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et l’ensemble de l’équipe Inria CAGE.

J’ai eu la chance de passer 9 mois formidables à l’ETH Zürich au début de ma thèse, grâce à la
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à commencer par le Bureau des Légendes (15-25-326b, what else?), avec d’abord Chaoyu, Shuyang,
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Merci à vous, vous êtes indispensables.

Nietzsche (je crois que les lettres sont dans le bon ordre) a écrit ”sans la musique, la vie serait une
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Papy, Xémygne, Mathias, Jean-Noël, Clara, Camille J., Alice, Arnaud, Marie S., Marie G., Clément
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sûr Declan et ses chapeaux en peau de renard, qui ne m’a rien appris, sauf peut-être l’orthographe
de whiskey et un peu d’accent de Belfast (miette) ; Camille, Céline F., Romain et toute la promo
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Chapter 1

Introduction

In France, the phrase “mathématiques appliquées” covers a large scope, part of which would be
considered “pure mathematics” by most countries. As the compatriots of Descartes, we take pride in
this linguistic peculiarity because it so eloquently highlights our taste for abstraction and theory. But
it also illustrates the complex beauty of mathematics. Indeed, mathematics is a rigorous, sometimes
poetic language describing objects of this (or other) world(s), but they are also a powerful tool to
interact with them, and there is no clear boundary between the language and the tool, between theory
and application. In the gray area in between, one finds, among others, control theory: wonderfully
applicable and applied in its origins, but also profoundly mathematical in its evolution. This thesis
focuses on some questions in control theory, namely the internal control and stabilization of some
hyperbolic systems of first or second order.

1.1 A few general notions

1.1.1 Partial differential equations

Partial differential equations (PDEs) are equations that relate multivariable physical quantities to
their variations in time and space. They are the most common tool to model dynamical phenomena
such as heat diffusion, fluids, vibrations, electromagnetism, gravitation, chemical reactions. One of
the first PDEs to be studied is the heat equation, which describes the evolution of temperature in a
solid body Ω: {

ut − c∆u = f, in Ω,

∂nu = 0 on ∂Ω.
(1.1)

The first line describes the evolution of the temperature u inside the solid, with another heat source
inside the solid described by the function f . The second line describes what happens at the boundary
of the solid. These boundary conditions are of equal physical importance, as the nature and even the
existence of solutions depend on what boundary conditions we set.

This example already shows the main ways of influencing the dynamics of a system modelled by a
PDE: by acting inside, or at the boundary. For each one, there are a myriad of variations: the action
can be localised in time and/or space, it can be reduced to changing the amplitude of prescribed force.
Physically, these actions on a system, or controls, can take many forms: changing the entering flow of
a water pipe, injecting heat in a solid, modulating the electric field in which a particle is moving...

There are many types of PDEs, and even though the most common fall into a finite number of
categories, this multitude makes it impossible to formulate a general theory, even less a general method
of resolution.

Fortunately, the aforementioned categories of PDEs have been studied for decades, some for cen-
turies. Some deep questions have found answers, many remain open, making for a very exciting field of
research. Roughly speaking, PDEs can be categorized according to the profound nature of the physical
phenomena described by the equations: to name a few, kinetic equations (Boltzmann equation, Vlasov
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equation) describe the evolution of a continuum of “particles” interacting with each other, dispersive
equations (Schrödinger equation, KdV equation) describe wavelike phenomena where wavelength and
propagation speed are linked, diffusion equations (heat equation) describe phenomena where a certain
physical quantity spreads in space over time, and hyperbolic equations, on which the next section will
focus.

1.1.2 Hyperbolic systems

In this thesis we will focus on a special class of PDEs, namely hyperbolic equations. Simply put,
these equations describe phenomena where physical quantities travel along certain directions in space
at finite speeds, like sound, electricity, or waves in general. Equivalently, this means the evolution
of these quantities can be described by a differential equation along certain directions of time and
space. More abstractly speaking, we can consider that the information about the system is traveling
along these directions. This will be an important insight to understand the effect of a control on such
systems. Now, if we know these directions, then we might be able to reconstruct the solution of such
equations given their initial values in space. This is actually given as a qualitative definition by Boris
L. Rozhdestvenskii ([131]): a hyperbolic system is such that, if initial data is given on a time-space
surface that does not contain the directions along which the physical quantities remain constant, then
there exists a unique solution close to this surface.

Let us illustrate this on a simple example. Consider the transport equation on the real line R:

αt + αx = 0. (1.2)

We are looking for lines in R+
t ×Rx along which a solution of (1.2) would satisfy a simple differential

equation. Here, it is easy to see that (1.2) implies that the gradient (in time and space) of α is
orthogonal to the vector (1, 1), which means that α is constant along any line (t, x0 + t), t ∈ R+, called
characteristic lines. Now, every point of R+

t ×Rx can be reached by such a line, so if the initial value
of α is given, i.e. if α is given on the line (0, x), x ∈ R, then the solution to (1.2) is given by

α(t, x) = α(0, x− t), ∀(t, x) ∈ R+ × R. (1.3)

Mathematically, a hyperbolic system has the general form

Ut +A(U, x)Ux + F (U, x) = 0 (1.4)

where A : Rn ×Rd →Mn(R) is continuous, and A(U, x) is diagonalizable with real eigenvalues for all
(U, x) ∈ Rn × Rd. In particular, if A is diagonal, and F ≡ 0, then we get a collection of transport
equations similar to (1.2).

Note that the above characterization also covers equations of the second order, for example wave
equations. For example, one of the ways to rewrite the wave equation

utt − uxx = 0 (1.5)

is to set
u1 := ut − ux, u2 := ut + ux, (1.6)

for which (1.5) rewrites {
u1
t + u1

x = 0,

u2
t − u2

x = 0.
(1.7)

As we have mentioned earlier, there are mainly two types of controls on PDEs: on the boundary,
or inside the domain. In the case of hyperbolic equation, because of the finite travelling speed of
the information, one should expect that the action on the system might not take effect immediately,
depending on where one acts. Note that when acting on the boundary, one has to pay attention to
the direction in which the information travels. The action or input should happen upstream of the
“flow of information” in order to really influence the dynamics of the system.

8



1.1.3 Control theory: some definitions

Having modelled a system, and the way it can be acted upon, the next question is what we can make
that system do. This has been narrowed down to three main fields of studies:

• Controllability: can the system be steered from point (state) A to point (state) B?

• Optimal control: can it be done in an optimal way (e.g. in minimal time, with a minimal cost...)?
This places the problem in an optimization framework and has enriched the technical landscape
of control theory.

• Stabilization: given an equilibrium point, can we design the control as a function of the state of
the system (a closed-loop control) to make it stable if it is unstable, or improve its stability if it
is already stable in some sense?

In this thesis, we focus on the first and third questions, and the links between them. Broadly speaking,
controllability is about how well the information is transmitted and acted upon in a system. The better
it is, the better our chances should be to stabilize that system by an input that is a function of the
state.

1.1.3.1 Controllability

Let us now give a few definitions of control theory. In all these definitions, we consider a general control
system in infinite dimension. We omit important subtleties regarding the existence of solutions, the
nature of the solutions, and function spaces in general, as these are specific to each problem.

Definition 1.1.1 (Exact controllability). A control system is globally exactly controllable in time
T > 0 if for any initial and final states y0, y1, there exists a control u such that the corresponding
solution y of the system with initial value y0 exists and satisfies y(T ) = y1.

It is locally exactly controllable around a trajectory if the above holds for y0 (resp.y1) close
enough to the starting (resp. ending) point of that trajectory.

It is globally small-time exactly controllable if it is globally exactly controllable in any time
T > 0.

It is locally small-time exactly controllable around an equilibrium point if for any T > 0 it is locally
exactly controllable around that equilibrium point in time T .

Sometimes, it is interesting to consider a less demanding goal than exact controllability. For
systems for which 0 is an equilibrium point, knowing how to steer the state to 0 can be an important
first step.

Definition 1.1.2 (Null controllability). A control system is globally null controllable in time
T > 0 if for any initial state y0 there exists a control u such that the corresponding solution y of the
system with initial value y0 exists and satisfies y(T ) = 0.

It is locally null controllable if the above holds only for small enough y0.
It is small-time globally null controllable if it is null controllable in any time T > 0.
It is small-time locally null controllable if for any T > 0, it is locally null controllable in time

T .

Sometimes, for intrinsic reasons (regularization phenomena for example), exact controllability is
out of the question. However, for such systems one can still investigate the next best thing:

Definition 1.1.3 (Approximate controllability). A control system is approximately controllable
in time T > 0 if for any initial and final states y0, y1, and any neighborhood of y1 one can find a
control such that the corresponding solution y with initial state y0 exists and is such that y(T ) is in
this neighborhood.

A large range of methods have been developed to study the controllability of control systems. Let
us first mention what is perhaps the simplest and most powerful characterization of controllability for
finite-dimensional linear control systems:
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Theorem 1.1.1 (J.LaSalle, 1960, Y.-C.Ho, R.Kalman, K.Narendra, 1963). The control system

Ẋ = AX +Bu (1.8)

where X ∈ Rn is the state, u ∈ Rm is the control, A ∈ Mn(R), B ∈ Mn,m(R) is controllable with
u ∈ L∞(0, T ;Rm) if and only if (A,B) satisfies the so-called Kalman rank condition:

Span{AjBu, j ∈ {0, · · · , n− 1}, u ∈ Rm} = Rn. (1.9)

But such a simple algebraic characterization is not always available, and in any case it does not
give any indication on what control might work to steer the system from a given initial state to a given
final state. Other methods address these issues: on can for example try to express the solutions of the
control system as a function of the control, using for example the characteristics method as for system
(1.2). The controllability problem can also be seen as the surjectivity of the end-point mapping, which
maps a control to the final state of the corresponding trajectory starting at 0. Indeed, this mapping
is onto if and only if any state can be reached from 0, which is equivalent to controllability for linear
systems.

For linear systems in a Banach space setting, this can be tackled using the adjoint of that mapping
(see [132, Theorem 4.15, page 97], and [34, Théorème II.19, pages 29-30] for unbounded operators):

Theorem 1.1.2. Let H1, H2 be Hilbert spaces. Let F : H1 → H2 be a continuous linear operator.
Then F is onto if and only if there exists C > 0 such that

‖F∗x‖H1 ≥ C‖x‖H2 , ∀x ∈ H2. (1.10)

In that case, F admits a continuous linear right inverse G satisfying

|||G|||L(H2,H1) ≤
1

C
. (1.11)

In control theory, (1.10) is called observability inequality, after the notion of observability: a
system with a prescribed output of the state is observable in time T > 0 if any two solutions with
the same output on [0, T ] necessarily have the same initial state. As it turns out, controllability and
observability are dual notions: the former asks what final states can be reached by acting in some
way on the system, the latter asks if the initial state can be inferred by observing some output of
the system. In particular, a linear control system is controllable if and only if its adjoint system is
observable ([72]).

Many methods exist to prove observability inequalities: the Hilbert Uniqueness Method (HUM),
Carleman inequalities, the moments method, spectral inequalities...One of the interesting features of
this approach is that it does not require precise knowledge of the solutions, but simply to prove that
they exist, and satisfy some inequalities.

1.1.3.2 Stability and stabilizability

Stability is a major notion in the study of physical systems. It is linked to the question of existence
of solutions to an equation: often, when a solution exists only on a finite-time interval, it is because
it blows up after some-time. But once we are sure that we can talk about the evolution of a system
for all time, comes the question of its asymptotic behavior: we will not be there to see it, but can we
still try to characterize how the evolution looks like after a very long time?

The question of stability is of particular practical interest: stability means that robustness with
respect to the perturbations of the system, so that the system still has a “good trajectory” in the long
run. For example, a self-driving car must have a stable steering mechanism in order to stay on course
even if there are irregularities on the road. Instability can be even more spectacular: the collapse of
the Tacoma Narrows bridge, caused by a resonance phenomenon, shows the importance of stability
in practical applications.
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Mathematically, stability is characterized by the fact that the system converges to an equilibrium.
Let us consider an abstract evolution system, in some topological space E with norm ‖ · ‖E :

Ẋ(t) = f(t,X(t)). (1.12)

We suppose, for the sake of simplicity, that its solutions are always defined, i.e. for all X0 ∈ E, s ∈ R,
(1.12) has a solution X(t), t ∈ [s,∞) such that

X(s) = X0. (1.13)

Finally, suppose 0 is an equilibrium of that system, i.e.

f(t, 0) = 0, ∀t ∈ R. (1.14)

Definition 1.1.4 (Asymptotic stability). The equilibrium point 0 is said to be locally asymptoti-
cally stable if

i) (uniform stability) For any ε > 0, there exists δ > 0 such that, if X(t) is a solution of (1.12),
then for every s ≤ τ ∈ R,

‖X(s)‖E ≤ δ =⇒ ‖X(τ)‖E ≤ ε. (1.15)

ii) (Convergence) There exists δ > 0 such that, if X(t) is a solution of (1.12), then for all ε > 0,
there exists Tε > 0 such that for s ∈ R

‖X(s)‖E ≤ δ =⇒ ‖X(s+ Tε)‖E ≤ ε. (1.16)

It is globally asymptotically stable if ii) holds for arbitrarily large δ > 0.

Stability can then be characterized by the speed of convergence: in particular, the most interesting
kind of stability is the one we can actually witness without having to wait indefinitely:

Definition 1.1.5 (Finite-time stability). The equilibrium point 0 is locally finite-time stable if it
is uniformly stable, and if there exist δ, T > 0 such that, if X(t) is a solution of (1.12), then for every
s ∈ R,

‖X(s)‖E ≤ δ =⇒ X(s+ T ) = 0. (1.17)

It is globally asymptotically stable if it is uniformly stable and if there is T > 0 such that, for
every s ∈ R,

X(s+ T ) = 0. (1.18)

However, this notion is very strong, and it is more reasonable to explore exponential decay. Indeed
this kind of convergence occurs naturally in heat diffusion, or in radioactive decay.

Definition 1.1.6 (Exponential stability). The equilibrium point 0 is locally exponentially stable
if there exist constants µ,C, δ > 0 such that, if X(t) is a solution of (1.12), then for s ≤ τ ∈ R,

‖X(s)‖E ≤ δ =⇒ ‖X(τ)‖E ≤ Ce−µ(τ−s)‖X(s)‖E . (1.19)

The exponential decay rate of (1.12) is the supremum of the set of µ > 0 such that (1.19) holds.
The equilibrium point 0 is globally exponentially stable if the above holds for arbitrarily large δ > 0.

Even mathematically, this kind of decay is particularly interesting, since the exponential map is
a central object in the study of evolution equations. Indeed, consider a simple linear system in finite
dimension:

Ẋ = AX, A ∈Mn(R). (1.20)

It is well known that any solution X(t) to this system can be written:

X(t) = eAtX(0), ∀t ∈ R. (1.21)

Now, if the eigenvalues of A have negative real parts, then it is clear that 0 is exponentially stable for
(1.20). This leads to a local stability result for nonlinear autonomous systems, due to Lyapunov and
known as Lyapunov’s first theorem:
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Theorem 1.1.3. Let f ∈ C1(Rn,Rn) such that f(0) = 0. If every eigenvalue of Df(0) has a negative
real part, then 0 is locally exponentially stable for

Ẋ = f(X). (1.22)

Spectral properties, though powerful in finite dimension, can fall short in infinite dimension, and
some simple hyperbolic systems in particular have an exponentially stable linearized system without
being even locally asymptotically stable. For infinite-dimensional systems, another set of techniques
has been developed, resting on the physical intuition that stability is linked with the decay of some
sort of energy. Mathematically, this translates into the so-called Lyapunov functions. Lyapunov’s
original works ([121]) treat the finite-dimensional case:

Definition 1.1.7. Consider system (1.12) with state in Rn, with f locally Lipschitz with respect to
x, and such that for all x ∈ Rn,

t ∈ R 7→ f(t, x)

is measurable and L1
loc. Let U ⊂ Rn be a neighbourhood of 0. A Lyapunov function for system (1.12)

is a function V ∈ C1(R× U ;R) such that

i) There exists W ∈ C0(U ;R) such that

W (0) = 0, W (x) > 0, ∀x ∈ U \ {0}, (1.23)

and such that
V (t, x) ≥W (x), ∀(t, x) ∈ R× U. (1.24)

ii) There exists η ∈ C0(U ;R) such that

η(0) = 0, η(x) ≤ 0, ∀x ∈ U \ {0}, (1.25)

and such that
∇V (t, x) · f(t, x) + ∂tV (t, x) ≤ η(x), ∀(t, x) ∈ R× U. (1.26)

A strict Lyapunov function is a Lyapunov function such that the inequality in (1.25) is strict.

These functions are a powerful tool to study the stability of a system, as this is reduced to finding
a certain positive functional that will decrease along the trajectories of the system:

Theorem 1.1.4. If system (1.12) satisfying the hypotheses of Definition 1.1.7 admits a strict Lya-
punov function, then for a small enough initial condition at time 0, the corresponding solution of that
system is defined on [0,∞), and 0 is locally asymptotically stable for system (1.12).

Of course there is much more to the theory of Lyapunov functions: there are converse theorems
that state that stable systems have a Lyapunov function, and stronger decay conditions on Lyapunov
functions to prove exponential stability, for example. In the context of PDEs, for example, one of the
possible extensions of the notion of Lyapunov functions is the following:

Definition 1.1.8. A functional V ∈ C1(E,R) is a Lyapunov function for (1.12) if

i) There exist constants c, C > 0 such that

c‖X‖E ≤ V (X) ≤ C‖X‖E , ∀X ∈ E. (1.27)

ii) If X(t) is a solution of (1.12), then for all s ≤ t ∈ R

V (X(t)) ≤ V (X(s)). (1.28)

V is a strict Lyapunov function if, in the right-hand side of the above implication, the inequality
is strict whenever X(s) 6= 0.

V is a local Lyapunov function if i) holds on a neighbourhood of 0, and if for all s ∈ R, there
exists δ > 0 such that

‖X(s)‖ ≤ δ =⇒ V (X(t2)) ≤ V (X(t1)), ∀t2 ≥ t1 ≥ s. (1.29)

12



Now let us go back to control theory: consider a general control system in some topological space
E, with norm ‖ · ‖E , with control in some other space U :

Ẋ = f(X,u), (1.30)

such that
f(0, 0) = 0. (1.31)

A key feature in stabilization is that we will consider closed-loop controls. Indeed, in the previous
section, we presented controllability with open-loop controls, where the choice of the control is planned
beforehand and depends on the initial and final conditions. In stabilization problems, a form of
automation is sought after, in the sense that the system reacts to its own state in a prescribed manner
that does not depend on its initial state.

Technically speaking, the stabilization problem is that of finding controls of the form

u := h(x), (1.32)

called stationary feedback laws ; sometimes even

u := h(t, x), (1.33)

called time-varying feedback laws, such that the system

Ẋ = f(X,h(t,X)) (1.34)

is well-posed, and 0 is (locally/globally/asymptotically/exponentially/finite-time) stable.
In what follows, whenever there is no ambiguity about the equilibrium point under consideration,

we will simply say that a system is (locally/globally/asymptotically/exponentially/finite-time) stable
without specifying the equilibrium point.

Finally, let us specify some definitions used in this thesis in the context of autonomous linear
partial differential equations.

Definition 1.1.9. A control system is:

• (locally) exponentially stabilizable at decay rate λ > 0 if there exists a linear stationary
feedback law such that the corresponding closed-loop system is well-posed and (locally) exponen-
tially stable with decay rate λ.

• (locally) rapidly stabilizable if it is (locally) exponentially stabilizable at any positive decay
rate.

• (locally) finite-time stabilizable if there exists a linear stationary feedback law such that the
corresponding closed-loop system is (locally) finite-time stable.

1.2 From controllability to stabilization

In the previous section we have presented two central notions of control theory on which this thesis
will focus. Although quite different in their definitions and in their practical aims, controllability and
stabilizability are closely linked by many theoretical results. In a way, as controllability is a way of
describing how well information is transmitted and acted upon in a system, one can imagine that if
a system is controllable, i.e. information is well processed, then chances are that it can be stabilized
too.

The main result we want to mention here can be found in [160], and concerns autonomous control
systems in Hilbert spaces with bounded control operators:

Theorem 1.2.1. If an autonomous linear system with a bounded control operator is null controllable,
then it is exponentially stabilizable, at any decay rate.
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This result has since then been quantified via weakened observability inequalities in [146]. It holds
in particular for finite-dimensional systems, and we will see that in this case, explicit feedbacks can
be derived.

Conversely, some results highlight obstructions to stabilizability. Let us mention the famous result
in finite dimension by Roger Brockett (see [36]):

Theorem 1.2.2 (Brockett condition). A necessary condition for the control system

Ẋ = f(X,u), X ∈ Rn, u ∈ Rm (1.35)

to be locally asymptotically stabilizable at the equilibrium point (xe, 0) by a continuous, stationary
feedback law vanishing at 0 is that the image of any neighborhood of (xe, 0) by f is a neighbourhood
of 0.

In particular, there are some nonlinear systems that are locally controllable in small time but do not
satisfy the Brockett condition. To overcome this obstacle, one can revert to time-varying feedback laws.
Thus, in [47, 50], Jean-Michel Coron proves that nonlinear finite-dimensional controllable systems can
stabilized by means of time-varying feedbacks, when the control can be chosen continuous with respect
to the initial and final conditions.

Of course this is not the whole story: some systems can be stabilized but are not controllable (see
Example 1.4.1 hereafter), and some systems are approximately controllable but cannot be stabilized
exponentially (see [160, Theorem 3.3]). And, last but not least, knowing that something can or cannot
be done is but the first step. Doing it is the next one: let us now present a few methods that have
been developed to stabilize controllable systems.

1.2.1 Finite-dimensional systems

For autonomous linear systems in finite dimension

Ẋ = AX +Bu, X ∈ Rn, A ∈Mn(R), B ∈Mn,m(R), u ∈ Rm, (1.36)

there is a powerful theorem which links controllability and stabilizability (see for example [53, Chapter
10, Section 10.1]):

Theorem 1.2.3. Suppose that the control system (1.36) is controllable. Then, for any unitary poly-
nomial P ∈ R[X], there exists a feedback law K ∈Mm,n(R) such that

χ(A+BK) = P, (1.37)

where χ(A + BK) is the characteristic polynomial of A + BK. In particular, by Theorem 1.1.3, the
control system (1.36) can be stabilized exponentially at any exponential decay rate.

After an appropriate reduction to the case of scalar controls, the proof of this result relies on the
notion of canonical form (also known as Brunovski normal form). Indeed, all controllable systems
with a scalar control can be rewritten, after an appropriate change of variables, in the form (see [53,
Lemma 10.2]):

Ẋ =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a1 · · · · · · · · · −an

X + u(t)


0
0
0
...
1

 (1.38)

This illustrates a general strategy of trying to bring all the dynamics of the system “within reach” of
the control term. Indeed, one can see that the particular companion matrix form is a cascade structure
where everything happens on the last line. In more algebraic terms, this form is the “natural form”
to express and understand the Kalman rank condition (1.9).

This result for linear systems leads to a fundamental stabilizability theorem for nonlinear systems:
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Theorem 1.2.4. Consider the nonlinear control system

Ẋ = f(X,u), X ∈ Rn, u ∈ Rm, f ∈ C1(Rn+m,Rn), (1.39)

where f(0, 0) = 0. Suppose that the linearized system

Ẋ = ∇f(0, 0) · (X,u) (1.40)

is controllable. Then system (1.39) is locally asymptotically stabilizable by means of continuous sta-
tionary feedback laws.

Another approach to the stabilization of controllable systems is to consider the following matrix,
called controllability Gramian of the system (1.36):

CT :=

∫ T

0

e−tABB∗e−tA
∗
dt. (1.41)

It is a well-known result that (1.36) is controllable if and only if CT is positive definite. Then, Dahlard
Lukes ([120]) and David Kleinman ([103]) prove that the feedback

K := −B∗C−1
T (1.42)

stabilizes (1.36) exponentially.

1.2.2 Infinite-dimensional systems

The power and simplicity of the canonical form make it tempting to try to generalize it to infinite-
dimensional systems to study spectral assignability. Accordingly, in [135] David Russell builds a
canonical form for a class of controllable linear first-order hyperbolic systems, in order to study what
pole placement may be achieved using linear bounded feedback laws. In that case, the canonical
form is a simple time-delay system and the transformation that maps the hyperbolic systems to
their canonical form is a Volterra transformation of the second kind. We will see that this class of
transformations plays an important role in Section 1.4. Another generalisation of the canonical form
for hyperbolic systems can be found in [45], where the authors arrive at a canonical form, using the
Laplace transform, to study spectral assignability by boundary input of a linear bounded feedback.

We will see in Section 1.4.1 that the canonical form shows some limitations in its infinite-dimensional
generalization. On the other hand, the Gramian method has been successfully generalized to a whole
class of infinite-dimensional control systems. In [140], to deal with infinite-dimensional systems with
bounded control operators, Marshall Slemrod adds an exponential weight function inside the integral,
for some ω > 0:

CωT :=

∫ T

0

e−2ωte−tABB∗e−tA
∗
dt, (1.43)

and uses it to build a stabilizing feedback:

Kω := −B∗(CωT )−1 (1.44)

which achieves an exponential stabilization at rate ω.
To handle unbounded control operators, Komornik chooses a different weight function in [108], by

requiring that CωT be the solution of an algebraic Riccati equation. This is explored further in [153], and
yields a virtually explicit feedback of the form (1.44). However, this feedback requires the computation
of the inverse of an operator, which can be quite computationally heavy, as indicated by Emmanuel
Trélat, Gensheng Wang and Yashan Xu in [147]. In this paper an approach via Proper Orthogonal
Reduction is proposed, where feedbacks are computed on appropriate finite-dimensional reductions,
to approximate the infinite-dimensional feedback under suitable assumptions on the system.

Finally, in Section 1.4 we will present another method that has allowed us to build explicit (and
computable) feedback laws to exponentially stabilize hyperbolic systems.
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Aim of the thesis

In this thesis, we address some internal controllability and stabilization questions, and the link be-
tween these notions, for some hyperbolic systems in one space dimension. We first study the indirect
controllability of systems of coupled semilinear wave equations, using inversion theorems of the Nash-
Moser type, combined with the return method, in the second chapter of this thesis. In this chapter
we also delve into the possibility of stabilizing these systems. The difficulties encountered in this
endeavour suggest a different outlook on the stabilization of controllable systems. This is explored in
the third, fourth and fifth chapters of this thesis. In the third and fourth, we prove the rapid and
finite-time stabilization of a linear transport equation with a distributed scalar input, using a form of
backstepping method. In the fifth, we adapt the same method to study the stabilization of a coupled
hyperbolic system, namely, the linearized water tank system, modelled by the Saint-Venant equations.

1.3 Internal controllability of systems of semilinear coupled
one-dimensional wave equations in 1-D with a single con-
trol

1.3.1 Controlling hyperbolic systems

As we have mentioned earlier, hyperbolic systems are characterized by the way information travels,
at finite speed along characteristic manifolds. In the 1-D case, these manifolds are simply curves, and
the propagation of information can be illustrated with simple diagrams.

Accordingly, the first results on the controllability of hyperbolic systems use these characteristics,
as they are a convenient way to see how the input is processed inside the system: let us mention
the fundamental result in [133, 134], further developed in [18], for the boundary control, observation,
and stabilization of the linear wave equation, in particular the famous Geometric Control Condition
(GCC). To quote Claude Bardos, Gilles Lebeau and Jeffrey Rauch in the latter reference: “To control,
observe, or stabilize solutions of hyperbolic partial differential equations, it is necessary that we observe
or control at least one point of each ray of geometric optics.”

This was later extended to nonlinear cases by [43], and local controllability results were proved in
[78]. Let us mention also the survey [113] on the boundary controllability of quasilinear hyperbolic
systems (in Ck spaces). The presence of the Laplacian operator in the wave operator makes it
interesting to use duality methods: Enrique Zuazua obtained results for semilinear wave equations in
[167, 166], with a constraint on the nonlinearity, first proving a linear result with the HUM method,
then using a fixed-point theorem to get the semilinear result. Results for stronger nonlinearities were
then obtained in [38, 37]. Carleman estimates have also been used to prove observability inequalities:
in [164, 165] internal observability is established for semilinear wave equations with globally Lipschitz
nonlinearities, and the observer supported in a neighbourhood of some portion of the boundary. In
[79, 88] the method was improved to work for controllers with smaller supports and for stronger
nonlinearities.

Knowing this, the question we address in Chapter 2 is that of so-called indirect controllability: can
a system of coupled hyperbolic equations be controlled with less controls than equations? Physically
speaking, can the interactions between the equations help us control them all, by acting on one of
them only? This is a typical question of control theory, as it pushes the controllability to its limits,
by asking how much do we really need to act on in order to control everything? Why is it enough?
Why can we not do it with less? And its dual notion, partial observability, asks the question how
much do we really need to observe to know everything? Several other questions then follow: how
does it depend on the supports of the control (the observation) and/or the coupling? For hyperbolic
equations there is often a minimal time, in the case of indirect control, on what does the minimal time
depend? Intuitively speaking, one can consider that the information has to travel from the controlled
zone to the coupling zone, then from the coupling zone to the whole domain.
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In the linear case, some answers to these questions can be found in [6, 8, 3], where energy methods
are used to obtain indirect controllability of various types of linear systems. In particular, in [8]
geometric conditions on the supports of the coupling and the control appear (in particular they can
have an empty intersection), and a control result is proved for a system of coupled wave equations,
with a minimal time depending in particular on these supports:

Theorem 1.3.1 (F.Alabau-Boussouira, M.Léautaud, 2013). Let Ω ⊂ Rn be a bounded open domain
with smooth boundary, a, b be smooth real-valued functions on Ω such that

∆ + a is a coercive operator on H2 ∩H1
0 (Ω) for ‖ · ‖L2 ,

b ≥ 0 on Ω,
{x ∈ Ω, b > 0} satisfies the GCC for some time T > 0.

(1.45)

Then for p small enough in ‖ · ‖∞, positive, with a support satisfying the GCC in time T , the system
utt −∆u+ au+ pv = bf,

vtt −∆v + av + pu = 0,

u = v = 0 on ∂Ω.

(1.46)

is null controllable in time T > 0 with initial data in H1
0 (Ω)× (H2 ∩H1

0 (Ω))× L2(Ω)×H1
0 (Ω).

Note that in the same paper analogous results are proved for a boundary control, and for the
internal and boundary controllability of coupled Schrödinger equations and coupled heat equations.

A notable result in the quasilinear case can be found in [5, Theorem 3.1], for 1-D first order
hyperbolic systems:

Theorem 1.3.2 (F.Alabau-Boussouira, J.-M.Coron, G.Olive, 2017). Let 0 < a < b < L and
Λ1,Λ2, f1, f2 ∈ C∞(R2) be such that

Λ1(u, v) < Λ2(u, v), ∀(u, v) ∈ R2, (1.47)

and
∂f2

∂u
(0, 0) 6= 0. (1.48)

Then, the system 
ut + Λ1(u, v)ux + f1(u, v) = h,

vt + Λ2(u, v)vx + f2(u, v) = 0,

u(t, 0) = u(t, L), v(t, 0) =v(t, L),

(1.49)

where h is the control, is locally controllable around 0 in time

T > (L− (b− a)) max

{
1

|Λ1(0, 0)|
,

1

|Λ2(0, 0)|

}
(1.50)

for initial and final states in C6, with a C1([0, T ]× [0, L]) control supported in [δ, T − δ]× [a+ δ, b− δ]
for every 0 < δ < min(T, (b− a)/2)/4 such that

T − 4δ > (L− (b− a− 8δ)) max

{
1

Λ1(0, 0)
,

1

Λ2(0, 0)

}
. (1.51)

Moreover, the control can be chosen to be a continuous (C6)2 → C1 function of the initial and final
states.

The proof of this result is based on an altogether different approach, called the fictitious control
method.

To prove the results of Chapter 2, we use the same approach to study the indirect controllability
of coupled semilinear wave equations in 1-D in two different situations, one where a condition of the
type (1.48) is satisfied, and one where it is not.
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1.3.2 Main results

Let T > 0, and 0 < a < b < L. We study the following class of systems:
utt − ν2

1uxx = f1(u, v) + h, x ∈ (0, L),

vtt − ν2
2vxx = f2(u, v), x ∈ (0, L),

u = 0 on {0, L},
v = 0 on {0, L},

(1.52)

where h : [0, T ] × [0, L] → R is the control, with supp h ⊂ [0, T ] × [a, b], and f1, f2 ∈ C∞(R2),
f1(0, 0) = f2(0, 0) = 0, ν1, ν2 6= 0. We will also study the following particular system:

utt − ν2
1uxx = h, x ∈ (0, L),

vtt − ν2
2vxx = u3, x ∈ (0, L),

u = 0 on {0, L},
v = 0 on {0, L}.

(1.53)

These are systems of coupled semilinear wave equations, with different speeds, which we seek
to control with a single control, which takes the form of a source term in the first equation with a
support in [0, L] × [a, b]. In both cases, we will study solutions with Ck((0, T ] × [0, L]) regularity
in order to establish a controllability result with two controls. Thus, the initial and final conditions
((u0, u1), (v0, v1), (uf0 , u

f
1 ), (vf0 , v

f
1 )) have to satisfy some compatibility conditions, which will be given

in Chapter 2 by (2.8).
In Chapter 2 we prove two controllability results: a local result for system (1.52), and a global

result for system (1.53).

Theorem 1.3.3 (Christophe Zhang, 2017). Let R > 0, and 0 ≤ a < b ≤ L, T > 0 be such that

T > 2(L− b) max

(
1

|ν1|
,

1

|ν2|

)
, T > 2amax

(
1

|ν1|
,

1

|ν2|

)
. (1.54)

If
∂f2

∂u
(0, 0) 6= 0, (1.55)

then there exists η > 0 such that for initial and final conditions

((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )) ∈

(
BC11([0,L]) ×BC10([0,L])(0, η)

)4
where BCk(0, η) denotes the ball centered in 0 and with radius η in the usual Ck topology, satisfying
compatibility conditions (2.8) at the order 11, there exists h ∈ C6([0, T ]× [0, L]) such that

supp h ⊂ [0, T ]× [a, b], (1.56)

and such that the corresponding solution (u, v) ∈ C6([0, T ] × [0, L])2 of (1.52) with initial values
((u0, u1), (v0, v1)) satisfies {

u(T, · ) = uf0 , ut(T, · ) = uf1 ,

v(T, · ) = vf0 , vt(T, · ) = vf1

and
‖(u, v, h)‖(C6)3 ≤ R. (1.57)

The second theorem gives a controllability result for a system that does not satisfy (1.55). Note
that, thanks to the homogeneity of the system, this result is global.
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Theorem 1.3.4 (Christophe Zhang, 2017). Let 0 ≤ a < b ≤ L, T > 0 satisfying (1.54). There exists
a constant C > 0 depending on T such that, for any given initial and final conditions

((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )) ∈

(
C11([0, L])× C10([0, L])

)4
satisfying compatibility conditions (2.8) at the order 11, there exists h ∈ C6([0, T ]× [0, L]) such that

supp h ⊂ [0, T ]× [a, b], (1.58)

and such that the corresponding solution (u, v) ∈ C6([0, T ] × [0, L])2 of (1.53) with initial values
((u0, u1), (v0, v1)) satisfies {

u(T, · ) = uf0 , ut(T, · ) = uf1 ,

v(T, · ) = vf0 , vt(T, · ) = vf1

and
‖h‖C6 ≤ C

(
‖(u0, u1, u

f
0 , u

f
1 )‖(C11×C10)2 + ‖(v0, v1, v

f
0 , v

f
1 )‖

1
3

(C11×C10)2

)
. (1.59)

1.3.3 The fictitious control method

To prove these results, we use a method called the “fictitious control method”, first introduced in
[47] and [83], and most recently developed in [5, 61, 76, 115, 77]. The idea is to first try to solve the
problem with as many controls as equations (the fictitious controls), then to work from this solution
to reduce the number of controls. In even broader terms, the strategy is to first find an “easy”, but
not exact solution, and then try to tweak it to find a real solution. Let us illustrate with a simple
linear example, presented in detail in [53, Theorem 1.18]: consider the linear, time-varying, control
problem

Ẋ = A(t)X +B(t)u(t), (1.60)

where X ∈ Rn, u(t) ∈ C∞([0, T ];Rm), A ∈ C∞(R;Mn(R)), B ∈ C∞(R;Mn,m(R)). Define, by
induction,

B0(t) := B(t) ; Bi(t) := Ḃi−1(t)−A(t)Bi−1(t), ∀i ≥ 1. (1.61)

Under some conditions on the Bi, we have the following control result (see [40] and [139]):

Theorem 1.3.5 (A. Chang, 1965, L.Silverman, H.Meadows, 1965). Let T0, T1 > 0. If there exists
t ∈ [T0, T1] such that

Span{Bi(t)u, u ∈ Rm, 0 ≤ i ≤ n− 1} = Rn, (1.62)

then (1.60) is controllable on the interval [T0, T1].

Remark 1.3.1. Note that if A,B are constant, then (1.62) becomes the usual Kalman rank condition
(1.9) for the matrices (A,B).

This well-known result is usually proved using the controllability Gramian. In [53] however a new
proof is given, which uses the fictitious control strategy.

Let x0, x1 ∈ Rn. We first note that (1.62) is true in a neighbourhood of [t0, t1] ⊂ [T0, T1] of t.
Then, let us consider the uncontrolled trajectory of (1.60) starting from x0 (resp. ending at x1), which
we note a (resp. b). Then, let d be a cut-off function:

d ∈ C∞([T0, T1]), d|[T0,t0+ε] ≡ 0, d|[t1−ε,T1] ≡ 1, (1.63)

for some ε > 0. Then,
Γ := (1− d)x0 + dx1 (1.64)

has the right starting and ending points:

Γ(T0) = x0, Γ(T1) = x1. (1.65)
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Now, if there existed u ∈ C∞([T0, T1];Rm) such that

Bu = Γ̇−AΓ =: q (1.66)

then we would have found a solution to our problem. But we have little information on B itself, and
it might well be that q /∈ Im(B), in other words, that the trajectory Γ uses too many controls. The
idea at this point is rather to see Γ̇ − AΓ as some sort of local error term that has to be corrected.
Indeed if we can find (r, u) ∈ C∞([T0, T1];Rn × Rm) such that

ṙ −Ar −Bu = q, r(T0) = r(T1) = 0, (1.67)

then, setting
X := Γ− r, (1.68)

the controllability problem is solved with (X,−u), as Γ already has the right starting and ending
points, and r does not change them.

To solve (1.67), consider the following differential operator:

L(X,u) := Ẋ −AX −Bu, ∀(X,u) ∈ C∞([T0, T1];Rn × Rm), (1.69)

so that we have
L(Γ, 0) = q. (1.70)

Essentially, solving (1.67) is finding a right inverse M for the under-determined operator L, which
would give the solution

(r, u) := M(q). (1.71)

However we need to make sure that r satisfies the second part of (1.67). This is ensured by the fact
that we can actually find a right inverse M that is also a linear differential operator, which in this
case is built using (1.62). Then, noting that, by construction,

q(t) = 0, ∀t ∈ [T0, t0] ∪ [t1, T1]. (1.72)

we get in particular that r(T0) = r(T1) = 0, so that by (1.68), the problem is solved.

Remark 1.3.2. At this point, one could wonder why the right inverse M is not directly applied to 0,
and not bother with an error term followed by a correction. But one has to keep in mind that we need
a trajectory with the right starting and ending points, which is not guaranteed if we simply take M(0).

Let us now turn to an infinite-dimensional example, taken from [12]: consider the linear control
problem {

∂ty −∆y = Ay +B1ωh, on Ω,

y = 0 on ∂Ω,
(1.73)

where Ω ∈ Rd, y(t) ∈ L2(Ω)n, A ∈ Mn(R), m < n h ∈ L2((0, T ) × Ω)m, B ∈ Mn,m(R) and ω is an
open subset of Ω.

Theorem 1.3.6 (F.Ammar-Khodja, A.Benabdallah, C.Dupaix, M.Gonzalez-Burgos, 2009). System
(1.73) is null-controllable in small-time for L2 initial conditions if and only if (A,B) satisfies the
Kalman rank condition.

This extension of the Kalman rank condition, algebraic in nature, to a system of heat equations,
can be understood thanks to the fictitious control method.

Let y0 ∈ L2(Ω)n. As before, the first step is to find a trajectory with the right initial (y0) and
final (0) conditions. This time, it is not as simple as “merging” two trajectories (for example, one
cannot start from the end-point and go backwards as with (1.60)), but can still be done by studying
the simpler control problem {

∂ty −∆y = Ay + 1ωh, on Ω,

y = 0 on ∂Ω,
(1.74)
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looking for controls h ∈ L2((0, T )× Ω)m supported in [ε, T − ε]× ω. This system is null-controllable
(using for example Carleman estimates), so we get a trajectory ŷ starting at y0 and solution of (1.74)

for some fictitious controls ĥ supported in [ε, T − ε]× ω.
Now let us use the fictitious controls to get the real control. Consider the following partial differ-

ential operator:

L(y, h) = ∂ty −∆y −Ay −B1ωh, ∀y ∈ H1(0, T ;H2(Ω)n), ∀h ∈ L2((0, T )× Ω)m, (1.75)

so that we have
L(ŷ, 0) = ĥ. (1.76)

Finding a right inverse for this operator is equivalent to finding a left inverse for its adjoint L∗:

L∗f =

(
−∂tf −∆f −A∗f

−B∗f

)
, ∀f ∈ H1(0, T ;H2(Ω)n). (1.77)

Now let us apply the following operators to L∗f :

S := (S1, · · · ,Sn),

S0(x1, x2) := −x2,

S1(x1, x2) := ∂tx2 + ∆x2 −B∗x1,

· · ·
Sk(x1, x2) := (∂t + ∆)Sk−1(x1, x2)−B∗(A∗)k−2x1

(1.78)

so that

S ◦ L∗f =


B∗f
B∗A∗f

...
B∗(A∗)n−1f

 =


B∗

B∗A∗

...
B∗(A∗)n−1

 f. (1.79)

Then, thanks to the Kalman rank condition, there exists a matrix M ∈Mn,nm(R) such that

M


B∗

B∗A∗

...
B∗(A∗)n−1

 = In, (1.80)

so that M ◦ S is a linear left inverse for L∗, hence S∗ ◦M∗ is a linear right inverse for L.
Then, as in the previous example, thanks to the precautions on the support of ĥ, and the fact that

we are dealing with linear differential operators,

(X,u) := (ŷ, 0)− S∗ ◦M∗(ĥ) (1.81)

gives us a trajectory and a control that solve the null-controllability problem (1.73).

Remark 1.3.3. The underlying general results that allowed us to find right inverses for the operators L
and L are a set of powerful theorems proved by Mikhail Gromov ([84, pages 150-156]). A generic under-
determined linear differential operator (in finite or infinite dimension) is algebraically solvable, i.e.
has a right inverse that is also a linear differential operator. Algebraic solvability is crucial in the
fictitious control method. Indeed, linear differential operators preserve the supports of the controls and
trajectories we are working with, in finite or infinite dimension, which is crucial to find trajectories
with the right initial and final conditions, and controls with the right support in infinite dimension.

As we will see later on, there is also a nonlinear inversion theorem in [84], which will be very
useful to obtain the results of Chapter 2.
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1.3.4 The linear test and the fictitious control method

When dealing with nonlinear control systems, the go-to strategy is to look at the linearized system,
and apply the so-called linear test : if it is controllable, then chances are, with a suitable inversion
(fixed-point) theorem, the nonlinear system is locally controllable. This is always the case in finite
dimension, around equilibrium points and around trajectories (see [53, Section 3.1]), thanks to the local
inversion theorem (or, alternately, the implicit function theorem, or the Picard fixed-point theorem
for contractions).

On the other hand, in infinite dimension the situation can be more complicated (as usual). Some-
times the general Picard fixed point theorem for Banach spaces still works, for example for the non-
linear 1-D KdV equation with a Neumann control on the right ([130]). The idea is to consider the
nonlinearity like a perturbation of the linearized system around 0, in other words, a source term of
the linear equation. Essentially, the solution of this controllability problem is given by the fixed point
of a mapping that maps y ∈ L2(0, T ;H1(0, L)) to the solution of

zt + zx + zxxx = −yyx,
z(t, 0) = z(t, L) = zx(t, L) = 0, t ∈ (0, T ),

z(0, x) = y0, x ∈ (0, L),

(1.82)

with some additional adjustments to get the wanted final value, which are possible thanks to the
controllability of the linear system (without source term).

In other cases, one has to work a bit more to get the local controllability of the nonlinear system.
Consider for example the following hyperbolic control system (see [53, Section 4.2.1]):{

yt + a(y)yx = 0,

y(t, 0) = u(t),
(1.83)

where a ∈ C2(R) and a(0) > 0. Its linearized system around (0, 0){
yt + a(0)yx = 0,

y(t, 0) = u(t),
(1.84)

is controllable in times T > L/a(0). Taking the same perturbative approach as before, if we try to
consider the mapping that maps y to the solution of

zt + a(0)zx = (a(0)− a(y))yx,

z(t, 0) = 0.

z(0, x) = y0,

(1.85)

a problem occurs with the spaces in which this mapping is defined. Indeed, it does not have the same
nice regularity properties as the one defined by (1.82): we lose one derivative because the solution of
(1.85) is not necessarily more regular than the source term. Instead, another fixed point theorem can
be considered, with the mapping that maps y ∈ C1([0, T ]× [0, L]) to the solution of{

zt + a(y)zx = 0,

z(0, x) = y0, z(T, x) = y1.
(1.86)

This mapping is different in essence, as it links the coefficient of a linear differential operator, instead
of the source term, to the solution of the corresponding equation. Moreover, this mapping requires
the study of not one linear system (the linearized system), but a collection of linearized systems (all
the linear systems “close to” the linearized system). Accordingly, it is dealt with thanks to a different,
more powerful fixed-point theorem, namely Schauder’s theorem.
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The problem encountered in (1.85), namely a loss of derivatives, occurs in many systems. In the
above example it was handled with a particular mapping for which we can apply a “classical” fixed-
point theorem. However, there is a more systematic approach, known as the Nash-Moser method (see
[96, 97, 10] for a comprehensive overview and a general version on Hölder spaces). Let us illustrate it
on an example due to Karine Beauchard ([28]), the 1-D bilinear Schrödinger equation:{

ψt(t, x) = iψxx(t, x) + iu(t)xψ(t, x), (t, x) ∈ (0, T )× (−1, 1),

ψ(t,−1) = ψ(t, 1) = 0, t ∈ (0, T ),
(1.87)

with states in the L2-sphere S. For γ ≥ 0 define the operator

Sγ := −∂xx − γx, D = H2(−1, 1) ∩H1
0 (−1, 1), (1.88)

and note (ϕk,γ , λk,γ) its eigenfunctions and eigenvalues. We will study the linearized system around
the trajectory (ψ1,γ , γ):{

ψt(t, x) = iψxx(t, x) + iγxψ(t, x) + iu(t)xψ1,γ(t, x), (t, x) ∈ (0, T )× (−1, 1),

ψ(t,−1) = ψ(t, 1) = 0, t ∈ (0, T ),
(1.89)

where ψ1,γ satisfies 
(ψ1,γ)t = i(ψ1,γ)xx + iγxψ1,γ , (t, x) ∈ (0, T )× (−1, 1),

ψ1,γ(t,−1) = ψ1,γ(t, 1) = 0, t ∈ (0, T ),

ψ1,γ(0, ·) = ϕ1,γ(·)
‖ψ1,γ(t, ·)‖L2(−1,1) = 1, t ∈ (0, T ).

(1.90)

One can prove, using the moments method, that (1.89) is small-time controllable with state in

TS(ψ1,γ(0, ·)) ∩H3
(0) := {y ∈ H3(−1, 1), y(−1) = y′′(−1) = y(1) = y′′(1) = 0}, (1.91)

and u ∈ L2(0, T ), for γ > 0 small enough. However, we cannot deduce a nonlinear controllability
result in the same spaces. Indeed, consider the mapping

F : u 7→ y(T, ·) ∈ S (1.92)

where y is the solution of (1.87) with control u and initial value ψ1,γ(0, ·). Its differential around the
constant function u ≡ γ is the endpoint mapping for (1.89), and the controllability of that linearized
system corresponds to the existence of a right inverse

F ′(u)−1 : H3
(0) ∩ TS(ψ1,γ(T, ·))→ L2(0, T ). (1.93)

One could hope to use that right inverse in an iteration scheme to find a solution to the nonlinear
controllability problem

F(u) = ψ1 (1.94)

for some target state ψ1 ∈ H3
(0) ∩ TS(ψ1,γ(T, ·)). The iteration scheme to solve (1.94) around ū,

knowing that F ′(u) has a right inverse, would be the sequence defined by

un+1 = un −F ′(u)−1P (F(un)− ψ1), (1.95)

where P is the projection on the tangent space TS(ψ1,γ(T, ·)). Normally, un would be expected to
converge towards a solution. The problem is that although F ′(u)−1 loses three derivatives, there is a
priori no reason for the mapping F to regain them: for an L2 control, one cannot expect the solution of
(1.87) to be more than H2. So at each iteration of (1.95), one derivative is lost. Nash’s idea (initially
developed to imbed Riemannian manifolds in Euclidean spaces in [123]) was to apply a smoothing
operator Sn at each step to compensate this loss of derivatives. To make sure the smoothing operator
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does not hinder the convergence of the scheme, a Newton convergence scheme is used, which is much
faster than (1.95):

un+1 = un − SnF ′(un)−1(F(un)− ψ1). (1.96)

Note that, as in the previous example, we now need to study all the linear systems close to the linearized
system around u. More precisely, we require that all F ′(u) be invertible for u in a neighbourhood of u.
Moreover, because some margin is needed to have the right estimates and chose the right smoothing
operators, the final nonlinear controllability result holds for states in

TS(ψ1,γ(0, ·)) ∩H7
(0) := {y ∈ H7(−1, 1), y(2k)(−1) = y(2k)(1) = 0, k = 0, 1, 2, 3},

TS(ψ1,γ(T, ·)) ∩H7
(0),

(1.97)

and with a positive minimal time. Note that in [31], Karine Beauchard improves her result from [28]
to require less additional regularity, with the spaces

TS(ψ1,γ(0, ·)) ∩H5+ε(−1, 1) ∩H5
(0) := {y ∈ H5(−1, 1), y(2k)(−1) = y(2k)(1) = 0, k = 0, 1, 2},

TS(ψ1,γ(T, ·)) ∩H5+ε(−1, 1) ∩H5
(0).

(1.98)

Remark 1.3.4. In that particular case, it turns out that the Nash-Moser method is not necessary to
study the nonlinear system. Indeed in [30], Karine Beauchard and Camille Laurent prove that there
is actually no loss of derivative, due to a hidden regularization effect. Thus the optimal spaces for the
nonlinear controllability are the same as for the controllability of the linearized system, and hold for
a generic potential function:

Theorem 1.3.7 (K.Beauchard, C.Laurent, 2010). Let µ ∈ H3(−1, 1;R) be such that there exists a
constant C > 0 such that

〈µϕ1,0, ϕk,0〉 ≥
C

k3
, ∀k ≥ 1, (1.99)

Then, the 1-D bilinear Schrödinger equation{
ψt(t, x) = iψxx(t, x) + iu(t)µ(x)ψ(t, x), (t, x) ∈ (0, T )× (−1, 1),

ψ(t,−1) = ψ(t, 1) = 0, t ∈ (0, T ),
(1.100)

is small-time locally controllable around the trajectory (ψ1,0, 0) in TS(ψ1,0(0, ·)) ∩H3
(0), with u ∈ L2 a

continuous function of the initial and final data.

In Chapter 2, we deal with the same a priori loss of derivatives, and the situation is analogous to
the one in [5]. Indeed there is an a priori loss of derivatives, which will be detailed in Section 2.4.1
from the initial and final data to the control, and again the ideas of the Nash-Moser method are used
to handle this issue.

However, our strategy, which we adapt from [5], differs from the examples above. Indeed, to prove
Theorem 1.3.3, following the path of the previous example, we would set out to prove a controllability
result for some related linear systems, using the fictitious control method as in the examples of Section
1.3.3. Then, we would try to find a way to use an inversion theorem to get a local controllability result
for the nonlinear system. It turns out that it is not necessary to do things in two steps, but one can
instead apply the fictitious control method directly to the nonlinear system. Indeed, as mentioned in
Remark 1.3.3, there is a nonlinear inversion theorem (see [84, Section 2.3.2, Main Theorem]) which
can be used to discard the fictitious controls. This inversion theorem, which is of the Nash-Moser
type, relies on condition (1.55), which is basically a characterization of the controllability of linear
systems close to the linearized system around 0 (if the dynamics of v does not depend on u there is
no hope to control v through u). So, in a way, the study of the linearized system is absorbed into
the fictitious control method. The first step is thus to solve the nonlinear problem with two controls,
which is done using boundary control results in the book [113, Chapter 5]. We point out that this is
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the only step in the proof that requires a 1-D domain, as the inversion theorem works in any space
dimension, under the same condition (1.55).

On the other hand, (1.53) does not satisfy (1.55): the linearized system around 0 is not controllable.
However, Theorem 1.3.4 shows that this condition is not necessary in the case of nonlinear systems,
and we still obtain a controllability result.

This situation where the linearized system is not controllable is very common in control theory,
for example with the nonviscous Burgers equation ([41, 42]), or the Euler equation ([48, 46, 81, 82]).
To deal with this, Jean-Michel Coron introduced a method known as the return method. The idea
is to look for another trajectory of the control system, a return trajectory, going from 0 back to 0
(hence the name), around which the linearized system is controllable, and then try once more to apply
linear test methods. A more comprehensive outline, along with many references, can be found in [53,
Chapter 6].

In our case, we will also build return trajectories, along which an adequate adaptation of (1.55)
holds, or equivalently, the linearized system is controllable. This construction actually requires some
legwork: we use the same method as Jean-Michel Coron, Sergio Guerrero, and Lionel Rosier in [60],
where the controllability of a system of heat equations with cubic coupling is studied. The idea is to
use the cascade structure of (1.53) to build a solution of the stationary problem

−u′′e = he,

−v′′e = u3
e,

ue(0) = ue(L) = ve(0) = ve(L) = 0,

(1.101)

by working upwards: first, we find a C∞ function ve whose second derivative is the cube of a C∞

function, with a unique vanishing point, and a very smooth behaviour at the boundary. Then the
solution of the stationary problem is given by

ve := g, ue :=
3
√
v′′, he := u′′. (1.102)

To obtain a return trajectory, this solution is then perturbed in time and space. In contrast with [60],
this must be done with extra care to control the support of u. Indeed, (1.55) must be satisfied along
the return trajectory, and this condition corresponds to u being nonzero. Moreover, as the support
of u will be more or less the support of our final control, it has to satisfy a GCC, which will give us
the minimal time for our control. As we will see, the method described above yields trajectories with
very small supports, so that in order to satisfy a GCC, we will have to put many of these trajectories
side by side. Although this method is 1-dimensional in essence, it can be easily extended to any space
dimension by considering radial functions, as is done in [60]. So again, even in this particular case
where we have to use a form of return method, the only point that specifically requires a 1 -D spatial
domain is the controllability problem with 2 controls.

Then, as we have pointed out before, we are not going to apply the usual linear test strategy
around the return trajectory, but instead apply the nonlinear fictitious control method around these
trajectories.

Finally, let us note that for now, it is likely that the spaces in Theorems 1.3.3 and 1.3.4 are
not optimal, as the difference of regularity between the initial and final data and the control is 5,
whereas the expected loss as shown in Section 2.4.1 is only 1. Moreover, it would be interesting to
have a result in “natural” spaces for the wave equation, for example Sobolev spaces. To that effect
let us point out that in the recently published [16], Pietro Baldi and Emanuele Haus prove a Nash-
Moser-Hörmander inversion theorem for Sobolev spaces which could be applied to our problem. The
Nash-Moser method has already been implemented in Sobolev spaces, as we have mentioned in the
example of the Schrödinger equation (1.87), but Baldi and Haus’ theorem has the advantage of being
sharp with respect to the loss of derivatives (see [16, Remark 2.5]). Indeed, when solving the linearized
problem

F ′(u)h = g, (1.103)
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the right inverse of F ′(u) is applied to g, so there is a loss of regularity from g to h. When solving
the nonlinear problem

F(u) = F(0) + g, (1.104)

the loss of regularity from g to u is the same. In contrast, previous inversion theorems required an
arbitrarily small additional loss of regularity on the solution to the nonlinear problem.

1.3.5 Some comments about indirect stabilization

With Theorem 1.2.1 in mind, and knowing that system (1.52) is likely null-controllable in some Sobolev
spaces, it is natural to look for exponentially stabilizing feedbacks for this system.

To stabilize physical systems such as waves, the most natural approach is to add a damping term.
Consider for example the classical damped wave equation:{

utt − uxx = −λut, on [0, L],

u(t, 0) = u(t, L) = 0, ∀t ≥ 0,
(1.105)

with initial conditions in H1
0 × L2. Then one can derive an energy inequality for solutions in (H2 ∩

H1
0 )×H1

0 :

1

2

d

dt

∫ L

0

|ut|2 + |ux|2 =

∫ L

0

<(uxxut)− λ|ut|2 + <(uxtux)

= −λ
∫ L

0

|ut|2.
(1.106)

Hence, by density, V is a Lyapunov function for (1.105). Then we can show that 0 is asymptotically
stable for system (1.105), using a weak version of the LaSalle invariance principle (see [143, Lemma
5.7.8, page 226], or [2, Proposition 1.3.6]):

Theorem 1.3.8. Let V be a Lyapunov function for an autonomous system

Ẋ = f(X), (1.107)

with f such that the system is well-posed in some Hilbert space, and f(0) = 0. Suppose that for any
trajectory X(t) of that system,

d

dt
V (X(t)) = 0, ∀t ≥ 0 =⇒ X(t) ≡ 0. (1.108)

Then, if the trajectories of that system are precompact, 0 is asymptotically stable for that system.

In the case of the damped wave equation, we can see from (1.106) that

1

2

d

dt

∫ L

0

|ut|2 + |ux|2 = 0

if and only u is stationary. Stationary solutions of (1.105) are given by the equation{
−uxx = 0,

u(0) = u(L) = 0,
(1.109)

for which the only solution is obviously 0. This proves implication (1.108) for system (1.105).
Now let (u0, u1) ∈ (H2 ∩H1

0 )×H1
0 , and let us note u(t), t ≥ 0 the solution of (1.105) with initial

conditions (u0, u1). Then, (u1, (u0)xx − λu1) ∈ H1
0 × L2 and the solution of (1.105) with initial

condition (u1, (u0)xx − λu1) is exactly ut(t), t ≥ 0.
The energy inequality (1.106) implies, by density, that (ut, utt) is bounded in H0

1×L2. By Rellich’s
theorem, this means ut is precompact in L2. Moreover, by (1.105) and boundedness of utt in L2,
uxx − λut is bounded in L2 so in particular uxx is bounded in L2. Again by Rellich’s theorem, this
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means u is precompact in H1
0 . So we can apply the LaSalle invariance principle to prove that (1.105)

is asymptotically stable (it is even exponentially stable) for the H1
0 × L2 norm for initial conditions

in (H2 ∩H1
0 )×H1

0 . Then, by density of (H2 ∩H1
0 )×H1

0 in H1
0 × L2, and by the energy inequality∫ L

0

|ut(t2)|2 + |ux(t2)|2 ≤
∫ L

0

|ut(t1)|2 + |ux(t1)|2, ∀t1 ≤ t2, (1.110)

derived from (1.106), we get asymptotic stability for initial conditions in H1
0 × L2.

For coupled wave equations, it is then natural to follow the same path: consider the simple system
of coupled linear wave equations with a symetric coupling

utt − uxx = Pv,

vtt − vxx = P ∗u,

u(t, 0) =u(t, L) = 0, ∀t ≥ 0,

v(t, 0) =v(t, L) = 0, ∀t ≥ 0,

(1.111)

where P ∈ L(L2), with initial conditions in (H1
0 × L2)2. Then, one can derive the following energy

conservation law:

1

2

d

dt

∫ L

0

|ut|2 + |ux|2 + |vt|2 + |vx|2 = <

(∫ L

0

(uxx + Pv)ut + utxux + (vxx + Pu)vt + vxtvx

)

= <

(∫ L

0

Pvut + P ∗uvt

)

=
d

dt
<〈u, Pv〉L2

(1.112)
So the energy

E(u, v, ut, vt) =
1

2

(∫ L

0

|ut|2 + |ux|2 + |vt|2 + |vx|2
)
−<〈u, Pv〉L2 (1.113)

is conserved for system (1.111). Note that this is some sort of total energy of the system, with a
kinetic part (the squared terms) and an interaction part (the scalar product).

Now let us recall that we want to stabilize coupled wave equations with a feedback in the first
equation only. Considering system (1.111), and the damping in (1.105), it seems natural to investigate
what happens if we add a damping term in the first equation of (1.111). Intuitively, as we have just
seen that (1.111) is conservative, adding a damping term should make the energy decay, and the system
would become asymptotically stable. As it turns out, it takes some work to prove that intuition. To
our knowledge, David Russell was the first to study the decay of solutions in [136] (and later [138]),
in the more general framework of weak damping in general evolution equations in Hilbert spaces. In
particular, [136, Proposition 1.1 and the subsequent remark] ([80] also gives a related result) establishes
that compact perturbations of strongly continuous groups (not semigroups!) of operators cannot yield
exponential stability. This negative result was later quantified by Fatiha Alabau, Piermarco Cannarsa
and Vilmos Komornik in [1] (see also [2] for a synthesis), for partially damped coupled wave equations
with a scalar weak coupling on a bounded domain Ω ⊂ Rn, n ≥ 1:

utt −A1u = αv −But,
vtt −A2v = αu,

u(t, 0) =u(t, L) = 0, ∀t ≥ 0,

v(t, 0) =v(t, L) = 0, ∀t ≥ 0,

(1.114)
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where A1, A2 are linear positive self-adjoint operators on D(A
1
2
1 ) × L2 × D(A

1
2
2 ) × L2, and B is a

bounded linear positive self-adjoint operator on L2. Indeed, the coupled terms, as they are of lower
order, can be written as compact operators:

(u1, u2) ∈ H1
0 × L2 7→ (0, αu1), (1.115)

so that David Russell’s result applies. In this context the authors show that it is still possible to
obtain a decay rate: solutions with smooth initial conditions have a polynomial decay rate, under
certain conditions. More precisely, if there exists an integer j ≥ 2 such that

D(A
j
2
2 ) ⊂ D(A1), (1.116)

and if the energy

V (u, ut, v, vt) :=
1

2

(
‖ut‖2 + ‖A

1
2
1 u‖2 + ‖vt‖2 + ‖A

1
2
2 v‖2

)
+ α〈u, v〉 (1.117)

satisfies the following estimate involving higher order terms, for some n ≥ 1, C > 0, smooth enough
initial conditions, and for all T > 0:∫ T

0

V (u(t), ut(t), v(t), vt(t))dt ≤ C
j∑

k=0

V

((
d

dt

)nk
u(0),

(
d

dt

)nk+1

u(0),

(
d

dt

)nk
v(0),

(
d

dt

)nk+1

v(0)

)
,

(1.118)
then it satisfies the following decay inequality for some other constant C > 0, and all t > 0:

V (u(t), ut(t), v(t), vt(t)) ≤
C

tn

j∑
k=0

V

((
d

dt

)nk
u(0),

(
d

dt

)nk+1

u(0),

(
d

dt

)nk
v(0),

(
d

dt

)nk+1

v(0)

)
.

(1.119)
Let us point out two important facts:

• The smoother the initial conditions, the stronger the polynomial decay can be.

• By density, (1.114) is asymptotically stable for initial solutions in D(A
1
2
1 )× L2 ×D(A

1
2
2 )× L2.

This result is extended to more general couplings in [7]: polynomial decay for smooth initial
conditions holds for partially coercive operators, i.e. operators P such that there exists ΠP ∈ L(L2)
such that

|||ΠP ||| = 1, 〈Pv, v〉 ≥ c‖ΠP v‖2, ∀v ∈ L2, (1.120)

for some constant c > 0. In a way, this assumption corresponds to some downgraded information
transmission for the coupling operator, but still sufficient for the damping in the first equation to
stabilize both equations. Note that in the particular case of wave equations where the coupling and
control operators are given by L∞ functions, the authors give a geometric condition for the supports of
these functions, called the piecewise multipliers geometric condition (PGMC). This condition relates to
the aforementioned GCC, and implies polynomial stability for smooth initial conditions. In particular,
the supports of the coupling and the control must intersect in dimension greater than 2, but in
dimension 1 they can be of empty intersection.

As we have noted above, the obstruction to exponential stability comes from the fact that the
coupling operator is compact because it involves zero-order terms. In contrast, coupled velocities
yield quite different results: 

utt −A1u = αvt − ρ(x, ut),

vtt −A2v = αut,

u(t, 0) =u(t, L) = 0, ∀t ≥ 0,

v(t, 0) =v(t, L) = 0, ∀t ≥ 0.

(1.121)
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Indeed, in [9] the authors prove that the whole system is as stable as the first, damped, equation. In
particular, if the first equation is exponentially stable, then system (1.121) is exponentially stable.

Let us finally mention the work of Alain Haraux and Mohamed Ali Jendoubi in [89], who give a
unified approach with carefully chosen Lyapunov functions, of a more involved form than the usual
total energy (1.117), and recover the aforementioned results of polynomial stability (Section 7), as well
as a general result for so-called strong couplings, under some assumptions on the coupling operator
(Section 5).

Now, let us point out some specificities in the case of nonlinear systems. Consider once again the
system of coupled wave equations with a cubic coupling (1.53), and consider the equilibrium:

(γue, γ
3ve, γhe)

where γ > 0 and (ue, ve, he) are defined by (1.101). The system (1.53) is locally controllable around
that equilibrium. We can linearize (1.53) around that equilibrium:

utt − uxx = h,

vtt − vxx = 3γ2u2
eu,

u(t, 0) =u(t, L) = 0, ∀t ≥ 0,

v(t, 0) =v(t, L) = 0, ∀t ≥ 0.

(1.122)

Given the computations we made for system (1.111) and for (1.105), let us consider the following
feedback law:

hγ(u, ut, v, vt) = −ut + 3γ2u2
ev, (1.123)

which yields the following closed-loop system:
utt − uxx = 3γ2u2

ev − ut,
vtt − vxx = 3γ2u2

eu,

u(t, 0) =u(t, L) = 0, ∀t ≥ 0,

v(t, 0) =v(t, L) = 0, ∀t ≥ 0.

(1.124)

Then, the result of Fatiha Alabau and Matthieu Léautaud in [7] gives us the asymptotic stability of
the linearized system (1.124) as long as γ > 0. However this not enough to get stability results for
the nonlinear system.

Instead, we can add some terms to the Lyapunov function and the feedback. The nonlinear system
can be rewritten with (ũ, ṽ, h̃) := (u− γue, v − γ3ve, h− γhe):

ũtt − ũxx = h̃, x ∈ [0, L],

ṽtt − ṽxx = 3γ2u2
eũ+ 3γueũ

2 + ũ3, x ∈ [0, L],

ũ(t, 0) =ũ(t, L) = 0, ∀t ≥ 0,

ṽ(t, 0) =ṽ(t, L) = 0, ∀t ≥ 0.

(1.125)

The new “total energy” has additional terms due to the nonlinear coupling:

V γ(u, ut, v, vt) =
1

2

∫ L

0

|ut|2 + |ũx|2 + |vt|2 + |ṽx|2 −<

(∫ L

0

ṽ
(
ũ3 + 3ũ2γue + 3γ2u2

eũ
))

, (1.126)

and with additional terms in the feedback

h̃(u, ut, v, vt) = −ut + 3ṽ(ũ+ uγ)2 (1.127)

V γ is a Lyapunov function. However, it is not strict, which brings the following alternative: prove
that the trajectories are precompact ([11] gives a powerful method to do that for single nonlinear
equations); or try to obtain decay estimates following the method in [2], or the approach of [89].
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An important feature of (1.53) is that the linearized system around 0 has no coupling term. Thus
it seems difficult to tackle the stabilization directly. But the above study, if it yields some form of
stability around the non-zero equilibria (γue, γ

3ve, γhe), could be used to bring the system close to
0, using the so-called phantom tracking method. One way of doing this would be to consider γ as a
function of time, with the same expression of h̃, and add a penalizing term in the energy:

H(γ, u, ut, v, vt) := V γ(u, ut, v, vt) + (γ − V γ)2. (1.128)

Differentiating in time, we get:

d

dt
H(γ, u, ut, v, vt) = −(1− 2(γ − V γ))

∫ L

0

|ut|2 + γ̇ρ(γ, u, ut, v, vt) (1.129)

where

ρ(γ, u, ut, v, vt) =2(γ − V γ)

+ (1− 2(γ − V γ))

(∫ L

0

heu+ γ(u′e)
2 + 3γ2(v′′e v + veu

3 + uev
3)

−9γ3u2ueve + 3γ4uu2
eve + 3γ5((v′e)

2 − 2u3
eve)

)
.

(1.130)

The closed-loop system with the additional variable γ now writes

utt − uxx = −ut + γhe + 3u2(v − γ3ve), x ∈ [0, L],

vtt − vxx = u3, x ∈ [0, L],

γ̇ = −ρ(γ, u, ut, v, vt),

ũ(t, 0) = ũ(t, L) = 0, ∀t ≥ 0,

ṽ(t, 0) = ṽ(t, L) = 0, ∀t ≥ 0.

(1.131)

If γ(0) is small enough then we have the following energy inequality:

d

dt
H(γ, u, ut, v, vt) = −(1− 2(γ − V γ))

∫ L

0

|ut|2 − ρ(γ, u, ut, v, vt)
2 ≤ 0. (1.132)

Now the precompactness problem reappears for these augmented trajectories. Note however that
the energy inequality implies that H is bounded on trajectories of (1.131), so in particular γ is also
bounded, hence it is precompact as it is a scalar variable. So the main problem remains the u, ut, v, vt
components.

Let us point out, as a final note, that this approach is not likely to yield exponential stability, as
it rests on the weak LaSalle principle. Moreover, it all stems from a particular way of choosing the
feedback, which, although natural, is not the only possibility for feedback design.

Accordingly, the next section will focus on another method of feedback design that achieves expo-
nential stabilization of controllable system.

1.4 Stabilization of hyperbolic systems with a distributed scalar
input

1.4.1 Main results

In this part, we turn to first-order linear 1-D hyperbolic systems with a distributed scalar input and
proportional boundary conditions, of the general form:{

Yt +A(x)Yx +B(x)Y = u(t)Φ(x), ∀x ∈ [0, L]

Y+(t) = GY−(t), ∀t ≥ 0,
(1.133)
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where A,B ∈ C1([0, L],Mn(R)), G ∈ Mn(R). We suppose that A is already in diagonal form, with
non-zero eigenvalues λi. Then Y+ (resp. Y−) is the vector of ingoing boundary conditions Yi(t, σ)
with σ = 0 if λi > 0 and σ = L otherwise (resp. the vector of outgoing boundary conditions Yi(t, σ)
with σ = 0 if λi < 0 and σ = L otherwise). Finally, u(t)Φ(x) is an internal control force, with a fixed
spatial profile Φ, and our control is the amplitude of that force, u.

Let us point out some results related to the stabilization of these systems. As we have mentioned
in Section 1.2, the study of pole placement is closely linked with the stabilizability of a system.

It is natural to first consider linear, bounded feedbacks, for which David Russell proves in [137]:

Theorem 1.4.1 (D.L.Russell, 1978). Consider the system (1.133) with n = 2 and

A =

(
0 1
1 0

)
,

and note (ek, λk)k∈Z the eigenfunctions and eigenvalues of the operator −A∂x − B(x) with boundary
conditions

α0Y1(t, 0) + β0Y2(t, 0) = 0, α1Y1(t, L) + β1Y2(t, L) = 0, |αi|2 + |βi|2 6= 0, i = 0, 1. (1.134)

If the resulting system is controllable, then for any complex sequence (ρk)k∈Z satisfying

∑
k∈Z

∣∣∣∣ρk − λkφk

∣∣∣∣2 <∞, (1.135)

where the φk are the coefficients of the expansion of Φ in (ek)k∈Z, there exists a linear bounded feedback
law u(t) = 〈U,F 〉 such that the closed-loop operator −A∂x −B + 〈·, F 〉Φ has eigenvalues (ρk)k∈Z.

The quite limiting sufficient condition (1.135) was then proved to be a necessary and sufficient
condition in a more general setting which comprises our hyperbolic systems (see [144]):

Theorem 1.4.2 (S.H.Sun, 1981). Consider the general control system

dY

dt
= AY +Bu, Y ∈ H,u ∈ R, (1.136)

where H is a Hilbert space and A is a linear operator, potentially unbounded. Suppose that

1. A has discrete spectrum (λk)k≥1, λk 6= λj for j 6= k, and the associated normalized eigenfunctions
ek form a Riesz basis.

2. inf
k 6=j
|λk − λj | > 0.

3. sup
k≥1

∑
j≥1,j 6=k

1

|λk − λj |2
<∞.

Let (ρk)k≥1 be a sequence of complex numbers. Then, there exists a bounded feedback law u(t) = 〈Y, k〉
such that the operator A+ 〈·., k〉B has eigenvalues (ρk)k≥1, if and only if

1. B∗ek 6= 0, ∀k ≥ 1.

2.
∑
k∈Z

∣∣∣∣ρk − λkB∗ek

∣∣∣∣2 <∞.

Finally, let us mention an extension of this study to so-called admissible unbounded feedback
laws, in [129]. Building on Sun’s result, and without using canonical forms, Richard Rebarber gives a
sufficient condition for pole placement by a certain class of unbounded feedback laws, with:

• generalized spectral spacing conditions (conditions 1 and 2 in the above theorem) using cardinal
functions,
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• a relaxation of condition (1.135), requiring boundedness instead of summable squares,

• an additional condition depending on the spacing of the initial spectrum.

Note that these results do not yield exponential stabilization for systems of the form (1.133) unless
we consider unbounded feedback laws. In this latter case, [129] gives a formula for a feedback law
that achieves the desired pole placement. However, this formula requires to know a cardinal function
for which the poles coincide with the initial spectrum, which might be difficult in practice.

Systems of the form (1.133) appear naturally in physical problems. For example, as is mentioned
in [135], a linear wave equation which can be rewritten as a 2 × 2 first order hyperbolic system, the
problem of a vibrating damped string, or the plucking of a string, can be modelled by systems of
the form (1.133). In a different field altogether, chemical tubular reactors, in particular plug flow
reactors (see [125, 127]), are modeled by hyperbolic systems of the form (1.133). The control is the
temperature of the reactor, and instead of proportional boundary conditions there is a given input
at the boundary. Numerous other examples of hyperbolic control systems with boundary control
(channels, electric circuits, other types of chemical reactors...) can be found in [24, Chapter 1].

In Chapter 5, we will focus on yet another example, the so-called water-tank system. Introduced by
François Dubois, Nicolas Petit and Pierre Rouchon in [75], it models a 1-D tank containing an inviscid,
incompressible, irrotational fluid1 , in the approximation that its acceleration is small compared with
the gravitational constant, and that the height of the liquid is small compared with the length of
the tank2. In this setting, the motion of the fluid can be modelled by the Saint-Venant equations
([19, 20, 21]) on the interval [0, L]:

∂tH + ∂x(HV ) = 0,

∂tV + V ∂xV + g∂xH = −U(t),

ds

dt
(t) = U(t),

dD

dt
(t) = s(t),

V (t, 0) = V (t, L) = 0, ∀t ≥ 0,

(1.137)

where g is the gravitational constant, H is the height of the water, and V its averaged velocity, D is
the horizontal displacement of the tank, s its horizontal speed. The penultimate equation corresponds
to the fact that the sides of the tank are not permeable, and this implies that one never spills water.
Mathematically, one can obtain mass conservation by integrating the first equation:

0 =

∫ L

0

(∂tH + ∂x(HV ))

=
d

dt

∫ L

0

H(t, x)dx+H(t, L)V (t, L)−H(t, 0)V (t, 0)

=
d

dt

∫ L

0

H(t, x)dx, ∀t ≥ 0.

(1.138)

It is clear that this system has natural equilibrium points, corresponding to a motionless tank and
fluid:

(He, 0, 0, D), He > 0, D ∈ R.

In [52], Jean-Michel Coron proves the following theorem, using the return method and quasi-static
deformations (very slow movements of the whole system):

1Water, or beer, for example
2So I am not really stabilizing coffee mugs, as I like to tell my friends. I can only hope none of them reads my thesis

up to this footnote.
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Theorem 1.4.3 (Coron, 2002). There exists T > 0 such that the water tank system is locally con-
trollable around the equilibrium point (He, 0, 0, 0) for initial and final states

(H0, V 0, s0, D0), (H1, V 1, s1, D1) ∈ C1([0, L])× C1([0, L])× R× R

satisfying ∫ L

0

H0(x)dx =

∫ L

0

H1(x)dx = LHe,

H0
x(0) = H0

x(L), H1
x(0) = H1

x(L),

(1.139)

and with |s1 − s0|+ |D1 − s0T −D0| small enough.

From this theorem, it follows that any equilibrium point (He, 0, 0, D
0) can be steered to any other

equilibrium point (He, 0, 0, D
1).

This raises the following open problem: is the water-tank stabilizable?
In Chapter 5, we give a partial answer. First, we study the linearized water-tank system around

another class of equilibria corresponding to constant acceleration: (Hγ := 1 − γx, γ), which are no
longer uniform. Moreover, as the equilibrium corresponds to a moving tank, we do not include speed
and position in the state for the linearized control system:∂t

(
h
v

)
+

(
0 Hγ

1 0

)
∂x

(
h
v

)
+

(
0 −γ
0 0

)(
h
v

)
= −u(t)

(
0
1

)
,

v(t, 0) = v(t, L) = 0, ∀t ≥ 0,

(1.140)

which is of the form (1.133). Again, we can integrate the first equation to derive conservation of mass:

d

dt

∫ L

0

h(t, x)dx = 0, ∀t ≥ 0, (1.141)

and as initial perturbations of the system do not change the mass, this yields the following mass
condition: ∫ L

0

h(t, x)dx = 0, ∀t ≥ 0. (1.142)

and we prove that it is controllable for states in Sobolev spaces that satisfy the boundary conditions
of (1.140) and (1.142), for γ > 0 small enough, but not if γ = 0. As it so happens, mass condition
(1.142) translates into the fact that the controller (0 1)T fails to act on the kernel Span{(1 0)T } of
the operator (

0 Hγ

1 0

)
∂x +

(
0 −γ
0 0

)
.

To circumvent this obstacle, we consider a controller with an added component:(
ν
1

)
with ν 6= 0 carefully chosen so that we can apply the backstepping method. With this new controller,
we have a fictitious control system:∂t

(
h
v

)
+

(
0 Hγ

1 0

)
∂x

(
h
v

)
+

(
0 −γ
0 0

)(
h
v

)
= −u(t)

(
ν
1

)
,

v(t, 0) = v(t, L) = 0, ∀t ≥ 0,

(1.143)

which we can now separate in two components, one along the vector (1 0)T , and the one with conserved
mass: (

h
v

)
=

(
h0

0

)
+

(
h
v

)
. (1.144)
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Then, (1.143) rewrites:
ḣ0 = −u(t)ν,

∂t

(
h
v

)
+

(
0 Hγ

1 0

)
∂x

(
h
v

)
+

(
0 −γ
0 0

)(
h
v

)
= −u(t)

(
0
1

)
,

v(t, 0) = v(t, L) = 0, ∀t ≥ 0,

(1.145)

Then, under the same assumptions, we prove the following theorem:

Theorem 1.4.4 (J.-M.Coron, A.Hayat, S.Xiang, C.Zhang, 2019). For any µ > 0, there exists γ0 > 0
such that, for any γ ∈ (0, γ0), there exists ν 6= 0 such that there exists an unbounded feedback law
u(t) := 〈[h0, (h, v)], F 〉 such that the associated closed-loop system (1.145) is exponentially stable in
H1 norm, with decay rate µ.

In particular, this gives us a way to stabilize system (1.140) by adding a form of integrator.

Remark 1.4.1. As we will see, one of the requirements on µ and γ is that the target system be
controllable. This will give a quantitative relationship between these two parameters:

γ ≤ ce−2µL (1.146)

for some c > 0. So, in particular, the smaller the acceleration, the greater decay rate one can achieve
with a well-chosen feedback.

The proof of this result draws from the method used in [59] to stabilize a linearized Schrödinger
equation, which is a mix of the backstepping method for PDEs and the pole-shifting properties of
finite-dimensional systems. As in classical PDE backstepping, which we will present below, this allows
us to build explicit feedbacks.

However, although the basic outline of the proof is inspired from [59], the technical developments
prove quite different due to the hyperbolic nature of the system. In fact, Chapter 3 is devoted to the
elaboration of this method, first developed on a simpler hyperbolic system, namely a periodic linear
transport equation: {

αt + αx + µα = u(t)ϕ(x), x ∈ [0, L],

α(t, 0) = α(t, L), ∀t ≥ 0,
(1.147)

The simplicity of this example makes for lighter and more practical computations, while at the same
time providing a nice illustration of deeper technical issues. Moreover, the choice of this toy model
is motivated by the fact that the uncontrolled linearized system (1.140) when γ = 0 is equivalent,
after an appropriate variable change and a transformation to obtain one equation instead of two, to
a periodic transport equation.

The results for this simplified system are stronger than for the water tank, and are obtained in the
framework of periodic Sobolev spaces: :

Hm
per =

{
f ∈ Hm, f (i)(0) = f (i)(L),∀i ∈ {0, · · · ,m− 1}

}
. (1.148)

Theorem 1.4.5 (Christophe Zhang, 2018). Let m ≥ 1. If (1.147) is exactly controllable in Hm
per,

then for any λ > 0, there exists an unbounded feedback law u(t) := 〈α(t), Fλ〉 such that the closed-loop
operator associated to (1.147) generates an exponentially stable C0 semigroup on Hm

per, with decay
rate λ.

The feedbacks Fλ are explicit, and even allow for finite-time stabilization, which we will present
in Chapter 4:

Theorem 1.4.6 (Christophe Zhang, 2018). Let m ≥ 1. If (1.147) is exactly controllable in Hm
per, then

there exists an unbounded feedback law u(t) := 〈α(t), F 〉 such that the closed-loop operator associated
to (1.147) generates a C0 semigroup that goes to 0 in time L.
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1.4.2 A classic example

Simply put, the idea of backstepping for PDEs is to try to transform the considered system into a
simpler, stable system, the target system. The possibility of doing this depends on the feedback we
choose for our system, so in a way, the feedback law becomes a parameter of such a transformation.
The stabilization problem thus becomes that of finding if there exists a value for this parameter (a
feedback) such that the transformation is invertible and maps the trajectories of the resulting closed-
loop system into those of the target system. To our knowledge, this method was first presented
to stabilize an unstable heat equation with a boundary control in [33], and results on boundary
stabilization of classes of parabolic systems were then developed in [32, 17]. Let us give a rapid
account of the feedback design strategy in these works. Consider the following 1-D heat equation,
with internal antidamping λ > 0: {

ut − uxx = λu,

u(0) = 0, u(1) = U(t).
(1.149)

The goal is to find a transformation Tλ:

w(t, x) := u(t, x)−
∫ x

0

k(x, y)u(t, y)dy (1.150)

that maps the solutions of (1.149) to those of the exponentially stable target system:{
wt − wxx = 0,

w(0) = 0, w(1) = 0,
(1.151)

as it is well-known that the solutions of (1.151) decay exponentially with decay rate 1/4:

‖w(t)‖L2 ≤ e− t4 ‖w(0)‖L2 . (1.152)

Then, from (1.150) and the right boundary condition of (1.151), we will get the natural control
design:

U(t) =

∫ 1

0

k(1, y)u(t, y)dy. (1.153)

Replacing w by (1.150) in (1.151), and performing several integrations by parts using the boundary
conditions of (1.149), we find that k should satisfy the following the following kernel equations on
T := {0 ≤ y ≤ x ≤ 1}: 

kxx − kyy = λk,

k(x, 0) = 0,

k(x, x) = −λx
2

(1.154)

which is a form of wave equation on a triangular domain. To solve this PDE, let us first perform a
variable change:

ξ = x+ y, η = x− y, G(ξ, η) = k(x, y), (1.155)

which yields a new equation on a new domain T ′:
4Gξη(ξ, η) = λG(ξ, η),

G(ξ, ξ) = 0,

G(ξ, 0) = −λξ
4
.

(1.156)

Now, by successive integrations, (1.156) can be rewritten as an integral equation:
G(ξ, η) = −λ

4
(ξ − η) +

λ

4

∫ ξ

η

∫ η

0

G(s, σ)dσds,

G(ξ, ξ) = 0,

G(ξ, 0) = −λξ
4
.

(1.157)
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This equation can be solved using a classic fixed-point iterative method, where successive approxima-
tions are made with the following iterative scheme:

Gn+1(ξ, η) = −λ
4

(ξ − η) +
λ

4

∫ ξ

η

∫ η

0

Gn(s, σ)dσds, (1.158)

which leads to the following explicit expression for k, in the original variables x, y:

k(x, y) = −λy
I1

(√
λ(x2 − y2)

)
√
λ(x2 − y2)

, (1.159)

where I1 is the first Bessel function. This makes (1.153) an explicit full-state feedback.
Now that we know that k ∈ L2 we can compute the inverse T−1

λ :

u(t, x) = w(t, x) +

∫ x

0

l(x, y)w(t, y)dy, (1.160)

where, with almost the same computations as before, l is given by:

l(x, y, λ) = k(x, y,−λ). (1.161)

Thus, Tλ is indeed invertible, and maps the solutions of (1.149) to those of (1.151), which proves
the stability of (1.149) with feedback (1.153). More precisely, we have estimates on the decay of our
system, using (1.152):

‖y(t)‖L2 ≤ |||(Tλ)−1||||||Tλ|||e− t4 ‖y0‖L2

≤ C1λ
2eC2

√
λe−

t
4 ‖y0‖L2 ,

(1.162)

for some constants C1, C2 > 0. Thus, by looking for an invertible transformation under a certain
form, degrees of freedom are resolved and the problem of stabilization becomes one of solving the
PDE satisfied by the kernel of the Volterra transformation.

Since this seminal work, this backstepping strategy has been applied to many different PDE
systems, obtaining exponential or rapid stabilization for the wave equation ([109] and [141]), for the
Korteweg-de Vries equation ([39], more recently [155, 156]). A general presentation for an application
to first-order hyperbolic systems can be found in [24, chapter 7].

1.4.3 ODE backstepping

In its origins, however, backstepping is something quite different. Initially, the word “backstepping”
comes from a method in finite dimension (see for example [53, 110, 143] for a comprehensive overview
of this technique). Given a system

ẋ = f(x, u), x ∈ Rn, u ∈ Rm, f ∈ C1(Rn+m,Rn) (1.163)

for which a Lyapunov function V and a stabilizing C1 feedback law u = α(x) are already known, one
can find a stabilizing feedback law for (1.163) with an added integrator:

ẋ = f(x, ξ)

ξ̇ = u,
(1.164)

where the state is (x, ξ) and the control is u. The idea is that we are adding extra steps in the
stabilization problem, and the question is whether knowledge on the initial stabilization problem can
be used even though there are extra steps. And indeed, using a Lyapunov function approach, one can
design a feedback law that builds on α and accounts for these extra steps. Indeed, consider

Vb(x, ξ) := V (x) +
1

2
(ξ − α(x))2. (1.165)
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Then, along a solution of (1.164),

d

dt
Vb(x(t), ξ(t)) = ∇V (x) · f(x, ξ) + (ξ − α(x))(u− α′(x)f(x, α(x))). (1.166)

As f ∈ C1, there exists a continuous function G such that

f(x, ξ1)− f(x, ξ2) = G(x, ξ1, ξ2)(ξ1 − ξ2),∀(x, ξ1, ξ2) ∈ Rn+m+m. (1.167)

Thus,
d

dt
Vb(x(t), ξ(t)) = ∇V (x) · f(x, α(x))+

(ξ − α(x))(u− α′(x)f(x, α(x)) +∇V (x) ·G(x, ξ, α(x))).
(1.168)

so that by setting, for example,

u(x, ξ) := α′(x)f(x, α(x))−∇V (x) ·G(x, ξ, α(x))− (ξ − α(x)), (1.169)

we get
d

dt
Vb(x(t), ξ(t)) ≤ 0, (1.170)

which proves the stability of system (1.164) with the feedback law (1.169). The essence of this strategy
is that we use the control u to get ξ(t) to behave as much like the feedback α(x(t)) as possible, by
adding a penalizing term (ξ−α(x)) in Vb: we try to reproduce the action of α through the integrator.
In a way, we are taking α one step back, through the integrator, that is, backstepping it. This can be
extended to chains of integrators.

Another way of approaching the problem of an added integrator is to consider that we are per-
forming a change of variables on our system, by setting

z1 := x,

z2 := ξ − α(x).
(1.171)

Note that by its “lower-triangular structure”, this change of variables is invertible provided α is a
smooth enough function of x. Then, (1.164) becomes

ż1 = f(z1, z2 + α(z1))

ż2 = u− α′(z1)f(z1, z2 + α(z1)),
(1.172)

which we can rewrite
ż1 = f(z1, α(z1)) +G(z1, z2 + α(z1), α(z1))z2

ż2 = u− α′(z1)f(z1, z2 + α(z1)).
(1.173)

In this setting, we can use the feedback to “symmetrize” the coupling term G(z1, z2 + α(z1), α(z1))z2

and compensate α′(z1)f(z1, z2 + α(z1)), so that, defining

u := α′(z1)f(z1, z2 + α(z1))−∇V (z1) ·G(z1, z2 + α(z1), α(z1))

V z(z1, z2) := V (z1) +
1

2
z2

2 .
(1.174)

we get
d

dt
V z(t) = ∇V (z1) · f(z1, α(z1)) ≤ 0. (1.175)

More generally, systems of nonlinear ODEs with an underlying integrator chain structure and with
one scalar control at the bottom (or similar systems of PDEs, see [56] or [118] for instance) can be
transformed using an invertible, nonlinear change of variables. This nonlinear change of variables
is constructed recursively, variable by variable. The example (1.164) shows how the first step goes.
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Then, at step N , we go down one equation, and we see the current equation (in the new variable set
z1, · · · , zN )

żN = f̃N (z1, · · · , zN , xN+1) (1.176)

as a control system for which a stabilizing feedback law αN (z1, · · · , zN ) is known, and where the
variable xN+1 of the following equation plays the role of a control input. Then, we change that
variable in order to consider the error term

zN+1 := xN+1 − αN (z1, · · · , zN ),

as in (1.171), and we are now trying to use xN+2 to stabilize zN+1 to 0, so that xN+1 behaves like
the feedback law we know for zN . We are, once again, backstepping the feedback law αN through to
the next equation.

Example 1.4.1. Let us note that this method can be used to stabilize uncontrollable systems. Indeed
consider the following nonlinear system:

ẋ1 = −x2
1x2

ẋ2 = u.
(1.177)

It is clear that trajectories starting with x1 = 0 stay at x1 = 0 regardless of the control input. Thus
(1.177) is not controllable. However, the backstepping method can still be applied. Indeed, α(x1) := x1

clearly defines a stabilizing feedback for the first equation of (1.177): indeed it is well-known that 0 is
asymptotically stable for

ẋ1 = −x2
1α(x1) = x3

1. (1.178)

Then, consider the following functional:

V (x1, x2) :=
1

2
x2

1 +
1

2
(x2 − x1)2. (1.179)

V is clearly a positive definite quadratic form, moreover, differentiating in time along a trajectory of
(1.177), we get

d

dt
V (x1(t), x2(t)) = x1ẋ1 + (x2 − x1)(ẋ2 − ẋ1)

= −x3
1x2 + (x2 − x1)(u+ x2

1x2)

= −x4
1 + (x2 − x1)(u+ x2

1x2 − x3
1),

(1.180)

so that setting the feedback law

u := −x2
1x2 + x3

1 + x1 − x2 = (x2
1 + 1)(x1 − x2) (1.181)

ensures that
d

dt
V (x1(t), x2(t)) ≤ 0, (1.182)

and thus stabilizes (1.177).

1.4.4 PDE backstepping

As mentioned earlier it is possible to directly apply the ODE backstepping method, with a finite
number of steps, to some systems of PDEs. It seems also natural to try and apply the above method
on a semi-discretization of the system under consideration, as the boundary control ensures that the
resulting ODE system has some sort of integrator chain structure. This is done in [17] and [32], where
a backstepping change of variable with an increasing number of steps is applied to an increasingly fine
discretization of the heat equation of the form (1.149). However, with the traditional backstepping
change of variables, where natural Lyapunov functions are considered, the norm of the feedback
law obtained increases to infinity with the number of points in the discretization (or, equivalently,
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the number of backstepping steps). The reason for this is that the traditional change of variables
transforms the semi-discretized system into a tridiagonal system that is no longer parabolic, which in
particular replaces all its poles. This total pole placement is however not necessary, as there are only
a finite number of unstable eigenvalues for system (1.149). Thus, choosing a parabolic target system
for a less demanding pole placement, the authors manage to design a feedback that remains finite
when N →∞, leading to the example presented in Section 1.4.2. Remarkably, the change of variables
converges to a Volterra transformation of the second kind, and this is where the idea of using Volterra
transformations of the second kind originated.

This development shows the central difference between the finite-dimensional method, where one
uses, equivalently, natural Lyapunov functions, or lower triangular changes of variables, and the
infinite-dimensional method, where one has to pay attention to the pole placement involved, which
may call for a different target system. However, the new method for PDEs has inherited the name
“backstepping” because the spirit remains the same: a recursive change of variables is used to syn-
thesize the action of the control by climbing down the integrator chain (or going from the passive
boundary to the active boundary for PDEs); or, equivalently, to reap all the destabilizing terms and
bring them to the last equation (or to the boundary, for PDEs), where the control input can deal
with them. As a result, the transformations in both cases have a triangular structure. In the case
of a Volterra transformation of the second kind, one can see that it is “spatially causal”: indeed in
equation (1.150) one can see that the value of w(x) depends only on the values of v on [0, x].

1.4.5 The evolution of the method

1.4.5.1 From Volterra to Fredholm transformations

Volterra transformations of the second kind are one of the ingredients that made the new backstepping
method so powerful on PDEs. Interestingly, the use of a Volterra transformation of the second kind
also appears in the study of spectral assignability, which is the infinite-dimensional analog of pole-
shifting.

All in all, Volterra transformations of the second kind seem to work well with control systems.
But on the other hand, as mentioned previously these transformations have a specific triangular
structure. For some stabilization problems, this might be too constraining, and one could consider
looking for a larger class of invertible transformations, along with suitable target systems, to use the
backstepping method. And indeed, more recently, general kernel operators, also known as Fredholm
transformations, have been considered:

f(t, x) 7→
∫ L

0

k(x, y)f(t, y)dy. (1.183)

Even though they require more work, as one has to prove their invertibility from scratch, they have
proven to be more suitable regarding the position of the control (see [66, 65] for example), and have also
allowed to find stabilizing boundary feedbacks for hyperbolic systems (see [62] for integro-differential
systems, and in [63] for general balance laws). A striking feature is that the Fredholm transformations
in [66, 65] are actually still compact perturbations of the identity, although it is not clear whether they
are actually Volterra transformations of the second kind. Let us also note that in [63] the Fredholm
operator is sought in the form

f(t, x) 7→ f(t, x)−
∫ L

0

K(x, y)f(t, y)dy

where K(x, y) is a lower triangular matrix with zero diagonal for all (x, y) ∈ [0, L]2.
In [142] the authors achieve rapid boundary stabilization of the Euler-Bernoulli beam system. In

[87] the authors stabilize a spatially non-causal reaction-diffusion equation exponentially. Remarkably,
the system is spatially non-causal, and accordingly the authors apply the backstepping method with
a mixed Fredholm-Volterra transformation instead of a Volterra transformation of the second kind.
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1.4.5.2 From boundary control to distributed scalar inputs

Another significant evolution is the extension of the backstepping method to systems with a distributed
scalar input, which no longer bear any resemblance to finite-dimensional cascade systems:

dY

dt
+AY = u(t)Φ(x), (1.184)

where u is the control. Notwithstanding their differing nature, the backstepping method can still
be applied on these systems. For example, by adding some additional assumptions on the controller
Φ(x), the authors of [150] and [154] for parabolic systems, and [159] for first-order hyperbolic systems
similar to the ones in Section 1.4.1, are able to apply a Volterra transformation of the second kind to
their system, which moves some terms to the boundary but still leaves the input inside the domain.
Then, they apply a second invertible differential transformation to their simpler target system to move
the input to the boundary, which allows them to design an explicit feedback law.

As in the case of boundary control, on some systems the backstepping method seems to work
better with Fredholm transformations. For example, in [59], the authors use a Fourier approach to
find a suitable backstepping transformation, in the form of a Fredholm transformation, to achieve
rapid stabilization for the bilinear Schrödinger equation.

In this case, and also in the results presented in Chapters 3 and 5, we will see that the Fredholm
transformations that are found by the backstepping method are not compact perturbations of the
identity anymore.

1.4.5.3 Target systems

As we have mentioned, the choice of a target system is an important ingredient in PDE backstepping,
primarily because it ensures the convergence of the backstepping change of variables on the discretiza-
tion of the system, and essentially because it encodes what destabilizing terms we want to remove,
or what stabilizing terms we want to add. For example, in the works on the heat and wave equation
([109, 141, 17, 32]), antidamping terms are removed, and stability is enhanced by adding internal
damping:

ut −∆u = λ1u (1.185)

becomes
ut −∆u = −λ2u (1.186)

where λ1, λ2 > 0.
In some cases, however, backstepping can achieve more. In [68] and in [14, 13] the authors derive

a Volterra transformation of the second kind that moves the internal coupling terms to the boundary.
Remarkably, in [68], this allows for a complete cancellation of the boundary input, and yields finite-
time stabilization of the linearized system, with a minimal time due to the hyperbolic nature of the
system.

Finally, in Chapter 5 we encounter another kind of target system. Indeed, we have found that
adding boundary damping rather than internal damping seems to work better to find a backstepping
transformation.

1.4.5.4 Nonlinear systems

Another advantage of obtaining explicit feedbacks laws is that they can be used to stabilize nonlinear
systems. This approach can take different forms, depending on the system under consideration. For
example, in [39] the authors study a nonlinear KdV equation with a boundary control. Using the
backstepping method, they first compute explicit feedback laws for the linearized system for any
given exponential decay rate. Then, they build a solution u to the nonlinear equation step by step,
on the intervals [nT, (n + 1)T ]. On each interval, they study the image of u by the backstepping
transformation, and prove that it decays exponentially. Finally, by patching all the intervals together,
they prove that the image of u by the backstepping transformation decays exponentially on R+. Thus,
by invertibility of the backstepping transformation, u decays exponentially as well.
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Another approach is given in [68]. The authors plug the linear feedback, which stabilizes the
linearized system in finite time, into the nonlinear system, and prove the exponential stability of the
nonlinear closed-loop system using Lyapunov functions.

Regarding the systems studied in Chapters 3 and 5, as the feedbacks are explicit as well, one can
hope that the results for linear systems can be extended to nonlinear systems. However a new difficulty
arises: the feedback laws are not bounded for the state space norm. As a consequence the system
obtained by plugging the linear feedback law into the nonlinear system is not that straightforward to
study.

1.4.5.5 Null-controllability and finite-time stabilization

As mentioned earlier, in [68] the structure of the system makes it possible to chose a target system
that converges to 0 in finite time. The same is achieved in [159], where the second transformation
actually maps the system to a hyperbolic system with zero input at the boundary.

Even when it seems difficult to aim for target systems with finite-time convergence, backstepping
can help achieve finite-time stabilization. Indeed, a strategy has been developed in [67, 155, 156], using
the explicit feedback laws obtained by the backstepping method. The general strategy is to divide
the interval [0, T ] in smaller intervals [tn, tn+1], the length of which tends to 0, and on which one gets
exponential stabilization with decay rates λn, with λn → ∞, by applying feedbacks kλn . Then, for
well-chosen tn, λn, the trajectory thus obtained reaches 0 in time T , with a piecewise H1, explicit,
closed-loop control. For example, in [155] the author derives an explicit feedback law to stabilize
a linearized KdV equation exponentially, with a Dirichlet control on the left boundary. This yields
the following decay estimates for a given exponential decay rate λ, for the state y and the feedback
u := kλ(y):

‖y(t)‖L2 ≤ e4(1+L)2
√
λ−λt‖y(0)‖L2 ,

|u(t)| ≤ e6(1+L)2
√
λ−λt‖y(0)‖L2

(1.187)

so that the above defined piecewise feedback law yields the following estimates on [tn, tn+1):

‖y(t)‖L2 ≤ e
−

n∑
k=0

λn(tn+1 − tn) + 4(1 + L)2
n∑
k=0

√
λn

‖y(0)‖L2 ,

|u(t)| ≤ e
−

n∑
k=0

λn(tn+1 − tn) + 6(1 + L)2
n∑
k=0

√
λn

‖y(0)‖L2 .

(1.188)

Choosing for example

tn := T − 1

n2
, λ := 2n8, (1.189)

then ensures that the state reaches 0 in finite time.
Although this provides an explicit control to steer the system to 0, the norm of the feedback laws

kλn tends to infinity, and the closed-loop flow Φ does not satisfy the uniform stability condition:

∀ε > 0, ∃η > 0, ‖y0‖L2 ≤ η =⇒ ‖Φ(t, t′; y0)‖L2 ≤ ε, ∀t′ ≥ t. (1.190)

However, the previous construction of the control can be used, with some adequate modifications (see
[67] and [156]) to design a time-varying, periodic feedback, with some regularity in the state variable,
which stabilizes the system in finite time.

Theorem 1.4.6 translates an altogether different situation: indeed in this case, the norm of the
feedback law Fλ achieving exponential decay rate λ is bounded when λ→∞, and

Fλ −−−−→
N→∞

F∞, (1.191)

where F∞ is a linear form, and the convergence is in the sense of the coefficients of the linear forms
in some basis of the state space.

To test whether F∞ is actually a feedback law achieving finite-time stabilization, we then use the
semi-group formalism.
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1.4.6 A finite-dimensional example

The results stated in Section 1.4.1 are obtained by a uniform pole-shifting. As we have seen in the
example of the canonical form for hyperbolic systems, it seems that Volterra transformations of the
second kind on our systems are unlikely to yield more than a compact perturbation of the spectrum,
which is too weak to achieve the exponential stabilization we want.

On the other hand, we have seen that controllability implies a powerful pole-shifting property in
finite dimension. Moreover, in [66, 59] a controllability assumption is made, and is crucial in proving
the invertibility of the Fredholm transformation. This marks another evolution of the backstepping
method, which, in the finite-dimensional case, did not rely on the controllability of the system (see the
example with system (1.177)). In the wake of this evolution, the method we use to prove Theorems
1.4.5 and 1.4.4 draws on the strategy of proof in [59], and combines the use of controllability with the
spirit of backstepping transformations and target systems.

Let us now give a finite-dimensional example to illustrate the role controllability can play in the
backstepping method for PDEs. Consider the finite-dimensional control system

ẋ = Ax+Bu(t), x ∈ Cn, A ∈Mn(C), B ∈Mn,1(C). (1.192)

Now suppose that (A,B) is controllable, and let us try to invertibly transform system (1.192) into
another controllable system, namely

ẋ = Ãx, (1.193)

which is exponentially stable if Ã is well chosen.
Suppose that x(t) is a solution of system (1.192) with u(t) = Kx(t). Such a transformation T

would map (1.192) into
˙(Tx) = T ẋ = T (A+BK)x.

In order for Tx to be a solution of (1.193), we need

T (A+BK)x = ÃTx.

To find such a T , let us suppose without loss of generality that (A,B) is in canonical form, using
the fact that (A,B) is controllable. Now, as (Ã, B) is also controllable, it can be put in canonical
form with an invertible matrix T :

T−1ÃT = c(Ã) (1.194)

Now, as in the proof of the pole-shifting theorem (Theorem 1.2.3), there exists a unique K such that

A+BK = c(Ã) (1.195)

which yields
T (A+BK) = ÃT. (1.196)

Now notice that as we assumed that (A,B) was in canonical form, this implies that

TB = B. (1.197)

Injecting the above equation into (1.196), we get the following equations:

TA+BK = ÃT,

TB = B,
(1.198)

for which we just proved the following theorem:

Theorem 1.4.7. If (A,B) and (Ã, B) are controllable, then there exists a unique pair (T,K) satisfying
conditions (1.198).
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What this proof shows is that controllability can be very useful when one wants to transform
systems into other systems. In the finite-dimensional case, using the canonical form is the most
efficient way of writing it. However, in order to gain some insight on the infinite-dimensional case,
there is a different proof, relying on the spectral properties of A and Ã, which can be found in [59].
The idea is that the controllability of A allows to build a basis for the space state, in which T can then
be constructed. Indeed, suppose A is diagonalizable with eigenvectors (en, λn)1≤n≤N , and suppose

that Ã and A have no mutual eigenvalues. Then, let us project (1.198) on en:

λnTen + (Ken)B = ÃTen, (1.199)

from which we get the following relationship

Ten = (Ken)(Ã− λnI)−1B, ∀n ∈ {1, · · · , N}. (1.200)

Then, using the Kalman rank condition on the pair (Ã, B), one can prove that the fn := ((Ã −
λnI)−1B) form a basis of RN .

Knowing this, write

B =

N∑
n=1

bnen,

B =

N∑
n=1

b̃nfn,

(1.201)

and TB is written naturally in this basis:

TB =

N∑
n=1

(Ken)bnfn, (1.202)

so that the second equation of (1.198) becomes

N∑
n=1

(Ken)bnfn =

N∑
n=1

b̃nfn. (1.203)

Using the Kalman rank condition on (A,B), one can prove that bn 6= 0 so that the (Ken) are uniquely
determined. The only thing that remains to prove is the invertibility of T , as the (Ken) could be 0.
In the end the invertibility is proven thanks to the Hautus test on the pair (Ã, B), and the uniqueness
is given by the TB = B condition.

1.4.7 Making educated guesses

The strategy described above can be translated into a heuristic for PDEs. Consider now the same
systems (1.192) and (1.193), but where A, Ã,B are differential operators and the state space is some
Hilbert space (for example, L2).

Suppose that A and Ã admit Riesz bases of eigenfunctions. Translating (1.199) in terms of differ-
ential operators, we get an ODE that Ten would satisfy if a backstepping transformation T existed.
We can then solve this ODE, which is analog to writing (1.200). Then, using the controllability of the
target system as in the finite-dimensional case, we can try and prove that the (Ten) form a Riesz basis
of the state space, under some conditions on the (Ken). If that is the case, then for every suitable
feedback law, we have built an invertible transformation.

Note however that at this point, we do not know if one of these is an actual backstepping trans-
formation: for a suitable feedback law, our approach is to make an “educated guess” at what the
corresponding backstepping transformation could be.

Now, to continue our search for a backstepping transformation, we recall that (1.199) is not the
genuine backstepping operator equality: indeed we have injected the TB = B condition in the first
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equation of (1.196), which was actually very convenient, as it separated the variables T,K in finite
dimension, and removed the non-local terms of the kernel equations in infinite dimension ([59], or
Chapters 3 and 5).

So, for our educated guess to be consistent, we need some form of TB = B condition to be satisfied
by (T,K). In finite dimension, this is relatively easy, as it relies on decompositions in two different
bases. In infinite dimension, this can prove trickier. In [59] the controller function is in the domain of
definition of the invertible transformations derived from the kernel equations. However, in Chapters
3 and 5, this is no longer the case, and we resort to a weaker form of the TB = B condition. To our
knowledge, this feature is novel in the development of the backstepping method.

To understand this weaker form, let us recall that we are trying to check whether our guess
is accurate, that is, checking rigorously if, for a given feedback, the corresponding transformation
we have built really is a backstepping transformation. More precisely, we want to check that this
transformation satisfies the operator equality (1.198) on some domain depending on the feedback law.
Accordingly, a careful study of this operator equality (see Chapter 5, Section 5.5.3) yields a condition
on the feedback law which is actually the weaker form of the TB = B condition:

〈TB(N), φ̃m〉 −−−−→
N→∞

〈I, φ̃m〉, ∀m ∈ Z, (1.204)

for a specific approximation B(N) of B. Finally we process this condition by using pointwise con-
vergence theorems for Fourier-type series, inspired by the Dirichlet convergence theorem for Fourier
series (see for example [101]):

N∑
n=−N

〈f, en〉 en(x) −−−−→
N→∞

f(x+) + f(x−)

2
, f ∈ C1

pm, ∀x ∈ [0, L]. (1.205)

This kind of technical development is new in the landscape of backstepping, and we believe it to
be linked to the growth of the eigenvalues of the hyperbolic operators we have considered. Indeed,
in [59], the eigenvalues have quadratic growth and the technical developments are quite different. In
particular, the Riesz basis property of the (Ten) is profoundly different in nature, which leads to a
backstepping transformation T defined on the whole state space.

1.4.8 Backstepping in higher dimension

As far as we know, PDE backstepping has only been applied on 1-D systems, except for some parabolic
systems on a parallelepiped, under some assumptions on the diffusion and reaction coefficients, in
[100, 122], or extension to higher dimension of feedback laws elaborated in 1-D ([119]). Indeed the
triangular (or spatially causal) structure of Volterra transformations of the second kind makes them
difficult to define on higher-dimensional domains, and geometrical constraints on the system seem
necessary as they help reduce the problem to a collection of 1-D problems.

In contrast, our method relies on general kernel operators, and one could consider extending
them to higher-dimensional domains, as long as the differential operators involved have nice spectral
properties. This would involve more complicated kernel equations, and the analog of the equations
(1.199) would be PDEs instead of ODEs, for which Riesz basis properties could be more challenging
to prove.

1.5 Conclusion and prospects

In this thesis, we have studied various problems of internal control for some hyperbolic systems in
1-D.

We have studied indirect controllability for systems of quasilinear and semilinear coupled wave
equations, with an internal control. We have given a natural sufficient condition for local controllability
around trajectories of the system, together with a natural relation between the control time and the
support of the control. To obtain this result we used the fictitious control method, together with a
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local inversion theorem by Mikhail Gromov, of the Nash-Moser type, to deal with the inherent loss of
derivatives in such systems. This method allowed for control supports that are subsets of an interval,
as long as they satisfy a form of Geometrical Control Condition. This flexibility made it possible to
construct non-trivial trajectories around which the system is locally controllable, as is illustrated in
the particular case of semilinear wave equations with a cubic coupling.

We have studied the stabilization of controllable hyperbolic systems by a distributed scalar feed-
back. We built on the most recent developments of the backstepping method for PDEs to obtain
explicit feedbacks. Although based on a recent application to the bilinear Schrödinger equation, the
method we develop proved to be quite different in its technical developments. We believe this to be
linked with the growth of the eigenvalues of the differential operators involved. Using this method,
we have obtained explicit stationary feedbacks that stabilize controllable linear periodic transport
equations, for arbitrarily large exponential decay rates. In this framework it turns out that a new sta-
tionary feedback law can be derived from these feedback laws, which achieves finite-time stabilization.
Finally, we have applied our method on the linearized water tank system around non-uniform steady
states. This last situation presented an additional challenge, due to the conservation of mass. In fact,
the system under consideration is only controllable up to a missing direction which corresponds to
variation of mass. We have overcome this obstacle by adding an integrator to the feedback loop.

Let us now list a few questions and prospects.

Regarding internal controllability, the regularities of the control and the trajectories in our result
are probably not optimal, due to technical specificities of the inversion theorem we have used. It
would also be interesting to investigate a higher-dimensional version of this result, keeping in mind
that part of our proof is specific to 1-D systems. On another note, our proof is constructive, in a way,
but the Nash-Moser scheme contained in the inversion theorem suggests that the control could be
approximated numerically. Finally, the question of boundary indirect controllability or observability
was studied in the linear case, and recent works seem to indicate that it might be more challenging
than internal indirect controllability, but it remains open for nonlinear systems.

Regarding the stabilization of controllable hyperbolic systems, several prospects should be pointed
out. Concerning the water tank itself, we have provided a feedback law to stabilize a linearized
system. Therefore the stabilization of the nonlinear system, around non-uniform or uniform steady-
states, is still in question. Moreover, the feedback loop we have provided is relatively explicit, so that
a numerical illustration seems within reach.

Some general questions on the backstepping method should also be raised. As we have presented
in this introduction, there are many variants of the backstepping method. How does one know which
one to chose for a given PDE? Could the variant we used on hyperbolic systems, and the one used on
the bilinear Schrödinger equation, be understood in a broader framework, which could, in particular,
explain the influence of the growth of the eigenvalues? Is the assumption of exact controllability
absolutely necessary, knowing that the backstepping method can work with approximate controllability
in some cases? Finally, up to now the backstepping method has been elaborated on 1-D systems, and
recent extensions to higher space dimensions are restricted to systems with a tensor product structure.
Could a backstepping method be designed for more general higher-dimensional systems?
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Internal controllability of coupled
wave equations
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Chapter 2

Internal Controllability of Systems
of Semilinear Coupled
One-Dimensional Wave Equations
with One Control

This chapter is taken from the following article (also referred to as [161]):
Christophe Zhang. Internal controllability of systems of semilinear coupled one-dimensional wave
equations with one control. SIAM Journal on Control and Optimization, Society for Industrial and
Applied Mathematics, 2018, 56 (4), pp.3092 - 3127.
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Abstract We study systems of two coupled wave equations in one space dimension, with one control,
spatially supported on an arbitrarily small interval. We obtain the controllability of such systems
under certain conditions on the coupling. To do this we apply the “fictitious control method” in two
cases: general systems with a controllable linearised system, and a particular case where the linearised
system is not controllable, namely a cubic coupling.

In the latter case, our proof requires to find nontrivial trajectories of the control system that go
from 0 to 0 and having a controllable linearized system. We build these trajectories by adapting (in 1

49



space dimension) a construction developed by Jean-Michel Coron, Sergio Guerrero and Lionel Rosier
for the study of coupled parabolic systems.

2.1 Main results and outline of proof

2.1.1 Control systems

Let T > 0, and 0 < a < b < L. We study the following class of systems:
utt − ν2

1uxx = f1(u, v) + h, x ∈ (0, L),

vtt − ν2
2vxx = f2(u, v), x ∈ (0, L),

u = 0 on {0, L},
v = 0 on {0, L},

(2.1)

where h : [0, T ] × [0, L] → R is the control, with supp h ⊂ [0, T ] × [a, b], and f1, f2 ∈ C∞(R2),
f1(0, 0) = f2(0, 0) = 0, ν1, ν2 6= 0. In what follows we shall note, for any ν 6= 0,

�ν := ∂tt − ν2∂xx

We will also study the following particular system:
�ν1u = h, x ∈ (0, L),

�ν2
v = u3, x ∈ (0, L),

u = 0 on {0, L},
v = 0 on {0, L}.

(2.2)

These are systems of coupled semilinear wave equations, with different speeds, which we seek
to control with a single control, which takes the form of a source term in the first equation with a
support in [0, L] × [a, b]. In both cases, we will study solutions with Ck((0, T ] × [0, L]) regularity
in order to establish a controllability result with two controls. Thus, the initial and final conditions
((u0, u1), (v0, v1), (uf0 , u

f
1 ), (vf0 , v

f
1 )) have to satisfy some compatibility conditions. For example, the

conditions of order 1 and 2 read as:

∀β ∈ {0, L},



u0(β) = u1(β) = (uf0 )(β) = (uf1 )(β) = 0,

u′′0(β) = u′′1(β) = (uf0 )′′(β) = (uf1 )′′(β) = 0,

v0(β) = v1(β) = (vf0 )(β) = (vf1 )(β) = 0,

v′′0 (β) = v′′1 (β) = (vf0 )′′(β) = (vf1 )′′(β) = 0.

(2.3)

To write the compatibility conditions of order k ≥ 3, the idea is to first write the time derivatives
of u and v as a function of their lower order derivatives.

There exists a multivariate polynomial Qfin,i such that(
d

dt

)n
(fi(u, v)) = Qfin,i (Jnt (u, v)) , i = 1, 2, (2.4)

where Jnt (u, v) denotes the n-jet of time derivatives of u and v, that is

(u, v, ut, vt, · · · , ∂nt u, ∂nt v) .

Now, define by recurrence the following family of operators:
D(i)

1 = ∂t,

D(i)
2 = ∂xx + fi(·, ·),

D(i)
n = ∂xx ◦ D(i)

n−2 +Qfin−2,i

(
Jn−2
t (·, ·)

)
, for 3 ≤ n ≤ k.

(2.5)
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Then, near the corners Γ := {(0, 0), (0, L), (T, 0), (T, L)}, using the equations of system (2.1) and
keeping in mind that the control h is supported away from the corners, we have{

∂nt u = D(1)
n (u, v)

∂nt v = D(2)
n (u, v)

(2.6)

Now, thanks to the boundary conditions,

∂nt u(c) = ∂nt v(c) = 0, ∀c ∈ Γ,∀n ≤ k.

Moreover, it is clear thanks to the recurrence in (2.5) that there exist multivariate polynomials P fin,i
such that:

D(i)
n (u, v) = P fin,i

(
Jnx (u, v), Jn−1

x (ut, vt), J
n
t (u, v)

)
,∀n ≤ k, i = 1, 2, (2.7)

where Jnx (u, v) denotes the n-jet of space derivatives f u and v. Now, (2.6) can be written in the

corners using only u0, u1, u
f
0 , u

f
1 , v0, v1, v

f
0 , v

f
1 , which gives the following compatibility conditions of

order k: 

P fin,i
(
Jnx (u0, v0)(0), Jn−1

x (u1, v1)(0), (0, · · · , 0)
)

= 0,

P fin,i
(
Jnx (u0, v0)(L), Jn−1

x (u1, v1)(L), (0, · · · , 0)
)

= 0,

P fin,i

(
Jnx (uf0 , v

f
0 )(0), Jn−1

x (uf1 , v
f
1 )(0), (0, · · · , 0)

)
= 0,

P fin,i

(
Jnx (uf0 , v

f
0 )(L), Jn−1

x (uf1 , v
f
1 )(L), (0, · · · , 0)

)
= 0,

∀n ≤ k, i = 1, 2. (2.8)

The existence and uniqueness of solutions to these systems can be derived from TaTsien Li’s general
results on quasilinear wave equations (see [112] or [113, chapter 5, section 5.2]).

In this chapter we prove two controllability results: a local result for system (2.1), and a global
result for system (2.2).

Theorem 2.1.1. Let R > 0, and 0 ≤ a < b ≤ L, T > 0 such that

T > 2(L− b) max

(
1

|ν1|
,

1

|ν2|

)
, T > 2amax

(
1

|ν1|
,

1

|ν2|

)
. (2.9)

If
∂f2

∂u
(0, 0) 6= 0, (2.10)

then there exists η > 0 such that for initial and final conditions

((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )) ∈

(
BC11([0,L]) ×BC10([0,L])(0, η)

)4
where BCk(0, η) denotes the ball centered in 0 and with radius η in the usual Ck topology, satisfying
(2.8) at the order 11, there exists h ∈ C6([0, T ]× [0, L]) such that

supp h ⊂ [0, T ]× [a, b], (2.11)

and such that the corresponding solution (u, v) ∈ C6([0, T ] × [0, L])2 of (2.1) with initial values
((u0, u1), (v0, v1)) satisfies {

u(T, · ) = uf0 , ut(T, · ) = uf1 ,

v(T, · ) = vf0 , vt(T, · ) = vf1

and
‖(u, v, h)‖(C6)3 ≤ R. (2.12)
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Condition (2.10) is necessary and sufficient for the controllability of linear systems (if the dynamics
of v does not depend on u there is no hope to control v through u). In contrast, the following theorem
shows that it is not necessary in the case of nonlinear systems: system (2.2) does not satisfy (2.10),
but we still obtain a controllability result. Moreover, thanks to the system’s homogeneity, the result
is global.

Theorem 2.1.2. Let 0 ≤ a < b ≤ L, T > 0 satisfying (2.9). There exists a constant C > 0 depending
on T such that, for any given initial and final conditions

((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )) ∈

(
C11([0, L])× C10([0, L])

)4
satisfying (2.8) at the order 11, there exists h ∈ C6([0, T ]× [0, L]) such that

supp h ⊂ [0, T ]× [a, b], (2.13)

and such that the corresponding solution (u, v) ∈ C6([0, T ] × [0, L])2 of (2.2) with initial values
((u0, u1), (v0, v1)) satisfies {

u(T, · ) = uf0 , ut(T, · ) = uf1 ,

v(T, · ) = vf0 , vt(T, · ) = vf1

and
‖h‖C6 ≤ C

(
‖(u0, u1, u

f
0 , u

f
1 )‖(C11×C10)2 + ‖(v0, v1, v

f
0 , v

f
1 )‖

1
3

(C11×C10)2

)
. (2.14)

2.1.2 Related results

Control of hyperbolic equations

Fundamental results for the controllability and stabilisation of the linear wave equation can be
found in [18]. For quasilinear wave equations, boundary controllability results for scalar systems with
C2 regularity can be found in [113, chapter 5], and can be adapted to coupled systems with the
same number of controls and equations, and for Ck regularity. For the semilinear wave equation,
local controllability results have been obtained using the implicit function theorem (see [78] and the
generalisation by [43]). To get global boundary and internal controllability for the semilinear wave
equation, under some growth constraints on the nonlinearity, Enrique Zuazua used HUM (Hilbert
Uniqueness Method) and introduced a suitable fixed-point method in [167] and [166]. These results
have sin Ce then been improved successively by [38] and [37], where authors study the one-sided
and internal controllability of a semilinear wave equation with an iterated logarithm nonlinearity.
Another powerful method to prove controllability results is the Carleman estimates method. It was
first used for the semilinear wave equation in [164] and [165], where a new Carleman estimate was
established to prove internal observability. The estimate worked for globally Lipschitz nonlinearities,
with the observer supported in a neighbourhood of some portion of the boundary. More recently,
Carleman estimates were used in [79] to obtain internal controllability of the semilinear wave equation
in any space dimension. The control is supported in a neighbourhood of a portion of the boundary
(earlier works required the controller to be supported in the neighbourhood of the whole boundary),
and the nonlinearity is superlinear. The method of Carleman estimates was also used in [88] for
mechanical systems of several coupled linear hyperbolic equations (a multilayer Rao-Nakra plate).
This yields internal controllability results, with the same number of controls and equations, and
controllers supported on an arbitrarily small neighbourhood of some portion of the boundary.

Systems with less controls than equations

Linear case. Regarding controllability with a reduced number of controls, results for boundary
and internal control of coupled linear symmetric wave systems have been proved by Fatiha Alabau-
Boussouira ([8] and [3]) in any space dimension, using energy methods, with more or less strong
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assumptions on the coupling operators, and in particular in the case where the control domain and
the coupling domain do not intersect. This was then used in [4] to prove the existence of insensitizing
controls for a single wave equation, as this is linked to the controllability of linear cascade systems in
one space dimension, with the same speed in both equations. Other methods have been used to deal
with a reduced number of controllers, albeit on different types of systems: on the related question
of partial observability on a sphere, on top of some results proven by Lions in [116] and [117], [107]
shows a way to deal with a reduced number of controllers using the Fourier expansion of the solutions.
They prove that for a generic choice of coupling parameters, and provided the initial conditions of the
unobserved components are zero, and the initial conditions of the observed components are orthogonal
to a finite-dimensional space (possibly trivial, for example in the one-dimensional case), then partial
observability holds.

Nonlinear case. The link between cascade controllability and desensitizing controls has also been
explored for semilinear equations in [145], where the author proves the controllability of cascade
systems of the form: 

�u+ f(u) = h+ ξ,

�v + f ′(u)v = 0,

u = 0, v(t, 0) =
∂u

∂n
χΓ0 on ∂Ω,

(2.15)

where Γ0 is a portion of the boundary, and where f is subject to a growth constraint to have global well-
posedness. To prove the controllability of such systems, the author first establishes the controllability
of a linear problem, using a form of HUM combined with Carleman estimates. Then, using the
Schauder fixed-point theorem, he establishes the controllability of the nonlinear problem.

In other cases, as for system (2.2), the linearised system around 0 is not controllable. A classical
tool to handle this problem in finite dimension is the use of iterated Lie brackets, see for example
[99, chapter 2], [124, chapter 3], and [53, chapter 3]. However, this tool does not work for many
partial differential equations (see for example [53, chapter 5]). In particular it does not work for
our control system (2.2). In that case, a method to handle this situation is the return method. It
consists in looking for trajectories going from 0 to 0 and such that the linearised system around them
is controllable (return trajectories). This method has been introduced in [47] for the stabilization
of driftless control systems and in [51] and in [49] for the controllability of the Euler equations of
in Compressible fluids. It is also used in [60] for parabolic systems with cubic coupling. Following
this method, in [60] the authors build return trajectories, using the structure of the coupling. Then,
using Carleman estimates, they prove the controllability of a family of related parabolic linear systems
close to the return trajectory, from which they deduce null-controllability using Kakutani’s fixed-point
theorem.

In yet other cases, a phenomenon of loss of derivatives can occur: this can be handled with an
inversion theorem of the Nash-Moser type, with a stronger condition on the linearised system. A
well-know case is the local controllability of the 1-D Schrödinger equation, which was proven in [28]
and [29] using a Nash-Moser implicit function theorem. More recently, the controllability of a system
of coupled quasilinear first order hyperbolic systems with one control was proved in [5], using the
“fictitious control method” and a Nash-Moser type inversion theorem proven by Gromov, which we
will explain in the following section. More precisely the result concerns systems of the form:{

ut + Λ1(u, v)ux + f1(u, v) = h,

vt + Λ2(u, v)vx + f2(u, v) = 0,

with
∂f2

∂u
(0, 0) 6= 0. (2.16)

The work presented in this chapter draws from all these situations: we study semilinear systems,
as in [145], but of a more general form than (2.15). The idea would then be to prove a controllability
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result for some sort of linearised system, then use a fixed point theorem (or an inversion theorem) to
conclude. However, because of a phenomenon of loss of derivatives, we rather follow the same path
as [5] to get Theorem 2.1.1. This approach, in addition to dealing with the loss of derivatives in our
system, has the advantage of not being as computation heavy as Carleman estimates, and allows for
general control domains, whereas the use of Carleman estimates usually requires the control domain
to be the neighborhood of some portion of the boundary. For Theorem 2.1.2 however, condition (2.10)
(analogous to (2.16)) is not satisfied. This corresponds to the fact that the linearized system is not
controllable, and so we build return trajectories as in [60].

Finally, a remark on the control time is in order: for hyperbolic systems, the control time is
usually linked to the speeds of propagation and the size of the domain, as this represents how fast the
deformation produced by the control reaches every point of the domain. Now, in the case of a reduced
number of controls, one can expect that the indirect action of the control should mean additional
control time, or that the control time should not depend only on the geometry of the domains and
the propagation speeds, but on some other parameters. For example, in the results of [8], the authors
point out that the control time they obtain depends on all the parameters of the system, not only
the geometry of the control and coupling domains. Likewise, in [3] and [4] the control times depend
on observability times not only for a single equation, but also for the coupling operator, and in [145],
the control time depends on the choice of some function used to establish Carleman estimates. On
the other hand, in [5] as well as in our theorems, the control time is the same as for scalar equations.
Indeed, as we will see in what follows, applying the fictitious control method does not change the
control time when removing one control, and the control time depends only on the size of the support
of the control. Physically speaking, we use the coupling to transmit information from one equation
to another (this corresponds to conditions (2.10) and (2.16)) everywhere in the domain, so that the
action of the control on the first equation can be transmitted without delay.

2.1.3 The fictitious control method

The fictitious control method was introduced in [47] and [83], and successfully used in [64], [5] and
[61]. The idea is to first prove a controllability result with two controls (the fictitious controls), then
reduce the number of controls, using some sort of fixed-point theorem, namely Theorem 2.2.1.

In this chapter, we apply it to second order hyperbolic systems, which present the same problem
of loss of derivatives as the systems in [5]. This loss of derivatives is handled by using Gromov’s
notion of algebraic solvability, which allows for differential operators to be inverted in a special way
under some condition (infinitesimal inversion) on their derivative. This yields local results around
the equilibrium, but we will also work around other trajectories than the stationary trajectory at the
equilibrium, in the spirit of the return method, paying close attention to the regularities involved.
Indeed, condition (2.10) from Theorem 2.1.1 is identical to condition (2.16), and is crucial to solve the
system algebraically (see Proposition 2.2.2). If, as in Theorem 2.1.2, it is not satisfied, then, following
the spirit of the return method, one can build trajectories of the system along which such a condition
is verified, at least on some appropriate spatial domain.

We can thus sum up our strategy of proof in three steps:

1. Find smooth trajectories around which Theorem 2.2.1 can be used (when necessary).

2. Prove a local controllability result with two controls (fictitious controls) around the return
trajectory, using classical boundary control results.

3. Use Theorem 2.2.1 to reduce the number of controls to one.

Remark 2.1.1. In this method, the controllability of the linearised system is not used directly to obtain
controllability of the nonlinear system using a fixed point theorem. Rather, the corresponding condition
(2.10) gives us some sort of indication that information is “well transmitted” from the first equation
to the second equation, so that what happens with one control in each equation, can be translated into
a single control in the first equation.
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this chapter is organised as follows: in section 2, we illustrate Gromov’s ideas on a linear example, and
then prove Theorem 2.1.1, which is a case where we do not need to find return trajectories. This will
allow us to present how Gromov’s ideas can be applied to a system of nonlinear wave equations. In
section 3 we prove Theorem 2.1.2. In this case we need to find return trajectories, and the application
of Theorem 2.2.1 around those trajectories will require a more detailed knowledge of the supports of
the return trajectory. Finally section 4 is devoted to possible improvements and further questions on
this topic.

2.2 First case: the linearised system is controllable

As mentioned in section 2.1.3, we build on the method presented in [5]. One of the main ingredients
of this method is the theory of differential operators, and the notion of algebraic solvability, which we
briefly present in the subsection below. The use of algebraic solvability in the study of control systems
first appears in [47], where it was used to prove the stabilisability of finite dimensional systems without
drift with time-varying feedbacks. It was first used in the context of partial differential equations in
[64] for the control of the Navier-Stokes equation.

But first let us give an informal explanation of our method in the case of a linear system: first we
have to rewrite the control problem using differential operators. We note D the operator associated
with the equation of our control problem. Then, the control problem, given initial and final conditions,
consists in finding (u, v) with those initial and final conditions, and a control h such that

D(u, v, h) = 0.

This corresponds to an inversion problem, but with a twist: one has to find an inverse image with the
right initial and final conditions. Now, using the solutions to forward- and backward-evolving Cauchy
problems corresponding to the initial and final conditions, one can build functions (u, v) with the right
initial and final conditions. The nonlinear version of this is done at the beginning of subsection 2.2.2.
In general, one can do this so that for some η > 0,

(h1, h2) := D(u, v, 0) = 0,∀t /∈ [η, T − η].

Now suppose D is invertible. We can make the following computation, the nonlinear version of which
is made in subsection 2.2.2:

D
(
(u, v, 0) + D−1(−h1,−h2)

)
= (h1, h2)− (h1, h2) = 0.

This seems to yield a solution to the control problem, however we still need to check that the “corrective
term” does not change the initial and final conditions. This is where Gromov’s notion of algebraic
solvability comes into play: the right property for D is not to be invertible, but to be algebraically
solvable. That is, that the inverse can also be written as a differential operator:

D−1(−h1,−h2) =
∑
r

ar∂r(−h1) +
∑
r

br∂r(−h2)

for some functions ar, br. With this additional property, one can see that, because −h1,−h2 vanish
for t /∈ [η, T − η],

D−1(−h1,−h2) = 0,∀t /∈ [η, T − η].

Hence, (u, v, 0) + D−1(−h1,−h2) still has the right initial and final conditions.

2.2.1 Differential relations and Gromov’s theorem

In this section we sum up some basic notions regarding differential operators, and Gromov’s local
inversion theorem for differential operators. More details can be found in [84].
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In what follows, Q is the closure of a non-empty open bounded smooth subset of R2, and p, q, r ∈
N∗. We note nr,p := 2 + p card{(α1, α2) ∈ N2 | α1 + α2 ≤ r}. Recall the definition of the r-jet of a
function z ∈ Cr(Q)p:

Jrz(t, x) =

(
(t, x), z(t, x), · · · , ∂|α|z

∂tα1∂xα2
, · · · , ∂rz

∂tα1∂xα2

)
∈ Rnr,p , ∀(t, x) ∈ Q.

Definition 2.2.1. A map D : Cr(Q)p → C0(Q)q is a C∞ nonlinear differential operator of order r
if there exists F ∈ C∞(Rnr,p ,Rq) such that

D(z) = F (Jrz), ∀z ∈ Cr(Q)p.

This clearly implies that D is C∞ (with the usual Cr, C0 topologies), and we denote by

Lz : Cr(Q)p → C0(Q)q

its Fréchet differential at z ∈ Cr(Q)p.

We now define some sort of manifold, over which we can invert these operators:

Definition 2.2.2. A subset A of Cd(Q)p is a differential relation of order d ∈ N if there exists
R ⊂ Rnd,p such that

A = {z ∈ Cd(Q)p | ∀(t, x) ∈ Q, Jdz(t, x) ∈ R}.

It is said to be open if R is an open subset of Rnd,p . For k ∈ N, we note

Ak := A ∩ Ck(Q)p

For classical local inversion theorems, one needs the differential at one point to be invertible. Here
the requirement is somewhat stronger: we need the differential at any point to be invertible, with the
extra property that the inverse of each differential is also a linear differential operator.

Definition 2.2.3. Let A ⊂ Cd(Q)p be a differential relation of order d, and let D be a differential
operator of order r. We say that D admits an infinitesimal inversion of order s ∈ N over A if there
exists a family of linear differential operators of order s

z ∈ A,Mz : Cs(Q)q → C0(Q)p,

such that:

1. For every g ∈ Cs(Q)q, z 7→Mz(g) is a differential operator of order d (possibly nonlinear) and
it is a C∞-differential operator in (z, g).

2. (Algebraic solvability) For every z ∈ Ad+r,

Lz ◦Mz = IdCr+s(Q).

We can now state Gromov’s inversion theorem (see [84, Section 2.3.2, main theorem]):

Theorem 2.2.1 (Gromov). Let A ⊂ Cd(Q)p be a non-empty open differential relation of order d,
and let D be a differential operator of order r. Assume that D admits an infinitesimal inversion of
order s over A. Let

σ0 > max(d, 2r + s), (2.17)

ν ∈ (0,∞). (2.18)

Then, there exists a family of sets Bz ⊂ Cσ0+s(Q)q and a family of operators D−1
z : Bz → A where

z ∈ Aσ0+r+s, such that:
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1. (Neighbourhood property) For every z ∈ Aσ0+r+s, 0 ∈ Bz and

B :=
⋃

z∈Aσ0+r+s

{z} × Bz

is an open subset of Cσ0+r+s(Q)p × Cσ0+s(Q)q.

2. (Inversion property)
D
(
D−1
z (g)

)
= D(z) + g, ∀(z, g) ∈ B. (2.19)

3. (Normalisation property)
D−1
z (0) = z, ∀z ∈ Aσ0+r+s. (2.20)

4. (Regularity and continuity) Let σ0 ≤ σ1 ≤ η1, then for all z ∈ Aη1+r+s and g ∈ Bσ1+s
z :=

Bz ∩ Cσ1+s,
D−1
z (g) ∈ Ak, ∀k < σ1. (2.21)

Moreover,
(z, g) 7→ D−1

z (g) ∈ C0(Aσ0+r+s × Bσ1+s
z ,Ak), ∀k < σ1. (2.22)

Finally, if η1 > σ1, then (2.21) and (2.22) hold for k = σ1.

5. (Locality) For every (t, x) ∈ Q, and for every (z1, g1), (z2, g2) ∈ B, if we have

(z1, g1)(t̃, x̃) = (z2, g2)(t̃, x̃), ∀(t̃, x̃) ∈ B((t, x), ν) ∩Q,

then,
D−1
z1 (g1)(t, x) = D−1

z2 (g2)(t, x).

Remark 2.2.1. The neighbourhood property allows to relate the domains of inversion for each local
inversion to each other: local inverses at two “neighbouring” points will be defined on domains that
have “neighbouring” sizes. In particular that means the domains of inversions are bound to overlap.
The locality property tells us that when this happens (albeit locally), the images of the local inverses
agree locally. In the linear case, this corresponds to the fact that when a function vanishes on an open
set, its image by any linear differential operator also vanishes on this open set (see the beginning of
the section).

2.2.2 From two controls to one: algebraic solvability

As in the linear case, we first build a trajectory (u, v) with the right initial and final conditions,
but with D(u, v, 0) potentially non-zero on some restricted domain. In terms of control theory, this
amounts to solving the control problem with two controls (the fictitious controls), with restricted
supports. In fact, for systems of the form

�ν1
u = f1(u, v) + h1, x ∈ [0, L],

�ν2
v = f2(u, v) + h2, x ∈ [0, L],

u = 0 on {0, L},
v = 0 on {0, L},

(2.23)

where f1(0, 0) = f2(0, 0) = 0, we have the following local controllability result, which is a consequence
of boundary control results presented in [113, chapter , sections 5.2 and 5.3]:

Proposition 2.2.1. Let k ≥ 2, 0 ≤ a < b ≤ L, T > 0 such that (2.9) holds. For every 0 < δ <
min (T/2, (b− a)/2) satisfying

T − 2δ > 2(L− b+ 2δ) max

(
1

|ν1|
,

1

|ν2|

)
,

T − 2δ > 2(a+ 2δ) max

(
1

|ν1|
,

1

|ν2|

)
,

(2.24)
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there exists η > 0 such that, for initial and final conditions

((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )) ∈

(
BCk([0,T ]×[0,L])(0, η)×BCk−1([0,T ]×[0,L])(0, η)

)4
satisfying (2.8) at the order k, there exist controls h1, h2 ∈ Ck−2([0, T ]×[0, L]) and constants C1, C2 >
0 depending on T, δ, k satisfying

supp hi ⊂ [δ, T − δ]× [a+ δ, b− δ], i = 1, 2, (2.25)

‖hi‖Ck−2 ≤ C1‖((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 ))‖(Ck×Ck−1)4 , i = 1, 2, (2.26)

such that the corresponding solution of (2.23) with initial values ((u0, u1), (v0, v1)) satisfies{
u(T, · ) = uf0 , ut(T, · ) = uf1 ,

v(T, · ) = vf0 , vt(T, · ) = vf1 .

‖(u, v)‖(Ck)2 ≤ C2‖((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 ))‖(Ck×Ck−1)4 . (2.27)

This result is a particular case of Proposition 2.3.2 which we will prove in the following section,
when dealing with the cubic coupling.

For now, let R > 0, 0 ≤ a < b ≤ L, and let T > 0 be such that (2.9) holds. Let 0 < δ <
min (T/2, (b− a)/2) /2 such that (2.24) holds for 2δ (note that it also holds for δ). Define

Qδ := [δ, T − δ]× [a+ δ, b− δ],

Q2δ := [2δ, T − 2δ]× [a+ 2δ, b− 2δ],

and let Q ⊂ [0, T ]× [a, b] be a smooth closed set such that

Qδ ⊂
◦
Q.

Define the following nonempty open differential relation of order 2:

A =

{
(u, v, h) ∈

(
C2(Q)

)3 ∣∣∣∣ ∀(t, x) ∈ Q, ∂f2

∂u
(u(t, x), v(t, x)) 6= 0

}
.

We define the following nonlinear differential operator D : C2(Q)3 → C0(Q)2 of order r = 2:

D ((u, v, h)) = (�ν1
u− f1(u, v)− h,�ν2

v − f2(u, v)), ∀(u, v, h) ∈ C2(Q)3,

and its differential at (u, v, h) ∈ C2([0, T ]× [0, L])3:

L(u,v,h)(ũ, ṽ, h̃) =
(
�ν1

ũ−Df1(u, v) · (ũ, ṽ)− h̃, �ν2
ṽ −Df2(u, v) · (ũ, ṽ)

)
, ∀(ũ, ṽ, h̃) ∈ C2([0, T ]×[0, L])3.

We now have the following result, thanks to the definition of A:

Proposition 2.2.2. D admits an infinitesimal inversion of order 2 over A.

Proof. Let h1, h2 ∈ C4(Q), (u, v, h) ∈ A. Using the fact that
∂f2

∂u
(u, v) never vanishes, if we set:

ṽ = 0,

ũ = − h2

∂f2

∂u (u, v)
,

h̃ = �ν1
ũ− ∂f1

∂u
(u, v)ũ− h1,

then we have
L(u,v,h)(ũ, ṽ, h̃) = (h1, h2).

Moreover, the above formulae clearly show that (u, v, h) 7→ L(u,v,h)(ũ, ṽ, h̃) is a (nonlinear, C∞

with the usual topology of C2(Q)) differential operator of order 2 on C2(Q), and (u, v, h, ũ, ṽ, h̃) 7→
L(u,v,h)(ũ, ṽ, h̃) is also C∞.
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Figure 2.1: Matching trajectories with two controls and with a single control on the appropriate
domain.

We can now apply Theorem 2.2.1 with d = 2, s = 2, r = 2 σ0 = 7, ν = δ/2. This yields a collection
of open sets, which all contain 0,

Bz ⊂
(
C9(Q)

)2
, z ∈ A11,

the open subset of
(
C11(Q)

)3 × (C9(Q)
)2
B =

⋃
z∈A11

{z} × Bz,

and the collection of operators
D−1
z : Bz → A, z ∈ A11.

Now, thanks to condition (2.10),
(0, 0, 0) ∈ A,

D(0, 0, 0) = (0, 0),

and
((0, 0, 0), (0, 0)) ∈ B,

so that, thanks to the neighbourhood property of Theorem 2.2.1, there exists ε > 0 such that(
BC11(Q)((0, 0, 0), ε)

)3 × (BC9(Q)((0, 0), ε)
)2 ⊂ B. (2.28)

By the continuity property of Theorem 2.2.1 with η1 = σ1 = σ0 = 7, there exists η > 0 such that for
‖((u, v, h), (h1, h2))‖(C11)3×(C9)2 ≤ η,

‖D−1
(u,v,h)(h1, h2)‖(C6)3 ≤ R.

Proposition 2.2.1 with k = 11 yields η′ > 0 such that for any initial and final conditions

((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )) ∈

(
BC11([0,T ]×[0,L])(0, η

′)×BC10([0,T ]×[0,L])(0, η
′)
)4
,
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there exist two controls h1, h2 ∈ C9([0, T ] × [0, L]), supported in Q2δ (condition (2.25)), that steer
system (2.23) from the given initial conditions to the given final conditions, with the corresponding
trajectory (u∗, v∗) satisfying (2.27). Together with (2.28), this implies that there exists η′ ≥ η′′ > 0
such that for initial and final conditions

((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )) ∈

(
BC11([0,T ]×[0,L])(0, η

′′)×BC10([0,T ]×[0,L])(0, η
′′)
)4
,

the corresponding trajectory of system (2.23) satisfies

D(u∗|Q, v
∗
|Q, 0) =

(
h1|Q, h2|Q

)
, (2.29)(

(u∗|Q, v
∗
|Q, 0), (−h1|Q,−h2|Q)

)
∈ B. (2.30)

‖((u∗, v∗, 0), (h1, h2))‖(C11)3×(C9)2 ≤ min(R, η). (2.31)

Let us now set, keeping in mind the regularity property of Theorem 2.2.1 with η1 = σ1 = σ0 = 7,

(u, v, h) = D−1
(u∗|Q,v

∗
|Q,0)

(
−h1|Q,−h2|Q

)
∈ A6.

Then, by the inversion property of Theorem 2.2.1, and (2.29),

D (u, v, h) = D(u∗|Q, v
∗
|Q, 0)− (h1|Q, h2|Q) = (0, 0).

Now, let us show that (u, v, h) = (u∗, v∗, 0) on Q̊ \ Qδ′ . This will allow us to extend (u, v, h) on
([0, T ]× [0, L]) \ Q.

Let (t, x) ∈ Q̊ \ Qδ. As the hi are supported in Q2δ,

((u∗, v∗, 0), (−h1,−h2)) = ((u∗, v∗, 0), (0, 0)) on B

(
(t, x),

δ

2

)
∩Q. (2.32)

Thus, using the locality property of Theorem 2.2.1,

D−1
(u∗|Q,v

∗
|Q,0)

(
−h1|Q,−h2|Q

)
(t, x) = D−1

(u∗|Q,v
∗
|Q,0) (0, 0) (t, x), (2.33)

that is, using the normalisation property:

(u, v, h)(t, x) = (u∗, v∗, 0)(t, x). (2.34)

We can now extend (u, v, h) by setting

(u, v, h)(t, x) = (u∗, v∗, 0)(t, x), ∀(t, x) ∈ [0, T ]× [0, L] \ Q. (2.35)

Then,
supp h ⊂ [0, T ]× [a, b],

and (u, v) satisfies the same initial, boundary and final conditions as (u∗, v∗):{
(u, v)(0, · ) = (u0, v0), (ut, vt)(0, ˙) = (u1, v1)

(u, v)(T, · ) = (uf0 , v
f
0 ), (ut, vt)(T, ˙) = (uf1 , v

f
1 )

(2.36)

{
u( · , 0) = u( · , L) = 0

v( · , 0) = v( · , L) = 0
(2.37)

and {
�ν1

u = f1(u, v) + h,

�ν2
v = f2(u, v),

(2.38)

Finally, we get (2.12) from (2.31) and the continuity property of Theorem 2.2.1.
This proves Theorem 2.1.1.
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Remark 2.2.2. Theorem 2.1.1 actually holds for coupled quasilinear equations:
∂ttu− ∂x (K1(u, ∂xu)) = f1(u, v) + h, x ∈ [0, L],

∂ttv − ∂x (K2(v, ∂xv)) = f2(u, v), x ∈ [0, L],

u = 0 on {0, L},
v = 0 on {0, L},

(2.39)

where f1(0, 0) = f2(0, 0) = 0, K1,K2 ∈ C∞(R2), and K1(0, 0) = K2(0, 0) = 0. One can check that
when one modifies the recurrence relation in (2.5) to match the new equations, the operators can still
be written using only Jnx (u, v), Jn−1

x (ut, vt) and Jnt (u, v), and thus the compatibility conditions will
have the same form as (2.8).

Indeed, in this case we can still use Li’s results for the perturbed quasilinear system, as we consider
the “perturbations” around 0. This will yield a “universal” time condition, because the propagation
speeds are close to min(

√
∂2K1(0, 0),

√
∂2K2(0, 0)) for the perturbed system. On the other hand if we

work around a nonzero trajectory (return method), the perturbed quasilinear system could present quite
smaller propagation speeds. The final time condition would then depend on the return trajectories that
are found.

Theorem 2.2.2. Let R > 0, 0 ≤ a < b ≤ L, T > 0 such that

T > 2(L− b) max

((√
∂2K1(0, 0)

)−1

,
(√

∂2K2(0, 0)
)−1

)
,

T > 2amax

((√
∂2K1(0, 0)

)−1

,
(√

∂2K2(0, 0)
)−1

)
.

(2.40)

If
∂f2

∂u
(0, 0) 6= 0, (2.41)

then there exists η > 0 such that for initial and final conditions

((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )) ∈ B(C11([0,L])×C10([0,L]))4(0, η)

compatible at the order 11, there exists h ∈ C6([0, T ]× [0, L]) such that

supp h ⊂ [0, T ]× [a, b], (2.42)

and such that the corresponding solution (u, v) ∈ C6([0, T ] × [0, L]) of (2.39) with initial values
((u0, u1), (v0, v1)) satisfies {

u(T, · ) = uf0 , ut(T, · ) = uf1 ,

v(T, · ) = vf0 , vt(T, · ) = vf1

and inequality (2.12) holds.

2.3 Second case: an example with an uncontrollable linearized
system

We now turn to system (2.2). As mentioned before, it does not satisfy condition (2.10), in other
words, the linearised system around 0 is not controllable:

�ν1
u = h,

�ν2
v = 0,

u|∂Ω = 0,

v|∂Ω = 0,

(2.43)
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the control h gives us no influence on the dynamics of v.
Thus, the computations from the beginning of subsection 2.2.2 do not hold: we cannot work

around the stationary trajectory 0, thus we need to find another trajectory around which to work.
More precisely, keeping in mind Proposition 2.2.2, we look for a return trajectory (ū, v̄, h̄) going from
0 to 0 such that for some smooth closed set Q ⊂ [0, T ]× [a, b],we have

∀(t, x) ∈ Q, ∂f2

∂u
(ū(t, x), v̄(t, x)) = 3ū2(t, x) 6= 0. (2.44)

Additionally, Q will have to satisfy some properties so that a result with two controls can be proved.
To find such a trajectory, we follow the same idea as in [60], where return trajectories are built for

coupled heat equations with a cubic coupling. The additional derivative in time simply adds terms
and makes for heavier computations. However, condition (2.44) will account for additional work.

We will then prove and use a more general controllability result with two controls. After that, the
application of Gromov’s theorem is rather straightforward.

2.3.1 A preliminary construction: elementary trajectories

In this subsection, we describe a construction of a smooth trajectory of system (2.2) that goes
from 0 to 0. For now we consider condition (2.44) but without any special requirements for Q.

In what follows, we suppose, without loss of generality (by scaling the space variable) that ν2 = 1.
To build trajectories that start at 0 and return there, the idea is to use the cascade structure

of the equation: first we find a C∞([−1, 1] × [0, 1]) function v̄ such that �v̄ is the third power of a
C∞([−1, 1]× [0, 1]) function ū. By setting the right conditions at the start and end times, this gives
us a return trajectory. The corresponding control will then be �ν1

ū.
Let us recall that x 7→ 3

√
x is C∞ on R∗. So, by composition, the cubic root of a C∞ function f

is C∞ at all the points where f is non-zero. At the points where f vanishes, by Taylor’s formula, a
fairly simple sufficient condition for 3

√
f to be C∞ at those points is for f to vanish, along with its

first and second derivatives, while its third derivative is non-zero.
Now, to find functions whose image by the wave operator is a third power of a C∞ function, we

consider the solutions to the corresponding stationary problem, namely functions whose Laplacian
is the third power of a C∞ function. The solution of this problem corresponds to the following
proposition, proven (with 1/2 instead of 3/4) in [60]:

Proposition 2.3.1 (Coron, Guerrero, Rosier). There exist δ′, δ′′, g ∈ C∞([0, 1]), G ∈ C∞([0, 1]) such
that 

g′′ = G,
g(z) = 1− z2 on [0, δ′′],

g(z) = e
− 1

1−z2 on [1− δ′, 1),

G(z)

(
z − 3

4

)
> 0 for z ∈ (0, 1) \

{
3

4

}
,

G(z) =

(
z − 3

4

)3

on

[
3

4
− δ′′

2
,

3

4
+
δ′′

2

]
,

(2.45)

In a sense, this proposition gives us the simplest example of functions the second derivative of
which is the third power of a smooth function: G = g′′ vanishes exponentially in 1, and has only one
vanishing point on [0, 1), around which it has a cubic behaviour. The idea of the construction is then
to perturb this function of space and make it evolve in time, so slightly as to preserve the properties
2.45 of the stationary problem. Let 0 ≤ a < b ≤ L, and T > 0 such that (2.9) holds.

Let 0 < δ < min(T/2, (b− a)/2) such that (2.46) holds. Set λ0 to be a function such that

λ0(t) = e
−
√

1
t(T−t) ∀t ∈

(
0,
δ

2

]
∪
[
T − δ

2
, T

)
,

λ0(0) = λ0(T ) = 0,
λ0(t) > 0, ∀t ∈ (0, T ),
λ0([δ, T − δ]) = {1},

(2.46)
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and write λ := ελ0 for some ε to be determined.

Remark 2.3.1. In [60], the authors take

λ(t) = εt2(1− t)2. (2.47)

In our case however, we will see that we need to fit a rectangle of the form [δ, T − δ]× [x0 − ξ, x0 + ξ]
inside the support of ū, see Figure 2.3. With a polynomial as in (2.47), the smaller δ > 0 gets, the
smaller ξ has to be. This in itself would not be an obstruction to prove our controllability result, but
using definition (2.46) has the advantage to fix the width of the rectangle for all δ satisfying (2.24).

Set
f0(t) = e−

1
t(t−T ) , ∀t ∈ (0, T ),

f0(0) = f0(T ) = 0,
(2.48)

Finally, let g0 be the solution to the stationary problem (see Proposition 2.3.1). Let x0 ∈ (0, L), and
choose ε ≤ min(x0, L− x0). We now look for v̄ in the form

v̄(t, x) =

3∑
i=0

fi(t)gi

(
|x− x0|
λ(t)

)
. (2.49)

Note that the fact that f0 vanishes faster than λ at 0 and T compensates the singularity that occurs
in the term |x− x0|/λ(t) of the first term of the sum. We will see that the fi have a similar property,
thus ensuring that functions of the form above are indeed C∞. We also require that the gi satisfy

supp gi ⊂
[

3

4
− δ′′

2
,

3

4
+
δ′′

2

]
, ∀i ∈ {1, 2, 3}, (2.50)

where δ′′ is as defined in Proposition 2.3.1, so that

supp (ū, v̄, h̄) ⊂ [0, T ]× [x0 − ε, x0 + ε]. (2.51)

Let us then set, in order to simplify the notations for our computations:

z :=
|x− x0|
λ(t)

,

V (t, x) := �v̄ = v̄tt − v̄xx,

which we note, in the new set of variables,

V(t, z) := V (t, λ(t)z).

We are now looking for functions fi and gi such that V
1
3 is of class C∞. In order to achieve this,

we will work with the new set of variables (t, z), and study V. We now need to have precise knowledge
of the behaviour of V when it vanishes.

More precisely, the aim is to write V near
3

4
as:

λ2V =

(
z − 3

4

)3

ϕ(t, z), with ϕ ∈ C∞
(

[0, T ]×
[

3

4
− δ′′

2
,

3

4
+
δ′′

2

])
, ϕ < 0 for t 6= 0, T.

Note that ϕ has to be negative because of the minus sign in the wave operator. Hence, we look for V
satisfying

Vz
(
· , 3

4

)
= 0,

Vzz
(
· , 3

4

)
= 0,

Vzzz ≤ −Cf0 on [0, T ]×
[

3

4
− δ′′

2
,

3

4
+
δ′′

2

]
, where C > 0.
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Figure 2.2: The support of the trajectory (ū, v̄, h̄). The dashed line represents the vanishing points of
�v̄ (or, equivalently, ū).

Additionally, since we have the following condition on G:

G(z)(z − 3

4
) > 0 for z ∈ (0, 1) \ {3

4
},

we will make sure to have

V(t, z)

(
z − 3

4

)
< 0, ∀(t, z) ∈ (0, T )×

(
(0, 1) \

{
3

4

})
.

Let us now compute V and its first, second and third derivatives:

v̄tt =

3∑
i=0

f̈igi − 2ḟiz
λ̇

λ
g′i − fi

z λλ̈− 2λ̇2

λ2
g′i − z2

(
λ̇

λ

)2

g′′i

,
v̄xx = λ−2f0G+

3∑
i=1

fiλ
−2g′′i .
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λ2V = −(1− z2λ̇2)f0G+ λ2f̈0g0 − 2ḟ0zλ̇λg
′
0 − z

(
λλ̈− 2λ̇2

)
f0g
′
0 +

3∑
i=1

(
λ2f̈igi − 2ḟizλ̇λg

′
i

−fi
(
z
(
λλ̈− 2λ̇2

)
g′i − z2λ̇2g′′i

)
− fig′′i

)
= −(1− z2λ̇2)f0G+ λ2f̈0g0 − 2ḟ0zλ̇λg

′
0 − z(λλ̈− 2λ̇2)f0g

′
0 +

3∑
i=1

(
λ2f̈igi − 2ḟizλ̇λg

′
i

−fi
[
z(λλ̈− 2λ̇2)g′i +

(
1− z2λ̇2

)
g′′i

])
.

Now, for ε small enough (note that this depends on the value of δ),

1− (εzλ̇0(t))2 >
1

2
, ∀(t, z) ∈ [0, T ]× [0, 1] (2.52)

and, using the notation λ, ∥∥∥∥∥∥∥
1

1−
(

3
4 λ̇
)2

∥∥∥∥∥∥∥
C2([0,T ])

≤ 10. (2.53)

Now, if we impose 
g

(j)
i

(
3

4

)
= 0 ∀i ∈ {1, 2, 3}, j ∈ {0, 1, 2} (i, j) 6= (1, 2)

g
(2)
1

(
3

4

)
= 1

(2.54)

and if we define f1 by

f1 :=
1

1− ( 3
4 λ̇)2

(
λ2g0

(
3

4

)
f̈0 − 2

3

4
λ̇λg′0

(
3

4

)
ḟ0 −

3

4
(λλ̈− 2λ̇2)g′0(

3

4
)f0

)
, (2.55)

we get:

λ2V
(
· , 3

4

)
= 0.

We now compute the first derivative of V:

λ2Vz = −(1− z2λ̇2)f0G
′ + (2zλ̇2 − z(λλ̈− 2λ̇2))f0G− 2zλ̇λḟ0G+ λ2f̈0g

′
0 − 2ḟ0λ̇λg

′
0

−(λλ̈− 2λ̇2)f0g
′
0 +

3∑
i=1

λ2f̈ig
′
i − 2ḟizλ̇λg

′′
i − 2ḟiλ̇λg

′
i − fi

[
(λλ̈− 2λ̇2)g′i − 2zλ̇2g′′i

]
−fi

[
z(λλ̈− 2λ̇2)g′′i +

(
1− z2λ̇2

)
g

(3)
i

]
= −(1− z2λ̇2)f0G

′ + (4zλ̇2 + zλλ̈)f0G− 2zλ̇λḟ0G+ λ2f̈0g
′
0 − 2ḟ0λ̇λg

′
0 − (λλ̈− 2λ̇2)f0g

′
0

+

3∑
i=1

λ2f̈ig
′
i − 2ḟiλ̇λ(zg′′i + g′i)− fi

[
(λλ̈− 2λ̇2)g′i + z(λλ̈− 4λ̇2)g′′i +

(
1− z2λ̇2

)
g

(3)
i

]
.

Again, we impose

g
(3)
i

(
3

4

)
=

{
0 if i ∈ {1, 3},
1 if i = 2,

(2.56)

and we set

f2 :=
1

1− ( 3
4 λ̇)2

[
λ2g′0

(
3

4

)
f̈0 − λ̇λg′0

(
3

4

)
ḟ0 − 2λ̇λg0

(
3

4

)
ḟ0

−(λλ̈− 2λ̇2)g′0

(
3

4

)
f0 − 2

3

4
λ̇λḟ1 −

3

4
(λλ̈− 4λ̇2)f1

] (2.57)
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so that

λ2Vz
(
· , 3

4

)
= 0.

Finally,

λ2Vzz = −(1− z2λ̇2)f0G
′′ + (6zλ̇2 + zλλ̈)f0G

′ − 2zλ̇λḟ0G
′ + 6λ̇2f0G− 4λ̇λḟ0G+ λ2f̈0G

+

3∑
i=1

λ2f̈ig
′′
i − 2ḟiλ̇λ(2g′′i + zg

(3)
i )− fi

[(
2λλ̈− 6λ̇2

)
g′′i + z(λλ̈− 6λ̇2)g

(3)
i +

(
1− z2λ̇2

)
g

(4)
i

]
.

Again we impose

g
(4)
i

(
3

4

)
=

{
0 if i ∈ {1, 2},
1 if i = 3,

(2.58)

then, by setting:

f3 =
1

1− ( 3
4 λ̇)2

[
−(2λλ̇+ 2λ̇2)f1 − 4λλ̇ḟ1 + λ2f̈1 −

3

4
(λλ̈− 6λ̇2)f2 − 2

3

4
λ̇λḟ2

]
(2.59)

we get:

λ2Vzz
(
· , 3

4

)
= 0.

Now all that remains is to estimate the third derivative: on [0, T ]×
[

3

4
− δ′′

2
,

3

4
+
δ′′

2

]
, by definition

of G, we have
λ2Vzzz = −6K 3

4
(1− z2λ̇2)f0 +R0 +R, (2.60)

with:
R0 := z(8λ̇2 + λ̈λ)f0G

′′ − 2zλ̇λḟ0G
′′ + (12λ̇2 + λλ̈)f0G

′ − 6λ̇λḟ0G
′ + λ2f̈0G

′, (2.61)

and

R :=

3∑
i=1

λ2f̈ig
(3)
i − 2ḟiλ̇λ(3g

(3)
i + zg

(4)
i )− fi

[
(3λ̈λ− 12λ̇2)g

(3)
i + (zλλ̈− 8zλ̇2)g

(4)
i + (1− z2λ̇2)g

(5)
i

]
.

(2.62)
Let us note that (2.48), combined with the properties of exponential functions, yields(

d

dt

)n
f0 = Fn(t)f0(t), ∀n ∈ N, (2.63)

where the Fn are rational fractions, the poles of which are 0 and T . Now, one can see in (2.61), (2.55),
(2.57) and (2.59) that the divergent behaviour of these fractions near 0 and T is always compensated
by the exponential behaviour of λ and its derivatives. Furthermore, differentiating the fi does not
change this fact. Hence, keeping (2.53) in mind:

R0 = ε2O(f ; t, z),

f
(n)
1 = ε2O(f0; t), ∀n ∈ N,

f
(n)
2 = ε2O(f0; t), ∀n ∈ N,

f
(n)
3 = ε4O(f0; t), ∀n ∈ N,

(2.64)

where the notation O(f ; t) (resp. O(f ; t, z)) means f times a bounded function of time on [0, T ] (resp.

time and space). Hence, near
3

4
A, we have

R0 +R = ε2O(f0; t, z), (2.65)
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the dominant term being f̈1(1− z2λ̇2)g
(5)
i . Consequently, using (2.60) and (2.65), for a small enough

ε, there exists a constant C > 0 such that:

λ2Vzzz ≤ −Cf0 on

[
3

4
− δ′′

2
,

3

4
+
δ′′

2

]
. (2.66)

Thus, on [0, T ]×
[

3

4
− δ′′

2
,

3

4
+
δ′′

2

]
, we can write, thanks to the Taylor-Laplace formula:

λ2V =

(
z − 3

4

)3

ϕ(t, z), with ϕ ∈ C∞
(

[0, T ]×
[

3

4
− δ′′

2
,

3

4
+
δ′′

2

])
, ϕ < 0 for t 6= 0, T.

Additionally, by definition of f0, ϕ/λ2 vanishes exponentially for t = 0, T , and (2.50) ensures that ϕ
vanishes exponentially for z = 1, so that( ϕ

λ2

) 1
3 ∈ C∞

(
[0, T ]×

[
3

4
− δ′′

2
,

3

4
+
δ′′

2

])
.

We now have

V 1
3 ∈ C∞

(
[0, T ]×

[
3

4
− δ′′

2
,

3

4
+
δ′′

2

])
(2.67)

Moreover, on [0, T ]×
([

0,
3

4
− δ′′

2

)
∪
(

3

4
− δ′′

2
, 1

])
, thanks to the constraint on the supports of

the gi, we have:

λ2V = −(1− z2λ̇2)f0G+ λ2f̈0g0 − 2ḟ0zλ̇λg
′
0 − z

(
λλ̈− 2λ̇2

)
f0g
′
0︸ ︷︷ ︸

ε2O(f0;t,x)

. (2.68)

As, thanks to Proposition 2.3.1, we have

|G| > 2 on

[
0,

3

4
− δ′′

2

]
∪
[

3

4
+
δ′′

2
, 1− δ′

]
,

for small enough ε, we have:

|λ2V| > 0 on ]0, T [×
([

0,
3

4
− δ′′

2

]
∪
[

3

4
+
δ′′

2
, 1− δ′

])
.

Now, let us recall that, on [1− δ′, 1),

g0(z) = e
− 1

1−z2 ,

g′0(z) =
−2z

(1− z2)2
e
− 1

1−z2 ,

G(z) = g′′0 (z) =
6z4 − 2

(1− z2)4
e
− 1

1−z2 ,

So that g0/G and g′0/G are bounded near 1, allowing us to write

λ2V = −f0G+ ε2O(f0; t)O1−(G; z). (2.69)

The notation O1−(G; z) meaning G times a bounded function of space on [1 − δ′, 1]. So for small
enough ε, there exists a function a with positive values on ]0, T [, such that

λ2V(t, z) ≤ −a(t)G(z) < 0, ∀(t, z) ∈ (−0, T )× [1− δ′, 1).
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Finally, for all t ∈ [0, T ], V(t, · ) vanishes exponentially at z = 1, and for all z ∈ [1 − δ′, 1], V( · , z)
vanishes exponentially for t = 0, T . Hence,

V 1
3 ∈ C∞

(
[0, T ]×

([
0,

3

4
− δ′′

2

)
∪
(

3

4
+
δ′′

2
, 1

]))
. (2.70)

This, together with (2.67), proves that

V 1
3 ∈ C∞ ([0, T ]× [0, 1]) . (2.71)

Now, as x 7→ |x| is C∞ on R \ {0}, by composition we deduce from (2.71) that

V
1
3 ∈ C∞ ([0, T ]× ((0, L) \ {x0})).

To deal with the missing point x0, let us recall that for all t ∈]− 1, 1[, for all x ∈ [0, L] such that
|x− x0| ≤ δ′′λ(t) (i.e. z ≤ δ′′),

λ2V(t, z) = −f0G+ λ2f̈0g0 − 2ḟ0zλ̇λg
′
0 − z

(
λλ̈− 2λ̇2

)
f0g
′
0 + z2λ̇2f0G

= 2f0 + f̈0(λ2 − |x− x0|2) + 4ḟ0
λ̇

λ
|x− x0|2 + 2

 λ̈
λ
− 2

(
λ̇

λ

)2
 f0|x− x0|2 − 2

(
λ̇

λ

)2

f0|x− x0|2

= 2f0 + λ2f̈0 + ψ(t)|x− x0|2,
(2.72)

where ψ ∈ C∞([0, T ]), and ψ vanishes exponentially for t = 0, T , along with all its derivatives.
We now see that the terms in |x − x0| of V are actually in |x − x0|2, which compensates the sin-

gularity at 0 of the map x 7→ |x|. Thus, from the smoothness of V 1
3 we get, by composition,

V
1
3 ∈ C∞ ([0, T ]× [0, L]). Thus we have proved that, by chosing gi that verify (2.50), (2.54), (2.56)

and (2.58), we get

V
1
3 ∈ C∞ ([0, T ]× [0, L]) .

Finally, we set

v̄(x, t) :=

3∑
i=0

fi(t)gi

(
|x− x0|
λ(t)

)
,

ū := (�v̄)
1
3 ,

h̄ := �ū.

where λ is defined by (2.46), the gi are some functions satisfying (2.50), (2.54), (2.56), and (2.58),
and the fi are defined by (2.48), (2.55), (2.57), and (2.59).

Let us check that we have indeed built a return trajectory: for i ∈ {0, · · · , 3}, the fi vanish at −1
and 1, along with all their derivatives. Hence,

ū(−1, · ) = v̄(−1, · ) = ūt(−1, · ) = v̄t(−1, · ) = 0,

ū(1, · ) = v̄(1, · ) = ūt(1, · ) = v̄t(1, · ) = 0.

Remark 2.3.2. Most of the work in the construction above comes from the vanishing points (t, (3/4)λ(t))
“in the middle of the domain”. So one could wonder, would it not be simpler to try and build a function
that only vanishes, along with all its derivatives, at the points (t, λ(t))?

Let us remind that our strategy to build the return trajectory is to start from a solution to the
stationary problem, and then make it evolve through time so as to stay “not too far away from it”.
But the reason we have vanishing points “in the middle of the domain” has to do with that same
stationary problem. More precisely, the stationary problem consists in finding functions that vanish,
along with their derivatives, on the boundary of the domain. In our case this condition corresponds to

g(z) = e
− 1

1−z2 on [1− δ′, 1]. (2.73)
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We further require that the Laplacians of these functions be third powers of C∞ functions. In our
case this condition becomes

G(z)

(
z − 3

4

)
> 0,

G(z) =

(
z − 3

4

)3

on

[
3

4
− δ′′

2
,

3

4
+
δ′′

2

]
.

Now, we could instead demand that G be non-negative (or non-positive). But then, by convexity
arguments (or Hopf’s maximum prin Ciple), we would get

g′(1) < 0,

Which contradicts condition (2.73). But that condition is very helpful in proving the smoothness

of V 1
3 near the boundary. Giving it up would mean setting more conditions on the gi functions near

the boundary, so we would have to give up condition (2.50), and then set additional conditions on the
gi to make sure V is well defined (as λ(0) = λ(T ) = 0), preserve the sign of V or more generally its
smoothness, in particular near the boundary...Which would probably be more trouble than what we had
to do at the vanishing points (t, (3/4)λ(t)).

2.3.2 Covering sets and return trajectories

As mentioned at the beginning of this section, we want to work on a smooth subset of [0, T ]× [a, b]
where u 6= 0. However, to do so we need more than the elementary trajectory described above:
rather, we use the elementary trajectory as a building block for our final return trajectory. Indeed, let
0 < δ < min ((b− a)/4, T/2) such that (2.24) is satisfied. The preliminary construction gives us a real
number ε > 0 (after the right rescaling of the space variable) and, for any x0 ∈ [a+ δ + ε, b− δ − ε],
a trajectory (ū, v̄, h̄) such that ū 6= 0 on Λε,x0 := {(t, x) | |x− x0| < (3/4)ελ0(t)}, which contains any
rectangle of the form [δ, T − δ]× [x0 − ξ, x0 + ξ] with ξ < (3/4)ε. Moreover, each of these rectangles
can be fit into the interior of a smooth closed subset of Λε,x0

.

Figure 2.3: The support of the preliminary construction with a rectangle fit inside the line of vanishing
points of ū.

Now there are cases (if [a, b] is too long and ε - and consequently, ξ - too small), where none of
the rectangles [δ, T − δ]× [x0 − ξ, x0 + ξ] satisfies the Geometric Control Condition (GCC). Thus we
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cannot apply Proposition 2.2.1 with controls supported in some [δ, T − δ] × [x0 − ξ, x0 + ξ], as time
condition (2.94) does not hold in these cases. So we need to build a return trajectory (ū, v̄, h̄) such
that ū 6= 0 on a smooth closed set Q containing a set Qδ that satisfies the GCC.

Now there is a simple type of set that would fit our needs for Qδ: in Section 2 we worked in
[δ, T − δ]× [a+ δ, b+ δ], but we do not need the whole rectangle in general for the GCC to be satisfied.
We can in fact work with a number of much smaller rectangles, as long as they are close enough to
each other:

Definition 2.3.1. Let 0 < δ < min ((b− a)/4, T/2), such that (2.24) is satisfied. A δ-covering set
of [0, T ] × [a, b] for system (2.1) is a union of rectangles of the form {[δ, T − δ]× [ai, bi], 1 ≤ i ≤ N}
for some N ≥ 1, such that

a1 = a+ δ,

bN = b− δ,

0 < (ai+1 − bi) max

(
1

|ν1|
,

1

|ν2|

)
< T − 2δ, 1 ≤ i ≤ N − 1.

(2.74)

Figure 2.4: An example of a δ-covering set.

Now the idea is to add the elementary trajectories obtained by the preliminary construction on
disjoint supports centered in xi ∈ [a+ δ+ ε, b− δ− ε], that are close enough, and with a small enough
ε so that the rectangles [δ, T − δ]× [x0− ε/2, x0 + ε/2] form a δ-covering set. Take ε0 ≤ (b− a− 2δ)/2
small enough for the preliminary construction to work, and such that ε0 max (1/ν1, 1/ν2) < T − 2δ.
We then define the following sequence: take N ∈ N large enough so that

ε :=
b− a− 2δ

2N − 1
≤ ε0

and define, for 1 ≤ i ≤ N ,

xi := a+ δ +

(
2i− 3

2

)
ε,

and (ūi, v̄i, h̄i) the trajectory obtained by the preliminary construction corresponding to the chosen
ε, centered in xi. Let Qi be a smooth closed subset of Λε,xi containing [δ, T − δ]× [xi − ε/2, xi + ε/2]
in its interior. Then,

Qδ :=

N⋃
i=1

[δ, T − δ]× [xi − ε/2, xi + ε/2]
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is a δ-covering set,

Q :=

(⋃
i

Qi

)

is a smooth closed set such that Qδ ⊂
◦
Q, and we can define

(ū, v̄, h̄) :=

N∑
i=1

(ūi, v̄i, h̄i), (2.75)

which is supported in [0, T ]× [a, b], and satisfies (2.44).

Figure 2.5: Putting elementary trajectories side by side. The rectangles form a covering set.

2.3.3 Local controllability with two controls and Gromov inversion

We now have our return trajectory (ū, v̄, h̄). Now let R > 0, and notice that for all κ > 0,
(κū, κ3v̄, κh̄) is also a return trajectory, with the same support. Thus, we can now suppose without
loss of generality, that

‖(ū, v̄, h̄)‖(C11)3 ≤ R

2
. (2.76)

Let u, v ∈ Ck([0, T ]× [0, L]), h1, h2 ∈ Ck−2([0, T ]× [0, L]). Let us consider the trajectory (ū+u, v̄+v),
controlled by (h̄+ h1, h2), we get the following control system for u and v:

�ν1u = h1,

�ν2
v = u3 + 3ūu2 + 3ū2u+ h2,

u( · , 0) = 0,

u( · , L) = 0,

v( · , 0) = 0,

v( · , L) = 0.

(2.77)
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This is a coupled semilinear system with a source term, and falls in the category of systems (2.23).
The aim of this section is to prove the following proposition:

Proposition 2.3.2. Let k ≥ 2, 0 ≤ a < b ≤ L, T > 0 such that

T > 2(L− b) max

(
1

ν1
,

1

ν2

)
, T > 2amax

(
1

ν1
,

1

ν2

)
.

For every 0 < δ < min (T/2, (b− a)/2) satisfying (2.24), for every δ-covering set Qδ of [0, T ]× [a, b],
there exists η > 0 and constants C1, C2 > 0 depending on T, δ, k such that, for initial and final values

((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )) ∈

(
BCk([0,T ]×[0,L])(0, η)×BCk−1([0,T ]×[0,L])(0, η)

)4
satisfying (2.8) at the order k, there exist controls h1, h2 ∈ Ck−1([0, T ]× [0, L]) satisfying

supp hi ⊂ Qδ, i = 1, 2, (2.78)

‖hi‖Ck−2 ≤ C1‖((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 ))‖(Ck×Ck−1)4 , i = 1, 2, (2.79)

such that the corresponding solution of (2.23) with initial values ((u0, u1), (v0, v1)) satisfies{
u(T, · ) = uf0 , ut(T, · ) = uf1 ,

v(T, · ) = vf0 , vt(T, · ) = vf1 .
(2.80)

‖(u, v)‖(Ck)2 ≤ C2‖((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 ))‖(Ck×Ck−1)4 . (2.81)

Remark 2.3.3. It is clear, by Definition 2.3.1, that for any 0 < δ < min ((b− a)/4, T/2) such that
(2.24) is satisfied, [δ, T − δ]× [a+ δ, b− δ] is a δ-covering set of [0, T ]× [a, b]. Thus Proposition 2.3.2
implies Proposition 2.2.1.

To prove this proposition, we use the following propositions, which are particular cases of more
general quasilinear results proved in [112] (see also [113, chapter 5, sections 5.3 and 5.4]):

Proposition 2.3.3 (two–sided control). Let k ≥ 2, L > 0, T > 0, F ∈ C∞(R2,R2), ν1, ν2 > 0. If

T > Lmax

(
1

ν1
,

1

ν2

)
,

then there exists η > 0 and a constant C > 0 depending on T, k, such that for any initial and final
values

(U0, U1, U
f
0 , U

f
1 ) ∈ B(Ck([0,L])2×Ck−1([0,L])2)2(0, η)

there exist controls H1 and H2 ∈ Ck([0, T ],R2) satisfying compatibility conditions

P fin,i
(
Jnx (U0)(0), Jn−1

x (U1)(0), (0, · · · , 0)
)

= ∂nt H1i(0),

P fin,i
(
Jnx (U0)(L), Jn−1

x (U1)(L), (0, · · · , 0)
)

= ∂nt H2i(0),

P fin,i

(
Jnx (Uf0 )(0), Jn−1

x (Uf1 )(0), (0, · · · , 0)
)

= ∂nt H1i(T ),

P fin,i

(
Jnx (Uf0 )(L), Jn−1

x (Uf1 )(L), (0, · · · , 0)
)

= ∂nt H2i(T ),

∀n ≤ k, i = 1, 2. (2.82)

such that the solution to the vector system

∂ttU −
(
ν2

1 0
0 ν2

2

)
∂xxU = F (U), x ∈ (0, L)

U(t, 0) = H1,

U(t, L) = H2,

U(0) = U0,

Ut(0) = U1,

(2.83)
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satisfies {
U(T ) = Uf0 ,

Ut(T ) = Uf1 ,

‖U‖Ck ≤ C‖(U0, U1), (Uf0 , U
f
1 )‖(Ck×Ck−1)2 . (2.84)

Proposition 2.3.4 (one-sided control). Let k ≥ 2, L > 0, T > 0, F ∈ C∞(R2,R2), ν1, ν2 > 0. If

T > 2Lmax

(
1

ν1
,

1

ν2

)
,

then there exists η > 0 and a constant C > 0 depending on T, k, such that for any initial and final
values

(U0, U1, U
f
0 , U

f
1 ) ∈ B(Ck([0,L])2×Ck−1([0,L])2)2(0, η)

there exists a control H ∈ Ck([0, T ],R2) satisfying compatibility conditions

P fin,i
(
Jnx (U0)(0), Jn−1

x (U1)(0), (0, · · · , 0)
)

= ∂nt Hi(0) (resp. 0),

P fin,i
(
Jnx (U0)(L), Jn−1

x (U1)(L), (0, · · · , 0)
)

= 0 (resp.∂nt Hi(0)),

P fin,i

(
Jnx (Uf0 )(0), Jn−1

x (Uf1 )(0), (0, · · · , 0)
)

= ∂nt Hi(T ) (resp. 0),

P fin,i

(
Jnx (Uf0 )(L), Jn−1

x (Uf1 )(L), (0, · · · , 0)
)

= 0 (resp.∂nt Hi(T )),

∀n ≤ k, i = 1, 2. (2.85)

such that the solution to the vector system

∂ttU −
(
ν2

1 0
0 ν2

2

)
∂xxU = F (U), x ∈ (0, L),

U(t, L) = 0 (resp. U(t, L) = H(t)),

U(t, 0) = H, (resp. U(t, 0) = 0),

U(0) = U0,

Ut(0) = U1,

(2.86)

satisfies {
U(T ) = Uf0 ,

Ut(T ) = Uf1 ,

‖U‖Ck ≤ C‖(U0, U1), (Uf0 , U
f
1 )‖(Ck×Ck−1)2 . (2.87)

Proof of Proposition 2.3.2. Let us note

Qδ =
⋃

1≤i≤N

[δ, T − δ]× [ai, bi],

for some N ≥ 1. for every 1 ≤ i ≤ N − 1, let 0 < δi < min((bi+1 − ai+1)/2, (bi − ai)/2) such that

T − 2δi > (ai+1 − bi + 4δi) max

(
1

ν1
,

1

ν2

)
. (2.88)

Thanks to Propositions 2.3.3 and 2.3.4, Definition 2.3.1 and conditions (2.24) and (2.88), there exists
η > 0 such that for initial and final values

((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )) ∈

(
BCk([0,L])(0, η)×BCk−1([0,L])(0, η)

)4
satisfying (2.8),
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• There exist boundary controls u
(i)
1 , u

(i)
2 ∈ Ck([0, T − 2δ]) at bi− δi and ai+1 + δi that steer (u, v)

on [bi − δi, ai+1 + δi] from (y0, y1)|[bi−δi,ai+1+δi] to (z0, z1)|[bi−δi,ai+1+δi].

• There exist two boundary controls u1, u2 ∈ Ck([0, T − 2δ]) at a+ 2δ and b− 2δ that steer (u, v)
on [0, a+ 2δ] from (y0, y1)|[0,a+2δ] to (z0, z1)|[0,a+2δ], and from (y0, y1)|[b−2δ,L] to (z0, z1)|[b−2δ,L]

while satisfying the boundary conditions of the system at 0 and L.

Figure 2.6: Using boundary control results outside of the covering set.

We note δ0 = δN := δ, and (u∗, v∗) the corresponding trajectory on [0, a+2δ]∪[b−2δ, L]∪
⋃

1≤i≤N−1

[bi−

δi, ai+1 + δi]. Then, (2.87) and (2.84) imply

‖(u∗, v∗)‖Ck ≤ C‖(u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )‖(Ck×Ck−1)4 (2.89)

for some constant C > 0.
On the other hand, for η > 0 small enough, for initial and final conditions

((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )) ∈

(
BCk([0,T ]×[0,L])(0, η)×BCk−1([0,T ]×[0,L])(0, η)

)4
,

for 1 ≤ i ≤ N the forward evolving solutions
(
u

(i)
f , v

(i)
f

)
of the vector equations

�ν1
u = f1(ū+ u, v̄ + v)− f1(ū, v̄),

�ν2
v = f2(ū+ u, v̄ + v)− f2(ū, v̄),

(u, v)(t, ai) = (u, v)(t, bi) = (0, 0),

(u, v)(0, · ) = (u0|[ai,bi], v0|[ai,bi]),

(u, v)t(0, · ) = (u1|[ai,bi], v1|[ai,bi]).

,

are defined on [0, T − 2δ]× [ai, bi]. Let us also note
(
u

(i)
b , v

(i)
b

)
the backward evolving solutions of the
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vector equations on [0, T − 2δ]× [ai, bi]

�ν1u = f1(ū+ u, v̄ + v)− f1(ū, v̄),

�ν2v = f2(ū+ u, v̄ + v)− f2(ū, v̄),

(u, v)(t, ai) = (u, v)(t, bi) = (0, 0),

(u, v)(T − 2δ, ·) = (uf0|[ai,bi], v
f
0|[ai,bi]),

(u, v)t(T − 2δ, · ) = (uf1|[ai,bi], v
f
1|[ai,bi]).

Then we define (ũ, ṽ) by

(ũ, ṽ) =
(
u

(i)
f , v

(i)
f

)
φ+

(
u

(i)
b , v

(i)
b

)
(1− φ), on [ai, bi],∀i ≤ N,

where φ is a time cut-off function such that

φ(0) = 1, φ(T − 2δ) = 0.

Note that, by well-posedness of the Cauchy problems, there exists C ′ > 0 such that the norm of (ũ, ṽ)
satisfies

‖(ũ, ṽ)‖(Ck)2 ≤ C ′‖(u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )‖(Ck×Ck−1)4 . (2.90)

Finally, let us define (u∗∗, v∗∗) by smoothly extending (u∗, v∗) on
⋃

1≤i≤N

[ai + δi−1, bi − δi] with

‖(u∗∗, v∗∗)‖(Ck)2 ≤ C ′′‖(u∗, v∗)‖Ck , (2.91)

where C ′′ is a constant depending on the ai, bi. Then, we define (u, v) by

(u, v) = ξ(u∗∗, v∗∗) + (1− ξ)(ũ, ṽ),

where ξ is a space cut-off function satisfying

ξ = 1 on [0, a+ δ] ∪ [b− δ, L] ∪
⋃

1≤i≤N−1

[bi, ai+1],

ξ = 0 on
⋃

1≤i≤N

[ai + δi−1, bi − δi].

Then, by construction, we have
u(0, · ) = u0, v(0, · ) = v0,

ut(0, · ) = u1, vt(0, · ) = v1,

u(T − 2δ, · ) = uf0 , v(T − 2δ, · ) = vf0 ,

ut(T − 2δ, · ) = uf1 , vt(T − 2δ, · ) = vf1 ,

and

supp (�ν1
u− f1(ū+ u, v̄ + v)− f1(ū, v̄)) ⊂ Qδ,

supp (�ν2
v − f2(ū+ u, v̄ + v)− f2(ū, v̄)) ⊂ Qδ,

Finally, (2.89), (2.90) and (2.91) imply that there exists a constant C2 > 0 such that (2.81) holds,
and, by continuity of the fi, noting

hi := �νiu− fi(ū+ u, v̄ + v)− fi(ū, v̄), i = 1, 2,

there exists a constant C1 > 0 such that (2.79) holds.
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Now, we define

A =
{

(u, v, h) ∈
(
C2(Q)

)3 | ∀(t, x) ∈ Q, u(t, x) 6= 0
}
,

which is clearly nonempty, and

∀(u, v, h) ∈ C2(Q)3,D(u, v, h) =
(
�ν1

u− h,�ν2
v − u3

)
.

Then, we have the following proposition, similar to Proposition 2.2.2:

Proposition 2.3.5. D admits an infinitesimal inversion of order 2 over A.

Moreover, thanks to (2.75) and (2.44),

Proposition 2.3.6.
(ū, v̄, h̄)|Q ∈ A.

Now, we can use Theorem 2.2.1: there exists η > 0 such that for initial and final conditions

((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )) ∈

(
BC11([0,L])(0, η)×BC10([0,L])(0, η)

)4
the corresponding trajectories of system (2.77) with two controls u∗, v∗, h1, h2 are small enough in
(C11)2 × (C9)2 norm so that D can be inverted locally around (ū+ u∗, v̄+ v∗, h̄), and so that, by the
continuity property, (u, v, h) := D−1

(ū+u∗,v̄+v∗,h̄)
(θ1, θ2) satisfies

‖(u− ū, v − v̄, h− h̄)‖(C6)3 ≤ R

2
. (2.92)

Together with (2.76), this yields
‖(u, v, h)‖(C6)3 ≤ R. (2.93)

This proves the following local controllability result:

Theorem 2.3.1. Let R > 0, and 0 ≤ a < b ≤ L, T > 0 such that

T > 2(L− b) max

(
1

|ν1|
,

1

|ν2|

)
, T > 2amax

(
1

|ν1|
,

1

|ν2|

)
. (2.94)

There exists η > 0 such that for given initial and final conditions

((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )) ∈

(
BC11([0,L])(0, η)×BC10([0,L])(0, η)

)4
satisfying (2.8), there exists h ∈ C6([0, T ]× [0, L]) satisfying

supp h ⊂ [0, T ]× [a, b].

such that the corresponding solution (u, v) ∈ C6([0, T ]×[0, L]) of (2.2) with initial values ((u0, u1), (v0, v1))
satisfies {

u(T, · ) = uf0 , ut(T, · ) = uf1 ,

v(T, · ) = vf0 , vt(T, · ) = vf1

and (2.93) holds.

Now let (u0, u1, v0, v1, u
f
0 , u

f
1 , v

f
0 , v

f
1 ) ∈

(
C11([0, L])× C10([0, L])

)4
such that (2.8) is satisfied. Let

us note
M := ‖(u0, u1, u

f
0 , u

f
1 )‖(C11×C10)2 + ‖(v0, v1, v

f
0 , v

f
1 )‖

1
3

(C11×C10)2 ,

and α :=
η

2M
. Then,

‖αu0‖C11 ≤ η, ‖αu1‖C10 ≤ η, ‖αuf0‖C11 ≤ η, ‖αuf1‖C10 ≤ η,

‖α3v0‖C11 ≤ η, ‖α3v1‖C10 ≤ η, ‖α3vf0 ‖C11 ≤ η, ‖α3vf1 ‖C10 ≤ η,
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and these functions satisfy (2.8). We can now apply Theorem 2.3.1, and for any support and time
T > 0 compatible with that support, we get (u, v, h) with initial and final conditions

(αu0, αu1, αu
f
0 , αu

f
1 , α

3v0, α
3v1, α

3vf0 , α
3vf1 ) such that

�ν1
u = h,

�ν2v = u3,

u|∂Ω = 0,

v|∂Ω = 0.

Then we also have 
�ν1α

−1u = α−1h,

�ν2
α−3v = (α−1u)3,

α−1u(0) = α−1u(L) = 0,

α−3v(0) = α−3v(L) = 0,

Thus, α−1h steers (u0, u1, v0, v1) to (uf0 , u
f
1 , v

f
0 , v

f
1 ) in T .

Finally, to get estimate (2.14), recall (2.93)

‖h‖C6 ≤ R,

hence, in terms of the original control system,

‖α−1h‖C6 ≤ α−1R

≤ 2R

η

(
‖(u0, u1, u

f
0 , u

f
1 )‖(C11×C10)2 + ‖(v0, v1, v

f
0 , v

f
1 )‖

1
3

(C11×C10)2

)
.

This proves Theorem 2.1.2.

2.3.4 A general criterion for internal controllability

Let us now give a general definition, which gives the main criterion our return trajectories must fulfill
to apply our method:

Definition 2.3.2. A suitable return trajectory for time T > 0 is a trajectory (ū, v̄, h̄) ∈ C11([0, T ]×
[0, L])3 of system (2.1), such that

ū(0, ·) = 0, v̄(0, ·) = 0,

ūt(0, ·) = 0, v̄t(0, ·) = 0,

ū(T, ·) = 0, v̄(T, ·) = 0,

ūt(T, ·) = 0, v̄t(T, ·) = 0,

supp (ū, v̄, h̄) ⊂ [0, T ]× [a, b],

D(ū, v̄, h̄) = (0, 0),

and such that there exists 0 < δ < min (T/2, (b− a)/2) satisfying (2.24), a δ-covering set Qδ, a smooth

closed set Q such that Qδ ⊂
◦
Q such that

∀(t, x) ∈ Q, ū(t, x) 6= 0.

We can now give a general statement to sum up our work on system (2.2):

Proposition 2.3.7. Let 0 ≤ a < b ≤ L, and T > 0 such that (2.9) holds. Suppose condition (2.10)
does not hold. If one can find a suitable return trajectory, then system (2.1) is locally controllable

in time T for
(
C11 × C10

)4
initial and final conditions, with C6 trajectories, and with a C6 control

supported in [0, T ]× [a, b].
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2.4 Further questions

2.4.1 Regularity

Our method requires somewhat specific regularities: C11 (C10 for the time-derivative) for the
initial and final data. As is often the case when using a Nash-Moser scheme, these regularities are
probably not optimal. However, if we require for example Ck regularity for the control, k ≥ 2, the
initial and final data have to be at least one notch smoother. Indeed, note

w := ut − ν1ux,

and consider to the following computation, where one requires the control and the trajectories to be
Ck:

d

dt
w(t, x− ν1t) = wt − ν1wx

= wt + ν1wx − 2ν1wx
= h(t, x− ν1t)− 2ν1(utx − ν1uxx)

= h(t, x− ν1t)− 2ν1
d

dt
ux(t, x− ν1t),

hence, for a fixed t > 0 and for characteristics going from {0} × [0, L] to {t} × [0, L],∫ t

0

h(s, x−ν1s)ds = ut(t, x−ν1t)−u1(x)−ν1ux(t, x−ν1t)+ν1u
′
0(x)−2ν1(ux(t, x−ν1t)−u′0(x)). (2.95)

Now the left-hand side of (2.95) is a Ck function of x, so we need to upgrade the regularity of u0 to
Ck+1, and that of u1, x 7→ ux(t, x) and x 7→ ut(t, x) to Ck. This shows a partial derivative loss (in the
space dimension) between the trajectory and the control, and, taking t = T , a derivative loss between
the initial and final data for u, and the control.

For linear cascade systems with smooth coefficients, the same procedure can be repeated on the
second equation to establish similar losses of derivatives, showing that because u has increased spatial
regularity, the initial and final data for v have to be Ck+2 × Ck+1. Note that with two controls, this
would not be the case, as each control “absorbs” the loss of derivatives in each equation.

Furthermore, it would be interesting to consider other iteration schemes such as the one presented
in [53], section 4.2.1, where one considers the following linear system:{

�u = f1(0, 0) + gv1(a, b)v + gu1 (a, 0)u+ h

�v = f2(0, 0) + gv2(0, b)v + gu2 (a, b)u,
(2.96)

where, for i ∈ {1, 2},

gui (u, v) =


fi(u, v)− fi(0, v)

u
for u 6= 0

∂ufi(0, v) for u = 0.

gvi (u, v) =


fi(u, v)− fi(u, 0)

v
for v 6= 0

∂vfi(u, 0) for v = 0.

Then, by superposition one can restrict to the study of{
�u = h

�v = gu2 (a, b)u.
(2.97)

But ultimately, this only shifts the problem of the Ck regularity gap between data and control,
although we now have a linear system instead of a semilinear one.

78



On the other hand, there are some situations where the Nash-Moser theorem eventually proves
unnecessary. For instance, as mentioned in the introduction, controllability results for the 1-D
Schrödinger equation were first proved using a Nash-Moser implicit function theorem ([28], [29]),
because of an a priori loss of derivatives. Karine Beauchard and Camille Laurent later discovered
that, because of a regularizing effect, there was actually no loss of derivatives, and proved more gen-
eral results on the bilinear control of the linear and nonlinear 1-D Schrödinger equation in [30], using
a classical inversion theorem on optimal function spaces. Similarly, in [85] and [86], it was proved that
the problem of isometric embedding could be solved using a classical iteration scheme, instead of a
Nash-Moser one. It would be interesting to know if a similar do-over is possible for our result, keeping
in mind that the argument we gave above excludes the possibility of a regularizing effect that would
cancel all loss of derivatives. We could hope for a result with a C2 control and (C4 ×C3)2 initial and
final conditions, for example.

This would also be interesting in terms of numerical analysis, to compute approximate controls
and trajectories for the considered system. Indeed, the proof of Gromov’s inversion theorem relies on
an Nash-Moser type iterative scheme, which could be computed. However, such an iterative scheme
would be very heavy to implement, because of the regularization at each step. A classical inversion
theorem, relying on a Newton scheme, would be lighter to implement.

Finally, it would be interesting to investigate a Hk version of this result, using other versions of
the Nash-Moser implicit function theorem.

2.4.2 Other systems with an uncontrollable linearised system

Our scheme of proof also allows to prove a controllability result for systems of the form
�ν1

u = G(u, v) + h, G ∈ C∞(R2),

�ν2v = u3,

u|∂Ω = 0,

v|∂Ω = 0.

(2.98)

Indeed, this simply adds a term in the definition of h̄ when we build our return trajectory. However,
h̄ is no longer supported in [0, T ] × [a, b]. The other steps remain unchanged, as the additional G
term does not prevent the differential operator D from being algebraically solvable. So we get a local
internal controllability result with the same time conditions, but no condition on the support of the
control. Finally, if G is homogeneous of degree 1, we can use the scaling argument to deduce a global
result.

In addition to adding a coupling term to the first equation, we can also change the power of the
coupling term in the second equation. There are two cases:

1. Even powers As such, our method cannot work for even powers: indeed, u2k has nonnegative
values. In particular, by the same convexity argument as in Remark 2.3.2, solutions to the
stationary problem cannot vanish smoothly in 1. So the perturbative approach would allow us
to build smooth return trajectories only if u (and thus h) is spatially supported in all of [0, L].

Another way of answering this question would be to switch to complex values, as is done in the
appendix of [60] for the quadratic case.

2. Odd powers Thanks to Proposition 2.3.7, we know that the part that requires the most work is
the construction of return trajectories: say the power of the coupling is 2k+ 1, k ∈ N∗, in order
to control all the derivatives of v up to 2k + 1, we would have to look for v in the form

2k+1∑
i=0

fi(t)gi

(
|x− b+a

2 |
λ

)
.

This would call for ever longer computations, and for now there is no indication that there might
or might not be new difficulties with these additional terms.
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2.4.3 Boundary controllability

In this chapter we have explored a method to prove internal controllability with one control.
However, to our knowledge there is no result for boundary controllability with one control for semilinear
systems such as (2.1). Although boundary controllability is relatively easy to establish for simple
equations, or when there are the same number of controls and equations, we cannot use results on the
inversion of differential operators to reduce the number of controls.
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Stabilization of 1-D linear
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input
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Chapter 3

Internal rapid stabilization of a 1-D
linear transport equation with a
scalar feedback

This chapter is taken from the following preprint (also referred to as [162]):
Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar

feedback. 2018. (hal-01905098)
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3.1 Introduction

We study the linear 1-D hyperbolic equation{
yt + yx + a(x)y = u(t)ϕ̃(x), x ∈ [0, L],

y(t, 0) = y(t, L), ∀t ≥ 0,
(3.1)

where a is continuous, real-valued, ϕ̃ is a given real-valued function that will have to satisfy certain
conditions, and at time t, y(t, ·) is the state and u(t) is the control. As the system can be transformed
into {

αt + αx + µα = u(t)ϕ(x), x ∈ [0, L],

α(t, 0) = α(t, L), ∀t ≥ 0,
(3.2)

through the state transformation

α(t, x) := e
∫ x
0
a(s)ds−µxy(x, t),

where µ =

∫ L

0

a(s)ds, and with

ϕ(x) := e
∫ x
0
a(s)ds−µxϕ̃(x),

we will focus on systems of the form (3.2) in this article.
These systems are an example of linear hyperbolic systems with a distributed scalar input. Such

systems appear naturally in physical problems. For example, as is mentioned in [135], a linear wave
equation which can be rewritten as a 2× 2 first order hyperbolic system, the problem of a vibrating
damped string, or the plucking of a string, can be modelled thus. In a different field altogether,
chemical tubular reactors, in particular plug flow reactors (see [125, 127]), are modeled by hyperbolic
systems with a distributed scalar input (the temperature of the reactor jacket), albeit with a boundary
input instead of proportional boundary conditions. Let us cite also the water tank system, introduced
by François Dubois, Nicolas Petit and Pierre Rouchon in [75]. It models a 1-D tank containing an
inviscid, incompressible, irrotational fluid, in the approximation that its acceleration is small compared
with the gravitational constant, and that the height of the liquid is small compared with the length
of the tank. In this setting, the motion of the fluid can be modelled by the Saint-Venant equations on
the interval [0, L] with impermeable boundary conditions (which correspond to proportional boundary
conditions after a variable change), and the control is the force applied to the tank itself, which takes
the form of a distributed scalar input.

3.1.1 Notations and definitions

We note `2 the space of summable square series `2(Z). To simplify the notations, we will note L2 the
space L2(0, L) of complex-valued L2 functions, with its hermitian product

〈f, g〉 =

∫ L

0

f(x)g(x)dx, ∀f, g ∈ L2, (3.3)

and the associated norm ‖ · ‖. We also use the following notation

en(x) =
1√
L
e

2iπ
L nx, ∀n ∈ Z, (3.4)

the usual Hilbert basis for L2. For a function f ∈ L2, we will note (fn) ∈ `2 its coefficients in this
basis:

f =
∑
n∈Z

fnen.
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Note that with this notation, we have

f̄ =
∑
n∈Z

f−nen,

so that, in particular, if f is real-valued:

f−n = fn, ∀n ∈ Z.

Functions of L2 can also be seen as L-periodic functions on R, by the usual L-periodic continuation:
in this article, for any f ∈ L2 we will also note f its L-periodic continuation on R.

We will use the following definition of the convolution product on L-periodic functions:

f ? g =
∑
n∈Z

fngnen =

∫ L

0

f(s)g(· − s)ds ∈ L2, ∀f, g ∈ L2, (3.5)

where g(x− s) should be understood as the value taken in x− s by the L-periodic continuation of g.
Let us now note E the space of finite linear combinations of the (en)n∈Z. Then, any sequence

(fn)n∈Z defines an element f of E ′:
〈en, f〉 = fn.

On this space of linear forms, derivation can be defined by duality:

f ′ =

(
2iπn

L
fn

)
n∈Z

, ∀f ∈ E ′.

We also define the following spaces:

Definition 3.1.1. Let m ∈ N. We note Hm the usual Sobolev spaces on the interval (0, L), equipped
with the Hermitian product

〈f, g〉m =

∫ L

0

∂mf∂mg + fg, ∀f, g ∈ Hm,

and the associated norm ‖ · ‖m.
For m ≥ 1 we also define Hm

(pw) the space of piecewise Hm functions, that is, f ∈ Hm
(pw) if there

exists a finite number d of points (σj)1≤j≤d ∈ [0, L] such that, noting σ0 := 0 and σd+1 := L, f is Hm

on every [σj , σj+1] for 0 ≤ j ≤ d. This space can be equipped with the norm

‖f‖m,pw :=

d∑
j=0

‖f|[σj ,σj+1]‖Hm(σj ,σj+1).

For s > 0, we also define the periodic Sobolev space Hs
per as the subspace of L2 functions f =∑

n∈Z
fnen such that

∑
n∈Z

(
1 +

∣∣∣∣2iπnL
∣∣∣∣2s
)
|fn|2 <∞.

Hs is a Hilbert space, equipped with the Hermitian product

〈f, g〉s =
∑
n∈Z

(
1 +

∣∣∣∣2iπnL
∣∣∣∣2s
)
fngn, ∀f, g ∈ Hs,

and the associated norm ‖ · ‖s, as well as the Hilbert basis

(esn) :=

 en√
1 +

∣∣ 2iπn
L

∣∣2s
 .

Note that for m ∈ N, Hm
per is a closed subspace of Hm, with the same scalar product and norm,

thanks to the Parseval identity. Moreover,

Hm
per =

{
f ∈ Hm, f (i)(0) = f (i)(L),∀i ∈ {0, · · · ,m− 1}

}
.
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3.1.2 Main result

To stabilize (3.2), we will be considering linear feedbacks of the form

〈α(t), F 〉 =
∑
n∈Z

Fnαn(t) =

∫ L

0

F̄ (s)α(s)ds

where F ∈ E ′ and (Fn) ∈ CZ are its Fourier coefficients, and F is real-valued, that is,

F−n = Fn, ∀n ∈ Z.

In fact, the integral notation will appear as purely formal, as the (Fn) will have a prescribed growth,
so that F /∈ L2. The associated closed-loop system now writes{

αt + αx + µα = 〈α(t), F 〉ϕ(x), x ∈ [0, L],

α(t, 0) = α(t, L), ∀t ≥ 0.
(3.6)

This is a linear transport equation, which we seek to stabilize with an internal, scalar feedback, given
by a real-valued feedback law. This article aims at proving the following class of stabilization results:

Theorem 3.1.1 (Rapid stabilization in Sobolev norms). Let m ≥ 1. Let ϕ ∈ Hm
(pw) ∩ H

m−1
per such

that
c√

1 +
∣∣ 2iπn
L

∣∣2m ≤ |ϕn| ≤ C√
1 +

∣∣ 2iπn
L

∣∣2m , ∀n ∈ Z, (3.7)

where c, C > 0 are the optimal constants for these inequalities. Then, for every λ>0, for all α0 ∈ Hm
per

the closed-loop system (3.6) with the stationary feedback law F ∈ E ′ given by

〈en, F 〉 := − 1− eλL

1 + e−λL
2

Lϕn
, ∀n ∈ Z,

has a solution α(t) which satisfies the estimate

‖α(t)‖m ≤
(
C

c

)2

e(µ+λ)Le−λt‖α0‖m, ∀t ≥ 0. (3.8)

Note that the estimate (3.8) is constructive, as it only depends on c, C, µ and λ. Though it is not
necessarily sharp for a given controller ϕ and the corresponding feedback law F , it is the “least worse”
a priori estimate one can get, in a sense that we will elaborate further on. The growth restriction
(3.7) on the Fourier coefficients of ϕ can be written, more intuitively, and for some other constants
c′, C ′ > 0,

c′

1 +
∣∣ 2iπn
L

∣∣m ≤ |ϕn| ≤ C ′

1 +
∣∣ 2iπn
L

∣∣m , ∀n ∈ Z,

and corresponds to the necessary and sufficient condition for the controllability of system (3.2) in
Hm
per, in time T ≥ L. This is obtained using the moments method, and we refer to [137, Equation

(2.19) and pages 199-200] for more details. The controllability of system (3.2), in turn, will allow us
to use a form of backstepping method to stabilize it.

On the other hand, the additional regularity ϕ ∈ Hm
(pw) gives us the following equality, first using

the fact that ϕ ∈ Hm−1
per , then by integration by parts on each interval [σj , σj+1], using the fact that

∂m−1ϕ ∈ H1
(pw):

ϕn =
(−1)m−1(
2iπn
L

)m−1 〈ϕ, ∂
m−1en〉

=
1(

2iπn
L

)m−1 〈∂
m−1ϕ, en〉

= − τϕn(
2iπ
L n
)m +

1(
2iπ
L n
)m d∑

j=0

〈
χ[σj ,σj+1]∂

mϕ, en
〉
, ∀n ∈ Z∗,

(3.9)
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where

τϕn :=
1√
L

∂m−1ϕ(L)− ∂m−1ϕ(0) +

d∑
j=1

e−
2iπ
L nσj (∂m−1ϕ(σ−j )− ∂m−1ϕ(σ+

j ))

 , ∀n ∈ Z.

Note that, thanks to condition (3.7), there exists C1, C2 > 0 such that

C1 ≤ |τϕn | ≤ C2, n ∈ Z,

so that these numbers are the eigenvalues of a diagonal isomorphism of any periodic Sobolev space
into itself, which we note τϕ. Moreover, it is clear from the definition of its coefficients that τϕ is a
sum of translations. Also, note that τϕn 6= 0, and thus, ϕ /∈ Hm

per. Finally, note that d∑
j=0

〈
χ[σj ,σj+1]∂

mϕ, en
〉 ∈ `2. (3.10)

3.1.3 Related results

To investigate the stabilization of infinite-dimensional systems, there are four main types of ap-
proaches.

The first type of approach relies on abstract methods, such as the Gramian approach and the
Riccati equations (see for example [153, 151, 108]). This method is a generalization of the well-known
Gramian method in finite dimension (see [120, 103]), these feedback laws involve the solution to
an algebraic Riccati equation, and the inversion of an infinite-dimensional Gramian operator, which
makes them difficult to compute in practice.

The second approach relies on Lyapunov functions. Many results on the boundary stabilization of
first-order hyperbolic systems, linear and nonlinear, have been obtained using this approach: see for
example the book [24], and the recent results in [91, 92]. However, this approach can be limited, as it
is sometimes impossible to obtain an arbitrary decay rate using Lyapunov functions (see [53, Remark
12.9, page 318] for a finite dimensional example).

The third approach is related to pole-shifting results in finite dimension. Indeed, it is well-known
that if a linear finite-dimensional system is controllable, than its poles can be arbitrarily reassigned
(shifted) with an appropriate linear feedback law (see [53]). There have been some generalizations of
this powerful property to infinite-dimensional systems, notably hyperbolic systems. Let us cite [137],
in which the author uses a sort of canonical form to prove a pole-shifting result for a class of hyperbolic
systems with a distributed scalar control. In this paper, the feedback laws under consideration are
bounded and pole-shifting property is not as strong as in finite dimension. This is actually inevitable,
as was proved in [144], in a very general setting: bounded feedback laws can only achieve weak pole-
shifting, which is not sufficient for exponential stabilization. However, if one allows for unbounded
feedback laws, it is possible to obtain stronger pole-shifting, and in particular exponential stabilization
in some cases. This is extensively studied in [129]. In this paper, the author gives a formula for a
feedback law that achieves the desired pole placement. However, this formula requires to know a
cardinal function for which the poles coincide with the initial spectrum, which might be difficult in
practice.

The fourth approach, which we will be using in this article, is the backstepping method. This
name originally refers to a way of designing feedbacks for finite-dimensional stabilizable systems with
an added chain of integrators (see [53, 143, 110], and [56] or [118] for some applications to partial
differential equations). Another way of applying this approach to partial differential equations was
then developed in [17] and [32]: when applied to the discretization of the heat equation, the backstep-
ping approach yielded a change of coordinates which was equivalent to a Volterra transform of the
second kind. Backstepping then took yet another successful form, consisting in mapping the system to
stable target system, using a Volterra transformation of the second kind (see [111] for a comprehensive

87



introduction to the method):

f(t, x) 7→ f(t, x)−
∫ x

0

k(x, y)f(t, y)dy.

This was used to prove a host of results on the boundary stabilization of partial differential equations:
let us cite for example [109] and [141] for the wave equation, [155, 156] for the Korteweg-de Vries
equation, [24, chapter 7] for an application to first-order hyperbolic systems, and also [68], which
combines the backstepping method with Lyapunov functions to prove finite-time stabilization in H2

for a quasilinear 2× 2 hyperbolic system.
The backstepping method has the advantage of providing explicit feedback laws, which makes it

a powerful tool to prove other related results, such as null-controllability or small-time stabilization
(stabilization in an arbitrarily small time). This is done in [67], where the authors give an explicit
control to bring a heat equation to 0, then a time-varying, periodic feedback to stabilize the equation
in small time. In [156], the author obtains the same kind of results for the Korteweg-de Vries equation.

In some cases, the method was used to obtain stabilization with an internal feedback. This was
done in [150] and [154] for parabolic systems, and [159] for first-order hyperbolic systems. The strategy
in these works is to first apply a Volterra transformation as usual, which still leaves an unstable source
term in the target, and then apply a second invertible transformation to reach a stable target system.
Let us note that in the latter reference, the authors study a linear transport equation and get finite-
time stabilization. However, their controller takes a different form than ours, and several hypotheses
are made on the space component of the controller so that a Volterra transform can be successfully
applied to the system. This is in contrast with the method in this article, where the assumption we
make on the controller corresponds to the exact null-controllability of the system.

In this paper, we use another application of the backstepping method, which uses another type of
linear transformations, namely, Fredholm transformations:

f(t, x) 7→
∫ L

0

k(x, y)f(t, y)dy.

These are more general than Volterra transformations, but they require more work: indeed, Volterra
transformations are always invertible, but the invertibility of a Fredholm transform is harder to check.
Even though it is sometimes more involved and technical, the use of a Fredholm transformation proves
more effective for certain types of control: for example, in [66] for the Korteweg-de Vries equation
and [65] for a Kuramoto-Sivashinsky, the position of the control makes it more appropriate to use a
Fredholm transformation. Other boundary stabilization results using a Fredholm transformation can
be found in [62] for integro-differential hyperbolic systems, and in [63] for general hyperbolic balance
laws.

Fredholm transformations have also been used in [59], where the authors prove the rapid stabi-
lization of the Schrödinger equation with an internal feedback. Their method of proof relies on the
assumption that the system is controllable, and the technical developments are quite different from
the work in previous references. This is a new development in the evolution of the backstepping
method. Indeed, the original form of the backstepping method, and the backstepping method with
Volterra transformations of the second kind, could be applied to uncontrollable systems. Hence, a
controllability assumption makes for potentially powerful additional information, for example when
one considers the more general Fredholm transformations instead of Volterra transformations of the
second kind. It is interesting to note that this is a common feature with the pole-shifting approach,
although in this setting it leads to an explicit feedback law given by its Fourier coefficients.

3.1.4 The backstepping method revisited: a finite-dimensional example

Let us now give a finite-dimensional example to illustrate the role controllability can play in the
backstepping method for PDEs. Consider the finite-dimensional control system

ẋ = Ax+Bu(t), x ∈ Cn, A ∈Mn(C), B ∈Mn,1(C). (3.11)
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Assume that (A,B) is controllable. Suppose that x(t) is a solution of system (3.11) with u(t) = Kx(t).
Now, in the spirit of PDE backstepping, let us try to invertibly transform the resulting closed-loop
system into another controllable system, namely

ẋ = Ãx, (3.12)

which can be exponentially stable if Ã is well chosen.
Such a transformation T would map the closed loop system to

˙(Tx) = T ẋ = T (A+BK)x.

In order for Tx to be a solution of (3.12), we would need

T (A+BK) = ÃT. (3.13)

One can see quite clearly that this matrix equation is not well-posed, in that if it has a solution, it
has an infinity of solutions. Moreover, the variables T and K are not separated because of the TBK
term, and as a result the equation is nonlinear. Hence, we can add the following constraint to equation
(3.13), to separate the variables, make the equation linear in (T,K), and get a uniqueness property:

TB = B. (3.14)

Injecting the above equation into (3.13), we get the following equations:

TA+BK = ÃT,

TB = B,
(3.15)

Now for this set of equations, one can prove the following theorem, using the Brunovski normal form
(or canonical form):

Theorem 3.1.2. If (A,B) and (Ã, B) are controllable, then there exists a unique pair (T,K) satisfying
conditions (3.15).

This shows that controllability can be very useful when one wants to transform systems into other
systems. In the finite-dimensional case, using the canonical form is the most efficient way of writing
it. However, in order to gain some insight on the infinite-dimensional case, there is a different proof,
relying on the spectral properties of A and Ã, which can be found in [59]. The idea is that the
controllability of A allows to build a basis for the space state, in which T can then be constructed.
Indeed, suppose A is diagonalizable with eigenvectors (en, λn)1≤n≤N , and suppose that Ã and A have
no mutual eigenvalues. Then, let us project (3.15) on en:

λnTen + (Ken)B = ÃTen, (3.16)

from which we get the following relationship

Ten = (Ken)(Ã− λnI)−1B, ∀n ∈ {1, · · · , N}. (3.17)

Then, using the Kalman rank condition on the pair (Ã, B), one can prove that the fn := ((Ã −
λnI)−1B) form a basis of RN .

Knowing this, write

B =

N∑
n=1

bnen,

B =

N∑
n=1

b̃nfn,

(3.18)
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and TB is written naturally in this basis:

TB =

N∑
n=1

(Ken)bnfn, (3.19)

so that the second equation of (3.15) becomes

N∑
n=1

(Ken)bnfn =

N∑
n=1

b̃nfn. (3.20)

Using the Kalman rank condition on (A,B), one can prove that bn 6= 0 so that the (Ken) are uniquely
determined. The only thing that remains to prove is the invertibility of T , as the (Ken) could be 0.
In the end the invertibility is proven thanks to the Hautus test on the pair (Ã, B), and the uniqueness
is given by the TB = B condition.

3.1.5 Structure of the article

The structure of this article follows the outline of the proof given above: in Section 2, we look for
candidates for the backstepping transformation in the form of Fredholm transformations. Formal
calculations (and a formal TB = B condition) lead to a PDE analogous to (3.16) which we solve,
which is analogous to the derivation of (3.17). Using the properties of Riesz bases and the controlla-
bility assumption, we prove that such candidates are indeed invertible, under some conditions on the
feedback coefficients (Fn). For consistency, we then determine the feedback law (Fn) such that the
corresponding transformation indeed satisfies a weak form of the TB = B condition. Then, in Section
3, we check that the corresponding transformation indeed satisfies an operator equality analogous to
(3.15), making it a valid backstepping transformation. We check the well-posedness of the closed-loop
system for the feedback law obtained in Section 2, which allows us to prove the stability result. Finally,
Section 4 gives a few remarks on the result, as well as further questions on this stabilization problem.

3.2 Definition and properties of the transformation

Let λ′ > 0 be such that λ′ − µ > 0, and m ≥ 1. Let ϕ ∈ Hm ∩ Hm−1
per be a real-valued function

satisfying (3.7). We consider the following target system:{
zt + zx + λ′z = 0, x ∈ (0, L),

z(t, 0) = z(t, L), t ≥ 0.
(3.21)

Then it is well-known that, taking α0 ∈ L2, the solution to (3.21) with initial condition α0 writes

z(t, x) = e−λ
′tα0(x− t), ∀(t, x) ∈ R+ × (0, L).

Hence,

Proposition 3.2.1. For all s ≥ 0, the system (3.21) is exponentially stable for ‖ · ‖s, for initial
conditions in Hs

per.

3.2.1 Kernel equations

As mentioned in the introduction, we want to build backstepping transformations T as a kernel
operator of the Fredholm type:

f(t, x) 7→
∫ L

0

k(x, y)f(t, y)dy.
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To have an idea of what this kernel looks like, we can do the following formal computation for some
Fredholm operator T : first the boundary conditions(∫ L

0

k(0, y)α(y)dy

)
=

(∫ L

0

k(L, y)α(y)dy

)
,

then the equation of the target system, for x ∈ [0, L]:

0 =

(∫ L

0

k(x, y)α(y)dy

)
t

+

(∫ L

0

k(x, y)α(y)dy

)
x

+ λ′

(∫ L

0

k(x, y)α(y)dy

)

=

(∫ L

0

k(x, y)αt(y)dy

)
+

(∫ L

0

kx(x, y)α(y)dy

)
+ λ′

(∫ L

0

k(x, y)α(y)dy

)

=

(∫ L

0

k(x, y)(−αx(y)− µα(y) + 〈α, F 〉ϕ(y))dy

)
+

(∫ L

0

(kx(x, y) + λ′k(x, y))α(y)dy

)

=

(∫ L

0

ky(x, y)α(y)dy

)
− (k(x, L)α(L)− k(x, 0)α(0)) +

(∫ L

0

k(x, y)〈α, F 〉ϕ(y))dy

)
+

(∫ L

0

(kx(x, y) + (λ′ − µ)k(x, y))α(y)dy

)

=

(∫ L

0

k(x, y)

(∫ L

0

F̄ (s)α(s)ds

)
ϕ(y))dy

)
− (k(x, L)α(L)− k(x, 0)α(0))

+

(∫ L

0

(ky(x, y) + kx(x, y) + (λ′ − µ)k(x, y))α(y)dy

)

=

(∫ L

0

F̄ (s)

(∫ L

0

k(x, y)ϕ(y)dy

)
α(s)ds

)
− (k(x, L)α(L)− k(x, 0)α(0))

+

(∫ L

0

(ky(x, y) + kx(x, y) + (λ′ − µ)k(x, y))α(y)dy

)
.

Now, suppose we have the formal TB = B condition∫ L

0

k(x, y)ϕ(y)dy = ϕ(x), ∀x ∈ [0, L].

Then, we get, noting λ := λ′ − µ> 0,(∫ L

0

(
ky(x, y) + kx(x, y) + λk(x, y) + ϕ(x)F̄ (y)

)
α(y)dy

)
− (k(x, L)α(L)− k(x, 0)α(0)) = 0.

Hence the kernel equation: 
kx + ky + λk = −ϕ(x)F̄ (y),

k(0, y) = k(L, y),

k(x, 0) = k(x, L),

(3.22)

together with the TB = B condition

〈k(x, ·), ϕ(·)〉 = ϕ(x), ∀x ∈ [0, L]. (3.23)
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3.2.2 Construction of Riesz bases for Sobolev spaces

To study the solution to the kernel equation, we project it along the variable y. Let us write heuris-
tically

k(x, y) =
∑
n∈Z

kn(x)en(y),

so that ∫ L

0

k(x, y)α(y)dy =
∑
n∈Z

αnk−n(x).

Projecting the kernel equations (3.22), we get

k′n + λnkn = −F−nϕ, (3.24)

where

λn = λ+
2iπ

L
n. (3.25)

Note that
2iπp

L

1

λn+p
+ λn

1

λn+p
= 1, ∀n, p ∈ Z. (3.26)

Now consider the L2 function given by

Λλn(x) =

√
L

1− e−λL
e−λnx, ∀n ∈ Z, ∀x ∈ [0, L). (3.27)

Then, for all m ≥ 0, Λλn ∈ Hm, and we have

〈Λλn, ep〉 =
1√
L

∫ L

0

√
L

1− e−λL
e−λnxe−

2iπp
L xdx =

1

1− e−λL

∫ L

0

e−λn+pxdx =
1

λn+p
, ∀n, p ∈ Z,

so that, using (3.26),

(Λλn)′ + λnΛλn =
∑
p∈Z

ep in E ′.

Remark 3.2.1. In E ′,
∑
p∈Z

ep is the equivalent of the Dirac comb, or the “Dirac distribution” on the

space of functions on [0, L]. So, in a sense, Λλn is the elementary solution of (3.24).

Let us now define, in analogy with the elementary solution method,

kn,λ = −F−nΛλn ? ϕ ∈ Hm
per, ∀n ∈ Z. (3.28)

The regularity comes from the definition of the convolution product, (3.7) and (3.25), and one can
check, using (3.26), that kn,λ is a solution of (3.24).

The next step to build an invertible transformation is to find conditions under which (kn,λ) is some
sort of basis. More precisely we use the notion of Riesz basis (see [44, Chapter 4])

Definition 3.2.1. A Riesz basis in a Hilbert space H is the image of an orthonormal basis of H by
an isomorphism.

Proposition 3.2.2. Let H be a Hilbert space. A family of vectors (fk)k∈N ∈ H is a Riesz basis if
and only if it is complete (i.e., Span(fk) = H) and there exists constants C1, C2 > 0 such that, for
any scalar sequence (ak) with finite support,

C1

∑
|ak|2 ≤

∥∥∥∑ akfk

∥∥∥2

H
≤ C2

∑
|ak|2. (3.29)
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Let us now introduce the following growth condition:

Definition 3.2.2. Let s ≥ 0, (un) ∈ CZ (or u ∈ E ′) . We say that (un) (or u) has s-growth if

c

√
1 +

∣∣∣∣2iπnL
∣∣∣∣2s ≤ |un| ≤ C

√
1 +

∣∣∣∣2iπnL
∣∣∣∣2s, ∀n ∈ Z, (3.30)

for some c, C > 0. The optimal constants for these inequalities are called growth constants.

Remark 3.2.2. The inequalities (3.30) can also be written, more intuitively, and for some other
positive constants,

c (1 + |n|s) ≤ |un| ≤ C (1 + |n|s) , ∀n ∈ Z. (3.31)

We can now establish the following Riesz basis properties for the (kn,λ):

Proposition 3.2.3. Let s ≥ 0. If (Fn) has s-growth, then the family of functions

(ksn,λ) :=

 kn,λ√
1 +

∣∣ 2iπn
L

∣∣2s


is a Riesz basis for Hm
per.

Proof. We use the characterization of Riesz bases given in Proposition 3.2.2. First, let us prove the
completeness of (ksn,λ). Let f ∈ Hm

per be such that

〈f, ksn,λ〉m = 0, ∀n ∈ Z.

Then for all n ∈ Z we get

0 = 〈Λλn ? ϕ, f〉m =
∑
p∈Z

fpϕp
λn+p

(
1 +

∣∣∣∣2iπpL
∣∣∣∣2m
)

=

〈
Λλn,

∑
p∈Z

(
1 +

∣∣∣∣2iπpL
∣∣∣∣2m
)
fpϕpep

〉
,

as, thanks to (3.7), and using the fact that f ∈ Hm
per,∑

p∈Z

(
1 +

∣∣∣∣2iπpL
∣∣∣∣2m
)
fpϕpep ∈ L2.

Now, (Λλn) is a complete family of L2, as it is a Riesz basis, so that

fpϕp = 0, ∀p ∈ Z.

Recalling condition (3.7), this yields
fp = 0, ∀p ∈ Z,

which proves the completeness of (ksn,λ).

Now let I ⊂ Z be a finite set, and (an) ∈ CI . Then,∥∥∥∥∥∑
n∈I

ank
s
n,λ

∥∥∥∥∥
2

m

=

∥∥∥∥∥∥
∑
n∈I
−an

F−n√
1 +

∣∣ 2iπn
L

∣∣2sΛλn ? ϕ

∥∥∥∥∥∥
2

m

=

∥∥∥∥∥∥
∑
n∈I

an
F−n√

1 +
∣∣ 2iπn
L

∣∣2s
∑
p∈Z

ϕp
λn+p

ep

∥∥∥∥∥∥
2

m

=

∥∥∥∥∥∥
∑
p∈Z

ϕp
∑
n∈I

anF−n

λn+p

√
1 +

∣∣ 2iπn
L

∣∣2s ep
∥∥∥∥∥∥

2

m

=
∑
p∈Z

(
1 +

∣∣∣∣2πpL
∣∣∣∣2m
)
|ϕp|2

∣∣∣∣∣∣
∑
n∈I

anF−n

λn+p

√
1 +

∣∣ 2iπn
L

∣∣2s
∣∣∣∣∣∣
2

.
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Now, using condition (3.7), we have

c2
∑
p∈Z

∣∣∣∣∣∣
∑
n∈I

anF−n

λn+p

√
1 +

∣∣ 2iπn
L

∣∣2s
∣∣∣∣∣∣
2

≤

∥∥∥∥∥∑
n∈I

ank
s
n,λ

∥∥∥∥∥
2

m

≤ C2
∑
p∈Z

∣∣∣∣∣∣
∑
n∈I

anF−n

λn+p

√
1 +

∣∣ 2iπn
L

∣∣2s
∣∣∣∣∣∣
2

,

where c, C > 0 are the decay constants in condition (3.7).
This last inequality can be rewritten

c2

∥∥∥∥∥∥
∑
n∈I

anF−n√
1 +

∣∣ 2iπn
L

∣∣2sΛλn

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∑
n∈I

ank
s
n,λ

∥∥∥∥∥
2

m

≤ C2

∥∥∥∥∥∥
∑
n∈I

anF−n√
1 +

∣∣ 2iπn
L

∣∣2sΛλn

∥∥∥∥∥∥
2

,

as

Λλn =
∑
p∈Z

1

λn+p
ep.

We now use the fact that (Λλn) is a Riesz basis of L2: indeed, it is the image of the Hilbert basis (en)
by the isomorphism

Λλ : f ∈ L2 7→ Λλ0f.

The norms of Λλ and its inverse are rather straightforward to compute using piecewise constant
functions, we have

|||Λλ||| =
√
L

1− e−λL
,

|||(Λλ)−1||| = 1− e−λL√
L

eλL,

so that

1

|||(Λλ)−1|||2
∑
n∈I

∣∣∣∣∣∣ anF−n√
1 +

∣∣ 2iπn
L

∣∣2s
∣∣∣∣∣∣
2

≤

∥∥∥∥∥∥
∑
n∈I

anF−n√
1 +

∣∣ 2iπn
L

∣∣2sΛλn

∥∥∥∥∥∥
2

≤ |||Λλ|||2
∑
n∈I

∣∣∣∣∣∣ anF−n√
1 +

∣∣ 2iπn
L

∣∣2s
∣∣∣∣∣∣
2

,

and we finally get, using the fact that (Fn) has s-growth,

c2C2
1

1

|||(Λλ)−1|||2
∑
n∈I
|an|2 ≤

∥∥∥∥∥∑
n∈I

ank
s
n,λ

∥∥∥∥∥
2

m

≤ C2C2
2 |||Λλ|||

2∑
n∈I
|an|2.

where C1, C2 > 0 are the growth constants of (Fn), so that the constants in the inequalities above are
optimal. Hence, using again point 2. of Proposition 3.2.2, (ksn,λ) is a Riesz basis of Hm

per.

We now have candidates for the backstepping transformation, under some conditions on F :

Corollary 3.2.1. Let m ∈ N∗, and F such that (Fn) has m-growth, with growth constants C1, C2 > 0.
Define

Tλα :=
∑
n∈Z

√
1 +

∣∣∣∣2iπnL
∣∣∣∣2mαnkm−n,λ =

∑
n∈Z

αnk−n,λ ∈ Hm
per, ∀α ∈ Hm

per, (3.32)

where α =
∑
n∈Z

αnen. Then, Tλ : Hm
per → Hm

per is an isomorphism. Moreover,

|||Tλ|||≤ CC2

√
L

1− e−λL
,

|||(Tλ)−1|||≤1− e−λL

cC1

√
L
eλL.

(3.33)

Proof. The invertibility of Tλ is clear thanks to the Riesz basis property of (km−n,λ), and (3.33) comes
from the fact that, as mentioned at the end of the proof of Proposition 3.2.3, all the constants in the
inequalities are optimal.
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3.2.3 Definition of the feedback law

In order to further determine the feedback law, and define our final candidate for the backstepping
transformation, the idea is now to return to the TB = B condition (3.23), as we have used it in the
formal computations of section 3.2.1, in the equation (3.23). However, in this case, ϕ /∈ Hm

per, and so

it is not clear whether Tλϕ is well-defined.
We can nonetheless obtain a TB = B condition in some weak sense: indeed, let us set

ϕ(N) :=

N∑
n=−N

ϕnen ∈ Hm
per, ∀N ∈ N.

Then,

ϕ(N) Hm−1

−−−−→
N→∞

ϕ

and

Tλϕ(N) =

N∑
n=−N

−ϕnFnΛλ−n ? ϕ

=

N∑
n=−N

∑
p∈Z

−ϕnFnϕp
λ−n+p

ep

=
∑
p∈Z

ϕp

(
N∑

n=−N

−ϕnFn
λ−n+p

)
ep.

Now, notice that one can apply the Dirichlet convergence theorem for Fourier series (see for example
[101]) to Λλp , p ∈ Z at 0:

N∑
n=−N

1

λ−n+p
=

N∑
n=−N

1

λn+p
−−−−→
N→∞

√
L

Λλp(0) + Λλp(L)

2
=

L

1− e−λL
1 + e−λL

2
.

Let us note

K(λ) :=
2

L

1− e−λL

1 + e−λL
,

and set

Fn := −K(λ)

ϕn
, ∀n ∈ Z. (3.34)

This defines a feedback law F ∈ E ′ which is real-valued, as ϕ is real-valued, and which has m-growth
thanks to condition (3.7), so that Tλ is a valid backstepping transformation. Moreover,

〈Tλϕ(N), ep〉 = ϕpK(λ)

N∑
n=−N

1

λ−n+p
−−−−→
N→∞

ϕp, ∀p ∈ Z, (3.35)

which corresponds to the TB = B condition in some weak sense.
With this feedback law, the backstepping transformation now writes

Tλα =
∑
n∈Z

αnk−n,λ, ∀α ∈ Hm
per, (3.36)

and

|||Tλ||| = CK(λ)
√
L

c(1− e−λL)
,

|||(Tλ)−1||| = C(1− e−λL)

cK(λ)
√
L

eλL.

(3.37)
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3.2.4 Regularity of the feedback law

Finally, in order to study the well-posedness of the closed-loop system corresponding to (3.34), we
need some information on the regularity of F .

Let us first begin by a general lemma for linear forms with coefficients that have m-growth:

Lemma 3.2.1. Let m ≥ 0, and G ∈ E ′ with m-growth.
Then, for all s > 1/2, G is defined on Hm+s

per , is continuous for ‖ · ‖m+s, but not for ‖ · ‖m+σ, for
−m ≤ σ < 1/2.

In particular, the feedback law F ∈ E ′ defined by (3.34) defines a linear form on Hm+1
per which is

continuous for ‖ · ‖m+1 but not for ‖ · ‖m.

Proof. Let s > 1/2, and let α ∈ Hm+s
per . Using the growth conditions (3.30), we can do the following

computations for α ∈ Hm+s
per :

∑
n∈Z
|Gn||αn| ≤ C

∑
n∈Z

√
1 +

∣∣∣∣2iπnL
∣∣∣∣2m|αn|

≤ C ′
∑
n∈Z

1

1 + |n|s

√
1 +

∣∣∣∣2iπnL
∣∣∣∣2m+2s

|αn|

≤ C ′

√∑
n∈Z

1

(1 + |n|s)2

 ‖α‖m+s

where C,C ′ > 0 are constants that do not depend on α, and where the last inequality is obtained
using the Cauchy-Schwarz inequality. Thus G is defined on Hm+s

per by

〈α,G〉 :=
∑
n∈Z

Gnαn, ∀α ∈ Hm+s
per ,

and G is continuous on Hm+s
per .

On the other hand, let −m ≤ σ < 1/2, and consider, for N ≥ 1,

γ(N) :=
∑
|n|≥N

1

Gn (1 + |n|1+s)
en ∈ Hm+s

per .

We have

‖γ(N)‖2m+σ =
∑
|n|≥N

(
1 +

∣∣ 2iπn
L

∣∣2m+2σ
)

|Gn|2
1

(1 + |n|1+s)
2 ≤ C

∑
|n|≥N

1

1 + |n|2+2s−2σ

for some constant C > 0. Then,

|〈γ(N), G〉| =
∑
|n|≥N

1

1 + |n|1+s

≥ c
∑
|n|≥N

|n|1+s−2σ 1

1 + |n|2+2s−2σ

≥ cN1+s−2σ
∑
|n|≥N

1

1 + |n|2+2s−2σ

≥ c′N1+s−2σ

√√√√ ∑
|n|≥N

1

1 + |n|2+2s−2σ
‖γ(N)‖m+σ
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for some constants c, c′ > 0. Now, we know that there exists constants c′′, C ′′ > 0 such that

c′′

N1+2s−2σ
≤
∑
|n|≥N

1

1 + |n|2+2s−2σ
≤ C ′′

N1+2s−2σ
,

So that

N1+s−2σ

√√√√ ∑
|n|≥N

1

1 + |n|2+2s−2σ
≥ c′′N 1

2−σ −−−−→
N→∞

∞.

This proves that G is not continuous for‖ · ‖m+σ.

Let us now give a more precise description of the domain of definition and regularity of F . Recalling
the identity (3.9), we can derive the following identity for Fn from (3.34):

Fn = (−1)m
K(λ)

τϕ−n

(
2iπn

L

)m
+ (−1)m

K(λ)

τϕ−n

(
2iπn

L

)m d∑
j=0

〈
χ[σj ,σj+1]∂

mϕ, en
〉

τϕ−n −
d∑
j=0

〈
χ[σj ,σj+1]∂

mϕ, en
〉 , ∀n ∈ Z∗,

(3.38)
so that (

1(
2iπn
L

)m (Fn − (−1)m
K(λ)

τϕ−n

(
2iπn

L

)m))
n∈Z∗

∈ `2. (3.39)

Let us then note

hn := (−1)m
K(λ)

τϕ−n

(
2iπn

L

)m
, ∀n ∈ Z,

and h the associated linear form in E ′.

Proposition 3.2.4. The linear form h defines the following linear form on τϕ(Hm+1
(pw) ), continuous

for ‖ · ‖m+1,pw:

〈α, h〉 =
√
L
K(λ)

2

(
∂m
(
(τϕ)−1α

)
(0) + ∂m

(
(τϕ)−1α

)
(L)
)
, ∀α ∈ τϕ(Hm+1

(pw) ). (3.40)

Moreover, F̃ := F − h is continuous for ‖ · ‖m, so that F is defined on τϕ(Hm+1
(pw) ) ∩ Hm

per, and is

continuous for ‖ · ‖m+1,pw, but not ‖ · ‖m.

Proof. It is clear, by definition of Hm
per, and using (3.39), that for α ∈ Hm

per, the expression:

〈α, F − h〉 =
∑
n∈Z

αn(Fn − hn) =
K(λ)α0

ϕ0
+
∑
n 6=0

(
2iπn

L

)m
αn

1(
2iπn
L

)m (Fn−hn) (3.41)

defines a continuous linear form on Hm
per.

On the other hand, let α ∈ τϕ(Hm+2
(pw) ), then

N∑
n=−N

αnhn =
√
LK(λ)

N∑
n=−N

(
2iπn

L

)m
αn
τϕn

1√
L

we can use the Dirichlet convergence theorem (see [101]) on ∂m
(
(τϕ)−1α

)
∈ H2

(pw) at 0, so that

N∑
n=−N

αnhn =
√
LK(λ)

N∑
n=−N

(
2iπn

L

)m
αn
τϕn

1√
L

−−−−→
N→∞

√
L
K(λ)

2

(
∂m
(
(τϕ)−1α

)
(0) + ∂m

(
(τϕ)−1α

)
(L)
)
.
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Now, we know that Hm+2
(pw) is dense in Hm+1

(pw) for the Hm+1
(pw) norm. As τϕ is a sum of translations, it is

continuous for ‖ · ‖m+1,pw, so that τϕ(Hm+2
(pw) ) is dense in τϕ(Hm+1

(pw) ) for ‖ · ‖m+1,pw.

Moreover, using the Sobolev inequality for H1 and L∞ (see for example [35, Chapter 8, Theorem
8.8]), we get the continuity of h for ‖·‖m+1,pw, so that we can extend it from τϕ(Hm+2

(pw) ) to τϕ(Hm+1
(pw) ) by

density. We also get that h is not continuous for ‖·‖m, as α ∈ Hm 7→ ∂mα(0) and α ∈ Hm 7→ ∂mα(L)
are not continuous for ‖ · ‖m.

Thus, F = F̃ + h is defined on τϕ(Hm+1
(pw) )∩Hm

per, is continuous for ‖ · ‖m+1 but not for ‖ · ‖m.

3.3 Well-posedness and stability of the closed-loop system

Let m ≥ 1, ϕ ∈ Hm
(pw) ∩H

m−1
per satisfying growth condition (3.7). Let the feedback law F be defined

by (3.34).

3.3.1 Operator equality

Now that we have completely defined the feedback F and the transformation Tλ, let us check that we
have indeed built a backstepping tranformation. As in the finite dimensional example of subsection
3.1.4, this corresponds to the formal operator equality

T (A+BK) = (A− λI)T.

Let us define the following domain:

Dm :=
{
α ∈ τϕ(Hm+1

(pw) ) ∩Hm
per, −αx − µα+ 〈α, F 〉ϕ ∈ Hm

per

}
. (3.42)

Notice that, as ϕ ∈ Hm
(pw), the condition α ∈ Hm+1

(pw) ⊃ τϕ(Hm+1
(pw) ) is necessary for −αx − µα +

〈α, F 〉ϕ to be in Hm
per . Let us first check the following property:

Proposition 3.3.1. For m ≥ 1, Dm is dense in Hm
per for ‖ · ‖m.

Proof. It is clear that Hm+1
per ⊂ τϕ

(
Hm+1

(pw)

)
, so that

Km :=
{
α ∈ Hm+1

per , 〈α, F 〉 = 0
}
⊂ Dm.

Now, by Lemma 3.2.1, as F has m-growth, Km is dense in Hm+1
per for ‖ · ‖m, as the kernel of the linear

form F which is not continuous for ‖ · ‖m. As Hm+1
per is dense in Hm

per, then Dm is dense in Hm
per for

‖ · ‖m.

Now, on this dense domain, let us establish the operator equality:

Proposition 3.3.2.

Tλ(−∂x − µI + 〈·, F 〉ϕ)α = (−∂x − λ′I)Tλα in Hm
per, ∀α ∈ Dm. (3.43)

Proof. First let us rewrite (3.43) in terms of λ:

Tλ(−∂x + 〈·, F 〉ϕ)α = (−∂x − λI)Tλα in Hm
per, ∀α ∈ Dm(F ).

Let α ∈ Dm. By definition of the domain Dm, the left-hand side of (3.43) is a function of Hm
per ⊂ E ′,

and by construction of Tλ, the right-hand side of (3.43) is a function of Hm−1
per ⊂ E ′. To prove that

these functions are equal, it is thus sufficient to prove their equality in E ′. Let us then write each term
of the equality against en for n ∈ Z. One has
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〈
(−∂x − λI)Tλα, en

〉
=

〈
Tλα,

2iπn

L
en

〉
− λ

〈
Tλα, en

〉
= −λn〈Tλα, en〉.

Let us now prove that

〈Tλ(−αx + 〈α, F 〉ϕ), en〉 = −λn〈Tλα, en〉, ∀n ∈ Z. (3.44)

Now, as we only have αx ∈ Hm−1
per , Tλαx is not defined a priori. In order to allow for more

computations, let us define

α(N) :=

N∑
n=−N

αnen, ∀N ∈ N,

ϕ(N) :=

N∑
n=−N

ϕnen,

so that we have, by property of the partial Fourier sum of a Hm
per function,

−α(N)
x + 〈α, F 〉ϕ(N) Hm−−−−→

N→∞
−αx + 〈α, F 〉ϕ,

so that in particular,

〈Tλ(−α(N)
x + 〈α, F 〉ϕ(N)), en〉 −−−−→

N→∞
〈Tλ(−αx + 〈α, F 〉ϕ), en〉 (3.45)

Let N ∈ N. We can now write

〈Tλ(−α(N)
x + 〈α, F 〉ϕ(N)), en〉 = −〈Tλα(N)

x , en〉+ 〈α, F 〉〈Tλϕ(N), en〉

= −

〈
N∑

p=−N

2iπp

L
αpk−p,λ, en

〉
+ 〈α, F 〉〈Tλϕ(N), en〉.

Now, using (3.24), we get

2iπp

L
k−p,λ = (k−p,λ)x + λk−p,λ + Fpϕ,

so that

−Tλα(N)
x =

N∑
p=−N

αp
(
(k−p,λ)x + λk−p,λ + Fpϕ

)
.

Hence
−〈Tλα(N)

x , en〉 = −
〈(
Tλα(N)

)
x
, en

〉
− λ

〈
Tλα(N), en

〉
− 〈α(N), F 〉ϕn,

and finally,

〈Tλ(−α(N)
x + 〈α, F 〉ϕ(N)), en〉 = −λn

〈
Tλα(N), en

〉
+
(
〈α− α(N), F 〉

)
ϕn

+ 〈α, F 〉
(〈
Tλϕ(N) − ϕ, en

〉)
.

(3.46)

To deal with the third term of the right-hand side of this equality, recall that we have chosen a feedback
law so that the TB = B condition (3.23) holds. Thus,〈

Tλϕ(N) − ϕ, en
〉
−−−−→
N→∞

0. (3.47)
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To deal with the second term, recall that F is the sum of a regular part F̃ and a singular part h:

〈α− α(N), F 〉 =
〈
α− α(N), F̃

〉
+ 〈α− α(N), h〉.

Now, by definition of α(N) and continuity of F̃ for ‖ · ‖m,〈
α− α(N), F̃

〉
−−−−→
N→∞

0. (3.48)

On the other hand, for all N ∈ N,

〈α(N), h〉 = K(λ)

N∑
n=−N

αn
τϕn

(
2iπn

L

)m

=
K(λ)

2

N∑
n=−N

(
αn
τϕn

+ (−1)m
α−n
τϕ−n

)(
2iπn

L

)m
.

=
√
L
K(λ)

2
∂m−1τ̃ϕα(N)

x (0),

(3.49)

where

τ̃ϕf =
∑
n∈Z

(
fn
τϕn

+ (−1)m−1 f−n
τϕ−n

)
en, ∀f ∈ L2.

Now, notice that, by definition of τϕ and Dm,

τ̃ϕ (−αx − µα+ 〈α, F 〉ϕ) ∈ Hm
per. (3.50)

Moreover, using (3.9), we have for n ∈ Z∗:

ϕn
τϕn

+ (−1)m−1ϕ−n

τϕ−n
=

ϕn
τϕn

+ (−1)m−1ϕn

τϕn

=
−1− (−1)m−1(−1)m(

2iπ
L n
)m +

rn(
2iπ
L n
)m

=
rn(

2iπ
L n
)m ,

where rn ∈ `2. Hence, τ̃ϕϕ ∈ Hm
per. This, together with (3.50), yields

τ̃ϕαx ∈ Hm
per.

This implies that

τ̃ϕα(N)
x

Hm−−−−→
N→∞

τ̃ϕαx,

as τ̃ϕα(N)
x is the partial sum of τ̃ϕαx.

Hence, by continuity of α 7→ ∂m−1α(0) for ‖ · ‖m, (3.49) implies that〈
α− α(N), h

〉
−−−−→
N→∞

0. (3.51)

Finally, (3.46), (3.47), (3.48), (3.51), and the continuity of Tλ yield

〈Tλ(−α(N)
x + 〈α, F 〉ϕ(N)), en〉 −−−−→

N→∞
−λn

〈
Tλα, en

〉
.

This, put together with (3.45), gives (3.44) by uniqueness of the limit, which in turn proves (3.43).
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Remark 3.3.1. When ϕ ∈ Hm, τϕ is simply (1/
√
L)(∂m−1ϕ(L) − ∂m−1ϕ(0))Id, F is defined on

Hm+1 ∩Hm
per, and τ̃ϕα is simply, up to a constant factor, the symmetrisation α+ (−1)m−1α(L− ·),

which is Hm
per if α ∈ Hm ∩Hm−1

per .

3.3.2 Well-posedness of the closed-loop system

The operator equality we have established in the previous section means that Tλ transforms, if they
exist, solutions of the closed-loop system with a well-chosen feedback into solutions of the target
system. Let us now check that the closed-loop system in question is indeed well-posed in some sense.

Proposition 3.3.3. The operator A+BK := −∂x−µα+〈F, ·〉ϕ defined on Dm is a dense restriction
of the infinitesimal generator of a C0-semigroup on Hm

per.

Proof. We know from Lemma 3.3.1 that A+BK is densely defined on Dm ⊂ Hm
per.

Now, define the following semigroup on Hm
per:

Sλ′(t)α := e−λ
′tα(· − t), ∀α ∈ Hm

per, t ≥ 0, (3.52)

which corresponds to the target system (3.21). Its infinitesimal is given by

Dλ′ := Hm+1
p er,

−∂x − λ′I.
(3.53)

Now, define a second semigroup on Hm
per:

S(t)α := (Tλ)−1Sλ′(t)T
λα, ∀α ∈ Hm

per, t ≥ 0. (3.54)

The infinitesimal generator of S(t) is given, when it exists, by the limit of

S(t)α− α
t

= (Tλ)−1Sλ′(t)T
λα− Tλα
t

, (3.55)

so, by (3.53), the domain of the infinitesimal generator of S(t) is (Tλ)−1(Hm+1
per ), and the infinitesimal

generator itself is given by

S(t)α− α
t

Hm−−−−→
t→0+

(Tλ)−1(−∂x − λ′I)Tλα. (3.56)

In particular, by (3.43),

(Tλ)−1(−∂x − λ′I)Tλα = (−∂x − µI + 〈·, F 〉ϕ)α = (A+BK)α, (3.57)

which proves the proposition.

3.3.3 Stability of the closed-loop system

We can now prove Theorem 3.1.1.
Let S(t) the semigroup defined by (3.54), α ∈ Hm

per.
By definition of S(t), and using (3.37), we then get, for t ≥ 0,

‖S(t)α‖m ≤ |||(Tλ)−1|||‖Sλ′(t)Tλα‖m
≤ |||(Tλ)−1||| e−λ

′t‖Tλα‖m
≤ |||(Tλ)−1||||||Tλ|||e−λ

′t‖α‖m

≤
(
C

c

)2

eλLe−λ
′t‖α‖m,
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which proves the exponential stability of the semigroup S(t).
Now consider the particular case where C = c > 0, and µ = 0 to simplify notations:

ϕ0 := C, ϕn :=
C√

1 +
∣∣ 2iπn
L

∣∣2m , ∀n ∈ Z∗, (3.58)

so that

‖α ? ϕ‖m = C‖α‖, ∀α ∈ L2, ‖α ? F‖ =
1

C
‖α‖m, ∀α ∈ Hm

per. (3.59)

Nowlet ε > 0. Keeping in mind that (χ[0,1/n])n>0 and (χ[L−1/n,L])n>0 are maximizing sequences for

Λλ and
(
Λλ
)−1

respectively, . Using (3.32), (3.34), (3.52), we get

S

(
L− 1

n

)
(χ[0,1/n] ? ϕ) = (Tλ)−1Sλ′

(
L− 1

n

)
Tλ(χ[0,1/n] ? ϕ)

= (Tλ)−1Sλ′

(
L− 1

n

)(
ϕ ?

(
Λλ(χ[0,1/n])

))
=
e−λ(L−1/n)

√
L

1− e−λL
(Tλ)−1ϕ ?

(
χ[L−1/n,L]e

−λ(·−L+1/n)
)

= e−λ(L−1/n)eλ(L−1/n)(χ[L−1/n,L] ? ϕ), ∀n > 0,

(3.60)

so that ∥∥∥∥S (L− 1

n

)
(χ[0,1/n] ? ϕ)

∥∥∥∥
m

= e−λ(L−1/n)eλ(L−1/n)‖χ[0,1/n] ? ϕ‖m, ∀n > 0. (3.61)

Then, there exists n > 0 such that∥∥∥∥S (L− 1

n

)
(χ[0,1/n] ? ϕ)

∥∥∥∥
m

> e−λ(L−1/n)(eλL − ε)‖χ[0,1/n] ? ϕ‖m. (3.62)

This shows that estimate (3.8) can be critical in some cases.

3.3.4 Application

Let m = 1, λ > 0, and let us suppose, to simplify the computations, that a ≡ 0. Define

ϕ(x) = L− x, ∀x ∈ (0, L), (3.63)

so that ϕ ∈ H1 but is not periodic, and satisfies (3.7), with

ϕn = − iL
3
2

2πn
, ∀n ∈ Z∗,

ϕ0 =
L

3
2

2
.

Then,

〈α, F 〉 = −2K(λ)

L
3
2

α0 −K(λ)
αx(0) + αx(L)

2
, ∀α ∈ H2 ∩H1

per, (3.64)

and

D1 =

{
α ∈ H2 ∩H1

per,
2K(λ)

L
3
2

α0 +

(
1

L
−K(λ)

)
αx(0)− 1

L
αx(L) = 0

}
,

so that αt + αx =

(
−2K(λ)

L
3
2

α0 −K(λ)
αx(0) + αx(L)

2

)
ϕ(x), x ∈ [0, L],

α(t, 0) = α(t, L), ∀t ≥ 0,

(3.65)
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has a unique solution for initial conditions in D1.
The backstepping transformation can be written as:

Tλα =

√
L

1− e−λL

(
e−λx

(
−K(λ)√

L
αx −

2K(λ)

L2
α0

))
? ϕ, ∀α ∈ H1

per. (3.66)

Let α(t) ∈ D1 be the solution of the closed loop system (3.65) with initial condition α0 ∈ D1, and let
us note z(t) := Tλα(t), then

zt =

√
L

1− e−λL

(
e−λx

(
−K(λ)√

L
αxt −

2K(λ)

L2
α′0

))
? ϕ.

=

√
L

1− e−λL

(
e−λx

(
−K(λ)√

L
(−αxx + 〈α, F 〉ϕx)− 2K(λ)

L2
α′0

))
? ϕ.

=

√
L

1− e−λL

(
e−λx

(
−K(λ)√

L
(−αxx − 〈α, F 〉)−

2K(λ)

L2
α′0

))
? ϕ.

zx =

√
L

1− e−λL

(
−e−λxK(λ)√

L
αxx

)
? ϕ− λz

zt + zx + λz =

√
L

1− e−λL

(
e−λx

(
K(λ)√
L
〈α, F 〉 − 2K(λ)

L2
α′0

))
? ϕ.

By projecting the closed loop system on e0, we get

α′0 = 〈α, F 〉ϕ0 = 〈α, F 〉L
3
2

2

so that
zt + zx + λz = 0.

In particular,
d

dt
‖z‖21 = −2λ‖z‖21. (3.67)

Let us now set
V (α) := ‖z‖21, ∀α ∈ H1

per.

Now, notice that

‖Tλα‖21 =
L

(1− e−λL)2

∑
n∈Z

(
1 +

∣∣∣∣2iπnL
∣∣∣∣2
)
|ϕn|2

∣∣∣∣〈e−λx(−K(λ)√
L
αx −

2K(λ)

L2
α0

)
, en

〉∣∣∣∣2

≥ C

∥∥∥∥e−λx(−K(λ)√
L
αx −

2K(λ)

L2
α0

)∥∥∥∥2

≥ Ce2λL

∥∥∥∥−K(λ)√
L
αx −

2K(λ)

L2
α0

∥∥∥∥2

≥ C ′K(λ)2e2λL‖α‖21.

Together with (3.67), this shows that V is a Lyapunov function, and (3.65) is exponentially stable.

3.4 Further remarks and questions

3.4.1 Controllability and the TB = B condition
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In the introduction we have mentioned that the growth constraint on the Fourier coefficients of ϕ
actually corresponds to the exact null controllability condition in some Sobolev space for the control
system (3.2). As we have mentioned in the finite dimensional example, the controllability condition
is essential to solve the operator equation: in our case, formal computations lead to a family of
functions that turns out to be a Riesz basis precisely thanks to that rate of growth. Moreover, that
rate of growth is essential for the compatibility of the TB = B condition and the invertibility of the
backstepping transformation. Indeed, as the transformation is constructed formally using a formal
TB = B condition, that same TB = B condition fixes the value of the coefficients of Fn, giving them
the right rate of growth for Tλ to be an isomorphism.

In that spirit, it would be interesting to investigate if a backstepping approach is still valid if the
conditions on ϕ are weakened. For example, if we suppose approximate controllability instead of exact
controllability, i.e.

ϕn 6= 0, ∀n ∈ Z,

then F can still be defined using a weak TB = B condition. However, it seems delicate to prove, in
the same direct way as we have done, that Tλ is an isomorphism, as we only get the completeness of
the corresponding (kn,λ), but not the Riesz basis property.

Finally, it should be noted that, while in [59] the TB = B condition is well-defined, in our case,
it only holds in a rather weak sense. This is probably because of a lack of regularization, indeed in
[59] the backstepping transformation has nice properties, as it can be decomposed in Fredholm form,
i.e. as the sum of a isomorphism and a compact operator. Accordingly, the Riesz basis in that case
is quadratically close to the orthonormal basis given by the eigenvectors of the Laplacian operator.
That is not the case for our backstepping transformation, as it is closely linked to the operator Λλ,
which does not have any nice spectral properties.

Nonetheless, it appears that thanks to some information on the regularity of F , a weak sense is
sufficient and allows us to prove the operator equality by convergence.

3.4.2 Regularity of the feedback law

As we have pointed out in Section 3.2.4, if ϕ is such that system (3.2) is controllable in Hm
per, then

the feedback law F defined by (3.34) is continuous for ‖ · ‖m+1 but not for ‖ · ‖m. This was actually
to be expected, as we have mentioned in the introduction that Shun Hua Sun proved that bounded
feedback laws can only achieve “compact” perturbations of the spectrum, which is not enough to get
exponential stabilization. More precisely, it would be possible to get exponential stabilization only
with very singular controllers. With a distributed control such as ours, it is necessary to consider
unbounded feedback laws.

Moreover, the application in Section 3.3.4 shows that even though the feedback is not continuous,
and is given by its Fourier coefficients, in practice it can be expressed quite simply for some controllers.

3.4.3 Null-controllability and finite-time stabilization

As we have mentioned in the introduction, one of the advantages of the backstepping method
is that it can provide an explicit expression for feedbacks, thus allowing the construction of explicit
controls for null controllability, as well as time-varying feedbacks that stabilize the system in finite
time T > 0.

The general strategy (as is done in [67], [155]) is to divide the interval [0, T ] in smaller intervals
[tn, tn+1], the length of which tends to 0, and on which one applies feedbacks to get exponential
stabilization with decay rates λn, with λn → ∞. Then, for well-chosen tn, λn, the trajectory thus
obtained reaches 0 in time T . Though this provides an explicit control to steer the system to 0, the
norm of the operators applied successively to obtain the control tends to infinity. As such, it does not
provide a reasonably regular feedback. However, the previous construction of the control can be used,
with some adequate modifications (see [67] and [156]) to design a time-varying, periodic feedback,
with some regularity in the state variable, which stabilizes the system in finite time.
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Let us first note that, due to the hyperbolic nature of the system, there is a minimal control
time, and thus small-time stabilization cannot be expected. Moreover, even for T > L, the estimates
we have established on the backstepping transforms prevent us from applying the strategy we have
described above: indeed, for any sequences (tn)→ T , λn →∞, we have

‖α(t)‖m ≤
n∏
k=0

(
C

c

)2n

enµLexp

(
n∑
k=0

−λk(tk+1 − tk − L)

)
‖α0‖m, ∀t ∈ [tn, tn+1],

where c, C are the decay constants in (3.7). Moreover, as tk+1 − tk → 0, we have

exp

(
n∑
k=0

−λk(tk+1 − tk − L)

)
−−−−→
n→∞

∞.

Another approach could be to draw from [63] and apply a second transformation to design a more
efficient feedback law. It would also be interesting to adapt the strategy in [159], inspired from [150],
to our setting.

3.4.4 Nonlinear systems

Finally, another prospect, having obtained explicit feedbacks that stabilize the linear system, is to
investigate the stabilization of nonlinear transport equations. This has been done in [65], where the
authors show that the feedback law obtained for the linear Korteweg-de Vries equation also stabilize
the nonlinear equation. However, as in [59], the feedback law we have obtained is not continuous in
the norm for which the system is stabilize. This would require some nonlinear modifications to the
feedback law in order to stabilize the nonlinear system.

105



106



Chapter 4

Finite-time internal stabilization of
a linear 1-D transport equation

This chapter is taken from the following article (also referred to as [163]):
Christophe Zhang, Finite-time internal stabilization of a linear 1-D transport equation, Systems

& Control Letters, Volume 133, 2019, 104529.
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Abstract We consider a 1-D linear transport equation on the interval (0, L), with an internal scalar
control. We prove that if the system is controllable in a periodic Sobolev space of order greater than
1, then the system can be stabilized in finite time, and we give an explicit feedback law.

4.1 Introduction

We study the linear 1-D hyperbolic equation{
yt + yx + a(x)y = u(t)ϕ̃(x), x ∈ [0, L],

y(t, 0) = y(t, L), ∀t ≥ 0,
(4.1)
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where a is continuous, real-valued, ϕ̃ is a given real-valued function of space, and at time t, y(t, ·) is
the state and u(t) is the control. As in [162], the system can be transformed into{

αt + αx + µα = u(t)ϕ(x), x ∈ [0, L],

α(t, 0) = α(t, L), ∀t ≥ 0,
(4.2)

through the state transformation

α(t, x) := e
∫ x
0
a(s)ds−µxy(t, x),

where µ =

∫ L

0

a(s)ds, and with

ϕ(x) := e
∫ x
0
a(s)ds−µxϕ̃(x),

so that we focus on systems of the form (4.2) in this article. Hyperbolic systems with an internal
control of this form model a variety of physical systems: let us cite the water tank system (introduced
in [75] and further studied in [52, 126]), which is modelled by Saint-Venant equations with boundary
conditions analog to our periodic boundary conditions, and the plug-flow reactor system, where the
control is the temperature of the reactor, and there is a given input at the boundary (see [125, 127]).

4.1.1 Notations and definitions

We note `2 the space of summable square series `2(Z,C). To simplify the notations, we will note L2

the space L2(0, L) of complex-valued L2 functions on the interval (0, L), with its hermitian product

〈f, g〉 =

∫ L

0

f(x)g(x)dx, ∀f, g ∈ L2, (4.3)

and the associated norm ‖ · ‖. Functions of L2 can also be seen as L-periodic functions on R, by the
usual L-periodic extension: in this article, for any f ∈ L2 we will also note f its L-periodic extension
on R.

We also use the following notation

en(x) =
1√
L
e

2iπ
L nx, ∀n ∈ Z, (4.4)

the usual Hilbert basis for L2. For a function f ∈ L2, we will note (fn)n∈Z ∈ `2 its coefficients in this
basis:

f =
∑
n∈Z

fnen.

Note that with this notation, we have

f̄ =
∑
n∈Z

f−nen,

so that, in particular, if f is real-valued:

f−n = fn, ∀n ∈ Z.

We will use the following definition of the convolution product on L-periodic functions:

f ? g =
∑
n∈Z

fngnen

=

∫ L

0

f(s)g(· − s)ds ∈ L2, ∀f, g ∈ L2,

(4.5)
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where g(x− s) should be understood as the value taken in x− s by the L-periodic extension of g.
Let us now note E the space of finite linear combinations of the (en)n∈Z. Then, any sequence

(fn)n∈Z defines an element f of E ′:

〈en, f〉 = fn, ∀n ∈ Z. (4.6)

On this space of linear forms, we can extend our previous definition of convolution:

〈en, f ? g〉 = fngn (4.7)

derivation can be defined by duality from (4.6):

f ′ =

(
2iπn

L
fn

)
n∈Z

, ∀f ∈ E ′. (4.8)

We also define the following spaces:

Definition 4.1.1. Let m ∈ N. We note Hm the usual Sobolev spaces on the interval (0, L), equipped
with the Hermitian product

〈f, g〉m =

∫ L

0

fḡ + ∂mf∂mg, ∀f, g ∈ Hm,

and the associated norm ‖ · ‖m.
For m ≥ 1 we also define Hm

(pw) the space of piecewise Hm functions, that is, f ∈ Hm
(pw) if there

exists a finite number d of points (σj)1≤j≤d ∈ [0, L] such that, noting σ0 := 0 and σd+1 := L, f is Hm

on every [σj , σj+1] for 0 ≤ j ≤ d. This space can be equipped with the norm

‖f‖m,pw :=

d∑
j=0

‖f|[σj ,σj+1]‖Hm(σj ,σj+1). (4.9)

For s > 0, we also define the periodic Sobolev space Hs
per as the subspace of L2 functions f =∑

n∈Z
fnen such that

∑
n∈Z

(
1 +

∣∣∣∣2iπnL
∣∣∣∣2s
)
|fn|2 <∞.

Note that (4.9) does not depend on the choice of a suitable partition (σj), so ‖·‖m,pw is well-defined.
Also, Hs

per is a Hilbert space, equipped with the Hermitian product

〈f, g〉s =
∑
n∈Z

(
1 +

∣∣∣∣2iπnL
∣∣∣∣2s
)
fngn, ∀f, g ∈ Hs

per,

and the associated norm ‖ · ‖s, as well as the Hilbert basis

(esn) :=

 en√
1 +

∣∣ 2iπn
L

∣∣2s
 .

Finally, for m ∈ N, Hm
per is a closed subspace of Hm, with the same scalar product and norm, thanks

to the Parseval identity. Moreover,

Hm
per = {f ∈ Hm, f (i)(0) = f (i)(L),

∀i ∈ {0, · · · ,m− 1}} .
(4.10)
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4.1.2 Main result

To stabilize (4.2), we will be considering linear feedbacks, that is, formally,

〈α(t), F 〉 =
∑
n∈Z

Fnαn(t) =

∫ L

0

F̄ (s)α(s)ds

where F ∈ E ′ and (Fn)n∈Z ∈ CZ are its Fourier coefficients, and F is “real-valued”:

F−n = Fn, ∀n ∈ Z.

In fact, the integral notation will appear as purely formal, as the (Fn)n∈Z will have a prescribed
growth, so that F /∈ L2. The associated closed-loop system now writes{

αt + αx + µα = 〈α(t), F 〉ϕ(x), x ∈ [0, L],

α(t, 0) = α(t, L), ∀t ≥ 0.
(4.11)

This is a linear transport equation, which we seek to stabilize with an internal, scalar feedback, given
by a real-valued feedback law. In [162], we proved the following theorem for system (4.2) when it is
controllable:

Theorem 4.1.1 (Rapid stabilization in Sobolev norms). Let m ≥ 1. Let ϕ ∈ Hm
(pw) ∩ H

m−1
per such

that
c√

1 +
∣∣ 2iπn
L

∣∣2m ≤ |ϕn| ≤ C√
1 +

∣∣ 2iπn
L

∣∣2m ,
∀n ∈ Z,

(4.12)

where c, C > 0. Then, for every λ ≥ 0 there exists a stationary feedback law Fλ such that for all
initial data α0∈ Hm

per the closed-loop system (4.11) has a solution α(t) ∈ Hm
per which satisfies

‖α(t)‖m ≤
(
C

c

)2

e(µ+λ)Le−λt‖α0‖m, ∀t ≥ 0. (4.13)

The growth condition (4.12) is equivalent to the exact controllability of (4.2) (see [137, Equation
(2.19) and pages 199-200] where the author uses the moments method). In particular, one can see
that if c (resp. C) is the largest (resp. smallest) constant such that (4.12) holds, then the constant in
(4.13) can be critical in some particular cases (see [162]).

Now, for λ > 0, the corresponding feedback law obtained in [162, Section 2.3] using the backstep-
ping method is the linear form Fλ−µ ∈ E ′ defined by

Fλ−µn := −K(λ− µ)

ϕn
, ∀n ∈ Z, (4.14)

where

K(λ− µ) :=
2

L

1− e−(λ−µ)L

1 + e−(λ−µ)L
−−−−→
λ→∞

2

L
, (4.15)

so that

Fλ
E′−−−−→

λ→∞
F∞ (4.16)

where

F∞n := − 2

ϕnL
, ∀n ∈ Z. (4.17)

Moreover, when λ→∞, the stability estimate in Theorem 4.1.1 becomes, for t > L,

‖α(t)‖m = 0.

This would suggest that taking the limit feedback F∞ could result in finite-time stabilization of
(4.2). This is indeed the case, and in this article we will prove the following theorem:
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Theorem 4.1.2 (Finite-time stabilization in Sobolev norms). Let m ≥ 1. Let ϕ ∈ Hm
(pw) ∩ H

m−1
per ,

satisfying (4.12) for some c, C > 0. Then, if the feedback law is defined by (4.17), for any initial data
α0 ∈ Hm

per the corresponding closed-loop system (4.11) has a solution α(t) which satisfies

‖α(t)‖m = 0, ∀t ≥ L.

4.1.3 Related results

To investigate the stabilization of infinite-dimensional systems, there are three main types of ap-
proaches: the Gramian method (see for example [153, 151, 108]), Lyapunov functions (see for example
[55], the book [24], and the recent results in [91, 92], which study the boundary stabilization of hyper-
bolic systems), and the backstepping method. The latter is derived from a method in finite dimension,
also called backstepping, used to stabilize stabilizable systems with an added chain of integrators (see
[110, 53, 143] for an overview of the finite-dimensional case, and [56] or [118] for applications to partial
differential equations). Another way of applying this approach to partial differential equations was
then pioneered and developed in [17] and [32]. This new form of backstepping consisted in mapping
the system to a stable target system, using a Volterra transformation of the second kind (see [111] for
a comprehensive introduction to the method):

f(t, x) 7→ f(t, x)−
∫ x

0

k(x, y)f(t, y)dy.

This was used to prove many results on the boundary stabilization of partial differential equations
(see for example [109, 141, 155, 156, 68], and also [24, chapter 7]).

In some cases, the method was used to obtain stabilization with an internal feedback (see [150,
154, 159]). We point out that in the latter reference, a system resembling (4.1) is studied, which
leads to finite-time stabilization. However, several hypotheses are made on the space component of
the controller so that a Volterra transformation of the second kind can be successfully applied to the
system, whereas in this article and in [162], we simply assume the exact controllability of the system.

Another recent development of the backstepping method is the use of Fredholm transformations:

f(t, x) 7→
∫ L

0

k(x, y)f(t, y)dy,

to map the control system to a stable target system (see for example [66, 65, 62, 63] for boundary sta-
bilization problems, [59] for an internal stabilization problem). These are more general than Volterra
transformation of the second kind, but one has to check that the transformation under consideration
is actually invertible, whereas Volterra transformations of the second kind are always invertible if the
kernel k has enough regularity.

Because backstepping provides explicit feedback laws, it has helped prove null-controllability or
small-time stabilization (stabilization in an arbitrarily small time) results for some systems: see [67]
for the heat equation, and [156] for the Korteweg-de Vries equation. In this article, we use the explicit
feedback laws obtained by the backstepping method in [162] to design an explicit stationary feedback
law that achieves finite-time stabilization.

4.1.4 Structure of the article

In Section 2, we derive an expression for the exponentially stable semigroup corresponding to the
explicit feedback laws obtained in [162] for exponential stabilization. Then, in Section 3, we study
the semigroup obtained when λ → ∞. In particular, we derive its infinitesimal generator and prove
that it corresponds to a closed-loop system which goes to 0 in finite time, which yields a feedback law
achieving stabilization in finite time. Finally, Section 4 is devoted to some comments on the result,
and on further questions.
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4.2 The exponentially stable semigroup

We recall some specifics of Theorem 4.1.1, which can be found in more detail in [162].

4.2.1 Backstepping transformation

To prove Theorem 4.1.1, the backstepping method was used. This method consists in mapping our
system into a stable target system, here{

zt + zx + λ′z = 0, x ∈ (0, L),

z(t, 0) = z(t, L), t ≥ 0,
(4.18)

with λ′ > 0. To find an invertible transformation that does this, the idea is to write it as a Fredholm
operator:

T : α(t, x) 7→
∫ L

0

k(x, y)α(t, y)dy

so that the mapping condition becomes a partial differential equation in k (the kernel equation). This
equation contains non-local terms, which are resolved by adding a natural constraint to the kernel
equation: ∫ L

0

k(x, y)ϕ(y)dy = ϕ(x), ∀x ∈ [0, L], (4.19)

which turns the non-local terms (left hand side) into local terms (right hand side). This constraint is
sometimes called the TB = B condition (see [162, 59]).

From this kernel equation, conditions on F for the invertibility of T can be derived. Then, using
a weak version of (4.19) condition, a suitable feedback is computed, so that a candidate for the
backstepping transformation can be derived:

Tλα =
∑
n∈Z

αnFλnΛλ−n ? ϕ, ∀α ∈ Hm
per, (4.20)

where λ := λ′ − µ, Fλn is defined by (4.14), and

Λλn(x) : =

√
L

1− e−λL
e−λnx

= Λ(x)e−n(x), ∀n ∈ Z, ∀x ∈ [0, L),

(4.21)

where

λn = λ+
2iπn

L
, ∀n ∈ Z, (4.22)

and where Λ is the L-periodic function defined by

Λ(x) =
L

1− e−λL
e−λx, ∀x ∈ [0, L).

4.2.2 Well-posedness of the closed-loop system

Now that a candidate for the backstepping transformation has been determined, it must be proved
that it is indeed a backstepping transformation, and that the closed-loop with the feedback defined
above is well-posed. We first define the domains

Dλ
m := {α ∈τϕ(Hm+1

(pw) ) ∩Hm
per,

−αx − µα+ 〈α, Fλ〉ϕ ∈ Hm
per

} (4.23)

112



where τϕ is the diagonal operator defined by the eigenvalues

τϕn : =
1√
L

( d∑
j=1

e−
2iπ
L nσj (∂m−1ϕ(σ−j )− ∂m−1ϕ(σ+

j ))

+ ∂m−1ϕ(L)− ∂m−1ϕ(0)

)
, ∀n ∈ Z.

In [162], we investigate the regularity of the feedback law, using the controllability condition (4.12).
This helps to prove that the corresponding closed-loop operator

A+BK := −∂x − µI + 〈·, Fλ〉ϕ

is densely defined and closed. Finally, to check that the mapping property between systems (4.11)
and (4.18) is verified, one proves the operator equality

Tλ(−∂x + 〈·, Fλ〉ϕ)α = (−∂x − λI)Tλα

in Hm
per, ∀α ∈ Dλ

m.
(4.24)

This operator equality implies that the unbounded operator A + BK is a dense restriction of the
infinitesimal generator of an exponentially stable semigroup Sλ(t).

Now, the basic idea is that for a given initial condition α0, for each feedback Fλ one has a trajectory
of the closed-loop system

αλt + αλx + µαλ = 〈αλ(t), Fλ〉ϕ(x) (4.25)

and one hopes that the αλ converge in some sense towards a trajectory α∞, which should satisfy the
closed-loop equation

α∞t + α∞x + µα∞ = 〈α∞(t), F∞〉ϕ(x). (4.26)

However, one can write equation (4.25) only for α0 ∈ Dλ
m, and to use this equation to study the

convergence of the αλ, one would need α ∈
⋂
λ>0

Dλ
m. This is too restrictive since we would like a

statement for α0 ∈ Hm
per. Thus, rather than consider the equations (4.25), we will work in the more

general framework of semigroups.

4.2.3 Expression of the semigroup

In [162], an expression of the semigroup Sλ is given using the transformation Tλ. Here, to study what
happens when λ→∞, we need to expand that expression.

First, we derive from (4.20) and (4.21) the following expression for the backstepping transformation:

Tλα = ϕ ?
(

Λ(α ? F̃λ)
)
, ∀α ∈ Hm

per, (4.27)

where F̃λ ∈ E ′ is defined by:
〈en, F̃λ〉 = Fλn , n ∈ Z.

Now, define the following operators:

Cϕf = ϕ ? f ∈ Hm
per, ∀f ∈ L2,

CF̃λf = F̃λ ? f ∈ L2, ∀f ∈ Hm
per,

MΛf = Λf, ∀f ∈ L2.

Then, by definition of Fλ, it follows that

Cϕ ◦ CF̃λ = −K(λ)IdHmper ,

CF̃λ ◦ Cϕ = −K(λ)IdL2 ,

MΛ ◦M 1
Λ

= IdL2 ,

(4.28)
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where K is defined by (4.15). Moreover, with these notations, we have

Tλ = Cϕ ◦MΛ ◦ CF̃λ (4.29)

hence

(Tλ)−1 =
1

K(λ)2
Cϕ ◦M 1

Λ
◦ CF̃λ , (4.30)

i.e.

(Tλ)−1α =
1

K(λ)2
ϕ ?

(
1

Λ
(α ? F̃λ)

)
, ∀α ∈ Hm

per. (4.31)

Now, recall that for all initial data z0 ∈ Hm
per, the solution of system (4.18) can be written

z(t, x) = e−λ
′tz0(x− t), ∀(t, x) ∈ R+ × (0, L). (4.32)

Thus, by the expression of the semigroup (see [162, Subsection 3.2]), for all initial data α0 ∈ Dλ
m,

the solution of system (4.11) can be written:

α(t, x) = (Tλ)−1e−λ
′t(Tλα0)(x− t),

∀(t, x) ∈ R+ × (0, L).
(4.33)

Now, notice that convolution and translation commute, so for (t, x) ∈ [0, L]× (0, L), we get, using
(4.27) and (4.31),

α(t, x) =
1

K(λ)2
ϕ ?

(
1

Λ

(
F̃λ?(

e−λ
′t
(
ϕ ?

(
Λ(α0 ? F̃λ)

)
(· − t)

))))
= − e

−λ′t

K(λ)
ϕ ?

(
1

Λ

((
Λ(α0 ? F̃λ)

)
(· − t)

))
= − e

−λ′t

K(λ)
ϕ ?

(
χ[0,t]e

λ(t−L)α0 ? F̃λ(· − t+ L)

+χ[t,L]e
λtα0 ? F̃λ(· − t)

)
= − e−µt

K(λ)
ϕ ?

(
χ[0,t]e

−λLα0 ? F̃λ(· − t+ L)

+χ[t,L]α
0 ? F̃λ(· − t)

)
.

This expression is derived for α0 ∈ Dλ
m, but it is actually well-defined on all of Hm

per, as α0 ? F̃λ ∈ L2

when α0 ∈ Hm
per. This gives us an expression for Sλ(t) on all of Hm

per:

Sλ(t)α0 =
−e−µt

K(λ)
ϕ ?

(
χ[t,L]α

0 ? F̃λ(· − t)

+χ[0,t]e
−λLα0 ? F̃λ(· − t+ L)

)
,

∀t ∈ [0, L], ∀α0 ∈ Hm
per,

(4.34)

which defines Sλ(t) for t ≥ 0 by the semigroup property.

4.3 The limit semigroup

Now, notice that, from (4.15) and (4.17),

Fλ =
LK(λ)

2
F∞,

114



so that we can write

Sλ(t)α =− Le−µt

2
ϕ ?

(
χ[0,t]e

−λLα ? F̃∞(· − t+ L)

+χ[t,L]α ? F̃
∞(· − t)

)
, ∀t ∈ [0, L], ∀α ∈ Hm

per.

Then it is clear that

χ[0,t]e
−λLα ? F̃∞(· − t+ L)

L2

−−−−→
λ→∞

0, ∀t ∈ [0, L], ∀α ∈ Hm
per,

so that, after convolution with ϕ,

Sλ(t)α
Hm−−−−→
λ→∞

S∞(t)α, ∀t ∈ [0, L], ∀α ∈ Hm
per,

where

S∞(t)α := −Le
−µt

2
ϕ?
(
χ[t,L]α ? F̃

∞(· − t)
)
,

∀t ≥ 0, ∀α ∈ Hm
per,

with the convention that χ[t,L] ≡ 0 when t ≥ L. Hence we have defined a new semigroup S∞(t) on
Hm
per, which we now study in order to establish Theorem 4.1.2.

4.3.1 A useful semigroup

Consider the semigroup given by

S0(t)α = e−µtχ[t,L]α(· − t), ∀t ≥ 0, ∀α ∈ L2.

This is actually a contraction semigroup, the infinitesimal generator of which is given by

D(A0) =
{
α ∈ H1, α(0) = 0

}
A0 = −∂x − µI

(4.35)

where the derivative is to be understood as the usual derivative of a Sobolev function, not as the
derivative in E ′. Note that this semigroup is associated to the following transport equation:{

yt + yx + µy = 0, x ∈ [0, L],

y(t, 0) = 0, ∀t ≥ 0,
(4.36)

and that in particular
S0(t)α = 0, ∀t ≥ L, ∀α ∈ L2. (4.37)

4.3.2 Infinitesimal generator

Now let us compute the infinitesimal generator of S∞. First, notice that

S∞(t)α = −L
2
ϕ ? S0(t)

(
α ? F̃∞

)
. (4.38)

Now, let us define the following domain, in the same spirit as in section 4.2.1:

D∞m := {α ∈ τϕ(Hm+1
(pw) ) ∩Hm

per,

−αx − µα+ 〈α, F∞〉ϕ ∈ Hm
per

}
.

(4.39)

This domain is dense in Hm
per, as it contains the following dense subspace (see [162, Proposition 3.1]):{

α ∈ Hm+1
per , 〈α, F 〉 = 0

}
.
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Let us now prove that on this domain, S∞ has an infinitesimal generator. For α ∈ D∞m , we have

r := F̃∞ ? (−αx − µα+ 〈α, F∞〉ϕ) ∈ L2. (4.40)

Thus, taking the Fourier coefficients, we get:

αnF∞n = −rn + µαnF∞n(
2iπn
L

) + i
〈α, F∞〉
πn

, ∀n 6= 0.

Now, note that ∑
n∈Z∗

i
〈α, F∞〉
πn

en(x) =
2

L
〈α, F∞〉

(
x√
L
−
√
L

2

)
,

so that

α ? F̃∞ = r̃ +
2

L
〈α, F∞〉

(
x√
L
−
√
L

2

)
, (4.41)

where

r̃ =
α0F

∞
0√
L
−
∑
n∈Z∗

rn + µαnF∞n(
2iπn
L

) en ∈ H1
per. (4.42)

Hence, α ? F̃∞ ∈ H1, and, from (4.41) and (4.42) we get

(α ? F̃∞)x = −
(
r − r0√

L
+ µα ? F̃∞ −µα0F

∞
0√
L

)
+

2

L
√
L
〈α, F∞〉.

Now, by (4.40), (4.17) and by definition of the convolution product,

r0 = −µF∞0 α0 −
2〈α, F∞〉

L
,

so that, again by (4.40),

(α ? F̃∞)x = −r + µα ? F̃∞

= −F̃∞ ? (−αx + 〈α, F∞〉ϕ) in L2.
(4.43)

On the other hand, we know, by the Dirichlet convergence theorem (see [101]) applied to α?F̃∞ ∈ H1

at point 0, that

α ? F̃∞(0) + α ? F̃∞(L)

2
=
∑
n∈Z

αnF∞n√
L

=
〈α, F∞〉√

L
.

On the other hand, by (4.41),

(α ? F̃∞ − r̃)(0) = −〈α, F
∞〉√
L

= −(α ? F̃∞ − r̃)(L),

(4.44)

thus, as r̃ is periodic,

r̃(0) =
α ? F̃∞(0) + α ? F̃∞(L)

2
=
〈α, F∞〉√

L
. (4.45)

From (4.44) and (4.45), we get

α ? F̃∞(0) = r̃(0)− 〈α, F
∞〉√
L

= 0,
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so that α ? F̃∞ ∈ D(A0).
We can now compute the infinitesimal generator of S∞: let α ∈ D∞m . Then, thanks to the above,

α ? F̃∞ ∈ D(A0), which means in particular that

S0(t)(α ? F̃∞)− (α ? F̃∞)

t

L2

−−−−→
t→0+

−(α ? F̃∞)x − µ(α ? F̃∞).

This, together with (4.38) and (4.12), implies that

S∞(t)α− α
t

= −L
2
ϕ ?

(
S0(t)(α ? F̃∞)− (α ? F̃∞)

t

)
Hm−−−−→
t→0+

L

2
ϕ ?

(
(α ? F̃∞)x + µ(α ? F̃∞)

)
.

By (4.43), we have

ϕ ?
(

(α ? F̃∞)x + µ (α ? F̃∞)
)

=

2

L
(−αx − µα+ 〈α, F∞〉ϕ)

so that, finally,
S∞(t)α− α

t

Hm−−−−→
t→0+

−αx − µα+ 〈α, F∞〉ϕ.

This, together with (4.39), means that the infinitesimal generator of S∞(t) can be given by the domain
D∞m and the unbounded operator −∂x − µI + 〈·, F∞〉ϕ. Hence, S∞(t) corresponds to the closed loop
system {

αt + αx + µα = 〈α(t), F∞〉ϕ(x), x ∈ [0, L],

α(t, 0) = α(t, L), ∀t ≥ 0,
(4.46)

which is well-posed. Moreover, by (4.37) and (4.38),

S∞(t)α0 = 0, ∀t ≥ L,∀α0 ∈ Hm
per, (4.47)

which proves Theorem 4.1.2.

4.4 An explicit example

Consider the control system {
αt + αx = u(t)(L− x), x ∈ [0, L],

α(t, 0) = α(t, L), ∀t ≥ 0.
(4.48)

In this case, ϕ(x) = L− x, so ϕ ∈ H1 and the Fourier coefficients of the controller are

ϕn = − iL
3
2

2πn
, ∀n ∈ Z∗,

ϕ0 =
L

3
2

2
.

(4.49)

so that (4.12) is clearly satisfied for m = 1. Now, from (4.49) and (4.17) we get

F∞n =
2

L

2iπn

L
√
L
, ∀n ∈ Z∗,

F∞0 = − 4

L
5
2

.

(4.50)
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Now, using the Dirichlet convergence theorem, we have for α ∈ H2 ∩H1
per,

N∑
n=−N

F∞n αn = − 2

L

N∑
n=−N

2iπn

L
αn

1√
L
− 4

L
5
2

α0

−−−−→
N→∞

−αx(0) + αx(L)

L
− 4

L
5
2

α0,

(4.51)

so that

〈α, F∞〉 = −αx(0) + αx(L)

L
− 4

L
5
2

α0,

∀α ∈ H2 ∩H1
per.

(4.52)

One can see from the above expression that even though our method defines F∞ by its Fourier
coefficients, with some controllers the feedback law can be expressed quite simply.

Now, let us consider solutions of the closed-loop system (4.48) with u(t) = 〈α(t), F∞〉, with initial
conditions in the domain

D∞1 =
{
α ∈H2 ∩H1

per,

− αx + 〈α, F∞〉(L− x) ∈ H1
per

}
,

(4.53)

which can be rewritten as

D∞1 =

{
α ∈H2 ∩H1

per,

αx(0) = − 2

L
√
L
α0 ∈ H1

per

}
.

(4.54)

Indeed, −αx + 〈α, F∞〉(L− x) ∈ H1, so the above condition simply corresponds to its being periodic
in addition.

Let α0 ∈ D∞1 , and note α(t) the corresponding solution of (4.48). We can make the following
computations for t ≥ 0, using (4.50) for the first, the periodicity of α, and differentiating the first
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equation of (4.48) in space for the second, and (4.54) for the third:

α(t) ? F̃∞ = − 2

L
√
L
αx −

4

L3
α0,

(α ? F̃∞)t = − 2

L
√
L
αxt −

4

L3
(α0)t

= − 2

L
√
L
αtx −

4

L3
√
L

∫ L

0

αt

=
2

L
√
L

((αx − 〈α, F∞〉(L− x))x)

− 4

L3
√
L

∫ L

0

αt

=
2

L
√
L

(αxx + 〈α, F∞〉)

− 4

L3
√
L

∫ L

0

〈α, F∞〉(L− x)− αx

=
2

L
√
L

(αxx + 〈α, F∞〉)

− 4

L3
√
L
〈α, F∞〉

∫ L

0

(L− x)dx

=
2

L
√
L
αxx

= −(α ? F̃∞)x,

α(t) ? F̃∞(0) = − 2

L
√
L
αx(0)− 4

L3
α0

= 0.

(4.55)

So in particular we can see quite clearly how α ? F̃∞ satisfies the equation (4.36) with µ = 0. In
particular,

α(t) ? F̃∞ = 0, ∀t ≥ L, (4.56)

which implies, using the first equation of (4.55), that αx(t) is a constant function of space, i.e. α(t)
is an affine function of space. However, it is also periodic, so we get

α(t) = 0, ∀t ≥ L. (4.57)

4.5 Comments and further questions

4.5.1 Backstepping and finite-time stabilization

As we have mentioned in the introduction, one of the advantages of the backstepping method is that
it can provide explicit feedback laws for exponential stabilization. This allows the construction of
explicit controls for null controllability ([155, 67]) as well as time-varying feedbacks that stabilize the
system in finite time T > 0 ([156, 67]).

The general strategy in these articles is to divide the interval [0, T ] in smaller intervals [tn, tn+1]
on which the feedback corresponding to some λn > 0 is applied. The idea is then to chose the tn so
that the length of the intervals [tn, tn+1] tends to 0 fast enough to compensate the growth of the norm
of the feedback law as λn → ∞. Building from this, the authors design a time-varying feedback law
that stabilizes the system in finite-time.

119



Here, the feedback is stationary, and we do not need to define it piecewise: indeed, the norm of
the feedback law Fλ is bounded when λ→∞. This comes from the fact that we used a special type
of convergence to define the feedback law, using a weak version of (4.19). Indeed, in [162], we set

ϕ(N) :=

N∑
n=−N

ϕnen ∈ Hm
per, ∀N ∈ N.

Then,

Tλϕ(N) =

N∑
n=−N

−ϕnFλnΛλ−n ? ϕ

=

N∑
n=−N

∑
p∈Z

−ϕnFnϕp
λ−n+p

ep

=
∑
p∈Z

ϕp

(
N∑

n=−N

−ϕnFn
λ−n+p

)
ep.

and Fλ is defined by

1

−ϕnFλn
= lim
N→∞

N∑
n=−N

1

λ−n+p

in order to have
〈Tλϕ(N), en〉 −−−−→

N→∞
ϕn, n ∈ Z,

which is the weak version of (4.19).
Now, if the convergence of the right-hand side had been absolute, the limit would have gone to

0 when λ → ∞. However, here the sum converges in a special way due to the Dirichlet convergence
theorem (see for example [101]), which is why it remains positive (and thus Fλ remains bounded)
when λ→∞.

Hence, a weaker TB = B condition seems to allow for better behavior of the feedback law when
λ→∞.

4.5.2 Regularity of the feedback law

A remarkable point of this application of the backstepping method, both for rapid and finite-time
stabilization, is that the feedback law is not regular on the state space: indeed, it is continuous for
‖ · ‖m+1 but not for ‖ · ‖m.

On the other hand, it seems that a continuous feedback law would have a more restricted action
on the eigenvalues of the system. Indeed, in [137] it is proved that if the sequence of complex numbers
(ρn)n∈Z satisfies (∣∣∣∣∣ρn − 2iπn

L

ϕn

∣∣∣∣∣
)
∈ `2, (4.58)

then there exists a bounded feedback law such that the resulting closed-loop system has eigenvalues
(ρn)n∈Z. It is clear that (4.58) does not allow for a uniform pole-shifting as we have done in [162].
But even though (4.58) is not a necessary condition, subsequent works such as [135, 45, 129] turn
to unbounded feedback laws, as they are proved to allow for more eigenvalue displacement, and in
particular uniform pole-shifting. A fortiori, the stronger notion of finite-time stabilization, in which
case the operator associated to the closed-loop system has an empty spectrum (see for example [135,
Theorem 3 and comments]), probably requires an unbounded feedback law.
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Chapter 5

Exponential stabilization of the
linearized water tank system

This chapter is taken from a work in progress with Jean-Michel Coron, Amaury Hayat and
Shenguan Xiang.
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5.1 Introduction

5.1.1 Equations of the problem

We consider a water tank modelled by the Saint-Venant equations with no friction and no slope,{
∂tH + ∂x(HV ) = 0,

∂tV + V ∂xV + g∂xH = −U(t).
(5.1)

where H is the height of the water, V its averaged velocity and U is control input. Without loss of
generality we can suppose that g = 1. The water is localized inside the water tank, which implies the
following Dirichlet boundary conditions:

V (t, 0) = V (t, L) = 0. (5.2)

Moreover, integrating the first equation of (5.1) we obtain the conservation of the mass of the water,
we have that ∫ L

0

H(t, x)dx does not change with respect to time. (5.3)

First derived in 1871 by Barré de Saint-Venant [19, 21, 20], the Saint-Venant equations are among
the most famous equations in fluid dynamics and represent flow under shallow water approximation.
Despite their apparent simplicity, they capture a large number of physical behaviors, which made
them a ground tool for practical application in particular in the regulation of canals for agriculture
management and in the regulation of navigable rivers.

The stabilization of the Saint-Venant equations by boundary controls is a well-studied problem.
The first result goes back to 1999 with [57] where the stability of the homogeneous linearized Saint-
Venant was shown, using proportional boundary conditions. This was extended in [58] to the nonlinear
homogeneous Saint-Venant equations. Later, in 2008, using a semigroup approach and the method
of the characteristics, the stabilization of the nonlinear homogeneous equations was achieved for
sufficiently small friction and slope [73, 128]. The same type of result was shown in [54] using a
Lyapunov approach while [27] dealt with the inhomogeneous Saint-Venant equations in the particular
case where the steady-states are uniform. In 2017, the stabilization was achieved for arbitrary large
friction but in the absence of slope [25], and very recently for any section profil and any source
term [95, 94]. Other results exists using different boundary conditions for instance PI controllers [23,
Chapter 8], [74, 26, 157, 158, 148, 93] or full-state feedbacks resulting of a backstepping approach
[68] (see [71, 70] for its application on variant systems based on the Saint-Venant equations). The
stabilization of the Saint-Venant equations by internal control, however, has seldom been studied while
being very interesting mathematically and corresponding to physical situations, for instance a water
tank subject to an acceleration.
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5.1.2 Main result

The water tank problem is interesting in that it has been studied for a long time and is rich enough to
have led to several interesting results. Among the control results in this setting, one can cite [75, 126,
52] where the authors show, among others, that the linearized homogeneous Saint-Venant equations
with null velocity at the boundaries and subject to a scalar control force are not locally approximately
controllable around their uniform steady-states. This implies that they are not stabilizable either.

Now, consider the non-uniform steady-states corresponding to a (small) acceleration U(t) = γ with
γ > 0 fixed: H∗ = Hγ , V ∗ = 0 with Hγ(0) = 1 and

Hγ(x) = 1− γx. (5.4)

The linearized equations around this steady-state expressed with the variables h = H − Hγ and
v = V − V γ denoting the perturbations and the internal control u(t) = −(U(t)− γ)

∂t

(
h
v

)
+

(
0 Hγ

1 0

)
∂x

(
h
v

)
+

(
0 −γ
0 0

)(
h
v

)
= −u(t)

(
0
1

)
, (5.5)

with the boundary conditions:
v(t, 0) = v(t, L) = 0. (5.6)

While, condition (5.3) becomes ∫ L

0

h(t, x)dx = 0. (5.7)

As Hγ 6= 0, the transport matrix is diagonalizable and the system is thus strictly hyperbolic. We now
recall the definition of exponential stability:

Definition 5.1.1. The system (5.5)–(5.6) is exponentially stable with decay rate µ if there exists a
constant C > 0 such that for any (h0, v0) ∈ H1((0, L);R2)) satisfying the compatibility conditions
v0(0) = v0(L) = 0 corresponding to (5.6), the system (5.5)–(5.6) has a unique solution (h, v) ∈
C0([0,+∞), H1((0, L);R2)) and

‖h(t, ·), v(t, ·)‖H1((0,L);R2) ≤ Ce−µt‖h0, v0‖H1((0,L);R2), ∀ t ∈ [0,+∞). (5.8)

In this article we give a way of stabilizing system (5.5) exponentially for a small enough γ.
To state our main result let us introduce some notations. We know from [137] (see also Section

5.2.3) that the family of eigenvectors associated to the problem (5.5)–(5.6) form a Riesz basis of (L2)2,
let us note them (hγn, v

γ
n)n∈Z. Then, we denote by Dγ the space of finite linear combinations of the

(hγn, v
γ
n)n∈Z, then, any sequence (Fn)n∈Z defines an element F of D′γ :

〈(hγn, vγn)T , F 〉 = Fn. (5.9)

This gives us a general framework to talk about linear feedback laws. The actual domain of definition
of our feedback laws, and their regularity, will be closely studied later on in Subsection 5.6.2.

Theorem 5.1.1. For any µ > 0, there exists γ0 > 0 such that, for any γ ∈ (0, γ0), there exists ν 6= 0
such that the control u of the feedback form

u(t) :=

〈(
hγ0
vγ0

)
, F γ1

〉∫ t

0

eνL/L
γ〈(hγ0 vγ0 )T ,Fγ1 〉(t−τ) νL

Lγ

〈(
h
v

)
(τ, ·), F γ1

〉
dτ

+

〈(
h
v

)
(t, ·), F γ1

〉
,

(5.10)

where Lγ :=
2

γ

(
1−

√
1− γL

)
and F γ1 ∈ D′γ is given by

〈(hn, vn)T , F γ1 〉 = − tanh(µL)

Hγ(0)

(hn)2(0)∫ L
0

L
Lγ
√

1−γx exp
(
−
∫ x

0
3γ

4(1−γx)ds
)
vn(x)dx

, ∀ n ∈ Z∗,

〈(h0, v0)T , F γ1 〉 = −2
tanh(µL)

Hγ(0)

(h0)2(0)

ν
,

(5.11)
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stabilizes the system (5.5)–(5.6) exponentially in (H1)2 norm, for initial conditions in (H1)2 satisfying

the boundary conditions (5.6), with decay rate
µ

2
.

Remark 5.1.1. This result works for any small γ > 0, therefore one could wonder whether it could be
extended to γ = 0. However, when γ = 0 no such F exists as the system (5.5)–(5.6) is not controllable
(see [52]), thus this result is sharp in this sense.

This result will be shown using a strategy inspired from the backstepping approach. Backstepping
originally referred to a way of designing more effective feedback laws for finite dimensional systems
in a recursive way (see [104], [99], [149] for instance). Later, this method has been modified and
adapted to partial differential equations (see [17] and [32]). The key idea is to use an invertible
transformation mapping the original system to a target system for which the stability is easy to
prove. The stabilization problem becomes then a problem of existence of an isomorphism between
two systems. As the class of transformation could be very large, this is potentially a very complicated
problem, it is usually simplified by restricting to the Volterra transformation of second kind which have
the advantage of being convenient to use and naturally invertible in most cases. These transformations
were extensively used in the last decades, for instance for the heat equation [33, 32, 17], for first order
hyperbolic linear then quasilinear systems [152, 68], and for many particular cases (see [155, 156] for
the KdV equations, [69] for coupled PDE-ODE systems, or [111] for an overview), the goal of each
new study being to show that such a transformation exists. However, restricting to only a special
type of invertible transformation necessarily restricts the cases where this method can be applied.
Moreover, Volterra transformations of the second kind are usually used to move a complexity in the
dynamics to the boundaries, to be dealt with an appropriate control. Therefore it could be ill-adapted
to an internal control stabilization problem, where the boundary conditions are fixed and cannot be
changed, although some results exist by applying a second invertible transform (see [150] or [154]).

In this article we opt for a more general approach, following the strategy of [59] by searching
for general kernel operators, namely Fredholm transforms. This requires more work as a Fredholm
transform is not always invertible, but we have an additional information: the system is controllable.
This will be a key ingredient to find an invertible transformation and derive an explicit feedback law
to stabilize the system exponentially.

5.1.3 The backstepping method: a finite-dimensional example

Our strategy of proof combines the use of controllability to stabilize systems with the backstepping
method. It was developed to stabilize the Schrödinger equation in [59], and adapted to hyperbolic
systems in [162]. We illustrate it with a finite-dimensional example.

Consider the finite-dimensional control system

ẋ = Ax+Bu(t), x ∈ Cn, A ∈Mn(C), B ∈Mn,1(C). (5.12)

Suppose that (5.12) is controllable. Then, it is well known (see for example [53]) that for every
polynomial P ∈ C[X] there exists a feedbackK ∈M1,n(R) such that P is the characteristic polynomial
of A+BK.

This pole-shifting property for controllable systems can be formulated in another way, by trying
to invertibly transform system (5.12) into another system with shifted poles, namely

ẋ = (A− λI)x, (5.13)

which is asymptotically stable for a large enough λ.
More generally we can try to invertibly transform system (5.12) into

ẋ = Ãx, (5.14)

which is exponentially stable if Ã is well chosen.
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Suppose that x(t) is a solution of system (5.12) with u(t) = Kx(t) for some control function v.
Such a transformation T would map (5.12) into

˙(Tx) = T ẋ = T (A+BK)x.

In order for Tx to be a solution of (5.13), we need

T (A+BK)x = ÃTx.

To find such a T , let us suppose without loss of generality that (A,B) is in canonical form, using
the fact that (A,B) is controllable. Now, suppose that (Ã, B) is also controllable, so that it can be
put in canonical form with an invertible matrix T :

T−1ÃT = c(Ã). (5.15)

Now, it is well-known that there exists a unique K such that

A+BK = c(Ã), (5.16)

which yields
T (A+BK) = ÃT. (5.17)

Now notice that as we assumed that (A,B) was in canonical form, this implies that

TB = B. (5.18)

Injecting the above equation into (5.17), we get the following equations:

TA+BK = ÃT,

TB = B,
(5.19)

for which we just proved the following theorem:

Theorem 5.1.2. If (A,B) and (Ã, B) are controllable, then there exists a unique pair (T,K) satisfying
conditions (5.19).

The controllability of (5.12) and (5.14) is crucial here, as it allows us to use the control canonical
form. However, another proof can be found in [59], which is more adaptable to the context of PDEs:
the idea is to suppose that A and Ã are diagonalizable. Then, the controllability of (Ã, B) allows to
build a basis for the space state using the eigenvectors of A, in which T can then be constructed. The
TB = B condition along with the controllability of the first system help define the coefficients of the
feedback K, and finally the controllability of the second system ensures the invertibility of T with K
thus defined.

This other approach to pole-shifting, which links controllability to stabilization, can be used in
infinite dimension. In our case, the controllability of (5.59)–(5.38) will have the same importance:
it will also allow us to build some sort of basis for the state space, and find a general form for the
backstepping transformation, depending on F .

5.2 Properties of the system and presentation of the method

5.2.1 Transforming the system

Let us consider the system (5.5)–(5.6). Using the change of variable

(
ξ1
ξ2

)
=


√

1

Hγ
1

−
√

1

Hγ
1

(hv
)
, (5.20)
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we get the system in Riemann coordinates:

(
ξ1
ξ2

)
t

+

(
λ1 0
0 −λ2

)(
ξ1
ξ2

)
x

+δ0(x)

 1
1

3

−1

3
−1

(ξ1ξ2
)

= u(t)

(
1
1

)
. (5.21)

where λ1 = λ2 =
√
Hγ , δ0(x) = −3

4

γ
√

1− γx
, and with the boundary conditions:

ξ1(t, 0) = −ξ2(t, 0),

ξ2(t, L) = −ξ1(t, L).
(5.22)

Thus also implies the following condition:∫ L

0

√
Hγ(x) (ξ1 − ξ2) (x)dx = 0. (5.23)

We would like to simplify the matrix in front of the transport term. To this aim, let us introduce

a change of variable in space: y =
2

γ

(
1−

√
1− γx

)
and define

Lγ =
2

γ

(
1−

√
1− γL

)
, (γ is supposed sufficiently small). (5.24)

By a slight abuse of notation we used again ξ, now defined on y ∈ [0, Lγ ], to denote the solutions to
this last system, so that these equations become:

∂t

(
ξ1
ξ2

)
+

(
1 0
0 −1

)
∂y

(
ξ1
ξ2

)
+ δ1(y)

 1
1

3

−1

3
−1

(ξ1ξ2
)

= u(t)

(
1
1

)
, (5.25)

where δ1(y) = −3

4

γ

(1− γy/2)
, and with the boundary conditions:

ξ1(t, 0) = −ξ2(t, 0),

ξ2(t, Lγ) = −ξ1(t, Lγ).
(5.26)

As well as the conservation law, ∫ Lγ

0

(1− γ

2
y)2(ξ1(y)− ξ2(y))dy = 0. (5.27)

This could be expressed in a more compact form using the following notations:

Λ =

(
1 0
0 −1

)
, J0 =

 1
1

3

−1

3
−1

 . (5.28)

We also define

J =

 0
1

3

−1

3
0

 , (5.29)

which will be used later on. Looking at (5.25) and (5.28), the transport matrix Λ has now a simple
form, as expected, but the length of the domain depends now on γ. We arrange this by using a scaling
simultaneously on time and space and we define

w(t, z) := ξ(Lγt/L, y(z)), with y(z) =
Lγ
L
z. (5.30)
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For convenience we renote x := z ∈ [0, L] so that x still denotes the space variable, then w(x) satisfies

∂tw + Λ∂xw + δJ0w = u(Lγt/L)

(
1
1

)
,

w1(t, 0) = −w2(t, 0),

w2(t, L) = −w1(t, L),

(5.31)

with
δ(x) = (Lγ/L)δ1(Lγx/L), for all x ∈ [0, L], (5.32)

§so that

δ(x) = −3

4
γ
(

1 +
1

2
γ(L+ x) +O(γ2)

)
. (5.33)

And the condition ∫ L

0

(
1− 1−

√
1− γL
L

x

)2

(w1(x)− w2(x))dx = 0, (5.34)

which, from now on, will be called the “missing direction” as this cannot be changed, whatever the
control, and restricts necessarily the admissible perturbation or the reachable states.

And, finally, we use a diagonal change of coordinates

ζ(t, x) := exp

(∫ x

0

δ(s)ds

)
w(t, x), (5.35)

with

exp

(∫ x

0

δ(s)ds

)
=

(
1− γ

2

Lγ
L
x

)3/2

= 1− 3

4
γx+O(γ2). (5.36)

This last operation is used to remove the diagonal coefficients of the source term (see [111, Chapter
9], [98] for more details on the interest of this change of coordinates). The system then becomes

∂tζ + Λ∂xζ + δJζ = u(Lγt/L) exp

(∫ x

0

δ(s)ds

)(
1
1

)
, (5.37)

with boundary conditions
ζ1(t, 0) = −ζ2(t, 0),

ζ2(t, L) = −ζ1(t, L).
(5.38)

Hence a condition ∫ L

0

(
1− 1−

√
1− γL
L

x

)1/2

(ζ1(x)− ζ2(x))dx = 0. (5.39)

This will be our system in the following, together with the boundary conditions (5.38).

5.2.2 Spaces and notations

In this subsection, we define several notations which will be used throughout the article. Some of
them will be introduced later on in the article but are gathered here as a glossary for the reader’s
convenience. To simplify the computations and the statements we denote

(L2)2 = L2((0, L);C2),

(Hs)2 = Hs((0, L);C2), for any s ≥ 0.
(5.40)

Similarly for any s ∈ N we denote Cs = Cs([0, L],R2) and we note Cspw the space of piecewise Cs

functions, i.e. functions f such that there exists a subdivision {σi}, i ∈ {1, . . . , n− 1} for some n ≥ 1,
such that

f|[σi,σi+1] ∈ C1([σi, σi + 1]), ∀i ∈ {1, . . . , n− 1}. (5.41)
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For any family we denote for simplicity (an)n∈Z = (an), the index being specified when the family is
not considered over the whole Z. The scalar product correspond to the L2 norm is defined by

〈f, g〉 :=
1

2L

∫ L

0

f1(x)g1(x) + f2(x)g2(x)dx. (5.42)

We now present the following families of functions, whose existence will be justified later on :

• (fn)n∈Z denote the eigenfunctions of the operator given by (5.46)–(5.47) and associated to the
original system (5.37)–(5.38) and forming an orthonormal Riesz basis.

• (f̃n, φ̃n)n∈Z denote the eigenfunctions forming a Riesz basis and the associated biorthonormal
family of the operator given by (5.61) and associated to the target system (5.60).

• (ψn, χn) denote the eigenfunctions forming a Riesz basis and the associated biorthonormal family
of the operator associated to the system (5.31).

• (ψ̃n, χ̃n) denote the eigenfunctions forming a Riesz basis and the associated biorthonormal family
of the operator associated to the system (5.210).

Let us now note E the space of finite linear combinations of the (fn)n∈Z. Then, any sequence (Fn)n∈Z
defines an element F of E ′:

〈fn, F 〉 = fn. (5.43)

E and E ′ are linked to the spaces Dγ and D′γ by the changes of variables performed in the previous
section.

Finally we define the spaces

Xs := {f ∈ (L2)2, (τI)−1(Λ∂xf + δ(x)Jf) ∈ (Hs−1)2}, s ≥ 1, (5.44)

where τ I is an isomorphism of Hs defined by (5.289), and we endow them with the norms:

‖f‖Xs := ‖(τI)−1(Λ∂xf + δ(x)Jf)‖(Hs−1)2 + ‖f‖L2 , s ≥ 1. (5.45)

5.2.3 A system of eigenvectors for the open-loop system (i.e. without
feedback):

Considering (5.37), let us define the following operator:

A := Λ∂x + δ(x)J, (5.46)

defined on the domain

D(A) :=
{

(f1, f2) ∈ (H1)2, f1(0) + f2(0) = 0, f1(L) + f2(L) = 0
}
. (5.47)

Its adjoint is clearly defined by:

A∗ := −Λ∂x − δ(x)J,
D(A∗) :=

{
(f1, f2) ∈ (H1)2, f1(0) + f2(0) = 0, f1(L) + f2(L) = 0

}
,

(5.48)

so that
A∗ = −A, if γ ∈ R. (5.49)

We know from [137] that A has a family of eigenfunctions, which we note (fn), that form a Riesz
basis of (L2)2. From (5.49) we know that the (fn) form an orthonormal basis, and the corresponding
eigenvalues µn are all imaginary. Moreover, they satisfy the following asymptotic behaviour, given
the boundary conditions we have set:

µn =
iπn

L
+O

(
1

n

)
, ∀n ∈ Z. (5.50)

Moreover, given the definition of A, we can easily derive a few additional properties (see Appendix
5.A for the proof):
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Proposition 5.2.1. The (fn, µn) satisfy the following:

(i)
µ−n = µn = −µn, ∀n ∈ Z. (5.51)

In particular, µ0 = 0.

(ii)
f−n = fn = (−fn,2(·),−fn,1(·)), ∀n ∈ Z. (5.52)

In particular, fn,1(0), fn,1(L) ∈ R, and

f0,1(x) + f0,2(x) = 0,∀x ∈ [0, L]. (5.53)

Finally let us introduce the spaces:

D(As) := {α ∈ (L2)2,
∑
n∈Z∗

(1 + |µn|2s)|〈α, fn〉|2 <∞}, s ≥ 0, (5.54)

which corresponds to Hs, so that we have

D(A1) = D(A). (5.55)

5.3 Dealing with mass conservation

5.3.1 A new system

Let us now consider again our system (5.37):

∂tζ + Λ∂xζ + δJζ = u(Lγt/L) exp

(∫ x

0

δ(s)ds

)(
1
1

)
,

with boundary conditions (5.38). In order to identify the control in the following we define

I := exp

(∫ x

0

δ(s)ds

)(
1
1

)
. (5.56)

As we will see later on this control term has a drawback : from (5.53), we get

〈I, f0〉 = 0, (5.57)

which means that the control cannot act on this direction and therefore the system is not fully con-
trollable. Physically this comes from the fact that the control does not add or spill any water, thus
the mass is conserved.

To overcome this difficulty we introduce the following virtual control

Iν := I + νf0, (5.58)

together with the following virtual system
∂tZ + Λ∂xZ + δ(s)JZ = 〈Z(t, ·), F 〉Iν ,
Z1(t, 0) = −Z2(t, 0), ∀t ≥ 0,

Z1(t, L) = −Z2(t, L), ∀t ≥ 0,

(5.59)

where F is a linear feedback to be determined.
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5.3.2 Our target system

In past applications of the backstepping method, the most frequently used target system is simply the
homogeneous system corresponding to the damped operator A−µId, for some µ > 0. This choice can
be easily understood: by adding a damping large enough the solution is likely to be decaying with a
decay rate large enough. As it appears, in our case it is more practical to consider a target system
where the dissipation occurs instead at the boundary:

∂tz + Λ∂xz + δ(x)Jz = 0,

z1(t, 0) = −e−2µLz2(t, 0),

z2(t, L) = −z1(t, L).

(5.60)

5.3.2.1 A system of eigenvectors for the target system

As this target system has boundary conditions different from the original system, let us define a new
operator:

Ã := Λ∂x + δ(x)J,

D(Ã) :=
{

(f1, f2) ∈ (H1)2, f1(0) + e−2µLf2(0) = 0, f1(L) + f2(L) = 0
}
.

(5.61)

The eigenvectors (f̃n, µ̃n) of Ã form a Riesz basis of
(
L2
)2

, and, using again the results in [137], we
have the following asymptotic development for µ̃n:

µ̃n = µ+
iπn

L
+O

(
1

n

)
. (5.62)

Moreover, the (f̃n) admit a biorthogonal family which we note (φ̃n). Note that it is a well known fact

that the (φ̃n, µ̃n) are the eigenvectors of the adjoint operator:

Ã∗ := −Λ∂x − δ(x)J,

D(Ã∗) :=
{

(f1, f2) ∈ (H1)2, f1(0) + e2µLf2(0) = 0, f1(L) + f2(L) = 0
}
.

(5.63)

Again, this allows us to define the following spaces:

D(Ãs) := {α ∈ (L2)2,
∑

(1 + |µ̃n|2s)|〈α, φ̃n〉|2 <∞}, s ≥ 0, (5.64)

and
D((Ã∗)s) := {α ∈ (L2)2,

∑
(1 + |µ̃n|2s)|〈α, f̃n〉|2 <∞}, s ≥ 0. (5.65)

Now notice that when γ = 0, from the expression of δ1 and (5.32), δ(x) = 0 and the operator becomes:

Ã(0) := Λ∂x,

D(Ã(0)) :=
{

(f1, f2) ∈ (H1)2, f1(0) + e−2µLf2(0) = 0, f1(L) + f2(L) = 0
}
,

(5.66)

for which the eigenvectors and eigenvalues are

f̃ (0)
n =

(
e(µ+ iπn

L )x

−e(µ+ iπn
L )(2L−x)

)
, µ̃(0)

n = µ+
iπn

L
, ∀n ∈ Z, (5.67)

and the corresponding biorthogonal family is given by:

φ̃(0)
n =

(
e(−µ+ iπn

L )x

−e(−µ+ iπn
L )(2L−x)

)
, ∀n ∈ Z. (5.68)
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These eigenfunctions are not normal in L2 space. Thanks to [137], we know that {f̃ (0)
n /‖f̃ (0)

n ‖L2} form
a Riesz basis of L2 space. Moreover, since

‖f̃ (0)
n ‖2L2=

e4µL − 1

2µ
, (5.69)

we know that

{f̃ (0)
n } form a Riesz basis of L2 space. (5.70)

Now note that, by integration by parts,

µ̃
(0)
n

〈
(1, 1), φ̃(0)

n

〉
=
〈

(1, 1),Λ∂xφ̃
(0)
n

〉
=
(
φ̃

(0)
n

)
1

(L)−
(
φ̃

(0)
n

)
1

(0)−
(
φ̃

(0)
n

)
2

(L) +
(
φ̃

(0)
n

)
2

(0)

= 2(−1)ne−µL − 1− e−2µL,

(5.71)

which is clearly bounded away from 0 for µ large enough. Hence (A(0), (1, 1)) is controllable.

5.3.2.2 Exponential stability of the target system

In this section we show the following proposition

Proposition 5.3.1. For any λ ∈ (0, µ), there exists γ0 > 0 such that if γ ∈ (0, γ0), the target system
(5.60) is exponentially stable with decay rate λ (for the Hp norm, for any p ∈ N).

Proof. First, from [114] note that the system is well-posed in Hp. More precisely, let T > 0, there
exists a constant C(T ) > 0 such that for any z0 ∈ Hp the system (5.60) with initial condition z0 has
a unique solution z ∈ C0([0, T ], Hp) and

‖z(t, ·)‖Hp ≤ C(T )‖z0‖Hp . (5.72)

We now define the following Lyapunov function candidate V

V (Z) =

p∑
n=0

‖Θ(x)(ÃnZ)‖2L2(0,L), ∀ Z ∈ Hp(0, L), (5.73)

where Θ = diag(
√
θ1,
√
θ2) with θ1 and θ2 two positive C1 functions to be selected later on. Obviously

V is equivalent to the square of the Hp norm in the sense that there exists positive constants C1 and
C2 such that for any Z ∈ Hp(0, L),

C1‖Z‖2Hp(0,L) ≤ V (Z) ≤ C2‖Z‖2Hp(0,L). (5.74)

Now observe that for a solution z to the system (5.60), one has

V (z) =

p∑
n=0

〈Θ(x)∂nt z(t, ·),Θ(x)∂nt z(t, ·)〉. (5.75)

Let n ∈ {0, ..., p}, from (5.60) ∂nt z is also a solution to (5.60), and therefore, differentiating V (z) along
time, one has

V̇ (z) = −2Re

(
p∑

n=0

〈Λ∂x(∂nt z)(t, ·),Θ2∂nt z(t, ·)〉+ 〈δJ∂nt z(t, ·),Θ2∂nt z(t, ·)〉

)
. (5.76)
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Thus, integrating by parts and using the boundary conditions of (5.60),

V̇ (z) =− 2λV

−
p∑

n=0

[(θ1(L)− θ2(L))(∂nt z1)2(t, L) + (θ2(0)− θ1(0)e−4µL)(∂nt z2)2(t, 0)]

−
p∑

n=0

Re
(
〈(−Λ

(
Θ2
)′ − 2λΘ2 + 2Θ2δJ)∂nt z, ∂

n
t z〉
)
.

(5.77)

Our goal is now to choose Θ such that the two last sums are nonnegative. Recognizing a quadratic
form in the integrals, it suffices to ensure that

θ1(L) ≥ θ2(L),

θ2(0)− θ1(0)e−4µL ≥ 0

(−Λ
(
Θ2
)′ − 2λΘ2 + 2Θ2δJ) is definite semi-positive.

(5.78)

Denoting Ξ1 = θ1 exp(2λ(x− L)) and Ξ2 = θ2 exp(−2λ(x− L)), (5.78) is equivalent to

Ξ1(L) ≥ Ξ2(L),

Ξ2(0)− Ξ1(0)e−4(µ−λ)L ≥ 0,

− Ξ1
′Ξ2
′ ≥

(
δ

3

)2

(Ξ1 exp(−2λ(x− L))− Ξ2 exp(2λ(x− L)))2.

(5.79)

Following [22, Proposition 1], the existence of Ξ1, Ξ2 positive and of class C1 satisfying these conditions
is equivalent to the existence of η positive and of class C1 satisfying

η(L) ≤ 1,

η(0) = e−2(µ−λ)L,

η′ =

∣∣∣∣δ3
∣∣∣∣ ∣∣exp(−2λ(x− L))− η2 exp(2λ(x− L))

∣∣ , (5.80)

which, using the first condition in the third one, is in fact equivalent to

η(L) ≤ 1,

η(0) = e−2(µ−λ)L,

η′ =

∣∣∣∣δ3
∣∣∣∣ (exp(−2λ(x− L))− η2 exp(2λ(x− L))

)
.

(5.81)

We will now show the existence of such η by exhibiting a super-solution to the two last equations of
(5.81) satisfying also the first condition. Let us introduce ξ being the C1 solution of

ξ′ = ‖δ
3
‖L∞(0,L)

(
e2λ(L−x)

)
,

ξ(0) = e−2(µ−λ)L.

(5.82)

This system can be easily solved and

ξ(x) = e−2(µ−λ)L +
‖δ‖L∞(0,L)

6λ

(
e2λL − e2λ(L−x)

)
. (5.83)

Let us now set

γ0 = min

(
7

16L
, 6λ

1− e−2(µ−λ)L(
e2λL − e2λ(L−x)

)) , (5.84)
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and assume that γ ∈ (0, γ0), then one has from the definition of δ given in (5.32),

ξ(L) ≤ 1. (5.85)

Thus, looking at (5.82) and the two last equations of (5.81) and by comparison (see for instance [90]),
η exists on [0, L] and in addition η ≤ ξ on [0, L]. Thus, choosing such η, we have

V̇ (z) ≤ −2λV, (5.86)

thus, using (5.74),

‖z(t, ·)‖Hp ≤
√
C2

C1
‖z0‖Hpe−λt, on [0, T ]. (5.87)

But, as T > 0 was chosen arbitrary and C1, C2 and λ are independent of T this is also true on [0,+∞).
This ends the proof of Proposition 5.3.1

Remark 5.3.1. As it can be seen in condition (5.84), when γ is small enough we can actually achieve

a decay rate as close as we want from µ, as was expected looking at the eigenvalues of Ã given by
(5.62).

Finally, following [22] again, if the maximal solution of the two last equations of (5.81) does not
exists on [0, L] or does not satisfies the first condition of (5.81), then there does not exist any Lyapunov
function with a decay rate larger of equal to λ of the form

V (Z) =

p∑
n=0

〈ÃnZ,Q(x)(ÃnZ)〉, ∀ Z ∈ Hp(0, L), (5.88)

where Q ∈ C1([0, L],M+
2 (R)), with M+

2 (R) the space of positive definite matrix on R2. Note that the
form (5.88) includes all the Lyapunov functions of the form (5.73). This implies that we cannot get a
uniform bound on γ and in particular that for any γ > 0 there exists µγ > 0 such that there does not
exists any Lyapunov function of the form (5.88) with a decay rate larger of equal to µγ > 0. Indeed
let γ > 0, and assume by contradiction for any µ > 0 there exists a Lyapunov function of the form
(5.88) with decay rate larger or equal to µ, then there exists a function η on [0, L] satisfying (5.81).
Besides,

η′ ≥ inf
[0,L]

∣∣∣∣δ3
∣∣∣∣ (eµ(L−x) − e−µ(L−x)

)
, (5.89)

hence, integrating and as η(0) ≥ 0,

η(L) ≥ 1

µ
inf
[0,L]

∣∣∣∣δ3
∣∣∣∣ (ch(µL)− 1), (5.90)

and using the first condition of (5.81),

1

µ
inf
[0,L]

∣∣∣∣δ3
∣∣∣∣ (ch(µL)− 1) ≤ 1. (5.91)

As inf
[0,L]
|δ| > 0, there exists µ1 > 0 such that there is contradiction.

5.3.3 Outline of the proof

Now, notice that, thanks to the fact that Λ∂xf0 + δ(s)Jf0 = 0, projecting the system (5.59) on the
(fn)n∈Z and denoting

Z = ζ0f0 + ζ, 〈ζ, f0〉 = 0, (5.92)

one has
ζ̇0 = ν (〈ζ, F 〉+ ζ0〈f0, F 〉) , (5.93)
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and 
∂tζ + Λ∂xζ + δJζ = (〈ζ(t, ·), F 〉+ ζ0〈f0, F 〉) I,
ζ1(t, 0) = −ζ2(t, 0),

ζ2(t, L) = −ζ1(t, L).

(5.94)

We will show later (see Remark 5.4.7) that (5.39) is equivalent to 〈ζ, f0〉 = 0. Thus ζ is exactly
the solution of (5.37), (5.38), (5.39) with control u(Lγt/L) := (〈ζ(t, ·), F 〉+ ζ0〈f0, F 〉). This control is
indeed an implementable feedback law as it depends only on the state and past states of the system,
with ζ0 acting as a kind of integrator on the system. Physically speaking, we can think of it as “virtual
mass” that is added or removed from the real, physical system described by ζ.

Then, the key result to prove Theorem 5.1.1 is the following:

Proposition 5.3.2. For any µ > 0, there exists γ0 > 0 such that, for any γ ∈ (0, γ0), there exists
ν 6= 0 such that the control u of the feedback form

u(t) = 〈Z, F 〉, (5.95)

where F ∈ E ′ is given by

〈f0, F 〉 = −2 tanh(µL)
(f0,1(0))2

ν
,

〈fn, F 〉 = −2 tanh(µL)
(fn,1(0))2

〈I, fn〉
, ∀n ∈ Z∗,

(5.96)

stabilizes (5.59) exponentially, with decay rate
3

4
µ.

Indeed, to design a feedback ensuring the exponential stability of (5.37), (5.38), (5.39), it suffices
to design a linear feedback ensuring the exponential stability of the virtual system (5.59). Then, for
any initial condition of system (5.37), (5.38),

ζ0 ∈ D(A), 〈ζ0, f0〉 = 0, (5.97)

one can implement that feedback on system (5.59) with initial condition

ζ0(0) = 0, ζ(0) = ζ0.

This will yield, in particular, exponential stabilization of the ζ part.
Then, as the transformations (5.20) and (5.35) and the scaling introduced in (5.25) and (5.30)

define a diffeomorphism, this implies the exponential stability of the initial system (5.5)–(5.7), albeit
with a different decay rate (because of the time scaling in (5.30)). Finally, the inverse transformations
of (5.20) and (5.35) allow us to recover (5.11) in the original variables from the definition of F given
by (5.271)(this is given in more detail in Appendix 5.C), which completes the proof of Theorem 5.1.1.

The following sections are thus devoted to the proof of Proposition 5.3.2, by applying the back-
stepping method described in Section 5.1.3 to virtual system (5.59) and target system (5.60).

Section 5.4 handles the controllability of both systems, proving that there exists ν 6= 0 such (5.59)
(Lemma 5.4.5), and (5.60) (Lemma 5.4.7) are both controllable.

Section 5.5 builds candidates for a suitable backstepping transformation for our problem, and gives
a sufficient condition to find such a backstepping transformation.

Section 5.6 then builds a suitable backstepping transformation, along with the associated feedback
law, and checks that this feedback law is indeed exponentially stabilizing in some sense.

5.4 Controllability

The goal of this section is to achieve some controllability results for the original system and the target
system. Thanks to the moment theory, those results can be obtained by several estimates, such as
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Lemma 5.4.1, Lemma 5.4.5 , Lemma 5.4.6, , (5.179), (5.200), (5.229), which are exactly some key
points for our stabilization problem.

When γ = 0 the target system (5.60) becomes quite simple (see (5.66)) and obviously controllable.
Hence, it is rather easy to prove its controllability with γ> 0 small. On the other hand, as already
mentioned, the initial system (5.37)–(5.38) is not controllable when γ = 0. Therefore, we mainly focus
in this section on the controllability of system (5.37)–(5.38) which will be the object of Section 5.4.1

and Corollary 5.4.1. Then, as the operator A given by (5.46) and the operator Ã given by (5.61) share
many common properties, almost all the calculations and estimates in Section 5.4.1.1–5.4.1.6 also hold
for Ã, which will lead to the controllability of System (5.60). This will be the object of Section 5.4.2
and Theorem 5.4.5.

5.4.1 Controllability of System (5.37)–(5.38)

As system (5.37), (5.38)is obtained from (5.31) by an isomorphism, it suffices to prove the controlla-
bility of System (5.31)

5.4.1.1 Asymptotic calculation: Perturbed operators and normalized eigenfunctions

Let us define the operator
T := Λ∂x, (5.98)

Tγ := S0 = Λ∂x + δ(x)J0, (5.99)

D(S0) :=
{

(w1, w2) ∈ (H1)2 : w1(0) = −w2(0), w1(L) = −w2(L)
}
, (5.100)

associated to the system (5.31).
We want to find an asymptotic formulation of eigenvalues and eigenfunctions of this operator.

Then the adjoint operator is given by

S∗0 := −Λ∂x + δ̄(x)J∗0 , (5.101)

D(S∗0 ) = D(S0). (5.102)

Hence, S0 is neither self-adjoint nor anti-adjoint. In fact, it is even not a normal operator:

S0S∗0 − S∗0S0 = 2δx(x). (5.103)

Note that this operator has the same eigenvalues µn(γ) as the operator A. Concerning the relation
between S0 and S∗0 . If (ψn(γ), µn(γ)) are eigenfunctions of S0, then (χn(γ), µn(γ)) are eigenfunctions
of S∗0 . Moreover

〈ψn(γ), χm(γ)〉 = 0, if n 6= m. (5.104)

The eigenvalues of T are µ(0)
n := iπn/L. They are thus simple and isolated. The normalized eigen-

functions are ψ(0)
n = (eiπnx/L,−e−iπnx/L). Similarly, the eigenvalues of Tγ are µn(γ). In fact, due to

the fact that an eigenfunction multiplied by a scalar number is still an eigenfunction, it is convenient
to consider normalized eigenfunctions ψn(γ), as what is done in Kato’s noval book [102, page 92]:

〈ψn(γ), χ(0)
n 〉 = 1, (resp. 〈ψ(0)

n , χn(γ)〉 = 1). (5.105)

This normalization formula is standard and is convenient to perform symbol calculation. For this
reason we cannot assume 〈ψn(γ), χn(γ)〉 = 1 at the same time.

5.4.1.2 L2-normalized eigenfunctions and Riesz basis

We are also interested in the L2–normalized eigenfunctions:

ψ̂n(γ) := ψn(γ)/‖ψn(γ)‖L2 , χ̂n(γ) := χn(γ)/‖χn(γ)‖L2 . (5.106)

The following theorem by Russell tells us that those eigenfunctions form a Riesz basis when γ is
sufficiently small.
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Theorem 5.4.1 (Russell [137]). There exists rR > 0 such that, ∀γ ∈ (−rR, rR),

(1) both {ψ̂n(γ)}n and {χ̂n(γ)}n form a Riesz basis of L2

(2) Tγ has simple isolated eigenvalues µn(γ). Moreover,

µn(γ) =
iπn

L
+ γO

(
1

n

)
, ∀n ∈ Z∗. (5.107)

5.4.1.3 The moment method

The moments methodconsists in decomposing the state and the control term in a Riesz basis of
eigenfunctions, which yields an infinity of independent ODEs, and studying the moments problem
given by these ODEs . The main issues, as indicated above, are that the eigenfunctions form a Riesz
basis, and that the projection of the control term on each direction is away from 0 (hence observable).
We also refer to the book [15] for a good introduction of this method.

This suggests that we study

an := 〈ψn(γ), (1, 1)〉 and bn := 〈χn(γ), (1, 1)〉, ∀n ∈ Z, (5.108)

Indeed, at least formally, we are able to decompose (1,1) by

(1, 1) =
∑
n∈Z

dnψn(γ), (5.109)

thus, using (5.104)
dn〈ψn(γ), χn(γ)〉 = 〈(1, 1), χn(γ)〉 = b̄n. (5.110)

For that moment let us assume that the following lemma holds (it will be proved in Sections 5.4.1.6–
5.4.1.7):

Lemma 5.4.1. There exists γ0, c, C > 0 such that for any γ ∈ (0, γ0) we have

(i) (ψn(γ))n∈Z is a Riesz basis of L2;

(ii) |〈ψn(γ), χn(γ)〉|∈ (1/2, 2);

(iii) | µn(γ)− µ(0)
n |<

1

4L
;

(iv) bn is away from zero in some sense. More precisely, we have

b0 = 0, (5.111)

γ
c

n
< |bn| <

C

n
,∀n ∈ Z∗. (5.112)

Thanks to Lemma 5.4.1 and classical moment theory, we can conclude that the system is not yet
controllable but there is only one dimension missing corresponding to the moment b0. From (5.109),
the missing direction corresponds therefore to Span{ψ0}. In fact we will show later on that this missing
direction corresponds exactly to the condition (5.34) which is the condition of mass conservation in
the original system (5.7) (see Remark 5.4.7). This also means that any state that keeps a constant
mass is reachable, more precisely

Theorem 5.4.2. If T > 2L, then system (5.31) is D(Hs(0)) controllable with D(Hs−1
(0) ) controls, where

D(Hs(0)) = {f :=
∑
n∈Z∗

fnψn ∈ Hs|
∑
n∈Z∗

(1 + n2s)f2
n < +∞}. (5.113)

Remark 5.4.1. We see again, with another argument than [52], that the system is not controllable
when γ = 0, since an = bn = 0 when n is even.

Remark 5.4.2. This control time is not sharp as it depends on the localization of the eigenvalues,
which we do not know for perturbed operators.
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5.4.1.4 Asymptotic calculation: holomorphic extension

We will now use Kato’s method [102] of asymptotic calculation with the help of complex analysis to
obtain an explicit formulation, and remainder estimates, for the eigenvalues, and an insight on the
eigenfunctions’ asymptotic behavior.

Let us consider eigenfunctions on the space C([0, 1]). From now on, ‖·‖ denotes the L∞ norm.
In the preceding formulas, γ was defined for sufficiently small real numbers. Now we extend those
formulas to γ ∈ C with |γ| small: at least formally this extension is true. In fact, this complex
extension enables us to use holomorphic techniques concerning asymptotic calculation. Once we will
get estimates that we require, we will use them with a real γ, as several properties are better in this
case. Moreover, the operators {Tγ} are of type (A) (see Kato Chapter 7 Section 2), hence the extended
formulas are holomorphic for |γ| small.

Remark 5.4.3. We choose the L∞ norm for asymptotic information on boundary points, because it
will be useful in the following. Getting an estimation on the L2 norm, though, would be much simpler.

Let us define,

A(γ) := Tγ − T = δ(x)J0, (5.114)

A(1)(γ) = Tγ − T − γT (1), T (1) = −3

4
J0, (5.115)

where Tγ is still given by (5.99). Direct calculation yields the existence of d ∈ (0, 1/(8L)) such that ,
if |γ| < d, then

|δ(x)| < |γ|, |δ(x) +
3

4
γ| < L|γ|2, (5.116)

thus

‖A(γ)‖< 2|γ|, ‖A(1)(γ)‖< 2L|γ|2. (5.117)

Theorem 5.4.3. The resolvent R(ξ) := (T − ξId)−1 is defined on D0 := C \
⋃
n∈Z

µ(0)
n . Besides, T has

compact resolvent, i.e. R(ξ) is compact for all ξ ∈ D0.

The proof is straightforward: let ξ ∈ D0, v = R(ξ)u, if u =
∑
n∈Z

anψ
(0)
n and v =

∑
n∈Z

bnψ
(0)
n , then

bn =
an

µ
(0)
n − ξ

. (5.118)

By slightly changing the notations and basically following the same calculations as in Kato [102], we
get the following result.

Theorem 5.4.4. For any n ∈ Z there exists dn > 0 (convergence radii) such that

(i) (Kato, [102, page 377 Theorem 2.4]) Tγ has compact resolvent;

(ii) (Kato, [102, page 382, Example 2.14]) µn(γ) and ψn(γ) are holomorphic in Bdn ;

In fact dn ≥ d: let us define

D :=
⋃
n

B(iπn/L; 1/L), with B(a; r) := {x ∈ C; |x− a| < r}, (5.119)

Γn := {x ∈ C; |x− iπn/L| = 1/L}, (5.120)

and the perturbation of the resolvent

R(ξ, γ) := (Tγ − ξId)−1. (5.121)
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Simple symbol calculation leads to the second Neumann series of R(ξ, γ):

R(ξ, γ) = R(ξ)(1 +A(γ)R(ξ))−1. (5.122)

It suffices to let ‖A(γ)R(ξ)‖< 1.

For ξ ∈ C \ D, we estimate the norm of R(ξ): if u =
∑
n∈Z

anψ
(0)
n ∈ (L(0))

2, then

‖R(ξ)u‖L∞≤
∑
n∈Z

∣∣∣∣∣ an

µ
(0)
n − ξ

∣∣∣∣∣ ≤
(∑
n∈Z

a2
n

) 1
2
(∑
n∈Z

1

|µ(0)
n − ξ|2

) 1
2

< 2L‖u‖L2≤ 2L‖u‖L∞ , (5.123)

which gives ‖R(ξ)‖< 2L.
On the other hand, for |γ| < d, we have

‖A(γ)‖< 2|γ| < 1/(4L). (5.124)

Therefore
‖A(γ)R(ξ)‖< 1 for ξ ∈ C \ D and |γ| < d. (5.125)

Hence R(ξ, γ) is holomorphic. From now on ,we will always let ξ and γ be in this domain to guarantee
convergences of calculations. In the following subsection our aim will be to derive asymptotic estimates
on µn(γ) and ψn(γ), first by direct estimation, then using majoring series.

5.4.1.5 Asymptotic calculation: Direct estimation

In order to estimate µn(γ) and ψn(γ), we need to decompose R(ξ). More precisely, for each µ(0)
n , we

have the following Laurent series:

R(ξ) = −(ξ − µ(0)
n )−1Pn +

+∞∑
m=0

(ξ − µ(0)
n )mSm+1

n , (5.126)

with

Pn := − 1

2πi

∫
Γn

R(ξ)dξ, (5.127)

Sn :=
1

2πi

∫
Γn

(ξ − µ(0)
n )−1R(ξ)dξ. (5.128)

Moreover, thanks to the explicit formula (5.118), we get

Pnu = 〈u, ψ(0)
n 〉ψ(0)

n , (5.129)

Snu =
∑
k 6=n

〈u, ψ(0)
k 〉

µ
(0)
k − µ

(0)
n

ψ
(0)
k . (5.130)

The following lemma gives the expansion of eigenvalues:

Lemma 5.4.2 ([102], Chapter 2 Section 3.1). One has

|µn(γ)− µ(0)
n −

m∑
p=1

γpµ(p)
n |≤

|γ|m+1

dm(d− |γ|)
, ∀|γ| < d. (5.131)

Therefore,

|µn(γ)− µ(0)
n |≤

3|γ|
2d
≤ 1

2L
, ∀|γ| < min{ d

3L
,
d

3
}. (5.132)
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As for eigenfunctions, the explicit asymptotic formulation of ψn(γ) reads

ψn(γ) = ψ(0)
n − γSnT (1)ψ(0)

n + ... = ψ(0)
n + γψ(1)

n + γ2ψ(2)
n ... (5.133)

Thanks to (5.130), ψ(k)
n can be calculated, e.g. the first order term is given by

ψ(1)
n = −SnT (1)ψ(0)

n =
3

4
SnJ0ψ

(0)
n =

3L

4

∑
k 6=n

〈J0ψ
(0)
n , ψ

(0)
k 〉

iπ(k − n)
ψ

(0)
k . (5.134)

The remainder of the zeroth order reads as

ψn(γ)− ψ(0)
n = −Sn

(
1 +

(
A(γ)− µn(γ) + µ(0)

n

)
Sn

)−1

A(γ)ψ(0)
n . (5.135)

Let us define sn := ‖Sn‖. Suppose that u =
∑
k

akψ
(0)
k ∈ L∞, then

‖Snu‖L∞6
∑
k 6=n

| | ak |
µ

(0)
k − µ

(0)
n

|6 L

π
(
∑
k

| ak |2)1/2(
∑
k 6=n

1

(n− k)2
)1/2 6 L‖u‖L26 L‖u‖L∞ . (5.136)

On the other hand, we choose u as ψ
(0)
n+1, which gives

Snψ
(0)
n+1 =

Lψ
(0)
n+1

iπ
. (5.137)

Therefore
L/π ≤ sn ≤ L, ∀n ∈ Z. (5.138)

Combining (5.135), (5.138), (5.124) and (5.132), we get

‖ψn(γ)− ψ(0)
n ‖L∞≤ 4L|γ|, ∀|γ| < d(1) := min{ d

3L
,
d

3
}. (5.139)

Let us continue to estimate the remainder of the first order.

ψn(γ)− ψ(0)
n − γψ(1)

n

= −Sn
(

1 +
(
A(γ)− µn(γ) + µ(0)

n

)
Sn

)−1

A(γ)ψ(0)
n − γ

3

4
SnJ0ψ

(0)
n

= γ
3

4

(
Sn

(
1 +

(
A(γ)− µn(γ) + µ(0)

n

)
Sn

)−1

− Sn
)
J0ψ

(0)
n

− Sn
(

1 +
(
A(γ)− µn(γ) + µ(0)

n

)
Sn

)−1

A(1)(γ)ψ(0)
n

= −γ 3

4
Sn
(
A(γ)− µn(γ) + µ(0)

n

)
Sn

(
1 +

(
A(γ)− µn(γ) + µ(0)

n

)
Sn

)−1

J0ψ
(0)
n

− Sn
(

1 +
(
A(γ)− µn(γ) + µ(0)

n

)
Sn

)−1

A(1)(γ)ψ(0)
n . (5.140)

Combing (5.135), (5.138), (5.124) and (5.132), we get the existence of d(2) > 0 and C(2) which are
independent of n ∈ Z such that

‖ψn(γ)− ψ(0)
n − γψ(1)

n ‖L∞≤ C(2)|γ|2, ∀|γ| < d(2). (5.141)

Remark 5.4.4. We observe that, by using this direct method, the best estimates that we can get are
Lemma 5.4.2 and

‖ψn(γ)− ψ(0)
n − γψ(1)

n − γ2ψ(2)
n − ...− γkψ(k)

n ‖6 C(k)|γ|k+1, ∀|γ| < d(k). (5.142)

Clearly there is no asymptotic behavior with respect to n.
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5.4.1.6 Asymptotic calculation: majorizing series for better estimation

The so called majorizing series provides a more explicit and more systematic way of estimating re-
mainder terms. This method is heavily used for high order remainder terms estimates, since it is
rather difficult to perform calculation as (5.140) then. One can see [102][Chapter 2 Section 3.2, page
382 Example 2.14] for a perturbation of the Laplace operator. To give a comprehensive view of the
method, we start by considering a reduced case: the eigenvalues and eigenfunctions of T + γT (1). Let
us define

pn := ‖3

4
J0Pn‖, qn := ‖3

4
J0Sn‖, rn := [(pnsn)1/2 + q1/2

n ]−2. (5.143)

Lemma 5.4.3. There exists c and C independent of n such that

c < pn, qn, rn, ‖Pn‖< C,∀n ∈ Z. (5.144)

Proof. Suppose that u =
∑
k

akψ
(0)
k ∈ L∞, then

‖Pnu‖L∞= |an|‖ψ(0)
n ‖L∞6 ‖u‖L26 ‖u‖L∞ , (5.145)

which completes the right hand side inequality of (5.144).

On the other hand, for the left hand side of (5.144), let us choose u as ψ(0)
n or ψ

(0)
n+1, which gives

Snψ
(0)
n+1 =

Lψ
(0)
n+1

iπ
, J0Snψ

(0)
n+1 = J0

Lψ
(0)
n+1

iπ
,

Pnψ
(0)
n = ψ(0)

n , J0Pnψ
(0)
n = J0ψ

(0)
n .

(5.146)

We obtain the asymptotic expression of ψn(γ) similarly as in [102, page 382 Example 2.14] (which
is based on majorizing series and [102, Chapter 2 Section 3 Examples 3.2-3.7]):

Lemma 5.4.4. For any |γ| < min{rn} we have

‖ψn(γ)− ψ(0)
n − γψ(1)

n ‖6 |γ|2
sn

(pnqnsn)1/2
((pnsn)1/2 + q1/2

n )2(pnsn + qn + (pnqnsn)1/2). (5.147)

By inserting (5.144) into (5.147), we get

‖ψn(γ)− ψ(0)
n − γψ(1)

n ‖6 C|γ|2,∀|γ| < min{rn},∀n ∈ Z. (5.148)

However, as we have seen that pn, qn, sn are bounded by constant instead of c/n, when considering
not only T + γT (1) but the whole Tγ , the best asymptotic estimate that we can get from majorizing
series is (still)

‖ψn(γ)− ψ(0)
n − γψ(1)

n − γ2ψ(2)
n − ...− γkψ(k)

n ‖6 C(k)γk+1, (5.149)

with C(k) independent of n.

Remark 5.4.5 (Comparison with Laplacian). The asymptotic calculation for the Laplacian operator
contains some factor 1/n which comes from (5.130). More precisely, it comes from the localization
of the eigenvalues and the fact that for the Laplacian operator case µn ∼ n2. Indeed, for the same
reason, we can expect some asymptotic behavior of eigenvalues’ gap for fractional Laplacian ∆s when
s > 1.
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5.4.1.7 The controllability thanks to boundary conditions

From now on we will assume that γ ∈ R to simplify the calculation. With the two last subsections,
we have an estimate on ‖ψn(γ)− ψ(0)

n − γψ(1)
n − γ2ψ(2)

n − ...− γkψ(k)
n ‖ that it not totally satisfactory

and that does not depend on n. However, notice that, from (5.110), what we need to conclude the
study of the controllability is the value of

(ψn(γ)− ψ(0)
n − γψ(1)

n − γ2ψ(2)
n − ...− γkψ(k)

n , (1, 1)). (5.150)

It sounds thus natural to investigate (5.150) directly.
Let us calculate the boundary value of ψ(1)

n , more precisely, a combination of boundary values:

l(1)
n := ψ

(1)
n,1(1)− ψ(1)

n,1(0)− ψ(1)
n,2(1) + ψ

(1)
n,2(0). (5.151)

We observe that l(0)
n := ψ

(0)
n,1(1)−ψ(0)

n,1(0)−ψ(0)
n,2(1) +ψ

(0)
n,2(0) = 2((−1)n− 1). Direct calculation shows

that

l(1)
n =

3L

2iπ

∑
k 6=n

〈J0ψ
(0)
n , ψ

(0)
k 〉

(k − n)
((−1)k − 1). (5.152)

On the other hand we know that

〈J0ψ
(0)
n , ψ

(0)
k 〉 =

(−1)n+k − 1

iπ

( 1

n− k
+

1

3

1

n+ k

)
. (5.153)

Notice that if n is odd we will have that ((−1)k − 1)((−1)n+k − 1) = 0, therefore l(1)
n = 0. We thus

only need to consider the case when n = 2m is even. Then

l(1)
n =− 3L

2π2

∑
k 6=2m

((−1)k − 1)2 1

k − 2m

( 1

2m− k
+

1

3

1

2m+ k

)
(5.154)

=− 6L

π2

∑
k∈Z

1

2k + 1− 2m

( 1

2m− 2k − 1
+

1

3

1

2m+ 2k + 1

)
(5.155)

=
6L

π2

∑
k∈Z

1

2k + 1− 2m

( 1

2k + 1− 2m
− 1

3

1

2m+ 2k + 1

)
. (5.156)

We know that ∑
k∈Z

(
1

2k + 1− 2m
)2 =

∑
k∈Z

(
1

2k + 1
)2 =

π2

4
= :C0 > 1. (5.157)

If m = 0, then l(1)
n > 0. If m 6= 0, without loss of generality let us suppose that m > 0, then

| 1

3

∑
k

1

2k + 1− 2m

1

2m+ 2k + 1
| (5.158)

= | 1

3

( ∑
k>m

+
∑

k6−m−1

+

m−1∑
k=−m

) 1

2k + 1− 2m

1

2m+ 2k + 1
| (5.159)

6
2

3
C0 +

2m

4m− 1
(5.160)

<C0 −
1

3
. (5.161)

Therefore,

| l(1)
n |>

2L

π2
if n is even, | l(1)

n |= 0 if n is odd. (5.162)
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Remark 5.4.6. The way that we get this uniform bound relies on the the matrix J0, more precisely, the
diagonal matrix Λ. Indeed, this is the key point to get the controllability: in (5.99) if we replace δ(x)J0

by δ(x)Λ, then the operator becomes easier as the coupled term disappear; thanks to the expansion of

δ(x), (5.33), if we further replace δ(x)Λ by −3

4
γΛ, then the operator becomes

Tγ,s := Λ

(
∂x −

3

4
γ

)
, (5.163)

D(Tγ,s) :=
{

(w1, w2) ∈ (H1)2 : w1(0) = −w2(0), w1(L) = −w2(L)
}
, (5.164)

for which the controlability is rather easy to obtain. Maybe with the help of some perturbation argu-
ments we can prove the controllability of the operator Λ∂x + Λδ(x), of course we need to deal with
some loss of derivative issues as the normal fixed point argument can not be applied here. However, in
our case we need to consider J0 = Λ + J , where J is of the same order as Λ, hence cannot be ignored.

We observe from (5.144) and (5.134) that ‖ψ(1)
n ‖L∞ are O(1) rather than O((1/n)α). However, in

(5.150), we still have a γk in front of ‖ψ(k)
n ‖L∞ , which, when γ is small, gives good estimate.

In fact, thanks to the above calculation, (5.99), (5.148), we get the following:

δ(x) = = −3

4
γ +R0(γ), (5.165)

ψn,1(γ) =eiπnx/L + γψ
(1)
n,1 +Rn,1(γ), (5.166)

ψn,2(γ) =− e−iπnx/L + γψ
(1)
n,2 +Rn,2(γ). (5.167)

Therefore, the existence of r(2) > 0 and C2 > 0 such that

‖ψ(1)
n ‖L∞≤ L, (5.168)

‖R0(γ)‖L∞ , ‖Rn,1(γ)‖L∞ , ‖Rn,2(γ)‖L∞6 C2|γ|2. (5.169)

Moreover, there exists r(3) ∈ (0, r(2)) such that, if |γ| < r(3), then we have

4/5 < ‖ψn,1(γ)‖L∞ , ‖ψn,2(γ)‖L∞< 6/5, (5.170)

4/5 < ‖ψn,1(γ)‖L2 , ‖ψn,2(γ)‖L2< 6/5. (5.171)

The same estimates hold for χn(γ), hence

〈ψn(γ), χn(γ)〉 = 1 + 〈ψn(γ), χn(γ)− χ(0)
n 〉 ∈ (3/4, 5/4). (5.172)

Furthermore, for n ∈ Z∗ we observe from the definition of ψn(γ) and (5.165)–(5.169) that

µn(γ)

∫ L

0

ψn,1(γ) + ψn,2(γ) (5.173)

=2〈µn(γ)ψn(γ), (1, 1)〉 (5.174)

=2〈Λ∂xψn(γ) + δ(x)J0ψn(γ), (1, 1)〉 (5.175)

=
(
ψn,1(γ)(1)− ψn,1(γ)(0)− ψn,2(γ)(1) + ψn,2(γ)(0)

)
+

2

3

∫ L

0

δ(x)(ψn,1 − ψn,2)

=
(

2((−1)n − 1) + γl(1)
n +O(γ2)

)
− 1

2
γ
(
eiπnx/L + e−iπnx/L

)
+O(γ2)

=2((−1)n − 1) + γl(1)
n +O(γ2). (5.176)

We remark here that O(γ2) means uniformly bounded by Cγ2 with some C > 0 independent of n ∈ Z∗
and γ small. The same for other similar notations, as O(γ). By inserting (5.162) into (5.176), we get

µn(γ)

∫ 1

0

ψn,1(γ) + ψn,2(γ) =

{
0 + γl(1)

n +Rn(γ), when n is even,

−4 + 0 +Rn(γ), when n is odd,
(5.177)
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with |Rn(γ)| 6 C3|γ|2. Therefore, there exists r(4) ∈ (0, r(3)) such that, if |γ| < r(4), then we have

|γ| L
π2

< |µn(γ)〈ψn(γ), (1, 1)〉| < 5, ∀n ∈ Z∗. (5.178)

We are able to perform the same calculation for χn(γ) which are eigenfunctions of S∗0 , thus

|γ| L
π2

< |µ̄n(γ)〈χn(γ), (1, 1)〉| < 5, ∀n ∈ Z∗. (5.179)

Remark 5.4.7 (χ0 and the “missing direction”). As for the case when n = 0, thanks to the diffeo-
morphism (5.35) and the equation (5.53), we know that

ψ0,1(x) + ψ0,2(x) = 0,∀x ∈ [0, L], (5.180)

∂xψ0,1 +
2

3
δψ0,1 = 0, (5.181)

thus ψ0 can be calculated explicitely,

ψ0,1 = −ψ0,2 =

(
1− γ

2

Lγ
L
x

)−1

=

(
1− 1−

√
1− γL
L

x

)−1

, (5.182)

which of course satisfies
〈ψ0(γ), (1, 1)〉 = 0. (5.183)

The same reason and similar calculations for χ0 lead to

χ0,1(x) + χ0,2(x) = 0, (5.184)

∂xχ0,1(x)− 4

3
δ(x)χ0,1(x) = 0, (5.185)

thus

χ0,1(x) =

(
1− 1−

√
1− γL
L

x

)2

, (5.186)

〈χ0(γ), (1, 1)〉 = 0. (5.187)

We observe from (5.187) that we can not cover direction ψ0 with our control, due to the moment
theory. More precisely, the quantity

〈w,χ0〉 =

∫ L

0

(
1− 1−

√
1− γL
L

x

)2

(w1(x)− w2(x))dx, (5.188)

which is precisely the term appearing in (5.34), remains constant in time for any control u(t). Hence
the controller (1, 1)T is compatible with the conservation of mass (5.34). The equivalence between
(5.34) and (5.188) is not a coincidence: from (5.34) we know that there is at least one direction for
which we can not control; on the other hand, (5.187) gives us the only uncontrollable direction of the
system. Algebraically, these two directions have to be the same.

Thanks to Theorem 5.4.1 and (5.171), for |γ| < rR, we know that

(ψn(γ))n∈Z∗ form a Riesz basis of L2
(0), (5.189)

where
L2

(0) := {f ∈ L2|〈f, χ0〉 = 0}. (5.190)

Combining (5.108), (5.110), (5.50), (5.172), (5.179), and (5.189), this complete the proof of Lemma
5.4.1.
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5.4.1.8 The controllability of the transformed system (5.37)–(5.38)

Let us look now at the operator A given by (5.46)–(5.47) and associated to system (5.37)–(5.38)
As stated previously, the eigenvalues of the operators (5.99) and of (5.46) are the same; and the
eigenfunctions of (5.46) can be generated by applying the diffeomorphism (5.35) on the eigenfunctions
of (5.99). Indeed, with (fn)n∈Z∗ the family of eigenfunctions of A that form a Riesz basis of (L2

(0))
2,

and depends of course of γ, and from (ii) in Lemma 5.4.1, there exists uniformly bounded positive
constants (an)n∈Z∗ such that

fn(γ) := an exp
(∫ x

0

δ(s)ds
)
ψn(γ). (5.191)

Remark 5.4.8. The generated eigenfunctions fn(γ) no longer satisfy the normalized condition:
〈fn(γ), φ(0)

n 〉 = 1.

As the change of coordinates (5.35) used to remove the diagonal coefficients of the source term is
an isomorphism in Hs, Theorem 5.4.2 directly leads to the controllability of this system and thus of
(5.37)–(5.38):

Corollary 5.4.1. If T > 2L, then system (5.37)–(5.38) is D(As(0)) controllable with D(As−1
(0) ) controls,

where
D(As(0)) = {f ∈ D(As)|〈f, f0〉 = 0}. (5.192)

In particular, by using the same technique we are able to prove the following estimate (compare
to (5.179))

m0|µ−1
n | ≤ |〈I, a−1

n fn〉| ≤M0|µ−1
n |, ∀n ∈ Z∗, (5.193)

for some constants m0,M0 > 0, which implies, from the uniform boundedness of (an),

m|µ−1
n | ≤ |〈I, fn〉| ≤M |µ−1

n |, ∀n ∈ Z∗, (5.194)

for some constants m,M > 0. We can be even more precise, using the fact that I ∈ (H1)2: let us
write, for n ∈ Z∗,

−µn〈I, fn〉 = 〈I,Afn〉

=

∫ L

0

I1∂xfn,1 − I2∂xfn,2 − 〈δ(x)JI, fn〉

= [I1fn,1]
L
0 − [I2fn,2]

L
0 −

∫ L

0

∂xI1fn,1 − ∂xI2fn,2 − 〈δ(x)JI, fn〉

= 2
(
e
∫ L
0
δfn,1(L)− fn,1(0)

)
− 〈Λ∂xI + δ(x)JI, fn〉

= 2
(
e
∫ L
0
δfn,1(L)− fn,1(0)

)
− 〈δ(x)J0I, fn〉.

(5.195)

Now, as Λ∂xI + δ(x)JI ∈ L2, this gives us an asymptotic expansion for the coefficients of I:

〈I, fn〉 =
2
(
fn,1(0)− e

∫ L
0
δfn,1(L)

)
µn

+
1

µn
〈δ(x)J0I, fn〉, ∀n ∈ Z∗. (5.196)

Thanks to the expansion of fn and δ(x), we know that, for any n ∈ Z∗

fn,1(0)− e
∫ L
0
δfn,1(L) = (1− (−1)n) + γ

(
3L

4
(−1n) + f

(1)
n,1(0)− f (1)

n,1(L)

)
+O(γ2), (5.197)

which, combined with the fact that

〈δ(x)J0I, fn〉 = O(γ2), (5.198)
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leads to

− µn〈I, fn〉 = (1− (−1)n) + γ

(
3L

4
(−1n) + f

(1)
n,1(0)− f (1)

n,1(L)

)
+O(γ2). (5.199)

Similar calculations as in Subsection 5.4.1.7, lead to the existence of m,M > 0 such that

m ≤ |µn〈I, fn〉| ≤M, ∀n ∈ Z∗. (5.200)

We now study the system with our virtual control Iν : thanks to the fact that

〈f0, fn〉 = δ0,n, (5.201)

we get the following lemma which leads to the controllability of the system with control Iν .

Lemma 5.4.5. Let 0 < |γ|< γ0. Let ν 6= 0. There exist m,M > 0 such that

m ≤ |〈Iν , f0〉| ≤M, (5.202)

m ≤ |µn〈Iν , fn〉| ≤M, ∀n ∈ Z∗. (5.203)

And thus, as all the moment are bounded away from 0, we recover the controllability of the system.
This explains the definition of Iν given by (5.58).

5.4.1.9 Asymptotic calculation: is O(1) sharp for the transformed operator A?

We have seen from the above calculation that γψ(1)
n and R1,n(γ) are O(γ) and O(γ2) respectively.

Thanks to (5.162), at least for L∞ norm the O(1) type estimates are sharp: there is no decay with
respect to n. As we have indicated in Remark 5.4.6, the diagonal matrix plays an important role in
the estimation. Hence it is natural to ask whether the normalized eigenfunctions of A are better than
those of S0, as the diagonal coefficients of J are 0. The normalized eigenfunctions are given by

Aψ̄n(γ) = µn(γ)ψ̄n(γ), 〈ψ̄n(γ), χ̄(0)
n 〉 = 1. (5.204)

In this situation, everything we have defined for the calculation of eigenfunctions from (5.99) to
(5.150) remain the same if we replace J0 by J , except for the part of controllability: as (1, 1) is

replaced by exp
(∫ x

0

δ(s)ds
)

(1, 1).

Therefore, from (5.134) and using (5.29) we know that

ψ̄(1)
n =

3L

4

∑
k 6=n

〈Jψ(0)
n , ψ

(0)
k 〉

iπ(k − n)
ψ

(0)
k = − L

2π2

∑
k 6=n

(
(−1)k−n − 1

)
n2 − k2

ψ
(0)
k . (5.205)

It is easy to find that
‖ψ̄(1)

n ‖L2−→|n|→+∞ 0. (5.206)

Moreover, with the help of more precise estimates we are able to prove that

‖ψ̄(1)
n ‖L∞−→|n|→+∞ 0. (5.207)

The interpolation implies that the same result holds for the Lp norm. Maybe for the transformed
operator we are able to conclude some better asymptotic estimates rather than O(1). On the other
way around, as we know that the controllabilty is strongly related to those estimates, see (5.108).
The system is controllable only if bn is away from 0 in some sense. If for the transformed operator
Λ∂x + δ(x)J we are able to get some better decay estimates, it is rather interesting to investigate
its controllability with the control term as u(t)(1, 1), since this case is “critical” in some sense (with
respect to Remark 5.4.6; or, at least, more complicated.)
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5.4.2 Controllability of the target system

As previously, it suffices to investigate the properties of the operator

T̃γ := S̃0 = Λ∂x + δ(x)J, (5.208)

D(S̃0) :=
{

(w1, w2) ∈ (H1)2 : w1(0) = −e2µLw2(0), w1(L) = −w2(L)
}
, (5.209)

and the controllability of

∂tw + Λ∂xw + δJw = u(t)Iν ,
w1(t, 0) = −e2µLw2(t, 0), w2(t, L) = −w1(t, L).

(5.210)

As in Section 5.4.1 we define adjoint operators S̃∗0 , eigenvalues µ̃n, and normalized eigenfunctions

(f̃n, φ̃n). As indicated at the beginning of Section 5.4 we are able to perform the same calculation for

Operator S̃0 as in Section 5.4.1.1–5.4.1.6, we omit the explicit calculation for readers’ convenience.
More precisely, we have

Lemma 5.4.6. Let µ 6= 0. There exists r̄µ, cµ, Cµ > 0 such that for any γ ∈ Br̄µ and any n ∈ Z we
have

|µ̃n − µ̃(0)
n | < 1/(4L), (5.211)

{φ̃n/‖φ̃n‖L2}n is a Riesz basis of L2, (5.212)

{f̃n/‖f̃n‖L2}n is a Riesz basis of L2, (5.213)

‖φ̃n − φ̃(0)
n ‖L∞ , ‖f̃n − f̃ (0)

n ‖L∞6 Cµ|γ|, (5.214)

‖φ̃n − φ̃(0)
n − γφ̃(1)

n ‖L∞6 Cµ|γ|2, (5.215)

‖f̃n − f̃ (0)
n − γf̃ (1)

n ‖L∞6 Cµ|γ|2, (5.216)

‖φ̃(1)
n ‖L∞ , ‖f̃ (1)

n ‖L∞≤ Cµ, (5.217)

cµ ≤ ‖φ̃n‖L2 , ‖f̃n‖L2 , ‖φ̃n‖L∞ , ‖f̃n‖L∞≤ Cµ. (5.218)

Remark 5.4.9. Due to the fact that ‖f̃ (0)
n ‖L∞ , (5.69) and the Riesz basis (5.70) strongly depend on

µ, the norm of S̃n depends on the value of µ (see (5.136) for instance). This is one of the key points
which result in the existence of cµ, Cµ and (especially) r̄µ.

Thanks to (5.71) and Lemma 5.4.6, for ∀n ∈ Z, we have

µ̃n〈φ̃n, (1, 1)〉 =
(
φ̃n,1(γ)(L)− φ̃n,1(γ)(0)− φ̃n,2(γ)(L) + ψ̃n,2(γ)(0)

)
+O(γ) (5.219)

=
(
φ̃n,1(L)− φ̃n,1(0)− φ̃n,2(L) + φ̃n,2(0)

)
+O(γ) (5.220)

=2(−1)ne−µL − 1− e−2µL +O(γ). (5.221)

Moreover, similar calculation as (5.195) leads to

µ̃n〈φ̃n, I〉 =[φ̃n,1I1]L0 − [φ̃n,2I2]L0 +O(γ) (5.222)

=
(
φ̃n,1(L)− φ̃n,1(0)− φ̃n,2(L) + φ̃n,2(0)

)
+O(γ) (5.223)

=2(−1)ne−µL − 1− e−2µL +O(γ). (5.224)

Then, we further get

µ̃n〈φ̃n, f0〉 =〈Λ∂xφ̃n + δ(x)Jφ̃n, f0〉 (5.225)

=〈Λ∂xφ̃n, f0〉+O(γ) (5.226)

=[φ̃n,1f0,1 − φ̃n,2f0,2]L0 +O(γ) (5.227)

=
(
e−2µL − 1

)
+O(γ). (5.228)

146



Therefore, combining (5.224) and (5.228) we get

µ̃n〈φ̃n, Iν〉 = µ̃n〈φ̃n, I + νf0〉 = 2(−1)ne−µL − 1− e−2µL + ν
(
e−2µL − 1

)
+O(γ). (5.229)

Remark 5.4.10. Similar estimates hold for f̃n.

Remark 5.4.11. One can compare estimate (5.229) to (5.176) where we calculated until γ2 order,
while in (5.221) only γ1 order is needed. That is because the zeroth order in (5.176) becomes 0 when
n is even, hence we need to use the first order terms as dominate term in this case. However, as we
have seen in (5.71) the zeroth order of (5.221) is already away from 0, even for n = 0, thus we no
longer need to estimate the second order.

Hence we get the following lemma:

Lemma 5.4.7. Let µ > 3/L. Let 0 < |ν|< 1. There exists γ̃µ such that for any γ ∈ (−γ̃µ, γ̃µ) and
for any n ∈ Z we have

(i) {φ̃n}n(resp. {f̃n}n) is a Riesz basis of L2;

(ii) |〈f̃n, φ̃n〉|∈ (1/2, 2);

(iii) |µ̃n − µ̃(0)
n | < 1/(4L);

(iv) 0 < 1/2 < |µ̃n〈f̃n, Iν〉|, |µ̃n〈φ̃n, Iν〉| < 3/2.

Since Lemma 5.4.7 and the classical moment theory lead to the controllability of System (5.210),
while System (5.60) is obtained from System (5.210) by an isomorphism, System (5.60) is also con-
trollable.

Theorem 5.4.5. If T > 2L, then system (5.60) is D(Ãs) controllable with D(Ãs−1) controls.

5.5 A heuristic construction

From now on, let µ > 0 be the desired decay rate, and γ, ν > 0 such that (5.59) and (5.60) are both
controllable.

5.5.1 Kernel equations

Suppose there exists a solution u to (5.59), and a solution z to (5.60). We are looking for an invertible
transformation that maps u to z, under the form of a Fredholm transformation:(

z1(t, x)
z2(t, x)

)
= T (u(t, ·))(x) :=

∫ L

0

K(x, y).

(
u1(t, y)
u2(t, y)

)
dy (5.230)

where K(x, y) is a 2 × 2 matrix. Using (5.60), (5.59) and (5.38), we would like the kernel to satisfy
the following equation:

Λ∂xK + ∂yKΛ + δ(x)JK −Kδ(y)J = − exp

(∫ x

0

δ(s)ds

)(
F1 F2

F1 F2

)
(y) (5.231)

where F1, F2 are the coefficients of the feedback, together with the (formal) so called TB = B condi-
tion: ∫ L

0

KIνdy = Iν , (5.232)
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and the following boundary conditions:

k11(0, y) = −e−2µLk21(0, y),

k12(0, y) = −e−2µLk22(0, y),

k11(L, y) = −k21(L, y),

k12(L, y) = −k22(L, y),

(5.233)

and
k11(x, L) = −k12(x, L),

k21(x, L) = −k22(x, L),

k11(x, 0) = −e2µLk12(x, 0),

k21(x, 0) = −e2µLk22(x, 0).

(5.234)

To study solutions to (5.231), (5.232), (5.233), and (5.234), let us derive equations for the family
of functions

gn := (Tfn)n∈Z∗ .

From (5.231), integrating against the fn and using the boundary conditions (5.233) and (5.234)
we get for any n ∈ Z,

−
∫ L

0

exp

(∫ x

0

δ(s)ds

)(
F1 F2

F1 F2

)
(y)fn(y)dy =

∫ L

0

(Λ∂xK(x, y)fn(y) + ∂yK(x, y)Λfn(y)

+δ(x)JK(x, y)fn(y)−K(x, y)δ(y)Jfn(y)) dy
= Λ∂xgn + δ(x)Jgn − TAfn
= Λ∂xgn − µngn + δ(x)Jgn,

hence the following equation for (gn):{
Λ∂xgn − µngn + δ(x)Jgn = −〈fn, F 〉Iν ,
gn,1(0) + e−2µLgn,2(0) = 0, gn,1(L) + gn,2(L) = 0.

(5.235)

Now, we study solutions to (5.235) for any given F .
By property of biorthogonal families, we have the following decomposition:

gn =
∑
p∈Z
〈gn, φ̃p〉f̃p in L2, ∀n ∈ Z. (5.236)

Taking the scalar product of equation (5.235) with the φ̃p, we get〈
Ãgn, φ̃p

〉
− µn〈gn, φ̃p〉 = −〈fn, F 〉

〈
Iν , φ̃p

〉
, ∀n ∈ Z, ∀p ∈ Z. (5.237)

As A is anti-hermitian, (5.237) becomes〈
gn, Ã∗φ̃p

〉
− µn〈gn, φ̃p〉 = −〈fn, F 〉

〈
Iν , φ̃p

〉
, ∀n ∈ Z, ∀p ∈ Z,

hence finally

〈gn, φ̃p〉 = −
〈fn, F 〉

〈
Iν , φ̃p

〉
µ̃p − µn

, ∀n ∈ Z, ∀p ∈ Z. (5.238)

5.5.2 Riesz basis property

Obviously, such a family (gn) defines an operator T . Now we study the invertibility of this operator
T thus defined. The first obvious observation from (5.238) is that T is injective if and only if

〈fn, F 〉 6= 0, ∀n ∈ Z. (5.239)
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Next, considering (5.238), we turn to the family of functions given by

kn :=
∑
p∈Z

1

µ̃p − µn
f̃p, ∀n ∈ Z. (5.240)

Then, we have the following property for the (kn):

Lemma 5.5.1. (kn) is a Riesz basis of L2(0, L)2.

Proof. First, let us perform the computations of (5.237) with the (fn):〈
Afn, φ̃p

〉
− µn〈fn, φ̃p〉 = 0, ∀n ∈ Z. (5.241)

This time, due to the dissipative boundary conditions in 0 for the φ̃p, boundary terms appear in the

integration by parts (which amounts to taking the adjoint Ã∗):

µn〈fn, φ̃p〉 =
〈
Afn, φ̃p

〉
=

〈
fn, Ã∗φ̃p

〉
+ fn,2(0)φ̃p,2(0)− fn,1(0)φ̃p,1(0)

= µ̃p〈fn, φ̃p〉 − fn,1(0)φ̃p,1(0)
(
1− e−2µL

)
,

where the last equality is obtained using boundary conditions given by (5.38) and (5.60). From this
we get the following decomposition for fn:

fn =
∑
p∈Z

fn,1(0)φ̃p,1(0)
(
1− e−2µL

)
µ̃p − µn

f̃p = fn,1(0)τ̃Akn, ∀n ∈ Z. (5.242)

where τ̃A is the operator defined by

τ̃Af̃p := φ̃p,1(0)(1− e−2µL)f̃p, ∀p ∈ Z. (5.243)

Let us now give a crucial Lemma:

Lemma 5.5.2. There exists γ∗ > 0 such that for any γ ∈ (0, γ∗), there exist m,M > 0 such that

m ≤
∣∣∣φ̃p,1(0)

∣∣∣ ≤M, ∀p ∈ Z,

m ≤ |fp,1(0)| ≤M, ∀p ∈ Z.
(5.244)

Proof. When γ = 0, fp,1(0) = 1. Using (5.191) and estimate (5.139), there exists γ∗ > 0 such that

this remains true for any γ ∈ (0, γ∗). Similarly one can show looking at (5.60)–(5.61) that φ̃p,1(0) 6= 0
and independent of p, thus, using estimate (5.211), the result holds.

We can assume that we have chosen γ < γ∗ without losing the controllability of (5.59) and (5.60).
Then, it is clear thanks to Lemma 5.5.2 that τ̃A is an isomorphism of (L2)2. Moreover, thanks to the
same lemma and the definition of a Riesz basis, the family of functions defined by(

fn
fn,1(0)

)
forms a Riesz basis of (L2)2, so that the family

(kn) =

(
τ̃−1
A

fn
fn,1(0)

)
forms a Riesz basis of (L2)2.
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We now recall a result about Riesz basis (see for instance [44, Chapter 4])

Proposition 5.5.1. A family of vector (fk)k∈Z of a Hilbert space H is a Riesz basis if and only if it
is complete (i.e. ) and there exists positive constants c and C such that, for any scalar sequence (ak)
with finite support,

c
∑
|ak|2 ≤ ‖

∑
akfk‖2H ≤ C

∑
|ak|2. (5.245)

We can now prove the following Riesz basis property for the (gn):

Proposition 5.5.2. The family (
1

〈fn, F 〉
gn

)
n∈Z

is a Riesz basis of D(Ã).

Proof. We first prove that the above family is a Riesz sequence: let I be a finite subset of Z, and
(an) ∈ CI . Then, ∥∥∥∥∥∑

n∈I

an
〈fn, F 〉

gn

∥∥∥∥∥
2

D(Ã)

=

∥∥∥∥∥∥
∑
n∈I

an
〈fn, F 〉

∑
p∈Z

〈fn, F 〉
〈
Iν , φ̃p

〉
µ̃p − µn

f̃p

∥∥∥∥∥∥
2

D(Ã)

=

∥∥∥∥∥∥
∑
p∈Z

〈
Iν , φ̃p

〉(∑
n∈I

an
µ̃p − µn

)
f̃p

∥∥∥∥∥∥
2

D(Ã)

=

∥∥∥∥∥∥
∑
p∈Z

〈
Iν , φ̃p

〉(∑
n∈I

an
µ̃p − µn

)
f̃p

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑
p∈Z

〈
Iν , φ̃p

〉(∑
n∈I

an
µ̃p − µn

)
µ̃pf̃p

∥∥∥∥∥∥
2

.

(5.246)

as (f̃p) is Riesz basis for L2 and from Proposition 5.5.1, there exist C1, C2 > 0 such that

C1

∑
p∈Z

(1 + |µ̃p|2)
∣∣∣〈Iν , φ̃p〉∣∣∣2

∣∣∣∣∣∑
n∈I

an
µ̃p − µn

∣∣∣∣∣
2

≤

∥∥∥∥∥∑
n∈I

an
〈fn, F 〉

gn

∥∥∥∥∥
2

D(Ã)

≤ C2

∑
p∈Z

(1 + |µ̃p|2)
∣∣∣〈Iν , φ̃p〉∣∣∣2

∣∣∣∣∣∑
n∈I

an
µ̃p − µn

∣∣∣∣∣
2

.

(5.247)

Now, similar estimates as what is done to obtain (5.200) (though even simpler in this case, as only
first order of γ is required), also thanks to the controllability of our system, we know that there exists
constants m,M > 0 such that

m ≤ (1 + |µ̃p|2)
∣∣∣〈Iν , φ̃p〉∣∣∣2 ≤M. (5.248)

Moreover, ∑
p∈Z

∣∣∣∣∣∑
n∈I

an
µ̃p − µn

∣∣∣∣∣
2

=

∥∥∥∥∥∑
n∈I

ankn

∥∥∥∥∥
2

, (5.249)

so that, from Proposition 5.5.1 and as (kn) is a Riesz basis , there exist constants C1, C2 > 0 such
that

C1

∑
n∈I
|an|2 ≤

∑
p∈Z

∣∣∣∣∣∑
n∈I

an
µ̃p − µn

∣∣∣∣∣
2

≤ C2

∑
n∈I
|an|2, (5.250)

150



and we get, putting (5.247) and (5.250) together, and for some constants C1, C2 > 0,

C1

∑
n∈I
|an|2 ≤

∥∥∥∥∥∑
n∈I

an
gn

〈fn, F 〉

∥∥∥∥∥
2

D(Ã)

≤ C2

∑
n∈I
|an|2. (5.251)

Now let us prove the the above family is complete. Let α ∈ D(Ã) be such that

〈α, gn
〈F, fn〉

〉D(Ã) = 0, ∀n ∈ Z. (5.252)

Then, (5.252) and the definition of (kn) given by (5.240) implies that

0 =
∑
p∈Z

(1 + |µp|2)〈α, f̃p〉

〈
Iν , φ̃p

〉
µ̃p − µn

=

〈∑
p∈Z

(1 + |µp|2)〈α, f̃p〉
〈
Iν , φ̃p

〉
φ̃p, kn

〉
, ∀n ∈ Z.

(5.253)

Thanks to (5.239), this implies〈∑
p∈Z

(1 + |µp|2)〈α, f̃p〉
〈
Iν , φ̃p

〉
φ̃p, kn

〉
= 0, ∀n ∈ Z, (5.254)

which implies, thanks to the completeness of the Riesz basis (kn), that∑
p∈Z

(1 + |µp|2)〈α, f̃p〉
〈
Iν , φ̃p

〉
φ̃p = 0 (5.255)

hence, thanks to the controllability of the system,

α = 0.

This proves the completeness of the family, and, together with (5.251), the proposition.

Corollary 5.5.1. If there exist constants c, C > 0 such that

c(1 + |n|) ≤ |〈F, fn〉| ≤ C(1 + |n|), ∀n ∈ Z, (5.256)

then the expression, for α ∈ D(A),

Tα :=
∑
n∈Z
〈α, fn〉gn = −

∑
n∈Z
〈α, fn〉〈fn, F 〉

∑
p∈Z

〈
Iν , φ̃p

〉
µ̃p − µn

f̃p (5.257)

defines an isomorphism of D(A)→ D(Ã).

5.5.3 Finding a suitable candidate: the operator equality

Now, for any F ∈ E ′ satisfying (5.256), we have used the heuristic kernel equation (5.231), (5.233),
(5.234) to build an isomorphism. The next step is to find a feedback law F such that the corresponding
isomorphism T is indeed a backstepping transformation, i.e. satisfies the following operator inequality:

T (−A+ IνF ) = −ÃT (5.258)

on the domain
DF = {α ∈ D(A), −Aα+ 〈α, F 〉Iν ∈ D(A)} . (5.259)
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Let F ∈ E ′, satisfying (5.256). To prove (5.258), it suffices to prove

〈T (−Aα+ 〈α, F 〉Iν), φ̃m〉 = 〈−ÃTα, φ̃m〉, ∀α ∈ DF , ∀m ∈ Z. (5.260)

Let m ∈ Z, we consider the left-hand side of (5.260), which can be rewritten

〈−Aα+ 〈α, F 〉Iν , T ∗φ̃m〉D(A)×D(A)′ . (5.261)

Now, to evaluate the linear form T ∗φ̃m on the function Aα+ 〈α, F 〉Iν , we approximate the function
by its truncated expansion in the basis (fn)n∈Z:

〈T (−Aα(N) + 〈α, F 〉I(N)
ν ), φ̃m〉 = 〈−Aα(N) + 〈α, F 〉I(N)

ν , T ∗φ̃m〉D(A)×D(A)′

−−−−→
N→∞

〈−Aα+ 〈α, F 〉Iν , T ∗φ̃m〉D(A)×D(A)′
(5.262)

where, for N > 0,

α(N) :=

N∑
n=−N

〈α, fn〉fn,

I(N)
ν :=

N∑
n=−N

〈Iν , fn〉fn.

(5.263)

We can then make the following computations for α ∈ DF and N > 0, using (5.235) and (5.257):

T (−Aα(N) + 〈α, F 〉I(N)
ν ) = 〈α, F 〉TI(N)

ν +

N∑
n=−N

−µn〈α, fn〉gn

= 〈α, F 〉TI(N)
ν +

N∑
n=−N

〈α, fn〉(−Ãgn − 〈fn, F 〉Iν)

= −ÃTα(N) − 〈α(N), F 〉Iν + 〈α, F 〉TI(N)
ν .

(5.264)

Now, as
〈ÃTα(N), φ̃m〉 −−−−→

N→∞
〈ÃTα, φ̃m〉, ∀m ∈ Z, ∀α ∈ DF , (5.265)

to get (5.260) from (5.264), it suffices to have

〈α(N), F 〉 −−−−→
N→∞

〈α, F 〉, ∀α ∈ DF ,

〈TI(N)
ν , φ̃m〉 −−−−→

N→∞
〈Iν , φ̃m〉, ∀m ∈ Z.

(5.266)

Recall that the formal TB = B condition (5.232) had been added to the kernel equation (5.231) to
take away the nonlocal term of the equation and thus make it easier to study, and allowing us to build
isomorphisms. Consistently, when checking whether such isomorphisms are actually backstepping
transformations, the TB = B condition reappears in a weak form, precisely given by the second limit
of (5.266). Notice that this is the “real” TB = B condition, as, according to Corollary 5.5.1, TIν is
not defined and thus (5.232) has no real mathematical meaning.

5.6 Backstepping transformation and feedback law

To find an actual backstepping transformation, we want to construct a feedback F that satisfies
(5.266). We will first study the second limit of (5.266), which will determine the value of F . Then, we
will check that F thus defined satisfies the first limit of (5.266), so that the corresponding isomorphism
T is indeed a backstepping transformation.
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5.6.1 Construction of the feedback law

Keeping the notations of (5.263), first note that

TI(N)
ν = −

N∑
n=−N

〈Iν , fn〉〈fn, F 〉
∑
p∈Z

〈Iν , φ̃p〉
µ̃p − µn

f̃p

= −
∑
p∈Z
〈Iν , φ̃p〉

(
N∑

n=−N

〈Iν , fn〉〈fn, F 〉
µ̃p − µn

)
f̃p.

(5.267)

Hence, for m ∈ Z, using (5.243), and recalling that 〈f̃p, φ̃m〉 = 0, for any p 6= m from the definition of
a biorthogonal family,

〈TI(N)
ν , φ̃m〉 = −

〈∑
p∈Z
〈Iν , φ̃p〉

(
N∑

n=−N

〈Iν , fn〉〈fn, F 〉
µ̃p − µn

)
f̃p, φ̃m

〉

= −〈Iν , φ̃m〉

〈∑
p∈Z

(
N∑

n=−N

〈Iν , fn〉〈fn, F 〉
µ̃p − µn

)
f̃p, φ̃m

〉

= −〈Iν , φ̃m〉

〈
N∑

n=−N
〈Iν , fn〉〈fn, F 〉

∑
p∈Z

1

µ̃p − µn
f̃p, φ̃m

〉

= −〈Iν , φ̃m〉

〈
N∑

n=−N
〈Iν , fn〉〈fn, F 〉τ̃−1

A
fn

fn,1(0)
, φ̃m

〉

= −〈Iν , φ̃m〉

〈
τ̃−1
A

N∑
n=−N

〈Iν , fn〉〈fn, F 〉
fn

fn,1(0)
, φ̃m

〉
.

(5.268)

Moreover, by definition (5.243) of τ̃A, (f̃n), (φ̃n), we have:(
τ̃−1
A
)∗
φ̃m =

1

φ̃m,1(0)(1− e−2µL)
φ̃m, (5.269)

hence

〈TI(N)
ν , φ̃m〉 = − 〈Iν , φ̃m〉

φ̃m,1(0)(1− e−2µL)

〈
N∑

n=−N
〈Iν , fn〉〈fn, F 〉

fn
fn,1(0)

, φ̃m

〉

= − 〈Iν , φ̃m〉

φ̃m,1(0)(1− e−2µL)

N∑
n=−N

〈Iν , fn〉
〈fn, F 〉
fn,1(0)

〈
fn, φ̃m

〉
.

(5.270)

Now let us set

〈fn, F 〉 := −2 tanh(µL)
(fn,1(0))2

〈Iν , fn〉
, ∀n ∈ Z, (5.271)

so that

〈TI(N)
ν , φ̃m〉 =

2〈Iν , φ̃m〉

φ̃m,1(0)(1 + e−2µL)

N∑
n=−N

fn,1(0)
〈
fn, φ̃m

〉
. (5.272)

The sum in (5.272) is analog to the Dirichlet sum which appears in [162] and that we recall here: for
f ∈ C1

pw([0, L]), then
N∑

n=−N
〈f, ep〉 −−−−−→

N→+∞

f(0) + f(L)

2
(5.273)
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where (ep)p∈Z = (e
2iπpx
L )p∈Z. Note that this can be extended to functions f ∈ (C1)2 such that f1(0) =

−f2(0) and f1(L) = −f2(L) and the basis (Ep)p∈Z =
((
e
iπpx
L ,−e

−iπpx
L

))
p∈Z

. Indeed, using the gluing

(5.362), from each of these functions one can define f ∈ C1
pw([0, 2L]) and (Ep)p∈Z = (e

2iπpx
2L )p∈Z, thus

N∑
n=−N

〈f,Ep〉 −−−−−→
N→+∞

f(0) + f(2L)

2
=
f1(0)− f2(0)

2
. (5.274)

As it turns out, the sum in (5.272) has the same remarkable property of converging towards the mean

of the left and right values of φ̃m. This comes from a powerful equiconvergence theorem proved in
[105] for a Schrödinger operator (see [106] for its generalization on operators of order n ≥ 2):

Theorem 5.6.1. Let (uk) ⊂ L2(0, L) be a complete orthonormal system of eigenfunctions associated
to the eigenvalues λp of the Schrödinger operator −∂xx + q, where q is a locally integrable function.
Let us denote for any f ∈ L2(0, L), µ > 0, and x ∈ (0, L),

σµ(f, x) =
∑

|Re(
√
λp)|<µ

〈f, up〉up(x). (5.275)

Similarly, let (ûk) ⊂ L2(0, L) be a complete orthonormal system of eigenfunctions associated to the

eigenvalues λ̂p of the Schrödinger operator −∂xx + q̂, where q̂ is a locally integrable function and
denote,

σ̂µ(f, x) =
∑

|Re(
√
λ̂p)|<µ

〈f, ûp〉ûp(x). (5.276)

Then, given any compact interval K ⊂ (0, L), for any f ∈ L2(0, L), the following holds

lim
µ→+∞

sup
x∈K
|σµ(f, x)− σ̂µ(f, x)| = 0. (5.277)

This theorem can be adapted to our operator:

Proposition 5.6.1. Let us denote

σµ(f, x) =
∑

|Im(µp)|<µ

〈f, fp〉fp(x) (5.278)

and
pµ(f, x) =

∑
|Im(µ

(0)
p )|<µ

〈f,Ep〉Ep(x) (5.279)

where (Ep)p∈Z =
((
e
iπpx
L ,−e

−iπpx
L

))
p∈Z

. One has for any compact K ⊂ [0, L)

lim
µ→+∞

sup
x∈K
|σµ(f, x)− pµ(f, x)| = 0. (5.280)

This result is a generalization of the work of Komornik in [105]. A way to adapt the proof of [105,
Theorem 2] is given in Appendix 5.B.

Now let us recall that for m ∈ Z, φ̃m is the solution of a linear ODE given by the operator Ã∗.
Thus φ̃m ∈ C1

pw(0, 2L) (recall the definition of f given in (5.362)) and, applying Proposition 5.6.1 and
the Dirichlet convergence theorem given by (5.274), we get:

N∑
n=−N

fn,1(0)
〈
fn, φ̃m

〉
=

N∑
n=−N

fn,1(0)
〈
φ̃m, fn

〉
−−−−→
N→∞

φ̃m,1(0)− φ̃m,2(0)

2
(5.281)
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Now, using the boundary conditions (5.63) for φ̃m, we have

φ̃m,1(0)− φ̃m,2(0)

2
=
φ̃m,1(0)(1 + e−2µL)

2
(5.282)

so that finally, if F is defined by (5.271), we get from (5.272):

〈TI(N)
ν , φ̃m〉 −−−−→

N→∞
〈Iν , φ̃m〉, ∀m ∈ Z, (5.283)

which is the second limit of (5.266).

5.6.2 Regularity of the feedback law

Let us now study the regularity of the feedback law defined by (5.271). First note that, thanks to
(5.194) that was deduced from the moments condition that gave us the controllability of the system,
and thanks to Lemma 5.5.2,

c(1 + |µn|) ≤ |〈fn, F 〉| ≤ C(1 + |µn|), n ∈ Z, (5.284)

for some constants c, C > 0, which is exactly to (5.256) for some other constants, thanks to (5.50).
Then, we have the following regularity result, analogous to [162, Lemma 2.1]:

Lemma 5.6.1. F ∈ E ′ defined by (5.271) defines a linear form on D(A2) which is continuous for
‖ · ‖D(A2) but not for ‖ · ‖D(A).

Corollary 5.6.1. If F is defined by (5.271), then the domain DF given by (5.259) defines a dense
domain of D(A).

Proof. It is clear from (5.259) that:

KF := {α ∈ D(A2), 〈α, F 〉 = 0} ⊂ DF . (5.285)

Now, KF is the kernel of a non-continuous linear form, so it is dense in D(A2) for ‖ · ‖D(A), which is
in turn dense in D(A) for ‖ · ‖D(A), hence the density of DF in D(A).

Now, to obtain the second limit of (5.266), we need a more precise knowledge of the regularity of
F .

Recall that (5.196) had given more information on the growth of the coefficients of Iν . Now, taking
the inverse, and using (5.194) we get the following property for the coefficients of the feedback law F :(

1

µn

(
〈fn, F 〉+

tanh(µL)

τIn
fn,1(0)µn

))
∈ `2(Z), (5.286)

where

τIn :=

(
e
∫ L
0
δ fn,1(L)

fn,1(0)
− 1

)
, ∀n ∈ Z. (5.287)

Note that we have, thanks to Lemma 5.5.2 and (5.200),

c ≤ |τIn | ≤ C, ∀n ∈ Z, (5.288)

for some constants c, C > 0, so that the operator defined by

τIα :=
∑
n∈Z

τIn 〈α, fn〉fn, ∀α ∈ (L2)2 (5.289)

is an isomorphism of D(As),∀s ≥ 0.

Remark 5.6.1. Because it is a diagonal operator, τI commutes with A.
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We recall now the definition of the spaces Xs for s ≥ 0

Xs := {f ∈ (L2
(0))

2, (τI)−1(Λ∂xf + δ(x)Jf) ∈ (Hs−1)2}. (5.290)

Let us then note:

hn := − tanh(µL)

τIn
fn,1(0)µn, n ∈ Z, (5.291)

and h ∈ E ′ the linear form defined by:

〈fn, h〉 = hn, ∀n ∈ Z. (5.292)

Then, we have the following proposition:

Proposition 5.6.2. The linear form h defines the following linear form on X2 ∩D(A), continuous
for ‖ · ‖X2 :

〈α, h〉 = − tanh(µL)

(
A(τI)−1α

)
1

(0)−
(
A(τI)−1α

)
2

(0)

2
(5.293)

Moreover, F̃ := F − h is continuous for ‖ · ‖D(A), so that F is actually defined on X2 ∩D(A), and is
continuous for ‖ · ‖X2 , but not ‖ · ‖D(A).

Remark 5.6.2. This proposition means that h is the ”singular part” of F , i.e. the part that limits
the regularity of F , the rest F − h being continuous for ‖ · ‖D(A). In the following we will therefore
study specifically this singular part.

Proof of Proposition 5.6.2. The continuity of F̃ follows directly from (5.286). On the other hand,
let α ∈ X3 ∩ D(A). Then, A(τI)−1α ∈ (H2)2, and thus satisfies the conditions of the Dirichlet
convergence theorem, so that using again Proposition 5.6.1, we get:

〈α, h〉 = −
∑
n∈Z
〈α, fn〉

tanh(µL)

τIn
fn,1(0)µn

= − tanh(µL) lim
N→∞

pN
(
A(τI)−1α, 0

)
= − tanh(µL)

(
A(τI)−1α

)
1

(0)−
(
A(τI)−1α

)
2

(0)

2
.

(5.294)

It is clear from this last expression that h is continuous for ‖ · ‖X2 , by the continuous injection of
(H1)2 → (L∞)2. Now let us show that X3 ∩ D(A) is dense in X2 ∩ D(A) for the X2 norm. Let
α ∈ X2 ∩D(A), and ε > 0. Then, by density of (H2)2 in (H1)2 there exists aε ∈ (H2)2 such that

‖aε −A(τI)−1α‖(H1)2 ≤ ε. (5.295)

Now,
〈A(τI)−1α, f0〉 = 0 (5.296)

so that
〈aε, f0〉 ≤ ε, (5.297)

and, setting
ãε := aε − 〈aε, f0〉f0, (5.298)

we get, thanks to (5.297) and the smoothness of f0 as the solution of a linear ODE,

ãε ∈ (H2)2,∥∥ãε −A(τI)−1α
∥∥

(H1)2 ≤ Cε,
(5.299)
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For some constant C > 0 depending only on ‖f0‖(H1)2 . Let us now set:

αε := 〈α, f0〉f0 +
∑
n∈Z∗

τIn
〈ãε, fn〉
µn

fn ∈ D(A). (5.300)

Then,
A(τI)−1αε = aε, (5.301)

so that αε ∈ X3. Moreover, by (5.295) and (5.288),

‖Aαε −Aα‖ ≤ Cε, (5.302)

for some constant C > 0. As |µn| ≥ δ > 0, ∀|n| ≥ 1, and by definition of αε, 〈αε − α, f0〉 = 0, we get

‖αε − α‖ ≤ C ′ε, (5.303)

and (5.295), (5.301), (5.302), and (5.303) yield

‖αε − α‖X2 ≤ C ′′ε, (5.304)

This proves the density of X3 ∩ D(A) in X2 ∩ D(A). We can then continuously extend (5.294) to
X2 ∩D(A), which proves the rest of the proposition.

Now that we have some knowledge on F defined by (5.271), we get some more knowledge on the
corresponding domain DF :

Lemma 5.6.2.
DF ⊂ X2. (5.305)

Proof. Recall that
DF = {α ∈ D(A), −Aα+ 〈α, F 〉Iν ∈ D(A)} . (5.306)

In particular,
(τI)−1 (−Aα+ 〈α, F 〉Iν) ∈ D(A). (5.307)

Moreover, by (5.289) and (5.196),

(τI)−1Iν −
∑
n∈Z

fn,1(0)

µn
fn ∈ D(A). (5.308)

Now, let

ϕ(x) :=

1

2
− x

2L
1

2
− x

2L

 ∈ (H1)2, (5.309)

it is clear by integration by parts that

ϕ−
∑
n∈Z

fn,1(0)

µn
fn ∈ D(A), (5.310)

so that
(τI)−1Iν ∈ (H1)2 (5.311)

and, finally, by (5.307) and (5.311),
A(τI)−1α ∈ (H1)2. (5.312)
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Now we can tackle the first limit of (5.266). Let α ∈ DF . As

α(N) D(A)−−−−→
N→∞

α, (5.313)

, by Proposition 5.6.2, we only need to study the “singular part” h of the feedback F . By (5.263) and
(5.52), we have:

〈α(N), h〉 = −
N∑

n=−N
〈α, fn〉

tanh(µL)

τIn
fn,1(0)µn

= − tanh(µL)

2

N∑
n=−N

(
〈α, fn〉
τIn

µn +
〈α, f−n〉
τI−n

µ−n

)
fn,1(0)

= − tanh(µL)

2

N∑
n=−N

〈
A((τI)−1α− σ((τI)−1α)), fn

〉
fn,1(0),

(5.314)

where
σ(f)(x) :=

∑
n∈Z
〈f, f−n〉fn, ∀f ∈ (L2)2. (5.315)

Note that we used that for f ∈ D(A), Aσ(f) = −σ(Af). Now, as α ∈ X2 ∩D(A), we have

A(τI)−1α = Λ∂x(τI)−1α+ δ(x)J(τI)−1α ∈ (H1)2 (5.316)

so
Λ∂x(τI)−1α ∈ (L2)2, (5.317)

hence
(τI)−1α ∈ (H1)2. (5.318)

Repeating the same argument, we get

(τI)−1α ∈ (H2)2 ∩D(A). (5.319)

We now use the following lemma:

Lemma 5.6.3. Let f ∈ (H2)2 ∩D(A). Then,

f − σ(f) ∈ D(A2). (5.320)

Proof. Using the regularity of f , we write, by double integration by parts:

〈f, fn〉 =
1

µn
〈Af, fn〉

=
(Af1(L) +Af2(L)) fn,1(L)− (Af1(0) +Af2(0)) fn,1(0)

(µn)2

+
1

(µn)2
〈A2f, fn〉,

(5.321)

Hence, using (5.51) and (5.52).

〈f, fn〉 − 〈f, f−n〉 =
1

(µn)2
〈A2f, fn − f−n〉. (5.322)

As A2f ∈ (L2)2, this proves the Lemma.
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From Lemma 5.6.3, we get

A((τI)−1α− σ((τI)−1α)) ∈ D(A). (5.323)

Hence, the last sum of (5.314) converges absolutely. As α ∈ X2 ∩ D(A), by Proposition 5.6.2 and
unicity of the limit, we get

〈α(N), F 〉 N→∞−−−−→ 〈α, F 〉, (5.324)

which is the first limit of (5.266).
Thus, by the results of the two previous subsections and (5.266), we have the following proposition:

Proposition 5.6.3. Let F be defined by (5.271), and T accordingly defined by (5.257). Then, T
satisfies (5.258) on the domain DF .

5.6.3 Well-posedness and stability of the closed-loop system

Now that we have constructed a pair (T, F ) that satisfies (5.258), let us check that the closed-loop
system (5.59) corresponding to the feedback F is well-posed in some sense. The idea is to use the
dynamics of the target system (5.60), as (5.258) essentially means that T exchanges the dynamics of
the target system and the closed-loop system. We have seen in Section 5.3.2 that (5.60) is well-posed,

more specifically, looking at Section 5.3.2.2, Ã with domain D(Ã2) ⊂ D(Ã) generates a contraction

semigroup on D(Ã) for the norm defined by the Lyapunov function (5.73) with p = 1. We note that

semigroup S̃(t), t ≥ 0.
Accordingly, before we study the dynamics generated by −A + IνF , let us give a more precise

characterization of its domain DF ⊂ D(A). We start with the following lemma:

Lemma 5.6.4. The operator −A+ IνF admits a Riesz basis of eigenvectors in D(A), given by

hp := T−1 f̃p
µ̃p
, ∀p ∈ Z, (5.325)

with corresponding eigenvalues (−µ̃p)p∈Z.

Proof. It is clear that the normalized family (f̃p/µ̃p)p∈Z is a Riesz basis of D(Ã), so that, applying
the isomorphism T−1, (hp)p∈Z is a Riesz basis of D(A). Let us now show that

hp ∈ DF , ∀p ∈ Z. (5.326)

Let us denote the following decomposition along the orthonormal basis (fn)n∈Z:

hp =
∑
n∈Z

an,pfn, (µnan,p)n∈Z ∈ `2(Z), ∀p ∈ Z. (5.327)

From the definitions of T and hp,

f̃p = µ̃pThp =
∑
n∈Z

µ̃pan,pgn, ∀p ∈ Z, (5.328)

which implies, from (5.236) and (5.238),

f̃p = −
∑
n∈Z

µ̃pan,p〈fn, F 〉
∑
k∈Z

〈Iν , φ̃k〉
µ̃k − µn

f̃k, ∀p ∈ Z. (5.329)

Now, as in Subsection 5.6.1, consider the truncatures along the Riesz basis (gn/〈fn, F 〉)n∈Z,

f̃ (N)
p :=

N∑
n=−N

µ̃pan,p〈fn, F 〉
gn

〈fn, F 〉
, ∀N ∈ N∗, ∀p ∈ Z, (5.330)
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so that

〈f̃ (N)
p , φ̃m〉 =− µ̃p

〈
N∑

n=−N
an,p〈fn, F 〉

∑
k∈Z

〈Iν , φ̃k〉
µ̃k − µn

f̃k, φ̃m

〉

=− µ̃p

〈∑
k∈Z
〈Iν , φ̃k〉

(
N∑

n=−N

an,p〈fn, F 〉
µ̃k − µn

)
f̃k, φ̃m

〉

=−µ̃p〈Iν , φ̃m〉

〈
N∑

n=−N

an,p〈fn, F 〉
µ̃m − µn

f̃m, φ̃m

〉

=− µ̃p〈Iν , φ̃m〉

〈∑
k∈Z

(
N∑

n=−N

an,p〈fn, F 〉
µ̃k − µn

)
f̃k, φ̃m

〉

=−µ̃p〈Iν , φ̃m〉

〈
N∑

n=−N
an,p〈fn, F 〉

∑
k∈Z

f̃k
µ̃k − µn

, φ̃m

〉

=−µ̃p〈Iν , φ̃m〉

〈
N∑

n=−N
an,p〈fn, F 〉kn, φ̃m

〉

=− µ̃p〈Iν , φ̃m〉

〈
N∑

n=−N
an,p〈fn, F 〉τ̃−1

A
fn

fn,1(0)
, φ̃m

〉
,

∀p ∈ Z, ∀m ∈ Z, ∀N ∈ N∗,

(5.331)

where we used the biorthogonality of the families (f̃p)p∈Z and (φ̃p)p∈Z, and the relation (5.242). Using
again the aforementioned biorthogonality, and the convergences

f̃ (N)
p

D(Ã)−−−−→
N→∞

f̃p,

N∑
n=−N

an,p〈fn, F 〉τ̃−1
A

fn
fn,1(0)

L2

−−−−→
N→∞

∑
n∈Z

an,p〈fn, F 〉τ̃−1
A

fn
fn,1(0)

,

(5.332)

given by (5.194), (5.271) and (5.327), we get〈
f̃p

〈Iν , φ̃m〉
, φ̃m

〉
=

〈
f̃p

〈Iν , φ̃p〉
, φ̃m

〉
= −

〈
µ̃p
∑
n∈Z

an,p〈fn, F 〉τ̃−1
A

fn
fn,1(0)

, φ̃m

〉
. (5.333)

Note that the first equality holds as
〈
f̃p/〈Iν , φ̃m〉, φ̃m

〉
= 0 whenever p 6= m. Therefore, by property

of the Riesz basis (φ̃m)m∈Z, and by continuity and invertibility of τ̃A,

τ̃A
f̃p

〈Iν , φ̃p〉
= −µ̃p

∑
n∈Z

an,p〈fn, F 〉
fn

fn,1(0)
. (5.334)

Using the expression of τ̃A given in (5.243), we finally get

φ̃p,1(0)(1− e−2µL)
f̃p

〈Iν , φ̃p〉
= −µ̃p

∑
n∈Z

an,p〈fn, F 〉
fn

fn,1(0)
, (5.335)

so that, by property of the orthonormal basis (fn)n∈Z,

an,p = − φ̃p,1(0)(1− e−2µL)

µ̃p〈Iν , φ̃p〉
fn,1(0)

〈fn, F 〉
〈f̃p, fn〉. (5.336)
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Let us now compute 〈hp, F 〉 with truncatures of the hp:

h(N)
p :=

N∑
n=−N

an,pfn.

〈h(N)
p , F 〉 =

N∑
n=−N

an,p〈fn, F 〉

= − φ̃p,1(0)(1− e−2µL)

µ̃p〈Iν , φ̃p〉

N∑
n=−N

fn,1(0)〈f̃p, fn〉.

(5.337)

Now, using Proposition 5.6.1, similar to (5.281), we have,

N∑
n=−N

fn,1(0)〈f̃p, fn〉 −−−−→
N→∞

f̃p,1(0)− f̃p,2(0)

2
, (5.338)

so that

〈hp, F 〉 = − φ̃p,1(0)(1− e−2µL)

µ̃p〈Iν , φ̃p〉
f̃p,1(0)− f̃p,2(0)

2
. (5.339)

Using (5.336) together with (5.339), we get

〈−Ahp + Iν〈hp, F 〉, fn〉 =
φ̃p,1(0)(1− e−2µL)

µ̃p〈Iν , φ̃p〉
fn,1(0)

〈fn, F 〉
〈f̃p, fn〉µn

− 〈Iν , fn〉
φ̃p,1(0)(1− e−2µL)

µ̃p〈Iν , φ̃p〉
f̃p,1(0)− f̃p,2(0)

2

=
φ̃p,1(0)(1− e−2µL)

µ̃p〈Iν , φ̃p〉

(
− 〈Iν , fn〉

2 tanh(µL)fn,1(0)
〈f̃p, fn〉µn

− 〈Iν , fn〉
f̃p,1(0)− f̃p,2(0)

2

)
.

(5.340)

Note that, proceeding as for (5.241), we have

µ̃p〈f̃p, fn〉 = −µn〈f̃p, fn〉+ (f̃p,2fn,2(0)− f̃p,1(0)fn,1(0))

= µn〈f̃p, fn〉 − f̃p,1(0)fn,1(0)(1− e2µL)
(5.341)

where we used the boundary conditions given by (5.47) and (5.61) together with (5.51). Thus

〈f̃p, fn〉 =
−f̃p,1(0)fn,1(0)(1− e2µL)

µ̃p − µn
. (5.342)
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Therefore, using again the boundary conditions given by (5.47) and (5.61) and also (5.271), we have

〈−Ahp + 〈hp, F 〉Iν , fn〉 =
φ̃p,1(0)(1− e2µL)

µ̃p〈Iν , φ̃p〉

(
− 〈Iν , fn〉

2 tanh(µL)

−f̃p,1(0)(1− e2µL)

µ̃p − µn
µn

− 〈Iν , fn〉
f̃p,1(0)− f̃p,2(0)

2

)
.

=− φ̃p,1(0)(1− e2µL)

µ̃p〈Iν , φ̃p〉
〈Iν , fn〉(

f̃p,1(0)
1 + e2µL

2

µn
µ̃p − µn

+ f̃p,1(0)
1 + e2µL

2

)
=− f̃p,1(0)φ̃p,1(0)(1− e4µL)

2〈Iν , φ̃p〉
〈Iν , fn〉
µ̃p − µn

.

(5.343)

This shows, thanks to (5.194) and (5.50), that

(−A+ IνF )hp ∈ D(A). (5.344)

Then, we can apply (5.258) to the (hp)p∈Z, thanks to Proposition 5.6.3:

T (−A+ IνF )hp = −ÃThp

= −Ã f̃p
µ̃p

= −µ̃p
f̃p
µ̃p
, ∀p ∈ Z,

(5.345)

so that
(−A+ IνF )hp = −µ̃php, ∀p ∈ Z. (5.346)

We can now prove the following proposition which gives a precise characterization of the elements
of DF :

Proposition 5.6.4. The domain DF satisfies the following equality:

DF = T−1D(Ã2). (5.347)

Proof. Given Lemma 5.6.4, one clearly has the following characterization of DF :

DF =

{
f ∈ D(A): f =

∑
n∈Z

fphp, (µ̃pfp)p∈Z ∈ `2(Z)

}
. (5.348)

Then, let α ∈ D(Ã2), with the following decomposition:

α :=
∑
p∈Z

αp
f̃p
µ̃p
, (µ̃pαp)p∈Z ∈ `2(Z). (5.349)

Then,

T−1α :=
∑
p∈Z

αpT
−1 f̃p
µ̃p

=
∑
p∈Z

αphp. (5.350)
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Now, by construction of T , T−1α ∈ D(A), and as (µ̃pαp)p∈Z ∈ `2(Z), it follows from (5.348) that

T−1α ∈ DF ,

hence
T−1D(Ã2) ⊂ DF . (5.351)

The converse inclusion is a consequence of the operator equality (5.258). Indeed, let α ∈ DF , then

Tα ∈ D(Ã), ÃTα = −T (−A+ IνF )α ∈ D(Ã),

so that
Tα ∈ D(Ã2),

hence,
DF ⊂ T−1D(Ã2). (5.352)

Then, we have the following result:

Proposition 5.6.5. The mapping

S : R+ → L(D(A))

t 7→ T−1S̃(t)T
(5.353)

defines an exponentially stable C0-semigroup on D(A), and its infinitesimal generator is the unbounded
operator (−A+ IνF,DF ).

Proof. By continuity and invertibility of T , (5.353) clearly defines a C0-semigroup, and the domain

DS of its infinitesimal generator is clearly T−1(D(Ã2)). Now, Proposition 5.6.4 implies that

DS = DF .

Let α ∈ DS . Then, Tα ∈ D(Ã2) so that, by definition of S, the definition of the infinitesimal generator

Ã of S̃(t), and (5.258),

S̃(t)Tα− Tα
t

D(Ã)−−−−→
t→0+

−ÃTα = T (−A+ IνF )α. (5.354)

Hence, applying the isomorphism T−1 to both sides of (5.354), we get

S(t)α− α
t

D(A)−−−−→
t→0+

(−A+ IνF )α, (5.355)

which proves the second part of the proposition.
Let α ∈ D(A). Then, using the equivalence of ‖ · ‖D(Ã) and the (H1)2 norm, and estimate (5.87)

with p = 1, we can write

‖S(t)α‖D(A) = ‖T−1S̃(t)Tα‖D(A)

≤ |||T−1|||‖S̃(t)Tα‖D(Ã)

≤ C|||T−1|||e−
3µ
4 s‖Tα‖D(Ã)

≤ C|||T−1||||||T |||e−
3µ
4 s‖α‖D(A), ∀t ≥ 0.

(5.356)

Hence, S(t), t ≥ 0 is an exponentially stable semi-group.

This ends the proof of Proposition 5.3.2.
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Appendix 5.A Proof of Proposition 5.2.1

Proof. Note that if we conjugate the eigenvalue equation, using the fact that the µn are all imaginary,
we get, for n ∈ Z:

∂xfn,1 +
δ

3
fn,2 = −µnfn,1,

−∂xfn,2 −
δ

3
fn,1 = −µnfn,2,

(5.357)

which proves (5.51) and the first equality of (5.52). Moreover (5.357) can be written

A
(
−fn,2
−fn,1

)
= µn

(
−fn,2
−fn,1

)
. (5.358)

Now, as ∥∥∥∥(−fn,2−fn,1

)∥∥∥∥ = ‖fn‖ (5.359)

and, according to (5.358), these two functions of L2(0, L)2 are solutions to the same eigenvalue prob-
lem, this means we have

−fn,2 = fn,1

or

fn,2 = fn,1.

(5.360)

Now let us recall that, by (5.168) and (5.169), the fn are L∞-close to the En, which satisfy the first
relation of (5.360). So for a small enough γ, we have

fn,1 = −fn,2. (5.361)

Appendix 5.B Proof of Proposition 5.6.1

Proof of Proposition 5.6.1. As [105, Theorem 2] deals with scalar second-order equation, we first
define a map R on L2(0, L)2, gluing the two components to form a function of L2(0, L) and apply the
first order operator twice to recover a second order scalar equation. For f ∈ H1((0, L);R2) satisfying
f1(L) = −f2(L) we define R(f) := f on (0, 2L) by

f = 1[0,L]f1 − 1[L,2L]f2(2L− ·) (5.362)

This is a natural mapping, given the boundary condition f1(L) = −f2(L), and defines an isomorphism
between H1(0, 2L) and

{
f ∈ H1((0, L);R2)|f1(L) = −f2(L)

}
. We extend this definition to L2 func-

tions by density, and the resulting map R is, up to a constant, an isometry from L2(0, L)2 → L2(0, 2L)
for their usual scalar products.

Now, notice that the (fp) are also the eigenfunctions of the operator −A2, for which the following
expression can be derived:

− (Λ∂x + δ(x)J)
2

= −∂2
x − δ(x)2J2 − Λ∂x(δ(x)J)− δ(x)JΛ∂x

= −∂2
x − δ(x)2J2 − δ′(x)ΛJ − δ(x)ΛJ∂x − δ(x)JΛ∂x

= −∂2
x − δ(x)2J2 − δ′(x)ΛJ,

(5.363)

the last equality being obtained thanks to the relation

ΛJ + JΛ =

(
1 0
0 −1

)(
0 1/3
−1/3 0

)
+

(
0 1/3
−1/3 0

)(
1 0
0 −1

)
=

(
0 1/3

1/3 0

)
+

(
0 −1/3
−1/3 0

)
= 0.

(5.364)
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Hence,

−A2 = −∂2
x +

1

3

(
δ(x)2/3 −δ′(x)
−δ′(x) δ(x)2/3

)
, (5.365)

and
−A2R−1fk = −µ2

kR
−1fk

i.e.
−RA2R−1fk = −µ2

kfk. (5.366)

Now, it is clear from (5.362) that

RΛ∂xα = ∂x(Rα), ∀α ∈ H1, α1(L) = −α2(L). (5.367)

Also, for a ∈ L2(0, L), we define

a := R

(
a
−a

)
. (5.368)

and we have
R(af) = af, ∀f ∈ L2(0, L)2. (5.369)

Finally,

R

((
0 1
1 0

)
f

)
= 1[0,L]f2 − 1[L,2L]f1(2L− ·) = −f(2L− ·). (5.370)

From (5.367),(5.369), and (5.370), (5.366) becomes

− ∂2
xfk +

δ2

9
fk +

(δ′)

3
fk(2L− ·) = −µ2

kfk (5.371)

so that, using (5.370),
fk(2L− x) = fk(x), ∀x ∈ (0, 2L), (5.372)

and we finally get

− ∂2
xfk +

δ2

9
fk +

(δ′)

3
fk = −µ2

kfk (5.373)

Thus (fp)p∈Z is a family of eigenvectors of the operator L defined by

Lu = −∂2
xu+

1

9
δ2u+

1

3
(δ)′u, (5.374)

with eigenvalues−λ2
p which, from (5.51), are real and nonnegative. Besides, (fp)p∈Z is still an orthonor-

mal basis of L2(0, 2L). Observe that (Ep)p∈Z = (eiπpx/L)p∈Z and is an orthonormal basis of L2(0, 2L)

and a family of eigenvectors of the operator L0 = −∂2
x with associated eigenvalues (π2p2/L2)p∈Z. Note

that L can be written as
Lu = −∂2

xu− qu− q1u(2L− ·) (5.375)

where q and q1 are both L1 (and in fact C∞) functions on (0, 2L). We now extend periodically the
functions fp, Ep, q and q1 on (−L, 3L) as follows :

fp(·) = fp(·+ 2L), on (−L, 0),

fp(·) = fp(· − 2L), on (2L, 3L),
(5.376)

and similarly for Ep, q and q1. As fp(2L) = fp(0) from (5.362) and (5.47), the functions fp thus

constructed are continuous on [−2L, 2L]. Besides,

‖q‖L1(−L,3L) = 2‖q‖L1(0,2L), ‖q1‖L1(−L,3L) = 2‖q1‖L1(0,2L). (5.377)
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Then, let a compact interval K ⊂ [0, L) and consider the restriction of fp to K, one can easily see
from (5.362) that its gluing map corresponds to the restriction of fp on {x ∈ [0, 2L)|x ∈ K or 2L−x ∈
K} which is a compact set symmetrical with respect to L and with two connected components. This
means that, in order to end the proof of Proposition 5.6.1, it suffices to show the same type of result
as [105, Theorem 2] applied to (fp)p∈Z and (Ep)p∈Z, but on compacts of (−L, 3L), symmetrical with

respect to L with two connected components only. Observe that [105, Theorem 2] is only given for
compact interval but is also true for compacts with finite number of connected components. Now, the
two only differences between our case with [105, Theorem 2] are that L has a non-local term which is
the third term q1u(2L− ·) in the right-hand side of (5.375), and that the fp are continuous but their

derivatives are not always continuous and have discontinuities on D := {x = 0, x = 2L}. Observe,
however, that in the proof of [105, Theorem 2], the fact that fp are eigenvectors of L is only used

through the Titchmarsh formula [105], and note that a generalized Titchmarsh formula still holds for
this operator and we have, for p ∈ Z, and x ∈ (−L, 3L), t ∈ (0,min(|3L− x|, |x+ L|))

fp(x+ t) + fp(x− t) = 2fp(x) cos(
√
−µ2

pt)

+

∫ x+t

x−t
q(ξ)fp(ξ)

sin(
√
−µ2

p(t− |x− ξ|))√
−µ2

p

dξ

+

∫ x+t

x−t
q1(ξ)fp(2L− ξ)

sin(
√
−µ2

p(t− |x− ξ|))√
−µ2

p

dξ

+
∑

x1∈(x−t,x+t)∩D

sin(
√
−µ2

p(t− |x− x1|))√
−µ2

p

(fp
′(x+

1 )− fp′(x−1 )).

(5.378)

As expected, the two differences with [105, Theorem 2] are now translated in the appearance of the
third and fourth terms that do not appear in the case of [105, Theorem 2]. Now observe that in the
proof of [105, Theorem 2], the second term of the right-hand side is each time bounded using the L∞

norm of fp and Q = ‖q‖L1(0,L). Thus, to adapt the proof of [105, Theorem 2], all we have to do is
to provide the same type of bounds at each step for the third and fourth terms. As for any compact
K ⊂ (−L, 3L) symmetrical with respect to L, ‖fp‖L∞(K) = ‖fp(2L−·)‖L∞(K), the same bounds hold

in our case for the third term replacing Q by ‖q‖L1(−L,3L) + ‖q1‖L1(−L,3L).
1 To deal with the fourth

term, we need to study the jump discontinuities fp
′(x+

1 )− fp′(x−1 ). From the definition of fp, one has

∂xfp −
δ

3
fp(2L− x) + µpfp = 0 for x ∈ (0, L) ∪ (2L, 3L),

∂xfp +
δ

3
fp(2L− x) + µpfp = 0 for x ∈ (−L, 0) ∪ (L, 2L).

(5.379)

Thus for x1 ∈ D, one has
fp
′(x+

1 )− fp′(x−1 ) = 2δ(x1)fp(x1) (5.380)

which implies, for x1 ∈ K, that ∣∣∣fp′(x+
1 )− fp′(x−1 )

∣∣∣ ≤ C‖fp‖L∞(K), (5.381)

where C is a constant independent of p. With this in mind, and noting that for any compact K,
K ∩D has a finite cardinal NK≤ 2 depending only on K, we can bound the fourth term of (5.378) as
in [105, Theorem 2]. More precisely we have :

1For the sake of rigor let us note that when K = [a, b] is symmetrical with respect to L, KR = [a−R, b + R] is also
symmetrical with respect to L.
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1. For Lemma 1 of [105], with R > 0 such that x+ 2R ∈ K, integrating the fourth term on (0, R)
gives ∣∣∣∣∣∣

∫ R

0

∑
x1∈(x−t,x+t)∩D

sin(
√
−µ2

p(t− |x− x1|))√
−µ2

p

(fp
′(x+

1 )− fp′(x−1 ))dt

∣∣∣∣∣∣
≤ AC‖fp‖L∞(K)

∫ R

0

∑
x1∈(x−t,x+t)∩D

|t− |x− x1||dt

≤ AC‖fp‖L∞(K)NKR2,

(5.382)

where we used in the last line that x1 ∈ (x− t, x+ t) and where A = 1 but corresponds to the
constant A in [105]. Thus, this bound is similar to the bound obtained in [105] for the second
term of (5.378) replacing Q with Q = CNK . The proof of the first part a) of Theorem 1 in [105]
follows directly.

2. For the part b) of Theorem 1 in [105], one has, with x ∈ K and KR is the compact extension of
K given by {x ∈ By(R)|y ∈ K}∣∣∣∣∣∣

∫ R

0

cos(µt)
∑

x1∈(x−t,x+t)∩D

sin(
√
−µ2

p(t− |x− x1|))√
−µ2

p

(f ′p(x
+
1 )− f ′p(x−1 ))dt

∣∣∣∣∣∣
≤ C‖fp‖L∞(KR)

∫ R

0

∑
x1∈(x−t,x+t)∩D

∣∣∣∣∣∣
sin(

√
−µ2

p(t− |x− x1|))√
−µ2

p

∣∣∣∣∣∣ dt
(5.383)

Now, for t ∈ [0, R] and x1 ∈ (x− t, x+ t), we have (t− |x− x1|) ∈ [0, R], which implies that∣∣∣∣∣∣
sin(

√
−µ2

p(t− |x− x1|))√
−µ2

p

∣∣∣∣∣∣ ≤ 2
R+ 1

1 + |
√
−µ2

p|
. (5.384)

Thus, (5.383) becomes∣∣∣∣∣∣
∫ R

0

cos(µt)
∑

x1∈(x−t,x+t)∩D

sin(
√
−µ2

p(t− |x− x1|))√
−µ2

p

(f ′p(x
+
1 )− f ′p(x−1 ))dt

∣∣∣∣∣∣
≤ C‖fp‖L∞(KR)2

R+ 1

1 + |
√
−µ2

p|
NKR

(5.385)

and we have once again a bound similar to the bound obtained in [105] for the second term of
(5.378) with Q = CNK .

3. Finally, one can do the same with the proof of Theorem 2 by noting that Lemma 3 and 4 still
holds identically and that

∫ R

0

sin(µt)

πt

∑
x1∈(x−t,x+t)∩D

sin(
√
−µ2

p(t− |x− x1|))√
−µ2

p

(f ′p(x
+
1 )− f ′p(x−1 ))dt

=
∑

{|x−x1|≤R}∩D

∫ R

|x−x1|

sin(µt)

πt

sin(
√
−µ2

p(t− |x− x1|))√
−µ2

p

(f ′p(x
+
1 )− f ′p(x−1 ))dt.

(5.386)
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Thus, we can overall apply the results of [105] by replacing Q with Q = 2(‖q‖L1(0,2L) +‖q1‖L1(0,2L))+
CNK . Thus, we still have from [105, Theorem 2]

lim
µ→+∞

sup
x∈K

∣∣∣∣∣∣∣
∑

|Im(µp)|<µ

〈f, fp〉fp(x)−
∑

|Im(µ
(0)
p )|<µ

〈f,Ep〉Ep(x)

∣∣∣∣∣∣∣ = 0. (5.387)

Choosing now the compact K = [−L/2, 5L/2] ∈ (−L, 3L) and symmetrical with respect to L, one can
see that for any x ∈ [0, L], x ∈ K and 2L− x ∈ K. Thus

lim
µ→+∞

sup
x∈K
|σµ(f, x)− pµ(f, x)| = 0. (5.388)

This ends the proof of Lemma 5.6.1

Appendix 5.C Expression of the feedback coefficients before
and after variable changes

In this appendix, we justify the form of (5.11) from (5.94) and (5.271). Let (hn, vn)n∈Z be the Riesz
basis of (L2)2 of eigenvectors associated to the problem (5.5)–(5.6). Let us now define

S =


√

1

Hγ
1

−
√

1

Hγ
1

 (5.389)

and

r : z → Lγz/L−
γL2

γ

4L2
z2, (5.390)

which is a bijection from [0, L] to [0, L]. As the transformations (5.20) and (5.35) and the scaling
introduced in (5.25) and (5.30) define a diffeomorphism, the family (fn)n∈Z given by

fn = exp

(∫ z

0

δ(x)dx

)
S(r(·))

(
hn
vn

)
(r(·)), (5.391)

is also a Riesz basis of (L2)2 but this time of eigenvectors of A given by (5.46). As A is anti-adjoint
this basis is orthogonal, and we can form an orthonormal basis that we denote again by (fn). This
basis is therefore suitable to apply the results of Section 5.4–5.6. Thus the exponential stability holds
provided that F ∈ L(D(A);R) satisfies (5.271), which we are now going to show using (5.11) and
(5.94). Let be a feedback F ∈ E ′, one has from (5.94) and (5.20)–(5.37)

u(Lγt/L) = (〈ζ(t, ·), F 〉+ ζ0〈f0, F 〉) , (5.392)

and

〈ζ(t, ·), F 〉 =

〈
exp

(∫ z

0

δ(x)dx

)
S(r(·))

(
h
v

)
(Lγt/L, r(·)), F

〉
. (5.393)

Thus there exists F1 ∈ D′γ such that

〈ζ(L/Lγt, ·), F 〉 =

〈(
h
v

)
(t, ·), F1

〉
, (5.394)

and therefore from (5.391)

〈fn, F 〉 =

〈(
hn
vn

)
, F1

〉
. (5.395)
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Now if F1 satisfies (5.11), one has using (5.389) and (5.391)

〈fn, F 〉 = −2 tanh(µL)
(fn,1(0))2∫ L

0
fn,1(x) + fn,2(x)dx

, ∀n ∈ Z, (5.396)

which is exactly (5.271), noting that fn,1 is real from (5.52). Finally, as we restrict ourselves to
solutions of the system (5.59), (5.38) with ζ0(0) = 0 (see (5.97)), and from (5.394), the control under
the form (5.10) corresponds exactly to (5.392).

Finally, to get the final exponential decay rate for (5.5)–(5.6) with feedback F γ1 , let us recall that
we operated a scaling in time in (5.30), so the decay rate is

3

4
µ
L

Lγ
−−−→
γ→0

3

4
µ. (5.397)

In particular, for γ > 0 small enough,
3

4
µ
L

Lγ
≥ µ

2
, (5.398)

which gives us the decay rate of Theorem 5.1.1.

Remark 5.C.1. Note that the conditions (5.11) and (5.271) remain the same when the basis under
consideration is renormalized.

169



Bibliography

[1] Fatiha Alabau, Piermarco Cannarsa, and Vilmos Komornik. Indirect internal stabilization of
weakly coupled evolution equations. J. Evol. Equ., 2(2):127–150, 2002.

[2] Fatiha Alabau-Boussouira. On some recent advances on stabilization for hyperbolic equations.
In Control of partial differential equations, volume 2048 of Lecture Notes in Math., pages 1–100.
Springer, Heidelberg, 2012.

[3] Fatiha Alabau-Boussouira. A hierarchic multi-level energy method for the control of bidiag-
onal and mixed n-coupled cascade systems of PDE’s by a reduced number of controls. Adv.
Differential Equations, 18(11-12):1005–1072, 2013.

[4] Fatiha Alabau-Boussouira. Insensitizing exact controls for the scalar wave equation and exact
controllability of 2-coupled cascade systems of PDE’s by a single control. Math. Control Signals
Systems, 26(1):1–46, 2014.

[5] Fatiha Alabau-Boussouira, Jean-Michel Coron, and Guillaume Olive. Internal Controllability
of First Order Quasi-linear Hyperbolic Systems with a Reduced Number of Controls. SIAM J.
Control Optim., 55(1):300–323, 2017.
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