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Abstract: Mechatronic products are complex 
and multidisciplinary in nature. The 
requirements to design them are often 
contradictory and must be validated by the 
various disciplinary engineering (DE) teams. To 
address this complexity and reduce design time, 
disciplinary engineers need to collaborate 
dynamically, resolve interdisciplinary conflicts, 
and reuse knowledge from previous projects. In 
addition, they need to work seamlessly with the 
Systems Engineering (SE) team to have direct 
access to requirements and the Multidisciplinary 
Design Optimization (MDO) team for global 
validation.  

We propose to use Knowledge Management 
techniques to structure the knowledge generated 
during collaboration activities and harmonize 
the overall design cycle. Our primary 
contribution is a unification approach, 
elaborating how SE, DE, and MDO complement 
each-other and can be used in synergy for an 
integrated and continuous design cycle. Our 
methodology centralizes the product knowledge 
necessary for collaboration. It ensures 
traceability of the exchange between 
disciplinary en-gineers using graph theory. This 
formalized process knowledge facilitates MDO 
problem definition. 
 

 

 

 

  

Titre: Gestion des connaissances pour la conception collaborative et l’optimisation multi-physique 
de systèmes mécatroniques 

Mots clés: Gestion des connaissances, conception collaborative, processus de conception, 
optimisation multidisciplinaire, systèmes mécatroniques, boitier papillon 

Résumé: Les produits mécatroniques sont 
complexes et multidisciplinaires par nature. Les 
exigences pour les concevoir sont souvent 
contradictoires et doivent être validées par les 
différentes équipes d'ingénierie disciplinaire 
(ID). Pour répondre à cette complexité et réduire 
le temps de conception, les ingénieurs 
disciplinaires ont besoin de collaborer 
dynamiquement, de résoudre les conflits 
interdisciplinaires et de réutiliser les 
connaissances de projets antérieurs. De plus, ils 
ont besoin de collaborer en permanence avec 
l’équipe d’ingénierie systèmes (IS) pour avoir 
un accès direct aux exigences et l’équipe 
d’optimisation multidisciplinaire (OMD) pour 
valider le système dans sa globalité. 

Nous proposons d'utiliser des techniques de 
gestion des connaissances pour structurer les 
connaissances générées lors des activités de 
collaboration afin d'harmoniser le cycle de 
conception. Notre principale contribution est 
une approche d'unification qui explique 
comment IS, ID et OMD se complètent et 
peuvent être utilisés en synergie pour un cycle 
de conception intégré et continu. Notre 
méthodologie permet de centraliser les 
connaissances nécessaires à la collabora-tion et 
au suivi des exigences. Elle assure également la 
traçabilité des échanges entre les ingénieurs 
grâce à la théorie des graphes. Cette 
connaissance formalisée du processus de 
collaboration permet de défi-nir 
automatiquement un problème OMD. 
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Introduction 

A. General introduction 

Recent advances in design methods promote the development of concurrent engineering to reduce 

the time and cost of the design cycle. This is particularly necessary for mechatronic design which is 

involving several disciplines. But companies have also to address associated challenges related to 

collaboration and reuse. For instance, designers from different disciplines need to collaborate instan-

taneously and access to the right information at the right moment (Maranzana, Gartiser et al. 2008).  

Mechatronic systems encompass a variety of disciplines, including control, electrical and software. 

They need to be combined to accomplish the entire requisite functionality (Zheng, Bricogne et al. 

2014). Each discipline independently focuses on a particular aspect of the system and exploits differ-

ent Disciplinary Engineering (DE) tools for technical analysis. Such multiplicity of tools and methods 

renders the mechatronic design quite complex and knowledge intensive.  Systems Engineering (SE) 

approach was proposed to manage this issue. It provides a common communication platform between 

different stakeholders at the system level, ensuring that each discipline meets the system require-

ments. Despite these efforts, a benchmark report about mechatronic design challenges shows that 

44% of the manufacturers have a problem with understanding and fulfilling requirements (Jackson 

2006). To attain the full benefit of SE in concurrent engineering, there is a critical need to create links 

between system engineers and disciplinary engineers. Research reports a gap between SE and DE, 

resulting in costly failures to meet system requirements (Gausemeier, Gaukstern et al. 2013). Solu-

tions must support the collaboration between the two levels, allowing system engineers to manage 

changes in requirements and access dynamic decisions, made during the design cycle, and discipli-

nary engineers to solve their conflicting objectives and to stay consistent with the system level. Mul-

tidisciplinary Design Optimization (MDO) was proposed as a solution to this issue. It provides useful 

instruments and methodologies to deal with complex design problems. Nevertheless, MDO is chal-

lenging to implement in an industrial environment and cannot handle for itself the complexity of the 

dynamic collaboration and complex reuse of project results (Simpson, Toropov et al. 2008). 

In our manuscript, we will study the links between SE, DE and MDO and how to merge them for an 

integrated and continuous mechatronic design cycle.  

B. Research context 

 

a. MIMe research project 
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This thesis is a part of a collaborative French project entitled FUI19-MIMe (Model d’Intégraton et de 

Simulation Mécatronique), which brings together industrials and academics:  

- Small and medium-sized enterprises: DPS, Deltacad, Soyatec, and Eiris 

- Manufacturers: PSA and Valeo 

- Academics: Supmeca, Estaca, and UTC 

The MIMe project aims to enable structured and instantaneous collaboration in mechatronic design.   

PSA and Valeo are two major French automotive manufactures. Many meetings were conducted in 

the context of this project to identify the industrial requirements and the problems relative to mecha-

tronic design. While each work package of the MIMe project focuses on specific objectives, the meet-

ings were valuable to exchange our views and converge in our research. 

b. Project objectives 

The MIMe project is divided into 5 work packages. Our Ph.D. thesis is situated in the WP4. The 

different WPs meet regularly to keep the coherence of the global project.  

 

Figure 0-1. MIMe project organization 

 

WP1: DPS 

Provides technical, administrative and financial management of the project, as well as the develop-

ment of a connector framework. This framework enables the automatic creation of connectors be-

tween CAD tools and the collaborative platform. 
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WP2: UTC - DeltaCAD 

Determines how to capitalize multidisciplinary knowledge from exchanges made during collabora-

tion to integrate them into a knowledge management structure. This concerns in particular two types 

of sources: the existing data (in the information systems of companies) and the data generated during 

the collaboration (emails, meetings..) 

WP3: Eiris - DPS 

Considers the capitalization of quantified requirements that are critical for tradeoff analysis. This is 

done by traceability between the system architecture and analysis models 

WP4: Supmeca – Estaca - Soyatec 

Our WP focuses on the mechatronic design workflow. Our objective is to formalize the collaborative 

design process and reuse this process efficiently. 

WP5: PSA - Valeo 

The objective of this WP is to present collaborative intra-company use-case (design teams) and inter-

company use-case (suppliers, clients, and partners). The industrial use-cases will focus on the design 

process of the ETB (Valeo) and its integration into the air loop of a gasoline engine (PSA). 

 

C. Objectives and manuscript organization 

a. Research objectives 

The discontinuity between Systems Engineering (SE), Disciplinary Engineering (DE) and Multidis-

ciplinary Design Optimization (MDO) creates difficulties during the collaboration and the reuse 

phases. The originality of the proposal is to adopt a Knowledge Management approach bringing to-

gether knowledge from the different views, as simple as possible, in a single coherent framework 

with the following characteristics: 

- Understanding the viewpoints of engineers in SE, DE , and MDO to collaborate efficiently 

- Reusing efficiently results and decisions made in previous projects  

- Automating repetitive design tasks when it is possible 

The problematic and the expected contributions are detailed at the end of the Chapter 1. 

a. Outline of the manuscript 

Following this introduction, the thesis manuscript is organized in 5 chapters (Figure 0-2) 
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Figure 0-2. Organization of the manuscript chapters 

 

- Chapter 1: This chapter introduces the mechatronic design and the difficulties that the design-

ers encounter. We define SE, DE, and MDO with illustrative examples. 

- Chapter 2: This chapter is a state of the art concerning existing solutions to support SE, DE, 

and MDO. Accordingly, our problematic and approach are positioned. 

- Chapter 3: The Knowledge Configuration Model (KCM), outlined in chapter 2, is analyzed in 

detail in this chapter. We propose a methodology to use KCM in mechatronic design.  

- Chapter 4: Based on the limits of KCM, our new model is presented in this chapter. Collabo-

rative Design Process and Product Knowledge (CDPPK) model and associated methodology 

are explained to answer the research problematic. 

- Chapter 5: Presents the validation of the proposal. We define in details the ETB design lifecy-

cle in industry. The multidisciplinary models implemented and the experimental test bench 

are presented. The CDPPK is applied in two collaborative scenarios to validate our point. 

Finally, we close this manuscript with a general conclusion. The first part is a summary of the con-

ducted work with analysis and limits. The second part is about the perspectives and future work. 

Appendixes are also provided for more explanations. 
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Abbreviations 

AAO:  All At Once 

CAD:  Computer Aided Design 

CAE:  Computer Aided Engineering 

CDP:   Collaborative Design Process 

CDPPK: Collaborative Design Process and Product Knowledge 

CE:   Concurrent Engineering 

CFD:  Computational Fluid Dynamics 

CM:  Configuration Management 

CSCD:  Computer Supported Collaborative Design 

DA:  Design Analysis 

DE:   Disciplinary Engineering 

DE:  Disciplinary Engineering 

DoE:   Design of Experiment 

DPK:  Design Product Knowledge 

DV:   Design Variable 

ETB:   Electronic Throttle Body 

FEM:   Finite Element Method 

ICE:   Information Core Entity 

ISO:  International Organization for Standardization 

IT:   Information Technology 

KBE:   Knowledge Based Engineering 

KBS:  Knowledge Based System 
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KC:   Knowledge Configuration 

KCM:  Knowledge Configuration Model 

KM:  Knowledge Management 

LH:   Limp Home 

MDO:   Multidisciplinary Design Optimization 

PDM:   Product Data Management 

PIDO:  Process Integration and Design Optimization 

PLM:   Product Lifecycle Management 

SDM:  Simulation Data Management 

SE:   Systems Engineering 

SysML:  System Modeling Language 

UML:   Unified Modeling Language 

UPC  User Process Configuration 
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 Mechatronic systems design 

In this chapter mechatronic design is introduced. We focus in this work on Systems Engineering (SE), 

Disciplinary Engineering (DE), and Multidisciplinary Design Optimization (MDO). Based on their 

limits, the research problematic emerges. The Electronic Throttle Body (ETB) is an example of mech-

atronic systems that will be used for illustration. 
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1.1 Mechatronic systems 

1.1.1 Definition of mechatronics 

The term “mechatronics” originally emerged from the Yaskawa Electric Corporation in Japan (Kyura 

and Oho 1996). It combines the two words “mechanics” and “electronics”. The French Standard Or-

ganization AFNOR, normalized the definition of the mechatronics (NF E01-010):”a synergistic com-

bination of mechanical, electrical, control and computer” as illustrated in Figure 1-1. The design of 

mechatronic systems is complex because of the increasing integration level and the wider range of 

collaborators involved (Tomizuka 2000). Mechatronics can be considered as a philosophical ap-

proach to design performant devices through a mechanism of simulating interdisciplinary ideas. The 

performance of mechatronic products results from the combination of precision mechanical and elec-

trical engineering and real time programming integrated into the design process (Shetty, Manzione et 

al. 2012).  

 

Figure 1-1. Mechatronic applications (Karnopp, Margolis et al. 2012) 

1.1.2 Mechatronics system structure 

There is a need to understand the fundamental working principles of mechatronic systems before 

approaching the design procedure of a mechatronic product. The general scheme (Figure 1-2) presents 

the architecture of a mechatronic system. 
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Figure 1-2. Mechatronic system architecture (adapted from (Krause, Jansen et al. 2007)) 

The basis of mechatronic systems is the physical structure. Information on the state of the mechanical 

product has to be obtained by measuring energy flow and/or information flow. Together with the 

reference variables (coming from man-machine interface), the measured variables are the inputs for 

an information processing, which controls the system. The generated signal is converted to an analog 

signal for the actuator. Mechatronic systems make new functions possible that could not be possible 

without this integration like fault diagnosis, adaptation to changes, autonomous systems… 

In the future, growth in mechatronic systems will be fueled by the growth in the constituent domains. 

We can cite for example: cyber communication, 3D printing for integrated prototypes, images recog-

nition in sensors, and machine learning in control systems. Mechatronic systems are present in many 

areas and some products will be presented in the next paragraph for illustration. 
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1.1.3 Mechatronic products 

Mechatronic products are divided into micro-mechatronics and macro-mechatronics. Micro-mecha-

tronics deals with miniaturization and precision applications like piezoelectric components, micro-

actuators, and micro-sensors. Macro-mechatronics are shown in Figure 1-3, they are components pre-

sent in daily products, machinery, transport… 

 

Figure 1-3. Examples for mechatronic components (Hehenberger and Zeman 2007) 

Mechatronics has a high impact on the automotive area. In our project, PSA and Valeo gave as their 

point of view on this subject and how they collaborate to design mechatronic systems.  

These systems improve the drivability and reduce the emissions. They introduced functionalities in 

automobiles that were not feasible with purely mechanical systems. All mechatronics management 

remains invisible for the customer and allows correction of systems in real time (engine management, 

stability control, braking control…). The modern Spark Ignition (SI) engines are equipped with mech-

atronic components that control air-to-fuel ratio (George and Pecht 2014). The process of varying air 

intake into the engine cylinder is accomplished employing the Electronic Throttle Body (ETB). As 

shown in Figure 1-4, the throttle valve varies the quantity of air flow into the engine and thereby 

cylinder charge, which determines the engine torque (Rossi, Tilli et al. 2000). The ETB offers in 

acceleration maneuvers, a smoother vehicle behavior and ensures security by controlling the engine 

operation range (engine speed limitation, idle speed...) (Corno, Tanelli et al. 2011).  
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Figure 1-4. Electronic throttle body environment (Nentwig and Mercorelli 2008) 

The ETB encompasses the aspects of a mechatronic system by containing mechanical parts, electric 

power, electronic sensor and a control system. Figure 1-5 details the composition of the ETB. A 

typical ETB includes a DC motor that actuates a gearbox and a valve. A potentiometer is generally 

used to measure the angle for control feedback. A failsafe system with two springs is used when the 

control system fails, it keeps the valve at the Limp Home position (between 10 deg and 14 deg) in 

order to provide the necessary flow to keep the engine running (Rossi, Tilli et al. 2000). 

 

Figure 1-5. Electronic Throttle Body composition 
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As reported by PSA and Valeo, the design of such system creates new challenges for the industrials 

because of its multi-physical aspect and the implication of different design teams (control, mechanic, 

electric, thermal, and fluid). Moreover, the nonlinearities of the system bring challenges in the design 

and the verification phases. A successful design requires a successful collaboration between multi-

disciplinary teams. The ETB example will be used in this manuscript in the different chapters with 

different levels of maturity to concretize the design process of such components and validate our 

approach. The next section details the design process of mechatronic systems. 

1.2 Design process for mechatronic systems 

The ABET (Accreditation Board for Engineering and Technology, Inc.) definition of engineering 

design: “Engineering design is the process of devising a system, component, or process to meet de-

sired needs. It is a decision-making process (often iterative), in which the basic sciences, mathematics, 

and engineering sciences are applied to convert resources optimally to meet these stated needs (Com-

mission 1999)”. Like any design, the mechatronic design is an iterative procedure with defined steps. 

However, it is more complex than mono-disciplinary processes because it requires continuous inte-

gration and collaboration. In this section, the main design cycles are analyzed. 

1.2.1 Sequential cycle 

It is not uncommon to find companies that consider that mechatronics system design as a sequential 

cycle (Figure 1-6). This cycle consists of three consecutive phases: modeling and simulation, proto-

typing and deployment. First, the requirements are analyzed and the conceptual design starts based 

on customer needs. The conceptual design aims to define the optimum configuration of the whole 

system without going into detail on its subsystems. The main functions are identified and an archi-

tecture is created for the system. Then, a first modular mathematical model is created with the funda-

mental behavior of the subsystems. After, a detailed model which is an extension of the first one 

provides more functions and accuracy for analysis. The control system is developed and the final step 

of this phase consists in the optimization of the system with its controller. If the requirements are 

designer can move the prototyping phase otherwise a new iteration is necessary to adjust the model. 
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Figure 1-6. Mechatronic sequential process (Shetty, Manzione et al. 2012) 

The complexity of multidisciplinary design showed the limits of this approach. Downstream tasks are 

penalized because they are more and more constraints by the choices made during upstream tasks. In 

fact, the multidisciplinary optimum cannot be reached by successive monodisciplinary calculations. 

Moreover, the duration of the process is not optimal because the tasks are carried out one after an-

other. Therefore, V-model which is more adapted for concurrent engineering was widely adopted by 

industrials (Shetty and Kolk 2010). Then, it was standardized for mechatronics in VDI 2206 guideline 

that will be presented in the next paragraph. 

1.2.2 VDI 2206 cycle 

The VDI 2206 guideline provides a design process which is more integrated than the sequential de-

sign process. This cycle is divided into two phases: A top-down phase for system decomposition and 

a bottom-up for system integration (Figure 1-7). Even if the base of this process is sequential, the V-

form highlights the continuous feedback connections between the two phases. The disciplines are 

treated in parallel to stress the iterations that occur during the cycle and facilitate concurrent engi-

neering. Five main macro steps can be considered in this process (Dick, Hull et al. 2017): 

Step1: Product Requirements 
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The customer requirements are identified in this step. A good understanding of customer requirements 

is the key to provide a suitable system (Wiesner, Freitag et al. 2015). Requirements should be clear 

and concise because this step is essential to have a first estimation of the resources and time allocation. 

Step2: Conceptual Design 

Based on the requirements, system engineers identify the different functions of the system. This pro-

vides a greater understanding of the system complexity. For each function, a functional subsystem is 

defined (Peluso 2015). Therefore, we can obtain different architectures depending on the chosen func-

tional subsystems. Functional and architectural design can be combined into conceptual design 

(Kellner, Hehenberger et al. 2015). This step is important because it has a direct impact on the main 

parameters, properties, and cost. 

Step3: Domain-specific Design 

The detailed design step is between the two phases. The previously defined architecture is trans-

formed into technical solutions with associating physical components to the functional subsystems. 

The architecture needs then to be modelled using embodiment tools. In this step, the system begins 

to take shape and first analyses are made to model the system (Törngren, Qamar et al. 2014). 

Step4: Verification & Integration 

Several analyses and simulations are made in this step to test the system against physical laws. The 

goal is to recompose the system and evaluate the integration of the different components (Petty 2009). 

The properties depending on the nature of the components (thermodynamic, vibration, dimensions...) 

and the requirements are verified and analyzed. 

 

Step5: Product Validation 

In this final step, the requirements related to the global system are validated. This validation can be 

experimental or virtual using analysis tools and multidisciplinary design optimization (Hammadi, 

Choley et al. 2012). 
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Figure 1-7. Design cycle of mechatronic systems (adapted from VDI Guideline) 

1.2.3 Mechatronic design cycle in the industry 

The VDI 2206 is, in practice, a spiraling process between decomposition phase and integration phase. 

We have initially incomplete requirements which gain completion during the decomposition phase. 

Also, conflicts in the integration phase lead to changes in the architecture defined by system engi-

neers. The principle is to carry out in parallel different activities related to the product design. To 

study the mechatronic design cycle from an industrial perspective we decompose into SE, DE, and 

MDO (Figure 1-8). The predominant field in the first phase is SE which manages the decomposition 

activities (Requirements management, Functional modelling…). For the second phase, the field of 

DE is predominant. By DE we mean all the formal analyses and calculations made on CAD tools in 

the different disciplines involved in the mechatronic design (Embodiment, simulation…). Finally, 

MDO was recently created to resolve complex multidisciplinary problems through optimization al-

gorithms. SE, DE, and MDO are explained in the next three sections. 
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Figure 1-8. SE, DE, and MDO activities in mechatronic design 

1.3 Systems Engineering (SE) 

International Council on Systems Engineering (INCOSE) defines SE as “An interdisciplinary ap-

proach and means to enable the realization of successful systems. It focuses on defining customer 

needs and required functionality early in the development cycle, documenting requirements, then 

proceeding with design synthesis and system validation while considering the complete problem. It 

integrates all the disciplines and specialty groups into a team effort forming a structured development 

process that proceeds from concept over production to operation. SE considers both the business and 

the technical needs of all customers with the goal of providing a quality product that meets the user 

needs” (Friedenthal, Griego et al. 2007). In this section, we will explore this field and its implication 

in the definition and decomposition phase. 

1.3.1 Definition and decomposition phase 

SE was developed to address the challenges of coordinating and managing the design cycle. It is 

typically viewed as a separate branch of engineering addressing both technical and management ac-

tivities with the goal of balancing all project objectives. The system engineer intervenes concretely 

in the first part of the design cycle to define the system based on the requirements (Lightsey 2001). 

Therefore tools belonging to SE are tools for creating a common system model that integrates all 

partial models and their relationships (Biahmou 2015). SE focuses more on the process of designing 

a system rather than on the solutions to the design problem itself.  It focuses on the system-level to 
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evaluate the properties of the system under consideration in order to ensure that the final system meets 

the design requirements.  

There are various languages for SE (SysML, eFFBD, ISM…). Only the SysML language will be 

considered in this chapter because it is one of the most commonly used in industry. 

1.3.2 SysML Language 

The System Modelling Language (SysML), comes from an effort from the International Council on 

Systems Engineering (InCoSE) and the Object Management Group (OMG) to integrate languages of 

different disciplines into one interdisciplinary language. SysML is the most widespread system mod-

eling language in the industry and it derived from UML2.0 (Friedenthal, Moore et al. 2014). This 

language offers nine different diagram types representing various aspects of the system.  

- Requirement diagrams are used to model the requirements, their organization and their re-

lationships with the elements of the system. 

- Activity diagrams allow modelling the chronological order of activities and decisions to 

model a process for example. 

- Sequence diagrams are used to model the flow of control between actors and systems 

(blocks) or between parts of a system.  

- State machine diagrams describe the states of a system and their changes in response to 

events. 

- Use case diagrams describe the usage of a system by its actors (environment)  and high-level 

services or features that the system has to offer. 

- Block definition diagrams represent the structure of the system and provide an option for 

modelling the system hierarchy. The system consists of various blocks (modular units of the 

system), which are interconnected by connectors, which specify relationships between model 

elements, both within and across the boundary of the system. 

- Internal block diagrams Represent the internal organization of a block and of its sub-blocks, 

and in particular the interconnections between the ports. 

- Parametric diagrams represent physical aspects of the system, using constraint blocks in a 

specialized variant of an internal block diagram. Constraint blocks include a constraint (math-

ematical equation) and the associated parameters.  

- Package diagrams are used to organize the model (e.g. for visualization and evaluation pur-

poses) 

There are allocations between these diagrams for traceability like the possibility to link a requirement 

and a component for example or a logical component and a physical component. 
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Figure 1-9. Diagrams of SysML language (Friedenthal, Moore et al. 2014) 

The modelling of a system does not require the use of all the SysML diagrams, it depends on the type 

of study. To use this language efficiently in mechatronic design, we need methods to use the right 

diagram at the right moment. 

1.3.3 Methods for SE in mechatronic design 

As explained before, SysML language contains several diagrams that are linked to each other. A 

methodology is then needed to use them efficiently during the design cycle of mechatronic systems. 

“Black box” and “White box” approach was proposed for this purpose (Mhenni, Choley et al. 2014). 

In the first phase (Black box), the system is specified but not described by keeping an external point 

of view. The second phase (White box), the system is described in detail which corresponds to the 

conceptual phase. This methodology improves the traceability in the decomposition phase and pro-

motes the diagrams reuse. 

 

Figure 1-10. Black box-white box approach (Mhenni, Choley et al. 2014) 

An integration modelling approach was also proposed in three steps (Abid, Pernelle et al. 2015). The 

first step is to define the system requirements with the external environment, main functions and link 

it to the PLM system. The second step is to study in detail the structure of the system with its subsys-

tems and components. Finally, the behavioral study of the system allows defining the development 

process of the mechatronic system and its life cycle from PLM data (Figure 1-11) 
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Figure 1-11. Integration modeling approach (Abid, Pernelle et al. 2015) 

1.3.4 ETB definition example 

To illustrate the SE approach. Two diagrams of the ETB system will be presented here. The functional 

diagram as explained before shows the different functions of the system and the links between them 

(Figure 1-12). This diagram shows also the input and output of the system and its environment. 

 

Figure 1-12. Functional architecture of the ETB (Ammar, Hammadi et al. 2017) 

Different architectures can be considered for this functional architecture as illustrated in Figure 1-13. 

In fact, transmission and actuation function can be achieved by different technological solutions and 

this leads to a completely different product in terms of performance and cost.  
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Figure 1-13. Two architectures of the ETB 

In this manuscript, we will work with the standard architecture using a DC motor and a gearbox as 

shown in the BDD (Figure 1-14). 

 

Figure 1-14. BDD of the standard ETB architecture 

The decomposition of the system exposed in this paragraph is one of the main goals of the SE meth-

odology. It gives a system level view of the product and organizes it in clear diagrams so that the 

disciplinary designers can refer to them. The next paragraph explains the current challenges of SE in 

industry. 

1.3.5 SE challenges 

These diagrams are only used to communicate between stakeholders and do not allow to make calcu-

lations or to be simulated.  The integration of simulation and analysis capabilities within SE is one of 

the most challenging and promising research activities. Such interest is also highlighted by the recent 

creation of “Systems Modeling & Simulation Working Group” (SMSWG) between the “International 
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Council on Systems Engineering” (INCOSE) and the “International Association of the Engineering 

Modelling, Analysis and Simulation Community” (NAFEMS). This recent cooperation highlights the 

fact that the integration between system level and multidisciplinary level environments is currently 

one of the most investigated areas of research (Cencetti 2016). The current lack of integration between 

them generates several problems during concurrent engineering. Iterations between system level and 

detailed level are difficult and design changes (which are more and more present) cannot be solved 

easily by disciplinary designers. The next section explains more this issue from the DE point of view. 

1.4 Disciplinary Engineering (DE) 

1.4.1 Integration and verification phase 

DE is a technical and detailed work to create models and simulate the mechatronic system using 

mathematical and physical laws. This rigorous approach aims to optimize the system in its entirety 

and to generate all the necessary data to produce the mechatronic system. Design teams are brought 

to work together and to develop new ways of working to deal with conflicts that emerge during the 

integration. In each discipline, designers are working with specific tools and methods but they have 

to merge their work to verify the global system functionalities. Therefore, the main disciplines (me-

chanic, electronic and control) are integrated depending on design maturity. This integration can be 

virtual by combining disciplinary tools or real by testing the control system with its structure (Figure 

1-15). The main integration approaches in industry are: 

- Model in the Loop (MiL): the plant model is connected to the controller model 

- Software in the Loop (SiL): the plant model is connected to the controller translated C-code 

- Hardware in the Loop (HiL): the plant model interacts with the controller hardware 

- Rapid Control Prototype (RCP): where the real plant is operated together with the simulated 

controller 
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Figure 1-15. Combining real and simulated parts in the mechatronic design (Isermann and Müller 2003) 

The system integration comprises the spatial integration of the hardware components (actuator, trans-

mission, cables, ECU…) and functional integration of software algorithms (control system, fault di-

agnostic, HMI...). To sum up, integration in mechatronics means integration across traditional bound-

aries. In the following, we detail the tools used in this phase. 

1.4.2 DE tools 

The tool landscape for developing mechatronic systems is large and diverse, consisting of a number 

of multi-domain tools and mono-domain tools. In one hand, multidomain tools take into account the 

functional and physical coupling between components. This level of modelling is usually done using 

0D/1D models, represented by algebraic equations, ordinary differential equations (ODE) or differ-

ential algebraic equations (DAE).  These are some examples: Dymola, Open-modelica, Mobile 

VHDL-AMS, AMESIM, 20 SIM. On the other hand, Monodisciplinary tools are based on a 3D geo-

metric representation. The monodomain phenomena are generally represented through partial differ-

ential equations (PDE) and by using numerical approximations such as finite element methods 

(FEM). Here are some Mono-domain DE tools: 

• In mechanical design, dimensions, shapes, and materials that correspond to the physical objects are 

the main interest. These are some examples: Solid Edge, SolidWorks, Catia.ProE 

• In control design, software based on transfer function are used like Matlab/Simulink.  
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• Electronics deals with the physical implementation of the controller. The software packages for 

electronic design support predictions of behavior and execution time through logical and physical 

simulations. 

• Electrical engineering commonly designs components to link electronic and mechanical domains 

like Synopsys, OrCad 

• For specific physical phenomena, like thermal, fluid and magnetic effects, FEM tools based on mesh 

calculations are used. We can cite: Ansys, Abaqus, SiemensNX 

• Test benches: Because no single model can ever flawlessly reproduce reality, there will always be 

an error between the behavior of a product model and the actual products. A test bench offers a real 

environment to verify the product in various conditions. 

In this context, Table 1-1 summarizes the DE tools used in an automotive project. 

Table 1-1. Example of stakeholders and their roles in the automotive domain (Navet and Simonot-Lion 2008) 

 

 

 



Mechatronic systems design 

46 

Mono-domain tools perform well within their domains but cannot consider all the aspects of the 

mechatronic system. Multi-domain tools can cover different aspects of the mechatronic system but 

they are not accurate enough to perform the various steps of the design cycle and need enrichment 

from more accurate tools. Therefore, interoperability is necessary between these tools to realize the 

integration and the validation of the mechatronic system. 

1.4.3 DE and interoperability 

A multidisciplinary system is a source of complexity because designers from different teams struggle 

to communicate and find agreement on design decisions, each with their business constraints and 

conflicting objectives. Moreover, if a significant number of tools is proposed for multi-domain design 

mechatronic systems, these do not integrate all the stages of the design cycle (Cabrera, Foeken et al. 

2010).   

One possible solution to support communication is through data exchange standards. For instance, 

within the CAD community, a number of international standards have been developed to make prod-

uct data exchange possible. Among these standards, the STEP standard (Pratt 2001) is the most re-

nowned. Some key issues, such as errors in exchanged data and loss of data when using a standardized 

neutral model, are still not resolved (Gielingh 2008). As a result, organizations tend to rely on tools 

from a single vendor (which can be costly), or stick to documents and meetings for data exchange 

(which can be time-consuming). 

Another solution is the Functional Mock-up Interface (FMI) which is an open standardized interface 

for co-simulation and model exchange between simulation tools (Nouidui, Wetter et al. 2014). The 

purpose of the standard is to allow models to be interchanged between different vendors, departments 

or modelling disciplines. Each sub-part can then be modelled in the most appropriate tool.  

Finally, XML is a well-known exchange standard. The goal of XML is to enable the automated ex-

change of content between heterogeneous information systems and thus to answer an interoperability 

problem. An XML document is a self-describing text file with tree-structured data. It is usable by any 

application but cannot support dynamic collaboration. 

1.4.4 ETB open loop example 

A simple example is presented in this paragraph to show some tools used in mechatronic multidisci-

plinary design. The task is to improve an existing ETB (Bosch). The first model is an embodiment 

model in Catia (Figure 1-16). 
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Figure 1-16. 3D model of the ETB 

The architecture of the ETB and the involved parameters are detailed in Figure 1-17. The inertia of 

the valve, the gearbox as well as the gearbox ratio are calculated with the embodiment model to be 

used in the 0D model. The 0D model of the ETB is created using components from Modelica library 

(Figure 1-18). Initial values are given for the unknown parameters like the stiffness of the springs or 

the motor parameters. The list of the initial values is given in Table 1-1.Our goal is to understand the 

behavior of the system in open loop. 

 

 

Figure 1-17. ETB open loop architecture and parameters 
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 Figure 1-18. Modelica model of ETB in open loop 

Table 1-2. ETB initial parameters 

Parameter Unit Description Initial value 

Motor 

Km N.m/A Motor constant 0.02 

Ke N.m.s/rad Back emf 0.02 

Rm Ohm Resistance 1.5 

Lm H Inductance 0.0015 

Jm Kg.m² Inertia 4.8e-6 

im A Current variable 

Vm V Voltage variable 

θm deg Motor angle variable 

Gear 

Ng - Ratio 20 

Stop deg Angle interval [0,90] 

Load 

Jl Kg.m² Inertia 5.6e-5 
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Ts N.m Springs torque variable 

Tf N.m Friction torque variable 

Tl N.m Torque after reduction variable 

C1 N.m/rad Main spring stiffness 0.3 

C2 N.m/rad Limp home spring stiffness 0.6 

θl deg Throttle angle variable 

 

A simulation is made to understand the failsafe functionality. The failsafe system works when the 

control system of the ETB fails. It brings the valve to a pre-defined angle (limp home position), in 

order to provide the necessary air flow to keep the engine running. This position is between 10 deg 

and 15 deg depending on models. The limp home spring is connected to the lever and the sector gear, 

it works only when the lever is in contact with the stop limit. The main spring is connected to the 

sector gear and the mass. The role of the main spring (stiffness C1) is to bring the valve from open 

positon to limp home position. And the role of the second spring (stiffness C2) is to bring the valve 

from the closed position to the limp home position. In the two cases the equilibrium position is 

reached at the limp home position. The Figure 1-19 shows an example done with a throttle initially 

positioned at 90° with 0V supply voltage. The two springs reach the equilibrium position at 10deg. 

 

Figure 1-19. System response with 90° as an initial position to illustrate springs effects 
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This model gives us a first idea about the behavior of our system. We can understand how friction 

and springs work. However, this model needs optimization because the return time is too long. Opti-

mizing such a model is difficult because we have conflicting parameters, if we reduce the main spring 

stiffness, the rising time will be shorter but the return time will be longer. Therefore, we need to use 

specific optimization methods. This challenge and others will be explained in the next paragraph. 

1.4.5 DE challenges 

Given the multidisciplinary nature of mechatronic design, engineers need diverse and heterogeneous 

DE tools. To integrate their work, engineers need communication means between these tools: 

- The current interoperability solutions partially solve this need. They do not support the dy-

namic exchange in concurrent engineering (Van 2006). 

- The network-based Workflow Management (WfM) have until now been more used for man-

aging business processes, documents flow, and much less engineering process (van der Aalst 

2012).  

- The Computer Supported Collaborative Work (CSCW) tools focus on communication fea-

tures (messaging) and co-ordination (approval forms, workflow tools, videoconference tools) 

but few of them are interested in collaboration among actors (Pawlak 2010). 

Besides, current engineering problems are increasingly characterized by a wide set of conflicting 

objectives that must be properly approached. The MDO was proposed for this purpose. 

1.5 Multidisciplinary Design Optimization (MDO) 

Multidisciplinary Design Optimization is “a methodology for a design of complex engineering sys-

tems that are governed by mutually interacting physical phenomena and made up of distinct interact-

ing subsystems (suitable for systems for which) in their design, everything influences everything else” 

(Sobieszczanski-Sobieski 1995). This methodology and its impact on mechatronic design are ex-

plained in this section. 

1.5.1 Problem formulation 

In mechatronic design, problems are non-linear, have many constraints and require minimization of 

one or more criteria. Optimization algorithms have been developed to help the design team in this 

quest. The optimization is an important tool in decision science and in the analysis of physical sys-

tems. To use this methodology, we must first identify the objectives to optimize and the constraints 

to respect. They depend on specific parameters, called Design Variables (DV). The aim is to find the 
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values for the DV that maximizes and minimizes the objective function with respecting the con-

straints.  

In mechatronic design, multidisciplinary models are involved in the design cycle with a strong inter-

action between them. Therefore, optimizing a model without taking into account the others will gen-

erate integration problems. The optimal design may even tend to converge on an absurd solution for 

the system (Chapman and Pinfol 2001). Given this state, MDO has been recognized as a promising 

solution to optimize globally the mechatronic system (Alexandrov 2005). 

To express the MDO problem we use the All-At-Once formulation (AAO). This formulation contains 

all the coupling variables, their copies, state variables, consistency constraints and residual equations. 

The formulation of the other problems derive from this definition (Figure 1-20). For more details, 

readers can refer to (Cramer, Dennis et al. 1994). 

 

 

Figure 1-20. The All At Once problem formulation (Lambe and Martins 2012) 

1.5.2 MDO architectures 

The term MDO architecture identifies how the simulation blocks, analysis elements, algorithms and 

overall process flows are related between each other. The architecture refers to the algorithmic strat-

egy to solve the problem. Different MDO architectures are available from the literature but they are 
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presented in different manners. An interesting survey is provided in (Martins and Lambe 2013) where 

clear algorithms of these architectures are proposed to basically describe MDO architectures in uni-

fied diagrams called XDSM (Figure 1-21). To read the diagram correctly, we have to follow the 

indicated numbers step by step. The directions of exchanging the parameters are illustrated in the 

Figure 1-21. The components consist of the discipline analyses represented by rectangles and a spe-

cial component (driver) that controls the iteration which is represented by a rounded rectangle. The 

data flow is shown as thick gray lines. The components take data inputs from the vertical direction 

and output data in the horizontal direction. Thus, the connections above the diagonal flow from left 

to right and top to bottom, and the connections below the diagonal flow from right to left and bottom 

to top. The off-diagonal nodes in the shape of parallelograms are used to label the data. External 

inputs and outputs are placed on the outer edges of the diagram. The thin black lines show the driver 

process flow. Loops are represented by j → k with j < k. It means that if in the j step convergence 

condition is not reached we repeat again from the k step.  

 

Figure 1-21. XDSM of a multidisciplinary analysis (MDA) process to solve a three-discipline coupled system 

 

Two kinds of architecture can be found in the literature (Tedford and Martins 2010): 

Monolevel approaches - The whole system is optimized using a single optimization process: 

• Multidisciplinary Design Analysis (MDA) 

• Multidisciplinary Feasible (MF) 
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• Individual Discipline Feasible (IDF) 

• All-At-Once (AAO) 

Multilevel approaches - Monodisciplinary optimizations are first conducted, before optimizing the 

whole system:  

• Collaborative Optimization (CO) 

• Concurrent SubSpace Optimization (CSSO) 

• Bi-Level Integrated Systems Synthesis (BLISS) 

• Analytical Target Cascading (ATC) 

1.5.3 MDO tools 

Unlike traditional optimization method, MDO is a multidisciplinary methodology (data analysis, vis-

ualization, sensitivity analysis, optimization architecture…). MDO is accomplished by several types 

of software tools. Some CAD tools (Ansys, Matlab, Dymola..) can perform MDO. For instance, An-

sys workbench proposes an MDO tool to optimize models in its environment. These MDO tools are 

limited because they cannot integrate external DE models and do not provide enough algorithms and 

features (meta-modelling, sensitivity, architectures…). 

MDO can also be done by Process Integration and Design Optimization (PIDO) tools. They are spe-

cialized in MDO and workflow management and offer various features to integrate DE tools in a 

common framework. Some examples are illustrated in Figure 1-22 (iSIGHT, modeFRONTIER, 

PAnO, ModelCenter, Optimus). They have relatively the same process: Optimization problem for-

mulation, creating links between DE models involved in the loop and finally running the optimization 

algorithm and analyzing the results. Some associated techniques will be explained in the next para-

graph. 
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Figure 1-22. Examples of PIDO frameworks 

1.5.4 Associated techniques 

When the MDO problem involves conflicting objectives, the algorithm identifies several solutions 

that are optimal considering the objective functions, they are called Pareto solutions. Figure 1-23 

shows a Pareto front defining the solutions for two objectives (F1 and F2). The multi-objective opti-

mization becomes more difficult with increasing number of objectives (Hammadi, Choley et al. 

2012). 

 

 

Figure 1-23. Pareto front in multi-objective optimization 

Due to the presence of uncertainty, in real life optimization, it is often required to determine less 

sensitive solutions as robust designs (Figure 1-24). Robust solutions are areas in the search space 
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where significant changes in design variables produce only insignificant changes in the performance 

of the design. The challenge is to identify robust regions in the design space. Global and local opti-

mums have to be taken into consideration in algorithm choice (gradient-based algorithms are sensitive 

to local optimums). The design space should be enlarged if the local optimum is not sufficient. 

 

 

Figure 1-24. Robust vs local vs global optimum 

 

In all the domains of engineering, designers use computationally expensive numerical models. The 

integration of such models in an optimization process can take a long time due to the significant 

number of iterations. Surrogate modeling is used in this case to make an approximation of the expen-

sive model and then use it in the optimization process. In the field of surrogate modeling, three steps 

are required as we can see in Figure 1-25. An initial set of sample points is generated using a statistical 

method of Design of Experiment (DoE). These points are then used as inputs to run the simulation 

model and get function evaluations. Finally, a surrogate model type is selected to represent the re-

sponse surface of the simulation model (Gaussian process (GP), polynomial regression, multi-variate 

adaptive regression splines (MARS)). If the precision of the model is not sufficient, new points are 

generated to adapt the model (Barton and Meckesheimer 2006). 
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Figure 1-25. The three steps of the surrogate modelling process 

 

Another Surrogate modelling method appeared recently, called Space Mapping. The difference with 

the first approach is that we assume the existence of two models for the same system: a fine model 

(precise and expensive) and coarse model (cheaper and less accurate). The idea is to use the coarse 

model in the optimization process and to update it with the fine model to improve the accuracy (Figure 

1-26). The algorithm establishes a mapping between the two models using Broyden updates (Bandler, 

Biernacki et al. 1994). The critical part of the process is the mapping function. Many techniques exist 

depending on the mapping function (Intput Space Mapping, Manifold Space Mapping, Agressive 

Space Mapping, Output Space Mapping). 

 

Figure 1-26. Space mapping principle 

 

1.5.5 ETB optimization example 

The ETB model presented previously in paragraph 2.4.4 was not optimal. In this paragraph we try to 

optimize it following these specifications: 
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• The rising time (0° to 90°) should be lower than 150 ms (12V supply voltage) 

• The return time with the failsafe system (90° to 10°) should be lower than 300ms (0V supply 

voltage and open circuit) 

• The maximum torque of the throttle should be between 2N.m and 3.5N.m 

The optimization problem presented contains two contradictory objectives because if we want to de-

crease the return time we should use a spring with high stiffness and this will delay the rising time. 

Therefore, a multi-objective optimization is applied by combining Modelica with ModelCenter soft-

ware. The optimization details are presented in Table 1-3. 

Table 1-3. Optimization problem 

 Unit Lower 

bound 

Start 

value 

Upper 

bound 

Objectives to minimize 

Rize_time s - 0.24 0.15 

Return_time s - 3.38 0.30 

Problem Constraints 

Tl_max N.m 2 1.8 3.5 

θ_max deg 89 90 91 

Design Variables 

Km N.m/A 0.01 0.02 0.08 

Rm Ohm 1 1.5 4 

Ng - 15 20 30 

C1 N.m/rad 0.1 0.3 1 

 

Note that the maximum angle was added to the constraints to force the optimizer to respect the re-

quirement full closed to full open. Figure 1-27 shows the Modelica model of the ETB with the design 

variable (in blue) and the objectives (in orange). 
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Figure 1-27. Modelica model for optimization 

To carry out the optimization, Modelica was combined with ModelCenter software (Figure 1-28). 

From the algorithms available in ModelCenter, we have chosen the NSGA II algorithm (Nondomi-

nating Sorting Genetic Algorithm).  

 

Figure 1-28. Optimization between modelica and ModelCenter software 

Since the problem is multi-objective, the solution is not unique but we obtain a set of Pareto solutions. 

The Pareto Front is presented in the Figure 1-29. After 990 iterations, the solutions found present 

good performances and respect the torque constraint. The rising time can attend 118ms, the return 

time can attend 150ms and the designer should make the compromise between these two objectives. 

The torque value is in the range between 2N.m and 3.5N.m and this is sufficient to overcome the 

resistive torques (Mcharek, Hammadi et al. 2016). 
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Figure 1-29. Pareto Front solution 

Four points are selected with the associated design variables in the Table 1-4. 

Table 1-4. Four selected solutions 

 Unit 1 2 3 4 

Objectives values  

Rizing_time ms 128 118 120 131 

Return_time ms 206 302 190 250 

Constraints values  

Tl_max N.m 2.0 2.8 2.1 2.3 

θ_max deg 90 90 90 90 

Design Variables  

Km N.m/A 0.026 0.027 0.023 0.020 

Rm Ohm 1.23 1.32 1.13 1.26 

Ng - 20.71 27.29 23.68 25.73. 

C1 N.m/rad 0.77 0.56 0.80 0.61 
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The solution 2 is then compared with the initial set for illustration as shown in Figure 1-30. 

 

Figure 1-30. Comparison between the initial and the optimized set 

1.5.6 MDO challenges 

MDO is essential to the design and operation of a complex system. It has been successfully applied 

in the designs of many complex systems such as aircrafts, automobiles, shipbuilding, and civic infra-

structures. However, industrial are still facing problems applying MDO due to: 

- The difficulty of formalizing real problems into MDO problems. If the optimization problem 

is poorly defined, the goal will not be reached 

- The difficulty to apply MDO on the integration phase due to the complexity of DE tools  

- The lack of human decision-making support and collaboration means in MDO as reported in 

the NSF workshop 

- The difficulty to integrate MDO to the design cycle 

Regarding MDO challenges and those of SE and DE, we propose in the next section our research 

problematic. 
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1.6 Research problematic 

1.6.1 Literature review 

Design cycle is recognized as the primary contributor to the final product form, cost and reliability. 

The major opportunities for cost savings occur in this phase. There is a need to rapidly conduct design 

analyses involving multiple fields communicating together (Törngren, Qamar et al. 2014). Torry-

Smith argues in his survey that the most reported challenges in mechatronic design are related to how 

information linked to the product concept can be shared across engineering disciplines (Torry-Smith, 

Qamar et al. 2013). We cannot share correctly the information across the design cycle or reuse effi-

ciently previous works if SE, DE, and MDO are separated. 

The fragmentation between SE and DE can be explained by:  

- The nature of the results is different between the two fields (qualitative vs quantitative) 

(Simpson and Martins 2011). 

- Different views and perspectives about the system (hierarchical decomposition vs disciplinary 

decomposition) (Zheng, Le Duigou et al. 2016). 

- Incompatible tools used by system engineers (UML, SysML..) and disciplinary engineers 

(CAD, CAE, FEM..) (Borches and Bonnema 2010). 

- Different capabilities between SE and DE (non-technical vs technical) (Price, Raghunathan et 

al. 2006). 

The fragmentation between DE and MDO can be explained by: 

- Different coupling methods between the analysis tools (semi-formal and manual vs formal 

and automatic) (Hiriyannaiah and Mocko 2008). 

- Different strategies between DE and MDO (exploration vs optimization) (Simpson and 

Martins 2011). 

- DE tools are tightly associated with a specific discipline but MDO are more generic and cut 

across disciplines (specific vs generic) (Simpson, Toropov et al. 2008). 

- The definition of the MDO problem is time consuming and incompatible with concurrent 

disciplinary engineering (Rocca and L. Van Tooren 2009). 

1.6.2 MIMe Project feedback 

In order to have a realistic design approach, it is essential to meet the needs of companies.  The MIMe 

project provides an excellent opportunity to access both industries in charge of new methodologies 
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and academic experts. It enables the industrial problems and requirements to be identified and dis-

cussed. My research activities have always been linked to the meetings of MIMe projects and the 

feedbacks of the involved industrials. Here is a summary of the reflections constructed with the dif-

ferent work packages: 

WP1 – IT expertise 

- Issues related to the database should be considered early in the conceptual phase of a collab-

orative framework.  

- The traceability of the exchanges during the collaboration is important for reuse.   

WP2 – KM expertise 

- Traditional means of collaboration (emails, phone, visio…) are inadequate for concurrent en-

gineering and reuse 

- The semantic mismatch between stakeholders generates problems during collaboration phase. 

WP3 – SE expertise 

- Communication between SE and DE is crucial for trade-offs and cannot be performed with 

the current tools.  

- The need for dynamic verification of requirements during concurrent engineering. 

WP5 – Design process expertise 

- When synchronizing MDO with the design cycle activities, how can we obtain the right results 

at the right moment? 

- How can we ensure the collaboration between two companies having different PLM systems? 

- How can we reduce the design efforts in reuse phases? 

All these points raise serious problems. The next paragraph presents our research problematic in this 

context. 

1.6.3 Research problematic and objectives 

The main goal of the design cycle is to realize in a short time a high-quality design solution that 

satisfies the customer requirements. Disciplinary engineers are at the center of this cycle, they use 

various heterogeneous tools. As we explained before, the collaboration between disciplinary engi-

neers is not efficient and it is disconnected from SE and MDO (Figure 1-31). The problematic of this 

work can be summarized in two questions: 
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- Q1: How can we ensure a dynamic collaboration at the disciplinary level while remaining 

coherent with the system level? 

 

- Q2: How can we formalize the knowledge generated during the collaborative design to facil-

itate reuse and multidisciplinary design optimization? 

 

Figure 1-31. Research problematic 
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 Product Lifecycle Management 

and Knowledge Management Solutions 

The topic of knowledge management and the technologies associated are nowadays receiving 

ample attention, especially in mechatronic design. This chapter is devoted to the description of 

knowledge based solutions to support SE, DE, and MDO. This state of the art will be followed 

by a work positioning. 
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2.1 Product Lifecycle Management and knowledge 

CIMData defines PLM as “a strategic business approach that applies a consistent set of business 

solutions in support of the collaborative creation, management, dissemination, and use of prod-

uct definition information across the extended enterprise from concept to end of life – integrat-

ing people, processes, business systems, and information” (Amann 2002). This section explains 

the evolution of PLM and its relationship with knowledge management. 

2.1.1 PLM and knowledge 

PLM can be defined as the ‘connective tissue’ that allows the connection of design software to 

production and supply chain management software, taking into account the dispersed nature of 

the extended and collaborative enterprise (Figure 2-1). 

 

Figure 2-1. PLM functions in the entire product process (Matta, Ducellier et al. 2013) 

 

 

A PLM system requires a high level of coordination and integration as stated in (Jun, Shin et 

al. 2007). However, the key enabler in PLM are stakeholders, as well as the knowledge they 
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generate during collaboration (Bruun and Mortensen 2012). Formalizing this knowledge con-

tributes to efficient reuse and optimization of the design cycle as reported in (El Hani, Rivest et 

al. 2012). 

The concept of knowledge refers to intellectual capital that is available in the company to carry 

out its design process. The pyramid of knowledge starts with data which are objective and in-

dependent. Then, in a specific context, the data are structured and transformed into information. 

Finally, the interpretation of the information to make decisions is considered as knowledge 

(Alavi and Leidner 2001). 

It is important to incorporate knowledge in the early stages of PLM. Traditionally, uncertainties 

are embedded in the early phase of the design cycle due to the lack of knowledge. Therefore, 

decision making is postponed to late stages when more knowledge is accumulated. This is time-

consuming and costly. An improvement of the traditional design processes is to increase the 

level of knowledge in early design phases, implying more design freedom as shown in Figure 

2-2 (Ullman 2010).  

 

Figure 2-2. Design knowledge and freedom related to the design cycle (Verhagen, Bermell-Garcia et al. 2012) 

2.1.2 Knowledge exchange in PLM 

Nonaka and Takeuchi argued that to reach effective knowledge exchange, we need to convert 

internalized tacit knowledge into explicit codified knowledge to share it (Nonaka, Takeuchi et 

al. 1996). In PLM context, there is a spiral conversion of knowledge as illustrated in Figure 2-3. 
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Figure 2-3. Spiral conversion of knowledge (Nonaka 1991) 

• Socialization: The sharing of tacit knowledge between individuals. Meetings, video confer-

ences, collaboration, and visualization tools are the major tools of knowledge socialization dur-

ing the product life cycle. 

• Externalization: Tacit knowledge is turned explicit. It requires an effort of formalization to 

express knowledge in an understandable form for others. CAD tools are among the most widely 

used tools for externalization within a PLM environment since they encapsulate multidiscipli-

nary design knowledge. 

• Internalization: Transforming explicit knowledge into tacit knowledge. It is a learning phase 

that requires the identification of knowledge relevant to an individual within a broader set of 

explicit knowledge. Direct tools in PLM are search engines which help actors in locating the 

required pieces of explicit knowledge. Indirectly, document and workflow management tools 

have a supportive role in the internalization process since they make explicit knowledge more 

organized. 
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• Combination: Combining two or more pieces of knowledge to generate new explicit 

knowledge. It represents the conversion of simple explicit pieces of knowledge to a more orga-

nized structure. Expert systems, for instance, perform combination through inference in PLM. 

This system can, for example, classify components based on their similarity in geometry. 

2.1.3 PLM challenges 

PLM offers collaborative solutions for product-centric environments. It applies a set of tools 

and technologies that provide a shared platform for collaboration among product stakeholders 

(Ameri and Dutta 2005). However, PLM is not enough to cover the complexity of mechatronic 

collaborative design and its heterogeneous tools (Fortineau, Paviot et al. 2013). This issue is 

amplified when a company works with partners and suppliers with different PLM-systems 

(Srinivasan 2011). To overcome this situation, engineers resort to informal collaboration chan-

nels (email, meeting, phone…). These means are no longer sufficient in concurrent engineering 

for they lead to unnecessary iterations and lack of traceability (Dave and Koskela 2009).  To 

overcome these challenges, Knowledge Management (KM) was proposed (Garetti, Terzi et al. 

2005). 

2.2 KM to support PLM in mechatronics 

Knowledge is important in the mechatronic design cycle. First, the simultaneous and collabo-

rative design processes depend on effective transfer and interpretation of knowledge between 

teams. Second, the knowledge captured from previous projects facilitates decision making dur-

ing the design cycle. Therefore, knowledge should be carefully managed as we will explain in 

this section. 

Research indicates that, in a typical organization, only 4% of organizational knowledge is avail-

able in a structured and reusable format and the rest is either unstructured or resides in peoples’ 

minds (Assouroko, Ducellier et al. 2014). The structured knowledge, although small in volume, 

has high value for companies because it can be accessed easily, mined and used for decision 

making. Generating structured knowledge, through a transformation from a tacit form into an 

explicit form, is one of the critical steps of knowledge management. 

2.2.1 Knowledge classification and representations 

Classifying knowledge is important to determine ways to represent it. Three axes are considered 

while classifying design knowledge (Figure 2-4): 
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Formal / Tacit: This axis is based on the works cited previously (Nonaka 1991). The formal 

knowledge is embedded in the product documents, description of the structure and product 

functions, etc. And tacit knowledge is knowledge related to experience, implicit rules, intuition, 

and others, which are anchored in the actor's memory. 

Product / Process: Product knowledge takes into account information and knowledge about the 

evolution of the product throughout its life cycle. Process knowledge can be classified into 

design process knowledge, manufacturing process knowledge, and business process 

knowledge. In our context, we will only consider the design process knowledge 

Compiled / Dynamic: The compiled knowledge is essentially obtained from experience that can 

be compiled into rules, plans, scripts, etc. Dynamic knowledge encodes information that can be 

utilized to create extra knowledge structures, not covered by compiled knowledge 

 

 

Figure 2-4. Classifying knowledge in three axes (Chandrasegaran, Ramani et al. 2013) 

 

Knowledge representation lists various forms of knowledge that are used or produced at each 

stage. Recently, a design process view of knowledge was proposed (Chandrasegaran, Ramani 

et al. 2013). Figure 2-5 shows this interpretation of knowledge representation during the product 

lifecycle. 
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Figure 2-5. Knowledge representations throughout the product lifecycle (Ali 2016) 

Five categories of knowledge representation are proposed (Owen and Horváth 2002): 

- The pictorial representation, which relates to the knowledge that is communicated 

through photos, videos, drawings, etc. 

- The symbolic representation, which represents knowledge about the logical aspect, such 

as diagrams, decision tables, charts, etc. 

- Linguistic representation, which relates to different knowledge communicated through 

language, such as in verbal communications, texts, etc. 

- The virtual representation, which allows representing the knowledge through virtual 

models such as CAD, virtual reality models, animations, etc. 

- The algorithmic representation, which relates to different expressions mathematics, 

computer algorithms, calculation procedures, etc. 

This helps to highlight the level of detail relating to each form of representation and the ease 

with which it communicates information: linguistic, then pictorial, then symbolic and / or algo-

rithmic, then virtual (from the most abstract to the most concrete).  

Research indicates that wasted time comprises about 60 percent of total operational time in 

most businesses. The major portion of this waste can be attributed to the absence of an efficient 

knowledge management system (Karayel, Özkan et al. 2004).  
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2.2.2 Knowledge Management cycle 

KM is shown as the encompassing area, where the intention is to enable more efficient and 

effective use of knowledge assets in the organization. The basic processes involved in KM are 

creating, storing/retrieving, transferring and applying knowledge (Alavi and Leidner).  

Knowledge creation refers to the creativity of an organization to develop novel and useful ideas 

and solutions, for instance, creating new products, new ideas, more efficient processes and new 

skills. Knowledge storage/retrieval refers to the retention/accessibility of knowledge assets in 

organization, namely organizational memory (Garetti, Terzi et al. 2005). That is the knowledge 

residing in various component forms, including written documentation, structured information 

stored in electronic databases, codified human knowledge in expert systems, documented or-

ganizational procedures and processes and implicit knowledge acquired by individuals and net-

works of individuals. Knowledge transfer refers to the availability of knowledge throughout an 

organization, which means distributing knowledge to locations where it is needed and used 

(Maier and Hadrich 2006). Knowledge application relates to the ability of utilizing knowledge 

to confront new situations in an organization. The source of competitive advantage for an or-

ganization resides in the application of knowledge rather than the knowledge itself (Levy, 

Loebbecke et al. 2003). 

KM encompasses Knowledge Engineering (KE) and Knowledge Based Engineering (KBE) ap-

proaches as illustrated in Figure 2-6. 
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Figure 2-6. Overview of KM, KE and KBE (Chandrasegaran, Ramani et al. 2013) 

- Knowledge Engineering (KE) 

KE refers to the use of ontologies in the problem identification phase. An ontology can be 

defined as a definition of a common vocabulary for researchers who need to share information 

in a domain (Tudorache 2006). It includes machine-interpretable definitions of basic concepts 

in the domain and the relations among them. An ontology necessarily includes a common vo-

cabulary of terms and a specification of their meaning (Huzar, Kuzniarz et al. 2004). Without 

specification, the set of ontology concepts would be variously interpretable by different sets of 

users. With specification, different users (e.g., experts in different lifecycle phases) with differ-

ent views on a single reality can be accommodated. 

- Knowledge Based Engineering 

KBE approach is to automate repetitive, non-creative design tasks, which can lead to “signifi-

cant cost savings” and “free up time for creativity” (Rocca and L. Van Tooren 2009). The 

meaning of KBE seems to be dynamic and once very tightly integrated with AI techniques. A 

contemporary description of KBE adopted in this thesis is: Automating non-creative design 

tasks by utilizing object oriented programming (Chapman and Pinfold 2001). 

2.2.3 MOKA standard example 

The MOKA (Methodology and tools Oriented to Knowledge-based engineering Applications) 

European project proposed a KM methodology adopted by various European companies. This 
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methodology aims to capture, organize and store data created in a design process in order to 

reuse this knowledge in future new product development projects (Klein 2000). It indicates the 

interaction between domain experts, knowledge engineers, system developers and end users, 

and their role in the key lifecycle phases (Figure 2-7). The “Capture” phase in MOKA termi-

nology, occurs between the domain expert and knowledge engineer through the development 

of an informal knowledge model, represented by ICARE forms (Illustrations, Constraints, Ac-

tivities, Rules and Entities). The informal knowledge can be read by the end user if needed. The 

next phase is to “Formalize” the informal collected knowledge into a formal knowledge model 

using MML Language (MOKA Modeling Language which is a UML extension). Knowledge 

engineers and software developers interact through the formal knowledge model. In “Package” 

phase, software developers, create appropriate KBE software applications to automate the iden-

tified knowledge contained in the formal knowledge model. In “Activate” phase, end user uses 

the KBE application and ICARE Form to accomplish his activities (Stokes 2001). 

 

Figure 2-7. MOKA methodology process (MOKA Group, 2000) 

2.2.4 Criteria for a mechatronic KM solution  

Based on this state of the art, we suggest in this paragraph the criteria necessary to connect SE, 

DE, and MDO to answer the two research question: 

- Q1: How can we ensure a dynamic collaboration at the disciplinary level while remain-

ing coherent with the system level? 
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- Q2: How can we formalize the knowledge generated during the collaborative design to 

facilitate reuse and multidisciplinary design optimization? 

We need a KM platform capable of managing the knowledge generated in disciplinary and 

system level as well as managing collaboration and conflicts between the different stakeholders. 

The knowledge generated during this collaboration should be formalized for reuse and MDO 

purposes. For this end, we need first to establish a connection between SE and DE. Then, a 

second connection between DE and MDO. We choose common criteria for the two connections 

as explained in Table 2-1. 

Table 2-1. Criteria for KM mechatronic platform 

Criteria SE – DE connection DE – MDO connection 

Product knowledge Quantitative knowledge from 

SE tools and parameters in-

volved in DE tools 

Necessary knowledge for 

MDO problem resolution and 

collaboration results 

Process knowledge Design process between DE 

tools for reuse purpose 

Process between DE tools to 

generate MDO architecture 

Dynamic exchange Interdisciplinary dynamic 

exchange and dynamic re-

quirements check 

Dynamic exchange between 

MDO engineers and discipli-

nary engineers 

Tools interoperability Interoperability between SE 

tool and DE tools 

Interoperability between 

MDO tool and DE tools that 

are not directly related to the 

MDO problem 

Conflicts resolution System and interdisciplinary 

conflicts resolution 

Conflicts resolution between 

MDO model results and re-

lated DE models 

Consistency check Check consistency between 

disciplinary level models and 

system model 

Check the consistency be-

tween MDO model results 

and the other DE models 

 

To the best of our knowledge, no KM solution was proposed to deal with a global connection 

between SE, DE, and MDO. However, important works were made to support separately SE, 
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DE, and MDO. In the next 3 sections, we will explore these solutions and evaluate them ac-

cording to our criteria. 

2.3 SE support solutions 

2.3.1 SysDICE framework 

The lack of an easily accessible analytical capability makes it difficult for systems engineers to 

quickly understand consequences of inevitable changes in requirements. SysDICE methodol-

ogy use SysML as a common language between system engineers and disciplinary engineers 

(Figure 2-8). They use simultaneously SysML diagrams for requirements, functions and con-

ceptual solutions. First, system engineers and disciplinary engineers generate system models. 

The second step is the mathematical formulation related to these models. The final step is the 

evaluation by connecting this model with DE tools (Chami and Bruel 2015).  

 

Figure 2-8. SysDICE framework (Chami and Bruel 2015) 

 

This solution is interesting to fil the gap between SE and DE. It provides a common basis for 

system engineers and disciplinary engineers. However, it does not seem suitable for concurrent 

engineering, because the exchange of knowledge is not dynamic. Additionally, the design pro-

cess is not captured for reuse (Table 2-2). 



Product Lifecycle Management and Knowledge Management Solutions 

77 

Table 2-2. SysDICE framework evaluation 

Criteria Product 

knowledge 

Design pro-

cess 

knowledge 

Dynamic 

Exchange 

Tools 

interoperability 

Conflict 

resolution 

Consistency 

check 

Evaluation The product 

knowledge is 

centralized in 

SysML dia-

grams 

No process 

knowledge is 

considered 

The possibil-

ity to ex-

change via 

the SysDICE 

profile 

Connectors are 

created to con-

nect SysML with 

DE tools 

Only system 

level conflict 

are consid-

ered 

The con-

sistency is 

checked only 

at the system 

level 

 

2.3.2 SLIM framework 

SysML models are capable of describing a given system configuration with a high degree of 

detail, it is difficult to evaluate properly how well the design meets the requirements or to per-

form important trade-offs between performance, cost, and risk. The SLIM platform creates con-

nectivity patterns between SysML models and DE models (Figure 2-9). Then it checks the 

changes and updates the two models of the connection. System engineers can drive automated 

requirements verification, system simulations, trade studies and optimization (Bajaj, Zwemer 

et al. 2011).  It also provides plugins to integrate the system model to a variety of CAD/CAE 

tools. 
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Figure 2-9. Conceptual architecture of SLIM (Bajaj, Zwemer et al. 2011) 

SysML here captures the product knowledge, however, the traceability of the collaboration and 

conflict resolution are missing. This makes the collaboration and reuse phases difficult in mech-

atronics (Table 2-3). 

 

Table 2-3. SLIM framework evaluation 

Criteria Product 

knowledge 

Process 

knowledge 

Dynamic 

Exchange 

Tools 

interoperability 

Conflict 

resolution 

Consistency 

check 

Evaluation The product 

knowledge is 

centralized in 

SysML dia-

grams 

The process 

knowledge is 

not consid-

ered in this 

approach 

Partially cov-

ered 

Interoperability 

between SE, DE 

and MDO tools 

Not consid-

ered 

Consistency 

art system 

level 
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2.3.3 SysML-PIDO 

SysML-PIDO connection is based on the parametric diagram of SysML. This diagram (when 

created properly) has the necessary information to create an analysis model that can be executed 

through the PIDO framework (Kim, Fried et al. 2012). Each block of the parametric diagram is 

considered as an analysis tool. A connection has been made between MagicDraw tool and 

ModelCenter tool (Figure 2-10). This connection gives to the system engineer to execute 

tradeoffs and optimization.  

 

Figure 2-10. SysML-PIDO connection using MagicDraw and ModelCenter software (Kaslow, Soremekun et al. 2014) 

This methodology requires a formalization of the DE tools to match the connections defined in 

the parametric model. The collaboration and the dynamic exchange are not covered also (Table 

2-4). 

Table 2-4. SysML-PIDO framework evaluation 

Criteria Product 

knowledge 

Process 

knowledge 

Dynamic 

Exchange 

Tools 

interoperability 

Conflict 

resolution 

Consistency 

check 

Evaluation The product 

knowledge is 

centralized in 

SysML 

The paramet-

ric diagram is 

The ex-

change is via 

MDO tool 

Interoperability 

between SE tool 

and MDO tool 

No conflict 

resolution 

The con-

sistency is di-
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the only pro-

cess 

knowledge 

and it is not 

dynamic 

rectly consid-

ered inside 

MDO tool 

 

2.4 DE support solutions 

2.4.1 Multiview point methodology 

This methodology focuses on the dependency between people, model and tool levels (Figure 

2-11). The dependency is visualized using semantic web solution for inter and intra viewpoints. 

This tool permits consistency checking and supports effective collaborative design (Törngren, 

Qamar et al. 2014). The dependency graph proposed in this approach facilitates the reuse phase. 

However, it does not support the dynamic exchange between engineers (Table 2-5). 

 

Figure 2-11. Multiviewpoint concept (Törngren, Qamar et al. 2014) 

 

Table 2-5. Multiviewpoint framework evaluation 

Criteria Product 

knowledge 

Process 

knowledge 

Dynamic 

Exchange 

Tools 

interoperability 

Conflict 

resolution 

Consistency 

check 

Evaluation Parameters 

in DE tools 

Dependency 

graph 

Not consid-

ered 

Not considered No conflict 

resolution is 

proposed 

Conflict check 

is managed by 

dependency 

graph 
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2.4.2 PROXIMA framework 

This approach manages the system parameters and constraints as well as the design process 

using DSM view (Figure 2-12). The design process permits reasoning over inconsistencies and 

their origins. Design space exploration is used to optimize the process and minimize the incon-

stancies (Dávid, Denil et al. 2016). PROXIMA is an efficient enabler of collaborative design 

and can support the project managers however it does not offer a collaborative exchange envi-

ronment for disciplinary designers (Table 2-6). 

 

Figure 2-12. PROXIMA framework 

 

Table 2-6. PROXIMA framework evaluation 

Criteria Product 

knowledge 

Process 

knowledge 

Dynamic 

Exchange 

Tools 

interoperability 

Conflict 

resolution 

Consistency 

check 

Evaluation The product 

knowledge 

consists of 

system pa-

rameters and 

constraints 

Process 

knowledge is 

saved in the 

DSM view 

No dynamic 

exchange is 

proposed be-

tween disci-

plinary engi-

neers 

The interopera-

bility is not con-

sidered in this ap-

proach 

A process 

optimization 

algorithm is 

used to avoid 

conflicts 

The con-

sistency check 

is realized us-

ing the process 

modeling 
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2.4.3 Knowledge Configuration Model (KCM) 

KCM is developed with the aim of managing knowledge by using configurations synchronized 

with expert models (Figure 2-13). KCM focuses on the couple product-simulation. The consid-

ered knowledge consists of parameters and expert rules organized in Information Core Entity 

(ICE). ICEs are used by disciplinary designers and conflicts are detected between them (Badin 

2011). This methodology was tested in ADN project and can considerably assist in concurrent 

engineering (Alliance des Données Numériques in French, which means digital data alliance). 

However, in our case, the lack of process knowledge will affect reuse and the connection with 

MDO (Table 2-7). 

 

 

Figure 2-13. Knowledge Management Model 

 

Table 2-7. KCM framework evaluation 

Criteria Product 

knowledge 

Process 

knowledge 

Dynamic 

Exchange 

Tools 

interoperability 

Conflict 

resolution 

Consistency 

check 
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Evaluation Parameters 

and rules or-

ganized in 

ICEs 

No process 

knowledge 

Only inter-

disciplinary 

dynamic ex-

change is 

possible 

SOAP connec-

tion between en-

gineering tools 

Conflicts are 

detected 

when param-

eters does 

not respect 

constraints 

The con-

sistency is 

checked via 

ICE instances 

 

2.4.4 Constraint Linking Bridge (COLIBRI) 

Constraints can be used to support cooperative work in consistency management. COLIBRI is 

completely dedicated to constraints linking parameters between heterogeneous DE models 

(Figure 2-14).  This model allows the connection between parameters encapsulated in hetero-

geneous models through the integration of constraints, taking into account the structure of the 

product. In the constraint modelling method, the constraints are classified into mechanical and 

electrical domains respectively. Based on this classification, the disciplinary and the cross-dis-

ciplinary constraints of a mechatronic system can be managed (Kleiner, Anderl et al. 2003). 

This approaches are interesting to manage inconsistency but does manage exchange between 

engineers (Table 2-8). 

 

Figure 2-14. COLIBRI concept (Kleiner, Anderl et al. 2003) 
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Table 2-8. COLIBRI framework evaluation 

Criteria Product 

knowledge 

Process 

knowledge 

Dynamic 

Exchange 

Tools 

interoperability 

Conflict 

resolution 

Consistency 

check 

Evaluation Parameters 

and relations 

between DE 

models 

No process 

knowledge is 

provided 

No dynamic 

exchange is 

proposed  

The interopera-

bility is managed 

via constraints 

between tools 

There is no 

conflict reso-

lution ap-

proach 

The con-

sistency is 

managed using 

the constrints 

 

 

2.5 MDO support solutions 

2.5.1 Design and Engineering Engine (DEE) 

This system, called the design and engineering engine (DEE), is based on the KBE technique. 

The heart of the DEE is the multi-model generator (MMG). The MMG defines high level prim-

itives (HLPs) to capture elements of similarity among very different configurations and using 

them as the parametrized modules for geometric modeling (Figure 2-15). The engineer there-

fore does not have to do any geometry modeling, only choose the HLPs, which are then assem-

bled together automatically (Rocca and L. Van Tooren 2009). The presented tool is said to be 

effective and time-saving when performing MDO, partly because the geometry is produced 

much faster than with a CAD tool and partly because the pre-processing activities required to 

feed the various analysis systems in the MDO process can be largely or fully automated (Table 

2-9). 

  



Product Lifecycle Management and Knowledge Management Solutions 

85 

 

Figure 2-15. Design and Engineering Engine process (La Rocca 2012) 

 

Table 2-9. DEE framework evaluation 

Criteria Product 

knowledge 

Process 

knowledge 

Dynamic 

Exchange 

Tools 

interoperability 

Conflict 

resolution 

Consistency 

check 

Evaluation Parameters 

used in 

MMG pro-

cess 

The process 

between the 

DE models  

No dynamic 

exchange is 

proposed 

The interopera-

bility is managed 

by the MDO tool 

Not consid-

ered 

The con-

sistency is 

considered 

only during the 

optimization 

 

2.5.2 FabK framework 

FabK methodology is composed of 3 phases: Expert phase, Design phase processing phase, 

Validation and knowledge acquisition phase (Figure 2-16). The feedbacks from late phases are 

integrated into the design processing phase utilizing a KBE application (Toussaint, Demoly et 
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al. 2010). Product and process knowledge are considered in this methodology, nevertheless, 

there is no collaborative environment for dynamic exchange between engineers (Table 2-10). 

 

Figure 2-16. FabK Methodology (Toussaint, Demoly et al. 2010) 

 

Table 2-10. FabK framework evaluation 

Criteria Product 

knowledge 

Process 

knowledge 

Dynamic 

Exchange 

Tools 

interoperability 

Conflict 

resolution 

Consistency 

check 

Evaluation Parameters 

and rules 

The MDO 

process is 

considered in 

this approach 

No dynamic 

exchange 

The interopera-

bility is not con-

sidered  

There is no 

conflict reso-

lution system 

The con-

sistency is 

checked using 

rules 

 

2.5.3 KADMOS framework 

KADMOS (Knowledge and graph based Agile Design for Multidisciplinary Optimization Sys-

tems) platform propose a methodology to automatically generate MDO architecture. This ap-

proach was proposed in the context of AGILE EU project and an open access software was 

developed (Ciampa and Nagel 2017). This framework supports the formal specification the 

MDO problem using graph based system (Figure 2-17). It helps considerably disciplinary en-

gineers to set up MDO architecture and enable system engineers to practice tradeoffs, however, 

it does not support the collaborative phase between engineers (Table 2-11). 
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Figure 2-17. KADMOS methodology overview (van Gent, Ciampa et al. 2017) 

 

Table 2-11. KADMOS framework evaluation 

Criteria Product 

knowledge 

Process 

knowledge 

Dynamic 

Exchange 

Tools 

interoperability 

Conflict 

resolution 

Consistency 

check 

Evaluation Parameters 

and MDO re-

sults 

Process be-

tween DE 

tools and 

MDO archi-

tectures 

Not consid-

ered 

Managed by 

MDO tool 

Not consid-

ered 

Managed by 

the MDO tool 

 

2.6 Conclusion and work positioning 

Many interesting models are proposed to support SE, DE, and MDO. Based on our criteria we 

will choose a methodology to apply it in the mechatronic design context. Our objective is to 

start with a methodology fulfilling a part of our criteria and extend it to reach the connection 

between SE, DE, and MDO. The Table 2-12 summarizes the state of the art. 

Table 2-12. Summary of frameworks evaluation 

Criteria Product 

knowledge 

Process 

knowledge 

Dynamic 

Exchange 

Tools 

interoperability 

Conflict 

resolution 

Consistency 

check 

SysDICE Yes No No Partial No Yes 

SLIM Yes No Partial Yes No Yes 

PIDO No Yes No Yes No Partial 

Multiview Partial Yes No Partial No Yes 

PROXIMA Yes Yes No Partial No Yes 
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KCM Yes No Yes Yes Partial Yes 

COLIBRI Partial No Partial Partial No Yes 

MMG Yes Yes No Yes Partial No 

FabK Yes Yes Partial Partial No No 

KADMOS Yes Yes No Yes No Partial 

 

KCM is the most eligible model with these criteria, offering more flexibility than the other 

solutions in terms of conflict resolution and consistency management. In the next chapter, we 

will define a methodology for KCM in order to enable the continuity between SE, DE, and 

MDO in mechatronic design. 
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 Knowledge Configuration 

Model applied to mechatronic design 

In this chapter, we define a methodology for KCM in order to apply it in mechatronic design. 

This methodology consists of SE-DE and DE-MDO data connections. An application case is 

presented to evaluate KCM in practice. Finally, the practical and theoretical limits of KCM are 

listed. 

 

 

 

 

 

 

 

 

    



Knowledge Configuration Model applied to mechatronic design 

90 

3.1 KCM principle 

3.1.1 Configuration management 

To improve the inter-operability between disciplinary engineering tools, numerous product 

models are created to support the PLM approach through data and information management 

(Function-Behavior-Structure, Core Product Model, Product Process Organization…) (Zheng, 

Bricogne et al. 2014). However, these models do not focus on the management of knowledge 

embedded in CAD and CAE models. In this context, KCM was proposed to manage the 

knowledge encapsulated in disciplinary models (Badin 2011). It ensures the coherence of pa-

rameters through several product design and simulation activities in a collaborative engineering 

context by using the concept of Configuration Management (CM). 

CM is a managerial discipline that aims at providing consistency and accuracy of product 

knowledge throughout its lifecycle and for the same purpose it is being used in different extents 

in most of the organizations (Niknam and Ovtcharova 2013). CM is defined in ISO 10007:2003 

releases: 

- Configuration: interrelated functional and physical characteristics of a product defined 

in product configuration information. 

- Product configuration information: requirements for the design, implementation, verifi-

cation and support of a product. 

Product configuration ensures the consistency through the design process by managing config-

uration information organized into “Configuration Items”. All the configuration items must be 

coherent over all the design process following the evolution into an iterative process and keep 

traceability of any changes. Configuration management can be particularly interesting to man-

age parameters and rules used in several CAD/CAE models. 

3.1.2 KCM overview 

The first objective of KCM is to enable designers to use parameters consistently in collaborative 

design. In fact, the lack of communication among different steps of the design cycle causes 

consistency problems in parameters. In CE, all participants need to access all relevant up-to-

date product information. This methodology is based on the concept of crucial knowledge to 

keep the design models consistent with each other (Monticolo, Badin et al. 2015). Crucial 
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knowledge refers to the sufficient and necessary knowledge that need to be shared for the ac-

tivity of a company (Saad and Chakhar 2009). Here, the knowledge consists of contextualized 

parameters and rules that are critical for the collaborative product development. Therefore, this 

crucial knowledge is structured and has its own lifecycle according to the guiding GAMETH 

framework (Grundstein and Rosenthal-Sabroux 2004). This framework defines a cycle with 

four facets which are: identify, formalize, value and update. 

 The principle is the capitalization of critical knowledge extracted from different expert models, 

into an abstract generic information entity called an “Information Core Entity” (ICE). The ICEs 

are grouped in a “Knowledge Configuration” (KC). Then each stakeholder instantiates the nec-

essary ICEs in his “User Configuration” (UC). This principle is illustrated in Figure 3-1 and 

further explained in the next section. 

 

Figure 3-1 Knowledge Configuration Model principle 
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3.2 Main concepts 

3.2.1 Information Core Entity (ICE) 

ICE is an indecomposable generic entity that can capitalize crucial data extracted from disci-

plinary models in order to move from the data state to the information state (Badin, Chamoret 

et al. 2011). It is composed of parameters and generic constraints. These constraints include: 

- Mathematic relations 

- Expert rules (if  ... then  ...) 

- Boundary conditions (min ,max ,default) 

- Discrete values table 

The creation of ICEs results from an analysis to identify data and information crucial to capi-

talize and share in the design process, especially between disciplinary models. The set of ICEs 

forms a dynamic knowledge base which is enriched as the project evolves. 

3.2.2 Usage Configuration (UC) 

Each user makes a selection in the ICE database to retain only those they need for their activity. 

Then, they instantiate this selection in a Usage Configuration (UC) and synchronize it with a 

disciplinary model. Thus, a UC is constituted of ICE instances and represents the knowledge 

encapsulated in a disciplinary model. The notion of configuration refers to all the services of 

version management, management changes and consistency management in the UC. Therefore, 

in a UC, a user can back up multiple versions based on changing parameter values or adding or 

deleting instances of ICEs. The interest of configurations is to have a mode of homogeneous 

representation of knowledge that can be used in different activities of the design process. It is 

through them that the coherence of shared knowledge is ensured because it is very difficult to 

directly compare several disciplinary models with each other that are using different heteroge-

neous tools. 

3.2.3 Knowledge Configuration (KC) 

KC contains the ICEs and UCs that will be used in the collaboration. It can be considered as 

the dashboard of the collaboration. UCs are compared in KC to give users information on the 

existence of possible conflicts. This global configuration ensures the management and collab-

oration of all the UCs and represents all the activities of a project milestone. ICEs in KC are 

either directly instantiated from the generic knowledge base or recovered from other previous 
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configurations. When the collaboration starts, the project manager can visualize the existing 

conflicts between the different instances ICEs of the published UCs.  

3.2.4 KCM metamodel 

The KCM UML metamodel is shown in Figure 3-2. The link between the various concepts. 

KCM manages: 

-  Technical data: the parameters and expert rules extracted from disciplinary models. 

-  Information: the data identified, structured and organized into a specific entity to con-

struct a technical and generic product information baseline. 

-  Product Knowledge: a set of technical product information entities instantiated from 

the baseline in a configuration used in specific design or simulation activity. This con-

figuration is synchronized with a specific CAD or CAE model. 
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Figure 3-2 UML meta-model of KCM (Monticolo, Badin et al. 2015) 

3.3 KCM use 

3.3.1 Consistency checking 

Each user working on very different expert models (design and simulation domain, different 

tools, different components, etc.), exports data from multiple product architectures into their 

configurations simultaneously. The consistency management between configurations can warn 

users if conflicts occur between data shared by several expert models. Two kinds of consistency 

are considered (Badin, Monticolo et al. 2011): 

- Consistency in User Configuration level: parameters must respect all the rules defined 

in the UC 
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- Consistency in Knowledge Configuration level: Instances of the same ICE must contain 

the same values.  

3.3.2 PLM connection 

In the ADN project, a PLM connector was realized for KCM (Penciuc, Durupt et al. 2014). The 

connector was designed as an independent web application which is accessible independently 

of the information systems considered. The Windchill and ADN environments were chosen to 

illustrate the implementation of the PLM connector. The connector architecture is flexible 

enough to allow portability and interoperability with external applications. The communication 

is handled by the SOAPClient2.4 component, which is a JavaScript library implementing the 

SOAP1.1 protocol. The connection is illustrated in Figure 3-3. 

 

Figure 3-3. KCM-PLM connection (Penciuc, Durupt et al. 2014) 

3.3.3 The need for a mechatronic methodology 

This chapter aims to develop an approach to use KCM in mechatronic design. To provide an 

answer for both research questions, we focus first on the connection between SE and DE with 

the necessary steps to formalize the knowledge for the system and disciplinary engineers. Sec-

ond, we use KCM to integrate MDO and DE by means of synchronization between MDO tools 

and KCM. 
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3.4 SE-DE connection 

Our contribution here is to define a methodology in order to connect SE and DE using KCM. 

After analyzing the collaboration process of PSA and Valéo we defined actors and steps to 

transfer the critical knowledge from system engineers to disciplinary engineers. 

3.4.1 Actors 

The mechatronic system is a combination of mechanical, electronic/electrical and software 

technology, a modification in any discipline will influence the others. The product model of the 

mechatronic system should evolve dynamically according to the progress of the design process. 

Therefore, KCM can clearly help the designers in incorporating changes during the process. 

However, KBE is not limited to its technological approach, it includes a sociotechnical ap-

proach by analyzing the actors and their roles in knowledge management (Arduin et al. (2013)). 

We identified three main roles in our approach: 

• Knowledge Expert 

- Locating and characterizing the critical knowledge needed to solve the problem 

- Capitalizing the knowledge inside ICEs  

• System Engineer 

- Converting the descriptive requirements into bounds and constraints in ICEs 

- Creating User Configurations and manage the collaboration 

• Disciplinary Engineer 

- Filling the parameters of ICE instances in his configuration. 

- Transferring the parameters’ values from other Users if needed 

3.4.2 Methodology 

The different steps are illustrated in Erreur ! Source du renvoi introuvable.:  

1. The critical knowledge is captured and organized in ICEs by the Knowledge Expert. 

The Knowledge Expert should have a multidisciplinary background to collect the 

knowledge from different designers.  

2. System Engineers add the requirements of the project to ICEs. This can be achieved by 

adding new parameters or defining constraints for the existing parameters. This step is 

important because it represents the link between SE and DE teams.  
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3. The manager creates Usage Configurations for the collaboration. Each disciplinary en-

gineering instantiates needed ICEs then they can freely collaborate.  

4. Each user can send results to other collaborators by publishing ICE instance (ICE_A) 

5. Each user can receive results from other collaborators by updating the common ICE 

instance (ICE_B) 

6. There is also the possibility to work on the same ICE and check the results of two dif-

ferent users for validation purposes (ICE_C) 

This approach is flexible and offers a collaborative environment for users from different steps 

of the design cycle so they can collaborate efficiently. Generally, the multidisciplinary collab-

oration is error-prone with difficult decision making but the dynamicity offered by this ap-

proach can handle these problems. In addition, the work made by the different stakeholders can 

be adapted and reused for future collaborations.  

 

Figure 3-4. SE-DE connection using KCM 
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The key element to apply KCM in mechatronic design is the organization of roles during the 

process. The structure of KCM allows the exchange between users but there is a lack of deci-

sions traceability to improve the reuse phase. In the next section, we will focus on the MDO 

part. 

3.5 DE-MDO connection 

Our contribution here lies in defining a connector between MDO tool and KCM to give the 

MDO user the possibility to define the MDO problem in KCM and synchronize the results with 

the other stakeholders. 

3.5.1 MDO user 

The MDO User is an expert in optimization, he knows the optimization techniques and how to 

study the system under analysis in order to select the best optimization strategy. His knowledge 

also covers the techniques for design of experiment and system analysis. The MDO User is 

responsible for the creation of the multidisciplinary workflow, of the optimization plan, and for 

making the plan available to the other users. The definition of the optimization plan includes: 

definition of goals such as objectives and constraints, definition of the design space, and defi-

nition of the optimization strategies (Hiriyannaiah and Mocko 2008). Engineers use the results 

of the optimization to validate their assumptions and to examine different alternatives. The 

MDO user needs, therefore, an environment to exchange directly with other engineers and up-

date his results. 

3.5.2 MDO-KCM connector 

Our methodology consists in defining an environment to manage MDO and collaborative de-

sign. To establish an MDO problem in an industrial context, the intervention of several multi-

disciplinary designers is crucial. This will be possible by using KCM and by correctly defining 

the UCs for each designer. Then a connection is made between KCM parameters and MDO 

tool. Finally, the results of the MDO can be validated in the KCM environment by the experts. 

A standard example is presented in Figure 3-5 to illustrate the methodology. 

1. A Knowledge Configuration is first created to manage the collaboration. The KC man-

ager defines the different UCs and the needed ICEs. In this level, the parameters are 

defined with their units and constraints as explained in the previous section. The values 

of the parameters will be defined later in the UCs. 
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2. Each designer instantiates in his UC environment the needed ICEs. The UC1_MDO 

should contain all the ICEs necessary to define the MDO problem. Then MDO designer 

takes the values of unknown parameters from the other users. In this way, we collabo-

ratively define the MDO problem and we provide interaction between different users. 

3. The parameters of the UC1_MDO are sent to the MDO tool via a connector. A mapping 

is realized between KBE baseline and MDO data. The ICE parameters bounds are used 

in MDO to define optimization objectives and constraints. Then the models’ parameters 

of MDA are mapped to ICE parameters values. 

4. Optimization is launched with iterations between the optimization algorithm and the 

models involved in MDO. 

5. The MDO results are then mapped to the KBE baseline with a second connector. The 

data in UC1_MDO is updated with the MDO results. 

6. The results saved in UC1_MDO can be used then for validation and experimental veri-

fication with other users connected to the KC. Indeed, the MDO becomes a bridge be-

tween different disciplines in different levels of the design cycle. 

 

 

Figure 3-5. MDO - KCM connection 

This connection will enable us to collaboratively define an optimization design and to collabo-

ratively validate the results. However, KCM cannot support the automatic creation of an MDO 

architecture because it does not support process knowledge. Therefore, this methodology can 

be applied only when the MDO problem does not require a complex architecture. 
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3.6 Use case 

To illustrate the methodology, we created a collaborative scenario to optimize the control sys-

tem of a VDO Siemens ETB. This model is shown in Figure 3-6. 

 

3.6.1 ETB control system 

The control system is a Proportional Integrator controller. It generates a PWM signal to actuate 

the HBrige. Figure 3-7 represents the model with the control loop. For security measure, a me-

chanical failsafe system with two springs (main spring and return spring) is used.  So when the 

control system fails, the springs keep the valve at the Limp Home position (in our case 11.5 

deg) in order to provide the necessary flow to keep the engine running. A closed-loop model is 

created using Modelica as shown in Figure 3-8. The optimization of the control system is not 

easy because the system is highly nonlinear and has a hysteresis behavior as illustrated in Figure 

3-9. 

 

 

 

Figure 3-6. Siemens VDO model 
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Figure 3-7. ETB architecture in closed loop 

 

 

Figure 3-8. Modelica model of the ETB in closed loop 
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Figure 3-9. Hysteresis behavior of the ETB 

3.6.2 Collaborative scenario 

The throttle angle has to be precisely maintained based on the driver and other system require-

ments to provide an enhanced throttle response and drivability (Ashok et al. (2017)). The task 

is to design a PI control system for Siemens VDO ETB with the following requirements: 

- Minimize the rise time (11.5 deg to 90 deg) : Lower than 200 ms. 

- Minimize the return time (11.5 deg to 90 deg) : lower than 150 ms 

- Overshoot lower than 5 deg. 

- Static Error lower than 0.5 deg. 

The first phase consists of applying SE-DE connection. The first issue that we faced is to or-

ganize correctly the parameters in ICEs. This step is important because we cannot change Ices 

when the collaboration begin. We choose to organize parameters All the parameters using sys-

tem engineers decomposition (ICE_Control, ICE_Valve, ICE_Motor). Then parameters com-

ing directly from the requirements are added to ICE_Requirements. For specific requirements, 

constraints are added to initial parameters. The list of all the parameters is given in Table 3-1. 

Table 3-1. List of parameters and ICEs 

Parameters Unit Description Min Max 

ICE_Requirements 

Rise ms Rise time from 11.5deg to 90deg 0 200 
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Return ms Return time from 90deg to 11.5deg 0 150 

S_Error deg Signal static error 0 0.2 

Overshoot deg Absolute signal overshoot 0 5 

ICE_Control 

P - Proportional gain 0 0.30 

I - Integrator gain 0 0.25 

ICE_Motor 

Km N.mm/A Motor constant   

Rm Ohm Motor resistance   

Jm Kg.m2 Motor inertia   

Fm N.mm Friction   

ICE_Valve 

Jl Kg.m2 Valve inertia   

Ng - Gearbox ratio   

C1 N.m/rad Main spring stiffness   

C2 N.m/rad Return spring stiffness   

 

KARREN software is platform based on KCM and we used this platform for this case study. 

For more details about the platform, readers can refer to the patent (Navarro, Badin et al. 2018). 

We first created the ICEs and the parameters listed in Table 3-1. Then, we created UCs for the 

users (UC1_MDO, UC2_Test, UC3_Identification) as illustrated in Figure 3-10. 
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Figure 3-10. KARREN platform dashboard 

For MDO, a connector between Karren tool and Isight tool is implemented. As illustrated in 

Figure 3-11, the Karren connector is placed as an input to map the necessary values for the 

optimization problem definition. After the optimization loop, a second connector collects the 

results and sends them to the baseline. This connection allows the integration of the MDO in 

the design process with a clear mapping between MDO parameters and KCM parameters 

 

Figure 3-11. Karren - Isight connection 

The sequential diagram in Figure 3-12 explains the collaboration between the different users. 

The collaboration starts with the KC Manager who defines the different users and fills the 

bounds of ICE_Requirements. These bounds will be used later as optimization objectives and 

constraints. Then each user instantiates the ICEs that he will need. First, the Identification user 

realizes the identification of the ETB and fills the values of the parameters found in ICE_Mo-

tor.3 and ICE_Valve.3. The MDO user takes this values and has now all the necessary data to 
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start the optimization. This data is sent to the MDO tool via the input connector and the opti-

mization is launched. The results of the optimization are then sent back via the output connector 

and saved in ICE_Requirements.1 and ICE_Control.1. The manager has now access to the op-

timization results and waits for the validation. To validate the results of the controller parame-

ters, ICE_Control is sent to the Tester that will use a test bench based on dSPACE card (control 

system) and the Siemens VDO ETB to check the requirements. Then, he fills the test values in 

ICE_Requirements.2 and finally the validation can be made by the Manager. 

 

 

Figure 3-12. Sequential diagram of the collaboration 

 

3.6.3 Results 

The scenario was tested in Karren platform. Figure 3-13 summarizes the results of the collabo-

ration. The consistent parameters represent the parameters sent between the users. Moreover, 

non-consistent parameters represent parameters that need validation. The results of the optimi-

zation respect the requirements and they are near to experiment test values.  

A graphical comparison is also presented in Figure 3-14. A good agreement was obtained with 

experiment but there are low errors due to the assumptions made in the model. We notice that 

the return time is less than the rise time because in the return phase the main spring and the 

motor act in the same direction. The collaboration leads to a validation of the controller values. 
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In practice, this example which is relatively simple was difficult to setup because the decom-

position of ICEs and the centralized collaboration process. The next section explains these lim-

its. 

 

 

Figure 3-13. Results of the collaboration 
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Figure 3-14. Comparison between simulation and experimental results 

3.7 Towards a new KM model 

As we can notice, ICE is at the heart of the KCM. These entities contain all the information and 

constitute a cross-functional baseline. The defined methodology partially solves our initial 

problematic. Indeed, KCM can ensure the consistency between the different models of the de-

sign process and tasks parallelization is then possible. Nevertheless, this consistency is not 

enough to ensure the continuity between SE, DE, and MDO. Even with the methodology that 

we propose, KCM still have limitations in the model and cannot be applied in complex cases. 

Here are listed the limits of this model: 

• Difficult decomposition of the knowledge. This step is important in KCM because the 

ICE structure will be used in all the cycle. However, the decomposition of parameters 

in definition phase is different from the decomposition in the analysis phase and users 

can be confused. 

• The ICE instance is indecomposable and may be unsuitable for some users. For exam-

ple, an ICE instance may contain one important parameter and other useless parameters 

that can mislead the user. In fact, a user cannot select one parameter, but have to take 

the ICE instance with all its parameters. 
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• KCM detects conflicts between users but does not manage decision making (Drémont, 

Troussier et al. 2013). 

• The knowledge reuse is difficult because there is no traceability of the design process. 

It is important to save the final values of the project parameters but there is no infor-

mation about how these parameters are calculated (Belkadi, Dremont et al. 2012). 

• The collaboration is managed by the consistency between parameters. This centralized 

way is efficient for validation but not suitable for normal exchange. 

As a result, stakeholders have problems accessing the information they need and also to under-

stand previous projects. The limits listed indicate a clear demand for a new approach that suits 

the different views of the design cycle. Even with the contributions made in the methodology 

to use KCM in mechatronic design, modifications are needed in the structure of KCM itself. 

KCM can be used in simple projects but to be adapted for complex mechatronic projects. Based 

on these limits we propose in the next chapter a new original model and its associated method-

ology.  
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 Collaborative Design Process 

and Product Knowledge Methodology 

This chapter presents our new model Collaborative Design Process and Product Knowledge 

(CDPPK). The model is first detailed then we present the methodology to connect SE and DE. 

The process knowledge generated during the first connection allows us to connect DE and 

MDO using KADMOS methodology. A Python demonstrator is presented to illustrate our pur-

pose. Finally, we present the KM dimensions of CDPPK. 
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4.1 CDPPK principle 

The success of any collaboration framework is strongly linked to the need to share knowledge 

between actors to ensure a common representation of the problem to be solved (Assouroko, 

Ducellier et al. 2014). However, the shared knowledge is composed of fragments that are cre-

ated by various actors according to their expertise domain. An important aspect to be considered 

is then the adaptation to these different viewpoints between SE, DE, and MDO. 

One may wonder how we can adapt the already available KCM approaches in a way that covers 

the entire design cycle. Our goal is to manage and communicate knowledge between the de-

composition phase and the integration phase. Our framework aims at overcoming collaboration 

and reuse issues. For collaboration, a new way of viewing the product is necessary to find so-

lutions that lie across disciplinary boundaries. For the reuse, the current KCM focuses on de-

clarative knowledge (know-what). This knowledge is important to understand the product but 

should be completed by process intents (know-how) to facilitate the project reuse. 

Our new approach, illustrated in Figure 4-1, is inspired by KCM structure and our contribution 

lies firstly on reorganizing parameters in order to facilitate collaboration. In fact, all parameters 

involved must be reflected in a well formalized conceptual infrastructure to ensure an effective 

connection between SE and DE environments. On the one hand, we propose the use of ICEs as 

a point of reference for system engineers. On the other, disciplinary designers are only to in-

stantiate the parameters that they need from specific ICEs. Accordingly, these disciplinary en-

gineers become detached from the conceptualization of the ICEs. 

Additionally, we added for each parameter an in/out flow to connect the disciplinary engineers 

and create a collaborative network that will be used later for DE – MDO connection. We will 

explain the main concepts of our model then the methodology to connect SE – DE and DE –

MDO. 
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Figure 4-1. Collaborative Design Process and Product Knowledge principle 

 

4.2 Main concepts 

4.2.1 Information Core Entity (ICE) 

We keep the concept of ICE in this methodology to capitalize knowledge. The difference with 

the previous methodology is that ICE is considered here as an organizational structure only for 

the decomposition phase. System engineers use ICE to decompose the system into functional 

subsystems and save the associated parameters and constraints. Therefore, ICE is used here to 

transform product data into product information. The parameters can be: reals, interval, vectors 

and matrix to give more flexibility to the stakeholders. For the constraints, we consider only 

interval constraints in this work. 

4.2.2 Design Product Knowledge (DPK) 

DPK contains all the ICEs used in the project. Stakeholders can add here the parameters and 

the constraints. DPK can be considered in this stage as a product information base. When the 

collaboration starts, stakeholders refer to this base which represents the system level. DPK also 
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plays an important role in conflict management, as we will explain later. After the collaboration, 

ICEs will contain the final product results. Thus, DPK generates product knowledge from in-

formation stored in ICEs. 

4.2.3 User Process Configuration (UPC) 

This new class differs from the UC defined in KCM. Instead of affecting a block of parameters 

in the form of ICE instances, we propose to break ICEs and give the flexibility to disciplinary 

engineers in the choice of parameters that they need. Our contribution is to define input/output 

flows for the instantiated parameters. This considerably facilitates the collaboration and data 

exchange between stakeholders and helps to construct a collaboration network.  

4.2.4 Collaborative Design Process (CDP) 

CDP contains all the UPCs present in the collaboration. It manages the disciplinary conflicts 

between UPCs and ensures the connection with DPK. All the disciplinary engineers are then 

connected to CDP which achieves the traceability of the collaboration. The collaborative design 

process is formalized in a directional graph which facilitates knowledge reuse. All the decisions 

made during the collaboration are also stored in CDP. 

4.2.5 Project Domain (PD) 

The concept of Project Domain makes it possible to define a macroscopic context for the defi-

nition of the basis of ICEs and the use of configurations. Indeed, we can qualify a PD as a global 

usage environment in which a system can be defined and decomposed into major subsystems. 

In this way, we capitalize the respective knowledge to each subsystem and we reduce the com-

plexity during collaboration and reuse.  

4.2.6 CDPPK metamodel 

This new CDPPK model is adapted to the mechatronic design cycle. In the decomposition 

phase, each functional subsystem is represented by an ICE. Then, in the integration phase, each 

DE tool is represented by a UPC. We notice that the knowledge cycle (data-information-

knowledge) for the design process and product is respected. The UML metal-model of CDPPK 

framework is shown in Figure 4-2.  The different classes and connections are represented be-

tween the entities defined previously. This model is based on Configuration Management (CM) 

defined in ISO 10007:2015. CM carries the access to the adequate information relative to prod-
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uct design, realization, verification and use. This information is organized in a “global config-

uration” which is updated and versioned to trace the evolution of the product. In CDPPK, this 

organizational concept is the Knowledge Configuration (KC). The standard defines also “con-

figuration items” that are components of the global configuration to ensure the final use of 

information and allow users to converge to a single product. In our model, these items are the 

UPCs. 

 

4.3 SE-DE methodology 

We define a methodology to connect SE and DE using CDPPK. The main difference with KCM 

is that we can have disciplinary and system viewpoints in the same framework. The methodol-

ogy is detailed in the next paragraph followed by the conflicts management approach. 

4.3.1 Methodology steps 

Actors in the design cycle are submerged in a heterogeneous tools environment and information 

flow. They collaborate with traditional and informal ways (email, meeting...). These ways are 

Figure 4-2. UML meta-model of CDPPK 
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error-prone and impossible to trace for reuse perspectives. Whereas, if we have effective col-

laboration we can acquire not only short-term benefits, during the product development, but 

also long-term ones, during the reuse process. KM was proposed to improve collaboration per-

formance in mechatronic design. Nevertheless, it is not limited to its technological approach for 

it, also, includes a sociotechnical approach which considers knowledge as a resource partici-

pating in companies' performance (Arduin, Grundstein et al. 2013). A very common problem 

of a failed collaborative framework is that it does not meet the users’ real tasks. Therefore, the 

CDPPK’s methodology is created with regards to the mechatronic design cycle (Figure 4-3). 

Each step is adapted to each stakeholder involved in the design cycle and their needs. 

 

Figure 4-3. SE-DE methodology for CDPPK 

Step1: Project Requirements 

The project manager analyses the requirements of the customer. Accordingly, they create a 

Knowledge Configuration and identify the actors needed for each step. Their main objective is 

to lead the team towards accomplishing the project.  
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Step2: Conceptual Design 

Based on customer requirements, system engineers define the functions of the system. They 

can explore several architectures according to the defined functions, in this work, we will focus 

on the development of one architecture. Our hypothesis is to decompose the system into func-

tional subsystems. Each one of the latter is represented by an ICE. The available parameters 

and constraints (from requirements and previous works) are added in this phase to the ICEs. 

 

Step3: Detailed Design 

Here, the previously created ICEs are enriched with all the crucial parameters necessary for the 

integration phase. To do so, we recommend a meeting between the different stakeholders. A 

knowledge expert can also capitalize the crucial knowledge necessary for the collaboration. 

Semi-automatic extraction of parameters methods exists also. This step is a direct intermediate 

between the decomposition and the integration phases.  

 

Step4: Verification & Integration 

In this step, disciplinary engineers create their own User Configuration Process (UCP). Each 

engineer instantiates the parameters that they need in their own UPC. Then, they instantiate the 

parameters to link with their DE model. Then, the in/out flow is selected for each parameter. 

When all the engineers have filled their UPC, the collaboration starts and the exchange of the 

parameters follows the network generated by different parameters flows. Each designer gets to 

know which UPCs are currently related to their work. Each UPC has a collaboration state to 

manage the exchange (Start/Ready/In Progress/Publish). We will further explain this point in 

the following section. 

 

Step5: System Validation 

Thanks to the product knowledge in DPK and the process knowledge in CDP, the project man-

ager has a holistic view of the design cycle.  They need to check the collaboration state and the 

recorded conflicts between system engineers and disciplinary designers in order to assess the 

situation and make decisions.  
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This methodology enables each stakeholder to access and use the right knowledge. At this point, 

Knowledge becomes of great value for the company (Ilvonen, Jussila et al. 2015). In managerial 

terms, our methodology moves from the traditional predefined collaboration process to a more 

dynamic and flexible one. It provides a common basis of exchange that does not disrupt the 

tasks of the stakeholders. The main inconvenience of such methodology is the need to convene 

the different stakeholders to formalize knowledge for it might be time-consuming. Yet, research 

covered in this section proves the long-term benefits of KM (Assouroko, Ducellier et al. 2014). 

That is to say, that the time spent in formalization will be compensated in reuse. 

 

4.3.2 Collaboration and conflicts management 

 Web technology communication can ensure the exchange of information between different 

actors but when it comes to complex multi-stakeholder problem resolution, it does not succeed 

to provide active supports to resolve conflicts. In collaborative design, a conflict is an incom-

patibility between two (or more) design decisions that a design party has a negative critique of 

another design party's actions. According to our methodology, conflicts are generated when 

parameters’ values do not respect the constraints. The constraints associated with the parame-

ters can be system constraints (defined at the beginning in the ICE) or interdisciplinary con-

straints (defined in UPC during the second phase). Therefore, system constraints help us to 

manage requirement changes and interdisciplinary constraints help us to manage conflicts be-

tween disciplinary engineers (Figure 4-4). We defined collaboration states for UPC and CDP 

in order to organize the conflict resolution process. Each UPC has four collaboration states in 

accordance with the four facets of knowledge management cited by Grundstein: identify, for-

malize, value and update (Grundstein 2000): 

- Start: In this initial state, actor instantiates the needed parameters 

- Ready: When all the parameters and the flows are assigned, the actor switches to 

“Ready” state to indicate their readiness to collaborate. They can receive in this state 

input parameters from collaborators who published their work. 

- Publish: When the actor finishes their tasks, they switch to “Publish” state. All the out-

put parameters will be sent to the other collaborators. Each publication upgrades the 

version of the UPC. 
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- Conflict: When a parameter value does not respect the constraint (system constraint or 

interdisciplinary constraint), the user switch to conflict state and the concerned collab-

orators are informed automatically. 

- In parallel, the CDP has its own cycle: 

- In progress: When one or many UPCs are in start state, it means that they didn’t choose 

all the parameters they need. 

- Process: When all UPCs are in ready status, it means that actors defined all the param-

eters and flows. The collaboration graph can be generated in this state. 

- Collaboration: When all actors are publishing their work and/or solving their conflicts. 

In the case of an unresolved conflict, the project manager intervenes to provide a bal-

anced solution based on compromises in global vision. 

- Validation: When all UPCs are in Publish status. In this state, the final values of the 

collaboration are saved in DPK inside ICEs and the final collaboration graph is saved 

in CDP. 

Developing products without a good collaborative environment can result in unnecessary iter-

ations, higher development costs, and quality problems. This methodology assists designers 

finding optimal solutions and making decisions by structuring knowledge for different actors. 

The process knowledge plays an important role in decision making and collaboration as it will 

be explained in the next section. 
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Figure 4-4. System and interdisciplinary conflicts management in CDPPK 

Ensuring the consistency between different design models is crucial in a collaborative develop-

ment environment. The purpose of conflict management is to detect inconsistencies and trace 

this information back to users to allow them to iterate, make decisions and finally converge 

towards a common solution. Once the conflicts are detected, it is a matter of putting the infor-

mation back to the different users. In the case of interdisciplinary conflicts, the conflicts are 

listed in CDP and managed directly by disciplinary engineers. In the case of system conflicts, 

it is the PDK that is responsible for displaying this information for system engineers. In this 

way, the traceability and coherence of manipulated knowledge is guaranteed in the entire cycle. 

The next section explains how the generated knowledge can be used for MDO. 

4.4 DE-MDO connection 

The National Science Foundation Workshop argued that the future of MDO is not MDO; rather, 

the future lies in “Multidisciplinary collaborative human decision making” (Simpson and 

Martins 2011). Our methodology consists in using the process knowledge generated during the 

collaborative design process in order to create an MDO problem. In this way, we use human 

collective knowledge and decisions to generate the MDO problem as we explain in this section. 
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4.4.1 Graph generation 

The collaboration management in CDPPK is based on graph theory (Bondy and Murty 1976). 

To generate collaborative graph process and manage the exchange of knowledge we propose to 

generate a unidirectional graph constituted of edges and analysis blocks. Each analysis block 

represents a UPC and the edges represent the exchange of parameters between the UPCs. Pate 

presents a graph approach to problem formulation for multidisciplinary design analysis and 

optimization (Pate, Gray et al. 2014). He presented two kinds of graphs: 

- Maximal Connectivity Graph (MCG): Represents all the possible interconnections be-

tween DE tools. 

- Fundamental Connectivity Graph (FCG): Simplification of the MCG to represent only 

the tools and the connections necessary to solve an engineering problem. 

The approach is based first on Fundamental Problem Formulation (FPF). It is a general way to 

present an engineering or optimization problem by specifying the objectives to minimize, the 

constraints to respect and the design variables (Cramer, Dennis et al. 1994). Based on this for-

mulation, there are two limits to this approach. The first limit is the difficulty to create the MCG 

when the models are dynamic. In fact, when only one analysis block changes this will affect 

the whole MCG graph. Second, one cannot have all the information needed to transform MCG 

into FCG. In our approach, we create directly an FCG. We propose to implicate actors in the 

creation of the global graph by recovering their work in UPCs that represent the nodes that 

constitute the FCG. Given the nature of UPCs, the FPG can be generated dynamically at any 

moment. 

As illustrated in Figure 4-5, analyses are considered as blocks with inputs and outputs: 

- Parameter connecting two analyses blocks is a coupling variable (out 1 of analysis 1 for 

example). 

- Parameter without flow is a shared variable. 

- Output parameter without a connection and without a constraint is an objective variable. 

- Output parameter without a connection and with a constraint is a constraint variable. 



Collaborative Design Process and Product Knowledge Methodology 

120 

- Input parameter with two entries is a decision node (when two multi-fidelity analyses 

output the same parameter as analysis block 1 and analysis block 2 for example). 

This can be used to facilitate collaboration and reuse. For the collaboration, this graph offers an 

overview of dynamic parameters workflow. Therefore, it helps to detect analyze conflicts and 

gives a global view of the collaborative design process. For reuse, this graph represents a col-

lective knowledge that stakeholders can learn from it to understand previous decisions and to 

improve the design process. In this work, we will also use this graph to facilitate automation by 

means of MDO. 

4.4.2 MDO problem formulation 

To connect DE and MDO, we propose to generate an MDO architecture from the collaborative 

design graph. MDO is an important technique in mechatronic design.  However, the cost-effec-

tiveness and scalability of an MDO process are highly dependent on designers’ ability to rapidly 

formulate the optimization problem for a specific situation. The problem of determining a fea-

sible data flow between DE tools to produce an MDO architecture is combinatorically chal-

lenging (Simpson and Martins 2011). To get an MDO process accepted by its planned users, 

the problem must be customized to their individual requirements. Therefore, we propose to start 

from the process knowledge generated by the collaboration between designers. The feasibility 

of the process was validated previously and this graph presents therefore a precious knowledge 

process for MDO. Our goal is to use the generated graph in KADMOS open source platform. 

Figure 4-5. Exchange graph between DE models 
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This platform was developed in the European AGILE project and allows automatic generation 

of MDO problems (Ciampa and Nagel 2017). 

4.4.3 CDPPK-KADMOS connection 

The KADMOS platform proposes an interesting methodology to automate the MDO problem 

generation (Lefebvre, Bartoli et al. 2017). This methodology contains 6 steps as illustrated in 

Figure 4-6: 

1. Import tools and connections: A maximal connectivity graph is created 

based on XML baseline containing knowledge about the tools and all 

the parameters. 

2. Formulate MDO problem: Transformation of MCG graph to FPG 

graph depending on the MDO problem. 

3. Import MDO architecture on problem: Use the best MDO architecture 

to solve the problem. 

4. Export CMDOWS file: The generated graph is exported in standard 

XML format called CMDOWS to be executed in a PIDO software (the 

software compatible with this format are currently: RCG, Optimus and 

OpenMDAO). 

5. Create executable workflow: An MDO workflow is automatically gen-

erated in the PIDO software. 

6. Run optimization and post-process results: This final phase is an anal-

ysis of the MDO results. 
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Figure 4-6. KADMOS platform overview (van Gent, Ciampa et al. 2017) 

Our methodology is to use the knowledge generated during the collaboration and connect our 

FPG graph directly to the second step of KADMOS process. In this way, we reduce the setup 

time and we import a graph that was tested successfully in manual collaboration. Disciplinary 

designers participate in the creation of the MDO problem. This will reduce considerably the 

errors while launching the optimization in the PIDO tool. 

This methodology was implemented in a Python demonstrator as it will be explained in the next 

section. 



Collaborative Design Process and Product Knowledge Methodology 

123 

4.5 Python demonstrator implementation 

A Python demonstrator was implemented to show the ability of CDPPK to assist designers in 

the whole collaboration process. Due to the time allocated, this demonstrator is not related to a 

web server that permits distributed collaboration but we choose to work on a local application. 

The goal of this demonstrator is to illustrated CPPPK steps and to validate graph theory aspects. 

This demonstrator contains a Product Design Knowledge window, a Collaborative Design Pro-

cess window and a graph generator. 

4.5.1 Product Design Knowledge part 

In this window, we can add the necessary ICEs for the collaboration and fill the parameters in 

each ICE. As reported before, only interval constraints are considered for this demonstrator. 

When the collaboration starts, the system conflicts are listed also in this window (Figure 4-7). 

 

Figure 4-7. Design Product Knowledge in Python demonstrator 
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4.5.2 Collaborative Design Process part 

In this window, we can add UPCs. Normally each UPC represents a user, but for this local 

application we manage all the UPCs in one window. For each UPC, we can add a parameter 

from the list of all the parameters defined before. Then the collaboration starts by defining the 

parameter flows and the collaboration state (Figure 4-8). 

 

Figure 4-8. Collaborative Design Process in the Python demonstrator 

4.5.3 Graph generation 

When all the UPCs are in “Ready” state, the process button is activated and we can generate 

automatically the design collaboration graph using the principle described in the previous sec-

tion. The graph and the connections are generated automatically using Python (Figure 4-9); It 

is possible to generate an XML file based on this process for KADMOS platform in order to 

generate automatically an MDO problem. 



Collaborative Design Process and Product Knowledge Methodology 

125 

 

Figure 4-9. Graph generation in Python 

4.6 Conclusion 

For mechatronic design, informal ways of collaboration are not sufficient when the system is 

complex and many iterations can appear between stakeholders to solve conflicts. Using 

CDDPK, the actors will benefit from a holistic view of the system and conflict resolution ways 

to reduce iterations. Then, the formal product knowledge and the process knowledge generated 

during the collaboration will considerably improve the reuse and the MDO problem automatic 

generation.  

4.6.1 SE-DE and KM 

Our solution is based on a bidirectional connection between the product knowledge and the 

process knowledge. The list of parameters and constraints are instantiated by stakeholders in 

their UPCs. A knowledge process is then generated with the exchanges between the stakehold-

ers. When the conflicts are solved, the final parameters are saved in the DPK. 
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Figure 4-10. Connection between design product and process knowledge 

The product knowledge cycle in CDPPK is the following: 

– Data: parameters and constraints organized in ICEs. Without a context, these ICEs are con-

sidered as data at the beginning of the project. 

– Information: parameters and constraints instantiated in UPCs. In fact, UPCs are used in spe-

cific activities and they are synchronized with specific DE models. 

– Knowledge: when the collaboration progresses, UPCs and ICEs evolve from a version to 

another depending on the conflicts’ resolution. The access to these versions containing the dif-

ferent sets of values and the history of changes is the product knowledge. 

4.6.2 DE-MDO and KM 

The connection between DE and MDO is carried out using the collaborative design graph. This 

graph represents the workflow between the DE models and can be used as a basis to generate 

automatically an MDO architecture. The results of the optimization can be linked directly to 

DPK using the connector defined in Chapter 3. 
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Figure 4-11. Knowledge management in CDPPK 

One of the main goals of KM is the automation. By using our approach we can learn from the 

collaborative design process and when we have enough knowledge about the process we can 

automate it using MDO. 

To validate this approach we propose collaborative scenarios in the next chapter based on the 

ETB design cycle. 
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 Validation of the methodology 

This chapter validates our approach using the Electronic Throttle Body example. Multidisci-

plinary models and the test bench of ETB are presented. First, a collaborative scenario is im-

plemented to validate the SE-DE connection. Second, an optimization problem is solved to val-

idate the DE-MDO connection.  

 

 

 

 

 

 

 

 

 

 

 



Validation of the methodology 

129 

5.1 Multi-disciplinary development of the ETB 

In order to demonstrate our approach, we created different models used in the ETB as well as 

a test bench to reproduce the industrial design cycle. Based on industrial requirement, we ap-

plied our demonstrator in two use cases: SE-DE use case and DE-MDO use case. In this section, 

we introduce the disciplinary models of the ETB as well as the test bench. 

5.1.1 Modelica model 

The Modelica model of the ETB encompasses five physics (electric, mechanical, thermal, fluid, 

control) and was created for optimization purposes (Figure 5-1. Fast simulations can be gener-

ated using this model but it needs 3D enrichment to improve the accuracy. More details about 

the analytic equations of the ETB are detailed in Appendix 1. 

 

Figure 5-1. Multi-physical model of the ETB using Modelica 

5.1.2 Control model 

The control model in Simulink software contains 4 control systems (PI, PID, Sliding 1, and 

Sliding 2) with the possibility to switch from one control to another (Figure 5-2). This model is 

connected to the dSPACE environment for experiment purposes. Sliding control was tested to 

provide more robustness for parameters (Amini, Razmara et al. 2017). More details about the 

analytic formulation of the sliding mode controller are detailed in Appendix 2. 
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Figure 5-2. Control model of the ETB using Simulink software 

5.1.3 Fluid model 

A CFD model is realized using Fluent software (Figure 5-3). The aim is to simulate the airflow 

with precision in different angles and find the discharge coefficient for each angle in order to 

calibrate the Saint-Venant model (Appendix 1). A pipe is realized before and after the valve 

long enough to avoid turbulence effects and results distortion with parasite vortex (Kumar, 

Ganesan et al. 2013). The k-ε model was chosen as the majority of previous studies and automatic 

meshing was used depending on the throttle angle. Therefore, the number of elements was be-

tween 440.000 and 500.000. The inlet boundary condition was set to a pressure of 101325Pa 

and outlet boundary condition was set to the theoretical air-velocity of the vacuum pump for 

each studying point. The temperature was assumed to be 293K at the boundary condition. The 

selected fluid was air with a density following ideal gas law.  
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Figure 5-3. Fluid model of the ETB using Ansys 

5.1.4 Experimental test bench 

For   experimental   measurements   an ETB fluid   test   bench was set up (Figure 5-4). First,  

we  have  the  inlet  straight  pipe  with  60mm diameter and long enough to avoid any unwanted 

vortex and  have  always  a  laminar  flow  at  the  inlet  of  the ETB (140cm).  At the outlet of 

the   ETB,   another   straight   pipe (60 cm) with   the   same diameter is connected to a vacuum 

pump that vacuums the gas from the ETB as a real engine. For measurement, a differential 

pressure sensor is mounted with probe on each part of the ETB.  An absolute pressure sensor is 

placed in the upstream of the ETB. The two pressure sensors are connected with 4 ports to have 

an average of the pressure in the section. A pitot probe to calculate the air flow is mounted on 

the upstream pipe to avoid any false measurements due to vortexes generated by the valve since 

the airflow is considered the same along the pipe. For the ETB control and power supply, a 

dSPACE card is used with a 12V power source for the DC motor, 5V power source for the 

potentiometer and an H-Bridge (Amini, Razmara et al. 2017). The control model is loaded in the 

dSPACE card. The position curve is displayed in real time in the control environment. To sum-

marize, this test bench allows us to validate the dynamic behavior of the ETB, to realize fluid 

measurements in static positions and to study the behavior of the ETB in real conditions. 
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Figure 5-4. Experimental test bench of the ETB 

5.2 First case study: SE-DE connection 

In order to illustrate the effectiveness of our methodology, we present a concrete mechatronic 

collaborative design scenario to connect SE and DE. The case study refers to an Electronic 

Throttle Body (ETB) controller. A collaborative scenario implying various fields of expertise 

is presented in this section. The five steps of CDPPK methodology are applied using the Python 

demonstrator. 

5.2.1 Step1: Project Requirements 

ETB is a nonlinear mechanism which contains several physical effects, such as friction, the 

return spring load, and aerodynamic forces, causing a variable time response, an unsteady be-

havior and static errors. The throttle angle has to be precisely maintained to provide an enhanced 

throttle response. Thus, the goal is to develop a robust and effective PID controller for Siemens 

VDO Electronic Throttle Body with the following representative requirements: 

- Rising time (from 11,5deg to 90deg) lower than 240ms. 

- Return time (from 90deg to 11,5deg) lower than 140ms. 

- Static error at maximum aerodynamic torque lower than 0.8deg. 
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The environment of the system is: 

- A pressure drop between 20 and 120mbar. 

- Temperature between -20 and 140°C. 

The project manager analyzes the requirements and affects the actors of the project. 

5.2.2 Step2: Conceptual Design 

In this step, the system functions are outlined with the associated functional subsystem. In the 

Design Product Knowledge, system engineers define the following ICEs: 

- Motorization function: ICE_DCMotor. 

- Control function: ICE_Controller. 

- Transmission function: ICE_Gearbox. 

- Air regulation function: ICE_Valve. 

An ICE_System is also created to affect general requirements concerning all the system like 

the temperature or the global mass. The controller used here is a proportional-integral-deriva-

tive (PID). This type of controllers is widely employed in the industry. However, in practice, 

it’s hard to optimize when conflicting objectives are to be achieved (Ang, Chong et al. 2005).  

As shown in our demonstrator (Figure 5-5), the first parameters coming from requirements and 

general knowledge are filled in this step in DPK. 
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5.2.3 Step3: Detailed Design 

In this intermediate step, effective communication between stakeholders is necessary in order 

to determine all the parameters necessary for the project and to have a common understanding 

of the design problem. A meeting between system engineers and disciplinary-specific engineers 

is proposed to fill all the parameters in the DPK structure. Table 5-1 contains all the crucial 

parameters in this scenario. Some parameters are filled by system engineers in the previous step 

but the technical parameters are filled by disciplinary engineers. In this step, a refinement of 

requirements is possible by adding constraints to the newly added parameters. 

Table 5-1. The list of crucial parameters and the values found by users 

Parameter Description Unit Min. Max. UPC_ 
Identification  

UPC_ 
Dynamic 

UPC_ 
Fluid 

UPC_ 
Test 

ICE_System 

D ETB diameter mm   60 - -  

Figure 5-5. ICEs definition in DPK 
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T Temperature °C -20 140 - - - - 
Dp Pressure drop mbar 20 120   80 - 

ICE_DCMotor 

R Motor Resistance Ohm   4 -   
K Motor constant N.mm/A   16.9 -   
L Motor inductance H   1.5e-3 -   
J Motor inertia Kg.m2    1e-6 -   
F Friction coefficient N.mm   1.5 -   

ICE_Controller 

P Proportional gain []    0.07  - 
I Integral gain []    0.008  - 
D Derivative gain []    0.001  - 
Se Static error at maximum aerody-

namic torque 
deg 0 0.8  0.59  0.62 

t1 Rising time from 11.5deg to 
90deg 

ms 0 240  218  215 

t2 Return time from 90deg to 
11.5deg 

ms 0 140  112  108 

ICE_Gearbox 

N Gearbox ratio []   44 -   
C1 Main spring stiffness N.m/rad   0.17 -   
C2 Return spring stiffness N.m/rad   0.82 -   
J Gearbox inertia Kg.m2   0.7e-6 -   

ICE_Valve 

Ta Maximum aerodynamic torque N.m    - 0.15  
Wa Angle at Ta deg 0 90  - 30 - 
J Valve inertia Kg.m2   2e-6    

 

5.2.4 Step4: Verification & Integration 

Four disciplinary-specific engineers are involved in this scenario (Figure 5-7): 

- UPC_Identification: Traction tests are made to identify the springs’ stiffness and cali-

bration test are made to identify the motor and friction parameters. 

- UPC_Dynamic: A 0D model in Modelica using Dymola environment studies the dy-

namic response of the system based on differential equations. This model takes into 

account the system non-linearity and operating constraints. 

- UPC_Fluid: The role of the Fluid model is to identify the maximum aerodynamic torque 

applied and the associated angle by CFD calculations in Fluent software. 

- UPC_Test: The test bench is equipped with dSPACE card for a real-time control of the 

ETB using Simulink environment. A wind tunnel and pressure measurement instru-

ments are used to adequately reflect tests under real conditions.  
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As shown in Figure 5-6, each user instantiates his parameters and indicates the in/out flow. 

Each user has a collaboration state and when the analysis is finished, the user can publish his 

work and send the values to related collaborators. The collaboration is then managed as ex-

plained in section 3.4. The collaborative scenario is composed of four iterative steps (Figure 

5-8): (1) The identification of the ETB parameters are made and saved in UPC_Identification. 

The later sends their values to UPC_Fluid and UPC_Dynamic (2) The fluid calculation are 

performed to determine the maximum aerodynamic torque and angle. This information is saved 

in UPC_Fluid, then sent to UPC_Dynamic and UPC_Test to adapt their profile and test the 

maximum torque angle condition (3) Dynamic calculations are made in Modelica to optimize 

the PID controller and respect the requirements in term of rising time, return time and static 

error in maximum aerodynamic torque. The optimized PID parameters are sent to UCP_Test 

for validation (4) The test bench is used to verify the requirements in real conditions. The ex-

perimental values are saved in UPC_Test (5) The validation is made by comparing the results 

of  UPC_Test and UPC_Dynamic as explained in the next section. 

 

 

Figure 5-6. UPCs involved in the collaboration 
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Figure 5-7. The different users involved in the collaborative scenario 
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5.2.5 Step5: System Validation 

In this last step, the final results are saved in the PDK and the final collaboration graph is saved 

in CDP. In order to validate the design, the project manager has to ensure that the simulation 

results and the experimental validation satisfy the control design requirements (step (5) in Fi-

gure 5-8). The project manager has now access to the collaboration process and the product 

design knowledge. In this scenario, the control system is validated with a good agreement be-

tween simulation and experimental results (Columns UPC_Dynamic and UPC_Test in Table 

5-1). The system response is also represented in Figure 5-9 and follows the profile to illustrate 

the rising time, the return time and the aerodynamic effect at 30° when the wind tunnel is acti-

vated. This collaborative process leads to the validation of the designed controller. Product and 

process knowledge are well formalized for future reuse. 

 

Figure 5-8.Collaboration graph generated by Python demonstrator 
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5.3 Second case study: DE-MDO connection 

Starting from the Modelica model identified in the previous section, we propose here a more 

complicated scenario (more iterative and involving more objectives). The goal of this section 

is to illustrate the connection between CDPPK and KADMOS. We start from a collaborative 

process using CDPPK and we convert it automatically into an MDO problem.  

Figure 5-9. The system response to the complete profile reference 
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5.3.1 Requirements 

The Euro6 standard is currently the main purpose of all automotive industrials to look for new 

technologies to reduce emission and enhance driving comfort. Table 5-2 summarizes industrial 

requirements for ETB. We notice that the requirements are multi-physical (control, electrical, 

fluid, thermal) with the interaction between these physics (aerodynamic torque on the valve for 

example). In this section we will evaluate the Siemens VDO model and optimize the sliding 

mode controller as well as the valve geometry to meet these requirements. 

Table 5-2. . Industrial multi-physical requirements for the ETB 

Parameter Description Conditions Requirements 

T1 [ms] Rising time From 11.5 deg to 90 deg < 200 ms 

T2 [ms] Return time From 90 deg to 11.5 deg < 150 ms 

S_error [deg] Static error Considering aerodynamic 

torque 

< 0.1 deg 

I_max [A] Maximum current At rising phase and T = 23° < 1.5 A 

I_avr [A] Average current In stepped profile (10 deg) < 0.5 A 

Flow_LH [Kg.s-1] Airflow at limp home 

position 

Po/ Pi = 0.97  and Ti = 23° [0.006 , 0.01]kg/s 

Flow_max [Kg.s-1] Airflow at full open 

position 

Po/ Pi = 0.97 and Ti = 23° > 0.3 kg/s 

Flow_coef [Kg.s-

1/deg] 

Fluid progressivity 

coefficient 

Po/ Pi = 0.85  and T = 23° < 0.02 deg 

 

5.3.2 Collaborative process 

We defined 4 UPCs to solve the problem defined below: 

- UPC_Fluid: The fluid model estimates of the airflow for different angles and pressure 

ratios (Dm () vector). It estimates also the aerodynamic torque (Tm () vector). 

- UPC_Area: The 3D model calculates the airflow section for the different angles (Am () 

vector) depending on the diameter D and the inclination angle of the valve (In) as illus-

trated in Figure 5-10 
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- UPC_Flow: This 0D model calculates the discharge coefficient (Cd () vector) to opti-

mize the Saint Venant Model (Appendix 1). It calculates also F_max, F_LH, F_coef and 

estimates the inclination angle (In) if these requirements are not reached. 

- UPC_Dynamic: The modelica model uses the parameters calculated previously to sim-

ulate dynamically the ETB and to optimize the sliding mode controller. 

 

 

Figure 5-10. 3D model to estimate the airflow section of the ETB 

The collaborative process is generated using CDPPK (Figure 5-11). The goal here is to validate 

the requirements by varying the inclination angle (In) and by optimizing the sliding mode pa-

rameters (c1, c2 and c3). The fluid part here affects the control performance, therefore, many 

iterations are required to reach the requirements. We use this collaborative process to generate 

an MDO architecture in the next paragraph. 
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Figure 5-11. Collaborative process generated by CDPPK 

5.3.3 MDO problem generation 

The collaborative process generated by CDPPK can be automatically converted into an MDO 

problem using CDPPK-KADMOS connection. Figure 5-12 shows the IDF architecture applied 

to this problem using XDSM generated by KADMOS. In this architecture, UPCs are considered 

as analyses and the optimization process is controlled by two drivers (coordinator and opti-

mizer). 
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Figure 5-12. XDSM of the IDF architecture applied to the ETB problem 

The next step is to automatically create this MDO architecture in RCE software as shown in 

Figure 5-13. Unfortunately, for a license problem, we did not launch the optimization in RCE 

software. We used another software for the results as we explain in the next paragraph. 



Validation of the methodology 

144 

 

Figure 5-13. Automatic MDO problem generation in RCE environment 

 

 

 

5.3.4 Results 

The results of the optimization are detailed in this section and compared to the requirements 

presented previously in Table 5-2. First, the mass flow curves and the 3D model calculations 

are illustrated for different angles “Am ()” (Figure 5-14). Second, the discharge coefficient “Cd 

()” that was calculated by minimizing the error between the Saint Venant model and the values 



Validation of the methodology 

145 

generated by the 3D Fluid model (Figure 5-15). We can notice that the Saint Venant model was 

calibrated correctly thanks to the enrichment data in Figure 5-16. The progressivity coefficient 

(F_coef) at the ratio Po/ Pi = 0.85 is calculated using this curve. The fluid behavior of the system 

respects the requirements. 

 

 

Figure 5-14. Airflow section estimation 

 

Figure 5-15. Discharge coefficient for each throttle angle 
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Figure 5-16. Optimized mass flow model 

For the control part, position tracking curves are generated with the current. The rising time, 

the return time and the maximum current are calculated in Figure 5-17. We notice that the 

response time is respected and that the behavior of the system is stable in the two senses of 

movement. It is important to guarantee this stability because the system is highly nonlinear and 

presents different characteristics in the two senses. The Figure 5-18 shows a stepped profile 

with the associated current. The average current calculated respects the initial requirements and 

gives an idea about the regular consumption of the ETB. In addition, the optimized controller 

is robust and works correctly on the different operating points. The average static error consid-

ering the aerodynamic torque is less than 0.1 deg. Finally, all the optimization results are re-

grouped in Table 5-3.  
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Figure 5-17. Rising time, return time and the maximum current of the ETB 

 

Figure 5-18. Step function response of ETB 
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Table 5-3. Simulation and experimental results 

Parameter Constraint  Simulation 

Requirements 

T1 [ms] [0 , 200]  181 

T2 [ms] [0 , 150]  134 

S_error [deg] [0 , 0.1]  0.07 

I_max [A] [0 , 1.5]  1.312 

I_avr [A] [0 , 0.5]  0.440 

Flow_LH [Kg.s-1] [0.006 , 0.01]  0.009 

Flow_max [Kg.s-1] [0.3 , -]  0.310 

Flow_coef [Kg.s1/deg] [- , 0.02]  0.015 

Optimized sliding mode and inclination angle 

c1 ( = β ) -  4.1 

c2 ( = V) -  0.5 

c3 (= γ) -  2.2 

In [deg]   4.5 

 

5.4 Summary 

In this chapter, we illustrated how our approach can be implemented with industrial use cases. 

We started from industrial requirements and using the disciplinary models and the test bench to 

realize the collaborative scenarios in CDPPK.  

In the first part, we applied step by step the CDPPK methodology starting from the SE view-

point. We generated the collaborative design process and we managed the exchanges between 

disciplinary designers. This first part allowed as to answer the first research question related to 

the dynamic disciplinary collaboration and system coherence. 

In the second part, we were able to generate from a collaborative design process an MDO ar-

chitecture. This automation is possible thanks to the connection between CDPPK and KAD-

MOS. This second part allowed as to answer the second research question related to automatic 

MDO problem generation. 
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Conclusion 

A. Overview 

In this work we tried to answer the questions: 

- Q1: How can we ensure a dynamic collaboration at the disciplinary level while remain-

ing coherent with the system level? 

 

- Q2: How can we formalize the knowledge generated during the collaborative design to 

facilitate reuse and multidisciplinary design optimization? 

For the first question, SE-DE connection proposed in CDPPK ensure a dynamic collaboration 

between disciplinary and system engineers as well as conflict management between disciplinary 

and system levels.  

For the second question, the design process graph generated by CDPPK ensures efficient reuse 

of the collaborative knowledge and the connection between CDPPK and KADMOS ensures the 

automatic generation of MDO problem based on the collaborative design knowledge. 

Therefore, CDPPK is capable of harmonizing the design cycle by centralizing the connection 

between SE, DE, and MDO as illustrated in Figure 6-1. 



Conclusion 

150 

 

Figure 6-1. CDPPK solution for SE, DE, and MDO 

In this context, the presented use case is based on the automotive industrial requirements. Var-

ious disciplines are involved in the design of an ETB system. First, by applying the different 

steps of our methodology, we managed to exchange parameters between stakeholders and to 

connect the knowledge generated by system engineers and disciplinary engineers. Second, we 

proposed an MDO problem based on the design process generated by CDPPK. Thereupon, the 

collaborative scenarios validate the practicality of the approach to connect SE-DE and DE-

MDO. 

The work carried out during this PhD thesis has brought several academic and industrial con-

tributions.  

B. Contributions 

To address the identified scientific challenges we have made the following key contributions: 

- SE-DE connection 

Traditionally, collaborative methods have no evident added value for solving simple design 

problems. In such a case, simple direct communication between engineers seems sufficient. 
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However, when the design involves many parameters and tools, the collaboration becomes 

time-consuming and conflicts become even impossible to resolve. In practice, stakeholders 

spend in average 20 percent of the workweek looking for internal information or tracking down 

other actors who can help with specific tasks (Åman, Handroos et al. 2015). The CDPPK pro-

poses an exchange environment that resolves mechatronic design related conflicts. This is done 

through interdisciplinary constraints between discipline-specific engineers, and through system 

constraints between discipline-specific engineers and system engineers. Thus errors, during the 

design phase, and iterations, between the decomposition and integration phases, are bound to 

be reduced. The cost and effectiveness benefits cannot be evaluated accurately without testing 

the methodology in an industrial environment. Nevertheless, estimations show that the use of 

collaborative tools in the product development phase is likely to improve the revenues in the 

automotive and aeronautic industries by 0.5-0.7% (Chui, Manyika et al.).  

 

- DE-MDO connection 

Conventionally, engineers had to refer to written reports and one or two DE tools, with no need 

for KM support. However, in multidisciplinary mechatronic design, understanding and reusing 

the different DE tools are challenging. As reported recently, research indicates that wasted time 

comprises about 60 percent of the total operational time in most businesses. This is partially 

due to working with wrong data and unnecessary reinvention of the existing knowledge (Ameri 

and Dutta 2005). Therefore, all the manufacturing companies dealing with product families and 

repetitive design task should adopt a knowledge management methodology. In CDPPK, 

knowledge generated by the collaborative activity is stored into product knowledge and process 

knowledge in a way that it can be easily reused. On one side, the product knowledge serves as 

a source of information for system engineers and disciplinary engineers. The system engineers 

use this knowledge to decompose the product parameters and requirements. This is suitable for 

their system view. The disciplinary engineers select the parameters that they need to collaborate 

and find the optimal value. On the other side, the dynamic process knowledge breaks with a 

traditional predefined process which is no more suitable for concurrent engineering. This type 

of knowledge, generated with the FPG graph, can be reused in product families design. Stake-

holders learn from the recorded conflicts and iterations to reduce them in the next design.  
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Moreover, CDPPK-KADMOS connection can achieve significant results through automation 

of complex engineering tasks by automatically generating an MDO problem based on the col-

laborative design process.  

C. Limits 

Concerning the limits of our approach, we can notice that the step 3 of CDPPK methodology 

(formalizing knowledge) might be time-consuming. It requires a close exchange between the 

different actors of the design cycle. We suggested in step 3 of our methodology a meeting to 

formalize the parameters needed for the collaboration. The project manager, the system engi-

neers, and the disciplinary engineers must have a close exchange to form a holistic product 

knowledge. But this can be difficult to organize in complex and distributed environments. Au-

tomated ontology solutions to extract knowledge exist and can be incorporated in this step. 

Either way, the benefits of the formalized knowledge are proven in the long term. The structured 

knowledge is highly valuable for companies because it can be easily accessed, mined and used 

for decision making.  

Lately, knowledge risks have gained increasing attention in the information security related 

literature. Indeed, knowledge can have a competitive value which makes it at risk of inter-

organizational collaboration (Ilvonen, Jussila et al. 2015). One must note that such risks are 

already present in traditional solutions (e.g. email social platforms and face-to-face conversa-

tions). The CDPPK proposes, in this context, to grant each actor special access privileges to 

reduce the probability of such threats.  

For people, there is an inconvenience when adopting new collaborative and reuse tools for they 

require training and time to be assimilated. Therefore, to avoid rejection, the concept should be 

simple and easy to master. Our CDPPK methodology has not been proposed on an industrial 

level yet, but feedbacks from industrials in our project give us good insights. 

The other people related limit is their acceptance to share their knowledge. Research indicates 

that, in a typical organization, only 4% of organizational knowledge is available in a structured 

and reusable format and the rest is either unstructured or resides in people's minds (Rasmus 

2002). Therefore, the successful development of such tools requires the ability of the dedicated 

design team to communicate, collaborate and integrate their knowledge and know-how 

(Assouroko, Ducellier et al. 2014).  
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D. Perspectives 

Based on the discussions with industrials of our project, we estimate the following perspectives: 

- The next step of our work is to upgrade the prototype for web-service applications to 

test it in a distributed industrial environment.  This will allow us to have actual feed-

backs from engineers.  

 

- We plan to include an Agent-based solution supporting the exchange and assisting ac-

tors to avoid conflicts. This technology can be integrated into our methodology as well 

as constraint satisfaction techniques to advise stakeholders during collaboration. 

 

- We plan to use state-of-the-art graph querying tools to facilitate the access to the 

knowledge and facilitate the reuse phase 

 

- The possibility to define different architectures of the same system and generate a 

tradeoff based on common criteria. The tradeoff can be envisaged between KCs. 
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Appendix 1: Analytic model of the ETB 

 
 
According to Kirchhoff’s law, the DC motor circuit can be described as the following equation: 
 ����� = �� �	
����� + 
��������Ω����																																																																																																					�1�  
The voltage at the H-bridge output depending on the duty cycle is modeled by this equation: 

�� = �2� − 1��																																																																																																																																													�2� 
Using the torque balance law, the kinematic equation of the DC motor is: 

�� �Ω
����� = ������� − ��Ω����																																																																																																													�3�	                            
The gearbox reduction equations are: 

����� = ������																																																																																																																																															�4�           
Ω���� = �Ω����																																																																																																																																													�5�           

The torque balance law is finally applied in the valve level: 

�� �Ω������ = ����� − �����																																																																																																																																	�6�    
Where the resistive forces ����� are: 

����� = �!��� + �"��� + �#���																																																																																																																							�7�               
 �� and �� are the motor current and voltage, �� and 
� are the armature inductance and resistance, 

%� is electromotive force (EMF), Ω� is the motor speed, �� and �� are EMF constant and torque fac-

tors,	��  is the inertia of motor, � is the input voltage and α represents duty cycle. The gearbox ratio is	�, 

the valve speed and inertia are Ω� and	��. The torques cited are the motor torque	��, the torque after re-

duction at the valve level	��, and the resistive torque �� . This resistive torque is composed of springs 

torque	�!, friction torque �" and aerodynamic torque �# 	which will be detailed later in the next section. 

The thermal effects are also considered on the resistance and the electromotive force by the following 

equations (�& and �' are linear coefficients): 


���� = 
���(� ∗ �1 + �&�� − �(��																																																																																																										�8�               
����� = ����(� ∗ �1 + �'�� − �(��																																																																																																										�9�               
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Then, the flow through the throttle valve is modelled by a steady isentropic compressible flow 

(Alsemgeest 2004). The most used model in literature is the Barré de Saint-Venant model which give us 

the mass flow rate for chocked and non-chocked flow (Bordjane and Chalet 2015): 

If ,-.-/0 ≥ , '23&0
4�456�	, then the non-chocked-flow is represented by: 

78 = 	9� × ;�<� × =	>
 × �	 × ?=@=	A
&2 ×B 2CC − 1 × ?1 − =@=	A

�2D&�2 																																																									�10� 
If ,-.-/0 < , '23&0

4�456�, then the chocked-flow is represented by: 

78 = 	9��<� × ;�<� × =	>
 × �	 × >C × ? 2C + 1A
23&'×�2D&� 																																																																								�11� 

With �	and =	 the temperature and total pressure at the inlet, =@	the total pressure at the outlet, C	is the 

polytropic coefficient fixed to 1.4, 
 the universal constant equal to 8,314 �.7HID&. �D&, ;�<�	the airflow 

section and 9��<�	the discharge coefficient which is an empirical coefficient to correct the limitations of 

the 1D hypothesis. 
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Appendix 2: Sliding mode control 

 

Many sources of nonlinearities exist in the ETB system and linear control tools (PD, PID, LQR…) may 

fail in some cases. To improve the response of the controlled system, and avoid fast transient variations, 

we looked to use the second order sliding mode control (Bai 2018). 

The sliding surface is defined as:  

J��� = K��� + L �M����� 																																																																																																																																							�12�    
With K��� = 	Ω� −	Ω��" as tracking error and L a control parameter that determine the rate of conver-

gence of the error to zero inside the sliding surface J = 0. 

The considered control parameter is N = 	�� which generates the real control parameter given by the 

duty cycle (α) according to the equation (2). 

After some calculations, we can find that the derivative of J can be written as follows 

J8 = O�. � + P�. �N																																																																																																																																												�13� 
Where O�. � and P�. � are bounded functions whose expressions are given in (Azib, Talj et al. 2010). 

This characteristic of the system motivates us to use the second order sliding mode, super-twisting algo-

rithm, known for its robustness against perturbation and parameters uncertainties. The control parameter 

N is defined as: 

N = N& + N'																																																																																																																																																							�14� 
Where:  

N8&��� = −Q	R�ST	�J�																																																																																																																																						�15� 
N'��� = −C|J|� 	R�ST	�J�																																																																																																																															�16� 
With: 

Q > 9(ℎ� ,				C' ≥ 49(ℎY�Q + 9(�ℎ�Z �Q − 9(� ,			0 < [ < 0,5																																																																																						�17� 
Where 9(, ℎ� and ℎY	 are constants depending on the system such that: 

|∅�. �| < 9(,						ℎ� < P�. � < ℎY				  
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Appendix 3: French summary 

 

 

Résumé:  

Le contexte général des travaux de thèse concerne la conception collaborative de systèmes mé-

catroniques avec pour objectif de formaliser le processus de conception afin de pouvoir le réu-

tiliser de manière efficace. Le problème de discontinuité entre l’ingénierie système (IS), l’ingé-

nierie disciplinaire (ID) et l’optimisation multidisciplinaire (OMD) nous a conduit à proposer 

une nouvelle approche fondée sur la gestion des connaissances cruciales pour la conception 

mécatroniques. 

En industrie, le problème de discontinuité est lié à plusieurs raisons. Premièrement, les outils 

de collaboration actuels ne garantissent pas la traçabilité et la résolution dynamique de conflits 

interdisciplinaires. Par conséquent, les connaissances générées pendant la collaboration ne peu-

vent pas être réutilisées. Deuxièmement, l'hétérogénéité entre les outils IS et ID complique le 

processus de validation des exigences. Troisièmement, la définition d'un problème OMD prend 

beaucoup de temps et reste incompatible avec l’ingénierie concurrente. 

Dans ce travail, nous proposons d'utiliser des techniques de gestion des connaissances pour 

assurer la collaboration entre les acteurs, en améliorant la capitalisation, la traçabilité et la réu-

tilisation des connaissances utilisées. Cette approche s'appelle « Collaborative Design Process 

and Product Knowledge » (CDPPK). Elle permet de centraliser les connaissances nécessaires à 

la collaboration et au suivi des exigences. Elle assure également la traçabilité des échanges entre 

les ingénieurs grâce à la théorie des graphes. Cette connaissance formalisée du processus de 

collaboration permet par la suite de définir automatiquement un problème OMD.  

Pour valider notre approche, un démonstrateur a été mis en place et appliqué au système boitier 

papillon motorisé (BP). Des modèles multidisciplinaires du BP et un banc d'essai expérimental 

ont été réalisés. Ensuite, des scénarios de collaboration industrielle ont été reconstitués avec 

succès en utilisant notre méthodologie. 
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Structure:  

La thèse commence par une introduction générale du contexte et du projet MIMe. Ensuite, la 

problématique de recherche est traitée sur 5 chapitres : 

- Chapitre 1: Ce chapitre présente un état de l’art sur la description des systèmes mécatronique 

et les difficultés rencontrées par les concepteurs. Nous définissons IS, ID et OMD avec des 

exemples réalisés sur le boitier papillon motorisé. 

- Chapitre 2: Ce chapitre présente l’état de l’art en ce qui concerne les solutions de gestion de 

connaissances existantes pour prendre en charge IS, ID et OMD. Nous proposons des critères 

de comparaison pour justifier notre choix et positionner nos travaux. 

- Chapitre 3: Le modèle de configuration de connaissances (KCM) décrit dans le chapitre 2 est 

analysé en détail dans ce chapitre. Nous proposons d’étendre cette méthodologie afin de l’ap-

pliquer à la conception mécatronique grâce à des connecteurs IS-ID et ID-OMD. Cette métho-

dologie est par la suite appliquée à un cas d’étude industriel pour monter les limites pratiques 

et théoriques. 

- Chapitre 4: Basé sur les limites de KCM, notre nouveau modèle est présenté dans ce chapitre. 

Le modèle CDPPK (Process Design Design and Product Knowledge) et la méthodologie asso-

ciée sont expliqués pour répondre à notre problématique de la recherche. Un démonstrateur 

Python est présenté avec les connexions IS-ID et ID-MDO. 

- Chapitre 5: Ce chapitre valide l’approche CDPPK. Nous définissons en détail le cycle de vie 

de la conception ETB dans l'industrie. Les modèles multidisciplinaires mis en œuvre et le banc 

d'essai expérimental sont présentés. La méthodologie est appliquée dans deux scénarios indus-

triels de collaboration pour valider les connexions IS-ID et ID-OMD. 

Le document se termine par une conclusion générale et des perspectives des travaux menés. 

Dans cette conclusion, nous mettons en avant les contributions apportées en termes de méthodes 

collaboratives et de formalisation des connaissances ainsi que les limites de l’approche et les 

extensions possibles. 
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