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Spécialité de doctorat: Sciences de l’Univers
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like to thank them both: PA, thank you for your kindness, diligence in every task you undertake, for our countless
long and fruitful discussions about all things PSF. Jérôme, thank you for never failing to take the time to help
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Summary in French

Depuis la découverte de l’accélération de l’expansion de l’Univers, à la fin du millénaire dernier, un “modèle
standard de la cosmologie” a émergé. Ancré dans la théorie de la relativité générale d’Einstein, il repose
sur l’existence de matière noire - qui interagit gravitationnellement mais n’émet pas de lumière - et d’une
mystérieuse énergie sombre. Avec seulement sept paramètres libres, ce modèle explique remarquablement
bien les observations que nous pouvons faire de notre Univers aujourd’hui.

De nombreuses questions demeurent cependant ouvertes. On ignore toujours la nature précise de la
matière noire. L’énergie sombre - le nom que l’on donne à la cause l’accélération de l’expansion - est plus
mystérieuse encore. L’hypothèse la plus simple est qu’il s’agirait simplement d’une constante cosmologique.
Cette possibilité est considérée par beaucoup comme peu satisfaisante d’un point de vue théorique. De plus,
de récentes observations semblent indiquer l’existence de potentielles tensions : selon la manière dont on
mesure la valeur prise, dans notre Univers, par les quelques paramètres cosmologiques du modèle standard,
nous obtenons des résultats qui pourraient être incompatibles. Si ces tensions sont confirmées, elles pourraient
indiquer le besoin de nouvelle physique, au delà du modèle standard.

L’un des objectifs principaux de la cosmologie observationelle moderne est donc de mesurer, avec une
très grande précision et de différentes manières, la valeur des paramètres cosmologiques. Chacune de ces
manières constitue une sonde cosmologique. Parmi ces sondes figure le lentillage gravitationnel faible, un
moyen particulièrement prometteur de relier des observations aux paramètres cosmologiques.

Lentillage gravitationnel

La théorie de la relativité générale prédit que les objets massifs déforment l’espace temps. Lorsque la lumière
se propage, elle suit ces déformations. Les objets massifs modifient donc, tels des lentilles, le chemin de
la lumière. Cet effet, dit de lentillage gravitationnel, a été confirmé par de nombreuses observations, no-
tamment lorsque notre système solaire, un objet d’avant-plan (une galaxie ou un amas de galaxies) et une
galaxie d’arrière-plan sont presque alignés. Plutôt que de regarder individuellement de tels systèmes, on peut
s’intéresser à l’effet de lentillage causé par toute la structure à grande échelle de notre Univers. Cela revient
à mesurer la forme d’un très grand nombre de galaxies. Prises seules, ces mesures ne nous permettent pas
de tirer d’information cosmologique, puisque nous ne connaissons pas la forme que possédait la galaxie avant
que sa lumière ne se propage jusqu’à nous : c’est le régime du lentillage gravitationnel faible. En en mesurant
un très grand nombre, et en regardant les propriétés statistiques de la distribution de formes de galaxies, on
peut cependant extraire de l’information sur la distribution de matière dans l’Univers.

De telles mesures cosmologiques, basées sur le lentillage gravitationnel, ont déjà été effectuées depuis le
sol et avec le télescope Hubble. C’est également l’un des deux objectifs scientifiques principaux du télescope
spatial Euclid, de l’Agence Spatiale Européenne, dont le lancement est prévu en 2022. Euclid observera la
presque-totalité du ciel extra-galactique, et nous permettra ainsi d’obtenir des contraintes extrêmement fortes
sur les valeurs des paramètres cosmologiques... A condition que l’on arrive à mesurer précisément la forme de
plusieurs milliards de galaxies.

Cette mesure s’avère extrêmement difficile en pratique, principalement à cause de la fonction d’étalement
du point (PSF, pour Point Spread Function en anglais). Toute observation faite à travers un instrument optique
est légèrement floutée. Ainsi, si un objet devait apparaı̂tre comme un point isolé, on l’observerait plutôt comme
une tâche légèrement étalée. C’est cet effet qu’on appelle PSF. Ses origines sont diverses : diffraction, imper-
fections dans l’optique de l’instrument, turbulences atmosphériques (pour les télscopes au sol), etc. L’impact de
la PSF sur la forme des galaxies est beaucoup plus important que celui causé par le lentillage gravitationnel. Il
est donc crucial de corriger très précisément cet effet. Pour ce faire, il faut d’abord connaı̂tre la PSF elle-même.
Dans le ciel, les étoiles non-résolues devraient apparaı̂tre comme des points ; aussi donnent-elles une mesure
de la PSF.
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Estimation du champ de PSF

Cette thèse porte sur le problème d’estimation du champ de PSF : à partir d’images dégradées d’étoiles,
comment reconstruire un modèle de PSF qui pourra ensuite être utilisé pour la mesure de forme de galaxies ?
Nous nous intéressons en particulier à la résolution de ce problème dans le cas d’Euclid. La variation spatiale
de la PSF, c’est-à-dire le fait que la PSF varie en fonction de la position de l’objet dans l’image, était déjà
présente dans toutes les études passées de lentillage gravitationnel. En raison des spécificités d’Euclid, la
modélisation de sa PSF demande en plus de résoudre de nombreux défis qui n’avaient pas été rencontrés
auparavant. En particulier, la PSF sera sous-échantillonnée et subira de fortes variations chromatiques.

Nous proposons l’utilisation d’outils avancés, issus des mathématiques appliquées et du traitement du sig-
nal, pour relever ces défis. Pour contrecarrer le sous-échantillonnage, c’est-à-dire le fait que les pixels du
détecteur de l’instrument visible d’Euclid sont “trop gros” pour capturer tous les détails de la PSF, et les vari-
ations spatiales, nous étendons la méthode RCA (Resolved Components Analysis, en anglais), développée
récemment au CEA. En utilisant les notions de représentation parcimonieuse et de théorie des graphes, nous
construisons un modèle de PSF qui permet de procéder à la super-résolution (c’est-à-dire de retrouver de
l’information contenue dans des pixels plus fins) d’images bruitées d’étoiles, et qui capture les variations spa-
tiales de la PSF se produisant à différentes échelles.

Pour étudier la qualité de ce modèle et le comparer à l’état de l’art, nous réalisons un grand nombre
de simulations d’images, non seulement d’étoiles, mais également de galaxies. Cela nous permet d’étudier
l’impact des erreurs commises dans l’estimation de la PSF sur notre estimation de la forme des galaxies. Nous
montrons ainsi que cette propagation d’erreur s’avère, dans le cas d’Euclid, plus complexe qu’anticipé. En
particulier, le formalisme largement utilisé dans la communauté jusqu’ici pour propager les erreurs de PSF ne
sera alors plus valable.

L’instrument visible d’Euclid couvre une très large bande du spectre électromagnétique : d’environ 550
à 900nm en longueur d’onde. Contrairement aux études précédentes, où les observations utilisées pour le
lentillage gravitationnel étaient effectuées à travers des filtres beaucoup plus fins, il devient donc capital de
prendre en compte les variations chromatiques de la PSF. L’objectif est alors de construire un modèle à trois
dimensions : les deux dimensions spatiales habituelles, ainsi que la longueur d’onde. C’est un problème
extrêmement difficile à résoudre, puisque nous ne disposons pour chaque étoile que d’une seule image qui,
plutôt que d’être prise à une longueur d’onde particulière, est intégrée avec un spectre, propre à l’étoile !

Transport optimal

Pour faire face à cette très grande dégradation de l’information, nous proposons d’utiliser le transport op-
timal numérique. Le transport optimal est une branche des mathématiques qui présente un grand intérêt
théorique depuis plusieurs siècles. On attribue souvent son origine à Monge, qui en 1781 proposait d’étudier
les problèmes de transportation de masse : étant données deux configurations de masse (par exemple, un
tas de sable qu’on désirerait utiliser pour remplir un trou de même volume), et connaissant l’effort associé au
déplacement de masse, quelle est la manière optimale (c’est-à-dire associée au moindre effort) pour passer
d’une configuration à l’autre ?

Jusqu’à récemment, le calcul des quantités associées aux problèmes de transport optimal était trop coûteux
pour qu’elles puissent être utilisées dans des problèmes pratiques. Depuis, des méthodes pour calculer effi-
cacement des approximations de ces quantités, comme celle proposée par Cuturi en 2013, ont rendu possible
l’avènement du transport optimal numérique. On peut ainsi, par exemple, calculer très rapidement le barycen-
tre de Wasserstein de plusieurs images. On peut songer au barycentre de Wasserstein comme les différentes
étapes intermédiaires par lesquelles passent notre tas de sable au cours de son transport. C’est un opérateur
qui permet ainsi de capturer les déformations géométriques séparant plusieurs objets.

Nous proposons d’utiliser ces notions pour capturer les variations chromatiques de la PSF d’Euclid. En
combinant les outils, basés sur le transport optimal et développés dans cette thèse, avec les fondements de la
méthode RCA, nous créons le premier modèle permettant de modéliser de manière polychromatique la PSF



xv

Euclid. Cette approche, nommée λRCA, permet ainsi de construire un modèle à trois dimensions de la PSF
en n’utilisant rien d’autre que des observations sous-échantillonnées d’étoiles, intégrées avec leurs spectres
(supposés connus). En particulier, elle ne nécessite aucune connaissance a priori sur l’instrument.

En plus de l’application aux PSFs polychromatiques, les outils développés dans cette thèse nous ont permis
d’introduire l’apprentissage de dictionnaire de Wasserstein (Wasserstein Dictionary Learning, en anglais), une
méthode de représentation des données qui utilise pleinement les propriétés du transport optimal. Ses applica-
tions potentielles sont très vastes, comme le montrent par exemple les travaux de Xu et collaborateurs, qui ont
utilisé (et étendu) dès 2018 notre approche pour du traitement de texte, avec une application aux formulaires
d’admission de patients à l’hôpital.
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Chapter 1

Introduction

In 1915, Einstein introduced the theory of General Relativity (GR) that would come to have a huge impact on
our understanding of physics and the Universe. This year, just over a century after Einstein’s presentation at
the Prussian Academy of Sciences, the team of the Event Horizon Telescope revealed the first direct image of a
black hole’s shadow. This came very shortly after another validation of GR, right before I started the PhD work
that will be presented in this thesis: in February of 2016, the LIGO collaboration announced the first detection
of gravitational waves.

Long before these observations, the application of GR to the Universe as a whole had already laid the
foundations for what would become modern cosmology. A picture of the history of our Universe, from its
beginnings - the Big Bang - to the present day started to emerge. From these early days, we eventually
reached an era of observational cosmology. Much like astronomers and astrophysicists had already been
doing, the different models and predictions of cosmology could now be put to the test with actual observations
of our own Universe - notably, in the 1990s, the COsmic Background Explorer (COBE) gave us a wealth of
cosmological insight from measurements of the Cosmic Microwave Background (CMB).

It is also thanks to observational evidence that two key components of our current understanding of the
Universe came to our consideration. First, several different observations indicated that ordinary matter alone
could not explain all of the gravitational effects we observed. This led to the addition of dark matter, which
interacts gravitationally but emits no light, as one of the main components of our Universe. Dark matter is in
fact much more prominent than ordinary matter, by about a factor of five in its contribution to the total energy
content. Second, Hubble noticed that the farther away galaxies are, the faster they appear to move away from
us: not only is our Universe expanding, but this expansion is accelerating. Dark Energy is the name we gave to
the force responsible for this acceleration.

These three components - GR, dark matter and Dark Energy - are the pillars of the Standard Model of
Cosmology. This model is remarkably well supported by observational evidence, yet several issues still need
to be addressed. The nature of dark matter and dark energy remains a mystery. Is the latter truly nothing
but a cosmological constant? While this possibility is not ruled out by present observations, it would come
with questions of its own. Why this particular value, conspicuously close to 0? It also is, to many, a deeply
unsatisfying answer from a theoretical standpoint. Moreover, as our cosmological probes reach ever higher
levels of accuracy, potential tensions start to emerge - that is, measurements of the same quantity, from two
independent sources, that would be in contradiction within the Standard Model. At the time of the writing of this
thesis, the most notable is that related to H0, the rate of the expansion of the Universe. Measurements, made
either directly from supernovae or indirectly from the latest CMB data, appear strongly at odds with one another.
Another potential tension is related to dark matter and its distribution. Its significance is less certain, but the
sources of the potentially conflicting measurements are particularly relevant to this work: one comes from the
Planck mission and its CMB measurements, while the others are made from the study of weak gravitational
lensing - the heart of this thesis.

Gravitational lensing, another effect predicted by GR, can lead to spectacular effects. For instance, in an
Einstein Ring, what should be a simple background object appears as a ring-like structure around a massive
foreground object. In the weak (gravitational) lensing (WL) regime, these effects are of a much smaller ampli-
tude, and cannot be discerned by eye. In this case, no information can be gleaned on an object-by-object basis,
but a statistical study of the (observed) shapes of a large number of objects can reveal information about the
late-time Universe, and especially about the distribution of matter (dark or otherwise). This makes WL a very
powerful cosmological probe.

1



2 CHAPTER 1. INTRODUCTION

For our observational efforts to address some of today’s most pressing questions in cosmology, whether
it is the nature of Dark Energy or the possible tensions between different probes, we must achieve exquisite
measurement accuracy over very large portions of the sky and/or for very large numbers of objects. These
ambitious goals make up what is often referred to as precision cosmology. After Planck and the CMB, we must
now bring WL to this new level of sky coverage and precision. That is one of the main goals of the Euclid space
mission, expected to launch in 2022.

Until then, we can turn our efforts to some of the many data processing challenges that come with any WL
survey, as well as some of the new ones that will arise specifically in the case of Euclid. Precision cosmology
is not just about converting “observables” to cosmological information - care must also be given to how we go
from the actual observations (raw images from our telescopes) to the quantities of interest (galaxy shapes that
contain the WL signal, in our case). Throughout these various steps, many challenging problems arise, some
of which we can only hope to solve by deploying advanced signal processing methods.

Amongst the most major of these challenges is that of the Point Spread Function (PSF). Every astronomical
image is distorted because of various effects: diffraction, imperfect optics, atmospheric effects (for ground-
based telescopes) or the slight jitter of the instrument (when in space). In the case of WL, where the signal
of interest lies in the shapes of galaxies, it is naturally of paramount importance to correctly account for the
distortions caused by the PSF. This, in turn, can only be achieved if our knowledge of the PSF itself is sufficient.
The PSF estimation problem is the main focus of this thesis, with a special emphasis on the Euclid Visible
instrument (VIS).

Finding an adequate PSF model from the objects found in Euclid exposures amounts to solving an ill-posed
inverse problem. Within this framework, we will use advanced mathematical signal processing tools to try and
achieve the best possible PSF model that is able to account for all of Euclid’s specificities. Super-resolution,
spatial variations, and chromatic variations of the PSF will be addressed in this thesis. Each of these sub-
problems associated with the Euclid PSF will lead us to delve into advanced and exciting methodological tools.
Sparsity, (a small amount of) graph theory, and especially Optimal Transport (OT) will all come together as we
get closer to a non-parametric PSF model applicable to Euclid.

This thesis is organized as follows. Starting from the very general, in Chapter 2, we will give some cos-
mological context, then narrow our attention first to lensing as a cosmological probe, then specifically to PSF
modelling and Euclid. We will then start our PSF modelling efforts in Chapter 3, in a simplified context where
the chromatic variations of the PSF will be left aside. Before turning to these, we will first take a look at the re-
cent field of numerical optimal transport in Chapter 4. These tools will then be incorporated in our PSF model in
Chapter 5, where we will add an OT component to our monochromatic model to make it the first non-parametric
PSF model able to capture chromatic variations.
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Cosmological and practical context

Contents
2.1 The standard cosmological model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 General Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 The isotropic, homogeneous Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Redshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 Structure formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.5 The ΛCDM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Gravitational lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Propagation of light through an in inhomogeneous Universe . . . . . . . . . . . . . . . . . 17

2.2.2 Shear and convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Relation to cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.4 Cosmic shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Practical weak lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 Image “preprocessing” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.3 Object detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.4 (De)blending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.5 Star-galaxy separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.6 PSF modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.7 Galaxy shape measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.8 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.9 Obtaining redshift information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Point Spread Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.1 Impact of PSF modelling on shear measurements . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.2 Real data diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.3 Past and current PSF models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 Euclid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

In this chapter, we present the cosmological context of this thesis. Starting with a general presentation of
the standard cosmological model as it stands at the time of this writing, we then quickly narrow our attention
to the particular cosmological probe of interest for this work by giving the basic lensing formalism on which WL
experiments and results are based. By the end of this chapter, we will have established the role of the PSF in
WL studies, the importance of accurately modelling it, and the challenges encountered in the particular case
of Euclid. It should be noted that, while we use the standard model and the estimation of its parameters as
the cosmological motivation for this task, WL can absolutely also be used to constrain exotic Dark Energy or
Modified Gravity models. Similarly, in the present chapter, we will introduce and focus on cosmic shear as the
way to exploit WL observations. They can however be used in numerous other ways, both for cosmological
inference, and to achieve different science objectives. In all cases, the PSF model used is crucial, and can lead
to severe systematic errors.
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4 CHAPTER 2. COSMOLOGICAL AND PRACTICAL CONTEXT

2.1 The standard cosmological model

We start by giving a brief overview of our current understanding of our Universe and its history, as summarized
in Figure 2.1. It begins about 13.8 billion years ago with a singularity in space-time, famously known as the
Big Bang. Shortly thereafter, a period of exponential expansion, called inflation, occurs. It ends when our
Universe is but 10−32 seconds old, yet that is enough to expand small quantum fluctuations into the footprints
of what will ultimately allow for the creation and growth of structure. Following the inflation, all of the Universe’s
components live in a hot plasma. In particular, this means photons are coupled to baryonic matter, and are not
free to escape for about 380, 000 years. During this time, as the Universe expands (albeit at a much slower rate
than during inflation), it cools down. 380, 000 years marks the time when the Universe’s expansion causes it to
fall below a temperature of around 4000K, which allows for recombination: electrons and protons combine to
form (hydrogen) atoms, and the photons are free to escape for the first time. Some of these photons can be
observed today in the microwave domain, and constitute the CMB. Observations of the CMB contain a wealth
of cosmological information, making it one of the main cosmological probes.

Following the emission of the CMB photons, as the Universe continues slowly expanding, the small anisotropies
imprinted by inflation lead to the creation of structure. These structures are mostly governed by the gravitational
action of dark matter particles. After several hundred million years, enough ordinary matter falls into these dark
matter(-dominated) structures to start forming stars, and eventually galaxies. This marks the end of the period
ominously called the Dark ages, as these new objects start emitting photons. These, in turn, cause some
electrons to be stripped from atoms that had been neutral since recombination, an event called reionization.
While these first stars have not yet been observed by mankind, as time goes on and more of them form, we
eventually start seeing more and more of these galaxies, which then act as tracers allowing us to indirectly
observe the Large Scale Structure (LSS) of the recent Universe. In the present day, this LSS appears as the
beautiful cosmic web that can be seen toward the right-hand side of Figure 2.1: central, dark matter halos are
connected by filamentary structures of dark matter. Within these, structure can now be discerned even when
observing ordinary matter, as galaxies themselves gather in gravitationally-bound clusters.

One last cosmological landmark worth mentioning here occurred only about 4 billion years ago1. The
Universe had been in the matter-dominated era until then (and ever since it was only a few 104 years old,
before which it was radiation-dominated). Starting then, our Universe entered the present era of Dark Energy
domination, in which its expansion is accelerating.

We give in the following subsections some very brief insight into how the picture we have just presented is
built, starting with some necessary basic notions in the underlying theory it is built upon: GR (Einstein, 1916).
Much like measuring the CMB makes it possible to impose constraints on our Universe and its history, the LSS
of the recent Universe makes for a rich vein of cosmological information. In Section 2.2, we will dive into WL,
one of the main ways to probe this LSS.

2.1.1 General Relativity

Classical physics consider a 3-dimensional (3D) space, wherein systems may evolve with time. In GR, a 4-
dimensional spacetime is considered instead, the local geometry of which is then entirely defined through

ds2 =

3∑
µ,ν=0

gµνdxµdxν := gµνdxµdxν, (2.1)

where gµν is the metric tensor and the index of coordinates xµ varies from 0 to 3 (with µ = 0 corresponding
to the time coordinate, and 1 ≤ µ ≤ 3 to space). Through the second equality, we implicitly define the Ein-
stein summation convention, wherein repeated indices are summed over. We shall use this convention for the

1Which, interestingly though irrelevantly, happens to be in the same order-of-magnitude timescale as that of recent estimates for the
appearance of life on Earth (Dodd et al., 2017).



2.1. The standard cosmological model 5

Figure 2.1: An overview of the cosmic history of our Universe. Credit: European Space Agency (ESA), C. Carreau
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remainder of this chapter only. The := symbol, on the other hand, will be used for definitions throughout this
thesis.

In classical physics, and in the absence of influence of any external force, the movement of particles through
time occurs along straight lines. By analogy, in GR, the motion of particles is described via the geodesic
equation,

d2xµ

dλ2 + Γ
µ
αβ

dxα

dλ
dxβ

dλ
= 0. (2.2)

Since we now consider time to be one of the dimensions of spacetime, we use an increasing scalar λ (rather
than time t) to parametrize the evolution of our particle across all 4 dimensions. Γ

µ
αβ are the Christoffel symbols

and depend only the chosen metric:

Γ
µ
αβ =

gµν

2

(
∂gαν

∂xβ
+
∂gβν

∂xα
−
∂gαβ

∂xν

)
. (2.3)

Equation (2.2) gives us the GR equivalent of the equation of motion: instead of moving across space in a
straight line, our particles will now move along the geodesics of the curved spacetime. The last element we
need is the origin of this curvature when we add content to our system; this is described by the famous Einstein
field equations:

Gµν =
8πG
c4 Tµν, (2.4)

where Gµν is the Einstein tensor which, once again, is only a function of metric gµν, G is Newton’s Gravitational
Constant, c is the speed of light, and Tµν is the energy-momentum tensor that describes said contents.

2.1.2 The isotropic, homogeneous Universe

GR-based cosmology amounts to applying the theory to the Universe as a whole. If we are to find solutions
to (2.4) in this context, we need further assumptions. We will thus assume the Cosmological Principle to hold
true. It states that the Universe is isotropic and homogeneous - a reasonable assumption at large scales.
Actual observations of the CMB, for instance, confirm the Universe we live in is indeed very homogeneous -
almost alarmingly so, as we shall discuss shortly. Of course, this is clearly no longer the case at the scales we
experience daily. We will address the issue of structure formation in Section 2.1.4.

For now, let us simply assume the cosmological principle to hold true. It can then be shown that the metric
is unique, called the Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) metric, and allows for (2.1) to be written
as:

ds2 = −c2dt2 + a2(t)dl2, (2.5)

where a(t) is the scale factor. As first suggested by Lemaı̂tre (1927), there is very strong evidence that our
Universe is expanding. A typical, yet useful illustration of this expansion is that of a sheet of graph paper: as
shown in Figure 2.2, suppose two galaxies MW and A lie (motionless) at the intersections of two consecutive
vertical lines. Their distance, as measured in units of the graph paper’s squares, would be χ = 1. If the graph
paper itself was to expand with time, the physical distance (red arrow) between our galaxies would increase with
time; yet, since they are motionless, they would remain on the same nodes of the graph paper, therefore still
be separated by a ”graph paper unit” distance of χ = 1. For this reason, we call χ the comoving distance. The
physical distance between MW and A would then be some function of time, a(t), describing how the expansion
of our graph paper takes place - this function is none other than the scale factor we came across in (2.5).
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Figure 2.2: Schematic representation of the expansion of the Universe.

Back to equation (2.5), the line element dl2 can be further decomposed by making use of the comoving
distance:

dl2 := dχ2 + fK(χ)2dω. (2.6)

fK is the comoving transverse distance, related to the geometry of the Universe, parametrized by K,

fK(χ) :=


K−1/2 sin

(
K−1/2χ

)
for K > 0 (spherical)

χ for K = 0 (flat)

|K−1/2| sinh
(
|K|−1/2χ

)
for K < 0 (hyperbolic).

(2.7)

The combination of some of our latest cosmological observations (Planck Collaboration et al., 2018) seem
to indicate we live in a flat Universe, and place strong constraints around the value of K (or rather, ΩK , which
we shall define shortly). In the particular case where we consider the Universe to be exactly flat, (2.5) gives us
this explicit expression for the metric tensor:

gµν =


−c2 0 0 0
0 a2(t) 0 0
0 0 a2(t) 0
0 0 0 a2(t)

 . (2.8)

So far, we have made use of the Cosmological Principle to simplify the geometry of the Universe, i.e., the left-
hand side of (2.4); another of its consequences is that we can treat the contents of the Universe as a perfect
fluid, entirely characterized by
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T µ
ν =


ρ(t) 0 0 0
0 p(t) 0 0
0 0 p(t) 0
0 0 0 p(t)

 , (2.9)

where ρ and p are, respectively, the energy density and pressure of said fluid.
Making use of both the FLRW metric and this energy-momentum tensor, the Einstein field equations (2.4)

can be simplified, through the 00-component and the trace respectively, to yield the Friedmann equations:

( ȧ
a

)2
=

8πG
3
ρ −

Kc2

a2 , (2.10)

ä
a

= −
4πG

3

(
ρ +

3p
c2

)
. (2.11)

In the above expression, we have omitted the time dependency for readability, and introduced the usual ẋ := dx
dt

notation for time derivatives.
Let us now define two important quantities. First, the Hubble parameter (or Hubble rate), as

H(t) :=
ȧ(t)
a(t)

. (2.12)

By convention, we set the value of the scale factor today at a(t0) = 1. This, in turn, allows us to define the
Hubble constant as H0 := H(t0) = ȧ(t0), often parametrized via the reduced Hubble constant2, h, as follows:

H0 := 100h km sec−1 Mpc−1. (2.13)

The Hubble parameter (resp. Hubble constant) gives a measure of the rate (resp. speed) of the expansion of
the Universe at a given time t (resp. today).

Second, we can see from the first Friedmann equation (2.10) that there exists a specific value of the density
for which the term related to curvature K vanishes; let us define this quantity, at present time, as the critical
density

ρc :=
3H2

0

8πG
. (2.14)

Combining (the derivative of) (2.10) and (2.11), we get, omitting time dependencies again, the following
conservation law:

ρ̇ + 3
ȧ
a

(ρ + p) = 0. (2.15)

Considering (2.15), it shall behoove us to define the Equation of State (EOS), relating the energy density and
pressure through a parameter w, as

p = c2wρ. (2.16)

2Note that despite similar notations, and usage that could lead to confusion, h is not in any direct way related to Planck’s constant h̄.



2.1. The standard cosmological model 9

While we have, once again, omitted the time dependency in (2.16), w could in principle vary with time, though
that is not the case for the components of our Universe we are most familiar with. On the topic of components,
now is a good time to remark upon how, starting from the energy-momentum tensor in (2.4), we have, so far in
this section, considered the constituents of the Universe to make up a single, perfect fluid. As can immediately
be established simply by gazing around us, that is, of course, not true of our own Universe, composed of
varied and different constituents - matter and light, at the very least. Much like we shall go beyond the smooth
Universe we are currently describing in Section 2.1.4, we shall return to the issue of these different constituents
in Section 2.1.5.

For now, let us simply consider a certain number of them, each component α having its own energy density
ρα, pressure pα, and EOS parameter wα. It shall prove useful to scale the present-day3 density by that of the
critical density defined in (2.14),

Ωα :=
ρα(t0)
ρc

. (2.17)

Let us now divide the first Friedmann equation (2.10) by H2
0 and rewrite it when considering several components:

H2(t)
H2

0

=
∑
α

Ωα −
Kc2

H2
0a(t)2

, (2.18)

which, evaluated at t = t0, yields
∑
α Ωα + ΩK = 1, where we have defined

ΩK :=
Kc2

H2
0

. (2.19)

This allows for the curvature to be treated, after a fashion, as an extra constituent of the Universe. For a flat
Universe, both K and ΩK are equal to 0, and the Ωα’s are direct indicators of the relative contribution of each
component to the overall energy density of the Universe today.

2.1.3 Redshift

Much like the sound of an ambulance speeding away from the observer is altered by the Doppler effect, the
expansion of the Universe causes an alteration to the wavelength of light that reaches us. We call this alteration
redshift : as distant objects are moving away from us, the wavelength of light in the visible domain is shifted
towards the red. Let us denote λobs the wavelength at which we observe light originally emitted at wavelength
λemit. Formally, we define redshift as

z =
λobs − λemit

λemit
. (2.20)

For light emitted at time t, we have:

λobs

λemit
=

a(t0)
a(t)

. (2.21)

3Much like ρc can be defined at any time t by replacing present-day values in (2.14) with their value at time t, the Ωα’s can be
computed at any arbitrary time. In the present thesis, the ρc and Ωα notations shall always refer to present-day values, despite their
lacking the usual 0 subscript.
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Recall that by convention, a(t0) = 1; combining (2.20) and (2.21) allows us to give a simple relation between
scale factor and redshift:

a =
1

1 + z
. (2.22)

Beneath these simple relations lies one of the reasons redshift has come to be such a central concept in
cosmology. As our illustration in Figure 2.2 showed, there is a direct relationship between time t and the scale
factor a(t): as the latter monotonously increases over time in an expanding Universe, one can equivalently use
time or the value of the scale factor at that time to determine a certain point in the history of the Universe.
Similarly, (2.22) allows us to use redshift to that end. Within a given cosmological model, the redshift of an
object is then also a measure of its distance to the observer: consider the observable Universe as a sphere,
with us (the observer) at its center. For any angular direction on our sky, redshift can be used as the unit along
the radial axis, or depth.

We have already introduced the comoving distance, χ, in Section 2.1.2. Let us now derive the relation
between χ and z. From the FLRW metric (2.5) and (2.6), we get

dχ =
c
a

dt. (2.23)

By definition of the Hubble parameter (2.12), we have:

dt =
da

aH(a)
. (2.24)

Combining the two yields

χ(a) =

∫ 1

a

cda′

a′2H(a′)
, (2.25)

or, using (2.22),

χ(z) =

∫ z

0

cdz′

H(z′)
. (2.26)

2.1.4 Structure formation

In Section 2.1.2, we described an homogeneous, isotropic Universe. While this is a good description of our
own Universe at very large scales, it obviously no longer holds true at smaller scales - the very existence of
our galaxy being a blatant statement to local inhomogeneity. As we mentioned at the beginning of this chapter,
these present-day features of our Universe are believed to have originated with a brief period of inflation that
occurred during the first few instants of its infancy, and allowed for small quantum fluctuations to be expanded
into the seeds that would grow into the structure we observe today.

Beyond providing the link between the smooth and inhomogeneous appearance of our Universe at large
and small scales, respectively, inflation theory is appealing in that it gives an elegant explanation to two other
puzzling realizations we have come to make. First, the flatness problem: as already mentioned, observations
indicate we live a fairly flat Universe, which would imply that it was extremely flat in the past. A period of
exponential inflation would naturally lead to a dilution of the curvature, giving an explanation for the low values
of ΩK , both at present days and in the early, post-inflation Universe. Second, as we alluded to in Section 2.1.2,
our observations at large scales reveal a surprising isotropy of the Universe. In the temperature of the CMB,
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in particular, the anisotropies are incredibly small, including when looking at portions of the sky that should
have never been causally connected! This is referred to as the horizon problem: while we can see photons
from the CMB in two opposite directions of the sky, their respective regions of origin should be beyond the
other’s horizon, and there is thus no reason to expect their temperatures to be so similar. Once again, inflation
provides an explanation: these regions only found themselves beyond each other’s horizon because of it, but
were causally connected before. Finding appropriate inflation models, and the search for signatures of this key
component of our modern understanding of the Universe are some of the highest stakes in modern cosmology.

Let us define the matter density contrast,

δ(r, a) :=
ρ(r, a) − ρ̄(a)

ρ̄(a)
, (2.27)

where ρ is the matter density and ρ̄ its average at a given scale factor. When considering either early enough
times, or large enough scales, the evolution of δ can be described by Linear Pertubation Theory. If we consider
matter as an ideal, pressureless fluid, the evolution of δ on scales less than the horizon can be described by
Newtonian physics (Peebles, 1980). One particular consequence worth highlighting now, as it will prove useful
to our derivations in the next chapter, is that it then verifies the Poisson equation,

∇2Φ = 4πGa2ρ̄δ, (2.28)

where Φ is the Newtonian gravitational potential. Under these assumptions, the linear evolution can further be
shown to follow a differential equation,

δ̈ + 2Hδ̇ − 4πGρ̄δ = 0. (2.29)

For a derivation of (2.29), and other details on linear perturbation theory, we refer the reader to standard
cosmological textbooks such as the Dodelson (2003). For our purposes, it shall be sufficient to point out that
from this simple expression, one can see that the Hubble parameter H will have a damping effect on the growth
of structure, which perfectly aligns with our intuition: the expansion of the Universe suppresses the growth of
structure.

When looking at perturbations, an extremely useful tool is the two-point correlation function (2PCF):

Cδ(r) := 〈δ(r′)δ(r′ + r)〉r′ :=
∫
R3
δ(r′ + r)δ(r′)dr′, (2.30)

where the second equality defines the angle bracket notation for averaging over r′ (in what follows, we may
omit the variable over which the averaging is done when no confusion is possible). Up to the sign, (2.30) looks
exactly like the convolution product of the quantity of interest (δ in our case) with itself; it shall thus often be
convenient to work in Fourier space. For any function f : Rn 7→ R, let f̃ denote its Fourier transform:

f̃ (k) :=
∫
Rn

e−ik·r f (r)dr, (2.31)

where · denotes the vector inner product4 and k the n-dimensional wave vector. The inverse Fourier transform
is then

4That is, a · b :=
∑n

i=1 aibi = 〈a � b〉, where � is the Hadamard, or element-wise, product. In later chapters, we shall also use the
notation a · b := 〈a, b〉 for the inner product; in this chapter, however, we shall prefer the · notation to avoid confusion with the averaging
brackets.
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f (r) =
1

(2π)n

∫
Rn

eik·r f̃ (k)dk. (2.32)

With these and the Convolution Theorem (that states a convolution in direct space is a regular product in Fourier
space), we can rewrite (2.30) as

Cδ(r) =
1

(2π)3

∫
R3

eik·rδ̃(k)δ̃(−k)dk =
1

(2π)3

∫
R3

eik·r
∣∣∣δ̃(k)

∣∣∣2 dk. (2.33)

Instead of the 2PCF itself, it is often convenient to work with the closely related power spectrum: the average,
for a given scale k := |k|, of

∣∣∣δ̃(k)
∣∣∣2 across all directions ω, i.e.

Pδ(k) :=
1

4π

∫ ∣∣∣δ̃(k)
∣∣∣2 dω. (2.34)

In the literature, another common (and equivalent) definition of the power spectrum of a statistically homoge-
neous and isotropic random field is

〈δ̃(k)δ̃∗(k′)〉ω := (2π)3Pδ(k)1{k=k′}, (2.35)

where 1A is the (finite) indicator function5, equal to 1 if A is true and 0 otherwise.
Going back to the perturbations of interest to us in this section, their scale dependence is often parametrized

by assuming the Primordial Power Spectrum (PPS), PP, follows a power law:

PP(k) := As

(
k
k0

)ns−1

, (2.36)

where k0 is just an (arbitrary) pivot scale, and As is the amplitude of the PPS and ns is the spectral index, two of
the main cosmological parameters in the standard model. Historically, ns was often assumed to be equal to 1.
In other words, the primordial perturbations were assumed to be entirely described by a a scale-independent
Gaussian random field. This model, called Harrison-Zel’dovich (Harrison, 1970; Zel’dovich, 1972), is however
now strongly excluded by observations (see Section 2.1.5), hence the newfound importance of ns, a measure
of how far the PPS deviates from scale invariance, as a cosmological parameter.

If the evolution of perturbation is assumed to be linear, and the initial density field Gaussian, each Fourier
mode of the density contrast evolves independently from the others, and their values right after inflation (at
a = 0) can be related to those today (a = 1) through the transfer function,

T (k) :=
δ̃(k, a = 1)δ̃(k = 0, a = 0)
δ̃(k, a = 0)δ̃(k = 0, a = 1)

, (2.37)

where k = 0 indicates an arbitrarily large scale. Computation of the transfer function is typically carried out using
Boltzmann codes such as CLASS (Lesgourgues, 2011), though analytical fitting formulae (e.g. Eisenstein and
Hu, 1998) can also be used if one can get away with lower accuracy. T includes effects from linear pertubation
theory and encoded in (2.29), as well as those due to horizon crossing and to Baryon Acoustic Oscillations
(BAO). When looking at cases where linear evolution can no longer be assumed (small scales and/or late

5The indicator function we have chosen to use here is more commonly found in the form of a Dirac delta function in the literature,
though we will come to make use of 1 again in the remainder of this thesis (and of its infinite counterpart, ι, that we shall introduce in
due time).
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times), one must turn to other tools to capture the complex dynamics that arise in non-linear structure formation,
for instance non-linear perturbation theory (a review of which is given by Bernardeau et al., 2002), or, ideally,
N-body simulations (that can yield corrective terms to be added on top of the linear power spectrum, as is done
e.g. by HALOFIT, Smith et al., 2003).

Before moving on to finally giving an overall description of the standard cosmological model, let us finish our
study of the inhomogeneity of our Universe with a consideration of its metric (which will come in handy when
we revisit the geodesic Equation 2.2 in the context of WL in Section 2.2). At first order, the perturbed metric
of an expanding, non-smooth Universe can be described by the addition of the Bardeen potentials (Bardeen,
1980) to (2.5):

ds2 = −

(
1 +

2Ψ

c2

)
c2dt2 + a2(t)

(
1 −

2Φ

c2

)
dl2. (2.38)

Ψ and Φ are in general functions of both space and time, describing the Newtonian potential and the perturba-
tion applied to the spatial curvature, respectively. In GR (and in the absence of anisotropic stress), Ψ = Φ (and
the notations for Equation 2.38 are coherent with those of 2.28). Giblin et al. (2017) compare this linearization
with fully non-linear GR simulations and offer corrections for the WL quantities we will introduce in Section 2.2.4.

2.1.5 The ΛCDM Model

The previous subsections provided us with the necessary concepts to establish the current standard model of
cosmology we briefly presented at the beginning of the chapter. The different elements that make up this model
are as follows.

Matter

The matter content of our Universe is itself divided in two different subtypes. Ordinary matter is made of
baryonic elements (and electrons), the majority of which is found in the form of hydrogen. While everything
material in our everyday lives is made up entirely of ordinary matter, its relative contribution (Ωb) to the total
energy density of matter (Ωm) is dwarfed by that of dark matter, roughly five times higher. In the standard model,
the latter is also assumed to be non-relativistic, that is, to be Cold Dark Matter (CDM). Their EOS parameter
then verifies wm = wb = 0, leading to the following solution of the conservation law (2.15):

ρm(a) = a−3ρm,0. (2.39)

Radiation

Next are the relativistic components of our Universe, the majority of which are photons. Relative, massless
neutrinos are also considered as radiation. They have an EOS with wr = 1/3, leading to

ρr(a) = a−4ρr,0. (2.40)

Dark Energy

Recent observational evidence (Riess et al., 1998; Perlmutter et al., 1999) has shown our Universe’s expansion
has recently (on cosmological scales) started accelerating. Dark Energy is the name given to the origin of this
acceleration. In its simplest form, Dark Energy is nothing but a cosmological constant6, Λ. This amounts to a
fluid with an EOS characterized by a (constant through time) wΛ = −1, leading to

6The combination of a cosmological constant with non-relativistic dark matter gives the “concordance” model its name: ΛCDM.
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ρΛ(a) = ρΛ,0, (2.41)

in other words, an energy density that also remains constant with time. The second Friedmann equation (2.11)
shows that, by definition of the EOS (2.16), any component with w < −1/3 would lead to an acceleration
of the expansion. From that, and the evolution of the energy density parameters (2.39–2.41) of our three
constituents alone, we can get a very clear intuition into this recent acceleration that ties into the three main
eras in the cosmic history of our Universe: while radiation and matter originally dominated the energy content
of the Universe7, its scale factor was well behaved. As time passed, however, expansion naturally led to their
density diminishing. Regardless of how small that of the cosmological constant was initially, the fact it remains
constant by necessity meant it was to become dominant eventually - which in our case occurred about 4 billion
years ago.

Through the definition in (2.19), we saw that we could treat the curvature as “just another component of
the Universe.” In the case of a Cosmological Constant, that we have here introduced as precisely one of the
“regular” constituents, we can do the reverse: let us retrace the steps we took in Section 2.1.2 as follows. First,
define the constant itself from its density:

ΩΛ :=
c2Λ

3H2
0

. (2.42)

Recall form (2.18) of the Friedmann equation:

H2(t)
H2

0

= Ωm + Ωr −
Kc2

H2
0a(t)2

+ ΩΛ, (2.43)

or, going back to its original form (2.10), including a generic ρ for the homogeneous fluid content of the Universe:

( ȧ
a

)2
=

8πG
3
ρ −

Kc2

a2 +
c2Λ

3
. (2.44)

If we only add a similar c2Λ/3 term to the second Friedmann equation (2.11), we arrive precisely at those we
would have derived, using the Cosmological Principle as we did at the very beginning of Section 2.1.2, had we
used the Einstein field equations in the following, infamous form:

Gµν =
8πG
c4 Tµν − Λgµν. (2.45)

If the two approaches - postulating the existence of a cosmological constant as in this version of the Einstein
equations, or considering a fluid with wΛ = −1 - are equivalent, the latter allows for more flexibility. As we have
alluded to in the introductory chapter to this thesis, while ΛCDM is currently very well supported by observations,
a cosmological constant remains unsatisfying for several reasons. Among them is the actual value such a
constant would have: Planck Collaboration et al. (2018) gives Λ = (4.24 ± 0.11) × 10−66 eV2. Much like the
extremely small value of K at early times led to the “flatness problem”, some consider such a small value for
the cosmological constant to constitute a fine-tuning problem.

The most natural way to move away from a cosmological constant is to parametrize wΛ as a (non-constant)
function of time. Without any physical insight into the nature of Dark Energy, it is common to turn to the linear
parametrization of Linder (2003):

7In fact, as we mentioned at the beginning of the chapter, both did: the radiation-domination era, with scale factor α ∝ t1/2, lasted
until the Universe was a few tens of thousands years old, at which point it became matter-dominated, with α ∝ t2/3.
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wΛ(a) := w0 + wa(1 − a). (2.46)

The cosmological constant case can then be retrieved by setting w0 = −1, wa = 0.

Massive neutrinos

While arguably already “beyond-ΛCDM” in the strictest sense, no overview of modern cosmology, however
brief, would be complete without a mention of massive neutrinos. They naturally have an impact on cosmolog-
ical considerations (they impact structure formation, for starters) and, conversely, cosmological observations
can lead to constraints both on their mass (that are, in fact, extremely competitive with many terrestrial experi-
ments) and on the so-called effective number of species, Neff . Lesgourgues and Pastor (2006) give an in-depth
review of massive neutrinos in cosmology, while the very recent work of Kreisch et al. (2019) delves into some
ramifications, notably their potential role in some of the cosmological tensions that may be emerging from re-
cent observational data. While we shall not concern ourselves with their impact in the present thesis, it should
be noted that WL is sensible to massive neutrinos, and the considerations and issues we will address in this
thesis (especially those related to the PSF) in light of the standard model remain of the same relevance if one’s
interest was centred on cosmology with (or aimed at the study of) massive neutrinos.

Cosmological parameters

We have now introduced all the basic components of our standard cosmological model. Let us now try and
find the smallest number of cosmological parameters to describe all of them. We have already introduced the
Hubble constant H0 and the density parameters (at present day), ΩΛ and Ωm, of the cosmological constant and
matter, respectively; we shall use these three as-is in our parametrization of ΛCDM. For the amount of baryons
in the total matter content, we shall use the common parametrization Ωbh2.

In Section 2.1.4, we have introduced the PPS, parametrized by its amplitude As and spectral index ns. While
we will keep the latter as a cosmological parameter, rather than As, let us introduce another parameter that is
more commonly found in WL literature. When evaluated at r = 0, the 2PCF of matter density today, as defined
in (2.30), directly gives us the variance of the density contrast σ2

∞, (recall that, by construction (2.27), its mean
is 0):

σ2
∞ := Cδ(0) =

∫
R3
δ(r)2dr. (2.47)

It is easy to fathom, from this expression, that this quantity could be divergent. A way around this is to apply
some filter W to the density contrast field, and to measure the variance of the resulting smoothed field Cδ∗W(0),
where ∗ is the convolution product. A natural choice for W is to use a 3D-spherical tophat of radius R, that is,

WR(r) :=
3πR3

4
1{|r|≤R}. (2.48)

We can finally introduce our power spectrum normalization parameter of choice, that is, the smoothed variance
of the 2PCF with radius R = 8Mpc/h,

σ8 := Cδ∗W8(0). (2.49)

The last cosmological parameter we need to make up a set well describing vanilla ΛCDM is one we have
not encountered at all: the optical depth to reionization, τ. As we briefly mentioned in the introduction to this
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Parameter Value

ΩΛ 0.6889 ± 0.0056
Ωm 0.3111 ± 0.0056
Ωbh2 0.02242 ± 0.00014
σ8 0.8102 ± 0.0060
ns 0.9665 ± 0.0038
τ 0.0561 ± 0.0071
H0 67.66 ± 0.42

Table 2.1: Best-fit ΛCDM parameters and 68%-confidence regions, obtained from the combination of the full
Planck data and BAO. H0 is given in km/s/Mpc. Source: Planck Collaboration et al. (2018).

chapter, reionization occurred when photons emitted from some of the earliest stars caused neutral atoms to
ionize. τ is directly linked to the time (or redshift) at which this occurs, and it is not by coincidence that it is the
only of the 7 cosmological parameters we have chosen that we have not stumbled upon up to now: we built
our exposition of the standard model throughout this chapter with WL, a probe of the late Universe, in mind. It
is then quite natural that, despite its importance in the cosmic history, our WL observations contain very little
information about the value of τ; and, conversely, we managed to build the basic foundations necessary for
the rest of this thesis without giving reionization much attention. Fortunately, unlike lensing by the LSS, CMB
measurements are an excellent probe into the value of τ, which is now extremely well constrained thanks to
CMB experiments. Reionization itself, as well as its imprints on the CMB, are covered in standard cosmological
textbooks (see, e.g., Dodelson, 2003, especially Section 8.7.2).

One of the main goals of modern observational cosmology is to achieve the most precise measurements of
the base parameters in the ΛCDM model; the best such values, at the time of this writing and for our chosen
parametrization, are shown in Table 2.1. Another central goal is to search for deviations from this standard
model. This could potentially be achieved from within the framework of ΛCDM, for instance if two independent
cosmological probes were to measure significantly different values of one of its parameters. Another approach
is to try and constrain alternative approaches; the simplest of which is that of a time-varying EOS of Dark
Energy, as shown in (2.46): any measured deviation from (w0, wa) = (−1, 0) would prove the cosmological
constant proposal wrong.

Whether to achieve either of these goals, or to explore more complicated Dark Energy or Modified Gravity
models, it is clearly beneficial to have several independent and highly accurate cosmological probes at our
disposal. We have mentioned the CMB and its use as a cosmological probe several times; we now turn to an
entirely different one. Where Planck probed the early-time Universe with exquisite accuracy, more upcoming
“Stage IV” experiments - Euclid, the Large Synoptic Survey Telescope (LSST), Wide Field Infrared Survey
Telescope (WFIRST) and Chinese Space Station Optical Survey (CSS-OS)8 - shall soon achieve the same with
the later time Universe, in great part through the use of WL, which we shall now turn our focus to.

2.2 Gravitational lensing

As photons move along the geodesics of spacetime, massive objects can bend their path, much like optical
lenses do, giving the phenomenon its name: gravitational lensing. It is often illustrated by analogy with the

8When referencing “Stages” of cosmological experiments, I aim to match the (actualized) definitions of the Dark Energy Task
Force (Albrecht et al., 2006), that is, Stage I and II surveys as already completed and ongoing then, respectively, Stage III as “near-term,
medium-cost” projects, and Stage IV as listed here.
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Figure 2.3: Einstein ring LRG 3-757 observed by the Hubble Space Telescope (HST). Credit: ESA/Hubble & NASA.

movement of a marble, launched in a straight direction, on a stretched sheet slightly bended by some massive
object laid on it. Just over a century ago, gravitational lensing provided the earliest observational evidence of
GR, when Dyson et al. (1920) measured its effect during a total eclipse.

When the right conditions are met, for instance when the observer, a massive foreground, and a luminous
background galaxies are aligned, gravitational lensing can lead to spectacular displays. In an Einstein ring like
the one shown in Figure 2.3, the background blue galaxy appears to wrap around the foreground red galaxy.
Such effects make up what we have come to call Strong Gravitational Lensing (see Treu, 2010, for a review).
Several hundred such objects have been found, and future wide surveys like Euclid and LSST are expected to
bring our number of detections to the tens of thousands.

In the vast majority of cases, however, the effect of gravitational lensing is too small to be discerned by
eye, and has a far smaller impact on the way galaxies appear to us than their intrinsic shape does. But
while, in this regime, we cannot infer the contribution of gravitational lensing on the scale of single objects,
the statistical study of a large number of galaxies is still a rich source of information about our Universe, its
LSS, and especially on how matter is distributed within it. This constitutes the field of WL, the formalism of
which we shall now introduce. We will then illustrate how to connect the main WL observable (galaxy shapes)
with cosmology through the particular example of cosmic shear (Kilbinger, 2015), that is, the study of spatial
correlations of the former.

2.2.1 Propagation of light through an in inhomogeneous Universe

To study how light propagates in an inhomogeneous Universe, following Seitz et al. (1994), let us first consider
an arbitrary, fiducial light ray, γµfid(λ). Recall from the geodesic equation (2.2) that its path is parametrized by the
scalar parameter λ, such that it arrives at the observer at λ = 0. Since we are interested in how inhomogeneities
impact the propagation of light, let us consider another light ray, γµ(λ,θθθ), separated from γ

µ
fid at the observer by

the 2-dimensional (2D) angular coordinates θθθ = (θ1, θ2). θθθ would be the apparent position of the source on the
sky if that of the fiducial ray was chosen as origin. We want to study the separation between those two rays,
which depends on the contents of the Universe they went through, at any arbitrary point λ > 0. For any such,
let us consider the 2D separation, ξ(λ,θθθ), projection of γµfid(λ) − γµ(λ,θθθ) on the 2D screen perpendicular to the
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Figure 2.4: Schematic representation of the quantities of interest in the study of two light rays through an
inhomogeneous Universe. The observer is at the black dot on the left. The black screen is perpendicular to the
fiducial ray at an arbitrary λ1, and the 2D separation ξ(λ1, θθθ), in red, lies within it.

fiducial ray at λ, and tangential to the sphere of directions from the observer. A sketch of all these quantities is
shown in Figure 2.4.

The evolution of ξ is described through the following geodesic deviation equation:

d2ξ

dλ2 (λ,θθθ) = T (X1, X2, r)ξ(λ,θθθ). (2.50)

T is the optical tidal matrix, function of physical spatial coordinates X1 and X2 (indicated in black dotted lines in
Figure 2.4) within the tangential screen at λ, in which we omit the depedency for readability, and r, the line-of-
sight component, orthogonal to said screen. In the case of our perturbed metric from equation (2.38), and if Φ

can be considered a weak field9 Φ << c2, Seitz et al. (1994) derive the expression of the tidal matrix,

Ti j(X1, X2, r) = −
4πG
c2

ρ̄0

a51{i= j} −
1

c2a2

(
2

∂2

∂Xi∂X j
+ 1{i= j}

∂2

∂r2

)
Φ, (2.51)

for i, j ∈ {1, 2}. Note that the left-hand term relates only to the (homogeneous) FLRW background and remains
diagonal, while the right-hand term, called the clump contribution, can contain off-diagonal terms that lead to
the anisotropic effects we will ultimately measure in WL studies.

Let xxx = (x1, x2) := ξ/a the comoving separation vector, and ∇⊥ := (∂/∂x1, ∂/∂x2) the comoving transverse
gradient in the screen perpendicular to our fiducial ray. Injecting (2.51) in (2.50) and writing it in comoving
coordinates, we get

9An approximation of the potential of a lens with radius R and mass M is GM/R = (c2/2)(RS/R), with RS the Schwarzschild radius
of the lens. The weak field approximation thus only breaks down for extremely compact objects, which we can afford not to concern
ourselves with when looking at the gravitational lensing caused by the LSS.
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d2xxx
dχ2 (χ) + Kxxx(χ) = −

2
c2

(
∇⊥Φ(xxx, χ) − ∇⊥Φ(0, χ)

)
. (2.52)

By definition of ξ (and by extension xxx), we have the boundary conditions xxx(χ = 0) = 0 and dxxx/dχ(χ = 0) = θθθ.
These give us the solutions to (2.52),

xxx(χ) = fK(χ)θθθ −
2
c2

∫ χ

0
fK(χ − χ′)

(
∇⊥Φ

(
xxx(χ′), χ′

)
− ∇⊥Φ(0, χ′)

)
dχ′. (2.53)

In this expression, the (transverse gradient of the) gravitational potential is integrated along the perturbed light
ray at xxx(χ′). A 0th-order approximation amounts to integrating along the unperturbed ray, fK(χ′)θθθ; this is the
famous Born approximation, shown (e.g. by Shapiro and Cooray, 2006) to be extremely accurate for WL power
spectrum studies, even in the case of full-sky surveys. Under the Born approximation, (2.53) yields

xxx(χ) = fK(χ)θθθ −
2
c2

∫ χ

0
fK(χ − χ′)

(
∇⊥Φ

(
fK(χ′)θθθ, χ′

)
− ∇⊥Φ(0, χ′)

)
dχ′. (2.54)

Consider a source at distance χ; in the absence of gravitational lensing, it would be observed with an angular
separation βββ := xxx/ fK(χ). Dividing (2.54) by the radial comoving distance fK gives us the lens equation:

βββ = θθθ −ααα(θθθ), (2.55)

where we have defined the deflection angle as

ααα(θθθ, χ) :=
2
c2

∫ χ

0

fK(χ − χ′)
fK(χ)

(
∇⊥Φ

(
fK(χ′)θθθ, χ′

)
− ∇⊥Φ(0, χ′)

)
dχ′. (2.56)

2.2.2 Shear and convergence

The lens equation (2.55) gives us a mapping from lensed (or “image”) to unlensed (or “source”) coordinates. In
order to arrive at the classical lensing observables, let us now consider the linearization of this mapping. We
introduce the (inverse) amplification matrix as the Jacobian

AAA :=
∂βββ

∂θθθ
= I2 −

∂ααα

∂θθθ
, (2.57)

where IN is the N ×N identity matrix. The right-hand term in the definition of ααα (2.56) does not depend on θθθ and
will vanish. It is then useful to define the 2D effective lensing potential,

ψ(θθθ, χ) :=
2
c2

∫ χ

0

fK(χ − χ′)
fK(χ) fK(χ′)

Φ( fK(χ′)θθθ, χ′)dχ′. (2.58)

Up to the ∇⊥Φ(0, χ′) term in (2.56), ααα is then the gradient of ψ, and we have

AAAi j := 1{i= j} − ∂i∂ jψ, (2.59)

where ∂i := ∂/∂θi. We can now introduce the notions of convergence, κ, and shear, γ, by parametrizing our
Jacobian thus:
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Figure 2.5: Illustration of the application of various shears. Each ellipse is a sheared version of the circular
object at (0, 0), shown at the position corresponding to the shear that was applied to it. Credit: Image from Kilbinger
(2015), reproduced with permission.

AAA :=
(
1 − κ − γ1 −γ2
−γ2 1 − κ + γ1

)
, (2.60)

i.e.,

κ =
1
2

(∂1∂1 + ∂2∂2)ψ, (2.61)

γ1 =
1
2

(∂1∂1 − ∂2∂2)ψ, (2.62)

γ2 = ∂1∂2ψ. (2.63)

Convergence is the isotropic change in the observed size of an object, while shear is the anisotropic stretching
due to gravitational lensing. The latter is often parametrized as a single complex number, γ := γ1 + iγ2; its effect
on a circular object is shown in Figure 2.5.

For this work, we shall focus on the alteration to the shapes of galaxies by gravitational lensing effects.
Since κ only affects their size, let us introduce the reduced shear :

g = g1 + ig2 :=
γ

1 − κ
. (2.64)

As we shall see shortly, actual measurements of galaxy shapes in practice give us an estimate of g rather than
γ itself.

2.2.3 Relation to cosmology

Now that we have introduced our main WL observables, let us establish how we can relate them to the cosmo-
logical parameters we introduced in Section 2.1.5. From the the definition of the lensing potential (2.58) and its
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relationship with convergence (2.61), we can relate κ to the 2D-Laplacian of the gravitational potential:

κ(θθθ, χ) =
1
c2

∫ χ

0

fK(χ − χ′)
fK(χ) fK(χ′)

∇2Φ( fk(χ′)θθθ, χ′)dχ′. (2.65)

It is a reasonable assumption that d2Φ/dχ′2 would vanish when integrated along the line of sight, since negative
and positive contributions would compensate each other, and we can thus replace the Laplacian in (2.65) with
its 3D counterpart. This is, in turn, precisely the quantity that appears in the Poisson equation (2.28), yielding

κ(θθθ, χ) =
4πG
c2

∫ χ

0

fK(χ − χ′) fK(χ′)
fK(χ)

a2(χ′)ρ̄(χ′)δ( fK(χ′)θθθ, χ′)dχ′. (2.66)

If we use the matter EOS (2.39) and make the critical density (2.14) appear from the 4πG term, we get

κ(θθθ, χ) =
3H2

0Ωm

2c2

∫ χ

0

fK(χ − χ′) fK(χ′)
fK(χ)

δ( fK(χ′)θθθ, χ′)
a(χ′)

dχ′. (2.67)

We can see from this expression that the convergence is a projection of the density along comoving coordinates,
with a weighting that depends on the geometry of the Universe in between source and observer.

Up to now, we have focused on a single source at an arbitrary distance χ. Let us now consider a full WL
survey, probing up to limiting distance χlim. Let n(χ) denote the probabilty density function (PDF) of the galaxy
sample across distances; n is more commonly referred to as the “n of z”, directly related through n(z)dz = n(χ)dχ.
The mean convergence is then

κ(θθθ) =

∫ χlim

0
κ(θθθ, χ)n(χ)dχ =

3H2
0Ωm

2c2

∫ χlim

0
q(χ) fK(χ)

δ( fK(χ)θθθ, χ)
a(χ)

dχ, (2.68)

where q is the lens efficiency,

q(χ) :=
∫ χlim

χ
n(χ′)

fK(χ′ − χ)
fK(χ′)

dχ′. (2.69)

Note that in this expression, our distribution of galaxies n does not depend on the direction on the sky. This no
longer holds true in the vicinity of galaxy clusters, because of the proximity in between source galaxies (Schnei-
der et al., 2002b), or between them and the lenses (Bernardeau, 1998; Hamana et al., 2002).

2.2.4 Cosmic shear

In the previous section, we established convergence as a projection of density, and thus overall mass, along a
line of sight. However, since the average density contrast is zero, so is the expected value of convergence (or
shear, for that matter). If we are to retrieve cosmological information, we must thus turn to higher-order statistics
of our observables’ distributions. The first non-trivial ones are of course the second order statistics, on which
we shall focus here, in their simplest form possible. We give a brief overview of some more advanced statistics
that can be used to leverage WL measurements at the end of this section.

Let us then consider the convergence power spectrum, defined similarly to (2.35) in the 2 instead of 3D
case:

〈κ̃(lll)κ̃∗(lll′)〉 := (2π)21{lll=lll′}Pκ(l), (2.70)
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where the power spectrum once again depends only on the modulus of the 2D wave vector, l := |lll|, since like
the density field δ, κ is statistically homogeneous and isotropic at large scales. Note that by working in Fourier
space, we implicitly started using the important flat-sky approximation. Because convergence is measured in
directions on the celestial sphere, it would be more accurate to compute the lensing power spectrum using
spherical harmonics. Kilbinger et al. (2017) give both a thorough derivation in this case, as well as a study of
the impact of this approximation.

By further making use of the Limber approximation (Limber, 1953), that is, neglecting correlations along the
line of sight, Kaiser (1992) showed that the convergence and density power spectra are related through

Pκ(l) =
9H4

0Ω2
m

4c4

∫ χlim

0

q2(χ)
a2(χ)

Pδ

(
k =

l
fK(χ)

, χ

)
dχ. (2.71)

Once again, Kilbinger et al. (2017) provide a study of the impact of the Limber approximation, and extensions
thereof (LoVerde and Afshordi, 2008), on cosmological inference from cosmic shear. They conclude that work-
ing with a flat-sky is sufficient for cosmic shear in current WL surveys, though future large-scale surveys will
require the consideration of a full spherical sky and a second order Limber approximation. In the present work,
we shall proceed with the simple expression we obtained in (2.71).

Note that the convergence and shear power spectra are actually equal. Indeed, when taking the Fourier
transform of both the convergence and complex shear, their relation to the lensing potential in equations (2.61–
2.63) yield

κ̃(lll) =
l21 + l22

2
ψ̃, (2.72)

γ̃1(lll) =
l21 − l22

2
ψ̃, (2.73)

γ̃2(lll) = l1l2ψ̃, (2.74)

which can be combined into

γ̃(lll) =
(l1 + il2)2

l2
κ̃(lll) := e2iβκ̃(lll), (2.75)

where β is the polar angle of lll, which in turn gives us Pγ = Pκ. Therefore, while it is possible to perform an
“inversion” to obtain the convergence from shear measurements (for instance using Equations 2.72–2.74, as is
done in the traditional method of Kaiser and Squires, 1993), we can also work directly with the 2-point statistics
of shear and still retrieve the cosmological information contained in (2.71).

Our shear measurements will ultimately come from individual galaxies, which can lead to several complica-
tions when working in Fourier space, for instance the handling of masked areas where no galaxy shapes were
measured. It is therefore more convenient to work in direct space, and look at the 2PCF of the shear. Instead
of working directly with the complex shear, it will prove convenient to reparametrize it. For any direction θθθ with
polar angle ϕ, we define the tangential and cross-components, respectively, as

γt := −Re
(
γe−2iϕ

)
, (2.76)

γ× := −Im
(
γe−2iϕ

)
, (2.77)

where Re and Im are the real and imaginary parts of their argument, respectively. We then have three pos-
sible 2-point correlators: 〈γtγt〉, 〈γ×γ×〉, and 〈γtγ×〉. In a parity-symmetric Universe, that is, one that remains
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unchanged by a mirror transformation, the latter vanishes, as γt is unaffected by such a transformation while γ×
sees its sign swapped. We can then finally introduce the two components of our shear 2PCF,

ξ+(θ) := 〈γtγt〉(θ) + 〈γ×γ×〉(θ), (2.78)

ξ−(θ) := 〈γtγt〉(θ) − 〈γ×γ×〉(θ). (2.79)

These are directly related to the convergence power spectrum through the Hankel transform,

ξ+(θ) =
1

2π

∫ +∞

0
lJ0(lθ)Pκ(l)dl, (2.80)

ξ−(θ) =
1

2π

∫ +∞

0
lJ4(lθ)Pκ(l)dl, (2.81)

where Jn is the nth-order Bessel function of the first kind,

Jn(x) :=
∞∑

m=0

(−1)m

m!Γ(m + n + 1)

( x
2

)2m+n
, (2.82)

with Γ the Gamma-function. Equations (2.80–2.81) thus give us quantities that relate the measured shear with
our cosmological models.

There remains one last step to connect these to real-life WL measurements, which give us the shapes
of galaxies rather than the shear itself. As we shall discuss further in Section 2.3.7, there are a great many
definitions of what exactly constitutes the shape of a galaxy; for now, let us consider the simple case where a
galaxy is assumed to have elliptical isophotes with minor axis of length a, major axis of length b, and position
angle ϕ. Let us define its intrinsic ellipticity as

εint :=
a − b
a + b

e2iϕ. (2.83)

The application of a reduced shear g (of modulus less than one) leads to its observed ellipticity being (Seitz
and Schneider, 1997)

ε =
εint + g

1 + g∗ε
. (2.84)

Using these, Schneider et al. (2002a) proposed the following estimator of the 2PCF:

ξ̂±(θ) :=

∑
(i, j)∈Π(θ) wiw j

(
εt,iεt, j ± ε×,iε×, j

)∑
(i, j)∈Π(θ) wiw j

, (2.85)

where the wi’s are weights given to each measured galaxy shape, resulting from an estimation of our uncertainty
on the measurements, that arises from the steps we will detail in Section 2.3. Π(θ) is the set of all indices i, j
such that the angular separation between galaxies i and j lies in a small bin around θ, and the tangential and
cross-ellipticity components are derived the same way as their shear counterparts in (2.76, 2.77).

There are two important potential sources of bias we should mention at this point. First, while we have
established the link between shear and cosmology in the last two subsections, the quantity that appears in
(2.84) is not shear itself, but the reduced shear (2.64). Using one in lieu of the other, that is, approximating
(2.84) by
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ε ≈ εint + γ, (2.86)

can lead to significant biases in our estimation of the shear power spectrum. Corrections can reach the order
of 10% of the power spectrum’s amplitude at arcminute scales (Krause and Hirata, 2010; Deshpande et al., in
prep).

Second, when working with galaxy ellipticities from wide surveys, it is common to assume there is no
preferred intrinsic orientation of galaxies, that is, for a large number of objects,

〈εint〉 = 0. (2.87)

If this first-order assumption seems perfectly reasonable, dealing with second order quantities is trickier. From
equations (2.85) and (2.86), one can see that in addition to the shear-shear correlation, terms of the form
〈εint

i (εint
j )∗〉 and 〈εint

i γ∗j〉, often called “shape-shape” or II and “shape-shear” or GI, respectively, will make their
appearance. These make up the problem of intrinsic alignment, which has recently proven to be a topic of
vast interest in the WL community. Several approaches have been proposed to tackle this issue, for instance
considering intrinsic alignment as an extra, “nuisance” parameter to be estimated alongside the cosmological
parameters, or by using appropriate weights in the combination of shear quantities (“nulling”). See Troxel and
Ishak (2015); Joachimi et al. (2015) for recent reviews on this topic.

In the next subsection, we will turn our attention to the practical measurement of quantities such as the
galaxy ellipticities ε used in (2.85). With this specific and simple example, we have established how such
quantities can then be used for cosmological inference. However, we should emphasize once again that WL
observations can be used for several other scientific endeavors10. Even with the estimation of cosmological
parameters in mind, WL observables can be used in many ways that go beyond the simplest of cases we have
chosen to use for illustration here. We shall now give a very brief overview of some of the most significant,
and highlight, once again, that the main problem we aim to address in this thesis - that of the PSF estimation -
remains of similar relevance for every one of those other uses of WL data.

Using redshift information

In (2.69), all the redshift information is contained in the distribution of our galaxy sample, n(z), that we integrate
up to the limiting distance of our survey. This effectively makes our study of cosmic shear a 2D one. It is of
course tempting to try and extend that analysis to make (more) use of the radial distribution of galaxies, which
in turn would allow us to probe the LSS at different times. While 2D cosmic shear is already good at probing
the overall distribution of matter (i.e. a combination of the Ωm and σ8 parameters), the addition of redshift
information is particularly desirable if one wants to probe some other quantities. For instance, if one aims to
use WL to constrain a time-varying Dark Energy EOS, as discussed at the end of Section 2.1.5, it is naturally
crucial to include redshift information.

The simplest way to do so is to split the galaxies into redshift bins; this is called tomographic WL (Hu,
1999). This leads to one lens efficiency qi per redshift bin, and to nzbins(nzbins−1)/2 convergence power spectra,
where nzbins is the chosen number of redshift bins, but the overall approach remains, broadly speaking, fairly
close to that we showed in the 2D case. Conversely, 3D lensing, first proposed by Heavens (2003), actually
makes full use of the per-galaxy redshift estimate. While it requires more involved changes than tomography,
it can also greatly improve the yield of our WL data. For instance, when using it to constrain modified gravity

10To name but one example, Mahdavi et al. (2007) used WL data to analyze the Abell 520 system and found what appeared to be
a dark core, which could potentially be evidence against collisionless dark matter. See Okabe and Umetsu (2008); Jee et al. (2012);
Clowe et al. (2012); Jee et al. (2014); Peel et al. (2017); Price et al. (2018) for further WL analysis of this object (the last two references
find no significant detection of a dark core).
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models, Spurio Mancini et al. (2018) recently showed that a 3D analysis of a Euclid-like survey will lead to a
20% decrease in errors compared to a tomographic approach.

Either of those approaches of course require an estimation of redshift for each object; in the WL context,
where a very large number of galaxies are used, these are often obtained from photometric redshift (photo-z);
we shall revisit this issue briefly in Section 2.3.

Derived second order functions

Beyond the standard shear 2PCF in (2.80–2.81), it can be useful to compute other, more advanced second
order functions. For instance, by splitting the shear correlations into E- and B-modes (like is commonly done for
CMB polarization), we would expect the latter to vanish, and it thus provides a strong tool to explore potential
remaining systematics. This decomposition involves the choice of a filter function, several of which have been
proposed in the context of WL: the top-hat (Kaiser, 1992), aperture mass (Schneider et al., 1998), optimized
ring statistic (Fu and Kilbinger, 2010), Complete Orthogonal Sets of E-/B-mode Integrals (COSEBIs; Schneider
et al., 2010), and spin directional wavelets (Leistedt et al., 2016).

Higher-order statistics

As a first non-trivial statistic one can derive from shear measurements, the 2PCF is both a natural and rea-
sonable choice. Nonetheless, our WL observations contain more information than can be probed with second
order statistics; in particular, higher-order statistics can probe the non-Gaussian part of the gravitational lens-
ing signal. Other statistics have been proposed, and in some cases successfully applied to real data: the WL
bispectrum Cooray and Hu (2001), peak counts (the PhD thesis of Lin, 2016, provides a great entry point and
recent overview of the field), Minkowski functionals (Kratochvil et al., 2012), and recently, deep learning-based
approaches (Peel et al., 2019; Merten et al., 2019). Not only can these beyond-second order approaches yield
cosmological constraints that are competitive with those obtained from the 2PCF, the combination of both can
often lead to higher constraining power than either approach would have (see, e.g., Martinet et al., 2017).

2.3 Practical weak lensing

We have established WL, in the previous section, as a rich source of cosmological information, and how the
relevant quantities can be computed using measurements of a high number of galaxy shapes.

We now turn to the issue of how these shapes can be obtained from real-life observations. We thus give
a brief overview of the critical steps involved in a shape measurement pipeline, that is, how one goes from
raw images from a given survey to a final shape catalog. Each of these steps can, if not properly handled,
lead to biases in the shape measurements that would then have an impact on the science performed from the
output catalogs. This section is largely based on my personal experience (see Appendix B), contributing to
ShapePipe (Guinot et al., in prep), a shape measurement pipeline currently being developed for the Canada
France Imaging Survey (CFIS) survey.

The very first observational detections of WL by the LSS occurred in 2000 and were made independently
by four different groups (Bacon et al., 2000; Kaiser et al., 2000; Van Waerbeke et al., 2000; Wittman et al.,
2000). Since then, galaxy shape measurement for WL studies has been performed on many different datasets,
culminating in several dedicated surveys. All these are listed in Table 2.2. At the time of this writing, the last11

major survey to have released WL data products is the HSC survey, which provides two excellent references
to get more details about the topics discussed in this section: Bosch et al. (2017) give a very detailed rundown
of the main steps of their overall data processing that includes, but is not limited to, shape measurement, while
Mandelbaum et al. (2017) go into more detail and provide validation for the steps central to building the final
shape catalog.

11The fourth data release (Kuijken et al., 2019) of the Kilo Degree Survey (KiDS) came after Hyper Suprime-Cam (HSC)’s first, though
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2.3.1 Image “preprocessing”

Since in this section, we are dealing with going from raw images to WL-relevant quantities, defining a clear line
between “pre-” and “main” processing is not an easy task. Nonetheless, there are several very low-level (in
the sense that they occur on the rawest, closest to telecope-outputted data) steps that are critical to successful
lensing measurements, and can directly impact them (as illustrated, for instance, by Hoekstra et al., 1998, in
the case of camera distortions). As an example, for Canada-France-Hawaii Telescope (CFHT) data, many of
these early steps are handled by the widely used Elixir pipeline (Magnier and Cuillandre, 2004). See also
Erben et al. (2013) for a detailed account of further steps taken (mostly within the THELI pipeline) on top of
Elixir-processed images for the CFHTLenS survey.

It is naturally of crucial importance, not just for WL, but for any astronomical endeavor, to know the corre-
spondence between an image and the part of the sky it features. Even within each image, we will need a precise
mapping from pixels to real-world positions, which tends to be highly non-linear because of both the curvature
of the sky and instrument-induced distortions. Astrometry, and especially establishing a very accurate World
Coordinate System (Greisen and Calabretta, 2002; Calabretta and Greisen, 2002), are of course especially
crucial for WL, where the position of galaxies will ultimately be central to the computation of shear statistics, as
shown in Section 2.2.4.

Several effects related to the instrument, and especially to the Charge-Coupled Devices (CCDs) typically
used in lensing surveys, are also often corrected for before moving on to the steps presented in the following
subsections. These include various steps of detrending (flat-fielding, de-biasing, etc.) and possibly handling of
other effects such as crosstalk or saturation. Estimation and subtraction of the background can also sometimes
be performed at these early stages, though it is now well-established (Martinet et al., 2019) that this issue
should be approached with extreme care as it can have a substantial impact on shear measurements.

Cosmic rays and satellite trails need to be addressed, as they would otherwise cause severe biases in a
lensing analysis (for instance if falsely identified as extremely elongated galaxies). If single exposure images
are to be used for the analysis, they should thus be identified and removed (masked) from the analysis (see,
e.g., Desai et al., 2016, for an approach applied to Dark Energy Survey – DES – data).

An alternative way to deal with cosmic rays and satellite trails is the use of stacking, that is, the combination
of several single exposures that feature the same part of the sky into a single image. Stacking comes with
several other appealing consequences: as it allows to go deeper, it increases the number of detected objects;
it reduces noise levels, which increases the quality of galaxy images and should thus, in principle, help with the
shape measurement process; it can fill in the gaps in between the CCDs; it can help deal with undersampled
images (Lauer, 1999; Fruchter and Hook, 2002; Rowe et al., 2011). Stacking however has one major drawback,
especially in the case of shape measurement, linked to the core of this thesis: the handling of the PSF. We
have already mentioned that it is of the utmost importance for WL - a point that we shall establish formally in
Section 2.4, though it is natural to get a sense of why this would be the case, since the PSF can and does alter
the very shapes we aim to measure. A single galaxy is affected by a different PSF on each single exposure it
appears on, because of changing atmospheric contributions and/or because it falls at a different position within
the focal plane each time. It then raises the question of how to combine the PSF models from each exposure
into a single, final PSF to use in order to correct the shape measured on the stacked galaxy image. One cannot
simply build a “stacked” PSF model by applying a standard PSF modelling approach directly on the stacked
images, since each time a different set of pointings are combined, the resulting PSF model is different. This is
illustrated in Figure 2.6 with data from CFIS: the PSF model across the central “tile”, that combines stacks with
different sets of available single exposures, has a great many discontinuities.

the associated WL products had not yet been released.
12Note this does not mean it is the last WL paper published for this particular survey/dataset. For past surveys, there typically are

several more papers with cosmological analysis and re-analysis, which sometimes include larger areas than those used in the reference
cited in the table (e.g. Hoekstra et al., 2002a, in the case of RCS), or the combination of several different surveys (e.g. the “100-deg2”
survey of Benjamin et al., 2007). However, when the shape measurement remains largely unchanged, I chose to cite the earlier paper
that gives the most detailed account of the shape measurement pipeline.
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Figure 2.6: Stacking-induced discontinuities in the PSF. Each combination of two same-colored rectangles
corresponds to one MegaCam pointing; the scattered objects in the middle are those detected on a single “tile”,
that is, a stacked image using those pointings. The color of each object corresponds to a unique combination
of contributing pointings, which in turn implies the application of a different (stacked) PSF.
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The PSF model therefore needs to be fitted on single exposure images. There are then three main ap-
proaches to make the most use of the multiple available exposures for shape measurement. The first one is
simply not to use stacked images for shape measurement, though detection (which we shall return to in Sec-
tion 2.3.3) should still be performed on these. The multiple images of the galaxy can still be leveraged to get the
best possible shape measurement by simultaneously fitting each single-exposure galaxy/PSF pair of the same
object. This typically implies the need for a model-fitting shape measurement method (see Section 2.3.7), and
is for instance currently the chosen approach in the KiDS survey (Kuijken et al., 2015). If the same object is
observed through several filters, shape measurement can also be improved in a similar fashion by using each
of these images, as is done for instance in the Dark Energy Survey (DES) survey (Zuntz et al., 2018).

Another approach is to perform the shape measurement on the stacked image, which requires a careful
combination of the single-exposure PSF models on a per-object basis. This can, in turn, be done in two ways.
The first one, that seems to have fallen somewhat out of favor in the WL community in recent years, is to apply
extra, well-chosen convolutions to each image so that they are all effectively affected by the same PSF, often
chosen to be circular. This was, for instance, the chosen approach of Huff et al. (2014) in their WL analysis of
the Sloan Digital Sky Survey (SDSS) data. Lastly, the individual PSF models can be evaluated for each object,
then combined into a single PSF model, to be used with the stacked galaxy image, within any standard shape
measurement approach. This requires the PSF combination to be done in the exact same fashion as that of
the galaxy stacking; in particular, care should be given to the weights allocated to each single PSF. Historically,
this approach has been used to combine only the PSF model quantities that were required for the correction,
typically some measures of the shape of the PSF. This was fairly common in early studies (first two “eras” of
our Table 2.2), and was also often used for space-based WL measurements with HST (e.g. by Schrabback
et al., 2007). More recently, the full PSF models, sampled on small images (“postage stamps”) are combined
to obtain an actual stacked PSF with as many pixels, which can then be used with any shape measurement
approach. This is currently done by Bosch et al. (2017) for the HSC survey.

Lastly, several detector effects can be taken into account at this stage. Their impact on shape measure-
ment are somewhat similar to those of the PSF, though they are typically non-convolutional and can be flux-
dependent. It is therefore impossible to simply consider them as extra effects that contribute to the final PSF and
correct for them in a single step. In this work, we will always assume they have been modelled and corrected
for prior to the PSF modelling stage.

Chief among these detector effects is surely the Charge Transfer Inefficiency (CTI) phenomenon that affects
all CCD devices, but can become especially significant for space-based telescopes as the harsh conditions of
their environment tend to lead to increasing levels of CTI throughout the lifespan of the instrument. Massey et al.
(2014) proposed a modelling approach and successfully applied it to HST; the continuation of these efforts is
currently ongoing specifically for application to Euclid (Israel et al., 2015, 2017; Nightingale et al., in prep).

Second is the Brighter-Fatter effect (BFE), wherein the size of brighter objects tends to be larger. This
is, of course, particularly relevant to WL and especially PSF modelling, since the latter is typically performed
using bright stars. Coulton et al. (2018) recently studied and proposed a scheme to correct for this effect, with
application to HSC data.

Lastly, Boone et al. (2018) recently discovered an effect on CCD readout electronics, where a binary offset,
that depends on the number of 1s in the binary representation of a “driver” pixel, occurs for the few pixels read
out immediately after. It is likely one that should be considered and carefully dealt with for WL, when present.

Note that several of the steps we mentioned in this subsection can actually be improved once the others
have been performed; in fact, this circularity extends to the PSF modelling step, as we shall briefly discuss in
Section 2.3.5. In practice, an iterative approach can thus prove beneficial, where the corrections or calibrations
discussed here are repeated on data that has already been “cleaned” from all other effects.

2.3.2 Masking

The areas covered by WL surveys are naturally becoming larger and larger, which necessitates an increasing
degree of automation in the data processing pipelines. In particular, objects that appear in science exposures
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and cannot be used for WL analysis need to be identified and “masked” (i.e., removed from all further analysis).
This masking step itself requires automation, as it has become impossible to expect human eyes to identify and
demarcate all undesirable objects.

Among everything that should be masked for a successful WL analysis, the three most significant are
bad pixels, saturated stars, and nearby galaxies (see Appendix B for an anecdotal illustration of the latter’s
importance).

2.3.3 Object detection

Once again, the sheer size of WL surveys calls for an automated detection of both stars and galaxies. This is
also typically the stage at which “postage stamps”, small images centered on a particular object, are extracted
and used in further analysis. This is most often performed, for WL as it is for many other types of studies
on wide optical astronomical data, with Bertin and Arnouts (1996)’s celebrated SExtractor software. Beyond
identifying individual objects and extracting postage stamps, SExtractor performs many other tasks such as
measuring several quantities, on those objects, that will prove useful to later steps of the shape measurement
pipeline (e.g. noise levels, individual SNRs, object sizes).

2.3.4 (De)blending

Another crucial information provided by SExtractor is the identification of blended objects, that is, cases
where two or more distinct objects are close enough, when projected on the sky, to overlap and appear in one
another’s postage stamp. SExtractor identifies such cases, and offers tailored masks that identify which pixels
are affected by the contaminating additional object(s). These can in turn either be removed from the samples
entirely, or treated as stamps with several masked out pixels (which can, of course, strongly hinder the shape
measurement process).

While this is an extremely powerful first order tool to deal with blends, a more advanced treatment of this
issue will likely be needed for Stage IV WL surveys, especially for the ground-based LSST. As our surveys go
deeper, blending naturally occurs more frequently, and experience gained on recent surveys clearly identify this
issue as one of the most major for WL goals: Bosch et al. (2017) estimate that 58% of objects identified in the
HSC wide survey were recognized blends!

Several advanced methods to deal with the identification and separation of blended objects have recently
been proposed (Joseph et al., 2016; Melchior et al., 2018; Boucaud et al., 2019). These works illustrate that
the use of colour information makes this complicated issue considerably easier to tackle. While the Euclid VIS
observes in only one, very wide band, its spaceborne nature means it is far better at resolving objects. The
(de)blending issue in WL therefore makes for great potential synergy between ground- and space-based future
missions, especially between LSST and Euclid (Rhodes et al., 2017; Schuhmann et al., 2019).

2.3.5 Star-galaxy separation

While we have already addressed several artefacts and other potential sources of false detections that could
occur during the process of Section 2.3.3, there still remains an important distinction to be made between those
objects that remain: galaxies and stars. The former will of course be used to measure shapes and, eventually,
cosmic shear or other cosmologically-relevant quantities. Stars tend to be both more circular than galaxies,
and much closer (most within the Milky Way). It is therefore important not to misidentify stars as galaxies and
treat their measured shapes as if they carried some sort of cosmological lensing information. Even among
those objects identified as galaxies, it might be preferable to remove some from the sample that will be used for
shape measurement. A good illustration of this is given by the DES Year 1 shape catalog (Zuntz et al., 2018),
where two different shape measurements methods required selecting two different galaxy catalogs.

Conversely, we want clean samples of stars to fit our PSF models on; leftover galaxies within those sample
would bias our PSF model. In fact, given the importance of the latter in WL studies, it is common to perform a
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Figure 2.7: The size-magnitude diagram for a single CCD from the CFIS survey. Each scattered point is a
detected object; those within the identified stellar locus are shown in orange. Both size, measured through the
full width at half-maximum (FWHM), and magnitude are from SExtractor. Credit: A. Guinot.

further, more conservative selection of “PSF stars” for this purpose specifically, than that done for others, such
as photometric measurement. For instance, the DES PSF star selection made by Zuntz et al. (2018) is different
from what has been done for photometry (Drlica-Wagner et al., 2018). The most common approach is to make
use of the size-magnitude diagram (or diagrams made from proxies of those two quantities). While galaxies
come in a variety of sizes, all stars (or rather, all those unaffected by the BFE, unresolved, and unsaturated)
should be of roughly the same size, namely that of the PSF. This defines the stellar locus, a fairly straight
line within the size-magnitude diagram, the identification of which amounts to a star selection. An example is
shown, from our own processing of the CFIS data, in Figure 2.7. For KiDS, Kuijken et al. (2015) refined this
approach by also using the fourth-order moment measured on the object’s postage stamps (see Section 2.3.7
for a definition of lower-order moments).

Another approach is the use of external star catalogs from dedicated surveys. This comes with strong
confidence on the (close) lack of contamination by non-star objects, and is being made increasingly more
seemly by current successive Gaia data releases (Brown et al., 2018).

This classification problem could be approached by advanced methods; a neural network is included in
SExtractor (if ran in conjunction with the companion, PSF modelling software PSFEx of Bertin, 2011, which
we shall return to in Section 2.4.3), though it is generally not used for PSF star selection (see the different DES
star catalogs Drlica-Wagner et al., 2018; Zuntz et al., 2018, for illustration).

At the end of Section 2.3.1, we mentioned how the steps described there could benefit from an iterative,
repeated processing. The same is very true for star-galaxy separation, as once a PSF model has been es-
tablished, objects that appear very different from it are unlikely to be stars. Historically (e.g. in several studies
of the “Early applications” era of Table 2.2), this notion was often used by performing shape “clipping”, that is,
by removing from the star sample all objects whose size or ellipticity differed from that of the PSF model, then
refitting the model on surviving stars. Nowadays, where full-pixel PSF models are more common, bad objects
can be iteratively removed from the star sample by goodness-of-fit tests, typically through a cut-off in χ2. Such
an approach is, for instance, natively handled by PSFEx.
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2.3.6 PSF modelling

We have now established how a clean star sample has been selected from raw images. Section 2.3 gives an
overview of the critical steps in a shape measurement pipeline. The PSF modelling process would typically
occur at this stage, but given the nature of this work, it requires a more in-depth treatment. We thus postpone
these considerations and refer the reader to Section 2.4 and subsequent chapters.

2.3.7 Galaxy shape measurement

Assuming we obtained an appropriate PSF model for each of the galaxies we selected in Section 2.3.5, we can
finally turn to the practical measurement of shapes. This implies addressing two main issues. First, we need
a definition of what exactly constitutes the shape of a galaxy. Second, we need to find a way to obtain this
measurement while correcting for the influence of the PSF.

Defining ellipticities

In (2.83), we defined the ellipticity of a galaxy using the semi minor- and major-axes of its supposed elliptical
isophotes. We then connected this quantity to the action of reduced shear through (2.84). Of course, real-life
galaxies have complex brightness profiles, whether it is because of different components (e.g. a bulge and a
disk) of highly different shapes, of intricate spiral arms, or simply, in the case of irregular galaxies, because
they are in no way ellipsoidal. They are thus nowhere close to having elliptical isophotes, and the intuitive and
geometric definition of (2.83) is of no practical use.

Let us introduce a definition of “ellipticity” that is computable on any brightness profile, I(x1, x2), where x1
and x2 are arbitrary orthogonal coordinates (in practice, they will typically be chosen to move along the x−
and y−axes corresponding to the pixel grid on our discrete images). Let Qi j denote the (centered) quadrupole
moments of our image I. Q is defined as

Qi j :=

∫
R2 I(x1, x2)(xi − xc

i )(x j − xc
j)d(x1, x2)

Q0
, (2.88)

for i, j ∈ {1, 2}, where

Q0 :=
∫
R2

I(x1, x2)d(x1, x2) (2.89)

and the two

xc
i :=

∫
R2 I(x1, x2)xid(x1, x2)

Q0
(2.90)

are called the image centroid. Note a strictly equivalent definition sometimes found in the litterature uses

µi j :=
∫
R2

I(x1, x2)(x1 − xc
1)i(x2 − xc

2) jd(x1, x2), (2.91)

which directly leads to

Q0 = µ00, (2.92)

µ10 = µ01 = 0, (2.93)

Q11 = µ20/µ00, Q12 = Q21 = µ11/µ00, Q22 = µ02/µ00. (2.94)
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Where, by definition of the centroid, the first order centered moments (µ01, µ10) vanish. This notation has the
advantage of illustrating how characterizing the ellipticity amounts to the knowledge of 6 individual quantities:
either the 6 moments of order up to 2 or, equivalently, (a specific measure of) its flux, its two centroid coordinates,
and three second order moments.

We can now define the ellipticity of our image I as

ε :=
Q11 − Q22 + 2iQ12

Q11 + Q22 + 2
√

Q11Q22 − Q2
12

. (2.95)

This definition of ellipticity is a generalization of (2.83), since they coincide in the particular case of objects with
elliptical isophotes. The action of a reduced shear (2.84) also holds true regardless of the initial image’s profile
I (up to its quadrupole moments being defined).

Another definition commonly found (perhaps even more so than that of Equation 2.95) in the lensing litera-
ture is

e :=
Q11 − Q22 + 2iQ12

Q11 + Q22
. (2.96)

The two are directly related through (Bartelmann and Schneider, 2001)

ε =
e

1 +
√

1 − |e|2
, e =

2ε
1 + |ε|2

, (2.97)

and analogous to (2.84), the action of a reduced shear g on an object with intrinsic ellipticity eint is

e =
eint − 2g + g2e∗

1 + |g|2 − 2Re(ge∗)
. (2.98)

The two notations can therefore be used fairly interchangeably, as long as one remains self-coherent (i.e. avoids
mixing-and-matching of quantities computed with different definitions).

Another useful quantity is a measure of the size of an object, defined from its quadrupole moments Qi j, as

R2 := Q11 + Q22. (2.99)

In the case of an object that follows a parametric profile, this quantity is directly related to the size parameters.
For instance, for a 2D Gaussian profile

I(x1, x2) := A exp
(
−

(x1 + x2)2

2σ2

)
, (2.100)

we have R2 = 2σ2. Much like equations (2.95–2.96) gave us ellipticity definitions applicable on any arbitrary
profile, R2 is a measure of size that can (in principle) be computed on any object. Throughout this thesis, when
referring to stars or PSFs, the term “shape” will mean the set of both ellipticity e and size R2 of the object.

Before we can use these definitions to measure ellipticities, two outstanding issues remain to be addressed.
First, images will be discretely sampled on a finite set of pixels, P. Second, noise will be present in our images.
Dealing with the discrete sampling may seem straightforward enough at first: we only have to replace the
integrals in the definition(s) of our image moments with a discrete sum over the set of available pixels P. For
instance, our definition of µi j (2.91) would then become
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µi j :=
∑

(x1,x2)∈P

I(x1, x2)(x1 − xc
1)i(x2 − xc

2) j. (2.101)

We shall henceforth use the same notations Qi j, µi j, and xc
i to refer to either the continuous or discrete versions

of these quantities.
In practice, our measurements will be made from postage stamps centered on the objects of interest (see

Section 2.3.3). This means the set P is finite, which is not undesirable, as the pixel intensity actually emanating
from objects of interest in a WL analysis (distant galaxies and unresolved stars) is likely to go below noise
level after a small number of pixels, and it limits the number of other objects whose own profile impacts the
pixel values. However, the quadrupole moments (2.88) are quantities of circular symmetry, while our postage
stamps are square. This leads to truncation effects that can be quite significant when measuring ellipticities
from (discrete) quadrupole moments on a postage stamp, especially in light of the fact that by construction, the
first ellipticity component will likely correspond to elongation along the x and y axes of our stamps, while the
second to those in the diagonal directions, i.e. where the truncation occurs the closest and farthest, respectively.

Second, quadrupole moments are notoriously sensitive to noise. It is easy see why by looking at their
definition (2.88): the furthest away from the center, the stronger the influence a single pixel will carry (because
of the term in x2

1, x1x2, or x2
2), yet the more its value will be driven by noise. Direct measurements of ellipticities

from quadrupole moments are thus strongly noise-dominated in practical applications.
Both of these considerations are alleviated by the addition of a window function, similar to how we solved

the problem of the power spectrum normalization in Equation 2.1.5. Let W denote such a function; we use the
same notations to define weighted quadrupole moments and related quantities, for instance

µi j :=
∫
R2

I(x1, x2)W(x1, x2)(x1 − xc
1)i(x2 − xc

2) jd(x1, x2). (2.102)

The addition of this window function naturally biases our estimation of the ellipticity - we shall return to this
issue in Section 2.3.8 and Section 2.4.1, as it arises in the case of galaxies and PSFs, respectively. Moreover,
it raises the question of the choice of W. It is typically chosen to be a 2D Gaussian centered on the object’s
centroid, which still leaves the question of its size to be addressed. Historically, this size would often be fixed a
priori, and chosen to be the same for measurements on both galaxies and the stars used to model the PSF. This
eventually proved to cause issues, especially as WL studies started being carried out with space instruments,
where the moments measured from the (mostly optical) PSF are highly dependent on the chosen size for the
window function (Hoekstra et al., 1998). More recently, Hirata and Seljak (2003); Mandelbaum et al. (2005)
suggested matching the size of the window function to that of the object being measured - we shall refer to this
approach as Hirata-Seljak-Mandelbaum (HSM), and use it for all direct (that is, with no PSF correction) shape
measurements derived from quadrupole moments for the rest of this thesis. Let us note that, as proposed by
Melchior et al. (2011); Viola et al. (2011), a natural extension is to make the window function match the object
not only in size, but also in ellipticity, by iteratively shearing it.

“Shape measurement,” or, how to correct for the PSF

The effect of the PSF is that of a convolution, i.e. if an object had an initial (in image space, that is, possibly
already gravitationally sheared) brightness profile I, and was affected by a PSF H, the observed image would
be

Y = I ∗ H, (2.103)

where ∗ is the convolution product. Removing the effect of the PSF therefore amounts to the task of decon-
volution; a very well-studied topic in image processing (see, e.g., Starck and Murtagh, 2007). However, the
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needs that come with a WL-centric analysis make it impossible to directly apply this plethora of tried-and-tested
deconvolution tools, as they come with no guarantee that the shape of objects, as we just defined them, re-
mains unchanged through the process. This led to new approaches being developed, specifically with lensing
in mind, as early as the mid-1990s. Broadly speaking, these shape measurement methods (which should be
understood as including the removal of PSF effects, rather than just measuring the shape of an object taken on
its own, as can be done using the weighted moments approach) fall into two categories.

Moments-based methods make use of the quadrupole moments, as defined in (2.88), of both the observed
galaxy and the corresponding PSF, and correct for the latter directly in moments space. The classical example
of such an approach is the famous Kaiser-Squires-Broadhurst (KSB), first proposed by Kaiser et al. (1995).
Throughout the years, several variants and improvements of KSB were proposed, for instance by Luppino and
Kaiser (1997); Hoekstra et al. (1998); Kaiser (2000); Viola et al. (2011), and used on most of the early cosmic
shear studies; see Table 2.2, where all entries where the PSF is modelled through “shape interpolation” used
moments-based shape measurement approaches.

Model-fitting methods, first proposed as early as the end of last century by Kuijken (1999), makes use of the
full PSF image instead of just its measured moments. An analytical profile for the galaxy is chosen, for instance
a Sérsic profile (Sérsic, 1963). The parameters of this profile (plus those used in an extra shearing process if
the profile is circular) are then fitted by convolving it with the PSF, then sampling it at the same pixel scale as the
observations and comparing them. Because of this process, model-fitting methods are also often referred to as
forward-fitting. This class of approaches had come to become the preferred one up to very recently, and has
been used on several recent surveys in the following incarnations: LensFit (Miller et al., 2013) in CFHTLenS
and KiDS (Kuijken et al., 2015), im3shape (Zuntz et al., 2013) and ngmix (Sheldon, 2015) in DES (Zuntz et al.,
2018).

Both approaches come with their own advantages and pitfalls. Moments-based methods are typically less
computationally demanding, as model-fitting often requires iteratively solving an inverse problem (see Sec-
tion 3.1.1 for an introduction). As we already discussed above, the former come with the issue of having to
select a window function, therefore introducing bias; the latter, with the need to select a model for the galax-
ies, which in turn introduces model bias (as real-world galaxies do not quite follow simple analytical profiles).
Those two sources of bias have long been known to be very similar in the lensing community; with the correct
formalism, one can in fact show they are mathematically identical, as done by Simon and Schneider (2017).

A lot of effort has been made by the lensing community to compare different shape measurement methods,
originally in the hopes of determining the best-suited, or at least understanding their differences. To this end,
and to investigate other aspects of practical WL measurements, a series of challenges were organized, starting
with the Shear TEsting Program (Heymans et al., 2006; Massey et al., 2007), followed up by the GRavitational
lEnsing Accuracy Testing (GREAT) series, each of increasing complexity: GREAT08 (Bridle et al., 2009, 2010),
GREAT10 (Kitching et al., 2011, 2012), which also contained a “Star Challenge” to compare PSF interpolation
methods (Kitching et al., 2013), and the latest to date, GREAT3 (Mandelbaum et al., 2014, 2015). This quest for
the best per-object estimate of shape has, very recently (and in part thanks to the experience gained from these
challenges), been replaced by a new paradigm (Mandelbaum, 2018): the outputs of the shape measurement
method itself is of little import, as long as the actual shear estimates we will derive from it (typically through
some sort of averaging, e.g. in a 2PCF) are viable. In other words, rather than having an accurate shape
measurement, we would rather have one that we can properly calibrate.

Before turning to how this calibration is carried out in practice in the next subsection, it is worth mentioning
two more shape measurement approaches. Neither really fits into either the moments-based or the model-fitting
categories. Moreover, rather than attempting to measure the shapes of individual objects, then estimate the
contribution of gravitational lensing-induced shear from these, they instead directly attempt to measure the lat-
ter, in turn bypassing many of the issues we have presented in this subsection. The first is the Bayesian Fourier
Domain (BFD) approach of Bernstein and Armstrong (2014) (see also Bernstein et al., 2016, for extensions).
The second relies on machine learning algorithms trained on simulations; two different approaches have been
proposed by Springer et al. (2018) and Tewes et al. (2019). The latter and BFD are both planned to be used,
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along with more classical methods of the two classes described above, within Euclid.

2.3.8 Calibration

For an inferred shear ĝ = (ĝ1, ĝ2), let us extend the bias resulting from all the steps we have outlined in the
present section to first order,

ĝi ≈ (1 + mi)gi + ci, (2.104)

where i ∈ {1, 2}, gi is the true shear component, and mi and ci are the multiplicative and additive biases,
respectively. The aim of the calibration step is to both evaluate and correct for these terms. The bias incurred
on a specific galaxy depends on many of its properties, so it is important to estimate m and c as functions of
these properties, rather than just single constants across the whole catalog. The dependency on the size of
galaxies is the most obvious of these, so it has been common in calibration schemes to estimate different m
and c values per object size bin. The requirements on future surveys will likely require a calibration scheme
that varies with a great many parameters. Pujol et al. (2017) carried out an in-depth study of several of these.
See also Hoekstra et al. (2015, 2017); Martinet et al. (2019), where the authors explore many sources of bias
(especially, in the latest of the series, that of undetected galaxies).

In practice, until the very recent proposal for an alternative approach, the estimation of m, c was carried
out using image simulations. These are made to be as realistic, and include as many real-world effects, as
possible. The entire shape measurement pipeline is then ran on those simulations, and since we have access
to the inputted shear values, we can actually compute the bias parameters from (2.104). When building those
simulations, an invaluable resource is the freely available GalSim13 software (Rowe et al., 2015), the original
development of which started as a byproduct of the creation of the GREAT3 dataset (though it has since then
far outgrown this initial purpose). The latest practical calibration of WL measurements through simulations was
carried out by Mandelbaum et al. (2018) for the HSC survey.

Calibration through simulations comes with two major caveats. The first one is the computational cost
associated with generating enough simulations to achieve sufficiently accurate calibrations; Pujol et al. (2019)
recently proposed an approach to drastically reduce that number. The second is that the ultimate calibration
scheme we get from simulations will only ever be as good as the simulations themselves, and it is of course hard
to gauge exactly how realistic a particular simulation is. There are many specific points that could cause concern
in this area; a good example is the profiles used to simulate the galaxies. It is well-known that analytical profiles
are far too simplistic to accurately describe the intensity profile of real-life galaxies. Worse, if we use model-
fitting methods, we would end up using the same (or very similar) profiles both to generate and measure the
shapes of galaxies, therefore entirely missing the model bias that would definitely occur in applications to real
data. A way around this issue is to use images of real galaxies, taken with an instrument with higher resolution,
and reprocess them (including the application of the shear to be measured) so they match what would be
observed by the survey at hand. An example is shown in Figure 2.8, where I have taken a galaxy observed with
HST’s Advanced Camera for Surveys (ACS), and processed it so it appears as it would if observed with Euclid’s
VIS instrument. While we have no information on the intrinsic shape of the galaxy, we can still use many of
them to infer shear and perform calibration. While this approach frees us from the lack of realism introduced by
using analytical galaxy profiles, it comes with its own limitation, namely the number of real galaxies observed,
much lower than that we aim to observe with future surveys. This can (and should) be somewhat alleviated
by using several different “realizations” of the same real object, including by rotating the original profile (which
should be done regardless, to remove the impact of intrinsic galaxy shapes). Another promising and far more
flexible option has recently been proposed by Ravanbakhsh et al. (2017), who use generative networks trained
on real data to create any arbitrary number of galaxy profiles that are indistinguishable from those we observed.

13https://github.com/GalSim-developers/GalSim

https://github.com/GalSim-developers/GalSim
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COSMOS galaxy "Euclidized" galaxy

Figure 2.8: “Euclidization” of a COSmic evOlution Survey (COSMOS) galaxy. The galaxy, as observed by HST,
is shown on the left; its reprocessed version, as it would appear if observed by VIS, on the right.

As we hinted at at the beginning of this subsection, another recent but far-reaching development is the ad-
vent of meta-calibration (hereafer MetaCal). First introduced in Huff and Mandelbaum (2017) and Sheldon and
Huff (2017), MetaCal foregoes the need for simulations entirely by instead measuring the shear response14 on
observed objects. The general procedure is as follows: the PSF is removed from each object through an ana-
lytical deconvolution via the convolution theorem, that is, an element-wise division in Fourier space. This leads
to a non-physical image (as the observation was noisy), that can, however, still be sheared. Several different
shear values are applied, then the sheared (and original) images are reconvolved with a PSF that is larger than
the one used at the deconvolution step. This removes the spurious modes created by the deconvolution. By
measuring the shape of each of these reconvolved galaxies, one can compute the numerical derivative of this
shape as a function of applied shear, and thus build a shear responsivity matrix that can then be used for cali-
bration. MetaCal has already been successfully applied to real data within the DES survey (Zuntz et al., 2018).
Several aspects of MetaCal we have not mentioned in the brief overview of the method given here require
careful handling, especially the issue of noise (as the deconvolution/reconvolution process introduces spurious
correlations). We refer the reader to the three papers cited in this subsection (as some new developments are
proposed in the real-data application of Zuntz et al., 2018).

2.3.9 Obtaining redshift information

One last item is worth mentioning, despite not being part of the shape measurement pipeline per se: redshift
estimation for the galaxies in our catalog. As mentioned at the end of Section 2.2.4, whether they are used
through tomography or a full 3D analysis, redshifts are needed in order to maximize the amount of cosmological
information yielded by a WL survey. In fact, even for a 2D cosmic shear analysis, as we might recall from (2.69),
we would still need the n(z) for our galaxy sample.

While the best way to measure redshift is through spectroscopic measurements, the sheer size and number
of objects involved in WL surveys requires some other, faster (and less costly) way of obtaining per-object
redshift estimates. This is typically done through photo-z, that is, the estimation of an object’s redshift from the
measurement of its photometry in several different bands - which, in practice, amounts to a very low resolution
sampling of its spectral energy distribution (SED). To this end, ground-based surveys often observe in several
different bands. In the case of Euclid, however, WL measurements will be made from the VIS instrument, which
contains only a single, very wide (550-900nm) band. The success of Euclid’s WL science objectives is thus

14Note the aforementioned approach of Pujol et al. (2019) also makes use of the idea of shear responsivity, though within a simulation-
driven calibration framework.
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Figure 2.9: Illustration of the imaging process on a galaxy (top left) and a point source (bottom left). Both
undergo convolution by the PSF (center), and are then sampled on a finite number of pixels (right).

dependent on photometric measurements obtained from the ground. This is, for instance, one of the main
goals of the CFIS survey, further discussed and analyzed in Appendix B.

Once the photometric data has been acquired, there are two main ways to convert them into redshift esti-
mates: template-fitting (see, e.g., Ilbert et al., 2006) and machine learning (e.g. the well-known artificial neural
network (ANN) approach of Collister and Lahav, 2004). Salvato et al. (2019) give a very up-to-date (at the time
of this writing) review of the field. For an example of a recent application to a WL survey, we once again refer
the reader to the first HSC data release, for which the photo-z measurements are described in Tanaka et al.
(2017).

Lastly, let us briefly mention clustering redshifts, an alternative approach where spatial cross-correlations
with a sample of spectroscopically-identified redshifts are used. See Morrison et al. (2017) (and references
therein) for an overview of the method, an open-source code15, and a comparison to KiDS photo-z.

2.4 Point Spread Function

Let us now turn to the main topic of the rest of this thesis: PSF estimation. The images we use for WL purposes
are obtained from telescopes, which means they - like any other image from an optical imaging device - are
slightly distorted. The origins of this distortion are various: diffraction effects, imperfect optics, for instance due
to the polishing of mirrors, and possibly stray light propagating within the instrument. All these make up the
optical PSF, that we shall focus on in most of the following chapters. For ground-based surveys, the effect
of the atmosphere further contributes to the final PSF, and is the main driver for the development of space-
based telescopes. In space, there are other contributions to the PSF, such as the jitter of the spacecraft once
in orbit (Ma et al., 2008), and the effect of the Attitude and Orbit Control System (AOCS). When these are
included, we call the resulting PSF the system PSF.

The effect of the final PSF on an image is a convolution; by definition, the PSF is the kernel of that convolu-
tion. The imaging process, that is, how the actual, continuous intensity profile of an object I on the sky (which
we consider as already including the effects of gravitational lensing) is transformed by the imaging process is

15https://github.com/morriscb/The-wiZZ/

https://github.com/morriscb/The-wiZZ/


2.4. Point Spread Function 39

Figure 2.10: Cartoon representation of the PSF field estimation problem. Stars, indicated in magenta, provide a
measurement of the PSF, that must then be used to determine the PSF at the position of the galaxies, in cyan.

illustrated in Figure 2.9. Galaxies undergo a convolution by the PSF that alters their shape, and are further
sampled on a finite number of pixels, which also contain additive noise. In our case of optical images taken with
CCDs, it will always be a safe assumption that the noise is drawn from a white Gaussian distribution.

Applying a convolution to a point source simply results in the convolution kernel. Unresolved stars in the
field should be point sources, and therefore give us measurements of the PSF; however, they also undergo the
imaging process, and we thus only have access to noisy realizations of our PSF. The PSF modelling task is,
starting from these, at the bottom right of Figure 2.9, to build an estimator of the true PSF, in the central column,
that we can then combine with the observed galaxy in the top right, through some shape measurement scheme
(see Section 2.3.7), to obtain an estimate of the true galaxy in the top left, or at least of its shape.

The PSF varies as a function of position within the focal plane; this is especially true for ground based
surveys, as light arriving with different incidence angles has gone through different atmospheric turbulences,
but also holds true for the optical PSF. Stars therefore do not directly give us (degraded) samples of the PSF H,
but rather samples, at a fixed set of locations, of a spatially varying function H(x, y). PSF modelling therefore
also entails an interpolation, as illustrated in Figure 2.10. In the case of ground-based surveys, where the
atmospheric component varies quickly, this estimation needs to be carried out on a per-image basis. Space-
based telescopes are a lot more stable, and it is in principle possible to combine several exposures to build
the PSF model. However, even a space telescope undergoes changes as time passes, which in turn leads
to a varying PSF, as was realized early on in WL studies using the HST (see, e.g., Heymans et al., 2005;
Schrabback et al., 2007). In this case, the leading factor was found to be a slight defocus that altered the PSF
of ACS-acquired images. The temperature of the spacecraft, which varies with time, and particularly with the
relative position of the Sun, also impacts its individual components, and thus the PSF.

Beyond the very intuitive nature of the importance of the PSF modelling step to WL studies that we have
already mentioned, its practical implications were made evident very early on. One of the “first four” detections
of cosmic shear was that of Van Waerbeke et al. (2000), using observations made at the CFHT, and was quickly
followed-up by Visible and InfraRed Multi-Object Spectrographs (VIRMOS)-Dark matter from Ellipticity Sources
CARTography (DESCART; Van Waerbeke et al., 2001), one of the very first cosmological WL-oriented surveys,
that yielded significant constraints on cosmological models. Hoekstra (2004) later showed that the PSF model
used was insufficient to capture the full extent of spatial variations. This prompted a reanalysis of the same
data, including a more accurate PSF model, in Van Waerbeke et al. (2005), which drastically changed the
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Figure 2.11: Aperture mass measurements from the VIRMOS-DESCART survey. Top: original processing.
Bottom: reanalysis, including a corrected PSF model. Credit: Image from Van Waerbeke et al. (2005), reproduced with
permission.

values of the mass aperture statistics (one of the derived second order statistics we discussed at the end of
Equation 2.2.4), as shown in Figure 2.11. The apparent bump at scales of θap ≈ 5arcminutes in the original
analysis, for instance, completely disappears with the new model, and was thus likely due solely to the PSF
model imperfections. To complement this striking (and early) example, in Section 2.4.1, we will present a more
general framework to measure the impact of PSF modelling error on WL.

There are two different approaches to the PSF modelling problem. Our knowledge of the instrument can be
used to build a model of the optical PSF, which gives us a simulator of the PSF, the parameters of which can
then be fitted to the stars. For this reason, these are often called parametric, or physical, models. Since it is,
in principle, impossible to know the atmospheric component of the PSF in ground-based surveys a priori, this
approach has, so far, only been used with space-based telescopes (though see our discussion of Piff below).
For WL, the only example of such, up to now, has been the HST. Parametric models of its ACS instrument are
obtained using the TinyTim software (Krist, 1995).

In the non-parametric16, or empirical, approach, knowledge of the instrument (if available) is not used,
and the PSF model is built instead using only the available data, that is, the unresolved stars in the field.

16When I began my work on the Euclid PSF, the name we used for these methods was “data-driven”. Since physical models also
use data to fit the parameters, this naming scheme was faded out in favour of the parametric/non-parametric one. Of course, one could
argue that non-parametric models still do contain some parameters, as we shall see in Chapters 3 and 5.
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As mentioned, this has been the preferred approach to deal with ground-based surveys, since the atmospheric
contribution can then be estimated on a per-image basis. Even for space-based surveys, however, it is desirable
to pursue a non-parametric approach: in the aforementioned case of HST, both Jee et al. (2007) and Hoffmann
and Anderson (2017) found that they outperformed the TinyTim physical model, for WL and for photometric
purposes. Moreover, a physical model is only as good as our assumptions about the physics of the instrument.
Any effect left unaccounted for will be entirely missed, while in principle non-parametric approaches could
recover them. They also should be less susceptible to unexpected surprises, for instance a non-nominal launch
of the instrument that has a higher-than-expected impact on its components. Lastly, and most importantly,
developing both approaches allows for their eventual combination, likely leading to a better PSF model than
either method taken separately.

After introducing the formalism for propagation of PSF errors in the next subsection, in Section 2.4.3, I
attempt to give an exhaustive list of all PSF modelling approaches (both parametric and non-parametric) used
in, or developed for, cosmological WL applications.

2.4.1 Impact of PSF modelling on shear measurements

Beyond the intuitive notion that an incorrect PSF model would interfere with galaxy shape measurement, and
thus directly impact the cosmological results derived from cosmic shear, and the very early practical realization
that this was indeed very true (see Figure 2.11), a need for a way to quantify the impact of PSF modelling errors
on shear measurements naturally arises. It could allow us to control the ultimate impact of our PSF models on
science results, or even to set requirements. There is no such thing as a perfect model, but if we know how
the PSF errors propagate, we can start from a requirement, say, on the tightness of our constraint on the Dark
Energy EOS parameters in (2.46), allocate a budget to different sources of systematic errors, including those
related to the PSF, and use that propagation scheme to convert this budget into a maximum allowed PSF error.
We can then derive objectives for the quality of the PSF model.

Such a propagation framework was first proposed by Paulin-Henriksson et al. (2008), working with the
quadrupole moments we introduced in Section 2.3.7. This work was further expanded by Massey et al. (2012).
While the latter also included both detector effects and those due to the shape measurement approach in their
work, in this section, I will consider only the PSF-related terms of their proposed formalism.

Let us then consider a galaxy with complex ellipticity, defined from its quadrupole moments as in (2.96),
egal (which already includes the contribution of gravitational effects) and size, defined in (2.99), R2

gal. After
undergoing the first step of the imaging process of Figure 2.9, that is, convolution by a PSF of ellipticity and
sizes ePSF,R2

PSF, the resulting profile has shape

eobs = egal +
R2

PSF

R2
gal + R2

PSF

(ePSF − egal) (2.105)

and

R2
obs = R2

gal + R2
PSF. (2.106)

The quantity of interest in (2.105) is egal, while what we have access to in practice are measurements of all
observed and PSF quantities. Using (2.106), we can rewrite

egal =
eobsR2

obs − ePSFR2
PSF

R2
obs − R2

PSF

. (2.107)
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From this equation, it would appear the only quantities of interest in a PSF model are its size and ellipticity; how-
ever, this is due to our assumption of being in an ideal case of quantities derived from unweighted quadrupole
moments, as we shall see shortly.

As a first step, however, let us keep considering these quantities. To study the impact of errors in the
reconstructed PSF, let us consider an imperfect PSF model. Since its ellipticity and size are the only quantities
related to the PSF appearing in (2.107), let us simply consider δ(R2

PSF) and δePSF, the errors in those quantities
present in our model. Note that at this stage, whether these errors actually occur from the model itself (that
is, the PSF model has a different shape than the true PSF), or from our incapacity to correctly measure the
shape of our PSF (e.g. because we cannot measure unweighted quadrupole moments in practice, even on a
noiseless PSF model) makes no difference.

The key idea to propagate these errors into our galaxy shape measurement is to perform a Taylor expansion
of (2.107) with regards to the shape of the PSF. At first order, this gives

êgal ≈ egal +
∂egal

∂
(
R2

PSF

)δ(R2
PSF) +

∂egal

∂ePSF δe
PSF, (2.108)

where êgal is the object ellipticity computed using the imperfect model rather than the true PSF. The two partial
derivatives are readily computable from (2.107), and yield (dropping the gal notation for quantities relative to
the galaxy)

êi = ei

1 +
δ(R2

PSF)

R2
gal

 −
R2

PSF

R2
gal

δePSF
i +

δ(R2
PSF)

R2
gal

ePSF
i

 , (2.109)

where we have separated the ellipticity into its individual components i ∈ {1, 2}.
This is the famous expression derived by Paulin-Henriksson et al. (2008) (their equation 8, or the 26th in

Massey et al., 2012). This expression has been widely used by the WL community, for instance to study the
number of stars required to achieve a given PSF model accuracy (Paulin-Henriksson et al., 2009), to quantify the
quality of a given PSF model on real data (Rowe, 2010; Jarvis et al., 2016, see Section 2.4.2), and, significantly,
to set requirements on WL surveys (Cropper et al., 2013).

There are a few more interesting observations worth making from (2.109). First, remember the usual linear
parametrization of shear bias of (2.104). Taking the average of (2.109) across a large number of objects of
size R2

gal, and under the common assumptions of (2.86–2.87), we get the predicted contributions (of the PSF
modelling) to multiplicative and additive biases,

mPH :=
δ(R2

PSF)

R2
gal

, (2.110)

and

cPH
i := −

R2
PSF

R2
gal

δePSF
i +

δ(R2
PSF)

R2
gal

ePSF
i

 , (2.111)

respectively. Since we split (2.107) into both components instead of using the complex notation, we can point
out that the expected multiplicative bias should be the same across both, while the additive bias depends on the
PSF’s own ellipticity, leading to a different ci for i ∈ {1, 2}. We can also already see, from (2.109), how the way
the PSF impacts shape measurement is twofold: both the PSF’s intrinsic shape, ePSF,R2

PSF, and our knowledge
of those quantities will impact the measured shapes. From a mission design perspective, this can be directly
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linked to the questions of hardware and software: a WL survey should, ideally, aim to have both a very small
and isotropic PSF (hardware/instrument design), and an excellent PSF model to recover these values with high
accuracy (software/data processing).

Cropper et al. (2013) use (2.109) (among many other factors) to develop a top-down approach: starting
from science requirements (i.e. constraints on cosmological parameters), they obtain requirements on both the
instrument and our ability to process its data. This is, in a way, the opposite of the bottom-up approach of the
Massey et al. (2012) companion paper we have been focusing on. This can be achieved by injecting (2.109) into
the definition (2.80–2.81) of the shear 2PCF, then propagating the terms arising because of the errors to our
constraints on cosmological parameters, for instance by using the Fisher matrix formalism (though this choice
should be made with care, see Wolz et al., 2012; Euclid Collaboration et al., 2019).

As we have already mentioned earlier, unweighted quadrupole moments can never be computed in practice
because of noise, and thus require apodisation, that is, the use of a window function. This raises the question
of how much trust can be put into the predictions we get from (2.109) if the left hand side is, in practice,
measured using a window function (or, equivalently, a specific analytical model). In fact, even the terms on the
right-hand side likely cannot be estimated with unweighted moments. This is especially true in the case of a
diffraction-limited PSF, which has diverging second order moments, which means ePSF is not even defined!

Melchior et al. (2011) studied the impact of the addition of a window function in the measurement of
quadrupole moments and (especially) ellipticity. They show, analytically, that the addition of a window func-
tion causes a mixing with higher-order moments of the same object. Following Massey et al. (2012), let us
consider these effects as prefactors, Pe and PR, corresponding to the changes in ePSF and R2

PSF/R
2
gal, respec-

tively. Note that since the only size terms in (2.109) are ratios of PSF and galaxy sizes, the second prefactor
is related to that ratio, while the first is only related to PSF quantities. This means that PR is not just a function
of the PSF, but also of the object being measured. Both are, of course, dependent on the shape measurement
method chosen (and on its hyperparameters, like the window size). We can then add these terms in (2.109),
yielding

êi = ei

1 +
δ(R2

PSF)

PRR2
gal

 − 1
PRPe

R2
PSF

R2
gal

δePSF
i +

δ(R2
PSF)

R2
gal

ePSF
i

 . (2.112)

For a Gaussian PSF, Pe and PR are exactly equal to 1 and (2.112) reverts to (2.109). Neglecting those terms is
thus likely acceptable for ground-based surveys, where the atmospheric contribution smooths out the PSF. It is
far less evident in the case of space-based surveys, however. Beyond the aforementioned undefined ellipticities,
the PSF of spaceborne instruments often suffers from far stronger ellipticity gradients, that is, the ellipticity of
their profile varies with the radius around center used to compute it (see Figure 2.12 for an illustration). In other
words, since the weighted measurements of ePSF are strongly dependent on the chosen window function, so is
Pe. In Chapter 3, we will address this issue, and indeed show that the simpler formulation of (2.109) no longer
holds in the case of Euclid.

While the addition of PR and Pe will prove sufficient to make this point, it should be noted that Massey et al.
(2012) in fact go further in that they also consider the error made in determining PR itself. This is achieved by
considering a weighted version of (2.107), then adding the first-order term in δ(PR) in (2.108). They note that
the same treatment could be applied to errors in Pe, though these would act in the exact same way as δePSF. In
light of the results of next chapter, however, I think even this additional term might be worth explicitly taking into
account, as even for one given PSF model, Pe would still vary from a shape measurement method to another.

A couple of alternatives to this formalism have already been suggested to quantify the impact of PSF errors
on shear measurement. Lu et al. (2017) propose to use real data, in a somewhat similar heuristic to that
used in calibration schemes (see Section 2.3.8). As is commonly done to assess the quality of a PSF model
a posteriori, they separate their star sample into two, and only use one of the sets to build their PSF model.

17As specified in the internal “EUCL-EST-TN-1-002” document.
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Figure 2.12: Illustration of the “ellipticity gradient” in a space telescope’s PSF. Each point shows the two elliptic-
ity components measured on the same simulated Euclid PSF, from a noiseless, very large image with extremely
small pixel sampling rate (much more so than that of the VIS detector).
The green point shows the measured ellipticity with no weight function (save for the truncation at the edges of
the large stamp), the blue one with a Gaussian weight with the size recommended for internal use within the
Euclid Consortium (EC)17, and the red ones with different square truncations with N pixels around the center.

They then perform galaxy simulations, complete with an applied shear, as would be done in a simulation-driven
calibration approach, but they convolve the profile with the stars they left aside. They then perform their shape
measurement using both the “true PSF” (i.e. the observed star) and their reconstruction of it. The difference
in shear biases found between the two sets of measurement gives their estimation of the contribution of the
PSF18. While this approach is definitely interesting, especially in its use of real data to try and measure the bias
brought by our PSF modelling, the use of noisy star images as ground truth PSFs would be impossible if these
were undersampled (as will be the case for Euclid). Even in the absence of undersampling, the use of noisy
convolution kernels can be problematic. A PSF model that somehow perfectly reproduced all stars in the field,
noise patterns and all, would lead to a measured bias that is strictly zero in this case. Except we know stars are
imperfect samples of the true, underlying PSF, so we do not really want our models to perfectly reproduce their
properties. For instance, the measurement of ellipticities on all stars in any given exposure is extremely noisy.

The other approach has very recently been proposed by Paykari et al. (2019). They construct an “end-
to-end” framework where all identified sources of errors and/or uncertainty on our measurement of shear are
applied on an object-by-object basis. Their approach can thus be used to account for more effects than just
those related to the PSF (though it is one of the two they chose as example for this first application), and comes
with the added benefits of treating all considered effects simultaneously, thus also capturing potential cross-
effects, and taking into account effects that arise as a function of sky position (e.g. because of where the CCD
mosaic falls with each pointing, which in turn creates patterns in where PSF and detector effects occur across
the whole survey).

2.4.2 Real data diagnostics

If we assume (2.109) to hold true, we can use it to build PSF model diagnostics applicable to real data.
We can see that the quantities impacting galaxy shape measurement are the residuals in ellipticity and size,
δ(ePSF

i ), δ(R2
PSF)/R2

PSF. All the experiments we will carry out in the main chapters of this thesis use simulations
where we had access to the ground truth PSF. We can thus compute the true values for these residuals. On
real data, these quantities must be estimated using stars.

As discussed in Section 2.3.7, measurements of shape parameters from quadrupole moments are ex-

18Note we will use a similar difference in measured biases in our own simulations (to remove all effects due to the shape measurement
itself and not the PSF model) in Chapter 3.
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tremely sensitive to noise. Building PSF diagnostics based on (2.109) will thus require averaging over large
numbers of objects. Rowe (2010) proposed a set of such statistics, expanded by Jarvis et al. (2016). These
are defined as follows:

ρ1(θ) =
〈
δe∗PSF(x)δePSF(x + θ)

〉
, (2.113)

ρ2(θ) =
〈
e∗PSF(x)δePSF(x + θ)

〉
, (2.114)

ρ3(θ) =
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δR2
PSF
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R2
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 (x + θ)
〉
, (2.115)

ρ4(θ) =
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〉
, (2.116)

ρ5(θ) =
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R2
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 (x + θ)
〉
, (2.117)

where ∗ denotes complex conjugation. The ρ statistics are therefore made up of all the combination of 2-point
auto- and cross-correlations between the shape residual terms (in ellipticity and size) appearing in (2.109), as
well as those with the actual PSF shape. These are the terms that appear when injecting equation (2.109) into
the computation of the shear 2PCF, ξ+, defined in (2.80). Their impact on the latter can be expressed as
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where α is the PSF leakage term defined in (3.46) (see Jarvis et al., 2016, for a recipe to estimate it from real
data).

Equation (2.118) can then be used to transfer requirements on the accuracy of the 2PCF into requirements
on the ρ statistics. Another appeal of the ρ statistics is that they can be used, as originally suggested by Rowe
(2010), as a mean to compare different PSF models. They can, in fact, even be used to compare the quality of
PSF models across different surveys. See Appendix B for an application to the CFIS survey.

2.4.3 Past and current PSF models

Let us now review all PSF models for WL, starting with all those already applied on real data, as shown in
Table 2.2 (and footnotes therein).

“Shape interpolation”

As can be seen in Table 2.2, the vast majority of early WL studies used what I have named “shape interpolation”
for PSF modelling. These early works used the KSB method (or some variant thereof) to measure the shapes
of galaxies, and KSB only requires specific quantities related to the PSF to carry out the correction, rather than
a full pixel model. These are the anistropic smearing, and the isotropic damping (as even a round PSF causes a
galaxy to become more circular). “Shape interpolation” as a PSF model thus amounted to measuring the shape
of stars, then interpolating those quantities across the field. This interpolation was, in most cases, carried out
polynomially. A significant exception to that is the early CFHT/CFH12K-based surveys we mentioned at the
beginning of this section, for which Hoekstra (2004) built a tailored interpolation function. Chang et al. (2012)
also proposed PSFENT, an interpolation scheme for star shapes based on maximum entropy. This approach
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was meant to handle the high (spatial) frequency variations induced by atmospheric distortions in ground-based
surveys with short exposure times (Heymans et al., 2012a) better than polynomial models could.

On ground-based surveys, this shape interpolation was carried out exposure-by-exposure. HST-based
studies made use of the telescope’s stability, and used exposures with dense stellar fields (e.g. observations of
globular clusters) to build the PSF model; see for instance Rhodes et al. (2004)’s model for the Space Telescope
Imaging Spectrograph (STIS) instrument (where corrective terms are added to a polynomial model of shapes),
and Schrabback et al. (2007), where different PSF models are built on each available dense star field, then
the few stars from each WL-useable exposure are used to select the closest model among those, in order to
recover the PSF model corresponding to the closest defocus value.

Another interesting exception to this early trend of interpolating only the shape of the PSF is that of Kaiser
et al. (2000) (another of the “First four”), where a spatially-varying model of the PSF in full pixel domain was used
(with further treatment, closer to the standard shape interpolation approaches of the time, for some identified
failure modes). The PSF at field position (x, y) is then constructed as

Ĥ(x, y) :=
∑

j

A j(x, y)S j, (2.119)

where each S j is a full image (rather than just a set of measurements of the shape of the PSF). The A j

coefficients were chosen to be linearly varying. This is extremely similar to the non-parametric approaches that
would appear several years later, and which we shall now describe.

Principal Components Analysis (PCA)

In most cases, building a non-parametric PSF model boils down to selecting a way to construct both the A and
S terms in (2.119). The most natural way to determine the latter from data is the use of PCA (Dunteman, 1989),
which can be either carried out on some quantities related to the PSF (e.g. some measurements of shape, like
in the above methods), or on actual star images themselves. In this case, the elements of S are once again full
images, sometimes referred to as eigenPSFs.

The use of PCA was first proposed, specifically for use in WL, by Jarvis and Jain (2004), though it was
already the method of choice for PSF modelling in the general SDSS pipeline (Lupton et al., 2001, where they
refer to PCA as the Karhunen-Loève transform), and was used for the subsequent WL measurements by Lin
et al. (2012) and Huff et al. (2014) (the former further perform a correction of shape residuals, akin to the
shape interpolation method described above). PCA also led to the final model used for WL analysis with the
HST (Schrabback et al., 2010). Their latest use on real data was in Jee et al. (2013)’s processing of the Deep
Lens Survey (DLS) data.

The choice of a set of A functions for each principal component, or eigenPSF, S j, is then a matter of
traditional spatial interpolation. Gentile et al. (2013) give a review of several such standard approaches, with
application to GREAT3 data.

PSFEx

Bertin (2011)’s PSFEx can be considered the gold standard in (freely available) non-parametric PSF estimation.
Designed as a companion software to SExtractor, the two were initially intended to be used in conjunction
to perform both the PSF modelling and the shape measurement (by model-fitting) steps. Though PSFEx has
never been used in this manner for WL on real data, it is for instance one of the methods applied to simulations
by Martinet et al. (2019) in their study of undetected galaxies and their impact on shear measurements. It is
applied, in a slightly modified form (to only use the PSF modelling part), in several current WL surveys, namely
DES (Zuntz et al., 2018) and HSC (Mandelbaum et al., 2017). See also Appendix B for our own application to
CFIS.
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The PSFEx model is polynomial, up to a user-set degree d, in any chosen set of SExtractor parameters.
By default, these are, naturally, field positions, leading to

ĤPSFEx(x, y) =
∑

p,q≥0
p+q≤d

xpyqS pq. (2.120)

The set of basis functions S can be chosen either by fitting the parameters of a chosen model or, by default, by
learning a full pixel model. A first guess S 0 is then estimated from a median image of all available observations
(reshifted to the same grid), and the final S := S 0 + ∆S is then learned by minimizing

min
∆S

χ2(∆S ) + ‖T∆S ‖2F. (2.121)

We will return to the χ2 term and define it explicitely in Equation 3.3.1 of next chapter. For now, let us simply
state that it is, as indicated by its name, a data fidelity term that ensures the model recovers the profile of the
observed stars. In Section 3.1.2, we shall introduce and discuss the need for regularization in inverse problems;
the right-hand term in (2.121) is one such, namely a Tikhonov regularization. In the case of PSFEx, T is chosen
to be scalar, and this term favors solutions S with smaller l2 norms.

This default configuration (polynomial dependence on positions and data-derived pixel basis functions) is
the one in which PSFEx was always ran in in WL surveys. Note that in this case, in order to rewrite (2.120) in
the general form of (2.119), we only have to define19

∀i, Ai := (xp
i y

q
i )p+q≤d. (2.122)

By doing so, we recast the problem solved when building the PSFEx model as one of matrix factorization, as is
our own proposed approach we will present in Chapter 3.

LensFit

LensFit (Miller et al., 2007; Kitching et al., 2008) is a Bayesian shape measurement approach of the model-
fitting class. It was the method used to process the CFHTLenS data, for which a non-parametric PSF modelling
approach was also developed (Miller et al., 2013). The name LensFit is now often used to identify the whole
suite of methods, which also includes others steps described in Section 2.3 beyond PSF modelling and shape
measurement. It was one of the entries in the GREAT3 challenge, under the name “MaltaOx” (Mandelbaum
et al., 2015). It is also currently being used in KiDS, as described in Kuijken et al. (2015), which incidentally
provides greater detail of the PSF part than the initial Miller et al. (2013) paper. Here, we shall focus on the PSF
modelling part of LensFit, which I will simply refer to as LensFit.

Unlike PSFEx, which builds a set of basis functions that contain as many pixels as the desired final model,
the LensFit model is fitted pixel-by-pixel. The value of each pixel is a polynomial combination of positions, up
to a user-set order d (called n in Kuijken et al., 2015). A significant improvement over PSFEx, which needs to be
fitted on each CCD separately, is that LensFit can be fitted jointly on the whole exposure. The discontinuities
in the PSF caused by the jump from one CCD to the next are handled by fitting the polynomial coefficients up
to a certain (also user-set) degree, nc ≤ d, separately on each detector.

One way to recast the LensFit model into our notation from (2.119) is thus as follows. Consider each S j to
be an image with a single non-zero pixel. There would then be as many as the desired number of pixels in the
final model (in KiDS, this number was chosen to be 35 × 35, at the same pixel scale as that of the instrument).
Let c denote the CCD number, and ND the number of CCDs in the camera mosaic. We then have

19Where, here and throughout, I shall try to use i to index different objects (stars or galaxies), and j to index elements of S , which I
shall carry on referring to as eigenPSF, even when they are not actually chosen through PCA.
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ĤLensFit(x, y) :=
∑

j


∑

p,q≥0
p+q≤nc

xpyq
ND∑
k=1

1{c(x,y)=k}a
( j)
kpq

 +
∑

p+q>nc
p+q≤d

xpyqa( j)
0pq

 S j. (2.123)

Note that, with these notations, LensFit uses predetermined S j’s and the free parameters to be fitted to star
observations are, for each pixel j,

A j :=
(
a( j)

kpq

)
k,p,q

. (2.124)

This is the opposite of PSFEx, where the A were predetermined by (2.122), and S learnt from the data. When
fitting the A j’s, each star is given a weight

wi :=
ν2

i

ν2
i + 502

, (2.125)

where νi is the integrated star SNR on its exposure.
The number of free parameters per pixel is then

Ncoeff =
1
2
[
(d + 1)(d + 2) + (ND − 1)(nc + 1)(nc + 2)

]
. (2.126)

In both CFHTLenS and KiDS, the parameters were chosen to be d = 3, nc = 1, after comparison of the quality
of the models resulting from several different values on a subset of the data. This led, for instance, to a number
of free parameters Ncoeff = 103 for KiDS (carried out with the OmegaCAM instrument that has ND = 32 CCDs).
While this may seem unreasonably high, it should be kept in mind that the fitting will be carried out using stars
from the whole exposure at once. Assuming a uniform distribution of stars on science exposures, this means a
factor of about ND more datapoints than would be available on each CCD.

Let us mention one last important specificity of LensFit that arises because it treats each pixel separately.
So far in this section, we have used (x, y) to denote the position, within an image, of an object. The true centroid
of this object is highly unlikely to fall precisely at the center of a pixel. We must thus consider each real object
to be sampled with an intra-pixel shift, corresponding to the difference between an arbitrary position within the
pixel grid and that of its true centroid. This is illustrated in Figure 2.13. When comparing an observed star with
a PSF model, one of the two needs to be shifted so that both are sampled on the same grid. In most cases
(e.g. PSFEx), the model is shifted to match each star. The opposite is true of LensFit, however, where the
observations are all shifted to a common grid. While this allows for each pixel to be treated independently, this
shifting, carried out using a sinc function, implies performing an intra-pixel interpolation on noisy observations.

TinyTim

We have already cited TinyTim (Krist, 1995) as the only example of a physical PSF model applied in a WL
context. The software can be used to build a model of the ACS on board the HST, the only spaceborne
telescope used for cosmological WL to date. Its specific use (and modifications) in this case are detailed by
Rhodes et al. (2007). Like later, PCA-based models used in the COSMOS surveys, TinyTim is ran with various
defocus levels, which were found to be the main driver in the temporal variations of the PSF. All the resulting
models are compared with the few available stars in the extragalactic exposures to select the best match, which
corresponds to finding the closest defocus level. This PSF model was the one used to build the first COSMOS
shape catalog (Leauthaud et al., 2007), though as we already mentioned, later analysis found a non-parametric
approach to yield more accurate models.



2.4. Point Spread Function 49

H

Y1

Y2

Figure 2.13: Illustration of intra-pixel shifts. The same PSF, H, is sampled on two different pixel grids, indicated
by the dotted white and dashed pink lines. Application of the degradation operator, Fd, yields two different
observations at detector pixel scale, Y1 and Y2. Despite their coming from the same object H, and being
shown in postage stamps of the same size, they appear very different because their respective centroids fall
at different positions with regard to, say, the central pixel of the stamp. Any PSF modelling approach based on
star observations must account for this effect through the use of intra-pixel shifts.
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Shapelets

Shapelets (Refregier, 2003) are a particular set of basis functions, that were originally considered for use in
galaxy shape measurement. In this case, the PSF itself can be decomposed in the shapelet basis (Refregier
and Bacon, 2003), and the correction can then be applied in shapelet space.

Every PSF modelling method we have presented up to now has been used in cosmic shear surveys. To
the best of my knowledge, this is not the case of a shapelet-based PSF model. It has, however, been used
by Romano et al. (2010) to perform a WL study of the Abell 611 object (which they also compared to a KSB
measurement, with standard “shape interpolation” as PSF model). They build a shapelet decomposition of
their stars, then interpolate the shapelet coefficients with a fourth-order polynomial, which amounts to using
the shapelet basis functions as S in (2.119). A shapelet-based entry was also submitted to the GREAT10 Star
Challenge under the name “Gaussianlets” (Kitching et al., 2013).

Fourier

Zhang et al. (2015) is the latest in a series of papers proposing a shape measurement approach, Fourier quad,
that was one of the main entries in the GREAT3 challenge (Mandelbaum et al., 2015). Like other moments-
based methods introduced in Equation 2.3.7, it relies on computing the quadrupole moments of the galaxy
images, though this computation is done in Fourier rather than direct space. To carry out the PSF correction,
the Fourier transform of the PSF model at the position of the galaxy is used, which in turn naturally brings forth
the idea of performing the PSF modelling step in Fourier space. Similar to LensFit in the direct domain, a
pixel-by-pixel interpolation is carried out from the Fast Fourier Transform (FFT; Cooley and Tukey, 1965) of the
star postage stamps, potentially after applying some noise mitigation scheme (Zhang et al., 2019).

One particular consequence of carrying out the PSF modelling in Fourier space is that application of the FFT
leads to centered postage stamps, and thus circumvents the issue of intra-pixel shifts and interpolation of noisy
objects that, as mentioned, LensFit suffers from. Moreover, Lu et al. (2018) recently proposed an approach
to remove correlations occurring because of remaining errors in the PSF model. While this is currently the
only approach that can deal with PSF modelling errors a posteriori, it is method-dependent, i.e. it can only be
applied in the specific case of a Fourier PSF model used with Fourier quad as the shape measurement.

Machine Learning

Let us once again turn to our equation (2.119), and equate the non-parametric PSF modelling to that of finding
an appropriate representation space. As mentioned, PCA is one of the most classical ways to obtain such
a representation. More recently, unsupervised machine learning methods have often been used to carry out
this task. Their application to the PSF modelling problem was already considered by the MegaLUT team of the
GREAT3 challenge and briefly mentioned in Mandelbaum et al. (2015).

An approach based on ANNs is presented in the PhD thesis of Kuntzer (2018). This approach requires
a very large training set of “true PSFs”, which typically would have to be obtained through simulations. This
then raises the concern of whether these PSF simulations can be made to be sufficiently realistic. Another
approach, proposed by Herbel et al. (2018), uses a Convolutional Neural Network, also trained on simulations,
to produce PSF models from a set number of parameters that can be measured from stars on actual data. This
in turn allows them to produce PSF models that match the properties seen on data, with their use in simulations
(rather than shape measurement) in mind.

VIS physical model

We now turn to two PSF models that have, at the time of this writing, not yet been described in published
work, but are under active development and planned to be used in some of the main ongoing and upcoming
WL surveys. The first is a physical (or parametric) model of the VIS PSF, which will be described in detail in



2.4. Point Spread Function 51

Duncan et al. (in prep)20. It contains both a physically-motivated “simulator” of the PSF, the VIS equivalent to
ACS’s TinyTim, and a fitting approach to select the parameters of this model from observed, undersampled
stars in Euclid images (including some planned calibration fields). An early version of this model is used and
briefly described in Paykari et al. (2019).

The bulk of the original work we will present in later chapters of this thesis also aims at building a VIS PSF
model, albeit within a non-parametric framework. Our approach and this one are currently being developed
entirely independently, which is desirable both for redundancy and cross-validation. As we already mentioned,
however, ultimately combining the two approaches is likely to lead to a better PSF model than either could
achieve separately.

Piff

The idea of such an hybrid approach, combining a physical and an empirical model of the PSF so that the latter
can capture and correct for effects missed by the former, was already suggested over a decade ago by Jarvis
et al. (2008). It is one of the planned features of Piff (PSFs In the Full FOV), a new PSF modelling Python
package. Its development, led by Mike Jarvis, is already at quite an advanced stage21.

Miscellaneous

Let us now briefly mention a few other noteworthy works in the field of PSF modelling. In the list we have just
built, several models create a full image of the PSF, often by working directly from the pixels of the star images
to construct their own basis S . This is, for instance, the case of PSFEx, when ran in its default configuration.
While this setting is the most widely used, PSFEx also allows for the use of predetermined basis functions
(namely, either the polar shapelets introduced by Massey and Refregier, 2005, or a user-provided set). In a
similar vein, and analogously to what is done when performing model-fitting for galaxy shape measurement,
one can in principle select an analytical profile, fit its free parameters to the observed stars, then interpolate
those over the field positions to obtain a PSF model. This was attempted in the variable PSF branch of the
GREAT3 challenge by the CEA-EPFL team, who used an elliptical Moffat profile (Moffat, 1969).

When using such an approach, like with many others (e.g. PCA or shape interpolation), the choice of the
interpolation function to use, that is, of the A coefficients in (2.119) remains free, and thus falls into the classical
problem of spatial interpolation, for which numerous methods exist. Reviews of several of these are given by
Bergé et al. (2012); Gentile et al. (2013) and, in the specific case of the Fourier approach described above, by
Lu et al. (2017). A particularly elegant alternative to these classical methods was recently proposed by Ngolè
and Starck (2017). It relies on notions of manifold learning and on numerical OT, specifically Wasserstein
barycenters, which we shall return to and use profusely in Chapters 4 and 5.

The only examples we have given of physical PSF models so far are those for the HST (TinyTim) and
Euclid (Duncan et al., in prep). Davis et al. (2016) proposed such an approach for Dark Energy Camera (DE-
Cam), though as DES is a ground-based survey, a full PSF modelling would also require handling atmospheric
effects, once again highlighting the importance of hybrid approaches. In this area, Xin et al. (2018) propose a
two-part model for the SDSS PSF, which is, interestingly, somewhat opposite to the hybrid case considered by
Jarvis et al. (2008). The latter suggested using the knowledge of the instrument, that is, of the optical PSF,
as a base model, to be complemented by an empirical approach to account for the remaining atmospheric (or
otherwise) effects. In contrast, this approach instead uses a physically-motivated model of atmospheric turbu-
lences (namely the von Kàrmàn turbulence model, De Karman and Howarth, 1938), further convolved with a
model aiming at capturing the (unknown) instrumental PSF.

“Pi of the Sky” is a very wide field of view (FOV) - 1.5 steradians! - experiment with the early detection of
(optical counterparts to) Gamma Ray Bursts as one of its main science drivers (Burd et al., 2005). This design
leads to a very highly distorted PSF toward the edges of the camera. The task of modelling such a PSF is of

20In the meantime, Euclid members may refer to the “EUCL-OXF-TN-draft” document.
21https://github.com/rmjarvis/Piff

https://github.com/rmjarvis/Piff
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course quite different from that of WL-oriented surveys, and entails dealing with dramatically stronger variations
across the field. Piotrowski et al. (2013) tackle this challenge using a physical model based on laboratory
measurements of the instrument, improved by a fitting procedure using observed stars.

Lastly, let us mention the work of Suksmono (2013), who uses a Compressed Sensing approach to inter-
polate PSF ellipticity field at all positions. This approach should therefore fall under the “shape interpolation”
category, yet is remarkable for two reasons. First, it makes full use of the definition of ellipticity as a complex
number, by considering the PSF ellipticity field as complex-valued random field. Second, as a compressed
sensing approach, it makes use of the same notion of sparsity that we shall introduce and use in our own
approach in the next chapter.

2.5 Euclid

We now turn our attention to the Euclid mission, main focus of the work presented in this thesis. As with the
beginning of this chapter, I shall start from the very general, with a broad overview of the mission, then quickly
narrow our scope down to those parts that my PhD work has related to. This will enable us, in particular, to
reach an understanding of some of Euclid’s specificities, and how they make the modelling of its PSF quite the
unique task, from which originates the need for new methods beyond those I presented in Section 2.4.3. For a
far more detailed (albeit somewhat aged) overview, we refer the reader to the Euclid Redbook (Laureijs et al.,
2011).

Euclid is a medium-class ESA mission, part of its “Cosmic Vision” program for the 2015−2025 decade. The
main observations will be carried from an eponymous space telescope, the launch of which is planned on a
Soyuz rocket in June of 2022. As already mentioned, complementary observations from several ground-based
surveys are critical to the overall mission, especially to obtain photo-z measurements. In this section, however,
I will focus on the Euclid spacecraft.

The spaceborne observatory will carry out its work, for an expected nominal mission span of 6 years, from
the L2 Sun-Earth Lagrange point. It will carry a 1.2m primary mirror, along with two instruments: the visible
imager VIS, and a Near Infrared Spectrometer and Photometer (NISP). The scientific exploitation of Euclid data,
and the design and construction of these two instruments is the responsibility of the EC, made up of about 1500
members from 14 participating European countries, as well as Canada and the United States of America.

The main science objectives of Euclid are in the field of cosmology, and especially aimed at a better un-
derstanding of the “Dark Universe”, that is, the distribution of dark matter and the nature of Dark Energy (see
Section 2.1.5). This will be achieved through the use of two main cosmological probe: galaxy clustering (includ-
ing the study of BAO), and WL. Several other scientific results will also be derived, both in cosmology (e.g. via
clusters of galaxies) and other areas of astronomy and astrophysics (e.g. exoplanets and solar system objects).

In addition to the three Euclid Deep Fields (EDFs, dubbed EDF North, EDF South and EDF Fornax) that will
be observed repeatedly in order to go deeper and probe the high-redshift Universe (which will also be useful for
WL, especially calibration; see e.g. Martinet et al., 2019), the Euclid Wide Survey aims to maximize the yield
of its two main cosmological probes. As both WL and galaxy clustering rely on the measurement of a large
number of objects, the aim is to observe as much of the sky as possible. Figure 2.14 shows the footprint of the
Euclid Wide Survey. Since the main objects of interest are distant galaxies, several zones are excluded both to
minimize the amount of contaminants and to maximize the quality of such observations. The former criterion
naturally leads to the exclusion of the plane of our own galaxy (where most observed objects would be intra-
galactic) and the Large Magellanic Cloud (LMC), the latter to that of the ecliptic plane (to avoid contamination
by zodiacal light cause by our own Sun) and regions of strong reddening (caused by intra-galactic dust and
measured to high accuracy by Planck ). Note that Euclid will carry out some observations in those excluded
areas, including some calibration fields which might prove particularly useful for PSF modelling. After exclusion
of these zones, the Wide Survey amounts to a total of 15, 000deg2, which will allow for the detection of billions
of galaxies, and a highly precise redshift measurement for tens of millions of them from the spectroscopic part
of NISP. The expected number density of galaxies suitable for shape measurement is of 30arcmin−2, a vast
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Figure 2.14: Full-sky map showing the Euclid Wide Survey (contoured in blue), and the main excluded zones:
galactic and ecliptic planes. The LMC, at the bottom-left of the southern extragalactic region, is also excluded.
Credit: Jean-Charles Cuillandre.

improvement even over the already impressive, current (effective) number density of 21.8arcmin−2 for the HSC
survey (Mandelbaum et al., 2017).

With WL measurements as one of its core objectives, Euclid has been designed with accurate shape mea-
surement as one of the main drivers. While the photometric part of NISP will contribute, along with complemen-
tary observations from the ground, to the determination of photo-z, the shape measurement itself will be made
using images from the VIS instrument. The VIS focal plane, represented in Figure 2.15, is made up of a mosaic
of 6 × 6 CCDs, each of them comprising 4096 × 4132 pixels. The pixel scale is of about 0.1arcsec, leading to a
very wide FOV of about 0.57deg2. For comparison, the FOV of the HST’s ACS instrument, from which the best
space-based WL catalogs to date were produced, is about 180 times smaller.

By design, the VIS PSF will allow for an exquisitely small (with an FWHM of less than 0.2arcsec), and highly
stable PSF. Nonetheless, because of the properties of the instrument we just detailed, its modelling will involve
both the handling of spatial variations that occur both across a very large FOV and that include high spatial
frequency variations caused by polishing errors in the mirrors. Star images will further be undersampled, which
means a super-resolution step will be required to achieve a properly sampled PSF model.

Moreover, all shape catalogs up to now (see Table 2.2) have been established either from the ground, or
with the HST. In either case, observations were carried out using fairly narrow filters. Once again, VIS was
designed to optimize shape measurement over a very large number of objects, which, by necessity, means
over very faint galaxies. A single, very wide band spanning most of the optical domain (from 550 to 900nm) was
thus chosen. This, however, comes at the cost of needing to handle the chromatic variations of the PSF.
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Figure 2.15: Schematic view of the VIS focal plane. Each almost-square region corresponds to one of the 36
CCDs. The gaps in between them are larger in one of the two directions (corresponding to either “Ysc” or “θx”,
two different conventions used internally within the EC).

None of the methods I presented in Section 2.4.3 can address all of these issues, save for the parametric
approach of Duncan et al. (in prep). As we have already argued and illustrated throughout this section, it is
highly desirable to also have a non-parametric approach to model the VIS (or any) PSF. Most of the work
presented in this thesis, starting with the next chapter, is precisely aimed at working towards a non-parametric
PSF model that can handle all of Euclid’s specificities.
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Monochromatic PSF field estimation
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In this chapter, we start our PSF modelling efforts in a simplified setting. In particular, while the PSFs we will
use to test our model are simulations of the VIS PSF, we do not yet take into account the chromatic variations,
and instead assume the PSF to always be sampled at the same wavelength.

We begin, in the first half of this chapter, with a brief overview of the mathematical tools our proposed
approach relies on. In Section 3.1, I introduce the fields of Inverse Problems, the use of sparsity as a regular-
ization, and how such problems can be solved in practice. Section 3.2 gives a very brief introduction to the few
concepts of Graph Theory we will use. Lastly, in Section 3.3, we finally apply all of these tools to the modelling
and the interpolation of a (monochromatic) Euclid PSF. These last two subsections largely correspond to (the
arXiv v1 of) Schmitz et al. (2019) (Paper II hereafter). They are the result of work done in collaboration with
Jean-Luc Starck and Fred Ngolè, and that benefited from numerous comments from EC members, especially
Lance Miller, Christopher Duncan, Henk Hoekstra, Peter Schneider and several of the other authors of Paper
II; a complete list is given in Appendix A.

3.1 Sparse Signal Processing

The use of sparse representations has proven beneficial to a great many applications, and has deeply impacted
the vast field of signal processing. It has also affected our everyday lives, for instance through considerable
breakthroughs in data compression. A related area where sparsity has had a profound impact is that of inverse
problems, which are precisely what our PSF modelling task will amount to. As with the previous sections, I will
start with a general overview of the field, then quickly move on to the specific concepts we will require in order
to build our first Euclid PSF model. For a more extensive view of Sparse Signal Processing, see the classical
textbook of Mallat (1999), and that of Starck et al. (2015).

55
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3.1.1 Inverse problems

We have already come to mention inverse problems a few times throughout this thesis; for instance, when
performing galaxy shape measurement with model-fitting methods (Equation 2.3.7). Some instances of PSF
modelling also rely on solving an inverse problem. In both cases, starting from observations (galaxies and
stars, respectively) that are assumed to have resulted from some process F (called the forward operator or, in
some cases, the “observation model”), the aim is to invert that process in order to recover some knowledge, X,
that could not be measured directly. As an illustration, recall our Figure 2.13. There, an initial, finely sampled
PSF H went through the process, Fd, of sampling on a pixel grid, leading to observations Yi with coarser pixels.
Suppose we started from these observations Yi, considered the forward operator F := Fd, and tried to recover
the undegraded PSF, X := H, we would effectively be solving an inverse problem. It is, in fact, close to the one
we will actually solve in Section 3.3, although it will then take a much more complex (and realistic) form. In the
case of our other example, suppose we were fitting a Sérsic profile with intensity I, size Re and (Sérsic) index
n as free parameters, given an ellipticity (e1, e2) by application of a shear transformation. Starting with noisy
galaxy observations and knowledge of the PSF H, the model-fitting step consists in solving the inverse problem
with X := (I,Re, n, e1, e2), and

F : X 7→ Fd
(
S(I,Re, n) ◦ G(e1,e2)

)
, (3.1)

where Fd is still the operator that samples on finite pixels,

S(I,Re, n) : (x, y) 7→ I exp

−bn


 √

x2 + y2

Re

1/n

− 1


 (3.2)

is the Sérsic profile (with bn a normalization factor), and the shearing operator is defined as

G(e1,e2) : (x, y) 7→
(
1 − e1 −e2
−e2 1 + e1

) (
x
y

)
. (3.3)

In practice, the forward operator is often not invertible. In those cases, inverse problems are solved by
choosing some cost function, L, that measures how well the chosen X reproduces the observations. The aim
is then to find the value(s) of X that minimizes this cost, that is, to solve

min
X
E(X) := L(F(X),Y). (3.4)

We already gave an example of such in (2.121), the cost function solved by PSFEx to build its PSF model.
Solving (3.4) can be achieved by using optimization methods; we will present those used in the present case in
Section 3.1.4.

3.1.2 Regularization

Before turning to the practical solving of inverse problems, let us first consider another example. Equation
(2.119) allowed us to cast the PSF modelling problem as the choice of two matrices, S and A. We then saw,
through PSFEx and LensFit, examples where A was fixed and S learned from the data, or S fixed and A
learned, respectively. When performing PCA, neither are set in advance, and both S and A are computed from
the data, with S being the eigenvectors and A the corresponding codes (that is, the coefficients given to each
entry of S to reproduce the original datapoints).

PCA thus offers one specific way of solving the general inverse problem that amounts to finding two matri-
ces, S and A, such that observations X are reconstructed through their combination:
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X ≈ S A. (3.5)

This class of inverse problems, called matrix factorization, sets the framework we will use in the second half of
this chapter (and generalize in the next).

Hadamard (1902) defined “well-posed” problems as those for which a solution exists, is unique, and well-
behaved (in that it varies continuously with the initial conditions, or observations). Problems that do not meet
these conditions are ill-posed. Such is the case of most inverse problems.

Consider the case of matrix factorization. For a given set of observations Y, let us choose

L(Y, S , A) := ‖Y − S A‖2F, (3.6)

with ‖.‖F the matrix Fröbenius norm, as our loss function. Suppose we found one solution, S ∗, A∗, to our inverse
problem. For any scalar α, define

S̃ ∗ := αS ∗, (3.7)

Ã∗ :=
1
α

A∗. (3.8)

(3.9)

We have L(Y, S ∗, A∗) = L(Y, S̃ ∗, Ã∗), and these new quantities are therefore also a solution. Matrix factorization
is then indeed ill-posed, as there exists infinitely many solutions.

Recall how, after introducing the Einstein equations (2.4) in Chapter 2, we found ourselves in the need for
additional assumptions (which we found in the Cosmological Principle) in order to be able to find solutions.
Similarly, in order to solve ill-posed inverse problems, it is common to use regularization, that is, the addition of
constraints on our final solution. A classical example is the Tikhonov regularization, i.e. the addition of an l2
term to (3.4). The problem solved by PSFEx uses such a regularization, as shown in (2.121).

3.1.3 Sparse representation

Another extremely useful constraint is the use of sparsity. Consider the discrete, 1-dimensional (1D) signal
X(t) := sin(π/2 + 2πt), shown in purple Figure 3.1a. We show its FFT, X̃(k), in Figure 3.1b. Most of X̃’s
coefficients are 0: we then say X is sparse in Fourier space.

Suppose we only have access to noisy observations Y, shown in black, in both spaces, in Figure 3.1. In
order to recover our initial signal, we can make use of its sparse representation by adding a constraint. The
most natural way is to use the l0 pseudo-norm,

‖X‖0 :=
∑

i

1{xi,0}, (3.10)

that returns the count of non-zero entries. Let us then build our cost function as:

• an l2 term to ensure our reconstruction is close to the observations, the data-fidelity;

• an l0 term to favour solutions with few non-zero coefficients in Fourier space, the sparsity constraint.

The problem to solve would then be

min
X
E(X) := ‖Y − X‖22 + λ‖X̂‖0. (3.11)
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Figure 3.1: Toy example of signals with a sparse representation.

λ is a new hyperparameter that regulates the trade-off between how close we want to match the observed
data, and the importance of our additional constraint. It is typically chosen by using some knowledge about (or
estimation of) noise properties. We show the solution (see Section 3.1.5) to (3.11) in red in Figure 3.1a, for
λ = 20. The signal is remarkably well recovered despite the poor apparent quality of the observations.

This successful recovery is because the assumption of sparsity in Fourier domain was exactly correct. That
is not necessarily the case for all signals, of course. However, the same idea can be used by finding other,
appropriate representation spaces for the signal of interest. Wavelets are often used to achieve this. They
come in several different forms, but can be considered, roughly speaking, as a generalization of the Fourier
transform. They have proven invaluable, for instance, in treating natural images. We once again point the
reader to Mallat (1999)’s textbook for more details on wavelets and their applications. These have spun many
fields, including astrophysics, where the Starlet, or Undecimated Isotropic Wavelet transform (Starck et al.,
2011) has been used to tackle many inverse problems. The Starlet decomposition of a Euclid PSF is shown in
Figure 3.2 as example.

3.1.4 Convex optimization

We now turn to the issue of solving (3.4). In some cases, the solution can be found analytically, e.g. when finding
the minimum amounts to solving a linear system. In other cases, we must often turn to iterative schemes. If E
is differentiable, a necessary condition for X∗ to be a minimum is

∇E(X∗) = 0. (3.12)

If E is also convex, this condition is sufficient; if it is strongly convex, any such point will be the unique global
minimum. The field of convex optimization aims at solving such problems. Nesterov (2018) provides a recently
updated textbook covering the field. Let us note that even when the function we aim to minimize is not convex, it
can still be possible (and sensible) to apply convex optimization tools. For instance, in some cases, we might not
be interested in finding the global minimum of (3.4), and a local minimum might be sufficient for our purposes.
This is often the case when the problem we are solving is aimed at learning a new representation space for our
data, e.g. in Chapter 4. We will address the non-differentiable case later in Section 3.1.5.

In convex optimization, finding the point that verifies (3.12) is often achieved through gradient descent :
starting at some initialization X(0), we will iteratively follow the direction of ”steepest descent”, that is, the one
opposite the gradient:



3.1. Sparse Signal Processing 59

Figure 3.2: Example image (left) and its Starlet decomposition. The wavelet coefficient at each successive scale
j ≤ 5 is an image, of the same size as the original, that captures decreasingly finer variations. The “coarse
scale”, at the bottom right, contains the remaining information that is, by construction, a smooth approximation
of the input image.
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Figure 3.3: Illustration of gradient descent methods. The grey dotted lines denote isolines of the objective func-
tion, E = f , and the black star its global minimum. The first two iterations (3.13) are shown, for an appropriate
step size α (in purple) and one that is too large and leads to oscillations around the objective (in red).

X(t+1) := X(t) − α∇E(X(t)), (3.13)

where α is the step size and determines how far along this path we will move. As α becomes infinitely small,
we are sure that E(X(t+1)) ≤ E(X(t)). However, the larger α is, the faster we will move toward the minimum. This
is illustrated in Figure 3.3. If the gradient of E is L-Lipschitzian, that is,

∀(X,Y), ‖∇E(X) − ∇E(Y)‖ ≤ L‖X − Y‖, (3.14)

then choosing α ≤ 2/L ensures convergence. If that is not the case, or there is no way to compute L, α can
instead be chosen empirically at each iteration using a line search method, for instance Armijo’s rule (Armijo,
1966).

Finding X∗ that verifies (3.12) amounts to finding the zeros of ∇E. A classical method to find the zeros of a
differentiable, smooth function g is the Newton method,

X(t+1) := X(t) −
g(X(t))
g′(X(t))

. (3.15)

When applicable, the Newton method comes with theoretical guarantees of quadratic convergence. It is there-
fore tempting to try and apply it in the case of our optimization problem by taking g := ∇E. This is thus only

possible if E is twice-differentiable, and in this case its inverse Hessian matrix,
(
∇2E(X(t))

)−1
appears as the g′

term in (3.15). Note that in this case, we can see the application of the Newton method as a particular case of
the generic gradient descent in (3.13), with a particularly efficient choice of α, at each iteration, as a function of
the Hessian.
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It is often intractable to compute or invert the Hessian of E in practice. In the same way as α can be
empirically chosen at each iteration when L cannot be directly computed, we can instead use an empirical
approximation of the Hessian that is updated at each iteration. This scheme is called the Quasi-Newton method.
It is a very efficient way to solve optimization problems when the cost function is smooth and there are no added
constraints, i.e. when the need for regularization that we saw in Section 3.1.2 does not arise. The most famous
Quasi-Newton method is the Limited memory BFGS (L-BFGS) (Morales and Nocedal, 2011), which we will use
in Chapter 4 to solve a non-constrained optimization problem.

3.1.5 Proximal methods

Standard gradient descent and Newton methods both require the computation of the gradient of the cost func-
tion. This is impossible if it includes a non-differentiable term, as is often the case when we use regulariza-
tion. For instance, recall our example of denoising with a sparsity constraint in Fourier domain of (3.11); the l0
pseudo-norm is non-differentiable, and neither of the above approaches can be directly applied. Proximal meth-
ods (Parikh and Boyd, 2014) allow for such problems to be solved, and are an extremely powerful tool to solve
constrained optimization problems. They rely on the the proximal operator (Moreau, 1962, “prox” hereafter),
defined for a function g as

proxg(Y) := argmin
X

(
1
2
‖X − Y‖22 + g(X)

)
. (3.16)

For a list of the properties of the prox as an operator, we refer the reader to Combettes and Pesquet (2011).
Here, we focus on their use in solving minimization problem.

Several functions g that are commonly used for regularization of inverse problems have a closed-form prox.
We shall call these functions proximable. Let us mention a few significant examples of proximable functions
that we will use in the present work. For a set C, we define its indicator function as

ιC(X) =

0 if X ∈ C,
+∞ otherwise.

(3.17)

Note it is different to the (finite) indicator function we have introduced in (2.35). The addition of an ιC(X) term
to our cost function therefore enforces the constraint that the final solution should belong to C. This allows for
a wide range of regularization. For example, if we want our solutions in Rp to contain only positive values, we
can set C := Rp

+. For a convex set C, the prox of ιC is simply the orthogonal projection onto C.
Other important examples are sparsity constraints. In the example of Section 3.1.3, we introduced the l0

pseudo-norm as a way to enforce sparsity. If g(X) := λ‖X‖0, with λ a scalar parameter as in (3.11) then its prox
is the hard-thresholding operator, defined as

HTλ(X) =
(
1{|xi |≥λ}xi

)
i . (3.18)

The l0 norm is the natural way to enforce sparsity, but has the major caveat that it is not convex. It is therefore
common to use the l1 norm, as a convex relaxation, in its stead. Donoho and Huo (2001) show that the l1 norm
(or any lp for 0 ≤ p ≤ 1) does also promote sparsity and can, in some cases, recover the exact solution that
would have been obtained by using the l0. With g(X) := λ‖X‖1, the prox is once again analytically known. It is
the Soft-Thresholding operator,

STλ(X) =

(
1{|xi |≥λ}

(
xi −
|xi|

xi
λ
))

i
, (3.19)
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Figure 3.4: Hard- and soft-thresholding operators, for a given λ parameter.

shown along with HT, in the 1D case, in Figure 3.4.
Proximal methods aim at solving minimization problems that include both a differentiable and a proximable

terms. For their theoretical foundation, proofs of properties and convergence, we refer the reader to the afore-
mentioned general references (Combettes and Pesquet, 2011; Parikh and Boyd, 2014), or to those related to
each specific proximal algorithm. Intuitively, one can think of them as a generalization of the gradient descent
approach to the case where the loss function is not differentiable. As an illustration, consider problems of the
form

min
X
E(X) := f (X) + g(X), (3.20)

with f smooth, differentiable and convex, and g proximable. The Forward-Backward splitting algorithm offers
an iterative scheme to solve these problems, namely,

X(t+1) := proxαg
(
X(t) − α∇ f (X(t))

)
. (3.21)

Note the term inside the prox is the usual gradient descent iteration of (3.13) (the “forward step”). The application
of the prox (“backward step”) then ensures the constraint expressed by g is enforced. This is illustrated in
Figure 3.5 in the case where g := ιC . Note that in this case, the forward-backward splitting is equivalent to the
long-used “projected gradient descent”.

In the case where there are more than one proximable function,

min
X
E(X) := f (X) +

∑
k

gk(X), (3.22)

e.g. because we are enforcing several constraints simultaneously, the problem can be solved by the General-
ized Forward-Backward proposed by Raguet et al. (2013). Lastly, Condat (2013) propose a method to solve
problems of the form

min
X
E(X) := f (X) +

∑
k

gk(LkX), (3.23)

where the (Lk)k are bounded linear functions. This can, for instance, be used when we want to apply a sparsity
constraint to our solution, but within a given representation space. For instance, in our previous example, the l0
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Figure 3.5: Illustration of the first two forward-backward splitting iterations, for E = f +ιC , where f is the same as
in Figure 3.3. The dotted arrows denote the forward step, corresponding to a gradient descent iteration (3.13),
and the dashed arrows to the application of proxιC .

norm was applied to X̃, the FFT of our solution X. Similarly, when using a non-orthogonal wavelet transform, Φ

(e.g. the Starlet transform), the prox of g : X 7→ λ‖ΦX‖1 does not have a closed form, and is often estimated
iteratively. Alternatively, one can take L1 := Φ in (3.23), as was for instance done by Farrens et al. (2017) to
deconvolve galaxy images from a spatially-varying PSF. All three of these proximal methods are implemented
in the freely available ModOpt1 python package, that we used for the applications presented in the rest of this
thesis.

3.1.6 Alternated minimization

In some cases, such as the matrix factorization example of Section 3.1.2, we want to minimize some cost E
that is function of more than one variable, and not multiconvex. That is, while the problem might be convex with
regards to each variable taken separately, it is not jointly convex in all of them. A standard example is that of
dictionary learning, a particular case of matrix factorization, where we want to learn both a dictionary D and a
set of codes Λ2. This problem typically takes the form

min
D,Λ
‖Y − DΛ‖2F + gD(D) + gΛ(Λ), (3.24)

where the g terms enforce some constraint on either or both of D and Λ. Several well-known variants of
dictionary learning can be recovered with different choices of gD, gΛ. For instance, the problem of Non-negative
Matrix Factorization (NMF) is that where both are chosen to be ι+, by which we denote the indicator function of
R

p
+ for any p, the dimensionality of its inputs (in this case, either the dictionary or the codes). See Section 4.1.1

for a quick overview of dictionary learning methods.
1https://github.com/CEA-COSMIC/ModOpt
2In this context, Λ denotes a matrix containing a set of weights, and has nothing to do with the hypothetical cosmological constant

discussed in Equation 2.1.5. This will also be the case throughout Chapter 4.

https://github.com/CEA-COSMIC/ModOpt
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Figure 3.6: An example unweighted graph.

Such problems are often solved by alternated minimization, that is, by iteratively solving for one parameter
(e.g. the dictionary D) while considering the others (say, the codes Λ) fixed. A great body of literature exists
on alternated schemes, including proofs of convergence under certain assumptions. See, for instance, the
Proximal Alternating Linearized Minimization of Bolte et al. (2010).

3.2 A primer on graph theory

In this section, we give a very brief introduction to some graph theory concepts that we will use in our building
of a PSF model in next section. Let us first define the Laplacian matrix. Consider an unweighted graph such
as that shown in Figure 3.6 (where each vertex i is identified through ui). We define the degree, d(i), of vertex
i as the number of edges connected to it. In our example, we have d(1) = d(4) = 3, d(2) = d(5) = 1 and
d(3) = 2. The degree matrix D is simply the diagonal matrix with Dii = d(i). It contains information about
the graph’s connectivity, but none about its actual structure (as we cannot know which vertices contribute to
another’s degree). This is contained in the adjacency matrix A, which in the unweighted case is simply defined
as

Ai j =

1 if there is an edge between vertices i and j,
0 otherwise.

(3.25)

We can now define the Laplacian matrix of a graph as

L = D − A. (3.26)

In the example of Figure 3.6, the Laplacian would be
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L =


3 −1 −1 −1 0
−1 1 0 0 0
−1 0 2 −1 0
−1 0 −1 3 −1
0 0 0 −1 1


. (3.27)

The Laplacian matrix is a central tool to graph theory. In the next section, we will introduce the PSF Graph,
wherein each vertex will correspond to a star, and the edges will be weighted by a function of the distance
in-between them. Generalizing the definition of L to the weighted case is an intuitive procedure. While the
adjacency matrix entries up to now only contained a binary information (either two vertices are connected, or
they are not), in the weighted case we replace that with the weight on the corresponding edge: the entries of
A now tell us quantitatively how connected two vertices are. Similarly, for the degree matrix to quantify the
amount of connectivity of a given vertex rather than just count the number of edges, we define the degree of
node i as d(i) =

∑
j Ai j, that is, the sum of the weights carried by all edges connected to vertex i.

As a pathway toward defining wavelets on graphs, Hammond et al. (2011) introduced, by analogy with
the usual transform, the Fourier transform on graphs. For a graph G with Laplacian L, let (Vl)l denote its
eigenvectors. For any function f defined on the vertices of G, we define its Fourier transform as

f̂ (l) := 〈Vl, f 〉. (3.28)

Using this definition, one can then set constraints (e.g. sparsity) on the Fourier transform of a graph-valued
function. We will use this tool to capture the spatial variations of the Euclid PSF in the next section.

3.3 Non-parametric Euclid PSF field recovery

In this section, we start building our non-parametric PSF modelling approach. We first consider a simplified
setting that does not yet include all of Euclid’s specificities. It will already require us to use the tools we
have presented in the first half of this chapter, and will also provide an opportunity to revisit the issue of PSF
error propagation of Section 2.4.1. Indeed, we will compare our proposed approach to PSFEx in a Euclid-
like setting, leading to two different imperfect PSF models we can use to explore the impact of PSF errors
on galaxy shape measurement. In particular, by propagating the errors of both PSF models through different
shape measurement methods, we examine whether the usual assumption that these two issues can be treated
separately still holds for Euclid.

The aspects of the PSF, and other factors that could impact its modelling, that we leave aside in this section
are the following. Binary stars can impact the PSF model if they are not removed from those objects used
to fit the PSF model. Since previous work (Kuntzer et al., 2016; Kuntzer and Courbin, 2017) deals with the
identification of such objects, we will assume throughout this thesis that they have already been removed.
More generally, in this thesis, we will always work under the assumption that our star catalogs are empty from
contamination (except for our work on CFIS data in Appendix B). Detector effects such as CTI and the BFE are
also assumed to have been treated separately (see Section 2.3.1). Effects due to the AOCS and guiding errors,
on the other hand, would contribute to the PSF as an extra convolutive term. Here, we focus on the optical PSF.
In practice, the kernel of the extra convolution should be obtainable from precise time-series measurements of
the instrument’s AOCS. The system PSF could then be recovered by simply convolving together this kernel with
our own optical PSF model.

In Section 2.5, we discussed the large band of the VIS instrument and its implications on the chromatic
variations of the PSF (Cypriano et al., 2010; Eriksen and Hoekstra, 2018). No existing non-parametric approach
can model these variations. We will propose the first one in Chapter 5. It relies on yet another class of
mathematical tools, namely numerical OT, that we will introduce and apply in Chapter 4. In this section, we will
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start our efforts by using the simulated VIS PSF at a single wavelength, which will allow us to use PSFEx for
comparison.

The simulations used in this section (further described in Section 3.3.4 and Ngolè et al., 2015) did not
yet include manufacturing and polishing errors. These can induce variations of the PSF that occur on very
small spatial scales. As discussed below, the proposed method can by construction handle these high-spatial
frequency variations (with the strong caveat that observations need to fall within the area of variation for our
model to account for it).

Lastly, the modelling we carry out in the present work is done at a single point in time, with a low number
of observed stars. As we already saw was the case for the HST, the telescope will in truth vary with time,
which means the PSF modelling should be performed on each exposure separately (or on a set of exposures
taken closely enough in time that the temporal variation can be neglected). However, another approach is
to include the temporal variation within the non-parametric model itself, and fit it either to several exposures
simultaneously, or in an online way, updating the model with each new available exposure. Not only could this
improve the quality of the PSF model, it might also help mitigate two serious limitations of the non-parametric
method: its quality depending on the number of stars available, and the aforementioned need to observe one
precisely at the position of high-spatial frequency variations (which should be constant with time).

In our simplified setting, the two main issues to tackle are the spatial variations of the PSF and the un-
dersampling of star images. Of the methods we presented in Section 2.4.3, PSFEx remains the most widely
used method and is, to the best of our knowledge, the only one to deal with both the super-resolution and
the spatial variation steps at the same time. Mandelbaum et al. (2017) found the PSFEx-based model of the
HSC PSF to perform poorly when seeing becomes better than a certain value, close to the threshold at which
PSFEx automatically switches to the super-resolution mode (Bosch et al., 2017), and could indicate issues with
PSFEx’s handling of super-resolution (and the need for other non-parametric methods to deal with this problem).
Super-resolution is a well-studied problem in image processing, where sparsity-based methods (Starck et al.,
2015) have been shown to perform extremely well. Ngolè et al. (2015) showed this to hold true in the particular
case of PSFs. However, contrary to the typical setting of the super-resolution problem where the object of
interest is observed several times with slight shifts (Rowe et al., 2011), in the case of Euclid, we instead have
several undersampled observations of the PSF at different positions in the FOV. Ngolè et al. (2016) recently
introduced Resolved Components Analysis (RCA), a method specifically designed to handle such a problem,
but estimating the PSFs only at star positions.

In this section, we expand the RCA method by capturing spatial variations of the PSF through a set of PSF
graphs. We can thus estimate the PSF at any arbitrary position in the field, while preserving all the properties
of the RCA-recovered PSF field. This leads to a new approach that can deal, similarly to PSFEx, with both
super-resolution and spatial variations. The python library is freely available3.

The official Euclid requirements for WL are that the overall multiplicative shear bias should be lower than
2 × 10−3. As discussed in Section 2.4.1, using the approach of Cropper et al. (2013), this in turn leads to
stringent requirements on the PSF model accuracy: the root mean square (RMS) error on each ellipticity
component

(
ePSF

i

)
i∈{1,2}

should be lower than 5 × 10−5, and that on the relative size δR2
PSF/R

2
PSF (as defined in

Section 2.3.7) lower than 5 × 10−4. As we will see in the experiments of this section, the proposed approach
cannot yet, on its own and using only a small number of stars, achieve these requirements. It does, however,
already provide an improvement over PSFEx.

The rest of the section is organized as follows: Section 3.3.1 describes the formalism of the PSF recovery
field problem we adopted, Section 3.3.2 gives a quick overview of the RCA method and Section 3.3.3 presents
the new PSF field recovery method. In Section 3.3.4, we apply both PSFEx and our approach to recover sim-
plified Euclid-like PSFs and compare the resulting models. We then use them for galaxy shape measurement
and study the impact of PSF modelling errors in Sections 3.3.5 and 3.3.6. We give some partial conclusions to
this chapter in Section 3.3.7.

3https://github.com/CosmoStat/rca

https://github.com/CosmoStat/rca
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3.3.1 Modelling the PSF field from stars

Notations

Let us first describe the problem at hand. Let H(u) denote the (unknown) PSF that we wish to estimate; H
is a function of u = (x, y), a 2D vector containing the position within the image. It is the full, untruncated PSF
intensity profile, and thus outputs a continuous image at any position u. Here and throughout this paper, all such
positions will be given in “image” coordinates (i.e. within the instrument’s CCDs), since the position of objects
on the sky has no influence on the PSF they are affected by. Similarly, here we consider H to be a single PSF
that aggregates all effects (e.g. diffraction, imperfect optical elements). In particular, we do not consider the
intermediary, relative position of incoming light rays from a given object on each individual optical component.
We also consider the spatial variations of the PSF to be slow enough that the entirety of an object whose center
lies at position u is affected by the same H(u).

Assume we observe a set of nstars stars across the FOV, at positions Ustars :=
(
u1, . . . , unstars

)
. Each star i

gives us a noisy, undersampled observation of H :

Yi = F (H(ui)) + Ni, (3.29)

where Ni is a noise vector and F is the degradation operator, i.e. the effect of the realization on the instrument’s
CCDs. In our case, we separate its effects in two distinct operators,

F = Fd ◦ Fs. (3.30)

Fs is a discrete sampling into a finite number of pixels, which turns each continuous imageH(u) into a truncated
p × p image sampled at our target pixel size. Fd is composed of a sub-pixel shift (as illustrated in Figure 2.13),
and a further downsampling matrix M (i.e. the pixel response of our instrument) that can lead to undersampling.
Denoting by D the downsampling factor caused by M, the available observations Yi are thus Dp × Dp images.
In the following, we will treat them as flattened vectors of size D2 p2.

The problem at hand is composed of the two following parts:

• from observations Y := (Y1, . . . ,Ynstars), build an estimator Ĥ of the true PSFH at corresponding positions
Ustars;

• recover the PSF at the galaxy positions,Ugal , Ustars.

In our present case of undersampled observations, while still discretized, we want our PSF model Ĥ to be
sampled on a finer grid than observations (Yi)i, that is, to counter the effect of Fd.

PSFEx

We gave a brief introduction to PSFEx in Equation 2.4.3. Recall from (2.121) that it built its model by solving
an inverse problem with a χ2 data fidelity term and a Tikhonov regularization. Using the notations we just
introduced, the former can be defined as

χ2(∆S ) =

nstars∑
i=1

∥∥∥∥∥Yi − Fd ([S 0 + ∆S ]Ai)
σ̂i

∥∥∥∥∥2

2
, (3.31)

where σ̂2
i contains the estimated per-pixel variances.

Here, we include the flux normalization, sub-pixel shifting and potential downsampling (if super-resolution
is required) operators in Fd. Shifting of the PSF models to the same grid as those of the observed stars is
performed, both within PSFEx and for our proposed approach in the upcoming section, through the use of a
Lanczos interpolant (as opposed to LensFit that uses, as described in Equation 2.4.3, a full sinc interpolation).
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Figure 3.7: RCA’s matrix factorization.

3.3.2 Resolved Components Analysis

Overview

RCA (Ngolè et al., 2016), like many other methods (including PSFEx, as shown in Equation 2.4.3), achieves
super-resolution through matrix factorization. The PSF at the position ui of each star is reconstructed through
a linear combination of a set of eigenPSFs, S j:

ĤRCA
i := ĤRCA(ui) =

r∑
j=1

S jAi j = S Ai, (3.32)

where each eigenPSF S j is an image of the same size as the PSF images. Introducing the set of all re-
constructed PSFs at star positions, Ĥ =

(
Ĥ1, . . . , Ĥnstars

)
, we thus have the matrix formulation illustrated in

Figure 3.7.
Because our data is undersampled, a strong degeneracy needs to be broken: infinitely many finely sampled

PSFs would manage to reproduce the observed undersampled stars. RCA manages to break this degeneracy
by enforcing several constraints on both S and A that reflect known properties of the PSF field.

1. Low rank : the PSF variations across the field should be capturable through a small number of eigenPSFs
r. This can be enforced by choosing S to be of dimension p2 × r, with r � p2.

2. Sparsity: the PSF should have a sparse representation in an appropriate basis, which can be enforced
through a sparsity constraint on the eigenPSFs.

3. Positivity: the final PSF model should contain no negative pixel values.

4. Spatial constraints: variations of the PSF across the field are highly structured, and the smaller the
difference between two PSFs’ positions ui, u j, the smaller the difference between their representations
Ĥi, Ĥ j should be.

The last of these constraints is achieved through a further factorization of A itself, described in the following
subsection.
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Spatial regularization on graph

The spatial variations of the PSF across the FOV is highly structured, with both smooth variations that take
place across the whole field, and some much more localized changes that only affect PSFs in a small part of
it. If we had access to evenly spaced samples, this would amount to variations occurring at different (spatial)
frequencies. We could then capture these variations by making each of our eigenPSFs contain information
related to a given spatial frequency. Our sampling of the PSF is, however, dependent on the position of stars in
the field over which we have no control.

RCA overcomes this hurdle through the introduction of graph harmonics: each row Ak of A, which contains
the weights given to all observed star positions for eigenPSF k, is associated with a graph. For k ∈ {1, . . . , r},
let Pek ,ak denote the Laplacian (up to a constant multiplication on the diagonal) of the graph associated with Ak

(and thus to the kth eigenPSF). We define it as

(
Pek ,ak

)
i j :=

−1
‖ui − u j‖

ek
2

if i , j,

(
Pek ,ak

)
ii :=

nstars∑
j=1
j,i

ak

‖ui − u j‖
ek
2
. (3.33)

From the definition of the Laplacian for a weighted graph given in Section 3.2, we can see that these Pek ,ak

are precisely the Laplacian matrices of a fully connected graph with the edge between i and j weighted by
1/‖ui − u j‖

ek
2 , multiplied (entry-wise) by a matrix L̃D, defined as

L̃D := akId −



0 −1 −1 . . . −1
−1 0 −1 . . . −1
...

. . .
...

−1 . . . −1 0 −1
−1 . . . −1 −1 0


. (3.34)

In other words, each of our r PSF graphs are fully connected graphs with the edge between positions ui and u j

given a weight of 1/‖ui − u j‖
ek
2 . The role of ek in associating each of our graphs to a certain spatial frequency

is straightforward: the higher its value, the stronger the decay in edge weight as the distance between two
vertices increases, leading to the graph capturing lower spatial frequencies. Comparing (3.34) to (3.26) gives
an intuitive (though unrigorous) interpretation as to the role of ak: it amounts to multiplying the degree matrix of
our graph by ak, in turn affecting its overall connectivity.

By carefully choosing the parameters of our set of graphs, (ek, ak)k∈{1,...,nstars}, we can thus make each of them
sensitive to different ranges of distances, which leads to the harmonic interpretation. See Ngolè et al. (2016,
particularly Sections 5.2, 5.5.3 and Appendix A) for more details, as well as a scheme to select appropriate
(ek, ak)k from the data.

We enforce the link between A’s rows and their corresponding graph through the addition of a constraint on
the former. Namely, we want to preserve the graph’s geometry through A so that the amplitude of coefficients
associated with a certain eigenPSF varies with the right spatial harmonics. We achieve this as follows: since
Pek ,ak is real and symmetric, we decompose it as

Pek ,ak := Vek ,akΣek ,ak V
>
ek ,ak

, (3.35)

where Σek ,ak is diagonal. Let V :=
(
Ve1,a1 , . . . ,Ver ,ar

)
the matrix made up of the eigenvectors associated with each

of our r PSF graphs. Our spatial constraint can now be expressed by further factorizing A by V>, and forcing the
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Figure 3.8: Matrices involved in the spatial constraint.

resulting coefficients α to be sparse. This is illustrated in Figure 3.8. At the end of Section 3.2, we introduced
the Graph Fourier transform of Hammond et al. (2011). Here, each line Ak containing the coefficients of each
star for a particular eigenPSF is a function on the associated PSF Graph. From (3.28), we can see that the
matrix V introduced in this subsection is nothing but the concatenation of the eigenvectors associated to each
eigenPSF’s graph. Factorizing A by V> and imposing the rows of the resulting matrix α to be sparse thus simply
amounts to imposing the coefficients associated to our eigenPSFs to be sparse in the Fourier domain of each
associated graph (themselves capturing, by construction, a particular spatial frequency).

As mentioned at the beginning of this section, manufacturing and polishing defects in the VIS instrument will
inevitably lead to very localized, but strong variations of the PSF at some (fixed) positions. While these are not
yet included in the simulated PSFs we use in Section 3.3.4, they should be naturally handled by our proposed
approach with the addition of extra eigenPSFs. Each of these additions would diminish the role of constraint
1 (low rankness), but the added graph (and corresponding eigenPSF) would capture only those very localized
changes in the PSF. However, all this can only be accomplished if some of the observed stars do fall within
the area where these variations occur. As we already discussed, this caveat could be alleviated by adding a
temporal component to our model, and fitting it on stars extracted from several different exposures.

Optimization problem

Combining the factorizations illustrated in Figures 3.7 and 3.8, reconstruction of the PSF field at the star posi-
tions through RCA amounts to solving the following problem:

min
S ,α

(
1
2
‖Y − Fd(SαV>)‖2F +

r∑
i=1

‖wi � Φsi‖1 + ι+(SαV>) + ιΩ(α)
)
, (3.36)

where (wi)i are weights, � denotes the Hadamard (or entry-wise) product, Φ is a transform through which our
eigenPSFs should have a sparse representation (in our case, Φ will always be the Starlet transform, Starck
et al., 2011), ι+ is the previously introduced positivity indicator function, that is,

ι+ : X 7→

0 if no entry of X is strictly negative,

+∞ otherwise.
(3.37)

Ω is a sparsity enforcing set,
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Ω :=
{
α,∀i ∈ {1, . . . , r} , ‖(α>)i‖0 ≤ ηi

}
, (3.38)

and ιΩ its indicator function. Here, α belongs to Ω if each of its row i has at most ηi non-zero entries.
Breaking down (3.36) into its four summands, we can get a sense of how solving it would yield a PSF model

that fits the observations while satisfying the list of constraints we introduced at the beginning of Section 3.3.2.
Indeed, the first term is the data fidelity term, which ensures we recover the observed star images after applying
the correct undersampling operator. The second term promotes the sparsity of our eigenPSFs, thus satisfying
constraint 2. The third term ensures our PSF model only contains positive pixel values, enforcing constraint 3.
The fourth term forces the learned α to be sparse, in turn satisfying constraint 4 as detailed in item 3.3.2. Lastly,
as mentioned above, constraint 1 is achieved by setting a low enough number of eigenPSFs r.

Finding the eigenPSFs and their associated coefficients for each star amounts to solving (3.36). This can
be done through alternated minimization, that is, by solving in turn for S then for α iteratively. Each minimization
is performed through the use of the proximal methods we presented in Section 3.1.5. For more details on how
parameters (ek, ak)k, r, (wi)i and (ηi)i are set, we refer the reader to Ngolè et al. (2016).

3.3.3 PSF Field Recovery from Graph Harmonics

Spatial interpolation of the PSF

We now turn to the problem of interpolating our PSF model from the positions of stars,Ustars, to that of galaxies,
Ugal.

As discussed in Figure 2.4.3, several standard methods exist to perform spatial interpolation, that is, to
estimate the (unknown) value of some function f at a new position u = (x, y) given its measurements at several
other positions: ( f (uk))k. The most natural (and the one used by PSFEx) is probably the use of a polynomial
function of positions, i.e.

f̂ (u) =
∑
i, j≥0
i+ j≤d

xiy jQi j, (3.39)

where the maximum polynomial degree d is a user selected parameter and the (Qi j)i, j are chosen such that
f̂ (uk) ≈ f (uk) at every position where f was observed (in our case, uk ∈ Ustars). Note that the particular set-up of
PSFEx shown in (2.120) can be recovered when choosing f := ĤPSFEx and Qi j the PSFEx-learned, image-sized
components.

An alternative to the polynomial approach is the use of Radial Basis Function (RBF) (Buhmann, 2003). An
RBF is a kernel ϕ that only depends on the distance between two points. The polynomial formulation of (3.39)
can then be replaced by

f̂ (u) =

nneighbors∑
i=1

Qiϕ(‖u − ui‖), (3.40)

where we sum over observed positions of the closest neighbors of u, and the (Qi)i are, once again, chosen so
that f̂ coincides with the observed f at all sampled positions. Broadly speaking, the idea behind these schemes
is that the closer a position ui is, the more its observed value f (ui) should contribute to the estimated f̂ (u), and
RBF interpolation can be thought of as a generalization of inverse distance weighting schemes. Note that an
assumption underlying the use of RBFs is that the PSF’s amount of similarity to its neighbors in f is isotropic,
i.e., the same in every direction.

Because of its simplicity and good performance exhibited in Gentile et al. (2013), we chose to use RBF
interpolation in the present work, and selected the commonly used thin plate RBF kernel (see Ngolè and
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Figure 3.9: Graphical representation of the PSF graph associated with eigenPSF S k. The height of the vertical
bar at each position ui corresponds to the amplitude of coefficient Aki.

Starck, 2017, Section 3.2, for a quick discussion of its physical interpretation). In what follows, we always set
nneighbors to 15.

Spatial Regularity using RCA Graph Harmonics

Aside from the choice of the spatial interpolator discussed above, one must also decide which function f to
interpolate. In our case, where the PSFs are images of p2 pixels, the simplest approach would be to consider
each of these pixels as a scalar function and interpolate it independently from the others. This is what is done
by the LensFit model (see Equation 2.4.3). While simple, this approach is extremely sensitive to single-pixel
fluctuations, which are not unexpected in our data-driven estimations of the PSF, for instance if some noise-
related artefacts remain.

As mentioned, instead of using p2 different f scalar functions, PSFEx instead considers f to be Rp2
-valued.

By construction, it performs a polynomial interpolation of its learned components. Spatial interpolation can also
be carried within any chosen basis of representation – a typical example being the use of PCA we discussed in
Equation 2.4.3, wherein spatial interpolation is carried over the coefficients associated with the first few principal
components.

Our proposed approach is to perform this spatial interpolation step within the Graph Harmonics framework
of RCA. We showed in item 3.3.2 that the rows of matrix A are functions on a set of graphs, each containing the
spatial information related to one particular eigenPSF. This is illustrated in Figure 3.9: the coefficients related to
eigenPSF S k encode the spatial variations for a given range of distances. By performing the spatial interpolation
in each of the r rows of the RCA-learned A matrix, we are moving along each of the corresponding PSF graphs.
For any new position u, we can then reconstruct a new set of coefficients Au ∈ R

p through r RBF applications
as in (3.40), and reconstruct the PSF as

Ĥ(u) := S Au. (3.41)

This amounts to adding a new point on the PSF graphs, as shown in red in Figure 3.9. Since S was learned from
the observed stars and Au preserves the graph harmonics, this step ensures the constraints we highlighted at
the end of Section 3.3.2 are still applied to the new PSF at the galaxy positions. In particular, the spatial
constraints are preserved thanks to the PSF graphs.

Note that an additional advantage to this approach lies in the fact that the most computation-intensive
steps are performed during the reconstruction of the PSF field through RCA (Section 3.3.2). In a Euclid-like
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framework where star images are undersampled, if we were to use RCA to perform the necessary super-
resolution step, the dictionary S and the graph harmonics encoded in A would already be computed. The
proposed method can thus perform the spatial interpolation step in a particularly appropriate representation
at no additional computational cost save for that of fitting the RBF weights. Conversely, if one wanted to use
any other representation, even one as simple as PCA would require the extra computation a spectral value
decomposition (SVD).

3.3.4 Comparison of PSF models

Data set

The PSFs we use are simulations of Euclid’s VIS PSFs (as described in Ngolè et al., 2015, Section 4.1), located
in the central part of the FOV, sampled at a single wavelength of 600 nm. As mentioned at the beginning of
Section 3.3, this is a simplification of the true Euclid PSF, since we neglect its chromatic variations, and the
detector and guiding effects are absent from the simulations. This data set contains 597 such PSFs, each
consisting of a 512 × 512 stamp with a pixel size of approximately 0.0083 arcsecond, i.e. sampled on a much
finer grid than the Euclid pixel size. See Figure 3.10 for two examples chosen at some of the top-right- and
bottom-left-most positions.

As previously discussed, in a real-life observing situation, the only information (in the non-parametric frame-
work of this thesis) from which we would derive our PSF models would be obtained from stars within the field,
which lie at positions different from those where we wish to estimate it. We thus randomly split our sample of
PSFs into two parts:

• a training set of 300 PSFs, the position of which we will refer to as “star positions”;

• a test set with the remaining 297 PSFs, the position of which we will refer to as “galaxy positions”.

The number of stars in our training sample is of order 10 times smaller than the expected average number
of usable stars present in a VIS science exposure, though using all the available stars simultaneously would
require taking into account the variations of the PSF across different CCDs. In Figure 3.3.4, we will only use
the PSFs at star positions to try and produce estimations of the PSF at the galaxy positions. Conversely, from
Section 3.3.5 on, we will solely focus on and use objects at the galaxy positions.

Euclid’s sampling frequency is at 0.688 of the Nyquist rate, which sets our goal in terms of super-resolution
at achieving an upsampling factor of 1/D = 2 (Cropper et al., 2013). To simulate observed stars, we sample all
300 PSFs in the training set at the nominal Euclid pixel scale of 0.1 arcsecond. This is achieved by first applying
a mean filter (which amounts to the approximation that the VIS pixel response is a perfect top hat), then sampling
pixels at the correct rate. We apply a random sub-pixel shift to each resulting image, then truncate the stamps
to be of size 21 × 21 around the pixel closest to the object’s centroid. Indeed, in observing situations, our PSF
models would likely (definitely, in the cases of both PSFEx and RCA) be fitted on image stamps containing a
suitable star extracted from the full image as described in Section 2.3.3. Our models would thus necessarily
need to deal with the resulting truncation effects. Lastly, we add various levels of white Gaussian noise with
standard deviation σ, yielding five different sets of observed stars at average SNR of 10, 20, 35 and 50, where
the SNR is defined as

SNR =
‖x‖22
σ2 p2 , (3.42)

for image x of size p × p. An example of the resulting star images is shown in Figure 3.11.
From these, we will estimate the PSF at twice the Euclid pixel sampling and at the galaxy positions in

Figure 3.3.4. Because of the upsampling, the resulting PSFs will be stored in stamps of 42 × 42 pixels.
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Figure 3.10: Visual examples of the simulated Euclid PSF in the natural (top row) and logarithmic (bottom row)
domains, at the original pixel sampling of the simulation (about 12 times finer than Euclid). Each stamp is
approximately 4.25 arcsecond across.

For comparison purposes, we also prepare a set of “known” PSFs Ĥkn at those positions, by sampling the
297 test PSFs at half of Euclid’s pixel size and truncating the resulting images to 42 × 42 pixels. While not
the ideal case (where the continuous PSF image would be perfectly known), this fiducial, unattainable case
amounts to the best possible PSF our approaches to super-resolution, denoising and spatial interpolation could
possibly achieve. Note that this would require some extra conditions to be met, e.g. by the population of random
shifts undergone by the undersampled images (which is, under the safe assumption that shifts are randomly
distributed, also directly related to the number of observed stars). Using the notations of Section 3.3.1, Ĥkn

would be the the PSF obtained if only Fs remained while Fd had been perfectly corrected for. In other words,
the only effects degrading these PSFs are those of sampling (at our target of half Euclid’s pixel size), and
truncation at the best possible stamp size given that of our star images.

(a) SNR 10 (b) SNR 20 (c) SNR 35 (d) SNR 50

Figure 3.11: Example observed (undersampled) star stamps, at the various noise levels considered, from which
the PSF models will be estimated. Each stamp is approximately 2.1 arcsecond across.
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PSF modelling

We first assume the star images described in Section 3.3.4 were already extracted, and we perform both super-
resolution and spatial interpolation using RCA, as described in subsections 3.3.2 and 3.3.3. This yields a set of
297 RCA-estimated 42 × 42 PSFs, ĤRCA, at galaxy positions per SNR level.
PSFEx was designed to run on catalogs extracted using companion software SExtractor, and thus requires

a little more setting up. For each SNR level, we first create a fake full image of 12 000× 12 000 pixels, into which
the 300 stars are placed at their respective positions4. We then run SExtractor on the resulting images, with
parameters selected so that all stars are detected and extracted correctly, and no spurious detections occur.
When ran, PSFEx performs a further selection across all objects extracted by SExtractor, which is usually
desirable to have the PSF model fitted to appropriate stars. In our case, however, since we already know our
SExtractor catalog to be perfect, we tune PSFEx’s selection parameters so that as many stars as possible are
used. One is nonetheless rejected at SNR 50. The parameters related to the model are the following:

PSF_SAMPLING .5

PSF_SIZE 42,42

PSFVAR_KEYS X_IMAGE,Y_IMAGE

PSFVAR_GROUPS 1,1

PSFVAR_DEGREES 2

Namely, PSFEx learns a set of PSF basis elements
(
S i j

)
i, j

such that the PSF at position x, y is estimated as
in (2.120), with d = 2 (repeating the experiments with d = 3 led to very poor PSF models). All other PSFEx
parameters are left to their default value. Again, this gives us one set of estimated PSFs per SNR level, ĤPSFEx,
with the same stamp and pixel sizes as Ĥkn and ĤRCA.

Examples of Ĥkn, ĤRCA and ĤPSFEx, at the galaxy position corresponding to the simulated PSF on the
left-hand side of Figure 3.10, are given in Figure 3.12 for the worst and best-case noise scenarii.

Results

In Section 2.4.1, we saw that Equation (2.109) was often used as a basis to study the quality of a PSF model. As
discussed then, it is unclear whether this equation would hold true in the case of Euclid. Before answering this
question, we first quantify the quality of our PSF by looking at the errors that appear in (2.109), i.e. δ(R2

PSF), δePSF
i ,

for both models, on the 297 test PSFs.
For the former, both models tend to overestimate the size of the PSF, likely because super-resolution is

performed on a small sample of very narrow objects. This size error has a much stronger contribution to the
quantities in (2.109) than the ellipticity error. RCA already reduces this bias in our current set-up, with an
improvement of about 24% at all noise levels. This still leads to a RMS on the relative size δ(R2

PSF)/R2
PSF that

is about 104 times too high to match the requirements. Beyond the need to use more stars simultaneously to
build the model, which also emerges from every other current shortcoming of our approach, this strong bias will
already be greatly reduced in a more realistic Euclid scenario, since a broadband PSF is necessarily broader
than the monochromatic PSF we are considering in this work, regardless of the target object’s SED.

The values of the true PSF ellipticity at each “galaxy position” in our test set is shown in Figure 3.13. The
corresponding ellipticity residuals for each PSF model, δePSF

i , and their distribution across all positions are
shown respectively in Figures 3.14 and 3.15, when computed on stars with SNR 35. Noticeable residuals
are present for both methods, though they are of lower amplitude in the case of RCA. Figure 3.13 shows
a strong asymmetry between the two ellipticity components, with most objects showing mostly horizontally- or
vertically-oriented sticks. This indicates the first ellipticity component has both higher values, and much stronger

4The python script I used to perform this step, and others related to handling SExtractor and PSFEx with simulated PSFs can be
found at https://github.com/MorganSchmitz/PySFEx.

https://github.com/MorganSchmitz/PySFEx
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(a) Ĥkn (b) Ĥkn

(c) ĤRCA (SNR 10) (d) ĤRCA (SNR 50)

(e) ĤPSFEx (SNR 10) (f) ĤPSFEx (SNR 50)

Figure 3.12: Examples from the three sets of estimated PSFs described in Section 3.3.4. Each stamp is
approximately 2.1 arcsecond across. Note that the only difference between (a) and (b) is the color map, matched
to be the same as that of ĤRCA and ĤPSFEx estimated from stars with SNR 10 and 50, respectively.
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Figure 3.13: True PSF ellipticity as a function of position.

variations across the field than the second (which contributes to diagonal orientations). Residuals in Figures
3.14 and 3.15 are in turn similarly dominated by the first component. This is due to the pixel grid on which the
input simulated PSFs were sampled. A simple rotation of the reference frame before sampling would reduce
(or invert, through a π/4-rotation) the difference in amplitudes between the two ellipticity components.

As could already be glimpsed from Figure 3.14, Figure 3.15a shows PSFEx leads to a strong bias in the first
ellipticity component that is systematically overestimated. This occurs at all SNRs and indicates that PSFEx, as
it is, cannot capture the variations of the Euclid PSF model from undersampled stars.

The RMS error per star SNR level is shown in Figure 3.16. We observe the same overall behavior of both
PSF models at all star SNRs, with RCA performing better at e1 recovery, and worse at capturing the much
smaller e2 variations. As mentioned at the beginning of this section, Euclid’s requirements for weak lensing
are that the RMS on both PSF ellipticity component should be lower than 5 × 10−5. As expected, our purely
non-parametric approach is far (at a factor of 100-300) from achieving these requirements on its own and with
such few stars, though it already yields a significant improvement over PSFEx.

The RMS on the first ellipticity component gets increasingly worse for higher SNR values in the case of
PSFEx, which might indicate the presence of spurious effects in the model that get attenuated by higher levels
of noise. It might seem puzzling that the error we observe in the case of RCA is lower for a SNR of 35 than
it is for one of 50. We observe the same effect when rerunning RCA on several different realizations of noise
at those levels. A natural concern would be that this could indicate the quality of our PSF model gets worse
with decreasing levels of noise; however, the pixel error between our RCA PSFs and the “known” ones does
get smaller, as shown in Figure 3.17. These effects illustrate an important point: when building the PSF model,
neither RCA nor PSFEx explicitly aim at matching the observed stars’ shapes. It is therefore possible that a
“better” model, as defined from the actual functionals both approaches aim at minimizing (in Equations 3.36
and 2.121, respectively), leads to a poorer ellipticity component. This is what we observe in Figure 3.16: the
PSF model outputted by RCA, when run on given stars, varies smoothly as a function of their noise level. The
overall quality of the model monotonically increases with SNR, as seen in Figure 3.17, eventually converging
to the model that would be obtained if there were no noise in the input stars. The ellipticity of the model at
any arbitrary position also varies smoothly, but there is no guarantee these variations monotonically tend to the
true ellipticity. While the effect we observe here is much smaller (and is, in fact, not identifiable visually when
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Figure 3.14: PSF ellipticity residuals as a function of position, for both PSF models. Left: RCA; right: PSFEx.
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Figure 3.15: Distribution of the ellipticity residuals for both PSF models. Measurements were made with star
SNR 35.
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Figure 3.16: RMS error on each PSF ellipticity component for the two models, as a function of input star SNR.
Continuous lines are for the first ellipticity component, dashed for the second.

Figure 3.17: Average pixel error as a function of star SNR.

comparing the models obtained at SNRs of 35 and 50), as a crude illustration, consider a PSF with two outer
rings: the first one having a dampening effect on the full PSF’s first component ellipticity δ(einner

1 ) < 0, and the
second leading to an increase δ(eouter

1 ) = −δ(einner
1 ) > 0. For a given number of stars, suppose the best possible

error achievable (with no noise) is δ(e∗1) > 0. Let us assume the quality of the reconstruction of the central part of
the PSF is unchanged regardless of input noise levels, and both rings are completely lost to noise at low SNR.
As we increase the SNR of input stars, the model would eventually capture the inner ring, while still completely
missing the outer one. At this stage, the dampening effect of the first ring would counteract the overestimation
of the central part’s ellipticity, thus leading to a smaller ellipticity error 0 < δ(e∗1) + δ(einner

1 ) < δ(e∗1). If the SNR
was to keep increasing, however, the outer ring would eventually be captured by the model, increasing once
again the overestimation of the first component ellipticity.

3.3.5 Impact on galaxy shape measurement

At the end of Section 2.4.1, we discussed how the use of weighted moments introduced prefactors in the usual
Paulin-Henriksson et al. (2008) formalism, leading to equation (2.112). For a Gaussian PSF, these prefactors
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are exactly 1. To test whether this remains true in our present case of a Euclid-like PSF, in this section, we
perform image simulations and galaxy shape measurement using each PSF model. In particular, we will apply
both a moments-based shape measurement method, and one based on model-fitting. While each comes with
its own method-dependent biases, we would expect the contribution of the PSF modelling errors to be the same
in both cases if the assumption that the prefactors in (2.112) vanish held true.

Galaxies and observations

We perform galaxy image simulations using GalSim (Rowe et al., 2015). The galaxy parameters are identical
to those used in several branches of GREAT3 (Mandelbaum et al., 2014), themselves based on fitting the
COSMOS population. This gives us a population of 2 040 000 galaxies that are either drawn from a single
Sersic profile, or composed of both a bulge (following a de Vaucouleurs’ profile) and a disk (with an exponential
profile). We apply 204 different random shear values, each of them to a set of 10 000 different galaxies. These
sets include the 90-degree rotated counterpart to each galaxy, so as to ensure intrinsic ellipticity truly averages
to 0.

The main difference between our image simulations and those used in GREAT3 is, naturally, the PSF used.
For our study, we randomly assign one of the 297 Euclid PSFs (at galaxy positions) to each of the galaxies,
import them in GalSim and perform the convolution with the galaxy profile.

Our observations are then generated by sampling the resulting convolved profile on stamps of 42×42 pixels
at half the nominal VIS pixel scale, to match our super-resolved PSFs. Note that in a real-life Euclid setting,
the observed galaxies would also suffer from undersampling; however, we choose not to take it into account
in this work in order to better isolate the effects of imperfect PSF modelling on shape measurement. Similarly,
rather than matching the observations’ noise level to those we used for the stars, we instead always add white
Gaussian noise with σ = 0.01 (leading to an average SNR of about 50).

Shape measurement

With both the estimated PSFs and observed galaxies described in the previous sections, we can now per-
form the actual shape measurement step. For a given galaxy of intrinsic ellipticity eint = (eint

1 , eint
2 ) and having

undergone a shear (g1, g2), our shape measurement method yields

êi ≈ eint
i + gi. (3.43)

The shear itself can then be obtained by averaging over sets of objects:

ĝ = 〈ê〉 ≈ 〈eint〉 + 〈g〉 = g. (3.44)

In our case, we know 〈eint〉 is exactly 0. As discussed in Equation 2.3.7, numerous shape measurement methods
that yield ê (and thus ĝ) exist. However, they are known to be imperfect and introduce bias (see Section 2.3.8
for how this bias can be calibrated). Since we are interested in the impact of imperfect PSF models, in order
to quantify the amount of error that is introduced by the shape measurement itself, we start by measuring the
shape of each observed galaxy using the corresponding known PSF Ĥkn. Then, for each of our star noise
levels, we repeat the measurement of the same object, both with the RCA-estimated ĤRCA and the PSFEx
ĤPSFEx.

As we saw in Equation 2.3.7, there are considerable differences between moments-based and model-fitting
methods, especially with regards to how the PSF is taken into account, we perform our experiments with one
method of each type. The most well-known moments-based approach is the KSB method, first introduced
by Kaiser et al. (1995). In the present work, we use its implementation within the HSM (Hirata and Seljak,
2003; Mandelbaum et al., 2005) library of GalSim, where the size of the (circular) Gaussian window function
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is matched to that of the observed galaxy. For model-fitting, we use the freely available im3shape package5

described in Zuntz et al. (2013). In the results shown in Section 3.3.6, im3shape was ran with most parameters
left to default, except for those related to the images stamp size, noise level, ranges for the estimation of the
object’s centroid and PSF handling (see Section C.1 in the Appendices for a complete list).

A particular consequence of this is that the model chosen for galaxies is a de Vaucouleurs bulge combined
with an exponential disk, which in turn is the exact model used for generating some of our observations (though
some others are composed of a Single Sersic profile with index n < {1, 4}). However, im3shape thus config-
ured assumes the bulge and disk to have the exact same ellipticity, orientation and relative size, which is not
necessarily the case for our simulated galaxies. Nonetheless, this means the actual galaxy profiles used by
im3shape are fairly close to that of the observations, perhaps more so than what could be expected from real
data. In other words, our model-fitting experiments may not suffer from so-called model bias quite as much as
could be expected in a more realistic setting (Voigt and Bridle, 2010). However, our emphasis on the present
work is on the effect of PSF modelling errors on galaxy shape measurement, and whether both approaches
are similarly affected by them. For a study of the impact of model bias on shape measurement, see Pujol et al.
(2017).

In some cases, the KSB implementation we used fails to compute the shapes of certain objects, or returns
ellipticity estimates with an absolute value of more than 1. When this occurs with any of our three PSFs, we
remove these objects from the analysis. This leads to about 72 000 objects being put aside. The exact amount
of objects removed per SNR and PSF type are given in Section C.2 of the Appendices. Note the model-fitting
approach always provides an estimate of the shape, and thus all 2 040 000 objects are used.

3.3.6 Results

Ellipticity measurements

We first consider the measured shape of galaxies themselves. Regardless of the PSF model and shape mea-
surement method applied, we obtain an estimate of the overall galaxy shape, which includes both its intrinsic
ellipticity and the undergone shear as shown in (3.43). As discussed in Equation 2.3.7), both shape measure-
ment approaches suffer from some form of model bias, either because of the window function or the choice of
a model, though as mentioned above, in our current set-up, im3shape measurements are fairly exempt from
model bias. Regardless, these potentially strong biases are due solely to the shape measurement methods
themselves, and should be independent from the PSF modelling. Since the impact of the latter is our focus
here, we thus study the relative ellipticity error of the various combinations of PSF models and shape measure-
ments, that is,

〈(êkn
i − êRCA

i )2〉, 〈(êkn
i − êPSFEx

i )2〉, (3.45)

where the average is taken over all objects. The results are shown in Figure 3.18. Note the overall amplitude
of errors is still related to the intrinsic biases of each shape measurement method, which could be alleviated by
a proper calibration scheme. However, these results can still be used to inform us about the two PSF models
and their impact on galaxy shape estimation.

When using KSB, there is a clear improvement of order 50 − 60% in the shape error when using the pro-
posed approach over PSFEx. Similarly to results shown on the PSF models themselves in Figure 3.3.4, this
seems to indicate that both models yield significantly different PSFs, and that our RCA-based approach is more
successful at reconstructing the true PSF.

Yet, interestingly, the observed difference is much smaller (of order 10− 20%) between the two PSF models
when shapes are measured through model-fitting. This would seem to imply that these methods are less sensi-
tive to PSF modelling errors than moments-based methods, which was not an especially expected outcome: for

5https://bitbucket.org/joezuntz/im3shape-git

https://bitbucket.org/joezuntz/im3shape-git
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Figure 3.18: Relative ellipticity error on the measured galaxy shapes, for both PSF models, as a function of the
star SNR at which they were fitted. The lines indicate errors made when applying KSB, the scattered points
errors made when using model-fitting.

instance, Pujol et al. (2017) found no significant difference in sensitivity on various other potential factors when
comparing methods of each type. This difference in behaviour when faced with imperfect PSF models could
be related to effects due to mixing with higher-order moments discussed in Section 2.4.1. This will be further
studied below.

Shear bias

A second way to study the impact of PSF models is to look at the actual inferred shear itself. In our case, since
we know the intrinsic galaxy ellipticities average to 0 (and we can correct for it if not, e.g. if some objects were
tagged as outliers and removed from the analysis), we only have to average across a set of 10 000 objects with
the same applied shear to obtain our shear estimator, as shown in (3.44).

A common way to parametrize the bias made on shear measurement is to extend it to first order as in
(2.104). We then consider mi, ci, the multiplicative and additive shear bias, respectively, for shear component
i ∈ {1, 2}. As in the previous subsection, we compute the value of those two parameters for each combination
of PSF and shape measurement technique. Once again, we emphasize that the goal of the present work is not
to compare shape measurement methods per se, but rather how PSF model errors impact them. The focus
should thus be on the differences of c and m values between different PSF models, rather than on the actual
values themselves.

In the case of KSB, the distributions of the first component of measured and true shears, as well as the best
fit linear regression yielding the two bias values, are shown in Figure 3.19 for the known PSF. The same figures
for both our models, with star SNR of 35, are shown in Figure 3.20, with the line corresponding to shear bias in
the ideal case shown in black for comparison.

PSF modelling induces a stronger shear bias in both cases, with over a factor of 2 gain in multiplicative
bias compared to the ideal scenario. The RCA-based PSF leads to an improvement, in both components,
of the multiplicative bias compared to PSFEx, as seen on Figure 3.21 (where, similarly to the ellipticities in
Section 3.3.6, we show the relative biases ∆mi,∆ci after subtracting that measured using the known PSF).

Conversely, Figure 3.20 indicates our RCA-based PSFs lead to a higher additive bias than the PSFEx ones.
This additive bias is present at every star SNR, as shown in Figure 3.22, though it undergoes strong variations.
This higher RCA additive bias is especially noticeable on the first of the two shear components, despite both the
bias and RMS error on the first component PSF ellipticity being smaller as shown in Figure 3.3.4. A common
way to investigate the relationship between PSF and additive bias is to reparametrize (2.104) thus:
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Figure 3.19: 2D density of true and measured shear; the colours correspond to the number of occurrences
of measured shear values when using the “known” PSF, each from approximatively 10 000 galaxies, for the
corresponding input shear. The line shows the best fit linear regression, yielding the bias values. Shapes were
measured with KSB.
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(a) RCA
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(b) PSFEx

Figure 3.20: Similar to Figure 3.19, 2D density of true and measured shear, using the PSF models for the latter.
The line corresponding to first order shear bias is shown for both the PSF models (in color) and the best case
scenario (in black). Shape measurement is performed using KSB.
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Figure 3.21: KSB-induced multiplicative shear bias m as a function of the SNR of stars on which the PSF
models were fitted. Straight lines correspond to the first component, dashed lines to the second.

Figure 3.22: Same as Figure 3.21, for additive bias c.

ĝi ≈ (1 + mi)gi + c′i + αePSF
i , (3.46)

where α then quantifies the amount of PSF leakage. Note, however, that this quantity can contain both PSF
effects that were not fully captured by the shape measurement step, and effects emanating from errors in the
PSF model itself. It would therefore not be informative in our present case, where the additive bias appears
stronger for the PSF model with the smallest errors despite the same shape measurement being applied in both
cases.

A study of the shear biases obtained with our different PSF models when using im3shape also seems
to indicate the presence of a slight additive bias when using the RCA PSF. This is illustrated in Figure 3.23,
which features the same shear 2D densities and linear fit as Figure 3.20, also at star SNR 35, when the shape
measurement is performed by model-fitting. In terms of multiplicative bias, the difference between the known
and modeled PSFs is much smaller than it was with KSB, and insignificant in between models, which once
again seems to indicate a lower sensitivity to PSF modelling errors of model-fitting methods.

Comparison to analytical predictions

These results are already at odds with those predicted by (2.109), since we observe different relative biases
introduced by the same PSF model errors depending on the shape measurement used. To better illustrate
this discrepancy, for any set of galaxy, true PSF, and PSF model, we compute the expected contribution to
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Figure 3.23: Same as Figure 3.20, when shape measurement is performed using model-fitting.

multiplicative bias, mPH, and to each component of the additive bias, (cPH
i )i∈{1,2}, defined in (2.110) and (2.111),

respectively.
These are shown in Figures 3.24 and 3.25, respectively, for a range of galaxy sizes. Here and for the rest of

this section, we use PSFs modelled at star SNR 35. The error bars correspond to the variations across our 297
estimated PSFs. Starting from our full experiment, we separate the pure-Sersic galaxies, split them by size,
and recompute the shear biases we observe per galaxy size bin. As previously, we then compute the relative
biases, ∆m,∆ci, by removing the bias measured with the “known” PSFs to those of both PSF models. These
values are then overplotted for each galaxy size bin in Figures 3.24 and 3.25, and show strong deviations from
the analytical predictions.

For instance, we showed in Figure 3.3.4 that the RCA model led to smaller errors in both the first PSF
ellipticity component, δePSF

1 , and its size, δ
(
R2

PSF

)
. It follows that we expect a lower relative (positive) additive

bias when using the RCA PSFs, which is the opposite of what we observe with our full experiment. The worse
performance in ePSF

2 recovery is compensated by RCA’s smaller δ(R2
PSF), which, as previously mentioned, largely

outweighs the contribution of the ellipticity error term here. This leads to smaller cPH
2 values when compared

with the prediction for PSFEx. However, we see that the biases we observe in practice are strongly dependent
on the shape measurement method. With im3shape, the c2 contribution is indeed smaller for RCA, though they
were overestimated by the analytical prediction for both PSF models. With KSB, it is higher for RCA than it
is for PSFEx, and while cPH

2 < 0 for both PSF models, they lead to a positive contribution when propagated to
KSB-measured shapes.

As discussed at the beginning of Section 3.3.5, we know the analytical predictions are exact when the
prefactors in (2.112) vanish. In order to test whether these are the reason for the differences we observed,
we generate a new set of simulations. The galaxies have the same properties (size, shape, applied shear) as
those described above, but are drawn from a 2D Gaussian distribution. Similarly, the PSF applied have identical
shape properties as our Euclid PSFs, but are also Gaussian. Lastly, we recreate a set of “RCA” and a set of
“PSFEx” PSFs, Gaussian as well, but with the same shape errors δePSF

i , δ
(
R2

PSF

)
as those measured on our

actual star-fitted models. While we have access to the true galaxy sizes from the GREAT3 input catalogs, the
PSF shapes have to be measured in all three cases. We once again used the HSM library of GalSim, which
matches the size of the weighting function to the object being measured. We chose the size of our Gaussian
PSFs to be the same as that of the matched window, which leads to a constant factor of two in their unweighted
R2

PSF.
The results are shown in Figures 3.26 and 3.27 for the multiplicative and additive components, respectively,
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Figure 3.24: Multiplicative bias induced by the PSF models, as predicted from (2.110) (continuous line and error
bars) and observed when measuring galaxy shapes with KSB (empty points) or im3shape (filled points).

(a) First ellipticity component. (b) Second ellipticity component.

Figure 3.25: Similar to Figure 3.24, for the additive biases predicted from (2.111) (continuous line and error
bars), and those observed with KSB (empty points) and im3shape (filled points). Note that in this case, the
analytical predictions are different for each ellipticity component because of the left-hand term in (2.111).

Figure 3.26: Same as Figure 3.24, when PSFs and galaxies are Gaussian.
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(a) First ellipticity component. (b) Second ellipticity component.

Figure 3.27: Same as Figure 3.25, when PSFs and galaxies are Gaussian.

and show good agreement with the predicted values. The first few galaxy size bins lead to smaller measured
multiplicative biases, though these are only due to the small number of galaxies at these sizes.

3.3.7 Partial conclusion

In this section, we extended a previously proposed approach for PSF estimation, taking necessary steps toward
a fully non-parametric approach applicable in the context of the upcoming Euclid survey. A study of the PSF
models and their residuals shows our model outperforms the proven and widely used PSFEx. This could indicate
a better handling of the super-resolution, as hints at potential issues with PSFEx’s super-resolution mode were
recently observed in HSC (Bosch et al., 2017). Our method is still, however, far from achieving the Euclid
requirements. As a non-parametric approach, its main limitation lies in the number of available stars, and a
natural path of improvement is thus simultaneous use of stars from different exposures, that is, taking into
account the temporal variability of the PSF. The other approach is that of a parametric PSF model, discussed
in Figure 2.4.3. Ultimately, the combination of both approaches will likely do better than each taken separately,
which warrants further study of non-parametric models, how to improve them, and make them capable of
handling the specificities of Euclid’s PSF.

Despite the improvement in model quality, the use of our approach as the PSF in galaxy shape measurement
unexpectedly led to stronger additive shear biases than when using PSFEx. Following this observation, as well
as other observed discrepancies, this section also showed that in the case of Euclid, the way the PSF modelling
errors impact shear measurement can be more complicated than previously thought and method-dependent.
In particular, the Paulin-Henriksson et al. (2008) formalism no longer holds. Our experiments show this is likely
coming from additional terms arising from the necessary addition of a window function to compute quadrupole
moments. Similar effects could thus occur for any diffraction-limited telescope.

As mentioned at the beginning of this section, up to now we have considered a single monochromatic
PSF. This will no longer be an acceptable assumption in the case of Euclid (Eriksen and Hoekstra, 2018),
and aside from the need to use a greater number of stars, a necessary improvement to the presented method
and focus of the next two chapters will be to take those chromatic variations into account. We first begin with
a methodological chapter, where we present the field of numerical OT, and some developments we recently
proposed. These will then be used to capture the chromatic variations of the Euclid PSF in Chapter 5.
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In this chapter, we introduce the field of numerical OT. In particular, we will define and present approaches
to compute the Wasserstein distance and the associated Wasserstein barycenter. For an overview of the field,
see Peyré and Cuturi (2019).

In Sections 3.1.2 and 3.1.6, we have discussed matrix factorization and dictionary learning. As an illustration
of the capabilities of OT, this chapter will introduce a new method, Wasserstein Dictionary Learning (WDL),
where the linear relation of (3.5) is replaced by the Wasserstein barycenter operator.

As a general method of representation learning, it is applicable to many types of data. This is illustrated
by our various applications in Section 4.5 and that of Xu et al. (2018), who used (and extended) our method
to process hospital admission records. In the context of this thesis, the most relevant is the application of
Section 4.5.2. There, we show that OT is particularly suited to capture the chromatic variations of the Euclid
PSF. This is done using monochromatic PSFs as training data. In the context of Euclid observations, these will
not be available, so this section has no direct practical use. However, it will serve as the central idea from which
we will build the first polychromatic PSF model in Chapter 5, using the tools we develop in this chapter.

This method, and the rest of this chapter, is the result of work carried out with my collaborators, Matthieu
Heitz, Nicolas Bonneel, Fred Ngolè, David Coeurjolly, Marco Cuturi, Gabriel Peyré and Jean-Luc Starck. It was
published in Schmitz et al. (2018) (Paper I hereafter).
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4.1 Partial Introduction

The idea of dimensionality reduction is as old as data analysis (Pearson, 1901). Dictionary learning (Lee and
Seung, 1999), independent component analysis (Hyvärinen et al., 2004), sparse coding (Lee et al., 2007),
autoencoders (Hinton and Salakhutdinov, 2006) or most simply PCA are all variations of the idea that each
datapoint of a high-dimensional dataset can be efficiently encoded as a low-dimensional vector. Dimension-
ality reduction typically exploits a sufficient amount of data to produce an encoding map of datapoints into
smaller vectors, coupled with a decoding map able to reconstruct an approximation of the original datapoints
using such vectors. Algorithms to carry out the encoding and/or the decoding can rely on simple linear com-
binations of vectors, as is the case with PCA and NMF. They can also be highly nonlinear and employ kernel
methods (Schölkopf et al., 1997) or neural networks for that purpose (Hinton and Salakhutdinov, 2006).

In this work, we consider a very specific type of encoding/decoding pair, which relies on OT geometry be-
tween probability measures. OT geometry, also known as Wasserstein or earth mover’s, defines a distance
between two probability measures µ, ν by computing the minimal effort required to morph measure µ into mea-
sure ν. The original interpretation of Monge (1781) was that µ would stand for a heap of sand, which should
be used to fill in a hole in the ground of the shape of ν. The effort required to move the pile of sand is usually
parametrized by a cost function to move one atom of sand from any location x in the support of µ to any lo-
cation y in the support of ν (see Figure 4.1). Monge then considered the problem of finding the optimal (least
costly) way to level the ground by transporting the heap into the hole. That cost defines a geometry between
probability measures which has several attractive properties. In this paper we exploit the fact that shapes and,
more generally, images can be cast as probability measures, and we propose several tools inherited from OT
geometry, such as OT barycenters, to warp and average such images (Solomon et al., 2015). These tools can
be exploited further to carry out non-linear inverse problems in a Wasserstein sense (Bonneel et al., 2016),
and we propose in this work to extend this approach to carry out nonlinear dictionary learning on images using
Wasserstein geometry.

Figure 4.1: Graphical representation of the mass transportation problem. The minimal effort cost to transport
one measure into the other defines the OT distance between µ and ν.

4.1.1 Previous works

Linear dictionary learning

Several dimensionality reduction approaches rely on using a predefined orthogonal basis upon which datapoints
can be projected. Such basis are usually defined without even looking at data, as is the case for Fourier
transforms or wavelet-based dictionaries (Mallat, 1999). Dictionary learning methods instead underline the
idea that dictionaries should be customized to fit a particular dataset in an optimal way. Suppose that the M
datapoints of interest can be stored in a matrix X = (x1, . . . , xM) ∈ RN×M. The aim of (linear) dictionary learning
is to factorize the data matrix X using two matrices: a dictionary, D, whose elements (the atoms) have the same
dimension N as those of X, and a list of codes Λ used to relate the two: X ≈ DΛ.
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When no constraints on D or Λ are given, and one simply seeks to minimize the Fröbenius norm of the
difference of X and DΛ, the problem amounts to computing the singular value decomposition of X or, equiva-
lently, the diagonalization of the variance matrix of X. In practical situations, one may wish to enforce certain
properties of that factorization, which can be done in practice by adding a prior or a constraint on the dictionary
D, the codes Λ, or both. For instance, an l0 or l1 norm penalty on the codes yields a sparse representation of
data (Aharon et al., 2006; Mairal et al., 2010). The sparsity constraint might instead be imposed upon the new
components (or atoms), as is the case for sparse PCA (d’Aspremont et al., 2007). Properties other than sparsity
might be desired, for example, statistical independence between the components, yielding independent com-
ponent analysis (ICA, Hyvärinen et al., 2004), or positivity of both the dictionary entries and the codes, yielding
NMF (Lee and Seung, 1999). A third possible modification of the dictionary learning problem is to change
the fitting loss function that measures the discrepancy between a datapoint and its reconstruction. When data
lies in the nonnegative orthant, Lee and Seung (1999) have shown, for instance, the interest of considering
the Kullback-Leibler (KL) divergence to compute such a loss or, more recently, the Wasserstein distance (Rolet
et al., 2016), as detailed later in this section. More advanced fitting losses can also be derived using probabilistic
graphical models, such as those considered in the topic modelling literature (Blei and Lafferty, 2009).

Nonlinear dictionary learning

The methods described above are linear in the sense that they attempt to reconstruct each datapoint xi by a
linear combination of a few dictionary elements. Nonlinear dictionary learning techniques involve reconstructing
such datapoints using nonlinear operations instead. Autoencoders (Hinton and Salakhutdinov, 2006) propose
using neural networks and to use their versatility to encode datapoints into low-dimensional vectors and later
decode them with another network to form a reconstruction. The main motivation behind principal geodesic
analysis (Fletcher et al., 2004) is to build such nonlinear operations using geometry, namely by replacing linear
interpolations with geodesic interpolations. Of particular relevance to our paper is the body of work that relies
on Wasserstein geometry to compute geodesic components (Bigot et al., 2017; Wang et al., 2013; Boissard
et al., 2015; Seguy and Cuturi, 2015, see Section 4.5.1).

More generally, when data lies on a Riemannian manifold for which Riemannian exponential and logarithmic
maps are known, Ho et al. (2013) propose a generalization of both sparse coding and dictionary learning.
Nonlinear dictionary learning can also be performed by relying on the “kernel trick”, which allows one to learn
dictionary atoms that lie in some feature space of higher, or even infinite, dimension (Van Nguyen et al., 2013;
Harandi and Salzmann, 2015; Liu et al., 2015). Equiangular kernel dictionary learning, proposed by Quan et al.
(2016), further enforces stability of the learned sparse codes. Several problems where data is known to belong
to a specific manifold are well studied within this framework, e.g. sparse coding and dictionary learning for
Grassmann manifolds (Harandi et al., 2013), or for positive definite matrices (Harandi et al., 2012), and methods
to find appropriate kernels and make full use of the associated manifold’s geometry have been proposed for
the latter (Li et al., 2013). Kernel dictionary learning has also been studied for the (nonlinear) adaptive filtering
framework, where Gao et al. (2014) propose an online approach that discards obsolete dictionary elements as
new inputs are acquired. These methods rely on the choice of a particular feature space and an associated
kernel and achieve nonlinearity through the use of the latter. The learned dictionary atoms then lie in that feature
space. Conversely, our proposed approach requires no choice of kernel. Moreover, the training data and the
atoms we learn belong to the same probability simplex, which allows for easy representation and interpretation;
e.g. our learned atoms can (depending on the chosen fitting loss) capture the extreme states of a transformation
undergone by the data. This is opposed to kernel dictionary atoms, which cannot be naturally represented in
the same space as datapoints because of their belonging to the chosen high-dimensional feature space.

Computational optimal transport

Optimal transport has seen significant interest from mathematicians in recent decades (Talagrand, 1996; Rachev
and Rüschendorf, 1998; Villani, 2003). For many years, that theory was, however, of limited practical use and
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mostly restricted to the comparison of small histograms or point clouds, since typical algorithms used to com-
pute them, such as the auction algorithm (Bertsekas, 1988) or the Hungarian algorithm (Kuhn, 1955), were
intractable beyond a few hundred bins or points. Recent approaches (Shirdhonkar and Jacobs, 2008; Rabin
et al., 2011) have ignited interest for fast yet faithful approximations of OT distances. Of particular interest to this
work is the entropic regularization scheme proposed by Cuturi (2013), which finds its roots in the gravity model
used in transportation theory (Erlander and Stewart, 1990). This regularization can also be tied to the relation
between OT and Schrödinger’s problem (Schrödinger, 1931) (as explored by Léonard, 2014). Whereas the orig-
inal OT problem is a linear problem, regularizing it with an entropic regularization term results in a strictly convex
problem with a unique solution which can be solved with Sinkhorn’s fixed-point algorithm (Sinkhorn, 1967), also
known as block coordinate ascent in the dual regularized OT problem. That iterative fixed-point scheme yields
a numerical approach relying only on elementwise operations on vectors and matrix-vector products. The latter
can in many cases be replaced by a separable convolution operator (Solomon et al., 2015), forgoing the need to
manipulate a full cost matrix of prohibitive dimensions in some use cases of interest (e.g. when input measures
are large images).

Wasserstein barycenters

Agueh and Carlier (2011) introduced the idea of a Wasserstein barycenter in the space of probability measures,
namely Fréchet means (Fréchet, 1948) computed with the Wasserstein metric. Such barycenters are the basic
building block of our proposal of a nonlinear dictionary learning scheme with Wasserstein geometry. Agueh
and Carlier studied several properties of Wasserstein barycenters and showed very importantly that their exact
computation for empirical measures involves solving a multimarginal optimal transport problem, namely a linear
program with the size growing exponentially with the size of the support of the considered measures.

Since that work, several algorithms have been proposed to efficiently compute these barycenters (Rabin
et al., 2011; Carlier et al., 2015; Solomon et al., 2014; Bonneel et al., 2015; Ye et al., 2017). The computa-
tion of such barycenters using regularized distances (Cuturi and Doucet, 2014) is of particular interest to this
work. Cuturi and Peyré (2016) use entropic regularization and duality to cast a wide range of problems involv-
ing Wasserstein distances (including the computation of Wasserstein barycenters) as simple convex programs
with closed form derivatives. They also illustrate the fact that the smoothness introduced by the addition of
the entropic penalty can be desirable, beyond its computational gains, in the case of the Wasserstein barycen-
ter problem. Indeed, when the discretization grid is small, its true optimum can be highly unstable, which is
counteracted by the smoothing introduced by the entropy (Cuturi and Peyré, 2016, Section 3.4). The idea of
performing iterative Bregman projections to compute approximate Wasserstein distances can be extended to
the barycenter problem, allowing its direct computation using a generalized form of the Sinkhorn algorithm (Be-
namou et al., 2015). Chizat et al. (2018) recently proposed a unifying framework for solving unbalanced optimal
transport problems, including computing a generalization of the Wasserstein barycenter.

Wasserstein barycentric coordinates

An approach to solving the inverse problem associated with Wasserstein barycenters was recently proposed (Bon-
neel et al., 2016): Given a database of S histograms, a vector of S weights can be associated to any new input
histogram, such that the barycenter of that database with those weights approximates as closely as possible
the input histogram. These weights are obtained by automatic differentiation (with respect to the weights) of the
generalized Sinkhorn algorithm that outputs the approximate Wasserstein barycenter. This step can be seen
as an analogy of, given a dictionary D, finding the best vector of weights Λ that can help reconstruct a new
datapoint using the atoms in the dictionary. That work can be seen as a precursor for our proposal, whose aim
is to learn both weights and dictionary atoms.
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Applications to image processing

OT was introduced into the computer graphics community by Rubner et al. (2000) to retrieve images from their
color distribution, by considering images as distributions of pixels within a 3D color space. Color processing
has remained a recurring application of OT, for instance to color grade an input image using a photograph
of a desired color style (Pitié et al., 2005), or using a database of photographs (Bonneel et al., 2016), or to
harmonize multiple images’ colors (Bonneel et al., 2015). Another approach considers grayscale images as 2D
histograms. OT then allows one to find a transport-based warping between images (Haker et al., 2004; Mérigot,
2011). Further image processing applications are reviewed in the habilitation dissertation of Papadakis (2015).

Wasserstein loss and fidelity

Several recent papers have investigated the use of OT distances as fitting losses that have desirable properties
that KL or Euclidean distances cannot offer. We have already mentioned generalizations of PCA to the set of
probability measures via the use of OT distances (Bigot et al., 2017; Seguy and Cuturi, 2015). Sandler and
Lindenbaum (2009) first considered the NMF problem with a Wasserstein loss. Their computational approach
was, however, of limited practical use. More scalable algorithms for Wasserstein NMF and (linear) dictionary
learning were subsequently proposed (Rolet et al., 2016). The Wasserstein distance was also used as a loss
function with desirable robustness properties to address multilabel supervised learning problems (Frogner et al.,
2015).

Using the Wasserstein distance to quantify the fit between data (an empirical measure) and a parametric
family of densities, or a generative model defined using a parameterized push-forward map of a base measure,
has also received ample attention in the recent literature. Theoretical properties of such estimators were es-
tablished by Bassetti et al. (2006) and Bassetti and Regazzini (2006), and additional results by Bernton et al.
(2017). Entropic smoothing has facilitated the translation of these ideas into practical algorithms, as illustrated in
the work by Montavon et al. (2016), who proposed to estimate the parameters of restricted Boltzmann machines
using the Wasserstein distance instead of the KL divergence. Purely generative models, namely, degenerate
probability measures defined as the push-forward of a measure supported on a low-dimensional space into a
high-dimensional space using a parameterized function, have also been fitted to observations using a Wasser-
stein loss (Bernton et al., 2017), allowing for density fitting without having to choose summary statistics (as is
often the case with usual methods). The Wasserstein distance has also been used in the context of generative
adversarial networks (GANs, Arjovsky et al., 2017). In that work, the authors use a proxy to approximate the
1-Wasserstein distance. Instead of computing the 1-Wasserstein distance using 1-Lipschitz functions, a classic
result from Kantorovich’s dual formulation of OT (see Theorem 1.14 in Villani, 2003), the authors restrict that
set to multilayer networks with rectified linear units and boundedness constraints on weights, which allows them
to enforce some form of Lipschitzness of their networks. Unlike the entropic smoothing used in this paper, that
approximation requires solving a nonconvex problem whose optimum, even if attained, would be arbitrarily far
from the true Wassertein distance. More recently, Genevay et al. (2018) introduced a general scheme for using
OT distances as the loss in generative models, which relies on both the entropic penalty and automatic differ-
entiation of the Sinkhorn algorithm. Our work shares some similarities with that paper, since we also propose
automatically differentiating the Sinkhorn iterations used in Wasserstein barycenter computations.

4.1.2 Contributions

In this paper, we introduce a new method for carrying out nonlinear dictionary learning for probability histograms
using OT geometry. Nonlinearity comes from the fact that we replace the usual linear combination of dictionary
atoms by Wasserstein barycenters. Our goal is to reconstruct datapoints using the closest (according to any
arbitrary fitting loss on the simplex, not necessarily the Wasserstein distance) Wasserstein barycenter to that
point using the dictionary atoms. Namely, instead of considering linear reconstructions for X ≈ DΛ, our aim is
to approximate columns of X ≈ P(D,Λ) using the P operator which maps atoms D with lists of weights Λ to
their respective barycenters.
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Similar to many traditional dictionary learning approaches, this is achieved by finding local minima of a
nonconvex energy function. To do so, we propose using automatic differentiation of the iterative scheme used
to compute Wasserstein barycenters. We can thus obtain gradients with respect to both the dictionary atoms
and the weights that can then be used within one’s solver of choice (in this work, we chose to use an off-the-shelf
quasi-Newton approach and perform both dictionary and code updates simultaneously).

Our nonlinear dictionary learning approach makes full use of the Wasserstein space’s properties, as illus-
trated in Figure 4.2: two atoms are learned from a dataset made up of five discretized Gaussian distributions in
1D, each slightly translated on the grid. Despite the simplicity of the transformation (translation), linear gener-
ative models fail to capture the changes of the geometrical space, as opposed to our OT approach. Moreover,
the atoms we learn are also discrete measures, unlike the PCA and NMF components.

We also offer several variants and improvements to our method:

• Arbitrarily sharp reconstructions can be reached by performing the barycenter computation in the log-
domain;

• We offer a general method to make use of the separability of the kernel involved and greatly alleviate the
computational cost of this log-domain stabilization;

• Our representation is learned from the differentiation of an iterative, Sinkhorn-like algorithm, whose con-
vergence can be accelerated by using information from previous Sinkhorn loops at each initialization
(warm start), or adding a momentum term to the Sinkhorn iterations (heavyball);

• We expand our method to the unbalanced transport framework.

Part of this work was previously presented as a conference proceedings (Schmitz et al., 2017), featuring an
initial version of our method, without any of the above improvements and variants, and in the case where we
were only interested in learning two different atoms.

Additional background on OT is given in Section 4.2. The method itself and an efficient implementation are
presented in Section 4.3. We highlight other extensions in Section 4.4. We showcase its use in several image
processing applications in Section 4.5.

4.1.3 Notations used in this chapter

We denote Σd the simplex of Rd, that is,

Σd :=

u ∈ Rd
+,

d∑
i=1

ui = 1

 . (4.1)

For any positive matrix T , we define its negative entropy as

H(T ) :=
∑
i, j

Ti j log(Ti j − 1). (4.2)

� denotes the Hadamard product between matrices or vectors. Throughout this chapter, when applied to
matrices,

∏
,÷, and exp notations refer to elementwise operators. The scalar product between two matrices

denotes the usual inner product, that is,

〈A, B〉 := Tr(A>B) =
∑
i, j

Ai jBi j, (4.3)

where A> is the transpose of A. For (p, q) ∈ Σ2
N , we denote their set of couplings as
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Figure 4.2: Top row: data points. Bottom three rows: On the far sides, in purple, are the two atoms learned
by PCA, NMF and our method (WDL), respectively. In between the two atoms are the reconstructions of the
five datapoints for each method. The latter two were relaunched a few times with randomized initializations and
the best local minimum was kept. As discussed in Section 4.2, the addition of an entropy penalty to the usual
OT program causes a blur in the reconstructions. When the parameter associated with the entropy is high, our
method yields atoms that are sharper than the dataset on which it was trained, as is observed here where the
atoms are Dirac despite the dataset consisting of discretized Gaussians. See Section 4.4.1 for a method to
reach arbitrarily low values of the entropy parameter and counteract the blurring effect.
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Π(p, q) :=
{
T ∈ RN×N

+ ,T1N = p,T>1N = q
}
, (4.4)

where 1N = (1, . . . , 1)> ∈ RN . ∆ denotes the diag operator, such that if u ∈ RN , then

∆(u) :=


u1

. . .

uN

 ∈ RN×N . (4.5)

For two vectors u, v, KL(.|.) is their KL divergence, defined here as

KL(u|v) =
∑

i

ui log
(
ui

vi

)
− ui + vi. (4.6)

For a concatenated family of vectors t =
[
t>1 , . . . , t

>
S

]>
∈ RNS , we write the ith element of ts as [ts]i. We denote

the rows of matrix M as Mi. and its columns as M. j. IN and 0N×N are the N × N identity and zero matrices,
respectively.

4.2 Optimal transport

4.2.1 OT distances

In the present work, we restrict ourselves to the discrete setting, i.e. our measures of interest will be histograms,
discretized on a fixed grid of size N (Eulerian discretization), and represented as vectors in ΣN . In this case, the
cost function is represented as a cost matrix C ∈ RN×N , containing the costs of transportation between any two
locations in the discretization grid. The OT distance between two histograms (p, q) ∈ Σ2

N is the solution to the
discretized Monge–Kantorovich problem:

W(p, q) := min
T∈Π(p,q)

〈T,C〉. (4.7)

As defined in (4.4), Π(p, q) is the set of admissible couplings between p and q, that is, the set of matrices with
rows summing to p and columns to q. A solution, T ∗ ∈ RN×N , is an optimal transport plan.

Villani’s books give extended theoretical overviews of OT (Villani, 2003, 2008) and, in particular, several
properties of such distances. The particular case where the cost matrix is derived from a metric on the chosen
discretization grid yields the so-called Wasserstein distance (sometimes called the earth mover’s distance).
For example, if Ci j = ‖xi − x j‖

2
2 (where xi, x j are the positions on the grid), the above formulation yields the

squared 2-Wasserstein distance, the square-root of which is indeed a distance in the mathematical sense.
Despite its intuitive formulation, the computation of Wasserstein distances grows supercubicly in N, making
them impractical as dimensions reach the order of one thousand grid points. This issue has motivated the recent
introduction of several approximations that can be obtained at a lower computational cost (see Section 4.1.1).
Among such approximations, the entropic regularization of OT distances (Cuturi, 2013) relies on the addition of
a penalty term as follows:

Wγ(p, q) := min
T∈Π(p,q)

〈T,C〉 + γH(T ), (4.8)

where γ > 0 is a hyperparameter. As γ → 0, Wγ converges to the original Wasserstein distance, while higher
values of γ promote more diffuse transport matrices. The addition of a negentropic penalty makes the problem
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γ-strongly convex; first-order conditions show that the problem can be analyzed as a matrix-scaling problem
which can be solved using Sinkhorn’s algorithm (Sinkhorn, 1967), also known as the iterative proportional
fitting procedure (Deming and Stephan, 1940). The Sinkhorn algorithm can be interpreted in several ways: for
instance, it can be thought of as an alternate projection scheme under a KL divergence for couplings (Benamou
et al., 2015) or as a block-coordinate ascent on a dual problem (Cuturi and Doucet, 2014). The Sinkhorn
algorithm consists in using the following iterations for l ≥ 1, starting with b(0) = 1N :

a(l) =
q

K>b(l−1) , (4.9)

b(l) =
p

Ka(l) ,

where K := exp(−C
γ ) is the elementwise exponential of the negative of the rescaled cost matrix. Note that when

γ gets close to 0, some values of K become negligible, and values within the scaling vectors, a(l) and b(l),
can also result in numerical instability in practice (we will study workarounds for that issue in Section 4.4.1).
Application of the matrix K can often be closely approximated by a separable operation (Solomon et al., 2015,
see Equation 4.4.1 for separability even in the log-domain). In the case where the histograms are defined on a
uniform grid and the cost matrix is the squared Euclidean distance, the convolution kernel is simply Gaussian
with standard deviation

√
γ/2. The two vectors a(l), b(l) converge linearly towards the optimal scalings (Franklin

and Lorenz, 1989) corresponding to the optimal solution of (4.8). Notice finally that the Sinkhorn algorithm at
each iteration l ≥ 1 results in an approximate optimal transport matrix T (l) = ∆(b(l))K∆(a(l)).

4.2.2 Wasserstein barycenter

Analogous to the usual Euclidean barycenter, the Wasserstein barycenter of a family of measures is defined as
the minimizer of the (weighted) sum of squared Wasserstein distances from the variable to each of the measures
in that family (Agueh and Carlier, 2011). For measures with the same discrete support, we define, using entropic
regularization, the barycenter of histograms (d1, . . . , dS ) ∈ (ΣN)S with barycentric weights λ = (λ1, . . . , λS ) ∈ ΣS

as

P (D, λ) := argmin
u∈ΣN

S∑
s=1

λsWγ(ds, u), (4.10)

where D := (d>1 , . . . , d
>
S )> ∈ RNS . The addition of the entropy term ensures strict convexity and thus that the

Wasserstein barycenter is uniquely defined. It also yields a simple and efficient iterative scheme to compute
approximate Wasserstein barycenters, which can be seen as a particular case of the unbalanced OT set-
ting (Chizat et al., 2018). This scheme, a generalization of the Sinkhorn algorithm, once again relies on two
scaling vectors:

a(l)
s =

ds

Kb(l−1)
s

, (4.11)

P(l) (D, λ) =

S∏
s=1

(
K>a(l)

s

)λs
, (4.12)

b(l)
s =

P(l) (D, λ)

K>a(l)
s

, (4.13)

where, as before, K = exp(−C
γ ). In this case, however, the scaling vectors are of size NS , such that a(l) =(

a(l)>
1 , . . . , a(l)>

S

)>
, b(l) =

(
b(l)>

1 , . . . , b(l)>
S

)>
and b(0) = 1NS . Note that one can perform both scaling vector updates
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(a) Wasserstein simplex; γ = 8 (b) Wasserstein simplex; γ = 1

Figure 4.3: Wasserstein simplices: barycenters of the three images in the corners with varying barycentric
weights. Middle row: λ =
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at once (and avoid storing both) by plugging one of (4.11), (4.13) into the other. An illustration of the Wasserstein
barycenter, as well as the impact of the γ parameter, is given in Figure 4.3.

4.3 Wasserstein dictionary learning

4.3.1 Overview

Given data X ∈ RN×M in the form of histograms, i.e., each column xi ∈ ΣN (for instance a list of M images with
normalized pixel intensities), and the desired number of atoms S , we aim to learn a dictionary D made up of
histograms (d1, . . . , dS ) ∈ (ΣN)S and a list of barycentric weights Λ = (λ1, . . . , λM) ∈ (ΣS )M so that for each input,
P(D, λi) is the best approximation of xi according to some criterion L (see Table 4.1 for examples). Namely, our
representation is obtained by solving the problem

min
D,Λ
E(D,Λ) :=

M∑
i=1

L (P(D, λi), xi) . (4.14)

Note the similarity between the usual dictionary learning formulation (see Section 4.1.1) and the one above. In
our case, however, the reconstruction of the original data happens via the nonlinear Wasserstein barycenter
operator, P(D,Λ) = (P(D, λi))i, instead of the (linear) matrix product DΛ.

Differentiation of (4.14) relies in part on the computation of the Wasserstein barycenter operator’s Jaco-
bians with regard to either the barycentric weights or the atoms. While it is possible to obtain their analytical
formulae, for example by using the fact that Sinkhorn updates (4.12–4.13) become fixed-point equations when
convergence is reached, they rely on solving a linear system of prohibitive dimensionality for our settings of in-
terest where N is typically large (Bonneel et al., 2016, derived the expression with regard to barycentric weights
and discussed the issue in their Section 4.1). Moreover, in practice, the true Wasserstein barycenters with
entropic penalty P(D, λi) are unknown and approximated by sufficient Sinkhorn iterations (4.12–4.13). As is
now common practice in some machine learning methods (a typical example being backward propagation for
neural nets), and following recent works (Bonneel et al., 2016), we instead take an approach in the vein of au-
tomatic differentiation (Griewank and Walther, 2008). That is, we recursively differentiate the iterative scheme
yielding our algorithm instead of the analytical formula of our Wasserstein barycenter. In our case, this is the
generalization of the Sinkhorn algorithm for barycenters. Instead of (4.14), we thus aim to minimize

min
D,Λ
EL(D,Λ) :=

M∑
i=1

L
(
P(L)(D, λi), xi

)
, (4.15)
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where P(L) is the approximate barycenter after L iterations, defined as in (4.12). Even when using an entropy
penalty term, we have no guarantee on the convexity of the above problem, whether jointly in D and Λ or
for each separately, contrary to the case of OT distance computation in (4.8). We thus aim to reach a local
minimum of energy landscape EL by computing its gradients and applying a descent method. By additivity of
EL and without loss of generality, we will focus on the derivations of such gradients for a single datapoint x ∈ ΣN

(in which case Λ only comprises one list of weights λ ∈ ΣS ). Differentiation of (4.15) yields

∇DEL(D,Λ) =
[
∂DP(L)(D, λ)

]>
∇L(P(L)(D, λ), x), (4.16)

∇λEL(D,Λ) =
[
∂λP(L)(D, λ)

]>
∇L(P(L)(D, λ), x). (4.17)

The right-hand term in both cases is the gradient of the loss which is typically readily computable (see Table 4.1)
and depends on the choice of fitting loss. The left-hand terms are the Jacobians of the Wasserstein barycenter
operator with regard to either the weights or the dictionary. These can be obtained either by performing the
analytical differentiation of the P(l) operator, as is done in Section 4.3.2 (and Appendix D), or by using an auto-
matic differentiation library such as Theano (Theano Development Team, 2016). The latter approach ensures
that the complexity of the backward loop is the same as that of the forward, but it can lead to memory problems
due to the storing of all objects being part of the gradient computation graph (as can be the case, for instance,
when performing the forward Sinkhorn loop in the log-domain as in Section 4.4.1; for this specific case, an
alternative is given in Equation 4.4.1). The resulting numerical scheme relies only on elementwise operations
and on the application of the matrix K (or its transpose) which often amounts to applying a separable convo-
lution (Solomon et al., 2015, see Equation 4.4.1). The resulting algorithm is given in Algorithm 4.1. At first, a
“forward” loop is performed, which amounts to the exact same operations as those used to compute the ap-
proximate Wasserstein barycenter using updates (4.12–4.13) (the barycenter for current weights and atoms is
thus computed as a by-product). Two additional vectors of size S NL are stored and then used in the recursive
backward differentiation loops that compute the gradients with regard to the dictionary and the weights.

Name L(p, q) ∇L

Total variation ‖p − q‖1 sign(p − q)
Quadratic ‖p − q‖22 2(p − q)

Kullback-Leibler KL(p|q) log(p/q) − 1
Wasserstein1 W(L)

γ (p, q) γ log(a(L))

Table 4.1: Examples of similarity criteria and their gradient in p. See Figure 4.14 for the atoms yielded by our
method for these various fitting losses.

Using the above scheme to compute gradients, or its automatically computed counterpart from an auto-
matic differentiation tool, one can find a local minimum of the energy landscape (4.15), and thus the eventual
representation Λ and dictionary D, by applying any appropriate optimization method under the constraints that
both the atoms and the weights belong to their respective simplices ΣN ,ΣS .

For the applications shown in Section 4.5, we chose to enforce these constraints through the following
change of variables

∀i, di := FN(αi) :=
eαi∑N

j=1 e[αi] j
, λ := FS (β) :=

eβ∑S
j=1 eβ j

. (4.18)

The energy to minimize (with regard to α, β) then reads as

1In this case, the loss is computed iteratively as explained in Section 4.2.1, and a(L) in the gradient’s expression is obtained after L
iterations as in (4.9).
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Algorithm 4.1: SinkhornGrads: Computation of dictionary and barycentric weights gradients.



4.3. Wasserstein dictionary learning 101

GL(α, β) := EL(F(α), FS (β)), (4.19)

where F(α) := (FN(α1), . . . , FN(αS )) = D. Differentiating (4.19) yields

∇αGL(α, β) = [∂F(α)]> ∇DEL (F(α), FS (β)) = [∂F(α)]> ∇DEL (D,Λ) , (4.20)

∇βGL(α, β) =
[
∂FS (β)

]>
∇λEL (F(α), FS (β)) =

[
∂FS (β)

]>
∇λEL (D,Λ) , (4.21)

where
[
∂Fp(u)

]>
= ∂Fp(u) =

(
Ip − Fp(u)1>p

)
∆

(
Fp(u)

)
, p being either N or S for each atom or the weights,

respectively, and both derivatives of EL are computed using either automatic differentiation or as given in (4.16),
(4.17) with Algorithm 4.1 (see Section 4.3.2). The optimization can then be performed with no constraints over
α, β.

Since the resulting problem is one where the function to minimize is differentiable and we are left with no
constraints, in this work we chose to use a quasi-Newton method (though our approach can be used with any
appropriate solver); that is, at each iteration t, an approximation of the inverse Hessian matrix of the objective
function, B(t), is updated, and the logistic variables for the atoms and weights are updated as

α(t+1) := α(t) − ρ(t)
α B(t)

α ∇αGL(α, β), β(t+1) := β(t) − ρ(t)
β B(t)

β ∇βGL(α, β), (4.22)

where the ρ(t) are step sizes. An overall algorithm yielding our representation in this particular setup of quasi-
Newton after a logistic change of variables is given in Algorithm 4.2.

In the applications of Section 4.5, B(t) and ρ(t) were chosen using an off-the-shelf L-BFGS solver (Morales
and Nocedal, 2011). We chose to perform updates to atoms and weights simultaneously. Note that in this case,
both are fed to the solver of choice as a concatenated vector. It is then beneficial to add a “variable scale”
hyperparameter ζ and to multiply all gradient entries related to the weights by that value. Otherwise, the solver
might reach its convergence criterion when approaching a local minimum with regards to either dictionary atoms
or weights, even if convergence is not yet achieved in the other. Setting either a low or high value of ζ bypasses
the problem by forcing the solver to keep optimizing with regard to one of the two variables in particular. In
practice, and as expected, we have observed that relaunching the optimization with different ζ values upon
convergence can increase the quality of the learned representation. While analogous to the usual alternated
optimization scheme often used in dictionary learning problems, this approach avoids having to compute two
different forward Sinkhorn loops to obtain the derivatives in both variables.

4.3.2 Backward recursive differentiation

To differentiate P(L)(D,Λ), we first rewrite its definition (4.12) by introducing the following notations:

P(l)(D, λ) = Ψ(b(l−1)(D, λ),D, λ), (4.23)

b(l)(D, λ) = Φ(b(l−1)(D, λ),D, λ), (4.24)

where

Ψ(b,D, λ) :=
∏

s

(
K>

ds

Kbs

)λs

, (4.25)

Φ(b,D, λ) :=


Ψ(b,D, λ)

K> d1
Kb1

> , . . . ,
Ψ(b,D, λ)

K> dS
KbS

>

>

. (4.26)
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Algorithm 4.2: Quasi-Newton implementation of the WDL algorithm.

Finally, we introduce the following notations for readability:

ξ(l)
y :=

[
∂yξ(b(l),D, λ)

]>
, B(l)

y :=
[
∂yb(l)(D, λ)

]>
, (4.27)

where ξ can be Ψ or Φ, and y can be D or λ.
We then have

∇DEL(D, λ) = Ψ
(L−1)
D

(
∇L(P(L)(D, λ), x)

)
+

L−2∑
l=0

Φ
(l)
D

(
v(l+1)

)
, (4.28)

∇λEL(D, λ) = Ψ
(L−1)
λ

(
∇L(P(L)(D, λ), x)

)
+

L−2∑
l=0

Φ
(l)
λ

(
v(l+1)

)
, (4.29)

where:

v(L−1) := Ψ
(L−1)
b

(
∇L(P(L)(D, λ), x)

)
, (4.30)

∀l < L − 1, v(l−1) := Φ
(l−1)
b

(
v(l)

)
. (4.31)

See Appendix D for proof.

4.4 Extensions

4.4.1 Log-domain stabilization

Stabilization

In its most general framework, representation learning aims at finding a useful representation of data, rather
than one allowing for perfect reconstruction. In some particular cases, however, it might also be desirable to
achieve a very low reconstruction error, for instance if the representation is to be used for compression of data
rather than a task such as classification. In the case of our method, the quality of the reconstruction is directly
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linked to the selected value of the entropy parameter γ, as it introduces a blur in the reconstructed images as
illustrated in Figure 4.3. In the case where sharp features in the reconstructed images are desired, we need to
take extremely low values of γ, which can lead to numerical problems, e.g. because values within the scaling
vectors a and b can then tend to infinity. As suggested by Chizat et al. (2018) and Schmitzer (2019), we can
instead perform the generalized Sinkhorn updates (4.12–4.13) in the log-domain. Indeed, noting u(l)

s , v
(l)
s as the

dual scaling variables, that is,

a(l)
s := exp

u(l)
s

γ

 , b(l)
s := exp

v(l)
s

γ

 , (4.32)

the quantity −ci j + ui + v j is known to be bounded and thus remains numerically stable. We can then introduce
the stabilized kernel K̃(u, v) defined as

K̃(u, v) := exp
(
−C + u1> + 1v>

γ

)
, (4.33)

and notice that we then have

u(l)
s = γ

[
log(ds) − log(Kb(l−1)

s )
]
, (4.34)[

log(Kb(l−1)
s )

]
i
= log

∑
j

exp

−ci j + v(l−1)
j

γ


 (4.35)

= log

∑
j

K̃(u(l−1)
s , v(l−1)

s ). j

 −
[
u(l−1)

s

]
i

γ
. (4.36)

With similar computations for the vs updates, we can then reformulate the Sinkhorn updates in the stabilized
domain as

u(l)
s := γ

log(ds) − log

∑
j

K̃(u(l−1)
s , v(l−1)

s ). j


 + u(l−1)

s , (4.37)

v(l)
s := γ

log(P(l)) − log

∑
i

K̃(u(l)
s , v

(l−1)
s )i.

 + v(l−1)
s . (4.38)

This provides a forward scheme for computing Wasserstein barycenters with arbitrarily low values of γ, which
could be expanded to the backward loop of our method either by applying an automatic differentiation tool to
the stabilized forward barycenter algorithm or by changing the steps in the backward loop of Algorithm 4.1 to
make them rely solely on stable quantities. However, this would imply computing a great number of stabilized
kernels as in (4.33), which relies on nonseparable operations. Each of those kernels would also have to either
be stored in memory or recomputed when performing the backward loop. In both cases, the cost in memory or
number of operations, respectively, can easily be too high in large scale settings.

Separable log kernel

These issues can be avoided by noticing that when the application of the kernel K is separable, this operation
can be performed at a much lower cost. For a d-dimensional histogram of N = nd bins, applying a separable
kernel amounts to performing a sequence of d steps, where each step computes n operations per bin. It results
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in a O(nd+1) = O(N
d+1

d ) cost instead of O(N2). As mentioned previously, the stabilized kernel (4.33) is not
separable, prompting us to introduce a new stable and separable kernel suitable for log-domain processing.
We illustrate this process using 2D kernels without loss of generality. Let X be a 2D domain discretized as an
n × n grid. Applying a kernel of the form K = exp(−C

γ ) to a 2D image b ∈ X is performed as such:

R(i, j) :=
n∑

k=1

n∑
l=1

exp
(
−

C((i, j), (k, l))
γ

)
b(k, l) , (4.39)

where C((i, j), (k, l)) denotes the cost to transport mass between the points (i, j) and (k, l).
Assuming a separable cost such that C((i, j), (k, l)) := Cy(i, k) + Cx( j, l) , it amounts to performing two sets

of 1D kernel applications:

A(k, j) =

n∑
l=1

exp
(
Cx( j, l)
γ

)
b(k, l), (4.40)

R(i, j) =

n∑
k=1

exp
(
Cy(i, k)
γ

)
A(k, j) . (4.41)

In order to stabilize the computation and avoid reaching representation limits, we transfer it to the log-domain
(v := log(b)). Moreover, we shift the input values by their maximum and add it at the end. The final process can
be written as the operator KLS : log(b)→ log(K(b)) with K a separable kernel, and is described in Algorithm 4.3.

Algorithm 4.3: LogSeparableKer KLS : Application of a 2D separable kernel in log-domain.

This operator can be used directly in the forward loop, as seen in Algorithm E.1. For backward loops, in-
termediate values can be negative and real-valued logarithms are not suited. While complex-valued logarithms
solve this problem, they come at a prohibitive computational cost. Instead, we store the sign of the input values
and compute logarithms of absolute values. When exponentiating, the stored sign is used to recover the correct
value.

4.4.2 Warm start

Warm start, often used in optimization problems, consists in using the solution of a previous optimization prob-
lem, close to the current one, as the initialization point in order to speed up the convergence. Our method relies
on performing an iterative optimization process (for example, L-BFGS in the following experiments) which, at
each iteration, calls upon another iterative scheme: the forward Sinkhorn loop to compute the barycenter and
its automatic differentiation to obtain gradients. As described in Section 4.2.2, this second, nested iterative
scheme is usually initialized with constant scaling vectors. However, in our case, since each iteration of our
descent method performs a new Sinkhorn loop, the scaling vectors of the previous iteration can be used to set
the values of b(0) instead of the usual 1NS , thus “warm-starting” the barycenter computation. In the remainder of
this subsection, for illustrative purposes, we will focus on our particular case where the chosen descent method
is L-BFGS, though the idea of applying warm start to the generalized Sinkhorn algorithm should be directly
applicable with any other optimization scheme.



4.4. Extensions 105

(a) MUG dataset: woman (b) MUG dataset: man

Figure 4.4: Evolution of the mean PSNR of the reconstructions per L-BFGS iteration, for three configurations, on
two datasets. The KL loss was used for this experiment. We see that the warm start yields better reconstructions
with the same number of Sinkhorn iterations (L) in roughly the same time.

As an example, in our case, instead of a single L-BFGS step after L = 500 Sinkhorn iterations, we perform
an L-BFGS step every L = 10 iterations, initializing the scaling vectors as the ones reached at the end of the
previous 10. This technique accumulates the Sinkhorn iterations as we accumulate L-BFGS steps. This has
several consequences: a gain in precision and time, a potential increase in the instability of the scaling vectors,
and changes in the energy we minimize.

First, the last scaling vectors of the previous overall iteration are closer to that of the current one than a
vector of constant value. Therefore, the Sinkhorn algorithm converges more rapidly, and the final barycenters
computed at each iteration gain accuracy compared to the classical version of the algorithm.

Second, as mentioned in Section 4.4.1, the scaling vectors may become unstable when computing a large
number of iterations of the Sinkhorn algorithm. When using a warm start strategy, Sinkhorn iterations tend
to accumulate, which may consequently degrade the stability of the scaling vectors. For example, using 20
Sinkhorn iterations running through 50 L-BFGS steps, a warm start would lead to barycenters computed using
scaling vectors comparable to those obtained after 1000 Sinkhorn iterations. When instabilities become an
issue, we couple the warm start approach with our log-domain stabilization. The reduced speed of log-domain
computations is largely compensated by the fact that our warm start allows the computation of fewer Sinkhorn
iterations for an equivalent or better result.

Third, when differentiating (4.15), we consider the initial, warm-started (as opposed to initializing b(0) to
1NS ) values given to the scaling vectors to be constant and independent of weights and atoms. This amounts
to considering a different energy to minimize at each L-BFGS step.

We demonstrate the benefits of the warm start in Figure 4.4. We plot the evolution of the mean Peak SNR
(PSNR) of the reconstructions throughout the L-BFGS iterations for different settings for the two datasets used
in Section 4.5.4. For these examples, we used the KL loss (since it gave the best reconstructions overall), we
did not have to use the log-domain stabilization, and we restarted L-BFGS every 10 iterations. At an equal
number of Sinkhorn iterations (L), enabling the warm start always yields better reconstructions after a certain
number of iterations. It comes at a small overhead cost in time (around 25%) because the L-BFGS line search
routine requires more evaluations at the start. For the example in Figure 4.4a, the computation times are 20
minutes for L = 2, 25 minutes for the warm restart and L = 2, and 15 hours for L = 100. In this particular
case, enabling the warm start with two Sinkhorn iterations yields even better results than having 100 Sinkhorn
iterations without a warm start and with a 36 gain factor in time. For the second dataset (Figure 4.4b), enabling
the warm start does not yield results as good as when running 100 Sinkhorn iterations. However, it would
require considerably more than two Sinkhorn iterations, and hence a lot more time, to achieve the same result
without it. The computation times in all three cases are similar to the previous example.
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4.4.3 Sinkhorn heavyball

As part of a generalization of the Sinkhorn algorithm for solving OT between tensor fields, Peyré et al. (2016)
introduced relaxation variables. In the particular case of scalar OT (our framework in the present work), these
relaxation variables amount to an averaging step in the Sinkhorn updates; for instance, in the case of the
barycenter scaling updates (4.11), (4.13),

ã(l)
s =

ds

Kb(l−1)
s

, (4.42)

a(l)
s =

(
a(l−1)

s

)τ (
ã(l)

s

)1−τ
,

b̃(l)
s =

P(l) (D, λ)

K>a(l)
s

, (4.43)

b(l)
s =

(
b(l−1)

s

)τ (
b̃(l)

s

)1−τ
.

τ = 0 yields the usual Sinkhorn iterations, but it has been shown that negative values of τ produce extrapolation
and can lead to a considerable increase in the rate of convergence of the Sinkhorn algorithm (Peyré et al.,
2016, Remark 6). This effect can be thought of in the same way as the heavyball method (Zavriev and Kostyuk,
1993; Nesterov, 2018), often used in optimization problems and dating back to Polyak (1964), i.e. as the
addition of a momentum term (e.g., (a(l−1)

s /ã(l)
s )τ, which amounts to τ(u(l−1)

s − ũ(l)
s ) in the log-domain) to the

usual Sinkhorn updates. This acceleration scheme can be used within our method by applying an automatic
differentiation tool (Theano Development Team, 2016) to the forward Sinkhorn loop yielding the barycenter
(shown in Algorithm G.1 in the Appendices) and feeding the gradients to Algorithm 4.2.

4.4.4 Unbalanced

In (4.4), we defined the set of admissible transport plans Π(p, q) as the set of matrices whose marginals are
equal to the two input measures, that is, with rows summing to p and columns summing to q. Equivalently, we
can reformulate the definition of the approximate Wasserstein distance (4.8) as

Wγ(p, q) := min
T∈RN×N

+

〈T,C〉 + γH(T ) + ι{p}(T1N) + ι{q}(T>1N), (4.44)

where ι is the indicator function defined in (3.17). Chizat et al. (2018) introduce the notion of unbalanced
transport problems, wherein this equality constraint between the marginals of the OT plan and the input mea-
sures is replaced by some other similarity criterion. Using entropic regularization, they introduce matrix scaling
algorithms generalizing the Sinkhorn algorithm to compute, among others, unbalanced barycenters. This gen-
eralizes the notion of approximate Wasserstein barycenters that we have focused on thus far.

In particular, using the KL divergence between the transport plan’s marginals and the input measures allows
for less stringent constraints on mass conservation, which can in turn yield barycenters which maintain more of
the structure seen in the input measures. This amounts to using the following definition of Wγ in the barycenter
formulation (4.10):

Wγ(p, q) := min
T∈RN×N

+

〈T,C〉 + γH(T ) + ρ
(
KL(T1N |p) + KL(T>1N |q)

)
, (4.45)

where ρ > 0 is the parameter determining how far from the balanced OT case we can stray, with ρ = ∞ yielding
the usual OT formulation. In this case, the iterative matrix scaling updates (4.12–4.13) read, respectively (Chizat
et al., 2018), as
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P(l) (D, λ) =

 S∑
s=1

λs
(
K>a(l)

s

) γ
ρ+γ


ρ+γ
γ

, (4.46)

a(l)
s =

(
ã(l)

s

) ρ
ρ+γ , b(l)

s =
(
b̃(l)

s

) ρ
ρ+γ , (4.47)

where ã(l)
s , b̃

(l)
s are obtained from the usual Sinkhorn updates as in (4.42), (4.43).

Algorithm G.2, given in the Appendices, performs the barycenter computation (forward loop) including both
the unbalanced formulation and the acceleration scheme shown in Section 4.4.3. Automatic differentiation can
then be performed using an appropriate library (Theano Development Team, 2016) to obtain the dictionary
and weights gradients, which can then be plugged into Algorithm 4.2 to obtain a representation relying on
unbalanced barycenters.

4.5 Applications

4.5.1 Comparison with Wasserstein principal geodesics

As mentioned in Section 4.1.1, an approach to generalize PCA to the set of probability measures on some
space, endowed with the Wasserstein distance, has recently been proposed (Seguy and Cuturi, 2015). Given
a set of input measures, an approximation of their Wasserstein Principal Geodesics (WPGs) can be computed,
namely geodesics that pass through their isobarycenter (in the Wasserstein sense) and are close to all input
measures. Because of the close link between Wasserstein geodesics and the Wasserstein barycenter, it would
stand to reason that the set of barycenters of S = 2 atoms learned using our method could be fairly close to
the first WPG. In order to test this, and to compare both approaches, we reproduce the setting of the WPG
paper (Seguy and Cuturi, 2015) experiment on the Modified National Institute of Standards and Technology
database (MNIST) within our framework.

Figure 4.5: Span of our 2-atom dictionary for weights (1 − t, t), t ∈ {0, 1
4 ,

1
2 ,

3
4 , 1}, when trained on images of digit

2.

We first run our method to learn two atoms on samples of 1000 images for each of the first four nonzero
digits, with parameters γ = 2.5, L = 30, and compare the geodesic that runs in between the two learned atoms
with the first WPG. An example of the former is shown in Figure 4.5. Interestingly, in this case, as with the 3’s
and 4’s, the two appear visually extremely close (see the first columns of Seguy and Cuturi, 2015, Figure 5,
for the first WPG). It appears our method can thus capture WPGs. We do not seem to recover the first WPG
when running on the dataset made up of 1’s, however. This is not unexpected, as several factors can cause the
representation we learn to vary from this computation of the first WPG:

• In our case, there is no guarantee the isobarycenter of all input measures lies within the span of the
learned dictionary.

• Even when it does, since we minimize a non-convex function, the algorithm might converge toward an-
other local minimum.
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• In this experiment, the WPGs are computed using several approximations (Seguy and Cuturi, 2015),
including some for the computation of the geodesics themselves, which we are not required to make in
order to learn our representation.

Note that in the case of this particular experiment (on a subsample of MNIST 1’s), we tried relaunching our
method several times with different random initializations and never observed a span similar to the first WPG
computed using these approximations.

Our approach further enables us to combine, in a straightforward way, each of the captured variations when
learning more than two atoms. This is illustrated in Figure 4.6, where we run our method with S = 3. Warpings
similar to those captured when learning only S = 2 atoms (the appearance of a loop within the 2) are also
captured, along with others (shrinking of the vertical size of the digit toward the right). Intermediate values of
the weight given to each of the three atoms allow our representation to cover the whole simplex, thus arbitrarily
combining any of these captured warpings (e.g., vertically shrinked, loopless 2 in the middle of the bottom row).

Figures similar to Figure 4.5 and 4.6 for all other digits are given in the Appendices, Section H.1.

Figure 4.6: Span of a 3-atom dictionary learned on a set of 2’s. Weights along each edge are the same as in
Figure 4.5 for the two extreme vertices and 0 for the other, while the three center barycenters have a weight of
1
2 for the atom corresponding to the closest vertex and 1

4 for each of the other two.

4.5.2 Point spread functions

As with every optical system, observations from astrophysical telescopes suffer from a blurring related to the
instrument’s optics and various other effects (such as the telescope’s jitter for space-based instruments). The
blurring function, or PSF, can vary spatially (across the instrument’s FOV), temporally and chromatically (with
the incoming light’s wavelength). In order to reach its scientific goals, ESA’s upcoming Euclid space mis-
sion (Laureijs et al., 2011) will need to measure the shape of billions of galaxies extremely accurately, and
therefore correcting the PSF effects is of paramount importance. The use of OT for PSF modelling has been
investigated by Irace and Batatia (2013) and Ngolè and Starck (2017), both with the aim of capturing the spatial
variation of the PSF. For any given position in the FOV, the transformations undergone by the PSF depend-
ing on the incoming light’s wavelength are also known to contain strong geometrical information, as illustrated
in Figure 4.7. It is therefore tempting to express these variations as the intermediary steps in the optimal
transportation between the PSFs at the two extreme wavelengths. This succession of intermediary steps,
the displacement interpolation (also known as McCann’s interpolation McCann, 1997) between two measures,
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(a) 550nm (b) 600nm (c) 650nm (d) 700nm (e) 750nm (f) 800nm (g) 850nm (h) 900nm

Figure 4.7: Simulated Euclid-like PSF variation at a fixed position in the FOV for varying incoming wavelengths.

(a) 550nm (b) 600nm (c) 650nm (d) 700nm (e) 750nm (f) 800nm (g) 850nm (h) 900nm

Figure 4.8: Polychromatic variations of PSFs by displacement interpolation.

can be computed (in the case of the 2-Wasserstein distance) as their Wasserstein barycenters with weights
λ = (1 − t, t), t ∈ [0, 1] (Agueh and Carlier, 2011).

We thus ran our method on a dataset of simulated, Euclid-like PSFs (described in Section 3.3.4 and Ngolè
et al., 2015, Section 4.1) at various wavelengths and learned only two atoms. The weights were initialized as a
projection of the wavelengths into [0, 1] but allowed to vary. The atoms were initialized without using any prior
information as two uniform images with all pixels set at 1/N, N being the number of pixels (in this case 402).
The fitting loss was quadratic, the entropic parameter γ set to a value of 0.5 to allow for sharp reconstructions,
and the number of Sinkhorn iterations set at 120, with a heavyball parameter τ = −0.1.

The learned atoms, as well as the actual PSFs at both ends of the spectrum, are shown in Figure 4.9. Our
method does indeed learn atoms that are extremely close visually to the two extremal PSFs. The reconstructed
PSFs at the same wavelength as those of Figure 4.7 are shown in Figure 4.8 (the corresponding final barycentric
weights are shown in Figure 4.11b). This shows that OT, and in particular displacement interpolation, does
indeed capture the geometry of the polychromatic transformations undergone by the PSF. On the other hand,
when one learns only two components using a PCA, they have no direct interpretation (see Figure 4.10), and
the weights given to the second principal component appear to have no direct link to the PSF’s wavelength, as
shown in Figure 4.11a.

Note that while adding constraints can also make linear generative methods yield two atoms that are visually
close to the extreme PSFs, for instance by using NMF instead of PCA (see Figure H.5 in the Appendices), our
method yields lower reconstruction error, with an average normalized mean square error of 1.71 × 10−3 across
the whole dataset, as opposed to 2.62 × 10−3 for NMF. As expected, this difference in reconstruction error
is particularly noticeable for datapoints corresponding to wavelengths in the middle of the spectrum, as the
NMF reconstruction then simply corresponds to a weighted sum of the two atoms, while our method captures
more complex warping between them. This shows that the OT representation allows us to better capture the
nonlinear geometrical variations due to the optical characteristics of the telescope.

4.5.3 Cardiac sequences

We tested our dictionary learning algorithm on a reconstructed Magnetic Resonance Imaging (MRI) sequence
of a beating heart. The goal was to learn a dictionary of four atoms, representing the key frames of the
sequence.

An advantageous side effect of the weights learned by our method lying in the simplex is that it provides
a natural way to visualize them: by associating each atom di with a fiducial position (xi, yi) ∈ R2, each set of
weights can be represented as one point placed at the position of the Euclidean barycenter of these positions,
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Figure 4.9: Extreme wavelength PSFs in the dataset and the atoms making up the learned dictionary.

Figure 4.10: PCA-learned components.
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(a) Weights for the first two principal components learned
by PCA.

(b) Barycentric weights learned by our method. The dashed
lines are the initialization.

Figure 4.11: Evolution of representation coefficients by wavelength.

Figure 4.12: Left: Comparison between four frames (out of 13) of the measures (lower row) and the same
reconstructed frames (upper row). Right: plot of the reconstructed frames (blue points) by their barycentric
coordinates in the 4-atom basis, with each atom (red points) at the vertices of the tetrahedra. The green point
is the first frame.

with individual weights given to the corresponding atom. Up to rotations and inverse ordering, there are only as
many such representations as there are possible orderings of the atoms. In the present case of S = 4, we can
further use the fact that any of the four weights λi is perfectly known through the other three as 1 −

∑
j,i λ j. By

giving atoms fiducial positions in R3 and ignoring one of them or, equivalently, assigning it the (0, 0, 0) position,
we thus obtain a unique representation of the weights as seen in Figure 4.12. The “barycentric path” (polyline of
the barycentric points) is a cycle, which means the algorithm is successful at finding those key frames that, when
interpolated, can represent the whole dataset. This is confirmed by the similarity between the reconstructions
and the input measures.

For this application, we used 13 frames of 272×240, a regularization γ = 2, and a scale between weights and
atoms of ζ = N/(100∗M), N = 272×240, M = 13 frames. Initialization was random for the weights, and constant
for the atoms. We used a quadratic loss because it provided the best results in terms of reconstruction and
representation. We found 25 iterations for the Sinkhorn algorithm to be a good trade-off between computation
time and precision.
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4.5.4 Wasserstein faces

It has been shown that images of faces, when properly aligned, span a low-dimensional space that can be
obtained via PCA. These principal components, called Eigenfaces, have been used for face recognition (Turk
and Pentland, 1991). We show that, with the right setting, our dictionary learning algorithm can produce atoms
that can be interpreted more easily than their linear counterparts, and can be used to edit a human face’s
appearance.

We illustrate this application on the Multimedia Understanding Groups database (MUG) of facial expression
(Aifanti et al., 2010). From the raw images of the MUG database, we isolated faces and converted the images
to grayscale. The resulting images are in the top rows of Figure 4.13. We can optionally invert the colors
and apply a power factor α similarly to a gamma-correction. We used a total of 20 (224 × 224) images of a
single person performing five facial expressions and learned dictionaries of five atoms using PCA, NMF, a K-
SVD implementation (Rubinstein et al., 2008), and our proposed method. For the last, we set the number of
Sinkhorn iterations to 100 and the maximum number of L-BFGS iterations to 450. The weights were randomly
initialized, and the atoms were initialized as constant.

We performed a cross validation using two datasets, four loss functions, four values for α (1, 2.2, 3, 5), and
colors either inverted or not. We found that none of the α values we tested gave significantly better results (in
terms of reconstruction errors). Interestingly, however, inverting colors improved the result for our method in
most cases. We can conclude that when dealing with faces, it is better to transport the thin and dark zones
(eyebrows, mouth, creases) than the large and bright ones (cheeks, forehead, chin).

As illustrated by Figure 4.13 (and H.7 in the Appendices), our method reaches similarly successful recon-
structions given the low number of atoms, with a slightly higher mean PSNR of 33.8 compared to PSNRs of
33.6, 33.5 and 33.6 for PCA, NMF and K-SVD respectively.

We show in Figure 4.14 (and H.6 in the Appendices) the atoms obtained when using different loss functions.
This shows how sensible the learned atoms are to the chosen fitting loss, which highlights the necessity for its
careful selection if atoms’ interpretability is important for the application at hand.

Finally, we showcase an appealing feature of our method: the atoms that it computes allow for facial editing.
We demonstrate this application in Figure 4.15. Starting from the isobarycenter of the atoms, by interpolating
weights towards a particular atom, we add some of the corresponding emotion to the face.

4.5.5 Literature learning

We use our algorithm to represent literary work. To this end, we use a bag-of-words representation (Salton
and McGill, 1983), where each book is represented by a histogram of its words. In this particular application,
the cost matrix C (distance between each word) is computed exhaustively and stored. We use a semantic
distance between words. These distances were computed from the Euclidian embedding provided by the
GloVe database (Global Vectors for Word Representation, Pennington et al., 2014).

Our learning algorithm is unsupervised and considers similarity between books based on their lexical fields.
Consequently we expect it to sort books by either author, writing style, or genre.

To demonstrate our algorithm’s performance, we created a database of 20 books by five different authors.
In order to keep the problem size reasonable we only considered words that are between seven and eight
letters long. In our case, it is better to deal with long words because they have a higher chance of holding
discriminative information than shorter ones.

The results can be seen in Figure 4.16. Our algorithm is able to group the novels by author, recognizing the
proximity of lexical fields across the different books. Atom 0 seems to be representing Charlotte Brontë’s style,
atoms 1 and 4 that of Mark Twain, atom 2 that of Arthur Conan Doyle, and atom 3 that of Jane Austen. Charles
Dickens appears to share an extended amount of vocabulary with the other authors without it differing enough
to be represented by its own atom, like others are.
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Figure 4.13: We compare our method with Eigenfaces (Turk and Pentland, 1991), NMF and K-SVD (Rubinstein
et al., 2008) as a tool to represent faces on a low-dimensional space. Given a dataset of 20 images of the same
person from the MUG (Aifanti et al., 2010) performing five facial expressions four times (row (a) illustrates each
expression), we project the dataset on the first five Eigenfaces (row (b)). The reconstructed faces corresponding
to the highlighted input images are shown in row (f). Rows (c) and (d), respectively, show atoms obtained using
NMF and K-SVD and rows (g) and (h) their respective reconstructions. Using our method, we obtain five atoms
shown in row (e) that produce the reconstructions in row (i).
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Figure 4.14: We compare the atoms (columns 1 to 5) obtained using different loss functions, ordered by the
fidelity of the reconstructions to the input measures (using the mean PSNR), from best to worst: the KL diver-
gence (a) PS NR = 32.03, the quadratic loss (b) PS NR = 31.93, the total variation loss (c) PS NR = 31.41, and
the Wasserstein loss (d) PS NR = 30.33. In the last column, we show the reconstruction of the same input image
for each loss. We notice that from (a) to (d), the atoms’ visual appearance seems to increase even though the
reconstruction quality decreases.

Figure 4.15: Face editing : Using the atoms shown in row (a) of Figure H.6, we interpolate between the atoms’
isobarycenter (top image) and each one of the atoms (giving it a relative contribution of 70%). This allows us to
emphasize each emotion (bottom images) when starting from a neutral face.
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Figure 4.16: Using our algorithm, we look at word histograms of novels and learn five atoms in a sample of 20
books by five authors. Each book is plotted according to its barycentric coordinates with regard to the learned
atoms, as explained in Section 4.5.3.
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Figure 4.17: Four different original datapoints (in blue) and their reconstructions (in yellow) from our method in
both the balanced (top row) and unbalanced (bottom row) settings. In the balanced case, we see the appear-
ance of spurious modes where there was no mass in the original data or a lack of mass where there was a
mode originally (the third example). Conversely, in the unbalanced case, our approach always places mass at
the right positions on the grid.

4.5.6 Multimodal distributions

It is a well-known limitation of the regular OT-based Wasserstein barycenters that when there are several distinct
areas containing mass, the supports of which are disjoint on the grid, the barycenter operator will still produce
barycenters with mass in between them. To illustrate the advantages of using the unbalanced version our
method introduced in Section 4.4.4 and the use cases where it might be preferable to do so, we place ourselves
in such a setting.

We generate a dataset as follows: A 1D grid is separated into three equal parts, and while the center part is
left empty, we place two discretized and truncated 1D Gaussians with the same standard deviation, their mean
randomly drawn from every other appropriate position on the grid. We draw 40 such datapoints, yielding several
distributions with either one (if the same mean is drawn twice) or two modes in one of the two extreme parts of
the grid or one mode in each.

We then run our method in both the balanced and the unbalanced settings. In both cases, γ is set to 7, 100
Sinkhorn iterations are performed, the loss is quadratic, and the learned dictionary is made up of three atoms.
In the unbalanced case, the KL-regularization parameter is set as ρ = 20.

Figure 4.17 shows examples of the input data and its reconstructions in both settings. In the unbalanced
case, our method always yields the right number of modes in the right parts of the grid. Running our method with
balanced Wasserstein barycenters, however, leads to reconstructions featuring mass in parts of the grid where
there was none in the original datapoint (the two left-most examples). Parts of the grid where the datapoint
featured a mode can also be reconstructed as empty (the third example). Lastly, we observe mass in areas of
the grid that were empty for all datapoints (the fourth example).
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4.6 Conclusion to Chapter 4

This chapter introduces a nonlinear dictionary learning approach that uses OT geometry by fitting data to
Wasserstein barycenters of a list of learned atoms. We offer schemes to compute this representation based on
the addition of an entropic penalty to the definition of OT distances, as well as several variants and extensions
of our method. We illustrate the representation our approach yields on several different applications.

Some very recent works present a faster Sinkhorn routine, such as the Greenkhorn algorithm (Altschuler
et al., 2017) or a multiscale approach (Schmitzer, 2019). These could be integrated into our method along with
automatic differentiation in order to speed up the algorithm.
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Chapter 5

Polychromatic PSF field estimation

Contents
5.1 Chromatic variations of the PSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.1.2 SEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2 λRCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.2.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2.2 Learning D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2.3 Choosing tλ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.2.4 Other constraints and optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.3.1 Observed stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3.2 Test/galaxy PSFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3.3 PSF models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.4.1 Monochromatic PSFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.4.2 Test PSFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Space telescopes like Euclid are particularly adapted to WL studies because of their small and very stable
PSF. However, a space observatory comes with its own complications. In Section 2.4.1 and Chapter 3, for
example, we showed the complex profile of a diffraction-limited PSF leads to higher-order effects in its impact
on galaxy shape measurement.

Another issue that will need to be addressed with Euclid is the chromatic variations of the PSF (Cypriano
et al., 2010; Eriksen and Hoekstra, 2018). The PSF is not just a function of the position within the focal plane
where the objects lie, but also of the wavelength of incoming light. This effect is especially significant in the
case of the VIS instrument because of its very wide band. The effective PSF applied to each object is therefore
a function of its SED. In order to correctly measure a galaxy’s shape, we must find the PSF that corresponds
to this specific SED. This means we need to recover chromatic variations of the PSF from stellar observations.
This information can then be used to estimate the PSF not just at the position of the galaxy, but also with its
own SED.

Note that while the issue we discuss here is the chromatic variation of the Optical PSF, Meyers and Burchat
(2015) showed that seeing was also wavelength-dependent. This means that ground-based PSF can also vary
with wavelength. Carlsten et al. (2018) study this effect in the case of the HSC survey, and propose a correction
scheme to apply to the size of the PSF model. Both of these studies conclude that tnderstanding the chromatic
variations of the PSF will also be crucial for WL studies with the upcoming, ground-based LSST.

The main aim of this thesis is the development of non-parametric methods to model the VIS PSF. No
existing method (see Section 2.4.3) can recover chromatic variations. In this chapter, we propose the first
non-parametric PSF model capable of doing so. We start from the approach proposed in Chapter 3 and
Paper II, and expand it using the OT concepts developed in Chapter 4 and Paper I. This work was carried
out in collaboration with Jean-Luc Starck, Fred Ngolè, and graduate student Rebeca Araripe, who contributed
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significantly to improving the method, and to both identifying and addressing some of its limitations during her
internship at CEA.

5.1 Chromatic variations of the PSF

5.1.1 Overview

We start by describing the formalism of a wavelength-dependent PSF. Following Section 3.3.1, let H denote
the true PSF. We now consider it to be a function of both position u and wavelength λ. Consider an object (star
or galaxy) i, at position ui and with SED Si. The PSF affecting it is

Hi =

∫
B
Si(λ)H(ui, λ)dλ, (5.1)

where B is the band of the instrument. In our case of Euclid’s VIS instrument, we have B := [550, 900]nm. Hi

is a 2D function of image coordinates, x1, x2. Using (2.88)’s notations, let I denote the true brightness profile of
object i. Its PSF-convolved profile is

Iobs(x1, x2) =

∫
B

I(x1, x2)Si(λ) ∗
[
H(ui, λ)

]
(x1, x2)dλ (5.2)

= I(x1, x2) ∗
∫

B
Si(λ)

[
H(ui, λ)

]
(x1, x2)dλ (5.3)

Iobs(x1, x2) = I(x1, x2) ∗ Hi(x1, x2). (5.4)

(5.4) is the polychromatic (and continuous) equivalent to the general PSF convolution setting of (2.103). All
wavelength-dependent quantities are contained in Hi. This required, to go from (5.2) to (5.3), the assumption
that I does not vary with λ. In the case of an unresolved star, I(x1, x2) := 1{(x1,x2)=(xc

1,x
c
2)}, and this is true. For a

galaxy, however, the true brightness profile is likely to be a function of wavelength. For instance, its bulge and
disk are likely to have different spectra. In the general case, the effect of a chromatically varying brightness
profile, I(x1, x2, λ) (or, equivalently, of a spatially varying SED Si(λ, x1, x2)), is called color gradient (Semboloni
et al., 2013). It can be a significant source of bias in shear measurements. Er et al. (2018) showed that it
is possible to calibrate it to sufficient accuracy for Euclid, using HST data. This correction also requires an
accurate knowledge of the PSF chromaticity, which needs to be acquired from stellar images. In this chapter,
we focus on this task, and will therefore always assume (5.4) to be a valid assumption. Color gradient correction
could then be carried out a posteriori, using our chromatic model as an input.

Similarly to the simplified setting of Section 3.3.1, our aim is to build a PSF model, Ĥ(ugal,Sgal), for any set
of galaxy position and SED, (ugal,Sgal). Available observations are star images, Y1, . . . ,Ynstars , with

Yi := F (Hi) + Ni, (5.5)

where, as in (3.29), F and Ni are the degradation operator (discrete sampling, subpixel shift and further under-
sampling) and Gaussian noise, respectively. Hi) is the true PSF affecting star i.

Since we want our PSF model to be computable for any SED S, we will build it as a function of λ. In
other words, we want to break down integrated, degraded observations into monochromatic PSF components(
Ĥ(u, λ)

)
λ
. We can then reconstruct the PSF that affected the object with

Ĥ(u,S) =
∑
λ

S(λ)Ĥ(u, λ), (5.6)
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Figure 5.1: Illustration of the imaging process in the case of a chromatically varying PSF, and the associated
polychromatic PSF estimation problem (indicated by the question mark).

where the summation is carried out over a discretization of B. This is an ill-posed inverse problem, as infinitely
many Ĥ(ui, λ) can reproduce the integrated star observation Yi. The most trivial example is

Ĥ(ui, λ) =
H̄i

S(λ)
, (5.7)

with H̄i the average integrated PSF across the whole band B. Such a model would entirely fail at recovering
chromatic information.

This example shows the complexity of this problem; this is further illustrated in Figure 5.1. Even if we
assume the stars’ SED to be known (see Section 5.1.2 for a discussion of this issue), the chromatic information
is highly degraded by the integration over λ. The only way to recover it is through the use of prior knowledge
and regularization, as discussed in Section 3.1.2. We will build these using OT in Section 5.2.

5.1.2 SEDs

Knowledge of both stars’ and galaxies’ spectra are required. The former to build a chromatic PSF model, the
latter to compute it for galaxies using (5.6). Photometric measurements, for each galaxy, from both Euclid’s
own NISP instrument and supporting ground-based surveys will be made available for photo-z. These can also
be used to obtain an estimate of S per object. This, however, raises the concern that the same measurements
would be used for both PSF and redshift estimation. This in turn leads to correlations between errors in the
two. Eriksen and Hoekstra (2018) explore this issue, and find that existing template-fitting methods would need
to be modified to achieve Euclid accuracy goals. They propose a machine learning approach that reaches
requirements, and corrects for potential correlations between the integrated galaxy PSF models and estimated
redshifts. Interestingly, since their approach allows for a mapping between objects’ colors and PSF size that is
independent from the main PSF model, it can also be used as an extra validation of the latter. For their approach
to be successful in recovering the effective galaxy PSFs (i.e. evaluating Equation 5.6), they do require accurate
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knowledge of the chromatic variations of the PSF. Similar to color gradient corrections, the model proposed in
this chapter would thus be fitted on stellar objects first, then provided as input.

In order to build a polychromatic PSF model, we also require per-object spectral information about stars.
Kuntzer et al. (2016) showed that they could successfully classify individual stars into stellar classes using only
their observation with VIS. This in turn allows us to obtain at least an SED template per star. More accurate
spectral information will also be available for some objects, including from CSS-OS (Gong et al., 2019) and
Gaia (Perryman et al., 2001). In the experiments of Section 5.3, we will only use stellar template SEDs, though
we note our proposed model can only be improved by more precise spectral information on the observed stars.
It can also, in principle, be fitted using stars with discrete SEDs of various accuracy simultaneously.

In what follows, we will always assume that for each observed star Yi, we also have access to some mea-
surement of its SED, Si. Moreover, in our experiments, the SED associated to each star is always exactly cor-
rect; the impact of a misclassification of stellar classes and/or inaccurate SED measurements on our method is
left for further study.

5.2 λRCA

5.2.1 Rationale

In Section 4.5.2, we showed that the Wasserstein barycenter operator was a good choice to capture the chro-
matic variations of the VIS PSF. Our proposed polychromatic PSF model, λRCA, uses this information as a
prior on the chromatic variations in order to expand the method of Chapter 3. In this model, the PSF was
decomposed through the matrix factorization Ĥi := S Ai, with S a set of eigenPSFs and Ai the weights for
observation i. Star images could then be recovered by applying the degradation operator,

Yi ≈ Fd(S Ai) = Fd

∑
j

ai jS j

 . (5.8)

The central idea behind λRCA is to replace the set of eigenPSFs (S j) j with a set of 2-atoms dictionaries
(D j) j := (d−j , d

+
j ) j containing, similar to those learned in Section 4.5.2, two extreme wavelengths eigenPSFs.

Each monochromatic eigenPSF at any arbitrary wavelength λ can then be recovered as the Wasserstein
barycenter of D j with weights Tλ := (tλ, 1 − tλ), as shown in Figure 4.8. Replacing S j in (5.8), we get

Yi ≈ Fd

∑
j

ai j

∑
λ

Si(λ)P(D j,Tλ)

 = Fd

∑
λ

Si(λ)
∑

j

ai jP(D j,Tλ)

 , (5.9)

where P is the Wasserstein barycenter operator defined in (4.10). We will discuss the choice of Tλ in Sec-
tion 5.2.3.

By learning both D := (D j) j and A = (Ai)i∈{1,...,nstars} from observed stars, we can then reconstruct the PSF
at any position and for any SED. Spatial interpolation is carried out over A in the same way as in RCA (see
Section 3.3.3), yielding Agal = (agal, j) j. “Spectral interpolation” is performed by using, in (5.6),

Ĥ(ugal, λ) :=
∑

j

agal, jP(D j,Tλ). (5.10)

5.2.2 Learning D

We have shown in Chapter 4 that the Wasserstein barycenter operator can recover the chromatic variations
of the PSF. However, in that experiment, our WDL method was trained on monochromatic PSFs. The learned
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atoms, d−, d+, were thus extremely close to the true extreme wavelengths PSFs (Figure 4.9). In the real-life
setting of Figure 5.1, however, monochromatic PSFs are unavailable. It is therefore impossible to directly apply
the idea presented above.

To illustrate this, let us start by simply replacing the eigenPSFs S of RCA by a set of Wasserstein barycenters
D, and the observation model (5.8) by (5.9). We would then fit our model by solving a minimization problem
similar to (3.36) in the case of RCA, i.e.

min
D,A

(
1
2

∥∥∥∥∥∥Y − Fd

∑
λ, j

Si(λ)ai jP(D j,Tλ)


∥∥∥∥∥∥2

F
+ g(D, A)

)
, (5.11)

with g enforcing a set of constraints. If these were chosen to be the same as those of RCA (where applicable,
see Section 5.2.4), with no extra constraints on the set of 2-atoms of D, it would lead to convergence toward

∀ j, d−j = d+
j = S j, (5.12)

where S j is the eigenPSF that would be obtained by running RCA on the same data. Since P((S j, S j),Λ) = S j

for any set of weights Λ, we would revert to the same PSF model as that of monochromatic RCA. This is the
exact same degeneracy as that illustrated by (5.7).

We thus need further constraints to ensure our prior knowledge (that the Wasserstein barycenter recovers
chromatic variations) is active. We achieve this through two means: an adequate first guess, and a constraint
on the spread of the atoms. Both come from the observation that, as λ increases, chromatic variations resemble
a “zoom-in”, as seen in Figure 4.7.

Since we will obtain our final model by alternate minimization (Section 3.1.6) over D and A, we expect to
converge toward a local minimum. By selecting a first guess D(0) motivated by the actual variations in our

data, we can influence which local minimum will be reached. We build the first guess atoms,
(
d−j

)(0)
,
(
d+

j

)(0)
, as

follows:

1. we split the available stars into r groups (where r is the number of sets of dictionaries, or polychromatic
eigenPSFs);

2. we perform a crude super-resolution step to obtain one superresolved star, Y+
j , per group;

3. we apply a zoom-out operation to each Y+
j , yielding Y−j ;

4. we set
(
d−j

)(0)
:= Y+

j ,
(
d+

j

)(0)
:= Y+

j .

We tried several different ways to allocate stars to groups at step 1, and found it to have little influence. In
practice, the stars are thus randomly allocated to groups, with replacement, as the number of stars used impacts
upon the quality of the superresolution step. Step 2 was performed using the shift-and-add approach (Elad and
Hel-Or, 2001). Lastly, the zoom-out operation of step 3 was carried out using an off-the-shelf method within
SciPy1 (Jones et al., 2001). An example of the resulting first guess atoms is shown in Figure 5.2.

We want to ensure the property of d+ being more spread out than d− is conserved throughout the iterations.
While we could set one to be the zoom-out of the other at every iteration, and only optimize over the set of
(d+

j ) j, this would be too stringent a constraint. The true extreme wavelength PSFs clearly exhibit more intricate
variations, as can be seen in Figure 4.9. Instead, if we impose the support of d̃−, the Fourier transform of d−,
to be smaller than that of d+, it will lead to the latter being more spread out in direct space. In practice, this is
achieved through the addition of the following spread constraint :

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.zoom.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.zoom.html
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Figure 5.2: First-guess dictionary atoms for an arbitrary component j. Each of the other r − 1 initializations
appear very similar.

gspread(D) := βspread
∑

j

‖w
spread
j � d̃−j ‖1, (5.13)

where βspread is a trade-off parameter weighing the relative importance of this constraint compared to others
and to the data fidelity term (similar to λ in Equation 3.11), and wspread

j are weights that determine the amount
of sparsity desired.

These are two new hyperparameters that could in principle be set to any value. We can, however, provide
the following empirical considerations. In practice, it is beneficial to have βspread vanish with increasing iterations.
Indeed, as D approaches convergence, the spread constraint becomes less needed. Lowering its relative
importance further allows for our final d̃− to include low-frequency variations that would have otherwise been
removed by thresholding. Since we want the Fourier transform of d̃− to be sparser than that of d̃+, wspread

j should
be related to ‖d̃+‖1. We found

w
spread
j :=

1
2p2 ‖d̃

+‖1, (5.14)

where p2 is the number of pixels in the superresolved PSF images, to work well in practice for the VIS PSF. The
amount of extra spread of the largest wavelength PSF, when comparing it to the smallest, is related to how the
size of the PSF changes with wavelength. This relationship is often modelled as a power law. It is reasonable
to assume that some knowledge about its parameter should be available for any instrument’s PSF (see, e.g.
Carlsten et al., 2018; Eriksen and Hoekstra, 2018, for that of HSC and VIS, respectively), in turn giving an
empirical mean to select wspread

j for any survey.
We note that both of these choices lead to a change in the cost function that is minimized. However,

since fitting λRCA amounts to an alternated minimization, this is acceptable as long as overall convergence
is achieved in practice. Indeed, each minimization over D is already carried out with a different cost function
regardless, since A is updated in between each of them.

5.2.3 Choosing tλ

The other new parameters arising from the introduction of OT in our PSF modelling are the barycentric weights,
Tλ (that were called Λ in the generic case of Chapter 4). Since we only consider 2-atoms dictionaries in the
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Figure 5.3: Optimal barycentric weight t∗λ(u), for 10 positions u, each shown with a different color.

present chapter, there is only one scalar paramater, tλ, to choose. The other barycentric weight will then
necessarily be 1 − tλ. tλ corresponds to the relative weight given to d− (compared to d+) at any wavelength λ.
For the extreme wavelengths of our band B, the choice is naturally

tλmin := 1, tλmax := 0. (5.15)

For all intermediary wavelengths, tλ can either be added as a free parameter to optimize over when fitting λRCA
to stars, or as a predetermined function of λ.

The second option is preferable as it reduces the number of free parameters. Our experiment of Sec-
tion 4.5.2 provided us with some early insight into the relationship between λ and the Wasserstein barycentric
weights between two “extreme wavelength” atoms. There, tλ was initialized as a projection of B = [λmin, λmax]
into [0, 1]. While still allowed to vary, it remained fairly close to linear upon convergence of WDL, as shown in
Figure 4.11b. The present setting is different, since we are not running WDL on a set of true monochromatic
PSFs, though this result is an indication that a linear relationship between λ and tλ might be a good choice.

If our model succeeds at capturing chromatic variations, our set of polychromatic eigenPSFs should repro-
duce the true extreme wavelength PSFs, Hext(u) := (H(u, λmin),H(u, λmax)). To explore the relationship between
λ and an optimal tλ, we thus compute a set of Wasserstein barycenters,

Pt(u) := P(Hext(u), (t, 1 − t)), (5.16)

on a finely sampled grid t ∈ [0, 1], for 10 different positions u in the FOV. For each intermediary wavelength λ,
we select the optimal t as

t∗λ(u) := argmin
t
‖H(u, λ) − Pt(u)‖2F. (5.17)

That is, the barycenter of the true extreme wavelength PSFs that achieves the lowest pixel reconstruction
error when compared with the true monochromatic PSF. These are plotted in Figure 5.3, and show excellent
agreement with a linear relationship. We will therefore always set

tλ :=
λ − λmin

λmax − λmin
(5.18)

for all components j.
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5.2.4 Other constraints and optimization problem

Now that we have addressed the new variables and parameters of λRCA, we turn to the rest of the constraints
of RCA described in Section 3.3.2. The “low rank”, or dimensionality reduction aspect is preserved through the
choice of r, the number of components. The only difference is these are now a set of dictionaries (D j), instead
of a set of single eigenPSF images (S j) j. Similarly, we still want to enforce sparsity of these components in an
appropriate representation space (Starlets, in our case). This is achieved by preserving the sparsity constraint,
but applying it to both elements of each D j instead of S j.

The graph constraint described in Sections 3.3.2 and 3.3.3 is directly applicable to λRCA and remains
unchanged. We build the set of PSF graphs at initialization as in (3.33), factorize A by the last few eigenvectors
of their “Laplacian matrices”, and optimize over the resulting α coefficients instead of A. The graph constraint
is still enforced through a ιΩ term in the cost function, with Ω defined in (3.38).

As was the case for the dictionary of WDL in Section 4.2, we will now require all (d+
j , d
−
j ) to belong to the

probability simplex Σp2 , defined in (4.1). This can be achieved by two means: either using the logistic change
of variable (as we did in Chapter 4), or by adding ιΣp2 terms for each d+

j and d−j to our cost function. Note
that Σp2 is a convex set, and ιΣp2 is thus proximable. The experiments shown in this chapter used the latter
option. Either way, a side effect is that all elements of D are positive. This does not guarantee the positivity
of the reconstructed PSFs, as A can still contain negative values. However, in practice, we found that the new
simplex constraint was sufficient to obtain a positive-valued PSF model. We thus remove the positivity constraint
that was present in regular RCA (enforced through the ι+(SαVT ) term in Equation 3.36). Note that a similar
observation was already made in both Ngolè et al. (2016) and Section 3.3: when performing the alternated
optimization of RCA, it was sufficient to consider the positivity constraint when optimizing over S . It was already
discarded when optimizing over α.

Altogether, these considerations give the following optimization problem:

min
D,α

(
1
2

∥∥∥∥∥∥Y − Fd

∑
λ, j

Si(λ)ai jP(L)(D j,Tλ)


∥∥∥∥∥∥2

F

+

r∑
j=1

[
‖w−j � Φd−j ‖1 + ‖w+

j � Φd+
j ‖1

]
+

∑
j

[
ιΣp2 (d+

j ) + ιΣp2 (d−j )
]

+ gspread(D) (5.19)

+ ιΩ(α)
)
.

The first line is the data fidelity term. The second contains all constraints applied to D: sparsity in Starlet
domain, need to belong to the simplex, and spread constraint (defined in Equation 5.13). The third is the graph
constraint applied to α.

Notice we replaced the Wasserstein barycenter operator P with its entropy penalized approximation P(L),
as in Section 4.2.2. As in the WDL method of Chapter 4, this will allow us to compute the gradient of our cost
function with regard to D through automatic differentiation.

As with regular RCA, fitting λRCA to a star field amounts to solving (5.19). This is achieved through alterna-
tively optimizing over D and α using proximal algorithms (Condat, 2013; Raguet et al., 2013). A python library
to perform this fitting is currently under development2. It includes a wrapper of C functions3, originally devel-
oped by my collaborator Matthieu Heitz for the log-stabilized implementation of WDL described in Section 4.4.1,
heavily modified by Rebeca Araripe to fit the needs of λRCA.

2https://github.com/CosmoStat/LambdaRCA
3https://github.com/matthieuheitz/WassersteinDictionaryLearning

https://github.com/CosmoStat/LambdaRCA
https://github.com/matthieuheitz/WassersteinDictionaryLearning
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Figure 5.4: Stellar SEDs used in our experiments.

5.3 Experiments

In order to test our proposed approach, we compare its performance with that of regular RCA on the experiment
described in this section.

The PSFs used as ground truth are the same VIS simulations as those used in Section 3.3 and the PSF
experiment of Section 4.5.2, described in more detail in Ngolè et al. (2015). Future experiments in the non-
parametric Euclid PSF modelling efforts will, however, use a new set of simulations provided by Pierre-Antoine
Frugier. These were custom made for this purpose, are based on more up-to-date specifications of the flight
instrument, include modelling of polishing errors that lead to high-frequency variation, and the impact of CCD
misalignment. Because of this last addition, the underlying PSF model is discontinuous at the border of each
CCD. Conversely, no CCD misalignment is present in the dataset used in this thesis. The experimental set-up
of Section 3.3 used nstars = 300, which is higher than the expected number of usable PSF stars per CCD, but
lower than the number across the whole field. In preparation for the new dataset, and future efforts to add
multi-CCD handling to our non-parametric models, we will use nstars = 80 in the present chapter. This number
corresponds to the average expected number of PSF stars, per VIS CCD, on science exposures.

For each position considered, we save a set of “true” PSFs, (H(u, λ))λ, sampled at the target pixel scale. As
in Section 3.3, that target is half of Euclid’s detector pixel scale. Resulting PSF images are then truncated to
stamps of 42×42 pixels. These correspond, similar to Hkn in Chapter 3, to the best reconstruction achievable by
our models, and will be used for comparison and to compute PSF model quality criteria. The PSF simulations
contain 100 monochromatic PSFs, with a spectral sampling of ∆λ = 5nm. These, however, contain some out-of-
band simulations that we will not consider in the present work. Restraining ourselves to the nominal VIS band
of B = [λmin, λmax] = [550, 900]nm, we obtain 71 monochromatic PSFs per position.

5.3.1 Observed stars

80 positions Ustars are randomly drawn across the FOV. One of 13 stellar SED is assigned to each of these.
Following Kuntzer et al. (2016), these are chosen to be templates of main sequence stars, spanning the whole
Morgan-Keenan range (Morgan and Keenan, 1973), from the Pickles (1998) library. These are shown in Fig-
ure 5.4. The SED assigned to any position is uniformly drawn.

The monochromatic PSFs are then summed at the smallest pixel scale available, weighted by the normal-
ized selected stellar SED. These are sampled on the VIS band with a spectral sampling step of ∆λ = 5nm,
to match that of the PSF dataset. The resulting integrated stellar PSFs are then sampled at the target pixel
scale, and the degradation operator Fd containing both a sub-pixel shift (as illustrated in Figure 2.13) and the
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Figure 5.5: Example observed stars. Each corresponds to both a different position in the FOV and a different
stellar SED.
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Figure 5.6: Euclid lensing n(z) (purple line) and the corresponding PDF for each of our 5 redshift bins (red bars).

further degradation to Euclid pixel scale is applied. Stamps of p2 := 21 × 21 pixels are then extracted, and
white Gaussian noise is added, yielding 80 star observations (Yi)i∈{1,...,80}. Since we saw no significant trend
with noise levels in the experiments of Chapter 3, we consider a single noise level of σ = 0.03, applied after
normalization of the star stamps. Examples of a few resulting star images are shown in Figure 5.5.

5.3.2 Test/galaxy PSFs

80 other positions are drawn from those with available PSF simulations. We will refer to these as “test” or galaxy
positions.

The galaxy SEDs we use are those of Ilbert et al. (2008) and were provided by my cosupervisor, Martin
Kilbinger, following exchanges with Francisco Castander4. These contain 31 different template SEDs, corre-
sponding to 7 elliptical, 1 lenticular, 11 spiral, and 12 starburst galaxy types. Each of these include extinction by
the galaxy itself, selected from 5 different possible extinction laws, but no extinction by the Milky Way.

For each of 31 × 80 = 2480 unique combinations of position and galactic SED template, we draw a redshift
value from 5 very wide bins of ∆z = 0.5, with probabilities matching the expected lensing n(z) of the Euclid Wide
Survey (Euclid Collaboration et al., 2019) as shown in Figure 5.6. Each SED is redshifted accordingly, and
sampled with the correct ∆λ within the VIS band. Examples for two redshift bins and the elliptical galaxy SED
templates are shown in Figure 5.7. The final, integrated test PSF are then computed by summation at the finest
available pixel scale, then sampled at our target pixel scale and stamp size of 42 pixels. This results in a set of
2480 test PSFs

(
H(u,S j)

)
u∈Ugal, j∈{1,...,31}

.

4Readers with access to CEA’s Direction de la Recherche Fondamentale private repositories can find them at https://
drf-gitlab.cea.fr/mkilbing/SED.

https://drf-gitlab.cea.fr/mkilbing/SED
https://drf-gitlab.cea.fr/mkilbing/SED
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Elliptical galaxy SED templates

(a) Redshift bin centered on z = 0.25.
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Figure 5.7: Example galaxy SEDs for Elliptical galaxies for two different redshift bins. Each color corresponds to
one of 7 templates for elliptical galaxies. Similar plots for all considered galaxy SEDs are shown in Appendix I.
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5.3.3 PSF models

We run both RCA and λRCA on the observed stars. Since RCA does not handle chromatic variations, its PSF
model is simply interpolated to each galaxy position inUgal, yielding 80 different ĤRCA estimated PSF. Each will
be used to compute diagnostics by comparing it with each of the 31 different integrated test PSFs corresponding
to different SEDs.

λRCA uses the true individual stellar SEDs, (Si)i, along with the corresponding observed stars and posi-
tions, (Yi, ui)i, as inputs. The spectral sampling rate ∆λ of these is the same as that of our simulated PSFs.
However, in a real-life setting, this sampling rate would depend on the source of our SED information. The num-
ber of individual wavelengths at which the Wasserstein barycenters of each of our D j are computed is another
free parameter. In other words, this parameter determines the set over which the summation in λ is carried
out in (5.9). The higher this number is, the more chromatic information is used, up to the limit imposed by the
quality of our SED estimates. However, it also comes at increasingly higher computational costs. In the results
shown in this chapter, we chose to compute barycenters at 12 different, evenly spaced individual wavelengths.
This value was chosen because of the small improvement in reconstruction error obtained when adding extra
wavelengths values.

For both methods, we learn r = 4 components. These are either eigenPSFs S j for RCA, or 2-atoms
dictionaries D j for λRCA. Other hyperparameters are set as suggested in Chapter 3 and Section 5.2. The
addition of the entropic penalty in the computation of the Wasserstein barycenter operator in (5.19) adds γ and
L as hyperparameters to λRCA. These are the entropic penalty trade-off parameter and number of Sinkhorn
iterations, respectively. The role of these two is described in Chapter 4, with a graphical representation of the
influence of γ in Figure 4.3.

Once again, empirical ways to determine adequate values for these two parameters can easily be proposed.
While high γ values can lead to a denoising effect (Cuturi and Peyré, 2016), in our case, the noise is already
handled by the sparsity constraint. On the other hand, we want our PSF model to recover sharp features, which
requires low values of γ. The exact value can be chosen empirically by computing Wasserstein barycenters of
images expected to contain features of the same sharpness as the desired PSF model, and ensuring these are
preserved within the barycenters. In our case, γ could be chosen by computing Wasserstein barycenters of the
first guess, lowest wavelengths dictionary atoms, (d−j )(0), and ensuring they do not exhibit excessive smoothing.
Once γ is chosen, L should simply be chosen to be the smallest possible, while still allowing for convergent
Sinkhorn iterations. In our case, these empirical recipes led to our choosing γ = 0.3 and L = 10. These values
caused a need for the log-domain stabilization of Sinkhorn iterations we introduced in Section 4.4.1.

Every element of D upon convergence of the λRCA fitting process are shown in Figure 5.8. The features
they exhibit clearly show that the algorithm was successful in capturing chromatic variations. We emphasize
that, unlike the experiment of Section 4.5.2, these atoms were obtained using only undersampled, single-band
images of stars, like those shown in Figure 5.5.

5.4 Results

5.4.1 Monochromatic PSFs

We first study the recovery of individual monochromatic PSFs by λRCA. No comparison with RCA (or any other
non-parametric PSF model) is possible at this stage, since λRCA is the only one able to recover these. Fig-
ure 5.9 show the true and reconstructed PSF, for a range of evenly spaced λ values, for a single randomly drawn
position. The normalized pixel mean square error (MSE) per wavelength is shown in Figure 5.10. Monochro-
matic profiles are recovered to few-percent accuracy, with a decrease in quality, and wider spread of errors
across positions, in the few lowest wavelengths.
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Figure 5.8: λRCA-learned dictionary atoms D. The lowest (resp. highest) wavelength atom for each component
j are shown on the left (resp. right).



132 CHAPTER 5. POLYCHROMATIC PSF FIELD ESTIMATION

H(u,550)

0.00

0.02

0.04

0.06

0.08

0.10
H(u,615)

0.00

0.02

0.04

0.06

0.08

H(u,685)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

H(u,755)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

H(u,900)

0.00

0.01

0.02

0.03

0.04

0.05

(a) True monochromatic PSFs.
ĤλRCA(u,550)

0.00

0.02

0.04

0.06

0.08

0.10
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Figure 5.9: Selected monochromatic PSFs at individual wavelengths across the whole VIS band for a randomly
drawn position. Row (a) show the true PSFs, row (b) their reconstruction using the λRCA model, and row (c)
the absolute error between the two.

5.4.2 Test PSFs

In this section, we compare the quality of estimated galaxy PSFs. A visual example is shown for both PSF
models in Figure 5.11. We further compute a set of quality criteria, for each group of galaxy SED templates,
and show the results in Table 5.1. These include the pixel MSE, normalized by the l2 norm of the true integrated
test PSFs, as well as RMS errors on both ellipticity components and size. As discussed in Section 2.4.1,
these are the quantities used by Cropper et al. (2013) to set requirements on PSF model quality for given WL
science objectives, and was in turn used to set those for Euclid. Our experiments of Chapter 3 showed that
the Paulin-Henriksson et al. (2008) formalism, which led to the choice of these quantities, is no longer valid
for a diffraction-limited PSF. Nonetheless, it remains a useful quantification of a PSF model quality and allows
for comparison with the only currently established Euclid requirements. Most importantly, even if our results
showed these are not the only PSF quantities having an impact on shear estimation, they still remain among
the most important contributors.

As can be seen in Figures I.2 and I.3 of the Appendices, the SED for Starburst galaxies can vary significantly
from one template to the next, especially at higher redshifts. We thus split them into two groups with similar
trends in high-redshift SEDs in Table 5.1. Using λRCA leads to smaller errors in pixels (as could be seen in the
example of Figure 5.11c) across all types of galaxies. The error on the size of the integrated galaxy PSFs is
also improved, by over a factor of 2, compared to the case where chromatic variations are not accounted for.
In both cases, the amplitude of errors in the RCA model vary by over 20% from one galaxy group to another,
while λRCA errors show less variations.

Looking at the RMS on ellipticity, however, we see no significant difference in performance in the second
component, while λRCA actually performs slightly worse than RCA in the first component. A possibility is that
this is due to λRCA being less efficient in capturing the spatial variations in e1. Indeed, the graph constraint
is built using the positions of stars, regardless of their SEDs. In the case of λRCA, this leads to a mixing
between recovered chromatic and spatial information. If the former has more of an impact on the updates to D
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Figure 5.10: Normalized pixel MSE as a function of wavelength. Error bars show variations across all 80 star
positions.

Galaxy type
Normalized pixel MSE σ(e1) σ(e2) σ(R2)/R2

RCA λRCA RCA λRCA RCA λRCA RCA λRCA
Elliptical 0.016 0.0095 0.018 0.021 0.0050 0.0046 0.32 0.15
Spiral & lenticular 0.016 0.0095 0.018 0.021 0.0051 0.0047 0.32 0.15
1st group Starburst 0.017 0.0096 0.018 0.023 0.0053 0.0051 0.35 0.14
2nd group Starburst 0.020 0.010 0.020 0.027 0.0059 0.0059 0.40 0.13

Table 5.1: Summary of quality criteria for both PSF models across all galaxy types. Here, σ denotes the RMS
error.

across iterations, the spatial information contained in the graph constraint is drowned out as the components
“specialize” in capturing the chromatic variations. Conversely, since RCA ignores chromatic information entirely,
the graph constraint has a greater impact on updates to the eigenPSFs. If this is indeed the reason for the
difference in recovery of the first ellipticity component between the two models, it could be alleviated by learning
both chromatic components D j and achromatic eigenPSFs S j simultaneously within λRCA. The former would
still capture the chromatic variations, as is clearly the case with the components we found here (as can be seen
in Figure 5.8). The latter could then leverage the graph constraint to capture remaining variations driven by the
position of objects.

5.5 Discussion

In this chapter, we introduced λRCA, the first non-parametric PSF model capable of capturing chromatic varia-
tions. Using no information other than observed undersampled stars and estimates of their SED, we manage
to capture the variations undergone by the PSF as the wavelength varies, as illustrated by the appearance of
the learned components in Figure 5.8 and the reconstructed monochromatic PSFs at single wavelengths in
Figure 5.9.
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(a) True PSF integrated with a
galaxy SED.

(b) Corresponding reconstructions
from both PSF models.

(c) Absolute errors.

Figure 5.11: Example test PSF, reconstructions using regular RCA (i.e. neglecting chromatic variations) and
λRCA, and the corresponding error maps.

Estimating the PSF that would affect galaxies with a wide range of SEDs and several different redshifts, we
see a significant improvement using this proposed approach in both the recovered profile of the PSF and its
size. Ignoring the chromatic variations of the PSF naturally leads to a strong correlation between the galaxy
type and the PSF modelling errors. Using our chromatic model leads to more stable PSF errors across different
galaxy types.

The setting of our experiments in this chapter is more realistic than that of Section 3.3, as it contains poly-
chromatic PSFs and is estimated using the expected number of stars on a single CCD. The quality of our PSF
models in terms of ellipticity is of the same order of magnitude as that observed in the previous, monochromatic
setting. Interestingly, however, using our chromatic model leads to a worse RMS in the first ellipticity component.
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This might be alleviated by learning both λ-dependent and achromatic components simultaneously.
Another significant difference with the results of Chapter 3 is in the RMS on the size of the PSF, which is

improved by more than an order of magnitude. Using λRCA, we are now at a factor of a few 102 over both
shape requirements, while in the earlier experiment, we found a factor of about 104 in size. This is not only
due to the improvement to the PSF model obtained by going from achromatic RCA to λRCA, but also because
integrated PSFs naturally have larger profiles, which in turn makes the superresolution easier.

Now that we have a PSF model that can capture chromatic variations, the main limitation is the number of
datapoints used to fit it. As we already concluded at the end of Chapter 3, our non-parametric approach will only
be able to achieve Euclid requirements if we can somehow fit it to more stars simultaneously. A first and fairly
straightforward way to do so is to include a modelling of the discontinuities caused by the jump from one CCD to
the next in the model. This will allow us to fit it to the whole field simultaneously instead of on a per-CCD basis.
As shown in Appendix B, this can already lead to significant improvement of PSF model quality. An approach
similar to that used by the LensFit PSF model, described in Equation 2.4.3, could be included into λRCA.
While such an approach could not be tested with the data used in this thesis, the new simulated Euclid PSFs
we mentioned in Section 5.3 do contain realistic CCD discontinuities. In the case of VIS, performing cross-CCD
fits would already allow for 36 times more stars (on average) to be used. If this still proves insufficient to bridge
the gap between the performance showed in this chapter and Euclid requirements, we will need to use stars
from several different exposures.

A current caveat of λRCA is its computation time. For the experiment shown in this chapter, fitting the model
to a field of 80 stars took a little over an hour on a 4-core computer. The main contribution to computation time
is the repeated computations of the Wasserstein barycenter operator, P(L), and especially of its derivative with
regards to the dictionaries. Since we need a very accurate recovery of the PSF profiles, we have to use small
values for the entropic regularization parameter γ. This in turn forces us to use the log stabilized version of
the backward Sinkhorn loop we presented in Section 4.4.1. Despite our efforts in last chapter to speed up this
computation, and our use of a parallelized C code, this step remains the main bottleneck in the fitting of λRCA.
The same was true for our WDL approach, and we suggested some alternatives to speed up the process
at the end of Chapter 4, namely the Greenkhorn algorithm (Altschuler et al., 2017) and Schmitzer (2019)’s
multiscale approach. Another option applicable to λRCA is offered by Courty et al. (2017): using deep neural
networks, they learn the Wasserstein barycenter operator P. Once such a network is trained, computation of
P becomes extremely fast. Moreover, they show these networks are particularly good at generalization; that
is, despite being trained using very different data, they still manage to compute excellent approximations of
the true Wasserstein barycenters. Including their approach in λRCA could lead to drastic improvements in its
computational cost.

Lastly, let us mention a few effects that could have an impact our polychromatic Euclid PSF model. Uncer-
tainty in stellar SEDs was already discussed in Section 5.1.2. Emission lines in galaxy spectra might also lead
to large errors in the estimated effective PSF, even if the PSF modelling step presented in this chapter perfectly
captured chromatic variations. Out-of-band leakage could also impact the chromatic PSF modelling step.

Most importantly, the central assumption on which λRCA is built is that OT tools are able to capture the true
chromatic variations. While we have shown this to be true with the present dataset, very recent measurements
made on Euclid hardware indicate the chromatic variations of the PSF may not be quite as smooth as expected.
If non-smooth variations, localized in λ, occur, these would need to be taken into account separately (or on top
of) the OT-based recovery of λRCA.
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Chapter 6

Conclusion

This thesis presents a study of non-parametric approaches to PSF modelling for WL surveys. Several upcoming
surveys, including Euclid, will soon start their observations. They will bring a wealth of cosmological information
from WL surveys of unprecedented breadth. This will only be possible, however, if we are able to correctly
handle the main source of error in galaxy shape measurement: the PSF.

Main contributions

Historically, non-parametric approaches to model the PSF have proven to be more efficient than physically-
motivated ones. In the case of Euclid, however, no existing model can be directly applied. Indeed, the PSF of
Euclid’s VIS instrument comes with new modelling challenges that the WL community had never been faced
with before. Chief among those is the chromatic variation of the PSF over the very broad band of VIS.

In this thesis, I have improved upon existing PSF models, and devised a new approach to capture these
chromatic variations. Achieving this in a non-parametric framework is an especially hard task, since the infor-
mation to be recovered is highly degraded. Not only is the PSF affecting objects integrated, with their own SED,
over the whole band, these broadband observations are also undersampled. Recovering a polychromatic PSF
model from such observations amounts to solving an ill-posed inverse problem.

Advanced mathematical tools were deployed to solve this problem. To tackle the issues of noise, under-
sampling, and spatial variations of the PSF, I have made use of sparse signal processing. These methods were
used to improve upon a recently proposed PSF modelling approach in Chapter 3, and extensively tested using
image simulations.

In order to break down SED-integrated, undersampled star images into a set of monochromatic PSFs
spanning the whole band, I have turned to Numerical OT. Following recent developments in this fairly new field,
numerical tools derived from the theory of optimal transportation can now be readily computed and applied
to practical problems. In particular, the Wasserstein distance, that describes the effort needed to “transport”
a probability measure into another, has already proven to be an extremely potent tool in machine learning
applications. In this vein, in Chapter 4, I have presented a new, non-linear dictionary learning approach, called
WDL. This new method fully leverages the attractive properties of OT in its learned representation of “data”,
which can come in many forms. In particular, WDL can be applied to images – including PSFs.

In Chapter 5, I made use of several concepts and numerical tools we created as part of the development
of WDL. The addition of this OT component to the PSF modelling problem led to the creation of λRCA: a non-
parametric PSF model that successfully recovers chromatic variations using no information other than images
of observed stars, their SEDs (or estimates thereof), and positions within the focal plane.

Beyond these methodological contributions, I have performed extensive image simulations to test the impact
of PSF modelling errors on galaxy shape measurements. Through these, I showed that in the case of Euclid,
usual assumptions about the propagation of PSF errors break down. The quality of a PSF model is traditionally
assessed by looking at its size and ellipticity: quantities of second order. This assessment is also mostly done
independently from the shape measurement process. Our experiments show that for Euclid (or any nearly
diffraction-limited instrument):

• higher-order effects can affect measured galaxy shapes, and thus shear estimation;

• the propagation of PSF error varies from one shape measurement method to another.

137



138 CHAPTER 6. CONCLUSION

Outlook

Experiments show that our proposed PSF models already outperform the current state-of-the art on simula-
tions. As discussed in Appendix B, however, some technical work remains before these models can reach
their full potential within actual data processing pipelines. Similarly, the computational cost of our proposed
λRCA approach currently makes its use in processing Euclid data unrealistic. This caveat is mostly related
to the computation of OT quantities, however, for which Courty et al. (2017) recently proposed a workaround.
Incorporating their approach into λRCA should lead to a dramatic decrease in computational overhead.

Beyond these technical improvements, a lot of prospects for the non-parametric PSF models proposed in
this thesis could lead to vast improvements. We are presently at a factor of a few hundreds beyond Euclid’s
stringent requirements. While this may seem like a severe gap, it is important to note that this has been achieved
in a fairly pessimistic scenario. Indeed, it was recently pointed out that the simulated PSFs used throughout
this thesis correspond to a “toleranced” realization of the telescope model. This means the effects included
due to the manufacturing of the instrument are within specifications, but still correspond to a highly perturbed
final instrument. The amplitude of the PSF variations occurring within our dataset thus correspond to a highly
pessimistic case, and those of the true Euclid flight instrument are likely to be much milder. Moreover, now that
we have a model that is capable of capturing chromatic variations, the main limiting factor on its performance is
the number of available observations. As discussed at the end of both Chapter 3 and Chapter 5, an immediate
mean of improving the quality of a PSF model is to enable it to be fitted to more stars simultaneously.

Our last experiment used only the average number of stars expected, from a single CCD, in a science
exposure. As a first mean to increase the number of available stars, we could include a way of handling all
CCDs at once. We discussed this prospect in Section 5.5. This straightforward improvement would allow us
to use all the stars from any single exposure. Because Euclid’s PSF is expected to be, by design, extremely
stable, another way of increasing the number of available stars is to use those from several different exposures.
The crudest way to do so would be to determine a certain amount of exposures that can be considered to have
been affected by the same PSF, and use stars from all of these simultaneously. These could be selected either
because they were acquired in short succession, or within similar observing conditions (e.g. with the same
solar aspect angle, the main driver for the thermal state of the telescope).

A more involved approach would be to fully account for temporal variations within the PSF modelling. We
have already gone from a PSF model that was a function of position, to one that was a function of position and
wavelength. We could as well add the time of observation (or some proxy thereof, like measured temperature
of the spacecraft) as an extra dimension. Our PSF model could even be updated in an online way, that is,
iteratively improved as new exposures are taken. Such an approach would allow for far more datapoints to be
used during the fitting. It may even allow us to use the planned calibration fields, some of which will contain a
far greater star density than the science exposures of the Wide survey.

This addition of a time dimension to our non-parametric PSF model is the first of three areas where future
work in the continuation of this thesis can bring significant improvements. The second is the eventual combi-
nation of the approach presented in this thesis with physically-motivated models like that of Duncan et al. (in
prep). It is already highly beneficial to have two independent methods to solve a problem that is critical to the
success of the Euclid mission. If both end up successful, their combination is likely to lead to an even better
PSF model.

A third far-reaching area worth exploring is trying to apply the tools developed in this thesis in wavefront
space. Indeed, in the present work, we have only carried out our work in direct space, that is, on images of
the PSF itself. Another option is to try and model the wavefront error (WFE) instead of the PSF itself, which
could still be done in a non-parametric way. The WFE and resulting direct space PSF are related through the
modulus of the Fourier transform. Trying to recover the WFE from direct-space star images thus falls into the
field of phase retrieval problems (Shechtman et al., 2015).

By successfully transferring our method to wavefront space, we would gain access to a wealth of new
information. In particular, characterization campaigns led, on the ground, on actual Euclid hardware can provide
the impact on the final WFE caused by various components. At the very end of Chapter 5, we briefly mentioned
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newly found effects causing severe “glitches” (i.e. very strong variations occurring over a very narrow, constant
ranges of λ values) in the chromatic variations of the PSF. These glitches could, perhaps, still be captured in
direct space using knowledge of their location (in wavelength), for instance by considering λRCA to provide
a baseline model, on top of which we would try to capture these extra variations. This task would, however,
be made significantly easier if the full WFE maps could be used instead of just the glitches’ location. This
specific WFE map alone is already a major motivation for further exploration of this avenue. It would also
enable us to use every other available source of information about the instrument’s WFE, and potentially even
the wide corpus of tools adapted for wavefront analysis, like Zernike polynomials (Zernike, 1934). This avenue
for research is thus closely related to that of combining physical and empirical PSF models.

Each of those three ideas are associated with exciting new problems to solve and potential developments
to explore. Conversely, there are several other extensions or improvements to the work carried out in this thesis
that are more minor and/or less exploratory, some of which we already mentioned:

• technical improvements to both RCA (in order to handle real-data corner cases) and λRCA (to reduce its
computational cost);

• handling multiple CCDs simultaneously;

• simultaneously fitting chromatic and achromatic components (see Sections 5.4.2 and 5.5);

• replacing the Starlet transform Φ used in the sparsity constraints by one more adapted to the PSFs we
aim to model;

• treating variations of the core and the wings of the PSF separately.

Modelling the Euclid PSF in a non-parametric way is a hard task. A lot of exciting work remains to be carried
out, as illustrated by the ideas listed above. The work carried out during my thesis already made it possible to
take steps towards a PSF model that is useable for Euclid. Several other useful contributions emanated from
this methodological work, both on knowledge about the propagation of PSF errors and in the form of WDL,
a generic unsupervised representation learning method. It also allowed me to delve into highly interesting
and useful topics, from WL image simulations and galaxy shape measurement to OT. In addition to all the
aforementioned PSF modelling-related topics I hope to explore in future work, I believe numerical OT could have
several other exciting and beneficial applications in cosmology. As a generic example, Wasserstein barycenters
are an excellent tool to interpolate between distributions that vary smoothly with some parameters, but that we
can only sample so many times. This type of issue is, of course, ubiquitous in our field.
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Appendix B

PSF estimation on real data

CFIS is a survey in the r and u bands carried out from the CFHT at Mauna Kea, Hawai’i. Together with
Pan-STARRS (Panoramic Survey Telescope and Rapid Response System), it forms UNIONS (Ultraviolet Near-
Infrared Optical Northern Survey). Its photometric measurements are among the most crucial for Euclid’s
photo-z measurements. The area of the sky covered by the survey is shown, along with that of Euclid, in
Figure B.1.

Ongoing efforts are currently being carried out to use CFIS data to perform WL measurements. Two shape
measurement pipelines are being independently applied to allow for comparison and mutual cross-validations:
LensFit (that we already mentioned in Equation 2.4.3) and ShapePipe. This chapter presents my contributions
to the PSF modelling and diagnostics for the latter.

This work was carried out in collaboration with the whole ShapePipe team, and especially my fellow PhD
student Axel Guinot. These results will appear, along with many other diagnostics of the rest of the pipeline, in
Guinot et al. (in prep). Some of these extra results also involve the PSF, for instance the spatial correlations
between PSF model and measured galaxy shapes. In this chapter, however, I will focus only on diagnostics of
the PSF model itself, and not on the PSF correction.

B.1 PSF models

In order to have a first functional shape measurement pipeline, standard methods to perform for each step
(see Section 2.3 for a brief overview) were first implemented in ShapePipe. In the case of the PSF, we thus
first implemented the tried-and-tested PSFEx approach (Bertin, 2011). See Sections 2.4.2 and 3.3.1 for more
details about the PSFEx model. It was originally designed to be ran in conjunction with companion software
SExtractor (Bertin and Arnouts, 1996) in order to perform shape measurement. In the case of ShapePipe,
however, we only want to make use of its PSF model, so that we can use any shape measurement method.
Small interfacing functions need to be applied to extract the PSF model from the PSFEx output files and compute
it at any arbitrary position. The same thing was done in DES (Jarvis et al., 2016), HSC (Bosch et al., 2017),
and in our own experimental set-up of Chapter 3.

A freely available code1, written by Erin Sheldon and Eli Rykoff, performs this step and was originally used
for our processing of the CFIS data. However, after running into some unidentified issues and in order to obtain
more flexibility when changing the upsampling parameter of PSFEx, we later changed to a version of the script2 I
used for the experiments of Chapter 3, slightly modified to fit the needs of (and the interfacing with) ShapePipe.

As with both current surveys using PSFEx, most of its parameters are left to their default values which are
also very close to those shown in Figure 3.3.4. One difference is in the use XWIN_IMAGE,YWIN_IMAGE instead
of X_IMAGE,Y_IMAGE as the position parameters. We found that setting the maximum polynomial degree to
3 led to a decrease in the PSF model quality, as measured from the diagnostics shown in Sections B.2 and
B.3. We therefore set it to 2. Lastly, the results we show in the present chapter were obtained by setting the
PSF_SAMPLING parameter to 1. This means PSFEx did not attempt to perform superresolution. Some early
testing on a small area of the sky seemed to indicate using a lower value led to worse results, though this is
something we plan on testing further in the future. We note, however, that Bosch et al. (2017) also found issues
when the superresolution mode of PSFEx was activated on HSC data, and that the PSF model we obtained with

1https://github.com/esheldon/psfex
2https://github.com/MorganSchmitz/PySFEx
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Figure B.1: Similar to Figure 2.14, the Euclid Wide Survey is shown in yellow, along with the footprint of several
key ground-based surveys. In particular, CFIS-r, which produced the data used in this chapter, is shown in red.
Credit: Jean-Charles Cuillandre.
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Figure B.2: A single exposure of the CFIS survey, observed with the CFHT’s MegaCam. The object at the
top-right of center of the mosaic is M101. Image rendered using the ds9 software (Joye and Mandel, 2003).
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no superresolution already seems to be of good quality. We will show some of the diagnostics that allowed us
to reach this conclusion in the rest of this chapter.

Our goal is to eventually include the PSF models described in earlier chapters of this thesis into ShapePipe.
The RCA code is now implemented as a ShapePipemodule and successfully runs within the pipeline. However,
we found that because of several effects never encountered when applying it to simulated star fields, yet more
modifications are required before it can be fully functional. As an example, the handling of SExtractor masks
within the method was required. We used this opportunity to improve RCA by making it capable of handling any
pixel-wise weights.

Another problematic corner case is that of a CCD where the star selection fails, for instance if the stellar
locus is not found (see Figure 2.7). PSFEx’s diagnostics can be used to identify and automatically remove such
cases (for instance by performing a selection on the final χ2 value). Critical failure cases could potentially be
missed by RCA, however, as in its present state it assumes the catalog it receives as input contains only stars.

While not directly related to the PSF model itself, such a case of unusable star catalog occurred in the
early days of our testing of ShapePipe on CFIS data. By checking instances of catastrophic failure of PSFEx
individually, I came across a CCD that contained an abnormally large amount of objects identified as stars.
Inspection of individual postage stamps from that catalog showed that several indeed appeared to contain a
star, along with many SExtractor mask. We eventually had to return to the original exposure to identify the
problem. It is reproduced in Figure B.2: the CCD was one close to object M101. While admittedly anecdotal,
this example illustrates how studying the PSF can reveal issues with entirely different parts of the pipeline (in
this case, local objects that had not been masked), or even the survey as a whole. Another example of an issue
with ShapePipe revealed by PSF studies will be given in Section B.3.

B.2 ρ statistics

We now present diagnostics of our CFIS PSF model, computed on the original processing of an area of about
2, 200 square degrees.

In Section 2.4.1, we presented the Paulin-Henriksson et al. (2008) formalism of PSF error propagation.
While we have subsequently shown its underlying assumptions no longer hold true for a diffraction-limited PSF
(see Figure 3.3.6), it remains applicable to a ground-based survey like CFIS. We can thus use the real-data
diagnostics we introduced in Section 2.4.2.

While there are, at this time, no requirements for CFIS WL, we can still use these to compare different PSF
models applied to CFIS. As both HSC and DES use PSFEx, the ρ statistics also provide us with a mean to check
whether it achieves similar performance when used in ShapeLens and on CFIS.

The ρ statistics computed across the whole processed area of CFIS are shown in Figure B.3. These
were computed using the freely available Stile3 package, developed for HSC/LSST. We note that the precise
definition of the ρ statistics used by Zuntz et al. (2018) and Mandelbaum et al. (2017) differ. These correspond
to the latest DES and HSC shape catalogs, respectively. In (2.113-2.117), the residual terms are uniquely
defined up to a sign swap, but quantities related to the PSF shape itself can either be computed from stars (as
is done in DES) or the PSF model (in HSC). Since the key element in the ρ statistics are the shape residuals,
and they are computed through averaging over a large number of objects, this choice of convention is of little
import. We do observe some variations in the resulting ρ values when computed using one convention or the
other on both our own CFIS data, and the DES Year 1 star catalog.

The values we observe in Figure B.3 are of the same order as those obtained by Zuntz et al. (2018)
and Mandelbaum et al. (2017). Since LensFit was also ran on CFIS data, we computed the ρ statistics
using the LensFit star catalog and PSF model. Since these catalogs are not yet ready for the whole area
processed by ShapePipe, this comparison was done on a smaller area, namely the W3 field of CFHTLenS
(that was reobserved by CFIS). The ρ statistics computed on the same field for our own star/PSF catalogs were

3https://github.com/msimet/Stile

https://github.com/msimet/Stile
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Figure B.3: ρ statistics computed from our PSFEx model of the CFIS-r dataset. Dotted lines indicate negative
values, the absolute values of which are represented.

consistent with those shown in Figure B.3 (albeit, as expected, with larger error bars). We thus expect the
comparison with the preliminary LensFit ρ values to be usable.

We find that LensFit leads to ρ values that are about an order of magnitude lower than ours. Since the
LensFit and PSFEx models are fairly similar (see Section 2.4.3), and both were fitted to the same data, we
attribute this improvement to the fact LensFit performs a cross-CCD fit. This fact highlights how a larger
number of input stars can significantly increase the quality of a PSF model. Beyond the current study of the
CFIS PSF, this result provides a strong motivation for the addition of multi-CCD fitting to RCA and λRCA.
Moreover, the bump we observe in ρ1 at scales of about 10arcmin in Figure B.3 is not present in the LensFIt
ρ1, and is likely related to CCD jumps.

B.3 Focal plane variations

The ρ statistics probe potential remaining spatially coherent residuals, in our PSF model, across sky positions.
Another common diagnostic of PSF models on real data is to study these residuals as a function of position
in the focal plane instead. This is, once again, achieved by measuring shapes of both observed stars and the
PSF model estimated at their position, then averaging across a large number of objects. The two ellipticity
components and their residuals across the MegaCam mosaic are shown in Figure B.4. Some patterns can be
seen in the residuals, although these remain of fairly low amplitude.

Interestingly, even for a ground-based survey like CFIS, this type of diagnostic does not only provide infor-
mation about potential patterns in the residual, but also about the optical PSF of the instrument. Indeed, as the
atmospheric contribution to the PSF at any given position in the focal plane is expected to be largely random,
they are cancelled out by averaging across a large number of exposures.

An easily computed byproduct of these diagnostics is the distribution of identified stars as a function of
position across the FOV. This is shown in Figure B.5. Some vertical lines with slightly lower star density can be
seen, especially close to the CCD borders, though these are not unexpected. “Dark zones” that contain very
few stars, however, are clearly present in the four corners of the CCD mosaic, and especially noticeable in the
bottom right. These are not present in the LensFit star catalogs, and are thus likely indicative of an issue with
Shapepipe’s star selection. As of this writing, the exact origin of this issue has not yet been identified, though
a working theory is that it might be related to a poor background estimation.
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Figure B.4: Spatial distribution of the MegaCam PSF ellipticity (left), and average residuals after correction
by our PSF model (right). The first (resp. second) row contains plots for the first (resp. second) ellipticity
component.

Figure B.5: Total number of stars identified, per position within the MegaCam FOV, across the whole processed
CFIS data. Each CCD is separated into 5 × 10 bins.
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B.4 Conclusion to Appendix B

This appendix presented my main contributions to the ongoing WL processing of CFIS data. We have shown
several standard PSF diagnostics used in modern WL surveys. These are performed in addition to more
standard checks, such as goodness-of-fit metrics and visual inspection of the residuals of star image after
subtraction by the corresponding PSF model. Taken together, these indicate that our PSFEx model is fairly
successful in modelling the PSF in the CFIS survey. In particular, Figures B.3 and B.4 seem to indicate we have
achieved similar levels of PSF modelling accuracy to those observed in other recent surveys that use PSFEx.

An independent running of the LensFit pipeline on the same data, however, led to a PSF model that
outperforms PSFEx in terms of ρ statistics. This is likely due to LensFit’s PSF model being fitted to the whole
exposure simultaneously, rather than CCD-by-CCD.

Our proposed RCA approach, described in Chapter 3, will soon achieve the necessary code maturity to be
successfully applied to these data. The diagnostics shown in this chapter can then be directly computed, and
we will be able to compare its performance to PSFEx not just on simulations, but also on real data.
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Appendix C

Shape measurement experiment: additional
information

This appendix contains further details about the experiments of Chapter 3.

C.1 im3shape configuration

Below is the configuration file used when running im3shape

noise_sigma = 0.01

background_subtract = NO

psf_truncation_pixels = 50.0

stamp_size = 42

sersics_x0_start = 21.0

sersics_y0_start = 21.0

sersics_x0_min = 18.0

sersics_y0_min = 18.0

sersics_x0_max = 24.0

sersics_y0_max = 24.0

psf_input = psf_image_cube

perform_pixel_integration = NO

upsampling = 1

central_pixel_upsampling = NO

padding = 0

Note that default values are used for all parameters not specified in this config file.

C.2 KSB-HSM outlier counts

Table C.1 contains the number of objects removed from the analysis when using KSB.

SNR10 SNR20 SNR35 SNR50
Known 26 741 26 702 26 787 26 798
PSFEx 63 541 63 356 63 236 63 111
RCA 54 345 51 664 52 100 51 739
Total 72 951 71 551 71 128 70 902

Table C.1: Number of objects where the HSM implementation of KSB fails to compute the PSF-corrected shapes
per star SNR level. The total amount corresponds to the union of the 3 PSF-specific sets of such outliers.
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Appendix D

Proof of (4.17-4.18)

By differentiating (4.23) with regard to the dictionary or one of the barycentric weights, we can rewrite the
Jacobians in (4.16), (4.17), respectively, while separating the differentiations with regard to the dictionary D, the
weights λi and the scaling vector b, by total differentiation and the chain rule:

[
∂DP(l)(D, λ)

]>
= Ψ

(l−1)
D + B(l−1)

D Ψ
(l−1)
b , (D.1)[

∂λP(l)(D, λ)
]>

= Ψ
(l−1)
λ + B(l−1)

λ Ψ
(l−1)
b . (D.2)

And, differentiating (4.24),

B(l)
D = Φ

(l−1)
D + B(l−1)

D Φ
(l−1)
b , (D.3)

B(l)
λ = Φ

(l−1)
λ + B(l−1)

λ Φ
(l−1)
b . (D.4)

We then have, by definitions (4.30)-(4.31) and by plugging (D.1) and (D.3) into (4.16),

∇DEL(D, λ) = Ψ
(L−1)
D

(
∇L(P(L)(D, λ), x)

)
+ B(L−1)

D v(L−1)

= Ψ
(L−1)
D

(
∇L(P(L)(D, λ), x)

)
+ Φ

(L−2)
D

(
v(L−1)

)
+ B(L−2)

D

(
v(L−2)

)
= . . .

∇DEL(D, λ) = Ψ
(L−1)
D

(
∇L(P(L)(D, λ), x)

)
+

L−2∑
l=0

Φ
(l)
D

(
v(l+1)

)
, (D.5)

where the sum starts at 0 because B(0)
D = 0 since we initialized b(0) as a constant vector. This proves (4.28).

Similarly, differentiating with regard to λ yields

∇λEL(D, λ) = Ψ
(L−1)
λ

(
∇L(P(L)(D, λ), x)

)
+

L−2∑
l=0

Φ
(l)
λ

(
v(l+1)

)
.

This proves (4.29). The detailed derivation of the differentials of ϕ, Φ, and Ψ with regard to all three variables is
given in Appendix F.
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Appendix E

Stabilized backward loop

Algorithm E.1: logSinkhornGrads: Computation of dictionary and barycentric weights gradients in log-domain.
Log-domain variables are marked with a tilde.

159



160 APPENDIX E. STABILIZED BACKWARD LOOP



Appendix F

Detailed derivations

Let us first introduce the following notation:

ϕ :
RN × RN → RN

bs, d 7→ K>
d

Kbs

.

F.1 Computation of ∂bϕ

By definition,

∂ϕ

∂bs
(bs, d) = −K>∆

(
d

(Kbs)2

)
K. (F.1)

In what follows, we will denote ϕNS (b,D) =
[
ϕ(b1, d1)>, . . . , ϕ(bS , dS )>

]>
∈ RNS .

∂bϕNS (b,D) =


∂ϕ(b1,d1)
∂b1

0N×N . . . 0N×N

0N×N
∂ϕ(b2,d2)
∂b2

. . . 0N×N
...

. . .
...

0N×N . . . 0N×N
∂ϕ(bS ,dS )

∂bS

 .

F.2 Computation of Ψb

Taking the logarithm of (4.25) yields

log(Ψ(b,D, λ)) =
∑

s

λs log(ϕ(bs, ds)),

the differentiation of which gives us

∆

(
1N

Ψ(b,D, λ)

)
∂bΨ(b,D, λ) =

(
λ1IN . . . λS IN

)
∆

(
1NS

ϕNS (b,D)

)
∂bϕNS (b,D)

=⇒ Ψb = [∂bϕNS (b,D)]>∆

(
1NS

ϕNS (b,D)

)
Jλ∆(Ψ(b,D, λ)), (F.2)

where Jλ =


λ1IN
...

λS IN

 ∈ RNS×N .
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F.3 Computation of ΨD

Let i ∈ {1, . . . , S }.

Ψ(b,D, λ) =
∏
s,i

∆(ϕc(bs, ds))λs .

(
K>

di

Kbi

)λi

,

and

∂
(
K> di

Kbi

)λi

∂di
= λi∆

(
K>

di

Kbi

)λi−1

K>∆

(
1N

Kbi

)
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∂Ψ

∂di
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∆(Ψ(b,D, λ))

∆
(
K> di

Kbi

) K>
(

1N

Kbs

)
. (F.3)

F.4 Computation of Φb

∂bΦ(b,D, λ) =


∆

( 1N
ϕ(b1,d1)

)
...

∆
( 1N
ϕ(bS ,dS )

)
 ∂bΨ(b, d)

−



∆
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]
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[
ΨbIN,S − [∂bϕNS (b,D)]>∆(Φ(b,D, λ))

]
∆

(
1NS
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)
(F.2)
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1NS
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Jλ∆(Ψ(b,D, λ))IN,S

− [∂bϕNS (b,D)]>∆(Φ(b,D, λ))]∆
(

1NS
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= [∂bϕNS (b,D)]>

[
∆

(
1NS
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∆

(
1N

ϕNS (b,D)

)
, (F.4)

where IN,S = [IN , . . . , IN] ∈ RN×NS . Moreover, we have



F.5. Computation of ΦD 163

∆

(
1NS

ϕ(b,D)

)
Jλ∆(Ψ(b,D, λ)) =


∆(1/ϕ(b1, d1))

. . .

∆(1/ϕ(bS , dS ))
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∆

(
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ϕ(b,D)
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Jλ∆(Ψ(b,D, λ)) = ∆(Φ(b,D, λ))Jλ.

Hence, in (F.4),

Φb = [∂bϕNS (b,D)]>∆(Φ(b,D, λ))[JλIN,S − INS ]∆
(

1N

ϕNS (b,D)

)
.

F.5 Computation of ΦD

Let i ∈ {1, . . . }. ∀s , i, the only dependency in di of Φs(b,D, λ) resides in Ψ (see (4.26)), hence

∀s , i,
∂Φs

∂di
= ∆

(
1N

ϕ(bs, ds)

)
∂diΨ

(F.3)
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(
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(
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)
.

As for s = i, we have

Φi(b,D, λ) =
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K> di
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Appendix G

Generalized barycenters

Algorithm G.1: HeavyballSinkhorn: Computation of approximate Wasserstein barycenters with acceleration.

Algorithm G.2: GeneralizedSinkhorn: Computation of unbalanced barycenters with acceleration.
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Appendix H

Additional results to Chapter 4

H.1 MNIST and Wasserstein geodesics

This section contains the additional Figures H.1, H.2, H.3, and H.4, for the application of Section 4.5.1.

Figure H.1: Span of our two-atom dictionary for weights (1 − t, t), t ∈ {0, 1
4 ,

1
2 ,

3
4 , 1} when trained on images of

digits 1, 2, 3, 4. See the first columns of (Seguy and Cuturi, 2015, Figure 5) for comparison with first WPGs.

H.2 PSF application

This section contains the additional Figure H.5 for the application of Section 4.5.2.
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Figure H.2: Same as Figure 4.6 when training on images of the digit 1.

Figure H.3: Same as Figure 4.6 when training on images of the digit 3.
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Figure H.4: Same as Figure 4.6 when training on images of the digit 4.

Figure H.5: Extreme wavelength PSFs in the dataset and atoms learned from NMF. See Figure 4.9 for those
learned using our method.
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Figure H.6: Similarly to Figure 4.14, we compare the atoms obtained using different loss functions, ranking
them by mean PSNR: (a) PS NR = 33.81, (b) PS NR = 33.72, (c) PS NR = 32.95, and (d) PS NR = 32.34.

H.3 Wasserstein faces

This section contains the additional FIgures H.6 and H.7 for the application of Section 4.5.4.
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Figure H.7: Similarly to Figure 4.13, we compare our method to the Eigenfaces (Turk and Pentland, 1991)
approach, NMF and K-SVD as a tool to represent faces on a low-dimensional space.
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Appendix I

Galaxy SEDs

This appendix contains plots of all the template galaxy SEDs used in Chapter 5. Note unlike those shown in
Figure 5.7, these have not yet been normalized or resampled with the spectral sampling step of ∆λ = 5nm.
The redshift value indicated in the titles corresponds to the lower end of each redshift bin. Figure I.1 contains
the rest of the templates for elliptical galaxies; Figures I.2 and I.3 starbursts; and Figure I.4 spirals and (the)
lenticular.
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Figure I.1: Template SEDs for Elliptical galaxies.
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Figure I.2: Template SEDs for the first group of Starburst galaxies.
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Figure I.3: Template SEDs for the second group of Starburst galaxies.
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Figure I.4: Template SEDs for the spiral and lenticular galaxies.



Acronyms & Abbreviations

1D 1-dimensional.

2D 2-dimensional.

3D 3-dimensional.

2PCF two-point correlation function.

ACS Advanced Camera for Surveys.

ANN artificial neural network.

AOCS Attitude and Orbit Control System.

BAO Baryon Acoustic Oscillations.

BFD Bayesian Fourier Domain.

BFE Brighter-Fatter effect.

BFGS Broyden-Fletcher-Goldfarb-Shanno.

BTC Big Throughput Camera.

CCD Charge-Coupled Device.

CDFS Chandra Deep Field South.

CDM Cold Dark Matter.

CEA Commissariat à l’énergie atomique et aux énergies alternatives.

CFHT Canada-France-Hawaii Telescope.

CFHTLenS CFHT Lensing Survey.

CFHTLS CFHT Legacy Survey.

CFIS Canada France Imaging Survey.

CMB Cosmic Microwave Background.

COMBO Classifying Objects by Medium-Band Observations.

COSMOS COSmic evOlution Survey.

CSS-OS Chinese Space Station Optical Survey.

CTI Charge Transfer Inefficiency.

DECam Dark Energy Camera.

DES Dark Energy Survey.

DESCART Dark matter from Ellipticity Sources CARTography.
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DLS Deep Lens Survey.

EC Euclid Consortium.

EDF Euclid Deep Field.

ELAIS European Large-Area Infrared Space observatory.

EOS Equation of State.

EPFL Ecole Polytechnique Fédérale de Lausanne.

ES1 ELAIS South 1.

ESA European Space Agency.

ESI Echelle Spectrograph and Imager.

FFT Fast Fourier Transform.

FLRW Friedmann-Lemaı̂tre-Robertson-Walker.

FORS FOcal Reducer and low dispersion Spectrograph.

FOV field of view.

FWHM full width at half-maximum.

GaBoDS Garching-Bonn Deep Survey.

GEMS Galaxy Evolution From Morphology And SEDs.

GR General Relativity.

GREAT GRavitational lEnsing Accuracy Testing.

HSC Hyper Suprime-Cam.

HSM Hirata-Seljak-Mandelbaum.

HST Hubble Space Telescope.

KiDS Kilo Degree Survey.

KL Kullback-Leibler.

KSB Kaiser-Squires-Broadhurst.

L-BFGS Limited memory BFGS.

LMC Large Magellanic Cloud.

LSS Large Scale Structure.

LSST Large Synoptic Survey Telescope.

MNIST Modified National Institute of Standards and Technology database.

MPG-ESO Max Planck Gesellschaft-European Southern Observatory.
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MSE mean square error.

MUG Multimedia Understanding Groups database.

NISP Near Infrared Spectrometer and Photometer.

NMF Non-negative Matrix Factorization.

OT Optimal Transport.

PCA Principal Components Analysis.

PDF probabilty density function.

PFIC Prime Focus Imaging Camera.

photo-z photometric redshift.

PPS Primordial Power Spectrum.

PSF Point Spread Function.

PSNR Peak SNR.

RBF Radial Basis Function.

RCA Resolved Components Analysis.

RCS Red-sequence Cluster Survey.

RMS root mean square.

SDSS Sloan Digital Sky Survey.

SED spectral energy distribution.

SNR Signal-to-Noise Ratio.

SSP Strategic Subaru Proposal.

STIS Space Telescope Imaging Spectrograph.

SVD spectral value decomposition.

UH University of Hawai‘i.

VIRMOS Visible and InfraRed Multi-Object Spectrographs.

VIS Euclid Visible instrument.

VLT Very Large Telescope.

VOICE VST Optical Imaging of the CDFS and ES1 fields.

VST VLT Survey Telescope.

WDL Wasserstein Dictionary Learning.

WFE wavefront error.
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WFI Wide Field Instrument.

WFI (ESO) Wide Field Imager.

WFIRST Wide Field Infrared Survey Telescope.

WFPC2 Wide Field Planetary Camera 2.

WHT William Herschel Telescope.

WL weak (gravitational) lensing.

WPG Wasserstein Principal Geodesic.
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Bonneel, N., Peyré, G., and Cuturi, M. (2016). Wasserstein barycentric coordinates: Histogram regression using optimal transport.
ACM Transactions on Graphics (Proceedings of SIGGRAPH 2016), 35(4).
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Clowe, D., Markevitch, M., Bradač, M., Gonzalez, A. H., Chung, S. M., Massey, R., and Zaritsky, D. (2012). On dark peaks and missing
mass: a weak-lensing mass reconstruction of the merging cluster system A520. The Astrophysical Journal, 758(2):128.

Collister, A. A. and Lahav, O. (2004). ANNz: estimating photometric redshifts using artificial neural networks. Publications of the
Astronomical Society of the Pacific, 116(818):345.

Combettes, P. L. and Pesquet, J.-C. (2011). Proximal splitting methods in signal processing. In Fixed-point algorithms for inverse
problems in science and engineering, pages 185–212. Springer.

Condat, L. (2013). A primal–dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms.
Journal of Optimization Theory and Applications, 158(2):460–479.

Cooley, J. W. and Tukey, J. W. (1965). An algorithm for the machine calculation of complex Fourier series. Mathematics of computation,
19(90):297–301.

Cooray, A. and Hu, W. (2001). Weak gravitational lensing bispectrum. The Astrophysical Journal, 548(1):7.

Coulton, W. R., Armstrong, R., Smith, K. M., Lupton, R. H., and Spergel, D. N. (2018). Exploring the brighter-fatter effect with the Hyper
Suprime-Cam. The Astrophysical Journal, 155(6):258.

Courty, N., Flamary, R., and Ducoffe, M. (2017). Learning Wasserstein embeddings. arXiv preprint arXiv:1710.07457.

Cropper, M., Hoekstra, H., Kitching, T., Massey, R., Amiaux, J., Miller, L., Mellier, Y., Rhodes, J., Rowe, B., Pires, S., et al. (2013).
Defining a weak lensing experiment in space. Monthly Notices of the Royal Astronomical Society, 431(4):3103–3126.

Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in Neural Information Processing
Systems, pages 2292–2300.

Cuturi, M. and Doucet, A. (2014). Fast computation of Wasserstein barycenters. In Proceedings of The 31st International Conference
on Machine Learning, pages 685–693.
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Hadamard, J. (1902). Sur les problèmes aux dérivées partielles et leur signification physique. Princeton university bulletin, pages
49–52.

Haker, S., Zhu, L., Tannenbaum, A., and Angenent, S. (2004). Optimal mass transport for registration and warping. International
Journal of Computer Vision, 60(3):225–240.

Hamana, T., Colombi, S. T., Thion, A., Devriendt, J. E., Mellier, Y., and Bernardeau, F. (2002). Source-lens clustering effects on the
skewness of the lensing convergence. Monthly Notices of the Royal Astronomical Society, 330(2):365–377.

Hamana, T., Miyazaki, S., Shimasaku, K., Furusawa, H., Doi, M., Hamabe, M., Imi, K., Kimura, M., Komiyama, Y., Nakata, F., et al.
(2003). Cosmic shear statistics in the Suprime-Cam 2.1 square degree field: constraints on Ωm and σ8. The Astrophysical Journal,
597(1):98.

Hämmerle, H., Miralles, J.-M., Schneider, P., Erben, T., Fosbury, R., Freudling, W., Pirzkal, N., Jain, B., and White, S. (2002). Cosmic
shear from STIS pure parallels-II. Analysis. Astronomy & Astrophysics, 385(3):743–760.

Hammond, D. K., Vandergheynst, P., and Gribonval, R. (2011). Wavelets on graphs via spectral graph theory. Applied and Computa-
tional Harmonic Analysis, 30(2):129–150.

Harandi, M. and Salzmann, M. (2015). Riemannian coding and dictionary learning: Kernels to the rescue. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 3926–3935.

Harandi, M., Sanderson, C., Shen, C., and Lovell, B. C. (2013). Dictionary learning and sparse coding on Grassmann manifolds: An
extrinsic solution. In Proceedings of the IEEE International Conference on Computer Vision, pages 3120–3127.



186 BIBLIOGRAPHY

Harandi, M. T., Sanderson, C., Hartley, R., and Lovell, B. C. (2012). Sparse coding and dictionary learning for symmetric positive
definite matrices: A kernel approach. In Computer Vision–ECCV 2012, pages 216–229. Springer.

Harrison, E. R. (1970). Fluctuations at the threshold of classical cosmology. Physical review D, 1(10):2726.

Heavens, A. (2003). 3D weak lensing. Monthly Notices of the Royal Astronomical Society, 343(4):1327–1334.

Herbel, J., Kacprzak, T., Amara, A., Refregier, A., and Lucchi, A. (2018). Fast point spread function modeling with deep learning.
Journal of Cosmology and Astroparticle Physics, 2018(07):054.

Hetterscheidt, M., Simon, P., Schirmer, M., Hildebrandt, H., Schrabback, T., Erben, T., and Schneider, P. (2007). GaBoDS: The
Garching-Bonn Deep Survey-VII. Cosmic shear analysis. Astronomy & Astrophysics, 468(3):859–876.

Heymans, C., Brown, M. L., Barden, M., Caldwell, J. A., Jahnke, K., Peng, C. Y., Rix, H.-W., Taylor, A., Beckwith, S. V., Bell, E. F., et al.
(2005). Cosmological weak lensing with the HST GEMS survey. Monthly Notices of the Royal Astronomical Society, 361(1):160–176.

Heymans, C., Rowe, B., Hoekstra, H., Miller, L., Erben, T., Kitching, T., and Van Waerbeke, L. (2012a). The impact of high spatial
frequency atmospheric distortions on weak-lensing measurements. Monthly Notices of the Royal Astronomical Society, 421(1):381–
389.

Heymans, C., Van Waerbeke, L., Bacon, D., Berge, J., Bernstein, G., Bertin, E., Bridle, S., Brown, M. L., Clowe, D., Dahle, H., et al.
(2006). The Shear Testing Programme–I. Weak lensing analysis of simulated ground-based observations. Monthly Notices of the
Royal Astronomical Society, 368(3):1323–1339.

Heymans, C., Van Waerbeke, L., Miller, L., Erben, T., Hildebrandt, H., Hoekstra, H., Kitching, T. D., Mellier, Y., Simon, P., Bonnett,
C., et al. (2012b). CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey. Monthly Notices of the Royal Astronomical
Society, 427(1):146–166.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786):504–507.

Hirata, C. and Seljak, U. (2003). Shear calibration biases in weak-lensing surveys. Monthly Notices of the Royal Astronomical Society,
343(2):459–480.

Ho, J., Xie, Y., and Vemuri, B. (2013). On a nonlinear generalization of sparse coding and dictionary learning. In International conference
on machine learning, pages 1480–1488.

Hoekstra, H. (2004). The effect of imperfect models of point spread function anisotropy on cosmic shear measurements. Monthly
Notices of the Royal Astronomical Society, 347(4):1337–1344.

Hoekstra, H., Franx, M., Kuijken, K., and Squires, G. (1998). Weak lensing analysis of CL 1358+62 using Hubble Space Telescope
observations. The Astrophysical Journal, 504(2):636.

Hoekstra, H., Herbonnet, R., Muzzin, A., Babul, A., Mahdavi, A., Viola, M., and Cacciato, M. (2015). The Canadian Cluster Comparison
Project: detailed study of systematics and updated weak lensing masses. Monthly Notices of the Royal Astronomical Society,
449(1):685–714.

Hoekstra, H., Viola, M., and Herbonnet, R. (2017). A study of the sensitivity of shape measurements to the input parameters of
weak-lensing image simulations. Monthly Notices of the Royal Astronomical Society, 468(3):3295–3311.

Hoekstra, H., Yee, H. K., and Gladders, M. D. (2002a). Constraints on Ωm and σ8 from weak lensing in Red-Sequence Cluster Survey
fields. The Astrophysical Journal, 577(2):595.

Hoekstra, H., Yee, H. K., Gladders, M. D., Barrientos, L. F., Hall, P. B., and Infante, L. (2002b). A measurement of weak lensing by
large-scale structure in Red-Sequence Cluster Survey fields. The Astrophysical Journal, 572(1):55.

Hoffmann, S. and Anderson, J. (2017). A study of PSF models for ACS/WFC. Instrument Science Report ACS 2017-8, 12 pages.

Hu, W. (1999). Power spectrum tomography with weak lensing. The Astrophysical Journal Letters, 522(1):L21.

Hudelot, P., Goranova, Y., Mellier, Y., McCracken, H. J., Magnard, F., Monnerville, M., Smah, G., Cuillandre, J.-C., Withington, K.,
Regnault, N., et al. (2012). T0007: The final CFHTLS release.

Huff, E. and Mandelbaum, R. (2017). Metacalibration: Direct self-calibration of biases in shear measurement. arXiv preprint
arXiv:1702.02600.



187

Huff, E. M., Hirata, C. M., Mandelbaum, R., Schlegel, D., Seljak, U., and Lupton, R. H. (2014). Seeing in the dark–I. Multi-epoch
alchemy. Monthly Notices of the Royal Astronomical Society, 440(2):1296–1321.

Hyvärinen, A., Karhunen, J., and Oja, E. (2004). Independent component analysis, volume 46. John Wiley & Sons.

Ibata, R. A., McConnachie, A., Cuillandre, J.-C., Fantin, N., Haywood, M., Martin, N. F., Bergeron, P., Beckmann, V., Bernard, E.,
Bonifacio, P., et al. (2017). The Canada–France Imaging Survey: First results from the u-band component. The Astrophysical
Journal, 848(2):128.

Ilbert, O., Arnouts, S., McCracken, H., Bolzonella, M., Bertin, E., Le Fèvre, O., Mellier, Y., Zamorani, G., Pellò, R., Iovino, A., et al.
(2006). Accurate photometric redshifts for the CFHT Legacy Survey calibrated using the VIMOS VLT deep survey. Astronomy &
Astrophysics, 457(3):841–856.

Ilbert, O., Capak, P., Salvato, M., Aussel, H., McCracken, H., Sanders, D., Scoville, N., Kartaltepe, J., Arnouts, S., Le Floc’H, E., et al.
(2008). COSMOS photometric redshifts with 30-bands for 2-deg2. The Astrophysical Journal, 690(2):1236.

Irace, Z. and Batatia, H. (2013). Motion-based interpolation to estimate spatially variant PSF in positron emission tomography. In Signal
Processing Conference (EUSIPCO), 2013 Proceedings of the 21st European, pages 1–5. IEEE.

Israel, H., Massey, R., Prod’homme, T., Cropper, M., Cordes, O., Gow, J., Kohley, R., Marggraf, O., Niemi, S., Rhodes, J., et al. (2015).
How well can charge transfer inefficiency be corrected? A parameter sensitivity study for iterative correction. Monthly Notices of the
Royal Astronomical Society, 453(1):561–580.

Israel, H., Massey, R., Prod’homme, T., Cropper, M., Cordes, O., Gow, J., Kohley, R., Marggraf, O., Niemi, S., Rhodes, J., et al. (2017).
Erratum: How well can charge transfer inefficiency be corrected? A parameter sensitivity study for iterative correction. Monthly
notices of the Royal Astronomical Society., 467(4):4218–4219.

Jarvis, M., Bernstein, G., Fischer, P., Smith, D., Jain, B., Tyson, J., and Wittman, D. (2003). Weak-lensing results from the 75 square
degree Cerro Tololo Inter-American Observatory survey. The Astronomical Journal, 125(3):1014.

Jarvis, M. and Jain, B. (2004). Principal component analysis of PSF variation in weak lensing surveys. arXiv preprint astro-ph/0412234.

Jarvis, M., Jain, B., Bernstein, G., and Dolney, D. (2006). Dark energy constraints from the CTIO lensing survey. The Astrophysical
Journal, 644(1):71.

Jarvis, M., Schechter, P., and Jain, B. (2008). Telescope optics and weak lensing: PSF patterns due to low order aberrations. arXiv
preprint arXiv:0810.0027.

Jarvis, M., Sheldon, E., Zuntz, J., Kacprzak, T., Bridle, S., Amara, A., Armstrong, R., Becker, M., Bernstein, G., Bonnett, C., et al. (2016).
The DES Science Verification weak lensing shear catalogues. Monthly Notices of the Royal Astronomical Society, 460(2):2245–2281.

Jee, M., Blakeslee, J., Sirianni, M., Martel, A., White, R., and Ford, H. (2007). Principal component analysis of the time-and position-
dependent point-spread function of the Advanced Camera for Surveys. Publications of the Astronomical Society of the Pacific,
119(862):1403.

Jee, M., Mahdavi, A., Hoekstra, H., Babul, A., Dalcanton, J., Carroll, P., and Capak, P. (2012). A study of the dark core in A520 with the
Hubble Space Telescope: The mystery deepens. The Astrophysical Journal, 747(2):96.

Jee, M. J., Hoekstra, H., Mahdavi, A., and Babul, A. (2014). Hubble Space Telescope/Advanced Camera for Surveys confirmation of
the dark substructure in A520. The Astrophysical Journal, 783(2):78.

Jee, M. J., Tyson, J. A., Schneider, M. D., Wittman, D., Schmidt, S., and Hilbert, S. (2013). Cosmic shear results from the Deep Lens
Survey. I. Joint constraints on Ωm and σ8 with a two-dimensional analysis. The Astrophysical Journal, 765(1):74.

Joachimi, B., Cacciato, M., Kitching, T. D., Leonard, A., Mandelbaum, R., Schäfer, B. M., Sifón, C., Hoekstra, H., Kiessling, A., Kirk, D.,
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Leistedt, B., McEwen, J. D., Büttner, M., and Peiris, H. V. (2016). Wavelet reconstruction of E and B modes for CMB polarization and
cosmic shear analyses. Monthly Notices of the Royal Astronomical Society, 466(3):3728–3740.

Lemaı̂tre, G. (1927). Un univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des
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Rolet, A., Cuturi, M., and Peyré, G. (2016). Fast dictionary learning with a smoothed Wasserstein loss. In Proceedings of the 19th
International Conference on Artificial Intelligence and Statistics, pages 630–638.

Romano, A., Fu, L., Giordano, F., Maoli, R., Martini, P., Radovich, M., Scaramella, R., Antonuccio-Delogu, V., Donnarumma, A., Ettori,
S., et al. (2010). Abell 611-I. Weak lensing analysis with LBC. Astronomy & Astrophysics, 514:A88.

Rowe, B. (2010). Improving PSF modelling for weak gravitational lensing using new methods in model selection. Monthly Notices of
the Royal Astronomical Society, 404(1):350–366.

Rowe, B., Hirata, C., and Rhodes, J. (2011). Optimal linear image combination. The Astrophysical Journal, 741(1):46.

Rowe, B., Jarvis, M., Mandelbaum, R., Bernstein, G. M., Bosch, J., Simet, M., Meyers, J. E., Kacprzak, T., Nakajima, R., Zuntz, J., et al.
(2015). GalSim: The modular galaxy image simulation toolkit. Astronomy and Computing, 10:121–150.

Rubinstein, R., Zibulevsky, M., and Elad, M. (2008). Efficient implementation of the K-SVD algorithm using batch orthogonal matching
pursuit. Technical report, Computer Science Department, Technion.

Rubner, Y., Tomasi, C., and Guibas, L. J. (2000). The Earth Mover’s Distance as a metric for image retrieval. Int. J. Comput. Vision,
40(2):99–121.

Salton, G. and McGill, M. J. (1983). Introduction to modern information retrieval. McGraw-Hill, Inc.

Salvato, M., Ilbert, O., and Hoyle, B. (2019). The many flavours of photometric redshifts. Nature Astronomy, 3(3):212.

Sandler, R. and Lindenbaum, M. (2009). Non-negative matrix factorization with Earth Mover’s Distance metric. In Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 1873–1880. IEEE.

Schirmer, M., Erben, T., Schneider, P., Pietrzynski, G., Gieren, W., Carpano, S., Micol, A., and Pierfederici, F. (2003). GaBoDS: The
Garching-Bonn Deep Survey-I. Anatomy of galaxy clusters in the background of NGC 300. Astronomy & Astrophysics, 407(3):869–
888.

Schmitz, M. A., Heitz, M., Bonneel, N., Ngolè, F., Coeurjolly, D., Cuturi, M., Peyré, G., and Starck, J.-L. (2017). Optimal transport-based
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Titre: Estimation du champ de PSF pour l’effet de lentille gravitationnelle faible avec Euclid

Mots clés: Lentille gravitationnelle faible, Cosmologie, Euclid, Fonction d’étalement du point

Résumé: Le chemin parcouru par la lumière, lors de sa propa-
gation dans l’Univers, est altéré par la présence d’objets mas-
sifs. Cela entraine une déformation des images de galaxies
lointaines. La mesure de cet effet, dit de lentille gravitation-
nelle faible, nous permet de sonder la structure, aux grandes
échelles, de notre Univers. En particulier, nous pouvons ainsi
étudier la distribution de la matière noire et les propriétés de
l’Energie Sombre, proposée comme origine de l’accélération
de l’expansion de l’Univers. L’étude de l’effet de lentille gravi-
tationnelle faible constitue l’un des objectifs scientifiques prin-
cipaux d’Euclid, un télescope spatial de l’Agence Spatiale Eu-
ropéenne dont le lancement est prévu en 2022.
En pratique, ce signal est obtenu en mesurant la forme des
galaxies. Toute image produite par un instrument optique est
altérée par sa fonction d’étalement du point (PSF). Celle-ci
a diverses origines : diffraction, imperfections dans les com-
posantes optiques de l’instrument, effets atmosphériques (pour
les télescopes au sol). . . Puisque la PSF affecte aussi les
formes des galaxies, il est crucial de la prendre en compte
lorsque l’on étudie l’effet de lentille gravitationnelle faible, ce qui

nécessite de connaı̂tre la PSF avec une très grande précision.
Celle-ci varie en fonction de la position dans le plan focal.
Une mesure de la PSF, à certaines positions, est donnée par
l’observation d’étoiles non-résolues dans le champ, à partir
desquelles on peut construire un modèle de PSF. Dans le cas
d’Euclid, ces images d’étoiles seront sous-échantillonnée et il
est nécessaire d’intégrer une étape de super-résolution dans
la construction du modèle. En raison de la très large bande
d’intégration de l’imageur visible d’Euclid, il sera également
nécessaire de capturer les variations en longueur d’onde de
la PSF.
La contribution principale de cette thèse est le développement
de méthodes novatrices d’estimation de la PSF, reposant sur
plusieurs outils : la notion de représentation parcimonieuse,
et le transport optimal numérique. Ce dernier nous per-
met de proposer la première méthode capable de fournir un
modèle polychromatique de la PSF, construit uniquement à
partir d’images sous-échantillonnées d’étoiles et leur spectre.
Une étude de la propagation des erreurs de PSF sur la mesure
de forme de galaxies est également proposée.
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Abstract: As light propagates through the Universe, its path
is altered by the presence of massive objects. This causes a
distortion of the images of distant galaxies. Measuring this ef-
fect, called weak gravitational lensing, allows us to probe the
large scale structure of the Universe. This makes it a powerful
source of cosmological insight, and can in particular be used
to study the distribution of dark matter and the nature of Dark
Energy. The European Space Agency’s upcoming Euclid mis-
sion is a spaceborne telescope with weak lensing as one of its
primary science objectives. It is expected to launch in 2022.
In practice, the weak lensing signal is recovered from the mea-
surement of the shapes of galaxies. The images obtained by
any optical instrument are altered by its Point Spread Func-
tion (PSF), caused by various effects: diffraction, imperfect op-
tics, atmospheric turbulence (for ground-based telescopes). . .
Since the PSF also alters galaxy shapes, it is crucial to correct
for it when performing weak lensing measurements. This, in

turn, requires precise knowledge of the PSF itself.
The PSF varies depending on the position of objects within the
instrument’s focal plane. Unresolved stars in the field provide a
measurement of the PSF at given positions, from which a PSF
model can be built. In the case of Euclid, star images will suffer
from undersampling. The PSF model will thus need to perform
a super-resolution step. In addition, because of the very wide
band of its visible instrument, variations of the PSF with the
wavelength of incoming light will also need to be accounted for.
The main contribution of this thesis is the building of novel PSF
modelling approaches. These rely on sparsity and numerical
optimal transport. The latter enables us to propose the first
method capable of building a polychromatic PSF model, using
no information other than undersampled star images, their po-
sition and spectra. We also study the propagation of errors in
the PSF to the measurement of galaxy shapes.
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