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Abstract. Dynamical Analysis incorporates tools from dynamical systems, namely the Transfer Operator,
into the framework of Analytic Combinatorics, permitting the analysis of numerous algorithms and objects
naturally associated with an underlying dynamical system. This dissertation presents, in the integrated
framework of Dynamical Analysis, the probabilistic analysis of seemingly distinct problems in a unified
way: the probabilistic study of the recurrence function of Sturmian words, and the probabilistic study of the
Continued Logarithm algorithm.

Sturmian words are a fundamental family of words in Word Combinatorics. They are in a precise sense the
simplest infinite words that are not eventually periodic. Sturmian words have been well studied over the
years, notably by Morse and Hedlund (1940) who demonstrated that they present a notable number theoret-
ical characterization as discrete codings of lines with irrational slope, relating them naturally to dynamical
systems, in particular the Euclidean dynamical system. These words have never been studied from a prob-
abilistic perspective. Here, we quantify the recurrence properties of a “random” Sturmian word, which are
dictated by the so-called “recurrence function”; we perform a complete asymptotic probabilistic study of
this function, quantifying its mean and describing its distribution under two different probabilistic models,
which present different virtues: one is a naturally choice from an algorithmic point of view (but is innovative
from the point of view of dynamical analysis), while the other allows a natural quantification of the worst-
case growth of the recurrence function. We discuss the relation between these two distinct models and their
respective techniques, explaining also how the two seemingly different techniques employed could be linked
through the use of the Mellin transform. In this dissertation we also discuss our ongoing work regarding
two special families of Sturmian words: those associated with a quadratic irrational slope, and those with a
rational slope (not properly Sturmian). Our work seems to show the possibility of a unified study.

The Continued Logarithm Algorithm, introduced by Gosper in Hakmem (1978) as a mutation of classical
continued fractions, computes the greatest common divisor of two natural numbers by performing division-
like steps involving only binary shifts and subtractions. Its worst-case performance was studied recently
by Shallit (2016), who showed a precise upper-bound for the number of steps and gave a family of inputs
attaining this bound. In this dissertation we employ dynamical analysis to study the average running time
of the algorithm, giving precise mathematical constants for the asymptotics, as well as other parameters
of interest. The underlying dynamical system is akin to the Euclidean one, and was first studied by Chan
(around 2005) from an ergodic point of view, but the presence of powers of 2 in the quotients ingrains into
the central parameters a dyadic flavour that cannot be grasped solely by studying this system. We thus
introduce a dyadic component and deal with a two-component system. With this new mixed system at hand,
we then provide a complete average-case analysis of the algorithm by Dynamical Analysis.

Key words. Dynamical Analysis, dynamical systems, Word Combinatorics, Sturmian words, recurrence
functions, greatest common divisor, continued fractions, continued logarithm expansion, transfer operator,
Riemann sums, Dirichlet series, Tauberian theorem.



3

Résumé. L’analyse dynamique intègre des outils propres aux systèmes dynamiques (comme l’opérateur de
transfert) au cadre de la combinatoire analytique, et permet ainsi l’analyse d’un grand nombre d’algorithmes
et objets qu’on peut associer naturellement à un système dynamique. Dans ce manuscrit de thèse, nous
présentons, dans la perspective de l’analyse dynamique, l’étude probabiliste de plusieurs problèmes qui
semblent à priori bien différents : l’analyse probabiliste de la fonction de récurrence des mots de Sturm, et
l’étude probabiliste de l’algorithme du “logarithme continu”.

Les mots de Sturm constituent une famille omniprésente en combinatoire des mots. Ce sont, dans un sens
précis, les mots les plus simples qui ne sont pas ultimement périodiques. Les mots de Sturm ont déjà été
beaucoup étudiés, notamment par Morse et Hedlund (1940) qui en ont exhibé une caractérisation fonda-
mentale comme des codages discrets de droites à pente irrationnelle. Ce résultat relie ainsi les mots de
Sturm au système dynamique d’Euclide. Les mots de Sturm n’avaient jamais été étudiés d’un point de
vue probabiliste. Ici nous introduisons deux modèles probabilistes naturels (et bien complémentaires) et y
analysons le comportement probabiliste (et asymptotique) de la “fonction de récurrence” ; nous quantifions
sa valeur moyenne et décrivons sa distribution sous chacun de ces deux modèles : l’un est naturel du point de
vue algorithmique (mais original du point de vue de l’analyse dynamique), et l’autre permet naturellement
de quantifier des classes de plus mauvais cas. Nous discutons la relation entre ces deux modèles et leurs
méthodes respectives, en exhibant un lien potentiel qui utilise la transformée de Mellin. Nous avons aussi
considéré (et c’est un travail en cours qui vise à unifier les approches) les mots associés à deux familles
particulières de pentes : les pentes irrationnelles quadratiques, et les pentes rationnelles (qui donnent lieu
aux mots de Christoffel).

L’algorithme du logarithme continu est introduit par Gosper dans Hakmem (1978) comme une mutation de
l’algorithme classique des fractions continues. Il calcule le plus grand commun diviseur de deux nombres na-
turels en utilisant uniquement des shifts binaires et des soustractions. Le pire des cas a été étudié récemment
par Shallit (2016), qui a donné des bornes précises pour le nombre d’étapes et a exhibé une famille d’entrées
sur laquelle l’algorithme atteint cette borne. Dans cete thèse, nous étudions le nombre moyen d’étapes, tout
comme d’autres paramètres importants de l’algorithme. Grâce à des méthodes d’analyse dynamique, nous
exhibons des constantes mathmatiques précises. Le système dynamique ressemble à première vue à celui
d’Euclide, et a été étudié d’abord par Chan (2005) avec des méthodes ergodiques. Cependant, la présence
des puissances de 2 dans les quotients change la nature de l’algorithme et donne une nature dyadique aux
principaux paramètres de l’algorithme, qui ne peuvent donc pas être simplement caractérisés dans le monde
réel. C’est pourquoi nous introduisons un nouveau système dynamique, avec une nouvelle composante
dyadique, et travaillons dans ce système à deux composantes, l’une réelle, et l’autre dyadique. Grâce à ce
nouveau système mixte, nous obtenons l’analyse en moyenne de l’algorithme.

Mots clés. Analyse dynamique, systèmes dynamiques, combinatoire des mots, mots de Sturm, fonction de
récurrence, plus grand commun diviseur, fractions continues, logarithme continu, opérateur de transfert,
sommes de Riemann, series de Dirichlet, théorème tauberien, probabilités, modèle probabiliste.
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RÉSUMÉ LONG

Contexte général

Dans ce manuscrit de thèse, nous présentons l’étude probabiliste de plusieurs objets provenant de disciplines
qui semblent a priori bien distinctes : d’abord, une famille très importante et classique de mots, appelés mots
de Sturm, qui jouent un rôle fondamental en combinatoire des mots; deuxièment, un algorithme de pgcd
(l’algorithme du “logarithme continu” – CL pour ses initiales en anglais), propre à la théorie des nombres.
Ces objets ont été déjà beaucoup étudiés, en particulier, les “ordres de croissance maximaux” de certains
de leurs paramètres caractéristiques sont bien connus. Nous adoptons ici un point de vue différent et nous
en faisons une étude probabiliste. Au lieu d’être motivés par la question de savoir “quel est le meilleur/pire
cas?”, nous considérons des questions comme “comment décrire un mot (de Sturm) aléatoire? comment
décrire une execution aléatoire de l’algorithme de pgcd?”

Même si nos objets d’étude (mots, algorithmes de pgcd) proviennent de disciplines qui semblent éloignées,
ils peuvent être décrits dans un cadre commun de théorie des nombres. Ce cadre inclut les fractions continues
(classiques pour le cas des mots de Sturm, et une famille qui n’est pas si classiques pour le cas du CL où les
puissances de 2 jouent un rôle central), et leurs systèmes dynamiques respectifs.

Figure 1: Le schéma de la thèse.

Ici nous utilisons des outils propres aux systèmes dynamiques (comme l’opérateur de transfert) et au cadre
de la combinatoire analytique [FS09]. La combinatoire analytique a pour objet fondamental les fonctions
génératrices (ici de type “Dirichlet”, typiques de la théorie des nombres [Ten15]), avec des coefficients qui
comptent des objets combinatoires (ou de théorie des nombres), et relie leur comportement analytique (les
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(a) Le flux de travail de la combinatoire analytique. (b) Le flux de travail de l’analyse dynamique.

Figure 2: La combinatoire analytique et son prolongement à l’analyse dynamique.

singularités) aux asympytotiques de leur coefficients (grâce aux théorèmes tauberiens). La situation est
illustrée dans la figure 2a. La combinatoire analytique est largement utilisée dans l’étude d’algorithmes,
de structures de données, ou même en combinatoire per se, probabilistiquement. Quand les objets étudiés
sont engendrés par un système dynamique, la combinatoire analytique peut (et doit) être complétée par
une autre classe de méthodes, donnant lieu à ce qui s’appelle l’analyse dynamique [FV98], introduite par
Baladi, Flajolet, Vallée et d’autres. L’outil clé de l’analyse dynamique est l’opérateur de transfert du système
dynamique sous-jacent, qui étend l’opérateur transformateur de densité du système, et suit naturellement
l’évolution de nos paramètres pendant l’itération du système. Nous pouvons alors utiliser cet opérateur pour
engendrer des fonctions génératrices. Quand l’opérateur agit sur un espace fonctionnel approprié, il présente
une valeur propre dominante, qui joue le rôle de la singularité dominante en combinatoire analytique.

L’analyse dynamique est illustrée dans la figure 2b. Nous expliquons brièvement comment on y arrive.
La puissance k-ième (par composition) de l’opérateur de transfert Hs décrit la situation après k iterations
du système dynamique (sous-jacent à l’algorithme ou processus). Nous cherchons alors des expressions
pour notre fonction génératrice en termes de puissances de Hs, souvent avec toutes les puissances appa-
raissant en même temps (I −Hs)

−1 = I +Hs +H2
s + . . ., quand nous considérons toutes les exécutions

possibles d’un algorithme. Trouver une telle expression peut parfois être impossible avec la combinatoire
analytique classique, car l’utilisation des outils nécessite une certaine indépendence entre les différentes
étapes de l’algorithme. Une fois que nous avons trouvé ces expressions pour les fonctions génératrices,
nous utilisons les propriétés spectrales de l’opérateur; si l’opérateur a de bonnes propriétés (dans un espace
fonctionnel approprié), l’action de la puissance Hk

s est déterminée par la valeur propre dominante et la pro-
jection sur l’espace propre associé. Par bonnes propriétés, nous entendons que l’opórateur présente un saut
spectral [BV03] : la valeur propre dominante est unique et simple, et est séparée du reste du spectre. Nous
remarquons que cette situation est similaire à celle du théorème de Perron-Frobenius pour des matrices; le
comportement cherché est analogue mais dans un space de dimension infinie. Le choix de l’espace fonc-
tionnel est délicat car il y a un compromisà trouver : l’espace doit être suffisamment grand pour contenir
des fonctions utiles, mais suffisamment petit pour avoir un saut spectral. Une fois établi que les puissances
de l’opérateur de transfert sont déterminées par les puissances de la valeur propre dominante, nous pouvons
finir l’analyse et déterminer les singularités principales des fonctions génératrices.

Étude probabiliste des mots de Sturmian

Les mots de Sturm constituent une famille omniprésente en combinatoire des mots (voir e.g., [Fog02] et
[Lot02]). Ce sont précisement les mots les plus simples qui ne sont pas ultimement périodiques, au sens
qu’ils ont le plus petit nombre possible de facteurs de chaque longeur n, c’est-à-dire n+1. Les mots de Sturm
apparaissent naturellement en relation avec la géométrie digitale et les quasicristaux, et, par conséquence,
ont été beaucoup étudiés.

Sur l’alphabet binaire {0, 1}, Morse et Hedlund [MH40] fournissent une description arithmétique des mots
de Sturm fondamentale, qui montre un lien profond avec les fractions continues. Plus précisément, ils
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ont démontré qu’à chaque mot de Sturm correspond est associé un nombre irrationnel α de l’intervalle
unité (appellé sa pente), qui décrit la fréquence des 1 dans le mot : chaque mot de Sturm peut être écrit
systématiquement en fonction de sa pente comme Sα. Cette représentation correspond, en fait, à un codage
discret de droite comme décrit dans la figure Figure 3.

0 0 1 0 0 1 0 1 0 0

Figure 3: Morse et Hedlund ont relié les mots de Sturm aux codages discrets de droites avec une pente
irrationnelle α.

La fonction de récurrence du mot de Sturm Sα décrit la façon dont les facteurs finis de longueur n ar-
rivent dans le mot infini Sα. En particulier, Rα(n) indique le “temps d’attente” maximum qu’il faut pour
découvrir tous les facteurs de Sα de longueur n. La fonction Rα(n) dépend, d’une façon assez élégante, du
couple (α, n). Plus précisément, Morse et Hedlund [MH40] ont relié la fonction de récurrence Rα(n) au
dévelopepment en fraction continue de α, plus particulièrement à ses continuants qk(α), les dénominateurs
des convergents de la fraction continue de α.

Morse and Hedlund ont démontré que, quand n appartient à l’intervalle [qk−1(α), qk(α)[ entre deux contin-
uants consécutifs qk−1(α) et qk(α) de α, la fonction de récurrence Rα(n) admet une expression simple. De
plus, les auteurs exhibent un comportement en “n log n” pour le pire cas deRα(n), dont l’apparition dépend
fortement du choix spécifique de (α, n), mais qui se produit presque sûrement pour une infinité de n.

La question que nous posons est : Si le couple (α, n) est tiré au hasard de façon systématique, quel est
le comportement probabiliste de la fonction de récurrence Rα(n)? Dans cette thèse, nous proposons deux
modèles probabilistes différents pour répondre à la question.

Premier modèle probabiliste

Notre premier modèle, décrit dans le chapitre 5, a été publié en [BCR+15] pour la conférence MFCS 2015.
C’est une première approche pour le pire cas d’un point de vue probabiliste obtenue en conditionnant avec
des intervalles de plus en plus petits qui contiennent les pires cas. Dans ce modèle, nous tirons la pente α
“uniformément” dans l’intervalle unité puis nous prenons de sous-suites particulières k →→ nk qui fixent la
position barycentrique µ de n relative à l’intervalle [qk−1(α), qk(α)[. Nos résultats [BCR+15], obtenus par
des méthodes d’analyse dynamique, quantifient l’incidence de la position µ sur le comportement du pire cas
de la fonction de récurrence, et montrent effectivement un comportement du type “ n log n en moyenne” sur
certaines sous-suites k →→ nk.

Nous utilisons des méthodes d’analyse dynamique, ici avec le système dynamique classique d’Euclide (avec
l’application de Gauss) et son opérateur transformateur de densités. Nous démontrons que l’espérance
associé à la k-ième étape nk s’écrit en termes de la puissance k-ième de l’opérateur transformateur de
densités. Sur l’espace fonctionnel des fonctions de variation bornée, cet opérateur présente un saut spectral
dont on a besoin, et les puissance de l’opérateur sont alors approchées par les (véritables) puissances de la
valeur propre dominante. Dans ce cas nous avons eu besoin aussi de résultats sur le terme de reste, qui sont
assez connus.
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Deuxième modèle probabiliste

Le modèle précédent est très utile quand il s’agit de décrire le pire cas de la fonction de récurrence et
l’incidence de la position relative µ. Dans notre deuxième modèle nous considérons, à nouveau, une pente
aléatoire α, mais la taille d’entrée n est fixée et indépendant de α. L’analyse de la fonction de récurrence
dans ce modèle “n → ∞ fixé” est décrite au chapitre 4, et a été publiée dans les actes de ANALCO 2017
[RV17]. Ce modèle peut être utilisé aussi afin d’étudier d’autres fonctions, comme la position relative µ, qui
jouent un rôle dans l’analyse des mots de Sturm, ainsi que les fractions continues elles-mêmes.

Nous obtenons trois résultats principaux dans [RV17]; nous considérons les variables aléatoires α →→
(1/n)Rα(n) et les étudions pour n grand. Nous exhibons leur distribution limite, et nous démontrons
l’existence de la densité limite. Nous étudions aussi l’espérance conditionnelle du quotient de récurrence
(1/n)Rα(n), quand nous excluons la possibilité que n se trouve trop proche du bord gauche de l’intervalle
[qk−1(α), qk(α)[. Enfin, nous exhibons une classe d’événements pour lesquels l’ordre de cette espérance
conditionnelle est exactement log n. Ce dernier résultat peut être considéré comme une extension proba-
biliste du résultat classique de Morse et Hedlund.

Nos preuves utilisent des méthodes élémentaires : elles reposent sur une comparaison précise entre une
intégrale et sa somme de Riemann; cependant, l’intégrale est impropre (mais convergente) et la somme de
Riemann implique une condition supplémentaire de primalité, ce que nous avons appellé une “somme de
Riemann première”. Les sommes de Riemann premières apparaissent aussi dans [BCZ03], où les auteurs
étudient la suite de Farey, mais travaillent dans des domains bornés. Ici nous adaptons les méthodes pour
des domaines non bornés, avec des termes d’erreur précis pour la convergence vers les intégrales.

Comportement probabiliste de familles “particulières” de mots de Sturm

Il y a deux familles particulières de mots de Sturm qui sont importantes en tant que telles. Leur étude
constitue un travail un cours qui, en fait, vise à unifier les approches pour les deux familles et le cas générique
du deuxième modèle. Nos résultats actuels (non encore publiés) montrent que le comportement de ces
familles est semblable au cas générique. Les preuves utilisent aussi d’autres outils utiles tels que les séries
de Dirichlet et les théorèmes taubériens.

Christoffel words Quand la pente α est rationnelle, le mot Sα est périodique, ce que l’on appelle un mot de
Christoffel [BLRS08]. Dans ce cas, la question est : Est-ce vrai que, quand la longueur du développement en
fraction continue d’α tend vers l’infini, la fonction de récurrence a un comportement en moyenne semblable
à celui d’un mot de Sturm générique?

Mots de Sturm engendrés par morphisms Il y a une deuxième famille importante, à savoir, les mots
de Sturm qui sont engendrés par de morphisms [All98]. Ils sont associés à des pentes α irrationnelles
quadratiques, qui ont des développements en fractions continues périodiques. Ici nous posons une question
similaire : Est-ce vrai que, quand la période de l’irrationnel quadratique α tend vers l’infini, le comporte-
ment de la fonction de récurrence, en moyenne, est semblable à celui du cas générique? L’analyse dans ce
cadre est plus compliquée car elle dépend de (n, α, ℓ) où ℓ dénote la quantité de tours de la période.

Analysis of the Continued Logarithm Algorithm

L’algorithme du logarithme continu –CL pour ses initiales en anglais– est introduite par Gosper dans Hak-
mem [Gos78] comme une “mutation” de l’algorithme classique des fractions continues. Cet algorithme
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calcule le plus grand commun diviseur de deux nombres entiers en utilisant uniquement des shifts binaires
et des soustractions. Le pire cas a été étudié récemment par Shallit [Sha16], qui a donné des bornes précises
pour le nombre d’étapes et a exhibé une famille d’entrées sur laquelle l’algorithme atteint cette borne.
Dans cete thèse, nous étudions le nombre moyen d’étapes, tout comme d’autres paramètres importants de
l’algorithme. Grâce à des méthodes d’analyse dynamique, nous exhibons des constantes mathématiques
précises.

Plus précisément, nous considérons les couples (p, q), avec 1 ≤ p ≤ q ≤ N , avec la probabilité uniforme,
et nous étudions les valeurs moyennes du nombre d’étapes de pseudo-divisons et de shifts binaires, quand
N → ∞. Dans notre résultat principal, le théorème 7.2, nous démontrons que ces valeurs moyennes sont
asymptotiquement linéaires par rapport à la taille logN , et nous décrivons précisement leur comportement
asymptotique quand N → ∞.

Le système dynamique sous-jacent ressemble à première vue à celui d’Euclide, et a été étudié d’abord
par Chan [Cha05] et Borwein et al [BCLM17], avec des méthodes ergodiques, mais la présence des puis-
sances de 2 dans les quotients change la nature de l’algorithme et donne une nature dyadique aux principaux
paramètres de l’algorithme, qui ne peuvent donc pas être simplement caractérisés dans le monde réel. C’est
pourquoi nous introduisons un nouveau système dynamique, avec une nouvelle composante dyadique, et tra-
vaillons dans ce système à deux composantes, l’une réelle, et l’autre dyadique. Grâce à ce nouveau système
mixte, nous obtenons l’analyse en moyenne de l’algorithme.
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INTRODUCTION

General context

In this dissertation, we study objects coming from a priori diverse fields: first, a very important family of
words, the so-called Sturmian words, fundamental in Combinatorics on Words; second, a gcd algorithm
(the Continued Logarithm Algorithm – CL for short), stemming from Number Theory. These objects have
been studied extensively, and the “extreme orders” of some of their important characteristics are now well-
understood. We adopt a different point of view; we wish to study them from a probabilistic perspective.
Rather than being motivated the question “what is the worst/best case scenario?”, we consider questions
such as “what does a random (Sturmian) word look like? what does a random gcd algorithm execution look
like ?

Even though the objects we consider (words, gcd algorithms) come from seemingly distant fields, they can
both be described within a common Number Theoretic framework. This framework includes continued
fraction expansions (the usual one for Sturmian words, and a less classical one for the CL algorithm, where
powers of two play a central role), and their corresponding underlying dynamical systems.

Figure 4: The diagram of this thesis.

Here we apply techniques originating from Analytic Combinatorics and Dynamical Systems. Analytic Com-
binatorics [FS09] deals with generating functions (here of Dirichlet type, stemming from Number Theory
[Ten15]), with coefficients counting combinatorial (number theoretical) objects, and relates their analytic
behavior (notably their singularities) to the asymptotics of their coefficients (here via Tauberian Theorems).
The situation is illustrated in Figure 5a. Analytic Combinatorics is widely used to study algorithms, data
structures, or combinatorial objects per se, probabilistically. When the objects of interest are generated by a

15
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(a) The work-flow of Analytic Combinatorics. (b) The work-flow of Dynamical Analysis.

Figure 5: Analytic Combinatorics and the extension to Dynamical Analysis.

dynamical system, Analytic Combinatorics can be (and must be) complemented by another class of methods,
giving rise to the so-called Dynamical Analysis [FV98], pioneered by Baladi, Flajolet, Vallée and others.
The key object in Dynamical Analysis is the transfer operator of the underlying dynamical system, which
extends the density transformer operator of the system, and naturally tracks the evolution of our parameters
of interest through its iterates. It thus can be viewed as a generating operator that generates itself the gen-
erating functions of interest. When it acts on a convenient functional space, this operator has a dominant
eigenvalue, which plays the same role as the dominant singularity in classical Analytic Combinatorics.

The extension to Dynamical Analysis is illustrated in Figure 5b. We briefly explain how this is achieved.
The k-th power (by composition) of the transfer operator Hs reflects the situation after k iterations of the
dynamical system (underlying the algorithm or process). Thus we must first exploit this to give expressions
for our target generating functions in terms of the powers of Hs, often with all powers at the same time
(I−Hs)

−1 = I+Hs+H2
s+ . . . when considering every possible execution of an algorithm. Finding such

an expression is sometimes impossible in classical Analytic Combinatorics, as the usual techniques require
some sort of independence between distinct steps of the algorithm. Given expressions for our generating
functions in terms of the powers of Hs, we exploit the spectral properties of the operator; if the operator
is well-behaved (in an appropriately chosen functional space), the action of the power Hk

s is determined
by the dominant eigenvalue and the projection over its eigenspace. By well-behaved we mean it presents
a spectral gap [BV03]: the dominant eigenvalue is unique and simple, and separated from the rest of the
spectrum. The reader may be familiar with the Perron-Frobenius Theorem for matrices; the target behavior
is analog but in a space of infinite dimension. The choice of the functional space is then a delicate one
as there must be a balance: it must be big enough to contain useful input functions, but small enough to
give us our desired spectral gap. Then, once we have established that the powers of the operator follow the
powers of the dominant eigenvalue, we may complete the analysis and determine the main singularities of
the generating functions.

This dissertation is structured into 3 parts, following the bottom of the diamond in Figure 4:

• Part I is concerned with the common background for the whole thesis, which corresponds to the bottom
part of Figure 4. We introduce the background in continued fractions and dynamical systems in Chapter 1.
Particular attention has been payed to introducing continued fractions, dynamical systems and the functional
properties of the transfer operator. The concepts we require from Analytic Combinatorics are introduced in
Chapter 2, in particular Dirichlet Generating Functions and the Tauberian Theorem.

• Part II deals with the problems coming from Combinatorics on Words. Therein we define all the necessary
notions concerning Sturmian words and our problematic (in Chapter 3), to then proceed to our probabilistic
study of Sturmian words (in chapters 4 and 5).

• Finally, Part III closes the thesis with a probabilistic study of the CL algorithm.

Now we give further details regarding the contents of Part II and Part III.
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Probabilistic study of Sturmian words

Sturmian words are central objects in Word Combinatorics (see e.g., [Fog02] and [Lot02]). These are
precisely the simplest infinite words that are not eventually periodic, in the sense that they have the absolutely
smallest number of factors of each length n, that is n + 1. Sturmian words turn up naturally in relation to
digital geometry and quasicrystals, and have been widely studied.

On the binary alphabet {0, 1}, Morse and Hedlund [MH40] provide a powerful arithmetic description of
Sturmian words and relate them to continued fraction expansions. Specifically, they show that each Sturmian
word is in strong correspondence with an irrational number α of the unit interval (called its slope), describing
the frequency of ones in the word: each Sturmian word may be written as Sα for some irrational α in the
unit interval. This representation is related to the discrete coding of lines such as the one in Figure 6.

0 0 1 0 0 1 0 1 0 0

Figure 6: Morse and Hedlund connected Sturmian words to discretized lines of irrational slope α.

The recurrence function of the Sturmian word Sα describes how the finite factors of length n occur inside
the infinite word Sα. In particular Rα(n) denotes the maximum “waiting time” that is needed to discover
all the factors of Sα of length n. The function Rα(n) depends nicely upon the pair (α, n). More precisely,
Morse and Hedlund [MH40] relate the recurrence function Rα(n) to the continued fraction expansion of α,
more particularly to its continuants qk(α), the denominators resulting from the convergents of the continued
fraction for α.

Morse and Hedlund showed that when n belongs to the interval [qk−1(α), qk(α)) between two consecutive
continuants qk−1(α) and qk(α) of α, the recurrence function Rα(n) admits a simple expression. Further,
the authors exhibited a “n log n” worst-case behavior for Rα(n), whose occurrence depends strongly on the
specific choices of (α, n), but occurs almost surely for infinitely many n.

We present the general background regarding Sturmian words as well as Morse and Hedlund’s results,
rewritten in our notation, in Chapter 3. We deemed, in particular, that the link between the recurrence of
Sturmian words and continuants had to be explained thoroughly as we make extensive use of it. Finally,
at the end of the chapter, in Section 3.4, we discuss Morse and Hedlund’s classical results concerning the
growth of the recurrence function and we present briefly our context, questions, and results.

The question we pose is: If the pair (α, n) is chosen randomly in some systematic way. What is the prob-
abilistic behavior of the recurrence function Rα(n)? In this dissertation, we consider two distinct proba-
bilistic models to answer this question. Roughly speaking, our first model [BCR+15] considers sequences
of n, appropriately chosen for each α, in turn chosen uniformly at random, while our second model [RV17]
leaves n fixed and large (n→ ∞) and chooses α at random. The latter is described and studied in Chapter 4
while the former in Chapter 5, and the relation between the two models is studied in Chapter 6. For each
model, we answer the preceding question by giving precise limit distributions and densities, and studying
how these relate to the worst-case “n log n” behavior, found by Morse and Hedlund, through the study of
appropriate conditional probabilities.
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First probabilistic model

Our first model, described in Chapter 5, was published in [BCR+15] for MFCS 2015. It was a first attempt
to approach this worst-case scenario from a probabilistic setting by actually conditioning to smaller and
smaller sets which encapsulate the worst cases. In this setting, one picks the slope α “uniformly at random”
from the unit interval and then considers particular subsequences k →→ nk that fix the barycentric position
µ of n within the interval [qk−1(α), qk(α)). Our results in [BCR+15] , following a Dynamical Analysis,
quantify the incidence of the position µ on the worst-case behavior of the recurrence function, and exhibit a
“ n log n average behavior” over certain sequences k →→ nk.

More precisely, we exhibit the asymptotic value, as k → ∞, of the distribution of (1/nk)Rα


nk

. As this

analysis may be performed even for varying relative position µk, we show a kind of Morse-Hedlund result
“on average”: the expectation is of order n log n when µk → 0 at a prescribed exponential rate.

Considering the dynamical system underlying the problem (here the classical Euclidean one, with the Gauss
map), we use methods from Dynamical Analysis, in this case the plain density transformer operator of the
system. We express the expectations relative to the k-th step in terms of the k-th power of the density
transformer. Over an appropriate functional space (here the functions of bounded variation), the operator
presents our desired spectral gap, and the powers of the operator are approximated by the (true) k-th power
of the dominant eigenvalue. In this case we also require specific knowledge regarding the remainder term,
which has been studied extensively for the Euclidean system.

Main results for the first probabilistic model. The main results obtained are summarized here:

▷ Theorem 5.1. For a fixed relative (barycentric) position µ , we characterize the limit expectations and
the limit density of (1/nk)Rα(nk) as k → ∞.

▷ Theorem 5.2. For a varying relative (barycentric) position µk → 0 , we characterize the the limit
density of (1/nk)Rα(nk) as k → ∞, demonstrating the rate of convergence to the case of fixed µ = 0 from
Theorem 5.1. Moreover, we demonstrate that the expectations of (1/nk)Rα(nk) do have a log nk behavior
when µk tends to zero exponentially (not too fast).

Second probabilistic model

The previous model for Sturmian words is very useful when it comes to describing the worst-case behavior
of the recurrence function and the incidence of the relative position µ. Our second model considers, again, a
random slope α, but somewhat orthogonally to the previous model, we take an input size n independent from
α. The analysis of the recurrence function within this “fixed n → ∞” model is described in Chapter 4, and
was published in the proceedings of ANALCO 2017 [RV17]. This model can be employed to study other
functions, such as the relative position µ, playing a role in the analysis of Sturmian words, or continued
fractions.

We obtain three main results in [RV17]; we consider the random variables α →→ (1/n)Rα(n) and study them
for large n. We exhibit a limit for their distribution, and prove the existence of a limit density. We also study
the conditional expectation of the recurrence quotient (1/n)Rα(n), when we exclude the possibility that n
be too close to the left-end of the interval [qk−1(α), qk(α)). Finally, we describe a class of events for which
the order of this conditional mean value is exactly of order log n. This can be viewed as a probabilistic
extension of the Morse and Hedlund result.

Our proofs use elementary methods: they are based on a precise comparison between an integral and its
Riemann sum ; however, the integral is improper (but convergent) and the Riemann sum is constrained by a
coprimality condition, what we call a “coprime Riemann sum”. Coprime Riemann sums appear in [BCZ03],
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where the authors study the Farey sequence, but limited to bounded domains. Here we adapt the methods of
proof to unbounded domains, getting tight error bounds for the convergence towards the integrals.

We introduce a general family of functions, called continuant-functions or Q-functions, which are defined
via the sequence of continuants k →→ qk(α). Ustinov in [Ust09] had already considered similar functions
to answer a question from Sinai and Ulcigrai [SU08]; here we generalize the class of functions to Q-
functions, demonstrating its ubiquity in continued fraction problems. The recurrence quotient (1/n)Rα(n)

is an instance of this family, and the other “geometric” parameters of interest provide natural examples of
such a notion. The class of Q-functions lead naturally to coprime Riemann sums. Thus the paper describes
a framework for studying the more general Q-functions, giving special attention to the recurrence function.

Main results for the second probabilistic model. The main results obtained are summarized here:

▷ Theorem 4.1. We show that for a wide family of Q-functions, which we call LQ-functions, the random
variables (1/n)Rα(n) have a limiting distribution as n → ∞. This distribution is expressed in terms of an
analog ψ(x, y) of the Gauss measure. Moreover, we show explicit bounds for the remainder term.

▷ Theorem 4.2. This result makes precise when the histograms do converge to the derivative of the distri-
bution, thus making sense of it as a density. Since the distributions of Q-functions, such as (1/n)Rα(n), are
discrete, we have to be careful when speaking of the limit density. Here we characterize this limit density of
LQ-functions completely, giving also remainder terms.

▷ Theorem 4.3. This result demonstrates that if we condition to an event such as µ ≥ ϵ(n), which pre-
vents that n be too close to the left-end of the interval [qk−1(α), qk(α)), the expected value of (1/n)Rα(n)
involves a log ϵ(n). This is the counter-part of the results by Morse and Hedlund for this probabilistic model.
The proof exploits strongly the knowledge of the remainder term from Theorem 4.1.

We highlight also that the convergence in distribution for Q-functions still holds for more general conditions,
but without any guarantee for the remainder term however, see Theorem 4.10.

Probabilistic behavior of “particular” Sturmian words

There are two kinds of special Sturmian words, both interesting in their own right.

Christoffel words When the parameter α is rational, the word Sα is periodic and is called a Christoffel
word [BLRS08]. It is still interesting to study such words probabilistically, particularly how the word
evolves (when the length p(α) of its continued fraction becomes large) towards a Sturmian word, notably
from the point of view of its recurrence function. Our main question is: Is it true that, when the length
of the continued fraction of α becomes large, the behavior of the recurrence function becomes close to the
recurrence function of a generic Sturmian word?

We have carried out this study, yielding results in the same vein as the ANALCO paper. This results are
not yet published, and we explain them in subsection 6.3.1. We consider the set ΩN of rational numbers
from the unit interval with a denominator at most N , endowed with the uniform probability. We introduce
generating functions of Dirichlet kind, in order to sieve the right rationals for our asymptotics (through a
Tauberian Theorem). We show that when the bound for the denominator N tends to infinity, the analogous
distributions for the recurrence quotient are given by the same coprime Riemann-sum as before.

Sturmian words generated by morphisms There is a second important family of Sturmian words, namely
Sturmian words that are generated by word morphisms [All98]. They are associated to quadratic irrationals
α, that give rise to periodic continued fraction expansions. Our main question is: Is it true that, when the
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period π(α) of the quadratic irrational α becomes large, the behavior of the recurrence function resembles
that of a generic Sturmian word? The analysis is more difficult because it now depends on the triple (n, α, ℓ)
where the integer ℓ describes the number of times the period is needed.

We have already obtained interesting results for the case ℓ = 1 (not yet published), where we get the same
distributions from our second probabilistic model but through substantially different methods. There seems
to be a stationary behavior as ℓ → ∞, and this is work still in progress. The results obtained thus far are
discussed in subsection 6.3.2.

Our proofs mix methods from dynamical analysis and elementary methods like those in the second model:
as for rational numbers, we introduce generating functions of Dirichlet type to manage the quadratic irra-
tionals, which are endowed with their usual notion of size, here closely related to the fundamental unit of the
associated quadratic field. The associated generating functions are (again) expressed in terms of the transfer
operator of the Euclid dynamical system, but now via their traces. This leads to a more involved study.

A specific interesting result This study also leads us to a specific interesting result on finite continued frac-
tions. Such a continued fraction is defined by a finite sequence (m1,m2, . . .mk) of partial quotients and rep-
resents a rational p/q. The “mirror” continued fraction defined by the mirror sequence (mk,mk−1, . . .m1)
represents another reduced rational p′/q that has the same denominator as the previous one (but not the same
numerator). Very often, the two expansions occur together in our studies (and in many other studies), and
the two associated rational numbers seem a priori to be correlated in a strong way. We adapt a result of
Shparlinski [Shp12, Theorem 13] and we prove that, when one draws a rational p/q uniformly at random,
the two rational numbers p/q and p′/q asymptotically behave in an independent way, as the denominator q
becomes large. This is explained in Section 4.5.3.

Analysis of the Continued Logarithm Algorithm

The Continued Logarithm Algorithm –CL for short– introduced by Gosper in 1978 [Gos78], computes the
gcd of two integers; it employs efficient operations, as it only performs (binary) shifts and subtractions.
Shallit [Sha16] has studied its worst-case complexity in 2016 and showed it to be linear, and he proposed
the problem of determining the average-case analysis of the algorithm to us. We answer his question in the
publication [RVV18], accepted in LATIN 2018 and described in Chapter 7: we study its main parameters
(number of iterations K, total number of shifts S) and obtain precise asymptotics for their mean values.

More precisely, we consider the set ΩN gathering all integer pairs (p, q) with 1 ≤ p ≤ q ≤ N , endowed
with the uniform probability, and we study the mean values of K and S as N → ∞. In our main result,
Theorem 7.2, we prove that these mean values are asymptotically linear in the size logN , and describe
precisely their asymptotic behavior as N → ∞. This result is to be expected intuitively, since the algorithm
resembles the Euclidean one where both the worst and average case are linear [Val06]. The study leading
up to this average case asymptotics, however, presents several interesting (and non-trivial) aspects.

The dynamical analysis involves the dynamical system underlying the algorithm, which produces continued
fraction expansions whose quotients are powers of 2. Even though this CL system has already been studied
by Chan [Cha05] and Borwein et al [BCLM17], the presence of powers of 2 in the quotients ingrains into the
central parameters a dyadic flavor that cannot be grasped solely by studying the CL system. Indeed, even if
the input of the CL algorithm is a pair of coprime integers, the algorithm builds a sequence qk of remainders,
for which the pair (qk−1, qk) is no longer coprime. The successive gcd(qk−1, qk) are now powers of 2, and
it appears experimentally that (1/k) log2 gcd(qk−1, qk) gets close to 1/2 as k becomes large.

In order to take into account this involved dyadic phenomenon, central to our analysis, we add a second
dyadic component to the (usual) CL dynamical system, and work with a two-component system, which
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allows us to keep track of all the interesting parameters under study. This new dynamical system with its
two components, is not classical at all, but we succeed in finding a convenient space where its transfer
operator acts nicely, with a single dominant eigenvalue. With this new mixed system at hand, we provide a
complete average-case analysis of the CL algorithm, with explicit constants.

The extended dynamical system and its properties are presented in Section 7.4. In particular, in Section 7.4.2
we discuss to a certain extent the appropriate probability measures on the dyadics, while in Section 7.4.3
we provide the properties of the transfer operator that are needed to complete the analysis. This becomes
significant because the use of dyadics in Dynamical Analysis performed here is not commonplace. Even
though there exist works studying other gcd algorithms that employ dyadics, namely the so-called “Turtle
and the Hare” algorithm [DMDV05], and the Binary algorithm [Val98a] , the CL algorithm evolves and uses
the dyadics in a novel way.

Main results for the CL algorithm. The main result obtained is summarized here:

▷ Theorem 7.2. The mean value of the total number of iterations K and the total number of shifts S are
asymptotically linear in the size logN as N → ∞, and we provide explicit constants.

We remark that we are working on the so-called “real case” for the Continued Logarithm expansion. We
consider a random real in the unit interval and, a given number k, we wish to describe the evolution of the
main parameters associated with the expansion truncated after k steps, when the depth k tends to ∞. This
is a work still in progress.
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Part I

Presentation of the general context
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CHAPTER 1

CONTINUED FRACTIONS AND THE
GAUSS MAP

We kick off by introducing several useful concepts that are recurrent in our studies and will prove funda-
mental for both the solution and conception of our problems.

1.1 The numeration process

Continued fractions can be introduced in several ways, and arise in contexts as seemingly diverse as dio-
phantine approximation and Pell’s equation. The most classical text describing extensively the elementary
properties of continued fractions is definitely “Continued Fractions” by Khinchin [Khi97].

A continued fraction is a “formal” expression of the form

1

m1 +
1

m2 +
1

m3 +
. . .

,

which we denote by [m1,m2, . . .], where the coefficients m1,m2, . . ., known as quotients or partial quo-
tients, are positive integers.

We can make sense of this as a limit of the so-called convergents

[m1, . . . ,mk] :=
1

m1 +
1

. . . +
1

mk

, (1.1)

that is, the truncated expansion considering only the first k coefficients. This can be realized as a finite
continued fraction, or by filling in with 0s as follows [m1, . . . ,mk, 0, 0, 0 . . .], thus explaining the notation.

More precisely define
[m1,m2, . . .] := lim[m1, . . . ,mk] ,

25
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and this limit is well-defined (see e.g., [Khi97]) , for any choice of quotients m1,m2, . . . ≥ 1. We will now
describe how of the continuants evolve, and in fact derive the existence of the limits too, as well as other
interesting properties.

The finite continued fraction [m1, . . . ,mk] represents a rational number

pk
qk

=
1

m1 +
1

. . . +
1

mk

, gcd(pk, qk) = 1 , (1.2)

where we enforce that pk and qk to be coprime to make the choice unique.

Note pk and qk defined in (1.2) depend only on the vector (m1, . . . ,mk) ∈ Zk≥1 and hence we will often
write p(m1, . . . ,mk) and q(m1, . . . ,mk) to underline this dependence, or even pk(m) and qk(m) when the
whole sequence m = (m1, . . . ,mk, . . .) is fixed beforehand, thus emphasizing the “truncation” aspect. We
write simply pk and qk as above when there is no danger of confusion.

The limit [m1,m2, . . .] in (1.1) actually exists for any choice of coefficients (mk)
∞
k=1 (this is proved e.g.,

in [Khi97, Theorem 10, p.10]) and represents a real number α ∈ [0, 1]. Conversely, every real number
α ∈ (0, 1] has a continued fraction expansion

α =
1

m1 +
1

m2 +
. . .

, (1.3)

and we write mi = mi(α) when there is danger of confusion. This expansion is unique when α is irrational
and, of course, necessarily infinite. For rationals we have two expansions, both finite (we will point out why
later on), by means of the equality

[m1, . . . ,mk−1,mk] = [m1, . . . ,mk−1,mk − 1, 1] (1.4)

which holds for mk ≥ 2.

Thus rationals have two finite expansions; one of them ending with the digit 1. It is direct to see that this is
the only possible “redundancy” in the continued fraction expansion (this can be seen by direct comparisons),
somewhat analogously to the case of the binary base representation, where the redundancies come from the
cases of the form 0.a1 . . . ak100 . . . = 0.a1 . . . ak011 . . . This is to say, if two continued fraction expansions
represent the same real number, then we are necessarily in the case (1.4) described above.

When considering the quotients m1(α),m2(α), . . . coming from the expansion of α, we will also write
pk(α) and qk(α) to denote the numerators and denominators of the convergents. The sequence (qk(α))

∞
k=1

of denominators is known as the sequence of continuants, and plays a fundamental role in our studies.

Given α ∈ (0, 1) it will be useful to explain how its expansion is computed. We first note that if equality
(1.3) is to hold, then

1

α
= m1 + [m2,m3, . . .]

which impliesm1(α) =

1
α


, where ⌊·⌋ denotes the floor function. Then the continued fraction [m2,m3, . . .]

corresponds, in its turn, to the rational part {1/α} and the procedure is iterated.

Thus we may think of this procedure as a dynamical system producing the digits m1(α),m2(α), . . .

1.1.1 The Gauss map

The process of computing a continued fraction expansion, its successive digits, can be described somewhat
more.
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Definition 1.1 (Gauss map). Let I := (0, 1), we consider the shift map Tg, called the Gauss map, defined
by

Tg : I → I , α →→

1

α


, (1.5)

where {·} denotes the fractional part {α} := α− ⌊α⌋. We further define the digit function m by

m : I → N , α →→

1

α


. (1.6)

0.2 0.4 0.6 0.8 1
x

0.2

0.4

0.6

0.8

1

T(x)

Figure 1.1: The Gauss map

We remark then that the digits mi(α) are retrieved from the equality mi(α) = m(T i−1
g α), thus making

the continued fraction expansion a coding of the trajectory {α, Tgα, T 2
g α, . . .} by m. Note that this is well

defined when α ∈ I \Q, while the trajectory will be finite when α is rational, as we will soon explain.

The evolution of the orbits through the Gauss map Tg from Definition 1.1 constitutes a fundamental example
in dynamical systems. We extend the notions given for the Gauss map to more general dynamical systems
in Section 1.2, where we define complete interval dynamical systems in Definition 1.3.

Observation 1.1. It is important to remark that the Gauss map Tg and the digit function m are defined so
that

α =
1

m1(α) + Tg(α)
. (1.7)

This equation may be iterated giving

α =
1

m1(α) +
1

. . . +
1

mk(α) + T kg α

, (1.8)

which we denote by [m1(α),m2(α), . . . ,mk−1(α),mk(α) + T kg α] in a little abuse of notation (as we are
introducing non-integer coefficients).

1.1.2 Continued fractions and the Euclidean Algorithm

The Euclidean Algorithm computes the greatest common divisor (gcd) of a pair of positive integers a ≤ b by
exploiting the equality gcd(a, b) = gcd(r, a) where r = b mod a is the remainder of the division of b by a,
and then proceeding likewise with (r, a) until we get to a pair (0, g) for which it is clear that gcd(0, g) = g.

This algorithm is very efficient, having linear complexity (on the bit-length) of a and b. Here we explain
this fact briefly, by showing that there is a fundamental connection between the Euclidean Algorithm and
continued fractions of rational numbers.
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Continued fractions are naturally equivalent to the execution of the Euclidean algorithm. Indeed, let us pick
a rational number a/b. One step of the expansion gives:

a

b
=

1

b/a
=

1

⌊b/a⌋+ {b/a}
,

and here {b/a} = b mod a
a so that our original pair (a, b) has become (b mod a, a) after one iteration, exactly

like in the Euclidean Algorithm. As we know, the Euclidean algorithm certainly terminates, as the first entry
always decreases strictly until becoming 0 (clearly b mod a < a), thus giving a finite representation

a

b
=

1

m1 +
1

. . . + 1
mk

,

where m1,m2, . . . are the quotients of the divisions in the Euclidean algorithm applied to (a, b)!

In particular, as (1.4) is the only redundancy in the representation, rational numbers have only finite expan-
sions (exactly two of them). Second, this means that one may study the Euclidean algorithm by studying the
continued fraction expansion or viceversa.

1.1.3 Basic properties of continuants

We now develop important properties regarding the convergents pk/qk, providing information regarding the
growth of the sequence of continuants qk. These will prove useful in proving that α = [m1(α),m2(α), . . .]
indeed holds as expected, as the convergence rate of [m1(α),m2(α), . . . ,mk(α)] towards α will be dictated
by the size of qk as we explain in Proposition 1.4. Along the way we will introduce several properties which
are fundamental to our studies.

We start off by studying the recurrence equation satisfied by the sequences (pk)k and (qk)k, providing its
matricial form too.

Proposition 1.1. Let (mk)
∞
k=1 be a sequence of positive integers. The sequences (pk)

∞
k=1 ⊂ N and

(qk)
∞
k=1 ⊂ N of successive numerators and denominators of the continued fraction expansion, defined

by
pk
qk

= [m1, . . . ,mk] , gcd(pk, qk) = 1 ,

satisfy the recurrences

pk+1 = mk+1pk + pk−1 , qk+1 = mk+1qk + qk−1 , (1.9)

for all k ≥ 0, where we consider p0 = 0, p−1 = 1 and q0 = 1, q−1 = 0.

This can be written in matricial form as
qk+1 pk+1

qk pk


=


mk+1 1
1 0


qk pk
qk−1 pk−1


, (1.10)

along with 
q0 p0
q−1 p−1


=


1 0
0 1


. (1.11)

Proof. For convenience will prove the proposition in matricial form. Observe that the result is equivalent to
q(m1, . . . ,mk) p(m1, . . . ,mk)
q(m1, . . . ,mk−1) p(m1, . . . ,mk−1)


=


mk 1
1 0


· · ·

m1 1
1 0


, (1.12)
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for all k ≥ 0 and (m1, . . . ,mk) ∈ Nk. This expression is particularly useful as what we effectively do in
the inductive step is add the coefficient m1 to the beginning of (m2, . . . ,mk) ∈ Nk, for which we assume
the result to hold by induction.

The proof proceeds by strong induction over k. It is clear that the base case p0 = 0, p−1 = 1 and q0 =
1, q−1 = 0 holds for any choice of the quotients. Now assume that the recurrence holds for j up to k, for
any choice of quotients m1, . . . ,mk (strong induction). Let us consider now a concrete m1, . . . ,mk,mk+1

and show (1.12) for tuple of length k + 1.

We have

p(m1, . . . ,mk+1)

q(m1, . . . ,mk+1)
=

1

m1 +
p(m2,...,mk+1)
q(m2,...,mk+1)

=
q(m2, . . . ,mk+1)

m1q(m2, . . . ,mk+1) + p(m2, . . . ,mk+1)
,

and therefore p(m1, . . . ,mk+1) = q(m2, . . . ,mk+1) as well as q(m1, . . . ,mk+1) = m1q(m2, . . . ,mk+1)+
p(m2, . . . ,mk+1) because their gcd equals gcd(q(m2, . . . ,mk+1), p(m2, . . . ,mk+1)) = 1 .

As the previous equalities will also hold when we substitute k →→ k − 1, we have
q(m1, . . . ,mk+1) p(m1, . . . ,mk+1)
q(m1, . . . ,mk) p(m1, . . . ,mk)


=


q(m2, . . . ,mk+1) p(m2, . . . ,mk+1)
q(m2, . . . ,mk) p(m2, . . . ,mk)


m1 1
1 0


.

It follows from the inductive hypothesis that
q(m2, . . . ,mk+1) p(m2, . . . ,mk+1)
q(m2, . . . ,mk) p(m2, . . . ,mk)


=


mk+1 1
1 0


· · ·

m2 1
1 0


,

thus 
q(m1, . . . ,mk+1) p(m1, . . . ,mk+1)
q(m1, . . . ,mk) p(m1, . . . ,mk)


=


mk+1 1
1 0


· · ·

m2 1
1 0


m1 1
1 0


,

which proves the result for k + 1. ■

An immediate corollary of the recurrence is that the sequence of continuants grows at least exponentially.

Corollary 1.1. Let (mk)
∞
k=1 be a sequence of positive integers. The sequence (qk)

∞
k=1 ⊂ N of successive

continuants of the continued fraction expansion satisfies

qk ≥ 2(k−1)/2 .

Proof. Observe that qk+1 ≥ 2qk−1 by the recurrence. ■

Observation 1.2 (Precise bound). This last inequality can be made somewhat more precise by considering
that qk+1 ≥ qk+qk−1 . Then by induction we conclude that qk ≥ fk where fk is the k-th Fibonacci number,
defined from f0 = 0, f1 = 1 and fj+1 = fj + fj−1 for j ≥ 1. Equality can only hold for each k if
α = [1, 1, 1, . . .] which then satisfies α = 1/(1 + α) so that α = (

√
5− 1)/2.

Finally, we recall that fk = ⌊Φk/
√
5⌉ where ⌊·⌉ is the “round to the nearest integer” function and Φ =

√
5+1
2

is the Golden ratio. This means that qk(α) ≥ Φk−2 for all k ≥ 1. 3

Notice that the previous corollary gives a bound for the depth K(a, b) of the continued fraction expansion
of a reduced rational number a/b, as then b = qK(a,b) ≥ 2(K(a,b)−1)/2 and therefore K(a, b) ≤ 2 log2 b+1.

By definition we have that gcd(pk, qk) = 1, and the recurrence in Proposition 1.1 implies also gcd(qk−1, qk) =
1 and gcd(pk−1, pk) = 1. All of these greatest common divisors can be deduced at once too from the fol-
lowing “determinant” property of the convergents.
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Corollary 1.2 (Determinant). Let (mk)
∞
k=1 be a sequence of positive integers. The sequences (pk)∞k=1 ⊂ N

and (qk)
∞
k=1 ⊂ N of successive numerators and denominators of the continued fraction expansion satisfy

qkpk−1 − pkqk−1 = (−1)k , (1.13)

for all k ≥ 0.

Proof. Take determinants in (1.10). ■

The determinant property (1.13) gives a non-trivial relation between the sequences (pk)k and (qk)k of nu-
merators and denominators. For instance, notice that

pk−1

qk
=
pk
qk

qk−1

qk
+

(−1)k

q2k
=
pk
qk

qk−1

qk
+O(2−k) .

Another property that will play a fundamental role in our studies is the so-called “mirror property” (de-
scribed for instance in [AA07]) which tells us what happens when we consider the convergents of the mirror
sequence (m1, . . . ,mk) →→ (mk, . . . ,m1): the numerator pk becomes the continuant qk−1.

Corollary 1.3 (Mirror property). Let (mk)
∞
k=1 be a sequence of positive integers

q(mk,mk−1, . . . ,m1) = q(m1, . . . ,mk) , p(mk,mk−1, . . . ,m1) = q(m1, . . . ,mk−1) , (1.14)

for all k ≥ 0.

Proof. Transpose the matrices. ■

This tells us at once that gcd(qk−1, qk) = 1 is no surprise: actually qk−1 and qk give the reduced convergent
for the mirror sequence!

1.1.4 Inverse branches of the Gauss map

To actually get to the matters of convergence, it is important to relate the partial expansions [m1, . . . ,mk] to
the complete expansion [m1,m2, . . .] (which equals our number α ∈ I).

We recall that α ∈ I itself is of the form α = [m1(α), . . . ,mk−1(α),mk(α) + z] for z = T kg α ∈ [0, 1] (see
Equation 1.8), making significant the function z →→ [m1(α), . . . ,mk−1(α),mk(α) + z].

Definition 1.2 (Inverse branches). The inverse branches of the system (T, I) defined in Definition 1.1 are
given by

hm(x) :=
1

m+ x
, H := {hm : m ∈ N} . (1.15)

While the depth k inverse branches, equivalently, the inverse branches of T k, are given by

hm1,...,mk
(x) := hm1 ◦ · · · ◦ hmk

(x) , Hk := {hm : (m1, . . . ,mk) ∈ Nk} . (1.16)

Later on in Section 1.2 we shall define the concept of inverse branches for more general dynamical systems
having a countable number of complete branches.

Notice that by definition hm1,...,mk
(x) = [m1, . . . ,mk−1,mk + x].

Proposition 1.2. Let (mk)
∞
k=1 be a sequence of positive integers. Consider the sequences (pk)∞k=1 ⊂ N and

(qk)
∞
k=1 ⊂ N of successive numerators and denominators of the continued fraction expansion associated

with the quotients (mk)
∞
k=1, then

hm1,...,mk
(z) =

pk + zpk−1

qk + zqk−1
. (1.17)
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Proof. We proceed by induction. The result is clear for k = 0 as q0 = p−1 = 1 and p0 = q−1 = 0 by
definition. Assume the result to hold for k, we will prove it for k + 1. Indeed

[m1, . . . ,mk,mk+1 + z] =

m1, . . . ,mk +

1
mk+1+z


=
pk +

pk−1

mk+1+z

qk +
qk−1

mk+1+z

=
mk+1pk + pk−1 + zpk
mk+1qk + qk−1 + zqk

,

and the result follows from Proposition 1.1. ■

Corollary 1.4. Letm1,m2, . . . be the quotients in the continued fraction expansion of α ∈ I, then for every
k ≥ 0 we have

α = hm1,...,mk
(T kα) =

pk + (T kg α)pk−1

qk + (T kg α)qk−1
. (1.18)

We remark that the inverse branch h(z) = [m1, . . . ,mk + z] satisfies

h′(z) =
(−1)k

(qk + zqk−1)2
,

thanks to (1.13). Note then that |h′(x)| ≤ 1/q2k for all x ∈ I.

It is important to underline the simplicity of the formula for h′(z), which will play a crucial role in the
results to come. In particular, we draw the attention to the equality |h′(0)|−1/2 = qk, which yields an
analytic formula for the denominators purely in terms of the inverse branches h ∈ H⋆.

We also note that the sign of the derivative h′(z) is not that surprising. Indeed, the inverse branch ha : x →→
1

a+x is decreasing for any a, hence hm1 ◦ hm2 is increasing, hm1 ◦ hm2 ◦ hm3 decreasing, and so on. A
simple, but very informational consequence of this property is

p0
q0
<
p2
q2
< . . . < α < . . . <

p3
q3
<
p1
q1
, (1.19)

namely that the even convergents of α form an increasing subsequence, while the odd convergents constitute
a decreasing subsequence. Observe in particular that this means that

|αqk − pk| = (−1)k(αqk − pk) . (1.20)

1.1.5 Fundamental Intervals

The monoticity of the inverse branches h = hm1,...,mk
∈ Hk implies that the cylinder Im1,...,mk

:=
h(I), which will consist of all reals from I having a continued fraction expansion starting with the dig-
its m1, . . . ,mk, is an interval with endpoints h(0) = pk

qk
and h(1) = pk+pk−1

qk+qk−1
, which has length

|Im1,...,mk
| = |h(1)− h(0)| = 1

qk(qk + qk−1)
. (1.21)

The intervals Im1,...,mk
= hm1,...,mk

(I) are known as the fundamental intervals of the dynamical system.

We summarize the previous discussion.
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Proposition 1.3 (Fundamental intervals). The inverse branches h = hm1,...,mk
∈ Hk of the Euclidean

dynamical system are monotonic. The fundamental interval Im1,...,mk
:= hm1,...,mk

(I), which is the set of
all reals from I having a continued fraction expansion starting with the digits m1, . . . ,mk, has length

|Im1,...,mk
| = |h(1)− h(0)| = 1

qk(qk + qk−1)
.

More generally, the monoticity implies |h([x, y])| = |h(y)− h(x)| .
In particular, from (1.21) we deduce α− pk

qk

 ≤ 1

q2k
≤ 2

2k
,

but we can be even more precise

Proposition 1.4. Let α ∈ I be a real number having a continued fraction expansion starting with the digits
m1, . . . ,mk ∈ N, then we have the inequalities

1

qk(qk + qk+1)
≤
α− pk

qk

 ≤ 1

qkqk+1
.

Proof. Apply (1.13) and (1.18) substituting k →→ k + 1. ■

As a consequence our convergents [m1(α),m2(α), . . . ,mk(α)] constitute very good approximations to α,
the rate of convergence being exponential. In any case something much stronger holds. Continued fractions
in fact correspond to optimal approximations of reals by rational numbers. This is explained in detail e.g.,
in [Khi97, Theorems 16 and 17] which we cite here

Proposition 1.5. Let α ∈ I = (0, 1), α ̸= 1/2. Then the convergents of α satisfy (if the index k does not
exceed the depth of α, if the number α were rational)

|αpk(α)− qk(α)| < |αp− q| ,

for all (p, q) ∈ N, with p/q ̸= pk/qk and 0 < q ≤ qk(α).

We remark that, for α = 1/2, we have |1 ·α−1| = |1 ·α−0|, and here 1/1 is not a convergent by definition,
but this is, in fact, the only exceptional case.

It is therefore said that the convergents correspond to the best approximants of the “second-kind” p/q,
minimizing |αp − q| when one bounds q. Proposition 1.5 then tells us that continued fractions do occur
naturally when we attempt to approximate reals by rationals.

Observation 1.3 (Dirichlet’s Theorem). The inequalities in Proposition 1.4 yield the existence of good
approximants to α ∈ (0, 1) in the following sense: for any Q ≥ 1, there are p ∈ Z and q ∈ N such that

|qα− p| ≤ 1/Q

q ≤ Q .

Indeed, pick (p, q) = (pk, qk) where k is the index such that qk ≤ Q < qk+1. This result is known as
“Dirichlet’s Theorem”, and may also be proved as a direct application of the “pidgeon-hole principle” (see
for instance in [HW08]).

1.2 Dynamical systems and the Perron-Frobenius operator

In (discrete-time) dynamical systems we are interested in the evolution of the discrete orbit of a map f : X →
X on a set X , more precisely, the orbit {x, f(x), f2(x), . . .} for an initial point x ∈ X . When the set X
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is given some extra structure, be it topological, or a weight (measure), we would like to know how these
evolve in time, along the orbits, for given initial points x ∈ X .

In general we will be concerned with a concrete (and widely applicable) kind of dynamical systems called
the interval dynamical systems with complete branches. These systems are naturally associated with the
process of numeration, they give a coding of the orbits which characterizes the initial point x as is the case
of continued fractions or the decimal expansion.

In Section 1.3 we will consider properties related to the so called measure theoretic dynamical systems. A
measure theoretic dynamical system is a tuple (Ω, T,Σ, µ) consisting of a compact set Ω, a σ-algebra Σ, a
measurable map T : (Ω,Σ) → (Ω,Σ) and a probability measure µ on Σ. Such systems are quite general
and give the context for Ergodic theory.

1.2.1 A general definition of a dynamical system

In this section we introduce the general notion of a dynamical system associated with a numeration process.
Of course, numeration involves “digits” (a.k.a., letters) from a countable set A, known as the alphabet. This
alphabet is N for the case of continued fractions. Each letter of the alphabet codes information with regard
to the position of the orbit at a given moment of time.

Definition 1.3 (Interval dynamical systems). An interval dynamical system of class Ck is defined from the
following elements

• a countable set A, known as the alphabet.

• disjoint open intervals Ia for a ∈ A, such that I =

a∈A Ia (a topological partition).

• a coding map σ : I → A satisfying σ(x) = a for x ∈ Ia.

• a map T : I → I, called the shift map, which satisfies that T |Ia : Ia → Ja := T (Ia) is bijective
for each a ∈ A and of class Ck(Ia). The inverses ha := T |−1

Ia
: Ja → Ia are known as the inverse

branches of T and we denote H := {ha : a ∈ A} .
Observe that the inverse branches h ∈ H are necessarily monotone, as they are bijections. This means that
|Ia| = |h(B)− h(A)| if Ja = (A,B).

Such a dynamical system is called complete if Ja = I for each a ∈ A, and is called markovian when for
each a ∈ A, the images Ja are made out of the elements from the topological partition: Ja =


a′∈Sa

Ia′ for
some set Sa ⊂ A. That is, an interval system is markovian when Ia ∩ Jb ̸= ∅ implies Ia ⊂ Jb.

Observe that for a markovian system we have that σ(x) = a implies σ(Tx) ∈ Sa, hence the name.

Given an initial point x ∈ I we say that T (x) := (x, Tx, T 2x, . . .) is the orbit of x and that M(x) :=
(σx, σ(Tx), σ(T 2x) . . .) is the infinite word (coding) associated to x.

0.2 0.4 0.6 0.8 1
x

0.2

0.4

0.6

0.8

1

T(x)

Figure 1.2: The shift map of the binary dynamical system

In what follow we will only consider complete interval dynamical systems of class at least C1.

Example 1.1. To give a first example of such a complete dynamical system let us consider the binary
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expansion:

• Consider the alphabet A = {0, 1}.

• The partition I0 = (0, 1/2) and I1 = (1/2, 1).

• The map T (x) = 2x mod 1.

Then M(x) is the base two representation of x and the inverse branches are given by

h0(x) = x/2 , h1(x) = (x+ 1)/2 .

We remark that numbers from h1(I) begin their binary expansion by 1 while those in h0(I) begin their
binary expansion by 0. Similarly, for d1, . . . , dk ∈ A the sets

hd1 ◦ . . . ◦ hdk(I) ,

correspond to the x ∈ I having M(x) starting with d1, . . . , dk, i.e.,

hd1 ◦ . . . ◦ hdk(I) = {x ∈ I : (σ(x), σ(Tx), . . . , σ(T k−1x)) = (d1, . . . , dk)}

It is easy to see that this simple remark applies to all (complete) interval dynamical systems. 3

Definition 1.4 (Fundamental intervals). Consider a complete interval dynamical system of class Ck with
alphabet A and inverse branches H = {ha : a ∈ A}.

The fundamental interval Ia1,...,ak associated with the digits a1, . . . , ak is defined by

Ia1,...,ak := ha1 ◦ . . . ◦ hak(I) . (1.22)

This is indeed an interval as the inverse branches are continuous. We also note that Ia1,...,ak corresponds
exactly to the reals x ∈ I that have a coding beginning with a1, . . . , ak.

Definition 1.5 (Expanding maps). A map T : I → I is said to be expanding if and only if there exists a
topological partition of I into countable disjoint open intervals (Ia)a∈A such that

• the restriction Ta|Ia : Ia → I, Ta := T |Ia is monotone and C1(Ia) for each a ∈ A.

• |(Tn)′| ≥ δ > 1 for some δ > 0 and n ∈ N.

Proposition 1.6. Consider a complete interval dynamical system of class Cj , j ≥ 1 associated with the map
T . If T is expanding, then the lengths of the fundamental intervals satisfy

Ia1,...,ak →k 0 uniformly.

A consequence of this proposition is that the fundamental intervals generate the so-called Borel σ-algebra
of I. The Borel σ-algebra of I is the one generated by the open intervals of I. Such property is key for
several proofs because, when this is the case, it is enough to prove many things just over the fundamental
intervals. We will come back to this property later on in Section 1.3.

1.2.2 Dynamical systems of interest

In this thesis there are three fundamental dynamical systems: the euclidean dynamical system (associated
with the Gauss map), the rotation dynamical system and the Continued Logarithm dynamical system. We
have already discussed the Euclidean system, here we introduce the other two.

Example 1.2 (Circle rotations). We consider a unit length circle, more precisely T1 = R/Z, which corre-
sponds to the interval [0, 1] when we identify the points 0 and 1, and a rotation angle α ∈ [0, 1).

The associated rotation is given by Rα(x) := (x + α) mod 1. This means that Rα(x) = x + α for
x ∈ [0, 1− α) and Rα(x) = x+ α− 1 otherwise (in an abuse of notation identifying [0, 1) with T1).
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0.2 0.4 0.6 0.8 1
x

0.2

0.4

0.6

0.8

1

Rα(x)

Figure 1.3: The rotation Rα(x) of angle α = (
√
5− 1)/2.

For reasons that will be made clear in Section 3.2, we introduce the alphabet A = {0, 1} and the topological
partition given by I0 = [0, 1− α) (or (0, 1− α]) and I1 = [1− α, 1) (respectively (1− α, 1] taking 0 ≡ 1).

We note that the shift map Rα is clearly invertible as R−1
α = R−α, but this system is not complete (note

Rα(Ia) ̸= I) and cannot be made even markovian when α ̸∈ Q.

Example 1.3 (Continued logarithm). The continued logarithm expansion is a mutation of the classical con-
tinued fractions, introduced by Gosper [Sha16] in Hakmem.

Formally, the expansion of a number α ∈ I is of the form

α =
2−a1

1 +
2−a2

. . .

, a1, a2, . . . ≥ 0 ,

and, accordingly, reversing the process, the associated shift Tc is given by

Tc(x) =
2−a

x
− 1 , x ∈ Ia := (2−a−1, 2−a) ,

where the symbols a belong to the alphabet A = {0, 1, 2, . . .}. This system is complete and of class C∞,
with inverse branches ha : I → Ia given by

ha(x) =
1

2a(1 + x)
.

We will come back to this system in Chapter 7, when we will study its associated gcd algorithm.

1.2.3 Pushforward measure – Invariant measure

Almost every dynamical system of interest is what is informally called “chaotic”. In such systems it is
difficult to predict anything significant regarding the position of T k(x), for large k, without knowing x
itself. This is why it is more natural to consider the effect of dynamical systems when an initial distribution
or density is given, and study how these evolve as we iterate with the shift map T . The pushforward measure
describes precisely how a (probability) measure µ evolves after one iteration of a measurable map T .

Definition 1.6 (Pushforward measure, Measure preserving transformation, invariant measure). Given mea-
surable spaces (Ω1,Σ1) and (Ω2,Σ2), i.e., Σi is a σ-algebra over Ωi, a measurable map T : (Ω1,Σ1) →
(Ω2,Σ2) and a measure µ : Σ1 → [0,∞], we define the pushforward measure T∗µ by

(T∗µ)(B) := µ(T−1B) , (1.23)

for B ∈ Σ2.

If the spaces coincide, i.e., (Ω1,Σ1) = (Ω2,Σ2), the map T is said to preserve the measure µ if T∗µ = µ .
When a probability space (Ω1,Σ1, µ) is fixed before-hand, we will simply say that T is measure preserving
when T∗µ = µ. Equivalently, it is said that the measure µ is invariant with respect to T .
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The importance of finding invariant measures is realized intuitively from the stationary behavior for T kx
for large k. If there were a kind of stationary distribution for T kx then we must have, loosely speaking
T∗(T

k
∗ µ) ≈ T k∗ µ so that T k∗ µ approaches an invariant (our “stationary probability”) as k → ∞.

Since (1.23) can be seen as

Ω 1B(x)d(T∗µ(x)) =


Ω 1B ◦T (x)dµ(x) for allB ∈ Σ, it follows by measure-

theoretic induction that

Proposition 1.7 (Integration with respecto to a pushforward measure). Consider a measure space (Ω,Σ, µ)
and a measurable map T : Ω → Ω. A measurable map g : Ω → Ω is integrable with respect to the pushfor-
ward measure T∗µ if and only if g ◦ T is integrable with respect to µ, and then we have the equality

Ω
g(x)d(T∗µ(x)) =


Ω
g ◦ T (x)dµ(x) .

Example 1.4. We return to the example of circle rotations on the unit circle T1 = R/Z modulo 1.

For a rotation Rα(x) := (x+α) mod .1. It is clear that the uniform (Lebesgue) measure on T1 is invariant.

When α rational, we may build other invariant measures. For instance, if α = p/q with gcd(p, q) = 1,
consider the measure µ given by

µ(A) = #{a/q ∈ A : a ∈ Z}/q ,

so that the measure is actually uniform on the points 0, 1/q, . . . , (q − 1)/q. Our rotation Rα just permutes
these points, hence the reason the measure µ is invariant.

Of course, the invariant measures we just constructed for rational α have “atoms”, i.e., measurable sets
A such that any strict subset (measurable) of it has 0 measure. For irrationals, as the sequence α, 2α mod
1, 3α mod 1 . . . is dense on I (we will prove this in the next section), we will have a very different behavior:
the Lebesgue measure is the only (unique) invariant Borel measure. Intuitively speaking, we may approach
any possible translation I + a of an interval I by rotating I enough times. Hence I and I + a should have
the same measure, for any invariant measure, and this characterizes the Lebesgue measure. 3

1.2.4 The Perron Frobenius operator

We have described how the map T defining a (interval) dynamical system acts on a measure µ. For the cases
of interval dynamical systems, we may speak more concretely about how it acts on a density with respect to
the Lebesgue measure λLeb on I (the uniform probability).

The way the densities evolve as we apply a map T is given by what is called the Perron-Frobenius operator,
known as the density transformer.

Definition 1.7 (Perron-Frobenius operator). Consider an interval dynamical system of class C1 with inverse
branches H. Then the Perron-Frobenius operator H : C1(I) → C1(I) of the system is defined by

H[g](x) =

h∈H

|h′(x)|g(h(x)) . (1.24)

Proposition 1.8 (Density transformer). Consider an interval dynamical system of class C1 with map T . If
X is drawn from I with density (w.r.t., the Lebesgue measure λLeb) g then T (X) has density H[g] given by
the Perron Frobenius operator.

Proof. The proof is direct and is illustrated in Figure 1.4. ■

It is then clear that an invariant probability measure having a density g must then satisfy H[g] ≡ g and
conversely, if g ∈ L1(I) satisfies H[g] ≡ g, then the measure associated with this density is invariant.



1.2. DYNAMICAL SYSTEMS AND THE PERRON-FROBENIUS OPERATOR 37

0.2 0.4 0.6 0.8 1
x

0.2

0.4

0.6

0.8

1

T(x)

dy

|dh1(y)||dh2(y)||dh3(y)|

Figure 1.4: Illustration of the derivation of the density of Tgx from that of x. The probability of Tgx falling
around y in a small interval of length “dy” is the sum of the probabilities of x falling within an interval of
length “|dhm(y)|” from the respective points hm(y).

1.2.5 The case of the Gauss map; the Gauss density

Let us describe the case of the dynamical system associated to the Gauss map. As we know, this system has
inverse branches

hm(x) =
1

m+ x
, |h′m(x)| =

1

(m+ x)2
,

so that its associated Perron Frobenius operator is

H[g](x) =
∞
m=1

1

(m+ x)2
g


1

m+ x


.

In the case of the Gauss map, as well as other interval dynamical systems, the iterates of the Perron Frobenius
operator will play a big role, generating expressions of interest. We give here the formula for the Gauss map.

Proposition 1.9. For the Euclidean dynamical system (I, Tg) the iterates of the Perron-Frobenius operator
take on the form

Hk[g](x) :=


(m1,...,mk)∈Nk

1

(qk(m) + xqk−1(m))2
g


pk(m) + xpk−1(m)

qk(m) + xqk−1(m)


. (1.25)

Proof. Recall Proposition 1.2. ■

To motivate the ensuing limiting density, known as the Gauss density, we observe that formally when x→ ∞
(of course, we do actually have the constraint x ∈ I)

H[g](x) ≈ g(0)
∞
m=1

1

(m+ x)2
≈ g(0)

 ∞

1

dt

(t+ x)2
=

g(0)

1 + x
,
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which is indeed almost the right guess. Indeed

H

t →→ 1

1 + t


(x) =

∞
m=1

1

(m+ x)2
1

1 + 1
m+x

=

∞
m=1

1

(m+ x)(m+ x+ 1)
,

which is a telescoping sum because 1
(m+x)(m+x+1) =

1
m+x − 1

m+x+1 . Thus we get

H

t →→ 1

1 + t


(x) =

1

1 + x
.

This density (with a normalization factor) is known as the Gauss density, and is key to the study of continued
fractions as will be made clear in the rest of the chapter. In a letter to Laplace in 1812, Gauss noted [AS17]
that the map Tg preserves the derived probability measure µg .

Definition 1.8 (Gauss density – Gauss measure). The Gauss density is given by

ψ(x) :=
1

log 2

1

1 + x
.

This defines a probability measure over the Borel σ-algebra BI on I, known as the Gauss measure

µg(A) =
1

log 2


A

dx

1 + x
,

for A ∈ BI .

1.2.6 The case of the CL map

Let us now describe the case of the dynamical system associated to the CL map. As we know, this system
has inverse branches

ha(x) =
2−a

1 + x
, |h′a(x)| =

2−a

(1 + x)2
,

so its associated Perron Frobenius operator is given by

H[g](x) =
1

(1 + x)2

∞
a=0

2−ag


2−a

1 + x


.

Here the right invariant density ψc, due to [Cha05], is slightly more difficult to guess. The CL density is
given by

ψc(x) :=
1

log(4/3)

1

(x+ 1)(x+ 2)
. (1.26)

1.2.7 Entropy and dynamical systems

The entropy of a dynamical system is a fundamental quantity that describes the way the system evolves.

Entropy in Information Theory. The reader may be familiar with the concept of entropy in Information
Theory [CT06]. For a discrete random variable X taking values with probabilities p1, p2, . . . the entropy
H(X) is defined by

H(X) = −

i

pi log pi , (1.27)
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where it is understood that 0 log 0 is formally 0.

Given a stochastic process (Xi)
∞
i=1 (i.e., a series of random variables), its entropy, if it exists, is defined by

H(X ) = lim
n→∞

1

n
H(X1, . . . , Xn) , (1.28)

where H(X1, . . . , Xn) is the entropy of the random vector (X1, . . . , Xn).

Entropy in Dynamical Systems. Consider now a complete interval dynamical system with shift map T ,
alphabet A, inverse branches ha1,...,ak ∈ Hk and fundamental intervals Ia1,...,ak = ha1,...,ak(I).
The digits a1(X), a2(X), . . ., when we consider a distribution over X ∈ I with measure µ (i.e. P(X ∈
A) = µ(A)), constitute random variables which give rise to a stochastic process. The entropy of this
stochastic process Hµ is said to be the entropy of the dynamical system with respect to the measure µ and
satisfies

Hµ(T ) = − lim
k→∞

1

k


(a1,...,ak)∈Ak

µ (Ia1,...,ak) logµ (Ia1,...,ak) . (1.29)

Observation 1.4. Notice that in (1.29), the entropy can be rewritten as

Hµ(T ) = − lim
k→∞

E

1

k
logµ (Jk(X))


, (1.30)

where Jk(x) is the fundamental interval of depth k containing x, and X is distributed according to µ.

The entropy is, then, strongly related to what we call the “real probabilistic framework”, and in Section 1.4
we shall point out how the transfer operator relates to the entropy.

Notation 1.1. When we speak about “the entropy” without reference to a measure, the Lebesgue measure
is assumed. From Equation 1.30 it is actually seen that this does not change the entropy when µ and λLeb
are equivalent measures in the sense that there exist constants A,B > 0 with Aµ ≤ λLeb ≤ Bµ.

In Example 1.5 we derive the entropy of the Euclidean system, which equals π2

6 log 2 , from a classical result
of Lévy (Proposition 1.10) and the Dominated Convergence Theorem. We could also derive it with the
techniques from Section 1.4 and we point this out in Section 1.4.6.

1.3 Almost everywhere properties

1.3.1 Introduction

In Section 1.1 we described some classical properties of continued fractions, however, the great interest of
continued fractions lies also in their analytic properties! We now get into some classical, yet very important
statistics regarding the continued fraction expansion of a real number from I.

We study the properties of the Gauss map Tg : x →→ {1/x} in more detail, in particular its interplay with
the Lebesgue measure λLeb, demonstrating a sort of stationary behavior of the dynamical system, namely its
ergodicity.

First, it is important to remark that the σ-algebra generated by the fundamental intervals Im1,...,mk
:=

hm1 ◦ · · · ◦ hmk
(I), with k ≥ 0 and m1, . . . ,mk ≥ 1, is the Borel σ-algebra BI .

It is clear that the σ-algebra generated by the fundamental intervals is a subset of BI , but the fact that
they generate the whole of BI will come in handy later on: it will be enough to prove most things over
fundamental intervals, on which Tg behaves nicely.
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To see why the fundamental intervals Im1,...,mk
generate the Borel σ-algebra, notice that the lengths |Im1,...,mk

|
tend to 0 uniformly as k → ∞ (we have stated a more general result in Proposition 1.6), hence any inter-
val (a, b) ⊂ I may actually be produced as a countable union of fundamental intervals by considering the
continued fraction expansions of the borders a and b of the interval.

The other important concept, Ergodicity, implies a “stationary behavior” (Theorem 1.1). It can be thought
of as a sort of “escape property”, points from anywhere in the dynamical system will always escape, as we
apply our map T , from any set smaller than the whole space (in terms of measure).

Definition 1.9 (Ergodic transformation – ergodic measure). Let (Ω,B, µ) be a probability space and let
T : Ω → Ω be a measurable transformation. We say that T is ergodic (or µ is ergodic with respect to T ) if
and only if the implication

T−1(B) = B =⇒ µ(B) = 0 or µ(B) = 1 , (1.31)

holds for every measurable set B.

We note that [Bil65] actually adds the condition that T be a measure-preserving transformation to the defini-
tion of ergodicity, thus not adding the condition to the Ergodic Theorem below (Theorem 1.1). On the other
hand, [PY98] or [EW11] define an ergodic transformation the way we do, and add explicitly the condition
that the transformation be measure-preserving to the Ergodic Theorem.

1.3.2 Birkhoff’s Ergodic Theorem

The fundamental consequence of the “ergodicity” is Birkhoff’s Ergodic Theorem (Theorem 1.1 below),
which roughly tells us that the “time averages” approach the “space average”: the proportion of time spent
by the orbit x, S(x), S2(x), . . . on some part B of the space Ω is given µ(B).

Theorem 1.1 (Birkhoff’s Ergodic Theorem). Let (Ω,B, µ) be a probability space and let T : Ω → Ω be an
ergodic measure-preserving transformation. Then the time and space averages coincide, more precisely

lim
n→∞

1

n

n−1
k=0

f

T k(x)


= Eµ [f ] ,

for almost every x ∈ Ω and f ∈ L1(Ω,B, µ).
Birkhoff’s Ergodic Theorem may also be thought of as a generalization of the law of large numbers. In-
deed, the law of large numbers corresponds to the case in which x, T (x), T 2(x), . . . are independent and
identically distributed a.

We remark that this is not the most general form of Theorem 1.1. The hypothesis that T be an ergodic trans-
formation may be dropped (it remains measure-preserving), with the cost that the resulting limit becomes a
random variable given by a conditional expectation. See [EW11] for more details.

1.3.3 Ergodicity of the Gauss map and CL map

We now prove that the system (I, Tg,BI , µg) associated with the Gauss Map Tg(x) = 1
x mod 1 is ergodic.

Theorem 1.2. The measure preserving dynamical system (I, Tg,BI , µg) is ergodic.

Proof. The plan is as follows: we will prove that if T−1
g A = A with A measurable, then

µg(A)µg(B) ≤ Cµg (A ∩B) (1.32)

holds for a certain constant C > 0 and all B ∈ BI . Of course, taking B = Ac, this implies that either
µg(A) = 0 or µg(A) = 1, the desired conclusion.

aMore precisely this happens on a product space with T being T (X1, X2, . . .) = (X2, X3, . . .).
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Since the fundamental intervals (Im1,...,mk
) generate the σ-algebra BI , it is enough to prove (1.32) for B

being an arbitrary fundamental interval B = Im1,...,mk
. Let A be an invariant set, that is T−1

g A = A. Then
we want to show that µg(A) is either 0 or 1.

Since T−1
g A = A, we observe that (always bearing we chose B = Im1,...,mk

)

µg(A ∩ Im1,...,mk
) = µg


T−k
g A


∩ Im1,...,mk


,

thus, if it is true that for a certain constant C > 0 and all A ∈ BI we have

µg(A)µg(Im1,...,mk
) ≤ Cµg


T−kA


∩ Im1,...,mk


(1.33)

for all A ∈ BI and m1, . . . ,mk ≥ 1, the result will follow.

Clearly, it is enough to prove this result changing the Gauss measure µg for the Lebesgue measure λLeb
because they are equivalent measures as we have (bounding the integrand)

1

2 log(2)
λLeb (D) ≤ µg(D) ≤ 1

log(2)
λLeb (D) ,∀D ∈ BI . (1.34)

Therefore, it suffices to prove that for a certain constant C > 0

λLeb (A)λLeb (Im1,...,mk
) ≤ CλLeb


T−k
g A


∩ Im1,...,mk


holds for all k ≥ 0, m1, . . . ,mk ≥ 1 and A ∈ BI .

Since we want to prove the latter inequality for all A ∈ BI , it is enough to prove it for an arbitrary interval
A = [x, y] with x < y, as these generate the σ-algebra of Borel sets BI .

Now observe (key!) that

T−k
g A


∩ Im1,...,mk

= hm1,...,mk
([x, y]) so that

λLeb


T−k
g A


∩ Im1,...,mk


= λLeb (hm1,...,mk

([x, y])) = |hm1,...,mk
(y)− hm1,...,mk

(x)|

which reduces, by the determinant property (1.13), to

|hm1,...,mk
(y)− hm1,...,mk

(x)| =
pk + ypk−1

qk + yqk−1
− pk + xpk−1

qk + xqk−1

 = |y − x|
(qk + yqk−1)(qk + xqk−1)

.

Now λLeb (Im1,...,mk
) = λLeb (hm1,...,mk

([0, 1]) = 1
qk(qk+qk−1)

and of course we have qk−1 ≤ qk, hence

1

qk(qk + qk−1)
≤ 2× 1

(qk + qk−1)2
≤ 2× 1

(qk + yqk−1)(qk + xqk−1)
,

thus proving that

λLeb (A)λLeb (Im1,...,mk
) ≤ 2λLeb


T−k
g A


∩ Im1,...,mk


,

and the result follows. ■

Observation 1.5. We note that the previous proof comes down to the following key points:

(i) the fundamental intervals generate the Borel σ-algebra BI .

(ii) the given invariant measure µ is equivalent to the Lebesgue measure.

(iii) there is a constant C such that |h′(y)|/|h′(x)| ≤ C for all x, y ∈ I and inverse branches h ∈ H∗.
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For an expanding map T , we have immediately (i) by the same argument given for the Gauss map, while
for (iii) we note that the inverse branches are monotone and therefore h′ does not change sign, hence (iii)
may be restated in terms of having |(log |h′(x)|)′| = |h′′(x)/h′(x)| ≤ C1 for some C1.

All of these properties are immediate for the CL dynamical system, while (ii) is also immediate as the
invariant density ψc(x) satisfies

1

6 log(4/3)
≤ ψc(x) =

1

log(4/3)

1

(x+ 1)(x+ 2)
≤ 1

2 log(4/3)
.

1.3.4 Consequences of ergodicity: frequency of digits

We now explain the classical estimates for continued fractions that derive from this Theorem.

Corollary 1.5. For almost every real number x = [m1,m2, . . .] ∈ I, the frequency of the digit j ≥ 1 equals

lim
N→∞

1

N
#{i : 1 ≤ i ≤ N,mi(x) = j} =

1

log 2
log


1 +

1

j(j + 2)


. (1.35)

Proof. Note that m(x) = j if and only if x ∈ Ij =


1
j+1 ,

1
j


. Thus, by the Birkhoff Ergodic Theorem

applied to the characteristic function 1Ij we get

lim
N→∞

1

N
#{i : 1 ≤ i ≤ N,mi(x) = j} = µg(Ij) =

 1/j

1/(j+1)
ψ(x)dx ,

which yields the result. ■

Observation 1.6. The above distribution given by (1.35) is known as the Gauss-Kuzmin distribution. Sim-
ilar kinds of stationary distributions can be derived for any number of consecutive partial quotients

lim
N→∞

1

N
#{i : 1 ≤ i ≤ N,mi+1(x) = j1, . . . ,mi+k = jk} = µg(Ij1,...,jk)

=
1

log 2

1

1 + pk(j)
qk(j)

|Ij1,...,jk |+O

|Ij1,...,jk |

2

.

This can be restated as follows

lim
N→∞

1

N
#{i : 1 ≤ i ≤ N, T ix ∈ [y, y + δ]} =

1

log 2

1

1 + y
δ +O(δ2) , δ → 0 .

Corollary 1.6. For almost every real number x = [m1,m2, . . .] ∈ I, the arithmetic and geometric means
of the quotients satisfy

lim
N→∞

(m1 · · ·mN )
1/N =

∞
j=1


1 +

1

j(j + 2)

log j/ log 2

. (Kuzmin constant)

and
lim
N→∞

m1 + · · ·+mN

N
= ∞ . (1.36)

Proposition 1.10 (Lévy’s constant). For almost every real number x = [m1,m2, . . .] ∈ I, the continuants
(qk(x))

∞
k=1 satisfy

lim
N→∞

1

N
log qN (x) =

π2

12 log 2
, (1.37)

and the constant appearing on the right-hand side is known as the Lévy constant.
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Proof. In this case applying the Ergodic Theorem is not immediate. To take the expression limN→∞
1
N log qN (x)

to the form of the Ergodic Theorem, we note that pk(x) = qk−1(Tgx) so that

1

qN (x)
=
pN (x)

qN (x)

pN−1(Tgx)

qN−1(Tgx)
· · ·

p1(T
N−1
g x)

q1(T
N−1
g (x))

,

because of the telescoping taking place, indeed pN−j(T
j
gx) = qN−j−1(T

j+1
g x). Thus we get

log
1

qN (x)
=

N−1
k=0

log
pN−k(T

k
g x)

qN−k(T kg x)
,

which is almost of the form needed to apply the Ergodic Theorem, were it not for the fact that the function
x →→ pN−k(x)

qN−k(x)
depends on k and N . To get around this, we note that x →→ pN−k(x)

qN−k(x)
is in general a good

approximation of the identity function. Thus we must find a bound for

∆N (x) :=


N−1
k=0


log

pN−k(T
k
g x)

qN−k(T kg x)
− log T kg x

 ,
which makes 1

N∆N (x) → 0, in order to conclude

lim
N→∞

1

N
log

1

qN (x)
= lim

N→∞

1

N

N−1
k=0

log T kg x =
1

log 2

 1

0

log x

1 + x
dx .

Showing that the integral gives the desired constant
 1

0

log x

1 + x
dx = −π

2

12
follows simply from term-wise

integration of the sum 1
1+x = 1− x+ x2 ∓ · · ·+ (−1)mxm+ (−1)m+1 xm+1

1+x and


(−1)k/k2 = −π2/12.

Fix k, let us look at how big the difference

log pN−k(T
k
g x)

qN−k(T kx)
− log T kg x

 =
log


(T kg x)×

qN−k(T
k
g x)

pN−k(T kg x)

 ,
actually is. Of course, to study log u with u close to 1, we look at the corresponding u− 1, for us

(T kg x)×
qN−k(T

k
g x)

pN−k(T kg x)
− 1 =


T kg x−

pN−k(T
k
g x)

qN−k(T kg x)


×
qN−k(T

k
g x)

pN−k(T kg x)
,

and we recall
T kg x− pN−k(T

k
g x)

qN−k(Tk
g x)

 ≤ (qN−k(T
k
g x))

−2 hence for N − k ≥ 2

(T kx)× qN−k(T
k
g x)

pN−k(T kg x)
− 1

 ≤ 1

pN−k(T kg x)qN−k(T kg x)
≤ 1

2
.

Since |log u| ≤ 2|u− 1| for u ∈ [12 ,
3
2 ], which applies to our difference whenever k ≤ N − 2
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∆N (x) ≤
N−1
k=0

log pN−k(T
k
g x)

qN−k(T kg x)
− log T kg x

 =
N−1
k=0

log

(T kg x)×

qN−k(T
k
g x)

pN−k(T kg x)


≤ 2

N−1
k=0

(T kg x)× qN−k(T
k
g x)

pN−k(T kg x)
− 1


≤ 2

N−1
k=0

1

pN−k(T kg x)qN−k(T kg x)
≤ 2

N−1
k=0

2−(N−k−1)/2

≤ 2

∞
k=0

2−k/2 =
2

1−
√
2/2

.

Thus 1
N∆N (x) tends to 0, yielding the result. ■

Example 1.5 (Entropy of the Euclidean system). We now compute the entropy of the Euclidean dynami-
cal system with respect to the Lebesgue measure, recall the definition of entropy from Section 1.2.7. By
definition

H(Tg) = − lim
k→∞

E
1
k
log λLeb (Jk(X))


,

where Jk(x) is the fundamental interval of depth k containing x and X is drawn according to the uni-
form distribution. We recall that for the Euclidean system, the interval of depth k containing X is the one
delimited by pk(X)

qk(X) and pk(X)+pk−1(X)
qk(X)+qk−1(X) as follows from Section 1.1.5. Thus we derive

H(Tg) = − lim
k→∞

E
1
k
log

1

qk(X) (qk(X) + qk−1(X))


.

Since 0 < qk−1(X) ≤ qk(X) we deduce that

H(Tg) = 2 lim
k→∞

E
1
k
log qk(X)


.

From Proposition 1.10 we would expect the entropy H to equal π2

6 log 2 . This is not immediate, as the random
variable 1

k log qk(X) is not bounded in general (build X from a sequence m1,m2, . . . that grows very fast).
However, 1

k log qk(X) is bounded almost everywhere by a fixed constant B > 0 (see [Khi97, Theorem 31,
pp.65-68]), whence we derive the entropy by the Dominated Convergence Theorem (see [Fol99]).

In all

H(Tg) =
π2

6 log 2
. (1.38)

Example 1.6 (Continued logarithm). We continue with the example of the Continued Logarithm from Ex-
ample 1.3. We noted already in Observation 1.5 that the map Tc is Ergodic with respect to (I,BI , µc), where
µc is the invariant measure given by dµc(x) = ψc(x)dx, a fact that was already noted by Chan in [Cha05].

It follows that we may apply Birkhoff’s Ergodic Theorem, from which we derive the following result.

Proposition 1.11. For almost every x ∈ I, the digits (ai(x)) of the CL expansion of x from Example 1.3
satisfy

lim
N→∞

a1(x) + . . .+ aN (x)

N
=

log(3/2)

log(4/3)
. (1.39)

We notice immediately that the digits of the CL expansion are much smaller than those of classical continued
fractions (see Corollary 1.6). This is to be expected from the fact that we are coding the exponents. In
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fact, it is similarly true that the averages of logmi(x) converge almost everywhere (see the first part of
Corollary 1.6).

Proof. Since for almost every x we have a1(x) = ⌊log2(1/x)⌋ and ak(x) = a1(T
k−1
c x), it follows at once

from the Ergodic Theorem that

lim
N→∞

a1(x) + . . .+ aN (x)

N
=

1

log(4/3)

 1

0
⌊log2(1/z)⌋

dz

(z + 1)(z + 2)
.

We now compute this integral 1

0
⌊log2(1/z)⌋

dz

(z + 1)(z + 2)
=

∞
k=1

k

 2−k

2−k−1

dz

(z + 1)(z + 2)
,

and we remark that 1
(z+1)(z+2) =

1
z+1 − 1

z+2 , thus 2−k

2−k−1

dz

(z + 1)(z + 2)
=

 2−k

2−k−1

dz

z + 1
−
 2−k

2−k−1

dz

z + 2
=

 2−k

2−k−1

dz

z + 1
−
 2−k−1

2−k−2

dz

z + 1

by performing a change of variables in the second integral. Thus if Ik :=
 2−k

2−k−1
dz
z+1 we get 1

0
⌊log2(1/z)⌋

dz

(z + 1)(z + 2)
= −

∞
k=1

k∆Ik = I1 +
∞
k=1

Ik+1 =

 1/2

0

dz

z + 1
,

were we applied summation by parts, and this equals log(1/2 + 1) = log(3/2). ■

Example 1.7. We show that, for an irrational α ̸∈ Q, the circle rotation Rα : x →→ (x+α) mod 1 is ergodic
with respect to the Lebesgue measure. For the proof we follow [EW11].

Two important remarks

• Observe that if B is an invariant measurable set, meaning that R−1
α B = B, then 1B = 1B ◦ Rα

almost everywhere.

• Now the key observation. Since α is irrational, the points 0, α, 2α, 3α, . . . taken in T1 (i.e., modulo 1)
are dense in the circle T1. To see why, note that n · α+m · 1 = δ can be arbitrary small (this follows
from Observation 1.3) and then consider for s ∈ (0, 1) consider ⌊ sδ ⌋n · α modulo 1, which satisfies⌊ sδ ⌋n · α+ ⌊ sδ ⌋m− s

 ≤ |δ|. Thus the distance dT1(s, ⌊ sδ ⌋n · α mod 1) on T1 is at most δ.

Suppose then that B were an invariant measurable set. Let f ∈ C(T1) be such that ∥f − 1B∥1 < ϵ.

Then we have ∥f ◦Rk
α− f∥1 < 2ϵ, as follows from the first remark and the fact that for any integrable g we

have

g =


g◦Rα, because the Lebesgue measure is translation invariant. Since kα can be made arbitrarily

close to any s ∈ T1 (by density) and f is continuous, we deduce that the inequality ∥f ◦ Rs − f∥1 < 2ϵ
holds too.

Thus f −

f(s)ds


1
=

  (f(x)− f(x+ s))ds

 dx ≤


∥f − f ◦ Rs∥1ds ≤ 2ϵ ,

by applying the triangle inequality and Tonelli’s Theorem [Fol99].

Thus we deduce that

∥1B − λLeb (B) ∥1 ≤ ∥1B − f∥1 +
f −


f(s)ds


1
+ ∥


f(s)ds− λLeb (B) ∥1 < 4ϵ .

Since ϵ > 0 was arbitrary, we conclude that actually ∥1B − λLeb (B) ∥1 = 0 and so 1B(x) = λLeb (B) for
almost every x ∈ T1, implying that either λLeb (B) is 0 or 1. 3
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As a consequence of Definition 3.4 and Theorem 1.1, for every irrational angle α ∈ I \Q we have that for
almost every x the “time average” equals the space average

lim
N→∞

1

N

N−1
k=0

f ◦ Rk
α(x) =

 1

0
f(s)ds ,

for any f ∈ L1(I,BI , λLeb).

In particular this tells us that for almost every initial point x ∈ S1 and interval I ⊂ S1

lim
N→∞

1

N

N−1
k=0

1I


Rk
α(x)


= |I| ,

the frequency of time spent by the rotation on an interval I equals its length (as we have a unit length circle).
However there is still this somewhat annoying “almost every x” condition regarding the initial point. The
convergence actually holds for every initial point x ∈ S1 and f ∈ C(S1), as the system is what is called
“uniquely ergodic”. We will not get into much detail regarding unique ergodicity, in any case it is fair to say
that a dynamical system is uniquely ergodic if and only if it has a unique invariant measure.

The fact that it holds for continued functions will imply (by bounding from above and below) the result for
intervals that we will later need.

Proposition 1.12. Let α be an irrational. Given an interval I ⊂ T1 and x is any point x ∈ T1, the orbit of
the irrational rotation Rα of angle α, starting from x, spends a fraction of time proportional to the length
|I| on the interval I , namely

lim
N→∞

1

N

N−1
k=0

1I(Rk
αx) = |I| . (1.40)

The above proposition could have been derived as a consequence of the so-called “uniform distribution
modulo 1”, u.d.mod1 for short. Informally, a sequence x1, x2, . . . is uniformly distributed modulo 1 if and
only if the fractional parts {xk} spend |J | proportion of the time on the interval J ⊂ I. There is a classical
criterion (the Weil criterion) which gives a necessary and sufficient condition for u.d.mod1, which is quite
direct to verify in the case of the irrational rotations. A book of reference on the subject is [KN74].

1.3.5 Large digits in the expansion: the Borel-Bernstein Theorem

There is finally one other important property regarding the quotientsmk of the continued fraction expansions
that will be of great interest to us. We know so far that mk = s occurs with frequency ∼ 1

log 2
1
s2

almost
surely (see Corollary 1.5), and we know that the arithmetic mean (m1 + . . . + mN )/N tends to infinity
almost surely (see Corollary 1.6). Can we give asymptotic bounds for the “large quotients” mk in terms of
the index k? The answer to this question is be given by the so-called Borel-Bernstein Theorem [KMS16]
which we prove in two parts.

The principle of the proof is not reduced only to continued fractions, and we will underline the corresponding
results for the continued logarithm. These, as far as the author is aware, do not appear in the literature.

As we intend to prove an almost everywhere result, which concerns an infinite number of quotients mN , it
comes as no surprise that the Borel-Cantelli Lemma will be involved. The first Borel-Cantelli Lemma gives
a criterion to decide when a series of events on a measurable space are “transient”, meaning that almost
every point of the space will be in only finitely many events.

Thus it is important to highlight the following definition which comes in handy when stating the Borel-
Cantelli Lemma
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Definition 1.10. Let (X,M, µ) be a measure space and suppose A1, A2, . . . are measurable sets. We define
the set i.o. An, which reads infinitely often An, by

i.o. An := lim supAn =

∞
n=1


k≥n

Ak . (1.41)

In other words, x ∈ X \ (i.o. An) iff from some n0(x) we have x ̸∈ Ak for all k ≥ n0(x).

Theorem 1.3 (Borel-Cantelli Lemma). Let (X,M, µ) be a measure space and suppose A1, A2, . . . are
measurable sets such that


µ (Ak) <∞ .

Then the set i.o. An = lim supAn has measure 0. In other words, for almost every x ∈ X there is n0(x)
such that x ̸∈ Ak for all k ≥ n0(x).

Proof. Let Bn :=

k≥nAk and observe that

µ(Bn) = µ


k≥n

Ak

 ≤

k≥n

µ (Ak) <∞ .

This is the tail of a convergent series, therefore


k≥n µ (Ak) → 0 as n→ ∞, hence µ(Bn) → 0.

Clearly Bn is a decreasing sequence of sets, and the above equation proves that µ(B1) <∞, thus

µ (i.o. An) = µ

 
n≥1

Bn


= lim

n→∞
µ(Bn) ,

and this number equals 0. ■

Now we come to the digits (or quotients)mn(x) of the continued fraction expansion of x. The corresponding
application of the previous Borel-Cantelli Lemma gives

Theorem 1.4 (Borel-Bernstein). Let f : N → R>0 be such that


n 1/f(n) < ∞. Then for almost every
x ∈ I the inequality

mn(x) < f(n) (1.42)

holds for all large enough n.

Proof. Let us consider Ak := {x ∈ I : mk(x) ≥ f(k)}. Then we note that

λLeb (Ak) ≤


m1,...,mk−1≥1

hm1,...,mk−1


0, 1

f(k)

 ,
simply because mk(x) ≥ f(k) implies 1/T k−1x ≥ f(k), i.e., x ∈ hm1,...,mk−1


0, 1

f(k)


for some

coefficients m1, . . . ,mk−1 ≥ 1.

Here by the monoticity of h and the mean-value theorem we havehm1,...,mk−1


0, 1

f(k)

 = |hm1,...,mk−1
(0)− hm1,...,mk−1

( 1
f(k))| ≤

|h′m1,...,mk−1
(0)|

f(k)
,

and since |h′m1,...,mk−1
(0)| = 1/q2k−1 ≤

Im1,...,mk−1

 we obtain, from


m1,...,mk≥1 |Im1,...,mk−1
| = 1, that

λLeb (Ak) ≤
1

f(k)
.

Thus the result follows from the Borel-Cantelli Lemma Theorem 1.3. ■
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We see that Theorem 1.4 tells at once that almost surely

mn(x) < n (log n)1+ϵ ,

for all large enough n, when ϵ > 0. We will see conversely that n log n is, in a way, a kind of threshold for
mn(x) as mn(x) > n log n will hold almost surely for infinitely many indices n.

Observation 1.7. The same proof reads almost ad verbum for the continued logarithm and many other
dynamical systems. Indeed, for a complete interval dynamical system having digits in an infinite alphabet
A ⊂ N we require just the following key steps and hypothesis:

• Define

Ak =


a1,...,ak−1∈A
ha1,...,ak−1

 
j∈A:j≥f(k)

Ij

 , Ij = hj(I) .

• There is a constant C > 0 such that |h′(y)/h′(x)| ≤ C for all x, y ∈ I and h ∈ H∗.

• The function f(k) is strictly increasing for large enough k, hence invertible for large enough k. It is
key to note then that #{k : a ≥ f(k)} = f−1(a) +O(1).

And we get the following result for the digit sequence a1(x), a2(x), . . ., for almost every x ∈ I.

Proposition 1.13. Consider a complete interval dynamical system of class C1 with associated shift map
T : I → I and inverse branches ha labeled by A ⊂ N. Suppose further that, for some fixed constant C > 0
independent from the choice of the inverse branch, every inverse branch h ∈ H∗ of the system satisfies
|h′(y)/h′(x)| ≤ C for all x, y ∈ I. Let f be a strictly increasing function such that the condition

a∈A
f−1(a)× λLeb (ha(I)) <∞ (1.43)

is satisfied. Then for almost every x ∈ I, the digit sequence a1(x), a2(x), . . . satisfies

an(x) < f(n) ,

for all large enough n.

Example 1.8 (Continued fractions). The difference in the statements of Theorem 1.4 and Proposition 1.13
is simply due to the fact that during the proof of Theorem 1.4 we exploited the particular ordering of the
fundamental intervals, which gives the equality {x : m(x) ≥ f(k)} = (0, 1

f(k) ], while for the other, we
cannot suppose such an equality and we are forced to reverse a double sum and count.

Nevertheless, Proposition 1.13 does yield that the digits of classical continued fractions satisfy mn(x) <
n(log n)1+ϵ for large enough n.

Indeed, we show how to reverse f(n) = n(log n)1+ϵ asymptotically. We have

log n = log f(n)− (1 + ϵ) log log n

= log f(n)− (1 + ϵ) log(log f(n)− (1 + ϵ) log log n)

= log f(n)− (1 + ϵ) log log f(n) + log


1− (1 + ϵ)

log logn

log f(n)


,

and here log n < log f(n). Thus

f−1(a) =
a

(log a)1+ϵ
×

1− (1 + ϵ)

log log f−1(a)

log a


,

and log f−1(a) < log a implies log log f−1(a)
log a = O


log log a
log a


as a→ ∞. Given this asymptotic formula and

λLeb (ha(I)) = 1
a(a+1) , Proposition 1.13 yields that for a.e., x, ma(x) < a(log a)1+ϵ for large enough a.
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Example 1.9 (Continued logarithms). Here λLeb (ha(I)) = 1/2a+1 for a ∈ A = {0, 1, 2, . . . , }, thus
picking ϵ > 0 and f−1(a) = (2− ϵ)a we get that for almost every x ∈ I

an(x) <
log n

log(2− ϵ)
holds for all large enough n.

A more precise analysis yields that for almost every x ∈ I

an(x) < log2 n+ log2 log2 n+ (1 + ϵ) log2 log2 log2 n, holds for all large enough n.

Theorem 1.5 (Borel-Bernstein). Let f : N → R>0 be such that


n 1/f(n) = ∞. Then the inequality
mn(x) ≥ f(n) holds for infinitely many indices n.

If the variables mn(x) for n ≥ 1 were independent, this result would follow from the classical “converse”
of the Borel-Cantelli Lemma (on a probability space), which tells us that if


P(An) = ∞ and (Ai) are

mutually independent, then P

i.o.An


= 1. This is not our case however, but the same proof still holds if

an inequality such as

P(An+1 = s|A1 = s1, . . . , An = sn) ≥ CP(An+1 = s) ,

holds for some C > 0.

Thus, in order to prove this result, we rely on a lemma which tells us that the probability of finding
mk+1(x) = s, given the knowledge of m1, . . . ,mk, is always of order Θ(1/s2).

Lemma 1.1. Consider integers m1, . . . ,mk ≥ 1 and s ≥ 1. Then, the conditional probability, with respect
to the Lebesgue measure on I, of having mk+1(x) = s given that m1(x) = m1, . . . ,mk(x) = mk, which
is given by |Im1,...,mk,s|/|Im1,...,mk

|, satisfies the inequalities

1

3

1

s2
≤ |Im1,...,mk,s|

|Im1,...,mk
|
≤ 2

1

s2
. (1.44)

Proof. We remark that by from Proposition 1.3

|Im1,...,mk,s| =
hm1,...,mk

( 1
s+1)− hm1,...,mk

(1s )
 = pk(s+ 1) + pk−1

qk(s+ 1) + qk−1
− pks+ pk−1

qks+ qk−1


which by (1.13) equals

|Im1,...,mk,s| =
1

(sqk + qk−1)((s+ 1)qk + qk−1)
.

Therefore
|Im1,...,mk,s|
|Im1,...,mk

|
=

1

s2

1 +
qk−1

qk

(1 +
qk−1

sqk
)(1 + 1/s+

qk−1

sqk
)
,

hence we find
1

3

1

s2
≤ |Im1,...,mk,s|

|Im1,...,mk
|
≤ 2

1

s2
. ■

Proof. [Theorem 1.5] If we had mn(x) < f(n) for all n from N to N +M , an event which we call EN,M ,
we note that conditioning

λLeb (EN,M+1) =


s<f(n)

λLeb (mN+M+1(x) = s|EN,M )λLeb (EN,M ) .

Here we are going to apply our bounds on the conditional probability, first we write the sum in a more
convenient form

s<f(n)

λLeb (mN+M+1 = s|EN,M ) = 1−


s≥f(n)

λLeb (mN+M+1 = s|EN,M ) ,



1.3. ALMOST EVERYWHERE PROPERTIES 50

and therefore, from the bound we get


s<f(n)

λLeb (mN+M+1 = s|EN,M ) ≤ 1− 1

3


s≥f(n)

1

s2
≤ 1− 1

3

1

f(n)
,

where we have applied


s≥t 1/s
2 ≥

∞
t ds/s2 = 1/t. Thus we derive

λLeb (EN,M+1) ≤

1− 1

3

1

f(n)


λLeb (EN,M ) ≤ · · · ≤

M
k=0


1− 1

3f(n)


,

which converges to 0 as M → ∞ by the divergence of


1/f(n). Indeed, from the classical inequality
ex ≥ 1 + x for all x ∈ R we derive 1− 1

3f(n) ≤ exp(− 1
3f(n)).

Thus we have proved, as λLeb (I) = 1 < ∞ and EN,M+1 ⊂ EN,M decreases in M , that we have
λLeb (EN ) = 0 where EN :=


M≥N EN,M . Now we are done, because the probability that there ex-

ists N such that mn(x) < f(n) for all n ≥ N is λLeb (
∞
N=1EN ) = 0 . ■

Thus, the previous Theorems tell us that mN (x) is roughly N logN in the “worst-case”.

Corollary 1.7. Let ϵ > 0. For almost every x ∈ I the partial quotients mN (x) of the continued fraction
expansion of x satisfy the limits

lim
N→∞

mN (x)

N(logN)1+ϵ
= 0 ,

and

lim sup
N→∞

mN (x)

N logN
= ∞ ,

meaning that there is an increasing sequence Nk of positive integers (depending on x) such that

lim
k→∞

mNk
(x)

Nk logNk
= ∞ .

The Borel-Bernstein Theorem (divided into Theorem 1.4 and Theorem 1.5) as well as Corollary 1.7 apply
in the context of the recurrence function of Sturmian words, namely Theorem 3.4, first proved by Morse
and Hedlund in [MH40], which gives information regarding the “worst-case” for the recurrence function of
Sturmian words.

Observation 1.8. For the continued logarithms we do have a similar result, which we point out here. The
proof employs Corollary 7.1 from Chapter 7, which explains how to compute the lengths of the fundamental
intervals. The digits a1(x), a2(x), . . . of the continued logarithms satisfy, for almost every x ∈ I, that

an(x) ≥ log2 n+ log2 log n

infinitely often. As mentioned, the proof remains basically the same because |Im1,...,mk,s|
|Im1,...,mk |

is again of order

Θ(|Is|), for the fundamental intervals of this system.

Comparing with the case of continued fractions, we conclude that the digits a1(x), a2(x), . . . of the contin-
ued logarithm expansion of a real x ∈ I are almost surely an(x) ∼ log2 n+ log2 log n in the “worst-case”.
More formally, for almost every x

lim sup
n→∞

an(x)− log2 n

log2 log n
= 1 . (1.45)
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1.4 Real probabilistic framework

In Section 1.3 we studied the continued fraction expansion of almost every real number x ∈ I, namely up
to a set of measure (or probability) zero. It is worth noting that the results from Section 1.3, even though the
limits are explicit, all involve convergence rates that may vary widely according to the real number x ∈ I
that is considered (fixed). In this section we introduce what we call the “Real probabilistic framework”: here
we do not study a fixed x ∈ I anymore, but the behavior of larger sets on average or distribution.

Given a random X ∈ I with continued fraction expansion m1(X),m2(X), . . ., we stop the expansion at
a given position k and study the average properties of the resulting rational [m1(X),m2(X), . . . ,mk(X)],
which will be our random variable of interest.

Similarly, we may ask analogous questions for the continued logarithm expansion and other interval dynam-
ical systems. The main tool to perform such studies is in fact the Perron Frobenius operator, as well as a
generalization of it: the so-called transfer operator.

We recall Definition 1.7: the Perron-Frobenius operator H for an interval dynamical system of class C1 is
defined formally by the expression

H[g](x) :=

h∈H

|h′(x)|g(h(x)) ,

for an input function g that must belong to an “appropriate” functional space.

The Perron Frobenius operator describes how the densities evolve after one iteration of the corresponding
map of the system. Thus, if g is the density of the random variable X , then H[g] is the density of T (X). In
particular, we remark that g is an invariant density if and only if it satisfies H[g] ≡ g.

When we iterate the Perron Frobenius operator k times we get

Hk[g](x) :=

h∈Hk

|h′(x)|g(h(x)) ,

involving the depth k inverse branches Hk. Thus the powers of the Perron Frobenius operator follow the
evolution of the densities of the system.

Often, the Perron-Frobenius operator H has a behavior which resembles that of matrices; the iterate Hk is
determined by the so-called spectrum of H, with the dominant eigenvalues being the most determinant.

Our target properties for H are the following:

(P1) There is a unique and simple dominant eigenvalue λ = 1 for H.

(P2) There is a so-called spectral gap: the dominant eigenvalue is separated from the rest of the spectrum.

Then the iterates of H, which describe the evolution of the process, are asymptotically determined by the
corresponding projection onto the eigenspace of λ = 1 and the corresponding eigenvector ϕ, which gives
the invariant density after normalization.

Indeed, then [BV03] one has an appropriate decomposition H = P+N, where P is the projector over the
dominant eigenspace (given by P[f ](t) = ϕ(t)


I f(x)dx), and N is an operator with the same spectrum

except for λ = 1. Iterating gives Hk = P+Nk and the spectral radius of Nk tends to0 as k → ∞.

In subsection 1.4.1 we give several useful concepts and results concerning the spectrum of an operator.
Then subsection 1.4.3 introduces the concept of quasi-compactness, a property strongly related to (P2), in
particular we give sufficient conditions for the quasi-compactness. In subsection 1.4.4 we complete the
set of properties (P1) and (P2) by explaining how the spectral gap is obtained from the uniqueness of the
dominant eigenvalue and the quasi-compactness.

In 1.4.7 we describe the transfer operator, which generalizes the Perron Frobenius operator.
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In this section we follow mainly [Bal00, pp. 28–36] as well as [Kat95], and the notes in [Sar12] and [BV03].

1.4.1 Concepts from functional analysis

Let (B, ∥ · ∥B) be a Banach space, i.e., a vector space B along with a norm ∥ · ∥B which makes it complete.
We recall that an operator A : (B, ∥ · ∥B) → (B, ∥ · ∥B) is continuous if and only if it is bounded, i.e., the
set {A(v) : ∥v∥B ≤ 1} is bounded, or equivalently, there is constant C > 0 such that ∥A(v)∥B ≤ C∥v∥B.
The minimal such constant C is the norm of the operator ∥A∥, and the operator norm makes the space of
bounded operators into a normed space which further satisfies ∥AB∥ ≤ ∥A∥∥B∥.

For a bounded operator A : (B, ∥ · ∥B) → (B, ∥ · ∥B) we say, equivalently, that A acts on the Banach space.

Consider a bounded linear operator A : (B, ∥ · ∥B) → (B, ∥ · ∥B) acting on our Banach space.

Definition 1.11 (Spectrum and eigenvalues). The spectrum SP(A) of an operator A acting on a Banach
space F is the set of all complex numbers λ such that (A − λI) does not have a bounded (norm) inverse,
where I is the identity operator.

The spectral radius of A is defined by

R(A) = sup{|z| : z ∈ SP(A)} . (1.46)

We say λ ∈ SP(A) is an eigenvalue ofA if and only if (A−λI) is not injective. Equivalently, this means that
there is a non zero v ∈ B such that A(v) = λv. We then say that v ̸= 0 is an eigenvector associated with the
eigenvalue λ. The multiplicity of an eigenvalue λ is the dimension of the eigenspace {v ∈ B : A(v) = λv}.

Observation 1.9 (Perron Frobenius operator). In this example we do a formal computation with regard to
the Perron Frobenius operator. We note that if λ were an eigenvalue associated with the eigenvector g in L1,
then

H[g](x) = λg(x) .

Integrating and noting that

I H[g](x)dx =


I g(x)dx, we derive that either


I g(x)dx = 0 or λ = 1. 3

Proposition 1.14. Let (B, ∥ · ∥B) be a Banach space and let A be a bounded operator acting on B. If
∥A∥ < 1 then I−A is invertible and

(I−A)−1 = I+A+A2 + . . . , (1.47)

where the series actually converges to a bounded operator with norm at most 1/(1− ∥A∥).
Proof. Simply note that F := I+A+A2 + . . . defines a linear operator, due the completeness of B, which
is bounded because ∥Ak∥ ≤ ∥A∥k implies ∥F∥ ≤ 1/(1− ∥A∥).
Due to the continuity of A we have, point-wise

(I −A)F = F −AF = F − (A+A2 +A3 + . . .) = I ,

and similarly from the other side. ■

Corollary 1.8. Let (B, ∥ · ∥B) be a Banach space and let A be a bounded operator acting on B.

Then the following inequality holds for the spectral radius

R(A) ≤ ∥A∥ . (1.48)

Proof. Let λ be a complex number with |λ| > ∥A∥. Then we note that

∥A− λI∥ = λ
I− A

λ

 ,
and here ∥Aλ ∥ < 1, thus it follows from Proposition 1.14 that A− λI is invertible.

Since this holds for arbitrary λ ∈ C with |λ| > ∥A∥, we conclude that R(A) ≤ ∥A∥. ■
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Corollary 1.9. Let A be a bounded linear operator acting on acting on a Banach space B. The spectrum
SP(A) of A is compact.

Proof. From Proposition 1.14 we see that C \ SP(A) is open, as the proposition actually tells us that the set
of invertible bounded operators is open (with the operator norm). From Corollary 1.8 it is bounded. ■

There is a general formula connecting the spectral radius and the norm, see [Yos95, pp.209–212].

Theorem 1.6 (Spectral radius formula). Let (B, ∥ · ∥) be a Banach space and let A : B → B be a linear
bounded operator acting on it. Then we have the following spectral radius formula

R(A) = lim ∥An∥1/n . (1.49)

Notice, then, that the spectral radius tells us straight away the order of growth of ∥An∥, this is related to the
radius of convergence of power series we shall see in Proposition 2.3. In the case of matrices this is usually
known as Gelfand’s formula and, in that case, it is independent from the choice of norm.

Notation 1.2. Throughout this text we will make use of several classical norms which constitute the basis
of more complex ones. To start with, the ∥ · ∥1 (or ∥ · ∥L1 ) norm from L1(X,µ), given by the integral of the
absolute value

∥f∥1 :=

X
|f(x)|dµ(x) .

We recall that this norm makes L1 into a Banach space.

Second, the supremum norm (or uniform convergence norm) ∥·∥∞ for the continuous functions onC0(X,C),
given by

∥f∥∞ := sup
x∈X

|f(x)| .

Again, this makes C0(X,C) into a Banach space. 3

1.4.2 The spectral radius of the Perron Frobenius operator

Coming back to the Perron Frobenius operator defined in Definition 1.7, it is clear that it acts on the space
L1(I) of integrable function on I. The space L1 is complete under the norm ∥g∥1 =


I g(x)dx. Observe

I
|H[g](x)|dx ≤


I
|g(x)|dx, .

This follows from an application of the triangle inequality, which yields |H[g](x)| ≤ H[|g|](x), as well as
the fact that H preserves the integrals


H[|g|] =


|g|. It follows that ∥H∥ ≤ 1 and R(H) ≤ 1 over L1.

For the Euclidean dynamical system, we already know that x →→ 1/(1+x) is an eigenvector associated with
the eigenvalue λ = 1, hence R(H) = 1 in this case. We explain a generalization from [BDV02].

Throughout the text we will encounter several spaces other thanL1(I). Concretely, we will consider BV(I),
the subspace of functions of bounded variation (see [Fol99]), and the even smaller space C1(I) of continu-
ously differentiable functions.

Definition 1.12 (Bounded variation). The total variation of a function f : [a, b] → C from L1([a, b]) is
defined by

V b
a (f) = sup

P∈P

nP−1
i=0

|f(xi+1)− f(xi)| , (1.50)

where the supremum is taken over, P , the of all finite partitions P = (x0, x1, . . . , xnP ) of [a, b] with

a = x0 < x1 < . . . < xnP−1 < xnP = b .
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The function f is said to be of bounded variation, BV for short, on [a, b] if and only if V b
a (f) <∞. The set

of all functions of bounded variation on [a, b] is denoted by BV([a, b]).

The total variation satisfies various useful (and simple) properties

Proposition 1.15. Let f, g belong to BV([a, b]) then

1. If f ∈ C1([a, b]) we have V b
a (f) =

 b
a |f

′(x)|dx.

2. Triangle inequality: V b
a (f + g) ≤ V b

a (f) + V b
a (g).

3. Additivity: V b
a (f) = V c

a (f) + V b
c (f) if c ∈ (a, b).

4. Product rule: V b
a (fg) ≤ ∥f∥∞V b

a (g)+∥g∥∞V b
a (f). Also V b

a (fg) ≤
 b
a |f(x)g

′(x)|dx+∥g∥∞V b
a (f)

when g ∈ C1([a, b]).

5. Boundedness: ∥f∥∞ ≤ V b
a (f) +

1
b−a∥f∥1.

6. Composition: V d
c (f ◦ j) = V b

a (f) if j : [c, d] → [a, b] is a monotone bijection.

Observation 1.10. Consider a complete interval dynamical system of class C2 with |h′| ≤ ∆1 and |h′′| ≤
C|h′| for all h ∈ H. Then associated Perron Frobenius operator H acts on BV(I) under the norm

∥f∥BV := ∥f∥1 + V 1
0 (f) . (1.51)

The proof of this fact is simple enough. Indeed, if f ∈ BV(I), we have V 1
0 (H[f ]) ≤


h∈H V

1
0 (|h′|f ◦ h)

by Proposition 1.15 and for each particular h ∈ H we note

V 1
0 (|h′|f ◦ h) ≤ ∥h′∥∞VIh(f) +

 1

0
|h′′(x)f(h(x))|dx ≤ ∥h′∥∞VIh(f) + C

 1

0
|h′(x)||f(h(x))|dx ,

where Ih = h(I) is the fundamental interval associated with h. Thus it follows, summing up over all h, that

V 1
0 (H[f ]) ≤ ∆1V

1
0 (f) + C∥f∥1 .

Finally, since ∥H[f ]∥1 ≤ ∥f∥1 we get

∥H[f ]∥BV ≤ ∆1V
1
0 (f) + (1 + C)∥f∥1 , (1.52)

in particular H[f ] is of bounded variation. 3

Here is the main theorem of this subsection, which is a simplified version of [BDV02, Proposition 4].

Theorem 1.7. Consider a complete interval dynamical system of class C2 (see Definition 1.3) with inverse
branches h ∈ H. Assume further that ∆n := sup{∥h′∥∞ : h ∈ Hn} satisfies

1. (Weak expansion) The quantity ∆1 satisfies ∆1 ≤ 1.

2. (Strong expansion) There exists and integer m and a real constant γ < 1 such that ∆m ≤ γ.

3. (Bounded distortion) There exists a constant C > 0 such that |h′′(x)| ≤ C|h′(x)| for all h ∈ H and
x ∈ I.

Then the system admits an invariant density of bounded variation, in particular the spectral radius R(H) of
the Perron Frobenius operator is indeed R(H) = 1.

Proof. From (1.52) applied to the iteration of the system m times, so with Hm rather than H, we get

∥Hm[f ]∥BV ≤ γ∥f∥BV + Cm∥f∥1 ,

for some finite Cm. Note that we have a bounded distortion for h ∈ Hm too by induction (use ∆1 <∞).
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Now iterating and recalling ∥H∥1 ≤ 1 we get

∥Hm×k[f ]∥BV ≤ γk∥f∥BV +
Cm
1− γ

∥f∥1 . (1.53)

This means that the set

F := {fn =
1

n

n−1
j=0

Hm×j [1] : n ≥ 1} , 1(x) := x ,

is a bounded set for the ∥ · ∥BV norm. Thus Helly’s selection Theorem implies that a certain subsequence of
fn converges to a function f∞ of BV(I). Since the elements fn are densities, so is f∞.

Note that Hm[f∞] = f∞, and from this we derive an invariant density (note it is positive)

g :=
1

m

m−1
j=0

Hj [f∞]

for our original system. ■

1.4.3 Quasi-compactness

To be able to analyze the long term behavior of Hk as k gets larger we need to characterize the dominant
eigenvalues as well as the corresponding eigenvectors. If these are separated by a gap from the rest of the
spectrum, we will get asymptotics for Hk.

Definition 1.13 (Essential spectral radius). The essential spectral radiusRe(A) of a bounded linear operator
A acting on the Banach space (B, ∥ · ∥) is the infimum of the numbers R ≥ 0 such that for all λ ∈ SP(A)
with |λ| > R we have that λ is an isolated eigenvalue of finite multiplicity.

When Re(A) is strictly smaller than R(A), we can work with the “dominant” eigenvalues (those with
|λ| > Re(A)) like in the case of matrices. Such an operator is called a quasi-compact operator.

Definition 1.14 (Quasicompact operator). A bounded operatorA : (B, ∥ ·∥) → (B, ∥ ·∥) acting on a Banach
space (B, ∥ · ∥) is said to be quasi-compact if and only if Re(A) is strictly smaller than R(A).

The most classical example are the so-called compact operators, from where the name originates.

Definition 1.15 (Compact operator). A linear operator T : X → Y between two normed spaces is said to
be compact if the image (Txi) of any bounded sequence (xi)i ⊂ X contains a convergent subsequence.

Note that we have defined compact operators in somewhat more generality than quasi-compact operators.
This will come in handy when we state Hennion’s theorem, Theorem 1.8 below.

For compact operators we simply have Re(A) = 0, so 0 can be the only accumulation point of eigenvalues.
These conditions, for our case, are too restrictive.

It is not possible to get this spectral gap when the underlying functional space is too big (e.g., L1), thus a
huge part of the problem lies in choosing the right functional space F on which H will act (i.e., H[F ] ⊂ F)
but for which we will have an spectral gap (and so a “smaller spectrum”).

The following theorem by Hennion [Hen93, Corollaire 1] gives sufficient conditions for an operator to be
quasi-compact. His result is a reinforcement of a theorem of Ionescu Tulcea and Marinescu [ITM50], by
using a formula by Nussbaum [Nus70] for the essential spectral radius in terms of ball-coverings. He goes
on to show several examples of applications of his result. The reader is referred to the appendices of [Sar12]
for a self-contained proof of Hennion’s Theorem.

Theorem 1.8 (Hennion [Hen93]). LetA be a bounded operator acting on a Banach space (B, ∥·∥). Denote
by R(A) its spectral radius. Assume that there is a norm | · | on B such that
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1. A is a compact operator from (B, ∥ · ∥) to (B, | · |).
2. There are sequences (rn) and (ρn) of positive numbers such that r = lim inf(rn)

1/n < R(A) and for
all n ≥ 1 and v

∥Anv∥ ≤ rn∥v∥+ ρn|v| . (1.54)

Then the essential radius of A on (B, ∥ · ∥) satisfies Re(A) ≤ r < R(A), in particular A is quasi-
compact.

Note that in the previous theorem we do not ask for the space (B, | · |) to be complete, just a normed space.
The norm | · | is, in a sense, a weaker auxiliary norm.

There is an alternative formulation of Theorem 1.8 which appears in [DMDV05, Theorem C]. The hypoth-
esis are a bit stronger but easily applicable for our context.

Theorem 1.9 (See [DMDV05], theorem C). Let (B, ∥ · ∥) be a Banach space. Let A be a bounded operator
on (B, ∥ · ∥). Denote by R(A) its spectral radius. Assume that there exists another norm | · | on B, also
making it a Banach space, which satisfies the following properties

1. The closed unit ball of (B, ∥ · ∥) is compact in (B, | · |).
2. There are sequences (rn) and (ρn) of positive numbers such that r = lim inf(rn)

1/n < R(A) and,
for all n ≥ 1, the following inequality

∥Anv∥ ≤ rn∥v∥+ ρn|v| (Lasota-Yorke)

known as a Lasota-Yorke inequality, is fulfilled.

Then the essential radius of A on (B, ∥ · ∥) satisfies Re(A) ≤ r < R(A), in particular the operator
A is quasi-compact.

Proof. We explain how this version derives from Theorem 1.8. In order to do this we must show condition
(1) from Theorem 1.8, in other words, show that if (xn) is a bounded sequence in (B, ∥ · ∥), then there is
a subsequence (xnj )j that makes (Txnj )j converge under the | · | norm. We may assume without loss of
generality that ∥xn∥ ≤ 1 for all n.

Since the open ball from (B, ∥ · ∥) is compact under | · |, we know there is a subsequence (xmk
) of (xn) such

that |xmk
| converges, in particular it is bounded. From (2) we derive the inequality ∥Av∥ ≤ r1∥v∥ + ρ1|v|

which tells us that ∥Axmk
∥ is bounded, hence by our hypothesis (1) it has a convergence subsequence under

| · |, thus showing the result. ■

Observation 1.11. We remark that property (2) in Theorem 1.9 can somewhat be relaxed. Indeed, assume
that the Lasota-Yorke inequality from property (2) is satisfied for some s ≥ 1 with r1/ss < R(A). Then by
induction (note ∥Ak∥ ≤ ∥A∥k for all k) we get that

∥Ansv∥ ≤ rns ∥v∥+ ks|v| ,

for some constants ks ≥ 0 and all v ∈ B. Thus we derive a similar inequality for a number of iterations that
is not a multiple of s. Indeed, if 0 ≤ t < s, from ∥Ans+tv∥ ≤ ∥A∥t∥Ansv∥ we get

∥Ans+tv∥ ≤ max{1, ∥A∥, . . . , ∥A∥s−1} × (rns ∥v∥+ ks|v|) ,

from which we may apply Theorem 1.9 and get that Re(A) ≤ r
1/s
s < R(A). 3

Theorem 1.10. Consider an complete interval dynamical system of class C2 (see Definition 1.3) with inverse
branches h ∈ H. Assume further that ∆n := sup{∥h′∥∞ : h ∈ Hn} satisfies

1. (Weak expansion) The quantity ∆1 satisfies ∆1 ≤ 1.

2. (Strong expansion) There exists and integer m and a real constant γ < 1 such that ∆m ≤ γ.
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3. (Bounded distortion) There exists a constant C > 0 such that |h′′(x)| ≤ C|h′(x)| for all h ∈ H and
x ∈ I.

Then the associated Perron Frobenius operator H acting on BV(I) is quasi-compact with Re(H) ≤ γ1/m.

Proof. Use the ideas from Observation 1.11 and (1.53) along with the weak norm ∥ · ∥1 and the strong
norm ∥ · ∥BV. The only thing we have to prove is that the closed unit ball of (BV(I), ∥ · ∥BV) is compact on
(L1(I), ∥ · ∥1) but this follows at once from Helly’s selection Theorem. ■

Example 1.10 (Continued fractions on C1). Let us go back to the Euclidean dynamical system with the
Gauss map Tg. We recall that here the Perron Frobenius operator H is given by

H[g](x) :=

h∈H

|h′(x)|g(h(x)) =
∞
m=1

1

(m+ x)2
g


1

m+ x


,

we will show that, over an appropriate space, this operator is quasi-compact.

Of course, this operator acts on L1(I) and has R(H) = 1, having an eigenvalue λ = 1 associated with the
eigenvector x →→ 1/(1+x), corresponding to the Gauss measure. We will show that for a well-chosen space
our operator is quasi-compact by applying Hennion’s Theorem in the form of Observation 1.11.

We will work with the set of continuously differentiable functions C1(I). First, it is clear that H actually
acts on this space because the sum defining it converges uniformly and so do the sums of the term-wise
derivatives, for any fixed order.

Consider first the norm | · | defined by |g| = supx∈I |g(x)|, and the stronger norm ∥ · ∥ defined by ∥g∥ =
|g|+ |g′|. The norm ∥ · ∥ makes B a Banach space. This follows from the fact that the uniform convergence
(i.e., in the sup norm) of continuous functions gives a continuous function (see e.g., [Mun00] or [Fol99]).
This means at once that (B, | · |) is a Banach space, but the same holds for (B, ∥ · ∥) just by showing that
if the derivatives converge uniformly to a continuous function this must also be the derivative of the limit
function of the functions themselves (upon integration).

The operator H is a bounded one on (B, ∥ · ∥). Indeed observe that the derivative of H[g] is

(H[g])′(x) = −
∞
m=1

1

(m+ x)3


1

m+ x
g′


1

m+ x


+ 2g


1

m+ x


,

as follows from the uniform convergence of the previous sum. Then |(H[g])′| ≤ 2ζ(3)∥g∥, while it is clear
that |H[g]| ≤ ζ(2)∥g∥, thus, as ∥H[g]∥ = |H[g]|+ |(H[g])′|, it follows that the H is a bounded operator.

Now we turn to property (1) of Theorem 1.9. In fact, this property follows at once in this case from the
celebrated Arzelà-Ascoli Theoremb (see e.g., [Mun00]).

For property (2) of Theorem 1.9 we study what happens with each particular term H(m1,m2)[g](x) :=
|h′m1,m2

(x)|g(hm1,m2(x)) for each m1,m2 ≥ 1. Differentiating H(m1,m2)[g]
′
(x)
 ≤ |h′m1,m2

(x)|2|g′(hm1,m2(x))|+ |h′′m1,m2
(x)||h′m1,m2

(x)||g(hm1,m2(x))| .

Notice that |h′′m1
(x)| ≤ 2|h′m1

(x)|, thus there exists a constantC > 0 such that |h′′m1,m2
(x)| ≤ C|h′m1,m2

(x)|.
Then observe that |h′m1,m2

(x)| ≤ 1/4 =: γ, thus H(m1,m2)[g]
′
(x)
 ≤ γ|h′m1,m2

(x)||g′(hm1,m2(x))|+ C|h′m1,m2
(x)||g(hm1,m2(x))| .

Similarly for any k ≥ 1 H(m1,m2,...,m2k−1,m2k)[g]
′
(x)
 ≤ γk|h′(x)||g′(h(x))|+ C|h′(x)||g(hm1,m2(x))| ,

bThe only non-trivial part is the equicontinuity, and this in turn follows from the Mean Value Theorem for derivatives.
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where h = h(m1,m2,...,m2k−1,m2k). Notice that ∥h′∥∞ ≤ 1 for h ∈ H implies


h∈H2k |h′(x)| ≤


h∈H |h′(x)|,
which is uniformly bounded in our case.

From this we derive H2k[g]
 ≤ D1γ

k∥g∥+D0|g| ,

for some constants D0, D1 (independent from the choice of g) and all g ∈ C1(I). It then follows from
Observation 1.11 that Re(H) ≤ γ1/2 = 1/2. 3

The previous proof works for all complete interval dynamical systems as long as we add the condition that
the image of the constant function 1(x) = 1 through H, that is H[1], be well-defined.

Proposition 1.16. Consider an complete interval dynamical system of class C2 (see Definition 1.3) with
inverse branches h ∈ H. Assume further that ∆n := sup{∥h′∥∞ : h ∈ Hn} satisfies

1. (Weak expansion) The quantity ∆1 satisfies ∆1 ≤ 1.

2. (Strong expansion) There exists an integer m and a real constant γ < 1 such that ∆m ≤ γ.

3. (Fast decay of the branches) The series


h∈H |h′(x)| is uniformly bounded by a constant D1.

4. (Bounded distortion) There is a constant C > 0 such that |h′′(x)| ≤ C|h′(x)| for all h ∈ H and
x ∈ I.

Then the associated Perron Frobenius operator H acting on C1(I) is quasi-compact with Re(H) ≤ γ1/m.
Furthermore, the iterate Hm satisfies a Lasota-Yorke bound of the kindHm×k[f ]


1
≤ D1 γ

k
f 

1
+D0

f 
0
, (1.55)

for some D0 independent from f and k.

1.4.4 Spectral gap

Given a quasi-compact operator A, we know that its spectrum, out of some finite ball around the origin, is
discrete and consists of eigenvalues of finite multiplicity. When there is just one dominant eigenvalue λmax,
with multiplicity 1, the quasi-compactness tells us that there is a “gap’; there is a constant 0 < C < |λmax|
such that all other elements λ from the spectrum SP(A) satisfy |λ| < C.

When our operatorA presents such a spectral gap, we may rewrite [Kat95, Sar12] our operatorA as the sum
A = λmaxP + N , where P is a projection (i.e. it satisfies P 2 = P ) with dim Im(P ) = 1, and a bounded
linear operator N such that PN = NP = 0, with spectral radius R(N) < C.

Thus iterating we get Ak = λkmaxP +Nk and we recall that ∥Nk∥1/k → R(N) by Theorem 1.6, hence

Ak(v) = λkmaxP (v) +O(∥v∥ × Ck) .

In the case of a Hilbert space, i.e., when our Banach space is associated with an inner product ⟨·, ·⟩, it is
not difficult to define a projection P onto a space of finite dimension. Here, however, we deal with Banach
spaces with, a priori, no inner-product. This is why we must explain the notion of projection in this context,
making the connection with the spectrum.

Theorem 1.11 (Separation of spectrum [Sar12]). Let A be a bounded operator acting on a Banach space
(B, ∥ · ∥). Suppose SP(A) = Σin ⊎ Σout where Σin, Σout are compact, and let γ be a smooth closed curve
which does not intersect SP(A), and which contains Σin in its interior, and Σout in its exterior. Then

1. The operator

P :=
1

2πi


γ
(zI−A)−1dz

is a projection P 2 = P , and so B = ker(P)⊕ Im(P),
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Re(A)

gap

λmax

Figure 1.5: An illustration of the spectral gap.

2. The projection commutes with A, i.e., PA = AP. Therefore

A(ker(P)) ⊂ ker(P), and A(Im(P)) ⊂ Im(P) .

3. The spectrum of the projection P is related to that of A by the equalities

SP(A

Im(P)

) = Σin, and SP(A

ker(P)

) = Σout .

Of course, what we intend to do is to show that the Perron-Frobenius operator H has a unique dominant
eigenvalue λmax = 1 of multiplicity one. This, together with the quasi-compactness will lead to the decom-
position A = P+N where P[f ](x) = φ(x)


I f(t)dt where φ is the invariant density.

1.4.5 Eigenvalues and the ergodic properties of the Perron Frobenius operator

Actually there are some deep relations between the eigenvalues of the Perron Frobenius operator H of an
interval dynamical system and the ergodic properties of the system.

Definition 1.16 (Mixing). Let (Ω,B, µ) be a probability space and let T : Ω → Ω be an ergodic measure-
preserving transformation. We say that the map T is mixing if and only if for every pair of measurable sets
A,B ∈ B we have

lim
n→∞

µ

A ∩ T−nB


= µ(A)µ(B) .

Remark. Mixing is also sometimes called strong-mixing in order to contrast it with weak-mixing. We have
weak-mixing when the means converge

lim
n→∞

1

N

N−1
n=0

µ

A ∩ T−nB


= µ(A)µ(B) .

Clearly mixing implies weak-mixing. Note, in turn, that weak-mixing implies ergodicity

We now cite [Sar12]

Proposition 1.17. Consider a complete interval dynamical system of class C1 with shift T . Let (L, ∥ · ∥) be
a Banach space with L ⊂ L1(I) and ∥ · ∥L ≥ ∥ · ∥L1 .

Suppose the Perron Frobenius operator H acts on L and is quasi-compact. If there is an invariant density
φ for T , which makes T mixing for the measure defined by µ(A) :=


A φ(x)dx, then H presents a spectral

gap on L with dominant eigenvalue λ = 1 and projection

P (f) = φ


I
f(x)dx .
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It turns out that there are converses for H acting on C1(I) (see e.g., [Sar12] or [BV03]):

(i) if λ = 1 is a simple eigenvalue, the map T is ergodic.

(ii) λ = 1 is the only eigenvalue on {|λ| = 1} (moreover simple) if and only if the system is
mixing.

We underline for (ii) that there is the underlying assumption that H acts on C1(I). When we have the
weaker assumption that H acts on L1(I), it turns out that [Sar12] having λ = 1 as a simple eigenvalue, and
all other eigenvalues of smaller absolute value, implies that the system is weak-mixing.

For the case of the Euclidean dynamical system, proving that the system is mixing is not immediate. A
useful tool to prove mixing is the so-called exactness.

Definition 1.17 (Exactness). Let (Ω,Σ, µ) be a probability space. A measurable map T is said to be exact
if for every E ∈

∞
n=0 T

−n(Σ), either µ(E) = 0 or µ(Ω \ E) = 0.

Proposition 1.18. An exact probability preserving map is mixing.

The proof of this proposition can be found in [Sar12, Appendix A.2] and makes use of the Martingale
convergence theorem. Proving that a map is exact is simpler than proving it is mixing directly.

Example 1.11 (Exactness of the Gauss map). Suppose E satisfies E ∈

n T

−n(BI) and µg(E) > 0. We
must show that µg(I \ E) = 0.

Recall that during the proof of Theorem 1.2 we proved (1.33), i.e., that for any measurable A and funda-
mental interval Im1,...,mk

we have

µg((T
−kA) ∩ Im1,...,mk

) ≥ C−1µg(A)µg(Im1,...,mk
)

for a certain constant C > 0 independent from the choice of A and the interval. We note that if E ∈
∩nT−nT−n(BI) we have E = T−nEn for a certain En ∈ BI . Then it follows, picking k = n and A = En
that

µg(E ∩ Im1,...,mk
) ≥ C−1µg(En)µg(Im1,...,mk

)

But µg(En) = Tg(T
−nEn) = µg(E), thus

µg(E ∩ Im1,...,mk
) ≥ C−1µg(E)µg(Im1,...,mk

). (1.56)

The rest of the corresponding proof in [Sar12] proceeds by the Martingale convergence theorem. We may,
however, produce a direct argument, which we give here. The argument is a bit technical but not compli-
cated, and typical of measure theory. The concept is the following: we may approximate any measurable set
by a disjoint countable union of fundamental intervals.

As the Gauss measure is clearly regular [Fol99], for every ϵ > 0 there would be an open set Oϵ containing
I \E such that µg(Oϵ) ≤ µg(I \E) + ϵ. The open set Oϵ can be produced as a countable disjoint union of
fundamental intervals Ia1,...,ak of different depths. For every such interval we have (1.56), thus, summing
over these intervals we obtain

µg(E ∩Oϵ) ≥ C−1µg(E)µg(Oϵ) ,

but µg(E ∩Oϵ) ≤ µg(E ∩ (I \ E)) + ϵ = ϵ and µg(Oϵ) ≥ µg(I \ E), hence

ϵ ≥ C−1µg(E)µg(I \ E) .

As ϵ > 0 was arbitrary we derive µg(E)µg(I \ E) = 0, and therefore µg(I \ E) = 0. 3

We note that the previous proof generalizes exactly as mentioned in Observation 1.5, giving

Proposition 1.19. Consider a complete interval dynamical system of class C1 with map T , and an invariant
density g ∈ C0(I) with respect to the Lebesgue measure λLeb. Suppose
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(i) the map T k is expanding for some k ∈ N, i.e., suph∈Hk ∥h′(x)∥∞ < 1 for some k.

(ii) there is a distortion constant C > 0 such that |h′(y)|/|h′(x)| ≤ C for all x, y ∈ I and inverse
branches h ∈ H∗ of any depth.

Then the map T is exact with respect to the invariant measure dµ(x) = g(x)dλLeb(x).

This means, in particular, that the CL system is exact, and therefore mixing.

We conclude this subsection by stating the resulting theorem for the spectrum. This is a combination of
Proposition 1.19, Theorem 1.7 and Proposition 1.17

Theorem 1.12. Consider a complete interval dynamical system of class C1 (see Definition 1.3) with inverse
branches h ∈ H. Assume further that ∆n := sup{∥h′∥∞ : h ∈ Hn} satisfies

1. (Weak expansion) The quantity ∆1 satisfies ∆1 ≤ 1.

2. (Strong expansion) There exists and integer m and a real constant γ < 1 such that ∆m ≤ γ.

3. (Bounded distortion) There exists a constant C > 0 such that |h′′(x)| ≤ C|h′(x)| for all h ∈ H and
x ∈ I.

Then the Perron Frobenius operator H, acting on the space (BV, ∥ · ∥BV) admits a spectral gap, with 1 as a
the simple dominant eigenvalue, associated with the unique invariant density φ of the system (there is one).

The iterates Hk of the Perron Frobenius operator decomposes as

Hk[f ](x) =


I
f(t)dt


φ(x) +O


∥f∥BVθ

k

,

for some θ < 1, which depends on the subdominant eigenvalues.

Observation 1.12. It is also possible to substitute BV by C1(I) when the invariant density is continuous
and the series


h∈H |h′(x)| is uniformly bounded.

Why choose BV or C1(I). When the branches of the dynamical system are not complete, the Perron-
Frobenius operator involves characteristic functions which naturally lead to BV rather than C1(I). For
our case, however, the branches will always be complete and hence we may choose either one depending
on the target application. When the input functions are naturally discontinuous as in Chapter 5, we pick
BV(I). For the case of the CL system in Chapter 7 however, we will prefer C1(I) as we will also require
some analytical properties of the transfer operator (to apply analytical perturbation, see subsection 1.4.7)
associated with the system.

1.4.6 An application of the spectral decomposition to the values of the digits

In this subsection we will study the digits mk(X) of the continued fraction expansion of a random number
X ∈ I from our “real probabilistic framework” perspective. The random number X is drawn uniformly at
random from the unit interval and we study the distribution of mk and the expected values E[f(mk)].

These results were already noted by Kuzmin, who demonstrated the convergence of the iterates of the
Perron-Frobenius operator of the Gauss map in a more direct fashion. His proof can be found in [Khi97].
Here we apply our results from the section.

Distribution. We remark that

mk(X) = m⇐⇒ T k(X) ∈
 1

m+ 1
,
1

m


,
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and this means that

P (mk(X) = m) =

 1/m

1/(m+1)
Hk[1](x)dx ,

where 1(x) = 1 is the initial uniform density.

As we know that the dynamic system associated with the Gauss map satisfies the hypothesis of Theo-
rem 1.12, we get that Hk[1](x) = 1

log 2
1

1+x +O(θk) for some θ < 1. Integrating

P (mk(X) = m) =
1

log(2)

 1/m

1/(m+1)

dx

1 + x
+O


θk/m2


, (1.57)

which gives the exact same distribution from (1.35) but on a different model!

We remark that these results are independent from the choice of the initial density in BV(I).

Expected values. For the expected values, from (1.57), we deduce that whenever S :=


|f(m)|/m <∞
we have

E[f(mk)] =
1

log 2

∞
m=1

f(m) log


1 + 1/m

1 + 1/(m+ 1)


+O(S × θk) . (1.58)

The expected values E[f(mk)] may be produced by using the Perron-Frobenius operator in the lines of the
ideas exploited in Chapter 5. This is due to the fact that mk(X) = ⌊qk(X)/qk−1(X)⌋ where ⌊·⌋ denotes
the integer part. Then the expected value E[f(mk)] can be written as Hk[g](0) directly, for an appropriate g
which equals

g(x) =
1

1 + x
f


1
x


.

With such an analysis it is possible to get slightly better error terms, and hence be able to assert the value
of E[f(mk)] for a larger class of f . We will not get into details here, for more on this topic, the reader is
referred to Chapter 5.

Final comments. It is also worthwhile to mention that, for the case of the Euclidean dynamical system,
the value of the subdominant spectral radius (when we take out the dominant eigenvalue) is known [IK02]
to be φ2 where φ =

√
5−1
2

.
= 0.61803 . . .. This means that we may pick θ = φ2 + ϵ for any ϵ > 0.

1.4.7 The transfer operator

The transfer operator is an extension of the Perron Frobenius operator by adding a complex parameter s. We
then obtain the transfer operator Hs defined by

Hs[f ](x) :=

h∈H

|h′(x)|sf(h(x)) . (1.59)

This parameter help us express (Dirichlet) generating functions for our parameters of interest in relation to
the dynamical system.

Of course, we consider too the k-th iterate of the transfer operator, which again describes the depth k
branches of the dynamical system, given by

Hk
s [f ](x) =


h∈Hk

|h′(x)|sf(h(x)) . (1.60)

When we consider all of the inverse branches we get the so-called quasi-inverse of the transfer operator:

(I−Hs)
−1 := I+H1

s +H2
s + . . . . (1.61)
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Spectral decomposition. It turns out that, when the Perron Frobenius operator H = H1 presents a spectral
gap, the transfer operator inherits the spectral gap locally around s = 1 by what is called analytic perturba-
tion. This is possible when the operator depends analytically on the variable s (see [Sar12]), meaning that
the derivative operator is also part of the functional space.

Thus we have a decomposition as before

Hs = λ(s)Ps +Ns ,

where again Ps is the projection onto the eigenspace of λ(s), the dominant eigenvalue. It follows then that
for k ≥ 1

Hk
s = (λ(s))kPs +Nk

s ,

Note then that, if we can ensure that |λ(s)| < 1 for s ̸= 1, as well asR(Ns) < C < λ(s) for a fixed constant
C, for all s close enough to s = 1, the quasi-inverse satisfies

(I−Hs)
−1 := I+

λ(s)

1− λ(s)
Ps +

Ns

I−Ns
. (1.62)

Suppose, as will be the case for us, that the dominant eigenvalue for s = 1 is λ(1) = 1. The dependence of
λ(s) and Ns on s is analytic for s sufficiently close to 1 by principles of perturbation theory, hence we have
the estimate

(I−Hs)
−1 ∼ − 1

λ′(1)

1

s− 1
P , (1.63)

as s→ 1.

The approximation in (1.63) is key to apply the Tauberian Theorem (see Theorem 2.3 and the generalization
in [Ten15]) and extract asymptotics for the Dirichlet Generating Functions expressed in terms of the quasi-
inverse. The process of using the transfer operator, in particular the quasi-inverse, to produce generating
functions related to the system is known as Dynamical Analysis. The concepts of generating functions, as
well as the need for Dynamical Analysis, are explained in Chapter 2.

The transfer operator and the entropy. The reader may wonder what the curious λ′(1) in (1.63) is. The
answer is that actually −λ′(1) gives the entropy (recall subsection 1.2.7) of the system.

We explain this briefly. It is clear that if

Hk = −

h∈Hk

 1

0

h′(x) dx log

 1

0

h′(y) dy ,

then the entropy H is given by

H = − lim
k→∞

1

k
Hk .

Let us write first

Hk = −
 1

0


h∈Hk

h′(x) log 1

0

h′(y) dy
 dx .

If there is bounded distortion, there is a constant C such that C−1|h′(x)| ≤ |h′(y)| ≤ C|h′(x)| for all x, y
and h ∈ H⋆. As a consequence, applying the bounds for h′(y) we get

Hk = −
 1

0


h∈Hk

h′(x) log h′(x)
 dx+O(1) ,
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where the constant in O(1) depends only on C and not on k.

Observe that, if we have a spectral gap by analytic perturbation and invariant density φ, then
h∈Hk

h′(x) log h′(x) = ∂

∂s
Hk
s [1](x) ∼ kλ′(1)P[1](x) = kλ′(1)φ(x) ,

thus the Entropy follows upon integration.

The entropy of a complete interval dynamical system with expanding map may be computed through a
classical formula, known as Rokhlin’s entropy formula [PY98, pp.133-134].

Proposition 1.20 (Rokhlin’s entropy formula). Consider a complete interval dynamical system with ex-
panding map T . Then the entropy of the dynamical system is given by

H =

 1

0
log |T ′(x)|φ(x)dx ,

where φ is the unique invariant density of the system.

Example 1.12. We compute again that the entropy for the Euclidean system (see Example 1.5), associated
with the Gauss map Tg(x) = {1/x}, but using Rokhlin’s formula. Notice that the branches of Tg all have
derivative −1/x2, hence

H = − 2

log 2

 1

0

log x

1 + x
dx ,

as we recall that the invariant density φ(x) is the Gauss density φ(x) = 1
log 2

1
1+x .

Here we write 1
1+x = 1− x+ x2 ∓ . . . (−1)k−1xk−1 + (−x)k

1+x so that

H = − 2

log 2

k−1
j=0

(−1)j+1

 1

0
xj(log x)dx− 2(−1)k

 1

0
xk

log x

1 + x
dx .

Here by parts
 1
0 x

j(log x)dx = − 1
(j+1)2

while it is clear that
 1
0 x

k log x
1+x dx tends to 0 as k → ∞ by

dominated convergence. Thus

H =
2

log 2

∞
j=1

(−1)j+1

j2
=

π2

6 log 2
.⋄

The transfer operator in this dissertation. The quasi-inverse will play a key role in Chapter 7 where
we will study the algorithm associated with the CL expansion. In order to do this we will actually need
to consider all possible truncated expansions of the Continued Logarithm expansion. The k-th iterates of
the plain Perron Frobenius operator will play a fundamental role in Chapter 5, where we will work with
continued fractions of fixed depth. Finally in Chapter 4 we have a novel selection criteria for the branches
from H⋆ which, however, cannot be directly written in terms of the operator (see Chapter 6 for the relation
between the two models).

1.5 Continued fractions: Rationals and quadratics irrationals

Among the various subfamilies of real numbers we may consider, two of them stand out: the rationals
and the quadratic irrationals. In this section we will cite the corresponding results for each, explaining the
models and the corresponding sizes but we do not offer proofs.
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Rational numbers correspond to finite continued fraction expansions. First, these are precisely the executions
of the Euclidean algorithm over the positive integers, so their study takes on great importance. Second, we
may naturally wonder how the properties of a finite expansion actually turn into the properties of the reals.

Quadratic irrationals are the irrational numbers α which are the root of a degree-two polynomial over the
integers. Due to a famous theorem of Lagrange (see [Fog02, pp.183-184] or [Ten15, pp.156-158]), quadratic
irrationals α ∈ I correspond exactly to continued fraction expansions which are ultimately periodic, mean-
ing of the form

α = [m1,m2, . . . ,mk,mk+1, . . . ,mk+p,mk+1, . . . ,mk+p, . . .] ,

which we denote by [m1,m2, . . . ,mk,mk+1, . . . ,mk+p]. Thus we may also wonder things such as how do
the quadratic irrationals transition to reals as we allow larger and larger periods.

Most importantly, quadratic irrationals naturally turn up in Combinatorics on Words (see [All98], [Lot02,
Section 2.3.6]) as fixed points of morphisms, such as the one described in Example 3.2. It is not all quadratic
irrationals however, but just the ones called Sturm numbers, which have a continued fraction expansion of
one of the following forms:

• α = [1,m0,m1, . . . ,mp] with mp ≥ m0,

• α = [1 +m0,m1, . . . ,mp] with mp ≥ m0.

1.5.1 Probabilistic model for rational numbers

If we restrict ourselves to the set of rational numbers from the interval I, we may take sets corresponding to
fractions with bounded denominators

ΩN := {a/b : 1 ≤ a ≤ b ≤ N} ,

which are finite sets, and draw elements from ΩN uniformly at random. Observe that |ΩN | = φ(1) + . . .+
φ(N) where φ is Euler’s totient function φ(n) := #{a : 1 ≤ a ≤ n , gcd(a, n) = 1}.

On this probabilistic model parametrized on N , it is natural to consider probabilities and expected values,
which we denote by PN and EN respectively for this section.

We remark that studying rational trajectories corresponds to the study of the Euclidean algorithm. Indeed,
ΩN corresponds exactly to all pairs of coprime integers (a, b) with 1 ≤ a ≤ b ≤ N . As such, these average
properties have been studied extensively over the years, due to the crucial importance of the algorithm.

1.5.2 Asymptotic probabilistic properties of digits for rational numbers

A function f is of moderate growth if and only if f(m) = O(logm). We are interested in the cumulative
function F over the continued fraction development of a rational x = a/b, defined by

F (x) = f(m1) + . . .+ f(mk) ,

where a/b = [m1, . . . ,mk] and mk > 1.

Theorem 1.13 (Simplified Theorem 4 from [Val06]). The expectation EN [F ] of the cumulative function F
on the set of rationals with denominator bounded by N is asymptotically ,

EN [F ] ∼
12 log 2

π2
µ(f) logN , EN [F k] ∼ (EN [F ])k ,

where µ(f) = 1
log 2

∞
m=1 f(m) log


1+1/m

1+1/(m+1)


.

The standard deviation is o(logN), and, consequently, the random variable expressing the cumulative sum
F is concentrated around its mean.
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By concentration: the normalized random variable F/EN [F ] tends to 1 in probability as N → ∞. The
reader is referred to [FS09, Proposition III.3, p.162] for the corresponding concentration result.

We remark highlight the case f ≡ 1, which gives the average run-time of the Euclidean algorithm. The
conclusion is that the average number of steps K over ΩN is ∼ 12 log 2

π2 logN .

In turn, this means that if we normalized the expected values by the average number of steps we would get

EN [F ]
EN [K]

∼ µ(f) ,

which coincides with the behavior from the “real probabilistic model”, see (1.58).

1.5.3 Probabilistic model for quadratics irrationals

Quadratic irrationals are, of course, countable, yet we need an analogue notion of size, like the denominator
of a rational number. In what follows we will begin by studying those that have a purely periodic continued
fraction expansion for simplicity, only afterwards to delve into the ones that do have a preperiod. In [CV17]
the quadratic irrationals that have a purely periodic expansion are said to be reduced, and we write rqi in
shorthand to mean reduced quadratic irrational.

It is important to notice that given a period (m1, . . . ,mp) for our continued fraction expansion, the repeti-
tion (m1, . . . ,mp,m1, . . . ,mp) is another possible period, and so on. Thus, when working with quadratic
irrationals we must be careful to consider the so-called “primitive” periods. A period is primitive if and only
if it is not the repetition of a smaller one.

The size of a quadratic irrational

Let us now introduce the norm. Consider a primitive period m ∈ Nk, its associated rqi x∗m is the root
of hm(X) = X with x∗m ∈ I. The equation hm(X) = X clearly translates into the zero of a quadratic
polynomial AX2 +BX +C = 0 with (A,B,C) relatively prime integers. Then the size ϵ(x∗m) > 1 of x∗m
is going to be the fundamental unit of the quadratic field Q(

√
∆), where ∆ = B2 − 4AC.

The size function ϵ may be natural from a number-theoretical point of view, but there is another related
notion of size υ which relates naturally to the periodicity of the continued fraction expansion. This notion
of size may be defined by

υ(x) :=

p(x)−1
i=0

T i(x) = |h′(x)|1/2 , (1.64)

where p(x) denotes the period of the continued fraction expansion of x, and h is the LFT associated with x.

In what follows, given a tuple m = (m1, . . . ,mk), mR = (mk,mk−1, . . . ,m1) denotes its mirror. Given
two tuples m ∈ Nk and u ∈ N j we denote by m · u their concatenation m · u := (m1, . . . ,mk, u1, . . . , uj).
Also we will write mℓ to denote the repetition ℓ times of m, i.e., mℓ := m ·m. . . ·m  

ℓ times

.

We now explain why υ is a natural notion of size for a quadratic irrational.

Proposition 1.21. Let u ∈ Nj and w ∈ Nk then the continuant function satisfies

lim
ℓ→∞

q(wℓ)

q(wℓ · u)
=
h′uR x∗wR

1/2 , (1.65)

in particular, picking u = w produces

lim
ℓ→∞

q(wℓ)

q(wℓ+1)
=
h′wR


x∗wR

1/2 = υ(x∗w) . (1.66)
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The classical notion of size ϵ for a reduced quadratic irrational is then defined by

ϵ(x) = υ(x)−r(x), with r(x) = 1 for even p(x), and r(x) = 2 for odd p(x). (1.67)

Now given the size ϵ we define

K := {x ∈ I : x is a rqi} , KN := {x ∈ K : ϵ(x) ≤ N} .

We remark hat KN is clearly a finite set. Indeed, we need only show that there is a finite number of rqi’s x
with υ(x)−1 ≤ N . In turn, to prove this, note that υ(x) = (qp(x)(x) + x qp(x)−1(x))

−1 and hence we must
have qp(x) ≤ N which trivially implies that the quotients mk(x) and the period p(x) are bounded.

Fixed N we choose a quadratic irrational uniformly at random from JN . On this probabilistic model it is
again natural to consider probabilities and expected values, which we denote by PN and EN respectively.

Asymptotic probabilistic properties of digits for quadratics irrational

Here we follow [CV17], stating a simplified version of their main results for reduced quadratic irrationals.

Again, in this context, we consider a function f of moderate growth (i.e., f(m) = O(logm)). We are
interested in the cumulative function F over the period of a rqi x, defined by

F (x) := f(m1(x)) + . . .+ f(mp(x)(x)) .

Simple examples are f ≡ 1, and f(m) = logm, which are related, respectively, to the length of the minimal
period and the cost of storing the quotients of x.

Theorem 1.14 (Simplified Theorem 1 from [CV17]). Consider the set K of reduced quadratic irrationals
x, endowed with the size ϵ. Given a function f of moderate growth, we consider its cumulative sum F on
the subset K. Then the following holds on the set KN of reduced quadratic irrationals x with ϵ(x) ≤ N for
N → ∞:

(i) The expectation satisfies
EN [F ] ∼ µ(f) logN ,

as N → ∞, where µ(f) = 1
log 2

∞
m=1 f(m) log


1+1/m

1+1/(m+1)


(ii) There is also a constant ν(f) such that the variance satisfies

VN [F ] ∼ ν(f) logN ,

as N → ∞.

(iii) Moreover, the distribution of F is asymptotically Gaussian,

PN


x :

C(x)− µ(f) logN
ν(c) logN

≤ t


=

1√
2π

 t

−∞
e−u

2/2du+O


1√
N


.

We remark that the expected length of the minimal period p(x) over KN is exactly logN (note that µ(1) is
telescopic). It follows then that

EN [F ]
EN [p]

∼ 1

log 2

∞
m=1

f(m) log


1 + 1/m

1 + 1/(m+ 1)


,

which coincides with the behavior from the “real probabilistic model”, see (1.58).

As for part (iii), there is also a similar result for the “real probabilistic model” [Val06, Theorem 7], but the
variance may differ.
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CHAPTER 2

CONCEPTS FROM ANALYTIC
COMBINATORICS

In this chapter we introduce key tools for the probabilistic analysis of algorithms and data structures: gener-
ating functions. We give a fast and slightly informal overview of the principles of Analytic Combinatorics.
We deal, more specifically, with Dirichlet generating functions and Tauberian theorems, which we use ex-
tensively in this dissertation. In the context of dynamical systems, these generating functions are naturally
written in terms of transfer operators (see section 1.4.7), giving rise to the so-called Dynamical Analysis.

Generating functions encode sequences in a convenient way. Citing Herbert Wilf “A generating function
is a clothesline on which we hang up a sequence of numbers for display.” ([Wil06]). Given a sequence,
we consider a formal series (classically a power series from C[[z]]) encoding the terms as coefficients of the
series. Then operations between generating functions relate to sequences built up from the original ones.
This last property is fundamental and forms the basis of the symbolic part of Analytic Combinatorics.

Analytic Combinatorics, detailed extensively in [FS09], gives a systematic way to study combinatorial ob-
jects which can be constructed by combining simple building blocks by following a set of finite rules. These
objects should have an appropriate notion of size, which is strongly linked to the choice of the generating
function type (we mention here 3 types here!). This diversity stems from the fact that generating functions
encode the counting sequence of the family of objects according to their size, and different generating func-
tions produce quite different kinds of convolutions (Proposition 2.1,Proposition 2.2,Proposition 2.7), which
tell us how many object of a given size are produced when we apply the “product” rule. We introduce these
notions in subsection 2.1.1.

At this stage, generating functions are purely formal (algebraic) objects. It is then, interpreting them as
functions of a complex variable, that their power fully comes to light. It turns out that the singularities of
the generating functions (now really seen as functions!), through their nature, determine the asymptotics of
the coefficients. Thus we have two steps in the analysis: a symbolic step and an analytic one. The analytic
step for classical generating functions (ordinary and exponential) is briefly discussed in subsection 2.1.3.

Numerous data structures and algorithms can be studied through the principles of Analytic Combinatorics.
This is not always direct; our set of construction rules (in order to derive the generating functions) must
follow the evolution of the algorithm, actually accumulating the meaningful information along the way.
When the algorithm has some sort of finite memory or independence in its evolution, the analysis might be
simpler, steps separate into products. In some cases though, as is the case of the Euclidean Algorithm over

69
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the integers, all steps depend strongly on one another. This is where dynamical analysis comes into play.

Dynamical analysis mixes the methodology from Analytic Combinatorics with objects coming from dy-
namical systems, in particular the so-called transfer operator, introduced in subsection 1.4.7, which follows
naturally the evolution of the dynamical system. With this operator at hand, we may obtain generating
functions for our systems, now Dirichlet generating functions, which we describe in subsection 2.1.4. In
subsection 2.2.1 we state Delange’s [Del54] Tauberian Theorem, which relates the singularities of a Dirich-
let generating function with the asymptotics of the cumulative sums of its coefficients. The process of
dynamical analysis is introduced informally in subsection 2.2.3.

2.1 Generating functions

In this section we introduce generating functions. In section 2.1.1, we begin by introducing the most classical
type of generating functions, known as the “ordinary generating functions”, as well as the closely related
“exponential generating functions” in section 2.1.2. We mention, in particular, how these types of generating
function are related to different combinatorial contexts. Then we introduce the notion of singularities in
section 2.1.3, explaining briefly the role played by the dominant (smallest absolute value) singularities in
the growth of the coefficients of the generating functions. In section 2.1.4 we introduce Dirichlet generating
functions, explaining how they arise, as well as some very important examples coming from number theory.
In this context we highlight the Delange Tauberian theorem in section 2.2.1,which links the behaviour of
the dominant (now right-most) singularities to the growth of the partial sums of the coefficients. Finally we
explain in section 2.2.3 the need for the so-called Dynamical Analysis in the study of parameters stemming
from a dynamical system like those introduced in Chapter 1.

2.1.1 Ordinary generating functions

In its most basic form, an ordinary generating function is a power series encoding a given sequence as
its coefficients. Their formal interest arises from the fact that operations between generating functions
correspond to transformations between the coefficient series, with useful combinatorial interpretations when
the coefficients count objects or describe probabilities.

Definition 2.1 (Ordinary generating function). The ordinary generating function (OGF) of a sequence
(an)n≥0 is the formal power series A(z) ∈ C[[z]] defined by

A(z) :=

n≥0

anz
n . (2.1)

Notation 2.1. The coefficient corresponding to zn in a power series A(z) is denoted by [zn]{A(z)}.

We underline some basic properties of ordinary generating functions

Proposition 2.1. Let (an)n≥0 and (bn)n≥0 be sequences with OGFs A(z) and B(z) respectively. Then the
formal product A(z)B(z) is the OGF associated with the convolution sequence cn :=

n
k=0 akbn−k.

Example 2.1. We note that (1 − z)−1 = 1 + z + z2 + z3 + . . . formally over the ring C[[z]]. The proof is
just multiplying the formal power series on the right-hand side by (1− z).

Here the left-hand side (1 − z)−1 was interpreted, for the moment, as the inverse of the unit (1 − z) in the
ring. Since the formal operations proving that (1− z)−1 = 1 + z + z2 + . . . make sense over the complex
numbers when |z| < 1, we conclude that the equality also remains true over the complex numbers when
|z| < 1, and then the inverse (1− z)−1 is just 1

1−z . 3

Definition 2.2 (Combinatorial class). A combinatorial class is a pair (A, | · |A) made up of a finite or
countable set A along with a size function | · |A satisfying the following conditions:
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• the size of an element is a non-negative integer;

• the number of elements of any given size is finite.

Given a combinatorial class A, we denote by An the set of all elements of size n and by An the number of
such elements. The sequence (An) is known as the counting sequence of the class.

The ordinary generating function of a combinatorial class A is the OGF of its counting sequence, which
admits the combinatorial form

A(z) =

α∈A

z|α| . (2.2)

It turns out that certain operations between generating functions correspond to operations between com-
binatorial classes. Here we mention three key constructions (sum, product and quasi-inverse) which will
come in handy in order to get a good grasp of the operations in Dynamical Analysis (where we have sum,
composition, playing the role of multiplication, and a quasi-inverse too).

Definition 2.3 (Constructions for unlabelled classes). We denote by E the combinatorial class consisting
of a single element of size 0, and we call this the neutral class. By Z we denote the combinatorial class
consisting of a single element of size 1, and we call this the atom class.

Sum construction. Given combinatorial classes A and B we denote by A + B the combinatorial class
with underlying set

{(0, a) : a ∈ A} ∪ {(1, b) : b ∈ B}
and size | · |A+B defined by |(0, a)| = |a|A for a ∈ A and |(1, b)| = |b|B for b ∈ B.

When A∩B = ∅ we may identify A+B with A∪B and forget the first “label” entry. Observe also that the
sum construction can be extended to countably many terms with a little care.

Product construction. We define the product class A×B with the product of the underlying sets and the
sizes being simply the sum |(β, γ)|A×B := |β|A + |γ|B.

The product may easily be extended to a finite number of factor combinatorial classes. For a countably
infinite number of factors, on the other hand, we have to be more careful to ensure that the resulting counting
sequence is well-defined.

Sequence construction. Given a combinatorial class G with no element of size 0, we define

SEQ(G) := E + G + G × G + G × G × G + . . .

which corresponds to all finite “sequences” (g1, . . . , gk) of elements from G, k ≥ 0, along with the size
function |(g1, . . . , gk)| = |g1|G + . . .+ |gk|G . 3

Comments regarding the constructions. There exist several other notable constructions such as the “set”
or “multi-set”. We will not get into these here, for more constructions and a more in depth exposition, the
reader is referred to [FS09].

It is also possible to define classes recursively using our “grammar” of constructions. Determining system-
atically the well-foundedness of a recursive specification is a non-trivial matter in general, see [PSS12]. To
give an example of a recursive specification, the sequence SEQ(G) can be defined recursively by

SEQ(G) = E + Z × SEQ(G) .

Combinatorial constructions and power series. Note that the key role of the power series is easily
realized from Proposition 2.1, which relates naturally F×G to F (z) ·G(z). On the other hand, F (z)+G(z)
is the generating function associated with F +G. Finally, from these two we derive that the OGF associated
with SEQ(G) is 1 +G(z) + (G(z))2 + . . . = 1/(1−G(z)). This is summarized in Table 2.1.
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operation generating function
F + G F (z) +G(z)
F · G F (z) ·G(z)

SEQ (G) 1
1−G(z)

Table 2.1: A small dictionary between our basic constructions and their corresponding generating functions.
Here F (z) and G(z) denote the corresponding ordinary generating functions of the unlabeled classes F and
G respectively. We remark that for exponential generating functions we have a similar dictionary, substituing
the product · between labeled combinatorial classes for the labeled product ⋆ below.

2.1.2 Exponential generating functions

There are other types of useful generating functions, which correspond to a different kind of combinatorial
objects. Here we give brief and informal account of the so-called labeled classes, for more details the reader
is referred again to [FS09]. Whereas unlabeled constructions are naturally associated with OGFs, labeled
constructions will be associated with the so called exponential generating functions EGFs. What we want
to highlight here is how the nature of the objects in question dictates the kind of generating function used.

Definition 2.4 (Exponential generating function). The exponential generating function (EGF) of a sequence
(an)n≥0 is the formal power series A(z) ∈ C[[z]] defined by

A(z) :=

n≥0

an
zn

n!
. (2.3)

Proposition 2.2. Let (an)n≥0 and (bn)n≥0 be sequences with EGFs A(z) and B(z) respectively. Then the
formal product A(z)B(z) is the EGF associated with the convolution sequence cn :=

n
k=0


n
k


akbn−k.

In the unlabeled universe all atoms Z are equivalent, indistinguishable. In the labeled universe, on the other
hand, they are all different and, what is more, they bear different integer “labels”. A labeled object of size n
is a graph whose vertices are labeled with distinct integers. An object of size n is said to be well-labeled if
the labels form the set {1, . . . , n}.

Definition 2.5 (Labeled combinatorial class). A labeled combinatorial class is a combinatorial class of well-
labeled objects.

Of course, a labeled object γ of size n may be turned into a well-labeled object ρ(γ) of size n by making
the label set {1, . . . , n} and keeping the relative order of the labels of the nodes. The operation ρ is known
as the reduction of the labeled object.

Combinatorial constructions and power series. Even though here we may define the sum construction
similarly, the product construction is slightly more complex. Given two labeled combinatorial classes A and
B we will define a new labeled product A⋆B defined as follows

A⋆B := {(β, γ) : (β, γ) well-labeled , ρ(β) from class A, ρ(γ) from class B} .

That is to say, intuitively, an object from A ⋆ B with size n is built by first picking a subset S of {1, . . . , n},
and then an object of size |S| from A, which we relabel with the set S, and an object from B, which we
relabel according to the set {1, . . . , n} \ S.

With this definition at hand, it turns out that we still have the same dictionary from Table 2.1, but considering
labeled classes, exponential generating functions and labeled products instead. We insist that in the labeled
case the sequence construction SEQ may also be defined analogously by considering ⋆ instead of ×.
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The formula for the generating function of the product A ⋆B of two labeled classes is intuitively clear from
Proposition 2.2. Indeed, the binomial coefficient corresponds to the action of choosing how to distribute the
n labels for an object of size n between two labeled objects coming from A and B with sizes k and n− k.

2.1.3 Power series and singularities: the second step

Once we have characterized the generating functions for our objects of interest, we wish to obtain mean-
ingful information regarding their coefficients. Sometimes, when we are lucky, we may deduce precise
expressions for our quantities. More often than not, however, the generating functions involved are not
that simple and we may only ever hope to derive asymptotics for their coefficients. This is to be expected
in general, as the sequence of coefficients may be quite involved. In this section we explain how to ex-
tract asymptotics from the singularities of the OGFs or EGFs. The subject is classical and can be found in
[FS09, Chapter IV] and a brief summary is included here for the sake of introducing the key link between
coefficients of generating functions and their corresponding singularities.

Analytic functions. In what follows, we look at our generating functions as actual functions on the com-
plex plane, f : D → C, for an appropriately chosen open set D ⊆ C.

The introduction of complex numbers makes for a much stronger notion of differentiability: a complex
function is (complex) differentiable on a domain D if and only if it analytic at every point of D. We explain
what this means. The function f(z) is analytic at z0 ∈ D if there are complex coefficients a0, a1, . . . which
make f(z) =


ak(z− z0)

k for z on some open ball around z0. When f is analytic at every point of D, we
say that it is analytic on D.

From the equivalence between being differentiable and analytic, it follows that a complex function that is
differentiable once is actually differentiable infinitely many times!

This is not the only remarkable property satisfied by analytic functions; if the open domain D is connected
and the set of zeros of f has an accumulation point in D, the function f must be identically zero. This
property has key consequences. One of them, known as the uniqueness of analytic continuation, tells us that
an analytic function f : D → C has only one analytic extensiona g : D′ → C if D′ is a connected open set.
Intuitively, the value of g on D “determines” the rest.

Back to our generating functions, the series actually yield analytic functions whenever the former are con-
vergent. Power series actually have a so-called radius of convergence which is intimately related to the
coefficients of the series (see Proposition 2.3). In turn, the radius of convergence is associated with the
singularities (see Definition 2.6) of the complex-valued function derived from the GF.

First principle of Coefficient Asymptotics. A first indicator of the order of growth of the coefficients of a
power series is the so-called radius of convergence (this is introduced in any elementary calculus or analysis
book such as). The radius of convergence of a power series


n≥0 anz

n is the supremum of all possible
r > 0 such that the series converges for |z| < r. If there is no such r , the radius of convergence is defined
to be 0.

Proposition 2.3. The radius of convergence R of a power series f(z) =


n≥0 anz
n is determined by

R =
1

lim sup |an|1/n
, (2.4)

whenever the lim sup is non-zero, and it is said to be infinite otherwise.

In other words, given ϵ > 0

aWe say that g : D′ → C is an extension of f : D → C when D ⊂ D′, g|D = f
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• We have |an|1/n < 1
R + ϵ for all large enough n

• We have |an|1/n > 1
R − ϵ for infinitely many n.

Proposition 2.3 tells us that the radius of convergence largely dictates the asymptotic growth of the coef-
ficients of the power series (more precisely, their “maximal” exponential growth, namely lim sup |an|1/n),
but how do we determine the radius of convergence of a given generating function? This is where the so
called singularities will come into play: a power series converges until the circle (centered at the origin) of
radius |z| “hits” a singularity!

Singularities. We now introduce a key concept: the singularities. We briefly comment on how these are
related to the radius of convergence, giving a characterization of the radius of convergence.

Definition 2.6 (Singularity). An analytic function f : D → C defined in an open set D has a singularity at
z0 ∈ ∂D if and only if f it is not analytically continuable at z0.

The function f function is analytically continuable to a point z0 if there exists an analytic function g, defined
on a larger open set D′ containing D and z0, coinciding with f on D.

Proposition 2.4. If f(z) is analytic at the origin, and its power series expansion has a radius of convergence
R, then there must be a singularity of f in the circle |z| = R.

In order to prove this proposition, we would first have to prove the so-called Cauchy’s Integral Theorem and
derive Cauchy’s formula for the coefficients, see for instance [Rud87] or [FB09].

The singularities of smallest absolute value, i.e., R, the radius of convergence, are known as the dominant
singularities of f(z) and play a larger role in the asymptotics of the coefficients.

When f(z) =


n≥0 fnz
n has non-negative coefficients fn ≥ 0, we can say at more with regard to the

positions of the singularities, in a similar fashion to the Perron–Frobenius theorem for matrices.

Theorem 2.1 (Pringsheim’s Theorem). Suppose f(z) is analytic at the origin, and that the coefficients in
the expansion are all non-negative. If the radius of convergence is R > 0, then R is a singularity of f .

Second principle of Coefficient Asymptotics. We have related the radius of convergence R to the ana-
lytic properties, namely the position of the singularities, of the complex function f(z) given by the power
series. In turn, we know that this radius of convergence determines the maximal exponential growth of the
coefficients of its associated power series. We now explain, begninning from an example, how to get precise
asymptotics from the knowledge of the dominant singularities in the case of meromorphic functions. The
final principle is stated in Proposition 2.6.

Example 2.2 (Euclidean algorithm for polynomials over Fq). In this example we follow the method of
[BLV16] to study the number of steps performed by the Euclidean algorithm over Fq[x] (see also the example
from [FS09, Example IX.15, pp. 662–663] where it is presented from the perspective of continued fractions).

Let us suppose that our input polynomials (a(x), b(x)) satisfy deg b(x) ≤ deg a(x), then the Euclidean
algorithm proceeds by performing successive divisions

a(x) = q1(x)b(x) + r1(x) , deg r1(x) < deg b(x)

b(x) = q2(x)r1(x) + r2(x) , deg r2(x) < deg r1(x)
...

rk−1(x) = qk(x)rk(x) + 0 .

The algorithm stops when the remainder equals zero, i.e., rk+1(x) = 0, and outputs the previous one rk(x).
Then we are interested in studying the average number of division steps k = k(a(x), b(x)). If, otherwise,
deg b(x) > deg a(x) the algorithm proceeds as above for the reversed input (b(x), a(x)).
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We explain what we mean by average: pick the pair (a(x), b(x)) uniformly at random from the set

Ωn := {(a(x), b(x)) : deg a(x) + deg b(x) = n , a(x), b(x) monic polynomials} ,

where we recall that monic means that the leading coefficient is 1. What is the average of k = k(a(x), b(x))?

A few comments are in order:

• The whole process remains unchanged if we divided a(x) and b(x) by their gcd; each remainder
ri is just divided by gcd(a(x), b(x)). Thus we will mainly work with the coprime pair a(x) :=
a(x)/ gcd(a(x), b(x)), b(x) := b(x)/ gcd(a(x), b(x)), determining the execution of the algorithm.

• In turn, the reduced pair (a(x),b(x)) is determined univocally by the sequence of quotients (q1(x), . . . , qk(x)).
Note that q1(x) is monic by assumption,while the rest q2(x), q3(x), . . . , qk(x) can be arbitrary poly-
nomials.

Thus, the input pair is characterized by the gcd and the sequence of quotients.

Let us consider U(z) = 1
1−qz , the OGF of monic polynomials, and G(z) = (q−1)qz

1−qz , the OGF of the general
polynomials of positive degree. These expression follow from the sequence and product construction.

We “mark” the degree of a(x) by z and the degree of b(x) by t, thus rendering our generating function a
bivariate one (in the ring C[[z, t]]). By this we mean that the coefficient of zntm will correspond to a sum
over the cases in which deg a(x) = n and deg b(x) = m. Even though we have not formally introduced
multivariate series, we remark that we may realize such a series as a series where the coefficients are them-
selves series in another variable. The combinatorial operations of sum, multiplication and sequence extend
to series in several variables, corresponding to the same operations between generating functions as before.

We have the bivariate identity

U(z) · U(t) = U(zt)  
gcd

×

1 + (U(z)− 1) + (U(t)− 1)  

q1(x)⇔monic polynomial


× 1

1−G(zt)  
q2(x),...,qk(x)⇔SEQ(general polynomials of deg≥1)

.

This expression is justified by the fact that the gcd contributes equally to the degree of both a(x) and b(x),
hence the factor U(zt), while the first quotient q1(x) may contribute to either the degree of a(x) or b(x)
depending on which of the two has the smallest degree. Finally, the quotients q2(x), . . . , qk(x) contribute
equally to the degrees of both a(x) and b(x), hence the identity.

Let us set z = t, forgetting the distinction between the two. This makes z mark the sum of the degrees of
a(x) and b(x). In order to get the depth, which is just the number of quotients q2(x), . . . , qk(x) plus 1,we
introduce a variable u marking the number of quotients

F (z, u) :=


(a(x),b(x))∈Ω

u#steps(a(x),b(x))z|(a(x),b(x))| = U(z2)×

(2U(z)− 1)× u

1− uG(z2)


.

Operating with our expressions for U(z) and G(z) we obtain

F (z, u) =
(qz + 1)u

(1− q2uz2 − q(1− u)z2)(1− qz)
.

Differentiating in u and evaluating at u = 1 produces

S(z) :=


(a(x),b(x))∈Ω

#steps(a(x), b(x)) z|(a(x),b(x))| =
∂

∂u
F (z, u)


u=1

=
1− qz2

(1 + qz)(1− qz)3
.
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In terms of F (z, u), our expected value reads

EΩn [#steps] =


(a(x),b(x))∈Ωn

#steps(a(x), b(x))
(a(x),b(x))∈Ωn

1
=

[zn]S(z)

[zn]F (z, 1)
.

At this point we could actually compute the exact coefficients of both S(z) and F (z, 1), as our functions
are rational (quotient of polynomials) and apply the identity Equation 2.5 below. However we will do it by
looking directly at the nature of the singularities of both generating functions, thus explaining the process
of singularity extraction.

For the case of S, the dominant singularities are given by z = 1/q, with multiplicity three, and z = −1/q
with multiplicity 1. Thus we concentrate on these by applying partial fractions

S(z) =
A

(1− qz)3
+

B

(1− qz)2
+

C

1− qz
+

D

1 + qz
+R(z) , A =

q − 1

2q
,

for certain constants B,C,D and R(z) that has a larger radius of convergence. The first four terms actually
involve a well-known series because

1

(1− z)n
=

∞
k=0


n+ k − 1

k


zk , (2.5)

as follows upon differentiating (n− 1) times the identity 1/(1− z) =
∞

k=0 z
k.

From (2.5) we get, by applying Proposition 2.3 to R(z), that

[zn]S(z) = A · (n+ 2)(n+ 1)

2
· qn +B · (n+ 1) · qn + Cqn +D(−q)n +O((q − ϵ)n)

for some ϵ > 0.

For F (z, 1) we have F (z, 1) = (U(z))2 = 1/(1− qz)2 thus [zn]F (z, 1) = (n+ 1)qn and we derive

EΩn [#steps] ∼ A
n+ 2

2
.

The constant A = q−1
2 q is computed simply by multiplying S(z) by (1− qz)3 and taking z → 1/q. 3

The previous example showcases several important concepts we now underline.

Probability and bivariate generating functions. First, suppose we had a bivariate generating function

F (z, u) =

α∈Ω

uC(α)z|α| ,

where Ω is the set of objects, |α| the weight of α and C(α) the cost of α, a function we want to characterize.
From F (z, u) we may express at once quantities such as the expected value of C(α) when α is chosen
uniformly at random from Ωn, the set of objects of size n. Indeed

EΩn [C] =
[zn]


∂
∂uF (z, u)


u=1


[zn]F (z, 1)

,

as in the previous example but also note that

EΩn [C
k] =

[zn]

(u ∂

∂u)
kF (z, u)


u=1


[zn]F (z, 1)

,
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where (u ∂
∂u)

k means we apply the operator u ∂
∂u exactly k times. This is what Wilf in [Wil06] calls the

“xD operator”. In [FS09] this operation corresponds to a “pointing” construction; the pointing ΘC of a
combinatorial class C corresponds to distinguishing one atom from the structure as special.

We may even express the probability distributions in terms of F (z, u)

PΩn (C = i) =
[znui]F (z, u)

[zn]F (z, 1)
.

Asymptotics and the nature of the singularities. Second, the asymptotic growth is dictated by the nature
of the dominant (of smallest absolute value) singularities. In the example above we have rational functions,
but the principle applies more generally to the so-called meromorphic functions. Meromorphic functions
are functions which are locally a quotient of two analytic functions. For that case we just approximate our
meromorphic function around each singularity by a rational function.

We remark that the dominant singularities “may” cancel out, and so these may not suffice to get the asymp-
totic behavior of all coefficients. To clarify what we mean, consider the trivial 1/(1 − z2) + 1/(1 − z/2).
Here we have 1/(1 − z2) = 1/(1 − z) + 1/(1 + z), and so the contribution of the dominant poles indeed
cancels out (as they should!) for odd coefficients.

We state the principle here, for further details see [FS09, Chapter IV].

Proposition 2.5. Let F (z) =


n anz
n be meromorphic on the disc |z| ≤ R, having poles at the nonzero

points α1, . . . , αk. Assume further that F (z) can be continued analytically to all points on the circle |z| =
R. Then there are polynomials Π1, . . . ,Πk such that:

an =

k
j=1

Πj(n)α
−n
j +O(R−n) .

Furthermore, the degree of Πj is equal to the degree of the pole at αj minus 1.

When we have a unique dominant (of smallest absolute value) singularity, matters are simpler.

Proposition 2.6. For a meromorphic generating function F (z) =

anz

n, having a unique dominant (i.e.,

of smallest absolute value) singularity σ of type F (z) ∼ G(z)
(z−σ)1+a where G(z) is analytic at z = σ, we have

an = G(σ)
(−1)1+a

σ1+a


n+ a

a


σ−n +O


1

(|σ|+ ϵ)n


,

for some ϵ > 0, as n → ∞. Remark that

n+a
a


is a polynomial of degree a. Further, we have


n+a
a


=

na

a! +O(na−1).

Observation 2.1. In our simplified explanation for the singularity analysis, we have not talked about effec-
tive error bounds. It is possible to actually bound the size of the coefficients of a power series by considering
more precise expressions in terms of contour integrals in the complex plane. Indeed, Cauchy’s integral for-
mula (see [FB09, pp. 96-98]) tells us that for a power series f(z) =


anz

n, we have

an =
1

2πi


γ
f(z)

dz

zn+1
,

for any simple (and piece-wise smooth) contour γ within the radius of convergence of f . These integral
expressions lend themselves to bounding by considering bounds for |f(z)| on specific circles |z| = r. That
is how the classical saddle-point bounds are derived (see [FS09, pp. 546-548]).
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2.1.4 Dirichlet generating functions

Problems stemming from number theory many a times involve functions that are called multiplicative. An
arithmetical function f : N → C is multiplicative if f(ab) = f(a)f(b) when gcd(a, b) = 1, and completely
multiplicative if f(ab) = f(a)f(b) for all a, b ∈ N.

There are numerous multiplicative functions; for instance the number of divisors d(n), the number of prime
divisors ω(n), Euler’s φ function and the celebrated Möbius µ function (see Definition 2.9 below). The
appropriate generating functions to these functions is not a power series, but rather a Dirichlet series.

Definition 2.7 (Dirichlet generating function). The Dirichlet generating function (DGF) of a sequence
(an)n≥1 is the formal power series

A(s) :=

n≥1

an
ns
. (2.6)

Dirichlet generating functions naturally follow the process of multiplication.

Proposition 2.7. Let consider two sequences (an)n≥1 and (bn)n≥1 with associated DGFs A(s) and B(s)

respectively. Then the product A(s)B(s) is the DGF of the convolution


d|n adbn/d


n≥1

.

Note here that


d|n denotes the sum over all positive divisors d of n.

The most basic building block for DGFs is the so-called Riemann Zeta function.

Definition 2.8 (Riemann Zeta function). The Riemann Zeta function ζ(s), or Zeta function for short, is
defined by the series

ζ(s) :=

n≥1

1

ns
, ℜs > 1 . (2.7)

Of course, the series (2.7) converges absolutely for ℜs > 1 and so it actually defines an analytic function on
this half-plane. It can, however, be extended analytically to the whole plane except s = 1.

Example 2.3 (Divisor counting function). Define d(n) =


d|n 1. The DGF of d(n) is (ζ(s))2.

A fundamental function in the context of DGFs is the so-called Möbius function µ(n) defined as follows

Definition 2.9 (Möbius function). Let n be a positive integer. Then µ(n) is defined as follows

µ(n) :=


(−1)k , if n is free of squares and has exactly k prime divisors ,
0 , otherwise .

The fundamental property of the Möbius function is given by the following proposition which tells us that
µ actually allows us to perform a “sieving” over the “divisibility property”.

Proposition 2.8. For every positive integer n, the Möbius function satisfies


d|n

µ(d) =


1, if n = 1 ,

0, otherwise .
(2.8)

Proof. The proof is simple enough. We only care about the divisors which are square-free, as the µ-function
is 0 for the rest. Write the decomposition of n into product of prime powers n = pa11 . . . pakk , then all square
free divisors of n are given by d =


s∈S ps where S ⊂ {1, . . . , k}, as we may not pick a prime number

twice. Of course, µ(

s∈S ps) = (−1)|S| and for each j we have


k
j


possible subsets S with |S| = j. Thus

d|n µ(d) =
k

j=0


k
j


(−1)j and the result follows from the Binomial Theorem. ■
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Observation 2.2. Furthermore

F (n) :=

d|n

g(d) ,∀n =⇒ g(n) =

d|n

µ(d)F (n/d) . (2.9)

We are going to briefly explain why µ corresponds to inclusion-exclusion (see [Sta97, pp.64-65], [Wil06,
Chapter 4]) with this example. Following the proof of Proposition 2.8, we note that

d|n

µ(d)F (n/d) =


S⊂{1,...,k}

(−1)|S|F


n
s∈S ps


.

The term F


n
s∈S ps


corresponds to a sum of g(k) over all divisors k of n for which the exponent of ps is

not as for s ∈ S. Thus we are actually trying to exclude the terms g(k), k|n, with the property “there is a
prime pi such that paii ̸ |k”. Of course, what remains after the cancellation can just be g(n). 3

The property from Observation 2.2 is known as the Möbius inversion formula [Apo98, p. 32], and can
be explained purely in terms of DGFs in quite a direct way, even though the underlying combinatorial
interpretation is the inclusion-exclusion above.

Proposition 2.9. The Dirichlet generating function of the Möbius function µ(n) is 1
ζ(s) .

Proof. If F (s) :=

µ(n)n−s, then by Proposition 2.7 and Proposition 2.8 we get F (s)ζ(s) = 1. ■

The hypothesis Observation 2.2 translates into DGFs as follows
F (n)n−s = ζ(s)


g(n)n−s ,

therefore 
g(n)n−s =

1

ζ(s)


F (n)n−s .

Now this proves the result because 1
ζ(s) is the DGF of the Möbius function µ (see Proposition 2.9) and the

product gives the DGF of the convolution by Proposition 2.7.

Observation 2.3. An important application of the Möbius function which we will use in Chapter 4 is
to “filter” the pairs of integers (a, b) with gcd(a, b) = 1. Indeed, suppose we had a positive function
f : N× N → R≥0 and wanted to compute


(a,b):gcd(a,b)=1 f(a, b). Then

(a,b):gcd(a,b)=1

f(a, b) =


(a,b)∈N×N

f(a, b)


d| gcd(a,b)

µ(d) .

Note that d| gcd(a, b) if and only if both d|a and d|b. Thus
(a,b):gcd(a,b)=1

f(a, b) =


(a,b)∈N×N

f(a, b)


d|a ∧ d|b

µ(d) ,

and reversing the sums (for this we should add some conditions on f )


(a,b):gcd(a,b)=1

f(a, b) =
∞
d=1

µ(d)


(a,b):d|a∧d|b

f(a, b) ,

from which we conclude 
(a,b):gcd(a,b)=1

f(a, b) =
∞
d=1

µ(d)


(a,b)∈N×N

f(a · d, b · d) . (2.10)
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This last equation is extremely useful when f satisfies some homogeneity conditions such as f(ad, bd) =
d−rf(a, b) for some r > 1 (this already makes the series for f converge absolutely, and the reversing of the
sums is valid as well!) and we know the value of S :=


(a,b) f(a, b), because then we deduce


(a,b):gcd(a,b)=1

f(a, b) = S
∞
d=1

µ(d)

dr
=

S

ζ(r)
. (2.11)

A consequence of the previous remark is that the density of coprime pairs is 6/π2 (see [Ten15])

Proposition 2.10. The density DN := #{(a, b) : 1 ≤ a, b ≤ N , gcd(a, b) = 1}/N2 of coprime integers
on {1, . . . , N}2 satisfies

DN =
6

π2
+O((logN)/N) .

Proof. Consider a function f := fN (a, b) that is 1 iff gcd(a, b) = 1 with 1 ≤ a, b ≤ N and 0 otherwise.
Indeed, from (2.10) it follows that

#{(a, b) : 1 ≤ a, b ≤ N , gcd(a, b) = 1} =
∞
d=1

µ(d)


N

d

2
=

N2

ζ(2)
+O

N 
d≤N

1

d

 ,

and ζ(2) = π2/6 yields the result. ■

2.2 Analytic Combinatorics for Dirichlet generating functions

From the point of view of Analytic Combinatorics, Dirichlet series correspond to integer weights that are
multiplicative, i.e. |αβ| = |α||β| , for all α, β in the combinatorial class.

Dirichlet generating functions as analytic objects. Ordinary generating and exponential functions have
a radius of convergence where they present at least one point where they cannot be continued analytically.
Dirichlet generating functions, on the other hand, have a half-plane of convergence. This is explained by
the following classical theorem (see e.g., [Apo98, p. 245]).

Theorem 2.2. If the Dirichlet series F (s) =
 an

ns converges for s0 then it also converges for all s with
ℜs > ℜs0. If the series diverges for s0, then it diverges for all s with ℜs < ℜs0.

Dirichlet series in general (if they are not everywhere convergent or everywhere divergent) present two
fundamental abscissas: the abscissa of convergence σc, for which the series converges if ℜs > σc, and the
abscissa of absolute convergence σa, for which the series converges absolutely if ℜs > σa. If the terms of
the series are positive, as will be our case, then both abscissas coincide σa = σc. In any case, it is fair to
underline that the inequality 0 ≤ σa − σc ≤ 1 holds (see [Apo98]).

From the point of view of the generating functions as complex-valued functions, the convolutional product
from Proposition 2.7 makes sense within the intersection of the half-planes of convergence. By the unique-
ness of the analytic continuations (see [FB09, pp.126–128]), we do not pay attention to such details; we first
operate formally, deriving our DGFs, and then make sense of them on their corresponding half-planes.

Example 2.4. The series in (2.7), defining the Riemann zeta function, converges for ℜs > 1. Thus it
defines an analytic function over the half-plane ℜs > 1. It turns out that the zeta function can be extended
analytically to the whole plane with the sole exception of s = 1 (see [WW96, Chapter XIII]) where

ζ(s) =
1

s− 1
+ γ +


k≥1

(−1)k

k!
γk · (s− 1)k , (2.12)
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where γ is the Euler-Mascheroni constant defined by γ := limn
n

k=1
1
k − log n. The coefficients γk of the

expansion are called the Stieltjes constants. 3

2.2.1 Tauberian theorems

Tauberian theorems are the “transfer theorems”, telling us how the information on the singularities translates
into asymptotics, corresponding to Dirichlet generating functions. It will be the case for DGF that we will
not be able to derive asymptotics for individual coefficients but rather their cumulative sums. This is to be
expected as, for instance, DGFs encode irregular functions such as the number of divisors function d(n).

The following theorem is a classical Tauberian theorem from Delange [Del54].

Theorem 2.3 (Delange). Let F (s) be a Dirichlet series with non negative coefficients such that F (s) con-
verges when the real part of s satisfies ℜs > σ > 0. Assume that

• F (s) is analytic on ℜs = σ, s ̸= σ.

• there is a > −1 such that

F (s) =
G(s)

(s− σ)1+a
+H(s) ,

where G(s) and H(s) are analytic at s = σ with G(σ) ̸= 0.

Then 
n≤N

an ∼ G(σ)

σΓ(a+ 1)
Nσ logaN ,

as N → ∞.

The statement of Theorem 2.3 is to be compared with the singularity analysis for meromorphic functions.

More generally, this holds too for non-integer sizes and we consider more general DGFs of the form F (s) =
i∈I aig(i)

−s where g(i) need not be an integer anymore.

Proposition 2.11. Let (ai)i∈I be a family of non-negative numbers indexed on a countable set I , and let
g : I → (0,∞). Suppose the series F (s) =


i∈I aig(i)

−s converges when the real part of s satisfies
ℜs > σ > 0. Assume that

• F (s) is analytic on ℜs = σ, s ̸= σ.

• there is a > −1 such that

F (s) =
G(s)

(s− σ)1+a
+H(s) ,

where G(s) and H(s) are analytic at s = σ with G(σ) ̸= 0.

Then 
i:h(i)≤N

ai ∼
G(σ)

σΓ(a+ 1)
Nσ logaN ,

as N → ∞.

2.2.2 An example of Analytic Combinatorics in arithmetics

In this example we study the gcd of ℓ numbers picked independently and uniformly at random from
{1, . . . , N}. We want to compute its k-th order moment, i.e.,

MN,k,ℓ(s) :=
1

N ℓ

N
s1=1

. . .
N
sℓ=1

(gcd(s1, . . . , sℓ))
k ,
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as ℓ → ∞. This example originates from a private communication betwen Joachim von zur Gathen and
Brigitte Vallée [Val08].

In order to compute this we consider auxiliary functionsφℓ(n), extending Euler’sφ function. Let us consider
first the case ℓ = 2 which corresponds to Euler’s φ function.

Case ℓ = 2. A key identity of Euler’s totient function φ states that


d|n φ(d) = n for all n ∈ N.
This identity can be interpreted combinatorially as follows. First rewrite, by symmetry of the divisors,

d|n φ(d) =


d|n φ(n/d) and note that φ(n/d) is the number of integers in {1, . . . , n/d} that are coprime
to n/d. Then φ(n/d) corresponds too to the number of integersm from {1, . . . , n} that satisfy gcd(n,m) =
d (indeed gcd(n,m) = d⇐⇒ gcd(n/d,m/d) = 1).

Thus the sum


d|n φ(n/d) counts all integers m from {1, . . . , n} by dividing them according to d =
gcd(n,m). Therefore we conclude that


d|n φ(n/d) = n.

It is important to remark that Proposition 2.7 then yields ∞
n=1

φ(n)

ns


× ζ(s) =

 ∞
n=1

n

ns


= ζ(s− 1) ⇒

∞
n=1

φ(n)

ns
=
ζ(s− 1)

ζ(s)
. (2.13)

More generally, the above argument yields that


d|n

φ(n/d)dk =
n

m=1

(gcd(n,m))k .

Let us write

An,k :=

d|n

φ(n/d)dk =

n
m=1

(gcd(n,m))k .

The convolution defining An,k implies (thanks to Proposition 2.7)

∞
n=1

An,k
ns

=
ζ(s− 1)

ζ(s)
× ζ(s− k) .

The cumulative sums of An,k which yields the Tauberian theorem (Theorem 2.3) give

SN,k :=

n≤N

An,k ∼


Nk+1

k + 1

logN

ζ(2)
k = 1 ,

Nk+1

k + 1

ζ(k)

ζ(k + 1)
k > 1 .

This is due to the nature of the dominant singularity. Indeed, to analyze the singularities we employ (2.7).
When k = 1 we have a double pole at s = 2, due the numerator (ζ(s − 1))2. When k > 1 we have a
dominant singularity at s = k + 1 which is a simple pole.

The sum defining SN,k sums (gcd(n,m))k over m ≤ n. To get the other cases, we exploit the symmetry
and deduce

N
n=1

N
m=1

(gcd(n,m))k = 2SN,k −
N
n=1

nk ,

as we have summed the “diagonal case” n = m twice. Notice here that
N

n=1 n
k = Nk+1

k+1 +O(Nk) .
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When k > 1 this means that

1

N2

N
n=1

N
m=1

(gcd(n,m))k ∼


2

k + 1

ζ(k)

ζ(k + 1)
− 1

k + 1


Nk−1 . (2.14)

For the case k = 1, the diagonal case is of a smaller order than 2SN,1 therefore we simply get

1

N2

N
n=1

N
m=1

gcd(n,m) ∼ 2SN,1/N
2 ∼ logN

ζ(2)
. (2.15)

General case. We extend the φ function by defining φℓ to be

φℓ(n) := #{(y1, . . . , yℓ−1) ∈ {1, . . . , n}ℓ−1 : gcd(n, y1, . . . , yℓ−1) = 1} , (2.16)

in particular φ2(n) = φ(n), the classical φ function. As a consequence we get, as for the case ℓ = 2, that

φℓ(n/d) = #{(y1, . . . , yℓ−1) ∈ {1, . . . , n}ℓ−1 : gcd(n, y1, . . . , yℓ−1) = d} ,

and therefore 
d|n

φℓ(n/d)d
k =

n
y1=1

. . .
n

yℓ−1=1

(gcd(n, y1, . . . , yℓ−1))
k . (2.17)

In particular from the convolution of the case k = 0 we deduce its DGF ∞
n=1

φℓ(n)

ns


× ζ(s) =

∞
n=1

nℓ−1

ns
= ζ(s− ℓ+ 1) ⇒

∞
n=1

φℓ(n)

ns
=
ζ(s− ℓ+ 1)

ζ(s)
. (2.18)

Define

An,k,l :=

n
y1=1

. . .

n
yℓ−1=1

(gcd(n, y1, . . . , yℓ−1))
k ,

thus from the convolution we get

∞
n=1

An,k,l
ns

=
ζ(s− ℓ+ 1)

ζ(s)
× ζ(s− k) . (2.19)

From the singularities we get the asymptotics for the cumulative sums,

SN,k,ℓ =

n≤N

An,k,ℓ =



Nk+1

k + 1

ζ(k − ℓ+ 2)

ζ(k + 1)
k > ℓ− 1 ,

Nk+1

k + 1

logN

ζ(k + 1)
k = ℓ− 1 ,

N ℓ

ℓ

ζ(ℓ− k)

ζ(ℓ)
k < ℓ− 1 .

This follows from the nature of the singularities, which in turn depends on whether k > ℓ− 1 (simple pole
at s = k + 1), k = ℓ− 1 (pole of order two at s = k + 1 = ℓ), or k < ℓ− 1 (simple pole at s = ℓ).

Here the “diagonal” cases are subtracted through a process of inclusion-exclusion (see [Sta97, pp.64-65] or
[Wil06, Ch.4])

N
y0=1

. . .

N
yℓ−1=1

(gcd(y0, y1, . . . , yℓ−1))
k =


ℓ

1


SN,k,ℓ −


ℓ

2


SN,k,ℓ−1 ± . . . (2.20)
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Basically, first we sum ℓ times as the maximum of the entries may be anywhere, but we must subtract the
cases in which we have that the maximum entry in the tuple appears twice, etc...

When k > ℓ− 1, this means that

1

N ℓ

N
y0=1

. . .
N

yℓ−1=1

(gcd(y0, y1, . . . , yℓ−1))
k ∼ 1

ζ(k+1)
Nk+1−ℓ

k+1

ℓ
j=1


ℓ

j


ζ(k − ℓ+ 1 + j)(−1)j+1 . (2.21)

For k = ℓ − 1 the “diagonal cases” we subtract are of smaller order, hence we get just the first term of the
inclusion-exclusion

1

N ℓ

N
y0=1

. . .
N

yℓ−1=1

(gcd(y0, y1, . . . , yℓ−1))
k ∼ logN

ζ(ℓ)
. (2.22)

Finally, when k < ℓ− 1, the firs term

ℓ
1


SN,k,ℓ with the “largest ℓ” dominates over the others

1

N ℓ

N
y0=1

. . .

N
yℓ−1=1

(gcd(y0, y1, . . . , yℓ−1))
k ∼ ζ(ℓ− k)

ζ(ℓ)
. (2.23)

We summarize in the following proposition

Proposition 2.12. Consider random variables Y ⟨N⟩
i , i = 0, . . . , ℓ−1, drawn independently and uniformly at

random from {1, . . . , N}. The expected value of the gcd of these variables has 3 different phases depending
on whether k < ℓ− 1, k = ℓ− 1 or k > ℓ− 1.

E[

gcd(Y

⟨N⟩
0 , . . . , Y

⟨N⟩
ℓ−1 )

k
] ∼



Ck,ℓ
Nk+1−ℓ

ζ(k + 1)
if k > ℓ− 1 ,

logN

ζ(ℓ)
if k = ℓ− 1 ,

ζ(ℓ− k)

ζ(ℓ)
if k < ℓ− 1 ,

(2.24)

where

Ck,ℓ :=
1

k + 1

ℓ
j=1


ℓ

j


ζ(k − ℓ+ 1 + j)(−1)j+1 .

Observation 2.4. The ideas from Observation 2.3 give a fast way to compute the moments of the greatest
common divisor. Indeed

1

N ℓ

N
y0=1

. . .
N

yℓ−1=1

(gcd(y0, y1, . . . , yℓ−1))
k =

∞
s=1

µ(s)
∞
d=1

dk


N

d× s

ℓ 1

N ℓ
. (2.25)

This is significantly faster than the calculation on the left-hand side since the number of pairs (s, d) on the
right-hand side that are non-zero is at most

∞
s=1⌊

N
s ⌋ ∼ N logN .

From (2.25) it is clear that we get (2.23) when k < ℓ− 1 by estimating ⌊x⌋ = x+O(1), but the rest of the
cases are more involved because the error due to this approximation of the integer part does not vanish.

Second, from (2.25) we observe that (note simply that k marks the gcd)

lim
N→∞

PN

gcd(Y

⟨N⟩
0 , Y

⟨N⟩
1 , . . . , Y

⟨N⟩
ℓ−1 ) = d


=
d−ℓ

ζ(ℓ)
,

where the random variables Y ⟨N⟩
i are drawn independently and uniformly at random from {1, . . . , N}. 3
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Figure 2.1: The principles of dynamical analysis.

2.2.3 What is Dynamical Analysis? Why is it useful?

In the previous examples coming from number theory, even though it may be non trivial to find expressions
for the corresponding DGFs, in the end we did derive an “explicit” generating function in terms of the well-
known function ζ. This will not always be the case when we consider DGFs arising in a dynamical system.
In this context we make use of the transfer operator Hs, introduced in section 1.4.7, which follows the
evolution of the dynamical system. The transfer operator is a building block for our generating functions
related to the time evolution of the system. However, there is little hope of extracting an explicit formula
for this operator as the dynamical system may be quite correlated from step to step (notice that without
correlation, we would have a product of GFs by the principles of Analytic Combinatorics).

After deriving an expression for our DGFs in terms of the transfer operator, we would like to extract asymp-
totics by means of Delange’s Tauberian Theorem (i.e., Theorem 2.3). In order to do this, we require infor-
mation concerning the dominant singularities of the operator. This is where the spectral properties of the
transfer operator Hs come into play, dictating the behavior of Hk

s at time k. The functional space of choice
takes on a crucial importance; it must be expressive enough to allow us to produce our generating functions,
but, at the same time, we prefer having fewer eigenvalues (we want a spectral gap, see Section 1.4).
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Part II

Studies in Word Combinatorics
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CHAPTER 3

STURMIAN WORDS

Sturmian words constitute a family of words of primary importance in the field of Word Combinatorics. In-
troduced by Gustav A. Morse and Marston Hedlund [MH40] in 1940, they represent the simplest non-trivial
words in a precise sense we will soon describe. This chapter aims to explain why these objects, which are
seemingly purely of combinatorial nature, admit a surprising, and convenient, arithmetical characterization.

We start off from some basic definitions from Combinatorics on Words, in particular that of a Sturmian word
(see Definition 3.3), and build up the machinery necessary to characterize Sturmian words as what are called
mechanical sequences. This equivalent characterization is given by Theorem 3.1 due to Morse and Hedlund
[MH40].

With this characterization at hand, we move on to explain why the recurrence function, a fundamental
function measuring how much it takes for the factors of a word to reappear, of Sturmian words can be
seen purely in terms of continuants deriving from the continued fraction expansion of the frequency of 1s,
known also as the “slope” of the word, within the corresponding word. This remarkable property is given in
Theorem 3.3 and is due also to Morse and Hedlund [MH40].

3.1 Concepts from Combinatorics on Words

Consider a finite set A of symbols (also letters), which we call the alphabet. We are interested in the
properties of words over this alphabet. Words are sequences of symbols from A, and may be infinite u =
(un)n∈N from AN, or finite. We denote by A⋆ the set of all finite words over the alphabet A, while its
elements will be denoted by lower-case letters such as w, v and u. The set A⋆ contains a special element ϵ,
known as the empty word.

The length of a finite word w = w1 . . . wn where w1, . . . , wn ∈ A is denoted by |w| = n, and the length
of the empty word is |ϵ| = 0. An important operation between words is the concatenation ·. Given words
u = u1 . . . un and v = v1 . . . vm, their concatenation u · v is the word u · v = u1 . . . unv1 . . . vm. This
operation turns A⋆ into a monoid with identity ϵ.

The symbol · is omitted in general. This is coherent, as each individual symbol can be thought of as a word
and then w = w1 . . . wn can be interpreted as saying that w is the concatenation of n length-1 words.

89
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3.1.1 The complexity function of an infinite word

We study the properties of infinite words, particularly with regard to their factors. Let u = (un)n∈N be an
infinite word in AN. A finite word w of length n is a factor of u if and only if there exists an index m in u
for which w = um . . . um+n−1.

Let Lu(n) stand for the set of factors of length n of u, while Lu stands for the set of all finite factors of u
and is known as its language. Two functions describe the set Lu(n) of finite factors of the word u, namely
the complexity and the recurrence function.

Definition 3.1 (Complexity function). The complexity function of u ∈ A⋆ is the sequence

pu : n →→ |Lu(n)| .

Periodic words are amongst the “simplest” ones in terms of the complexity function, as they clearly satisfy
pu(n) ≤ C for some constant C. Sturmian words are, informally, the “next simplest words”.

Let us see some basic properties of this function

Proposition 3.1. Let u ∈ AN be an infinite word. The complexity function pu(n) satisfies the simple
properties

pu(n) ≤ |A|n , pu(n) ≤ pu(n+ 1) , pu(0) = 1 , (3.1)

as well as
pu(n+m) ≤ pu(n) · pu(m) , (3.2)

for all n,m ≥ 0.

Inequality (3.2) implies that the complexity function is sub-multiplicative, hence by Fekete’s Lemma [Fek23]
(applied to the logarithms) the limit

lim
n→∞

1

n
log pu(n) , (3.3)

exists and is known as the entropy of the word u. The entropy (3.3) can be thought of as an upper bound
for the compressibility of u, given that the cost per symbol (taking base of the logarithm to be 2) we would
have if we simply coded each block of length n as an integer {0, . . . , pu(n)−1} with fixed length in binary.

Definition 3.2 (Eventually periodic word). A word u ∈ AN is said to be eventually periodic if and only if
there are finite words w, v ∈ A⋆, with v ̸= ϵ such that u = wvN where vN is the infinite word v · v · v · · · .
In such a case u is said to be the preperiod of u, while v is known as the period of u.

Here is a characterization of the eventually periodic words in terms of the complexity function

Proposition 3.2. A word u ∈ AN is eventually periodic if and only if pu(n) ≤ n holds for some n.

Proof. It is clear that pu(n) is bounded when u is periodic. Indeed, the factors w of length n within u are
always among u1 . . . un, u2 . . . un+1, . . . , ui+j . . . ui+j+n−1 where i is the length of the preperiod of u and
j the length of the period of v.

Conversely, assume pu(n) ≤ n. Then for some k we must have pu(k) = pu(k + 1). Indeed, it is clear
that pu(k + 1) ≥ pu(k), and, if we never had equality, then pu(k + 1) ≥ 1 + pu(k) which implies
pu(n) ≥ n+ 1 as we always have pu(0) = 1 because of the empty word ϵ. As this is not the case, there is
k such that pu(k) = pu(k + 1).

This equality means that each factor of length k within u has exactly one extension to length k + 1, this
means that w1 . . . wk determine wk+1. Starting from u1 . . . uk, which determines univocally u2 . . . uk+1, at
some point we must repeat a word of length k as Lu(k) is finite. Thus u is eventually periodic. ■

Observation 3.1. As we have seen during the previous proof, a word u ∈ AN is eventually periodic

• if and only if pu(n) = pu(n+ 1) holds for some n,
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• if and only if pu(n) ≤ C for all n, for some C > 0.

Observation 3.2. A word u ∈ AN is not eventually periodic if and only if pu(n) ≥ n+ 1 for all n.

3.1.2 Definition of Sturmian words

The simplest words that are not eventually periodic satisfy the equality pu(n) = n + 1 for each n ≥ 0. As
pu(1) = 2, the alphabet is necessarily binary, and we consider A = {0, 1}, the binary alphabet, without loss
of generality. It is not immediately obvious that such words do exist, but they do and are known as Sturmian
words. In fact, there is a simple way of systematically constructing such words! See Definition 3.4 below.

Definition 3.3 (Sturmian word). An infinite word u ∈ {0, 1}N is said to be Sturmian if and only if its
complexity function satisfies pu(n) = n+ 1 for all n ≥ 0.

Example 3.1 (The Fibonacci word). One of the simplest, and most classic, examples of a Sturmian word
is given by the so-called Fibonacci word. The Fibonacci word is produced recursively as the limit of the
sequence of words (fn)n ⊂ {0, 1}⋆ defined by:

f0 = 0,f−1 = 1 , fn+1 = fn · fn−1 , n ≥ 1 ,

which follow the classical recurrence of the Fibonacci numbers. Remark that we get

f0 = 0

f1 = 01

f2 = 010

f3 = 01001

f4 = 01001010

...

Observe that, as fn is a prefix of fn+1 we may speak of the limit f∞, being defined as the infinite word
having every fn as a prefix. This limit word f∞ is the Fibonacci word and is a Sturmian word. Here we
show a part of the Fibonacci word

f∞ = 0100101001001010010100100101001001010010100100101001010 · · ·

We will come back to prove that f∞ is indeed a Sturmian when we will have introduced several useful
concepts and results from Word Combinatorics. For the moment we will remark that f∞ is not eventually
periodic. The number of ones in fn is the n-th Fibonacci number fn, while the length of fn is fn+2, thus
the frequency of 1s in f∞ should be given by lim fn/fn+2. As fn ∼ ϕn/

√
5 where ϕ > 1 satisfying

ϕ2 = ϕ+ 1 is the golden number, the frequency of 1s in f∞ should be 1/ϕ2 which is irrational! 3

3.1.3 Basic properties of Sturmian words

Sturmian words satisfy several simple, but useful, properties. An important one is the “recurrence”

Proposition 3.3. Sturmian words are recurrent, that is, every factor appears an infinite amount of times.

Proof. Let u = u1u2 . . . be a Sturmian word and suppose otherwise. If a factor w of u appeared finitely
many times, then there is an index i such that w does not appear in v := ui+1ui+2 . . . but then pv(n) ≤ n
and v is eventually periodic, hence so is u, an contradiction! ■

Proposition 3.4. If u ∈ {0, 1}N is a Sturmian word then
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(a) The generic structure of a Rauzy
graph of a Sturmian word.

(b) Rauzy graph for the Fibonacci word f∞,
here the length of the factors is n = 7.

Figure 3.1: The structure of a Rauzy graph of a Sturmian word. Observe that, since each word has exactly
one right extension except for Rn, all nodes except from Rn have outdegree 1 while Rn has outdegree 2.
Similarly, all nodes save for Ln have indegree 1, while Ln has indegree 2. This leaves us with a structure
like the one in the figure: there are two paths from Rn to Ln and one coming back from Ln to Rn.

1. the words 01 and 10 are factors of u.

2. exactly one of the words 00, 11 is a factor of u.

3. there is only one word Rn ∈ Lu(n) that can be extended on the right in two ways Rn0 ∈ Lu(n+ 1)
and Rn1 ∈ Lu(n+ 1). The other have only one right extension.

4. there is only one word Ln ∈ Lu(n) that can be extended on the left in two ways 0Ln ∈ Lu(n+ 1)
and 1Ln ∈ Lu(n+ 1). The other have only one right extension.

Proof. Property 1 follows from the fact that there are infinitely many 0s and 1s. Now, property 2 follows
from the Definition 3.3 which tells us that pu(2) = 3.

For property 3 we observe that both pu(n) = n + 1 and pu(n + 1) = n + 2. Since every factor has some
right-extension, this tells us that exactly one must have two right-extensions. Finally, item 4 is analogous as
every factor has a left-extension (because by the recurrence we may assume that it is not a prefix of u). ■

Observation 3.3. Note that Rn is necessarily a suffix of Rn+1 and Ln is a prefix of Ln+1.

The structure of Lu(n) described in Proposition 3.4 is best seen from its Rauzy graph Gu(n) (see e.g.,
[Ber96]) : the Rauzy graph Gu(n) associated with an infinite word u is a finite automaton with state space
Lu(n) which describes a moving “sliding window” of length n along the word u; From a state b ∈ Lu(n)
upon scanning letter y, the next word is b · y ∈ Lu(n + 1): we label the edge with u and the next state is
τ(b · y) where τ(f) for a word f just erases the leftmost symbol of f . A Sturmian Rauzy graph of order
n is thus particularly sparse: it has n + 1 vertices and n + 2 edges. The special words Ln and Rn play a
particular role in the Rauzy graph, this is shown in Figure 3.1

The Rauzy Graph Gu(n), illustrated in Figure 3.1, is strongly-connected as u is recurrent. As a consequence
its structure is composed of 3 oriented paths, forming two cycles. This is closely related to the 3-distance
Theorem (see [Sós58] and [Ber96]), which tells us that the words of Lu(n) have only 3 possible frequencies
in u, and gives explicit expressions for them.

Thus far we have not explained how to build Sturmian words, which is not immediate from Definition 3.3.
In Section 3.2 we give an explicit theorem by Morse and Hedlund [MH40], telling us that Sturmian words
occur exactly as a particular coding of the orbit of circle rotations (of irrational angle) introduced in subsec-
tion 1.2.2. This not only gives an explicit construction for Sturmian words, it characterizes them all.
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0 0 1 0 0 1 0 1 0 0

Figure 3.2: In digital geometry S and S code discrete lines. In the picture S(α, 0), where α is the slope.

3.2 The arithmetic nature of Sturmian words

Although Sturmian words may seem purely combinatorial objects, which look difficult to construct, it turns
out that all Sturmian words occur as special codings of circle rotations with an irrational angle α. This is
the central result of this section, but along the way we shall prove several properties regarding Sturmian
words.We cite Morse and Hedlund

“Sturmian trajectories possess certain numerical characteristics, namely, a frequency, a pole, and a type
index, and admit mechanical constructions uniquely determined by these characteristics.” [MH40]

This equivalence between Sturmian words and codings of circle rotations was first proved by Morse and
Hedlund in[MH40]. They, however, did not originally define Sturmian words as above. They defined
Sturmian words to be what in the notation of [Fog02] is called a “balanced word”. This concept that will
come in handy during the proof of this characterization of Sturmian words.

Definition 3.4 (Mechanical sequences). Given a pair (α, β) ∈ [0, 1]2, we define two infinite words S(α, β)
and S(α, β) whose n-th symbols are respectively ⌊α(n+1)+β⌋−⌊αn+β⌋ for S(α, β) and ⌈α(n+1)+
β⌉ − ⌈αn+ β⌉ for S(α, β).

The words S(α, β) and S(α, β) are depicted in Figure 3.2. In digital geometry, these words code the line
y = αx+β from above (S) and below (S) by horizontal lines (coded by a 0) and diagonals (coded by a 1).
In consequence it is commonplace to call α the slope of the word.

Theorem 3.1. [Morse and Hedlund] [MH40] A word u ∈ {0, 1}N is Sturmian if and only if it equals
S(α, β) or S(α, β) for a pair (α, β) formed by an irrational α ∈ (0, 1) and a real β ∈ [0, 1).

We now explain why the sequences from Theorem 3.1 correspond to codings of circle rotations and why
they are actually Sturmian when α is irrational. The equivalence with rotations is stated in Proposition 3.5.

A coding of irrational circle rotations. We recall that in circle rotations, we consider the unit circle
T1 = R/Z, which is comprised of all reals mod 1. We will consider the representatives in [0, 1), thus the
projection of a real number t onto the circle is represented by t mod 1 = {t}, the fractional part of t.

Rotations Rα : T1 → T1 are defined by Rα(x) := (x+ α) mod 1, and we will be interested in coding the
trajectory (or orbit) of an initial point β ∈ T1, which is given by (β,Rα(β),R2

α(β), . . .).

The words S(α, β) and S(α, β) correspond to special codings of circle rotations. Indeed, note for example
that for the word S(α, β) we have the n-th symbol equal to 1 if and only if going through the circle modulo
1 from αn+ β to α(n+1)+ β we traverse 0 ≡ 1, that is, if αn+ β mod 1 belongs to I1 = [1−α, 1). The
coding is illustrated in Figure 3.3.

Proposition 3.5. The infinite word u = S(α, β) is given in terms of the intervals I0 = [0, 1 − α) and
I1 = [1 − α, 1) by coding the rotation of β, considering the n-th symbol (n ≥ 0) to be 1 when Rn

α(β) =
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nα + β mod 1 belongs to I1 and 0 otherwise. Analogously, we may consider I0 = (0, 1 − α] and I1 =
(1− α, 1] with the identification 0 ≡ 1, thus giving the word we denote by S(α, β).

Symbols ui in u = u0u1u2 . . . indicate whether Ri
α(β) ∈ I0 or Ri

α(β) ∈ I1, this process can be iterated to
explain what happens with larger factors w ∈ {0, 1}n of length n. The result being that distinct factors are
in correspondence with the circle intervals delimited by the points [AB98]

0,−α,−2α, . . . ,−nα ,

modulo 1. Intuitively, to know what happens for the next symbol we must rotate the borders by −α.

I0

I1

1− α

0

I00

I10

I01
1− α

1− 2α

0

Figure 3.3: Intervals corresponding to the coding of the rotation of the circle.

When α is irrational, factors of length n correspond to exactly distinct n + 1 intervals. Thus we find
immediately that pu(n) ≤ n+1 for each n. Equality actually holds because the orbit is dense in the circlea.
Thus S(α, β) and S(α, β) are Sturmian words when the slope α is irrational.

Observation 3.4. It is important to remark that the fact that the length of I1 coincides with the angle of
rotation is fundamental to produce Sturmian words.

Indeed, suppose that we coded 1 on the interval I1 = [1 − α′, 1) with α′ > α and α + α′ < 1. Then the
intervals corresponding to words of length 2 are necessarily

I00 = [0, 1− α− α′), I01 = [1− α− α′, 1− α′), I11 = [1− α′, 1− α), I10 = [1− α, 1) ,

so we have all possible words of length 2, giving a word that is not Sturmian. 3

A final important remark is that S(α, β) and S(α, β) coincide unless αk + β is an integer for some k (this
can happen only for a single integer k), in which case they differ just on two symbols: indeed

⌊α(k + 1) + β⌋ − ⌊αk + β⌋ = 0 ̸= 1 = ⌈α(k + 1) + β⌉ − ⌈αk + β⌉

and
⌊αk + β⌋ − ⌊α(k − 1) + β⌋ = 1 ̸= 0 = ⌈αk + β⌉ − ⌈α(k − 1) + β⌉ ,

due to the floor and ceiling functions.

Strategy for the proof of Theorem 3.1. The proof is classical, here we follow [Fog02]. As we have
already shown that S(α, β) and S(α, β) are Sturmian, we need only prove the converse, that is: if u is a
Sturmian word, then either u = S(α, β) or u = S(α, β).

The proof goes through the following steps:

(1) the frequency of 1s, as defined in Definition 3.5, exists for every Sturmian word u, call it α.

(2) α is irrational.
aEnough to see that n ·α+m ·1 = ϵ can be arbitrary small (follows from Observation 1.3), as then

⌊ t
ϵ
⌋n · α+ ⌊ t

ϵ
⌋m− t

 ≤ ϵ.
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(3) two Sturmian words with the same α have the same language of factors.

(4) a Sturmian word u with frequency of 1s α can be “approximated” by taking increasingly long factors
from S(α, 0) and S(α, 0).

(5) there is a convergence of this sequence of factors (over AN) to either S(α, β) or S(α, β) for some β.

We formalize the notion of frequency and discuss the frequency of the words S(α, β) and S(α, β) defined
in Definition 3.4 which is both fundamental and motivates our plan.

Definition 3.5 (Frequency of a factor). Let u ∈ AN and consider a factor w ∈ A⋆. Then, the limit

fw := lim
n→∞

1

n

0 ≤ i ≤ n− |w| : ui+1 . . . ui+|w| = w
 , (3.4)

if it exists, is called the frequency of w in u.

The numerator in (3.4) represents the number of occurrences of w in u1 . . . un. It is important to compare
this with Birkhoff’s Ergodic Theorem (Theorem 1.1).

For S(α, β) and S(α, β), the frequencies exist for every factor w. Indeed, for w = w1 . . . wn, consider
the fundamental interval Iw := Iw1 ∩Rα

−1Iw2 ∩ . . . ∩Rα
−(n−1)Iwn . Then, thanks to Proposition 3.5, the

indicator function 1Iw(β) tells us whether w occurs at the beginning of the word (index 0). Thus the sum
1Iw(β) + 1Iw(R1

αβ) . . . + 1Iw(Rn−1
α β) is number of occurrences of w among the indices 0, . . . , n − 1.

Proposition 1.12 tells us that the frequency of w actually exists and equals the length of Iw.

Observe that for S(α, β) and S(α, β), the frequency of 1s is simply α, the angle of rotation/slope. Since
the frequency of a factor w, more generally, is |Iw|, note that the factors from the language of S(α, β) and
S(α, β) are characterized solely by α and are independent from β. Thus for the words S(α, β) and S(α, β)
we conclude that there is a bijection between α and the language of the word. This conclusion motivates
steps (3) and (4) from the proof plan.

Observation 3.5. From Theorem 3.1 we conclude that the frequency of any factor w of a Sturmian word u
actually exists.

3.2.1 The slope of a Sturmian word

In this subsection we prove steps (1) and (2) from the proof plan for Theorem 3.1, namely, that the frequency
of 1s α exists for every Sturmian word u and that α ̸∈ Q.

Actually, for Sturmian words, not only does the frequency exist, as a matter of fact all factors of u give
excellent approximations of the frequency of 1s (this is given in Corollary 3.1 below). This remarkable
property is called the balance of a word.

Definition 3.6 (Balanced word). A binary word u, be it finite or infinite, is said to be balanced if for every
n ≥ 0 and for pair of factors w and v of length n, we have that the number of symbols 1 present in both w
and v differ by at most 1.

Notation 3.1. We denote by |u|1 the number of ones in u. Thus, the latter part of the definition can be
rewritten as ||w|1 − |v|1| ≤ 1. Analogously we write |u|0 for the number of 0s.

We remark that for a balanced word u ∈ AN, all factors w, v ∈ Ln(u) satisfy ||w|1/|w| − |v|1/|v|| ≤ 1/n.

To prove that Sturmian words are balanced (i.e., Proposition 3.6), we require a technical lemma.

Lemma 3.1. If a binary sequence u is not balanced (be it finite or not), then it contains two subwords 0w0
and 1w1 for some w ∈ {0, 1}∗. Further, without loss of generality, we may suppose that the pair satisfies
the property that there is no pair of factors a, b ∈ Lu(m) with |a|1 − |b|1 ≥ 2 and m < |w|+ 2.

Proof. Let a and b satisfy |a|1 − |b|1 ≥ 2 and have length as short as possible. It is clear then that a and
b must differ in their borders (else we can eliminate the part that is equal and still get the same difference



3.2. THE ARITHMETIC NATURE OF STURMIAN WORDS 96

|a|1 − |b|1). Clearly then a = 1w1 and b = 0 w0, for some words w and w. Indeed, the “crossed” cases
a = 1w0, b = 0 w1 and a = 0w1,b = 1 w0 are not possible (because |a|1 − |b|1 = |w|1 − | w|1 and the latter
are shorter). Then, having a = 0w0, b = 1 w1 implies |w|1 − | w|1 = 2 + |a|1 − |b|1 ≥ 2. Now we claim
w = w. Assume otherwise, then there is a first index for which they differ, that is w = xαy, w = xαy′
where α ∈ {0, 1}, x, y, y′ ∈ {0, 1}⋆. Note then that α cannot be 1 because otherwise we would have 1x1
and 0x0 as subwords, and these satisfy |1x1|1−|0x0|1 = 2 while being shorter. Hence α = 0 and w = x0y,w = x1y′. But then we have |a|1 − |b|1 = |y1|1 − |y′0|1 which again leads to an absurd. ■

Proposition 3.6. A binary word u ∈ {0, 1}N is Sturmian if and only if it is balanced and non-eventually
periodic.

Proof. Consider a Sturmian word u ∈ {0, 1}N. We already know from Proposition 3.2 that u is not
eventually periodic. We now prove it is balanced. Suppose otherwise, then from Lemma 3.1 it follows that
there are factors 0w0 and 1w1 in u for somew ∈ {0, 1}⋆, minimal in length. From Proposition 3.4 we know
that either we have 00 as a factor or 11, but not both. This means immediately that w ̸= ϵ, but it also tells us
that if w = w0 . . . wn for some n ≥ 0, then w0 = wn. Furthermore, w is a palindrome, i.e., wk = wn−k for
all k = 0, . . . , n. Indeed, if it were not, let k ≥ 1 be the smallest such that wk ̸= wn−k, then 0w0 . . . wk−10
and 1wn−k+1 . . . wn1 form a shorter pair of unbalanced factors.

Now, since w can be extended to the right in two ways, i.e., w = Rn+1, this means that one of 0w, 1w is
Rn+2. Without loss of generality we assume it to be 0w. Thus we have that 0w0, 0w1, 1w1 are factors of
u, however note that 1w0 is not.

Here we remark the following key property:

if 1w1 = ui . . . ui+n+2, then 0w does not occur within v := wi . . . wi+2n+3. (1)

This is proved as follows: if it did occur withing v, then the word 0w must start within the first n+ 3 letters
of v (which correspond to a 1w1), as follows from comparing lengths. Then, as w is a palindrome we must
have 0w0 . . . wk = wn−kwn−k−1 . . . w01 for some k, but this is absurd as then wk = 1 and wn−k = 0.

Now we may continue with the proof of the proposition, armed with our key property. Property (1) tells
us that within v = wi . . . wi+2n+2 at most n + 2 factors of length n + 2 may occur. As we have words
wi . . . wi+n+1, wi+1 . . . wi+n+2, . . . , wi+n+2 . . . wi+n+3, for a total of n + 3, some factor of length n + 2
must appear at least twice. But all of these factors of length n + 2 are distinct from 0w = Rn+2, so all of
them have one right extension. Thus the factor appearing twice tells us that then this cycle repeats forever,
a contradiction, since we know u is not ultimately periodic.

For the converse we must show that pu(n) = n+ 1. Suppose otherwise, then let n be the smallest positive
integer such that pu(n) ≥ n+2. Then pu(n−1) = n and so there are two distinct factors, a and b, of length
(n − 1) that can be extended right-wards in two ways. Thus our word contains the words a0, a1, b0, b1 as
factors. We may suppose that the words a and b differ only on their first symbol (else a smaller n would do).
Then we have factors of the form 0w0 and 1w1, contradicting the balancedness of u. ■

With these results in hand, we can finally prove that the Fibonacci word f∞ defined in Example 3.1 is a
Sturmian word.

Example 3.2 (The Fibonacci word revisited). We show that the Fibonacci word f∞ defined in Example 3.1
is not eventually periodic, and hence from Proposition 3.6 it will follow that it is a Sturmian word. We prove
f∞ is balanced. In order to prove it, it is more convenient to define the sequence fk in terms of a morphism
σ : {0, 1}⋆ → {0, 1}⋆ defined by σ(0) = 01 and σ(1) = 0. Being a morphism on the monoid {0, 1}⋆ means
that σ satisfies σ(ϵ) = ϵ and σ(a · b) = σ(a) · σ(b), so defining it on {0, 1} is enough.

We remark then that σ(fk) = fk+1 indeed, by induction we see that σ(f0) = σ(0) = 01 = f1 and then if
we have σ(f j) = f j+1 for all j ≤ k, we have

σ(fk+1) = σ(fk · fk−1) = σ(fk) · σ(fk−1) = fk+1 · fk = fk+2 .
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Thus in fact, f∞ is usually defined as the fixed point of the morphism σ [Fog02].

Suppose now that f∞ were not balanced, then from Lemma 3.1 it follows that there would be factors of the
form 0w0 and 1w1 within fm for m large enough. Since f∞ is clearly recurrent, we may further assume
that the two subwords 0w0 and 1w1 we will be working with are not at the beginning of f∞. Clearly w is
not empty as 11 cannot appear in f∞ by Proposition 3.4. The word w can only start with a 0 and end with
a 0, since there cannot be two consecutive 1s (else 1w1 would not be a subword). Thus w = 0w′0 and so
00w′00 and 10w′01 are subwords of fm.

Now, observe that the morphism σ is injective from {0, 1}⋆ to {0, 1}⋆, in fact

• A 1 within the sequence implies that the symbol immediately to its left is a 0, and that we may extract
the preimage of this pair to be 0.

• A 00 indicates that the first 0 must come from σ(1) as otherwise it would be followed by a 1.

In conclusion, we know that the letter to the left of 10w′01 is a 0 and then fm contains 010w′01 which
has 0σ−1(0w′)0 as its preimage and this is a subword of σ−1(fm) = fm−1. Similarly, we note that
having 00w′00 in fm implies having 1σ−1(0w′)1 in fm−1. So both 0σ−1(0w′)0 and 1σ−1(0w′)1 appear
as subwords of fm−1 and fm−1 is not balanced either. This idea follows inductively until we get m small
enough for it to be obvious that fm is balanced and we have reached an absurd. 3

Proposition 3.7. Let u ∈ AN be a Sturmian word, then for any pair of factors u ∈ Lu(n) and v ∈ Lu(m)
we have  |u|1n − |v|1

m

 ≤ 1

n
+

1

m
. (3.5)

Proof. This proposition follows from Proposition 3.6. Let gk be the minimal number of 1s for the words of
Lu(k), so that each word of Lu(k) has either gk or gk + 1 ones.

As any factor of length n×m is composed of n factors of length m, or equivalently m factors of length n,
we derive the inequalities

mgn ≤ n(gm + 1) , ngm ≤ m(gn + 1) .

This means that
gn
n

− gm
m

≤ 1

m
,

gm
m

− gn
n

≤ 1

n
,

and these imply

|u|1
n

− |v|1
m

≤ gn + 1

n
− gm
m

≤ 1

n
+

1

m
,

|v|1
m

− |u|1
n

≤ gm + 1

m
− gn

n
≤ 1

m
+

1

n
,

thus proving the result. ■

Corollary 3.1. Let u ∈ {0, 1}∞ be a Sturmian word, then the frequency α := f1 of 1s exists and satisfies |w|1|w|
− f1

 ≤ 1

|w|
, (3.6)

for any w ∈ L(u).
Proof. Proposition 3.7 implies that the sequence (gk/k)

∞
k=1, where gk is the least possible number of ones

in a factor of length k in u, is a Cauchy sequence and hence converges to a real number α ∈ [0, 1].

This number α is equal to f1, frequency of 1s, as Sturmian sequences are balanced. Finally (3.6) follows
from Proposition 3.7 by choosing V to be a word in Lm(u) having the least possible number of 1s and then
taking the limit m→ ∞. ■

Following our proof plan described at the beginning of Section 3.2, the frequency α = f1 will end up being
the rotation angle in Theorem 3.1. As such, the rotation angle α must be irrational (step (2)).
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Proposition 3.8. Let u ∈ {0, 1}∞ be a Sturmian word, then the frequency α := f1 of 1s is irrational.

Proof. Assume for the sake of contradiction that α = p/q with gcd(p, q) = 1. Let gk be the minimal
number of 1s for the words of Lk(u). Then we have (just think of u as a series of blocks of length k)

gk
k

≤ α ≤ gk + 1

k
.

Pick k = q, then
gq
q

≤ p

q
≤ gq + 1

q
,

thus either p = gq or p = gq + 1.

Suppose first that p = gq and consider k = 2rq for r ≥ 0. Then 2rgq ≤ g2rq and therefore
g2rq
2rq

is increasing

in r. As it converges to α = gq/q it we get that
g2rq
2rq

= gq/q for all r ≥ 0. We show this is absurd.

As the word u is not periodic, there is a factor w of length q such that |w|1 = gq + 1. From Proposition 3.3
we know that w occurs an infinite number of times in u, hence it must occur at two indices congruent
modulo q. Thus for r large enough we can find a factor v of length 2rq for which w occurs at least twice,
and hence |v|1 ≥ 2raq + 2. This means that a2rq ≥ 2raq + 1, thus producing the contradiction.

The proof for the case p = gq + 1 is analogous. ■

3.2.2 The language of a Sturmian word

In this subsection we prove steps (3) and (4) from the proof plan for Theorem 3.1 given at the beginning of
Section 3.2, namely, that the language of a Sturmian word u is determined by its slope α and that we can
approximate u by arbitrarily long factors of S(α, 0) and S(α, 0) in a precise sense.

The topology of AN. We turn the space of infinite words AN over the alphabet A into a metric space by
introducing the distance

d(u, v) = 2−m , m := min{k ≥ 1 : uk ̸= vk} ,

and d(u, v) = 0 when u = v, which coincides with the intuition “min ∅ = ∞” and “2−∞ = 0”.

Thus a sequence of infinite words u(1),u(2), . . . in AN converges to a word v if and only if, for each index
k ≥ 1 there is Nk ≥ 0 for which u(n)1 . . . u

(n)
k = v1 . . . vk for all n ≥ Nk. Informally, if the prefixes

“stabilize”, becoming constant from some point on.

Observation 3.6. Of course, the topology we have just introduced for AN is non other than the product
topology: consider the discrete topology over the finite alphabet A.

Since the discrete topology makes A compact, the product AN is compact by Tychonoff’s Theorem (see for
instance [Mun00]).

Definition 3.7 (Convergence on A∞ := A⋆ ∪ AN). To extend AN to A∞ := A⋆ ∪ AN we may consider
that A∞ is actually a closed topological subspace of (A ∪ {ϵ})N, where ϵ denotes the empty word. Thus we
may speak of the convergence of finite words in A⋆ to infinite words in AN.

Example 3.3. This is the case of Example 3.1, where the finite words fk converge to f∞. 3

We may also speak of continuous functions on the space (AN, d). The simple example of such a function
being the shift map S : A → A defined by S(x1x2x3 . . .) = x2x3 . . .. The map S is clearly continuous as it
satisfies the inequality d(Su, Sv) ≤ 2d(u,v).

We already know that (AN, d) is compact due to Tychonoff’s theorem, however we present a classical proof
with a diagonal argument for the sake of completeness.
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Proposition 3.9. The metric space (AN, d) is compact.

Proof. Given a sequence of words u(1),u(2), . . ., we will show that there is a convergent subsequence.

Since the alphabet A is finite, there must be some letter a1 ∈ A that appears infinitely many times as the

first letter u(k)
0 = a. Let u(n

(0)
1 ),u(n

(0)
2 ), . . . be a subsequence such that u

(n
(0)
k )

0 = a0 for all k ≥ 1.

Repeating the argument we get an increasing subsequence (n(1)k )∞k=1 of (n(0)k )∞k=1 such that the second entry

u
n
(1)
k

1 is always equal to some symbol a1 ∈ A, and so on producing (n
(2)
k )∞k=1, (n

(3)
k )∞k=1, . . .

Now comes the diagonal argument. Consider mk := n
(k)
k , then u

(n
(k)
k )

0 . . .u
(n

(k)
k )

k = a0 . . . ak for all k ≥ 1

and we see that u(n
(k)
k ) converges to a = a0a1 . . . ■

The slope and the factors of Sturmian words. We denote by S : AN → AN the shift S(x1x2x3 . . .) =
x2x3 . . . The study of the factors of S comes down to the study of its orbit O(u) := {u, Su, S2u, . . .},
from a topological perspective. More precisely, we are interested in Xu := O(u), its topological closure.

The set Xu is compact and closed under S (by the continuity). We shall see that the set Xu, the subshift of
u, is actually characterized by the fact that every element has the same given frequency of 1s as u.

Proposition 3.10. Let u ∈ {0, 1}N be a Sturmian word. The for every v ∈ Xu = O(u) we have Lv = Lu

and the frequency of 1s in v and u are equal.

In order to prove Proposition 3.10, we introduce a new concept: the uniform recurrency of a word. This
property actually amounts to each elements from Xu having the exact same language as u. Uniformly
recurrent words have, even though the may be aperiodic, a sort of recurrence that we will afterwards measure
with the so called recurrence function, a central object to this dissertation.

Definition 3.8 (Uniformly recurrent word). A word u ∈ AN is said to be uniformly recurrent if and only if
each factor w in u appears infinitely often and with bounded gaps.

That is, given a factor w in u, there exists is a constant C := Cu(w) > 0 such that if ui+1 . . . ui+n = w,
there is j with 0 < j − i ≤ C such that uj+1 . . . uj+n = w.

Sturmian words are all uniformly recurrent. Thinking from S(α, β) and S(α, β) , this happens because
kα mod 1 is dense on [0, 1] and factors correspond to intervals (recall Proposition 3.5).

Proposition 3.11. Sturmian words are uniformly recurrent.

Proof. Let u be a Sturmian word and suppose otherwise. We already know from Proposition 3.3 that u
is recurrent, so for it to be not “uniformly recurrent” we must assume we had a factor w of u that appears
infinitely many times but not with bounded gaps, i.e., for each C > 0 there are indices i and j such that
j − i > C and ui+1ui+2 . . . ui+n = uj+1uj+2 . . . uj+n = w and w is not a factor of the finite word
ui+2 . . . uj+n−1.

Thus we may construct an infinite sequence of factors, increasing in length, that do not contain w. This
sequence has a fixed point v ∈ {0, 1}N. Since this new word v is a limit of factors of u not containing w,
we see that it has at most |w| factors of length |w| (because u is Sturmian). Thus v is eventually periodic
and its frequency of 1s is rational, but its frequency of 1s should coincide with that of u by Proposition 3.10,
which is irrational because of Proposition 3.8. ■

Corollary 3.2. Let u be a Sturmian word. Then Lu(n) = Lv(n) for all v ∈ O(u).

Then the following Theorem 3.2 is the final result of this subsection, which states that the slope α character-
izes the language of a Sturmian word and summarizes the fact that speaking about language and subshifts is
the same thing. This is key to the proof of Theorem 3.1 as this means that a Sturmian word u with slope α
has the same language as S(α, 0) and S(α, 0) (clearly of slope α) and hence u belongs to their subshift; it
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can be approximated from arbitrarily long factors of these.

Theorem 3.2. Let u and v be two Sturmian words with the same frequency of 1s. Then the language of
factors of both words coincide Lu = Lv , equivalently O(u) = O(v). Conversely, if Lu = Lv, then u and
v have the same slope (frequency of ones).

Observation 3.7. As a consequence, for Sturmian words we may speak of Lα, where α is the slope.

In order to prove this, we need a technical lemma regarding balanced sets of words. This is related to the
characterization of a Sturmian word as an aperiodic balanced word u ∈ {0, 1}N. In fact, from this technical
lemma one can easily derive that a balanced and aperiodic word is a Sturmian word.

Definition 3.9. A set of finite words L is said to be balanced if and only if for every pair of words w, v ∈ L
and factors w′ and v′, of w and v respectively, of the same length we have ||w′|1 − |v′|1| ≤ 1.

Lemma 3.2 (Ex. 6.1.12 [Fog02]). If a set of finite words L is balanced, then the number of words of length
n is at most n+ 1.

Proof. We may assume without loss of generality that our sets L satisfy that if u ∈ L and v is a factor of u,
then v ∈ L, as the addition of v still makes L balanced. We proceed by induction on n. The result is clear
for n = 0 and n = 1. Now assume the result to be true for all n < m, let us prove it for m.

Assume we had m+ 2 words of length m. Then, as we had only m words of length m− 1, two of these u
and v must have two right-extensions u0, u1 and v0, v1 on L. Write u = u1 . . . um−1 and v = v1 . . . vm−1

and let k = max{1 ≤ i < m : vi ̸= ui}. Of course k ≤ m − 1 is well-defined as u ̸= v. Then
U = ukuk+1 . . . um−1uk and V = vkvk+1 . . . vm−1vk are words in L and differ only in the first and last
symbol. Thus we get ||U |1 − |V |1| = 2, a contradiction ■

Proof. [Proof of Theorem 3.2] Consider two Sturmian words u and v with the same frequency α of 1s. Let
gk(u) and gk(v) denote the minimal number of ones in a factor of length k in u and v respectively, so that
any factor of length k in u has either gk(u) or gk(u) + 1 ones, and similarly for v. Then we know that

gk(u)

k
≤ α ≤ gk(u) + 1

k
,

gk(v)

k
≤ α ≤ gk(v) + 1

k
,

but this immediately implies that gk(u) = gk(v), because kα cannot be an integer. In turn, this means
that the union Lk(u) ∪ Lk(v) is balanced in the sense of Definition 3.9. Thus from Lemma 3.2 we deduce
that |Lk(u) ∪ Lk(v)| ≤ k + 1, which means that Lk(u) = Lk(v) = Lk(u) ∪ Lk(v) by comparing the
cardinalities following the definition of Sturmian words. ■

3.2.3 End of the proof of the characterization of Morse-Hedlund Theorem 3.1

Proof. Let u be a Sturmian word of frequency α = f1(u). We show that there is β ∈ [0, 1) such that either
u = S(α, β) or u = S(α, β).

Let us consider the centered v = S(α, 0), which as we have seen corresponds to the codings of circle
rotations in Proposition 3.5. We know from Theorem 3.2 that u ∈ O(v) so that u is seen as the limit of
Sn1v, Sn2v, . . . for some increasing sequence n1, n2, . . . We note that Snkv = S(α, {nkα}) and that the
sequence {nkα} on the unit interval mod1 must have a convergent subsequence. Thus we may assume
β = lim

k→∞
nkα on T1.

We prove that u = S(α, β) or u = S(α, β) by showing that Snkv tends to S(α, β) or S(α, β). As β =
limnkα on T1, we may assume that the sequence nkα either increases to β (tends to it counter-clockwise
in the sense of Figure 3.3) or it decreases to it (tends to it clockwise). Whether we have u = S(α, β) or
u = S(α, β) will depend exactly on this property.

We note that Snkv = S(α, {nkα}) and S(α, β) differ within the first m symbols if and only if {nkα} and
β belong to two different intervals of T1 delimited by the points 0,−α, . . . ,−mα modulo 1. As {nkα}
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tends to β modulo 1, the only case in which this does not happen for large enough k is when β is one of the
points 0,−α, . . . ,−mα modulo 1.

It is important to picture what happens at the borders of these delimited intervals (as in Proposition 3.5 with
0 ≡ 1 and 1 − α). In the case of S(α, β) we note that the delimited intervals (corresponding to factors
of length m) partitioning T1. These intervals are [a0 = 0, a1), [a1, a2), . . . , [am, am+1 = 1) where the
sequence ai increases. Moreover, for S(α, β) they read (0, a1], (a1, a2], . . . , (am, 1] for the same underlying
sequence ai. Suppose β = aj , then if {nkα} increases towards β we have that {nkα} ∈ (aj−1, β], setting
a−1 = am, for large enough k and so S(α, {nkα}) coincides with S(α, β) in the first m symbols for large
enough k. Else if {nkα} decreases towards β we have that {nkα} ∈ (β, aj+1], setting am+1 = a1, for large
enough k and then S(α, {nkα}) coincides with S(α, β) on the first m symbols for large enough k. ■

3.3 A second concept from Word Combinatorics: recurrence

We have already introduced the complexity function and several other key properties concerning Sturmian
words, in particular that they are “mechanical sequences” (see Theorem 3.1). Along the way we defined
the concept of uniform recurrence, as a convenient combinatorial formulation of the equivalence between
having two words u and v have equal languages Lu = Lv and having v belonging to the closure Xu of
the orbit O(u) = {u, Su, S2u, . . .} b (equivalently u ∈ Xv). We recall that an infinite word u ∈ AN is
uniformly recurrent if every factor of u appears infinitely often and with bounded gaps (see Definition 3.8).
We proved in Proposition 3.11 that Sturmian words are uniformly recurrent.

Here we will concentrate on the concept of recurrence for its own sake. We have already discussed the
complexity (the number of finite factors) of infinite words. It is also important to study where finite factors
occur inside the infinite word u. For uniformly recurrent words, such as Sturmian words, all factors reappear
with bounded gaps. We can then quantify the size of these gaps by using the so-called recurrence function.

In this section we introduce the recurrence function, discuss its basic properties and explain a fundamental
result, Theorem 3.3, again by Morse and Hedlund [MH40]. This theorem relates the recurrence function of
a Sturmian word with slope α to the continuants of α, and its proof depends strongly on Theorem 3.1.

3.3.1 Definitions and basic properties

In this subsection we introduce the recurrence function, and discuss briefly a proposition relating it to the
complexity function.

We recall the definition of uniform recurrence.

Definition. 3.8 A word u ∈ AN is said to be uniformly recurrent if and only if each factor w in u appears
infinitely often and with bounded gaps.

In other words, given a factorw in u, there exists is a constantC := Cu(w) > 0 such that if ui+1 . . . ui+n =
w, there is j with 0 < j − i ≤ C such that uj+1 . . . uj+n = w.

Denote by wu(q, n) the minimal number of symbols uk with k ≥ q which have to be inspected to discover
the whole set Lu(n), starting from the index q. Then, the integerwu(q, n) is a sort of “waiting time” and u is
uniformly recurrent if each set {wu(q, n) | q ∈ N} is bounded, and we may define the so-called recurrence
function n →→ Ru(n).

Definition 3.10. Recurrence function Let u ∈ AN be a uniformly recurrent word, then the recurrence
function is defined by

Ru(n) := max{wu(q, n) | q ∈ N} , (3.7)
bRecall that S : AN → AN, the shift map, is defined by S(x1x2x3 . . .) = x2x3 . . .
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(b) Recurrence function for α = 1/e.

Figure 3.4: Examples of recurrence function for two Sturmian words. In order to illustrate better the behav-
ior of the recurrence function, we have interpolated linearly between consecutive non-jump points.

where wu(q, n) := min{m ∈ N : uq . . .uq+m−1 contains all of the factors Lu(n)}.

This is clearly equivalent to the following usual definition: any factor of length Ru(n) from u contains all
factors of length n of u, and the length Ru(n) is the smallest integer which satisfies this property.

The complexity function and the recurrence function are related through the following bound

Proposition 3.12. Let u ∈ AN by an infinite word on a finite alphabet A, then the complexity function pu
and the recurrence function Ru of u satisfy

Ru(n) ≥ pu(n) + n− 1 .

Proof. If a factor w of lengthm in u contains every factor of length n, then for each of the pu(n) = |Lu(n)|
factors of length n, there is a corresponding index of w where they start. Then we must surely add n − 1
characters to complete the factor of length n with the largest starting index on w. ■

Any Sturmian word is uniformly recurrent. Its recurrence function only depends on the slope α (recall
Theorem 3.2) and is thus denoted by n →→ R(α, n). Figure 3.4 gives the plots for two different slopes. Note
that the recurrence is piece-wise affine, a fact that will be explained by Theorem 3.3.

3.3.2 The frequencies of the factors of a Sturmian word

The recurrence function is strongly related to the frequencies of the factors. Intuitively, a factor appearing
more rarely should force us to have a larger Ru(n).

We have already explained what happens with the frequencies of the factors of Sturmian words, as these
correspond to circle intervals. We recall it here

Proposition 3.13. Let u ∈ {0, 1}N be a Sturmian word of slope α and w = w1 . . . wn be a factor of u of
length n. Then the frequency of w in u is given by |Iw| where

Iw := Iw1 ∩R−1
α (Iw2) . . . ∩Rn−1

α (Iwn) ,

where I1 := [1− α, 1) and I0 := [0, 1− α), considered as circle intervals on T1.

This would make it seem as if we had to compute the length |Iw| for every single factor w. We underline
that this is not the case: for any given length n, there are at most three possible frequencies for the factors
of length n. This property is most easily explained from the form of the Rauzy graph (see Figure 3.1).

We recall that the Rauzy Graphs Gu(n), as shown in Figure 3.1, are strongly-connected (Sturmian words
are recurrent). Its structure is composed of 3 oriented paths, forming two cycles, thanks to Proposition 3.4.
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The structure of the graph tells us at once that there can be at most 3 possible frequencies for the words in
Lu(n), one of them being the sum of the other two (the frequency of the path back from Ln to Rn).

Proposition 3.14 (Weak three-distance theorem). Let α ∈ I \Q. Consider the circle T1 intervals I0, . . . , In
delimited by the set of points 0, α, . . . , nα mod 1 ordered geometrically. Then the lengths of the intervals
(Ik)

n
k=0 attain at most 3 possible values, the largest being the sum of the other two.

This is a weak version of the three-distance theorem ([Sós58], [Ber96]), which, in its full form also gives
precise formulas for each of the three distances in terms of the continuants (qk(α))k of the slope α. We will
not prove the complete version of the three-distance theorem, but it is worth highlighting that Lemma 3.4
could be seen as a particular consequence of it.

The smallest and largest of these 3 frequencies play a fundamental role. The smallest frequency, which
corresponds to the smallest intervals Iw, are the words we would expect to appear less often, and similarly
the largest frequency, which corresponds to the largest intervals Iw.

Definition 3.11 (Smallest distance). Let α ∈ [0, 1). On the circle T1 = R/Z consider the intervals delimited
by the set of points 0, α, . . . , nα mod 1. We denote by Γ(α, n) the smallest length of these intervals.

Observation 3.8. Note that the smallest distance Γ(α, n) corresponds to the smallest possible frequency of
a factor from Lα(n+ 1).

The smallest distance can be characterized in terms of the convergents of α.

Proposition 3.15. Let α ∈ [0, 1) and n ∈ N. Let k be the unique non-negative integer such that qk(α) ≤
n < qk+1(α). The smallest distance Γ(α, n) is then given by

Γ(α, n) =Mk(α) := |αqk − pk| . (3.8)

Proof. We note that if the distance on T1 between αi and αj for 0 ≤ i < j ≤ n is Γ(α, n), then so is the
distance between 0 and (j − i)α where 0 ≤ (j − i) ≤ n. The proof then follows from Proposition 1.5. ■

We also give the notation for the largest distance, which will also be involved in the proof.

Definition 3.12 (Largest distance). Let α ∈ [0, 1). On T1 = R/Z consider the intervals delimited by the
points 0, α, . . . , (n− 1)α modulo 1. We denote by Υ(α, n) the maximum of the lengths of these intervals.

We remark that the remaining distance equals Υ(α, n)− Γ(α, n) due to 3.14.

3.3.3 The Morse-Hedlund formula for recurrence of Sturmian words

Now that we have described the recurrence function and the smallest distance, we come to a key theorem of
this section, relating the recurrence function Rα(n) to the continuants of α.

Theorem 3.3 (Morse, Hedlund [MH40]). Fix an irrational slope α > 0, then the recurrence function can
be computed in terms of the continuants of α by the formula

Rα(n) = n− 1 + qk−1(α) + qk(α) , (3.9)

where the index k = k(α, n) is the only positive integer such that qk−1(α) ≤ n < qk(α).

Observe that Theorem 3.3 implies that the recurrence function is piece-wise affine (when we extend to
non-integer points), this is illustrated in Figure 3.4.

Here we rewrite the Morse and Hedlund’s proof in our notation. In order to do this, we will first relate the
recurrence function to the smallest distance Γ(α, n).

Definition 3.13 (First recurrence time). We define the first recurrence time ξ[ϵ, α] to be the smallest positive
integer m such that the maximum length of the circle T1 intervals delimited by 0, α, 2α, . . . , (m− 1)α, on
the unit circle, is at most ϵ > 0.
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It is important to note that in Definition 3.13 we havem points and notm+1 as in the definition of Γ(α,m).

Observation 3.9. By symmetry we have ξ[ϵ, α] = ξ[ϵ,−α] for any α ∈ R.

Lemma 3.3. The recurrence function Rα(n) and the smallest distance Γ(α, n) are related through the first
recurrence time ξ as follows

Rα(n) = ξ[Γ(α, n), α] + n− 1 , (3.10)

for all n.

Proof. We prove first the inequality Rα(n) ≤ ξ[Γ(α, n), α] + n − 1. Let m = ξ[Γ(α, n), α] + n − 1, we
intend to show that every factor in u = uα,β := S(α, β) of length m contains all factors of length n. Pick
an arbitrary factor of length m within u, by changing β we may assume that the factor is u0 . . . um−1.

Thus, to show that u0 . . . , um−1 contains every factor of length nwe have to show that the factors are among

u0 . . . un−1, u1 . . . un, . . . um−n . . . um−1 .

Factors of length n correspond to the intervals on the circle T1 delimited by

0,−α, . . . ,−nα ,

modulo 1, and we must show that among the points β, β + α, . . . , β + (m − n)α modulo 1, there is at
least one in each of the n + 1 circle intervals. Observe that if this were not the case, then the maximum
distance between two geometrically consecutive points β, β + α, . . . , β + (m − n)α modulo 1 is greater
than Γ(α, n), the minimal distance between points 0,−α, . . . ,−nα mod1, but this is impossible since
m− n+ 1 = ξ[Γ(α, n), α] precisely.

Next, we show the converse inequality Rα(n) ≥ ξ[Γ(α, n), α] +n− 1. Let m−n+1 = ξ[Γ(α, n), α]− 1,
we will show that there is a factor of length m not containing every factor of length n.

From the definition Definition 3.13 of ξ and Observation 3.9 it follows that, among the intervals delimited
by the points β, β + α, . . . , β + (m − n)α on T1, there is an interval I of length greater than Γ(α, n). By
adjusting β (this does not change the language) we may assume there is one of the intervals delimited by
0,−α, . . . ,−nα, call it J , fully contained within this interval I , as the lengths of these intervals is strictly
smaller than that of I . But this means that the word corresponding to J does not occur in u0 . . . um−1,
because it cannot start at any index 0, 1, . . . ,m− n. ■

Next we study the behavior of the largest distance. This is key due to the fact that ξ[Γ(α, n), α] is precisely
the smallest “time” to have largest distance smaller than Γ(α, n).

Lemma 3.4. Let α ∈ I be an irrational and let k > 1, then the largest distance Υ defined in Definition 3.12
satisfies

Υ(α, qk−1(α) + qk(α)) ≤Mk−1 , (3.11)

Υ(α, qk−1(α) + qk(α)− 1) > Mk−1 , (3.12)

where Mk(α) := |αqk(α)− pk(α)|.
Proof. We start from (3.11). We must show that the maximum length of the non-overlapping intervals of
T1 delimited by the set of points 0, α, 2α, . . . , (qk−1 + qk − 1)α modulo 1, is at most Mk−1. To do this we
show that for each αi mod 1 in our set there is another point αj mod 1, from our set, at T1-distance less
than Mk−1 always rotating in the same direction. This indeed implies the first part.

We recall (1.20), i.e., Mk = (−1)k(αqk − pk), note in particular the change of sign with the parity of k, as
this will be key to the proof of the first inequality (3.11).
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0 ≡ 1

≡ αj − αi

αi

αj

Figure 3.5: The oriented distance
is given by the difference modulo 1.

◦ Consider the case i < qk, then the point α(i + qk−1) mod 1 is still in
our set, and observe that αqk−1 ≡ (−1)k−1Mk−1(mod.1), hence α(i +
qk−1) ≡ αi + (−1)k−1Mk−1(mod.1). Hence the “oriented” distance in
T1 from αi to α(i + qk−1) is Mk−1, rotating positively (increasing on
[0, 1)) for k odd, and negatively (decreasing) otherwise.

◦ Next consider the case i ≥ qk, then we write i = qk + j and note that
αi ≡ αj + (−1)kMk(mod.1). Thus αj ≡ αi + (−1)k−1Mk(mod.1)
means that the “oriented” distance in T1 from αi to αj is Mk, rotating
positively for k odd, and negatively otherwise. In any case, since Mk <
Mk−1, this implies (3.11).

We now move on to proving (3.12). This is the most crucial part of the lemma. In this case we consider
the intervals in T1 delimited by the points 0, α, . . . , (qk + qk−1 − 2)α, seen modulo 1. For (3.11) it was
enough to exhibit points on the circle that were close together (without necessarily being endpoints of a
same interval), for (3.12) however, we must show something slightly stronger: there is a delimited interval
having at least the given length.

We will show that there is a delimited interval having α(qk − 1) mod 1 as an endpoint and length greater
than Mk−1. This is somewhat to be expected by looking at the preceding proof of (3.11). It is clear that the
distance from α(qk−1) mod 1 to each of the points 0, α, . . . , α(qk−2) modulo 1 is at least Γ(α, qk−1) =
Mk−1. It is also clear that α(qk − 1) mod 1 cannot be at distance Mk−1 from two distinct points from
0, α, . . . , α(qk − 2) modulo 1 simultaneously as then α would have to be rationalc. Thus we conclude that
a T1 interval I of length greater than Mk−1, having α(qk − 1) mod 1 as a border, and containing no point
from 0, α, . . . , α(qk − 2) modulo 1. Now note that the smallest circle distance from α(qk − 1) mod 1 to
αqk, . . . , α(qk + qk−1 − 2) modulo 1 is greater than Mk−1, indeed Γ(α, qk−1 − 1) =Mk−2 > Mk−1.

Thus I contains a subinterval I∗ ⊂ I , maybe even itself, having α(qk − 1) mod 1 as an endpoint, with
length greater than Mk−1 and no other point from 0, α, . . . , (qk + qk−1 − 2)α modulo 1 there. ■

Proof. [Theorem 3.3] From Lemma 3.3 we know that Rα(n) = ξ[Γ(α, n), α] + n − 1 where we recall
that Γ is the smallest distance defined in Definition 3.11. Recall also that ξ[Γ(α, n), α] is the waiting time
m ∈ N to have Υ(α,m) ≤ Γ(α, n). Since, by Proposition 3.15, Γ(α, n) = Mk−1(α) for n satisfying
qk−1(α) ≤ n < qk(α), we note that Lemma 3.4 implies that m = qk−1(α) + qk(α), thus proving the result.
■

3.4 The growth of the recurrence function of Sturmian words

The recurrence function R(α, n) := Rα(n) of Sturmian words has been widely studied (e.g., [Cas99,
MH40]) on what we call the worst case. In particular, in the pioneering work by Morse and Hedlund
[MH40]. They studied it first by turning the problem into one about continuants by Theorem 3.3, and then
applying Theorem 1.4 and Theorem 1.5 to get information about this worst-case almost everywhere.

Cassaigne [Cas99] introduced a similar notion of recurrence quotient ρu := lim supnR(u, n)/n (note the
lim sup) and studied the spectrum of values attained by it, in particular its topological properties and when it
is smallest. In his survey, Cassaigne [Cas01] proves ([Cas01, Theorem 3]) that when u is any not eventually
periodic word, then ρu ≥ 3. We will see, however, that from a measure-theoretic point of view, we have
ρu = ∞ for almost every Sturmian word u.

We begin by explaining the results from [MH40] concerning the extreme values of the recurrence function
in subsection 3.4.1. These results motivate our work, but unlike them, we study, for the first time, the
recurrence quotient S(α, n) := (R(α, n) + 1)/n in a probabilistic setting. We introduce the key ideas in

cElse there are i ̸= j with 0 ≤ i, j < qk − 1 and α(qk − 1− i) ≡ α(j − qk + 1) ≡ Mk−1(mod.1) which implies α ∈ Q.
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subsection 3.4.3 and develop these extensively in Chapter 4 and Chapter 5.

3.4.1 Classical results: worst-case analysis

Morse and Hedlund [MH40] first studied the extreme values attained by the recurrence function, turning the
problem into one about continuants by Theorem 3.3, and then applying Theorem 1.4 and Theorem 1.5. Here
is the corresponding result.

Theorem 3.4 (Morse-Hedlund [MH40]). Let h(x) be a function that is positive and non-decreasing for
x ≥ 0 and such that lim

x→∞
h(x) = ∞. For almost every α ∈ I

lim sup
n→∞

R(α, n)

nh(log n)

is finite or infinite according as to whether the series


n≥0 1/h(n) is convergent or divergent respectively.

Proof. Note that for n such that qk−1(α) ≤ n < qk(α) we have, by Theorem 3.3, that

R(α, n)

n
= 1− 1

n
+
qk−1(α) + qk(α)

n
.

Thus the maximum for n subject to qk−1(α) ≤ n < qk(α) is

R(α, qk−1(α))

qk−1(α)
= 1− 1

qk−1(α)
+
qk−1(α) + qk(α)

qk−1(α)
= 2− 1

qk−1(α)
+mk(α) +

qk−2(α)

qk−1(α)
,

and for R(α, n)/(nh(log n)) we deduce that the maximum for n in [qk−1(α), qk(α)) is

R(α, qk−1)

qk−1h(log qk−1)
=

mk(α)

h(log qk−1(α))
+ o(1) .

It will therefore be enough to analyze what happens with the lim sup of mk(α)
h(log qk−1(α))

as k → ∞.

We observe that from Theorem 1.4 and Theorem 1.5 we have that lim sup mk(α)
h(log qk−1)

is finite or infinite
according to the convergence or divergence of the sum


1/h(log qk−1).

For almost every α (recall Proposition 1.10) (1/k) log qk(α) tends toK = π2/(12 log 2) which lies between
1 and 2. Thus, for large enough k (depending on α), the value log qk−1(α) lies between k and 2k, hence we
have h(k) ≤ h(log qk−1(α)) ≤ h(2k) for large enough k.
Note that the monoticity of h implies that


1/h(n) converges if and only if


1/h(2n) converges, thus the

convergence of


1/h(log qk−1) is equivalent to the convergence of


1/h(k), this completes the proof. ■

As a consequence we have the following explicit limits:

Proposition 3.16. Let ϵ > 0. For almost every α the recurrence function satisfies:

lim sup
n→∞

R(α, n)

n log n
= ∞ , lim sup

n→∞

R(α, n)

n (log n)1+ϵ
= 0 .

Informally, we say that the worst-case of R(α, n)/n is roughly of order log n. It is worthwhile to point out
that the “best case” is always linear.

Proposition 3.17. For almost every α the recurrence function satisfies:

lim inf
n→∞

R(α, n)

n
= 2 .
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(a) Recurrence quotient for the Fibonacci word in
Example 3.1. Here α = 1/ϕ2, with ϕ =
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(b) Recurrence quotient for α = 1/e.

Figure 3.6: Examples of recurrence quotients for two Sturmian words.

n

qk−1 qk

Figure 3.7: Here we illustrate the case qk−1(α) ≤ n < qk(α), with a relative position µ(α, n) ≈ 1/3.

Proof. Note in the proof of Theorem 3.4 that the best case arrives when n = qk(α)−1 and that qk−1(α)/qk(α)
is close to 0 infinitely often (i.e., the quotients mk(α) are unbounded almost surely). ■

It is natural therefore to work with what we call the recurrence quotient

S(α, n) :=
R(α, n) + 1

n
. (3.13)

The recurrence quotient is illustrated in Figure 3.6. Observe in particular that, as explained during the proof
of Theorem 3.4, the recurrence quotient is largest on the left-end of the intervals [qk−1, qk), while it is
smallest on the right-end.

The results above, Theorem 3.4 and Proposition 3.17, tell us that the “best” and “worst” cases for R(α, n)
differ widely. This is why the question “what does a random Sturmian word look like?” is so relevant. Does
the recurrence function of a random Sturmian word behave more like n log n, or is it more linear?

3.4.2 Position parameters

From the proof of Proposition 3.16 and Proposition 3.17, as well as Figure 3.6, it should be evident that the
positioning of n within the interval [qk−1(α), qk(α)) plays a huge role when it comes to the magnitude of
the recurrence quotient S(α, n) defined in (3.13). Thus we introduce several position parameters which will
be ever present in our studies.

First there is the relative or barycentric position of nwithin the interval [qk−1(α), qk(α)), where k = k(α, n)
is the only positive integer satisfying qk−1(α) ≤ n < qk(α). We therefore define

µ(α, n) =
n− qk−1(α)

qk(α)− qk−1(α)
, (3.14)

where k = k(α, n) is the only positive integer satisfying qk−1(α) ≤ n < qk(α).

The relative position µ is illustrated in Figure 3.7.

We remark that with this new parameter µ = µ(α, n), the recurrence quotient can be rewritten as

S(α, n) = 1 +
qk−1(α) + qk(α)

n
= 1 +

qk−1(α) + qk(α)

qk−1(α) + µ · (qk(α)− qk−1(α))
,
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so that, dividing through by qk(α)

S(α, n) = 1 +

qk−1(α)
qk(α)

+ 1

qk−1(α)
qk(α)

+ µ ·

1− qk−1(α)

qk(α)

 = 1 +
1 +

qk−1(α)
qk(α)

µ+
qk−1(α)
qk(α)

· (1− µ)
. (3.15)

The case when µ(α, n) ≈ 1/2 is of particular interest. Indeed, we have S(α, n) ≈ 3 , as the numerators and
denominators in (3.15) cancel out. This corresponds exactly to Proposition 3.17.

Equation 3.15 makes evident that, to have a large S(α, n) then we must have

µ(α, n) ≈ 0 ,
qk−1(α)
qk(α)

≈ 0 .

This was implicit in the proof of Theorem 3.4, the Morse-Hedlund theorem giving the “worst case”. In-
deed, note that we at once picked µ(α, n) = 0 by making the choice n = qk−1(α) while qk−1(α)

qk(α)
=

mk +
qk−2(α)
qk−1(α)

−1
, that is small only when mk is large. Thus we rephrased the principles of Theorem 3.4.

This motivates the introduction of the parameter

ρ(α, n) =
qk−1(α)

qk(α)
, (3.16)

where k = k(α, n) is the only positive integer satisfying qk−1(α) ≤ n < qk(α). The parameter ρ(α, n),
which we call quotient, measures the relative sizes of the ends of the intervals.

We summarize in the following proposition the bounds relating µ, ρ and S.

Proposition 3.18. The recurrence quotient S(α, n) satisfies the following inqualities with respect to the
relative position µ = µ(α, n) and the quotient ρ = ρ(α, n)

1 +
1

µ+ ρ
≤ S(α, n) ≤ 1 +

4

µ+ ρ
. (3.17)

Thus the positional parameters µ(α, n) and ρ(α, n) play a key role in our studies of the recurrence.

3.4.3 Our framework: probabilistic analyses

Motivated by the question “does the recurrence function R(α, n) of a random Sturmian word behave more
like n log n (as in Theorem 3.4), or is it more linear (as in Proposition 3.17)?”, we present two probabilistic
models which aim to definitely answer this question. We also seek to explain the worst-case behavior.

In [BCR+15] we provided a first probabilistic study concerning the recurrence quotient S(α, n), and in
[RV17] we undertook the study of a completely different model which turns out to be somewhat more
natural from an algorithmic perspective. In the present text we begin from the latter [RV17] in Chapter 4
and then move on to the model from [BCR+15] in Chapter 5, in order to have a gentler introduction to the
subject. In any case we explain what the two models are before getting into the heart of the matter. The
relation between the two models will be explained throughout.

First, it is fair to recall that, since the language of a Sturmian word u is determined exclusively by its slope
α (see subsection 3.2.1) and, in turn, the recurrence function Ru(n) depends only on the language of u, we
just write R(α, n) in terms of α. Thus we may pick α at random rather than u, which at first may sound
like “picking a random language of a Sturmian word”. We argue, however, that this choice is justified: if we
pick a random Sturmian word, which is necessarily of the form S(α, β) or S(α, β) thanks to Theorem 3.1,
to study the resulting recurrence function we need only consider the distribution of the final slope α.
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Figure 3.8: The density d
dλFS(λ) of Sn. Observe the cusp at λ = 3.

Our original models [BCR+15] and [RV17] consider α distributed uniformly on [0, 1]. This seemingly
crucial hypothesis can be slightly relaxed, however, as we later showed that we would get the exact same
results of [RV17] if we instead considered α to be a random variable having a density with respect to the
usual Lebesgue measure. The reason why this occurs is interesting, and boils down to a sort of independence
“on the average” between the fractions pk/qk and qk−1/qk, which is a remarkable fact on its own right.

Here we introduce both models briefly, explaining the basic results and their consequences for Sturmian
words. Chapters 4 and 5 provide a more in depth study.

3.4.4 Two probabilistic models

Now we present our probabilistic models in detail.

(i) Fixed n→ ∞ model.

Given a random u, we wonder how the recurrence Ru(n) behaves as n → ∞. Our “fixed n → ∞” model
follows this idea. Given a random α we study the distribution of the recurrence quotient S(α, n) as n→ ∞.

This is the model from [RV17] and is described in detail in Chapter 4.

Model. Fix the integer n (corresponding to the length of the factors, which will further tend to ∞); the
index k of the interval [qk−1(α), qk(α)) which contains n is a random variable k = k(α, n).

The sequence n →→ Sn(α) := S(α, n), where S is the recurrence quotient from (3.13), is now a sequence
of random variables which we wish to study. It is important to note that then so are µn(α) := µ(α, n) and
ρn(α) := ρ(α, n), which are interesting from the point of view of continued fractions in their own right.

Results: a little taste. Our first main theorem in Chapter 4, Theorem 4.1, implies the existence of a
limiting distribution for the recurrence quotient Sn(α) := S(α, n) when α is drawn uniformly at random
from the unit interval I = [0, 1].

[Simplified Theorem 4.1 applied to the recurrence quotient]. The sequence n →→ Sn(α) as n→ ∞
admits a limit distribution FS(λ) whose derivative is shown in Figure 3.8.
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For the recurrence quotient we also derive the following tail-inequality valid for all n,

P[Sn ≥ b] ≤ 2

b− 1
,

and every b ≥ 3. The limiting distribution actually indicates that the asymptotically (as n → ∞) tight
constant in the above inequality should be 12

π2 , which is closer to 1 than to 2.

Theorem 4.1 actually applies to a more general class of functions that we called Q-functions (which we
introduced in [RV17]). This class includes useful functions such as S(α, n), µ(α, n) and ρ(α, n).

Our second result concerns the limiting density. It is not necessarily true, in general, that the derivative
of the limiting distribution d

dλF (λ) will also be the limiting density; one must be careful when speaking
about the limiting density. In our case, the variables Sn have actually a discrete distribution which tend to a
continuous (and differentiable, except for the single point λ = 3) one.

[Simplified Theorem 4.2] Consider the distribution function Fn(λ) of Sn, as well as the correspond-
ing limit distribution FS(λ) derived from Theorem 4.1

For any strictly positive sequence n →→ ϵ(n) which tends to 0 with nϵ(n) → ∞, the secants of the
distribution Fn with step ϵ(n) converge to F ′

S(λ) uniformly on λ.

Observe then that this result asserts the convergence of the histograms towards the limit density provided
that the step ϵ(n) is not excessively small.

Even though we may study the recurrence quotient in distribution, its expected value E[Sn] is infinite for
each n. This happens because of the contribution of the cases in which the position parameters µ(α, n) and
ρ(α, n), introduced in subsection 3.4.2, are both small. As we wish to characterize the log n worst-case
behavior of S(α, n) given by Proposition 3.16, we condition to events such as {α : µ(α, n) ≥ 1/n} or
{α : ρ(α, n) ≥ 1/n}, making µ and ρ bounded reasonably far from 0.

[Simplified Theorem 4.3] Consider a sequence ϵ(n) which is Ω(1/(n log n)). The conditional ex-
pectations of the recurrence quotient Sn with respect to the event µn ≥ ϵ(n) satisfy

E

Sn

µn ≥ ϵ(n)

∼n→∞

12

π2
|log ϵ(n)| .

We will see in Chapter 4 that the choice of 1/n is, in a way, optimal and that we get back a log n. This log
arises naturally.

(ii) Fixed depth k → ∞ model.

We introduced this model in [BCR+15], and we describe it in detail in Chapter 5. It is seemingly very
different from the one described in (i) (we discuss their relation in Chapter 6), and motivated by geometric
considerations regarding the interval [qk−1(α), qk(α)) containing n.

In the previous n → ∞ model, the position parameters from subsection 4.2.1 are random variables which
in principle we cannot control. Since α is random, there is no hope of fixing the quotient ρ, but we may try
fixing the relative position µ by making n depend on both α and µ.

In our second (ii) model we fix the relative position by considering random (depending on α) sequences
(nk(α))k , satisfying µ(α, nk(α)) ≈ µ, our prescribed constant.

Then we wonder how the recurrence quotient behaves within these sequences!
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Model. Fix a depth k (that further tends to ∞), and a real number µ ∈ [0, 1]. For any slope α, we consider
the interval [qk−1(α), qk(α)) delimited by the two successive continuants with indices k − 1 and k, and we
choose there the integer n := nk at a barycentric position, which now becomes a random variable.

This model may be called the model “large fixed k”. The sequence k →→ Sk(α) := S(α, nk(α)) is a
sequence of random variables.

Results: a little taste. Our main theorem in Chapter 5, Theorem 5.1, regards the limiting expected values
and densities.

[Part (i) from Theorem 5.1]. For each µ ∈ (0, 1], the expected values E[Sk] satisfy

lim
k→∞

E[Sk] = 1 +
1

log 2

| logµ|
1− µ

,

where the convergence can be made uniform provided that µ ∈ [ϵ, 1] for some fixed constant ϵ > 0.

This shows precisely how the size of the recurrence quotient S depends on the relative position µ. It is
actually possible to say more, by making µ = µk a variable of k that tends to 0. This is our second main
theorem, Theorem 5.2.

[Part of (i) from Theorem 5.2]. For any α, and for each τ ∈ [φ2, 1[, there exists a family of
increasing subsequences N (α, τ), depending on both α and τ , of indices n for which

E

Rα(n)

n
− 12| log τ |

π2
log n


= O(1) (n→ ∞). (3.18)

This result can be seen as a probabilistic version of the Proposition 3.16 from Morse and Hedlund [MH40].

These, as well as other results concerning the distributions are described extensively in Chapter 5.
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CHAPTER 4

A FIRST PROBABILISTIC STUDY OF
STURMIAN WORDS AND Q-FUNCTIONS

4.1 Introduction

Two different probabilistic settings.

As mentioned in subsection 3.4.3, we adopt a probabilistic approach and consider a random Sturmian word,
associated with a random irrational slope α of the unit interval. We consider two possibilities:

(i) fix the integer n (corresponding to the length of the factors, which will further tend to ∞); the index
k of the interval [qk−1(α), qk(α)) which contains n is a random variable k = k(α, n). This model
may be called the model “large fixed n”. The sequence n →→ S(α, n) is now a sequence of random
variables.

(ii) fix a depth k (that further tends to ∞), and a fixed µ ∈ [0, 1]. For any slope α, we consider the
interval [qk−1(α), qk(α)) delimited by the two successive continuants with indices k − 1 and k, and
we choose there the integer n := n

⟨µ⟩
k (α) at a fixed barycentric position µ, which now becomes a

random variable. This model may be called the model “large fixed k”. The sequence k →→ S
⟨µ⟩
k (α) :=

S(α, nµ(α, k)) is a sequence of random variables.

In both cases, we are interested in the same type of questions about the sequence of random variables: does
there exist a limit for the expectations? a limit distribution? a limit density?

Main results of the chapter [RV17].

Here we consider the recurrence quotient within model (i), i.e., the model with “a large fixed n”, while
model (ii) will be considered in Chapter 5 and we discuss their relation in Chapter 6. We obtain three results
for the recurrence quotient on this model; more precisely, we consider the random variables α →→ S(α, n)
and study them for large n. We exhibit a limit for their distribution, and prove that there exists a limit
density, as n → ∞. We also study the conditional expectation of the recurrence quotient, when we exclude
the possibility of n being too close to the left end of the interval [qk−1(α), qk(α)). More generally, we
describe a class of events for which the order of this conditional mean value is exactly log n. This can be

113
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n

qk−1 qk

Figure 4.1: Here we illustrate the case qk−1(α) ≤ n < qk(α), with a relative position µ(α, n) ≈ 1/3.

viewed as a probabilistic extension of Theorem 3.4.

Our proofs employ elementary methods: they are based on a precise comparison between an integral and its
Riemann sum; however, the integral is improper (but convergent) and the Riemann sum is constrained by a
coprimality condition, what we call a “coprime Riemann sum”.

We also introduce a general family of functions, called continuant-functions or Q-functions, which are
defined via the sequence of continuants k →→ qk(α). The recurrence quotient is an instance of such a
function, but the other “geometric” parameters of interest provide natural examples of such a notion. Our
framework is naturally adapted to the study of a general Q function.

4.2 Framework and results.

This section starts off by introducing several parameters describing the geometry of “continuant intervals”
or the position of the integer n inside the continuant interval. Section 4.2.2 defines the class of Q functions
that provides a convenient framework for our study. Then, we state Theorems 4.1 and 4.2 in Sections 4.2.4
and 4.2.5, for a fairly general set of Q-functions. We return to our specific parameters of interest, notably the
recurrence function in Section 4.2.4, with two figures (Figures 4.9 and 4.5b). Finally, Section 4.4 concludes
with a study of the conditional expectations.

4.2.1 Position parameters.

Besides the recurrence quotient, there are also three other interesting parameters ν, µ, ρ which describe the
geometry of the interval [qk−1(α), qk(α)) which contains n (this is the case for ρ) or the position of n inside
this interval (the case for µ and ν)

ρ(α, n) =
qk−1(α)

qk(α)
, (4.1)

µ(α, n) :=
n− qk−1(α)

qk(α)− qk−1(α)
, ν(α, n) =

n

qk(α)
. (4.2)

When n belongs to the interval [qk−1(α), qk(α)), the recurrence quotient is expressed in terms of ρ and ν as

S(α, n) = 1 +
1 + ρ(α, n)

ν(α, n)
. (4.3)

As ν(α, n) belongs to the interval [ρ(α, n), 1], the following bounds hold

2 + ρ(α, n) ≤ S(α, n) ≤ 2 +
1

ρ(α, n)
(4.4)

(the lower bound holds for n close to qk(α) whereas the upper bound is attained for n = qk−1(α)).

The ratio ρ(α, n) belongs to (0, 1], and the Borel-Bernstein Theorem (Theorem 1.5) proves that lim inf
n→∞

ρ(α, n) =

0 for almost any irrational α. This is implicit in the proof of Theorem 3.4.



4.2. FRAMEWORK AND RESULTS. 115

Parameter Function f(x, y) Density 12
π2Jf (λ)

S 1 + x+ y


12
π2

1
λ−1 log(λ− 1) if 2 ≤ λ ≤ 3

12
π2

1
λ−1 log(1 +

1
λ−2) if λ ≥ 3 .

ρ
x

y

12

π2
1

1 + λ
| log λ| for 0 ≤ λ ≤ 1

µ
1− x

y − x


12
π2

1
2λ−1


2 log 2− log λ

λ−1


if λ ̸= 1/2

24
π2 (1− log 2) if λ = 1/2 .

ν
1

y

12

π2
1

λ
log(1 + λ) for 0 ≤ λ ≤ 1

Figure 4.2: Limit densities for the main parameters.

4.2.2 Q-functions.

More generally, we are interested in functions whose definition depends fundamentally on the partition
Q(α) = {[qk−1(α), qk(α)) : k ≥ 1} defined by the continuants of α, and consider the functions (α, n) →→
Λ(α, n) that are associated with some function f and are written in terms of it as,

Λ(α, n) = f


qk−1(α)

n
,
qk(α)

n


, (4.5)

as soon as n ∈ [qk−1(α), qk(α)).

To get our results in distribution and density, we will have to add several conditions on f , in particular for
the results concerning the conditional probabilities, as we will need information concerning the rates of
convergence towards the distribution.

A function Λ defined as in (4.5) is what we call a Q-function (also continuant function), and we demand
that the function f associated with Λ satisfy

(i) it is defined on the unbounded rectangle

R := {(x, y) : 0 ≤ x ≤ 1 < y},

(ii) it is non negative on R .

To get good error terms when it comes to the convergence in distribution, we shall consider a more specific
class of Q-functions, called LQ-functions for short, which are the Q-functions associated with a function f
that is the quotient of two linear functions:

f(x, y) =
a1x+ b1y + c1
a2x+ b2y + c2

. (4.6)

Our four parameters of interest, namely the recurrence quotient S, the ratio ρ and the two parameters µ and
ν which describe the position of integer n with respect to the interval [qk−1(α), qk(α)) are LQ-functions,
associated to the following functions f

fS(x, y) = 1 + x+ y,

fρ(x, y) =
x

y
, fµ(x, y) =

1− x

y − x
, fν(x, y) =

1

y
.
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The problem of determining the joint limit distribution for the Q-functions resulting from the projections
(x, y) →→ x and (x, y) →→ y has already been considered by Ustinov in [Ust09], with the addition of a
condition [mk+1(α),mk+2(α), . . .] ≤ z, on the tail of the continued fraction development (here k is the
index such that qk−1(α) ≤ n < qk(α)). Such a condition does not fundamentally change the problem,
as we just need change the probability of the fundamental interval |Im1,...,mk

| = |hm1,...,mk
([0, 1])| in our

current study for
|hm1,...,mk

([0, z])| = z

qk(m)(qk(m) + zqk−1(m))
,

which is the length of the fundamental interval with the added condition that [mk+1(α),mk+2(α), . . .] ≤ z.

The motivation of Ustinov was mainly answering Sinai and Ulcigrai [SU08], in a question purely concerning
the distributions of the stopped continued fractions. Sinai and Ulcigrai showed the existence of the limiting
distribution, deriving it from a flow, but did not give an explicit formula.

4.2.3 Probabilistic setting.

We recall the present setting, anticipated in subsection 3.4.4. Consider a fixed integer n, and a random real
α in the unit interval [0, 1]. The sequence Λn(α) := Λ(α, n) is now a sequence of random variables. We
are interested in the limit distribution of the sequence when n→ ∞. Does there exist a limit distribution? a
limit density?

4.2.4 Distributions.

In the distributional study, we associate each real λ ≥ 0 to a subdomain of R,

∆f (λ) := {(x, y) : 0 ≤ x ≤ 1 < y; f(x, y) ≤ λ} (4.7)

(which is a convex domain when f is an LQ), and consider the integral

If (λ) =


∆f (λ)

ω(x, y)dxdy = I[ω,∆f (λ)] , (4.8)

which involves the function ω defined on R by

ω(x, y) =
1

y(x+ y)
, (4.9)

whose integral on R satisfies I(ω,R) = π2/12. The associated density

ψ(x, y) =
12

π2
1

y(x+ y)
(4.10)

plays a fundamental role in the sequel, as our originally discrete distribution smooths out (converges weakly)
to the distribution associated with the density ψ, as the following result shows:

Theorem 4.1. Consider a LQ-function Λ associated with a function f . Then the sequence n →→ Λn(α) as
n→ ∞ admits a limit distribution, and the sequence

Fn(λ) := P [Λn ≤ λ] =
12

π2
If (λ) +O


1

n


, (4.11)

involves the integral If (λ) defined in (4.8). Moreover, the constant of the O term can be chosen so that it
works for every pair (f, λ)
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Figure 4.3: Domain of integration ∆f (λ) for f(x, y) := fS(x, y) = 1 + x+ y.

It is worthwhile to notice that R is the “smooth version” of the domain occupied by the pointsqk−1(α)

n
,
qk(α)

n


: α ∈ [0, 1] \Q, k = k(α, n)


,

where k(α, n) is the integer k ≥ 1 such that qk−1(α) ≤ n < qk(α).

The domain ∆f (λ) in the case of the recurrence quotient S is illustrated in Figure 4.3. In this case ∆f (λ)
consists of all the points of R lying below the line fS(x, y) = λ.

Observe that as λ increases, the line fS(x, y) = λ just gets translated upwards in the y-axis. When λ < 3
we have the case shown in the first subfigure of Figure 4.3, the domain is delimited by the line fS(x, y) = λ,
the y-axis and the line y = 1. As we reach the vertex (1, 1) for the case λ = 3, we get to the case of the
second subfigure of Figure 4.3, and the domain ∆f (λ) is now a polygon with 4 sides, delimited by the line
fS(x, y) = λ, the line x = 1, the line y = 1 and the y-axis.

The shape of the derivative of the limit distribution (see Figure 4.4), which we will then make sense of as a
density in Theorem 4.2, is dictated by the moving frontier of ∆f (λ). The maximum at λ = 3 coming from
the fact that this moving frontier increases until λ = 3 and then decreases when we “change sides”. These
ideas will be made formal with Theorem 4.2.

2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

Figure 4.4: Limit density of the recurrence quotient S.

4.2.5 Results - densities.

We further show the convergence to the densities, more precisely, convergence of the histograms to the
corresponding densities, and we characterize the points where these densities are not differentiable. An
illustrating example is given by the recurrence quotient S, in this case the limit density (see Figure 4.2) is
displayed in Figure 4.4, while we see the actual convergence of the experimental histograms towards this
density in Figure 4.5.
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(a) Experimental histogram of the recurrence quotient
S(α, n) with step ϵ(n) = 1

n .
(b) Experimental histogram of the recurrence quotient
S(α, n) with step ϵ(n) = 1

⌈
√
n⌉ .

Figure 4.5: Limiting densities JfS (λ) for the sequence n →→ S(α, n) as estimated by the scaled histograms.
The number of experiments is M = 107, while n = 1000. The histograms are scaled so that they integrate
to 1.

Note that the limit density of S is continuously differentiable except for the point λ = 3, its maximum,
where it presents a “cusp”. This will be completely explained in our results.

For this we need to consider the boundary curves {(x, y) : f(x, y) = λ} and their intersection with R. We
prove the following:

Theorem 4.2. Consider a LQ-function Λ associated with a function f which is written as in (4.6). Then,

(a) The function λ →→ If (λ) and its derivative Jf exist for any λ. The derivative J ′
f exists except perhaps

on a finite set, consisting of the point b1/b2 and two possible other values λ0 and λ1. The following holds:

(i) At each of the points λ = λi, the function Jf admits a left and a right derivative, each of them being
finite.

(ii) When the determinant r(a, b) := a1b2 − a2b1 is zero, the derivative J ′
f exists at λ = b1/b2.

(iii) When the determinant r(a, b) := a1b2−a2b1 is not zero, the derivative J ′
f does not exist at b1/b2 and

is O(|b2λ− b1|−1) for λ→ b1/b2.

(b) For any strictly positive sequence n →→ ϵ(n) which tends to 0 with nϵ(n) → ∞, the secants of the
distribution Fn with step ϵ(n) converge to Jf (λ) and the following holds

Fn(λ+ ϵ(n))− Fn(λ)

ϵ(n)
=

12

π2
Jf (λ) + E(λ, ϵ(n)) , (4.12)

(c) The error term satisfies

E(λ, ϵ(n)) = O


1

ϵ(n)n


+O


|J ′
f (λ)|ϵ(n)


,

and the constants in the O-term do not depend on the pair (f, λ).
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4.2.6 Conditional expectations.

In order to control the size of the recurrence quotient S(α, n), we now focus on the position parameters ρ,
ν and µ defined in (4.1) and (4.2), and consider the three sequences

ρn(α) := ρ(α, n), νn(α) := ν(α, n), µn(α) := µ(α, n) .

The largest values of the recurrence quotient arise when ν or µ are small. In particular, the event [νn ≥ ϵ(n)]
gathers the reals α for which the integer n is not too close to the left end of the interval [qk−1(α), qk(α)),
and, at the same time, the length of the interval [qk−1(α), qk(α)) is of the same order as the right end qk(α).
We then consider a sequence ϵ(n) → 0, and condition with one of the events

[ρn ≥ ϵ(n)], [νn ≥ ϵ(n)], [µn ≥ ϵ(n)] .

Theorem 4.3. Consider a parameter Γ ∈ {ρ, µ, ν} defined in (4.1) and (4.2) and a sequence ϵ(n) which
is Ω(1/(n log n)). Then the conditional expectation of the recurrence quotient Sn with respect to the event
[Γn ≥ ϵ(n)] satisfies

E

Sn

Γn ≥ ϵ(n)

∼n→∞

12

π2
|log ϵ(n)| .

This result exhibits a sequence of events, over a space in which the integer n is not too close to the left-end
of interval [qk−1(α), qk(α)). When we are sure not to be too close to this left-end, the recurrence quotient is
(on average) of order log n. This can be viewed as a probabilistic counterpart of Theorem 3.4, in the case of
particular sequences of the form ϵ(n) = 1/(nψ(n)), for which the series of general term ϵ(n) is divergent.
We return to this study at the end of Section 4.4.

The log appearing in the expression of Theorem 4.3, we argue, turns up naturally from the expressions
for fS(x, y) and ψ(x, y). Indeed, ψ(x, y) is the “smoothed” density for


qk−1(α)

n , qk(α)n


around the point

(x, y) ∈ R, therefore the quantity fS(x, y)ψ(x, y) is the one we have to integrate to get expected values (we
show this in Theorem 4.4). We point out now that fS(x, y)ψ(x, y) = ψ(x, y) + 1

y , and here it is 1/y that
produces the logarithm. To make fS(x, y) = 1 + x + y big the only possibility is having a large y, so any
condition [Γn ≥ ϵ(n)] that makes fS bounded, must bound y accordingly.

4.3 Proofs: distributions and densities.

We first recall some useful properties of continued fraction expansions and introduce coprime Riemann
sums. Then, we prove the existence of limit distribution and limit densities for a general LQ-function. The
proof of Theorem 4.1 consists of three main steps, summarized in Proposition 4.1, Proposition 4.2, and
Proposition 4.3, and we conclude the proof of Theorem 4.1 in Section 4.3.3. Sections 4.3.4 and 4.3.5. are
devoted to the proof of Theorem 4.2.

4.3.1 Continued fractions, fundamental intervals and continuants.

(See Chapter 1 for more details). The continued fraction of an irrational number α of the unit interval [0, 1]
is

α =
1

m1 +
1

m2 +
1

. . . +
1

mk +
1

. . .

.
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Truncated at depth k, it gives rise to a rational number pk/qk associated with a coprime integer pair (pk, qk).
The numerator pk = pk(α) and the denominator qk = qk(α) are uniquely defined by the irrational number
α. All the irrational numbers α which begin with the same sequence m = (m1,m2, . . . ,mk) ∈ Nk
belong to an interval, called a fundamental interval of depth k and denoted by Ik(m). As the irrational
numbers of Ik(m) have the same convergents of order ℓ ≤ k, we denote their numerator and denominator
by pℓ(m), qℓ(m). The ends of the interval Ik(m) are

pk(m)

qk(m)
,
pk(m) + pk−1(m)

qk(m) + qk−1(m)
.

As the equality |pk(m)qk−1(m) − pk−1(m)qk(m)| = 1 holds, the length of the fundamental interval
involves the function ω defined in (4.9) under the form

|Ik(m)| = ω(qk−1(m), qk(m)) . (4.13)

This explains why the function ω defined in (4.9) and the associated density ψ are ubiquitous in the study of
the Q-functions.

4.3.2 Distributions. Strategy of the proof.

There are two main steps in the proofs of Theorem 4.1.

(i) Discrete step. We express in Proposition 4.1 the distribution of a Q function in terms of a variant of
a Riemann sum, that is called in the following a “coprime” Riemann sum. This type of “constrained”
Riemann sum was already considered in [BCZ01].

(ii) Continuous step. We compare the “coprime” Riemann sum to the associated integral. We begin by the
comparison of the “plain” Riemann sum to the integral in Proposition 4.2, then, we take into account
the coprimality condition in Proposition 4.3. We extend here the results of [BCZ01] which are only
proven for finite domains.

Distributions and Riemann sums.

We begin with the alternative expression of a Q-function Λ, associated with f , (already defined in (4.5)),
which is written with the Iverson bracketa under the form

Λ(α, n) =

k≥0

f


qk−1(α)

n
,
qk(α)

n


n ∈ [qk−1(α), qk(α)[


.

The distribution of a Q-function associated with f is

P (Λn ≤ λ) =

 1

0
dα

k≥0


qk−1(α)

n
,
qk(α)

n


∈ ∆f (λ)


.

For each k, the family of fundamental intervals Ik(m) defines a pseudo-partition when m goes through Nk,
and, for any α ∈ Ik(m), the equality qk(α) = qk(m) holds. We deduce

P[Λn ≤ λ]

=

∞
k=0


m∈Nk

|Ik(m)|


qk−1(m)

n
,
qk(m)

n


∈ ∆f (λ)


.

aThe Iverson bracket is a Boolean function defined by [[P]] = 1 as soon as Property P is true
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Then, with the expression of the length |Ik(m)| in terms of the function ω given in (4.13) and the fact that
ω is homogeneous of degree–2, we obtain

|Ik(m)| = 1

n2
ω


qk−1(m)

n
,
qk(m)

n


.

Now, as we go through all the sequences m ∈ N⋆, the coprime pairs (qk−1(m), qk(m)) give rise to all the
coprime pairs (a, b). Moreover, each coprime pair (a, b), except the pair (1, 1), appears exactly twice, due
to the existence of two continued fraction expansions, the proper one (in which the last digits strictly greater
than 1), and the improper one (in which the last digit is equal to 1). Then, the equality holds

P[Λn ≤ λ] =
2

n2


(a,b)∈Z2
(a,b)=1

ω


a

n
,
b

n


a

n
,
b

n


∈ ∆f (λ)


.

The right member is the Riemann sum of the function 2ω on the domain ∆f (λ) with step 1/n, with an
extra condition of coprimality. More generally, for a function g integrable on a subset Ω, we are led to the
following two Riemann sums with step 1/n: the first one Rn(g,Ω) is the usual one,

Rn (g,Ω) =
1

n2


(a,b)∈Z2

g


a

n
,
b

n


a

n
,
b

n


∈ Ω


,

whereas the second one Rn(g,Ω) takes into account the coprimality of (a, b), and is called the “coprime”
Riemann sum, Rn (g,Ω) = 1

n2


(a,b)∈Z2

gcd(a,b)=1

g


a

n
,
b

n


a

n
,
b

n


∈ Ω


,

We summarize:

Proposition 4.1. Consider a Q-function Λ associated with a function f . Then the distribution Fn(λ) :=
P [Λn ≤ λ] is expressed with a coprime Riemann sum,

P[Λn ≤ λ] = Rn (2ω,∆f (λ)) . (4.14)

which involves the density ω defined in (4.9) and the domain ∆f (λ) defined in (4.7).

The previous result extends if we replace ∆f (λ) by any other domain Ω ⊂ R. In particular, in Section 4,
we will deal with two Q-functions Λ and Γ associated respectively to f and g, together with the domain

∆f,g(λ, ϵ) := {(x, y) ∈ R : f(x, y) ≥ λ, g(x, y) ≥ ϵ} , (4.15)

and use the equality
P[Λn ≥ λ,Γn ≥ ϵ] = Rn 2ω,∆f,g(λ, ϵ)


. (4.16)

Usual Riemann sums and integrals.

We first deal with the usual Riemann sum, and compare it to its associated integral I(g,Ω). This is a classical
proof, but we consider improper integrals and we wish to have precise error terms.

We now deal (only within this subsection) with

S := [0, 1]× (0,∞) , (4.17)

consider a subset Ω ⊂ S and associate with it the family of subsets

Ω(k) := Ω ∩ ([0, 1]× [k, k + 1]) ,
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for any k ≥ 1, which form a pseudo-partition of Ω. We also consider a positive function g defined on Ω of
class C1, bounded on any bounded subset on Ω for which the following two finite boundsb

Cg(Ω, k) := sup{g(x, y) : (x, y) ∈ Ω(k)},

Dg(Ω, k) := sup

∂g∂y (x, y)
 : (x, y) ∈ Ω(k)


,

define sequences whose associated series are convergent,
k≥0

Cg(Ω, k) <∞,

k≥0

Dg(Ω, k) <∞ .

Their sums are denoted by Cg(Ω) and Dg(Ω), and we denote by Mg(Ω) their maximum.

Such a function g is called strongly decreasing on Ω with bound Mg(Ω). Such a function is integrable on Ω
and the inequality I(g,Ω) ≤Mg(Ω) holds.

Proposition 4.2. Consider the domain S defined in (4.17) and a function g which is strongly decreasing on
a convex Ω ⊂ S with boundMg(Ω). Then, the Riemann sum of the function g on Ω compares to the integral,

|Rn(g,Ω)− I(g,Ω)| ≤ 5

n
Mg(Ω) . (4.18)

Proof. We will prove the estimate, for each k ≥ 0,

|Rn(g,Ω(k))− I(g,Ω(k)| ≤ 4

n
(Cg(Ω, k) +Dg(Ω, k)) .

This will entail the result by taking the sum over k ≥ 0.

We consider the elementary squares of side 1/n, namely

Ra,b =


a

n
,
a+ 1

n


×

b

n
,
b+ 1

n


,

and we concentrate on those which meet Ω(k). There are two cases for such rectangles Ra,b, namely

(i) Ra,b ⊂ Ω(k), or (ii) Ra,b ∩ Ω(k)c ̸= ∅ .

In the first case (i), the definition of the bound Dg entails the estimate 1n2 g

a

n
,
b

n


− I(g,Ra,b)

 ≤ I

gan, bn

− g

 ,Ra,b


≤ 1

n3
Dg(Ω, k) .

As the number of such squares is at most n2, the contribution from case (i) is at most (1/n)Dg(Ω, k).

In the second case (ii), the positivity of g and the definition of the bound Cg entails the estimate 1n2 g

a

n
,
b

n


− I(g,Ω ∩Ra,b)

 ≤ 1

n2
Cg(Ω, k) .

But, the convexity of Ω entails that there are at most 4n such squares, and the contribution of the second
case is at most (4/n)Cg(Ω, k).

To see where the constant 4 comes from, we first replace Ω(k) by a closed convex polygon Cn ⊂ Ω, without
affecting the bound : in each square Ra,b of the second case, pick a point in Ω(k) and then take the convex
hull. If Ω(k) is a closed convex polygon, we go through the border in clockwise order and look at the grid
rectangles we encounter as explained in Figure 4.6. ■

bBy convention, we consider that Cg(Ω, k) and Dg(Ω, k) are 0 if the set Ω(k) is empty.
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Figure 4.6: The convex domain Ω, and, in blue, a convex polytope P . These two convex sets have the same grid
squares that intersect both themselves and their complement. We traverse the polygon clockwise from the lowest
vertex. Each time we intersect a horizontal line we move ±1 square horizontally in the grid, similarly for the vertical
lines, and diagonals. Being the polygon convex, once we stop moving upwards vertically (at most n steps), we can
only move downwards (at most n steps) when moving vertically. A similar observation for the horizontal case tells us
that there can be at most 2n horizontal steps.

Coprime Riemann sums and integrals.

The following result is an extension of the results obtained in [BCZ01], that are only proven for finite
domains.

Proposition 4.3. Consider a positive function g defined on R, homogeneous of degree −β there with β > 1.
Such a function is strictly decreasing on R. Consider also a convex subset Ω ⊂ R. Then, the coprime
Riemann sum of the function g on Ω compares to the integral of g on Ω, namely Rn(g,Ω)− 6

π2
I(g,Ω)

 ≤ 1

n
(1 + 5ζ(β))Mg(R) .

Proof. To filter the cases in which gcd(a, b) > 1, we use the Möbius function µ which performs “inclusion-
exclusion”. The Möbius function µ : N → {−1, 0,+1} satisfies


d|n

µ(d) =


1 if n = 1

0 if n > 1 .
(4.19)

We consider the restricted “coprime” Riemann sum, where the sum is taken over the pairs (a, b) with
gcd(a, b) = 1, namely

n2 Rn(g,Ω) = 
(a,b)∈Z2

gcd(a,b)=1

g


a

n
,
b

n


a

n
,
b

n


∈ Ω


.

We then “insert” the µ-function inside this restricted “coprime” Riemann sum,

n2 Rn(g,Ω) = 
(a,b)∈Z2

g


a

n
,
b

n


a

n
,
b

n


∈ Ω

 
d| gcd(a,b)

µ(d)

 .

As the point (a/n, b/n) belongs to R with a > 0, the inequality gcd(a, b) ≤ n holds. Then, inverting the
summations entails the equality

n2 Rn(g,Ω) =
d≤n

µ(d)


(a,b)∈Z2

g


ad

n
,
bd

n


ad

n
,
bd

n


∈ Ω


.
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Finally, the following equality holds

Rn(g,Ω) =
d≤n

µ(d)Rn(gd,Ωd) , (4.20)

and involves the function gd and the subset Ωd defined as

gd(x, y) := g(dx, dy), Ωd =
1

d
Ω .

As the inclusion Ωd ⊂ S holds, we now apply the previous Proposition 4.2 to each (plain) Riemann sum
Rn(gd,Ωd) and obtain

|Rn(gd,Ωd)− I(gd,Ωd)| ≤
5

n
Mgd(Ωd) . (4.21)

We now use three properties. We first remark the equality

I(gd,Ωd) =
1

d2
I(g,Ω) ,

due to the change of variables (x′, y′) = (dx, dy). Second, the series of general term µ(d)/d2 is convergent,
and, with the Möbius inversion, its sum equal 1/ζ(2) and


d≤n

µ(d)

d2
− 6

π2

 ≤ 1

n
.

Third, we relate the bound Mgd(Ωd) to its analogous. As g is homogeneous of degree −β, its derivative is
homogeneous of degree (−β − 1) and the two relations

gd(x, y) = g(dx, dy) =
1

dβ
g(x, y) ,

∂gd
∂y

(x, y) = d
∂g

∂y
(dx, dy) =

1

dβ
∂g

∂y
(x, y) ,

hold for (x, y) ∈ R. As g and its derivative are 0 outside R, the same holds for gd and its derivative, and

Mgd(Ωd) =Mgd(Ωd ∩R) =
1

dβ
Mg(Ωd ∩R) ≤ 1

dβ
Mg(R) .

Then, as β > 1, one has 
d≤n

Mgd(Ωd) ≤ ζ(β)Mg(R) .

With the three previous properties, together with Eq. (4.21), we obtain the final result. ■

4.3.3 Distributions. Proof of Theorem 4.1.

Theorem 4.1 is a particular case of the previous Proposition 4.3, when it applies to ω and ∆f (λ) defined in
(4.9) and (4.7). The function ω is homogeneous of degree 2 and the domain ∆f (λ) is convex, as it is the
intersection of the unbounded rectangle R with the half-plane {f(x, y) ≤ λ}. Applying Proposition 4.3
then proves Theorem 4.1.
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4.3.4 Proof of Theorem 4.2. First step.

We first prove Assertion (b) assuming Assertion (a). We let

Fn(λ) := P[Λn ≤ λ], F∞(λ) =
12

π2
If (λ) .

We know from Assertion (a) that the derivative Jf (λ) of λ →→ If (λ) exists. This is the same for the function
F∞ and we wish to estimate the differenceFn(λ+ ϵ(n))− Fn(λ)

ϵ(n)
− F ′

∞(λ)

 .
We begin with the triangle inequalityFn(λ+ ϵ(n))− Fn(λ)

ϵ(n)
− F ′

∞(λ)

 (4.22)

≤
Fn(λ+ ϵ(n))− F∞(λ+ ϵ(n))

ϵ(n)

+ F∞(λ)− Fn(λ)

ϵ(n)


+

F∞(λ+ ϵ(n))− F∞(λ)

ϵ(n)
− F ′

∞(λ)

 .
With the special form of function f , the domain ∆f (λ) is convex, and Theorem 4.1 provides the estimates

|Fn(λ)− F∞(λ)| = O (1/n) ,

|Fn(λ+ ϵ(n))− F∞(λ+ ϵ(n))| = O (1/n) ,

where the constant in the O-terms does not depend on λ and ϵ(n). Then, the first two terms in Inequality
(4.22) are O(1/(nϵ(n)) and tend to 0 because nϵ(n) → ∞. For the last term in (4.22), we use Taylor
expansion of order 2 of the function F∞ together with Assertion (a).

4.3.5 Proof of Theorem 4.2. Second step.

We now prove Assertion (a).

The set of lines F . In the set F of lines, defined as

F := {f(x, y) = λ : λ ∈ R},

the equation of the line f(x, y) = λ is written in terms of coefficients described in (4.6) as

(a1x+ b1y + c1)− λ (a2x+ b2y + c2) = 0 . (4.23)

The case in which the two vectors (a1, b1, c1) and (a2, b2, c2) are colinear is excluded, as in this case f(x, y)
is constant. The case b1 = b2 = 0 is also excluded as we wish that f depend on y. Thus, there is at most
one vertical line in F .

There are two cases for the set F defined in (4.23)

(i) the case when the determinant r(a, b) := a1b2−a2b1 is zero and in this case the determinant r(a, c) :=
a1c2 − a2c1 is not zero. The set F is formed by parallel lines of slope −a1/b1. This is for instance
the case of the recurrence quotient with slope −1 or the case of ν with slope 0.
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(ii) the case when the determinant r(a, b) := a1b2 − a2b1 is not zero. In this case, we can choose
r(a, b) = 1 due to the homogeneity of the problem. Then, the set F is made up of all the lines which
contain the point (x0, y0) uniquely defined by the relations

a1 b1
a2 b2


x0
y0


=


−c1
−c2


or

x0
y0


=


r(b, c)
−r(a, c)


.

The point (x0, y0) is called the basic point of F . Remark that case (i) can be seen as the limit of the case
(ii) when (x0, y0) tends to ∞ in the direction a1/b1. The basic points attached to our parameters ρ, µ are
(0, 0) for ρ and (1, 1) for µ.
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Figure 4.7: The lines fµ(x, y) = λ for the case of µ. Note the basic point (1, 1) at the bottom-right corner.

In the set F of basic point (x0, y0), the value of λ and the inverse 1/τ of the slope τ of the line f(x, y) = λ,
are related via linear fractional transformations with determinant equal to 1, namely

λ = F (τ) =
a1τ + b1
a2τ + b2

τ = G(λ) =
b2λ− b1
a2λ− b2

.

In the set F of basic point (x0, y0), the parametrization of the line f(x, y) = λ of slope 1/τ is thus

x = x0 + τ(y − y0), τ = G(λ) .

Expressions of If and its derivative. Consider a function f as in (4.6); denote by δf (τ) the segment
(possibly empty or unbounded) which is the intersection of the line f(x, y) = λ = F (τ) of slope 1/τ with
the rectangle R. Now, the function f is fixed, the point (x0, y0) is fixed, and all the indices which involve f
are removed. There is an open interval D which gathers the values of τ for which the segment δ(τ) is not
empty, and we denote by A(τ), B(τ) the ordinates of the two ends of the segment δ(τ).
As soon as the line f(x, y) = F (τ) is not horizontal, we consider the natural parametrization hτ of the line
δ(τ), namely a map hτ : (A(τ), B(τ)) → δ(τ) which associates to y the point

hτ (y) = h(τ, y) = (x0 + τ(y − y0), y)

of the line δ(τ). The map τ →→ hτ is of class C∞ on D.

Using the change of variables (θ, y) →→ (h(θ, y), y), and its Jacobian |(∂h)/(∂θ)(y, θ)| = |y − y0|, the
integral L(τ) := Lf (τ) := If (F (τ)) = If ◦ F (τ) is written as

L(τ) =

 τ

−∞
dθ

 B(θ)

A(θ)
Q(θ, y)dy ,



4.3. PROOFS: DISTRIBUTIONS AND DENSITIES. 127

with Q(θ, y) = ω(x0 + θ(y − y0), y) |y − y0| .
(We have used the fact that F is increasing). Then the derivative of L admits the expression

L′(τ) =

 B(τ)

A(τ)
Q(τ, y)dy . (4.24)

The function L′ is itself differentiable on the set D, except perhaps on a finite set (as we will see now) and
involves the previous functions under the form

L′′(τ) =

 B(τ)

A(τ)

∂Q

∂τ
(τ, y)dy (4.25)

+B′(τ)Q(τ,B(τ))−A′(τ)Q(τ,A(τ)) , (4.26)

with
∂Q

∂τ
(τ, y) =

∂ω

∂x
(x0 + τ(y − y0), y) |y − y0|2 .

We prefer to deal with the function L, as it is easier to “see the geometry”. We will return to the function I
and its two derivatives with the relations

I ′(λ) =
L′(τ)

F ′(τ)
, I ′′(λ)F ′(τ)2 = L′′(τ)− L′(τ)

F ′′(τ)

F ′(τ)
, (4.27)

and use the special form of F defined in (4.23).

The role of the corners. The values of τ in D for which I ′ is a priori not differentiable are those for which
the line of slope 1/τ is vertical or meets one of the two “corners” of R, namely the slope 1/τ0 for which it
meets the point (0, 1), and the slope 1/τ1 for which it meets the point (0, 1).
There are now two different geometric cases: the generic case (G) or the exceptional case (E), described as
follows:

(G) If the point (x0, y0) does not belong to the line y = 1, there are exactly two lines in F , each of them
containing one corner of R, associated with two distinct values τ0 and τ1.

(E) If the point (x0, y0) belongs to the line y = 1, there is only one value τ0 = τ1 = ∞.

Finally, there are at most three values of τ in the set {0, τ0, τ1} where L′ is possibly not differentiable. But,
L′ possesses at each finite τi a left and a right derivative, each of them being finite. This is thus the same for
the derivative I ′ of the function I . At τ = 0, the derivatives F ′(0) and F ′′(0) are finite as soon as b2 ̸= 0.

Behavior of L′′(τ) for λ→ 0. The ratio R(τ) := B(τ)/A(τ) is important, as the estimates

Q(τ, y) = Θ(y−1),
∂Q

∂τ
(τ, y) = Θ(y−1)

entail that L′(τ) and the first term of L′′(τ) in (4.25) are both Θ(logR(τ)).

The bound B(τ) always tends to +∞ but there are two cases for A(τ): it remains bounded or not.

(i) The case when A(τ) remains bounded occurs if and only if the basic point belongs to one of the two
vertical lines x0 = 1 or x0 = 1. Then the estimates R(τ) = Θ(τ−1) and L′(τ) = Θ(log τ), directly
entail that L′′(τ) is Θ(τ−1).

(ii) If A(τ) tends also to ∞, then the ratio R(τ) tends to |x0 − 1|/|x0|, and this limit may be only finite
non zero. Then, the derivatives A′(τ) and B′(τ) are Θ(τ−2) whereas A(τ) and B(τ) are Θ(τ−1) and
thus Q(τ,B(τ)) and Q(τ,B(τ)) are Θ(τ) and each term of (4.26) is Θ(τ−1), whereas the first term
in (4.25) tends to a finite limit. More precisely, the estimate

τ

B′(τ)Q(τ,B(τ))−A′(τ)Q(τ,A(τ))


→ 1

ends with (4.27) the proof of Theorem 4.2 (a). ■
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4.4 Proofs: conditional expectations.

We now focus on the conditional expectations. Our final purpose is to prove Theorem 4.3 which is devoted
to the recurrence quotient. However, we begin by a more general study and we obtain in Section 4.3 a
general result regarding the conditional expectations (Theorem 4.5). We then apply it in Section 4.4 to the
particular case of the recurrence quotient, and this provides Theorem 4.6, which can be viewed itself as an
extension of Theorem 4.3.

4.4.1 Limit expectation of bounded LQ- functions.

Thus far, we dealt with distributions of LQ-functions. Now, we consider expected values of an LQ-function,
and use the equality

E[Λn] =
 ∞

0
P[Λn ≥ λ] dλ ,

valid when Λ ≥ 0, as in our case. We consider here the case of an LQ-function Λ associated with a bounded
function f (which is the case when b2 is not zero). It is then possible to interchange the limit and the integral
and use Theorem 4.1.
When reversing the order of integration, we first integrate with respect to λ, and we are led to the integral

Eψ[f ] :=
6

π2
I(f · 2ω,R) (4.28)

which is exactly the expectation Eψ[f ] of the function f on the rectangle R with respect to the density
ψ := (12/π2)ω. We thus obtain the following result which provides an extension of Theorem 4.1:

Theorem 4.4. Consider an LQ-function Λ associated with a function f bounded by Bf . Then the sequence
n →→ Λn admits a limit expected value as n → ∞ equal to the expectation Eψ[f ] of the function f on the
rectangle R with respect to the density ψ := (12/π2)ω, and

E [Λn] = Eψ[f ] +Bf O


1

n


, (4.29)

where the constant in the O-term does not depend on f and λ.

4.4.2 Case of the recurrence quotient.

The function f associated with the recurrence quotient S(α, n) is fS(x, y) = 1 + x+ y. It is is unbounded
on R, and the function fS is not integrable with respect to ψ. In fact, by the argument of Proposition 4.1 the
expected value can be worked out to be

E[Sn] = Rn(2ωfS ,R),

and here Rn(2ωfS ,R) is infinite for each n.

This is why we consider the conditional expectations for the sequence Sn with respect to an event [Γn ≥
ϵ(n)] associated with another LQ-function Γ, namely

E[Sn|Γn ≥ ϵ(n)] .

We will choose in the sequel the LQ-function Γ from the set {µ, ν, ρ} and a positive sequence ϵ(n) tending
to 0 not all too quickly.
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4.4.3 General conditional expectations.

We consider more general conditional expectations,

E[Λn|Γn ≥ ϵ] (ϵ > 0)

when Γ is an LQ-function associated with a function g which tends to 0 for y → ∞. (This means that the
pair (b1, b2) in (4.6) satisfies b1/b2 = 0). The subset

{(x, y) ∈ R : g(x, y) ≥ ϵ}

is bounded for ϵ > 0, and we denote, for ϵ > 0,

Bf |g(ϵ) := sup{f(x, y) : g(x, y) ≥ ϵ} <∞.

In this case, the expectation of f with respect to ψ conditioned to the event [g ≥ ϵ] is well defined, and
denoted as

Eψ[f |g ≥ ϵ] .

The following holds.

Theorem 4.5. Consider two LQ-functions Λ and Γ with respective associated functions f and g. Assume
that g tends to 0 for y → ∞. Then the conditional expectation of Λn with respect to the event [Γn ≥ ϵ]
satisfies

E[Λn|Γn ≥ ϵ] · P[Γn ≥ ϵ] = Eψ[f |g ≥ ϵ] · Pψ[g ≥ ϵ]

+Bf |g(ϵ)O


1

n


where the constant in the O-term does not depend on either f , g or ϵ.

Proof. The conditional expectation is a ratio; the denominator is P[Γn ≥ ϵ] whereas the numerator ∞

0
P[Λn ≥ λ,Γn ≥ ϵ] dλ .

Associate with the pair (Λ,Γ) its function pair (f, g) and, for any pair (λ, ϵ) of positive real numbers,
consider the bounded convex subset already described in (4.15)

∆f,g(λ, ϵ) := {(x, y) ∈ R : f(x, y) ≥ λ, g(x, y) ≥ ϵ} .

We have remarked in Section 3 that a slight extension of Proposition 4.1 entails the equality

P[Λn ≥ λ,Γn ≥ ϵ] = Rn 2ω,∆f,g(λ, ϵ)

.

Moreover, with the convexity of the domain ∆f,g(λ, ϵ) ⊂ R, Proposition 4.3 applies, yielding

P[Λn ≥ λ,Γn ≥ ϵ] =
12

π2
I[ω,∆f,g(λ, ϵ)] +O


1

n


.

Now we integrate on λ, noticing that we need only integrate from 0 to Bf |g(ϵ) ∞

0
P[Λn ≥ λ,Γn ≥ ϵ]dλ =

12

π2

 ∞

0
I[ω,∆f,g(λ, ϵ)]dλ+Bf |g(ϵ)O


1

n


.

We are led to the integral of ω on the domain of R3 defined by

{(x, y, λ) ∈ R× R≥0 : f(x, y) ≥ λ, g(x, y) ≥ ϵ}
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Parameter Γ Bound for S Eψ[fS |fΓ ≥ ϵ(n)]Pψ[fΓ ≥ ϵ(n)]

ρ S ≤ 2 + 1/ρ =⇒ BfS |fρ(ϵ) = O(1/ϵ) A| log(ϵ(n)|+ 1−Aϵ(n)| log ϵ(n)|

µ S ≤ 1 + 1/µ =⇒ BfS |fµ(ϵ) = O(1/ϵ) A| log ϵ(n)|+ A

1− ϵ(n)
ϵ(n)| log ϵ(n)|

ν S ≤ 1 + 2/ν =⇒ BfS |fν (ϵ) = O(1/ϵ) A| log ϵ(n)|+ 1

Figure 4.8: In the second column, the bounds for S for each parameter Γ ∈ {ρ, µ, ν}. In the third column,
the values of the product Eψ[fS |fΓ ≥ ϵ(n)]Pψ[fΓ ≥ ϵ(n)] needed to apply Theorem 4.5. The constant A is
12/π2.

We interchange the summation, and we first integrate with respect to λ (which provides the term f(x, y)),
and obtain  ∞

0
I[ω,∆f,g(λ, ϵ)]dλ =


(x,y)∈R,
g(x,y)≥ϵ

ω(x, y) · f(x, y)dxdy ,

=
π2

12
Eψ[f |g ≥ ϵ] · Pψ[g ≥ ϵ] . ■

4.4.4 Conditional expectation of the recurrence quotient. Proof of Theorem 4.3.

We will prove here a stronger version of Theorem 4.3, where the remainder terms are more precise.

Theorem 4.6. Consider a parameter Γ ∈ {ρ, µ, ν} defined in (4.1) and (4.2), and a sequence n →→ ϵ(n)
which tends to 0. Then the conditional expectation of the recurrence quotient Sn with respect to the event
[Γn ≥ ϵ(n)] satisfies

E

Sn

Γn ≥ ϵ(n)

=

12

π2
| log ϵ(n)|+ C(Γ)

+O


1

ϵ(n)n
+ ϵ(n)| log ϵ(n)|2


. (4.30)

Moreover, the constants C(Γ) satisfy

C(ν) = +1, C(µ) = 0, C(ρ) = +1 .

Proof. The proof is an application of Theorem 4.5. First, a direct computation with Theorem 4.1 shows that
if Γ is one of the Q-functions ρ, µ or ν, the following estimates hold

P[Γn ≥ ϵ(n)] = 1 +O(ϵ(n) + 1/n) .

Along with the bounds and the integrals provided in Figure 4.8, this implies the result. ■

Now, Theorem 4.3 is an immediate application of Theorem 4.6. Indeed, in the case when ϵ(n) = Ω


1
n logn


,

the remainder term in (4.30) is o(| log ϵ(n)|).

4.5 Other applications and extensions

The principles employed above do not limit themselves to Q-functions, here we present other interesting
applications; first to the study of the number of continuants in an interval [n, cn) with fixed c > 1, and then
to study the minimal distance Γ from Definition 3.11. We also expand on the concept of Q-functions.
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4.5.1 Number of continuants in an interval.

There is an interesting application of the previous ideas, that counts the number of terms of the sequence
k →→ qk(α) that belongs to the interval [n, cn), for some fixed c > 1. We thus study the function

(α, n) →→ T (α, n) :=

k≥0

[[qk(α) ∈ [n, cn)]] .

Proposition 4.4. Consider the Lévy constant κ := exp

π2/(12 log 2)


. Then the mean number of continu-

ants in the interval [n, κn] tends to 1 as n→ ∞
Proof. Even if T is not a Q-function, its expectation E[Tn] is expressed as a Riemann sum of the function
2ω, in a domain Tc. However the domain Tc is not a subset of the rectangle R. We have indeed

E[Tn] =
 1

0
T (α, n)dα =

 1

0
dα

k

[[qk(α) ∈ [n, cn)]]

=

k


m∈Nk

|Ik(m)| [[qk(m) ∈ [n, cn)]]

=
1

n2


k


m∈Nk

ω


qk−1(m)

n
,
qk(m)

n


qk(m)

n
∈ [1, c)



= 2


(a,b)∈Z2
gcd(a,b)=1

ω


a

n
,
b

n


a

n
≤ b

n
, 1 ≤ b

n
≤ c



= Rn(2ω, Tc), with Tc = {(x, y) : x ≤ y, 1 ≤ y ≤ c} .

Even if Tc is not a subset of R, Proposition 4.3 applies, and the coprime Riemann series admits a limit equal
to the integral

6

π2
I(2ω, Tc) =

12 log 2

π2
log c . ■

Interpretation. The expression in Proposition 4.4 is no coincidence. Given a complete interval dynamical
system (see Definition 1.3) with shift map S, consider the inverse branches h ∈ Hk rather than the tuple of
digits m1, . . . ,mk. Pick a probability measure µ, which plays the role of the Lebesuge measure above.

Under good hypothesis, the author conjectures that the following limit should exist and equal

lim
n→∞


k≥1


h∈Hk

µ (h(I))

n < 1

µ(h(I)) ≤ θn


=
log θ

Hµ(S)
,

where Hµ(S) is the entropy of our system with respect to the probability measure µ, see Section 1.2.7.

We give the philosophical intuition behind this conjecture. If the limit g(θ) exists for each θ > 0, it should
be of the form g(θ) = c log θ for a certain C, as it satisfies g(θ1 · θ2) = g(θ1) + g(θ2) and it is increasing.
We expect the constant c to be as above because θ = exp(Hµ(S)) is the candidate to make the expected
number of continuants in (n, θn] roughly equal to 1.

4.5.2 The smallest distance and Q


-functions

Introduction Many functions that are not Q-functions may turn into one after integration. This is the case
of the smallest distance Γ(α, n) from Chapter 3, Definition 3.11, which constitutes an interesting building
example. We shall then show also that T k(α,n)α is another example.
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The average case of the smallest distance and its distribution has appeared several times in the literature
over the years. First Friedman and Niven [FN59] considered the study of the first recurrence time (see Def-
inition 3.13) on average, introducing several techniques involving the so-called Farey series. Then Kesten
[Kes62] built on the work of Friedman and Niven to study the expected values of the smallest distance. It
turns out that his proof can be simplified by explaining more deeply the relation between coprime Riemann
sums and integrals (see Proposition 4.8 below). Here we shall show that we may achieve the same results,
even in distribution, by extending the concepts of this chapter.

It is also worthwhile to point out the works by Knuth [Knu84] and Bosma, Jager and Wiedijk [BJW83].
Knuth has studied the related quantity θk(α) := qk(α) · |αqk(α) − pk(α)| probabilistically, giving a limit
density as k → ∞. Bosma, Jager and Wiedijk, on the other hand, have proved similar results from an
Ergodic perspective. We shall give more details on the matter when we state the result for the smallest
distance.

Normalized smallest distance Clearly asking for the limit distribution of Γ(α, n) does not make much
sense: it tends to 0 uniformly, as we know that Γ(α, n) ≤ 1/(n + 1). The inequality follows form the
fact that we have partitioned the circle of radius 1 into n + 1 intervals. The right function would be the
normalized smallest distance:

nΓ(α, n) = Γ(α, n)/(1/n) .

Let us recall an important proposition from Chapter 3, which explains the relationship between the smallest
distance Γ(α, n) and the convergents of α.

Proposition. 3.15 Let α ∈ [0, 1) and n ∈ N. Let k be the unique non-negative integer such that qk(α) ≤
n < qk+1(α). The smallest distance Γ(α, n) is then given by

Γ(α, n) =Mk(α) := |αqk − pk| .

We recall Proposition 1.4, which tells us that

1

qk + qk+1
≤ |αqk − pk| ≤

1

qk+1
,

and Proposition 3.15. From these we derive that for qk(α) ≤ n < qk+1(α)

qk
2qk+1

< n |αqk − pk| < 1 .

Thus we derive

Proposition 4.5. For almost every α ∈ (0, 1), the normalized smallest distance nΓ(α, n) satisfies the
bounds

1

2
≤ lim sup

n→∞
nΓ(α, n) ≤ 1 . (4.31)

Probabilistic study of the normalized smallest distance We shall prove the following Theorem giving
the limit distribution of the normalized smallest distance.

Theorem 4.7. The normalized smallest distance n · Γ(α, n) has a limit distribution

lim
n→∞

P (α : n · Γ(α, n) ≤ β) =
12

π2
(β −G(β)) , (4.32)

where G(β) is 0 for β ≤ 1/2, and for 1/2 ≤ β ≤ 1 we have

G(β) =− 1

2
(log β)2 + (β − 1) log

β

1− β
− Li2 (β) + 2β − 1 +

π2

12
,
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where we recall Li2(x) = −
 x
0

log(1−u)
u du for |x| ≤ 1.

This Theorem was first proved by Kesten in [Kes62] but by using significantly different methods.
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Figure 4.9: Limiting density for nΓ(α, n) in red and an escaled experimental histogram in blue.

As a consequence we have the following result for the expectation.

Theorem 4.8. The expected value of the normalized smallest distance n · Γ(α, n) satisfies

lim
n→∞

E [n · Γ(α, n)] = log 2

ζ(2)
. (4.33)

Theorem 4.7 has an analog in [BJW83] which we cite here

Theorem 4.9. Let b > 0. For almost every α ∈ I we have

lim
n→∞

1

n
#{j : j ≤ n, qj(α)|αqj(α)− pj(α)| ≤ b} =


b

log 2 if 0 ≤ b ≤ 1
2 ,

1
log 2(−b+ log(2b) + 1) if 1

2 ≤ b ≤ 1 .

Note that in Theorem 4.9 only the n’s that are continuants are considered (i.e., n = qj(α)) and the result
is of Ergodic nature, giving the average behavior of the orbit of a fixed α, almost every α ∈ I. The
proof of Theorem 4.9 rewrites the quantity |αqj(α)− pj(α)| in terms of T j(α) and [mj(α), . . . ,m1(α)] =
qj−1(α)/qj(α), to then apply the Ergodicity of the natural extension (x, y) →→ (Tg(x), 1/(m(x) + y)).

Knuth in [Knu84] obtains this same limit distribution for qk(α)|αqk(α) − pk(α)|, but for k fixed, when
considering α ∈ I drawn uniformly at random from I. His strategy, however, is rather different, as he
considered methods close to those of Chapter 5.

In order to study the smallest distance, we introduce a new concept.

Definition 4.1 (Q


-function). A function Λ: [0, 1]×N → R≥0 is said to be a Q


-function if and only if for
each positive integer n and prefix m ∈ Nk such that qk−1(m) ≤ n < qk(m), the integral of α →→ Λ(α, n)
on the fundamental interval Im associated with m can be written as

Im
Λ(α, n)dα =

1

n2
f


qk−1(m)

n
,
qk(m)

n


, (4.34)

for some function f : (0, 1]× [1,∞) → R≥0, independent from both m and n. In such a case we say that f
is the function associated with the Q


-function Λ.
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Thus Q


-functions have averages over the fundamental intervals that are actually Q-functions. It comes
as no surprise that we will be interested in the expected values of Q


-functions, even more so due to the

following proposition which states that the indicator [[nΓ(α, n) ≤ b]], for fixed b > 0, is a Q


-function.

Proposition 4.6. Fix b > 0. The indicator function (α, n) →→ [[nΓ(α, n) ≤ b]], is a Q


-function, explicitly


Im

[[nΓ(α, n) ≤ b]]dα =


1
n2

1
y(x+y) if 1 ≤ b y

1
n2


b
x − 1

x(x+y)


if by < 1 ≤ b(x+ y)

0 otherwise ,

where x =
qk−1(m)

n and y = qk(m)
n , so that qk−1(m) ≤ n < qk(m) implies 0 < x ≤ 1 < y.

Proof. We observe that if k is even, then

Im =


pk(m)

qk(m)
,

pk(m) + pk−1(m)

qk(m) + qk−1(m)


,

while, if k is odd,

Im =


pk(m) + pk−1(m)

qk(m) + qk−1(m)
,

pk(m)

qk(m)


.

Here
nΓ(α, n) ≤ b⇐⇒ α ≤ pk−1

qk−1
+

b

n qk−1
, and α ≥ pk−1

qk−1
− b

n qk−1
.

The first possibility holds trivially when k is even, because then α ≤ pk−1

qk−1
, and similarly the latter one holds

trivially occur when k is odd because then α ≥ pk−1

qk−1
.

Case k even. Let us start by supposing that k is even. Then

Im =


pk(m)

qk(m)
,

pk(m) + pk−1(m)

qk(m) + qk−1(m)


,

and we must compute the length of the interval

Jm,n := Im ∩

pk−1

qk−1
− b

n qk−1
,
pk−1

qk−1
+

b

n qk−1


.

Since α ≤ pk−1

qk−1
for k even, we need only check what happens with the left border pk−1

qk−1
− b

n qk−1
.

We compare first pk−1

qk−1
− b

n qk−1
with pk(m)+pk−1(m)

qk(m)+qk−1(m) . Observe that

pk−1(m)

qk−1(m)
− pk(m) + pk−1(m)

qk(m) + qk−1(m)
=

1

qk−1(qk + qk−1)

thus

pk−1

qk−1
− b

n qk−1
≤ pk(m) + pk−1(m)

qk(m) + qk−1(m)
⇐⇒ 1

qk−1 (qk−1 + qk)
≤ b

n qk−1
⇐⇒ n ≤ b (1 + xk) qk

But pk−1

qk−1
− b

n qk−1
may also exceed the left-hand border of Im when

pk−1

qk−1
− b

n qk−1
≤ pk
qk

⇐⇒ 1

qk
≤ b

n
⇐⇒ n ≤ b qk .

Thus, for b qk < n ≤ b (qk + qk−1) i.e. by < 1 ≤ b(x+ y), we have

Jm,n =


pk−1

qk−1
− b

n qk−1
,
pk(m) + pk−1(m)

qk(m) + qk−1(m)


, |Jm,n| =

1

n2


b

x
− 1

x(x+ y)


,
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while, if n > b (1 + xk) qk we have the empty set Jm,n = ∅, and for n ≤ b qk we get the original interval
Jm,n = Im in which case |Jm,n| = 1

n2
1

y(x+y) .

The analysis gives the same results in the end when k is odd, thus


Im

[[nΓ(α, n) ≤ b]]dα =


1
n2

1
y(x+y) if 1 ≤ b y

1
n2


b
x − 1

x(x+y)


if by < 1 ≤ b(x+ y)

0 otherwise ,

where x =
qk−1(m)

n and y = qk(m)
n , so that qk−1(m) ≤ n < qk(m) implies 0 < x ≤ 1 < y. ■

Here is an analogous to Proposition 4.1 for Q


-functions. Notice that here the density ω(x, y) does not
necessarily intervene, as we actually see from Proposition 4.6.

Proposition 4.7. Let Λ be a Q


-function associated with a function f ≥ 0. Then its expected value is given
by

Eα[Λ(α, n)] =
2

n2


a≤n<b ,

gcd(a,b)=1

f


a

n
,
b

n


. (4.35)

Proof. For a Q


–function Λ, associated with f , the expected value takes on the form

E[Λn] =

k≥1


m∈Nk

[[qk−1(m) ≤ n < qk(m)]]


Im

Λ(α, n)dα (4.36)

which by definition equals

E[Λn] =
1

n2


k≥1


m∈Nk

[[qk−1(m) ≤ n < qk(m)]]f


qk−1(m)

n
,
qk(m)

n


. (4.37)

Now the rest follows as before by noticing that the pairs (qk−1(m), qk(m)) traverse all the pairs of coprime
integers (a, b) with a ≤ b twice. ■

Observation 4.1. Observe that for the normalized smallest distance, the integrals over the fundamental
intervals 

Im
[[nΓ(α, n) ≤ b]]dα

can be decomposed, for any b > 0, as a sum of homogeneous functions of degree 2 and maybe also 1. So it
is not trivial to apply Proposition 4.3 at once.

Here there are two ways forward. In fact, if we admit the case of homogeneous functions of degree −1 in
Proposition 4.3, we get a bound of order O((log n)/n). We feel, however, that it is more illuminating to
step back and explain what happens on a much wider context.

The general intuition is explained by the following Proposition 4.8. Given a “filtering” or “weighting”
function δ with a natural density C > 0 (see the statement of the proposition), any perturbation of the
Riemann-integral by filtering (or weighting) the steps by δ just gives the same Riemann integral multiplied
by C. For our application we just need δ(a, b) = [[gcd(a, b) = 1]], which has density C = 6/π2 (see
Proposition 2.10), but it is important to give the whole intuition behind it.

Proposition 4.8. Let f : [0, 1]k → R be bounded, and Riemann integrable. Consider a bounded function
δ : Nk → R with a natural density

lim
N1,...,Nk→∞

1

N1 . . . Nk


x1≤N1,...,xk≤Nk

δ(x1, . . . , xk) = C ,
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for a certain constant C > 0. Then we have

lim
N1,...,Nk→∞

1

N1 . . . Nk


x1≤N1,...,xk≤Nk

f


x1
Nk

, . . . ,
xk
Nk


δ(x1, . . . , xk)

= C


· · ·

[0,1]k

f(x1, . . . , xk)dx1 . . . dxk .

Proof. The proof of this Lemma is the archetypical proof in Measure Theory; we prove that a certain class
of “easy functions” satisfies the statement, and then move on to prove that these functions approximate well
our “target functions”.

The result is trivially true when we pick f = 1(a1,b1]×...×(ak,bk]. Indeed, by inclusion-exclusion (see e.g.,
[Sta97, pp.64-65])


a1<

x1
N1

≤b1,...,ak<
xk
Nk

≤bk

δ(x1, . . . , xk) =

S⊂[k]

(−1)|S|


xi
Ni

≤ai for i∈S , xi
Ni

≤bi for i ̸∈S

δ(x1, . . . , xk) , (4.38)

because here the properties (sets) that may fail to be satisfied are ai < xi
Ni

for i = 1, . . . , k. Here we observe
that

lim
N1,...,Nk→∞

1

N1 . . . Nk


xi
Ni

≤ai for i∈S , xi
Ni

≤bi for i ̸∈S

δ(x1, . . . , xk) = C


i∈S

ai


·


i ̸∈S

bi

 ,

therefore

lim
N1,...,Nk→∞

1

N1 . . . Nk


a1<

x1
N1

≤b1,...,ak<
xk
Nk

≤bk

δ(x1, . . . , xk) = C

S⊂[k]

(−1)|S|


i∈S

ai


·


i ̸∈S

bi

 ,

(4.39)

= C (b1 − a1) . . . (bk − ak) . (4.40)

As a consequence, the result follows at once for step functions (the finite linear combinations of the charac-
teristic functions of rectangles), we have our “easy functions”. We remark that what happens in the borders
of the intervals defining the rectangle is not very important, since these cases do not eventually contribute to
the limits because |δ| is bounded.

Let us denote

Sf (N1, . . . , Nk) :=
1

N1 . . . Nk


x1≤N1,...,xk≤Nk

f


x1
Nk

, . . . ,
xk
Nk


δ(x1, . . . , xk)

for the sake of brevity.

So our “easy functions” are the step functions, now our “target functions” will be all of the Riemann inte-
grable functions. Indeed, the set of step functions is dense in the set of Riemann integrable functions under
the norm of L1, hence if f is Riemann integrable and ϵ > 0 is arbitrary, there is a step unction g such that
∥f − g∥1 ≤ ϵ and we explain why this, together with the Riemann integrability of |f − g|, actually imply
the conclusion.
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Let K be such that |φ| ≤ K, as it is bounded by hypothesis, thenSf (N1, . . . , Nk)−Sg(N1, . . . , Nk)


≤ 1

N1 . . . Nk


x1≤N1,...,xk≤Nk

f  x1Nk
, . . . , xkNk


− g


x1
Nk
, . . . , xkNk

 |δ(x1, . . . , xk)|
≤ K

N1 . . . Nk


x1≤N1,...,xk≤Nk

f  x1Nk
, . . . , xkNk


− g


x1
Nk
, . . . , xkNk

 ,
and observe here that the right-hand side tends to K


|f − g|, because |f − g| is Riemann integrable.

It follows that for, say N1, . . . , Nk ≥ M we get |Sf − Sg| ≤ 2Kϵ. By making M larger if necessary, we
may assume |Sg −


g| ≤ ϵ as we already know the result to hold for g, thus by the triangle inequality

|Sf −

f | ≤ |Sf − Sg|+ |Sg −


g|+ |


g −


f | ≤ (2K + 2)ϵ ,

provided that N1, . . . , Nk ≥M , which proves the result because ϵ > 0 was arbitrary. ■

With Proposition 4.8 at hand, we now explain how to get the distributions from before.

Theorem 4.10. Consider f ∈ C1 (R,R), and let Λ(α, n) be the Q-function associated with f , i.e.,

Λ(α, n) := f
qk−1

n
,
qk
n


for qk−1(α) ≤ n < qk. Assume that ∇f(x, y) ̸= 0 for almost-every (x, y) ∈ R, then the limiting distribu-
tion of Λ(α, n) as n→ ∞ is given by

lim
n→∞

P (α : Λ(α, n) ≤ λ) =
12

π2


∆f (λ)

ω(x, y)dxdy ,

for every λ ≥ 0.

Remark. Observe that the hypothesis hold for the recurrence quotient, where we have fS(x, y) = 1+x+y,
or the relative position, where we have fµ(x, y) = 1−x

y−x . In these cases, however, the fact that (x, y) →→
1f(x,y)≤λ is Riemann-integrable is actually simple enough since the border f(x, y) = λ is a line.

Proof. We give a sketch of the proof. There are two parts to it, after noticing that (see Proposition 4.1)

P (α : Λ(α, n) ≤ λ) =
2

n2


(a,b)∈N2

ω


a

n
,
b

n


f


a

n
,
b

n


≤ λ

 
a

n
<
b

n


δ(a, b),

where δ(a, b) = [[gcd(a, b) = 1]].

In order to apply Proposition 4.8 we first need to show that (x, y) →→ [[f(x, y) ≤ λ]] is Riemann-integrable,
and then extend the result to the unbounded R (the result works for the bounded rectangle [0, 1]× [0, 1]).

First we explain why (x, y) →→ [[f(x, y) ≤ λ]] is Riemann-integrable. This follows from the fact that the
points of discontinuity belong to f−1(λ), which is a null set, thanks to the inverse function theorem (we
may omit the points where ∇f = 0 as this is already a null set, and we show the rest is countable).

Now Proposition 4.8 applies only to bounded rectangles (by re-scaling), but the fast convergence of the sums
1

b(a+b) over (a, b) with a ≤ n < b gives the result by taking larger and larger rectangles. ■

We mention here that when one drops the condition that Λ be an LQ-function, then we cannot really give
guarantees with regard to the convergence to the distribution. This is why we gave a different proof in our
paper for ANALCO [RV17] with precise error terms, as these are much needed for the results regarding the
convergence in density and the conditional expectations.
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By using Proposition 4.8 we complete he proof of Theorem 4.7.

Proof. [of Theorem 4.7] We are now ready to prove Theorem 4.7 by using Proposition 4.6. Indeed, fixed
b > 0 we divide into two cases: (i) 1/b ≤ y and (ii) y ≤ 1/b.

When we are in case (ii) we have that the domain (x, y) is contained in the bounded rectangle [0, 1]×[1, 1/b].
Hence we may apply Proposition 4.8 for case (ii) after re-scaling the y-axis. For the case (ii) 1/b ≤ y we
note that the formula given by Proposition 4.6 falls into the case of Proposition 4.3. Hence it follows that in
the limit we get 12/π2 times the integral as before:

lim
n→∞

P (α : n · Γ(α, n) ≤ b) =
12

π2


R
fb(x, y)dxdy ,

where

fb(x, y) =


1
n2

1
y(x+y) if 1 ≤ b y

1
n2


b
x − 1

x(x+y)


if by < 1 ≤ b(x+ y)

0 otherwise .

Thus for b ≤ 1/2

lim
n→∞

P (α : n · Γ(α, n) ≤ b) =
12

π2

 1

0

 1/b

1/b−x


b

x
− 1

x(x+ y)


dy +

 ∞

1/b

dy

y(x+ y)


dx ,

since then 1/b− x ≥ 1. It is then a computation to find that this reduces to 12
π2 b.

For b > 1/2 it may hold that 1/b− x < 1 depending on x. Thus subtracting these cases

lim
n→∞

P (α : n · Γ(α, n) ≤ b) =
12

π2
b

− 12

π2

 1

1/b−1

 1

1/b−x


b

x
− 1

x(x+ y)


dy


dx ,

for b > 1/2. Computing the integral gives the result. ■

4.5.3 Independence from the initial distribution

Introduction Thus far we have only considered the uniform (Lebesgue) distribution on the interval I =
[0, 1]. It is more generally true that as long as our distribution have a density with respect to the Lebesgue
measure (i.e., that our measure µ is absolutely continuous with respect to the Lebesgue measure λLeb, in
symbols µ ≪ λLeb) the limit in Theorem 4.1 will remain the exact same. We do not give guarantees with
regard to the convergence speeds, and these may vary according to the nature of the density g(x) = dµ

dλLeb
(x).

Theorem 4.11 (Independence from the initial distribution). Consider a probability measure µ that is ab-
solutely continuous with respect to the Lebesgue measure λLeb, in symbols this reads µ ≪ λLeb. Then, for
each fixed λ ∈ R, the limit

lim
n→∞

Pµ (Sn ≤ λ)

exists and is independent from the choice of µ≪ λLeb.

To motivate the proof, let us consider a density g ∈ C1(I,R). We note that for a fundamental interval
J := Im1,...,mk

we have the following estimate

µ(J) =


J
g(x)dx = g


pk
qk


|J |+O(|J |2) ,
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by the mean-value Theorem, as pk(m)/qk(m) ∈ J . Recalling that |J | = 1/(qk(qk + qk−1)) we get

µ(J) =
1

q2k

g

pk
qk


1 +

qk−1

qk

+O(|J |2) ,

and here we write ρ =
qk−1

qk
and ρ = pk/qk. Clearly, if g ≡ 1 we get the same result from Theorem 4.10.

We will prove that we may indeed get rid of this factor g(pk/qk) by showing that pk/qk is asymptotically
independent (on average) to qk−1/qk. Then the factor g(x) integrates separately to 1 and we get the result.

The independence of pk/qk and qk−1/qk. We recall that by the mirror property (1.14) we have

ρ = [mk,mk−1, . . . ,m1] , ρ = [m1,m2, . . . ,mk] .

This property is crucial. We explain intuitively why ρ and ρ should be independent. Indeed, given a se-
quence m = (m1,m2, . . .), the convergents ρ = [m1,m2, . . . ,mk] converges exponentially fast to x =
[m1,m2, . . .]. Similarly ρ = [mk,mk−1, . . . ,m1] is mainly determined by the first digits ofmk,mk−1, . . . ,m1,
which present a kind of stationary behavior for almost every x. Thus we see that intuitively ρ and ρ should
be independent from one another.

Even if we made a seemingly fundamental use of the Riemann sums with x = qk−1/n and y = qk/n
before, this time it will prove significantly simpler to work with the parameters ρ = qk−1/qk, ρ = pk/qk
and y = qk/n. Note we now have three parameters, because the denominators pk have not intervened in our
expressions up to this point. In any case note that x = ρ · y so we may retrieve the expressions from before.

We present a proof that is algebraic in nature and depends fundamentally on the equivalent fact that x mod q
and x−1 mod q are asymptotically independent on average. Indeed, we shall prove that this follows from
the determinant equation (1.13) which implies the congruence pkqk−1 ≡ (−1)k+1(mod.qk). We remark
how to get rid of the sign ±1: the two signs will occur symmetrically, owing to the fact that each rational
has exactly two continued fraction expansions (one of even and one of odd length). To the best of our
knowledge, this remark proving that pk/qk and qk−1/qk behave somewhat independently is new, and we
would also like to prove this dynamically, but we have not been able to do this yet.

The fact that the modular inverses x mod q and x−1 mod q are asymptotically independent on average
might be intuitively clear to many people working in Number Theory, and in order to prove it in the form
we want, we cite the survey [Shp12] of Shparlinski, which gives several applications of a precise form of
independence inequalities for x mod q and x−1 mod q.

For the proof we require [Shp12, Theorem 13] which we cite here. The proof of this Theorem reduces to
the application of a bound by Estermann for Kloosterman sums. Kloosterman sums

Km(r, s) =


x: 1≤x≤m,
gcd(x,m)=1

exp


2πi

m


r x+ s (x−1 mod m


,

are intuitively a measure of “correlation” between x and x−1 mod m, so it comes as no surprise that they
be of use here.

Theorem 4.12 (From [Shp12], Theorem 13). Let X = {U+1, . . . , U+X}, wherem > X ≥ 1 and U ≥ 0
are arbitrary integers. Suppose that for every x ∈ X we are given a set Yx = {Vx + 1, . . . , Vx + Y } where
m > Y ≥ 1 and Vx ≥ 0 are arbitrary integers. Then for any integer m ≥ 1 and a with gcd(a,m) = 1, we
have 

(x,y)∈Ha,m ,
x∈X ,y∈Yx

1 =
φ(m)

m2
XY +O(m1/2+o(1)) ,

where Ha,m = {(x, y) : xy ≡ a(mod.m)}.
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In other words, we know very well (with an error term) what happens over rectangles. It comes as no
surprise then, following the previous result for linear combinations of characteristic functions of rectangles,
that we have the following Theorem 4.13.

Theorem 4.13. Let f : [0, 1] × [0, 1] × [0,∞) → R≥0 be locally Riemann-integrable and compactly sup-
ported (i.e., f(·, ·, y) = 0 for large enough y). Then

lim
N→∞

1

N2


(x,y): 1≤x≤y,

gcd(x,y)=1

f


x

y
,
x−1 mod y

y
,
y

N


=

6

π2


[0,1]×[0,1]×[0,∞)

y f(ρ, ρ, y)dρdρdy .
It is important to remark that the sum on Theorem 4.13 is bidimensional, yet it yields a triple integral.

Proof. [Sketch] First, we may work on a compact domain D := [0, 1]× [0, 1]× [0, R] containing the support
of f . Consider arbitrary step functions g and h with g ≥ f ≥ h ≥ 0 on D.

If the result holds for such arbitrary g and h, it is easy to see it also holds for f on D (Riemann-integrability
on D). Thus it is enough to prove it for step functions; the functions that are linear combinations of charac-
teristic functions of “rectangles” [a, b]× [c, d]× [A,B] (maybe excluding the borders).

For a basis step function f = 1[a,b]×[c,d]×[A,B] the result is a direct calculation that follows from Theo-
rem 4.12 and the approximationc N

k=1 φ(k) ∼
3
π2N

2. ■

Now we delve into the relation between modular inverses and the convergents. The formal relation is given
by the following theorem.

Theorem 4.14. Let f : [0, 1]× [0, 1]× [0,∞) → R≥0 then


m∈N⋆

f


qk−1(m)

qk(m)
,
pk(m)

qk(m)
,
qk(m)

N


=


(a,b)∈N2: 1≤a≤b,

gcd(a,b)=1


f


a

b
,
a−1 mod b

b
,
b

N



+ f


a

b
, 1− a−1 mod b

b
,
b

N



−f

1, 1,

1

N


.

Proof. Let Υ: {m ∈ N+ : m1 > 1} → N+ be defined by m = (m1, . . . ,mk) →→ (1,m1−1,m2, . . . ,mk),
then we may write


k≥1


m∈Nk

f


qk−1(m)

qk(m)
,
pk(m)

qk(m)
,
qk(m)

N


=

k≥1


m∈Nk,
m1>1


f


qk−1(m)

qk(m)
,
pk(m)

qk(m)
,
qk(m)

N



+ f


qk(Υ(m))

qk+1(Υ(m))
,
pk+1(Υ(m))

qk+1(Υ(m))
,
qk+1(Υ(m))

N



+ f


1, 1,

1

N


,

as every (w1, . . . , wk+1) with w1 = 1 is exactly Υ(w2 + 1, . . . , wk+1). Notice the term f

1, 1, 1

N


on the

right-hand side that is due to the fact that for (1) we may not apply Υ.

Observe that the mirror property (1.14) reads qk(Υ(m)) = qk−1(m) and qk+1(Υ(m)) = qk(m). This
follows from the equality [m1, . . . ,mk] = [m1, . . . ,mk − 1, 1], and the mirror property (1.14).

cRecall e.g., that the Dirichlet Generating Function of the Euler totient function φ is ζ(s− 1)/ζ(s), hence this follows from the
Tauberian Theorem in Theorem 2.3. See Section 2.2 on DGFs for more details.
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Let θ : N⋆ → N⋆ be the mirror (m1, . . . ,mp) →→ (mp, . . . ,m1), then we recall that the mirror property reads
pk−1(θ(m)) pk(θ(m))
qk−1(θ(m)) qk(θ(m))


=


pk−1(m) pk(m)
qk−1(m) qk(m)

T
. (4.41)

Let us continue. Due to the change of parity in the depth

{pk(m), pk+1(Υ(m))} = {q−1
k−1 mod qk, (−q−1

k−1) mod qk} ,

where, in fact, (−q−1
k−1) mod qk = qk −


q−1
k−1 mod qk


. Thus


k≥1


m∈Nk

f


qk−1(m)

qk(m)
,
pk(m)

qk(m)
,
qk(m)

N


=

k≥1


m∈Nk,
m1>1


f


qk−1

qk
, 1−

q−1
k−1 mod qk

qk
,
qk
N



+ f


qk−1

qk
,
q−1
k−1 mod qk

qk
,
qk
N



+ f


1, 1,

1

N


.

We recall that the mirror property tells us that

pk(θ(m)) = qk−1(m), qk−1(θ(m)) = pk(m), qk(θ(m)) = qk(m) ,

thus by applying the mirror θ on the right-hand side (note that this turns m1 > 1 into mk > 1) we have
m∈N⋆

f


qk−1(m)

qk(m)
,
pk(m)

qk(m)
,
qk(m)

N


=


m∈Nk


m∈Nk,
mk>1


f


pk
qk
, 1−

p−1
k mod qk

qk
,
qk
N



+ f


pk
qk
,
p−1
k mod qk

qk
,
qk
N


+ f


1, 1,

1

N


.

The coprime pairs (pk, qk) go through each reduced fraction a/b = pk/qk exactly once (except for a/b = 1),
thanks to condition mk > 1, thus we obtain

f


1, 1,

1

N


+


m∈N∗

f


qk−1(m)

qk(m)
,
pk(m)

qk(m)
,
qk(m)

N


=


(a,b)∈N2: 1≤a≤b,

gcd(a,b)=1


f


a

b
,
a−1 mod b

b
,
b

N



+ f


a

b
, 1− a−1 mod b

b
,
b

N


,

and we are done. ■

The following result solves the problem for the distribution of Sn as the event Sn(α) ≤ λmakes the function
we need compactly supported (we clearly have the bound qk

N ≤ λ when Sn ≤ λ). The result still holds for
the distributions of other LQ-functions the same argument.

Theorem 4.15. Let f : [0, 1]× [0, 1]× [0,∞) → R be locally Riemann-integrable and compactly supported.
Then

lim
N→∞

1

N2


k≥0


m∈N⋆

f


qk−1

qk
,
pk
qk
,
qk
N


=

12

π2


[0,1]×[0,1]×[0,∞)

y f(ρρ, ρ, ρ, y)dρdρdy .
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Observation 4.2. If we wanted to consider also pk−1 for our approximations, we could too. Indeed, the
equality pk−1qk − pkqk−1 = (−1)k implies

pk−1

qk
=
pk
qk

· qk−1

qk
+

(−1)k

q2k
,

thus it is easy to extend the result for a C1 function. The rest follows from approximation with C1 functions.

Corollary 4.1. Let f : [0, 1] × [0, 1] × [0, 1] × [0,∞) → R be locally Riemann-integrable and compactly
supported. Then

lim
N→∞

1

N2


k≥0


m∈N⋆

f


pk−1

qk
,
qk−1

qk
,
pk
qk
,
qk
N


=

12

π2


[0,1]×[0,1]×[0,∞)

y f(ρρ, ρ, ρ, y)dρdρdy .
Concluding remarks. We did not originally think it was possible to extend the results for the limit dis-
tributions to more general “initial” densities. The real motivation for this extension was the study of the
recurrence function over pure quadratic irrationals (see subsection 6.3.2). When studying the average be-
havior of the recurrence function when qk−1(α) ≤ n < qk(α) for an index k within the first period of the
continued fraction expansion of α, the distribution of the recurrence quotient coincides with the classical
case from this chapter, but changing the Lebesgue measure for the Gauss measure. The results from this
subsection tell us that we retrieve the same limit distributions.

4.6 Conclusions

Beginning from the question “what does the recurrence function of a random Sturmian word look like?”, we
define and work within a model that is natural at least from an algorithmic standpoint: pick a large integer
n and let the slope of the word be drawn at random from [0, 1]. We are led to the notion of the so-called
Q-functions: functions that, given n and a slope α, place n within the sequence of continuants k →→ qk(α)
of α, namely consider the index k for which n ∈ [qk−1(α), qk(α)), and then return a value depending only
on the two ratios (1/n)qk−1(α) and (1/n)qk(α). The recurrence quotient of Sturmian words defines such
a Q function, via a Theorem of Morse and Hedlund, where n is the length of the factors and α the slope of
the word.

Then, we study the distribution of a general Q-function. It defines in fact a sequence of distributions, and we
prove that the limit distribution and the limit densities exist. They all involve, as a sort of reference density,
the density ψ defined in (4.10), which plays a similar role to that of the Gauss density (defined in (1.8))
when one studies functions that depend on the ratio qk−1(α)/qk(α), and appears in our study [BCR+15]
which we explain extensively in Chapter 5.

Our results apply in particular to the recurrence quotient of Sturmian words; we exhibit the limit distribution
(and the limit density) of such a quotient. We compare our probabilistic study to the results of Morse and
Hedlund (see Theorem 3.4), which exhibit extreme behaviors, attained when n is close to the left border
qk−1(α) of the interval [qk−1(α), qk(α)) containing the integer n. That is why we also consider conditional
expectations, where the conditional events are related to the various parameters which describe the position
of the integer n inside [qk−1(α), qk(α)). We then compare this “constrained probabilistic” behaviors to the
extreme behaviors, in a precise manner.

We had already performed a similar study in [BCR+15] under a different probabilistic model, which we
called “fixed depth k → ∞” model in subsection 3.4.3. We present this model in detail in Chapter 5. In
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this model it is rather the index k of the interval [qk−1(α), qk(α)[ the integer n belongs to that is fixed. Then
for k → ∞, we exhibited limit distribution and limit densities all of which involve, as a sort of reference
density, the Gauss density. The two models are clearly different, but the two types of results show certain
similarities which we discuss in Chapter 6.

Further studies. In Chapter 6 we also present two variants of this model, which we consider in order to
tackle the study of the recurrence function for two special families of α.

Rational Numbers. This type of slope gives rise to periodic words, and occurs for Christoffel words. For
a bound N , we restrict α to the set of rationals with denominator at most N , endowed with the uniform
distribution, and we wish to observe the transition when N → ∞. We wish to explain how a periodic word
“becomes” Sturmian.

Quadratic Irrationals. This type of slope α, which we presented in Section 1.5, occurs for substitutive
Sturmian words. There is a natural notion of size (ϵ(x) from Section 1.5) associated with such numbers,
closely related to the period of their continued fraction expansion, and we wish to observe the transition
when the size becomes large.
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CHAPTER 5

THE RECURRENCE FUNCTION AND THE
RELATIVE POSITION

5.1 Introduction

The recurrence function, introduced in Chapter 3, measures the “complexity” of an infinite word and de-
scribes the possible occurrences of finite factors inside it together with the maximal gaps between successive
occurrences. This recurrence function has been widely studied, notably in the case of Sturmian words (see
[Cas99, MH40]). We recall that, due to Theorem 3.1, Sturmian words are strongly characterized by their
slope α. This is in particular the case for the recurrence function n →→ Rα(n), as explained by Theorem 3.3),
where the integerm = Rα(n) is the length of the smallest “window” needed to discover the whole set Lα(n)
of finite factors of length n. The set of factors Lα(n) is widely used in many applications of Sturmian words
(for instance quasicrystals, or digital geometry), and therefore the function n →→ Rα(n) intervenes very
often as a pre-computation cost, hence the importance of better understanding it “on average”, when the real
α is randomly chosen in the unit interval.

We have presented a random model, the “large fixed n” model, in Chapter 4. The “large fixed n” answers
the question “given a random slope α and a large n of our choice, how big is R(α, n) on average?”, which
makes sense from an algorithmic point of view. In the current chapter we will present another model, the
“large fixed k” model, we fix the interval [qk−1(α), qk(α)) between two continuants of α which contains n,
and prescribe a geometric description of the positioning of n within the interval. Thus the integer n is not
fixed anymore, becoming a random variable. This model is more adept to answering questions about the
incidence of the position of n within the interval and hence yield nicely worst-case families of n.

The expression of the recurrence function is recalled in Section 5.2. Our viewpoint and our main results are
given in Section 5.3. Proofs are provided in Section 5.4.

5.2 The recurrence function of Sturmian words

Notation. In the sequel φ = (
√
5− 1)/2 = 0.6180339 . . . stands for the inverse of the golden ratio, and for

two integers a, b, the set of integers n that satisfy a ≤ n ≤ b is denoted by [[a, b]] := [a, b] ∩ N.

We recall that the simplest words that are not eventually periodic satisfy the equality pu(n) = n + 1 for

145
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each n ≥ 0. Such words do exist: they are called Sturmian words. Morse and Hedlund provided a powerful
arithmetic description of Sturmian words (see Chapter 3 for more details).

Proposition. 3.1 Associate with a pair (α, β) ∈ [0, 1]2 the two infinite words S(α, β) and S(α, β) whose
n-th symbols are respectively

un = ⌊α(n+ 1) + β⌋ − ⌊αn+ β⌋,

un = ⌈α(n+ 1) + β⌉ − ⌈αn+ β⌉.

Then a word u ∈ {0, 1}N is Sturmian if and only if it equals S(α, β) or S(α, β) for a pair (α, β) formed
with an irrational α ∈ (0, 1) and a real β ∈ [0, 1).

It is also important to study where finite factors occur inside the infinite word u. This is where the recurrence
function (see subsection 3.3.1) comes in, giving a measure of how often factors reappear on the worst case.

More precisely, letwu(q, n) be the minimal number of symbols uk with k ≥ q which have to be inspected for
discovering the whole set Lu(n) from the index q. Then u is uniformly recurrent if each set {wu(q, n); q ∈
N} is bounded, and the recurrence function n →→ Ru(n) is defined by

Ru(n) := max{wu(q, n); q ∈ N} .

Any Sturmian word is uniformly recurrent (see Proposition 3.11). Its recurrence function only depends
on the slope α and is thus denoted by n →→ R(α, n) = Rα(n). Moreover, it only depends on α via its
continuants. We now recall this notion which plays a central role in the paper. Consider the continued
fraction expansion (see Chapter 1 for more details) of the irrational α

α =
1

m1 +
1

. . . +
1

mk +
1

. . .

= [m1,m2, . . . ,mk, . . . ].

The positive integers mk are called the partial quotients. The truncated expansion [m1, . . . ,mk] at depth
k defines a rational, and the continuant qk(α) is the denominator of this rational. The continuant sequence
satisfies q−1 = 0, q0 = 1 and for any k ≥ 1 the recurrence qk = mkqk−1 + qk−2 for all k.

We recall a fundamental result (Theorem 3.3) by Morse and Hedlund [MH40] :

Theorem. 3.3 For any Sturmian word of slope α, the recurrence function n →→ Rα(n) is piece-wise affine
and satisfies

Rα(n) = n− 1 + qk(α) + qk−1(α) ,

for n ∈ N satisfying qk−1(α) ≤ n < qk(α).

It is thus natural to study the quotient S(α, n) = (Rα(n)+1)/n. When n belongs to the interval [[qk−1(α), qk(α)−
1]], this quotient depends itself on two quotients: the quotient ρk(α) := qk−1(α)/qk(α), and the quotient
νk(α) := n/qk(α), and

S(α, n) :=
Rα(n) + 1

n
= 1 +

1 + ρk(α)

νk(α)
. (5.1)

As νk(α) belongs to the interval [ρk(α), 1], the following bounds hold

2 + ρk(α) ≤
Rα(n) + 1

n
≤ 2 +

1

ρk(α)
(5.2)
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(the lower bound holds for n close to qk(α) whereas the upper bound is attained for n = qk−1(α)).
The ratio ρk(α) belongs to (0, 1], and the Borel-Bernstein Theorem (see e.g., [IK02]) proves that lim inf

k→∞
ρk(α) =

0 for almost every irrational α. More precisely:

Proposition. 3.16 and 3.17. Let ϵ > 0. For almost every α the recurrence function satisfies:

lim sup
n→∞

R(α, n)

n log n
= ∞ , lim sup

n→∞

R(α, n)

n (log n)1+ϵ
= 0 ,

as well as

lim inf
n→∞

R(α, n)

n
= 2 .

Finally we recall that, thanks to the previous proposition, we work, not with the recurrence functionR(α, n),
but rather with the recurrence quotient

S(α, n) :=
R(α, n) + 1

n
,

for which we will sometimes write Sα(n) when we want to fix α and highlight the dependence on n.

5.3 Probabilistic model and main results

The notable feature of the model we are about to introduce, which was mentioned in subsection 3.4.3, is
that it highlights the relationship between the size of the recurrence function R(α, n) and the barycentric
position µ(α, n) of n, within its corresponding interval [qk−1(α), qk(α)).

In the first model presented here [RV17] (which was actually our second model historically, see Chapter 4
for more details), the size n of the factors was a fixed (and very large) positive integer, and then the position
µn(α) := µ(α, n) becomes a random variable which can be studied in its own right (see its density in 4.2).

In the model from [BCR+15], which we are about to present in detail, we do not have the freedom to choose
n anymore (in fact, we will have an analogous random variable n⟨µ⟩k ) but we have full freedom to fix the
relative position µ as a parameter. We thus begin by revisiting the geometric parameters µ and ρ that will
interest us in this model, then we introduce the model and finally the results along with their proofs.

5.3.1 Position parameter µ.

We consider a fixed sequence (µk)k with values in [0, 1), and for each α ∈ I := [0, 1], and each k ∈ N, we
consider the real number at (barycentric) position µk inside the interval [[qk−1(α), qk(α)− 1]], namelyn⟨µk⟩k (α) := qk−1(α) + µk(qk(α)− qk−1(α)),

together with its integer part (which belongs to [[qk−1(α), qk(α)− 1]]),

n
⟨µk⟩
k (α) = ⌊n⟨µk⟩k (α)⌋ = qk−1(α) + ⌊µk(qk(α)− qk−1(α))⌋.

The subsequence (n
⟨µk⟩
k (α))k is the subsequence associated with the positions µk.

We are interested in the subsequence of n →→ S(α, n) associated with the subsequence {n⟨µk⟩k (α), k ∈ N},
and we then let S⟨µk⟩

k (α) := S(α, n
⟨µk⟩
k (α)), namely

S
⟨µk⟩
k (α) = 1 +

qk−1(α) + qk(α)

n
⟨µk⟩
k (α)

= 1 +
qk−1(α) + qk(α)

qk−1(α) + ⌊µk(qk(α)− qk−1(α)⌋
. (5.3)
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If we drop the integer part in the expression of S⟨µk⟩
k , we deal with the sequence S⟨µk⟩

k (α) := S(α, n⟨µk⟩k (α)),
namely, S⟨µk⟩

k (α) = 1 +
qk−1(α) + qk(α)n⟨µk⟩k (α)

= 1 +
qk−1(α) + qk(α)

qk−1(α) + µk(qk(α)− qk−1(α))
, (5.4)

which is expressed with the two sequences (ρk(α))k and (µk) as

S⟨µk⟩
k (α) = fµk(ρk(α)) with fµ(x) := 1 +

1 + x

x+ µ(1− x)
. (5.5)

The study of the function fµ provides a precise knowledge on the sequence S⟨µk⟩
k (α), that may be “trans-

ferred” to the sequence S⟨µk⟩
k (α) since the two sequences are “close enough”. The following result provides

such a first instance of this strategy:

Proposition 5.1. Consider a sequence (µk)k with µk ∈ [0, 1], and let α ∈ [0, 1] \Q.

(i) Denote by mk the k-th partial quotient of α. Then, ρk(α) ≤ 1/(mk + 1) and

S⟨µk⟩
k (α) ∈


1 +

mk + 2

µkmk + 1
, 3


or S⟨µk⟩

k (α) ∈

3, 1 +

mk + 2

µkmk + 1


depending whether µk ∈ [1/2, 1] or µk ∈ [0, 1/2].

(ii) The sequence S⟨µk⟩
k (α) is bounded if α has bounded partial quotients or if the sequence (µk) admits

a strictly positive lower bound.

Proof. The map fµ : [0, 1] → R is strictly decreasing when µ ∈ (0, 1/2), and strictly increasing when
µ ∈ (1/2, 1). This is the constant function equal to 3 when µ = 1/2. For any a ∈ (0, 1), the image
fµ([a, 1]) is the interval with endpoints 3 and fµ(a). This proves Assertion (i).

With the two inequalities n⟨µ⟩k ≥ n
⟨µ⟩
k ≥ qk−1 ≥ φ1−k, 0 ≤ n⟨µ⟩k − n

⟨µ⟩
k ≤ 1,

we obtain the inequality

0 ≤ S
⟨µ⟩
k − S⟨µ⟩

k =
qk + qk−1

n
⟨µ⟩
k · n⟨µ⟩k

(n⟨µ⟩k − n
⟨µ⟩
k ) ≤ 1

qk−1

qk + qk−1n⟨µ⟩k

≤ φk−1 S⟨µ⟩
k , (5.6)

and we apply (i). ■

5.3.2 Probabilistic model

Let us describe now our probabilistic model. We choose a sequence (µk)k of positions that will be fixed.
This defines, for each real α, a sequence of indices nk := n

⟨µk⟩
k , and then a sequence of real numbers

k →→ S
⟨µk⟩
k (α). When the real α is random, and uniformly drawn in the unit interval I = [0, 1], the sequence

k →→ S
⟨µk⟩
k becomes a sequence of random variables, and we study the mean value and the distribution of

the sequence k →→ S
⟨µk⟩
k for k → ∞.

For any position, the index n
⟨µk⟩
k belongs to the interval [[qk−1, qk − 1]]. Then, as the expectations for

α ∈ [0, 1] of the two extreme sequences k →→ log qk−1(α), k →→ log qk(α) satisfy the same estimates (see
[L3́6]), it is also the case for the expectation for α ∈ [0, 1] of the sequence k →→ log n

⟨µk⟩
k (α). It thus satisfies

E[log n⟨µk⟩k ] =
π2

12 log 2
k +O(1), (5.7)

and it is of linear growth with respect to k.



5.3. PROBABILISTIC MODEL AND MAIN RESULTS 149

0 0.2 0.4 0.6 0.8 1
µ

2.5

3

3.5

4

4.5

5

lim
k

[
S
〈
µ
〉

k

]

Figure 5.1: On the left, the graph of limk→∞ E[S⟨µ⟩
k ] as a function of µ. On the right, the graph of the density s⟨0⟩.

5.3.3 Results for a constant position µ

We first consider the case in which the sequence (µk)k is a constant, taking a fixed value µ, and we study the
expectation and the distribution of the sequence k →→ S

⟨µ⟩
k of random variables, when k → ∞, as a function

of the position µ. Theorem 5.1 below shows that there are two main cases:

(a) the case when µ = 0; here, the expectations are infinite, but the functions k →→ S
⟨0⟩
k admit a limit

density;

(b) the case when µ ̸= 0; here, both the expectations and the densities have a finite limit; the case µ = 1/2
is particular, as the limit density is a Dirac measure, concentrated at the value 3.

For indices n associated with parameters µ satisfying µ ≥ µ0 > 0, we exhibit a behavior for the sequence
n →→ Rα(n) which is thus “linear on average”; the “log n” behavior of Theorem 3.4 does not occur in this
case.

Theorem 5.1. [Fixed position µ] Let φ = (
√
5 − 1)/2 < 1. The following results hold for the random

variables S⟨µ⟩
k .

(i) [Expectations] For each µ ∈]0, 1], their expected values E[S⟨µ⟩
k ] satisfy

E[S⟨µ⟩
k ] = 1 +

1

log 2

| logµ|
1− µ

+O


φ2k

µ


+O


φk

| logµ|
1− µ


, (5.8)

where the constants in the O–terms are uniform with respect to µ and k.

(ii) [Limit density] For each µ ∈ [0, 1] with µ ̸= 1/2, they admit a limit density s⟨µ⟩ equal to

s⟨µ⟩(x) =
1

log 2


1

(x− 1) |x(1− µ) + µ− 2|


1Iµ(x), (5.9)

where Iµ is the real interval with endpoints 3 and 1 + 1/µ.
More precisely, for any b ∈ Iµ, one has

P

S
⟨µ⟩
k ≤ b


=

 b

0
s⟨µ⟩(x) dx+

1

b
O

φk

,

where the constant of the O–term is uniform with respect to b and k. It is also uniform with respect to
µ when µ satisfies |µ− 1/2| ≥ µ0 for any µ0 > 0.
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5.3.4 Results when the sequence µk → 0

We now focus on the difficult case, when the sequence (µk)k is no longer constant, and we consider a se-
quence (µk)k of positions which tends to 0. Theorem 5.2 below tackles this case, first considering sequences
(µk)k which tend exponentially fast to 0, for which we observe that the expectations are of order k. We then
consider general sequences (µk)k which tend to 0, and we show that the associated random variables admit
a limit density, with a speed of convergence which depends upon the sequence (µk)k.

Theorem 5.2. [Sequence µk → 0] The following holds for the random variables S⟨µ⟩
k associated with a

sequence µk → 0.

(i) [Expectations] Consider the sequence µk = τk, with τ ∈ [φ2, 1). Then

E[S⟨τk⟩
k ] = k

| log τ |
log 2

+O(1), (5.10)

where the constant hidden in the O–term is uniform with respect to τ and k.

For any α, and for each τ ∈ [φ2, 1[, there exists a family of increasing subsequences N (α, τ), de-
pending on both α and τ , of indices n for which

E

Rα(n)

n
− 12| log τ |

π2
log n


= O(1) (n→ ∞). (5.11)

For any τ < 1, if µk is drawn uniformly from [0, 1], the conditional expectation with respect to the
event [µk ≥ τk] satisfies

lim
k→∞

E

S
⟨µk⟩
k

[µk ≥ τk]

= 1 +

π2

6 log 2
.

(ii) [Limit density] For any sequence µk → 0, the random variables S⟨µk⟩
k admit as limit density the

density s⟨0⟩ equal to

s⟨0⟩(x) =
1

log 2

1

(x− 1)(x− 2)
1[3,∞](x).

More precisely, for any b ≥ 3, the probability P[S⟨µk⟩
k ≥ b] satisfies

P[S⟨µk⟩
k ≥ b] =

1

log 2
log


b− 1

b− 2


+O(µk) +

1

b
O

φk

,

where the constants hidden in the O–term are uniform to respect to b and k. If now the sequences
(bk)k and (µk)k satisfy the following three conditions (bk → ∞, µk → 0 with bkµk → 0), then

lim
k→∞

bk · P

S
⟨µk⟩
k ≥ bk


=

1

log 2
.

Observation 5.1. The estimate (5.7) together with (5.10) yields (5.11). We have then exhibited a log n
behavior “on average” for the ratio Rα(n)/n for (an infinity of) particular subsequences n (which depend
on α). On the contrary, when the position is not too small, the ratioRα(n)/n remains bounded (on average).

5.4 Strategy for the proofs.

We begin with Theorem 5.1 which deals with a fixed position µ. There are three main steps in the proof of
Theorem 5.1.
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(i) We drop the integer part in the expression of S⟨µ⟩
k and consider the sequence S⟨µ⟩

k (α) which can be
written as fµ(ρk(α)) (see (5.5))). This is an instance of a smooth sequence (as defined in Section
5.4.1 below). We express its mean value and distribution in terms of the k-th iterate of the Perron
Frobenius operator H.

(ii) With the spectral properties of the operator H (described in Section 5.4.2), when acting on the Banach
space BV (I) of the functions of bounded variation on the unit interval I, we obtain the asymptotics
of the expectations and the expression of the limit distribution, always for the sequence S⟨µ⟩

k .

(iii) We return to the initial sequence S⟨µ⟩
k with the following estimates

E[S⟨µ⟩
k ] = E[S⟨µ⟩

k ]

1 +O(φk)


, P(S⟨µ⟩

k ≤ b)− P(S⟨µ⟩
k ≤ b) = O


φk

b


, (5.12)

which are refinements of Eq.(5.6).

Since the probabilistic estimates obtained in Theorem 5.1 are uniform with respect to µ and k, we may
extend them to the case where µ depends on k, and we may study the interesting case where the sequence
(µk)k tends to 0 for k → ∞. We then obtain the results of Theorem 5.2.

Observation 5.2. There are two error terms in the asymptotic estimates (5.8) of the expectations. The first
one comes from the spectral gap of the Perron-Frobenius operator and the second one arises when one takes
into account integer parts in the definition of S⟨µ⟩

k .

5.4.1 Smooth sequences

The sequence S⟨µ⟩
k provides an instance of a smooth sequence, defined as follows:

Definition 5.1. A sequence of random variables (Tk) defined on the unit interval I = [0, 1] is a smooth
sequence if there exists a function f ∈ BV(I) for which

Tk(α) = f(ρk(α)) with ρk(α) =
qk−1(α)

qk(α)
for all α ∈ I.

Here, we deal with the function fµ defined in (5.5), whose inverse map gµ is

gµ : fµ(I) →→ [0, 1], gµ(x) =
−1− µ+ µx

2− µ− x(1− µ)
.

For µ ∈ (0, 1), the function fµ is integrable on I, and its L1–norm satisfies

∥fµ∥L1 = 1 +
1

1− µ
+

1− 2µ

(1− µ)2
| logµ|, ∥f1∥L1 = 5/2.

Moreover, for every µ ∈ (0, 1), the function fµ is monotonic and thus of bounded variation, with a total
variation equal to (1/µ)|1− 2µ|, hence ∥fµ∥BV = O(1/µ). Remark that f0 does not belong to BV(I).

We now recall some basic facts on the underlying dynamical system, together with the Perron-Frobenius
operator, that will be useful in the sequel.

5.4.2 The dynamical system and the Perron-Frobenius operator

The underlying dynamical system. The underlying dynamical system is the Euclidean system from Chap-
ter 1. We recall it briefly here.
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We consider the dynamical system (I, Tg) associated with the unit interval I and the Gauss map Tg, defined
by

Tg(x) =
1

x
−

1

x


=


1

x


for x ̸= 0, Tg(0) = 0.

The map Tg builds the continued fraction expansion of α, via the function m(α) := ⌊1/α⌋, as

α = [m1,m2, . . . ,mk, . . .] with mk+1(α) = m(T kg (α)) for all k ≥ 0.

The inverse branches of Tg belong to the set

H :=


hm : x →→ 1

m+ x
; m ≥ 1


,

and the inverse branches of T kg belong to the set

Hk = {hm1 ◦ hm2 ◦ . . . ◦ hmk
: m1, . . . ,mk ≥ 1} .

For a k-uple m = (m1,m2, . . . ,mk), let hm := hm1 ◦hm2 ◦ . . .◦hmk
. The linear fractional transformation

hm is expressed in terms of the sequences (pk) and (qk), of successive numerators and denominators of the
convergents, under the form

hm(x) = hm1 ◦ hm2 ◦ . . . ◦ hmk
(x) =

1

m1 +
1

. . . +
1

mk + x

=
pk−1 x+ pk
qk−1 x+ qk

.

We remark that qk, pk depend only on the k-uple m = (m1,m2, . . . ,mk). We insist that there is no conflict
with the notation qk(α). Indeed, when α is an irrational which belongs to the interval hm(I), the equality
qk(α) = qk(m) holds as the digits are uniquely determined from α.

The mirror property (1.14) (in Corollary 1.3) relates the coefficients of h = hm1 ◦hm2 ◦ . . . ◦hmk
and those

of its mirror h := hmk
◦ hmk−1

◦ . . . ◦ hm1 :

h(y) =
pk−1y + pk
qk−1y + qk

=⇒ h(y) = pk−1y + qk−1

pky + qk
.

Perron-Frobenius operator. We recall that when the unit interval I is endowed with a density f , after one
iteration of Tg, it is endowed with the density

H[f ](x) :=

h∈H

|h′(x)| · f ◦ h(x),

and after k iterations of Tg, with the density

Hk[f ](x) =

h∈Hk

|h′(x)| · f ◦ h(x).

The operator H is exactly the Perron Frobenius operator from Definition 1.7.
Now, at x = 0, the two maps h and h satisfy |h′(0)| = |h′(0)| = 1/q2k, and the equality qk−1/qk = h(0)
holds. With this remark, the k-th iterate Hk generates the continuants qk,

Hk[f ](0) =

h∈Hk

1

q2k
f


pk
qk


=

h∈Hk

1

q2k
f


qk−1

qk


. (5.13)
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We now summarize some classical spectral properties of the operator H (see e.g. [IK02] or [BDV02]).
When acting on the Banach space BV(I) of functions of bounded variation, the operator H admits a unique
dominant eigenvalue λ = 1, with an eigenfunction proportional to ψ(x) = 1/(1 + x), as follows from
Theorem 1.12, and it has a subdominant spectral radius equal to φ2. Moreover, the adjoint H∗ has an
eigenmeasure proportional to the Lebesgue measure. Then, for any g ∈ BV(I) and ϵ > 0, the iterate Hk[g]
decomposes as

Hk[g](x) =
1

log 2

1

1 + x
·

I
g(x)dx+O((φ+ ϵ)2k)∥g∥BV. (5.14)

5.4.3 Smooth random variables and Perron-Frobenius operator

We now perform Step (i) in the proof of Theorem 5.1. The following lemma (inspired by [FV98]) expresses
the expectation and distribution of smooth sequences in terms of the Perron-Frobenius operator H.

Lemma 5.1. Assume that (Tk) is a smooth sequence associated with the function f . Then, the expected
value E[Tk] and the distribution of the random variable (Tk) are both expressed with the k-th iterate of the
Perron-Frobenius operator H:

E[Tk] = Hk


f(x) · 1

1 + x


(0), P[Tk ∈ J ] = Hk


1J ◦ f(x) · 1

1 + x


(0),

for any subinterval J of I.

Proof. For each index k, consider the family of linear fractional transformations h ∈ Hk. The intervals
h(I) form a partition of the interval I, and the length of the interval h(I) is expressed as a function of the
continuants qk, as

|h(I)| = 1

qk(qk + qk−1)
=

1

q2k

 1

1 +
qk−1

qk

 .

Moreover Tk(α) is constant on the interval h(I), and equal to f(qk−1/qk). Finally

E[Tk] :=

I
Tk(α)dα =


h∈Hk

1

q2k
ℓ


qk−1

qk


with ℓ(x) =

1

1 + x
f(x).

With Relation (5.13), the last expression is exactly Hk[ℓ](0).

We now consider, for any J ⊂ R, the probability P (Tk ∈ J) = E[1J ◦ Tk]. Using the same transforms as
above (now applied to the function 1J ◦ f(x)) yields

P[Tk ∈ J ] = Hk


1J ◦ f(x) · 1

1 + x


(0).

■

5.4.4 Asymptotic study of smooth variables

We now perform Step (ii) in the proof of Theorem 5.1. Since the probabilistic characteristics of the random
variable Tk are expressed with the k-th iterate of the Perron Frobenius operator H, their asymptotics will be
related to the dominant spectral properties of this operator when it acts on the Banach space BV (I) of the
functions of bounded variation on the unit interval, and we use the decomposition (7.9).
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Lemma 5.2. The following asymptotics hold, for any smooth sequence (Tk) relative to a function f ∈
BV (I):

E[Tk] =
1

log 2


I
f(x) · 1

1 + x
dx+O(φ2k∥f∥BV ),

P[Tk ∈ J ] =
1

log 2


I
1J ◦ f(x) · 1

1 + x
dx+O(φ2k),

for any subinterval J of I. If moreover the function f is of class C1 and monotonic, with an inverse function
g, the random variable Tk admits a limit density; for any interval [a, b] ⊂ f(I), one has

P[Tk ∈ [a, b]] =
1

log 2

 b

a

|g′(u)|
1 + g(u)

du+O(φ2k) =
1

log 2

log 1 + g(a)

1 + g(b)

+O(φ2k).

Proof. This is just an easy application of the decomposition (7.9). For the distribution, the norm ∥1J ◦ f ·
ψ∥BV admits an upper bound which does not depend on the choice of f or J . ■

The previous lemma entails the following asymptotics for the probabilistic characteristics of the sequenceS⟨µ⟩
k . Recall that the density s⟨µ⟩ is defined in (5.9).

Lemma 5.3. For µ ∈]0, 1], the following two asymptotic estimates, namely

E[S⟨µ⟩
k ] = 1 +

1

log 2

| logµ|
1− µ

+O


φ2k

µ


, P

S⟨µ⟩
k ∈ J


=


J
s⟨µ⟩(x)dx+O(φ2k).

The second estimate also holds for µ = 0.

Proof. This is just the application of the previous lemma for f := fµ. The function fµ belongs to BV (I)
for µ > 0, with norm ∥fµ∥BV = O(1/µ). ■

This ends Step (ii) of the proof of Theorem 5.1. The estimates (5.12) needed in Step (iii).

5.4.5 Third Step of the proof of Theorem 5.1.

We first describe Step (iii) of the proof of Theorem 5.1 that explains how to return to the initial sequence
S
⟨µ⟩
k (involving integer parts). We also give hints to prove Theorem 5.2.

This technical lemma is useful to compare the distributions of two random variables.

Lemma 5.4. (i) Consider two positive random variables X and Y defined on the unit interval I. Assume
that there exists ε > 0 for which one has ∥X − Y ∥0 < εY . Then, for any b > 0, the following holds

|P (X ≤ b)− P (Y ≤ b) | ≤ max

P (b(1− ε) ≤ X ≤ b) , P (b ≤ X ≤ b(1 + ε))


.

(ii) Consider two sequences (Xk) and (Yk) of random variables defined on the unit interval I, with values
in [0,+∞[. Assume the following

(a) there is a real sequence (ak)k for which ∥Xk − Yk∥0 ≤ akYk,

(b) the sequence (Xk)k admits a limit density s with a speed of convergence ck.

Then the sequence Yk satisfies

P(Yk ≤ bk) = P(Xk ≤ bk) +O(ck) +O

bkak sup {s(x);x ∈ [bk(1− ak), bk(1 + ak)]}


.

Proof.
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Assertion (i). The inequality

|P(B)− P(A)| ≤ max {P(B \A), P(A \B)}

is an immediate consequence of the equalities

P(B) = P(B \A) + P(A ∩B), P(A) = P(A \B) + P(A ∩B).

The inequality Y (1− ε) ≤ X ≤ Y (1 + ε) entails the inclusions between events

{X ≤ b} \ {Y ≤ b} ⊂ {b(1− ε) ≤ X ≤ b}, {Y ≤ b} \ {X ≤ b} ⊂ {b ≤ X ≤ b(1 + ε)},

and thus Assertion (i) with the choicesA = {X ≤ b} and B = {Y ≤ b}.

Assertion (ii). Using (a) and Assertion (i) entails the inequality

|P (Xk ≤ bk)− P (Yk ≤ bk) |

≤ max {P (bk(1− ak) ≤ Xk ≤ bk) , P (bk ≤ Xk ≤ bk(1 + ak))} . (5.15)

With (b), the following estimate

P (c ≤ Xk ≤ d) =

 d

c
s(t)dt+O(ck)

holds for any interval [c, d] with a O-constant uniform with respect to the interval [c, d]. Then each of the
two integrals in (5.15) is of the form bk

bk−akbk
s(t)dt+O(ck),

 bk+akbk

bk

s(t)dt+O(ck),

and is O

bkak sup {s(x);x ∈ [bk(1− ak), bk(1 + ak)]}


+O(ck). ■

Lemma 5.5. For any µ ∈ [0, 1], the probabilistic characteristics of the random variable S⟨µ⟩
k and its

smoothed version S⟨µ⟩
k are related as follows:

(i) The difference between the two random variables satisfies

0 ≤ S
⟨µ⟩
k − S⟨µ⟩

k ≤ φk−3 S⟨µ⟩
k .

(ii) The following holds for the expectations

E[S⟨µ⟩
k ] = E[S⟨µ⟩

k ](1 +O(φk)).

(iii) The following holds for the distributions, for any b ∈ Iµ,

P(S⟨µ⟩
k ≤ b)− P(S⟨µ⟩

k ≤ b) = O


φk

b


+O(φ2k).

Proof.

Assertion (i). Denote by Φ the Golden ratio Φ = 1+
√
5

2 . The inequalities (see Observation 1.2)

0 ≤ n⟨µ⟩k − n
⟨µ⟩
k ≤ 1 and n⟨µ⟩k ≥ n

⟨µ⟩
k ≥ qk−1 ≥ Φk−3

show that
0 ≤ S

⟨µ⟩
k − S⟨µ⟩

k =
qk + qk−1

n
⟨µ⟩
k · n⟨µ⟩k

(n⟨µ⟩k − n
⟨µ⟩
k ) ≤ 1

qk−1

qk + qk−1n⟨µ⟩k

≤ φk−3 S⟨µ⟩
k .

Assertion (ii). This a clear consequence of Assertion (i).

Assertion (iii). It follows from Assertion (i) of the present Lemma together with Assertion (ii) of the
previous Lemma 5.4. ■
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5.4.6 Comparison between densities s⟨µ⟩ and s⟨0⟩.

Lemma 5.6. Consider µ ∈ [0, 1/2[. The difference between the densities s⟨µ⟩ and s⟨0⟩ satisfies on the
interval [3,∞]

|s⟨µ⟩(x)− s⟨0⟩(x)| ≤ µ
1

[x(1− µ) + µ− 2]2
for x ∈ Iµ

|s⟨µ⟩(x)− s⟨0⟩(x)| = s⟨0⟩(x) for x ≥ 1 + 1
µ

The difference between the two distributions satisfies: b

3
s⟨µ⟩(x)dx−

 b

3
s⟨0⟩(x)dx

 = O(µ)

where the O-constant does not depend on b.

5.4.7 End of the proof of Theorem 5.2

For Theorem 5.2, we now consider a sequence of positions (µk), and as our estimates of Theorem 5.1 are
uniform with respect to µ and k, it is possible to deal with a µ which depends on k. Moreover, the previous
lemma is useful to compare the distributions of the variables S⟨µ⟩

k and S⟨0⟩
k .



CHAPTER 6

COMPARISON BETWEEN THE MODELS
AND SPECIAL FAMILIES OF SLOPES

In this chapter we take a step back and seek to compare and find connections between the models and
methods from chapters 4 and 5, namely the models with large fixed n and with large fixed k. Further, we
study two families of special slopes: the rationals and the quadratic irrationals. This is ongoing work, and
we shall point out the expected results and research directions taken. These studies have shown connections
with the previous two models, and in particular to the link between the methods employed.

6.1 Relation between the two models.

We wish to relate the two (asymptotic) models: the model “with fixed large n” and the model “with fixed
large k”? Of course, these two models should be close if the behavior of the sequence k →→ qk(α) does
not depend too strongly on α, and we know that it is not the case. However, the behavior of the sequence
k →→ log qk(α) is much more regular, as it is well known (see for instance [Khi97]) that

lim
k→∞

1

k
log qk(α) = L =

π2

12 log 2
for almost all α . (6.1)

Consider first the present model “with n fixed”, and a sequence ℓ →→ n(ℓ) = τ ℓ. Then Theorem 4.3 reads

E[Sn(ℓ) | µn(ℓ) ≥ τ−ℓ] ∼

12

π2
log τ


ℓ . (6.2)

Furthermore, as n(ℓ) belongs to the interval [qk−1(α), qk(α)[, the existence of the limit for the quotient
qk(α)/n, that holds for almost any α, and is recalled in (6.1) entails the relation between the index ℓ and the
index k := k(α, n(ℓ)), that holds for almost any α, namely

log n(ℓ) = ℓ log τ ∼ π2

12 log 2
k(α, n(ℓ)) . (6.3)

Now, we deal with the model “with k fixed”, and we consider that the index k(α, n(ℓ)) satisfies (6.3)
everywhere. Then, the application of the result in the model “with k fixed”, described in (5.10) should entail

E[S⟨τk⟩
k ] ∼


1

log 2
log τ


k ∼


12

π2
log2 τ


ℓ . (6.4)

157
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Remark that the conditional events are not the same in the two equations (6.2) and (6.4):

– in (6.2), the event is {α | µ(α, n(ℓ)) ≥ τ−ℓ},

– in (6.4) the event is {α | µ(α, n(ℓ)) ∼ τ−ℓ}.

This (heuristic) comparison exhibits in both cases a linear growth with respect to ℓ. However, the events of
interest are not the same, and we have considered that the index k(α, n(ℓ)) satisfies (6.3) everywhere.

6.2 Relationship between the techniques employed

The techniques may seem fundamentally distinct at first sight, we claim, however, that they are closely
related to one another.

6.2.1 From Riemann sums to the Transfer Operator

It may come away as a surprise that we may express the results with fixed n→ ∞ from Chapter 4 (our article
[RV17]) in terms of the transfer operator. At first sight the results and tools are fundamentally different: a
variable depth for the continued fraction expansion against a fixed depth.

This surprising link is given by the use of the Mellin transform [FS09] [FGD+95] . The Mellin transform
of our coprime Riemann sums will be given in terms of the quasi-inverse of the transfer operator of the
Euclidean system. The appearance of the quasi-inverse is natural: we must filter (in terms of n) from all
possible branches.

We recall the definition of the Mellin transform [FGD+95], and later mention the key properties that interest
us. For the Mellin transform method to work, we require several conditions regarding the behavior of the
quasi-inverse in a band around its dominant singularity at s = 1. We expect, expect that this should be
doable by an application of the Dolgopyat-Baladi-Vallée estimates (see Theorem 6.1) we cite below. These
estimates give, precisely, a good understanding of the behavior of the quasi-inverse on a band around s = 1.

Definition 6.1 (Mellin Transform). Let f(x) be locally Lebesgue integrable over (0,∞). The Mellin trans-
form of f(x) is defined by

M[f(x); s] :=

 ∞

0
f(x)xs−1dx .

Once we will have calculated the Mellin transform of our target function, we will explain briefly how to
exploit this knowledge to get back the the distributions from Chapter 4.

Context and notation. In this chapter we write ρk = qk−1/qk and y = qk/n, where t = 1/n.

Consider a Q-function Λ, we may write

Λ(α, n) = fΛ


qk−1(α)

qk(α)
,
qk(α)

n


for a certain fΛ, whenever qk−1(α) ≤ n < qk(α). We recall from Chapter 4 that we write Λn(α) := Λ(α, n)
to denote the random variable for a fixed n.

Then, following Chapter 4, we are interested in the behaviour of

FΛ(t) := t2

k≥0


m∈Nk

1

(tqk)2(1 + ρk)
fΛ(ρk, tqk)
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as t → 0. The reason being that this sum is gives the expectation of Λn when α is distributed uniformly,
namely

F (1/n) = E[Λn] .

Notice that here t→ 0 is a continuous version of 1/n.

That is why we are interested, more generally, in sums of the form

F (t) := t2

k≥0


m∈Nk

f(ρk, tqk) . (6.5)

In particular, we consider the choice

f(ρ, y) =
1

y2(ρ+ 1)
[[fΛ(ρ, y) ≤ λ, ρy ≤ 1 < y]] , (6.6)

which gives the probability density at λ, namely F (1/n) = P (Λn ≤ λ).

The connection with Hs. We begin by operating formally. Taking Mellin Transform of F (t) in (6.5) and
exchanging the sums and the integrals we have ∞

0
F (t)ts−1dt =


k


m

 ∞

0
f(ρk, tqk)t

s+1dt .

We make a change of variables t →→ tqk in each integral, getting ∞

0
F (t)ts−1dt =


k


m

q
−(s+2)
k

 ∞

0
f(ρk, t)t

s+1dt .

At this point we recall from Chapter 5 that we have identity (5.13), transforming a sum in pk/qk into a sum
on qk−1/qk. For our case this gives


m

q
−(s+2)
k

 ∞

0
f(ρk, t)t

s+1dt = Hk
s/2+1


x →→

 ∞

0
f(x, t)ts+1dt


(0) ,

as the variable s accompanies q−2
k = |h′(0)|.

Thus, summing in k, we get our Mellin transform in terms of the quasi-inverse

M[F (t); s] =

 ∞

0
F (t)ts−1dt = (I−Hs/2+1)

−1


x →→

 ∞

0
f(x, t)ts+1dt


(0) . (6.7)

This is our key relation; the Mellin transform takes us from our coprime Riemann sums from Chapter 4 to
a quasi-inverse of the transfer operator, at least formally. This is in principle a moral relation between the
two, we explain below why we expect this to also be an effective link.

Analytic properties. We observe in (6.7) that the integral is well-defined for any s when we take f of the
form (6.6) (which yields the densities), because the domain of integration is limited to the compact [1, 1/x].
Moreover, the function

x →→
 ∞

0
f(x, t)ts+1dt

is of class C1 as soon as the frontier {(ρ, y) : fΛ(ρ, y) = λ, ρy ≤ 1 < y} is of class C1.

Now we turn to the quasi-inverse itself. For this we cite the following result (see [BV05]).
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Theorem 6.1 (Dolgopyat-Baladi-Vallée estimates). Consider the transfer operator Hs associated with the
Euclidean dynamical system when it acts on the functional space C1(I) endowed with the family of norms
||.||1,t defined for t ̸= 0 as

||f ||1,t := sup |f |+ (1/|t|) sup |f ′| .
There is a real neighborhood Σ1 of 1, an exponent ξ > 0, a real t0 > 0 and a constant M > 0 such that,
for s = σ + it, the operator (I −Hs)

−1 satisfies the following :

(i) For σ ∈ Σ1, the operator (I −Hs)
−1 has a unique pole, simple, and located at s = 1.

(ii) For σ ∈ Σ1 and |t| > t0, the operator (I −Hs)
−1 satisfies

||(I −Hs)
−1||1,t ≤M · |t|ξ

With this estimates, we expect the Mellin transform M[F (t); s] to be meromorphic on ℜs > −a for some
a > 0, and a unique pole at s = 0 where

M[F (t); s] ∼ 1

s

12

π2

 1

0

 ∞

0
f(x, t)tdt


dx , (6.8)

due to (1.63).

The relation between the behavior of the Mellin transform on the singularities on the left of the convergence
strip, and the asymptotics for F (t) as t→ 0, are given precisely in Theorem 4 and Figure 4 from [FGD+95].
In short, a singularity of type M[F (t); s] ∼ C

sk+1 as s → 0 will translate into an asymptotic of type

F (t) ∼ C (−1)k

k! (log t)k as t → 0. This is true provided that M[F (t); s] can be extended meromorphically
lef-twise to a strip ⟨−a,∞⟩ where a > 0 and s = 0 is the sole singularity, and the transform also decreases
fast enough on the lines c± i∞ for c on a strip around 0 (which we expect due to Theorem 6.1).

Then we would deduce

lim
n→∞

1

n2


k


m∈Nk

f


qk−1

qk
,
qk
n


= lim

t→0
F (t) =

12

π2


[0,1]×[0,∞)

f(ρ, y)ydρdy , (6.9)

which would yield again the results from Chapter 4 when f is of the form (6.6).

6.2.2 Riemann sums resembling the Perron-Frobenius operator

When considering the fixed n → ∞ model, the deptha k(α, n) of the continued fraction expansion needed
is apparently “free”, contrary to the fixed k → ∞ model where we actually prescribe it. This is why a priori
we expect a relation with the quasi-inverse of the transfer operator.

It is not completely true, however, that the depth is “free”; we know that for almost every α there is the limit

lim
1

k
log qk(α) =

π2

12 log 2
,

hence we derive that for k = k(α, n) satisfying qk−1(α) ≤ n < qk(α), we have

lim
n→∞

log n

k(α, n)
=

π2

12 log 2

almost surely.

This motivates the intuition that k(α, n) is, in general, fairly close to 12 log 2
π2 log n.

Hence, the idea now is to reverse the construction of Chapter 5. By choosing an interval [log n, log n + θ]
to which log qk must belong, we “control” the size of k through n. With this in mind we have the following

aRecall that k = k(α, n) is the unique positive integer satisfying qk−1(α) ≤ n < qk(α).
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Proposition 6.1. Let f be Riemann-integrable and θ > 0, then

lim
N→∞


k≥1


m1,...,mk≥1

1

q2k
f


qk−1

qk


[[N < log qk ≤ N + θ]] =

12θ

π2

 1

0
f(x)dx .

Proof. This is just a generalization of Proposition 4.4. ■

Observe how the expression from Proposition 6.1 resembles that of the Perron-Frobenius operator H. When
we choose θ to be the entropy θ = π2

12 log 2 , which makes the expected number of continuants qk with
qk ∈ (N,N + θ] be 1 by Proposition 4.4, we retrieve

lim
N→∞


k≥1


m1,...,mk≥1

1

q2k
f


qk−1

qk


[[N < log qk ≤ N + π2

12 log 2 ]] =
1

log 2

 1

0
f(x)dx .

6.3 Special families of slopes

Now we present the study of two important families of slopes: the rationals and the quadratic irrationals.
It turns out that the method employed here for rationals and quadratic irrationals are very much related,
and in fact, related to those of section 6.2.1. This is a subject of ongoing research and we hope to be able
to develop a unified approach for the study of Q-functions for all 3 families of slopes (real, rational and
quadratic irrational).

6.3.1 Eventually periodic words: α rational

We consider the rectangle R := [0, 1] × [1,∞) and we recall that a Q-function Λ is associated with a
function fΛ : R → R≥0 when, given an irrational slope α ∈ [0, 1],

Λ(α, n) := fΛ


qk−1(α)

n
,
qk(α)

n


, for n ∈ [qk−1(α), qk(α)) .

The definition extends to a rational α of the form α = c/d with a coprime pair (c, d), as soon as the integer
n satisfies n < d.

Given a fixed an integer n, we are interested in the distribution of the function (c/d) →→ Λ(c/d, n). More
precisely, we consider the subsets

ΩD = {(c, d) : 1 ≤ c ≤ d ≤ D; gcd(c, d) = 1} , RD(ϱ, n) =

(c, d) ∈ ΩD : Λ

 c
d
, n

≤ ϱ

,

and we wish to study the distribution of the function Λ on the set ΩD

PrD


(c, d) ∈ ΩD | Λ

 c
d
, n

≤ ϱ

=

|RD(ϱ, n)|
|ΩD|

.

Our main expected result for the rationals is as follows:

Expected Theorem 6.2. Consider a continuant function Λ associated with a function f . Let the density ψ
and the domain ∆f (ϱ) be defined by

ψ : R → R, ψ(x, y) =
2

ζ(2)

1

y(x+ y)
, ∆f (ϱ) = {(x, y) ∈ R | f(x, y) ≤ ϱ} .
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Then, the distribution of the function Λ(·, n) on the set ΩD involves the coprime Riemann sum (see in
Section 4.3.2) Rn[ψ; ∆f (ϱ)] of step 1/n of the function ν over the domain ∆f (ϱ) under the form

PrD[Λ(·, n) ≤ ϱ] = ζ(2) Rn[ψ; ∆f (ϱ)] + ϵD(n, ϱ) ϵD(n, ϱ) →D→∞ 0 .

Moreover, the coprime Riemann sum is related to the integral I[ν; ∆f (ϱ)] of the function ψ over the domain
∆f (ϱ) with the estimate

ζ(2) Rn[ψ,∆f (ϱ)] = I[ψ; ∆f (ϱ)] +O


1

n2


.

Note that this means that, as the bound D for the denominators increases, the distribution approaches the
same exact distribution we have for the real numbers.

One further question we are interested in would be the following: could we get good mixed error bounds in
D and n which would allow us to make both tend to infinite at the same time, but in some prescribed way?

Proof elements. We consider the subsets

ωd := {(c, d) : 1 ≤ c ≤ d; gcd(c, d) = 1}, rd(ϱ, n) :=

(c, d) ∈ ωd : Λ

 c
d
, n

≤ ϱ


and the two generating functions

Fn,ϱ(s) =

d≥1

1

ds
|rd(ϱ)|, F (s) :=


d≥1

1

ds
|ωd| =

ζ(s− 1)

ζ(s)
. (6.10)

With the two relations

ΩD =

d≤D

ωd, RD(ϱ, n) =

d≤D

rd(ϱ) ,

we remark that the probability of interest is expressed as a ratio, where the numerator involves the coeffi-
cients of the series Fn,ϱ(s) whereas the denominator involves the coefficients of the series ζ(s− 1)/ζ(s).

Here comes the key step of the argument. Once we have determined the partial quotients m = (m1, . . . ,mk)
which make qk−1(m) ≤ n < qk(m), we have all we need to compute our Q-function Λ; that is, any element
α ∈ Im1,...,mk

will give the same value of Λ(α, n). Thus, any element in the image of hm1,...,mk
gives the

same value of Λn (provided that qk−1(m) ≤ n < qk(m)).

A number from hm(I) is rational if and only if it is of the form c/d = hm1,...,mk
(λ/µ) for some integers

1 ≤ λ ≤ µ. We note that for m = (m1, . . . ,mk)

hm1,...,mk
(λ/µ) =

µ pk(m) + λ pk−1(m)

µ qk(m) + λ qk−1(m)
,

and the right-hand side fraction is reduced if and only if λ/µ is reduced (i.e., gcd(λ, µ) = 1). We are only
interested in the reduced denominator for our Dirichlet series (which is marked with s).

Therefore we may rewrite
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Fn,ϱ(s) =

k≥1


m∈Nk


qk−1(m) ≤ n < qk(m) , fΛ


qk−1(m)

n , qk(m)
n


≤ ϱ



(λ,µ):λ≤µ ,gcd(λ,µ)

1

(µ qk(m) + λ qk−1(m))s
.

Here we could actually use the same ideas as before with coprime Riemann sums, and that was actually our
first approach. There would be one coming from the pairs (qk−1, qk) which traverse all coprime pairs with
qk−1 < qk, and another one for (µ, λ) inside.

We now explain an approach following principles similar to those of section 6.2.1. The principle is that our
whole Dirichlet sum may be rewritten in terms of the quasi-inverse operator of the Euclidean dynamical
system. Then we get a situation similar to that of section 6.2.1 but with Dirichlet series instead of a Mellin
transform. The analogous asymptotics are the derived from an application celebrated Perron formula (see
[Apo98] or [Ten15]).

We seek to rewrite the inner sum in terms of the quasi-inverse operator of the Euclidean dynamical system.
In order to do this, the expressions involved will be rewritten in terms of inverse branches.

Each fraction λ/µ is produced uniquely as h(0) for an inverse branch g ∈ H⋆ · {h1} (i.e., ending in a
quotient 1, or we could also work with all inverse branches not ending in a quotient 1). For simplicity in the
explanation we consider all branches g ∈ H⋆ (we are going twice over every fraction except for 1/1). Next,
we consider the inverse branch h = hm.

Notice that
1

(µ qk(m) + λ qk−1(m))s
=
(h ◦ g)′(0)

s/2 .
Finally, to get everything in terms of inverse branches, we must introduce an auxiliar function b working on
the set of inverse branches (notice that this is well-defined) taking hm1,...,mk

to hm1,...,mk−1
, i.e.,

b(hm1,...,mk
) := hm1,...,mk−1

.

With this auxiliary function, we notice that for m ∈ Nk and g = hm ∈ Hk, we have

qk(m) = |g′(0)|−1/2 , and qk−1(m) = |(b(g))′(0)|−1/2 .

For short, write

Ag(x, n, ϱ) :=

|(b(g))′(x)|−1/2 ≤ n < g′(x)|−1/2 , fΛ


|(b(g))′(x)|−1/2

n , g
′(x)|−1/2

n


≤ ϱ

. (6.11)

Thus we get (forgetting about the (λ, µ) = (1, 1), hence the ∼ )

2Fn,ϱ(s) ∼

h∈H⋆

Ah(0, n, ϱ)

g∈H⋆

(h ◦ g)′(0)
s/2 . (6.12)

Here we notice that h ◦ g traverses all inverse branches of the form h · H⋆, and hence corresponds to the
transfer operator (I−Hs/2)

−1 ◦H[h],s/2 with H[h],s[f ](x) := |h′(x)|sf(h(x)).
Thus we write

2Fn,ϱ(s) ∼

h∈H⋆

Ah(0, n, ϱ)(I−Hs/2)
−1 ◦H[h],s/2[1](0) .
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One step further

2Fn,ϱ(s) ∼ (I−Hs/2)
−1

 
h∈H⋆

Ah(0, n, ϱ)H[h],s/2[1]


(0) . (6.13)

Here the pole is found at s = 2, where the quotient with the pole of F (s) gives us


h∈H⋆

Ah(0, n, ϱ)


I
H[h],1[1](t)dt =


h∈H⋆

Ah(0, n, ϱ) |Ih| , (6.14)

the same expression from the “real case” from Chapter 4. We expect that it should be possible to combine
the Perron formula with the Dolgopyat-Baladi-Vallée estimates (see Theorem 6.1) to assert that this actually
is the limit of the probabilites as PD[Λ(·, n) ≤ ϱ] as D → ∞.

6.3.2 Sturmian words and morphisms: α quadratic irrational

Now we get back to the quadratic irrationals introduced in Section 1.5, in particular to the reduced quadratic
irrationals α (rqi for short), which are those whose continued fraction expansion is purely periodic. We
recall that there is a natural notion of size ϵ(α) associated with such numbers α. Our objective is to study,
in distribution, what happens with the recurrence quotient S(α, n) defined in (3.13), when α is drawn
uniformly at random from the set KN = {α rqi : ϵ(α) ≤ N} with large N .

6.3.3 The size of a quadratic irrational and the model

The classical notion of size ϵ given in Equation 1.67 depends strongly on the more basic notion of size
υ(α)−1 defined in (1.64), hence we start by reminding the definition of υ.

We recall that

υ(α) :=

k−1
i=0

T i(α) = |h′(α)|1/2 ,

where h ∈ Hk is the inverse branch associated with the minimal period m = (m1, . . . ,mk) of α, which has
length k = p(α). We recall that ν is related to the growth of the continuants of α as we accumulate periods

υ(α) = lim
ℓ→∞

q(mℓ)

q(mℓ+1)
.

Defined υ, note that

ϵ(α) = υ(α)−r(α), with r(α) = 1 for even p(α), and r(α) = 2 for odd p(α).

Therefore, it will be enough to do the analysis for υ, as this will then translate into the results for ϵ. We
consider, then, rather than KN , the sets

MN :=

α rqi :

1

υ(α)
≤ N


,

and in our new model we shall pick α uniformly at random from MN rather than KN . We shall use
henceforth PN and EN for the corresponding probabilities and expected values.
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6.3.4 The generating functions

Primitive periods. As we consider all possible periods m = (m1, . . . ,mk), there are clearly periods that
define the same periodic word. This is why we pick the minimal, so-called “primitive”, periods: periods
m = (m1, . . . ,mk) that are not themselves the power (repetition) of a smaller period.

We observe then that if P is the set of primitive periods, we have the decomposition

N⋆ =
∞
ℓ=1

Pℓ , (6.15)

where Pℓ := {wℓ : w ∈ P}. Indeed, any period m is a repetition of its smaller period, which is unique.

The expression (6.15) will be key, because working with the generating function over all periods in N⋆ is in
general easier much easier than working over P .

Working over all possible periods. So far we have defined υ over the r.q.i. α, but for the sake of having
“nice” expressions for our GFs, it will be useful to extend it to words. We could think of a r.q.i. α as
its primitive period (m1, . . . ,mk). Given now an arbitrary period m = (m1, . . . ,mk) which need not be
primitive, we still define

υ(m) := |h′m(x∗m)|1/2 ,

and the previous properties that held for a r.q.i. α still hold for this new extension, namely

υ(m) = lim
ℓ→∞

q(mℓ)

q(mℓ+1)
, υ(m) =

k−1
i=0

T ig(x
∗
m) .

We remark then the key multiplivative property

υ(mℓ) = (υ(m))ℓ , (6.16)

for every m ∈ N⋆ and ℓ ≥ 1.

Target generating functions. We wish to study the occurrence of S(n, x∗m) ≤ λ over all periods m ∈ N⋆
that are primitive and 1

υ(x∗m) ≤ N . To study such an event, due to the Tauberian Theorem, we consider in
first instance (we shall later adapt it!) the DGF

Pn(s) :=

m∈P

(υ(m))s[[S(x∗m, n) ≤ λ]] .

The decomposition in Equation 6.15 works its way into our final generating functions, giving

Gn(s) :=

m∈N⋆

(υ(m))s[[S(x∗m, n) ≤ λ]] = Pn(s) +

ℓ≥2

Pn(ℓs) .

The power to the ℓ in (6.15) then shifts the dominant singularities of our DGFs to the left, thanks to (6.16).
From this fact we deduce that the leading terms of the asymptotics for the DGF over N⋆ and P coincide.
Thus, generally, it will be enough to take all possible periods from N⋆.
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6.3.5 The number of complete cycles ℓ

Our current plan, i.e., working with Pn(s), actually is slightly “flawed”. Let us recall briefly how S(α, n) is
computed:

S(α, n) = 1 +
qk−1(α)

n
+
qk(α)

n
,

where k = k(α, n) is such that qk−1(α) ≤ n < qk(α). Since qk(α) ≥ 2(k−1)/2 for every α, then this means
that k = k(α, n) ≤ 2 log2 n+ 2, which is fixed when n is fixed. On the other hand, whenever S(α, n) ≤ λ,
then qk(α) ≤ λn and this implies that the quotients are bounded mi ≤ λn for all i = 1, . . . , k(α, n).

Hence only a finite number of primitive tuples m ∈ P which produce S(x∗m, n) ≤ λ satisfy that k(x∗m, n)
is larger than the period |m| (the length of the tuple m). Thus for most of the periods m ∈ P , satisfying
S(x∗m, n) ≤ λ, we never make use of the periodicity of the continued fraction expansion of x∗m in order to
determine the value of S(x∗m, n). In such a case we say that n occurs during the first period of x∗m. This
is not a desirable situation as this prevents us from observing the incidence of the periodic nature of the
expansion on the probabilistic study.

We formalize this notion by introducing an appropriate index ℓ that gives the number of complete “cycles”
or periods of m that are needed in the calculation of S(x∗m, n). To define what we mean by “needed in the
calculation of S(α, n)”, we say that a prefix m of the continued fraction expansion of α is needed in the
calculation of S(α, n) if k(α, n) ≤ |m|.
Definition 6.2 (Number of cycles ℓ). Given a tuple m = (m1, . . . ,mp) ∈ Np and an integer n ∈ N we
define the number of cycles ℓ = ℓ(m,n) of m around n to be the unique non-negative integer ℓ such that

q(mℓ) ≤ n < q(mℓm1 . . .mp−1)

is satisfied.

Suppose α = x∗m, and that v = w1 . . . wk is the prefix of m ·m · . . . needed to compute S(α, n). Then we
may decompose v = mℓu where u ̸= ϵ is a prefix of m and we then write u ⪯ m.
We distinguish two cases:

1. When ℓ = 0, the word v is a prefix of m and we may then complete the rest of the period after v as
we like without having this change the value of S.

2. When ℓ > 0, the word v has interdependencies given by the period of m.

6.3.6 Generating function for the first cycle: ℓ = 0

Let us start by studying the probabilities with the added condition that ℓ = 0. This case is still interesting
and introduces several tools used in the study of quadratic irrationals.

We recall that ℓ = 0 is equivalent to the condition k(x∗m, n) ≤ |m|. Adding this condition to the definition
of Gn(s) gives a new DGF

Fn(s) :=

m∈N⋆

(υ(m))s[[S(x∗m, n) ≤ λ , k(x∗m, n) ≤ |m|]] . (6.17)

Here we introduce a w that will represent the actual (maximal) prefix of m ·m ·m. . . needed to compute
k(x∗m, n), i.e., k(x∗m, n) = |w|. Thus we write

Fn(s) =

m∈N⋆

(υ(m))s


w:ϵ⪵w⪯m

[[S(x∗w, n) ≤ λ , k(x∗m, n) = |w|]] ,

by our extra condition |w| = k(x∗m, n) ≤ |m| (which implies S(x∗w, n) = S(x∗m, n)).
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Note that reversing the sums gives

Fn(s) =

w:ϵ⪵w

[[S(x∗w, n) ≤ λ , k(x∗m, n) = |w|]]


m:w⪯m
(υ(m))s .

It turns out that one may actually express the sums with υ(m) in terms of the so-called trace of the transfer
operator. On the other hand, the condition in the Iverson bracket may be rewritten in a more familiar form
to get

Fn(s) =

k≥1


w∈Nk


1 +

qk−1(w) + qk(w)

n
≤ λ , qk−1(w) ≤ n < qk(w)

 
m:w⪯m

(υ(m))s . (6.18)

This equation is reminiscent of (6.12) from the rational case. The difference between the two is the presence
of υ(m) = |h′m(x∗m)|1/2 (this case!) instead of q(m) = |h′m(0)|1/2 (rational case!).

We are now going to rewrite this expression again in terms of a quasi-inverse. In order to do this we introduce
the notion of the trace of an operator.

Generating the sizes: the trace of an operator In this section we cite [Val98b] and [CV17] for the main
properties of the trace of the transfer operator, as well as its components, over an appropriate space A∞(V).
The space A∞(V) consists of functions that are analytic on a complex disc V and are continuous on its
closure V .

Producing υ(m). We begin by explaining how to produce υ(m) for a fixedm ∈ N⋆. Consider the operator

H[m],s[g](x) := |h′m(x)|sg(hm(x)) .

It turns out that this “component operator” has the following eigenvalues (with multiplicity one) when acting
on the space A∞(V)

|h′m(x∗m)|s, (−1)|m||h′m(x∗m)|s+1, (−1)2|m||h′m(x∗m)|s+2, . . .

To motivate the above eigenvalues, notice that that if λ is an eigenvalue of H[m],s corresponding to the
eigenfunction g1, and if g1(x∗m) ̸= 0 we have

λg1(x
∗
m) = H[m],s[g1](x

∗
m) = |h′(x∗m)|sg1 (hm(x∗m)) = |h′m(x∗m)|sg1 (x∗m) ⇒ λ = |h′m(x∗m)|s .

If g1(x∗m) = 0 but g′1(x
∗
m) ̸= 0, differentiating we get

λg′1(x
∗
m) = (−1)|m||h′m(x∗m)|s+1g′1 (hm(x

∗
m)) = (−1)|m||h′m(x∗m)|s+1g′1 (x

∗
m) ⇒ λ = (−1)|m||h′m(x∗m)|s+1 .

and so on...

On the space A∞(V), these operators are what is called “trace class”: they have a trace that is the sum of
the eigenvalues. Thus the trace equals:

TrH[m],s =
|h′m(x∗m)|s

1− (−1)|m||h′m(x∗m)|
,

and we deduce
TrH[m],s = (υ(m))2s +O


(υ(m))2s+2


. (6.19)
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Producing the sum over the suffixes. Now we get back to (6.18). Summing over all suffixes m with
w ⪯ m produces

Tr

(I−Hs)

−1 ◦H[w],s


=


m:w⪯m

(υ(m))2s + smaller order series , (6.20)

meaning that the “remainder” series has a larger half-plane of convergence (due to the exponent 2s+ 2).

The argument (I−Hs)
−1 ◦H[w],s of the trace in (6.20) is the series of all terms H[m],s with w ⪯ m. Indeed,

this follows by composition: we start with v and the component (I−Hs)
−1 tells us that afterwards we may

complete as we please.

The singularity. We briefly mention how to get the dominant singularity of Tr

(I−Hs)

−1 ◦H[w],s


from (6.20).

Since the sum in H[w],s consists of just one term, it is enough to look for the dominant singularity of
(I −Hs)

−1 which is found at s = 1 where we have just the dominant eigenvector ψg(x) := 1
log 2

1
1+x (the

Gauss density)

(I−Hs)
−1◦H[w],1[ψg](x) ∼

1

s− 1

12 log 2

π2
ψg(x)

 1

0
H[w],1[ψg]dx =


1

s− 1

12 log 2

π2


Iw
ψg(x)dx


ψg(x) ,

as s → 1. Thus 1
s−1

12 log 2
π2


Iw ψg(x)dx approximates the dominant eigenvalue in the trace, the rest we

expect to be of much smaller absolute value as s→ 1.

Going back to (6.18), each


m:w⪯m(υ(m))s is approximated by 1
s/2−1

12 log 2
π2


Iw ψg(x)dx around their

pole s = 1. This gives a pole for the whole series

Fn(s) ∼
1

s− 2

24 log 2

π2


k≥1


w∈Nk


1 +

qk−1(w) + qk(w)

n
≤ λ , qk−1(w) ≤ n < qk(w)

 
Iw
ψg(x)dx ,

(6.21)
where we remark that


Iw ψg(x)dx = Pµg (α ∈ Iw), where Pµg is the probability when the input slope is

chosen according to the Gauss measure dµg(x) = dx/(1 + x) from the whole of I.

6.3.7 Results for ℓ = 0

We state our main expected result (unpublished) concerning the first cycle ℓ = 0.

Expected Theorem 6.3. Consider the set K of reduced quadratic irrationals α, endowed with the size
α →→ 1

υ(α) . Given N , we consider the uniform distribution on the set MN of reduced quadratic irrationals
α with 1/υ(α) ≤ N , giving a probability measure which we denote PN . Let Sn(α) = S(α, n) be the
recurrence quotient defined in Chapter 3, Equation 3.13, k(α, n) be the sole positive integer k such that
qk−1(α) ≤ n < qk(α), and p(α) be the period of the quadratic irrational α. Then, as N → ∞ we have

lim
N→∞

PN (S(α, n) ≤ λ , k(α, n) ≤ p(α)) = Pµg (Sn ≤ λ) ,

where Pµg is the probability when the input slope is chosen according to the Gauss measure dµg(x) =
dx/(1 + x) from the whole of I.

Furthermore, as n→ ∞ we have that Pµg (Sn ≤ λ) converges to the limit distribution from Theorem 4.1.

We comment briefly on the proof elements. From (6.21) we have the dominant singularity for Fn(s), defined
in (6.17), at s = 2. Then we recall that the dominant singularity of Fn(s), where we sum over all possible
prefixes m ∈ N⋆ coincides with that of the same sum but over the primitive periods in P . At this point we
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expect to prove the result by showing a combination of the Perron formula and the Dolgopyat-Baladi-Vallée
estimates (see Theorem 6.1).

Finally, the fact that Pµg (Sn ≤ λ) converges to the limit distribution from Theorem 4.1 follows from the
“independence from the initial distribution” explained in Section 4.5.3. In fact, this result for the quadratic
irrationals was the main motivation for our study of Section 4.5.3.

Of course, we should be able to derive analogous results for other LQ-funtions.

6.3.8 The case ℓ → ∞ and future work

Our study for the case ℓ → ∞ is very much work in progress. Our experiments, and intuitions, suggest
strongly that there is some kind of stationary behavior as we will shortly explain.

In this section we consider a Q-function Λ(α, n) with associated function f . Recall that this means that
Λ(α, n) = f(qk−1(α)/qk(α), qk(α)/n) where k = k(α, n) is the sole positive integer satisfying qk−1(α) ≤
n < qk(α).

In the case ℓ→ ∞ we wish to study the averages

Aℓ(m) :=
1

q(mℓ+1)− q(mℓ)

q(mℓ+1)−1
n=q(mℓ)

Λ(x∗m, n) (6.22)

over a period m ∈ N⋆. Note that the condition on n makes the index from Section 6.3.5 be fixed and equal
to ℓ, and further, these are all the possible n giving the number of complete turns ℓ. There are sound intuitive
reasons for choosing to study these averages, which we now explain.

Scaling properties as ℓ→ ∞. We recall that

υ(m) = lim
ℓ→∞

q(mℓ)

q(mℓ+1)
,

moreover, we can show that for u ∈ N⋆ we have

lim
ℓ→∞

q(mℓ)

q(mℓu)
=
h′uR x∗mR

1/2 , (6.23)

where we recall that uR and mR denote the mirror image of u and m. All of this means that, in a way, the
continuants q behave almost multiplicatively.

Example 6.1. We begin by exploiting the regularity of Λ over each interval

qk(m), qk+1(m)


, thus de-

compose

1

q(mℓ+1)− q(mℓ)

q(mℓ+1)−1
n=q(mℓ)

Λ(x∗m, n) =
1

q(mℓ+1)− q(mℓ)

(ℓ+1)|m|−1
k=ℓ|m|

qk+1−1
n=qk

Λ(x∗m, n) ,

and we substitute using our formula for Λ

qk+1−1
n=qk

Λ(x∗m, n) =

qk+1−1
n=qk

f

ρk(x

∗
m),

qk+1

n


≈ qk+1(x

∗
m)

 1/ρk+1(x
∗
m)

1
f(ρk+1(x

∗
m), y)

dy

y2
,

where ρk(x) :=
qk−1(x)
qk(x)

.
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The previous integral approximation allows us to estimate the result for a given w fairly fast (for the experi-
ments in particular), but we hope that it will also allow for a nice alternative expression for our final dirichlet
generating functions.

At this point we expect

lim
ℓ→∞

1

q(mℓ+1)− q(mℓ)

q(mℓ+1)−1
n=q(mℓ)

Λ(x∗m, n)

=
υ(m)

1− υ(m)


ϵ≺u⪯m

h′uR x∗mR

−1/2
 1

h
uR

(x∗
mR )

1
f


1

h
uR

(x∗
mR ) , y


dy

y2
,

due to (6.23). Thus the averages for a fixed m ∈ N⋆ would converge.

Closing comments. There are several potential generating functions we have considered.

For conciseness, let us write, for h, g ∈ H⋆, that h ≤ g if and only if h = hm1 and g = hm2 where
m1 ⪯ m2.

Our current conjecture is that a good choice of a DGF should be

G
[∞]
n,λ(s) =


h∈H⋆


g≤h

Bg(0, nx
∗h, λ)(υ(h))s , (6.24)

where υ(hm) := υ(m),h is the mirror of h, andBg(x, n, λ) is an analog ofAg(x, n, λ) from (6.11), defined
by

Bg(x, n, λ) :=

|(e(g))′(x)|−1/2 ≤ n < |g′(x)|−1/2 , fΛ


|(e(g))′(x)|−1/2

n , g
′(x)|−1/2

n


≤ ϱ

,

where e is the “ending” (if b was beginning in (6.11)) defined by e(hm1,...,mk
) = hm2,...,mk

.

There is a sound reason for this choice. The functions Ag and Bg are sort of dual, if g = hℓ ◦ g with g ≤ h,
then we may consider the mirror to consider g first,through the remarkable identity

Ag(0, n|(hℓ)′(0)|1/2, λ) = Bg(hℓ(0), n, λ) .
Thus, the natural generating function for the ℓ-th tour, namely

G
[ℓ]
n,λ(s) =


h∈H⋆


hℓ≤g≤hℓ+1

Ag(0, n|(hℓ)′(0)|1/2, λ)(υ(h))s , (6.25)

notice the scaling |(hℓ)′(0)|1/2 = q(hℓ)−1, gives naturally rise to (6.24) as ℓ→ ∞.

Then we expect the generating function from (6.24) to be dealt with as in the previous cases, being expressed
as the sum of traces of expressions involving the quasi-inverse. Our conjecture is that we will get the same
dominant pole as before, thus giving a similar result following (maybe) a combined application of the Perron
formula and Theorem 6.1. This is part of the ongoing work towards a unified vision of all of the three cases
(real, rational and quadratic irrational).
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CHAPTER 7

THE CONTINUED LOGARITHM
ALGORITHM

In Chapter 1, Example 1.3, we introduced the so-called continued logarithm expansion as an example of
an interesting interval dynamical system (see Example 1.3, Observation 1.5). Here we study its associated
gcd-algorithm in detail, explaining the origins of the algorithm, what was known about it and we present
our novel study of its average performance.

7.1 Introduction

In an unpublished manuscript, Gosper [Gos78] introduced a new kind of continued fraction expansion,
called the “Continued Logarithm”[BCLM17]. He writes

There is a mutation of continued fractions, which I call continued logarithms, which have sev-
eral advantages over regular continued fractions, especially for computational hardware. (..)

The primary advantage is the conveniently small information parcel. The restriction to integers
of regular continued fractions makes them unsuitable for very large and very small numbers.
The continued fraction for Avogadro’s number, for example, cannot even be determined to one
term, since its integer part contains 23 digits, only 6 of which are known. (...) By contrast,
the continued logarithm of Avogadro’s number begins with its binary order of magnitude, and
only then begins the description equivalent to the leading digits – a sort of recursive version of
scientific notation. (..)

Although these operations are not as nice on paper, they are beautifully suited to binary ma-
chines, requiring only shift, add, subtract, exchange, and compare-for-greater.

The continued logarithm expansion of a real number x ∈ (0, 1) (it can be easily extended to the whole
positive numbers) is of the form

x =
2−a1

1 +
2−a2

1 +
. . .

,

where the exponents a1, a2, a3, . . . are non-negative integers. Observe that indeed the first coefficient a1
gives the logarithmic size of x in base 2, thus why Gosper called it a “sort of recursive version of scientific
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notation”.

The Continued Logarithm expansion has been studied from an Ergodic point of view by Chan [Cha05,
Cha06], which parallels the classical study of continued fractions presented in Chapter 1. In particular, he
shows that the associated dynamical system is ergodic and exhibits its invariant density. The motivation of
Chan is somewhat different: he shows that for almost every sequence {a1, a2, . . .} of natural numbers (we
will see what he meant by this), if we define a Fibonacci-like sequence fk by f−1 = 0, f0 = 1, a0 = 0 and
fk = 2akfk−1 + 2ak−1fk−2 for k ≥ 1, then

lim
n→∞

1

n
log fn = 1.30022988 . . .

This property is in fact analogous to Proposition 1.10 and we give an explicit constant for the above limit.
More recently, the continued logarithm has been considered by Borwein et al. [BHL17, BCLM17]

The idea of Gosper gives rise to an algorithm for computing the gcd of two integers. Shallit describes this
algorithm in [Sha16], considering purely as an algorithm for computing the continued logarithm expansion
of a rational number, and not a gcd-algorithm, and studies the worst case (when the expansion is longest).
This algorithm has two advantages: first, it can be calculated starting from the most representative bits, and
uses very simple operations (subtractions and shifts) as explained in the above citation of Gosper; it does not
employ divisions. Second, as the quotients intervening in the associated continued fraction are powers of
two 2a, we can store each of them with log2 a bits. This gives a compelling argument in favor of the small
complexity of the algorithm, both in terms of computation and storage.

Shallit [Sha16] performs the worst-case analysis of the algorithm, and studies the number of steps K(p, q),
and the total number of shifts S(p, q) that are performed on an integer input (p, q) with p < q: he proves the
inequalities

K(p, q) ≤ 2 log2 q + 2, S(p, q) ≤ (2 log2 q + 2) log2 q ,

and exhibits instances, the family (1, 2n − 1), which show that the previous bounds are asymptotically
optimal, namely K(1, 2n − 1) = 2n− 2, S(1, 2n − 1) = n(n− 1)/2 + 1.

Following Shallit’s study of the worst-case [Sha16], he proposed to us to perform the average-case analysis
of the algorithm (equivalently, the expansion over rationals), and we answered his question in [RVV18].

We considered the set ΩN which gathers the integer pairs (p, q) with 0 ≤ p ≤ q ≤ N , endowed with the
uniform probability, and we study the mean values EN [K] and EN [S] as N → ∞. We prove that these
mean values are asymptotically linear in the size logN , and exhibit their precise asymptotics for N → ∞,

EN [K] ∼ 2

H
logN, EN [S] ∼

log 3− log 2

2 log 2− log 3
EN [K] .

The constant H is related to the entropy of an associated dynamical system and

H =
1

2 log 2− log 3

π2
6

+ 2

k≥1

(−1)k

k2 2k
− (log 2)(3 log 3− 4 log 2)

 . (7.1)

This entails numerical estimates (validated by experiments) for the mean values
EN [K] ∼ 1.49283 logN, EN [S] ∼ 1.40942 logN ,

and the mean number of pseudo-divisions is about half the maximuma from Shallit [Sha16].

aNote 2/ log 2
.
= 2.885 . . .
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7.1.1 The continued logarithm expansion

To motivate the choice of the algorithm we begin rather from the associated continued fraction expansion
which gives origin to it. The reason behind this is that, otherwise, the algorithm may come away as somewhat
less natural (but we will also explain why it is reasonable from an algorithmic point of view) as there are
several details that may be done in other ways.

The continued logarithm associates to each x ∈ (0, 1) a formal expansion

x =
2−a1

1 +
2−a2

1 +
2−a3

1 +
. . .

, (7.2)

for certain non-negative integer digits a1(x), a2(x), . . .We denote the RHS expression by [a1, a2, . . .], which
can be shown to represent a real number [Khi97], when interpreted as the appropriate limit

[a1, a2, . . .] := lim
k→∞

2−a1

1 +
2−a2

1 +
. . .

2−ak

1

.

As for continued fractions (see Chapter 1), for rational numbers this expansion is going to be finite

p

q
=

2−a1

1 +
2−a2

1 +
2−a3

1 +
. . .

2−ak

1

, (7.3)

but not unique. There are two representations

2−a1

1 +
2−a2

1 +
. . .

2−ak

1

=
2−a1

1 +
2−a2

1 +
. . .

2−(ak−1)

1 +
2−0

1

, (7.4)

when ak > 0. This, however, is the only possible redundancy in the representation.

To define the process of computing the continued logarithm expansion in a definite way, we compute the
coefficients simply by considering that a1 = a1(x) is determined uniquely by

2−a1−1 < x ≤ 2−a1 ,

and so on. This is the coding of the CL dynamical system we defined in Example 1.3, with the shift map Tc,
which we call the CL map b, which satisfies

x =
2−a1(x)

1 + Tc(x)
.

We recall the CL dynamical system here, which is an interval dynamical system (see Definition 1.3).
bIt is called the “Hei-Chi Chan map” in [AS17] in honor of Chan who studied its Ergodic properties in [Cha05].
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Definition 7.1 (CL system). Let I := (0, 1) be the unit interval, we define the shift map Tc : I → I, called
the CL map, by

Tc(x) =
2−a1(x)

x
− 1 , a1(x) =


log2

1

x


, (7.5)

where {·} denotes the fractional part {y} := y − ⌊y⌋. Then the inverse branches are given by

ha(x) =
1

2a(1 + x)
, a ≥ 0 . (7.6)

We further define the digits ak(x) by
ak(x) = a1(T

k−1
c x) , (7.7)

for k ≥ 2.

Observation 7.1. We note that for x = p/q this gives

Tc


p

q


=
q − 2a1p

2a1p
,

so, for fractions, we may think of Tc as a map on the pairs (p, q) which maps

(p, q) →→ (p′, q′) := (q − 2a1p, 2a1p) ,

where a1(p/q) = max{k ∈ N : 2kp ≤ q}. This is how Shallit in [Sha16] computes the coefficients of the
continued fraction expansion. It may be seen as a gcd-algorithm as we will soon explain in Section 7.1.2.

The CL system (I, Tc) is displayed on the left of the figure below, along with the shift S : I → I which
gives rise to the CL system by induction on the first branch. The map S is a mix of the Binary and Farey
maps, as its first branch comes from the Binary system, and the second one from the Farey system. On the
right, the usual Euclid dynamical system (defined from the Gauss map Tg) is derived from the Farey shift
by induction on the first branch.

1

1

1

1

0.2 0.4 0.6 0.8 1
x

0.2

0.4

0.6

0.8

1

T(x)

1

1

7.1.2 The continued logarithm algorithm

In Observation 7.1 we explained how the CL map can be seen as a map on pairs (p, q), representing respec-
tively the successive numerators and denominators. In this section we describe the gcd algorithm derived
from this.

The algorithm, described by Shallit in [Sha16], is a sequence of (pseudo)–divisions: each division associates
a pair (p, q)c with p < q to a new pair (r, p′) (where r stands for “remainder”) defined as follows

q = 2ap+ r, q′ = 2ap, with a = a(p, q) := max{k ≥ 0 | 2kp ≤ q} .

This is a gcd algorithm; indeed gcd(r, q′) = gcd(q − 2ap, 2ap) is equal to gcd(2ap, q), and this latter gcd
may differ from gcd(p, q) only in a power of 2. Thus the CL algorithm determines the odd part of gcd(p, q)
whereas the even part is directly determined by the dyadic valuations of p and q, which amounts to reading
the trailing 0s in binary.

Here we show a first example of the execution of the algorithm for (13, 31)
cOur notations are not the same as in the paper of Shallit as we reverse the roles of p and q.
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i ai 2aiqi qi+1 (2aiqi)2 (qi+1)2 δ(2aiqi) δ(qi+1) δ(gi)
0 − 75 31 1001011 11111 0 0 0
1 1 62 13 0111110 1101 1 0 0
2 2 52 10 110100 1010 2 1 1
3 2 40 12 101000 1100 3 2 2
4 1 24 16 11000 10000 3 4 3
5 0 16 8 10000 1000 4 3 3
6 0 8 8 1000 1000 3 3 3
7 − 8 0 1000 0 3 ∞ 3

Figure 7.1: Execution for the input pair (p, q) = (31, 75). Here gi = gcd(2aiqi, qi+1). The dyadic valuation δ(gi)
seems to linearly increase with i, with the asymptotic δ(gi) ∼ δ(qi+1) ∼ i/2 as i→ ∞.

a p q r 2ap

1 13 31 5 26
2 5 26 6 20
1 6 20 8 12
0 8 12 4 8
1 4 8 0 8

Matrix form. This transformation is conveniently written in matrix form: the pair (p, q) gives a new one
(r, 2ap) satisfying

p
q


= Na


r
2ap


, with Na =


0 2−a

1 1


= 2−aMa, Ma =


0 1
2a 2a


. (7.8)

The CL algorithm begins from an input pair (p, q) with p < q. It lets the initial pair be (q1, q0) := (p, q),
and then performs a sequence of divisions

qi+1, qi
T

= Nai+1


qi+2, 2

ai+1 qi+1

T
,

and stops after k = K(p, q) steps on a pair of the form (0, 2akqk). The complete execution of the algorithm
uses the set of matrices Na defined in (7.8), and expands the input as

p, q
T

= Na1 ·Na2 · · ·Nak


0, 2akqk

T
.

The rational input p/q is then written as a continued fraction according to the linear fractional transforma-
tions (LFTs for short) ha associated with matrices Na or Ma,

p

q
=

2−a1

1 +
2−a2

1 +
2−a3

1 +
. . .

2−ak

1

= ha1 ◦ ha2 ◦ · · · ◦ hak(0) , with ha : x →→ 2−a

1 + x
. (7.9)

We note that ha, for a ≥ 0, are the inverse branches of the CL map as in Definition 1.3.

Moreover, thanks to the equality (7.4), it is possible to change our definition of a(p, q) to make the last
exponent ak be 0 (and the last quotient to be 1). Indeed, according to our definition of a(p, q), the last
exponent is necessarily ak > 0, and through (7.4) we make it into the form on the right-hand side .

Figure 7.1 describes the execution of the algorithm for the initial pair (31, 75). Note that this example is
related to our previous example (13, 31). Indeed, we get the pair (62, 13) = (2 · 31, 31) after one iteration.
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Worst case analysis. It is simple enough to see that the algorithm terminates; indeed if 2ap = q the
algorithm surely ends, else the next second entry of the pair, q′ = 2ap, is less than q. It is not trivial,
however, to find its worst case behavior. Shallit [Sha16] proved that the number of steps K(p, q) is at most
2 log2 q + O(1) by proving that the size of the entries at least half every two steps. This is also the idea
in a classical simplified proof that Euclid’s algorithm terminates in O(log q) steps [DPV08], but it is more
involved in the case of the CL algorithm: Shallit proves his result by showing that (p, q) →→ p2 + q2 is
decreasing, roughly dividing its size by 2 for each step, when one reduces (p, q) dividing by the gcd when
possible.

The worst case for the Euclidean algorithm is given by the pairs of the form (fk, fk+1) where the (fk) are
the Fibonacci numbers, and the final depth is k, see for example [CLRS09, pp.935-936]. This follows from
choosing the quotientsmi so as to make the continuants qi as small as possible. As fk ∼ φk/

√
5 we see that

the worst case for the Euclidean algorithm is actually (log q)/ logφ rather than 2 log2 q +O(1). In the case
of the CL algorithm, however, the bound 2 log2 q +O(1) is asymptotically tight as Shallit demonstrated by
considering the family (p, q) = (1, 2n − 1). Indeed, every two steps we have

(1, 2n − 1) →→a=n−1 (2
n−1 − 1, 2n−1) →→a=0 (1, 2

n−1 − 1) .

We remark that here the worst-case is not given by minimizing the quotients (or exponents) 2a at each step.
This is due to the fact that there are other cancellations taking place: the natural continuants qk(x) for the
CL expansion do not naturally produce reduced fractions as we shall see in Section 7.2.1 below.

7.2 The CL dynamical system

In this section we point out several properties of the CL dynamical system.

7.2.1 The continuants of the CL expansion

Each number x ∈ I admits an infinite continued fraction expansion derived from the dynamical system,
called its CL expansion. When truncated at depth k, the expansion of x becomes finite, as in (7.9), and
represents a rational p/q, which we assume to be irreducible. As x belongs to a unique fundamental interval
J of depth k, of the form J = h(I) with h ∈ Hk, the pair (k, x) determines a unique LFT h := ha of
depth k, and the rational p/q equals h(0).

The k-tuple a defines a matrix Ma (see equation (7.8)) and an integer pair (P,Q), called the continu-
ant pair, defined by (P,Q)T := Ma(0, 1)

T . The equality P
Q = p

q clearly holds, but the pair (P,Q) is
not necessarily coprime. Nevertheless, gcd(P,Q) is a power of 2, as follows from taking determinants
|det(Ma)| = 2a1+···+ak . Moreover, the integer R(Q) := Q/ gcd(P,Q), called the reduced continuant,
is an important parameter actually dictating the quality of the rational approximation of x given by the
truncation of its CL expansion.

The recurrence of the continuant pairs. The continuant pairs satisfy a recurrence analogous to that of
Proposition 1.1 for the convergents of the Euclidean Algorithm. To avoid ambiguity, we will write P (a)
and Q(a) for the continuant pair associated with a tuple a = (a1, . . . , ak). In an abuse of notation, we will
also write Pk(a) and Qk(a) to denote P (a1, . . . , ak) and Q(a1, . . . , ak), respectively, when a is a tuple of
length at least k (maybe an infinite sequence). Similarly, when given an irrational xwe will also write Pk(x)
and Qk(x) for P (a1(x), . . . , ak(x)) and Q(a1(x), . . . , ak(x)).

The following result is actually the starting point definition used by Chan [Cha05].
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Proposition 7.1. Consider non-negative integers a1, . . . , ak then we have the following recurrence for the
continuant pairs of the CL expansion

P (a1, . . . , ak) = 2akP (a1, . . . , ak−1) + 2ak−1P (a1, . . . , ak−2) , (k ≥ 2)

Q(a1, . . . , ak) = 2akQ(a1, . . . , ak−1) + 2ak−1Q(a1, . . . , ak−2) , (k ≥ 1)

where we take P0 = 0, P1 = 1 and Q−1 = 0, Q0 = 1.

Proof. The definition (P (a), Q(a))T := Ma(0, 1)
T is not the simplest when it comes to proving this

recurrence, but if we extend it slightly to 2× 2 matrices
2akP (a1, . . . , ak−1) P (a1, . . . , ak)
2akQ(a1, . . . , ak−1) Q(a1, . . . , ak)


=Ma =Ma1 ·Ma2 · . . .Mak , (7.10)

we easily get the result.

Now we explain (7.10). It is clear, from our definition, that the second column in the left-hand side matrix
is correct. As for the first column, notice that the equalities

Ma = (Ma1 . . .Mak−1
)Mak , Mak =


0 1
2ak 2ak


,

imply that the first column ofMa is the second column of (Ma1 . . .Mak−1
) multiplied by 2ak , hence yielding

the first column on the left-hand side of (7.10). ■

Note that from (7.10) we see at once that

|P (a1, . . . , ak−1)Q(a1, . . . , ak)−Q(a1, . . . , ak−1)P (a1, . . . , ak)| = 2a1+...+ak−1 . (7.11)

The continuants and the inverse branches. Another important result noted by Chan in [Cha05] concerns
the inverse branches of the CL system. The following proposition tells us how to express the inverse branches
in terms of the continuant pairs. The reader familiar with linear fractional transforms (LFT) will note at once
that, since ha is the LFT associated with Ma, this result follows at once from the expression (7.10) as the
multiplication of matrices corresponds to the composition of LFTs .

Proposition 7.2. Consider non-negative integers a1, . . . , ak. Then, the inverse branch

ha(x) = ha1 ◦ . . . ◦ hak(x) ,

can be written in terms of the continuant pairs as follows

ha(x) =
P (a1, . . . , ak) + x · 2akP (a1, . . . , ak−1)

Q(a1, . . . , ak) + x · 2akQ(a1, . . . , ak−1)
. (7.12)

The expression in (7.12) tells us a lot regarding the CL system. In particular it gives us an expression for the
length of the fundamental intervals and the speed of convergence of the truncated expansions.

Corollary 7.1. Consider non-negative integers a1, . . . , ak. Then, the length of the fundamental interval
Ia := Ia1,...,ak , associated with the CL system, is given by

|Ia| =
2a1+...+ak

Q(a1, . . . , ak) · (Q(a1, . . . , ak) + 2akQ(a1, . . . , ak−1))
.
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The gcd of the continuant pair. Contrary to the case of classical continued fractions, the continuant pair,
seen as a rational number, is not reduced. In fact, it follows at once from (7.11) that the greatest common
divisor gcd(Pk, Qk) divides 2a1+...+ak−1 , hence being a power of two, but in general it is not 1. Indeed,
when ak(x), ak−1(x) > 0, the gcd is not one, and this happens infinitely many often for almost every x.

In fact, we have the following conjecture regarding the continuant pairs of a real number

Conjecture. For almost every x ∈ I the limit

lim
k→∞

1

k
log2 gcd(Pk(x), Qk(x)) =

1

2
(7.13)

holds. 3

This conjecture is based on experimental evidence, with the convergence to 1/2 being apparently faster for
the expected values

lim
k→∞

1

k
Ex[log2 gcd(Pk(x), Qk(x))] =

1

2
.

For the moment we can offer the following bounds, showing that the greatest common divisor increases at
least at an exponential rate almost surely.

Proposition 7.3. For almost every x ∈ I

lim inf
k→∞

1

k
log2 gcd(Pk(x), Qk(x)) ≥

1

2
Eµ[A]

.
= 0.30542 . . . ,

where A(x) = min{a1(x), a1(Tcx)} and µ is the probability measure on I given by the density ψc(x) =
1

log(4/3)
1

(x+1)(x+2) with respect to the Lebesgue Measure.

This proposition demonstrates that a big gcd is the rule rather than the exception.

Corollary 7.2. For almost every x ∈ I we have

lim sup
k→∞

1

k
log2 gcd(Pk(x), Qk(x)) ≤

log(3/2)

log(4/3)
− 1

2
Eµ[A]

.
= 1.1040 . . . ,

where A(x) = min{a1(x), a1(Tcx)} and µ is the probability measure on I given by the density ψc(x) =
1

log(4/3)
1

(x+1)(x+2) with respect to the Lebesgue Measure.

The proof of Proposition 7.3 employs Birkhoff’s Ergodic Theorem, and relies strongly on two observations
that we will now explain. On the other hand, Corollary 7.2 follows directly from (7.11) by Proposition 1.11
and Proposition 7.3.

Let δ(n) denote the dyadic valuation of n, i.e., the greatest integer such that 2δ(n)|n. We know that the great-
est common divisor ofPk andQk is a power of two (similarly for gcd(Qk, Qk−1) and gcd(Pk, Pk−1) in fact),
therefore it suffices to study the evolution of δ(Pk) and δ(Qk). Then log2 gcd(Pk, Qk) = min{δ(Pk), δ(Qk)}.

The first key observation for Proposition 7.3 is that the continuant pairs of an irrational x ∈ I satisfy

Pk(x) = Qk−1(Tcx) , (7.14)

for all k ≥ 1.

Equation 7.14 implies that, if we could prove that for almost every x we had lim 1
kδ(Qk(x)) = 1

2 , then
the same limit would hold with Pk instead of Qk. Therefore if lim 1

kδ(Qk(x)) =
1
2 holds for almost every

x, then lim 1
k log2 gcd(Pk(x), Qk(x)) = 1

2 for almost every x. This observation also holds when taking
lim sup or lim inf instead of a limit, and changing 1/2 for another constant.

The second observation is given by the following lemma.
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Lemma 7.1. Suppose that for a given h ≥ 0 we had δ(Qk−1) ≥ h and δ(Qk−2) ≥ h. If ak−1, ak ≥ t we
have δ(Qk) ≥ h+ t and δ(Qk+1) ≥ h+ t, and further δ(Qj) ≥ h+ t for all j ≥ k.

Proof. Follows at once from Proposition 7.1. ■

From Lemma 7.1 we see that

δ(Qk(x)) ≥ min{ak(x), ak−1(x)}+min{ak−2(x), ak−3(x)}+ . . . ,

from which the result follows by applying Birkhoff’s Theorem to T 2
c = Tc ◦ Tc, recall ak(x) = a1(T

k−1
c x).

7.2.2 The Perron Frobenius operator

The Perron Frobenius operator (recall subsection 1.2.4) for the CL dynamical system is given explicitly by

H[f ](x) :=

h∈H

|h′(x)| f(h(x)) =


1

1 + x

2
a≥0

2−a f


2−a

1 + x


. (7.15)

This operator describes the evolution of densities : if f is the initial density, H[f ] is the density after one
iteration of the system (I, Tc). The invariant density ψc is a fixed point for H and satisfies the functional
equation

ψc(x) =


1

1 + x

2 
a≥0

2−a ψc


2−a

1 + x


. (7.16)

We recall that in Observation 1.5 we pointed out that the CL map Tc is Ergodic with respect to the Lebesgue
measure, a result proved by Chan in [Cha05], who showed the explicit invariant CL density ψc(x) given by

ψc(x) =
1

log(4/3)

1

(x+ 1)(x+ 2)
.

However, Chan did not provide an explicit expression for the entropy. We obtain here such an expression,
with a precise study of the transfer operator of the system.

We introduce two (complex) parameters t, v in (7.15), and deal with a perturbation of the operator H, defined
by

Ht,v[f ](x) :=

h∈H

|h′(x)|t d(h)v f(h(x)) =


1

1 + x

2t
a≥0

2 a(v−t)f


2−a

1 + x


. (7.17)

Such an operator Ht,v is called a transfer operator. When (t, v) satisfies ℜ(t − v) > 0, we prove the
following: the operator Ht,v acts nicely on the space C1(I) endowed with the norm | · |1,1, defined by
|f |1,1 := |f |0 + |f ′|0, where | · |0 denotes the sup norm. In particular, it has a dominant eigenvalue λ(t, v)
separated from the remainder of the spectrum by a spectral gap, for (t, v) close to (1, 0). The Taylor expan-
sion of λ(t, v) near (1, 0)

λ(t, v) ≈ 1−A(t− 1) +Dv

involves the two constants A = −∂λ/∂t(1, 1, 0), D = ∂λ/∂v(1, 1, 0) , that are expressed as mean values
with respect to the invariant density ψ,

A = E −D, E = Eψ[2| log x|], D = (log 2)Eψ[a] , (7.18)

(here, the function a associates with x the integer defined with the Iverson bracket a(x) := a · [[x ∈ ha(I)]].
The constants A is the entropy of the system, and E,D admit explicit expressions

E =
1

log(4/3)

π2
6

+ 2

k≥1

(−1)k

k2 2k

 , D = (log 2)
log(3/2)

log(4/3)
(7.19)
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Then, with (7.18) and (7.19), there is an explicit value for the entropy A, and
A
.
= 1.62352 . . . , D

.
= 0.97693 . . . , E

.
= 2.60045 . . . .

There are two contexts in which a finite CL expansion arises: in the real context, where it comes from the
truncation at a fixed depth of an infinite CL expansion – and in the rational context, where it is finite per
se, and the depth is no longer fixed. Our main study deals with the second context, but it is also central to
understand the former, real context.

7.3 Costs and model for the algorithm

The main interesting costs associated with a finite expansion, as in (7.9), are defined via the associated
inverse branch (an LFT) h ∈ Hk and mainly involve the continuant pair (P,Q), associated with h, together
with the absolute value of the determinant of the LFT h, denoted by d(h).

7.3.1 Generating functions for our main costs

We recall that for the Euclidean dynamical system, if h(0) = p/q is the reduced fraction, then |h′(0)| = q−2,
giving back our reduced denominator. For the CL dynamical system this is not so simple. We want to be
able to produce the reduced continuants R(Q), which correspond to the size of our input, in terms of h′ and
h so as to use the transfer operator.

Let us look at an inverse branch h ∈ Hk. We note that by Proposition 7.2 its derivative gives |h′(0)| =
d(h)/Q2. Here we wish to obtain R(Q) = Q/ gcd(P,Q). Since the gcd is a power of two, we have
gcd(P,Q) = 2min{δ(P ),δ(Q)} where δ(q) denotes the dyadic valuation of q. Also, we recall, d(h) is a power
of two. Hence we introduce the dyadic numbers Q2.

For an integer q, δ(q) denotes the dyadic valuation, i.e., is the greatest integer k for which 2k divides q.
The dyadic norm | · |2 is defined on Q with the equality |a/b|2 := 2δ(b)−δ(a). The dyadic field Q2 is the
completion of Q for this norm. See [Kob84] for more details about the dyadic field Q2.

Dyadics numbers can be realized as series of the form y = 2a1 + 2a2 + . . . where a1 < a2 < . . . are
integers (maybe negative). For instance we remark that −1 = 1 + 2 + 4 + 8 + . . . Indeed, notice that
An := (1 + 2 + . . . + 2n) is a Cauchy sequence because |An − Am|2 = 2−min{n,m} and hence the limit
A = limAn exists. Then 1 +An = 2n+1 which tends to 0, thus A = −1.

The next result describes provides alternative expressions for these costs.

Proposition 7.4. Consider the functionG2 : Q2 → R+ (called the gcd map) equal toG2(y) = min(1, |y|−2
2 ),

namely
G2(y) = 1 for |y|2 ≤ 1, G2(y) = |y|−2

2 for |y|2 > 1 . (7.20)

The main costs associated with the CL expansion of a rational h(0)

Q, g(P,Q) := gcd(P,Q), R(P,Q) = Q/gcd(P,Q), |Q|2 ,

are all expressed in terms of the quadruple (|h′(0)|, |h′(0)|2, d(h), G2[h(0)]) as follows

Q−2 = |h′(0)|/d(h), |Q|−2
2 = d(h) |h′(0)|2,

R−2(Q) = |h′(0)| |h′(0)|2G2[h(0)], g2(P,Q) = d(h) |h′(0)|2G2[h(0)] .

Proof. One has (by definition)

P/Q = h(0), Q−2 = |h′(0)|/d(h), r(Q)−2 = g2(P,Q)/Q2 .



7.3. COSTS AND MODEL FOR THE ALGORITHM 183

Cost C Cost c = logC Quadruple γC Constant M(c) Numerical value of M(c)

d(h) σ (0, 0, 1, 0) D
.
= 0.97693 . . .

Q2 q (−1, 0, 1, 0) A+D
.
= 2.6004 . . .

g2(P,Q) ϱ (0, 1, 1, 1) B +D
.
= 1.26030 . . .

R2(P,Q) r (−1,−1, 0,−1) A−B
.
= 1.34015 . . .

|Q|−2
2 q2 (0, 1, 1, 0) B +D

.
= 1.26030 . . .

Figure 7.2: Main costs of interest, with their quadruple, and the constant which intervenes in the analysis of their
mean value. (see Thm 1).

As g(P,Q) is a power of 2, and using the function G2 defined in (7.20), one has

g2(P,Q) = min(|P |2, |Q|2)−2 = |Q|−2
2 min(1, |P/Q|−2

2 ) = |Q|−2
2 G2(P/Q)

We conclude with the equalities : |Q|−2
2 = |h′(0)|2/|d(h)|2, d(h) · |d(h)|2 = 1. ■

Any cost C from Proposition 7.4 admits an expression of the form

|h′(0)|t |h′(0)|u2 d(h)v G2[h(0)]
z .

The quadruple (t, u, v, z) associated with the cost C is denoted as γC . Moreover, as these costs C are
expected to be of exponential growth with respect to the depth of the CF, we will work with their logarithms
c = logC. Figure 7.2 summarizes the result.

7.3.2 Probabilistic model for the rational case

We now change our context and deal with sets of coprimed integer pairs

Ω := {(p, q) : 0 < p < q, gcd(p, q) = 1}, ΩN := {(p, q) : 0 < p < q ≤ N, gcd(p, q) = 1} .

The set ΩN is endowed with the uniform measure, and we wish to study the mean values EN [C] of the main
parameters C on ΩN . We focus on parameters which describe the execution of the algorithm, that can be
“read” from the CF(p/q) built by the algorithm as in (7.9).

We apply standard analytic combinatorics methodology (see Chapter 2) and we work with (Dirichlet) gen-
erating functions (DGFs in short). We first consider the plain Dirichlet generating function (recall (2.13))

S(s) :=


(p,q)∈Ω

1

q2s
=

∞
q=1

φ(q)

q2s
=
ζ(2s− 1)

ζ(2s)
, (7.21)

but we also associate a cost C : Ω → R+ with two generating functions, the bivariate DGF and the
cumulative DGF, namely

SC(s, w) :=


(p,q)∈Ω

ewC(p,q)

q2s
, SC(s) :=


(p,q)∈Ω

C(p, q)
1

q2s
=

∂

∂w
SC(s, w)


w=0

. (7.22)

The expectation EN [C] is now expressed as a ratio which involves the sums ΦN (S), ΦN (SC) of the first N
coefficients of the Dirichlet series S(s) and SC(s), namely,

EN [C] = ΦN [SC ]/ΦN [S] . (7.23)

d This restriction can be easily removed and our analysis extends to the set of all the integer pairs.
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We know from principles of Analytic Combinatorics that the dominant singularity of a DGF (here its sin-
gularity of largest real part) provides precise information about its coefficients, in the case of DGFs for
the cumulative ΦN [C]. Here this transfer from the analytic behavior of the DGF to the asymptotics of its
coefficients is provided by Theorem 2.3, due to Delange.

We thus need an alternative expression of these series, from which it is possible to obtain information
regarding the dominant singularity, which will be transferred to the asymptotics of coefficients.

Proposition 7.5. The Dirichlet generating S(s) and its bivariate version SC(s, w) relative to a cost C :
Ω → R, admit alternative expressionse involving the gcd map G2 from Proposition 7.4

S(s) =


h∈H⋆·h0

|h′(0)|s |h′(0)|s2 Gs2 ◦ h(0) , SC(s, w) =


h∈H⋆·h0

ewC(h) |h′(0)|s |h′(0)|s2 Gs2 ◦ h(0) .

For any cost C ∈ {σ, q, ϱ, r, q2} studied in Proposition 7.4, the general term of the bivariate DGF is

|h′(0)|t |h′(0)|u2 d(h)v Gz2 ◦ h(0) .
The quadruple (t, u, v, z) = γC(s, w), corresponding to a cost C, linearly depends on the two exponents s
and w. The following table describes the quadruple γC(s, w) for our costs, together with its derivative with
respect to w at w = 0 denoted as γC .

Cost C Quadruple γC(s, w) Quadruple γC
σ (s, s, w, s) (0, 0, 1, 0)
q (s− w, s, w, s) (−1, 0, 1, 0)
ϱ (s, s+ w,w, s+ w) (0, 1, 1, 1)
r (s− w, s− w, 0, s− w) (−1,−1, 0,−1)
q2 (s, s− w,w, s) (0,−1, 1, 0)

Dynamical analysis. At this point we look for an alternative form for our generating functions in terms
of the transfer operator of the dynamical system which underlies the algorithm. Here, it is not possible to
obtain such an alternative expression if we stay in the real “world”. This is why we will add a component
to our system which allows us to express parameters with a dyadic flavor. It will be possible to express our
DGFs in term of a (quasi-inverse) of an (extended) transfer operator, and relate their dominant singularity to
the dominant eigenvalue of this extended transfer operator.

We then obtain our main result: We will prove that the mean values EN [C] of our costs of interest are all of
order Θ(logN), and satisfy precise asymptotics that involve three constants A,B,D: the constants A and
D come from the real word, and have been previously defined in (7.18) and (7.19), but there arises a new
constant B that comes from the dyadic world and describes the behavior of the logarithm of the gcd. See
the precise statement in Theorem 4.1.

7.4 The extended dynamical system.

In this section, we extend the CL dynamical system, adding a new component to study the dyadic nature
of our costs. We then introduce the corresponding transfer operators. It is then possible to express the
generating functions in terms of the quasi-inverses of this transfer operator.

7.4.1 Extension of the dynamical system

We will work with a two-component dynamical system: its first component is the initial CL system, to which
we add a second (new) component which is used to “follow” the evolution of dyadic phenomena during the

eWe recall that the last exponent is 0 by convention.
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execution of the first component.

We consider the extended interval I := I × Q2. We define a new shift T : I → I from the characteristics
of the old shift T defined in (7.5). As the branches Ta, ha are LFTs with rational coefficients, they are
well-defined on Q2, and they are moreover bijections from Q2 ∪ {∞} to Q2 ∪ {∞}.

Finally, each branch T a of the new shift T is defined via the equality T a(x, y) := (Ta(x), Ta(y)) on the
fundamental domain Ia := Ia ×Q2, and the shift T a is a bijection from Ia to I := I ×Q2 whose inverse
branch ha : (x, y) →→ (ha(x), ha(y)) is a bijection from I to Ia.

7.4.2 Measures on Q2

To properly speak of the transfer operator, or even the Perron Frobenius operator, we must first define a base
measure which extends the Lebesgue measure from the one-component CL system. By “base” measure we
mean the measure with respect to which the densities (the Perron Frobenius operator works on densities!)
are to be integrated to define probabilities. This base measure is key, as it leads to the form of the Perron
Frobenius operator of the system, and it is fundamental that there be a change of variable formula.

The Haar measure. Given an appropriate (Hausdorff locally compact) abelian topological group (G,+, 0)
there is a unique measure ν (up to scalars) that is translation invariant, i.e., νG(A + v) = νG(A) for every
Borel set A ⊂ G and v ∈ A. This measure is called the Haar measure of the group and is finite on each
compact set of G. For a proof of this fact see [RV99].

We consider three basic subdomains of Q2

B := Q2 ∩ {|y|2 < 1}, U := Q2 ∩ {|y|2 = 1}, C := Q2 ∩ {|y|2 > 1}, (7.24)

and we will denote by Z2 the closed unit ball Z2 := U ⊎ B.

Since Q2 is locally compact, there is such a Haar measure ν0 on Q2 .We may normalize our Haar measure
ν0 further so that ν0(U) = 1/3 (see [RV99]).

If our measure is to be translation invariant, we must have

ν0(2
kU) = 2ν0(2

k+1U) (7.25)

for every k ∈ Z.

Observation 7.2. The measure ν0 satisfies ν0(2kU) = (1/3)2−k for any k ∈ Z. Since the sets {2kU : k ∈
Z} actually form a basis for the dyadic topology, this characterizes the measure ν0 uniquely.

Thus, our measure ν0 cannot be finite and does not give a probability on Q2. The measure ν0 actually
satisfies a change of variable formula akin to that of the Lebesgue integral. Here we first explain it for
quotients of linear functions, which in particular tells us that the change of variables holds for the inverse
branches h of the CL system.

Lemma 7.2. Let ν0 be a translation invariant measure on Q2, and let h be a non-constant rational function
h(y) = ay+b

cy+d . Then for any measurable F : Q2 → C with F ≥ 0 or F ∈ L1(ν0), we have the change of
variables formula 

Q2

|h′(y)|2F (h(y))dν0(y) =

Q2

F (y)dν0(y) .

Proof. It is enough, by compositions, to prove the result when h is of the form h(y) = y + b, h(y) = ay or
h(y) = 1/y. By working with linear combinations of simple sets, it is enough to prove the results for the
case in which F is the characteristic function of a set of the form B := t + 2kZ2 with 2−k < |t|2, as these
generate the σ-algebra. This is a classical strategy in measure theory (see e.g., [Fol99]).
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The case h(y) = y + b is just the translation invariance of the measure ν0. Consider then h(y) = ay first.

Then
Q2

|h′(y)|2F (h(y))dν0(y) = |a|2

Q
1B(ay)dν0(y) = |a|2


Q
1B/a(y)dν0(y) = |a|2ν0(B/a) .

Note that B/a = t/a + (2k/a)Z2 = t/a + (2k|a|2)Z2 which by (7.25) and the translation invariance has
measure ν2(B/a) = |a|−1

2 ν(B). Thus we get our change of variables for this case.

Lastly consider the case h(y) = 1/y. We claim that it is enough to prove the result for B = 2kZ2, i.e.,
taking t = 0. Indeed, assume the result holds for t = 0 and any k. Consider t ̸= 0, then we will have
Q2

|y|−2
2 F (1/y)dν0(y) =

∞
j=−∞

22j

2jU

1t+2kZ2
(1/y)dν0(y) =

∞
j=−∞

22j

2−jU

|y|−2
2 1t+2kZ2

(y)dν0(y) ,

where we first decomposed Q2 into the disjoint union of (2jU)j , and then applied our assumption. Now
(t+ 2kZ2) ∩ (2−jU) is not empty only when |t|2 = 2j and so the intersection is the whole t+ 2kZ2. Thus,
considering the only non-zero term, for which |t|2 = 2j , we have

Q2

|y|−2
2 F (1/y)dν0(y) =

∞
j=−∞

22j ×


2−jU
|y|−2

2 1t+2kZ2
(y)dν0(y)


= |t|22 × (|t|−2

2 ν0(t+ 2kZ2)) ,

thereby proving the result for t ̸= 0.

Now we prove that the result holds for B = 2kZ2 with k ∈ Z. Indeed
Q2

|y|−2
2 F (1/y)dν0(y) =

∞
j=−∞

22j

2jU

12kZ2
(1/y)dν0(y) =

∞
j=−∞

22jν0


(2jU) ∩ (2−kZ2)


,

and here (2jU) ∩ (2−kZ2) = 2jU when j ≤ −k and is empty otherwise. Thus, applying (7.25) we deduce
Q2

|y|−2
2 F (1/y)dν0(y) =

−k
j=−∞

22jν0

2jU


=

∞
j=k

2−2j2jν0(U) =
∞
j=k

ν0(2
jU) = ν0(2

kZ2) ,

as desired. ■

Lemma 7.2 can be generalized to quite an extent, giving the classical change of variables formula but for p-
adics. We refer the reader to the paper [Eva06, see Proposition 2.3], which states the multivariable change of
variables over the p-adics. The book [Sch84, see Appendix A.7] gives a very readable account of such results
for complete (locally compact) non-archimedean fields that are non-trivially valued. Bourbaki [Bou07],
chapter 10, p.36. gives a general version of this result for Haar measures and manifolds.

A function f : Q2 → Q2 is continuously differentiable if and only if there is a continuousR : Q2×Q2 → Q2

such that f(x) − f(y) = R(x, y)(x − y) for all x, y ∈ Q2. Then we define f ′(x) := R(x, x). We remark
that for the case of the rational functions from Lemma 7.2 both notions coincide.

Theorem 7.1. Let g : Q2 → Q2 be a continuously differentiable bijection satisfying g′(y) ̸= 0 for all y.
Then for a function F ∈ L1(Q2, ν0), we have the change of variable formula

Q2

|g′(y)|2F (g(y))dν0(y) =

Q2

F (y)dν0(y) .

The proof of this result, given in [Sch84] for ultrametrics, goes through two steps. First, there is a key local
invertibility theorem stating that for sufficiently small balls B around a point a, the image g(B) is a ball of
radius |g′(a)|2 diam(B) around g(a). Then the proof concludes by noticing that |g′|2 is locally constant.

Thus the proof relies strongly on the “ultrametric” properties of Q2. It is true, however, that even though
the proofs look different from the surface, the main proof steps are similar to those of the Lebesgue measure
(see e.g., in [Apo74]).
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Probability measure on Q2. We now introduce our probability measure ν, defined by

ν(A) :=


A
G2(y)dν0(y) , (7.26)

for every measurable A ⊂ BQ2 .

It is simple enough to see that this defines probability measure on Q2.

Proposition 7.6. The measure ν is a probability measure on Q2.

Proof. We need to verify that ν(Q2) = 1. Note that ν0(Z2) = 1/3 (ν0(U) + ν0(2U) + . . .) = 2/3.

Of course, for |y|2 ≤ 1 we have G2(y) = 1, hence ν(Z2) = 2/3 too. Now we must show that ν(C) = 1/3.

Note that by undoing the change of variables y →→ 1/y we have

ν(C) =

C
G2(y)dν0(y) =


C
|y|−2

2 dν0(y) =


B
dν0(y) = ν(B) .

Observe that, as ν = ν0 over Z2,

ν(B) = ν(2U) + ν(22U) + . . . = 2−1ν(U) + 2−2ν(U) + . . . = ν(U) ,

hence ν(B) = ν(U) = 1/3, and the proposition follows. ■

Observation 7.3. We remark that the measure ν satisfies ν(2kU) = (1/3)2−|k| for any k ∈ Z.

From Lemma 7.2 and dν = G2 dν0, we deduce the following change of variables formula, valid for any
F ∈ L1(Q2, ν), 

Q2

|h′(y)|2 F (h(y))

G2(h(y))

G2(y)


dν(y) =


Q2

F (y) dν(y) . (7.27)

Measure for the extended system Now, given the probability ν on Q2 we can define our probability for
the extended system. This will be the product measure

dρ(x, y) := dλLeb(x)× dν(y) . (7.28)

7.4.3 Density transformer and transfer operator

We now consider the “Perron Frobenius operator” H associated with the extended system. The density
transformer reads as follows: given a function F ∈ L1(I, ρ), it returns a new function defined by

H [F ](x, y) :=

h∈H

|h′(x)| |h′(y)|2 F (h(x), h(y))

G2(h(y))

G2(y)


. (7.29)

When F is a density in L1(I, ρ), then H[F ] is indeed the new density on I after one iteration of the shift T .
This follows easily from the change of variables formula (7.27) applied to each inverse branch h ∈ H.

Proposition 7.5 leads us to a new operator that depends on a quadruple (t, u, v, z),

Ht,u,v,z[F ](x, y) :=

h∈H

|h′(x)|t |h′(y)|u2 d(h)vF (h(x), h(y))

G2(h(y))

G2(y)

z
. (7.30)

We will focus on costs described in Figure 7.2: we thus deal with operators associated with quadruples
γC(s, w) defined in Proposition 7.5, and in particular with the quadruple (s, s, 0, s), and its associated
operator Hs := Hs,s,0,s.
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7.4.4 Alternative expressions of the Dirichlet generating functions

We start from the expressions in Proposition 7.4. Consider the three types of DGF defined in (7.21) and
(7.22), use the equality G2(0) = 1, and consider the operator Js relative to the branch J used in the last
step. For the plain DGF in (7.21), we obtain

S(s) =


h∈H⋆·J
|h′(0)|s |h′(0)|s2 Gs2 ◦ h(0) = Js ◦ (I −Hs)

−1[1](0, 0) , (7.31)

We now consider the bivariate DGF’s defined in (7.22). For the depth K, one has

SK(s, w) = ewJs ◦ (I − ewHs)
−1[1](0, 0) ;

For costs C of Figure 7.2, the bivariate DGF involves the quasi-inverse of HγC(s,w),

SC(s, w) = JγC(s,w) ◦ (I −HγC(s,w))
−1[1](0, 0) ,

except for C = |Q|−2
2 , where the function 1 is replaced by the function Gw2 .

The DGF SC(s) defined in (7.22) is obtained with taking the derivative of the bivariate DGF with respect to
w (at w = 0); it is thus written with a doublef quasi inverse which involves the plain operator Hs, separated
“in the middle” by the cumulative operator Hs,(C), namely

SC(s) ≍ Js ◦ (I −Hs)
−1 ◦Hs,(C) ◦ (I −Hs)

−1 [1](0, 0) , (7.32)

and the cumulative operator is itself defined by Hs,(C) :=
∂

∂w
HγC(s,w)


w=0

.

7.5 Functional Analysis

This section is devoted to the study of the quasi-inverses (I −Hs)
−1 intervening in the expressions of the

generating functions of interest. We deal with a delicate context: even though the inverse branches are
contracting on the interval I, they are not contracting on Q2, just contracting on average. We first define an
appropriate functional space on which the operators are proven to act and admit dominant spectral properties.
This will prove that the quasi-inverse (I −Hs)

−1 admits a pole at s = 1, and we study its residue, which
gives rise to the constants that appear in the expectations of our main costs.

7.5.1 Lasota-Yorke for the classical CL dynamical system

We kick off this section by explaining why the CL dynamical system, that is, the system with just the real
component, is so well-behaved. This good behavior will end up extending to the extended system.

The following Lemma shows that the transfer operator Ht operating over C1(I), defined by

Ht : f(x) →→

a≥0

|h′a(x)|tf(ha(x)) ,

satisfies Lasota-Yorke bound like that in Theorem 1.9. Over the reals we consider the norm | · |0 and the
semi-norm | · |1, related respectively to ∥ · ∥0 and ∥ · ∥1 for the extended case with space F , defined by

|f |0 := sup
x∈I

|f(x)| , |f |1 := sup
x∈I

|f ′(x)| .

fThere is another term which involves only a quasi-inverse. It does not intervene in the analysis.
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This Lasota-Yorke bound, along with the compactness of the closed unit ball

B = {f ∈ C1(I) : |f |0 + |f |1 ≤ 1}

of the Banach space (C1(I), | · |0 + | · |1), over (C1(I), | · |0), imply that the operator Ht is quasi-compact
due to Hennion’s Theorem (see Theorem 1.9). The compactness of the ball B over (C1(I), | · |0) follows at
once from the celebrated Arzelà-Ascoli Theoremg.

Lemma 7.3. The component operator Ht,(a) associated to a ∈ N defined as

Ht,(a)[f ](x) = |h′a(x)|tf(ha(x))

acts on C1(I) and the integral

Ka[f, t] :=


I


Ht,(a)[f ](x) + [Ht,(a)[f ](x)]

′ dx
satisfies

|Ka[f ](t)| ≤ Ia(t)|f |0(1 + 2|t|) + |f |1Ia(t+ 1), with Ia(t) :=


I
|h′a(x)|tdx .

Moreover, the integral Ia(t) satisfies

Ia(1) = 2−12−at, Ia(t) ≤ 2−1 2−at (t ≥ 1), Ia(t) ≤ 21−2t 2−at (t ≤ 1)

This admits a generalization to k-uples a := (a1, a2, . . . , ak) and leads to the Lasota-Yorke bound,

|Hk
t [f ]|1 ≤ (1 + 2k|t|)|f |0 + ϱk|f |1

that holds for ℜt = 1. Here, ϱ is the contraction ratio, and we have used the fact that |h′′(x)| ≤ 2k|h′(x)|
for any branch h of depth k.

7.5.2 Functional space

The delicate point of the dynamical analysis is finding a good functional space. It must surely be a subspace
of L1(I, ρ). Here, we know that, in the initial CL system, the transfer operator Hs acts nicely on the space
of continuously differentiable functions C1(I). As in our case it is the real part of the system that leads the
evolution, we will just ask for some sort of integrability condition over Q2.

For a function F defined on I, the main role will be played by the family of “sections” Fy : x →→ F (x, y)
which will be asked to belong to C1(I), with the following norm | · |1,1,

|Fy|1,1 := |Fy|0 + |Fy|1, with |Fy|0 := sup
x∈I

|Fy(x)|, |Fy|1 := sup
x∈I

 ∂∂xFy(x)
 .

We then just ask for the function y →→ |Fy|1,1 to be bounded on Q2 and deal with the Banach space

F :=

F : I → C : Fy ∈ C1(I), y →→ Fy in L1(Q2, ν)


endowed with the norm ∥F∥ := ∥F∥0 + ∥F∥1, with

∥F∥0 :=

Q2

|Fy|0 dν(y), ∥F∥1 :=

Q2

|Fy|1 dν(y) . (7.33)

gFor f ∈ B : |f(x)− f(x0)| = |
 x

x0
f ′(t)dt| ≤ |x− x0| |f |1 ≤ |x− x0|, which proves the equicontinuity.
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7.5.3 Action of the operator Ht,u,v,z on F

We are interested in determining the (or a sufficiently large) set of quadruples (t, u, v, z) for which the
operator Ht,u,v,z defined in (7.30) is bounded on F and, moreover, is analytic with respect to the quadruple
(for the analytic perturbation!).

As we will deal mainly with integrals arising from a change of variables, it will be important to underline
the following property of the inverse branches h

Observation 7.4. Consider an inverse branch ha(x) = 1
2a(1+x) of depth 1. Then

|h′a(x)|t = |h′a(x)|t−1|h′a(x)| =
2a (ha(x))2 t−1|h′a(x)| , (7.34)

which of course holds for the dyadic norm | · |2 as well. The factor |h′a(x)| on the right-hand side of (7.34)
will serve to perform the change of variables when working with integrals. Thus

I
|h′a(x)|tdx =


ha(I)

2au2t−1
du , (7.35)

even when changing | · | for the norm | · |2 and the Lebesgue measure for the Haar measure ν0 on Q2. 3

Before moving on to the corresponding results, we motivate the constraint u = z which we will impose on
our domain for (t, u, v, z). Such a constraint is not a problem (and we claim it is necessary) when it comes
to the concrete cases of our GFs (recall Proposition 7.5).

Given R : Q2 → [0,∞), we consider the integral

Ja,u,z[R] :=


Q2

G−z
2 (y) |h′a(y)|u2 R(ha(y)) Gz2(ha(y))G2(y) dν0(y) , (7.36)

which we wish to compare with

Q2
R(y)G2(y)dν0(y).

We perform the change of variables x = ha(y) and we note the two following equalities, following from
(7.34) and the previous discussion, according as to whether y ∈ C

G2(y)
1−z|h′a(y)|u2 =


2−a(u−1)|x|2(u−1)

2 |h′a(y)|2 , y ̸∈ C
2−a(u−2z+1) |x|2(u−z)2 |h′a(y)|2 , y ∈ C

.

Then, the integral decomposes into three integrals

Ja,u,z[R] = 2−a(u−1)


ha(B)

|x|2(u−1)
2 R(x) Gz2(x) dν0(x)

+2−a(u−1)


ha(U)

|x|2(u−1)
2 R(x) Gz2(x) dν0(x)

+2−a(u−2z+1)


ha(C)

|x|2(u−z)2 R(x) Gz2(x) dν0(x) .

Why consider u = z . Assume, for the sake of motivating the need for the equality u = z, that both u and
z were real numbers (else we would take the real parts).

First consider the case u > z. Then we would have ha(U) ⊂ C. This means that for the integral over ha(U)
we have G2(x) = |x|−2

2 and get an integral which is |x|2(u−z) times our target R(x)G2(x), but the factor
|x|2(u−z) is unbounded!

If we had u < z, then the factor multiplying the integral over ha(C) will give us a divergent series, even if
we could compare the corresponding integral with


Q2
R(x)G2(x)dν0(x).
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Comparison when u = z . When z = u ∈ C notice that we have |x|−2
2 = G2(x) for the first two

integrals, whence |x|−2(u−1)
2 = Gz−1

2 (x). Indeed, whenever x ∈ ha(B) ∪ ha(U) we have |x|2 ≥ 2a ≥ 1.

For the third, the factor |x|2(u−z)2 vanishes, and we may have a large (G2(x))
z−1 only when x ∈ ha(C) ∩ C

and ℜz−1 is negative. By definition of ha we have 1 < |x|2 < 2a, whence |Gz−1
2 (x)| ≤ max{1, 22aℜ(1−z)|}.

We conclude the ensuing discussion with the following lemma.

Lemma 7.4. Given a function R : Q2 → [0,∞) and a real u we define

Ja,u[R] :=


Q2

G−u
2 (y)|h′a(y)|u2R(ha(y))(G2(ha(y)))

uG2(y)dν0(y) .

Then Ja,u[R] satisfies

Ja,u[R] = 2−a(u−1)


ha(B)

R(x) G2(x) dν0(x)

+2−a(u−1)


ha(U)

R(x) G2(x) dν0(x)

+2−a(1−u)

ha(C)

R(x) Gu−1
2 (x)G2(x) dν0(x) ,

as well as the bounds

|Ja,u[R]| ≤ 2a|1−u|

Q2

R(y)G2(y)dν0(y) ,

 ∂∂uJa,u[R]
 ≤ 4 · 2a|1−u| · (1 + a)


Q2

R(y)G2(y)dν0(y) .

Proof. The only thing we have not explained is the second bound. For this we use our expression for Ja,u[R]
as a sum of three integrals. Notice that differentiating in u the first 2 terms produces a factor −a× (log 2).
For the third integral we have that |logG2(x)| ≤ 1 + 2(log 2)a is satisfied, while the derivative of 2−a(1−u)

also gives a term with a factor a. This yields the inequality. ■

We are now ready to state the key result concerning our domain.

Proposition 7.7. For a triple (t, u, v) ∈ C3 satisfying the conditions ℜ(t) > 0 and ℜ(t− v − |u− 1|) > 0,
the operator Ht,u,v,u acts on F and is analytic with respect to the triple (t, u, v).

Proof. We divide the proof into two parts: the proof that the operator acts on F , and the proof that it depends
analytically on the triples (t, u, v).

The operator acts on the space. Observe that by the triangle inequality

sup
x∈I

|Ht,u,v,u[F ](x, y)| ≤
∞
a=0

|h′a(x)|ℜt|ha(y)|ℜud(ha)ℜv sup
x∈I

|F (x, ha(y))|
G2(ha(y))

G2(y)

ℜu
.

Consider then Lemma 7.4 with R(y) := |Fy|0, we get that

∥Ht,u,v,u[F ]∥0 ≤
∞
a=0

2−a(ℜ(t−v−|1−u|))∥F∥0

when ℜt > 0 , as |h′(x)| ≤ 2−a. For our given conditions, the series


a 2
−a(ℜ(t−v−|1−u|)) converges.

We must now consider ∥Ht,u,v,u[F ]∥1. By differentiating we find that ∂
∂xHt,u,v,u[F ] satisfies ∂∂xHt,u,v,u[F ](x, y)

 ≤ ∞
a=0

|t| |h′a(x)|ℜt−1|h′′a(x)||h′a(y)|ℜu2 d(ha)
ℜvF (ha(x), ha(y))

G2(ha(y))

G2(y)

ℜu
+

∞
a=0

|h′a(x)|ℜt+1|h′a(y)|ℜu2 d(ha)
ℜv ∂F

∂x
(ha(x), ha(y))

G2(ha(y))

G2(y)

ℜu
.
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The inverse branches ha are of bounded distortion |h′′a(x)| ≤ 2|h′a(x)|, hence we may write

 ∂∂xHt,u,v,u[F ](x, y)

 ≤2|t|
∞
a=0

|h′a(x)|ℜt|h′a(y)|ℜu2 d(ha)
ℜvF (ha(x), ha(y))

G2(ha(y))

G2(y)

ℜu
+

∞
a=0

|h′a(x)|ℜt+1|h′a(y)|ℜu2 d(ha)
ℜv ∂F

∂x
(ha(x), ha(y))

G2(ha(y))

G2(y)

ℜu
.

Now we note again that |h′a(x)| ≤ 2−a, take supx and apply Lemma 7.4. After the integration on y ∈ Q2

with the measure dν(y) = G2(y)dν0(y), we get

∥Ht,u,v,u[F ]∥1 ≤ 2|t|
∞
a=0

2−aℜ(t−v−|1−u|)∥F∥0 +
∞
a=0

2−aℜ(t−v−|1−u|+1)∥ ∂
∂xF∥0 .

This last inequality implies that the operator is bounded, as then

∥Ht,u,v,u[F ]∥ ≤ (2|t|+ 1)

 ∞
a=0

2−aℜ(t−v−|1−u|)


× ∥F∥ ,

and the series converges over our domain.

The operator depends analytically on the triple. The analycity will follow from the fact that the series of
the term-wise derivatives belong to F .

Observe that differentiating Ht,u,v,u[F ](x, y) with respect to t gives

∂

∂t
Ht,u,v,u[F ](x, y) =

∞
a=0

(log |h′a(x)|)|h′a(x)|t|h′a(y)|u2d(ha)vF (ha(x), ha(y))
G2(ha(y))

G2(y)

u
.

Of course, log |h′a(x)| = −a · (log 2) + O(1) in the variable a, and the rest proceeds as before, showing
that this partial derivative gives a bounded operator. Indeed, the additional factor a does not change the
convergence/divergence region of the series


a 2

a(ℜv+|1−u|−ℜ(t)).

With respect to v we have an analogous situation. Thus let us get to the interesting case: differentiating with
respect to u. It is here that we need the second inequality from Lemma 7.4.

From Lemma 7.4 we deduce ∂∂uHt,u,v,u[F ](x, y)


0

=
∞
a=0

2−aℜ(t−v)
 ∂∂uJa,u[y →→ |Fy|0]

 ≤ 4
∞
a=0

(1 + a)2−a(ℜ(t−v)−|1−u|)∥F∥0 ,

where the series converges again on the same domain. And for the other norm ∥ · ∥1 we have, as in the
previous part when we considered ∂

∂x ,

 ∂∂uHt,u,v,u[F ](x, y)


1

≤ 2|t|
∞
a=0

2−aℜ(t−v)
 ∂∂uJa,u[y →→ |Fy|0]

+ ∞
a=0

2−aℜ(1+t−v)
 ∂∂uJa,u[y →→ |Fy|1]

 ,
and the boundedness follows again from Lemma 7.4 and the convergence of the series. ■

Proposition 7.8. The operator Hs := Hs,s,0,s acts on F for ℜs > 1/2. Moreover for each s with ℜs > 1
the spectral radius of Hs is strictly less than 1.
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7.5.4 Dominant spectral properties of the operator

The next result describes some of the main spectral properties of the operator on the space F . Assertion (a)
entails that the k-th iterate of the operator behaves as a true k-th power of its dominant eigenvalue. Then, as
stated in (c), its quasi-inverse behaves as a true quasi-inverse which involves its dominant eigenvalue.

Proposition 7.9. The following properties hold for the operator Ht,u,v,u, when the triple (t, u, v) belongs
to a neighborhood V of (1, 1, 0).

(a) At (t, u, v, u) = (1, 1, 0, 1), the operator Ht,u,v,u coincides with the density transformer H1. The
operator H1 has a unique dominant eigenvalue equal to 1, the corresponding eigenvector is the
invariant density Ψ and the projection is given by the integration with respect to the meas ure ρ.

(b) There is a unique dominant eigenvalue with multiplicity one, separated from the remainder of the
spectrum by a spectral gap, and denoted as λ(t, u, v), with a (normalized) dominant eigenfunction
Ψt,u,v and a dominant eigenmeasure ρt,u,v for the dual operator.

(c) The estimate holds for any function F ∈ F with ρ[F ] ̸= 0,

(I −Ht,u,v,u)
−1[F ](x, y) ∼ λ(t, u, v)

1− λ(t, u, v)
Ψt,u,v(x, y) ρt,u,v[F ] ,

as (t, u, v) → (1, 1, 0).

(d) For ℜs = 1, s ̸= 1, the spectral radius of Hs,s,0,s is strictly less than 1.

The third result describes the Taylor expansion of λ(t, u, v) at (1, 1, 0), and makes precise the behavior of
the quasi-inverse described in (c).

Proof.

(a) We already know that the Perron Frobenius operator H of the CL system presents a spectral gap, with a
dominant eigenvalue 1 that is simple, and no other eigenvalue on the unit circle. We know that H1 inherits
the Lasota-Yorke bound from that of H. Then, since H1 is actually an extension of H to two-variable
functions, the density transformer H1 of the extended system will inherit this spectral gap.

(b) There is a Lasota–Yorke bound, inherited from Lemma 7.3, for the H1,1,0,1 in F with the two norms
∥ · ∥0 and ∥ · ∥1. The unit ball in (F , ∥ · ∥) is precompact on (F , ∥ · ∥0) again by the Arzelà-Ascoli Theorem,
and we apply Hennion’s Theorem, yielding the quasi-compactness of Ht,u,v,u.

(c) Follows from classical principles as in subsection 1.4.7.

(d) We assume that there exists a complex number s of the form s = 1+ it, t ̸= 0, with t real, for which Hs

has a spectral radius equal to 1. Then, due to the Lasota–Yorke inequality satisfied by Hs, the operator Hs

is quasi-compact, and therefore it admits an eigenvalue of modulus 1. We follow the same first steps as in
“Dynamical Sources in Information Theory: Fundamental intervals and Word Prefixes” [Val01] Proposition
9 [basic case] that prove that the following holds 1

2a(1 + xa)2

it = 1 for any a ≥ 0

and involves the quadratic irrational xa ∈ [0, 1] that is the fixed point of the branch ha.

Remark two facts:

(i) each xa is a non rational element of the quadratic field Q(
√
1 + 22−a), and

(ii) we have the inequality 0 < xa < 2−a.
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Then, for any a large enough, there exists an integer ka for whichka 2π

t log 2
− a

 = log2(1 + xa), 0 < log2(1 + xa) ≤ K2−a for some constant K .

This proves that the sequence k2a − 2ka tends to 0; it is thus equal to 0 for a large enough. This now
entails that the two irrational quadratics x2a and x2a are equal. This is not possible since Q(

√
1 + 22−a) ∩

Q(
√
1 + 22−2a) = Q, at least when a > 1 is odd.

This is intuitively obvious, but the proof is not immediate. This is actually significantly simpler to prove by
contradiction for a odd, which can be done as we may pick any sufficiently large odd a. The contradiction
arrives after squaring and comparing dyadic valuations.

Going back, now knowing that α, γ ̸= 0, and squaring

α2(1 + 22−a) = γ2

1 + 22−2a


+ 2γ(δ − β)


1 + 22−2a + (δ − β)2 ,

and therefore δ = β, as
√
1 + 22−2a ̸∈ Q. Thus let us look at the possibility δ = β. Then

α


1 + 22−a = γ

1 + 22−2a,

for nonzero integers α, γ. Then
α2(2a + 4)2a = γ2(22a + 4) ,

and this is nonsense when a is odd and a > 1 as the left hand side has an odd dyadic valuation, while the
right hand side has an even valuation. ■

We have precise information concerning the eigenvalue λ(t, u, v) when (t, u, v) is near (1, 1, 0).

Proposition 7.10. The Taylor expansion of the eigenvalue λ(t, u, v) at (1, 1, 0), written as λ(t, u, v) ∼
1−A(t− 1) +B(u− 1) +Dv, involves the constants

A = −∂λ/∂t(1, 1, 0), B = ∂λ/∂u(1, 1, 0), D = ∂λ/∂v(1, 1, 0)

(a) The constants A and D already appear in the context of the plain dynamical system, and are precisely
described in (7.19) and (7.18). In particular A−D is equal to the integral E := EΨ[2| log x|];
(b) The constant B is defined in terms of the extension of the dynamical system and its invariant density
Ψ = Ψ1,1,0. The constant B + D is equal to the dyadic analog E2 of the integral E, namely, B + D =
E2 := EΨ[2 log |y|2];
(c) The constant A−B is the entropy of the extended dynamical system.

About the constant B. The invariant density Ψ –more precisely the function Ψ := Ψ · G2 – satisfies a
functional equation of the same type as the invariant function ψ, (described in Equation 7.16), namely,

Ψ(x, y) =


1

1 + x

2  1

1 + y

2
2


a≥0

Ψ 2−a

1 + x
,
2−a

1 + y


.

Comparing to Equation 7.16, we “lose” the factor 2−a in the sum, and so we have not succeeded in finding
an explicit formula for Ψ. We do not know how to evaluate the integral E2 defined in Proposition 7.10(b).
However, we conjecture the equality D −B = log 2, from experiments of the same type as those described
in Figure 7.1. This would entail an explicit value for the entropy H of the extended system,

H =
1

2 log 2− log 3

π2
6

+ 2

k≥1

(−1)k

k2 2k
− (log 2)(3 log 3− 4 log 2)

 .
= 1.33973 . . .
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7.6 Final result for the analysis of the CL algorithm

We then obtain our final result:

Theorem 7.2. The mean values EN [c] for c ∈ {K,σ, q, ϱ, r, q2} on the set ΩN are all of order Θ(logN)
and admit the precise following estimates,

EN [K] ∼ 2

H
logN, EN [c] ∼M(c) · EN [K], for c ∈ {σ, q, ϱ, r, q2} .

The constant H is the entropy of the extended system. The constants H and M(c) are expressed with a
scalar product that involves the gradient ∇λ of the dominant eigenvalue at (1, 1, 0) and the beginning γC
of the quadruple γC associated with the cost c. More precisely

H = ⟨∇λ, (−1,−1, 0)⟩, M(c) = ⟨∇λ, γC⟩ .
The constants M(c), in terms of the derivatives of λ(t, u, v) as defined in Proposition 7.10, are exhibited in
Figure 7.2 and we recall them here

Cost C Cost c = logC Beginning γC Constant M(c) Numerical value of M(c)

d(h) σ (0, 0, 1) D
.
= 0.97693 . . .

Q2 q (−1, 0, 1) A+D
.
= 2.6004 . . .

g2(P,Q) ϱ (0, 1, 1) B +D
.
= 1.26030 . . .

R2(P,Q) r (−1,−1, 0) A−B
.
= 1.33973 . . .

|Q|−2
2 q2 (0, 1, 1) B +D

.
= 1.26072 . . .

Proof. Now, the Tauberian Theorem comes into play, relating the behavior of a Dirichlet series F (s) near its
dominant singularity with asymptotics for the sum ΦN (F ) of its first N coefficients. Delange’s Tauberian
Theorem (Theorem 2.3)

We now show that the two DGFs S(s) and SC(s) satisfy the hypotheses of the Tauberian theorem. The
two expressions obtained in (7.31) and (7.32) involve quasi-inverses (I −Hs)

−1, a simple one in (7.31), a
double one in (7.32).
First, Propositions 7.8 with 7.9(b), and 7.9(d) prove that such quasi-inverses are analytic on ℜs ≥ 1, s ̸= 1.
Then Proposition 7.9(c), together with Equation 7.32, shows that S(s) and SC(s) have a pole at s = 1, of
order 1 for S(s), of order 2 for SC(s).
We now evaluate the dominant constants: first, the estimate holds,

1− λ(s, s, 0) ∼ (A−B)(s− 1) = H(s− 1) .

Second, with Proposition 7.9(c), the DGFs S(s) and SC(s) admit the following estimates which both involve
the constant a = J[Ψ](0, 0), namely,

S(s) ∼ a

H(s− 1)
, SC(s) ∼ a

H2(s− 1)2
ρ

H1,(C)[Ψ]


.

We now explain the occurrence of the constant M(c): we use the definition of the triple γC(s, w), the
definition of the cumulative operator H1,(C) as the derivative of the bivariate operator HγC(s,w) at (s, w) =
(1, 0), and the fact that H1,1,0,1 = H1 is the density transformer. This entails the sequence of equalities,

ρ

H1,(C)[Ψ]


=

∂

∂w
λ(γC(1, w))

w=0
= ⟨∇λ, γC⟩ =M(c) . ■
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CONCLUSIONS

In this dissertation we have presented several instances of Dynamical Analysis to study objects coming
from Combinatorics on Words (namely Sturmian words) and Number Theory (the Continued Logarithm
algorithm). In both cases there had been preceding studies on the worst case (see [MH40] and [Sha16]),
and we, on the other hand, strive to study them probabilistically. This is where Dynamical Analysis actually
comes in, as the objects we consider can be described in a common framework mixing continued fractions
and dynamical systems.

Studies in Combinatorics on Words

We have first studied the recurrence functionRα(n) of Sturmian words, a fundamental quantity dictating the
worst “waiting time” to find all factors of a given length n, in two different probabilistic models. The funda-
mental link between Sturmian words and continued fractions is given by Morse and Hedlund in [MH40], and
this means that the Euclidean system is the dynamical system underlying here. For our first model, given
a Sturmian word of slope α, and a sequence (µk), we have associated a sequence of indices nk (lengths
of factors) defined by their barycentric position µk inside [qk−1(α), qk(α)). We then have elucidated the
role played by the position in the behavior of the recurrence of a random Sturmian word when α is drawn
uniformly at random. In this case the dynamical analysis involves the powers of the density transformer of
the underlying system, and constitutes a starting point to our work. Our second model constitutes another
take on the problem, with a somewhat orthogonal viewpoint. We fix the length n of the factors and pick
α at random, then we study the distribution of the recurrence function. This study a priori differs widely
from the previous one; it employs elementary properties of continued fractions as well as coprime Riemann
sums over unbounded domain. This idea led us to the concept of Q-functions, of which we have shown
several examples, other than the recurrence quotient, in relation to continued fractions. This study involves
the generalization and adaptation of ideas which have appeared in [BCZ03] (for coprime Riemann sums)
and [Ust09].

Work in progress. We have since considered the possibility of the slope α belonging to a particular (but
important) set, such as the rational numbers (yielding periodic words) or the quadratic irrationals (related
to words produced by morphisms). These lead to models mixing the ideas from our two previous studies
and requiring several other key concepts such as the transfer operator of the system and the trace. We have
obtained partial results in this direction, and individuated the need to introduce an index ℓ, counting the
number of complete periods of the continued fraction expansion of α, for the case of quadratic irrationals.
The stationary behavior when ℓ → ∞ is an attractive question we are working on. Futhermore, the work
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may lead to a unification of all three contexts (real, rational and quadratic irrational).

Studies in Number Theory

We have studied the Continued Logarithm Algorithm on average and analyzed in particular the number
of pseudo divisions, and the total number of shifts. Thus we have answered a question posed by Shallit
[Sha16] following his analysis on the worst-case. Our work makes crucial use of Dynamical Analysis, but
requires a twist: the introduction of a dyadic component to the transfer operator. This dyadic component is
necessary to account for the complex dyadic behavior of the algorithm; even if the input pair is coprime, the
greatest common divisor of the working pair increases as the algorithm progresses, always being a power of
two. We have shown that this system possess the spectral properties we require to carry out our dynamical
analysis, namely, there is a spectral gap which follows from the fact that the one-component original system
is well-behaved. Thus we complete our analysis deriving constants which depend on the entropy of the
system.

Work in progress and open questions. We would like to obtain an explicit expression for the elusive
invariant density of the extended system. This would entail a proven expression for the entropy of the
dynamical system, for which we have provided a conjectural value. This conjectural value is sound in the
sense that it related to a more basic conjecture (see (7.13)), stating that 1

k log2 gcd(qk, qk+1) → 1
2 , which

seems reasonable, and fits in very well with the experiments performed.

It is also surely possible to analyze the bit complexity of the algorithm, notably in the case when one
eliminates the rightmost zeroes when shared by the two q′is (as suggested by Shallit). Such a version of this
algorithm may have a competitive bit complexity that merits a further study.

There exist two other gcd algorithm that are based on binary shifts, all involving a dyadic point of view: the
Binary Algorithm, and “the Tortoise and the Hare” algorithm, already analyzed in [Val98a] and [DMDV05];
however, the role of the binary shifts is different in each case. The strategy of the present algorithm is led by
the most significant bits, whereas the strategy of the “Tortoise and the Hare” is led by the least significant
bits. The Binary algorithm adopts a mixed strategy, as it performs both right-shifts and subtractions. We
have the project to unify the analysis of these three algorithms, and better understand the role of the dyadic
component in each case.

Finally, we are working on the so-called “real case” for the Continued Logarithm expansion. We consider a
random real in the unit interval and, a given number k of steps in its continued fraction expansion, we wish
to describe the evolution of the main parameters, notably gcd(qk−1, qk), associated with this expansion,
when the depth k tends to ∞. We wish to prove that generic reals have behavior akin to that of rationals p/q
from the previous model on the rationals.
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