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University of Zagreb Examinateur

Ana Bušić
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Abstract

The power system transformation brings new challenges and opportunities due to changes and uncer-
tainties in electricity consumption and generation. High integration of intermittent solar and wind

generation requires fast ramping resources to satisfy the growing demand, triggered by the electrification
of the transportation sector. Energy storage is one possible solution to facilitate such a transformation. In
this thesis Li-Ion battery, as energy storage, is used both at the level of individual consumers minimizing
the cost of electricity and at the grid level for increasing reliability and stability of the power network.
The cost of the batteries being still high, the importance is also given to the health of the battery taking
into account its degradation in optimization and control formulations.

Electricity consumers with local renewable generation such a rooftop solar generation can use a bat-
tery to minimize their cost of operation. We formulate storage optimization problem under time-varying
electricity prices with different net-metering policies. The strong Lagrangian theory based storage oper-
ation solution is developed with threshold-based structure of the optimal charging policy. The proposed
algorithm is computationally efficient with quadratic worst-case complexity with respect to the horizon
length.

Due to their high-cost batteries need to be used for more than one dedicated application for becoming
financially viable. New billing mechanisms worldwide facilitate such a storage operation. In the co-
optimization formulations, we consider storage performing energy arbitrage under net metering along with
power factor correction, peak demand shaving, and energy backup for power outages. These formulations
are evaluated on case studies using real data. To implement the above algorithms in real time, autoregres-
sive forecast in context of receding/rolling horizon model predictive control is proposed. Further, prosumer
storage applications are explored for low voltage consumers in Madeira and Uruguay. These control policies
are tailored based on consumer contracts proposed by the utility.

Large-scale storage applications facilitating dynamic regulation and phase balancing using storage are
proposed for increasing power system reliability. A distributed stochastic control is implemented for a fleet
of geographically distributed batteries for tracking fast timescale supply and demand imbalance, while also
ensuring that the mean charge level of the fleet stays close to the desired level. Based on real-world data
case studies for a substation in Madeira and network-based simulations, we show that phase unbalance
can be an outcome of ad hoc distributed generation and electric vehicle charging placement in the context
of phase imbalance. Storage control architectures are proposed for reducing the phase imbalance.

Battery life is commonly quantified using cycle life and calendar life. In other words, battery degrada-
tion happens due to operational cycles and the age of the battery. To increase the operational life of the
battery, age-based storage degradation should be matched with the operational cycle based degradation.
We propose an effective mechanism to control the cycles of operation, thus reducing the stress on the
battery. Such considerations of storage health are embedded in the control and the optimization design
for the batteries.

Several case studies using real data are conducted to evaluate the performance of the storage control
and optimization algorithms. We observe that the ever-decreasing prices of batteries and the growing share
of intermittent renewables will only increase the relevance of this work for future power networks.
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Résumé

La transformation du système électrique due aux changements et aux incertitudes de la consommation
et de la production apporte de nouveaux défis et de nouvelles opportunités. La forte intégration de

la production intermittente d’énergie solaire et éolienne nécessite des ressources à montée en puissance
rapide afin de satisfaire la demande croissante, déclenchée par l’électrification du secteur des transports.
Le stockage d’énergie est une solution possible pour faciliter une telle transformation. Dans cette thèse,
la batterie Li-Ion est utilisée à la fois au niveau des consommateurs individuels, minimisant le coût de
l’électricité, et au niveau du réseau pour accrôıtre la fiabilité et la stabilité du réseau électrique. Le coût
des batteries étant encore élevé, l’importance est également donnée à la durée de vie de la batterie, compte
tenu de sa dégradation dans les formulations d’optimisation et de contrôle.

Les consommateurs d’électricité avec la génération renouvelable locale peuvent utiliser une batterie
pour minimiser leurs coûts de fonctionnement. Nous formulons le problème d’optimisation du stockage
sous des prix de l’électricité variables dans le temps avec différentes politiques de facturation nette. Basée
sur la théorie lagrangienne forte, le contrôle optimal du stockage est développé, ayant une structure à
seuils. L’algorithme proposé est efficace du point de vue calcule, avec une complexité quadratique dans le
pire de cas par rapport à la longueur de l’horizon.

En raison de son coût élevé, les batteries doivent être utilisées dans plusieurs applications pour devenir
plus pertinentes financièrement. Dans les formules de co-optimisation, nous considérons que le stockage
effectue un arbitrage énergétique sous la facturation nette, ainsi que la correction du facteur de puissance, la
réduction de la demande de pointe et la réserve de l’énergie en cas de coupures de courant. Ces formulations
sont évaluées sur des études de cas utilisant des données réelles. Pour mettre en œuvre les algorithmes
ci-dessus en temps réel, des prévisions autorégressives sont proposées dans le contexte du contrôle prédictif
du modèle en recul / horizon glissant. De plus, des applications de stockage sont explorées pour les
consommateurs à basse tension à Madère et en Uruguay. Ces politiques de contrôle sont adaptées en
fonction des contrats de consommation proposés par le fournisseur.

Des applications de stockage à grande échelle, facilitant la régulation dynamique et l’équilibrage de
phase, sont proposées pour accrôıtre la fiabilité du système d’alimentation électrique. Un algorithme de
contrôle stochastique distribué est mis en œuvre pour un parc de batteries réparties géographiquement
afin de suivre les déséquilibres rapides de l’offre et de la demande, tout en veillant à ce que le niveau de
charge moyen du parc reste proche du niveau souhaité. Sur la base d’une étude de cas réelle sur une sous-
station à Madère et des simulations réseaux, nous montrons que le déséquilibre de phase peut résulter de
la génération distribuée ad hoc et du placement de la charge de véhicules électriques dans un contexte de
déséquilibre de phase. Des architectures de contrôle de stockage sont proposées pour réduire le déséquilibre
de phase.

La durée de vie de la batterie est généralement quantifiée en se basant sur la durée de vie en cycle et
en calendrier. Afin d’augmenter la durée de vie de la batterie, la dégradation du stockage en fonction de
l’âge doit être adaptée à celle basée sur le cycle opérationnel. Nous proposons un mécanisme efficace pour
contrôler les cycles de fonctionnement, réduisant ainsi les contraintes sur la batterie. Ces considérations
sur la durée de vie du stockage sont intégrées dans l’optimisation et le contrôle des batteries.

Plusieurs études de cas utilisant des données réelles sont menées pour évaluer les performances des
algorithmes de l’optimisation et le contrôle du stockage. Nous constatons que les prix en baisse constante
des batteries et la part croissante des énergies renouvelables intermittentes ne feront que renforcer la
pertinence de ce travail pour les futurs réseaux électriques.
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Some Notations

i Index for time instant; i ∈ {1, 2, ...., N}
N Total number of time instants in the time-horizon
hi Sampling time at time instant i; h without time index denotes constant sampling time.
T Total time in the time-horizon; T =

∑N
i=1 hi.

ηch Charging efficiency of battery; ηch ∈ (0, 1].
ηdis Discharging efficiency of battery; ηdis ∈ (0, 1].
δi Change in battery capacity at time instant i; units Watts; δi ∈ [δmin, δmax]
xi Change in battery capacity at time instant i; units Wh; xi = δihi
bi Battery capacity at time instant i; units watt-hour; bi = bi−1 + xi. bi ∈ [bmin, bmax].
bmin Minimum permissible battery capacity in watt-hours
bmax Maximum permissible battery capacity in watt-hours
brated Rated battery capacity in watt-hour.
SoCi State-of-Charge at time i; SoCi = bi/brated.
SoCmin Minimum permissible state of charge of the battery.
SoCmax Maximum permissible state of charge of the battery.
δmin Minimum discharge rate in watts; δmin < 0
δmax Minimum charge rate in watts; δmax > 0
di Inelastic consumer load at time instant i in joules
ri Renewable generation at time instant i in joules
zi Net load seen by the energy meter without storage at time instant i in joules; zi = di − ri
si Output storage output at time instant i in joules; si ∈ [Smin, Smax].
Li Total load behind the meter at time i in joules; Li = zi + si.
Smin Minimum energy output of storage in a time instant i with sampling time h.
Smax Maximum energy output of storage in a time instant i with sampling time h.
pelec(i) Electricity price at time instant i.
pb(i) Buying price of electricity at time instant i.
ps(i) Selling price of electricity at time instant i.
κi Ratio of selling price and buying price of electricity at time instant i; κi = ps(i)/pb(i).
Sih Apparent power of consumer load at time i; Sih = P ih + jQih.
P ih Active power consumed by the consumer load
Qih Reactive power consumed by the consumer load.
Sir Apparent power output of the solar inverter
SiB The apparent power output of energy storage (connected through a converter which

is an inverter or a rectifier) is given as SiB = P iB + jQiB .
P iB Active power output of battery at time i; P iB ∈ [Pmin

B , Pmax
B ], Pmin

B =δminηdis, P
max
B = δmax

ηch
Smax
B The converter rating given by the maximum apparent power supplied/consumed.
QiB Reactive power output of storage converter; QiB ∈ [−Smax

B , Smax
B ].

Tcycle Cycle life of battery in 100% depth-of-discharge.
Tcalender Calender life of battery in years.
Lcal Calender life of battery in days.
ηfric Friction coefficient.
Di Aggregate demand at time i.
Gi Aggregate generation at time i.
∆i Mismatch between demand and generation at time i.
R(i) Residual mismatch between demand and generation with storage output si.
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Chapter 1

Introduction
Someone’s sitting in the shade today because someone planted a tree a long time ago. -Warren Buffett

Electrical power system is undergoing a metamorphosis. The future power networks will have greater
unpredictability due to the increased share of renewable generation either as bulk installations connected
to high voltage (HV)1/ medium voltage (MV)2 electricity networks or as distributed generation and new
loads such as electric vehicles connected to low voltage (LV)3 electricity network. Due to intermittancy
and uncertainty in renewable generation, large-scale integration of renewable generation and new loads
alter the aggregate consumption behavior; such an evolution of power system brings unique challenges
and opportunities for generation facilities, consumers, aggregators, and other power network participants.
Energy storage devices could effectively mitigate the uncertainty caused due to such an evolution of power
system. In this thesis we explore some of the different applications that energy storage, specifically Li-Ion
batteries, can perform in future power systems. We present the motivation of the thesis in the next section
and subsequently the contributions and outline of the thesis.

1.1 Motivation
Energy consumption can be broadly categorized in three categories: (a) electricity, (b) transportation
and (c) non-electric heating and cooling. With the growth of electric vehicles, many believe that energy
consumption due to transportation would be largely met by increased electricity usage, thus ensuring the
reliability of electric energy is even more essential. Electricity is one of the major form of energy for hu-
manity which will only become more important in future. Traditionally, electricity generation used fossil
fuels which contribute to increased pollution, production of greenhouse gases. This leads us to question
their sustainability. The Paris climate change agreement of 2015 aims to keep the increase in global tem-
perature to below 2 degree Celsius compared to the pre-industrial levels [24]. In order to achieve the above
mentioned goals, participants of the agreement which covers 195 countries made commitments to reduce
greenhouse gas production, increase energy efficiency and reducing carbon footprint. We list the commit-
ments made by France as an example of the climate change self-imposed obligations that participants have
sworn to fulfill based on their nationally determined contributions. France made commitments listed as:
(i) to ban all petrol and diesel vehicles by 2040, (ii) stop using coal for producing electricity post 2022,
(iii) invest up to 4 billion euros for boosting energy efficiency, (iv) produce 23% of total energy needs from
renewable energy sources by 2020. This commitment breaks down to 33% of energy used in heating and
cooling sector, 27% of the electricity sector, and 10.5% in the transportation sector.

Clearly, to achieve the goals of the Paris Agreement, more electricity should be generated using re-
newable energy sources replacing the traditional fossil fuel based generators. Furthermore, renewable
generators are becoming more and more financially competitive compared to conventional sources of gen-
eration. Thus, many countries are replacing their generation facilities reaching their operational age with
new renewable energy sources. In 2016, new wind and solar installations beat investments in fossil fuels
by 2-to-1. In 2015, renewable energy provided 19.3% of the total energy consumed worldwide. Presently,
at least 30 nations already have renewable energy contributing more than 20% of energy supply [77].
Gradually, the share of renewables is further going to increase worldwide.

1IEC 60038 classifies voltage levels between 35 kV to 230 kV as high voltage or HV.
2IEC 60038 classifies voltage levels between 1000 V to 35 kV as medium voltage or MV.
3IEC 60038 classifies voltage levels upto 1000 V as low voltage or LV.
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Some believe this transition in energy will mark the beginning of the fourth industrial revolution. The
gravity with which this transition is required is not just about financial viability but is also essential to
ensure a sustainable future for the newer generation. To materialize the commitments towards climate
change, the developed countries affirmed to mobilize $100 billion a year in climate finance by 2020.4
Another study estimates that the world will spend an extra $8 trillion over the next 25 years to prolong
the use of non-renewable resources, a cost that would be eliminated by transitioning to greater share of
renewable energy generation.5

Note that renewable sources consist of not only solar and wind but also geothermal, biomass, burnt
waste, and small hydro plants. Based on this definition of renewable energy sources, not all of them
are intermittent. Often hydro plants and/or pumped storage are integrated together with intermittent
solar and wind plants. Hydro and pumped storage can be used as an energy storage for mitigating
the intermittent behavior of solar and wind generators. For example, Lower Austria, one of the nine
states of Austria with a population of more than 1.6 million claims to have a 100% renewable energy
consumption. The total generation consist of 63% hydroelectricity, 26% wind, 9% biomass and 2% solar.
In this generation mix majority of 72% could be scheduled to ramp up or ramp down. Furthermore, total
installed capacity is often significantly higher than the peak demand, this is to ensure that if a fraction of
generators is out of service, the total load will still be met. In this context, if there is a sudden drop in
solar or wind generation due to a passing cloud or loss of wind then hydro and biomass generations could
be ramped up to meet this unexpected drop in generation. Similarly, if solar and wind generate excess
energy than forecasted values, then hydro reservoir could be used to store the excess generation. However,
hydro and pumped storage are geography-specific and cannot be built in all places. In the absence of such
storage, batteries are an alternative solution.

Batteries are becoming more and more attractive for power system applications with a larger share
of renewable generation. The key attributes of batteries that make them so attractive are high energy
density, low starting time, fast ramping ability compared to other storage technologies such as flywheels
with high ramping capability but low energy capacity, pumped-hydro with a low ramping capability and a
high energy capacity. Furthermore, LiIon batteries have significantly higher roundtrip efficiency compared
to other forms of energy storage. In this thesis, we focus on using the batteries for different applications
for:
• electricity consumers integrating energy storage for minimizing their cost of consumption and
• large-scale storage applications for the utility/the aggregator/generation facilities for ensuring the

power system stability and reliability.

However, batteries are yet not cost effective due to their high initial cost. We, therefore, explore co-
optimizing storage applications to improve revenue opportunities that energy storage owners can make.
The new electricity consumer contracts indicate that inclusion of storage would indeed make financial sense
for consumers. We present case-studies of Uruguay and Madeira in Portugal as examples for exploring
possible roles energy storage could make in their power system. Furthermore, batteries should be used
optimally to maximize the service provided, and the control design should prolong their operational life.
Batteries degrade due to operational cycles and age. So tuning operational cycles can affect the long-term
life of the battery. We consider the battery degradation in storage optimization and control design.

1.2 Contributions of the Thesis
In this thesis we explore various applications of energy storage in the context of the future power networks,
taking into account storage health. Major contributions of this thesis are:

Optimal energy storage arbitrage: Under time-varying electricity price, consumers can operate
battery to minimize their cost of consumption. This is referred to as energy arbitrage. We propose a
computationally efficient algorithm for solving the optimal arbitrage problem. This formulation considers:
(a) consumer load variation, (b) time-varying electricity price, (c) storage ramping, capacity constraints
along with efficiency losses. We identify the exact threshold based structure of optimal storage opera-
tion governed by the price fluctuations, storage efficiency and consumer load (can also include the local
renewable generation by the consumer). These thresholds are used to decide the envelope of possible solu-
tions in a sub-horizon which is often smaller than the entire time horizon of optimization. The proposed

4https://www.wri.org/blog/2015/12/what-does-paris-agreement-do-finance
5https://news.nationalgeographic.com/news/energy/2010/11/101109-peak-oil-iea-world-energy-outlook/
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methodology of solving the optimal energy arbitrage problem is computationally efficient with worst-case
runtime complexity of quadratic and, therefore, several folds faster than a linear programming and convex
optimization based benchmarks. This proposed algorithm is then generalized for different relationship of
buying and selling price of electricity. In order to ensure the convexity of the arbitrage problem, selling
price is assumed to be lower or equal to the buying price. This assumption is valid for most net-metering
policies. In fact, we are unaware of a counterexample where the selling price is higher than the buying
price.

Co-optimization of storage: Due to the high cost of batteries, co-optimizing storage for multiple
tasks can increase the revenue stream thus increasing the financial viability of batteries. We propose three
co-optimization formulations in this thesis.
Formulation 1 : Arbitrage with power factor correction - Using convex relaxations we formulate the co-
optimization problem for performing arbitrage along with power factor correction (PFC). Using data
collected from households in Madeira we exhibit that solar inverters operating at unity power factor de-
grade the power factor seen by the grid. We validate our co-optimization formulations using numerical
results and conclude that performing power factor correction does not affect the arbitrage gains noticeably
and the control of active and reactive power is largely decoupled.
Formulation 2 : Arbitrage with power factor correction and peak demand shaving - Co-optimizing formu-
lation for arbitrage with PFC and peak demand shaving deals with different time scales of operation. A
peak demand charge is applicable for a longer time scale, e.g. a month. However, arbitrage and PFC
is applicable for smaller time scales of minutes to a few hours. We propose a heuristic to simplify this
co-optimization by reducing the horizon to one day using a memory variable which tracks the past peak
demand. This simplification makes the co-optimization problem computationally efficient.
Formulation 3 : Arbitrage with peak demand shaving, energy backup and self-sufficiency - A case-study
for consumer contracts in Madeira Portugal for co-optimization is performed. The storage also performs
energy backup for power outages.

Case-studies for power networks: We analyze the low-voltage consumer contracts for two loca-
tions: Madeira in Portugal and Uruguay. We identify that consumers in Madeira and Uruguay can gain
significantly by including energy storage. We also provide a case-study which can be used to recommend
the suitable contracts created by the utility that consumers with/without given storage should opt for.
The proposed optimization formulations for Madeira also consider energy storage used for power backup.
Under this role, energy storage attempts to have a higher charge level for periods where load shedding or
power outage is more probable. Due to the type of net-metering policy and time-of-use pricing of electricity
consumer storage operation in Uruguay is insensitive to uncertainties. For storage applications in Uruguay,
we show that pre-decided threshold based structure will be best-suited as the storage operation for both
active and reactive energy is not affected by exogenous parameter variations.

Large-scale storage applications6: We consider two large-scale applications for batteries:
(a) Dynamic regulation tracking by using a distributed fleet of batteries. The hierarchical control consists
of two levels: (i) feedback control based on the aggregate response of the fleet and (ii) local control for
ensuring that charge level of the battery is within the target band for battery charge level. An additional
control layer, drift compensation, is proposed to ensure that the aggregate charge level of the fleet of
batteries remains close to the target charge level.
(b) Phase balancing: Haphazard growth of renewables and electric vehicles could cause power unbalance
in three phases. This is due to most distributed generators and electric vehicles consume single phase elec-
tricity and thus causing unbalance in three-phases. Energy storage at building, substation or distribution
feeder level could assist in phase balancing. We present the different architectures of storage control for
phase balancing. Case of a substation in Madeira, Portugal is presented showing three phase imbalance
due to DGs and EVs.

Health consideration in storage operation: Storage life is often described as a combination of
cycle life and calender life. We propose controlling cycles of operation for equating cycling degradation
to the age degradation thus in effect increasing operational life of the battery. We show that controlling
the cycles of operation using proposed friction coefficient only eliminates the low returning transactions.
This methodology is also applied for co-optimization formulation described above, where storage uses the
majority of its cycles for performing arbitrage. We also present the mechanism for controlling cycles for
storage performing dynamic regulation by adjusting ramping commitments.

6Large-scale storage application refers to those applications where storage size is more than 1 MW.
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Financial feasibility of battery applications: Batteries are expensive with constraints due to
cycle life, ramping, and capacity. Financial viability is an essential aspect for batteries. We observe using
case studies for energy markets in the USA and Europe that performing only arbitrage is not profitable
for storage owners. However, co-optimization of multiple applications using battery could drastically
increase dollars per cycle that storage owners could make. Case studies for energy markets in Uruguay
and Madeira exhibit that batteries are profitable in such markets. On the contrary to consumer-based
storage applications, providing ancillary service is much more profitable. As a case-study for PJM ISO,
we observe that performing dynamic regulation is more than 15 times profitable compared to performing
arbitrage under the same ISO.
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Figure 1.1: Organization of the thesis

1.3 Organization of the Thesis
The organization of the thesis is depicted in Fig. 1.1. In Chapter 2 we present a detailed literature review
of the problems in power systems and why energy storage plays a pivotal role of technology enabler. We
also explore bottlenecks associated with batteries which need to be addressed in modeling and financial
evaluations.

The thesis is divided into three parts. In Part I and Part II we present the applications of battery
energy storage for an energy consumer in LV/MV power network such as residential consumers, building
consumers, and small industrial loads. We present a case-study of Uruguay that shows that storage
applications in a region or country should take into account the policies applicable, consumption behavior,
and local generation. In Part III we explore some of the large-scale applications of energy storage for the
power utility and ancillary service participants perspectives. In Chapter 5 in Part I and Chapter 12 in
Part III we also present how quality-of-service for batteries can be taken into account for some applications
described. Part II of the thesis is concluded with a perspective on the effect of real-time electricity price
on the ancillary service requirements which provides the need for applications discussed in Part III. The
last chapter of the thesis concludes and provides perspectives for future extensions of the work.
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Figure 1.2: The system considered for storage applications in Part I and Part II of the thesis

1.3.1 Part I of the thesis: energy storage arbitrage
The system considered in Part I and Part II of this thesis, i.e., electricity consumer/prosumer, is shown in
Fig. 1.2. In this part storage performing energy arbitrage is discussed under contemporary net-metering
policies with time-varying electricity price. Real-time implementation of the algorithm is proposed using
model predictive control. This part covers Chapter 3 to Chapter 5. A brief outline of each of these chapters
is as follows.

Chapter 3 describes Energy arbitrage under NEM7 1.0: Energy arbitrage using energy storage
refers to buying electrical energy when the price of electricity is low so as to sell when prices are higher
in order to make financial gains. In this chapter, we propose optimal energy storage control algorithm
for NEM 1.0, which compensates the excess generation supplied to the grid at par to the buying price of
electricity at that time instant. We observe that under such a net-metering policy minimizing the cost
of consumption with energy storage to maximize the gains is equivalent to minimizing the total cost of
consumption, thus storage operation is independent of inelastic load and renewable generation variation.
Our algorithm is based on the discretization of optimal Lagrange multipliers of a convex problem and has
a threshold based structure in which the optimal control decisions are independent of past or future prices
beyond a certain time horizon. The proposed algorithm has the worst-case quadratic run-time complexity
in terms of the time-horizon length. The proposed algorithm is found to be several folds faster than other
benchmarks and hence has the potential to be used for in real-time [184]. Furthermore, we present three
case-studies: (i) arbitrage financial potential in some European and USA energy markets, (ii) statistical
quantification of sub-horizon based on CAISO price data for 2017 [183], (iii) mitigating uncertainty and
comparison of scenario-based model predictive control with traditional forecasting with MPC on arbitrage
gains [130].

Chapter 4 describes Energy arbitrage under NEM 2.0: [183] We extend the approach proposed
for the optimal arbitrage under NEM 1.0 in Chapter 3 for NEM 2.0. In this case, the optimal storage
operation is affected by the magnitude and sign of the inelastic load and renewable generation. We present
a modular and computationally efficient algorithm for performing energy arbitrage under various net-
metering schemes. We show that the optimal storage operation has threshold based structure and we list
these thresholds for different conditions. The thresholds are a function of (i) electricity price, (ii) charging
and discharging efficiency, (iii) storage ramp constraint, (iv) relationship of selling price, buying price and
storage efficiency, and (v) inelastic load and renewable generation. We also observe that energy storage
optimal operation depends on a period defined as a sub-horizon. The sub-horizon is the lookahead horizon
which is required for taking optimal actions. The time instants outside the sub-horizon in past or future do
not affect the optimal control decisions. We observe that the sensible value of this sub-horizon is governed
by price variation and energy storage parameters like ramping and capacity. The length of sub-horizon is
governed by (a) initial storage charge level, (b) electricity price, (c) charging and discharging efficiency,
(d) ratio of ramp rate and rated capacity, and (e) sampling time.

7Net-Energy Metering or NEM: (a) NEM 1.0 refers to a policy where buying and selling prices are equal. (b) NEM 2.0
refers to a policy where the selling price is lower than or equal to the buying price. NEM 1.0 and NEM 2.0 are the two
versions of net-metering policy in California. Similar compensation strategies are also applicable for many countries across
the world, for example, France, Uruguay, rest of the US [22].
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Chapter 5 describes Considering battery life for arbitrage and regulation services: Estimation
of financial returns of energy storage is very essential due to its high cost. This chapters aims to identify the
monetary potential of batteries in performing price based energy arbitrage and dynamic regulation, while
considering the degradation of the battery over time and due to operational cycles. Based on the present
compensation mechanism we calculate the dollar value of per cycle operation of a battery. We propose an
algorithm for identifying the cycles of operation of the battery, taking into account the depth-of-discharge
of the battery. This is essential as Li-Ion batteries have a nonlinear relationship between cycle life of the
battery and the depth-of-discharge. Furthermore, we propose mechanisms to control the operational cycles
of the battery for increasing their operational life [182].

1.3.2 Part II of the thesis: energy storage co-optimization
In modern power networks energy storage devices can perform many different tasks from price-based arbi-
trage, incentive based demand response, voltage and frequency regulation as ancillary service participants
or peak demand shaving for consumers. This part consists of Chapter 6 to Chapter 10. In Chapter 6,
Chapter 7, and Chapter 8 we deal with co-optimizing energy storage applications for multiple revenue
streams. Chapter 9 provides a case-study using the new consumer contracts in Uruguay, where low volt-
age consumers can co-optimize for arbitrage and reactive energy compensation. The section ends with a
perspective on the effect of real time electricity pricing on ancillary requirements in Chapter 10.

Chapter 6 describes Co-optimization of arbitrage with power factor correction: The large
scale integration of distributed generation will drastically deteriorate power quality specifically power fac-
tor (PF) due to inverters producing only active power. PF norms which presently are applicable only to
large and industrial loads will change in future with greater share of low voltage distributed generation.
We use energy storage interfaced with a converter to correct the PF locally without deteriorating its ability
to perform arbitrage or peak demand shaving. We use four-quadrant energy storage converter operation,
i.e., energy storage converter generating or consuming both active and reactive power for maintaining the
PF within permissible levels set by the utility. This work is submitted as [177].

Chapter 7 describes Co-optimization for arbitrage, peak demand shaving and power factor
correction: We present a co-optimization formulation for energy storage devices for performing energy
arbitrage and power factor correction in the time scale of minutes to hours along with peak demand shav-
ing in the time scale of a month. The optimization problem, despite being non-convex, is solved using a
penalized convex relaxation. In this chapter, we present a case-study with real data for a time scale of
several months. This numerical experiment shows the effectiveness of energy storage devices performing
multiple tasks simultaneously. In particular, we show that the energy storage can correct the power factor
without significant change in arbitrage gains and peak demand charges [178].

Chapter 8 describes Co-optimization for energy backup, peak demand shaving and self-
sufficiency: Energy storage applications and roles are explored from a prosumer perspective for the
island of Madeira, Portugal. These applications can also be applicable to other isolated or mainland
power networks. We formulate a convex optimization problem for energy arbitrage under zero feed-in
tariff, increase self-sufficiency by increasing self-consumption of locally generated renewable energy, pro-
vide peak shaving, and act as a backup power source during anticipated and scheduled power outages [187].

Chapter 9 describes a case-study applicable for LV consumers in Uruguay. The objectives of
the case-study are two-fold: (a) Understanding the contracts available for low voltage electricity consumers
in Uruguay and (b) Energy storage applications and control for consumers with inelastic load and/or solar
PV [180]. Furthermore, we provide suggestions to an electricity consumer in selecting such contracts and
at the same time reducing their cost of consuming electricity. The presented case study depicts that the
applications of energy storage need to be tailored based on region which decides the available contracts,
consumption pattern, distributed generation available, and investment constraints for installing energy
storage.

Chapter 10 describes perspective on the Effect of real time electricity price on ancillary services:
We analyze the effect of real-time electricity price (RTP) on the amount of ancillary services required for
load balancing in the presence of responsive users, information asymmetry and forecast errors in demand
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and renewable generation. We consider a electricity price that is determined by the forecasted generation
and ramping cost. A community choice aggregator manages the load of all the consumers by setting the
price. The consumer’s objective is to minimize their overall cost of consumption. Ancillary services are
called upon to balance the load in real time. With zero RES in the power network and a high degree of
load flexibility, the proposed RTP flattens and the volatility in demand vanishes. However, in presence of
RES the volatility in price and demand is reduced up to an extent and ancillary services are required for
load balancing. The amount of ancillary services required increases with forecast errors. We also propose
a real time algorithm that approximates the optimal consumer behavior under the deterministic setting.
Numerical simulations are provided using real data from Pecan Street and Elia Belgium [186].

1.3.3 Part III of the thesis: large-scale application
In this part we present some of the large-scale applications of energy storage for the power utility and
ancillary service participants. This part of the thesis consists of Chapter 11 to Chapter 13. Chapter 12
presents the quality-of-service aspects of storage in the proposed distributed control design in Chapter 11.
Chapter 13 provides storage application for phase balancing.

Chapter 11 describes Distributed Control of Fleet of Batteries: Battery storage is increasingly
important for grid-level services such as frequency regulation, load following, and peak-shaving. The man-
agement of a large number of potentially geographically distributed batteries presents a control challenge.
The proposed control solution respects battery constraints, and ensures that the aggregate power output
tracks the desired grid-level signal [114], [135]. The system considered in this chapter is shown in Fig. 1.3.
The geographically distributed fleet of batteries track the reference signal rt denoting the instantaneous
unbalance in supply and demand. This fleet of batteries do not have any communication among them-
selves. The objective of the control design is: scalability, robustness to disturbances, modularity, and low
communication infrastructure.

Figure 1.3: Geographically distributed fleet of batteries control design for providing ancillary service.

Chapter 12 describes Drift Compensation: Mean state-of-charge (SoC) of batteries drifts from
the pre-decided optimal SoC level due to (a) charging and discharging efficiency losses and (b) non-zero
mean regulation signal. Control proposed in Chapter 11 does not actively ensure maintaining the SoC.
We propose a drift compensation control layer for stochastic control of geographically distributed fleet of
batteries proposed in Chapter 11 [114], in order to maintain the charge level of batteries in the desired
range. We show that the inclusion of the drift compensation leads to stable operation of providing dynamic
regulation with a fleet of batteries with efficiency losses [175].

Chapter 13 describes Phase Balancing: Most bulk transmission of electrical energy is done in three
phases. However, distribution of electrical energy in low voltage level is often performed in single-phase.
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The three phases independently act as three single phase lines. Phase imbalance can introduce additional
power losses and limit the loading capability of distribution transformer [102]. With ad hoc deployment
of renewables the chances of power unbalance among phases will increase with the share of distributed
renewable energy installations. A case study to demonstrate probable phase imbalance is also presented
for a substation in Madeira, Portugal.

In this chapter, we consider balancing active and reactive power between phases using a battery. We
consider a battery that is owned by the utility or building and placed at low voltage substations or building
or in the distribution feeder. The system considered in this unpublished work, [181], is shown in Fig. 1.4.
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Figure 1.4: One of storage control architectures used at distribution level for balancing active and
reactive power in the three phases [181].

1.3.4 Conclusion and future directions
Chapter 14 contains a summary of contributions made in this thesis and provide future directions for
possible extension of this line of research.
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Chapter 2

Challenges and Literature Review

In the middle of difficulty lies opportunity. - Albert Einstein

Energy storage as technology enabler for smart electricity networks

What bank is for money, battery is for energy.

Energy storage in power system are buffers which can deliver and store electrical energy, therefore,
can be used to store excess generation and supply excess demand. Many types of storage technologies
are used in power networks worldwide. For instance hydroelectric pumped storage acts as mechanical
energy storage, batteries store energy as chemical energy. Different energy storage technologies could
serve different applications in power grid. Capacity1, cost, energy density, efficiency level, discharging
speed2, self-discharge3 technical and economic life are factors that determine in which context the storage
technologies are most suitable.

Table 2.1: Energy Storage Specifications [259, 168, 275]

Storage Efficiency Life Self-discharge Discharge Cost Energy Start-up
Technology Level %(per-day) Speed $/kWh Density Time

Pumped Hydro 65-85 50+ yrs 0 - 0.5 1-24 hours 200-300 0.35-1.12 kWh/m3 sec-min
Compressed Air 42-54 10-20 yrs 0 - 10 1-24 hours 0.5-0.8 kWh/m3 min

Lithium-Ion 85-95 10-20 yrs/ ≈ 0.067 min-hours 370-900 85-200 kWh/kg -
2-10,000 cycles

Lead Acid 60-95 7 yrs/≤ 1000 cyc. ≈ 0.167 min-hours 100-300 33-42 kWh/kg -
Flywheels 95 20 yrs 20-100 [93] 0.1-20 min 550-950 200 kWh/kg ms

Super-capacitor 95 1 million+ cycles 2-4 0.001-3 sec 200-300 1-30 kWh/kg ms

Table 2.1 lists some of the common storage technology along with the range of technical specifications.
It is evident that storage type will govern the applications for which storage is used. For example pumped
hydro will be more suitable for energy management applications facilitating bulk energy shift. However,
pumped hydro will create less value in primary frequency regulation due to its slow ramping character-
istics, see discharging speed in Table 2.1. On the contrary, batteries are best suited for most power grid
applications, Fig. 2.1 presented in NERLs report [9] on energy storage shows a visual representation of
storage characteristics and possible application for which the storage could be used. In this report they use
capacity and discharge time to distinguish storage technologies. The storage applications are categorized
into three primary goals: energy management or shifting energy in time, operational and ramping reserves
for following load and frequency regulation4 to ensure power quality. These roles can be further categorized
for applications concerning generation end, transmission and distribution end and end-user level.

U.S. Energy Information Administration in its recent report explores market trends of large-scale
battery storage in the US [315]. Large scale refers to system that are grid connected and have a nameplate
power capacity greater than 1 MW. The report identifies that Lithium-ion represented more than 80% of
the installed power and energy capacity of large-scale battery storage in operation in the United States at
the end of 2016. This is due to Lithium-ion batteries having high-cycle efficiency and fast response times.

1Battery capacity is measured in Watt-hours which is a unit of energy.
2Discharge speed denotes the time required to discharge the battery from fully charged state at maximum discharge rate.
3Self-discharge refers to the deterioration of battery charge level even when idle due to internal chemical reactions.
4Frequency regulation refers to maintaining the power grid frequency within pre-set limits decided by the balancing

authority or the Transmission System Operators (TSOs).
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Figure 2.1: Classification of roles of energy storage in power system based on storage technology [9].

In addition, their high energy density makes them the current battery of choice for the portable electronic
and electric vehicle industries. At the end of 2017, 708 MegaWatts (MW) of power capacity (maximum
instantaneous power), representing 867 MegaWatthours (MWh) of energy capacity (total storage capacity),
of large-scale battery storage capacity was in operation. Nearly 40% of existing large-scale battery storage
power capacity (and 31% of energy capacity) lies in the Pennsylvania-New Jersey-Maryland Interconnection
(PJM). Installations in California Independent System Operator (CAISO) territory accounted for 18% of
existing U.S. large-scale battery storage power capacity in 2017, but they accounted for 44% of existing
energy capacity. Market trend indicates the superiority of Li-Ion batteries. In this thesis we consider
Li-Ion as energy storage for various power system applications.

This chapter is divided into five parts. The first part describes challenges specific to future power
system and presents some of the roles of independent system operator (ISO). ISO would encourage active
participation of different entities: commercial and residential consumers and generators facilitating reliable
operation of power network. In the second part we describe the various roles energy storage can play in a
smart grid. Energy participants could combine various roles in order to maximize their profit. A detailed
segregation of these tasks based on high voltage (HV), medium voltage (MV) and low voltage (LV) is
not performed in this thesis. In the third part we list the bottlenecks associated with Li-Ion energy
storage based on cost, storage parameters and uncertainty in decision variables. Note that some of these
bottlenecks will also be applicable for other types of storage. It is essential to consider these bottlenecks in
modeling and evaluation of energy storage applications. In the fourth part, we present the strategy used
to mitigate the effect of uncertainty and the storage operation used in the rest of the thesis. In the last
part of this chapter, we present the notation and storage model used in this thesis.

2.1 Future Power System Challenges
Electrical power system is often considered the most complex man-made system and comprises of gener-
ation, transmission and distribution assets facilitating electricity consumers commercial and residential,
to use electrical energy. In order to ensure the electrical stability and reliability of power network so as
the power can be transported from generators to distribution networks and to loads, independent system
operators or ISOs are created (in context of the US). ISOs being independent from ownership by generators
or market participants bring fairness as they do not tend to favor one over other in setting norms. An ISO
performs the following tasks (not complete list):

• (T1) instantaneous balancing of cumulative generation and load,
• (T2) power quality5 in the system,

5Power quality involves magnitude, frequency, and waveform of voltage and current. Well known indices such as frequency,
power factor, total harmonic distortion etc are frequently used as indicators of power quality.
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• (T3) power grid upgrade for future. Often an ISO divides the responsibility to several Distribution
System Operators or DSOs. DSO handles reliable operation of power network at a regional level. In
cases where DSOs are unable to ensure power reliability, ISOs take the role at regional level too.

The power network is undergoing a transformation at generation and load sides simultaneously. Dis-
tributed generation (DG) facilities which consist of primarily renewable energy sources like wind and solar
are being integrated in the power network. The share of DG is expected to increase. This transformation
of traditional centralized generation to distributed generation will require a re-design of the system to at-
tain the same levels of reliability. Contemporary power networks have very high reliability. Furthermore,
more and more fossil fuel based generators will reach their usable life and will not be replenished by the
same level of fossil fuel based generation due to environmental concerns. Large scale renewables will cause
the aggregate generation intermittent and more challenging to achieve a balance between generation and
demand. The renewable generation at electric consumer end is often interfaced via a converter which
operates at close to unity power factor6 [172] leading to deterioration of power factor seen by the grid
which meets all the consumer reactive power and only a fraction of active power. At the load side, new
loads like Electric Vehicles or EVs will evolve in large-scale in near future. Effect of such loads needs to
be evaluated. Both of these directions of power system transformation are heavily researched.

We summarize the effects caused by the above mentioned transformation presented in the literature.

• Generation shift from dispatchable units to intermittent renewables: paradigm shift from traditional
power network where generation used to follow load [202]. Furthermore, inverter interfaced renewable
energy sources (RES) replacing rotor based generation will reduce power system inertia which implies
higher rate of change of frequency during system disturbances. Distributed generation is intermittent,
interfaced via single phase converter and solar PV also have a high impedance and low short circuit
current making it more prone to cause unbalance7 in the power network [229], [155].

• Bulk centralized generation facilities to decentralized DGs: For instance, in the UK electricity network
is dominated by a centralized power generation model, where power flows from less than sixty large
power stations to millions of consumers [26]. However, this will change with growth of DGs and
small renewable generation plants. Due to growth of DGs compared to traditional power system
with centralized generation the risk of local voltage problems and congestion will increase [202].
Central system operators will no longer have a system overview to effectively dispatch reserves
and therefore, requiring localized corrective actions. Authors in [159] present case studies of how
distributed generation should be considered for finding the feeder hosting capacity8 to prevent over-
voltages and transformer overload. The hosting capacity depends on the network topology, line
parameters and transformer rating. In case of overproduction from the hosting capacity level, soft
or hard curtailment of generation will be required in order to ensure stable operation.

• Localized impact of DG outage: this is the advantage the new power system with large amounts of
DGs. Failure of DGs will have a localized effect, unlike presently power generation failures which
can lead to cascaded effect leading to complete blackout. However, detailed analysis should be
considered in redesigning the power grid, which has been designed for one way power flow, i.e. from
bulk generation facilities to LV and MV consumers. The distribution feeders are designed such that
the voltage magnitude becomes lower when moving along the feeder. Integrating DGs at distribution
level makes the design condition of feeders invalid and thus over-voltages could occur [104].

• Synchronized operation: The connection of single phase electric vehicles (EVs) and DGs are random
and often clustered in a certain area. Authors in [278] note that voltage imbalance caused by single
phase EVs is unlikely to exceed the prescribed limits set provided EVs are reasonably distributed
among three phases. However, such a distribution cannot be guaranteed. In addition both EVs
and PVs (PhotoVoltaics) tend to be active in a synchronized manner, i.e., majority EVs tend to get
charged in the evening when people reach their homes after work and all PVs generate electricity when
it is sunny. Such a synchronized operation of these loads and generation aggravates the problems for
distribution system operators who are obliged to ensure power quality at all times. Huge ramping
reserves (both up and down) will be required to cope up with bulk DG and EV integration.

Fig. 2.2 shows two consecutive weeks of demand, generation and regulation required at Bonneville Power
Administration (BPA) balancing authority. The left plots shows a week with negligible amount of wind

6Power factor measures the phase difference between the ac voltage and ac current.
7Voltage unbalance is used to measure unbalance in power networks. Voltage unbalance measure is referred as Voltage

Unbalance Factor or VUF. In Chapter 8 we describe in detail the various definitions used to measure unbalance.
8Feeder hosting capacity refers to the amount of resources (generators or loads) that can be accommodated on a feeder

without impacting system operation under existing control and infrastructure configuration [223].
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Figure 2.2: BPA demand supply mismatch with renewable generation for two consecutive weeks [5].

generation and the right plot shows significant amount of wind generation. Due to greater intermittancy
brought by higher wind generation the amount of regulation required for achieving balancing between
aggregate load and generation increases noticeably. The new power system will require active participation
of grid participants: consumers and producers. More ancillary services9 and greater responsiveness of
participants will be required. Greater observability of power network with sensors, information system
and communication protocols will be required for adaptive decision making in real time.

With increasing share of RES the problem of supply and load balancing will become more challenging,
due to the additional intermittency in power generation by RES. The various solutions to this problem
proposed in the literature are:
• Solution S1 : Install new fast ramping generation infrastructure and upgrade in transmission and distri-
bution grid infrastructure [168].
• Solution S2 : Induce demand response participation by end-users in exchange of incentives [248, 265].
• Solution S3 : Direct load control by the balancing authority or independent system operators [289, 256].
• Solution S4 : Generation and/or demand curtailment.
• Solution S5 : Perform ancillary service [114], demand response, arbitrage [184], load balancing, infras-
tructure deferral, generation and/or demand curtailment using batteries or storage devices.
In this thesis we focus on Solution S5.

Roles of ISO: The broad categorization of ISO tasks T1-T3 described previously, are coupled in
nature. If T1 is not achieved then one or more indices of T2 will deviate beyond their prescribed limits.
For instance in high voltage network where active power is coupled by frequency, if the active load exceeds
active power generated then frequency will dip below 50/60 Hz [188]. The dip will be governed by the
magnitude of unbalance between generated and consumed active power. The tasks T1 and T3 are coupled
in a way that if power network does not have enough reserves than achieving T1 is not possible without
load or generation shedding, a scenario which reduces power system reliability. ISO plans the growth
of transmission, distribution and generation facilities taking into account the emergence of new loads,
degradation of existing infrastructure, uncertainty in generation scheduling and intermittency of renewable
generation. In this thesis we do not discuss T3.

For ensuring that tasks T1 and T2 are achieved, ISOs introduced new billing mechanisms for energy
participants, created new energy markets, encouraged participation in ancillary service market and set
power quality norms for different participating entities in the network. Below we describe the need and
effect of these initiatives by ISOs. Fig. 2.3 shows the various ISOs in the US and Canada [34].
2.1.1 Need for innovative billing
In order to encourage electricity consumers to participate actively in facilitating goals T1 and T2 of the
ISO, ISOs provides incentives (or penalties) to energy participants, i.e. consumers and/or generators, in

9Ancillary services includes frequency support, voltage support, and system restoration [304].
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Figure 2.3: ISOs in the USA and Canada 2018 [34].

exchange of their services. The new electricity bills have few or all of the following revenue sources for
active participants. ISO also sets Locational Marginal Prices for participants of energy markets which
consists of large loads, generation facilities and utilities/retailers that buy energy for their consumers.

Wholesale Energy Markets: Wholesale energy markets exist in many power networks. The PJM
energy markets consists of two markets: a day-ahead market and a real-time balancing market [230]. The
day-ahead market is a forward market in which hourly clearing prices called as day-ahead LMPs10 which
are calculated for each hour of the next day based on offers and bids submitted into the day-ahead market.
The real-time energy market based on real-time operation uses real-time LMPs calculated based on sys-
tem operating conditions. All spot purchases and sales in balancing market are settled at real-time LMPs.
Large loads and bulk generators participate in wholesale energy markets.

Electricity Price for Consumers: Traditionally utilities and ISOs used fixed electricity prices as
most generators were developed to follow the load. However, with uncertainty in generation side, consumer
responsiveness could help ISOs in avoiding developing new infrastructure to mitigate such intermittency.
The real time electricity prices are set for consumers to incentivize their power consumption deviation.

• Time-of-Use (ToU) Price: ToU pricing is a variable rate structure that charges for energy depending
on the time of day and the season when the energy is used. Responsive end-users shift their load
to low rate times thus facilitating in load shifting from the historical peak consumption periods to
off-peak periods. ToU can reduce the peak aggregate load [105]. However, ToU rate is inadequate to
reflect the real time conditions of the grid, because the peak rate times are determined based on past
aggregate consumption and may not correspond to the actual peak load. This will only exacerbate
with more renewable sources in the grid. This is exemplified by the case study of Northern Italy by
authors in [310] pointing the non-effectiveness of ToU pricing in shifting peak demand. Therefore,
more dynamic price structure are proposed which reflects the real time condition of the grid.

• Real Time Electricity Price: electricity price vary dynamically with sampling time ranging from 5
minutes in CAISO to 15 minutes in NYISO to hourly variations in PJM [16]. Real time electricity
price aim to reduce the peak- to-average load ratio, i.e. flatten the load, leading to peak shaving for
the grid. For ex-ante type real time price (RTP) design where the electricity price set at the beginning

10Locational Marginal Price or LMP is defined as the marginal price for energy at the location where energy is delivered
or received. In PJM LMP consists of three components: system energy price, congestion price and loss price [230].
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of the time interval is most prevelent. Information asymmetry is caused by the time delay between
setting RTP, consumption decision and intermittent generation. Setting RTP requires the prediction
of aggregate demand and RES generation by the utility if the price is set ex-ante and prediction
of price by the consumers if the price is set ex-post [287, 186]. Due to information asymmetry the
application of RTP is limited in real-time load balancing [186], thus ancillary services are called for
supply and demand balancing, see Section 2.1.2 and Chapter 10.

Peak Demand Charge: The maximum demand dictates the size of power grid infrastructure, i.e.
generators, transmission lines, transformers, circuit breakers etc. Due to this many power utilities around
the world have introduced peak demand charge that a consumer may seek to minimize over a longer pe-
riod (weeks or months). For example in California, Pacific Gas and Electric company charge peak demand
charges are applied based on the maximum demand over a month [295].

Peak Consumption Contract: In many places instead of peak demand charge, the utility offers
peak demand contracts where the consumer should ensure their peak demand within the selected con-
tract. In case the instantaneous power exceeds the contract level, the utility could either disconnect the
consumer and/or penalize for contract violations. This contract level decides the fixed charge component
of the end user electricity bill. For instance in Madeira in Portugal the utility Empresa de Eletricidade
da Madeira (EEM) provides low voltage consumers with 8 peak power levels which consumers select as a
contract [320]. In case the peak power of the consumer exceeds the consumer contract level, a localized
disconnection happens. The consumer can manually reconnect. However, such disconnection could affect
appliance life.

Demand Response Participation: There are several different mechanisms for implementation of
demand response or DR11 programs. The demand response can be (dr1) price based, (dr2) consumers
opting for contracts where they respond to balancing authority’s request and (dr3) consumers opting for
contracts where the flexible resources are controlled directly using a centralized signal ensuring the local
quality of service of consumer. There are many examples of demand response implementation world-
wide. We list some literature on demand response type (dr1). Authors in [302] present how price-based
demand-side management programs assist in the reduction of peak demand and present a case study of the
impact of real-time pricing on a power network in the city of Gothenburg, Sweden. Note that demand-side
management includes DR, energy-efficiency and conservation programs [319]. Authors in [224] present
results for price structures from the Ameren Illinois Power Company, showing a reduction of up to 39%
in overall domestic energy costs. Authors in [205] show that demand-side resources like space heating
can be incentivized to alter their consumption pattern pertaining to variations in the price of electricity,
leading to a reduction in the cost of consumption for the end user, while performing price-based DR for
the grid. Authors in [337] proposes controller for residential HVAC12 systems for a significant reduction
in peak loads and electricity bills with modest variations in thermal comfort. Authors in [279, 291] pro-
pose real-time electricity pricing scheme that reduces the peak-to-average load ratio, i.e. flattens the load,
leading to peak shaving for the grid. In many cases, DR participants are informed prior to an event to
reduce consumption thus deferring investment in peak ramping power plants. For example, consumers
can enroll in Florida Power and Light (FPL) Residential On Call savings program where FPL-approved
contractor installs the On Call device to reduce energy demand during emergencies. This of the form
demand response (dr2) consumers could save up to $137 a year even if FPL never turns off the appliances
chosen by consumers to participate. Historically, this program has been implemented a few times per year
in early to late afternoons on weekdays [30]. Extensive works of demand response of the form (dr3) are
available. Some works of direct load control are [94, 246].

Penalties for violating power quality indices: Many ISOs also include power quality penalties, in
order to encourage consumers to maintain power quality at their point of common coupling. Such penalties
are often levied upon large consumers and commercial loads, however, we believe that as the power network
evolves such tasks will also be mandatory for smaller loads. Actively participating consumers should aim
to minimize the penalties by abiding by the power quality norms set. In this introduction we provide rules
for power factor violation and penalties, similar norms are available for other power quality indices.

Power Factor Rules: Power factor (PF) which denotes the ratio of active power and the apparent power

11Demand Response refers to change is the consumption of electricity by an energy participant to meet the needs of the
grid. The participants receive incentives in exchange.

12HVAC refers to Heating, ventilation, and air conditioning loads.
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is denoted as cos(φ), where φ denotes the angle between active and reactive power. An alternate definition
commonly used to denote the PF is tan(φ) represented as tg φ in national and ISO level power norm
documents. tg φ denotes the ratio of reactive power over active power. Note | cos(φ)| denotes absolute
value of PF and implies the rules for leading or lagging power factor are symmetrical. Maintaining PF of
aggregate load seen by the transmission network is essential for reliable operation of distribution network.
Power utilities worldwide have rules designed for consumers to comply with the minimum power factor that
they should maintain. In case the consumer power factor goes below the pre-set limit defined by utility,
the consumer has to pay a penalty under some utilities or the utility makes it compulsory for the consumer
to install power factor correction equipment to improve the power factor within permissible limits. The
cost of power factor correction devices are borne by the consumer and not the utility [12, 18].

Below we list in Table 2.2 the power factor norms in different regions:
Table 2.2: Power Factor Correction Rules

Utility Name PF Limit Penalty/Reactive Power Cost/Remarks
France [72] |tg φ| ≤ 0.4 0.2 × Active Power Cost

Portugal [271] | cos(φ)| ≥ 0.92 0.016 to 0.18 × Active Power Cost
Germany [303] | cos(φ)| ≥ 0.95 Applicable for Solar Generators

CAISO | cos(φ)| ≥ 0.95 Applicable for bulk Wind Generators [28]
| cos(φ)| ≥ 0.9 for Producers in Distribution Grid [31],[33],[32]
| cos(φ)| ≥ 0.85 LV consumers in PG&E [23]

PJM [28] | cos(φ)| ≥ 0.95 Applicable for Wind Generators
ERCOT [239] | cos(φ)| ≥ 0.95 Applicable for all Generators since 2004

FirstEnergy, Ohio [12] | cos(φ)| ≥ 0.85 Consumers obliged for reactive power compensation
Alabama Power Company [1] | cos(φ)| ≥ 0.9 kW Billable = kW measured× 90% power factor

Actual power factor in %
Lansing Board of Water and Light [18] cos(φ) ≥ 0.85 Consumers obliged for reactive power compensation

Hydro Ottawa, Canada [14] | cos(φ)| ≥ 0.9 kW Billable = kW measured× 90% power factor
Actual power factor in %

Essential Services Commission in Australia have drafted a much more detailed rules and conditions for
maintaining the power factor based on consumer size, supply voltage and leading or lagging power factor.
The detailed list is presented as listed in [11] (Table 2, Page 13).

Traditionally, these rules of power factor where applicable for large loads like industrial facilities,
commercial complexes etc. However, with the growth of DGs power factor correction will be essential for
kW load levels. Since the economics of small loads in almost all contemporary electrical markets is based
on active power, i.e., buy and/or sell of active power, the need for supplying reactive power has been
completely overlooked. Furthermore, the growth of capacitive appliances and non-linear power consuming
devices would aggravate the stress on distribution transformers in near future.

2.1.2 Need for ancillary services
Ancillary services are the specialty services and functions provided by the energy participants that facilitate
and support the continuous flow of electricity so that supply will continuously meet demand. The term
ancillary services is used to refer to a variety of operations beyond generation and transmission that
are required to maintain grid stability and security. These services generally include, frequency control,
spinning reserves and operating reserves. Ancillary services are called upon for load balancing in time
scale of seconds to minutes.

Frequency Regulation in PJM: PJM must comply with standards set by North American Electric
Reliability Corporation (NERC). The “Real Power Balancing Control Performance“ standard requires
each balancing authority to control its area control error (ACE) within specified limits in terms of yearly
averages and on minute-by-minute basis [3]. Frequency regulation is the tool to smooth out the real-
time supply and demand imbalances, or ACE. In 2011, FERC’s Order 755 required grid operators to
compensate frequency regulation providers, including new fast ramp-rate resources, according to their
actual performance and technical ability to support the grid system. On October 1, 2012, with the purpose
of incorporating accurate but energy-limited storage resources, PJM split the frequency regulation signal
into two signals: slow-responding Regulation A (RegA) and fast-responding Regulation D (RegD). In the
initial construction of this split-signal system, RegA was designed for resources “with the ability to sustain
energy output for long periods of time, but with limited ramp rates,” while RegD was designed for resources
“with the ability to quickly adjust energy output, but with limited ability to sustain energy output for
long periods of time” [218]. PJM developed a valuation system to determine the optimal mix of RegA and

34



RegD resources. PJM uses a study conducted by KEMA [17], that simulated different combinations of
RegA and RegD for achieving load balancing. Regulation resources currently receive a two-part payment
that consists of capability payment and performance payment, both of which are scaled according to the
performance score. Performance score is a measure the quality of regulation provided by a participant.

2.2 Roles energy storage can play in a smart grid
Batteries in future smart grid will play many essential roles, such as reserves, load balancing, frequency
regulation, microgrid stabilization, facilitating connection of renewable energy sources (RES) for the grid
and perform load shifting, demand response and energy arbitrage for the end user. However, batteries are
costly devices which consume some energy, act as inefficient buffers of energy and undergoes degradation,
therefore, health of battery should be considered for maximizing operational life.

In the previous section, 2.1, we discuss the future challenges the power network will face due to growth
of DGs and new loads such as EVs. In such power grids, balancing the load will be difficult. Energy
storage devices act as energy buffers and can therefore be used for diversified tasks in future power grids.
Batteries are an attractive solution as:

• Expected reduction in cost: The cost of batteries are expected to drop further in coming future,
pertaining to the fact that intense research is going on in developing cost effective energy storage
technology. Fig. 2.11 shows the decrease in storage cost, extrapolating this decrease which has a
learning rate of 18%. The Li-Ion battery cost is projected to to be around $94/kWh by 2024 and
$62/kWh by 2030 [103].

• New avenues: as indicated earlier, the innovative billing strategies provides energy participants with
opportunity to reduce their cost of consumption by participating in grid based services. These
opportunities are expected to increase for energy participants due to increased uncertainty and
greater responsiveness required. For instance, the volatility of electricity price signal will increase
with increased share of RES in total energy generation [186].

• For large energy participants: For big consumers or generators, the rules are well drafted by ISOs.
Such energy participants can install energy storage to ensure that the power quality and operational
norms are not violated.

Ideally, a battery which has a low cost, high energy density, high ramp rate, low maintenance, non-
toxic in nature will instantly become the ultimate solution for the various storage applications in the future
electricity grid. Although the research in achieving these goals are ongoing, batteries are becoming popular
in smart grids. Few contemporary examples are:

• California planning billion dollar battery: “In 2013, the California Public Utilities Commission
(CPUC) recognized the need to expand the role of energy storage in support of a carbon-free grid
by establishing an energy storage procurement target of 1,325 megawatts for load serving entities.
The investor-owned utilities, Pacific Gas and Electric Company, Southern California Edison and San
Diego Gas & Electric, as well as energy service providers operating in California must procure storage
resources by 2020 with installations completed by the end of 2024” [50].

• Hawaii island powered by Tesla battery and solar panels: The Kauai project consists of a 52
megawatt-hour battery installation plus a 13 megawatt SolarCity solar farm. Tesla and the Kauai
Island Utility Cooperative, the power company that ordered the project, believe the project will
reduce fossil fuel usage by 1.6 million gallons per year [64].

Next we describe some of the many energy storage applications for the future power networks.

2.2.1 Energy Arbitrage
Consider an electricity consumer with time varying electricity price. Electricity consumer could differ their
consumption seen by the grid such that when prices are high they consume less and when prices are low
they consume more, in effect reducing their cost of consumption without reducing total energy consumed.
By responding to such a price signal the consumer is assisting the utility to reduce peak demand by
shifting loads to off peak periods or from periods of more congestion to periods of less congestion in the
network. Electricity price design and consumers responding to such prices serves several other objectives
often difficult to quantify each ISO often has a different algorithm to generate RTPs. In Fig. 2.4 we show
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the real-time and day ahead electricity price over a week in California. The relationship between day-ahead
electricity price and aggregate load is clear. The morning and evening peak of aggregate load coincides
with peaks of day-ahead electricity price. This is primarily because the variation of aggregate load is fairly
predictable. However, the variation of real-time electricity price is much harder to quantify only using
aggregate load.
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Figure 2.4: Real-time, day-ahead electricity price and aggregate load in CAISO during 1st week of
December 2018 [16].

Although it would be beneficial for consumers to deviate consumption taking into account electricity
price variation, it has been observed that consumption patterns of users do not change significantly with
real time electricity price variations and hence consumers end-up paying more in their electricity bill [87].
Installing energy storage by an end user allows them to perform energy arbitrage, i.e., to buy energy when
prices are low and sell it when it is expensive. The energy bought can be stored in the battery for later use
when the demand arises. Hence, using the battery allows the user to keep the same consumption pattern
without increasing their electricity bills under time-varying electricity prices [251]. Additionally, if the
user is equipped with a renewable generation unit, then a battery also allows the user to reduce genera-
tion intermittence and uncertainty by storing excess generation. The value created by storage performing
arbitrage will increase with the increase in the variability in electricity prices [251] for the same storage.

Energy Storage with Distributed Generation: The share of total energy consumed worldwide by build-
ings, which include commercial and residential end users, accounts for around 20% and it is projected to
grow at an average of 1.4% per year from 2012 to 2040 [260]. The environmental benefit of connecting more
and more renewable energy sources in meeting the global energy demand is therefore irrefutable. Consider
a residential consumer with load, rooftop solar generation and a battery. The battery is controlled based
on the levels of buying price applicable when power flow from the grid to residential consumer and selling
price otherwise. The value of energy storage increases with DG installed locally as the selling price is
often lower than buying price, facilitating self-consumption of locally generated renewable energy which
otherwise would be wasted or supplied back to the grid at a low price, see Chapter 4 [183].

2.2.2 Dynamic Regulation and Reserves
Grid operator’s role is to maintain a balance between the supply and the demand. Electric energy is unique
in the sense that the demand and supply has to match approximately at every time instant such that the
frequency and voltage of the grid is within a specified band, for example for a nominal frequency of 50 or
60 Hz the grid frequency can vary between lower and upper bound of frequency decided by grid norms of
the country. Table below lists continuous operating frequency range (COFR) for some countries.
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Table 2.3: Continuous operating frequency range

Country COFR
Germany[234], China [194] 49.5 to 50.5 Hz

Australia [194] 47 to 52 Hz
India [194] 47.5 to 51.5 Hz

A-zone: 59.95 to 60.05 Hz,
USA [234] B-zone:59.8-59.95 & 60.05-60.02 Hz,

C-zone: <59.8 Hz & >60.02Hz

To maintain reliability the ISO must continuously match the demand of electricity with supply on a
second-by-second time-scale. In case of over-generation, excess generation curtailment maybe essential
to ensure stability of power network. And in case of under-generation, load shedding maybe essential.
In order to contain uncertainties in load and generation, additional resources are required for achieving
load balancing at finer time-scales. Such resources should be able to ramp up or ramp down with very
small response time. Traditionally, fast ramping gas turbines are used for such goals which can ramp up
generation in a short time. Using energy storage devices for dynamic regulation facilitates ramping up
(i.e. generating energy) and ramping down (i.e. consuming energy) capability simultaneously, thus holds
greater potential to eliminate generation curtailment and load shedding.

Case of Elia in Belgium: Each system operator in ENTSO-E13 synchronous area is responsible
for balancing generation and consumption within its own control area. In Belgium, Elia assumes this
responsibility. Elia divides the balancing responsibility to pre-designated access responsible parties or
ARPs. These ARPs maintain a balance in their designated area at every 15 minutes time interval. ARP
could be a producer, a major consumer, an energy supplier or a trader. Elia uses the measurement data
to verify whether the ARPs are meeting their respective balance management obligations. Elia will apply
imbalance tariffs if it observes a quarter-hourly imbalance between injections, imports, purchases and off-
takes, exports and sales. Energy storage owners can track unbalance signal for assisting Elia achieves
balance in net load and net generation. Similar to CAISO, Elia incentivizes ARPs and resources providing
up-regulation and down-regulation by separate up-regulation tariff denoted as POS and down-regulation
tariff denoted as NEG. Although, instantaneous values for POS and NEG are the same for most time
instants. The amount and direction of regulation required is denoted by Net Regulation Volume or NRV.
A positive value of NRV indicates a net upward regulation signal and a negative value indicates a net
downward regulation signal [6].

Figure 2.5: Imbalance prices and Net Regulation Volume for 3rd January, 2019 [15].

Fig. 2.5 shows the imbalance prices for up-regulation and down-regulation and NRV for 3rd January
2019. ARPs and resources should track NRV for facilitating balance in the power network.

Note that the imbalance signal in Elia is not energy neutral and therefore the price for up-regulation
and down-regulation is settled separately. Contrary to this, in PJM ISO the regulation services combines

13ENTSO-E, the European Network of Transmission System Operators, represents 43 electricity transmission system
operators (TSOs) from 36 countries across Europe.
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up-regulation and down-regulation and they are not settled separately. Therefore, PJM attempts to ensure
conditional neutrality of dynamic regulation signal [218]. Batteries commit capacity prior to regulation
participation and get compensated based on committed capacity and performance of tracking. For Elia
and CAISO battery owners commit up-regulation and down-regulation separately.

Reserves

Reserves enable power networks to maintain frequency and voltage at appropriate levels while managing
balance and congestion in three different types of reserves [2]:

Primary reserve: The turbines at some production units can automatically detect frequency fluctua-
tions and, where necessary, adjust production within 0 to 30 seconds.

Secondary reserve: The secondary reserve is automatically and continually activated both upstream
and downstream (upward/downward regulation). It kicks in quickly (between 30 seconds and 15 minutes)
and remains active as long as it is needed.

Tertiary reserve: The tertiary reserve enables ISOs to cope with a significant or systematic imbalance
in the control area and/or resolve major congestion problems.

In France the total electricity produced in 2013 is 551 TWh, implying 62.9 GW average power produc-
tion over the year [153]. The operating reserves used in French power network are [84]:

• Primary reserves with response time of less than 20 seconds and a cumulative capacity ≈ 500MW,
• Secondary reserves with response time of less than 3 minutes and a cumulative capacity ≈ 600MW,
• Tertiary reserves with response time of less than 15 minutes and a cumulative capacity ≈ 1500MW.

Thus total reserves in French power grid is ≈ 4.13% of the average generation for year 2013.
Energy storage can be used as reserves in power networks. With growth of uncertainty, the amount of

reserves will increase providing greater opportunity for energy storage devices.

2.2.3 Peak Demand Flattening
Previously, we discussed that the maximum demand dictates the size of power grid infrastructure, i.e.
generators, transmission lines, transformers, circuit breakers etc. Due to this many power utilities around
the world have introduced peak demand charge [295, 320, 228] that a consumer may seek to minimize over
a longer period (weeks or months). The peak demand charge is applied to the average peak power level for
a 5 min to an hour interval. The time scale varies from place to place. Authors in [294] note that energy
storage can reduce peak demand cost without degrading the ability to perform other applications using
energy storage.

Peak Power Contracts (PPC) for Low Voltage (LV) Consumers in Madeira, Portugal: As of 2018,
LV customers can select between 8 levels of peak power contract (PPC). LV customers are subject to a
maximum peak power contract (kVA), ranging from 3.45 kVA to 20.70 kVA (see Tab.2.4). The nominal PPC
value is selected by the customer based of their estimated electricity needs and should not be exceeded since
the supply is shut-down when that happens. The disconnection of power is done locally and consumer can
restart their energy-meter, however, sudden interruptions should be avoided as it may damage appliances.
The PPC can be changed upon formal request to EEM.

Table 2.4: Peak Power Contract for LV customer as of 2018.

Peak Power Contract (EUR/Day)
PPC (kVA) Single-rate (in euros) Dual/Triple-rate (in euros)

3.45 0.1611 0.1643
4.60 0.2096 0.2132
5.75 0.2560 0.2590
6.90 0.3040 0.3080
10.35 0.4478 0.4532
13.80 0.5902 0.5981
17.25 0.7326 0.7436
20.70 0.8751 0.8892

Form Tab.2.4 it is evident that consumers can use energy storage device to lower their peak demand
and in effect reduce the fixed cost associated with PPC contract selected by the consumer.
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2.2.4 Fast ramping and low response time
California aims to generate 50% of retail electricity from renewable power by 2030 in order to reduce
greenhouse gas emission to 1990 levels. Such goals would constitute increase in distributed generation and
large scale inclusion of electric vehicles. Historically, the ISO directed controllable power plant units to
track instantaneous demand. With growing penetration of renewables on the grid, there are higher levels
of uncontrollable, variable generation resources. Because of that the ISO must use controllable resources
to achieve a balance between both variable demand and variable supply. CAISO uses net load which is
the difference between total load and renewable generation such as wind and solar. The net-load curve
illustrates the variability and often referred as duck curve.

The CAISO performed an analysis on changing grid conditions by analyzing loads in past and near
future [197]. With growing inverter based renewables the frequency response of the power network dete-
riorates. This study identifies inclusion of specific resource operational capabilities for mitigation of [197],
[322] (i) oversupply risk, (ii) short and steep ramps. In order to mitigate the possible issues, the ISO
needs a resource mix that can react quickly to adjust electricity production to meet the sharp changes in
electricity demand.

Figure 2.6: Aggregate load forecast with growing share of renewables in CAISO [35].

To ensure reliability under changing grid conditions, the ISO needs resources with ramping flexibility
and ability to start and stop multiple times per day. Large scale solar integration in CAISO increases the
chances of oversupply during mid-day. According to testimony given to the FERC, CAISO’s minimum
non-dispatchable power production is about 15,000 MW - meaning the power grid’s online generators
cannot produce less than 15,000 MW at any one time [113, 107]. Solar power significantly reduces the
net-load on conventional generators during the day but not during the night, a surge in generation demand
may occur as the sun sets [113]. In that time, average day-ahead hourly energy market prices during the
3 hour interval (5 p.m. to 8 p.m. during summer and 2 p.m. to 5 p.m. during winter) – the “neck” of
the duck – have spiked to nearly $60 per megawatt-hour, compared to about $35 per megawatt-hour in
the same period in 2016 [198]. The recent analysis on duck curve concludes that the increase in ramps is
not seasonal and exists throughout the year. The ramps are most severe during weekend. Authors also
point that duck curve which is observed in California will become also present in other parts of the world
with high share of wind and solar generation [322]. This author also points that the evolution of ramping
requirements is much faster than anticipated in prior studies such as [197]. Batteries can help to solve
such ramping problems, which motivated growing installation of batteries in California in the last decade.

Fig. 2.6 shows the net load plot for 15th December 2018. The average ramp required for this day is
≈ 11, 809 MW. This ramp should be met with reserves which can respond rapidly. Energy storage is a
solution which CAISO considers has huge potential.

2.2.5 Power Quality
Energy storage interfaced via a converter can be a source or sink of active and reactive power. The active
power output is governed by ramping constraint of the storage and the reactive power output is governed
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by it converter rating and instantaneous active power output.

Phase Balancing: Unbalance in power distribution network can be eliminated by design if the trans-
mission lines are fully transposed and load is divided symmetrically in all phases, both of which is difficult
to realize in low voltage distribution networks due to primarily single phase loads and DGs connected.
Due to unbalanced loading and unequal feeder lengths, phase imbalance exists. Power utilities aim to
contain the unbalance within pre-decided norms, rather than complete elimination of unbalance. Table 2.5
lists the norms derived from standards and utilities for voltage unbalance. Note the norms often are more
detailed and are specific to the network and feeder. For instance in a radial distribution network, feeders
away from the source have higher potential to cause unbalance than those close to the source. Table 2.5
shows simplified version of these norms and should not be generalized. Many traditional solutions are

Table 2.5: Voltage Unbalance Norms

Utility/Standard Voltage Unbalance Factor Limit
American National Standard for electric 3%

power system and equipment ANSI C84.1
PG&E [37] 2.5%

NEMA MG-1-1988 [21] 1%
UK - network unbalance 2%

UK - load point unbalance 1.3%
BC Hydro - Standard Unbalance [10] 2%

BC Hydro - Rural Unbalance [10] 3%
Europe EN 50160 - LV and MV [36] 2%
Europe EN 50160 - High Voltage [36] 1%

available in the literature for solving unbalance problem in three phase networks. Inclusion of shunt or
series connected compensators are widely used traditionally. Recent works present feeder reconfiguration
for phase balancing [327]. Authors in [328] propose coordination of operation of data-center and DERs
to reduce phase unbalance. Authors in [329] propose load balancing with EV chargers and PV inverters
in unbalanced distribution grids by adaptively selecting the phase based on unbalance. Authors in [225]
present the phase balancing using EVs interfaced to power network via a single phase connection that adap-
tively selects the phase to connect in LV Danish grid. Authors in [193] used solid state switch placement
to achieve phase balancing in distribution grid. Authors in [306] used energy storage owned privately for
performing arbitrage and phase balance considering battery degradation. Balancing the voltage helps in
saving energy and money by increasing motor efficiency. Furthermore, transmission line capacity is better
utilized, false trigger of protective relays are avoided and also prevents downtime due to motor failures.

Energy storage interfaced via a converter is capable of supplying active and reactive power for phase
balancing of three phase network. Authors in [141] consider unbalance which could be caused by build-
ing integrated PV. Converter control is proposed for tracking voltage and phase angle mismatch. [140]
mitigates voltage unbalance in low voltage distribution network with high penetration of PV system us-
ing energy storage. The controller minimizes the current flow in the neutral line and experimental study
indicates improved Voltage Unbalance Factor or VUF.

2.2.6 Case-Study : EV Charging in Pasadena14

Phase unbalance can be an issue behind the meter as well. In this sub-section presents a case study around
phase unbalance at the Adaptive Charging Network (ACN) testbed located at Caltech in Pasadena, Cal-
ifornia. A description of the testbed including its electrical topology and usage patterns is provided then
provide examples of power unbalance between phases which occur do to usage patterns which lead to
non-symmetric loading between phases. Finally a motivation is provided for the need for phase balancing
techniques such as the energy storage which can account not only for instantaneous unbalances but also
long term unbalances caused by differences in the total energy demand on each phase.

Electric vehicle charging EVs are expected to dominate future transportation. Charging EV batteries
can place a massive load on the local electrical infrastructure. Table 2.6 lists some EVs and their battery
characteristics. The batteries can either be charged using three-phase or single-phase AC connection. In

14This section is prepared by Zachary Lee at California Institute of Technology, Pasadena, California.
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the case of AC level-2 charging, a single-phase connection is used by the AC/DC converter inside the
EV. In the case of DC charging, a single-phase or three-phase connection can be used to feed an AC/DC
converter outside the EV, which then feeds DC current directly to the EV’s battery. Table 2.7 lists the
standard single and three-phase EVSEs (charging ports) and their rated power transfer capability. For
instance, Nissan Leaf can be completely charged within 4 hours using 1-phase 32A charging EVSE. All
charging points in Caltech ACN Testbed are of single phase and 32A rated type.

Table 2.6: EV battery characteristics [70]

EV make Warranty Battery Charge times
Nissan Leaf 8yrs./100,000 miles 30 kWh 8h at 230V AC, 15A,

Chevrolet Bolt 8yrs./100,000 miles 60 kWh 10h at 230V AC, 30A
Tesla model S 8yrs./unlimited miles 70, 90 kWh 9h with 10kW charger

Table 2.7: EV charging socket characteristics [73]

Charger type (230V AC) Rated power Time to charge 30kWh
1-φ 16 A 3.7 kW 8 hours
1-φ 32 A 7.4 kW 4 hours

1-φ 16A/φ 11kW 2h 45 min
3-φ 32A/φ 22 kW 1h 22 min

The Caltech ACN Testbed: The ACN testbed at Caltech was built in early 2016 and since then
as delivered over 735 MWh of electricity to charge electric vehicles. The ACN currently has 54 EVSEs
which are used for research. It is a three-phase system supplied by a 150 kVA delta-wye transformer. Each
EVSE (charging port) is connected line-to-line. Early in the project, two EVSEs were replaced with pods
of 8 EVSEs each to demonstrate the scalability of smart charging. This has led to a significant imbalance
in the number of EVSEs on each leg of the delta, with AB having 26 EVSEs, BC and CA each having
14 a piece. This topology only exacerbates the power unbalance caused by randomness in user demands.
More information about the ACN including its hardware, software, and algorithms can be found in [220].
Since 2016, the ACN framework has been commercialized by PowerFlex Systems which operates similar
large-scale charging systems around the United States.

Examples of Unbalance To demonstrate the unbalance present in the Caltech ACN the authors
considered two cases, uncontrolled charging and smart charging. In both cases they simulated the phase
unbalance using ACN-Sim, an open-source simulator for EV charging research [221]. Each simulation
was based on real usage data collected from the Caltech ACN available from from the ACN-Data dataset
[222] (which can be downloaded at [219]) as well as models of the actual electrical infrastructure of the
Caltech ACN. The current unbalance which results from uncontrolled charging is shown in the top panel
of Fig. 2.7, while the unbalance from the smart charging algorithm used in the actual ACN (described in
detail in [220]) is shown in the bottom panel. From the top panel it can be seen that the current unbalance
from uncontrolled charging can be substantial, differing by as much as 280 A between phase A and phase
C. In the actual system, a smart charging algorithm is used to schedule charging while accounting for
infrastructure constraints as well as user provided deadlines and energy requests. While this algorithm
does not explicitly try to reduce phase unbalance, it does implicitly reduce unbalance during times of
congestion since more power can be delivered when phases are balanced. In the bottom panel of Fig. 2.7,
it is observed that while the smart charging algorithm is able to lower the peak currents in the system to
below the line limits (here 417 A), phase unbalances are still substantial.

Limitations of Smart Charging While smart charging algorithms can help to prevent line overloads
and alleviate instantaneous current unbalance by shifting loads in time, it cannot fix the inherent imbalance
in total load. For example, on September 5, 2018 the total energy demand on EVSEs on the AB leg of
the delta was 408 kWh while BC was 178 kWh and CA was 232 kWh. These unbalanced energy demands
mean require us to redistribute load between phases in order to balance currents. The proposed energy
storage system is one way to do so.

2.2.7 Increasing Reliability and Inertia
With large-scale integration of renewables the frequency response of the power network deteriorates as (i)
less resources are available to automatically adjust electricity production to maintain grid reliability, (ii)
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Figure 2.7: (top) Current unbalances for uncontrolled EV charging at the Caltech ACN. (bottom) Current
unbalances for smart EV charging at the Caltech ACN. Both plots are simulated based on real data collected
Sept. 5, 2018 at the Caltech ACN.

inverter based distributed generations do not add inertia thus the grid becomes more prone to fluctuations
and (iii) distributed generation increases fluctuations.

The electrical power system globally is undergoing huge changes in operation. This change is attribute
to integration of intermittent renewable energy sources in transmission and distribution side of power sys-
tem. Especially the integration of DG is critical for stable operation of entire power system. Traditionally,
the power system is designed for one way power flow, however, with DGs the direction of power flow can
be reversed. This new power system will require more real time adaptive control for stable operation. Au-
thors in [226] claim that smart grid with large share of renewables will bring the third industrial revolution
worldwide. The concept of smart grid could be a reality with cheap DGs, affordable storage, advancements
in communication and information theory.

2.2.8 Congestion and Voltage Support
Power networks were designed for one way power flow. Bulk power generators transmit power to consumers.
Under such a power network the voltage level farther away from the generation with respect to point of
connection in the network will be lower compared to all points before it. However, this will not be valid
with integration of DGs in power network. Such a power network could have overvoltage issues at a local
level and will require localized mitigation. Prior to this situation the voltage at the beginning of the feeder
would have given a good estimation of voltage profile across the network, however, this will no longer be
valid with DG integration. Furthermore, power system protections have been designed based on one way
power flow assumption, a detailed study needs to be performed to understand the required modification
in protective relay settings in order to avoid false tripping of relays.

Case Study for a Radial Distribution Network: We present a toy example to demonstrate this issue.
We use a IEEE 33 bus radial distribution system shown in Fig. 2.8. The buses 1-18, 19-22 and 26-33 are
part of single feeder. Under no DG the voltage magnitude in each of these feeders will drop as we go
farther away from the connection point. For instance voltage magnitude will reduce from 1 to 18, bus 18
being the lowest in magnitude.

Figure 2.8: IEEE 33 bus radial distribution system
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We identify the voltage profile of 3 different cases: (i) Nominal case, (ii) Change the load at bus 15 to
2 MW and (iii) add 2 MW generation at bus 15. We perform these simulations using MatPower toolbox
[342]. The voltage profile for the 33 bus network under the three cases is described in Fig. 2.9. The
blue and red lines show the expected voltage profile behavior of dropping voltage magnitude as we go
farther away from point of connection. However, for the third case where a DG is emulated using a 2 MW
generation, the voltage profile peaks at that point. If generation is further increased, the voltage will go
beyond permissible limits set by utility. Note that the voltage measurement at the bus 1 (generation bus)
might not be able to provide indication of such localized over-voltages.
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Figure 2.9: Voltage profile plot for IEEE 33-bus radial distribution network for (i) Nominal flow,
(ii) 2 MW load at bus 15, (iii) 2 MW DG connected at bus 15.

Form Fig. 2.9 it is clear that overvoltage issues would be localized. Such problems could be efficiently
solved using distributed energy storage devices and/or load flexibility at local level.

2.2.9 Infrastructure Deferral
All the above problems described could be solved using more traditional solutions like adding more fast
ramping power plants, curtailment of excess generation, load-shedding (affecting power network reliability),
power quality improvement infrastructure. However, the capital required for such an upgrade of power
network will be several folds higher than using energy storage in a smart grid with ample amount of
information for adaptive decision making. Thus adding storage will provide power utilities to defer the
infrastructure development cost which otherwise they would need in order to cope with the new power
grid with more volatility and uncertainty [86].

Transmission and distribution deferral keeps the loading of the transmission or distribution system
equipment lower than a specified maximum. This allows for delays or completely avoids the need to
upgrade a transmission system or avoids congestion-related costs and charges [315].

There are several other applications of energy storage such as microgrid stabilization, spinning reserves,
island and off-grid storage, black-start services etc., which have not been discussed in detailed.

2.3 Bottlenecks with energy storage: Li-Ion battery
Li-Ion battery could be used for many power system applications, however, there are various bottlenecks
associated with Li-Ion battery and energy storage in general. Firstly, energy storage is a costly solution
making it financially infeasible if deployed for many of the applications. Careful financial evaluation is
essential. Secondly, due to energy storage parameters and chemistry batteries consume cycling losses,
degrade over time and have limited life time. Furthermore, batteries require maintenance at regular
intervals. Battery health and thus its life is affected by temperature, humidity, charging and discharging
pattern to name a few. Thirdly, there is uncertainty in system variables based on which battery mode of
operation is selected. Note that optimal storage operation of energy storage requires look-ahead in time.
If the parameters based on which mode of operation of battery is decided are drastically different, then
the mode decided might not be optimal. Thus due to inaccurate information the storage returns could be

43



undermined. Forecasting is a heavily research area in power systems. However, the forecast models are
not modular, i.e., a forecast model in a region could be of little use in forecasting the same parameters in
a different region.

2.3.1 High Cost
Batteries are expensive with per kWh cost ranging from US $ 400 to several thousands. The cost of Li-ion
battery depends on the technical specifications and the type of application. The price of Tesla’s Powerwall
from 2017 are listed in Table 2.8.

Table 2.8: Ramp Rates as listed in datasheets

Manufacturer Cost ($) Cost per kWh Wh per US $
Tesla Powerwall 1 [66] $ 3000 470 2.13
Tesla Powerwall 2 [66] $ 5500 398 2.51

Researchers are optimistic about future dip in price of batteries. Fig. 2.10 shows the forcast of price
dip from 2015.

Figure 2.10: IHS Benchmark Battery Module Price Forecast in 2015 (US$/kWh) [47].

A similar projection is presented in BloombergNEF report 2019 shown in Fig. 2.11.

Figure 2.11: The price of an average LiIon battery pack is projected to be around $94/kWh by 2024
and $62/kWh by 2030 [103] (Mar 2019. Source: https://about.bnef.com/blog/behind-scenes-take-
lithium-ion-battery-prices/)

US Energy Information Administration in it report, [315], state that the cost of the battery storage
technology depends on power and energy capacity of the battery. The battery cost is the maximum of the
costs decided by battery power and energy ratings.

2.3.2 Battery life and parameters
Batteries degrade as a function of its operational trajectories, i.e. charging and discharging cycles, exoge-
nous condition such as temperature, humidity and the age of the battery. There are many degradation
models for Li-Ion storage available in the literature.
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The usable life of a Li-Ion battery is commonly referred as End-of-Life or EoL15. The battery should
be operated in a way that the EoL of the battery is maximized.

The objective of this subsection is to list the internal bottlenecks related to Li-Ion batteries such
as efficiency losses, cycle life, calender life, capacity, size and ramp rate rate specifications and their
approximate relationships. Here we also present the effect of temperature and mode of operation which
should be considered in designing the charge controller. We explore the datasheets of Li-Ion batteries for
electrical power system. Some of the experience gained from this exercise will be used in battery models
used in the rest of this thesis.

We use xC-yC notation to represent the relationship between ramp rate and battery capacity. xC-yC
implies battery takes 1/x hours to charge and 1/y hours to discharge completely. Higher value of x and y
implies faster the battery is to charge and discharge. For example 2C-1C battery implies the battery takes
0.5 hours to charge and 1 hour to discharge completely.

Efficiency Losses: Batteries store electrical energy as chemical energy. When a battery is charging,
electrical energy is converted into chemical energy and when a battery is discharging, chemical energy is
converted into electrical energy. These energy conversions are not completely efficient and thus induce
losses denoted by charging and discharging efficiency. The roundtrip battery efficiency of the battery is
the product of charging and discharging efficiency. The battery produces or consumes direct-current or
DC, however, the majority of power network is alternating current or AC. In order to use batteries in AC
networks, a converter is required which converts AC to DC (i.e. acts as a rectifier) while the battery is
charging and performs DC to AC conversion (i.e. acts as a inverter) while battery is discharging. These
AC to DC and DC to AC conversions also induce losses. Battery manufacturers use system efficiency to
denote the product of charging, discharging and converter efficiency.

The loss of energy in charging and discharging cycle is shown in Fig. 2.12. Note as the battery is
charged its cell voltage increases. In fact cell voltage is a primary variable used in many state-of-charge or
SoC16 estimation algorithms. Fig. 2.12 also denotes the SoC operating window confined due to high stress
in extremely low and high SoC regions. We will discuss this in more details in modes of operations of a
Li-Ion battery.

 

Figure 2.12: Charge and discharge cycle losses and optimal range of SoC [53].

Table 2.9 lists the efficiency information provided in battery datasheets. The values of efficiencies listed
indicate that at best 85 to 95 % of charging energy could be discharged. AES Advancion [42] claims that
slower ramp rates lead to greater roundtrip efficiency. Tesla Powerwall specifications are applicable when
the battery is brand new. Powerwall specifies that age of the product, temperatures above or below 25 deg.
C, and charge rates or discharge rates above 2 kW would lower this value of efficiency, thus decreasing the
system performance. Table 2.9 shows that battery efficiency of a Li-Ion battery is affected by ramp rates
and temperature as most of the efficiency listed in datasheets where applicable for a specific operating
condition.

Cycles of operation: One of the indexes which decides the life of operation is the rated cycles
of operation of a battery. This is an information often provided by manufacturers in their datasheets,

15EoL is the state of the battery when the maximum battery capacity reduces to 80% of its initial rated capacity in
watt-hours.

16SoC denotes battery charge level in a scale of 0 to 1, where 0 denotes fully discharged and 1 denotes fully charged
battery.
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Table 2.9: Efficiency of Li-Ion battery

Manufacturer Efficiency Remarks
LI TEL 48-170C C&D Techno[48] ηcharging=98% for 35 deg.C

AES Advancion[42] ηroundtrip >85-90% depends on ramp rate
Saft Evolion Li-ion[62] ηroundtrip >95% -

LG Chem RESU 6.4EX [51] ηroundtrip >95% For ramp rate C/3 and 25 deg. C
QINOUS Li-ion [59] ηsystem >88%, ηroundtrip >96% -

Tesla Powerwall 1 [66] ηroundtrip ≈ 92.5% for battery voltage 400-450V
Tesla Powerwall 2 [66] ηroundtrip ≈ 89% for 25 deg. C

Tesvolt Li-phosphate [67] ηroundtrip >90% -
aentron Li-ion [41] ηsystem >97% for 25 deg. C
Bosch Storage [44] ηroundtrip >95% -

BYD [45] ηinverter ≈93%, ηsystem ≈89% -
REFU [60] ηinverter ≈95%, for 25 deg. C

ηdischarge ≈96%, ηcharge ≈93%

measured under controlled environment. This value of cycles will with high probability lead to the EoL of
the battery.

Table 2.10: Cycles of operation as listed in datasheets

Manufacturer Cycles of operation Remarks
C&D Techno [48] 4,300 cycles 20 deg. C and 80 % DoD

AES Advancion [42] 2000 to 3000 at 80% DOD
LG Chem RESU 6.4 [51] > 6000 90% DoD and 25 deg. C

QINOUS Li-ion [59] 4000 cycles at 1C/1C at 80% DoD, 25 deg.C
Tesla Powerwall 1 [66] 5000 cycles daily cycle application

Tesvolt Li-phosphate [67] 8000 cycles for 70% DoD
5000 cycles for 90% DoD

6 000, excluding calendar aging 25 deg.C, 70% DOD
Forsee Power HE48 [49] 5 000, including calendar aging 25 deg.C, 70% DOD, 2 cycles/day

4400, including calendar aging 25 deg.C, 70% DOD, 1 cycles/day
aentron Li-ion [41] 3000 50% DoD, 20 deg. C
Bosch Storage [44] 4500 -

REFU [60] 6000 80% DoD, 20 deg.C, max discharge=0.5C

The important thing to note from Table 2.10 is that the manufactures describe the cycles of operation
of a battery with respect to a particular temperature (implying if temperature is not maintained then
operational life will be lower), number of cycles of operation per day, depth of discharge or DoD17, calender
aging, rate of charge and discharge. If we say a battery is 100% fully charged, it means the DoD of this
battery is 0%, If we say the battery has delivered 30% of its energy, we say the DoD of this battery is 30%
[43]. Slower the charge or discharge rate, slower will be the stress on the battery and thus longer the life
of battery.

From Table 2.10 we observe that the factors affecting the rated cycles of operation are: (i) Battery type,
i.e. chemical composition of the battery, (ii) Depth of discharge of Operational cycles, (iii) Temperature,
(iv) Ramp rate and (v) Cycles per day.

Calender life in years: Calender life refers to the number of years the battery is expected to
last till the battery will reach EoL. It is independent of how much the battery is charged and discharged.
However, calender life is dependent on the state of charge of the battery and the temperature. As shown
in Fig. 2.13, observe that below 35 deg. C expected life is independent of SoC.

The life of a battery will be a combined function of cycle life, calender life, temperature, SoC. Fig. 2.13
shows how the calender life of the battery is a function of SoC level and temperature. An interesting
observation is that a high SoC level affects the calender life drastically at high temperatures.

17The depth of discharge of the battery measures how deeply depleted the battery is, compared to a state of full discharge
when it would have discharged all of its energy capacity. When a battery has discharged its full energy capacity, the DoD
100%.

46



Figure 2.13: Expected life for Li-ion cells with temperature (EoL for capacity loss of 20%) [49]

Table 2.11: Calender Life as listed in datasheets

Manufacturer Calender life and Remarks
AES Advancion [42] 7-8 years Lifespan

Evolion Li-ion battery [62] at 20 deg. C is 20 years
at 40 deg. C is > 10 years

LG Chem’s RESU 6.4 EX [51] at 25 deg. C is > 10 years
Tesla Powerwall 2 [66] warranty of 10 years

Tesvolt Li-phosphate [67] 10 years
Forsee Power Li-ion HE48 [49] 10 years

Aentron off grid Li-ion [41] 10 years at 20 deg. C, Warranty 5 years
Bosch Storage Solutions [44] > 10 years

BYD [45] Warranty of 5 years

Table 2.11 indicates that the typical value of calender life is around 10 years. The calender life deteri-
orates drastically with temperature as shown in Table 2.11 for Evolion Li-ion battery.

Capacity, size and ramp rate: Capacity and size of the battery is a critical component of selection
as the area occupied by one or a fleet of batteries acts as a constraint. We enlist in Table 2.12 some of
lithium based batteries to understand the relationship between the dimension and capacity of batteries.

Table 2.12: kWh, Ah Capacity of the battery and its size and weight

Manufacturer Energy Capacity Dimension (w, d, h) Weight m3/kWh
Li TEL 48-170 C [48] 8.2 kWh 173 Ah 0.564, 0.564, 0.172m 72.6 kg 0.00667

Evolion Li-ion battery [62] 3.9 kWh 74 Ah 0.216, 0.404, 0.260m 30 kg 0.00582
LG Chem RESU 6.4 [51] 6.4 kWh 126 Ah 0.406, 0.165, 0.664m 60 kg 0.00695

Tesla Powerwall 1 [66] 6.4 kWh - 1.3,0.86,0.18m [65] 97 kg 0.03144
Tesla Powerwall 2 [66] 13.5 kWh - 1.15,0.755,0.155m 122 kg 0.00997

Tesvolt Li-phosphate [67] 120 kWh 2400 Ah 3,2.45,2.9m 4800 kg 0.17763
Qinous Li-ion [59] 44 to 331 kWh - - - -

Forsee Power HE48 [49] 2.7 to 27 kWh - 0.483, 0.526, 0.088m - 0.00828
aentron Off grid Li-ion [41] 4 to 12 kWh 50-500 Ah 0.8, 0.6, 0.4m - 0.04800

Bosch Storage [44] 2 MWh - 14,2.4,2.9m 80000 kg 0.04872
BYD [45] 8 kWh - - - -

Panasonic [57] 4 kWh-1 MWh - - - -
REFU [60] 3 kWh - 1.023, 0.738, 0.290m 70 kg 0.07298

Table 2.13 lists the rated ramp rates for charging and discharging of some batteries. Typical charging
time ranges from 1 hour to 4 hours. As can be observed for Forsee Li-ion battery that discharging is twice
faster than rated charging time.
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Table 2.13: Ramp Rates as listed in datasheets

Manufacturer Charging Rate Disharging Rate
LG Chem’s RESU 6.4 EX [51] 0.3C 0.3C

Tesla Powerwall 1 [66] - 0.313C continuous
Tesla Powerwall 2 [66] - 0.52C peak/ 0.37C continuous

Tesvolt Li-phosphate [67] 0.417C 0.417C
Forsee Power Li-ion HE48 [49] 0.5C 1C

REFU [60] ≈1C or 3200 W 3000 W

Temperature effects: Prevention of excessive temperature rise in Lithium chemistry cell packs
has always been a major design issue. Most Lithium-Ion cells must not be charged above 45 deg. C or
discharged above 60 deg. C. These limits can be pushed a bit higher, but at the expense of drastically
reducing the cycle life. In the worst case, if cell temperatures get too high, venting may occur, resulting
in battery failure or even a cell fire [52].

Li TEL 48-170 C [48] has an operating temperature is between -30 deg. C to 50 deg. C. The typical
optimal operating temperature of Li-ion battery is between 20 to 30 deg.C. LG Chem’s RESU 6.4 EX [51]
has an optimal operating temperature ranging from 15 to 30 deg.C. The cooling can be natural convection.

ABB ESS Pro [40] has the cooling requirements. The cooling can be forced air, chiller, HVAC depending
on rating spanning from 50 kW to 6 MW of continuous power.

 

Figure 2.14: Effect of temperature on number of cycles of operation [54].

Fig. 2.14 shows increase of temperature from 25 deg. C to 40 deg. C will reduce the number of cy-
cles with 100% DoD from 1200 cycles to almost 600 cycles. This plot is for Activenergy’s AC6000 [54].
However, similar trends will be present for Li-ion batteries of other manufacturers. The key take away is
temperature adversely affects cycle life Li-ion battery. Therefore maintaining temperature for the batteries
is essential for long operational battery life and making best use of these expensive devices.

Li-Ion Charging operation: Mechanism of charging and discharging is essential for long operational
life of Li-ion battery. The commonly used method for charging of Lithium-Ion cells is constant current
- constant voltage (CC-CV). This means charging with constant current until a predefined threshold is
reached by the cell and continuing with constant voltage until the current drops to zero. The charge time
depends on the charge level of the battery and varies from 1-4 hours for full charge from the starting state
of minimum charge level. Also Li-Ion cannot be charged very fast, as this will increase their temperature
above safety limits. Charging time increases at lower temperatures.

Li-Ion battery chemistries utilize a constant, or controlled, current and constant voltage algorithm that
can be broken-up into four stages:
Stage 1: Trickle Charge – Trickle charge restores charge to deeply depleted cells.
Stage 2: Constant Current Charge – For Li-Ion batteries, after the cell voltage has risen above the trickle
charge threshold, the charge current increases in order to perform constant current charging. The constant
current charge should be in the 0.2C to 1.0C range.
Stage 3: Constant Voltage – For Li-Ion batteries, constant current charge ends and the constant voltage
stage begins when the cell voltage reaches predefined threshold (4.2V for single cell). In order to maximize
performance, the voltage regulation tolerance should be better than ±1%.
Stage 4: Charge Termination – When the timed trickle charge is complete, charge termination is then
necessary.
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Figure 2.15: Mode of charging a battery [63].

Fig. 2.15 shows the charging current, SoC, battery voltage with time for a Evolion Li-ion battery [63].
Over-charging and over-discharging Li-Ion batteries increases stress in the battery and affect the life

of the battery significantly. In order to maximize operational life Li-Ion battery should not be over-
charged or over-discharged. The SoC of the battery should lie within minimum SoC level denoted as
SoCmin and maximum SoC level denoted as SoCmax. The upper and lower band of SoC will depend on
the electrochemical composition of the battery, type of load, external conditions such as temperature and
humidity. These levels can be dynamic or chosen as constant fixed thresholds to minimize control design
complexity. This physical characteristic of Li-Ion battery is used to design the nominal battery model
presented in Chapter 11.

2.4 Uncertainty in parameters
Energy storage is bounded by capacity and ramping constraints. Any decision to charge or discharge
affects the battery capacity available in subsequent time steps. This implies look-ahead in time is essential
for optimal decision making. Look-ahead variables need to be forecasted and due to their non-stationarity
accuracy of forecast cannot be guaranteed. The inaccuracy in forecast of information required for selection
of mode of operation of the storage leads to sub-optimal results.

Forecasting: The variables required for decision making can be fairly accurately forecasted in near
future compared to long time ahead in future. We demonstrate this with an example below.
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Figure 2.16: Wind generation forecast 10 hour ahead and 1 hour ahead published by BPA

Based on BPA Centralized Wind Power Forecasting Initiative, the historical information is being pro-
vided for the benefit of academics and researchers. The wind forecast information provided represents
the expected aggregate generation level of wind generators in BPA’s balancing authority area. For each
month’s historical data BPA publishes maximum, minimum and average forecast values for the next 72
hours as a rolling horizon window. The Average forecast represents the expected average hourly genera-
tion and the Maximum and Minimum forecast denotes the predictive interval. We show in Fig. 2.16 the
actual wind generation values for hour ahead and 10-hour ahead forecast for several days in the month of
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December 2017 [5],[38]. It is evident from the plots that the accuracy of forecast in close vicinity of the
present time is much more accurate compared to farther away in time.

We represent this idea in a quantitative way in Fig. 2.17. Fig. 2.17 presents the root-mean square error
(RMSE) of actual generation values with respect to mean, maximum and minimum forecast values. It is
clear that the forecast in vicinity of 1-3 hours is significantly better compared to forecasts made more away
from present time. Note that the RMSE of the different forecasts saturates after few time intervals.
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Figure 2.17: Root-mean square error of wind generation forecast based on look-ahead period under
BPA for the month of December 2017 [38].

Effect of Uncertainty on Storage Control: Optimal usage of energy storage of power grid
applications requires two components: (i) optimal control algorithm and (ii) accurate information of system
parameters, exogenous variables based on which step (i) is implemented. Note that the two components
are coupled in nature. Inaccuracy in system parameters and variables would diminish energy storage
operational value and thus in effect affect the gains made by the storage owner.

In our works [114],[130],[183] we identify that the effect of uncertainty on energy storage control de-
pends on the relationship between charge or discharge time and the sampling time of control decisions. For
example, if the charging and discharging time at maximum ramp rate is 2 hours and the sampling time
is 2 seconds, implying the sampling time is significantly lower than charge or discharge time, the storage
control is not strongly affected by stochastic nature of future decisions. This is shown in Chapter 11 where
the the regret of the control decision lies with 4% with a myopic control design. The regret of controller is
expressed as the fraction of deteriorated gains with respect to maximum gains storage owners could have
made in deterministic case. In Chapter 3.6 we show as the value of charge or discharge times become com-
parable to the sampling time, the effect of uncertainty in control decisions increase, thus regret increases.

Mitigation of Uncertainty: As pointed earlier, due to mismatch in forecasted and actual parameter
values, the storage gains will be lower than the deterministic optimal gains. In this thesis we mitigate
the effect of uncertainty using improving forecast generated at each time state implemented along with
Model Predictive Control or MPC. This idea of new forecast at time instant is based on the fact that the
accuracy of forecast in vicinity of present time could be done with fair amount of accuracy, compared to
farther away in time, denoted in Fig. 2.17. MPC is used to optimize the decisions in current time slots,
while taking into account future time slots. In the receding or rolling horizon the forecast is updated and
implemented again, till end time is reached.

Inaccurate estimation of storage states: Note that in this work we do not consider the effect of
uncertainty in measurement and estimation of system parameters. For instance the state of the battery
can only be estimated with certain accuracy.

2.4.1 AutoRegressive Forecasting and Model Predictive Control
In this section, we describe the AutoRegressive Moving Average (ARMA) and AutoRegressive Integrated
Moving Average (ARIMA) forecast models we used in this thesis. The forecast information is used to
calculate storage control actions in real-time. The pseudo algorithm is presented as ForecastwithMPC.
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We define the mean behavior of past values of net load without storage at time step i as

zi = 1
D

D∑
p=1

z(i−pN) ∀i ∈ {k, ..., N}, k ≥ 1, (2.4.1)

where N is the number of points in a time horizon of 1 day, and D is the number of days in the past whose
values are considered in calculating z. The actual value of net load without storage is given as

zi = zi +Xi ∀i ∈ {k, ..., N}, k ≥ 1, (2.4.2)

where Xi represents the actual difference from the mean behavior. The forecasted value of net load without
storage is given as

ẑi = zi + X̂i ∀i ∈ {k, ..., N}, k ≥ 1, (2.4.3)

where X̂i represents the forecasted difference from the mean behavior. We define X̂i,∀i ∈ {k, ..., N} as

X̂k = α1Xk−1 + α2Xk−2 + α3Xk−3 + β1δ
1
k + β2δ

2
k + β3δ

3
k, (2.4.4)

where δmk = (zk−mN − zk−mN ) and αi, βi∀i ∈ {1, 2, 3} are constant. Our forecast model uses the errors in
net load without storage for the past three time steps and the error in the same time step for past three
days. At time step i = k − 1 we calculate X̂k as shown in Eq 2.4.4. We also need to calculate X̂k+1 till
X̂N in order to update the forecast signal to be fed to MPC.

X̂k+1 = α1X̂k + α2Xk−1 + α3Xk−2 +
3∑
q=1

βqδ
q
k+1,

X̂k+2 = α1X̂k+1 + α2X̂k + α3Xk−1 +
3∑
q=1

βqδ
q
k+2, ...

X̂N = α1X̂N−1 + α2X̂N−2 + α3X̂N−3 +
3∑
q=1

βqδ
q
N .

We calculate ẑ using Eq. 2.4.3. The vector ẑ is fed to MPC for calculating optimal energy storage actions
for time step i = k − 1. At the time step i = k, we can calculate Xk = zk − zk. Similar steps are done for
i ∈ {k + 1, ..., N}, till the end of time horizon is reached.

The forecasted end user consumption without storage is fed to the online algorithm, ForecastwithMPC.
The online algorithm is executed sequentially and uses model predictive control to identity the optimal
modes of operation of storage.

We define the mean behavior of past values of active power at time step i as

P
i = 1

D

D∑
p=1

P(i−pN) ∀i ∈ {k, ..., N}, k ≥ 1, (2.4.5)

where N is the number of points in a time horizon of 1 day, and D is the number of days in the past whose
values are considered in calculating P .

We define the mean behavior of past values of reactive power at time step i as

Q
i = 1

D

D∑
p=1

Q(i−pN) ∀i ∈ {k, ..., N}, k ≥ 1, (2.4.6)

The actual value of active power is given as

P i = P i +Xi ∀i ∈ {k, ..., N}, k ≥ 1, (2.4.7)

where Xi represents the difference from the mean behavior.
The actual value of reactive power is given as

Qi = Qi + Y i ∀i ∈ {k, ..., N}, k ≥ 1, (2.4.8)

where Y i represents the actual difference from the mean behavior.
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The forecast value of forecast variable z with M̂ i as the difference from mean behavior is given as

ẑi = zi + M̂i ∀i ∈ {k, ..., N}, k ≥ 1, (2.4.9)

We define M̂i,∀i ∈ {k, ..., N} as

M̂k = α1Mk−1 + α2Mk−2 + α3Mk−3 + β1δ
1
k + β2δ

2
k + β3δ

3
k, (2.4.10)

where δmk = (zk−mN − zk−mN ) and αi, βi, ∀i ∈ {1, 2, 3} are constant. Our forecast model uses the errors
in net load without storage for the past three time steps and the error in the same time step for past three
days. At time step i = k − 1 we calculate X̂k as shown in Eq 7.4.3. We also need to calculate M̂k+1 till
M̂N in order to update the forecast signal as

M̂k+1 = α1M̂k + α2Mk−1 + α3Mk−2 +
3∑
q=1

βqδ
q
k+1,

M̂k+2 = α1M̂k+1 + α2M̂k + α3Mk−1 +
3∑
q=1

βqδ
q
k+2, ...

M̂N = α1M̂N−1 + α2M̂N−2 + α3M̂N−3 +
3∑
q=1

βqδ
q
N .

The weights used in ARMA model, αi, βi, ∀i ∈ {1, 2, 3}, are tuned by minimizing Eq. 7.4.4

min
∑
i

{||zi − ẑi||2 + ||norm([αi, βi])||1} (2.4.11)

We calculate ẑ using Eq. 2.4.9. The vector ẑ is fed to MPC for calculating optimal energy storage actions
for time step i = k− 1. At the time step i = k, we can calculate Mk = zk − zk. Similar steps are done for
i ∈ {k + 1, ..., N}, till the end of time horizon is reached.

We use AutoRegressive Integrated Moving Average (ARIMA) model of 8th lag order and one degree
of differencing for forecasting electricity price. The ARIMA model is developed using training data and
tested for test dataset. For price forecast the moving average window is set to zero. This model is denoted
as

∆Xt+1 = γ1∆Xt + γ2∆Xt−1 + ...+ γ8∆Xt−7 (2.4.12)
where ∆Xt = Xt −Xt−1.

Algorithm 1 ForecastwithMPC
Inputs: Time horizon, sampling time, historical data, real time information, system variables and parameters
1: Tune forecast model using training data,
2: Generate forecast ARMA and ARIMA,
3: Run the model using forecast data,
4: Select the first action calculated in Line 3,
5: Update states and increment time and Goto 2.

2.5 Notation and battery model
The system considered in Chapter 3 to Chapter 8 consists of an electricity consumer with inelastic demand,
renewable generation (rooftop solar) and battery. The electricity consumer is shown in block diagram in
Fig. 2.18. We consider operation of storage over a total duration T , with operations divided into N steps
indexed by i ∈ {1, ..., N}. The duration of a step is denoted as h. Hence, T = hN .

The inelastic load for time i is denoted as di. The renewable generation for time i is denoted as ri. The
total active energy in one sample seen by the energy meter with storage is denoted as zi = di − ri. The
total active power seen by the energy meter without storage is denoted as P i = zi/h. The reactive power
at time i without storage is denoted as Qi. We denote the battery using ramping and capacity constraint,
considering charging and discharging efficiency. The ramping constraint is denoted as

δi ∈ [δmin, δmax], (2.5.1)
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Figure 2.18: Consumer with renewable generation model used in Chapters 3 to 8

where δmin denotes minimum ramping rate or the maximum discharge rate and δmax denotes the maximum
charge rate in units of watts (i.e. power), where δmin ≤ 0, δmax ≥ 0 are the minimum and the maximum
ramp rates (kW).

The instantaneous battery charge level is denoted as bi for time instant i. The battery charge level
should satisfy

bi ∈ [bmin, bmax], (2.5.2)

where bmin and bmax denotes the minimum and maximum battery charge level. The battery charge level
evolution with time depends the ramp rate of the battery and the battery charge level in the previous time
instant and is given as

bi = bi−1 + xi, (2.5.3)

where xi = δih denotes the change in charge level of the battery. A value xi > 0 implies charging and xi < 0
implies discharging. xi/h denotes the corresponding storage ramp rate with δmin ≤ 0 and δmax ≥ 0 as the
minimum and maximum ramp rates (kW) respectively. h denotes the sampling time. The state-of-charge
(SoC) of the battery is defined as

SoCi = bi
brated

, (2.5.4)

where brated is the rated battery capacity. For LiIon battery health consideration, it should not be over-
charged or over-discharged beyond a certain level [114], we define SoCmin = bmin/brated and SoCmax =
bmax/brated.

We define two more variables. The time required for the energy storage to completely discharge from
bmax to bmin at the maximum discharge rate is given as

Tdis = bmax − bmin

|δmin|
. (2.5.5)

The time required for the energy storage to completely charge from bmin to bmax at the maximum
charge rate is given as

Tch = bmax − bmin

δmax
. (2.5.6)

The active power output of the battery is denoted as

P iB = [xi]+

h ηch
− [xi]−ηdis

h
, (2.5.7)

where ηch and ηdis denote charging and discharging efficiency of the battery and lie in the range (0, 1].
The function [a]+ denotes max(0, a) and [a]− denotes −min(0, a).

The active power ramp rate constraint is given as

P iB ∈ [Pmin
B , Pmax

B ] with Pmin
B =δminηdis, P

max
B =

δmax

ηch
(2.5.8)

Though the battery charge level is not affected by the reactive power output QiB of the connected
inverter, the amount of active power supplied or consumed is dependent upon it, due to the line current
limitations [208]. The converter rating is given by maximum apparent power supplied/consumed denoted
as Smax

B . The instantaneous apparent power of battery SiB should satisfy

(Smax
B )2 ≥ (SiB)2 = (P iB)2 + (QiB)2, (2.5.9)
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Figure 2.19: Energy storage interfaced via a converter; the converter acts as AC to DC battery charger and
DC to AC power source.

Stress on battery: Authors in [242, 164] identify that the internal storage losses depends square of the
current supplied by the battery. Thus the storage operational profile which reduces the sum of square of
currents over the time horizon would minimize the losses and thus we consider reduce the stress on the
battery.

The block diagram of the electricity consumer in terms of active and reactive power is shown in Fig. 2.20.
The apparent power of the load shown in Fig. 2.20, at ith time instant is denoted as Sih = P ih+ jQih, where
P ih and Qih are the active and reactive power consumed. Apparent power of the solar inverter is given as
Sir = P ir where P ir is the active power supplied by solar inverter. We assume the solar inverter operates at
unity PF. Let us denote the combined load and renewable active and reactive power by P i = P ih−P ir and
Qi = Qih respectively. The power factor seen by the grid is the ratio of real power supplied or extracted
by the grid over the apparent power seen by the grid. In the absence of storage it is given by

pfibc = P i/

√
P i

2 +Qi
2
. (2.5.10)

Observe that PF before correction, pfibc, degrades as P ir and Qih increases in magnitude.
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Figure 2.20: Residential load block diagram with DG and storage

Battery Model: We use xC-yC notation to represent the relationship between ramp rate and battery
capacity. xC-yC implies battery takes 1/x hours to charge and 1/y hours to discharge completely. For
example, 2C-1C battery takes 0.5 hours to charge fully (from completely discharged state) and 1 hour to
discharge fully (from completely charge state). Commercial data-sheets often use this notation to denote
the ramp rate with respect to battery capacity.
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Part I
Energy Storage Arbitrage for Electricity Consumers
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Chapter 3

Energy Arbitrage - Net Metering 1.0

One man’s “magic” is another man’s engineering. “Supernatural” is a null word. -Robert A. Heinlein

Summary: End users equipped with storage may exploit time variations in electricity prices to earn
profit by doing energy arbitrage. We propose an algorithm to find an optimal solution of the energy
arbitrage problem under given time varying electricity prices. Our algorithm is based on the discretization
of optimal Lagrange multipliers of a convex problem and has a structure in which the optimal control
decisions are independent of past or future prices beyond a certain time horizon, referred as sub-horizon.
The proposed algorithm has a run time complexity of O(N2) in the worst case, where N denotes the time
horizon. To show the efficacy of the proposed algorithm, we compare its run-time performance with other
algorithms used in MATLAB’s constrained optimization solvers and linear programming (LP). The LP
formulation is detailed in Appendix B. Our algorithm is found to be several folds faster compared to other
benchmarks, and hence has the potential to be used for in real-time. Using the proposed algorithm, we
also evaluate the benefits of doing energy arbitrage over an extended period of time for which price signals
are available from some ISO’s in the USA and Europe. We present case-study for heuristically identifying
the length of sub-horizon. Sub-horizon denotes optimal look-ahead required for performing arbitrage. We
observe that faster ramping battery requires smaller lookahead horizon for performing arbitrage compared
to faster ramping batteries, however, such a battery are more prone to uncertainties.

3.1 Introduction
Net-energy metering (NEM) or Net-metering compensates consumer for solar surplus production. Utilities
in order to encourage consumers to install rooftop solar panels apply a compensation rate for surplus
production that is equal to the retail rate. This version of NEM is referred as NEM 1.0, which relies on
volumetric rates to recover fixed costs put by electric utilities [192]. Utilities aimed to increase renewable
production from consumer end. NEM is a noticeable success, by end of 2018 more than 913,481 California
electricity consumers opted for solar installations along with NEM. The total installed capacity of these
consumers exceed 7.6 GW1. Fig. 3.1 (downloaded on June 5th, 2019) shows the growth of installed solar
capacity in California [71]. There are many distributed generation interconnection programs offered by
the California Investor Owned Utilities (IOUs) which include Pacific Gas & Electric (PG&E), Southern
California Edison (SCE), and San Diego Gas & Electric (SDG&E) 2. In this chapter, we formulate the
optimal energy arbitrage problem under NEM 1.0 compensation mechanism.

Dynamic pricing of electricity in wholesale electricity markets has the potential to reduce peak de-
mand [106]. An end user operating under such pricing has to alter its consumption pattern to reduce
cost of operation by shifting its peak demand to hours of low price. However, it has been observed that
consumption patterns of users do not change significantly with real time electricity price variations and
hence consumers end-up paying more in their electricity bill [87]. Installing energy storage by an end user
allows them to perform energy arbitrage. The energy bought can be stored in the battery for later use
when the demand arises. Hence, using the battery allows the user to keep the same consumption pattern
without increasing their electricity bills under time-varying electricity prices [251]. Additionally, if the

1https://www.californiadgstats.ca.gov/, January, 2019
2https://www.californiadgstats.ca.gov/programs/, January, 2019

56

https://www.californiadgstats.ca.gov/
https://www.californiadgstats.ca.gov/programs/


Figure 3.1: Growth of installed solar in CAISO; 65.26% in residential (sample size =448k), 24.54% in
commercial (sample size: 8698), 5.29% in educational (sample size: 989), 2.12% in industrial (sample size:
181), 1.73% in other government bodies (sample size: 263), 0.77% in non-profit (sample size: 575) [71].

user is equipped with a renewable generation unit, then a battery also allows the user to reduce energy
uncertainty by storing excess generations.

Combining energy storage with renewables holds several benefits for storage owners. For example,
the Salt Lake Project in Phoenix Arizona (1995) demonstrated that the consumption peak and the solar
PhotoVoltaic (PV) generation peak are not aligned; the use of energy storage for load matching is proposed
in [266]. In a more recent study [283], renewables have been identified as primary contributors to the
environmental aspect, and energy storage adds economic value from an end user’s perspective. Renewables
are intermittent in terms of power generation, and dependent on exogenous parameters like solar irradiance
or wind speed. The design of real time electricity prices, as pointed out in [106, 186], indicates that energy
storage can be profitable due to the increased volatility caused by greater integration of renewables.

In this chapter, we consider storage operation in the presence of time-varying electricity price, consumer
load and renewable generation. Compensation for surplus supplied back to the grid is according to NEM
1.0. Under this setting, the optimization cost function is piecewise linear. Cruise et.al. [146] considered a
general (strictly) convex objective function. Similar to Cruise et.al., we also consider the optimal energy
arbitrage problem for an end user as a convex problem and propose a solution based on finding the optimal
Lagrange multipliers. However, due to piecewise linear cost structure the search of optimal Lagrange
multipliers can limited by electricity price levels and storage efficiency. We take the approach from Cruise
and exploit the piecewise-linear cost structure to obtain an efficient algorithm with provable complexity
analysis, see Chapter 4 Section 4.12. Our algorithm is much faster in practice than the simplex algorithm
for linear programming (LP). This LP formulation is presented in Appendix B. The real time optimal
storage arbitrage requires (i) an optimal control algorithm and (ii) accurate information about the present
and future states. Collectively these two requirements affect the end user arbitrage gains. We formulate
the energy arbitrage algorithm which allows users to perform energy arbitrage optimally and efficiently
under time-varying electricity prices. In order to deal with the uncertainty of information we use model
predictive control with forecasting. The key contributions/insights in the chapter are the following:
• Lagrange multipliers: Exploiting the piecewise linear cost structure of the arbitrage problem we find that
the optimal Lagrange multipliers can only take a discrete set of values corresponding to buying and selling
prices of electricity. This transforms the continuous optimization problem into a discrete optimization
problem. We indicate how to tune the Lagrange multiplier variables for given prices.
• Complexity: Using the discrete nature of the optimization, we explicitly characterize the worst case
running time complexity of the proposed arbitrage algorithm. The worst case run-time complexity is
found to be quadratic in the number of instants for which price values are available. Numerical simulations
show that our algorithm computes the optimal solution at least ten times faster than standard MATLAB
optimization solver and several folds faster than LP formulation summarized in Appendix B.
• Sub-horizon: From the structure of solution obtained using Lagrangian dual, we observe that to find
optimal control decisions in a certain period within the total period it is sufficient to consider prices only
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within a sub-horizon much smaller than the whole duration. In the proposed algorithm, we show how to
calculate these sub-horizons.
• Arbitrage: Using the proposed algorithm, we evaluate the benefits of performing energy arbitrage for an
extended duration of operation (e.g. 5 years). We use real price data and also incorporate realistic losses
in the battery.
• Heuristic quantification of length of sub-horizon: we present a heuristic based analysis to quantify the
lookahead required based on storage type. We observe in this case-study that the optimal lookahead for
performing arbitrage depends on the ratio of ramp rate over capacity. For batteries with high ratio of
ramp rate over capacity, the lookahead required is smaller compared to batteries with lower ratio of ramp
rate over capacity.
• Influence of uncertainty with storage parameters: For small sampling time (compared to charge/ discharge
time of the battery), batteries with higher ramp rates are more prone to uncertainties. For cases where
sampling time of the decision making is of the order of charge/discharge time, uncertainty in future
parameters does not have a significant effect of arbitrage gains. We observe that for fast ramping batteries
with small sampling time compared to charge or discharge time, it is crucial to model uncertainty which
would drastically influence the arbitrage gains in absence of considerations of uncertainty.

The problem of optimal energy arbitrage using storage has been the subject of many recent works e.g.,
[317, 280, 210, 148, 251, 91, 331, 206, 314]. In [317], the demand and price of electricity are assumed to be
correlated and stochastic. However, in this setting the user is not allowed to sell energy to the grid. In [280],
a closed form solution based on stochastic dynamic programming has been found for the arbitrage problem
without considering the ramp constraints of the battery. The objective in [210] is to reduce operational
cost of the grid, where demands arrive randomly in time. The work closest to the current chapter is [148],
where the energy arbitrage problem has been considered for a single battery user incorporating ramp and
capacity constraints of the battery, for strictly convex cost function. In the current chapter, we consider a
special case where the cost function is piecewise-linear which allows us to discretize the optimal Lagrange
multiplier values and characterize the complexity of the optimal arbitrage algorithm.

In [91, 331, 323], the authors consider application of energy storage for not only energy arbitrage but
also for providing ancillary services to the grid. Authors in [196] propose a deterministic setting of revenue
maximization using spot market prices of electricity available one day ahead. Authors in [314] investigate
control of energy storage in context of data-centers. Their model assumes that the battery is fully efficient.

The rest of the chapter is organized as follows. The battery model is described in Chapter 2.5. Sec-
tion 3.2 presents a mathematical framework and the proposed algorithm for solving the arbitrage problem.
Section 3.3 presents the numerical results. Section 3.4 analyses financial feasibility of energy storage per-
forming arbitrage. Section 3.5 quantifies the length of sub-horizon based on a case-study. Section 3.6
presents the third case-study on effect and mitigation of uncertainty due to price variations with battery
parameters. Section 3.7 concludes the chapter.

3.2 Arbitrage under NEM 1.0
We consider the operation of a single household user of electricity over a fixed period of time. The user
is assumed to be equipped with a renewable generation unit and a battery to store excess generation.
It is also connected to the electricity grid from where it can buy or to which it can sell energy. The
objective is to minimize the cost or maximize the profit of the user’s operation over a fixed period of time.
Qualitatively, the optimal decisions consist of buying energy from the grid when electricity prices are low
and selling energy to the grid when the electricity prices are high. Our objective is to find an efficient
algorithm for user to make optimal decisions over a period of varying electricity prices. We assume that
the energy consumed or sold by the end user over period of constant price is too small to affect the price
of the electricity in the same period. So in our case the end user acts as a price-taker.

The total duration, T , of operation is divided into N steps, where in each step i ∈ {1, ..., N} the price
of electricity is assumed to be constant at pi. This assumption is in sync with NEM 1.0 compensation in
California where the selling price equals the retail rate for each time instant. The duration of step i is
denoted as hi. Hence, T =

∑N
i=1 hi. The time duration T of the user’s operation is typically chosen as

one day [196] since the pattern in electricity prices repeats with a period of one day; being high during the
day and low during the night. We assume each user has a non-elastic demand of di units of energy in time
instant i and it generates ri units of energy through renewable sources in the same time instant. We define
zi = di− ri ∈ R. This difference between the demand and the generation can be satisfied either by buying
energy from the grid (at price pi) or by the energy obtained from a battery installed at the user’s home.
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In case of excess energy generation, it can be either stored in the battery or sold to the grid. The effciency
of charging and discharging of the battery are denoted by ηch ∈ (0, 1] and ηdis ∈ (0, 1], respectively. We
denote the change in the energy level of the battery at ith instant by xi = hiδi, where δi denotes the
storage ramp rate at ith instant; δi > 0 implies charging and δi < 0 implies discharging. Battery charge
level is denoted as bi and its evolution is given in Eq. 2.5.3. Amount of energy that comes from the grid
or renewables or goes out to the grid or end user from the battery at ith instant is given by

si = 1
ηch

[xi]+ − ηdis[xi]−, (3.2.1)

where function [a]+ = max(0, a) and function [a]− = −min(0, a). Hence, the net energy consumption
at ith instant is given as Pem(i) = di − ri + si. The cost at ith instant without the battery is given by
C1(i) = zipi. Similarly, the cost at ith instant with the battery is given by C2(i) = (zi + si) pi. The
objective of the energy arbitrage problem is to minimize

∑N
i=1 C2(i) with respect to xi.

3.2.1 Optimal Energy Arbitrage Problem: NEM 1.0

The optimal arbitrage problem with battery is defined as the minimization of
∑N
i=1 C2(i) subjected to the

battery constraints. We have

N∑
i=1

C2(i) =
N∑
i=1

(zi + si) pi =
N∑
i=1

C1(i) + C
(i)
storage(xi), (3.2.2)

where C(i)
storage(xi) is defined as

C
(i)
storage(xi) = sipi = pi

( 1
ηch

[xi]+ − ηdis[xi]−
)
. (3.2.3)

Hence, minimizing
∑N
i=1 C2(i) is equivalent to minimizing

∑N
i=1 C

(i)
storage(xi) as C1(i) is a constant for

every i. This implies the storage control under NEM 1.0 is independent of inelastic load and renewable
generation variation. In this formulation, the only stochastic variable is the variation in electricity price.
In this section, we formulate the energy arbitrage problem for deterministic price variation. The effect of
uncertainty is mitigated using forecasting along with model predictive control, presented in Section 3.6.
Therefore, the optimal arbitrage problem is given as

Minimize
xi∈[Xmin

i
,Xmax
i

],∀i

N∑
i=1

C
(i)
storage(xi)

subject to bmin ≤ bi ≤ bmax, ∀i,

(PNEM1)

where Xmin
i = hiδmin and Xmax

i = hiδmax for all i. From Eq. 3.2.3 it is clear that C(i)
storage(xi) is a piecewise

linear, continuous increasing function in xi for all i. Hence, the objective function for the above problem
is convex. Fig. 3.2 shows the cost function. It is evident from Fig. 3.2 that the cost function is convex
with respect to xi. The Lagrangian of problem Eq. PNEM1 is given as

L (x, α, β) =
N∑
i=1

(
C

(i)
storage(xi) + αi(bmin − bi) + βi(bi − bmax)

)
. (3.2.4)

Hence, the Lagrangian dual of Eq. PNEM1 is given by

(LD) max φ(α, β)
subject to, αi, βi ≥ 0 ∀i where φ(α, β) = inf

xi∈[Xmin
i

,Xmax
i

]
L (x, α, β)
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Figure 3.2: Cost Function for NEM 1.0

Theorem 3.2.1
There exists a pair (x∗, µ∗) with µ∗ = (µ∗1, . . . , µ∗N ) such that:

(1.) x∗ = (x∗1, ..., x∗N ) is a feasible solution of optimal arbitrage problem Eq. PNEM1 implying x∗i ∈
[Xmin

i , Xmax
i ] and b∗i = b0 +

∑i
j=1 x

∗
j ∈ [bmin, bmax] for all i.

(2.) For each i, x∗i minimizes C(i)
storage(x) − µ∗i x. Here, µ∗i is called the optimal accumulated Lagrange

multiplier for time instant i and is related to the dual optimal solution (α∗, β∗) as follows µ∗i =∑N
j=i(α∗j − β∗j ).

(3.) Optimal accumulated Lagrange multiplier, µ∗i , at any time instant i satisfies the following recursive
conditions:

• µ∗i+1 = µ∗i , if bmin < b∗i < bmax

• µ∗i+1 ≤ µ∗i , if b∗i = bmin

• µ∗i+1 ≥ µ∗i , if b∗i = bmax

where b∗i = b0 +
∑i
j=1 x

∗
j

(4.) Additionally, the optimal accumulated Lagrange multiplier µN at the last instant N satisfies

• µ∗N = 0, if bmin < b∗N < bmax

• µ∗N ≥ 0, if b∗N = bmin

For any pair (x∗, µ∗) satisfying the above conditions, x∗ solves the optimal arbitrage problem Eq. PNEM1.

The proof of Theorem 3.2.1 is provided in Appendix A.1. We note that the optimality conditions
stated in Theorem 3.2.1 are valid as long as C(i)

storage(xi) is a convex function with respect to xi for each i.
Next, we characterize, for each instant i, the relationship between the optimal decision x∗i and the optimal
accumulated Lagrange multiplier µ∗i using the particular nature of the cost function C(i)

storage(xi). This will
be useful in formulating the optimal arbitrage algorithm.

Remark 1. From condition (2) of Theorem 3.2.1 we have that the optimal control decision x∗i in the ith
instant minimizes the function C(i)

storage(x)−µ∗i x for x ∈
[
Xmin
i , Xmax

i

]
. Now from Eq. 3.2.3 we obtain that

for a given µ∗i = µ the optimal decision x∗i (µ) is given by

x∗i (µ) =



[
Xmin
i , Xmin

i

]
, if µ < pdis(i),[

Xmin
i , 0

]
, if µ = pdis(i),

[0, 0] , if pch(i) > µ > pdis(i),
[0, Xmax

i ] , if µ = pch(i),
[Xmax

i , Xmax
i ] , if µ > pch(i),

(3.2.5)

where pch(i) = pi/ηch and pdis(i) = piηdis. Note that x∗i (µ) is a set-valued function in µ: for µ = pch(i) or
µ = pdis(i), x∗i (µ) takes an envelope of values and for any other value of µ it is a singleton set. It is also
important to note from Eq. 3.2.5 that if µ1 ≤ µ2 then x∗i (µ1) � x∗i (µ2), where for two sets A and B we say
A � B (resp, A ≺ B) if a ≤ b (resp a < b) for all a ∈ A and for all b ∈ B. The above monotonicity property
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also holds for the sets b∗i (µ), defined recursively as b∗i (µ) = b∗i−1(µ) +x∗i (µ) for i ≥ 1 and b∗0(µ) = b0. Here,
addition of two intervals [a, b] and [c, d] denotes the interval [a+ c, b+ d].

3.2.2 Proposed Algorithm under NEM 1.0
We now propose an algorithm which finds a pair (x∗, µ∗) that satisfies all the conditions in Theorem 3.2.1
and therefore solves Eq. PNEM1. The pseudo code of the proposed algorithm is shown as Algorithm 2
below. Note from Theorem 3.2.1 condition (3) that µ∗i+1 may differ from µ∗i only when b∗i = bmax or
b∗i = bmin. Hence, if the battery level at the end of a time instant lies strictly within the battery capacity
limits, then there is no change in the value of the optimal accumulated Lagrange multiplier. Using this
key idea, in the proposed algorithm, we divide the total duration T into groups, indexed as {1, 2, . . . ,M},
of consecutive time instants such that for all instants i belonging to the same group K ∈ {1, 2, . . . ,M} the
value of the accumulated Lagrange multiplier µ∗i is the same, denoted as µK . We call each such group as
a sub-horizon. At the end of each sub-horizon, the battery energy level touches either bmax or bmin. The
number M of sub-horizons, the start and end instants of each sub-horizon K, and the value of µK and
optimal actions in each sub-horizon K depend on the problem instance and are determined recursively as
described below.

i=0 i=K1 i=K2 i=Km-1 i=N 

Length of Sub-horizon 

…. 
1 Index of Sub-horizon 2 M 

Figure 3.3: M sub-horizons in total horizon of length T

Suppose we have identified the first K− 1 (K ≥ 1) sub-horizons and the optimal actions in all instants
belonging to these sub-horizons. Call the last instant identified to be in the (K − 1)th sub-horizon as
iK−1. If iK−1 = N , then we have already covered whole period T . If iK−1 < N , then we proceed to
identify the next sub-horizon K, i.e., the values of iK , µK , and the optimal decisions for the time instants
i ∈ [iK−1 + 1, iK ]. To identify the sub-horizon K, we start with instant iK−1 + 1 and a guess value of
µK ≥ 0 for that sub-horizon.3 Now, for the chosen value of µK , the values of x∗i (µK) and b∗i (µK) are
computed as described in Remark 1 for all consecutive time instants i > iK−1 until we reach a time instant
i = ibreak for which one of the following conditions is satisfied (we call these as the violation conditions):

C1: b∗ibreak
(µK) ≺ {bmin}.

C2: {bmax} ≺ b∗ibreak
(µK).

C3: ibreak = N, bmin /∈ b∗N (µK), µK > 0.

If no such i is found even after reaching i = N , then K is identified as the last sub-horizon and we set
iK = N (and lines 24–30 of the pseudo code are executed). If µK > 0, then b∗N = bmin; else b∗N is taken
to be some value in the set [bmin, bmax) ∩ b∗N (µK) to satisfy condition (4) of Theorem 3.2.1. The optimal
decisions x∗i and b∗i for i ∈ [iK−1 + 1, N ] are then found by using the algorithm BackwardStep, shown
as in Algorithm 3 below. The proposed algorithm then terminates. The algorithm BackwardStep will be
discussed in more detail later.

If condition C1 above is satisfied, then for the chosen value of µK , the battery capacity limit is violated
at the instant ibreak since the set bibreak(µ) lies strictly below bmin. The value of µK is then increased to

µK = min {p > µ : p ∈ (pch(i), pdis(i); iK−1 < i ≤ ibreak)} .

Otherwise, if C2 or C3 above is satisfied, then µK is decreased to

µK = max {p < µ : p ∈ (pch(i), pdis(i); iK−1 < i ≤ ibreak)} .

With the updated value of µK we again repeat the same process as discussed above to obtain a new value
of ibreak. Since x∗i (µK) and b∗i (µK) are monotonically non-decreasing functions in µK , the potential effect

3For the first sub-horizon K = 1 (that includes the first time instant) the starting guess value of µ1 is taken to be 0 and
for every other sub-horizon K > 1, the starting guess value of µK is taken to be equal to µK−1. Note that these choices are
arbitrary and the algorithm does not depend on these choices.
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of the update of µK is that ibreak is pushed to a later instant. The update of µK is repeated so long as
ibreak increases (or remains the same) as compared to its old value (stored in imemory). If the value of
ibreak decreases with an updated value of µK , then for the previous value µmemory of µK there must have
been an instant i ∈ [iK−1 + 1, imemory], where bmax ∈ b∗i (µK) (if the violation occurred due to C1) or
bmin ∈ b∗i (µK) (if violation occurred due to C2 or C3). This is because both µmemory and µK always lie in
the range [pdis(i), pch(i)] for all i > iK−1. Since b∗i (pch(i)) ∩ b∗i (pdis(i)) 6= ∅ an update of µK cannot cause
b∗i (µK) to completely go above bmax or below bmin if {bmin} ≺ b∗i (µmemory) ≺ {bmax}.

At this point in the algorithm, µK and ibreak are switched back to their previous values stored in µmemory
and imemory, respectively. This value of µK is identified to be the final value of the optimal accumulated
Lagrange multiplier in the sub-horizon K. We set iK to be the latest time instant i ∈ [iK−1 + 1, ibreak] for
which bmin ∈ b∗i (µK) or bmax ∈ b∗i (µK). The value of b∗iK is chosen to be bmin in the former case and bmax
in the later case.

Finally, for each i in the range iK−1+1 ≤ i < iK , the optimal battery level b∗i is found from b∗i+1 through
the function BackwardStep which uses the backward recursion b∗i = (b∗i+1−x∗i+1(µK))∩b∗i (µK)∩[bmin, bmax].
If the above backward recursion returns a set, then any arbitrary value in the set is chosen to be the optimal
battery level. We note here that the optimal solution to Eq. PNEM1 need not be unique since its objective
function is not strictly convex.

Complexity Analysis: For any sub-horizon starting from instant i, there may be at most N − i + 1
more time instants which may be included in the same sub-horizon. Hence, in order to find the optimal
accumulated Lagrange multiplier for the sub-horizon, we may have to update the value of µK in the sub-
horizon at most 2(N − i+ 1) times (for each instant i two possible values pdis(i) pch(i) may be checked).
For each update, a basic set of operation is performed. Furthermore, there may be separate sub-horizon
starting from every time instant i ∈ [1, N ]. Hence, a crude upper bound on the number of times the
basic set of operations are needed to be repeated is

∑N
i=1 2(N − i + 1) = O(N2). Hence, the worst case

time complexity of the proposed algorithm is O(N2). In most situations, however, the number of instants
included in a sub-horizon does not grow with N . Hence, in most cases the the proposed algorithm would
be performed in linear in time, see Chapter 4 Section 4.12.

3.2.3 Open Source Code
The optimal arbitrage algorithm developed in this chapter is made open source. The link for the code is
https://github.com/umar-hashmi/netmetering1.

3.2.4 Stylized Example of Proposed Algorithm
Here we present a stylized example to demonstrate the operation of the proposed optimal arbitrage algo-
rithm which is composed of Algorithm 2 and Algorithm 3. Algorithm 2 is used to identify a sub-horizon
and returns the lower and the upper envelope of battery charge level in the sub-horizon. Algorithm 3 is
implemented once for a sub-horizon to identify the optimal battery charge level. We present Remark 2 as
the special case of Remark 1 for lossless battery, i.e., ηch = ηdis = 1.

Remark 2. The optimal control decision x∗i in the ith instant minimizes the function C
(i)
storage(x) − µ∗i x

for x ∈
[
Xi

min, X
i
max
]

and for battery with ηch = ηdis = 1 is given as:

x∗i (µ) =


[Xi

min, X
i
min], if µ < pi,[

Xi
min, X

i
max
]
, if µ = pi,

[Xi
max, X

i
max], if µ > pi,

(3.2.6)

where C(i)
storage(xi) = sipelec(i). For µ = pelec(i), x∗i (µ) takes an envelope of values. This threshold based

structure has a sub-gradient. For any other value of µ it is a singleton set.

This example considers a lossless battery under equal buying and selling price of electricity. For this
example the price of electricity is assumed to be in ascending order (worst case), i.e., 0 < p1 < p2 < p3...
and so on. The accumulated Lagrange multiplier (µ) is initiated from zero. Fig. 3.4 shows the battery
charge level trajectory for µ = 0. The battery charge level has a feasible trajectory till i = 1. The
temporary sub-horizon has sample between i = 0 and i = 1. Since p1 > µ therefore, battery should
discharge at maximum rate, based on the threshold based structure.

In the next iteration of the algorithm the accumulated Lagrange multiplier should be increased to
the price level in the identified sub-horizon, i.e. p1. The value of µ is increased because of the lower
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Algorithm 2 OptimalArbitrageNEM1
Inputs: N , T , h = (h1, h2, . . . , hN ), p = (p1, p2, . . . , pN ), b0
Parameters: bmax, bmin, δmax, δmin
Outputs: x∗ = (x∗

1, x
∗
2, . . . , x

∗
N ), b∗ = (b∗

1, b
∗
2, . . . , b

∗
N ), µ∗ = (µ∗

1, µ
∗
2, . . . , µ

∗
K)

Initialize: K = 1; µK = µmemory = 0; iK−1 = iK = imemory = 0; BreakFlag = 0
1: while iK < N do
2: for i = iK−1 + 1 to N do
3: Compute x∗

i (µK) and b∗
i (µK)

4: if C1 or C2 or C3 holds then
5: BreakFlag← 1; ibreak ← i
6: Break
7: end if
8: end for
9: if BreakFlag = 1 and ibreak ≥ imemory then

10: BreakFlag← 0; imemory ← ibreak; µmemory ← µK
11: if b∗

i (µK) ≺ {bmin} then
12: µK ← min {p > µ : p ∈ (pch(i), pdis(i); iK−1 < i ≤ ibreak)}
13: else
14: µK ← max {p < µ : p ∈ (pch(i), pdis(i); iK−1 < i ≤ ibreak)}
15: end if
16: else if BreakFlag = 1 and ibreak < imemory then
17: if C1 is True then
18: iK ← max {i ∈ [iK−1 + 1, imemory] : bmax ∈ b∗

i (µmemory)}
19: b∗

iK
= bmax

20: else if C2 or C3 is True then
21: iK ← max {i ∈ [iK−1 + 1, imemory] : bmin ∈ b∗

i (µmemory)}
22: b∗

iK
= bmin

23: end if
24: µK ← µmemory; BreakFlag← 0; ibreak ← imemory
25: imemory ← iK
26: BackwardStep(µK , iK−1, iK , b

∗, x∗, µ∗)
27: µK+1 ← µK ; K ← K + 1
28: else
29: iK ← N ;
30: if µK > 0 then
31: b∗

N ← bmin
32: else
33: b∗

N ← [bmin, bmax) ∩ b∗
N (µK)

34: end if
35: BackwardStep(µK , iK−1, iK , b

∗, x∗, µ∗)
36: end if
37: end while

Algorithm 3 BackwardStep(µK , iK−1, iK , b
∗, x∗, µ∗)

Inputs: µK , iK−1, iK , b
∗, x∗, µ∗

Function: Computes components of the optimal vectors b∗, x∗ in the range [iK−1 + 1, iK − 1] using backward
recursion
Initialize: i← iK − 1
1: while i ≥ iK−1 + 1 do
2: b∗

i ← (b∗
i+1 − x∗

i+1(µK)) ∩ b∗
i (µK) ∩ [bmin, bmax]

3: xi+1∗ ← b∗
i+1 − b∗

i

4: µ∗
i ← µK

5: end while
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Figure 3.4: Battery charge level trajectory for µ = 0

capacity violation in Fig. 3.5, see Condition 4 of Theorem 3.2.1. With this alteration of µ, the temporary
sub-horizon has increased from i = 0 to i = 2, as no feasible charge level exists at i = 3.
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Figure 3.5: Battery charge level trajectory for µ = p1

In the next iteration the value of µ is increased to p2. For the first time instant the battery should
charge as µ > p1. For the second time instant the battery charge level has an envelope based structure
between i = 1 to i = 2. For the third time µ < p3 therefore, the battery should discharge. The new
temporary sub-horizon has increased from i = 0 to i = 4, as shown in Fig. 3.6.
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Figure 3.6: Battery charge level trajectory for µ = p2
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Figure 3.7: Battery charge level trajectory for µ = p3
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Figure 3.8: Battery charge level trajectory for µ = p4

Similar adjustment of µ is performed till the sub-horizon keeps increasing, see Fig. 3.4 to 3.8. Any
further increase in µ from the case denoted in Fig. 3.8 decreases the length of the sub-horizon, see Fig. 3.9.
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Figure 3.9: Battery charge level trajectory for µ = p5

The value of µ associated with case shown in Fig. 3.8 is called the optimal accumulated Lagrange
multiplier denoted as µ∗ for the sub-horizon. For this example µ∗ = p4. The value of battery charge level
trajectory associated with µ∗ is the input to Algorithm 3. Note the value of µ∗ acts as the shadow price
and remains constant for a sub-horizon. Note the value of µ∗ is selected from finite number of discrete
levels of electricity price in the sub-horizon. This makes the proposed algorithm computationally very
efficient due to this discretization of a continuous optimization problem.

Algorithm 3 takes as input the envelope of battery charge level and identifies the optimal solution.
BackwardStep algorithm fix the last time instant in the sub-horizon at bmin and back-calculates the optimal
battery charge level. For time instant where µ∗ is equal to the price level, anything from Xmin to Xmax is
possible. Note neither charging or discharging is profitable or loss here, however, the battery could charge
some more if there are possible discharging opportunities in adjacent time periods in the sub-horizon.
Similarly, the battery could discharge here if there are lower discharging opportunities in adjacent time
periods in the sub-horizon. This period provides a slack in adjusting battery charge level. It is essential to
note that in this period intermediate ramp rate could be possible, contrary to all prior works on threshold
based optimal decision making. The optimal battery capacity is shown in Fig. 3.10.
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Figure 3.10: Optimal Battery charge level

The next sub-horizon begins at i = 7 as the optimal actions have been identified from i = 0 to i = 6.
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3.3 Numerical Evaluation
We solve the optimal arbitrage problem using the proposed algorithm described in Section 3.2.2. The per-
formance of the proposed algorithm is compared with Linear Programming (LP) and Matlab’s Fmincon
based constrained minimization (function evaluations set to 9600), in terms of run time and energy arbi-
trage gains. However, LP can only be evaluated for lossless battery as the objective function of Eq. PNEM1
is linear in the lossless case.
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Figure 3.11: Comparison for lossless battery

The battery parameters used for numerical evaluation are: bmax = 1 kWh, bmin = 0.1 kWh, δmax = 0.26
kW, δmin = −0.52 kW. Real-Time locational marginal pricing data for 21st December 2016 from NYISO
[29] is used to calculate optimal ramping trajectory. The sampling time of price signal is h = 0.25 hours.
Simulations are done using a laptop PC with Intel Core i5-4200M, 2.50GHz processor and 8 GB RAM.

Fig 3.11 shows the results for lossless battery, i.e. ηch = 1, ηdis = 1. The first plot of Fig 3.11b shows
the electricity price for a day [29], and the other plots show the optimal trajectory of battery level and the
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value of µ with time. It can be observed from Fig 3.11a and 3.11c that the proposed algorithm has not
violated the constraints for the battery and the results are using proposed algorithm and Matlab’s Fmincon
are very similar. The details of linear programming formulation is provided in Appendix B. However, the
run time of the proposed algorithm is significantly lower than other methods as shown in Table 3.1.

Table 3.1: Comparison of performance for lossless battery

Algorithm Type Run Time (sec) Profit ($)
Proposed Algo 0.1967 0.1403245

Linear Programming 1.4873 0.1403245
Matlab’s Fmincon 23.0526 0.14027568

Fig 3.12 shows the results of the proposed algorithm for a lossy battery, i.e. ηch = 0.95, ηdis = 0.95.

Table 3.2: Comparison of performance for lossy battery

Algorithm Type Run Time (sec) Profit ($)
Proposed Algo 0.164189 0.1193289

Linear Programming 1.255490 0.1193289
Matlab’s Fmincon 23.41217 0.11923956

From numerical evaluation it is observed that the proposed algorithm significantly reduces the run time
compared to Matlab’s Fmincon with reasonable number of evaluations, 9600 in this case. Table 3.2 provides
a comparison of results for a lossy battery.

3.4 Case Study 1: Feasibility of Energy Arbitrage
Energy storage is expensive, so its financial feasibility analysis is essential. We present an approximate
methodology to consider the net average capacity of the battery over its entire life. Using this average
available capacity, we calculate energy arbitrage gains in a deterministic setting for a 1 kWh rated capacity
battery with 1 day as optimization horizon.

3.4.1 Net Average Available Battery Capacity
The average battery capacity available over its entire life to the user will be close to 50 to 70 % of the
original storage capacity when the battery is new. Oversizing is a crucial factor jeopardizing the financial
viability of energy storage. We consider following sources of discounting:
(1.) Efficiency of Cycling : The losses incurred during cycles of charging and discharging (≈ 70 to 95%)
(2.) Efficiency of Converter : AC to DC and DC to AC conversion incurs losses (≈ 90 to 98 %)
(3.) Performance Degradation: Battery reaches End-of-Life (EoL) if the maximum battery capacity re-
duces to 80 % of the rated battery capacity. Life of a battery in years ranges from 5-20 years and in cycles
from 1000 to 20000 cycles depending on type of battery, whatever is achieved first marks EoL.
(4.) Optimal SoC Band: overcharging or over-discharging a battery significantly affect its life.

The discount factors assumed are: (1.) ηch = 0.95, ηdis = 0.95, thus the roundtrip battery efficiency
equals 0.9025, (2.) Converter Efficiency = 0.95, (3.) Average Capacity due to Degradation = 0.9,
(4.) [Bmax −Bmin]/Capacity = [0.98− 0.1]/1 = 0.88. Therefore Net Available Capacity = 0.679. This
implies that the earnings of 0.679 kWh available capacity in 5 years should match price paid by end user
in buying 1 kWh, for achieving 5 yrs. simple payback period. Discount factors due to maintenance cost
and self-discharge will further reduce the net average capacity of the battery.

3.4.2 Evaluation
The present battery cost is around $ 350 - 500 per kWh. One year (2016) simulations for real time
electricity prices of Nord Pool, PJM, ISONE, MISO, NYISO, ERCOT, CAISO and PG&E’s TOU prices
are done to calculate the value of energy storage. The discounted returns calculated for Battery model
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Figure 3.12: Comparison for lossy battery
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Figure 3.13: Average battery capacity due to: SoC constraint, cycling and converter losses and degradation
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Table 3.3: The price signals evaluated are listed below

Region/ISO Pricing Sample
NordPool [76] Real Time 1 hour
PG&E [295] ToU -

CAISO (Average Price) [16] Real Time 5 min
PJM (Zone AEP) [16] Real Time 1 hour

ERCOT (Zone LZ-Huston) [16] Real Time 1 hour
ISONE (Zone .Z.SEMASS) [16] Real Time 1 hour
MISO(Zone Michigan Hub) [16] Real Time 1 hour

NYISO (Zone N.Y.C.) [16] Real Time 1 hour

Table 3.4: Battery 1: δmax=0.26 kW, δmin=-0.52 kW

Region Cumulative Operational Discounted
or ISO Gains in 2016 Cycles in 2016 Gains in 5 yrs

NordPool e 0.991 1748 e 4.3
PG&E $ 4.38 184 $ 18.7
CAISO $ 37.9 914 $ 162.0
PJM $ 11.2 573 $ 47.9

ERCOT $ 18.6 430 $ 79.5
ISONE $ 15.3 687 $ 65.4
MISO $ 10.5 595 $ 44.9

NYISO $ 23.3 700 $ 99.6

Table 3.5: Battery 2: δmax = 1kW , δmin = −1kW

Region Cumulative Operational Discounted
or ISO Gains in 2016 Cycles in 2016 Gains in 5 yrs

NordPool e 1.09 2836 e 4.7
PG&E $ 4.38 184 $ 18.7
CAISO $ 73.2 2008 $ 312.9
PJM $ 16.1 825 $ 68.8

ERCOT $ 25.02 534 $ 107.0
ISONE $ 23.51 1082 $ 100.5
MISO $ 15.52 860 $ 66.34

NYISO $ 36.32 1225 $ 155.3

Table 3.6: Battery 3: δmax = 2kW , δmin = −2kW

Region Cumulative Operational Discounted
or ISO Gains in 2016 Cycles in 2016 Gains in 5 yrs
CAISO $ 125.03 3240 $ 534.4
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Figure 3.14: Histogram of sub-horizon spread for 0.5C-0.5C battery for CAISO in 2017

1, 2, 3 listed in Table 3.4, 3.5 and 3.6. The results take into account the net average battery capacity
calculated in section 3.4.1. The discounted returns are significantly lower than the present cost of a battery.
CAISO, NYISO and ERCOT is relatively more profitable but still lower than the initial investment made
by end user. For small price variations arbitrage could still be profitable if (Selling Price) > (Buying
Price)/(Round-trip Efficiency), but the revenue generated with per cycle of operation of the battery will
be small. It is evident from Table 3.4, 3.5 that the arbitrage gains are lower than the cost of a battery,
therefore subsides would be required for end user participation. For battery model 3, energy arbitrage
using CAISO prices tend to over use the battery, which is evident from the cycles of operation shown in
Table 3.6. Note that for other ISOs the gains remain as in Table 3.5, due to the one hour sampling time.
Energy storage arbitrage could become more profitable if the price of energy storage decreases drastically
or/and the price of electricity becomes more volatile or/and cycle life of batteries increase significantly.

3.5 Case Study 2: Quantifying length of a sub-horizon
Identifying optimal look-ahead horizon for performing arbitrage would be essential for maximizing the
gains by performing arbitrage. Prior works [251] indicate selecting a time horizon of 1 day is sensible since
the electricity pattern repeats with a period of one day approximately, being high during peak consumption
hours during the day and low during the night [196]. In this work we claim that the optimal control actions
for energy storage device depends on electricity price and load variations in a smaller part of a larger time
horizon and independent of all points in past or beyond the sub-horizon, as shown in Fig. 3.3. However,
identifying this optimal look-ahead period is challenging as it is governed by variation of electricity price,
load and battery parameters. Next we present a case study for understanding the influence of battery
parameters on length of a sub-horizon.

3.5.1 Case Study: CAISO 2017 for equal buying and selling price of electricity
We consider 2017 electricity price for CAISO and identify the variation of sub-horizon over a year with
different energy storage parameters. The variable considered here in this case study are:

• Electricity price for CAISO in 2017,

• Ramp rate of the battery: in this case study we consider 1 kWh capacity battery with 3 different
ramp rates. xC-yC represents that battery takes 1/x hours to completely charge and 1/y hours to
completely discharge.

• Efficiency of the battery: we consider 5 levels of efficiency (η): 0.99, 0.95, 0.9, 0.8 and 0.7. Here
η = ηch = ηdis.

The performance indices used in this case study are:

• Tmean: denotes the mean length of a sub-horizon over the whole year,

• T99%: denotes the 99% quartile,

• Tworst: denotes the worst case length of a sub-horizon,
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• $/cycle: denotes dollars per cycle gain and

• Gain: denoted total arbitrage gain.

Table 3.7: Quantifying the length of sub-horizon

Efficiency Tmean T99% Tworst $/cyc Gains
η hours hours hours $

0.5 C - 0.5C Battery
0.99 2.45 15.33 25.75 0.037 32.80
0.95 3.20 17.50 26.75 0.046 30.21
0.9 4.11 20.50 26.92 0.055 27.54
0.8 6.68 26.70 42.42 0.068 23.21
0.7 9.73 69.83 90.58 0.075 19.62

1 C - 1 C Battery
0.99 1.76 11.83 18.75 0.036 59.52
0.95 2.14 13.00 18.75 0.047 54.84
0.9 2.79 14.83 23.08 0.059 50.04
0.8 4.52 18.67 33.58 0.077 42.29
0.7 6.37 30.67 63.50 0.085 35.86

2 C - 2 C Battery
0.99 1.21 6.92 12.75 0.034 103.60
0.95 1.61 9.17 14.17 0.048 95.28
0.9 2.10 11.00 16.33 0.062 87.02
0.8 3.32 16.83 26.42 0.085 73.76
0.7 4.60 23.00 58.50 0.093 62.65

It is evident from Fig. 3.14 and Table 3.7 that the length of look ahead required for optimal energy
storage arbitrage reduces as the ramping rate increases and as the energy storage becomes more efficient.
As pointed in [174] that the efficiency creates a dead band in threshold based structure and increase in
efficiency implies battery should not operate during low returning transactions as it would not be profitable.
Dollars per cycle calculated using prior work [182] (detailed in Chapter 5) shows increase as the efficiency
decreases. For more details refer to Chapter 5, [174] and [182]. As the ramping of battery increases
and battery becomes more efficient the optimal look-ahead period decreases making it more prone to
inaccuracies in forecast information. This observation is in sync with [130].

Table 3.7 compares the look-ahead window required in hours for three batteries. xC-yC battery implies
battery takes 1/x hours to charge and 1/y hours to discharge completely. All the three batteries have the
same capacity but different ramping rates. The arbitrage gains increases as the battery becomes more
efficient and as the ramping rate increases. The $/cycle calculated here takes into account battery degra-
dation due to operational cycles. Note the look-ahead window for 0.5C-0.C battery with 95% efficiency
(i.e. ηch = ηdis = 0.95) is 15.5 hours or below for 99% of sub-horizons over the whole year (CAISO, 2017),
this decrease to 13 hours for 1C-1C battery and further reduces to just 9.17 hours for 2C-2C battery. This
case study indicates that the optimal look-ahead window for performing arbitrage is not only governed
by price variation but also battery ramping rate and round trip efficiency. Fig. 3.14 shows the spread of
sub-horizons for 0.5C-0.5 battery with varying efficiency. For a highly efficient battery the spread is much
more compact compared to less efficient one.

3.6 Case study 3: Effect of Uncertainty on Arbitrage
In recent years, energy storage has become an integral part of modern grid operations. Several pioneering
research papers have studied the economic benefits brought by operating energy storage [297, 109]. The
main obstacle here arise due to imperfections in the uncertainty modeling of forecast prices. Under NEM
1.0 the uncertainty is due to the variation of electricity price. Electricity price can be forecast based on
historical observations and market signals, yet any off-the-shelf forecasting methods would bring prediction
errors into subsequent battery control and arbitrage decisions. Battery owners need to design a strategy
that maximizes accumulated profits for the overall operation period where designed charging/discharging
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Figure 3.15: Schematic plot for our scenario-based battery controller, with a comparison to normal
MPC controller using point forecasts [130].

actions are coupled in time due to finite size of inventory or capacity, inaccurate forecasts can lead to
sub-optimal and hence less profitable sequential decisions.

To deal with such forecasting uncertainties, researchers have tried to design algorithms that are more
robust to predictions errors, such as ones based on model predictive control (MPC) and dynamic program-
ming (DP). The authors in [280, 317] maximize the expected value in presence of uncertain parameters,
though the solutions are very sensitive to the accuracy of given point forecast algorithms. The authors
in [92] propose multi-stage forecast for receding horizon control to mitigate the effects of forecasting
errors, however, explicit quantification of uncertainty is still difficult. In [324], the authors use a data-
driven reinforcement learning algorithm to maximize the arbitrage, yet both battery charging level and
charge/discharge actions are discrete which simplifies the control. From another perspective, other re-
searchers tried to handle the uncertainties explicitly via robust optimization [100], chance-constraints [292]
or scenario-based optimization [123]. The scenario-based approach often avoids the conservative solutions
achieved by robust optimization. It uses independent, identically distributed future realizations (scenar-
ios) to expressively represent the uncertainties. Moreover, with an appropriate choice of the number of
the scenarios, the solution of the scenario-based problem can be made a feasible solution of the corre-
sponding chance-constrained problem [123]. Scenario approach can also ease the subsequent control and
optimization problem with convex and linear formulations that are easy to scale. In [82, 213], authors use
scenario-based maximization for selecting control decisions for arbitrage problem.

The goal of this case-study is two-fold. Firstly, mitigation of uncertainties leading to reduction in
arbitrage gains for consumers compensated based on NEM 1.0 using model predictive control (MPC). We
propose two algorithms applicable for: (i) point forecast with MPC and (ii) scenario based MPC. Fig. 3.15
compares the classical MPC control algorithm with design the scenario-MPC controller, and derive the
optimal charge/discharge actions with respect to certain number of future price scenarios. Second goal
of this case-study is to understand the effect of storage parameters on how prone performing arbitrage
is towards uncertainty. For this evaluation we use four different simulation types: (a) Deterministic
simulation based on actual price values, (b) Day-ahead price predictions used for fixing control decisions,
(c) AutoRegressive Integrated Moving Average (ARIMA) based price forecast with MPC and (d) Model
free scenario generation along with MPC based on [132, 131].

3.6.1 Threshold based structure for negative prices
In some cases with high penetration of renewables, there may exist negative prices. Note that under such
cases, the cost function of the optimization is no longer convex. Here we make a realistic assumption
that negative prices are rare4, and assume the optimal action for the consumer under negative prices is to
charge. For instance in Germany and in California the negative prices comprised of 2.6% of total hourly

4Negative electricity prices occur when high inflexible power generation which cannot be shut down and restarted in a
quick and efficient manner meets low demand [158]. Such instances are on the rise with the growth of renewables, however,
the share of instants with negative price over the total number of time instants still remain within 3%.
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prices for the year 20175 6. Under this condition the threshold-based structure, used for selecting optimal
control decisions in Section 3.2, is modified to Eq. 3.6.1 in Remark 3.

Remark 3. The storage control decision x∗i in the ith instant minimizes the function C
(i)
storage(x) − µ∗i x

for x ∈ [Xmin, Xmax]. The storage control decision x∗i (µ) is

x∗i (µ) =





Xmin, if µ < pdis(i),
[Xmin, 0] , if µ = pdis(i),
0, if pch(i) > µ > pdis(i),
[0, Xmax] , if µ = pch(i),
Xmax, if µ > pch(i),

if pi ≥ 0

{
[0, Xmax] , if µ ≤ pch(i),
Xmax, if µ > pch(i),

if pi < 0

(3.6.1)

where pch(i) = pi/ηch, pdis(i) = piηdis, C(i)
storage(xi) = sipi and µ represents the shadow price of the

transaction.

Note that for µ = p̂chi or µ = p̂disi , u∗i (µ) takes an envelope of values. For any other value of µ it
is a singleton set. In order to find optimal decisions among an envelope of possible solutions based on
the price variations, a backward Step algorithm is used as described in detail in Section 3.2.2, refer to
OptimalArbitrageNEM1 algorithm.

Though the OptimalArbitrageNEM1 algorithm could provide resiliency to forecast uncertainties by
iteratively solving the MPC, it still heavily relies on the performance of forecasts, and the point forecast
errors can still lead to unsatisfactory charging/discharging actions. Next we present two algorithms used
for the analysis mentioned.

3.6.2 Point Forecast with MPC
We use AutoRegressive Integrated Moving Average (ARIMA) model of 8th lag order and one degree of
differencing for forecasting electricity price. The ARIMA model is described in Section 2.4.1. The ARIMA
model is developed using training data and tested for test dataset. Note that for price forecast the moving
average window is set to zero. This model is denoted as

∆Xi+1 = γ1∆Xi + γ2∆Xi−1 + ...+ γ8∆Xi−7 (3.6.2)

where ∆Xi = Xi −Xi−1.

Algorithm 4 PointForecastMPC
Global Inputs: ηch, ηdis, δmax, δmin, bmax, bmin, b0
Inputs: h,N, T, i = 0
1: while i < N do
2: i = i+ 1
3: Forecast p̂elec from time step i to N using ARIMA
4: Find x∗ by solving OptimalArbitrageNEM1 using inputs p̂elec, b0, h, battery parameters
5: bi

∗ = bi−1 + x∗
i

6: Update b0 = bi
∗

7: end while

3.6.3 Scenario-Based MPC
Scenario approach has been introduced into optimization problems to replace the uncertainty set of vari-
ables by a finite number of scenarios. In [123, 268] different approaches have been proposed to formulate
the uncertainty set as scenarios either in objectives or constraints. Model-free scenario generation is based
on [131]. We advise interested readers to follow details of the model with respect to arbitrage in [130].

We can now bridge the machine learning scenario generation algorithm ModelFreeScenarios with the
optimal control algorithm OptimalArbitrageNEM1 into the SMPC formulation. We term the entire process
as ScenarioMPC algorithm for real-time battery arbitrage.

5https://tinyurl.com/y9xq5gul
6https://tinyurl.com/y87t578b
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Algorithm 5 ScenarioMPC
Global Inputs: ηch, ηdis, δmax, δmin, bmax, bmin, b0, K
Inputs: h, total horizon N,T, t = 0
1: while i < N do
2: Update i = i+ 1
3: k = 1
4: while k < K do
5: Get forecasts p̂elec starting from i
6: p̂k

elec = ModelFreeScenarios(p̂elec , i) [131]
7: k = k + 1
8: end while
9: x∗ = OptimalArbitrageNEM1(p̂k

elec, h,N), ∀ k
10: Calculate bi+1 = bi + x∗

i

11: Update b0 = bi+1
12: end while
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Figure 3.16: One-week charging/discharging signals under deterministic, single scenario and
scenario-MPC control frameworks.

3.6.4 Simulation Results
We validate the performance of our algorithm on three battery model with varying ramp rates: 0.25kW, 1kW
and 4kW . The other battery parameters are b0 = 0.5kWh,Brated = 1kWh, SoCmax = 0.98, SoCmin =
0.1, h = 1

12 hour, ηch=ηdis=0.95. We use one-year locational marginal pricing data from CAISO7 as train-
ing data for scenarios, and test the three battery’s arbitrage performance on 1-week’s separate data. We
generate 1, 000 independent scenarios at each time-step. This number is selected in our case as we don’t
observe significant improvement in control performance with more scenarios. During testing on standalone
1-week test data, we also use public available day-ahead forecasts to compare the arbitrage performance.

We firstly validate if the proposed algorithm can make profits for batteries of varying ramp rates
and compare the results with control using full knowledge of price (the deterministic case). As shown
in Fig. 3.17, all three batteries are making profits, but the profits vary a lot depending on the ramp
rate. This corresponds to our expectation, since battery with greater ramping rates are able to catch the
opportunities of extreme prices (e.g., sell more energy when price are high). We define regret as the ratio
of difference on arbitrage gains. The regret comparison is shown in Table 3.8. From Table 3.8 we can
observe that inaccuracies in uncertainty model affect faster ramping battery (e.g., ultra-capacitor) much
more significantly compared to slow ramping battery (e.g., hydro storage). Observe the regret for 4 kW
ramping battery is more than 58% using SMPC, however, for 0.25 kW ramping battery the regret is less
than 3%.

In all settings, we observe better performance by using proposed data-driven ScenarioMPC algorithm
over MPC using point forecasts (ARIMA) and day-ahead price. More interestingly, when battery ramp
rate is lower, ScenarioMPC could achieve nearly the benchmark of using real future price information.
When ramp rate is higher, the battery are reacting more strongly to forecast errors, and scenarios can
only compensate part of such uncertainties on forecasts.

7http://www.energyonline.com/Data/
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Table 3.8: Comparison of regret on one-week profits

Max Ramp Rate Day Ahead ARIMA SMPC
0.25 KW 0.657 0.133 0.028

1 kW 0.855 0.237 0.134
4 kW 0.922 0.730 0.588

We then look into the details of how ScenarioMPC affects the battery charging/discharging decisions
in Fig. 3.16, where we show the actions for the battery with 0.25kW ramp rate. The decision of each
single scenario may deviate from the deterministic version’s strategy, while by integrating scenarios into
ScenarioMPC, the final decision is getting closer to the deterministic solution.

3.6.5 Key Observation
In this case-study, we use optimal arbitrage framework proposed in this chapter for solving the battery
arbitrage problem which is often faced with uncertainties in price forecasts. By utilizing data-driven
scenarios in the optimal control problem, simulation results demonstrate our algorithm can achieve better
performance than classical MPC algorithms with a basic ARIMA forecast. We observe that battery with
higher ramp rate has a greater sensitivity towards uncertainty. In such cases the modeling of uncertainty
is much more essential. However, if the sampling time of decision making is large than the effect of
uncertainty is low. For instance modeling of uncertainty is more essential for places where electricity price
varies every 5 minutes compared to places where the variation of electricity price happens hourly.

3.7 Conclusion and Perspectives
We formulate the optimal arbitrage algorithm for storage operation and propose an efficient algorithm
to find an optimal solution. The method transforms a continuous, convex optimization problem into a
discrete one by exploiting the piecewise linear structure of the cost function. This structure provides the
derivative of the cost function which is unique or has a sub-gradient like structure. We observe that optimal
storage control decisions do not depend on prices beyond a certain sub-horizon. In the proposed algorithm,
we indicate a method to calculate these sub-horizons and finding the optimal solution in the sub-horizon
using backwards step algorithm. The worst case run-time complexity of the proposed algorithm is found
to be quadratic in terms of the number of time instants for which price values are available. The proposed
algorithm outperforms even the simplex based LP formulation summarized in Appendix B.

Using the proposed algorithm, we conducted extended simulations for three case-studies. In first case-
study we use real price data from several ISOs in the USA and Europe for the year 2016. We extrapolate
the arbitrage gains for an end user for a five year period, considering detailed losses in the battery. The
numerical evaluation suggests that only arbitrage cannot create positive net present value for storage, thus
subsidies are required to incentivize investment.

In second case-study we quantify the length of a sub-horizon for CAISO price for the year 2017. We
observe the sub-horizon required for faster ramping batteries are significantly lower compared to slow
ramping batteries. However, in the third case-study we observe that faster ramping batteries are more
prone to uncertainty compared to slower ramping batteries. This could be used to infer that short-term
accurate forecasting is essential for maximizing arbitrage gains for faster ramping energy storage devices.

We also identify the effect of uncertainty on storage operation in association with the ramping capability
of storage. Fast ramping batteries have a greater influence of parameter uncertainty and therefore, would
require more rapid correction in its operation. Batteries could contribute if the lookahead forecast is
accurate. Although, the central goal of the thesis is not to develop tools for forecasting, however, realizing
the storage control algorithms in the real world should consider combining reliable forecasting tools with
storage control.
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(a) Comparison of cumulative profit for battery 0.25C-
0.25C

(b) Comparison of cumulative profit for battery 1C-1C

(c) Comparison of cumulative profit for battery 4C-4C

Figure 3.17: Case studies on one-week profits of 3 batteries with varying ramp rate. By incorporating
scenarios to account for the forecasting uncertainties, scenario-MPC outperforms control algorithms using
pure ARIMA or day-ahead forecasts information. Legend: (i) Blue shows deterministic case, (ii) Black shows
scenario MPC, (iii) Red shows MPC using ARIMA forecast, (iv) Green shows cumulative gains using day-
ahead price predictions.

76



Chapter 4

Energy Arbitrage - Net Metering 2.0

Never mistake a clear view for a short distance. - Paul Saffo

Summary: Electricity prices and the end user net load vary with time. End users equipped with
energy storage devices can perform energy arbitrage, i.e., buy when energy is cheap or when there is a
deficit of energy, and sell it when it is expensive or in excess, taking into account future variations in price
and net load. Net metering policies indicate that many of the utilities in order to compensate excess power
generated by end users apply a rate lower than or equal to the retail rate. In Chapter 3 we introduced
net-metering policies specifically applicable for NEM 1.0. This chapter formulates the optimal arbitrage
problem for NEM 2.0, where selling price is lower than or equal to buying price of electricity. Under such a
case the consumer inelastic load and renewable generation cannot be ignored, unlike the optimal arbitrage
formulation presented in Chapter 3. We propose a computationally efficient algorithm, with worst case
run time complexity of O(N2), that computes the optimal energy ramping rates in a time horizon. The
proposed algorithm exploits the problem’s convexity properties and is based on the discretization of optimal
Lagrange multipliers. The levels of discretization are governed by electricity price and storage efficiency.
The solution has a threshold-based structure in which optimal control decisions are independent of past
or future price as well as of net load values beyond a certain time horizon, defined as a sub-horizon. The
threshold is governed by inelastic load, renewable generation, electricity price and storage parameters.
Numerical results show the effectiveness of the proposed model and algorithm.

Furthermore, we investigate the impact of forecasting errors on the proposed technique. We consider an
Auto-Regressive Moving Average (ARMA) based forecasting of net load together with the Model Predictive
Control (MPC). We numerically show that adaptive forecasting and MPC significantly mitigate the effects
of forecast error on energy arbitrage gains. In numerical results we present the sensitivity analysis of
storage performing arbitrage with varying ramping batteries and different ratio of selling and buying price
of electricity.

4.1 Introduction
The share of total energy consumed worldwide by buildings, which include commercial and residential end
users, accounts for around 20% and it is projected to grow at an average of 1.4% per year from 2012 to
2040 [260]. The environmental benefit of connecting more and more renewable energy sources in meeting
the global energy demand is therefore irrefutable. Nowadays, utilities encourage end users to install DG
sources like solar PV, wind, biogas, biomass, geothermal energy or small hydro [98]; any excess power
generated by such sources are bought back by the grid and compensated at every billing cycle (monthly
or yearly). This can be achieved by Net Metering, which facilitates bi-directional power flow to and from
an end user. Net metering is a policy designed to encourage private investment in renewable energy [22].
Authors in [151] identify that the future adoption of distributed generation (DG) is highly sensitive to the
compensation mechanism, and an increase in retail rate would accelerate DG deployment. Incentivizing
DG owners pushes utilities to increase charges per kWh for all the customers, creating a disparity for non-
DG owners [156]. Utilities have to make a bargain in promoting DG and penalizing non-DG owners with
higher electricity rates [78]. Therefore, net metering policies vary significantly by country and by state or
province. For instance, in the US each state has its own mechanism to deal with distributed generation by
consumers. The compensation for an excess generation by an end user can be categorized based on selling
price as [78, 22]:

77



Retail Rate: The selling price is equal to the buying price of electricity for the end user for each time
instant. This compensation mechanism also referred as NEM 1.0 is considered for storage operation in
Chapter 3. States in the US where the NEM compensation equals retail rate: Connecticut, Delaware,
Florida, DC, Illinois, Indiana, Iowa, Kansas, Kentucky, Maine, Maryland, Minnesota, Montana, Nevada,
New Jersey, North Carolina, Vermont, Virginia, Washington, West Virginia, Wyoming,
Lower than the Retail rate: (referred as NEM 2.0). There are various compensation mechanisms where
the selling price is lower than the buying price, such as (a.) selling price could be a function of buying
price. States: Rhode Island, Michigan, Alabama, California, Colorado, Massachusetts, Oregon, Texas, (b.)
Avoided Cost: is the minimum amount an electric utility is required to pay an end user. States where NEM
compensation is based on the avoided cost are: Arizona, Louisiana, Missouri, Nebraska, New Hampshire,
New Mexico, North Dakota, Oklahoma, (c.) Generation Rate: selling price is approximately half the retail
rate, states: Ohio, Pennsylvania. Note that within a state there could be multiple utilities, the rules for
net metering can differ for different utilities, for example, net metering in California is discussed in [55].

While originally intended to promote the growth of distributed solar which NEM 1.0 has irrefutably
achieved, electric utilities have felt NEM 1.0 puts them in a disadvantaged position by increasing financial
stress. Utilities claim that large-scale renewable generation facilities are at least 50% cheaper compared to
buying surplus generation from consumers. NEM creates cross-subsidies between consumer classes, quite
similar to those created during the 1960s in the US to promote electric heating instead of using oil and
gas for heating. Utilities claimed that the increased sales resulting from consumers switching from gas
to electric heating offset the costs of the incentive programs. The utilities offered rebates to consumers
who switched to electric heating and promoted the concept of total electric home. The utilities were
able to capitalize on the fact that electric homes used 2.5 to 3 times as much energy as their nonelectric
counterparts, which would increase the sales for decades to come [192]. However, NEM contrary to
increasing electricity sales actually decreases them. Arizona Public Services reported that for a typical
solar consumer prior to installation of solar had 1,545 kWh and 8.9 kW average monthly energy and
power needs, which reduces to 491 kWh and 8.5 kW average monthly energy and power needs [89]. Note
although average power demand underwent non-noticeable change, the energy consumption reduced by
more than 68%. Such a reduction in volumetric energy consumption makes it impossible for a fixed cost
to be recovered. Investor-owned utilities which includes privately held companies such as PG&E claim
that solar customers are being compensated more than they generate and propose a re-evaluation of NEM
programs. The next generation NEM is referred to commonly as NEM 2.0. In this chapter, we formulate
the optimal energy arbitrage problem under NEM 2.0 compensation mechanism.

In this chapter, we generalize the threshold based structure of storage operation introduced in Chapter 3
to NEM 2.0 net-metering compensation policies. We use a similar search strategy for finding the shadow
price levels in a sub-horizon. Sub-horizon denotes a smaller portion of the longer time horizon where
storage control actions are coupled. These levels of shadow price required to identify a sub-horizon are
equivalent to the derivative of consumption cost paid by the consumer with respect to the optimization
variable. In this chapter we use the change in storage charge level as the optimization variable, therefore,
the shadow price defined takes the value which is governed by the price levels in the sub-horizon and
storage charging and discharging efficiency. We formulate the storage arbitrage problem applicable for
storage control under net-metering NEM 2.0, where the cost function has a piecewise linear structure. Our
setting also considers a consumer with inelastic load and renewable generation. Based on the selection of
optimization variable, we show the convexity of the objective function of operating energy storage in the
presence of inelastic consumer load and renewable generation. The objective function is not strictly convex,
so it does not have a unique derivative at the point of change of slope of the cost function, at these points
the derivate has a sub-gradient like structure. Due to this attribute of the cost function, an only forward
algorithm for storage control would not suffice. These points act as slack in optimizing storage operation.
This is illustrated using a stylized example provided in Chapter 3. We observe that at these points the
storage could have a ramp rate which is neither maximum, minimum nor zero, a notion (that optimal
storage actions consist of these 3 storage operation levels) many believed to be true [170, 325], [272], we
demonstrate this claim using a numerical experiment in Chapter 4.6. This claim assumes that the storage
ramp rates can only be changed at decision epochs and not in between the sampling time. In order to
identify storage actions in these points, we have a combination of a forward algorithm (Algorithm 6) which
identifies the sub-horizon and envelope of storage actions and a backward algorithm (Algorithm 7) which
runs one time in the identified sub-horizon to decide the storage control trajectory in that sub-horizon.
Algorithm 6 and Algorithm 7 together performs optimal arbitrage. We observe that the power level seen
by energy meter in the absence of energy storage affects the storage control decisions under net-metering.
We list exact thresholds based on price variation, load, and renewable variation and storage parameters.
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An alternative definition of energy arbitrage could be for reshaping renewable energy generation combined
with energy storage operated to adjust the grid injection to maximize the profitability of the facility [253].
The proposed algorithm could also be used for increasing self-consumption of local distributed generation
as pointed in [160] under zero selling price, thus reducing reliance on the utility.

4.1.1 General applicability of proposed algorithm
Note that the proposed solution is generally applicable for any system with finite capacity performing
arbitrage. In any market of commodities a market participant buys the commodity and stores it in its
inventory, in order to sell the commodity in the future to make profit. Performing such a transaction
has a coupling in buying and selling decisions. This coupling in time is due to the finite size of the
inventory, much like energy storage performing arbitrage. At any time, due to infrastructure constraint,
the market participant can buy or sell no more than a given limit, much like the ramp rate constraint
of a battery. Usage of inventory incurs some cost which decides the efficiency of buy and sell decisions,
analogous to charging and discharging efficiency of a battery. The exogenous variables such as inelastic
load and renewable generation is analogous to the operational cost and income for the inventory problem.

4.1.2 Contributions of the chapter
The key contributions of this chapter are as follows:
• Generalized Buy and Sell Prices: The Lagrangian theory for performing optimal arbitrage is proposed in
[145], [146]. Our main contribution is the development of a computationally efficient algorithm applicable
for different net-metering policies for consumer with inelastic load and renewable generation considering
storage ramp and capacity constraints.
• Sub-horizon: We observe that in order to determine optimal control decisions in a certain period within
the total time horizon it is sufficient to consider prices only within a sub-horizon which is often much
smaller than the entire horizon. The length of sub-horizon depends on (a) initial storage capacity, (b)
electricity price variation, (c) storage efficiency, (d) ratio of ramp rate over capacity and (e) sampling time
of decision making.
• Computationally efficient algorithm: Due to the discrete nature of the optimization problem, we explicitly
characterize the worst case run time complexity of the proposed arbitrage algorithm to be quadratic in
the number of time steps. The discretization is governed by electricity price levels in the sub-horizon and
storage charging and discharging efficiency.
• Threshold based structure: The threshold-based structure of the proposed solution provides a set of
feasible solutions in a sub-horizon. A backward step is, therefore, used for selecting the optimal trajectory
in a sub-horizon. We provide the conditions for optimally selecting these thresholds. Storage thresholds
for optimal arbitrage is a function of (a) price for buying and selling, (b) storage charging and discharging
efficiency, (c) ramping constraint, (d) the relationship between the ratio of selling and buying price with
respect to round-trip storage efficiency and (e) consumption level seen by energy meter without storage.
• The effect of forecast error on arbitrage gains: We implement auto-regressive based forecast model along
with MPC and numerically analyze their effect on arbitrage gains using real data from Pecan Street [58]
and ERCOT price signal [16], and real data from a household in Madeira in Portugal and electricity price
from California ISO [16]. The effect of uncertainty on arbitrage gains is more pronounced for cases where
selling price is higher compared to cases where selling price is closer to zero.
• Sensitivity of ratio of selling and buying price: We numerically analyze the effect of the ratio of buying and
selling price of electricity on the value of storage integration with inelastic load and renewable generation.
We observe that the value of storage performing arbitrage significantly increases in the presence of load
and renewable generation with the increasing disparity of selling and buying price of electricity, compared
to only storage performing arbitrage. Inclusion of storage in the presence of load and renewable could be
profitable even for cases where the selling price is zero or small compared to buying price. For the same
case, only storage performing arbitrage would not be profitable.

Prior Work: As in Chapter 3, optimal arbitrage problem can be seen as LP (see App. B) and
also as a convex optimization problem. The work closest to this chapter is [146], [148], where the energy
arbitrage problem has been considered for a single battery user incorporating storage ramping and capacity
constraints. In this chapter, we deal with a special case, for NEM 2.0, of optimal arbitrage problem dealt
in [146] along with consumer load and/or generation. Authors in [146] propose a forward storage control
algorithm, based on Lagrangian theory used to manage the storage capacity constraint, which could be
applied for strictly convex cost function which has a unique derivative of the cost function. Authors in
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[146] use strong Lagrangian theory for identifying storage control decisions. The key difference of our
work compared to [146] are: discretizing the continuous optimization problem of performing arbitrage and
presenting a threshold based structure of the optimal solution. Furthermore, we also consider inelastic
consumer load and renewable generation which influence storage operations for cases where the selling
price is lower than the buying price of electricity. The problem of optimal energy arbitrage using storage
has been the subject of many recent works e.g., [317, 148, 251, 91, 206]. Works [317, 280], [272, 166]
identify that the optimal decisions for arbitrage have a threshold based structure. In our work, we present
an efficient way of finding such thresholds (refer to Remark 4-7). In Chapter 3, we consider equal buy
and sell price of electricity, which simplifies the optimal arbitrage problem, as the optimal storage control
becomes independent of consumer load and renewable generation [335]. The system in [317, 282, 249] has
rooftop solar PV and energy storage for a residential setting, similar to the system considered in this work.

Modeling uncertainty with storage control is essential for real-time operation. Authors in [325] use
reinforcement learning for real-time energy arbitrage. Authors in [91], [81] use receding horizon dynamic
programming for mitigating uncertainty. We used model predictive control with forecasting for reducing
the effect of uncertainty over arbitrage gains.

The system considered in this chapter is described in Chapter 2.5. The chapter is organized as follows.
Section 4.2 presents a mathematical framework and proposes an algorithm for solving the arbitrage prob-
lem. Section 4.3 presents an online algorithm using the proposed optimal arbitrage algorithm using ARMA
forecasting in the MPC framework. Section 4.4 discusses numerical results. Section 4.5 compares run-time
of proposed algorithm with convex optimization and linear programming formulations. Section 4.6 and
Section 4.7 provides two case-studies providing more insights about the features of arbitrage problem.
Finally, section 4.8 concludes the chapter.

4.2 Optimal Arbitrage Problem
We consider the operation of a single residential user of electricity over a fixed period of time. The user
is assumed to be equipped with a rooftop solar PV and a battery to store excess generation. It is also
connected to the electricity grid from where it can buy or to which it can sell energy. The objective is
to find an efficient algorithm for a user to make optimal decisions over a period of varying electricity
prices considering variations in the solar generation and end user load. The time duration T of the user’s
operation is typically chosen as one day [251, 196] since the approximate pattern of electricity prices repeats
with a period of one day. The price of electricity, pelec(i), equals the buying price, pb(i), if the consumption
is positive; otherwise pelec(i) equals the selling price, ps(i). Note pelec is ex-ante. The ratio of selling and
buying price is denoted as κi = ps(i)

pb(i) . The end user inelastic consumption is denoted as di and generates
ri units of energy through renewable sources in time step i. Net energy consumption without storage is
denoted as zi = di − ri ∈ R. Energy consumed by the storage in the ith instant is given by

si = f(xi) = 1
ηch

[xi]+ − ηdis[xi]−, (4.2.1)

where xi = δihi must lie in the range from Xi
min = δminhi to Xi

max = δmaxhi. Alternatively, we can write
xi = ηch[si]+ − 1

ηdis
[si]−. The limits on si are given as si ∈ [Simin, S

i
max], where Simin = ηdisδminhi and

Simax = δmaxhi
ηch

. The capacity of the battery imposes the constraint bi ∈ [bmin, bmax],∀i. The total energy
consumed between time step i and i+1 is Li = zi+si. The optimal arbitrage problem (denoted as PNEM2)
is defined as the minimization of the cost of the total consumed energy, min

∑N
i=1 Lipelec(i), subject to the

battery constraints. It is given as follows:

(PNEM2) min
N∑
i=1

Cinm(xi),

subject to, bmin − b0 ≤
∑i
j=1 xj ≤ bmax − b0,∀i ∈ {1, .., N}, and xi ∈

[
Xi

min, X
i
max
]
∀i ∈ {1, .., N} Cinm(xi)

is equal to cost of consumption, i.e. [zi + f(xi)]+pb(i) − [zi + f(xi)]−ps(i) denotes cost function at the
ith instant. We first show that the optimal arbitrage problem is convex in x = (xi, i = 1 : N). For this
convexity to hold we require pb(i) ≥ ps(i) for all i = 1 : N , i.e., κ ∈ [0, 1]. This is generally the case in
most practical net metering policies [22],[56].

80



  

When z
i
 > 0 When z

i
 < 0

 x
i
  x

i
 Decision 

Variable

Cost 
Function

Cost 
Function

z
i 
p

b

Slope= p
b
/η

ch Slope = p
b 
/ η

ch

-z
i 
η

ch

z
i 
p

s

Slope= p
b
η

dis

Slope = p
s 
/ η

ch

-z
i 
/η

dis

Slope = p
s 
η

dis

Slope = p
s 
η

dis

Figure 4.1: Convexity of cost function: pictorial representation

Theorem 4.2.1
If pb(i) ≥ ps(i) for all i = 1 : N , then problem (PNEM2) is convex in x.

The proof of Theorem 4.2.1 is provided in Appendix A.3. It is evident from Fig. 4.1 that as κi ex-
ceeds 1, the plots will become concave. Therefore, in this work we assume κi ∈ [0, 1]. This assump-
tion ensures that the cost function is convex. The convexity of (PNEM2) established above helps us
exploit the strong duality property with the dual problem (D) defined below. Finally, using this duality
we find the structure of the optimal solution of (PNEM2). The Lagrangian of the optimization prob-
lem described for generalized buy and sell electricity price is given as L (x, α, β) =

∑N
i=1

(
C

(i)
nm(xi) +

αi

(
(bmin − b0) −

∑i
j=1 xj

)
+ βi

(∑i
j=1 xj − (bmax − b0)

))
. The Lagrangian dual of primal problem is

(D) max φ(α, β), subject to, αi, βi ≥ 0 ∀i, where φ(α, β) = inff(xi)∈[Simin,S
i
max] L (x, α, β)

Theorem 4.2.2
There exists a tuple (s∗, x∗, µ∗) with µ∗ = (µ∗1, . . . , µ∗N ) such that:

(1.) s∗ = f(x∗) ∀ i (Refer Eq. 4.2.1).
(2.) s∗ = (s∗1, ..., s∗N ) is a feasible solution of the optimal arbitrage problem (PNEM2) implying

si ∈
[
ηdisδminh,

δmaxh
ηch

]
and b∗i = b0 +

∑i
j=1 x

∗
j ∈ [bmin, bmax] for all i.

(3.) For each i, x∗i minimizes C(i)
nm(x)− µ∗i x. Here, µ∗i is called the optimal accumulated Lagrange

multiplier for time i and is related to the dual optimal solution (α∗, β∗) as follows µ∗i =
∑N
j=i(α∗j −β∗j ).

(4.) The optimal accumulated Lagrange multiplier, µ∗i , at any time step i satisfies the following
recursive conditions:

• µ∗i+1 = µ∗i , if bmin < b∗i < bmax,
• µ∗i+1 ≤ µ∗i , if b∗i = bmin,
• µ∗i+1 ≥ µ∗i , if b∗i = bmax.
(5.) Additionally µ∗N at the last instant N satisfies

• µ∗N = 0, if bmin < b∗N < bmax,
• µ∗N ≥ 0, if b∗N = bmin.

For any pair (s∗, µ∗) satisfying the above conditions, s∗ solves the optimal arbitrage problem (PNEM2).

The proof of Theorem 4.2.2 is provided in Appendix A.4. We note that the optimality conditions stated
in Theorem 4.2.2 do not depend on the particular structure of the cost function C

(i)
nm(xi) and are valid as

long as it is a convex function with respect to xi for each i. Theorem 4.2.2 is motivated from [148] and is
a generalized representation of our prior work [184].

To compute the optimal solution (i.e., the optimal control decisions), we introduce the idea of a sub-
horizon and propose a mechanism to identify such sub-horizons (see Theorem 4.2.2). A sub-horizon is a
portion of time-horizon where the shadow price1 remains constant. The shadow price is selected iteratively
from discrete levels based on the price of electricity and the battery charging and discharging efficiencies

1In optimization, the shadow price is the value of the Lagrange multiplier at the optimal solution.
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in the sub-horizon. The optimal control decisions have a threshold based structure, and these thresholds
are calculated in function of the shadow prices. The accumulated Lagrange multiplier (µ∗) is considered
as the shadow price of transaction.

4.2.1 Threshold Based Structure of the Optimal Solution
From condition (2) of Theorem 4.2.2 we have that the optimal control decision x∗i in the ith instant
minimizes the function C(i)

nm(x)−µ∗i x for f(xi) ∈
[
Simin, S

i
max
]
. This implies x∗i is a function of accumulated

Lagrange multiplier µi for time instant i. In all these cases we find out the expression for s∗i (µ) can be
directly mapped to x∗i (µ). Below we observe that the relationship between s∗i and µ is based on different
threshold values of µ. Prior works [317, 280, 166] also indicates that the optimal actions for an energy
storage device performing energy arbitrage have a threshold-based structure. We now present the different
cases that may arise in terms of ratio κi. In the cases below we present the threshold based structure
governed by the relationship between buying and selling price, battery charging and discharging efficiency
and net load without storage.

Case 1: κi = 1

κi = 1 implies buying and selling price for time instant i are the same. This case is considered in Chapter 3.
For equal buying and selling price, minimizing the total cost of consumption, i.e.,

∑
(zi + si)pelec(i),

is equivalent to minimizing the cost of operation of storage,
∑
sipelec(i). Here the price of electricity,

pelec(i) = ps(i) = pb(i) ∀ i [184]. The threshold based structure of the optimal control decisions are
presented in Remark 4.

Remark 4. Optimal control decision x∗i minimizes the function C
(i)
storage(s) − µ∗i x for s ∈

[
Simin, S

i
max
]
.

s∗i (µ) is given in Eq. 4.2.2.

s∗i (µ) =



[Simin, S
i
min], if µ < ps(i)ηdis,[

Simin, 0
]
, if µ = ps(i)ηdis,

[0, 0], if ps(i)ηdis < µ < pb(i)/ηch,[
0, Simax

]
, if µ = pb(i)/ηch,

[Simax, S
i
max], if µ > pb(i)/ηch,

(4.2.2)

where C(i)
storage(si) = sipelec(i). Note for µ = pb(i)/ηch or µ = ps(i)ηdis, s∗i (µ) takes an envelope of values

and for any other value of µ it is a singleton set.
We would like to highlight here that for case concerning only storage device performing arbitrage in

absence of any load, Eq. 4.2.2 can be applied for κi ∈ [0, 1].

Note that s∗i (µ) is a set-valued function in µ. It is also important to note that if µ1 ≤ µ2 then
s∗i (µ1) � s∗i (µ2), where for two sets A and B we say A � B (resp, A ≺ B) if a ≤ b (resp a < b) for all
a ∈ A and for all b ∈ B. Note x∗i = f−1(s∗i ). The above monotonicity property also holds for the sets
b∗i (µ), defined recursively as b∗i (µ) = b∗i−1(µ) + x∗i (µ) for i ≥ 1 and b∗0(µ) = b0. Here, the addition of two
intervals [a, b] and [c, d] denotes the interval [a + c, b + d]. Note that when µ lies between ps(i)ηdis and
pb(i)/ηch, the optimal action for the battery is to do nothing, thus the cycles of operation that a battery
performs can be controlled by introducing a friction coefficient facilitating the elimination of low returning
transactions [174]. In [182] we show that this friction term can be tuned to maximize the battery life.

Case 2: κi ∈ [0, ηchηdis)

For κi ∈ [0, ηchηdis) implies ps(i)/ηch < pb(i)ηdis. Since ηch < 1, ηdis < 1, therefore, pb > ps is valid. The
optimal thresholds based on the value of µ are given by Remark 5.

Remark 5. The optimal control decision s∗i minimizes the function C(i)
nm(f(x))−µ∗i x for f(x) ∈

[
Simin, S

i
max
]
.

The optimal decision s∗i (µ) is given by Eq. 4.2.3.
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s∗i (µ) ∈



{[
Simin, S

i
min
]
, if µ < ηdisps(i),{[

Simin,max(−zi, Simin)
]
, if zi ≥ 0,[

Simin, 0
]
, if zi < 0,

if µ = ηdisps(i){[
max(−zi, Simin),max(−zi, Simin)

]
, if zi ≥ 0,

[0, 0] , if zi < 0,
if ηdisps(i) < µ < ps(i)

ηch{[
max(−zi, Simin),max(−zi, Simin)

]
, if zi ≥ 0,[

0,min(−zi, Simax)
]
, if zi < 0,

if µ = ps(i)
ηch{[

max(−zi, Simin),max(−zi, Simin)
]
, if zi ≥ 0,[

min(−zi, Simax),min(−zi, Simax)
]
, if zi < 0,

if ps(i)
ηch

< µ < ηdispb(i){[
max(−zi, Simin), 0

]
, if zi ≥ 0,[

min(−zi, Simax),min(−zi, Simax)
]
, if zi < 0,

if µ = ηdispb(i){
[0, 0] , if zi ≥ 0,[
min(−zi, Simax),min(−zi, Simax)

]
, if zi < 0,

if ηdispb(i) < µ < pb(i)
ηch{[

0, Simax
]
, if zi ≥ 0,[

min(−zi, Simax), Simax
]
, if zi < 0,

if µ = pb(i)
ηch{[

Simax, S
i
max
]
, if µ > pb(i)

ηch

(4.2.3)

Proof. For a given µ∗
i = µ the optimal decision s∗

i (µ) is given by minimizing Eq. 4.2.4.
[zi + si]+pb(i)− [zi + si]−ps(i)− µ

(
ηch[si]+ −

1
ηdis

[si]−
)

(4.2.4)

Hence, in order to minimize Eq. 4.2.4 we consider the sign of (zi + si) and si. This will provide the following cases
J1: si(pb(i)− µηch) s.t. zi + si ≥ 0 and si ∈ [0, Smax],
J2: si(ps(i)− µηch) s.t. zi + si ≤ 0 and si ∈ [0, Smax],

J3: si
(
pb(i)− µ

ηdis

)
s.t. zi + si ≥ 0 and si ∈ [Smin, 0],

J4: si
(
ps(i)− µ

ηdis

)
s.t. zi + si ≤ 0 and si ∈ [Smin, 0].

The accumulated Lagrange multiplier, µ, can be viewed as the shadow price of decision making. Based on conditions
J1 to J4, the value of µ will divide the price levels into nine cases. Table 4.1 lists the constraints and minimizing
conditions, we will use this table to find optimal value of s∗

i . From Table 4.1 we can see the conditions of desired

Table 4.1: Conditions to check

Tag [zi + si] [si] min Condition Desired scenario
J1 +ve +ve si(pb(i)− µηch) (pb(i)− µηch) ≤ 0
J2 -ve +ve si(ps(i)− µηch) (ps(i)− µηch) ≤ 0
J3 +ve -ve si(pb(i)− µ

ηdis
) (pb(i)− µ

ηdis
) ≥ 0

J4 -ve -ve si(ps(i)− µ
ηdis

) (ps(i)− µ
ηdis

) ≥ 0

scenarios. Based on conditions J1 to J4, we observe four distinct levels in price signal which will subsequently
divide the real line into nine possible levels for the accumulated Lagrange multiplier (µ) as shown in Fig 4.2.

Region 1: µ < ηdisps(i): The minimizing conditions will be achieved by J3 and J4 as shown below:

Tag [zi + si] [si] min Condition Sign Comment
J1 +ve +ve si(pb(i)− µηch) + (+) Undesired
J2 -ve +ve si(ps(i)− µηch) + (+) Undesired
J3 +ve -ve si(pb(i)− µ

ηdis
) - (+) Desired

J4 -ve -ve si(ps(i)− µ
ηdis

) - (+) Desired

From J4 if (zi + si) < 0 then s∗
i = [Smin, Smin] and from J3 if (zi + si) ≥ 0 then s∗

i = [Smin, Smin]. Therefore,
irrespective the sign of zi the optimal value is [Smin, Smin].

Region 2: µ = ηdisps(i): The minimizing conditions will be achieved by J3 and J4 is a don’t care condition
with only constraint on si being negative or zero.
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Figure 4.2: Cases based on levels of µ

Tag [zi + si] [si] min Condition Sign Comment
J1 +ve +ve si(pb(i)− µηch) + (+) Undesired
J2 -ve +ve si(ps(i)− µηch) + (+) Undesired
J3 +ve -ve si(pb(i)− µ

ηdis
) - (+) Desired

J4 -ve -ve si(ps(i)− µ
ηdis

) - (0) Don’t Care

Sub-Case 1: from J3 and J2 if zi ≥ 0 then s∗
i = [Smin,max(−zi, Smin)].

Sub-Case 2: from J4 if zi < 0 then s∗
i = [Smin, 0].

Region 3: µ ∈ (ηdisps(i), ps(i)
ηch

): The minimizing conditions will be achieved by minimizing J3. All other
conditions, i.e., J1, J2 and J4 are undesired.

Tag [zi + si] [si] min Condition Sign Comment
J1 +ve +ve si(pb(i)− µηch) + (+) Undesired
J2 -ve +ve si(ps(i)− µηch) + (+) Undesired
J3 +ve -ve si(pb(i)− µ

ηdis
) - (+) Desired

J4 -ve -ve si(ps(i)− µ
ηdis

) - (-) Undesired

Sub-Case 1: from J3 if zi ≥ 0 then s∗
i = [max{−zi, Smin},max{−zi, Smin}].

Sub-Case 2: from J2 and J4 s∗
i = [0, 0].

Region 4: µ = ps(i)
ηch

: The minimizing conditions will be achieved by minimizing J3. J2 is a don’t care
condition.

Tag [zi + si] [si] min Condition Sign Comment
J1 +ve +ve si(pb(i)− µηch) + (+) Undesired
J2 -ve +ve si(ps(i)− µηch) + (0) Don’t Care
J3 +ve -ve si(pb(i)− µ

ηdis
) - (+) Desired

J4 -ve -ve si(ps(i)− µ
ηdis

) - (-) Undesired

Sub-Case 1: from J3 if zi ≥ 0 then s∗
i = [max{−zi, Smin},max{−zi, Smin}].

Sub-Case 2: from J2, if zi < 0 then s∗
i = [0,min{−zi, Smax}].

Region 5: µ ∈ ( ps(i)
ηch

, ηdispb(i)): The minimizing conditions will be achieved by minimizing J2 and J3.

Tag [zi + si] [si] min Condition Sign Comment
J1 +ve +ve si(pb(i)− µηch) + (+) Undesired
J2 -ve +ve si(ps(i)− µηch) + (-) Desired
J3 +ve -ve si(pb(i)− µ

ηdis
) - (+) Desired

J4 -ve -ve si(ps(i)− µ
ηdis

) - (-) Undesired

Sub-Case 1: from J3 if zi ≥ 0 then s∗
i = [max{−zi, Smin},max{−zi, Smin}].

Sub-Case 2: from J2, if zi < 0 then s∗
i = [min{−zi, Smax},min{−zi, Smax}].

Region 6: µ = ηdispb(i): The minimizing conditions will be achieved by J2 and J3 is a don’t care condition
with only constraint on si being negative or zero.

Tag [zi + si] [si] min Condition Sign Comment
J1 +ve +ve si(pb(i)− µηch) + (+) Undesired
J2 -ve +ve si(ps(i)− µηch) + (-) Desired
J3 +ve -ve si(pb(i)− µ

ηdis
) - (0) Don’t Care

J4 -ve -ve si(ps(i)− µ
ηdis

) - (-) Undesired
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Sub-Case 1: from J3 if zi ≥ 0 then s∗
i = [max{−zi, Smin}, 0].

Sub-Case 2: from J2 if zi < 0 then s∗
i = [min{−zi, Smax},min{−zi, Smax}].

Region 7: µ ∈ (ηdispb(i), pb(i)ηch
): The minimizing conditions will be achieved by J2. All other cases will be

undesirable.

Tag [zi + si] [si] min Condition Sign Comment
J1 +ve +ve si(pb(i)− µηch) + (+) Undesired
J2 -ve +ve si(ps(i)− µηch) + (-) Desired
J3 +ve -ve si(pb(i)− µ

ηdis
) - (-) Undesired

J4 -ve -ve si(ps(i)− µ
ηdis

) - (-) Undesired

Sub-Case 1: from J2 if zi < 0 then s∗
i = [min{−zi, Smax},min{−zi, Smax}].

Sub-Case 2: if zi ≥ 0 then do nothing, s∗
i = [0, 0]. This is because J1 and J3 covers two direction of movement

i.e. charging and discharging, both of which will increase the objective function.
Region 8: µ = pb(i)

ηch
: The minimizing conditions will be achieved by J2 and J1 is a don’t care condition.

Tag [zi + si] [si] min Condition Sign Comment
J1 +ve +ve si(pb(i)− µηch) + (0) Don’t Care
J2 -ve +ve si(ps(i)− µηch) + (-) Desired
J3 +ve -ve si(pb(i)− µ

ηdis
) - (-) Undesired

J4 -ve -ve si(ps(i)− µ
ηdis

) - (-) Undesired

Sub-Case 1: from J2 and J1 if zi < 0 then s∗
i = [min{−zi, Smax}, Smax].

Sub-Case 2: from J1 is zi ≥ 0 then s∗
i = [0, Smax].

Region 9: µ > pb(i)
ηch

: The minimizing conditions will be achieved by J2 and J1.

Tag [zi + si] [si] min Condition Sign Comment
J1 +ve +ve si(pb(i)− µηch) + (-) Desired
J2 -ve +ve si(ps(i)− µηch) + (-) Desired
J3 +ve -ve si(pb(i)− µ

ηdis
) - (-) Undesired

J4 -ve -ve si(ps(i)− µ
ηdis

) - (-) Undesired

Irrespective of sign of zi, s∗
i = [Smax, Smax].

Case 3: κi ∈ (ηchηdis, 1)

For pb(i) > ps(i) and ps(i)/ηch > pb(i)ηdis optimal thresholds based on the value of µ are given by
Remark 6.

Remark 6. The optimal control decision s∗i minimizes the function C(i)
nm(f(x))−µ∗i x for f(x) ∈

[
Simin, S

i
max
]
.

The optimal decision s∗i (µ) is given by Eq. 4.2.5.

s∗i (µ) ∈



{[
Simin, Smin

]i
, if µ < ηdisps(i),{[

Simin,max(−zi, Simin)
]
, if zi ≥ 0,[

Simin, 0
]
, if zi < 0,

if µ = ηdisps(i){[
max(−zi, Simin),max(−zi, Simin)

]
, if zi ≥ 0,

[0, 0] , if zi < 0,
if ηdisps(i) < µ < ηdispb(i){[

max(−zi, Simin), 0
]
, if zi ≥ 0,

[0, 0] , if zi < 0,
if µ = ηdispb(i){

[0, 0] , if ηdispb(i) < µ < ps(i)
ηch{

[0, 0] , if zi ≥ 0,[
0,min(−zi, Simax)

]
, if zi < 0,

if µ = ps(i)
ηch{

[0, 0] , if zi ≥ 0,[
min(−zi, Simax),min(−zi, Simax)

]
, if zi < 0,

if ps(i)
ηch

< µ < pb(i)
ηch{[

0, Simax
]
, if zi ≥ 0,[

min(−zi, Simax), Simax
]
, if zi < 0,

if µ = pb(i)
ηch{[

Simax, S
i
max
]
, if µ > pb(i)

ηch
,

(4.2.5)

85



The proof of Remark 4 is provided in Appendix A.5. Note by substituting pb(i) = ps(i) in Eq. 4.2.5 and
taking the union of the ranges, Case 3 can be simplified to Case 1.

Case 4: κi = ηchηdis

For pb(i) > ps(i) and ps(i)/ηch = pb(i)ηdis optimal thresholds based on the value of µ are given by
Remark 7.

Remark 7. The optimal control decision s∗i minimizes the function C(i)
nm(f(x))−µ∗i x for f(x) ∈

[
Simin, S

i
max
]
.

The optimal decision s∗i (µ) is given by Eq. 4.2.6.

The proof of Remark 4 is provided in Appendix A.6.

s∗i (µ) ∈



{[
Simin, Smin

]i
, if µ < ηdisps(i),{[

Simin,max(−zi, Simin)
]
, if zi ≥ 0,[

Simin, 0
]
, if zi < 0,

if µ = ηdisps(i){[
max(−zi, Simin),max(−zi, Simin)

]
, if zi ≥ 0,

[0, 0] , if zi < 0,
if ηdisps(i) < µ < ηdispb(i){[

max(−zi, Simin), 0
]
, if zi ≥ 0,[

0,min(−zi, Simax)
]
, if zi < 0,

if µ = ηdispb(i){
[0, 0] , if zi ≥ 0,[
min(−zi, Simax),min(−zi, Simax)

]
, if zi < 0,

if ps(i)
ηch

< µ < pb(i)
ηch{[

0, Simax
]
, if zi ≥ 0,[

min(−zi, Simax), Simax
]
, if zi < 0,

if µ = pb(i)
ηch{[

Simax, S
i
max
]
, if µ > pb(i)

ηch
,

(4.2.6)

By substituting pbηdis = ps/ηch in Eq. 4.2.5 and taking the union of the ranges, Case 3 can be simplified
to Case 4.

4.2.2 Proposed Algorithm
In this section we describe the algorithm we propose to solve the optimal energy arbitrage problem for-
mulated previously. The objective of the algorithm is to find a tuple (s∗, x∗, µ∗) that satisfies conditions
(1)-(5) of Theorem 4.2.2, and therefore solves (PNEM2). The proposed algorithm is developed for Case
1 to 4, described in the previous section, using Remark 4, 5, 6 and 7 for lossy battery. The presented
algorithm could be operated for a variable value of κi, such that κi ∈ [0, 1] ∀ i, covering all net-metering
compensation scheme. Algorithm 6 illustrates its main steps. Based on the value of κi the lower and
upper bound of the envelope is selected, lines 4–8 of the pseudo code of Algorithm 6. From condition
(4) of the theorem, we can see that µ∗i+1 may differ from the optimal accumulated Lagrange multiplier,
µ∗i , only when b∗i = bmax or b∗i = bmin. This means that the value of µ remains constant as long as the
battery level at a time instant lies strictly within the battery capacity limits. Based on this key idea, the
whole duration T is divided into M periods, indexed as {1, 2, . . . ,M}. Each period contains a number of
consecutive time instants, such that for all instants i belonging to the same period K ∈ {1, 2, . . . ,M} the
value of the accumulated Lagrange multiplier µ∗i remains the same, denoted as µK . Each such period is
called sub-horizon. It follows that at the end instant of each sub-horizon, the battery energy level touches
either bmax or bmin. Note that the number of sub-horizons (M), the start and end instants of each sub-
horizon K, the µK value, and the optimal actions in sub-horizon K depend on the problem instance and
are determined recursively, as described below.

Assume that we have already identified the first K−1 (K ≥ 1) sub-horizons and determined the values
of s∗i and µ∗i in all instants i belonging to these sub-horizons (for i ∈ [1, iK−1]). The index iK−1 denotes
the last instant in the (K − 1)th sub-horizon. Hence:

If iK−1 = N , then we have already covered the whole period T and the algorithm terminates.

If iK−1 < N , then we proceed to identify the next sub-horizon K, i.e., the values of iK (the last
instant in sub-horizon K), µK , and the optimal decisions for the time instants i ∈ [iK−1 + 1, iK ].
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To determine sub-horizon K, we start with instant iK−1 + 1 and an initial value of µK ≥ 0 for that
sub-horizon2. We compute the values of s∗i (µK) and b∗i (µK)3 according to the method described in Re-
mark 4, 5, 6 and 7, for all consecutive time instants i > iK−1 until we reach a time instant i = ibreak, for
which one of the following conditions is satisfied (we call these as the violation conditions):

C1: b∗ibreak
(µK) ≺ {bmin}.

C2: {bmax} ≺ b∗ibreak
(µK).

C3: ibreak = N, bmin /∈ b∗N (µK), µK > 0.

If no ibreak is found even after reaching i = N , then K is the last sub-horizon and we set iK = N (and
lines 36–43 of the pseudo code are executed). From condition (5) of Theorem 4.2.2, if µK > 0, then
b∗N = bmin; else b∗N can take any value in the set [bmin, bmax) ∩ b∗N (µK). The optimal decisions of x∗i and
b∗i , for i ∈ [iK−1 + 1, N ], are calculated by using Algorithm 7, discussed in more detail later.

Tuning µ value: Since the cost function in problem (PNEM2) is piecewise linear, the optimal values of
the accumulated Lagrange multipliers µ∗i are chosen from a discrete set of values corresponding to buying
and selling prices of electricity. This feature transforms (PNEM2) from a continuous optimization problem
to a discrete one. Therefore, in the proposed solution, we specify how to tune the Lagrange multipliers
to these prices to find their optimal values (lines 18, 20 in the pseudo code). Now, if condition C1 holds;
for the chosen value of µK , the battery capacity limit is violated from below at instant ibreak since the set
bibreak(µ) lies strictly below bmin. The strategy here is to increase µK value to the

µK = min{p > µ : p ∈ ps(i)ηdis, ps(i)/ηch, pb(i)ηdis, pb(i)/ηch; iK−1 < i ≤ ibreak}.

Otherwise, if condition C2 or condition C3 holds, then µK is decreased to

µK = max{p < µ : p ∈ ps(i)ηdis, ps(i)/ηch, pb(i)ηdis, pb(i)/ηch; iK−1 < i ≤ ibreak}.

After updating µK value, we repeat the same process as before until we reach a new time instant ibreak, for
which one of the above conditions is satisfied. Note there is a one-to-one mapping of si and xi, therefore,
x∗i (µK) and consequently b∗i (µK) are monotonically non-decreasing functions in µK , the potential effect
of the update of µK is that ibreak is pushed to a later instant. The update of µK is repeated as long as
ibreak increases (or remains the same), compared to its previous value, stored in imem. This part of the
proposed algorithm is mirrored in lines 15–21 of the pseudo-code of Algorithm 6. If the value of ibreak
decreases after updating µK , then for the previous value µmem of µK there must have been an instant
i ∈ [iK−1 + 1, imem], where bmax ∈ b∗i (µK) (violation occurred due to C1) or bmin ∈ b∗i (µK) (violation
occurred due to C2 or C3). This is due to the fact that both µmem and µK always lie in the range
{ps(i)ηdis, ps(i)/ηch, pb(i)ηdis, pb(i)/ηch}, for all i > iK−1. At this point of the algorithm (lines 22–34 of
the pseudo-code), µK and ibreak are switched back to their previous values, which are saved, respectively,
in µmem and imem. This value of µK is selected as the final value of the optimal accumulated Lagrange
multiplier corresponding to sub-horizon K. The end instant of sub-horizon K, iK , is set equal to the latest
time instant i ∈ [iK−1 + 1, ibreak], for which bmin ∈ b∗i (µK) or bmax ∈ b∗i (µK), and b∗iK takes the value bmin
in the former case and bmax in the later case.

Using Algorithm 6 we find the optimal battery capacity in a sub-horizon, b∗(µK). b∗(µK)∩ [bmin, bmax]
contains information of the lower and upper feasible envelope of battery capacity. We propose a novel
method based on backward step to find the optimal solution among infinite possibilities, described as
BackwardStep, in Algorithm 7. Note that the BackwardStep algorithm is implemented only one time for
a sub-horizon. For each i in the range iK−1 + 1 ≤ i < iK , the optimal battery level b∗i is found from
b∗i+1 through the function BackwardStep which uses the backward recursion b∗i = (b∗i+1 − x∗i+1(µK)) ∩
b∗i (µK) ∩ [bmin, bmax]. If the above backward recursion returns a set, then any arbitrary value in the set is
chosen to be the optimal battery level. We note here that the optimal solution to (P) needs not be unique
since its objective function is not strictly convex. We also found out that intermediate ramp rates could
be optimal contrary to [170, 325], wherein optimal actions have three possibilities i.e. stay idle or charge
or discharge at a maximum possible rate. A stylized example demonstrating the operation of proposed
optimal arbitrage algorithm is presented in Appendix 3.2.4.

2For the first sub-horizon K=1 (that includes the first time instant) the starting guess value of µ1 is taken to be 0 and
for every other sub-horizon K > 1, the starting guess value of µK is taken to be equal to µK−1. Note that these choices do
not affect the solution given by the algorithm.

3b∗
i (µK) is a set containing the values of lower and upper envelope of optimal battery capacity for the scalar value of µK .
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Complexity Analysis: Using the discrete nature of the optimization problem, we explicitly characterize
the worst case run time of the proposed algorithm. For any sub-horizon starting from instant i, there
may be at most N − i+ 1 more time instants which may be included in the same sub-horizon. Hence, in
order to find the optimal accumulated Lagrange multiplier for the sub-horizon, we may have to update
the value of µK in the sub-horizon at most 2(N − i + 1) times (for each instant i two possible values
pdis(i), pch(i) may be checked for equal buying and selling price of electricity and four possible values
ps(i)ηdis, ps(i)/ηch, pb(i)ηdis, pb(i)/ηch may be checked for selling price strictly lower than buying price).
For each update, a basic set of operations is performed. Furthermore, there may be separate sub-horizons
starting from every time instant i ∈ [1, N ]. Hence, a crude upper bound on the number of times the
basic set of operations are needed to be repeated is

∑N
i=1 2(N − i + 1) = O(N2). Hence, the worst

case time complexity of the proposed algorithm is O(N2). In most situations, however, the number of
instants included in a sub-horizon does not grow with N . Hence, in most cases the proposed algorithm
would be performed linearly in time. Run-time comparison of convex optimization, linear programming
and proposed algorithm for performing arbitrage is shown in Appendix 4.5, it is observed that run-time
complexity grows approximately linearly with number of samples in optimization horizon. The proposed
algorithm outperforms the other benchmarks.

4.2.3 Open Source Codes
The optimal arbitrage algorithm developed in this chapter is made open source. The link for the code is
https://github.com/umar-hashmi/NetMetering. The benchmarks used for optimal arbitrage algorithm
are also made open source for evaluation. The linear programming formulation can be found here https:
//github.com/umar-hashmi/linearprogrammingarbitrage. The LP formulation details are provided in
Appendix B. The convex optimization formulation can be found here https://github.com/umar-hashmi/
ArbitrageConvex. The CVX formulation details are provided in Appendix A.8.

4.3 Online Implementation of Proposed Algorithm
The problem of real time energy arbitrage consists of two coupled problems: firstly, optimal arbitrage
algorithm and secondly, forecasting future parameters like electricity price, end user demand and solar
PV generation required for performing optimal arbitrage. Due to the mismatch in forecasted and actual
parameter values, the arbitrage gains will likely be lower than deterministic optimal arbitrage gains. In
this section we present an online algorithm which uses incrementally improving forecasting of parameters
along with Model Predictive Control (MPC) to decide optimal control actions. MPC is used to optimize
the decisions in current time slots, while taking into account future time slots. In the receding horizon
the forecast is updated and MPC is implemented again, till end time is reached. In our proposed optimal
arbitrage algorithm, OptimalArbitrage, we emphasized that the optimal control decisions are independent
of past or future values of price, solar generation and consumer inelastic demand beyond the considered
sub-horizon. This suggests we only need to accurately forecast for time instants in proximity to the
current time instant, as optimal actions beyond the current sub-horizon are not influenced by parameters
in future sub-horizons. However, quantifying the length of a sub-horizon is challenging since it is governed
by storage parameters and variation of prices. A sub-horizon denotes the optimal lookahead in future
intervals for selecting control decisions. In Section 3.5 we present a heuristic based analysis to quantify the
lookahead required based on storage type. We observe in this case-study that the optimal lookahead for
performing arbitrage depends on the ratio of ramp rate over capacity, battery efficiency, sampling time and
κ. For batteries with high ratio of ramp rate over capacity, the lookahead required is smaller compared to
batteries with lower ratio of ramp rate over capacity.

The deterministic arbitrage gains is denoted as V ∗a . This denotes the maximum value obtained by
arbitrage for actual value of parameters under complete information about future variations of parameters.
It is given as V ∗a =

∑N
i=1 pelec(i)(zi − L∗i (zi, pelec(i))), where L∗i . The real arbitrage gains that the end

user would make using optimal actions are calculated using forecasted parameters. Due to forecast errors,
the end user’s energy arbitrage gains are affected. Realistic arbitrage gain,Vr, is the energy arbitrage
gain made by following the same actions as calculated for forecasted signals and is denoted as Vr =∑N
i=1 pelec(i)(zi − L̂∗i (ẑi, p̂elec(i))). L̂∗i is the optimal end user net consumption for the forecasted price

signal, p̂elec(i), and forecasted load vector, ẑ. It is evident that V ∗a ≥ Vr. In this section we show how
adaptive forecasting and MPC can efficiently mitigate the effects of forecast error on user’s arbitrage gains.

Our objective is to calculate energy arbitrage gains sequentially with incrementally improving the
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Algorithm 6 OptimalArbitrage(pb, ps, b0)
Inputs: N , T , h = (h1, h2, . . . , hN ), pb = (p1

b , p
2
b , . . . , p

N
b ), ps = (p1

s, p
2
s, . . . , p

N
s ), b0, z = (z1, z2, ..., zN ),

Parameters: bmax, bmin, δmax, δmin, ηch, ηdis
Outputs: s∗=(s∗

1, s
∗
2, .., s

∗
N ), b∗=(b∗

1, b
∗
2, .., b

∗
N ), µ∗=(µ∗

1, µ
∗
2, .., µ

∗
K)

Initialize: K=1; µK=µmem=0; iK−1=iK=imem=0; BreakFlag=0
1: while iK < N do
2: for i = iK−1 + 1 to N do
3: Compute κi = ps(i)/pb(i)
4: if κi = 1 then Find s∗

i (µK) using Remark 4, Eq. 4.2.2
5: else if κi ∈ [0, ηchηdis) then Find s∗

i (µK) using Remark 5, Eq. 4.2.3
6: else if κi ∈ (ηchηdis, 1) then Find s∗

i (µK) using Remark 6, Eq. 4.2.5
7: else if κi = ηchηdis then Find s∗

i (µK) with Rmk. 7, Eq. 4.2.6
8: end if
9: x∗

i = f−1(s∗
i (µK))and b∗

i (µK) = b∗
i−1 + x∗

i

10: if C1 or C2 or C3 holds then
11: BreakFlag← 1; ibreak ← i
12: Break
13: end if
14: end for
15: if BreakFlag = 1 and ibreak ≥ imem then
16: BreakFlag← 0; imem ← ibreak; µmem ← µK
17: if b∗

i (µK) ≺ {bmin} then
18: µK ← min{p > µK : p ∈ (ps(i)ηdis, ps(i)/ηch, pb(i)ηdis, pb(i)/ηch; iK−1 < i ≤ ibreak)}
19: else
20: µK ← max{p < µK : p ∈ (ps(i)ηdis, ps(i)/ηch, pb(i)ηdis, pb(i)/ηch; iK−1 < i ≤ ibreak)}
21: end if
22: else if BreakFlag = 1 and ibreak < imem then
23: if C1 is True then
24: iK ← max{i ∈ [iK−1 + 1, imem] : bmax ∈ b∗

i (µmem)}
25: b∗

iK
= bmax

26: else if C2 or C3 is True then
27: iK ← max{i ∈ [iK−1 + 1, imem] : bmin ∈ b∗

i (µmem)}
28: b∗

iK
= bmin

29: end if
30: µK ← µmem; BreakFlag← 0; ibreak ← imem
31: imem ← iK
32: BackwardStep(µK , iK−1, iK , b

∗, x∗, µ∗)
33: s∗ = f(x∗) using Eq 4.2.1
34: µK+1 ← µK ; K ← K + 1
35: else
36: iK ← N ;
37: if µK > 0 then
38: b∗

N ← bmin
39: else
40: b∗

N ← [bmin, bmax) ∩ b∗
N (µK)

41: end if
42: BackwardStep(µK , iK−1, iK , b

∗, x∗, µ∗)
43: s∗ = f(x∗) using Eq 4.2.1
44: end if
45: end while

Algorithm 7 BackwardStep(µK , iK−1, iK , b
∗, x∗, µ∗)

Inputs: µK , iK−1, iK , b
∗, x∗, µ∗

Function: Computes components of the optimal vectors b∗, x∗ in the range [iK−1 + 1, iK − 1] using backward
recursion
Initialize: i← iK − 1
1: while i ≥ iK−1 + 1 do
2: b∗

i ← (b∗
i+1 − x∗

i+1(µK)) ∩ b∗
i (µK) ∩ [bmin, bmax]

3: xi+1∗ ← b∗
i+1 − b∗

i

4: µ∗
i ← µK

5: i−−
6: end while
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forecast model. To this aim, we implement the forecast model using the AutoRegressive Moving Average
(ARMA) model. In this work, we focus on and develop a forecast model for the net load consumption of
the end user without storage. Note that similar forecasting model can be developed for electricity price.
The details of autoregressive forecast model is presented in Section 2.4.1.

The forecasted end user load without storage is fed to the online algorithm, ForecastPlusMPCnem2,
given below. The online algorithm is executed sequentially and uses MPC to identity the optimal modes

Algorithm 8 ForecastPlusMPCnem2
Global Inputs: ηch, ηdis, δmax, δmin, bmax, bmin, b0
Inputs: h,N, T, i = 0
1: while i < N do
2: i = i+ 1
3: Forecast p̂elec, ẑ from time step i to N using ARMA model described in Section 2.4.1.
4: s∗ = OptimalArbitrage(p̂elec, ẑ, h,N, T )
5: b∗

i = bi−1 + f(s∗) and Update b0 = b∗
i

6: end while

of operation of storage.

4.4 Numerical Results
For the numerical evaluation, we use a single end user having an inelastic power and energy demand and
a rooftop solar generation. The end user’s consumption data with solar generation data are downloaded
from the Pecan Street’s online data repository [58]. We use the data corresponding to user id 379 for
May 2, 2016. This is one of the days when the solar generation exceeds the end user’s consumption for
some amount of time. We solve the optimal arbitrage problem using OptimalArbitrage described in the
previous section. The battery parameters are set as follows: bmax= 1 kWh, bmin= 0.1 kWh, δmax= 0.26
kW, δmin=−0.52 kW. Real-time locational marginal pricing data from NYISO [29] is used to calculate
the optimal ramping trajectory. The sampling time of the price signal is h=15 minutes. Simulations are
conducted using a laptop PC with Intel Core i7-6600 CPU, 2.6 GHz processor and 16 GB RAM. The
results obtained by our algorithm for a lossy battery with ηch = ηdis = 0.95 and for the case of zero selling
price are shown in the figures below. Fig. 4.3 shows the electricity buying price4 and the shadow price,
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Figure 4.3: Price Signal and accumulated Lagrange Multiplier

i.e. µ∗, calculated using the proposed algorithm for initial battery charge level b0 = 0.5. Since we assume
zero selling price, implying that it is not beneficial for the end user to supply power back to the grid, we
can observe from Fig. 4.4 that in the afternoon when the end user generates more than the consumption,
it still supplies power back to the grid, as the user has no flexibility in form of storage. However, with the
inclusion of energy storage we can observe the modification in the total energy consumption curve. In fact,
since it is not beneficial to sell electricity, the total consumption is saturated at zero as the lower limit.

4NYISO Real Time Electricity Price Data, https://tinyurl.com/2flowo6
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Table 4.2 compares the run-time of the proposed algorithm with CVX5, YALMIP and Matlab’s Fmincon
optimization tool.

Table 4.2: Comparison of runtime

Algorithm Type Run Time (sec)
Proposed Algo 0.019

Linear Program [185] 0.025
CVX 0.536

YALMIP [231] with Gurobi 3.700
Matlab’s Fmincon 5.693

Fig. 4.5 shows the solar generation, the end user demand and the energy consumed from the grid. Now,
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Figure 4.5: Pecan Street Data of a home with solar generation

consider a hypothetical scenario, when this end user might have had energy storage installed. How much
gains could an end user make by installing an energy storage?
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Figure 4.6: Ramp rate for optimal arbitrage

Fig. 4.6 shows the ramp rate of the battery. It is evident from Fig. 4.6 that the ramping constraints
for the battery are met and intermediate ramp rates could also be optimal. Fig. 4.7 shows the optimal

5CVX Matlab Toolbox, http://cvxr.com/cvx
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battery capacity trajectory. Note from Fig. 4.3 that the price has two peaks in the whole day, thus the
battery does 2 cycles of charge and discharge, as shown in Fig. 4.7.

The comparison of the change in valuation of only storage and only solar with the variation in the ratio
of the selling price and buying price from an end user’s perspective is studied. Fig. 4.8 shows the variation
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Figure 4.8: Value of Solar and Storage with the ratio of ps and pb

of value of only storage and only renewable with the change in the selling price of electricity. We define the
value of solar as the difference between cost of consumption with only load and cost of consumption with
load and solar. Similarly, the value of storage is defined as the difference between the cost of consumption
with load and solar and the cost of consumption with load, solar and battery. The value of storage is
defined as

∑N
i=1{pb[zi]+ − ps[zi]−} −

∑N
i=1{pb[zi + si]+ − ps[zi + si]−}. We would like to highlight that

when selling price is low there is an increase in the storage value which comes at the cost of decrease in
the value of renewables connected. For zero selling price the value of energy storage for the numerical
evaluation is $0.1237.

As the share of renewables connected to power network increases the volatility in electricity prices
will increase in order to incentivize users to differ their consumption. Fig. 4.9 shows that as the variance
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Figure 4.9: Increase in arbitrage gains with volatility in price

in electricity price increases, i.e. price volatility increases, the amount of arbitrage gains for consumers,
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with full information about price variation, will increase. The increase in arbitrage gains with respect to
variance can be approximated using a quadratic fit. Installing energy storage would provide more financial
returns under increased volatility.

Forecast Error and Loss of Opportunity: It is expected that mismatch between forecast and actual
values will create a loss of possible opportunity for the user. Loss of opportunity is defined as the per unit
variation of ideal versus actual arbitrage gain with respect to ideal arbitrage gains. Loss of opportunity is
denoted as Loss of Opportunity = V ∗

a −Vr
V ∗
a

. In order to understand the effect of forecast error in electricity
price on the arbitrage gains we conduct a performance evaluation based on 10,000 simulations for equal
buying and selling prices with battery having 95% charging and discharging efficiency for different variance
of forecast error (= actual price - forecasted price). Fig. 4.10 shows that with increasing variance of forecast
error the loss of opportunity for the user will increase. Black dots in Fig. 4.10 represent the mean value
of loss of opportunity corresponding to the variance in forecast error, which could be fitted with a linear
function.
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Figure 4.10: Relationship of Loss of Opportunity and Forecast Error

4.4.1 MPC with incrementally improving forecast
We use the Pecan Street data [58] for hourly consumption for house id 379 for the month of June and July
2016. The day ahead electricity prices in the ERCOT data is used for the same period [16]. It is assumed
that the selling price is half that of the buying price. The factors in Eq. 2.4.4 are α1 = β1 = 0.5×x

x+x2+x3 =
0.27185, α2 = β2 = 0.5×x2

x+x2+x3 = 0.14780 and α3 = β3 = 0.5×x3

x+x2+x3 = 0.08036, note the factors are selected
such that x + x2 + x3 = 1. The value of D = 7 days and N = 24. We use the same parameters of the
battery as described in the previous numerical results. The simulation results for ARMA based forecasting
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Figure 4.11: Comparison of arbitrage gains for ideal and actual case

with MPC are shown in Fig. 4.11. It can be observed that Vr ≤ V ∗a .

Gain Type Mean ($) STD
Ideal (V ∗

a ) 0.05481 0.04673
Actual (Vr) 0.04783 0.04922
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The table reports the mean and standard deviation of arbitrage gains over a period of 2 months (see
Fig. 4.11), V ∗a and Vr. Due to inaccuracies in forecasting, end user incurs ≈ 12.7% of loss in possible
opportunity during the period of 2 months. The run time for forecasting and MPC for the whole period is
9.699 seconds. Fig 4.11 shows that actual and ideal arbitrage gains are in sync with each other. It should
be noted that the forecast model using ARMA uses mean behavior over the past week as the starting
point, however, the mean behavior provides a very crude indicator of future behavior. Even with this
model along with MPC, we could significantly mitigate the effects of forecast error on arbitrage gains.

4.5 Comparing Run-Time of Algorithms
We compare the run-time of three optimal arbitrage algorithms for a given battery and present the run-
times with different number of samples in the time horizon of optimization. The three algorithms compared
here are:
(a) Proposed algorithm in this work which shows the structure of optimal arbitrage solution based on price
and net-load variation.
(b) Linear Programming: We use the LP formulation proposed in Appendix B and [185]. The LP for-
mulation is possible due to piecewise linear convex cost functions. In this formulation we consider: (i)
net-metering compensation (with selling price at best equal to buying price) i.e. κi ∈ [0, 1], (ii) inelastic
load, (iii) consumer renewable generation, (iv) storage charging and discharging losses, (v) storage ramping
constraint and (vi) storage capacity constraint. Using numerical results we perform sensitivity analysis of
batteries with varying ramp rates and varying ratio of selling and buying price of electricity.
(c) Convex optimization: There could be several different ways of formulating optimal arbitrage problem
using convex optimization toolbox. We propose one of the many ways of solving optimal arbitrage problem
with convex piecewise linear cost function using CVX. Since in the optimization formulation we do not
have any binary variable, this optimization problem could be solved using the default solver, SDPT36.
The decision variable xi is fragmented into two variable given as xi = xchi − xdsi , where xchi ∈ [0, Xmax]
and xdsi ∈ [0,−Xmin], denotes the charging and discharging values.

For the numerical evaluation we use a battery with initial charge level, b0=500 Wh, bmax=3000 Wh,
bmin=100 Wh, ηch=ηdis=0.9 and sampling time is equal to 1 hour.

Table 4.3: Sub-horizon characteristics in number of samples

Samples in Mean no. of samples STD of sub-
time horizon in sub-horizon horizon length

10 5 7.07
100 10 6.29
1000 10.99 7.19
10000 11.09 7.27
100000 11.11 7.28

Fig. 4.12 shows the run-time in seconds for the three approaches for performing optimal arbitrage
algorithm. It is evident that the proposed algorithm outperforms the other two approaches described
significantly. The complexity of linear programming (LP) based algorithms is polynomial [203]. However,
with a significantly longer time horizon LP might not be tractable. The CVX based convex optimization
problem also becomes intractable for optimization horizon greater than 104 samples.

Fig. 4.13 shows the run-time in seconds for optimal arbitrage algorithm without and with load. It is
evident that the complexity of the proposed algorithm grows approximately linearly with the number of
samples. The quantification of mean and standard deviation of sub-horizon is shown in Table 4.3.

4.6 Case Study 1: Intermediate ramp rate
Several works on energy storage arbitrage use set thresholds according to which storage operation could
be selected from 3 cases, i.e., charge at maximum rate, discharge at minimum rate or stay idle. We believe
energy storage performing arbitrage could also have intermediate ramping rates which are neither minimum

6https://tinyurl.com/yfqclqz
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Figure 4.12: Comparison of run-time for CVX based optimization, linear programming and the
proposed algorithm with variation of samples in time horizon of optimization for storage arbitrage.
The run-time without load in blue and with load in red is shown.
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or maximum nor zero, making the optimal storage ramping selection a continuous set from minimum to
maximum ramp rate, assuming storage ramp rate is same for a decision epoch.

We demonstrate this claim with a stylized example. In this example we consider only storage case with
equal buying and selling price of electricity, in order to have analytical tractability. Consider the electricity
price signal shown in the first plot of Fig. 4.14. The battery parameters are as follows: b0 = 500Wh,
bmax = 3000Wh, bmax = 100Wh, ηch = ηdis = 0.9, δmax = −δmin = 1000W. The electricity price values for
hour 1 to 10 are provided here: [1, 0.9, 1.5, 0.8, 0.6, 5, 4.9, 6, 5, 8]. We intend to provide all details of the
results presented in order to ease the reproducibility of the claims made here.

The price signal is carefully designed to have values between 1 to 2 cent/kWh for hour 1 to 5 and higher
levels of electricity price for hour 6 to 10. This could be analogous to low electricity price during the night
and significantly higher price levels during the evening peak. Note that the electricity price for 7th and
9th hour are at the same level, i.e. 5 cents/kWh. The second plot of Fig. 4.14 shows the optimal storage
charge level considering electricity price variation and storage parameters. The third plot of Fig. 4.14
shows the ramp rate in x which affects the change in battery charge level in blue and s, output power of
storage in red which considers the charging and discharging efficiency losses. Points marked P1, P2 and
P3 shows ramping of the battery which are neither at maximum, minimum or zero level of ramp rate.

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

c
e
n
ts

/k
W

h

Electricity Price

0 1 2 3 4 5 6 7 8 9 10

Time index in hours

-1000

-500

0

500

1000

W
a
tt
s

Ramp Rate
0 1 2 3 4 5 6 7 8 9 10

0

1000

2000

3000

W
a
tt
-h

o
u
r

Storage Charge Level

P1

P2

P3

Figure 4.14: Toy example to show the intermediate ramp rate of energy storage. Plot 1 shows the
electricity price. Plot 2 shows the optimal storage charge level. Plot 3 shows the storage ramp rate.

Clearly, based on the price variation for this example storage needs to be completely charged at the end
of 5th hour. In order to discharge during higher price levels for interval 6 to 10 hour. The order of price
levels in 0 to 5 hour are in this order: pelec(5) < pelec(4) < pelec(2) < pelec(1) < pelec(3). Starting from
b0 = 500Wh, storage needs 2500 Wh of energy to be fully charged at the end of 5th hour. The battery
charges at a ramp rate of 500 W in hour 1. This level is lower than the max level of ramp rate. The
battery reaches a charge level of 1000 Wh. pelec(2) is the third lower price in hour 1 to 5 and the battery
charges at maximum rate in order to discharge during hour 3 to capture gains as pelec(3) is the local peak.
In subsequent 4th and 5th hour the battery charges at max level to unity state-of-charge at the end of 5th
hour.

The order of price levels in 6 to 10 hour are in this order: pelec(7) < pelec(6) = pelec(8) < pelec(8) <
pelec(10). Clearly, battery should should discharge maximum possible during 10th hour and then 8th hour.
If the battery is still not completely discharged than during 6th and 9th hour. The incentive of discharging
during hour 6 and 9 are equal so multiple solutions could be possible if the battery is not discharging at
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its peak rate. This could be seen in Fig. 4.15 where two distinct solutions are plotted (with infinite other
combinations possible). All such combinations provide the same level of arbitrage gains which for this
example is 14.89 cents. Since hour 7 has the lowest price level in the interval 6 to 10 hour and the battery
could be discharged completely in slightly less than 3 hours. Thus storage remains idle during 7th hour.
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Figure 4.15: Two distinct optimal ramping solution for performing energy arbitrage for the electricity
price shown in Fig. 4.14.
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Figure 4.16: Shadow price (accumulated Lagrange multiplier) for the electricity price shown in
Fig. 4.14.

Fig. 4.16 presents the shadow price (accumulated Lagrange multiplier) for the 2 sub-horizons for this
example. First sub-horizon has µ1 = 1.111 is applicable for hour 1 to 5 and µ2 = 4.5 is applicable for
hour 6 to 10. Since the intermediate ramp rate is observed at 1st hour with pelec(1) = 1 cents/kWh and
the battery is charging therefore, µ1 = pelec(1)/ηch = 1.111. Similarly, the intermediate ramp rate in
the second sub-horizon is observed at 6th or 9th (as same price level) hour with pelec(6) = pelec(9) = 5
cents/kWh and the battery is discharging therefore, µ2 = pelec(6)ηdis = pelec(9)ηdis = 4.5.
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Figure 4.17: Lower, upper and optimal charge level for the electricity price signal shown in Fig. 4.14.

Fig. 4.17 shows the upper and lower envelopes of storage charge level along with the selected optimal
storage charge level. The envelope of solutions is due to the piecewise linear cost structure of the cost
function which provides sub-gradient like solution at point where the cost function changes its slope.
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4.7 Case study 2: Sensitivity analysis for varying κ

For the numerical evaluation, we use battery parameters listed in Table 4.4. The performance indices used
for evaluating simulations are:
• Arbitrage Gains: denotes the gains (made in absence of load and renewable) or reduction in the cost of
consumption (made in presence of load and renewable) due to storage performing energy arbitrage under
time-varying electricity prices,
• Cycles of operation: In our prior work [182] we develop a mechanism to measure the number of cycles
of operation based on depth-of-discharge (DoD) of energy storage operational cycles. Equivalent cycles of
100% DoD are identified. This index provides information about how much the battery is operated.

We use xC-yC notation to represent the relationship between ramp rate and battery capacity. xC-yC
implies battery takes 1/x hours to charge and 1/y hours to discharge completely. We perform sensitivity
analysis with (a) four battery models with the different ramping capability listed in Table 4.4 and (b) 5
levels of the ratio of selling price and buying price of electricity, i.e., κ ∈ {1, 0.75, 0.5, 0.25, 0}. In this work
we assume the selling price is equal to the product of scalar variable κ and the buying price of electricity.
The optimization problem, PLP, is solved using linprog in MATLAB7. linprog uses dual-simplex [90]

Table 4.4: Battery Parameters

bmin, bmax 200Wh, 2000 Wh
b0 1000 Wh

ηch = ηdis 0.95
δmax = −δmin 500 W for 0.25C-0.25C,

(4 battery model) 1000 W for 0.5C-0.5C
2000 W for 1C-1C,
4000 W for 2C-2C

(default) algorithm.

4.7.1 Deterministic Simulations
The price data for our simulations in this subsection is taken from NYISO [29]. The load and generation
data is taken from data collected at Madeira, Portugal. Fig. 4.18 shows the electricity price and energy
consumption (includes inelastic load and rooftop solar generation) data used for deterministic simulations.
Table 4.5 and Table 4.6 lists the energy storage arbitrage without and with energy consumption load for
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Figure 4.18: Electricity price and consumer net load data used for deterministic simulations.

the electricity price data shown in Fig. 4.18. The observations are:

7https://www.mathworks.com/help/optim/ug/linprog.html
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• The value of storage in presence of load and renewable increases as κ decreases. Note that for κ = 0, the
only storage operation provides zero gain (see Table 4.5), however, for the same buying and selling levels,
the consumer would make significant gains when operated with inelastic load and renewable generation
(see Table 4.6),
• The cycles of operation for faster ramping batteries are higher compared to slower ramping batteries.
This implies that faster ramping batteries should be compared in terms of gains per cycle with slower
ramping batteries. Observing only gains could be misleading.
• As κ decreases, the cycles of operation decrease, thus the effect on storage operation in the cases presented
is similar to ηfric in reducing cycles of operation.
• Note that for κ = 1, the arbitrage gains with and without load are the same. This observation is in sync
with claims made in [184]. Authors in [184] observe that storage operation becomes independent of load
and renewable variation for equal buying and selling case.

Table 4.5: Performance indices for only storage

κ 2C-2C 1C-1C 0.5C-0.5C 0.25C-0.25C
Arbitrage gains in $ cents for 1 day

1 44.445 33.760 25.636 17.536
0.75 18.842 17.668 14.077 9.921
0.5 7.682 7.088 6.253 5.219
0.25 2.513 2.502 2.483 2.422

0 0 0 0 0
Cycles of operation for 1 day

1 6.586 3.856 2.237 1.620
0.75 2.401 1.742 1.484 0.795
0.5 1.539 1.099 0.714 0.386
0.25 0.182 0.171 0.164 0.160

0 0 0 0 0

Table 4.6: Performance indices for storage + load

κ 2C-2C 1C-1C 0.5C-0.5C 0.25C-0.25C
Arbitrage gains in $ cents for 1 day

1 44.445 33.760 25.636 17.536
0.75 37.848 33.023 26.469 18.337
0.5 39.045 34.105 27.696 19.344
0.25 40.272 35.332 28.923 20.351

0 41.500 36.560 30.150 21.358
Cycles of operation for 1 day

1 6.586 3.835 2.263 1.620
0.75 5.986 4.039 2.338 1.652
0.5 5.986 4.033 2.364 1.660
0.25 5.986 4.033 2.364 1.660

0 5.986 4.033 2.364 1.660

Fig. 4.19 and Fig. 4.20 show the arbitrage gains, gains per cycle and cycles of operation with varying κ
for storage performing arbitrage without and with inelastic load and renewable generation. The gains per
cycle are nearly flat with varying κ. Slow ramping batteries, 0.25C-0.25C and 0.5C-0.5C, have significantly
higher gains per cycle compared to faster ramping batteries, 1C-1C and 2C-2C.

4.7.2 Results with Uncertainty
The forecast model is generated for load with solar generation and for electricity price. The ARMA based
forecast uses 9 weeks of data (starting from 29th May, 2019) for training and generates forecast for the next
week. ForecastMPClinearProgram is implemented in receding horizon. The electricity price data used for
this numerical experiment is taken from CAISO [79] for the same days of load data. To compare the effect
of forecasting net load and electricity prices with perfect information, we present average arbitrage gains
and cycles of operation starting from 1st June 2019. Rolling horizon time-period of optimization, Nopt,
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Figure 4.19: Performance indices for only storage performing arbitrage with varying κ for 1 day.
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Figure 4.20: Storage along with inelastic load and renewable generation with varying κ for 1 day.
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is selected as 1 day. This implies at 13:00 h today, the storage control decisions are based on parameter
variation forecasts till 13:00 h tomorrow.

Table 4.7: Deterministic arbitrage gains for only storage

κ 2C-2C 1C-1C 0.5C-0.5C 0.25C-0.25C
Arbitrage gains in $ for 1 week

1 9.411 7.059 4.784 3.065
0.75 5.729 4.491 3.168 2.082
0.5 3.166 2.550 1.833 1.217
0.25 1.124 0.941 0.688 0.456

0 0 0 0 0
Cycles of operation for 1 week

1 58.729 37.257 21.324 12.107
0.75 23.462 16.341 10.746 7.519
0.5 12.689 9.770 7.579 6.174
0.25 7.727 6.229 4.558 3.464

0 0 0 0 0

Table 4.8: Deterministic arbitrage gains for storage with load

κ 2C-2C 1C-1C 0.5C-0.5C 0.25C-0.25C
Arbitrage gains in $ for 1 week

1 9.411 7.059 4.784 3.065
0.75 7.462 6.269 4.540 3.025
0.5 6.641 5.987 4.468 3.019
0.25 6.350 5.904 4.451 3.019

0 6.313 5.902 4.451 3.019
Cycles of operation for 1 week

1 58.700 37.294 21.324 12.107
0.75 28.583 20.809 14.382 10.229
0.5 19.296 16.629 13.007 9.971
0.25 16.591 15.348 12.498 9.968

0 16.041 15.201 12.484 9.968

Table 4.9: Stochastic indices for only storage

κ 2C-2C 1C-1C 0.5C-0.5C 0.25C-0.25C
Arbitrage gains in $ for 1 week

1 6.035 4.684 3.469 3.000
0.75 5.024 4.118 3.081 1.904
0.5 3.004 2.367 1.692 1.110
0.25 1.067 0.891 0.618 0.442

Cycles of operation for 1 week
1 64.323 38.979 22.622 12.850

0.75 24.870 16.169 10.570 7.733
0.5 11.393 8.891 7.013 6.099
0.25 6.429 5.557 4.359 3.395

The deterministic results for without and with load are presented in Table 4.7 and Table 4.8. Compare
the deterministic results with stochastic results presented in Table 4.9 and Table 4.10. The primary
numerical observations are:
• Effect of uncertainty on arbitrage gains for a faster ramping battery is greater compared to a slower
ramping battery, this observation is in sync with conclusions drawn in [130],
• Combining storage with inelastic load with renewable generation provides greater gains for decreasing
κ. Furthermore, the effect of uncertainty for lower κ is lower compared to higher values of κ.
• Profitability of operating only storage deteriorates sharply with decrease of κ. For only storage case
under zero selling price case (κ = 0) no arbitrage would be possible and the gain remains zero.
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Table 4.10: Stochastic indices for storage with load

κ 2C-2C 1C-1C 0.5C-0.5C 0.25C-0.25C
Arbitrage gains in $ for 1 week

1 6.034 4.684 3.496 3.000
0.75 4.827 4.075 3.400 2.987
0.5 4.168 3.711 3.292 2.975
0.25 4.204 3.943 3.348 3.002

0 4.427 3.896 3.396 3.009
Cycles of operation for 1 week

1 64.322 38.979 22.622 12.850
0.75 41.613 30.322 19.948 11.980
0.5 34.658 27.627 18.744 11.348
0.25 31.429 26.370 18.476 11.396

0 32.958 28.255 19.845 11.372

4.8 Conclusion and Perspectives
We formulated the optimal arbitrage problem for storage operation for an end user with load and renewable
generation in presence of net-metering pricing policy. We proposed an efficient algorithm to find an optimal
solution, using a method that transforms a continuous, convex optimization problem into a discrete one
by exploiting the piecewise linear structure of the cost function, which leads to efficient algorithm that
has worst case quadratic complexity with respect to the time horizon. This optimal solution structure is
similar to Chapter 3. However, the thresholds for NEM 2.0 is more complex with more number of cases due
to dependency os inelastic load and renewable generation compared to thresholds for NEM 1.0 described
in Chapter 3. We introduced a method for determining the sub-horizons in the whole duration and showed
that optimal storage control decisions do not depend on price of electricity and load variations beyond a
sub-horizon. We observe that the complexity of the proposed algorithm is quadratic in worst case, however,
numerical experiment indicate the complexity of the algorithm can be approximated to be linear in terms
number of samples in the horizon of optimization. This computationally superiority compared to simplex
for LP and CVX based benchmarks is striking. Furthermore, to find an optimal solution among infinite
possibilities, we described a novel methodology using backward step algorithm, which is done only once
in a sub-horizon. The worst case run-time complexity of the proposed algorithm is found to be quadratic
in the number of time instants for which price signals are available. We also presented an application of
the proposed algorithm to implement a MPC based control for reducing the effects of the forecast error
on energy arbitrage gains significantly.

By conducting extensive numerical simulations, we analyze the sensitivity of energy storage with varying
ramp rates and varying ratio of selling and buying price of electricity. We observe that the value of storage
in presence of load and renewable increases as the ratio of selling and buying price decreases. We also
perform stochastic simulation for real-time implementation and compare the stochastic results to the
deterministic ones. Net-load and electricity price are modeled with AutoRegressive models for model
predictive control. The effect of uncertainty on slow ramping batteries is observed to be lower compared to
faster ramping batteries. Furthermore, as the ratio of selling and buying price decreases, arbitrage gains
becomes less sensitive to uncertainty.
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Chapter 5

Battery Degradation and Valuation

Earth provides enough to satisfy every man’s needs, but not every man’s greed. -Mahatma Gandhi

Summary: Battery life is often described a combination of cycle life and calendar life. In this chapter
we propose a mechanism to limit the number of cycles of operation over a time horizon in a computationally
efficient manner. We propose a modification in an optimal arbitrage algorithm proposed in Chapter 3 and
Chapter 4 to efficiently control the number of cycles of operation of a battery. The cycles of operation
have to be tuned based on price volatility to maximize the battery life and arbitrage gains. We propose a
mechanism to distinguish arbitrage returns.

Energy storage revenue estimation is essential for analyzing financial feasibility of investment in bat-
teries. We quantify the cycles of operation considering depth-of-discharge (DoD) of operational cycles and
provide an algorithm to calculate equivalent 100% DoD cycles. This facilitates in comparing cycles of
different DoDs. We propose a battery capacity degradation model based on the cycle and the calendar
life and operational cycles. Using equivalent 100% DoD cycles and revenue generated, we calculate the
dollars per cycle revenue of storage performing electricity price based arbitrage and ancillary services for
load balancing in real time. Using PJM’s (a regional transmission organization in the US) real data we
calculate short term and long term financial potential for the year of 2017. We observe that participating in
ancillary services is significantly more beneficial for storage owners compared to participating in arbitrage.

5.1 Introduction
With increased share of power coming from Renewable Energy Sources (RES), the uncertainty in power
networks is increasing. This variability makes the power, frequency and voltage regulation more chal-
lenging. Inverter based RES has small inertia compared to conventional synchronous power generators,
reducing the capability of the future power grid to withstand perturbation. The future power network
will need fast dynamic ancillary services to avoid additional infrastructure development in installing fast
ramping power generators. Distributed energy storage devices such as batteries are suitable for assisting
the grid because of its fast ramping capability. Authors in [154] and in Chapter 2 we highlight the diverse
roles energy storage technologies can play in future power networks. Energy storage not only improves
the reliability of power network but also facilitates arbitrage and increases the value of renewable energy
sources in the energy markets. Authors in [334] point that battery owners participating in electricity mar-
kets should consider cycle aging of batteries. This is due to finite battery cycle life, which is affected by
charge-discharge operational cycles, temperature etc. Using a case study on ISO New England energy and
reserve markets, authors demonstrate that participants maximize their operational profit while considering
cycle aging cost.

The variability in the price is due to the variable generation cost and demand and supply mismatch
components caused due to scheduling delays and errors in forecast of RES. This variability in the price can
be used by batteries for performing arbitrage. However, sometimes charge and discharge cycles generate
very small revenue and it would be beneficial for the battery to be idle. Maximizing idle time would lower
stress on the battery and maximize the cycle life of the battery, observed in Chapter 11 [114].

Estimation of financial returns of energy storage is very essential due to its high cost. In modern power
networks energy storage devices can perform many different tasks from price based arbitrage, incentive
based demand response, voltage and frequency regulation as ancillary service participants or peak demand
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shaving for consumers [125]. The goal of this chapter is to identify the monetary potential of energy storage
devices, specifically batteries, in performing price based energy arbitrage and dynamic regulation, while
considering the degradation of batteries over time and due to operational cycles. Based on the present
compensation mechanism we calculate the dollar value of per cycle operation of a battery.

Prior work by Sandia National Laboratories [119] analyses the financial potential of batteries performing
arbitrage and regulation in CAISO, California during 2010-11. The authors discovered that participating
in dynamic regulation is four times more beneficial compared to participating in arbitrage. However, their
work does not consider battery degradation. Furthermore, volatility in prices have changed significantly
compared to rates in 2011. And without huge investment in energy storage and flexible load control, the
volatility is expected to increase even more as the share of renewable increases in power network [186].
Prior work [332] on energy storage valuation for performing ancillary services concludes that in presence of
performance based compensation and battery degradation, installing batteries are a profitable investment.

The authors in [308] optimize the DoD for a battery operating in a dynamic pricing environment that
can perform one or two cycles per day and evaluate the gains per cycle. In [161], the authors evaluate the
impact of cycle and calendar life on the gain achieved by arbitrage in smart grid networks for both Lead-
acid and Lithium batteries. In [190], the authors proposed a linear programming algorithm to optimize the
charge and discharge decisions for battery performing regulation and evaluates the return on investment
taking into account the battery performances degradation due to the aging effect.

We believe it is essential to take into account the cycles of operation of the battery, due to finite battery
cycle and calendar life. The value of cycle and calendar life is often provided by the manufacturers in their
data-sheets [48, 49]. These values represent an upper limit of cycles of operation and age of battery by
which the battery will reach its End-of-Life (EoL) with high probability. EoL is defined as a state of the
battery when the maximum capacity of the battery reduces to 80% of its rated initial capacity. Calendar
life refers to the number of years the battery is expected to last until the battery will reach EoL. It is
independent of how much the battery is charged and discharged. However, calendar life is dependent on
the state of charge of the battery and the temperature. Cycle life limits the number of cycles of operation a
battery could perform before reaching EoL. It is governed by charge-discharge trajectory and temperature.
In this chapter we do not consider the effect of temperature on battery degradation. The number of cycles
of operation will depend on storage parameters and charging and discharging efficiency losses. Refer to
Chapter 2 Section 2.3.2 for parameter details and dependencies described in their data-sheets by battery
manufacturers. Batteries performing more cycles each day would imply the gains per cycles will be lower.
In lithium-ion batteries the growth of solid-electrolyte inter-phase layer increases the impedance of the
battery and therefore, reduces the battery capacity because of the consumption of cyclable lithium from
the battery. The battery capacity thus degrades [299]. There are various models providing the remaining
battery capacity as a combination of cycle life and calendar life: (i) summation of calendar and cycling
degradation, (ii) greater of calendar or cycling degradation [300], or (iii) a multiplicative coupling between
calendar and cycling degradation. In this chapter we consider the second model where the greater of
cycling and calendar degradation decides the remaining battery capacity and the EoL of the battery. This
chapter is a qualitative study to compare dollars per cycle a storage would make if they participate in
dynamic regulation or in energy arbitrage.

Note the volatility of electricity price across days in a year can vary drastically, implying battery should
perform more cycles when the volatility is high. The number of cycles of operation ideally should be selected
adaptively ensuring maximizing gains and battery’s operational life. The cycles should be controlled based
on volatility. In this chapter, we propose a framework to eliminate low returning transaction for battery
performing arbitrage using friction coefficient. This friction coefficient needs to be tuned based on nominal
operation of battery with no cycles limitations. The battery life can at maximum be equal to its calender
life. If the battery is over-used, then the battery EoL is achieved due to cycle life and if the battery is
under-used than EoL is achieved due to calender life. In order to maximize the battery’s operational life,
the degradation due to aging and cycles of operation should be equal in per unit of time. The value of
friction coefficient is calculated based on past data, assuming the mean volatility across a longer time
horizon in the past will be equal in the future. We consider the longer time scale as a year as it would
cover the effects of seasonality too. Similarly, batteries performing dynamic regulation in the ancillary
service market should consider maximizing battery life by eliminating low returning transactions. For
PJM interconnection it is observed that unlike arbitrage the amount of regulation required is independent
of seasonality and remains fairly constant over the year, see Fig.5.9. The key contributions of this chapter
are:
• Financial potential of batteries: We use real data to calculate dollar per cycle potential of storage
performing arbitrage versus ancillary service market participation.

104



• Equivalent 100% DoD cycles: Battery operates with no fixed DoD. We propose a computationally
efficient algorithm to calculate equivalent 100% cycles for varying DoD operational cycles. It is essential to
consider DoD in comparing cycles, as the relationship between different DoD cycles and equivalent 100%
DoD cycles is not linear.
• Controlling cycles of operation: Considering cycle and calendar degradation and DoD of each cycle we
calculate the battery degradation and provide a mechanism to control cycles of operation to maximize
gains and operational life of battery performing arbitrage and ancillary services. We present a mechanism
for calculating the friction coefficient for calculating arbitrage gains. By introducing friction coefficient,
ηfriction in energy arbitrage control we can efficiently control the cycles of operation. If the battery is
operating more number of cycles per day then ηfriction is decreased so that the battery on average operates
for lower number of cycles. Note the selection of ηfriction will governed by variability of price, number of
cycles of operation in absence of any friction, i.e., ηfriction = 1.
• Distinguishing arbitrage returns: We present a mechanism to eliminate low returning transactions to
maximize battery life. In this chapter we highlight how at the cost of small portion of arbitrage gains, the
battery cycle life can be significantly improved.

For ancillary services, participants commit in advance the amount of regulation they can provide. The
regulation provided should be achieved with high performance score. By adjusting ramping commitment,
storage owners can control the cycles of operation for storage performing regulation.

This chapter is organized as follows. In Section 5.2 we describe the degradation model of the battery.
Section 5.3 describes the rationale of eliminating low returning transactions for storage performing arbi-
trage. Section 5.4 deals with storage performing energy arbitrage using the optimal arbitrage algorithm
proposed in [184]. We also propose a mechanism to control cycles of operation by tuning the friction coef-
ficient. Section 5.5 presents energy storage performing ancillary services for the grid. Section 5.6 presents
the numerical results. Section 5.7 concludes the chapter.

5.2 Battery degradation and mathematical model
In this section we present the battery model and the need to control cycles of operation. We present an
algorithm to identify cycles based on DoD and calculate the equivalent 100% DoD cycles. We observe
that storage operation with short cycles significantly increases the cycle life of battery. We present the
mathematical model of a battery combining short and long time scales. Degradation of a battery is
insignificant in shorter time scale, while it cannot be ignored in longer time horizon.

5.2.1 Battery Degradation
Batteries are energy storage devices which convert electrical energy into chemical energy while charging and
chemical energy into electrical energy while discharging. These conversions are not completely efficient,
incurring charging and discharging losses in shorter time frame. Furthermore, for longer time horizon
batteries degrade because of time and operational cycles, providing us with distinct calendar and cycle life
of the battery.

Degradation due to cycles of operation: What is a cycle for a battery? One would say if the battery at
State of Charge (SoC) level x1 charges to level x2 and then discharges back to x1 is called a cycle. But
how could we differentiate between cycles; cycles with more change in SoC compared to cycles with less
change in SoC. The change in SoC for the cycle example presented is x2 − x1, this is also called the DoD.
Let the cycle life, Tcycle, at 100% DoD be given as N100 cycles. The proposed cycle degradation model
of battery used in this chapter is derived from prior work [190]. The number of cycles at d DoD that the
battery can operate if N100 is the rated cycle life at 100% DoD is assumed to be [190]

f(d) = N100d
−kp , (5.2.1)

where kp is a constant that ranges from 0.8 to 2.1.
DoD plays a significant role in deciding the cycle life especially because the growth in cycle life for a

battery performing higher DoD cycles to smaller DoD cycles is not linear, as shown in Eq.(5.2.1) (would
be linear if kp = 1). We will demonstrate this with an example. In Forsee Power’s Li-Ion battery system
HE 48 V data-sheet [49], they show the relationship between cycle life with DoD. At 100% DoD the
battery performs approximately 1500 cycles and at 5% DoD the battery performs ≈ 106 cycles. We used
the battery life model given by Eq.(5.2.1) to fit the DoD vs. cycle life plot in [49]. Fig. 5.1 shows an
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approximate fit for kp = 1.1. In Fig. 5.1 we also show the linear battery model which assumes for instance
10 cycles of 10% DoD as equivalent to 1 cycle of 100% DoD. From Fig. 5.1 it is evident that a battery model
ignoring the effect of DoD in counting cycles of operation would hugely underestimate the life of battery
and thus would be very pessimistic. If a battery performs nd cycles at d DoD then this is equivalent to
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Figure 5.1: Li-ion cycle of operation with DoD [49].

n100 cycles at 100% DoD, this is given as n100 = ndd
kp . By this analogy Tcycle at 100% DoD is N100 then

Tcycle at d% DoD is N100d
kp .

We propose an algorithm to calculate DoD efficiently. The new algorithm calculates DoD based on
the change in SoC of the battery between mode reversals, i.e., from charging to discharging or vice versa.
The Algorithm 9 finds the half cycle DoD and calculates equivalent 100% DoD cycles using Eq. 5.2.1. The
input to the algorithm is the charge-discharge trajectory with respect to the rated storage capacity and
the output is cumulative number of equivalent 100% DoD cycles the storage operated.

5.2.2 Battery Model
The total duration on shorter time-scale of a day is denoted as T , of operations divided into N steps indexed
by i ∈ {1, ..., N}. The duration of time-step is denoted as h. Hence, T = hN . The total duration of storage
operation on longer time-scale is denoted as τ , represents the day index. The day index, τ ∈ {1, ..., Lcal},
where Lcal is the calendar life in days.

The efficiency of charging and discharging of battery is denoted by ηch, ηdis ∈ (0, 1]. We denote the
change in the energy level of the battery at ith instant by xτi = hδτi , where δτi denotes the storage ramp
rate at the ith instant such that δτi ∈ [δmin, δmax]∀i and δmin ≤ 0 and δmax ≥ 0 are the minimum and
maximum ramp rates (kW); δτi > 0 implies charging and δτi < 0 implies discharging. Energy consumed
by the storage in the ith instant is given by sτi = [xτi ]+

ηch
− ηdis[xτi ]−. Let bτi denote the energy stored in the

battery at the ith step. Then, bτi = bτi−1 + xτi . The rated battery capacity at the beginning of battery life
is denoted by Brated. The available battery capacity at day τ is approximated as

Ba(τ) = Brated − 0.2×
(

max
(Ocy(τ)

Lcy
,
τ

Lcal

))
(5.2.2)

where Ocy(τ) is the number of cycles operated until day index τ , Lcy denotes the battery cycle life for 100%
DoD and Lcal is the calendar life of the battery in days. Eq. (5.2.2) assumes a linear capacity degradation.
When the battery is new Ba(0) = Brated and when the battery reaches EoL then the battery capacity is
denoted as Ba(EoL) = 0.8×Brated. The state-of-charge of the battery is denoted as SoCτi = bτi

Ba(τ) . The
SoC is bounded by SoCτi ∈ [SoCmin, SoCmax], therefore, bτi ∈ [SoCminBa(τ), SoCmaxBa(τ)]. The cycles of
operation is calculated as Ocy(τ) =

∑τ
j=1 n

j
100, where nj100 represents the equivalent 100% DoD cycles for

jth day.

5.2.3 Tuning Cycles of Operation
The cycles of operation have to be tuned based on price volatility across a longer time-horizon (months
or years) to maximize the battery life and arbitrage gains. The ideal number of cycles of operation on
average per unit of time (Iop) is approximated as the ratio of cycle life and calender life. Let us define IN
as the number of cycles of operation per unit of time that the battery performs with no cycle limitations.
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Algorithm 9 total100
cycle = DoDofVector(x)

Inputs: x
Function: Equivalent 100% DoD Cycles
Initialize: aminus = 0, aplus = 0, vec = [ ], i = 1, N =length(x)
1: while i < N do
2: if x(i) >= 0 then C1 = 1,
3: if aplus == 0 then aplus = x(i)
4: end if
5: else C1 = 0,
6: if aminus == 0 then aminus = x(i)
7: end if
8: end if
9: if x(i+1) >= 0 then C2 = 1,

10: else C2 = 0,
11: end if
12: if C1 == 1 and C2 ==1 then aplus = aplus + x(i+ 1)
13: else if C1 == 0 and C2 ==0 then aminus = aminus + x(i+ 1)
14: else if C1 == 1 and C2 ==0 then vec = [vec aplus], aplus = 0, aminus = 0
15: else if C1 == 0 and C2 ==1 then vec=[vec aminus], aplus = 0, aminus = 0
16: end if
17: i = i+ 1
18: end while
19: Calculate dodhalf = abs(vec)
20: Calculate eqdod100

cyc (j) = 0.5 ∗ (dodhalf(j))kp , ∀j ∈ [1, .., length(vec)]
21: Return total100

cycle = sum(eqdod100
cyc )

The scenarios of operations are:
• IN >> Iop: for example Lead Acid with calendar life of 6 years and cycle life of 1500 cycles. In this case
the storage cycles of operation should be controlled in such a way that calendar life equals cycle life. If
no cycle control is implemented then battery will reach EoL due to over use, prior to reaching its calendar
life. It is essential to ensure that the strategy to limit cycles should only eliminate storage operation for
low returning transactions.
• IN ≈ Iop: for example Li-Ion with calendar life of 10 years and cycle life of 6000 cycles. In this case
no control is required as the number of cycles of operation without controlling cycles approximates the
optimal cycles of operation per unit of time.
• IN << Iop: in such a case controlling the cycles of battery operation is again not required. In this case
the battery will reach EoL due to under-use. The battery owner should consider using the battery for
multiple applications in order to maximize its gains. This case is not dealt with in this chapter. However,
the storage co-optimization formulations proposed in Chapter 7 and Chapter 8 will increase the storage
operational cycles.

5.3 Eliminating Low Returning Arbitrage Gains
There are two distinct, but inter-related ways that are used to measure the life of Li-ion batteries deployed
in energy storage system applications for smart grid - calendar life and cycle life.

5.3.1 Cycle Life
One of the indexes which decides the life of operation is the rated cycles of operation of a battery. This
information is often provided by manufacturers in their data-sheets. In Section 2.3.2 we list the values of
the cycle of operation provided by the manufacturers under controlled environment. This value of cycles
will with probably lead to the EoL of the battery. The factors affecting the rated cycles of operation are:
(a) Battery type: Chemical composition of the battery, (b) Depth of discharge (DoD): Operational cycles,
(c) Temperature should be maintained, (d) Ramp rate: affects the stress on the battery, (e) Cycles per
day. The cycles life for grid based batteries are listed in Table 2.10. Fig. 5.1 shows the effect of number of
cycles of operation with variation in DoD. It should be noted that 10 cycles of 10% DoD will be equal to
1 cycle of 100% DoD, in terms of energy exchange.
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5.3.2 Calendar Life
Calendar life refers to the number of years the battery is expected to last till the battery will reach EoL.
It is independent of how much the battery is charged and discharged. However, calendar life is dependent
on the state of charge of the battery and the temperature. Data-sheet [63] shows how the calendar life of
the battery is a function of SoC level and temperature. An interesting observation is that a high SoC level
affects the calendar life drastically at high temperatures. It can be observed that below 35oC expected life
is independent of SoC. In this chapter we assume temperature is controlled and SoC is regulated in the
optimal band of operation. The calendar life for grid based batteries are listed in Table 2.11.

5.3.3 Optimal Storage Control
An optimal control problem for an energy storage device such as a battery is proposed in [148, 145] using
convexity property of the optimization function and saddle point inequality. In Chapter 3 and Chapter 4
we formulate the optimal energy arbitrage problem and propose an efficient algorithm and we show that
a time horizon of optimization can be sub-divided into sub-horizons. In each of these sub-horizons, the
shadow price is a function of price levels in a sub-horizon and is independent of all past and future sub-
horizons. This value of the shadow price is altered only when the battery capacity reaches its maximum
or minimum permissible charge levels. Based on the value of shadow price in a sub-horizon, the optimal
control decisions are selected depending on the level of price of electricity at that instant.

The threshold based structure of the optimal solution is presented in Remark 1 in Chapter 3.

5.3.4 Limiting Cycles of Operation
The life of a battery will be a function of cycle life and calendar life. If the battery operates more cycles
per unit of time then the battery EoL will be achieved due to cycle life limitations and vice versa. In
other words, if the battery is used a lot then the battery will last less. To increase the operational life, the
average number of cycles of operation per unit of time (Iop) should be set to

Iop = Cycle Life
Calendar Life . (5.3.1)

EoL of a battery operating more than Iop will be caused by the limitation on cycle life of the battery,
implying the battery is over-used. If the battery is under-used, EoL will be caused by the calendar life.
We assume that if cycle life equals calendar life of the battery than the operational life the battery is
increased. This criterion will be met if battery operates Iop cycles per unit time on average, shown in
Eq. 5.3.1. Desired cycles of operation for unit of time matches the battery calendar life degradation to
that of the operational cycling degradation.

Note the volatility across all days in a year can vary drastically, implying battery should perform more
cycles when the volatility is high. It is interesting that a scalar selection the friction coefficient will ensure
storage performing more cycles under more volatile price compared to less volatile price.

We propose limiting the operation of the battery by adding friction in mode changes for the battery.
Adding friction will ensure that the battery does not operate for lower returns. This idea of creating dead-
band of no operation is motivated by Eq. 5.3.2. The threshold based structure of the optimal solution
indicates that the optimal decision for the battery when the condition pch(i) > µ > pdis(i) is true, is to do
nothing. This band signifies the additional profit the charge discharge cycle of a battery should make in
order to compensate the losses incurred due losses in charging and discharging. Increase of this band will
indicate eliminating low returns transactions in arbitrage. We define modified charging and discharging
cost as a function of friction coefficient denoted as

pLch(i) = pch(i)/ηfriction = pi
ηchηfriction

, pLdis(i) = pdis(i)ηfriction = piηdisηfriction.

The threshold based structure of the solution is modified as

x∗i (µ) =



Xmin, if µ < pLdis(i),
[Xmin, 0] , if µ = pLdis(i),
0, if pLch(i) > µ > pLdis(i),
[0, Xmax] , if µ = pLch(i),
Xmax, if µ > pLch(i),

(5.3.2)
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The selection of ηfriction will be governed by: volatility of the price, maximizing operational life of
the battery and arbitrage gains. Note the value of ηfriction ∈ (0, 1]. The control of ηfriction should only
be considered if the cycles of operation per day is higher than Iop. Fig. 5.2 shows the ramping profile
difference for the same price single for no losses and with losses (refer to numerical experiment in Chapter 3
for details).
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Figure 5.2: Comparison of ramp rates for same price signal without and with efficiency losses

5.3.5 Numerical Results
In this section we present a numerical example demonstrating the effect of friction coefficient on arbitrage
gains, number of cycles of operation and the shadow price of transaction. The battery parameters used
for the numerical evaluation is listed in Table 5.1. Consider the battery has a cycle life of 6000 cycles

Table 5.1: Battery Parameters

Parameter Value Parameter Value
δmax 0.5 kW δmin −0.5 kW
bmax 1 kWh bmin 0.1 kWh
ηch 0.95 ηdis 0.95
h 0.25 hour b0 0.1 kWh
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Figure 5.3: Electricity price data from NYISO [29].

and calendar life of 10 years. The optimal number of cycles the battery should operate per day should be
Iop = 1.644 per day, using Eq. 5.3.1. Real-time 15-minute locational marginal price data for 21st December,
2016 from NYISO [29] is used for simulation analysis. The electricity price is plotted in Fig. 5.3. Fig. 5.4
shows the variation of cycles of operation and arbitrage gains with friction coefficient. When friction
coefficient is 1 implies battery operates more and the arbitrage gains are higher. As the coefficient is
reduced the decrease in gains and cycles of operation can be observed. For Iop cycles per day, the optimal
value of friction coefficient for this numerical example is ηfrictionopt = 0.855 as shown in Fig. 5.4. Note that
for achieving Iop cycles the reduction in arbitrage gains is ≈ 10% and the cycles of operation decreases
by ≈ 36%. A risk averse user may prefer to maximize it’s current gains, for example for ηfriction = 0.918,
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Figure 5.4: Variation of cycles and gains with ηfriction

the reduction in gains is 1.47% and the reduction in cycles of operation will be 11.7%. Fig. 5.5 shows the
variation of shadow price across the time horizon of 1 day as the friction coefficient is varied. Note as the
friction coefficient is reduced, the shadow price converges to a single level. Fig. 5.6 shows the variation of
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Figure 5.5: The shadow price in a day vary with ηfriction

ramp rate of the battery with ηfriction. On comparing Fig. 5.6 with respect to price variations in Fig. 5.3,
it is evident that battery operates only when the gains are significantly higher for lower values of ηfriction.
As the ηfriction is reduced the battery operates only around midnight to charge in order to discharge during
morning peak and during evening peak. The friction coefficient distinguishes arbitrage gains based on the
returns. Inclusion of ηfriction ensures battery operates for only when the gains are high enough.

5.3.6 Observations
We propose a mechanism to compare arbitrage gains and cycles of operation for a battery. The users can
tune the coefficient of friction according the price volatility over a period to maximize operational life of a
battery and its arbitrage gains. The inclusion of friction coefficient ensures that low returning transactions
are eliminated and battery operates only when returns are higher.
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Figure 5.6: Variation of ramp rate of the battery with ηfriction

5.4 Controlling Arbitrage Cycles
In this section we present the threshold based mechanism to identify the optimal arbitrage decisions and
efficiently controlling the cycles of operation. We present an iterative framework to tune the number of
cycles of operation to maximize battery life by matching calendar life degradation to cycle life degradation.

5.4.1 Energy Storage Arbitrage Algorithm with Negative Prices
Extension of the threshold based structure proposed in Chapter 3 for negative electricity prices is introduced
in Section 3.6.1 and Remark 3. The threshold for day τ is given as Remark 8.

Remark 8. The storage control decision x∗i for some day τ in the ith instant minimizes the function
C

(i)
storage(x)− µ∗i x for x ∈ [Xmin, Xmax]. The storage control decision x∗i (µ) is [184]

x∗i (µ) =





Xmin, if µ < pdis(i),
[Xmin, 0] , if µ = pdis(i),
0, if pch(i) > µ > pdis(i),
[0, Xmax] , if µ = pch(i),
Xmax, if µ > pch(i),

if pi ≥ 0

{
[0, Xmax] , if µ ≤ pch(i),
Xmax, if µ > pch(i),

if pi < 0

(5.4.1)

where pch(i) = pτi /ηch, pdis(i) = pτi ηdis, C(i)
storage(xi) = sip

τ
i and µ represents the shadow price of the

transaction. Note for µ = pch(i) or µ = pdis(i), x∗i (µ) takes an envelope of values and for any other value
of µ it is a singleton set. In order to find optimal decisions among an envelope of possible solutions based
on the price variations, the Backward Step algorithm is used one time. The details of the algorithm can
be found in Chapter 3 [184].

5.4.2 Controlling Cycles of Operation
The average monthly arbitrage gains is shown in Fig. 5.7. It is evident that opportunity for users is
different for different months of the year. The results are for 1C/1C battery and the price signal used is
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for the year 2016. For instance, it will be beneficial for users in MISO and NEISO to operate more number
of cycles during August than any other month. However, for CAISO it is November. Storage in PJM
in 2016 performing arbitrage would earn almost 15% of the total gains in the year for just the month of
April. In our prior work [174], we proposed a mechanism to eliminate the low returning transactions of
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Figure 5.7: Monthly Average Arbitrage Gains

Algorithm 10 OptimalCycles
Inputs: h, ηch, ηdis, δmax, δmin, SoCmax, SoCmin
Function: Optimal operation of storage with battery degradation
Initialize: Ocy, b0, ηfric = 1, ηpreviousfric = 1
1: (O∗

cy)time = Lcy/Lcal
2: while (Ocy − (O∗

cy)time) > ε do
3: x = Optimal arbitrage gains calculated using algorithm proposed in [184]
4: Calculate (B̄a)time = 0.5((Ba)initial + (Ba)time)
5: Calculate (N100)time = DoDofVector(x)
6: Calculate Ocy = (N100)time

(B̄a)time
7: if Ocy > (O∗

cy)time then
8: Reduce ηfric w.r.t. ηpreviousfric such that ηfric ∈ [0, 1]
9: end if

10: ηpreviousfric = ηfric

11: if Ocy
<∼ (O∗

cy)time then
12: Break While Loop
13: end if
14: end while
15: Return the friction coefficient, ηfric

storage operation while performing arbitrage by introducing a friction coefficient in mode change. Adding
friction will ensure that the battery does not operate for lower returns. This idea of creating dead-band of
no operation is motivated by Eq.(5.4.1). The threshold based structure of the optimal solution indicates
that the optimal decision for the battery when the condition pch(i) > µ > pdis(i) is true, is to do nothing.
This band signifies the additional profit the charge-discharge cycle of a battery should make in order
to compensate the losses incurred due losses in charging and discharging. Increase of this band will
indicate eliminating low returns transactions in arbitrage. We define modified charging and discharging
cost as a function of friction coefficient denoted as pLch(i) = pch(i)/ηfric and pLdis(i) = pdis(i)ηfric.
Algorithm 10 uses the algorithms proposed in [184, 174] to control cycles of operation in such a way
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that the calendar degradation is approximately equal to the cycle degradation, implying maximization of
battery’s operational life. Note that the proposed algorithm is sensitive to the accuracy of information, in
this chapter we operate under deterministic setting as our objective is to identify the maximum dollar per
cycle potential of a battery.

5.4.3 Open Source Codes
The equivalent depth-of-discharge and mechanism to calculate dollars per cycle is made open source. The
link for the code is https://github.com/umar-hashmi/DollarsPerCycle.

5.5 Battery Participating in Ancillary Service
Ancillary services are essential components of power system to ensure reliable operation of the power grid.
In this part of the chapter we focus on ancillary service market of PJM in the US. We list the compensation
mechanism used under PJM and the amount of capacity needed to perform regulation. We also look into
fluctuations of monthly regulation needs requested by PJM for the year 2017.

5.5.1 Compensation Mechanism
The value of regulation provided under PJM depends on the performance score, mileage ratio, market
clearing prices. The compensation mechanism is described in this subsection. Performance score is cal-
culated for each regulation resource for each hour. Performance scores reflect the benefits each resource
provides to system control by focusing on the resource’s response to PJM control signals. All ISO in the
USA have some sort of performance evaluation mechanism for comparing service provided by regulating
resources.

PJM’s performance score has 3 components: Accuracy score, Delay score and Precision Score [143, 144,
39]. PJM calculates performance score for hourly data. The dynamic regulation signal is sampled every 2
seconds. Performance scores reflect how well the resource is following the regulation signal. Performance
Score is defined as the equal weighted sum of accuracy score, delay score and precision score.

RegA and RegD represents the low and high frequency ancillary service requirement needs at PJM
ISO. Batteries are suitable for tracking RegD regulation signal. Mileage is the absolute sum of movement
of the regulation signal in a given time period with n samples. Mileage for RegA and RegD are denoted
as MileageRegA =

∑n
i=0 |RegAi −RegAi−1|, MileageRegD =

∑n
i=0 |RegDi −RegDi−1|. Mileage is a proxy

metric for measuring the amount of work done by regulation resources, i.e., their contribution towards
area control error correction [97]. At the beginning of each hour, Hour Signal Mileage is measured for the
previous operating hour. Hour Signal Mileage is the actual mileage used in settlements for service credits.
Mileage ratio is defined as the ratio of MileageRegD and MileageRegA. Mileage ratio measures the relative
work done or the movement of RegD resources relative to RegA [97].

The end user compensation is governed by hourly values of Regulation Market Capability Clearing Price
(RMCCP), Regulation Market Performance Clearing Price (RMPCP), Mileage Ratio (M), Cumulative
Regulation provided in MW (G) and performance score (ηperf ). It is in the best interest for storage
owners to maintain a high performance score. In order to maintain a high performance score battery
owners must commit regulation appropriately. The integrated regulation provided in MW is used for
calculating the compensation (Page 28 of [68]). The cumulative regulation provided for the kth hour is
denoted as Gk =

∑i=ik
i=ik−1+1 |gi|, where gi is the power output of regulation resource (MW) at ith, ik

denotes the sample index of end of the kth hour.
The RMCCP (USD/MWh) used in settlement is multiplied by the actual performance score and the

hourly integrated megawatts operated each hour to determine capability revenues. Regulation RMCCP
Credit for kth hour is given as

RMCCPkcredit = ηkperfGk RMCCPk.

FERC order 755 provides the pay-for-performance in compensation design for regulating resources [117].
The RMPCP (USD/MWh) is used for calculating Regulation RMPCP Credit for hour index k, it is given
as

RMPCPkcredit = ηkperfGk RMPCPkMk.
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Regulation Clearing Price Credit = Regulation RMCCP Credit + Regulation RMPCP Credit [68]. The
typical variation of RMCCP and RMPCP is shown in Fig. 5.8.
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Figure 5.8: RMCP variation for 1st week of April, 2017 [152].

5.5.2 Controlling the Cycles
The design of regulation signal is done in such a way that energy storage owners participating in PJM’s
ancillary service market can track the regulation signal in a sustainable manner. Energy storage is a buffer
of energy and consumes finite amount of power in charging and discharging cycles due to efficiency losses
in power conversion. This implies if the regulation signal is not designed appropriately then battery charge
level will drift to one of its boundaries and will not be able to provide regulation in the other direction.
Fig. 5.9 shows the mean ramp-up and ramp-down required monthly for the year 2017 in PJM ISO. Mean
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Figure 5.9: Monthly Average Ramp Up & Down Regulation, PJM 2017

ramp-up for M days in a month is calculated as 1
M

∑M
τ=1

∑T
i=0[ri]+τ , where [ri]+τ denoted the up regulation

for τ th day and ith instant. Similarly, mean ramp down for a month is calculated as 1
M

∑M
τ=1

∑T
i=0[ri]−τ .

PJM’s thoughtful design of regulation signal is evident from Fig. 5.9, where the ratio of cumulative mean
ramp up over ramp down is maintained between 0.8 to 0.96 for each month in the year of 2017. Due to
this attribute of regulation signal batteries can consume extra energy while performing ramping down (i.e.
charging) compared to ramping up (i.e. discharging), compensating the loss in energy due to efficiency
losses. Fig. 5.9 shows the histogram of mean regulation for each day in each month for ramping up and
ramping down. The key take away from this figure is that the regulation requirements remain quite the
same for the whole year and the variability is not governed by seasonality unlike price variability over the
year.

The regulation provided by the batteries can be controlled by controlling the maximum ramp rate
of the battery. The operational ramp rate can be adjusted such that δi ∈ [−δmax

op , δmax
op ] where δmax

op ∈
[0,min(δmax,−δmin)]. The parameter used for controlling the cycles of operation is the operational maxi-
mum ramp rate of the battery, δmax

op .
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Algorithm 11 describes the mechanism to calculate the maximum capacity needed to track regulation
signal sustainably for longer time horizons. It is observed that battery capacity is not a constraint for
sustainable tracking of regulation signals using batteries pertaining to the design of regulation signal under
PJM ISO.

5.6 Numerical Results
For the numerical results we use a Li-Ion battery with calendar life of 10 years and cycle life at 100% DoD
is 4000 cycles. For degradation model, kp is selected as 1.1, implying battery will perform approximately
5971 cycles at 70% DoD. We present simulation results at two different time scales, to make gains per
cycle comparison between arbitrage and regulation more robust to short term volatilities. The shorter
time scale is considered as 1 day and longer time scale is considered to be a year. The simulations are
conducted using PJM real time price data and RegD data for the year 2017. In order to understand the
volatility of price, data for the year 2016 is used. With our model we observe that the arbitrage and the
regulation gains are affected by the ratio of ramp rate and storage capacity. Replacing a smaller battery
with a big one with same ratio of ramp rate over storage capacity will increase the gains proportional to
the factor of increase in battery capacity, assuming charging and discharging efficiencies are the same. This
implies the current analysis is valid for different capacity battery with same ratio of the ramp rate and the
capacity of the battery. For all numerical analysis we consider a 1kWh battery with SoCmin = 0.1 and
SoCmax = 0.98, ηch = ηdis = 0.95. The ratio of battery capacity over ramp rate is often used to denote
battery type. For instance xC-yC battery will require 1/x hours to fully charge and 1/y hours to fully
discharge. We use this nomenclature in results in this section. In order to calculate the financial potential
of storage in ancillary service market, we assume that the performance index is equal to 0.95. The real
time electricity data used for arbitrage simulation is of PJM [16] and ancillary service market parameters
are downloaded from [152], [274].

Algorithm 11 CapacityNeededRegulation
Inputs: r, k = 1
Function: Maximum Capacity Needed to Perform Regulation
1: Calculate N = length(r)
2: for i = 1 : N do
3: for j = 1 : i do
4: cummat(k) = cummat(k) + ηch[r]+ − [r]−

ηdis
5: end for
6: k=k+1
7: end for
8: Return Capacity Needed, bneed = h(max(cummat)−min(cummat)

SoCmax−SoCmin

5.6.1 Short Time-Scale: A typical Day
Arbitrage and regulation gains are calculated for price data and RegD signal for 2nd Feb. 2017. Storage
with varying ramping capabilities are simulated for gains and gains per cycle. Results tabulated in Table

Table 5.2: Dollars/Cycle for storage performing arbitrage

Ramp Rate Cycles Performed Gain ($) Dollars/Cycle
2C-2C 4.029 0.2015 0.0500
1C-1C 4.029 0.2015 0.0500

0.5C-0.5C 2.714 0.1675 0.0617
0.25C-0.25C 2.259 0.1380 0.0611

5.2 and Table 5.3 indicate that a high ramping storage will perform many more cycles while performing
regulation. It is clear that gains per cycle is significantly higher for storage performing regulation compared
to arbitrage.

For storage performing regulation, the number of 100% DoD cycles using the linear DoD model (i.e.,
kp = 1) is more than 3 cycles. However, 100% cycles calculated for kp = 1.1 is 1.121. Storage performing
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Table 5.3: Dollars/Cycle for storage performing regulation

Ramp Rate Cycles Performed Gain ($) Dollars/Cycle
2C-2C 11.045 9.0530 0.8196
1C-1C 5.153 4.5265 0.8785

0.5C-0.5C 2.404 2.2632 0.9415
0.25C-0.25C 1.121 1.1316 1.0091

regulation takes the advantage of short-cycling, evident from histogram of DoD shown in Fig. 5.10, while
storage performing arbitrage performs deep discharge cycles, regulation due to shorter sampling time
performs short DoD cycles, as pointed out earlier short DoD cycles significantly improves the cycle life
of battery. It is evident from Table 5.3 that the efficient manner to calculate cycles of operation is by
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Figure 5.10: DoD variation of a battery performing arbitrage and regulation in PJM ISO in a day

adjusting the maximum ramping of battery. Furthermore, it is observed that storage operating at lower
ramp rate has a higher dollars per cycle potential implying higher revenue in the long term.

5.6.2 Long Term Simulation - One Year
For the battery considered in this numerical example, the battery should perform ≈ 400 cycles per year in
order to match the calendar and cycle degradation, thus maximizing battery life. Long term simulations
for the year of 2017 is conducted. For arbitrage, the friction coefficient is adjusted to match the optimal
number of cycles, as shown in Fig. 5.11. The dollar per cycle potential of storage performing regulation
for the year 2017 is listed in Table 5.4. From the short term and long term simulations it is evident that

Table 5.4: Dollars/Cycle for storage performing regulation

Ramp Rate Cycles Performed Gain ($) Dollars/Cycle
2C-2C 4451.34 7709.62 1.7320
1C-1C 2076.62 3854.81 1.8562

0.5C-0.5C 968.77 1927.40 1.9895
0.25C-0.25C 451.95 963.70 2.1323

0.125C-0.125C 210.84 481.85 2.2854

performing regulation is much more beneficial for storage owners compared to arbitrage.
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Figure 5.11: Arbitrage Gains, cycles of operation with ηfric for 2017

5.7 Conclusion and Perspectives
In order to maximize the battery life, the calendar life degradation has to be matched with cycle life
degradation. For a battery performing arbitrage, the cycles can be controlled by tuning friction coefficient
and for battery performing regulation the cycles can be controlled by adjusting the ramping rate. By
adjusting ramp rate of the battery the amount of regulation provided by the battery is controlled. As the
ramp rate increases the amount of regulation provided by the battery proportionally increases.

We propose an algorithm to calculate equivalent 100% cycles performed by battery. The financial
potential of battery performing arbitrage and regulation is compared based on dollars per cycle potential
identified using simulations based on real data from PJM ISO. The simulations results indicate that storage
participating in ancillary services will gain significantly higher than storage performing energy arbitrage.

Dollars per cycle as a performance index is versatile. It can be used for (a) taking into account
operational cycles, (b) this index can be normalized with respect to battery size for making it independent
of storage size, which implies we can use it to select the right size of the battery. We used dollars per cycle
to identify the optimal ramping battery in Chapter 7. Furthermore, the dollars per cycle can be used for
identifying the profitability of battery. This is used in Chapter 8 and Chapter 9.
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Part II
Energy Storage Co-Optimization for Electricity Consumers
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Chapter 6

Arbitrage & Power Factor Correction

To the optimist, the glass is half full. To the pessimist, the glass is half empty. To the engineer, the glass
is twice as big as it needs to be. -Unknown

Summary: The importance of reactive power compensation for power factor (PF) correction will
significantly increase with the large-scale integration of distributed generation interfaced via inverters
producing only active power. In this work, we focus on co-optimizing energy storage for performing energy
arbitrage as well as local power factor corrections. The joint optimization problem is non-convex, but can
be solved efficiently using a McCormick relaxation along with penalty-based schemes. Using numerical
simulations on real data and realistic storage profiles, we show that energy storage can correct PF locally
without reducing arbitrage gains. It is observed that active and reactive power control is largely decoupled
in nature for performing arbitrage and PF correction (PFC). Furthermore, we consider a stochastic online
formulation of the problem with uncertain load, renewable and pricing profiles. We develop a model
predictive control based storage control policy using ARMA forecast for the uncertainty. Using numerical
simulations we observe that PFC is primarily governed by the size of the converter and therefore, look-
ahead in time in the online setting does not affect PFC noticeably. However, arbitrage gains are more
sensitive to uncertainty for batteries with faster ramp rates compared to slow ramping batteries.

6.1 Introduction
With the growth of distributed generation (DG) and large-scale renewables, the need to understand their
effects on power networks has become crucial. While bulk-renewable generators have well defined rules for
performance including that for reactive power, distributed generation owned by small residential consumers
have been exempted. This is primarily due to lack of measurement infrastructure and installed DG
contributing to a small fraction of total generation. However, in recent years, growing incentives and
environmental awareness have resulted in a large number of consumers installing distributed generation.
In Chapter 3 and Chapter 4 we pointed that NEM policies have been a great success. Only in California
almost a million consumers opted for DG installations by the end of 20181. Understanding the effects, both
operational and financial, of growth in distributed energy resources (DERs) is essential for Distribution
System Operators (DSOs) to ensure reliable operation. Since DERs in current markets are not financially
rewarded for providing reactive power support, small inverters connected to them primarily output active
power and almost no reactive power [191]. This is also in compliance with IEEE Standard 1547, which
specifies that DG shall not actively regulate the voltage at the point of common coupling [298]. As a result,
there has been a degradation of the load power factor (PF) [344].

PF denotes the ratio of active power and the apparent power and is measured as cos(φ), where φ denotes
the angle between active and reactive power. As distribution grids are primarily designed to operate close
to unity power factor, a systematic degradation in PF can lead to high current, excessive thermal losses,
aggravated voltage profiles [199], and equipment damage. It has been shown that maintaining a high
power factor leads to positive environmental effects due to increased grid efficiency [8]. To this end, several
regional transmission organizations and system operators have operational rules for PF as stated in Table
2.2, though primarily for large loads.

1https://www.californiadgstats.ca.gov/, January, 2019
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However, the PF of residential consumers is also a point of concern. For example, the Smart Islands
Energy Systems (SMILE) project, initiated by the European Union in 2017 [13], involves data collection
at multiple fronts including consumer smart meters in Madeira, Portugal. As a case study, 15 minute
averaged household consumption and solar generation data on 18th May, 2018 for a representative resi-
dential consumer in the island of Madeira, Portugal is depicted in Fig. 6.1. Note that while PF at night
is close to unity, during the day it degrades significantly due to solar output. Thus low load PF may be
subjected to norms and penalties [344, 191]. Some household smart meters (Eg. Linky smart meters in
France) already have reactive power monitoring capability that can implement PF norms [19]. The LV
consumers in Uruguay have electricity bills with three different contracts [25] that include penalties for
PF degradation. Section 6.6 presents a measurement case-study of degradation of power factor seen from
a substation in the island of Madeira.
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Figure 6.1: Variation of active, reactive power and absolute value of power factor for PV and load

6.1.1 Literature Review
While additional infrastructure such as capacitor banks [27] have been proposed to improve power factor,
we focus our work on using conventional energy storage/battery for performing power factor correction, in
addition to other functions like arbitrage [283, 183]. Note that storage devices generate DC power and hence
are connected to the grid through a DC/AC converter/inverter that are often over-sized compared to the
installed DER facility [201]. Utilizing the storage converter/inverter and power electronics [296] for power
factor correction averts additional investment. The overarching goal of this chapter is to demonstrate
through novel co-optimization formulations that batteries can be used for PFC without any significant
effect on arbitrage gains, for a range of price, consumption and PV settings. Note that due to the
high cost of storage deployment, researchers have proposed using storage for co-optimization additional
goals along with energy arbitrage (temporal shift of active load) for financial feasibility [207]. Inverter
reactive power output depends on its control design [157], [313] and can be governed by terminal voltage
and/or active power measurements [201], [85]. The authors in [254] use energy storage for maintaining
voltages at wind facilities. Similarly, storage devices have been evaluated using power hardware-in-loop
for minimizing losses and voltage fluctuations [307]. The authors in [136, 294] co-optimize storage for
arbitrage, peak shaving and frequency regulation. Unlike the described prior work, we discuss storage for
co-optimization of arbitrage and power factor correction. Note that contemporary solar inverters in low
voltage operate close to unity power factor (UPF)[172] due to no reactive power obligations and hence are
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practically ineffective for power factor correction. While we assume UPF for the solar inverter through the
manuscript, we show that our approach can be used for controlling the solar inverter directly as a special
case in Section 6.7.

6.1.2 Contribution
We are interested in using energy storage connected through an inverter for the joint task of arbitrage and
PFC. In addition to commercial and residential electricity consumers, the formulation is also of interest
for renewable integrators, transmission and distribution operators [4].

The contributions of this chapter are as follows
1. the development of a non-convex mixed-integer formulation to optimize storage for arbitrage and

power factor correction in the presence of DG. While the co-optimization problem is non-convex, we
demonstrate three different approximation schemes to solve the problem: (a) McCormick relaxation
for original non-convex program, (b) receding horizon arbitrage with real-time PFC, and (c) arbitrage
with penalty-based PFC. While the McCormick relaxation and real-time PFC policies routinely
achieve the optimal solution, the penalty based approach is able to provide best alternatives in
scenarios where no feasible solution satisfying PF limits exists.

2. we present a modified penalty-based algorithm that reduces converter usage along with arbitrage
and PFC.

3. using realistic pricing, net load (consumption + solar) data and battery parameters, we extensively
benchmark the achievable ability of storage devices to maintain PF limits without any significant
degradation in arbitrage gains. This implies that household DG can follow PF limits as well if such
regulations are created in future distribution grids.

4. we consider stochastic extensions of our algorithms for real-time implementation through Model
Predictive Control (MPC). We use Auto-Regressive Moving Average (ARMA) processes to model
temporally evolving signals in the MPC framework and demonstrate significant benefits from the
online algorithms.

The chapter is organized in 7 sections. Section 6.2 provides the system details. Section 6.3 formulates
the co-optimization problem of performing arbitrage and PFC using storage and discusses multiple solution
strategies. Section 6.4 presents an online algorithm using ARMA forecasting and MPC in order to mitigate
the effect of forecast error. Section 6.5 presents the numerical results. Section 6.6 provides a case study for
a substation in Madeira where solar installations cause three phase unbalance, motivation for the imbalance
reduction provided in Chapter 13. Section 6.7 provides PFC algorithm using solar inverter in absence of
energy storage. Section 6.8 concludes the chapter and discusses future directions of research.

6.2 System Description
The system considered in this chapter consists of an electricity consumer with inelastic demand, renewable
generation (rooftop solar) and battery. The energy storage will provide flexibility to deviate consumption
in order to make gains by performing arbitrage and correct the power factor to satisfy utility prescribed
limits. The block diagram of the system considered is shown in Fig. 2.20.

We denote time instant using variable i. The apparent power of the load shown in Fig. 2.20, at ith
time instant is denoted as Sih = P ih + jQih, where P ih and Qih are the active and reactive power consumed.
Apparent power of the solar inverter is given as Sir = P ir where P ir is the active power supplied by solar
inverter. We assume the solar inverter operates at unity PF. Let us denote the combined load and renewable
active and reactive power by P i = P ih − P ir and Qi = Qih respectively. The power factor seen by the grid
is the ratio of real power supplied or extracted by the grid over the apparent power seen by the grid. In
the absence of storage it is given by

pfibc = P i/

√
P i

2 +Qi
2
. (6.2.1)

Observe that PF before correction, pfibc, degrades as P ir and Qih increases in magnitude. Next we discuss
the battery model considered and its effect on PF.

Battery Model: The battery model is described in Chapter 2.5. The storage/battery converter
can supply active and reactive power. The apparent power output of energy storage (connected through
a converter which is an inverter or a rectifier) is given as SiB = P iB + jQiB , where P iB , QiB denote active
and reactive power outputs respectively. We consider operation over a total duration T , with operations
divided into N steps indexed by {1, ..., N}. The duration of each step is denoted as h. Hence, T = hN .
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We denote the change in the energy level of the battery at ith instant by xi; xi > 0 implies charging and
xi < 0 implies discharging. xi/h denotes the corresponding storage ramp rate with δmin ≤ 0 and δmax ≥ 0
as the minimum and maximum ramp rates (kW) respectively. The storage active power P iB for the ith

instant is related to battery energy as P iB = [xi]+
hηch

− [xi]−ηdis
h . Active power ramp rate constraint follows as

P iB ∈ [Pmin
B , Pmax

B ] with Pmin
B =δminηdis, P

max
B =

δmax

ηch
, (6.2.2)

Though the battery charge level is not affected by the reactive power output QiB of the connected inverter,
the amount of active power supplied or consumed is dependent upon it due to the line current limitations
[208]. The converter rating is given by the maximum apparent power supplied/consumed, denoted as Smax

B

which bounds the instantaneous apparent power SiB

(Smax
B )2 ≥ (SiB)2 = (P iB)2 + (QiB)2, (6.2.3)

Let bi denote the energy stored in the battery at the ith step with bi = bi−1 + xi. To keep the charge in
the battery within prescribed limits, the battery capacity constraint is imposed

bi ∈ [bmin, bmax], (6.2.4)

where bmin = SoCminBrated and bmax = SoCmaxBrated. Brated is the rated capacity and SoCmin and
SoCmax are the minimum and maximum level of state of charge respectively.

6.2.1 Energy Arbitrage
In this chapter we assume that buying and selling prices of electricity at each instant i are the same and
denote it by pielec. Under this assumption, the arbitrage gains depend on the varying electricity price but
not on the inflexible load. As monetary benefits from arbitrage is based only on active power, the operator
seeks to minimize minPB

∑
pielecP

i
B with additional system constraints. Refer to Chapter 3 for details.

The price of electricity is denoted as pielec. The consumer optimization problem is given as [184]

min
N∑
i=1

pielec[P i + P iB ], subject to: Eqs. 6.2.2, 6.2.4

Since there is no degree of freedom in P i, it is equivalent to

(Parb) min
N∑
i=1

pielecP
i
B , subject to: Eqs. 6.2.2, 6.2.4

In this problem the uncertainty will be due to variation of electricity price.

6.2.2 Power Factor Correction
The active power out of storage converter, P iB ∈ [−Pmax

B , Pmax
B ], and reactive power output ranges as

QiB ∈ [−Smax
B , Smax

B ]. The utility sets the power factor limit pfmin, which corresponds power angle θmin =
cos−1(pfmin). The deep blue shaded region in Fig. 6.2 shows the feasible region of converter operation
where output power factor lies within permissible limits of PF. In this plot we assume Pmax

B ≥ Smax
B . Note

the power factor formulation in Eq. 6.2.1. In the presence of storage, it takes the form

pf ic = P iT /
√

(P iT )2 + (QiT )2, (6.2.5)

where total active power is denoted as P iT = P i + P iB and total reactive power is given as QiT = Qi +QiB .
It is clear that storage operations can negatively or positively affect the load PF. To ensure that the PF
is within the permissible limits,

− k ≤ QiT
|P iT |

= Qi +QiB
|P i + P iB |

≤ k, where k = tan(θmin). (6.2.6)

We assume that the limits in Eq. 6.2.6 are identical for both leading and lagging PF. Note that the feasible
region for the PF constraint as shown in Fig. 6.2(a) is not convex. In the next section we will formulate a
non-convex storage optimization problem and discuss solution strategies.
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Figure 6.2: Feasible storage operation region considering power factor constraint (a) Shows the
feasible region of storage in absence of load and DG. (b) Shows the feasible region of storage in
presence of load and DG. The active and reactive power without storage is shown with red asterisk.

6.3 Arbitrage and PFC with Storage
We formulate the co-optimization problem for performing arbitrage and correcting power factor consid-
ering active (P iB) and reactive power (QiB) output from storage connected via an inverter. Following the
discussion in the preceding section, the objective function is given as

(Porg) min
P i
B
,Qi
B

N∑
i=1

pielecP
i
B , subject to, Eqs. 6.2.2, 6.2.3, 6.2.4, 6.2.6.

Eq. 6.2.6 is non-convex but consists of two disjoint convex sets if the active power in the denominator is
sign-restricted. This disjoint nature of PF constraint can be formulated as a mixed-integer convex problem
by using McCormick relaxation as described in Section 6.3.1. Additional approaches to solve it are discussed
in later sections. Section 6.3.2 presents the second sequential approach where arbitrage is optimized first
and then PF constraints are corrected for the current instance only. Section 6.3.3 presents a third approach
for this problem where we use a convex penalty for PF violations and solve the co-optimization problem
by dynamic programming.

6.3.1 McCormick Relaxation based approach
We reformulate the non-convex PF constraint in (Porg) to a bi-linear constraint by introducing binary
variables z as |P iT | = (2z − 1)P iT . Here z is equal to 1 when total active power is positive and zero
otherwise. Denoting the bi-linear term with variable y = zP iT , we use McCormick relaxation [244] to
convert it to a mixed-integer linear constraint. As mentioned in [255], this McCormick relaxation is exact
as one of the variables in the bi-linear term is a binary variable. After simplification, we get the following
mixed-integer convex problem (Pmr).

McCormick envelopes are a type of relaxation used in bi-linear nonlinear programming problems as
solving non-convex problems are difficult. The McCormick envelope guarantees convexity but keeps the
bounds sufficiently tight [20]. In our setting, we use it to relax bi-linear representation of absolute value
operator, say |P iT | = (2z − 1)(P iT ) where z denotes a binary variable equal to 1 when P iT > 0 and zero
otherwise. Let y = zP iT denote the bi-linear variable. We then have

(2z − 1)P iT ≥ 0 =⇒ 2y − P iT ≥ 0.

The McCormick relaxation for the bi-linear term is represented as follows

y ≥ zlbP iT + P ilbz − zlbP ilb, y ≥ zubP iT + P iubz − zubP iub,
y ≤ zlbP iT + P iubz − zlbP iub, y ≤ zubP iT + P ilbz − zubP ilb.
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where zlb (zub) and P ilb (P ilb) are the lower (upper) bounds for z and P iT respectively. As zlb = 0 and
zub = 1, the above constraints simplify to

y ≥ P ilbz, y ≥ P iT + P iubz − P iub
y ≤ P iubz, y ≤ P iT + P ilbz − P ilb,

The McCormick relaxation is known to be exact here as one of the variables in the bi-linear term is a
binary variable. The optimization formulation including the above constraints is given as

(Pmr) min
PB ,QB

N∑
i=1

pielecP
i
B

subject to, Eqs. 6.2.2, 6.2.3, 6.2.4
PF Constraint: − 2ky + kP iT −QiT ≤ 0,

−2ky + kP iT +QiT ≤ 0,
McCormick Constraint:

y ≥ P ilbz, y ≥ P iT + P iubz − P iub,
y ≤ P iubz, y ≤ P iT + P ilbz − P ilb,

Binary Variable: z ∈ {0, 1}, 2y − P iT ≥ 0.

Here P ilb = P i + Pmin
B is the lower bound of total active power, and P iub = P i + Pmax

B is the upper bound.
Problem (Pmr) involving mixed-integer linear constraints can be solved by off the shelf solvers like Gurobi
or Mosek that can be called by CVX [7]. Note that both (Porg, Pmr) consider arbitrage and PFC at equal
footing for all time instances. To study the impact of PFC on arbitrage gains, we propose an approach
next where PF of the current instance alone is considered while making optimal arbitrage decisions.

6.3.2 Receding horizon arbitrage with sequential PFC
We consider a receding horizon approach (Prh) that solves two disjoint optimization problems, denoted as
(Psub1) and (Psub2) below, for each time instant j and selects the solution with higher gains and feasibility.

(Psub1) min
PB ,QB

N∑
i=j

pielecP
i
B

subject to, Eq. 6.2.2, Eq. 6.2.3, Eq. 6.2.4,
−kP jT ≤ Q

j
T ≤ kP

j
T , P jT ≥ 0,

and the second sub problem is given as

(Psub2) min
PB ,QB

N∑
i=j

pielecP
i
B

subject to, Eq. 6.2.2, Eq. 6.2.3, Eq. 6.2.4,
−kP jT ≥ Q

j
T ≥ kP

j
T , P jT < 0.

Note that both (Psub1),(Psub2) are convex and solve a cumulative arbitrage gains problem, but with PFC
restricted to the current time-instant j only (no look-ahead PFC). The sub-problems only differ in the sign
of the current total active power P jT . The feasible sub-problem with higher gains sets the storage actions
for the current instant j, (P jB)∗ and (QjB)∗. The approach then moves to the next instance j + 1.

Formulations (Porg), (Pmr), (Prh) model the PF constraints as hard constraints and ensure their
feasibility at every operational point. However, PF violations may be unavoidable and no feasible solution
may exist. This may be due to converter limitations as well as storage constraints with regard to capacity
and ramping. In such cases, we propose an alternate approach where we correct PF as best as possible.

6.3.3 Arbitrage with penalty based PFC
We redefine problem (Porg) using a penalty function θ(i) for the power factor. The objective of the new
formulation (Pplt) is given by

min
PB ,QB

N∑
i=1

{
pielecP

i
B + θ(i)

}
, (6.3.1)
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where we define penalty function θ(i) as
θ(i) = λmax(0, |QiT | − k|P iT |). (6.3.2)

Here λ represents the constant associated with the linear cost of violating the PF. The shape of penalty
function is shown in Fig. 6.3. The second term in Eq. 6.3.2 represents the amount of PF deviation from

Penalty, θ(i)

Q
t
i  / P

t
i

Slope, λSlope, - λ
k- k

Figure 6.3: Penalty function with power factor variation

preset thresholds. This term will be equal to zero for cases where PF is within permissible limits. The
max term can be modelled as two constraints

θ(i) ≥ 0, θ(i) ≥ λ(|QiT | − k|P iT |) (6.3.3)
where absolute value function |x| can further be represented as (2z−1)x ≥ 0 with binary variable z ∈ {0, 1}.
Eq. 6.3.3 can now be reformulated as

θ(i) ≥ 0, θ(i) ≥ λ(2yi1 −QiT − 2kyi2 + kP iT ).
2yi1 −QiT ≥ 0, 2yi2 − P iT ≥ 0

(6.3.4)

Here yi1 and yi2 denote bi-linear variables
yi1 = zi1Q

i
T , yi2 = zi2P

i
T (6.3.5)

with binary variables zi1 and zi2. zi1 (zi2) is equal to 1 if the total reactive (active) power is greater than zero,
and zero otherwise. As before, we use McCormick relaxation to convert the bi-linear terms in Eq. 6.3.5 to
mixed-integer linear constraints

yi1 ≥ Qilbzi1, yi1 ≥ QiT +Qiubz
i
1 −Qiub

yi1 ≤ Qiubzi1, yi1 ≤ QiT +Qilbz
i
1 −Qilb

yi2 ≥ P ilbzi2, yi2 ≥ P iT + P iubz
i
2 − P iub

yi2 ≤ P iubzi2, yi2 ≤ P iT + P ilbz
i
2 − P ilb.

(6.3.6)

In these equations, Qilb = Qi−Smax
B and Qiub = Qi+Smax

B denote the lower and upper bounds respectively
for total reactive power.

To summarize, the optimization problem for performing arbitrage and penalization PF violations and
its associated constraints are given as

(Pplt) min
PB ,QB

N∑
i=1

{
pielecP

i
B + θ(i)

}
subject to, Eq. 6.2.2, Eq. 6.2.3, Eq. 6.2.4, Eq. 6.3.4, Eq. 6.3.6.

Note that while our approach uses linear costs for PF violations, the methodology can be extended to
nonlinear penalties in a similar way.

6.3.4 Minimizing converter usage with arbitrage and PFC
Power electronic converters degrade with usage [336]. It is in the best interest of energy storage owners
to minimize the converter operation, measured in apparent power output, to expand their lifetime. In
order to emulate this we propose addition of converter usage component in the objective function of the
new optimization problem (P convplt ). The new objective function consists of three components: (a) increase
arbitrage gains, (b) reduce PF penalty and (c) reduce converter usage and is given as

min
PB ,QB

N∑
i=1

{
pielecP

i
B + θ(i) + β

(
(P iB)2 + (QiB)2)}

The optimization problem (P convplt ) is subject to the same constraints as (Pplt).
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6.3.5 Open Source Codes
The co-optimization formulations and benchmarks presented in this chapter is made open source. The
link for the code is https://github.com/umar-hashmi/powerfactorcorrection.

6.4 Modeling Uncertainty
The previous section discussed arbitrage and PFC under complete knowledge of future net loads and prices.
In this section, we consider the setting where future values may be unknown. To that end, we first develop
a forecast model for active and reactive power and electricity price for future times, where the forecast
is updated after each time step. We develop the forecasting model for net load with solar generation
using AutoRegressive Moving Average (ARMA) model and electricity price forecast using AutoRegressive
Integrated Moving Average (ARIMA). The output of the forecast model is fed to model predictive control
for real-time operation. The details of forecast model are provided in Section 2.4.1.

6.4.1 Model Predictive Control
The forecast values are fed to a Model Predictive Control (MPC) scheme [122] to identity the optimal
modes of operation of storage for the current time-instance. Any of the developed schemes from the
previous section can be used for the receding horizon optimization inside MPC. These steps (forecast and
MPC) are repeated sequentially and highlighted in online Algorithm 9: ForecastPlusMPCforCoOpt1.

Algorithm 12 ForecastPlusMPCforCoOpt1
Global Inputs: ηch, ηdis, δmax, δmin, bmax, bmin, S

max
B , b0

Inputs: h,N, T, i = 0
1: while i < N do
2: i = i+ 1
3: Forecast P̂ , Q̂ from time step i to N using ARMA
4: Forecast p̂elec from time step i to N using ARIMA
5: Co-optimize arbitrage and PFC using inputs p̂elec, P̂ , Q̂, h, battery parameters
6: Find out battery output: PB and QB
7: bi

∗ = bi−1 + [PB(i)]+ηch − [PB(i)]−/ηdis
8: Update b0 = bi

∗

9: end while

6.5 Numerical Results
In this section, we demonstrate the performance of our proposed optimization formulations through numer-
ical simulations with real data. As described in Section 6.3, we consider multiple storage control policies
in the presence of solar, as listed below.

• Parb: Only arbitrage,
• Pmr: McCormick relaxation for arbitrage + PFC,
• Prh: Receding horizon arbitrage + sequential PFC,
• Pplt: Arbitrage + penalized PFC,
• P convplt : Arbitrage + penalized PFC+converter usage.

The price data for our simulations is taken from NYISO [29]. The load and generation data is taken from
data collected at Madeira, Portugal. We use the following performance indexes to measure the performance
of our simulations:

1. Arbitrage Gains: effectiveness in performing arbitrage,
2. Power Factor Correction: is gauged using 3 indices, using a prescribed PF limit of 0.9: (i) No. of

PF violations denoted as VLT, (ii) Mean PF, and (iii) Minimum PF.
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3. Converter Usage Factor (CUF): measures usage as

CUF = 1
N

N∑
i=1

√
(P iB)2 + (QiB)2

Smax
B

. (6.5.1)

As a benchmark for PFC indices, in Table 6.1, we list the values over a representative day, for two nominal
cases: (a)NSNB (no solar with no battery), and (b)SNB (solar with no battery). It is evident that with

Table 6.1: Nominal Cases without Energy Storage for 1 day

Parameters NSNB SNB

No. of PF violations 8 25
mean PF 0.9735 0.9054
min PF 0.8201 0.1587

addition of solar, the PF seen by the grid deteriorates with number of PF violations increasing by 200%
and minimum PF reached decreasing by 80%.

In order to rectify the PF and perform arbitrage we add inverter connected energy storage. In numerical
results, we use four batteries with differing converter capacities for comparison. Their parameters are listed
in Table 6.2. For fixed battery capacity, we consider four different ramp rates, each of which is described

Table 6.2: Battery Parameters

Bmin, Bmax, B0 200Wh, 2000 Wh, 1000 Wh
ηch = ηdis 0.95

δmax = −δmin 500 W for 0.25C-0.25C, 1000 W for 0.5C-0.5C
2000 W for 1C-1C, 4000 W for 2C-2C

as a ratio of battery capacity over ramp rate. For instance xC-yC ramp rate in Table 6.2 will require 1/x
hours to fully charge and 1/y hours to fully discharge. By Eq. 6.2.2, the ramp rate also fixes the maximum
power Pmax

B . We define maximum converter capacity Smax
B in terms of Pmax

B . We consider 4 different
battery converters: (i) Smax

B = Pmax
B , (ii) Smax

B = 0.9Pmax
B (i.e. under-designed), (iii) Smax

B = 1.25Pmax
B

(i.e. over-designed), (iv) Smax
B = 1.5Pmax

B (i.e. over-designed). The sampling time h is 15 minutes, time
horizon T is 24 hours and the power factor limit set is 0.9.

Table 6.3: Comparison of arbitrage gains for 1 day

Converter Battery Parb Pmr Prh Pplt P convplt

0.25C-0.25C 0.1754 N.F. N.F. 0.1747 0.1747
Pmax
B 0.5C-0.5C 0.2564 0.2564 0.2564 0.2564 0.2564

1C-1C 0.3367 0.3367 0.3367 0.3367 0.3367
2C-2C 0.4144 0.4144 0.4144 0.4144 0.4144

0.25C-0.25C 0.1728 N.F. N.F. 0.1704 0.1704
0.9Pmax

B 0.5C-0.5C 0.2523 0.2511 0.2511 0.2511 0.2511
1C-1C 0.3314 0.3314 0.3314 0.3314 0.3314
2C-2C 0.4098 0.4098 0.4097 0.4098 0.4098

0.25C-0.25C 0.1754 N.F. N.F. 0.1753 0.1753
1.25× 0.5C-0.5C 0.2564 0.2564 0.2564 0.2564 0.2564
Pmax
B 1C-1C 0.3367 0.3367 0.3367 0.3367 0.3367

2C-2C 0.4144 0.4144 0.4144 0.4144 0.4144
0.25C-0.25C 0.1754 0.1754 0.1754 0.1754 0.1754

1.5Pmax
B 0.5C-0.5C 0.2564 0.2564 0.2564 0.2564 0.2564

1C-1C 0.3367 0.3367 0.3367 0.3367 0.3367
2C-2C 0.4144 0.4144 0.4144 0.4144 0.4144

We compare the arbitrage gains in Table 6.3 and PF violations in Table 6.4 respectively for different
algorithms and battery settings over a day (96 time instances). Note the arbitrage gains with PFC matches
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with arbitrage gains for Parb, implying performing PFC does not deteriorated energy storage’s ability to
perform arbitrage. For PF violations, as expected, the no. of PF violations for Parb remain close to

Table 6.4: Comparison of no. of PF violations for 1 day

Converter Battery Parb Pmr Prh Pplt P convplt

0.25C-0.25C 27 N.F. N.F. 2 2
Pmax
B 0.5C-0.5C 27 0 0 0 0

1C-1C 26 0 0 0 0
2C-2C 24 0 0 0 0

0.25C-0.25C 26 N.F. N.F. 4 4
0.9Pmax

B 0.5C-0.5C 23 0 0 0 0
1C-1C 25 0 0 0 0
2C-2C 24 0 0 0 0

0.25C-0.25C 26 N.F. N.F. 1 1
1.25× 0.5C-0.5C 25 0 0 0 0
Pmax
B 1C-1C 26 0 0 0 0

2C-2C 25 0 0 0 0
0.25C-0.25C 26 0 0 0 0

1.5Pmax
B 0.5C-0.5C 25 0 0 0 0

1C-1C 26 0 0 0 0
2C-2C 25 0 0 0 0

SNB. Pmr and Prh are not feasible (denoted as N.F. in results) for battery with slowest ramp rate and
small converter, i.e., PF violations are unavoidable. However, the other schemes are able to reduce the
number of violations drastically. In settings where feasible solution exist, all schemes considered are able to
completely avoid any violation. Table 6.5 presents the mean PF. Note that for Pmr and Prh in particular,

Table 6.5: Comparison of mean PF for 1 day

Converter Battery Parb Pmr Prh Pplt P convplt

0.25C-0.25C 0.9062 N.F. N.F. 0.9581 0.9562
Pmax
B 0.5C-0.5C 0.8803 0.9571 0.9850 0.9616 0.9567

1C-1C 0.9077 0.9615 0.9938 0.9426 0.9602
2C-2C 0.8997 0.9656 0.9983 0.9378 0.9638

0.25C-0.25C 0.9058 N.F. N.F. 0.9512 0.9554
0.9Pmax

B 0.5C-0.5C 0.8837 0.9580 0.9772 0.9661 0.9580
1C-1C 0.9080 0.9610 0.9909 0.9560 0.9603
2C-2C 0.9012 0.9659 0.9972 0.9648 0.9642

0.25C-0.25C 0.9062 N.F. N.F. 0.9545 0.9567
1.25× 0.5C-0.5C 0.8803 0.9973 0.9903 0.9802 0.9802
Pmax
B 1C-1C 0.9077 0.9998 0.9962 0.9742 0.9742

2C-2C 0.8997 0.9999 0.9987 0.9478 0.9478
0.25C-0.25C 0.9062 0.9934 0.9821 0.9850 0.9571

1.5Pmax
B 0.5C-0.5C 0.8803 0.9987 0.9927 0.9832 0.9567

1C-1C 0.9080 0.9999 0.9971 0.9839 0.9602
2C-2C 0.8997 0.9999 0.9991 0.9244 0.9381

the mean PF for a large converter approaches close to 1, which demonstrates their ability in PFC. However
this may lead to overuse of the converter, as evident from CUF listed in Table 6.7. Here P convplt provides
a way to balance CUF with mean PF as evident from both the tables. Table 6.6 lists the minimum PF
measured over the same day which is greater or equal to the threshold for feasible cases. However, further
analysis would be required to determine penalty functions that motivate or hinder converter usage.

It is clear from the mentioned results that storage devices over multiple settings can be used for PFC
without any noticeable loss in arbitrage gains.

Fig. 6.4 presents the relationship between the PF threshold, mean PF and arbitrage gains for 1C-1C
battery. As the effect of PF limit on the maximum possible arbitrage gains is almost non-existent except
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Table 6.6: Comparison of minimum PF for 1 day

Converter Battery Parb Pmr Prh Pplt P convplt

0.25C-0.25C 0.1587 N.F. N.F. 0.8443 0.8443
Pmax
B 0.5C-0.5C 0.0321 0.9000 0.9000 0.9000 0.9000

1C-1C 0.1587 0.9000 0.9568 0.9000 0.9000
2C-2C 0.0545 0.9000 0.9821 0.9000 0.9000

0.25C-0.25C 0.1587 N.F. N.F. 0.8295 0.8295
0.9Pmax

B 0.5C-0.5C 0.0321 0.9000 0.9000 0.9000 0.9000
1C-1C 0.1587 0.9000 0.9000 0.9000 0.9000
2C-2C 0.0545 0.9000 0.9000 0.9000 0.9000

0.25C-0.25C 0.1587 N.F. N.F. 0.8789 0.8789
1.25× 0.5C-0.5C 0.0321 0.9501 0.9303 0.9323 0.9000
Pmax
B 1C-1C 0.1587 0.9935 0.9681 0.9604 0.9000

2C-2C 0.0545 0.9970 0.9842 0.9266 0.9000
0.25C-0.25C 0.1587 0.9015 0.9005 0.9000 0.9000

1.5Pmax
B 0.5C-0.5C 0.0321 0.9739 0.9444 0.9638 0.9000

1C-1C 0.1587 0.9935 0.9749 0.9765 0.9000
2C-2C 0.0545 0.9993 0.9863 0.9124 0.9237

Table 6.7: Comparison of CUF for 1 day

Converter Battery Parb Pmr Prh Pplt P convplt

0.25C-0.25C 0.7154 N.F. N.F. 0.9198 0.7390
Pmax
B 0.5C-0.5C 0.6056 0.6246 0.6387 0.6789 0.6230

1C-1C 0.5520 0.5611 0.5709 0.6011 0.5568
2C-2C 0.4970 0.5048 0.5059 0.5248 0.4985

0.25C-0.25C 0.7693 N.F. N.F. 0.9386 0.7823
0.9Pmax

B 0.5C-0.5C 0.6373 0.6552 0.6694 0.7088 0.6541
1C-1C 0.5787 0.5876 0.5989 0.6183 0.5842
2C-2C 0.5284 0.5375 0.5398 0.5395 0.5302

0.25C-0.25C 0.5723 N.F. N.F. 0.8045 0.5992
1.25× 0.5C-0.5C 0.4845 0.5605 0.5180 0.5513 0.4984
Pmax
B 1C-1C 0.4416 0.4796 0.4595 0.4648 0.4454

2C-2C 0.3976 0.4106 0.4058 0.4208 0.3988
0.25C-0.25C 0.4770 0.5972 0.5277 0.6159 0.5023

1.5Pmax
B 0.5C-0.5C 0.4037 0.4811 0.4379 0.4705 0.4153

1C-1C 0.3680 0.4032 0.3844 0.4444 0.3712
2C-2C 0.3311 0.3418 0.3387 0.3630 0.3519
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for PF limit close to 1. This resonates with our claim that PFC and arbitrage are largely decoupled
and performing PFC do not degrade energy storage’s ability to perform arbitrage. From Fig. 6.4 we also
observe that the mean PF during the day when solar generation is available drops to 0.81 significantly
lower than the mean PF for the whole day in absence of solar generation which is 0.97.
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Figure 6.4: Arbitrage gains and mean PF with varying PF limit for 1C-1C

We present in Fig. 6.5 the variation for PF for different ramp rate batteries with same converter size
for the same day for Pplt. The uncorrected PF is shown in Fig. 6.1. Fig. 6.6 shows the variation of active
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Figure 6.5: PFC + arbitrage for Smax
B = Pmax

B = δmax/ηch

power, reactive power and PF variations with and without battery.

6.5.1 Results with uncertainty
In Section 6.8 we propose a real-time implementation for performing PFC with arbitrage under uncertainty.
The forecast model is generated for load with solar generation and for electricity price. The ARMA based
forecast use 9 weeks of data for training and generates forecast for the next week. ForecastPlusMPC is
implemented in receding horizon. The training data for net load seen by the grid with and without PV is
plotted in Fig. 6.7. Fig. 6.7 indicate that inclusion of solar PV have degraded the PF significantly.

The performance of forecast of electricity price signal is plotted in Fig. 6.8. The electricity price data
used for this numerical experiment is taken from CAISO for the same days of load data. Note that the
ARIMA model for price misses peaks beyond $200/MW. However, this drawback of the forecast model is
not dominant for batteries with slow ramp rates as for such batteries the optimal control action for any
price above $200/MW is discharge the battery at maximum rate. Note $200/MW is significantly higher
than the mean electricity price. To compare the effect of forecasting net load and electricity prices with
perfect information, we present average arbitrage gains and PFC indices for one week starting from 1st
June 2018 using (Pplt) as the optimization scheme inside PFC. Table 6.8 includes the deterministic results,
while Table 6.9 includes the performance with uncertainty. Note that the arbitrage gain is more sensitive
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to uncertainty for fast ramping battery. This observation is in sync with [130]. PFC generally requires
no-look-ahead as evident from comparison of (Pmr) and (Prh). Note in Tables 6.8 and 6.9 that future
uncertainty does not affect the power factor violations significantly. It is however true that an undersized
converter for slow ramping battery have a high CUF compared to other cases.

Table 6.8: Deterministic Performance

Converter Battery Gains Mean PF VLT CUF Min PF
0.25C-0.25C 3.0645 0.9705 11 0.8972 0.0487

Pmax
B 0.5C-0.5C 4.7840 0.9713 2 0.7508 0.6665

1C-1C 7.0592 0.9433 0 0.6924 0.9000
2C-2C 9.4113 0.9364 0 0.5868 0.9000

0.25C-0.25C 3.0385 0.9644 26 0.9278 0.0883
0.9Pmax

B 0.5C-0.5C 4.7251 0.9618 19 0.7951 0.2141
1C-1C 6.9569 0.9663 2 0.7128 0.6330
2C-2C 9.3096 0.9754 1 0.6149 0.5688

0.25C-0.25C 3.0647 0.9831 0 0.6985 0.9033
1.25× 0.5C-0.5C 4.7840 0.9799 0 0.6236 0.9352
Pmax
B 1C-1C 7.0593 0.9764 0 0.5495 0.9000

2C-2C 9.4113 0.9769 0 0.4645 0.9000
0.25C-0.25C 3.0647 0.9803 0 0.6119 0.9000

1.5Pmax
B 0.5C-0.5C 4.7840 0.9773 0 0.5267 0.9000

1C-1C 7.0593 0.9762 0 0.4624 0.9000
2C-2C 9.4113 0.9776 0 0.3874 0.9000

6.6 Case Study: Degradation of PF at a substation
We show the plots of data collected at a LV voltage substation in Madeira, Portugal. The data shows that
degradation of power factor seen at the substation. The substation distributes the single phase distributed
generation on each phase such that phases are balanced. However, due to deterioration of active power
demand on each phase during the day as evident in Fig. 6.9. This dip is not observed in the reactive power
plot shown as Fig. 6.10. Fig. 6.12 presents the zoomed in plot for Fig. 6.11. Fig. 6.12 shows that during
the day when consumers generate part of their consumption using solar PV, leading to deterioration of
power factor significantly. The degradation of PF is most prominent for Phase C.
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Table 6.9: Performance with uncertainty model and MPC

Converter Battery Gains Mean PF VLT CUF Min PF
0.25C-0.25C 2.9996 0.9704 13 0.9075 0.0488

Pmax
B 0.5C-0.5C 3.4962 0.9692 2 0.7746 0.6665

1C-1C 4.6840 0.9465 0 0.7032 0.9000
2C-2C 6.0345 0.9375 0 0.6142 0.9000

0.25C-0.25C 2.9718 0.9652 25 0.9324 0.0656
0.9Pmax

B 0.5C-0.5C 3.3975 0.9630 21 0.8198 0.2152
1C-1C 4.5934 0.9684 4 0.7258 0.6268
2C-2C 5.9686 0.9771 1 0.6402 0.5762

0.25C-0.25C 2.9997 0.9827 0 0.7166 0.9000
1.25× 0.5C-0.5C 3.4962 0.9796 0 0.6493 0.9146
Pmax
B 1C-1C 4.6841 0.9763 0 0.5680 0.9122

2C-2C 6.0345 0.9765 0 0.4889 0.9083
0.25C-0.25C 2.9997 0.9789 0 0.6220 0.9248

1.5Pmax
B 0.5C-0.5C 3.4962 0.9774 0 0.5540 0.9105

1C-1C 4.6841 0.9747 0 0.4768 0.9058
2C-2C 6.0345 0.9778 0 0.4071 0.9103
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Figure 6.9: Active power seen from the sub-station
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Figure 6.10: Reactive power seen from the substation
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Figure 6.11: Power factor seen from the substation
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Figure 6.12: Power factor seen from the substation: zoomed in plot
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6.7 Power Factor Correction with Solar Inverter
Traditionally solar inverters in LV distribution network operate at close to unity power factor, primarily
due to no obligations to supply reactive power. This is financially sensible as the DG owner could size
their solar inverted based on the maximum active power generation from rooftop solar panels. However,
due to large scale DG connection the reactive power responsibilities needs to be shared. In this case study
we present a special case of the power factor correction framework presented earlier for energy storage
battery, modified for control of a solar inverter. The system considered here consists of a non-elastic
consumer with active and reactive power demand and solar inverter with active power output governed
by solar generation, thus an uncontrollable variable. The reactive power output of the solar inverter is
controlled so as the power factor is corrected as much as possible. Fig. 6.13 shows the block diagram of
the special case where consumer have solar generation interfaced with solar inverter but no storage.
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Figure 6.13: Residential consumer with solar generation

The optimization problem for solar inverter for PFC can be obtained by modifying optimization problem
Pplt described for storage performing arbitrage and PFC. This optimization problem is denoted as PsolPFC

min
Qr

N∑
i=1

θ(i), (6.7.1)

where we define penalty function θ(i) as

θ(i) = λmax(0, |Qih +Qir| − k|P ih − P ir |). (6.7.2)

Note PsolPFC has only Qr as the control variable and P ih−P ir is known at each time instant i. Therefore,
|P ih − P ir | is a constant, we denote M = |P ih − P ir |.

The max term can be modeled as two constraints

θ(i) ≥ 0, θ(i) ≥ λ(|Qih +Qir| − kM). (6.7.3)

Eq. 6.7.3 can now be reformulated as

θ(i) ≥ 0, θ(i) ≥ λ(2yi1 − (Qih +Qir)− kM).
2yi1 − (Qih +Qir) ≥ 0,

(6.7.4)

Here yi1 denote bi-linear variable
yi1 = zi1(Qih +Qir), (6.7.5)

with binary variables zi1. zi1 is equal to 1 if the total reactive power is greater than zero, and zero otherwise.
We use McCormick relaxation to convert the bi-linear term in Eq. 6.7.5 to mixed-integer linear constraints

yi1 ≥ Qilbzi1, yi1 ≥ (Qih +Qir) +Qiubz
i
1 −Qiub

yi1 ≤ Qiubzi1, yi1 ≤ (Qih +Qir) +Qilbz
i
1 −Qilb

(6.7.6)

In these equations, Qilb = Qih−Smax
B and Qiub = Qih+Smax

B denote the lower and upper bounds respectively
for total reactive power. To summarize, the optimization problem for performing arbitrage and penalization
PF violations and its associated constraints are given as
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(PsolPFC) min
Qr

N∑
i=1

θ(i)

subject to, Eq. 6.2.3, Eq. 6.7.4, Eq. 6.7.6.

The control of solar inverter for PFC has only one decision variable. Furthermore, if we assume that PF
violation penalty is linear, i.e., the cost of violating is linearly proportional to the amount of violation then
under such a case solar inverter can be controlled with no look-ahead.

We present an algorithm for linear PF violation penalty. In future work we will combine the control of
the solar inverter with that of control of the storage inverter to maximize the arbitrage and PFC gains as
well as compare it with gains from individual inverter controls.

Algorithm 13 SolarInverterPFC
Inputs: Qih, P ir , P ih, Smax

B

1: Calculate M = |P ih −Rir|,
2: Calculate Js = |Qih| − kM
3: Calculate Slack =

√
(Smax
B )2 − (P ih − P ir)2.

4: if Js ≤ 0 then
5: No PFC required as PF already within limits
6: Set reactive power output of solar inverter Qir = 0.
7: else
8: if Qih > 0 then
9: Qir = max(−Qih + kM,−Slack).

10: else
11: Qir = min(| −Qih − kM |,Slack).
12: end if
13: end if
14: Return Qir.

6.8 Conclusion and Perspectives
In this chapter, we propose optimization formulations to operate inverter connected storage devices in
distribution grids for co-optimizing arbitrage and power factor correction (PFC), both with or without
perfect information. For a majority of cases, we show that the arbitrage gains with PFC converge to
the gains achieved when storage performs only arbitrage. The primary reason for PFC being decoupled
from arbitrage gains is due to the fact that in most instances, PF can be corrected by adjusting reactive
power output. This is primarily governed by converter size and unlike storage active power output, which
is constrained by capacity and ramp constraint. We also observe that arbitrage gain of batteries with
higher ratio of ramp rate over capacity are more sensitive to uncertainty about future variables as they
face capacity constraints more frequently.

It is also noteworthy that increasing the converter size would improve the mean PF without any
significant change in arbitrage gains for the same ramping battery. In the current work, we consider a
stringent case of maintaining PF for every operational point, though the methodology can be extended
to the case with penalties on average PF. Moreover, in future work we will research further selection of
optimal converter sizes and use solar and storage converter simultaneously. The control of active and
reactive application proposed here is decoupled, however, further exploration is required to identify the
extent of decoupling. Finally we will also research directions to incorporate network power flow constraints
pertaining to flow and voltage limits [189] into our work on energy storage.
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Chapter 7

Co-optimizing Storage for Prosumers

The electric light did not come from the continuous improvement of candles. -Oren Harari

Summary: In current distribution grids, energy storage devices can be used for multiple func-
tions, often operating at different time-scales. The co-optimization formulation presented in Chapter 6
is extended to peak demand shaving. This chapter presents a new co-optimization formulation for en-
ergy storage for performing energy arbitrage and power factor correction in the time scale of minutes to
hours, along with peak demand shaving in the time scale of a month. While the optimization problem is
non-convex, we present an efficient penalty based convex relaxation to approximate it. Furthermore, we
provide a mechanism to maximize the storage operational life by tuning the cycles of operation using a
friction coefficient, and thereby make our formulation more realistic. To demonstrate the effectiveness of
energy storage performing multiple tasks simultaneously, we present a case-study with real data for a time
scale of several months. We demonstrate a real-time model predictive control based implementation of
the proposed formulation with AutoRegressive forecasting of net-load and electricity price. Through our
optimal storage control algorithm, we are able to show that energy storage can realistically correct power
factor without significant change in either arbitrage gains or peak demand charges.

7.1 Introduction
In today’s smart grid, many electricity consumers also generate part of their consumed electricity locally
using renewable energy sources. Such consumers are referred to as electricity prosumers. In Chapter 10
we show that active participation of prosumers in electricity markets can lead to mutual benefits for both
the utility as well as reduced cost of consumption for the prosumers [186]. While renewable energy sources
are clean and cheap, they are also intermittent and hence unreliable. This leads to increased burden for
control and ancillary services on the grid. In this context, energy storage devices such as batteries present
a good alternative to act as a buffer and reduce the energy fluctuations due to renewables. The authors in
[191] present the various roles energy storage can perform in future power networks due to their ability to
absorb and deliver real and reactive power with very small response time. This capability of energy storage
can be used for frequency regulation, voltage control to enhance power network stability. Further, using
temporal differences in real-time electricity prices, energy storage bundled with intermittent generation
can reduce electric bills and increase system reliability [191].

While energy storage devices can act as a technology enabler for power systems with non-trivial renew-
able energy sources, they are still expensive and often not financially viable for use in a specific application
alone. In prior work, the authors in [184] present a deterministic case-study for identifying financial po-
tential for different ramping batteries in North American and European energy markets. It is identified
that performing only energy arbitrage is not fiscally profitable. It is thus necessary to combine various
roles for operating energy storage for profitability as shown in the pioneering work [323]. However, a ma-
jor challenge with co-optimizing for multiple applications is in dealing with different revenue streams and
penalties with differing time scales of operation. Table 7.1 lists a non-exhaustive list of roles energy storage
can perform and time scales at which these roles operate. The authors in [264] bifurcate energy storage
applications into power or energy applications. The short-time scale applications such as ancillary service
and frequency regulation can be viewed as high power applications as ramping needs are more essential
compared to storage capacity. While arbitrage and peak shaving can be viewed as energy management
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Table 7.1: Roles energy storage can play

Energy Storage Roles Time scale
(1.) Frequency regulation milliseconds to few sec.
(2.) Ancillary services seconds to few minutes
(3.) Energy Arbitrage minutes to hours
(4.) Power factor correction minutes to hours
(5.) Peak demand reduction days to months

applications. Frequency regulation and ancillary service participation is often exclusive for facilities which
make service commitments prior to participation [218]. All ISOs in the USA have performance evaluation
mechanisms for comparing services provided by regulating resources - often measured in terms of respon-
siveness to control signals [39, 144]. Such performance norms as well as lack of communication/monitoring
equipment make it extremely difficult for low voltage electricity consumers to participate in dynamic reg-
ulation. Therefore, in this chapter we focus on co-optimizing the following storage applications for low
voltage distribution grid consumers in the time-scale of minutes to several days for performing:
• Energy Arbitrage: Based on fluctuations of electricity price, end-users can charge their batteries when
prices are low and discharge when prices are high and reduce their electricity bills [109, 338]
• Peak Demand Charge: The maximum demand dictates the size of power grid infrastructure, i.e.
generators, transmission lines, transformers, circuit breakers etc. Many power utilities around the world
have introduced peak demand charge [295, 320, 228] that a consumer may seek to minimize over a longer
period (weeks or months).
• Power Factor Correction (PFC): Distributed generation (DG) often operate at close to unity power
factor as they are not obliged to supply reactive, in compliance with IEEE Standard 1547 [298]. Hence all
the reactive power is met by the distribution grid leading to issues. In this chapter we assume LV consumer
is obliged to maintain a power factor greater than or equal to a threshold set by the power utility.

There has been multiple works in the past that have looked that individual battery goals. [250, 109, 338]
have analyzed the usefulness of batteries in arbitrage or load shifting to benefit from price fluctuations.
The authors in [263] use energy storage for peak demand shaving for industrial loads as the power demand
payment for such loads reaches a level of 50% of the plant’s electricity bill. On the other hand, the
authors in [216, 339] present peak shaving in the context of residential electricity consumers. Power factor
correction using energy storage converter is presented in [177, 326]. While such correction is currently
mandated for large consumers [126], in the near future owing to PF issues related to domestic solar, PFC
for domestic customers may be mandated. It is noteworthy that the co-optimization of energy storage
usage has also been extensively researched. In Table 7.2 we list some of the works in this area.

Table 7.2: Co-optimization of energy storage

Paper Co-optimizing for
[323], [92, 136] Arbitrage and frequency regulation

[306] Phase balancing with arbitrage
[245, 294, 330] Peak shaving and frequency regulation

[187] Arbitrage, peak shaving, energy backup

Prior work on co-optimization of storage operation for different time-scale applications such as [294],
[330] do not explicitly propose a split of optimization horizon between the different time scales. In our
work we overcome this by an efficient split.

Contribution: In this work, we focus on co-optimizing energy storage for performing energy arbitrage,
peak demand shaving and power factor correction. The joint optimization problem is non-convex, but is
solved efficiently using a penalty-based convex-relaxation scheme inspired by our prior work on single time-
scale battery optimization for arbitrage and PFC [177]. To include the peak demand charges with longer
time-scales, we use a memory variable, and furthermore split the longer optimization problem into smaller
sections for efficient solution. Further battery degradation is taken into account by the formulation, and
it is also amenable for addition of extra costs. To summarize, the key contributions of this chapter are:
• Co-optimization of energy arbitrage, power factor correction (time scale of minutes to hours), and peak
demand charge saving (time scale of a month).
• Control of cycles of operation by the introduction of friction coefficient to manage cycle life degradation.
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• Numerical Case Study: We present simulation of 80 days for load data from Madeira, Portugal with
real-time electricity price data from CAISO and peak demand charge from PG&E in California.
• Real-time implementation:To account for real-time application, we consider a Model Predictive Control
(MPC) framework where AutoRegressive forecasting is used to predict future prices and loads. In the con-
text of the real-time implementation, peak demand shaving and arbitrage gains are affected by uncertainty
modeling in for batteries with faster ramp rates, though PFC is not sensitive.

The overarching conclusion of this chapter is that energy storage devices can co-optimize these goals
without any deterioration in individual gains and significantly higher total gains.

The chapter is organized as follows. Section 7.2 provides a description of the system. Section 7.3
formulates co-optimization problem for performing arbitrage, PF correction and peak demand charge
saving. Section 7.5 presents the numerical results. Section 7.6 concludes the chapter.

7.2 System Description
In this chapter, similar to Chapter 3 to 6, we consider a low voltage electricity consumer with inelastic
demand, rooftop solar generation and a battery. The block diagram of the system considered is shown in
Fig. 2.20. The apparent power of the load is denoted as Sih = P ih + jQih, where P ih and Qih are the active
and reactive power consumed. Apparent power of the solar coupled with a converter is Sir = P ir . Total
active power of load and solar PV is denoted as P i = P ih − P ir . Similarly, the total reactive power of load
and solar PV is denoted as Qi = Qih. The battery and system model used in this chapter is described
in Chapter 2.5. The co-optimization formulation for arbitrage with PFC is presented in Chapter 6. In
this chapter we extend this formulation for peak demand shaving along with PFC and arbitrage. Next we
discuss the billing structure considered in this chapter.

7.2.1 Billing Structure
We consider the variable cost of electricity consists of three components. In our setting, each component has
a value which automatically either blocks or prioritizes certain application, unlike [281] which prioritizes
storage application. For instance, if ramping up for arbitrage is more profitable in certain time instant
compared to peak shaving then the battery should ramp up. The three components are

(1) Active energy cost: equals the product of time varying cost of electricity denoted as pielec and the
amount of active energy consumed, is denoted as

CiP = pielec × P iTh. (7.2.1)
(2) Reactive energy cost/ PFC gains: denoted as

CiQ = λmax
(
0,
∣∣QiT ∣∣− k ∣∣P iT ∣∣) , (7.2.2)

here λ denotes the penalty for reactive power if the PF dips below the limit prescribed. The mechanism for
pricing reactive energy in Eq. 7.2.2 has similarities with charges imposed by UTE (Uruguay’s government-
owned power company) [25] and PF limits and penalty listed in Table 7.3, see [177].

Table 7.3: Power Factor Rules

Utility/Country PF Limit Reactive Cost
France [72] |tan(φ)| ≤ 0.4 0.2 × CiP

Portugal [271] | cos(φ)| ≥0.92 0.016 to 0.18 × CiP
Germany [303] | cos(φ)| ≥0.95 for Solar Generators

CAISO | cos(φ)| ≥0.85 LV consumers [23]

(3) Peak demand cost: denoted as
Cpeak = λpeak max(P iT ,∀i ∈ {1, ..., Nmonth} ), (7.2.3)

where the maximization is over a month. λpeak denotes the peak-demand charged imposed on a time-scale
of a month. Under this model, the total variable cost of electricity for a month is given as

Cmonth
T = Cpeak +

Nmonth∑
i=1

{
CiP + CiQ

}
. (7.2.4)

where Nmonth denotes number of samples in the month considered.
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7.3 Co-Optimization of Energy Storage
In this section we formulate the co-optimization problem for performing arbitrage, PFC and peak demand
charge saving.

7.3.1 Energy Arbitrage
‘Energy arbitrage’ refers to buying electricity when price is low and selling it when price is high, and in
effect making a profit. In this chapter we use the energy arbitrage formulation presented in Chapter 3
where the buying and selling prices of electricity at each instant i are the same and denote it by pielec.
As monetary benefits from arbitrage is based only on active power, the operator seeks to minimize the
following problem

(Parb) min
PB ,QB

N∑
i=1

pielecP
i
Bh, subject to, Eq. 6.2.2, Eq. 6.2.3, Eq. 6.2.4.

7.3.2 Arbitrage with PFC
Optimization problem (Pplt) is proposed in Chapter 6. The objective of this co-optimization formulation
is given by

(Pplt) min
PB ,QB

N∑
i=1

{
pielecP

i
Bh + θ(i)

}
. (7.3.1)

Subject to: (a) Ramp Eq. 6.2.2, (b) Converter Eq. 6.2.3, (c) Capacity Eq. 6.2.4,
(d) Constraints which are Mixed-Integer type for the penalty function

θ(i) ≥ 0, θ(i) ≥ λ(2yi1 −QiT − 2kyi2 + kP iT ).
2yi1 −QiT ≥ 0, 2yi2 − P iT ≥ 0

(e) McCormick Relaxations for bi-linear terms
yi1 ≥ Qilbzi1, yi1 ≥ QiT +Qiubz

i
1 −Qiub

yi1 ≤ Qiubzi1, yi1 ≤ QiT +Qilbz
i
1 −Qilb

yi2 ≥ P ilbzi2, yi2 ≥ P iT + P iubz
i
2 − P iub

yi2 ≤ P iubzi2, yi2 ≤ P iT + P ilbz
i
2 − P ilb.

where total active power is denoted as P iT = P i + P iB and total reactive power is given as QiT = Qi +QiB .
yi1 and yi2 denote bi-linear variables

yi1 = zi1Q
i
T , yi2 = zi2P

i
T (7.3.2)

with binary variables zi1 and zi2. zi1 (zi2) is equal to 1 if the total reactive (active) power is greater than zero,
and zero otherwise. Qilb = Qi−Smax

B and Qiub = Qi+Smax
B denote the lower and upper bounds respectively

for total reactive power. P ilb = P i + Pmin
B is the lower bound of total active power, and P iub = P i + Pmax

B .
|x| = (2z − 1)x ≥ 0 with z ∈ {0, 1}.

7.3.3 Peak Demand Shaving with PFC and arbitrage
We now add peak demand charge λpeak (per units of power) to the formulation. The total cost is propor-
tional to the peak electricity demand over a longer period of time (Eg. 1 month scale) unlike Parb and
Pplt. However, we split the optimization horizon to one day intervals. At each interval we add a memory
variable to make the problem tractable as below.

(P peak
plt ) min

PB ,QB

N∑
i=1

{
pielecP

i
Bh+ θ(i) + λpeak max(P iT , P previous

max )
}

subject to, Eq. 6.2.2, Eq. 6.2.3, Eq. 6.2.4, Eq. 6.3.4, Eq. 6.3.6.

Variable P previous
max here acts as the memory of peak loads in the previous days of the month. The P previous

max
is initialized, and updated if the peak power exceeds the current value. The overall optimization and
update steps are shown in Algorithm 14. In order to obtain results not biased because of initialization
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Algorithm 14 PeakDemandThresholdUpdate
Global Inputs: ηch, ηdis, δmax, δmin, bmax, bmin, S

max
B Inputs: h,N, b0

Initialize: P previous
max = 0

1: while days < Month do
2: for i = 1 : N do
3: Implement P peakplt for the day and find P iT ,
4: Update P previous

max = max(P iT , P previous
max ) and Update battery capacity

5: end for
6: Update b0 and increment days = days +1
7: end while

we select it as zero at the beginning of each month. In practical implementation we advice to initialize
P previous

max with more realistic functions of historical peak load and storage ramp rate. Other combinations
of co-optimization (Eg. arbitrage with peak shaving) can be formed by dropping the unused functions
(related to PFC).

7.3.4 Co-optimization with control of cycles
Note that the formulations discussed previously do not consider battery life that is affected by charge-
discharge cycles. Battery manufacturers measure the life of a battery using two indices: cycle life and
calendar life. Cycle life denotes the number of cycles a battery can operate at a certain depth-of-discharge
before reaching its end-of-life or EoL1. Similarly, calendar life denotes the maximum probable age that
the battery can be operational at before reaching end-of-life. The battery degradation model used in this
chapter is described in detail in Chapter 5. The cycles of operation for batteries are controlled using friction
coefficient. In this chapter, we define a friction function for the active power to model the degradation due
to cycles of operation which eliminates low returning transactions while performing arbitrage in order to
reduce cycles of operation of the battery.

P ifric = [P iB ]+

ηfric
− [P iB ]−ηfric (7.3.3)

Here ηfric denotes the friction coefficient. The new optimization function with battery degradation is
presented as

(Pcyc) min
PB ,QB

N∑
i=1

{
pielecP

i
frich+ θ(i) + λpeak max(P iT , P previous

max )
}

subject to, Eq. 6.2.2, Eq. 6.2.3, Eq. 6.2.4, Eq. 6.3.4, Eq. 6.3.6.

The friction coefficient takes a value from 1 to 0. ηfric needs to be tuned so as the operational life is
maximized. If the battery is not over operating then ηfric is set to 1. For cases where the battery is
performing more cycles, the low returning transactions could be eliminated by decreasing the value of ηfric.
Note that the control of cycles is only imposed on the arbitrage component of the objective function, as
majority of cycles are performed for arbitrage. We would like to highlight that reactive power depends on
converter size and does not affect storage cycles.

7.3.5 Open Source Codes
The co-optimization formulations and benchmarks presented in this chapter is made open source. The
link for the code is https://github.com/umar-hashmi/ConvexRelaxation.

7.4 Real-time implementation
In real-world accurate information of parameters such as consumer load and renewable generation for fu-
ture time is not known and required for the proposed optimization models. For real-time implementation
we propose to implementation of the optimization algorithm in a model predictive framework with autore-
gressive forecasting. In Section 7.4.1 we describe the forecast model used and in Section 7.4.2 we describe
the MPC algorithm as CoOptimizationForecastMPC.

1EoL is the state of the battery when the maximum battery capacity reduces to 80% of its initial rated capacity.
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7.4.1 AutoRegressive Forecasting
The lookahead horizon of optimization is denoted as Nopt. Consider the number of decision samples in a
month is denoted as Nmonth. At time k a rolling horizon forecast of Nopt number of samples is performed.
We present a generalized ARMA model used for forecasting active power, reactive power and electricity
price in terms of general variable V . We define the mean behavior of past values of parameter denoted as
V at time step i as

V̄ i = 1
D

D∑
p=1

V(i−pNopt) ∀i ∈ {k, ..., Nopt}, k ≥ 1, (7.4.1)

where Nopt is the number of points in a time horizon of 1 day, and D is the number of days in the past
whose values are considered in calculating V̄ . The forecast of V with M̂ i as the difference from mean
behavior is given as

V̂i = V̄i + M̂i ∀i ∈ {k, ..., Nopt + k − 1}, k ≥ 1, (7.4.2)

We define M̂i ∀i ∈ {k, ..., Nopt + k − 1} as

M̂k =
J∑
j=1

αjMk−j +
U∑
u=1

βuδ
u
k , (7.4.3)

where δmk = (Vk−mN − V̄k−mN ) and αi, βi∀i ∈ {1, ..., U} are constants. The weights used in ARMA model,
αj∀j ∈ {1, ..., J}, βu∀u ∈ {1, ..., U}, are tuned by solving Eq. 7.4.4

min
∑
i

{||Vi − V̂i||2 + ||norm([αi, βi])||1}. (7.4.4)

7.4.2 Model Predictive Control
ARMA models for active and reactive power and electricity price are tuned using historical data. The
tuned ARMA model coefficients are calculated using Eq. 7.4.4. Using the tuned coefficients the forecast
vectors are identified using Eq. 7.4.2. These forecast vectors are fed to MPC for calculating optimal energy
storage actions for time step i. Similar steps are done for i ∈ {k + 1, ..., Nopt + k}, till the end of time
horizon is reached. Real-time algorithm is presented as CoOptimizationForecastMPC. A rolling horizon
with Nopt number of samples is used for look-ahead. In this work we assume number of decision samples
in 1 day as Nopt.

Algorithm 15 CoOptimizationForecastMPC
Storage Parameters: ηch, ηdis, δmax, δmin, bmax, bmin, b0.
Inputs: h,N, T, i = 0, Rolling horizon optimization time period Nopt, Historical load, renewable generation and
price data, Nmonth.
Initialize: P previous

max = 0.
1: Use historical data to tune ARMA models for active power, reactive power and electricity price,
2: while i < Nmonth do
3: Increment i = i+ 1 and receive pelec(i) and load Pi, Qi,
4: Forecast Nopt samples of P̂ , Q̂, p̂elec using ARMA,
5: Implement P peakplt for the rolling horizon and find P iT ,
6: Calculate P previous

max = max(P iT , P previous
max ),

7: bi
∗=bi−1+x̂∗(1) s.t. x̂∗(1)=[PB∗(i)]+ηch-[PB∗(i)]−/ηdis,

8: Update b0 = bi
∗, the initial capacity of battery is updated,

9: Return bi
∗, PB∗(i), QB∗(i).

10: end while

7.5 Numerical Results
In this section, we demonstrate the performance of our optimization formulations through numerical sim-
ulations with real data. We consider multiple storage control policies, as listed below.

• Parb: Only arbitrage,
• Pplt: Arbitrage + PFC,
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• P peakplt : Arbitrage + PFC+ Peak demand shaving,
• Ppd: Only peak demand shaving,
• P peakarb : Arbitrage + Peak demand shaving.

Pcyc with battery degradation is discussed subsequently. We use the following performance indexes to
measure the performance of our simulations:

1. Arbitrage Gains Garb: measures effectiveness in performing arbitrage,
2. Power Factor Correction: is gauged using 2 indices, using a prescribed PF limit of 0.9: (i) No. of

PF violations and (ii) Mean PF,
3. Peak Demand Charge Savings (Gpd): Consider ∆Pmax as the reduction in peak demand due to

energy storage then the saving is given as Gpd = λpeak∆Pmax.
4. Gains of reactive energy: denoted as Greac is the improvements in reactive/PF gains with respect to

nominal case,
5. Total Gains GT : is the sum of arbitrage gains, reactive compensation gains and peak demand charge

saving, calculated with respect to nominal.
6. Profit is calculated as the ratio of the total gains and the nominal cost incurred,
7. Converter Usage Factor : measures usage of converter and presented in Eq. 6.5.1.
8. Gains per cycle: Calculated based on equivalent 100% Depth of Discharge (DoD) cycles. We consider

the storage degradation model and algorithm to identify equivalent 100% DoD presented in Chapter 5
[182].

Table 7.4: Battery Parameters

Bmin, Bmax, B0 200Wh, 2000 Wh, 1000 Wh
ηch = ηdis 0.95

500 W for 0.25C-0.25C
δmax = −δmin 1000 W for 0.5C-0.5C

2000 W for 1C-1C
4000 W for 2C-2C
8000 W for 4C-4C

Cycle Life 4000 cycles at 100% DoD
Calendar Life 10 years

Cost $ 1000

For simulation results we consider a period of 80 days starting from 1st of June 2018. The load and
generation data is taken from data collected at Madeira, Portugal. The price data for our simulations is
taken from CAISO for the same dates [16]. We use PG&E peak demand rate which is $0.01826/ watt [295].
The gain λ for penalty function θ(i) is set to be equal to 0.4. Note different gains for the penalty function
will place proportional importance in maintaining the instantaneous power factor within permissible limits.
Under the nominal case, i.e., without any storage the consumer pays $207.88 for active energy, $46.485 for
reactive energy and $246.138 for peak demand for 80 days period. The number of PF violations under the
nominal case is 2894 time instants and the mean PF is 0.9399. The energy storage actions for deterministic
case are decided based on the total optimization horizon of 80 days. The sampling time of this numerical
experiment is 5 minutes (288 samples in a day).

Energy storage is interfaced via a converter which can supply active and reactive power based on its
ratings. In numerical results, we use five batteries with different ramping capabilities for comparison.
Their parameters are listed in Table 7.4. Battery model is denoted as xC-yC implies the battery takes 1/x
hours to charge completely and 1/y hours to discharge completely. Fixing the total energy and varying
ramping capability provides a sensitivity analysis of different ramping storage technologies. For computing
storage profitability, we consider the 2 kWh battery to have a cost of $1000, approximately proportional
to the cost of Tesla Powerwall per kWh [66]. For the battery given in Table 7.4, each 100% DoD cycle
should make more that $0.2 in order to reach break-even, else this battery will not be profitable.

Fig. 7.1 shows the variation of nominal peak demand for each day along with P previous
max for different

battery models. It is clear that higher ramping battery can lower the peak demand up to a greater extent.
Table 7.5 lists detailed results comparing performance indices for different optimization problems and

for different battery models. We wish to highlight that for 4C-4C battery, performing arbitrage with
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Table 7.5: Performance indices for converter Smax
B = Pmax

B

Performance Indices Parb Pplt P peakplt Ppd P peakarb

Battery 4C-4C
mean PF 0.953 0.946 0.948 0.945 0.953

PF violation 2267 17 23 2622 2268
Gpd ($) -12.526 -12.526 32.541 33.367 32.541
Garb ($) 65.330 65.328 65.294 -25.418 65.296
Greac ($) 6.136 46.847 46.847 4.162 6.180
GT ($) 58.94 99.649 144.682 12.111 104.017

Profit % 11.78 19.91 28.91 2.42 20.78
Cycles 1243.0 1239.3 1239.1 38.79 1242.8
$/cycle 0.0474 0.0804 0.1168 0.3122 0.0837
CUF % 32.20 47.50 47.29 5.51 32.20

Battery 2C-2C
mean PF 0.934 0.960 0.960 0.942 0.934

PF violation 3260 11 11 2758 3259
Gpd ($) 0.288 0.288 17.347 17.347 17.347
Garb ($) 42.787 42.767 42.751 -12.756 42.771
Greac ($) -6.731 46.479 46.479 2.113 -6.636
GT ($) 36.344 89.534 106.577 6.704 53.482

Profit % 7.26 17.89 21.29 1.34 10.69
Cycles 806.54 803.34 803.85 17.19 807.04
$/cycle 0.0451 0.1115 0.1326 0.3900 0.0663
CUF % 42.67 57.68 57.68 5.46 42.7

Battery 1C-1C
mean PF 0.936 0.964 0.963 0.941 0.936

PF violation 3058 51 51 2811 3057
Gpd ($) 5.782 5.782 8.674 8.674 8.674
Garb ($) 26.349 26.267 26.260 -6.380 26.342
Greac ($) -4.060 45.546 45.546 1.020 -4.021
GT ($) 28.071 77.595 80.48 3.314 30.995

Profit % 5.55 15.35 15.92 0.66 6.13
Cycles 453.90 451.32 451.57 8.11 454.24
$/cycle 0.0618 0.1719 0.1782 0.4086 0.0682
CUF % 49.76 74.16 74.19 5.44 49.80

Battery 0.5C-0.5C
mean PF 0.940 0.973 0.974 0.940 0.940

PF violation 3024 236 237 2839 3024
Gpd ($) 4.337 4.337 4.337 4.337 4.337
Garb ($) 15.404 15.103 15.103 -3.189 15.401
Greac ($) -1.028 41.058 41.058 0.529 -1.006
GT ($) 18.713 60.498 60.498 1.677 18.732

Profit % 3.74 12.09 12.09 0.34 3.74
Cycles 249.93 247.07 247.19 5.09 250.13
$/cycle 0.0749 0.2449 0.2447 0.3295 0.0749
CUF % 56.45 81.61 81.54 5.61 56.49

Battery 0.25C-0.25C
mean PF 0.941 0.970 0.969 0.940 0.941

PF violation 2886 790 789 2868 2886
Gpd ($) 2.168 2.168 2.168 2.168 2.168
Garb ($) 8.790 8.333 8.333 -1.590 8.788
Greac ($) 0.205 31.971 37.971 0.187 0.214
GT ($) 11.163 42.472 42.472 0.765 11.17

Profit % 2.21 8.40 8.40 0.15 2.21
Cycles 138.16 134.15 134.09 3.01 138.21
$/cycle 0.0808 0.3166 0.3167 0.2542 0.0808
CUF % 63.71 77.17 77.19 5.47 63.74
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Figure 7.1: Variation of Pprevious
max as the days progress

or without PFC, but without peak shaving leads to significant increase in peak demand charge. This
drastically overshadows the marginal extra gain that energy storage makes by performing arbitrage. This
observation is in sync with conclusions drawn by authors in [294], where super-linear gains were observed
for co-optimizing storage. More significant are the results for P peakplt . Notice that for different batteries, it
is able to reduce PF violations to as much as Pplt, while maintaining gains similar to ones in Parb, P

peak
arb .

This highlights the ability of batteries to do PFC over and above arbitrage and peak shaving. As expected,
the gains of peak demand shaving increase as the ramping increases. Table 7.5 also lists that PF viola-
tions decrease with increased ramping. We believe these values are still pessimistic and can be improved
with a more sophisticated penalty function, θ. To better elucidate the financial gains, we present Fig 7.2.
Additional observations based on Table 7.5 are:
(1.) Co-optimizing clearly outperforms total financial gains over performing only one or few of the appli-
cations considered in this chapter. Co-optimizing could reduce the consumer bill by up to 28.9% for 4C-4C
storage.
(2.) For slow ramping battery reactive compensation gains, Greac, consists of a greater share of total gains
compared to faster ramping battery. Consumer with 0.25C-0.25C battery makes up to 78.34% of their
total gains by PFC.
(3.) Ignoring peak charges can lead to degraded total gains due to penalties- this is clear for performing
only arbitrage for the 4C-4C battery.
(4.) The relatively low CUF for batteries performing peak demand saving solely indicates their under-
utilization. Hence dedicating storage application only for peak-demand is sub-optimal.
(5.) For 0.25C-0.25C and 0.5C-0.5C battery, total gains for optimizations performing arbitrage with PFC
matches with co-optimization gains for arbitrage, peak demand shaving and PFC, as the storage having a
slow ramping capability does add much additional value.

Fig. 7.3 presents a visual representation of total gains made by P peakplt with different battery models. It
is clear that total gains increases almost exponentially with decrease in charge-discharge time. This implies
that financial potential of energy storage will increase significantly with faster batteries. However, such
batteries will be more prone to uncertainty as pointed in [130]. It is worth noting in Table 7.5 that the
storage device performs too many cycles and hence low gains per cycle. For example, the 4C-4C battery
operates 1239 cycles of 100% DoD cycles in a 3 month period, which is equivalent to greater than 30% of
its operational life. At this rate the battery would last less than a year. This motivates the use of Pcyc
and inclusion of battery life into the model as discussed next.

7.5.1 Controlling and Tuning Cycles of Operation
In order to have an operational life equal to calendar life, the battery should operate 400 100% DoD cycles
in a year. For our numerical simulation of 3 months, the battery should perform approximately 100 cycles
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with different battery model and an approximate
fit denoted as yfit; The goodness of the fit parameters are: The sum of squares due to error (SSE) = 3.274,
R-square = 0.9994, Adjusted R-square = 0.9975, Root mean squared error (RMSE) = 1.809.
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(of 100% DoD). Depending on the storage model, the number of cycles of operation can be tuned using
the friction coefficient. In order to demonstrate the effect of friction coefficient we show the effect of its
variation on total gains, dollars per cycle, number of cycles and CUF in Table 7.6 for the 0.25C-0.25C
battery. The following takeaways are clear from Table 7.6:
(1.) Dollars per cycle increases as ηfric decreases as low returning transactions are eliminated, in sync with
findings in Chapter 3.6 [174].
(2.) Reducing friction coefficient from 1 to 0.8 has less than 2.1% effect on total gains, however, the number
of cycles is reduced by more than 53.4%. This justifies the inclusion of degradation/life-cycle modeling
into our formulation.
(3.) Decreasing ηfric below a certain level (0.4 for the case listed in Table 7.6) does not increase the total
gain significantly, however, gains per cycle increases due to lower number of cycles of operation.

Table 7.6: Effect of ηfric for 0.25C-0.25C Battery for Pcyc

ηfric GT cycles $/cycles CUF
1 42.601 134.10 0.3177 78.81

0.8 41.708 62.15 0.6711 59.73
0.6 40.053 27.70 1.446 55.04
0.4 38.215 18.986 2.013 51.5
0.2 36.704 15.005 2.446 53.62
0.1 34.557 12.53 2.758 53.39

Table 7.7 presents gains for different batteries for the friction coefficient at which their calendar life
degradation approximates cycle life degradation. It is interesting to note that battery 2C-2C provides
the highest dollars per cycle, which is even more than the fastest ramping battery 4C-4C. Note that for
the faster ramping batteries, CUF is quite low. This implies that a smaller converter may be sufficient.
Selection of optimal converter based on battery life-cycle is an objective of our future work in this domain.

Table 7.7: Tune ηfric: match calendar and cycle life degradation

Battery ηfric GT cycles $/cycles CUF
4C-4C 0.240 84.23 99.9 0.8432 22.5
2C-2C 0.532 86.07 99.9 0.8617 25.7
1C-1C 0.684 74.78 99.84 0.7490 50.5

0.5C-0.5C 0.802 58.92 100.2 0.5890 68.6
0.25C-0.25C 0.930 42.45 99.9 0.4248 69.3

Table 7.8: Deterministic and real-time implementation for March 2018

Battery Type Garb Greac Gpeak GT

Deterministic results: rolling horizon of 1 day
0.5C-0.5C 3.723 5.855 4.337 13.914

1C-1C 6.523 5.855 8.674 21.051
2C-2C 10.719 5.855 16.221 32.794

Real-time implementation: ARMA + MPC
0.5C-0.5C 2.819 5.855 4.337 13.010

1C-1C 5.073 5.855 5.590 16.518
2C-2C 9.226 5.855 10.800 25.880

7.5.2 Real-time Implementation
Simulation are performed for the month of March 2018. Data for the previous month is used to tune
the ARMA model. ARMA models takes into account the previous 3 time intervals and 3 previous days,
i.e., D = 3. The goal of the comparison is to understand the effect of parameter uncertainty on differ-
ent revenue streams of the co-optimization formulation. Table 7.8 shows the comparison of arbitrage,
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reactive compensation and peak demand gains for deterministic results with real-time implementations
using CoOptimizationForecastMPC algorithm. The arbitrage gains are more sensitive to parameter un-
certainty for battery with faster ramping battery. The results are in sync with observations made in [130].
The power factor correction gains are not influenced by future parameter uncertainties, as observed in
[177]. The peak demand shaving similar to arbitrage gains are affected by parameter uncertainty more
significantly for batteries with faster ramping.

7.6 Conclusion and Perspectives
We present a co-optimization formulation for arbitrage, power factor correction and peak shaving. These
storage applications are motivated by three part electricity pricing used in new designs of pricing electric-
ity. We consider realistic electricity billing mechanisms composed of three components: (i) active energy
consumption cost, (ii) reactive energy cost and (iii) peak demand cost. Despite the different time-scales
(minutes to a month), we show that using a memory variable for peak demand and a penalty-based for-
mulation for power factor correction, the optimization problem can be efficiently solved. Using realistic
battery parameters, real prices for arbitrage and peak demands, we demonstrate the efficiency of our
co-optimization approach. Through numerical simulations we show that proposed co-optimization prob-
lem has higher consumer gains. We observe that total gains of the user would be lower for optimization
problems which are a combination of one or two applications of the proposed optimization formulations.

We use different ramping batteries, and provide a sensitivity analysis of varying ramp rate batteries.
We observe that faster ramping battery performs many more number of cycles compared to slow ramping
battery. Since energy storage has a limited cycle life, therefore, control should consider the cycles of
operation in control design. We propose inclusion of friction coefficient which acts as friction in mode
changes and eliminating the low returning transactions. Comparing dollars per cycle indicate that faster
ramping batteries need not be more profitable for the consumer. In numerical results we identify that after
tuning the cycles of operation using friction coefficient, the battery model 2C-2C is most suitable with a
value of $0.8617 for each 100% DoD cycle.

We propose an online implementation of the proposed co-optimization formulation using Model Pre-
dictive Control. We observe that peak demand and arbitrage gains, but not power factor correction, are
sensitive to uncertainties in forecast, with sensitivity being higher for faster ramp rates. In future work,
we will analyze improvements in friction coefficient and penalty functions.

Further exploration is required for identification of more co-optimization roles and also prioritizing roles
which can be more valuable at certain times compared to others. This is essential as the valuation of roles
differ in time-scale, energy and power needs. Some storage applications require up-front commitments to
be made by storage owners (for example dynamic regulation in PJM), modeling these into the storage
control formulation is not straightforward.
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Chapter 8

Co-optimizing Storage in Madeira
Multitasking the art of doing twice as much as you should half as well as you could. -Anonymous

Summary: Energy storage applications are explored from a prosumer (consumers with generation)
perspective for the island of Madeira in Portugal. These applications could also be relevant to other power
networks with similar consumer contracts. We formulate a convex co-optimization problem for: (a) per-
forming arbitrage under zero feed-in tariff, (b) increasing self-sufficiency by increasing self-consumption of
locally generated renewable energy, (c) providing peak shaving and (d) acting as a backup power source
during anticipated and scheduled power outages. Using real data from Madeira we perform short and long
time-scale simulations in order to select end-user contract which maximizes their gains considering stor-
age degradation based on operational cycles. We observe energy storage ramping capability decides peak
shaving potential, fast ramping batteries can significantly reduce peak demand charge. The numerical ex-
periment indicates that storage providing backup does not significantly reduce gains performing arbitrage
and peak demand shaving. Furthermore, we also use AutoRegressive Moving Average (ARMA) forecasting
along with Model Predictive Control (MPC) for real-time implementation of the proposed optimization
problem in the presence of uncertainty.

8.1 Introduction
Medium sized isolated power networks often restrict the share of renewables and enforce stringent rules
necessary to maintain safety and stability of the electrical power system. Authors in [267] indicate that a
high share of wind energy penetration could lead to large variations in active power generated due to sudden
changes in wind speed. This in effect creates a huge mismatch between supply and demand, causing large
variations in voltage and frequency leading to hazardous operating conditions. The enforcement regulations
set by the Ministry of Industry and Energy of the Canary Government goes as far as restricting any
further increase in wind farm installations directly connected to the power network. However, additional
renewables are considered favourable if the generated energy is self-consumed locally [120]. In [111] the
use of wind-powered hydro storage system for increasing the penetration of renewables is proposed for
the island grid of Gran Canaria (part of Canarian Archipelago). In this solution, pumped storage acts as
energy storage which is feasible due to the geography of the island and might not be applicable to similar
isolated power networks.

The work in [321] presents a case study for Coimbra where residential solar and energy storage is locally
consumed with goal of zero energy buildings. Authors observe that the electricity bill for the household
reduces by more than 87%. Furthermore, self-consuming intermittent renewable generation locally is
desired by the utilities, as such generation makes load balancing, frequency and voltage regulation more
challenging. Thus self-consuming renewable generation assists the power grid to accommodate a larger
share of renewables [232]. Often utilities set the feed-in-tariff lower than the retail rate, making self-
consumption more desirable for electricity consumers. The details of compensation of active energy (as
arbitrage) is described in Chapter 3 and Chapter 4. Authors in [101] observe that by increasing self-
consumption of renewables, their financial feasibility could be achieved a decade before in some European
countries. Although self-consumption holds multiple benefits for utilities, such a constraint creates a
disparity for Distributed Generation (DG) owners, as excess generation cannot be fed back to the grid.

In order to mitigate this disparity, these DG owners should co-optimize for additional revenue streams.
In Germany DG owners until 2012 were incentivized for self-consumption rather than feeding power back to
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the grid [252]. Under the case where DG owners are not allowed to supply power back to the grid, energy
storage can facilitate load-shifting in real-time, minimizing consumption cost, increasing self-sufficiency
[232]. Self-sufficiency is the ratio of total energy demand met by local generation and/or storage with
respect to cumulative energy needs. Storage acts as a buffer of electrical energy and assists in the tempo-
ral shift of energy usage. Authors in [191] describe the various applications for energy storage in future
power networks. Furthermore, with greater integration of intermittent renewables performing arbitrage
and ancillary services will be more profitable [186]. Co-optimizing energy storage for multiple applications
has been proposed in many recent works. The authors in [136] co-optimize for arbitrage and frequency
regulation, [294] co-optimizes peak saving and frequency regulation. In this chapter, we consider the case
of Madeira Island, where utilities promote the inclusion of DG for self-consumption only. Hence this is
a special case of arbitrage formulation presented in Chapter 4, with selling price set zero at all time in-
stants. We propose the integration of a DG source along with energy storage. This battery facilitates
self-consumption of locally generated energy, assist users in selecting a lower peak power contract, per-
forming arbitrage and providing energy backup for instances of probable and scheduled power outages.
The key contributions of this chapter are:
• Co-optimization: We propose a convex formulation for energy storage control for performing arbitrage,
peak demand charge saving and backup reserve during power outages considering efficiency losses, ramping
and capacity constraints for an energy storage.
• Storage profitability: The operational cycles govern storage degradation. The performance index for
monetary value per cycle introduced in [182] is used. This index indicates that battery is financially prof-
itable in Madeira.
• Real time implementation: We use Auto-Regressive Moving Average (ARMA) processes to model tem-
poral evolution in the MPC framework for real-time implementation considering uncertainty, motivated
by our prior work [183].

The key observations made from numerical results are:
• Storage owners would benefit more by performing arbitrage with contracts with more price variations.
• Ramping capability primarily decides the ability to reduce peak demand charge savings for consumers.
• When DG generation is smaller than or approximately equal to inelastic load in magnitude then self-
sufficiency is governed by only the DG generator, otherwise, storage also contributes to it by increasing
self-consumption.
• Providing energy backup does not noticeably reduce storage ability to perform peak demand and/or
arbitrage.

The chapter is organized as follows. Section 8.2 introduces power system norms for consumers in
Madeira. Section 8.3 formulates the co-optimization problem of performing arbitrage, peak shaving and
energy backup. Section 8.4 presets the real-time control of storage under uncertainty. Section 8.5 presents
the numerical results. Section 8.6 concludes the chapter.

8.2 Power System Norms in Madeira
Madeira is an archipelago in the North Atlantic Ocean, located about 1000 km southwest of mainland
Portugal. It has a population of almost 270,000. 111,000 of which living in the capital city of Funchal.

8.2.1 Overview of the Madeira Electric Grid
Madeira relies on local generation for electricity. Empresa de Eletricidade da Madeira, S.A. (EEM) is
the only DSO/TSO in Madeira, and is responsible for the activities related to production, transport,
distribution and commercialization of electric energy. Energy generation sources used in Madeira are:
thermal energy from fossil fuels like diesel and natural gas, hydro, wind, solid waste incineration (SWI),
and photovoltaic (PV). In 2017, Madeira consumed 800GWh energy; thermal constituted about 70% of
the energy mix, with the remaining 30% coming from renewable sources (hydro: 12.2%, wind: 9.5%,
SWI: 4.8%, and PV: 3.6%) [83]. Thus 17% RES generation is controllable and 13% intermittent. The
non-domestic sector (e.g., tourism and commerce), the domestic sector contributes 45% and 30% of total
consumption respectively. The remaining 25% are contributed by public lighting (9%), public buildings
(8%), industry (7%), and agriculture (< 1%) [83].
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8.2.2 Peak Power Contracts, Tariffs and Billing Cycles
As of 2018, LV customers can select between 8 levels of peak power contract (PPC), three power tariffs,
and two billing cycles [320]. Thus, there are total 48 different contracts that users can select from.

Figure 8.1: Billing cycle schemes currently in place.

LV customers are subject to a maximum peak power contract (kVA), ranging from 3.45 kVA to 20.70
kVA (see Tab.2.4). PPC value is selected by the customer based of their estimated electricity needs and
should not be exceeded since the supply is shut-down when that happens. The disconnection of power is
done locally and consumer can restart their energy-meter, however, sudden interruptions should be avoided
as it may damage appliances.

Regarding the energy tariffs, there are three options for LV customers. Single, dual and triple-rate per
kWh. In the Single-rate tariff the price is fixed at 0.1629 e/kWh. In the dual-rate tariff there are two
time-of-use (ToU) prices (peak at 0.1894e/kWh, and off-peak at 0.0982e), whereas in the triple-rate tariffs
have three ToU price levels (peak at 0.2153e, off-peak at 0.0982e, and half-peak at 0.1716e). The off-peak,
peak and half-peak periods are defined in advance based on the notion of daily and weekly billing cycles.
In the daily cycle there are no distinctions between weekend and workdays, whereas in the weekly cycle
there are different time-of-use periods for work-days, Saturdays and Sundays. Fig. 8.1 summarizes the
billing cycle schemes in practice as of 2018. For dual-rate tariff, the peak period includes also the half-peak
period.

Consumer electricity bill consists of two components: a fixed component that depends on the contracted
power (kVA), and a dynamic component governed by actual energy consumption (kWh). Note that the
fixed component is governed by apparent power: a function of active and reactive power. In this work, we
consider PPC levels to a function of only active power as apparent power is primarily governed by active
power. Reactive power compensations as proposed in Chapter 6 [179] could be applied for the storage
control in this chapter.

8.2.3 Self-Consumption and Renewables in Madeira
In Madeira island, since 2014, new mini and micro-producers are not allowed to feed-in excess production
to the local grid, thus excess generation is wasted [83]. Due to such a constraint DGs are sized to maximize
self-consumption and minimize excess production [277]. Counterintuitively, in a period that one should
expect an explosion in the number of micro-producers leveraged by the relatively low prices of solar PV
technologies, Madeira is experiencing an stagnation on the number of new solar PV installations due to
the norms set by EEM. The main reason for this change in the local legislation is to protect the grid from
the issues associated with the intermittent and uncertain nature of renewable production from solar in a
total energy system. In case of the electrical LV networks in the rural areas of Madeira Island which are
at the edge of the radial distribution network, when associated with low consumption and high production
periods, it is very likely to observe the phenomena of voltage increase [83].
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8.3 Co-optimizing Energy Storage
In this chapter we consider a prosumer with inelastic load and rooftop solar generation as DG and an
energy storage. The battery serves four purposes: (i) increase self-consumption, thus reducing waste of
excess generation if any, (ii) perform energy arbitrage, (iii) minimize the peak demand charge and (iv)
maintain battery charge level for scheduled and/or anticipated power failures.

The battery and system model used in this chapter is described in Chapter 2.5. We use xC-yC notation
to represent the relationship between ramp rate and battery capacity. xC-yC implies battery takes 1/x
hours to charge and 1/y hours to discharge completely.

Optimizing the energy storage is essential due to its high cost. In this chapter we do not evaluate the
fixed electricity cost as under such a case storage can only be used either for backing up excess generation
and/or for peak demand shaving. Backing up energy will require no look-ahead and greedy behavior leads
to optimality [305]. The optimal solution in such a case is governed by the sign of zi and is given as

• if zi ≥ 0 then battery should discharge such that si = max {−zi, δminhηdis, (bi−1 − bmax)ηdis},
• if zi < 0 then battery should charge such that si = min {−zi, δmaxh/ηch, (bi−1 − bmin)/ηch}.

Next we formulate co-optimization problem for storage control for arbitrage, peak shaving and backup.

8.3.1 ToU pricing + zero feed-in-tariff + Peak-Shaving
The total load is denoted as li = zi + si. The optimal arbitrage problem with battery (Parb) is defined
as the minimization of the cost of total energy consumed denoted as min

∑N
i=1[li]+pelec(i) subject to the

battery constraints, see Chapter 2.5. pelec(i) denotes the electricity price for consuming electricity, i.e.
li > 0, for instant i. Here we assume the feed-in-tariff to be zero. This optimization framework is a special
case of the problem studied in [184], [148]. Under zero feed-in-tariff, only consumed energy is charged and
end-user gets no incentive in supplying power back to the grid (i.e. li < 0). This is emulated using a
variable θi = max(0, li). Keeping li ≥ 0 will maximize the self-consumption of renewable generation.

In this formulation we also consider peak demand shaving by reducing the peak demand contract the
end-user should opt for. Consider the maximum demand of the user without storage is Pmax then the
inclusion of energy storage would bring this maximum demand lower proportional to its ramp rate, consid-
ering look-ahead optimization ensures battery has enough capacity to discharge during peak demand. The
end user operates the energy storage for minimizing the cost of consumption, increasing self-consumption
by reducing the waste of excess of generation and restraining peak demand. This optimization problem

(Popt) min
si

N∑
i=1

pelec(i)θih,

subject to, (i.) Ramp Constraint Eq. 6.2.2, (ii.) Capacity constraint Eq. 6.2.4,
(iii.) θi ≥ 0, (iv.) θi ≥ [zi + si],

(v.) Peak Shaving: (PPC)[zi + si]/h ≤ P setmax.

P setmax is selected by the electricity consumer as a PPC contract with the utility in Madeira. Note that
selecting a low level of P setmax might be impossible to maintain using a given energy storage. The peak
power threshold, P setmax, is selected close to the power level (Pmax + δmin), subject to P setmax ≥ (Pmax + δmin).

8.3.2 Storage for BackUp with Arbitrage + Peak Shaving
The valuation of energy storage devices performing energy backup is hard to quantify and often ignored in
assessing the value of energy storage devices. Regions where power network is not very reliable, consumers
install energy storage devices and a power converter to charge the battery while power is available through
the grid and immediately start discharging when the grid supply is not active. Installing such devices
provides uninterrupted power supply to the user, enhancing the reliability of power supply at the consumer
end. Abrupt disconnection of power supply drastically affects the life of certain appliances. Energy storage
is also used for energy backup in developed countries; loads like data centers and hospitals are critical and
therefore, local backup of energy is essential. Here we consider two types of backup modes:
• Pre-scheduled unavailability of power : Due to scheduled maintenance power outages could occur. It is
essential to consider such incidents in case of Madeira as being an isolated power network it has less inertia
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and less redundancy making it more prone to scheduled outages. In such cases the time of the outage
denoted as iincident, is known a priori and users can maintain the battery level above bset, so as in absence
of grid supply users can meet its energy needs. This is represented as an additional constraint denoted as
bi = biincident ≥ bset.
• Probability of power loss: based on past failure incidents a probability of power failure can be calculated;
for instance, the chances of power failure due to load shedding are much more probable during morning and
evening peak than any other time of the day. Pi denotes the probability of power failure during the instant
i. If Pi is high than the user should maintain a greater charge level in the battery. The co-optimization
problem combined with planned and probable outages is given as follows

(Pmadeira) min
si

N∑
i=1
{pelec(i)θih− λPibi} ,

subject to, (i.) Eq. 6.2.2, (ii.) Eq. 6.2.4,
(iii.) θi ≥ 0, (iv.) θi ≥ [li], (v.) [li]/h ≤ P setmax,

(vi.) bi = biincident ≥ bset; where λ is scaling factor.

Note Popt and Pmadeira are convex in nature as the objective function and associated constraints are convex.
Using this, the co-optimization problems for performing arbitrage, peak shaving and backup can be

solved by by off the shelf solvers like Gurobi or Mosek through CVX [7].

8.3.3 Open Source Codes
The co-optimization formulations and benchmarks presented in this chapter is made open source. The
link for the code is https://github.com/umar-hashmi/MadeiraStorage.

8.4 Real-time Control under Uncertainty
The decision variables for the optimization problem Popt and Pmadeira is the energy storage output si.
The stochastic variable in these settings is the the net-load excluding energy storage output, zi. We use
AutoRegressive Moving Average (ARMA) forecasting for modeling zi. The details of the model is described
in Section 8.4.1 (for more details refer to Section 2.4.1) and model predictive control algorithm is described
in Section 8.4.2.

8.4.1 Modeling Uncertainty: ARMA Forecasting
We define the mean behavior of past values of net load without storage at time step i as

zi = 1
D

D∑
p=1

zi−pN ∀i ∈ {k, ..., N}, k ≥ 1, (8.4.1)

where D is the number of days in the past whose values are considered in calculating z. The forecasted
net load given as ẑi = zi + X̂i ∀i ∈ {k, ..., N}, k ≥ 1, where X̂i represents the forecasted difference from
the mean behavior. We define X̂i ∀i ∈ {k, ..., N} as

X̂k = α1X̂k−1 + α2X̂k−2 + α3X̂k−3 + β1δ
1
k + β2δ

2
k + β3δ

3
k, (8.4.2)

where δmk = (zk−mN − zk−mN ) and αi, βi∀i ∈ {1, 2, 3} are constant. We use the errors in net load without
storage for the past three time steps and the error in the same time step for past three days. At time step
i = k − 1 we calculate X̂k as shown in Eq 8.4.2. Using X̂ we calculate ẑ.

8.4.2 Model Predictive Control
The vector ẑ for instants i to N is fed to MPC for calculating optimal energy storage actions for time step
i. Similar steps are done for i ∈ {k+ 1, ..., N}, till the end of time horizon is reached. Real-time algorithm
is presented as ForecastPlusMPCforCoOpt3.
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Algorithm 16 ForecastPlusMPCforCoOpt3
Inputs: ηch, ηdis, δmax, δmin, bmax, bmin, b0, pelec, h,N, T, i = 0
1: while i < N do
2: Increment i=i+ 1
3: Forecast ẑ from time step i to N
4: Solve for s∗ = Pmadeira(pelec, ẑ, h,N, T )
5: b∗

i = bi−1 + [s∗]+ηch − [s∗]−/ηdis
6: Update b0 = b∗

i

7: end while

8.5 Numerical Results
For the numerical evaluation we use a battery with initial charge level, b0=1kWh, bmax=2kWh, bmin=0.2kWh,
ηch=ηdis=0.95. The home has 6.25 kWp solar PV. The performance indices used for evaluating simulations
are:
• Arbitrage Gains (Garb),
• Peak shaving gains (Gpeak): difference between nominal Peak Power Contract (PPC) and the new PPC
contract after adding storage.
• Self-sufficiency (SS): calculated using total energy consumed, PV generation and storage output.
•Gains per cycle: In our prior work [182] we develop a mechanism to measure the number of cycles of opera-
tion based on depth-of-discharge of energy storage operational cycles. We use total gains, GT=Garb+Gpeak,
to calculate e/cycles gained by operating energy storage as one of the performance index. This index puts
a financial value to operational cycles of the battery.

We perform deterministic simulations for arbitrage and peak demand shaving in Section 8.5.1. Sec-
tion 8.5.2 presents numerical results for energy storage performing backup along with arbitrage and peak
shaving. Section 8.5.3 compares forecast plus MPC with results for a week with respect to the deterministic
results.

8.5.1 Deterministic Solution for Popt
We compare various pricing contracts and propose the best contract that energy storage owners can select
for maximizing their gains. Here we consider only the daily cycles since this is the most commonly selected
option in Madeira. Two types of simulations results are presented: simulation on a shorter-time scale,
(i.e., for a day) and for longer time-scale, (i.e., for a month). The load data is collected from a facility
in Madeira. Single-rate tariff is used as the nominal case with respect to which profit and performance
improvements are calculated.

Shorter Time Scale: A day

Simulations using 2 and 3-level ToU price for 4 different batteries are conducted for load data of 18th May,
2018.
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Figure 8.2: Net Load with/without solar and with/without battery for h = 0.25 hours; here we
consider 4 different batteries
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From Table 8.1 we can conclude that 3-level ToU provides higher gains for end-user, fast ramping
battery can increaseGpeak, however, Garb deteriorates due to greater contribution of the battery performing
peak reduction. Fig. 8.2 shows the variation of net load for 3-level ToU.

Table 8.1: Comparison for 1 day

Case Garb PPC Gpeak SS GT e/cyc
e kVA e % e

No Battery
No PV - 10.35 - - - -

PV - 6.9 0.144 32.9 0.144 -
2 Level ToU with Battery

0.25C-0.25C 0.240 6.9 0.144 36.2 0.384 0.568
0.5C-0.5C 0.235 6.9 0.144 36.6 0.379 0.561

1C-1C 0.235 5.75 0.192 36.6 0.427 0.631
2C-2C 0.212 3.45 0.287 36.3 0.499 0.363

3 Level ToU with Battery
0.25C-0.25C 0.333 6.9 0.144 36.2 0.477 0.704
0.5C-0.5C 0.366 6.9 0.144 36.2 0.510 0.376

1C-1C 0.351 5.75 0.192 36.1 0.543 0.346
2C-2C 0.301 3.45 0.287 36.1 0.587 0.379

Table 8.2: Comparison for Longer Time Scale

Case Garb PPC Gpeak SS GT e/cyc SPB
e kVA e % e yrs.

No Battery
No PV - 17.25 - - - - -

PV - 17.25 0 34.1 0 - -
2 Level ToU with Battery

0.25C-0.25C 18.38 13.8 4.27 34.9 22.65 0.855 3.2
0.5C-0.5C 18.38 13.8 4.27 34.9 22.65 0.855 3.2

1C-1C 18.38 13.8 4.27 34.9 22.65 0.855 3.2
2C-2C 18.37 10.35 8.54 34.9 26.92 0.669 4.1

3 Level ToU with Battery
0.25C-0.25C 25.01 13.8 4.27 34.9 29.28 1.035 2.7
0.5C-0.5C 25.89 13.8 4.27 34.7 30.16 0.640 4.3

1C-1C 26.08 13.8 4.27 34.7 30.36 0.589 4.7
2C-2C 26.06 10.35 8.54 34.6 34.60 0.568 4.8

Integration of storage leads to approximately 3% saving of electricity bills. Prior to installation of
storage, 5.8% of solar generation was wasted and with addition of storage the waste is reduced to zero.
The simulations also shows that additional gains are possible by reducing the PPC shown in Fig 8.2 and
Table 8.1.

Longer Time-Scale: A month

Longer time scale simulations are conducted for the month of June, 2018. Table 8.2 shows that energy
storage does not contribute significantly towards self-sufficiency. Fig. 8.3 shows the variation of SS for each
day due to PV. Long time scale simulations also indicate that 3 level ToU is more beneficial. Further the
gains per cycle indicate that energy storage is highly profitable. A typical LiIon battery costing around
e500/kWh could perform around 4000 cycles at 100% DoD. Thus such a battery (of 2kWh size) to be
profitable should make more than e0.25/cycle. Table 8.1 and Table 8.2 show that e/cycle is significantly
more than e0.25. Table 8.2 also list the simple payback period (SPB) in years by extrapolating the gains
linearly based on gains made in 1 month.
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Figure 8.3: Self-Sufficiency due to Solar for June 2018

8.5.2 Co-optimizing with Power Backup
The probability of power failure used for scheduling energy storage backup is shown in Fig. 8.4(a). The
probability of power failure on a typical day is primarily because of load-shedding, which happens more
during peak consumption hours.
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Figure 8.4: (a) Probability of power failure, (b) Battery charge level

We assume that there is a scheduled power outage incident at iincident=6 am. During this time storage
should maintain an state of charge of 80% or higher, therefore, bset = 0.8bmax.

Table 8.3: Comparison of gains for power backup

Index Case (i) Popt Case (ii) Case (iii) Pmadeira
Garb 0.3006 0.3006 0.2976
Gpeak 0.2867 0.2867 0.2867

Fig. 8.4(b) shows battery charge level for three cases: (i) Popt: arbitrage with peak shaving, (ii)
Arbitrage with peak shaving and backup for probable outage governed by failure probability in Fig. 8.4(a)
and (iii) Pmadeira: arbitrage, peak shaving, probable outage with scheduled outage. As evident from
Fig. 8.4(b) the charge level for Case (iii) maintains a higher charge level during iincident. For case (ii)
and case (iii) maintains a high charge level during probable outage during morning and evening peak. As
shown in Table 8.3, the effect on gains due to performing backup is insignificant, less than 1% in this case.
For these cases self-sufficiency remains fairly similar.

8.5.3 Real-Time Implementation (Forecast plus MPC)
The coefficients of the ARMA forecast model is tuned using regression. For this case, we use a battery of
1C-1C type. The comparison of total load for deterministic and MPC simulations is shown in Fig. 8.5. The
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state of charge (SoC) of the battery is shown in Fig. 8.6. It can be observed that for stochastic simulations
the battery capacity is maintained at high SoC level in order to minimize probable outage component of
the objective function.

The arbitrage gains for the deterministic case for the week is e5.50 and for ARMA with MPC the gains
are e5.01. Loss of opportunity (LoO) is defined as = 1−(actual arbitrage gains)/(deterministic arbitrage
gains). The LoO for this numerical experiment is 8.91%. A low value of LoO indicates the robustness of
our proposed real time framework. Peak demand shaving for this week is e0.336 for both deterministic
and ARMA with MPC case. Although in this numerical experiment the peak demand is in compliance
with the same contract as for the deterministic case, however, it would be advised to select a higher level
of peak demand contract pertaining to forecast errors.
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8.6 Conclusion and Perspectives
We present a case study for the island of Madeira and formulate a convex co-optimization problem for
performing arbitrage, peak-shaving and providing backup during power outages. Using numerical simu-
lations we observe that storage owners benefit more under greater volatility, evident from higher gains
electricity customers can make with 3-level ToU compared to 2-level. We believe an increase in storage
size will make more volatile consumer contracts more beneficial. Energy storage adds to economic value
while solar PV increases self-sufficiency for scenarios where distributed generation is lower or comparable
to the magnitude of the inelastic load. For DG generating more than inelastic load, storage also con-
tributes to self-sufficiency by increasing self-consumption. We show that using storage for power backup
during probable and scheduled outages do not undermine its ability to perform arbitrage and peak demand
shaving. Considering storage operational cycle degradation, we calculated gains per cycle indicating the
storage could be financially viable in Madeira (simple payback period ≈3 years). Numerical simulation
for real-time control using ARMA based forecast with MPC shows the efficacy of the proposed scheme for
storage co-optimization.

The dependency of inelastic load and DG generation on storage sizing and NEM rules requires more
exploration. Consider a planning problem which takes into account historical data and provides best-suited
battery and the consumer contract the user should opt for given investment constraints. Of course, such
formulations need to be redesigned for other power networks depending on local network rules. Further
work is required to select an optimal battery size based on historical data. The storage parameter selection
would be governed by inelastic load and solar generation of the consumer.
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Chapter 9

Storage for low voltage consumers in
Uruguay

Earth provides enough to satisfy every man’s needs, but not every man’s greed. -Mahatma Gandhi

Summary: Energy storage can be used for many applications in the Smart Grid such as energy
arbitrage, peak demand shaving, power factor correction, energy backup to name a few, and can play
a major role at increasing the capacity of power networks to host renewable energy sources. Often,
storage control algorithms will need to be tailored according to power networks billing structure, reliability
restrictions, and other local power networks norms. In this chapter we explore residential energy storage
applications in Uruguay, one of the global leaders in renewable energies, where interesting low-voltage
consumer contracts were recently introduced. Based on these billing mechanisms, we focus on energy
arbitrage and reactive energy compensation with the aim of minimizing the cost of consumption of an
end-user. Given that in the new contacts the buying and selling price of electricity are equal and that
reactive power compensation is primarily governed by the installed converter, the storage operation is not
sensitive to parameter uncertainties and, therefore, no lookahead is required for decision making (refer
to Chapter 3). A threshold-based hierarchical controller is proposed which decides on the optimal active
energy for arbitrage and uses the remaining converter capacity for reactive power compensation, which
is shown to increase end-user profit. Numerical results indicate that storage could be profitable, even
considering battery degradation, under some but not all of the studied contracts. For the cases in which
it is not, we propose the best-suited contract. Results presented here can be naturally applied whenever
the tariff structure satisfies the hypothesis considered in this work.

9.1 Introduction
Electric power systems are undergoing major transformations because of changes in the generation mix, in
the structure of the network, and in the means and profiles of electricity consumption. The increased share
of intermittent generation requires large amount of reserves and costly infrastructure expansions, while the
electrification of energy consumption will significantly distort the aggregate electricity consumption profile.
This is mainly due to EVs that consume as much as the rest of the loads in a typical household over a small
charging period [173]. The negative consequences of such distributed energy resources can be avoided by
an adequate response from active energy participants with flexible energy consumption and/or generation
(prosumers). In order to achieve such a response, incentives are provided to interested participants, who
receive economic rewards in exchange of their flexibility services. In Chapter 10 we observe that with
the growth of renewable share the need for such responsive users is going to increase. This represents an
opportunity for energy participants to start providing services to the grid. Energy storage devices such as
batteries are at the focal point of such applications, as these are gradually becoming profitable thanks to
increasing flexibility opportunities and rewards and to continuous drop of their cost.

Authors in [214] present the economic analysis of storage in Southern California Homes. They highlight
that earlier Net-Energy Metering or NEM policies allowed only excess renewable generation to be supplied
back to the grid. However, new NEM policy allows distributed generation along with solar to participate
in NEM making it more conducive for consumers to invest in energy storage.

For low voltage consumers, performing energy arbitrage is one of the prominent applications of storage
devices. Optimizing storage for performing energy arbitrage is studied in numerous works, some examples
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Figure 9.1: Uncertainty under storage performing arbitrage; Consider the consumer have an inelastic
load, local renewable generation and storage. Under this setting storage operation is prone towards
uncertainty depending on pricing type and excess generation compensation mechanism.

are [217], [257], [184]. In [217], the authors propose an algorithm mixture of dynamic programming and
particle swarm optimization to schedule a battery in presence of a wind turbine. The time-of-use or ToU
has 3 leaves and they manage to obtain a 5.6 % saving in the energy bill each month. Authors in [257]
use linear programming for storage control under ToU pricing for PG&E residential and consumers in San
Francisco.

Co-optimizing energy storage for multiple revenue streams could drastically enhance the gains made
by storage owners [323], [294], [178]. Pioneering work on co-optimization, [323], presents an application of
batteries performing arbitrage and frequency regulation for a New York ISO case-study. They show that
storage batteries might not be profitable for a single dedicated application due to its high cost. Authors in
[294] claim that combining several applications could lead to greater gains compared to cumulative gains
obtained by performing few of the tasks at a time. This is essential, as having one dedicated goal might
maximize gains in that application but might lead to unexpected penalties or undermine other applications.
For instance storage performing only energy arbitrage could increase the peak demand charge paid by the
consumer, in effect reducing the total gain made by the storage owner [178]. A fine understanding of the
billing mechanism is essential to avoid incurring such a penalty.

Profitability is an essential question from a consumer perspective, who needs to decide whether to invest
in energy storage devices. The storage battery having a limited operational and aging life [174], economic
analysis should consider the operational cycles in analyzing the gains made by using energy storage.
Authors in [80] observe that ignoring storage degradation could inflate the gains made by operating the
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storage battery. They also highlight the importance of forecasting parameters such as consumer load
and electricity price for maximizing prosumer profit. In Chapter 8 we present a case-study for Madeira
island power network, where we explore residential storage applications and their economic viability. We
also provide recommendation about the best-suited contract among 46 different options for low voltage
consumers based on short-term and long-term simulations of 1 day and 1 month respectively. In [127], the
authors assess the profitability of storage in Ontario under various pricing schemes, without the possibility
to sell energy back to the grid, showing that for several cases it cannot be achieved. Authors in [116]
evaluate the feasibility of energy arbitrage (without selling back to the grid) in Australia using time of use
pricing. For several batteries they found the probability of earnings depending on battery size. Profitability
of storage devices is governed by grid norms which represent the eagerness and needs of power networks
to incentivize consumers for installing energy storage. The compensation mechanisms are also influenced
by political will, as electricity is not just any commodity in a market for profit making but also a necessity
in today’s world.

In this work, we consider storage control and applications for LV consumers in Uruguay, where new
contracts were proposed in early 2019, providing unique opportunities for consumers to include storage
to modify the consumption profile seen by the utility meter. We present a co-optimization formulation
for the energy storage device performing arbitrage and power factor correction (PFC), considering storage
degradation. We find that some consumer contracts could be profitable enough for consumers to invest on
storage. In Chapter 6 we identify that when co-optimizing storage for arbitrage and PFC, these objectives
are largely decoupled as arbitrage is governed by storage charge level while the reactive power capability is
constrained by instantaneous active power and converter size. Furthermore, we also identify that lookahead
for reactive power compensation is not essential, allowing us to consider myopic reactive compensation. For
energy arbitrage, the control in the context of LV electricity consumer in Uruguay has following properties:

- No uncertainty in electricity price: In Time-of-Use the instants and levels of price variations are
known a priori thus no uncertainty in storage control due to electricity price. This is an advantage over
real real-time electricity pricing schemes, where prices need to be forecasted.

- Net metering - Compensation of excess generation based on equal buying and selling price level: Elec-
tricity buying price vary over time (for ToU these variations are known), however, at every time instant
the buying price and selling price remain the same in magnitude. For example, consider the buying price
of electricity between 9 am and 10 am is 0.05$/kWh; the consumer consumes say 20 kWh, making the
cost of consumption equal to $1. In the same time period had the prosumer instead of consuming gen-
erated 20 kWh of energy, he/she would have received compensation of $1. Under such a compensation
mechanism, the objective to minimize the cost of consumption of the user which includes inelastic load,
renewable generation, and storage output is equivalent to maximizing the profit made by only energy
storage performing arbitrage [184]. In other words, optimal storage control decisions are independent of
variations in inelastic load and renewable generation at consumer end, which was also observed in [335].
Refer to Appendix A.7 for more details. Fig. 9.1 shows the effect of uncertainty based on pricing mecha-
nism and compensation of excess consumer generation. Thus, storage active power can be operated based
on precomputed thresholds which minimize the stress on the battery as the optimal solution, therefore,
active power output of storage also does not require lookahead. The proposed consumer contracts make
consumers completely not sensitive to uncertainty in inelastic load, renewable generation and electricity
price variation, furthermore, no lookahead of such parameters are required. This should be very attractive
for consumers as storage operation in a more dynamic market could affect consumer gains made by storage
operation due to the real-time variation of system parameters causing a loss of opportunity. In Chapter 3,
Section 3.6 we present a case-study for identifying the effect of price uncertainties on arbitrage gains. We
observe that consumer gains can be up to 59% lower for the stochastic case in comparison to the determin-
istic one. Furthermore, authors in [213, 309] propose storage control for performing arbitrage, taking into
consideration uncertainty in real time storage operation. These control mechanisms are computationally
intensive, however, in our work we observe that energy storage operation becomes immune to uncertainty
due to pricing of electricity and excess generation compensation.

The chapter is organized in sections. Section 9.2 provides a brief summary of the power system
landscape in Uruguay. Section 9.3 presents the new electricity consumer contracts applicable for low
voltage consumers in Uruguay. Section 9.4 outlines the various applications energy storage can be used for
the consumer contracts detailed in the previous section. Section 9.5 describes the storage control algorithm
applicable for different contracts. The proposed storage algorithm considers storage ramping and capacity
constraint, charging and discharging efficiency losses. Section 9.6 presents the numerical results using the
storage control algorithm. Section 9.7 concludes the chapter.
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9.2 Energy Landscape in Uruguay
Uruguay is a country with 3.5 million inhabitants located in the south of South America, that has be-
come a world leader in renewable energies. Historically, this small country has relied upon hydro power,
mainly from two dams: Salto Grande (co-owned with Argentina in the Uruguay river) and Rio Negro,
thermal power plants, and importing energy from neighboring countries: Argentina and Brazil. As of
today, Uruguay has completely changed their energy mix, consuming mostly from renewable resources and
becoming a purely exporting country. In the year 2017, only 1% of the energy was produced from thermal
power stations, while 65% corresponded to hydro generation, and the remaining 34% was composed of a
mix between biomass, wind and photovoltaic energy. With more than 600 wind turbines in 2018 wind
power provided up to 49 % of the energy consumed, which positions Uruguay as the second country in the
world with the highest share of wind power in their electricity mix, behind Denmark.

The main actor in the energy sector is UTE, a public company that acts as the only retailer, DSO
and TSO, and it is also one of the main producers of electricity. In a country with a surface of 176,215
km2, the distribution and transmission lines span 84,245 km and 5561 km respectively as of 2017. As a
matter of comparison, France with 3.6 times the extension of Uruguay, has 18.8 times more kilometers of
transmission lines [288]. Of the above mentioned mix, the residential sector consumes approximately 3500
GWh yearly, while big customers represent a load of 2000 GWh and medium consumers account for 1500
kWh. The peak power consumption registered in the years 2016 and 2017 was of 1964 MW and 1916 MW
respectively and occurred during the winter (mid July), while the yearly load factor was of 64.3 %.

Uruguay’s energy sector is still evolving towards a smarter landscape. UTE has several demand response
programs in place. Among them, they offer time-of-use tariff to residential consumers, 60% price rebates
for big consumers who increase their demand during periods of renewable energy surplus, and price rebates
on efficient household appliances such as class A water heater. Regarding distribution of residential clients
among tariffs, 47 % of total clients subscribe to a flat rate tariff while 53% use a more complex contract
such as time-of-use.

9.3 Electricity Consumer Contracts
Low Voltage (LV) electricity consumers can opt for new billing mechanisms introduced by UTE in January
2019 [316], leading residential consumers to choose among three different consumer contracts. Next we
describe the three contracts denoted as C1, C2 and C3 in this document for easy referencing. They are
structured with a variable fee that depends on the amount or the time of active energy consumption, a part
that is proportional to the contracted peak power and a fixed charge that is applied to all contracts every
month, irrespective of their variable energy or power consumption. Furthermore, consumers pay a reactive
energy charge. The details of the contracts can be found Portal of Electricity operator in Uruguay1. The
electricity prices are listed in Uruguayan peso2.

This section is divided into five sub-sections. In Section 9.3.1 we list the fixed and variable active
energy rates for the different contracts. In Section 9.3.2 the peak contracted power is given. Note that
consumers need to select the peak power contracts beforehand, as it determines the cabling and metering
requirements and therefore, do not have a flexibility in real-time to optimize. In turn, this will determine
the fixed costs incurred by the consumer. The billing of reactive power under the three contracts are
presented in Section 9.3.3. Section 9.3.4 presents the total and variable cost of electricity consumption.
In this chapter, we use the variable component to minimize the cost of consumption of user using a
battery. Consumers with distributed generation such as rooftop solar generation can opt for net-metering
in Uruguay. Section 9.3.5 presents the net-metering policies for different consumer contracts.

9.3.1 Fixed and Active Energy Cost
Table 9.1, Table 9.2 and Table 9.3 lists the fixed, power and energy charges for contracts C1, C2 and C3.
The fixed cost for contract Ci is denoted as CCifixed for i ∈ {1, 2, 3}. We also present the active energy
charge calculated under the different contracts for consumers.

1https://tinyurl.com/y5ug28jh
21 Uruguayan Peso equals 0.031 USA Dollar on 21st Feb. 2019.
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Table 9.1: C1: Simple Residential Rate

Category Price
Charge for energy consumption:

1 kWh to 100 kWh monthly 5.160 peso/kWh
101 kWh to 600 kWh monthly 6.470 peso/kWh

601 kWh onwards 8.065 peso/kWh
Charge for contracted power 61.6 peso/kW

Fixed monthly charge 198.9 peso

Table 9.2: C2: Two-level ToU Residential Rate

Category Price
Charge for energy consumption:

Peak hours: from 17:00 to 23:00 8.623 peso/kWh
Off-peak hours: 00:00 to 17:00 3.453 peso/kWh

and 23:00 to 24:00 hrs
Charge for contracted power 61.6 peso/kW

Fixed monthly charge 359.4 peso

C1: Simple Residential Flat Rate

Simple residential contracts are applicable for consumers with voltage level 230V and 400V and the con-
tracted power is less than or equal to 40 kW. The cost of active energy is given as:

CC1
active = λfixedEa, (9.3.1)

where Ea denotes the active energy consumed and expressed in kWh and λfixed denotes the flat rate
electricity cost under C1.

C2: Two level Time-of-Use (ToU) Rates

Two level ToU residential contracts are applicable for consumers with voltage level 230V and 400V and
the contracted power greater than 3.3 kW and less than or equal to 40 kW. The cost of active energy is
given as:

CC2
active = λpeakE

peak
a + λoff-peakE

off-peak
a , (9.3.2)

where Epeak
a denotes the active energy consumed during peak period over the month, Eoff-peak

a denotes the
active energy consumed during off-peak period over the month, and expressed in kWh and λpeak denotes
peak electricity cost, λoff-peak denotes off-peak electricity cost under C2 contract.

C3: Three-level ToU Rates

Three level ToU residential contracts are applicable for consumers with voltage level 230V and 400V and
the contracted power greater than 3.7 kW and less than or equal to 40 kW. The cost of active energy is

Table 9.3: C3: Three-level ToU Residential Rate

Category Price
Charge for energy consumption:
Peak hours: from 17:00 to 23:00 hrs 8.623 peso/kWh

Mid-peak hours: 07:00 to 17:00 4.676 peso/kWh
and 23:00 to 24:00 hrs

Off-peak hours: 00:00 to 7:00 hrs 1.803 peso/kWh
Charge for contracted power 61.6 peso/kW

Fixed monthly charge 359.4 peso
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Table 9.4: Power Contracted: 1-phase LV consumers

Power levels
3.7 kW, 4.6 kW, 7.4 kW, 9.2 kW

Table 9.5: Power Contracted: 3-phase LV consumers

Power levels (kW)
12, 20, 25, 30, 35,

40 kW, 41 to 50 kW

given as:
CC3

active = λpeakE
peak
a + λmid-peakE

mid-peak
a + λoff-peakE

off-peak
a , (9.3.3)

where Emid-peak
a denotes the active energy consumed during mid-peak period over the month and expressed

in kWh and λmid-peak denotes mid-peak electricity cost under C3 contract.

9.3.2 Peak Power Contract for LV Consumers
For low voltage consumers in Uruguay should specify the peak power contracted. This is essential as the
utility provides the connection and safety features based on the contracted power.

Single phase consumers in LV network can select the contracted power from following levels presented
in Table 9.4. Three phase consumers in LV network can select the contracted power from following levels
presented in Table 9.5. Based on Table 9.4 and Table 9.5 consumers select their power contract denoted
as Pcontracted. The charge for power contracted for contract i ∈ {1, 2, 3} is denoted as CCipower. The cost of
power contracted is given as:

CCipower = λpowerPcontracted. (9.3.4)

The value of λpower is listed in Table 9.1, Table 9.2 and Table 9.3 for contracts C1, C2 and C3 respectively.
Note the peak power charge is same for C1/C2/C3.

9.3.3 Billing of Reactive Energy
Traditionally, LV consumers were not obliged to regulate reactive power. There where many well thought
reasons why it made sense, we list a few below:
• Majority of loads used by low voltage consumers consisted of resistive loads, thus, the inherent power
factor seen by the grid used to be close to unity.
• Utility neither had the infrastructure nor the motivation for making it obligatory for small LV consumers
to comply reactive power norms normally well-defined for commercial establishments.

However, the reasons why utilities across the world do not meter reactive power in LV networks is
rapidly changing due to some of the following reasons:
• Evolution of many new loads have significantly increased the reactive power of the LV consumers. In
absence of regulation utilities would have to face degradation of efficiency of LV distribution network [8]
and additional stress on distribution transformer.
• Most countries have been promoting distributed generation (DG) such as rooftop solar PV installations.
These DGs operate at close to unity power factor, implying that while an important part of the active
power is locally met by the DG, all the reactive power is provided/absorbed by the grid [177].

Due the above mentioned transformation, the utilities are designing penalties for consumers with a low
power factor. Uruguay is in the fore front globally in implementing reactive power penalties and incentives
for small LV consumers to control their power factor.

Next we describe the mechanisms of charging for degraded power factor for each of the three consumer
contracts.

Reactive power cost under C1

Consumers billed in accordance to C1, or simple residential contract, need to pay a penalty if the power
factor calculated for the month deteriorates below 0.92. The power factor is calculated as a function of
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Figure 9.2: Graphical representation of Kfac for C1 with respect to the PF; where λ1 = 0.4 and λ2 = 1.

aggregate reactive power (Er) and active power (Ea) as follows

pfmonth = cos
(

arctan
(
Er
Ea

))
. (9.3.5)

The cost or reactive power for contract C1 is given as

CC1
reactive = Kfac × Er. (9.3.6)

Where Kfac is the coefficient of surcharge for reactive consumption and is governed by the following
conditions:

Kfac =


0, if Er

Ea
≤ 0.426,

0.4
(
Er
Ea
− 0.426

)
, if Er

Ea
∈ (0.426, 0.7],

0.4
(
Er
Ea
− 0.426

)
+ 0.6

(
Er
Ea
− 0.7

)
, if Er

Ea
> 0.7.

(9.3.7)

Reactive power cost under C2

Consumers billed in accordance to C2, or two-level ToU residential contract, need to pay a penalty if the
power factor calculated for the month deteriorates below 0.92. Consumers under C2 are also provided
incentives for cases where the pfmonth exceeds 0.92. The coefficient of surcharge or consumption bonus for
reactive consumption is governed by following conditions:

Kfac =


B

100

(
Er
Ea
− 0.426

)
, if Er

Ea
≤ 0.7,

B
100

(
Er
Ea
− 0.426

)
+ 100−B

100

(
Er
Ea
− 0.7

)
, if Er

Ea
> 0.7,

(9.3.8)

where the value of B is 36 or 34 depending on the contract. For consumers under C2, the coefficient Kfac
acts as penalty for case where Er

Ea
> 0.426. However, if Er

Ea
≤ 0.426 then it provides incentives for the

consumer as the cost of reactive power would be negative. Coefficient Kfac is applied to the total active
energy consumed during the peak period over the whole month. The total active energy is denoted as

Ea = Eoff-peak
a + Epeak

a , (9.3.9)

The cost or reactive power for contract C2 is given as

CC2
reactive = Kfac × Epeak

a . (9.3.10)

Reactive power cost under C3

The power factor applied for C3 consumers is given as

pf+month = cos
(

arctan
(
ErQ1

Ea+

))
, (9.3.11)

where ErQ1 is the absolute value of reactive energy in Quadrant 1 over a month expressed in kVAR
and Ea+ denotes the absolute value of active energy in the month expressed in units kWh. Consumers
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Figure 9.3: Graphical representation of Kfac for C2 with respect to the PF; where λ1 = B
100 and λ2 = 1.

Table 9.6: Value of B under C3

Voltage level Value of B
230 to 400 V 23

6.4 - 12 - 22 kV 18
31.5 kV 12

billed in accordance to C3, or three level ToU residential contract, need to pay a penalty if the power
factor, calculated with aggregate reactive power (ErQ1) and active power (Ea+), calculated for the month
deteriorates below 0.92. Similar to C2, Consumers under C3 are also provided incentives for cases where
the pf+month exceeds 0.92.

The coefficient of surcharge or consumption bonus for reactive consumption is governed by following
conditions:

Kfac =


A

100

(
ErQ1
Ea+

− 0.426
)
, if ErQ1

Ea+
≤ 0.7,

A
100

(
ErQ1
Ea+

− 0.426
)

+ 100−B
100 (ErQ1

Ea+
− 0.7), if ErQ1

Ea+
> 0.7,

(9.3.12)

where the value of B depends on supply voltage listed in Table 9.6. Coefficient Kfac is applied to the total
active energy consumed during the peak period over the whole month. The total active energy is denoted
as

Ea+ = Eoff peak
a+ + Emid peak

a+ + Epeak
a+ , (9.3.13)

where Eoff peak
a+ denotes the total energy consumed during off-peak hours over the month, Emid peak

a+ denotes
the total energy consumed during mid-peak hours over the month and Epeak

a+ denotes the total energy
consumed during peak hours over the month. The cost or reactive power for contract C3 is given as

CC3
reactive = Kfac × Ea+. (9.3.14)

9.3.4 Cost of Consumption
The cost of electricity consists of four components:

(1.) Fixed electricity cost: depending on the contract type, consumers are charged a fixed cost which
is independent of the consumed electricity,

(2.) Power contracted cost: the consumer specifies the peak power level before the utility provides a
connection. From the utility perspectives this contract determines the protection settings, fuse settings,
cable ratings, meter type etc.

(3.) Active energy cost: The cost of consuming active energy is decided by the contract type.
(4.) Reactive energy cost: This component of electricity cost is decided by the power factor, voltage

level, total active energy consumed and contract type.
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Figure 9.4: Graphical representation of Kfac for C3 with respect to the PF; where λ1 = A
100 and λ2 = 1.

Table 9.7: Variable cost component based on contract type

Contract CCivariable

C1 λfixedEa +Kfac × Er
C2 λpeakE

peak
a + λoff-peakE

off-peak
a +

Kfac × Epeak
a

C3 λpeakE
peak
a + λmid-peakE

mid-peak
a +

λoff-peakE
off-peak
a +Kfac × Epeak

a+

Therefore, the total cost of consumption under contract Ci is given as

CCiTotal = CCifixed + CCipower + CCiactive + CCireactive. (9.3.15)

The variable component of the cost would consists of the cost of active and reactive power given as

CCivariable = CCiactive + CCireactive. (9.3.16)

The variable component of electricity price could only be reduced if the electricity consumer optimizes
their consumption locally using load flexibility and/or energy storage. The cost component CCifixed +CCipower
have no degree of freedom and therefore, cannot be reduced.

9.3.5 Net-Metering in Uruguay
Net-energy metering (NEM) for small wind power, solar, biomass and mini-hydro systems is allowed since
2010 by Decree 173/0103 on micro-generation. The government-owned national electric company, UTE4,
is mandated to buy at retail price all the excess electricity produced by consumers for a period of ten
years [74]. Generated electricity must be low-voltage and the maximum power of installations is the
lower between 6 kW and the peak power contracted by consumer, although higher power is possible with
additional authorization before installation5. The buying and selling electricity prices for LV consumers in
Uruguay under contracts C1, C2 and C3 are depicted in Fig. 9.5, Fig. 9.6 and Fig. 9.7 which shows that
buy and sell price have the same level. Note that consumer needs to opt for NEM separately by notifying
the utility which may require the installation of different hardware.

In this chapter we use net-metering for contracts C2 and C3. The rationale behind not opting for
net-metering for contract C1 is described in Section 9.4.1.

3http://tinyurl.com/y2ccr2o2
4https://portal.ute.com.uy/
5https://tinyurl.com/y2gydsu7
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Buying  or Selling Price

00:00 00:0012:00

5.160 peso/kWh

Contract C1

Figure 9.5: Buying and selling price of electricity over a day under contract C1 with NEM

  

Buying or Selling Price                          

00:00 17:00

3.453 peso/kWh

Contract C2

8.623 peso/kWh

23:00

Figure 9.6: Buying and selling price of electricity over a day under contract C2 with NEM

9.4 Storage for LV Prosumers in Uruguay
The system considered in this chapter consists of an electricity consumer with inelastic demand, renew-
able generation source (rooftop solar) and an energy storage. The battery provides flexibility to deviate
consumption in order to make profit by performing arbitrage and provide reactive energy compensation.
The system is shown in Fig. 1.2. The energy storage interfaced via a converter provides flexibility to the
consumer to modify the active and reactive power seen by the grid. Energy storage with converter can act
as source and/or sink of active and reactive power. Opportunities for prosumers with storage in Uruguay
are:

Arbitrage: the ToU cost structure makes the selection of arbitrage decisions fairly simple for storage
owners. Furthermore, since under Net-metering policies in Uruguay, the buy and sell price is equal for
each time instant, shown in Fig. 9.5, Fig. 9.6 and Fig. 9.7, this implies that the control energy storage
becomes independent of the inelastic load and solar generation.

From the structure of ToU prices, clearly the storage needs to charge during the off-peak period and
discharge during the peak period. Storage remains idle during mid-peak periods except for very slow
ramping batteries which could not be completely charged in off-peak duration or discharged completely
during peak period duration.

Avoiding power factor penalty: previously we described the billing mechanism for reactive power
for LV consumers in Section 9.3.3. The thresholds indicate that as power factor (PF) seen by the grid
deteriorates the cost of consumption increases in proportion to peak energy consumed; this penalty for
low PF could be avoided by maintaining the PF locally. Energy storage interfaced via a converter could
be used for PF improvement locally.

Maintaining a high PF so as the consumer receives additional rebate on electricity consumption cost.
Note that the consumers maintaining a unity PF could reduce the active power cost under C2 by almost
13.6% of the cost energy consumed under the peak period of ToU. For contract C3, the cost of consumption
could be reduced by utmost 9.8% of the cost of energy consumed during peak period. However, for C1,
there is no additional incentive for consumers improving the PF above 0.92. Users opting for C1 could
make profit by reactive power compensation if the PF without any such correction is lower than 0.92.

The battery and system model used in this chapter is described in Chapter 2.5.

  

Buying or Selling Price                                    

00:00 17:00

1.803 peso/kWh

Contract C3

8.623 peso/kWh

23:007:00

4.676 peso/kWh

Figure 9.7: Buying and selling price of electricity over a day under contract C3 with NEM
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Table 9.8: Storage Operation under C1 without NEM

Min Load Max Load Installed Storage
without solar without solar Solar kWp Role

Lmin Lmax below Lmin No storage active energy management required
Lmin Lmax between Lmin and Lmax Storage might increase self-consumption
Lmin Lmax above Lmax Storage increases self-consumption

9.4.1 Active Power Management
Energy storage active power could serve two purposes: (1.) increase self-consumption of locally generated
energy under the absence of NEM and (2.) perform arbitrage under ToU electricity pricing.

Under Contract C1

Energy price is fixed for the day and, therefore, no arbitrage is possible. Under fixed electricity price
storage could maximize self-consumption locally in absence of NEM. However, self-consumption could
only be increased for cases where the instantaneous generation is more than the instantaneous load [187].

Table 9.8 lists the effect on self-consumption with the size of installed solar in absence of net-metering,
which implies consumers have no incentive to supply power back to the grid and therefore, would attempt to
increase the self-consumption as much as possible [187]. In Table 9.8 Lmin, Lmax denotes the minimum and
maximum load without solar, 0 ≤ Lmin ≤ Lmax. For case where installed solar is comparable or larger than
maximum load without solar generation, storage substantially contributes in increasing self-consumption.

Theorem 9.4.1
For arbitrage to be profitable following condition should be valid:

pjsηdis >
pib
ηch

,

where pjs denotes the selling price at time instant j and pib denotes the buying price at time instant i,
such that j > i and j, i ∈ {1, 2, , ..., N}. Here N denotes the number of time instants in the horizon.

The proof of Theorem 9.4.1 is provided in Appendix A.9.
Performing arbitrage with contract C1 with NEM will not be profitable as Theorem 9.4.1 is not valid,

since pjs = pib ∀j, i and ηch, ηdis < 1. In this chapter we explore the usage of energy storage for different
contracts. Optimizing the energy storage is essential pertaining to its high cost. In context of C1 storage
can only be used either for backing up excess generation and/or for peak demand shaving. Recall, the
net load without storage is denoted as zi = di − ri, where di denotes the inelastic load and ri denotes
the renewable generation. Backing up energy will require no look-ahead and greedy behavior leads to
optimality. The optimal solution in such a case is governed by the sign of active power, P i = zi/h and is
given as
• If P i ≥ 0 then battery should discharge such that P iB = max

{
−P i, δminhηdis, (bi−1 − bmax)ηdis

}
,

• If P i < 0 then battery should charge such that P iB = min
{
−P i, δmaxh/ηch, bi−1 − bmin/ηch

}
.

With C2 or C3 with NEM

Optimal energy storage arbitrage under net-energy metering is introduced in Chapter 3. The proposed
algorithm provides a unique solution. However, performing arbitrage under time-of-use setting often has
infinite possible optimal solutions as many different charging and discharging trajectories would lead to
optimal arbitrage gains.

A battery performing arbitrage under contracts C2 and C3 in Uruguay will perform at maximum 1
cycle over a day of depth-of discharge equal to SoCmax − SoCmin. Consider the the battery capacity
denoted as brated could charge from SoCmin to SoCmax at off-peak period then the storage buying cost
including charging losses would be λoff-peak(SoCmax−SoCmin)brated/ηch. Similarly, for battery discharging
from SoCmax to SoCmin during peak period of ToU price, λpeak, would provide a revenue of λpeak(SoCmax−
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SoCmin)bratedηdis. The storage owner profit is the difference of the revenue made by discharging and cost
incurred during charging, shown as

Garb = (SoCmax − SoCmin)brated

{
λpeakηdis − λoff-peak/ηch

}
. (9.4.1)

Storage ramp rate selection under ToU is governed by the relationship between (a.) Toff-peak and Tch
and (b.) Tpeak and Tdis. For contract C2 we define Toff-peak as the period of 17 hours (from 00:00 to 17:00)
and Tpeak as the period of 6 hours (from 17:00 to 23:00). Refer to Fig. 9.6.

For contract C3 we define Toff-peak as the period of 7 hours (from 00:00 to 7:00) and Tpeak as the period
of 6 hours (from 17:00 to 23:00). Refer to Fig. 9.7.

Based on relationship between (a.) Toff-peak and Tch and (b.) Tpeak and Tdis following cases are proposed
for storage performing arbitrage under ToU prices:

Case 1: Toff-peak > Tch and Tpeak > Tdis: For this case the battery can be fully charged during off-peak
period and fully discharged during peak period. In this case the ramp rate of the battery should be selected
so the stress on battery (which is proportional to square of ramp rate) is minimized. The storage ramp
rate is as follows:
• If {pielec = λpeak} then discharge at δ∗peak = max((bmin − bmax)/Tpeak, (bmin − bi−1)/h, δmin),

• If {pielec = λoff-peak} then charge at δ∗off-peak = min((bmax − bmin)/Toff-peak, (bmax − bi−1)/h, δmax),
Case 2: Toff-peak > Tch and Tpeak < Tdis: Battery should only be charged to a level which could be

discharged completely during peak period. The storage ramp rate is as follows:
• If {pielec = λpeak} then discharge at δ∗peak = δmin,

• If {pielec = λoff-peak} then charge at δ∗off-peak = min((bmax − bmin)/Toff-peak, (bmax − bi−1)/h, δmax),
Case 3: Toff-peak < Tch and Tpeak > Tdis: For this case battery cannot be charged completely from bmin

to bmax within Toff-peak time period. The storage ramp rate is as follows:
• If {pielec = λpeak} then discharge at δ∗peak = max((bmin − bmax)/Tpeak, (bmin − bi−1)/h, δmin),

• If {pielec = λoff-peak} then charge at δ∗off-peak = δmax,
Case 4: Toff-peak < Tch and Tpeak < Tdis: For this case the storage ramp rate is given as follows:
• If {pielec = λpeak} then discharge at δ∗peak = δmin,

• If {pielec = λoff-peak} then charge at δ∗off-peak = δmax,
It is clear that for Case 1 described above, the battery will perform 1 cycle per day at a Depth-of-

Discharge equal to DoD = (bmax−bmin)
brated

= SoCmax − SoCmin. Based on the degradation model proposed in
Chapter 5, the number of cycles of operation could be controlled by increasing SoCmin and/or by decreasing
SoCmax. The control of cycles of operation using friction coefficient is introduced in Chapter 5.

We would like to highlight that similar to prior works [174, 182] and Chapter 5 for mid-peak period
under contract C3, the optimal action is to do nothing (i.e. stay idle with δ∗mid-peak = 0). Note that the
proposed ramp rate thresholds presented also minimized the stress on the battery; stress as defined earlier
on the battery is proportional to the square of the ramp rate [242, 164].

9.4.2 Compensation Strategy for Reactive Power
The unique attribute of contracts in Uruguay is the mechanism used for billing reactive power. The utility
have two thresholds for charging for reactive power. First we list the penalty
• For PF ∈ [0.92, 1]: Consumes pay no penalty under contract C1,
• For PF ∈ [0.82, 0.92]: Consumes pay penalty under contract C1, C2 and C3,
• For PF ∈ [0, 0.82]: Consumes pay higher penalty compared to case where PF ∈ [0.82, 0.92] under contract
C1, C2 and C3,

Consumers could reduce there cost of consumption by maintaining a high PF for contracts C2 and C3:
•Maintaining a PF above 0.92 could provide additional gains to consumers opting for C2 and C3. However,
consumers under C1 hold no incentive in improving the PF beyond 0.92.
• Improving PF which under nominal case is lower than 0.92 would reduce the cost of consumption under
all contracts.

Next we describe the control mechanism for improving power factor or in other words reactive power
compensation using energy storage.

169



Reactive Power Compensation using Energy Storage interfaced via a Converter

In Chapter 6 we present that reactive compensation using energy storage interfaced via a converter per-
forming arbitrage is largely decoupled. This is due to reactive power capability is governed by converter size
and instantaneous active power. However, if the converter is slightly over-sized then converter could supply
reactive power without being constrained primarily by instantaneous active power. Furthermore, since the
converter size is static and a non-varying parameter, therefore, lookahead in time is not required. This
implies myopic reactive power compensation matches in optimal solution. In Chapter 6, we show through
numerical results that no lookahead reactive power compensation along with arbitrage (which requires
lookahead) matches very closely with the co-optimization results where the storage performs arbitrage and
PF compensation. The former optimization problem is denoted as Prh and the later optimization problem
is denoted as Pplt in Chapter 6. Based on these findings, we propose myopic reactive power compensation
for all contracts. For users opting for C1, must not correct the PF beyond 0.92.

9.5 Control Algorithm for Storage in Uruguay
In previous sections we discussed the new contracts available for LV consumers in Uruguay and what
roles energy storage could play for such consumers. In this section we present the storage control algo-
rithm for the different contracts in Uruguay. The storage control algorithm consists of two algorithms:
UruguayStorageControl and CalculateKfac.

These algorithms could be used for contracts C1, C2 or C3. The consumer needs to specify storage
parameters, converter size, initial battery capacity. The code updates the storage control decision based on
battery capacity available until the end of month is reached. At the end of month the algorithm calculates
the profit due to storage integration for the consumer compared to the nominal case where no storage is
considered.

9.5.1 Storage Operation Immune to Uncertainty
Uncertainty in Active Power Control in Uruguay: Control of energy storage is coupled in time. For

the active power, if the battery is charged in the present time then the amount of energy available in
subsequent time instant will be higher. In Chapter 4 identify that storage performing only active power
arbitrage have uncertainty due to two parameters: (a.) uncertainty due to electricity price variation and
(b.) uncertainty due net load without storage variation. These sources of uncertainty was for the case of
real-time electricity price and where the selling price have an arbitrary ratio varying between 0 and 1 with
respect to the buying price [183], refer to Case 4 in Figure 9.1. However, for the case of Uruguay, the LV
consumers respond to Time-of-Use prices which vary in a deterministic manner, thus no uncertainty due
to electricity price variations.

In Chapter 3 we have identified that energy storage control under equal instantaneous buy and sell
price becomes independent of the net load without storage. This implies that active power control faces
no uncertainty with respect to contracts in Uruguay which have ToU pricing structure and NEM which
provides equal buy and sell price at each time instant. Refer to Appendix A.7 and Figure 9.1 for details.

Uncertainty in Reactive Power Control in Uruguay: Numerical results in Chapter 6 and Chapter 7 show
that storage interfaced via a converter operating with no lookahead is close to optimality. Furthermore,
we show in numerical results that valuation of reactive power compensation is significantly lower than
incentive in performing arbitrage. Therefore, in the algorithm presented for active and reactive energy
compensation, the active power is adjusted to maximize arbitrage gains and the available energy storage
converter is utilized for reactive power compensation, thus prioritizing active power over reactive power
compensation.

9.6 Numerical Experiments
The numerical results presents three scenarios. In Section 9.6.1 the potential of performing energy arbitrage
is identified based on gains made by performing arbitrage for a month. In Section 9.6.2 consumer cost of
consumption is compared with nominal case with storage to that of consumer load with energy storage
performing active and/or reactive energy compensation. Based on 2 standard models of Tesla PowerWall
we recommend the suitable contracts. A similar analysis would be required with consumer of different
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Algorithm 17 UruguayStorageControl
Global Inputs: Battery Characteristics: ηch, ηdis, δmax, δmin, bmax, bmin.
Inputs: Sampling time h, Number of points in a month Nmonth, Time instant index i = 0,
Function: Computes optimal Active and Reactive Power of Energy Storage Output for Contracts C1, C2 and C3
1: Initialize b0, and Input electricity prices λpeak, λmid-peak, λoff-peak,
2: Input periods of peak, mid-peak and off-peak as Tpeak, Tmid-peak, Toff-peak,
3: Set Epeak

a , Emid-peak
a , Eoff-peak

a , Epeak
a+ , Emid-peak

a+ , Eoff-peak
a+ = 0, Set Er, ErQ1 = 0,

4: Input the converter rating Smax
B , b0

5: while i < Nmonth do
6: i = i+ 1,
7: if Contract is C1 then Storage can only be used for increasing self-consumption as no Arbitrage possible
8: if Net load without solar zi ≥ 0 then Battery should discharge s.t. x∗

i =
max {−zi/ηdis, δminh, (bi−1 − bmax)},

9: else Battery should charge such that x∗
i = min {−ziηch, δmaxh, bi−1 − bmin}.

10: end if
11: else if Contract is C2 or C3 then
12: if pielec == λpeak then Battery should discharge, x∗

i = hmax
(

(bmin−bmax)/Tpeak, (bmin−b0)/h, δmin

)
,

13: else if pielec == λmid-peak then Battery should do nothing, x∗
i = 0,

14: else if pielec == λoff-peak then Charge, x∗
i = hmin((bmax − bmin)/Toff-peak, (bmax − b0)/h, δmax),

15: end if
16: end if
17: s∗

i = [x∗
i ]+/ηch − [x∗

i ]−ηdis and Set P iB = sign(s∗
i )×min

(
|s∗
i |, Smax

B

)
,

18: if Contract is C2 and C3 then Set QiB = −sign(Qi) × min
(
|Qi|,

√
(Smax
B )2 − (s∗

i )2
)

,

19: else Select QiB such that power factor is no more then 0.92, as C1 consumers have no additional incentive
20: end if

21: if pielec == λpeak then Calculate Epeak
a = Epeak

a + (P i + P iB)h, and calculate (Epeak
a )nominal =

(Epeak
a )nominal + (P i)h,

22: else if pielec == λmid-peak then Calculate Emid-peak
a = Emid-peak

a + (P i + P iB)h, and calculate
(Emid-peak

a )nominal = (Emid-peak
a )nominal + (P i)h,

23: else if pielec == λoff-peak then CalculateEoff-peak
a = Eoff-peak

a +(P i+P iB)h, and calculate (Eoff-peak
a )nominal =

(Eoff-peak
a )nominal + (P i)h,

24: end if

25: Aggregate reactive power, Er = Er + (Qi +QiB)h,
26: Aggregate reactive power in Quadrant 1, ErQ1 = ErQ1 + |(Qi +QiB)h|,
27: b∗

i = b0 + x∗
i and Update b0 = b∗

i ,
28: end while

29: if Contract is C1 then
30: Calculate (Kfac)nominal with C1 contract using CalculateKfac defined as Algorithm 18,
31: Calculate Kfac with C1 contract using CalculateKfac,
32: Nominal Cost = (λfixed + (Kfac)nominal)(Ea)nominal,
33: New Cost = (λfixed +Kfac)Ea,
34: else if Contract is C2 then
35: Calculate (Kfac)nominal with C2 contract using CalculateKfac defined as Algorithm 18,
36: Calculate Kfac with C2 contract using CalculateKfac,
37: Nominal Cost =

(
λpeak + (Kfac)nominal

)
(Epeak

a )nominal + λoff-peak

(
(Emid-peak

a )nominal + (Eoff-peak
a )nominal

)
,

38: New Cost =
(
λpeak +Kfac

)
Epeak
a + λoff-peak

(
Emid-peak
a + Eoff-peak

a

)
,

39: else if Contract is C3 then
40: Calculate Epeak

a+ = |Epeak
a |, Emid-peak

a+ = |Emid-peak
a |, Eoff-peak

a+ = |Eoff-peak
a |,

41: Calculate (Kfac)nominal with C3 contract using CalculateKfac,
42: Calculate Kfac with C3 contract using CalculateKfac,
43: Nominal Cost=λpeak(Epeak

a )nominal + λmid-peak(Emid-peak
a )nominal + λoff-peak(Eoff-peak

a )nominal +
(Kfac)nominal(Epeak

a+ )nominal,
44: New Cost = λpeakE

peak
a + λmid-peakE

mid-peak
a + λoff-peakE

off-peak
a +KfacE

peak
a+ ,

45: end if
46: Profit = Nominal Cost of Consumption − New Cost of Consumption with inclusion Storage,
47: Return Vectors x∗, QB and Profit.
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Algorithm 18 CalculateKfac
Inputs: Epeak

a , Emid-peak
a , Eoff-peak

a , (Epeak
a )nominal, (Emid-peak

a )nominal, (Eoff-peak
a )nominal, Er, ErQ1

Function: Computes Kfac for Contracts C1, C2 and C3 for Uruguay LV consumers

1: Initialize A,B,

2: if Contract is C1 then
3: Calculate Ea = Epeak

a + Emid-peak
a + Eoff-peak

a ,
4: Calculate (Ea) = (Epeak

a )nominal + (Emid-peak
a )nominal + (Eoff-peak

a )nominal,

5: if Er/Ea ≤ 0.426 then
6: Assign Kfac = 0,
7: else if 0.426 < Er/Ea ≤ 0.7 then
8: Assign Kfac = 0.4

(
Er
Ea
− 0.426

)
,

9: else
10: Assign Kfac = 0.4

(
Er
Ea
− 0.426

)
+ 0.6

(
Er
Ea
− 0.7

)
,

11: end if
12: if (Er)nominal/(Ea)nominal ≤ 0.426 then
13: Assign (Kfac)nominal = 0,
14: else if 0.426 < (Er)nominal/(Ea)nominal ≤ 0.7 then
15: Assign (Kfac)nominal = 0.4

(
(Er)nominal
(Ea)nominal

− 0.426
)
,

16: else
17: Assign (Kfac)nominal = 0.4

(
(Er)nominal
(Ea)nominal

− 0.426
)

+ 0.6
(

(Er)nominal
(Ea)nominal

− 0.7
)

,
18: end if

19: else if Contract is C2 then
20: Calculate Ea = Epeak

a + Emid-peak
a + Eoff-peak

a ,
21: Calculate (Ea)nominal = (Epeak

a )nominal + (Emid-peak
a )nominal + (Eoff-peak

a )nominal,

22: if Er/Ea ≤ 0.7 then
23: Assign Kfac = B

100

(
Er
Ea
− 0.426

)
,

24: else
25: Assign Kfac = B

100

(
Er
Ea
− 0.426

)
+ 100−B

100

(
Er
Ea
− 0.7

)
,

26: end if
27: if (Er)nominal/(Ea)nominal ≤ 0.7 then
28: Assign (Kfac)nominal = B

100

(
(Er)nominal
(Ea)nominal

− 0.426
)
,

29: else
30: Assign (Kfac)nominal = B

100

(
(Er)nominal
(Ea)nominal

− 0.426
)

+ 100−B
100

(
(Er)nominal
(Ea)nominal

− 0.7
)

,
31: end if

32: else if Contract is C3 then
33: Calculate Epeak

a+ = |Epeak
a |, Emid-peak

a+ = |Emid-peak
a |, Eoff-peak

a+ = |Eoff-peak
a |,

34: Calculate Ea+ = Epeak
a+ + Emid-peak

a+ + Eoff-peak
a+ ,

35: Calculate (Ea+)nominal = (Epeak
a+ )nominal + (Emid-peak

a+ )nominal + (Eoff-peak
a+ )nominal,

36: if ErQ1/Ea ≤ 0.7 then
37: Assign Kfac = A

100

(
ErQ1
Ea+

− 0.426
)
,

38: else
39: Assign Kfac = A

100

(
ErQ1
Ea
− 0.426

)
+ 100−A

100

(
ErQ1
Ea+

− 0.7
)

,
40: end if
41: if (ErQ1)nominal/(Ea+)nominal ≤ 0.7 then
42: Assign (Kfac)nominal = A

100

(
(ErQ1)nominal
(Ea+)nominal

− 0.426
)
,

43: else
44: Assign (Kfac)nominal = A

100

(
(ErQ1)nominal
(Ea+)nominal

− 0.426
)

+ 100−A
100

(
(ErQ1)nominal
(Ea+)nominal

− 0.7
)

,
45: end if

46: end if

47: Return (Kfac)nominal, Kfac.
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Table 9.9: Arbitrage Gains Potential for a Month

brated kWh Contract C2 Contract C3
1 106.68 147.32
2 213.36 294.65
5 533.40 736.62
10 1066.81 1473.23
20 2133.62 2946.46

Table 9.10: Nominal load of a LV consumer

Load Consumed during kWh
Peak Period 200
Mid Peak 200
Off-peak 100

consumption pattern. In Section 9.6.3 we present that based on storage operational cycles and degradation,
the battery under certain contracts and size could be profitable for consumers. The financial returns of
storage in Uruguay are significantly higher than several ISOs in the USA and Europe as observed in a
case-study presented in Chapter 3 Section 3.4.

9.6.1 Arbitrage Potential
In Table 9.9 we list the arbitrage gains the storage owners would make for SoCmax = 0.98, SoCmin = 0.2,
ηdis=ηch =0.95. From Table 9.9 it is clear that storage is hugely profitable. Storage owner would make
3.56 peso per day per kWh for contract C2 and 4.91 peso per day per kWh for contract C3. For a user with
a 1000 peso per month as electricity bill under C3 would have to pay nothing perpetually if they install a
7kWh battery (performing arbitrage only) which could charge completely within the off-peak time period
and discharge completely during peak periods.

9.6.2 Consumer gains with/without storage
For this numerical experiment we assume a consumer with active energy consumed over a month listed
in the table 9.10. We assume the cumulative absolute value of reactive power is ErQ1 = 1.2 × Er and
cumulative value of absolute of active power Ea+ = Ea. For the consumer load listed in Table 9.10 we
vary the amount of reactive load and see the effect without and with inclusion of energy storage providing
active and/or reactive energy compensation.

Nominal Case

The nominal case consists of inelastic load with DG output in absence of energy storage. Thus the nominal
case is described for no compensation of active and reactive energy at consumer end. It is essential to
analyze the effect on consumer load listed in Table 9.10 on the cost of consumption based on the different
contracts. Note the presented analysis will vary with consumer load and we wish to present the mechanism
of analysis for the case described, of course a similar analysis needs to be performed for a specific user who
wish to select the appropriate contract based on their consumption behavior.

Fig. 9.8 presents the the cost of active energy with increasing share of reactive energy. It is clear that
cost of active energy is independent of increase in reactive energy. In absence of flexibility to alter the
active energy consumption, clearly contract C1 is best suited for the consumer presented in Table 9.10.
Fig. 9.9 presents the cost of reactive energy under contract C1, C2 and C3. With increase in share of
reactive energy, cost paid by consumer under C1 is significantly higher compared to C2 and C3.

Fig. 9.10 plots the variable cost component denoted as CCivariable. It is clear that the cost of active
power dominates the variable cost. The same trends are visible in Fig. 9.12 which presents the total cost
of consumption which includes the variable cost, fixed cost and power cost. Note that the fixed cost for
C2 and C3 is almost double the cost paid by consumer under C1. Fig. 9.11 presents the ratio of the cost
of reactive energy and the cost of active energy in percentage. For consumers consuming equal quantities
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Figure 9.8: Active energy cost with different contracts
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Figure 9.9: Reactive energy cost with different contracts
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Figure 9.10: Variable cost with different contracts
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Figure 9.11: Cost of reactive energy compared to active energy cost with different contracts
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Figure 9.12: Total energy cost with different contracts
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Figure 9.13: Cost of active energy with arbitrage

active and reactive energy end up paying almost 8% of active energy cost under C1, less than 4% of active
energy cost under C2 and less than 3% of active energy cost under C3. Clearly, the value of reactive energy
compensation is highest under contract C1. We would like to bring to notice that the cost paid by consumer
for active energy is significantly higher than that of the reactive energy. In the proposed algorithm the
energy storage converter active power output is selected based on maximization of arbitrage gains and
remaining converter capacity is used for supplying reactive power for correcting the PF in accordance to
the contract selected by the LV consumer.

Inclusion of Tesla PowerWall 1 (6.4 kWh)

The total arbitrage gains made by consumer owning Tesla PowerWall 1 which has a rated capacity of 6.4
kWh is 682.4733 pesos under contract C2 and 942.5827 pesos under contract C3. Fig. 9.13 presents the
cost of active energy with inclusion of energy storage performing only arbitrage. Now we can see that
inclusion of storage have turned contract C3 most profitable for the consumer.

Fig. 9.14 presents the total cost with inclusion of energy storage performing only arbitrage. In this
case, total cost under C2 and C3 are comparable. Assuming energy storage converter could supply all
the reactive energy that the user consumed, which is fairly reasonable as the utility aggregates reactive
power over the month. Fig. 9.15 presents the total cost of consumption (includes fixed and power cost) with
energy storage performing arbitrage and reactive power compensation. Clearly, contract C3 consumer pays
the least and consumer under C1 pays the maximum electricity bill in this scenario. Fig. 9.16 shows the
percentage of consumer would make with respect to the nominal case under the same contract. Consumers
with C3 would make a profit exceeding 25% by installing Tesla PowerWall 1. Note since consumer under
C1 could perform only reactive power compensation, it makes a profit only if the ratio of reactive energy
and active energy exceeds 0.426.

Inclusion of Tesla PowerWall 2 (13.5 kWh)

The total arbitrage gains made by consumer owning Tesla PowerWall 2 which has a rated capacity of 13.5
kWh is 1439.6 pesos under contract C2 and 1988.3 pesos under contract C3.
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Figure 9.14: Total cost with only arbitrage
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Figure 9.15: Total cost of electricity
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Figure 9.16: Profit due to inclusion of storage in terms of savings in percentage
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Figure 9.17: Active energy cost with arbitrage for PowerWall 2
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Figure 9.18: Total cost with only arbitrage for PowerWall 2

Fig. 9.17 presents the cost of active energy with inclusion of energy storage performing only arbitrage.
Now we can see that inclusion of storage have turned contract C3 most profitable for the consumer. Note
that the gap between C2 and C3 increases as the storage size increases, as the amount of profit under C3
is higher for performing arbitrage compared to C2. Compare Fig. 9.13 and Fig. 9.17.

Fig. 9.18 presents the total cost with inclusion of energy storage performing only arbitrage. In this
case, total cost under C2 and C3 are not comparable. Consumer would pay around 150 pesos lower under
C3 then under C2.

Fig. 9.19 presents the total cost of consumption (includes fixed and power cost) with energy storage
performing arbitrage and reactive power compensation. Clearly, contract C3 consumer pays the least and
consumer under C1 pays the maximum electricity bill in this scenario with Tesla PowerWall 2. Fig. 9.20
shows the percentage of consumer would make with respect to the nominal case under the same contract.
Consumers with C3 would make a profit exceeding 50% by installing Tesla PowerWall 2. Consumers with
C2 would make a profit exceeding 40% by installing Tesla PowerWall 2. Note since consumer under C1
could perform only reactive power compensation, it makes a profit only if the ratio of reactive energy and
active energy exceeds 0.426.

We observe that consumers with storage should opt for C3, i.e., three level time-of-use electricity pricing
rather than fixed pricing under C1. Note that the selection of contract also depends on the reactive energy
consumed, load and storage size. In this analysis we assume that conditions Toff-peak > Tch and Tpeak > Tdis
are true.

9.6.3 Energy Storage Profitability
The cost of Tesla Powerwall 1 is $3000 and Tesla Powerwall 2 is $5500 (for the year 2017), making the per
kWh cost of $470 and $398 [66]. Consider the storage could perform 3000 cycles of 100% depth-of-discharge
over a maximum calendar life of 10 years. We use the degradation model presented in [182]. In order to
have the storage application profitable the per cycle gains should satisfy
• For Tesla Powerwall 1: the battery should earn more than $1 for each cycle in order to be profitable,
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Figure 9.19: Total cost of electricity for Tesla PowerWall 2
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Figure 9.20: Profit due to inclusion of storage in terms of savings in percentage for Tesla PowerWall 2

• For Tesla Powerwall 2: the battery should earn more than $1.8333 for each cycle in order to be profitable.
The depth-of-discharge of battery for each day is equivalent to DoDdaily = SoCmax − SoCmin. Thus,

the battery performs 0.7608 cycles of 100% DoD each day and 277.7 cycles each day.
Of course the storage gains are dependent on the load active and reactive energy consumed during

different times of the day. For the nominal load profile storage gains by only performing arbitrage appears
to be profitable as the dollar per cycle gain exceeds the dollars per cycle cost calculated based on the cost
and life ratings of the battery. Adding the reactive compensation gains would further improve the dollars
per cycle of the battery, in effect reducing the payback period. The simple payback period for cases where
storage is profitable would lie between 3-4 years, similar to storage returns in the island of Madeira as
presented in Chapter 8.

9.7 Conclusion and Perspectives
The details of electricity billing and net-metering policy under the new electricity consumer contracts
applicable to the low voltage electricity consumers in Uruguay are summarized. The consumer contracts

Table 9.11: Profitability

Parameter Tesla Powerwall 1 Tesla Powerwall 2
Desired $/cycle $1.0 $1.833

Month gain in pesos C2: 682.5, C3:942.6 C2: 1439.6, C3:1988.3
Month gain in dollars C2: 20.29, C3:28.02 C2: 42.8, C3:59.11
Total cycles in month 22.83 22.83

Profit in $/cycle C2: 0.889, C3: 1.227 C2: 1.874, C3: 2.589
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make it attractive for consumers to install energy storage and distributed generation. Due to the huge
difference between peak and off-peak electricity pricing, installing energy storage could be rewarding for
LV consumers. Furthermore, consumers could use the storage converter for reactive power compensation
which could provide an additional revenue stream for the consumer. For each contract threshold-based
uncertainty insensitive algorithm based on hierarchical control of active energy for arbitrage and reactive
energy compensation is proposed. In the present work, the question of whether energy storage is profitable
for three new energy contracts in Uruguay is assessed. These contracts are of particular interest for
two reasons. Firstly, the buying price and selling price are the same, for which it is shown that policy
for performing arbitrage is insensitive to load and generation. Secondly, reactive power compensation is
monetarily compensated in some of those cases. With data from real batteries and taking into account
battery degradation, it is shown that for some of the new contracts it will be profitable to buy a battery,
while for others it will not. For the latter case, an evaluation of the best contract available is also provided.
Using numerical results we show that arbitrage is more profitable than reactive energy compensation, but
Chapter 6 identifies that reactive compensation can still be performed without compromising the former.
Energy markets with similar pricing and net-metering policy could use this analysis.
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Chapter 10

Effect of Electricity Pricing on
Ancillary Service

What we know is a drop, what we don’t know is an ocean. - Issac Newton

Summary: The objective of this chapter is to analyze the effect of real time electricity price (RTP)
on the amount of ancillary services required for load balancing in presence of responsive users, information
asymmetry and forecast errors in demand and renewable energy sources (RES) generation. We consider a
RTP that is determined by the forecasted generation and ramping cost. A community choice aggregator
manages the load of all the consumers by setting the price. The consumer’s objective is to minimize their
overall cost of consumption. Ancillary services are called upon to balance the load in real time.

With zero RES in the power network and a high degree of load flexibility, the proposed RTP flattens
and the volatility in demand vanishes. However, in presence of RES the volatility in price and demand is
reduced up to an extent and ancillary services are required for load balancing. The amount of ancillary
services required increases with forecast errors. We also propose a real time algorithm that approximates
the optimal consumer behavior under the complete information setting. Extensive numerical simulations
are provided using real data from Pecan Street and Elia Belgium.

10.1 Introduction
European Union has set the goal of 20% renewable generation by 2020 and 27% by 2030 [61]. India has set
an ambitious goal of achieving 40% cumulative electric power capacity from non fossil fuel sources by 2030
[69]. A cost efficient solution to achieve load balancing, essential for reliable operation of power system, is
to encourage retail customers and other market participants to take part in price based demand response
in slower time scales and ancillary services in real time. The objective of this chapter is to propose a
RTP design that is implementable and effective in incentivizing consumers to use their load flexibility to
manage the volatility in the generation with a high proportion of intermittent RES. This enables the system
operator to reduce the overall cost by not having to deploy the more expensive fast ramping generators.

10.1.1 Related Work
There is extensive work on real time pricing that addresses the peak load issues. Authors in [337] propose
a controller for residential HVAC systems that significantly reduce peak loads and electricity bills with
modest variations in thermal comfort. Authors in [279, 291] propose a real time electricity pricing scheme
that reduces the peak-to-average load ratio, i.e. flattens the load, leading to peak shaving for the grid.
Authors in [302] present how price based demand side management programs assist in reduction of peak
demand and present a case study of impact of real time pricing on power network in the city of Gothenburg,
Sweden. Note that demand side management includes DR, energy-efficiency and conservation programs
[319]. Primary objective of the works [310, 302, 337, 279, 291] is peak shaving. In our work we show that
dynamic pricing not only helps in reducing peaks and generating profit for the consumer but also assists
in reducing the ramping requirement in the power network.

In addition, there are many works that propose an equilibrium price process that maximizes social
welfare. Authors in [166] show the existence of a competitive equilibrium when players are price-takers.
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They establish that under the equilibrium price process, players selfish response coincide with the social
welfare-maximizing policy computed by a social planner. Authors in [147] claim that at the Nash equi-
librium, with multiple stores of sufficient size, the stores collectively erode their own profits. Essentially,
each store attempts to increase its own profit over time by over-competing at the expense of the others.
All of the above works study the equilibrium price process in the presence of flexible loads and/or energy
storage.

10.1.2 Contributions
We assume consumers have a portion of flexible load, which they shift in time to minimize their consumption
cost. The generation side consists of schedulable generators and RES generation. These generators can
be turned on when needed. The generator starting time constraints are ignored in this chapter. We also
assume the aggregate demand and the RES generation used for setting the price of electricity contains
forecast errors. The contributions of this chapter are:
• Effect of RTP on ancillary service needs: We analyze the effect of RTP design which considers information
asymmetry in presence of responsive users on the amount of ancillary services needed for load balancing.
• Real Time Price design in presence of RESs and price-responsive users. We show that the greedy behavior
of consumers to minimize its own cost of consumption lowers the volatility of price and demand, increases
profit for consumers and lowers the ancillary service required for load balancing. We also show that in the
presence of RES with forecast error, as the level of flexibility increases the ancillary service requirements
saturate to a level.
• Implementable Price Design under information asymmetry: We consider price design under the setting
where ex-ante (before real time) price is set by an aggregator. Information asymmetry is caused by the time
delay between setting RTP, consumption decision and intermittent generation. Setting RTP requires the
prediction of aggregate demand and RES generation by the utility if the price is set ex-ante and prediction
of price by the consumers if the price is set ex-post [287]. In our work, price design accounts for this
information asymmetry which has been largely ignored in prior works on real time electricity price design.
Most prior works consider time interval as a point, which worked well due to price inelasticity of demand.
However, due to increased energy awareness and technological advancements the future consumers cannot
be assumed to be inelastic to price fluctuations.
• Volatility of electricity price and demand: We show that the volatility in demand and price lowers with
increased fraction of load flexibility at the consumer end in presence of forecast errors.
• Sensitivity Analysis: We study (i) the effect of load flexibility and its variation on the amount of ancillary
service required for load balancing, (ii) the effect of variation of RES penetration for a fixed forecast error
on the amount of ancillary service required, (iii) the effect of variation of forecast error for a fixed renewable
penetration on the amount of ancillary service required.
• Real Time Algorithm for Consumer’s Scheduling: Proposed real time algorithm approximates the optimal
consumer scheduling under the complete information setting.

10.1.3 Key Observations
We would like to remind the reader of the key observations,
•With schedulable generation (no intermittent generation), the proposed price design completely balances
the load, with sufficient amount of flexibility in consumption.
• For power networks with intermittent generation, price by itself is not sufficient to balance load and so
ancillary services are required. With increase in forecast error for RES, the size of ancillary services needed
for balancing load increases.
• In presence of responsive consumers and RES, the proposed price design can lower the volatility of price
and aggregated demand but does not eliminate the volatility completely.

10.2 System Description
We propose an electricity RTP design for a power network consisting of generators, aggregator, consumers
and ancillary service participants. The aggregator’s objective is to minimize peak to average ratio of the
aggregate power consumption and induce responsiveness from the consumers so as the amount of ancillary
service needed for load balancing is as low as possible. The consumer’s objective is to minimize their cost
of consumption.
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10.2.1 Consumer Model
Consumers are assumed to be price responsive and alter their consumption based on price variations, with
the constraint that the aggregate energy consumed by users under nominal operation without any load
flexibility equals the new power consumption trajectory with load flexibility. Note in this chapter we do not
consider energy saving, rather shifting load in time like demand response. Denote the time horizon as T .
Let the time horizon be sampled in to N intervals of sampling time h. Denote by Do the nominal demand
profile of the consumer. The nominal demand is the power consumption at a time given there is no load
flexibility. Let the electricity price corresponding to the nominal demand profile be poelec. Let x ∈ [0, 1] be
the fraction of the load of the nominal demand that is flexible. Also, let D denote the power consumption
trajectory of the consumer with load flexibility x and pelec denote the electricity price corresponding to
the demand profile D. Note that poelec and pelec differ because consumer’s response influences the market
price in our setup. The consumer’s optimization problem (P) is given by

min
N∑
i=1

pelec(i)Di, s.t.
N∑
i=1

D(i) =
N∑
i=1

Do
i , Di ∈ [Dmin(i), Dmax(i)] (P)

where Dmin(i) = (1 − x)Do
i and Dmax(i) = (1 + x)Do

i . Load flexibility is assumed to have power and
energy constraint, much like an energy storage device [184].

10.2.2 Generation Scheduling
At time instant i the controllable portion of generation, Pc(i), is scheduled based on forecasted demand
D̂i and forecasted RES generation P̂r(i) such that total generation Pg(i) = Pc(i) + P̂r(i). However, the
actual demand Di and actual RES generation Pr(i) are know at the next time instant i+ 1. Therefore,
the task of load balancing cannot be performed by ex-ante RTP design due to this information asymmetry.
Furthermore, RTP can only partly facilitate the load balancing as the time scales of RTP is 5 min to
an hour. Hence, ancillary services are required to balance load. Our motivation for this chapter is to

Table 10.1: Information and Decisions Asymmetries

Time Instant i i+ 1
Aggregator Information D̂i, P̂r(i) Di, Pr(i)

Decisions pelec(i)
Consumers Information pelec(i)

Decisions Di

understand the role of load flexibility in compensating volatility, load balancing and minimizing peak to
average ratio in electricity markets.

10.2.3 Price Model
In Community Choice Aggregation or a microgrid the per unit cost of power generation at time instant i
is defined as

f(Pg(i)) =
CRpuEr(i) + CApuEA(i) + CBpuEB(i) + ....

Er(i) + EA(i) + EB(i) + ...
(10.2.1)

where CApu is the per unit energy generation cost (LCOE) of generation type A and EA(i) is the amount of
energy generation from generation type A at time instant i. R represent the renewable energy generators.
The amount of energy generated at any time instant ’i’ by source R, i.e. Er(i) = Pr(i)h, is accommodated
at all times in Pg(i). Er(i) is not scheduled generation and depends on exogenous parameters like solar
insolation, wind velocity etc. The total energy generated at time instant i is defined as Eg(i) = Pg(i)h =
Er(i)+EA(i)+EB(i)+EC(i)+.... The total cost of generation is represented as Cgen(i) = f (Pg(i))×Eg(i).

Our proposed electricity price structure has two components: generation cost and ramping cost. As
identified in [311], the price of electricity is not only governed by generation but also by the amount
of change in generation with respect to the previous time period. However, unlike [311], we consider
information asymmetry in the price design. This ramp is performed due to volatility in demand and
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uncertainty in RES generation. The ramping component of the proposed price model will increase the
price as the power network becomes more volatile, is given as

P∆(i) = γ|Pc(i)− Pc(i− 1)|, (10.2.2)

where γ is a positive scalar. The factor γ has to be tuned so as the ramping component does not dominate
and to ensure the stability of the price design. Therefore, the proposed price of electricity for per unit of
energy is defined as

pelec(i) = f
(
Pg(i)

)
+ P∆(i). (10.2.3)

The cost incurred by agent Q at time instant ’i’ for consuming energy eQ(i) is given as, CQ(i) =
pelec(i)eQ(i).

For scheduling generation we use forecasted aggregate demand. The aggregate demand in the immediate
previous time instant which is already known is used as the forecast in the present time instant. The
generation scheduled at time instant i equals the demand in immediate past time instant i− 1, given as
Pg(i) = D̂i = Di−1. This persistence model model has been statistically evaluated in [167], [287] for wind
power generation with forecast uncertainty.

Remark 9. As the fraction of flexibility in consumption increases, the incentives for users will increase
or remain the same. Consider two scenarios with different levels of flexibility x1, x2, such that x1 > x2
and

∑
D∗1 =

∑
D∗2 =

∑
Do is met where D∗1 is the optimal demand trajectory with flexibility x1 and D∗2

is the optimal demand trajectory with flexibility x2, then∑
px1

elec(i)D∗1(i) ≤
∑

px2
elec(i)D2(i) ≤

∑
p̂elec(i)Do

i ,

where Do represents the nominal demand curve with no flexibility.

10.2.4 Real time Operation
The optimization problem (P) for aggregate consumer model cannot be implemented in real time because of
the cumulative power constraint. In this section we present an algorithms that consumers can implement
for approximating the optimal solution under deterministic scenario. The calculation of instantaneous
demand using proposed algorithm is sequential and therefore, implementable in real time. We propose

Algorithm 19 RealTimeControl(i, x, d̄,Do
i , r̄, P̂r(i))

1: Calculate Dmin(i) = (1− x)Do
i

2: Calculate Dmax(i) = (1 + x)Do
i .

3: (D∗i )RT = min |Di − d̄+ r̄ − P̂r(i)|, s.t. Di ∈ [Dmin(i), Dmax(i)]

Algorithm 19 for computing the new aggregate load trajectory for consumers with load flexibility for a
power network with RES generation. The input to the algorithm is the time instant, degree of load
flexibility, mean nominal demand for the user, instantaneous nominal load and forecasted RES generation.
The algorithm use the mean nominal load and mean RES generation to ensure total energy consumed
in the time horizon is matched to the nominal energy consumed in the time horizon. The mean of the
nominal demand is denoted as d̄ = 1

N

∑N
i=1D

o
i . The mean renewable energy generated in the time horizon

is denoted as r̄ = 1
N

∑N
i=1 P̂r. Note Alg. 1 assumes a homogeneous population of loads, for heterogeneous

loads respective mean load and mean RES generation has to be estimated.

10.3 Indices Used for Measurement
In this section we define indices to measure volatility in price, demand and generation. We also list the
indices to measure ancillary services required for achieving load balancing.

10.3.1 Volatility Indices
RTP design considering variable generation cost and ramping cost components, as proposed in the chapter,
will become more volatile with increase in uncertainty in generation, demand, scheduling mismatch and
ramping constraints. This volatility in prices will induce users to alter their consumption behavior. These
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users responding to these prices will reduce the volatility of price to a level where no further deviation
is profitable [147]. This implies that with high degree of load flexibility the disparity for non-responsive
consumers will reduce.

Measuring Volatility of Generation and Aggregate Demand

• Case 1− No responsive users and no renewables: The generators are all controllable and the volatility
is due to change in demand.

D̂(i) = Do
i−1,

Pg(i) = Pc(i) = Do
i−1,

Demand and Grid volatility, V non
c =

∑∣∣D̂i −Do
i−1
∣∣, (10.3.1)

where Do
i−1 is the nominal demand in time instant i− 1.

• Case 2− No responsive users and with renewables: The total generation consists of controllable generators
and intermittent RES generation. The volatility in power network is not only because of demand but also
because of uncertainty in RES generation

Pg(i) = Pc(i) + P̂r(i) = Do
i−1,

volatility of RES, Vr =
∑∣∣P̂r(i)− Pr(i)∣∣,

where P̂r(i) is forecasted RES generation. The volatility in the power network is due to mismatch in actual
versus the forecasted demand and RES generation. The grid volatility is defined as

Grid volatility, Vnon = V non
c + Vr maxPr(i)

maxDo
. (10.3.2)

The volatility in demand in this case is equal to V non
c .

• Case 3− Responsive users and no renewables: The generators are all controllable and the volatility is
due to change in demand.

D̂i = Di−1,

Pg(i) = Pc(i) = Di−1,

Demand and Grid volatility, V res
c =

∑∣∣Di −Di−1
∣∣. (10.3.3)

• Case 4− With responsive users and with renewables: The volatility with new load trajectory D is
denoted as

Pg(i) = Pc(i) + P̂r(i) = Di−1,

Grid volatility, Vresponsive =
∑∣∣Di −Di−1

∣∣+ Vr maxPr
maxD . (10.3.4)

The volatility in demand in this case is equal to V res
c .

Measuring Volatility of Price

The nominal volatility in price is given as

V pricenominal =
∑∣∣poelec(i)− poelec(i− 1)

∣∣, (10.3.5)

where poelec is the nominal price corresponding to nominal demand, Do, with no load flexibility. In a power
network with responsive users, the volatility in price will be denoted as

V priceresponsive =
∑∣∣pelec(i)− pelec(i− 1)

∣∣. (10.3.6)

where pelec is the price corresponding to new optimal demand curve, D, with load flexibility x.
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10.3.2 Measuring Ancillary Service Required
The instantaneous power mismatch is communicated to ancillary service participants to respond. We
define the residual or the load imbalance as the difference of generation and demand.
With only controllable generation: the residual is denoted as

R(i) = Pg(i)−Di, (10.3.7)

The residual represents the mismatch between supply and demand.
Mismatch with RES : The actual renewable generation is not known because of the intermittent nature.

If forecasted value is given as P̂r. The error in magnitude of energy is represented as P errr (i) = Pr(i)−P̂r(i).
The residual in this case is given as

R(i) = Pg(i)−Di + P errr (i), (10.3.8)

where Pg(i) = Pc(i)+ P̂r(i), Pc(i) is the controllable portion of generation. The residual for electricity grid
with schedulable generation plus RES depends on the generation and demand mismatch and the error in
forecast of RES energy. The balancing problem with only schedulable generators had uncertainty at the
consumer end, however with RES there is also uncertainty in generation. Based on the sign of R(i):
Case 1: R(i) < 0 implies D(i) > Pg(i) and it is desirable that the consumers reduce consumption for load
balance and it is incentivized to reduce the load.
Case 2: R(i) > 0 implies D(i) < Pg(i) and it is desirable that the consumers increase their consumption
and it is incentivized to increase the consumption.

We define four scalar values to measure the amount of ancillary service required for achieving load
balancing as:

• Total ramp up capacity needed, Rup =
∑N
i=1[R(i)]+

• Total ramp down capacity needed, Rdown =
∑N
i=1[R(i)]−

• Maximum ramp up needed, Mup = max[R(i)]+ ∀i

• Minimum ramp up needed, Mdown = max[R(i)]− ∀i

The ancillary service requirement will be governed by quadruplet, ACneeded = {Rup, Rdowm,Mup,Mdown}.
ACneeded will decide the size of ancillary services needed for load balancing.

10.4 Numerical Results
The proposed electricity price signal is evaluated for completely schedulable generation and for schedulable
generation with RES. The simulation parameters used are γ = 0.5, T = 24 and h = 0.25.

10.4.1 Results with only schedulable generations
We consider a 1000 MW capacity system where the power system is formed with different types of genera-
tors with different cost of generation (LCOE) as listed below. The per unit generation cost is approximated

Generation Type A B C D E F G
Cost in $/MWh 40 60 100 120 150 180 200

Share in % 35 25 20 5 5 5 5

by 6e− 5P 2
g (t)− 0.022Pg(t) + 41 $/MWh.

We normalize the load consumption data of Belgium on 6th January 2017 [46] to our rated maximum
capacity. Fig. 10.1 shows the nominal value of demand with no flexibility [46] and demand trajectories with
increasing degrees of load flexibility over a period of one day. Note, the optimal consumption trajectory
becomes flatter with increased load flexibility, this is a desired scenario for the aggregator as the peak
consumption is reduced and power ramp needs are reduced as much as possible. Fig. 10.1 indicate that the
optimal strategy for consumers partially responsive to proposed real time electricity price is to flatten their
aggregate consumption trajectory. Therefore, for controllable generators with increase of load flexibility
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Figure 10.1: Optimal demand trajectories with load flexibility

we can say
∑
|D∗i −D∗i | → 0 as x ↑ . From Fig. 10.1 it is evident that the ramping cost component tends to

zero for flexibility greater that 25%, for this numerical example. Fig. 10.2 shows the comparison of mean,
variance and maximum value of price for the day decreases with increase in consumer responsiveness for
the optimal solution and proposed real time algorithm. The performance of real time algorithm matches
that of the optimal solution as the load flexibility increases. Note the correlationship between maximum
value of price and the fraction of flexibility is not as strong as the mean and variance of the price. Fig. 10.3
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Figure 10.2: Volatility in price with load flexibility

compares the demand volatility and consumer profit for the optimal scenario with the real time algorithm.
It is evident that the consumer greedy behavior is leading to reduction in price and demand volatility. The
volatility of demand with responsive users is lower compared to nominal demand without responsiveness,
given as (V res

c )∗x ≤ V non
c is true. Fig. 10.3 also reveals that the consumer’s profit saturates at a certain

level of load flexibility. From the consumer point of view, this is the optimal level of flexibility because the
profit increases up to this level and saturates for any further increase in the flexibility. Note the amount
of flexibility required for flattening the demand depends on the nominal demand curve and cannot be
generalized from the presented numerical results. Fig. 10.4 shows the four indices measuring the ancillary
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Figure 10.3: Demand volatility and consumer profit with x

services for achieving load balancing in the power network. It is evident from the figure that cumulative
ramp up and down capacity required are negatively correlated with fraction of flexibility. This implies
increase in consumers flexibility lowers required ancillary services. We conduct a numerical experiment
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Figure 10.4: Ancillary Services needed with load flexibility

with two different user groups with different consumption profiles. Fig. 10.5 shows that the consumers
with two user groups with different load profiles, Load1 and Load2. The consumers with more volatility in
demand have more incentive in having a higher degree of load flexibility, evident from the profit of these
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user groups.
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Figure 10.5: Consumer profit with Nominal Load Profiles

10.4.2 With RES Generation
The generation mix described in Section 4.1 is extended here. Let us assume 33.3% of total generation
is solar generation (500 MW maximum capacity) and the cost of generation is $35/MWh, equal to the
cheapest controllable generator. We assume ±30% forecast error. The solar generation data is taken from
Pecan Street [58] and normalized for our rated solar generation. The actual and forecasted values are
related as Pr(i) = P̂r(i)(1 + err), where err is an uniform random variable representing the forecast error
at that time instant. We would like to highlight that the generation from RES has to be accommodated
in total generation mix at all times.

Fig. 10.8 compares the performance of real time algorithm (Algo. 19) with respect to the optimal
solution of the power network with 33% RES share and ±30% forecast error and increasing consumer
responsiveness. Fig. 10.7 shows the mean, variance, maximum value and standard deviation of price with
intermittent solar generation with variation of consumer load flexibility. Note that variance is much higher
compared to Fig. 10.2. Fig. 10.8 shows the demand volatility and aggregate consumer profit with increase
in consumer load flexibility. Fig. 10.9 shows the ancillary service requirement with increasing flexibility. It
is interesting to note that the cumulative ramp up and down requirement is minimum for just 3% consumer
load flexibility and it saturates at a higher level for any further increase in consumer load flexibility, which
is still lower than the nominal required ancillary service for achieving load balancing. Fig. 10.10 shows the
ancillary service requirement with increasing error in forecast. 100 simulations are conducted for 0%, 10%,
20%, 30%, 40% and 50% error in forecast with 20% load flexibility and 33.3% RES in the power network
by capacity. It is evident that accuracy in the forecast of power generation by RES is essential to limit the
ancillary services required, and as the forecast error increases the amount of ancillary services required will
increase. Therefore, integration of RES will increase the load balancing needs of the power network. Thus,
planning of increasing in RES share should duly consider load balancing aspect of the power system in order

188



0 4 8 12 16 20 24

Time of Day

-100

0

100

200

300

400

500

600

P
o

w
e

r 
G

e
n

e
ra

te
d

 (
M

W
)

Actual RES Generation

Forecasted RES Generation

Error = Actual - Forecast

Figure 10.6: Solar Generation

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
60

65

70

75

$
/M

W
h

Mean Price

Optimal Solution
Real time algorithm

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

50

100

150

Variance Price

Optimal Solution
Real time algorithm

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Degree of Flexibility

60

80

100

120

140

$
/M

W
h

Max Price

Optimal Solution
Real time algorithm

Figure 10.7: Indexes of price with respect to varying degrees of flexibility and in presence of 33.3% solar
generation
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Figure 10.8: Demand Volatility and consumer profit with load flexibility with 33.3% solar and ±30% forecast
error
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Figure 10.9: Ancillary Services needed with load flexibility with 33.3% solar
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Figure 10.10: Size of ancillary services with forecast error

to ensure its reliable operation. Fig. 10.11 presents a sensitivity analysis of variation of renewable share
and consumer flexibility on the ancillary service requirement, price and demand volatility and aggregate
consumer profit. The forecast error for this result is fixed at ±30%. It is evident that prices become
more volatile with increased share of renewable sources under the proposed price model. The increased
volatility also provides an opportunity for users with load flexibility to increase their profit by responding
to the price variations. The ancillary service requirement increases with increased share of renewables in
the power network. The uncertainty in RES generation cannot be completely compensated with ex-ante
price design. For 50% RES with ±30% forecast error, the cumulative ramp up reduced by ≈ 40%, the
cumulative ramp down reduced by ≈ 44%, profit increased from 0 to 6.29e5, standard deviation of price
reduced from 39.5 to 27.4 for the increase in load flexibility from 0 to 55%.

10.5 Conclusion and Perspectives
In this chapter, we propose an implementable real time electricity price design for a power system with
a high proportion of the uncontrollable and highly variable RESs in the generation mix. Their highly
variable nature requires rethinking of how current power systems are organized and operated. A part of
the solution is the utilization of consumption flexibility. This requires a price design that incentivizes the
consumers to alter their consumption in a way that meets the needs of the grid.

RTP design, considering information asymmetry, assists in lowering but not eliminating, price and
demand volatility in presence of flexible loads, RES forecast errors and demand uncertainty. Therefore,
commissioning of large scale RES should consider proportional expansion of the ancillary market for reliable
operation of a power network by ensuring load balancing at all times. With an increased share of RESs
and forecast error in the generation, the required ancillary services should proportionally increase to ensure
power network reliability.

The observations made in this chapter raises the question of optimal resource sharing in real-time price
market and ancillary service market. It needs to be identified that based on response time, degree of flexi-
bility scheduling resources in which market can assist the grid the most. In this thesis we dealt with energy
storage participating in the real-time electricity market in Chapter 3 to Chapter 9 and distributed/bulk
storage participating in ancillary services in Chapter 11. Resource allocation is not dealt with in this thesis
and would be a crucial question to answer as these resources are costly.
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Chapter 11

Control of a fleet of batteries

By failing to prepare, you are preparing to fail. - Benjamin Franklin

Summary: Battery storage is increasingly important for grid-level services such as frequency reg-
ulation, load following, and peak-shaving. The management of a large number of batteries presents a
control challenge: How can we solve the apparently combinatorial problem of coordinating a large number
of batteries with discrete, and possibly slow rates of charge/discharge? The control solution must respect
battery constraints, and ensure that the aggregate power output tracks the desired grid-level signal.

A distributed stochastic control architecture is introduced as a potential solution. Extending prior
research on distributed control of flexible loads [134], a randomized decision rule is defined for each battery
of the same type. The power mode at each time-slot is a randomized function of the grid-signal and its
internal state. The randomized decision rule is designed to maximize idle time of each battery, and keep the
state-of-charge near its optimal level, while ensuring that the aggregate power output can be continuously
controlled by a grid operator or aggregator. Numerical results show excellent tracking, and low stress to
individual batteries.

11.1 Introduction
Future power grids will have greater volatility due to the higher percentage of weather dependent renewable
energy sources connected to the grid. These sources are intermittent, and their power generation has sharp
peaks and valleys. This makes load balancing and frequency regulation challenging.

Storage systems have enormous potential value for a range of services. Individual consumers can use
storage to enable more effective use of residential solar power, or to reduce electricity costs in regions
with time-of-use pricing. Battery energy storage systems (BESS) are increasingly important for grid-
level services such as frequency regulation, load following, peak-shaving, and deferral of investment in
transmission and generation resources [162].

The value of responsive regulation is now recognized and incentivized through FERC Order 755, issued
in 2011. FERC 755 report [270, pages 23-24] contains a survey of experiments conducted by Beacon Power
and Primus Power to determine the value of highly responsive resources for ancillary service. Primus claims
that batteries provide approximately 76% more “area control error” (ACE) correction when compared with
traditional service from generation.

Among the goals of the present chapter are:

• Address the apparent combinatorial problem of coordinating a large number of geographically dis-
tributed batteries to provide grid services.
• Ensure that each battery within the fleet does not violate local constraints, such as bounds on the
state of charge (SoC).

One challenge is that the grid level signals exhibit ramps and volatility that may be beyond reach for any
individual battery. Another is that many battery technologies exhibit strong asymmetry with respect to
charging/discharging rates; this is particularly true for lithium-ion technology.

Whether the batteries are distributed across a region or in a central location, techniques are required to
ensure that the fleet of batteries can perform desired grid services reliably and accurately, while respecting
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the inherent constraints of individual batteries [212, 124, 200]. For most cell chemistries, the effective
capacity of a battery is increased with slow discharge rates [215]. It is argued in [285] that the battery
lifetime is reduced when discharge current is subject to high variance.

Distributed control is adopted so that the complexity of the control solution does not grow with the
number of batteries. It is useful to employ randomization to introduce additional degrees of freedom
for control. Each battery in the fleet is modeled as a controlled Markov chain, in which the controlled
transition probabilities are common among each battery of the same type; this defines a local randomized
control architecture. The randomized decision rule is designed to encourage idle time for each battery,
and keep the state-of-charge near its optimal level, while ensuring that the aggregate power output can be
continuously controlled by a grid operator or aggregator.

The aggregate behavior is approximated by a mean field model, which is a nonlinear input-output
system, as in [233, 247]. This concept was brought to the power systems community in [237]. In numerical
results it is found that linearized dynamics are nearly flat over a large bandwidth. An additional macro
feedback loop is used to ensure accurate tracking; integral control is justified because of the simple aggregate
dynamics.

It is found in numerical experiments that the goals can be achieved with this hierarchical control
architecture: the aggregate of batteries accurately tracks the grid signal, and constraints on the battery SoC
are strictly enforced. It is also found that individual batteries behave in a nearly deterministic manner –
randomization leads to smooth input-output dynamics without causing “chattering” of individual batteries.

Related literature
The basic distributed control architecture developed in this chapter is based upon prior work on “demand
dispatch” – the creation of virtual energy storage from flexible loads [247, 133, 134]. For loads whose
power consumption cannot be varied continuously, a distributed randomized control architecture provides
the needed degrees for freedom to track a smooth power reference signal, despite the discrete nature of
each load. The use of randomization has been adopted in other work, such as [209, 241, 343]. A significant
difference is the design approach: it is argued here and in prior research that with appropriate local control
at the load or individual battery, the aggregate of resources will appear to the grid operator as an input-
output system that is easily controlled. Local control also ensures that strict bounds on quality of service
to the load are maintained.

While there are many papers on BESS, we are not aware of any work with a comparable distributed
control architecture, or comparable results. The prior work [121, 233] considers low-frequency services
such as “valley filling”, based on BESS in which each battery is a residential electric vehicle. There are
many recent papers on managing generation along with grid level storage, such as [96, 276].

The recent work [200] surveys mathematical models for estimating the cost of running LiIon batteries,
emphasizing the importance of maintaining the SoC near its optimal level. This chapter and [333] focus on
control loops to regulate the SoC level, and the latter focuses on estimating potential revenue from BESS
in typical ancillary service markets. Reference [243] considers a nonlinear model for a single battery, and
compares control techniques to address the conflicting goals of managing SoC and tracking a regulation
signal. These papers provided part of the motivation for the present work in this chapter.

While the setting is entirely different, [285] provides insights and control techniques for managing
batteries in portable electronic devices. An MDP (Markov Decision Process) model is proposed to obtain
good performance for the device, while ensuring that the battery is not subject to stress. It is claimed
that the battery control system will extend the battery service lifetime by more than 20%. It is not clear
if the methodology of [285] can be extended to grid applications.

This chapter is divided into four sections. Section 11.2 provides the distributed control design, nominal
battery model, controlled Markov model of an individual battery and the mean field model for aggregate
behavior of the fleet. Section 11.3 provides the numerical results for different battery models tracking PJM
RegD signal with efficiency losses. Section 11.4 concludes the chapter and provides some perspectives on
the topic.

11.2 Distributed control design
Consider a large collection of batteries, potentially distributed across a large geographical region within
a single balancing authority (BA). In numerical experiments we will consider data from PJM; the largest
BA in the U.S. [75]. A BA maintains supply-demand balancing within its operating region by regulating
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frequency to its nominal value (60 Hz in the U.S.), and regulating power flow between adjacent BAs. This
requires resources to provide ancillary services – traditionally, power output from generators is ramped up
and down to track a signal broadcast from the BA. At PJM, for frequency regulation there are two signals:
RegA and RegD. The latter is distinguished by its higher frequency content, and it is also conditioned so
that it is approximately zero energy over long time-horizons. Fig. 11.1 shows the cumulative sum of the
RegD signal over a typical day in 2015. While the sum eventually returns to zero, on this day it took a
long positive excursion before returning to zero at midnight.
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Figure 11.1: Cumulative sum of PJM RegD – data from January 4, 2015.

The distributed control approach of [247, 115] is based on a Markovian nominal model for an individual
resource (flexible loads in these papers). The main difficulty of extending this approach to batteries is
that the nominal behavior for batteries is highly deterministic: if there is no need for storage, the batteries
should stay idle at the mid-range SoC value. This will extend battery life, and also ensure that there is
ancillary service capacity in each direction (both charging and discharging). The first step in this proposed
design is to construct a stochastic nominal model that is close to this deterministic nominal behavior.

11.2.1 Nominal model design
Fig. 11.2 illustrates the overall control architecture in which design is based on two components: there
is a local decision rule at each battery based on a common signal {ζt} that is broadcast to all batteries.
Error feedback based on the regulation signal {rt} and measurements of aggregate power is used to ensure
accurate tracking.

Time is discrete with time steps of h seconds. In the next section, for PJM RegD signal tracking we
will use h = 2 seconds. We assume that an individual battery can be in three different modes of operation:
charging, discharging and idle. The state of a battery has two components, the mode and the state of
charge (SoC):

x = (m, s),

where m ∈ {ch,dis, id} and s ∈ [0, 1], with 1 corresponding to a fully charged battery.
While a battery is in a charging mode (m = ch), it is charging with a constant rate denoted δch. Its

new state after h seconds is (ch, s+ hδch). Similarly, if a battery is discharging, then its new state after h
seconds is (dis, s− hδdis). A battery that is idle does not change its SoC, so the new state after h seconds
is (id, s).

We describe next the change of mode of operation of a battery. Denote by pch, pdis, pid : [0, 1]→ [0, 1]
the functions that model the probability to stay in the charging, discharging or idle mode respectively.
Bounds on SoC impose the constraint pch(s) = 0, for all s > 1− hδch and pdis(s) = 0 for all s < hδdis.

In a state (m, s), a first decision (first coin flip) is made to decide if there is a change of mode of the
battery. If so then the second decision is made to decide which of the remaining two modes the battery is

t

rt ζt yt
Gc

Distributed Battery Fleet Individual Battery

Σ

−+

Reference Aggregate power Y i
t

Figure 11.2: BESS control architecture: Local control at each battery combined with error feedback based
on aggregate power is used to track the regulation signal. The power output of an individual battery Y it takes
on a finite number of values.
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going to switch to. This choice is done with the probabilities proportional to the values of the p functions
of the remaining two modes.

As an example, suppose the current state is x = (ch, s). The new state, after h seconds is then:

x+ := (ch, s+ hδch), with probability p+
0 (x)

x0 := (id, s), with probability p0
0(x)

x− := (dis, s− hδdis), with probability p−0 (x)
(11.2.1)

where p+
0 (x) = pch(s),

p0
0(x) = (1− pch(s)) pid(s)

pid(s) + pdis(s)

and p−0 (x) = (1− pch(s)) pdis(s)
pid(s) + pdis(s)

The design of pch, pdis, pid used in the numerical results of this chapter is given in Fig. 11.3. In this
design, the target SoC interval was set to 40 - 80% SoC. If the battery is charging, it will remain charging
with probability almost 1 until it reaches 40% SoC. The probability to keep charging then decreases and
reaches almost 0 at 80% SoC. The design of pdis is symmetrical. The function pid has values almost 1 for
50-70% SoC values and it is almost 0 outside the target interval.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

pid idle
pch charging
pdis discharging

SoC 

Figure 11.3: Design of switching probability functions pch, pdis, pid.

The nominal Markov model for an individual battery is then given by a transition kernel P0. Its state
space X is the union of three intervals; let B denotes its Borel sigma field. For any state x, the probability
measure P0(x, · ) is supported on at most three states. From (11.2.1) we see that for the state x = (ch, s),
and for any A ∈ B, P0(x,A) =

p+(x)I{x+ ∈ A}+ p0(x)I{x0 ∈ A}+ p−(x)I{x− ∈ A}

11.2.2 Controlled Markov model for an individual battery
Based on this nominal model, a controlled Markov model for an individual battery can be obtained following
similar steps as in [115]. The main difference is that the proposed model evolves on a continuous state
space compared to the discrete state space design in this previous work.

Let U(x) denote the power output at state x; it is assumed that this takes on just three values: U(x) = 0
for x = (id, s), and the remaining values are consistent with the Markov model:

|U(ch, s)|
U(dis, s) = δch

δdis
, 0 ≤ s ≤ 1.

For any fixed value of ζ, the probability measure Pζ(x, · ) is also supported on at most three states.
For the family of transition matrices, the three states (x+, x0, x−) depend on x but not on ζ: Pζ(x,A) =
p+
ζ (x)I{x+ ∈ A}+ p0

ζ(x)I{x0 ∈ A}+ p−ζ (x)I{x− ∈ A}, x ∈ X, A ∈ B.
The values of p+

ζ (x), p0
ζ(x) and p−ζ (x) are set as follows:

p+
ζ (x) = p+

0 (x) exp
(
ζU(x+)− Λζ(x)

)
p0
ζ(x) = p0

0(x) exp
(
ζU(x0)− Λζ(x)

)
p−ζ (x) = p−0 (x) exp

(
ζU(x−)− Λζ(x)

) (11.2.2)

with Λζ(x) = log
(∑

m∈{−,0,+} p
m
0 (x) exp

(
ζU(xk)

))
.
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This is similar to the myopic design introduced in [240]. It can be interpreted as an instance of the
optimal design introduced in [247], but with a time-horizon of one rather than infinite. This transformation
of the nominal model will encourage discharge when ζ > 0, and charging when ζ < 0.

11.2.3 Mean Field Model
The family of transition kernels {Pζ : ζ ∈ R} is constructed to define local decision making: Each battery
evolves as a controlled Markov chain on a finite state space, with common input ζ = (ζ0, ζ1, . . . ). It is
assumed that the scalar signal ζ is broadcast to each battery. If a battery is in state x at time t, and
the value ζt is broadcast, then the battery transitions to the state x′ according to the probability measure
Pζt(x, ·).

Let Xi
t = (M i

t , S
i
t) denote the state of the ith battery at time t. The dynamics of the first component

are governed by the randomized policy; the second component denotes SoC, which evolves as a controlled
random walk:

Sit+1 = Sit + hδch charge mode, M i
t = 1

Sit+1 = Sit − hδdis discharge mode, M i
t = −1

Sit+1 = Sit idle, M i
t = 0

(11.2.3)

The empirical probability measure is defined as the average,

µNt (A) = 1
N

N∑
i=1

I{Xi
t ∈ A}, A ∈ B.

As in prior work for the discrete state space [247, 133, 115], we assume that average power output is
obtained through measurements or state estimation. At time t, this is expressed in terms of the empirical
probability measure:

yNt = 1
N

N∑
i=1

Y it =
∫
U(x)µNt (dx), t ≥ 0, x ∈ X,

where Y it = U(Xi
t) as shown in Fig. 11.2.

The mean field model is defined by the recursion

µt+1(A) =
∫
Pζt(x,A)µt(dx) (11.2.4)

Under general conditions on the model and on µ0 it can be shown that µNt is approximated by µt. One
condition is that the input ζt is a continuous function of (yN0 , . . . , yNt−1, . . . ) that depends upon t, but does
not depend upon N .

Under these conditions, the average power output is approximated using the mean-field model:

yt =
∫
U(x)µt(dx), t ≥ 0. (11.2.5)

In prior work on demand dispatch it is found that although the input-output mean field dynamics are
nonlinear, the dynamics are accurately approximated by a linear model, and often the linearized dynamics
are minimum phase [247]. Desirable aggregate behavior can also be obtained through design [115, 240].

11.3 Numerical results
The following three scenarios were considered, differentiated by their time-to-charge Tch, time-to-discharge
Tdis, and power ratings:

Scenario Tch U(ch, s) Tdis U(dis, s)

S1: 2hr -0.5kW 2hr 0.5kW
A1: 2hr -0.5kW 1hr 1kW
A2: 2hr -0.5kW 30min 2kW

(11.3.1)

In each case, a collection of 1,000 batteries can deliver at most 500kW of power. In the symmetric model
the lower limit is -500kW. The regulation signal was scaled to respect these constraints.
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Figure 11.4: Bode plots for linear models obtained using Least Squares.
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Figure 11.5: Bode plot, margins and root locus for the loop transfer function.

In each of these three scenarios, a linear approximation of the input-output dynamics was obtained
using Least Squares. A seventh order model was sufficient in all cases.

Fig. 11.4 shows the Bode plots obtained for models S1 and A1. In each case, the magnitude plot is
nearly constant over the frequency range of interest, f ∈ [10−4, 5× 10−2].

While the magnitude plots are nearly perfectly flat, the true dynamics are only approximately linear.
To achieve accurate tracking we introduce error feedback, with input ζt, error et = rt − yNt , and “plant
transfer function” Gp: the linear model for input-output dynamics.

Consider the symmetric model S1 for which the Bode plot of Gp is shown in Fig. 11.4. Design of the
compensator Gc is simplest in continuous time. The loop transfer function is the product G = GcGp, and
the compensator Gc is constructed so that it has high gain at low frequencies, and the crossover frequency
fc is chosen at the desired closed-loop bandwidth. Since by definition |G(jfc)|dB = 0, a glance at Fig. 11.4
implies that |Gc(jfc)|dB ≈ 35 if fc ∈ [10−4, 5× 10−2].

The flat magnitude plot for Gp motivates the use of pure integral control, Gc(s) = K◦I s
−1, with

K◦I = 50fc (using |50|dB ≈ 35). This is implemented in discrete time:

ζt = KI

t∑
i=0

ei , KI = hK◦I (11.3.2)

where h = 2 is the sampling time in seconds.
On choosing fc = 5 × 10−2 we obtain K◦I = 250 × 10−2, and hence KI = 5. Fig. 11.5 shows a Bode

plot of the loop transfer function with this design (represented in continuous time), along with the root
locus plot for the discrete-time loop transfer function.
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11.3.1 Tracking and SoC Performance
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Figure 11.6: Tracking of PJM’s RegD Normalized Signal Test in Scenario S1 with 1000 batteries. Also
shown is the control signal (11.3.2).

All experiments use PJM’s Normalized Signal Test for RegD to define the reference signal {rt} [75].
The initial condition for each battery was at rest, with SoC at 50%. The impact on the initial condition
was insignificant in these and other experiments.

Consider first the symmetric model, Scenario S1, in which each battery requires 2hr to fully charge
(resp. discharge), and draws 0.5 kW when charging. The tracking results and control signal obtained using
the integral gain KI = 5 are displayed in Fig. 11.6.

It is found that an individual battery operates in a nearly deterministic manner, and the SoC is
maintained to the desired limits, even though the local control is randomized. The plots marked “η = 1.0”
in Fig. 11.7 show a comparison of the mean SoC and the evolution of SoC for an individual battery. All
goals have been achieved: grid level tracking is nearly perfect, and battery constraints are maintained.
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Figure 11.7: Evolution of SoC for the symmetric model.

Tracking results obtained with only 200 batteries are shown in Fig. 11.8. There is some extra high-
frequency error due to quantization, but the performance is well within the requirements of PJM.

The PI design was repeated in the two asymmetric models. Tracking is more challenging in these cases.
This is true in part because there is a capacity reduction associated with asymmetry. It is also found that
nonlinear effects are more apparent in asymmetric models.

Results for the asymmetric case A2 are displayed in Fig. 11.9. It is clear that the true system is
nonlinear: when the regulation signal is large and positive, the closed loop system appears to be under-
damped (oscillation is observed). When the regulation signal is negative then the closed loop system
appears over-damped. Similar but less extreme results were observed in the case A1.

11.3.2 Impact of efficiency loss
In the preceding experiments efficiency losses have been ignored. For example, the round trip efficiency
of Tesla’s Powerwall is just 92.5%. A linear model was used to test the impact of efficiency losses. For an
efficiency parameter ηch, ηdis ∈ (0, 1], the evolution of the state of charge of battery i is given by

Sit+1 = Sit + ηch × hδch charge mode, M i
t = 1

Sit+1 = Sit − hδdis/ηdis discharge mode, M i
t = −1

(11.3.3)
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Figure 11.8: Tracking of PJM’s RegD Normalized Signal Test in Scenario S1 with only 200 batteries.

The power output of the battery remains the same: Y it = U(Xi
t) for each t and i.
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Figure 11.9: Tracking of PJM’s RegD Normalized Signal Test in Scenario A2.

In the results described below we take η = 0.9. For the 40 minute PJM test signal, this loss presents
no impact on tracking performance. There is an observable negative drift in SoC over this time interval
– typical results are shown in Fig. 11.7 in Scenario S1 with 1,000 batteries. The SoC at the end of the
experiment is slightly smaller than observed with η = 1. This would be unacceptable on a 24 hour run:
an additional feedback loop is required to draw additional power to make up for losses.
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Figure 11.10: Mileage nearly reaches the ideal with and without losses. The error at the end of the run is
under 3% in case S1.

Excess operation of the fleet of batteries was computed based on mileage – a traditional metric of
service from batteries [270]. For an individual battery, the cumulative mileage by time T and its average
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are defined by

RkT =
T∑
t=1
|U(Xk

t )| , RT = 1
N

N∑
k=1
RkT T ≥ 1 . (11.3.4)

The following sequence is regarded as a metric for excess operation:

ET = RT −R
∗
T

R∗T
, where R∗T = 1

T

T∑
t=1
|rt|

It can be shown using Jensen’s inequality that ET ≥ 0 in the ideal case of perfect tracking. We obtain
ET = 0 if each battery tracks the reference exactly.

With E defined to be the final value at the end of the 40min PJM test signal, the following are typical
values:

Scenario E , η = 1 E , η = 0.9

S1 2.51% 2.54%
A1 3.30% 3.62%

with scenario data given in (11.3.1). The impact of losses is negligible in these experiments. In all cases,
it is surprising to see only about 3% beyond the ideal mileage using a distributed randomized control
strategy.

The evolution of mileage in these four cases is shown in Fig. 11.10. The close match with the ideal
means that most batteries in the fleet are cooperating, in the sense that the sign of U(Xi

t) matches the
sign of rt, or is equal to zero, for the overwhelming majority of indices i = 1, . . . , 1, 000.

11.4 Conclusions and Perspectives
It is remarkable that a fleet of ‘dumb, slow batteries’ can accurately track a grid level signal with much
faster temporal characteristics, while maintaining individual SoC within desired bounds. We observe that
for sampling time h = 2 seconds and min(Tch, Tdis) ≥ 1800 seconds, the myopic control with no lookahead
leads to less than 4% regret, implying near optimal solution. Note that h << min(Tch, Tdis).

There is of course much more work to be done on local control design, and control techniques for the
aggregate. What is the best way to resolve the asymmetric behavior observed in Fig. 11.9? One approach
is at the macro-level: gain scheduling could be used, in which the gain KI is reduced when the regulation
signal is positive, and increased when it is negative. An alternative is to refine the local control design to
make the aggregate appear more linear, as in [240].

Further research is needed to investigate the heterogeneous setting (e.g. with respect to the capacity,
charging and discharging rates), and the robustness to un-modelled dynamics (e.g. charging/discharging
rates that depend on the current SoC level). Another direction concerns state estimation both for the
aggregate power consumption used as a control feedback and state estimation for the local control.
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Chapter 12

Drift Control for a Fleet of Batteries

A ship is always safe at shore but that is not what it’s built for. - Albert Einstein

Summary: A distributed fleet of batteries participating in fast dynamic regulation should accurately
track the regulation signal denoting the system imbalance and at the same time battery charge level is
maintained which will ensure the battery can track the regulation signal sustainably without reaching
minimum or maximum charge level. In such a case the battery cannot either ramp-up or ramp-down.
We propose an additional drift compensation layer of control to the distributed stochastic control of a
fleet of batteries proposed in Chapter 11, in order to maintain state-of-charge (SoC) of the battery in the
optimal band of operation. The proposed control layers are redesigned using Linear Quadratic Regulator
(LQR) which minimizes the input energy and tracking error for aggregate power and maintaining SoC.
Further, gain scheduling is proposed for adaptive proportional gain for larger deviation of SoC from the
desired level. Using numerical simulations we show that the addition of this layer of control does not
deteriorate the ability of distributed fleet of batteries to perform fast dynamic regulation and it assists in
the stable operation of batteries in presence of efficiency losses and non-zero mean regulation signal. We
use PJM’s performance evaluation metrics to show the efficacy of the proposed controller in presence of
storage efficiency losses.

12.1 Introduction
Many believe that there will be a battery revolution over the next decade − energy storage systems will
be distributed across the grid at residential homes, electric vehicles, data centres, etc. Resources such
as pumped storages, small hydro plants, compressed gas, flywheels, aggregate load flexibility can act as
virtual batteries. With increasing share of intermittent renewable energy sources connected to the grid,
the need for fast ramping ancillary service will grow. In Chapter 11 we present a mechanism to control
distributed fleet of batteries for providing ancillary services to the grid. The solution proposed in this
chapter ensures that battery’s quality-of-service (QoS) is met. The QoS of a battery in context of this
chapter is defined considering two operational features of Li-ion based batteries. First, Li-ion should not be
over-charged or over-discharged, which is ensured by the proposed nominal design of battery limiting the
SoC level within the pre-decided optimal SoC band. Second aspect of QoS is achieved by limiting cycles
of operation by maximizing idle time of the battery. It is essential to duly regulate energy storage cycle of
operation as identified in [174]. Overusing the battery will reduce the operational life of the battery.

In this chapter, we redesign the control of the fleet of the batteries introduced in Chapter 11 with an
additional control layer for ensuring that the mean SoC of the fleet of battery remains in the desired band.
The proposed solution is scalable and require minimum communication infrastructure. The characteristics
of the nominal model are the same as described in Chapter 11. Unlike flexible loads, the nominal design
of batteries are not as natural, since nominal behavior of a battery is to stay idle. The battery in [114]
is modeled as continuous time Markov chain with transition probabilities calculated based on centralized
control signal. The proposed stochastic control tend to maximize idle time of batteries which will provide
the time for battery capacity recovery. Minimizing the variance of discharge current profile of a battery
leads to maximizing battery lifetime [286].

Authors in [150] consider a power system consisting of a high penetration of wind generation and storage
systems for regulation of frequency. The feedback controller proposed maintains the SoC at the optimal
operating point. Authors in [262] identify the importance of maintaining the SoC level close to 50%. A
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grid-connected EV supplies a distributed spinning reserve according to the frequency deviation at the plug-
in terminal, which is used as a signal of supply and demand imbalance in the power grid. The importance
of maintaining SoC is identified in [195, 235, 227, 340, 137, 312]. Authors in [195] propose supervisory
controller for AC/DC microgrid with objectives to maximize utilization of renewables, maintaining SoC
of battery banks and managing power exchange. [235, 340] describe battery energy system with focus
on control mechanism for SoC balancing of battery units. Authors in [227] proposed the control of EV
batteries for performing frequency regulation while charging to the desired level. For battery in [137] the
SoC needs to be maintained between 10% and 90% of the rated capacity. The battery controller in [312]
ensures through local optimization that battery SoC is constant for plug-in-hybrid vehicle. Distributed
stochastic control is used for controlling fleet of batteries and flexible loads having an error feedback based
on the measurements or estimates of aggregate power and the local decision rule based on a common scalar
signal that is broadcast to all the loads and/or batteries [135]. In order to ensure the longevity of a battery,
the constraints on SoC, ramping and temperature should be respected by the controller.

12.1.1 Frequency Regulation in PJM
PJM, a balancing authority, is part of Eastern interconnection in the USA. Each balancing authority must
comply with standards set by North American Electric Reliability Corporation (NERC). The “Real Power
Balancing Control Performance“ standard requires each balancing authority to control its area control error
(ACE) within specified limits in terms of yearly averages and on minute-by-minute basis [3]. Frequency
regulation is the tool to smooth out the real-time supply and demand imbalances, or ACE.

Due to fast ramping characteristics of batteries, a 2008 study by Pacific Northwest National Laboratory
[236] suggests that 1 MW of fast-responding resources can provide the same regulation service as 1.7 MW
of an average hydropower plant, 2.7 MW of an average combustion turbine, or 29 MW of an average steam
turbine. The advantage of using batteries for fast response regulation is evident, due to the high precision
in tracking [218]. However, energy storage devices have finite ability to absorb or inject power due to its
finite capacity. In comparison, conventional power plants can be more flexible in adjusting its output,
constrained by its starting/stopping time restricting their ramping ability. Thus, fast ramping resources
performing dynamic regulation (complements traditional generation) if cannot sustain the output which
accurately tracks the regulation signal for a long time then their performance advantage decreases. In
order to use resources like batteries, energy neutrality is essential. Energy neutrality is defined as the case
when cumulative energy input equals the cumulative output energy in a time window considered.

In 2011, FERC’s Order 755 required grid operators to compensate frequency regulation providers,
including new fast ramp-rate resources, according to their actual performance and technical ability to
support the grid system. On October 1, 2012, with the purpose of incorporating accurate but energy-
limited storage resources, PJM split the frequency regulation signal into two signals: slow-responding
Regulation A (RegA) and fast-responding Regulation D (RegD). In the initial construction of this split-
signal system, RegA was designed for resources “with the ability to sustain energy output for long periods
of time, but with limited ramp rates,” while RegD was designed for resources “with the ability to quickly
adjust energy output, but with limited ability to sustain energy output for long periods of time” [218].

Using the study conducted by KEMA, PJM developed a valuation system to determine the optimal
mix of RegA and RegD resources [17], the study simulates different combinations of RegA and RegD for
achieving load balancing. It is observed that introducing RegD resources reduces the overall amount of
regulation needed until a certain point, increasing RegD resources beyond leads to diminishing returns
from using RegD. According to PJM, the reason that an excessive share of RegD resources can worsen the
reliability as to maintain energy neutrality, sometimes the RegD control signal “moves in opposite control
direction than desired by dispatch” [238]. The concepts of optimal mix and relative benefits are captured
by the marginal benefits factor, which measures how well a RegD resource can substitute for RegA, while
still satisfying the regulation requirement. The benefit factor for RegD is almost always greater than 1 and
for RegA is always 1, making RegD tracking more beneficial for participants. In early 2015 PJM noticed
that larger participation of RegD tracking makes it difficult to ensure its energy neutrality as sometimes the
regulation signal was maintained by manually intervening to correct the fast regulation signal moving in
the wrong direction [171]. To avoid larger participation of RegD, PJM implemented the following changes:
(a) in December 2015, PJM deteriorated the benefit factor making RegD tracking less lucrative [261],
(b) reduced the maximum amount of RegD resources to be procured from 62 to 40%, and (c) finally in
early 2017 PJM re-engineered the frequency regulation signals to achieve “conditional neutrality“ for RegD
resources. The new RegA and RegD signals now work together so as energy neutrality is only supported
for RegD resources when there are excess RegA resources available with extra capacity [218].
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The conditionally neutral RegD signal makes the usage of batteries as regulation services very difficult.
This is evident from the decline of front of the meter energy deployment which reduced from 51.4 MW in
Q3 2015 to just 2.3 MW in Q3 2016. The non-zero mean regulation makes it essential for battery based
dynamic regulation to maintain SoC tightly close to optimal level which would ensure sustained operation
of batteries. Due to the above reasoning, the fleet of batteries needs to maintain their mean SoC close
to the desired level which will ensure that the fleet has both ramp-up and ramp-down capability at all
times. With this motivation, we propose a drift control layer along with accurate tracking feedback layer
to ensure the SoC level do not drift drastically. We show through numerical results that inclusion of such
a layer would not deteriorate the performance indices which measures the quality of regulation provided.

Regulation resources currently receive a two-part payment that consists of capability payment and
performance payment, both of which are scaled according to the performance score, are shown below.
Performance score is a measure the quality of regulation provided by a participant.

Capacity Payment = λcapCregPscore,

Performance Payment = λperfCregRmileagePscore,

where λcap is the regulation market capability clearing price, λperf is the regulation market performance
clearing price, Creg is the committed regulation capacity, Rmileage is the mileage ratio of RegD over RegA
and Pscore is the performance score calculated hourly. A good performance score is essential for maximizing
gains for a participant in regulation market. The key contributions of this chapter are:
• Drift compensation control layer: due to tracking a non-zero mean regulation signal and/or losses in
charging and discharging, the SoC of batteries can drift outside the optimal band. Thus a lower available
capacity to either ramp up or ramp down. We redesign the proposed control in Chapter 11 with the
inclusion of additional control layer compensating the mean SoC drift while ensuring good tracking.
• Drift update at a lower time scale: The drift compensation requires SoC measurement. We propose
updating the drift layer at a much slower time scale at least for every half the charging or discharging time
of the batteries.
• Controller design: We linearize the non-linear system model. Across this fixed point, the parameter
fitting is formed using the least square method. The augmented state space model is used for identifying
control gains which minimizes control energy and tracking error of aggregate power and SoC drift using
LQR control design. Further, gain scheduling is performed which prioritizes maintaining state-of-charge
for larger deviation of SoC from the desired levels.
• Performance evaluation: Using PJM’s performance evaluation metrics, combination of accuracy, precision
and delay scores for tracking, we show that distributed fleet of batteries can track faster temporal dynamic
regulation signal in presence of efficiency losses (charging efficiency (ηch) and discharging efficiency (ηdis))
without deterioration in performance index.

A demand dispatch architecture is proposed in Chapter 11 where a geographically distributed fleet
of batteries not only provides ancillary services to the grid but also takes into consideration the health
of batteries by reducing the operational cycles (increases cycle life) and increasing idle time (increases
calender life). Often life of a battery is defined as the combined effect of cycle and calender life, see
Chapter 5. State space for an individual battery is again the Cartesian product: a particular state is
denoted as x = (m, s), where m = {ch,dis,id} represents the mode of operation which could be either
charging (m =ch), discharging (m=dis) or idle (m =id), and s ∈ [0, 1] denotes the SoC. Normalized power
delivery at state x depends on the mode of operation: U(ch)=−1, U(id)=0, U(dis)=1. We use the nominal
battery model proposed in Chapter 11 Section 11.2.1.

This chapter is organized in six sections. Section 12.2 describes the drifting of SoC because of efficiency
loss. Section 12.3 presents the controller design using linearization, LQR control and gain scheduling. Sec-
tion 12.4 introduces the performance indices used by PJM for evaluating the dynamic tracking. Section 12.5
presents the numerical results and Section 12.6 concludes the chapter.

12.2 Drift compensation for a fleet of batteries
Batteries can act as generators momentarily, however, they have limited capacity and the charge level has to
be replenished. Furthermore, batteries incur losses in charging, discharging and ac/dc and dc/ac conversion
cycle, thus they consume finite amount of energy. This lost energy in cycling has to be compensated,
ensuring the mean SoC of the fleet of batteries remain in the optimal band of operation.
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For guaranteeing the objective achievement of providing dynamic regulation using batteries, as proposed
in Chapter 11, the mean SoC of ’N ’ batteries should remain in optimal SoC band at all times. Mean
SoC drifting to its boundaries will limit the capability of the fleet to either ramp up or ramp down thus
constraining its ability to accurately track the regulation signal. The controller minimizes the error through
feedback control. The feedback error et is given as et = rt− yNt , where rt ∈ [−1, 1] is the regulation signal
and yNt ∈ [−1, 1] is the normalized aggregate behavior of the fleet at time t is

yNt = 1
N

N∑
k=1
U(Xk

t ). (12.2.1)

For a perfect feedback controller tracking will have the feedback error approximately equal to zero, ei ≈ 0.
This would imply that the normalized response of all the participants will be equal to the regulation signal,
i.e., rt ≈ yNt .

Definition: Perfect Controller In order to gauge the performance of control of distributed fleet
of batteries, an index is introduced in Chapter 11 as the excess operation of the fleet of batteries was
computed based on mileage [270]. The metric excess operation is defined as ET = RT−R∗

T

R∗
T

, where R∗T =
1
T

∑T
t=1 |rt|. We obtain ET = 0 if each battery tracks the reference exactly, referred here as perfect con-

troller. For a controller to be perfect the excess of operation is zero, given by following condition

T∑
t=1
{|rt| − |yNt |} = 0. (12.2.2)

12.2.1 Lossless batteries with zero mean tracking signal
Let us consider an operational case where the batteries are lossless (ηch = ηdis = 1) and the tracking signal
is a zero mean regulation signal. This implies

∑T
t=1 rt = 0, and the controller will force

∑T
t=1 y

N
t = 0. For

lossless scenario the state change is given as

skt+1 =


skt + hδch, if Mk

t = 1, Charging
skt − hδdis, if Mk

t = −1, Discharging
skt , if Mk

t = 0, Idle .

In Eq. 12.2.1 the aggregate power output is calculated based on homogeneous population of batteries with
each storage of unity capacity, therefore, the aggregate capacity of the fleet equals the total number of
batteries in the fleet, i.e., N . The mean SoC of the fleet of battery is denoted as

yBt =
∑N
k=1 s

k
t∑N

k=1 b
k
max

, (12.2.3)

where bkmax denotes the maximum battery capacity of kth battery and Cagg =
∑N
k=1 b

k
max denotes the

aggregated rated capacity of the fleet. Note that Cagg is a constant and yBt ∈ [0, 1]. Cagg equals N for
homogeneous population of batteries with each storage of unity capacity, see Eq. 12.2.1. The tracking
signal can be re-written for perfect tracking

T∑
t=1

yNt = 1
Cagg

T∑
t=1

N∑
k=1
U(Xk

t ) = 0,

this implies that the amount charging and discharging cancels each other and is given as

1
Cagg

T∑
t=1

N∑
k=1

{
− hδch1(Mk

t = 1) + hδdis1(Mk
t = −1)

}
= 0.

This implies the total amount of charging energy supplied to the battery is equivalent to the amount of
energy supplied by discharging for a zero mean regulation signal.

Proposition 1. For a perfect controller tracking a zero mean regulation signal using lossless batteries, the
mean SoC of the population at the end of tracking period will be equal to the mean SoC of the population
at the beginning of tracking period.
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Proof : Lets assume the mean SoC of the population of batteries at the beginning of tracking time
horizon is given as yB0 = 1

Cagg

∑N
k=1 s

k
0 . The end SoC will be

yBend = yB0 + 1
Cagg

T∑
t=1

N∑
k=1

{
hδch1(Mk

t =1)− hδdis1(Mk
t =− 1)

}
.

We know for a perfect controller tracking zero mean signal with lossless batteries

1
Cagg

T∑
t=1

N∑
k=1

{
hδch1(Mk

t = 1)− hδdis1(Mk
t = −1)

}
= 0.

Therefore, yBend = yB0 . This shows that for an ideal controller for lossless batteries tracking a zero mean
signal the mean SoC of the population will not drift at all from its initial value.

12.2.2 Lossy batteries with zero mean tracking signal
The change of state of the battery is given as

skt+1 =


skt + hδchηch, if Mk

t = 1, Charging
skt − hδdis

ηdis
, if Mk

t = −1, Discharging
skt , if Mk

t = 0, Idle .

for perfect tracking et ≈ 0 =⇒ rt ≈ yNt . The tracking signal can be re-written for perfect tracking as

T∑
t=1

yNt = 1
Cagg

T∑
t=1

N∑
k=1

{
− hδch1(Mk

t =1) + hδdis1(Mk
t =− 1)

}
=0.

Proposition 2. For a perfect controller tracking a zero mean regulation signal through lossy energy storage
batteries, the mean SoC of the population at the end of tracking period will be strictly lower than the mean
SoC of the population at the beginning of tracking period.

Proof : The end SoC of the population is given as

yBend = yB0 + 1
Cagg

T∑
t=1

N∑
k=1

{
hδchηch1(Mk

t =1)− hδdis
ηdis

1(Mk
t =− 1)

}
.

Since the signal is zero mean we know for a perfect controller tracking zero mean signal with lossless
batteries will satisfy

T∑
t=1

N∑
k=1

hδch1(Mk
t = 1) =

T∑
t=1

N∑
k=1

hδdis1(Mk
t = −1).

Substituting this in yBend we get

yBend = yB0 + 1
Cagg

T∑
t=1

N∑
k=1

{
hδch1(Mk

t = 1)
(
ηch −

1
ηdis

)}
.

We know that 0 < ηch, ηdis < 1, therefore
(
ηch − 1

ηdis

)
< 0 This implies send < s0.

Proposition 2 shows that the end SoC is strictly lower than the mean initial SoC of the population,
for a fleet of batteries tracking a zero mean regulation signal in presence of efficiency losses. If the time
horizon T is large (i.e. the positive/negative ramp is high) and/or ηch, ηdis is low than end SoC, send,
could go below lower boundary of optimal SoC band, in such a scenario we would not be able to guarantee
the objective achievement of dynamic regulation using population of batteries.
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12.2.3 Why drift compensation?
Batteries store energy for later usage. A battery that is fully charged cannot store any further energy,
similarly a battery completely discharged can supply no further energy. In order to ensure that the batteries
can ramp up and/or ramp down the charge level should be maintained somewhere around mid-SoC level of
50%. The mid-SoC can vary depending on lower SoC and upper SoC limits governed by storage technology.
The target SoC is denoted as ytar = 0.5(yuopt − ylopt), where yuopt is the upper boundary of optimal SoC
band and ylopt is the lower boundary of optimal SoC band. We define the drift term for zero mean signal
as

ỹBt = yBt − ytar. (12.2.4)

Clearly, as ỹBt increases in magnitude the SoC drifts further away from the desired SoC level. This could
happen because: (a) batteries incur losses as shown in Section 12.2.1 and 12.2.2, (b) the regulation signal
is not zero mean and (c) for imperfect controller, i.e., ET 6= 0. All above mentioned cases are probable and
therefore, SoC in real world will drift because of one or multiple of above mentioned causes.

How can we avoid a scenario where yBt goes outside the optimal SoC band? In order to ensure that
the mean SoC of the population does not go beyond the optimal SoC band we add a drift compensation
control layer is proposed in addition to regulation tracking layer.

What does it mean to control? How does it stabilize the operation of a fleet of batteries? This additional
drift control layer replicates the greedy behavior (prioritizing SoC compensation) of population of batteries
where in addition to providing dynamic regulation, the population of batteries tries to maintain their SoC
close to the target SoC. This greedy behavior of batteries will deteriorate the performance indexes used
to measure the quality of regulation. However, the question is how badly it deteriorates the performance
scores. In the next section we will define the performance score indices used by PJM for evaluating the
quality of dynamic regulation.

12.3 Drift Compensation Controller design
In the previous section, we described the need for compensating mean SoC of a fleet of batteries in the
presence of a perfect controller, zero mean regulation signal and storage efficiency losses. Similar drift
in SoC is anticipated for non-zero mean regulation signal and/or imperfect controller with ET 6= 0. The
control loops with drift compensation is shown in Fig 12.1. There are two objectives for control design:
(i) maintaining mean state-of-charge (SoC) of the fleet of batteries close to its target SoC level and (ii)
track the regulation signal. These two objectives could be in conflict sometimes, in those cases both these
objectives cannot be met simultaneously. Under such a case where tracking is not possible due to charge
level of batteries, the battery may opt out and try to maintain the SoC level close to its target level. In
PJM ISO, the regulation signal is designed to be conditionally neutral and provides storage owners to
adjust SoC. However, storage control should duly consider maintaining SoC as in absence of such a control
would severely undermine fleets ability to track regulation signal sustainably for longer period of time.

Mean SoC
-

y
tar

- KG 

KB 

+
ζ(t) 

e
t
B

e
t
G

Figure 12.1: System model in block diagram

In the subsequent part of this section, we enumerate the steps for identifying suitable controller gains
for the dual objective of accurate tracking and maintaining SoC. In Section 12.3.1 linearized system model
of the nonlinear system is presented. In Section 12.3.2 least-square method is used for identifying the
state matrices based on simulation data. For tractable state space analysis the discrete state model
in transformed to continuous state space model in Section 12.3.3. The accumulated integral error is
kept within bounds using a discount factor. In the absence of resetting integral error, the stability and
performance of the control can be compromised. Section 12.3.4 presents the augmented state space matrices
taking into account integral discount factors for the two control loops shown in Fig 12.1. Using the
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augmented state space model LQR controller gains are obtained which minimizes the tracking error and
the penalty on SoC deviation. This is presented in Section 12.3.5. For instances where SoC is farther
away from the desired level, the controller in such cases should prioritize SoC compensation. This is
achieved using the gain scheduling is presented in Section 12.3.6. Section 12.3.7 presents the LQR gain
in form of controller gains to be used. A test simulation is performed using a swept sine as an input
signal, showing the controller stability for the frequency range of interest. The input and output of this
test simulation validate the efficacy of the proposed controller which assists in SoC recovery. The test
simulation is presented in Section 12.3.8. The variables used are described in Table 12.1.

12.3.1 Linearized System Model
For nonlinear system such as the control of a fleet of batteries, zooming in close the fixed point(s)1, the
dynamics around those fixed point could be linearized. The state vector is defined as STt = [yNt , ỹBt ]. We
linearize a nonlinear system across a fixed point S̄ such that the derivative at fixed point is equal to zero,
i.e., ˙̄S ≈ 0. We linearize our model across the nominal mean SoC equal to target SoC, implying ỹBt ≈ 0.
The control signal for this mean SoC value should be small enough so as the SoC deviation do not reaches
to the point where such linearizations would not be valid. For the drift compensator model presented in
Eq. 12.3.1 and Eq. 12.3.2 we linearize such that the aggregate power output is small and mean SoC is close
to the target SoC. −α,−g, β denotes coefficients.[

yNt+1
ỹBt+1

]
=
[
−α 0
−g 1

][
yNt
ỹBt

]
+
[
β
0

]
ζt +

[
Uncertainty in ζt → yNt model
Uncertainty in ζt → yBt model

]
(12.3.1)

Output of System,
[
y1
y2

]
=
[
1 0
0 1

][
yNt
ỹBt

]
+
[
Measurement noise in yNt model
Measurement noise in yBt model

]
(12.3.2)

Table 12.1: Variable Description

Variable Description
yNt Normalized aggregate power output
yBt Normalized mean SoC (energy) level of fleet
ỹBt Deviation of yBt from ytar

ytar Target SoC level of the fleet
rt Regulation signal to be tracked by the fleet
ζt Control Input fed to the fleet of batteries
KB Controller for tracking SoC deviation from ytar
KG Controller for tracking regulation signal
Kr LQR optimal gains

Aaugment Augmented state matrix A
Baugment Augmented state matrix B
ρG Discount factor for cumulative power deviation error
ρB Discount factor for cumulative battery deviation error

12.3.2 Least Square Fitting
Fig 12.1 shows that the states used to calculate control signal ζ is based on (a) Power error rt+1 − yNt+1
and (b) SoC error ỹBt+1. We redefine our state space model given as Eq. 12.3.3.[

rt+1 − yNt+1
ỹBt+1

]
=
[
a11 a12
a21 a22

][
rt − yNt
ỹBt

]
+
[
b1
b2

]
ζt (12.3.3)

The unknown coefficients in Eq. 12.3.3 are defined as θ = [a11 a12 a21 a22 b1 b2].

ψ1 = [(rt − yNt ) ỹBt 0 0 ζt 0], ψ2 = [0 0 (rt − yNt ) ỹBt 0 ζt]. (12.3.4)

1Operating points at which the nonlinear system provides steady states are called fixed points. Fixed points can be stable
or unstable. For example, a pendulum has two fixed points one at zero degrees (stable) and another in an inverted position
at 180 degrees (unstable).
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The matrix ψ is denoted as the concatenation of ψ1 and ψ2 denoted as ψ = [ψ1; ψ2]. The unknown
coefficients of the state space model described in Eq. 12.3.3 is solved as shown in Eq. 12.3.5.

θLS = (ψTψ)−1ψT
[
rt+1 − yNt+1

ỹBt+1

]
(12.3.5)

[
rt+1 − yNt+1

ỹBt+1

]
=
[
θLS(1) θLS(2)
θLS(3) θLS(4)

][
rt − yNt
ỹBt

]
+
[
θLS(5)
θLS(6)

]
ζt. (12.3.6)

12.3.3 Discrete to Continuous Transformation
The control analysis is more intuitive in continuous time-domain. However, the system defined is discrete.
The state space matrices are defined for continuous time domain as follows

SDt+1 = AdiscreteS
D
t +Bζt,

SDt+1 − SDt
Ts

= Adiscrete − I
Ts

SDt + B

Ts
ζt,

Continuous state matrices for the system are given as Acontinuous = Adiscrete−I
Ts

, Bcontinuous = B
Ts
,

denoted as

Acontinuous =

[
θLS(1)− 1 θLS(2)
θLS(3) θLS(4)− 1

]
Ts

, Bcontinuous =

[
θLS(5)
θLS(6)

]
Ts

. (12.3.7)

12.3.4 Augmented State Matrix
The cumulative integral gains for aggregate power and SoC deviation should be discounted for stable
controller operation. Consider the discount factor for cumulative power deviation is denoted as ρG and
the discount factor for cumulative SoC deviation is denoted as ρB .

Alag =
[
(ρG − 1)/Ts 0

0 (ρB − 1)/Ts

]
. (12.3.8)

The augmented state matrices are denoted as

Aaugment =
[
Acontinuous 0

C Alag

]
, Baugment =

Bcontinuous
0
0

, (12.3.9)

The dimension of Aaugment is 4x4, Baugment is 4x1 and C is 2x2.

12.3.5 Linear Quadratic Regulator Gain
The best suited controller gains which minimizes (a) input energy cost and (b) control energy cost is
selected using Linear Quadratic Regulator (LQR). The details of LQR for different system models are
summarized in Appendix A.10.

For system to be controllable C should be full rank matrix. The Matlab script for checking controllability
is given as

>> C = ctrb(Aaugment, Baugment)
>> Check = (rank(C) − size (Aaugment) == 0)

If variable Check = 1 then then the system is controllable. For controllable systems the LQR eigenvalue
placement can be achieved by following code:

>> Kr = lqr(Aaugment, Baugment, Q, R)

here Q and R denotes the penalty for not meeting the desired states and input energy respectively.
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Table 12.2: Controller parameters for test example in Section 12.3.8

Variable Value
R 0.5

Q

1 0 0 0
0 1 0 0
0 0 1000 0
0 0 0 100


C

[
1 0
0 1

]
θLS(1) 0.644644
θLS(2) 0.370062
θLS(3) 0.000428
θLS(4) 1.001226
θLS(5) 0.000358
θLS(6) −2.09904× 10−05

ρG 0.991
ρB 0.99
Kr [-149.58 -6453.34 -17.80 -2.45]

12.3.6 Gain Scheduling
Define the proportional gain for the battery as

KB
P (yBt ) = KB

P ỹ
B
t . (12.3.10)

KB
P (ỹBt ) = λ1ỹ

B
t + λ2(ỹBt )3. (12.3.11)

λ1 = d

dy
KB
P (0) = Ksmall

r (2), d

dy
KB
P (0.2) = Kbig

r (2),

λ2 = Kbig
r (2)−Ksmall

r (2)
3× (0.2)2

For the proportional battery gain KB
P is made to vary depending on the SoC of the battery, depicted

in Fig. 12.2.

Qbig =


1 0 0 0
0 108 0 0
0 0 1000 0
0 0 0 100

 Qsmall =


1 0 0 0
0 1 0 0
0 0 1000 0
0 0 0 100


We identify gains as Ksmall

r (2) = −6453, Kbig
r (2) = −45284.
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Figure 12.2: Proportional gain of SoC deviation from target levels based on the SoC
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Table 12.3: LQR gain and controller gains

Controller Element LQR matrix element
KG
P = Kr(1)

KB
P = Kr(2)

KG
I = Kr(3)

KB
I = Kr(4)

12.3.7 Optimal Controller Gain

ζt = KG
P (rt − yNt ) +KB

P ỹ
B
t +KG

I

t∑
j=1

ρG (rj − yNj ) +KB
I

t∑
j=1

ρB ỹBj (12.3.12)

Table 12.4: Sign of controller gain

Parameter Positive for discharge Negative for charge
ζ ζ > 0 promotes discharging ζ < 0 promotes charging

errG = (rt − yNt ) errG > 0 then battery should discharge errG < 0 then battery should charge
errB = ỹBt errB increases then battery should discharge errB decrease then battery should charge

LQR provides Kr = [KG
p KB

p KG
i KB

i ].

12.3.8 Test Simulation
The target SoC used for test simulations is set at 0.6 with the starting mean SoC of the fleet with 1000
batteries is equal to 0.5. The charging and discharging efficiency is set at 0.9. The simulation results for
swept sine input signal and tracking performance is plotted in Fig. 12.3. Fig. 12.4 shows the mean SoC
and cumulative sum of regulation signal. SoC recovery is visible from first plot of Fig. 12.4.
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Figure 12.3: Simulation result
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Figure 12.4: SoC recovery due to drift compensation

12.4 PJM Performance Scores
Performance score is calculated for each regulation resources for each regulating hour. Performance scores
reflects the benefits each resource provides to system control by focusing on the resource’s response to
PJM control signals. All ISO in the USA have some sort of performance evaluation mechanism for com-
paring service provided by regulating resources. To qualify for the regulation market, resources must
pass three consecutive regulation tests with a performance score of 75% or higher. Resource MW output
must be telemetered and activated before testing. Once the resources are part of regulation resources,
the resources must continue to demonstrate minimum performance requirements. Firstly, the historical
performance score must be greater the 40%. The historical performance score is the mean of past 100
hours of performance score, its a rolling horizon average. Secondly, the individual hour performance must
be greater than 25% to be compensated. Note that these are the minimum performance indexes essential
to be part of regulation market, however, resources with poor performance indexes might rarely be called
for participating in regulation by PJM’s Ancillary Service Optimizer (ASO), therefore, it is essential for
regulating resources to maintain a high performance score. ASO runs one hour in advance of operating
hour to procure least cost set of resources.

PJM’s performance score has 3 components: Accuracy score, Delay score and Precision Score. PJM
calculates performance score for hourly data. The dynamic regulation signal is sampled every 2 seconds.
The components of performance score measures are described as [143, 144, 39]:

• Accuracy Score: measures correlationship between regulation signal and the response of regulation
providing units. The correlationship is calculated for a 5 min rolling time window with sampling granularity
of 10 seconds for the regulation signal and the response. Accuracy score corresponds to the time index
where the correlationship between regulation signal and time-shifted response (up to 5 min) is the highest.
Accuracy Score = maxtj=0:10:300sec

{
corr (signal(t0 : t0 + 3600), response(t0 + tj : t0 + tj + 3600)

}
.

• Delay Score: There could be delay between regulation signal and the point of highest correlation.
Delay is given as tk = arg maxtj{corr (signal, response}. The delay score is calculated as

Delay Score = max
{

1, abs
{ (tk − 10)− 300

300

}}
The PJM wants a 10 second delay in control signal and response signal. This is primarily because the
communication round trip delay is approximately 9-11 seconds.

• Precision: difference between the area under the curve for the control signal and the regulating
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Figure 12.5: Performance Score Indices used by PJM ISO [39].

unit’s response.

Precision Score = 1−Average of
∣∣∣∑ Response−

∑
Control Signal∑

Control Signal

∣∣∣
Performance scores reflect how well the resource is following the regulation signal. Performance Score

is defined as the equal weighted sum of accuracy, delay and precision score.

12.5 Numerical Evaluation
In the previous section we showed that additional compensation is essential to guarantee objective achieve-
ment of dynamic regulation. The concern with such a modification in control is the deterioration in indexes
measuring performance of the regulation provided by fleet of batteries. In this section we will numerically
evaluate the performance of control with drift compensation. We wish to understand the degradation in
performance indexes due to inclusion of greedy behavior of population of batteries.

The battery parameters used are: maximum capacity is 1 kWh, maximum charge rate is 0.5 kW,
maximum discharge rate is 0.5 kW and initial SoC is 0.6.

Table 12.5 and Table 12.6 shows performance indexes and SoC of population at the end of the day for
control without and with drift control respectively. In practical application of fleet of batteries, it would

Table 12.5: No Drift Compensation

ηch, Roundtrip Average Average Average Mean End
ηdis Efficiency Accuracy Delay Precision SoC SoC

1 1 0.9974 1.00 0.9833 0.542 0.592
0.95 0.9025 0.6582 1.00 0.9809 0.364 0.144

Table 12.6: With Drift Compensation point-by-point

ηrt = Average Average Average Perf. Mean End
ηchηdis Accuracy Delay Precision Score SoC SoC

1 0.9955 1.00 0.9829 0.993 0.599 0.612
0.9025 0.9955 1.00 0.9803 0.992 0.593 0.603
0.81 0.9953 1.00 0.9766 0.991 0.586 0.593

0.7225 0.9952 1.00 0.9725 0.989 0.580 0.583
0.64 0.9951 1.00 0.9685 0.988 0.572 0.572

0.5625 0.9949 1.00 0.9640 0.986 0.564 0.561

be non-realistic to update the drift signal for each time instant. The drift signal updated at a slower time
scale could lead to results which match real time update of the drift signal. This is showcased in Table 12.7
where results are generated for the case where the drift signal is updated once in an hour, based on mean
SoC of the fleet at the beginning of the hour. However, if the duration of drift signal is extended beyond
a certain period (this period is governed by ramp rate of the battery and regulation signal) then quality
of tracking deteriorates drastically, as evident from Table 12.8. Numerical results indicate a slight drop in
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Table 12.7: With Drift Compensation hourly update

ηrt = Average Average Average Perf. Mean End
ηchηdis Accuracy Delay Precision Score SoC SoC

1 0.9970 1.00 0.9810 0.993 0.598 0.616
0.9025 0.9970 1.00 0.9804 0.993 0.592 0.607
0.81 0.9970 1.00 0.9770 0.991 0.585 0.597

0.7225 0.9967 1.00 0.9730 0.990 0.577 0.586
0.64 0.9967 1.00 0.9686 0.988 0.569 0.575

0.5625 0.9964 1.00 0.9642 0.987 0.560 0.563

Table 12.8: With Drift Compensation two hourly update

ηrt = Average Average Average Perf. Mean End
ηchηdis Accuracy Delay Precision Score SoC SoC

1 0.9814 1.00 0.8971 0.960 0.596 0.403
0.9025 0.9915 1.00 0.9021 0.965 0.586 0.396
0.81 0.9898 1.00 0.9077 0.966 0.576 0.395

0.7225 0.9910 1.00 0.9144 0.969 0.566 0.403
0.64 0.9891 1.00 0.9228 0.971 0.555 0.420

0.5625 0.9640 1.00 0.9375 0.967 0.545 0.447

performance indexes which is of the order of ≈ 1% if the batteries which is completely efficient is replaced
by ≈ 56% efficient batteries. The drop in performance indexes, which is almost insignificant, comes at
the cost of keeping SoC of the population of batteries within the optimal SoC band. This is crucial for
sustainable tracking of regulation signal. The results with no drift compensation (Table 1) fails even for
ηch = ηdis = 0.95, because SoC drops below the lower boundary of optimal band. Fig. 12.6 shows the
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Figure 12.6: Performance Score for point-by-point drift compensation

variations in performance index parameters for a 24 hour simulation.

12.6 Conclusion and Perspectives
In this chapter, we propose a drift compensation control layer for stochastic control of a geographically
distributed fleet of batteries, in order to maintain the charge level of batteries in the optimal range. We
show that the inclusion of drift compensation leads to the stable operation of providing dynamic regulation
with a fleet of batteries with efficiency losses. The control design is performed using Linear Quadratic
Regulator which minimizes control energy required and also ensures accurate tracking and SoC being close
to the desired level. This controller is made adaptive using gain scheduling, where the proportional gain
increases in a cubic function for larger deviation of SoC from the desired level. Using PJM’s performance
evaluation metrics we show that the objective of accurate tracking and maintaining SoC of the fleet can
be simultaneously performed without noticeable deterioration in performance score. We also numerically
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show that lower time scale update of drift compensation layer can still provide good tracking. It is observed
that the drift layer update should be done at least half the charging or discharging time. To bring time
scales into perspective, the dynamic regulation is performed at a sampling rate of 2 seconds, the charging
and discharging time of battery considered is in hours.

There is of course much more work to be done on estimating drift compensation signal from know
regulation signal, as shown in Fig. 12.7. Ideally, the state of all batteries in the fleet will be unknown
and calculating mean SoC of the population at each time instant will be impractical. Further research
is needed to investigate the relationship between initial mean SoC and the regulation signal on the drift
compensating signal.
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Chapter 13

Phase Balancing using Storage

The key to keeping your balance is knowing when you’ve lost it. -Anonymous

Summary: Most bulk transmission of electrical energy is done in three phases. However, distribution
of electrical energy in low voltage level is often performed in single phase. The three phases independently
act as three single phase lines. Phase imbalance can introduce additional power losses and limit the loading
capability of distribution transformer [102]. With ad hoc deployment of renewables the chances of power
unbalances among phases will increase with increase in share of distributed renewable energy installations.
In this chapter we introduce the phase unbalance problem and the effects of unbalanced generation and load
on three phase radial distribution network. We present storage based control architectures for achieving
phase balancing.

This chapter is divided into 5 sections. Section 13.1 provides an introduction of phase unbalance in
power system. In Section 13.2 we perform OpenDSS based radial distribution network simulations for
identifying the effect of connecting single phase generation and load in three phase system. We observe
losses in line increase significantly with such unbalance. Section 13.3 present storage architectures for
phase balancing. Section 13.4 presents a case-study of Madeira in Portugal. In Chapter 2 Section 2.2.6
we describe a case study of EV charging in Pasadena, California. Section 13.5 concludes the chapter and
provides some perspectives.

13.1 Introduction to Phase Balancing
Unbalance describes a condition in a poly-phase system in which the phasors of voltage or current are
not equal in magnitude and/or the phase angle between consecutive phasors. For example, a three phase
system have unbalanced voltage if the rms value1 of phase voltages are not the same and/or the phase
angle between voltage phases are not exactly 120 degrees [95], [10].

Fortescue in 1918 developed symmetrical components for representation of any set of unbalanced pha-
sors [165]: (i) a direct or positive sequence in order (abc), (ii) an inverse or negative sequence in order
(acb), (iii) a homopolar or zero sequence system in same direction.
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Figure 13.1: Sequence Component of an unbalanced phasor

The transformation of unbalanced phasor is given as [165], [88]Va0
Va1
Va2

 = 1
3

1 1 1
1 e

j2π
3 e

−j2π
3

1 e
−j2π

3 e
j2π

3

VaVb
Vc

 (13.1.1)

1RMS or root mean square is defined as the square root of the mean of the square of the parameter; for three phase
voltages the rms voltage is calculated as Vrms =

√
1
3 (V 2

a + V 2
b

+ V 2
c ).
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where e
j2π

3 = 1∠1200, {Va, Vb, Vc} are phase voltages.
Current unbalance is related to voltage unbalance through network impedances. If the network

impedances are asymmetric then voltage unbalance can occur even though the currents are perfectly
balanced. In this work we balance power in each phase leading to reduction in unbalance in current and
voltage. The remaining part of this section we discuss the reasons, effects and mitigation of unbalance.
We list the indices used to measure unbalance in voltage. We present the effects of large scale distributed
generation (DG) such as photovoltaic and electric vehicle (EV) will have on unbalance in three phase low
distribution power network.

13.1.1 Cause of unbalance in three-phase power network
Asymmetries in each of the three phases can be because of unbalanced loading and cable length. Here we
highlight the unbalance which could be caused of large scale EV deployment and DG installation.

With larger integration of single-phase intermittent and stochastic distributed generation and evolution
of end user consumption requires detailed assessment of voltage unbalance and effective mitigation [229].
The connection of single phase EVs and DGs are random and often clustered in a certain area. In addition
both EVs and PVs tend to be active in a synchronized manner, i.e., majority of the EVs are getting charged
in the evening when people reach their homes after work and with high probability all the PVs generate
electricity when it is sunny. Such a synchronized operation of these loads and generation aggravates the
problems for distribution system operators who are obliged to ensure power quality at all times.

Electric vehicles require high charging current, longer periods of charging which tend to coincide with
charging of other EVs. EVs with 30kWh battery stores as much as the average US residence consumes
in a day, making it significant portion of total household load [163]. Furthermore, often EV charging is
single phase which could cause voltage unbalance [278]. This should be a concern for distribution system
operators as EVs are expected to grow drastically in near future. The sale of EV will contribute to 10-50%
of all new cars by 2030 [163]. Authors in [278] note that voltage imbalance caused by EVs is unlikely to
exceed the prescribed limits set by the utility provided EVs are reasonably distributed among three phases.
Phase distribution often could not consider such asymmetrical evolution of new loads. This could have
adverse effect on voltage unbalance of a three-phase distribution network [293]. Furthermore, the effect
of connection of EVs on unbalance is significant if they are connected farther away in the feeder, causing
greater unbalance [293].

Distributed generation (such as PV, wind etc.) is intermittent, interfaced via single phase converter
and solar PV also have a high impedance and low short circuit current making it more prone to cause
unbalance in the power network [229], [155]. Within Europe the voltage characteristic standard, EN50160
[128], states that the 10-min rms voltage should be between 90% and 110% of the nominal voltage most
of the time and between 85% and 110% all of the time. The distribution feeders are designed such that
the voltage magnitude becomes lower when moving along the feeder. Integrating DGs at distribution level
makes the design condition of feeders invalid and thus over-voltages could occur [104], see Chapter 2,
Section 2.2.8 for an example demonstrating the change in voltage profile due to inclusion of EVs and DGs.
The introduction of DG changes the fault currents and will also increase the risk of an incorrect protection
operation. Uncertainty in generation and drastic ramping up/down of generation could be difficult to
handle by DSOs. For example the solar generation can reduce by 70% in few seconds due to passing clouds
[142].

Thus, larger integration of DGs and PVs will increase the chances of voltage unbalance.

13.1.2 Effect of unbalance in three-phase power network
Unbalance causes negative sequence power flow which contributes to thermal aging, reduction of equipment
life and derating the capacity of induction machines. In induction machine magnetic field and torque are
proportional to positive sequence of the machine. Negative sequence generates an inverse torque forcing the
machine to decelerate. Thus total torque is reduced and the machine cannot rotate at full speed. Voltage
unbalance can create a current unbalance 6-10 times the magnitude of voltage unbalance [37]. Negative
sequence for synchronous generator causes overheating in the inner construction of damper windings [229].

For transformers zero sequence flow could inverse the temperature of windings and positive and negative
sequence cause parasitic losses in the transformer structure [155]. It is estimated that there are 2.4 GWh
equivalent to $134,000 additional annual losses due to presence of unbalance based on 17,600 transformers
in Brazil [290]. The capacity of transformer, cables and overhead lines in order to carry negative sequence
current, the amount of positive sequence must be downgraded. This leads to reduction in capacity for
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carrying positive sequence current is reduced [129, 149]. Phase unbalance can, therefore, limit the power
transferred on a feeder [327]. Unbalance could also lead to preventive breaker or relay tripping and shut-
down of a feeder [327], as pointed in Section 13.1.1.

The voltage unbalance of low-voltage feeder maybe seen by other feeders fed from the same distribution
transformer. Furthermore, current unbalance can be propagated through the distribution transformer to
the higher voltage network [95, 138]. It is evident that voltage unbalance affects only three phase customers.

13.1.3 Indices for measuring of unbalance in three-phase power network
There are various indices to measure unbalance in three-phase power network. We list some of the defi-
nitions we use in this work. The selection of which definition to use depends on available data from real
measurements, details to be provided in case studies in next sections.

Definition 1: International Electrotechnical Commission or IEC defines voltage unbalance factor (VUF)
as the ratio of the magnitudes of negative sequence over positive sequence denoted as

VUF1 = |Va2|
|Va1|

. (13.1.2)

VUF1 denotes the true definition of VUF [273]. The remaining definitions are approximations of VUF1.
The alternate definitions are required as sequence components which require sophisticated measurement
devices are often not measured.

Definition 2: Alternative definition using magnitudes of line-to-line fundamental component voltages.
The VUF in this case is given as

VUF2 =

√
1−
√

3− 6β
1 +
√

3− 6β
, where β = V 4

ab + V 4
bc + V 4

ca

(V 2
ab + V 2

bc + V 2
ca)2 . (13.1.3)

The approximation of VUF1 using VUF2 is valid provided zero sequence component is negligible [10]. In
presence of zero sequence there will be an error in approximating the VUF and the measured VUF will lie
in the range VUF ∈ [VUF2 − |Va0|

|Va1| ,VUF2 + |Va0|
|Va1| ] [169].

Definition 3: National Electrical Manufacturers Association or NEMA defines VUF by the ration of
maximum deviation from average voltage

VUF3 = max (Vab, Vbc, Vca)−mean(Vab, Vbc, Vca)
mean(Vab, Vbc, Vca) . (13.1.4)

VUF3 is also called phase voltage unbalance rate (PVUR). NEMA definition uses only magnitude infor-
mation. A comparison of VUF calculated shows a discrepancy of up to 13% from actual VUF [301].

Definition 4: Similarly, for line voltage unbalance rate (LVUR) is defined as [273]

VUF4 = max (Van, Vbn, Vcn)−mean(Van, Vbn, Vcn)
mean(Van, Vbn, Vcn) . (13.1.5)

VUF4 is also known as the IEEE definition of voltage unbalance. NEMA definitions are good approxima-
tions of actual unbalance for cases where VUF is less than 5% [273].

Authors in [169] point that the line-to-neutral voltages rather than the specified line-to-line voltage
values for calculating VUF3 can give errors only if there is significant zero sequence component present in
unbalance phasors, otherwise this approximation is valid. [301] states that voltage unbalance assessment
is a steady-state event and recommends measurement of voltage at high sampling rate. Often voltage
measurements are done in time scales of several minutes. Due to averaging of voltage over the interval,
the unbalance calculated using average values is more than 50% lower than the average of the unbalance
for the same interval [169].

Definition for VUF3 is created based on the fact that many commercially available electricity meters
are not able to measure the angular difference between each phase. The VUF rules are listed in Table 2.5.
The mitigation of three-phase network is introduced in Chapter 2.2.5.

13.2 Understanding the effects of phase unbalance
In this section we perform phase unbalance simulations on a radial distribution network by connecting
single phase renewable generation and electric vehicle loads on a three phase four wire distribution system.
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We identify that system unbalance should be gauged by (a) losses in the neutral, (b) line losses and (c)
voltage unbalance factor. Considering only voltage unbalance factor does not provide the complete picture
of system unbalance especially if the network is compact. We observe that effect on system unbalance is
affected by: (i) the location of network where single phase loads or generation is connected in the network,
(ii) the effect of connecting single phase load and generation is nearly symmetrical for VUF, however, the
effect of neutral and line losses are not symmetrical for loads and generation, (iii) networks which are
sparse or congested with significant voltage drop could lead to significant VUF values. We present the
voltage drop, VUF, line losses, neutral loss, active power, reactive power and current magnitudes at each
of the nodes of the network.

13.2.1 Simulation Results
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Figure 13.2: Simulation Baseline Model

We perform a sensitivity analysis by placing different levels of RES (0%, 10%, 20%, ..., 90%, 100% of
max load in each phase) at points N1 (closed to feeder) and N5 (furtherest to feeder). For evaluation we
are interested in observing the variations of following parameters at nodes:

1. Voltage Unbalance Factor: for each node,
2. Per-unit voltage: for each phase at each node,
3. Active power: for each phase at each node,
4. Reactive power: for each phase at each node,
5. Losses incurred in each of the phases and
6. Losses incurred in the neutral conductor.

For this we assume the nominal case has a balanced load in each phases as we aim to understand the
variation caused due to integration of DGs/EVs in one of the phase. In this experiment we assume the
worst-case condition where all these single phase DGs/EVs are connected to one of the phases.

The key observations using simulations for a radial network shown Fig. 13.2 are as follows:

• VUF is not affected until the lines have significant voltage drop due to high resistance or overloaded
and/or network is sparse with significant line losses. For a compact network with low drop in voltage
with respect to voltage at the generation feeder in a radial distribution network, VUF is not significant
even for a large share of DGs/EVs connected to only one phase, refer to Fig. 13.4. The VUF limits
are listed in Table 2.5. Clearly, the VUF limit lies within 1-3%. For compact network the VUF
rises to less than 0.22% for 120% (compared to phase load) of DGs/EVs connected to N1 (refer to
Table 13.1) and 0.9% for DGs/EVs connected to N5 (refer to Table 13.2). However, VUF is a crucial
index for networks which are either congested and/or sparse, refer to Table 13.3 to Table 13.6.

• For single phase DG connected close to the feeder has a near to uniform effect on VUF compared
to DG connected farther away which affects the distant nodes much more than nodes closer to the
feeder. Fig. 13.4 shows that increase in share of DG connected at Node 5 or N5 almost linearly
increases the VUF.

• Contrary to prevalent notion that adding renewables would help in reducing voltage drop if connected
at distant nodes, however, DG not well balanced along the phases could reduce the losses in a phases
(note Phase A losses in Fig. 13.3) but increases the losses in the neutral conductor drastically.
Thus the total losses in effect are very large for large share of renewables. However, with increase
integration of EVs the losses increase in phase and neutral without any ambiguity.
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• Imbalance in power distribution network is observed using three parameters: VUF, losses in the
neutral conductor and losses in the phase.

• The 3 phase 4 wire system is used when a mixture of single-phase and three-phase loads are to be
served, such as mixed lighting and motor loads, where each customer may be only fed from one
phase and the neutral (which is common to the three phases). When a group of customers sharing
the neutral draw unequal phase currents, the common neutral wire carries the currents resulting
from these imbalances. Electrical engineers try to design the three-phase power system for any one
location so that the power drawn from each of three phases is the same, as far as possible at that
site. However, we observe that connecting large amount of single phase DG could aggravate the
system unbalance by increasing losses in the neutral conductor. Substation authorities in Madeira
have reported the major concern for them regarding unbalance manifests in form of blowing up of
neutral conductor due to over-current.

• The last plot of Fig. 13.3 shows that DGs can be designed to reduce the total loss in the distribution
network. These results further improve if we assume DG placement to be balanced in each phase.

• Considerable increase (almost 3 to 4 times) voltage drop in the injecting phase reduces with DG
connected at N5 compared to DG connected at N1. However, this configuration increases the voltage
drop in one of the phase.

• Fig. 13.3 shows the total phase losses, neutral losses and total losses for DGs/EVs connected at
N1 and N5. The total losses for DG/EV connected at the distant feeder are significantly higher
compared to the case where the DG/EV integration close to the feeder.

• Fig. 13.5, Fig. 13.6, Fig. 13.7, Fig. 13.8 shows the voltage drop in percentage for integration of
DG/EV at N1 and N5. The drop in voltage decreases in the phase where DG is connected and
increases when EV is connected.

• Fig. 13.9, Fig. 13.10 and Fig. 13.11 shows the active, reactive power and phase current variation with
respect to nodes due to integration of DG/EV at nodes N1 and N5.

Table 13.1: Performance Indices for 5kW total phase load with DG or EV connected at N1

EV/DG at N1 Mean Max Neutral Total Phase Sum of Voltage Sum of Voltage
VUF VUF Losses losses drop at N1 drop at N5

Nominal Balance Case 7.50e-08 1.19e-07 0 118.47668 -1.46091 -3.6141
Balanced + 40% DG 6.95e-08 1.03e-07 0 88.71856 -1.0968 -3.2472
Balanced + 40% EV 8.77e-08 1.70e-07 0 163.1242 -1.82691 -3.9828

Unbalanced + 120% DG 0.22105 0.2222 39.8537 103.57916 -1.09782 -3.2484
Unbalanced + 120% EV 0.22514 0.22639 41.0473 178.62513 -1.82810 -3.98393

Table 13.2: Performance Indices for 5kW total phase load with DG or EV connected at N5

EV/DG at N5 Mean Max Neutral Total Phase Sum of Voltage Sum of Voltage
VUF VUF Losses losses drop at N1 drop at N5

Nominal Balance Case 7.50e-08 1.19e-07 0 118.47668 -1.46091 -3.6141
Balanced + 40% DG 5.85e-08 1.12e-07 0 43.8494 -1.0909 -2.0587
Balanced + 40% EV 7.57e-08 1.34e-07 0 269.9494 -1.8410 -5.1984

Unbalanced + 120% DG 0.5137 0.8088 193.1352 117.3938 -1.1128 -2.0621
Unbalanced + 120% EV 0.5586 0.8812 222.0076 359.8447 -1.8675 -5.2065

13.2.2 Honeymoon and Divorce Cases
Two distinct and contradictory ideologies exists when it comes to renewable energy sources (RES) and
specifically DGs. Some believe that RES is not only environmentally friendly but also solves many problems
of power network such as (a) reducing transmission losses: DGs integrating close to their consumption
point could eliminate the losses which is incurred by traditional generation sources, (b) congestion relief and
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Figure 13.3: Losses in the distribution network with two scenarios: (i) DG/EV connected at N1 and
(ii) DG/EV connected at N5

Figure 13.4: VUF with (i) DG/EV connected at N1 and (ii) DG/EV connected at N5
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Figure 13.5: Voltage drop with (i) EV connected at N1 and (ii) EV connected at N5

Figure 13.6: Voltage drop with (i) DG/EV connected at N1 and (ii) DG/EV connected at N5
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Figure 13.7: Voltage drop with (i) DG connected at N1 and (ii) DG connected at N5

Figure 13.8: Sum of Voltage drop in 3 phases with (i) DG connected at N1 and (ii) DG connected
at N5
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Figure 13.9: Active power with (i) DG connected at N1 and (ii) DG connected at N5
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Figure 13.10: Reactive power with (i) DG connected at N1 and (ii) DG connected at N5
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Figure 13.11: Current magnitude with (i) DG connected at N1 and (ii) DG connected at N5

voltage profile flattening: since the DGs are connected in the distribution network which lifts the voltage
profile at nodes far away from the generation feeder or substation. DGs (often intrinsically assumed
balanced) would decrease the losses in the network thus improving the efficiency of the network. This
philosophy of distributed renewable energy generation propagators is referred to as the Honeymoon case.

The second line of thought considers renewable energy sources a menace for power networks reliability
(of course not undermining the low carbon footprint aspect of renewable energy sources). The intermittent
and uncertain nature of the generation they believe causes many problems in system balancing essential to
maintain the system frequency. The localized injections of DG energy could cause over-voltage problems
at a localized level leading to false tripping of circuit breakers and relays. Furthermore, the unplanned
DG growth in distribution network could create unbalance in the network leading to increased losses in
distribution network. The phase and supply and demand balancing which was difficult with stochastic
evolution of load only, gets more difficult with uncertainty in DGs. This philosophy of distributed renewable
energy generation propagators is referred to as the Divorce case.

Both these line of thinking are in some way extreme cases. A more sensible way of thinking would
combine the goods that DGs offer and minimizes the difficulties associated with them.

Table 13.3: Performance Indices for 50kW total phase load, Overloaded, with DG or EV connected at N1

EV/DG at N1 Mean Max Neutral Total Phase Sum of Voltage Sum of Voltage
VUF VUF Losses losses drop at N1 drop at N5

Balanced + 40% DG 1.12e-07 1.82e-07 0 10996.1153 -12.4467 -36.5481
Balanced + 40% EV 7.62e-08 1.15e-07 0 20621.7336 -21.0819 -46.0758

Unbalanced + 120% DG 2.8155 3.1089 4264.5506 13099.4897 -12.6841 -36.8959
Unbalanced + 120% EV 4.3865 5.0357 7064.8551 25068.9811 -21.7348 -47.0552

13.3 Architectures of Storage Solutions
In our present work we consider balancing active and reactive power between phases using energy storage
battery. We consider storage is owned by the utility and placed at selected node of the network. The
battery model used in this chapter is described in Chapter 2 Section 2.5. Next we present the storage
control architectures for facilitating phase balancing.
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Table 13.4: Performance Indices for 50kW total phase load, Overloaded, with DG or EV connected at N5

EV/DG at N5 Mean Max Neutral Total Phase Sum of Voltage Sum of Voltage
VUF VUF Losses losses drop at N1 drop at N5

Balanced + 40% DG 1.19e-07 1.43e-07 0 4988.4956 -11.6358 -22.0773
Balanced + 40% EV 1.23e-07 2.71e-07 0 40753.8467 -23.8587 -66.8436

Unbalanced + 120% DG 5.2444 8.1075 22111.61 16063.4889 -14.531 -24.2719
Unbalanced + 120% EV 4.7895 7.2048 7005.75 22851.0115 -18.378 -44.3698

Table 13.5: Performance Indices for 5kW total phase load with Sparse network; DG or EV connected at N1

EV/DG at N1 Mean Max Neutral Total Phase Sum of Voltage Sum of Voltage
VUF VUF Losses losses drop at N1 drop at N5

Balanced + 40% DG 9.25e-08 2.21e-07 0 1066.2160 -9.0111 -32.7123
Balanced + 40% EV 1.04e-07 1.45e-07 0 1972.4848 -15.7299 -40.0998

Unbalanced + 120% DG 2.0373 2.306 41.5705 1261.3842 -9.0739 -32.8439
Unbalanced + 120% EV 2.841 3.3052 59.6847 2310.5699 -15.9015 -40.4231

Table 13.6: Performance Indices for 5kW total phase load with Sparse network; DG or EV connected at N5

EV/DG at N5 Mean Max Neutral Total Phase Sum of Voltage Sum of Voltage
VUF VUF Losses losses drop at N1 drop at N5

Balanced + 40% DG 7.91e-08 1.25e-07 0 484.264 -8.4588 -18.7116
Balanced + 40% EV 1.24e-07 1.67e-07 0 3825.694 -17.4885 -58.9971

Unbalanced + 120% DG 4.4593 7.2123 224.0432 1573.9655 -10.4382 -20.2429
Unbalanced + 120% EV 4.3512 6.8105 80.3176 2367.5169 -13.8983 -40.0262

13.3.1 Solution with one battery and phase selector
A single battery is used to install to compensate imbalance in three-phases. A phase selection algorithm
selects the phase with which battery is connected and the storage charges or discharges to minimize the
imbalance as much as possible. Fig. 1.4 shows the architecture of this proposed solution. In this figure the
battery is placed at the substation close to the transformer. However, we observe from simulations that
the best-suited location to install phase balancing storage resource will depend on network architecture.
For a radial distribution network the storage device should be places on the furthest node for maximum
cumulative correction of voltage and losses. The phase selector algorithm should consider maintaining
state-of-charge of the battery close to 50%, so that the battery could charge or discharge for reducing the
phase imbalance.

13.3.2 Solution with three storage with each dedicated to each phase
Three dedicated batteries interfaced via a converter are connected to three phases. Fig. 13.12 shows the
architecture of this solution. The storage controller takes into account the phase imbalance and also
maintains the SoC of each of these batteries.

13.3.3 Solution with three storage with phase selector for each battery
The objective of performing phase balancing using energy storage is to compensate active and reactive
power unbalance in each phases and maintain the state of charge (SoC) of each of the battery. We achieve
these goals using two-step algorithm The first step is a scheduling algorithm which identifies which battery
should compensate which phase based on SoC and historical variation of each phase. Note the scheduling
algorithm is implemented at a longer time scale, in our case hourly. The second step consists of active and
reactive power compensation, in a manner that the sum of square of active and reactive power unbalances
are minimized over the time horizon under consideration.
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Figure 13.12: Block diagram of phase-wise compensation at with dedicated battery for each phase

Notation

The active power supplied by distribution transformer (in absence of energy storage) for phase A at time
instant i is denoted as PAg (i). Similarly, PBg (i) and PCg (i) represents the active power supplied for phase
B and C respectively.

The reactive power supplied by distribution transformer (in absence of energy storage) for phase A at
time instant i is denoted as QAg (i). Similarly, QBg (i) and QCg (i) represents the reactive power supplied for
phase B and C respectively.

The battery supplies active and reactive power denoted as PB(i) and QB(i) respectively. The active
power supplied a battery is bounded by its ramp rate and capacity constraint and the reactive power
supplied is governed by active power output and converter size. In this work we consider four-quadrant
storage operation.

The active power unbalance in phase A at time instant i is given as

∆A
P (i) = PAg (i)− P̄g(i), (13.3.1)

where P̄g(i) is the mean of active power in all phases given as

P̄g(i) = 1
3
(
PAg (i) + PBg (i) + PCg (i)

)
. (13.3.2)

If ∆A
P (i) > 0 then active power supplied in phase A is higher than the mean active power supplied in

each phase. Therefore, in order to provide compensation for this unbalance, the battery should discharge.
Similarly, unbalance in active power for phase B and C are calculated.

The reactive power unbalance in phase A at time instant i is given as

∆A
Q(i) = QAg (i)− Q̄g(i), (13.3.3)

where Q̄g(i) is the mean of reactive power in all phases given as

Q̄g(i) = 1
3
(
QAg (i) +QBg (i) +QCg (i)

)
. (13.3.4)

If ∆A
Q(i) > 0 then reactive power supplied in phase A is higher than the mean reactive power supplied

in each phase. Therefore, in order to provide compensation for this unbalance, the battery should supply
reactive power. Similarly, unbalance in reactive power for phase B and C are calculated.

Scheduling Algorithm

The sampling time of control decisions for operating energy storage is h. The scheduling algorithm is
implemented every N samples. The scheduling algorithm allots which energy storage should compensate
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Figure 13.13: Block diagram of phase-wise compensation with phase allocation for each storage

which phase for the next N samples, based on SoC of all the batteries and historical variation of each
phase. In this work we consider hourly energy storage allotments.

Hourly average forecasted imbalance of active power for phase x and hour k is denoted as

Ĥx
P (k) = − 1

N

N∑
h

∆̂x
P , (13.3.5)

where Nh is the number of samples in 1 hour.
The hourly forecasted imbalance is sorted in ascending order and stored in a vector Mk. Mk is given

as

Mk = sort(ĤA
P (k), ĤB

P (k), ĤC
P (k)).

The SoC of batteries is stored in vector Zk and is given as

Zk = sort(SoCB1
k , SoCB2

k , SoCB3
k ).

Higher value of hourly average forecasted imbalance imply more charging opportunity. Therefore, this
value should be matched with lowest SoC value. Mk(1) is matched with Zk(3).

The reactive power supplying capability is a function of converter size and active power magnitude. In
scheduling we only consider active power imbalance as the battery SoC is governed by active power and
reactive power does not affect the SoC of the battery [208].

Phase-wise Compensation

Suppose after running algorithm Phase A is compensated using battery g1, Phase B is compensated using
battery g2 and Phase C is compensated using battery g3.

The objective function for battery g1 is given as

(P g1bat) min
∑
i

{(
∆A
P (i) + P g1B (i)

)2
+
(

∆A
Q(i) +Qg1B (i)

)2
}

s.t. (i) bg1i ∈ [bmin, bmax]∀i,
(ii) P g1B (i) ∈ [Pmin

B , Pmax
B ]∀i,

(iii) (P g1B (i))2 + (Qg1B (i))2 ≤ (Smax
B )2∀i

Note that the optimization problem (P g1bat) is convex as the objective function and constraints are convex
functions. Similar to (P g1bat) the objective functions for battery g2 and g3 can be implemented.
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13.3.4 Phase Balancing with Storage: Stylized Example
In our exhaustive simulations on identifying the effect of connection of EVs and PVs on a radial distribution
network we identified that the indicators of unbalance: (a) Neutral conductor losses, (b) line losses and (c)
VUF has the most pronounced effect on the furtherest node of the radial distribution network, therefore,
we select storage battery to be placed at this point. Nominal case is described for 1 day with bulk PV
generation at N3 Phase A during the day and bulk EV consumption during the evening at N3 Phase C,
see Fig. 13.14. The imbalance magnitude is 5 times higher than the storage placed at farther end of the
radial distribution network. Fig. 13.15, Fig. 13.16 and Fig. 13.17 shows that the storage compensates the
unbalance caused due to EV and PV and in effect reduces the unbalance indices described above.
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Figure 13.14: Simulation scenario for the stylized example.

Figure 13.15: Impact on current intensity.

13.4 Case Study : Madeira Substation2

This section presents a case study of phase balancing in Madeira Island, Portugal. First, an overview of the
local grid is provided, in order to give some context to the reader. Second, the case of a specific distribution
substation in Madeira is presented, in order to motivate the need to improved grid control through the
introduction of Battery Energy Storage Systems (BESS) at the distribution station level. Finally, this
section concludes with a Q&A that was conducted with staff from the planning department of Madeira’s
DSO/TSO.

13.4.1 Overview of the Local Grid
Madeira is a total energy island, and all the energy is generated locally. There is only one DSO/TSO in
Madeira and it is responsible for the activities related to production, transport, distribution and commer-

2This section is prepared by Dr. Lucas Pereira at ITI/LARSyS, Tecnico Lisboa, Portugal.
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Figure 13.16: Impact on Voltage deviation.

Figure 13.17: Impact on Voltage Unbalance Factor.
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cialization of electric energy. The DSO is also the entity that acquires the electric energy that is produced
by private micro- and mini-producers.

The electric grid in Madeira island is fed by five sources of energy, namely: hydro, wind, photovoltaic,
solid waste incineration, and thermal energy from burning fossil fuels like diesel and natural gas. As of
this writing the electric energy production in Madeira island is guaranteed by two thermal plants, 10
hydro plants, eight wind farms, one solid waste plant, three solar farms with 7 MW, 2 MW and 6 MW
respectively, and 770 distributed solar micro and mini-producers, with full injection to the grid. The grid
is composed of: 20 x 30/6.6 kV substations, 4 x 60/6.6 kV substations 3 x 60/30 kV substations and 2 x
60/30/6.6 kV substations.

The grid total losses amount to 8.6% of the total emission (2016). From that value, 0.5% are the
responsibility of the HV networks (60 kV), 2.5% are losses at the MV level (30 and 6.6 kV), with the
remaining 5.6% losses happen low voltage network. It should be noted that LV losses include commercial
losses.

Power Quality Norms and Control Mechanisms for Voltage and Frequency

In Portugal, electric grids must primarily comply with the national Quality of Service Regulation (RQS)
parameters (depicted in table 13.7), while also respecting the European Norm NP EN 50160:2010, which
is the Portuguese version of the European Norm EN 50160: 1994 3.

With respect to the control mechanism in the Madeira grid, in the present, voltage and frequency
fluctuation are controlled by the thermal power stations through the available spinning reserve. Hydro
power plants also provide some frequency control capability but only in situations where there are plenty of
available hydro resources or the power plants are close to their rated power. In any case, the hydro plants
are slower than the thermal ones, so they are not usually considered for voltage and frequency control.

Overall, the frequency is controlled by the largest generation group in the grid, whereas voltage at the
LV substation can be regulated either at the HV/LV substation level, or locally through the transformer
tap-changer.

Regulation for Mini/Micro-Production and Self-Consumption

The current legislation for micro-production and self-consumption of energy is defined by the Decree-Law
no 153/2014 of October 20th of 2014. This Decree-Law defines two types of Units of Production, the UPP
(Unit of Small Production), and the UPAC (Unit Production for Self-Consumption).

UPPs are units of production, based on a single technology (e.g., solar or wind). All the energy
produced by a UPP must be injected to in the Public Service Electric Grid (RESP). On the other hand,
UPACs, are units of production that can be either off-grid or grid-connected. The energy produced by an
UPAC, must be first used for self-consumption, and only then injected to the grid.

In Madeira, since the publication of the Decree-Law 153/2014, the local DSO does not accept new
UPPs, and UPACs are not allowed to inject the excess energy to the RESP (i.e., excess production must
be curtailed). This imposition is owing to the isolated nature of the Madeira electric grid that is very
sensitive to variations in the energy produced by RES, hence the need to avoid direct injection to the grid.
Nevertheless, EEM still maintains the 785 installations that were contracted prior to this decision.

13.4.2 Case of a Distribution Substation in Madeira
The selected low voltage (LV) distribution substation is located in one of the most western villages of
Madeira Island. This substation has a transformer with an apparent power of 250 kVA, connected in

Metric Nominal Value Unit Thresholds
Min Max

Voltage 230 V -10% (207) +10% (253)
Frequency 50 Hz -2% (49) +2% (51)
Harmonics - - THD < 8%
Flicker - - Plt < 1%

Table 13.7: Grid Quality of Service thresholds as defined by the national Quality of Service Regulation,
after the European norm EN 50160:2010.

3EN 50160: 1994, https://www.pasma.com.au/pdf/GuideToEN50160.pdf
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delta-wye, which transforms voltage from the transmission grid (6600 V) to the distribution grid (400 V).
The feeder capacity is of 62.5 kVA, i.e., 25% of the transformer capacity.

The substation has a daily average load of 27 kW, an Off-Peak power of 1 kW and a Peak power of 63 kW.
At the moment the transformer’s capacity is relatively high when compared with the power requested by
the grid, mostly due to the expectation of growth in farming activities and local accommodation businesses
in this rural area. This transformer feeds a low voltage distribution board (Quadro Geral de Baixa Tensão
- QGBT) with five outputs outputs that distributes the electricity throughout the public grid, supplying
around 100 customers consisting mostly of domestic, small businesses and agricultural facilities, with just
a few three-phase installations (see figure 13.18 for an overview of the grid; the yellow dots represent the
position of the UPP sites.).

B1B2

B3

B4

B5

Figure 13.18: Madeira substation transformer five output branches and the nine connected UPPs

Presently, this is one of Madeira’s LV substations with higher micro PV generation, with a total
capacity of 36 kWp, distributed over nine UPPs (see table 13.8 for details), which is about 14% of the
feeder capacity. As such, there is still a lot of room to connect new UPPs and UPACs, which will require
additional efforts to keep the grid properly balanced.

Table 13.8: UPPs connected to the selected substation in the low voltage grid, and the respective installed
PPV capacities.

UPP kWp Branch Connected Phases
1 5.17 5 A B C
2 3.3 5 A B C
3 1.95 5 A B C
4 3.45 3 A
5 3.45 3 B
6 3.45 4 C
7 5.17 5 A
8 5.17 5 B
9 5.17 5 C

Phase Balancing

Presently, the Madeira electric grid is empirically or inherently balanced, i.e., the DSO/TSO relies on the
experience of the distribution team to carefully plan and manage the grid, by always trying to do the best
distribution of the installations in each phase (thus minimizing the potential for phase unbalance), and
having the adequate extensions of the conductors (thus avoiding voltage fluctuations and the edge of the
grid). Furthermore, before 2014, when deciding on the installation of a new UPP, extensive simulations
were conducted in order to assess the potential effects of adding additional renewable storage in the energy
mix. Any candidate installation that yielded grid quality parameters outside the accepted thresholds
(shown in table 13.7), would not be accepted in order to avoid potential disturbances in the grid.

Still, and despite the best efforts, due to the stochastic nature of energy, and especially renewable
production, there is still some considerable phase unbalance. For example, figure 13.19, presents the per
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phase average active power between 11 and 17 March of 2019, showing an evident unbalance between the
three phases. This unbalance in active power also leads to an unbalance in voltage, as shown in figure
13.20.
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Figure 13.19: Active power per phase, averaged by minute between 11 and 17 of March 2019
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Figure 13.20: Voltage per phase, averaged by minute between 11 and 17 of March 2019

Ultimately, in a LV network, like the one presented here, phase unbalance can lead to an overload of the
neutral conductor due to current leakage (show in Figure 13.21), and can ultimately lead to the presence
of harmonics that in the long-term will affect the operation of inductive equipment (e.g., overheating, and
speed variations).

Against this background, it is very relevant to study the possibility of providing improved grid control
through the introduction of Battery Energy Storage Systems (BESS) at the distribution station level.
Ultimately, the ability to coordinate active and reactive power balances at the distribution level would
represent a major step towards safely increasing the injection of renewable energy sources in the Madeira
electric grid. Furthermore, considering that most of the LV substations in Madeira Island have the same
characteristics of this one with respect to load consumption (i.e., are mostly resistive), such a solution could
be easily replicated in other substations since the only difference will be the amount of energy injected in
the grid by the UPPs.

This is even more important when one considers that in the neat future grid-injection from renewable
sources will be allowed once more. This will necessarily lead to an increase in the number of UPPs
and UPACs connected to the Island’s distribution stations, many of which should be from single-phase
installations, which will cause further perturbation to the grid.

13.4.3 Q&A with the EEM Madeira
Which are the greatest problems that phase imbalance can cause in the grid?

In LV networks, the biggest problem of phase imbalance is the overload in the neutral conductor, given
the leakage current. Furthermore, this can also lead to the presence of harmonics, that in the long-term
will affect the operation of inductive equipment (overheating, speed variations).

234



0

10

20

30

40

50

60

12:00 AM 1:40 AM 3:20 AM 5:00 AM 6:40 AM 8:20 AM 10:00 AM 11:40 AM 1:20 PM 3:00 PM 4:40 PM 6:20 PM 8:00 PM 9:40 PM 11:20 PM

N
eu

tr
al

 C
ur

re
nt

 (A
)

Daily Average Between 11 and 17 of March 2019

Total

Figure 13.21: Neutral currents, averaged by minute between 11 and 17 of March 2019

What causes the larger imbalance: voltage, power distribution across the phases, or are they
both related? I.e., if we solve one of the causes, does it solve the other?

The larger phase unbalance (of current) in LV happens at the phase distribution level, i.e., if all the clients
had three-phase systems this problem would not occur. No, because voltage unbalance can also happen
due to issues in the MV network.

What are the current solutions? Is there any norm to follow?

The current “solutions” are basically the careful planning and management of the grid: always try to
do the best distribution of the installations in each phase, and try to have adequate extensions for the
conductors (thus avoiding voltage fluctuations at the edge of the grid). Yes, in ML and LV networks the
energy distribution must follow the NP EN 50160 norm4.

How realistic is it to assume that the other DS in Madeira will behave similarly to this one?

The distribution grid at this DS, like with most LV networks in Madeira, is primarily resistive. Conse-
quently, what will differentiate this from other DS is the amount of energy injected by the UPPs.

When there is a new request for an UPP, is there any defined process that must be followed
to assess the impact of the installation?

Yes, the DSO/TSO performs a number of simulations using a proprietary planning software.

Is there any reference to the acceptable Power Factor values in the grid code?

The grid code is still under development. Nevertheless, we already have an estimate of the voltage and
frequency control that was done through the modulation of active and reactive power in different installa-
tions.

Are there any active voltage compensation mechanisms? I ask this because at this point the
Voltage is very well balanced, despite the presence of 9 UPPs

No. Instead, the distribution services make sure that all the consumers are qualitatively distributed across
the three phases. In this end, this results in an empirical phase balancing.

What is the feeder capacity of this substation?

The apparent power of the transformer is 250 kVA, and the peak apparent power is about 68 kVA. As
such, there is still a very big margin to connect new consumers. Nevertheless, and since the new grip-code
is still to approve, the feeder capacity of any LV substation is of 25% of the transformers’ capacity. For
example, in Fazendinha this would be 62.5 kVA, meaning that there is still room for an additional 26.5
kWp of micro-production.

4NP EN 50160, https://paginas.fe.up.pt/ ee86007/pagina norma np en 501602001.htm
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13.5 Conclusion and Perspectives
The three phase network could face greater unbalance due to unequal distributed generation and/or load
connected to each of the phases. Based on simulations of a radial distribution network on OpenDSS
software platform we identify the indices that should be used for measuring three phase system unbalance:
(a) VUF, (b) neutral losses and (c) line losses. Further, we observe that compensating phase imbalance is
most effective if it is performed on the distant feeder in a radial distribution network.

Two case studies demonstrating phase imbalance is presented. The first case study is derived from
data collected from Madeira Portugal. The utility in Madeira allots the phase in which new DGs in a
network is to be connected, such a planned allocation of DG is aimed to achieve a balanced three phase
network. However, unbalances are still observed as the DG production is not uniform in the phases (refer
to Fig. 6.9 and Fig. 6.10 for imbalance in three phases). The second case study deals with EV charging
testbed located at Caltech in Pasadena, California (refer to Chapter 2 Section 2.2.6).

We present three architectures of storage compensating system unbalance which might be caused due
to unbalance load and/or distributed generation. It is observed that significantly smaller sized storage
compared to imbalance magnitude can assist in reducing such an imbalance in three phases. More rigorous
algorithm development is the future goal and not performed in this chapter.
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Chapter 14

Conclusions and Future Directions

Life is like riding a bicycle. To keep your balance you must keep moving. - Albert Einstein

14.1 Conclusions
This thesis explores applications of energy storage in the context of power network participants, such as low
and medium voltage consumers and large-scale storage applications for generators and aggregators. The
contributions made in this thesis are categorized into four blocks: (i) energy arbitrage, (ii) co-optimization
of storage, (iii) large-scale application and (iv) health consideration of battery.

The first contribution is the development of energy arbitrage algorithm in the presence of time-varying
buying and selling price of electricity, charging and discharging efficiency losses, storage ramping and
capacity constraint, inelastic load and renewable generation variation. The proposed algorithm is applicable
for a piecewise linear convex cost function which is developed in the context of electricity consumers with
inelastic load and renewable generation. This formulation can be applied for net-energy metering based
compensation of excess generation. The proposed algorithm is compared with linear programming and
convex optimization formulation to demonstrate the computational efficiency. We show that the worst-case
run-time complexity is quadratic in the time horizon. Auto-regressive forecast models are implemented for
rolling horizon or receding horizon model predictive control to take into account real-world uncertainties
in electricity price, consumer load and renewable generation. The applicability of this proposed algorithm
is demonstrated in case-studies using real data from several ISOs. Some key observations are presented as
follows:
• Slow ramping batteries are less sensitive to uncertainties compared to faster-ramping batteries.
• Sensitivity analysis of the varying ratio of selling and buying price without and with net load (inelastic

load and/or renewable generation) variation is performed. A high value of the ratio of selling and
buying price affects more the sensitivity of arbitrage gains due to uncertainty in parameters. Storage
operation can be profitable for the low selling price in the presence of consumer load and renewable
generation, although only storage operation under the same compensation may not be profitable.
This implies the value of storage under low selling price compared to buying price increases due to
the presence of load and generation.

• Using a stylized example we show that the intermediate ramp rate (other than idle, minimum or
maximum ramp) can be an optimal action for performing energy arbitrage under the assumption
that decisions can be made only at discrete time-steps.

• Quantification of parameter uncertainties based on the compensation mechanism and pricing type
is presented in Fig. 9.1. The pricing type is categorized into (a) real-time electricity price whose
variations are not known a priori and (b) time-of-use pricing whose variations are known and the
excess generation compensation can be categorized based one net-metering or NEM policy into
(i) NEM 1.0 denotes selling price equal to buying price and (ii) NEM 2.0 denotes selling price lower
than or equal to buying price. Combination of pricing type and excess generation compensation
decides the parameters whose uncertainties affect the arbitrage gains. For instance, in Chapter 9
with a time-of-use price and NEM 1.0 excess generation compensation, we observe that the performing
arbitrage is completely insensitive to future uncertainties in parameters.
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Theoretical and analytical observations help us identify the governing parameters of following:
• Sub-horizon: is governed by (a) electricity price, (b) charging and discharging efficiency, (c) sampling

time, (d) ratio of ramp rate and the rated storage capacity and (e) initial storage capacity,
• Shadow price: is governed by (a) electricity price and (b) charging and discharging efficiency,
• Thresholds of storage operation: are governed by (a) consumer inelastic load, (b) renewable genera-

tion, (c) electricity price, (d) storage ramp rate, (e) charging and discharging efficiency and (f) ratio
of ramp rate and the rated capacity,

• Effect of uncertainty on arbitrage gains: governed by (a) relationship between sampling time [204]
and the ratio of ramp rate and the rated storage capacity, (b) charging and discharging efficiency.

The dependencies listed above are identified for piecewise convex cost function for NEM 1.0 and NEM 2.0
in this thesis and require further exploration to quantify their relationship with each other. The proposed
energy arbitrage algorithm is made open source in the form of arbitrage toolbox. The MATLAB code
for the proposed algorithm is developed along with benchmark algorithms using convex optimization and
linear programming. These benchmarks are also made open source.

Energy storage due to its high cost is often not financially viable to perform one dedicated task. The
second key contribution of the thesis is co-optimizing formulations for increasing the total gains made by
operating the battery. We present three co-optimization formulations in this thesis:

• Formulation 1: arbitrage + power factor correction : showing active and reactive power control
are largely decoupled (a) the co-optimization problem for controlling the active and reactive power
output of storage battery interfaced via a converter is almost decoupled. This is inferred based on no
reduction in active power arbitrage gains due to reactive power compensations, (b) although active
power output of storage requires lookahead over the time-horizon for maximizing arbitrage gains,
the reactive power control requires no lookahead in time (in almost all cases), (c) uncertainty in
parameters affects arbitrage gains, however, due to the independence of reactive power control over
future uncertainties, the reactive power control is not affected by uncertainties in the near future.

• Formulation 2: arbitrage + power factor correction + peak demand shaving: efficient formulation
considering drastically different time-scales of the tasks (a) co-optimization formulation considers the
time scales of these tasks. Energy arbitrage and PFC are performed in a time-scale of minutes to
an hour. However, peak demand shaving is performed in a time-scale of a month. Combining these
time scales together makes this optimization problem intractable. We propose a memory variable
for tracking the previous maximum power for applying peak demand shaving only if the power
peak exceeds the previous maximum and reduce the optimization horizon to one day, in which the
proposed co-optimization problem can be solved efficiently. (b) The benefits of co-optimizing are
significantly greater than performing a dedicated or a few of these tasks together, see Fig. 7.2. For
instance, performing only arbitrage and PFC could significantly increase the peak demand charge
paid by the consumer, undermining the gains made by the consumer. Co-optimizing can reduce
the consumer bill by up to 28.9% for a prosumer integrating 2 kWh 4C-4C1 battery. Furthermore,
control of battery operation cycles is proposed by the introduction of friction coefficient to manage
cycle life degradation. (c) Simulation of 80 days of load data from Madeira, Portugal with real-time
electricity price data from CAISO and peak demand charge from PG&E in California is performed.
The uncertainty of system parameters is modeled using auto-regressive models and sequentially
implemented as model predictive control of storage operation.

• Formulation 3: arbitrage + peak demand shaving + energy backup + self-sufficiency: storage oper-
ation is tailored according to consumer contracts applicable to LV consumers in Madeira, Portugal.
(a) A convex formulation is proposed for storage control for co-optimizing arbitrage, peak demand
charges saving and backup reserve during power outages considering efficiency losses, ramping and
capacity constraints for a battery. (b) Considering storage operational cycle degradation, we calcu-
late gains per cycle indicating the battery can be financially viable in Madeira with a simple payback
period of approximately 3 years. (c) Numerical results indicate the following: (i) ramping capability
primarily decides the ability to reduce peak demand charge savings for consumers, (ii) providing en-
ergy backup for probable and scheduled power outages does not noticeably reduce storage ability to
perform peak demand and/or arbitrage and (iii) for DG generating more than inelastic load, storage

1xC-yC notation represent the relationship between ramp rate and battery capacity. xC-yC implies battery takes 1/x
hours to charge and 1/y hours to discharge completely.
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also contributes to self-sufficiency by increasing self-consumption. (d) The proposed co-optimization
formulation is used for recommending the best-suited consumer contract based on inelastic load and
renewable generation variation. In Madeira, LV consumers select from an array of a total of 48 dif-
ferent contracts. This framework can be used for the selection of the best-suited consumer contract
depending on consumption pattern, renewable generation and available storage (or flexibility).

A case-study of storage applications for LV consumers in Uruguay is also performed. Storage operation is
used for co-optimizing energy arbitrage along with reactive energy compensation. It is observed that due
to the net-metering policy and time-of-use pricing, the storage operation is immune to any parameter un-
certainty. In this special case, storage can be operated using pre-decided thresholds and optimal profit can
be ensured. We observe that depending on consumer inelastic load and renewable generation integrating
storage can be profitable.

The third key contribution of this thesis is proposing large scale applications of batteries, such as
• Distributed control of a fleet of batteries: control architecture for a distributed fleet of batteries

is proposed which can accurately track a grid level signal with much faster temporal characteristics
(compared to amount of energy charged or discharges in one sample of time) using a fleet of batteries,
while maintaining individual SoC within desired bounds. Proposed control solution also maintains
the SoC of the fleet of batteries in the desired of operation and increases the idle time of each battery.
This controller consists of a centralized decision maker and local control design. Each of the battery
in the fleet has their independent local controller and there is no information exchange among these
local controllers. From simulation results, we observe: (a) the fleet of batteries cooperates in tracking
a regulation signal and do not chatter. In case of chattering, some batteries will compensate each
other by charging and discharging. This will increase the operational cycles causing the battery
to reach its end-of-life faster. (b) Properties of the distributed control proposed: (i) minimum
communication requirement as the centralized control sends a scalar signal which the local control
use for taking decisions, (ii) considering Quality-of-Service (QoS) for batteries by including bounds
on SoC. Further, the stochastic control increases the idle time of the batteries thus increasing battery
life, (iii) scalability: the complexity of the control solution (using randomization) does not grow with
the number of batteries.

• Phase balancing: The bulk of behind the meter resources such as rooftop solar generation and electric
vehicle charging are single phase connected to three-phase distribution systems. Ad hoc growth of
single phase connected DGs and EVs can lead to unbalanced three phases with negative consequences
on power network efficiency. We conducted stylized simulations on a 3 phase 4 wire radial distribu-
tion network using an openDSS-based simulator to understand the effects of phase unbalance. We
measure Voltage Unbalance Factor and we identify the negative impacts of phase unbalance which
increases: (i) voltage drop/rise, (ii) neutral losses and (iii) phase losses in 3 phase 4 wire distribution
network. We evaluate the integration of storage in the distribution network aimed to balance load
across phases. It is observed that relatively small-sized storage (compared to unbalance magnitude;
storage size upto 10% of imbalance) can significantly reduce the radial distribution network unbal-
ance. We identify that the best location to install a battery in such a distribution network is at
the end node of the distribution feeder, regardless of the location where the imbalance is created.
We propose three storage control architectures for balancing active and reactive power: (a) three
batteries dedicated for each phase, (b) three batteries with phase selector ensuring SoC level in each
battery and (c) single battery with phase selector. The implementation of control mechanisms for
all these architectures can be considered as the future extension of this topic. Then, unbalance case
study of a substation in Madeira in Portugal due to DG integration is presented. We detail the
mechanism in which power network operators plan to locate the DGs in the distribution network
so as balancing by design could be achieved. However, in spite of controlled placement of DGs,
substation operators observed imbalance in the distribution side. Their primary concern happened
to be high neutral conductor current which often leads to a significant amount of losses. We also
show some of the data collected at the substation. We list the DG allocation procedure in context
of Madeira. Note that such a meticulous phase allocation might not be possible in more densely
populated regions, therefore, the problem of unbalance will be more pronounced compared to the
substation case study presented.

The fourth key contribution of the thesis is to bring health or life aspect of batteries in control design.
Batteries have a limited life and need to be utilized appropriately so as the operational life can be increased.
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1. Nominal design of battery: Note that over-charging and over-discharging for Li-Ion battery raises
safety concerns and also drastically affects battery operational life. Batteries, unlike loads, do not
have a nominal behavior. For instance, the water heater should operate during morning and evening
when hot water is needed by the consumer. The batteries, on the other hand, should remain idle
when not needed. A continuous Markov model with two components is proposed with the following
properties:
• The first component have three states: charging, discharging or idle,
• The second component of Markov model is the state-of-charge of a battery (continuous variable),
• Battery should charge with high probability when the SoC is lower than a certain level and

discharge with high probability for a higher level of SoC. This probability distribution keeps
the battery SoC in the pre-decided desired band. The probability to remain idle is high in if
the SoC remains in this band. This nominal design of batteries increases the idle time in effect
reduces stress on each of the batteries.

The proposed nominal battery model (a) increases idle time, (b) avoids battery overcharging and
over-discharging.

2. Energy storage devices have finite ability to absorb or inject power due to its finite capacity. Batteries
participating in fast dynamic regulation should operate ensuring the regulation signal denoting the
system imbalance is tracked accurately and at the same time battery charge level is maintained
which will ensure the battery can track the dynamic signal sustainably without reaching minimum
or maximum charge level. In such a case the battery cannot either ramp-up or ramp-down. We
propose an drift compensation layer of control to the distributed stochastic control of a fleet of
batteries proposed in Chapter 11, in order to maintain state-of-charge (SoC) of the battery in the
optimal band of operation. The proposed controller is designed using Linear Quadratic Regulator
(LQR) which minimizes the input energy and tracking error for aggregate power and SoC, and
gain scheduling for adaptive proportional gain for larger deviation of battery charge level. Using
numerical simulations we show that the addition of this layer of control does not deteriorate the
ability of distributed fleet of batteries to perform fast dynamic regulation and it assists in the stable
operation of a fleet of batteries in presence of efficiency losses and non-zero mean regulation signal.
We use PJM’s performance evaluation metrics to compare scenarios.

3. We consider cycle and calendar life of the battery and propose mechanisms to control operational
cycles such that the battery operational life is increased: Batteries have a limited operational life,
often bounded by its calendar life and cycle life. Calendar life refers to the maximum age of a
battery. For example, if the calendar life is 10 years, then even if the battery is not used the battery
with high probability will reach its end-of-life in this period. The second index is cycle life, which
bounds the maximum number of operational cycles that a battery can perform. The operation
cycles measurement should consider the depth-of-discharge of each cycle. For instance cycle with
10% change in SoC cannot be directly compared with 80% change in SoC cycle. We propose an
algorithm for calculating equivalent operation cycles based on ramping trajectory. We claim that the
operational life battery will be increased if the degradation of battery due to ageing matches that to
the degradation due to operation cycles. The rationale to select this degradation model of battery is
based on battery datasheet which often mentions the cycle and calendar life of the battery and also
provides the relationship of operation cycles and depth-of-discharge.
The next step in increasing battery operational life is to control the operation cycles. For storage
performing arbitrage we propose a friction coefficient which can be tuned to control the cycles that
the battery operates. This friction coefficient is motivated by increasing the dead-band where optimal
action for a battery is to remain idle. Therefore, the inclusion of friction coefficient only eliminates
the low returning transactions and do not affect the arbitrage gains significantly. In a numerical
experiment performed in Chapter 7, we observe that reducing friction coefficient from 1 to 0.8 has
less than 2.1% effect on total gains, however, the number of cycles is reduced by more than 53.4%.
The operation cycles for storage performing dynamic regulation can be controlled by tuning the
ramping commitments2 made by storage owners.

2Fast regulation signal sent to ancillary service providing resources which commit to ramp up or ramp down; these
commitments are often made in terms of peak ramping capabilities that the resource can perform.
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14.2 Future Directions
14.2.1 Selection of best-suited energy storage
In this thesis, we made several interesting observation which can help in selecting the best-suited battery
in terms of financial returns. Some of these observations are:

• Ramping capability (maximum discharging and charging power constraint) of battery decides the
peak demand shaving performed by the storage device for a given peak load. This implies installing
storage device for only peak demand shaving should aim to maximize the ramping capability of
storage for a given cost (refer to Chapter 7 and Chapter 8).

• Cycles of operation decided based on the storage application, the ratio of ramp rate and storage
capacity, efficiency losses etc. Storage installations should consider that $/cycle of storage devices is
enough to be financially feasible.

• The lookahead time horizon depends on (a) initial storage capacity, (b) electricity price variation,
(c) storage efficiency, (d) ratio of ramp rate overcapacity and (e) sampling time of decision making
(refer to the case study provided in Chapter 3.5).

• Storage in presence of renewable energy and inelastic load can still be profitable for selling price
relatively smaller compared to buying price of electricity. Note that for the same compensation,
without renewable generation and inelastic load energy storage cannot be profitable as inelastic load
and local generation adds value to energy storage, [176], as the ratio of selling price and buying price
is closer to zero, see Fig. 4.8.

From the contributions made in this thesis, one can say that best-suited storage selection will be
governed by the following four factors:

1. Applications for which storage is to be installed: as discussed in this thesis, storage can be used
for different applications. The tasks allocated to storage decides the operational cycle of storage
and thus affect the returns and life of the battery. Refer to Chapter 2.2 for some of the storage
applications summarized.

2. External factors affecting size and storage type are: (i) sampling time of storage operation, (ii)
incentive mechanism of applications for example for arbitrage it will be a variation in electricity
price, (iii) inelastic load, (iv) renewable generation.

3. Storage parameters: A more thorough analysis of how to select energy storage parameters are re-
quired. Selecting battery parameters 1- charging and discharging efficiency, 2- ramp rates/battery
capacity (defines the charging and discharging time required), 3- available capacity, 4- cycles of opera-
tion, 5- calender life, 6- self-discharge or leakage, 7- converter size, 8- converter losses and operational
life, 9- nonlinear constraints such as charging and discharging ramp rate which is governed by SoC,
10- degradation characteristic of storage would lead to increased internal losses, lowering of useful
capacity.

4. Financial feasibility: In this thesis, we proposed a new mechanism to identify storage profitability.
We proposed the calculation of $/cycle which takes into account storage operational cycle and returns.
This way identifying the value of storage intrinsically considers storage degradation into account.

The four governing factors are correlated and coupled. Statistical tools need to be developed for selecting
the best-suited storage for an application or several applications.

We believe that there is a gap in battery selection problem based on parameters. The statistical
tool would also help investors answer the question of selection of best-suited storage technology for some
application(s), from (see Table 2.1): (a) Lithium Ion, (b) lead acid, (c) flow battery, (d) pumped hydro,
(e) flywheel, (f) ultra-capacitor (etc.).

14.2.2 Optimal lookahead horizon for hydro generation facilities
Hydro facilities can be modeled as a battery with dynamic parameters. The power ramping capability is
a nonlinear function of the height of the water head in the reservoir. Since the ratio of ramp rate over
battery capacity for hydro is significantly smaller compared to Li-Ion batteries, the lookahead required
for decision making for hydro facilities will be longer, see CAISO case-study presented in Chapter 3.5.
Choosing an optimal lookahead horizon would ensure the best use of computational resources and avoid
oversizing or under-sizing issues.
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14.2.3 Storage/DG/Load placement based on voltage profile
Power network is evolving, new loads such as electric vehicles and distributed generation will be disruptive
on how traditional power system used to work. The problem of placement of new loads such as EV
charging facility, data-centers etc, flexibility such as battery and distributed generation will be critical to
the healthy operation of the power network. There are many different directions for these problems, some
of which could be:

• development of the new standards and protocols for energy participants: consumers, producers and
energy traders,

• infrastructure deployment planners which aim to minimize the expenditure required for power net-
work upgrades,

• redesigning relays and adjust the settings of relays for ensuring two-way power flow in power network
with an especial focus to the distribution network,

• reanalyzing optimal power flow constraints which could get modified due to such an evolution of the
power network,

• localized flexibility planning in the form of responsive loads and/or storage for mitigation of conges-
tion at the local level.

Using a case-study we show in Chapter 2.2.8 that the voltage profile of a network distorts due to the
integration of DGs or EVs (see Fig. 2.8). New storage, DG and EV charging placement is critical for the
stability of the power system. Identification of best location should consider (a) local voltage profile, (b)
the effect inclusion of new loads or generation on the rest of the network. Similarly, storage placement
should consider buses where it could provide the maximum support for the voltage.

Consider the nominal voltage of bus i of a network is denoted as V Ni . The voltage constraint states
that the bus voltages should be within the lower and upper voltage level denoted as V Ni ∈ [Vl, Vu] ∀ i,
where Vl denotes the lower voltage level and Vl denotes the upper voltage level. Consider the network
under consideration has B buses.

Consider we add DG and/or EV in one of the buses of the network denoted by bus index j. Such
inclusion will modify the voltage profile in the complete network. We denote the new voltage at bus i with
new load/DG/flexibility as V Tji , here Tj denotes the change in network at bus j.

Next we define two indices which measures the cumulative distance of voltage from the boundaries as:
upper and lower slack defined as

INu =
B∑
i=1

(Vu − V Ni ), INl =
B∑
i=1

(V Ni − Vl)

The indices with inclusion of DG and/or load connected at bus j is denoted as

ITju =
B∑
i=1

(Vu − V
Tj
i ), I

Tj
l =

B∑
i=1

(V Tji − Vl)

Using the above definitions we define differential slack (compares the nominal case with the modified
network case) denoted as

∆Iju = INu − ITju (14.2.1)

∆Ijl = INl − I
Tj
l (14.2.2)

DG integration

With the integration of DGs, the voltage profile will be lifted above the nominal case for any network
considering other loads and generation remains the same. Thus if a large amount of DGs is included the
voltage profile would probably violate the upper boundary. Therefore, in the DG integration case, the
network operator should consider minimizing the value of ∆Iju by selecting the j to place those DGs. This
problem is given is as

JDG = min
j∈{1,2,...,B}

∆Iju. (14.2.3)

Note that ∆Iju is calculated for buses i ∈ {1, 2, ..., B} by connecting the same rating of DG at each bus.
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For a network, we rank the buses j1, j2, j3, ..., jB such that ∆Ij1
u ≤ ∆Ij2

u ≤ ∆Ij3
u ≤ ... ≤ ∆IjBu . If

DG placement is considered then DGs should be placed in j1 then in j2 and so on. This ranking shows
that connecting same amount of DG at a different bus of the network has a different impact on the whole
network. By identifying JDG by solving Eq. 14.2.3 we minimize the impact of adding DG in the network.

Feeder hosting capacity for some buses is higher compared to others in a network. Such buses should
be selected for planned DG installations. Solving Eq. 14.2.3 provides such buses with higher feeder hosting
capacity.

New load integration

Loads such as electric vehicle charging facility, data centers have the flexibility to be placed in a network.
With the integration of new loads, the voltage profile will be pulled lower than the nominal case for any
network considering other loads and generation remains the same. Thus if a large number of new loads
are included the voltage profile would probably violate the lower boundary. Therefore, in a new load
integration case, the network operator should consider minimizing the value of ∆Ijl by selecting the j to
place those new loads. This problem is given is as

Jload = min
j∈{1,2,...,B}

∆Ijl . (14.2.4)

Note that ∆Ijl is calculated for buses i ∈ {1, 2, ..., B} by connecting the same rating of loads at each
bus. For a network, we rank the buses j1, j2, j3, ..., jB such that ∆Ij1

l ≤ ∆Ij2
l ≤ ∆Ij3

l ≤ ... ≤ ∆IjBl . If load
placement is considered then new loads should be placed in j1 then in j2 and so on. This ranking shows
that connecting the same amount of new loads at a different bus of the network has a different impact on
the whole network. By identifying Jload by solving Eq. 14.2.4 we minimize the impact of new load in the
network. Solving Eq. 14.2.4 the utility can decide the locations for new loads such as EV charging stations
for instance.

Storage integration

Storage can ramp up or ramp down or it could act as a load while charging and a DG while discharging.
Thus energy storage could help the network not only in resolving network congestion (under-voltage) but
also in over-voltage cases that might happen due to DG generation. The storage owner would like to place
their storage at the bus where the value created by such placement on the network could be maximized.
Therefore, in DG integration case the network operator should consider to minimize the value of ∆Ijl +∆Iju
by selecting the j to place those storage devices. This problem is given is as

Jstore = min
j∈{1,2,...,B}

(∆Ijl + ∆Iju). (14.2.5)

We define ∆Ij = ∆Ijl + ∆Iju. For a network, we rank the buses j1, j2, j3, ..., jB such that ∆Ij1 ≤
∆Ij2 ≤ ∆Ij3 ≤ ... ≤ ∆IjB . If storage placement is considered then storage should be placed in j1 then
in j2 and so on. This ranking shows that connecting the same amount of storage at a different bus of
the network have a different impact on the whole network. By identifying Jstore by solving Eq. 14.2.5 we
minimize the impact of adding storage in the network.

Note that by solving Eq. 14.2.5 we can comment only about the desired power rating of the energy
storage to be placed, however, for identifying storage capacity, extended simulations for longer time horizon
should be considered.

14.2.4 Modeling flexible loads as batteries
In a preliminary work presented as [173] we evaluate the control of flexible loads based on electricity
price variation. This work divides flexible loads into (i) loads which can be shifted in time and their
nominal consumption profile can we steered, for example electric vehicle charging which can be shifted
in time as well the charging profile can be altered ensuring the EV battery is charged to a desired level
within the specified window, (ii) loads which can be modified in time within a flexible window, however,
their consumption profile cannot be altered. For example, motor based loads such as washing machine,
dishwasher etc. Using this framework a numerical experiment using real consumption data from Pecan
Street [58] and electricity price data from ERCOT [16] is presented for home ID 5357 for 3rd and 4th
January 2017.
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Figure 14.1: The nominal operation versus the optimal operation of flexible loads considering electricity
price, flexibility window [173].

Fig. 14.1 shows the nominal and optimal operation of flexible devices considering price variations
considering the window of flexibility and end-time, refer to [173] for details of the experiment.

The deviation of new consumption profile is denoted as

L∆(t) = Optimal Load at time t −Nominal load at time t, (14.2.6)

Fig. 14.2 shows the deviation from the nominal operation. Note L∆ is a zero mean signal.
Clearly, L∆ shown in Fig. 14.2 can be modeled as ηch = ηch = 1 battery. L∆ denoting the ramp rate of

this virtual battery. The advantages of modeling flexible loads as a battery is that the insights developed
on storage control in this thesis can be applied to controlling loads. Further work is required for robust
virtual battery model for (i) aggregating homogeneous and heterogeneous size of the same type of flexible
load (ii) aggregating homogeneous and heterogeneous size of different types of flexible loads.

14.2.5 Minimizing renewable energy curtailment
Consider using renewable generators used as conventional generators, where these facilities commit a
certain power output during a certain time of the day. In order to match these commitments, renewable
generation facility owners install energy storage. The storage device helps in matching commitments and
also in reducing wastage of renewable generation. Such a storage integration can only be effective with
forecast accuracy, which will also decide the size of the battery. Note that the marginal value of integrating
storage deteriorates with size, thus the sizing should consider financial limitations into decision making
cycle.

14.2.6 Extension of topics covered in thesis
(1) Energy arbitrage:
• Extending the proposed optimal arbitrage algorithm for any convex function. The convex function

can be approximated using to k linear segment piecewise linear components. It will of interest to
compare the sensitivity of the number of segments and the optimality gap.
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Figure 14.2: Deviation from the nominal operation

• Presenting an algorithm which applies for positive and negative electricity prices with optimal guar-
antees.

• Price maker problem: market impact factor and storage usage applicable to the storage of large size
affecting electricity markets with their operation.

• Closed form rule to identify the sub-horizon; In chapters 3 and 4, we identify that the length of sub-
horizon depends on (a) initial storage capacity, (b) electricity price variation, (c) storage efficiency,
(d) ratio of ramp rate overcapacity and (e) sampling time of decision making. Further work is
required to quantify the effect of these factors and perform a sensitivity analysis.

(2) Co-optimization exploring storage applications not considered here: congestions, reserve allocation
and spectral decomposition of imbalance signal for ancillary services for different time scales.

(3) Health - dynamic degradation model taking into account battery chemistry.

(4) Forecast model - more efficient forecast model taking into account computation required to perform
forecast; comparing computation required and loss in opportunity. Parameter uncertainty can be compen-
sated more effectively with more sophisticated forecast models.

(5) Fleet of batteries: redesigning the nominal model to account for storage ramping asymmetries.
Discretization of storage ramp levels into more finer levels which would require the nominal model to be
adapted.

(6) Spectral demand decomposition and reserve planning problem for installing different ramping bat-
teries in order to balance and supply more accurately.

(7) Storage/flexibility allocations for different time scale operation for enhancing grid reliability.

In this thesis, we consider batteries for various applications for electricity consumers, and aggrega-
tor/utility. Storage is becoming more and more financially relevant and near future storage, deploy-
ments are going to grow. However, with the growth of advanced communication infrastructure, artificial
intelligence-based decision making load flexibility modeled as virtual batteries will eventually replace real
batteries.
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Appendix A

Appendix 1

A.1 Proof of Theorem 3.2.1
We first prove existence of (x∗, α∗, β∗) such that:

1. x∗ is the primal optimal solution,

2. (α∗, β∗) is the dual optimal solution, and

3. the optimality gap is zero (strong duality).
Since the constraints of the primal problem are all linear, weak Slater’s constraint qualification conditions
(which imply strong duality) follow simply from the feasibility of the primal problem. Clearly, under the
assumptions bmin ≤ bmax, δmin ≤ δmax, b0 ∈ [bmin, bmax], 0 ∈ [δmin, δmax] a feasible solution exists (xi = 0
for all i = 1, 2, . . . , N is feasible). Furthermore, since the primal objective function is continuous and the
constraints define a convex compact set, its minimum must be finite and achieved at the some x∗ in the
feasibility region. According to the strong duality theorem, the above facts imply that the dual problem
must be maximized at some (α∗, β∗) and the duality gap must be zero.

From the above reasoning it also follows that (x∗, α∗, β∗) must be the saddle point satisfying the KKT
conditions. Hence, using RHS inequality of the Saddle Point conditions,

L (x∗, α∗, β∗) ≤ L (x, α∗, β∗)

=⇒
N∑
i=1

{
C

(i)
storage(x∗i ) + α∗i (bmin − b∗i ) + β∗i (b∗i − bmax)

}
≤

N∑
i=1

{
C

(i)
storage(xi) + α∗i (bmin − bi) + β∗i (bi − bmax)

}
Substituting bi = b0 +

∑i
j=1 xj we get,

N∑
i=1

{
C

(i)
storage(x∗i )− µ∗i x∗i

}
≤

N∑
i=1

{
Cstorage(xi)− µ∗i xi

}
(A.1.1)

where µ∗i =
∑N
j=i(α∗j − β∗j ). µ∗i is the accumulated Lagrange multiplier for time instant i to N . Hence,

µ∗k − µ∗k+1 = (α∗k − β∗k) (A.1.2)

The complementary slackness conditions for the Lagrangian are defined as

αi(bmin − bi) = 0, βi(bi − bmax) = 0,∀i s.t. αi, βi ≥ 0

Equation (8) derived above and complementary slackness conditions implies following relation of µ∗k and
µ∗k+1 ,

µ∗k+1


= µ∗k, if bmin < b∗k < bmax as α∗k = β∗k = 0
≤ µ∗k, if b∗k = bmin as α∗k ≥ 0 and β∗k = 0
≥ µ∗k, if b∗k = bmax as α∗k = 0 and β∗k ≥ 0
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The accumulated Lagrangian i.e. µ for the N th (last) instant is µ∗N = α∗N − β∗N , therefore

µ∗N =


= 0∗, if bmin < b∗N < bmax

≥ 0, if b∗N = bmin

≤ 0, if b∗N = bmax

Such a x∗ solves the optimal arbitrage problem (PNEM1) and α∗, β∗ solves the dual problem.

A.2 Convex Optimization: Conditions of Optimality
A.2.1 Convex Function and Subdifferential
Let f : X → R be a function. The function f is convex if:

• dom(f) is convex in Rn (convex set in a real vector space)

• f
(
αx1 + (1− α)x2

)
≤ αf(x1) + (1− α)f(x2) ∀ x1, x2 ∈ dom(f) and α ∈ [0, 1]

• Second Order Condition: ∇2f(x) ≥ 0 ∀ x ∈ dom(f)

• First Order Condition: f(z) ≥ f(x) +∇f(x)T (z − x) ∀ x, z ∈ dom(f)

Let us analyze the First Order Condition (FOC) described above. By the definition of differentiation:

f ′(a) = lim
h→0

f(a+ h)− f(a)
h

=⇒ f(a+ h) = f(a) + h× f ′(a)

For convexity to hold by FOC, the following condition must be valid:

f(a+ h) ≥ f(a) + h× f ′(a)

For the above equation to be valid f ′(a) ≥ 0 which implies the derivative of f is monotonically non-
decreasing in the whole interval dom(f) i.e. ∇f(x) is either equal or more than what it was in the
preceding value for which the function is evaluated.

Subgradient: g is a subgradient of f (not necessarily convex) at x if

f(z) ≥ f(x) + gT (z − x) ∀z
=⇒ −gT z + f(z) ≥ −gTx+ f(x)

If f(x) > −∞ ∀ x ∈ Rn, then

epif =
(

(x, ω)|f(x) ≤ ω, x ∈ Rn
)

[
−gT

1

]
×
[

x
f(x)

]
≤
[
−gT

1

]
×
[
y
ω

]
(x, ω) ∈ epif

The Hyperplane H is defined as,

H =
[
(y, ω) ∈ Rn+1| (−g, 1)T (y, ω) = (−g, 1)T (x, f(x))

]
The hyperplane H supports epi f at the vector (x, f(x)). The interpretation of g is a subgradient at x iff
the hyper-plane in Rn+1 has a normal (−g, 1) and passes through (x, f(x)) supports the epigraph of f.

The set of all subgradients of f at point x in dom(f) is called the subdifferential of f at x and denoted
as ∂f(x).

247



Figure A.1: The Subgradients [99]

A.2.2 Optimality condition for unconstrained problem
The cost function f(x) is to be minimized is subjected to no constraints and x ∈ X
Case 1: If f is convex and differentiable then the optimal solution x∗ is defined as,

f(x∗) = inf
x
f(x) =⇒ ∇f(x∗) = 0 from FOC.

Case 2: Generalizations to nondifferentiable convex function f will also be valid:

f(x∗) = inf
x
f(x) =⇒ ∂f(x∗) = 0

Figure A.2: Generalization of FOC for non-smooth functions [108]

Figure 14 provides us a clear interpretation of applicability of FOC for non-smooth convex functions.
This intuition is essential as a constrained optimization problem can be converted into unconstrained
minimization of the Lagrangian, in that case we should anticipate that 0 ∈ ∂L .

A.2.3 Constrained Optimization Primal Problem (P)
In practice we have equality and inequality constraints that are imposed on the objective function like
minimization of cost or maximization of revenue. We define a general constrained optimal problem and
use the same notation as [284].

(P) minimize f0(x) over C ∈ Rn

subject to: f1(x) ≤ 0, .... , fr(x) ≤ 0
fr+1(x) = 0, .... , fm(x) = 0

Where:
fi is finite convex function on C for i = 0, 1, 2, .... , r
fi is affine function on C for i = r + 1, .... ,m
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A vector x will be called a feasible solution to (P) if x ∈ C and x satisfies ′m′ constraints of (P). The
set of feasible solutions to (P) is (possibly empty) convex set, given as:

C0 = C ∩ C1 ∩ C2 ∩ ... ∩ Cm
where Ci =

{
x|fi(x) ≤ 0

}
for i = 1, 2, ...., r

Ci =
{
x|fi(x) = 0

}
for i = r + 1, ....,m

Let’s define the objective function for (P) as F on Rn as,

F (x) = f0(x) + δ(x|C0) =
{
f0(x) ifx ∈ C0

+∞, otherwise

A point x ∈ C0 is feasible point solving (P). A vector x∗ = (x1, ..., xn) ∈ C0 minimizes the objective
function is called the optimal solution. The value is defined as:

p∗ = inf{f0(x)|fi(x) ≤ 0, i = 1, ..., r and fi(x) = 0, i = r + 1, ...,m}

If p∗ is +∞ the problem (P) is infeasible, if p∗ is −∞ the problem (P) is unbounded below [108].

Lagrangian Dual Problem (D)

Convex optimization problems can be transformed to their dual problem. This transformation provides
another perspective to the original problem (P). Among the various duality formulations, the Lagrangian
duality is most popular. The Lagrangian dual of (P) is denoted as (D). The Lagrangian Dual function is
θ : Rr × Rm−r → R

(D) maximize θ(µ, λ)
subject to: µ ≥ 0

Where

θ(µ, λ) = inf
x∈X
{f0(x) +

r∑
i=1

µifi(x) +
m∑

i=r+1
λifi(x)}

The dual problem provides a lower bound to the original optimization problem i.e. for µ ≥ 0, θ(µ, λ) ≤ p∗.
θ is concave and can be −∞ for some µ, λ [108].
Note the Lagrangian (weighted sum of objective and constraint functions) is defined as,

L (x, µ, λ) = f0(x) +
r∑
i=1

µifi(x) +
m∑

i=r+1
λifi(x)

In the next part of this report we will extend the concept of primal and dual problem to understand the
Saddle point but before that we need to evaluate whether or not optimality conditions for smooth convex
function is similar to non-smooth convex function? The significance of Lagrangian is that it converts a
constrained optimal problem to an unconstrained optimal problem at the cost of solving for extra number
of variables (which implies 0 ∈ ∇L (x∗, µ, λ) or 0 ∈ ∂L (x∗, µ, λ))

Weak and Strong Duality

The optimal value of Primal problem is p∗ = f0(x∗) and the optimal value of dual problem is d∗ = θ(µ∗, λ∗).
Weak duality garantees that the dual solution d∗ is the lower bound of primal solution p∗. This implies

d∗ ≤ p∗

The above inequality holds even if the original problem is not convex. This is called weak duality [108].
The value p∗ − d∗ is called Duality Gap (as shown in figure below).
Strong duality is a concept in optimization such that the primal and dual solutions are equivalent. This
implies for strong duality the duality gap is zero.

If the primal solution is −∞ implying unbounded below, then the dual solution is also −∞ and the
dual problem is infeasible. When the dual problem is unbounded above implying d∗ =∞ then the primal
problem is infeasible [108].
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(a) Weak Duality. (b) Strong Duality.
Figure A.3: Duality [211]

Slater’s Condition

This condition is sufficient condition for strong duality to hold for a convex optimization problem. It states
that the feasible region must have an interior point.

∃ x ∈ relint C0 : fi(x) ≤ 0∀i = 1, ..., j ∩ fi(x) < 0∀i = j + 1, ..., r ∩ fi(x) = 0∀i = r + 1, ....,m

Strict inequality is only required for nonlinear constraint functions [108].

Theorem A.2.1
Convex Optimization problem satisfying Slater’s Constraint Qualification has x∗ as the Primal Optimal
and µ∗, λ∗ is Dual Optimal iff

• fi(x∗) ≤ 0, µ∗i ≥ 0 ∀i ∈ {1, 2, ..., r}

• 0 ∈ ∂f0(x) +
∑r
i=1 µi∂fi(x) +

∑m
i=r+1 λi∂fi(x) this is equivalent to 0 ∈ ∇xL or 0 ∈ ∂L

• µ∗i fi(x∗) = 0 ∀i ∈ {1, 2, ..., r}

This generalizes KKT conditions for nondifferentiable fi(x)forgiven(i = 0, 1, ..., r).

[Refer Theorem 28.3 [284] for Proof].

Saddle Point Optimality

If Slater’s Constraint Qualification is valid implying that strong duality holds implies that (x∗, µ∗, λ∗)
minimizes the Lagrangian L (x, µ, λ) is called the saddle point.
Definition (x∗, µ∗, λ∗) ∈ Rn × Rr × Rm−r and is called a saddle point of L (x, µ, λ) if [112]

• x∗ ∈ X
• µ∗ ≥ 0
• L (x∗, µ, λ) ≤ L (x∗, µ∗, λ∗) ≤ L (x, µ∗, λ∗) ∀x ∈ X,µ ∈ Rr, λ ∈ Rm−r

The existence of a saddle point solution to the Lagrangian function is a necessary and sufficient condition
for the absence of a duality gap.

Theorem A.2.2
(x∗, µ∗, λ∗) is a saddle point solution to L (x, µ, λ) iff

1. L (x∗, µ∗, λ∗) = minimizex∈X L (x, µ∗, λ∗)
2. fi(x) ≤ 0, i = 1, ..., r and fi(x) = 0, i = r + 1, ...,m
3. µ∗T fi(x) = 0 ∀i = 1, ..., r
4. µ∗ ≥ 0
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A.3 Proof of Theorem 4.2.1
Let ψ(t) = a[t]+ − b[t]− with a ≥ b ≥ 0. Using t = [t]+ − [t]− we have ψ(t) = (a− b)[t]+ + bt. Since both
[t]+ and t are convex in t and a − b, b ≥ 0 we have that ψ is convex since it is the positive sum of two
convex functions.

Now let f(x) = 1
ηch

[x]+ − ηdis[x]− (as defined in Eq. 4.2.1) and hi(s) = [zi + s]+pb(i)− [zi + s]−ps(i).
Then by the above reasoning we have that for pb(i) ≥ ps(i) ≥ 0 and ηch, ηdis ∈ (0, 1], hi is convex in s and
f is convex in x. Also, note that hi is non-decreasing in s. Hence, for λ ∈ [0, 1] we have

hi
(
f(λx+ (1− λ)y)

)
≤ hi

(
λf(x) + (1− λ)f(y)

)
(A.3.1)

≤ λhi(f(x)) + (1− λ)hi(f(y)) (A.3.2)

In the above, the first inequality follows from the convexity of f and non-decreasing nature of hi and the
second inequality follows from convexity of hi. Therefore, we have that hi ·f = hi(f()) is a convex function
in x. This shows that the objective function of (P) is convex in x since Cinm = hi · f . Finally, since the
constraints are linear in x, we have that problem (P) is convex.

Cost function of the optimization problem (P) is plotted for visual inspection of the convexity of the
function. The cost function is denoted as Cnm(i) which equals [zi + si]+pib − [zi + si]−pis. Reiterating our
convention: consuming electricity is considered to be positive, thus for xi > 0 implies battery is consuming
or in other words charging. Net load without storage is positive implies load seen from the grid is charged
for consumption. For plotting the cost function with respect to the optimization variable xi we consider
following two cases:

A.3.1 For zi > 0
Under the condition that zi > 0, we have following cost function based on storage operation:

• For charging we have [zi + xi/ηch]pib,

• For discharging we have following conditions:

– If −zi < xiηdis then [zi + xiηdis]pib,
– Else [zi + xiηdis]pis.

A.3.2 For zi < 0
Under the condition that zi < 0, we have following cost function based on storage operation:

1. For charging we have following conditions:

(a) If |zi| < xi/ηch then [zi + xi/ηch]pib,
(b) Else [zi + xi/ηch]pis.

2. For discharging we have [zi + xiηdis]pis.

A.4 Proof of Theorem 4.2.2
We first prove existence of (s∗, α∗, β∗) such that:

1. s∗ is the primal optimal solution,
2. (α∗, β∗) is the dual optimal solution, and
3. the optimality gap is zero (strong duality).

Since the constraints of the primal problem are all linear, weak Slater’s constraint qualification conditions
(which imply strong duality) follow simply from the feasibility of the primal problem. Clearly, under the
assumptions bmin ≤ bmax, δmin ≤ δmax, b0 ∈ [bmin, bmax], 0 ∈ [δmin, δmax] a feasible solution exists (si = 0
for all i = 1, 2, . . . , N is feasible). Furthermore, since the primal objective function is continuous and the
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constraints define a convex compact set, its minimum must be finite and achieved at the some s∗ in the
feasibility region. According to the strong duality theorem, the above facts imply that the dual problem
must be maximized at some (α∗, β∗) and the duality gap must be zero.

From the above reasoning it also follows that (s∗, α∗, β∗) must be the saddle point satisfying the KKT
conditions. Hence, using RHS inequality of the Saddle Point conditions,

L (x∗, α∗, β∗) ≤ L (x, α∗, β∗)

=⇒
N∑
i=1

{
C(i)

nm(x∗i ) + α∗i (bmin − b∗i ) + β∗i (b∗i − bmax)
}

≤
N∑
i=1

{
C(i)

nm(xi) + α∗i (bmin − bi) + β∗i (bi − bmax)
}

Substituting bi = b0 +
∑i
j=1 xj we get,

N∑
i=1

{
C(i)

nm(x∗i )− µ∗i x∗i
}
≤

N∑
i=1

{
Cnm(xi)− µ∗i xi

}
(A.4.1)

where µ∗i =
∑N
j=i(α∗j − β∗j ). µ∗i is the accumulated Lagrange multiplier for time instant i to N . Hence,

µ∗k − µ∗k+1 = (α∗k − β∗k) (A.4.2)

The complementary slackness conditions for the Lagrangian are defined as

αi(bmin − bi) = 0, βi(bi − bmax) = 0,∀i s.t. αi, βi ≥ 0

Equation (8) derived above and complementary slackness conditions implies following relation of µ∗k and
µ∗k+1 ,

µ∗k+1


= µ∗k, if bmin < b∗k < bmax as α∗k = β∗k = 0
≤ µ∗k, if b∗k = bmin as α∗k ≥ 0 and β∗k = 0
≥ µ∗k, if b∗k = bmax as α∗k = 0 and β∗k ≥ 0

The accumulated Lagrangian i.e. µ for the N th (last) instant is µ∗N = α∗N − β∗N , therefore

µ∗N =


= 0∗, if bmin < b∗N < bmax

≥ 0, if b∗N = bmin

≤ 0, if b∗N = bmax

Such a x∗ solves the optimal arbitrage problem (PNEM2) and α∗, β∗ solves the dual problem.

A.5 Proof of Remark 6
For a given µ∗i = µ the optimal decision s∗i (µ) is given by minimizing Eq. A.5.1.

[zi + si]+pb(i)− [zi + si]−ps(i)− µ
(
ηch[si]+ −

1
ηdis

[si]−
)

(A.5.1)

Hence, in order to minimize Eq. A.5.1 we consider the sign of (zi + si) and si. This will provide the
following cases

J1: si(pb(i)− µηch) s.t. zi + si ≥ 0 and si ∈ [0, Smax],

J2: si(ps(i)− µηch) s.t. zi + si ≤ 0 and si ∈ [0, Smax],

J3: si
(
pb(i)− µ

ηdis

)
s.t. zi + si ≥ 0 and si ∈ [Smin, 0],

J4: si
(
ps(i)− µ

ηdis

)
s.t. zi + si ≤ 0 and si ∈ [Smin, 0].
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Table A.1: Conditions to check

Tag [zi + si] [si] min Condition Desired scenario
J1 +ve +ve si(pb(i)− µηch) (pb(i)− µηch) ≤ 0
J2 -ve +ve si(ps(i)− µηch) (ps(i)− µηch) ≤ 0
J3 +ve -ve si(pb(i)− µ

ηdis
) (pb(i)− µ

ηdis
) ≥ 0

J4 -ve -ve si(ps(i)− µ
ηdis

) (ps(i)− µ
ηdis

) ≥ 0

The accumulated Lagrange multiplier, µ, can be viewed as the shadow price of decision making. Based
on conditions J1 to J4, the value of µ will divide the price levels into nine cases. Table A.1 lists the
constraints and minimizing conditions, we will use this table to find optimal value of s∗i . From Table A.1
we can see the conditions of desired scenarios. Based on conditions J1 to J4, we can observe there will be
four distinct levels in price signal which will subsequently divide the real line into nine possible levels for
the accumulated Lagrange multiplier (µ) as shown in Fig ??.

Based on four levels of prices shown in Fig A.4, the range is divided into into nine possible bands for
the accumulated Lagrange multiplier.

ps(i)ηdis p
s
(i)/η

ch
p
b
(i)η

dis
pb(i)/ηch

Region 1

Region 2 Region 4 Region 6 Region 8 

Region 3 Region 5 Region 7 Region 9

Figure A.4: Cases based on levels of µ

Region 1: µ < ηdisps(i): The minimizing conditions will be achieved by J3 and J4 as shown below

Tag [zi + si] [si] min Condition Sign Comment
J1 +ve +ve si(pb(i)− µηch) + (+) Undesired
J2 -ve +ve si(ps(i)− µηch) + (+) Undesired
J3 +ve -ve si(pb(i)− µ

ηdis
) - (+) Desired

J4 -ve -ve si(ps(i)− µ
ηdis

) - (+) Desired

From J4 if (zi+si) < 0 then s∗i = [Smin, Smin] and from J3 if (zi+si) ≥ 0 then s∗i = [Smin, Smin]. Therefore,
irrespective the sign of zi the optimal value is [Smin, Smin].

Region 2: µ = ηdisps(i): The minimizing conditions will be achieved by J3 and J4 is a don’t care
condition with only constraint on si being negative or zero.

Tag [zi + si] [si] min Condition Sign Comment
J1 +ve +ve si(pb(i)− µηch) + (+) Undesired
J2 -ve +ve si(ps(i)− µηch) + (+) Undesired
J3 +ve -ve si(pb(i)− µ

ηdis
) - (+) Desired

J4 -ve -ve si(ps(i)− µ
ηdis

) - (0) Don’t Care

Sub-Case 1: from J3 if zi ≥ 0 then s∗i = [max{−zi, Smin},max{−zi, Smin}].
Sub-Case 2: from J4 if zi < 0 then s∗i = [Smin, 0].

Region 3: µ ∈ (ηdisps(i), ηdispb(i)): The minimizing conditions will be achieved by minimizing J3. All
other conditions, i.e., J1, J2 and J4 are undesired.

Tag [zi + si] [si] min Condition Sign Comment
J1 +ve +ve si(pb(i)− µηch) + (+) Undesired
J2 -ve +ve si(ps(i)− µηch) + (+) Undesired
J3 +ve -ve si(pb(i)− µ

ηdis
) - (+) Desired

J4 -ve -ve si(ps(i)− µ
ηdis

) - (-) Unesired
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Sub-Case 1: from J3 if zi ≥ 0 then s∗i = [max{−zi, Smin},max{−zi, Smin}].
Sub-Case 2: from J2 and J4 s∗i = [0, 0].

Region 4: µ = ηdispb(i):

Tag [zi + si] [si] min Condition Sign Comment
J1 +ve +ve si(pb(i)− µηch) + (+) Undesired
J2 -ve +ve si(ps(i)− µηch) + (+) Undesired
J3 +ve -ve si(pb(i)− µ

ηdis
) - (0) Don’t Care

J4 -ve -ve si(ps(i)− µ
ηdis

) - (-) Undesired

Sub-Case 1: from J3 if zi ≥ 0 then s∗i = [max{−zi, Smin}, 0].
Sub-Case 2: from J2 and J4, if zi < 0 then s∗i = [0, 0].

Region 5: µ ∈ (ηdispb(i), ps(i)ηch
):

Tag [zi + si] [si] min Condition Sign Comment
J1 +ve +ve si(pb(i)− µηch) + (+) Undesired
J2 -ve +ve si(ps(i)− µηch) + (+) Undesired
J3 +ve -ve si(pb(i)− µ

ηdis
) - (-) Undesired

J4 -ve -ve si(ps(i)− µ
ηdis

) - (-) Undesired

Sub-Case 1: from J1 and J3 if zi ≥ 0 then s∗i = [0, 0].
Sub-Case 2: from J2 and J4, if zi < 0 then s∗i = [0, 0].

Region 6: µ = ps(i)
ηch

:

Tag [zi + si] [si] min Condition Sign Comment
J1 +ve +ve si(pb(i)− µηch) + (+) Undesired
J2 -ve +ve si(ps(i)− µηch) + (0) Don’t Care
J3 +ve -ve si(pb(i)− µ

ηdis
) - (-) Undesired

J4 -ve -ve si(ps(i)− µ
ηdis

) - (-) Undesired

Sub-Case 1: from J1 and J3 if zi ≥ 0 then s∗i = [0, 0].
Sub-Case 2: from J2 if zi < 0 then s∗i = [0,min{−zi, Smax}].

Region 7: µ ∈ (ps(i)ηch
, pb(i)ηch

): The minimizing conditions will be achieved by J2. All other cases will be
undesirable.

Tag [zi + si] [si] min Condition Sign Comment
J1 +ve +ve si(pb(i)− µηch) + (+) Undesired
J2 -ve +ve si(ps(i)− µηch) + (-) Desired
J3 +ve -ve si(pb(i)− µ

ηdis
) - (-) Undesired

J4 -ve -ve si(ps(i)− µ
ηdis

) - (-) Undesired

Sub-Case 1: from J2 if zi < 0 then s∗i = [min{−zi, Smax},min{−zi, Smax}].
Sub-Case 2: if zi ≥ 0 then do nothing, s∗i = [0, 0]. This is because J1 and J3 covers two direction of

movement i.e. charging and discharging, both of which will increase the objective function

Region 8: µ = pb(i)
ηch

: The minimizing conditions will be achieved by J2 and J1 is a don’t care condition.

Tag [zi + si] [si] min Condition Sign Comment
J1 +ve +ve si(pb(i)− µηch) + (0) Don’t Care
J2 -ve +ve si(ps(i)− µηch) + (-) Desired
J3 +ve -ve si(pb(i)− µ

ηdis
) - (-) Undesired

J4 -ve -ve si(ps(i)− µ
ηdis

) - (-) Undesired

Sub-Case 1: from J2 if zi < 0 then s∗i = [min{−zi, Smax},min{−zi, Smax}].
Sub-Case 2: from J1 is zi ≥ 0 then s∗i = [0, Smax].

Region 9: µ > pb(i)
ηch

: The minimizing conditions will be achieved by J2 and J1.
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Tag [zi + si] [si] min Condition Sign Comment
J1 +ve +ve si(pb(i)− µηch) + (-) Desired
J2 -ve +ve si(ps(i)− µηch) + (-) Desired
J3 +ve -ve si(pb(i)− µ

ηdis
) - (-) Undesired

J4 -ve -ve si(ps(i)− µ
ηdis

) - (-) Undesired

Irrespective of sign of zi, s∗i = [Smax, Smax].

A.6 Proof of Remark 7
Based on four levels of prices shown in Fig A.5, the range is divided into into nine possible bands for the
accumulated Lagrange multiplier.

Region 1

Region 2 Region 4 Region 6

Region 3
Region 5 Region 7

ps(i)ηdis
ps(i)/ηch

p
b
(i)η

dis pb(i)/ηch
=

Region 1

Figure A.5: Cases based on levels of µ

Region 1: µ < ηdisps(i): The minimizing conditions will be achieved by J3 and J4 as shown below

Tag [zi + si] [si] min Condition Sign Comment
J1 +ve +ve si(pb(i)− µηch) + (+) Undesired
J2 -ve +ve si(ps(i)− µηch) + (+) Undesired
J3 +ve -ve si(pb(i)− µ

ηdis
) - (+) Desired

J4 -ve -ve si(ps(i)− µ
ηdis

) - (+) Desired

From J4 if (zi+si) < 0 then s∗i = [Smin, Smin] and from J3 if (zi+si) ≥ 0 then s∗i = [Smin, Smin]. Therefore,
irrespective the sign of zi the optimal value is [Smin, Smin].

Region 2: µ = ηdisps(i): The minimizing conditions will be achieved by J3 and J4 is a don’t care
condition with only constraint on si being negative or zero.

Tag [zi + si] [si] min Condition Sign Comment
J1 +ve +ve si(pb(i)− µηch) + (+) Undesired
J2 -ve +ve si(ps(i)− µηch) + (+) Undesired
J3 +ve -ve si(pb(i)− µ

ηdis
) - (+) Desired

J4 -ve -ve si(ps(i)− µ
ηdis

) - (0) Don’t Care

Sub-Case 1: from J3 if zi ≥ 0 then s∗i = [max{−zi, Smin},max{−zi, Smin}].
Sub-Case 2: from J4 if zi < 0 then s∗i = [Smin, 0].

Region 3: µ ∈ (ηdisps(i), ηdispb(i)): The minimizing conditions will be achieved by minimizing J3. All
other conditions, i.e., J1, J2 and J4 are undesired.

Tag [zi + si] [si] min Condition Sign Comment
J1 +ve +ve si(pb(i)− µηch) + (+) Undesired
J2 -ve +ve si(ps(i)− µηch) + (+) Undesired
J3 +ve -ve si(pb(i)− µ

ηdis
) - (+) Desired

J4 -ve -ve si(ps(i)− µ
ηdis

) - (-) Unesired

Sub-Case 1: from J3 if zi ≥ 0 then s∗i = [max{−zi, Smin},max{−zi, Smin}].
Sub-Case 2: from J2 and J4 s∗i = [0, 0].

Region 4: µ = ηdispb(i):
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Tag [zi + si] [si] min Condition Sign Comment
J1 +ve +ve si(pb(i)− µηch) + (+) Undesired
J2 -ve +ve si(ps(i)− µηch) + (+) Undesired
J3 +ve -ve si(pb(i)− µ

ηdis
) - (0) Don’t Care

J4 -ve -ve si(ps(i)− µ
ηdis

) - (-) Undesired

Sub-Case 1: from J3 if zi ≥ 0 then s∗i = [max{−zi, Smin}, 0].
Sub-Case 2: from J2 and J4, if zi < 0 then s∗i = [0,min{−zi, Smax}].

Region 5: µ ∈ (ps(i)ηch
, pb(i)ηch

): The minimizing conditions will be achieved by J2. All other cases will be
undesirable.

Tag [zi + si] [si] min Condition Sign Comment
J1 +ve +ve si(pb(i)− µηch) + (+) Undesired
J2 -ve +ve si(ps(i)− µηch) + (-) Desired
J3 +ve -ve si(pb(i)− µ

ηdis
) - (-) Undesired

J4 -ve -ve si(ps(i)− µ
ηdis

) - (-) Undesired

Sub-Case 1: from J2 if zi < 0 then s∗i = [min{−zi, Smax},min{−zi, Smax}].
Sub-Case 2: if zi ≥ 0 then do nothing, s∗i = [0, 0]. This is because J1 and J3 covers two direction of

movement i.e. charging and discharging, both of which will increase the objective function

Region 6: µ = pb(i)
ηch

: The minimizing conditions will be achieved by J2 and J1 is a don’t care condition.

Tag [zi + si] [si] min Condition Sign Comment
J1 +ve +ve si(pb(i)− µηch) + (0) Don’t Care
J2 -ve +ve si(ps(i)− µηch) + (-) Desired
J3 +ve -ve si(pb(i)− µ

ηdis
) - (-) Undesired

J4 -ve -ve si(ps(i)− µ
ηdis

) - (-) Undesired

Sub-Case 1: from J2 if zi < 0 then s∗i = [min{−zi, Smax},min{−zi, Smax}].
Sub-Case 2: from J1 is zi ≥ 0 then s∗i = [0, Smax].

Region 7: µ > pb(i)
ηch

: The minimizing conditions will be achieved by J2 and J1.

Tag [zi + si] [si] min Condition Sign Comment
J1 +ve +ve si(pb(i)− µηch) + (-) Desired
J2 -ve +ve si(ps(i)− µηch) + (-) Desired
J3 +ve -ve si(pb(i)− µ

ηdis
) - (-) Undesired

J4 -ve -ve si(ps(i)− µ
ηdis

) - (-) Undesired

Irrespective of sign of zi, s∗i = [Smax, Smax].

A.7 Arbitrage with NEM 1.0
Energy arbitrage refers to buying energy when the price of electricity is low and selling it when price is
high. Another interpretation could be shifting consumptions from high price periods to low price periods.
The problem of energy arbitrage is considered from consumer or end-user perspective. The consumer of
electricity has its goal to minimize the overall cost of consumption by installing energy storage device such
as a battery for performing energy arbitrage. The price of electricity is denoted as pelec(i). The consumer
optimization problem is given as [184]

(P 0
arbitrage) min

P i
B
∈
[
ηdisδminh,

δmaxh
ηch

] N∑
i=1

[Pi + P iB ]pelec(i)

subject to,(i.) bmin − b0 ≤
i∑

j=1
xj ≤ bmax − b0.
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The optimization problem (P 0
arbitrage) is equivalent to min

∑N
i=1{pelec(i)Pi + pelec(i)P iB}. Since there is

no degree of freedom in pelec(i)Pi for all i, therefore, (P 0
arbitrage) is equivalent to

(P equiarbitrage) min
P i
B
∈
[
ηdisδminh,

δmaxh
ηch

] N∑
i=1

P iBpelec(i)

s.t. (i.) bmin − b0 ≤
i∑

j=1
xj ≤ bmax − b0,∀i ∈ {1, .., N}

A.8 Arbitrage with Convex Optimization using CVX
There could be several different ways of formulating optimal arbitrage problem using convex optimization
toolbox. We propose one of the many ways of solving optimal arbitrage problem with convex piecewise
linear cost function using CVX in MATLAB. Since in the optimization formulation we do not have any
binary variable, this optimization problem could be solved using the default solver, SDPT31.

The decision variable xi is fragmented into two variable given as

xi = xchi − xdsi , (A.8.1)

where xchi ∈ [0, Xmax] and xdsi ∈ [0,−Xmin], denotes the charging and discharging values.

A.8.1 Only storage with NEM and losses
We use following Matlab pseudo code is presented below:
>> cvx begin
>> variables xch(N,1) xds(N,1) delB(N,1)
>> minimize sum(pTb *xch/ηch − pTs *xdsηdis)
>> subject to
>> zeros(N,1)<= xch <= x upper;
>> zeros(N,1)<= xds <= -x lower;
>> delB == xch − xds;
>> bmin ≤ b0 +M ∗ delB ≤ bmax;
>> cvx end
>> profit = (pTb *xch/ηch-pTs *xdsηdis)

where M is lower triangular matrix, x upper and x lower are row matrix of size N with upper and lower
limit of optimization variable.

A.8.2 Arbitrage with load, renewable generation with NEM and losses
We use following Matlab pseudo code is presented below:
>> cvx begin
>> variables xch(N,1) xds(N,1) delB(N,1) lhouse(N,1)
>> minimize sum(pTb *subplus(lhouse)−pTs *min(0,lhouse)))
>> subject to
>> zeros(N,1)<= xch <= x upper;
>> zeros(N,1)<= xds <= -x lower;
>> delB == xch − xds;
>> lhouse == xch/ηch − xdsηdis + z;
>> bmin ≤ b0 +M ∗ delB ≤ bmax;
>> cvx end
>> profit = (pTb *subplus(z)-pTs *subplus(-z))- (pTb *subplus(lhouse)-pTs *subplus(-lhouse))

where lhouse denotes the total load seen by the energy meter including storage output.

1http://www.math.nus.edu.sg/˜mattohkc/sdpt3.html

257

http://www.math.nus.edu.sg/~mattohkc/sdpt3.html


t = 1

ε1
ηch

ε2
ηch

t = 2

ε1

ε2 ε2

ηdis

t = 3

ε1

ε3
ηch

ε4
ηch

ε5
ηch

t = 4

ε1

ε3

ε4

ε5

ε4
ηdis

ε1
ηdis

Figure A.6: Demonstrating the proof of Theorem 9.4.1

A.9 Proof of Theorem 9.4.1
Let ε denote a sufficiently small amount of energy, and w.l.o.g assume that inside every time slot, all
energy packets arrive sequentially. That is, we can define E={ε1, ε2, .., εK} as a complete order of all
energy packets that charged the battery. Let Ik denote the time slot at which the packet εk entered the
battery and Ok when it left it. If the packet never left (that is, if there is remaining energy in the battery
at the end of the arbitrage) we let k =∞ and p∞s = 0. Let nij denote the number of packets that charged
the battery during time slot i and discharged at time slot j.

nij =
K∑
k=0

I{Ik = i, Ok = j}

The price of charging the battery ε at time i is given by ε p
i
b

ηch
. The earnings of discharging the battery at

time slot j is given by εηdispjs. Finally, the total profit obtained by the arbitrage is given by:

Profit =
∑

i∈[N ],j∈[N ]\{1}∪{∞}

εnij

[
ηdisp

j
s −

pib
ηch

]

Because mij ∈ N, if pjsηdis ≤
pib
ηch

, then Profit ≤ 0.
In Fig. A.6 the size of the squares represents the amount of energy. Red squares (before been charged

in the battery) are bigger than the squares composing the battery. This in turn, are bigger than the green
squares that output the battery. Regarding the case presented: initially, the battery is empty. At t = 1, 2
energy packets arrive ε1 and ε2, so I1 = I2 = 1. In the next time-slot, ε2 leaves so we can update O2 = 2.
At time-slot t = 3, three energy packets arrive (3,4,5) so we have I3 = I4 = I5 = 3. Finally, in the last
time-slot the energy packets ε1 and ε4 leave so O1 = O4 = 4. Because the battery is still fully charged at
the end of the horizon, O3 = O5 =∞. In this example n12 = 1, n14 = 1, n34 = 1 and n3∞ = 2. With this
information the final profit can be found.

A.10 Control Design Using LQG in Matlab c©

A.10.1 System Type I: Open Loop System
An open loop system is given as

ẋ = Ax.
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For such a system to be stable, matrix A should have negative real part eigenvalues as

x(t) = eAtx(0).

  

System
u x

Figure A.7: Open loop system

Consider λ as an eigenvalue such that λ = a± ib then by Euler formula

eλt = eat(cos(bt)± i sin(bt)).

Clearly if a > 0 then eat grows to infinity with progress of time t, implying an unstable system.

A.10.2 System Type II: Closed Loop Full-feedback
Closed loop system with full feedback

ẋ = Ax+Bu,

ẋ = (A−BK)x.

For such a system to be stable the eigenvalues of the matrix (A − BK) should have negative real part.
Choosing appropriate values of K, eigenvalues of (A−BK) can be controlled.

  

System

Control
- K

u y = x

Figure A.8: Full feedback system

Such a system is shown in Fig. A.8. Note for equation y = Cx, for full feedback system C equals unity
row matrix.

In Matlab placement of eigenvalues for a full feedback system is easily done using eigenvalue placement
at points denoted as eigs in the code.

>> K = place(A,B, eigs)

However, often we do not know where to place the eigenvalues. For such cases we use Linear Quadratic
Regulator or LQR. LQR controller solves this optimization problem:

JLQR =
∫ ∞

0
{xTQx+ uTRu}dt,

here Q and R denotes the penalty for not meeting the desired states and input energy respectively.
Note that for LQR eigenvalue placement controllability of system is essential. The controllability matrix

is denoted as

C = [B AB ... An−1B].

For system to be controllable C should be full rank matrix. The Matlab script for checking controllability
is given as

>> C = ctrb(A,B)
>> Check = (rank(C) − size (A) == 0)

If variable Check = 1 then then the system is controllable. For controllable systems the LQR eigenvalue
placement can be achieved by following code:

>> K = lqr(A,B, Q, R)
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A.10.3 System Type III: Limited Measurement Feedback System
Limited measurement feedback system, therefore, the system becomes

ẋ = Ax+Bu,

y = Cx.

  

System

LQR
Control

u y 

State
Estimator

Figure A.9: Limited measurement feedback system

For estimating the states required for control design, we should check for observability. The observability
matrix is denoted as

G =


C
CA
..

CAn−1

.
For system to be observable G should be full rank matrix. The Matlab script for checking observability is
given as

>> G = obsv(A,B)
>> Check = (rank(G) − size (A) == 0)

For an observable system full estimator can be developed

˙̂x = Ax̂+Bu+Kf (y − ŷ),
ŷ = Cx.

Rearranging the system equation we get

˙̂x = (A−KfC)x̂+ [B Kf ]
[
u
y

]
.

Let the error is defined as ε = x− x̂, therefore, ε̇ = (A−KfC)ε. Thus if system is observable then we can
place eigenvalues by choosing estimator gain Kf .

A.10.4 System Type IV: Limited Measurement Noisy Feedback System
Limited measurement feedback system with disturbance in model and noise in measurements; realistic
system would have exogenous disturbance and sensor noise. The model for such a system is give as

ẋ = Ax+Bu+GWd, {State Equation}
y = Cx+Wn {Measurement Equation}.

where Wd denotes system disturbance and Wn denotes measurement noise. If we assume

• Wd denotes Gaussian white disturbance process with covariance Vd; Vd = E[WdW
T
d ] and

• Wn denotes Gaussian white noise process with covariance Vn; Vn = E[WnW
T
n ],

then we can develop full estimator of the system using Kalman Filter.

Cost function of the estimator

Jestimator = E[(x− ˆ(x))T (x− ˆ(x))]
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Figure A.10: Limited measurement feedback system with disturbance and noise

The Matlab code for estimator is

>> Kf = lqe(A,G, C, Vd,Vn)

lqe denotes linear quadratic estimator. Vd is a square matrix with size of matrix A. Vn is a square
matrix with number of columns of matrix C.

Alternatively, this could be done using command kalman.
>> sys = ss(A, B, C, D, Ts)
>> [Kest, Kf, P] = kalman( sys, Vd, Vn)

where Ts denotes the sampling time.

The estimator generates estimate x̂ to be fed to LQR control design. For implementing this following
lines of Matlab code is executed:

>> sysKf = ss(A−KfC, [B Kf], eye(size(A)), 0*[B Kf ] , Ts )
>> [x̂, t] = lsim ( sysKf, [u,y], t)

Linear optimal control design: If we have a linear system that is observable then we develop optimal
full state feedback control using LQE and subsequently use LQR to place the eigenvalues of the system

ε = x− x̂
˙̂x = Ax̂+Bu+Wd

Substitute the input u = −Krx̂. The error model after algebraic simplification is given as

ε̇ = (A−KfC)ε+Wd −KfWn

These equations in matrix form is given as[
ẋ
ε̇

]
=
[
A−BKr BKr

0 A−KfC

][
x
ε

]
+
[
I 0
I −Kf

][
Wd

Wn

]
The LQR control design can be implemented with x̂ generated by the estimator for designing Kr. We

use following Matlab code for finding Kr

>> [Akf , Bkf , Ckf , Dkf] = ssdata(sysKf)
>> Kr = lqr (Akf , Bkf, Q, R )

where Q, R are penalty matrix, û = −Krx̂.

Anew = A−KfC − [B Kf ]Kr,

Bnew = [B Kf ]Kr.

The linear quadratic Gaussian (LQG) controller is a combination of a Kalman filter (a linear quadratic
state estimator (LQE)) together with a linear quadratic regulator (LQR).

Acknowledgements The author would like to thank Prof. Steve Brunton from University of Wash-
ington for his lectures and lucid explanation of the topic [110].
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Appendix B

Arbitrage using Linear Programming

Summary: We formulate the optimal energy arbitrage problem for a piecewise linear cost function for
energy storage devices using linear programming (LP). The LP formulation is based on the equivalent
minimization of the epigraph. This formulation considers ramping and capacity constraints, charging
and discharging efficiency losses of the storage, inelastic consumer load and local renewable generation in
presence of net-metering which facilitates selling of energy to the grid and incentivizes consumers to install
renewable generation and energy storage. We consider the case where the consumer loads, electricity prices,
and renewable generations at different instances are uncertain. These uncertain quantities are predicted
using an Auto-Regressive Moving Average (ARMA) model and used in a model predictive control (MPC)
framework to obtain the arbitrage decision at each instance.

B.1 Introduction
Energy storage devices provide flexibility to alter the consumption behavior of an electricity consumer. In
Chapter 3 and Chapter 4 we identify that storage operation under net-metering policies have a piece-wise
line structure in presence of renewable generation and inelastic load. The cost function considered in this
chapter includes inelastic load, renewable generation and storage charging and discharging efficiency, and
ramping and capacity constraints. We formulate the optimal arbitrage problem for such a cost function
for an electricity consumer with inelastic load and renewable generation adopting NEM by using Linear
Programming (LP).

Authors in [341] provide a summary of storage control methodologies used in power distribution net-
works among which LP based formulations can be solved efficiently using commercially available solvers.
The complexity of LP based algorithms is polynomial [203]. Therefore, these algorithms can be used to
efficiently solve the arbitrage problem for the duration of a day divided into smaller time steps ranging
from 5 minutes to an hour. A day is the typical time horizon over which arbitrage is performed [251, 196].

Authors in [146] observe that the energy arbitrage problem for storage is convex in nature and under
the price-taker assumption the cost function will have a piecewise linear structure [184] and hence LP tools
could be used. LP techniques for energy storage arbitrage have been used in several prior works: [269],
[118], [139], [309], [109], [258], [325]. Authors in [109, 118, 325] consider storage operation in presence
of time-varying electricity price. However, in these formulations no renewable energy source or consumer
load is assumed to be present. Authors in [139, 309] consider optimal scheduling of storage battery for
maximizing energy arbitrage revenue in presence of distributed energy resources and variable electricity
price. Formulations presented in [258, 269] consider storage performing arbitrage in a residential setting
with inelastic load and local generation. Most common LP formulations for energy arbitrage such as in
[269], [325], [309], [118] consider separation of charging and discharging components. In these formulations,
they do not include constraint enforcing only one of the charging or the discharging component to be active
at any particular time as the inclusion of such a constraint makes these formulations nonlinear. Therefore,
in these formulations, optimal results cannot be guaranteed. Authors in [139, 109] do not consider energy
storage charging and discharging efficiencies in the cost minimization, making it straight forward to apply
LP. Authors in [258] consider a special case of optimization with zero-sum aggregate storage power output.
For such a case LP tools could be used, however, generalizing the formulations needs to be explored further.

The key contributions of this section are as follows:
• LP formulation for storage control: We formulate the LP optimization problem for piecewise linear
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convex cost function, for storage with efficiency losses, ramping and capacity constraints and a consumer
with inelastic load and renewable generation. The buying and selling price of electricity are varying over
time. The selling price is assumed to be at best equal to buying price for each time instant, this assumption
is in sync with most net-metering policies worldwide. We describe the LP formulations for lossy battery
with inelastic consumption, renewable generation and selling price less than or equal to buying price. The
reduction of this formulation for cases (a) lossless battery with equal buying and selling price of electricity
and (b) lossy battery with selling price less than or equal to buying price, is trivial and also included in this
section. Based on the structure of the cost function we apply an epigraph based minimization described
in [108] to the arbitrage problem.
• Real-time implementation: We implement an auto-regressive based forecast model along with model
predictive control.

Battery operational life is often quantified using cycle and calendar life which decides the cycles a
battery should perform over a time period. Friction coefficient, denoted as ηfric ∈ [0, 1], and introduced in
[174] assists in reducing the operational life of the battery such that low returning transactions of charging
and discharging are eliminated, thus increasing the operational life of the battery. In subsequent work,
authors in [182] propose a framework to tune the value of friction coefficient for increasing operational life
of battery. In a prior work, [178], we show that redefining ηch equal to ηchηfric and ηdis equal to ηdisηfric,
we can control the cycles of operation by eliminating the low returning transactions by reducing the value
of ηfric.

The section is organized as follows. Section B.2 presents the linear programming formulation of storage
performing arbitrage with inelastic load, renewable generation and net-metering based compensation.
Section B.3 presents the matrix formulation for solving the arbitrage problem using linear programming.
Section B.4 presents an online algorithm using the proposed optimal arbitrage algorithm along with auto-
regressive forecasting in the MPC framework. Finally, Section B.5 concludes the section.
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Figure B.1: The cost function segment wise for positive and negative net load z [183]. The decision
variable is storage change in charge level, xi, and cost function, Cnm(i) is formed with 4 line segments.

263



Table B.1: Cost function for storage with load under NEM

Segment Slope x-intercept y-intercept
Segment 1 pb(i)/ηch −ziηch zipb(i)
Segment 2 ps(i)ηdis −zi/ηdis zips(i)
Segment 3 pb(i)ηdis −zi/ηdis zipb(i)
Segment 4 ps(i)/ηch −ziηch zips(i)

B.2 Optimal Arbitrage with Linear Programming
The optimal arbitrage problem, (P), can be solved using linear programming as the cost function is (i)
convex and (ii) piecewise linear, and (iii) the associated ramping and capacity constraints are linear. In this
section, we provide an LP formulation for the optimal arbitrage of the storage device under net-metering
and consumer inelastic load and renewable generation, leveraging the epigraph based minimization pre-
sented in [108]. A summary of the epigraph based formulation for a piecewise linear convex cost function
is presented in Appendix B.2.1. The optimal arbitrage formulation for storage under net-metering and
consumer inelastic load and renewable generation using the epigraph formulation is presented in this sec-
tion. Fig. B.1 shows the two cost functions depending on the net-load without storage output, i.e. for
zi > 0 and zi < 0. Note that there are 4 unique segments which form the cost function Cnm(i). The
slope, x-intercept and y-intercept of these linear segments are given in Table B.1. The epigraph based LP
formulation is possible as irrespective of the sign of the load, the cost function is given as

Cnm(i) = max
(
Segment 1, Segment 2,Segment 3, Segment 4

)
. (B.2.1)

Since, Eq.B.2.1 is independent of the sign of load and based on the intercepts, Eq.B.2.1 is valid for
pb(i) ≥ ps(i) and for ηch, ηdis ∈ (0, 1] (conditions of convexity), therefore, we could formulate this problem
as an LP. Using the epigraph equivalent formulation for piecewise linear convex cost function we formulate
the optimal arbitrage problem using linear programming, denoted as PLP

(PLP) min {t1 + t2 + ...+ tN},

subject to, (a) Segment 1: pib
ηch

xi + zip
i
b ≤ ti, ∀i

(b) Segment 2: pisηdisxi + zip
i
s ≤ ti, ∀i

(c) Segment 3: pibηdisxi + zip
i
b ≤ ti, ∀i

(d) Segment 4: pis
ηch

xi + zip
i
s ≤ ti, ∀i

(e) Ramp constraint: xi ∈ [Xi
min, X

i
max], ∀i

(f) Capacity constraint:
∑

xi ∈ [bmin − b0, bmax − b0], ∀i.

The cost function for only lossy storage operation under NEM would have two-piecewise linear segments
and it would be linear for equal buying and selling price of electricity with lossless battery. Authors in
[139, 109] present this case in their LP formulation. This case could be obtained by simplifying the more
general case depicted as PLP in Fig. B.1.

We make our code open source on formulating optimal arbitrage problem using linear programming1.

B.2.1 Epigraph formulation of Linear Programming
An unconstrained minimization problem of a convex piecewise-linear function, h(x), could be trans-
formed to an equivalent linear programming problem by forming the epigraph problem [108], [318]. Con-
sider the convex piecewise cost function minimization problem is denoted as (Porg) min h(x), where
h(x) = maxi=1,...,m(aTi x+ bi). For cases where the decision variable x is scaler, aTi is also a scaler. Thus,
aix+ bi is a two-dimensional line with bi denoting the y-intercept and ai the slope of the line. The equiv-
alent epigraph problem for the original problem Porg is denoted as (Pepi) min t, subject to, aix+ bi ≤

1https://github.com/umar-hashmi/linearprogrammingarbitrage
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t, i = 1, ...,m, where t denotes auxiliary scalar variable. The LP matrix notation for the opti-

mization problem Pepi is represented as: minimize f̃T x̃, subject to Ãx̃ ≤ b̃; where f̃ =
[
0
1

]
, x̃ =[

x
t

]
, Ã =

a1 −1
: :
am −1

, b̃ =

−b1:
−bm

. Now consider extending this minimization problem for two time

instants with a unique cost function for each time instant. The optimization problem is denoted as
(Pepi) min t1 + t2, s.t., (i) a1ix+b1i ≤ t1, (ii) a2ix+b2i ≤ t2, i = 1, ...,m, The equivalent LP matrices
are denoted as

f̃=


0
0
1
1

, x̃=


x1
x2
t1
t2

, Ã=


a11 0 −1 0
: : : :

a1m 0 −1 0
0 a21 0 −1
: : : :
0 a1m 0 −1

, b̃=

−b11

:
−b1m
−b21

:
−b2m

.

A similar LP formulation for N time steps with piecewise linear cost function could be formulated.

B.3 Formulating LP Matrices
In this section we provide LP formulations for storage device for performing arbitrage. We present three
versions of the LP problem for energy arbitrage. Firstly, a lossless storage performing arbitrage under equal
buying and selling price of electricity, i.e. κi = 1, ∀i. Secondly, storage under net-metering, i.e. κi ∈ [0, 1],
with charging and discharging losses and finally storage with inelastic load and renewable generation at
consumer end with net-metering and storage losses. The progressive formulations shows the evolution of
complexity and the manner we deal with such challenges. We apply the epigraph based minimization
presented in [108] for optimal storage arbitrage.

B.3.1 Lossless Storage with equal buy and sell price
The LP formulation for lossless energy storage device with time varying electricity price is given as:

Ojective function: pTelecx, subject to: (a)Ac1x ≤ b, (b) lb ≤ x ≤ ub,

where x and pelec denote row vectors of dimension Nx1. The constraint (a) takes care of the capacity
constraint which ensures instantaneous battery charge level is within minimum and maximum bounds and
constraint (b) takes into account the ramp constraint of the battery. The capacity constraint could be
rewritten as two constraints given as (i)

∑
i xi ≤ {bmax − b0}, (ii)−

∑
i xi ≤ {b0 − bmin}∀i. The capacity

constraints, Ac1x ≤ b, in matrix is given as

1 0 0 .. 0 0
1 1 0 .. 0 0
: : : .. : :
1 1 1 .. 1 1
−1 0 0 .. 0 0
−1 −1 0 .. 0 0
: : : .. : :
−1 −1 −1 .. −1 −1




x1
x2
:
xN

 =



bmax − b0
bmax − b0

:
bmax − b0
b0 − bmin
b0 − bmin

:
b0 − bmin


. (B.3.1)

The dimension of matrix Ac1 is 2NxN, and b is of the order 2Nx1. Note that in this formulation we do not
consider storage efficiency losses and also assume price of electricity for buying and selling to be equal for
each time instant. The lower bound (lb) and upper bound (ub) in constraint (b) is given as

lb =


Xmin
Xmin

:
Xmin

 ≤

x1
x2
:
xN

 ≤ ub =


Xmax
Xmax

:
Xmax

. (B.3.2)
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B.3.2 Only Storage Case with net-metering and efficiency losses
Consider the operation of energy storage under time varying buying and selling price of electricity. It
is assumed the selling price is at best equal to buying price, however, we do not assume for this for-
mulation to have a fixed ratio of selling and buying price of electricity. The storage is considered to
have charging and discharging efficiency losses. The cost function for optimal arbitrage problem for stor-
age with change in charge level, xi, as the decision variable is presented in Fig. B.2. Clearly, the cost
function, Cstorage, is a combination of two lines. The equation of these line segments are denoted as
Seg.1: Y1i(xi) = pb(i)

ηch
xi,Seg.2: Y2i(xi) = ps(i)ηdisxi,

The cost function is denoted as Cstorage = max(Y1i(xi), Y2i(xi)). Note that y-intercept of segment 1 and
segment 2 are equal to zero, therefore, b1i = 0 and b2i = 0 for all i. The electricity price, pbat, is denoted as
(equivalent to the slopes of the cost function with respect to the decision variable). pbat(i) is equal to pb(i)

ηch

for xi ≥ 0 and ps(i)ηdis for otherwise. The epigraph based LP formulation (see Appendix B.2.1) could be
applied for the optimal arbitrage problem with cost function denoted as Cstorage, as the cost function is
convex and piecewise linear.
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Figure B.2: The cost function segment wise for storage performing arbitrage with κi ∈ [0, 1]. We
would like to highlight that this cost function also applies for equal buying and selling price in presence
of load and renewable generation, as under such cases operation of storage becomes independent of
load and renewable variations [184].

Using the epigraph equivalent formulation for piecewise linear convex cost function we formulate the
optimal arbitrage problem using LP, given as

min {t1 + t2 + ...+ tN}

subject to, pib
ηch

xi − ti ≤ 0, pisηdisxi − ti ≤ 0,∀i

xi ∈ [Xmin, Xmax],
∑

xi ∈ [bmin − b0, bmax − b0],∀i.

The matrix format for the above problem is denoted as minimize fTX, subject to Ac2X ≤ bc2, and
X ∈ [lb, ub].

f=


0
:
0
1
:
1

, X=


x1
:
xN
t1
:
tN

, lb=



Xmin
Xmin

:
Xmin
Tmin
Tmin

:
Tmin


≤



x1
x2
:
xN
t1
t2
:
tN


≤ ub=



Xmax
Xmax

:
Xmax
Tmax
Tmax

:
Tmax


. (B.3.3)

where Tmin and Tmax are bounds on ti. Since these bounds are not known to us, we choose Tmin to be
negative with a large magnitude and Tmax to be positive with a large magnitude. The dimension of Ac2 is
4Nx2N, bc2 is 4Nx1, X and f is 2Nx1.
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Ac2 =



pb(1)
ηch

0 0 ... 0 −1 0 0 ... 0
0 pb(2)

ηch
0 ... 0 0 −1 0 ... 0

: : : ... : : : : ... :
0 0 0 ... pb(N)

ηch
0 0 0 ... −1

ps(1)ηdis 0 0 ... 0 −1 0 0 ... 0
0 ps(2)ηdis 0 ... 0 0 −1 0 ... 0
: : : ... : : : : ... :
0 0 0 ... ps(N)ηdis 0 0 0 ... −1
1 0 0 ... 0 0 0 0 ... 0
1 1 0 ... 0 0 0 0 ... 0
: : : ... : : : : ... :
1 1 1 ... 1 0 0 0 ... 0
−1 0 0 ... 0 0 0 0 ... 0
−1 −1 0 ... 0 0 0 0 ... 0
: : : ... : : : : ... :
−1 −1 −1 ... −1 0 0 0 ... 0



, bc2 =



0
0
:
0
0
0
:
0

bmax − b0
bmax − b0

:
bmax − b0
b0 − bmin
b0 − bmin

:
b0 − bmin



,

(B.3.4)

B.3.3 Storage performing arbitrage with inelastic load and renewable gener-
ation under net-metering and storage losses

The matrix format for the optimization problem PLP is denoted as minimize fTX, subject to Ac3X ≤ bc3,
and X ∈ [lb, ub]. The variables for LP formulation is denoted as The lower bound and upper bound of the
state variable same as the previous case as Eq. B.3.3. The dimension of Ac3 is 6Nx2N, bc3 is 6Nx1, X and
f is 2Nx1, N denotes number of samples in the horizon of optimization.

Ac3 =



pb(1)
ηch

0 0 ... 0 −1 0 0 ... 0
0 pb(2)

ηch
0 ... 0 0 −1 0 ... 0

: : : ... : : : : ... :
0 0 0 ... pb(N)

ηch
0 0 0 ... −1

ps(1)ηdis 0 0 ... 0 −1 0 0 ... 0
0 ps(2)ηdis 0 ... 0 0 −1 0 ... 0
: : : ... : : : : ... :
0 0 0 ... ps(N)ηdis 0 0 0 ... −1

ps(1)
ηch

0 0 ... 0 −1 0 0 ... 0
0 ps(2)

ηch
0 ... 0 0 −1 0 ... 0

: : : ... : : : : ... :
0 0 0 ... ps(N)

ηch
0 0 0 ... −1

pb(1)ηdis 0 0 ... 0 −1 0 0 ... 0
0 pb(2)ηdis 0 ... 0 0 −1 0 ... 0
: : : ... : : : : ... :
0 0 0 ... pb(N)ηdis 0 0 0 ... −1
1 0 0 ... 0 0 0 0 ... 0
1 1 0 ... 0 0 0 0 ... 0
: : : ... : : : : ... :
1 1 1 ... 1 0 0 0 ... 0
−1 0 0 ... 0 0 0 0 ... 0
−1 −1 0 ... 0 0 0 0 ... 0
: : : ... : : : : ... :
−1 −1 −1 ... −1 0 0 0 ... 0



, bc3 =



−zipb(1)
−zipb(2)

:
−zipb(N)
−zips(1)
−zips(2)

:
−zips(N)
−zips(1)
−zips(2)

:
−zips(N)
−zipb(1)
−zipb(2)

:
−zipb(N)
bmax − b0
bmax − b0

:
bmax − b0
b0 − bmin
b0 − bmin

:
b0 − bmin



.

(B.3.5)
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B.4 Real-time implementation
The previous section discussed optimal storage arbitrage under complete knowledge of future net loads and
prices. In this section, we consider the setting where future values may be unknown. To that end, we first
develop a forecast model for net load without storage (which includes inelastic consumer load and consumer
distributed generation) and electricity price for future times, where the forecast is updated after each time
step. Then, we develop the forecasting model for net load with solar generation using AutoRegressive
Moving Average (ARMA) model and electricity price forecast using AutoRegressive Integrated Moving
Average (ARIMA).

The forecast models based on ARMA and ARIMA model developed in [179] are used in this work.
The forecast values are fed to a Model Predictive Control (MPC) scheme to identity the optimal modes of
operation of storage for the current time-instance. Any of the developed schemes from the previous section
can be used for the optimization inside MPC. These steps (forecast and MPC) are repeated sequentially
and highlighted in online Algorithm 20: ForecastMPClinearProgram.

Algorithm 20 ForecastMPClinearProgram
Storage Parameters: ηch, ηdis, δmax, δmin, bmax, bmin, b0.
Inputs: h,N, T, i = 0, Rolling horizon optimization time period Nopt, Historical inelastic load, renewable
generation and electricity price data.
1: Use historical data to tune ARMA and ARIMA models,
2: while i < N do
3: Increment i = i+ 1,
4: Real-time electricity price value pelec(i) and load zi,
5: Forecast ẑ from time step i+ 1 to i+Nopt using ARMA,
6: Forecast p̂b and p̂s from time i+ 1 to i+Nopt using ARIMA,
7: Calculate κ̂ as the ratio of p̂s and p̂b,
8: Build LP matrices for time step i to N ,
9: Solve the Linear Optimization problem for forecast vectors,

10: Calculate bi∗ = bi−1 + x̂∗(1),
11: Update b0 = bi

∗, the initial capacity of battery is updated.
12: Return bi

∗, xi∗.
13: end while

B.5 Conclusion
We formulate energy storage arbitrage problem using linear programming. The linear programming for-
mulation is possible due to piecewise linear convex cost functions. In this formulation we consider: (a)
net-metering compensation (with selling price at best equal to buying price) i.e. κi ∈ [0, 1], (b) inelastic
load, (c) consumer renewable generation, (d) storage charging and discharging losses, (e) storage ramping
constraint and (f) storage capacity constraint. Net-load and electricity price are modeled with AutoRe-
gressive models for model predictive control.
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[115] Ana Bušić and Sean Meyn. Distributed randomized control for demand dispatch. In IEEE Conference
on Decision and Control, pages 6964–6971, Dec 2016.

[116] C. Byrne and G. Verbic. Feasibility of residential battery storage for energy arbitrage. In 2013
Australasian Universities Power Engineering Conference (AUPEC), pages 1–7, Sep. 2013.

[117] Raymond H Byrne, Ricky J Concepcion, and César A Silva-Monroy. Estimating potential revenue
from electrical energy storage in pjm. In Power and Energy Society General Meeting (PESGM),
2016, pages 1–5. IEEE, 2016.

[118] Raymond H Byrne and César A Silva-Monroy. Potential revenue from electrical energy storage in
ercot: The impact of location and recent trends. In 2015 IEEE Power & Energy Society General
Meeting, pages 1–5. IEEE, 2015.

[119] Raymond H Byrne and Cesar Augusto Silva-Monroy. Estimating the maximum potential revenue
for grid connected electricity storage: Arbitrage and regulation. Sandia National Laboratories, 2012.
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[246] Sean Meyn, Prabir Barooah, Ana Bušić, and Jordan Ehren. Ancillary service to the grid from
deferrable loads: The case for intelligent pool pumps in florida. In 52nd IEEE Conference on
Decision and Control, pages 6946–6953. IEEE, 2013.
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RÉSUMÉ

Cette thèse est motivée par les transformations des systèmes d’énergie électrique, dues à une plus grande intégration des
énergies renouvelables et à un modèle de consommation en évolution. Le stockage d’énergie est une solution possible
pour faciliter une transition en douceur, garantissant la stabilité du système d’alimentation électrique. Dans cette thèse, la
batterie Li-Ion a un double rôle de stockage d’énergie. Premièrement, il est utilisé par les consommateurs individuels pour
minimiser le coût de l’électricité. Cela se fait par un arbitrage énergétique basé sur le prix de l’électricité, la correction
du facteur de puissance, la réduction de la demande de pointe et la préservation de l’énergie. Ensuite, il est également
utilisé pour augmenter la fiabilité et la stabilité du réseau électrique, en effectuant une régulation dynamique et une phase
d’équilibrage. Le coût des batteries étant toujours élevé, l’importance est également accordée à la santé de la batterie
compte tenu de sa dégradation dans les formulations d’optimisation et de contrôle. Plusieurs études de cas utilisant des
données réelles sont menées pour évaluer les performances des algorithmes de contrôle et d’optimisation du stockage.
Nous notons que la baisse des prix des batteries et la part croissante des énergies renouvelables intermittentes ne feront
qu’augmenter la pertinence de ces travaux pour les futurs réseaux électriques.

MOTS CLÉS

Stockage d’énergie, optimisation, contrôle, systèmes d’alimentation électrique.

ABSTRACT

This thesis is motivated by the electric power system transformations due to more renewable integration and changing
consumption patterns. Energy storage is one possible solution to facilitate a smooth transition, ensuring the stability of the
power system. In this thesis Li-Ion battery is used both at the level of individual consumers, minimizing the cost of elec-
tricity by performing energy arbitrage under time-varying electricity price, power factor correction, peak demand shaving
and energy backup, and at the grid level for increasing reliability and stability of the power network by performing dynamic
regulation and phase balancing. The cost of the batteries being still high, the importance is also given to the health of
the battery taking into account its degradation in optimization and control formulations. Several case studies using real
data are conducted to evaluate the performance of the storage control and optimization algorithms. We observe that the
ever-decreasing prices of batteries and the growing share of intermittent renewables will only increase the relevance of
this work for future power networks.

KEYWORDS

Energy storage, optimization, control, electrical power systems.
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