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Titre : Théorie de Ramsey sans principe des tiroirs et applications à la preuve de dichotomies d'espaces de Banach Résumé : Dans les années 90, Gowers démontre un théorème de type Ramsey pour les bloc-suites dans les espaces de Banach, afin de prouver deux dichotomies d'espaces de Banach. Ce théorème, contrairement à la plupart des résultats de type Ramsey en dimension infinie, ne repose pas sur un principe des tiroirs, et en conséquence, sa formulation doit faire appel à des jeux. Dans une première partie de cette thèse, nous développons un formalisme abstrait pour la théorie de Ramsey en dimension infinie avec et sans principe des tiroirs, et nous démontrons dans celui-ci une version abstraite du théorème de Gowers, duquel on peut déduire à la fois le théorème de Mathias-Silver et celui de Gowers. On en donne à la fois une version exacte dans les espaces dénombrables, et une version approximative dans les espaces métriques séparables. On démontre également le principe de Ramsey adverse, un résultat généralisant à la fois le théorème de Gowers abstrait et la détermination borélienne des jeux dénombrables. On étudie aussi les limitations de ces résultats et leurs généralisations possibles sous des hypothèses supplémentaires de théorie des ensembles.

Dans une seconde partie, nous appliquons les résultats précédents à la preuve de deux dichotomies d'espaces de Banach. Ces dichotomies ont une forme similaire à celles de Gowers, mais sont Hilbert-évitantes : elles assurent que le sous-espace obtenu n'est pas isomorphe à un espace de Hilbert. Ces dichotomies sont une nouvelle étape vers la résolution d'une question de Ferenczi et Rosendal, demandant si un espace de Banach séparable non-isomorphe à un espace de Hilbert possède nécessairement un grand nombre de sous-espaces, à isomorphisme près.
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Courte introduction en français

Pour des raisons pratiques et afin de la rendre accessible à un public plus large, cette thèse a entièrement été rédigée en anglais. Seule cette courte introduction sera rédigée en français ; elle présente dans les grandes lignes les principales questions et travaux qui ont dirigé mes recherches, ainsi que les résultats démontrés. Elle sera suivi d'une introduction plus longue, en anglais, présentant de façon détaillée les notions nécessaires à la compréhension de cette thèse et les travaux antérieurs sur lesquels elle s'appuie.

Les résultats présentés dans ce manuscrit prennent leurs racines dans les travaux de Gowers. Dans les années 90, ce dernier a montré une dichotomie d'espaces de Banach [START_REF] Gowers | An infinite Ramsey theorem and some Banach-space dichotomies[END_REF] qui, combinée avec un résultat antérieur dû à Komorowski et Tomczak-Jaegermann [START_REF] Komorowski | Banach spaces without local unconditional structure[END_REF], a répondu par la positive à une célèbre question de Banach, le problème de l'espace homogène. Ce problème était le suivant : 2 est-il le seul espace de Banach, a isomorphisme près, qui est isomorphe à tous ses sous-espaces ? Ce résultat a ouvert plusieurs nouvelles directions de recherche, qui seront étudiées dans cette thèse. La première est de nature combinatoire et ensembliste. En effet, la preuve de la dichotomie de Gowers utilise des méthodes mêlant théorie de Ramsey et théorie des jeux ; plus précisément, cette dichotomie est déduite d'un théorème de type Ramsey dans les espaces de Banach avec base, fortement inspiré de résultats de théorie de Ramsey en dimension infinie plus classiques, dont le résultat fondateur est le théorème de Mathias-Silver [START_REF] Mathias | On a generalization of Ramsey's theorem[END_REF][START_REF] Silver | Every analytic set is Ramsey[END_REF]. Néanmoins, le théorème de type Ramsey de Gowers diffère significativement de ces résultats classiques en cela qu'il ne repose pas sur un principe des tiroirs, contrairement à eux. La conséquence est qu'il est plus faible et a une formulation faisant intervenir des jeux. D'autre part, le fait qu'il soit énoncé dans un espace non-dénombrable nécessite une approximation métrique.

Une partie de cette thèse a pour but d'étudier de façon plus systématique la théorie de Ramsey en dimension infinie sans principe des tiroirs, énoncée à l'aide de jeux, et de la comparer avec la théorie de Ramsey avec principe des tiroirs. De même qu'un formalisme abstrait pour la théorie de Ramsey avec principe des tiroirs a été introduit par Todorčević [START_REF] Todorčević | Introduction to Ramsey spaces[END_REF], permettant de déduire le théorème de Mathias-Silver ainsi que d'autres résultats similaires dans différents contextes, nous introduirons ici un formalisme abstrait unifiant théorie de Ramsey avec et sans principe des tiroirs, celui des espaces de Gowers. Ce formalisme est inspiré de la version exacte du théorème de Gowers donnée par Rosendal dans les espaces vectoriels dénombrables [START_REF]An exact Ramsey principle for block sequences[END_REF], et peut s'appliquer à divers types de structures dénombrables. En particulier, une version abstraite du théorème de Rosendal sera démontrée (théorème II. [START_REF] Ferenczi | Minimal subspaces and isomorphically homogeneous sequences in a Banach space[END_REF]. Nous introduirons aussi une version approximative des espaces de Gowers, permettant de travailler dans des espaces non-dénombrables avec approximation métrique, et destinée a permettre de prouver facilement des dichotomies d'espaces de Banach dans la même veine que celle de Gowers. En particulier, un théorème abstrait généralisant à la fois le théorème de Mathias-Silver et celui de Gowers sera démontré (théorème III.17).

Un étude plus approfondie des espaces de Gowers et de leurs propriétés combinatoires sera effectuée. En particulier, on démontrera le principe de Ramsey adverse (théorème II.4), un résultat conjecturé par Rosendal généralisant à la fois sa version du théorème de Gowers et la détermination Borélienne des jeux dénombrables. On étudiera aussi les limitations et les possibles extensions des résultats présentés. La plupart d'entre eux sont démontrés pour les ensembles boréliens ou analytiques ; on verra sous quelles conditions ces résultats sont optimaux dans ZF C, dans quels cas ils peuvent être étendus à de plus grandes classes d'ensembles sous des hypothèses supplémentaires de théorie des ensembles. On étudiera aussi la force métamathématique de ces résultats. Cela fera apparaître une grande différence de comportement entre les espaces satisfaisant le principe des tiroirs et les espaces ne le satisfaisant pas. On peut en particulier citer le résultat suivant : le principe de Ramsey adverse, lorsqu'énoncé dans un espace sans principe des tiroirs, a la force de la détermination Borélienne, alors qu'il peut être démontré dans ZC pour les espaces avec principe des tiroirs.

La seconde direction de recherche ouverte par la preuve de la dichotomie de Gowers est connue sous le nom de "programme de Gowers". L'idée est de donner une classification "faible" mais la plus précise possible des espaces de Banach séparables "a sous-espace près". Plus précisément, on veut construire une liste de classes d'espaces de Banach séparables (généralement appelée liste de Gowers), aussi grande que possible, satisfaisant les critères suivants :

1. Les classes sont, dans un certain sens, héréditaires (closes par prise de sous-espaces, ou au moins de bloc-sous-espaces, pour les classes définies par les propriétés des bases) ;

2. Les classes sont deux à deux disjointes ;

3. Chaque espace possède au moins un sous-espace dans une des classes ;

4. Les classes sont naturelles, dans le sens ou savoir qu'un espace est dans une classe donne de nombreuses informations sur sa structure.

La dichotomie de Gowers fournit une telle classification en deux classes, la première étant la classe des espaces avec base inconditionnelle, et la seconde celle des espaces héréditairement indécomposables, c'est-à dire des espaces ne contenant aucune somme directe topologique de deux sous-espaces fermés de dimension infinie. Gowers a lui même démontré, dans le même article [START_REF] Gowers | An infinite Ramsey theorem and some Banach-space dichotomies[END_REF], une seconde dichotomie, allongeant cette liste à trois classes, et d'autres dichotomies ont par la suite été démontrées par d'autres auteurs, en particulier Ferenczi et Rosendal [START_REF] Ferenczi | Banach spaces without minimal subspaces[END_REF]. La tendance générale de ces dichotomies est de tracer une frontière entre, d'un côté, les espaces "simples", ayant un comportement proche des p et de c 0 , et d'un autre côté les espaces "pathologiques".

La troisième direction de recherche, ouverte plus particulièrement par la solution du problème de l'espace homogène, est celle de ses possibles extensions. On sait qu'un espace de Banach séparable non-isomorphe à 2 doit avoir au moins deux sous-espaces, à isomorphisme près, mais combien peut-il en avoir ? Cette question a été initialement posée par Gilles Godefroy. Elle s'exprime bien dans le langage de la classification des relations d'équivalence analytiques sur un espace Polonais : en étudiant la complexité de la relation d'isomorphisme entre les sous-espaces d'un espace donné (qu'on peut voir comme une relation d'équivalence analytique sur un espace Polonais), on obtiendra strictement plus d'informations qu'en étudiant uniquement le nombre de classes. Dans cet esprit, Ferenczi et Rosendal ont conjecturé que pour un espace de Banach séparable X non-isomorphe à 2 , la relation d'équivalence E 0 devait être réductible à l'isomorphisme entre les sous-espaces de X (un espace satisfaisant cette dernière propriété sera appelé un espace ergodique). En particulier, le nombre de classes d'isomorphisme devrait avoir la puissance du continu. Une conjecture plus faible, émise par Johnson, est la suivante : il n'existe pas d'espace de Banach séparable possédant exactement deux sous-espaces, à isomorphisme près. Ces deux problèmes sont encore largement ouverts à l'heure actuelle.

Ces deux dernières directions de recherche s'avèrent être liées, et seront étudiées dans le dernier chapitre de ce manuscrit. On étudiera la conjecture de Ferenczi et Rosendal, ainsi que celle de Johnson, et en particulier la question de savoir si on peut, pour démontrer ces conjectures, se ramener au cas d'espaces ayant une base inconditionnelle. Plus précisément, on s'intéressera aux conjectures suivantes :

(1) Tout espace de Banach séparable non-ergodique, non isomorphe à 2 , possède un sous-espace non-isomorphe à 2 ayant une base inconditionnelle.

(2) Tout espace de Banach séparable possédant exactement deux sous-espaces à isomorphisme près, doit posséder une base inconditionnelle.

On ne démontrera pas ces conjectures, mais on parviendra à les réduire à des problèmes semblant plus abordables. Leur énoncé fait appel à une nouvelle classe d'espaces introduite dans ce manuscrit, les espaces héréditairement Hilbertprimaires (HHP), qu'on peut voir comme une généralisation des espaces héréditairement indécomposables ou bien comme une variante des espaces primaires. Un espace X sera dit HHP s'il ne contient aucune somme directe topologique de deux sous-espaces fermés, de dimension infinie, et non-isomorphes à 2 . Les résultats suivants seront démontrés :

• Pour montrer la conjecture (1), il suffit de montrer que tout espace HHP nonisomorphe à 2 possède un sous-espace non-isomorphe à 2 dans lequel il ne peut pas se plonger ;

• Pour montrer la conjecture (2), il suffit de montrer qu'un espace HHP nonisomorphe à 2 possède au moins trois sous-espaces deux-à-deux non-isomorphes.

Ces résultats semblent plausibles, car ils sont proches du résultat dû a Gowers et Maurey affirmant qu'un espace héréditairement indécomposable n'est isomorphe à aucun de ses sous-espaces propres. On donnera d'ailleurs à la fin de ce manuscrit une nouvelle preuve du théorème de Gowers et Maurey, basée uniquement sur la théorie de Fredholm, et qui pourrait être un point de départ pour montrer qu'un espace HHP non-isomorphe à 2 possède suffisamment de sous-espaces deux-à-deux non-isomorphes.

Les deux résultats précédents sont conséquences de deux dichotomies d'espaces de Banach qui seront démontrées dans le chapitre IV de cette thèse. Ces dichotomies sont dans l'esprit du programme de Gowers, mis à part qu'elle sont Hilbert-évitantes, c'est-àdire qu'on assure que le sous-espace qu'elles produisent sera non-isomorphe à 2 . Avoir de telles dichotomies est très utile lorsqu'on s'attaque à la question du nombre de sousespaces, car lorsqu'on utilise les dichotomies traditionnelles, rien n'assure que le sousespace produit ne sera pas isomorphe à 2 , même si l'espace de départ est très complexe. La première dichotomie (théorème IV.12) est une variante 2 -évitante de la première dichotomie de Gowers et la seconde est une variante 2 -évitante d'une dichotomie dûe à Ferenczi et Rosendal [START_REF] Ferenczi | Banach spaces without minimal subspaces[END_REF]. On peut les voir comme les premières pierres d'une liste de Gowers pour les espaces non-isomorphes à 2 . Ces dichotomies sont prouvées en utilisant les résultats de type Ramsey abstraits démontrés dans les chapitres II et III de cette thèse, en particulier le théorème de Gowers abstrait (théorème III.17) ainsi que le principe de Ramsey adverse (théorème II.4). 
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Notations and conventions

Following the tradition in set theory, the set of nonnegative integers will be denoted by ω.

An integer n ω will usually be viewed as the set of its predecessors, n t0, 1, . . . , n¡1u.

Given two nonempty subsets A, B ω, we will say that A B if di A dj B i j.

Given n ω and a nonempty A ω, we say that n A if di A n i.

If X and Y are two sets, X Y will denote the set of mappings from Y to X. In particular, X ω is the set of infinite sequences of elements of X, and for n ω, X n is the set of n-uples of elements of X. We will denote by X ω nω X n the set of finite sequences of elements of X, and X ¤ω X ω X ω . We denote by SeqpXq X ω zt∅u the set of finite sequences of elements of X having at least one term. Given s, t X ¤ω , we let s t if s is an initial segment of t; this is, actually, the usual set-theoretical inclusion. If s X ¤ω , we denote by |s| the length of s, i.e. the unique ordinal α (ω or an integer) such that s X α . For s X ω and t X ¤ω , we denote by s " t the concatenation of s and t; for instance, if s ps 0 , . . . , s m¡1 q and t pt 0 , . . . , t n¡1 q, then s " t ps 0 , . . . , s m¡1 , t 0 , . . . , t n¡1 q. If f X Y and Z Y , we will denote by f aeZ X Z the restriction of f to Z; in particular, if s X ¤ω and n ¤ |s|, s aen will denote the sequence of the n first terms of s (unless otherwise specified, because for convenience of notation, we will sometimes derogate to this rule).

A tree on a set X is a set T X ω such that for every s, t X ω , if s t and t T , then s T . An element of a tree is usually called a node, and a terminal node of T is an s T that is maximal in T for the inclusion. A pruned tree is a tree without terminal nodes. An infinite branch of the tree T is an x X ω such that for every n ω, we have x aen T ; the set of infinite branches of T is denoted by rTs.

We will denote by c the cardinality of the continuum, 2 ℵ 0 . If X is a topological space we define by induction, for n ω, the sets Σ 1 n pXq and

Π 1
n pXq of subsets of X in the following way:

• Σ 1 0 pXq is the set of open subsets of X; • Π 1 n pXq is the set of A X such that A c Σ 1 n pXq; • Σ 1 n 1 pXq is the set of A X that are the first projection of a set B Π 1 n pX ¢ω ω q.
We also let ∆ 1

n pXq Σ 1 n pXqΠ 1 n pXq. In particular, if X is Polish, then Σ 1 n pXq, Π 1 n pXq
and ∆ 1 n pXq are respectively the set of analytic, coanalytic, and Borel subsets of X. As in Polish spaces, we call nω Σ 1 n pXq the class of projective subsets of X.

We say that a class Γ of subsets of Polish spaces is suitable if it contains the class of Borel sets and is stable under finite unions, finite intersections and Borel inverse images.

For such a class, let hΓ be the class of projections of Γ-sets; in other words, for A a subset of a Polish space X, we say that A hΓ if and only if there exist B X ¢ 2 ω such that B Γ and A is the first projection of B (we could have taken any uncountable Polish space instead of 2 ω in this definition, since Γ is closed under Borel inverse images). The class hΓ is itself suitable.

In this thesis, we will call Banach space an infinite-dimensional complete normed vector space. Unless otherwise specified, all Banach spaces will be over R; however, most of the time, the results we present apply as well to complex spaces. Unless otherwise specified, we will call a subspace of a Banach space E an infinite-dimensional, closed vector subspace of E. The unit sphere of E will be denoted by S E . Usually, the norm on a Banach space will be denoted by }¤}. If E and F are Banach spaces, we will equip, unless otherwise specified, the space LpE, F q of bounded operators from E to F , and the space E ¦ of continuous linear forms on E, with the operator norm, that will usually be denoted by ~¤ ~. When we refer to topological notions about Banach spaces without further explanation, these notion are always considered in respect to the norm topology.

An isomorphism between two Banach spaces E and F is a bijective bounded operator T : E ÝÑ F whose inverse is bounded. Such an isomrphism is said to be a

C-isomorphism, where C ¥ 1, if ~T~¤ ~T¡1 ~¤ C. If ~T~ ~T¡1 ~ 1, we say that
T is an isometry. An embedding (resp. a C-embedding) of E into F is an isomorphism (resp. a C-isomorphism) between E and a subspace of F . If there exists an embedding (resp. a C-embedding) of E into F , we say that E embeds (resp. C-embeds) into F , and this is denoted by E F (resp. E C F ). Given two finite-dimensional vector spaces E and F with the same dimension, we denote by d BM pE, F q the Banach-Mazur distance between E and F , i.e. the infimum of the nuumbers logp~T ~¤ ~T¡1 ~q, where T : E ÝÑ F is an isomorphism. Sometimes, we will also use this notation for infinitedimensional spaces, and in the case where E and F are not isomorphic, we will say that d BM pE, F q V. Two spaces are isometric if and only if the Banach-Mazur distance between them is 0.

If X is a compact Hausdorff space, CpXq will denote the space of continuous functions X ÝÑ R with the sup norm } ¤ } V .

Chapter I

Introduction and history

The results presented in this thesis have their roots in the work of Gowers. In the 90's, he proved a Banach-space dichotomy [START_REF] Gowers | An infinite Ramsey theorem and some Banach-space dichotomies[END_REF] which, combined with a result by Komorowski and Tomczak-Jaegermann [START_REF] Komorowski | Banach spaces without local unconditional structure[END_REF] gave a positive answer to a celebrated question by Banach. This question, known as the homogeneous space problem, asked whether 2 was the only Banach space, up to isomorphism, that was isomorphic to all of its subspaces.

His proof opened several new research directions. The first one is combinatorial and set-theoretical. The methods used in the proof of Gowers' dichotomy are much more combinatorial than analytical. The proof indeed relies on a Ramsey-type result in Banach spaces, inspired by Mathias' [START_REF] Mathias | On a generalization of Ramsey's theorem[END_REF] and Silver's [START_REF] Silver | Every analytic set is Ramsey[END_REF] infinite-dimensional version of Ramsey's theorem. However, this Ramsey-type result is slightly different from most infinite-dimensional Ramsey results, since it has a partially game-theoretic formulation. This led several authors, for instance Bagaria and López-Abad [START_REF] Bagaria | Weakly ramsey sets in Banach spaces[END_REF][START_REF] Bagaria | Determinacy and weakly Ramsey sets in Banach spaces[END_REF] or Rosendal [START_REF]An exact Ramsey principle for block sequences[END_REF][START_REF]Determinacy of adversarial Gowers games[END_REF] to study this result in more details, its possible extensions, and its links with the determinacy of games.

The second research direction opened by Gower's work is known as Gowers' program. The idea is to give a "loose" classification of Banach spaces "up to subspaces", i.e. to give a list of natural classes of Banach spaces that are pairwise disjoints and such that every space has a subspace in one of the classes. This could be done by proving other Banachspaces dichotomies by the same Ramsey-theoretic methods. This work has been initiated by Gowers in [START_REF] Gowers | An infinite Ramsey theorem and some Banach-space dichotomies[END_REF], and continued by several authors and in particular by Ferenczi and Rosendal in [START_REF] Ferenczi | Banach spaces without minimal subspaces[END_REF].

The third research direction comes from a question by Godefroy. He asked how many subspaces could have, up to isomorphism, a Banach space non-isomorphic to 2 . This question, that can be asked more precisely in the formalism of the classification of analytic equivalence relations on standard Borel spaces, led to several partial results, for example [START_REF] Ferenczi | Minimal subspaces and isomorphically homogeneous sequences in a Banach space[END_REF][START_REF] Ferenczi | Ergodic Banach spaces[END_REF][START_REF] Anisca | The ergodicity of weak Hilbert spaces[END_REF][START_REF] Carrera | Non-ergodic Banach spaces are near Hilbert[END_REF].

In this manuscript, we will mostly investigate the first and the third direction, that turn out to be widely linked. We start by introducing more precisely these results and their history, before presenting the organisation of this manuscript.

I.1 Determinacy

Determinacy is not the central subject of this thesis, however, since statements based on determinacy are often taken as axioms in set theory and have consequences on several results that will be presented in this manuscript, it is worth to start by introducing it. Determinacy is the study of the existence of winning strategies in two-player games with perfect information. Here, we will restrict our attention to games with length ω. Such a game will be represented by a set X (the set of possible moves), by a nonempty tree T X ω without terminal nodes (the rule), and by a set X rTs (the target set). Two players, denoted by I and II, choose alternately an element x i X:

I x 0 x 2 . . . II x 1 x 3 . . .
and they have to preserve the following property: for every i ω, px 0 , . . . x i q T . Player I wins if px i q iω X , and otherwise, player II wins. This game will be denoted by GpT, X q.

A winning strategy for a player is a strategy that enables him or her to win whatever the other player plays. Formally, a strategy for player I is a function τ that associate to every s T with even length an x X such that s " x T . Saying that I plays according to the strategy τ means that, if the current state of the game is the following:

I x 0 . . . x 2i¡2 II x 1 . . . x 2i¡1 ,
then I plays x 2i τ px 0 , x 1 , . . . , x 2i¡2 , x 2i¡1 q. We say that this strategy is winning when for every sequence px i q iω rTs, if for every i ω we have x 2i τ px 0 , x 1 , . . . , x 2i¡2 , x 2i¡1 q, then px i q iω X . We define in the same way the notion of a strategy, and of a winning strategy, for player II.

It will also often be convenient to define games without specifying a target set. Such games are defined with an outcome, which is a function of the sequence of moves of the players during the game (most of the time, it will be a subsequence of the sequence of moves). Formally, an outcome is a mapping F from rTs to some set Y ; if the sequence of moves during the game is px i q iω rTs, then the outcome of the game will be F ppx i q iω q.

The game whose rule is a tree T and whose outcome is a function F will be denoted by GpT, F q, or simply by GpT q if F is the identity. For games that are defined with an outcome rather than a target set, we will not speak about winning strategies but rather about strategies to reach some sets. For example, if Y Y , we will say that player I has a strategy in the game GpT, F q to reach Y if he has a strategy to ensures that the outcome of the game will be in the set Y; formally, such a strategy will be a winning strategy in the game GpT, F ¡1 pYqq.

We say that the game GpT, X q is determined if one of the players has a winning strategy in this game. When there is no ambiguity on the tree T , we will also say that the set X rTs is determined. In many cases we will study, the tree T will be the whole X ω ; when we say, without further explanation, that a set X X ω is determined, it will always be understood that the underlying tree is X ω . A game whose rule tree is X ω will be called a game on X.

Not all games are determined: we can easily build counterexamples using the axiom of choice (see [START_REF] Moschovakis | Descriptive set theory[END_REF], exercise 6A.6 for a construction of a subset of 2 ω that is not determined; this easily implies that such sets also exist in X ω for every set X with cardinality greater that 2). It is then natural to look for positive results under topological restrictions. Here, we will endow X with the discrete topology, and rTs with the topology induced by the product topology on X ω . [START_REF] Gale | Infinite games with perfect information[END_REF] proved that every closed game (i.e., a game with a closed target set) is determined. It was then extended by Wolfe [START_REF] Wolfe | The strict determinateness of certain infinite games[END_REF] to Σ 0 2 games, by Davis [START_REF] Davis | Infinite games of perfect information[END_REF] to Σ 0 3 games, and finally, Martin proved in 1975 that every Borel game is determined [START_REF] Martin | Borel determinacy[END_REF] (a proof can also be found in [START_REF] Kechris | Classical descriptive set theory[END_REF], theorem 20.5). Martin's result is optimal in ZF C:

Gale and Stewart

in ZF C V L, it is possible to build Σ 1
1 subsets of ω ω that are not determined (see [START_REF] Moschovakis | Descriptive set theory[END_REF], exercise 6A.12).

In this manuscript, for Γ a class of subsets of Polish spaces, we will denote by Det ω pΓq the assumption "every Γ-subset of ω ω is determined". This implies that every Γ-game whose rule is an at most countable tree is determined, as soon as Γ is suitable. We will also denote by Det R pΓq the statement "when R is endowed with its usual Polish topology, and R ω with the product topology, every Γ-subset of R ω is determined". Here, we consider the Polish topology on R and not the discrete one, since it will be enough to prove the results we want.

Determinacy has strong links with set theory. The first remark is that, while Gale and Stewart's, Wolfe's and Davis' results can be proved in second-order arithmetic (so in particular, in the theory ZC), Martin's proof of Borel determinacy uses a much larger fragment of ZF C. In fact, Friedman proved [START_REF] Friedman | Higher set theory and mathematical practice[END_REF] that any proof of Borel determinacy should make use of the replacement scheme and of the powerset axiom. Many determinacy statements have also been shown equiconsistent with large cardinal hypotheses. Martin [START_REF] Martin | Measurable cardinals and analytic games[END_REF] proved in 1970 that, if there exists a measurable cardinal κ, then every analytic game on a set X with cardinality strictly lower that κ was determined. Harrigton [START_REF] Harrington | Analytic determinacy and 0 #[END_REF] showed then that Det ω pΣ 1 1 q was equivalent to a slightly weaker hypothesis than the existence of a measurable cardinal, the existence of x # for every real x. Then, the works of Martin and Steel [START_REF] Martin | Projective determinacy[END_REF][START_REF] Martin | A proof of projective determinacy[END_REF] and of Woodin [START_REF] Woodin | Supecompact cardinals, sets of reals, and weakly homogeneous trees[END_REF] (see also [START_REF] Martin | A proof of projective determinacy[END_REF] and [START_REF] Neeman | Determinacy in LpRq. Handbook of set theory[END_REF] for proofs of unpublished results by Woodin) led to proofs of the statements Det ω pΣ 1 n q (for n ¥ 2)

and "every subset of ω ω in LpRq is determined" assuming large cardinal axioms, based on the notion of Woodin cardinals. Later works by Woodin (see [START_REF] Müller | Mice with finitely many Woodin cardinals from optimal determinacy hypotheses[END_REF][START_REF] Koellner | Large cardinals from determinacy. Handbook of set theory[END_REF]) showed the last statements to be equiconsistent with statements involving large cardinals. Martin, Steel and Woodin's work show, in particular, that assuming the consistency of some large cardinal axioms, the following theories are consistant:

• ZF C P D, where P D is the axiom of projective determinacy, i.e. the statement dn ω Det ω pΣ 1 n q;

• ZF DC AD, where AD is the axiom of determinacy, i.e. the statement "every subset of ω ω is determined".

The axioms P D and AD have many interesting consequences on the structure of sets of reals, and hence they are widely studied. Of course AD is incompatible with ZF C. Some stronger theories are often also considered, for example:

• ZF C P D R , where P D R is the statement dn ω Det R pΣ 1 n q;

• ZF DC AD R , where AD R is the statement "every subset of R ω is determined".

I.2 Infinite-dimensional Ramsey theory

The fundamental result in Ramsey theory is Ramsey's theorem [START_REF] Ramsey | On a problem of formal logic[END_REF]:

Theorem I.1. Let d ω.
For every colouring of rωs d with a finite number of colors, there exists an infinite M ω such that rMs d is monochromatic.

The set M is usually said to be homogeneous for this colouring, and the integer d is called the dimension of the Ramsey result. Ramsey initially proved his theorem as a lemma in a logic article, however it later found applications in many other fields. Many generalizations, or variants of this theorem in other contexts, were also proved, forming a field that we now call Ramsey theory. An interesting way to generalize this result is to look at what happens when the number d is infinite (this number d is called the dimension of the Ramsey result). We call this direction of research infinite-dimensional Ramsey theory. We restrict our attention to colourings with two colors, since it is more convenient and since extensions to an arbitrary finite number of colors are easily deduced by induction. A colouring with two colors, blue and red, can be viewed as a set X , the set of blue sets for this colouring. It is thus natural to give the following definition. Definition I.2. A set X rωs ω is Ramsey if for every infinite M ω, there exists an infinite N M such that either rNs ω X , or rNs ω X c . Basing ourselve on Ramsey's theorem, it would be natural to conjecture that every subset of rωs ω is Ramsey. However, it is easy to build a counterexample, using the axiom of choice (see for example [START_REF] Kechris | Classical descriptive set theory[END_REF], II.19.C., for a construction by a diagonal argument). It is then natural to look for positive results when we put topological restrictions on the set X . Here, we equip rωs ω with the topology inherited from the Cantor space Ppωq 2 ω with the product topology. Alternately, we can see this topology as inherited from the product topology on ω ω , when we see rωs ω as a subset of ω ω by identifying an infinite set of integer with its increasing enumeration. Basing themselve on previous works by Nash-Williams [START_REF] St | On well-quasi-ordering transfinite sequences[END_REF] and Galvin and Prikry [START_REF] Galvin | Borel sets and Ramsey's theorem[END_REF], Mathias [START_REF] Mathias | On a generalization of Ramsey's theorem[END_REF] and Silver [START_REF] Silver | Every analytic set is Ramsey[END_REF] finally proved the following result: Theorem I.3 (Mathias-Silver). Every analytic subset of rωs ω is Ramsey.

Other results about Ramsey sets were proved next. Ellentuck [START_REF] Ellentuck | A new proof that analytic sets are Ramsey[END_REF] gave a topological characterisation of subsets of rωs ω that are, in some sense, Ramsey "at every scale"; this characterisation is based on a toplogy on rωs ω that is finer than the usual topology. If V L, it is not hard to build a Σ 1 2 -subset of rωs ω that is not Ramsey (this is folklore; a more general result will be proved in section II.4 of this manuscript). In particular, Mathias-Silver's result is optimal in ZF C. Results were also proved under stronger settheoretical assumptions. Mathias [START_REF] Mathias | On a generalization of Ramsey's theorem[END_REF] proved, assuming the consistency of large cardinal hypotheses, the consistency of the theory ZF DC "every subset of rωs ω is Ramsey".

Silver [START_REF] Silver | Every analytic set is Ramsey[END_REF] proved that if there exists a measurable cardinal, then every Σ 1 2 -subset of rωs ω is Ramsey. Harrington and Kechris [START_REF] Harrington | On the determinacy of games on ordinals[END_REF], and independently Woodin [START_REF] Woodin | On the consistency strength of projective uniformization[END_REF] proved that under P D, every projective subset of rωs ω is Ramsey. Martin and Steel [START_REF] Martin | The extent of scales in LpRq[END_REF] proved a result implying that if AD holds in LpRq, then in LpRq, every subset of rωs ω is Ramsey.

In particular, this implies that under a strong enough large cardinal assumption, every subset of rωs ω that is in LpRq is Ramsey. These last results are not directly obtained by the determinacy of some game, but are proved using heavy set-theoretical machinery.

Kastanas [START_REF] Kastanas | On the Ramsey property for sets of reals[END_REF] defined for the first time in 1983 a game that is directly related to the Ramsey property. Tanaka [START_REF] Tanaka | A game-theoretic proof of analytic Ramsey theorem[END_REF] gave then an unfolded version of Kastanas' game and used it to give a new proof of Mathias-Silver's theorem, based on the determinacy of Σ 0 2 -sets. Since Kastanas' game will play a central role in the proof of a result of this thesis, we will here recall its definition. Given an infinite set of integers M , Kastanas' game below M , denoted by K M , is defined as follows:

I M 0 M 1 . . . II n 0 , N 0 n 1 , N 1 . . .
where the M i 's and the N i 's are elements of rωs ω , and the n i 's are elements of ω. The rules are the following:

• for I: M 0 M , and for all i ω, M i 1 N i ;

• for II: for all i ω, n i M i , N i M i , and n i N i .

The outcome of the game is the set tn 0 , n 1 , . . .u rωs ω . Remark that this game is a game on reals: the players play elements of rωs ω (or of ω ¢ rωs ω for player II) that can be viewed as real numbers. The result proved by Kastanas is the following: Theorem I.4 (Kastanas). Let X rωs ω and M ω be infinite.

1. If player I has a strategy in K M to reach X c , then there exists an infinite N M such that rNs ω X c . 2. If player II has a strategy in K M to reach X , then there exists an infinite N M such that rNs ω X .

In particular, this theorem, combined with Borel determinacy of games on reals, show that every Borel subset of rωs ω is Ramsey. Tanaka actually proved that it was possible to deduce the Ramsey property for analytic subsets of rωs ω from the determinacy of an unfolded version of Kastanas' game with a Σ 0 2 target set, and the Ramsey property for Σ 1 2 -subsets of rωs ω from the determinacy of the same game with an analytic target set. In particular, Tanaka's method enables to recover Mathias-Silver's theorem, and Silver's result that under the existence of a measurable cardinal, every Σ 1 2 -subset of rωs ω is Ramsey. However, it does not enable to recover results about the Ramsey property under P D or under AD in LpRq, since Kastanas' game is not a game on integers. And it is still not known today whether in ZF DC AD, every subset of rωs ω is Ramsey.

An important remark is that in Tanaka's proof of Mathias-Silver's theorem, the sets M and N are often seen as subspaces, i.e. elements of a poset (in the game K M , players play subsets of ω that are smaller and smaller), while an element of rNs ω is rather seen as an infinite sequence, the increasing sequence of its elements (this sequence being a subsequence of the sequence of moves of the players). This distinction between sets seen as subspaces and sets seen as sequences of points also appear in more classical proofs of Mathias-Silver's theorem and is actually central in infinitedimensional Ramsey theory. In the decades that followed the proof of Mathias-Silver's theorem, several similar results arose in different contexts (words, trees, etc.), constituing what we call now infinite-dimensional Ramsey theory. All of these have the same form: we color infinite sequences of points satisfying some structural condition (being increasing, being block-sequences, etc.) and the theorem ensures that we can find a monochromatic subspace. To illustrate this, we give here another example due to Milliken. Let K be a field, and E be a countably-infinite dimensional vector space over K with a basis pe i q iω . If x °iω x i e i E, we define the support of x as the set supppxq ti ω | x i $ 0u. A block-sequence is an infinite sequence px i q iω of nonzero vectors of E such that supppx 0 q supppx 1 q . . .. A block-subspace of E is a vector subspace of E spanned by a block-sequence. Remark that, since every vector of E has finite support, every infinite-dimensional subspace of E contains a block subspace. We can endow E with the discrete topology and E ω with the product topology. Miliken's result is the following: Theorem I.5 (Milliken). Suppose that E is a countably-infinite dimensional vector space over K F 2 , with a basis. Let X be an analytic set of block-sequences of E. Then for every block-subspace X E, there exists a block-subspace Y X such that:

• either every block-sequence in Y belongs to X ;

• or every block-sequence in Y belongs to X c . This theorem is usually formulated in terms of finite subsets of ω rather that vector spaces over F 2 , however we chose here this formulation because a link with other results presented in this manuscript will appear more clearly. For a proof, see [START_REF] Todorčević | Introduction to Ramsey spaces[END_REF], corollary 5.23.

It turns out that the proofs of all results in infinite-dimensional Ramsey theory use in an essential way what we call a pigeonhole principle. A pigeonhole principle is, in general, a one-dimensional Ramsey result, ensuring that for a colouring of points of some space with a finite number of colors (or equivalently, two colors), there exists a monochromatic subspace. The pigeonhole principle associated to an infinite-dimensional Ramsey theorem is the result we get if we restrict this theorem to colorations of sequences that only depend on the first term of the sequence. For instance, the pigeonhole principle associated to Mathias-Silver's theorem is the trivial fact that for every infinite M ω and every A ω, there exists an infinite N M such that either N A, or N A c .

The pigeonhole principle associated to Milliken's theorem, however, is not trivial at all; it is the following result by Hindman (see [START_REF] Todorčević | Introduction to Ramsey spaces[END_REF], theorem 2.25):

Theorem I.6 (Hindman). Suppose that E is a countably-infinite dimensional vector space over K F 2 , with a basis. Then for every colouring of the nonzero vectors of E with a finite number of colors, and for every block-subspace X E, there exists a block-subspace Y X such that Y zt0u is monochromatic.

Many examples of infinite-dimensional Ramsey theorems, and of their associated pigeonhole principles, can be found in Todorčević book [START_REF] Todorčević | Introduction to Ramsey spaces[END_REF], where a general framework to deduce an infinite dimensional Ramsey result from its associated pigeonhole principle is also developped.

I.3 Gowers' Ramsey-type theorem in Banach spaces and adversarial Gowers' games

The first infinite-dimensional Ramsey-type result that was not relying on a pigeonhole principle was proved by Gowers, in the 90's. The aim of Gowers was to solve a celebrated problem asked by Banach, the homogeneous space problem, asking whether 2 was the only infinite-dimensional Banach space, up to isomorphism, that was isomorphic to all of its closed, infinite-dimensional subspaces. Gowers proved a dichotomy [START_REF] Gowers | An infinite Ramsey theorem and some Banach-space dichotomies[END_REF] that, combined with a result by Komorowski and Tomczak-Jaegermann [START_REF] Komorowski | Banach spaces without local unconditional structure[END_REF], provided a positive answer to Banach's question. The proof of this dichotomy relies on a Ramsey-type theorem in separable Banach spaces, that we will state now. We start by recalling some basic notions about bases in Banach spaces; these notions will be central in all of this manuscript. For proofs and more details, see [START_REF] Albiac | Topics in Banach space theory[END_REF].

Let E be a Banach space. A Schauder basis of E is a sequence pe i q iω E ω such that every x E can be written in a unique way as an infinite sum °V i0 x i e i , where x i R. In this manuscript, we will only consider normalized Schauder bases: we will add to the definition that vectors of a Schauder basis must have norm 1 (this restriction is not usual, but here, it will make things simpler). A Schauder basis is not a basis in the algebraic sense, however algebraic bases (that are often called Hamel bases) do not have much interest in the study of Banach spaces, so when speaking about a Banach space, in this manuscript, Schauder bases will often be simply called bases. Given a basis pe i q of a Banach space E, we can define , for every n, a projection P n : E ÝÑ spante i | i nu by P n °V i0 x i e i ¨ °i n x i e i . It can be shown that all these projections are bounded and that C : sup nω ~Pn ~ V. This constant C is called the basis constant of pe i q.

A normalized sequence px i q iω E ω that is a basis of the closed subspace of E it spans is called a basic sequence. It can be shown that a normalized sequence px i q iω E ω is a basic sequence if and only if there exists a constant C such that for every integers m ¤ n and for every pa i q i n R n , we have } °i m a i x i } ¤ } °i n a i x i }; in this case, the basis constant of px i q is the least such C. A classical result asserts that every Banach space contains a basic sequence, and that moreover, the constant of this basic sequence can be choosen as close as 1 as we want.

If E is a Banach space with a basis pe i q, we define the support of a vector x °V i0 x i e i , denoted by supppxq, as the set ti ω | x i $ 0u. A block-sequence of pe i q is an infinite normalized sequence px n q nω of vectors of E with supppx 0 q supppx 1 q . . .. A consequence of the previous characterisation of basic sequences is that a block-sequence of pe i q is a basic sequence with constant not greather than the constant of pe i q. A closed subspace of E generated by a block-sequence is called a block-subspace.

For X a block-subspace of E, we denote by rXs the set of block-sequences all of whose terms are in X (if px n q is a block-sequence generating X, then these sequences are exactly the block-sequences of px n q). We can equip rEs with a natural topology by seeing it as a subspace of pS E q ω with the product topology (where S E is endowed with the norm topology), which makes it a Polish space. For X rEs and ∆ p∆ n q nω a sequence of positive real numbers, we let pXq ∆ tpx n q nω rEs | hpy n q nω X dn ω }x n ¡ y n } ¤ ∆ n u, a set called the ∆-expansion of X . In order to state Gowers' theorem, we need a last definition.

Definition I.7. Let X be a block-subspace of E. Gowers' game below X, denoted by G X , is the following infinite two-players game (whose players will be denoted by I and II):

I Y 0 Y 1 . . . II y 0 y 1 .
. . where the Y i 's are block-subspaces of X, and the y i 's are normalized elements of E with finite support, with the constraints for II that for all i ω, y i Y i and supppy i q supppy i 1 q. The outcome of the game is the sequence py i q iω rEs.

Remark that saying that player II has a strategy in G X to reach X means, in a certain way, that "a lot" of block sequences of X belong to X . We can now state Gowers' theorem: Theorem I.8 (Gowers' Ramsey-type theorem). Let X rEs be an analytic set, X E a block-subspace, and ∆ be an infinite sequence of positive real numbers. Then there exists a block-subspace Y of X such that either rY s X c , or player II has a strategy in G Y to reach pXq ∆ .

While one of the possible conclusions of this theorem, rXs X c , is very similar to "For every infinite S M , we have S X c " in Mathias-Silver's theorem, the other one is much weaker, for two reasons: the use of metrical approximation and the use of a game. As we will see later, the necessity of the approximation is due to a lack of finiteness, while the necessity for one of the possible conclusions to involve a game matters much more and is due to the lack of a pigeonhole principle in this context. In some Banach spaces, a pigeonhole principle holds, and in these spaces, Gowers gave a strengthening of his theorem, involving no game, that we will introduce now. We start by stating the general form of the pigeonhole principle that we will use in Banach spaces; since an exact pigeonhole principle is never satisfied in this context, and would anyways be useless since approximation is needed for other reasons, we will only state an approximate pigeonhole principle. For a Banach space E, a set A S E , and δ ¡ 0, we let pAq δ tx S E | hy A }x ¡ y} ¤ δu. Definition I.9. Say that a Banach space E with a Schauder basis satisfies the approximate pigeonhole principle if for every A S E , for every block-subspace X E, and for every δ ¡ 0, there exists a block-subspace Y X such that either S Y A c , or S Y pAq δ .

Recall that an infinite-dimensional Banach space E is said to be c 0 -saturated if c 0 can be embedded in all of its infinite-dimensional, closed subspaces. A combination of results of Gowers [START_REF] Gowers | Lipschitz functions on classical spaces[END_REF], Odell and Schlumprecht [START_REF] Odell | The distortion problem[END_REF], and Milman [START_REF] Milman | Geometric theory of Banach spaces, part II: Geometry of the unit sphere[END_REF] shows the following: Theorem I.10. A space E with a Schauder basis satisfies the approximate pigeonhole principle if an only if it is c 0 -saturated.

Thus, in c 0 -saturated spaces, we have a strengthening of Gowers' theorem: Theorem I.11 (Gowers' Ramsey-type theorem for c 0 ). Suppose that E is c 0 -saturated. Let X rEs be an analytic set, X E be a block-subspace, and ∆ be an infinite sequence of positive real numbers. Then there exists a block-subspace Y of X such that either rY s X c , or rY s pXq ∆ .

For a complete survey of Gowers' Ramsey-type theory in Banach spaces, see [START_REF] Argyros | Ramsey methods in analysis[END_REF], part B, chapter IV.

In 2010, in [START_REF]An exact Ramsey principle for block sequences[END_REF], Rosendal proves an exact version (without approximation) of Gowers' theorem, in countable vector spaces, which easily implies Gowers' theorem in Banach spaces. In this theorem, to be able to remove the approximation, we have to weaken the non-game-theoretical conclusion by introducing a new game, the asymptotic game. We present here Rosendal's theorem in more details. Let E be a countably infinitedimensional vector space over an at most countable field K and pe i q iω be a basis (in the algebraic sense) of E. To a block-subspace X E, we associate two games defined as follows: Definition I.12.

1. Gowers' game below X, denoted by G X , is defined in the following way:

I Y 0 Y 1 . . . II y 0 y 1 . . .
where the Y i 's are block-subspaces of X, and the y i 's are nonzero elements of E, with the constraint for II that for all i ω, y i Y i . The outcome of the game is the sequence py i q iω E ω .

2. The asymptotic game below X, denoted by F X , is defined in the same way as G X , except that this time, the Y i 's are moreover required to have finite codimension in X.

We endow E with the discrete topology and E ω with the product topology; since E is countabe, E ω is a Polish space. Rosendal's theorem is then the following: Theorem I.13 (Rosendal). Let X be an analytic subset of E ω . Then for every blocksubspace X E, there exists a block-subspace Y X such that either I has a strategy in F Y to reach X c , or II has a strategy in G Y to reach X .

We say that a set X E ω is strategically Ramsey if it satisfies the conclusion of this theorem. Remark that if K F 2 , then this theorem is implied by Milliken's theorem I.5. However, the immediate generalization of Milliken's theorem is false for fields with more than two elements, in particular (but not only) because the associated pigeonhole principle (i.e. the immediate generalization of Hindman's theorem I.6) is not true for these fields. In general, for vector spaces over an at most countable field, we cannot have a better result than theorem I.13. However, here, the use of an asymptotic game in one side of the alternative is not much weaker than a non-game-theoretical conclusion as in Milliken's theorem. This will be discussed in more details in section II.2 of this manuscript.

In the same paper as the last theorem, Rosendal, inspired by the work of Pelczar [START_REF] Pelczar | Subsymmetric sequences and minimal spaces[END_REF], and by a common work with Ferenczi [START_REF] Ferenczi | Banach spaces without minimal subspaces[END_REF], introduced a new Ramsey principle which is, unlike theorem I.13, symmetrical. His result was then refined in [START_REF]Determinacy of adversarial Gowers games[END_REF]. It involves two games, known as the adversarial Gowers' games, obtained by mixing the games G X and F X .

Definition I.14.

1. For a block-subspace X E, the game A X is defined in the following way:

I x 0 , Y 0 x 1 , Y 1 . . . II X 0 y 0 , X 1 y 1 , X 2 . . .
where the x i 's and the y i 's are nonzero vectors of X, the X i 's are block-subspaces of X, and the Y i 's are block-subspaces of X with finite codimension. The rules are the following:

• for I: for all i ω, x i X i ;

• for II: for all i ω, y i Y i ;

and the outcome of the game is the sequence px 0 , y 0 , x 1 , y 1 , . . .q E ω .

2. The game B X is defined in the same way as A X , except that this time the X i 's are required to have finite codimension in X, whereas the Y i 's can be arbitrary block-subspaces of X.

The result Rosendal proves in [START_REF]Determinacy of adversarial Gowers games[END_REF] is the following:

Theorem I.15 (Rosendal). Let X E ω be Σ 0 3 or Π 0 3 . Then for every block-subspace X E, there exists a block-subspace Y X such that either I has a strategy in A Y to reach X , or II has a strategy in B Y to reach X c .

Let us say that a set X E ω is adversarially Ramsey if it satisfies the conclusion of this theorem. Then, a natural question to ask is for which complexity of the set X one can ensure that it is adversarially Ramsey.

There are two things to remark.

Firstly, let X E ω and define X I tpx i q iω E ω | px 2i q iω X u. Then by forgetting the contribution of player II to the outcome of the adversarial Gowers' games and switching the roles of players I and II, we see that X is strategically Ramsey if and only if X I is adversarially Ram- sey. So, for a class Γ of subsets of Polish spaces, closed under continuous inverse image, saying that all Γ-subsets of E ω are adversarially Ramsey is stronger than saying that all Γ-subsets of E ω are strategically Ramsey. The second remark is that, if the field K is infinite, then the adversarial Ramsey property for Γ-subsets of E ω also implies that all Γ-subsets of ω ω are determined. To see this, remark that when playing vectors in A X or B X , no matter the constraint imposed by the other player, players I and II have total liberty for choosing the first non-zero coordinate of the vectors they play. Therefore, by making X only depend on the first nonzero coordinate of each vector played, we recover a classical Gale-Stewart game in pK ¦ q ω . For this reason, there is no hope, in ZF C, to prove the adversarial Ramsey property for a class larger than Borel sets. Then, Rosendal asks the following questions in [START_REF]Determinacy of adversarial Gowers games[END_REF]: Question I.16 (Rosendal). Is every Borel set adversarially Ramsey? Question I.17 (Rosendal). In the presence of large cardinals, is every analytic set adversarially Ramsey?

A part of chapter II in this thesis will be devoted to answer these questions.

I.4 Banach-spaces dichotomies and complexity of the isomorphism

As we already said at the beginning of this introduction, Gowers introduced his Ramseytype theorem I.8 in order to prove a Banach-space dichotomy that was instrumental in the solution of a celebrated question asked by Banach in his book Théorie des Opérations Linéaires [START_REF] Banach | Théorie de opérations linéaires[END_REF]. Say that a Banach space is homogeneous if it is isomorphic to all of its subspaces. Obviously, 2 is homogeneous, and a homogeneous space has to be separable. Banach's question is the following:

Question I.18 (Banach's homogeneous space problem). Is every homogeneous Banach space isomorphic to 2 ?

This problem was solved by the positive in the 90's by a combination of results by Gowers and Maurey [START_REF] Gowers | The unconditional basic sequence problem[END_REF], Komorowski and Tomczak-Jaegeramnn [START_REF] Komorowski | Banach spaces without local unconditional structure[END_REF] , and Gowers [START_REF] Gowers | An infinite Ramsey theorem and some Banach-space dichotomies[END_REF]. We will briefly expose the main steps of this solution, and then present the new research directions that this problem, and its solution, have raised. For this, we need to recall some notions in Banach-space geometry.

Let pe i q iω be a basis of a Banach space E. Remark that, if A ω is infinite and coinfinite, then a projection on the closed subspace generated by the e i 's, for i A, does not necessarily exist: actually, if x °V i0 x i e i converges, the sums °iA x i e i do not need to converge unless A is finite or cofinite. We say that the basis pe i q is an unconditional basis if for every x °V i0 x i e i E and for every A ω, the sum °iA x i e i converges. It can be shown that, in this case, for every a pa i q iω V and for every x °V i0 x i e i E, the sum D a pxq °V i0 a i x i e i converges, and that the operator D a : E ÝÑ E it defines is bounded (such an operator is called a diagonal operator ). Moreover, there exists a constant K such that for every a V , ~Da ~¤ K}a} V . In this case, the sequence is said to be K-unconditional, and the least such K is called the unconditional constant of the basis pe i q. The unconditional constant is greater, but in general not equal, to the basis constant.

An unconditional basic sequence (or simply an unconditional sequence) is a normalized sequence px i q iω E ω that is an unconditional basis of the closed subspace of E it generates. It can be shown that a normalized sequence px i q iω E ω is Kunconditional if and only if for every n ω, every pa i q i n R n , and every sequence of signs pε i q i n t¡1, 1u n , we have } °i n ε i a i x i } ¤ K } °i n a i x i } (so in particular, px i q is unconditional if and only if there exist a constant K satisfying this property). This shows that a block-sequence of a (K-)unconditional sequence is itself (K-)unconditional.

The canonical bases of the spaces c 0 , and p for 1 ¤ p V, are 1-unconditional.

Spaces with an unconditional basis can be seen as quite regular spaces; in particular, many bounded operators are definable on them (all the D a 's for a V ) and they share many of the good properties of the p 's and of c 0 . For more details, proofs of the previous results, and properties of spaces with an unconditional basis, see [START_REF] Albiac | Topics in Banach space theory[END_REF].

In 1995, Komorowski and Tomczak-Jaegermann [START_REF] Komorowski | Banach spaces without local unconditional structure[END_REF] (with an erratum [START_REF] Komorowski | Erratum to: "Banach spaces without local unconditional structure[END_REF]) showed the following result: Theorem I.19 (Komorowski-Tomczak-Jaegermann). Every separable Banach space either has a subspace isomorphic to 2 , or a subspace without unconditional basis.

An immediate consequence of this theorem is that a homogeneous space that is not isomorphic to 2 cannot contain an unconditional sequence. The question whether a Banach space should always contain an unconditional sequence was itself a longstanding problem, asked by Banach in the same book [START_REF] Banach | Théorie de opérations linéaires[END_REF] and called the unconditional basic sequence problem. This problem was solved by the negative by Gowers and Maurey [START_REF] Gowers | The unconditional basic sequence problem[END_REF] a few years before the proof of Komorowski-Tomczak-Jaegermann's theorem, in 1992. The counterexample built by Gowers and Maurey actually had a slightly stronger property than not containig any unconditional sequence: it was hereditarily indecomposable.

Definition I.20.

1. A Banach space E is indecomposable if there are no subspaces X, Y E such that E X Y .

2. A Banach space E is hereditarily indecomposable (or simply HI ) if every subspace of E is indecomposable.

(Obviously, in the definition of an indecomposable Banach space, we only quantify on infinite-dimensional closed subspaces, since every finite-dimensional subspace has a closed complement, and since every vector subspace is the complement of another vector subspace.)

A space E with an unconditional basis pe i q iω is not indecomposable: indeed, for every A ω, we have E spanpte i | i Auq spanpte i | i A c uq. In particular, an HI space cannot contain an unconditional sequence. However, the converse is not true: for instance, it can easily be shown that the direct sum of two HI spaces cannot contain an unconditional sequence, however it is not HI. Surprisingly, all the natural counterexamples to the unconditional basic sequence problem that Gowers and Maurey managed to build where HI, as if HI spaces were the basic building blocks of such spaces. To explain this phenomenon, Gowers proved a few years later his celebrated first dichotomy [START_REF] Gowers | An infinite Ramsey theorem and some Banach-space dichotomies[END_REF]: Theorem I.21 (Gowers' first dichotomy). Every Banach space either contains a unconditional basic sequence, or contains a HI subspace. This is in order to prove this dichotomy that Gowers proved his Ramsey-type theorem I.8. A consequence of this dichotomy, combined with Komorowski-Tomczak-Jaegermann's theorem, is that if a homogeneous space is not isomorphic to 2 , then it has to be HI. So to solve the homogeneous space problem, it only remains to prove that an HI space cannot be homogeneous. This is actually a consequence of general results by Gowers and Maurey about HI spaces. In the same paper [START_REF] Gowers | The unconditional basic sequence problem[END_REF] where they built the first HI space, they proved the following theorem: Theorem I.22 (Gowers-Maurey). Let X be a complex HI space. Then every bounded operator X ÝÑ X has the form λ Id X S, where λ C and S is a strictly singular operator (that is, an operator that induces no isomorphism between two subspaces of X).

This theorem was proved using spectral theory and is only valid for complex spaces. Using Fredholm theory, we can easily deduce from it the following result (valid as well for real spaces as for complex spaces):

Theorem I.23 (Gowers-Maurey). A (real or complex) HI space cannot be isomorphic to one of its proper subspaces.

In particular, such a space is very far from being homogeneous, and this last result ends the solution of the homogeneous space problem.

The first research direction opened by the solution of the homogeneous space problem, and in particular by Gowers' first dichotomy, is a project initiated by Gowers at the end of his article [START_REF] Gowers | An infinite Ramsey theorem and some Banach-space dichotomies[END_REF]. He suggested that, using Ramsey-theoretic methods to prove Banachspace dichotomies in the same vein as his first dichotomy, we could build a "loose" classification of separable Banach spaces, up to subspaces. The idea is to build a list of classes of separable Banach spaces (called a Gowers list), as precise as possible, satisfying the following conditions:

(1) The classes should be hereditary, i.e. if a space E belongs to one class, then every subspace of E must belong to the same class (or every block-subspace, if the class is defined by a property of bases);

(2) The classes should be disjoint, for obvious reasons;

(3) Every Banach space should have at least one subspace belonging to one of the classes;

(4) Knowing that a space belongs to a class should give much information about the space, and in particular about the operators that can be defined on this space.

Gowers' first dichotomy gives an example of a Gowers list with two classes, the class of spaces with an unconditional basis, and the class of HI spaces. Properties (1) and (2) are obvious, and property (3) is given by the dichotomy. This Gowers list illustrates particularly well property (4), since spaces with an unconditional basis have many operators (in particular, all the diagonal operators), whereas HI spaces have very few of them (in paticular, all diagonal operators on a HI space with a basis are trivial).

The interest of a Gowers list is also to draw a border between "nice", well-behaved spaces (those sharing many good properties of the p 's and of c 0 ) and "pathological" one, like HI spaces, that were mostly discovered in order to provide counterexamples. In the same paper [START_REF] Gowers | An infinite Ramsey theorem and some Banach-space dichotomies[END_REF], Gowers proved a second dichotomy, enabling him to get a Gowers' list with three classes, and then, Ferenczi and Rosendal [START_REF] Ferenczi | Banach spaces without minimal subspaces[END_REF] proved three other dichotomies. We will present one of them here, since it is an inspiration for a part of the work of this thesis.

Definition I.24.

1. A Banach space E is said to be minimal if it can be embedded into all of its subspaces.

2. Let pe i q iω be a basis of some Banach space E. A Banach space X is tight in the basis pe i q if there is an infinite sequence of intervals I 0 I 1 . . . of integers such that for every infinite A ω, we have X span
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3. A basis pe i q iω is said to be tight if every Banach space is tight in it. A Banach space X is tight if it has a tight basis.

The class of minimal spaces is another example of a class of "nice" spaces. For example, the p 's and c 0 are minimal. This is obviously a hereditary class. On the other hand, a tight space cannot be minimal, and it is not hard to see that a block-sequence of a tight basis is itself tight. Tight spaces are more pathological spaces, an example of them is Tsirelson's space, the first example of a space in which none of the p 's, neither c 0 , can be embedded (see [START_REF] Albiac | Topics in Banach space theory[END_REF], section 10.3). The dichotomy is the following: Theorem I.25 (Ferenczi-Rosendal). Every Banach space either has a minimal subspace, or has a tight subspace. This dichotomy does not precisely satisfy the condition (4) in the definition of a Gowers list, since the operators on tight spaces have not been studied much. However, as we will see, knowing that a space is tight gives much information about the isomorphism relation between its subspaces. In particular, such spaces are highly non-homogeneous, and this will be a useful information in the study of the number of non-isomorphic subspaces of a separable Banach space. This is, indeed, the second research direction raised by the solution of the homogeneous space problem. As soon as a separable Banach space is not isomorphic to 2 , it must have at least two non-isomorphic subspaces; but more precisely, how many subspaces can such a space have, up to isomorphism? This very general question was asked by Godefroy, and many particular cases of it were studied. This turn out to be quite difficult questions, and most of the time, we only have partial results about it. For example, the following question was asked by Johnson: Question I.26. Does there exist a separable Banach space having exactly two subspaces, up to isomorphism? Even this question is still open, and will be studied in the present manuscript. A separable Banach space with exactly two subspaces, up to isomorphism, will be called a Johnson space.

It turns out that the right setting to study Godefroy's question is the theory of the classification of equivalence relations on Polish spaces. Let us recall the basic notions of this theory. We will study nonempty Polish spaces equiped with an equivalence relation (that will often be analytic). If X and Y are two nonempty Polish spaces, and if E and F are equivalence relations respectively on X and Y , we say that E Borel-reduces to F , denoted by pX, Eq ¤ B pY, F q (or simply E ¤ B F ) if there is a Borel mapping f : X ÝÑ Y (called a reduction) such that for every x, y X, we have x E y ô f pxq F f pyq (if such an f can be choosen continuous, we will say that E continuously reduces to F , denoted by E ¤ c F ). We say that E and F are Borel-equivalent, denoted by E B F , if E ¤ B F and F ¤ B E. Saying that E reduces to F means that E is less complex than F , and that if we know F , then we can, in some sense "compute" E. Remark that a reduction f from pX, Eq to pY, F q induces a one-to-one mapping X{E Ñ Y {F, and in particular, if E ¤ B F , then E has less classes than F . Thus, studying the complexity of an equivalence relation gives us at least as much information than counting it classes.

If E has at most countably-many classes, then E ¤ B F ô |X{E| ¤ |Y {F|. Thus, for equivalence relations with at most countably many classes, the number of classes completely determines the equivalence type of the relation, and we have the following exhaustive hierarchy:

p1, q ¤ B p2, q ¤ B p3, q ¤ B . . . ¤ B pω, q.
However, for relations with uncountably many classes, the situation is more complex. Restricting our attention to Borel equivalence relations, we will present two dichotomies that give the two next steps of this hierarchy. The first one is valid even for coanalytic relations, and is due to Silver [START_REF] Silver | Counting the number of equivalence classes of Borel and coanalytic equivalence relations[END_REF] (for a more modern proof, see [START_REF] Miller | Forceless, ineffective, powerless proofs of descriptive dichotomy theorems[END_REF]).

Theorem I.27 (Silver). Let E be a coanalytic equivalence relation on a Polish space X. Then either E has at most countably many classes (and thus, Borel reduces to the equality on ω), or p2 ω , q ¤ c pX, Eq.

The next equivalence relation is the relation E 0 on the Cantor space 2 ω , defined by x E 0 y if and only if there exists n ω such that for every m ¥ n, we have xpmq ypmq.

Using standard category arguments (see [START_REF] Harrington | A Glimm-Effros dichotomy for Borel equivalence relations[END_REF]), it can be shown that E 0 is generically ergodic, that is, every E 0 -invariant Baire-measurable set is either meager or comeager, and thus that it is not Borel-reducible to the equality on the Cantor space. In [START_REF] Harrington | A Glimm-Effros dichotomy for Borel equivalence relations[END_REF], Harrington, Kechris and Louveau show the following dichotomy (for a more modern proof, see [START_REF] Miller | Forceless, ineffective, powerless proofs of descriptive dichotomy theorems[END_REF]):

Theorem I. [START_REF] Harrington | A Glimm-Effros dichotomy for Borel equivalence relations[END_REF]. Let E be a Borel equivalence relation on a Polish space X. Then either pX, Eq ¤ B p2 ω , q, or p2 ω , E 0 q ¤ c pX, Eq. Thus, we have the following exhaustive hierarchy for Borel equivalence relation that reduce to E 0 :

p1, q ¤ B p2, q ¤ B p3, q ¤ B . . . ¤ B pω, q ¤ B p2 ω , q ¤ B p2 ω , E 0 q.
The situation is more complex for analytic equivalence relations, for instance there are such relations E that are not reducible to the equality on the Cantor space, but such that E 0 does not reduce to E.

The main application of the complexity of equivalence relations appears in the study of the classification of mathematical objects: one can, for example, put a convenient Borel structure on a class of mathematical objects and study the isomorphism relation between these objects (that is, in general, analytic). Knowing the complexity of this relation enables to estimate how difficult it will be to classify these objects up to isomorphism. In general, we consider that a class of objects is classifiable if the isomorphism relation on this class is reducible to the equality on the Cantor space; indeed, this means that the structures in this class can be described, up to isomorphism, by a real number, or by a sequence of integers (for instance, the isomorphism between Bernoulli shifts is classified by a real number, its entropy).

This theory can indeed be applied to the isomorphism relation between subspaces of a Banach space. Given E a separable Banach space, denote by SubpEq the set of its subspaces. On SubpEq, we will put the Effros Borel structure. Recall that if X is a Polish space and FpXq the set of its open subsets, the Effros Borel structure on FpXq is the σ-algebra generated by sets of the form tF FpXq | F U $ ∅u, where U varies over open subsets of X. It can be shown that this gives FpXq a structure of standard Borel space (see [START_REF] Kechris | Classical descriptive set theory[END_REF], theorem 12.6); actually, if X is a compactification of X, then this Borel space can be seen as a subspace of the set compacts subsets of X with the Hausdorff distance, so it is quite natural. If E is a separable Banach space, it is not hard to see that SubpEq is a Borel subset of FpEq, so SubpEq with the Effros Borel structure is itself a standard Borel space. Moreover, the isomorphism relation ! on SubpEq is analytic.

For more results about the structure of SubpEq, see [START_REF] Bossard | A coding of separable Banach spaces. Analytic and coanalytic families of Banach spaces[END_REF].

The complexity of the isomorphism relation of Subp 2 q is minimal among analytic equivalence relations. On the other hand, Ferenczi, Louveau and Rosendal [START_REF] Ferenczi | The complexity of classifying separable Banach spaces up to isomorphism[END_REF] proved the following: Theorem I.29 (Ferenczi-Louveau-Rosendal). The isomorphism relation on SubpCpr0, 1sqq is analytic-complete, that is, every analytic equivalence relation on a Polish space is Borel-reducible to it.

As, by Banach-Mazur's theorem (theorem 1.4.3 in [START_REF] Albiac | Topics in Banach space theory[END_REF]), every separable Banach space can be isometrically embedded in SubpCpr0, 1sqq, this result can be interpreted by saying that the isomorphism relation between separable Banach spaces is analytic-complete and in particular, that these spaces are not classifiable, up to isomorphism. This justifies Gowers' idea of rather trying to build a "loose" classification of Banach spaces.

We have, on one side, a space for whose the complexity of the isomorphism between subspaces is minimal, and on the other side, a space for whose this complexity is maximal among analytic equivalence relations, and we are tempted to ask what lies inbetween. Ferenczi and Rosendal defined a new class of spaces based on their complexity:

Definition I.30. A separable Banach space E is ergodic if p2 ω , E 0 q ¤ B pSubpEq, !q.
In particular, the subspaces of these spaces are not classifiable by real numbers, so they can be seen as rather complex spaces. In the papers [START_REF] Ferenczi | On the number of non-isomorphic subspaces of a Banach space[END_REF][START_REF] Ferenczi | Ergodic Banach spaces[END_REF][START_REF]Incomparable, non-isomorphic and minimal Banach spaces[END_REF], Ferenczi and Rosendal studied the properties of non-ergodic spaces, that appeared to behave quite well. Among others, we can cite the following nice results for spaces with an unconditional basis: Theorem I.31 (Ferenczi-Rosendal). Let E be a non-ergodic separable Banach space with an unconditional basis. Then E is isomorphic to its hyperplanes, to its square, and to every direct sum E X, where X is a block-subspace of E generated by a subsequence of the basis.

All of their results led them to conjecture the following generalization to the homogeneous space problem: Conjecture I.32 (Ferenczi-Rosendal). Every separable Banach space non-isomorphic to 2 is ergodic. This conjecture will be refered as the ergodic conjecture in the rest of this manuscript. Much progress have been made by now on this conjecture. Rosendal proved [START_REF]Incomparable, non-isomorphic and minimal Banach spaces[END_REF] that an HI space must be ergodic. In particular, using Gowers' first dichotomy, we can deduce that every non-ergodic Banach space contains a subspace with an unconditional basis. Then, an important result was proved by Ferenczi [START_REF] Ferenczi | Minimal subspaces and isomorphically homogeneous sequences in a Banach space[END_REF]:

Theorem I.33 (Ferenczi). Every non-ergodic Banach space contains a minimal subspace.

The proof of this theorem was the main inspiration for Ferenczi and Rosendal's dichotomy I.25, that was proved a few years later. Actually, this result can be seen as a consequence of the dichotomy: indeed, in [START_REF] Ferenczi | Tightness of Banach spaces and Baire category[END_REF], Ferenczi and Godefroy give a categorical caracterisation of tightness which, combined with a result of Rosendal ([55], proposition 15), easily proves that a tight space must be ergodic. All of this results show that the question of the number of non-isomorphic subspaces and this of the loose classification of Banach spaces are closely related.

In another direction, progress have been made by Anisca [START_REF] Anisca | The ergodicity of weak Hilbert spaces[END_REF], who proved that an asymptotically Hilbertian separable Banach space that is not isomorphic to 2 has to be ergodic; we will not recall here the definition of an asymptotically Hilbertian space, but this results says in some sense that spaces that are too close to 2 have to be ergodic. Then, Cuellar-Carrera proved [START_REF] Carrera | Non-ergodic Banach spaces are near Hilbert[END_REF] that a non-ergodic separable Banach space must have type p and cotype q for every p 2 q. Without recalling the definitions, it means that such a space still needs to be rather close to 2 . In particular, a consequence of this result is that the p 's, for 1 ¤ p $ 2 V, and c 0 , are ergodic.

I.5 Organisation of the results

In chapter II of this thesis, we present an abstract setting for Ramsey theory, the setting of Gowers spaces. The goal of this abstract setting is to enable to prove as well Ramsey results with a pigeonhole principle like Mathias-Silver's theorem I.3 or Milliken's theorem I.5, and strategical Ramsey results without a pigeonhole principle like Rosendal's theorem I.13. An abstract Ramsey theorem, having a version without pigeonhole principle (theorem II.14), and a version with a pigeonhole principle (corollary II.21) and implying these results, will be shown. Remark that all possible conclusions of this theorem involve games, since our setting is too weak to allow to get directly "genuine" Ramsey-type conclusions as in Mathias-Silver's or Milliken's theorem. However, the results we get are very close to that, and this drawback will be corrected in chapter III by adding a feature to our setting. In chapter II, we will also give an answer to Rosendal's questions I.16 and I.17 by proving an abstract adversarial Ramsey principle (theorem II.4), unifying our strategical Ramsey theory with the determinacy of games on integers. An emphasis will be put on the strength of the latter result, that is implied by the determinacy of games on reals but seems slightly above this of games on integers. Finally, we will study the differences between Gowers spaces with a pigeonhole principle and Gowers space without a pigeonhole principle, and see that they behave very differently. In particular, in spaces without a pigeonhole principle, the adversarial Ramsey principle is much stronger than is spaces where the pigeonhole principle holds.

Gowers spaces are countable, and as we will see at the beginning of chapter III, the result proved in chapter II are not true in the uncountable case. The goal of section III is to adapt the formalism of Gowers spaces to the case of uncountable metric space, in order to prove approximate results in the vein of Gowers' theorems I.8 and I.11. Results of chapter II will be extended to this setting, and a feature will also be added to our formalism, enabling to deduce non-strategical Ramsey results from strategical ones. In particular, both Mathias-Silver's theorem and Gower's theorems will be direct consequences of our main result, corollary III.17. The interest of the results presented in this chapter is more practical that theoretical: they are powerful tools to prove Banachspace dichotomies.

In chapter IV, we work on Johnson's problem and on Ferenczi and Rosendal's ergodic conjecture, and in particular on the following question: if counterexamples to these conjectures exist, do there necessarily exist counterexamples having an unconditional basis? We are not able to solve this question completely, however we prove two Banach-space dichotomies that could help a lot. The first one, theorem IV.12, is very similar to Gowers' first dichotomy between spaces with an unconditional basis and HI spaces, and the second one, theorem IV.14, is very similar to Ferenczi and Rosendal's dichotomy between minimal and tight spaces; however, the difference is that the dichotomies we prove are Hilbert-avoiding, that is, we can ensure that the subspace they provide is not isomorphic to 2 . The proofs of these dichotomies makes an essential use of the Ramsey-type results proved in chapters II and III. These dichotomies enable to reduce the question of the existence of counterexamples to the ergodic conjecture with an unconditional basis to a conjecture having many similarities with Gowers-Maurey's result that HI spaces are not isomorphic to their proper subspaces. We were not able to solve this conjecture, however, at the end of the chapter, we give a new and simpler proof of Gowers-Maurey's theorem, only based on Fredholm theory, that could be a good starting point to solve it.

Chapter II

Ramsey theory with and without pigeonhole principle

In this chapter, we present an abstract setting for Ramsey theory with and without pigeonhole principle: the setting of Gowers spaces. Inspired by the examples given in the introduction, we define a formalism with two notions, a notion of subspaces and a notion of points. The idea is that we will color infinite sequences of points and try to find subspaces such that many sequences of points in this subspace share the same color. This "many" will be expressed, as in Rosendal's results and conjectures, in terms of games; in particular, in Gowers spaces, we will be able to define the asymptotic game, Gowers' game, and the adversarial Gowers' games. These games will enable us to define strategically Ramsey sets and adversarially Ramsey sets in such spaces.

In section II.1, we define the formalism of Gowers spaces and the notion of strategically Ramsey sets in these spaces; then, we prove that every Borel sets is strategically Ramsey (theorem II.4), thus giving a positive answer to Rosendal's question I. [START_REF] Ferenczi | The complexity of classifying separable Banach spaces up to isomorphism[END_REF]. The proof of this theorem is based on the determinacy of a game on real numbers, thus, it will also enable to prove that, assuming enough determinacy for such games, we can get the adversarial Ramsey property for more than Borel sets (see theorems II.8 and II.10).

In section II.2, we define the asymptotic game, Gowers' game, and the notion of a strategically Ramsey set in a Gowers space. We prove an abstract version of Rosendal's theorem I.13 from the adversarial Ramsey principle proved in the previous section; this enables as well to get the strategical Ramsey property for more complex sets if we assume more determinacy. Then, we introduce the pigeonhole principle in a Gowers space, and we show that the strategical Ramsey property can be strengthened to a symmetrical result, very close to Mathias-Silver's and Milliken's theorem, in spaces that satisfy it (corollary II.21).

The two next sections are devoted to the study of the differences of behavior between spaces satisfying the pigeonhole principle, and spaces that don't. Such a study is done in what concerns the adversarial Ramsey property in section II.3, where we show that in spaces with a pigeonhole principle, this property is not stronger than the strategical Ramsey property, whereas in spaces without it, it has the strength of determinacy of games on integers (see proposition II.24 and theorem II.25). In section II.4, we carry out the same kind of study for strategically Ramsey sets, studying in particular the limitations on the complexities for which we can ensure this property in ZF C; this turns out to depend on the truth of the pigeonhole principle.

Since the adversarial Ramsey property is a consequence of the determinacy of games on reals, and implies the determinacy of games on integers, a natural question to ask is where lies the strength of the adversarial Ramsey property between the two others. In section II.5, we discuss some consequences of large cardinal assumptions on strategically Ramsey sets, allowing us to better see what could be the strength of this property.

II.1 Gowers spaces and the aversarial Ramsey property

In this section, we will introduce the notion of a Gowers space, which will be our abstract setting for infinite-dimensional Ramsey theory; then, we will prove in this setting the adversarial Ramsey principle, our most general Ramsey result without pigeonhole principle, which will give a positive answer to question I.16.

Definition II.1. A Gowers space is a quintuple G pP, X, ¤, ¤ ¦ , q, where P is a nonempty set (the set of subspaces), X is an at most countable nonempty set (the set of points), ¤ and ¤ ¦ are two quasiorders on P (i.e. reflexive and transitive binary relations), and SeqpXq ¢ P is a binary relation, satisfying the following properties:

1. for every p, q P , if p ¤ q, then p ¤ ¦ q; 2. for every p, q P , if p ¤ ¦ q, then there exists r P such that r ¤ p, r ¤ q and p ¤ ¦ r; 3. for every ¤-decreasing sequence pp i q iω of elements of P , there exists p ¦ P such that for all i ω, we have p ¦ ¤ ¦ p i ; 4. for every p P and s X ω , there exists x X such that s " x p; 5. for every s SeqpXq and every p, q P , if s p and p ¤ q, then s q.

We say that p, q P are compatible if there exists r P such that r ¤ p and r ¤ q.

To save writing, we will often write p AE q when p ¤ q and q ¤ ¦ p. Remark that by 2., the p ¦ in 3. can be chosen in such a way that p ¦ ¤ p 0 ; this will be useful in many proofs.

In most usual cases, the fact that s p will only depend on p and on the last term of s; the spaces satisfying this property will be called forgetful Gowers spaces. In these spaces, we will allow us to view as a binary relation on X ¢ P . However, for some applications (see, for example, the proof of theorem III.6), it is sometimes useful to make the fact that s p also depend on the the length of the sequence s; we do not know if there are any interesting applications where it would be useful to make it depend on all the terms of the sequence, however we would like to present results that are as general as possible.

When thinking about a Gowers space, we should have the two following examples in mind:

• The Mathias-Silver space N prωs ω , ω, , ¦ , q, where rωs ω is the set of all infinite sets of integers, M ¦ N iff M zN is finite and px 0 , . . . , x n q M iff x n M . Here, we have that M AE N iff M is a cofinite subset of N , and M and N are compatible iff M N in infinite. • The Rosendal space over an at most countable field

K, R K pP, Ezt0u, , ¦ , q,
where E is a countably infinite-dimensional K-vector space with a basis pe i q iω , P is the set of all block subspaces of E relative to this basis, X ¦ Y iff Y contains some finite-codimensional block subspace of X, and px 0 , . . . , x n q X iff x n X.

Here, we have that X AE Y iff X is a finite-codimensional subspace of Y , and X and Y are compatible iff X Y is infinite-dimensional.

Remark that both of these spaces are forgetful, so we could have defined as a relation between points and subspaces (and that is what we will do, in such cases, in the rest of this paper); in this way, in both cases, is the membership relation. It is easy to verify that, for these examples, the axioms 1., 2., 4., and 5. are satisfied; we briefly explain how to prove 3.. For the Mathias-Silver space, if pM i q iω is a -decreasing sequence of infinite subsets of ω, then we can, for each i ω, choose n i M i in such a way that the sequence pn i q iω is increasing, and let M ¦ tn i | i ωu. Then the set M ¦ is as wanted. For the Rosendal space, the idea is the same: given pF i q iω a decreasing sequence of block subspaces of E, we can pick, for each i, a nonzero vector x i F i , in such a way that for i ¥ 1, we have supppx i¡1 q supppx i q. In this way, px i q iω is a block sequence, and the block subspace F ¦ spanned by this sequence is as wanted.

Also remark that in the definition of the Rosendal space, choosing Ezt0u and not E for the set of points is totally arbitrary, and here, we only made this choice in order to use the same convention as Rosendal in his papers [START_REF]An exact Ramsey principle for block sequences[END_REF][START_REF]Determinacy of adversarial Gowers games[END_REF]; but the results we will show apply as well when the set of points is E. Also, we could have taken for P the set of all infinite-dimensional subspaces of E (where, here, the relation ¦ is defined by X ¦ Y iff X Y has finite codimension in X) instead of only block subspaces. However, the abstract results we will prove are slightly stronger in the case when we consider only block subspaces; this is due to the fact that, while every infinite-dimensional subspace of E contains a block subspace, there are finite-codimensional subspaces that do not contain any finite-codimensional block subspace.

In the rest of this section, we fix a Gowers space G pP, X, ¤, ¤ ¦ , q. For p P , we define the adversarial Gowers' Games below p as follows:

Definition II.2.

1. The game A p is defined in the following way:

I x 0 , q 0 x 1 , q 1 . . . II p 0 y 0 , p 1 y 1 , p 2 . . .
where the x i 's and the y i 's are elements of X, and the p i 's and the q i 's are elements of P . The rules are the following:

• for I: for all i ω, px 0 , y 0 , . . . , x i¡1 , y i¡1 , x i q p i and q i AE p;

• for II: for all i ω, px 0 , y 0 . . . , x i , y i q q i and p i ¤ p.

The outcome of the game is the sequence px 0 , y 0 , x 1 , y 1 , . . .q X ω .

2. The game B p is defined in the same way as A p , except that this time the we require p i AE p, whereas we only require q i ¤ p.

As in the particular case of vector spaces, we can define the adversarial Ramsey property for subsets of X ω : Definition II.3. A set X X ω is said to be adversarially Ramsey if for every p P , there exists q ¤ p such that either player I has a strategy to reach X in A q , or player II has a strategy to reach X c in B q .

Informally, the adversarial Ramsey property for X means that up to taking a subspace, one of the players has a winning strategy in the game that is the most difficult for him. Remark that the property that I has a strategy in A p to reach some set X (resp. the property that II has a strategy in B p to reach X c ) is strongly hereditary in the sense that if I has a strategy to reach X in A p , then he also has one in A p I for every p I ¤ ¦ p (and the same holds for II in B p ). Indeed, we can simulate a play of A p I with a play of A p : when, in A p , player I's strategy tells him to play x i and q i , then in A p I he can play the same x i and a q I i such that q I i AE p I and q I i ¤ q i , in such a way that the next y i played by II in A p I will be also playable in A p (the existence of such a q I i is guaranteed by condition 2. in the definition of a Gowers space). And when, in A p I, player II plays y i and p I i 1 , then in A p , I can make her play the same y i and a p i 1 such that p i 1 ¤ p and p i 1 ¤ p I i 1 , in such a way that the next x i 1 played by I in A p according to his strategy will also be playable in A p I. In this way, the outcomes of both games are the same, and since I reaches X in A p , then he also does in A p I.

On the other hand, it is clear that if I has a strategy to reach some set X in A p , then he also has one in B p , so II cannot have a strategy to reach X c in B p . Thus, the fact that X has the adversarial Ramsey property gives a genuine dichotomy between two disjoint and strongly hereditary classes of subspaces.

We endow the set X with the discrete topology and the set X ω with the product topology. The main result of this section is the following:

Theorem II.4 (Adversarial Ramsey principle, abstract version). Every Borel subset of X ω is adversarially Ramsey.

In the case of the Rosendal Space, the adversarial Gowers games defined here are exactly the same as those defined in the introduction. Thus, theorem II.4 applied to this space provides a positive answer to question I. [START_REF] Ferenczi | The complexity of classifying separable Banach spaces up to isomorphism[END_REF].

Also remark that if P t1u and if we have s 1 for every s SeqpXq, then both A 1 and B 1 are the classical Gale-Stewart game in X, so the adversarially Ramsey subsets of X ω are exactly the determined ones. So in this space, theorem II.4 is nothing more than Borel determinacy for games on integers; hence, we get that theorem II.4 has at least the metamathematical strength of Borel determinacy for games on integers. Therefore, by the work of Friedman [START_REF] Friedman | Higher set theory and mathematical practice[END_REF], any proof of theorem II.4 should make use of the powerset axiom and of the replacement scheme. We also get that it is not provable in ZF C that every analytic (or coanalytic) set in every Gowers space is adversarially Ramsey. Actually, it turns out that there is a large class of Gowers spaces for which Borel determinacy can be recovered from the version of theorem II.4 in these spaces; this will be shown in section II.3.

We will deduce theorem II.4 from Borel determinacy for games on real numbers. For this purpose, we follow an approach firstly used by Kastanas in [START_REF] Kastanas | On the Ramsey property for sets of reals[END_REF]: in this paper Kastanas deduced the Ramsey property for subsets of rωs ω from the determinacy of a game. In what follows, we adapt Kastanas' game in order to get the adversarial Ramsey property.

Definition II.5. For p P , Kastanas' game K p below p is defined as follows:

I
x 0 , q 0 x 1 , q 1 . . . II p 0 y 0 , p 1 y 1 , p 2 . . . where the x i 's and the y i 's are elements of X, and the p i 's and the q i 's are elements of P . The rules are the following:

• for I: for all i ω, px 0 , y 0 , . . . , x i¡1 , y i¡1 , x i q p i and q i ¤ p i ; • for II: p 0 ¤ p, and for all i ω, px 0 , y 0 . . . , x i , y i q q i and p i 1 ¤ q i . The outcome of the game is the sequence px 0 , y 0 , x 1 , y 1 , . . .q X ω .

The exact result we will show is the following: Proposition II.6. Let p P and X X ω .

1. If I has a strategy to reach X in K p , then there exists q ¤ p such that I has a strategy to reach X in A q ; 2. If II has a strategy to reach X c in K p , then there exists q ¤ p such that II has a strategy to reach X c in B q .

Once this proposition is proved, theorem II.4 will immediately follow from the Borel determinacy of Kastanas' game.

Since the proof of 1. and 2. of proposition II.6 are exactly the same, we only prove 2.. In order to do this, let us introduce some notation. During the whole proof, we fix a strategy τ for II in K p to reach X c . A partial play of K p ending with a move of II and during which II always plays according to her strategy will be called a state. We say that a state s realises a finite sequence px 0 , y 0 , x 1 , y 1 , . . . , x n¡1 , y n¡1 q if s has the form pp 0 , x 0 , ..., q n¡1 , y n¡1 , p n q; we say that a state realising a sequence of length 2n has rank n. We define in the same way the notions of a total state (which is a total play of K p ) and of realisation for a total state; the restriction of a total state s pp 0 , x 0 , q 0 , y 0 , p 1 , ...q to a state of rank n, denoted by s aen , is the state pp 0 , x 0 , ..., q n¡1 , y n¡1 , p n q. If an infinite sequence px 0 , y 0 , x 1 , y 1 , . . .q is realised by a total state, then this sequence belongs to X c . We will use the following lemma:

Lemma II.7. Let S be an at most countable set of states, and r P . Then there exists r ¦ ¤ r satisfying the following property: for all s S and x, y X if there exists u, v P such that:

1. I can legally continue the play s by the move px, uq; 2. τ ps " px, uqq py, vq;

3. v and r ¦ are compatible; then there exists u I , v I P satisfying 1., 2., and 3. and such that, moreover, we have r ¦ ¤ ¦ v I . Proof. Let ps n , x n , y n q nω be a (non-necessarily injective) enumeration of S ¢X 2 . Define pr n q nω a decreasing sequence of elements of P in the following way. Let r 0 r. For n ω, suppose r n defined. If there exists a pair pu, vq P 2 such that:

• I can legally continue the play s n by the move px n , uq;

• τ ps n " px n , uqq py n , vq;

• v and r n are compatible; then choose pu n , v n q such a pair and let r n 1 be a common lower bound to r n and v n . Otherwise, let r n 1 r n . This achieves the construction. By the definition of a Gowers space, there exists r ¦ P such that r ¦ ¤ r and for all n ω, r ¦ ¤ ¦ r n . We show that r ¦ is as required. Let n ω, and suppose that there exists pu, vq P 2 satisfying properties 1., 2., and 3. as in the statement of the lemma for the triple ps n , x n , y n q. Since r ¦ ¤ ¦ r n and since v and r ¦ are compatible, then v and r n are also compatible. This show that the pair pu n , v n q has been defined; by construction, this pair satisfies properties 1. and 2. for ps n , x n , y n q, and we have r n 1 ¤ v n , so r ¦ ¤ ¦ v n , which shows that pu I , v I q pu n , v n q is as required.

Proof of proposition II.6. Define pq n q nω a decreasing sequence of elements of P and pS n q nω a sequence where, for every n ω, S n is an at most countable set of states of rank n, in the following way. Let q 0 τ p∅q and S 0 tpτp∅qqu. For n ω, suppose q n and S n being defined. Let q n 1 be the result of the application of lemma II.7 to q n and the set of states S n . For s S n , let A s be the set of all pairs px, yq such that there exists pu, vq P 2 satisfying:

1. I can legally continue the play s by the move px, uq; 2. τ ps " px, uqq py, vq;

3. v and q n 1 are compatible.

Then by construction of q n 1 , for all px, yq A s , there exists a pair pu, vq P 2 satisfying 1., 2., and 3., and such that moreover q n 1 ¤ ¦ v. For each px, yq A s , choose pu s ,x,y , v s ,x,y q such a pair. Let S n 1 ts " px, u s ,x,y , y, v s ,x,y q | s S n , px, yq A s u; this is clearly a countable set of states of rank n 1. This achieves the construction. Now let q P be such that q ¤ q 0 and for all n ω, we have q ¤ ¦ q n . Remark that since q 0 ¤ p, we have q ¤ p. We show that q is as required, by describing a strategy for II in B q to reach X c . In order to do this, we simulate the play s pv 0 , x 0 , u 0 , y 0 , v 1 , ...q of B q that I and II are playing by a play s I pv I 0 , x 0 , u I 0 , y 0 , v I 1 , ...q of K p having the same outcome and during which II always plays according to her strategy τ . This will ensure that the outcome px 0 , y 0 , x 1 , y 1 , . . .q of both games lies in X c and so that the strategy for II in B q that we described enables her to reach her goal. We do this construction in such a way that at each turn n, the following conditions are kept satisfied:

(a) s I aen S n ; (b) v n ¤ v I n .
The moves of the players at the pn 1q th turn in both games that are described in the following proof are represented in the diagrams below. The third diagram, called "Fictive K p ", represents a fictive situation that will be studied for technical reasons in the proof, and in which the moves of both players are the same as in K p until the n th turn but differ from the pn 1q th turn.

I . . . x n , u n B q II . . . , v n y n , v n 1 I . . . x n , u I n K p II . . . , v I n y n , v I n 1 I . . . x n , u P n Fictive K p II . . . , v I n y n , v P n 1
Let us describe the strategy of II in B q . At the first turn, this strategy will consist in playing v 0 q; and, according to her strategy τ , II will play v I 0 τ p∅q in K p . Now, suppose that both games have been played until the n th turn, that is, the last moves of player II in the games B q and K p are respectively v n and v I n . Player I plays px n , u n q in B q . By the rules of the game B q and the induction hypothesis, we have that

u n ¤ q ¤ ¦ v n ¤ v I
n ; so there exists u P n P such that u P n AE u n and u P n ¤ v I n . We also have that px 0 , y 0 , . . . , x n q v n ¤ v I n , so it is legal for I to pursue the game K p by playing px n , u P n q; this fictive situation is represented in the third diagram above, called "Fictive K p ". In this fictive situation, the strategy τ of II would lead her to answer with a move py n , v P n 1 q satisfying px 0 , y 0 , . . . , x n , y n q u P n and v P n 1 ¤ u P n . We have, by construction of q, that v P n 1 ¤ u P n ¤ u n ¤ q ¤ ¦ q n 1 ; so in particular, v P n 1 and q n 1 are compatible.

Recalling that s aen S n , we see that the pair pu P n , v P n q witnesses that px n , y n q A s aen . Now let us leave the fictive situation and come back to the "real" K p . Since px n , y n q A s aen , we know that the pair pu s aen ,xn,yn , v s aen ,xn,yn q has been defined; we denote this pair by pu I n , v I n 1 q. In the "real" K p , we make I play px n , u I n q. By definition of pu I n , v I n 1 q, this move is legal, and II will answer, according to her strategy, with py n , v I n 1 q. Remark that the required condition (a) in the induction hypothesis is satisfied by these moves since, by the definition of S n 1 , we have s aen " px n , u I n , y n , v I n 1 q S n 1 . We also have that q ¤ ¦ q n 1 ¤ ¦ v I n 1 , so there exists

v n 1 P such that v n 1 ¤ v I n 1
and v n 1 AE q. For this reason, and since we also have (as we already saw) px 0 , y 0 , . . . , x n , y n q u P n ¤ u n , we get that py n , v n 1 q is a legal move for II in B q , that satisfies the condition (b) in the induction hypothesis. So we just have to define her strategy as leading her to play this move, and this achieves the proof.

We actually proved a little more than theorem II.4. Say that the Gowers space G is analytic if P is an analytic subset of a Polish space and if the relations ¤ and are Borel subsets of P 2 and of SeqpXq ¢ P respectively. For most of the spaces we actually use, P can be indentified to an analytic subset of PpXq, the relation ¤ to the inclusion, and the relation px 0 , . . . , x n q p to the membership relation x n p;

thus, these spaces are analytic. This is, for instance, the case for the Mathias-Silver space and the Rosendal space introduced at the beginning of this section. Then an easy consequence of proposition II.6 is the following:

Corollary II.8. Let Γ be a suitable class of subsets of Polish spaces. If every Γ-subset of R ω is determined, then for an analytic Gowers space G pP, X, ¤, ¤ ¦ , q, every Γ-subset of X ω is adversarially Ramsey.

Proof. Fix X X ω a Γ-subset, and p P . By proposition II.6, it is enough to show that in the game K p , either player I has a strategy to reach X , or player II has a strategy to reach X c . Let ϕ : R ÝÑ P be a surjective Borel mapping, and consider the following

game K I p : I x 0 , r q 0 x 1 , r q 1 . . . II r p 0 y 0 , r p 1 y 1 , r p 2
. . . where the x i 's and the y i 's are elements of X and the r p i 's and the r q i 's are real numbers, with the constraint that ϕp r p 0 q ¤ p, for all i ω, ϕp r q i q ¤ ϕp r p i q, ϕp p i 1 q ¤ ϕp r q i q, px 0 , y 0 , . . . , x i q ϕp r p i q, and px 0 , y 0 , . . . , x i , y i q ϕp r q i q, and whose outcome is the sequence px 0 , y 0 , x 1 , y 1 , . . .q X ω . This game is clearly equivalent to K p : I has a strategy to reach X in K p if and only if he has one in K I p , and II has a strategy to reach X c in K p if and only if she has one in K I p . Since K I p is a game on real numbers with Borel rules and since X is in Γ, we deduce that in this game, either I has a strategy to reach X , or II has a strategy to reach X c , what concludes the proof.

Corollary II.8 shows in particular that, in an analytic Gowers space, under P D R , every projective set is adversarially Ramsey. Recall that Harrington and Kechris [START_REF] Harrington | On the determinacy of games on ordinals[END_REF], and independently Woodin [START_REF] Woodin | On the consistency strength of projective uniformization[END_REF] proved that under P D, every projective subset of rωs ω is Ramsey. Using ideas from Woodin's proof, Bagaria and López-Abad [START_REF] Bagaria | Determinacy and weakly Ramsey sets in Banach spaces[END_REF] showed that under P D, every projective set of block sequences of a basis of a Banach space is strategically Ramsey (i.e. satisfies the conclusion of Gowers' theorem I.8). Basing ourselve on these facts, we can formulate the following conjecture:

Conjecture II.9. Under P D, if the Gowers space G pP, X, ¤, ¤ ¦ , q is analytic, then every projective subset of X ω is adversarially Ramsey.

Clearly, the method presented in the present paper does not enable to prove this. Also remark that the proof of proposition II.6 can almost entierly be done in ZF DC; the only use of the full axiom of choice is made to choose u P n P such that u P n AE u n and u P n ¤ v I n , and v n 1 P such that v n 1 ¤ v I n 1 and v n 1 AE q, so actually to apply axiom 2. in the definition of a Gowers space. For this reason, say that the Gowers space G is effective if in this axiom 2., the subspace r can be chosen in an effective way, that is, if there exist a function f : P 2 ÝÑ P such that for every p, q P , if p ¤ ¦ q, then we have f pp, qq AE p and f pp, qq ¤ q. For instance:

• The Mathias-Silver space is effective: indeed, if M ¦ N , then we can take f pM, N q M N .

• The Rosendal space is effective. Indeed, if X and Y are block subspaces such that X ¦ Y , let px n q nω be a block sequence spanning X. Then we can let f pX, Y q be the subspace spanned by the largest final segment of px n q all of whose terms are in Y (this subspace does not depend on the choice of px n q).

To prove proposition II.6 for an effective Gowers space, we only need dependant choices. Thus, we have the following result:

Corollary II.10 (ZF DC AD R ). Let G pP, X, ¤, ¤ ¦ , q be an effective Gowers space such that P is a subset of a Polish space. Then every subset of X ω is adversarially Ramsey.

Proof. Recall that in ZF DC AD, every subset of a Polish space is either at most countable, or contains a Cantor set, and is thus in bijection with R (this is a consequence of theorem 21.1 in [START_REF] Kechris | Classical descriptive set theory[END_REF], that can be proved in ZF DC). So if P is countable, then Kastanas' game can be viewed as a game on integers and is thus determined, and if P is uncountable, then Kastanas' game can be viewed as a game on real numbers, that is also determined. The conclusion follows from proposition II.6.

As above, we cannot prove in this way that the same result holds under AD instead of AD R , but we conjecture that it does so. As we will see in the next section, if this is true, this would imply that under AD, every subset of rωs ω is Ramsey, which is still conjectural today.

Since for sufficiently regular Gowers spaces (analytic ones, or effective ones with P being subset of a Polish space, depending on the case), we only need the determinacy of Γ-subsets of R ω to prove the adversarial Ramsey property for Γ-sets, and since from this property in every sufficiently regular space, we can deduce the determinacy of Γ-subsets of ω ω , another interesting question is the following: Question II.11. Where does the adversarial Ramsey property for Γ-sets in sufficiently regular Gowers spaces lie between the determinacy of Γ-subsets of ω ω and the determinacy of Γ-subsets of R ω ? This question can be asked both in terms of implication and of consistency strength. In particular, we don't know whether there exists an analytic Gowers space G and a suitable class Γ of subsets of Polish spaces such that ZF C doesn't prove that the determinacy of Γ-subsets of ω ω implies the adversarial Ramsey property for Γ-sets in G, neither if there exists some such that the consistency strength of ZF C "Every Γ-set in G is adversarially Ramsey" is strictly above the consistency strength of ZF C "Every Γ-subset of ω ω is determined".

II.2 Strategically Ramsey sets and the pigeonhole principle

The aim of this section is to prove a version of Rosendal's theorem I.13 in the general setting of Gowers spaces. We also introduce the notion of the pigeonhole principle for a Gowers space and see that the last result can be strengthened in the case where this principle holds. This will enable us to see the fundamental difference between the Mathias-Silver space and the Rosendal space over a field with at least three elements. We start by introducing Gowers' game and the asymptotic game in the setting of Gowers spaces, and the notion of a strategically Ramsey set. In this whole section, we fix a Gowers space G pP, X, ¤, ¤ ¦ , q.

Definition II.12. Let p P .

1. Gowers' game below p, denoted by G p , is defined in the following way:

I p 0 p 1 . . . II x 0 x 1 . . .
where the x i 's are elements of X, and the p i 's are elements of P . The rules are the following:

• for I: for all i ω, p i ¤ p;

• for II: for all i ω, px 0 , . . . , x i q p i . The outcome of the game is the sequence px i q iω X ω .

2. The asymptotic game below p, denoted by F p , is defined in the same way as G p , except that this time the we moreover require that p i AE p. Definition II.13. A set X X ω is said to be strategically Ramsey if for every p P , there exists q ¤ p such that either player I has a strategy to reach X c in F q , or player

II has a strategy to reach X in G q .
The general version of Rosendal's theorem I.13 is then the following:

Theorem II.14 (Abstract Rosendal's theorem). Every analytic subset of X ω is strategically Ramsey.

Remark that theorem I.13 is exactly the result of the application of theorem II.14 to the Rosendal space.

Proof. We firstly prove the result for Borel sets. In order to do this, consider another space r G pP, X, ¤, ¤ ¦ , r q, where P , X, ¤, and ¤ ¦ are the same as in G, but we replace by the relation r defined by px 0 , y 0 , x 1 , y 1 , . . . , x n , y n q r p iff py 0 , y 1 , . . . , y n q p, and px 0 , y 0 , x 1 , y 1 , . . . , x n q r p iff px 0 , x 1 , . . . , x n q p. Now, to each set X X ω , associate a set r X X ω defined by px 0 , y 0 , x 1 , y 1 , . . .q r X ô py 0 , y 1 , . . .q X . Then, when players try to reach r X or r X c in the games A p and B p of r G, the p i 's played by II and the x i 's played by I don't matter at all; so a strategy for I in the game A p of r G to reach r X c becomes a strategy for I in the game F p of G to reach X c , and a strategy for II in the game B p of r G to reach r X becomes a strategy for II in the game G p of G to reach X . Thus, the strategical Ramsey property for X in G is equivalent to the adversarial Ramsey property for r X c in r G, so the strategical Ramsey property for Borel sets in G follows from theorem II.4.

From the result for Borel sets, we now deduce the result for arbitrary analytic sets using an unfolding argument. Let X X ω be analytic, and p P . Let X I X ¢ t0, 1u, whose elements will be denoted by the letters px, εq. Define the binary relation I SeqpX I q¢P by px 0 , ε 0 , . . . , x n , ε n q I p if px 0 , . . . , x n q p, and consider the Gowers space G I pP, X I , ¤, ¤ ¦ , I q. In this proof, we will use the notations F q and G q to denote respectively the asymptotic game and Gowers' game in the space G, whereas the notations F I q and G I q will be used for these games in the space G I . We denote by π the projection X Iω ÝÑ X ω . Let X I X Iω be a G δ set such that X πpX I q. Since X I is G δ , it is strategically Ramsey; let q ¤ p witnessing so. If player II has a strategy in G I q to reach X I , then a run of the game G q where II uses this strategy but omits to display the ε i 's produces an outcome lying in X ; hence, II has a strategy to reach X in G q . Then, our result will follow from the following fact:

Fact II. [START_REF] Ferenczi | Tightness of Banach spaces and Baire category[END_REF]. If I has a strategy to reach X Ic in F I q , then he has a strategy to reach X c in F q .

Proof. Let τ I be a strategy enabling I to reach X Ic in F I q . In order to save notation, in this proof, we consider that in the games F I q and F q , player II is allowed not to respect the rules (i.e. to play x i 's such that px 0 , . . . , x i q p i ), but loses the game if she does. Then, the strategy τ I can be viewed as a mapping X I ω ÝÑ P such that for every px 0 , ε 0 , . . . , x n¡1 , ε n¡1 q X I ω , we have τ I px 0 , ε 0 , . . . , x n¡1 , ε n¡1 q AE q. Remark that if pp j q jJ is a finite family of elements of P such that dj J, p j AE q, then by applying iteratively the property 2. in the definition of a Gowers space, we can get p ¦ P such that p ¦ AE q and dj J p ¦ ¤ p j . Thus, for every px 0 , . . . , x n¡1 q X ω , we can choose τ px 0 , . . . , x n¡1 q P such that τ px 0 , . . . , x n¡1 q AE q and such that for every pε 0 , . . . , ε n¡1 q t0, 1u n , we have τ px 0 , . . . , x n¡1 q ¤ τ I px 0 , ε 0 . . . , x n¡1 , ε n¡1 q. We have hence defined a mapping τ : X ω ÝÑ P ; we show that this is a strategy for I in F q enabling him to reach X c . Consider a run of the game F q during which II respects the rules and I plays according to his strategy τ :

I p 0 p 1 . . . II x 0 x 1 . . .
We have to show that px i q iω X , that is, for every pε i q iω t0, 1u ω , px i , ε i q iω X I . Let pε i q iω t0, 1u ω ; it is enough to show that px i , ε i q iω is the outcome of a run of the game F I q during which I always follows his strategy τ I and II always respects the rules.

Letting p I i = τ I px 0 , ε 0 , . . . , x n¡1 , ε n¡1 q, this means that during the following run of the game F I q , player II always respects the rules:

I p I 0 p I 1 . . . II x 0 , ε 0 x 1 , ε 1 . . .
But for every i ω, we have that p i τ px 0 , . . . , x n¡1 q and p I i τ I px 0 , ε 0 , . . . , x n¡1 , ε n¡1 q, so by definition of τ , we have p i ¤ p I i . Since player II respects the rules in F q , we have that px 0 , . . . , x i q p i , so px 0 , ε 0 , . . . , x i , ε i q p I i , and II also respects the rules in F I q . This concludes the proof.

Remark that in the proof of theorem II.14, we only need theorem II.4 for G δ sets, and hence determinacy for G δ games. Hence, unlike theorem II.4 in its generality, the last result is provable in ZC. Actually, as previously, for effective Gowers spaces, it is even provable in Z DC.

Again, we actually proved a little more. Indeed, the proof of theorem II.14, combined with corollaries II.8 and II.10, actually shows the following:

Corollary II.16.

1. Let Γ be a suitable class of subsets of Polish spaces. If every Γ-subset of R ω is determined, then for an analytic Gowers space G pP, X, ¤, ¤ ¦ , q, every hΓsubset of X ω is strategically Ramsey.

2. pZF DC AD R q Let G pP, X, ¤, ¤ ¦ , q be an effective Gowers space such that P is a subset of a Polish space. Then every subset of X ω is strategically Ramsey.

The rest of this section aims at explaining how we can, in certain cases, get symmetrical Ramsey results like Mathias-Silver's theorem from theorem II.14, which is asymmetrical. By asymmetrical, we mean here that unlike Mathias-Silver's theorem, in theorem II.14, both possible conclusion don't have the same form. Actually, one of these conclusions is stronger than the other (and, as it will turn out later, strictly stronger in general), as it is shown by the following lemma.

Lemma II.17. Let X X ω and p P . Suppose that I has a strategy in F p to reach X . Then II has a strategy in G p to reach X .

Proof. Fix τ a strategy enabling I to reach X in F p . We describe a strategy for II in G p by simulating a play pq 0 , x 0 , q 1 , x 1 , . . .q of G p by a play pp 0 , x 0 , p 1 , x 1 , . . .q of F p having the same outcome and during which I always plays according to τ ; this will ensure that px 0 , x 1 , . . .q X and that this play of G p will be winning for II.

Suppose that the first n turns of both games have been played, which means that the p i 's, the q i 's and the x i 's have been choosen for every i n. For the next turn, in G p , player I plays q n ¤ p, and in F p , the strategy τ tells I to play p n AE p. Then q n ¤ ¦ p n , so by axiom 2. in the definition of a Gowers space, there exists r n P such that r n ¤ p n and r n ¤ q n . Let x n X such that px 0 , . . . , x n q r n (existing by axiom 4.). Then x n can be legally played by II in both F p and G p , what concludes the proof.

Actually, the fact that I has a strategy in F p to reach some set X is in general much stronger than the fact, for II, to have a strategy in G p to reach the same set, and the first statement is in fact very close to a "genuine" Ramsey statement. By a "genuine" Ramsey statement, we mean a non-game-theoretical statement of the form "every sequence px n q nω such that dn ω px 0 , . . . , x n q p, and moreover satisfiying some structural condition, belongs to X "; this is, for example, the form of both possible conclusions of Mathias-Silver's theorem (that have the form "every infinite subset of N belongs to X "; here, we identify infinite sets of integers with strictly increasing sequences of integers, the fact of being "strictly increasing" being in this case the structural condition mentionned above). In the case of the Mathias-Silver space, the link between the existence of a strategy for I in the asymptotic game and a genuine Ramsey statement is given by the following lemma:

Lemma II.18. Work in the Mathias-Silver space, and let X ω ω . Suppose that, for some M rωs ω , player I has a strategy in F M to reach X . Then there exists an infinite N M such that every infinite S N belongs to X (here, we identify infinite subsets of ω with increasing sequences of integers).

Obviously, a weak converse of this lemma holds: if every infinite S M belongs to X , then I has a strategy in F M to reach X . Indeed, he can always ensure that the outcome of this game is an increasing sequence.

Proof of lemma II.18. Without loss of generality, assume M ω. As in the proof of fact II.15, consider that in F ω , player II is allowed to play against the rules, but loses if she does. Let τ be a strategy for player I in F ω , enabling him to reach X ; in this context, this strategy can be viewed as a mapping associating to each finite sequence of integers a cofinite subset of ω. Without loss of generality, we can assume that these cofinite subsets are final segments of ω; for s ω ω , let τ 0 psq min τ psq. Now define, by induction, a strictly increasing sequence pn i q iω of integers in the following way: let n 0 τ 0 p∅q, and for i ω, let n i 1 be the maximum of n i 1 and of the τ 0 pn i 0 , . . . , n i k¡1 q's for k ω and 0 ¤ i 0 . . . i k¡1 i. Let N tn i | i ωu; then N is as required. Indeed, an infinite subset of N has the form tn i k | k ωu for a strictly increasing sequence of integers pi k q kω . To prove that pn i k q kω X , it is enough to prove this sequence is the outcome of some legal run of the game F ω during which player I always plays according to the strategy τ . In other words, letting, for all k ω, P k τ pn i 0 , . . . , n i k¡1 q, we have to show that during the following run of the game F ω , player II always respects the rules:

I P 0 P 1 . . . II n i 0 n i 1 . . .
But by construction, we have that n i 0 ¥ n 0 τ 0 p∅q min P 0 , and for k ¥ 1, n i k ¥ n i k¡1 1 ¥ τ 0 pn i 0 , . . . , n i k¡1 q min P k , which concludes the proof.

The setting of Gowers spaces does not give enough structure to get such a result in general. A general version of this result will be given in section III.3, in the setting of approximate asymptotic spaces with some additional structure; and, in a very different way, the setting of Ramsey spaces presented in [START_REF] Todorčević | Introduction to Ramsey spaces[END_REF] is also convenient to get non gametheoretical infinite-dimensional Ramsey results.

In the setting of Gowers spaces, however, the best kinds of conclusions we can get in general are those involving strategies for I in the asymptotic game. As, in the case of the Mathias-Silver space, we are able to get an alternative both side of whose are "genuine" Ramsey statements, it would be tempting to wonder whether, for Gowers spaces satisfying some additional property, it would be possible to get an alternative involving a strategy for player I in the asymptotic game in both sides. It turns out that such a property exists, called the pigeonhole principle.

In the rest of this paper, we denote by q s A, for q P , s X ω and A X, the fact that for every x X such that s " x q, we have x A. This notation could sound strange, however, in spaces where P PpXq and px 0 , . . . , x n q q ô x n q, we have that q s A iff q A. Let us introduce the pigeonhole principle.

Definition II. [START_REF] Ferenczi | Banach spaces without minimal subspaces[END_REF]. The Gowers space G is said to satisfy the pigeonhole principle if for every p P , s X ω and A X, there exists q ¤ p such that either q s A, or q s A c .

The pigeonhole principle holds in the Mathias-Silver space: there, it is the trivial fact that every subset of an infinite set is either infinite, or has infinite complement. It also holds in the Rosendal space over the field F 2 : this is Hindman's theorem I.6. However, it does not hold in the Rosendal space over K, for K $ F 2 : to see this, take for example for A the set of all vectors whose first nonzero coordinate is 1. Note that apart from this trivial obstruction, the pigeonhole principle does not hold in the Rosendal space for much more intrinsic reasons. Indeed, consider the projective Rosendal space, i.e. the forgetful Gowers space PR K pP, PpEq, , ¦ , q, where PpEq is a countably infinite-dimensional projective space over the field K (that is, the set of vector lines of some countably infinite-dimensional K-vector space E), P is the set of block subspaces of E relative to a fixed basis pe i q iω of E, ¦ is the inclusion up to finite codimension as in the definition of the Rosendal space, and where since the space is forgetful, the relation usually denoted by is viewed as a relation between points and subspaces, here the inclusion. The definition of this space is made to avoid the previous obstruction to the pigeonhole principle and other possible ones of the same kind. However, for K $ F 2 , the pigeonhole principle still does not hold in PR K : take for example for A the set of all vector lines Kx, where the first and the last non-zero coordinates of x are equal.

Under the pigeonhole principle, we will show a weak converse to lemma II.17:

Proposition II.20. Suppose that the Gowers space G satisfies the pigeonhole principle.

Let X X ω and p P . If player II has a strategy in G p to reach X , then there exists q ¤ p such that I has a strategy in F q to reach X .

Before proving this proposition, let us make some remarks. Firstly, proposition II.20 immediately implies the following corollary:

Corollary II.21. Suppose that the Gowers space G satisfies the pigeonhole principle.

Let X X ω be a strategically Ramsey set. Then for all p P , there exists q ¤ p such that in F q , player I has a strategy either to reach X , or to reach X c . This corollary has some kind of converse. Indeed, for every s X ω , consider the Gowers space G s pP, X, ¤, ¤ ¦ , s q, where P , X, ¤ and ¤ ¦ are the same as in G and where t s p ô s " t p. Then if G satisfies the pigeonhole principle, all of the G s 's do so, so strategically Ramsey sets in these spaces satisfy the conclusion of the last corollary. Remark that conversely, if the conclusion of this corollary holds for sets of the form tpx n q nω | x 0 Au (where A X), in the space G s for every s, then G satisfies the pigeonhole principle. Indeed, let p P , s X ω , and A X. Consider the set X tpx n q nω X ω | x 0 Au. By assumption, there exists q ¤ p such that in the space G s , either I has a strategy in F q to reach X , or he has one to reach X c . In the first case, his strategy tells him, at the first turn of F q , to play some q 0 AE q; then, whatever the answer x 0 s q 0 of player II is, if player I continues to play according to his strategy, the outcome of the game will be some sequence px 0 , x 1 , . . .q belonging to X , what means that x 0 A; so q 0 s A. In the second case, we show in the same way that there exists q 0 AE q such that q 0 s A, what concludes. Thus, the satisfaction of the conclusion of corollary II.21 for clopen sets in G s for every s X ω is equivalent to the pigeonhole principle in G. Remark that if G is a forgetful space, then for every s X ω , we have G s G; so for such a space, the pigeonhle principle is actually equivalent to the fact that the conclusion of corollary II.21 holds for sets of the form tpx n q nω | x 0 Au. Also remark that corollary II.21 applied to the Mathias-Silver space, combined with lemma II.18, gives that a set X rωs ω is Ramsey (in the sense of Mathias-Silver's theorem) if and only if it is strategically Ramsey in the Mathias-Silver space (when seen as a subset of ω ω ). In particular, Mathias-Silver's theorem is a consequence of the abstract Rosendal's theorem II.14.

We now prove proposition II.20.

Proof of proposition II.20. Fix τ a strategy for II in G p to reach X . We call a state a partial play of G p either empty or ending with a move of II, during which II always plays according to her strategy. We say that a state realises a sequence px 0 , . . . , x n¡1 q X ω if it has the form pp 0 , x 0 , . . . , p n¡1 , x n¡1 q. We define in the same way the notion of a total state (which is a total play of G p ) and of realisation for a total state; if an infinite sequence is realised by some total state, then it belongs to X . We say that a point x X is reachable from a state s if there exists r ¤ p such that τ ps " rq x. Denote by A s the set of all points that are reachable from the state s . We will use the following fact.

Fact II.22. For every state s realising a finite sequence s, and for every q ¤ p, there exists r ¤ q such that r s A s .

Proof. Otherwise, by the pigeonhole principle, there would exist r ¤ q such that r s pA s q c . But then I could play r after the partial play s , and II would answer, according to her strategy, by x τ ps " rq that should satisfy s " x r. Since r s pA s q c , this would imply that x pA s q c . But we also have, by definition of A s , that x A s , a contradiction. Now let ps n q nω be an enumeration of X ω such that if s m s n , then m ¤ n. We define, for some n ω, a state s n realising s n , by induction in the following way: s 0 ∅ and for n ¥ 1, letting s n s m " x for some m n and some x X,

• if s m has been defined and if x is reachable from s m , then choose a r ¤ p such that x τ ps m " rq and put s n s m " pr, xq,

• otherwise, s n is not defined.

Remark that if s n is defined and if s m s n , then s m is defined and s m s n .

We now define a ¤-decreasing sequence pq n q nω of elements of P in the following way: q 0 p and • if s n is defined, then q n 1 is the result of the application of fact II.22 to s n and q n ;

• q n 1 q n otherwise.

Finally, let q ¤ p be such that for every n ω, q ¤ ¦ q n . We will show that I has a strategy in F q to reach X . We describe this strategy on the following play of F q :

I u 0 u 1 . . . II x 0 x 1 . . .
We actually show that I can always play preserving the fact that, if n i ω is such that s n i px 0 , . . . , x i¡1 q, then s n i is defined. This will be enough to conclude: indeed, iω s n i will be a total state realising the sequence px i q iω , showing that this sequence belongs to X .

Suppose that the i th turn of the play has just been played, so the sequence s n i px 0 , . . . , x i¡1 q has been defined, in such a way that s n i is defined. Then by construction of q n i 1 , we have that q n i 1 sn i A s n i . We let I play some u i such that u i AE q and u i ¤ q n i 1 . Then u i sn i A s n i , so whatever is the x i that II answers with, this x i is reachable from s n i . So if s n i 1 s n i " x i , then s n i 1 has been defined, and the wanted property is preserved.

Remark that this proof can be done in ZF DC, even if the space G is not supposed effective.

II.3 The strength of the adversarial Ramsey principle

In section II.1, we proved the adversarial Ramsey property for Borel sets using Borel determinacy, and we saw on the trivial example of the space with only one subspace that, given Γ a suitable class of subsets of Polish spaces, the adversarial Ramsey property for Γ-sets implied the determinacy for Γ-games on integers. This had two consequences: on one hand, the use of a sufficiently large fragment of ZF C is necessary to prove the adversarial Ramsey property for Borel sets, and on the other hand, it is not possible to prove it for analytic or coanalytic sets in ZF C. However, the space we used to make this remark is quite artificial. Of course, we made the same remark in the introduction of this thesis using the Rosendal space, however we did it by making players play according to the norms of the vectors, which is quite artificial too (we would not do that, for example, in the applications to Banach-space geometry, where we usually restrict our attention to normalized vectors). Therefore, is it natural to ask in which cases using a large fragment of ZF C is necessary to prove the adversarial Ramsey property for Borel sets, or in which cases this property could be provable in ZF C for analytic and coanalytic sets; the aim of this section is to give an answer to this question. We will see, in particular, that Gowers spaces where the pigeonhole principle holds, and those where it does not hold, behave very differently.

In this section and the next one, we fix Γ a suitable class of subsets of Polish spaces.

Given a Gowers space G pP, X, ¤, ¤ ¦ , q, we denote by Adv G pΓq the statement "every Γ-subset of X ω is adversarially Ramsey", and by Strat G pΓq the statement "every Γ-subset of X ω is strategically Ramsey". We let AdvpΓq be the statement "for every analytic Gowers space G, Adv G pΓq holds", and StratpΓq be the statement "for every analytic Gowers space G, Strat G pΓq holds". We proved in the two previous sections the following implications:

Det R pΓq ñ AdvpΓq ñ Det ω pΓq

StratphΓq

In the rest of this section, we fix a Gowers space G pP, X, ¤, ¤ ¦ , q. We begin our analysis with making some remarks about games. In the games A p , B p , F p and G p , say that the turn n is the sequence of two moves, consisting in one move of each player, where one player plays a subspace and just after, the other player plays the element of index n in the outcome. For instance, in a run pp 0 , x 0 , p 1 , x 1 , . . .q of the game F p or G p , the turn n is pp n , x n q; and in a run pp 0 , x 0 , q 0 , y 0 , p 1 , x 1 , . . .q of the game A p , or B p , the turn 2n is pp n , x n q and the turn 2n 1 is pq n , y n q. We say that a turn of a game played under the subspace p is an asymptotic turn if it has the form pp n , x n q where p n AE p, player I plays p n and player II plays x n , an anti-asymptotic turn if it has the form pp n , x n q where p n AE p, player II plays p n and player I plays x n , a Gowers turn if it has the form pp n , x n q where p n ¤ p, player I plays p n and player II plays x n , and an anti-Gowers turn if it has the form pp n , x n q where p n ¤ p, player II plays p n and player I plays x n . In this way, F p is a sequence of asymptotic turns, G p is a sequence of Gowers turn, A p alternates between one anti-Gowers turn and one asymptotic turn, and B p alternates between one anti-asymptotic turn and one Gowers turn. Given a game H, we will denote by H ¦ the same game, but where the roles of players I and II are reversed.

Recall lemma II.17, where we proved that if player I had a strategy in F p to reach some set X , then II had a strategy in G p to reach X . This lemma can be rephrased in the following way: if player I has a strategy in F p to reach X , then he has a strategy in G ¦ p to reach X . And the proof of this lemma actually show the following stronger result: if, in a game H, player I has a strategy to reach some set X , then, in a game obtained from H by replacing some asymptotic turns by anti-Gowers turns, player I still have a strategy to reach X . Now remark that if we replace turns with even index (resp. odd index) in F p with anti-Gowers turns, we get A p (resp. B ¦ p ) and that if we replace turns with odd index in A p (resp. turns with even index in B ¦ p ), that are asymptotic turns, with anti-Gowers turns, then we get G ¦ p . Thus, we have the following lemma:

Lemma II.23. Let X X ω . Consider the following four assertions:

(A) Player I has a strategy to reach X in F p ;

(B) Player I has a strategy to reach X in A p ;

(C) Player II has a strategy to reach X in B p ;

(D) Player II has a strategy to reach X in G p ;

Then we have the following implications:

(B) (A) (D) (C)
An interesting consequence is the following result:

Proposition II.24. Suppose that the Gowers space G satisfies the pigeonhole principle.

Then a set X X ω is strategically Ramsey if and only if it is adversarially Ramsey. Proof. Suppose that X is strategically Ramsey, and let p P . By corollary II.21, there exists q ¤ p such that either player I has a strategy in F q to reach X , or he has one to reach X c . By lemma II.23, we deduce that either I has a strategy in A q to reach X , or II has a strategy in B q to reach X c . So X is adversarially Ramsey.

Now suppose that X is adversarially Ramsey, and let p P . Then there exists q ¤ p such that either I has a strategy in A q to reach X , or II has a strategy in B q to reach X c ; so by lemma II.23, either II has a strategy in G q to reach X , II has a strategy in G q to reach X c . In the second case, using proposition II.20, we get the existence of r ¤ q such that I has a strategy in F r to reach X c . So X is strategically Ramsey.

In particular, the proof of the adversarial Ramsey property for Borel sets in spaces where the pigeonhole principle holds can be carried out in ZC, and the adversarial Ramsey property is provable, in ZC, for analytic and coanalytic sets. In these spaces, this property is actually useless. We will now see that in spaces where the pigeonhole principle does not hold, the situation is the opposite. We will need, here, to restrict our attention to forgetful Gowers spaces.

Proposition II.25. Suppose that the Gowers space G is forgetful and does not satisfies the pigeonhole principle. Then Adv G pΓq ñ Det ω pΓq. Proof. Suppose Adv G pΓq. We show that every Γ-subset of 2 ω is determined. This implies that every Γ-subset of ω ω is determined; see for example [START_REF] Moschovakis | Descriptive set theory[END_REF], exercise 6A.8. So we let Y 2 ω be a Γ-set. Recall that the Gale-Stewart game over 2, that is, the game where I and II alternate playing elements of 2 and whose outcome is the sequence of these elements, is denoted by Gp2 ω q. We have to prove that either I has a strategy to reach Y in this game, or that II has a strategy to reach Y c in it.

Since G is forgetful, we will consider as a binary relation between elements of X and elements of P . Since G does not satisfy the pigeonhole principle, there exists p P and A X such that for every q ¤ p, there exists x, y q with x A and y A c . We let f : X ω ÝÑ 2 ω be the function mapping a sequence px n q nω to the sequence pα n q nω defined by dn ω pα n 1 ô x n Aq; and we let X f ¡1 pYq. Then X is in Γ, so it is adversarially Ramsey; let q ¤ p such that either I has a strategy in A q to reach X , or II has a strategy in B q to reach X c .

Suppose that I has a strategy τ to reach X in A q . We show that I has a strategy to reach Y in the Gale-Stewart game Gp2 ω q by simulating a play pα 0 , α 1 , α 2 , . . .q of this game by a play pq 0 , x 0 , q 1 , x 1 , q 2 , x 2 , . . .q of A q during which I always plays according to τ (here, we use a slightly different notation than usual: the subspaces played by I are the q i 's, for i odd, and the points played by I are the x i 's, for i even). Suppose that the x i 's, the q i 's and the α i 's have been played for every i 2n. In the game A q , we make II play q 2n q. According to the strategy τ , I answers with x 2n and q 2n 1 . If x 2n A, then we make I play α 2n 1 in Gp2 ω q; otherwise, we make him play α 2n 0. In this game, player II answers with α 2n 1 . If α 2n 1 1, then, in A q , we make II play x 2n 1 A such that x 2n 1 q 2n 1 ; otherwise, we make her play x 2n 1 A c such that x 2n 1 q 2n 1 . Remark that this is always possible by the definition of A, since q 2n 1 ¤ q ¤ p. And the plays can continue. At the end of the plays, the outcome of Gp2 ω q is pα n q nω f ppx n q nω q. Due to the use of the strategy τ by I, we have that px n q X , so pα n q Y as wanted.

In the same way, if II has a strategy in B q to reach X , then we can deduce that II has a strategy in Gp2 ω q to reach Y c ; this concludes the proof. This proof does not work in spaces that are not forgetful. In these spaces, we need a slight strengthening of the negation of the pigeonhole principle, for example the fact that there exists p P such that for every s X ω , there exists A s X such that for every q ¤ p, we do not have q s A s nor q s A c s . In this case, we can define the function f in the following way: f maps a sequence px n q nω to the unique sequence pα n q nω such that for every n, α n 1 iff x n A px 0 ,...,x n¡1 q , and carry out the proof in the same way.

A consequence of proposition II.25 is that if G is a forgetful Gowers space where the pigeonhole principle does not hold, then you cannot prove Adv G p∆ 1 1 q in ZC: you need to use the powerset axiom and the replacement scheme to prove it. This holds, for instance, in the projective Rosendal space over a field with at least three elements, showing that "playing on the norm" is not the only way to get back determinacy from the adversarial Ramsey property. Also, in these spaces, Adv G pΣ 1 1 q and Adv G pΠ 1 1 q are not provable in ZF C and even, are false in ZF C V L. This is a first major difference between spaces with and without a pigeonhole principle; we will see another one in the next section.

II.4 Closure properties and limitations for strategically Ramsey sets

In this section, we show the same kind of difference of behavior between spaces with and without a pigeonhole principle as in the previous section, but this kind for strategically Ramsey sets. We fix, in the whole section, a Gowers space G pP, X, ¤, ¤ ¦ , q and a suitable class Γ of subsets of Polish spaces. The first thing to remark is that if G satisfies the pigeonhole principle, then by corollary II.21, the class of strategically Ramsey sets is closed under taking complements: X X ω is strategically Ramsey if and only if X c is so. In particular, in ZF C, every Π 1 1 subset of X ω is strategically Ramsey. In spaces where the pigeonhole principle does not hold, the situation is very different; we firstly state the two main results of this section and present their consequences, before proving them.

The first result is a generalisation of a theorem proved by López-Abad [START_REF] López-Abad | Coding into Ramsey sets[END_REF] in the context of strategically Ramsey sets in Banach spaces. This result only holds for forgetful Gowers spaces, and to prove it, we need the negation of a slight weakening of the pigeonhole principle. We will say that the forgetful space G satisfies the weak pigeonhole principle if for every A X, there exists p P such that either p A, or p A c (where p A abusively denotes the fact that for every x X, if x p, then x A).

Of course, in most of the concrete spaces we consider, P has a maximum 1 that is isomorphic to every subspace (meaning, here, that for every p 0 P , there are bijections 57 Φ : P ÝÑ tp P | p ¤ p 0 u and ϕ : X Ñ tx X | x p 0 u that preserve the relations ¤, ¤ ¦ and ); this is, for example, the case of the Mathias-Silver space or of the Rosendal space. In these spaces, the weak pigeonhole principle is equivalent to the pigeonhole principle. Our result is the following: Proposition II.26. Suppose that G is forgetful and does not satisfy the weak pigeonhole principle. Then Strat G pΓq ñ Strat G phΓq.

For the second result we need to ensure the fact that the space G is non-trivial enough. We say that the space G is standard if |P| ¤ c and if G satisfies the following property: for every s X ω and for every p P , there exists q, r ¤ p such that no x X satisfies at the same time s " x q and s " x r. This property is for instance satisfied by the Mathias-Silver space and by the Rosendal space. Our second result is the following: Proposition II.27. Suppose that the Gowers space G is standard. Then there exists X X ω satisfying the following property: for every p P , player II has no strategy in G p to reach X , and no strategy in G p to reach X c . In particular, X is not strategically Ramsey. Moreover, if V L, then such a set X can be choosen Σ 1 2 .

Let us discuss the consequences of these two propositions. Firstly, we deduce immediately that if G is forgetful, standard, and does not satisfy the weak pigeonhole principle, then if V L, there exist Π 1 1 -sets that are not strategically Ramsey in this space. In particular, in this space, the class of strategically Ramsey sets is not closed under complements in general. On the other hand, if G is standard and satisfies the pigeonhole principle, then Strat G pΓq does not imply Strat G phΓq in general, since ZF C proves that every Π 1 1 -set in G is strategically Ramsey, but does not prove it for Σ 1 2 -sets. So, roughly speaking, we have a dichotomy between, on one side, spaces with a pigeonhole principle where the class of strategically Ramsey sets is closed under complements but not projections, and spaces without a pigeonhole principle where the class of strategically Ramsey sets is closed under projections but not complements.

We finish this section by giving the proof of propositions II.26 and II.27.

Proof of proposition II.26. As usual, since G is forgetful, we will consider as a relation between points and subspaces. As in the proof of theorem II.14, we let X I X ¢ t0, 1u and we define a relation I X I ¢P by px, εq p ô x p. Then G I pP, X I , ¤, ¤ ¦ , I q is a forgetful Gowers space. To avoid confusion, the asymptotic game and Gowers' game So suppose Strat G pΓq. Since G does not satisfy the weak pigeonhole principle, there exists A X such that for every p P , there exists x, y p such that x A and y A c . We define a mapping f : X Ñ t0, 1u by f pxq 1 ô x A, and a mapping F : X ω Ñ X Iω by F ppx n q nω q px 0 , f px 1 q, x 2 , f px 3 q, x 4 , f px 5 q, . . .q. We show that, for Proof.

1. pñq Suppose that I has a strategy to reach X c in G p . Then he can use the same strategy to win CG p pXq, but, instead of playing the subspace p i , he plays a (non-necessarily injective) enumeration x 0 i , x 1 i , . . . of the set tx X | s i " x p i u, where s i py 0 , . . . , y i¡1 q is the sequence of points already played by II. If II never interrupts him, then according to the rules of CG p pXq, I will win this game. So we can suppose that II interrputs him to play a y i such that py 0 , . . . , y i q p i , and the play can continue exactly as in G p .

pðq We simulate a play pp 0 , y 0 , p 1 , y 1 , . . .q of G p with a play px 0 0 , . . . , x n 0 0 , y 0 , x 0 1 , . . . , x n 1 1 , y 1 , . . .q where I plays using a winning strategy. Suppose that, for j i, all the p j and the y j have been played in G p , and that the last move in CG p pXq is II playing y i¡1 . In CG p pXq, we let I play x 0 i , x 1 i , . . ., according to his strategy. If II never interrupts it, he will have produced an infinite sequence px n i q nω , and with A tx n i | n ωu and s py 0 , . . . , y i¡1 q, knowing that I is winning, we will get that there exists p i ¤ p such that A tx X | s " x p i u. Then we make I play p i in G p ; II will answer by y i such that s " y i A, so by construction, we will have that y i x n i i for some n i ω, and in CG p pXq, II could have interrupted I after he played x n i i to play y i . We will suppose that II did that, and the games can continue. At the end, the outcome of G p is an infinite sequence of points played by II in CG p pXq while I was using his winning strategy, so it belongs to X c as wanted.

pñq

We simulate a play px 0 0 , . . . , x n 0 0 , y 0 , x 0 1 , . . . , x n 1 1 , y 1 , . . .q of CG p pXq with a play pp 0 , y 0 , p 1 , y 1 , . . .q of G p where II uses a strategy to reach X . Suppose that the last move in both games is y i¡1 , played by II. We say that y X is reachable if there exists p i ¤ p such that, if I plays p i in G p , then the strategy of II tells him to answer with y. The strategy of II in CG p pXq will be the following: she watches I playing a sequence of points px 0 i , x 1 i , . . .q, until he plays a reachable point. If, for some n i ω, x n i i is reachable, then II interrupts him and plays

y i x n i i .
Then, in G p , by assumption there exists a p i that I can play and such that II will answer, according to her strategy, with y i , and both games can continue. In the opposite case, if none of the points x n i 's played by I in CG p pXq is reachable, then II never interrupts him. In this way, I will produce a sequence px n i q nω , and we will see that he loses the game CG p pXq. Suppose not. Then, denoting by s py 0 , . . . , y i¡1 q the sequence of points already played by II in CG p pXq, there exists p i ¤ p such that the set tx n i | n ωu is equal to the set tx X | s " x p i u. Then, I can play p i in the game G p , and II will answer, according to her strategy, with a y i belonging to these sets. This y i is reachable, so this contradict the fact that no term of the sequence px n i q nω was reachable. In the case were II plays only finitely many points in CG p pXq, we just saw that she wins this game. If she produces an infinite sequence py i q iω , then this sequence is exactly the outcome of the auxiliary game G p , so it belongs to X and II wins.

pðq The proof is the same as for the direction pðq of 1.. If II has a strategy to win CG p pXq, then she can use this strategy in G p by believing that player I plays, instead of the p i 's, the points of the sets ty X | py 0 , . . . , y i¡1 , yq p i u successively. Her strategy will always make her interrupt I, because if it did not, then I could enumerate a set of this form and would win immediately. Now let τ be a strategy for II in the countable Gowers' game CG (we do not need to specify the subspace under which the game is played, nor the target set to define the notion of a strategy in this game). Such a strategy can be seen as a function τ : SeqpXq ÝÑ X t¦u: after I has played z 0 , . . . , z k¡1 in CG, if τ pz 0 , . . . , z k¡1 q y X, this means that II has to interrupt I and to play y, and if τ pz 0 , . . . , z k¡1 q ¦, then II has to wait and to let I play another point. (In particular, there are at most continuummany such strategies.) If τ is such a strategy, we let rτs be the set of sequences py i q iω that can be produced by II in plays of CG where she interrupts I infinitely many times and always plays according to her strategy τ . We say that the strategy τ is good if |rτs| c. Given a subspace p P , we say that a strategy τ is p-correct if whenever, during a play of CG p , II always plays according to τ and only interrupt I finitely many times, then I loses this play. (In this context, saying that I loses the play has a sense even without specifying the target set, since the winning condition for II when II only interrupts I finitely many times only depends on p.) Remark that a strategy τ is winning for II in the game CG p pXq if and only if it is p-correct and rτs X .

Lemma II.30. Suppose that the Gowers space G is standard. Let τ be a strategy for II in CG. If there exists p P such that τ is p-correct, then τ is good. Proof. Suppose that there exists p P such that τ is p-correct and fix such a p. Let X rτs. Then by the previous remark, II has a strategy winning strategy in CG p pXq, so by lemma II.29, she has a strategy σ in G p to reach X . As usual, we define a state as a partial play of G p ending with a move of II and during which II always plays according to σ; this play realises a sequence px 0 , . . . , x n¡1 q if it has the form pp 0 , x 0 , . . . , p n¡1 , x n¡1 q. We build inductively, for α 2 ω , a state s α realising a sequence s α of length |α|, in such a way that for α, β 2 ω , we have α β ñ s α s β , and if |α| |β|, then α $ β ñ s α $ s β . This will be enough to conclude: letting f pxq n ω s x aen will define a one-to-one mapping f : 2 ω Ñ X .

We let s ∅ s ∅ ∅. Let α 2 ω and suppose that s α and s α have been built. Then, since G is standard, then there exists q, r ¤ p such that no x X satisfies simultaneously s α " x q and s α " x r. In particular, x σps α " qq and y σps α " rq are distinct so we can let s α " 0 s α " pq, xq, s α " 0 s α " x, s α " 1 s α " pr, yq, and s α " 1 s α " y, and this achieves the construction.

Lemma II.31. Let X X ω . If, for some p P , II has a strategy in G p to reach X , then there is a good strategy τ for II in CG such that rτs X . Proof. By lemma II.29, if II has a strategy in G p to reach τ , then she has a winning strategy τ in the game CG p pXq. In particular, this strategy has to be satisfy rτs X .

Moreover, it has to be p-correct, so by lemma II.30, it is good.

We can now prove the "ZF C" part of proposition II.27. For the "V L" part, we will need some more lemmas and we will do that later. In the rest of this section, we will use the letters u, v, and w to denote elements of Polish spaces (as ω ω or X ω ).

Proof of proposition II.27, first part. Suppose that the space G is standard; we build a set X X such that for every p P , II has no strategy in G p to reach X , and she has no strategy in G p to reach X c . By lemma II.31, we only have to ensure that for every good strategy τ for II in CG, we have rτs X $ ∅ and rτs X c $ ∅. Let pτ α q α c be a (non-necessarily injective) enumeration of good strategies for II in CG. We can build inductively two sequences pu α q α c and pv α q α c of elements of X ω such that for every α, u α $ v α and u α , v α rτsztu ξ , v ξ | ξ αu. Then the set X tu α | α cu is as wanted.

Of course, the X we built cannot be strategically Ramsey: indeed, by lemma II.17, we get that for no p P , I can have a strategy in F p to reach X c . For the "V L" part of proposition II.27, we will use a well-known result by Gödel.

We begin with a definition.

Definition II.32. A well-ordering of a Polish space U is said to be Σ 1 2 -good if it has order-type ω 1 , if it is a Σ 1 2 -subset of U 2 , and if the relation R U ω ¢ U defined by

pu n q nω R v Ø tu n | n ωu tw ω ω | w vu is Σ 1 2 .
Gödel's result is the following (for a proof, see for example [START_REF] Jech | Set theory, 3rd millennium[END_REF], lemma 25.27):

Theorem II.33 (Gödel). Suppose V L. Then there exists a Σ 1 2 -good well-ordering on ω ω .

Obviously, it follows that if V L, such an ordering exists on every Polish space.

Remark that if is a Σ 1 2 -good well-ordering on a Polish space U , then it is actually a ∆ 1 2 -subset of U 2 : indeed, u v can be written 2pu v v uq, which is a Π 1 2 definition. In the same way, the relation R is in fact ∆ 1 2 , since pu n q nω R v can be written du U pu v ô hn ω u u n q, which is a Π 1 2 definition. Also remark that if U and V are Polish spaces, if is a Σ 1 2 -good well ordering on V , and if A is a ∆ 1 2 -subset of U ¢ V , then the set B U ¢ V defined by pu, vq B if and only if the set tw ω ω | pu, wq Au is nonempty and v is its -least element, is ∆ 1 2 . Indeed, the fact that pu, vq B can be written pu, vq A dw ω ω pw v ñ pu, wq Aq, which is a Π 1 2 -definition; and it can also be written pu, vq A pv v 0 hpw n q nω V ω ppw n q nω R v dn ω pu, w n q Aqq, which is a Σ 1 2 -definition (here, v 0 denotes the -least element of V ). We will refer to this fact later by saying that minimisation preserves ∆ 1 2 -sets.

Our proof of the "V L" part of proposition II.27 will be the same as this of the "ZF C" part, but we will replace the use of the axiom of choice by a careful use of a Σ 1 2 -good well ordering, enabling us to ensure that the set X we build is definable enough. The only difficulty here is to compute complexities.

We denote by Strat the sets of strategies for II in the game CG.

Lemma II.34.

1.

Strat is a closed subset of the set of mappings SeqpXq ÝÑ X t¦u. In particular, it is a Polish space.

2. The set tpτ, uq Strat ¢ X ω | u rτsu is an analytic subset of Strat ¢ X ω .

3. The set of good strategies is a ∆ 1 2 -subset of Strat.

Proof.

1. Let τ : SeqpXq ÝÑ X t¦u such that τ Strat. Then there exist a finite sequence px 0 0 , . . . , x n 0 0 , x 0 1 , . . . x n 1 1 , . . . , x 0 i , . . . , x n i i q SeqpXq such that for every j ¤ i and for every n n j , we have τ px 0 0 , . . . , x n 0 0 , . . . , x 0 j¡1 , . . . x n j¡1 j¡1 , x 0 j , . . . , x n j q ¦, for every j i we have τ px 0 0 , . . . , x n 0 0 , . . . , x 0 j , . . . , x n j j q tx 0 j , . . . , x n j j u, and τ px 0 0 , . . . , x n 0 0 , . . . , x 0 i , . . . , x n i i q tx 0 i , . . . , x n i i u. Any τ I : SeqpXq ÝÑ X t¦u satisfying the same conditions is not in Strat, showing that the complement of Strat is open.

2. For τ Strat, and for v X ω , let τ ¤ v X ¤ω be the sequence of the points played by II in a play of CG where he always plays according to τ , and where I plays the sequence v. Denote by Inf the set of pairs pτ, vq Strat ¢ X ω such that τ ¤ v is an infinite sequence. The fact that pτ, px n q nω q Inf can be written "eventually, τ px 0 , . . . , x k q ¦", so Inf is a G σ -subset of Strat ¢ X ω , so a Polish space. Moreover, the mapping pτ, vq Þ Ñ τ ¤ v from Inf to X ω is clearly continuous. The property u rτs, for τ Strat and u X ω , can be written as hv Inf pτ ¤ v uq, so this property in analytic, as wanted.

3. For τ Strat, we have that τ is good if and only if for every pu n q nω pX ω q ω , there exists v X ω such that pτ, vq Inf and dn ω pτ ¤ v $ u n q; this is a Π 1 2 -definition. We now have to find a Σ 1 2 -definition. For τ Strat, we denote by F in τ the set of v X ω such that pτ, vq F in. We define the equivalence relation E τ on F in τ by v E τ w iff τ ¤v τ ¤w, in such a way that τ is good if and only if E τ has uncountably many classes. The relation E τ is Borel, so by Silver's dichotomy theorem I.27, we get that τ is good if and only if there exists a continuous mapping f : 2 ω ÝÑ F in τ such that for every w, w I 2 ω , w $ w I ñ pfpwq, f pw I qq E τ . Knowing that the set of continuous mappings 2 ω ÝÑ X ω , with the uniform metric, is Polish (see [START_REF] Kechris | Classical descriptive set theory[END_REF], theorem 4. [START_REF] Ferenczi | Banach spaces without minimal subspaces[END_REF], we see that this characterisation of goodness is Σ 1 2 .

II.5 The adversarial Ramsey property under large cardinal assumptions

As we already saw, if Γ is a class of subsets of Polish spaces, then AdvpΓq is implied by Det R pΓq and implies Det ω pΓq, and an interesting question is to know where AdvpΓq lies between these two determinacy statements, both in terms of implication and of consistency strength. We do not know much about this question; in this section, we discuss the consequences of some usual large cardinal assumptions on the adversarial Ramsey property in order to have a better idea of its strength. In particular, we will give an answer to Rosendal's question I.17. As usual, we fix G pP, X, ¤, ¤ ¦ , q a Gowers space.

Recall that, for κ an uncountable cardinal, an ultrafilter on a set X is κ-complete if it is closed under intersections of size κ (if κ ℵ 1 , such an ultrafilter will also be said σ-complete). A measurable cardinal is an uncountable cardinal κ on which there exists a non-principal, κ-complete ultrafilter. Such cardinals are inaccessible, and it can be shown that the existence of a measurable cardinal is equivalent to the existence of a set X with a non-principal, σ-complete ultrafilter on X (see [START_REF] Jech | Set theory, 3rd millennium[END_REF], lemmas 10.2 and 10.4). The first determinacy result under large cardinal assumptions was proved by Martin [START_REF] Martin | Measurable cardinals and analytic games[END_REF]. We recall that, unless otherwise specified, if X is a set and T X ω a tree, we put the discrete topology on X, and the topology induced by the product topology on rTs.

Theorem II.35 (Martin). Suppose that there exists a measurable cardinal κ. Let X be a set with |X| κ and T X ω be a tree. Then every Σ 1 1 -subset of rTs is determined. In particular, if there exists a measurable cardinal above |P| and if X Σ 1 1 pX ω q then in Kastanas' game, either player I has a strategy to reach X , or II has one to reach X c . So proposition II.6, and the proof of theorem II.14, give:

Theorem II.36. If there exists a measurable cardinal above |P|, then every analytic subset of X ω is adversarially Ramsey, and every Σ 1 2 -subset of X ω is strategically Ramsey. In particular, this gives an answer to Rosendal's question I.17. Determinacy results for higher levels of the projective hierarchy were then proved, based on the notion of Woodin cardinals. We will not give the definition of a Woodin cardinal, since it is quite sophisticated and would have no interest here. Woodin cardinals are inaccessible, they are not necessarily measurable but contain a stationary set of measurable cardinals. For more details, see [START_REF] Jech | Set theory, 3rd millennium[END_REF], section 34. The first determinacy results assuming the existence of Woodin cardinals were proved by Martin and Steel [START_REF] Martin | Projective determinacy[END_REF][START_REF] Martin | A proof of projective determinacy[END_REF]:

Theorem II.37 (Martin-Steel). Suppose that there exist n Woodin cardinals, and a measurable cardinal above them. Let X be a set with cardinality strictly less than the Woodins, and T X ω be a tree. Then every Σ 1 n 1 -subset of rTs is determined. (The proof given by Martin and Steel is for X ω, but a proof of the general case can be found in [START_REF] Neeman | Determinacy in LpRq. Handbook of set theory[END_REF]). Then, Woodin proves the following result (see [START_REF] Martin | A proof of projective determinacy[END_REF]):

Theorem II.38 (Woodin). Suppose that there exist ω Woodin cardinals and a measurable above them. Then every subset of ω ω that belongs to LpRq is determined.

LpRq is the class of sets constructible from reals, see [START_REF] Jech | Set theory, 3rd millennium[END_REF], section 13. An interesting consequence of the last theorem is that, under the same hypotheses, AD holds in LpRq. Indeed strategies for games on ω can be coded by reals, so are in LpRq; moreover, the sentence, for instance, "τ is a strategy for I in Gpω ω q to reach A", only quantifies over sequences of integers, so is absolute for LpRq. This shows that "being determined", for a game on integers, is absolute for LpRq. Since ZF DC also holds in LpRq, this give the consistency of the theory ZF DC AD relatively to large cardinal axioms.

Given Y an uncountable Polish space, we will denote by LpRqpY q the set of A Y such that there exist a Borel mapping ϕ : Y Ñ ω ω and B Ppω ω q LpRq such that A ϕ ¡1 pBq. Since Borel subsets of ω ω and Borel mappings from ω ω to itself can be coded by real numbers, these sets and mappings are in LpRq. So we deduce that LpRq is a suitable class of subsets of Polish spaces. Neeman confirmed to the author that theorem II.38 was also true for games on real numbers. From this result, and from theorem II.37, we can deduce the following results:

Theorem II.39.

1. If there are n Woodin cardinals above |P| and a measurable cardinal above them, then every Σ 1 n 1 -subset of X ω is adversarially Ramsey, and every Σ 1 n 2 -subset of X ω is strategically Ramsey.

2. Suppose that there are ω Woodin cardinals, and a measurable cardinal above them.

Suppose that the space G is analytic. Then every LpRq-subset of X ω is adversarially Ramsey and strategically Ramsey.

Proof. The proof of 1. is exactly the same as the proof of theorem II.36, using Martin and Steel's result. For 2., we use Woodin's result for games on reals with outcome in LpRq, corollary II.8 and the fact that every LpRq-subset of R ω (with its Polish topology) is in LpRq (this is due to the fact that Borel mappings R ω ÝÑ ω ω can be coded by real numbers).

Corollary II.40. If the theory ZF C "there exist ω Woodin cardinals and a measurable above them" is consistent, then the following theory is also consistent: ZF DC "in every analytic Gowers spaces, every set is adversarially and strategically Ramsey".

Proof. We suppose the existence of ω Woodin cardinals and a measurable above them, and we show that the sentence "in every analytic Gowers spaces, every set is adversarially Ramsey" is satisfied in LpRq. The case of strategically Ramsey sets will follow since if every set is adversarially Ramsey, then every set is strategically Ramsey. Let G pP, X, ¤, ¤ ¦ , q LpRq such that LpRq satisfies "G is an analytic Gowers space".

Then in V , G is an analytic Gowers space, and subsets of X ω that are in LpRq are in

LpRqpX ω q, so by theorem II.39, they are adversarially Ramsey in V . It remains to prove that the property of being adversarially Ramsey relativizes to LpRq. For this, we have to prove that given p P and X PpX ω q LpRq, the two notions "I has a strategy in A p to reach X " and "II has a strategy in B p to reach X " relativize to LpRq. Since both proofs are the same, we show it for A p .

As well as we did for Gowers games in the the last section (see definition II.28), we will here define a countable version of the game A p . For p P , and for X X ω , we define the game CA p pXq in the following way:

I y 0 , z 0 0 , z 1 0 , . . . , z n 0 0 . . . II x 0 0 , x 1 0 , . . . , x m 0 0 t 0 , x 0 1 , x 1 1 , . . . , x m 1 1 . . .
It is played in the following way. II begins with playing a sequence px 0 0 , x 1 0 , . . .q of elements of X. At some point, I can choose to interrupt her at some point x m 0 0 and to choose y 0 tx 0 0 , x 1 0 , . . . , x m 0 0 u. If he does, then after playing y 0 , I plays a sequence pz 0 0 , z 1 0 , . . .q of elements f X, and II can choose to interrupt him at some point z n 0 0 by choosing t 0 tz 0 0 , z 1 0 , . . . , z n 0 0 u. If she does, then II begins back playing a sequence px 0 1 , x 1 1 , . . .q, etc.. Three cases can occur:

• First case: both of the player never let the other one play infinitely many consecutive times without interrupting him. Then at the end of the game, the players will have produced an infinite sequence py 0 , t 0 , y 1 , t 1 , . . .q X ω . In this case, I wins if and only if this sequence belongs to X .

• Second case: at some point, I chooses not to interrupt II and to let her play infinitely many successive times. Then II will continue to play points indefinitely and the game will stop after ω points have been played. In this case, the players will have produced a finite sequence s py 0 , t 0 , y 1 , t 1 , . . . , y i¡1 , t i¡1 q, and after that, II will have produced an infinite sequence px n i q nω ; we can let A tx n i | n ωu. Then I wins if and only if for no q ¤ p, we have that A tx X | s " x qu.

• Third case: at some point, II chooses not to interrupt I and to let him play infinitely many successive times. Then I will continue to play points indefinitely and the game will stop after ω points have been played. In this case, the players will have produced a finite sequence s py 0 , t 0 , y 1 , t 1 , . . . , t i¡1 , y i q, and after that, I will have produced an infinite sequence pz n i q nω ; we can let A tz n i | n ωu. Then I wins if and only if for some q AE p, we have that A tx X | s " x qu.

Using exactly the same proof as in lemma II.29, we can show the following:

• player I has a strategy in A p to reach X if and only if he has a winning strategy in CA p pXq;

• player II has a strategy in A p to reach X c if and only if she has a winning strategy in CA p pXq.

In particular, it is sufficient to show that for p P and X PpX ω q LpRq, the notion "I has a winning strategy in CA p pXq" relativizes to LpRq. But this is true, since strategies in this game are points of a Polish space and thus can be coded by real numbers.

Our results theorem II.36, theorem II.39 and corollary II.40 are certainly not optimal, since the statements on the adversarial Ramsey property they give are not enough to recover the large cardinal assumptions used to deduce them, even in terms of consistency.

And they are not enough to compare the stength of AdvpΓq with this of Det ω pΓq (for the classes Γ that are studied here), because the statements Det ω pΓq have already been shown to be equiconsistent to large cardinal assumptions that are strictly weaker as those used in our results. For instance, Harrington showed [START_REF] Harrington | Analytic determinacy and 0 #[END_REF] that Det ω pΣ 1 1 q is equivalent to the existence of a sharp for every real number, an hypothesis that is weaker in consistency than the existence of a measurable cardinal and that is not enough to deduce Det R pΣ 1 1 q

(and thus, to deduce AdvpΣ 1 1 q using our methods). This particular case will be discussed at the end of this section. Then, Woodin showed that the determinacy of games on ω with payoff in LpRq had the same consistency strength as the existence of ω Woodin cardinals (see [START_REF] Koellner | Large cardinals from determinacy. Handbook of set theory[END_REF] for a proof of the direction from determinacy to large cardinals, and [START_REF] Neeman | Determinacy in LpRq. Handbook of set theory[END_REF] for the other direction). However, it seems that ω Woodin cardinals are not enough to get the determinacy of games on real numbers with payoff in LpRq, so to get Advp LpRqq using our methods. The same occur for the case of Σ 1 n -sets for n ¥ 2, for which Det ω pΣ 1 n q has been shown to be equivalent in consistency strength to large cardinal assumptions by Woodin (see [START_REF] Müller | Mice with finitely many Woodin cardinals from optimal determinacy hypotheses[END_REF]). So the question of the comparison between AdvpΓq and Det ω pΓq remains widely open. However, AdvpΓq seem, in general, to be quite close to Det ω pΓq, and to illustrate this, in the rest of this section, we will study the link between the adversarial Ramsey property and the property of being homogeneously Souslin, a property of sets of sequences closely linked to determinacy.

In what follows, if X and K are sets, and we consider a tree T on X ¢ K as a subset of X ω ¢ K ω , whose elements are pairs of finite sequences of the same length. Given s X ω , we will let T s tt K |s| | ps, tq T u. We will often identify the sets pX ¢ Kq ω and X ω ¢ K ω , and thus consider rTs as a subset of X ω ¢ K ω . We denote by p : X ω ¢ K ω Ñ X ω the first projection. If m ¤ n are integers, and if U is an ultrafilter on K n , we will denote by π n m pUq the ultrafilter on K m defined by A π n m pUq ô tpk 0 , . . . , k n¡1 q K n | pk 0 , . . . , k m¡1 q Au U.

Definition II.41.

1. Let X, K be sets and T be a tree on X ¢ K. We say that T is homogeneous if there exists a family pU s q sX ω , where U s is a maxp|X| , ℵ 1 q-complete ultrafilter on K |s| , satisfying the following properties:

(a) for every s X ω , T s U s ; (b) for every s, t X ω with s t, we have U s π |t| |s| pU t q;

(c) for every x pprT sq, and for every sequence of sets pA n q nω ± nω U xaen , there exists k K ω such that for every n ω, k aen A n .

2. Let X be a set and X X ω . We say that X is homogeneously Souslin if there exists a set K and an homogeneous tree T on X ¢ K such that X pprT sq.

This is a classical fact that homogeneously Souslin sets are determined (see [START_REF] Neeman | Determinacy in LpRq. Handbook of set theory[END_REF], section 4). This fact is often used in proofs of determinacy from large cardinals; for example, the results of Martin from a measurable cardinal, or of Martin and Steel, and of Woodin, supposing the existence of Woodin cardinals with a measurable above them, actually show the fact that the studied sets are homogeneously Souslin. Our result will be the following:

Theorem II.42. Let G pP, X, ¤, ¤ ¦ , q be a Gowers space and suppose that there is no measurable cardinal ¤ |P|. Then every homogeneously Souslin subset of X ω is determined.

This result is interesting because unlike previous results, it does not deduce the adversarial Ramsey property for a set X from an assumption on a set of real numbers, but from an assumption on the set X himself. Before proving it, we recall an usual fact about measurable cardinals: if U is a σ-complete, nonprincipal ultrafilter on a set K, then there exists a measurable cardinal κ such that U is actually κ-complete (this is a conseqence of the proof of lemma 10.2 in [START_REF] Jech | Set theory, 3rd millennium[END_REF]).

Proof of theorem II.42. Let X X ω be a homogeneously Souslin set, K a set, T a homogeneous tree on X ¢K such that X pprT sq, and pU s q sX ω a family of ultrafilters witnessing that T is a homogeneous tree. Given s X ω , if U s is nonprincipal, then by the previous remark, it is κ-complete for a measurable cardinal κ, so in particular it is |P| -complete; and this is obviously also true if U s is principal.

Let p P ; we show that either I has a strategy in Kastanas' game K p to reach X , or II has one to reach X c . For this, we consider the following game K ¦ p : I x 0 , q 0 , k 0 l 0 , x 1 , q 1 , k 1 . . . II p 0 y 0 , p 1 y 1 , p 2 . . . where the x i 's and the y i 's are elements of X, the p i 's and the q i 's are elements of P , and the k i 's and the l i 's are elements of K. The rules are the following:

• for I: for all i ω, px 0 , y 0 , . . . , x i¡1 , y i¡1 , x i q p i and q i ¤ p i ; • for II: p 0 ¤ p, and for all i ω, px 0 , y 0 . . . , x i , y i q q i and p i 1 ¤ q i . The outcome of the game is the pair of sequences ppx 0 , y 0 , x 1 , y 1 , . . .q, pk 0 , l 0 , k 1 , l 1 , . . .qq X ω ¢ K ω . Since rTs is a closed subset of X ω ¢ K ω , then either I has a strategy to reach rTs in K ¦ p , or II has one to reach rTs c . So the conclusion will follow from the following fact:

Fact II.43.

If I has a strategy in K ¦

p to reach rTs, then he has a strategy in K p to reach X .

2. If II has a strategy in K ¦ p to reach rTs c , then she has a strategy in K p to reach X c .

Proof.

1. If I has a strategy in K ¦ p to reach rTs, then the same strategy used in K p , but omitting to display the k i 's and the l i 's, will enable him to reach X .

2. Let τ ¦ be a strategy for II in K ¦ p to reach rTs c . Let e pp 0 , x 0 , q 0 , y 0 , . . . , p n , x n , q n q be a partial play of K p ending with a move of I, and let s px 0 , y 0 , . . . , x n q. Since U s is |P| -complete, there exist an unique pair py n , p n 1 q X ¢ P such that tpk 0 , l 0 , . . . , k n q K 2n 1 | τ ¦ pp 0 , x 0 , q 0 , k 0 , y 0 , p 1 , l 0 , . . . , p n , l n¡1 , x n , q n , k n q py n , p n 1 qu U s ; let call this pair τ peq. This defines a strategy τ for II in K p ; we will show that this strategy enables her to reach X c .

Suppose not.

Then there exists a play pp 0 , x 0 , q 0 , y 0 , p 1 , . . .q of K p during which II always plays according to τ and such that px 0 , y 0 , x 1 , y 1 , . . .q X .

For every n ¥ 1, let A 2n 1 tpk 0 , l 0 , . . . , k n q K 2n 1 | τ ¦ pp 0 , x 0 , q 0 , k 0 , y 0 , p 1 , l 0 . . . , p n , l n¡1 , x n , q n , k n q py n , p n 1 qu. This is an element of U px 0 ,y 0 ,...,xnq , so B 2n 1 A 2n 1 T px 0 ,y 0 ,...,xnq is also in U px 0 ,y 0 ,...,xnq . Since px 0 , y 0 , x 1 , y 1 , . . .q pprT sq, then by the definition of a homogeneous tree, we get that there exists a sequence pk 0 , l 0 , k 1 , l 1 , . . .q K ω such that for every n ω, pk 0 , l 0 , . . . , k n q B 2n 1 . This shows that pp 0 , x 0 , q 0 , k 0 , y 0 , p 1 , l 0 , x 1 , q 1 , k 1 , . . .q is a play of K ¦ p during which II always plays according to τ ¦ , so ppx 0 , y 0 , . . .q, pk 0 , l 0 , . . .qq rTs c . But on the other hand, we have for every n ω, pk 0 , l 0 , . . . , k n q B 2n 1 T px 0 ,y 0 ,...,xnq , so ppk 0 , l 0 , . . . , k n q, px 0 , y 0 , . . . , x n qq T , and thus ppx 0 , y 0 , . . .q, pk 0 , l 0 , . . .qq rTs, a contradiction.

Though being determined is not so far from being homogeneously Souslin, theorem II.42 still does not enable us to compare Det ω pΓq and AdvpΓq, since the minimal hypotheses to get consistantly Det ω pΓq do not enable to prove that, consistently, every Γ-subset of ω ω is homogeneously Souslin. We can illustrate this on the case Γ Σ 1 1 . As we already mentioned, Det ω pΣq 1 1 is equivalent to the existence of a sharp for every real (for a definition of the sharps, see [START_REF] Kanamori | The higher infinite. Large cardinals in set theory from their beginnings[END_REF], section 9). The proof of Det ω pΣq 1 1 assuming the existence of sharps is very similar to the proof of theorem II.42 (see [START_REF] Kanamori | The higher infinite. Large cardinals in set theory from their beginnings[END_REF], theorem 31.2), however everything is done in Lrxs, for some real number x. This does not enable to generalize to the determinacy of Kastanas' game: indeed, in this game, players play elements of P , that are in general reals, and for this reason they do not necessarily belong to Lrxs. In general, it seems that the main obstacle to prove the equivalence between AdvpΓq and Det ω pΓq is the fact that the parameters played by players in Kastanas' game do not belong to the inner models with large cardinals given by Det ω pΓq. This should be taken into account when trying to prove, either that Det ω pΓq and AdvpΓq have the same consistency strenght, or that they do not.

Chapter III

Ramsey theory in uncountable spaces

In the setting of Gowers spaces defined in the last chapter, the set of points is always countable: this is necessary to perform the diagonal arguments in the proof of our dichotomies. As it will be shown in the first section of this chapter, this hypothesis is necessary: when X in uncountable, we can find very simple sets that are neither adversarially Ramsey nor strategically Ramsey (see proposition III.1). Thus this chapter is devoted to present weak versions of the results of the last chapter in the case where X is uncountable.

The results we will present are inspired by Gowers' theorems I.8 and I.11: they are based on metrical approximation. In section III.2, we will define the setting of approximate Gowers spaces, where the set of points is a Polish space. In such a space, analogs of theorem II.4, theorem II.14 and corollary II.21 involving approximation, will be shown (these are theorem III.6 and corollary III.11). The proof of the first one is based on the corresponding result without approximation.

In section III.3, we present a general method to get, from statements involving a strategy for I in the asymptotic game, non-strategical Ramsey conclusions as in Mathias-Silver's theorem, Milliken's theorem, or one of the conclusions of Gowers' theorem I.8. Our method enables as well to get such results in Gowers spaces, without approximation, and in approximate Gowers spaces, with approximation (actually, our results are stated for structures more general than approximate Gowers spaces, that are called approximate asymptotic spaces). Our central result, theorem III.16, can be seen as a generalization of lemma II.18. From this and from the results of section III.2, we can deduce an abstract version of Gowers' theorem (corollary III.17) that immediately implies as well Gowers' theorems I.8 and I.11 and Mathias-Silver's theorem.

III.1 A counterexample

In this section, we present a counterexample showing the necessity of the hypothesis that the set of points is countable in the definition of a Gowers space: without this hypothesis, theorems II.4 and II.14 are not true in general.

Let X be the R-vector space R ω , endowed with the product topology. This makes it a Polish vector space. For x px i q iω X, we let supppxq ti ω | x i $ 0u, and we let N pxq x min supppxq if x $ 0, and N p0q 0. A block sequence is an infinite sequence px n q nω of nonzero vectors of X such that supppx 0 q supppx 1 q supppx 2 q . . .. The closed linear span of a block sequence is called block subspace. Remark that if Y is a block subspace generated by a block sequence py n q nω , then for pa n q nω R ω , the sum °V n0 a n y n is always convergent, and the elements of Y are exactly the vectors of X that can be expressed as such a sum. We denote by P the set of all block sequences.

For px n q, py n q P , we say that px n q ¤ py n q if for every n ω, x n is a (finite) linear combination of the y m 's; and we say that px n q ¤ ¦ py n q if there exists n 0 ω such that px n n 0 q nω ¤ py n q nω . Finally, for x X and px n q P , we say that x px n q if x belongs to the block subspace generated by px n q.

It is easy to verify that the space G pP, X, ¤, ¤ ¦ , q satisfies all the axioms defining a forgetful Gowers space, apart from the fact that X is not countable (here, we defined as a subset of X ¢ P ); to verify the diagonalisation axiom, use a similar method as for the Rosendal space. Remark that, for px n q, py n q P with px n q ¤ py n q, we have px n q AE py n q if and only of there exists n 0 ω such that for every n large enough, x n and y n n 0 are colinear. We can define, for G, the notions of strategically Ramsey sets and of adversarially Ramsey sets exactly in the same way as for a genuine Gowers space. We equip X ω with the product topology. We will show the following: Proposition III.1. There exist a Borel set X X ω that is not strategically Ramsey.

Remark that the set X we will build has the form tpx n q nω X ω | px 0 , x 1 q Yu for some set Y X 2 ; so if we endow X with the discrete topology and X ω with the product topology, then X is actually clopen. tpx n q nω X ω | px 0 , x 2 , . . .q X u is adversarially Ramsey. So we deduce the following corollary:

Also

Corollary III.2. Not all Borel subsets X ω are adversarially Ramsey.

Proof of proposition III.1. The set P can be seen as a subset of X ω with the product topology; it is a G δ -subset, so a Polish space. Therefore, there is a Borel isomorphism ϕ : R ÝÑ P . We define the set Y X 2 in the following way: px, yq Y if y is equal to a term of the block sequence ϕpN pxqq. This is a Borel subset of X 2 . Let X tpx n q nω X ω | px 0 , x 1 q Yu. We show that X is not strategically Ramsey. Firstly suppose that there exists p P such that player II has a strategy in G p to reach X and consider the following play of G p , where II uses her strategy:

I p q II
x y Player I starts the game by playing p (his move actually does not matter). According to her strategy, II answers by some vector x. Let px n q nω ϕpN pxqq. Let A tn ω | x n pu. There are two cases. First case: A is finite. Then let q py n q nω be a final segment of the sequence p such that dn A supppx n q supppy 0 q. We make I play q. Then, whatever is the answer y q of II, we have supppx n q supppyq for every n A, so y is different from all the x n 's, n ω. So px, yq Y and II loses the game, a contradiction. Second case: A is infinite. Then let pn i q iω be an increasing enumeration of A and let q px n 0 x n 1 , x n 2 x n 3 , x n 4 x n 5 , . . .q. We make I play q. Then, whatever is the answer y q of II, y is different from all the x n 's, n ω, so px, yq Y and II loses the game, a contradiction. Now suppose that there exists p px n q nω P such that player I has a strategy in F p to reach X c and consider the following play of F p , where I uses his strategy:

I q r II x x k
Player I starts by playing some q AE p according to his strategy. Now consider a real number u such that ϕpuq p. II can always answer by an x q such that N pxq u.

Then, according to his strategy, I answers by r py n q nω . Since py n q AE px n q, there exists k, l ω such that x k and y l are colinear, so x k r. We make II play x k , which is a term of the block sequence px n q nω ϕpN pxqq, so px, x k q Y and I loses the game, a contradiction.

III.2 Approximate Gowers spaces

The counterexample given in the last section shows that the formalism of Gowers spaces is not sufficient if we want to work with uncountable spaces, like Banach spaces. In this section, following an idea introduced by Gowers for his Ramsey-type theorem I.8, we introduce an approximate version of Gowers spaces, allowing us to get approximate Ramsey-type results in situations where the set of points is uncountable. The results of this section, along with these of the next section, will allow us to directly recover results like Gowers' theorems I.8 and I.11. The interest of the spaces we introduce here is more practical that theoretical: their main aim is to allow applications, for instance in Banach-space geometry.

Definition III.3. An approximate Gowers space is a sextuple G pP, X, d, ¤, ¤ ¦ , q,

where P is a nonempty set, X is a nonempty Polish space, d is a compatible distance on X, ¤ and ¤ ¦ are two quasiorders on P , and X ¢ P is a binary relation, satisfying the same axioms 1. -3. as in the definition of a Gowers' space and satisfying moreover the two following axioms:

4. for every p P , there exists x X such that x p; 5. for every x X and every p, q P , if x p and p ¤ q, then x q. The relation AE and the compatibility relation on P are defined in the same way as for a Gowers space.

For p P , we define the games A p , B p , F p , and G p exactly in the same way as for Gowers spaces (see definitions II.2 and II.12), except that we naturally replace the rules px 0 , y 0 , . . . , x i¡1 , y i¡1 , x i q p i and px 0 , y 0 , . . . , x i , y i q q i in the definition of A p and B p and the rule px 0 , . . . , x i q p i in the definition of F p and G p , respectively by x i p i , y i q i and x i p i . The outcome is, there, an element of X ω .

Remark that, with this definition, approximate Gowers spaces are always forgetful, that is, we define the relation as a subset of X ¢P and not as a subset of SeqpXq ¢P.

Indeed, for technical reasons, to be able to get the results we want (in particular theorem III.6), we can only make depend the range of possible choices of points of a player in the games on the subspace played just before by the other player (for example, the range of possible choices of x i in G p can only depend on p i ). That is not a real problem since all interesting examples we currently know satisfy this requirement.

In the rest of this section, we fix an approximate Gowers space G pP, X, d, ¤, ¤ ¦ , q. An important notion in the setting of approximate Gowers spaces is that of expansion. Definition III.4.

1. Let A X and δ ¡ 0.

The δ-expansion of A is the set pAq δ tx X | hy A dpx, yq ¤ δu;

2. Let X X ω and ∆ p∆ n q nω be a sequence of positive real numbers. The ∆-expansion of X is the set pXq ∆ tpx n q nω X ω | hpy n q nω X dn ω dpx n , y n q ¤ ∆ n u.

We can now define the notions of adversarially Ramsey sets and of strategically Ramsey sets in an approximate Gowers space:

Definition III.5. Let X X ω .
1. We say that X is adversarially Ramsey if for every sequence ∆ of positive real numbers and for every p P , there exists q ¤ p such that either player I has a strategy in A q to reach pXq ∆ , or player II has a strategy in B q to reach pX c q ∆ . 2. We say that X is strategically Ramsey if for every sequence ∆ of positive real numbers and for every p P , there exists q ¤ p such that either player I has a strategy in F q to reach X c , or player II has a strategy in G q to reach pXq ∆ .

Remark that if G 0 pP, X, ¤, ¤ ¦ , q is a forgetful Gowers space (where we consider as a subset of X ¢ P ), then we can turn it into an approximate Gowers space G I 0 pP, X, d, ¤, ¤ ¦ , q by taking for d the discrete distance on X (dpx, yq 1 for x $ y). In this way, for 0 δ 1 and A X we have pAq δ A, and for ∆ a sequence of positive real numbers strictly lower than 1 and for X X ω , we have pXq ∆ X . So for a set X X ω , the definition of being adversarially or strategically Ramsey in G 0 and in G I 0 coincide. Therefore, we will consider forgetful Gowers spaces as particular cases of approximate Gowers spaces.

Another interesting family of examples of approximate Gowers spaces is the following.

Given a Banach space E with a Schauder basis pe i q iω , we can consider the canonical approximate Gowers space over E, G E pP, S E , d, , ¦ , q, where P is the set of all block subspaces of E, S E is the unit sphere of E, d the distance given by the norm, and X ¦ Y if and only if Y contains some finite-codimensional block subspace of X. We will see in the next section how to get Gowers' theorems I.8 and I.11 from the study of this space.

The results that generalize theorems II.4 and II.14 to adversarial Gowers spaces are the following:

Theorem III.6.

1. Every Borel subset of X ω is adversarially Ramsey; 2. Every analytic subset of X ω is strategically Ramsey.

Proof. Remark that to prove 2., it is actually sufficient to prove the following apparently weaker result: for every X X ω analytic, for every sequence ∆ of positive real numbers and for every p P , there exists q ¤ p such that either player I has a strategy in F q to reach pX c q ∆ , or player II has a strategy in G q to reach pXq ∆ . Indeed, if X is analytic, then pXq∆ 2 is analytic too; so applying the last result to pXq∆ 2 and to the sequence ∆ 2 , and using the fact that

¡¡ pXq∆ 2 © c © ∆ 2 X c and ¡ pXq∆ 2 © ∆ 2
pXq ∆ , we get that X is strategically Ramsey.

Now let D X be a countable dense subset, and ∆ be a sequence of positive real numbers. Consider the Gowers space G ∆ pP, D, ¤, ¤ ¦ , ∆ q, where ∆ is defined by py 0 , . . . , y n q ∆ p if there exists x n X with x n p and dpx n , y n q ∆ n . To avoid confusion, we denote by A p , B p , F p and G p the games in the space G, and by

A ∆ p , B ∆ p , F ∆ p and G ∆ p the games in the space G ∆ .
If X is Borel (resp. analytic) then the set X D ω is Borel (resp. analytic) too (when D is endowed by the discrete topology), so it is adversarially (resp. strategically)

Ramsey in G ∆ . So to prove the theorem, it is enough to show that for every p P , we have that:

(i) if player I has a strategy in F ∆ p to reach X c , then he has a strategy in F p to reach pX c q ∆ ;

(ii) if player II has a strategy in G ∆ p to reach X , then she has a strategy in G p to reach pXq ∆ ;

(iii) if player I has a strategy in A ∆ p to reach X , then he has a strategy in A p to reach pXq ∆ ;

(iv) if player II has a strategy in B ∆ p to reach X c , then she has a strategy in B p to reach pX c q ∆ .

We only prove (i) and (ii); the proofs of (iii) and (iv) are naturally obtained by combining the proofs of (i) and (ii).

(i) As usual, we fix a strategy for I in F ∆ p , enabling him to reach X c , and we describe a strategy for I in F p to reach pX c q ∆ by simulating a play pp 0 , x 0 , p 1 , x 1 , . . .q of F p by a play pp 0 , y 0 , p 1 , y 1 , . . .q of F ∆ p in which I always plays using his strategy; we suppose moreover that the same subspaces are played by I in both games.

Suppose that in both games, the first n turns have been played, so the p i 's, the x i 's and the y i 's are defined for i n. According to his strategy, in F ∆ p , I plays some p n AE p. Then we let I play the same p n in F p , and in this game, II answers with x n X such that x n p n . Then we choose y n D such that dpx n , y n q ∆ n ; by the definition of ∆ , we have that py 0 , . . . , y n q ∆ p n , so we can let II play y n in F ∆ p , and the games can continue! Due to the choice of the strategy of I in F ∆ p , we get that py n q nω X c , so px n q nω pX c q ∆ as wanted.

(ii) We simulate a play pp 0 , x 0 , p 1 , x 1 , . . .q of G p by a play pp 0 , y 0 , p 1 , y 1 , . . .q of G ∆ p where II uses a strategy to reach X , and we suppose moreover that I plays the same subspaces in both games. Suppose that the first n turns of boths games have been played. In G p , I plays p n . We make I copy this move in G ∆ p , and according to her strategy, II answers, in this game, by a y n D such that py 0 , . . . , y n q ∆ p n . We can find x n X such that x n p n and dpx n , y n q ∆ n ; we let II play this x n in G p and the games continue. At the end, we have that py n q nω X , so px n q nω pXq ∆ as wanted.

Say that the approximate Gowers space G is analytic if P is an analytic subset of a Polish space, if the relation ¤ is a Borel subset of P 2 , and if for every open set U X, the set tp P | hx U x pu is a Borel subset of P . Also recall that if Y is a Polish space, and if FpY q is the set of all closed subsets of Y , the Effros Borel structure on FpY q is the σ-algebra generated by the sets tF FpY q | F U $ ∅u where U varies over open subsets of Y . If P is an analytic subset of FpXq endowed with the Effros Borel structure, and if and are respectively the inclusion and the membership relation, then G is an analytic approximate Gowers space. This is, for instance, the case of the canonical approximate Gowers space G E over a Banach space E with a basis: indeed, the fact that F FpS E q is the unit sphere of a block subspace of E can be written "there exists a block sequence px i q iω such that for every U in a countable basis of open subsets of S E , F U $ ∅ if and only if there exists n ω and pa i q i n Q n zt0u with °i

n a i x i } °i n a i x i} U ".
Remark that if G is an analytic approximate Gowers space and ∆ a sequence of positive real numbers, then the Gowers space G ∆ defined in the proof of theorem III.6 is analytic. So this proof, combined with corollaries II.8 and II.16, gives us the following:

Corollary III.7. Let Γ be a suitable class of subsets of Polish spaces. Suppose that every Γ-subset of R ω is determined. Then for every analytic approximate Gowers space G pP, X, d, ¤, ¤ ¦ , q, we have that:

1. every Γ-subset of X ω is adversarially Ramsey; 2. every hΓ-subset of X ω is strategically Ramsey.

However, it is not straightforward, in the setting of approximate Gowers spaces, to get results in ZF DC AD R , because the proof of III.6 uses the full axiom of choice. Indeed, since there is, in general, an uncountable number of subspaces, in the proof of (ii) (and the same will happen in the proofs of (iii) and (iv)), player II needs AC to choose x n such that dpx n , y n q ∆ n and x n p n . However, under a slight restriction, we can get a positive result. Define the notion of an effective approximate Gowers space exactly in the same way as for effective Gowers spaces. Effective forgetful Gowers spaces are obviously effective when seen as approximate Gowers spaces, but also, the canonical approximate Gowers space G E is effective (this can be shown in the same way as for the Rosendal space). If G is an effective approximate Gowers space and ∆ a sequence of positive real numbers, then the Gowers space G ∆ defined in the proof of theorem III.6 is also effective. And we have:

Corollary III.8 (ZF DC AD R ). Let G pP, X, d, ¤, ¤ ¦ , q be an effective approximate Gowers space such that P is a subset of a Polish space, and such that for every p P , the set tx X | x pu is closed in X. Then every subset of X ω is adversarially Ramsey and strategically Ramsey.

Proof. We follow the proof of theorem III.6, using corollaries II.10 and II.16 to get that the set X D ω is adversarially Ramsey and strategically Ramsey in G ∆ . The only thing to do is to verify that the proofs of (i)-(iv) can be carried out with only DC instead of AC; as previously, we only do it for (i) and (ii). In the proof of (i), we have to be able to choose y n D such that dpx n , y n q ∆ n ; this can be done by fixing, at the beginning of the proof, a well-ordering of D, and by choosing, each time, the least such y n . In the proof of (ii), the difficulty is to choose x n ; so we have to prove that given p P , n ω, and y D, if there exists x X with x p and dpx, yq ∆ n , then we are able to choose such an x without using AC.

Using countable choices, for every y D and n ω, we choose f y,n : ω ω ÝÑ Bpy, ∆ n q a continuous surjection. Given p, n and y as in the previous paragraph, we can let F tu ω ω | f y,n puq pu, a closed subset of ω ω . Consider T ω ω the unique pruned tree such that F rTs. Then we can let u be the leftmost branch of T and let x f y,n puq.

Remark that in the proof of theorem III.6, the most important hypothesis on X is its separableness, and the only interest of its Polishness is the fact that if X is analytic, then pXq∆ 2 is analytic too. Thus, if we only suppose X separable, then the 1. of this theorem remains true, and the 2. can be replaced with "for every Σ 1 1 -subset X of X ω , for every sequence ∆ of positive real numbers and for every p P , there exists q ¤ p such that either player I has a strategy in F q to reach pX c q ∆ , or player II has a strategy in G q to reach pXq ∆ ". In the same way, given a suitable class Γ of subsets of Polish spaces, say that a subset Y of a topological space Y is potentially Γ if for every Polish space Z and every continuous mapping f : Z ÝÑ Y , f ¡1 pYq is a Γ-subset of Z. Then corollary III.7 remains true for X only assumed separable, if we modify the conclusion of 2. in the same way as for theorem III.6, and if in 1. and 2., we replace Γ-subsets and hΓ-subsets respectively by potentially Γ-subsets and potentially hΓ-subsets. However, the proof of corollary III.8 does not adapt to arbitrary separable metric spaces; but it remains true if we only suppose that X is an analytic subset of a Polish space. All of these extensions can be combined to the other results of this section and of the next section, since their proof will only use the separableness of X (or the fact that X is an analytic subset of a Polish space, if we work in ZF DC).

We now introduce the pigeonhole principle in an approximate Gowers space and its consequences. We actually only need an approximate pigeonhole principle in this setting.

For q P and A X, we write abusively q A to say that dx X px q ñ x Aq.

Definition III.9. The approximate Gowers space G is said to satisfy the pigeonhole principle if for every p P , A X, and δ ¡ 0 there exists q ¤ p such that either q A c , or q pAq δ .

For example, by theorem I.10, the canonical approximate Gowers space G E satisfies the pigeonhole principle if and only if E is c 0 -saturated.

As for Gowers spaces, we have the following proposition: Proposition III.10. Suppose that the approximate Gowers space G satisfies the pigeonhole principle. Let X X ω , p P and ∆ be a sequence of positive real numbers. If player II has a strategy in G p to reach X , then there exists q ¤ p such that player I has a strategy in F q to reach pXq ∆ .

Before proving this proposition, let us make some remarks. Using again the fact that

¡ pXq∆ 2 © ∆ 2
pXq ∆ , we deduce from proposition III.10 the following corollary:

Corollary III.11. Suppose that the approximate Gowers space G satisfies the pigeonhole principle. Let X X ω be a strategically Ramsey set. Then for every p P and every sequence ∆ of positive real numbers, there exists q ¤ p such that in F q , player I either has a strategy to reach X c , or has a strategy to reach pXq ∆ .

Conversely, if the conclusion of corollary III.11 holds for sets of the form tpx n q nω X ω | x 0 F u, where F X is closed, then the space G satisfies the pigeonhole principle. Indeed, let p P , A X and δ ¡ 0. Let F tx X | dy A dpx, yq ¥ δu, and X tpx n q nω X ω | x 0 F u. Then by assumption, there exists q ¤ p such that I either has a strategy to reach X c , or has a strategy to reach pXq ∆ , in F q , where ∆ p δ 2 , δ 2 , . . .q. As in the case of Gowers spaces, in the first case we find q 0 AE q with q 0 F c pAq δ , and in the second case we get q 0 AE q with q 0 pFqδ 2 A c .

Also remark that if G 0 is a forgetful Gowers space, and if G I 0 is the associated approximate Gowers space, then the pigeonhole principle in G 0 is equivalent to the pigeonhole principle in G I 0 , and proposition III.10 and corollary III.11 are respectively the same as proposition II.20 and corollary II.21.

We now prove proposition III.10.

Proof of proposition III.10. Unlike the previous results about approximate Gowers spaces, here we cannot deduce this result from its exact version; thus, we adapt the proof of proposition II.20. To save notation, we show that there exists q ¤ p such that I has a strategy in F q to reach pXq 3∆ .

We fix τ a strategy for II in G p to reach X . We call a state a partial play of G p either empty or ending with a move of II, during which II always plays according to her strategy. We say that a state realises a sequence px 0 , . . . , x n¡1 q X ω if it has the form pp 0 , x 0 , . . . , p n¡1 , x n¡1 q. The length of the state s , denoted by |s |, is the length of the sequence it realises. We define in the same way the notion of a total state (which is a total play of G p ) and of realisation for a total state; if an infinite sequence is realised by a total state, then it belongs to X . We say that a point x X is reachable from a state s if there exists r ¤ p such that τ ps " rq x. Denote by A s the set of all points that are reachable from the state s . We will use the following fact.

Fact III.12. For every state s and for every q ¤ p, there exists r ¤ q such that r pA s q ∆ |s | . Proof. Otherwise, by the pigeonhole principle, there would exist r ¤ q such that r pA s q c . But then I could play r after the partial play s , and II would answer, according to her strategy, by x τ ps " rq that should satisfy x r. Since r pA s q c , this would imply that x pA s q c . But we also have, by the definition of A s , that x A s , a contradiction. For two sequences s, t X ¤ω of the same length, we denote by dps, tq ¤ ∆ the fact that for every i |s|, we have dps i , t i q ¤ ∆ i . Let D X be a countable dense set and let ps n q nω be an enumeration of D ω such that if s m s n , then m ¤ n. We define, for some n ω, a state s n realising a sequence t n satisfying dps n , t n q ¤ 2∆, by induction in the following way: s 0 ∅ and for n ¥ 1, letting s n s m " y for some m n and some y X,

• if s m has been defined and if there exists z X reachable from s m such that dpy, zq ¤ 2∆ |s m| , then choose a r ¤ p such that z τ ps m " rq and put t n t m " z and s n s m " pr, zq,

• otherwise, s n is not defined.

Remark that if s n is defined and if s m s n , then s m is defined, and we have s m s n and t m t n .

We now define a ¤-decreasing sequence pq n q nω of elements of P in the following way: q 0 p and • if s n is defined, then q n 1 is the result of the application of fact III.12 to s n and q n ;

• q n 1 q n otherwise. Finally, let q ¤ p be such that for every n ω, q ¤ ¦ q n . We will show that I has a strategy in F q to reach pXq 3∆ . We describe this strategy on the following play of F q :

I u 0 u 1 . . . II x 0 x 1 .
. . We moreover suppose that at the same time as this game is played, we build a sequence pn i q iω of integers, with n 0 0 and n i being defined during the i th turn, such that ps n i q iω is increasing and for every i ω, |s n i | i, s n i is defined, and dps n i , px 0 , . . . , x i¡1 qq ¤ ∆. This will be enough to conclude: indeed, iω s n i will be a total state realising the sequence iω t n i , showing that this sequence belongs to X ; and since d p iω t n i , px i q iω q ¤ d p iω t n i , iω s n i q d p iω s n i , px i q iω q ¤ 3∆, we will have that px i q iω pXq 3∆ .

Suppose that the i th turn of the game has just been played, so the sequence px 0 , . . . , x i¡1 q and the integers n 0 , . . . , n i has been defined. Then by construction of q n i 1 , we have that q n i 1 pA s n i q ∆ |s n i | . We let I play some u i such that u i AE q and u i ¤ q n i 1 . Then u i pA s n i q ∆ |s n i | . Now, suppose that II answers by x i . Then we choose a y i D such that dpx i , y i q ¤ ∆ i and we choose n i 1 in such a way that s n i 1 s n i " y i . So we have that y i pA s n i q 2∆ |s n i | ; this shows that s n i 1 has been defined. Moreover we have dps n i 1 , px 0 , . . . , x i qq ¤ ∆ as wanted, what ends the proof.

III.3 Eliminating the asymptotic game

Unlike Mathias-Silver's theorem which ensures that in some subspace, all of the increasing sequences have the same color, and unlike Gowers' theorem, one of whose possible conclusions says that all block sequences in some subspace have the same color, all the results we proved by now only have game-theoretical conclusions. The aim of this section is to provide a tool to deduce, from a statement of the form "player I has a strategy in F p to reach X ", a conclusion of the form "in some subspace, every sequence satisfying some structural condition is in X ". This tool can be seen as a generalization of lemma II.18. It will allow us to get, from Ramsey results with game-theoretical conclusions, stronger results having the same form as Mathias-Silver's theorem or Gowers' theorem.

We will actually not add any structure on the set of points, but rather provide a tool enabling, in each concrete situation, to build this structure in the way we want. Our result could be stated in the setting of approximate Gowers spaces, but we prefer to state it in the more general setting of approximate asymptotic spaces, since it could be useful in itself in situations where we have no natural Gowers space structure.

Definition III.13. An approximate asymptotic space is a quintuple A tP, X, d, AE, u, where P is a nonempty set, pX, dq is a nonempty separable metric space, AE is a quasiorder on P , and X ¢ P is a binary relation, satisfying the following properties:

1. for every p, q, r P , if q AE p and r AE p, then there exists u P such that u AE q and u AE r; 2. for every p P , there exists x X such that x p; 3. for every every x X and every p, q P , if x p and p AE q, then x q.

Every approximate Gowers space has a natural structure of approximate asymptotic space. In an approximate asymptotic space, we can define the notion of expansion, and the asymptotic game, in the same way as in an approximate Gowers space.

In the rest of this section, we fix A tP, X, d, AE, u an approximate asymptotic space. To be able to get the result we want, we need some more structure. Recall that a subset of X is said to be precompact if its closure in X is compact. In what follows, for K X and p P , we abusively write K p to say that the set tx K | x pu is dense in K.

Definition III.14. A system of precompact sets for A is a set K of precompact subsets of X, equipped with an associative binary operation , satisfying the following property: for every p P , and for every K, L K, if K p and L p, then K L p.

If pK, q is a system of precompact sets for A and if pK n q nω is a sequence of elements of K, then:

• for A ω finite, we denote by À nA K n the sum K n 1 . . . K n k , where n 1 , . . . , n k are the elements of A taken in increasing order;

• a block sequence of pK n q is, by definition, a sequence px i q iω X ω for which there exists an increasing sequence of nonempty sets of integers A 0 A 1 A 2 . . . such that for every i ω, we have

x i À nA i K n .
We denote by bsppK n q nω q the set of all block sequences of pK n q.

We can already give some examples. For the Mathias-Silver space N , let K N be the set of all singletons, and define the operation N by tmu N tnu tmaxpm, nqu. Then pK N , N q is a system of precompact sets. If pm i q iω is an increasing sequence of integers, then the block sequences of ptm i uq iω are exactly the subsequences of pm i q.

Now, for a Banach space E with a basis, consider the canonical approximate Gowers space G E . Let K E be the set of all unit spheres of finite-dimensional subspaces of E.

We define the operation E on K E by S F E S G S F G . Then pK E , E q is a system of precompact sets for G E . If px n q nω is a (normalized) block sequence of E, then for every n, S Rxn tx n , ¡x n u is in K E , and the block sequences of pS Rxn q nω in the sense of K are exactly the (normalized) block sequences of px n q in the Banach-theoretical sense.

More generally, it is often useful to study the block sequences of sequences of the form pS Fn q nω , where pF n q nω is a FDD of a closed, infinite-dimensional subspace F of E (that is, a sequence such that every x F can be written in a unique way as a sum °V n0 x n , where for every n, x n F n ).

In general, in an asymptotic space, a sequence pK n q nω of elements of a system of precompact sets can be seen as another kind of subspace. Sometimes, some subspaces of the type pK n q nω can be represented as elements of P ; that is, for example, the case in the Mathias-Silver space and in the canonical approximate Gowers space over a Banach space with a basis, as we just saw. We now introduce a theorem enabling us to build sequences pK n q nω such that bsppK n q nω q X , knowing that player I has a strategy in an asymptotic game to reach X . Firstly, we have to define a new game.

Definition III.15. Let pK, q be a system of precompact sets for the space A, and p P . The strong asymptotic game below p, denoted by SF p , is defined as follows:

I p 0 p 1 . . . II K 0 K 1 .
. . where the K n 's are elements of K, and the p n 's are elements of P . The rules are the following:

• for I: for all n ω, p n AE p; • for II: for all n ω, K n p n . The outcome of the game is the sequence pK n q nω K ω . Theorem III.16. Let pK, q be a system of precompact sets on the space A, p P , X X ω , and ∆ be a sequence of positive real numbers. Suppose that player I has a strategy in F p to reach X . Then he has a strategy in SF p to build a sequence pK n q nω such that bsppK n q nω q pXq ∆ .

Proof. For each K K, each q P such that K q, and each i ω, let N i,q pKq be a ∆ i -net in K (that is, a finite subset of K such that K pN i,q pKqq ∆ i ), such that for every x N i,q pKq, we have x q. We fix τ a strategy for I in F p , enabling him to reach X . As in the proofs of fact II.15 and lemma II.18, we consider that in F p , II is allowed to play against the rules, but that she immedately loses if she does; so we will view τ as a mapping from X ω to P , such that for every s X ω , we have τ psq AE p.

Let us describe a strategy for I in SF p on a play pp 0 , K 0 , p 1 , K 1 , . . .q of this game. Suppose that the first n turns have been played, so the p j 's and the K j 's, for j n, are defined. Moreover suppose that the sequence pp j q j n is AE-decreasing. Let S pK 0 ,...,K n¡1 q X ω be the set of all finite sequences py 0 , . . . , y k¡1 q satisfying the following property: there exists an increasing sequence A 0 . . . A k¡1 of nonempty subsets of n such that for every i k, we have y i N i,p minpA i q p jA i K j q. Then S pK 0 ,...,K n¡1 q is finite and for every s S pK 0 ,...,K n¡1 q , we have τ psq AE p, so by iterating the axiom 1. in the definition of an approximate asymptotic space, we can find p n AE p such that for every s S pK 0 ,...,K n¡1 q , we have p n AE τ psq. Moreover, if n ¥ 1, we can choose p n such that p n AE p n¡1 . The strategy of I will consist in playing this p n . Now suppose that this play has been played completely; we show that bsppK n q nω q pXq ∆ . Let px i q iω be a block sequence of pK n q and A 0 A 1 . . . be a sequence of nonempty subsets of ω such that for every i, we have

x i À nA i K n .
For every i ω, we have À nA i K n ¨ p minpA i q , so N i,p minpA i q À nA i K n ¨has been defined and we can choose a y i in it such that dpx i , y i q ¤ ∆ i . We have to show that px i q iω pXq ∆ , so it is enough to show that py i q iω X . Knowing that τ is a strategy for I in F p to reach X , it is enough to show that, letting q i τ py 0 , . . . , y i¡1 q for all i, in the following play of F p , II always respects the rules:

I q 0 q 1 . . . II y 0 y 1 . . .
In other words, we have to show that for all k ω, we have y k q k . So let k ω. We let n 0 min A k . Since the sets A 0 , . . . , A k¡1 are subsets of n 0 , we have that py 0 , . . . , y k¡1 q S pK 0 ,...,K n 0 ¡1 q , and therefore p n 0 AE τ py 0 , . . . , y k¡1 q q k . But

y k N k,pn 0 ¡ À nA k K n ©
, so y k p n 0 , so y k q k , as wanted.

Again, under slight restrictions, we can prove theorem III.16 without using the full axiom of choice. Say that the approximate asymptotic space A is effective if there exist a function f : P 2 ÝÑ P such that for every q, r P , if there exist p P such that q AE p and r AE p, then we have f pq, rq AE q and f pq, rq AE r. Effective approximate Gowers spaces, when seen as approximate asymptotic spaces, are effective. We will show that if A is an effective approximate asymptotic space, if X is an analytic subset of a Polish space, if for every p P , the set tx X | x pu is closed in X, and if every element of K is compact, then theorem III.16 for A and K can be shown in ZF DC. In the proof of theorem III.16, AC is only used:

• to choose p n such that for every s S pK 0 ,...,K n¡1 q , we have p n AE τ psq, and such that p n AE p n¡1 if n ¥ 1;

• to choose the nets N i,q pKq; • and to choose y i N i,p minpA i q À nA i K n ¨such that dpx i , y i q ¤ ∆ i .

The choice of the p n 's can be done without AC as soon as the space A is effective. For the choice of the nets and of the y i 's, firstly remark that, given K K and q P , since tx X | x qu is closed in X, we have that K q if and only if K tx X | x qu; so N i,q pKq can actually be an arbitrary ∆ i -net in K, and does not need to depend on q. Thus, to be able to chose these nets and the y i 's without AC, it is enough to show that we can choose, without AC, a ∆ i -net N i pKq in K and a wellordering i,K on it, for every K K and every i ω. This can be done in the following way. Let ϕ : ω ω Ñ X be a continuous surjection. If K K, then ϕ ¡1 pKq has the form rT K s, where T K is a pruned tree on ω. We can easily build, without choice, a countable dense subset of rT K s, for example the set of all the u s 's where for every s T K , u s is the leftmost branch of T K satisfying s u s . Since T K can naturally be wellordered, then this dense subset can also be wellordered. Pushing forward by ϕ, this enables us to get, for every K K, a countable dense subset D K K with a wellordering K . From this we can naturally wellorder the set of all finite subsets of D K , take for N i pKq the least finite subset of D K that is a ∆ i -net in K and take for i,K the restriction of K to N i pKq.

Theorem III.16, combined with the results of the last section and with the last remark, gives us the following corollary:

Corollary III.17 (Abstract Gowers' theorem). Let G pP, X, d, ¤, ¤ ¦ , q be an approximate Gowers space, equipped with a system of precompact sets pK, q. Let X X ω , and suppose that one of the following conditions holds:

• X is analytic;

• G is analytic and X is hΓ, for some suitable class Γ of subsets of Polish spaces such that every Γ-subset of R ω is determined;

• AD R holds, the space G is effective, P is a subset of Polish space, for every p P , the set tx X | x pu is closed in X, and every element of K is compact.

Let p P and ∆ be a sequence of positive real numbers. Then there exists q ¤ p such that:

• either player I has a strategy in SF q to build a sequence pK n q nω such that bsppK n q nω q X c ; • or player II has a strategy in G q to reach pXq ∆ .

Moreover, if G satisfies the pigeonhole principle, then the second conclusion can be replaced with the following stronger one: player I has a strategy in SF q to build a sequence pK n q nω such that bsppK n q nω q pXq ∆ . Now see how to deduce Mathias-Silver's theorem, Gowers' theorem I.8, and Gowers' theorem for c 0 (theorem I.11) from corollary III.17.

• For Mathias-Silver's theorem, work in the Mathias-Silver space N with the system pK N , N q of precompact sets introduced before. Let M be an infinite set of integers, and X rωs ω be analytic, that we will consider as a subset of ω ω by identifying infinite subsets of ω with increasing sequences of integers. Applying corollary III.17 to X , to M , and to the constant sequence equal to 1 2 , we get an infinite N M such that either I has a strategy in SF N to build ptn i uq iω with bspptn i uq iω q X , or he has one to build ptn i uq iω with bspptn i uq iω q X c . Remark that in SF N , II can always play in such a way that the sequence pn i q iω is increasing. So in the first case, we get an increasing sequence pn i q iω of elements of N such that every block sequence of ptn i uq iω belongs to X , or in other words, such that every infinite subset of tn i | i ωu belongs to X ; and in the second case, in the same way, we get an infinite subset of N every infinite subset of whose belongs to X c .

• For Gowers' theorem, let E be a Banach space with a Schauder basis and work in the canonical approximate Gowers space G E with the system pK E , E q of precompact sets introduced before. Given Y P , in SF Y , whatever I plays, II can always ensure that the outcome will have the form pS Ryn q nω , where py n q nω is a block sequence. So given X rEs analytic, X E a block subspace, and ∆ a sequence of positive real numbers, corollary III.17 gives us either a block sequence py n q nω in X such that bsppS Ryn q nω q X c , or a block subspace Y X such that II has a strategy in G Y to reach pXq∆ 2 . In the first case, denoting by Y the block subspace generated by the sequence py n q, this precisely means that rY s X c . In the second case, we have to be careful because the Gowers' game of the space G E is not exactly the same as this defined in the introduction: in the one of the introduction, player II is required to play vectors with finite support forming a block sequence, while in the one of G E , she she can play any vector in the unit sphere of the subspace played by I. This is not a real problem as, by perturbating a little bit the vectors given by her strategy, player II can reach X ∆ playing vectors with finite support; and without loss of generality, we can assume that the subspace Y n played by I at the pn 1q th turn is choosen small enough to force II to play a y n such that supppy n¡1 q supppy n q.

• To deduce Gowers' theorem for c 0 , the method is the same except that this time, G E satisfies the pigeonhole principle so corollary III.17 will give us a conclusion with a strong asymptotic game in both sides.

To finish this section, let us show on an example that the hypothesis "I has a strategy in F p to reach X " does not always imply that for some subspace q, every sequence below q satisfying some natural structural condition (for instance, being block) is in X ∆ . To see this, consider the Rosendal space R K pP, Ezt0u, , ¦ , q over a field K. We have the following fact: Fact III.18. Suppose that K is a finite field. Let X pEzt0uq ω and X P , and suppose that I has a strategy in F X to reach X . Then there exists a block subspace Y X such that every block sequence of Y is in X .

Proof. Let K be the set of all sets of the form F zt0u, where F is a finite-dimensional subspace of E. Since the field K is finite, the elements of K are finite too. For F, G E finite-dimensional, we let pFzt0uq pGzt0uq pF Gqzt0u. Then pK, q is a system of precompact sets. The conclusion follows from theorem III.16 applied to this system, using the same method as previously.

Remark that this proof does not work when K is infinite, and actually, this result is false.

Let us give a counterexample.

Let pe i q i ω be the basis of E with respect to whose block subspaces are taken, and let ϕ : K ¦ Ñ ω be a bijection.

For x Ezt0u, let N pxq be the first nonzero coordinate of x.

We let Y tpx, yq pEzt0uq 2 | ϕpN pxqq min supppyqu and X tpx n q nω pEzt0uq ω | px 0 , x 1 q Yu. Then player I has a strategy in F E to reach X ; this strategy is illustrated on the following diagram:

I E spanpte i | i ¡ ϕpN pxqquq II x y
But there is no block subspace Y of E such that every block sequence in Y belongs to X . Indeed, given Y E a block subspace generated by a block sequence py n q nω , we can take λ K such that ϕpN pλy 0 qq min supppy 1 q, and we have pλy 0 , y 1 , y 2 , . . .q X . Just like the counterexample to the pigeonhole principle presented in section II.2, this counterexample could be avoided by working in the projective Rosendal space PR K pP, PpEq, , ¦ , q (where we recall that PpEq is the set of all vector lines in E). However, even in this space, counterexamples to the natural analogue of fact III.18 can be found. For example, for Kx PpEq, denote by N I pKxq the quotient of the last nonzero coordinate of x by its first nonzero coordinate (which does not depend of the choice of the representative x); and let X tpl i q iω PpEq ω | ϕpN I pl 0 qq min supppl 1 qu.

Then X is a counterexample as well.

Therefore, many cases, the "subspaces" of the form pK n q nω , where the K n 's are elements of a system of precompact sets, cannot always be identified with "genuine" subspaces (i.e. elements of P ): we always need a form of compactness for that.

Chapter IV

Hilbert-avoiding dichotomies and ergodicity

Recall that Johnson's problem ask whether there exists a separable Banach space with exactly two subspaces, up to isomorphism (a Johnosn space), and that Ferenczi and Rosendal's ergodic conjecture ask whether there exists a non-ergodic separable Banach space non-isomorphic to 2 , where a space is ergodic if E 0 reduces to the isomorphism relation between its subspaces. In this chapter, we try to answer the following question: if counterexamples to these conjectures exist, do there necessarily exist such counterexamples having an unconditional basis? More precisely, we will work on the following conjectures:

Conjecture IV.1. Let E be a separable Banach space, non-ergodic and non-isomorphic to 2 . Then E has a subspace with an unconditional basis that is non-isomorphic to 2 .

Conjecture IV.2. Every Johnson space has an unconditional basis.

Remark that conjecture IV.2 is a consequence of conjecture IV.1: indeed, a result by Anisca [START_REF] Anisca | On the structure of Banach spaces with an unconditional basic sequence[END_REF] implies that a Johnson space necessarily has a subspace isomorphic to 2 .

We do not manage to solve these conjecture, but we prove results that should help for them. The basic idea is the following. Recall that Rosendal [START_REF]Incomparable, non-isomorphic and minimal Banach spaces[END_REF] proved that HI spaces cannot be ergodic; so if a space E is non-ergodic, then by Gowers' first dichotomy (theorem I.21), it must have a subspace with an unconditional basis. However, this does not give us anything interesting, since this space could be isomorphic to 2 . So what we will do is to prove Hilbert-avoiding dichotomies, i.e. dichotomies ensuring that the subspace obtained is non-isomorphic to 2 .

The basic ideas to prove such dichotomies was given to the author by Ferenczi. The fact that a Banach space is isomorphic to 2 can be verified only on its finitedimensional subspaces, and this implies that we can diagonalize among subspaces that are not isomorphic to 2 . Thus, a Banach space E non-isomorphic to 2 can be made an approximate Gowers space by taking for subspaces only subspaces of E that are not isomorphic to 2 . In this manner, we will be able to prove Hilbert-avoiding versions of Gowers' first dichotomy, and of Ferenczi-Rosendal's dichotomy between minimal spaces and tight spaces (theorem I.25). Obviously, Gowers' game and the adversarial Gowers' games change in our new approximate Gowers space, and the consequence of this is that the possible conclusions in our Hilbert-avoiding dichotomies will be weaker than in their "original versions".

Using these dichotomies, we get interesting consequences about conjectures IV.1 and IV.2. In particular, we define the class of hereditarily Hilbert-primary (HHP) spaces as follows: a Banach space E is HHP if there is no topological direct sum of subspaces of E that are both non-isomorphic to 2 . Then we get that, to prove conjecture IV.1, it would be enough to prove that an HHP space cannot be embedded in any subspace of itself that is not isomorphic to 2 , and to prove conjecture IV.2, it would be enough to prove that an HHP space must at least have two non-isomorphic subspaces that are non-isomorphic to 2 . The two last statements are quite similar to Gowers-Maurey's result IV.33 that an HI space cannot be isomorphic to a proper subspace of itself; thus, it is tempting to try to prove them using the same methods. This chapter is organized as follows. In section IV.1, we recall some facts and prove some preliminary results about finite-dimensional decompositions. In section IV.2, we introduce our Hilbert-avoiding approximate Gowers space and we use it to prove a Hilbert-avoiding version of Gowers Ramsey-type theorem, theorem IV.9. Then, we use this theorem to prove our first dichotomy, the Hilbert-avoiding version of Gowers' first dichotomy (theorem IV.12). In section IV.3, we prove our Hilbert-avoiding version of Ferenczi-Rosendal's minimal-tight dichotomy (theorem IV.14). Note that here, since the argument is quite technical, we will not use approximate Gowers spaces, but rather a Gowers space and apply the results of chapter II. In section IV.4, using, among others, recent unpublished results by Ferenczi, we set the consequences of our two dichotomies for non-ergodic spaces and Johnson spaces; in particular, we get the results stated in the last paragraph. Finally, in section IV.5, we give a new and simple proof of Gowers-Maurey's result that HI spaces are isomorphic to no proper subspaces. This proof is only based on Fredholm theory and works as well in the real and the complex case. We hope that the method used here could help to finish to solve conjectures IV.1 and IV.2, combined with our dichotomies.

IV.1 Preliminaries

In this section, we recall some preliminary results that will be useful in the next sections.

A finite-dimensional decomposition (FDD) of a Banach space E is a sequence pE n q nω of nonzero finite-dimensional subspaces of E such that every x E can be decomposed in a unique way as a convergent sum x °V n0 x n , where for every n ω, x n E n . With these notation, we let P n pxq °i n x i ; this defines a linear projection P n : E ÝÑ À i n E i . As for Schauder bases, we can show that the P n 's are uniformily bounded; the number C sup nω ~Pn ~is called the constant of the FDD. FDDs are a generalisation of Schauder bases: given px n q nω a normalized sequence in E, we have that px n q nω is a basis of E if and only if pRx n q nω is an FDD of E, and in this case, the constants are the same.

If a sequence pF n q nω of finite-dimensional subspaces of E is a FDD of À nω F n , then pF n q nω will simply be called a FDD. We have the same characterisation for FDDs as for basic sequences: if pF n q n ω is a sequence of nonzero finite-dimensional subspaces of E and if there exists a constant C such that, for every m ¤ n and for every px i q i n ±

i n F i , we have } °i m x i } ¤ C } °i n x i }, then pF n q nω is a FDD. Moreover, the constant of this FDD is the least C satisfying this property.

A block-FDD of an FDD pF n q nω is a sequence pG i q iω of nonzero finite-dimensional

subspaces of E such that there exists a sequence A 0 A 1 . . . of finite subsets of ω such that for every i ω, G i nA i F n . By the previous characterisation, a block-FDD of pF n q nω is an FDD and its constant is less or equal to than the constant of pF n q nω . For x °V n0 x n , where dn ω x n F n , the support of x on the FDD pF n q nω is supppxq tn ω | x n $ 0u. A block-sequence of pF n q nω is a sequence px n q nω of normalized vectors of nω F n such that supppx 0 q supppx 1 q . . .. Remark that a normalized sequence px n q nω is a block-sequence of pF n q nω if and only if pRx n q nω is a block-FDD of pF n q nω . In particular, a block-sequence of pF n q nω is a basic sequence with constant less or equal to than the constant of pF n q nω . An unconditional finite-dimensional decomposition (UFDD) is an FDD pF n q nω such that for every px n q nω ± nω F n , if the series °V n0 x n converges, then for every A ω, the series °nA x n also converges. If this holds, it can be shown that for every a pa n q nω V and, the series T a °V n0 x n ¨ °V n0 a n x n converges. Moreover, letting F À nω F n , this defines a bounded operator T a : F ÝÑ F , and K : sup aS V ~Ta ~ V. The constant K is called the unconditional constant of the FDD.

A sequence pF n q nω of nonzero finite-dimensional subspaces of E is a UFDD if and only if there exists a constant K such that for every n ω, for every pε 0 , . . . , ε n¡1 q t¡1, 1u n , and for every px i q i n ± i n F n , we have

} °i n ε i x i } ¤ K } °i n x i }.
In this case, the unconditional constant of pF n q nω is the least K satisfying this property. This characterisation shows that a block-FDD of pF n q nω is a UFDD with unconditional constant less or equal than the unconditional constant of pF n q nω . We can also show that a sequence pF n q nω of nonzero finitedimensional subspaces of E is a UFDD if and only if there exists a constant K I such that for every n ω, for every A n, and for every px i q i n ±

i n F n , we have

} °iA x i } ¤ K I } °i n x i }.
Before going further, let us recall some facts about the equivalence of sequences.

Here, α will denote an integer or ω. Two sequences px n q n α and py n q n α of elements of a Banach space E are said to be C-equivalent, for some constant C ¥ 1, if there exist A, B ¥ 1 such that AB ¤ C and for every pa n q n α R α with finite support, we have 1

A } °n α a n y n } ¤ } °n α a n x n } ¤ B } °n α a n y n }. Two sequences are equivalent if they are C-equivalent for some C. If two normalized sequences px n q n α and py n q n α are C-equivalent, and if X and Y denote the respective closed subspaces spanned by the x n 's and the y n 's, then there exists a unique C-isomorphism T from X to Y , such that for every n α, T px n q y n . Moreover, if px n q nω is a basic sequence with constant M , then py n q nω is a basic sequence with constant less or equal than CM .

A classical result says that a small perturbation of a basic sequences is still a basic sequence, equivalent to the first one. We will later need a generalization of this result; we state it now. Recall that, given a finite-dimensional normed space F , a normalized basis pf i q i d of F is said to be an Auerbach basis if all of the biorthogonal functionals f ¦ i F ¦ , for i d, have norm 1. Auerbach's lemma says that such bases always exist; for a proof see problem 12.1 in [START_REF] Albiac | Topics in Banach space theory[END_REF]. Here, we will say that a sequence px i q i α of normalized vectors in a Banach space is M -Auerbach, for M ¥ 1, if for every sequence pa i q i α R α with finite support, and for every n α, we have |a n | ¤ M } °i α a i x i }. Remark that if two sequences px n q n α and py n q n α are C-equivalent, and if px n q n α is M -Auerbach, then py n q n α is CM -Auerbach. Obviously, Auerbach bases are 1-Auerbach, and basic sequences with constant M are 2M -Auerbach. But there also exist other examples of Auerbach sequences. For exemple, take pF i q iω a FDD with constant C, let n i °j i dimpF j q, and for every i ω, let px n q n i ¤n n i 1 be a normalized basis of F i which is M -Auerbach, for a fixed M . Then the sequence px n q nω is 2CM -Auerbach; however, this is not necessarily a basic sequence.

The principle of small perturbations we will use here is the following.

Lemma IV.3. Let px i q i α be a C-Auerbach sequence, and let py i q i α be a normalized sequence in the same Banach space. Let ε 1 C , and suppose that °i α }x i ¡ y i } ¤ ε. Then the sequences px i q i α and py i q i α are 1 Cε 1¡Cε -equivalent.

Proof. Let pa i q i α R α be a sequence with finite support. We have:

i α a i y i ¤ i α a i x i i α |a i |}y i ¡ x i } ¤ i α a i x i C i α a i x i ¤ i α }y i ¡ x i } ¤ p1 Cεq i α a i x i .
On the other hand, we have:

i α a i x i ¤ i α a i y i i α |a i |}y i ¡ x i } ¤ i α a i y i Cε i α a i x i , so: p1 ¡ Cεq i α a i x i ¤ i α a i y i .
The result immediately follows.

We now turn back to FDDs and introduce a method for constructing them. The idea is the same as the usual method for building basic sequences: each term has to be choosen "far enough" from the previous ones. We give here a formulation of this criterion that will be quite convenient for our work. We start by giving a new version of the asymptotic game.

Definition IV. [START_REF] Anisca | The ergodicity of weak Hilbert spaces[END_REF]. Let E be a Banach space. The subspace-asymptotic game below E, denoted by SubF E , is the following two-players game:

I X 0 X 1 . . . II F 0 F 1 .
. . where the X n 's are finite-codimensional subspaces of E, and the F n 's are finitedimensional subspaces of E, with the constraint for II that for all n ω, F n X n . The outcome of the game is the sequence pF n q nω . Our criterion will be the following.

Lemma IV.5. Let E be a separable Banach space and ε ¡ 0. Then player I has a strategy in SubF n to build a FDD with constant less or equal than 1 ε.

Proof. Recall that Cpr0, 1sq, the space of continuous functions r0, 1s ÝÑ R with the sup norm, has a Schauder basis pe i q iω with constant 1 (see [START_REF] Albiac | Topics in Banach space theory[END_REF], theorem 1.2.1). We denote by P i , i ω, the projections relative to this basis. Recall also Banach-Mazur's theorem (theorem 1.4.3. in [START_REF] Albiac | Topics in Banach space theory[END_REF]), saying that every separable Banach space can be isometrically embedded in Cpr0, 1sq. So we can assume that E Cpr0, 1sq. Remark that a strategy for I in the subspace-asymptotic game into Cpr0, 1sq to reach some target immediately gives a strategy for I in the same game played in E to reach the same target: I can play in E the intersection of E and of the subspace he would play in Cpr0, 1sq. So we can assume that E Cpr0, 1sq.

Consider the approximate asymptotic space pP, S E , d, AE, q where P is the set of all infinite-dimensional subspaces of E, d is the distance of the norm on S E , and X AE Y if X is a finite-codimensional subspace of Y . On this space, we can consider the system of compact sets pK, q where K is the set of balls of nonzero finite-dimensional subspaces of E and S F S G S F G . In this space, the strong asymptotic game below E is exactly the same as the subspace-asymptotic game below E. Moreover, denote by X C the set of basic sequences in E with constant less or equal than C. Then, for a sequence pF n q n ω of nonzero finite-dimensional subspaces of E, if bsppS Fn q nω q X 1 , then pF n q nω is a FDD with constant less or equal than 1 ε. However, by lemma IV.3, we have that for a well-chosen sequence ∆ of positive real numbers, pX 1 ε 2 q ∆ X 1 ε . So by theorem III.16, it is enough to show that player I has a strategy in the asymptotic game F E to build a basic sequence with constant 1 ε 2 .

Fix δ 0, 1 2 ¨be such that 1 2δ 1¡2δ ¤ 1 ε 2 . We describe a strategy for I in F E on a play pX 0 , x 0 , X 1 , x 1 , . . .q of this game. We suppose moreover that at the same time as each x i , a vector y i is built such that }x i ¡y i } ¤ δ 2 i 1 and such that py i q iω is a block-sequence of pe n q nω . This will be enough to conclude: indeed, py i q iω will be a basic sequence with constant 1, so by lemma IV.3, px i q iω will be a basic sequence with constant 1 ε 2 .

At the first turn of the game, I plays X 0 E. II answers with x 0 . Then, for n 0 ω large enough, we can let y 0 Pn 0 px 0 q }Pn 0 px 0 q} and we have }x 0 ¡y 0 } ¤ δ 2 . Suppose now that the first i turns of the game have been played, so x 0 , . . . , x i and y 0 , . . . , y i have been built. Let m i max supppy i q. Player I plays X i 1 Ker P m i . Then II answers by x i 1 ¡ y i ; for n i 1 ω large enough, letting y i 1 Pn i 1 px i 1 q }Pn 0 px i 1 q} , we have }x i 1 ¡ y i 1 } ¤ δ 2 i 2 . We have y i 1 ¡ y i as wanted, what finishes the proof.

It will be very important, in the following work, to be able to characterise separable spaces that are not isomorphic to 2 . Recall that it is a well-known fact that if a separable Banach space X is not isomorphic to 2 , then for every C ¥ 1, there exists a finite-dimensional subspace F of X which is not C-isomorphic to dimpF q 2 . We state here a little stronger result.

Lemma IV.6 (Folklore). Let X be a Banach space and pF n q nω be an increasing sequence of finite-dimensional subspaces of X such that

nω F n is dense in X. Then d BM pX, 2 q sup nω d BM pF n , dimpFnq 2 q.
Proof. Let C ¥ 1 and suppose that for every n, F n is C-isomorphic to 2 . We need to show that X is C-isomorphic to 2 . For every n, let ϕ n : F n ÝÑ E n an isomorphism, where E n is a subspace of 2 , ~ϕn ~¤ C, and ~ϕ¡1 n ~¤ 1. By composing successively the ϕ n 's by isometries between finite-dimensional subspaces of 2 , we can moreover assume that E 0 E 1 . . .. Let U be a nonprincipal ultrafilter on ω. For every x iω F i , we let ϕpxq lim iÝÑU ϕ i pxq. As, if x B Fn pRq, we have for every i large enough, ϕ i pxq B En pCRq, this limit is well-defined. This defines a linear mapping ϕ : nω F n ÝÑ 2 with, for every x, }x} ¤ }ϕpxq} ¤ C}x}. So ϕ can be extended to an C-isomorphism between X and a subspace Y of 2 , and since Y is isometric to 2 , this concludes.

We can now state a characterisation of non-isomorphism to 2 based on FDDs. This characterisation will be central in the following work.

Lemma IV.7. Let E be a separable Banach space. Then E is non-isomorphic to 2 if and only if there is a FDD pF n q nω in E such that for every n ω, we have d BM pF n , dimpFnq 2 q ¥ n. Moreover, if such a FDD exist, it can be choosen with constant as close as 1 as we want.

Proof. It is immediate that if there is a FDD pF n q nω in E with d BM pF n , dimpFnq 2 q ¥ n for every n, then E is not isomorphic to 2 . Now suppose that E is not isomorphic to 2 . Then no finite-codimensional subspace of E is isomorphic to 2 , so by lemma IV.6, 94 when playing the subspace-asymptotic game in E, player II can, at the n th turn, play F n with d BM pF n , dimpFnq 2 q ¥ n. Lemma IV.5 concludes immediately.

An FDD satisfying the conclusion of lemma IV.7 will be called a good FDD in the rest of this manuscript.

To finish this section, we recall some simple facts about directs sums and HI spaces. Recall that two subspaces Y, Z of a Banach space X are in topological direct sum if Y Z t0u and if the natural projection Y Z ÝÑ Y is bounded. This is equivalent to say that the mapping Y ¢ Z ÝÑ Y Z defined by py, zq Þ Ñ y z is an isomorphism; thus, by the open mapping theorem, saying that Y and Z are in topological direct sum is equivalent to say that Y Z t0u and Y Z is closed in X. In particular, a space X is HI if and only if no pair of subspaces of X are in topological direct sum. Also recall that Y and Z are not in topological direct sum if and only if dpS Y , S Z q 0: indeed, saying that the projection Y Z ÝÑ Y is unbounded is equivalent to say that we can find y S Y and z Z such that }y z} is arbitrarily small, so that y and z are arbitrarily close.

IV.2 The first dichotomy

In this section, we give a Hilbert-avoiding version of Gowers' first dichotomy I.21. We fix E a separable Banach space non-isomorphic to 2 . We let P be the set of its subspaces that are not isomorphic to 2 , and on P , we put the usual quasi-order ¦ defined by X ¦ Y if X Y has finite codimension in X. We let d be the distance on S E induced by the norm.

The results presented in this section take their roots in an idea of Valentin Ferenczi. He remarked that lemma IV.6 has the following corollary:

Proposition -definition IV.8. The space HA E pP, S E , , ¦ , q, called the Hilbertavoiding space over E, is an approximate Gowers space.

Proof. The verification of the axioms 1., 4., and 5. in the definition of a Gowers space are straightforward. The axiom 2. follows from the fact that if a space X has a finitecodimensional subspace isomorphic to 2 , then X is itself isomorphic to 2 . We now verify 3.. Let pX n q ω be a -decreasing sequence of elements of P . Since X n is nonisomorphic to 2 , then by the lemma there exist a finite-dimensional subspace F n X n such that F n is not n-isomorphic to dimpFnq 2

. Then we let X ¦ °nω F n . Since X contains all the F n 's, it is infinite-dimensional and non-isomorphic to 2 . Moreover, for every n ω, X ¦ X n °i n F i , so X ¦ ¦ X n as wanted.

In the same way as we deduced Gowers' Ramsey-type theorem from its abstract version theorem III.17, we can, using this space, give a Hilbert-avoiding version of this theorem:

Theorem IV.9. Let X pS E q ω be an analytic set, ∆ be a sequence of positive real numbers, and ε ¡ 0. Then:

• either there exists a good FDD pF n q nω in E, with constant at most 1 ε, such that no block-sequence of this FDD belongs to X ;

• or there exists a subspace X of E, non-isomorphic to 2 , such that II has a strategy in Gowers' game below X to reach pXq ∆ .

Beware: here, when talking about Gowers' game, we talk about the version of Gowers' game corresponding to the approximate Gowers space HA E . This means that in this game, player I is only allowed to play subspaces of X that are not isomorphic to 2 .

Proof of theorem IV.9. Let K be the set of unit spheres of nonzero finite-dimensional subspaces of E. For F, G E finite-dimensional, let S F S G S F G . This defines a system pK, q of compact sets on HA E . Apply the abstract Gowers' theorem III.17 to HA E , to this system, to the set X , the subspace E, and the sequence ∆. It gives us a subspace X of E, non-isomorphic to 2 , such that:

• either player I has a strategy τ in SF X to build a sequence pS Fn q nω such that bsppS Fn q nω q X c ; • or player II has a strategy in G X to reach pXq ∆ .

In the second case we are done, so suppose now that we are in the first case. By lemma IV.5, player I has also a strategy σ in SubF X to build a FDD with constant at most p1 εq. Remark that in this case, the games SF X and SubF X can be identified.

We let I play to this unique game using both of the strategies τ and σ at the same time, that is, at each turn, he plays the intersection of the subspace given by σ and of the subspace given by τ , which is still finite-codimensional in X. This ensures that the outcome pF n q nω will be a FDD with constant at most 1 ε such that bsppS Fn q nω q X c . On her side, since I always plays subspaces that are non-isomorphic to 2 , II can play at the n th turn a subspace F n such that d BM pF n , dimpFnq 2 q ¥ n. This ensures that the outcome will be a good FDD. To finish, block-sequences of pS Fn q nω are exactly the block-sequences of the FDD pF n q nω , so the fact that bsppS Fn q nω q X c ensures that the outcome will have the wanted property.

We can now turn to our dichotomy. Recall that a Banach space X is said to be primary if for every subspaces Y, Z of X, if X Y Z, then either Y or Z is isomorphic to X. This motivates the following definition, that can be seen as a variant of primary spaces, or as a weakening of HI spaces: Theorem IV.12. Let E be a separable Banach space, non-isomorphic to 2 . Then there exists a subspace X of E, non-isomorphic to 2 , such that:

• either X has a good UFDD;

• or X is HHP. This is a dichotomy between two classes that are, in some sense, hereditary. The second one is hereditary with respect to taking subspaces that are non-isomorphic to 2 , and the first one is hereditary with respect to good block-FDDs: a block-FDD of a UFDD is a UFDD. Moreover, these classes are disjoint: if pF i q iω is a good UFDD of X, then for every infinite and coinfinite A ω, we have a decomposition of X in a direct sum of two subspaces that are not isomorphic to 2 , À iA F i and À iA c F i . Thus, we have a genuine dichotomy of spaces non-isomorphic to 2 in the sense of Gowers; we know how to build lots of operators on a space X with a good UFDD, the only missing thing would be a better understanding of the operators on a HHP space that is not isomorphic to 2 .

Proof of theorem IV.12. Fix ∆ a sequence of positive real numbers that will be determined at the end of the proof. For every integer N ¥ 1, let X N be the set of sequences px i q iω pS E q ω such that there exists n ω and a sequence pa i q i n R n such that

i n i even a i x i ¡ N i n a i x i
. The X N 's are open subsets of pS E q ω . Firstly suppose that the following property p¦q holds: p¦q There exists N ω and a good FDD pF n q nω in E such that no block-sequence of pF n q nω belongs to X N .

We then show that pF n q nω is a UFDD. More precisely, we will show that given m ω, A m, and py i q i m ± i m F i , we have } °iA y i } ¤ pN 1q } °i m y i }; by the criterion given in the last section, it will be enough to conclude. 

Let B ti m | y i $ 0u. If B ∅,
y i i n i even a i x i and i m y i i n a i x i . Moreover, px i q i n
is a finite block-sequence of pF n q nω , so it can be prolonged to an (infinite) block-sequence, that will belong to X c N . Therefore, we have that

i n i even a i x i ¤ N i n a i x i
, or in other words } °iA y i } ¤ N } °i m y i }, as wanted. Now, if min B A, then we can apply the previous result to A c and get that } °iA c y

i } ¤ N } °i m y i }, so } °iA y i } ¤ } °i m y i } } °iA c y i } ¤ pN 1q } °i m y i },
as wanted.

We now suppose that the property p¦q is not satisfied. We build a decreasing sequence pX N q N ω of subspaces of E, non-isomorphic to 2 , in the following way. We let X 0 E. If X N has been constructed, knowing that p¦q is not satisfied and applying theorem IV.9 to the space X N , the sequence ∆ and the set X N 1 , we get X N 1 X N non-isomorphic to 2 such that player II has a strategy in G X N 1 to reach pX N 1 q ∆ . The sequence pX N q N ω being built, there exists a subspace X E non-isomorphic to 2 such that for every n, we have X ¦ X N . This show that for every N ¥ 1, player II has a strategy in G X to reach pX N q ∆ . We now show that X is HHP. Suppose not, then there exists two subspaces Y, Z of X, non-isomorphic to 2 , such that Y Z is a topological direct sum. We let P be the projection from Y Z to Y and we choose an integer N ¥ ~P~. We consider a play of F X and a play of G X played simultaneously, and having the same outcome px i q iω , as represented on the diagrams below:

I U 0 U 1 U 2 U 3 . . . F X II x 0 x 1 x 2 x 3 . . . I U 0 Y U 1 Z U 2 Y U 3 Z . . . G X II x 0 x 1 x 2 x 3 . . .
This is how these games are played:

• In F X , I plays using a strategy enuring that the outcome is a basic sequence with constant at most 2. Such a strategy exists by lemma IV.5 (here, the games F X and SubF X can be identified, since II only plays vectors). We denote by pU i q iω the sequence of his moves.

• At the turn i of G X , if i is even, I plays U i Y , and if i is odd, he plays U i Z.

• In G X , II plays using her strategy to reach pX 4N q ∆ . The sequence of her moves will be denoted by px i q iω .

• At the turn i of F X , II plays x i . This is always a legal move: indeed, by the rules of G X , we have x i U i . This ensures that the sequence px i q iω built in this way is a basic sequence with constant at most 2, is in pX 4N q ∆ , and that for i even, we have x i Y , and for i odd, we have x i Z.

We now choose ∆ in such a way that if py i q iω is a basic sequence with constant at most 2, and if pz i q iω pS E q ω is a sequence such that for every i, }y i ¡ z i } ¤ ∆ i , then py i q iω and pz i q iω are 2-equivalent; such a ∆ exists by lemma IV.3. Remark that if py i q iω and pz i q iω are 2-equivalent, and if py i q iω X 4N , then pz i q iω X N . In particular, we deduce that px i q iω X N . So there exists n ω and a sequence pa i q i n R n such that

i n i even a i x i ¡ N i n a i x i . Now let y i n i even a i x i and z i n i odd a i x i .
We have y Y , z Z and }y} ¡ N }y z}; this contradicts the fact that the projection from Y Z to Y has norm less or equal than N .

IV.3 The second dichotomy

In this section, we give a Hilbert-avoiding version of Ferenczi and Rosendal's dichotomy between minimal subspaces and tight subspaces (theorem I.25). We begin with some definitions. Given a FDD pF i q nω in some Banach space E, and A ω, we will denote by rF i | i As the subspace À iA F i . Definition IV.13.

1. A separable Banach space X non-isomorphic to 2 is minimal among non-hilbertian spaces (MNH) if it embeds in all of its subspaces that are not isomorphic to 2 .

2. Let pF i q iω be a FDD in some Banach space E. A Banach space X is tight in pF i q iω if there is an infinite sequence of intervals I 0 I 1 . . . of integers such that for every infinite A ω, we have X

F i § § §i jA I j % .
3. A good FDD pF i q iω is said to be tight for non-hilbertian spaces (TNH) if every Banach space non-isomorphic to 2 is tight in it. A Banach space X is tight for non-hilbertian spaces (TNH) if it has a good FDD which is TNH.

Some more properties of TNH spaces will be proved in the next setion. The dichotomy we will prove is the following: Theorem IV.14. Let E be a Banach space with a good FDD pE i q iω . Then pE i q iω has a good block-FDD pF i q iω such that:

• either rF i | i ωs is MNH;

• or pF i q iω is TNH.

In particular, every separable Banach space non-isomorphic to 2 has either an MNH subspace, or a TNH subspace.

Again, this a genuine dichotomy in the sense of Gowers. A subspace of a MNH space that is not isomorphic to 2 is itself MNH; and a good block-FDD of a TNH FDD is itself TNH. Moreover, a TNH space cannot be MNH. The rest of this section is devoted to prove this dichtomy. Remark that the "in particular" part of the theorem is a direct consequence of the first part, since every separable Banach space non-isomorphic to 2 contains a good FDD. So we prove the first part. We fix a Banach space E with a good FDD pE i q iω . Since the proof is quite technical, it is inconvenient to deal with approximation, so we will work with vector spaces on a countable field. For every i ω, we fix a basis pe i j q j d i of E i . In this way, every x E can be decomposed in a unique way as a sum x °V i0 x i with x i E i for every i, and every x i can be decomposed in a unique way as a sum x i °j d i x i j e i j . We fix K a countable subfield of R such that for every x E, if all the x i j are in K and if all them are zero except for a finite number, then }x} K. Such a field can be built inductively: begin with K 0 Q, and define K n 1 the subfield of R generated by K n and all of the }x}'s, for x E such that for every x E, all the x i j are in K and all them are zero except for a finite number; and then let K nω K n . In the rest of this section, vector spaces on K will be denoted by capital script roman letters, and closed subspaces of E (of finite or infinite dimension) will be denoted by capital printscript roman letters. We let V be the K-vector subspace of E generated by all the e i j 's. For R a K-vector subspace of E, we let R be its closure in E, and S R be the set of its normalized vectors. Remark that R is a R-vector subspace of E, that R is R-finite-dimensional if and only R is K-finite-dimensional, and that in this case, their dimensions are equal. We have V E. Also remark that since, for x V , we have x }x} V , then for R a vector subspace of V , S R is always non-trivial.

We now define a Gowers space. For every i ω, we let E i be the K-vector subspace of E i generated by the e i j 's for j d i . Obviously we have E i E i and V À iω E i . We define a block-FDD of pE i q iω as a sequence pF i q iω of nonzero finite-dimensional K-vector subspaces of E such that there exists a sequence A 0 A 1 . . . of finite sets of integers such that for every i, we have F i jA i E j . A block-FDD pF i q iω will often be denoted by the letter F ; thus, when we speak about a block-FDD F without further explanation, it will be supposed that its terms are denoted by

F i . Remark that if F is a block-FDD of E , then ¡ F i © iω is a block-FDD of pE i q iω . So we will say that F is good if and only if ¡ F i © iω is a good block-FDD of pE i q iω .
We let P be the set of good block-FDDs of E . If F , G P , we let F ¤ G if F is the block-FDD of G . We let F ¤ ¦ G if there exists n ω such that pF i q i¥n ¤ G . We let X be the set of pairs pR , xq where R is a finite-dimensional subspace of V and x an element of S V . For F P and pR , xq X, we say that pR , xq F if R À iω F i .

Lemma IV.15. G pP, X, ¤, ¤ ¦ , q is a Gowers space.

Proof. The only non-trivial property to verify is the diagonalization property. So, suppose that we have a ¤-decreasing sequence pF i q i ω of elements of P (with for every i, F i pF j i q jω ). Then we can verify, by induction, that for every k ω and i j, we have F k j À l¥k F l i . Letting F ¦ pF i i q iω , this proves that F ¦ is a good block-FDD and that for every i ω, pF l ¦ q l¥i ¤ F i , as wanted.

In this proof, we will use variants of the usual games F F , G F , A F , B F of the Gowers space G, but with additional rules. These games will be denoted with a prime:

F I F , G I F , A I F , B I F .
We define these games below.

Definition IV.16. Let F P .

• The game G I F is defined in the following way:

I F 0 F 1 . . . II R 0 , x 0 R 1 , x 1 . . .
where the F i 's are good block-FDDs of F , the R i 's are finite-dimensional subspaces of V , and the x i 's are elements of S V , with the constraints for II that for all i ω, R i À jω F j i , and x i R 0 . . . R i . The outcome of the game is the sequence px i q iω pS V q ω .

• The game F I F is defined in the same way as G I F apart form the fact that this time, player I has to choose the F i in such a way that F i AE F .

• The game A I F is defined in the following way:

I R 0 , x 0 , G 0 R 1 , x 1 , G 1 . . . II F 0 S 0 , y 0 , F 1 S 1 , y 1 , F 2 . . .
where the F i 's and the G i 's are elements of P , the R i 's and the S i 's are finite-dimensional subspaces of V , and the x i 's and the y i 's are elements of S V .

The rules are the following:

for I : for all i ω, G i AE F , R i À jω F j i , and x i R 0 . . . R i ; for II : for all i ω, F i ¤ F , S i À jω G j i , and y i S 0 . . . S i ; and the outcome of the game is the pair of sequences ppx i q iω , py i q iω q ppS V q ω q 2 .

• The game B I F is defined in the same way as A I F , except that this time the F i 's are required to satisfy F i AE F , whereas the G i are only required to satisfy G i ¤ F . The starting point of this proof will be the following lemma.

Lemma IV.17. There exists F P such that either player I has a strategy in A I F to ensure that the sequences px i q iω and py i q iω are not equivalent, or player II has a strategy in B I F to ensure that the sequences px i q iω and py i q iω are equivalent.

Proof. The idea is that the games A I F and B I F can be seen as special cases of the games A F and B F by coding the rules in the target set. Let X be the set of sequences pR 0 , x 0 , S 0 , y 0 , R 1 , x 1 , . . .q X ω satisfying one of the two following conditions:

• The sequences px i q iω and py i q iω are inequivalent, and for every i ω, we have

x i R 0 . . . R i ;
• There exists i ω such that y i S 0 . . . S i , and for every j ¤ i,

x j R 0 . . . R j .

The first condition says that I reaches his target without cheating, and the second one says that II cheats, and is the first player to do so. Then we have that:

• If player I has a strategy in A F to reach X , then he has a strategy in A I F to ensure that the sequences px i q iω and py i q iω are inequivalent;

• If player II has a strategy in B F to reach X c , then he has a strategy in B I F to ensure that the sequences px i q iω and py i q iω are equivalent.

Since the set X is a G δ -subset of X ω , the conclusion of the lemma immediately follows from the adversarial Ramsey property in the space G (theorem II.4).

In the rest of this proof, we fix the block-FDD F given by the last lemma. We say that a sequence pu i q iω pS F q ω is F -correct if there exists G ¤ F and a partition of ω in successive intervals I 0 I 1

. . . such that for every i ω, the finite sequence pu j q jI i is a basis of G i . The next proposition contains the combinatorial content of theorem IV.14.

Proposition IV.18. One of the following statements is satisfied:

(1) For every F -correct sequence pu i q iω , player I has a strategy in F I F to build a sequence px i q iω that is not equivalent to pu i q iω ;

(2) There exists a F -correct sequence pu i q iω such that player II has a strategy in G I F to build a sequence px i q iω that is equivalent to pu i q iω .

Proof. Suppose that (1) is not satisfied. For the rest of the proof, we fix a F -correct sequence pu i q iω such that player I has no strategy in F I F to build a sequence px i q iω that is not equivalent to pu i q iω . By the determinacy of this game, player II has a strategy τ in F I F to build a sequence which is equivalent to pu i q iω . By correctness of this sequence, we can also fix G ¤ F and a partition of ω in successive intervals I 0 I 1 . . . such that for every i ω, pu j q jI i is a basis of G i .

Step 1. We prove that II has a strategy in A I F to build two equivalent sequences.

We describe this strategy on a play pG , R 0 , x 0 , F 0 , S 0 , y 0 , G , . . .q of A I F , in which the FDDs played by II will always be equal to G and that will be played at the same time as an auxiliary play pH 0 , U 0 , z 0 , H 1 , U 1 , z 1 , . . .q of F I F during which player II always plays according to her strategy τ . Actually, the R i 's played by I in A I F will not matter at all in this proof, so we will omit them in the notation. At the same time as the games are played, a sequence of integers 0 n 0 n 1 . . . will be constructed. The idea is that the turn i of A I F will be played at the same time as the turns n i , n i 1, . . . , n i 1 ¡ 1 of the game F I F . Suppose that we are just before the turn i of the game A I F , so the x j 's, the F j 's, the S j 's, and the y j 's have been defined for all j i. Suppose also that the integers n j have been defined for all j ¤ i, and that we are just before the turn n i of the game F I F , so the H n 's, the U n 's and the z n 's have been played for all n n i . We represent on the diagram below the turn i of the game A I F , and the turns n i , . . . , n i 1 ¡ 1 of the game F I We now describe how these turns are played. In A I F , player II plays G . Then player I answers by a FDD F i AE F and a vector x i À kω G k . Thus, x i can be decomposed on the basis pu m q mω : we can find n i 1 ω and pa m i q m n i 1 K n i 1 such that x i °m n i 1 a m i u m . Moreover, we can assume that n i 1 ¡ n i . Now, during the n i 1 ¡ n i following turns of the game F I F , we will let player I play F i (So we will have, for every n i ¤ m n i 1 , H m F i ). According to the strategy τ , player II will answer with U n i , z n i , . . . , U n i 1 ¡1 , z n i 1 ¡1 . We now let S i U n i . . . U n i 1 ¡1 , and y i °m n i 1 a m i z m . Since all the U m 's, for n i ¤ m n i 1 are finite-dimensional subspaces of À kω F k i , then S i is itself a finite-dimensional subspace of À kω F k i . And since all the z m , for n i ¤ m n i 1 , are elements of U 0 . . . U n i 1 ¡1 S 0 . . . S i , then y i is itself an element of S 0 . . . S i . So we can let II play S i and y i in A I F , what finishes the description of the strategy.

The fact that in F I F , player II always plays according to the strategy τ , ensures that the sequences pu m q mω and pz m q mω are equivalent. Remark that the sequence px i q iω is built from pu m q mω in exactly the same way that the sequence py i q iω is built from pz m q mω ; so this ensures that px i q iω and py i q iω are equivalent, concluding this step of the proof.

Lemma IV.20. Suppose that for every F -correct sequence pu i q iω , player I has a strategy in F I F to build a sequence px i q iω that is not equivalent to pu i q iω . Then the FDD pF i q iω is TNH.

In order to prove these, we need two more lemmas. The first one is due to Ferenczi and Rosendal and its proof can be found in [START_REF] Ferenczi | On the number of non-isomorphic subspaces of a Banach space[END_REF] (lemma 3).

Lemma IV.21 (Ferenczi -Rosendal). For every n ω, there exists cpnq ¥ 1 such that for every Banach space U , and every subspaces V and W having both codimension n, V and W are cpnq-isomorphic.

Lemma IV. [START_REF] Galvin | Borel sets and Ramsey's theorem[END_REF] . We fix ∆ a sequence of positive real numbers that will be defined in the course of the proof. We build inductively the block-sequence H . We will let, for every i ω, n i °j i dim pH i q, and we will build, at the same time as the block-sequence H , two normalized sequences px n q nω and py n q nω , with the property that for every i, the sequence px n q n i ¤n n i 1 will be a basis of H i , and for every n ω, }x n ¡ y n } ¤ ∆ n .

Fix i ω and suppose that the H j 's have been built for j i, that the n j ' have been built for j ¤ i, and that the x i 's and the y j 's have been built for n n i . Let m i ω be such that for every j i, H j À m m i G m (take for example for m i the supremum of the supports of the x n 's for n n i ). Then

À m¥m i G m G m § § § m ¥ m i % has finite codimension in G m § § § m ω % , so U À
m¥m i G m is not isomorphic to 2 , and contains a R-finite-dimensional vector subspace H i such that H i is not 2e i -isomorphic to dimpH i q

2

. We let n i 1 n i dimpH i q and we let py n q n i ¤n n i 1 be an Auerbach basis of H i . We choose x n i , . . . , x n i 1 ¡1 normalized vectors in À m¥m i G m such that for n i ¤ n n i 1 , we have }x n ¡ y n } ¤ ∆ n . We now let H i be the vector subspace of V generated by the x n 's for n i ¤ n n i 1 . This achieves the construction of H . This is a good FDD: indeed, since px n q n i ¤n n i 1 is 1-Auerbach, we can choose ∆ small enough to ensure that py i q n i ¤n n i 1 is 2-equivalent to it, so H i is 2-isomorphic to H i and hence cannot be e i -isomorphic to

dimpH i q 2 .
Since all the px n q n i ¤n n i 1 are 2-Auerbach and since the FDD ¡ H i © iω has constant at most C, this ensures that px n q nω is 4C-Auerbach. So if ∆ has been choosen small enough, we can ensure that the sequences px n q nω and py n q nω are p1 εq-equivalent.

Since the closed subspace of E generated by the x i 's is

H i § § § i ω %
, and since all the y i 's are in U , this ensures that H i § § § i ω % can be p1 εq-embedded in U .

Proof of lemma IV.19. Since the sequence pu i q iω is F -correct we can fix G ¤ F and a partition of ω in successive intervals I 0 I 1 . . . such that for every i ω, the finite sequence pu j q jI i is a basis of G i . We let G i G i . Then pG i q iω is a good block-FDD of pF i q iω ; we will show that G rG i | i ωs is MNH. By lemma IV.22, it is enough to show that for every H ¤ G , the space G can be embedded in

H H i § § § i ω % .
Fix such an H and consider a play of G I F where I plays H at each turn, and II answers with her strategy to build a sequence px i q iω that is equivalent to pu i q iω . Since all the x i 's are in H and since the closed space generated by the u i 's is G, the mapping u i Þ Ñ x i extends to an embedding of G into H.

Proof of lemma IV.20. We have to prove that every Banach G space non-isomorphic to 2 is tight in pF i q iω . By lemma IV.22, it is enough to prove it in the case where G has the form

G i § § § i ω %
, where G ¤ F . So we fix such a G . For every i ω, we let n i °j i dim pG i q, and we let pu n q n i ¤n n i 1 be a normalized basis of G i that is 2-Auerbach (this can be done by firstly, choosing an Auerbach basis of G i and then, perturbing it a little bit in order to have all the terms in G i ). In this way, the sequence pu k q kω is F -correct. We let C be the constant of the FDD ¡ G i © iω . We then have that the sequence pu k q kω is 4C-Auerbach. Since the proof is quite technical, we will proceed in several steps.

Step 1. The hypothesis of this lemma says that I has a strategy τ in F I F to build a sequence that is inequivalent to pu k q kω . We reinterpret this statement using the asymptotic game of an approximate asymptotic space we now define. The space will be A pω, Y, D, AE, q, where:

• the set of subspaces is ω, and the order AE is defined by m AE n ô n ¤ m;

• an element of Y is a pair pI, xq where I is a finite interval of ω and x is an element of S F ; the distance on Y is defined by dppI, xq, pJ, yqq }x ¡ y} if I J and 1 otherwise;

• pI, xq n if n ¤ I, i.e. every element of I is greater or equal than n.

In this proof, we will denote by F P n the asymptotic game of the space A under the subspace n of A in order to avoid confusion with F I F . We fix K ¥ 1, and ∆ a sequence of positive real numbers, less than 1, such that for every normalized sequences px i q iω and py i q iω , if px i q iω is 16KC-Auerbach and if for every i ω, }x i ¡ y i } ¤ 2∆ i , then px i q iω and py i q iω are 2-equivalent. We let X be the set of sequences pI 0 , x 0 , I 1 , x 1 , . . .q of elements of Y such that if for every i ω, we have

x i ¢ SÀ j¤i ¡ À kI j F k © ∆ i , then
px i q iω is not 4K-equivalent to pu i q iω . The aim of this step is to show that I has a strategy to reach X in F P 0 . For this, we describe a play pn 0 , I 0 , x 0 , n 1 , I 1 , x 1 , . . .q of F P 0 107 at the same time as a play pF 0 , R 0 , y 0 , F 1 , R 1 , y 1 , . . .q of F I F during which I always plays according to his strategy τ and such that for every i ω, }x i ¡ y i } ¤ 2∆ i .

Suppose that the first i turns of both games have been played; at the turn i, in F I F , according to his strategy, player I plays F i . Since F i AE F , there is n i ω such that pF k q k¥n i ¤ F i ; we let I play this n i in F P 0 . In this game, II answers with I i and

x i , and we can suppose that So we can find a nomalized element y i À j¤i ¡ À

kI j F k © such that }x i ¡ y i } ¤ 2∆ i .
In F I F , we let II play R i À kI i F k and y i ; this finishes the description of the strategy.

Now verify that this strategy is as wanted, that is, that pI 0 , x 0 , I 1 , x 1 , . . .q X . Suppose not. Then px i q iω is 4K-equivalent to pu i q iω , so px i q iω is 16KC-Auerbach. By the choice of ∆, we get that px i q iω and py i q iω are equivalent, so py i q iω is equivalent to pu i q iω , thus contradicting the assumption on the strategy τ .

Step 2. We prove that for every K ¥ 1, there exists a sequence of intervals of integers I 0 I 1

. . . such that for every infinite A ω containing 0, we have

G K F i § § §i jA I j %
. We fix K ¥ 1, and we keep the sequence ∆ and the set X defined at the previous step relatively to K. We define a system of compact sets on A. For J a nonempty finite interval of integers, let K J tJu ¢ S p À i¤maxpJq F iq ; this is a compact subset of Y . We let K be the set of all the K J 's, and for K J 1 , K J 2 K, we let K J 1 K J 2 K J , where J is the smallest interval of ω containing J 1 and J 1 .

Then pK, q is a system of compact sets on A. By step 1, player I has a strategy in F P 0 to reach X ; so by theorem III.16, he has a strategy in SF P 0 , the strong asymptotic game of the space A under the subspace 0, to build a sequence pK J i q iω with bsppK J i q iω q pXq ∆ . In particular, there exists such a sequence with minpJ 0 q ¡ 0 and for every i ¥ 1, maxpJ i¡1 q 1 minpJ i q. We let I 0 = 0, minpJ 0 q ¡ 1 and for every i ¥ 1, I i maxpJ i¡1 q 1, minpJ i q ¡ 1 , in such a way that we have a partition of ω in intervals I 0 J 0 I 1 J 1 . . .. We prove that the sequence pI i q iω is as wanted. Suppose not. Then there exists an infinite A ω containing 0 such that

G K F i § § §i jA I j %
. In particular, in

F i § § §i jA I j %
, there is a normalized sequence px i q iω that is K-equivalent to pu i q iω . We can then find a normalized sequence py i q iω that is close enough to px i q iω to be 2-equivalent to it, and such that moreover, every y i has finite support on the FDD pF i q iω ; so we can find integers 0 n 0 n 1 . . . in A such that for every i, supppy i q min I n i 1 . For every i, we let L i J n i I n i 1 J n i 1 . . . J n i 1 ¡2 I n i 1 ¡1 J n i 1 ¡1 . In this way we have K L i n i ¤n n i 1 K Jn , and pL i , y i q K L i . Since bsppK Jn q nω q pXq ∆ , we deduce that pL 0 , y 0 , L 1 , y 1 , . . .q pXq ∆ . So there exists pz i q iω pS F q ω such that for every i, }z i ¡ y i } ¤ ∆ i , and such that pL 0 , z 0 , L 1 , z 1 , . . .q X . Since the n i 's are in A, and since supppy i q minpI n i 1 q, we have that for every i, y i

F k § § §k minpI n i 1 q, k j i I n j % .
Remark that the set of k minpI n i 1 q such that k j i I n j is exactly j¤i L i , so

y k SÀ j¤i ¡ À kL j F k © . So for every i, z i ¢ SÀ j¤i ¡ À kL j F k © ∆ i
. By the definition of X , this implies that pz i q iω and pu i q iω are not 4K-equivalent. But on the other hand, py i q iω is 2-equivalent to px i q iω which is K-equivalent to pu i q iω which is 4C-Auerbach. So py i q iω is 16KC-Auerbach, and by the choice of ∆, we get that pz i q iω is 2-equivalent to py i q iω , so 4K-equivalent to pu i q iω , a contradiction.

Step 3. We show that G is tight in pF n q nω . For this, for every N ¥ 1, we consider . For every d ω, we denote by cpdq the constant given by lemma IV.21 such that for every Banach space U , and every subspaces V and W having both codimension d, V and W are cpdq-isomorphic.

We build a sequence J 1 J 2 . . . of intervals of integers in the following way. All the J l 's, for l k, being defined, we can choose J k such that:

• for every N ¤ k, J k contains at least one interval of the sequence pI N i q iω ; • maxpJ k q ¥ d k maxpI N k 0 q, where d k dimprF n | n minpJ k qsq and N k rkcpd k qs. We show that for every infinite A ω, we have G rF n |n kA J k s. Suppose not, and let A be witnessing it. Let K ¥ 1 such that G K rF n |n kA J k s. Let k 0 A such that K ¤ k 0 . Let n 0 min J k 0 . Since maxpJ k 0 q ¥ d k 0 maxpI N k 0 0 q, we have in particular d k 0 ¤ dimprF n | maxpI N k 0 0 q n ¤ maxpJ k 0 qsq, so we can find a subspace H rF n | maxpI N k 0 0 q n ¤ maxpJ k 0 qs of dimension d k 0 . Remark that rF n |pn n 0 q pn kA J k qs and rF n |pn ¥ n 0 q pn kA J k qs H both have codimension d k 0 in their sum, so they are cpd k 0 q-isomorphic. In particular, since G can be k 0 -embedded in the first of these spaces, then it can be N k 0 rk 0 cpd k 0 qs-embedded in the second one. So in particular, G 

IV.4 Links with ergodicity and Johnson's problem

In this section, we discuss some consequences of the two previous dichotomies that could help for Johnson's problem and for Ferenczi and Rosendal's conjecture about ergodic

Step 1. We show that there exists a constant C such that every block-sequence of pE i q spans a subspace C-isomorphic to 2 . If not, then for every i ω and every C, there exists a block-sequence px i,C n q nω of rE j | j ¥ is spanning a block-subspace that is not C-isomorphic to 2 . By lemma IV.6, for every i and C, we can find an integer n i,C

such that px i,C n q n n i,C spans a finite-dimensional subspace that is not C-isomorphic to

n i,C 2 
. Now we build an increasing sequence of integers pm N q N ¥1 in the following way : m 1 0 and m N having been built, let m N 1 min supppx m N ,N n m N ,N q. In this way, the sequence px 0,1 0 , . . . x 0,1 n 0,1 ¡1 , x m 2 ,2 0 , . . . , x m 2 ,2 n m 2 ,2 ¡1 , x m 3 ,3 0 , . . .q is a block-sequence of pE i q having subsequences spanning finite-dimensional spaces that are arbitrarily far away from euclidean spaces; so the subspace spanned by this sequence is not isomorphic to 2 , a contradiction.

Step 2. We show that there is a constant M such that every block-sequence of pE i q is M -equivalent to the canonical basis of 2 . Let px n q nω be such a sequence. It is Kunconditional and by the previous step, it spans a block-subspace that is C-isomorphic to 2 , so it is C-equivalent to a sequence py n q nω in 2 that is KC-unconditional. Remark that py n q is not necessarily normalized, but by C-equivalence with the normalized sequence px n q, we get that for every n, 1 C ¤ }y n } ¤ C. Let z n yn }yn} . By KC-unconditionality of py n q, we get that pz n q nω is K 2 C 4 -equivalent to py i q, so K 2 C 5equivalent to px i q. Moreover, pz i q is a normalized KC-unconditional sequence in 2 , so it is K 2 C 2 -equivalent to the canonical basis of 2 . So px i q is K 4 C 7 -equivalent to the canonical basis of 2 . Hence, M K 4 C 7 is as wanted.

Step 3. We show that there exists µ ¥ 1 such that for every A ¥ 1 and i 0 ω, there exists j 0 ¥ i 0 and a µ-unconditional normalized sequence px k q k k 0 rE i | i 0 ¤ i j 0 s ω spanning a subspace that is not A-isomorphic to k 0 2 . Since E is non-ergodic and non-isomorphic to 2 , by theorem IV.26, it does not have property (H); so there exists λ ¥ 1 such that for every B ¥ 1, there exists a finite λ-unconditional sequence pu k q k k 0 pS E q k 0 with either } °i n x i } c n λ 4 B 7 , or λ 4 B 7 c n } °i n x i }. In particular, this sequence is not λ 4 B 7 -equivalent to the orthonormal basis of a euclidean space, but it is λ-unconditional, so by the same method as in the previous step, we can show that spanptu k | k k 0 uq is not B-isomorphic to a k 0 2 . We can take a sufficiently small perturbation pv k q k k 0 of pu k q k k 0 , still normalized and whose elements have finite support, to ensure that pv k q k k 0 is 2λ-unconditional and spans a space that is not B 2 -isomorphic to a euclidean space. Now recall that lemma IV.28 gives a constant D such that for every i ω, rE j | j is D rE j | j ¥ is. Using these embeddings, we can find, given i 0 ω, a sequence pw k q k k 0 that is 2Dλ-unconditional and that spans a subspace that is not B 2D -isomorphic to a euclidean space, such that for every k k 0 , we have w k rE i | i ¥ i 0 s. Finally, we can choose a sufficiently small perturbation px k q k k 0 of pw k q k¡k 0 , still normalized, and such for every k k 0 , x k is a vector of rF i | i ¥ i 0 s with finite support, such that px k q k k 0 is 4Dλ-unconditional and spans a subspace that is not B 4D -isomorphic to a euclidean space. So we can take µ 4Dλ.

Step 4. We conclude. Using step 3, we can build a sequence px n q n ω pS E q ω and integers 0 n 0 n 1 . . . such that, for every i, letting F i spanptx n | n i ¤ n n i 1 uq, we have that pF i q iω is a good block-FDD of pE i q, and the sequence px n q n i ¤n n i 1 is µ-unconditional. Since pF i q is good, we have that F : rF i | i ωs spanptx n | n ωuq is not isomorphic to 2 . So to conclude the proof, it is enough to show that the sequence px n q nω is unconditional. So let pa n q nω R ω be with finite support, and pε n q nω t¡1, 1u ω , we will show that } °nω ε n a n x n } ¤ M 2 µ } °nω a n x n }. For i ω, let b i °ni ¤n n i 1 a n x n , y i 1

b i ¡ °ni ¤n n i 1 a n x n © , c i °ni ¤n n i 1 ε n a n x n , z i 1 c i ¡ °ni ¤n n i 1 ε i a n x n ©
. Since the sequence px n q n i ¤n n i 1 is µ-unconditional, we have that c i ¤ µb i . Also remark that py i q iω and pz i q iω are normalized block-sequences of the FDD pe i q, so by step 2, they are M -equivalent to the canonical basis of 2 . Thus, we have: ņω

ε n a n x n iω c i z i ¤ M d iω c 2 i ¤ M µ d iω b 2 i ¤ M 2 µ iω b i y i M 2 µ ņω a n x n .
We now give an interesting consequence of theorem IV.23 for Johnson spaces. In [START_REF] Anisca | On the structure of Banach spaces with an unconditional basic sequence[END_REF], Anisca proves a result implying that a separable Banach space with a finite number of subspaces, up to isomorphism, must contain a subspace isomorphic to 2 . In particular, a Johnson space must contain a subspace isomorphic to 2 . So theorem IV.23 has the following corollary:

Corollary IV.29. A Johnson space either has an unconditional basis, or is HHP.

Thus, to prove that a Johnson space necessarily has an unconditional basis, it would be enough to prove that a non-trivial HHP space must have at least three subspaces, up to isomorphism. By similarity with Gowers-Maurey's result that an HI space is not isomorphic to any proper subspace of itself, this seems plausible. However, we did not manage to prove this conjecture. In the next section, a simple proof of Gowers-Maurey's theorem will be presented; this could be a good starting point to try to prove that non-trivial HHP spaces have many non-isomorphic subspaces.

We now turn to the consequences of the second dichotomy. In [START_REF] Ferenczi | Tightness of Banach spaces and Baire category[END_REF], Ferenczi and Godefroy studied the links between tightness and Baire-category. In particular, they proved that if pe i q iω is a basis and X a Banach space, then X is tight in pe i q if and only if the set of A ω such that X spanpte i | i Auq meager in Ppωq. Using the same ideas, and the result of Rosendal IV.27 linking ergodicity with Baire category, we get the following result:

Theorem IV.30. Every TNH space is ergodic.

Proof. Let X be a TNH space with a TNH FDD pF i q iω . As in the proof of lemma IV.28, we let, for every i ω, n i °j i dimpF j q, and px n q n i ¤n n i 1 be a normalized basis of F i . For A rωs ω , we let X A be the closed subspace of X generated by the x n 's, for n A. And we define an equivalence relation E on rωs ω by A E B if X A and X B are isomorphic. We will show that E 0 ¤ B E. Since E I 0 E, it is enough to show, by proposition IV.27, that E is meager, so by Kuratwski-Ulam's theorem, that for every A rωs ω , the E-equivalence class rAs of A is meager. We distinguish two cases. First case: X A is isomorphic to 2 . For N ¥ 1, we let D N the set of B rωs ω such that X B is not N -isomorphic to 2 . This is an open set: indeed, if X B is not Nisomorphic to 2 , then by lemma IV.6, there exists n ω such that X Bn is not Nisomorphic to a euclidean space, so as soon as C rωs ω satisfies B n C n, we have C D N . The set D N is also dense: indeed, if s 2 ω , the set B rωs ω defined by n B ô pn ¥ |s| spnq 1q is in N s and X B has finite codimension in X, so it is not isomorphic to 2 and thus, B D N . Since rAs n¥1 D N ¨c, we have that rAs is meager.

Second case: X A is not isomorphic to 2 . In this case, since the FDD pF i q is TNH, then there is an infinite sequence of intervals I 0 I 1 . . . of integers such that for every infinite M ω, we have X A F i § § §i jM I j % . We can let J i tn ω | hj I i n j ¤ n n j 1 u, in such a way that J 0 J 1 . . . and that for B rωs ω , if for an infinite number of i, we have B J i ∅, then X B is not isomorphic to X A . For k ω, we let D k the set of B rωs ω such that there exists i ¥ k with B J i ∅.

Then D k is an open dense set, and by the previous remark, rAs p kω D k q ∅, so rAs is meager.

Corollary IV.31. Every separable Banach space, non-ergodic and non-isomorphic to 2 , has a MNH subspace. This corollary, combined with theorem IV.23, show that to prove the conjecture IV.1, it is enough to prove the following conjecture, seeming much easier: Using lemma IV.37, the proof of Gowers-Maurey theorem will be complete once we prove the following lemma: Lemma IV.38. A bounded operator from an HI space into itself has at most one infinitely singular value.

Proof. Suppose that X is HI and let T : X ÝÑ X be a bounded operator. Suppose that T has two infinitely singular values λ and µ. Let ε ¡ 0. We can find subspaces Y, Z X such that ~pT ¡ λ Id X q aeY ~¤ ε and ~pT ¡ λ Id X q aeZ ~¤ ε. Since X is HI, Y and Z are not in topological direct sum, so we have dpS Y , S Z q 0. In particular, we can find y S Y and z S Z with }y ¡ z} ¤ ε. So we have:

|λ ¡ µ| }λx} ¡ }µy} ¤ }λy ¡ µz} ¤ }λy ¡ T pyq} }Tpyq ¡ T pzq} }Tpzq ¡ µz} ¤ ε ~T~¤ }y ¡ z} ε ¤ p2 ~T~qε.

So by making ε ÝÑ 0, we get that λ µ.

We hope that this kind of methods could also apply to show that HHP spaces cannot be MNH, or at least that they must have two non-isomorphic subspace that are nonisomorphic to 2 , thus respectively proving the conjectures IV.1 or IV.2. However, this seems quite difficult, since here, we should replace the use of infinitely singular operators with 2 -singular operators, that is, operators T : X ÝÑ X such that for every ε ¡ 0, there exists a subspace Y , non-isomorphic to 2 , such that ~TaeY ~¤ ε. These operators are not Fredholm in general. Thus, an idea could be to define an analog of Fredholm index allowing us to deal with operators T such that kerpT q is isomorphic to 2 , but not necessarily finite-dimensional. 117
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  will be respectively denoted by F p and G p is the space G, an by F I p and G I p in the space G I . The proof of theorem II.14 actually show that Strat G IpΓq ñ Strat G phΓq, so it remains to prove that Strat G pΓq ñ Strat G IpΓq.
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Again, this proof can be done in ZF DC, even if the space G is not supposed effective.

Remerciements

X I X Iω , if F ¡1 pX I q is strategically Ramsey in G, then X I is strategically Ramsey in G I . Since the mapping F is continuous, it will be enough to conclude. So we let X I X Iω , and we suppose that X F ¡1 pX I q is strategically Ramsey. Let p P . There exists q ¤ P such that either I has a strategy in F q to reach X c , or II has a strategy in G q to reach X .

First case: I has a strategy in F q to reach X c . We show that I has a strategy in F I q to reach X Ic by simulating a play of this game by a play of F q where I uses a strategy to reach X c . Suppose that the first n turns of F I q and the first 2n turns of F q have been played. What happens during the pn 1q th turn of F I q and during the p2n 1q th and the p2n 2q th turns of F q is represented in the diagrams below: I . . . q n r n . . . F q II . . .

x n y n . . .

According to his strategy in F q , I plays q n AE q. His strategy in F I q will consist in copying this move. In F I q , II answers with px n , ε n q I q n . Since we have that x n q n , we can make II play x n in F q . According to his strategy, I will answer with r n AE q. Then, by definition of A, there exists y n r n such that f py n q ε n . We make II play y n in F q , and the games can continue.

At the end of the games, the outcome px 0 , ε 0 , x 1 , ε 1 , . . .q of the game F I q will be the image by F of the outcome px 0 , y 0 , x 1 , y 1 , . . .q of F q . By the choice of the strategy of I in F q , the outcome of this game is in X c , so the outcome of F I q is in X Ic as wanted. Second case: II has a strategy in G q to reach X . We show that II has a strategy in G I q to reach X I by simulating a play of this game by a play of G q where II uses a strategy to reach X . Suppose that the first n turns of G I q and the first 2n turns of G q have been played. What happens during the pn 1q th turn of G I q and during the p2n 1q th and the p2n 2q th turns of G q is represented in the diagrams below:

x n , f py n q . . .

In G I

q , I plays q n ¤ q. We make him repeat this moves two times in G q and we denote by x n and y n the two successive answers of II in this game, according to her strategy. In

G I

q , the strategy of II will consist in playing px n , f py n qq X I . In this way, the outcome of the game G I q will be the image by F of the outcome of G q , which is in X ; so the outcome of G I q is in X I .

In order to prove proposition II.27, we will need to perform a diagonal argument for which we need to have at most continuum-many strategies in Gowers' game. For this reason, we will need to give a countable version of this game. Exceptionnaly, for technical reasons, we will define this game with a winning condition rather than an outcome.

Definition II.28. Let p P and X X ω . The countable Gowers' game under p with target set X , denoted by CG p pXq, is the following two-players game:

It is played in the following way. I begins with playing a sequence px 0 0 , x 1 0 , . . .q of elements of X. At some point, II can choose to interrupt him at some point x n 0 0 and to choose y 0 tx 0 0 , x 1 0 , . . . , x n 0 0 u. In this case, I begins back to choose points x 0 1 , x 1 1 , . . ., and again, II can choose to interrupt him at some point

Two cases can occur:

• If II always chooses to interrupt I after some time, then at the end of the game, II will have produced an infinite sequence py i q iω . In this case, II wins if and only if this sequence belongs to X .

• If, at some point, II chooses not to interrupt I, then I will continue to play points indefinitely and the game will stop after ω points have been played. In this case, II will have produced a finite sequence s py 0 , . . . , y i¡1 q, and after that, I will have produced an infinite sequence px n i q nω ; we can let A tx n i | n ωu. Then II wins if and only if for no q ¤ p, we have that A tx X | s " x qu.

In some situations, specifying the target set, or even the subspace under which the game is played, will be useless (as only the winning condition depend on this information); in this case, the countable Gowers' game will be denoted by CG p , or simply CG.

The interest of this game is that it is in fact equivalent to Gowers We are now ready to prove the "V L" part of proposition II.27. Proof of proposition II.27, second part. We suppose V L. We fix a Σ 1 2 -good well ordering S on Strat and another one X on pX ω q 2 . We define two sequences pu τ q τ Strat and pv τ q τ Strat , simultaneously by induction on the relation S in the following way.

Suppose that the u σ and v σ have been defined for all σ S τ . Then, if τ is good, we let pu τ , v τ q be the X -least pair pu, vq pX ω q 2 such that u, v rτsztu σ , v σ | σ S τ u, and u $ v. Otherwise, we let pu τ , v τ q be the X -least pair pu, vq pX ω q 2 such that u $ v and u, v tu σ , v σ | σ S τ u. By construction, we have that all the u τ 's and the v τ 's, for τ Strat, are pairwise distinct, and that for every good τ Strat, we have u τ , v τ rτs. So if we let X tu τ | τ Stratu, then by lemma II.31, for every p P , II has no strategy in G p to reach X , nor to reach X c , as wanted. It remains to compute the complexity of X .

We say that a sequence pτ n , u I n , v I n q nω pStrat ¢ X ω ¢ X ω q ω is nice is it satisfies the following properties:

(1) The set tτ n | n ωu is an initial segment of Strat for the ordering S ;

(2) For every n ω, we have u I n u τn and v I n v τn . Then for u X ω , the fact that u X can be written "there exists a nice sequence pτ n , u I n , v I n q nω pStrat ¢ X ω ¢ X ω q ω and n ω such that u u I n ". So to prove that X is Σ 1 2 , it is enough to prove that the set of nice sequences is Σ 1 2 . Property [START_REF] Abramovich | An invitation to operator theory[END_REF] in the definition of a nice sequence can be written

If we know that property (1) is satisfied, then property (2) can be written in the following way: "for every n ω, pu n , v n q is the X -least pair pu, vq X ω ¢X ω satisfying the following properties:

1 , and by lemma II.34, property (b) is also ∆ 1 2 . Since minimisation preserves ∆ 1 2 set, we deduce that this writing of property ( 2) is ∆ 1 2 . So the set of nice sequences is Σ 1 2 , as wanted.

Definition IV.10.

1. A separable Banach space X is said to be Hilbert-primary if for every subspaces

2. The space X is hereditarily Hilbert-primary (HHP) if every subspace of X is Hilbert-primary.

Remark that, in the same way as we did for HI spaces in the last section, HHP spaces can be characterized as spaces X such that no pair of subspaces Y, Z X nonisomorphic to 2 is in topological direct sum. Obviously, 2 is HHP, and every HI space is HHP. The following proposition gives us another example of an HHP space.

Lemma IV.11. If X is a separable HI space, then X 2 is HHP. Proof. Suppose not. Then X 2 has two subspaces Y and Z, non-isomorphic to 2 , and whose sum is a topological direct sum. We denote respectively by P 2 and P X the projections of X 2 onto X and 2 and we suppose that the norm on X 2 has been choosen in such a way that these projections have norm 1.

We describe a play pU 0 , Ru 0 , U 1 , Ru 1 , . . .q of the game SubF X 2 where pu i q iω is a normalized sequence and where I plays using his strategy to build a FDD with constant at most 2. Describe how II plays. Suppose that we are at turn i, so player I just played U i ; and suppose that i is even. Since U i is a finite-codimensional subspace of X 2 , we have that U i Y is not isomorphic to 2 , so in particular, P 2 aepU i Y q is not an isomorphism onto its image. In particular, there exists u i S U i X such that }P 2 pu i q} ¤ 1 2 n 4 . We let II play Ru i in SubF X 2 . If i is odd, we do the same but with Z instead of Y .

In this way we have built a basic sequence pu i q iω with constant at most 2 such that u i Y for i even and u i Z for i odd. Let U be the closed subspace spanned by the u i 's, and let x U with norm 1. We write x °V i0 x i u i . Then for every i ω, |x i | ¤ 4.

And we have:

So }P X pxq} }x ¡ P 2 pxq} ¥ 1 2 . In particular, P X aeU is an isomorphism between U and its image. Since both Y U and Z U are infinite-dimensional, and are in topological direct sum, the same holds for their images by P X . But P X pY U q and P X pZ U q are subspaces of X which is HI, so this is a contradiction.

By now, we do not know any other example of an HHP space. It would be particularly interesting for us to know if there exist HHP spaces that are non-isomorphic to 2 and that do not have any HI subspace; such spaces should be 2 -saturated (i.e. 2 can be embedded in every subspace of such a space).

Our dichotomy is the following.

Step 2. II has a strategy σ in B I F to build two equivalent sequences. Indeed, by step 1, I has no strategy in A I F to build inequivalent sequences; so the conclusion follows from lemma IV.17.

Step 3. We conclude, proving that player II has a strategy in G I F to build a sequence py i q iω that is equivalent to pu i q iω . We describe this strategy on a play of G I F that will played simultaneously with a play of B I F where II will play according to her strategy σ, and a play of F I F where II will play according to her strategy τ (for a fixed i ω, the turn i of each game will be played at the same time). The moves of the players during the turn i of the games are described in the diagram below.

S i , y i

We describe more precisely these moves. Suppose that in G I F , player I plays G i . We look at the move F i made by II in B I F according to her strategy σ, and we let I copy this moves in F I F . In this game, according to her strategy τ , player II will answer with some R i and x i . Now, in B I F , we can let I answer with R i , x i and G i . In this game, according to her strategy σ, player II answers with some S i and some y i .

Then the strategy of player II in G I F will consist in answering with S i and y i .

Let us verify that this strategy is as wanted. The outcome of the game F I F is the sequence px i q iω ; the use of the strategy τ by II ensures that this sequence is equivalent to pu i q iω . The outcome of the game B I F is the pair of sequences ppx i q iω , py i q iω q; the use by II of her strategy σ ensures that these two sequences are equivalent. We deduce that the sequences pu i q iω and py i q iω are equivalent, concluding the proof.

We now let, for every i ω, F i F i . The sequence pF i q iω is a good block-FDD of pE i q iω and we can let F rF i | i ωs. By proposition IV.18, theorem IV.14 will be proved once we have proved the two following lemmas:

Lemma IV.19. Suppose that there exists a F -correct sequence pu i q iω such that player II has a strategy in G I F to build a sequence px i q iω that is equivalent to pu i q iω . Then pF i q iω has a good block-FDD pG i q iω such that G rG i | i ωs is MNH. spaces. We start by looking at the form that the first dichotomy takes for non-ergodic spaces. The result we will prove is the following: Theorem IV. [START_REF] Gowers | Lipschitz functions on classical spaces[END_REF]. Let E be a non-ergodic separable Banach space, non-isomorphic to 2 . Then there exists a subspace X of E, non-isomorphic to 2 , such that:

• either X has a unconditional basis;

• or X is HHP.

This theorem is an immediate consequence of the first dichotomy and of the following proposition, which is an unpublished result by Ferenczi:

Proposition IV.24 (Ferenczi). Let E be a non-ergodic separable Banach space, nonisomorphic to 2 , having a good UFDD. Then E has a subspace X, non-isomorphic to 2 , with an unconditional basis.

We reproduce here the proof of this proposition. We start by introducing two results that will be needed in the proof. The first one involves the following property, defined and studied by Pisier [START_REF] Pisier | Weak Hilbert spaces[END_REF]: Definition IV.25. A Banach space X is said to have the property (H) if for every λ ¥ 1, there exists a constant Kpλq such that for every finite sequence px i q i n pS X q ω , if px i q i n is λ-unconditional, then

A Hilbert space has property (H): indeed, a λ-inconditional normalized sequence in a Hilbert space is λ 2 -equivalent to an orthonormal sequence (see, for example, [START_REF] Lindenstrauss | Classical Banach Spaces, I: Sequences spaces[END_REF], page 71). So property (H) characterizes spaces that are, in some sense, "close" to 2 . In [START_REF] Anisca | On the ergodicity of Banach spaces with property (H)[END_REF] and [START_REF] Anisca | The ergodicity of weak Hilbert spaces[END_REF], Anisca proved the following result:

Theorem IV.26 (Anisca). Every separable Banach space non-isomorphic to 2 and having the property (H) is ergodic.

The second result we need is due to Rosendal ([55], theorem 15). Let E I 0 be the equivalence relation on rωs ω defined as follows: if A, B rωs ω , we say that AE I 0 B if there exists n ω such that |A n| |B n| and Azn Bzn. Rosendal proved the following:

Proposition IV. [START_REF] Harrington | On the determinacy of games on ordinals[END_REF]. Let E be a meager equivalence relation on rωs ω , with E I 0 E. Then E 0 ¤ B E.

(In [START_REF]Incomparable, non-isomorphic and minimal Banach spaces[END_REF], this result is stated and proved for equivalence relations on Ppωq, however, the same proof works in the case of rωs ω .)

We now prove proposition IV.24. For s 2 ω , we denote by N s the basic open subset tA rωs ω | dn |s| pn A ô spnq 1qu of rωs ω . We begin with a lemma.

Lemma IV.28 (Ferenczi). Let X be a non-ergodic Banach space with an FDD pF i q iω . Then there exists a constant K such that for every i ω, rF j | j is K rF j | j ¥ is.

Proof. For every i ω, let n i °j i dimpF j q. Let px n q n i ¤n n i 1 be a normalized basis of F i . For A Ppωq, let X A be the closed subspace of X generated by the x n 's, for n A. Remark that for A rωs ω and for a cofinite B A, we have X A X B X AzB : indeed, up to reducing B, we can suppose that there exists i ω such that B ¥ n i and AzB n i ; but in this case we have X B rF j | j ¥ is and X AzB rF j | j is, so the answer follows. In particular, if A, B rωs ω are such that AE I 0 B, then X A and X B have the same finite codimension in X AB , so by lemma IV.21, they are isomorphic.

We define an equivalence relation E on rωs ω by A E B if X A and X B are isomorphic.

As we just saw, E I 0 E. Also remark that the mapping A Þ Ñ X A from rωs ω to SubpXq with the Effros Borel structure is a Borel mapping. Indeed, if U is an open subset of X and if X A U $ ∅, then there exists m ω such that X Am U $ ∅, so for B rωs ω , as soon as A m B m, we have X B U $ ∅. In particular, since X is non-ergodic, then E 0 does not reduce to E. So by proposition IV.27, we deduce that E is non-meager.

E is analytic so has the Baire property, so by Kuratowski-Ulam theorem, there exists A rωs ω such that the E-equivalence class of A, denoted by rAs, is non-meager. For K ¥ 1, denote by rAs K the set of B rωs ω such that X A and X B are K-isomorphic. Since rAs K¥1 rAs K , then for some K ¥ 1, rAs K is non-meager. So it is comeager in a basic open set N s , for some s 2 ω . We let N |s| and m |tn |s| | spnq 1u|. We denote by cpmq (resp. cpN ¡ mq) the constant given by lemma IV.21 such that two subspaces of a Banach space having both codimension m (resp. N ¡ m) are misomorphic (resp. pN ¡ mq-isomorphic). We show that for i ω such that n i ¥ N , we have rF j | j is K 2 cpmqcpN ¡mq rF j | j ¥ is; the conclusion will follow.

Let i be such that n i ¥ N . Consider t 1 s " p0, . . . , 0q and t 2 p0, . . . , 0q " s, where in each definition, there are n i 0's. Since rAs K is dense in N s , there exists B 1 N t 1 rAs K . We define B 2 rωs ω in the following way: for n ¥ N n i , we let n B 2 iff n B 1 , and for n N n i , we let n B 2 iff t 2 pnq 1. The set B 2 has been obtained by shifting m 1's at the beginning of B 1 . In particular, |pB

and X B 2 are cpmq-isomorphic. Thus, X B 2 is Kcpmq-isomorphic to A.

In the same way, we can consider u 1 s " p1, . . . , 1q and u 2 p1, . . . , 1q " s, where in each definition, there are n i 1's. Then there exists C 1 N u 1 and C 2 N u 2 such that C 1 zpN n i q C 2 zpN n i q, and C 1 rA k s. The set C 2 has been obtained by shifting N ¡m 0's at the beginning of C 1 . Thus, X C 1 and X C 2 are cpN ¡mq-isomorphic. Therefore, X C 2 and X B 2 are K 2 cpmqcpN ¡ mq-isomorphic. Since rF j | j is C 2 and B 2 rF j | j ¥ is, the conclusion follows.

Proof of proposition IV.24. Let pE i q iω be a good UFDD of E, and let K be its unconditional constant. If there exists a block-sequence of this UFDD that spans a subspace that is non-isomorphic to 2 , then we can take for X this subspace and we are done. So we will suppose that every block-sequence of pE i q spans a subspace isomorphic to 2 .

Conjecture IV.32. A HHP space cannot be MNH.

The methods presented in next section could help for this conjecture as well.

IV.5 A simple proof of Gowers-Maurey's theorem

In this section, we present a new proof of the following result by Gowers and Maurey [START_REF] Gowers | The unconditional basic sequence problem[END_REF]:

Theorem IV.33 (Gowers-Maurey). An HI space is not isomorphic to any proper subspace of itself.

Recall that a bounded operator T : X ÝÑ Y between two Banach space is said to be bounded below if there is a constant c ¡ 0 such that for every x X, we have }Tpxq} ¥ c}x} (by the open mapping theorem, it is equivalent to say that it is one-to-one and has closed range), and strictly singular if no restriction of T to a subspace of X is bounded below. In [START_REF] Gowers | The unconditional basic sequence problem[END_REF], Gowers and Maurey prove theorem IV.33 in the following way: they prove, using spectral theory and Fredholm theory, that every bounded operator from a complex HI space to itself has the form λ Id S, where S is a strictly singular operator (this is not true for real HI spaces), and they deduce the theorem for complex and real HI spaces using Fredholm theory. Here, we present a simple proof using only Fredholm theory and working as well for real and complex spaces. We suppose here that the spaces we consider are real, but the proof is the same for complex spaces.

We start by recalling some basic Fredholm theory; for more details and for proofs, the reader can refer to [START_REF] Abramovich | An invitation to operator theory[END_REF], section 4.4.

Definition IV.34. Let T : X Ñ Y be a bounded operator between two Banach spaces.

1. We denote by npT q ω t Vu the dimension of the kernel of T , and dpT q ω t Vu the codimension of the range of T .

2. We say that T is semi-Fredholm if it has closed range and if at least one of the numbers npT q and dpT q is finite. 3. We say that T is Fredholm if both numbers npT q and dpT q are finite (this implies that T has closed range).

If

T is semi-Fredholm, we define its Fredholm index as ipT q npT q ¡ dpT q Z t¡V, Vu. We denote by FredpX, Y q and FredpX, Y q respectively the set of Fredholm operators and of semi-Fredholm operators between X and Y . We equip Z t¡V, Vu with the topology such that Z is a discrete subset, the sets n, V form a basis of neighborhoods of V, and the sets ¡V, n form a basis of neighborhoods of ¡V. We have the following theorem:

Theorem IV.35. FredpX, Y q is an open subset of the space of bounded operators from X to Y , and the Fredholm index i : FredpX, Y q ÝÑ Z t¡V, Vu is continuous.

We now present the proof of theorem IV.33. Let X be a Banach space (at this point, we do not need to assume that X is HI). We say that a bounded operator T : X ÝÑ X is infinitely singular if for every ε ¡ 0, there exists a subspace Y of X such that ~TaeY ~¤ ε. We say that λ is an infinitely singular value of a bounded operator T : X ÝÑ X if T ¡ λ Id X is infinitely singular. Lemma IV.36. Let T : X ÝÑ X a bounded operator. We have equivalence between:

(1) T is not infinitely singular;

(2) There exists a finite-codimensional subspace Y of X such that T aeY is bounded below;

(3) T is semi-Fredholm and ipT q V. Proof. (2) ñ (1) is obvious.

(3) ñ (2) Since ipT q V, then kerpT q is finite-dimensional; let Y be a closed complement of kerpT q. Then T is a bijection between Y and impT q and impT q is closed, by the open mapping theorem, T aeY is bounded below.

(2) ñ (3) Letting F be a complement of Y in X, we have impT q T pY q T pFq. Since T is bounded below on Y , we have that T pY q is closed; moreover T pFq has finite dimension so impT q is closed. Since kerpT q is finite-dimensional, the result follows.

(1) ñ (2) Suppose that (2) is not satisfied, and let ε ¡ 0. Then by lemma IV.5, there exists a normalized basic sequence pf n q nω in X, with constant at most 2, such that, for every n ω, }Tpf n q} ¤ ε 2 n 3 (in the game SubF X , player I plays with a strategy to build a FDD with constant at most 2, and in the subspace X n played by I at the pn 1q th turn, II can always choose a convenient f n by the assumption). We let Y be the closed subspace of X generated by the f n 's. Then for x °V n0 x n f n Y , we have }Tpxq} ¤ °V n0 |x n |}Tpf n q} ¤ °V n0 4}x} ε 2 n 3 ε}x}. So ~TaeY ~¤ ε, and T is infinitely singular.

Lemma IV.37. Let T : X Ñ Y be an isomorphism, where Y is a proper subspace of X. Then T has at least two infinitely singular values, a positive one and a negative one.

Proof. For t r0, 1s, define T t tT p1¡tq Id X . We show that there exists t p0, 1q such that T t is infinitely singular; this will imply that t¡1 t is a negative infinitely singular value of T . Suppose not. Then by lemma IV.36, for every t r0, 1s, T t is semi-Fredholm. So letting f ptq ipT t q we define a function f : r0, 1s ÝÑ Z t¡V, Vu; by the continuity of Fredholm index, this function is continuous, so constant. This is a contradiction since f p0q 0 and f p1q 0.

We prove in the same way that T has a positive infinitely singular value, considering the operators T I t tT ¡ p1 ¡ tq Id X .