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Introduction en français

La relativité générale est l’étude des espace-temps, qui sont des variétés lorentziennes
(M̃, g̃) satisfaisant les équations d’Einstein

Ricαβ(g̃)−
1

2
R(g̃)g̃αβ = 8πTαβ ,

α, β = 0, n. Ici, R(g̃) désigne la courbure scalaire de g̃, Ric est la courbure de Ricci, et
Tαβ est le tenseur d’énergie impulsion, qui décrit la présence de matière et d’énergie. En
présence d’un champ scalaire, le tenseur d’énergie-impulsion devient

Tαβ = ∇αψ̃∇βψ̃ −
(
1

2
|∇ψ̃|2g̃ + V (ψ̃)

)
g̃αβ ,

où ψ̃ ∈ C∞(M) est le champ scalaire, et V ∈ C∞(R) est le potentiel. Par exemple, V = Λ
et ψ̃ = 0 modélise le vide avec Λ pour constante cosmologique, et V = 1

2mψ̃2, m > 0
correspond au cas de Klein-Gordon.

Dans les années 50 et 60, le champ de la relativité générale a connu une grande avan-
cée. En effet, Choquet-Bruhat, et plus tard Choquet-Bruhat et Geroch ([CBG69], [FB52])
ont montré que les équations d’Einstein peuvent être envisagées comme un problème
d’évolution. Dans le cas d’un champ scalaire, les conditions initiales sont la donnée de
(M, g,K, ψ, π), où (M, g) est une variété riemannienne de dimension n, K est un 2-tenseur
symétrique correspondant à la seconde forme fondamentale, ψ représente le champ scalaire
dans M , et π sa dérivée temporelle. En relativité générale, les conditions initiales sont
solutions des équations de contraintes,{

R(g) + trgK
2 − |K|2g = π2 + |∇ψ|2g + 2V (ψ)

∂i(trgK)−Kj
i,j = π∂iψ.

(0.0.1)

Ce système est clairement sous-déterminé. Dans le cas n = 3, par exemple, il consiste
en 4 équations de 14 inconnues. Ainsi, bien que l’on ne puisse pas choisir des conditions
initiales données (M, g,K, ψ, π) quelconques, l’ensemble des données admissibles est riche –
on peut intuitivement l’assimiler à une variété de dimension 10. En outre, chaque condition
initiale admissible détermine de manière unique un espace-temps maximal, et tout espace-
temps globalement hyperbolique est la solution d’un problème de Cauchy, ce qui justifie le
bien-fondé de notre étude.

La méthode conforme est la première approche générale dans l’identification de condi-
tions initiales (Lichnerowicz [Lic44]). Elle permet aux équations de contrainte (0.0.1) de
devenir un système déterminé en fixant certains paramètres bien choisis. Pour illustrer
cette méthode, revenons au cas n = 3. Le système (0.0.1) contient une équation scalaire
et une équation vectorielle, soit un total de 4 équations scalaires. Les inconnues sont les
2-tenseurs symétriques ĝab et K̂ab, où a, b ∈ 1, 3, ainsi que les fonctions π̂ et ψ̂, soit 14
inconnues. Le système comporte exactement 10 degrés de liberté. On commencer donc par
fixer un premier paramètre en imposant à ĝab d’appartenir à une classe conforme qu’on
écrit g, ou [ĝab], où

g = {eαg, α ∈ C∞}.
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Soit ĝ = uq−2g, u ∈ C∞, u > 0, où q est l’exposant de Sobolev critique, q = 2n
n−2 . Alors,

la courbure scalaire, sous une transformation conforme, se transforme selon la formule
suivante

R(ĝ) = u1−q

(
4(n− 1)

n− 2
Δgu+R(g)u

)
,

où Δg = −divg∇ est l’opérateur de Laplace-Beltrami. La méthode conforme consiste en
un choix de paramètres qui se comportent bien sous les transformations conformes. Les
tenseurs de trace et de divergence nulles en sont un autre exemple. Ils obéissent à la loi
Ûab = u−2Uab, ce qui signifie qu’on peut considérer la classe d’équivalence U = [ĝab, Ûab] =
[gab, Uab] comme un autre paramètre, où Uab apparaît dans la décomposition de la partie
de trace nulle de K, comme le montre le tableau suivant pour n = 3 :

Données physiques Paramètres Dimensions Inconnues

ĝab = uq−2gab g 5 1

K̂ab = u−2
[
(LgW )ab + Uab

]
+

τ

n
uq−2gab U, τ 2 + 1 3

ψ̂ = ψ ψ 1 0

π̂ = u−qπ π 1 0

Pour une fonction u et un champ de vecteur W , lisses sur Σ, une variété fermée, le système
en (u,W ), se simplifie en

Δgu+ n−2
4(n−1)

(
R(g)− |∇ψ|2g

)
u = − n−2

4(n−1)

(
n−1
n τ2 − 2V (ψ)

)
uq−1

+ n−2
4(n−1)

(|U+LgW |2g+π2)
uq+1 ,

−→
ΔgW = n−1

n uq∇τ − π∇ψ,

où LgWij = Wi,j + Wj,i − 2
ndivgWgij est l’opérateur de Killing conforme, et

−→
ΔgW =

−divgLgW est l’opérateur de Lamé. Cette méthode s’avère particulièrement efficace pour
trouver des solutions dans le cas d’une courbure moyenne constante ou presque constante.
Cela est principalement dû au fait que le système devient, dans ce cas, seulement semi-
couplé, ce qui rend son analyse plus aisée. À ce jour, il n’est pas sûr que cette méthode
soit pertinente dans le cas général, puisque le système couplé reste très compliqué.

En 2011, David Maxwell a montré que les paramétrages donnés par la méthode conforme
classique peuvent être dégénérés, en identifiant certains paramètres explicites qui corres-
pondent à une infinité de solutions ([Max11], [Max15]). Cependant, cet échec de la théorie
n’est pas nécessairement lié à l’existence de singularités dans l’espace des solutions, mais est
peut-être conséquence d’un choix de paramétrage malheureux. Dans son article de 2014,
Maxwell propose une variante de la méthode conforme standard [Max14b]. Dans le cas
d’un champ scalaire, le système prend la forme suivante

Δgu+ n−2
4(n−1)(R(g) + |∇ψ|2g)u =

(n−2)|U+LgW |2+π2

4(n−1)uq+1

+ n−2
4(n−1) [2V (ψ)− n−1

n

(
τ∗ + divg(uqṼ )2

Ng,ωu2q

)
]uq−1

divg

(
1

2Ng,ω
LgW

)
= n−1

n uqd
(
divg(uqṼ )
2Ng,ωu2q

)
+ π∇ψ = 0.

(0.0.2)

où les inconnues sont la fonction strictement positive et lisse u et le champ vectoriel W i, et
où d est la dérivée extérieure, τ∗ est la constante qui apparaît dans l’expression du moment
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volumétrique, Ṽ est le champ vectoriel associé à la dérive inertielle (« drift momentum »,
une quantité introduite par Maxwell), et Ng,ω est la « densitized lapse ». Ici, nous avons
supposé que g n’admet pas de champ de Killing conforme non trivial.

Dans [Vâl19], nous nous intéressons au cas d’un potentiel V positif ou nul dans le
système de Maxwell. L’équation scalaire présente une non-linéarité critique, avec un signe
positif. En d’autres termes, nous nous intéressons au cas focalisant. Le cas non focalisant
a été traité par Holst, Maxwell et Mazzeo en 2018 [HMM18]. Notre problème traite de
l’existence de solutions (u,W ), u > 0, à

Δgu+ hu = fuq−1 +
ρ1+|Ψ+ρ2LgW |2g

uq+1

− b
u − c〈∇u, Y 〉

(
d
u2 + 1

uq+2

)
− 〈∇u,Y 〉2

uq+3

divg (ρ3LgW ) = R(u,∇u,∇2u),

(0.0.3)

où f > 0, h, b, c, d, ρ1, ρ2, ρ3 sont des fonctions lisses, Ψ, Y sont des champs vectoriels,
et l’opérateur R vérifie, pour une constante CR > 0,

R(u,∇u,∇2u) � CR

(
1 +

||u||2C2

(infM u)2

)
Soient

θ = min(inf
M

ρ1, inf
M

f), (0.0.4)

et
T = max(||f ||C1,γ , ||ρ1||C0,γ , ||c||C0,γ , ||d||C0,γ , ||h||C0,γ ). (0.0.5)

Theorem 1 ([Vâl19]). Soit n = 3, 4 ou 5. Il existe une constante C = C(n, h) > 0 telle
que si ρ1 vérifie

||ρ1||L1(M) � C(n, h)

(
max
M

|f |
)1−n

, (0.0.6)

alors il existe une constante
δ = δ(θ, T ) > 0

telle que le système (0.0.3) admet une solution si

||b||C0,γ + ||Y ||C0,γ + ||Ψ||C0,γ + ||ρ2||C0,γ + CR � δ. (0.0.7)

Pour obtenir ce résultat d’existence, nous imposons essentiellement deux conditions :
les paramètres doivent être suffisament petits, et la dimension aussi. La démonstration est
inspirée du travail de Bruno Premoselli [Pre14], mais traite les difficultés supplémentaires
liées à la présence de termes non-linéaires impliquant le gradiant de u, et aussi à la structure
non-variationnelle de la première équation. Nous utilisons un argument de point fixe. En
bref, nous définissons un opérateur de « ping-pong » qui alterne entre les deux équations du
système, fixant une inconnue pour résoudre en l’autre, et vice-versa. Un théorème du point
fixe nous permet alors de conclure. Nous commençons par établir, grâce à une méthode
itérative, l’existence de solutions à l’équation scalaire de Lichnerowicz. La solution s’avère
minimale et stable.

Nous montrons aussi que les perturbations des paramètres de l’équation n’entrainent
pas de perte de compacité dans les dimensions n = 3, 4, et 5.
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Theorem 2 ([Vâl19]). Soit (M, g) une variété riemannienne fermée de dimension n = 3,
4 ou 5. Soient 1

2 < η < 1 et 0 < α < 1. Soient a, b, c, d, f , et h des fonctions lisses sur M ,
et Y un champ vectoriel lisse sur M . Pour tout 0 < θ < T , il existe deux constantes Sθ,T

et ϑθ,T telle que toute solution strictement positive et lisse u de l’équation de Lichnerowicz
vérifie ||u||C2 � Sθ,T , dès lors que les paramètres sont dans

Eθ,T :=
{
(f, a, b, c, d, h, Y ), f � θ, a � θ,

||f ||C1,η � T, ||a||C0,α , ||b||C0,α , ||c||C0,α , ||d||C0,α , ||h||C0,α , ||Y ||C0,α � T
}
,

(0.0.8)

avec
||Y ||C0,α � ϑθ,T , (0.0.9)

Nous montrons la stabilité des solutions du système (0.0.3) : ce résultat est obtenu en
dimension 3 � n � 5, dans le cas où la métrique est localement conformément plate, et le
drift est petit.

Theorem 3. Soit (M, g) une variété riemannienne fermée de dimension n = 3, 4 ou 5,
où g est localement conformement plat. Soient 1

2 < η < 1 et 0 < α < 1. Soient 1
2 < η < 1

et 0 < α < 1. Soient a, b, c, d, f , h, ρ1, ρ2, ψ, π, et Ñ des fonctions lisses sur M , et
Y un champ vectoriel lisse sur M . Pour tout 0 < θ < T , il existe deux constantes Sθ,T et
ϑθ,T telle que, dès lors que les paramètres sont dans

Eθ,T :=
{
(f, a, b, c, d, h, ρ1, ρ2, Y )× (Ñ , Ṽ , ψ, π), f � θ, a � θ, Ñ � θ,

||f ||C1,η � T,

||a||C1,α , ||b||C1,α , ||c||C1,α , ||d||C1,α ,

||ρ1||C1,α , ||ρ2||C1,α , ||h||C1,α , ||Y ||C1,α � T,

and ||Ñ ||C2,α , ||Ṽ ||C2,α � T
}
,

(0.0.10)
avec

||Y ||C1,α , ||Ṽ ||C2,α � ϑθ,T , (0.0.11)

toute solution (u,W ), avec u strictement positive et lisse, vérifie

||u||C2,α + ||LgW ||C1,α � Sθ,T . (0.0.12)

Le but à long terme est de trouver une alternative viable à la méthode conforme, qui
nous permettrait de mieux comprendre la structure géométrique de l’espace des solutions
des équations de contrainte. L’idée sera, par exemple, de montrer que, en dimension 3,
l’ensemble des solutions est une variété lisse de dimension 10. Nous rappelons que les an-
ciens paramétrages proposés sont souvent trop compliqués à analyser (comme, par exemple,
dans le cas des systèmes qui correspondent aux solutions à courbure moyenne loin d’être
constante), et qu’ils présentent des singularités.

L’avantage du système de Maxwell par rapport aux modèles plus classiques est la
présence des paramètres supplémentaires. Une idée sera d’utiliser ces paramètres de plus
pour incliner les axes des coordonnées (de dimension 10) dans le voisinage d’une singularité.
Ainsi, nous montrerons que ces singularités ne sont que des fausses singularités, dues à de
mauvais choix de paramétrage. Le prix à payer, par contre, sera la complexité analytique
du système correspondant.

Many thanks to Simon Zugmeyer for his help in writing this section in French.
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1.1 Differential geometry

Before we properly begin, let us recall some notions from differential geometry that will be
useful in the reading of the present text. For a more detailed introduction, we recommend
the book of Sylvestre Gallot, Dominique Hulin and Jacques Lafontaine, together with that
of Peter Peterson, and the course notes of Frédéric Paulin [GHL04, Pet16, Pau13].

For more background on general relativity, see the work of Robert Wald [Wal84]. A
particularly lovely resource that functions as a great introduction to general relativity and
also includes a chapter on differential geometry is the book of Yvonne Choquet-Bruhat
[CB15].
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1.1.1 Manifolds and tensors

Let M be a differential manifold ; intuitively, a manifold may be seen as an object that
can be locally identified with an Euclidean space. A topological n-dimensional manifold
is defined as a set M , together with a collection of charts (UI , ϕI) called an atlas. Here,
I is an arbitrary set of indices. For any i ∈ I, we define Ui ⊂ M , and ϕi : Ui → V ⊂
R
n, x �→ ϕ(x) ≡ (x1, . . . , xn), a one-to-one invertible mapping, where V is an open in

R
n. The numbers xk, k = 1, n, are called local coordinates. The atlas we describe is the

structure that allows for the local identification of M with R
n. If the mappings ϕi ◦ ϕ−1

j

are homeomorphisms between open sets in R
n for any two i, j ∈ I, then M is a topological

manifold. If moreover they are Ck, with k ∈ N∪{∞}, then M is a Ck differential manifold.
Finally, we ask that any two different points have non-intersecting neighbourhoods.

This is the Hausdorff topology.
A differentiable submanifold Σ ⊂ M is the image by a differentiable mapping f : M ′ →

Σ ⊂ M on a manifold M ′. We call Σ an embedded manifold if f is injective.

We denote by TxM the tangent space to M in a point x. Tangent vectors are geometrical
objects (i.e. they are independent of changes of coordinates). The disjoint union TM of
all TxM , with x ∈ M , is called the tangent bundle to M . A vector field is a mapping
M → TM which gives the identity when composed with the standard projection, also
known as a section of the tangent bundle. The set of all vector fields is denoted as Γ(TM).

Additionally, the cotangent space at x is the set of linear forms on TxM and we denote
it by (TxM)∗. The disjoint union of all (TxM)∗ is called the cotangent bundle (TM)∗.

A tensor of type (p, q) is a multilinear form that is p-contravariant and q-covariant.
The set of such tensors is denoted as

TM ⊗ · · · ⊗ TM︸ ︷︷ ︸
p

⊗T ∗M ⊗ · · · ⊗ T ∗M︸ ︷︷ ︸
q

. (1.1.1)

A tensor field of type (p, q) is a section of the respective bundle.

1.1.2 Metrics

A pseudo-Riemannian metric on a manifold M is a symmetric covariant 2-tensor field such
that the quadratic form it defines on contravariant vectors is non-degenerate (in other
words, if g is a metric, then det g does not vanish in any chart).

A metric is Riemannian if its quadratic form in each point is positive-definite. The
Euclidean δ is such an example. If the signature of the quadratic form is (−,+, . . . ,+), ho-
wever, the metric is called Lorentzian. The standard example in this case is the Minkowski
metric, whose quadratic form reads

m = −(dx0)2 + (dx1)2 · · ·+ (dxn)2. (1.1.2)

The volume form of the metric g is the exterior n-form that can be locally represented
as

dVg =
√

|detg| dx1dx2 . . . dxn. (1.1.3)

An isometry f of a pseudo-Riemannian manifold (M, g) is a diffeomorphism that leaves
g invariant : ∀x ∈ M , (f∗g)(x) = g(x).

1.1.3 Geodesics on Lorentzian manifolds. The exponential map

The length of a causal continuously differential curve γ between two points γ(a) and γ(b)
is

l(γ) =

∫ b

a

(
−gab

dγα

dλ

dγβ

dλ

) 1
2

dλ. (1.1.4)
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This is similar to the Riemannian case, up to a change of sign. Null curves have zero length.
In order to define geodesics, we ask that it is a critical point of the Lagrangian∫ b

a
gαβ(x(λ))

dxα

dλ

dxβ

dλ
dλ. (1.1.5)

In coordinate form, its corresponding Euler equation takes the form

2gαβ
d2xβ

dλ2
+

(
2
∂gαβ
∂xγ

− ∂gβγ
∂xα

)
dxβ

dλ

dxγ

dλ
= 0. (1.1.6)

Any geodesic minimizes the length of a path between two given points. The inverse does
not hold. Let X ∈ TxM be a tangent vector. There exists a unique geodesic γX satisfying

γX(0) = x

γ′X(0) = X.
(1.1.7)

The exponential mapping is defined by expx(X) = γX(1).

1.1.4 Pullbacks. Flow. The Lie derivative

Let ϕ : U → V be a diffeomorphism between two open sets in M and let ω be a linear
form defined on V ; the pullback of ω is defined on U as

∀x ∈ U, ∀X ∈ TxM, ϕ∗ωx(X) = ωϕ(x)(dϕ(x), X), (1.1.8)

whereas the pullback of a vector field X is

ϕ∗Y (x) = (dϕ(x))−1(ϕ(x)). (1.1.9)

These definitions may be extended to tensors.

Let I be an interval in R. We call the flow associated with X on a differential manifold
M the differential mapping ϕ : I ×M → M that verifies

d
dtϕt(x) = X(ϕt(x)),

ϕ0(x) = x.
(1.1.10)

Here, ϕt is a local diffeomorphism.

We can now define the Lie derivative, which is a derivation operator. It maps a vector
field T in the direction of another vector field X to

LXT =
d

dt
(ϕ∗

−tT )|t=0. (1.1.11)

There is another way to view the Lie derivative,

LXT = [X,T ], (1.1.12)

where [X,Y ] is a vector called the Lie bracket. Given f ∈ C∞, the Lie bracket corresponds
to

[X,Y ]f = X(Y f)− Y (Xf). (1.1.13)

where Xf := df(X).
Note that the Lie derivative satisfies the Leibniz rule of multiplication. It is also R

linear with respect to T .
The definition of the Lie derivative can naturally be extended to p-tensors T , taking

values in the set of p-tensors.
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1.1.5 Killing fields

A vector field X is a Killing field if its associated flow is an isometry, or equivalently if

LXg = 0. (1.1.14)

We say that X is a conformal Killing field if

LXg = fg, (1.1.15)

where f is a positive scalar function.

Remark 1. As an example, the Killing fields associated to the Minkowski space (R1+n,m)
are

• translations : Tα = ∂
∂xα

,

• rotations : Ωij = xi
∂

∂xj
− xj

∂
∂xi

,

• hyperbolic rotations : Ω0i = t ∂
∂xi

+ xi
∂
∂t
.

We’ve taken i ∈ 1, n and t = x0.

1.1.6 Connections

We are interested in having a notion of a derivative that can be applied to tensors. By
naively deriving the individual components of tensors, we do not necessarily obtain another
tensor. At first glance, the Lie derivative seems like the perfect candidate. There is a
drawback, however. When writing the Lie derivative LXT of a tensor in coordinate form,
we realize that not only does it depend on a neighbourhood of T (which seems natural),
but also on a neighbourhood of X ; this clashes with our usual intuition of a derivation.

Connections are structures we may add to manifolds so that we can define a notion of
derivative where this is not a problem.

Let τ ∈ Γ(E) be a section of a tensor bundle (TM or T ∗M , for example) and a
vector field of the tangent bundle X ∈ Γ(TM). A covariant derivative or connection is
an application ∇ : Γ(TM)× Γ(E) into 2-tensor fields, that satisfies the Leibniz rule for a
product with a function,

∀f ∈ C∞(M), ∀τ ∈ Γ(E), ∇X(fτ) = df(X)σ + f∇Xσ, (1.1.16)

and that is C∞ linear in X and R linear in τ . We call ∇Xτ the derivative of τ with respect
to X.

The Levi-Civita connection is a particular type of connection on TM associated to g
such that

1. the covariant derivative of the metric is zero, ∇g = 0, and

2. it has vanishing torsion, i.e. the second derivatives of scalar functions commute :
∀f ∈ C∞, ∇α∂βf −∇β∂αf ≡ 0.

It is unique. In coordinate form, the Levi-Civita connection associated to g reads

∇XY = Xi∂Y
k

∂xi
∂

∂xk
+XiY kΓj

ik

∂

∂xj
, (1.1.17)
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where Γj
ik are the Christoffel symbols associated to the Levi-Civita connection. They take

the form
Γj
ik =

1

2
gjl(∂igkl + ∂kgil − ∂lgik). (1.1.18)

Whenever we refer to a connection in the rest of the present text, we are referring to
the Levi-Civita connection.

When applied to a scalar function, all the notions of derivatives coincide :

LXf = ∇Xf = df(X). (1.1.19)

1.1.7 Curvature

In general, the covariant derivatives are non-commutative. The non-commutativity of co-
variant derivatives is a geometric property ; it is measured through the 2-covariant, 1-
contravariant curvature tensor R, which is defined as

∀X,Y, Z ∈ Γ(TM), R(X,Y )Z = ∇X∇Y Z −∇X∇Y Z −∇[X,Y ]Z, (1.1.20)

and which, in coordinate form, reads as

R γ
αβ δv

δ = (∇α∇β −∇β∇α)v
γ . (1.1.21)

As a function of the Christoffel symbols, the curvature tensors is written as

R γ
αβ δ = ∂αΓ

γ
βδ − ∂βΓ

γ
αδ + Γγ

αμΓ
μ
βδ − Γγ

βμΓ
μ
αδ. (1.1.22)

Moreover, we recall the definition of the Ricci operator

Rαβ = R μ
μα β (1.1.23)

and of the scalar trace
R = gαβRαβ . (1.1.24)

The following properties are useful to keep in mind when working with the notion of the

curvature :

1. Rαβγδ = −Rβαγδ,

2. Rαβγδ = Rγδαβ ,

3. the first Bianchi identity : R δ
αβγ +R δ

βγα +R δ
γαβ = 0,

4. the second Bianchi identity : ∇αR
μ

βγδ +∇β R μ
γαδ +∇γR

μ
αβδ .

1.1.8 The second fundamental form

Given Σ a hypersurface of M and T a normal vector field to Σ such that g(T, T ) = 1 (or
g(T, T ) = −1). We consider both cases in order to account for hypersurfaces not only in
Riemannian manifolds, but also Lorentzian ones. Let ∇̂ be the connection induced by ∇
to Σ. The second fundamental form K is defined as

∇XY = ∇̂XY −K(X,Y )T (1.1.25)

Thus, if g(T, T ) = 1, then
K(X,Y ) = g(∇XT, Y ) (1.1.26)
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and if g(T, T ) = −1, then
K(X,Y ) = −g(∇XT, Y ). (1.1.27)

Moreover, the second fundamental form can be expressed as

K =
1

2
(LT g)T ∗Σ×T ∗Σ (1.1.28)

if g(T, T ) = 1, with the opposite sign if g(T, T ) = −1.

1.2 General relativity preliminaries

1.2.1 Space-times

The theory of general relativity was developed by Einstein through a series of papers
between 1907 and 1915. From a mathematical standpoint, the central object of study
in general relativity is the space-time, which is defined as a Lorentzian manifold (M̃, g̃)
satisfying the Einstein field equations

Ricαβ(g̃)−
1

2
R(g̃)g̃αβ = 8πTαβ , α, β = 0, n, (1.2.1)

where R(g̃) is the scalar curvature of g̃, Ric the Ricci curvature and Tαβ the stress-energy
tensor describing the presence of matter and energy. Moreover, two space-times (M̃1, g̃1)

and (M̃2, g̃2) are said to be equivalent if there exists a diffeomorphism

ϕ : M̃1 → M̃2 such that ϕ∗g̃2 = g̃1. (1.2.2)

This encompasses one of general relativity’s postulates, namely the covariance principle,
which states that physical laws are independent of any chosen coordinate system. Throu-
ghout this work, we consider Lorentzian manifolds with a (−, +, . . . , +) signature.

In a given coordinate system, we generally denote by Latin indices any space-like direc-
tions and we have them take values between 1 and n. We use Greek indices for any general
direction, with values between 0 and n. The causal structure on M̃ is defined as follows :
a vector X in Tp(M̃), p ∈ M̃ is called

• time-like if g̃(X,X) < 0,

• null if g̃(X,X) = 0,

• space-like if g̃(X,X) > 0.

Similarly, a vector field is timelike, null or spacelike if, at all p ∈ M̃ , it is a timelike, null or
spacelike vector, respectively. The causal nature of a geodesic is given by that of its tangent
vector field, and that of a surface by its normal vector field. An object is sometimes called
causal if it is defined by timelike or null vectors.

In general, we use the indice 0 for local coordinates to refer to the time-like direction.
The Einstein field equations may be rewritten as

Gαβ = 8πTαβ , (1.2.3)

where Gαβ is called the gravitational tensor. Through its simplified form, (1.2.3) empha-
sizes a leading principle in general relativity, which is that the effect of gravitation is
coupled to the presence of matter and energy within the space-time. Both Gαβ and Tαβ

are symmetric 2-tensors. Let R(g̃) be the curvature tensor corresponding to g̃ and ∇̃ the
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covariant derivative corresponding to g̃ (see (1.1.17), (1.1.20)). From the second Bianchi
identity,

∇̃νR(g̃)αβγμ + ∇̃μR(g̃)αβνγ + ∇̃γR(g̃)αβμν = 0, (1.2.4)

it follows that
∇̃αGαβ = 0 (1.2.5)

and thus,
∇̃αTαβ = 0. (1.2.6)

Equation (1.2.6) can be interpreted as a law of local conservation. Historically, this property
came before the Einstein equations were ever written down, and even served as inspiration
in defining the gravitational tensor. If the space-time contains non-trivial Killing fields, we
may contract T against such fields to obtain conserved quantities in well-chosen regions
of the space-time. The stress-energy tensor can present in a number of ways. We give a
non-exhaustive list of possible stress-energy tensors.

• The vacuum corresponds to
Tαβ = 0. (1.2.7)

• Electromagnetic field relative to a space-time obersver at rest with respect to the
initial manifold :

Tαβ = FαγF
γ
β − 1

4
gαβF

μνFμν , (1.2.8)

where F is the electromagnetic field, represented by an anti-symmetric 2-tensor, that
solves the Maxwell equations

∇̃αFβγ + ∇̃γFαβ + ∇̃βFγα = 0

∇̃αFαβ = j.
(1.2.9)

Here, j = (ρ, J), with ρ the charge density and J the current. As an aside, note that
T00 =

1
2

(
|E|2 + |B|2

)
, where E is the electric field and B is the magnetic field.

• Perfect fluid :
Tαβ = (ρ+ P )uαuβ + pgαβ , (1.2.10)

where ρ is the mass density, P is the isotropic pressure and u is the velocity of the
fluid.

• Scalar field theory :

Tαβ = ∇̃αψ̃∇̃βψ̃ −
(
1

2
|∇̃ψ̃|2g̃ + V (ψ̃)

)
g̃αβ

and models the existence of a scalar field ψ̃ ∈ C∞(M) with potential V ∈ C∞(R),

∇̃α∇̃αψ̃ = V ′
(
ψ̃
)
. (1.2.11)

To give a few concrete examples, V = Λ and ψ̃ = 0 models the vacuum with cosmo-
logical constant Λ ; if V = 1

2mψ̃2, where m > 0, then we obtain the Klein-Gordon
case. Finally, we recall that the vacuum corresponds to both V ≡ 0 and ψ ≡ 0.
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Another way to look at the Einstein equations is the Euler-Lagrange equations corres-
ponding to an appropriate Einstein-Hilbert action. In the vacuum case, the Lagrangian
is

LG[g̃] =

∫
M̃

R(g̃) dVg̃︸ ︷︷ ︸
gravitational energy

(1.2.12)

for electromagnetism,

LG,H [g̃] =

∫
M̃

R(g̃) dVg̃ +
1

2

∫
M̃

FαβFαβ dVg̃︸ ︷︷ ︸
electromagnetic energy

(1.2.13)

where Fαβ is an anti-symmetric 2-tensor, and for the scalar-field theory,

LG,T [ψ̃, g̃] =
∫
M̃

R(g̃) dVg̃ +
1

2

∫
M̃

|∇̃ψ̃|2g̃ dVg̃︸ ︷︷ ︸
kinetic energy

+

∫
M̃

V (ψ̃) dVg̃︸ ︷︷ ︸
potential energy

(1.2.14)

Here, dVg̃ is the volume form corresponding to g̃, as defined in (1.1.3). Throughout this
work, we focus almost exclusively on scalar-field theory.

1.2.2 Initial data

In this section, we explain how to construct a Cauchy problem in general relativity. For
more details, we instruct the reader to consult the book by Yvonne-Choquet Bruhat [CB09]
and the survey paper by Robert Bartnik and Jim Isenberg [BI04]. Consider a Lorentzian
manifold that can be written as M ×R, with Mt = M ×{t} spacelike hypersurfaces. Let ∇
be the covariant derivative associated to g. We fix local coordinates given by a basis that
reflects the product structure ( ∂

∂t ,
∂
∂xi

). Locally, the metric takes the form

g̃ = −N2 dt⊗ dt+ gijθ
i ⊗ θj (1.2.15)

where (dt, θi) is the dual basis associated to
(
e⊥ = 1

N

(
∂
∂t −Xj

(
∂

∂xj

))
, ∂
∂xi

)
, and gij is

the Riemannian metric induced by g̃ on a spacelike hypersurface M̃t. The function N is the
lapse, and Xj are the components of the shift ; both depend on the local foliation of M̃ and
on the chosen time function. The vector field e⊥ is the normal to M̃ , with g̃(e⊥, e⊥) = −1.
We may locally define the second fundamental form

Kij = −〈∇̃ie⊥, ej〉 (1.2.16)

with L the Lie derivative. A great leap forward in the field of general relativity took place
in the 50’s and 60’s. The Einstein equations were shown to be well-posed as a Cauchy
problem thanks to the work of Yvonne Choquet-Bruhat, and later Choquet-Bruhat and
Robert Geroch [FB52, CBG69]. Intuitively, initial data describes the quantities

(g̃αβ)t=0 and (∂tg̃αβ)t=0 (1.2.17)

They encode the geometry and matter distribution of a space-time at an instance in “coor-
dinate time”, together with their instantaneous rate of change. In the case of vacuum with
a vanishing cosmological constant, initial data sets take the form :
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• (M, g) is an n-dimensional Riemannian manifold,

• K is a symmetric 2-tensor corresponding to the second fundamental form.

The question we may ask at this point is whether or not the set of initial data may be
freely specified. To better understand this, it is worth looking at the decomposition of the
Ricci tensor Ricαβ(g̃) with respect to the directions e⊥ and ∂

∂xi
:

Ricij(g̃) = Ricij(g) +KijK
ij − 2K l

iKjl −N−1 (Le⊥Kij +∇i∂jN) ,

Ric⊥j = N
(
∂jK

i
i −∇iK

i
j

)
,

Ric⊥⊥ = N(∂⊥
(
Ki

i

)
−KijK

ij +ΔN),

(1.2.18)

and at the similar decomposition of the scalar curvature

R(g̃) = R(g) + (trgK)2 +KijKij − 2N−1∂⊥(K
i
i )− 2N−1ΔN. (1.2.19)

Using (1.2.19), the G⊥⊥ and G⊥j equations of (1.2.1), together with the Ric⊥⊥(g̃) and
Ricc⊥j formulas (1.2.18), respectively, we obtain the vacuum constraint equations, which
determine vacuum initial data (g,K) :

R(g) + (trgK)2 − |K|2g = 0

∂i(trgK)− divgK i = 0.
(1.2.20)

We recall that trgK = gabKab, |K|2g = (Ka
a )

2 and divgK = Ka
a,b. The first equation of

the system is called the Hamiltonian constraint, whereas the second is the momentum
constraint. Similarly, the Gij components give the evolution equations

∂Kij

∂t
= N

(
Ricij(g̃)− 2KikK

k
j + (trgK)Kij

)
−N−1N ,ij + LXKij . (1.2.21)

We also obtain that the Riemannian metric verifies

∂gij
∂t

= −2NKij + LXgij . (1.2.22)

The associated Cauchy problem therefore consists in determining the ambient space-
time for the initial data that satisfies the Einstein equations, i.e. solving the evolution
equations. It was first shown by Yvonne Choquet-Bruhat that, in the vacuum regime, there
exists a solution for a given set of smooth initial data verifying the constraint equations,
and moreover that the solution is unique, up to a change of coordinates [FB52]. This result
was achieved by using the wave coordinates,

∇̃α∇̃αxβ = 0, (1.2.23)

to write the vacuum Einstein equations

∇̃α∇̃αg̃αβ = Nαβ(g̃), (1.2.24)

where N is a non-linear operator that is quadratic with respect to the first order partial
derivatives of g̃.

The subsequent joint paper of Choquet-Bruhat and Geroch states that if a set of initial
data satisfies the constraint equations and admits a local solution, then there exists a
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corresponding space-time which is maximal [CBG69]. Note that a maximal space-time for
a given initial data set is roughly an extension of any other development obtained from
the same data.

We should mention a caveat. The previous result refers only to globally hyperbolic
space-times, which are space-times that admits an embedded space-like Cauchy surface.
A Cauchy surface is any subspace of space-time intersected by every inextensible, causal
curve exactly once.

To conclude, every valid initial data set uniquely determines a maximal space-time, and
every globally hyperbolic space-time admits a Cauchy formulation, which further motivates
us in our study.

Theorem 4 (Well-posedness Theorem). Let (Σ, g,K) be a smooth vacuum initial data
set. There exists a unique smooth vacuum Cauchy development (M̃1, g̃1) with the property
that if (M̃2, g̃2) is any other vacuum Cauchy development, then there exists an isometric
embedding i : (M̃2, g̃2) → (M̃1, g̃1) commuting with the embeddings of Σ.

In the particular case of a scalar field theory, the Cauchy data takes the form (M, g,K, ψ, π),
where

• (M, g) is an n-dimensional Riemannian manifold,

• K is a symmetric 2-tensor corresponding to the second fundamental form,

• ψ represents the scalar field in M , and

• π is its derivative given by

π = N−1

(
∂ψ

∂t
−Xj ∂ψ

∂xj

)
. (1.2.25)

The constraint equations in turn take the form

R(g) + (trgK)2 − |K|2g = π2 + |∇ψ|2g + 2V (ψ)

∂i(trgK)− divgK i = π∂iψ.
(1.2.26)

Additionally, we ask that

�g̃ψ̃ =
dV

dψ̃
, (1.2.27)

which, in turn, is necessary in order for the local conservation of energy to hold true

divg̃T = 0. (1.2.28)

The well-posedness result in the presence of a scalar field is a straightforward consequence
of the vacuum case. Once initial data satisfy the constraint equations, we may find a
(unique) maximal development.

At first glance, the fact that the system (1.2.26) is under-determined is immediately
apparent. To illustrate this, consider the case n = 3. The system (1.2.26) contains one scalar
equation and one vector equation, which is equivalent to a total of 4 scalar equations. We
recall that the unknowns are the symmetric 2-tensors ĝab and K̂ab, where a, b ∈ 1, 3, and
the functions π̂ and ψ̂, which gives an overall count of 14 unknowns. This suggests that
there is a considerable amount of freedom in choosing solutions of the form (ĝ, K̂, ψ̂, π̂).

The question of finding solutions to the constraint equations has been approached in
multiple ways. One example is provided by gluing techniques, see for example [CD03, CS06,
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CIP05, CCI11, CS14]. Another approach consists of density and perturbation techniques
[Hua09, Hua10]. Both use known solutions, for example Minkowski, Schwarzschild or Kerr,
as springboards to create new, different solutions. The focus of the present work takes a
slightly different approach, by asking the question : how do you study the entire space of
solutions to the constraint equations ? The conformal method is a way of trying to find a
good mapping.

1.3 The conformal method

The conformal method is the first approach to identifying generic initial data. It allows for
the constraint equations (1.2.26) to become a determined system by prescribing a number
of well-chosen parameters. The set of parameters are therefore used to identify any given
solution. In the familiar case n = 3, for example, the constraint equations (1.2.26) call for
10 such parameters, corresponding to as many degrees of freedom. Intuitively, the space of
initial data with a scalar field source appears to form a manifold of dimension 10, and we
are interested in finding a good mapping to describe this manifold.

The conformal method is based on the work of André Lichnerowicz from 1944, who pro-
vided a blueprint to construct solutions of null mean curvature [Lic44]. It was later extended
by James W. York, Jr. to tackle constant mean curvature (CMC) solutions [Yor73]. The
method was further developed together with Niall Ó Murchadha to include non constant
mean curvature (non-CMC) solution [ÓMY74]. Two decades later, York introduced the
conformal “thin-sandwich" (CTS) model as an alternative for treating the non-CMC case,
followed by a variant in a joint paper with Harald P. Pfeiffer, called the Hamiltonian confor-
mal “thin-sandwich" (CTS-H) method [Yor99, PY03]. The non-CMC methods were later
all shown to be equivalent in a paper by David Maxwell, which also contains a detailed
overview of the conformal method [Max14a].

1.3.1 Toy model : the CMC conformal method

To begin, let us consider the vacuum case. We consider a set of initial data (ĝ, K̂). Since
the mean curvature trĝK̂ is constant, the constraint equations take the form

R(ĝ) +
(
trĝK̂

)2
− |K̂|2ĝ = 0

divĝK̂ = 0.
(1.3.1)

We look at how the parameters are chosen and calculated in the case of CMC solutions
(ĝab, K̂ab). Lichnerowicz suggested one first parameter as the conformal class of ĝab, denoted
as g or [ĝab], where

g = {eαg, α ∈ C∞}. (1.3.2)

Let
ĝab = uq−2gab, (1.3.3)

with u ∈ C∞, u > 0, and let q be the critical Sobolev constant q = 2n
n−2 . In the literature, q

is often denoted by 2∗. The scalar curvature changes conformally according to the formula

R(ĝ) = u1−q

(
4(n− 1)

n− 2
Δgu+R(g)u

)
,

where Δg = −divg∇ is the Laplace-Beltrami operator, defined with positive eigenvalues.
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The second and third parameters come from the unique decomposition of K̂ab into its
trace-free and pure-trace parts :

K̂ab = Ûab +
τ0
n
ĝab, (1.3.4)

where τ0 = trĝK̂ is the constant mean curvature and Ûab is a symmetric trace-free 2-
tensor. The decomposition (1.3.4) together with the momentum constraint divĝK̂ = 0

imply that Ûab is also divergence-free with respect to ĝab. Tensors which are both trace-
free and divergence-free are referred to as TT-tensors.

We define the conformal momentum U as the equivalence class of pairs (gab, Uab), where
g is a metric and U is a TT tensor with respect to g, where pairs are identified by

(gab, Uab) ≡ (uq−2gab, u
−2Uab), (1.3.5)

where u is an arbitrary positive smooth function. Every CMC solution (ĝab, K̂ab) determines
a unique conformal momentum U = (ĝab, Ûab) and a unique constant τ0.

The triplet of parameters (g,U, τ0) is called the CMC conformal data.
Conversely, we look at how to obtain a CMC solution (ĝab, K̂ab), given a set of conformal

data (g,U, τ0).

1. Choose gab ∈ g an arbitrary representative of the conformal class.

2. Choose the unique TT-tensor Uab ∈ U such that (gab, Uab) ∈ U.

The triplet (gab, Uab, τ0) is called a CMC representative data set. It is not unique. Since
gab ∈ g, there exists a smooth positive function u such that ĝab = uq−2gab. At this point,
u is still unknown. We write

ĝab = uq−2gab

K̂ab = u−2Uab +
τ0
n u

q−2gab

(1.3.6)

and plug these quantities into the vacuum Hamiltonian constraint

R(ĝ) +
n− 1

n
τ20 − |Û |2ĝ = 0 (1.3.7)

to obtain

Δgu+
n− 2

4(n− 1)
R(g)u = −n− 2

4n
τ20u

q−1 +
n− 2

4(n− 1)

|U |2g
uq+1

. (1.3.8)

Finding the initial data (ĝab, K̂ab) reduces to solving the so-called Einstein-Lichnerowicz
equation (1.3.8). The conformal method relies on the choice of parameters that change well
under conformal transformations. In this case, for any two choices of representative data
(g1ab, U

1
ab, τ

1
0 ) and (g2ab, U

2
ab, τ

2
0 ) for the same conformal data, there exists a smooth positive

function v such that
(g2ab, U

2
ab, τ

2
0 ) ≡ (vq−2g1ab, v

−2U1
ab, τ

1
0 ), (1.3.9)

This property is called conformal covariance. It implies that, given a conformal data set,
any arbitrary choice of representative data leads to the same constraint equations solution
(ĝab, K̂ab).
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1.3.2 The “classical” conformal method

We consider space-times with scalar field sources. We define the scalar field as a smooth
function ψ and the time-coordinate partial derivative of the scalar field as the equivalence
class of the pairs

(gab, π) ≡ (uq−2gab, u
−qπ), (1.3.10)

with g a metric, π a smooth function and u a positive smooth function. This particular
choice of representing source elements ensures that the constraint equations are rewritten
in a way which makes them easier to approach, analytically, by having them decoupled in
the case of τ constant. [CBY80, Yor73]

The choice of conformal momentum U relies on the unique decomposition of K̂ into a
pure-trace and a trace-free part, respectively (1.3.4). The trace-free part Ûab is divergence-
free as a consequence of the momentum constraint and the constant mean curvature. When
τ is not constant, the decomposition does not provides a TT-tensor, which we need based
on its good covariance properties. Let

K̂ab = Âab +
τ

n
ĝab, (1.3.11)

where Âab is a unique trace-free symmetric (0, 2) tensor. The next step is to split Aab into
a divergence-free part and a pure-divergence part. This decomposition, however, is not
unique.

Let ω be a volume form on M . We define the densitized lapse N as the equivalence
class of pairs (gab, N), where g is a metric and N a positive smooth function. The pairs
are identified by

(gab, N) ≡ (uq−2gab, u
qN), (1.3.12)

where u is an arbitrary positive smooth function. One convenient way to define N is as a
function of g and a volume gauge ω,

Ng,ω =
dVg

ω
. (1.3.13)

Here, dVg is the volume form corresponding to g (as in (1.1.3)) and ω an arbitrary volume
form on the manifold. The corresponding lapse is denoted Nω. To choose a conformal
momentum, a variation of the York splitting is used : given a symmetric trace-free (0, 2)-
tensor Âab and a positive function N̂ , there exists a unique TT-tensor Ûab and a vector
field W such that

Âab = Ûab +
1

2N̂
LĝW, (1.3.14)

where
LgWij = Wi,j +Wj,i −

2

n
divgWgij (1.3.15)

is called the conformal Killing operator and W is uniquely determined up to a conformal
Killing field. The conformal momentum U as measured by ω corresponds to (gab, Uab). The
conformal data set is (g,U, τ ;N). Note that the densitized lapse N is separated from the
rest of the data, being an equivalent of the gauge in this context : given a representative
metric g and a lapse N written as (1.3.13), we can deduce ω. In this sense, the choice of N
contains the choice of volume gauge, by which we measure the conformal momentum and
the densitized lapse [Max14a]. The representative data is conformally covariant

(ĝ, Û , τ̂ , ψ̂, π̂; N̂) = (uq−2g, u−2U, τ, ψ, u−qπ;uqN), (1.3.16)

so once ω is fixed, any set of representatives corresponds to the same initial data solutions.
The following steps show how to obtain a solution (ĝab, Ûab) from a set of conformal

data given a lapse form ω.
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1. Choose an arbitrary representative gab ∈ g.

2. Choose the unique densitized lapse representative Ng,ω.

3. Choose the unique TT-tensor Uab such that (gab, Uab) = U, where U is the conformal
momentum measured by ω.

4. Choose the unique scalar field ψ.

At this point, both u and W are still unknown. We write

ĝab = uq−2gab

K̂ab = u−2
[
( 1
2NLgW )ab + Uab

]
+ τ

nu
q−2gab.

(1.3.17)

and plug these quantities into the constraint equations to obtain

Δgu+ n−2
4(n−1)

(
R(g)− |∇ψ|2g

)
u = − n−2

4(n−1)

(
n−1
n τ2 − 2V (ψ)

)
uq−1

+ n−2
4(n−1)

(|U+LgW |2g+π2)
uq+1 ,

−→
ΔgW = n−1

n uq∇τ − π∇ψ,

(1.3.18)

and −→
ΔgW = −divgLgW (1.3.19)

is the Lamé operator. The method is particularly successful for finding solutions in the case
of a constant or almost constant mean curvature. It remains unclear how well the method
works otherwise.

The following table regroups, for n = 3, the conformal data and their dimensions
(columns 2 and 3), the expressions of physical data as functions of representatives of
conformal data (column 1) and the dimensions of the remaining unknowns (column 4).

Physical data Parameters Dimensions Unknowns

ĝ = uq−2g g 5 1

K̂ = u−2
(

1
2NLgW + U

)
+ τ

nu
q−2g

U, τ,N 2 + 1(+1) 3

ψ̂ = ψ ψ 1 0

π̂ = u−qπ π 1 0

(1.3.20)

We notice that we obtain 11 dimensions instead of the 10 we expected. Historically, the
parameter N was introduced quite late, within the CTS method. As we explained above, N
corresponds to the choice of gauge - once fixed, we locally obtain a “good” parametrization
for the 10 manifold, just as in the CMC model.

1.4 Solving the classical method system

So far, we have described how to define a tuple of conformal data (g,U, τ ;N) associated
to an initial data set (ĝ, K̂). Additionally, we began to explain how to reconstruct (ĝ, K̂)
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starting from a conformal data set : the first step is to choose a set of representative data
(g, U, τ ;N), and then to rewrite the constraint equations as a system (1.3.18). It remains
to find the corresponding solutions (u,W ). Once this is done, we obtain (ĝ, K̂) by (1.3.17).
In this section, we list a number of results related to the existence of solutions (u,W ) for
the classical conformal method. We introduce the following notation : let

Δgu+ hψu = fτ,ψ,V u
q−1 +

aπ,U (LgW )
uq+1 ,

−→
ΔgW = Xτu

q + Yψ,π,
(1.4.1)

where

hψ = n−2
4(n−1)

(
R(g)− |∇ψ|2g

)
,

fτ,ψ,V = − n−2
4(n−1)

(
n−1
n τ2 − 2V (ψ)

)
, and

aπ,U (LgW ) = n−2
4(n−1)

(
|U + LgW |2g + π2

)
Xτ = n−1

n ∇τ

Yψ,π = −π∇ψ.

(1.4.2)

In the rest of this work, we assume that M is a closed manifold unless otherwise stated.
By Stokes theorem, we see that

−→
ΔgW ≡ 0 ⇐⇒ LgW ≡ 0. (1.4.3)

We consider the following two classifications :

• positive : Δg + hψ is coercive ;

• null : Δg + hψ has a null first eigenvalue ; and

• negative : Δg + hψ admits a negative eigenvalue ;

and

• focusing : fτ,ψ,V > 0, and

• non-focusing : fτ,ψ,V < 0.

In the particular case of scalar field theory, the first classification was suggested by Choquet-
Bruhat, Isenberg and Pollack in their survey of the conformal method on compact manifolds
[CBIP06]. They introduce the Yamabe-scalar field conformal invariant

Yψ(g) = inf
u∈C∞(M),u 
≡0

∫
M

4(n−1)
n−2 |∇u|2 + (R(g)− |∇ψ|2g)u2 dVg(∫

M u
2n
n−2 dVg

)n−2
n

(1.4.4)

and prove that the following conditions are equivalent

• Yψ(g) is positive (respectively null, negative)

• there exits g̃ ∈ g such that (R(g̃)− |∇ψ|2g̃) is positive (respectively null, negative)

• For any metric g̃ ∈ g, the first eigenvalue λ1 of the self-adjoint operator Δ + hψ is
positive (respectively null, negative).
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We begin by indicating the good properties of system (1.4.1). First of all, note that the
second equation is linear in W . For a fixed scalar function u, the solvability of the momen-
tum constraint is relatively straightforward, given that the kernel of the elliptic operator
is known (1.4.3). In fact, in the CMC case, the vector field W does not depend on the
conformal factor u. We can calculate W and plug it into the Hamiltonian constraint. All
that needs to be verified is that Yψ,π is orthogonal to the kernel of

−→
Δg, i.e. to the space of

conformal Killing fields. This is not a strong demand, as conformal Killing fields are rare
[BCS05]. Another good feature of the system is that the first equation is similar to the
Lichnerowicz equation, as it appears in the Yamabe problem, which is well-understood.

We move on to the more difficult aspects. Note that the uq−1 term is critical (in the
sense of the H1

0 embeddings into Lebesgue spaces) ; this does not pose a problem in the
non-focusing case, when the Laplacian and critical non-linearity do not act in competition,
but it does lead to possible lack of compactness in the focusing regime. Moreover, the
negative power of the u−q−1 term implies that a sequence of solutions u which approach 0
can induce a non-compactness result.

In the rest of the section, we look in more detail at a series of existing results for the
constraint equations, categorized as either focusing or non-focusing.

1.4.1 Non-focusing case

Consider first the case of vacuum with null cosmological constant,i.e. V ≡ 0, ψ ≡ 0 and
π ≡ 0. In this case

fτ,ψ,V = − n− 2

4(n− 1)

n− 1

n
τ2 < 0, (1.4.5)

so we are obviously in the non-focusing regime. We begin by analyzing the CMC solutions.
Since ∇τ ≡ 0, the momentum constraint becomes

−→
ΔgW = 0, (1.4.6)

solved by conformal Killing fields, while the Hamiltonian constraint is written as

Δu+
n− 2

4(n− 1)
R(g)u = − n− 2

4(n− 1)

n− 1

n
τ2 +

|U |2g
uq+1

. (1.4.7)

In this case, Isenberg uses a sub and super solution method to show that the above equation
admits solutions in most cases (see the case study in Section 1.4.3), and that they are
unique [Ise95]. In fact, the result extend to non-trivial stress-energy tensors, including the
electromagnetic regime.

It was in the 90’s that a first result for non-CMC solutions was obtained by Isenberg
and Moncrief [IM96]. They further demand that the parameters correspond to the negative
case, by asking that R(g) ≡ −1. Moreover, they ask that the metric gab admits no non-
trivial conformal Killing fields. The authors obtain existence and uniqueness when τ is
smooth, doesn’t change sign, and when ∇τ verifies the smallness assumption

maxM |∇τ |2g
minM τ2

< C1(n, g, U) and |∇τ |g < C2(n, g, U). (1.4.8)

Under these conditions, one may use an iterative approach to construct a sequence of sub-
solutions to the Hamiltonian constraint and ensure that it converges to a solution. These
results were extended to the positive and null case, again for τ that does not change sign
and under smallness assumptions on ∇τ , that is on the variation of the mean curvature.
Solutions corresponding to systems that verify a condition like that in (1.4.8) are called
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near-CMC solutions. Without this assumption, it becomes much more delicate to ascertain
existence results.

The first case of a far-from CMC existence result comes from Michael Holst, Gabriel
Nagy and Guantumur Tsogtgerel [HNT09]. The authors consider the positive case and
demand the presence of a weak, non-trivial source. Instead of asking for ∇τ to be small,
they instead impose bounds on the size of ||U ||∞. A variety of techniques is used, including
a priori estimates, barrier constructions and fixed-point arguments. David Maxwell extends
this result to the vacuum, under the additional assumption that U �≡ 0. A global super-
solution construction is central to this proof. Yet another approach is apparent in the paper
of Mattias Dahl, Romain Gicquaud and Emmanuel Humbert, one that doesn’t explicitly
call for smallness assumptions [DGH12]. Given that g admits no non-trivial conformal
Killing fields, that τ does not change sign, that U �≡ 0, they prove that the Einstein
constraint equations admit solutions and the set of solutions is compact as soon as the
equation

−→
ΔgW = −α0

√
n− 1

n
|LgW |g

dτ

τ
(1.4.9)

does not admit any non-trivial solution for all α0 ∈ (0, 1].
The authors of [DGH12] found examples when (1.4.9) admits non-trivial solutions ; in

these cases, the question of existence of solutions to the constraint equations remains open.
On the other hand, they also prove the existence open sets of parameters gab and τ such
that (1.4.9) in unsolvable, and thus such that the constraint equations admit a solution.

Note also that the above results hold in low regularity. But the types of fixed point
techniques used in the paper do not allow any glimpses of possible uniqueness results.

As is apparent from the previous papers, the condition that gab does not admit non-
trivial Killing fields often appears in the non-CMC regime. This is linked to the solvability
of the momentum constraint. The assumption is not as strong as might seem at first glance,
as suggested by the result of Robert Beig, Piotr Chruściel and Richard Schoen, which states
that generic initial data have no symmetry [BCS05].

1.4.2 Focusing case

The focusing case has received more attention in recent years. We recall that it differs from
the previous regime as the critical non-linearity fuq−1 does compete with the Laplace-
Beltrami operator Δg, which allows for non compact behaviour. We do not generally expect
the system to admit one and only one solution ; this is often not the case. Rather, we can
obtain multiple solutions (e.g. a one-parameter family of solutions). Moreover, the stability
of the set of solutions necessitates careful analysis, as concrete examples of instability exist.

We define perturbations of system (1.4.1) ; they are written as

Δgu+ hαu = fαu
q−1 +

(
ρα + |Ψα + LgW |2g

)
u−q−1,

−→
ΔgW = Xαu

q + Yα,
(1.4.10)

for all α, where (hα)α, (fα)α, (ρα)α are sequences of smooth functions in M , (Xα)α, (Yα)α
are sequences of smooth vector fields and (Ψα)α is a sequence of smooth (0, 2)-tensors such
that

(hα, fα, ρα, Xα, Yα, Ψα)
T−→ (h, f, ρ, X, Y, Ψ), (1.4.11)

with T an appropriate topology. Given a sufficiently regular perturbation of the coefficients
of system (1.4.10), one tries to obtain a priori bounds on solutions (uα,Wα).

We say that the system (1.4.10) is stable in a topology T if, for any perturbation of the
coefficients h, f, ρ, X, Y, Ψ, there exists a solution (u,W ) of the limiting system such that,
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up to a subsequence, (uα,Wα) converges towards (u,W ) in C1,η(M). For further details
on the notion of stability defined here, we refer the reader to a series of papers by Olivier
Druet, Emmanuel Hebey, Frédéric Robert [Dru10, DHR04, Heb14].

The existence of solutions to the Hamiltonian constraint when f > 0 implies that we
are in the positive case, so from now on we assume that Δg+h is coercive [Pre14][CBIP07].

The decoupled case

Assume first that X ≡ 0, which is true for CMC-solutions. The momentum constraint
becomes −→

ΔgW = Y (1.4.12)

The solvability of (1.4.12) is equivalent to asking that Y is orthogonal to the kernel of
the Lamé operator. When g admits no non-trivial Killing fields, W exists, is unique and
depends continuously on Y . By plugging W into the first equation, the system (1.4.1)
reduces to the Einstein-Lichnerowicz equation

Δgu+ hu = fuq−1 +
a

uq+1
, (1.4.13)

where a � 0, a �≡ 0.
A versatile existence result for the above equation is due to Emmanuel Hebey, Frank

Pacard and Daniel Pollack [HPP08] showed that, given a bound on a depending only on
n, h and f , the equation (1.4.13) admits a positive, smooth solution. While f needs not be
positive, the proof does however ask that its maximum be. We insist on the fact that this
solution is not necessarily unique. The authors used variational techniques, sub-critical
perturbations and an argument based on the mountain-pass theorem. The solution is a
saddle-point, rather than a local minimum. By sub-critical perturbation, we understand
a generalized perturbation of the equation (1.4.13) such that terms of the form uqα−1 are
considered in place of uq−1, with qα < q. Thus, we obtain

Δgu+ hαu = fαu
qα−1 +

aα
uq+1

. (1.4.14)

In 2015, Bruno Premoselli builds on the proof of Hebey, Pacard and Pollack and proves
that, depending on the size of a, equation (1.4.13) admits either one, at least two, or
no solutions [Pre15]. Sub-critical perturbations and variational methods are used to show
that, when the equation admits solutions, it also admits stable, minimal solution. We
also mention the work of Li Ma and Juncheng Wei. They proved multiplicity of solutions,
assuming that a stable solution exists [MW13]. Furthermore, Quoc Anh Ngo and Xingwang
Xu wrote a series of papers on the existence of solutions when f is allowed to change sign
[NX12, NX14].

Regarding stability results for (1.4.13), we cite the paper of Emannuel Hebey and
Olivier Druet [DH09] ; stability is established in dimensions 3 � n � 5, a result which is
optimal, as examples of instability are stated in dimension n = 6.

Coupled case

The first result in the fully coupled regime is due to Bruno Premoselli : for g that admits
no non-trivial conformal Killing fields, n � 3, and under suitable smallness assumptions,
the system (1.4.1) admits solutions [Pre14]. In regard to the physical system (1.3.18), the
smallness assumptions translate to conditions on the coupling coefficients and on the source,
||∇τ ||∞ � 1, ||U ||∞ � 1 and ||ψ||∞ � 1. Broadly, the proof consists of a fixed-point
argument, a method which we explain in more detail in a subsequent section. Special care
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is given to establishing that the fixed-point functional is well-defined, as the Hamiltonian
equation can very well admit multiple solutions, and to establishing a priori bounds on
solutions.

Known examples of instability exist when M is the standard sphere S3 and X is as small
as we’d like, X �≡ 0 [Pre16]. An interesting property of this particular set of examples is
that, while the system is unstable for small X �≡ 0, it is stable in the uncoupled case, when
X ≡ 0. This suggests that the lack of compactness is not solely due to the Hamiltonian
constraint and its positive critical non-linearity, but also to the momentum constraint.
Stability results when the metric g is locally conformally flat are given by Druet and
Premoselli [DP15] and Premoselli [Pre16] ; it holds for 3 � n � 5, |X|g > 0 and ρ �≡ 0.
Moreover, the examples of instability found in [Pre16] and [PW16] show optimality.

1.4.3 The viability of conformal method models, examples and counter-
examples

The conformal method essentially provides a mapping from the set of conformal data
representatives to the set of initial data,

Conformal data representatives → Initial data. (1.4.15)

More precisely, in the case of the classical conformal method, given a volume gauge ω, the
mapping presents as

(gab, Uab, τ ;N)
solve(u,W )−−−−−−−→ (ĝ, K̂). (1.4.16)

By the nature of the conformal method, the mapping is unto : from any set of initial data,
one can calculate a set of corresponding conformal data representatives. We list a number
of criteria by which the strength of a conformal method may be judged.

1) Is the mapping a bijection ?

Ideally, to any set of conformal data representatives there corresponds one and only one
set of initial data. Thus, the set of all possible initial data is completely characterized by
the conformal method.

In lieu of such a strong result, one may ask :

• Where is the mapping well-defined (in the sense that there exists (ĝ, K̂) corresponding
to a fixed set of conformal data representatives) ? As long as we properly identify the
problem sets, we can simply remove them from the domain.

• Where is the mapping one-to-one ? If we obtain multiple solutions, where does this
happen ?

2) Is the mapping continuous ?

This question tests that the mapping is, in some sense, physically relevant.

Case study : the constant mean curvature

Let us consider a concrete example. We restrict our attention to the set of solutions with
constant mean curvature, i.e. let τ be a constant. James Isenberg gathered the results of
multiple authors in the compact case and showed that the mapping is generally a bijection
outside of the following known cases [Ise95]. Let Yg be the sign of the Yamabe invariant of
g.
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• Positive case and U = 0, then there is no corresponding solution ;

• Negative case and τ = 0, then there is no corresponding solution ;

• Null case and either U = 0 or τ = 0, then there is no corresponding solution ;

• Null case and both U = 0 and τ = 0, then there is a homothety family of solutions.

The same results can to some extent be generalized to the non-CMC regime, see papers
by Allen, Clausen, Isenberg, Maxwell, Moncrief and Ò Murchadha [IM96, ACI08, Max14a,
IÓM04]. The main caveat is that we additionally require that g admit no non-trivial confor-
mal Killing fields ; otherwise, the question remains open.

What happens in the regime of far-from-constant-CMC is still very unclear. One known
result is due to Michael Holst, Gabriel Nagy and Gantumur Tsogtgerel [HNT09, Max09],
which states that when Yg > 0 and U �= 0 is close to zero, then there exist solutions
associated to the given parameter set, but we no longer necessarily have uniqueness.

Maxwell’s counter-examples

So far, we have looked at examples of good behaviours of the conformal mapping. David
Maxwell identifies two negative examples in the far-from-CMC regime. They show that
issues with the mapping are not just theoretical. This failure, however, does not necessarily
stem from the existence of singularities in the space of solutions, but may instead follow
from an unlucky choice of mapping.

The first case refers to low regularity data, specifically to L∞ bounds on the mean
curvature [Max11]. Maxwell considers a family of symmetric conformal data on the torus.
There exist multiple solutions when U is small, no solutions when U is large, and a one-
parameter family of solutions in certain rare cases.

The second example deals with smooth mean curvatures [Max15]. It concerns the para-
metrization (g, μU �, τ,N), where U � is a fixed conformal momentum, μ is a constant, τ and
N are scalar functions. If both τ∗ = 0 and μ = 0, then there exists a one parameter family
of corresponding solutions. We draw the reader’s attention to the fact that the volumetric
momentum τ∗, as defined below in (1.5.3), plays a central role throughout the present text.
Two new conformal models are suggested in the same paper, including an early version of
the drift model.

1.5 David Maxwell’s drift model

In order to have a better understanding of the drift method, we recall a basic fact of
differential geometry : any metric is uniquely identified by its conformal class together
with its volume form. In fact,

M = C × V, (1.5.1)

where M is the space of metrics, V is the space of volume forms and C is the space of
conformal classes. In the context of the Einstein equations, it makes sense to consider M,
C and V modulo diffeomorphisms D0, with D0 the connected component of the identity in
the diffeomorphism group.

In his papers, Maxwell describes in great detail how the spaces M, C and V , together
with their tangent, cotangent and quotient spaces, are represented within the choice of
parameters [Max14a, Max14b]. The conformal momentum U, for example, is shown to be
an element of Tg (C\D0). By this interpretation, it becomes clear that C is prioritized over
V when it comes to choices of parameters.
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In a 2014 paper, Maxwell introduces a variant to the standard conformal method
[Max14b]. Very succinctly, the drift model differs from its predecessor in that it replaces the
mean curvature τ with two new conformal data, a volumetric momentum and a drift. These
new quantities are defined by the volumetric equivalent to the York splitting [Max15] :

τ = τ∗ +
1

Nĝ,ω
div(V +Q) (1.5.2)

where τ∗ ∈ R, V is a smooth vector field and Q is a conformal Killing field. The volumetric
momentum τ∗ as measured by ω is uniquely determined and can be rewritten as

τ∗ =

∫
M Nĝ,ωτ dVĝ∫
M Nĝ,ω dVĝ

. (1.5.3)

The vector field V is uniquely determined up to a ĝ divergence-free vector field.
As we explain above, τ∗ = 0 seems to be a common property of the known non-CMC

cases of an infinity of solutions corresponding to the same data set. The drawback of the
classical conformal method is that the value of τ∗ cannot be calculated a priori from a
choice of representatives. One needs to first solve the corresponding system, as

τ∗ = τ∗(g, u) =

∫
M u2qNg,ωτ dVg∫
M u2qNg,ω dVg

. (1.5.4)

Coming back to (Q1), this is an argument against the classical conformal model.
The volumetric momentum [g, τ ]α as measured by ω is −2n−1

n τ∗. A drift [V ]drift
g at

g is the equivalence class of V , modulo KerLg and Ker divg. The space of drifts at g is
denoted as Driftg. David Maxwell introduces the concept of drift as an infinitesimal motion
in the space of metrics, modulo diffeomorphisms, that preserves conformal class, up to a
diffeomorphism, and the volume form, also up to a diffeomorphism.

In this section, we assume that g admits no non-trivial conformal Killing field and
therefore that Q ≡ 0.

We show how to obtain the initial data (ĝab, K̂ab) from a conformal data set, given a
gauge ω.

1. Choose an arbitrary representative gab ∈ g.

2. Choose the unique densitized lapse Ng,ω.

3. Choose the unique TT-tensor Uab such that (gab, Uab) = U, where U is the conformal
momentum as measured by ω.

4. Choose a vector field Ṽ , unique up to a conformal Killing field, such that (gab, Ṽ a) =
V, where V is the volumetric drift measured by ω. We use the tilde to differentiate
the drift from the potential, while still staying true to Maxwell’s initial notation.

Both u and W are unknown. We write

ĝab = uq−2gab

K̂ab = u−2[ 1
2Ng,ω

(LgW )ab + Uab] +
1
nu

q−2gab

(
τ∗ + 1

Ng,ω
div(Ṽ )

)
.

(1.5.5)

Plug these quantities into the constraint equations to obtain

Δgu+ n−2
4(n−1)(R(g) + |∇ψ|2g)u =

(n−2)|U+LgW |2+π2

4(n−1)uq+1

+ n−2
4(n−1) [2V (ψ)− n−1

n

(
τ∗ + divg(uqṼ )2

Ng,ωu2q

)
]uq−1

divg

(
1

2Ng,ω
LgW

)
= n−1

n uqd
(
divg(uqṼ )
2Ng,ωu2q

)
+ π∇ψ = 0.

(1.5.6)

22



The following table regroups for n = 3 the conformal data and their dimensions (columns
2 and 3), the expressions of physical data as functions of representatives of conformal data
(column 1) and the dimensions of the remaining unknowns (column 4).

Physical data Parameters Dimensions Unknowns

ĝ = uq−2g g 5 1

K̂ab = u−2[ 1
2Ng,ω

(LgW )ab + Uab]

+ 1
nu

q−2gab

(
τ∗ + 1

Ng,ω
div(V )

) U, τ∗,N,V 2 + 1 + 3 3

ψ̂ = ψ ψ 1 0

π̂ = u−qπ π 1 0

(1.5.7)

This time, we obtain additional parameters. More on this in the following section.

1.6 Is the drift model a better alternative ?

We recall that not much is known about far-from-CMC solutions. The classical conformal
method seems to display a number of singularities, and these singularities are sometimes
difficult to find a priori without first solving the corresponding conformal system (1.3.18)
[Max11, Max15].

As we’ve discussed in the previous section, an advantage of the drift model is that the
singularities identified by Maxwell can be found in a priori known conformal data sets -
i.e when the volumetric momentum is null.

Apart from being more natural from a physical and geometrical point of view, another
feature of Maxwell’s model is that it prescribes more than 10 parameters. At first glance, it
“over-describes" the initial data. An important idea underlying the works presented in the
sequel is the hope to use these four additional parameters to “tilt” the coordinate system
(the other ten parameters) in the neighbourhood of a singularity. Another way to think
about this is that the 10-dimensional manifold of initial data cannot accurately be covered
by only one chart ; by changing the additional drift parameters whenever we approach of
singularity, we essentially switch to a different chart. In this way, we might prove that the
set of solutions to the constraint equations does not possess any real singularity, but only
ones due to the choice of coordinates. Naively, one might think of a curve having a vertical
tangent which is not well parametrized by its x-axis. The price we pay is that the drift
system is analytically much more complicated than the classical one.

The goal is to find a viable alternative to the conformal method that gives insight into
the structure of the set of solutions of the constraint equations. The drift method proposed
by Maxwell provides a promising way forward. The following steps are necessary in order
to achieve this :

a. Existence for small data. We essentially verify that Maxwell’s system is reasonable : it
can be solved even in the case of focusing non linearities. An immediate consequence
is that the set of solutions is non-empty. This is the purpose of chapter 2 of the
present manuscript.

b. Stability. We check that, given a perturbation of the coefficients, then the solutions
to the perturbed system converge to a solution of the limiting system. This is the
purpose of chapter 3.
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10 parameters (+3)

Figure 1.6.1 : Initial data manifold, parametrized by the drift method.

c. The study of bifurcations. This is where the extra parameters of Maxwell’s method might
come into play, by allowing us the freedom to continuously change our mapping as
needed. Indeed, as proved by Premoselli [Pre15], there is no hope that a single choice
of N and V lead to a nice smooth parametrization of the set of solutions (since his
study is a subcase of ours). Bifurcations must occur. Even in the defocusing case, such
bifurcations can occur, as shown by James Dilts, Michael Holst and David Maxwell
[DHKM17]. Thus, tilting the coordinates (the parameters) in a neighbourhood of
these bifurcations is a way to understand them and the extra parameters give an
opportunity to do so. This part of the program is not treated here.

We summarize this program with the help of the following figure. Point a. allows us
to start the process of proving that solutions do exist, for small parameters. Point b.
roughly says that the only problem could come from bifurcations corresponding to
folding (at least for the parameters for which stability holds). We rule out vertically
asymptotic branches. Part c. consists intuitively in tilting the coordinates with the
four added parameters, as shown below. These three steps should permit to obtain a
nice smooth description of the set of solutions. In the remaining sections, we explain
how to get existence for small data and some stability results.

1.7 Existence result for small data

The non-focusing case was addressed by Michael Holst, David Maxwell and Rafe Mazzeo
in 2018 [HMM18]. They proved existence under suitable smallness hypotheses on the coef-
ficients. Moreover, they improve previous known results, by applying their result to metrics
that admit conformal Killing fields.

The first result included in the present text addresses the focusing case ; it corresponds
to the presence of a scalar field source [Vâl19]. We study the existence of solutions (u,W ),
u > 0, to

Δgu+ hu = fuq−1 +
ρ1+|Ψ+ρ2LgW |2g

uq+1

− b
u − c〈∇u, Y 〉

(
d
u2 + 1

uq+2

)
− 〈∇u,Y 〉2

uq+3

divg (ρ3LgW ) = R(u,∇u,∇2u),

(1.7.1)

where f > 0, h, b, c, d, ρ1 > 0, ρ2, ρ3 are smooth functions, |∇ρ3| < (2C)−1, with C1 a
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dimensional constant as in section 2 of [IÓM04], and Ψ, Y vector fields. Here, R is an
operator verifying

R(u,∇u,∇2u) � CR

(
1 +

||u||2C2
(infM u)2

)
� C ′

R

(
1 +

∣∣∣∣∇u
u

∣∣∣∣
L∞ +

∣∣∣∣∇u
u

∣∣∣∣2
L∞ +

∣∣∣∣∣∣∇2u
u

∣∣∣∣∣∣
L∞

) (1.7.2)

for a constant CR > 0 and C ′
R = C ′

R(CR, infM u). We fix

θ = min(inf
M

ρ1, inf
M

f), (1.7.3)

and
T = max(||f ||C1,γ , ||ρ1||C0,γ , ||c||C0,γ , ||d||C0,γ , ||h||C0,γ ). (1.7.4)

Theorem 5 ([Vâl19]). Let n = 3, 4, or 5. There exists a constant C = C(n, h), C > 0
such that if ρ1 verifies

||ρ1||L1(M) � C(n, h)

(
max
M

|f |
)1−n

, (1.7.5)

then there exists a constant
δ = δ(θ, T ) > 0, (1.7.6)

which allows the previous system to admit a solution whenever its coefficients satisfy the
following smallness condition :

||b||C0,γ + ||Y ||C0,γ + ||Ψ||C0,γ + ||ρ2||C0,γ + CR � δ. (1.7.7)

In order to obtain the desired existence result, we essentially impose two conditions :
for the free data to be suitably small and for the dimension to be low. The proof builds on
the work of Bruno Premoselli [Pre14], with added difficulties arising from the presence of
non-linear terms involving the gradient of u and from the non-variational structure of the
first equation.

We make use of a fixed point argument. We define a “ping-pong” operator which moves
between the two equations of the system, alternatively fixing an unknown and solving for
the remaining one. We define an operator

Φ : C2(M) → C2(M), (1.7.8)

with
Φ : ϕ → u (LgW (ϕ)) . (1.7.9)

More precisely,

• W (ϕ) solves the second equation for a fixed ϕ and

• u (LgW (ϕ)) is a solution for the scalar equation with fixed W (ϕ).

In order for the resulting sequence to converge to a solution of the system (1.7.1), we must
check

1. that Φ is well defined,

2. that there is a constant M > 0 such that Φ : BM → BM , BM := {ϕ ∈ C2
+(Σ), ||ϕ||C2 �

M},

3. that Φ is continuous

4. that Φ is compact.

In the following subsections, we briefly explain the main steps for obtaining the exis-
tence result of Theorem 5. The full proof is found in chapter 2.
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1.7.1 Is the ping-pong operator well defined ?

We begin by establishing the existence of solutions to the Lichnerowicz-type scalar equation
that can be precisely identified.

First, we see that lower bounds on positive solutions u are immediate. Given an equation
of the type

Δgu+ hu = fuq−1 +
a

uq+1

− b

u
− c〈∇u, Y 〉

(
d

u2
+

1

uq+2

)
− 〈∇u, Y 〉2

uq+3
,

(1.7.10)

there exists ε > 0 such that u � ε. By looking at the equation at a minimum x0 of u,
where ∇u (x0) = 0, we obtain

h (x0)u (x0)
q+2 � a (x0)− b (x0)u (x0)

q . (1.7.11)

Here, we use the fact that f ≥ 0. The positive lower bound on u follows from the fact that
a > 0 on M . Additionally, it becomes clear that a > 0 implies that the negative power
terms do not explode for perturbations that allow uα to approach 0.

We use an iterative construction to create a sequence of subsolutions which are bounded
from both above and below. A supersolution (respectively subsolution) of the first equation
verifies

Δgψ + hψ
(�)

� fψq−1 + a
ψq+1

− b
ψ − c〈∇ψ, Y 〉

(
d
ψ2 + 1

ψq+2

)
− 〈∇ψ,Y 〉2

ψq+3 ,

(1.7.12)

For i ∈ N
∗, we find the unique solutions ui of equations (Ei) :

Δgui + (h+K)ui = fuq−1
i−1 + a

uq+1
i−1

− b
ui−1

− c〈∇ui, Y 〉
(

d
u2
i−1

+ 1

uq+2
i−1

)
− 〈∇ui,Y 〉2

uq+3
i−1

,
(1.7.13)

Here, u0 is chosen to be the constant ε given above. By induction, we show that

• ui is a subsolution of Ei+1, and therefore a subsolution of the Lichnerowicz equation,
and

• ui � ψ.

By a comparison principle, we obtain the sequence ui which is pointwise increasing and
bounded from above by ψ. In fact, the construction is independent of the choice of ψ -
therefore, u is the smallest supersolution (and therefore solution) larger than ε. The limit
is thus shown to be a minimal solution.

1.7.2 Is it a contraction ?

We show that perturbations of first equation’s coefficients do not lead to loss of compactness
in dimensions n = 3, 4, or 5.

Theorem 6 ([Vâl19]). Let (M, g) be a closed Riemannian manifold of dimension n =
3, 4, 5. Let 1

2 < η < 1 and 0 < α < 1. Let a, b, c, d, f , h be smooth functions on M , let Y
be a smooth vector field on M . For any 0 < θ < T , there exists Sθ,T and ϑθ,T such that,
given any parameters within

Eθ,T :=
{
(f, a, b, c, d, h, Y ), f � θ, a � θ,

||f ||C1,η � T, ||a||C0,α , ||b||C0,α , ||c||C0,α , ||d||C0,α , ||h||C0,α , ||Y ||C0,α � T
}
,

(1.7.14)
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with
||Y ||C0,α � ϑθ,T , (1.7.15)

then any smooth positive solution u of the Lichnerowicz-type equation satisfies

||u||C2 � Sθ,T . (1.7.16)

Solutions risk exploding both in ||uα||L∞ and in ||∇uα||L∞ . The analytical techniques
involved in this section are subtle (see for example Druet, Hebey [DH09], [DHR04] or the
survey [Dru10]).

The notion of concentration point is useful for studying stability. Its definition depends
on the equation or system of equations to which it is applied. In the case of (1.7.1), a
concentration point is the limit in M of any sequence (xα)α where

uα(xα) +∇uα(xα) → ∞. (1.7.17)

When (1.7.17) holds, the system (1.7.1) is unstable (in the sense of [DH09]). When it does
not, the system is stable.

We briefly describe the strategy of obtaining a priori bounds on solutions to (1.7.1),
which is a proof by contradiction. We first assume that concentration points exist and
we study the pointwise asymptotic blow-up profiles they display. Naively, we look at the
shape of solutions around points where they blow-up. The next step is to show that these
particular blow-up profiles cannot actually exist whenever 3 � n � 5.

Identifying a “first” potential concentration point

Assuming that concentration points exist, the first concentration point we identify is the
one that corresponds to the biggest blow-up. To do this, we rescale the solutions such that
the dominant terms, Δgu and fuq−2, are preserved. This technique was initially developed
by Michael Struwe [Str84] and Richard Schoen [Sch89]. Instead of using the characterization
(1.7.17), we use an equivalent form,

uα(xα) +

∣∣∣∣∇uα(xα)

uα(xα)

∣∣∣∣n−2
2

→ ∞ as α → ∞, (1.7.18)

which makes calculations easier when taking the limit of perturbations. We suppose that
there exists a sequence (xα)α such that (1.7.18) holds, where

uα(xα) +

∣∣∣∣∇uα(xα)

uα(xα)

∣∣∣∣n−2
2

= sup
x∈M

(
uα(x) +

∣∣∣∣∇uα(x)

uα(x)

∣∣∣∣n−2
2

)
. (1.7.19)

We denote

μ
1−n

2
α := uα(xα) +

∣∣∣∣∇uα(xα)

uα(xα)

∣∣∣∣n−2
2

. (1.7.20)

We consider the rescaled quantities

vα(x) := μ
n−2
2

α uα
(
expxα

(μαx)
)

et gα(x) :=
(
exp∗xα

g
)
(μαx) (1.7.21)

defined on progressively smaller balls, B0

(
δ
μα

)
, where 0 < δ < 1

2 ig(M). Here, ig(M) is the
injectivity radius of M . Thus,

lim sup
α→∞

sup
B0(R)

(
vα(x) +

∣∣∣∣∇vα(x)

vα(x)

∣∣∣∣n−2
2

)
= 1. (1.7.22)
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Additionally, in order to treat the potential case when both uα and ∇uα blow-up around
the same concentration points, we need to consider a further rescaling. Let

wα(x) :=
ûα(x)

ûα(0)
=

uα(expxα
(μαx))

uα(xα)
. (1.7.23)

Up to a subsequence, we denote

l̂α = ûα(0), with limα→∞ l̂α =: l̂ ∈ [0, 1],

lα = u−1
α (xα), with limα→∞ lα =: l ∈ [0, ε−1]

(1.7.24)

which follows from (1.7.21) in the case of the first limit, and from (1.7.11) for the second.
Furthermore, (1.7.20) implies that

ll̂ = lim
α→∞

μ
n−2
2

α = 0. (1.7.25)

By standard elliptic theory, we find that there exists W := limα→∞wα in C1,η
loc (R

n) solving :

ΔW = f(x0)W
q−1 l̂q−2 − 〈∇W,Y (x0)〉2

W q+3
l q+2, x ∈ R

n. (1.7.26)

We consider three separate cases. Let

l = 0 and l̂ �= 0. (1.7.27)

By passing to the limit in the equation of vα, we obtain

ΔV = f(x0)V
q−1 (1.7.28)

in R
n. The exact form of non-trivial solutions is due to Caffarelli, Gidas and Spruck [CGS89]

V (x) =

(
1 +

f(x0)|x− y0|2
n(n− 2)

)1−n
2

. (1.7.29)

In the remaining cases, we consider the limit equation (1.7.26). If

l �= 0 and l̂ = 0, (1.7.30)

we obtain

ΔW = −〈∇W,Y (x0)〉2
W q+3

l q+2, (1.7.31)

and if
l = 0 and l̂ = 0, (1.7.32)

we see
ΔW = 0. (1.7.33)

These three cases encompass all potential blow-up behaviours of solutions u to the first
constraint equation. In order to get the a priori estimates we need, we must show that any
of these blow-up profiles leads to a contradiction.

The next step is to identify all possible concentration points. Naively, it may seem
unusual to try to characterize a set of blow-up points that we then want to show do
not actually exist. In fact, we’re ultimately interested in how concentration points could
potentially be distributed within M , either clustered or isolated, and how the sizes of the
blow-ups compare to each other.
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Other potential concentration points

In order to find a second potential concentration point, we construct a test operator

Φα(x) = dg(xα, x)
n−2
2

(
uα(x) +

∣∣∣∣∇uα(x)

uα(x)

∣∣∣∣n−2
2

)
. (1.7.34)

Note that
Φα(xα) = 0. (1.7.35)

However, if supx∈M Φα(x) → ∞, then

∃ yα ∈ M, dg(xα, yα)
n−2
2

(
uα(yα) +

∣∣∣∣∇uα(yα)

uα(yα)

∣∣∣∣n−2
2

)
→ ∞, (1.7.36)

so, since M is compact,

uα(yα) +

∣∣∣∣∇uα(yα)

uα(yα)

∣∣∣∣n−2
2

→ ∞. (1.7.37)

Thus, if Φα blows up, it indicates the presence of a second concentration point. The process
can be generalized so that if k potential concentration points have been identified, one might
define an operator to identify a k + 1th.

Weak pointwise estimate on M

The first result we might get is the following pointwise estimate on solutions uα. This is a
more or less immediate consequence of the discussion above on concentration points and
possible blow-up profiles. It essentially states that, away from the points we just identified,
the solutions are bounded. Moreover, it sets a “weak" bound on the size of the explosions
we can expect to have.

Lemma 1. There exists Nα ∈ N
∗ and Sα := (x1,α, . . . xNα,α) a set of critical points of

(uα)α such that
dg(xi,α, xj,α)

n−2
2 uα(xi,α) � 1

for all i, j ∈ {1, . . . , Nα}, i �= j, and(
min

i=1,...,Nα

dg(xi,α, x)

)n−2
2

uα(x) � 1

for all critical points of uα and such that there exists C1 > 0 such that(
min

i=1,...Nα

dg(xi,α, x)

)n−2
2

(
uα(x) +

∣∣∣∣∇uα(x)

uα(x)

∣∣∣∣n−2
2

)
� C1

for all x ∈ M and all α ∈ N.

Fine asymptotic analysis around potential concentration points

Better estimates may be obtained through fine analysis. While the objects we use are
not complicated (Green representation theorems, maximum principles), their application
is somewhat arduous. Consider points (xα) where u(xα)α explodes. First of all, we get that
in Bxα(μα),

• μ
n−2
2

α uα
(
expxα

(μαx)
)
−→

(
1 + f(x0)|x|2

n(n−2)

)1−n
2 in C1

loc(R
n).
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Next, we look at what happens in a larger ball Bxα(ρα). We’re especially interested in
domains where, at the boundary, the influence of neighbouring blow-up’s begins to be felt
in a non-negligible fashion.

• uα(x) � Cμ
n−2
2

α dg(xα, x)
2−n and

• |∇uα(x)| � Cμ
n−2
2

α dg(xα, x)
1−n,

and finally, on the boundary of this ball, we have

• uα(xα)ρ
n−2
α uα(expα(ραx)) −→ λα

|x|n−2 +H(x),

where H is a harmonic function on Bxα(ρα).

Contradictions

In order to rule out blow-ups, we need to obtain contradictions, one by one, for all possible
distributions of explosions :

1. isolated

2. clustered, where the explosions are all of the same rate, and

3. clustered, where the bubbles explode at different rates.

We must also keep in mind that the profiles we must rule out roughly correspond to
situations where

1. only u explodes,

2. only ∇u explodes,

3. both u and ∇u explode.

x1,α x2,α

μ1,α μ2,α

ρ1,α

ε

Figure 1.7.1 : A cluster with two similar bubbles

Dimension plays a key role in this discussion. Naively, the higher the dimension, the more
lax the constrictions on possible bubble interactions. To illustrate this, we consider the case
of a cluster with two bubbles of comparable sizes. Let them be centered at x1,α and x2,α.

30



Their profiles on Bx1,α(μ1,α) and Bx2,α(μ2,α) are very close to B1,α and B2,α, respectively.
Consider pα a point close to x1,α. Formally, we define

Lg,α(u) = Δgu+ hαu− fαu
q−1 − aα

uq+1

+ bα
u + cα〈∇u, Yα〉

(
dα
u2 + 1

uq+2

)
− 〈∇u,Yα〉2

uq+3

(1.7.38)

Here, solutions of Lg,α(uα) = 0 solve the perturbed equations.
We give a heuristic argument to explain why and how interaction between bubbles is

constrained. At pα, uα ≈ B1,α. We rewrite it as uα = B1,α+Rα. Moreover, let Lg,α(B1,α) =:
Fα, which we can explicitly calculate. Again, formally we may obtain

0 = Lg,α(B1,α +Rα) = Lg,α(B1,α) + L′
α(B1,α)(Rα) +O(|Rα|2) (1.7.39)

i.e.
L′
g,α(B1,α)(Rα) = −Fα +O(|Rα|2). (1.7.40)

We also take into account the error terms that might arise from the geometry,

L′
g,α(B1,α) ≈ L′

ξ,α(B1,α) + g error terms. (1.7.41)

which are small, as locally at a microscopic scale, g ≈ ξ.
The kernel in the Euclidean is known and is given by the symmetries of the sollutions,

be it by scaling or by translation. For any ϕ ∈ Ker L′
ξ,α(B1,α), we need

ϕ ⊥ −Fα +O(|Rα|2) + g error terms, (1.7.42)

so ϕ ⊥ L′
α(B1,α)(Rα). These give us estimates on the error term Rα, which, in low dimen-

sion, are shown to lead to a contradiction at distance ρ1 ; there, by definition, Rα ≈ B2,α.
All this can be otherwise obtained through a Pohozaev identity [Poh65], which does the
same, but in a more rigorous and direct way (more in the next chapter). See also the note
by Jesse Ratzkin for more information on Pohozaev-type identities [Rat09].

1.8 The stability of the system.

The final chapter of this work details a compactness result obtained for Maxwell’s system.
For convenience, we recall that the scalar equation of the general system (1.7.1) is

Δgu+ hu = fuq−1 +
ρ1+|Ψ+ρ2LgW |2g

uq+1

− b
u − c〈∇u, Y 〉

(
d
u2 + 1

uq+2

)
− 〈∇u,Y 〉2

uq+3

(1.8.1)

and that the second equation of the physical system (1.5.6) writes as

−→
ΔgW = 〈∇ ln Ñ ,LgW 〉+ 2n−1

n−2

(
3n−2
n−2

〈∇u,Ṽ 〉∇u

u2 − 〈∇2u,Ṽ 〉
u

)
+2n−1

n−2

(
−〈∇u,Ṽ 〉

u ∇ ln Ñ + divgṼ
∇u
u − 〈∇Ṽ ,∇u〉

u

)
−n−1

n

(
divgṼ∇ ln Ñ +∇divgṼ

)
− 2Ñ−1π∇ψ.

(1.8.2)

We would like to prove the a priori estimate

||uα||C2,η + ||Wα||C1,η � C. (1.8.3)
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If this is true, then by standard elliptic theory there exists, up to a subsequence, a C2,η

limit of (uα,Wα) solving the limiting system (1.7.1). In effect, since the system (1.7.1) is
invariant by the addition of conformal Killing fields, it suffices to show that

||uα||L∞ + ||∇uα||L∞ + ||∇2uα||L∞ + ||LgWα||L∞ � C. (1.8.4)

The proof follows by contradiction. We assume instead that there exists a sequence of
solutions (uα,Wα) of the perturbed system such that

||uα||L∞ + ||∇uα||L∞ + ||∇2uα||L∞ + ||LgWα||L∞ → ∞ as α → ∞. (1.8.5)

Theorem 7. Let (M, g) be a closed Riemannian manifold of dimension n = 3, 4, 5, where
g is locally conformally flat. Let 1

2 < η < 1 and 0 < α < 1. Let a, b, c, d, f , h, ρ1, ρ2,
ψ, π, Ñ be smooth functions on M , let Ṽ and Y be smooth vector field on M . For any
0 < θ < T , there exists Sθ,T and ϑθ,T such that, given any parameters within

Eθ,T :=
{
(f, a, b, c, d, h, ρ1, ρ2, Y )× (Ñ , Ṽ , ψ, π), f � θ, a � θ, Ñ � θ,

||f ||C1,η � T,

||a||C1,α , ||b||C1,α , ||c||C1,α , ||d||C1,α ,

||ρ1||C1,α , ||ρ2||C1,α , ||h||C1,α , ||Y ||C1,α � T,

and ||Ñ ||C2,α , ||Ṽ ||C2,α � T
}
,

(1.8.6)
with

||Y ||C1,α , ||Ṽ ||C2,α � ϑθ,T , (1.8.7)

then any smooth solution (u,W ), with u > 0, satisfies

||u||C2,α + ||LgW ||C1,α � Sθ,T . (1.8.8)

The proof strategy is very similar to the one used in obtaining a priori estimates to
solutions of the Lichnerowiz-type equation. However, this time we must take into account
possible lack of compactness stemming from the LgWα term. The weak pointwise estimate
takes the form(

min1�i�Nα dg(xi,α, x)
)n

×
(
uqα(x) +

∣∣∣∇uα(x)
uα(x)

∣∣∣n +
∣∣∣∇2uα(x)

uα(x)

∣∣∣n2 + |LgWα|g(x)
)

� C.
(1.8.9)

Most of the profiles have already been treated in [Vâl19]. The main difference comes from
the limiting system

Δw = n−2
4(n−1)

(
2V (ψ(x0))− n−1

n τ∗2
)
wq−1 l̂q−2 + n−2

16(n−1)

Ñ2(x0)|LξZ|2ξ
wq+1

− n
n−2

〈∇w,Ñ(x0)Ṽ (x0)〉2
wq+3 l q+2

−→
ΔξZ = −2n−1

n+1
〈Ṽ (x0),∇w〉∇w

w2 l
q+2
2 − n−1

n 〈Ṽ (x0),
∇2w
w 〉l q+2

2 ,

(1.8.10)

with l and l̂ as in (1.7.24), which results from both LgW and ∇uα or ∇2uα simultaneously.
The additional smallness condition on Ṽα ensures that the above system reduces to the
classical equation

Δw =
n− 2

4(n− 1)

(
2V (ψ(x0))−

n− 1

n
τ∗2

)
wq−1 l̂q−2. (1.8.11)
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In the future, it might prove fruitful to further examine the possible solutions of the second
equation, together with the exact coupling of the system, in order to not have to impose
additional limits on the drift term Ṽ .

Finally, we’d like to discuss the condition that g be locally conformally flat. The same
holds true for the stability of the classical system, also in the focusing case, which was
treated in [Pre16]. In order to obtain the improved weak estimates on LgWα that we
need, the Green representation formula is applied on balls of diminishing radius Bxα(δα),
δα → 0, where xα is a concentration point. The bounds needs to be uniform with respect
to α, which is why we need the kernel of

−→
Δgα to have the same dimension as that of

−→
Δξ,

with gα = exp∗xα
(δα·).
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CHAPITRE 2

Existence

The chapter is dedicated to the establishment of the existence in low dimensions of solu-
tions to the constraint equations in the case of the conformal system proposed by David
Maxwell [Max14b], with the added presence of a scalar field and under suitable smallness
assumptions on its parameters. This is chapter contains a reproduction of [Vâl19] :

Caterina Vâlcu, The Constraint Equations in the Presence of a Scalar Field : The
Case of the Conformal Method with Volumetric Drift, Comm. Math. Phys., (2019),
arXiv:1809.07218, HAL:hal-02022713, version 1.
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The constraint equations in the presence of a scalar field -
the case of the conformal method with volumetric drift
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2.1 Introduction

The field of general relativity deals with the study of spacetime, an object defined as the
equivalence class, up to an isometry, of Lorentzian manifolds (M̃, g̃) of dimension n + 1
satisfying the Einstein field equations

Ricαβ(g̃)−
1

2
R(g̃)g̃αβ = 8πTαβ , (2.1.1)

α, β = 1, n+ 1. Here, R(g̃) is the scalar curvature of g̃, Ric the Ricci curvature and Tαβ the
stress-energy tensor describing the presence of matter and energy. For example, Tαβ = 0
describes vacuum. Our interest focuses on the more general case

Tαβ = ∇̃αψ̃∇̃βψ̃ −
(
1

2
|∇̃ψ̃|2g̃ + V (ψ̃)

)
g̃αβ , (2.1.2)

which models the existence within the spacetime of a scalar field ψ̃ ∈ C∞(M) having
potential V ∈ C∞(R). Thus, ψ̃ = 0 and V = Λ yield the vacuum with cosmological
constant Λ, while V = 1

2mψ̃2 corresponds to the Einstein-Klein-Gordon setting.
For a globally hyperbolic spacetime, we define its initial data (M, ĝ, K̂, ψ̂, π̂). They

consist of an n-dimensional Riemannian manifold (M, ĝ), which models the spacetime
at a particular moment in time, a symmetric 2-tensor K̂, corresponding to its second
fundamental form, the scalar field ψ̂ in M , and its temporal derivative π̂. The associated
spacetime development takes the form (M × R, g̃, ψ̃), where g̃ is a Lorentzian metric that
verifies g̃|M = ĝ and ψ̃ is a scalar field such that ψ̃|M = ψ̂ and ∂tψ̃|M = π̂.

Initial data in general relativity may not be freely specified, unlike their Newtonian
counterparts. Instead, they must verify the Gauss and Codazzi equations,

R(ĝ) + (trĝK̂)2 − |K̂|2ĝ = π̂2 + |∇̂ψ̂|2ĝ + 2V (ψ̂)

∂i(trĝK̂)− K̂j
i,j = π̂∂iψ̂,

(2.1.3)
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which are referred to as the constraint equations. The work of Choquet-Bruhat [FB52]
establishes, once and for all, that the constraint equations are not only necessary but
sufficient conditions for the (local) existence of a solution. Later, Choquet-Bruhat and
Geroch [CBG69] prove that the maximal development of initial data is unique, up to
an isometry. Globally hyperbolic spacetimes may rigorously be studied in the context of
mathematical analysis as the result of an evolution problem. The above system is clearly
under-determined, which allows for considerable freedom in choosing a solution (ĝ, K̂, ψ̂, π̂).

Using the conformal method introduced by Lichnerowicz [Lic44], the constraint equa-
tions may be transformed into a determined system of equations by fixing well-chosen
quantities (see Choquet-Bruhat, Isenberg and Pollack [CBIP07]). The appeal of such a
method lies in that it provides a characterisation of the resulting initial data by fixed
quantities. Essentially, it maps a space of parameters to the space of solutions.

Given an initial data set (ĝ, K̂, ψ̂, π̂), the classical choice of parameters is (g,U, τ, ψ, π;α):
in this case, the conformal class g is represented by a Riemannian metric g, the smooth
function τ = ĝabK̂ab is a mean curvature and the conformal momentum U measured by a
volume form α (volume gauge) is a 2-tensor that is both trace-free and divergence-free with
respect to g (a transverse-traceless tensor). We sometimes prefer to indicate the volume
gauge by the densitized lapse

Ñg,α :=
α

dVg
. (2.1.4)

Note that this quantity depends on the choice of representative g, unlike the volume gauge
α which does not. The standard conformal method implicitly fixes Ñg,α = 2; in the present
paper, we prefer to make use of the freedom of choosing Ñg,α as needed. We often refer to
a parameter set by indicating the representative metric g and the corresponding densitized
lapse Ñg,α instead of giving the conformal class and volume gauge. However, these quan-
tities can immediately be reconstructed from our data. We refer to Maxwell [Max14b] for
an introduction to the conformal method in our context.

Starting from the parameter set (g, U, τ, ψ, π; Ñ), the corresponding (physical) initial
data is pinpointed by solving a resulting system, comprising the Lichnerowicz-type equation
and the momentum constraints, for a smooth positive function (or conformal factor) u and
a smooth vector field W in M ,

Δgu+Rψ = −Bτ,ψ,V u
q−1 +

Aπ,U (W )
uq+1 ,

−→
ΔgW = n−1

n uq∇τ + π∇ψ,
(2.1.5)

where
Rψ =

n− 2

4(n− 1)

(
R(g)− |∇ψ|2g

)
,

Bτ,ψ,V =
n− 2

4(n− 1)

(
n− 1

n
τ2 − 2V (ψ)

)
,

Aπ,U (W ) =
n− 2

4(n− 1)

(
|U + LgW |2g + π2

)
.

(2.1.6)

If (u,W ) solves the above system, then the initial data we’ve been searching for are

ĝ = uq−2g, K̂ = u−2

(
U +

Ñ

2
LgW

)
+

τ

n
ĝ, ψ̂ = ψ, π̂ = u−qπ. (2.1.7)

Note also that the solutions generated by (g, U, τ ; Ñ) and

(ϕq−2g, ϕ−2U, τ, ψ, ϕ−qπ;ϕqÑ) (2.1.8)
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are the same, where ϕ is a smooth positive function. The notations above are similar to
those of Choquet-Bruhat, Isenberg and Pollack [CBIP07]. The following quantities often
appear throughout the present paper: q = 2n

n−2 is the critical Sobolev exponent for the
embedding of H1 in Lebesgue spaces, Δg = −divg∇ denotes the Laplace-Beltrami operator
taken with non-negative eigenvalues,

−→
ΔgW = −divg(LgW ) is the Lamé operator and Lg

is the conformal Killing operator with respect to g,

LgWij = Wi,j +Wj,i −
2

n
divgWgij . (2.1.9)

Conformal Killing fields are defined as vector fields in the kernel of Lg.

The conformal method is particularly successful in finding solutions when the mean
curvature τ is constant as the system (2.1.5) becomes uncoupled, but it is unclear how well
the method functions when the mean curvature is far from being constant: see Maxwell
[Max11] and [Max15], where a given set of parameters point to no or to an infinite number
of solutions. We emphasize that any failing of the system does not necessarily translate to a
singularity in the space of solutions to the constraints system, but may instead derive from
a poor choice of mapping. This motivates the study of variations to standard conformal
methods.

The drift method introduced by Maxwell replaces the mean curvature τ as a parameter
by a pair (τ∗, Ṽ ), where τ∗ is a unique constant called volumetric momentum and Ṽ a
vector field related to the drift. They verify an analogue of York splitting, namely

τ = τ∗ + Ñĝ,αdivĝṼ = τ∗ +
Ñg,α

u2q
divg(u

qṼ ), (2.1.10)

the notation Ṽ being specific to this paper in order to avoid confusion with the potential V .
Interestingly, τ∗ = 0 holds true for all counterexamples found by Maxwell [Max11, Max15].
This suggests that the volumetric momentum may play an important role in characterizing
the space of initial data. Ideally, we would like to know as soon as we fix a set of parameters
(g, U, τ, ψ, π; Ñ) if we find ourselves in the case τ∗ = 0. However, τ∗ cannot be directly
calculated by (2.1.10) without first solving (2.1.5), which somewhat defeats the purpose.
This motivates a new choice of parameters, even at the risk of working with an analytically
more complicated system. The idea of Maxwell [Max11, Max15] is thus to choose τ∗ as
an additional parameter that is to be fixed in the place of τ : the hope is thus to avoid
the aforementioned problem. As well as τ∗, Maxwell added Ñ and Ṽ as parameters, for
geometric and physical reasons. Therefore, instead of fixing τ , we fix τ∗, Ñ and Ṽ .

Intuitively, the drift is a geometric quantity describing infinitesimal motion in the space
of metrics modulo the group of diffeomorphisms connected to the identity such that the
conformal class and volume are preserved. For any given drift, the choice of a representative
vector field Ṽ is unique up to conformal Killing fields and vector fields which are divergence-
free with respect to the initial metric ĝ. Given g an arbitrary representative of the conformal
class, it is not clear whether two vector fields are indicative of the same drift class defined for
ĝ; this problem is discussed at length in the paper of Mike Holst, David Maxwell and Rafe
Mazzeo [HMM18] for conformal systems where the critical non-linearity is non-focusing, or
negative. Our analysis treats systems with focusing (that is to say positive) non-linearities
stemming from the presence of a scalar field with positive potential.

The following system corresponds to Problem 12.1 of [Max14b] in the presence of a
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scalar field, where g admits no non-trivial conformal Killing fields:

Δgu+ n−2
4(n−1)(R(g)− |∇ψ|2g)u− (n−2)|U+LgW |2+π2

4(n−1)uq+1

− n−2
4(n−1)

[
2V (ψ)− n−1

n

(
τ∗ + Ñdivg(uqṼ )

u2q

)2]
uq−1 = 0

divg

(
Ñ
2 LgW

)
− n−1

n uqd
(
Ñdivg(uqṼ )

2u2q

)
− π∇ψ = 0.

(2.1.11)

We denote the exterior derivative by d. The unknowns are a smooth positive scalar function
u defined on M and a smooth vector field W on M . The parameters are (g, U, τ∗, Ṽ , ψ, π; Ñ).
Maxwell’s new set of parameters include τ∗, which could not be calculated a priori in the
classical method. The initial data of the constraint equations verify

ĝ = uq−2g, K̂ = u−2
(
U + Ñ

2 LgW
)
+ 1

n

(
τ∗ + Ñ

u2q div(u
qṼ )

)
ĝ,

ψ̂ = ψ, π̂ = u−qπ.
(2.1.12)

The following is a more general system than (2.1.11). The central result of the paper
consists in showing that it admits solutions. Let (M, g) be a closed Riemannian manifold
of dimension n ∈ {3, 4, 5}, and g has no non-trivial conformal Killing fields. Let b, c, d, f ,
h, ρ1, ρ2, ρ3 be smooth functions on M and let Y and Ψ be smooth vector fields defined
on M . Let 0 < γ < 1. Assume that Δg + h is coercive, in the sense that its first eigenvalue
is positive. Assume that f > 0, ρ1 > 0 and |∇ρ3| < (2C1)

−1, where C1 is a dimensional
constant - see (2.4.1). Consider the system

Δgu+ hu = fuq−1 +
ρ1+|Ψ+ρ2LgW |2g

uq+1

− b
u − c〈∇u, Y 〉

(
d
u2 + 1

uq+2

)
− 〈∇u,Y 〉2

uq+3

−→
ΔgW = ρ3LgW +R(u,∇u,∇2u).

(2.1.13)

Here R is an operator verifying

R(u,∇u,∇2u) � CR

(
1 +

||u||2C2

(infM u)2

)
(2.1.14)

for a constant CR > 0.
A supersolution of the Lichnerowicz-type equation is a smooth function u verifying that

Δgu+ hu � fuq−1 +
ρ1+|Ψ+ρ2LgW |2g

uq+1 − b
u

−c〈∇u, Y 〉
(

d
u2 + 1

uq+2

)
− 〈∇u,Y 〉2

uq+3 .
(2.1.15)

Similarly, a subsolution satisfies an inequality of opposite sign. Whenever the inequality is
strict, we say u is a strict subsolution or a strict supersolution respectively.

We fix
θ = min(inf

M
ρ1, inf

M
f), (2.1.16)

and
T = max(||f ||C1,γ , ||ρ1||C0,γ , ||c||C0,γ , ||d||C0,γ , ||h||C0,γ ). (2.1.17)

Here is the main result of our paper:
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Theorem 8. Let n = 3, 4, or 5. There exists a constant C = C(n, h), C > 0 such that if
ρ1 verifies

||ρ1||L1(M) � C(n, h)

(
max
M

|f |
)1−n

, (2.1.18)

then there exists a constant
δ = δ(θ, T ) > 0, (2.1.19)

which allows the system (2.1.13) to admit a solution whenever its coefficients satisfy the
following smallness condition:

||b||C0,γ + ||Y ||C0,γ + ||Ψ||C0,γ + ||ρ2||C0,γ + CR � δ. (2.1.20)

Remark 2. For a slightly more detailed expression of the smallness assumptions, see Sec-

tion 2.4. The constant C(n, h) =
C(n)

Sn−1
h

appears explicitly in a paper by Hebey, Pacard

and Pollack ([HPP08], Corollary 3.1). By Sh we understand the Sobolev constant which is
defined as the smallest constant Sh > 0 such that

∫
M

|v|q dvg � Sh

(∫
M
(|∇v|2 + hv2) dvg

) q
2

(2.1.21)

for all v ∈ H1(M).

The following corollary deals with the existence of solutions to the conformal system.
It suffices to take

h = n−2
4(n−1)

(
Rg − |∇ψ|2g

)
, f = n−2

4(n−1)

[
2V (ψ)− n−1

n (τ∗)2
]
,

ρ1 =
n−2

4(n−1)

(
π − n−1

n (Ñ)2divg(Ṽ )
)
, ρ2 =

√
n−2
(n−1)

Ñ
4 ,

Ψ =
√

n−2
4(n−1)U,

b = n−2
2n τ∗Ñdivg(Ṽ ), c =

√
n−2
n , d = τ∗

Y =
√

n
n−2Ñ Ṽ , ρ3 = ln Ñ ,

(2.1.22)

and

R = n−1
n divg(Ṽ )∇ ln Ñ + n−1

n ∇(divg(Ṽ )) + πδiψ

Ñ

+2〈Ṽ , ∇u
u 〉∇ ln Ñ − 2n−1

n+1
〈Ṽ ,∇u〉∇u

u2 − n−1
n 〈Ṽ ,

Δgu
u 〉

(2.1.23)

in (2.1.13). It is a direct application of Theorem 8.

Corollary 1. Let Δg +
n−2

4(n−1)

(
Rg − |∇ψ|2g

)
be a coercive operator. Assume that

2V (ψ) >
n− 1

n
(τ∗)2, π >

n− 1

n
(Ñ)2divg(Ṽ ) and |∇ ln Ñ | < C−1

1 , (2.1.24)

where C1 depends on n and g (see (2.4.1) for more details). Moreover, assume that

||π − n− 1

n
(Ñ)2divg(Ṽ )||L1 � C(n, g, h)||2V (ψ)− n− 1

n
(τ∗)2||1−n

L∞ . (2.1.25)
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Then there exists a positive constant

δ = δ
(
infM

n−2
4(n−1)

[
2V (ψ)− n−1

n (τ∗)2
]
,

infM
n−2

4(n−1)

(
π − n−1

n (Ñ)2divg(Ṽ )
)
,

τ∗, ||π||C0,γ , ||Rg − |∇ψ|2g||C0;γ , ||2V (ψ)||C1,γ

) (2.1.26)

such that, if

||U ||C0,γ + ||π||C0,γ + ||∇ψ||C0,γ + || ln Ñ ||C1,γ + ||Ṽ ||C1,γ � δ, (2.1.27)

then (2.1.11) admits a solution (u,W ), where u is a smooth positive function on M and
W a smooth vector field on M .

A few remarks on the results of the present paper. The classical system of constraint
equations obtained by the conformal method (without the modifications proposed by
Maxwell [Max14b]) was studied by Bruno Premoselli [Pre14, Pre15] in the presence of
a scalar field. Second, the above system is the subject of a paper by Mike Holst, David
Maxwell and Rafe Mazzeo [HMM18] - in their case, certain conditions are imposed on the
presence of the matter field. We treat the separate and delicate case wherein the dominant
non linearity is focusing and leads to possible loss of compactness. It is interesting to note
that the size of n plays a role; as Premoselli proves in his paper, while the scalar equation
is stable in low dimensions (3 � n � 5), it most certainly fails to be so in higher dimensions
(n � 6); therefore, the techniques used in the present proofs cannot be applied. Even if our
results are similar to those of Premoselli, they are considerably more difficult to obtain.
This is mainly due to the presence of a |∇u|2 term in the scalar equation, a term which is
not compact a priori.

Outline of the paper. Section 2 is devoted to the study of the first equation in
(2.1.13), the so-called Lichnerowicz equation. We prove the existence of stable solutions
under suitable assumptions.

Section 3 deals with a priori estimates for solutions of the Lichnerowicz equation. A
careful blow-up analysis is carried out. As already mentioned, the term |∇u|2 poses ad-
ditional difficulty: blow-up can occur at the C1 level, even if the solution is bounded in
L∞.

Section 4 is devoted to the proof of Theorem 8 and Corollary 1, which relies heavily on
the a priori estimates obtained in Section 3. At the end of Section 4, we also explain how
to extend Corollary 1 in the presence of conformal Killing vector fields.

Aknowledgements. It is a pleasure to express my sincere gratitude to Olivier Druet
for many helpful discussions and suggestions.

2.2 Existence of minimal solutions of the scalar equation

We study the Lichnerowicz-type scalar equation in (2.1.13). The following theorem states
that, given the existence of supersolutions, one may use an iterative procedure to obtain
a sequence which converges in C1 norm to a solution. We draw the reader’s attention to
the fact that this solution is uniquely determined by its construction. The proof contains
some similarities with that of Premoselli [Pre14], but some new difficulties appear. The
main difference here comes from the presence of non-linearities containing gradient terms,
which force us to further refine the analysis. These gradient terms lead to difficulties in
obtaining a priori estimates on solutions of the equation, which in turn lead to problems
of stability. The existence result we prove in this section reads as follows:
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Theorem 9. Let (M, g) be a closed Riemannian manifold. Let a, b, c, d, f , h be smooth
functions on M and Y be a smooth vector field on M . Assume that a > 0 and f > 0. The
equation

Δgu+ hu− fuq−1 − a

uq+1
+

b

u
+

〈∇u, Y 〉2
uq+3

+ c〈∇u, Y 〉
(

d

u2
+

1

uq+2

)
= 0 (2.2.1)

admits a smooth positive solution u as soon as it admits a supersolution.

Remark 3. For a reference on the existence of supersolutions to Lichnerowicz-type equa-
tions, see [HPP08].

Remark 4. The solution obtained by the construction below is unique. Moreover, it is
stable (see Lemma 2 at the end of this section.)

Proof of Theorem 9: We begin by fixing a supersolution and a subsolution to serve as upper
and lower bounds respectively for the iterative process. Let ψ be a positive supersolution
of (2.2.1). Let ε0 > 0 be a small constant such that

ε0 < inf
M

ψ,

(
sup
M

h

)
εq+2
0 <

infM a

2
and

(
sup
M

b

)
εq0 <

infM a

2
. (2.2.2)

The last two bounds ensure that u0 = ε0 is a strict subsolution of (2.2.1) since f > 0. We
let

FK(t, x) = −f(x)tq−1 − a(x)

tq+1
+

b(x)

t
−Kt (2.2.3)

for x ∈ M and t ∈ [ε0, supM ψ]. Here, we fix K > 0 large enough such that it verifies the
following three conditions, which are necessary for the proof below.

First, let us define

F̃K (t, x, A(x)) = FK(t, x) +
A(x)2

tq+3
+ c(x)A(x)

(
d(x)

t2
+

1

tq+2

)
(2.2.4)

where x ∈ M , ε0 � t � supM ψ and A ∈ F(M ;R), with F(M ;R) the space of real-valued
functions on M . The first thing we ask is that

∂

∂t
F̃K (t, x, A(x)) � 0 for any (x, t, A) ∈ M × [ε0, sup

M
ψ]×F(M ;R). (2.2.5)

If t and x are seen as fixed quantities, the operator F̃ becomes a polynomial of degree 2
in R, calculated in A(x).

Keeping this in mind, it suffices to take

K � supx∈M,t∈[ε0,supM ψ]

[
− (q − 1)f(x)tq−2 + (q + 1) a(x)

tq+2 − b(x)
t2

+
c(x)2

(
2d(x)

t3
+ d+2

tq+3

)2
tq+4

4(q+3)

] (2.2.6)

for (2.2.5) to hold. Note that the right-hand side in the above inequality is bounded, since
it is the supremum of a continuous function defined on a compact set M × [ε0, supM ψ].

The second condition we impose on K is that h + K > 0, which ensures that the
operator Δg + (h+K) to be coercive.

Finally, we would like FK(t, x) to be negative. This reduces to choosing K large with
respect to supM b and ε0.

42



We shall now consider a sequence (ui)i∈N defined by induction. Let u0 ≡ ε0. We denote
by (Ei) the following equations on M :

(Ei) : Δgv(x) + (h(x) +K)v(x) + FK(ui−1(x), x) +
〈∇v(x), Y (x)〉2

uq+3
i−1 (x)

+c〈∇v(x), Y (x)〉
(

d(x)

u2i−1(x)
+

1

uq+2
i−1 (x)

)
= 0.

(2.2.7)

and we ask that ui solve (Ei) for i ∈ N
∗.

We prove in Step 1 below that the sequence is well defined. In Step 2, we prove that
the sequence if pointwise increasing and uniformly bounded. At last, Step 3 is devoted to
the proof that the sequence (ui) converges to a solution of (2.2.1).

Step 1: We prove that (ui) is well defined. We consider the more general equation

Δgu+Hu+ θ1〈∇u, Z〉2 + θ2〈∇u, Z〉+ θ3 = 0, (2.2.8)

with H, θ1, θ2, θ3 smooth functions on M and Z a smooth vector field on M such that
θ1 > 0, H > 0, θ3 < 0. We claim that (2.2.8) admits a unique smooth positive solution.

Proof of Step 1: We shall use Schaefer’s fixed point theorem as stated in Evans [Eva10],
Section 9.2.2, Theorem 4.

Let us define the operator T : C1,γ(M) → C1,γ(M) such that

ΔgT (u) +HT (u) + θ1〈∇u, Z〉2 + θ2〈∇u, Z〉+ θ3 = 0. (2.2.9)

Another way to express the operator T is as

T = (Δg +H)−1 ◦
(
−θ1〈∇ · , Z〉2 − θ2〈∇ · , Z〉 − θ3

)
(2.2.10)

where (Δg +H)−1 : Ck,γ �→ Ck+2,γ and θ1〈∇ · , Z〉2 + θ2〈∇ · , Z〉 + θ3 : Cl+1,γ �→ Cl,γ , for
k, l ∈ N, are two continuous operators. Moreover, their composition is compact: if (ui) is
bounded in C1,γ , then θ1〈∇ · , Z〉2 + θ2〈∇ · , Z〉 + θ3 is bounded in C0,γ . This means that
T (ui) is bounded in C2,γ , and therefore that it is pre-compact in C1,γ .

Consequently, if we can prove that there exists C > 0 such that

∀ 0 � τ � 1, w = τT (w) ⇒ ||w||C1,γ(M) � C, (2.2.11)

then the operator T will have a fixed point, leading to a solution of (2.2.8).
Note that this solution will be unique. Indeed, assume that w1 and w2 are two solutions

of (2.2.8), then at a point of maximum x0 of w1 − w2, we have that ∇w1(x0) = ∇w2(x0)
and Δgw1(x0) � Δgw2(x0) so that (2.2.8) gives

H(x0) (w1(x0)− w2(x0)) � 0. (2.2.12)

Since H > 0, this leads to w1 � w2. By symmetry, uniqueness is proved. The fixed point
of T is smooth and positive by the standard regularity theory and the maximum principle.

Thus we are left with the proof of (2.2.11). Let 0 � σm � 1 and let wm ∈ C1,γ(M) be
such that

wm = σmT (wm). (2.2.13)

Multiplying (2.2.9) by σm, we obtain that

Δgwm +Hwm + σmθ1〈∇wm, Z〉2 + σmθ2〈∇wm, Z〉+ σmθ3 = 0. (2.2.14)
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First, the L∞ bounds on wm exist a priori. Indeed, consider x0 ∈ M a minimum of wm.
Since Δgwm(x0) � 0 and ∇wm(x0) = 0, which holds true for all minima, then Hwm(x0) �
−σmθ3(x0). By applying the same procedure to the study of maxima, we obtain that

inf
M

−σmθ3
H

� wm � sup
M

−σmθ3
H

. (2.2.15)

Assume now that ||∇wm||L∞(M) → ∞. Let

μm :=
1

||∇wm||L∞(M)
→ 0 as m → ∞, (2.2.16)

and (xm)m ⊂ M be such that

||∇wm||L∞(M) = |∇wm(xm)|. (2.2.17)

Consider the domains Ωm := B0

(
ig(M)
2μm

)
⊂ Txm(M), where xm ∈ M and ig(M) is the

injectivity radius of M . We work with the rescaled quantities

vm(x) := wm

(
expxm

(μmx)
)

and gm(x) :=
(
exp∗xm

g
)
(μmx), (2.2.18)

where μm ∈ R and x ∈ Ωm. Clearly, ||∇vm||L∞ � 1 and |∇vm(0)| = 1. The L∞ bounds
remain unchanged. In (Ωm)m�1, we have that

Δgmvm + μ2
mH

(
expxm

(μm·)
)
vm + σmμ2

mθ3
(
expxm

(μm·)
)

+σmθ1
(
expxm

(μm·)
)
〈∇vm, Z

(
expxm

(μm·)
)
〉2

+μmσmθ2
(
expxm

(μm·)
)
〈∇vm, Z

(
expxm

(μm·)
)
〉 = 0

(2.2.19)

A few words on the use of the exponential coordinates when doing local analysis on a
Riemannian manifold M might be welcome. In general, for any point p ∈ M , one might
find an open set Up ∈ TpM and, with the help of geodesics, define expp : Up �→ M . It is a
diffeomorphism.

For all m ∈ N, exp∗xm
gm(0) = Id and there exists a constant C independent of m such

that |∇k exp∗xm
gm| � C, for any k ∈ N. Consequently, gm → ξ in Ck

loc.
The argument that follows comes from standard elliptic theory; we often use similar

reasonings throughout this text. So far, we have concluded that (vm)m is uniformly bounded
in W 1,∞(Ωm), and thus in W 1,p(Ωm) for some p > n

2 . The regularizing effect of Δgm applied
to (2.2.19) implies that vm is bounded in W 2,p(Ωm); we continue by using a Sobolev
embedding theorem, according to which C1,η

0 (Ωm) is compactly embedded in W 2,p(Ωm)
for some η ∈ (0, 1). We apply a diagonalization argument (Arzelà-Ascoli) to conclude
that there exists a subsequence that converges uniformly in C1

loc. That is, one can find
a C1

loc-limit v∞ such that v∞ = limm→∞ vm in C1
loc norm, where x∞ = limm→∞ xn and

σ∞ := limm→∞ σm. From this is follows that ||∇v∞||L∞ = 1 and that the a priori bounds
(2.2.15) become

inf
M

−σ∞θ3
H

� v∞ � sup
M

−σ∞θ3
H

. (2.2.20)
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Moreover, v∞ solves the limit equation

Δv∞ + (∂1v∞)2 = 0 (2.2.21)

in R
n, where we have let

∂1v∞ :=
√

σ∞θ1(0)∇v∞ · Z(x0). (2.2.22)

If σ∞ = 0, then v∞ is a bounded harmonic function, and thus a constant. Let us assume
that σ∞ �= 0. Note that, for α ∈ R,

Δv−α
∞ = − α

vα+1∞
Δv∞ − α(α+ 1)|∇v∞|2

vα+2∞

� α|∇v∞|2
vα+1∞

(
σ∞θ1(0)|Z(0)|2 − α+ 1

v∞

)
.

(2.2.23)

This and (2.2.20) imply that, for α sufficiently large, v−α
∞ is subharmonic. We then apply

Lemma 12 (see annex) to get that v∞ must be constant. Whichever the case, ∇v∞ ≡ 0
leads to a contradiction. The C1,γ bound we need for (2.2.11) follows from a similar elliptic
regularity argument as the one used above. This ends the proof of Step 1.

Step 2: We claim that

ε0 � ui(x) � ui+1(x) � ψ(x) (2.2.24)

for all x ∈ M and all i � 0.

Proof of Step 2: We proceed by induction. We prove first that

∀ i � 0, ui is a subsolution of (Ei+1) and ui � ψ. (2.2.25)

Note that
(2.2.25) ⇒ ui � ui+1. (2.2.26)

Indeed, let x0 ∈ M be a maximum point of ui − ui+1. Then ∇ui(x0) = ∇ui+1(x0) and we
can use the fact that ui is a subsolution of (Ei+1) and ui+1 a solution of (Ei+1) to write
that

Δg(ui − ui+1)(x0) + (h(x0) +K)(ui − ui+1)(x0) � 0 (2.2.27)

which implies that ui(x0) � ui+1(x0) since Δg(ui − ui+1)(x0) � 0 and h + K > 0. This
proves (2.2.26).

We now prove (2.2.25) by induction. For i = 0, it follows from the choice of ε0 we made.
Assume that (2.2.25) holds for some i � 0. We need to prove that ui+1 is a subsolution of
(Ei+2), which means we have to show that

Δgui+1(x) + (h(x) +K)ui+1(x) + FK(ui+1(x), x) +
〈∇ui+1(x), Y (x)〉2

uq+3
i+1 (x)

+c〈∇ui+1(x), Y (x)〉
(

d(x)

u2i+1(x)
+

1

uq+2
i+1 (x)

)
� 0.

(2.2.28)

We know that

FK(ui+1(x), x) + c(x)〈∇ui+1(x), Y (x)〉
(

d(x)
u2
i+1(x)

+ 1

uq+2
i+1 (x)

)
+ 〈∇ui+1(x),Y (x)〉2

uq+3
i+1 (x)

� FK(ui(x)) + c(x)〈∇ui+1(x), Y (x)〉
(

d(x)
u2
i (x)

+ 1

uq+2
i (x)

)
+ 〈∇ui+1(x),Y (x)〉2

uq+3
i (x)

.
(2.2.29)
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This is true because of (2.2.5), with A(x) = 〈∇ui+1(x), Y (x)〉, and since (2.2.26) implies
that ui+1 � ui by the induction hypothesis.

Given that ui+1 is defined as a solution of (Ei+1), we know that

Δgui+1(x) + (h(x) +K)ui+1(x) + FK(ui−1(x), x) +
〈∇ui+1(x),Y (x)〉2

uq+3
i−1 (x)

+c〈∇ui+1(x), Y (x)〉
(

d(x)

u2i−1(x)
+

1

uq+2
i−1 (x)

)
= 0.

(2.2.30)

By combining (2.2.29) and (2.2.30), we see that ui+1 is a subsolution of (Ei+2).
Finally, so as to check the last point, assume there exists x0 ∈ M such that ui+1(x0) >

ψ(x0) and that it corresponds to maxM (ui+1(x)− ψ(x)) . Since ∇ui+1(x0) = ∇ψ(x0) and
Δgui+1(x0) � Δgψ(x0), we obtain that

Δg(ui+1 − ψ)(x0) + (h+K)(ui+1 − ψ)(x0) > 0. (2.2.31)

But ψ is a supersolution for (2.2.1), so we get that

0 < Δg(ui+1 − ψ)(x0) + (h(x0) +K)(ui+1 − ψ)(x0)

� FK(ψ(x0), x0)− FK(ui(x0), x0)− 〈∇ψ(x0), Y (x0)〉2
(

1

uq+3
i

− 1
ψq+3

)
(x0)

−〈∇ψ(x0), Y (x0)〉
(

d
u2
i
− d

ψ2 + 1

uq+2
i

− 1
ψq+2

)
(x0).

(2.2.32)

Thanks to (2.2.5) with A(x) = 〈∇ψ(x), Y (x)〉 and to the induction hypothesis which says
that ui � ψ, we obtain a contradiction. This wraps up the induction argument and the
proof of Step 2.

Step 3: The sequence (ui)i∈N is uniformly bounded in C1(M).

Proof of Step 3: Thanks to Step 2, we know that (ui)i∈N is an increasing sequence bounded
by ψ. Thus, (ui) is bounded in C0(M).

Assume by contradiction that exists a subsequence (uφ(m))m∈N such that ||∇uφ(m)||L∞ →
∞. Moreover, up to choosing a subsequence, we might find that ||∇uφ(m)−1||L∞ � ||∇uφ(m)||L∞ ,
∀m ∈ N

∗. Let
μm :=

1

||∇uφ(m)||L∞
(2.2.33)

and let (xm)m ⊂ M be such that

|∇uφ(m)(xm)| = ||∇uφ(m)||L∞ . (2.2.34)

Consider the domains Ωm = B0

(
igM

2μm

)
⊂ TxmM and the rescaled quantities

vm(x) := uφ(m)

(
expxm

(μmx)
)

and gm(x) :=
(
exp∗xm

g
)
(μmx) (2.2.35)

in Ωm. We get

Δgmvm + μ2
m(h

(
expxm

(μm·)
)
+K)vm

(
expxm

(μm·)
)

+μ2
mFK

(
uφ(m)−1

(
expxm

(μm·)
))

+
〈∇vm, Y

(
expxm

(μm·)
)
〉2

uq+3
φ(m)−1

(
expxm

(μm·)
)

+μm〈∇vm, Y
(
expxm

(μm·)
)
〉c
(
expxm

(μm·)
) [ d

(
expxm

(μm·)
)

u2φ(m)−1

(
expxm

(μm·)
)

+
1

uq+2
φ(m)−1

(
expxm

(μm·)
)] = 0,

(2.2.36)
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with (vm)m∈N bounded in L∞, ||∇vm||L∞ = 1 and ε0 � vm.
Let wm(x) := uφ(m)−1(expxm(μmx)) be defined on Ωm. Since, by our choice of subse-

quence ψ(m), we have

∇wm(x) = μm∇uφ(m)−1(expxm(μmx))

=
∇uφ(m)−1(expxm (μmx))

||∇uφ(m)(expxm (μmx))||L∞

� 1

(2.2.37)

we know that wm is uniformly bounded in C1.
By the Sobolev embedding theorem and standard elliptic regularity, there exists a

smooth positive C1-limit v∞ of (vm)m∈N , up to a subsequence. There also exists a positive
function w such that wn → w in C0 as m → ∞.

By taking m → ∞ in (2.2.36), we obtain

Δv∞ +
(∇v∞ · Y (0))2

wq+3
= 0. (2.2.38)

Note also that

Δv−α
∞ � α|∇v∞|2

wα+2

( |Y (0)|2
wq+2

− (α+ 1)

)
. (2.2.39)

For α large enough, v−α
∞ is subharmonic. Using Lemma 12 (see Annex), we find that v∞

is constant, which contradicts the fact that ||∇v∞||L∞ = 1. This ends the proof of Step
3.

Since (ui)i∈N is uniformly bounded in C1, we conclude by standard elliptic theory that
its limit u is a positive smooth function solving equation (2.2.1). This ends the proof of
the theorem.

The solution constructed in the previous proof is uniquely determined as the pointwise
limit of (ui)i∈N , where each ui is the unique solution of (2.2.7). Furthermore, the solution
is minimal among all supersolutions (including solutions) of (2.2.1) with values between ε0
and supM ψ. These bounds were explicitly used in the inductive argument. By construction,
u � ψ, where ψ is the supersolution fixed at the very beginning. Note that the constant
K appearing in (2.2.7) depend on supM ψ and ε0. We would obtain the same iteration
were we to use another supersolution ψ̃ and the same K, given that ε0 < ψ̃ < supM ψ.
Therefore, u is smaller than any supersolution between ε0 and supM ψ.

As an immediate consequence of the minimality discussed above, the solutions we found
corresponding to different functions a are ordered. Let 0 < a < ã be two functions, and
assume that the equation associated to ã admits a solution ũ. Then ũ is a supersolution for
(2.2.1) corresponding to a, and by the previous proof we find a solution u � ũ. Moreover,
given that ũ may be viewed as a supersolution to all (2.2.1) with a � ã, we obtain a
monotonicity of u in a: for a1 � a2 � ã, then u1 � u2 � ũ.

Finally, the solution u is stable, as defined in the following lemma.

Lemma 2. The operator L resulting from the linearization of (2.2.1) at the minimal so-
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lution u admits a real, simple eigenvalue λ0 � 0 such that

Lϕ0 = Δgϕ0 +
[
h− (q − 1)fuq−2 + (q + 1)au−q−2 − bu−2

−(q + 3) 〈∇u,Y 〉2
uq+4 − c〈∇u, Y 〉

(
2d
u3 + q+2

uq+3

) ]
ϕ0

+〈∇ϕ0, Y 〉
[
c
(

d
u2 + 1

uq+2

)
+ 2〈∇u,Y 〉

uq+3

]
= λ0ϕ0,

where ϕ0 is the corresponding positive eigenfunction. Furthermore, if λ ∈ C is any other
eigenvalue, then Re(λ) � λ0.

Proof of Lemma 2: Notice that L is nonsymmetric; moreover, one may find a large enough
constant K such that

h− (q − 1)fuq−2 + (q + 1)au−q−2 − bu−2 − (q + 3) 〈∇u,Y 〉2
uq+4

−c〈∇u, Y 〉
(
2d
u3 + q+2

uq+3

)
+K � 0.

(2.2.40)

According to ([Eva10], Section 6.5, Theorem 1) there exists a real, positive eigenvalue
λK > 0 of L+K, such that any other complex eigenvalue of L+K has a greater real part.
Consequently, the operator L admits a minimal real eigenvalue λ0 > −K. We now assume
that λ0 < 0. Let uδ := u0 − δϕ0, δ > 0. By taking δ small enough, we may ensure that
ε0 < uδ. Then

Δguδ + huδ − fuq−1
δ − a

uq+1
δ

+
b

uδ
+

〈∇uδ, Y 〉2
uq+3
δ

+ c〈∇uδ, Y 〉
(

d

u2δ
+

1

uq+2
δ

)

= −δλ0ϕ0 + o(δ).

(2.2.41)

This implies that ε0 < uδ < u is a supersolution of (2.2.1), which cannot be the case, as
discussed above. Thus, λ0 � 0.

2.3 A priori estimates on solutions of the scalar equation in
low dimensions

The estimates obtained in this section will play a crucial role in the proof of Theorem
8, which is based on a fixed-point argument. This section is devoted to the proof of the
following theorem:

Theorem 10. Let (M, g) be a closed Riemannian manifold of dimension n = 3, 4, 5. Let
1
2 < η < 1 and 0 < α < 1. Let a, b, c, d, f , h be smooth functions on M , let Y be a
smooth vector field on M . For any 0 < θ < T , there exists Sθ,T and ϑθ,T such that, given
any parameters within

Eθ,T :=
{
(f, a, b, c, d, h, Y ), f � θ, a � θ,

||f ||C1,η � T, ||a||C0,α , ||b||C0,α , ||c||C0,α , ||d||C0,α , ||h||C0,α , ||Y ||C0,α � T
}
,

(2.3.1)

with
||Y ||C0,α � ϑθ,T , (2.3.2)

then any smooth positive solution u of (2.2.1) satisfies ||u||C2 � Sθ,T .
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Remark 5. For the sake of clarity, we’ve taken the bounds on the parameters to be of the
form θ and T . They can of course be individually specified.

We proceed by contradiction. Let (aα, bα, cα, dα, fα, hα, Yα) be a set of parameters in
Eθ,T . We assume the existence of a sequence

||Yα||C0,α → 0 (2.3.3)

such that one might find a corresponding sequence (uα)α∈N of smooth positive solutions
of equations (ELα)

Δguα + hαuα − fαu
q−1
α − aα

uq+1
α

+ bα
uα

+ 〈∇uα,Yα〉2
uq+3
α

+cα〈∇uα, Yα〉
[
dα
u2
α
+ 1

uq+2
α

]
= 0

(2.3.4)

with
||uα||C1(M) → ∞, as α → ∞. (2.3.5)

Remark 6. The condition (2.3.2) is only used later in the proof. For now, we proceed as
if Yα is simply in Eθ,T . We emphasize when (2.3.3) becomes necessary.

A concentration point is the limit in M of any sequence (xα)α where (2.3.5) holds.
Note that a C1-bound on (uα)α automatically gives a C2-bound by elliptic theory. Note
also that, up to a subsequence, all parameters converge in C0(M).

Let mα = minx∈M uα(x) = uα(xα) > 0. Since ∇uα(xα) = 0 and since Δguα(xα) � 0,
we have thanks to (2.3.4) that

hα(xα)mα − fα(xα)m
q−1
α − aα(xα)

mq+1
α

+
bα(xα)

mα
� 0. (2.3.6)

Thanks to the definition of Eθ,T , it follows that

θ

mq+1
α

� T (mα +
1

mα
). (2.3.7)

Then there exists ε = ε(θ, T, n) > 0 such that mα � ε, meaning that

uα > ε > 0 for all x ∈ M and all α. (2.3.8)

The scheme of the proof follows the work of Druet and Hebey [DH09], with the added
difficulty consisting in the gradient terms in (2.3.4).

2.3.1 Concentration points

The first step in finding a priori estimates for (uα)α is to find all potential concentration
points.

Lemma 3. There exists Nα ∈ N
∗ and Sα := (x1,α, . . . xNα,α) a set of critical points of

(uα)α such that
dg(xi,α, xj,α)

n−2
2 uα(xi,α) � 1 (2.3.9)

for all i, j ∈ {1, . . . , Nα}, i �= j, and(
min

i=1,...,Nα

dg(xi,α, x)

)n−2
2

uα(x) � 1 (2.3.10)
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for all critical points of uα and such that there exists C1 > 0 such that(
min

i=1,...Nα

dg(xi,α, x)

)n−2
2

(
uα(x) +

∣∣∣∣∇uα(x)

uα(x)

∣∣∣∣n−2
2

)
� C1 (2.3.11)

for all x ∈ M and all α ∈ N.

Remark 7. Estimate (2.3.11) implies that any concentration point of (uα)α∈N calls for
the existence of a sequence (xα)α ⊂ (Sα)α converging to it. We shall focus our analysis in
the neighbourhood of Sα as α → ∞ to find concentration points.

Proof of Lemma 3: In order to choose (Sα)α, we make use of a simple result describing
any sufficiently regular function on a compact manifold.

Lemma 4. Let u be a positive real-valued C1 function defined in a compact manifold M .
Then there exists N ∈ N

∗ and (x1, x2, . . . xN ) a set of critical points of u such that

dg(xi, xj)
n−2
2 u(xi) � 1 (2.3.12)

for all i, j ∈ {1, . . . , N}, i �= j, and(
min

i=1,...,N
dg(xi, x)

)n−2
2

u(x) � 1 (2.3.13)

for all critical points x of u.

Sketch of proof. The lemma and its proof may be found in Druet and Hebey’s paper
(Lemma 1.1) [DH09]. Briefly, the authors begin with the set K0, the closed set of crit-
ical points of u, and construct x1 ∈ K0 and K1 ⊂ K0 such that

u(x1) = max
K0

u,

K1 = {x ∈ K0 | dg(x1, x)
n−2
2 u(x) � 1},

and subsequently recurrently build xp ∈ Kp−1 and Kp ⊂ Kp−1 such that

u(xp) = max
Kp−1

u,

Kp = {x ∈ Kp−1 | dg(xp, x)
n−2
2 u(xp) � 1, min

i=1,...,p
dg(xi, x)

n−2
2 u(x) � 1}.

As M is compact, one quickly sees that the sequence of sets thus constructed is finite: there
exists N � 1 such that

∅ = KN ⊂ KN−1 ⊂ · · · ⊂ K0.

The set we are interested in is {x1, x2, . . . , xN}.

Applying this lemma to (uα) gives Nα and Sα as in Lemma 3 such that (2.3.9) and
(2.3.10) hold. We need to prove (2.3.11). Proceeding by contradiction, assume that there
exists a sequence (xα)α such that(

min
i=1,...Nα

dg(xi,α, xα)

)n−2
2

(
uα(xα) +

∣∣∣∣∇uα(xα)

uα(xα)

∣∣∣∣n−2
2

)
→ ∞ (2.3.14)
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as α → ∞, where(
min

i=1,...Nα

dg(xi,α, xα)

)n−2
2

(
uα(xα) +

∣∣∣∣∇uα(xα)

uα(xα)

∣∣∣∣n−2
2

)

= sup
x∈M

(
min

i=1,...Nα

dg(xi,α, x)

)n−2
2

(
uα(x) +

∣∣∣∣∇uα(x)

uα(x)

∣∣∣∣n−2
2

)
.

(2.3.15)

Denote

ν
1−n

2
α := uα(xα) +

∣∣∣∣∇uα(xα)

uα(xα)

∣∣∣∣n−2
2

(2.3.16)

and see that (2.3.14) translates to

dg(xα,Sα)

να
→ ∞ as α → ∞. (2.3.17)

Also, since M is compact,
να → 0 as α → ∞. (2.3.18)

Consider the rescaled quantities

vα(x) := ν
n−2
2

α uα
(
expxα

(ναx)
)

and gα(x) :=
(
exp∗xα

g
)
(ναx) (2.3.19)

defined in Ωα := B0

(
δ
να

)
, with 0 < δ < 1

2 ig(M). We emphasize that, for any R > 0,

lim sup
α→∞

sup
B0(R)

(
vα +

∣∣∣∣∇vα
vα

∣∣∣∣n−2
2

)
= 1 (2.3.20)

thanks to (2.3.15) and (2.3.17). However, unlike (uα)α, the sequence (vα)α is not necessarily
bounded from below by a small positive constant ε. Instead, we deduce from (2.3.20) that

|∇ ln vα| � 1 + o(1) in B0(R) (2.3.21)

for all R > 0 so that

vα(0)e
−2|x| � vα(x) � vα(0)e

2|x| in B0(R) (2.3.22)

for all R > 0 as soon as α is large enough. We rewrite (2.3.4) in Ωα as

Δgαvα = fα
(
expxα

(να·)
)
vq−1
α + ν

n+2
2

α
aα(expxα (να·))

uq+1
α (expxα (να·))

−ν2αhα
(
expxα

(να·)
)
vα − ν

n+2
2

α
bα(expxα (να·))
uα(expxα (να·))

− 〈∇vα,Yα(expxα (να·))〉2
vα

1

uq+2
α (expxα (να·))

−ναcα
(
expxα

(να·)
)
〈∇vα, Yα

(
expxα

(να·)
)
〉
[
dα(expxα (να·))
u2
α(expxα (να·))

+ 1

uq+2
α (expxα (να·))

]
(2.3.23)

Note that the metrics gα → ξ in C2
loc as α → ∞. Because of (2.3.8) and (2.3.20), the right

hand side is bounded, so by standard elliptic theory there exists up to a subsequence a C1

limit U := limα→∞ vα and x0 := limα→∞ xα. Let us set

wα(x) :=
vα(x)

vα(0)
=

uα(expxα
(ναx))

uα(xα)
. (2.3.24)
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It follows that

wα(0) = 1 and lim
α→∞

∣∣∣∣∇wα(0)

wα(0)

∣∣∣∣ � 1. (2.3.25)

Moreover, (2.3.22) implies that

e−2|x| � wα(x) � e2|x| (2.3.26)

in B0(R) for α large. Multiply (2.3.23) by vα(0)
−1 to get

Δgwα = fα
(
expxα

(να·)
)
wq−1
α vq−2

α (0) + ν2α
a(expxα (να·))

uq+1
α (expxα (να·))uα(xα)

−ν2αhα
(
expxα

(να·)
)
wα − ν2α

bα(expxα (να·))
uα(expxα (να·))uα(xα)

− 〈∇wα,Yα(expxα (να·))〉2

wq+2
α

1
uα(xα)q+2

−ναcα
(
expxα

(να·)
)
〈∇wα, Yα

(
expxα

(να·)
)
〉
[
dα(expxα (να·))
u2
α(expxα (να·))

+ 1

uq+2
α (expxα (να·))

]
.

(2.3.27)

Up to a subsequence, let

l̂α = vα(0), with limα→∞ l̂α =: l̂ ∈ [0, 1],

lα = u−1
α (xα), with limα→∞ lα =: l ∈ [0, ε−1].

(2.3.28)

The above limits hold thanks to (2.3.8), (2.3.19), and (2.3.20). By our hypothesis (2.3.18),
we obtain

ll̂ = lim
α→∞

ν
n−2
2

α = 0. (2.3.29)

Note that, if the above limit is different from zero, then the sequence (ui)i∈N is already
a priori bounded.

By standard elliptic theory, we find that there exists w := limα→∞wα in C1 solving:

Δw = f(x0)w
q−1 l̂q−2 − 〈∇w, Y (x0)〉2

wq+3
lq+2, x ∈ R

n. (2.3.30)

Based on (2.3.28), we consider three separate cases.
First case: Let

l = 0 and l̂ �= 0. (2.3.31)

By passing to the limit in the first equation (2.3.23), we get

ΔU = f(x0)U
q−1 (2.3.32)

in R
n. The exact form of these solutions is found in a paper by Caffarelli, Gidas and Spruck

[CGS89]:

U(x) =

(
1 +

f(x0)|x− y0|2
n(n− 2)

)1−n
2

or U ≡ 0. (2.3.33)

If U is non-trivial, then there exists y0 ∈ R
n its unique maximum point, and therefore one

might also find (yα)α local maxima of (uα)α such that

dg(xα, yα) = O(να) (2.3.34)
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and

ν
n−2
2

α uα(yα) → 1 as α → ∞. (2.3.35)

Since (yα)α are critical points, (2.3.10) implies that

dg(Sα, yα)
n−2
2 uα(yα) � 1 (2.3.36)

for all α ∈ N, so by (2.3.35), dg(Sα, yα) = O(να); together with (2.3.34), this leads to
dg(Sα, xα) = O(να), which contradicts (2.3.17).

If U ≡ 0, then
lim
α→∞

vα(0) = 0, (2.3.37)

which contradicts (2.3.31).
Second case: Let

l �= 0 and l̂ = 0. (2.3.38)

As l �= 0 and (2.3.8),

wα(x) =
uα

(
expxα

(να·)
)

uα(xα)
� ε

l
+ o(1) (2.3.39)

in B0(R) for all R > 0. Note that, since w � ε
l ,

Δw−α � α
|∇w|2
wα+2

[ |Y (x0)|2
εq+2

− (α+ 1)

]
, (2.3.40)

so w−α is subharmonic for α large. By applying Lemma 12 (see the Annex), we deduce
that w is constant, in contradiction with (2.3.25).

Third case: Let
l = 0 and l̂ = 0, (2.3.41)

then w is a non-negative harmonic function on R
n. Thus, w = cst and, by (2.3.25), w ≡ 1.

Since l̂ = 0 and (2.3.21) imply that ∣∣∣∣∇w(0)

w(0)

∣∣∣∣ = 1, (2.3.42)

which leads to a contradiction.

The following is a Harnack-type inequality. It holds whenever an estimate like (2.3.11)
is verified, that is when there exists a constant C2 and a sequence (xα, ρα)α such that

dg(xα, x)
n−2
2

[
uα(x) +

∣∣∣∣∇uα(x)

uα(x)

∣∣∣∣n−2
2

]
� C2, ∀x ∈ Bxα(7ρα). (2.3.43)

Lemma 5. Let (xα, ρα)α be a sequence such that (2.3.43) holds. Then there exists a con-
stant C3 > 1 such that for any sequence 0 < sα � ρα, we get

sα||∇uα||L∞(Ωα) � C3 sup
Ωα

uα � C2
3 inf

Ωα

uα, (2.3.44)

where Ωα = Bxα(6sα)\Bxα(
1
6sα).
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Proof of Lemma 5: Estimate (2.3.43) implies that∣∣∣∣∇uα(x)

uα(x)

∣∣∣∣ � C2dg(xα, x)
−1 (2.3.45)

in Ωα, and therefore
sα|∇ lnuα(x)| � 6C2 (2.3.46)

in Ωα. Taking C3 � 6C2, we get the first inequality from (2.3.45). Then, from (2.3.46) and
from the fact that the domain is an annulus Ωα = Bxα(6sα)\Bxα(

1
6sα), we estimate that

sup
Ωα

lnuα − inf
Ωα

lnuα � lα(Ωα)||∇ lnuα||L∞(Ωα) � 42C2, (2.3.47)

where lα(Ωα) is the infimum of the length of a curve in Ωα drawn between a maximum
and a minimum of uα. Equivalently

sup
Ωα

uα � e42C2 inf
Ωα

uα, (2.3.48)

so it suffices to take C3 = e42C2 .

2.3.2 Local blow-up analysis

In order to show that uα is bounded in C1, we define a blow-up sequence (xα)α with (ρα)α
as follows: let (xα)α be critical points of (uα)α and (ρα)α positive numbers such that they
verify the following three conditions:

0 < ρα <
1

7
ig(M), (2.3.49)

ρ
n−2
2

α sup
Bxα (6ρα)

uα → ∞, (2.3.50)

and

dg(xα, x)
n−2
2

[
uα(x) +

∣∣∣∣∇uα(x)

uα(x)

∣∣∣∣n−2
2

]
� C2 ∀x ∈ Bxα(7ρα), (2.3.51)

where C2 is a constant. In the rest of the section, we denote

μ
1−n

2
α := uα(xα). (2.3.52)

Remark 8. The limit as α → ∞ of a blow-up sequence is a concentration point, as seen
from (2.3.50).

Remark 9. Any sequence (xα)α ⊂ (Sα)α qualifies as a blow-up sequence as soon as (2.3.50)
is verified. In this case, (ρα)α can be chosen as

ρα := min

(
1

7
ig(M),

1

2
min

1�i<j�Nα

dg(xi,α, xj,α)

)
(2.3.53)

and C2 = C1.

Given any blow-up sequence, the following proposition gathers the central results of our
local analysis for the reader’s convenience: namely, it states the exact asymptotic profile
of (uα)α at distance (ρα)α of (xα)α and it gives sharp pointwise asymptotic estimates on
balls of radius ρα. This is the result we shall point to whenever we want to describe the
local asymptotic behaviour of (uα)α around a concentration point corresponding to local
maximum points xα. Note that in this case ∇uα(xα) = 0.
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Proposition 1. Let (xα)α and (ρα)α be a blow-up sequence. Then there exists C4 > 0 such
that

uα(x) + dg(xα, x)|∇uα(x)| � C4μ
n−2
2

α dg(xα, x)
2−n (2.3.54)

for all x ∈ Bxα(6ρα)\{xα}. Moreover, we see that up to a subsequence, the asymptotic
profile of (uα)α is

uα(xα)ρ
n−2
α uα(expα(ραx)) →

Rn−2
0

|x|n−2
+H(x) (2.3.55)

in C2
loc(B0(5)\{0}), where H is some harmonic function in B0(5) satisfying H(0) = 0.

Here R2
0 = n(n−2)

f(x0)
where x0 = limα→∞ xα.

The proof of this proposition is the subject of this section. It will follow from Lemma
8 and Lemma 9 below. We first describe the asymptotic profile at distance (μα)α of (xα)α
as α → ∞ of any blow-up sequence.

Lemma 6. Let (xα)α with (ρα)α be a blow-up sequence. We have

μ
n−2
2

α uα
(
expxα

(μαx)
)
→

(
1 +

f(x0)|x|2
n(n− 2)

)1−n
2

(2.3.56)

in C1
loc(R

n) as α → ∞, with μ
1−n

2
α := uα(xα) and x0 := limα→∞ xα, up to a subsequence.

Proof of Lemma 6: The proof involves similar arguments to the ones used for Lemma 3.
Let yα ∈ Bxα(6ρα) be such that

uα(yα) +

∣∣∣∣∇uα(yα)

uα(yα)

∣∣∣∣n−2
2

= sup
Bxα (6ρα)

(
uα(x) +

∣∣∣∣∇uα(x)

uα(x)

∣∣∣∣n−2
2

)
and let

ν
1−n

2
α := uα(yα) +

∣∣∣∣∇uα(yα)

uα(yα)

∣∣∣∣n−2
2

.

Conditions (2.3.50) and (2.3.51) imply that
ρα
να

→ ∞

and
dg(xα, yα) � C

2
n−2

2 να.

It follows that the coordinates of yα in the exponential chart around xα defined as ỹα :=

ν−1 exp−1
xα

(yα) are bounded by C
2

n−2

2 . Up to a subsequence, we may choose a finite limit
ỹ0 := limα→∞ ỹα. We denote

vα(x) = ν
n−2
2

α uα
(
expxα

(ναx)
)

and gα(x) =
(
exp∗xα

g
) (

expxα
(ναx)

)
for x ∈ Ωα := B0

(
ρα
να

)
. As before, gα → ξ in C2

loc, vα = O(1), and
∣∣∣∇vα

vα

∣∣∣ = O(1). By

applying the same analysis as in the proof of Lemma 3, we get that, up to passing to a
subsequence, there exists U := limα→∞ vα in C1

loc(R
n), with x0 := limα→∞ xα,

ΔU = f(x0)U
q−1.

where

U(x) =

(
1 +

f(x0)|x− ỹ0|2
n(n− 2)

)1−n
2

.

We know that xα are local maxima for uα, so both 0 and ỹ0 are maxima of U . However,
since U admits a unique maximum, we conclude that ỹ0 = 0.
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We recall the aim of this section is to show that concentration points do not exist for
the system (2.1.13). So far, we have obtained a pointwise estimate (2.3.11) that holds ev-
erywhere on M and an asymptotic profile in the neighbourhood of xα, a blow-up sequence;
we aim to also find estimates around xα. We defined (ρα)α as the quantity describing
the sphere of dominance of the blow-up sequence (xα)α. However, the influence of other
blow-up sequences may be felt earlier. Let ϕα : (0, ρα) → R

+ be the average of uα defined
as

ϕα(r) :=
1

|∂Bxα(r)|g

∫
∂Bxα (r)

uαdσg.

It follows from Lemma 6 that

(μαr)
n−2
2 ϕα(μαr) → r

n−2
2

(
1 +

f(x0)r
2

n(n− 2)

)1−n
2

(2.3.57)

in C1
loc([0,+∞)). We define

rα := sup
r∈(2R0μα,ρα)

{
s

n−2
2 ϕα(s) is non-increasing in (2R0μα, r)

}
(2.3.58)

with
R2

0 :=
n(n− 2)

f(x0)
.

Note that
if rα < ρα, then

(
r

n−2
2 ϕα(r)

)′
(rα) = 0.

Since r
n−2
2 U is non-increasing in [2R0,∞), then (2.3.57) implies

rα
μα

→ ∞. (2.3.59)

so μα = o(rα).

Remark 10. Considering that the asymptotic profile of blow-up sequences (xα)α, which is
a bump function with a unique maximum, the quantity rα is an indicator of the beginning
of the influence of neighbouring blow-up sequences within the sphere of dominance, as the
average of uα is no longer decreasing.

Let
ηα := sup

Bxα (6rα)\Bxα ( 1
6
rα)

uα. (2.3.60)

Note that, by Lemma 5,

1

C3
sup

Bxα (6sα)\Bxα( 1
6
sα)

uα � ϕα(sα) � C3 inf
Bxα (6sα)\Bxα( 1

6
sα)

uα

for 0 < sα � rα and all α. By (2.3.57), we obtain the estimate

lim
R→∞

lim sup
α→∞

sup
Bxα (6rα)\Bxα (Rμα)

dg(xα, x)
n−2
2 uα = 0. (2.3.61)

Thus,
r2αη

q−2
α → 0 (2.3.62)

as α → ∞. It is important to note that this implies that

rα → 0 (2.3.63)

as α → ∞ since uα � ε by (2.3.8). We now prove a pointwise asymptotic estimate for uα
in Bxα(6rα)\{xα}.
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Lemma 7. Let (xα)α with (ρα)α be a blow-up sequence. Then, for any 0 < ε < 1
2 , there

exists Cε > 0 such that

uα(x) � Cε

(
μ

n−2
2

(1−2ε)
α dg(xα, x)

(n−2)(1−ε) + ηα

(
rα

dg(xα, x)

)(n−2)ε
)

for all x ∈ Bxα(6rα)\{xα}.

Proof of Lemma 7: Let G be a Green function for the Laplace operator Δg on M with
G > 0. Recall the following estimates, that can be found in Aubin [Aub82]:∣∣∣dg(xα, y)n−2G(x, y)− 1

(n−2)ωn−1

∣∣∣ � τ (dg(x, y))∣∣∣dg(xα, y)n−1|∇G(x, y)| − 1
ωn−1

∣∣∣ � τ (dg(x, y))
(2.3.64)

where τ : R+ → R
+ is a continuous function satisfying τ(0) = 0. For a fixed ε, let

Φε
α(x) := μ

n−2
2

(1−2ε)
α G(xα, x)

1−ε + ηαr
(n−2)ε
α G(xα, x)

ε (2.3.65)

and let yα ∈ Bxα(6rα)\{xα} be such that

sup
Bxα (6rα)

uα
Φε
α

=
uα(yα)

Φε
α(yα)

, (2.3.66)

We continue by studying the following two cases, separately.
First case: Assume that the relative size of dg(xα, yα) with respect to μα is

R := lim
α→∞

dg(xα, yα)

μα
with R ∈ [0,∞). (2.3.67)

Thanks to Lemma 6,

μ
n−2
2

α uα(yα) =

(
1 +

R2

R2
0

)1−n
2

+ o(1),

so that, whenever R ∈ [0,∞), using (2.3.59), (2.3.64) and (2.3.67), it is easily shown that

uα(yα)

Φε
α(yα)

→ ((n− 2)ωn−1)
1−εR(n−2)(1−ε)

(
1 +

R2

R2
0

)1−n
2

as α → ∞.

Second case: It remains to study the case

lim
α→∞

dg(xα, yα)

μα
→ ∞ as α → ∞.

If (yα)α sits on the outer boundary ∂Bxα(6rα), then by (2.3.63), (2.3.64), and (2.3.65),

uα(yα)

Φε
α(yα)

�
(
6n−2(n− 2)ωn−1

)ε
+ o(1).

Otherwise, if up to a subsequence yα ∈ Bxα(6rα), then

Δguα(yα)

uα(yα)
� ΔgΦ

ε
α(yα)

Φε
α(yα)
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as a consequence of the fact that yα is the maximum of
uα
Φε
α

. On the other hand, taking

note of the sign of the dominant gradient term in equations (2.3.4), we see that

Δguα = −hαuα + fαu
q−1
α + aα

uq+1
α

− bα
uα

− 〈∇uα,Yα〉2
uq+3
α

−cα〈∇uα, Yα〉
[
dα
u2
α
+ 1

uq+2
α

]
� Cuq−1

α ,

(2.3.68)

where C is a constant depending on θ and T . Here we used (2.3.8). Finally, thanks to
(2.3.61),

dg(xα, yα)
2Δguα(yα)

uα(yα)
� Cdg(xα, yα)

2uq−2
α (yα) → 0.

To conclude, (2.3.63) and (2.3.64) imply that

dg(xα, yα)
2ΔgΦ

ε
α(yα)

Φε
α(yα)

= ε(1− ε)(n− 2)2 + o(1).

We deduce that uα(yα) = O(Φε
α(yα)). The study of the previous two cases ends the proof

of the lemma.

The following lemma improves the estimate we’ve just obtained and gives a very im-
portant bound on the size of rα.

Lemma 8. Let (xα)α with (ρα)α be a blow-up sequence. Then there exists C4 > 0 such
that

uα(x) + dg(xα, x)|∇uα(x)| � C4μ
n−2
2

α (dg(xα, x) + μα)
2−n (2.3.69)

for all x ∈ Bxα(6rα)\{xα}. Moreover, r2α = O(μα).

Proof of Lemma 8: It suffices to prove the estimate for uα; the rest follows as an immediate
consequence of Lemma 5. We start by showing that for any sequence zα ∈ Bxα(6rα)\{xα},
there holds

uα(zα) = O

(
μ

n−2
2

α dg(xα, zα)
2−n + ηα

)
. (2.3.70)

First, if dg(xα, zα) = O(μα), it falls within the range described in Lemma 6. On the other
hand, when rα = O (dg(xα, zα)) , we use Lemma 5 together with (2.3.60). It remains to
consider the intermediary case:

dg(xα, zα)

μα
→ ∞ and

dg(xα, zα)

rα
→ 0 at α → ∞.

According to the Green representation formula,

uα(zα) = O

(∫
Bxα (6rα)

dg(zα, x)
2−nΔguα(x) dvg

)
+O(ηα),

where the second term corresponds to the boundary element. Recall that

Δguα � Cuq−1
α
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because of the sign of the dominant gradient term, see (2.3.68). Using (2.3.8), (2.3.62) and
Lemma 7, we can write that

∫
Bxα (6rα)

dg(zα, x)
2−nuq−1

α (x) dvg

= O
(
μ

n
2
−1

α dg(xα, zα)
2−n

)
+O

(
μ

n+2
2

(1−2ε)
α

∫
Bxα (6rα)\Bxα (μα)

dg(zα, x)
2−ndg(xα, x)

−(n+2)(1−ε) dvg

)
+O

(
ηq−1
α r

(n+2)ε
α

∫
Bxα (6rα)\Bxα (μα)

dg(zα, x)
2−ndg(xα, x)

−(n+2)ε dvg

)
= O

(
μ

n
2
−1

α dg(xα, zα)
2−n

)
+O

(
ηq−1
α r2α

)
= O

(
μ

n
2
−1

α dg(xα, zα)
2−n

)
+O (ηα) .

In order to get estimate (2.3.69), it suffices to show that

ηα = O

(
μ

n−2
2

α r2−n
α

)
. (2.3.71)

For any fixed 0 < δ < 1, taking α large enough, then the monotonicity of r
n−2
2 ϕα(r)

expressed in the definition of rα, see (2.3.58), and the fact that μα = o(rα), see (2.3.59),
imply that

r
n−2
2

α ϕα(rα) � (δrα)
n−2
2 ϕα(δrα) for all 0 < δ < 1,

so by Lemma 5,
1

C3
ηα � δ

n−2
2 sup

∂Bxα (δrα)
uα.

According to estimate (2.3.70), this leads to

ηα � C

(
μ

n−2
2

α δ2−nr2−n
α + ηα

)
δ

n−2
2 ,

where C is independent of δ and α. Choosing δ small enough leads to (2.3.71).
Estimates (2.3.8) and (2.3.71) imply that

r2α = O(μα). (2.3.72)

This ends the proof of the lemma.

Given a blow-up sequence (xα)α with (ρα)α, the following lemma gives the exact asymp-
totic profile of (uα)α at distance (ρα)α of (xα)α.

Lemma 9. Let (xα)α and (ρα)α be a blow-up sequence. Then we have that rα = ρα, where
rα is as in (2.3.58). Up to a subsequence, we have

uα(xα)ρ
n−2
α uα(expxα

(ραx)) →
Rn−2

0

|x|n−2
+H(x) (2.3.73)

in C2
loc(B0(5)\{0}), where H is some harmonic function in B0(5) satisfying H(0) = 0.

Proof of Lemma 9: First, we prove that, up to a subsequence,

uα(xα)r
n−2
α uα(expα(rαx)) →

Rn−2
0

|x|n−2
+H(x). (2.3.74)
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Let us define the following rescaled quantities:

ûα(x) = μ
1−n

2
α rn−2

α uα
(
expxα

(rαx)
)

and ĝα(x) = exp∗xα
g
(
expxα

(rαx)
)
.

Then
Δĝα ûα = F̂α,

in B0(δr
−1
α ) for some δ > 0 small enough, with

F̂α = −μ
1−n

2
α rnαhα

(
expxα

(rαx)
)
uα

(
expxα

(rαx)
)

+μ
1−n

2
α rnαfα

(
expxα

(rαx)
)
uq−1
α

(
expxα

(rαx)
)

+μ
1−n

2
α rnα

aα(expxα (rαx))
uq+1
α (expxα (rαx))

− μ
1−n

2
α rnα

bα(expxα (rαx))
uα(expxα (rαx))

−μ
1−n

2
α rnα

〈∇uα(expxα (rαx)),Yα(expxα (rαx))〉2

uq+3
α (expxα (rαx))

−μ
1−n

2
α rnαcα

(
expxα

(rαx)
)
〈∇uα, Yα〉

(
expxα

(rαx)
) [ dα(expxα (rαx))

uα(expxα (rαx))
2

+ 1

uα(expxα (rαx))
q+2

]
(2.3.75)

Thanks to Lemma 8, we know that |ûα| � CK and |F̂α| = O(1) on any compact K ⊂
B0(5)\{0}. The above system may be rewritten as

Δĝα ûα = o(1)−O(1)
〈∇ûα, Yα〉2

ûq+3
α

. (2.3.76)

Remark 11. It is here that we use the additional smallness condition we impose on Y , as
seen in (2.3.3).

By standard elliptic theory, up to a subsequence,

ûα → Û in C1
loc(B0(5)\{0})

with
ΔξÛ = 0 in B0(5)\{0}.

Separate Û into the sum of a regular harmonic function and a singular part

Û =
λ

|x|n−2
+H(x),

where λ � 0.
To get (2.3.74), it remains to show that λ = Rn−2

0 . For any δ > 0:∫
B0(δ)

F̂α dvĝα = −
∫
∂B0(δ)

∂ν ûα dσĝα . (2.3.77)

Using the equation (2.3.75), we estimate the left hand side of (2.3.77). In particular,∫
B0(δ)

fα
(
expxα

(rαx)
)
μ
1−n

2
α rnαu

q−1
α

(
expxα

(rαx)
)
dx

=

∫
B0(δ

rα
μα

)
fα

(
expxα

(μαz)
)
μ

n+2
2

α uq−1
α

(
expxα

(μαz)
)
dz
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where z =
rα
μα

x, and by Lemma 6 and Lemma 8,

lim
α→∞

∫
B0(δ)

fα
(
expxα

(rαx)
)
μ
1−n

2
α rnαu

q−1
α

(
expxα

(rαx)
)
dx

= f(x0)

∫
Rn

(
1 +

|x|2
R2

0

)−1−n
2

dx.

The gradient terms are controlled with the estimate (2.3.11), and together with (2.3.8), we
obtain that the dominant gradient term of (2.3.75) verifies∫

B0(δ)

|∇uα|2
uq+3
α

(
expxα

(rαx)
)
μ
1−n

2
α rnα dx � Cμ

1−n
2

α rn−2
α

∫
B0(δ)

|x|−2 dx

� Cωn−1μ
1−n

2
α rn−2

α δn−2.

(2.3.78)

As μ
1−n

2
α rn−2

α = O(1), the integral does not vanish as α → ∞; its size depends on δ. The
remaining terms in (2.3.75) are negligible. Thus∫

B0(δ)
F̂α dvĝα = f(x0)

∫
Rn

(
1 +

|x|2
R2

0

)−1−n
2

dx+ o(1) +O(δn−2)

for any δ > 0. It follows that

f(x0)

∫
Rn

(
1 +

|x|2
R2

0

)−1−n
2

dx = (n− 2)ωn−1R
n−2
0 .

Note also that the right hand side of (2.3.77) verifies

−
∫
∂B0(δ)

∂ν ûα dσǧα = −
∫
∂B0(δ)

∂νÛ + o(1)

= λ(n− 2)ωn−1 + o(1).

since H is smooth and harmonic. Since

λ(n− 2)ωn−1 = Rn−2
0 (n− 2)ωn−1 +O(δn−2) + o(1),

for any δ > 0, we get that λ = Rn−2
0 .

Finally, let us prove that H(0) = 0. The equation’s dominant terms are invariant
by rescaling, which leads us to use a Pohozaev identity to obtain new estimates for the
remaining terms. Let Ωα correspond to B0(δrα) in the exponential chart at xα ∈ M and
let Xα = 1

2∇dg(xα, x)
2 be the vector field of coordinates. Using integration by parts,

∫
Ωα

∇uα(Xα)Δguα dvg =
∫
Ωα

〈∇ (∇uα(Xα)) ,∇uα〉 dvg

−
∫
∂Ωα

∇uα(Xα)∂νuα dσg

=
∫
Ωα

∇#∇uα(Xα,∇uα) +∇#Xα (∇uα,∇uα) dvg

−
∫
∂Ωα

∇uα(Xα)∂νuα dσg,
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where (∇#Xα) = (∇iXα)
j . Since

∫
Ωα

|∇uα|2divgXα dvg +
∫
Ωα

〈∇
(
|∇uα|2

)
, Xα〉 dvg

=
∫
∂Ωα

|∇uα|2〈Xα, ν〉 dσg,

we can write that

∫
Ωα

(
∇uα(Xα) +

n− 2

2
uα

)
Δguα dvg

=
∫
Ωα

(
∇#Xα (∇uα,∇uα)− 1

2 (divgXα) |∇uα|2
)
dvg

+
∫
∂Ωg

(
1
2〈Xα, ν〉|∇uα|2 −∇uα(Xα)∂νuα − n−2

2 uα∂νuα
)
dσg.

(2.3.79)

We begin by analyzing the right-hand side of (2.3.79). By our choice of Xα, (∇#Xα)
ij =

gij +O(dg(xα, x)
2), and consequently

∫
Ωα

(
∇#Xα (∇uα,∇uα)−

1

2
(divgXα) |∇uα|2

)
dvg

= O
(∫

Ωα
dg(xα, x)

2|∇uα|2dvg
)
.

According to (2.3.69),∫
Ωα

dg(xα, x)
2|∇uα|2 dvg � C

∫
Ωα

μn−2
α (dg(xα, x) + μα)

4−2n dvg,

so

∫
Ωα

dg(xα, x)
2|∇uα|2 dvg �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O(μαrα) if n = 3

O

(
μ2
α ln

1

μα

)
if n = 4

O
(
μ2
α

)
if n = 5

In all these three cases, thanks to (2.3.72), the integral is of the order o(μn−2
α r2−n

α ). From
(2.3.73), ∫

∂Ωα

(
1

2
〈Xα, ν〉|∇uα|2 −∇uα(Xα)∂νuα − n− 2

2
uα∂νuα

)
dσg

=
(
(n−2)2

2 ωn−1R
n−2
0 H(0) + o(1)

)
μn−2
α r2−n

α .

Note that the boundary term does not depend on δ, and as a result

∫
Ωα

(
∇uα(Xα) +

n− 2

2
uα

)
Δguα dvg

=
(
(n−2)2

2 ωn−1R
n−2
0 H(0) + o(1)

)
μn−2
α r2−n

α

(2.3.80)
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We now analyse the right hand side of (2.3.79) by using (2.3.4):

∫
Ωα

(
∇uα(Xα) +

n−2
2 uα

)
Δguα dvg

=
∫
Ωα

(
∇uα(Xα) +

n−2
2 uα

)
fαu

q−1
α dvg

−
∫
Ωα

(
∇uα(Xα) +

n−2
2 uα

)
〈∇uα, Yα〉2u−q−3

α dvg

−
∫
Ωα

(
∇uα(Xα) +

n−2
2 uα

)
cα〈∇uα, Yα〉(dαu−2

α + u−q−2
α ) dvg

+
∫
Ωα

(
∇uα(Xα) +

n−2
2 uα

) (
aαu

−q−1
α − bαu

−1
α − hαuα

)
dvg

(2.3.81)

and we look at each term in turn. By the estimates (2.3.8) and (2.3.11), we get∣∣∣∫Ωα

(
∇uα(Xα) +

n−2
2 uα

)
〈∇uα, Yα〉2u−q−3

α dvg

∣∣∣ � C
∫
Ωα

dg(xα, x)
−2dvg

� C(δrα)
n−2

(2.3.82)

and, similarly,∣∣∣∫Ωα

(
∇uα(Xα) +

n−2
2 uα

)
cα〈∇uα, Yα〉(dαu−2

α + u−q−2
α ) dvg

∣∣∣
� C(δrα)

n−1.
(2.3.83)

We also have that∣∣∣∣∫
Ωα

(
∇uα(Xα) +

n− 2

2
uα

)(
aαu

−q−1
α − bαu

−1
α

)∣∣∣∣ � Crnα. (2.3.84)

From (2.3.69), we obtain that∣∣∣∫Ωα
hα

(
∇uα(Xα) +

n−2
2 uα

)
uα dvg

∣∣∣
= O

(∫
Ωα

μn−2
α (μα + dg(xα, x))

4−2n dx
)

= o(μn−2
α r2−n

α )

(2.3.85)

for 3 � n � 5. Using integration by parts,

∫
Ωα

∇uα(Xα)fαu
q−1
α dvg = 1

q

∫
∂Ωα

fαrαu
q
α dσg

−1
q

∫
Ωα

divgXαfαu
q
α dvg

−1
q

∫
Ωα

∇fα(Xα)u
q
α dvg.

(2.3.86)

Thus we can write that

∫
Ωα

(
∇uα(Xα) +

n−2
2 uα

)
fαu

q−1
α dvg = 1

q rα
∫
∂Ωα

fαu
q
α dσg

+
∫
Ωα

(
−1

qdivg(Xα) +
n−2
2

)
fαu

q
α dvg

−1
q

∫
Ωα

∇fα(Xα)u
q
α dvg.
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Since divg(Xα) = n+O
(
dg(xα, x)

2
)
, this leads to

∫
Ωα

(
∇uα(Xα) +

n−2
2 uα

)
fαu

q−1
α dvg = 1

q rα
∫
∂Ωα

fαu
q
α dσg

+O
(∫

Ωα
dg(xα, x)

2uqα dvg

)
−1

q

∫
Ωα

∇fα(Xα)u
q
α dvg.

Using lemmas 6 and 8, this leads to

∫
Ωα

(
∇uα(Xα) +

n−2
2 uα

)
fαu

q−1
α dvg = O (μn

αr
−n
α ) +O(μ2

α)

−1
q

∫
Ωα

∇fα(Xα)u
q
α dvg

so that, thanks to (2.3.72),

∫
Ωα

(
∇uα(Xα) +

n−2
2 uα

)
fαu

q−1
α dvg = o

(
μn−2
α r2−n

α

)
−1

q

∫
Ωα

∇fα(Xα)u
q
α dvg

(2.3.87)

if 3 � n � 5.
We claim that ∫

Ωα

∇fα(Xα)u
q
α dvg = o

(
μn−2
α r2−n

α

)
. (2.3.88)

Thanks to (2.3.80), (2.3.82), (2.3.83), (2.3.84), (2.3.85), (2.3.87) and (2.3.88), we see that

H(0) = o(1) + δ4 (2.3.89)

for any δ > 0, so by taking δ → 0 wee see that H(0) = 0.
In order to prove (2.3.88), we can first use Lemma 8 to write that∫

Ωα

∇fα(Xα)u
q
α dvg = O(μα)

which leads to (2.3.88) if n = 3, 4 thanks to (2.3.72), but is not enough for n = 5. In order
to improve the estimate in the case n = 5, note that∫

Ωα

∇fα(Xα)u
q
α dvg = ∂if(xα)

∫
Ωα

xiuqα dvg

+O

(∫
Ωα

dg(xα, x)
1+ηuqα dvg

)

= o (μα|∇fα(xα)|) +O
(
μ1+η
α

)

= o (μα|∇fα(xα)|) + o
(
μ3
αr

−3
α

)
.

with η > 1
2 . Thus it remains to prove that

|∇fα(xα)| = O
(
μ2
αr

−3
α

)
. (2.3.90)
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As before, we use a Pohozaev-type identity. We make use of the equation’s symmetry by
translation, with Z = Zi a constant vector field in the exponential chart of xα. We can
write that∫

Ωα

∇uα(Zα)Δguα dvg = O

(∫
Ωα

dg(xα, x)|∇uα|2 dvg +
∫
∂Ωα

|∇uα|2 dσg
)
, (2.3.91)

which is o(μ2
αr

−3
α ). On the left-hand side, we use (2.3.4). Lemma 5 and (2.3.8) imply that∫

Ωα

∇uα(Zα)
〈∇uα, Yα〉2

uq+3
α

dvg � 1

εq

∫
Ωα

∣∣∣∣∇uα
uα

∣∣∣∣3 dvg

� 1

εq

∫
Ωα

dg(xα, x)
−3 dvg

= O(r2α) = o(μ2
αr

−3
α ).

(2.3.92)

We see that∫
Ωα

∇uα(Zα)cα〈∇uα, Yα〉
(
dα
u2α

+
1

uq+2
α

)
dvg = O(r2α) = o(μ2

αr
−3
α ), (2.3.93)

and that the same holds for the terms corresponding to hα, bα and cα. So (2.3.91), (2.3.92)
and (2.3.93) imply that ∫

Ωα

∇uα(Zα)fαu
q−1
α dvg = o(μ2

αr
−3
α ).

Furthermore, ∫
Ωα

∇uα(Zα)fαu
q−1
α dvg = O

(∫
∂Ωα

uqα dσg

)

−1

q

∫
Ωα

divg(Zα)fαu
q
α dvg

−1

q
∇fα(Zα)

∫
Ωα

uqα dvg,

which leads us to conclude the claim in (2.3.88). Note that

divg(Zα) = O (dg(xα, x)
η)

and ∫
Ωα

uqα dvg →
∫
Rn

(
1 +

|x|2
R2

0

)−5

dx < ∞.

Finally, we are in the position to remark that ρα = rα. Remember that

ϕ(r) =
1

ωn−1rn−1

∫
∂B0(r)

Û =

(
R0

r

)n−2

+H(0)

and that
(
r

n−2
2 ϕ(r)

)′
(1) = 0, so if rα < ρα, then H(0) = Rn−2

0 , which contradicts (2.3.89).
Thus (2.3.74) implies (2.3.73), and this wraps up the proof of the lemma.

65



Moreover, ρα = rα means that ρα → 0 because rα = O

(
μ

1
2
α

)
thanks to (2.3.72). As

an important consequence, there do not exist any isolated bubbles. Otherwise, if a bubble
were isolated, then we could choose a blow-up sequence with 0 < δ < ρα, contradicting the
previous result.

2.3.3 Proof of the stability theorem

We are now in the position to prove Theorem 10. Let

δα := min
1�i<j�Nα

dg(xi,α, xj,α).

For any R > 0, let 1 � MR,α be such that

dg(x1,α, xiα,α) � Rδα for iα ∈ {1, . . . ,MR,α}, and

dg(x1,α, xjα,α) > Rδα for jα ∈ {MR,α + 1, . . . , Nα}.
We consider the rescaled quantities

ǔα(x) := δ
n−2
2

α uα(expx1,α
(δαx)) and ǧα(x) :=

(
exp∗x1,α

g
)
(δαx)

and the coordinates x̌i,α := δ−1
α exp−1

x1,α
(xi,α) in the exponential chart. It’s obvious that

|x̌2,α| = 1 and |x̌i,α| � 1.
The following lemma is a direct consequence of Lemma 5.

Lemma 10. For all R > 0, there exists CR > 0 such that the Harnack-type inequality

||∇ǔα||L∞(ΩR) � CR sup
ΩR

ǔα � C2
R inf

ΩR

ǔα

holds, where ΩR = B0(R)\⋃M2R,α

i=1 Bx̌i,α

(
1
R

)
.

Note that, for 1 � i < j � MR,α, Bxi,α

(
δα
4

)
and Bxj,α

(
δα
4

)
are disjoint, which is

equivalent to saying that Bx̌i,α

(
1
4

)
and Bx̌j,α

(
1
4

)
are also disjoint.

At this point, we are finally able to prove Theorem 10, which we stated at the very
beginning of this section. We define two possible types of concentration points, according
to how ǔα explodes. We prove that, within a cluster, we can only find one type or the other,
but never both. Finally, we see that the existence of either type leads to contradictions,
which implies that ǔα admits no concentration points whatsoever.

Proof of Theorem 10: Consider the cluster around (x1,α)α, for some R > 0. There are two
possible cases. The first type of concentration point corresponds to

sup
Bx̌i,α(

1
2)

(
ǔα(x) +

∣∣∣∣∇ǔα(x)

ǔα(x)

∣∣∣∣n−2
2

)
= O(1). (2.3.94)

In this case, note that (ǔα)α is uniformly bounded in C1
loc. Moreover, we find a lower bound,

as by (2.3.9) from Lemma 3,
|x̌i,α|

n−2
2 ǔα(x̌i,α) � 1.

There exists δi > 0 such that

inf
Bx̌i,α (δi)

ǔα � 1

2
|x̌i,α|1−

n
2 ,
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which leads to the existence of δ0 > 0 where

inf
Bx̌i,α (δ0)

ǔα � 1

2
. (2.3.95)

The second type is defined by

sup
Bx̌i,α(

1
2)

(
ǔα(x) +

∣∣∣∣∇ǔα(x)

ǔα(x)

∣∣∣∣n−2
2

)
→ ∞. (2.3.96)

In this case, either

sup
Bx̌i,α(

1
2)

ǔα(x) � M and sup
Bx̌i,α(

1
2)

|∇ǔα(x)| → ∞, (2.3.97)

or
sup

Bx̌i,α(
1
2)

ǔα(x) → ∞. (2.3.98)

We show (2.3.97) is not actually possible. Assume it holds true. Then there exist (x̌α)α ⊂
(Bx̌i,α

(
1
2

)
)α and (ν̌α)α such that

ν̌
1−n

2
α := ǔα(x̌α) +

∣∣∣∣∇ǔα(x̌α)

ǔα(x̌α)

∣∣∣∣n−2
2

= sup
x∈Bx̌i,α(

1
2)

(
ǔα(x) +

∣∣∣∣∇ǔα(x)

ǔα(x)

∣∣∣∣n−2
2

)

with
ν̌α → 0. (2.3.99)

We define the rescaled quantities

v̌α(x) := ν̌
n−2
2

α ǔα
(
expx̌α

(ν̌αx)
)

and ȟα(x) :=
(
exp∗x̌α

ǧ
)
(ν̌αx)

respectively, defined in Ωα := B0

(
1

2ν̌α

)
. For any R > 0 and α large enough so that R < 1

2ν̌α
,

lim sup
α→∞

sup
B0(R)

(
v̌α +

∣∣∣∣∇v̌α
v̌α

∣∣∣∣) = 1. (2.3.100)

Thus
|∇ ln v̌α| � 1

and
v̌α(0)e

−x � v̌α(x) � v̌α(0)e
x. (2.3.101)

Note that the metrics ȟα → ξ in C2
loc as α → ∞. Assume that, up to a subsequence,

uα(x̌α) → l < ∞. We also deduce that v̌α(0) → 0. Let x̌0 := limα→∞ x̌α and let us denote

w̌α(x) :=
v̌α(x)

v̌α(0)
.

These functions are bounded from below,

w̌α(x) �
ε

l
+ o(1) > 0. (2.3.102)

Moreover,
w̌α(x) � e|x|.
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By standard elliptic theory, we find that there exists w̌ := limα→∞ w̌α in C1 solving:

Δw̌ = − 1

lq+2

〈∇w̌, Y (x̌0)〉2
w̌q+3

.

Note that

Δw̌−α � α
|∇w̌|2
w̌α+2

[ ||Y (x̌0)||2L∞

εq+2
− (α+ 1)

]
,

so w̌−α is subharmonic for α large, and so Lemma 12 (see the Annex) implies that w̌
is constant, which in turn implies that Ǔ = 0 and ∇Ǔ = 0, which is false (see proof of
Lemma 4). Therefore, the second subcase cannot be true. This essentially means that when
a concentration point is of the second type, then

sup
Bx̌i,α(

1
2)

ǔα(x) → ∞

and so
ǔα(x̌i,α) → ∞.

Let us denote x̌i := limα→∞ x̌i,α up to a subsequence. According to Proposition 1,

ǔα(x̌i,α)ǔα(x) �→
λi

|x− x̌i|n−2
+Hi(x) (2.3.103)

in C1 in Bx̌i

(
1
2

)
\{x̌i}, with λi > 0, where Hi is a harmonic function in Bx̌i,α

(
1
2

)
, H(x̌i) = 0.

Let U be a connected open set of Rn, UR ⊂ B0(R + 1), containing no other point of
the cluster apart from x̌i and x̌j . For any 0 < r < 1

8 , we set

Vr,R = UR\
(
Bx̌i(r)

⋃
Bx̌j (r)

)
.

For a fixed x ∈ Bx̌i

(
1
4

)
\Vr,R, (2.3.103) implies that ǔα(x) → 0 as α → ∞. It follows

from Lemma 10 and (2.3.95) that all points of a cluster must be of the same type.
Assuming all points in the cluster are of the first type, then

ǔα(0) +

∣∣∣∣∇ǔα(0)

ǔα(0)

∣∣∣∣n−2
2

= O(1),

then by standard elliptic theory there exists ǔ := limα→∞ ǔα in C1(B0(R)), R > 0. Re-
peating the reasoning of Lemma 3 or Lemma 6, we know that

Δξǔ = f(x1)ǔ
q−1.

However, ǔ must have at least two separate maxima, at 0 and x̌2, which leads to a contra-
diction by the classification result of Caffarelli, Gidas and Spruck [CGS89].

Therefore ǔα(x̌i,α) → ∞, for any i = 1,M2R,α. Up to a subsequence

ǔα(x̌i,α)

ǔα(0)
→ μi > 0 as α → ∞.

We fix R > 0 and assume, without loss of generality, that (M2R,α)α is a constant denoted
by M2R. Using Lemma 10 and standard elliptic theory, we pass to a subsequence and get

ǔα(0)ǔα(x) → Ǧ(x)
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in C1
loc

(
B0(R)\{x̌i}i=1,N2R

)
for α → ∞, with

Ǧ(x) =
∑p

i=1
λi

μi|x−x̌i|n−2 + Ȟ(x)

= λ1
|x|n−2 +

(∑p
i=2

λi
μi|x−x̌i|n−2 + Ȟ(x)

)
Here, Ȟ is harmonic on B0(R), and 2 � p � M2R such that |x̌p| � R as |x̌p+1| > R. If we
apply Proposition 1 to the blow-up sequence xα = x1,α with ρα = 1

16dα, we obtain

Ĥ(0) :=

p∑
i=2

λi

μi|x̌i|n−2
+ Ȟ(0) = 0

Since Ĥ(x)− λ2
μ2|x−x̌2| = Ǧ(x)− λ1

|x|n−2− λ2
μ2|x−x̌2|n−2 is harmonic in the ball B0(R)\{x̌i}i∈2,N2R

and Ǧ � 0, then as a consequence of the maximum principle, by considering a minimum
on ∂B0(R), we see that

Ĥ(0) � λ2

μ2
− λ1

Rn−2
− λ2

μ2(R− 1)n−2
.

Choosing R > 0 large enough, we ensure that Ĥ > 0, which contradicts Theorem 9.
Consequently, uα admits no concentration points and is therefore uniformly bounded in
C1.

Lemma 11. Assuming equation (2.2.1) associated to ã admits a supersolution and that
Δg + h is coercive, then for any 0 < T < infM ã and any equation with parameters in
Eθ,T (as in Theorem 10), there exists a constant Cθ,T = C(n, θ, T ) > 0 such that, for any
||Y ||L∞ � Cθ,T and ||b||L∞ � Cθ,T , we may find a smallest real eigenvalue λ0 > 0, where
λ0 is as in Lemma 2.

Proof. Given any parameters (f, a, b, c, d, h, Y ) in Eθ,T and additionally asking for Y and b
to be sufficiently small in L∞ norm with respect to θ and T , we aim to prove that minimal
solutions to the Lichnerowicz-type equation change continuously with their parameters.
In order to do this, we study the sign of the smallest real eigenvalue associated to the
linearisation around a minimal solution and show that it is positive by comparing it to the
smallest real eigenvalue at b = 0 and Y = 0. Indeed, let s > 0 a real number and Es the
equation

Es(us) := Δgus + hus − fuq−1
s − a

uq+1
s

+ sb
us

+ c〈∇us, sY 〉
(

d
u2
s
+ 1

uq+2
s

)
+ 〈∇us,sY 〉2

uq+3
s

= 0,
(2.3.104)

with us its minimal solution. Let Ls be the linearisation of Es around us,

Δgϕs +
[
h− (q − 1)fuq−2

s + (q + 1) a

uq+2
s

− sb
us

− c〈∇us, sY 〉
(
2d
u3
s
+ q+2

uq+3
s

)
−(q + 3) 〈∇us,sY 〉2

uq+4
s

]
ϕs + 〈∇ϕs, sY 〉

[
c
(

d
u2
s
+ 1

uq+2
s

)
+ 2〈∇us,sY 〉

uq+3
s

]
= λsϕs,

(2.3.105)

with λs � 0 the smallest real eigenvalue, ϕs > 0 the associated eigenfunction, normalised
such that ||ϕs||L2 = 1. Note that the linear equations Ls are stable, in the sense that ϕs

is a priori uniformly bounded in C1. This follows from the fact that the us is uniformly
bounded. We may also suppose that λs is uniformly bounded, because if λs → ∞, then it
is clear that λs > 0.
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As Premoselli proved by way of a variational argument [Pre14], the equation E0 is
strictly stable, in the sense that its corresponding smallest real eigenvalue is positive. It
uses the coerciveness of Δg+h. We emphasize that his argument makes use of the fact that
E0 is symmetric, which is not the case for our more general equations. The strict stability
implies continuity, i.e. that us → u0, with u0 the minimal value. Indeed, let us → ũ another
solution of E0. Clearly, ũ > u0. Let ũδ = u0 + δϕ0. Note that

Es(ũδ) = E0(ũδ) +
sb
uδ

+ c〈∇uδ, sY 〉
(

d
u2
δ
+ 1

uq+2
δ

)
+ 〈∇uδ ,sY 〉2

uq+3
δ

= E0(u0) + λ0δϕ0 + o(δ) + sb
uδ

+ sc〈∇uδ, Y 〉
(

d
u2
δ
+ 1

uq+2
δ

)
+s2 〈∇uδ ,Y 〉2

uq+3
δ

If we fix δ > 0 sufficiently small, the error terms |o(δ)| � λ0δϕ0

3 and ũδ < ũ � us, ∀s. Then,
by taking s sufficiently close to 0, we get that the rest of the terms are also smaller in
absolute size than λ0δϕ0

3 . Consequently, Es(ũδ) > 0, so ũδ is a supersolution of Es that is
smaller than the minimal solution us.

Since us → u0, we also get that λs → λ0, so for s small, the first eigenvalue λs > 0. We
would like to obtain that there exists sθ,T > 0 such that, for any 0 � s < sθ,T , the minimal
eigenvalue corresponding to Ls is positive, where (a, b, c, d, f, h, Y ) ∈ Eθ,T . In other words,
we attempt to set a size for Y and b, depending on θ and T (and n), such that the resulting
equations are strictly stable.

First, there exists δθ,T > 0 such that if Y = 0, b = 0 and the equation’s parameters are
found in Eθ,T , then λ0 > δθ,T . We let us = u0 + εsvs such that ||vs||L2 = 1, εs ∈ R. Note
that εs → 0 as s → 0.

We begin by analyzing the difference in size between εs and s, or equivalently between
||us − u0||L∞ and s. Let

Es = E0 + sMs,

where

Ms(us) =
b

us
+ c〈∇us, Y 〉

(
d

u2s
+

1

uq+2
s

)
+ s

〈∇us, Y 〉2
uq+3
s

.

Recall that
E0(us) = −sMs(us) (2.3.106)

where
E0(us) = L0(us − u0) +O(|us − u0|2).

Since u0 is a solution of E0 and the operator L0 is coercive, with minimal eigenvalue λ0,
then by testing (2.3.106) against (us − u0), we see that

λ0 (1 + o(1)) ||us − u0||2L2 � −s

∫
M

Ms(us)(us − u0) � s||Ms(us)||L2 ||us − u0||L2 .

The size of Ms(us) is determined by a constant depending on θ and T . Therefore, we may
write

(1 + o(1))εs = (1 + o(1))||us − u0||L2 � s
C

λ0

Finally, in order to compare λs to λ0, extract the terms of order s from the quantity
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∫
M ϕ0Ls(ϕs)− ϕsL0(ϕ0),

−
∫
M

sb
u0
ϕ0ϕs −

∫
M c〈∇u0, sY 〉

(
2d
u3
0
+ q+3

uq+3
0

)
ϕsϕ0 −

∫
M (q + 3) 〈∇us,sY 〉2

uq+4
s

ϕsϕ0

εs
∫
M

[
(q − 1)(q − 2)fuq−3

0 − (q + 1)(q + 2) a

uq+3
0

]
vsϕsϕ0

+O(s2) = (λθ − λ0)
∫
M ϕsϕ0,

(2.3.107)

so there exists a constant C depending on θ and T such that

λs − λ0 � sC

(∫
M

ϕsϕ0

)−1

. (2.3.108)

As ϕs = ϕ0 + o(1) and the L2 norm of ϕ0 is 1, we may choose s small enough so that
|λs − λ0| � δθ,T

2 , and thus λs > 0.

2.4 Existence of solutions to the system

2.4.1 The proof of the main theorem

The following is a useful estimate we can find in [IÓM04]; it plays a crucial role in ensuring
the necessary compacity of the sequence Wα in the main theorem.

Proposition 2. Let (M, g) be a closed Riemannian manifold of dimension n � 3 such that
g has no conformal Killing fields. Let X be a smooth vector field in M . Then there exists
a unique solution W of

Δg,confW = X.

Also, for 0 < γ < 1, there exists a constant C0 > 0 that depends only on n and g such that

||W ||C1,γ � C0||X||∞.

Remark 12. As a consequence, there exists a constant C1 = C1(n, g) such that

||LgW ||C0,γ � C1||X||∞ (2.4.1)

Let (M, g) be a closed Riemannian manifold of dimension n ∈ {3, 4, 5} such that g has
no conformal Killing fields. Let b, c, d, f , h, ρ1, ρ2, ρ3 be smooth functions on M and let
Y and Ψ be smooth vector fields defined on M . Let 0 < γ < 1.

Assume that Δg + h is coercive. Assume that f > 0, ρ1 > 0 and |∇ρ3| < (2C1)
−1,

where C1 is defined in (2.4.1).
Consider the coupled system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Δgu+ hu = fuq−1 +
ρ1 + |Ψ+ ρ2LgW |2g

uq+1

− b

u
− c〈∇u, Y 〉

(
d

u2
+

1

uq+2

)
− 〈∇u, Y 〉2

uq+3

divg (ρ3LgW ) = R(u),

(2.4.2)

where R is an operator verifying

R(u) � CR

(
1 +

||u||2C2

(infM u)2

)
(2.4.3)
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for a constant CR > 0.
We fix

θ = min(inf
M

ρ1, inf
M

f), (2.4.4)

and
T = max(||f ||C1,η , ||ρ1||C0,γ , ||c||C0,γ , ||d||C0,γ , ||h||C0,γ ). (2.4.5)

Let
M = lnSθ,2T , (2.4.6)

with Sθ,2T a constant as in Theorem 10. The following theorem is the main result of the
present paper.

Theorem 11. Assume there exists a smooth positive function ã for which

Δgũ+ hũ = fũq−1 +
ã

ũq+1
(2.4.7)

admits a positive supersolution ũ. Assume that ρ1 < ã and let ω = infM (ã − ρ1). Then
there exists

δ = δ(ω, θ, T ) (2.4.8)

such that if
||b||C0,γ + ||Y ||C0,γ + ||Ψ||C0,γ + ||ρ2||C0,γ + CR � δ, (2.4.9)

the system (2.4.2) admits a solution (u,W ), with u a smooth positive function and W a
smooth vector field.

Remark 13. We can use a result by Hebey, Pacard and Pollack ([HPP08], Corollary 3.1)
in order to ensure the existence of a supersolution ũ. There exists a constant C = C(n, h),
C > 0 such that if ã is a smooth positive function verifying

||ã||L1(M) � C(n, h)

(
max
M

|f |
)1−n

, (2.4.10)

then (2.4.7) accepts a smooth positive solution.

Proof of Theorem 11: The proof of the theorem consists of a fixed-point argument. For-
mally, we define the operator

Φ : ϕ → lnu (LgW (eϕ)) ,

where W (eϕ) solves the second equation of (2.4.2) for a fixed u = eϕ and where u (LgW (eϕ))
is the solution of the scalar equation of (2.4.2) constructed in Section 2 for a fixed W (eϕ).
In order to apply Schauder’s fixed point theorem, we show that Φ : BM → BM , BM :=
{ϕ ∈ C2(M), ||ϕ||C2 � M}, where M is defined as in (2.4.6), and that Φ is continuous and
compact.

We first want to prove that

ρ1 + |Ψ+ ρ2LgW (eϕ)|2g < ã (2.4.11)

to ensure that Φ(ϕ) is well defined, with ũ from (2.4.7) a supersolution. By (2.4.1), we
have

||LgW (eϕ)||C0,γ � C1 (||∇ρ3||L∞ ||LgW (eϕ)||L∞ + ||R(eϕ)||L∞) (2.4.12)
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and thanks to (2.4.3) we see that

ρ1 + |Ψ+ ρ2LgW (eϕ)|2g � ρ1 + 2||Ψ||2L∞

+2
(

C1CR||ρ2||L∞
1−C1||∇ρ3||L∞

)2 (
1 + M2e2M

e2ε

)2
,

(2.4.13)

where ε is the lower bound of any solution corresponding to Eθ,2T from Theorem 10. There
exists

δ1 = δ1(ω, θ, T ) (2.4.14)

such that if
||Ψ||C0,γ + ||ρ2||C0,γ + CR � δ1, (2.4.15)

then (2.4.11) holds.
In order to use the a priori estimate of Section 3 to see that Φ : BM → BM , we need

to prove that

θ � ρ1 + |Ψ+ ρ2LgW (eϕ)|2g and ||ρ1 + |Ψ+ ρ2LgW (eϕ)|2g||C0,γ � 2T. (2.4.16)

From (2.4.4) we deduce that

θ � ρ1 + |Ψ+ ρ2LgW (eϕ)|2g. (2.4.17)

and thanks to (2.4.12) we see that

||ρ1 + |Ψ+ ρ2LgW (eϕ)|2g||C0,γ � ||ρ1||C0,γ + 2||Ψ||2C0,γ

+2
(

C1CR||ρ2||C0,γ
1−C1||∇ρ3||L∞

)2 (
1 + M2e2M

e2ε

)2
.

(2.4.18)

There exists
δ2 = δ2(ω, θ, T ) (2.4.19)

such that if
||Ψ||C0,γ + ||ρ2||C0,γ + CR � δ2, (2.4.20)

then
||ρ1 + |Ψ+ ρ2LgW (eϕ)|2g||C0,γ � 2T. (2.4.21)

Thanks to (2.4.17) and (2.4.21), the a priori estimates in Section 3 imply that

||u (LgW (eϕ)) ||C2 � Sθ,2T ,

so
Φ(ϕ) � M,

where M is as in (2.4.6). We have thus proved that Φ is well-defined and that Φ : BM →
BM .

In order to show that Φ is continuous, we want to check that it holds true for a �→ u(a),
where u(a) is the minimal solution constructed in Section 2. For all a < ã, we’ve established
monotony, which ensures that the minimal solutions exist. For t > 0 small, let us denote
by ut the solutions corresponding to a(1 + t) < ã. Let u0 be the limit of ut as t → 0; it is
also a solution of the Lichnerowicz-type equation associated to a. If u0 �= u, then u < u0.
According to Section 3, there exists Cθ,2T such that

||b||C0,γ + ||Y ||C0,γ � Cθ,2T (2.4.22)
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implies that u is strictly stable. We ask that

δ � min (δ1, δ2, Cθ,2T ) (2.4.23)

where δ1 is defined in (2.4.14) and δ2 is defined in (2.4.19). We choose μ > 0 small enough
such that u < ûμ < u0, where ûμ := u+μψ, ψ a positive eigenfunction at u corresponding
to the smallest real eigenvalue. But ûμ is a supersolution for a(1 + ε), ε > 0 small, which
contradicts the monotonicity. Therefore, Φ is continuous.

Lastly, BM being a closed convex set in C2, it remains to show that Φ(BM ) is compact
to conclude. From the previous discussion, Φ(BM ) ⊂ BM , and is thus bounded in C2. By
standard elliptic theory, we conclude the proof of Theorem 8.

2.4.2 The case of a metric with conformal Killing fields

Let us consider the case of a metric g with non-trivial conformal Killing fields associated
to it. For Ṽ a representative of the drift, the equation

divḡ

(
Ñ

2
LgW

)
=

n− 1

n
uqd

(
u−2qÑdivg(u

qṼ )
)
+ π∇ψ (2.4.24)

admits a solution W if and only if

n− 1

n

∫
M

u−2qÑdivg(u
qṼ )divg(u

qP ) =

∫
M
〈π∇ψ, P 〉 (2.4.25)

for all P conformal Killing fields. Moreover, the solution W is unique up to the addition
of a conformal Killing field. Note that the drift is defined modulo conformal Killing fields,
so Ṽ and Ṽ +P are representatives of the same drift for all P conformal Killing fields. We
claim that given a vector field Ṽ there exists a conformal Killing field Q̃ which is unique
up to a true Killing field and such that

n− 1

n

∫
M

u−2qÑdivg

(
uq(Ṽ + Q̃)

)
divg(u

qP ) =

∫
M
〈π∇ψ, P 〉. (2.4.26)

By analyzing the homogeneous operator associated to the equation above,∫
M

u−2qÑdivg

(
uq(Ṽ + Q̃′)

)
divg(u

qP ) = 0, (2.4.27)

we check that it is positive definite, thus invertible. Consider the functional

F (P ) =

∫
M

u−2qÑdivg

(
uq(Ṽ + P )

)2
dvg (2.4.28)

on the finite-dimensional space of conformal Killing fields and note that Q̃′ is stationary
for F . Since F is quadratic and non-negative definite, stationary points are associated to
minimizers. If ḡ does not admit any nontrivial true Killing fields, then every conformal
Killing field P satisfies divP �= 0 and the quadratic term of F is positive definite. On
the other hand, if g admits proper Killing fields, then F descends to a functional on the
quotient space and its quadratic order term is again positive definite. So the minimum of
F is unique up to a true Killing field.
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The conformal system proposed by Maxwell [Max14b] becomes in this framework⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δgu+ n−2
4(n−1)(R(g)− |∇ψ|2g)u− (n−2)

4(n−1)
|U+LgW |2+π2

uq+1

− n− 2

4(n− 1)

⎡⎢⎣2V (ψ)− n− 1

n

⎛⎝τ∗ +
Ñdivg

(
uq(Ṽ + Q̃)

)
u2q

⎞⎠2
⎤⎥⎦uq−1 = 0

divg

(
Ñ
2 LgW

)
= n−1

n uqd

(
Ñdivg(uq(Ṽ+Q̃))

2u2q

)
+ π∇ψ,

(2.4.29)

whose solution (u,W, Q̃) is a smooth positive function u, a smooth vector field W , defined
up to a conformal Killing field, and Q̃ a conformal Killing field defined up to a true Killing
field.

The existence of solutions to (2.4.29) follows from Theorem 8 and is similar to Corollary
1, with slight modifications. Here,

ρ1 =
n−2

4(n−1)

[
π − n−1

n Ñ2divg(Q̃+ Ṽ )
]
, b = −τ∗Ñdivg(Ṽ + Q̃),

Y =
√

n
n−2Ñ(Ṽ + Q̃)

(2.4.30)

and
CR = CR(||Q̃||C2). (2.4.31)

Moreover, we define θ and T as in (2.1.16) and (2.1.17) respectively, but without the
dependency on ρ1 = ρ1(Q̃), i.e.

θ = min(inf
M

f), (2.4.32)

and
T = max(||f ||C1,η , ||c||C0,γ , ||d||C0,γ , ||h||C0,γ ). (2.4.33)

First of all, the stability of the first equation still holds, as in Lemma 2 and Lemma 11.
In order to apply the last theorem, we need to check that: ρ1(Q̃) > θ, ||ρ1(Q̃)||C0,γ < 2T ,
||b||C0,γ � Cθ,2T and ||Y ||C0,γ � Cθ,2T . This translates to

divgQ̃ <

(
n− 2

4(n− 1)
π − θ

)
n

n− 1
Ñ−2 − divgṼ , (2.4.34)

n− 2

4(n− 1)
||π||C0,γ +

n− 1

n
||Ñdivg(Ṽ + Q̃)||C0,γ � 2T, (2.4.35)

||τ∗Ñdivg(Ṽ + Q̃)||C0,γ � Cθ,2T , (2.4.36)

and √
n

n− 2
||Ñ(Ṽ + Q̃)|| � Cθ,2T . (2.4.37)

We find bounds on Q̃ depending on π, ψ, Ñ , Ṽ from (2.4.26), thereby proving the necessary
compactness. Finally, the continuity (a, b, Y ) → ua,b,Y doesn’t pose any problem, and the
proof mirrors our previous argument for the continuty of a → u(a). This shows the existence
of solutions (u,W, Q̃).
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2.5 Annex

We used the following result repeatedly throughout the paper.

Lemma 12. Let u be a bounded subharmonic function defined on R
n. If there exists 0 <

ε � u which bounds u from below and α > 0 such that u−α is a subharmonic function, then
u is a constant.

Proof of Lemma 12: Let us denote

ūx(R) :=
1

ωn−1Rn−1

∫
∂Bx(R)

u(y) dy

the average of a smooth function u over the sphere ∂Bx(R). We will sometimes use the
simplified notation ū(R). Recall that, given any subharmonic function u, x ∈ R

n and for
any two radii R � R̃, then

ūx(R) � ūx(R̃). (2.5.1)

This follows from

rn−1ū′(r) =
1

ωn−1

∫
∂Bx(r)

∂νu(y) dy = − 1

ωn−1

∫
Bx(r)

Δu(y) dy � 0

where r > 0 and ν is the exterior normal.
Note that u−α � ε−α implies that the average of u−α on arbitrary subsets is uniformly

bounded. Let us fix x ∈ R
n. Since u−α is bounded, there exists a constant M > 0 and a

sequence of radii Ri → ∞ as i → ∞ such that

M−α := lim
i→∞

u−α
x(Ri). (2.5.2)

In fact, because the averages are increasing (2.5.1), any sequence R → ∞ around any point
in R

n leads to the same limit M , since one may always find a subsequence of Ri such that
Bx(Ri) includes the new sequence.

As u−α is subharmonic,
u−α(x) � u−α

x(R)

and therefore u−α(x) � M−α, or equivalently

M � u(x). (2.5.3)

For z ∈ R
n, let R := |z − x| and R̃ > R. By Green’s representation theorem, we get

u(z) �
∫
∂Bx(R̃)

u(y)
R̃2 −R2

ωn−1R̃|z − y|n
dy

� (R̃+R)R̃n−2

(R̃−R)n−1
ux(R̃).

(2.5.4)

For δ > 0, we denote
Ωδ,R := {z ∈ ∂Bx(R), u(z) � M + δ}

a subset of ∂Bx(R) and let

θδ,R :=
|Ωδ,R|

|∂Bx(R)| ∈ [0, 1]
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be the corresponding relative size of its volume. Note that θδ,R → 0 as R → ∞. Otherwise,
if there exists ε ∈ (0, 1] such that

lim sup
R→∞

|{z ∈ ∂Bx(R), u(z) � M + δ}|
|∂Bx(R)| = ε

then
lim sup
R→∞

u−α
x(R) � ε(M + δ)−α + (1− ε)M−α < M−α

which contradicts our definition (2.5.2) of M .
By choosing R large, θδ,R � δ. Let

λδ,i := ūx(2
iR)

Note that, by (2.5.4), λδ,i � 3× 2n−2λδ,i+1. Since

u(x) � λδ,i � (M + δ)(1− θδ,2iR) + λδ,i+1 × θδ,2iR

then, by induction,

u(x) � (M + δ)
1− δl

1− δ
+ λlδ

l

for all l ∈ N. As we take l → ∞,

u(x) � (M + δ)
1

1− δ

for any δ > 0, and therefore u(x) � M. By (2.5.3), u(x) ≡ M.
We may apply the same argument to any other x̃ ∈ R

n and obtain the same value
u(x̃) = M . Indeed, assuming that

M̃−α := lim
R̃→∞

u−α
x̃(R̃)

so that M̃−α � M−α, then for R̃ large, u−α
x̃(R̃) � M−α. But, at the same time, given

any fixed R̃, then for R sufficiently large, by (2.5.4), u−α
x̃(R̃) � u−α

x(R). Thus we obtain
that u ≡ M in R

n.
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CHAPITRE 3

Stability

We study the stability in low dimensions of solutions to the constraint equations, where
the Riemannian metric of the initial data is conformally flat, and in the presence of a scalar
field.

Caterina Vâlcu, Stability paper
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3.1 Introduction

A spacetime is defined as the equivalence class, up to an isometry, of Lorentzian manifolds
(M̃, g̃) of dimension n+ 1, which satisfy the Einstein field equations

Ricαβ(g̃)−
1

2
R(g̃)g̃αβ = 8πTαβ , (3.1.1)

α, β = 1, n+ 1. We have used the following notation : R(g̃) is the scalar curvature of g̃, Ric
the Ricci curvature and Tαβ the stress-energy tensor. If Tαβ = 0, we describe the vacuum.
If

Tαβ = ∇̃αψ̃∇̃βψ̃ −
(
1

2
|∇̃ψ̃|2g̃ + V (ψ̃)

)
g̃αβ , (3.1.2)

the model corresponds to the existence of a scalar field ψ̃ ∈ C∞(M) having potential
V ∈ C∞(R). By correctly choosing ψ and V , we can describe the vacuum with cosmological
constant and the Einstein-Klein-Gordon setting.

A globally hyperbolic spacetime accepts initial data (M, g,K, ψ, π), where

• (M, g) is an n-dimensional Riemannian manifold,

• K is a symmetric 2-tensor corresponding to the second fundamental form,

• ψ represents the scalar field in M , and

• π is its derivative.

The associated spacetime development takes the form (M×R, g̃, ψ̃), where g̃ is a Lorentzian
metric that verifies g̃|M = ĝ and ψ̃ is a scalar field such that ψ̃|M = ψ̂ and ∂tψ̃|M = π̂.

Through the work of Choquet-Bruhat and Geroch, having the initial data verify the
constraint equations is proved to be not only a necessary, but a sufficient condition for the
development of a maximal, globally hyperbolic space-time [FB52, CBG69] :

R(ĝ) + (trĝK̂)2 − |K̂|2ĝ = π̂2 + |∇̂ψ̂|2ĝ + 2V (ψ̂)

∂i(trĝK̂)− K̂j
i,j = π̂∂iψ̂,

(3.1.3)
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The above system is clearly under-determined, which allows for a good amount of freedom
in choosing (ĝ, K̂, ψ̂, π̂).

The conformal method began with Lichnerowicz [Lic44], and was later developped by
York, Jr., Ó Murchadha and Pfeiffer, [Yor73, ÓMY74, Yor99, PY03]. We allow for the
constraint equations to be transformed into a determined system of equations by fixing
well-chosen quantities (see Choquet-Bruhat, Isenberg and Pollack [CBIP07]). Essentially,
the technique maps a space of parameters to the space of solutions.

Given an initial data set (ĝ, K̂, ψ̂, π̂), the classical choice of parameters is (g,U, τ, ψ, π;α) :
in this case, the conformal class g is represented by a Riemannian metric g, the smooth
function τ = ĝabK̂ab is a mean curvature and the conformal momentum U measured by a
volume form α (volume gauge) is a 2-tensor that is both trace-free and divergence-free with
respect to g (a transverse-traceless tensor). We sometimes prefer to indicate the volume
gauge by the densitized lapse

Ñg,α :=
α

dVg
. (3.1.4)

In 2014, Maxwell introduces a variant to the standard conformal method called “the drift
method" [Max14b]. Very succinctly, it differs from its predecessor in that it replaces the
mean curvature τ with two new conformal data, a volumetric momentum and a drift. These
new quantities are defined by the volumetric equivalent to the York splitting [Max15] :

τ = τ∗ +Ng,ωdivg(V +Q) (3.1.5)

where τ∗ ∈ R, V is a smooth vector field and Q is a conformal Killing field.
The conformal method essentially provides a mapping from the set of conformal data

representatives to the set of initial data,

Conformal data representatives → Initial data. (3.1.6)

Given a gauge ω, one might choose

1. an arbitrary representative gab ∈ g,

2. the unique densitized lapse Ñg,ω,

3. the unique TT-tensor Uab such that (gab, Uab) = U, where U is the conformal mo-
mentum as measured by ω, and

4. a vector field Ṽ , unique up to a conformal Killing field, such that (gab, Ṽab) = V,
where V is the volumetric drift measured by ω.

We denote by

q :=
2n

n− 2
(3.1.7)

the critical Sobolev constant corresponding to the embedding of H1 into the Lebesgue
spaces. Let

LgWij = Wi,j +Wj,i −
2

n
divgWgij (3.1.8)

be the conformal Killing operator with respect to g. We use the decompositions

ĝab = uq−2gab

K̂ab = u−2[ Ñ2 (LgW )ab + Uab] +
1
nu

q−2gab

(
τ∗ + Ñdivg(V +Q)

)
.

(3.1.9)
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where u is a scalar function and W and Q are vector fields, all unknown. More precisely,
the mapping presents as

(gab, Uab, τ∗, Ṽ ; Ñ)
solve(u,W,Q)−−−−−−−−→ (ĝ, K̂). (3.1.10)

The question we aim to tackle in this paper is as follows :

(Q) Is the mapping continuous ?

We test, in some sense, that the mapping is physically relevant.

3.1.1 The main result.

Let (M, g) be a closed locally conformally flat manifold of dimension n, which can be 3, 4
and 5. Let

Δg = −divg∇ (3.1.11)

be the Laplace-Beltrami operator with non-negative eigenvalues. Similarly, let
−→
ΔgWi = −divg(LgW )i = −(LgW ) j

ij, (3.1.12)

be the corresponding Lamé operator. The volumetric drift model proposed by Maxwell
leads to the reworking of the Einstein constraint equations as

Δgu+ n−2
4(n−1)(R(g) + |∇ψ|2g)u =

(n−2)|U+LgW |2+π2

4(n−1)uq+1

+ n−2
4(n−1)

(
2V (ψ)− n−1

n τ∗

+n−1
n

Ñdivg(uqṼ )2

u2q

)
uq−1

divg

(
Ñ
2 LgW

)
= n−1

n uqd
(
Ñdivg(uqṼ )

2u2q

)
+ π∇ψ.

(3.1.13)

The existence of solutions to this system was treated in [HMM18] in the non-focusing case,
and in [Vâl19] for the focusing case. The classical conformal method, also in the focusing
regime, is treated in [Pre14]. See [DH09] for the precursor of the asymptotic techniques
used in the existence proofs.

The second equation may be rewritten as :

−→
ΔgW = 〈∇ ln Ñ ,LgW 〉+ 2n−1

n−2

(
3n−2
n−2

〈∇u,Ṽ 〉∇u

u2 − 〈∇2u,Ṽ 〉
u

)
+2n−1

n−2

(
−〈∇u,Ṽ 〉

u ∇ ln Ñ + divgṼ
∇u
u − 〈∇Ṽ ,∇u〉

u

)
−n−1

n

(
divgṼ∇ ln Ñ +∇divgṼ

)
− 2Ñ−1π∇ψ.

(3.1.14)

In the present paper, it sometimes proves useful to work with the more general equation

Δgu+ hu = fuq−1 +
ρ1+|Ψ+ρ2LgW |2g

uq+1

− b
u − c〈∇u, Y 〉

(
d
u2 + 1

uq+2

)
− 〈∇u,Y 〉2

uq+3

(3.1.15)
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where we make the following substitutions :

h = n−2
4(n−1)

(
Rg − |∇ψ|2g

)
, f = n−2

4(n−1)

(
2V (ψ)− n−1

n τ∗2
)
,

ρ1 =
n−2

4(n−1)

(
π − n−1

n Ñ2divgṼ
)
, ρ2 =

√
n−2
n−1

Ñ
4 , Ψ =

√
n−2
n−1

U
2 ,

b = n−2
2n τ∗ÑdivgṼ , c =

√
n−2
n , d = τ∗, Y =

√
n

n−2Ñ Ṽ .

(3.1.16)

Consider (uα,Wα)α∈N a sequence of smooth solutions of perturbations of the system
(3.1.15),

Δguα + hαuα = fαu
q−1
α +

ρ1,α+|Ψα+ρ2,αLgWα|2g
uq+1
α

− bα
uα

− cα〈∇uα, Yα〉
(

dα
u2
α
+ 1

uq+2
α

)
− 〈∇uα,Yα〉2

uq+3
α

−→
ΔgWα = Rα(uα,∇uα,∇2uα,LgWα).

(3.1.17)

Here, we ask that the perturbed coefficients converge towards the initial ones in a suffi-
ciently regular way, e.g in C2,η norm. The scalar solutions uα are positive as long as ρ1
which is positive. To see this, let mα = minx∈M uα(x) = uα(xα) > 0 and let

aα = ρ1,α + |Ψα + ρ2,αLgWα|2g. (3.1.18)

Since ∇uα(xα) = 0 and since Δguα(xα) � 0, we have

hα(xα)mα − fα(xα)m
q−1
α − aα(xα)

mq+1
α

+
bα(xα)

mα
� 0.

Since aα → a in C0 (M) as α → +∞ and a > 0 in M , there exists ε > 0 such that mα � ε,
meaning that

uα � ε > 0 for all x ∈ M and all α. (3.1.19)

We would like to prove the a priori estimate

||uα||C2,η + ||Wα||C1,η � C. (3.1.20)

If this is true, then by standard elliptic theory there exists, up to a subsequence, a C2,η

limit of (uα,Wα) solving the limiting system (3.1.15). In effect, since the system (3.1.15)
is invariant by the addition of conformal Killing fields, it suffices to show that

||uα||L∞ + ||∇uα||L∞ + ||∇2uα||L∞ + ||LgWα||L∞ � C. (3.1.21)

The proof follows by contradiction. We assume instead that there exists a sequence of
solutions (uα,Wα) of the perturbed system such that

||uα||L∞ + ||∇uα||L∞ + ||∇2uα||L∞ + ||LgWα||L∞ → ∞ as α → ∞. (3.1.22)

The main theorem in this paper is the following.

Theorem 12. Let (M, g) be a closed Riemannian manifold of dimension n = 3, 4, 5, where
g is locally conformally flat. Let 1

2 < η < 1 and 0 < α < 1. Let a, b, c, d, f , h, ρ1, ρ2,
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ψ, π, Ñ be smooth functions on M , let Ṽ and Y be smooth vector field on M . For any
0 < θ < T , there exists Sθ,T and ϑθ,T such that, given any parameters within

Eθ,T :=
{
(f, a, b, c, d, h, ρ1, ρ2, Y )× (Ñ , Ṽ , ψ, π), f � θ, a � θ, Ñ � θ,

||f ||C1,η � T,

||a||C1,α , ||b||C1,α , ||c||C1,α , ||d||C1,α ,

||ρ1||C1,α , ||ρ2||C1,α , ||h||C1,α , ||Y ||C1,α � T,

and ||Ñ ||C2,α , ||Ṽ ||C2,α � T
}
,

(3.1.23)
with

||Y ||C1,α , ||Ṽ ||C2,α � ϑθ,T , (3.1.24)

then any smooth solution (u,W ) (3.1.13), with u > 0, satisfies

||u||C2,α + ||LgW ||C1,α � Sθ,T . (3.1.25)

A few remarks are in order at this point. We have taken the decision to write the theorem
using the physical coordinates for the second equation, and the general coefficients for the
first. The same is true for the ensuing proof. This forcibly leads to some redundancies. We
recall that Y =

√
n

n−2Ñ Ṽ , so asking for bounds on Ñ and Ṽ imply bounds on Y . The
reasons why we still choose this writing are as follows :

1. The general notation of the first equation is the same as the ones used in the paper
proving the existence of solutions to the system, and are more readable than the
physical coordinates one. Moreover, they more accurately capture the nature of the
scalar equation and make it easier to handle, since one can follow each of the different
non-linear terms separately.

2. Writing the second equation in more general terms can prove counterproductive. For
one, introducing new coefficients would actually burden the notation in this particular
case.

3. Secondly, and most importantly, one hopes that there is a better way to treat po-
tential blow-ups caused by LgWα. This could follow from a more detailed analysis of
the second equation, where even the exact size of each of the dimensional constants
can potentially play a role, given the coupling of the system.

In the proof, we use the smallness of Y (and thus, Ṽ , since Ñ � θ) as sparsely as pos-
sible, and we take care to emphasize it each time. It follows that, in the argument by
contradiction, we are working with

Yα → 0 in C1,α and Ṽα → 0 in C2,α. (3.1.26)

The fact that g is locally conformally flat is a condition we impose to get the improved
estimates on LgWα that we need. We briefly explain the reasoning. The Green represen-
tation formula is applied on balls of diminishing radius Bxα(δα), δα → 0, where xα is a
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concentration point. Moreover, we impose Neumann boundary conditions, so that there is
no dependency on Wα, but just LgαWα. The bounds needs to be uniform with respect to
α, which is why we need the kernel of

−→
Δgα to have the same dimension as that of

−→
Δξ, with

gα = exp∗xα
(δα·).

The stability of the classical system, also in the focusing case, was treated in [Pre16].
The proof is structured as follows. In Section 2, we conformally change (uα,Wα) on

(M, g) to (vα, Zα) defined in a Euclidean domain. In Section 3, we begin by obtaining
pointwise estimates on both vα, ∇vα, ∇2vα and LgZα. Section 4 begins with an immediate
consequence of the aforementioned bounds : they yield a Harnack inequality on vα. Green’s
representation theory, applied to the elliptic operators of both the first and second equation,
plays a central role in both obtaining and improving the aforementioned weak bounds on
LξZα. The next step consists of using the techniques of asymptotic analysis to describe
potential blow-up behaviour, and their interactions. All leads to a contradiction.

3.2 Conformal changes of coordinates.

Since (M, g) is assumed to be locally conformally flat, for any sequence xα ∈ M with
xα → x as α → +∞ and for any δ > 0 small enough, there exist smooth diffeomorphisms

Φα : Uα ⊂ M �→ B0 (δ) ⊂ R
n (3.2.1)

and ϕα ∈ C∞ (B0 (δ)) where Uα is some neighbourhood of xα in M such that(
Φ−1
α

)�
g = ϕα(x)

q−2ξ (3.2.2)

where ξ is the Euclidean metric. Moreover we can choose the diffeomorphisms Φα and the
functions ϕα to be uniformly bounded in any Ck for k ≤ m, m fixed as we want. Note
that we can also choose ϕα(0) = 1 and ∇ϕα(0) = 0. For x ∈ B0(δ), consider the change of
functions

vα(x) = ϕα(x)uα ◦ Φ−1
α (x) and Zα(x) = ϕα(x)

2−q (Φα)∗Wα(x). (3.2.3)

This change of functions will be used repeatedly in the sequel. First of all, note that, by
(3.1.19), there exists ε′ > 0 such that

vα � ε′. (3.2.4)

Then it’s convenient to recall the following formulas. Given that
(
Φ−1
α

)�
gij = ϕq−2

α ξij , we
see that the Laplace-Beltrami operator becomes

Δξvα = Δξ

(
ϕαuα ◦ Φ−1

α

)
= ϕq−1

α (x)
(
Δguα + n−2

4(n−1)R(g)uα

) (
Φ−1
α

) (3.2.5)

and that
ϕq−2
α LξZα = (Φα)∗ (LgWα) . (3.2.6)

At last, the Lamé type operator transforms as

−→
Δξ

(
ϕ2−q
α (Φα)∗Wα

)
i
− qξkl∂k(lnϕα)Lξ

(
ϕ2−q
α (Φα)∗Wα

)
il
= (Φα)∗

(−→
ΔgWα

)
i
, (3.2.7)

so (−→
ΔξZα

)
i
− q 〈∇ lnϕα,LξZα〉i = (Φα)�

(−→
ΔgWα

)
i
. (3.2.8)
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Simple but tedious computations lead then to the transformation of the system (3.1.17)
into

Δξvα(x) + h̃α(x)vα(x) = f̃α(x)v
q−1
α (x) + ãα(x)

vq+1
α (x)

− b̃α(x)
vα(x)

−〈∇vα(x), Ỹα(x)〉
(
c̃α(x)
v2α(x)

+ d̃α(x)

vq+2
α (x)

)
− 〈∇vα(x),Ỹα(x)〉2

vq+3
α (x)(−→

ΔξZα

)
i
= q〈∇ lnϕα,LξZα〉i + R̃α(vα,∇vα,∇2vα,LξZα)i

(3.2.9)

where

Ỹα = ϕ2
α(Φα)∗Yα, f̃α = fα ◦ Φ−1

α ,

h̃α = ϕq−2
α

(
hα − n−2

4(n−1)R(g)
)
◦ Φ−1

α ,

b̃α = ϕq
αbα ◦ Φ−1

α − ϕα〈∇ϕα, (Φα)�Yα〉cα ◦ Φ−1
α ,

c̃α = cα ◦ Φ−1
α , d̃α = 2ϕα〈∇ϕα, (Φα)�Yα〉+ ϕq

αdα ◦ Φ−1
α ,

ãα = ρ̃1,α +
∣∣∣Ψ̃α + ρ̃2,αLξZα

∣∣∣2
ξ

ρ̃1,α = ϕ2q
α ρ1,α ◦ Φ−1

α + ϕq+1
α 〈∇ϕα, (Φα)�Yα〉dα ◦ Φ−1

α − ϕ2
α〈∇ϕα, (Φα)�, Yα〉2,

ρ̃2,α = ϕq
αρ2,α ◦ Φ−1

α , Ψ̃α = ϕ2
α (Φα)∗Ψα

(3.2.10)

and

R̃α(vα,∇vα,∇2vα,LξZα) = (Φα)�Rα(uα,∇uα,∇2uα,LgWα)

= 〈(Φα)�∇ ln Ñ ,LξZα〉

+2n−1
n−2ϕ

2−q
α

(
3n−2
n−2

〈∇vα,(Φα)�Ṽα〉∇vα
v2α

− 〈∇2vα,(Φα)�Ṽα〉
vα

)
+T̃α(vα,∇vα,∇2vα).

(3.2.11)

Here, T̃α denotes the lower order terms of the second equation. It is clear that we have

|T̃α(vα,∇vα,∇2vα)| � C

(
1 + ||(Φα)�Ṽα||C1

∣∣∣∣∇vα
vα

∣∣∣∣) . (3.2.12)

3.3 Weak pointwise estimates

The following result describes a pointwise estimate that holds everywhere on M . It provides
a way to identify a set of points Sα where uα or LgWα can potentially explode.

Lemma 13. Let (uα,Wα) be a sequence of solutions of the perturbed system (3.1.17),
verifying the non-compactness hypothesis (3.1.22). There exists an integer Nα ∈ N

∗ and a
set of critical points Sα = (x1,α, . . . , xNα,α) of uα such that

dg(xi,α, xj,α)
nuα(xi,α)

q � 1, (3.3.1)
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for all 1 � i, j � Nα, i �= j, and(
min

1�i�Nα

dg(xi,α, x)
)n

uα(x) � 1 (3.3.2)

for any x critical point of uα in M , and(
min1�i�Nα dg(xi,α, x)

)n
×
(
uqα(x) +

∣∣∣∇uα(x)
uα(x)

∣∣∣n +
∣∣∣∇2uα(x)

uα(x)

∣∣∣n2 + |LgWα|g(x)
)

� C.
(3.3.3)

Démonstration. Step 1 : Setting up the proof by contradiction. For every α ∈ N
∗,

we may define the integer Nα ∈ N
∗ and the set of critical points

Sα = (x1,α, . . . , xNα,α)

of uα by the following lemma, which holds very generally for any sufficiently regular func-
tion.

Lemma 14. Let u be a positive real-valued C2 function defined in a compact manifold M .
Then there exists N ∈ N

∗ and (x1, x2, . . . xN ) a set of critical points of u such that

dg(xi, xj)
n−2
2 u(xi) � 1 (3.3.4)

for all i, j ∈ {1, . . . , N}, i �= j, and(
min

i=1,...,N
dg(xi, x)

)n−2
2

u(x) � 1 (3.3.5)

for all critical points x of u.

The lemma and its proof may be found in Druet and Hebey’s paper [DH09]. Let

Ψα(x) =
(
min1�i�Nα dg(xi,α, x)

)n
×
(
uqα(x) +

∣∣∣∇uα(x)
uα(x)

∣∣∣n +
∣∣∣∇2uα(x)

uα(x)

∣∣∣n2 + |LgWα|g(x)
) (3.3.6)

for x ∈ M . Let (xα)α ∈ M be such that

Ψα(xα) = sup
M

Ψα → ∞ (3.3.7)

as α → ∞.
Step 2 : Rescaling. We denote the injectivity radius of M by ig(M). Let

0 < δα <
1

2
ig(M) (3.3.8)

be radii around xα. Since (M, g) is conformally flat, let ϕα and Φα be as in previous section
so that

(
Φ−1
α

)�
gij = ϕq−2

α ξij , ϕα(0) = 1 and ∇ϕα(0) = 0. In fact, these conformal factors
can be chosen to be uniformly bounded up in Ck, up to an arbitrary k > 0. Consider the
following rescalings of the conformal factors :

v̂α(x) = μ
n−2
2

α ϕα(μαx)uα ◦ Φ−1
α (μαx)

Ẑα(x) = μn−1
α ϕα(μαx)

2−q (Φα)∗Wα(μαx),
(3.3.9)

87



where x ∈ Ωα, with Ωα := Bxα

(
δ
μα

)
and

μ−n
α := uα(xα)

q +

∣∣∣∣∇uα(xα)

uα(xα)

∣∣∣∣n +

∣∣∣∣∇2uα(xα)

uα(xα)

∣∣∣∣
n
2

+ |LgWα|g(xα). (3.3.10)

Moreover, because M is compact, and by (3.3.6) and (3.3.7),

dg(xα,Sα)

μα
→ ∞ and μα → 0. (3.3.11)

We consider the rescaled perturbed system corresponding to (3.3.9),

Δξ v̂α = −μ2
αĥαv̂α + f̂αv̂

q−1
α + âα

v̂q+1
α

− μ
n+2
2

α
b̂α

vα(μα·)

−μ
n
2
α

〈∇v̂α,Ŷα〉
v̂α

(
d̂α

vα(μα·) +
ĉα

vq+1
α (μα·)

)
−μ

n−2
2

α
〈∇v̂α,Ŷα〉2

v̂2α

1

vq+1
α (μα·)

−→
ΔξẐα = qμαξ

kl∂k(lnϕα)(μα·)LξẐαl

+R̂α(v̂α,∇v̂α,∇2v̂α,LξẐα),

(3.3.12)

where

ĥα(x) = h̃α(μαx), f̂α(x) = f̃α(μαx),

ρ̂1,α(x) = ρ̃1,α(μαx), ρ̂2,α(x) = ρ̃2,α(μαx),

Ψ̂α(x) = Ψ̃α(μαx), Ŷα(x) = Ỹα(μαx),

âα(x) = ãα(μαx),

ĉα(x) = c̃α(μαx), d̂α(x) = d̃α(μαx).

(3.3.13)

and

R̂(v̂α,∇v̂α,∇2v̂α,LξZα) � C ′
R

(
μn+1
α + μn

α

∣∣∣∇v̂α
v̂α

∣∣∣+ μn−1
α

∣∣∣∇v̂α
v̂α

∣∣∣2
+μn−1

α

∣∣∣∇2v̂α
v̂α

∣∣∣+ μα|LξẐα|
)
.

(3.3.14)

where C′
R is a constant.

By the definition (3.3.10),

v̂α(0)
q +

∣∣∣∣∇v̂α(0)

v̂α(0)

∣∣∣∣n +

∣∣∣∣∇2v̂α(0)

v̂α(0)

∣∣∣∣
n
2

+ |LξẐα|ξ(0) = 1 (3.3.15)

and for any R > 0,

sup
x∈B0(R)

(
v̂qα(x) +

∣∣∣∣∇v̂α(x)

v̂α(x)

∣∣∣∣n +

∣∣∣∣∇2v̂α(x)

ûα(x)

∣∣∣∣
n
2

+
∣∣∣LξẐα(x)

∣∣∣
ξ

)
� 1 + o(1) (3.3.16)

and thereby
sup
B0(R)

|∇ ln v̂α(x)| � 1 + o(1) (3.3.17)
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for all R > 0. As a consequence,

v̂α(0)e
−2|x| � v̂α(x) � v̂α(0)e

2|x|. (3.3.18)

Step 3 : |LξẐα| converges to zero. By Green’s representation formula applied to the
first equation of (3.3.12) on Bx(3R), we get

v̂α(x) �
∫
Bx(3R) G3R(x, y)

[
âα(y)

v̂q+1
α (y)

− μ2
αĥα(y)v̂α(y)− μ

n+2
2

α
b̂α(y)

vα(μαy)

−μ
n
2
α

〈∇v̂α(y),Ŷα(y)〉
v̂α(y)

(
d̂α(y)

vα(μαy)
+ ĉα(y)

vq+1
α (μαy)

)
−μ

n−2
2

α
〈∇v̂α(y),Ŷα(y)〉2

v̂α(y)
1

vq+1
α (μαy)

]
dy.

(3.3.19)

Here, G3R(x, y) := 1
(n−2)ωn−1

(
|x− y|2−n − (3R)2−n

)
. By taking α large, we get the bulk

integral estimate ∫
Bx(2R)

|x− y|2−n|LξẐα|2ξ(y) dy � C, (3.3.20)

where C a positive constant independent of R or α. Therefore, we may find sα ∈ (32R, 2R)
such that the boundary estimate∫

∂B0(sα)
|LξẐα|2ξ(y) dσ(y) � CRn−3 (3.3.21)

holds. Moreover, ∣∣∣qμαξ
kl∂k (lnϕα) (μα·)

(
LξẐα

)
li

∣∣∣ � Cμ2
α|y|

∣∣∣LξẐα

∣∣∣
ξ
. (3.3.22)

Turning to the second equation of (3.3.12), we use the Green representation formula for
the Lamé type operator

−→
Δξ in B0(2R). This yields∣∣∣LξẐα

∣∣∣
ξ
(x) � C

∫
B0(sα)

|x− y|1−n
∣∣∣−→ΔξẐα

∣∣∣ dy
+C

∫
∂B0(sα)

|x− y|1−n
∣∣∣LξẐα

∣∣∣
ξ
(y) dσ(y)

� C ′Rμα + C′
R .

(3.3.23)

for positive constants C and C ′. We therefore get an improvement on the pointwise estimate
of the rescaled Ŵα from (3.3.16) : ∣∣∣LξẐα

∣∣∣
ξ
→ 0 (3.3.24)

and
âα → 0 (3.3.25)

in C0
loc(R

n) as α → ∞.
Step 4 : The study of potential blow-up profiles. We turn to the study of the

remaining terms of (3.3.10). From (3.3.15) and (3.3.24), we deduce that

lim
α→∞

(
v̂qα(0) +

∣∣∣∣∇v̂α(0)

v̂α(0)

∣∣∣∣n +

∣∣∣∣∇2v̂α(0)

v̂α(0)

∣∣∣∣
n
2

)
= 1. (3.3.26)

Let us set
wα(x) :=

v̂α(x)

v̂α(0)
=

uα(expxα
(μαx))

uα(xα)
. (3.3.27)
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It follows that

wα(0) = 1 and lim
α→∞

(∣∣∣∣∇wα(0)

wα(0)

∣∣∣∣n +

∣∣∣∣∇2wα(0)

wα(0)

∣∣∣∣
n
2

)
� 1 (3.3.28)

and therefore
e−2|x| � wα(x) � e2|x| (3.3.29)

We divide the first equation of system (3.3.12) by ûα(0) and obtain

Δξwα = −μ2
αĥαwα + f̂αw

q−1
α v̂q−2

α (0)

+
μ

n+2
2

α ρ̂1,α(x)

v̂q+1
α (x)vα(xα)

+
|μ

n+2
4

α Ψ̂α(x)+ρ̂2,α(x)LξẐα(x)|2ξ
v̂q+1
α (x)vα(xα)

−μ2
α

b̂α
vα(expxα (μα·))vα(xα)

− 〈∇wα,Ŷα〉2
w2

α

1

vα(xα)v
q+1
α (μα·)

−μα〈∇wα, Ŷα〉
(

d̂α
vα(expxα (μα·))vα(xα)

+ ĉα
vq+1
α (expxα (μα·))vα(xα)

)
.

Up to a subsequence, we denote

l̂α = v̂α(0), with limα→∞ l̂α =: l̂ ∈ [0, 1],

lα = v−1
α (xα), with limα→∞ lα =: l ∈ [0, ε−1]

(3.3.30)

which follows from (3.3.9) and (3.3.26) in the case of the first limit, and from (3.1.19) for
the second. Furthermore, (3.3.10) implies that

ll̂ = lim
α→∞

μ
n−2
2

α = 0. (3.3.31)

Remark 14. It is here that we use the hypothesis Vα(xα) → 0.
We denote

LξẐα(x)

l̂
q+2
2

α

→ LξZ. (3.3.32)

By standard elliptic theory, we find that there exists w := limα→∞wα in C1,η
loc (R

n), and
by dividing the first equation by l̂, we obtain

Δw = n−2
4(n−1)

(
2V (ψ(x0))− n−1

n τ∗2
)
wq−1 l̂q−2 + n−2

16(n−1)

Ñ2(x0)|LξZ|2ξ
wq+1

− n
n−2

〈∇w,Ñ(x0)Ṽ (x0)〉2
wq+3 l q+2

−→
ΔξZ = −2n−1

n+1
〈Ṽ (x0),∇w〉∇w

w2 l
q+2
2 − n−1

n 〈Ṽ (x0),
∇2w
w 〉l q+2

2 .

(3.3.33)

Since Ṽ (x0) = 0, we obtain LξZ = 0. Had we not imposed this hypothesis, the next step
would have been to classify the solutions of the second equation. To our knowledge, this is
an open problem.

Therefore, the limit equation becomes :

Δw = f(x0)w
q−1 l̂q−2.

In fact, we can easily tackle the slightly more general equation

Δw = f(x0)w
q−1 l̂q−2 − 〈∇w, Y (x0)〉2

wq+3
l q+2, x ∈ R

n, (3.3.34)
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even if Y (x0) �= 0. Based on the observation (3.3.31), we consider three separate cases.
First case. Let

l = 0 and l̂ �= 0. (3.3.35)

Then by passing to the limit in the first equation of (3.3.12), we obtain

ΔU = f(x0)U
q−1 (3.3.36)

in R
n. The exact form of the solutions of this equation is known, thanks to the work of

Caffarelli, Gidas and Spruck [CGS89] :

U(x) =

(
1 +

f(x0)|x− y0|2
n(n− 2)

)1−n
2

or U ≡ 0, (3.3.37)

If U is non-trivial, with y0 ∈ R
n the unique maximum point, there exist (yα)α local

maxima of (vα)α approaching y0 such that

dg(xα, yα) = O(μα) (3.3.38)

and
μ

n−2
2

α vα(yα) → 1 as α → ∞. (3.3.39)

Since (yα)α are critical points, the hypothesis (3.3.5) implies that

dg(Sα, yα)
n−2
2 vα(yα) � 1

for all α ∈ N, so by (3.3.39), dg(Sα, yα) = O(μα) ; together with (3.3.38), the triangle
inequality implies dg(Sα, xα) = O(μα), which contradicts (3.3.11).

If U ≡ 0, then
lim
α→∞

v̂α(0) = 0, (3.3.40)

which contradicts (3.3.35).
Second case. Let

l �= 0 and l̂ = 0. (3.3.41)

Since l �= 0, thanks to (3.1.19) and (3.3.27), w is bounded from below by a constant,

w � εl. (3.3.42)

Note also that (3.3.34) implies that w is subharmonic and that

Δw−α � α
|∇w|2
wα+2

[ |Y (x0)|2
εq+2

− (α+ 1)

]
, (3.3.43)

so w−α is subharmonic for α large. By applying Lemma 21 (see the Annex), we deduce
that w is constant, in contradiction with (3.3.28).

Third case. Let
l = 0 and l̂ = 0, (3.3.44)

then w is a non-negative harmonic function on R
n. Thus, w = cst and furthermore, by

(3.3.28), w ≡ 1. But l̂ = 0 implies that∣∣∣∣∇w(0)

w(0)

∣∣∣∣n +

∣∣∣∣∇2w(0)

w(0)

∣∣∣∣
n
2

= 1. (3.3.45)

which leads to a contradiction.
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3.4 Asymptotic analysis

In this section, we assume that (uα,Wα)α∈N is an L∞ blow-up sequence, i.e. we ask that
there exist a sequence (xα)α∈N of critical points of (uα)α∈N and a series of positive real
numbers (ρα)α∈N, where

0 < ρα <
1

16
ig(M), (3.4.1)

such that
ρnα sup

Bxα (8)
uqα(ραx) → ∞ as α → ∞, (3.4.2)

and moreover we ask that

dg(xα, x)
n

(
uqα(x) +

∣∣∣∇uα(x)
uα(x)

∣∣∣n +
∣∣∣∇2uα(x)

uα(x)

∣∣∣n2 + |LgWα|g(x)
)

� C,

x ∈ Bxα(8ρα).

(3.4.3)

In the reminder of this section, we assume that (uα,Wα)α∈N is a blow-up sequence, and we
look at the kind of asymptotic profiles we can potentially obtain. At the very end, we rule
all of them out, and thus obtain our compactness result. Note that, if we were to assume
that (3.4.2) holds for a sequence (xα)α in Sα, with ρα smaller than the distance of xα to
any other point in Sα, then (3.4.3) holds as well.

3.4.1 Harnack inequality

The following is a Harnack-type inequality. It is a direct consequence of the weak estimate
and it plays a key role in ruling out clusters of bubbles where some are much larger than
others.

Lemma 15. Let (uα, ρα)α be a blow-up sequence such that (3.4.2) and (3.4.3) hold. Then
there exists a constant C3 > 1 such that for any sequence 0 < sα � ρα, we get

s2α||∇2uα||L∞(Ωα) + sα||∇uα||L∞(Ωα) � C3 sup
Ωα

uα � C2
3 inf

Ωα

uα, (3.4.4)

where Ωα = Bxα(6sα)\Bxα(
1
6sα).

Remark 15. When considering a rescaling of the type

ū(x) = s
n−2
2

α uα(expxα
(sαx)), (3.4.5)

and Ω̄α = B0(6) \B0(
1
6), then the above lemma gives

||∇2ūα||L∞(Ω̄α) + ||∇ūα||L∞(Ω̄α) � C3 sup
Ω̄α

ūα � C2
3 inf

Ω̄α

ūα. (3.4.6)

Proof of Lemma (15) : Estimate (3.3.10) implies that∣∣∣∣∇uα(x)

uα(x)

∣∣∣∣ � C2dg(xα, x)
−1 in Ωα, (3.4.7)

and therefore
sα|∇ lnuα(x)| � 6C2 in Ωα. (3.4.8)

Similarly, it holds true that

s2α|∇2 lnuα(x)| � 6C2 in Ωα. (3.4.9)
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Taking C3 � 6C2, we get the first inequality from (3.4.6). Then, from (2.3.46) and from
the fact that the domain is an annulus Ωα = Bxα(6sα)\Bxα(

1
6sα), we estimate that

sup
Ωα

lnuα − inf
Ωα

lnuα � lα(Ωα)||∇ lnuα||L∞(Ωα) � 42C2,

where lα(Ωα) is the infimum of the length of a curve in Ωα drawn between a maximum
and a minimum of uα. Equivalently

sup
Ωα

uα � e42C2 inf
Ωα

uα,

so it suffices to take C3 = e42C2 .

Let (Bxα(16),Φα) be a conformal chart around xα. We study the blow-up sequence in
a Euclidean framework through these charts. By the properties we’ve imposed on ϕα,∣∣∣qξkl∂k (lnϕα) (LξZα)li

∣∣∣ � C|y||LξZα|ξ, on B0(8ρα). (3.4.10)

By the definition of a blow-up sequence, we also get that

|x|n
(
vqα(x) +

∣∣∣∣∇vα(x)

vα(x)

∣∣∣∣n +

∣∣∣∣∇2vα(x)

vα(x)

∣∣∣∣
n
2

+ |LξZα(x)|
)

� C. (3.4.11)

3.4.2 Strong estimate on vα in B0(μα)

The following result is a strong estimate on the size of a blow-up sequence in a very small
ball B0(μα).

Lemma 16. Let (uα,Wα)α∈N be a blow-up sequence. Let

μ
1−n

2
α := uα(xα) = vα(0). (3.4.12)

Up to a subsequence, we have

μα → 0 and
ρα
μα

→ ∞. (3.4.13)

Moreover, we see that

μ
n−2
2

α vα(μαx) → U(x) in C2,η
loc (R

n) as α → ∞ (3.4.14)

and
μn
α|LξZα|ξ(μαx) → 0 and C0

loc(R
n) as α → ∞. (3.4.15)

We have denoted
x0 = lim

α→∞
xα (3.4.16)

and

U(x) =

(
1 +

f0(x0)

n(n− 2)
|x|2

)1−n
2

. (3.4.17)

Démonstration. The proof involves similar arguments to the ones used for Lemma (13).
Let yα ∈ Bxα(8ρα) be such that

uqα(yα)+
∣∣∣∇uα(yα)

uα(yα)

∣∣∣n +
∣∣∣∇2uα(yα)

uα(yα)

∣∣∣n2 + |LgWα(yα)|

= supBxα (8ρα)

(
uqα(x) +

∣∣∣∇uα(x)
uα(x)

∣∣∣n +
∣∣∣∇2uα(x)

uα(x)

∣∣∣n2 + |LgWα(x)|
) (3.4.18)
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and let

ν−n
α := uqα(yα) +

∣∣∣∣∇uα(yα)

uα(yα)

∣∣∣∣n +

∣∣∣∣∇2uα(yα)

uα(yα)

∣∣∣∣
n
2

+ |LgWα(yα)|. (3.4.19)

Conditions (3.4.2) and (3.4.3) imply that

ρα
να

→ ∞ and να → 0 as α → ∞. (3.4.20)

Moreover,

dg(xα, yα) � C
1
n
2 να, (3.4.21)

which implies that the coordinates of yα in the exponential chart around xα, defined as
ỹα := ν−1 exp−1

xα
(yα), are bounded by C

1
n
2 . Up to a subsequence, we may choose a finite

limit ỹ0 := limα→∞ ỹα. We denote

v̂α(x) = ν
n−2
2

α uα
(
expxα

(ναx)
)

and Ẑα(x) = νn−1
α Zα

(
expxα

(ναx)
)

(3.4.22)

for x ∈ Ωα := B0

(
8ρα
να

)
. As before,

v̂α(x) = O(1),

∣∣∣∣∇v̂α(x)

v̂α(x)

∣∣∣∣ = O(1),

∣∣∣∣∇2v̂α(x)

v̂α(x)

∣∣∣∣ = O(1) (3.4.23)

and
|LξẐα(x)|ξ → 0. (3.4.24)

This implies that

v̂qα(ỹα) +

∣∣∣∣∇v̂α(ỹα)

v̂α(ỹα)

∣∣∣∣n +

∣∣∣∣∇2v̂α(ỹα)

v̂α(ỹα)

∣∣∣∣
n
2

= 1. (3.4.25)

By applying the same analysis as in the proof of Lemma 13, we get that, up to passing
to a subsequence, there exists Uλ := limα→∞ vα in C2,η

loc (R
n), with x0 := limα→∞ xα, such

that
ΔUλ = f(x0)U

q−1
λ , (3.4.26)

Since ∇Uλ(0) = 0, it holds that

Uλ(x) = λ
n−2
2

(
1 +

f(x0)λ
2|x|2

n(n− 2)

)1−n
2

(3.4.27)

for some λ > 0, where
να
μα

→ λ. (3.4.28)

This yields (3.4.13), (3.4.14) and (3.4.15), thanks to (3.4.20), (3.4.27) and (3.4.24).

3.4.3 The sphere of dominance around a blow-up point

We denote

Bα(x) = μ
n−2
2

α

(
μ2
α +

fα(xα)

n(n− 2)
|x|2

)1−n
2

(3.4.29)

and
θα(x) =

√
μ2
α + |x|2. (3.4.30)
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Our next goal is to extend the estimates from a ball of size μα to one of size ρα. We define
the radius on which the estimates continue to hold as

rα = supRα (3.4.31)

where

Rα =
{
0 < r � ρα, vα � (1 + ε)Bα, |∇(vα −Bα)|ξ � ε|∇Bα|ξ,

and B0(r)\B0(2Rαμα)
} (3.4.32)

where

R2
α =

n(n− 2)

fα(xα)
. (3.4.33)

The two following properties hold for rα :

rα = O(
√
μα) (3.4.34)

and
rα >> μα. (3.4.35)

By the previous lemma, we know that the C2,η limit holds on balls of order ρα and by
definition also of size rα, which is to say that the two are comparable. As a result, (3.4.13)
implies (3.4.34). In order to get the second estimate, it suffices to note that, by the definition
of rα and by (3.1.19),

ε � Cμ
n−2
2

α r2−n
α , (3.4.36)

which directly implies (3.4.35).

First order estimates of vα on B0(8δα)

Lemma 17. Let (δα)α 0 < δα � rα be a sequence of radii. Then for any zα ∈ B0(8δα)
there holds :

vα(zα) + |∇vα(zα)||zα|+ |∇2vα(zα)||zα|2 � CBα(zα). (3.4.37)

Moreover, there exists a sequence of positive numbers (κα)α∈N such that

(1− κα)Bα(zα) � vα(zα). (3.4.38)

If δα → 0, then κα → 0.

Démonstration. For x ∈ B0(8) :

v̄α(x) = r
n−2
2

α vα(rαx). (3.4.39)

Then v̄α satisfies

Δξ v̄α(x) + r2αh̄α(x) = f̄α(x)v̄
q−1
α (x) + r2nα

āα(x)

v̄q+1
α (x)

− rnα
b̃α(x)
v̄α(x)

−r
n
2
α

〈∇v̄α(x),Ȳα(x)〉
v̄α(x)

(
r
n−2
2

α d̄α(x)
v̄α(x)

+ r
3n−2
n−2

α c̄α(x)

v̄q+1
α (x)

)
−r2n+2

α
〈∇v̄α(x),Ȳα(x)〉2

v̄α(x)
1

v̄q+1
α (x)

(3.4.40)
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where
āα(x) = ãα(rαx), h̄α(x) = h̃α(rαx), f̄α(x) = f̃α(rαx),

c̄α(x) = c̃α(rαx), d̄α(x) = d̃α(rαx), Ȳα(x) = Ỹα(rαx).
(3.4.41)

By the definition of rα, we know that

v̄α(x) � C

(
μα

rα

)n−2
2

(3.4.42)

in B0(1)\B0

(
1
2

)
. By the weak estimate we know that

v̄α � C∣∣∣∇v̄α(x)
v̄α(x)

∣∣∣ � C∣∣∣∇2v̄α(x)
v̄α(x)

∣∣∣ � C

r2nα āα � C

(3.4.43)

in B0(8)\B0

(
1
2

)
. We conclude the proof by Lemma 15.

Considering Gα the Green function of Δg + hα in M . For any sequence (zα) of points
in B0(8rα) :

vα(zα) � ϕα(zα)

∫
B0(rα)

ϕα(y)Gα

(
Φ−1
α (zα),Φ

−1
α (y)

)
α
(y)vq−1

α (y) dy. (3.4.44)

In particular,

vα(zα)
Bα(zα)

� ϕα(zα)
∫
B0(

6rα
μα

) ϕα(μαy)f̃α(μαy)

(
μ

n−2
2

α vα(μαy)

)q−1

×Gα(Φ
−1
α (zα),Φ

−1
α (μαy))dg

(
Φ−1
α (zα),Φ

−1
α (μαy)

)n−2

×
(

μ2
α+

fα(xα)
n(n−2)

|zα|2

dg(Φ−1
α (zα),Φ

−1
α (μαy))

2

)n−2
2

dy.

(3.4.45)

Improved weak estimate of LξZα on B0(7δα)

Lemma 18. Let (δα)α be a sequence of positive numbers such that δα >> μα and δα �√
μα. We get for any x ∈ B0(7δα),∫

B0(6δα)
|x− y|2−n|LξZα(y)|2ξv−q−1

α (y) dy � C (Bα(x) +O(1)) (3.4.46)

and as a consequence∫
B0(6δα)\B0(δα)

|LξZα|2ξ dy � C

(
μ2n−2
α δ2−3n

α + μ
3n
2
−1

α δ−2n
α

)
, (3.4.47)

and there exists a sequence sα ∈ (5δα, 6δα) such that∫
∂B(sα)

|LξZα|2ξ dσ � C

(
μ2n−2
α δ1−3n

α + μ
3n
2
−1

α δ−2n−1
α

)
. (3.4.48)
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Démonstration. We use the Green’s representation theorem for Δξ + h̃α in B0(7δα) in the
1st equation, and obtain∫

B0(6δα)
|x− y|2−n

|LξZα(y)|2ξ
vq+1
α (y)

dy � C (Bα(x) +H1 +H2 +H3) , (3.4.49)

where

H1 =
∫
B0(6δα)

b̃α(y)
vα(y)

|x− y|2−n dy,

H2 =
∫
B0(6δα)

〈∇vα(y), Ṽ (y)〉
(
d̃α(y)
v2α(y)

+ c̃α(y)

vq+2
α (y)

)
|x− y|2−n dy,

H3 =
∫
B0(6δα)

〈∇vα(y),Ṽ (y)〉2
vq+3
α (y)

|x− y|2−n dy.

(3.4.50)

Lemma 17 yields the following estimates :

H1 � C

∫
B0(6δα)

μ
2−n
n

α θn−2
α (y)|x− y|2−n dy � Cμα

(
δ2α
μα

)n
2

, (3.4.51)

H2 � C
∫
B0(6δα)

θ−2
α (y)

(
μ

2−3n
3

α θ3n−2
α (y) + μ

2−n
2

α θn−2
α (y)

)
×|x− y|2−n dx,

� C
(

δ2α
μα

) 3n−2
2

+ C
(

δ2α
μα

)n−2
2

(3.4.52)

and

H3 � C

∫
B0(6δα)

μ
2−3n

2
α θ3n−2

α (y)|x− y|2−n dx � C

(
δ2α
μα

) 3n−2
2

. (3.4.53)

As a consequence,∫
B0(6δα)

|x− y|2−n
|LξZα(y)|2ξ
vq+1
α (y)

dy � C

(
μ

n−2
2

α θ2−n
α (x) + 1

)
. (3.4.54)

In particular, we get (3.4.47) and (3.4.48).

First order estimate of LξZα on B0(3δα)

We use the previous improved weak estimate in order to get a first order estimate of LξZα.
For x �= 0, let

Gi(x)j = − 1

4(n− 1)ωn−1
|x|2−n

(
(3n− 2)δij + (n− 2)

yiyj
|x|2

)
(3.4.55)

be the i-th fundamental solution of
−→
Δξ in R

n. We define on R
n the vector field

Vα(x)i = − n2

2(n− 2)
ln

(
1 +

|x|2
μ2
α

)
Ṽα(0)i +

n

μ2
α + |x|2

〈
x, Ṽα(0)

〉
xi (3.4.56)

and a vector field Rα such that

−→
Δξ(Vα +Rα)(x) = 2n−1

n−2

(
− 〈∇2Bα(x),Ṽα(0)〉

Bα(x)

+3n−2
n−2

〈∇Bα(x),Ṽα(0)〉∇Bα(x)

B2
α(x)

)
.

(3.4.57)
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Note, in particular, that

|−→ΔξRα(x)| � C|Ṽα(0)|μ2
αθα(x)

−4. (3.4.58)

Thus,

C|Ṽα(0)|μ2
αθ

−3
α (x) n = 5

|LξRα(x)| � C|Ṽα(0)|μ2
αθ

−3
α (x) ln

(
1 + θα(x)

μα

)
n = 4,

C|Ṽα(0)|μ2
αθ

−2
α (x) n = 3.

(3.4.59)

By direct calculation, we see that

(LξVα)ij (x) = − 2n
n−2 |Ṽα(0)| |x|

μ2
α+|x|2

(
xj

|x|
Ṽα(0)i
|Ṽα(0)|

+ xi
|x|

Ṽα(0)j

|Ṽα(0)|
− 2

n

〈
x
|x| ,

Ṽα(0)

|Ṽα(0)|

〉)
−4 |x|3|Ṽα(0)|

(μ2
α+|x|2)2

〈
x
|x| ,

Ṽα(0)

|Ṽα(0)|

〉
−4n |x|3|Ṽα(0)|

(μ2
α+|x|2)2

〈
x
|x| ,

Ṽα(0)

|Ṽα(0)|

〉
xi
|x|

xj

|x| .

(3.4.60)

Note that
|LξVα(x)| � C|Ṽα(0)|θ−1

α (x). (3.4.61)

Lemma 19. Let (δα)α be a sequence of positive numbers such that

μα

δα
→ 0 and δα � min(rα,

√
μα). (3.4.62)

For any x ∈ B0(3δα), we get the following estimate on |Lξ (Zα − Vα) (x)| :

|LξZα(x)| � θ−1
α (x) + μn−1

α δ1−2n
α . (3.4.63)

Démonstration. Without making mention of the conformal change factor ϕα, We apply

the Green representation theorem on the 2nd equation. Let Gα,i be the i-th Green 1-form
for

−→
Δξ with Neumann boundary conditions on B0(sα), sα � 4δα. Similarly, let

Hij,α(x, y)p = ∂iGα,j(x, y)p + ∂jGα,i(x, y)p −
2

n
ξij

n∑
k=1

∂kGα,k(x, y)p. (3.4.64)

There holds that

Lξ(Zα − Vα −Rα)ij(x) =
∫
B0(sα)

Hij,α(x, y)p
−→
Δξ(Zα − Vα −Rα)

p(y) dy

+
∫
∂B0(sα)

Hij,α(zα, y)pνpLξ(Zα − Vα −Rα)
pq(y) dσ.

(3.4.65)
Keeping in mind that Rα is negligible compared to Vα, we obtain the estimate

|Lξ(Zα − Vα −Rα)(x)|ξ � C (I1 + I2 + I3 + I4 + J1 + J2) , (3.4.66)
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where the bulk terms are

I1 =
∫
B0(6δα)

|x− y|1−n|LξZα(y)| dy

I2 =
∣∣∣2n−1

n−2

∫
B0(6δα)

3n−2
n−2

(
〈∇vα(y),Ṽα(y)〉∇vα(y)

v2α(y)
− 〈∇Bα(y),Ṽα(y)〉∇Bα(y)

B2
α(y)

)
|x− y|1−n

−
(
〈∇2vα(y),Ṽα(y)〉

vα(y)
− 〈∇2Bα(y),Ṽα(y)〉

Bα(y)

)
|x− y|1−n dy

∣∣∣
I3 =

∣∣∣ ∫B0(6δα)
|x− y|1−n

(
− 〈∇vα(y),Ṽα(y)〉

vα(y)
∇ ln Ñα(y)

+divṼα(y)
∇vα(y)
vα(y)

− 〈∇Ṽ (y),∇vα(y)〉
vα(y)

)
dy
∣∣∣

I4 =
∫
B0(6δα)

|x− y|1−n dy

(3.4.67)
and the boundary terms

J1 =
∫
∂B0

|x− y|1−n|LξVα(x)| dσ,

J2 =
∫
∂B0

|x− y|1−n|LξZα(x)| dσ.
(3.4.68)

Then, by (3.4.61),
J1 � Cδ−1

α , (3.4.69)

and by (3.4.48),
J2 � μn−1

α δ1−2n
α . (3.4.70)

Next, we see that

I2 � C
∫
B0(6δα)

|x− y|1−nθ−2
α (y) dy

� Cθ−1
α (x)

∫
B0

(
6δα

θα(x)

) ∣∣∣ x
θα(x)

− z
∣∣∣1−n

1(
μα

θα(x)

)2
+|z|2

dz
(3.4.71)

so that
|I2| � θ−1

α (x). (3.4.72)

The term I3 is in fact negligible when compared to I2 and so

|I3| � θ−1
α (x) (3.4.73)

also. It is also clear that
I4 � Cδα. (3.4.74)

Coming back to (3.4.66) with all these estimates, we thus obtain that

|LξZα(x)| ≤ C
(
θα(x)

−1 + μn−1
α δ1−2n

α

)
+ I1. (3.4.75)

It remains to estimate I1. We shall use an iterative argument to do it. Assume that

|LξZα(x)| ≤ C
(
θα(x)

−β + μn−1
α δ1−2n

α

)
(3.4.76)
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for some 1 < β ≤ n. Note that, thanks to the weak estimate (3.4.11) on LξZα, it holds for
β = n. If (3.4.76) holds, we can write that

I1 ≤ Cμn−1
α δ1−2n

α

∫
B0(6δα)

|x− y|1−n dy

+C
∫
B0(6δα)

|x− y|1−nθα(y)
−β dy

≤ Cμn−1
α δ2−2n

α

+

⎧⎪⎨⎪⎩ θα(x)
1−β if β < n

θα(x)
1−n ln

(
1 + θα(x)

μα

)
if β = n

(3.4.77)

Remember here that β > 1. Coming back to (3.4.75), we obtain that, if (3.4.76) holds for
some 1 < β ≤ n, it necessarily also holds when β is replaced by β − 1

2 . Since, as already
said, it holds for β = n, we obtain by induction that it holds for all β = n− k

2 as long as
n− k−1

2 > 1. Thus, it holds for β = 1. But this is exactly the estimate (3.4.63).

Remark 16. For δα = rα, we get that

|LξZα| � θ−1
α + μn−1

α δ1−2n
α (3.4.78)

implies

|LξZα| �
(
μα

rα

)n−1

θ−n
α . (3.4.79)

Asymptotic profile on B0(2rα)

Lemma 20. Up to a subsequence, it holds that

vα(0)r
n−2
α vα(rαx) →

Rn−2
0

|x|n−2
+H(x) in C2

loc(B0(2)\{0}), (3.4.80)

where H is a non-negative superharmonic function in B0(2). We recall that, by (3.4.12),

vα(0) = μ
1−n

2
α . (3.4.81)

Démonstration. Step 1 : Let

v̌α(x) = μ
1−n

2
α rn−2

α vα(rαx), x ∈ B0(2), (3.4.82)

where μα is defined in (3.4.12). Then

Δξ v̌α = F̌α, (3.4.83)

with

F̌α = −r2αȟα(x)v̌α(x) + μ2
αr

−2
α f̌α(x)v̌

q−1
α (x)

+μ2−2n
α r4n−2

α

ρ̌1,α(x)+|Ψ̌α(x)+ρ̌2,α(x)LξZα(x)|2ξ
v̌q+1
α (x)

−μ2−n
α r2n−2

α
b̌α(x)
v̌α(x)

− μ
2−n
2

α rn−2
α

〈∇v̌α(x),Y̌α(x)〉2
v̌2α(x)u

q+1
α (expxα (rαx))

−μ
1−n

2
α rn−1

α
〈∇v̌α(x),Y̌α(x)〉

v̌α(x)

(
ďα(x)
vα(x)

+ čα(x)
vα(x)q+1

)
(3.4.84)
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This implies that

Δǧα v̌α =
(
μα

rα

)2
f̌αv̌

q−1
α +

(
r2α
μα

)2n (
μα

rα

)2 |ρ̌2,α|2|LξZα(rαx)|2
v̌q+1
α

−
(

r2α
μα

)2n−2 〈∇v̌α,Y̌α〉2
v̌q+3
α

+ o(1);
(3.4.85)

where

f̌α(x) = f̃α(rαx), ρ̌2,α = ρ̃2,α(rαx), and Y̌α(x) = Ỹα(rαx). (3.4.86)

By the definition (3.4.32), there holds for some positive C that((
μα

rα

)2

+
fα(xα)

n(n− 2)
|x|2

)1−n
2

� v̌α(x) �
(
fα(xα)|x|2
n(n− 2)

)1−n
2

. (3.4.87)

Similarly,

|∇v̌α(x)| �
(
fα(xα)|x|2
n(n− 2)

)−n
2

. (3.4.88)

Moreover, for any x ∈ B0(2) :

ǎα(x)

v̌q+1
α (x)

� C

((
μα

rα

)2

+
fα(xα)

n(n− 2)
|x|2

)n
2

∈ L∞(B0(2)\{0}). (3.4.89)

We recall that we’ve assumed Y̌α → 0 in C0,α. By standard elliptic theory, we see that

v̌α → v̌ in C1
loc(B0(2) \ {0}) as α → ∞. (3.4.90)

For x �= 0,

v̌(x) =
λ0

|x|n−2
+H(x), (3.4.91)

where H is a superharmonic function in B0(2) and λ0 =
(
n(n−2)
f(x0)

)1−n
2 . Moreover, H � 0

in B0(2). If rα < ρα, then H(0) > 0. Indeed, by the definition (3.4.32), there exists
yα ∈ B0(rα) such that at least one of the following conditions hold :

1. vα(yα) = (1 + ε)Bα(yα),

2. |∇vα(yα)|ξ = (1 + ε)|∇Bα(yα)|ξ,

Letting y̌α = yα
rα
, we see that either H(y̌α) or ∇H(y̌α) are non-zero, and since H

is a non-negative superharmonic function, then H(0) > 0. Independently, we show that
H(0) � 0. The Pohozaev identity writes as

∫
B0(δrα)

(
xk∂kvα(x) +

n−2
2 vα(x)

)
Δξvα(x) dx

=
∫
∂B0(δrα)

(
1
2δrα|∇vα(x)|2ξ − n−2

2 vα(x)∂νvα(x)− δrα(∂νvα(x))
2
)
dσ.

(3.4.92)
Thanks to (3.4.80), we can estimate the boundary terms as

∫
∂B0(δrα)

(
1
2δrα|∇vα(x)|2ξ − n−2

2 vα(x)∂νvα(x)− δrα(∂νvα(x))
2
)
dσ

=
(
μα

rα

)n−2 (∫
∂B0(δ)

(
1
2δ |∇Ψ|2 − n−2

2 Ψ∂νΨ− δ (∂νΨ)2
)
dσ + o(1)

) (3.4.93)
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where Ψ(x) = Rn−2
0 |x|2−n +H(x). Simple computations lead then to

∫
∂B0(δrα)

(
1
2δrα|∇vα(x)|2ξ − n−2

2 vα(x)∂νvα(x)− δrα(∂νvα(x))
2
)
dσ

=
(
μα

rα

)n−2 (
(n−2)2

2 ωn−1R
n−2
0 H(0) +O (δ)

)
.

(3.4.94)

On the other hand, the LHS writes as∫
B0(δrα)

(
xk∂kvα(x) +

n− 2

2
vα(x)

)
Δξvα(x) dx = J1 + J2 + J3 + J4, (3.4.95)

where

J1 = −
∫
B0(δrα)

(
xk∂kvα(x) +

n−2
2 vα(x)

)
×
(
h̃α(x)vα(x) +

b̃α(x)
vα(x)

+ 〈∇vα(x), Ỹα(x)〉
(
d̃α(x)
v2α(x)

+ c̃α(x)

vq+2
α (x)

))
dx

J2 =
∫
B0(δrα)

(
xk∂kvα(x) +

n−2
2 vα(x)

)
f̃α(x)v

q−1
α (x) dx

J3 =
∫
B0(δrα)

(
xk∂kvα(x) +

n−2
2 vα(x)

) ρ̃1,α(x)+|Ψ̃α(x)+ρ̃2,α(x)LξZα(x)|2
vq+1
α (x)

dx

J4 = −
∫
B0(δrα)

(
xk∂kvα(x) +

n−2
2 vα(x)

) 〈∇vα(x),Ỹα(x)〉2
vq+3
α (x)

dx

(3.4.96)
We find estimates for each quantity in turn. In the case of J1, we notice that

∣∣∣∣∣
∫
B0(δrα)

h̃α(x)B
2
α(x) dx

∣∣∣∣∣ � C

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
μ2
α if n = 5

μ2
α ln

(
rα
μα

)
if n = 4

δrαμα if n = 3

(3.4.97)

Then we have that ∣∣∣∣∣
∫
B0(δrα)

b̃α(x) dx

∣∣∣∣∣ � C(δrα)
n, (3.4.98)

and ∣∣∣∫B0(δrα)
〈∇Bα(x),Ỹα(x)〉

Bα(x)

(
d̃α(x) +

c̃α(x)
vqα(x)

)
dx
∣∣∣ � C

∫
B0(δrα)

θ−1
α (x) dx

� C(δrα)
n−1.

(3.4.99)

For J3, we obtain∣∣∣∫B0(δrα)
|LξZα(x)|2

Bq
α(x)

dx
∣∣∣ � ∫

B0(δrα)

(
μα

rα

)2n−2
μ−n
α θnα(x) dx

� C
(
μα

rα

)n−2
rαδ

2n,
(3.4.100)

while for J4, we get∣∣∣∫B0(δrα)
〈∇Bα(x),Ỹα(x)〉2

Bq+3
α (x)

dx
∣∣∣ � ∫

B0(δαrα)
θ2n−2
α (x)μ−n

α dx

� C
(
μα

rα

)n (
r2α
μα

)2n
r−2
α δ3n−2.

(3.4.101)
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For J2, lengthy, yet straightforward computations as those seen in [Vâl19] lead to

J2 = o

(
μα

rα

)n−2

. (3.4.102)

We conclude that

H(0) = o

(
μα

rα

)n−2

(1 +O(δ)), ∀α, ∀δ > 0, (3.4.103)

and thus H(0) = 0.

3.4.4 Stability theorem proof

Consider the sets Sα and let

16δα := min
1�i<j�Nα

|xi,α − xj,α|. (3.4.104)

We first prove that δα → 0 as α → +∞. Assuming that the contrary holds, we can apply
the results of Lemma 16 with xα = x1,α and ρα = δ for some δ > 0 fixed. This contradicts
(3.4.32). We reorder the elements of the sets Sα in order of distance, so that

16δα = |x1,α − x2,α|. (3.4.105)

For R > 1, let 1 � MR,α be such that

|x1,α − xiα,α| � Rδα for iα ∈ {1, . . . ,MR,α},

|x1,α − xiα,α| > Rδα for iα ∈ {MR,α + 1, . . . , Nα}.
(3.4.106)

For x ∈ B0(8δα), we define the rescaled quantities

v̌α(x) := δ
n−2
2

α ϕα(δαx)uα ◦ Φ−1
α (δαx) (3.4.107)

and
Žα(x) = δn−1

α ϕ−q+2
α (δαx)(Φα)∗Wα(δαx). (3.4.108)

In the exponential chart, the elements of Sα become

x̌i,α := δ−1
α exp−1

x1,α
(xi,α), (3.4.109)

where 1 � i � Ni. Note that Bxi,α (8δα) and Bxj,α (8δα) are disjoint. We define two types
of concentration points : the first

sup
Bx̌i,α (8)

(
v̌α(x)

q +

∣∣∣∣∇v̌α(x)

v̌α(x)

∣∣∣∣n +

∣∣∣∣∇2v̌α(x)

v̌α(x)

∣∣∣∣
n
2

+ |LξŽα(x)|
)

= O(1) (3.4.110)

and the second

sup
Bx̌i,α (8)

(
v̌α(x)

q +

∣∣∣∣∇v̌α(x)

v̌α(x)

∣∣∣∣n +

∣∣∣∣∇2v̌α(x)

v̌α(x)

∣∣∣∣
n
2

+ |LξŽα(x)|
)

→ ∞. (3.4.111)

A cluster with only the first type of points, i.e. where all bubbles are of a
comparable size. Assume x̌i,α corresponds to the first type. Since for all j � MR,α,

|x̌i,α − x̌j,α|
n−2
2 v̌α(x̌i,α) � 1, (3.4.112)
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then
v̌(x̌i,α) � 2C(R). (3.4.113)

Since v̌α is uniformly bounded in C2, there exists ri > 0 such that

inf
Bx̌i,α (ri)

v̌α � C(R). (3.4.114)

By following the arguments of Lemmas 13 and 16, there exists a C2(B0(R)) limit,

v̌ = lim
α→∞

v̌α (3.4.115)

such that
Δξ v̌ = f(0)v̌q−1; (3.4.116)

since v̌ has at least two maxima, this leads to a contradiction.
A cluster with both type of points, i.e. where there exists at least one pair

of bubbles such that one is much greater than the other. Around the second type
of concentration point, we consider two cases : either

sup
Bx̌j,α (8)

v̌α(x) � M and sup
Bx̌j,α (8)

∣∣∣∣∇v̌α(x)

v̌α(x)

∣∣∣∣n+∣∣∣∣∇2v̌α(x)

v̌α(x)

∣∣∣∣
n
2

+|LξŽα(x)| → ∞ (3.4.117)

or
sup

Bx̌j,α (8)
v̌α(x) → ∞. (3.4.118)

By similar arguments to those of Lemma 16. From Lemma 20, we know that

|v̌α − B̌α| = o(δ
n−2
2

α ). (3.4.119)

where

B̌α(x) = μ̌
n−2
2

α

(
μ̌

n−2
2

α − f̌(x̌i,α)

n(n− 2)
|x|2

)
(3.4.120)

with
μ̌α =

μα

δα
= ǔα(x̌i,α)

−q+2. (3.4.121)

Up to a subsequence,

ǔα(x̌j,α)ǔα(x) →
λi

|x− x̌j |n−2
+Hj(x) (3.4.122)

in Bx̌i

(
1
2 \ {x̌j}

)
, with λj > 0, where Hj is superharmonic in Bx̌j,α

(
1
2

)
with H(x̌i) = 0.

This means that ǔα → 0 in C0
(
Bx̌i,α

(
1
2

)
\Bx̌i,α

(
1
4

))
By the Harnack type result, Lemma

15, we get a contradiction.
A cluster with only the second type of points. Let Ǧα(x, ·) be the Green func-

tion of the operator Δξ + δ2αȟα in Bx(3R). It converges to the Green function of Δξ in
C1
loc(Bx(3R) \ {x}). Since Δξ + h0 is coercive, for any y ∈ Bx(2R), and since Yα → 0,

ǔα(x) �
∫
B0( 1

2)
Ǧα(x, y)f̌α(y)v̌

q−1
α (y) dy

+
∫
Bx̌2,α(

1
2)

Ǧα(x, y)f̌α(y)v̌
q−1
α (y) dy.

(3.4.123)

This yields

v̌α(x) � (1 + o(1))(B̌1,α(x) + B̌2,α(x))−
C

Rn−2

(
μ

n−2
2

1,α + μ
n−2
2

2,α

)
(3.4.124)
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For |x| � 1
4 , x �= 0, we approximate the RHS with B̌1,α to get(

μ1,α

μ2,α

)n−2
2

|x|n−2
(
|x− x̌2|2−n − CR2−n + o(1)

)
� o(1) +

C

Rn−2
|x|2−n (3.4.125)

We divide the previous equation by |x| and take x → 0 to get, for R large,

lim sup
α→∞

(
μ1,α

μ2,α

)n−2
2

� C
16n−2

Rn−2 − C16n−2
. (3.4.126)

By switching the roles of x̌1,α and x̌2,α, we obtain

lim sup
α→∞

(
μ2,α

μ1,α

)n−2
2

� C
16n−2

Rn−2 − C16n−2
. (3.4.127)

This is a contradiction.

3.5 Annex

3.5.1 Standard elliptic theory for the Lamé operator

If X is a 1-form in M , the Lamé operator is written in coordinate form as :

−→
ΔgXi = ∇j∇jXi +∇j∇iX

j − 2

n
∇i (divgX) . (3.5.1)

The operator
−→
Δg is uniformly elliptic on M . It satisfies the strong ellipticity condition

(also known as the Legendre-Hadamard condition) : for any x ∈ M and any η ∈ T ∗
xM :

(L(x, ξ)η)iη
i = |ξ|2g|η|2g +

(
1− 2

n

)
|〈ξ, η〉|2g � |ξ|2g|η|2g. (3.5.2)

The Lamé operator is self-adjoint on H1(M) on any closed manifold M , since by integration
by parts one gets, for any 1 forms X and Y ,∫

M
〈−→ΔgX,Y 〉g dvg =

1

2

∫
M
〈LgX,LgY 〉g dvg. (3.5.3)

This implies that for any 1-form X on M ,

−→
ΔgX = 0 ⇐⇒ LgX = 0. (3.5.4)

The standard elliptic theory for (self-adjoint) strongly elliptic operators acting on vector
bundles on a compact manifold apply (see Theorem 5.20 in Giaquinta-Martinazzi) :

Proposition 3. For any p > 1, there exists constants C1 = C1(g, p) and C2 = C2(g, p)
such that for any 1-form X in M :

||X||W 2,p(M) � C1||
−→
ΔgX||Lp(M) + C2||X||L1(M). (3.5.5)

In addition, X satisfies ∫
M
〈X,K〉g dvg = 0 (3.5.6)

for all conformal Killing 1-forms K, then we can choose C2 = 0.
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We now turn to the case of Rn. For any 1 � i � n, we define the 1-form R
n \ {0} by :

Gi(y)j = − 1

4(n− 1)ωn−1
|y|2−n

(
(3n− 2)δij + (n− 2)

yiyj
|y|2

)
(3.5.7)

for any y �= 0. Note that the matrices (Gi(y)j)ij thus defined are symmetric : for any y �= 0,

Gi(y)j = Gj(y)i. (3.5.8)

Let X be a field of 1-form in R
n. For any R > 0 and for any x ∈ B0(R) there holds :

Xi(x) =
∫
B0(R) Gi(x− y)j

−→
ΔξX(y)j dx

+
∫
∂B0(R) LξX(y)klνk(y)Gi(x− y)l dσ

−
∫
∂B0(R) Lξ (Gi(x− ·))kl (y)ν(y)kX(y)l dσ.

(3.5.9)

If Y is a smooth 1-form in L1(Rn), then

Wi(x) =

∫
Rn

Gi(x− y)jY
j(y) dy = (G ∗ Y )i(x) (3.5.10)

satisfies −→
ΔξWi(x) = Yi(x). (3.5.11)

The system (3.1.15) is invariant up to adding a conformal Killing 1-form in M to Wα. Let

KR = {X ∈ H1(M) (B0(R)) ,LξX = 0} (3.5.12)

is the subspace of 1-forms associated to the kernel to the Neumann problem for Δξ in
B0(R). The H1 orthogonal space is defined as the space of 1-forms Y ∈ H1 (B0(R)) such
that for any X ∈ KR : ∫

B0(R)
〈Y,K〉ξ dx = 0. (3.5.13)

For any 1-form X ∈ B0 (B0(R)), we define the orthogonal projection on KR by

πR(X) =
m∑
j=1

(∫
B0(R)

〈Kj , X〉 dx
)
Kj . (3.5.14)

The existence of Green 1-forms satisfying Neumann boundary conditions :

Proposition 4. For any 1 � i � n and any R > 0, there exists a unique Gi,R defined in
B0(R)×B0(R) \D, where D = {(x, x), x ∈ B0(R)} there holds :

(X − πR(X))i (x) =
∫
B0(R) Gi,R(x, y)j

−→
ΔξX(y)j dx

+
∫
∂B0(R) LξX(y)klνk(y)Gi,R(x, y)k dσ.

(3.5.15)

Moreover, Gi,R is continuously differentiable in B0(R) × B0(R) \ D. Furthermore, if K
denotes any compact set in B0(R), there holds for any x, y ∈ M

|x− y||∇Gi,R(x, y)|+ |Gi,R(x, y)| � C(δ)|x− y|2−n, (3.5.16)

where
δ =

1

R
d (K, ∂B0(R)) > 0. (3.5.17)
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3.5.2 Limiting equation

The following lemma has been proved in [Vâl19].

Lemma 21. Let u be a bounded subharmonic function defined on R
n. If there exists 0 <

ε � u which bounds u from below and α > 0 such that u−α is a subharmonic function, then
u is a constant.
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Autour des équations de contrainte en relativité générale

Résumé. Le but à long terme de mon travail de recherche est de trouver une alternative
viable à la méthode conforme, qui nous permettrait de mieux comprendre la structure
géométrique de l’espace des solutions des équations de contrainte. L’avantage du modèle
de Maxwell (the drift model) par rapport aux modèles plus classiques est la présence des
paramètres supplémentaires. Le prix à payer, par contre, sera la complexité analytique
du système correspondant. Ma thèse a été structurée en deux parties :

a. Existence sous la condition de petitesse des données initiales. Nous avons montré que
le système de Maxwell est raisonnable dans le sens où nous pouvons le résoudre,
malgré sa forte nonlinéarité, sous des conditions de petitesse sur ses coefficients, en
dimension 3 � n � 5. Par conséquent, l’ensemble des solutions est non-vide.

b. Stabilité. Nous montrons la stabilité des solutions du système : ce résultat est obtenu
en dimension 3 � n � 5, dans le cas où la métrique est localement conformément
plate, et le drift est petit.

Mots-clés : Relativité générale, Analyse asymptotique, Équations au dérivées par-
tialles, Physique mathématique, Équations de contrainte

On the Constraint Equations in General Relativity

Abstract. The long-term goal of my work is to find a viable alternative to the conformal
method, which would allow us to better understand the geometry of the space of solutions
of the constraint equations. The advantage of Maxwell’s model (the drift model) is the
presence of additional parameters. Its downside, however, is that it proves to be much
more difficult from an analytic standpoint. My thesis is structured in two parts:

a. Existence under suitable smallness conditions. We show that Maxwell’s system is suf-
ficiently reasonable: it can be solved even given the presence of focusing non linear-
ities. We prove this under smallness conditions of its coefficients, and in dimensions
3 � n � 5. An immediate consequence is that the set of solutions is non-empty.

b. Stability. We verify that the solutions of the system are stable: this result holds in
dimensions 3 � n � 5, when the metric is conformally flat and the drift is small.

Keywords: General relativity, Asymptotic analysis, Partial differential equations,
Mathematical physics, Constraint equations

Image de couverture : Matthew Cusick, Cat’s Wave (2015)
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