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I. Introduction 

 

1. Hydrogen isotopes in organic molecules 

 

Hydrogen   
  has the highest abundance among all elements in the universe. Deuterium   

  is 

the nonradioactive and herewith the stable isotope of hydrogen. The deuterium atom   
  is 

composed of one electron and the nucleus which is called deuteron. The deuteron consists of 

one proton and one neutron. Natural hydrogen is composed to 0.0145% of deuterium.
1
 

Tritium   
   is the radioactive isotope of hydrogen. The nucleus of the tritium atom   

  

consists of one proton and two neutrons. The tritium atom also has one electron. It is a β-

emitter, it has a half-life of 12.346 years and a molar activity of 29.2 Ci/mmol which 

corresponds to 1080.4 GBq/mmol. Naturally occurring hydrogen atoms consist to 10
-18

% of 

tritium atoms. In the following, the interest in incorporating hydrogen isotopes in organic 

molecules is going to be detailed. Since the two isotopes deuterium and tritium differ in 

certain properties from hydrogen (different spin, higher mass, radioactivity), numerous 

applications of deuterium and tritium labelled molecules were developed in many fields of life 

science such as drug discovery. 

 

1.1 Deuterium: the kinetic isotope effect and its applications 

 

Deuterium has a slightly lower electronegativity and electronic polarizability than hydrogen, 

but both isotopes are chemically mostly undistinguishable.
2
 The electronegativity refers to the 

ability of an atom to withdraw electrons from neighboring atoms and the electronic 

polarizability refers to the potential of an atom to keep its own electrons. However, if we 

assume that hydrogen is replaced by deuterium on a C–H bond, a C–D bond is obtained that 

manifests higher stability. The stability increase is reasoned in the higher mass of deuterium 

and the weaker vibration frequency that brings about a lower zero-point energy (ZPE) of the 

C–D bond in the Morse diagram. Hence, the needed energy ΔE
‡

 to overcome the barrier for 

bond breaking is then also higher (figure 1). This phenomenon is called the kinetic isotope 

effect (KIE). The KIEs of hydrogen isotopes are the most developed among every other 
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kinetic isotope effect, since hydrogen is the lightest element in the periodic table. Thus, the 

relative mass change from hydrogen to deuterium is much bigger than e.g. from 
11

C to 
12

C. 

 

Figure 1. Morse potential of a C–H and a C–D bond illustrating the origin of the KIE. Figure 

extracted from reference 3. 

As mentioned above, deuterium merely appears in low percentages in the natural 

environment. High amounts of deuterium in living organisms (>20% of the body weight) even 

revealed to be toxic because it evokes a “solvent isotope effect” and the deuteration of 

biomolecules, changing kinetics of processes being important for live.
4
 However, there are 

numerous chemical strategies developed with the objective to incorporate hydrogen isotopes 

in a targeted manner in organic molecules. The most important methods to do so are going to 

be detailed in chapter I.3. The isotopic enrichment of bioactive molecules and materials by 

deuterium paves the way to a vast repertory of applications. Some of them benefit from the 

described KIE and others from the mass shift that is conferred to an organic molecule when 

its hydrogens are exchanged for deuteriums. Nonetheless, every hereinafter described 

application benefits from the fact that different isotopes of an element do not significantly 

differ in terms of chemical and biological properties.  

 

1.1.1 Heavy Drugs 

 

A real therapeutic value of deuterium was demonstrated by the recent commercialization of 

“Heavy Drugs”. In drug development, fluorine was usually used to replace hydrogen in order 

to stabilize metabolically fragile sites of drug development candidates, such as in the case of 

pleconaril.
5
 However, a major drawback of fluorine is its high electronegativity and the 

concomitant polarity change of the drug molecule to which it is bound. Thus, compared to 
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fluorine, deuterium must be a much better bioisosteric substitution of hydrogen. Additionally, 

a bond stabilization is also achieved through the KIE that appears when hydrogen is 

exchanged for deuterium. This is evidenced in the recent approval of deutetrabenazine, a 

deuteroanalogue of tetrabenazine, by the U.S. Food and Drug Administration (FDA) thanks to 

its advantageous pharmacological and toxicological profile over its protioanalogue (figure 

2)
6
. By deuterating key metabolism sites, chemists managed to increase the lifetime of the 

drug and its active metabolites whereas the breakdown of the drug to inactive metabolites 

could be delayed. This effect reduced the required daily dose and helped to overcome 

undesired side-effects on patients. Another example for the improvement of a toxicological 

profile by deuteration is AVP-786, a deutero-analogue of dextromethorphan which is 

currently under clinical trials (figure 2). In certain cases, dextromethorphan had to be applied 

with the cardiotoxic additive quinidine because dextromethorphan alone is known to be 

metabolized to rapidly. The development of the deuterated analogue AVP-786 allowed to 

decrease the amount of required harmful quinidine to a half.
7
 Most probably the deuteration of 

methyl groups like in deutetrabenazine or AVP-786 aims at slowing down the CYP-450 

metabolism. The incorporation of deuterium was also performed on a N-heterocyclic moiety 

of the third example to give VX-984, another drug that reached clinical trials. This 

modification could be potentially useful to slow down the metabolism by the enzyme 

aldehyde oxidase.
8
 

 

 

Figure 2. Deuterated tetrabenazine (left, FDA approved), deuterated dextromethorphan 

(middle, in clinical trials) and VX-984 (right, in clinical trials). 
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1.1.2 Stable isotopically labelled internal standards (SILSs) 

 

The application of deuterium labelled molecules described herein is based on the fact that the 

replacement of a hydrogen for a deuterium atom endows an organic molecule with a mass 

label and generates a shift within its mass spectrum but does not significantly change the 

chemical properties of the molecule. In this manner, the unlabelled compound and the 

deuterium labelled compound have the same retention times in liquid- and gas 

chromatography, but they can be still distinguished through mass-spectrometry (MS) (figure 

3).  

 

 

Figure 3. Mass shift achieved when four hydrogen atoms are replaced by four deuterium 

atoms in a hypothetical organic molecule. 

Thus, the deuteration of a molecule of interest can generate an internal standard that paves the 

way to many analytical tools through liquid chromatography (LC) and gas chromatography 

(GC) coupled to mass spectrometry (LC-MS/MS, GC-MS/MS). In order to avoid an overlap 

of the MS pattern of the natural isotopomer and isotopologue distribution of the unlabelled 

analyte with the MS pattern of the internal MS-standard, in the ideal case, the deuterated 

internal standard is supposed to accommodate at least three deuterium atoms and to contain 

less than 0.5% of unlabelled starting material.
9
 Isotopologues are mass variants of the same 

molecule displaying different amounts of isotopes in their chemical structures (figure 4, top). 

Chemical structures of an isotopologue with different isotope substitution patterns and the 

same molar masses, are called isotopomers (figure 4, bottom). 
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Figure 4. Different isotopologues and isotopomers of 2,5-diphenyloxazole as an example. 

A deutero-analogue that is used in this kind of application is referred to as a stable 

isotopically labelled internal standard (SILS), because deuterium is a stable isotope. The 

incorporation of other stable isotopes like 
13

C, 
15

N and 
18

O into organic molecules very often 

proceeds through synthetic pathways and usually not over isotope exchange reactions as for 

hydrogen isotopes (see chapter I.3). Owing to the availability of more convenient methods for 

the incorporation of several deuterium atoms per molecule which brings about higher time- 

and cost efficiency, deuterium can be largely preferred over 
13

C, 
15

N and 
18

O in some of the 

following applications. 

 

1.1.3 SILSs for metabolism studies of drugs 

 

The first applications of deuterium in metabolism studies are even longer ago than the 

invention of nuclear magnetic resonance (NMR).
10

 Deuterated analogues of drug development 

candidates are predominantly used by pharmaceutical companies for monitoring the fate of 

the drug compound issued and its metabolism inside an organism. In the early stages of 

clinical studies in drug development processes, it is crucial to gain knowledge about the 

structures, pharmacokinetics and toxicological profiles of every drug metabolite. To this end, 

usually 1:1 mixtures are prepared from the unlabelled analyte and the deuterated analogue. 
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After being applied to the body and isolated from a biological liquid (blood plasma, urine etc.) 

every downstream metabolite stemming from the metabolized drug would show again the 

characteristic 1:1 pattern in MS-analysis. In this manner, every drug metabolite can be 

isolated through HPLC and identified, e.g. through additional isotopic labelling (
13

C labelling 

for subsequent 
13

C-NMR analysis).3 

 

1.1.4 SILSs in metabolomics 

 

The term metabolomics defines the study and analysis of the metabolic phenotype of a 

biological system. The metabolic phenotype refers to the entirety of all metabolites and their 

quantities in a biological system or sample.
11

 Metabolomic studies are subdivided into three 

main branches. Firstly, the identification and characterization of all metabolites of an 

organism. Secondly, their quantification and thirdly, the investigation of their pathways inside 

the organism, in other words, the metabolite flux analysis. The so called untargeted or 

nonbiased approach in metabolomics is used to determine and to characterize the ensemble of 

all present metabolites in the sample. The difference between metabolism studies (I.1.1.3) and 

untargeted metabolomics is that the latter require the pool of all metabolites which are 

isotopically labelled, not just the compound of interest. Thus, the internal standard in 

untargeted metabolomics represents usually a mixture of hundreds of different deuterated 

metabolites to exclude background ions like sample contaminations which are visible in MS-

spectra but do not result from metabolic processes. Such mixtures can be prepared e.g. by 

supplying [
13

C6]-glucose to an organism as a feedstock of 
13

C atoms. However, the 

determination of the full metabolic phenotype also requires thorough quantifications of every 

metabolite. This kind of analysis can be disturbed by several factors. On the one hand, highly 

abundant metabolites could saturate the detector of the mass spectrometer, making the 

measurement of high metabolite amounts impossible. On the other hand, metabolite 

concentrations could deviate due to matrix effects of biological probes. Matrix effects occur 

in mixtures of complex composition and they can affect the stability, binding behavior and 

other properties of a certain compound which is present in the given mixture. To overcome 

those effects and to solve these problems, internal standardization through isotopically 

labelled analogues is effectuated to generate calibration curves for the detector response. For 

this analytical step, a SILS of the metabolite of interest is needed to be isolated and pure. 

Hence, it is indispensable to have many alternative methods available for the preparation of 
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stable isotopically labelled metabolites, also because of the high number of possible 

metabolites and their structural diversity. The metabolite flux analysis is rather achieved 

through 
13

C-labelling. Deuterium plays a minor role in this context, because it is known to 

have a potential impact on metabolic pathways, as described for “Heavy Drugs” in section 

I.1.1.1.  Published works using deuterated molecules for this purpose are still known. 

Metabolic fluxes in potato tubers, for example, could be elucidated by incubating tuber slices 

with deuterated phenylalanine and subsequent LC-MS analysis.
12

 

Apart from drug development, metabolism studies and the investigation of other cellular 

processes, deuterium is applied in many other disciplines, which cannot be described in detail 

here. Deuterated analogues are also used in material science
13

, for the elucidation of 

mechanistic pathways in chemical synthesis
14

 and different imaging techniques like deuterium 

metabolic imaging (DMI) by means of magnetic resonance spectroscopic imaging (MRSI).
15

 

The stability of 
11

C-labelled radiotracers for positron emission tomography (PET) towards 

metabolism could be also increased by deuteration.
16

 

 

1.2 Tritium and its applications 

 

The radioactive isotope tritium is produced in nuclear reactors through neutron irradiation of 

compounds containing high percentages of lithium-6, e.g. lithium fluoride or lithium alloys as 

Li–Al and Li–Mg. One part is formed as 
3
H2 (T2) gas and the other part is retained in the solid 

state which can be recovered chemically. Since tritium is a β-emitter, the maximum 

penetration depth of the radiation in air is 6mm and in glass or concrete 2µm.
17

 For this 

reason, tritium containing material can be handled in usual glass ware without further risks of 

irradiation, if all safety rules are respected. The incorporation of tritium into organic 

molecules is performed in order to obtain tracer molecules and radioligands used in diverse 

life-science applications. As it could be seen in the precedent sections, light can be already 

shed on many aspects related to metabolism with deuterium labelled compounds in hand, but 

the detection of a radioactive compound unambiguously confirms with higher precision that it 

must be a metabolite of the tritium labelled compound which was applied initially. 

Radioactive detection also ensures that no relevant compound is missed during analysis of a 

mixture. Hence, drug metabolism studies are rather carried out through radioactive isotope 

labelling of the drug candidate. Indeed, when candidates of interest are evaluated within drug 

development processes, tritiated analogues thereof are constantly demanded for absorption, 
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distribution, metabolism and excretion (ADME) studies. The general preference of 
3
H over 

14
C can be explained in the lower costs and more rapid procedures for the preparation of 

tritium labelled compounds. However, the common risk of tritium and deuterium labels is that 

they can be lost more easily then 
13

C- or 
14

C labels when attached to a position being sensitive 

to metabolic degradation. In vitro, tritium labelled drug development candidates or reference 

compounds, i.e. well-characterized benchmark compounds, are mainly used for radio ligand 

binding assays. Although there is a big variety of strategies using different tags, the general 

objective is the determination of the affinity of a compound to a biological target, which is 

very often a protein. In a typical example of an in vitro competitive binding assay, a tritium 

labelled reference ligand [
3
H]-astemizole, the membrane suspension of a cell that was 

transfected before with the membrane protein of interest (figure 5, vial 1) and the analyte, a 

small-molecule drug as potential inhibitor of the membrane protein, were incubated together 

(figure 5, vial 2). After filtration and washing of the mixture, the value of the scintillation 

counter reflected the amount of bound radioligand relative to the amount of bound analyte 

(figure 5, vial 3).
18

 

 

Figure 5. General principle of a competitive radioligand binding assay 

Tritium labelled compounds also allow to monitor a compounds distribution and clearance 

from a body and single organs, which are additional features and probably the main objectives 

of ADME studies. One example is quantitative whole body audioradiography (QWBA) that 

visualizes the accumulation behavior of a tritiated drug candidate in the body of small 

animals. This allows to calculate and to estimate the maximum dose of the radioactively 
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labelled drug candidate that can be applied to a human test candidate in ongoing clinical 

ADME studies. 

 

1.3 Analysis of molecules labelled by hydrogen isotopes 

 

This section is going to explain how to determine whether the structure of an organic 

molecule contains a certain isotope (
2
H or 

3
H). Further, the question is addressed how to 

figure out at which position of its structure the isotope is situated. The quantification of the 

isotope labelling, in other words, the determination of the isotopic enrichment, will be also 

addressed in relation with the presented analytical methods. The isotopic enrichment is the 

percentage of molecules present in a given mixture of isotopologues and isotopomers which 

incorporates the isotope of interest at a certain position of the chemical structure. As chemical 

differences between hydrogenated and deuterated or tritiated small molecules are usually not 

measurable under clinical conditions, a chromatographic separation and isolation of every 

isotopologue and isotopomer of the same molecule is not possible. For this reason, isotope 

chemistry requires analytical methods being able to unambiguously indicate the presence of 

an atom and to quantify its abundance with high accuracy. 

 

1.3.1 Mass spectrometry 

 

Mass spectrometric analysis is the most reliant method to confirm the presence of compounds 

in complex mixtures and to determine their isotopic composition as already mentioned at the 

beginning of section I.1.1.2 with figure 3. The principle of mass spectrometry is to ionize the 

molecules in the probe and to bring their ions into the gas phase, either by electrospray 

ionization (ESI) or matrix assisted laser desorption ionization (MALDI). For the ESI process 

the analyte solution is conducted through a metallic capillary and at its tip, an electrical field 

is applied that leads to an ionization of the molecules, either to positively charged species by a 

cation uptake (H
+
, Na

+ 
etc.) or to negatively charged species by proton releases. The ions 

migrate then to the counter electrode at the opposite of the capillary outlet. In MALDI, the 

analyte is embedded into an organic matrix together with inorganic salts. Molecules are 

excited and released for example by a nitrogen laser. Collisions in the gas phase lead to the 

formation of ions. Ions in the gas phase can be then accelerated by the application of an 

electrical field.
19

 The ion separation and analysis by their mass to charge ratio (m/z) can 
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proceed on different ways. Quadrupole mass spectrometers conduct the ion beam through an 

oscillating voltage that is applied between four parallel metallic rods. Just ions with a defined 

m/z can pass the quadrupole at a given voltage. Thus, by tuning the quadrupole voltage, the 

whole m/z range of the analyte can be monitored. The time of flight (TOF) mass spectrometer 

gives the same initial energy to all ions by accelerating them over a short distance. Then, the 

time they need to cross a defined way is measured by a detector at the end. The higher the 

mass of the ion, the longer it needs to fly to the detector. Given that isotope incorporations 

always result in mass changes, mass spectrometry is used as the most current method in 

isotope chemistry because it is able to measure even the tiniest mass shifts. Consequently, 

isotopologue mixtures can be thoroughly analyzed, since isotopologues also manifest 

separation on MS spectra. On this path, the measurement of relative isotopic abundances 

(RIS) becomes possible, for example of naturally occurring isotopologues or after isotope 

labelling experiments. In a hydrogen isotope labelling experiment, the type and the quantity of 

hydrogen isotopes incorporated on the same molecule (+ ~1g/mol for the replacement of one 

hydrogen for one deuterium or + ~2g/mol for the replacement of one hydrogen for one 

tritium) can be determined by computer-assisted methods from the recorded MS-spectrum, 

given that the different intensities or integrals of the mass peaks reflect the ratio of 

isotopologues in a mixture. To this end, the isotopologue mass peaks are integrated before and 

after the deuterium incorporation and the contribution of the natural isotope abundance is 

subtracted from the integrals of the labelled molecule. An example is given in figure 6 by 

ESI-MS. In order to determine the amount of D1-isotopologue after the deuteration of a 

theoretical molecule (figure 6b, red spectrum), the integration value of the peak that appears 

in spectrum a at the same mass shift (161.2) needs to be subtracted from the integration value 

of the D1-isotopologue in spectrum b. The same procedure is repeated for every isotopologue 

peak of the labelled material. The D0 peak in spectrum b gives the amount of unlabelled 

starting material left after the deuteration experiment. The total isotope incorporation on the 

whole molecule is obtained by the sum of all deuterated isotopologue amounts relative to the 

amount of unlabelled starting material left. 
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Figure 6. (a) Natural isotope pattern of a starting material (b) ESI-mass spectrum of the same 

molecule after deuterium incorporation 

High-resolution mass spectrometry even allows differentiating other types of stable isotopes 

(
2
H, 

13
C, 

15
N, 

18
O). If a molecule contains different types of stable isotopes, higher mass 

isotopologues can be split into several interfering mass peaks. The slight shifts between 

different isotopes can be interpreted by the different gaps in mass, e.g. between protium and 

deuterium (M(
2
H) - M(

1
H) = 1.0063g/mol) and 

12
C and 

13
C (M(

13
C) - M(

12
C) = 1.0031g/mol). 

Thus, the peak of an isotopologue possessing just one deuterium would be shifted by 

0.0032g/mol compared to the peak of an isotopologue possessing just one 
13

C. These isotopic 

distances are related to the different sums of protons and neutrons in chemical elements. The 

high-resolution potential of this technique resolves interferences between mass peaks, it 

indicates whether a mass shift results from the one or the other isotope and permits computer-

assisted quantifications, which is also relevant for environmental geochemistry, earth- and 

planetary sciences.
20

 

 

1.3.2 NMR spectroscopy 

 

NMR spectroscopy provides information about the nuclei present in an organic molecule, 

their ratios in the molecular framework and their electronic situations. An NMR spectrometer 

consists of a magnet that can generate a strong and homogeneous magnetic field and a source 

of electromagnetic radiation from the radiofrequency range. When an analyte is placed into 

the magnetic field, atomic nuclei with a nuclear spin I =   , as hydrogen for example, form two 

different energetic levels mI =   
  and   

   with the transition ΔE = γħB0 between both (γ is 

  D1 

161.2 

   | 
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the gyromagnetic ratio, ħ =     with h as the Planck constant, B0 is the strength of the magnetic 

field, figure 7). At this stage, the nuclei are able to absorb electromagnetic radiation to 

undergo excitation from one level to the other if the condition hνL = γħB0 is fulfilled. The 

frequency νL that is needed to excite the nucleus is called Larmor-frequency.
21

 

 

 

Figure 7. Split of the energetic levels of a nucleus with the spin I =    in a magnetic field 

Further, the applied magnetic field interacts with the electrons of every atom and induces an 

additional little magnetic field that contributes to the local magnetic field at the nucleus. As a 

result, the local magnetic field at the nucleus of every atom is never equal to the applied 

magnetic field. Thus, if B0 is replaced for Blocal, the condition for resonance turns into hνL = 

γħBlocal and the Larmor-frequency depends now on the strength of the local magnetic field 

which is different for every nucleus of the molecule, regulated by the electronic situation. For 

this reason, same atoms that are situated at different positions of a molecule usually have 

different Larmor-frequencies. When a measured resonance is converted to the NMR spectrum 

by a “Fourier transformation”, the chemical shift of every nucleus can be then related to its 

electronic situation. The less a nucleus is shielded by its electrons, the more downfield the 

NMR signal appears in the spectrum. However, exact attribution of NMR signals to 

corresponding nuclei usually succeeds through coupling effects. Coupling, the spreading of 

signals into multiplets, occurs because magnetic moments of neighboring nuclei interact. The 

formula to calculate the multiplicity is 2nI+1, where I is the spin and n the number of 

equivalent nuclei the considered nucleus is coupling with. 
1
H-NMR spectroscopy is used in 

hydrogen isotope labelling in order to reveal the exact positions of the incorporated isotope in 
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the structure of a molecule, as demonstrated on 1-phenyl-1H-1,2,4-triazole in figure 8. By 

comparing the spectra of the non-labelled protio-analogue (figure 8, top) with the deuterium 

labelled molecule (figure 8, bottom), we will see that integration values diminish for the 

signals where hydrogen is exchanged for deuterium (figure 8 bottom, positions 1, 2 and 3), 

because deuterium does not resonate at the frequency of 
1
H-NMR. Precise isotopic 

enrichment values of a certain position can be then derived from the integration values (figure 

8, square brackets). Certain positions can be also assigned by considering the change in 

multiplicity when hydrogen is exchanged for deuterium on neighboring positions. Since the 

two 3-positions are deuterated to 80%, the multiplicity of the 4-positions changes from a 

doublet of a doublet (dd) to a doublet (d) as it can be seen in figure 8 when both 
1
H-NMR 

spectra are compared against each other. 

 

 

 

Figure 8. 
1
H-NMR spectra of 1-phenyl-1H-1,2,4-triazole (top) and deuterated 1-phenyl-1H-

1,2,4-triazole (bottom) with signal assignment, chemical shifts are given in ppm 

Proton decoupled 
13

C-NMR (
13

C{
1
H}-NMR) also helps to confirm the deuteration of a 

position because the multiplicity of a carbon signal where deuteration takes place changes 
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from a singlet into a triplet, due to the spin of deuterium (ID = 1). 
2
H- and 

3
H-NMR analysis 

stay the most indispensable tools to thoroughly determine the positions of hydrogen isotopes 

in a molecule. However, the deuteron has a 6.15 times lower gyromagnetic ratio than the 

proton which diminishes the resolution in 
2
H-NMR. For this reason, it is rather common to 

use high-field NMR instruments and 
2
H selective cryogenic probes to obtain qualitative 

2
H-

NMR spectra. Additionally, several other technical advances turned 
2
H-NMR into a very 

sensitive analytical method that is even able to detect the natural abundance of deuterium. The 

high sensitivity makes it a very convenient method for hydrogen isotope labelling 

experiments because every deuterated position in an organic molecule can be thoroughly 

determined. Further, 
2
H-NMR is an excellent purity control as it shows the presence of small 

amounts of deuterated side-products which is not an easy task for other methods.
22

 The triton 

is related to as the most sensitive nucleus for NMR-analysis due to its high gyromagnetic 

ratio. Additionally, the extremely low natural abundance of tritium leads to an efficient 

suppression of background signals which facilitates the analysis of 
3
H-NMR spectra.

23
 In 

order to diminish the fine structure of 
2
H- and 

3
H-NMR spectra, it is important to decouple the 

protons of the molecule from the 
2
H- and 

3
H-nuclei and to generate proton-decoupled 

deuterium- (
2
H-{

1
H}) NMR or proton-decoupled tritium (

3
H-{

1
H}) NMR spectra. In the 

following a comparative overview of the properties of the hydrogen isotope nuclei is 

illustrated (table 1). 

 

 
1
H  

2
H  

3
H 

 

Usual notation H D T 

Radioactivity No No Yes (β
-
-emitter) 

Half-life  

(Days) 

NA NA 4540  

Natural abundance 

(%) 

99.985 0.015 10
-18

 

Spin quantum number 

(no unit) 

1/2 1 1/2 

Gyromagnetic ratio γ 

(MHz.T
-1

) 

42.576 6.536 45.403 

Quadrupolar moment  

(10
-24 

cm
2
) 

0 +2.87 10
-3

 0 

Larmor frequency at 14.09 T  

(MHz) 

600.00 92.10 639.98 
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Relative sensibility
(a) 

  

(no unit) 

1.00 9.65 10
-3

 1.21 

Absolute sensibility
(b)  

(no unit) 

1.00 1.45 10
-6

 - 

Typical Chemical shift range  

(ppm) 

0 to 20 0 to 20 0 to 20 

Typical T1 range 

(s) 

0.1 to 20 0.1 to 10 0.1 to 10 

Typical T2 range 

(s) 

0.1 to 20 0.1 to 10 0.1  to 10 

Typical J(H,X) scalar coupling range 

(Hz) 

0 to 20 0 to 3 
(c) 

  0 to 22 
(d) 

  

NOE effect by 
1
H decoupling Yes Negligible Yes 

 

(a) Value at constant magnetic field or equal number of nuclei 

(b) Product of the relative sensitivity and natural abundance 

(c) J(D,H) = J(H,H) × (D /H) 

(d) J(T,H) = J(H,H) × (T /H) 
 

Table 1. Comparison of the hydrogen, deuterium and tritium nucleus
23

 

Moreover, due to the radioactive decay of tritium, molecules which contain tritium atoms in 

their structure are analyzed by scintillation counting. The measured parameter gives the 

specific activity [Ci/mg] or the molar activity [Ci/mmol] that indicates the amount of tritium 

atoms present in the structure of a purified molecule. 

 

2. N-Based heterocycles: promising bioactive targets for 

the introduction of deuterium and tritium 

 

The following chapter demonstrates a manifold of important targets for the incorporation of 

hydrogen isotopes. As we will see, aromatic heterocycles containing nitrogen atoms in their 

structures (N-heterocycles) appear to be highly relevant compounds or structural patterns in 

many fields of our life as pharma- and food industry. Heterocyclic scaffolds are involved as 

building blocks in the majority of commercial drugs, with nitrogen containing heterocycles 

being the most popular among them.
24

 59% of FDA approved drugs contain at least one 

nitrogen-based heterocycle.
25

 For every compound of biological or technological relevance, it 

is favorable to have available methods that allow labelling by deuterium and tritium. For this 
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purpose, the most relevant N-heterocyclic scaffolds for this work will be classified and the 

nomenclature of their rings will be explained. Further, light will be shed on their chemical 

properties and on the advantages or drawbacks to incorporate hydrogen isotopes on certain N-

heterocyclic sites. Finally, this chapter will analyze in more detail the presence of N-

heterocyclic scaffolds in Active Pharmaceutical Ingredients (APIs) and the motivation of drug 

discovery and development to introduce N-heterocyclic cores into these agents. 

 

2.1 Nomenclature and numbering of heterocyclic rings 

 

The most relevant scaffolds for the follow-up of this work are introduced in this section. The 

focus lies on nitrogen-containing five-membered aromatic heterocycles and on structural 

analogues thereof with attached benzene rings, which are going to be called “benzo-

derivatives”. Benzimidazole, for example, is a benzo-derivative of imidazole and indole a 

benzo-derivative of pyrrole (figure 9). The numbering starts at the heteroatom that has the 

highest atomic number in the periodic table, e.g. in oxazole at the oxygen. In imidazole, the 

N–H has a higher priority than the nitrogen atom without hydrogen. An exception is carbazole 

which is not considered to be a classical N-heterocycle and numbering is started at the 

attached benzene ring next to the N–H moiety. The numbering continues towards the next 

heteroatom that is localized closest to the first one. For this reason, the C2-atom lies between 

the oxygen and the nitrogen atom in oxazoles and benzoxazoles. Angular atoms are usually 

referred to with the number of the precedent position and an “a” or “b” is added (figure 9). 

Just angular carbon atoms of nucleobases get own numbers, but this is due to historical 

reasons.
26
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Figure 9. Nitrogen containing heterocyclic scaffolds (N-heterocycles) and the numbering of 

their positions 

Sometimes the labels “α”, “β” or “γ” are used to indicate a position on a heterocycle relative 

to a heteroatom. In this context, “α”, “β” or “γ” would refer to the distance of the considered 

position from the heteroatom. If we follow this system, the C2 atom of benzimidazole is the 

neighboring atom of the two nitrogens, thus, it would be the α position. The C4 and C7 atoms 

would be the β positions relative to the two nitrogen atoms. Positions situated on the third 

carbon with respect to a heteroatom are referred to as γ positions. The ortho positions of the 

phenyl ring on 2-phenyl-benzimidazole, for example, are γ positions (figure 10). 

 

 

Figure 10. α-, β- and γ positions on benzimidazole and 2-phenyl-benzimidazole as example 

Triazoles are named by the arrangement of their nitrogen atoms in the 5-membered 

heterocycle. This can be a 1,2,3- or a 1,2,4-constellation. In addition, the nomenclature has to 
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contain the position of the nitrogen atom that carries the proton because tautomerization takes 

place on both isomers (1,2,3- and 1,2,4-triazole) that leads to tautomers which are chemically 

different (figure 11).
27

 

 

Figure 11. Tautomerism of 1,2,3- and 1,2,4-triazole 

Analogous to triazoles, the hydrogen of the N-H moiety in imidazole is also exchangeable and 

migrates in solution by tautomerism from one to the other nitrogen atom. However, this 

proton migration yields two equivalent tautomers, thus, the protons on the C4 and C5 positions 

of imidazole also become chemically equivalent and give one signal in 
1
H-NMR. The same 

goes for benzimidazole (one signal for C4–H and C7–H, another signal for C5–H and C6–H). 

 

2.2 Basicity/acidity of N-Heterocycles 

 

Every position in a N-heterocycle’s structure displays a certain acidity, say, a tendency to be 

deprotonated or to exchange the proton in the presence of a proton acceptor. Acidity depends 

on several factors, but if we first just have a look at unsubstituted or simply substituted N-

heterocycles, it is mostly the electronic situation of the considered position that defines the 

pKa. Generally speaking, sites next to a heteroatom or between two heteroatoms, i.e. in the α 

position of heteroatoms, display the highest acidity from every other position in the ring, 

reasoned in the higher electronegativity and electron-withdrawing effect of the heteroatoms 

(figure 12).
28
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Figure 12. pKa values of some acidic N-heterocyclic protons measured in THF 

For the upcoming work, the provided pKa values by Fraser et al. in figure 12 are just 

benchmarks because they do not take into account further substituent effects on the 

conjugated aromatic rings. Consequently, they do not replace test experiments at higher 

temperatures by adding deuterated solvents (D2O, CD3OD), bases, acids etc. to estimate the 

acidic or basic character of a given N-heterocyclic derivative. The isotopic enrichment within 

such a test experiment, will indicate the positions on the N-heterocycle where also back-

exchange can be theoretically expected in the presence of proton acceptors, even after 

successful introduction of the isotope label, e.g. by one of the methods that are going to be 

shown in the next chapter (I.3). Consequently, targeting N-containing heterocyclic moieties 

for the chemical incorporation of hydrogen isotopes bears the risk to lose a label that has been 

introduced over cost and time demanding chemical transformations. In the case of a tritium 

back-exchange, the impediment would be even twofold. On the one hand, undoubtedly, the 

loss of the tritium label from the labelled candidate is everything else than encouraging, and 

on the other hand, the formation of a potentially volatile and radioactive solvent represents an 

additional safety issue. Apart from that, it can be in so far reasonable to label N-heterocycles 

by hydrogen isotopes as we consider that the majority of N-heterocyclic sites exhibits 

practically no acidity, many of them are even known to be relatively stable towards 

metabolism. Last but not least, it is mainly due to the vast presence and application of N-

heterocycles in pharmaceutical-, agrochemical- and material sciences that methodological 

research for the incorporation of hydrogen isotopes is needed for this group of compounds. 

 

2.3 Implementation as therapeutics, in agricultural chemistry & material sciences 

 

Among all other fields of application, N-heterocyclic scaffolds are mostly represented in 

bioactive molecules. The latter comprise natural products like nucleobases, amino acids, 
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hormones, cofactors, poisons etc. but also synthetic substances like drugs and agrochemicals. 

Since the structures of numerous natural bioactive molecules are built up of N-heterocycles, 

drug discovery often aims at mimicking a natural structure by preserving the same 

heterocyclic core and endowing it with a different substitution pattern to achieve or to 

enhance the desired effects. A medicinal chemist could call such a bioactive natural product 

the “lead structure”. The term “lead structure” refers to a molecule that has attracted interest 

because of its promising effects and that serves as template in the ongoing drug development 

and optimization process. Popular examples for this strategy of drug design are nucleoside 

analogues, mostly used as anti-tumor agents (cytostatics).
29

 An example, for copying the 

imidazole scaffold of a natural neurotransmitter into a drug´s structure that is supposed to 

have a higher affinity to the same receptor, is demonstrated in figure 13. The design of the 

drug cimetidine, an antagonist of the H2 receptor, was based on the structure of the natural 

ligand histamine.
30

 

 

 

Figure 13. Structures of histamine, the natural ligand of the H1-4 receptors (left), and the H2 

antagonist cimetidine (right) 

Another common strategy in drug discovery and development is the substitution of 

functionalities in a lead structure by heterocycles to form bioisosters, also called biomimetics, 

which is probably the broadest application of the shown N-heterocyclic scaffolds in section 

I.2.2 for drug development, because some of them such as triazoles are mostly absent in 

natural molecules. The objective of using a bioisoster is to achieve either a stronger 

interaction between the drug and the desired target in the body or more convenient 

pharmacological drug properties.5 In most cases the introduction of an aromatic N-

heterocyclic scaffold in the structure of a drug development candidate is considered to 

establish hydrogen bonds, more efficient metal ion complexation or π-interactions in the 

binding pocket of an enzyme. This can be achieved by presenting conformationally restricted 

proton donors or -acceptors, aromatics for π-interactions or chelating groups for metal 

complexation. Indeed, each of these properties is accommodated by one or several N-

heterocyclic scaffolds. Figure 14 shows an example for the replacement of a cis-olefin by an 
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oxazole during a development process of inhibitors of ADP- and collagen induced blood 

platelet aggregation.5 Indeed, it was crucial for the drug´s efficiency to introduce a central 

oxazole. This modification furnished BMY-45778, the compound in middle with a much 

lower EC50 value, compared to the olefin on the left (figure 14). EC50 is a pharmacological 

parameter that indicates a ligand concentration at which 50% of the expected effect is 

observed. Based on several data, the oxazole unit of BMY-45778 in the red box is most 

probably involved in a decisive hydrogen bonding with the PGI2 receptor. Further, this 

hypothesis is reinforced by the EC50 of the isomeric compound on the right (figure 14). The 

drug candidate loses its efficiency almost completely as soon as the nitrogen atom of the 

central oxazole, being the stronger hydrogen bond acceptor inside the 5-membered 

heterocycle, is exposed to the opposite side (see the trend of EC50 values, figure 14). 

 

Figure 14. EC50 dependence on the C – C double bond - oxazole substitution on PGI2 

receptor ligands. 

In the following, the interest in N-heterocycles, which are relevant for this work, is going to 

be explained and exemplified by illustrating popular bioactive compounds that accommodate 

the respective N-heterocyclic unit in their structure. As already alluded with figure 14, the 

oxazole unit is utilized as a versatile hydrogen bond acceptor in drug development, because it 

has two different heteroatoms for doing so. Further, the C2-H position of oxazole is able to 

establish weak interactions by acting as H-bond donor.5 Since many oxazole-based drugs are 

well-established on the market,
31

 oxazole is considered to be a perspective scaffold for the 

discovery of new drugs. The work with oxazoles is an emerging field given the wide range of 

newly synthesized aryl derivatives which manifested promising potency as anti-tuberculosis 

and patented anti-cancer agents.
32

 Consequently, an upcoming request for the synthesis of 

isotopically labelled analogues for ADME studies can be expected.
33

 Moreover, the oxazole 
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core is accommodated in the structures of natural alkaloids, e.g. pimprinine, pimprinoles A-C 

and many others
34

. Pimprinine in particular has gained attention with regard to its important 

anticonvulsant
35

 and antiviral activity (left, figure 15).
36

 

 

Figure 15. Examples of an oxazole-based natural product (left) a commercial drug (middle) 

and a patented drug development candidate (right). 

The Imidazole scaffold can play the role of a hydrogen bond donor and a hydrogen bond 

acceptor at the same time within drug design. Apart from cimetidine in figure 13, imidazole is 

a widespread nucleus in the structures of many other commercial drugs as it can be seen in 

figure 16, e.g. in drugs for the treatment of osteoporosis (zoledronic acid)
37

, spinocerebellar 

degeneration (taltirelin);
38

 but also in sedative-analgesic agents (midazolam, 

dexmedetomidine)
39

 and antifungal drugs (bifonazole).
40

 A few molecules of the latter do not 

even display complex functionalization, like bifonazole or the α2 agonist dexmedetomidine 

(figure 16). 

 

Figure 16. Marketed imidazole-based bioactive molecules 

1,2,4-triazoles are also prominent structural motives in many fields of life as medicine and 

agrochemistry. Some reviews present a synopsis of their recurrence in several antifungal 

drugs, fungicides, pesticides and sedative agents.
41

 Additionally, the 1,2,4-triazole group can 

be also found in anti-tumor-
42

 and anti-migraine agents (figure 17).
43

 Due to the frequent 

occurrence of the 1,2,4-triazole scaffold in all those types of molecules, there is an obvious 
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and high interest in the preparation of hydrogen isotope labelled analogues of 1,2,4-triazole 

containing bioactive molecules. 

 

 

Figure 17. 1H-1,2,4-triazole-based antifungal drug (first from left), -fungicide (second from 

left), -anti-tumor- (third compound) and anti-migraine agent (fourth compound) 

The popularity of N-heterocyclic benzoderivatives especially refers to their implementation as 

bioisosteres in drug design, reasoned in their low basicity and capability to form hydrogen 

bonds at the same time. This is manifested in the high ranking of benzimidazole derivatives in 

the top 25 of the most frequent nitrogen heterocyclic drugs approved by the FDA. The 

benzimidazole motif contributes to the affinity of drugs to their target by acting as a 

bioisostere for phenols, catechols, amidines and guanidines.5 Benzoxazoles can serve as 

conformationally restricted biomimetics for N-aryl amides. The H1-antihistamine astemizole 

is representative for benzimidazole-based drugs (figure 18). Although it was withdrawn from 

the market in 1997,
44

 astemizole and tritium labelled astemizole stayed important benchmark 

compounds for ADME studies, as shown in chapter I.1.2. Two benzoxazole-based drug 

examples are tafamidis, used for the treatment of transthyretin amyloidosis, and 

benoxaprofen, an anti-inflammatory drug which was also withdrawn from the market due to 

its hepatotoxicity (figure 18). Deuterated benoxaprofen in particular could be even applied by 

a pharmaceutical company as an internal standard for metabolism studies in man.
45

 

https://en.wikipedia.org/wiki/Transthyretin
https://en.wikipedia.org/wiki/Amyloidosis
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Figure 18. Molecular structures of astemizole, tafamidis and benoxaprofen 

The placement of a sulfur atom inside a heterocycle, like in the case of benzothiazole, thiazole 

and thiophene, gives one additional opportunity for inducing conformational constraints in the 

design of drug structures. Electron-rich atoms such as carbonyl oxygen- or heterocyclic 

nitrogen atoms are able to interact with heterocyclic sulfur atoms through n0 → σ* donations. 

The underlying explanation for this attraction between two heteroatoms is the electronic 

situation of sulfur atoms which are embedded in aromatic systems. Given that sulfur and 

carbon have the same electronegativity, heterocyclic sulfur atoms receive a partial positive 

charge due to the -M effect of neighboring sp
2
 carbon atoms (figure 19, bottom). This effect 

paves the way to control the three-dimensional conformation of a drug e.g. by biasing 

coplanar conformation of two aromatic heterocyclic moieties. This principle was 

demonstrated within the optimization of p38α MAP kinase inhibitors (figure 19). X-ray 

cocrystal analysis of both isomers shown in figure 19 with the enzyme confirmed the sulfur-

nitrogen interaction and the coplanarity of the thiazole- and diazine groups. In this context, 

the isomer on the left revealed to be the more efficient ligand because its conformation was 

more adapted to the enzymatic binding pocket, which is manifested in the lower IC50 value 

(compare IC50 values in figure 19). IC50 is the half maximum inhibitory concentration that 

defines the concentration of ligand needed to inhibit 50% of the targets present in a system. 
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Figure 19. The effect of thiazole on the conformation of drugs. 

The carbazole scaffold is encountered in many natural products owning interesting 

pharmaceutical properties. One example that attracted the attention of many researchers was 

staurosporine (figure 20, left).
46

 From a therapeutic point of view, the carbazole-containing 

drug carvedilol is used as a nonselective beta and alpha-1 blocker for treating congestive heart 

failure, left ventricular dysfunction and high blood pressure (figure 20, middle). Carprofen is 

an anti-inflammatory drug for animals (figure 20, right). Carbazoles are also frequently used 

in material science as fluorescent molecules, where deuterium incorporation may be 

interesting in order to enhance their fluorescence properties.
47

 

 

Figure 20. Carbazole-based natural product (left) and two commercial carbazole drugs 

(middle and right) 
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Deuterated analogues of carbazole based drugs like deuterated carvedilol are recurrent in 

literature because they are required for a manifold of different studies connected to the 

metabolism of this kind of compounds.
48

  

 

3. Existing methods for the incorporation of hydrogen 

isotopes into organic substrates 

 

The precedent chapters of this work have shown that the incorporation of hydrogen isotopes 

into organic molecules is of multifaceted interest. Further, it was demonstrated that N-

heterocycles are relevant and perspective targets to be labelled by deuterium and tritium. The 

upcoming chapter is going to show and discuss methods for the preparation of molecules 

whose hydrogen atoms are replaced by hydrogen isotopes. A synopsis of general methods for 

the introduction of hydrogen isotopes through chemical transformations will be given. 

However, a particular focus will lie on methods adapted for the deuterium and tritium 

labelling of N-heterocycles. In this context, it will be also outlined that existing methods for 

the hydrogen isotope labelling of N-heterocycles shown in chapter I.2 are scarce and 

suboptimal in certain aspects. 

 

3.1 The synthetic approach 

 

Synthetic approaches refer to methods that need more than one reaction step to generate the 

deutero- or tritio-analogue of the molecule of interest. Owing to the availability of modern 

catalytic exchange methods, nowadays (see chapter I.3.2), synthetic approaches are rather 

considered to be conventional approaches. Acid-base reactions are the most logical way to 

exchange hydrogen for deuterium on many heterocycles, based on the pKa values of N-

heterocycles provided in chapter I.2.2. However, an efficient deprotonation of the C2–H 

position of oxazoles for example, can be just achieved by strong bases like organolithium 

reagents
49

 or sodium methoxide (NaOMe).
50

 The deuteration then occurs through quenching 

with deuteroxide (D2O) or D4-acetic acid for the deprotonation with organolithium reagents 

(equation (1), figure 21) or in an equilibrium with deutero-methanol (MeOD) as solvent in the 

case of NaOMe (equation (2), figure 21). 
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Figure 21. Deuteration of oxazole derivatives through acid-base reactions with deuterated 

solvents 

As discussed in chapter I.2.2, the risk of labelling such positions is to lose the hydrogen 

isotope gradually through back-exchange in the presence of moisture and other protic 

solvents. Another strategy would be to label a certain position through an acid-base reaction 

in the course of a multi-step synthesis and to stabilize it by removing the acidic character of 

the position carrying the isotope label in further reaction steps. An example is illustrated in 

figure 22 that shows the multi-step syntheses of deuterated fluconazole. Deuterium is 

incorporated in step (2) through an enol-carbonyl equilibrium. In step (3), the carbonyl is 

transformed into an epoxide by a Corey-Chaykovsky reaction and stable deuterium labelled 

fluconazole is obtained after one more nucleophilic substitution in step (4) (figure 22).
51

 

 

 

Figure 22. Synthesis of deuterated fluconazole  



                                                                      42 

In general, up to now, in order to obtain many hydrogen isotope labelled drugs, a synthesis 

from labelled precursors is required. For the generation of a drug compound, being endowed 

with a tritium label, other strategies than the one from figure 22 are required that circumvent 

the use or the formation of tritiated water, any other tritiated volatile species and tritiated 

acids. In order to synthesize tritium labelled carvedilol and astemizole, halogenation-

dehalogenation methods were developed in the past.
52

 For the synthesis of the two tritium 

labelled enantiomers of carvedilol, the carbazole moiety was halogenated with bromine (Br2) 

in the first step. Subsequently, the two tritium labelled carvedilol enantiomers were delivered 

after hydrogenolysis of the tribromo-carvedilol with tritium gas and palladium on carbon as 

catalyst to give a molar activity of 35.2 Ci/mmol for the R-enantiomer and 61.0 Ci/mmol for 

the S-enantiomer (figure 23). 

 

 

Figure 23. Synthesis of tritium labelled carvedilol through bromination and hydrogenolysis 

with tritium gas 

Very often synthetic approaches employ harsh reaction conditions by using reactive reagents 

which might be not compatible with other functionalities in the molecule’s structure. 

Nevertheless, the biggest drawback of the approaches mentioned above is the fact, that they 

all require an appropriate precursor molecule, i.e. a small building block being already 

labelled, a halogenated derivative or a derivative that contains double or triple bonds. 

Consequently, additional synthetic steps for obtaining the precursor itself and to build up a 

complex molecule can become time consuming, extremely challenging and deleterious for the 

overall yield. Additionally, high amounts of radioactive waste are produced if a tritium label 
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is introduced in an early step during synthesis. Owing to the given enormous efforts made in 

the past, a burning request for methods that circumvent these conventional multi-step 

syntheses can be anticipated. 

 

3.2 Late-stage modifications 

 

A stronger demand for isotopically labelled compounds clearly came up with the 

technological advances made in mass spectrometry which gave new opportunities to analyze 

complex mixtures. During the last three decades, this demand has prompted an intensive 

development of more rapid methods that yield SILS and radioligands. Chemical research 

started to seek methods that deliver deuterium or tritium labelled compounds in one 

operationally simple step, comparable to an acid-base reaction where exchangeable protons 

are subjected to an equilibrium with a source of deuterons, as it could be done on a position of 

the fluconazole precursor that undergoes a ketone-enole tautomerization (I.3.1, figure 22). 

These methods are also known under the name “late-stage modifications” because they use 

the molecule of interest as a substrate to introduce an isotope label in it, at the end of every 

other synthetical step. A simple form of such a hydrogen isotope exchange (HIE) and a 

tentative for doing so are illustrated in figure 24. A few little pyridine derivatives could be 

deuterated efficiently on several positions in deuterium oxide without additional acids or 

bases in a closed vessel (figure 24, top).
53

 However, the required temperatures for the 

activations of these C-H bonds and the subsequent hydrogen/deuterium (H/D) exchange are 

remarkably high. At the bottom of figure 24, it is demonstrated that the necessity of high 

temperatures is a clear disadvantage for late-stage modifications. During an attempt to 

deuterate dextromethorphan with pyridiniumdeuterochloride, demethylation of the drug 

substrate occurred and deuterated dextrorphan was obtained in 95% yield.
54
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Figure 24. HIE on a pyridine derivative in D2O (top) and a HIE attempt on dextromethorphan 

As we could see, harsh reaction conditions can lead to the formation of undesired side 

products or to the complete loss of a valuable substrate e.g. due to demethylations, 

decarboxylations, eliminations, hydrolysis etc. Consequently, methods that require harsh 

reaction condition are not favorable or even applicable for HIE on complex molecules like 

drugs. Moreover, a significant drawback is the poor selectivity of deuterium incorporation in 

both cases (figure 24). Selective isotope incorporations are sometimes necessary which is 

going to be detailed later on.  

 

3.2.1. Heterogeneous transition metal catalyzed HIE 

 

Several reviews give excellent summaries on existing HIE methods, especially on reactions 

catalyzed by commercially available supported heterogenous transition metal catalysts (Pd/C, 

Pt/C, PtO2, Raney nickel etc.), which were originally used for hydrogenations of unsaturated 

moieties and hydrogenolyses of halogens and protecting groups.9
,55

 The reviewed HIE 

reactions, that also work with these catalysts, include hydrothermal -, microwave assisted 

reactions, pre-activations of the catalyst and so on. Many aromatics like carbazole could be 

deuterated at all positions of the aromatic rings under hydrothermal conditions in D2O with 

PtO2 as catalyst (figure 25, top).
56

 Nonetheless, the emphasis in this chapter will lie on more 

selective HIE methods that work under mild reaction conditions, since they are more 

preferred for the late-stage labelling of complex and biologically relevant molecules. 

Correspondingly, the prerequisite of mild reaction conditions also justifies the use of 

transition metal catalysis. The first aim in using a transition metal catalyst is to establish a 
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mechanistic pathway that overcomes a relatively high activation barrier more easily. In this 

way, C–H bonds can be activated for HIE where activation and exchange does not occur with 

metal-free methods under mild reaction conditions. Indeed, drastic differences in terms of 

selectivity emerge during palladium catalyzed HIE that is performed under different 

temperatures (figure 25, bottom). 5-Phenylvaleric acid was deuterated with Pd/C in D2O 

under a H2 atmosphere at 160°C on every site of the molecule. The same HIE reaction at 

ambient temperature selectively deuterated the benzylic position of the molecule. Given that 

the substrate can be potentially degraded under high temperatures as shown for 

dextromethorphan in figure 24, this result demonstrated that the possibility to lower the 

temperature for HIE is a benefit of transition metal catalysis. Despite the lower deuterium 

incorporation in total, a selectively labelled deutero-analogue could be obtained from the 

deuteration at room temperature, containing an amount of deuterium which might be still 

sufficient for certain applications. 

 

Figure 25. Deuteration of carbazole under hydrothermal conditions (top), and deuteration of 

5-phenylvaleric acid at different temperatures (bottom) 

As already alluded in the discussion after figure 24, regioselectivity in HIE can be a real 

benefit because it has positive impacts on the application of a deuteroanalogue as internal 

MS-standard. Selective H/D exchange methods are often preferred because they result in 

narrow distribution patterns of isotopologues in mass spectra (figure 26c), in contrast to 

unselective methods that tend to give isotope clusters (figure 26b). The broader the isotope 
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cluster, the higher the probability of an overlap with background ions and impurities or with 

the non-labelled analyte, which complicates quantitative analysis. 

 

Figure 26. (a) Unlabelled starting material (b) Broad isotope cluster after unselective HIE 

method (c) Narrow MS pattern of labelled internal standard generated by selective HIE 

method (exemplary MS patterns extracted from reference 9; no precise molar masses 

attributed) 

Other heterogeneous HIE catalysts consist of the earth-abundant metal nickel, such as “nickel 

Kieselguhr” or “Raney nickel”. Correspondingly, the advantage of nickel over noble metals is 

the lower price. However, the results obtained from HIE reactions carried out with Raney 

nickel were dependent on the pre-activation procedure of the catalyst which is achieved by 

washing and sonication. Different sonication times of the catalyst, for example, were reported 

to give different isotopic enrichments on the substrate.
57

 On top of that, most of the known 

nickel catalyzed HIE reactions were just carried out in D2O which would render tritiations 

under the same conditions difficult. Further, the substrates were labelled with low 

selectivity.
58

 Consequently, these methods are of low relevance for this work. Nevertheless, a 

much longer time ago, in 1971, probably the first selective HIE method was reported that 

exchanged selectively two deuterium atoms on pyridine at 42°C under a D2 atmosphere 

catalyzed by a metallic nickel film on a glass surface.
59

 Compared to previously discussed 

methods (figure 24), the major advantage of this elder procedure was its efficiency in the 

absence of deuteroxide. This suggests that it could have been theoretically also applied to 

tritiation reactions without employing or generating tritiated water (HTO, T2O). Elemental 

metals from the platinum group of the periodic table (Ru, Rh, Pd, Os, Ir, Pt) are known to 

catalyze hydrogen isotope scrambling between hydrogen/deuterium/tritium gas and water.
60

 

For this reason, most of laboratories try to avoid using protic solvents for tritiations. Over the 

course of time, further selective HIE methods were developed by Alexakis et al.
61

 These 

methods worked on a broader selection of N-containing heterocycles in tetrahydrofuran (THF) 
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without D2O using commercial heterogeneous catalysts (Ru black, Rh black & Rh on 

alumina) and D2 gas as isotopic source. N-heterocyclic model compounds like pyridine-, 

quinoline derivatives and isoquinoline were efficiently deuterated at α positions relative to 

nitrogen atoms of the heterocyclic systems. It has to be noted that the deuterium gas 

atmosphere was replaced twice during the course of each reaction. The authors mentioned that 

the tritiation of 4,4’-bipyridyl was also possible by employing deuterium tritide gas (DT) as 

isotopic source yielding the tritiated compound with a low specific activity. 

 

 
Figure 27. Selective HIE on N-heterocycles with heterogeneous catalysts and D2 gas as 

isotopic source 

In most cases, drug development processes are confronted with the task to obtain tritio-

analogues of higher structural complexities than in figure 27. Inconveniences occurring at this 

stage are reasoned in the lack of labelling methods that efficiently tritiate a drug candidate of 

a given molecular structure in an organic aprotic solvent like THF with T2 gas as isotopic 

source. Research on this field is insofar relevant as we consider that several aforementioned 

methods employed D2O as isotopic source, as for example hydrothermal methods but also the 

labelling through supported nickel catalysts. Thus, their application to tritium labelling is not 

feasible by most of laboratories. T2 gas as isotopic source is largely preferred over T2O 
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reasoned in the 1000-fold higher radioactivity per volume unit of the latter. Further, there are 

modern absorption and storage techniques that render T2 gas the easiest raw material to 

handle for tritium labelling. Typically, reactions involving gaseous tritium are conducted 

using subatmospheric pressure of T2 in order to minimize the risk of leakage and radioactive 

releases. The difficulty to find such a method for the tritium labelling of drugs is due to the 

fact that the incorporation of tritium proceeds less efficiently, due to the kinetic hydrogen 

isotope effect. In some cases, the translation from deuteration to tritiation reactions can be 

even very poor. To a certain extent, this explains the rarity of reported successful tritium 

labelling under mild reaction conditions by heterogeneous transition metal catalysts and 

hydrogen isotope exchange. After all, a few concrete applications are known, where 

heterogeneous transition metal catalysts permitted to perform satisfying tritium labelling. 

Since the advent of the ruthenium and rhodium catalyzed HIE method by Alexakis et al. 

(figure 27), Rh black and T2 gas gained certain popularity for the tritium labelling of N-

heterocycles. For example, this catalytic system was used by Walji and coworkers in order to 

obtain tritiated N-heterocyclic PET tracers for further protein binding assays.
62

 Analogous to 

the work of Alexakis et al., selective tritium labelling took place on the N-heterocyclic cores 

in α positions relative to the nitrogen atoms (figure 28, top). In the same manner, Hesk and 

coworkers also succeeded to tritiate the drug candidate “SCH D” (figure 28, bottom).
63

 

 

 

Figure 28. Tritiations of N-heterocycles by Rh black and T2 gas in THF  
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It has to be noted that two equivalents of catalyst were needed for the tritiation of the complex 

SCH D, which represents a very high catalytic charge (figure 28). We have to bear in mind 

that high catalytic charges favor the degradation of the substrate. Further, the authors pointed 

out that significant amounts of T2 gas got lost through absorption, when high catalytic charges 

were used. Last but not least, the major problems of commercial heterogeneous catalysts are 

batch to batch differences that usually lead to unreproducible results. They emerge because 

catalytic activity depends on particle size, dispersion, degree of purity and surface 

functionalization or poisoning. Commonly, these parameters are not precisely determined for 

marketed supported and unsupported heterogeneous transition metal catalysts. 

 

3.2.2. Homogeneous transition metal catalyzed HIE 

 

Two main conclusions from the precedent chapters have to be noted at this stage because they 

are the most relevant for the upcoming work. Firstly, many preclinical and clinical studies of 

the drug development process can be potentially mastered by means of deuterium labelled 

drugs and metabolites which supports the great usefulness of deuterium. Secondly, tritiated 

drugs are still indispensable since they are preferred for ADME studies, but complications to 

prepare them from tritium gas stay a significant obstacle for drug development. However, 

within the following HIE methods that employ homogeneous metal complexes as catalysts, 

considerably more examples of successful tritiations of complex molecules are known. 

Several organosoluble transition metal complexes have garnered considerable interest as HIE 

catalysts because they overcome many problems related to previously described 

heterogeneous methods. Metalorganic compounds are synthesized and purified after well-

established protocols, characterized by NMR, stored and marketed as crystalline substances. 

As a consequence, batch to batch differences are not that enormous as for heterogeneous 

catalysts. Further, in many reported cases the metal center coordinates and activates hydrogen, 

deuterium and tritium gas at relatively low partial pressures. In contrast, from literature no 

cases are known where HIE succeeded by heterogeneous catalysts under comparable 

deuterium or tritium gas pressures. For these reasons, homogenous metal catalyses are very 

often the labelling methods of choice for tritiation reactions. Richard Heys discovered in 1992 

that an iridium (I) complex catalyzes the exchange of hydrogen for deuterium in the presence 

of deuterium gas on N-heterocyclic compounds and compounds with carbonyl substituents.
64

 

Nowadays, there are several commercially available mononuclear homogeneous Ir(I) 
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complexes with Crabtree’s and Kerr’s catalyst as two examples. In the further course of time, 

it was found that Crabtree’s catalyst was applicable to the ortho deuteration of acetanilides
65

 

and Kerr’s catalyst was an efficient catalyst for the ortho deuteration of adjacent phenyl 

substituents of N-heterocycles.
66

 The deuteration with Kerr’s catalyst revealed impressive 

isotopic enrichments on a big variety of N-heterocyclic compounds, e.g. on oxazoles, 

imidazoles, thiazoles and benzoderivatives thereof (figure 29). Some drug-like examples of 

higher structural complexity could be also deuterated in dichloromethane (DCM) and THF 

(figure 29, bottom). 

 

Figure 29. Ortho deuterations of phenyl rings on different N-heterocycles by Kerr´s catalyst 

However, N-heterocycles which are not endowed with an aryl group in an adequate position, 

as benzimidazole, could not be labelled at all by this method because the regioselectivity is 

restricted to certain γ-positions relative to a coordinating atom. This γ-selectivity of Ir(I) 

catalysts can be interpreted by looking at the reaction mechanism and the formed key 

intermediates. The reaction mechanism for the HIE by Ir(I) catalysts was already proposed in 
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previous works.
67

 In order to draw the HIE mechanism for N-heterocycles, a N-heterocyclic 

unit was assumed as the directing group. A corresponding pathway is illustrated in figure 30 

with the substrate 2-phenylimidazole as an example. First of all, the cyclooctadiene (COD) 

ligand is hydrogenated under the D2 atmosphere under the formation of d4-cyclooctane. Then, 

the catalyst activates a D2 molecule and receives two deuteride ligands which confers the 

oxidation state +III to the iridium center. Additionally, the substrate is coordinated through a 

nitrogen atom and a C–H bond in ortho of the phenyl group through a side-on coordination. 

These processes lead to the formation of the octahedral complex A (figure 30).  

 

 

Figure 30. Reaction mechanism for the Ir(I)-catalyzed HIE stemming from reference 67, that 

was adapted to an exemplary HIE reaction on 2-phenylimidazole 

Two covalently bound hydride or deuteride ligands can be eliminated at any time to obtain a 

side-on coordinated D2, HD or H2 molecule. Therefore, an equilibrium is established between 

deuterium or hydrogen gas and hydride or deuteride ligands on the catalyst. This also allows 

the C–H activation to occur through the insertion of the Ir-center into the C–H bond. On this 
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path, a covalent bond is formed between the ortho position of the phenyl ring and the metal 

resulting in a 5-membered metallacycle key intermediate (complex B, figure 30). As already 

alluded, the hydride ligand that is coordinated in cis relative to the phenyl ligand can be 

exchanged for a deuteride ligand through the equilibrium with the gas phase (complex C, 

figure 30). Subsequently, the N-heterocyclic substrate and the deuteride ligand are eliminated 

to give a C-D bond in ortho of the phenyl group (complex D, figure 30). Thus, the deuterated 

N-heterocyclic substrate can dissociate which permits the catalytic cycle to start again by 

coordinating another substrate molecule (complex D to A, figure 30). As we could see, the 

regioselectivity of Ir(I) is a product of the directing effect of the imidazole scaffold and the 5-

membered metallacycle key intermediate formed after C–H activation. This can be also 

considered as a drawback of the method because it is a structural limitation. Since HIE merely 

takes place at ortho positions of phenyl groups adjacent to a N-heterocycle at a certain 

position, many N-heterocyclic molecules cannot be labelled at all, as it was the case for 

unsubstituted benzimidazole in the described work in figure 29. Further, owing to the 

production of SILS for metabolism studies, drug molecules would undergo insufficient 

deuterium incorporation in most cases, because two deuteriums per molecule might be not 

enough. Nevertheless, Ir(I) complexes stay indispensable HIE catalysts in terms of many 

tritiations. In a recent work, it was shown on the drug suvorexant that HIE with Crabtree´s 

catalyst leads to efficient and selective tritiation in ortho of the phenyl substituent, directed 

through the 1,2,3-triazole unit (figure 31, top). In the same work, Chirik and coworkers 

presented a mononuclear Fe(0) complex as a new homogeneous HIE catalyst (figure 31, 

bottom left).
68

 Interestingly, in contrast to Ir(I), tritiations catalyzed by the Fe(0) catalyst 

always proceeded on the less sterically encumbered positions of complex molecules. If we 

have a look at the tritium incorporation selectivity on the two other examples cinacalcet and 

MK-7246, one can assume that the C-H activation via the Iron catalyst takes place in a non-

directed way, although the mechanistic pathway was not proposed, yet (figure 31, bottom 

right). 
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Figure 31. Tritiations of drugs catalyzed by a homogeneous Fe(0) catalyst 

The possibility to use an earth-abundant metal like iron for efficient catalytic transformations 

is a clear plus of this work. The high air sensitivity of the iron catalyst and the need to 

synthesize it by using sodium amalgam Na(Hg) as reducing agent are still significant 

inconveniences of the method.
69

 Soon after, Chirik and coworkers discovered a dinuclear 

nickel hydride complex to be another active homogeneous earth abundant metal catalyst for 

tritiations of APIs (figure 32).
70

 The advantage of the Ni catalyst over the Fe(0) complex is 

the easier preparation that just includes the mixing of an air stable nickel precursor complex 

with the diimine ligand 
iPr

DI = [2,6-
i
Pr2–C6H3N═C(CH3)]2 and HSi(OEt)3 in THF. Tritiations 

of drug compounds took place at low pressures of tritium gas (0.15bar) and predominantly in 

α positions of nitrogen atoms on N-heterocyclic motifs, comparable to Ru/C and Rh black as 

in chapter I.3.2.1 (figure 27), or on adjacent phenyl groups, in γ positions relative to nitrogen 

atoms, comparable to Ir(I) catalysts. Owing to the HIE selectivities observed, the authors 

assumed the C–H activations to be directed in this case. All in all, pyridine- and diazine 

containing radiolabelled drugs manifested satisfying molar activities. Unfortunately, a rather 

low molar activity was obtained for the purine-based drug famciclovir. 
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Figure 32. Tritiations of APIs catalyzed by a nickel complex 

In an ongoing work, the same working group developed another more sterically encumbered 

Ni(I)-complex that was found to be even more active as HIE catalyst under the same pressure 

of T2 gas as in figure 32. In this case, the tritiation of MK-6096 yielded a molar activity of 

99.2Ci/mmol. The new Ni(I)-catalyst promoted also the deuteration of other N-heterocycles 

like oxazole and thiazole (figure 33)
71

. 
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Figure 33. Dinuclear Ni(I)-complex with bulky substituents as HIE catalyst for the efficient 

tritiation of pharmaceuticals and the deuteration of oxazole and thiazole 

To sum up, in the recent past, several homogeneous metal complexes were described as 

innovative and efficient HIE catalysts. Up to date, HIE through homogeneous catalysis is 

even the most efficient and rapid way to obtain tritiated drugs. However, a crucial point that 

was neglected in the course of the discussion is a potential formation of stable complexes 

between the transition metal and substrate molecules endowed with strongly coordinating 

functionalities. Thus, there is a permanent risk of metal contamination that can require 

additional purification steps of the isotopically labelled molecules which has to be taken into 

account within biological applications. 

 

3.2.3 Metal nanoparticles-based methods for HIE 

 

The last section of this chapter will introduce another type of HIE catalyst, that has the highest 

relevance for us, because this work is dedicated to the development of these methods. 

Undoubtedly, the latest discovery in the field of HIE catalysis are metal nanoparticles. In the 

context of this work, the emphasis will lie on nanosized spherical particles which consist of a 

catalytically active metal with the oxidation state zero. They are not deposited on a support 
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like carbon, graphene monolayers, CaCO3 etc. as it was the case for heterogeneous catalysts 

in chapter I.3.2.1. In the ideal case, these nanoparticles are well-dispersed in a solvent because 

they are able to form stable solutions without getting into contact with each other. In other 

words, they could be also referred to as metal colloids. The word “colloid” describes a tiny 

solid object in the nanometer range that tumbles in a liquid without precipitating. Due to the 

little size and the low mass of the solid object, the Brownian motion of the solvent molecules 

prevents it from sinking to the ground. Metal nanoparticle solutions in particular are also 

stabilized by other effects. The precise methods for synthesis and stabilization will be detailed 

in the next chapter. In 2009, a HIE method was developed for the deuteration of N-

heterocyclic substrates in D20 using palladium nanoparticles embedded in a matrix of 

polyvinylpyrrolidone, as catalyst.
72

 Polyvinylpyrrolidone (PVP) is a water-soluble polymer 

that has a stabilizing effect and prevents the metallic nanoparticles from aggregation. Pieters 

and coworkers demonstrated then that ruthenium nanoparticles, stabilized in a matrix of the 

same polymer, are performant catalysts for the deuteration of aliphatic amines, pyridine- and 

indole derivatives in THF under mild reaction conditions and D2 gas as isotopic source 

(figure 34).
73

 Polyvinylpyrrolidone stabilized ruthenium nanoparticles (RuNp@PVP) as 

catalyst promoted the exchange of hydrogen for deuterium at α- and β positions relative to 

nitrogen atoms, as in the previous work of Alexakis et al.
61

 described in I.3.2.1. 

 

Figure 34. HIE on amines, pyridine, quinoline and indole catalyzed by RuNp@PVP under D2 

gas in THF 

Nevertheless, in the work presented in figure 34, the RuNp@PVP catalyzed HIE was still 

limited to a small range of N-heterocyclic substrates being soluble in THF as the only organic 

solvent. Tritiations catalyzed by ruthenium nanoparticles appeared in a separate work with the 

focus on nucleobase derivatives. In this context, ruthenium nanoparticles stabilized by N-

heterocyclic carbene ligands (Ru-ICy Np) were employed as catalyst to conduct tritiations of 
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didanosine and idelalisib, two drugs that contain nucleobases in their molecular structures 

(figure 35).
74

  

 

Figure 35. Tritiation of didanosine and idelalisib under T2 catalyzed by Ru-ICy Np  

In summary, encouraging results were obtained for ruthenium nanoparticles catalyzed HIE. In 

contrast to heterogeneous catalysts like rhodium black, ruthenium nanoparticles rendered 

tritiations of N-heterocyclic scaffolds possible at lower catalytic charges. On the one hand, the 

higher efficiency of metal nanoparticles in comparison to commercial heterogeneous catalysts 

can be reasoned in their nanometric size which confers a higher active surface for catalysis. 

On the other hand, like already mentioned in the context of homogeneous transition metal 

catalysts, also the synthesis of metal nanoparticles proceeds under controlled conditions and 

their storage and handling under glove box conditions. As a consequence, their surface should 

be covered by far less impurities. However, the substrate scope in terms of N-heterocycles 

stays restricted, if we consider the diversity of presented heterocyclic scaffolds in chapter I.2. 

Further, the removal of Ru-ICy Np from the reaction mixture is still difficult because this type 

of nanocatalyst is soluble in every common organic solvent, thus, it cannot be removed by 

simple precipitation and filtration and requires a preparative separation through high-pressure 

liquid chromatography (HPLC). 

 

4. Metal nanoparticles 

 

This chapter is exclusively dedicated to existing syntheses of catalytically active metal 

nanoparticles being soluble in common organic solvents. Recent highlights in metal 

nanoparticle synthesis will be presented and concomitant interest for our work will be 

outlined. In particular, metal nanoparticles will be shown that gave a hint for the development 
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of new metal nanoparticles applicable to HIE within this work. The course will proceed to 

fundamental investigations of these modern and rather unknown catalysts.  

 

4.1 Synthesis, stabilization and analysis 

 

Metal nanoparticles (MNp) are very little frameworks built up from metal atoms. Their 

synthesis is usually realized from a dissolved compound that contains the corresponding 

metal. To this end, a stimulus is given to the metal atoms to undergo assembly to a cluster of 

metal atoms being connected through metallic bonds, which represents a metal nanoparticle. 

Possible stimuli can be the reduction of a metal ion or the removal of ligands that form a 

complex with the metal atom. This is achieved, e.g. through thermal decomposition of 

organometallic precursors, as it was shown for the production of bimetallic iron/platinum 

nanoparticles from iron carbonyl Fe(CO)5 and platinum acetylacetonate Pt(acac)2.
75 Much 

milder methods to synthesize metal nanoparticles were discovered by Chaudret and 

coworkers. In this context, ways and means were developed to synthesize ruthenium 

nanoparticles (RuNp) through reductive decomposition of the organometallic precursor 

Ru(COD)(COT), with H2 gas. However, without any other additive the formed RuNps can be 

just stabilized by the organic solvent. Thus, the colloid solution is not stable over a long time, 

and nanoparticles agglomerate with each other and tend to form a ruthenium sponge.
76 A big 

advantage of the produced nanoparticles by Chaudret et al. was still the absence of other 

reagents like surfactants which were added in conventional Np syntheses to form micelles as 

nanoreactors. However, every additional component can lead to impurities and poisoning of 

the Nps surface or even to the formation of an oxide shell around the Np being deleterious for 

the catalytic activity. Perfectly soluble MNp in common organic solvents could be achieved 

through the stabilization by polymers. For this purpose, the reductive decomposition of the 

organometallic precursor is carried out in THF in the presence of a cellulose derivative
77

 or 

PVP
78

  in order to synthesize RuNp@PVP that was discussed in section I.3.2.3. Full solubility 

is of high importance for an application of the MNp within catalysis because this property 

leads to a big active metallic surface and delivers all the available catalytic sites on the Np 

surface. The mobility of hydride and deuteride ligands at the surface of RuNp and their 

dynamic equilibrium with hydrogen and deuterium gas in the gas phase was proven by NMR 

experiments. Undoubtedly, this is the most crucial quality of a catalyst for an application in 

HIE.
79

 An excellent overview of a big repertory of different stabilizing small-molecule 

ligands for ruthenium nanoparticles is provided in a review by Chaudret et al.
80

 The most 
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important thing to be pointed out is that the stabilization through ligands like amines and 

thiols does not lead to RuNp which are stable in solution over a long time. Due to the low 

affinity and dynamic exchange behavior of these ligands at the metal surface, nanoparticles 

rather have the tendency to form aggregates and superstructures.
78

 Surface ligands that 

provided stable and well-dispersed ruthenium nanoparticles in solution, additionally with 

excellent catalytic properties, are N-heterocyclic carbenes (NHCs). In general, carbenes have 

a high affinity for transition metals. In any case, they are assumed not to show strong 

exchange at the metallic surface because they do not easily dissociate from the metal they are 

coordinated to. The synthesis of NHC stabilized RuNp was demonstrated by Lara and 

coworkers.
81

 The characterization of metal nanoparticles can be achieved by several analytical 

methods usually employed in chemistry and material science. Transmission electron 

microscopy (TEM) is used to determine the shape, size, size distribution and dispersion-or 

aggregation state of the Np. The size distribution points out in how far the synthesized badge 

of nanoparticles is monodisperse. Wide-angle X-ray scattering (WAXS) is used to determine 

the composition and the crystalline structure of the nanocatalyst. Further, the surface of 

nanoparticles can be characterized through the quantification of surface hydrides through 

titration with 2-norbornene. Another important surface study is the absorption of 
13

C-labelled 

carbon monoxide (
13

CO) on the MNp. Subsequent analysis by Fourier-transform infrared 

(FTIR) and magic-angle-spinning (MAS) NMR spectroscopy yields the strength of absorption 

and the coordination modes of the CO molecules (side-on or end-on). In this manner, 

information is obtained about the nature of potentially active sites for catalysis.
82

 

 

4.2 DFT calculations on metal nanoparticles 

 

Density functional theory (DFT) employs computational methods that approach the orbitals of 

atoms and molecules as mathematical functions. In this fashion, DFT calculations are able to 

provide numerical and empirical information about reactivity and reaction pathways. If a 

theoretical nanoparticle model is established, chemical processes taking place on the surface 

of metal nanoparticles can be also studied by DFT calculations. This is best realized by 

considering a cluster of metal atoms which are connected through metallic bonds and display 

hydride or deuteride ligands bound to the surface metal atoms. It was found in a previous 

study that the HIE reaction in the α position of the nitrogen atom of 1-methyl-iso-butylamine 

on a RuNp surface follows a Langmuir-Hinshelwood mechanism, that refers to the reaction 
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between two components which are both absorbed at the surface. In this case, this would be 

the coordinating amine and a surface deuteride. In contrast, a mechanism where one 

component is absorbed on the catalyst and reacts with a compound from the gas phase is 

called an Eley–Rideal mechanism. The most relevant finding of this study was that the HIE 

reaction passes through a four-membered dimetallacycle key intermediate which is formed 

after the C–H activation step and explains the selective deuteration on α positions of nitrogen-

containing compounds (figure 36).
83

 

 

Figure 36. Modeled image of the 4-membered dimetallacyclic key intermediate that is formed 

after C–H activation on a secondary amine at the surface of a deuterated RuNp (figure 

extracted from reference 84). 

 

II. Development of new metal nanoparticles-based HIE 
methods 
 

Metal nanoparticle catalyzed HIE was outlined to be a promising method to label certain 

nitrogen containing compounds in the vicinity of their nitrogen atoms. However, none of the 

known metal nanoparticles was extensively used for the labelling of biologically interesting 

molecules by hydrogen isotopes. Various N-heterocyclic scaffolds were presented to be 

attractive and biologically relevant targets for HIE. Existing methods are just able to introduce 

hydrogen isotopes into oxazoles and imidazoles under structural limitations. For a mild and 

selective HIE on 1,2,4-triazoles and carbazoles, it still doesn´t exist any method. Owing to all 

these reasons, we believed that metal nanoparticle catalyzed HIE is worth to be further 

developed on N-heterocyclic substrates which were listed in chapter I.2. Therefore, the 

practical section of this work is segmented into two principle parts. The first part is the 
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synthesis of metal nanoparticles consisting of ruthenium that were already described and new 

metal nanoparticles that consist of nickel. In the second part, the objective is it to find and to 

develop new, efficient and generally applicable metal nanoparticle catalyzed deuteration and 

tritiation methods for a broad scope of N-heterocyclic substrates (Figure 37). In this context, 

DFT-based investigations will help us to understand the processes taking place in HIE at the 

surface of a nanocatalyst. 

 

Figure 37. General scheme illustrating of the objectives of the upcoming work 

 

1. Syntheses of metal nanoparticles 

 

This chapter will present and explain the syntheses of metal nanoparticles which was 

performed within this work. In order to carry out comparative studies on the hydrogen isotope 

labelling of N-heterocycles afterwards, we synthesized four different types of metal 

nanoparticles. The metal ruthenium continues to be of high interest also for this work. On this 

account, RuNp@PVP and ruthenium nanoparticles stabilized by a NHC ligand (Ru-ICy Np) 

were synthesized. Then, the nanoparticle syntheses proceeded to NHC stabilized nickel 

nanoparticles (Ni-ICy Np and Ni-IMes Np). 
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1.1 Synthesis of RuNp@PVP 

 

First, RuNp@PVP was prepared because this ruthenium-based nanocatalyst yielded already 

good results on the area of HIE. To this end, the crystalline organometallic compound 

Ru(COD)(COT) and the polymer PVP are dissolved in THF. Afterwards, Ru(COD)(COT) is 

reduced under a low pressure of H2 gas (3bar) and vigorous stirring, according to the 

procedure of Chaudret et al. as already alluded in the theoretical part I.4.1.
78

 The reductive 

decomposition of the organometallic precursor with H2 gas proceeds at room temperature. 

The two ligands of the Ru(0) complex, 1,5-cyclooctadiene (COD) and the 1,3,5-

cyclooctatriene (COT), undergo ruthenium catalyzed hydrogenation to give cyclooctane that 

dissociates from the complex and goes into solution. The Ru(0) atoms then form metallic 

bonds to each other and get stabilized as ruthenium nanoparticles. In this case, the metal 

nanoparticles are supposed to be accommodated in nanoreactors formed by PVP which 

prevents them from aggregating. The synthesis of RuNp@PVP with the corresponding 

conditions is depicted in figure 38. 

 

 

Figure 38. Synthesis of ruthenium nanoparticles in a PVP matrix 

Given that the synthesis of RuNp@PVP proceeded after a well-established protocol, 

recording a TEM image of the product was the only analytical method to confirm the presence 

of well-dispersed and nano-sized metallic particles. Although the resolution was poor due to 

the high percentage of PVP, separated black spots on the image could be attributed to 

dispersed ruthenium nanoparticles with a size of around 1.1nm (figure 39). The ruthenium 

content of RuNp@PVP prepared after this procedure was found to be around 7.6%. WAXS 

analysis supported a hexagonal close-packed (hcp) structure of the ruthenium nanoparticles. 
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Figure 39. TEM image of RuNp@PVP 

 

1.2 Synthesis of Ru-ICy Np 

 

For the synthesis of NHC-stabilized RuNps, the reduction of Ru(COD)(COT) requires to be 

performed in the presence of the carbene ligand as it was previously reported.
81

 For this 

purpose, 0.25 stoichiometric equivalents of the carbene ligand 1,3-dicyclohexylimidazol-2-

ylidene (ICy) were prepared separately by deprotonating the imidazolium salt 1,3-

dicyclohexylimidazolium chloride with potassium tert-butanolate (figure 40). 

 

 

Figure 40. Preparation of a N-heterocyclic carbene ligand through the deprotonation of an 

imidazolium salt. 

Subsequently the carbene solution was added to one equivalent the organometallic precursor 

solution and the reduction with H2 gas was started. Within a short time, the reaction mixture 

turned into a deep black homogeneous solution, evidencing the formation of soluble 

ruthenium colloids (figure 41). 
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Figure 41. Synthesis of RuNp stabilized by N-heterocyclic carbenes 

The successful formation of RuNp was confirmed also in this case over TEM. The 

distribution of the particle size was plotted in a histogram. The nanoparticles manifested a 

mean size of 1.2nm with a distribution of around ±0.5nm (figure 42). 

 

 

Figure 42. TEM image of Ru-ICy Np (left) and histogram showing the nanoparticle size 

distribution (right) 

Nanoparticles were also analyzed by thermal gravimetric analysis (TGA) to determine the 

content of ruthenium relative to organic matter. Heating of the synthesized nanoparticles to 

around 600°C lead to a mass decrease of 29%. Consequently, synthesized Ru-ICy Np are 

supposed to contain 71wt% of ruthenium (see experimental section for TGA data). 
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1.3 Synthesis of Ni-ICy Np 

 

The synthesis of nickel nanoparticles (NiNp) was of high interest, because a principle aim of 

this work was also the study of the reactivity of a different metal than ruthenium. Nickel is a 

non-noble, earth-abundant and much cheaper metal than noble metals as ruthenium. Being 

non-noble, well-dispersed Ni(0) manifests high oxygen sensitivity which is a drawback 

towards the work with ruthenium because it makes thorough operation of Ni(0) catalyzed 

reactions under inert conditions mandatory. Metallic Ni(0) films are already known to be 

active HIE catalysts under D2 gas as mentioned earlier in chapter I.3.2.1.
59

 Nonetheless, with 

the synthesis of well-defined nickel nanoparticles we intended to generate a more active and 

efficient HIE catalyst, that operates under mild reaction conditions using D2 or T2 gas as 

isotopic sources. For this purpose, nickel nanoparticles were synthesized, stabilized by 0.25 

stoichiometric equivalents of the NHC-ligand ICy that was prepared as stated in figure 40. A 

suitable nickel-based organometallic precursor proved to be bis(1,5-cyclooctadiene) nickel 

(Ni(COD)2). However, the reduction of Ni(COD)2 with H2 gas demanded a higher 

temperature than in the case of Ru(COD)(COT). The formation of nickel nanoparticles (Ni-

ICy Np) could be observed at 70°C (figure 43). 

 

Figure 43. Synthesis of NiNp stabilized by N-heterocyclic carbenes (Ni-ICy Np) 

The nanoparticle solution was again concentrated and washed by precipitation in n-pentane in 

order to remove non-volatile impurities. The analysis of the nanocatalyst by TEM supported 

the formation of NiNp displaying a bigger diameter then the aforementioned RuNp. The size 

of Ni-ICy Np was around 2nm with a size-dispersion of ±1nm (figure 44). 
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Figure 44. TEM image of NiNp stabilized by 0.25 stoichiometric equivalents of ICy 

The metal content in NiNp was determined by inductively coupled plasma-mass spectrometry 

(ICP-MS) in all cases, because TGA proved to be not as suitable as ICP-MS for nickel-based 

probes. In this context, the mass of the synthesized nanocatalyst was found to be composed to 

69wt% of nickel. The crystal structure analysis of Ni-ICy Np by wide-angle X-ray scattering 

(WAXS) evidenced a face-centered-cubic (fcc) unit-cell for the nickel metal (see experimental 

part for complete analytical data). 

 

1.4 Synthesis of Ni-IMes Np 

 

With regard to NiNp, it was also necessary to test the influence of a different NHC ligand on 

the reactivity within HIE reactions in the ongoing work. 1,3-Dimesitylimidazol-2-ylidene 

(IMes) was a very convenient NHC-ligand to work with, because it was commercially 

available as free carbene and ready to use for MNp syntheses. In this section, two batches of 

NiNp were synthesized which were stabilized by different amounts of IMes, in order to figure 

out a possible steric or electronic impact of the NHC-ligand attached to the catalyst surface. 

Ni-IMes Np were synthesized under the same conditions as Ni-ICy Np in figure 43. One 

batch was stabilized by 0.25 equivalents of NHC-ligand and the other one by 0.5 equivalents 

(figure 45). The obtained nanoparticle solutions were again precipitated twice in n-pentane 

and dried under vacuum prior to storage in the glove box. 
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Figure 45. Synthesis of NiNp stabilized by N-heterocyclic carbenes (Ni-IMes Np) 

TEM images pointed out that the syntheses furnished well-dispersed NiNp with a mean size 

of 1.8±0.6nm in the case of 0.25 equivalents NHC ligand (figure 46, left) and smaller NiNp 

with 0.5 equivalents NHC-ligand (figure 46, right). The precise determination of the 

nanoparticle size was difficult for the latter, due to the poor resolution of the TEM image. 

 

              

Figure 46. TEM images of Ni-IMes Np stabilized by 0.25eq. (left) and 0.5eq. of NHC-ligand 

(right) 

WAXS analysis witnessed fcc-Ni(0) also in the case of Ni-IMes Np. The determination of the 

metal content in the two batches through ICP-MS delivered 36wt% (0.25eq of IMes) and 

29wt% nickel (0.5eq of IMes). 
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2. HIE on N-Heterocycles catalyzed by metallic 

nanoparticles 

 

2.1 HIE catalyzed by ruthenium nanoparticles 

 

In this chapter, ruthenium nanoparticles are going to be explored for their potential to 

incorporate hydrogen isotopes into several types of N-heterocycles. In recent articles, we 

demonstrated that the use of RuNp allows the deuteration of nitrogen-containing compounds 

in bioactive molecules, including the indole and pyridine moiety as N-heterocyclic substrates, 

and by using D2 as isotopic source. Thereafter, we envisioned that the nanocatalysts 

synthesized in II.1.1 and II.1.2 might be used for an efficient and selective deuteration of a 

larger variety of nitrogen containing heterocycles. Based on this theory, we anticipated that 

this would also provide a new method for the late-stage tritiation of many pharmaceuticals 

under mild reaction conditions. 

 

2.1.1 Initial considerations 

 

The first aim was to determine experimentally in how far compounds, which are of interest 

for us, can be deuterated by D2O as solvent or co-solvent without any metal catalyst under a 

moderate temperature of 80°C. Thermal exchange experiments in the protic (co-)solvent D2O 

on some selected model compound examples, carrying additional acidic or basic moieties 

themselves, lead to a low percentage of exchanged hydrogen at C2 of the oxazole ring of an 

oxazole derivative (figure 47, top). The exchange in the presence of D2O replaced hydrogen 

at C2 of imidazolyl-acetic acid to 74% for deuterium (figure 47, center) and almost 

quantitatively at C5 of the 1,2,4-triazolic moiety (figure 47, bottom).  
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Figure 47. Deuteration on acidic sites of N-heterocyclic derivatives in D2O. 

Consequently, the C2 position of the depicted oxazole derivative is still worth to be targeted 

by transition metal catalyzed HIE because it is shown to be deuterated not efficiently under 

relatively mild conditions through D2O alone. On top of that, it is worth to develop a suitable 

and efficient HIE method for heterocyclic cores because there are several other sites like the 

C4 and C5 position on imidazoles and the C3 position of 1,2,4-triazoles which are not 

deuterated at all by protic deuterated solvents. A back-exchange to the protio form should also 

not occur since these positions do not display low pKa values (I.2.2, figure 12). At any rate, a 

novel method is needed for the tritium labelling of such compounds. Despite the satisfying 

H/D exchange at one position of 1,2,4-triazole, a corresponding tritium labelling by T2O is of 

very low interest. Hence, a method being able to activate T2 gas to use it as isotopic source is 

strongly necessitated if tritium labelling is intended on these types of substrates. Further, it 

was necessary to test the reactivity of various N-heterocyclic substrates within other transition 

metal catalyzed methods in order to draw a comparison between HIE methods that already 

exist and metal nanoparticle catalysis that is going to be investigated. This will allow us to list 

advantages and drawbacks based on experimental results. As already mentioned previously in 

I.3.2.2, an option to conduct regioselective HIE by using D2 or T2 as isotopic source on N-

heterocyclic derivatives is homogenous Ir(I) catalysis. 2,5-diphenyloxazole revealed to be an 

attractive substrate to initiate our studies. In another context, it appeared as a biologically 
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relevant reference compound for affinity assays, since it showed efficient antimycobacterial 

activity.
85

 Crabtree´s catalyst [(COD)Ir(py)PCy3]PF6 (COD = 1,5-cyclooctadiene; py = 

pyridine; Cy = cyclohexyl), was found to give a complete exchange at the ortho positions of 

one phenyl ring of 2,5-diphenyloxazole (figure 48, top). The HIE selectivity on this substrate 

is in line with the result obtained with another Ir(I) catalyst
86

 confirming the reproducibility of 

our applied reaction conditions. Positions located in α and β relative to the nitrogen, however, 

did not change in terms of isotopic ratio at all, which was also confirmed for 2-methyl-

benzoxazole (figure 48, center). Moreover, to the best of our knowledge, no Ir(I)-complex is 

known that addresses HIE on substrates containing 1,2,4-triazole scaffolds. In our case, the 

attempt to deuterate a hydroxylic triazole derivative via the same Crabtree catalyzed exchange 

protocol resulted in the full conversion to an undesired side-product (figure 48, bottom). This 

observation brought about the conclusion that a different catalytic method is required being 

also compatible with triazolic compounds.  

 

 

Figure 48. Reactivity tests on different N-heterocyclic derivatives with Crabtree catalyst and 

D2 gas in DCM. 
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2.1.2 Deuterations of oxazoles 
 

In the next step, we intended to figure out the most convenient ruthenium catalyst and 

reaction conditions for our HIE reactions on oxazoles. On this account, we submitted the 

oxazole-based compound 2,5-diphenyloxazole to deuteration experiments with three different 

catalysts under the same reaction conditions (2bar of D2 gas, 5mol% Ru in each case, 2mL of 

solvent, 50°C, 24h): commercially available ruthenium on charcoal (Ru/C), RuNp@PVP and 

Ru-ICy Np. We must bear in mind that transition metal catalysts as Ru(0) originally found 

application for the reduction of various functionalities through hydrogenation with H2. Thus, 

when combining an unsaturated organic substrate with a metallic ruthenium catalyst and a 

hydride donor as H2 gas or one of its isotope analogues (D2, T2), several other undesired 

reactions might take place apart from HIE through C–H activation. Not surprisingly, 

hydrogenation of the phenyl rings of 2,5-diphenyloxazole took place in parallel to the HIE 

reaction, leading to complex mixtures of several isomers and their isotopomers after every 

described test reaction (the experiment was also run with H2 instead of D2 gas in order to 

simplify the analysis. In this manner, every side-product could be precisely characterized by 

1
H-NMR and ESI-MS, figure 49).  

 

 

Figure 49. HIE on 2,5-diphenyloxazole by Ru catalysts and its reduction to undesired side-

products. 

1
H-NMR analysis of the crude products was used to quantify the formation of the major side-

product in every experiment in order to select the best reaction conditions (figure 50). In each 

case, the integration was calibrated towards the signal in the middle that could be attributed to 
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the ortho hydrogens of the phenyl ring on position 5 of 2,5-diphenyloxazole where 

deuteration did not take place. The signal on the left was attributed to the ortho positions of 

the phenyl ring on position 2 where HIE took place. The signal on the right arises from two 

hydrogens of the major side-product that overlaps with the hydrogen on the C4 position of the 

oxazole. However, this did not perturbate the analysis because the differences between the 

amounts of formed side-product within the three experiments were still significant. When the 

HIE was run with commercial Ru/C in THF, the isotopic enrichment was very high, 

evidenced by the little integration value of the signal on the left (figure 50a). However, the 

side-product was formed in a significantly higher amount than the labelled product (compare 

integration value in the middle and on the right, figure 50a). This finding witnessed a low 

chemospecificity of the charcoal supported heterogeneous ruthenium catalyst. The deuteration 

of the substrate with Ru-ICy Np still yielded an amount of side-product that was equal to the 

deuterated substrate (figure 50b). When 2,5-diphenyloxazole was deuterated with 

RuNp@PVP in THF, reduction of the substrate was also concomitant but to a much lower 

degree (figure 50c). Within this approach, the isotopic enrichment in ortho slightly dropped 

(compare 0.07 on the left integral in a and b with 0.28 in c, figure 50). The solvent was 

changed from THF to DMA and the HIE with RuNp@PVP was repeated (figure 50d). In this 

manner, the deuteration in ortho could be boosted compared to c, corresponding to 93% of 

isotopic enrichment at the ortho positions as it can be seen in the spectrum d. Astonishingly, 

the amount of generated side-product in d was just half the amount observed for the reaction 

catalyzed by Ru/C in a and also lower than in b with Ru-ICy Np. Owing to the higher 

chemospecificity and the satisfying efficiency achieved with RuNp@PVP, this catalyst was 

determined to be the most suitable for our ongoing plans. Further, we found that HIE 

reactions can be also carried out in the solvent DMA which offers the possibility to dissolve a 

broader variety of substrates. 
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Figure 50. (a)-(d) 
1
H-NMR spectra of the crude mixtures after HIE on 2,5-diphenyloxazole 

with different Ru catalysts (e) spectrum after HPLC-purification (chemical shifts in ppm) 
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Figure 50. (a)-(d) 
1
H-NMR spectra of the crude mixtures after HIE on 2,5-diphenyloxazole 

with different Ru catalysts (e) spectrum after HPLC-purification (chemical shifts in ppm) 
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After HPLC of the crude reaction mixture from figure 50d, spectrum e was obtained where 

the labelled C4 position of the oxazole arises at 7.70 ppm. Deuterated 2,5-diphenyloxazole 1 

was afforded in an isolated yield of 25% with a total uptake of 2.4 deuterium atoms 

incorporated at the oxazole core and in the ortho positions of the phenyl group attached to the 

C2 position, i.e. in α- and in γ-positions to the nitrogen atom (figure 51). The utility of the 

RuNp@PVP-based approach to label oxazoles by hydrogen isotopes could be confirmed by 

furnishing other successfully deuterated model compounds 2 – 4, whose hydrogen isotope 

labelling cannot be achieved via Ir(I)-catalysis (figure 51). Deuteration reactions were also 

conducted in tetrahydrofurane (THF) or dimethylacetamide (DMA) as solvents and with 

RuNp@PVP as catalyst (5mol% of ruthenium nanoparticles) at 50°C under D2 atmosphere 

(2bar). It is noteworthy that isotopic enrichments on oxazoles with strongly polar 

functionalities as 3 and 4 were higher in the solvent dimethylacetamide (DMA) than in THF. 

It is likely that DMA represents a better coordination competitor for polar moieties like –NH2 

and –COOH on the surface of the catalyst, due to the presence of a nitrogen atom in its 

molecular structure that coordinates stronger to the ruthenium surface than the oxygen atom 

of THF. This solvent property probably favored the dissociation of the amino group of 3 and 

the carboxyl group of 4 from the catalyst surface and established a more favorable 

coordination/decoordination equilibrium to increase the turnover number (TON) for the C–H 

activation on the oxazole ring. Moreover, regio- and chemoselective labelling at C2 of 

compound 4 was realized without forming the decarboxylated side product. Interestingly, 

Compounds 2 and 3 displayed high deuterium uptakes at the C2- and just moderate uptakes at 

the C4 positions of the oxazole ring (both α-positions relative to the same coordinating 

nitrogen atom, figure 51). 
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Figure 51. Examples of deuterated oxazole derivatives 

From a fundamental point of view, we were further interested in exploring the considerable 

difference in isotopic enrichment between the C2- and the C4 position on compound 3 as an 

example. In order to study the reaction pathway leading to the C(sp
2
)-H activation at the α 

positions of the nitrogen atom on oxazoles, theoretical calculations at the DFT-PBE level of 

theory were conducted by Romuald Poteau and coworkers. Every other DFT-based 

calculation in the following sections was also carried out in the working group of Romuald 

Poteau. For this purpose, a 0.5 nm ruthenium cluster with 1.4 H atoms per Ru surface atom 

(Ru13H17) was used as a model for a ruthenium nanoparticle.
83, 87

 As we can see in figure 52, 

the coordination of 3 to the RuNP model through the lone pair of the nitrogen atom is an 

exothermic process (3
N*

: ca. -19 kcal.mol
-1

). From this intermediate a stabilizing agostic 

interaction can be established between the C2-H (3
N*,C2H*

, green pathway) or C4-H (3
N*,C4H*

, 

blue pathway) groups and one of the first-neighbored ruthenium atoms to the one that 

interacts with the nitrogen atom. The formation of this three-center two electron bond 

between a C-H bonding orbital and an empty metal orbital is evidenced by the slight carbon 

pyramidalization (accompanied by the lifting of the hydrogen atom out of the plane of the 

oxazole ring). From both 4-membered dimetallacycle intermediates 3
N*,C4H*

 and 3
N*,C2H*

, the 

C−H bond activation is a kinetically accessible process with an activation barrier of 6.0 
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kcal/mol on C4 position (3
N*,C4H‡*

) and of 4.2 kcal/mol on C2 position (3
N*,C2H‡*

). However, 

from a thermodynamic point of view, the C - H bond breaking is an almost athermic process 

at C2 position (3
N*,C2*

:+1 kcal/mol with respect to 3
N*,C2H*

) whereas it is clearly endothermic 

at the C4 position (3
N*,C4*

:+4.3 kcal/mol w.r.t. 3
N*,C4H*

). However, the formation of the 4-

membered dimetallacyle is just one key parameter in both pathways. Owing to the small 

barrier heights, a second crucial key parameter is the competition between the (C-H)* → 

(C)*(H)* reaction (i.e. 3
N*,CXH*

 → (3
N*,CX*

)(H*)) and the (C)*(H)* → (C-H)* back reaction. 

The lower deuterium incorporation at the C4 position ([15]) vs at the C2 position ([98]), 

experimentally observed for compound 3, can therefore be explained by the small barrier 

(only 1.7 kcal/mol) for the back reaction (from 3
N*,C4*

 to 3
N*,C4H*

), thereby reducing the 

efficiency of the overall process. A similar explanation can probably be invoked for 

compound 2, where the isotopic labelling at the C2 position ([99]) was also found to be higher 

than the one encountered at the C4 position ([26]). 

 

Figure 52. Energy diagram for the Langmuir–Hinshelwood-type H/D exchange on the C2 

(green pathway) and C4 (blue pathway) position of the oxazole ring of compound 3; energies 

are given in kcal.mol
-1
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The exchange of hydrogen for deuterium was found to take place at α-, β- and γ-positions 

relative to the nitrogen atom of the oxazole scaffold within RuNp@PVP catalyzed 

deuterations. This property of Ru nanoparticles permitted to provide several examples of 

deuterated oxazole derivatives that cannot be labelled by other HIE methods as homogeneous 

Ir(I) catalysis at all. Further, the HIE catalyst RuNp@PVP proved to be compatible with very 

polar and protic functionalities, in contrast to the Fe(0) catalyst of Chirik et al. where the 

carboxyl group of a drug had to be deprotonated prior to hydrogen isotope exchange.
68

 DFT-

based mechanistic studies deciphered a four-membered dimetallacyclic adduct as the key 

intermediate for the labelling of α positions relative to nitrogen atoms on aromatic rings. 

Additionally, when monitoring the energetic profiles of the C–H activations on C2 and C4 of 

an oxazole compound, the preference of RuNp for the C2- over the C4 position could be 

interpreted. Nonetheless, the reduction of sensitive substrates still persisted which prompted 

the conclusion that employing a different metal as HIE catalyst like the nickel nanoparticles 

from II.1.3 - II.1.4 could probably circumvent this problematic side-reaction. 

 

2.1.3 Deuterations of imidazoles 

 

Owing to the ubiquity of the imidazole scaffold in biologically relevant molecules as 

demonstrated in chapter I.2.3, we subjected various imidazole derivatives to the RuNp@PVP-

based HIE approach (figure 53). 2-Phenylimidazole 5 showed high deuterium incorporation 

on the phenyl, in ortho to the imidazole nucleus. Moreover, deuteration occurred at the α-

positions relative to the nitrogen atoms of the imidazole itself, which are not labelled by 

Kerr´s catalyst.
66

 Thus, in contrast to this homogeneous Ir(I) catalyst, the Ru nanocatalyst 

permitted the isotopic labelling of two additional positions which can be significant for the 

successful synthesis of SILSs (figure 53).  
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Figure 53. Examples of deuterated imidazole derivatives and diverse test compounds 

The deuterium incorporation on both sites of 5 was considered from a theoretical point of 

view, especially in order to identify the key intermediate leading to the labelling at the γ-

positions of the coordinating nitrogen, i.e. γ1 and γ2 in figure 54. Two competitive pathways 

were investigated (γ1 in red and γ2 in blue, figure 54). In any case, compound 5 is initially 

adsorbed at the Ru nanoparticle surface through the lone pair of the N3 nitrogen atom to give 

5
N*

. Then, the C–H bond in ortho of the phenyl ring also coordinates to the ruthenium catalyst 

by the formation of a stabilizing agostic interaction. It is noteworthy that two different 

adsorptions of the substrate can occur, either on one ruthenium atom (5
N*,γ1H*

) or on two 

neighboring ruthenium atoms (5
N*,γ2H*

). They lead respectively to a five-membered 

metallacyle (a key intermediate analogue to the one proposed in homogeneous catalysis) or a 

six-membered dimetallacycle adduct.  
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Figure 54. Energy diagram for the Langmuir–Hinshelwood-type H/D exchange on 5 in the 

ortho-position of the phenyl (blue and red pathways) and at α-positions relative to the 

imidazole nitrogen atoms (green pathway; for the sake of clarity the geometries are not given, 

see also SI); energies are given in kcal.mol
-1

. 

The pathway that involves a six-membered dimetallacycle is both endothermic and kinetically 

accessible (blue pathway, figure 54). This mechanism cannot be excluded for the deuterium 

incorporation but it is probably inefficient due to the small barrier (1.9 kcal/mol) and the 

exothermicity (ca. -4 kcal/mol) of the (C)*(H) * ↔ (C-H)* back reaction (i.e. 

5
N*,γ2*

↔5
N*,γ2H*

). The C-H activation involving a five-membered metallacyle (red pathway, 

figure 54) is also kinetically accessible, with an activation barrier of 7.4 kcal/mol, but 

thermodynamically more favorable (-4.1 kcal/mol) on the contrary to the γ2 case. The C-H 

activation equilibrium is now in favor of (C)*(H)* (5
N*,γ1*

). Thus, the deuterium incorporation 

at the γ-position of the nitrogen is most probably due to a process that goes through a five-

membered metallacyle intermediate such as in homogeneous catalysis. The very efficient HIE 

in α to the nitrogen atoms ([96]) corresponds to a thermodynamically favorable mechanism (-

2.1 kcal/mol w.r.t. (C-H)*, green pathway in figure 54) involving a 4-membered 

dimetallacycle as key intermediate and a low activation barrier for the C-H bond breaking 

step (4.3 kcal/mol). Thus, the competition between the (C)*(H)* ↔ (C-H)* back reaction (i.e. 
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(5
N*,α*

)(H*) ↔ 5
N*,αH*

) and the (C)*(D*)* ↔ (C-D)* (i.e. (5
N*,α*

)(D*) ↔ 5
N*,αD*

) isotopic 

exchange is in favor of the latter. An explanation of the difference between the 62% and 96% 

conversion yields is somewhat beyond the chemical accuracy of DFT, even though, 

interestingly, the barrier that leads to the (C
ortho

-D)* turns out to be higher than its (C
α
-D)* 

counterpart in agreement with the observed lower experimental isotopic enrichment at this 

position. Compound 6 in figure 53 was deuterated at the α-position of the N3 nitrogen atom 

with 99% of isotopic enrichment accompanied by a slight deuterium incorporation on the 

hydroxymethyl group, which is a β position of the coordinating nitrogen atom. At this point, 

the observation was made, that β positions on sp
3
 carbons can be also targeted for HIE by 

ruthenium nanoparticles, although the obtained isotopic enrichment for this position was quite 

moderate. An attempt to explain the incorporation of 0.24D at the hydroxymethyl group is 

illustrated in figure 55. The coordination of the nitrogen and the oxygen atom to the surface 

of the catalyst at the same time provides a large gain in energy because a chelate is formed. 

This constraint immobilizes the substrate in a certain conformation where the hydrogen atoms 

of the methylene group are directed opposite to the surface of the RuNp, making a C-H 

activation through the RuNp impossible on this position (figure 55, structure on the left). In 

order to allow a rotation of the hydroxylic side-chain for a C-H activation to occur, the 

hydroxyl group is supposed to dissociate from the surface (figure 55, structure on the right), 

which must be energetically less favored than the chelate conformation on the left. This 

seemed to be the most plausible rationalization of the lowered deuterium incorporation at the 

C(sp
3
) center.  

 

 

Figure 55. Proposed chelate-based explanation for the low isotopic enrichment on the 

hydroxymethyl group of 6 

Against our expectations, besides the imidazole labelling of 7, an exchange of the formyl 

proton for deuterium was concomitant. In order to confirm the ability of RuNp to procure HIE 

on aldehyde groups in general, the model compound 7* was subjected to deuteration that was 

functionalized with an aldehyde moiety but did not contain any nitrogen atom in its structure. 
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Indeed, hydrogen was selectively exchanged for deuterium on 7* yielding an isotopic 

enrichment of 88% on the aldehyde moiety. However, this HIE reaction took place in parallel 

with the reduction of the aldehyde to an alcohol that was formed in a ratio of 2:1, relative to 

the deuterium labelled aldehyde 7*. These findings were also made by Kerr et al. for Ir(I) 

complexes.
88

 Apparently, the surface of Ru nanoparticles shows a similar behavior towards 

aromatic aldehydes as Crabtree’s catalyst, where the transition metal performs a C-H 

activation over oxidative addition of the –CHO group and regenerates the deuterated 

aldehyde. Further, it is noteworthy, that compounds 6 and 7 were both selectively deuterated 

on the imidazole cycle in α-positions to the unsubstituted nitrogen atoms with the C5-positions 

remaining almost unchanged in both cases. The C5-positions of 6 and 7 merely manifested 

some traces of deuterium incorporation which could be perceived by 
2
H-NMR; but they were 

too little to be precisely quantified. In all cases, the C-H activation was mostly directed by the 

unsubstituted nitrogen atom N3 inside the imidazole core, whereas aromatic tertiary nitrogen 

(N1 in 6 & 7) can be assumed not to be a directing atom. A loss of this selectivity rule was 

clearly encountered for 8. The deuteration of 8 took place in D2O, because of its poor 

solubility in organic solvents. Besides the expected and efficient labelling of C2 and C4, the 

non-exchangeable C5 position of 8 was also deuterated to 70%, which gave rise to three 

different aromatic signals in the 
2
H-NMR spectrum (see experimental part). First, the 

deuterium incorporation at C5 was related to a directing group effect arising from the 

carboxylic side chain that coordinated to the catalyst and directed the C–H activation to the C5 

position. To test this hypothesis, an acetic acid derivative needed to be subjected to 

RuNp@PVP catalyzed deuteration being endowed with an aromatic ring and no other 

functionality that could coordinate to the catalyst. Although these criteria are fulfilled by p-

phenylenediacetic acid 8*, this compound did not show any deuterium incorporation at 

aromatic positions with RuNp@PVP (figure 53). Consequently, the theory, that the acetic 

acid side-chain could direct the C–H activation in 8, was withdrawn. In view of this result, the 

unexpected exchange at C5 of 8 was rather related to its tendency to undergo C–H activation 

through a non-directed agnostic interaction with the catalyst. In the next sections, such 

positions will be also identified on other N-heterocyclic compounds. To sum up, several 

imidazole derivatives were deuterated successfully by RuNp@PVP in α, β and γ positions 

relative to coordinating nitrogen atoms and even aromatic aldehydes were revealed to be 

suitable substrates for the deuteration by RuNp. The method proved again to incorporate more 

deuterium atoms per molecule than previously reported methods like Ir(I) catalysis and to be 

more tolerant for substrate functionalization. For the first time, the discrimination through a 
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DFT-based study was successful between a five-membered metallacycle and a six-membered 

dimetallacycle adduct which is formed on the surface of the metal nanoparticle after the C–H 

activation for the HIE in γ. The comparison of the energetic profiles led to the conclusion that 

the HIE in γ passes through a five-membered metallacycle key-intermediate. 

 

2.1.4 Deuterations of N-heterocyclic benzoderivatives 

 

In the next step, several N-heterocyclic benzoderivatives were subjected to ruthenium 

nanoparticles catalyzed HIE. Given the results of Atzrodt et al., benzimidazole 9 did not show 

any reactivity with Kerr’s catalyst in terms of deuteration.
66

 However, RuNp@PVP permitted 

to deuterate this substrate on C2, in α to the N1 and N3 nitrogen. C4 and C7, the two β positions 

of the nitrogen atoms on 9, manifested also very efficient deuterium uptake (figure 56). The 

deuteration of sp
2
 carbons in β to nitrogen atoms was already observed on indoles, in one of 

our previous works with Ru nanoparticles.
73

 Herewith it could be also confirmed on another 

class of N-heterocycles. Analogously, deuteration succeeded on 2-phenyl-benzimidazole 10 

on the β positions. Further the ortho positions of the adjacent phenyl moiety were also 

addressed for HIE, since they are located in γ to the same coordinating nitrogen atoms. 

Prompted by the result on compound 6 in the previous section (figure 53), where deuterium 

incorporation succeeded on a sp
3
 carbon in β to a coordinating nitrogen atom, we employed 

other model compounds having a substituent on similar positions of the N-heterocyclic 

scaffold. Unfortunately, compound 11 showed just traces of deuterium incorporation on its 

hydroxymethyl group, as in the case of 6. For a better understanding of this result, 2-Me-

benzoxazole 12 was tried, as it does not carry a hydroxy group which could prevent the C-H 

activation on the sp
3
 carbon through the coordination of the oxygen atom to the catalyst 

surface. Indeed, the methyl of 12, which is a sp
3
-hybridized β position of the benzoxazole 

nitrogen, displayed an isotopic enrichment of 38% corresponding to a considerably higher 

amount of deuterium than it was found for the sp
3
-positions in 6 and 11. Nonetheless, the β 

positions on the N-heterocyclic cores of 11 and 12 were deuterated very efficiently and quite 

selectively. Unselective deuterations in 11 and 12 were encountered and also confirmed by 

2
H-NMR on one more position of the N-heterocyclic scaffold, respectively (grey dots, figure 

56). These are two more examples where the deuterium uptake could be rather related to non-

directed agostic interactions and subsequent C–H activation on the ruthenium catalyst. 
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Figure 56. Examples of deuterated N-heterocyclic benzoderivatives 

 

Having elicited the possibility to label β positions on sp
2
 and on sp

3
 carbons relative to a 

coordinating nitrogen atom with RuNp@PVP and D2 gas, the objective was set to incorporate 

high deuterium amounts on 2-methyl-benzimidazole 13 and to show that this method is also 

suitable for the generation of stable isotopically labelled internal standards (figure 57). A first 

deuteration run on 2-methyl-benzimidazole in THF gave almost complete deuteration of the β 

positions and an exchange of hydrogen for deuterium at the methyl group to 57% (figure 57, 

molecule 13I). The incomplete deuteration of the methyl suggested that there must be still a 

possibility to boost the overall isotopic enrichment on this molecule. Thus, the isolated 

product was resubmitted to a second deuteration run with new catalyst under the same 

reaction conditions. In this manner, the deuteration of the methyl could be raised to 80%, 

which gave a total deuterium incorporation of 4.3 deuteriums in ESI-MS (4.4 deuteriums 

determined by 
1
H-NMR) (figure 57, molecule 13II). 
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Figure 57. Isotopic enrichment on 2-methyl-benzimidazole after two runs of deuteration (top) 

and corresponding ESI-mass spectra (bottom) 

Additionally, the deuteration progress was followed by ESI-MS after every deuteration run in 

order to monitor the disappearance and formation of every isotopologue. When unlabelled 2-

methylbenzimidazole with the natural isotope pattern a was submitted to a first deuteration 

run, the broad isotope pattern b was obtained, being composed of 4 peaks of similar 

intensities that can be assigned to the isotopologues D2-D5. It is noteworthy, that the D0-peak 

wasn´t visible any more after this deuteration run (figure 57, compare black and blue 

spectrum). A second run, under the same reaction conditions with new catalyst, tightened the 

distribution pattern by decreasing the amounts of lower deuterated isotopologues (D2-D4) to 

form a major amount of the D5-isotopologue being the representative peak (figure 57, 

compare blue and red spectrum). The amount of D0 material after the second run was at 

<0.1%. The percentage of the unselectively generated isotopologue D6 was determined to be 

1,8%. Consequently, it could be supported by mass spectrometry that RuNp@PVP catalyzed 

HIE clearly has a regioselective character because a narrow mass distribution was obtained 

instead of a broad isotope cluster. Last but not least, the total incorporation of 4.3 deuterium 

atoms (ESI-MS) also renders this method attractive for the synthesis of SILS for metabolism 
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studies (see also chapter I.3.2.1).9
 
A DFT-based investigation, was conducted for compound 9 

in order to identify the key intermediate involved in the labelling at the β- (figure 58, blue 

pathway) and α- (green pathway) positions of the nitrogens. Again, the reaction starts with a 

favorable σ-donation of the N3 nitrogen lone pair (9
N*

) and a further stabilization of the 

adduct as a result of a C
α
-H (9

N*,αH*
) or C

β
-H (9

N*,βH*
) agostic interaction. The C

β
-H HIE 

reaction involves a 5-membered dimetallacycle and is favored by an exothermic (C-H)* ↔ 

(C)*(H)* reaction (9
N*,β*

 is more stable than 9
N*

 by -4.8 kcal/mol) leading to the H/D 

exchange (vide supra the discussion for compound 3, II.2.1.2) and a relatively low C-H 

activation barrier (9
N*,βH‡*

: 5.6 kcal/mol). As shown in figure 58, the C
α
-H HIE reaction is 

characterized by a profile (in green), very similar to the profiles calculated for the two other 

H/D exchanges in α, described above for oxazole and imidazole substructures (II.2.1.2 & 

II.2.1.3).  

 

Figure 58. Energy diagram for the Langmuir–Hinshelwood-type H/D exchange on 9 in α 

(green pathway; for the sake of clarity the geometries are not given, see also SI) and β (blue 

pathway) positions of the nitrogen atoms; energies are given in kcal.mol
-1

 

The postulated α and β processes excelled in three key factors which characterize an efficient 

HIE at C(sp
2
) centers, i.e. the formation of metallacycle intermediates, a low-barrier and an 

exothermic C-H activation process. It is noteworthy that the most efficient labelling process 

(98%) goes through an almost barrierless (C)*(H)* pathway whereas the (C-D)* bonding also 

requires to overcome the lowest barrier (4.5 kcal/mol vs. 7.9 kcal/mol). In summary, 

RuNp@PVP allowed to deuterate α, β and γ positions relative to coordinating nitrogen atoms 
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on C(sp
2
) and on C(sp

3
) of N-heterocyclic benzoderivatives which could not be labelled by 

other HIE methods before. It was shown that the incorporation of deuterium could be almost 

completed on the targeted positions by conducting the HIE reaction twice on 2-methyl-

benzimidazole. DFT calculations paved the way to the discovery of a new key intermediate in 

catalysis. In this context, it was found that a five-membered dimetallacycle adduct is formed 

after the C–H activation in β of a coordinating nitrogen atom. 

 

2.1.5 Deuterations of 1,2,4-triazoles 

 

To the present day, it still did not exist a suitable method for the late-stage isotope labelling of 

the 1,2,4-triazole scaffold despite its high frequency in the structures of bioactive agents and 

therapeutics. Gratifyingly, the same HIE conditions used for oxazoles, imidazoles and their 

benzoderivatives, resulted in very positive results on various 1,2,4-triazolic derivatives. Since 

both triazolic protons are situated in α-positions relative to coordinating nitrogen atoms, they 

were exchanged very efficiently for deuterium atoms in all cases (compounds 14-19, figure 

59). Similar to previous findings, it appeared very likely, that the underlying C–H activations 

for the labelling at the α positions of the triazolic scaffold pass through four-membered 

dimetallacyclic key intermediates. In contrast to the targeted C2–H and C4–H of oxazoles, the 

C3–H and C5–H of the 1,2,4-triazole unit display almost the same reactivities in most cases, 

which was reflected in identical isotopic enrichments on C3 and C5 of compounds 14-19 

(figure 59). Moreover, exchange of hydrogen for deuterium appeared in ortho positions of 

adjacent phenyl rings, since they are situated in γ to the triazolic N2 atom for examples 14-18, 

however not for example 19. An explanation of the result on 19 is given below. Logically, C–

H activations in ortho of adjacent phenyl substituents in compounds 14-18 must also proceed 

through five-membered metallacyclic key intermediates as in the case of 2-phenylimidazole 

(figure 54). If a comparison is made between compounds 14 and 15, we notice that a methoxy 

group in the para position did not have any impact on the isotopic enrichment in the ortho 

positions. When comparing 14 with 16 and 17, it turns out that the presence of protic and 

strongly polar moieties, like the hydroxyl group in 16 and the amino group in 17, lowers the 

isotopic enrichment values in ortho positions of the phenyl units. In addition, the 

hydroxymethyl side chain in the meta position of 16 shields one ortho site more than the 

other. Thus, diminished isotopic enrichments can emerge from competitive and steric 

substituent effects. This hypothesis could be confirmed by subjecting compound 18 to the 
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same HIE conditions. The acetylation of the -NH2 group in 17 furnished the acetyl amide 18. 

The HIE on 18 with RuNp@PVP resulted again in a higher deuterium uptake in the ortho 

positions. The most reasonable interpretation of this result is that the extension of the amino 

group by an electron withdrawing acetyl has a deleterious impact on the coordination ability, 

depriving the aniline nitrogen of its ability to compete with the triazole unit for the catalyst 

surface. 

 

Figure 59. Examples of deuterated 1,2,4-triazole derivatives 

Just when derivative 19 was considered, where the 1H-1,2,4-triazole in 18 is replaced for a 

4H-1,2,4-triazole unit, the acidity of the triazole protons increased remarkably. As a 

consequence, a certain amount of incorporated deuterium got lost through back-exchange 

after the HIE during the recrystallisation of 19 from methanol and ethylacetate, giving a slight 

decrease in isotopic enrichment (74%). Deuterations were also observed in ortho positions of 

phenyl groups, i.e. in γ-sites of coordinating nitrogen atoms. These enrichments were 

considered to be non-directed, since those protons cannot be reached for C–H through the 
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coordination of N1 and N2 to the ruthenium surface. Hence, the interpretation of the non-

directed HIE on these both ortho positions could reside in their ability to directly coordinate 

to the catalyst through an agostic interaction (see also chapter II.2.1.6, figure 64, for a more 

detailed explanation). To sum up, the first method with a high functional group compatibility 

was found to perform efficient HIE on 1,2,4-triazole-based molecules. In every considered 

case, intensive exchange was observed at both α positions of the 1,2,4-triazole unit, 

highlighting its role as a reliable handle for the incorporation of two deuterium atoms at a 

minimum which could be supported by successful labelling of model compounds 14-19. 

Except acetyl derivative 19, deuterium atoms were never observed to exchange backwards at 

other model compounds in methanol after being stored at room temperature, since the values 

for total isotope incorporation generated by ESI-MS were mostly in line with those from 
1
H-

NMR. Based on the DFT-results in the precedent chapters, the labelling in α on the triazole 

scaffold was attributed to a reaction mechanism that passes through a four-membered 

dimetallacyclic key intermediated and the labelling in γ on adjacent phenyl rings to a reaction 

mechanism that goes through a five-membered metallacyclic key intermediate. 

 

2.1.6 Deuterations of carbazoles 
 

 

Up to date, only few HIE methods were reported for the deuteration of carbazoles. All of them 

are accompanied by harsh reaction conditions and unselective isotope incorporation (chapter 

I.3.2.1, figure 25).
56

 The catalysis by RuNps in this work allowed more selective deuterium 

labelling in the solvents THF and ethylacetate. For compounds 20 to 23, high isotopic 

enrichments (72% – 89%) occurred at the β-positions relative to the nitrogen using smooth 

reaction conditions (figure 60). However, the deuterium incorporation selectivity on 

carbazoles stayed moderate, if we consider that other positions of the N-heterocycles 

manifested unselective incorporations up to 13% (grey dots on compound 20, figure 60). As 

already noticed on other N-heterocycles (e.g. compounds 8, 11, 12, 19) the positions C2, C3, 

C6 and C7 of the carbazole scaffold are also prone to undergo C-H activations which cannot be 

directed by a σ-coordination of the nitrogen atom. This hypothesis is reinforced by the fact 

that using N-methylcarbazole 24 as a substrate led exclusively to weak deuterium 

incorporations in positions C2, C3, C6 and C7 but not in β to the nitrogen atom (figure 60). 

Another major problem was the reduction of compounds 20-24 which required a purification 
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through chromatography or recrystallization in every case, furnishing a decreased yield of 

deuterated products (figure 60). 

 

Figure 60. Examples of carbazole derivatives deuterated under neutral conditions. 

To shed some light on this topic from a theoretical point of view, a DFT-based investigation 

was performed using carbazole as model compound. Three coordination modes have been 

considered, either by the nitrogen atom (20
NH*

, blue pathway, figure 61), by the carbon in 

position 1 (20
βH*

, red level, figure 61), and the simultaneous coordination of N and C1-H 

(20
NH*,βH*

, black pathways, figure 61). 20 revealed to be weakly coordinated to the surface, 

by -5 to 9 kcal/mol, if we compare it to ca. -25 kcal/mol in the previous cases. This is 

consistent with a π coordination instead of a σ coordination. Apparently, the latter is less 

favored because it would break the conjugation of the carbazole scaffold. Since the 20
βH*

 

adsorption mode is the less favored one, a subsequent C1-H activation has not been explored. 
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The 20
NH*

 coordination leads to a direct N-H activation with a rather low 13.3 kcal/mol 

barrier height and a 20
N*

 product more stable by 7.9 kcal/mol than the adsorbed carbazole. 

Thus, after H/D exchanges at the surface, a (N–D)* carbazole (or 20
ND*

) could be obtained by 

overcoming a 21.2 kcal/mol kinetic barrier. Although significantly higher than in the previous 

cases, it can be probably overcome in mild conditions. Two other pathways were considered 

from the 20
NH*,βH* 

dimetallacycle: the N-H activation (20
N*,βH*

, dashed black line) followed 

by the C1-H activation (20
N*,β*

) and the C1-H activation (20
NH*,β*

, plain black line) followed 

by the N-H activation (20
N*,β*

). These both exothermic reactions involve moderate barrier 

heights and the C-H activation seems easier through these two pathways. In summary, the 

optimal reaction consists in the coordination of a 5-membered dimetallacycle that partially 

breaks the conjugation and that preludes a possible HIE both on N and on C1 through two 

pathways that require to overcome a 17.8 kcal/mol apparent barrier in order to go to 20
ND*,βD*

. 

 

 

Figure 61. Energy diagram for the first steps of the Langmuir–Hinshelwood-type H/D 

exchange on 20: on N and then in β (dashed black pathway); in β and then on N (black 

pathway); directly on N (blue pathway). The π adsorption energy in β is also given in red. 

Energies are given in kcal.mol
-1

. 

Surprisingly, the use of one equivalent of the base Cs2CO3 clearly enhanced the efficacy, 

regio-and chemoselectivity of the deuterium incorporation. The HIE on carbazoles in the 

presence of Cs2CO3 was insofar much more chemoselective as undesired reduced side 
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products were not formed anymore and the deuterated products could be obtained in nearly 

quantitative yields without further purification (figure 62). 

 

 

Figure 62. Examples of deuterated carbazoles under basic conditions 

Further, the labelling proceeded in a slightly more regioselective manner because traces of 

deuterium incorporations nearly disappeared in positions 3 and 6 of carbazole 20’ and in 

positions 3 and 8 of compound 23’ (figure 62). The increase in regio- and chemoselectivity 

might be explained by a base assisted N-H activation leading to the formation of a N-Ru bond 

which would inhibit non-directed agostic interactions of positions C2, C3, C6 and C7 of the 

carbazole scaffold and π-interactions of the aromatic rings with the surface of the catalyst. We 

also anticipated that the base could facilitate the C-H activation process itself which would 

explain the more efficient deuterium incorporation and the higher isotopic enrichments in the 

β positions. In any case, this represented the first method allowing an efficient and quite 
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selective deuterium incorporation on carbazole substructures using an HIE approach, to the 

best of our knowledge. Prompted by the obtained results we were eager to study the role of 

cesium carbonate on these activation processes. The exploration of these pathways in the 

presence of a base is not an easy task for transition-state search algorithms. It is however 

possible to give some energetic and structural clues regarding the role of Cs2CO3 on the C–H 

and N–H activation on compound 20’. As shown in figure 63(a), Cs2CO3 can favorably 

interact with both the surface and the nanoparticle bound intermediate 20’
NH*, βH*

. 

Interestingly, this Cs2CO3 / 20’
NH*, βH*

 complex is more stable by ca. 20 kcal/mol than two 

separate species on the surface. However, this is an energy minimum, i.e. geometry 

optimizations do not involve a barrierless H transfer from C1 or N toward the base. 

 

 

Figure 63. Ability of Cs2CO3 to coordinate to the catalyst surface and to adapt the role of a 

proton acceptor in the N–H and C–H activation step. 

Given that the species resulting from this transfer are thermodynamically less stable by ~4 

kcal.mol
-1

 and ~6 kcal.mol
-1

, such pathways would not facilitate the deuterium incorporation. 

However, we should also consider the possible role of the base after a first C-H or N-H 

activation by the metal surface of the RuNp. As shown in figure 63(b), a Cs2CO3 in the 

vicinity of the 20’
NH*, β*

 or  20’
N*, βH*  

intermediates spontaneously – and hence efficiently – 
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abstracts the hydrogen of the N-H and C1-H bonds. The reactions are exothermic by ~19.5 

kcal.mol
-1

 and do not display any energetic barrier. These proton abstractions give rise to the 

formation of the adduct 20’
N*, β*

 where the carbazole is bound perpendicularly to the surface 

of the nanoparticle (figure 63(b)) Given the C and N coordination on the surface, the H/D 

exchange can then occur from the resulting 20’
N*, β*

 compound. All in all, the easier and faster 

formation of σ-coordinations to the catalyst surface in the presence of a base, could explain 

the higher efficiency, chemo- and regioselectivity of the deuterium incorporation on the 

substrates 20’-23’. First of all, the higher efficiency i.e. the almost complete deuterium 

incorporations at β positions of carbazoles can be referred to the easier transfer of protons 

during the activation of N-H and C-H bonds which is barrierless with Cs2CO3. Undoubtedly, 

the most striking effect of adding Cs2CO3 on the HIE was the absence of reduced side-

products. It is very likely that π-coordinations of aromatic C–C double bonds are 

indispensable to let the reduction of aromatic rings occur as a side-reaction. However, in the 

presence of Cs2CO3 the N–H and C–H activated adduct 20’
N*, β*

 from figure 63(b) is favored 

because its formation proceeds in a barrierless fashion. Since the aromatic substrate has 

adapted a perpendicular position relative to the catalyst surface in this case, π-interactions 

disappear and the formation of reduced side-products is circumvented, explaining the increase 

in chemoselectivity. Apparently, Cs2CO3 also slightly influenced the regioselectivity i.e. the 

unselective deuterations of other positions than C1 and C8, but this effect was not enormous. 

As already mentioned above, the deuteration at positions 3 and 6 of carbazole, for example, 

decreased from 8% to 0% (compare compounds 20 and 20’ in figure 60 and figure 62). A 

possible mechanism is illustrated in figure 64 to shed some light on these unselective 

deuterations which are not driven by the coordination of a nitrogen atom to the catalyst. 

Although energetically less favored, but still possible, it is likely that C–H  bonds on other 

aromatic carbons than C1 or C8, interact with the catalyst through agostic interactions (figure 

64, step A). An absorption mode without the participation of the nitrogen atom was already 

invoked with the red level 20
βH*

 in figure 61. The coordination of such a position is followed 

by the insertion of a surface ruthenium atom into the C–H bond. This generates the C–H 

activated organometallic species i.e. a carbazole that is covalently bound through the C3 or C6 

position to the metal surface (figure 64, step B). Since the surface hydrides and deuterides are 

mobile at the catalyst surface, the hydride gets exchanged for a deuteride in the vicinity of the 

carbazole (C). The subsequent reductive elimination with a surface deuteride leads to the final 

hydrogen-deuterium exchange on position 3 of carbazole (figure 64, step D). In any case, 

figure 64 could serve as a general explanation for non-directed ruthenium catalyzed HIE for 
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every other N-heterocycle in the precedent chapters (compounds with grey dots, 8, 11, 12, 19, 

20, 22, 23 and 24). For a deeper understanding of this type of deuteration and the underlying 

mechanism, further experiments under different reaction conditions are required. 

 

 

Figure 64. Proposed Ru-catalyzed mechanism for non-directed labelling; exemplified on 

carbazole 

 

2.1.7 Deuterations of N-heterocyclic bioactive molecules 

 

Deuteration experiments on N-heterocycles of medical relevance and higher molecular 

complexity should provide a more profound evaluation of the potential usefulness of Ru 

nanoparticle catalyzed hydrogen isotope labelling. Besides suvorexant 31, biologically active 

substances were chosen whose deuterium or tritium labelling wasn’t carried out within a late-

stage modification approach, to the present day. For the antifungal drug fluconazole and the 

H1 antagonist astemizole just conventional synthetical approaches from labelled precursors 

are known to generate the final drug compounds being endowed with a deuterium or tritium 

label as discussed in chapter I.3.1.
52

 Deutero- or tritioanalogues of the natural product 

pimprinine, the agrochemical fluquinconazole and the TLR7 agonist Imiquimod should exist 

because two of these examples are marketed drugs but HIE methods for their synthesis did not 

appear in literature. This might be reasoned in a lack of HIE methods with an appropriate 

functional group tolerance for the labelling of highly sensitive and badly soluble substrates 

like these. The deuteration of pimprinine catalyzed by RuNp appeared at the indole with a 

moderate isotopic enrichment, at C4 of the oxazole ring and the methyl with isotopic 

enrichments of 89% and 63%. The HIE yields a total uptake of 3.5 deuteriums (compound 

25I, figure 65a). 
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Figure 65. Deuteration of pimprinine by RuNp@PVP with different selectivities  

A different selectivity was achieved under the same reaction conditions by adding one 

equivalent of Cs2CO3. By adding Cs2CO3, the labelling efficiency on the indole could be 

boosted to 99% in α and β to the N-H group, analogous to the findings made with 

carbazoles 20’ – 23’ (figure 62). As a result, the HIE efficiency on the methyl group was 

lower and the isotopic enrichment diminished from 63% to 7%. With this HIE protocol, a 

total amount of 3.1 deuteriums could be still incorporated. Repeatedly, the addition of Cs2CO3 

brought about the advantage that reduced side-products were not formed in contrast to the 

previous protocol without base (compound 25II, figure 65b). Attempts to interpret the change 

in selectivity on pimprinine without and with Cs2CO3 are given in figure 66. First of all, in 

order to be reduced to side-products, the substrate needs to undergo π-interactions with the 

catalyst. This is best achieved when the molecule is not covalently bound to the nanoparticle; 

thus it can get flat on the surface. As discussed on carbazoles, this situation is given under 

neutral conditions (figure 66(a), top). Moreover, under neutral conditions the indole N–H 

moiety and the oxazole nitrogen atom compete for coordination sites on the RuNp. In the 

context of imidazole- and benzimidazole scaffolds, DFT calculation revealed that the nitrogen 

on position 3 has a higher affinity to the catalyst than the (benz)imidazole N–H group 

(II.2.1.3 & II.2.1.4). Consequently, the oxazole nitrogen is assumed to be the better 

coordination competitor in this case which is also justified by the much higher deuterium 

incorporation on the oxazole- than on indole group under neutral conditions (figure 66(a), 

bottom). Whereas, an explanation for the almost complete deuteration of the α- and β position 

on the indole moiety in the presence of Cs2CO3 was seen in the formation of a covalent Ru–N 

bond between the indole and the RuNp (figure 66(b)), which is generated through a base-

assisted N–H activation as for carbazole in figure 63. Being covalently bound to the surface, 

this intermediate was supposed to be sufficiently stable to bring about the efficient deuteration 
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of the indole group in 25II (figure 66, (b)). Interestingly, the isotopic enrichment was not 

affected at the α position of the oxazole group (figure 65, compare (a) and (b)), which proved 

that the oxazole nitrogen is still a good coordination competitor. These results rather indicated 

that Cs2CO3 has the ability to assist in C–H activations on every sp
2
-hybridized carbon atom 

but not on sp
3
-carbons which explains the decreased isotopic enrichment at the methyl group 

in 25II. 

  

Figure 66. Propositions of favored key-intermediates for the RuNp@PVP catalyzed 

deuteration of pimprinine (a) without and (b) with Cs2CO3 
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Figure 66. Propositions of favored key-intermediates for the RuNp@PVP catalyzed 

deuteration of pimprinine (a) without and (b) with Cs2CO3 

When handling this oxazolic natural product, we confirmed that it is prone to turn rapidly into 

degradation products at 40°C and in the presence of oxygen and light.
89

 For this reason, it is 

indispensable having the possibility to perform isotopic labelling under mild reaction 

conditions, as we have shown herein. Finally, the possibility to switch the deuterium 

incorporation selectivity renders this HIE method interesting for the preparation of stable 

isotopically labelled internal standards for metabolic studies. Carvedilol is a drug example 

that contains a carbazole scaffold in its molecular structure (figure 67). Using carvedilol as 

substrate led to the deuteration on both α positions of the secondary amine nitrogen with an 

isotopic enrichment of 90% respectively (figure 67, 26I, signals at 3.10 ppm and 2.99 ppm in 

2
H-NMR). In contrast, the targeted carbazole moiety merely showed low deuterium uptakes 

(14% and 17%) on the β positions relative to the carbazolic N–H group (figure 67, signals at 
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7.45 ppm and 7.09 ppm in 
2
H-NMR). This difference in isotopic enrichment on two different 

coordinating units inside the same molecule clearly reflected a competition for the catalyst 

surface between both. Apparently, the alkylamine showed much higher deuteration because 

its nucleophilic nitrogen has the ability to undergo a strong σ-coordination to the catalyst 

surface, whereas the carbazole scaffold is just able to interact through a weak π-coordination 

with the ruthenium catalyst. Thus, the deuterated drug 26I was representative for the obtained 

results from the DFT-studies for the HIE on carbazoles in chapter II.2.1.6 which told us that 

the level of isotopic enrichment goes hand in hand with the tendency of the directing nitrogen 

atom to coordinate to the Ru catalyst surface.  

 

Figure 67. Labelled positions in the molecular structure of carvedilol 25I and 
2
H-NMR 

spectrum; chemical shifts are given in ppm 

However, if we imagine a clinical trial situation within a drug development process which 

absolutely requires a deutero- or tritio-analogue of a drug candidate that carries the hydrogen 

isotope label exclusively on its carbazole moiety (e.g. for the investigation of the precise 

metabolism sites of the molecule and the place of metabolism in the body), a different 

strategy would be needed for achieving such a HIE on a molecule as carvedilol. Logically, if 

we don´t want the amine to be labelled, we have to completely withdraw its affinity to the 

catalyst; and if the carbazole moiety is supposed to be enriched by deuterium or tritium as 

efficiently as possible, its affinity to the catalyst needs to be increased. In any case, we already 

figured out how to boost the isotopic enrichment on the carbazole moiety in chapter II.2.1.6. 

Indeed, by simply protecting the aliphatic amine with a Boc-group and adding one equivalent 

of Cs2CO3, we were able to exclusively label the carbazole moiety with RuNp@PVP and to 

obtain N-Boc-protected carvedilol with high isotopic enrichments on both β positions on the 

carbazole unit (99%) (figure 68, 26II, signals at 7.45 ppm and 7.10 ppm in 
2
H-NMR). The 
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additional signals in the aromatic region at 7.29 and 6.87 ppm arouse from unselective 

labelling of positions 2, 3 and 5 of the carbazole unit. Gratifyingly, deuterium incorporation 

wasn´t detected at all in the proximity of the protected amine nitrogen. The possibility to 

modify the regioselectivity of the isotope incorporation on a complex structure by using 

simple protecting group strategies, highlights once more the versatility of our RuNps 

catalyzed HIE reactions for the synthesis of labelled compounds used in metabolic studies. 

 
Figure 68. Labelled positions in the molecular structure of N-Boc-protected carvedilol 25II 

and 
2
H-NMR spectrum; chemical shifts are given in ppm 

In the next step, the deprotection of deuterated N-boc-protected carvedilol 26II was carried 

out in order to obtain carvedilol that displays deuteration exclusively at the carbazole moiety. 

Removal of the boc-group succeeded with 25 equivalents of trifluoroacetic acid in DCM 

(figure 69, top). Unfortunately, the deuterium labelling on deprotected carvedilol 26III 

proved to be stable just at position 7 and 8 of the carbazole group (figure 69, bottom). The big 

signal at 7.10ppm in figure 68 corresponds to the deuterated position 1 of the carbazole 

scaffold. Taken into account that chemical shifts of the carbazole group in 26II and 26III do 

not significantly differ, the signal at 7.10ppm of 26II disappeared after removal of the boc-

group, which could be related to a back-exchange of deuterium for hydrogen at positions 1 

and 2 of the carbazole nucleus under acidic conditions (compare aromatic regions of 
2
H-NMR 

spectra in figure 68 and figure 69). The third signal at 6.87 ppm in the 
2
H-NMR spectrum in 

figure 69 corresponds to traces of deuterium on aromatic positions of the methoxyphenyl 

group. 
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Figure 69. Deprotection of deuterated N-boc-carvedilol 26II to deuterated carvedilol 26III 

(top) 
2
H-NMR spectrum of deuterium labelled carvedilol 26III (bottom); chemical shifts are 

given in ppm 

Moreover, many other N-heterocyclic drugs and agrochemicals could be successfully 

deuterated under neural conditions by RuNp@PVP. The benzimidazole containing drug 

astemizole has been a commercial drug in the treatment of allergies (figure 70).
90

 Deuteration 

within our method occurred at the benzimidazole scaffold in β to the unsubstituted nitrogen 

with an isotopic enrichment of 87%. Furthermore, the 
2
H-NMR spectrum also supported 

slight H/D exchange on one α-methylene of the tertiary amine (22%). Seemingly, the two 

protons of this α-methylene are diastereotopic protons which gives rise to a different chemical 

shift and to the appearance of two signals in 
2
H-NMR at 2.64ppm and 2.47ppm when the 

methylene group is deuterated (figure 70). The deuteration of other positions on the side-

chain could be excluded because ESI-MS analysis of the labelled product did not show any 

isotopologues with more than three deuteriums. 
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Figure 70. Labelled positions in the molecular structure of astemizole 26 and 
2
H-NMR 

spectrum; chemical shifts are given in ppm 

The deuteration selectivity at the aliphatic side-chain can be related to the chair conformation 

of the piperidinyl moiety which necessitates its two big substituents to be equatorial. As a 

consequence, certain hydrogens of the 6-membered aminocycle, especially those which are 

situated on α-positions relative to the nitrogen atoms, cannot be exposed to the metal surface. 

Most probably this conformational constraint prevents a C–H activation at those positions 

(figure 71).  

 

Figure 71. Structural conformation of astemizole, dictating the deuteration selectivity 

Imiquimod exerts convincing efficacy against malignant melanoma, with a mode of action on 

different pathways (figure 72).
91

 It displays very poor solubility in common organic solvents 

like THF or ethylacetate and needed to be dissolved in DMA for a satisfying deuteration. 

High deuterium incorporation could be encountered at two positions of the N-heterocyclic 

system, in α and β to the heteroatoms, leading to isotopic enrichments of 86% on the α- and to 

89% on the β position. The low solubility also complicated NMR-analysis by broadening the 

signals and decreasing the resolution. 
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Figure 72. Labelled positions in the molecular structure of imiquimod 28 and 
2
H-NMR 

spectrum; chemical shifts are given in ppm 

 

 

 

Figure 73. Labelled positions in the molecular structure of fluconazole 29 (top) and 

fluquinconazole 30 (bottom) with 
2
H-NMR spectra; chemical shifts are given in ppm 

The HIE on the antifungal drug fluconazole and the agricultural fungicide fluquinconazole 

was representative for the high functional group tolerance of the Ru nanoparticle catalyzed 

method (figure 73). Respectively, triazolic protons were exchanged efficiently for deuterium 
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and the deutero-analogues of both 1,2,4-triazole containing bioactive compounds could be 

obtained through simple filtrations (figure 73, compounds 29 and 30). The 
2
H-NMR spectra 

were then recorded without further purifications after the deuteration reactions (figure 73). 

This rapid deuterium labelling is insofar beneficiary as we consider that stable isotopically 

labelled internal standards of fluconazole were originally synthesized from deuterated 

precursors over four steps (I.3.1).
51

 The 1,2,3-triazole drug suvorexant is administered for 

insomnia treatment and is already known to be labelled by hydrogen isotopes within other 

methods (figure 74). Significant exchange occurs either on the 1,2,3-triazole with a 

homogeneous Fe(0) catalyst (leading to the incorporation of 0.6D) or in ortho of the adjacent 

phenyl with Crabtree´s catalyst (theoretically limited to the incorporation of 1D).
68

 In this 

work, the use of RuNp@PVP as catalyst allowed for deuterium labelling of both, the 1,2,3-

triazole group (1.6D) and the adjacent phenyl ring (0.3D) which gave a considerably higher 

deuterium incorporation as a whole, than the ones obtained using the previously described 

HIE procedures. The successful deuteration of these positions was approved by 
2
H-NMR. The 

signal at 7.86ppm corresponds to triazolic deuterons and the smaller signal at 7.31ppm to the 

ortho position. The latter manifests broadening because suvorexant usually shows different 

rotamers in NMR-spectra. Contrary to the findings made with model compound 12, the 

benzoxazole moiety of suvorexant stayed unlabelled, which was related to the steric hindrance 

arising from the chlorine substituent that prevented a coordination of the benzoxazole 

nitrogen to the ruthenium nanoparticle. All in all, these results manifested an excellent and 

general compatibility of triazolic units with RuNp@PVP, completely circumventing side-

reactions like reductions of unsaturated groups and hydrogenolyses e.g. of halogen 

substituents. 

 

 

Figure 74. Labelled positions in the molecular structure of suvorexant 31 with 
2
H-NMR 

spectra; chemical shifts are given in ppm 
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2.1.8 Tritiations of N-heterocyclic Drugs 
 

Owing to the mentioned limitations in tritium labelling of drugs previously discussed in 

chapter I.3.2.1, the possibility to introduce a tritium label into complex N-heterocyclic 

pharmaceuticals through our RuNp@PVP-based method would be a real benefit. For this 

reason, in the first step, we tried to optimize the deuteration conditions for the three selected 

drug examples N-Boc-protected carvedilol, astemizole and fluconazole in order to apply them 

to the tritiations of these drugs with T2- instead of D2 gas. The objective was to develop 

tritiation protocols that can generate radioactive analogues of these three drug examples with 

RuNp@PVP as catalyst under tritium gas pressures inferior to 1.0 bar in THF. N-Boc-

protected carvedilol was deuterated in the precedent chapter with 10 mol% RuNp@PVP 

under a D2 gas pressure of 2 bar in THF with 99% isotopic enrichment on both β positions. 

For the optimization of the reaction conditions under lower gas pressures, the catalytic 

loading was raised to 20 mol%. In this manner, the deuteration still proceeded with high 

isotopic enrichments (80%) at 936 mbar, which already represented an appropriate gas 

pressure for a potential tritiation reaction (table 2, entry 1).  

 

 

Entry Applied pressure of D2 gas 

(RT) 

Isotopic enrichment at β 

positions 

(
1
H-NMR) 

Deuterium uptake in 

total (ESI-MS) 

 

1 

 

936 mbar 

 

80% 

 

1.8D 

2 795 mbar 53% 1.2D 

3 578 mbar 59% 1.4D 

4 549 mbar 60% 1.3D 

    

Table 2. Deuterium uptakes on N-Boc-carvedilol under different D2 gas pressures (isotopic 

enrichment values were equivalent on both β positions), experiments were carried out in 

2.5mL Fisher-Porter tubes using the reaction conditions: 20mol% RuNp@PVP, 10µmol 

substrate, 1 eq. Cs2CO3, 0.3mL THF, 50°C, 24h 
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When the pressure of deuterium gas was decreased to lower values, the deuterium uptakes 

settled at 50-60% on both β positions of the carbazole scaffold (table 2, entry 2-4). The 

deuterium uptakes were also followed by ESI-MS and listed in the last column of table 2. 

These values refer to the sum of all deuterium atoms that were incorporated on every labelled 

position of the molecule (blue and grey dots). As it was shown in table 2, more than one 

deuterium atom could be incorporated into N-Boc-protected carvedilol under D2 pressures 

which were slightly above 500 mbar. The objective was also to incorporate approximatively 

one tritium atom into the molecule within a tritiation reaction with T2- instead of D2 gas. For 

this reason, the tritiation of N-Boc-protected carvedilol was conducted under a T2 pressure 

from the same range (519 mbar) in a Fisher-Porter tube of 2.5 mL with a gas volume of 5.0 

mL in the presence of one equivalent Cs2CO3, taking into account a KIE that usually leads to 

a lower tritium incorporation. The total activity of T2 used was 6.6 Ci. Unfortunately, the 

tritium uptake in 26* merely corresponded to 0.3T i.e. an isotopic enrichment of 13% per β 

position. Thus, the achieved molar activity (9 Ci/mmol) of the tritiated drug was still within 

an acceptable range but much lower than expected. With regard to the deuteration of N-Boc-

protected carvedilol under the same conditions, where still more than one deuterium could be 

incorporated on the carbazole, the impact of the kinetic isotope effect was assumed to be 

tremendous for the tritiation described herein. In order to find an explanation for this large 

drop of the isotopic enrichment on N-Boc-protected carvedilol within the tritiation reaction 

and if we want to figure out in how far the kinetic isotope effect plays a role in this case, 

further experiments need to be conducted. Nevertheless, a purification of the tritiated product 

through HPLC was not necessary at all since side-products resulting from reduction or 

radiolysis were not formed. Further, 
3
H-NMR evidenced a fully selective labelling at the β 

positions of the carbazole nucleus (two singulets) which could be considered as a clear asset 

(figure 75).  
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Figure 75. Tritiated N-Boc-carvedilol and the corresponding 
3
H-NMR spectrum 

In order to exclude leakage and other preparative errors, the tritiation of N-Boc-carvedilol was 

repeated with a higher pressure and bigger volume of T2 gas of 882 mbar in a Fisher-Porter 

tube of 5.0 mL (gas volume of 7.3 mL) which was equal to 16.9 Ci of T2 gas inside the 

reaction vessel. Under these conditions, the tritium uptake on the molecule even dropped to a 

molar activity of 4.4 Ci/mmol, according to 7% of isotopic enrichment per β position on the 

carbazole scaffold. This result reconfirmed within a tritiation that HIE catalyzed by 

RuNp@PVP under gas pressures below 1.0 bar depends less on the gas pressure than on other 

factors. Despite of all, further experiments are required for a full comprehension of the low 

isotopic enrichment in these tritiations. 

When the deuteration conditions were optimized for astemizole, the deuterium uptake was 

monitored by the isotopic enrichment at the β position of the benzimidazole scaffold through 

1
H-NMR and verified by ESI-MS (table 3). The optimization of the reaction conditions was 

started at 948 mbar of D2 and with 46 mol% of catalytic loading in THF. Under these 

conditions, the deuterium incorporation of 0.5D was too low, if we consider that at least one 

deuterium was needed (table 3, entry 1). The deuteration was repeated under the same 

conditions in DMA. Although the pressure at room temperature with the less volatile solvent 

DMA (table 3, entry 2) was 110 mbar lower than in entry 1, both initial pressures at -196 °C 

were the same. Owing to the deuterium uptake, the change from THF to DMA did not give 

any difference. Thus, the deuteration was repeated in THF with a higher catalytic loading (92 

mol% RuNp@PVP). Gratifyingly, the deuterium uptake could be more than doubled in this 

manner (table 3, entry 3). A second experiment under the same conditions ensured the 

reproducibility of the result (table 3, entry 4). 
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Entry Applied pressure of D2 gas 

(RT) 

Isotopic enrichment at the 

β position of the 

benzimidazole group 

(
1
H-NMR) 

Deuterium uptake in 

total (ESI-MS) 

 

1 

 

948 mbar 
a
 

 

31% 

 

0.5D 

2 838 mbar 
b
 29%  

3 991 mbar 
c
 50% 1.2D 

4 980 mbar 
c
 54% 1.2D 

    

Table 3. Deuterium uptakes on astemizole under different D2 gas pressures (isotopic 

enrichment values of the β position on benzimidazole were chosen as a reference point), 

experiments were carried out in 2.5mL Fisher-Porter tubes using the reaction conditions: (a) 

46mol% RuNp@PVP, 11µmol substrate, 0.5mL THF, 50°C, 24h, (b) 46mol% RuNp@PVP, 

11µmol substrate, 0.5mL DMA, 50°C, 24h, (c) 92mol% RuNp@PVP, 11µmol substrate, 

0.4mL THF, 50°C, 24h 

Since the deuteration of astemizole with 92 mol% RuNp@PVP and a D2 pressure that was 

slightly below 1 bar incorporated more than one deuterium atom, the same conditions were 

chosen for a corresponding tritium labelling. The tritiation of astemizole was conducted with 

a total activity of 12.4 Ci, being equal to a tritium gas pressure of 970 mbar with a gas volume 

of 5 mL. To our delight, the obtained molar activity of 27* (24 Ci/mmol) clearly 

outperformed the prerequisites for ADME studies, which usually range form 10-20 Ci/mmol 

(figure 76). In this case, the isotopic enrichment values did not significantly differ between 

deuteration and tritiation reaction under the same conditions, evidencing the absence of a KIE 

for the tritiation of astemizole. 
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Figure 76. Tritiated astemizole and the corresponding 
3
H-NMR spectrum 

When the deuteration conditions were optimized for fluconazole, the deuterium uptake was 

followed by the isotopic enrichment through 
1
H-NMR at the α positions of the 1,2,4-triazole 

scaffolds and verified once by ESI-MS (table 4). The first try at 625mbar and 30°C delivered 

50% of isotopic enrichment on each labelled position (table 4, entry 1). Increasing the 

temperature to 50°C did not give any change in isotopic enrichment (table 4, entry 2). When 

gradually increasing the D2 gas pressure from 600-900mbar we encountered that 10mol% or 

13mol% of catalyst nearly operated with the same efficiency at 30°C and 50°C (table 4, 

entries 1-4). Just a higher catalyst loading of 30mol% raised the isotopic enrichment to 91% 

per α position (table 4, entry 5). 
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Entry Applied pressure of D2 gas 

(RT) 

Isotopic enrichment at α 

positions 

(
1
H-NMR) 

Deuterium uptake in 

total (ESI-MS) 

 

1 

 

625 mbar 
a
 

 

50% 

 

2 636 mbar 
b
 51%  

3 840 mbar 
b
 56%  

4 ~900 mbar
 c

 50% 1.7D 

5 ~900 mbar 
d
 91%  

    

Table 4. Deuterium uptakes on fluconazole under different D2 gas pressures (isotopic 

enrichment values were mostly equivalent for every α position), experiments were carried out 

in 2.5mL Fisher-Porter tubes using the reaction conditions: (a) 10mol% RuNp@PVP, 50µmol 

substrate, 1mL THF, 30°C, 24h, (b) 10mol% RuNp@PVP, 50µmol substrate, 1mL THF, 

50°C, 24h, (c) 13mol% RuNp@PVP, 17µmol substrate, 0.5mL THF, 50°C, 24h, (d) 30mol% 

RuNp@PVP, 17µmol substrate, 0.5mL THF, 50°C, 24h 

Given that the reaction condition from entry 4 in table 4 already incorporated a sufficient 

amount of 1.7D into fluconazole, this was the reaction condition of choice for the tritiation 

reaction. However, the reaction temperature was set to 30°C because it was found not to have 

any impact on the deuterium uptake in this case. The tritium labelling of fluconazole was 

performed under 869mbar of T2 gas (gas volume of 5mL) which corresponds to a total 

activity of 11.1Ci. This procedure yielded tritium labelled fluconazole with a molar activity of 

24.7 Ci/mmol (figure 77). If we have a look at the isotopic enrichment, a KIE is perceivable 

but it did not appear in a drastic fashion, if we compare 1.7D to 0.8T and take also in account 

that the tritiation reaction was conducted under a lower temperature of 30°C instead of 50°C. 

All in all, the result was satisfying because the obtained molar activity was again in full 

compliance with the requirements for ADME studies. 
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Figure 77. Tritiated fluconazole and the corresponding 
3
H-NMR spectrum 

To sum up, a moderate KIE emerged between the deuteration and tritiation reaction of 

fluconazole 29*. Comparing the deuteration and tritiation reaction of astemizole 27*, rather 

no KIE could be encountered. Changing the isotopic source from D2 to T2 did not 

significantly diminish the tritium uptakes on the two drugs owing to the satisfying molar 

activities of around 24 Ci/mmol for both tritium labelled drug analogues 27* and 29*. 

However, the tritium uptake of N-Boc-carvedilol manifested a much stronger KIE due to the 

large drop in isotopic enrichment compared to the deuteration under the same conditions. 

Probably, the strongly divergent result on N-Boc-carvedilol can be related to a different type 

of KIE that arose from the base Cs2CO3 that showed a specific reactivity with T2 gas on the 

RuNp surface. In order to figure out in how far Cs2CO3 is involved in the drop of isotopic 

enrichment in this tritiation reaction, we could imagine to conduct the tritiation of a different 

substrate, which showed higher tritium uptakes with RuNp@PVP (e.g. astemizole), in the 

presence of Cs2CO3 as a test experiment. Interestingly, in none of the three cases, the amount 

of incorporated deuterium or tritium strongly depended on the gas pressure. It was rather the 

increase in catalytic loadings that gave rise to higher deuteration at gas pressures inferior to 

1.0bar as demonstrated for astemizole and fluconazole. The tritium uptake in N-Boc-

carvedilol did not depend at all on the applied total activity or pressure of tritium gas. 

However, for the illumination of this topic, further studies on the KIE between hydrogen, 

deuterium and tritium are required. In any case, the low dependence of isotopic enrichment on 

the applied D2- or T2 gas pressure could be an evidence that the catalyst loses the capacity to 

activate deuterium or tritium gas under gas pressures below 1.0bar once the N-heterocyclic 

substrate gets absorbed on the surface. There are still several crucial assets of our method to 

be outlined in terms of tritium incorporation in complex pharmaceuticals. Compared to every 

existing heterogeneous transition metal catalyzed HIE method, it could be demonstrated that 
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the catalyst RuNp@PVP was applicable to the broadest variety of N-heterocyclic drugs to 

efficiently prepare tritiated analogues thereof. This is further evidenced by the fact that, to the 

present day, the simplest way to label the N-heterocyclic substructures of astemizole and 

carvedilol by tritium was the transformation of halogenated precursors with Pd/C and T2, a 

procedure that consisted of several other reaction steps (I.3.1).
52

 Furthermore, it is noteworthy 

that in every case (26*, 27*, 29*) tritium labelling took place on positions which are not 

major metabolism sites.
92

 Undoubtedly, these achievements confirmed the potential of our 

method to accelerate drug discovery and development processes. 

 

2.1.9 Limitations of RuNp@PVP as HIE catalyst  

 

Despite the great success delivered with RuNp@PVP in HIE on N-heterocyclic scaffolds, 

certain drawbacks and restrictions were figured out on different levels of application. As 

already noticed at the beginning of section II.2.1.2, 2,5-diphenyloxazole and several other 

compounds from chapters II.2.1.2 – II.2.1.7 were reduced to undesired side-products. Further, 

it is also possible that hydrogenolysis of halogenated- and benzylic moieties occurred. The 

degree of these side-reactions with RuNp@PVP was still acceptable but a purification would 

be required at any rate since isotopically labelled internal standards are supposed to have a 

high degree of purity, prior to a potential application e.g. in biological assays. Another 

problem is that the hydrogenation of phenyl- to cyclohexyl groups very often gives side-

products which do not significantly differ in polarity compared to the main-product. Thus, in 

some cases a HPLC purification was required to remove undesired components properly from 

the crude reaction mixture. Beyond the presented classes of N-heterocycles whose hydrogen 

isotope labelling was very satisfying and efficient (II.2.1.2 – II.2.1.8), there is another 

interesting N-heterocyclic scaffold that didn´t show any exchange of hydrogen for deuterium 

through our ruthenium nanoparticle-based method. Unfortunately, the substrates thiazole and 

benzothiazole did not show any reactivity in the presence of RuNp@PVP and D2 gas, neither 

hydrogen isotope exchange nor decomposition (figure 78). The failure of our catalyst to label 

thiazole and benzothiazole scaffolds by hydrogen isotopes could be very likely attributed to 

the presence of sulfur atoms in their molecular structures. Such organic molecules are known 

to undergo very strong coordination to transition metals through their sulfur atom. Thus, 

complete covering of a transition metal catalyst surface results in poisoning, i.e. deactivation 

of the catalyst. On the one hand, sulfur poisoning can have a steric impact by preventing other 
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(benzo-)thiazole molecules from coordinating with their nitrogen atom to the Ru nanoparticle 

for further C-H activation. On the other hand, when heterogeneous transition metal catalysts 

are poisoned by sulfur, their electronical properties are modified so far that they lose their 

ability to absorb and activate H2 gas.
93

 

 

 

Figure 78. Thiazole and benzothiazole did not show any reactivity with RuNp@PVP 

The precedent chapters of this work showed a large range of N-heterocyclic derivatives 

endowed with a certain variety of functional groups which did not significantly perturbate our 

HIE method and satisfying isotopic enrichments could be still achieved. In other words, those 

functionalities were compatible with our ruthenium nanoparticles catalyzed HIE approach, 

which finally allowed the successful hydrogen isotope labelling of many drugs (methoxy-, 

amino-, carboxyl-, chlorine substituents etc., II.2.1.2 – II.2.1.7). Non the less, the 

functionalization in drugs’ molecular structures might be even more complex. Thus, there are 

many other interesting drugs on the market built up from N-heterocyclic units which offer 

several sites for a potential selective hydrogen isotope incorporation through Ru nanoparticles 

(benzimidazole in albendazole and omeprazole, 1,2,4-triazole in letrozole, imidazole in 

metronidazole, benzoxazole in tafamidis, carbazole in carprofen, figure 79) Non the less, 

none of these drugs displayed satisfying exchange of hydrogen for deuterium under a D2 

atmosphere and in the presence of RuNp@PVP. The strongly divergent behavior of those 

specific cases in figure 79 from previously labelled drugs in II.2.1.2 – II.2.1.8 could be 

reasoned in their substitution patterns. Sulfur containing functions like the thioether in 

albendazole and the sulfoxide in omeprazole most probably had a poisoning effect on the 

catalyst again and prevented heterocyclic units from interacting with the catalyst. The nitrile 

functionalities of letrozole are probably also strongly ligating and have a higher affinity to the 

ruthenium surface than nitrogen atoms in whose vicinity H/D exchange is expected to take 

place. Apparently, the other drugs metronidazole, tafamidis and carprofen (second line, figure 

79) do not display any problematic functionality in their molecular structures, since the 

carboxyl groups in compounds 4 and 8 (II.2.1.2 & II.2.1.3) did not inhibit the deuterium 
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uptakes. Chlorine substituents were also tolerated in fluquinconazole and suvorexant and did 

not undergo hydrogenolysis (30 and 31, II.2.1.7). Nevertheless, as it could be already 

encountered on deuterium labelled suvorexant 31, HIE did not take place on the benzoxazolyl 

group carrying a chlorine substituent. Analogously, not just the type of substitution but also 

the substitution pattern seemingly modifies the electronic properties of the N-heterocyclic 

cores in metronidazole, tafamidis and carprofen to such an extent, that coordination through 

the nitrogen atom and C–H activations were not possible any more. Finally, dependent on the 

stability of certain functionalities, side reactions as hydrogenolysis of C–Cl or C–S bonds may 

also occur. Hydrogenolysis can be a minor side-reaction which is not detectable by current 

analytical methods (
1
H-, 

13
C-NMR, ESI-MS), since those methods are merely able to analyze 

the filtered solution and dissolved species. However, cleaved species could be potentially 

bound irreversibly to the catalyst surface, without any opportunity for elimination. This can be 

considered as another poisoning effect on the catalyst. 

 

 

Figure 79. Heterocyclic drugs which cannot be labelled by RuNp@PVP 
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2.2 HIE catalyzed by nickel nanoparticles 

 

The next aim in this thesis was it to test different metallic nanoparticles for HIE on N-

heterocyclic substrates and to make out their utilities, respectively. The catalytic behavior of 

ruthenium nanoparticles for HIE was already well-explored in this work and other 

aforementioned publications and the limitations of this method were also discussed. One 

major disadvantage was the reduction of some substrates lowering the yield of deuterated 

product. Thereafter, a way was presented to inhibit undesired reductions of unsaturated 

moieties during the deuterium labelling of carbazoles in chapter II.2.1.6. The addition of an 

inorganic base favored the formation of σ-bonds between carbazole derivatives and the 

catalyst surface by facilitating the proton abstraction from the N-H and C-H bonds. However, 

there are many other listed examples that do not have a N-H moiety in their molecular 

structures, being sensitive to reduction anyhow, like 2,5-diphenyloxazole. This model 

substrate underwent strong reduction with different ruthenium catalysts. The isotopic 

enrichments on deutero analogue 1 with RuNp@PVP were not very high, as well (II.2.1.2). 

Moreover, ruthenium nanoparticles revealed to be very sensitive towards poisoning through 

compounds displaying sulfur atoms in their molecular structures. These limitations gave the 

impetus to try nanoparticles that preferably consisted of a different metal as catalyst for HIE 

on some selected N-heterocyclic examples. For this reason, NHC-stabilized nickel 

nanoparticles, which were synthesized in II.1.3 and II.1.4, are going to be tested for HIE in 

this chapter. The investigation started again with 2,5-diphenyloxazole. Deuterations of the 

substrate were conducted with 9mol% of every synthesized batch of NiNp under a D2 

atmosphere of 2bar in THF at 50°C with a reaction time of 24 hours, respectively. The 

catalyst Ni-ICy Np (0.25eq NHC) deuterated efficiently the α position of the substrate but it 

gave just an isotopic enrichment of 43% on both γ positions (table 5, entry 1).  The 

deuteration of 2,5-diphenyloxazole with NiNp being stabilized by 0.25 equivalents IMes-

ligand (Ni-IMes Np) led to an almost full deuteration in α and in γ to the nitrogen atom of the 

oxazole scaffold (table 5, entry 2). The third attempt with Ni-IMes Np being stabilized by 0.5 

equivalents IMes-ligand lead to a slightly lower deuterium incorporation in α than in the 

precedent case (table 5, entry 3). It is noteworthy, that the regioselectivity was the same as 

observed for RuNp@PVP with every batch of NiNp. However, in contrast to ruthenium 

catalysts, reduced side-products were not formed at all with NiNp and deuterated 2,5-

diphenyloxazole could be obtained in 99% yield without any further purification. 
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Entry Catalyst (equivalents of 

NHC-ligand) 

Isotopic enrichment in 

α (
1
H-NMR) 

Isotopic enrichment 

in γ (
1
H-NMR) 

 

1 

 

Ni-ICy Np (0.25eq NHC) 

 

97% 

 

43% 

2 Ni-IMes Np (0.25eq NHC) 98% 99% 

3 Ni-IMes Np (0.5eq NHC) 93% 99% 

 

Table 5. Deuteration of 2,5-diphenyloxazole with different NiNp using the reaction 

conditions: 9mol% Ni, 200µmol substrate, D2 (2bar), 2mL THF, 50°C, 24h 

Due to the highest isotopic enrichment values obtained with Ni-IMes Np (0.25eq NHC), this 

catalyst was also used for the next experiments. In order to ensure the reproducibility of the 

results with the new nickel nanoparticles, the HIE on 2,5-diphenyloxazole was repeated after 

having stored the NiNp for six months in the glove box. Unfortunately, we had to encounter 

an activity loss of the catalyst of 39% for the α position and 56% for the γ positions (figure 

80). Apparently, metallic Ni(0), being the active species in this HIE process, was gradually 

oxidized during the storage period, even if just traces of oxygen were present. 

 

 

Figure 80. Decreased isotopic enrichment on 2,5-diphenyloxazole after having stored the 

catalyst Ni-IMes Np (0.25eq NHC) for six months 
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Regarding the high sensitivity of the nickel nanocatalyst towards storage in the solid state, a 

smaller amount of Ni-IMes Np was prepared according to the procedure from section II.1.4 

and used directly after synthesis as catalyst stem solution for the next deuteration reactions. 

Since most of deuterations of N-heterocyclic derivatives worked in THF, there was no need to 

remove the solvent under reduced pressure or vacuum. Astonishingly, the deuteration of 2,5-

diphenyloxazole with the freshly prepared Ni-IMes Np stem solution gave the same result as 

in the beginning with freshly prepared Ni-IMes Np (0.25eq NHC) which were washed by 

precipitation in n-pentane and dried prior to use (see II.1.4 for catalyst synthesis and table 5, 

entry 2 and compound 32 in figure 81 for deuteration results). Prompted by this positive 

result, other N-heterocyclic derivatives were subjected to deuteration with the freshly 

prepared solution of Ni-IMes Np (0.25eq NHC) under a D2 atmosphere. 2-Phenylimidazole 

was deuterated very efficiently in ortho on the phenyl group. The positions in α to the 

nitrogen atoms on the imidazole scaffold showed moderate deuterium incorporation (33, 

figure 81). 1-Phenyl-1,2,4-triazole manifested different isotopic enrichment levels on the C3 

and C5 position on the triazole scaffold (34, figure 81). The C5 position revealed to be the 

more reactive one for nickel nanoparticle catalyzed HIE. Interestingly, deuterium uptakes in 

ortho of the adjacent phenyl ring did not appear.  Gratifyingly, none of the considered cases 

(32-34, figure 81) underwent reduction through hydrogenation within the NiNp-based HIE 

method. 

 

 

Figure 81. N-heterocyclic substrates deuterated with a freshly prepared stem solution of Ni-

IMes Np (0.25eq NHC) using the reaction conditions: (a) 10mol% Ni, 100µmol substrate, D2 

(2bar), 2mL THF, 50°C, 24h (b) 5mol% Ni, 200µmol substrate, D2 (2bar), 2mL THF, 50°C, 

24h 
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In the past, Raney-Ni was reported to be a current catalyst for the reduction of benzene to 

cyclohexane
94

 but apparently the reaction conditions described herein are too mild for a Ni(0)-

catalyzed hydrogenation of aromatic moieties. Consequently, the higher chemospecificity in 

HIE delivered with nickel nanoparticles in this work is not just beneficial for the yield of 

deuterated products, but it might be also the reason for the higher isotopic enrichments on 

many positions of the shown N-heterocyclic model substrates compared to RuNp@PVP. By 

changing the metal from ruthenium to nickel, probably not just the reduction of phenyl rings 

but also reductions and hydrogenolyses of N-heterocyclic cores were inhibited, which resulted 

in a lower formation of protic side-products like amines for example. In this manner, the 

nanoparticle surface got less poisoned as it has been supposed for ruthenium (II.2.1.9) and 

higher TONs could be achieved with nickel, leading to higher isotopic enrichments on the 

marked positions of 32 (figure 81). In addition, the regioselectivity on every subjected N-

heterocyclic substrate revealed to be the same as in the case of ruthenium, except on 

compound 34. This is likely due to the fact that the nickel nanocatalyst operates after the same 

reaction mechanisms in terms of HIE reactions with D2 gas as isotopic source as described for 

ruthenium nanoparticles in chapters II.2.1.2 - II.2.1.6. For the triazolic deutero analogue 34, 

the mechanism that leads to the C-H activation in γ to nitrogen is seemingly unfavorable with 

the nickel catalyst or it cannot compete with the much higher affinity of the triazole moiety to 

the nickel catalyst surface. Further, Ni-ICy Np allowed to deuterate benzothiazole for the first 

time. Benzothiazole displayed a deuterium uptake of 85% on the C2 position with 19mol% of 

NiNp (35, figure 82), indicating that the substrate did not irreversibly coordinate to the 

catalyst surface and a TON could be achieved superior to 1. This result stands in stark contrast 

to the limitations observed for RuNp@PVP (II.2.1.9). Consequently, nickel nanoparticles can 

be assumed to be less sensitive towards sulfur poisoning. 

 

 

Figure 82. Deuteration of benzothiazole by Ni-IMes Np on the C2 position 
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During the attempt to deuterate benzimidazole with Ni-IMes Np, the nanocatalyst aggregated 

a few minutes after getting into contact with benzimidazole dissolved in THF. The metallic 

nanoparticles also gradually lost their black color and turned white. After stirring for 24 

hours, no transformation of the organic substrate was observed by 
1
H-NMR, neither 

deuteration, nor degradation (figure 83). This observation pointed towards an insufficient 

stability of nickel nanoparticles with this kind of substrates. Since nickel is a less noble metal 

than ruthenium for example, it undergoes redox reactions more easily. The degradation of the 

metallic catalyst in this case might be due to its oxidation through an acidic moiety. The N-H 

moiety of benzimidazole could be acidic enough to react with well-dispersed metallic nickel 

to give a nickel salt and H2 gas. 

 

 

Figure 83. Ni-IMes Np proved to be unstable when getting into contact with benzimidazole 

Nickel nanoparticles stabilized by N-heterocyclic carbenes proved to be efficient, regio- and 

chemoselective catalysts for the deuteration of some N-heterocyclic substrates. In terms of 

efficiency and regioselectivity, results could be achieved which were very similar to the 

deuteration of these substrates by ruthenium nanoparticles embedded in a PVP matrix. This 

similarity points towards the fact that C-H activations must pass through the same reaction 

mechanisms with metallic Ni catalysts as discussed in the context of DFT-calculations on 

ruthenium nanoparticles (II.2.1.2 - II.2.1.6). However, a huge difference to Ru catalyzed HIE 

from previous sections was the much higher chemoselectivity of the Ni catalysts because 

reduced side-products were completely absent in this case. In order to study the fundamental 

background of nickel catalyzed hydrogenations and to explain why reductions did not happen 

under a D2 atmosphere with these nickel nanocatalysts, the performance of other 

investigations and experiments would be needed. The second difference compared to 

RuNp@PVP was the deuteration of benzothiazole that succeeded with Ni-IMes Np. 

Apparently, NiNp were not poisoned by the sulfur atom of benzothiazole, witnessed by the 

deuteration of the C2 position. Nevertheless, β positions relative to the nitrogen or the sulfur 

atom were not activated, as it was observed for HIE catalyzed by RuNp on N-heterocyclic 

benzoderivatives (II.2.1.4). A third difference relative to RuNp@PVP could be figured out 

within NiNp catalyzed HIE. The NHC-stabilized NiNp revealed to be unstable when getting 
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into contact with benzimidazole, which can be probably related to the acidity of the N–H 

bond. 

Summary and perspectives 

 

This work triggered several meaningful achievements in isotope chemistry and organic 

chemistry. The results were accompanied and elucidated by DFT-calculations to a large 

extend which revealed new fundamental aspects in transition metal catalysis. First of all, 

means and ways were demonstrated how to generate numerous biologically relevant stable 

deuterium and tritium labelled N-heterocyclic compounds over ruthenium nanoparticle 

catalyzed C-H activations using D2 and T2 gas as the only isotopic sources. This HIE method 

furnished a broad repertory of drug-like model compounds and structurally complex 

commercial drugs, one agrochemical and one natural product from the oxazole, imidazole, 

triazole and carbazole families which are highly deuterated at the expected sites, employing 

RuNp@PVP as a catalyst. The exchange of hydrogen for deuterium was found to take place 

on sp
2
- and sp

3
-carbon atoms at α-, β- and γ-positions relative to a nitrogen atom. This 

property of Ru nanoparticles permitted to provide plenty examples of deuterium labelled N-

heterocyclic compounds that cannot be labelled by other HIE methods as homogeneous Ir(I) 

catalysis at all. The nitrogen associated selectivity of RuNp for α- β- and γ-positions allowed 

to incorporate up to 5 deuterium atoms per molecule, representing up to date the only mild 

HIE method that is suitable for a rapid SILS synthesis of many bioactive N-heterocyclic 

substrates. However, a clear drawback of RuNp@PVP-catalyzed HIE was the concomitant 

reduction of many substrates to undesired side-products, which required HPLC purification of 

the labelled products. The capacity of RuNp to operate on α-, β- and γ-positions relative to a 

nitrogen atom was studied by DFT-based calculations. In the light of the above, it was found 

that nitrogen atoms inside the aromatic heterocycles show coordination to the RuNp surface. 

Nitrogen atoms at position 3 of imidazoles and benzimidazoles coordinate stronger to the 

ruthenium catalyst than the N–H group at position 1. This coordination directs the subsequent 

C–H activations. C–H activations at α-positions relative to the coordinating nitrogen atom 

result in a four-membered dimetallacycle key intermediate. C–H activations on β-positions 

succeed under the formation of a five-membered dimetallacycle key intermediate and C–H 

activations on γ-positions give a five-membered metallacycle key intermediate which is 

formed between the substrate and the ruthenium nanoparticle. This gain in mechanistic 
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knowledge will certainly help to derive and understand many other reaction pathways in 

nano- and heterogeneous catalysis. Moreover, the regioselectivity of HIE on N-heterocyclic 

scaffolds could be controlled by changing the coordination affinity of certain structural 

moieties. Thus, the isotopic enrichment could be almost completed at α- and β positions of 

carbazole- and indole moieties in presence of the base Cs2CO3. On this path, the reduction of 

aromatic groups as a side-reaction was also completely inhibited. DFT again provided 

important hints for the clarification of these results by pointing out the important role of the 

carbonate ion as a proton acceptor on the nanoparticle surface during the N–H and C–H 

activation steps. In this context, the additive Cs2CO3 allowed both activation steps to occur 

without the need to overcome an energetic barrier. Owing to the drug carvedilol, the affinity 

of a secondary amine could be withdrawn by protecting it with a Boc-group and the 

regioselectivity of the HIE was completely shifted to the carbazole moiety by adding one 

equivalent of Cs2CO3. This strategy paved the way to deuterium labelled carvedilol with the 

deuterium label exclusively on the carbazole moiety. With the aim to enhance the hydrogen 

isotope labelling of other molecules, especially of those which could not be labelled within 

this work (II.2.1.9),  similar additive strategies could be also applied to the protection or 

masking of other functionalities in the near future, that interfere in MNp catalyzed HIE 

because they strongly bind to the catalyst. Furthermore, RuNp@PVP catalyzed HIE permitted 

to perform tritiations of astemizole, fluconazole and N-Boc protected carvedilol which were 

achieved in one rapid and practically simple step for the first time, to the best of our 

knowledge.  

Tritiation reactions were conducted under tritium gas pressures below one bar and the tritium 

labelled drugs displayed satisfying molar activities. Undoubtedly, these features fulfill the 

requirements of most laboratories for tritiation protocols. The encouraging results achieved 

with RuNp@PVP as HIE catalyst prompted the conclusion, that the established deuteration 

and tritiation protocols from this work will garner a lot of attention from the academic and 

industrial sphere. Owing to the presented large substrate scope, these methods can be certainly 

transferred to the synthesis of SILSs and radioligands of many other N-heterocyclic molecules 

that circulate in drug development and life-science. In order to explore other metallic 

nanoparticles as HIE catalysts, new NHC-stabilized nickel nanoparticles were synthesized. 

These NiNp also revealed to be efficient HIE catalysts for the deuteration of N-heterocyclic 

model compounds displaying the same regioselectivity as RuNp in most cases. The most 

remarkable property of the Ni-based catalysts was the high chemoselectivity of the 

deuterations. In contrast to RuNp, the nickel nanocatalysts did not reduce the aromatic groups 
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of any tested substrate. This was a huge asset compared to every other Ru-based catalyst. 

Another unusual finding was the deuteration of benzothiazole, a sulfur-containing substrate 

that did not show any reactivity with RuNp. For this reason, other molecules with sulfur 

atoms in their molecular structures need to be subjected to NiNp catalyzed HIE soon. 

Nevertheless, there was also evidence that the substrate scope of NiNp catalyzed HIE can be 

more limited than the substrate scope of RuNp, which was reflected in the decomposition of 

the nickel catalyst with benzimidazole as substrate. This result was refered to a side-reaction 

where Ni(0) was oxidized by the protic N–H group of the substrate. On this account, it will be 

indispensable to figure out the compatibility of NiNp with other protic or acidic compounds 

and functionalities in future experiments. Undoubtedly, the results obtained for nickel 

catalyzed HIE in this work offered a fundament which will render nickel nanoparticles an 

important and perspective subject for future studies in hydrogen isotope labelling.  

 

Experimental part 
 

 

Reagents and instrumentation. Metal nanoparticle syntheses and catalyses were carried out 

in Fischer-Porter glassware under argon. Metal nanoparticles were stored in a glove box under 

an argon atmosphere (O2 < 0.1 ppm).  Organometallic precursors, ligands and substrates were 

purchased from commercial suppliers (Aldrich, Acros Organics, 

Alfa Aesar, Maybridge, abcr, Ark Pharm Inc., Cayman Chemical) and used without further 

purification. THF was dried over sodium and benzophenone and distilled before use. DMA 

was stored in a Schlenck tube over molecular sieves (4Å, previously activated by microwave 

treatment). CD3OD was used without further purification. 
1
H NMR (400 MHz), 

13
C NMR 

(100 MHz) & 
3
H NMR (427 MHz) spectra were recorded on a (400 MHz) Bruker Avance 

spectrometer. Proton-decoupled deuterium (
2
H-{

1
H}) 1D NMR (92 MHz) spectra were 

recorded on a 14.1 T (600 MHz) Bruker Avance II NMR spectrometer equipped with a 5-mm 

selective 
2
H observe cryogenic probe. Proton signals were eliminated using the WALTZ-16 

CPD sequence. Chemical shifts are reported in parts per million (ppm) downfield from 

residual solvent peaks and coupling constants are reported in Hertz (Hz). Splitting patterns are 

designated as singlets (s), doublets (d) or triplets (t). Splitting patterns that could not be 

interpreted or easily visualized are designated as multiplets (m). Electrospray (ESI) mass 

spectra were recorded using a Waters ZQ 2000 LCMS System. GC-MS analysis was carried 

out using a Waters GCT Premier TOF Mass spectrometer equipped with a DCI probe tip. 
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H/D exchange quantification. Deuterium incorporation was quantified by the decrease of 

1
H-NMR integral intensities at the specified positions compared to the starting material. 

Integral intensities were calibrated against hydrogen signals that did not undergo H/D-

exchange. Incorporations of deuterium and tritium could be further determined by
 2

H- and 
3
H-

NMR. Mass spectrometry quantification was performed by subtraction of the mean molecular 

masses of the product and substrate isotopologue clusters in order to eliminate the 

contribution of the natural isotope abundance to the total mass. 

 

General Procedure for H/D exchanges. A 100 mL Fischer–Porter bottle was equipped with 

a magnetic stir bar. The catalyst (RuNp@PVP or nickel nanoparticles) and Cs2CO3 were 

charged in a glove box into the Fischer–Porter bottle. The substrate was dissolved in the 

appropriate solvent; the solution was then degassed and added to the catalyst in the Fischer–

Porter bottle under an argon atmosphere. Argon was removed under reduced pressure and the 

Fischer-Porter glassware was flushed with D2 gas under stirring. The degassing-flushing cycle 

was repeated twice. The reaction mixture was then stirred at 50°C (sand bath) under D2 (2 

bar) for 24 hours. Amounts of substrates, catalyst, used solvents, work-up and purification 

procedures are individually indicated in all cases. 

 

DFT calculations. The Ru13 model has previously been published and detailed elsewhere.
83

 It 

has been successfully applied to rationalize the enantiospecific C-H activation using 

ruthenium nanocatalysts in terms of reaction pathways. It was shown that similar 

thermodynamic and activation energies are found on this model and on a larger hydrogenated 

1nm Ru55 model. The surface of this Ru13 model is covered with 17 hydrides per surface 

ruthenium atom, i.e. 1.4 H/surface Ru atom, a usually measured coverage value on RuNPs.
95

 

DFT calculations were done with the Vienna ab initio simulation package, VASP.
96

 spin 

polarized DFT; exchange-correlation potential approximated by the generalized gradient 

approach proposed by Perdew, Burke, and Ernzerhof (PBE);
97

 projector augmented waves 

(PAW) full-potential reconstruction;
98

 PAW data sets for Ru atoms treating the 4p, 4d and 5s 

states (14 valence electrons); kinetic energy cutoff: 500 eV;
 

Γ-centered calculations;
99 

Gaussian smearing of 0.02 eV width; geometry optimization threshold: residual forces on any 

direction less than 0.02 eV/Å; supercell size set to ensure a vacuum space of ca. 14 Å between 

periodic images of metal clusters, 30.5Å x 30.5Å x 31Å). Reaction barriers were estimated by 

the climbing image nudge elastic band (CINEB) method;
100

 spring force between images: 5 

eV; force tolerance of 0.02 eV/Å. The harmonic vibrational modes were systematically 
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calculated for in order to distinguish minima and saddle points by using the dynamical matrix 

code implemented in VASP as well as the VASPTST tools also developed by Henkelman's 

group.  

 

Syntheses of metal nanoparticles 
 

 

Synthesis of RuNp@PVP 

 

A schlenk flask was charged with PVP (500mg). The PVP was dissolved in THF (15mL) 

under stirring at 50°C. Ru(COD)(COT) (79.0mg, 0.25mmol) was filled in a Fisher-Porter 

flask and dissolved in THF (15mL). The PVP solution was added to the Ru(COD)(COT) 

solution. Argon was removed under reduced pressure and the Fisher-Porter flask was charged 

with H2 gas (3bar) under stirring. The reaction mixture was stirred overnight at ambient 

temperature. The solution was concentrated under vacuum to a volume of 3mL and n-pentane 

(30mL) was added under stirring. The mixture was stirred for 30min and then stored for 1h at 

room temperature without stirring to let deposit RuNp@PVP at the bottom. The supernatant 

was removed and the solid dried under vacuum overnight. 

 

Yield: 400mg 

The size and shape of the RuNp was confirmed by TEM. 

 

Synthesis of ruthenium nanoparticles stabilized by 1,3-dicyclohexylimidazol-2-ylidene (Ru-

ICy Np) 

 

A schlenk flask was charged with 1,3-dicyclohexylimidazolium chloride (19.0mg, 0.08mmol, 

0.25eq) and with potassium tert-butoxide (KOtBu) (10.0mg, 0.09mmol, 0.28eq). THF (15mL) 

was added and the solution was stirred over night at room temperature to form the carbene 

ligand. Ru(COD)(COT) (100mg, 0.32mmol, 1eq) was filled in a Fisher Porter flask, dissolved 

in THF (15mL) and cooled down in a liquid nitrogen/acetone bath. The carbene ligand 

solution was filtered through a celite pad and added to the Ru(COD)(COT) solution. Argon 

was removed under reduced pressure and the Fisher Porter bottle was charged with H2 gas 

(3bar). The reaction mixture was stirred over night at ambient temperature. The solution was 
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concentrated under vacuum to a volume of 3mL and n-pentane (30mL) was added under 

stirring. The mixture was stirred for 30min and then stored for 1h at room temperature 

without stirring to let deposit Ru-ICy Np at the bottom. The supernatant was removed and the 

solid dried under vacuum overnight. 

 

Yield: 24mg 

The size of the RuNp was measured by TEM. The determination of the mean size 

(1.2±0.5nm) was achieved by taking into account a population of at least 200 Np. 

 

 

TGA of Ru-ICy Np 

 

Synthesis of Nickel nanoparticles stabilized by 1,3-dicyclohexylimidazol-2-ylidene (Ni-ICy 

Np) 

 

A schlenk flask was charged with 1,3-dicyclohexylimidazolium chloride (48.3mg, 0.18mmol, 

0.25eq) and with KOtBu (22.2mg, 0.20mmol, 0.28eq). THF (15mL) was added and the 

solution was stirred over night at room temperature to form the carbene ligand. Ni(COD)2 

(200mg, 0.73mmol, 1eq) was filled in a Fisher Porter flask, dissolved in THF (15mL) and 

cooled down in a liquid nitrogen/acetone bath. The carbene ligand solution was filtered 



                                                                      126 

through a celite pad and added to the Ni(COD)2 solution. Argon was removed under reduced 

pressure and the Fisher Porter bottle was charged with H2 gas (3bar). The reaction mixture 

was stirred for 5h at 70°C. The solution was cooled down to room temperature, concentrated 

under vacuum to a volume of 1mL, n-pentane (30mL) was added and the mixture was stirred 

for 30min. The mixture was stored for 1h at room temperature without stirring to let deposit 

Ni-ICy Np at the bottom. The supernatant was removed and the solid dried under vacuum for 

2h. 

 

Yield: 29mg 

The size of the NiNp was measured by TEM. The determination of the mean size (2±1nm) 

was achieved by taking into account a population of at least 200 Np. 

 

Synthesis of Nickel nanoparticles stabilized by 1,3-Dimesitylimidazol-2-ylidene (Ni-IMes Np) 

 

A schlenk flask was charged with 1,3-dimesitylimidazol-2-ylidene (IMes) (27.8mg, 90µmol, 

0.25eq) or (55.6mg, 180µmol, 0.5eq). THF (10mL) was added and stirred until the solid 

completely dissolved. Ni(COD)2 (100mg, 0.37mmol, 1eq) was filled in a Fisher Porter flask, 

dissolved in THF (15mL) and cooled down in a liquid nitrogen/acetone bath. The carbene 

ligand solution was added to the Ni(COD)2 solution, argon was removed under reduced 

pressure and the Fisher Porter bottle was charged with H2 gas (3bar). The reaction mixture 

was stirred for 5h at 70°C. The solution was cooled down to room temperature, concentrated 

under vacuum to a volume of 1mL, n-pentane (30mL) was added and the mixture was stirred 

for 30min. The mixture was stored for 1h at room temperature without stirring to let deposit 

Ni-IMes Np at the bottom. The supernatant was removed and the solid dried under vacuum 

for 2h. 

 

Yield: 39mg, (0.25eq IMes) 

The size of the NiNp (0.25eq IMes) was measured by TEM. The determination of the mean 

size (1.8±0.6nm) was achieved by taking into account a population of at least 200 Np. 

 

Yield: 56mg, (0.5eq IMes) 
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Syntheses of compounds 
 

 

Synthesis of pimprinine 

 

 
 

Pimprinine was synthesized after a literature procedure.
34

 3-Acetylindole (1.6g, 10mmol) and 

I2 (5.1g, 20mmol) were dissolved in DMSO (60mL) and stirred for 45min at 110°C. DL-

alanine (1.8g, 20mmol) was added to the reaction mixture and the reaction was stirred for 

another 15min at 110°C. After cooling down to room temperature the reaction mixture was 

poured into a Na2SO3 solution (100mL, 10% in H2O dist.). The aqueous phase was extracted 

three times with EtOAc (3 x 50mL). The combined organic phases were dried over MgSO4 

and the solvent was removed under vacuum. The crude product was purified over C18 

functionalized SiO2. Pimprinine was eluted with 1:1 MeOH : H2O (0.1% TFA). 

 

Yield: 160mg, 8%, light yellow solid 

 

1
H NMR (400 MHz, Methanol-d4): δ 7.80 – 7.75 (m, 1H), 7.59 (s, 1H), 7.46 – 7.40 (m, 1H), 

7.23 – 7.12 (m, 3H), 2.51 (s, 3H). 

 

13
C-{

1
H}NMR (100 MHz, Methanol-d4): δ 160.8, 150.1, 138.2, 125.3, 123.7, 123.4, 121.3, 

120.4, 119.2, 112.8, 105.5, 13.5. 
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1
H-NMR spectrum of pimprinine 

 

 

 
13

C-NMR spectrum of pimprinine 
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ESI spectrum of pimprinine 

 

 

Synthesis of 4'-(1,2,4-Triazol-1-yl)acetanilide 

 

 
 

 

4-(1H-1,2,4-Triazol-1-yl)aniline (150mg, 937μmol)  was dissolved in THF (5mL) and NEt3 

(130μL, 937μmol) was added under stirring at RT. Acetylchloride (65μL, 937μmol) was 

added and the reaction mixture was stirred for 1h at room temperature. The reaction mixture 

was poured into H2O dist. (100mL). The aqueous phase was extracted three times with DCM 



                                                                      130 

(3 x 50mL). The solvent was removed under vacuum and the crude product was recrystallized 

from DCM/MeOH (3:1).  

 

Yield: 65.0mg, 34%, white solid 

 

1
H NMR (400 MHz, Methanol-d4): δ 9.02 (s, 1H), 8.14 (s, 1H), 7.77 – 7.71 (m, 4H), 2.15 (s, 

3H). 

 

13
C-{

1
H}NMR (100 MHz, Methanol-d4): δ 171.8, 152.7, 142.8, 140.2, 134.0, 121.8, 121.6, 

23.9. 

 

 
1
H-NMR spectrum of 4'-(1,2,4-Triazol-1-yl)acetanilide 
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13

C-NMR spectrum of 4'-(1,2,4-Triazol-1-yl)acetanilide 

 

 

ESI-spectrum of 4'-(1,2,4-Triazol-1-yl)acetanilide 
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Synthesis of N-methylcarbazole 

 

 
 

 

Carbazole (1.0g, 6mmol) was dissolved in DMA (2mL). A suspension of NaH (0.24g, 

10mmol) in DMA (2mL) was added under stirring at 0°C. The mixture was stirred for 30min 

and methyliodide (0.37mL, 6mmol) was added and the reaction mixture was stirred for 1h at 

room temperature. The reaction mixture was poured into H2O dist. (100mL). The aqueous 

phase was extracted three times with chloroform (3 x 20mL). The organic phase was dried 

over MgSO4 and the solvent was removed under vacuum. The crude product was purified 

over SiO2 where N-methylcarbazole was eluted with 20:1 cyclohexane : THF. The product 

was recrystallized from cyclohexane.  

 

Yield: 590mg, 54%, white solid 

 

1
H NMR (400 MHz, Acetone-d6): δ 8.17 – 8.11 (m, 2H), 7.57 – 7.51 (m, 2H), 7.50 – 7.43 

(m, 2H), 7.24 – 7.17 (m, 2H), 3.91 (s, 3H). 

 

13
C-{

1
H}NMR (100 MHz, CDCl3): δ 141.1, 125.8, 122.9, 120.4, 118.9, 108.5, 29.2. 
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1
H-NMR spectrum of N-methylcarbazole 

 

 

 

 
13

C-NMR spectrum of N-methylcarbazole 

 



                                                                      134 

 

ESI-spectrum of N-methylcarbazole 

 

 

 

Synthesis of N-Boc-carvedilol 

 

 

 

Carvedilol (1.0g, 2.5mmol) was dissolved in THF (20mL) and NEt3 (377µL, 2.70mmol, 

1.1eq) was added under stirring. A solution of di-tert-butyl dicarbonate (540mg, 2.50mmol, 

1eq) in THF (15mL) was added slowly under stirring to the reaction mixture at room 

temperature. The reaction mixture was stirred 1h at room temperature and poured on a SiO2 

column. Elution was carried out with EtOAc/MeOH (50:3) and the solvent was removed 

under vacuum. The crude product was dissolved in THF (5mL) and precipitated in n-pentane 

(400mL). 

 

Yield: 1.2g, 96%, white solid 

 

 

https://www.googleadservices.com/pagead/aclk?sa=L&ai=DChcSEwjh8rDEvcvcAhVJhdUKHQGHAo0YABAAGgJ3cw&ohost=www.google.fr&cid=CAESEeD2dnFFIiZGGH0AsPOMcJiQ&sig=AOD64_2LCqCFj1xrNF8zt6iBP6BWKChCkw&q=&ved=2ahUKEwi-9avEvcvcAhVLhxoKHXhaCiYQ0Qx6BAgFEAI&adurl=
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1
H NMR (400 MHz, Acetone-d6): δ 10.31 (bs, NH), 8.55 – 8.40 (m, 1H), 7.54 – 7.46 (m, 

1H), 7.40 – 7.28 (m, 2H), 7.22 – 7.11 (m, 2H), 6.99 – 6.80 (m, 4H), 6.77 – 6.68 (m, 1H), 4.80 

– 4.49 (m, 2H), 4.38 – 4.15 (m, 4H), 4.00 – 3.92 (m, 1H), 3.88 – 3.79 (m, 2H), 3.78 – 3.66 (m, 

4H), 1.54 – 1.43 (m, 9H). 

 

13
C-{

1
H}NMR (100 MHz, Acetone-d6): δ 157.1, 156.2, 150.7, 149.3, 142.4, 140.1, 127.3, 

125.4, 124.1, 123.3, 122.2, 121.6, 119.7, 114.6, 113.3, 110.9, 104.7, 101.4, 80.3, 71.2, 70.4, 

68.3, 56.0, 53.1, 49.2, 28.6. 

 

 
1
H-NMR spectrum of N-Boc-carvedilol 
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13

C-NMR spectrum of N-Boc-carvedilol 

 

 
ESI-spectrum of N-Boc-carvedilol 
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H/D exchange reactions 
 

 

Deuterations of oxazoles 
 

 

2,5-Diphenyloxazole 1 

 

 
 

 
Substrate Solvent (Volume) RuNp@PVP cat. 

44.3mg, 0.2mmol DMA (1mL) 14.4mg, 5mol% 

 

 

Workup and purification: 

 

After cooling down to room temperature ethylacetate : cyclohexane (1:1, 3mL) was added to 

the reaction mixture and stirred for 10min to let precipitate RuNp@PVP. The suspension was 

passed through a SiO2 pad and the crude product was eluted with ethylacetate (5mL). The 

solvent was removed under vacuum and the crude product was purified by HPLC on an 

Interchim utisphere C18-HDO 5UM 150x21.2mm P REP-LC column. Condition: 1.7mL/min, 

UV & mass detection, 25°C, Solvents & gradients: Solvent A : H2O + 0.1% HCOOH; Solvent 

B : ACN + 0.1% HCOOH 

 

t (0)   95%A 5%B 

t(24min)  50%A 50%B 
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HPLC chromatogram 

 

Yield: 11.0mg, 25%, white solid 

 

1
H NMR (400 MHz, Acetone-d6): δ 8.19 – 8.10 (m, 0.15H), 7.90 – 7.83 (m, 2H), 7.70 (s, 

0.24H), 7.60 – 7.47 (m, 5H), 7.42 – 7.36 (m, 1H). 

 

Deuterium incorporation was expected at δ 8.19 – 8.10 and at δ 7.70. Isotopic enrichment 

values were determined against the integral at δ 7.42 – 7.36. 

 

2
H-{

1
H}NMR (92 MHz, Acetone): δ 8.19 (s, 1.86D), 7.72 (s, 0.76D). 

 

13
C-{

1
H}NMR (100 MHz, Acetone-d6): δ 161.6, 152.1 (m), 131.3, 129.9, 129.7, 129.3, 

128.9, 128.3, 126.9 (m), 125.0, 124.7. 
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1
H-NMR spectrum of the non-deuterated starting material 

 

 
1
H-NMR spectrum of 1 
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2
H-NMR spectrum of 1 

 

 

 

 
13

C-NMR spectrum of the non-deuterated starting material 
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13

C-NMR spectrum of 1 

 

 

 

 

ESI spectrum of 1 
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5-(4-Methylphenyl)-oxazole 2 

 

 
 

 
Substrate Solvent (Volume) RuNp@PVP cat. 

31.8mg, 0.2mmol THF (2mL) 14.4mg, 5mol% 

 

 

Workup and purification: 

After cooling down to room temperature, cyclohexane (2mL) was added to the reaction 

mixture and stirred for 10min to let precipitate RuNp@PVP. The suspension was passed 

through a SiO2 pad and the product was eluted with ethylacetate (5mL). The solvent was 

removed under vacuum. 

 

Yield: 25.0mg, 79%, light yellow solid 

 

1
H NMR (400 MHz, Acetone-d6): δ 8.16 (s, 0.01H), 7.73 – 7.57 (m, 2H), 7.49 (s, 0.75H), 

7.36 – 7.11 (m, 2H), 2.36 (s, 3H). 

 

Deuterium incorporation was expected at δ 8.16 and at δ 7.49. Isotopic enrichment values 

were determined against the integral at δ 7.36 – 7.11. 

 

2
H-{

1
H}NMR (92 MHz, Acetone): δ 8.12 (s, 0.99D), 7.47 (s, 0.20D), 

 

13
C-{

1
H}NMR (100 MHz, Acetone-d6): δ 152.2, 151.4 (m), 139.3, 130.4, 126.2, 125.0, 

121.9, 21.2. 
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1
H-NMR spectrum of the non-deuterated starting material 

 

 
 

 

 

 
1
H-NMR spectrum of 2 
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2
H-NMR spectrum of 2 

 

 

 

 
13

C-NMR spectrum of the non-deuterated starting material 
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13

C-NMR spectrum of 2 

 

 

 

ESI spectrum of 2 
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4-(Oxazol-5-yl)aniline 3 

 

 
 

 
Substrate Solvent (Volume) RuNp@PVP cat. 

32.0mg, 0.2mmol  DMA (2mL) 14.4mg, 5mol% 

 

Workup and purification: 

 

After cooling down to room temperature, the reaction mixture was poured on a brine solution 

(50mL) in a separation funnel. The aqueous phase was extracted 3 times with a mixture of 

ethylacetate and cyclohexane (EtOAc : cyclohexane 3:1; 50mL). The organic phases were 

combined and dried over MgSO4. The solvent was removed under vacuum. 

 

Yield: 16.0mg, 50%, orange solid 

 

1
H NMR (400 MHz, CDCl3): δ 7.83 (s, 0.01H), 7.49 – 7.42 (m, 2H), 7.15 (s, 0.82H), 6.76 – 

6.68 (m, 2H), 3.84 (bs, 1H). 

 

Deuterium incorporation was expected at δ 7.83 and at δ 7.15. Isotopic enrichment values 

were determined against the integral at δ 7.49 – 7.42. 

 

2
H-{

1
H}NMR (92 MHz, CHCl3): δ 7.86 (s, 0.99D), 7.19 (s, 0.18D). 

 

13
C-{

1
H}NMR (100 MHz, CDCl3): δ 147.0, 126.0, 119.2, 118.5, 115.2. 
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1
H-NMR spectrum of the non-deuterated starting material 

 

 

 
1
H-NMR spectrum of 3 
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2
H-NMR spectrum of 3 

 

 

 

 
13

C-NMR spectrum of the non-deuterated starting material 
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13

C-NMR spectrum of 3 

 

 

 

ESI spectrum of 3 
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5-(4-Methoxyphenyl)-oxazole-4-carboxylic acid 4 

 

 

 
 

 
Substrate Solvent (Volume) RuNp@PVP cat. 

43.8mg, 0.2mmol  DMA (2mL) 14.4mg, 5mol% 

 

 

Workup and purification: 

 

After cooling down to room temperature, the reaction mixture was poured on a brine solution 

(50mL) in a separation funnel. The aqueous phase was extracted 3 times with a mixture of 

ethylacetate and cyclohexane (EtOAc : cyclohexane 3:1; 50mL). The organic phases were 

combined and dried over MgSO4. The solvent was removed under vacuum. 

 

Yield: 45.0mg, 99%, light yellow solid 

 

1
H NMR (400 MHz, Acetone-d6): δ 8.24 (s, 0.39H), 8.16 – 8.11 (m, 2H), 7.09 – 7.05 (m, 

2H), 3.88 (s, 3H). 

 

Deuterium incorporation was expected at δ 8.24. Isotopic enrichment values were determined 

against the integral at δ 7.09 – 7.05. 

 

2
H-{

1
H}NMR (92 MHz, Acetone): δ 8.19 (s) 

 

13
C-{

1
H}NMR (100 MHz, Acetone-d6): δ 163.3, 162.2, 155.9, 150.0 (m), 130.9, 126.1, 

120.3, 114.7, 55.8. 
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1
H-NMR spectrum of the non-deuterated starting material 

 

 

 
1
H-NMR spectrum of 4 
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2
H-NMR spectrum of 4 

 

 

 

 
13

C-NMR spectrum of the non-deuterated starting material 
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13

C-NMR spectrum of 4 

 

 

 

ESI spectrum of 4 

 

 

Deuterations of imidazoles 
 

2-Phenylimidazole 5 
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Substrate Solvent (Volume) RuNp@PVP cat. 

28.8mg, 0.2mmol  THF (2mL) 14.4mg, 5mol% 

 

Workup and purification: 

 

After cooling down to room temperature, cyclohexane (2mL) was added to the reaction 

mixture and stirred for 10min to let precipitating RuNp@PVP. The suspension was passed 

through a pad of neutral Al2O3 and then eluted with ethylacetate (5mL). The solvent was 

removed under vacuum to obtain 31.0mg of crude product. The crude product (10mg) was 

purified by HPLC on an XBridge Prep Phenyl 5µm OBD 19x150mm column. Condition: 

1mL/min, UV & mass detection, 25°C, Solvents & gradients: Solvent A : H2O + 0.1% 

HCOOH; Solvent B : MeOH + 0.1% HCOOH 

 

t (0)   95%A 5%B 

t(24min)  50%A 50%B 

 

 

HPLC chromatogram 

 

The obtained formiate salt was dissolved in methanol (1mL) and an aqueous K2CO3-solution 

(0.03M, 1mL) was added under stirring. The mixture was poured in H20 dist. (50mL) in a 

separation funnel and extracted 3 times with ethylacetate (50mL). The organic phases were 

combined and the solvent was removed under vacuum. The neutralized product was purified 

on neutral Al2O3, where it could be eluted with EtOAc/cyclohexane (3:1). 

 

Yield: 3.0mg, 30%, white solid 
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1
H NMR (400 MHz, Acetone-d6): δ 11.64 (bs, NH), 8.01 – 7.96 (m, 0.79H), 7.46 – 7.40 (m, 

2H), 7.36 – 7.30 (m, 1H), 7.20 (s, 0.04H), 7.06 (s, 0.04H). 

 

Deuterium incorporation was expected at δ 8.01 – 7.96, δ 7.20 and δ 7.06. Isotopic 

enrichment values were determined against the integral at δ 7.36 – 7.30. 

 

2
H-{

1
H}NMR (92 MHz, Acetone): δ 7.98 (s, 1.24D), 7.14 (s, 1.92D) 

 

13
C-{

1
H}NMR (100 MHz, Acetone-d6): δ 129.4 (m), 128.8, 125.8. 

 

 
1
H-NMR spectrum of the non-deuterated starting material 
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1
H-NMR spectrum of 5 

 

 

 
2
H-NMR spectrum of 5 
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13

C-NMR spectrum of the non-deuterated starting material 

 

 
13

C-NMR spectrum of 5 
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ESI spectrum of 5 

 

 

 

(1-Ethyl-imidazol-2-yl)methanol 6 

 

 
 

 
Substrate Solvent (Volume) RuNp@PVP cat. 

25.2mg, 0.2mmol  DMA (2mL) 14.4mg, 5mol% 

 

Workup and purification: 

 

After cooling down to room temperature, EtOAc/cyclohexane (1:1, 3mL) was added to the 

reaction mixture and stirred for 10min to let precipitating RuNp@PVP. The suspension was 
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passed through a Sep-Pak® C18 cartridge and then eluted with EtOAc/cyclohexane (1:1, 

5mL). The solvent was removed under vacuum. 

 

Yield: 25.0mg, 99%, colourless oil 

 

1
H NMR (400 MHz, Acetone-d6): δ 7.10 - 7.02 (m, 1H), 6.78 (s, 0.02H), 4.59 (s, 2H), 4.47 

(bs, OH), 4.11 (q, J = 7.3 Hz, 2H), 1.39 (t, J = 7.3 Hz, 3H). 

 

Deuterium incorporation was expected at δ 6.78 and at δ 4.59. Isotopic enrichment values 

were determined against the integral at δ 7.10 - 7.02. 

 

2
H-{

1
H}NMR (92 MHz, Acetone): δ 6.79 (s, 0.99D), 4.55 (s, 0.24D) 

 

13
C-{

1
H}NMR (100 MHz, Acetone-d6): δ 148.1, 127.0 (m), 120.3, 56.5 (m), 41.4, 16.7. 

 
1
H-NMR spectrum of the non-deuterated starting material 
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1
H-NMR spectrum of 6 

 

 
2
H-NMR spectrum of 6 
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13

C-NMR spectrum of the non-deuterated starting material 

 

 

 
13

C-NMR spectrum of 6 
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ESI spectrum of 6 

 

4-(Imidazol-1-yl)benzaldehyde 7 

 

 
 

 
Substrate Solvent (Volume) RuNp@PVP cat. 

34.4mg, 0.2mmol  THF (2mL) 14.4mg, 5mol% 

 

Workup and purification: 

 

After cooling down to room temperature, EtOAc/cyclohexane (1:1, 3mL) was added to the 

reaction mixture and stirred for 10min to let precipitating RuNp@PVP. The suspension was 

passed through a Sep-Pak® C18 cartridge and then eluted with THF (3mL). The solvent was 

removed under vacuum. The product was recrystallized from THF/cyclohexane (1:1). 

 

Yield: 18.0mg, 52%, yellow solid 

 

1
H NMR (400 MHz, Acetone-d6): δ 10.08 (s, 0.69H), 8.27 (s, 0.55H), 8.09 (d, J = 8.6 Hz, 

2H), 7.89 (d, J = 8.6 Hz, 2H), 7.75 (s, 1H), 7.16 (s, 0.64H). 

 

Deuterium incorporation was expected at δ 10.08, δ 8.27 and at δ 7.16. Isotopic enrichment 

values were determined against the integral at δ 7.89. 
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2
H-{

1
H}NMR (92 MHz, Acetone): δ 10.11 (s, 0.29D), 8.28 (s, 0.45D), 7.20 (s, 0.36D) 

 

13
C-{

1
H}NMR (100 MHz, Acetone-d6): δ 191.8, 142.7, 136.5, 135.9, 132.2, 131.7, 121.5, 

118.4. 

 
1
H-NMR spectrum of the non-deuterated starting material 

 

 

 
1
H-NMR spectrum of 7 
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2
H-NMR spectrum of 7 

 

 

 

 
13

C-NMR spectrum of the non-deuterated starting material 
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13

C-NMR spectrum of 7 

 

 

 
ESI spectrum of 7 

 

 

2,3-(Methylenedioxy)benzaldehyde 7* 

 

 
 

 
Substrate Solvent (Volume) RuNp@PVP cat. 

30.0mg, 0.2mmol  THF (2mL) 14.4mg, 5mol% 
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Workup and purification: 

 

After cooling down to room temperature, EtOAc/cyclohexane (1:1, 3mL) was added to the 

reaction mixture and stirred for 10min to let precipitating RuNp@PVP. The suspension was 

passed through SiO2 pad and then eluted with EtOAc (5mL). The solvent was removed under 

vacuum and the crude product was purified over SiO2. The labelled product was eluted with n-

pentane/EtOAc (3:1). 

 

Yield: 6.0mg, 20%, yellow solid 

 

1
H NMR (400 MHz, Acetone-d6): δ 10.14 (s, 0.11H), 7.36 – 7.20 (m, 1H), 7.18 – 7.07 (m, 

1H), 7.04 – 6.91 (m, 1H), 6.20 (s, 2H). 

 

Deuterium incorporation was expected at δ 10.14. Isotopic enrichment values were 

determined against the integral at δ 7.36 – 7.20. 

 

2
H-{

1
H}NMR (92 MHz, Acetone): δ 10.13 (s) 

 

13
C-{

1
H}NMR (100 MHz, Acetone-d6): δ 187.7(m), 150.6, 150.0, 122.6, 120.7, 120.2, 114.0, 

103.7. 

 

 
1
H-NMR spectrum of the non-deuterated starting material 
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1
H-NMR spectrum of 7* 

 

 
2
H-NMR spectrum of 7* 

 

 

 

(Imidazol-1-yl)acetic acid 8 

 

 
 

 
Substrate Solvent (Volume) RuNp@PVP cat. 

25.2mg, 0.2mmol  D2O (2mL) 14.4mg, 5mol% 
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Workup and purification: 

 

After cooling down to room temperature, the reaction mixture was incubated with “Amberlyst 

A21 free base” (5mL) for 1h. The liquid phase was removed and the resin was washed with 

MeOH (5mL). The labelled product was eluted with an aqueous HCl solution (1M, 10mL). 

The solvent was removed under vacuum. 

 

Yield: 10.0mg, 40%, white solid 

 

1
H NMR (400 MHz, DMSO-d6): δ 4.86 (s, 2H) 

 

Deuterium incorporation was expected at δ 7.62, δ 7.13 and at δ 6.88. Isotopic enrichment 

values were determined by 
2
H-{

1
H}NMR. 

 

2
H-{

1
H}NMR (92 MHz, DMSO): δ 7.95 (s, 1D), 7.36 (s, 0.66D), 7.14 (s, 1D) 

 
1
H-NMR spectrum of the non-deuterated starting material 
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1
H-NMR spectrum of 8 

 

 

 
2
H-NMR spectrum of 8 

 

 

 

 

 
ESI spectrum of 8 
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p-Phenylenediacetic acid 8* 

 

 
 

 
Substrate Solvent (Volume) RuNp@PVP cat. 

38.8mg, 0.2mmol  D2O/THF 1:1 (2mL) 14.4mg, 5mol% 

 

Workup and purification: 

 

After cooling down to room temperature, the reaction mixture was incubated with “Amberlyst 

A21 free base” (5mL) for 15 min. The liquid phase was removed and the resin was washed 

with MeOH (5mL). The compound was eluted with a 1:1 mixture of aqueous HCl solution 

(0.1M) and MeOH (10mL). The solvent was removed under vacuum. 

 

Yield: 12.0mg, 31%, white solid 

 

1
H NMR (400 MHz, methanol-d4): δ 7.24 (s, 4H), 3.58 (s, 3.54H), 

 

Deuterium incorporation was expected at δ 3.58 and confirmed by 
2
H-{

1
H}NMR. 

 

2
H-{

1
H}NMR (92 MHz, methanol): δ 3.59 (s) 

 

The signal at δ 3.59 (s) 
2
H-{

1
H}NMR could be attributed to slight deuteration of the enolic 

positions. Signals emerging at lower chemical shifts could be related to reduced side-

products. 
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1
H-NMR spectrum of starting material 

 

 

 
1
H-NMR spectrum of 8* 

 

 

 
2
H-NMR spectrum of 8* 
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Deuterations of N-heterocyclic benzoderivatives 
 

Benzimidazole 9 

 

 
 

 
Substrate Solvent (Volume) RuNp@PVP cat. 

23.6mg, 0.2mmol  THF (2mL) 14.4mg, 5mol% 

 

 

Workup and purification: 

 

After cooling down to room temperature, cyclohexane (2mL) was added to the reaction 

mixture and stirred for 10min to let precipitating RuNp@PVP. The suspension was passed 

through a Sep-Pak® C18 cartridge and then eluted with EtOAc/cyclohexane (1:1, 5mL). The 

solvent was removed under vacuum. 

 

Yield: 25.0mg, 99%, white solid 

 

1
H NMR (400 MHz, Acetone-d6): δ 8.18 (s, 0.03H), 7.66 – 7.59 (m, 0.39H), 7.25 – 7.18 (m, 

2H). 

 

Deuterium incorporation was expected at δ 8.18 and at δ 7.66 – 7.59. Isotopic enrichment 

values were determined against the integral at δ 7.25 – 7.18. 

 

2
H-{

1
H}NMR (92 MHz, Acetone): δ 8.12 (s, 0.97D), 7.61 (s, 1.62D) 

 

13
C-{

1
H}NMR (100 MHz, Acetone-d6): δ 142.0 (m), 122.8 (m). 
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1
H-NMR spectrum of the non-deuterated starting material 

 

 

 
1
H-NMR spectrum of 9 
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2
H-NMR spectrum of 9 

 

 

 
13

C-NMR spectrum of the non-deuterated starting material 

 

 

 



                                                                      175 

 
13

C-NMR spectrum of 9 

 

 

 

 

ESI spectrum of 9 

 

 

2-Phenylbenzimidazole 10 
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Substrate Solvent (Volume) RuNp@PVP cat. 

38.8mg, 0.2mmol  DMA (2mL) 14.4mg, 5mol% 

 

 

Workup and purification: 

 

After cooling down to room temperature, cyclohexane (2mL) was added to the reaction 

mixture and stirred for 10min to let precipitating RuNp@PVP. The suspension was passed 

through a Sep-Pak® C18 cartridge and then eluted with EtOAc/cyclohexane (1:1, 5mL). The 

solvent was removed under vacuum. The crude was not further purified. 

 

1
H NMR (400 MHz, Acetone-d6): δ 8.28 – 8.21 (m, 0.37H), 7.65 – 7.45 (m, 4.05H), 7.24 – 

7.17 (m, 2H). 

 

Deuterium incorporation was expected at δ 8.28 – 8.21 and at δ 7.65 – 7.45. Isotopic 

enrichment values were determined against the integral at δ 7.24 – 7.17. The reduced side-

product arises at δ 7.11. 

 

 

 
1
H-NMR spectrum of the non-deuterated starting material 
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1
H-NMR spectrum of 10 

 

 

 

 

 

ESI spectrum of 10 

 

 

(5-Methylimidazo[1,2-a]pyridin-2-yl)methanol 11 

 

 

 

 
Substrate Solvent (Volume) RuNp@PVP cat. 

32.4mg, 0.2mmol  THF (2mL) 14.4mg, 5mol% 
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Workup and purification: 

 

After cooling down to room temperature, cyclohexane (3mL) was added to the reaction 

mixture and stirred for 10min to let precipitating RuNp@PVP. The suspension was passed 

through a Sep-Pak® C18 cartridge and then eluted with THF (2mL). The solvent was 

removed under vacuum and the labelled product was recrystallized from acetone/MeOH 

(10:1). 

 

Yield: 5.0mg, 15%, colourless crystals 

 

1
H NMR (400 MHz, methanol-d4): δ 7.68 (s, 1H), 7.44 – 7.37 (m, 0.02H), 7.30 – 7.21 (m, 

1H), 6.80 – 6.72 (m, 1H), 4.78 (s, 2H), 2.63 (s, 3H). 

 

Deuterium incorporation was expected at δ 7.44 – 7.37. Isotopic enrichment values were 

determined against the integral at δ 7.68. 

 

2
H-{

1
H}NMR (92 MHz, methanol): δ 7.43 (s), 4.77 (m) 

 

13
C-{

1
H}NMR (100 MHz, methanol-d4): δ 147.7, 146.7, 136.9, 126.9, 114.0 (m), 112.8, 

108.6, 59.6, 18.5. 

 

 
1
H-NMR spectrum of the non-deuterated starting material 
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1
H-NMR spectrum of 11 

 

 

 

 
2
H-NMR spectrum of 11 

 

 

 
13

C-NMR spectrum of the non-deuterated starting material 
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13

C-NMR spectrum of 11 

 

 

2-Methylbenzoxazole 12 

 
 

 
Substrate Solvent (Volume) RuNp@PVP cat. 

53.2mg, 0.4mmol  THF (2mL) 14.4mg, 2.5mol% 

 

Workup and purification: 

 

Once the reaction was set up and stirred for 24h under D2 atmosphere (2bar), the gas phase 

was removed under reduced pressure and flushed again with D2 gas to give a pressure of 2bar. 

The reaction mixture was stirred for another 24h. After cooling down to room temperature, 

the reaction mixture was absorbed on SiO2. The product was eluted with n-pentane:THF 

(10:1, 50mL). The solvent was removed under vacuum. 

 

Yield: 50.0mg, 94%, colourless liquid 

 

1
H NMR (400 MHz, Acetone-d6): δ 7.65 – 7.57 (m, 0.01H), 7.57 – 7.50 (m, 1H), 7.35 – 7.27 

(m, 2H), 2.59 (s, 1.87H). 
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Deuterium incorporation was expected at δ 7.65 – 7.57 and at δ 2.59. Isotopic enrichment 

values were determined against the integral at δ 7.35 – 7.27. 

 

2
H NMR (600 MHz, Acetone): δ 7.61 (s, 0.99D), 7.55 (s, 0.21D), 7.32 (s, 0.05D), 2.66 – 

2.41 (m, 1.13D). 

 

13
C-{

1
H}NMR (100 MHz, Acetone-d6): δ 164.7, 151.9, 142.7, 125.2, 124.8, 119.8 (m), 

111.0, 14.2 (m). 

 

 
1
H-NMR spectrum of the non-deuterated starting material 
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1
H-NMR spectrum of 12 

 

 

 
2
H-NMR spectrum of 12 
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13

C-NMR spectrum of the non-deuterated starting material 

 

 
13

C-NMR spectrum of 12 
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ESI spectrum of 12 

 

 

2-Methyl-benzimidazole 13I (first deuteration run) 

 

 
 

Substrate Solvent (Volume) RuNp@PVP cat. 

26.4mg, 0.2mmol  THF (2mL) 14.4mg, 5mol% 

 

 

 

Workup and purification: 

 

After cooling down to room temperature, cyclohexane (2mL) was added to the reaction 

mixture and stirred for 10min to let precipitating RuNp@PVP. The suspension was passed 

through a Sep-Pak® C18 cartridge and then eluted with EtOAc/cyclohexane (1:1, 5mL). The 

solvent was removed under vacuum. 

 

Yield: 26.0mg, 99%, white solid 

 

 
1
H NMR (400 MHz, Acetone-d6): δ 7.51 – 7.46 (m, 0.06H), 7.18 – 7.08 (m, 2H), 2.57 – 2.51 

(m, 1.28H). 
 

Deuterium incorporation was expected at δ 7.51 – 7.46 and at δ 2.57 – 2.51. Isotopic 

enrichment values were determined against the integral at δ 7.18 – 7.08. 

 
13

C-{
1
H}NMR (100 MHz, Acetone-d6): δ 152.0, 122.0, 114.8 (m), 14.9 (m). 
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1
H-NMR spectrum of the non-deuterated starting material 

 

 

 
1
H-NMR spectrum of 13I 
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13

C-NMR spectrum of the non-deuterated starting material 

 

 

 

 
13

C-NMR spectrum of 13I 
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ESI spectrum of 13I 

 

 

 

2-Methyl-benzimidazole 13II (second deuteration run) 

 

 
 

 
Substrate Solvent (Volume) RuNp@PVP cat. 

26.0mg, 0.2mmol  THF (2mL) 14.4mg, 5mol% 

 

Workup and purification: 

 

After cooling down to room temperature, cyclohexane (2mL) was added to the reaction 

mixture and stirred for 10min to let precipitating RuNp@PVP. The suspension was passed 

through a Sep-Pak® C18 cartridge and then eluted with EtOAc/cyclohexane (1:1, 5mL). The 

solvent was removed under vacuum. 

 

Yield: 26.0mg, 99%, white solid 

 

 

1
H NMR (400 MHz, Acetone-d6): δ 7.51 – 7.48 (m, 0.04H), 7.19 – 7.09 (m, 2H), 2.58 – 2.52 

(m, 0.59H). 

 

Deuterium incorporation was expected at δ 7.51 – 7.48 and at δ 2.58 – 2.52. Isotopic 

enrichment values were determined against the integral at δ 7.19 – 7.09. 
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2
H-{

1
H}NMR (92 MHz, Acetone): δ 7.48 (s, 2D), 2.47 (s, 2.38D) 

 

13
C-{

1
H}NMR (100 MHz, Acetone-d6): δ 152.0, 122.0, 114.9 (m), 14.4 (m). 

 

 
1
H-NMR spectrum of 13II (2

nd
 run) 

 

 
2
H-NMR spectrum of 13II (2

nd
 run) 
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13

C-NMR spectrum of 13II (2
nd

 run) 

 

 

 

ESI spectrum of 13II (2
nd

 run) 
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Deuterations of 1,2,4-triazoles 
 

 

1-Phenyl-1H-1,2,4-triazole 14 

 

 
 

 
Substrate Solvent (Volume) RuNp@PVP cat. Reaction time 

29.0mg, 0.2mmol  THF (0.5mL) 14.4mg, 5mol% 48h 

 

 

Workup and purification: 

 

After cooling down to room temperature, EtOAc (3mL) was added to the reaction mixture and 

stirred for 10min to let precipitate RuNp@PVP. The suspension was passed through a basic 

Al2O3 pad and then eluted with EtOAc (3mL). The solvent was removed under vacuum. The 

crude product was recrystallized from acetone. 

 

Yield: 18.0mg, 62%, white solid 

 

 
1
H NMR (400 MHz, Acetone-d6): δ 9.03 (s, 0.02H), 8.10 (s, 0.02H), 7.91 – 7.84 (m, 0.40H), 

7.62 – 7.50 (m, 2H), 7.46 – 7.38 (m, 1H). 
 

Deuterium incorporation was expected at δ 9.03, δ 8.10 and at δ 7.91 – 7.84. Isotopic 

enrichment values were determined against the integral at δ 7.46 – 7.38. 

 
2
H-{

1
H}NMR (92 MHz, Acetone): δ 9.01 (m, 0.98D), 8.09 (m, 0.96D), 7.88 (m, 1.60D)  

 
13

C-{
1
H}NMR (100 MHz, Acetone-d6): δ 153.4 (m), 142.6 (m), 138.2, 130.5, 128.6, 120.4 

(m). 
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1
H-NMR spectrum of the non-deuterated starting material 

 

 

 
1
H-NMR spectrum of 14 
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2
H-NMR spectrum of 14 

 

 

 
13

C-NMR spectrum of the non-deuterated starting material 
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13

C-NMR spectrum of 14 

 

 

ESI spectrum of 14 

 

 

1-(4-Methoxyphenyl)-1H-1,2,4-triazole 15 

 

 

 
 

Substrate Solvent (Volume) RuNp@PVP cat. 

35.0mg, 0.2mmol  THF (2mL) 14.4mg, 5mol% 
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Workup and purification: 

 

After cooling down to room temperature, EtOAc/cyclohexane (1:1, 3mL) was added to the 

reaction mixture and stirred for 10min to let precipitate RuNp@PVP. The suspension was 

passed through a Sep-Pak® C18 cartridge and then eluted with EtOAc/cyclohexane (1:1, 

5mL). The solvent was removed under vacuum. 

 

Yield: 37.0mg, 99%, white solid 

 

 

1
H NMR (400 MHz, Acetone-d6): δ 8.90 (s, 0.02H), 8.06 (s, 0.02H), 7.81 – 7.71 (m, 0.41H), 

7.14 – 7.06 (m, 2H), 3.86 (s, 3H). 

 

Deuterium incorporation was expected at δ 9.05, δ 8.90, δ 8.06 and at δ 7.81 – 7.71. Isotopic 

enrichment values were determined against the integral at δ 7.14 – 7.06. 

 

2
H-{

1
H}NMR (92 MHz, Acetone): δ 8.91 (s, 0.98D), 8.08 (s, 0.98D), 7.79 (s, 1.59D) 

 

13
C-{

1
H}NMR (100 MHz, Acetone-d6): δ 160.1, 153.0 (m), 142.3 (m), 131.5, 122.1 (m), 

115.4, 55.9. 

 
1
H-NMR spectrum of the non-deuterated starting material 
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1
H-NMR spectrum of 15 

 

 
2
H-NMR spectrum of 15 
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13

C-NMR spectrum of the non-deuterated starting material 

 

 

 
13

C-NMR spectrum of 15 
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ESI spectrum of 15 

 

 

[3-(1H-1,2,4-Triazol-1-yl)phenyl]methanol 16: 

 

 
 

 
Substrate Solvent (Volume) RuNp@PVP cat. 

35.2mg, 0.2mmol  DMA (2mL) 14.4mg, 5mol% 
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Workup and purification: 

 

After cooling down to room temperature, EtOAc/cyclohexane (1:1, 3mL) was added to the 

reaction mixture and stirred for 10mins to let precipitating RuNp@PVP. The suspension was 

passed through a Sep-Pak® C18 cartridge and then eluted with EtOAc/cyclohexane (1:1, 

5mL). The solvent was removed under vacuum. 

 

Yield: 29.0mg, 83%, grey solid 

 

 

1
H NMR (400 MHz, Acetone-d6): δ 9.05 (s, 0.02H), 8.11 (s, 0.04H), 7.88 (s, 0.94H), 7.76 – 

7.70 (m, 0.74H), 7.55 – 7.47 (m, 1H), 7.44 – 7.38 (m, 1H), 4.74 (s, 2H), 4.59 (bs, OH). 

 

Deuterium incorporation was expected at δ 9.05, δ 8.11, δ 7.88 and at δ 7.76 – 7.70. Isotopic 

enrichment values were determined against the integral at δ 7.44 – 7.38. 

 

2
H NMR (600 MHz, Acetone): δ 9.00 (s, 0.98D), 8.07 (s, 0.96D), 7.86 (s, 0.07D) , 7.72 (s, 

0.26D) 

 

13
C-{

1
H}NMR (100 MHz, Acetone-d6): δ 152.0 (m), 144.7, 141.4 (m), 137.3, 129.5 (m), 

125.6, 117.8, 117.5, 63.1. 
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1
H-NMR spectrum of the non-deuterated starting material 

 

 

 
1
H-NMR spectrum of 16 
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2
H-NMR spectrum of 16 

 

 

 
13

C-NMR spectrum of the non-deuterated starting material 
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13

C-NMR spectrum of 16 

 

 

 

ESI-spectrum of 16 

 

 

4-(1H-1,2,4-Triazol-1-yl)aniline 17 
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Substrate Solvent (Volume) RuNp@PVP cat. 

32.0mg, 0.2mmol  DMA (2mL) 14.4mg, 5mol% 

 

 

Workup and purification: 

 

After cooling down to room temperature, EtOAc/cyclohexane (1:1, 3mL) was added to the 

reaction mixture and stirred for 10min to let precipitate RuNp@PVP. The suspension was 

passed through a Sep-Pak® C18 cartridge and then eluted with EtOAc/cyclohexane (1:1, 

5mL). The solvent was removed under vacuum. 

 

Yield: 33.0mg, 99%, grey solid 

 

1
H NMR (400 MHz, CDCl3): δ 8.38 (s, 0.03H), 8.04 (s, 0.04H), 7.45 – 7.34 (m, 1.53H), 6.80 

– 6.69 (m, 2H), 3.87 (bs, NH2). 

 

Deuterium incorporation was expected at δ 8.38, δ 8.04 and at δ 7.45 – 7.34. Isotopic 

enrichment values were determined against the integral at δ 6.80 – 6.69. 

 

2
H-{

1
H}NMR (92 MHz, CHCl3): δ 8.42 (s, 0.97D), 8.07 (s, 0.96D), 7.43 (s, 0.48D). 

 

13
C-{

1
H}NMR (100 MHz, CDCl3): δ 152.2 (m), 146.8, 140.8 (m), 128.7, 122.1 (m), 115.5. 
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1
H-NMR spectrum of the non-deuterated starting material 

 

 
1
H-NMR spectrum of 17 
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2
H-NMR spectrum of 17 

 

 

 
13

C-NMR spectrum of the non-deuterated starting material 
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13

C-NMR spectrum of 17 

 

 

ESI-spectrum of 17 
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4'-(1H-1,2,4-Triazol-1-yl)acetanilide 18 

 

 

 
Substrate Solvent (Volume) RuNp@PVP cat. 

40.4mg, 0.2mmol  DMA (2mL) 14.4mg, 5mol% 

 

 

Workup and purification: 

 

After cooling down to room temperature, EtOAc/cyclohexane (1:1, 3mL) was added to the 

reaction mixture and stirred for 10min to let precipitate RuNp@PVP. The suspension was 

passed through a Sep-Pak® C18 cartridge and then eluted with ethylacetate (5mL). The 

solvent was removed under vacuum and the labelled product was recrystallized from 

DCM/MeOH (10:1).  

 

Yield: 26.0mg, 64%, white solid 

 

1
H NMR (400 MHz, methanol-d4): δ 9.03 (s, 0.04H), 8.14 (s, 0.04H), 7.78 – 7.71 (m, 

2.18H), 2.15 (s, 3H). 

 

Deuterium incorporation was expected at δ 9.03, δ 8.14 and at δ 7.78 – 7.71. Isotopic 

enrichment values were determined against the integral at δ 2.15. 

 

2
H-{

1
H}NMR (92 MHz, methanol): δ 8.98 (s, 0.95D), 8.12 (s, 0.96D), 7.73 (s, 1.81D). 

 

13
C-{

1
H}NMR (100 MHz, methanol-d4): δ 171.8, 152.8, 142.9 (m), 140.2 (m), 133.9, 121.8 

(m), 121.7, 23.9. 
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1
H-NMR spectrum of the non-deuterated starting material 

 

 

 
1
H-NMR spectrum of 18 
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2
H-NMR spectrum of 18 

 

 

 

 
13

C-NMR spectrum of the non-deuterated starting material 
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13

C-NMR spectrum of 18 

 

 

ESI-spectrum of 18 
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4'-(4H-1,2,4-Triazol-4-yl)acetanilide 19 

 

 

 
Substrate Solvent (Volume) RuNp@PVP cat. 

40.4mg, 0.2mmol  DMA (2mL) 14.4mg, 5mol% 

 

Workup and purification: 

 

After cooling down to room temperature, EtOAc/cyclohexane (1:1, 3mL) was added to the 

reaction mixture and stirred for 10min to let precipitate RuNp@PVP. The suspension was 

passed through a Sep-Pak® C18 cartridge and then eluted with DCM (2mL). The solvent was 

removed under vacuum and the labelled product was recrystallized from MeOH/EtOAc 

(10:1).  

 

Yield: 7.0mg, 17%, white solid 

 

1
H NMR (400 MHz, methanol-d4): δ 8.95 (s, 0.53H), 7.85 – 7.72 (m, 2H), 7.64 – 7.48 (m, 

1.64H), 2.16 (s, 3H). 

 

Deuterium incorporation was expected at δ 8.95 and at δ 7.64 – 7.48. Isotopic enrichment 

values were determined against the integral at δ 7.85 – 7.72. 

 

2
H-{

1
H}NMR (92 MHz, methanol): δ 8.91 (s), 7.55 (s). 
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1
H-NMR spectrum of the non-deuterated starting material 

 

 

 
1
H-NMR spectrum of 19 

 

 

 

 
2
H-NMR spectrum of 19 

 



                                                                      212 

 

ESI-spectrum of 19 

 

 

 

Deuteration of carbazoles under neutral conditions 
 

 

Carbazole 20 

 

 
 
Substrate Solvent (Volume) RuNp@PVP cat. 

33.4mg, 0.2mmol EtOAc (2mL) 14.4mg, 5mol% 
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Workup and purification: 

 

After cooling down to room temperature EtOAc/cyclohexane (1:1, 3mL) was added to the 

reaction mixture and stirred for 10mins to let precipitate RuNp@PVP. The suspension was 

passed through a SiO2 pad and the crude product was eluted with THF (5mL). The solvent 

was removed under vacuum and the crude product was recrystallized from THF/MeOH 

(10:1). 

 

Yield: 16.0mg, 48%, white solid 

 

1
H NMR (400 MHz, Acetone-d6): δ 10.35 (bs, NH), 8.14 – 8.09 (m, 2H), 7.53 – 7.49 (m, 

0.28H), 7.41 – 7.35 (m, 1.74H), 7.21 – 7.15 (m, 1.87H). 

 

Deuterium incorporation was expected at δ 7.53 – 7.49. Isotopic enrichment values were 

determined against the integral at δ 8.14 – 8.09. 

 

2
H-{

1
H}NMR (600 MHz, Acetone): δ 7.51 (s, 1.72D), 7.39 (s, 0.26D), 7.18 (s, 0.16D). 

 

13
C-{

1
H}NMR (100 MHz, Acetone-d6): δ 140.8, 126.3, 123.9, 120.8, 119.6, 111.6 (m). 

 

 
1
H-NMR spectrum of the non-deuterated starting material 
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1
H-NMR spectrum of 20 

 

 

 
2
H-NMR spectrum of 20 
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13

C-NMR spectrum of the non-deuterated starting material 

 

 

 

 
13

C-NMR spectrum of 20 
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3,6-Di-tert-butylcarbazole 21 

 

 
 
Substrate Solvent (Volume) RuNp@PVP cat. 

22.9mg, 0.1mmol THF (2mL) 14.4mg, 10mol% 

 

 

Workup and purification: 

 

After cooling down to room temperature EtOAc/cyclohexane (1:1, 3mL) was added to the 

reaction mixture and stirred for 10mins to let precipitate RuNp@PVP. The suspension was 

passed through a SiO2 pad and the crude product was eluted with THF (5mL). The solvent 

was removed under vacuum and the crude product was recrystallized from THF/MeOH 

(10:1). 

 

Yield: 10.0mg, 44%, white solid 

 

1
H NMR (400 MHz, Acetone-d6): δ 10.02 (bs, NH), 8.23 – 8.16 (m, 2H), 7.51 – 7.43 (m, 

2H), 7.42 – 7.37 (m, 0.48H), 1.43 (s, 18H). 

 

Deuterium incorporation was expected at δ 7.42 – 7.37. Isotopic enrichment values were 

determined against the integral at δ 8.23 – 8.16. 

 

2
H-{

1
H}NMR (600 MHz, Acetone): δ 7.39 (s). 

 

13
C-{

1
H}NMR (100 MHz, Acetone-d6): δ 142.1, 139.5, 139.5, 123.9, 116.9, 111.1 (m), 35.2, 

32.4. 
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1
H-NMR spectrum of the non-deuterated starting material 

 

 
1
H-NMR spectrum of 21 
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2
H-NMR spectrum of 21 

 
13

C-NMR spectrum of the non-deuterated starting material 
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13

C-NMR spectrum of 21 

 

ESI-spectrum of 21 
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3,6-Diphenylcarbazole 22 

 

 
 
Substrate Solvent (Volume) RuNp@PVP cat. 

31.9mg, 0.1mmol THF (2mL) 14.4mg, 10mol% 

 

Workup and purification: 

 

After cooling down to room temperature EtOAc/cyclohexane (1:1, 3mL) was added to the 

reaction mixture and stirred for 10mins to let precipitate RuNp@PVP. The suspension was 

passed through a SiO2 pad and the crude product was eluted with EtOAc (5mL). The solvent 

was removed under vacuum and the crude product was purified over SiO2. The product was 

eluted with 10:1 cyclohexane/ethylacetate. 

 

Yield: 10.0mg, 31%, white solid 

 

1
H NMR (400 MHz, Acetone-d6): δ 8.58 – 8.55 (m, 2H), 7.82 – 7.77 (m, 4H), 7.76 – 7.72 

(m, 2H), 7.63 – 7.60 (m, 0.23H), 7.51 – 7.44 (m, 4H), 7.36 – 7.29 (m, 2H). 

 

Deuterium incorporation was expected at δ 7.63 – 7.60. Isotopic enrichment values were 

determined against the integral at δ 8.58 – 8.55. 

 

2
H-{

1
H}NMR (600 MHz, Acetone): δ 7.62 (s). 

 

13
C-{

1
H}NMR (100 MHz, Acetone-d6): δ 142.9, 140.9, 133.1, 129.6, 127.8, 127.2, 125.8, 

124.8, 119.5, 112.2 (m). 
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1
H-NMR spectrum of the non-deuterated starting material 

 

 

 
1
H-NMR spectrum of 22 
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2
H-NMR spectrum of 22 

 
13

C-NMR spectrum of the non-deuterated starting material 
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13

C-NMR spectrum of 22 

 

 

ESI-spectrum of 22 

 

 

11,12-Dihydroindolo[2,3-a]carbazole 23 

 

 
 
Substrate Solvent (Volume) RuNp@PVP cat. 

51.2mg, 0.2mmol THF (2mL) 28.9mg, 10mol% 
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Workup and purification: 

 

After cooling down to room temperature EtOAc/cyclohexane (1:1, 3mL) was added to the 

reaction mixture and stirred for 10mins to let precipitate RuNp@PVP. The suspension was 

passed through a neutral Al2O3 pad and the crude product was eluted with THF (5mL). The 

solvent was removed under vacuum and the crude product was recrystallized from 

THF/MeOH (10:1). 

 

Yield: 18.0mg, 35%, white solid 

 

1
H NMR (400 MHz, Acetone-d6): δ 10.41 (bs, NH), 8.19 – 8.14 (m, 2H), 7.98 – 7.94 (m, 

2H), 7.63 – 7.59 (m, 0.56H), 7.40 – 7.35 (m, 2H), 7.25 – 7.19 (m, 2H). 

 

Deuterium incorporation was expected at δ 7.63 – 7.59. Isotopic enrichment values were 

determined against the integral at δ 8.19 – 8.14. 

 

2
H-{

1
H}NMR (600 MHz, Acetone): δ 7.61 (s, 1.44D), 7.38 (s, 0.20D), 7.23 (s, 0.14D). 

 

13
C-{

1
H}NMR (100 MHz, Acetone-d6): δ 140.3, 126.8, 125.5, 125.4, 121.9, 120.5, 120.0, 

112.6, 112.1 (m). 

 

 
1
H-NMR spectrum of the non-deuterated starting material 
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1
H-NMR spectrum of 23 

 

 

 
2
H-NMR spectrum of 23 
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13

C-NMR spectrum of the non-deuterated starting material 

 

 

 
13

C-NMR spectrum of 23 

 

 

 

ESI-spectrum of 23 
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N-Methylcarbazole 24 

 

 
 
Substrate Solvent (Volume) RuNp@PVP cat. 

36.2mg, 0.2mmol THF (2mL) 14.4mg, 5mol% 

 

Workup and purification: 

 

After cooling down to room temperature cyclohexane (3mL) was added to the reaction 

mixture and stirred for 10mins to let precipitate RuNp@PVP. The suspension was passed 

through a SiO2 pad and the crude product was eluted with EtOAc (5mL). The solvent was 

removed under vacuum and the crude product was recrystallized from THF/MeOH (10:1). 

 

Yield: 10.0mg, 28%, white solid 

 

1
H NMR (400 MHz, acetone-d6): δ 8.17 – 8.11 (m, 2H), 7.57 – 7.51 (m, 2H), 7.50 – 7.43 (m, 

1.73H), 7.23 – 7.18 (m, 1.83H), 3.90 (s, 3H). 

 

Deuterium incorporation was expected at δ 7.50 – 7.43 and at δ 7.23 – 7.18. Isotopic 

enrichment values were determined against the integral at δ 7.57 – 7.51. 

 

2
H-{

1
H}NMR (600 MHz, acetone): δ 8.18 – 8.07 (m, 0.03D), 7.52 – 7.38 (m, 0.27D), 7.26 – 

7.14 (m, 0.17D). 

 

13
C-{

1
H}NMR (100 MHz, acetone-d6): δ 141.9, 126.5, 123.5, 120.9, 119.6, 109.6. 

 

For 
1
H- and 

13
C-NMR spectrum of the non-deuterated starting material see “synthesis of 

compounds” 
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1
H-NMR spectrum of 24 

 

 

 
2
H-NMR spectrum of 24 

 

 

 
13

C-NMR spectrum of 24 
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ESI-spectrum of 24 

 

 

Deuteration of carbazoles with RuNp@PVP and Cs2CO3 

 

Carbazole 20’ 

 

 
 

 
Substrate Cs2CO3 Solvent (Volume) RuNp@PVP cat. 

33.4mg, 0.2mmol 65.2mg, 0.2mmol THF (2mL) 14.4mg, 5mol% 
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Workup and purification: 

 

After cooling down to room temperature the reaction mixture was poured on a 5mM solution 

of acetic acid in H2O dist. (100mL). The aqueous phase was extracted three times with EtOAc 

(3 x 50mL) in a separation funnel. The solvent was removed under vacuum and the crude 

product was recrystallized from THF and MeOH (THF : MeOH, 10:1). 

 

Yield: 34.0mg, 99%, white solid 

 

1
H NMR (400 MHz, Acetone-d6): δ 10.37 (bs, NH), 8.16 – 8.08 (m, 2H), 7.54 – 7.50 (m, 

0.04H), 7.42 – 7.36 (m, 2H), 7.22 – 7.15 (m, 2H). 

 

Deuterium incorporation was expected at δ 7.54 – 7.50. Isotopic enrichment values were 

determined against the integral at δ 8.16 – 8.08. 

 

2
H-{

1
H}NMR (92 MHz, Acetone): δ 7.52 (m, 1.96D), 7.39 (m, 0.27D). 

 

13
C-{

1
H}NMR (100 MHz, Acetone-d6): δ 140.9, 126.3, 123.90, 120.8, 119.6, 111.7 (m). 

 

 
1
H-NMR spectrum of the non-deuterated starting material 
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1
H-NMR spectrum of 20’ 

 

 

 
2
H-NMR spectrum of 20’ 

 

 

 



                                                                      232 

 
13

C-NMR spectrum of the non-deuterated starting material 

 

 

 

 
13

C-NMR spectrum of 20’ 
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TOF-spectrum of 20’ after GC-MS analysis 

 

 

3,6-Di-tert-butylcarbazole 21’ 

 

 
 

Substrate Cs2CO3 Solvent (Volume) RuNp@PVP cat. 

22.9mg, 0.1mmol 32.6mg, 0.1mmol THF (2mL) 7.22mg, 5mol% 
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Workup and purification: 

 

After cooling down to room temperature the reaction mixture was poured on a 5mM solution 

of acetic acid in H2O dist. (100mL). The aqueous phase was extracted three times with EtOAc 

(3 x 50mL) in a separation funnel. The solvent was removed under vacuum. 

 

Yield: 23mg, 99%, white solid 

 

1
H NMR (400 MHz, Acetone-d6): δ 10.04 (bs, NH), 8.23 – 8.15 (m, 2H), 7.51 – 7.42 (m, 

2H), 7.41 – 7.36 (m, 0.03H), 1.43 (s, 18H). 

 

Deuterium incorporation was expected at δ 7.41 – 7.36. Isotopic enrichment values were 

determined against the integral at δ 8.23 – 8.15. 

 

2
H-{

1
H}NMR (92 MHz, Acetone): δ 7.40 (s). 

 

13
C-{

1
H}NMR (100 MHz, Acetone-d6): δ 142.1, 139.5, 139.3, 123.9, 116.9, 111.1 (m), 35.2, 

32.4. 
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1
H-NMR spectrum of the non-deuterated starting material 

 

 
1
H-NMR spectrum of 21’ 
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2
H-NMR spectrum of 21’ 

 

 
13

C-NMR spectrum of the non-deuterated starting material 
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13

C-NMR spectrum of 21’ 

 

 

ESI-spectrum of 21’ 
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3,6-Diphenylcarbazole 22’ 

 

 
 

Substrate Cs2CO3 Solvent (Volume) RuNp@PVP cat. 

63.8mg, 0.2mmol 65.2mg, 0.2mmol THF (2mL) 14.4mg, 5mol% 

 

 

Workup and purification: 

 

After cooling down to room temperature the reaction mixture was poured on a 5mM solution 

of acetic acid in H2O dist. (100mL). The aqueous phase was extracted three times with EtOAc 

(3 x 50mL) in a separation funnel. The solvent was removed under vacuum. 

 

Yield: 68mg, 99%, white solid 

 

1
H NMR (400 MHz, Acetone-d6): δ 10.46 (bs, NH), 8.58 – 8.53 (m, 2H), 7.82 – 7.77 (m, 

4H), 7.75 – 7.72 (m, 2H), 7.64 – 7.60 (m, 0.09H), 7.51 – 7.44 (m, 4H), 7.36 – 7.30 (m, 2H). 

 

Deuterium incorporation was expected at δ 7.64 – 7.60. Isotopic enrichment values were 

determined against the integral at δ 8.58 – 8.53. 

 

2
H-{

1
H}NMR (92 MHz, Acetone): δ 7.62 (s, 1.91D), 7.48 (s, 0.17D). 7.33 (s, 0.20D) 

 

13
C-{

1
H}NMR (100 MHz, Acetone-d6): δ 142.9, 141.0, 133.1, 129.6, 127.8, 127.2, 125.9, 

124.9, 119.5, 112.2 (m). 
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1
H-NMR spectrum of the non-deuterated starting material 

 

 

 
1
H-NMR spectrum of 22’ 

 

 



                                                                      240 

 
2
H-NMR spectrum of 22’ 

 

 

 

 
13

C-NMR spectrum of the non-deuterated starting material 
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13

C-NMR spectrum of 22’ 

 

 

ESI-spectrum of 22’ 

 

 

11,12-Dihydroindolo[2,3-a]carbazole 23’ 

 

 
 
Substrate Cs2CO3 Solvent (Volume) RuNp@PVP cat. 

25.6mg, 0.1mmol 65.2mg, 0.2mmol THF (2mL) 7.22mg, 10mol% 
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Workup and purification: 

 

After cooling down to room temperature the reaction mixture was poured on a 5mM solution 

of acetic acid in H2O dist. (100mL). The aqueous phase was extracted three times with EtOAc 

(3 x 50mL) in a separation funnel. The solvent was removed under vacuum. 

 

Yield: 26.0mg, 99%, white solid 

 

1
H NMR (400 MHz, Acetone-d6): δ 10.50 (bs, NH), 8.19 – 8.14 (m, 2H), 7.98 – 7.93 (m, 

2H), 7.63 – 7.59 (m, 0.27H), 7.41 – 7.34 (m, 2H), 7.26 – 7.19 (m, 2H). 

 

Deuterium incorporation was expected at δ 7.63 – 7.59. Isotopic enrichment values were 

determined against the integral at δ 8.19 – 8.14. 

 

2
H-{

1
H}NMR (92 MHz, Acetone): δ 7.62 (m, 1.74D), 7.39 (m, 0.15D). 

 

13
C-{

1
H}NMR (100 MHz, Acetone-d6): δ 140.3, 126.8, 125.5, 125.3, 121.9, 120.5, 120.0, 

112.6, 112.1 (m). 

 
1
H-NMR spectrum of the non-deuterated starting material 
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1
H-NMR spectrum of 23’ 

 

 

 
2
H-NMR spectrum of 23’ 
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13

C-NMR spectrum of the non-deuterated starting material 

 

 
13

C-NMR spectrum of 23’ 
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ESI-spectrum of 23’ 

 

Deuterations of N-heterocyclic bioactive molecules 

 

Pimprinine 25I (without base) 

 

 
 

 
Substrate Solvent (Volume) RuNp@PVP cat. 

20.0mg, 0.1mmol Methanol-d4 (2mL) 28.9mg, 20mol% 

 

 

Workup and purification: 

 

After cooling down to room temperature the reaction mixture was poured on H2O dist. 

(100mL) in a separation funnel. The aqueous phase was extracted three times with EtOAc 

(100mL). The solvent was removed under vacuum at room temperature and the crude product 

was recrystallized from acetone and MeOH (acetone : MeOH, 3:1). 

 

Yield: 4.0mg, 20%, white solid 

 

1
H NMR (400 MHz, Methanol-d4): δ 7.81 – 7.75 (m, 1H), 7.60 (s, 0.38H), 7.46 – 7.41 (m, 

0.71H), 7.23 – 7.12 (m, 2.21H), 2.53 – 2.48 (m, 1.08H). 



                                                                      246 

 

Deuterium incorporation was expected at δ 7.60, δ 7.46 – 7.41, δ 7.23 – 7.12 and at δ 2.53 – 

2.48. Isotopic enrichment values were determined against the integral at δ 7.81 – 7.75. 

 

2
H-{

1
H}NMR (92 MHz, Methanol): δ 7.58 (s, 0.51D), 7.42 (s, 0.21D), 7.13 (s, 0.89D), 2.49 

– 2.41 (m, 1.89D). 

 

13
C-{

1
H}NMR (100 MHz, Methanol-d4): δ 160.8, 150.0, 138.2, 125.3, 123.6, 123.4 (m), 

121.3, 120.4, 119.2 (m), 112.8, 105.5 (m), 13.5 (m). 

 

 
1
H-NMR spectrum of the non-deuterated starting material 
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1
H-NMR spectrum of 25I 

 

 

 
2
H-NMR spectrum of 25I 
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13

C-NMR spectrum of the non-deuterated starting material 

 

 

 

 

 
13

C-NMR spectrum of 25I 
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ESI-spectrum of 25I 

 

 

Pimprinine 25II (with base) 

 

 
 
Substrate Cs2CO3 Solvent (Volume) RuNp@PVP cat. 

20.0mg, 0.1mmol 32.6mg, 0.1mmol Methanol-d4 (2mL) 28.9mg, 20mol% 
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Workup and purification: 

 

After cooling down to room temperature the reaction mixture was poured on a 5mM solution 

of acetic acid in H2O dist. (150mL). The aqueous phase was extracted three times with EtOAc 

(3 x 50mL) in a separation funnel. The solvent was removed under vacuum and the crude 

product was purified over SiO2. Deuterium labelled pimprinine could be eluted at 

cyclohexane/EtOAc (1:4). 

 

Yield: 3.0mg, 15%, white solid 

 

1
H NMR (400 MHz, Methanol-d4): δ 7.79 – 7.75 (m, 1H), 7.59 (s, 0.01H), 7.45 – 7.41 (m, 

0.02H), 7.23 – 7.11 (m, 2.19H), 2.53 – 2.49 (m, 2.80H). 

 

Deuterium incorporation was expected at δ 7.59, δ 7.45 – 7.41, δ 7.23 – 7.11 and at δ 2.53 – 

2.49. Isotopic enrichment values were determined against the integral at δ 7.79 – 7.75. 

 

2
H-{

1
H}NMR (92 MHz, Methanol): δ 7.58 (s, 1D), 7.43 (s, 1D), 7.13 (s, 0.81D), 2.49 – 2.41 

(m, 0.28D). 

 

13
C-{

1
H}NMR (100 MHz, Methanol-d4): δ 160.8, 150.0, 138.1, 125.3, 123.5(m), 123.3, 

121.3, 120.4, 119.0 (m), 112.8, 105.3 (m), 13.5 (m). 

 
1
H-NMR spectrum of the non-deuterated starting material 
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1
H-NMR spectrum of 25II 

 

 

 
2
H-NMR spectrum of 25II 
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13

C-NMR spectrum of the non-deuterated starting material 

 

 

 

 

 
13

C-NMR spectrum of 25II 
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ESI-spectrum of 25II 

 

 

Carvedilol 26I 

 

 
 
Substrate Solvent (Volume) RuNp@PVP cat. 

10.0mg, 25μmol THF (1mL) 7.2mg, 20mol% 

 

Workup and purification: 

 

After cooling down to room temperature, EtOAc/cyclohexane (1:1, 3mL) was added to the 

reaction mixture and stirred for 10min to let precipitate RuNp@PVP. The suspension was 

passed through a Sep-Pak® C18 cartridge and then eluted with EtOAc (5mL). The solvent 

was removed under vacuum. 

 

Yield: 10.0mg, 99%, white solid 

 

1
H NMR (400 MHz, CDCl3): δ 8.29 – 8.23 (m, 1H), 8.18 (bs, NH),  7.44 – 7.28 (m, 3H), 

7.24 – 7.16 (m, 1H), 7.09 – 7.01 (m, 0.88H), 6.99 – 6.81 (m, 4H), 6.72 – 6.62 (m, 1H), 4.34 – 

4.09 (m, 5H), 3.83 (s, 3H), 3.41 – 3.31 (m, 0.43H). 
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Deuterium incorporation was expected at δ 9.05 and at δ 7.97 – 7.88. Isotopic enrichment 

values were determined against the integral at δ 8.29 – 8.23. 

 

2
H-{

1
H}NMR (92 MHz, CHCl3): δ 7.45 (s, 0.17D), 7.09 (s, 0.14D), 3.25 – 2.75 (m, 3.6D). 

 

13
C-{

1
H}NMR (100 MHz, CDCl3): δ 155.3, 149.8, 148.4, 141.1, 138.9, 126.8, 125.1, 123.1, 

122.7, 121.8, 121.1, 119.8, 114.2, 112.9, 112.0, 110.1, 104.0, 101.4, 70.4, 68.8, 68.5, 55.9, 

52.1 (m), 48.8 (m). 

 
1
H-NMR spectrum of the non-deuterated starting material 

 
1
H-NMR spectrum of 26I 
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2
H-NMR spectrum of 26I 

 

 

 

 
13

C-NMR spectrum of the non-deuterated starting material 
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13

C-NMR spectrum of 26I 

 

 

ESI spectrum of 26I 
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N-Boc-carvedilol 26II 

 

 
 

 
Substrate Cs2CO3 Solvent (Volume) RuNp@PVP cat. 

50.0mg, 0.1mmol 32.5mg, 0.1mmol THF (1mL) 14.44mg, 10mol% 

 

 

Workup and purification: 

 

After cooling down to room temperature the reaction mixture was poured on a 5mM solution 

of acetic acid in H2O dist. (100mL). The aqueous phase was extracted three times with EtOAc 

(3 x 50mL) in a separation funnel. The solvent was removed under vacuum and the crude 

product was purified over SiO2. Deuterium labelled N-Boc-carvedilol could be eluted at 

cyclohexane/EtOAc (3:1). 

 

Yield: 43.0mg, 86%, white solid 

 

The complexity of the 
1
H- and 

13
C-spectrum is increased by the appearance of different 

rotamers. Signals are designated as multiplets (m) when they could not be nearer specified in 

the 
1
H-spectrum. Just signals of the major rotamer are given in the 

13
C-spectrum. 

 

1
H NMR (400 MHz, Acetone-d6): δ 10.31 (bs, NH), 8.54 – 8.30 (m, 1H), 7.50 – 7.44 (m, 

0.01H), 7.41 – 7.23 (m, 2H), 7.18 – 7.07 (m, 1.01H), 7.02 – 6.80 (m, 4H), 6.76 – 6.68 (m, 

1H), 4.72 – 4.43 (m, 2H), 4.32 – 4.15 (m, 4H), 3.98 – 3.88 (m, 1H), 3.83 – 3.78 (m, 2H), 3.75 

(s, 3H), 3.74 – 3.64 (m, 1H), 1.52 – 1.41 (m, 9H). 

 

Deuterium incorporation was expected at δ 7.50 – 7.44 and at δ 7.18 – 7.07. Isotopic 

enrichment values were determined against the integral at δ 8.54 – 8.30. 
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2
H-{

1
H}NMR (92 MHz, Acetone): δ 7.45 (s), 7.29 (s), 7.10 (s), 6.87 (s). 

 

13
C-{

1
H}NMR (100 MHz, Acetone-d6): δ 157.1, 156.3, 150.8, 149.5, 142.4, 140.1, 127.2, 

125.3, 124.2, 123.4, 122.2, 121.6, 119.7, 114.7, 113.3, 110.9 (m), 104.8 (m), 101.4, 80.2, 

71.3, 70.5, 68.4, 56.1, 53.2, 49.3, 28.6. 

 

 

 
1
H-NMR spectrum of the non-deuterated starting material 
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1
H-NMR spectrum of 26II 

 
2
H-NMR spectrum of 26II 
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13

C-NMR spectrum of the non-deuterated starting material 

 

 

 

 

 
13

C-NMR spectrum of 26II 
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ESI spectrum of 26II 

 

 

Removal of the Boc-group to 7, 8-dideuterocarbazole-carvedilol 26III 

 

 

 

 

7, 8-Dideuterocarbazole-N-boc-carvedilol 25 (20.0mg, 40µmol) was dissolved in DCM 

(1mL). TFA (74µL, 1.0mmol, 25eq) was added at 0°C and the mixture was stirred for 1h. 

Another amount of TFA (84µL, 1.1mmol, 28eq) was added at ambient temperature and 

stirring was continued for 1h more. The reaction mixture was poured on 150mL of an aqueous 

K2CO3 solution (0.03M). The aqueous phase was extracted three times with DCM (50mL). 

The solvent was removed under vacuum and the crude was purified over HPLC on a Waters 

XBridge C18 HPLC column (100x4,6 mm, 3.5 microns). Conditions: 1 ml/min, UV & mass 

detection, 25°C, Solvents & gradients:  A: H2O+1/1000 HCO2H  B: ACN+1/1000 

HCO2H 

 

t (0)   95%A 5%B 

t(24min)  50%A 50%B 

t(25min)  0%A 100%B 

t(30min)  0%A 100%B 
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HPLC chromatogram of 26III 

 

Pure fractions were concentrated under reduced pressure and poured on 100mL of an aqueous 

K2CO3 solution (0.03M). The aqueous phase was extracted three times with EtOAc (50mL). 

The organic fractions were combined and the solvent was removed under vacuum. 

 

Yield: 11.0mg, 66%, white solid 

 

1
H NMR (400 MHz, CDCl3): δ 8.28 – 8.22 (m, 1H), 8.18 (s, NH), 7.41 – 7.27 (m, 2H), 7.23 

– 7.16 (m, 1H), 7.08 – 7.02 (m, 1H), 6.97 – 6.83 (m, 4H), 6.67 – 6.62 (m, 1H), 4.36 – 4.10 (m, 

5H), 3.81 (s, 3H), 3.18 – 3.08 (m, 3H), 3.08 – 2.94 (m, 1H). 

 

Deuterium incorporation was expected at δ 7.41 – 7.27. Isotopic enrichment values were 

determined against the integral at δ 8.28 – 8.22. 

 

2
H NMR (92 MHz, CHCl3): δ 7.44 (s) 
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1
H-NMR spectrum of non-deuterated carvedilol 

 

 
1
H-NMR spectrum of 26III 
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2
H-NMR spectrum of 26III 

 

 

ESI spectrum of 26III 

 

 

 



                                                                      265 

Astemizole 27 

 

 
 
Substrate Solvent (Volume) RuNp@PVP cat. 

45.9mg, 0.1mmol THF (2mL) 28.9mg, 20mol% 

 

Workup and purification: 

 

After cooling down to room temperature, EtOAc/cyclohexane (1:1, 3mL) was added to the 

reaction mixture and stirred for 10min to let precipitate RuNp@PVP. The suspension was 

passed through a Sep-Pak® C18 cartridge and then eluted with EtOAc (5mL). The solvent 

was removed under vacuum to give 42mg of crude product. 10mg of the crude were purified 

over basic Al2O3. Elution started with cyclohexane/EtOAc (3:1). Pure product was eluted with 

THF/MeOH (1:1). 

 

Yield: 6.0mg, 60%, white solid 

 

1
H NMR (400 MHz, Acetone-d6): δ 7.29 – 7.24 (m, 0.13H), 7.24 – 7.02 (m, 7H), 7.01 – 6.95 

(m, 1H), 6.91 – 6.80 (m, 3H), 5.76 (d, J = 7.5 Hz, 1H), 5.28 (s, 2H), 3.97 – 3.85 (m, 1H), 3.75 

(s, 3H), 2.97 – 2.90 (m, 2H), 2.73 – 2.66 (m, 1.84H), 2.54 – 2.49 (m, 1.54H), 2.20 – 2.06 (m, 

4H), 1.62 – 1.50 (m, 2H). 

 

Deuterium incorporation was expected at δ 7.29 – 7.24, δ 2.73 – 2.66 and at δ 2.54 – 2.49. 

Isotopic enrichment values were determined against the integral at δ 7.01 – 6.95. 

 

2
H-{

1
H}NMR (92 MHz, Acetone): δ 7.28 (s, 0.87D), 2.64 (s, 0.16D), 2.47 (s, 0.46D). 
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13
C-{

1
H}NMR (100 MHz, Acetone-d6): δ 158.9, 154.8, 144.2, 135.6, 134.1, 133.6, 130.4, 

129.6, 121.5, 119.5, 116.5 (m), 116.3, 116.1, 114.4, 108.4, 61.4, 55.4, 53.4, 51.4, 44.9, 33.6 

(m), 33.3. 

 

 
1
H-NMR spectrum of the non-deuterated starting material 
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1
H-NMR spectrum of 27 

 

 

 
2
H-NMR spectrum of 27 
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13

C-NMR spectrum of the non-deuterated starting material 

 

 

 

 

 
13

C-NMR spectrum of 27 
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ESI-spectrum of 27 

 

Imiquimod 28 

 

 
 

 
Substrate Solvent (Volume) RuNp@PVP cat. 

10.0mg, 42μmol DMA (2mL) 14.4mg, 24mol% 

 

 

 

 



                                                                      270 

Workup and purification: 

 

After cooling down to room temperature the reaction mixture was poured on H2O dist. 

(100mL) in a separation funnel. The aqueous phase was extracted three times with EtOAc 

(50mL). The solvent was removed under vacuum at room temperature and the crude product 

was recrystallized from dichloromethane and methanol (DCM : MeOH, 4:1). 

 

Yield: 8.0mg, 80%, white solid 

 

1
H NMR (400 MHz, DMSO-d6): δ 8.18 (s, 0.18H), 8.03 – 7.97 (m, 1H), 7.63 – 7.59 (m, 

0.25H), 7.47 – 7.40 (m, 1H), 7.30 – 7.23 (m, 1H), 6.59 (s, 2H), 4.40 (d, J = 7.5 Hz, 2H), 2.21 

– 2.13 (m, 1H), 0.91 (d, J = 6.6 Hz, 6H). 

 

Deuterium incorporation was expected at δ 8.18 and at δ 7.63 – 7.59. Isotopic enrichment 

values were determined against the integral at δ 7.30 – 7.23. 

 

2
H-{

1
H}NMR (92 MHz, DMSO): δ 8.17 (s, 0.86D), 7.61 (s, 0.89D). 

 

The low solubility of imiquimod did not allow to record 
13

C-{
1
H}NMR spectra. 

 

 

 
1
H-NMR spectrum of the non-deuterated starting material 
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1
H-NMR spectrum of 28 

 

 
2
H-NMR spectrum of 28 
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ESI-spectrum of 28 

 

 

Fluconazole 29 

 

 
 
Substrate Solvent (Volume) RuNp@PVP cat. 

61.2mg, 0.2mmol THF (2mL) 28.9mg, 10mol% 

 

 

Workup and purification: 

 

After cooling down to room temperature, EtOAc/cyclohexane (1:1, 3mL) was added to the 

reaction mixture and stirred for 10min to let precipitate RuNp@PVP. The suspension was 

passed through a Sep-Pak® C18 cartridge and then eluted with EtOAc (5mL). The solvent 

was removed under vacuum. 

 

Yield: 41.0mg, 67%, white solid 

 

1
H NMR (400 MHz, Acetone-d6): δ 8.28 (s, 0.07H), 7.76 (s, 0.07H), 7.42 – 7.33 (m, 1H), 

7.08 – 6.98 (m, 1H), 6.89 – 6.81 (m, 1H), 5.63 (s, 1H), 4.90 (d, J = 15.0 Hz, 2H), 4.67 (d, J = 

14.5 Hz, 2H). 
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Deuterium incorporation was expected at δ 8.28 and at δ 7.76. Isotopic enrichment values 

were determined against the integral at δ 6.89 – 6.81. 

 

2
H-{

1
H}NMR (92 MHz, Acetone): δ 8.26 (s, 0.97D), 7.75 (s, 0.97D). 

 

13
C-{

1
H}NMR (100 MHz, Acetone-d6): δ 165.2 – 161.2 (m), 162.7 – 158.7 (m), 152.2 (m), 

146.0 (m), 131.6 – 130.4 (m), 124.6 – 123.8 (m), 112.6 – 111.4 (m), 105.4 – 104.0 (m), 75.9 – 

75.1 (m), 56.2 – 55.1 (m). 

 

 

 
1
H-NMR spectrum of the non-deuterated starting material 
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1
H-NMR spectrum of 29 

 

 

 
2
H-NMR spectrum of 29 
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13

C-NMR spectrum of the non-deuterated starting material 

 

 

 

 

 
13

C-NMR spectrum of 29 
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ESI-spectrum of 29 

 

Fluquinconazole 30 

 

 

 

Substrate Solvent (Volume) RuNp@PVP cat. 

10.0mg, 27μmol THF (2mL) 7.2mg, 19mol% 
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Workup and purification: 

 

After cooling down to room temperature, EtOAc/cyclohexane (1:1, 3mL) was added to the 

reaction mixture and stirred for 10min to let precipitate RuNp@PVP. The suspension was 

passed through a Sep-Pak® C18 cartridge and then eluted with EtOAc (5mL). The solvent 

was removed under vacuum. 

 

Yield: 7.0mg, 70%, white solid 

 

1
H NMR (400 MHz, Acetone-d6): δ 9.05 (s, 1H), 7.97 – 7.88 (m, 2.30H), 7.85 – 7.76 (m, 

1H), 7.70 – 7.66 (m, 1H), 7.65 – 7.59 (m, 1H), 7.51 – 7.43 (m, 1H). 

 

Deuterium incorporation was expected at δ 9.05 and at δ 7.97 – 7.88. Isotopic enrichment 

values were determined against the integral at δ 7.51 – 7.43. 

 

2
H-{

1
H}NMR (92 MHz, Acetone): δ 9.03 (s, 0.91D), 7.88 (s, 0.56D). 

 

13
C-{

1
H}NMR (100 MHz, Acetone-d6): δ 164.0 – 160.8 (m), 161.3, 153.5, 146.9 (m), 143.6, 

142.1, 136.4, 134.9, 133.8, 132.7, 131.7 – 131.3 (m), 130.2, 128.9, 125.2 – 124.5 (m), 123.4 – 

123.2 (m), 113.4 – 112.7 (m). 

 

1
H-NMR spectrum of the non-deuterated starting material 
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1
H-NMR spectrum of 30 

 

 

 

2
H-NMR spectrum of 30 
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13
C-NMR spectrum of the non-deuterated starting material 

 

 

 

 

 

13
C-NMR spectrum of 30 
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ESI spectrum of 30 

 

 

Suvorexant 31 

 

 
 
Substrate Solvent (Volume) RuNp@PVP cat. Reaction time 

22.0mg, 50μmol THF (0.5mL) 14.44mg, 20mol% 60h 

 

Workup and purification: 

 

After cooling down to room temperature, EtOAc (2mL) was added to the reaction mixture and 

stirred for 10min to let precipitate RuNp@PVP. The suspension was passed through a basic 

Al2O3 pad and then eluted with EtOAc (3mL). The solvent was removed under vacuum. 

 

Yield: 23.0mg, 99%, white solid 

 

The complexity of the recorded NMR spectra of suvorexant can be explained by the presence 

of several rotamers in solution (acetone-d6) at room temperature. 
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1
H NMR (400 MHz, Acetone-d6): δ 7.97 – 7.77 (m, 0.90H), 7.46 – 7.09 (m, 3.66H), 7.07 – 

6.90 (m, 1H), 4.94 – 3.18 (m, 8H), 2.83 – 2.37 (m, 3H), 2.26 – 2.12 (m, 1H), 1.26 – 0.87 (m, 

3H). 

 

Deuterium incorporation was expected at δ 7.97 – 7.77 and at δ 7.46 – 7.09. Isotopic 

enrichment values were determined against the integral at δ 7.07 – 6.90. 

 

2
H-{

1
H}NMR (92 MHz, Acetone): δ 7.86 (s, 1.60D), 7.31 (s, 0.23D). 

 

13
C-spectra were compared with spectra in literature. Just signals of the major rotamer are 

given. 

 

13
C-{

1
H}NMR (100 MHz, Acetone-d6): δ 169.3, 164.3, 148.7, 146.5, 139.00, 136.6, 135.3, 

131.6, 131.0, 129.6, 129.0, 123.4 (m), 120.5, 116.4, 110.3, 53.0, 47.7, 44.5, 41.3, 36.8, 20.9, 

19.9. 

 

1
H-NMR spectrum of the non-deuterated starting material 
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1
H-NMR spectrum of 31 

 

2
H-NMR spectrum of 31 
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13
C-NMR spectrum of the non-deuterated starting material 

 

 

 

 

13
C-NMR spectrum of 31 
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ESI spectrum of 31 

 

Deuterations of N-heterocycles by nickel nanoparticles 
 

 

Preparation of the Ni-IMes Np stem solution: 

 

A schlenk flask was charged with IMes (5.6mg, 18µmol, 0.25eq). THF (2mL) was added and 

stirred until the solid completely dissolved. Ni(COD)2 (20mg, 74µmol, 1eq) was filled in a 

Fisher Porter flask. The organometallic precursor was dissolved in THF (5mL) and cooled 

down in a liquid nitrogen/acetone bath. The ligand solution was added to the Ni(COD)2 

solution. Upon warming to room temperature, argon was removed under reduced pressure and 

the Fisher Porter bottle flushed with D2 gas (3bar). The reaction mixture was stirred for 3h at 

70°C. The D2 gas was removed and the F.P. bottle flushed with argon. The prepared 

nanoparticle stem solution was supposed to have a nickel concentration of 0.0148mmol/ml, 

and it was immediately used for H/D exchange reactions. 

 

2,5-Diphenyloxazole 32 
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Substrate Solvent (Volume) Ni-IMes Np solution 

22.2mg, 0.1mmol THF (1mL) 0.7mL, 10mol% Ni 

 

 

Workup and purification: 

 

After cooling down to room temperature ethylacetate (3mL) was added to the reaction 

mixture and stirred for 10min to let precipitate Ni-IMes Np. The suspension was passed 

through a celite pad and the product was eluted with ethylacetate (3mL). The solvent was 

removed under vacuum. 

 

Yield: 23.0mg, 99%, white solid 

 

1
H NMR (400 MHz, Acetone-d6): δ 8.19 – 8.10 (m, 0.02H), 7.90 – 7.83 (m, 2H), 7.69 (s, 

0.03H), 7.60 – 7.47 (m, 5H), 7.42 – 7.36 (m, 1H). 

 

Deuterium incorporation was expected at δ 8.19 – 8.10 and at δ 7.69. Isotopic enrichment 

values were determined against the integral at δ 7.42 – 7.36. 

 

 
1
H-NMR spectrum of 32 
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ESI spectrum of 32 

 

 

2-Phenylimidazole 33 

 

 
 

 
Substrate Solvent (Volume) Ni-IMes Np solution 

28.8mg, 0.2mmol THF (1mL) 0.7mL, 5mol% Ni 

 

 

 

Workup and purification: 

 

After cooling down to room temperature ethylacetate (3mL) was added to the reaction 

mixture and stirred for 10min to let precipitate Ni-IMes Np. The suspension was passed 

through a celite pad and the product was eluted with THF (3mL). The solvent was removed 

under vacuum. 

 

Yield: 30.0mg, 99%, white solid 

 

1
H NMR (400 MHz, acetone-d6): δ 8.02 – 7.96 (m, 0.16H), 7.46 – 7.40 (m, 2H), 7.36 – 7.30 

(m, 1H), 7.16 (s, 1H). 
 

Deuterium incorporation was expected at δ 8.02 – 7.96 and δ 7.16. Isotopic enrichment values 

were determined against the integral at δ 7.36 – 7.30. 
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1
H-NMR spectrum of 33 

 

 

 

 

ESI spectrum of 33 

1-Phenyl-1H-1,2,4-triazole 34 

 

 

 
 
Substrate Solvent (Volume) Ni-IMes Np solution 

29.0mg, 0.2mmol THF (1mL) 0.7mL, 5mol% Ni 
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Workup and purification: 

 

After cooling down to room temperature ethylacetate (3mL) was added to the reaction 

mixture and stirred for 10min to let precipitate Ni-IMes Np. The suspension was passed 

through a celite pad and the product was eluted with THF (3mL). The solvent was removed 

under vacuum. 

 

Yield: 30.0mg, 99%, white solid 

 

1
H NMR (400 MHz, acetone-d6): δ 9.05 (s, 0.01H), 8.12 (s, 0.33H), 7.91 – 7.84 (m, 2H), 

7.62 – 7.50 (m, 2H), 7.46 – 7.38 (m, 1H). 
 

Deuterium incorporation was expected at δ 9.03, δ 8.10 and at δ 7.91 – 7.84. Isotopic 

enrichment values were determined against the integral at δ 7.46 – 7.38. 

 

 

 
1
H-NMR spectrum of 34 

 

 

 

 

ESI spectrum of 34 
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Benzothiazole 35 

 

 

 
 
Substrate Solvent (Volume) Ni-ICy Np 

27.0mg, 0.2mmol THF (2mL) 5.0 mg, 29 mol% Ni 

 

 

Workup and purification: 

 

After cooling down to room temperature ethylacetate (3mL) was added to the reaction 

mixture and stirred for 10min to let precipitate Ni-ICy Np. The suspension was passed 

through a celite pad and the product was eluted with THF (3mL). The solvent was removed 

under vacuum. 

 

Yield: 30.0mg, 99%, white solid 

 

1
H NMR (400 MHz, acetone-d6): δ 9.25 (s, 0.15H), 8.16 – 8.07 (m, 2H), 7.60 – 7.44 (m, 

2H). 
 

Deuterium incorporation was expected at δ 9.25. Isotopic enrichment values were determined 

against the integral at δ 7.60 – 7.44. 

 

 

1
H-NMR spectrum of the non-deuterated starting material 
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1
H-NMR spectrum of 35 

 

 

Compound M0 M+1 M+2 M+3 M+4 M+5 M+6 M+7 M+8 Total 

D 

1 0% 6.6% 34.1% 53.8% -0.4% 0.8%    2.4D 

2 0% 79.5% 18.6% 0.9%      1.2D 

3 13.4% 68.3% 17.1% 1.2%      1.1D 

4 45.4% 54.3% 0.3%       0.6D 

5 0.1% 2.1% 23.6% 26.5% 42.5% 4.0% 1.0%   3.2D 

6 1.9% 74.1% 20.9% 3.2%      1.2D 

7 32.3% 38.9% 22.5% 6.3% 2.5% 2.0% 0.6%   1.0D 

8 7.8% 1.9% 49.3% 43.0% 1.8%     2.3D 

9 1.5% 6.0% 32.2% 59.4% 0.9%     2.5D 

10 5.3% 8.6% 29.9% 37.4% 18.7% 1.8%    2.6D 

12 4.8% 21.5% 30.9% 25.1% 17.8% 4.5%    2.5D 

13I 1.9% 1.0% 19.6% 21.4% 24.6% 32.4% 0.6%   3.7D 

13II 0.0% 0.0% 4.2% 11.1% 25.3% 57.6% 1.8%   4.3D 

14 0.4% 2.3% 12.3% 27.6% 57.3%     3.4D 

15 0.9% 0.9% 11.4% 19.0% 67.8% 0.6%    3.5D 

16 8.2% 12.3% 55.3% 19.9% 4.0% 0.4%    2.0D 

17 19.9% 5.4% 57.1% 17.5% 18.0% 1.7%    2.4D 

18 1.8% 0.6% 6.7% 19.7% 71.8% 0.9%    3.7D 

19 12.7% 36.7% 35.1% 10.3% 5.1% 0.3%    1.6D 

20 13.7% 20.4% 43.8% 22.1% 6.0% 1.1% 0.1%   2.0D 

21 11.0% 35.9% 53.1% 1.4%      1.4D 

22 7.7% 21.2% 56.0% 15.1% 4.3% 1.7%    2.0D 
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23 9.7% 30.5% 42.0% 13.5% 3.1% 1.2%    1.7D 

24 73.4% 18.5% 6.4% 1.7%      0.3D 

20’ 4.8% 21.1% 52.0% 17.9% 4.1%     2.0D 

21’ 3.1% 18.1% 77.9% 0.9% 1.1%     1.7D 

22’ 8.1% 4.6% 60.4% 26.9% 6.9% 0.9%    2.4D 

23’ 1.6% 19.0% 66.3% 13.0%      1.9D 

25I 0.3% 4.4% 15.7% 27.2% 31.0% 18.2% 3.2% 0.1%  3.5D 

25II 0.7% 0.0% 2.6% 81.5% 15.2%     3.1D 

26I 0.7% 0.1% 1.1% 1.4% 44.4% 35.2% 13.1% 2.3% 1.6% 4.7D 

26II 1.1% 4.6% 55.5% 33.4% 1.7% 3.7%    2.2D 

26III 9.2% 53.4% 29.4% 7.3% 0.7%     1.3D 

27 8.1% 53.2% 23.5% 12.3% 2.9%     1.4D 

28 16.1% 7.5% 68.6% 7.9% 0.3%     1.5D 

29 0.2% 0.2% 0.6% 12.8% 85.9% 0.3% 0.1%   3.8D 

30 6.8% 41.9% 46.5% 3.5% -3.8% 1.3% 0.9% 2.8%  1.4D 

31 0.1% 22.5% 37.8% 30.9% 7.9% 0.7%    1.9D 

32 0,0% 0,0% 3,8% 76,5% 18,3% 2,0%    3.0D 

33 0,7% 6,7% 34,8% 41,6% 16,2%     2.7D 

34 1,8% 34,0% 59,9% 3,0% 1,5% -0,2%    1.5D 

 

RIS of deuterium labelled compounds determined by mass spectrometry 

 

 

Tritiations of drugs 

 

General Procedure for H/T exchanges:  

 

A 2.5 mL Fischer–Porter bottle was equipped with a magnetic stir bar and charged with the 

substrate, (if not otherwise stated with Cs2CO3) & RuNp@PVP. THF was added to the 

Fischer–Porter bottle. The reaction medium was frozen in liquid nitrogen, set under vacuum 

& charged with T2 gas. After reaching ambient temperature the pressure was noted. Then, the 

reaction mixture was stirred at 50°C (sand bath) for 24 hours. Activity and pressure of T2 gas 

used, amounts of substrates, catalyst, solvent, work-up and purification procedures are 

individually indicated in all cases. 
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Tritiation of N-Boc-carvedilol 26* 

 

 
 

Substrate Cs2CO3 Solvent (Volume) RuNp@PVP cat. T2 [21°C] 

5.0mg, 10µmol 3.3mg, 10µmol THF (0.3mL) 3mg, 20mol% 519mbar, 6.6Ci 

 

Workup and purification: 

 

After cooling down to room temperature, an acetic acid solution (1% in EtOAc, 0.5mL) was 

added to the reaction mixture and stirred for 3 minutes to let precipitate RuNp@PVP. The 

suspension was passed through a SiO2 pad and then eluted with EtOAc (1.5mL). The solvent 

was removed under vacuum to give a white solid. 

 

Analytical HPLC performed on an Waters XBridge C18 100mm x 4.6mm, 3.5µm, column. 

Condition: 1.0mL/min, UV & mass detection, 25°C, Solvents & gradients: Solvent A : H2O + 

0.1% HCOOH; Solvent B : ACN + 0.1% HCOOH 

 

t (0min)  95%A 5%B 

t(25min)     0%A  100%B 

t(30min)     0%A  100%B  

 

3
H-{

1
H} NMR (427 MHz, Acetone-d6): δ 7.59 (s, 0.15T), 7.25 (s, 0.15T). 
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Chromatogram of 26* 

 
3
H-NMR spectrum of 26* 
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ESI spectrum of 26* 

 

 

 

Tritiation of astemizole 27* 

 
 
Substrate Solvent (Volume) RuNp@PVP cat. T2 [21°C] 

5.0mg, 11µmol THF (0.4mL) 14.0mg, 92mol% 970mbar, 12.4Ci 

 

Workup and purification: 

 

After cooling down to room temperature, EtOAc/cyclohexane (1:1, 1mL) was added to the 

reaction mixture and stirred for 3min to let precipitate RuNp@PVP. The suspension was 

passed through a C18-SiO2 pad. The product was eluted with EtOAc (4.5mL). The solvent 

was removed under vacuum to give a white solid.  
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Analytical HPLC was performed on a Waters XBridge Prep Phenyl 150mm x 10mm, 5µm, 

column. Condition: 4.0mL/min, UV & mass detection, 25°C, Solvents & gradients: Solvent 

A : H2O + 0.1% HCOOH; Solvent B : ACN + 0.1% HCOOH 

 

t (0min)  95%A 5%B 

t(25min)     0%A  100%B 

t(30min)     0%A  100%B  

 

 

HPLC chromatogram 

 

 
3
H-{

1
H} NMR (427 MHz, Acetone-d6): δ 7.31 (s, 0.42T), 2.60 – 2.45 (m, 0.33T). 
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3
H-NMR spectrum of 27* 

 

 

ESI-spectrum of 27* 

 

 

Tritiation of fluconazole 29* 
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Substrate Solvent (Volume) RuNp@PVP cat. T2 gas [21°C] 

5.0mg, 17µmol THF (0.5mL) 3mg, 13mol% 869mbar, 11.1Ci 

 

Workup and purification: 

 

After cooling down to room temperature, EtOAc/cyclohexane (1:1, 1mL) was added to the 

reaction mixture and stirred for 3 minutes to let precipitate RuNp@PVP. The suspension was 

passed through a SiO2 pad and then eluted with distilled THF (5mL). The solvent was 

removed under vacuum to give a white solid.  

 

Analytical HPLC was performed on a Waters XBridge C18 250mm x 4.6mm, 3.5µm, column. 

Condition: 1.0mL/min, UV & mass detection, 25°C, Solvents & gradients: Solvent A: H2O; 

Solvent B: MeOH 

 

t (0min)  95%A 5%B 

t(25min)     0%A  100%B 

t(30min)     0%A  100%B  
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HPLC chromatogram 

 
3
H-{

1
H} NMR (427 MHz, Acetone-d6): δ 8.33 (s, 0.66T), 7.79 (s, 0.24T). 

 

 

 
3
H-NMR spectrum of 29* 
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ESI-spectrum of 29* 

 

 

Compound M0 M+1 M+2 (1T) M+3 M+4 (2T) M+5 M+6 (3T) M+7 M+8 (4T) Total T 

26* 77.1% -6.6% 21.3% 4.0% 4.2%     0.3T 

27* 42.0% -1.1% 42.5% -1.0% 12.9% 0.1% 4.5%   0.8T 

29* 46.1% -0.3% 29.9% 0.1% 17.7% -0.1% 6.6%   0.9T 

 

RIS of tritium labelled compounds determined by mass spectrometry 
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Résumé rallongé : Cette thèse vise à développer de nouvelles méthodes de marquage efficaces permettant 

l’incorporation des isotopes de l’hydrogène dans les molécules organiques complexes. La méthode 

d’échange isotopique direct a été sélectionnée pour le marquage d’hétérocycles azotés. A l’heure actuelle, 

très peu de méthodes existent voire sont inexistantes pour certains types de composés et ce malgré la 

récurrence de ce type de sous-structures dans les molécules d’intérêt pharmacologique. Pour cette raison, la 

majeure partie de ce travail a consisté en le développement de nouvelles méthodes d’incorporation d’atomes 

de deutérium et de tritium sur des hétérocycles azotés catalysées par des nanoparticules métalliques.  La 

première étape pour le marquage est la synthèse de nanoparticules de ruthénium stabilisées par le polymère 

polyvinylpyrrolidone (RuNp@PVP) et de nanoparticules de ruthénium stabilisées par un carbène 

hétérocyclique azoté (Ru-ICy Np). D’autres nanoparticules composées d’un métal non noble, abondant et 

peu cher ont également été synthétisées pour la première fois. Ainsi, des nanoparticules de nickel ont été 

synthétisées en les stabilisants par deux différents types de carbènes (Ni-ICy Np et Ni-IMes Np). Les 

nanoparticules de ruthénium ont ensuite été utilisées pour la mise au point des réactions de deutération des 

dérivés hétérocycliques azotés. RuNp@PVP s´est révélée être le nanocatalyseur le plus efficace et 

chimosélectif et a donc été employé pour la suite de ce projet pour étudier la deutération des oxazoles, des 

imidazoles, des benzimidazoles, des benzoxazoles, des triazoles et des carbazoles. En comparaison avec les 

travaux déjà décrits, RuNp@PVP s´est avéré un très bon catalyseur permettant des incorporations efficaces 

de deutérium en position alfa, beta et gamma de l’atome d’azote responsable de la coordination dans des 

conditions douces. En outre, la compatibilité du RuNp@PVP avec des substrats pourvus des différentes 

fonctionnalités protiques et polaires a mis en évidence son applicabilité large. Un autre résultat remarquable 

résidait dans le fait que l´ajout d´une base inorganique a permis d´empêcher la formation des sous-produits 

réduits et d´améliorer des enrichissements isotopiques en vicinité des liaisons N-H sur les carbazoles et les 

indoles. Par ailleurs, des calculs théoriques ont permis de rationaliser les regiosélectivités obtenues 

expérimentalement et d’identifier notamment des intermédiaires clefs inédites. D’un point de vue applicatif, 

l´échange isotopique catalysé par les nanoparticules de ruthénium a permis de synthétiser des standards 

internes deutérés de molécules bioactives et fragiles, comme par exemple la pimprinine, pour la 

quantification LC-MS. La tritiation des molécules complexes (le fluconazole, l’astémizole et le carvédilol) a 

pu être effectuée par cette méthode en seulement une étape de synthèse en utilisant des pressions du gaz de 

tritium inférieures à un bar. En dépit des résultats positifs obtenus, la catalyse par les nanoparticules de 

ruthénium ne permet pas toujours le marquage des molécules portant certaines groupements (thiazole, 

thioéthers), d´où l´intérêt de développer des nanocatalyseurs métalliques contenant d´autres métaux et 

d´autres ligands. Dû à ces limitations, la réactivité de nouveaux nanocatalyseurs de nickel pour l´échange 

H/D sur les hétérocycles azotés était aussi discutée. Après une optimisation de conditions réactionnelles, le 

catalyseur Ni-IMes Np s’est trouvé être le plus efficace pour nos réactions. La régiosélectivité de l´échange 

isotopique par cette méthode sur certains substrats modèles était comparable à celle obtenue avec les 

nanocatalyseurs de ruthénium dans le chapitre précédent. Néanmoins, l´absence des sous-produits réduits 

s´est avérée comme un avantage considérable de la méthode utilisant les nanoparticules de nickel, à l´inverse 

des résultats obtenus avec des nanocatalyseurs de ruthénium. Un autre point positif était la deutération du 

benzothiazole, qui ne pouvait pas être deutéré par les nanoparticules de ruthénium. Un inconvénient des 

deutérations catalysées par les nanoparticules de nickel résidait dans leur instabilité en présence des 

groupements polaires, comme par exemple les amines et les alcools, ce qui a limité leur applicabilité pour le 

marquage des substrats plus complexes. Le développement des nouvelles méthodes de stabilisation des 

nanoparticules de nickel fera l’objet des futurs travaux dans ce domaine. 
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Titre : Marquage des molécules d’intérêt biologique au deutérium et tritium par la catalyse des 

nanoparticules métalliques 

Mots clés : marquage isotopique, radiochimie, nanoparticules, hétérocycles azotés, DFT 

Résumé : Cette thèse vise à développer de 

nouvelles méthodes efficaces pour incorporer 

des isotopes de l’hydrogène dans les molécules 

organiques complexes, après une introduction 

portant sur les applications et la synthèse des 

molécules marquées par le deutérium et tritium. 

Les méthodes permettant le marquage, par 

échange isotopique direct, d’hétérocycles azotés 

par des isotopes de l’hydrogène restent 

perfectibles, voire inexistantes dans certains cas, 

malgré la récurrence de ce type de sous-

structures dans les molécules d’intérêt 

pharmacologique. Pour cette raison, la majeure 

partie de ce travail a consisté au développement 

de nouvelles méthodes d’incorporation d’atomes 

de deutérium et de tritium sur des hétérocycles 

azotés catalysées par des nanoparticules métalli- 

ques. Dans un premier chapitre, la mise au point, 

le champ d’application d’une méthode de 

marquage mettant en jeu l’utilisation de 

nanocatalyseurs de ruthénium seront discutés. 

Dans ce cadre, des calculs théoriques ont permis 

de rationaliser les regiosélectivités obtenues 

expérimentalement et d’identifier notamment 

des intermédiaires clefs inédits. D’un point de 

vue applicatif, cette méthode a permis de 

synthétiser des étalons internes deutérés pour la 

quantification LC-MS mais aussi des molécules 

complexes tritiées ayant des activités spécifiques 

élevées en une étape de synthèse. Dans un autre 

chapitre, la synthèse et la réactivité de nouveaux 

nanocatalyseurs de nickel permettant de réaliser 

des échanges isotopiques sélectifs seront 

discutés.  

 
 

 

 

Title : Tritium and Deuterium Labelling of Bioactive Molecules Catalyzed by Metallic Nanoparticles 

Keywords : isotopic labelling, radiochemistry, nanoparticles, N-heterocycles, DFT 

Abstract: This PhD thesis deals with the 

development of new efficient methods for the 

incorporation of hydrogen isotopes into organic 

molecules, which represents a serious issue and 

a field of tremendous importance for drug 

discovery and drug development processes. 

After giving an introduction about hydrogen 

isotopes and their applications in organic 

molecules, the course will proceed to an 

overview of different chemical transformations 

for establishing deuterium or tritium labels on 

molecular frameworks. The possibilities to label 

N-heterocycles by hydrogen isotopes through 

hydrogen isotope exchange (HIE) are still very 

restricted and even impossible for some 

representatives despite the strong recurrence of 

these substructures in numerous biologically 

active molecules. For this reason, the emphasis 

of the practical part will lie on the development 

 

of new methods for the incorporation of 

deuterium and tritium on N-heterocycles through 

metal nanoparticle catalysis. In the first chapter, 

HIE through ruthenium nanocatalysts will be 

optimized and the application range will be 

demonstrated. In this context, DFT-based 

calculations allowed to explain experimental 

regioselectivities and to identify new key-

intermediates. In terms of application, it was 

shown that the ruthenium-catalyzed method is 

useful for the synthesis of deuterium labelled 

internal standards for LC-MS quantifications 

and for the tritiation of complex molecules 

displaying satisfying specific activities. In the 

next chapter, the synthesis of new nickel 

nanoparticles and their potential to catalyze 

selective HIE on N-heterocyclic derivatives will 

be discussed.  
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