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Titre : Théorie de Ramsey sans principe des tiroirs et applications a la preuve de
dichotomies d’espaces de Banach

Résumé : Dans les années 90, Gowers démontre un théoreme de type Ramsey pour
les bloc-suites dans les espaces de Banach, afin de prouver deux dichotomies d’espaces de
Banach. Ce théoréeme, contrairement a la plupart des résultats de type Ramsey en dimen-
sion infinie, ne repose pas sur un principe des tiroirs, et en conséquence, sa formulation
doit faire appel a des jeux. Dans une premiére partie de cette these, nous développons un
formalisme abstrait pour la théorie de Ramsey en dimension infinie avec et sans principe
des tiroirs, et nous démontrons dans celui-ci une version abstraite du théoreme de Gow-
ers, duquel on peut déduire a la fois le théoreme de Mathias-Silver et celui de Gowers.
On en donne a la fois une version exacte dans les espaces dénombrables, et une version
approximative dans les espaces métriques séparables. On démontre également le principe
de Ramsey adverse, un résultat généralisant a la fois le théoreme de Gowers abstrait et
la détermination borélienne des jeux dénombrables. On étudie aussi les limitations de
ces résultats et leurs généralisations possibles sous des hypotheses supplémentaires de
théorie des ensembles.

Dans une seconde partie, nous appliquons les résultats précédents a la preuve de
deux dichotomies d’espaces de Banach. Ces dichotomies ont une forme similaire & celles
de Gowers, mais sont Hilbert-évitantes : elles assurent que le sous-espace obtenu n’est
pas isomorphe & un espace de Hilbert. Ces dichotomies sont une nouvelle étape vers la
résolution d’une question de Ferenczi et Rosendal, demandant si un espace de Banach
séparable non-isomorphe a un espace de Hilbert possede nécessairement un grand nombre
de sous-espaces, a isomorphisme pres.

Mots clefs : Logique, Théorie des ensembles, Théorie de Ramsey, Détermination,
Analyse fonctionnelle, Géométrie des espaces de Banach



Title: Ramsey theory without pigeonhole principle and applications to the proof of
Banach-space dichotomies

Abstract: In the 90’s, Gowers proves a Ramsey-type theorem for block-sequences in
Banach spaces, in order to show two Banach-space dichotomies. Unlike most infinite-
dimensional Ramsey-type results, this theorem does not rely on a pigeonhole principle,
and therefore it has to have a partially game-theoretical formulation. In a first part
of this thesis, we develop an abstract formalism for Ramsey theory with and without
pigeonhole principle, and we prove in it an abstract version of Gowers’ theorem, from
which both Mathias-Silver’s theorem and Gowers’ theorem can be deduced. We give both
an exact version of this theorem in countable spaces, and an approximate version of it
in separable metric spaces. We also prove the adversarial Ramsey principle, a result
generalising both the abstract Gowers’ theorem and Borel determinacy of countable
games. We also study the limitations of these results and their possible generalisations
under additional set-theoretical hypotheses.

In a second part, we apply the latter results to the proof of two Banach-space di-
chotomies. These dichotomies are similar to Gowers’ ones, but are Hilbert-avoiding, that
is, they ensure that the subspace they give is not isomorphic to a Hilbert space. These
dichotomies are a new step towards the solution of a question asked by Ferenczi and
Rosendal, asking whether a separable Banach space non-isomorphic to a Hilbert space
necessarily contains a large number of subspaces, up to isomorphism.

Keywords: Logic, Set theory, Ramsey theory, Determinacy, Functional analysis, Ge-
ometry of Banach spaces
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Courte introduction en francais

Pour des raisons pratiques et afin de la rendre accessible a un public plus large, cette
these a entierement été rédigée en anglais. Seule cette courte introduction sera rédigée
en frangais ; elle présente dans les grandes lignes les principales questions et travaux
qui ont dirigé mes recherches, ainsi que les résultats démontrés. Elle sera suivi d’une
introduction plus longue, en anglais, présentant de facon détaillée les notions nécessaires
a la compréhension de cette these et les travaux antérieurs sur lesquels elle s’appuie.

Les résultats présentés dans ce manuscrit prennent leurs racines dans les travaux de
Gowers. Dans les années 90, ce dernier a montré une dichotomie d’espaces de Banach
[24] qui, combinée avec un résultat antérieur di & Komorowski et Tomczak-Jaegermann
[34], a répondu par la positive a une célebre question de Banach, le probleme de 'espace
homogene. Ce probleme était le suivant : ¢o est-il le seul espace de Banach, a isomor-
phisme pres, qui est isomorphe a tous ses sous-espaces 7

Ce résultat a ouvert plusieurs nouvelles directions de recherche, qui seront étudiées
dans cette thése. La premiere est de nature combinatoire et ensembliste. En effet,
la preuve de la dichotomie de Gowers utilise des méthodes mélant théorie de Ramsey
et théorie des jeux ; plus précisément, cette dichotomie est déduite d’un théoreme de
type Ramsey dans les espaces de Banach avec base, fortement inspiré de résultats de
théorie de Ramsey en dimension infinie plus classiques, dont le résultat fondateur est
le théoreme de Mathias—Silver [43, 58]. Néanmoins, le théoreme de type Ramsey de
Gowers differe significativement de ces résultats classiques en cela qu’il ne repose pas sur
un principe des tiroirs, contrairement a eux. La conséquence est qu’il est plus faible et
a une formulation faisant intervenir des jeux. D’autre part, le fait qu’il soit énoncé dans
un espace non-dénombrable nécessite une approximation métrique.

Une partie de cette these a pour but d’étudier de facon plus systématique la théorie
de Ramsey en dimension infinie sans principe des tiroirs, énoncée a l'aide de jeux, et
de la comparer avec la théorie de Ramsey avec principe des tiroirs. De méme qu'un
formalisme abstrait pour la théorie de Ramsey avec principe des tiroirs a été introduit
par Todorcevié [61], permettant de déduire le théoreme de Mathias—Silver ainsi que
d’autres résultats similaires dans différents contextes, nous introduirons ici un formalisme
abstrait unifiant théorie de Ramsey avec et sans principe des tiroirs, celui des espaces
de Gowers. Ce formalisme est inspiré de la version exacte du théoreme de Gowers
donnée par Rosendal dans les espaces vectoriels dénombrables [56], et peut s’appliquer
a divers types de structures dénombrables. En particulier, une version abstraite du



théoreme de Rosendal sera démontrée (théoreme I1.14). Nous introduirons aussi une
version approximative des espaces de Gowers, permettant de travailler dans des espaces
non-dénombrables avec approximation métrique, et destinée a permettre de prouver
facilement des dichotomies d’espaces de Banach dans la méme veine que celle de Gowers.
En particulier, un théoreme abstrait généralisant a la fois le théoreme de Mathias—Silver
et celui de Gowers sera démontré (théoreme II1.17).

Un étude plus approfondie des espaces de Gowers et de leurs propriétés combinatoires
sera effectuée. En particulier, on démontrera le principe de Ramsey adverse (théoreme
I1.4), un résultat conjecturé par Rosendal généralisant a la fois sa version du théoreme
de Gowers et la détermination Borélienne des jeux dénombrables. On étudiera aussi les
limitations et les possibles extensions des résultats présentés. La plupart d’entre eux
sont démontrés pour les ensembles boréliens ou analytiques ; on verra sous quelles con-
ditions ces résultats sont optimaux dans ZF'C, dans quels cas ils peuvent étre étendus a
de plus grandes classes d’ensembles sous des hypotheses supplémentaires de théorie des
ensembles. On étudiera aussi la force métamathématique de ces résultats. Cela fera ap-
paraitre une grande différence de comportement entre les espaces satisfaisant le principe
des tiroirs et les espaces ne le satisfaisant pas. On peut en particulier citer le résultat
suivant : le principe de Ramsey adverse, lorsqu’énoncé dans un espace sans principe des
tiroirs, a la force de la détermination Borélienne, alors qu’il peut étre démontré dans ZC
pour les espaces avec principe des tiroirs.

La seconde direction de recherche ouverte par la preuve de la dichotomie de Gowers
est connue sous le nom de “programme de Gowers”. L’idée est de donner une clas-
sification “faible” mais la plus précise possible des espaces de Banach séparables “a
sous-espace pres’. Plus précisément, on veut construire une liste de classes d’espaces de
Banach séparables (généralement appelée liste de Gowers), aussi grande que possible,

satisfaisant les critéres suivants :

1. Les classes sont, dans un certain sens, héréditaires (closes par prise de sous-espaces,
ou au moins de bloc-sous-espaces, pour les classes définies par les propriétés des
bases) ;

2. Les classes sont deux a deux disjointes ;
3. Chaque espace possede au moins un sous-espace dans une des classes ;

4. Les classes sont naturelles, dans le sens ou savoir qu’un espace est dans une classe
donne de nombreuses informations sur sa structure.

La dichotomie de Gowers fournit une telle classification en deux classes, la premiere
étant la classe des espaces avec base inconditionnelle, et la seconde celle des espaces
héréditairement indécomposables, c’est-a dire des espaces ne contenant aucune somme
directe topologique de deux sous-espaces fermés de dimension infinie. Gowers a lui méme
démontré, dans le méme article [24], une seconde dichotomie, allongeant cette liste a trois
classes, et d’autres dichotomies ont par la suite été démontrées par d’autres auteurs, en
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particulier Ferenczi et Rosendal [19]. La tendance générale de ces dichotomies est de
tracer une frontiere entre, d’'un coté, les espaces “simples”, ayant un comportement
proche des ¢, et de cp, et d’'un autre coté les espaces “pathologiques”.

La troisieme direction de recherche, ouverte plus particulierement par la solution
du probleme de I’espace homogene, est celle de ses possibles extensions. On sait qu'un
espace de Banach séparable non-isomorphe a £ doit avoir au moins deux sous-espaces,
a isomorphisme pres, mais combien peut-il en avoir 7 Cette question a été initialement
posée par Gilles Godefroy. Elle s’exprime bien dans le langage de la classification des
relations d’équivalence analytiques sur un espace Polonais : en étudiant la complexité
de la relation d’isomorphisme entre les sous-espaces d’un espace donné (qu’on peut
voir comme une relation d’équivalence analytique sur un espace Polonais), on obtiendra
strictement plus d’informations qu’en étudiant uniquement le nombre de classes. Dans
cet esprit, Ferenczi et Rosendal ont conjecturé que pour un espace de Banach séparable X
non-isomorphe a fs, la relation d’équivalence Eg devait étre réductible a 'isomorphisme
entre les sous-espaces de X (un espace satisfaisant cette derniere propriété sera appelé
un espace ergodique). En particulier, le nombre de classes d’isomorphisme devrait avoir
la puissance du continu. Une conjecture plus faible, émise par Johnson, est la suivante :
il n’existe pas d’espace de Banach séparable possédant exactement deux sous-espaces, a
isomorphisme pres. Ces deux problémes sont encore largement ouverts & I’heure actuelle.

Ces deux dernieres directions de recherche s’averent étre liées, et seront étudiées
dans le dernier chapitre de ce manuscrit. On étudiera la conjecture de Ferenczi et
Rosendal, ainsi que celle de Johnson, et en particulier la question de savoir si on peut,
pour démontrer ces conjectures, se ramener au cas d’espaces ayant une base incondition-
nelle. Plus précisément, on s’intéressera aux conjectures suivantes :

(1) Tout espace de Banach séparable non-ergodique, non isomorphe a f3, possede un
sous-espace non-isomorphe a £ ayant une base inconditionnelle.

(2) Tout espace de Banach séparable possédant exactement deux sous-espaces & isomor-
phisme pres, doit posséder une base inconditionnelle.

On ne démontrera pas ces conjectures, mais on parviendra a les réduire a
des problemes semblant plus abordables. Leur énoncé fait appel a une nouvelle
classe d’espaces introduite dans ce manuscrit, les espaces héréditairement Hilbert-
primaires (HHP), qu’on peut voir comme une généralisation des espaces héréditairement
indécomposables ou bien comme une variante des espaces primaires. Un espace X sera
dit HHP s’il ne contient aucune somme directe topologique de deux sous-espaces fermés,
de dimension infinie, et non-isomorphes a fo. Les résultats suivants seront démontrés :

e Pour montrer la conjecture (1), il suffit de montrer que tout espace HHP non-
isomorphe & £ possede un sous-espace non-isomorphe a £5 dans lequel il ne peut
pas se plonger ;

e Pour montrer la conjecture (2), il suffit de montrer qu'un espace HHP non-
isomorphe a #5 possede au moins trois sous-espaces deux-a-deux non-isomorphes.
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Ces résultats semblent plausibles, car ils sont proches du résultat di a Gowers et
Maurey affirmant qu’un espace héréditairement indécomposable n’est isomorphe & aucun
de ses sous-espaces propres. On donnera d’ailleurs a la fin de ce manuscrit une nouvelle
preuve du théoreme de Gowers et Maurey, basée uniquement sur la théorie de Fredholm,
et qui pourrait étre un point de départ pour montrer qu'un espace HHP non-isomorphe
a £o possede suffisamment de sous-espaces deux-a-deux non-isomorphes.

Les deux résultats précédents sont conséquences de deux dichotomies d’espaces de
Banach qui seront démontrées dans le chapitre IV de cette these. Ces dichotomies sont
dans 'esprit du programme de Gowers, mis a part qu’elle sont Hilbert-évitantes, c’est-a-
dire qu’on assure que le sous-espace qu’elles produisent sera non-isomorphe a fo. Avoir
de telles dichotomies est tres utile lorsqu’on s’attaque a la question du nombre de sous-
espaces, car lorsqu’on utilise les dichotomies traditionnelles, rien n’assure que le sous-
espace produit ne sera pas isomorphe a ¢, méme si I’espace de départ est trées complexe.
La premiere dichotomie (théoréeme IV.12) est une variante {o-évitante de la premiere
dichotomie de Gowers et la seconde est une variante fo-évitante d’une dichotomie die
a Ferenczi et Rosendal [19]. On peut les voir comme les premieres pierres d’une liste
de Gowers pour les espaces non-isomorphes a f5. Ces dichotomies sont prouvées en
utilisant les résultats de type Ramsey abstraits démontrés dans les chapitres II et III de
cette these, en particulier le théoreme de Gowers abstrait (théoréme II1.17) ainsi que le
principe de Ramsey adverse (théoreme 11.4).
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Notations and conventions

Following the tradition in set theory, the set of nonnegative integers will be denoted by w.
An integer n € w will usually be viewed as the set of its predecessors, n = {0,1,...,n—1}.
Given two nonempty subsets A, B € w, we will say that A < BifVie AVje Bi < j.
Given n € w and a nonempty A € w, we say that n < Aif Vie An <.

If X and Y are two sets, XY will denote the set of mappings from Y to X. In
particular, X*“ is the set of infinite sequences of elements of X, and for n € w, X" is
the set of n-uples of elements of X. We will denote by X< = J . X" the set of finite
sequences of elements of X, and XS¥ = X=* U X¥. We denote by Seq(X) = X~“\{z}
the set of finite sequences of elements of X having at least one term. Given s,t € X<,
we let s € ¢ if s is an initial segment of ¢; this is, actually, the usual set-theoretical
inclusion. If s € XS¥ we denote by |s| the length of s, i.e. the unique ordinal o (w
or an integer) such that s € X® For s € X~ and t € X<¥ we denote by s ~ ¢ the
concatenation of s and ¢; for instance, if s = (sg,...,8n—1) and t = (tg,...,tn—1), then
s 7t = (50, 8m-1t0s--,tn_1). If f€ XY and Z € Y, we will denote by fiz € Xz
the restriction of f to Z; in particular, if s € X<% and n < |s|, s}, will denote the
sequence of the n first terms of s (unless otherwise specified, because for convenience of
notation, we will sometimes derogate to this rule).

A tree on a set X is a set T € X =¥ such that for every s,t € X¥, if sctandte T,
then s € T. An element of a tree is usually called a node, and a terminal node of T is an
s € T that is maximal in T for the inclusion. A pruned tree is a tree without terminal
nodes. An infinite branch of the tree T is an x € X“ such that for every n € w, we have
xpn € T'; the set of infinite branches of 7" is denoted by [T'].

We will denote by ¢ the cardinality of the continuum, 2%0.

If X is a topological space we define by induction, for n € w, the sets X.(X) and
IT! (X) of subsets of X in the following way:

e 3} (X) is the set of open subsets of X;
e TI.(X) is the set of A € X such that A° e X! (X);
e X! (X) is the set of A S X that are the first projection of a set B € IT},(X x w®).

We also let Al(X) = 3L (X)AII!(X). In particular, if X is Polish, then X! (X), IT} (X)
and Al(X) are respectively the set of analytic, coanalytic, and Borel subsets of X. As
in Polish spaces, we call | ] . 3L(X) the class of projective subsets of X.

Nnew
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We say that a class I' of subsets of Polish spaces is suitable if it contains the class of
Borel sets and is stable under finite unions, finite intersections and Borel inverse images.
For such a class, let 31" be the class of projections of I'-sets; in other words, for A a subset
of a Polish space X, we say that A € dI" if and only if there exist B € X x 2% such that
B eI and A is the first projection of B (we could have taken any uncountable Polish
space instead of 2¥ in this definition, since I is closed under Borel inverse images). The
class dI' is itself suitable.

In this thesis, we will call Banach space an infinite-dimensional complete normed
vector space. Unless otherwise specified, all Banach spaces will be over R; however, most
of the time, the results we present apply as well to complex spaces. Unless otherwise
specified, we will call a subspace of a Banach space F an infinite-dimensional, closed
vector subspace of E. The unit sphere of E will be denoted by Sg. Usually, the norm
on a Banach space will be denoted by | - |. If E and F' are Banach spaces, we will equip,
unless otherwise specified, the space L(F, F') of bounded operators from E to F, and
the space E* of continuous linear forms on F, with the operator norm, that will usually
be denoted by || - ||. When we refer to topological notions about Banach spaces without
further explanation, these notion are always considered in respect to the norm topology.

An isomorphism between two Banach spaces FF and F' is a bijective bounded op-
erator 1T' : ¥ — F whose inverse is bounded. Such an isomrphism is said to be a
C-isomorphism, where C > 1, if ||T|| - [T < C. If |T|| = [T || = 1, we say that
T is an isometry. An embedding (resp. a C-embedding) of E into F is an isomorphism
(resp. a C-isomorphism) between E and a subspace of F'. If there exists an embedding
(resp. a C-embedding) of F into F', we say that E embeds (resp. C-embeds) into F,
and this is denoted by E E F (resp. E E¢ F). Given two finite-dimensional vector
spaces F and F with the same dimension, we denote by dpy(FE, F) the Banach-Mazur
distance between E and F, i.e. the infimum of the nuumbers log(||T|| - 77|, where
T : E — F is an isomorphism. Sometimes, we will also use this notation for infinite-
dimensional spaces, and in the case where F and F' are not isomorphic, we will say that
dpy(E, F) = . Two spaces are isometric if and only if the Banach-Mazur distance
between them is 0.

If X is a compact Hausdorff space, C(X) will denote the space of continuous functions
X — R with the sup norm || - | .
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Chapter 1

Introduction and history

The results presented in this thesis have their roots in the work of Gowers. In the 90’s, he
proved a Banach-space dichotomy [24] which, combined with a result by Komorowski and
Tomczak-Jaegermann [34] gave a positive answer to a celebrated question by Banach.
This question, known as the homogeneous space problem, asked whether o was the only
Banach space, up to isomorphism, that was isomorphic to all of its subspaces.

His proof opened several new research directions. The first one is combinatorial
and set-theoretical. The methods used in the proof of Gowers’ dichotomy are much
more combinatorial than analytical. The proof indeed relies on a Ramsey-type result
in Banach spaces, inspired by Mathias’ [43] and Silver’s [58] infinite-dimensional version
of Ramsey’s theorem. However, this Ramsey-type result is slightly different from most
infinite-dimensional Ramsey results, since it has a partially game-theoretic formulation.
This led several authors, for instance Bagaria and Lépez-Abad [7, 8] or Rosendal [56,
57] to study this result in more details, its possible extensions, and its links with the
determinacy of games.

The second research direction opened by Gower’s work is known as Gowers’ program.
The idea is to give a “loose” classification of Banach spaces “up to subspaces”, i.e. to give
a list of natural classes of Banach spaces that are pairwise disjoints and such that every
space has a subspace in one of the classes. This could be done by proving other Banach-
spaces dichotomies by the same Ramsey-theoretic methods. This work has been initiated
by Gowers in [24], and continued by several authors and in particular by Ferenczi and
Rosendal in [19].

The third research direction comes from a question by Godefroy. He asked how
many subspaces could have, up to isomorphism, a Banach space non-isomorphic to ¢s.
This question, that can be asked more precisely in the formalism of the classification of
analytic equivalence relations on standard Borel spaces, led to several partial results, for
example [14, 17, 4, 11].

In this manuscript, we will mostly investigate the first and the third direction, that
turn out to be widely linked. We start by introducing more precisely these results and
their history, before presenting the organisation of this manuscript.
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I.1 Determinacy

Determinacy is not the central subject of this thesis, however, since statements based on
determinacy are often taken as axioms in set theory and have consequences on several
results that will be presented in this manuscript, it is worth to start by introducing it.
Determinacy is the study of the existence of winning strategies in two-player games with
perfect information. Here, we will restrict our attention to games with length w. Such
a game will be represented by a set X (the set of possible moves), by a nonempty tree
T < X =% without terminal nodes (the rule), and by a set X < [T] (the target set). Two
players, denoted by I and II, choose alternately an element z; € X:

I i) D)

11 I I3 e
and they have to preserve the following property: for every i € w, (xg,...xz;) € T. Player
I wins if (2;)iew € X, and otherwise, player II wins. This game will be denoted by
Gg(T,x).

A winning strategy for a player is a strategy that enables him or her to win whatever
the other player plays. Formally, a strategy for player I is a function 7 that associate to
every s € T with even length an z € X such that s x € T. Saying that I plays according
to the strategy T means that, if the current state of the game is the following;:

I i) e Xo;—2

II 1 Toi—1
then I plays zo; = 7(x0,21,...,22-2,22i—1). We say that this strategy is win-
ning when for every sequence (z;)iew € [I], if for every i € w we have
x9; = T(®0,T1,...,%2—2,T2—1), then (;)icw € X. We define in the same way the

notion of a strategy, and of a winning strategy, for player II.

It will also often be convenient to define games without specifying a target set. Such
games are defined with an outcome, which is a function of the sequence of moves of the
players during the game (most of the time, it will be a subsequence of the sequence of
moves). Formally, an outcome is a mapping F' from [T'] to some set Y; if the sequence of
moves during the game is (z;)iew € [T'], then the outcome of the game will be F((z;)iew)-
The game whose rule is a tree T" and whose outcome is a function F will be denoted
by G(T, F'), or simply by G(T') if F is the identity. For games that are defined with an
outcome rather than a target set, we will not speak about winning strategies but rather
about strategies to reach some sets. For example, if J € Y, we will say that player I
has a strategy in the game G(T, F') to reach ) if he has a strategy to ensures that the
outcome of the game will be in the set ); formally, such a strategy will be a winning
strategy in the game G(T, F~1())).

We say that the game G(T,X) is determined if one of the players has a winning
strategy in this game. When there is no ambiguity on the tree 7', we will also say that
the set X < [T] is determined. In many cases we will study, the tree 7" will be the whole
X=¥: when we say, without further explanation, that a set X € X% is determined, it
will always be understood that the underlying tree is X<%. A game whose rule tree is
X =¥ will be called a game on X.
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Not all games are determined: we can easily build counterexamples using the axiom of
choice (see [47], exercise 6A.6 for a construction of a subset of 2* that is not determined,;
this easily implies that such sets also exist in X for every set X with cardinality greater
that 2). It is then natural to look for positive results under topological restrictions. Here,
we will endow X with the discrete topology, and [T'] with the topology induced by the
product topology on X“.

Gale and Stewart [21] proved that every closed game (i.e., a game with a closed
target set) is determined. It was then extended by Wolfe [62] to 39 games, by Davis [12]
to Eg games, and finally, Martin proved in 1975 that every Borel game is determined
[39] (a proof can also be found in [32], theorem 20.5). Martin’s result is optimal in ZFC"
in ZFC'+V = L, it is possible to build 2% subsets of w* that are not determined (see
[47], exercise 6A.12).

In this manuscript, for I' a class of subsets of Polish spaces, we will denote by Det,, (T")
the assumption “every I'-subset of w” is determined”. This implies that every I'-game
whose rule is an at most countable tree is determined, as soon as I' is suitable. We
will also denote by Detr(I') the statement “when R is endowed with its usual Polish
topology, and R“ with the product topology, every I'-subset of R¥ is determined”. Here,
we consider the Polish topology on R and not the discrete one, since it will be enough
to prove the results we want.

Determinacy has strong links with set theory. The first remark is that, while Gale
and Stewart’s, Wolfe’s and Davis’ results can be proved in second-order arithmetic (so
in particular, in the theory ZC'), Martin’s proof of Borel determinacy uses a much larger
fragment of ZFC. In fact, Friedman proved [20] that any proof of Borel determinacy
should make use of the replacement scheme and of the powerset axiom. Many deter-
minacy statements have also been shown equiconsistent with large cardinal hypotheses.
Martin [38] proved in 1970 that, if there exists a measurable cardinal «, then every ana-
lytic game on a set X with cardinality strictly lower that x was determined. Harrigton
[26] showed then that Det,(X1) was equivalent to a slightly weaker hypothesis than
the existence of a measurable cardinal, the existence of z# for every real z. Then, the
works of Martin and Steel [41, 42] and of Woodin [63] (see also [42] and [50] for proofs
of unpublished results by Woodin) led to proofs of the statements Det,,(XL) (for n > 2)
and “every subset of w* in L(R) is determined” assuming large cardinal axioms, based
on the notion of Woodin cardinals. Later works by Woodin (see [48, 33]) showed the last
statements to be equiconsistent with statements involving large cardinals. Martin, Steel
and Woodin’s work show, in particular, that assuming the consistency of some large
cardinal axioms, the following theories are consistant:

o ZFC + PD, where PD is the axiom of projective determinacy, i.e. the statement
Vn € w Dety,(E1);

o Z/F+ DC+ AD, where AD is the axiom of determinacy, i.e. the statement “every
subset of w* is determined”.
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The axioms PD and AD have many interesting consequences on the structure of sets
of reals, and hence they are widely studied. Of course AD is incompatible with ZFC.
Some stronger theories are often also considered, for example:

e ZFC + PDg, where PDy is the statement ¥n € w Detg(X});

o ZF+ DC+ ADg, where ADg is the statement “every subset of R is determined”.

I.2 Infinite-dimensional Ramsey theory

The fundamental result in Ramsey theory is Ramsey’s theorem [54]:

Theorem I.1. Let d € w. For every colouring of [w]? with a finite number of colors,
there exists an infinite M € w such that [M]? is monochromatic.

The set M is usually said to be homogeneous for this colouring, and the integer d
is called the dimension of the Ramsey result. Ramsey initially proved his theorem as a
lemma in a logic article, however it later found applications in many other fields. Many
generalizations, or variants of this theorem in other contexts, were also proved, forming
a field that we now call Ramsey theory. An interesting way to generalize this result
is to look at what happens when the number d is infinite (this number d is called the
dimension of the Ramsey result). We call this direction of research infinite-dimensional
Ramsey theory. We restrict our attention to colourings with two colors, since it is more
convenient and since extensions to an arbitrary finite number of colors are easily deduced
by induction. A colouring with two colors, blue and red, can be viewed as a set X', the
set of blue sets for this colouring. It is thus natural to give the following definition.

Definition 1.2. A set X € [w]¥ is Ramsey if for every infinite M € w, there exists an
infinite N € M such that either [N]¥ € X, or [N]¥ € X°.

Basing ourselve on Ramsey’s theorem, it would be natural to conjecture that every
subset of [w]“ is Ramsey. However, it is easy to build a counterexample, using the axiom
of choice (see for example [32], I1.19.C., for a construction by a diagonal argument). It is
then natural to look for positive results when we put topological restrictions on the set
X. Here, we equip [w]¥ with the topology inherited from the Cantor space P(w) = 2¢
with the product topology. Alternately, we can see this topology as inherited from the
product topology on w*, when we see [w]* as a subset of w* by identifying an infinite set
of integer with its increasing enumeration. Basing themselve on previous works by Nash-
Williams [49] and Galvin and Prikry [22], Mathias [43] and Silver [58] finally proved the
following result:

Theorem 1.3 (Mathias—Silver). Every analytic subset of [w]¥ is Ramsey.
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Other results about Ramsey sets were proved next. Ellentuck [13] gave a topological
characterisation of subsets of [w]* that are, in some sense, Ramsey “at every scale”; this
characterisation is based on a toplogy on [w]“ that is finer than the usual topology. If
V = L, it is not hard to build a 3i-subset of [w]* that is not Ramsey (this is folklore;
a more general result will be proved in section I1.4 of this manuscript). In particular,
Mathias—Silver’s result is optimal in ZFC. Results were also proved under stronger set-
theoretical assumptions. Mathias [43] proved, assuming the consistency of large cardinal
hypotheses, the consistency of the theory ZF + DC+ “every subset of [w]* is Ramsey”.
Silver [58] proved that if there exists a measurable cardinal, then every Xl-subset of
[w]“ is Ramsey. Harrington and Kechris [27], and independently Woodin [64] proved
that under PD, every projective subset of [w]“ is Ramsey. Martin and Steel [40] proved
a result implying that if AD holds in L(R), then in L(R), every subset of [w]* is Ramsey.
In particular, this implies that under a strong enough large cardinal assumption, every
subset of [w]“ that is in L(R) is Ramsey. These last results are not directly obtained by
the determinacy of some game, but are proved using heavy set-theoretical machinery.

Kastanas [31] defined for the first time in 1983 a game that is directly related to the
Ramsey property. Tanaka [60] gave then an unfolded version of Kastanas’ game and
used it to give a new proof of Mathias—Silver’s theorem, based on the determinacy of
39-sets. Since Kastanas’ game will play a central role in the proof of a result of this
thesis, we will here recall its definition. Given an infinite set of integers M, Kastanas’
game below M, denoted by Ky, is defined as follows:

I Mo Ml

11 no,No TL17N1

where the M;’s and the N;’s are elements of [w]*, and the n;’s are elements of w. The
rules are the following:

o for I: My € M, and for all i € w, M;+1 S N;;
e for II: for all i € w, n; € M;, N; € M;, and n; < Nj.

The outcome of the game is the set {ng,n1,...} € [w]“.

Remark that this game is a game on reals: the players play elements of [w]* (or
of w x [w]® for player II) that can be viewed as real numbers. The result proved by
Kastanas is the following:

Theorem 1.4 (Kastanas). Let X € [w]Y and M < w be infinite.

1. If player I has a strategy in Ky to reach X€¢, then there exists an infinite N € M
such that [N]¥ € X°.

2. If player II has a strategy in Ky to reach X, then there exists an infinite N € M
such that [N]¥ € X.
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In particular, this theorem, combined with Borel determinacy of games on reals, show
that every Borel subset of [w]* is Ramsey. Tanaka actually proved that it was possible
to deduce the Ramsey property for analytic subsets of [w]* from the determinacy of
an unfolded version of Kastanas’ game with a X target set, and the Ramsey property
for Zl-subsets of [w]¥ from the determinacy of the same game with an analytic target
set. In particular, Tanaka’s method enables to recover Mathias-Silver’s theorem, and
Silver’s result that under the existence of a measurable cardinal, every Xi-subset of [w]¥
is Ramsey. However, it does not enable to recover results about the Ramsey property
under PD or under AD in L(R), since Kastanas’ game is not a game on integers. And
it is still not known today whether in ZF + DC + AD, every subset of [w]¥ is Ramsey.

An important remark is that in Tanaka’s proof of Mathias—Silver’s theorem, the
sets M and N are often seen as subspaces, i.e. elements of a poset (in the game Ky,
players play subsets of w that are smaller and smaller), while an element of [N]“ is
rather seen as an infinite sequence, the increasing sequence of its elements (this se-
quence being a subsequence of the sequence of moves of the players). This distinc-
tion between sets seen as subspaces and sets seen as sequences of points also appear
in more classical proofs of Mathias—Silver’s theorem and is actually central in infinite-
dimensional Ramsey theory. In the decades that followed the proof of Mathias—Silver’s
theorem, several similar results arose in different contexts (words, trees, etc.), constitu-
ing what we call now infinite-dimensional Ramsey theory. All of these have the same
form: we color infinite sequences of points satisfying some structural condition (being
increasing, being block-sequences, etc.) and the theorem ensures that we can find a
monochromatic subspace. To illustrate this, we give here another example due to Mil-
liken. Let K be a field, and FE be a countably-infinite dimensional vector space over
K with a basis (€;)iew- If 2 = >, z'e; € E, we define the support of x as the set
supp(z) = {i € w | 2* # 0}. A block-sequence is an infinite sequence ()i of nonzero
vectors of E such that supp(zg) < supp(z1) < .... A block-subspace of E is a vector
subspace of E spanned by a block-sequence. Remark that, since every vector of E has
finite support, every infinite-dimensional subspace of E contains a block subspace. We
can endow E with the discrete topology and E“ with the product topology. Miliken’s
result is the following:

Theorem 1.5 (Milliken). Suppose that E is a countably-infinite dimensional vector space
over K = Fy, with a basis. Let X be an analytic set of block-sequences of E. Then for
every block-subspace X € FE, there exists a block-subspace Y € X such that:

e cither every block-sequence in'Y belongs to X;

e or every block-sequence in Y belongs to X°.

This theorem is usually formulated in terms of finite subsets of w rather that vector
spaces over Fo, however we chose here this formulation because a link with other results
presented in this manuscript will appear more clearly. For a proof, see [61], corollary
5.23.
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It turns out that the proofs of all results in infinite-dimensional Ramsey theory use
in an essential way what we call a pigeonhole principle. A pigeonhole principle is, in
general, a one-dimensional Ramsey result, ensuring that for a colouring of points of
some space with a finite number of colors (or equivalently, two colors), there exists a
monochromatic subspace. The pigeonhole principle associated to an infinite-dimensional
Ramsey theorem is the result we get if we restrict this theorem to colorations of sequences
that only depend on the first term of the sequence. For instance, the pigeonhole principle
associated to Mathias—Silver’s theorem is the trivial fact that for every infinite M € w
and every A € w, there exists an infinite N € M such that either N € A, or N € A°.
The pigeonhole principle associated to Milliken’s theorem, however, is not trivial at all;
it is the following result by Hindman (see [61], theorem 2.25):

Theorem 1.6 (Hindman). Suppose that E is a countably-infinite dimensional vector
space over K = Fo, with a basis. Then for every colouring of the monzero vectors of
E with a finite number of colors, and for every block-subspace X C FE, there exists a
block-subspace Y < X such that Y\{0} is monochromatic.

Many examples of infinite-dimensional Ramsey theorems, and of their associated
pigeonhole principles, can be found in Todorcevié¢ book [61], where a general framework
to deduce an infinite dimensional Ramsey result from its associated pigeonhole principle
is also developped.

1.3 Gowers’ Ramsey-type theorem in Banach spaces and
adversarial Gowers’ games

The first infinite-dimensional Ramsey-type result that was not relying on a pigeonhole
principle was proved by Gowers, in the 90’s. The aim of Gowers was to solve a cele-
brated problem asked by Banach, the homogeneous space problem, asking whether ¢
was the only infinite-dimensional Banach space, up to isomorphism, that was isomorphic
to all of its closed, infinite-dimensional subspaces. Gowers proved a dichotomy [24] that,
combined with a result by Komorowski and Tomczak-Jaegermann [34], provided a posi-
tive answer to Banach’s question. The proof of this dichotomy relies on a Ramsey-type
theorem in separable Banach spaces, that we will state now. We start by recalling some
basic notions about bases in Banach spaces; these notions will be central in all of this
manuscript. For proofs and more details, see [2].

Let E be a Banach space. A Schauder basis of E is a sequence (¢;)iew € E“ such
that every x € E can be written in a unique way as an infinite sum Z?io x'e;, where
2! € R. In this manuscript, we will only consider normalized Schauder bases: we will
add to the definition that vectors of a Schauder basis must have norm 1 (this restriction
is not usual, but here, it will make things simpler). A Schauder basis is not a basis in the
algebraic sense, however algebraic bases (that are often called Hamel bases) do not have
much interest in the study of Banach spaces, so when speaking about a Banach space, in
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this manuscript, Schauder bases will often be simply called bases. Given a basis (e;) of
a Banach space F, we can define , for every n, a projection P, : E — span{e; | i < n}
by P, (Z;‘io xiei) =Dicn x'e;. It can be shown that all these projections are bounded
and that C := sup,¢, [|Pn]| < 0. This constant C' is called the basis constant of (e;).

A normalized sequence (z;);e, € E that is a basis of the closed subspace of E it
spans is called a basic sequence. It can be shown that a normalized sequence (z;)iew € E¥
is a basic sequence if and only if there exists a constant C' such that for every integers
m < n and for every (a;)i<n € R", we have |3, _, a;xi| < ||2,-, aixi|; in this case, the
basis constant of (z;) is the least such C. A classical result asserts that every Banach
space contains a basic sequence, and that moreover, the constant of this basic sequence
can be choosen as close as 1 as we want.

If £ is a Banach space with a basis (e;), we define the support of a vector
z=Y,2 ', denoted by supp(z), as the set {i € w | 2 # 0}. A block-sequence of (e;) is
an infinite normalized sequence (x,,)new Of vectors of E with supp(zg) < supp(z1) < . ...
A consequence of the previous characterisation of basic sequences is that a block-sequence
of (e;) is a basic sequence with constant not greather than the constant of (e;). A closed
subspace of E generated by a block-sequence is called a block-subspace.

For X a block-subspace of E, we denote by [X] the set of block-sequences all of whose
terms are in X (if (z,,) is a block-sequence generating X, then these sequences are exactly
the block-sequences of (x,)). We can equip [E] with a natural topology by seeing it as a
subspace of (Sg)* with the product topology (where Sg is endowed with the norm topol-
ogy), which makes it a Polish space. For X € [E] and A = (A, )new & sequence of positive
real numbers, we let (X)a = {(Tn)new € [E]|I(Yn)new € X VN € w |zn — ynl| < An},
a set called the A-expansion of X. In order to state Gowers’ theorem, we need a last
definition.

Definition I.7. Let X be a block-subspace of E. Gowers’ game below X, denoted by
Gy, is the following infinite two-players game (whose players will be denoted by I and
II):

I Y Y

II Yo Y1
where the Y;’s are block-subspaces of X, and the y;’s are normalized elements of
FE with finite support, with the constraints for II that for all ¢ € w, y; € Y; and
supp(y;) < supp(yi+1). The outcome of the game is the sequence (y;)iew € [F].

Remark that saying that player II has a strategy in Gx to reach X means, in a
certain way, that “a lot” of block sequences of X belong to X. We can now state
Gowers’ theorem:

Theorem 1.8 (Gowers’ Ramsey-type theorem). Let X < [E] be an analytic set, X € E
a block-subspace, and A be an infinite sequence of positive real numbers. Then there
exists a block-subspace Y of X such that either [Y] € X€, or player II has a strategy in
Gy to reach (X)a.
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While one of the possible conclusions of this theorem, [X] € X, is very similar to
“For every infinite S € M, we have S € X®” in Mathias—Silver’s theorem, the other
one is much weaker, for two reasons: the use of metrical approximation and the use
of a game. As we will see later, the necessity of the approximation is due to a lack
of finiteness, while the necessity for one of the possible conclusions to involve a game
matters much more and is due to the lack of a pigeonhole principle in this context. In
some Banach spaces, a pigeonhole principle holds, and in these spaces, Gowers gave
a strengthening of his theorem, involving no game, that we will introduce now. We
start by stating the general form of the pigeonhole principle that we will use in Banach
spaces; since an exact pigeonhole principle is never satisfied in this context, and would
anyways be useless since approximation is needed for other reasons, we will only state
an approximate pigeonhole principle. For a Banach space F, a set A € Sg, and § > 0,
we let (A)s ={xeSg | Jye A |z —y| <o}

Definition 1.9. Say that a Banach space E with a Schauder basis satisfies the approa-
imate pigeonhole principle if for every A € Sg, for every block-subspace X € FE, and
for every § > 0, there exists a block-subspace ¥ € X such that either Sy € A€ or
Sy € (A)g.

Recall that an infinite-dimensional Banach space F is said to be cg-saturated if ¢y can
be embedded in all of its infinite-dimensional, closed subspaces. A combination of results
of Gowers [23], Odell and Schlumprecht [51], and Milman [46] shows the following:

Theorem 1.10. A space E with a Schauder basis satisfies the approzimate pigeonhole
principle if an only if it is co-saturated.

Thus, in cp-saturated spaces, we have a strengthening of Gowers’ theorem:

Theorem I.11 (Gowers’ Ramsey-type theorem for cy). Suppose that E is co-saturated.
Let X < [E] be an analytic set, X < E be a block-subspace, and A be an infinite
sequence of positive real numbers. Then there exists a block-subspace Y of X such that
either [Y] € X¢, or [Y] € (X)A.

For a complete survey of Gowers’ Ramsey-type theory in Banach spaces, see [6], part
B, chapter IV.

In 2010, in [56], Rosendal proves an exact version (without approximation) of Gowers’
theorem, in countable vector spaces, which easily implies Gowers’ theorem in Banach
spaces. In this theorem, to be able to remove the approximation, we have to weaken
the non-game-theoretical conclusion by introducing a new game, the asymptotic game.
We present here Rosendal’s theorem in more details. Let E be a countably infinite-
dimensional vector space over an at most countable field K and (e;)e, be a basis (in
the algebraic sense) of E. To a block-subspace X € E, we associate two games defined
as follows:
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Definition I.12.
1. Gowers’ game below X, denoted by Gx, is defined in the following way:

I Y, Y1
II Yo Y1

where the Y;’s are block-subspaces of X, and the y;’s are nonzero elements of F,
with the constraint for II that for all i € w, y; € Y;. The outcome of the game is
the sequence (y;)ien € E“.

2. The asymptotic game below X, denoted by Fx, is defined in the same way as Gx,
except that this time, the Y;’s are moreover required to have finite codimension in
X.

We endow FE with the discrete topology and E“ with the product topology; since E
is countabe, E“ is a Polish space. Rosendal’s theorem is then the following:

Theorem 1.13 (Rosendal). Let X' be an analytic subset of E“. Then for every block-
subspace X € FE, there exists a block-subspace Y S X such that either I has a strategy
in Fy to reach X¢, or II has a strategy in Gy to reach X.

We say that a set X € E“ is strategically Ramsey if it satisfies the conclusion of this
theorem. Remark that if K = Fa, then this theorem is implied by Milliken’s theorem
1.5. However, the immediate generalization of Milliken’s theorem is false for fields with
more than two elements, in particular (but not only) because the associated pigeonhole
principle (i.e. the immediate generalization of Hindman’s theorem 1.6) is not true for
these fields. In general, for vector spaces over an at most countable field, we cannot
have a better result than theorem 1.13. However, here, the use of an asymptotic game in
one side of the alternative is not much weaker than a non-game-theoretical conclusion
as in Milliken’s theorem. This will be discussed in more details in section I1.2 of this
manuscript.

In the same paper as the last theorem, Rosendal, inspired by the work of Pelczar [52],
and by a common work with Ferenczi [19], introduced a new Ramsey principle which
is, unlike theorem I.13, symmetrical. His result was then refined in [57]. It involves two
games, known as the adversarial Gowers’ games, obtained by mixing the games G x and
Fy.

Definition I.14.

1. For a block-subspace X € FE, the game Ay is defined in the following way:

I Zo, Yo x1, Y1
II X Yo, X1 Y1, X2

where the z;’s and the y;’s are nonzero vectors of X, the X;’s are block-subspaces
of X, and the Y;’s are block-subspaces of X with finite codimension. The rules are
the following:
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o for I: for all t € w, x; € X;;

o for II: for all i € w, y; € Y;;

and the outcome of the game is the sequence (zg, yo,z1,91,...) € E¥.

2. The game By is defined in the same way as Ay, except that this time the X;’s
are required to have finite codimension in X, whereas the Y;’s can be arbitrary
block-subspaces of X.

The result Rosendal proves in [57] is the following:

Theorem 1.15 (Rosendal). Let X € E¥ be X9 or II3. Then for every block-subspace
X C E, there exists a block-subspace Y S X such that either I has a strategy in Ay to
reach X, or II has a strategy in By to reach X°.

Let us say that a set X € EY is adversarially Ramsey if it satisfies the conclusion of
this theorem. Then, a natural question to ask is for which complexity of the set X’ one
can ensure that it is adversarially Ramsey.

There are two things to remark. Firstly, let X < FE“ and define
X' = {(zi)iew € EY | (22i)iew € X}. Then by forgetting the contribution of player
IT to the outcome of the adversarial Gowers’ games and switching the roles of players
I and II, we see that X is strategically Ramsey if and only if X’ is adversarially Ram-
sey. So, for a class I' of subsets of Polish spaces, closed under continuous inverse image,
saying that all I'-subsets of E* are adversarially Ramsey is stronger than saying that all
I'-subsets of E“ are strategically Ramsey. The second remark is that, if the field K is
infinite, then the adversarial Ramsey property for I'-subsets of E“ also implies that all
I’-subsets of w* are determined. To see this, remark that when playing vectors in Ax or
Bx, no matter the constraint imposed by the other player, players I and IT have total
liberty for choosing the first non-zero coordinate of the vectors they play. Therefore, by
making X only depend on the first nonzero coordinate of each vector played, we recover
a classical Gale-Stewart game in (K*)“. For this reason, there is no hope, in ZFC, to
prove the adversarial Ramsey property for a class larger than Borel sets. Then, Rosendal
asks the following questions in [57]:

Question 1.16 (Rosendal). Is every Borel set adversarially Ramsey?

Question 1.17 (Rosendal). In the presence of large cardinals, is every analytic set
adversarially Ramsey?

A part of chapter II in this thesis will be devoted to answer these questions.
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I.4 Banach-spaces dichotomies and complexity of the
isomorphism

As we already said at the beginning of this introduction, Gowers introduced his Ramsey-
type theorem 1.8 in order to prove a Banach-space dichotomy that was instrumental in
the solution of a celebrated question asked by Banach in his book Théorie des Opérations
Linéaires [9]. Say that a Banach space is homogeneous if it is isomorphic to all of its
subspaces. Obviously, ¢5 is homogeneous, and a homogeneous space has to be separable.
Banach’s question is the following:

Question 1.18 (Banach’s homogeneous space problem). Is every homogeneous Banach
space isomorphic to £y ?

This problem was solved by the positive in the 90’s by a combination of results by
Gowers and Maurey [25], Komorowski and Tomczak-Jaegeramnn [34] , and Gowers [24].
We will briefly expose the main steps of this solution, and then present the new research
directions that this problem, and its solution, have raised. For this, we need to recall
some notions in Banach-space geometry.

Let (€;)iew be a basis of a Banach space E. Remark that, if A € w is infinite and
coinfinite, then a projection on the closed subspace generated by the e;’s, for i € A,
does not necessarily exist: actually, if x = Z;io x'e; converges, the sums DieA xle;
do not need to converge unless A is finite or cofinite. We say that the basis (e;) is an
unconditional basis if for every x = 3° 1 2'e; € E and for every A € w, the sum Y, 4 2’¢;
converges. It can be shown that, in this case, for every a = (a;)iew € oo and for every
T = Z?’;O r'e; € E, the sum D,(z) = Z?io a;xr'e; converges, and that the operator
D, : E —> E it defines is bounded (such an operator is called a diagonal operator).
Moreover, there exists a constant K such that for every a € ly, ||Dal| < Kallo. In
this case, the sequence is said to be K-unconditional, and the least such K is called the
unconditional constant of the basis (e;). The unconditional constant is greater, but in
general not equal, to the basis constant.

An wunconditional basic sequence (or simply an unconditional sequence) is a nor-
malized sequence (x;)ie, € E* that is an unconditional basis of the closed subspace
of E it generates. It can be shown that a normalized sequence (z;)ie, € E¥ is K-
unconditional if and only if for every n € w, every (a;);<, € R", and every sequence of
signs (gi)i<n € {—1,1}", we have ||}, _, gia;x;| < K|, aizi| (so in particular, (x;)
is unconditional if and only if there exist a constant K satisfying this property). This
shows that a block-sequence of a (K-)unconditional sequence is itself (K-)unconditional.

The canonical bases of the spaces cg, and ¢, for 1 < p < o0, are 1-unconditional.
Spaces with an unconditional basis can be seen as quite regular spaces; in particular,
many bounded operators are definable on them (all the D,’s for a € {4 ) and they share
many of the good properties of the £,’s and of ¢g. For more details, proofs of the previous
results, and properties of spaces with an unconditional basis, see [2].

In 1995, Komorowski and Tomczak-Jaegermann [34] (with an erratum [35]) showed
the following result:
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Theorem I.19 (Komorowski-Tomczak-Jaegermann). Every separable Banach space ei-
ther has a subspace isomorphic to £o, or a subspace without unconditional basis.

An immediate consequence of this theorem is that a homogeneous space that is not
isomorphic to f5 cannot contain an unconditional sequence. The question whether a
Banach space should always contain an unconditional sequence was itself a longstanding
problem, asked by Banach in the same book [9] and called the unconditional basic se-
quence problem. This problem was solved by the negative by Gowers and Maurey [25] a
few years before the proof of Komorowski—Tomczak-Jaegermann’s theorem, in 1992. The
counterexample built by Gowers and Maurey actually had a slightly stronger property
than not containig any unconditional sequence: it was hereditarily indecomposable.

Definition I.20.

1. A Banach space F is indecomposable if there are no subspaces X,Y € E such that
E=XaY.

2. A Banach space FE is hereditarily indecomposable (or simply HI) if every subspace
of F is indecomposable.

(Obviously, in the definition of an indecomposable Banach space, we only quantify
on infinite-dimensional closed subspaces, since every finite-dimensional subspace has a
closed complement, and since every vector subspace is the complement of another vector
subspace. )

A space F with an unconditional basis (e;)ie, is not indecomposable: indeed, for
every A € w, we have E = span({e; | i € A}) @ span({e; | i € A¢}). In particular, an HI
space cannot contain an unconditional sequence. However, the converse is not true: for
instance, it can easily be shown that the direct sum of two HI spaces cannot contain an
unconditional sequence, however it is not HI. Surprisingly, all the natural counterexam-
ples to the unconditional basic sequence problem that Gowers and Maurey managed to
build where HI, as if HI spaces were the basic building blocks of such spaces. To explain
this phenomenon, Gowers proved a few years later his celebrated first dichotomy [24]:

Theorem 1.21 (Gowers’ first dichotomy). Every Banach space either contains a un-
conditional basic sequence, or contains a HI subspace.

This is in order to prove this dichotomy that Gowers proved his Ramsey-type the-
orem 1.8. A consequence of this dichotomy, combined with Komorowski—Tomczak-
Jaegermann’s theorem, is that if a homogeneous space is not isomorphic to fo, then
it has to be HI. So to solve the homogeneous space problem, it only remains to prove
that an HI space cannot be homogeneous. This is actually a consequence of general
results by Gowers and Maurey about HI spaces. In the same paper [25] where they built
the first HI space, they proved the following theorem:

Theorem I.22 (Gowers-Maurey). Let X be a complex HI space. Then every bounded
operator X — X has the form Aldx +S, where A € C and S is a strictly singular
operator (that is, an operator that induces no isomorphism between two subspaces of X ).
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This theorem was proved using spectral theory and is only valid for complex spaces.
Using Fredholm theory, we can easily deduce from it the following result (valid as well
for real spaces as for complex spaces):

Theorem 1.23 (Gowers-Maurey). A (real or complex) HI space cannot be isomorphic
to one of its proper subspaces.

In particular, such a space is very far from being homogeneous, and this last result
ends the solution of the homogeneous space problem.

The first research direction opened by the solution of the homogeneous space problem,
and in particular by Gowers’ first dichotomy, is a project initiated by Gowers at the end
of his article [24]. He suggested that, using Ramsey-theoretic methods to prove Banach-
space dichotomies in the same vein as his first dichotomy, we could build a “loose”
classification of separable Banach spaces, up to subspaces. The idea is to build a list of
classes of separable Banach spaces (called a Gowers list), as precise as possible, satisfying
the following conditions:

(1) The classes should be hereditary, i.e. if a space E belongs to one class, then every
subspace of F must belong to the same class (or every block-subspace, if the class
is defined by a property of bases);

(2) The classes should be disjoint, for obvious reasons;

(3) Every Banach space should have at least one subspace belonging to one of the
classes;

(4) Knowing that a space belongs to a class should give much information about the
space, and in particular about the operators that can be defined on this space.

Gowers’ first dichotomy gives an example of a Gowers list with two classes, the
class of spaces with an unconditional basis, and the class of HI spaces. Properties (1)
and (2) are obvious, and property (3) is given by the dichotomy. This Gowers list
illustrates particularly well property (4), since spaces with an unconditional basis have
many operators (in particular, all the diagonal operators), whereas HI spaces have very
few of them (in paticular, all diagonal operators on a HI space with a basis are trivial).

The interest of a Gowers list is also to draw a border between “nice”, well-behaved
spaces (those sharing many good properties of the ¢,’s and of c¢y) and “pathological” one,
like HI spaces, that were mostly discovered in order to provide counterexamples. In the
same paper [24], Gowers proved a second dichotomy, enabling him to get a Gowers’ list
with three classes, and then, Ferenczi and Rosendal [19] proved three other dichotomies.
We will present one of them here, since it is an inspiration for a part of the work of this
thesis.

Definition 1.24.

1. A Banach space FE is said to be minimal if it can be embedded into all of its
subspaces.
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2. Let (e;)icw be a basis of some Banach space E. A Banach space X is tight in the
basis (e;) if there is an infinite sequence of intervals Iy < I; < ... of integers such

i ¢ UjeA I; })

3. A basis (€;)iew is said to be tight if every Banach space is tight in it. A Banach
space X is tight if it has a tight basis.

that for every infinite A € w, we have X & span ({ei

The class of minimal spaces is another example of a class of “nice” spaces. For
example, the £,’s and ¢y are minimal. This is obviously a hereditary class. On the other
hand, a tight space cannot be minimal, and it is not hard to see that a block-sequence
of a tight basis is itself tight. Tight spaces are more pathological spaces, an example of
them is Tsirelson’s space, the first example of a space in which none of the £,’s, neither
cp, can be embedded (see [2], section 10.3). The dichotomy is the following:

Theorem 1.25 (Ferenczi-Rosendal). Every Banach space either has a minimal subspace,
or has a tight subspace.

This dichotomy does not precisely satisfy the condition (4) in the definition of a
Gowers list, since the operators on tight spaces have not been studied much. However, as
we will see, knowing that a space is tight gives much information about the isomorphism
relation between its subspaces. In particular, such spaces are highly non-homogeneous,
and this will be a useful information in the study of the number of non-isomorphic
subspaces of a separable Banach space.

This is, indeed, the second research direction raised by the solution of the homoge-
neous space problem. As soon as a separable Banach space is not isomorphic to #s, it
must have at least two non-isomorphic subspaces; but more precisely, how many sub-
spaces can such a space have, up to isomorphism? This very general question was asked
by Godefroy, and many particular cases of it were studied. This turn out to be quite
difficult questions, and most of the time, we only have partial results about it. For
example, the following question was asked by Johnson:

Question 1.26. Does there exist a separable Banach space having exactly two subspaces,
up to isomorphism?

Even this question is still open, and will be studied in the present manuscript. A
separable Banach space with exactly two subspaces, up to isomorphism, will be called a
Johnson space.

It turns out that the right setting to study Godefroy’s question is the theory of the
classification of equivalence relations on Polish spaces. Let us recall the basic notions of
this theory. We will study nonempty Polish spaces equiped with an equivalence relation
(that will often be analytic). If X and Y are two nonempty Polish spaces, and if F and
F' are equivalence relations respectively on X and Y, we say that E& Borel-reduces to F,
denoted by (X, E) <p (Y, F) (or simply E <p F) if there is a Borel mapping f : X — Y
(called a reduction) such that for every z,y € X, we have t Ey < f(z) F f(y) (if such
an f can be choosen continuous, we will say that F continuously reduces to F', denoted
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by E <. F'). We say that F and F' are Borel-equivalent, denoted by F =p F, if E <p F
and F' <p FE. Saying that F reduces to F' means that F is less complex than F', and
that if we know F', then we can, in some sense “compute” F. Remark that a reduction f
from (X, F) to (Y, F') induces a one-to-one mapping X/FE — Y /F, and in particular, if
E <p F, then E has less classes than F'. Thus, studying the complexity of an equivalence
relation gives us at least as much information than counting it classes.

If E has at most countably-many classes, then £ <p F < |X/E| < |Y/F|. Thus,
for equivalence relations with at most countably many classes, the number of classes
completely determines the equivalence type of the relation, and we have the following
exhaustive hierarchy:

(1,2) <B (2,2) <B (3, :) <B <B (w,:).

However, for relations with uncountably many classes, the situation is more complex.
Restricting our attention to Borel equivalence relations, we will present two dichotomies
that give the two next steps of this hierarchy. The first one is valid even for coanalytic
relations, and is due to Silver [59] (for a more modern proof, see [44]).

Theorem 1.27 (Silver). Let E be a coanalytic equivalence relation on a Polish space
X. Then either E has at most countably many classes (and thus, Borel reduces to the
equality on w), or (2¥,=) <. (X, E).

The next equivalence relation is the relation Eg on the Cantor space 2%, defined by
x Eg y if and only if there exists n € w such that for every m = n, we have x(m) = y(m).
Using standard category arguments (see [28]), it can be shown that Eg is generically
ergodic, that is, every Eg-invariant Baire-measurable set is either meager or comeager,
and thus that it is not Borel-reducible to the equality on the Cantor space. In [28],
Harrington, Kechris and Louveau show the following dichotomy (for a more modern
proof, see [45]):

Theorem 1.28. Let E be a Borel equivalence relation on a Polish space X. Then either
(X, E) <p (2¥,=), or (2¥,Eg) <. (X, E).

Thus, we have the following exhaustive hierarchy for Borel equivalence relation that
reduce to Eg:

(1,=)<B (2,=)<p (3,=) <p ... <B (v,=) <B (2“,=) <p (2, Eo).

The situation is more complex for analytic equivalence relations, for instance there are
such relations F that are not reducible to the equality on the Cantor space, but such
that Eg does not reduce to FE.

The main application of the complexity of equivalence relations appears in the study
of the classification of mathematical objects: one can, for example, put a convenient Borel
structure on a class of mathematical objects and study the isomorphism relation between
these objects (that is, in general, analytic). Knowing the complexity of this relation
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enables to estimate how difficult it will be to classify these objects up to isomorphism.
In general, we consider that a class of objects is classifiable if the isomorphism relation
on this class is reducible to the equality on the Cantor space; indeed, this means that the
structures in this class can be described, up to isomorphism, by a real number, or by a
sequence of integers (for instance, the isomorphism between Bernoulli shifts is classified
by a real number, its entropy).

This theory can indeed be applied to the isomorphism relation between subspaces
of a Banach space. Given E a separable Banach space, denote by Sub(FE) the set of its
subspaces. On Sub(FE), we will put the Effros Borel structure. Recall that if X is a Polish
space and F(X) the set of its open subsets, the Effros Borel structure on F(X) is the
o-algebra generated by sets of the form {F € F(X) | F n U # @}, where U varies over
open subsets of X. It can be shown that this gives F(X) a structure of standard Borel
space (see [32], theorem 12.6); actually, if X is a compactification of X, then this Borel
space can be seen as a subspace of the set compacts subsets of X with the Hausdorff
distance, so it is quite natural. If F is a separable Banach space, it is not hard to see
that Sub(E) is a Borel subset of F(F), so Sub(E) with the Effros Borel structure is itself
a standard Borel space. Moreover, the isomorphism relation =~ on Sub(F) is analytic.
For more results about the structure of Sub(E), see [10].

The complexity of the isomorphism relation of Sub(¢3) is minimal among analytic
equivalence relations. On the other hand, Ferenczi, Louveau and Rosendal [16] proved
the following:

Theorem 1.29 (Ferenczi-Louveau-Rosendal). The isomorphism relation on
Sub(C([0,1])) is analytic-complete, that is, every analytic equivalence relation on
a Polish space is Borel-reducible to it.

As, by Banach-Mazur’s theorem (theorem 1.4.3 in [2]), every separable Banach space
can be isometrically embedded in Sub(C(]0, 1])), this result can be interpreted by saying
that the isomorphism relation between separable Banach spaces is analytic-complete and
in particular, that these spaces are not classifiable, up to isomorphism. This justifies
Gowers’ idea of rather trying to build a “loose” classification of Banach spaces.

We have, on one side, a space for whose the complexity of the isomorphism between
subspaces is minimal, and on the other side, a space for whose this complexity is maximal
among analytic equivalence relations, and we are tempted to ask what lies inbetween.
Ferenczi and Rosendal defined a new class of spaces based on their complexity:

Definition 1.30. A separable Banach space E is ergodic if (2, Eg) <p (Sub(F), ).

In particular, the subspaces of these spaces are not classifiable by real numbers,
so they can be seen as rather complex spaces. In the papers [18, 17, 55], Ferenczi
and Rosendal studied the properties of non-ergodic spaces, that appeared to behave
quite well. Among others, we can cite the following nice results for spaces with an
unconditional basis:
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Theorem 1.31 (Ferenczi-Rosendal). Let E be a non-ergodic separable Banach space
with an unconditional basis. Then E is isomorphic to its hyperplanes, to its square, and
to every direct sum E @ X, where X is a block-subspace of E generated by a subsequence
of the basis.

All of their results led them to conjecture the following generalization to the homo-
geneous space problem:

Conjecture 1.32 (Ferenczi-Rosendal). Every separable Banach space non-isomorphic
to £y is ergodic.

This conjecture will be refered as the ergodic conjecture in the rest of this manuscript.
Much progress have been made by now on this conjecture. Rosendal proved [55] that an
HI space must be ergodic. In particular, using Gowers’ first dichotomy, we can deduce
that every non-ergodic Banach space contains a subspace with an unconditional basis.
Then, an important result was proved by Ferenczi [14]:

Theorem 1.33 (Ferenczi). Every non-ergodic Banach space contains a minimal sub-
space.

The proof of this theorem was the main inspiration for Ferenczi and Rosendal’s
dichotomy 1.25, that was proved a few years later. Actually, this result can be seen as a
consequence of the dichotomy: indeed, in [15], Ferenczi and Godefroy give a categorical
caracterisation of tightness which, combined with a result of Rosendal ([55], proposition
15), easily proves that a tight space must be ergodic. All of this results show that the
question of the number of non-isomorphic subspaces and this of the loose classification
of Banach spaces are closely related.

In another direction, progress have been made by Anisca [4], who proved that an
asymptotically Hilbertian separable Banach space that is not isomorphic to ¢5 has to be
ergodic; we will not recall here the definition of an asymptotically Hilbertian space, but
this results says in some sense that spaces that are too close to £ have to be ergodic.
Then, Cuellar-Carrera proved [11] that a non-ergodic separable Banach space must have
type p and cotype ¢ for every p < 2 < g. Without recalling the definitions, it means
that such a space still needs to be rather close to /5. In particular, a consequence of this
result is that the £,’s, for 1 < p # 2 < o, and c¢p, are ergodic.

I.5 Organisation of the results

In chapter II of this thesis, we present an abstract setting for Ramsey theory, the set-
ting of Gowers spaces. The goal of this abstract setting is to enable to prove as well
Ramsey results with a pigeonhole principle like Mathias—Silver’s theorem 1.3 or Mil-
liken’s theorem 1.5, and strategical Ramsey results without a pigeonhole principle like
Rosendal’s theorem 1.13. An abstract Ramsey theorem, having a version without pi-
geonhole principle (theorem I1.14), and a version with a pigeonhole principle (corollary
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I1.21) and implying these results, will be shown. Remark that all possible conclusions of
this theorem involve games, since our setting is too weak to allow to get directly “gen-
uine” Ramsey-type conclusions as in Mathias—Silver’s or Milliken’s theorem. However,
the results we get are very close to that, and this drawback will be corrected in chapter
III by adding a feature to our setting. In chapter II, we will also give an answer to
Rosendal’s questions 1.16 and 1.17 by proving an abstract adversarial Ramsey principle
(theorem II.4), unifying our strategical Ramsey theory with the determinacy of games
on integers. An emphasis will be put on the strength of the latter result, that is implied
by the determinacy of games on reals but seems slightly above this of games on integers.
Finally, we will study the differences between Gowers spaces with a pigeonhole principle
and Gowers space without a pigeonhole principle, and see that they behave very differ-
ently. In particular, in spaces without a pigeonhole principle, the adversarial Ramsey
principle is much stronger than is spaces where the pigeonhole principle holds.

Gowers spaces are countable, and as we will see at the beginning of chapter III, the
result proved in chapter II are not true in the uncountable case. The goal of section
IIT is to adapt the formalism of Gowers spaces to the case of uncountable metric space,
in order to prove approximate results in the vein of Gowers’ theorems 1.8 and I.11.
Results of chapter II will be extended to this setting, and a feature will also be added
to our formalism, enabling to deduce non-strategical Ramsey results from strategical
ones. In particular, both Mathias—Silver’s theorem and Gower’s theorems will be direct
consequences of our main result, corollary II1.17. The interest of the results presented in
this chapter is more practical that theoretical: they are powerful tools to prove Banach-
space dichotomies.

In chapter IV, we work on Johnson’s problem and on Ferenczi and Rosendal’s ergodic
conjecture, and in particular on the following question: if counterexamples to these con-
jectures exist, do there necessarily exist counterexamples having an unconditional basis?
We are not able to solve this question completely, however we prove two Banach-space
dichotomies that could help a lot. The first one, theorem 1V.12, is very similar to Gow-
ers’ first dichotomy between spaces with an unconditional basis and HI spaces, and the
second one, theorem IV.14, is very similar to Ferenczi and Rosendal’s dichotomy between
minimal and tight spaces; however, the difference is that the dichotomies we prove are
Hilbert-avoiding, that is, we can ensure that the subspace they provide is not isomorphic
to £2. The proofs of these dichotomies makes an essential use of the Ramsey-type results
proved in chapters II and III. These dichotomies enable to reduce the question of the
existence of counterexamples to the ergodic conjecture with an unconditional basis to
a conjecture having many similarities with Gowers—Maurey’s result that HI spaces are
not isomorphic to their proper subspaces. We were not able to solve this conjecture,
however, at the end of the chapter, we give a new and simpler proof of Gowers—Maurey’s
theorem, only based on Fredholm theory, that could be a good starting point to solve it.
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Chapter 11

Ramsey theory with and without
pigeonhole principle

In this chapter, we present an abstract setting for Ramsey theory with and without
pigeonhole principle: the setting of Gowers spaces. Inspired by the examples given in
the introduction, we define a formalism with two notions, a notion of subspaces and a
notion of points. The idea is that we will color infinite sequences of points and try to
find subspaces such that many sequences of points in this subspace share the same color.
This “many” will be expressed, as in Rosendal’s results and conjectures, in terms of
games; in particular, in Gowers spaces, we will be able to define the asymptotic game,
Gowers’ game, and the adversarial Gowers’ games. These games will enable us to define
strategically Ramsey sets and adversarially Ramsey sets in such spaces.

In section II.1, we define the formalism of Gowers spaces and the notion of strategi-
cally Ramsey sets in these spaces; then, we prove that every Borel sets is strategically
Ramsey (theorem II.4), thus giving a positive answer to Rosendal’s question 1.16. The
proof of this theorem is based on the determinacy of a game on real numbers, thus, it
will also enable to prove that, assuming enough determinacy for such games, we can get
the adversarial Ramsey property for more than Borel sets (see theorems I1.8 and I1.10).

In section I1.2, we define the asymptotic game, Gowers’ game, and the notion of a
strategically Ramsey set in a Gowers space. We prove an abstract version of Rosendal’s
theorem 1.13 from the adversarial Ramsey principle proved in the previous section; this
enables as well to get the strategical Ramsey property for more complex sets if we assume
more determinacy. Then, we introduce the pigeonhole principle in a Gowers space, and
we show that the strategical Ramsey property can be strengthened to a symmetrical
result, very close to Mathias—Silver’s and Milliken’s theorem, in spaces that satisfy it
(corollary I1.21).

The two next sections are devoted to the study of the differences of behavior between
spaces satisfying the pigeonhole principle, and spaces that don’t. Such a study is done
in what concerns the adversarial Ramsey property in section I1.3, where we show that
in spaces with a pigeonhole principle, this property is not stronger than the strategical
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Ramsey property, whereas in spaces without it, it has the strength of determinacy of
games on integers (see proposition 11.24 and theorem I1.25). In section I1.4, we carry
out the same kind of study for strategically Ramsey sets, studying in particular the
limitations on the complexities for which we can ensure this property in ZFC; this
turns out to depend on the truth of the pigeonhole principle.

Since the adversarial Ramsey property is a consequence of the determinacy of games
on reals, and implies the determinacy of games on integers, a natural question to ask is
where lies the strength of the adversarial Ramsey property between the two others. In
section I1.5, we discuss some consequences of large cardinal assumptions on strategically
Ramsey sets, allowing us to better see what could be the strength of this property.

II.1 Gowers spaces and the aversarial Ramsey
property

In this section, we will introduce the notion of a Gowers space, which will be our ab-
stract setting for infinite-dimensional Ramsey theory; then, we will prove in this setting
the adversarial Ramsey principle, our most general Ramsey result without pigeonhole
principle, which will give a positive answer to question 1.16.

Definition I1.1. A Gowers space is a quintuple G = (P, X, <, <* <), where P is a
nonempty set (the set of subspaces), X is an at most countable nonempty set (the set
of points), < and <* are two quasiorders on P (i.e. reflexive and transitive binary
relations), and <« € Seq(X) x P is a binary relation, satisfying the following properties:

1. for every p,q € P, if p < g, then p <* g;

2. for every p,q € P, if p <* ¢, then there exists » € P such that r < p, r < ¢ and
p<tr

3. for every <-decreasing sequence (p;)iew Of elements of P, there exists p* € P such
that for all ¢ € w, we have p* <* p;;

4. for every pe P and s € X =%, there exists € X such that s ™z < p;

5. for every s € Seq(X) and every p,q € P, if s < p and p < ¢, then s < .

We say that p,q € P are compatible if there exists r € P such that r < p and r < q.
To save writing, we will often write p $ ¢ when p < g and ¢ <* p. Remark that by 2.,
the p* in 3. can be chosen in such a way that p* < pg; this will be useful in many proofs.

In most usual cases, the fact that s < p will only depend on p and on the last term
of s; the spaces satisfying this property will be called forgetful Gowers spaces. In these
spaces, we will allow us to view <t as a binary relation on X x P. However, for some
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applications (see, for example, the proof of theorem II1.6), it is sometimes useful to make
the fact that s < p also depend on the the length of the sequence s; we do not know if
there are any interesting applications where it would be useful to make it depend on all
the terms of the sequence, however we would like to present results that are as general
as possible.

When thinking about a Gowers space, we should have the two following examples in
mind:

e The Mathias—Silver space N = ([w]“,w,S,S* <), where [w]® is the set of all
infinite sets of integers, M <* N iff M\N is finite and (zo,...,z,) < M iff
xn € M. Here, we have that M g N iff M is a cofinite subset of N, and M and N
are compatible iff M ~ N in infinite.

e The Rosendal space over an at most countable field K, Rx = (P, E\{0},<&,<*, <),
where F is a countably infinite-dimensional K-vector space with a basis (e;)iew, P
is the set of all block subspaces of E relative to this basis, X €* Y iff Y contains
some finite-codimensional block subspace of X, and (zo,...,z,) < X iff z, € X.
Here, we have that X Y iff X is a finite-codimensional subspace of Y, and X
and Y are compatible iff X nY is infinite-dimensional.

Remark that both of these spaces are forgetful, so we could have defined < as a
relation between points and subspaces (and that is what we will do, in such cases, in the
rest of this paper); in this way, in both cases, <1 is the membership relation. It is easy
to verify that, for these examples, the axioms 1., 2., 4., and 5. are satisfied; we briefly
explain how to prove 3.. For the Mathias—Silver space, if (M;)ie, is a S-decreasing
sequence of infinite subsets of w, then we can, for each ¢ € w, choose n; € M; in such a
way that the sequence (n;)ew is increasing, and let M* = {n; | i € w}. Then the set M*
is as wanted. For the Rosendal space, the idea is the same: given (F;);en a decreasing
sequence of block subspaces of E, we can pick, for each 7, a nonzero vector x; € F;, in
such a way that for ¢ > 1, we have supp(x;_1) < supp(z;). In this way, (z;)ie. is a block
sequence, and the block subspace F'* spanned by this sequence is as wanted.

Also remark that in the definition of the Rosendal space, choosing E\{0} and not E
for the set of points is totally arbitrary, and here, we only made this choice in order to
use the same convention as Rosendal in his papers [56, 57]; but the results we will show
apply as well when the set of points is F. Also, we could have taken for P the set of all
infinite-dimensional subspaces of E (where, here, the relation * is defined by X c* Y
iff X n'Y has finite codimension in X) instead of only block subspaces. However, the
abstract results we will prove are slightly stronger in the case when we consider only
block subspaces; this is due to the fact that, while every infinite-dimensional subspace
of F contains a block subspace, there are finite-codimensional subspaces that do not
contain any finite-codimensional block subspace.

*

In the rest of this section, we fix a Gowers space G = (P, X, <, <*,<). For pe P, we

define the adversarial Gowers’ Games below p as follows:
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Definition II.2.
1. The game A, is defined in the following way:

1 0, 4o 1, q1
I po Yo, P1 Y1, D2

where the x;’s and the y;’s are elements of X, and the p;’s and the ¢;’s are elements
of P. The rules are the following;:

e for I: for all i € w, (zo,Y0,.--,%i1,Yi—1,%;) < p; and ¢; S p;

e for II: for all i € w, (x0,y0 ..., i, ¥i) < ¢ and p; < p.

The outcome of the game is the sequence (z9,yo, z1,¥1,--.) € X“.

2. The game B, is defined in the same way as A,,, except that this time the we require
pi < p, whereas we only require ¢; < p.

As in the particular case of vector spaces, we can define the adversarial Ramsey
property for subsets of X%:

Definition I1.3. A set X € X% is said to be adversarially Ramsey if for every p € P,
there exists ¢ < p such that either player I has a strategy to reach X in Ay, or player IT
has a strategy to reach X in B,.

Informally, the adversarial Ramsey property for X means that up to taking a sub-
space, one of the players has a winning strategy in the game that is the most difficult for
him. Remark that the property that I has a strategy in A, to reach some set X' (resp.
the property that IT has a strategy in B, to reach X') is strongly hereditary in the sense
that if I has a strategy to reach X’ in A, then he also has one in A, for every p’ <* p
(and the same holds for IT in B,). Indeed, we can simulate a play of A, with a play
of Ap: when, in Ay, player I's strategy tells him to play x; and ¢;, then in A, he can
play the same z; and a ¢, such that ¢ $ p’ and ¢, < ¢;, in such a way that the next y;
played by IT in A, will be also playable in A, (the existence of such a ¢} is guaranteed
by condition 2. in the definition of a Gowers space). And when, in A/, player II plays
y; and p)_ , then in A,, I can make her play the same y; and a p;41 such that p;p1 <p
and p;+1 < P}, in such a way that the next ;.1 played by I in A, according to his
strategy will also be playable in A,y. In this way, the outcomes of both games are the
same, and since I reaches X" in A, then he also does in A, .

On the other hand, it is clear that if I has a strategy to reach some set & in A,
then he also has one in Bp, so II cannot have a strategy to reach X in B,. Thus, the
fact that X has the adversarial Ramsey property gives a genuine dichotomy between two
disjoint and strongly hereditary classes of subspaces.

We endow the set X with the discrete topology and the set X“ with the product
topology. The main result of this section is the following:
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Theorem II.4 (Adversarial Ramsey principle, abstract version). Fvery Borel subset of
XY is adversarially Ramsey.

In the case of the Rosendal Space, the adversarial Gowers games defined here are
exactly the same as those defined in the introduction. Thus, theorem II1.4 applied to this
space provides a positive answer to question 1.16.

Also remark that if P = {1} and if we have s <« 1 for every s € Seq(X), then
both Ay and By are the classical Gale-Stewart game in X, so the adversarially Ramsey
subsets of X“ are exactly the determined ones. So in this space, theorem 11.4 is nothing
more than Borel determinacy for games on integers; hence, we get that theorem II1.4
has at least the metamathematical strength of Borel determinacy for games on integers.
Therefore, by the work of Friedman [20], any proof of theorem II.4 should make use of
the powerset axiom and of the replacement scheme. We also get that it is not provable
in ZFC that every analytic (or coanalytic) set in every Gowers space is adversarially
Ramsey. Actually, it turns out that there is a large class of Gowers spaces for which
Borel determinacy can be recovered from the version of theorem II.4 in these spaces;
this will be shown in section II.3.

We will deduce theorem II.4 from Borel determinacy for games on real numbers.
For this purpose, we follow an approach firstly used by Kastanas in [31]: in this paper
Kastanas deduced the Ramsey property for subsets of [w]¥ from the determinacy of a
game. In what follows, we adapt Kastanas’ game in order to get the adversarial Ramsey

property.
Definition II.5. For p € P, Kastanas’ game K, below p is defined as follows:

I 0, 4o 1, q1

IT  po Y0, 1 Y1, D2
where the x;’s and the y;’s are elements of X, and the p;’s and the ¢;’s are elements of
P. The rules are the following:

e for I: for all i € w, (xo,y0,---,Ti—1,Yi—1, i) < p; and q; < p;;
e for IT: py < p, and for all i € w, (xo,yo .-, ¥i) < ¢ and pi+1 < ¢;.
The outcome of the game is the sequence (xg, Yo, 1,¥1,...) € X“.

The exact result we will show is the following:

Proposition I1.6. Let pe P and X € X“.

1. If T has a strategy to reach X in K,, then there exists ¢ < p such that I has a
strategy to reach X in Ay;

2. If IT has a strategy to reach X in K, then there exists ¢ < p such that II has a
strategy to reach X¢ in B,.
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Once this proposition is proved, theorem II.4 will immediately follow from the Borel
determinacy of Kastanas’ game.

Since the proof of 1. and 2. of proposition II.6 are exactly the same, we only prove
2.. In order to do this, let us introduce some notation. During the whole proof, we fix a
strategy 7 for Il in K, to reach X°. A partial play of K, ending with a move of II and
during which IT always plays according to her strategy will be called a state. We say
that a state s realises a finite sequence (xo, Yo, 1,91, .- Tn—1,Yn—1) if 7 has the form
(PO, 0, s @n—1, Yn—1, Pn); We say that a state realising a sequence of length 2n has rank
n. We define in the same way the notions of a total state (which is a total play of K))
and of realisation for a total state; the restriction of a total state 4 = (po, zo, g0, Yo, P1, ---)
to a state of rank n, denoted by 7, is the state (po, zo, ..., gn—1,Yn—1,Pn). If an infinite
sequence (o, Yo, T1, Y1, - - -) is realised by a total state, then this sequence belongs to X°.

We will use the following lemma:

Lemma I1.7. Let S be an at most countable set of states, and r € P. Then there exists
*

r* < r satisfying the following property: for all 5 € S and x,y € X if there exists u,v € P
such that:

1. I can legally continue the play 5 by the move (z,u);

2. 7(97 (z,u)) = (y,0);
3. v and r* are compatible;

then there exists u',v' € P satisfying 1., 2., and 3. and such that, moreover, we have
,,,,* <* U/.

Proof. Let (Jy, Tn, Yn)new be a (non-necessarily injective) enumeration of S x X2. Define
(rn)new & decreasing sequence of elements of P in the following way. Let rg = r. For
n € w, suppose 7, defined. If there exists a pair (u,v) € P? such that:

e I can legally continue the play 4, by the move (x,,u);

o (4" (T, u) = (Yn,v);
e v and 7, are compatible;

then choose (uy,vy,) such a pair and let 7,41 be a common lower bound to 7, and v,,.
Otherwise, let r,,4+1 = r,. This achieves the construction.

By the definition of a Gowers space, there exists r* € P such that r* < r and for all
n € w, r* <* r,. We show that r* is as required. Let n € w, and suppose that there exists
(u,v) € P? satisfying properties 1., 2., and 3. as in the statement of the lemma for the
triple (Jn, Tn,Yn). Since r* <* r,, and since v and r* are compatible, then v and r, are
also compatible. This show that the pair (u,, v,,) has been defined; by construction, this
pair satisfies properties 1. and 2. for (J,, zy,yn), and we have 7,11 < vy, so 7% <* vy,
which shows that (u/,v") = (uy,v,) is as required.
O
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Proof of proposition I1.6. Define (g,)new & decreasing sequence of elements of P and
(Sn)new a sequence where, for every n € w, S, is an at most countable set of states of
rank n, in the following way. Let ¢o = 7(@) and Sy = {(7(@))}. For n € w, suppose gy,
and S, being defined. Let g,1 be the result of the application of lemma I1.7 to ¢, and
the set of states S,,. For 4 € S,,, let A, be the set of all pairs (z,y) such that there exists
(u,v) € P? satisfying:

1. T can legally continue the play 4 by the move (x, u);

2. 7(47 (z,u) = (y,v);

3. v and g1 are compatible.

Then by construction of g, 1, for all (x,y) € A, there exists a pair (u,v) € P? satis-
fying 1., 2., and 3., and such that moreover ¢,+1 <* v. For each (z,y) € Ay, choose
(s 2,5 Vo) such a pair. Let Spi1 = {97 (2, Us 2y, Y, Vo) | 4 € Spy (2,y) € Ay}; this
is clearly a countable set of states of rank n + 1. This achieves the construction.

Now let ¢ € P be such that g < q¢ and for all n € w, we have ¢ <* ¢,,. Remark that
since qg < p, we have ¢ < p. We show that ¢ is as required, by describing a strategy for
IT in B, to reach X°. In order to do this, we simulate the play 4 = (vo, o, uo, Yo, v1, -..)
of By that I and IT are playing by a play 4’ = (v, 2o, ug, Yo, v}, -..) of K, having the same
outcome and during which IT always plays according to her strategy 7. This will ensure
that the outcome (xo,yo,x1,y1,...) of both games lies in X' and so that the strategy
for IT in B, that we described enables her to reach her goal. We do this construction in
such a way that at each turn n, the following conditions are kept satisfied:

(a) 4}, € S

(b) v, < vl,.

The moves of the players at the (n + 1)™ turn in both games that are described in
the following proof are represented in the diagrams below. The third diagram, called
“Fictive K,”, represents a fictive situation that will be studied for technical reasons in
the proof, and in which the moves of both players are the same as in K, until the nth
turn but differ from the (n 4 1)™ turn.
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Let us describe the strategy of II in B,. At the first turn, this strategy will consist
in playing vg = ¢; and, according to her strategy 7, II will play v = 7(@) in K.
Now, suppose that both games have been played until the n*® turn, that is, the last
moves of player II in the games B, and K, are respectively v, and v],. Player I plays
(@n, un) in By. By the rules of the game B, and the induction hypothesis, we have that
up < ¢ <* v, <5 so there exists ur € P such that u!! < u, and u!! < v],. We also have
that (zo,%0,...,2n) < v, < v}, so it is legal for I to pursue the game K, by playing
(@, ull); this fictive situation is represented in the third diagram above, called “Fictive
K,”. In this fictive situation, the strategy 7 of II would lead her to answer with a move
(Yn, v, 1) satisfying (zo, Yo, ..., Zn, Yn) < u;, and v} | < u;. We have, by construction
of ¢, that v, | < u;, <up < g <* guy1; so in particular, v}, | and g, are compatible.

Recalling that 4, € Sy, we see that the pair (uy,vy) witnesses that (zn,yn) € Ay,

n»-n

Now let us leave the fictive situation and come back to the “real” K,. Since
(TnyYn) € Ayy,, we know that the pair (U, z,yn»Vsp,.00.9,) has been defined; we de-
note this pair by (u;,,v,.;). In the “real” K, we make I play (z,,u},). By definition
of (uy,,v) ), this move is legal, and II will answer, according to her strategy, with
(Yn, vy, 1). Remark that the required condition (a) in the induction hypothesis is satisfied
by these moves since, by the definition of S,,+1, we have 4y, = (Tn, Uy, Yn, V), 1) € Sp1.
We also have that ¢ <* gn41 <* v],,, so there exists v,;1 € P such that v, <],
and v,+1 S ¢. For this reason, and since we also have (as we already saw)
(0, Y0, - - - s TnyYn) < Ul < Uy, we get that (yn,vp41) is a legal move for IT in By,
that satisfies the condition (b) in the induction hypothesis. So we just have to define

her strategy as leading her to play this move, and this achieves the proof.
O

We actually proved a little more than theorem II.4. Say that the Gowers space G
is analytic if P is an analytic subset of a Polish space and if the relations < and <
are Borel subsets of P? and of Seq(X) x P respectively. For most of the spaces we

44



actually use, P can be indentified to an analytic subset of P(X), the relation < to
the inclusion, and the relation (xg,...,z,) < p to the membership relation z, € p;
thus, these spaces are analytic. This is, for instance, the case for the Mathias—Silver
space and the Rosendal space introduced at the beginning of this section. Then an easy
consequence of proposition I1.6 is the following;:

Corollary I1.8. Let I' be a suitable class of subsets of Polish spaces. If every I'-subset
of R¥ is determined, then for an analytic Gowers space G = (P, X,<,<*,<), every
I'-subset of X% is adversarially Ramsey.

Proof. Fix X € X“ aI'-subset, and p € P. By proposition II.6, it is enough to show that
in the game K, either player I has a strategy to reach X', or player II has a strategy
to reach X€. Let ¢ : R — P be a surjective Borel mapping, and consider the following
game K:

I o, 4o 1, q1

I po Yo, P1 Y1, D2
where the x;’s and the y;’s are elements of X and the p;’s and the ¢;’s are real num-
bers, with the constraint that ¢(py) < p, for all i € w, ©(§) < ©(Pi), (Pit1) < (i),
(o, Y0, ---,i) < @(pi), and (xo,yo,- .., 2, Yi) < ©(gi), and whose outcome is the se-
quence (zo, Yo, T1,Y1,...) € X“. This game is clearly equivalent to K,: I has a strategy
to reach X in K, if and only if he has one in KI’;, and IT has a strategy to reach X° in
K, if and only if she has one in KI’). Since KI') is a game on real numbers with Borel
rules and since X is in I', we deduce that in this game, either I has a strategy to reach
X, or II has a strategy to reach X¢, what concludes the proof.

O

Corollary II.8 shows in particular that, in an analytic Gowers space, under PDg,
every projective set is adversarially Ramsey. Recall that Harrington and Kechris [27],
and independently Woodin [64] proved that under PD, every projective subset of [w]¥
is Ramsey. Using ideas from Woodin’s proof, Bagaria and Lépez-Abad [8] showed that
under PD, every projective set of block sequences of a basis of a Banach space is strate-
gically Ramsey (i.e. satisfies the conclusion of Gowers’ theorem 1.8). Basing ourselve on
these facts, we can formulate the following conjecture:

Conjecture I1.9. Under PD, if the Gowers space G = (P, X, <, <*, <) is analytic, then
every projective subset of X% is adversarially Ramsey.

Clearly, the method presented in the present paper does not enable to prove this.

Also remark that the proof of proposition II.6 can almost entierly be done in
ZF + DC; the only use of the full axiom of choice is made to choose u!! € P such
that u;, < u, and ), < v;,, and v,41 € P such that v,y < 0], and v,41 S ¢, s0
actually to apply axiom 2. in the definition of a Gowers space. For this reason, say that
the Gowers space G is effective if in this axiom 2., the subspace r can be chosen in an
effective way, that is, if there exist a function f : P2 — P such that for every p,q € P,

if p <* ¢, then we have f(p,q) < p and f(p,q) < q. For instance:
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e The Mathias—Silver space is effective: indeed, if M <* N, then we can take
f(M,N)=Mn N.

e The Rosendal space is effective. Indeed, if X and Y are block subspaces such that
X c* Y, let (x)new be a block sequence spanning X. Then we can let f(X,Y) be
the subspace spanned by the largest final segment of (x,) all of whose terms are
in Y (this subspace does not depend on the choice of (zy,)).

To prove proposition I1.6 for an effective Gowers space, we only need dependant
choices. Thus, we have the following result:

Corollary I1.10 (ZF + DC + ADg). Let G = (P, X, <, <*, <) be an effective Gowers
space such that P is a subset of a Polish space. Then every subset of X¥ is adversarially
Ramsey.

Proof. Recall that in ZF + DC + AD, every subset of a Polish space is either at most
countable, or contains a Cantor set, and is thus in bijection with R (this is a consequence
of theorem 21.1 in [32], that can be proved in ZF + DC'). So if P is countable, then
Kastanas’ game can be viewed as a game on integers and is thus determined, and if P
is uncountable, then Kastanas’ game can be viewed as a game on real numbers, that is
also determined. The conclusion follows from proposition II.6.

O

As above, we cannot prove in this way that the same result holds under AD instead
of ADg, but we conjecture that it does so. As we will see in the next section, if this
is true, this would imply that under AD, every subset of [w]¥ is Ramsey, which is still
conjectural today.

Since for sufficiently regular Gowers spaces (analytic ones, or effective ones with P
being subset of a Polish space, depending on the case), we only need the determinacy of
I'-subsets of R¥ to prove the adversarial Ramsey property for I'-sets, and since from this
property in every sufficiently regular space, we can deduce the determinacy of I'-subsets
of w¥, another interesting question is the following;:

Question I1.11. Where does the adversarial Ramsey property for I'-sets in sufficiently
reqular Gowers spaces lie between the determinacy of I'-subsets of w* and the determi-
nacy of I'-subsets of RY?

This question can be asked both in terms of implication and of consistency strength.
In particular, we don’t know whether there exists an analytic Gowers space G and a
suitable class I' of subsets of Polish spaces such that ZFC doesn’t prove that the de-
terminacy of I'-subsets of w® implies the adversarial Ramsey property for I'-sets in G,
neither if there exists some such that the consistency strength of ZFC+ “Every I'-set in
G is adversarially Ramsey” is strictly above the consistency strength of ZFC+ “Fvery
I'-subset of w* is determined”.
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I1.2 Strategically Ramsey sets and the pigeonhole princi-
ple

The aim of this section is to prove a version of Rosendal’s theorem 1.13 in the general
setting of Gowers spaces. We also introduce the notion of the pigeonhole principle for
a Gowers space and see that the last result can be strengthened in the case where
this principle holds. This will enable us to see the fundamental difference between the
Mathias—Silver space and the Rosendal space over a field with at least three elements. We
start by introducing Gowers’ game and the asymptotic game in the setting of Gowers
spaces, and the notion of a strategically Ramsey set. In this whole section, we fix a
Gowers space G = (P, X, <, <*, <).

Definition II1.12. Let pe P.

1. Gowers’ game below p, denoted by G, is defined in the following way:

I po D1
II i) Il

where the x;’s are elements of X, and the p;’s are elements of P. The rules are the
following:

e for I: for all i € w, p; < p;

e for II: for all i € w, (xq,...,2;) < p;.

The outcome of the game is the sequence (z;)iew € Xv.

2. The asymptotic game below p, denoted by F),, is defined in the same way as G,
except that this time the we moreover require that p; < p.

Definition II.13. A set X © XY is said to be strategically Ramsey if for every p € P,
there exists ¢ < p such that either player I has a strategy to reach X in Fy, or player
II has a strategy to reach X in G,.

The general version of Rosendal’s theorem 1.13 is then the following;:

Theorem I1.14 (Abstract Rosendal’s theorem). FEvery analytic subset of X% is strate-
gically Ramsey.

Remark that theorem 1.13 is exactly the result of the application of theorem I1.14 to
the Rosendal space.

Proof. We firstly prove the result for Borel sets. In order to do this, consider another
space G = (P, X,<,<*,9), where P, X, <, and <* are the same as in G, but we replace
<1 by the relation < defined by (zo, Yo, 1,91, - - -, Tn, Yn) Jp iff (yo,y1,...,yn) < p, and
(X0, Y0, T1, Y15 - - - » Tp) AP iff (20, 21,...,2,) < p. Now, to each set X € X%, associate a
set X € X¥ defined by (zo,v0,%1,Y1,...) € X e (y0,y1,-..) € X. Then, when players
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try to reach X or X¢ in the games A, and B, of QN, the p;’s played by II and the z;’s
played by I don’t matter at all; so a strategy for I in the game A, of G to reach X°
becomes a strategy for I in the game [, of G to reach X¢, and a strategy for II in
the game B, of G to reach X' becomes a strategy for II in the game G), of G to reach
X. Thus, the strategical Ramsey property for X in G is equivalent to the adversarial
Ramsey property for X¢ in 6, so the strategical Ramsey property for Borel sets in G
follows from theorem II.4.

From the result for Borel sets, we now deduce the result for arbitrary analytic
sets using an unfolding argument. Let X < X“ be analytic, and p € P. Let
X' = X x {0,1}, whose elements will be denoted by the letters (z, ). Define the binary
relation <'< Seq(X') x P by (z9,€0, - - -, Tn,en) <’ pif (xo,...,2,) < p, and consider the
Gowers space G' = (P, X', <, <*,<’). In this proof, we will use the notations Fj, and Gy
to denote respectively the asymptotic game and Gowers’ game in the space G, whereas
the notations F, and G will be used for these games in the space G'. We denote by
7 the projection XY — X%, Let X' € X' be a Gy set such that X = w(X”). Since
X' is G5, it is strategically Ramsey; let ¢ < p witnessing so. If player II has a strategy
in G; to reach X”’, then a run of the game G, where II uses this strategy but omits to
display the g;’s produces an outcome lying in X’; hence, II has a strategy to reach X in
Gg4. Then, our result will follow from the following fact:

Fact I1.15. If I has a strategy to reach X' in Fé, then he has a strategy to reach X° in
F,.

Proof. Let 7' be a strategy enabling I to reach X’ in F,. In order to save notation,
in this proof, we consider that in the games Fq’ and Fj, player II is allowed not to
respect the rules (i.e. to play x;’s such that (xo,...,z;) € p;), but loses the game if
she does. Then, the strategy 7" can be viewed as a mapping X’ — P such that for
every (xo,€0, ..., Tn—1,6n—1) € X'=%, we have 7'(xg,€0,...,2Zn-1,6n-1) ~ ¢- Remark
that if (pj)jes is a finite family of elements of P such that Vj € J, p; $ ¢, then by
applying iteratively the property 2. in the definition of a Gowers space, we can get
p* € P such that p* < q and Vj € J p* < pj. Thus, for every (zo,...,zp—1) € X=“, we
can choose 7(xg,...,x,_1) € P such that 7(xg,...,2,—1) $ ¢ and such that for every
(€0y---,en—1) € {0,1}", we have 7(x0,...,2pn-1) < 7 (20,€0...,Tn-1,En—1). We have
hence defined a mapping 7 : X=* — P; we show that this is a strategy for I in F,
enabling him to reach X°.

Consider a run of the game Fj, during which IT respects the rules and I plays according
to his strategy 7:

I po P1

11 Zo Il cee
We have to show that (z;)ien ¢ X, that is, for every (g;)iew € {0,1}¥, (24, 8i)icw & X'
Let (£;)iew € {0,1}¥; it is enough to show that (x;,¢€;)ie, is the outcome of a run of the
game Fé during which I always follows his strategy 7’ and II always respects the rules.
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Letting p} = 7/(x0,€0,-..,%n-1,6n—1), this means that during the following run of the
game Fé, player IT always respects the rules:

I P
II Z0, €0 x1,€1
But for every i € w, we have that p; = 7(zo,...,zn—1) and p} = 7/(x0,€0, ..., Tn-1,En—1),
so by definition of 7, we have p; < pj. Since player II respects the rules in F,;, we have
that (zo,..., %) < pi, so (20,0, ---,%i,&;) < p;, and IT also respects the rules in Fy.
This concludes the proof.
O
O

Remark that in the proof of theorem II.14, we only need theorem I1.4 for Gy sets,
and hence determinacy for G5 games. Hence, unlike theorem II.4 in its generality, the
last result is provable in ZC'. Actually, as previously, for effective Gowers spaces, it is
even provable in Z + DC.

Again, we actually proved a little more. Indeed, the proof of theorem II.14, combined
with corollaries I1.8 and 11.10, actually shows the following:

Corollary II.16.

1. Let T" be a suitable class of subsets of Polish spaces. If every I'-subset of R¥ is
determined, then for an analytic Gowers space G = (P, X, <,<*,<), every 3T-
subset of X is strategically Ramsey.

2. (ZF+DC+ ADg) Let G = (P, X, <,<*,<) be an effective Gowers space such that
P is a subset of a Polish space. Then every subset of X% is strategically Ramsey.

The rest of this section aims at explaining how we can, in certain cases, get symmetri-
cal Ramsey results like Mathias—Silver’s theorem from theorem II.14, which is asymmet-
rical. By asymmetrical, we mean here that unlike Mathias—Silver’s theorem, in theorem
11.14, both possible conclusion don’t have the same form. Actually, one of these con-
clusions is stronger than the other (and, as it will turn out later, strictly stronger in
general), as it is shown by the following lemma.

Lemma I1.17. Let X € X% and p € P. Suppose that I has a strategy in F), to reach
X. Then II has a strategy in Gy, to reach X.

Proof. Fix T a strategy enabling I to reach X in F,,. We describe a strategy for II in G,
by simulating a play (qo,zo,q1,21,...) of G, by a play (po,zo,p1,21,...) of F}, having
the same outcome and during which I always plays according to 7; this will ensure that
(x0,21,...) € X and that this play of G, will be winning for IL.

Suppose that the first n turns of both games have been played, which means that the
pi’s, the ¢;’s and the x;’s have been choosen for every i < n. For the next turn, in G,
player I plays g, < p, and in F), the strategy 7 tells I to play p, < p. Then ¢, <* py, so

49



by axiom 2. in the definition of a Gowers space, there exists r, € P such that r, < p,
and r, < g,. Let x, € X such that (xq,...,2,) < r, (existing by axiom 4.). Then z,
can be legally played by II in both F, and G, what concludes the proof.

O

Actually, the fact that I has a strategy in F), to reach some set X is in general much
stronger than the fact, for II, to have a strategy in G, to reach the same set, and the first
statement is in fact very close to a “genuine” Ramsey statement. By a “genuine” Ram-
sey statement, we mean a non-game-theoretical statement of the form “every sequence
(Zn)new such that Vn € w (xg,...,2,) < p, and moreover satisfiying some structural
condition, belongs to X”; this is, for example, the form of both possible conclusions of
Mathias—Silver’s theorem (that have the form “every infinite subset of N belongs to X”;
here, we identify infinite sets of integers with strictly increasing sequences of integers,
the fact of being “strictly increasing” being in this case the structural condition men-
tionned above). In the case of the Mathias—Silver space, the link between the existence
of a strategy for I in the asymptotic game and a genuine Ramsey statement is given by
the following lemma:

Lemma 11.18. Work in the Mathias—Silver space, and let X < w*. Suppose that, for
some M € |[w]¥, player I has a strategy in Fpr to reach X. Then there exists an infinite
N € M such that every infinite S N belongs to X (here, we identify infinite subsets
of w with increasing sequences of integers).

Obviously, a weak converse of this lemma holds: if every infinite S © M belongs
to X, then I has a strategy in Fj; to reach X. Indeed, he can always ensure that the
outcome of this game is an increasing sequence.

Proof of lemma I1.18. Without loss of generality, assume M = w. As in the proof of fact
11.15, consider that in F,,, player II is allowed to play against the rules, but loses if she
does. Let 7 be a strategy for player I in F,,, enabling him to reach X’; in this context,
this strategy can be viewed as a mapping associating to each finite sequence of integers a
cofinite subset of w. Without loss of generality, we can assume that these cofinite subsets
are final segments of w; for s € w=“, let 79(s) = min7(s). Now define, by induction, a
strictly increasing sequence (n;)qe, of integers in the following way: let ng = 79(&), and
for i € w, let nj11 be the maximum of n; + 1 and of the m9(n,, ..., n;,_,)’s for k € w and
0<ig<...<ip1 =1 Let N={n;|i€w}; then N is as required. Indeed, an infinite
subset of N has the form {n;, | k € w} for a strictly increasing sequence of integers
(ik)kew- To prove that (n;, )re, € X, it is enough to prove this sequence is the outcome
of some legal run of the game F,, during which player I always plays according to the
strategy 7. In other words, letting, for all k € w, P, = 7(n4,, ..., ni, ), we have to show
that during the following run of the game F,, player II always respects the rules:

I R Py

II Ni, ni,
But by construction, we have that n;,, = ng = 70(&) = minFp, and for k£ > 1,
NG, = Nip_+1 = T0(Nigs - - -, N, ) = min P, which concludes the proof.
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The setting of Gowers spaces does not give enough structure to get such a result in
general. A general version of this result will be given in section II1.3, in the setting of
approximate asymptotic spaces with some additional structure; and, in a very different
way, the setting of Ramsey spaces presented in [61] is also convenient to get non game-
theoretical infinite-dimensional Ramsey results.

In the setting of Gowers spaces, however, the best kinds of conclusions we can get
in general are those involving strategies for I in the asymptotic game. As, in the case
of the Mathias—Silver space, we are able to get an alternative both side of whose are
“genuine” Ramsey statements, it would be tempting to wonder whether, for Gowers
spaces satisfying some additional property, it would be possible to get an alternative
involving a strategy for player I in the asymptotic game in both sides. It turns out that
such a property exists, called the pigeonhole principle.

In the rest of this paper, we denote by ¢ S5 A, for g€ P, se€ X=“ and A € X, the
fact that for every x € X such that s~ x <1 ¢, we have x € A. This notation could sound
strange, however, in spaces where P € P(X) and (zg,...,2,) < ¢ © x, € ¢, we have
that ¢ €5 A iff ¢ € A. Let us introduce the pigeonhole principle.

Definition I1.19. The Gowers space G is said to satisfy the pigeonhole principle if for
every pe P, s € X=¥ and A € X, there exists ¢ < p such that either ¢ =4 A, or ¢ &5 A°.

The pigeonhole principle holds in the Mathias—Silver space: there, it is the trivial
fact that every subset of an infinite set is either infinite, or has infinite complement.
It also holds in the Rosendal space over the field Fy: this is Hindman’s theorem I.6.
However, it does not hold in the Rosendal space over K, for K # Fo: to see this, take for
example for A the set of all vectors whose first nonzero coordinate is 1. Note that apart
from this trivial obstruction, the pigeonhole principle does not hold in the Rosendal
space for much more intrinsic reasons. Indeed, consider the projective Rosendal space,
i.e. the forgetful Gowers space PRx = (P,P(F),<,c*, <), where P(F) is a countably
infinite-dimensional projective space over the field K (that is, the set of vector lines of
some countably infinite-dimensional K-vector space E), P is the set of block subspaces
of E relative to a fixed basis (€;)iew of E, ©* is the inclusion up to finite codimension
as in the definition of the Rosendal space, and where since the space is forgetful, the
relation usually denoted by <1 is viewed as a relation between points and subspaces, here
the inclusion. The definition of this space is made to avoid the previous obstruction to
the pigeonhole principle and other possible ones of the same kind. However, for K # Fo,
the pigeonhole principle still does not hold in PR: take for example for A the set of
all vector lines Kx, where the first and the last non-zero coordinates of x are equal.

Under the pigeonhole principle, we will show a weak converse to lemma I1.17:

Proposition I1.20. Suppose that the Gowers space G satisfies the pigeonhole principle.
Let X € X% and p € P. If player II has a strategy in G to reach X, then there exists
q < p such that I has a strategy in Fy to reach X.
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Before proving this proposition, let us make some remarks. Firstly, proposition I1.20
immediately implies the following corollary:

Corollary I1.21. Suppose that the Gowers space G satisfies the pigeonhole principle.
Let X € X¥ be a strategically Ramsey set. Then for all p € P, there exists ¢ < p such
that in Fy, player I has a strategy either to reach X, or to reach X°.

This corollary has some kind of converse. Indeed, for every s € X <%, consider the
Gowers space G° = (P, X, <, <*, <), where P, X, < and <* are the same as in G and
where t <® p & st < p. Then if G satisfies the pigeonhole principle, all of the G*’s
do so, so strategically Ramsey sets in these spaces satisfy the conclusion of the last
corollary. Remark that conversely, if the conclusion of this corollary holds for sets of the
form {(zp)new | o € A} (where A € X)), in the space G° for every s, then G satisfies
the pigeonhole principle. Indeed, let p € P, s € X=“ and A < X. Consider the set
X = {(zn)new € X¥ | g € A}. By assumption, there exists ¢ < p such that in the space
G°, either I has a strategy in Fy to reach &, or he has one to reach X°. In the first case,
his strategy tells him, at the first turn of F, to play some ¢y < ¢; then, whatever the
answer xg <1® qg of player II is, if player I continues to play according to his strategy,
the outcome of the game will be some sequence (zg, 21, . . .) belonging to X', what means
that xg € A; so go s A. In the second case, we show in the same way that there exists
go S ¢ such that gy S5 A, what concludes. Thus, the satisfaction of the conclusion of
corollary II.21 for clopen sets in G° for every s € X =% is equivalent to the pigeonhole
principle in G. Remark that if G is a forgetful space, then for every s € X<“, we have
G® = @G; so for such a space, the pigeonhle principle is actually equivalent to the fact
that the conclusion of corollary I1.21 holds for sets of the form {(x,)new | o € A}.

Also remark that corollary I1.21 applied to the Mathias—Silver space, combined with
lemma II.18, gives that a set X € [w]|¥ is Ramsey (in the sense of Mathias—Silver’s
theorem) if and only if it is strategically Ramsey in the Mathias—Silver space (when
seen as a subset of w*”). In particular, Mathias—Silver’s theorem is a consequence of the
abstract Rosendal’s theorem I1.14.

We now prove proposition I1.20.

Proof of proposition I1.20. Fix 7 a strategy for IT in G), to reach X. We call a state a
partial play of G, either empty or ending with a move of II, during which IT always plays
according to her strategy. We say that a state realises a sequence (xq,...,Tn—1) € X =%
if it has the form (pg,xo,...,Pn—1,%n—1). We define in the same way the notion of a
total state (which is a total play of G,) and of realisation for a total state; if an infinite
sequence is realised by some total state, then it belongs to X'. We say that a point z € X
is reachable from a state s if there exists r < p such that 7(s 7 r) = z. Denote by A,
the set of all points that are reachable from the state 4. We will use the following fact.

Fact 11.22. For every state 4 realising a finite sequence s, and for every q < p, there
exrists r < q such that r S5 A,.
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Proof. Otherwise, by the pigeonhole principle, there would exist r < ¢ such that
r Cs (A,)° But then I could play r after the partial play 4, and II would answer,
according to her strategy, by « = 7(47 r) that should satisfy s~z < r. Since r S, (A4,)¢,
this would imply that x € (A,)°. But we also have, by definition of A,, that x € A, a
contradiction.

d

Now let (sp)new be an enumeration of X <“ such that if s, < s,, then m < n. We
define, for some n € w, a state 4, realising s,,, by induction in the following way: J9 = @
and for n > 1, letting s,, = s, ~ x for some m < n and some z € X,

e if 4,, has been defined and if = is reachable from 4,,, then choose a r < p such
that © = 7(J,, ~ r) and put 4, = J,,, ~ (r, ),

e otherwise, 4,, is not defined.

Remark that if 4, is defined and if s,, € s,, then 4,, is defined and 4,, € 4,.

We now define a <-decreasing sequence (¢, )new Of elements of P in the following
way: qo = p and

e if 4, is defined, then ¢, 1 is the result of the application of fact I11.22 to 4, and g¢y;

® ¢ni1 = g, Otherwise.

Finally, let ¢ < p be such that for every n € w, ¢ <* ¢,. We will show that I has a
strategy in Fj, to reach X'. We describe this strategy on the following play of Fj:

I Uuo Ui

11 o 1
We actually show that I can always play preserving the fact that, if n; € w is such
that s,, = (xo,...,zi_1), then 4, is defined. This will be enough to conclude: indeed,
U,ew, n: will be a total state realising the sequence (;)icw, showing that this sequence
belongs to X.

Suppose that the ™" turn of the play has just been played, so the sequence
Sn; = (xo,...,xi—1) has been defined, in such a way that 4,, is defined. Then by
construction of g,,+1, we have that g,,11 Ssn, Agni. We let I play some u; such that
w; 5 q and u; < ¢p, 1. Then u; Ss,, Ajni, so whatever is the x; that IT answers with,
this x; is reachable from 4,,. Soif s,,,, = s,, " x;, then 4, , has been defined, and the
wanted property is preserved.

O]

Remark that this proof can be done in ZF + DC, even if the space G is not supposed
effective.
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I1.3 The strength of the adversarial Ramsey principle

In section II.1, we proved the adversarial Ramsey property for Borel sets using Borel
determinacy, and we saw on the trivial example of the space with only one subspace that,
given I' a suitable class of subsets of Polish spaces, the adversarial Ramsey property for
I"-sets implied the determinacy for I'-games on integers. This had two consequences:
on one hand, the use of a sufficiently large fragment of ZFC' is necessary to prove the
adversarial Ramsey property for Borel sets, and on the other hand, it is not possible to
prove it for analytic or coanalytic sets in ZFC. However, the space we used to make this
remark is quite artificial. Of course, we made the same remark in the introduction of this
thesis using the Rosendal space, however we did it by making players play according to
the norms of the vectors, which is quite artificial too (we would not do that, for example,
in the applications to Banach-space geometry, where we usually restrict our attention to
normalized vectors). Therefore, is it natural to ask in which cases using a large fragment
of ZFC is necessary to prove the adversarial Ramsey property for Borel sets, or in which
cases this property could be provable in ZF'C for analytic and coanalytic sets; the aim of
this section is to give an answer to this question. We will see, in particular, that Gowers
spaces where the pigeonhole principle holds, and those where it does not hold, behave
very differently.

In this section and the next one, we fix I' a suitable class of subsets of Polish spaces.
Given a Gowers space G = (P, X, <, <* <), we denote by Advg(I") the statement “every
I-subset of X“ is adversarially Ramsey”, and by Stratg(T") the statement “every I'-subset
of X¥ is strategically Ramsey”. We let Adv(I') be the statement “for every analytic
Gowers space G, Advg(T) holds”, and Strat(I') be the statement “for every analytic
Gowers space G, Stratg(I') holds”. We proved in the two previous sections the following
implications:

Detg(I') == Adv(I') == Det,,(I")

l

Strat(3T")

In the rest of this section, we fix a Gowers space G = (P, X, <, <* <1). We begin
our analysis with making some remarks about games. In the games A,, B,, F}, and G,,
say that the turn n is the sequence of two moves, consisting in one move of each player,
where one player plays a subspace and just after, the other player plays the element
of index n in the outcome. For instance, in a run (pog, o, p1,21,...) of the game F, or
Gp, the turn n is (py, xy,); and in a run (po, o, go, Yo, P1, 21, . . .) of the game A,, or By,
the turn 2n is (pp, ) and the turn 2n + 1 is (g, yn). We say that a turn of a game
played under the subspace p is an asymptotic turn if it has the form (py,,x,) where
pn < P, Player I plays p, and player II plays z,, an anti-asymptotic turn if it has the
form (py,x,) where p, < p, player II plays p, and player I plays z,,, a Gowers turn
if it has the form (py,,x,) where p, < p, player I plays p, and player II plays z,, and
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an anti-Gowers turn if it has the form (py,x,) where p, < p, player II plays p, and
player I plays z,,. In this way, F)}, is a sequence of asymptotic turns, G, is a sequence of
Gowers turn, A, alternates between one anti-Gowers turn and one asymptotic turn, and
B, alternates between one anti-asymptotic turn and one Gowers turn. Given a game
H, we will denote by H* the same game, but where the roles of players I and II are
reversed.

Recall lemma II.17, where we proved that if player I had a strategy in Fj, to reach
some set X', then IT had a strategy in G, to reach X'. This lemma can be rephrased in
the following way: if player I has a strategy in F), to reach X, then he has a strategy in
G toreach X. And the proof of this lemma actually show the following stronger result:
if, in a game H, player I has a strategy to reach some set X', then, in a game obtained
from H by replacing some asymptotic turns by anti-Gowers turns, player I still have a
strategy to reach X. Now remark that if we replace turns with even index (resp. odd
index) in Fj, with anti-Gowers turns, we get A, (resp. By) and that if we replace turns
with odd index in A, (resp. turns with even index in B;), that are asymptotic turns,
with anti-Gowers turns, then we get G7. Thus, we have the following lemma:

Lemma I1.23. Let X € X*“. Consider the following four assertions:
(A) Player I has a strategy to reach X in F);

(B) Player I has a strategy to reach X in Ay;

(C) Player II has a strategy to reach X in Bp;

(D) Player IT has a strategy to reach X in Gp;

Then we have the following implications:
(B)
(A) (D)
(C)

An interesting consequence is the following result:

Proposition I1.24. Suppose that the Gowers space G satisfies the pigeonhole principle.
Then a set X € X% is strategically Ramsey if and only if it is adversarially Ramsey.

Proof. Suppose that X is strategically Ramsey, and let p € P. By corollary I1.21, there
exists ¢ < p such that either player I has a strategy in Fj to reach X, or he has one to
reach X¢. By lemma II.23, we deduce that either I has a strategy in A, to reach &, or
IT has a strategy in B, to reach X°. So X is adversarially Ramsey.
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Now suppose that X' is adversarially Ramsey, and let p € P. Then there exists ¢ < p
such that either I has a strategy in A, to reach X, or II has a strategy in B, to reach
X¢; so by lemma I1.23, either IT has a strategy in G, to reach X', IT has a strategy in G|,
to reach X°. In the second case, using proposition I1.20, we get the existence of r < ¢
such that I has a strategy in F,. to reach X¢. So X is strategically Ramsey.

O

In particular, the proof of the adversarial Ramsey property for Borel sets in spaces
where the pigeonhole principle holds can be carried out in ZC, and the adversarial
Ramsey property is provable, in ZC, for analytic and coanalytic sets. In these spaces,
this property is actually useless. We will now see that in spaces where the pigeonhole
principle does not hold, the situation is the opposite. We will need, here, to restrict our
attention to forgetful Gowers spaces.

Proposition I1.25. Suppose that the Gowers space G is forgetful and does not satisfies
the pigeonhole principle. Then Advg(T') = Det,,(T').

Proof. Suppose Advg(I"). We show that every I'-subset of 2¥ is determined. This implies
that every I'-subset of w* is determined; see for example [47], exercise 6A.8. So we let
Y € 2¥ be a I'-set. Recall that the Gale-Stewart game over 2, that is, the game where
I and II alternate playing elements of 2 and whose outcome is the sequence of these
elements, is denoted by G(2<“). We have to prove that either I has a strategy to reach
Y in this game, or that II has a strategy to reach )¢ in it.

Since G is forgetful, we will consider <1 as a binary relation between elements of X
and elements of P. Since G does not satisfy the pigeonhole principle, there exists p € P
and A € X such that for every ¢ < p, there exists z,y < ¢ with z € A and y € A°. We
let f: X¥ — 2% be the function mapping a sequence (z,,)new to the sequence (o )new
defined by Vn € w (a, = 1 © x,, € A); and we let X = f~1()). Then X isin T, so it is
adversarially Ramsey; let ¢ < p such that either I has a strategy in A, to reach X, or
IT has a strategy in B, to reach X°.

Suppose that I has a strategy 7 to reach X in A;. We show that I has a strategy to
reach ) in the Gale-Stewart game G(2<“) by simulating a play (g, a1, ag,...) of this
game by a play (qo, zo, q1, 1, g2, T2, . ..) of A, during which I always plays according to
7 (here, we use a slightly different notation than usual: the subspaces played by I are
the ¢;’s, for i odd, and the points played by I are the z;’s, for ¢ even). Suppose that
the z;’s, the ¢;’s and the o;’s have been played for every ¢ < 2n. In the game A,, we
make IT play g2, = q. According to the strategy 7, I answers with xo, and qopv1. If
Zon € A, then we make I play ag, = 1 in G(2<%); otherwise, we make him play «as, = 0.
In this game, player IT answers with agp41. If o941 = 1, then, in A,, we make II
play 2,1 € A such that xo,11 <0 gop11; otherwise, we make her play x2,.1 € A° such
that zon41 < @on+1. Remark that this is always possible by the definition of A, since
Gon+1 < ¢ < p. And the plays can continue.

At the end of the plays, the outcome of G(2=%) is (n)new = f((Zn)new). Due to the
use of the strategy 7 by I, we have that (z,) € X, so (ay,) € V) as wanted.

o6



In the same way, if II has a strategy in By to reach X', then we can deduce that II

has a strategy in G(2<“) to reach )¢; this concludes the proof.
O

This proof does not work in spaces that are not forgetful. In these spaces, we need
a slight strengthening of the negation of the pigeonhole principle, for example the fact
that there exists p € P such that for every s € X =%, there exists A; € X such that for
every ¢ < p, we do not have ¢ S5 As nor ¢ S5 AS. In this case, we can define the function
f in the following way: f maps a sequence (&, )new to the unique sequence (v, )pew such

that for every n, a, = 1iff z,, € Ay 2, 1), and carry out the proof in the same way.

A consequence of proposition I1.25 is that if G is a forgetful Gowers space where
the pigeonhole principle does not hold, then you cannot prove Advg(Al) in ZC: you
need to use the powerset axiom and the replacement scheme to prove it. This holds,
for instance, in the projective Rosendal space over a field with at least three elements,
showing that “playing on the norm” is not the only way to get back determinacy from
the adversarial Ramsey property. Also, in these spaces, Advg(X1) and Advg(I1}) are
not provable in ZF'C' and even, are false in ZFC'+V = L. This is a first major difference
between spaces with and without a pigeonhole principle; we will see another one in the
next section.

I1.4 Closure properties and limitations for strategically
Ramsey sets

In this section, we show the same kind of difference of behavior between spaces with and
without a pigeonhole principle as in the previous section, but this kind for strategically
Ramsey sets. We fix, in the whole section, a Gowers space G = (P, X, <, <*,<) and a
suitable class I" of subsets of Polish spaces. The first thing to remark is that if G satisfies
the pigeonhole principle, then by corollary I1.21, the class of strategically Ramsey sets
is closed under taking complements: X € X* is strategically Ramsey if and only if X¢
is so. In particular, in ZFC, every II} subset of X¥ is strategically Ramsey. In spaces
where the pigeonhole principle does not hold, the situation is very different; we firstly
state the two main results of this section and present their consequences, before proving
them.

The first result is a generalisation of a theorem proved by Lépez-Abad [37] in the
context of strategically Ramsey sets in Banach spaces. This result only holds for for-
getful Gowers spaces, and to prove it, we need the negation of a slight weakening of the
pigeonhole principle. We will say that the forgetful space G satisfies the weak pigeonhole
principle if for every A € X, there exists p € P such that either p € A, or p € A€
(where p € A abusively denotes the fact that for every x € X, if z < p, then x € A).
Of course, in most of the concrete spaces we consider, P has a maximum 1 that is iso-
morphic to every subspace (meaning, here, that for every py € P, there are bijections

o7



®:P—{peP|p<py}and p: X — {xre X | x< pp} that preserve the relations <,
<* and <); this is, for example, the case of the Mathias—Silver space or of the Rosendal
space. In these spaces, the weak pigeonhole principle is equivalent to the pigeonhole
principle. Our result is the following:

Proposition I1.26. Suppose that G is forgetful and does not satisfy the weak pigeonhole
principle. Then Stratg(I') = Stratg(3T).

For the second result we need to ensure the fact that the space G is non-trivial
enough. We say that the space G is standard if |P| < ¢ and if G satisfies the following
property: for every s € X=“ and for every p € P, there exists ¢, < p such that no
x € X satisfies at the same time s~ x <1 ¢ and s~ x < r. This property is for instance
satisfied by the Mathias—Silver space and by the Rosendal space. Our second result is
the following:

Proposition 11.27. Suppose that the Gowers space G is standard. Then there exists
X € XY satisfying the following property: for every p € P, player II has no strategy in
G, to reach X, and no strategy in G, to reach X°. In particular, X is not strategically
Ramsey. Moreover, if V = L, then such a set X can be choosen 3.

Let us discuss the consequences of these two propositions. Firstly, we deduce immedi-
ately that if G is forgetful, standard, and does not satisfy the weak pigeonhole principle,
then if V' = L, there exist II}-sets that are not strategically Ramsey in this space. In
particular, in this space, the class of strategically Ramsey sets is not closed under com-
plements in general. On the other hand, if G is standard and satisfies the pigeonhole
principle, then Stratg(I') does not imply Stratg(3I') in general, since ZFC' proves that
every ITi-set in G is strategically Ramsey, but does not prove it for 3i-sets. So, roughly
speaking, we have a dichotomy between, on one side, spaces with a pigeonhole principle
where the class of strategically Ramsey sets is closed under complements but not projec-
tions, and spaces without a pigeonhole principle where the class of strategically Ramsey
sets is closed under projections but not complements.

We finish this section by giving the proof of propositions I1.26 and I1.27.

Proof of proposition 11.26. As usual, since G is forgetful, we will consider <t as a relation
between points and subspaces. As in the proof of theorem II1.14, we let X' = X x {0, 1}
and we define a relation <€ X' x P by (z,e) <sp < z<p. Then G’ = (P, X', <, <*, <)
is a forgetful Gowers space. To avoid confusion, the asymptotic game and Gowers’ game
will be respectively denoted by Fj, and G, is the space G, an by Fé and G:'D in the space
G'. The proof of theorem II.14 actually show that Stratg (I') = Stratg(3T'), so it remains
to prove that Stratg(I') = Stratg: (T).

So suppose Stratg(I'). Since G does not satisfy the weak pigeonhole principle, there
exists A € X such that for every p € P, there exists x,y <« p such that z € A and
y € A°. We define a mapping f : X — {0,1} by f(z) = 1 & = € A, and a mapping
F: X% - X" by F((xn)new) = (x0, f(x1), x2, f(23), 24, f(x5),...). We show that, for
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X' X" if F71(X’) is strategically Ramsey in G, then &” is strategically Ramsey in
G’'. Since the mapping F is continuous, it will be enough to conclude.

So we let X’ € X'*, and we suppose that X = F~1(X") is strategically Ramsey. Let
p € P. There exists ¢ < P such that either I has a strategy in F}, to reach A, or II has
a strategy in G to reach X.

First case: I has a strategy in Fy to reach X°. We show that I has a strategy in Fq’ to
reach X’¢ by simulating a play of this game by a play of F, where I uses a strategy to
reach X¢. Suppose that the first n turns of Fé and the first 2n turns of F, have been
played. What happens during the (n + 1)™ turn of Fy and during the (2n + 1)t and
the (2n + 2)' turns of F, is represented in the diagrams below:

I oo qn Tn
Fy
I In
!
Fq
11 Tn,En

According to his strategy in Fy, I plays ¢, < ¢. His strategy in Fé will consist in copying
this move. In Fy, IT answers with (z,e,) <’ 5. Since we have that x,, < g,, we can
make IT play x, in Fj,. According to his strategy, I will answer with r, < g. Then, by
definition of A, there exists y, < 7, such that f(y,) = ,. We make II play y, in Fy,
and the games can continue.

At the end of the games, the outcome (xg, g, x1,€1,...) of the game Fé will be the
image by F' of the outcome (zo,yo,z1,¥1,...) of Fy. By the choice of the strategy of I
in F, the outcome of this game is in X, so the outcome of Fé is in X’¢ as wanted.

Second case: II has a strategy in Gy to reach X. We show that IT has a strategy in Gg
to reach X’ by simulating a play of this game by a play of G, where IT uses a strategy
to reach X. Suppose that the first n turns of G:] and the first 2n turns of G4 have been
played. What happens during the (n + 1)* turn of Gy, and during the (2n + ™ and
the (2n + 2)' turns of G, is represented in the diagrams below:

I ... qn qn
Gq
11 .. Tn, UYn
I In
!
Gq
11 .. Ty f(yn)

In G;, I plays ¢, < ¢. We make him repeat this moves two times in G, and we denote
by z, and y, the two successive answers of II in this game, according to her strategy. In
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Gy, the strategy of IT will consist in playing (z,, f(y.)) € X’. In this way, the outcome
of the game Gg will be the image by F of the outcome of Gy, which is in X’; so the
outcome of G is in &”.

O

In order to prove proposition I1.27, we will need to perform a diagonal argument for
which we need to have at most continuum-many strategies in Gowers’ game. For this
reason, we will need to give a countable version of this game. Exceptionnaly, for technical
reasons, we will define this game with a winning condition rather than an outcome.

Definition I1.28. Let pe P and X € X“. The countable Gowers’ game under p with
target set X', denoted by CG,(X), is the following two-players game:

0 .1 n0 0 ,.1 ni
I =zg,25,...,7 A N

II Yo Y1
It is played in the following way. I begins with playing a sequence (20, z{, . ..) of elements
of X. At some point, IT can choose to interrupt him at some point z{° and to choose
Yo € {20, 2, ..., z(°}. In this case, I begins back to choose points 29, z1, ..., and again,
IT can choose to interrupt him at some point 7" by choosing y; € {x?, ri,. .. ,x'}, ete.
Two cases can occur:

o If IT always chooses to interrupt I after some time, then at the end of the game,
IT will have produced an infinite sequence (y;)e,- In this case, IT wins if and only
if this sequence belongs to X.

e If at some point, IT chooses not to interrupt I, then I will continue to play points
indefinitely and the game will stop after w points have been played. In this case,
IT will have produced a finite sequence s = (yo, ..., ¥i—1), and after that, I will
have produced an infinite sequence (2 )nen; we can let A = {7 | n € w}. Then II
wins if and only if for no ¢ < p, we have that A ={zx e X | s~z < q}.

In some situations, specifying the target set, or even the subspace under which the
game is played, will be useless (as only the winning condition depend on this infor-
mation); in this case, the countable Gowers’ game will be denoted by CG), or simply

CG.

The interest of this game is that it is in fact equivalent to Gowers’ game. More
precisely, we have:

Lemma I1.29. Letpe P and X € X. Then:

1. player I has a strategy in G, to reach X¢ if and only if he has a winning strategy
in CGp(X);

2. player II has a strategy in G, to reach X if and only if she has a winning strategy
in CGp(X).
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Proof.

1. (=) Suppose that I has a strategy to reach X¢ in G,. Then he can use
the same strategy to win CGp(X), but, instead of playing the subspace
pi, he plays a (non-necessarily injective) enumeration x?,x%, ... of the set
{x € X | s; " x < p;}, where s; = (yo,...,¥i—1) is the sequence of points
already played by II. If IT never interrupts him, then according to the rules
of CG,(X), I will win this game. So we can suppose that IT interrputs him
to play a y; such that (yo,...,y;) < p;, and the play can continue exactly as
in G.

We  simulate a play  (po,v0,p1,%1,...) of G, with a play
(z8,...,20% yo, 2%, ..., 21" y1,...) where I plays using a winning strat-
egy. Suppose that, for j < i, all the p; and the y; have been played in G,
and that the last move in CG,(X) is II playing y;—1. In CGp(X), we let I
play x?,x%, ..., according to his strategy. If II never interrupts it, he will
have produced an infinite sequence (z}')pew, and with A = {z]' | n € w} and
s = (yo,-..,Yi—1), knowing that I is winning, we will get that there exists
pi < psuch that A = {x € X | s™ 2 < p;}. Then we make I play p; in G); II
will answer by y; such that s~ y; € A, so by construction, we will have that
y; = x;* for some n; € w, and in CG,(X), IT could have interrupted I after
he played z;" to play y;. We will suppose that II did that, and the games
can continue. At the end, the outcome of G, is an infinite sequence of points
played by II in CG,(X) while I was using his winning strategy, so it belongs
to A€ as wanted.

We simulate a play (9, ...,23%, y0, 2%, ..., 27", y1,...) of CG,(X) with a play
(o, Y0, P1, Y1, - - .) of G, where IT uses a strategy to reach X'. Suppose that the
last move in both games is y;—1, played by II. We say that y € X is reachable
if there exists p; < p such that, if I plays p; in G, then the strategy of II tells
him to answer with y. The strategy of IT in CG,(X) will be the following: she
watches I playing a sequence of points (z, 7}, ...), until he plays a reachable
point. If, for some n; € w, =" is reachable, then II interrupts him and plays
yi = x;". Then, in Gp, by assumption there exists a p; that I can play and
such that IT will answer, according to her strategy, with y;, and both games
can continue. In the opposite case, if none of the points z}'’s played by I in
CGp(X) is reachable, then IT never interrupts him. In this way, I will produce
a sequence (27 )new, and we will see that he loses the game CGp,(X). Suppose
not. Then, denoting by s = (yo,...,yi—1) the sequence of points already
played by IT in CG,(X), there exists p; < p such that the set {z]' | n € w} is
equal to the set {z € X | s~ 2 < p;}. Then, I can play p; in the game G, and
IT will answer, according to her strategy, with a y; belonging to these sets.
This y; is reachable, so this contradict the fact that no term of the sequence
(21 )new was reachable.

In the case were II plays only finitely many points in CG,(X), we just saw
that she wins this game. If she produces an infinite sequence (¥;);e,, then
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this sequence is exactly the outcome of the auxiliary game G, so it belongs
to X and IT wins.

(<) The proof is the same as for the direction (<) of 1.. If IT has a strategy to
win CGp(X), then she can use this strategy in G, by believing that player I
plays, instead of the p;’s, the points of the sets {y € X | (vo,...,%i-1,y) < i}
successively. Her strategy will always make her interrupt I, because if it did
not, then I could enumerate a set of this form and would win immediately.

O]

Now let 7 be a strategy for IT in the countable Gowers’ game C'G (we do not need
to specify the subspace under which the game is played, nor the target set to define
the notion of a strategy in this game). Such a strategy can be seen as a function
7 : Seq(X) — X u{x}: after I has played 2, ...,2;_1 in CG, if 7(20,...,2k-1) =y € X,
this means that IT has to interrupt I and to play y, and if 7(zo, ..., 2x—1) = *, then II
has to wait and to let I play another point. (In particular, there are at most continuum-
many such strategies.) If 7 is such a strategy, we let [7] be the set of sequences (y;)iew
that can be produced by II in plays of CG where she interrupts I infinitely many times
and always plays according to her strategy 7. We say that the strategy 7 is good if
|[7]| = ¢. Given a subspace p € P, we say that a strategy 7 is p-correct if whenever,
during a play of C'G), II always plays according to 7 and only interrupt I finitely many
times, then I loses this play. (In this context, saying that I loses the play has a sense
even without specifying the target set, since the winning condition for IT when II only
interrupts I finitely many times only depends on p.) Remark that a strategy 7 is winning
for IT in the game CGp(X) if and only if it is p-correct and [7] < X.

Lemma I1.30. Suppose that the Gowers space G is standard. Let T be a strategy for IT
in CG. If there exists p € P such that T is p-correct, then T is good.

Proof. Suppose that there exists p € P such that 7 is p-correct and fix such a p. Let
X = [r]. Then by the previous remark, IT has a strategy winning strategy in CG,(X),
so by lemma I1.29, she has a strategy o in G, to reach X'. As usual, we define a state as a
partial play of G, ending with a move of IT and during which IT always plays according to

o; this play realises a sequence (xg, ..., Tp—1) if it has the form (pg, zo, ..., Pn—1, Tn—1)-
We build inductively, for o € 2<%/ a state 4, realising a sequence s, of length |a], in
such a way that for o, 5 € 2%, we have o € = J, S J3, and if |a| = |f], then

a # 3= s, # sg. This will be enough to conclude: letting f(x) = [, 8z, Will define
a one-to-one mapping f : 2% — X.

We let 45 = s = I. Let a € 2¥ and suppose that 4, and s, have been built. Then,
since G is standard, then there exists g, < p such that no x € X satisfies simultaneously
Sa " x<aqand s, x<r. In particular, x = 0(J, ~ ¢q) and y = o(J, ~ r) are distinct
so we can let 4~ = Jo " (¢, %), Su~0 = Sa X, Io~1 = Ja (1Y), and s,~; = Sa Y,
and this achieves the construction.

O
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Lemma II.31. Let X € X¥. If, for some p € P, II has a strategy in G, to reach X,
then there is a good strategy T for II in CG such that [T] € X.

Proof. By lemma I1.29, if II has a strategy in G, to reach 7, then she has a winning
strategy 7 in the game C'G,(X). In particular, this strategy has to be satisfy [7] € X.
Moreover, it has to be p-correct, so by lemma I1.30, it is good.

O

We can now prove the “ZFC” part of proposition I1.27. For the “V = L” part, we
will need some more lemmas and we will do that later. In the rest of this section, we
will use the letters u, v, and w to denote elements of Polish spaces (as w* or X¥).

Proof of proposition I1.27, first part. Suppose that the space G is standard; we build a
set X © X such that for every p € P, II has no strategy in G, to reach X', and she has
no strategy in G, to reach X¢. By lemma I1.31, we only have to ensure that for every
good strategy 7 for IT in CG, we have [7] n X # @ and [7] n X¢ # @. Let (7a)a<c be
a (non-necessarily injective) enumeration of good strategies for IT in CG. We can build
inductively two sequences (g )a<c and (vq)a<c of elements of X“ such that for every a,
Ua # Vo and Uq, Vo € [T]\{ug, ve | € < a}. Then the set X' = {u, | @ < ¢} is as wanted.

Of course, the X we built cannot be strategically Ramsey: indeed, by lemma I1.17,
we get that for no p € P, I can have a strategy in F), to reach X°.
O

For the “V = L” part of proposition 11.27, we will use a well-known result by Goédel.
We begin with a definition.

Definition I1.32. A well-ordering < of a Polish space U is said to be 31-good if it has
order-type wi, if it is a 2§—subset of U?, and if the relation R < U¥ x U defined by
(un)new R<v © {u, | new} = {wew? | w<v}is Bi.

Godel’s result is the following (for a proof, see for example [29], lemma 25.27):

Theorem I1.33 (Godel). Suppose V. = L. Then there exists a Xi-good well-ordering
on w¥.

Obviously, it follows that if V' = L, such an ordering exists on every Polish space.
Remark that if < is a 3-good well-ordering on a Polish space U, then it is actually
a Al-subset of U?: indeed, u < v can be written —(u = v v v < u), which is a TI}
definition. In the same way, the relation R. is in fact A%, since (un)new R<v can be
written Vu € U (u < v < In € w u = uy,), which is a II} definition.

Also remark that if U and V are Polish spaces, if < is a 3i-good well order-
ing on V, and if A is a A%—subset of U x V, then the set B € U x V defined
by (u,v) € B if and only if the set {w € w* | (u,w) € A} is nonempty and
v is its <-least element, is A%. Indeed, the fact that (u,v) € B can be written
(u,v) € A AVw € w* (w < v = (u,w) ¢ A), which is a IIi-definition; and it can also
be written (u,v) € A A (v = vy v HWn)new € V¥ (Wn)new R< v A VN € w (u,wy) ¢ A)),
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which is a Xi-definition (here, vy denotes the <-least element of V). We will refer to
this fact later by saying that minimisation preserves A%-sets.

Our proof of the “V = L” part of proposition I1.27 will be the same as this of the
“ZFC” part, but we will replace the use of the axiom of choice by a careful use of a
31-good well ordering, enabling us to ensure that the set X we build is definable enough.
The only difficulty here is to compute complexities.

We denote by Strat the sets of strategies for I in the game CG.

Lemma 11.34.

1.

2.
3.

Strat is a closed subset of the set of mappings Seq(X) — X u {x}. In particular,
it is a Polish space.

The set {(1,u) € Strat x X“ | u € [7]} is an analytic subset of Strat x X“.

The set of good strategies is a Ak-subset of Strat.

Proof. 1. Let 7 : Seq(X) — X u{x} such that 7 ¢ Strat. Then there exist a finite se-

quence (z0,...,z(°%, 2%, ..., ... 2Y, ... 2l") € Seq(X) such that for every j < i
and for every n < n;, we have T(:L’g,...,.CESO,...,.739»_1,...x;Li_ll,l’?,...,(E?) = x,
for every j < i we have T(mg,...,xgo,...,a:?,...,x?j) € {x?,...,x?j}, and
(@), . a2l al) ¢ {2, 2 Any 77 Seq(X) — X U {x} satis-

fying the same conditions is not in Strat, showing that the complement of Strat is
open.

. For 7 € Strat, and for v € X%, let 7-v € XS¥ be the sequence of the points

played by II in a play of CG where he always plays according to 7, and where
I plays the sequence v. Denote by Inf the set of pairs (1,v) € Strat x X%
such that 7 - v is an infinite sequence. The fact that (7, (x,)new) € Inf can be
written “eventually, 7(xq,...,xx) = *”, so Inf is a Gy-subset of Strat x X%, so
a Polish space. Moreover, the mapping (7,v) — 7 -v from Inf to X“ is clearly
continuous. The property u € [7], for 7 € Strat and u € X“, can be written as
Jv e Inf (7 -v = u), so this property in analytic, as wanted.

. For 7 € Strat, we have that 7 is good if and only if for every (u,)new € (X“)¥,

there exists v € X“ such that (r,v) € Inf and Vn € w (7 -v # u,); this is a
ITi-definition. We now have to find a ¥i-definition. For 7 € Strat, we denote by
Fin, the set of v € X% such that (7,v) € Fin. We define the equivalence relation
E:on Fin, by v E;wiff 7-v = 7-w, in such a way that 7 is good if and only if E,
has uncountably many classes. The relation E; is Borel, so by Silver’s dichotomy
theorem 1.27, we get that 7 is good if and only if there exists a continuous mapping
f : 2% — Fin, such that for every w,w’ € 2¥, w # v’ = (f(w), f(w')) ¢ E;.
Knowing that the set of continuous mappings 2 — X%, with the uniform metric,
is Polish (see [32], theorem 4.19), we see that this characterisation of goodness is
I

O
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We are now ready to prove the “V = L” part of proposition I1.27.

Proof of proposition II.27, second part. We suppose V = L. We fix a Xl-good well
ordering <g on Strat and another one < x on (X“)2. We define two sequences (u,)reStrat
and (vr)reStrat, sSimultaneously by induction on the relation <g in the following way.
Suppose that the u, and v, have been defined for all ¢ <g 7. Then, if 7 is good, we
let (ur,v,) be the <y-least pair (u,v) € (X¥)? such that u,v € [T]\{uo, vy | o <5 T},
and u # v. Otherwise, we let (u,,v,) be the <x-least pair (u,v) € (X“)? such that
u # v and u,v ¢ {us,v, | 0 <g 7}. By construction, we have that all the u,’s and the
v;’s, for 7 € Strat, are pairwise distinct, and that for every good 7 € Strat, we have
ur, vy € [7]. So if we let X = {u, | 7 € Strat}, then by lemma I1.31, for every p € P, IT
has no strategy in G}, to reach X, nor to reach X, as wanted. It remains to compute
the complexity of X.

We say that a sequence (7, ul,, v} )new € (Strat x X“ x X¥)¥ is nice is it satisfies
the following properties:

(1) The set {7, | n € w} is an initial segment of Strat for the ordering <g;
(2) For every n € w, we have u), = u,, and v}, = v,, .

Then for v € X%, the fact that u € X can be written “there exists a nice sequence
(T ULy, Ul ) new € (Strat x X¥ x X“)¥ and n € w such that u = u!,”. So to prove that X
is 2%, it is enough to prove that the set of nice sequences is E%.

Property (1) in the definition of a nice sequence can be written
At € Strat ((Tn)new R<g T), so it is i

If we know that property (1) is satisfied, then property (2) can be written in the
following way: “for every n € w, (un, vy,) is the <x-least pair (u,v) € X“ x X¥ satisfying
the following properties:

(a) u # v, and for every m € w, if 7, <g Ty, then u # U, U # Uy, v # Uy, and
UV ZF U

(b) if 7, is good, then u,v € [1,]”.

Property (a) is A?, and by lemma I1.34, property (b) is also Al. Since minimisation
preserves Al set, we deduce that this writing of property (2) is Ad. So the set of nice
sequences is Z%, as wanted.

O
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I1.5 The adversarial Ramsey property under large cardinal
assumptions

As we already saw, if ' is a class of subsets of Polish spaces, then Adv(I") is implied
by Detgr(T") and implies Det,(I'), and an interesting question is to know where Adv(T)
lies between these two determinacy statements, both in terms of implication and of
consistency strength. We do not know much about this question; in this section, we
discuss the consequences of some usual large cardinal assumptions on the adversarial
Ramsey property in order to have a better idea of its strength. In particular, we will
give an answer to Rosendal’s question 1.17. As usual, we fix G = (P, X, <, <%, <) a
Gowers space.

Recall that, for k an uncountable cardinal, an ultrafilter on a set X is k-complete if
it is closed under intersections of size < k (if & = Wy, such an ultrafilter will also be said
o-complete). A measurable cardinal is an uncountable cardinal x on which there exists
a non-principal, k-complete ultrafilter. Such cardinals are inaccessible, and it can be
shown that the existence of a measurable cardinal is equivalent to the existence of a set
X with a non-principal, o-complete ultrafilter on X (see [29], lemmas 10.2 and 10.4).

The first determinacy result under large cardinal assumptions was proved by Martin
[38]. We recall that, unless otherwise specified, if X is a set and TS X =% a tree, we put
the discrete topology on X, and the topology induced by the product topology on [T].

Theorem I1.35 (Martin). Suppose that there exists a measurable cardinal k. Let X be
a set with | X| <k and T S X=% be a tree. Then every Xi-subset of [T] is determined.

In particular, if there exists a measurable cardinal above |P| and if X € 31(X%) then
in Kastanas’ game, either player I has a strategy to reach X, or IT has one to reach X°.
So proposition I1.6, and the proof of theorem I1.14, give:

Theorem 11.36. If there exists a measurable cardinal above |P|, then every analytic
subset of X¥ is adversarially Ramsey, and every $3-subset of X* is strategically Ramsey.

In particular, this gives an answer to Rosendal’s question 1.17.

Determinacy results for higher levels of the projective hierarchy were then proved,
based on the notion of Woodin cardinals. We will not give the definition of a Woodin
cardinal, since it is quite sophisticated and would have no interest here. Woodin cardinals
are inaccessible, they are not necessarily measurable but contain a stationary set of
measurable cardinals. For more details, see [29], section 34. The first determinacy
results assuming the existence of Woodin cardinals were proved by Martin and Steel
[41, 42]:

Theorem I1.37 (Martin—Steel). Suppose that there exist n Woodin cardinals, and a
measurable cardinal above them. Let X be a set with cardinality strictly less than the
Woodins, and T = X< be a tree. Then every X} ,,-subset of [T is determined.

(The proof given by Martin and Steel is for X = w, but a proof of the general case
can be found in [50]). Then, Woodin proves the following result (see [42]):
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Theorem II.38 (Woodin). Suppose that there exist w Woodin cardinals and a measur-
able above them. Then every subset of w* that belongs to L(R) is determined.

L(R) is the class of sets constructible from reals, see [29], section 13. An interesting
consequence of the last theorem is that, under the same hypotheses, AD holds in L(R).
Indeed strategies for games on w can be coded by reals, so are in L(R); moreover, the
sentence, for instance, “r is a strategy for I in G(w=*) to reach A”, only quantifies over
sequences of integers, so is absolute for L(R). This shows that “being determined”, for
a game on integers, is absolute for L(R). Since ZF + DC' also holds in L(R), this give
the consistency of the theory ZF + DC + AD relatively to large cardinal axioms.

—~

Given Y an uncountable Polish space, we will denote by L(R)(Y) the set of A S Y
such that there exist a Borel mapping ¢ : ¥ — w* and B € P(w*¥) n L(R) such that
A = ¢~Y(B). Since Borel subsets of w* and Borel mappings from w* to itself can be

—~—

coded by real numbers, these sets and mappings are in L(R). So we deduce that L(R)
is a suitable class of subsets of Polish spaces. Neeman confirmed to the author that
theorem I1.38 was also true for games on real numbers. From this result, and from
theorem I1.37, we can deduce the following results:

Theorem I1.39.

1. If there are n Woodin cardinals above |P| and a measurable cardinal above them,
then every E}LH—subset of X% is adversarially Ramsey, and every E}HQ—subset of
XY is strategically Ramsey.

2. Suppose that there are w Woodin cardinals, and a measurable cardinal above them.
Suppose that the space G is analytic. Then every I/J(\R/)—subset of X¥ is adversarially
Ramsey and strategically Ramsey.

Proof. The proof of 1. is exactly the same as the proof of theorem I1.36, using Martin
and Steel’s result. For 2., we use Woodin’s /@ult for games on reals with outcome in
L(R), corollary I1.8 and the fact that every L(R)-subset of R¥ (with its Polish topology)
is in L(R) (this is due to the fact that Borel mappings RY — w® can be coded by real
numbers).

O]

Corollary I1.40. If the theory ZFC+ “there exist w Woodin cardinals and a measurable

above them” is consistent, then the following theory is also consistent: ZF + DC+ “in
every analytic Gowers spaces, every set is adversarially and strategically Ramsey”.

Proof. We suppose the existence of w Woodin cardinals and a measurable above them,
and we show that the sentence “in every analytic Gowers spaces, every set is adver-
sarially Ramsey” is satisfied in L(R). The case of strategically Ramsey sets will follow
since if every set is adversarially Ramsey, then every set is strategically Ramsey. Let
G = (P,X,<,<* <) € L(R) such that L(R) satisfies “G is an analytic Gowers space”.
Then in V, G is an analytic Gowers space, and subsets of X that are in L(R) are in
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L(R)(X*), so by theorem II.39, they are adversarially Ramsey in V. It remains to prove
that the property of being adversarially Ramsey relativizes to L(R). For this, we have
to prove that given p € P and X € P(X“) n L(R), the two notions “I has a strategy in
A, to reach X" and “II has a strategy in B), to reach X relativize to L(R). Since both
proofs are the same, we show it for A,.

As well as we did for Gowers games in the the last section (see definition I1.28), we
will here define a countable version of the game A,. For p € P, and for X € X%, we
define the game C'A,(X) in the following way:

I yo,zg,z(l),...,zgo

IT ad,2l,...,25° to,xd, zd, ... 2™
It is played in the following way. II begins with playing a sequence (z9,zd,...) of
elements of X. At some point, I can choose to interrupt her at some point z;" and

to choose yo € {20, 23,...,2("°}. If he does, then after playing yo, I plays a sequence
(28,28,...) of elements f X, and IT can choose to interrupt him at some point 2;° by
choosing ¢y € {28,25, ..., 2,°}. If she does, then IT begins back playing a sequence

(z9,21,...), etc.. Three cases can occur:

e First case: both of the player never let the other one play infinitely many consecu-
tive times without interrupting him. Then at the end of the game, the players will
have produced an infinite sequence (yo,to,y1,t1,...) € X*. In this case, I wins if
and only if this sequence belongs to X.

e Second case: at some point, I chooses not to interrupt II and to let her play
infinitely many successive times. Then IT will continue to play points indefinitely
and the game will stop after w points have been played. In this case, the players will
have produced a finite sequence s = (yo, to, y1,t1,--.,Yi—1,ti—1), and after that, II
will have produced an infinite sequence (27 )nen; we can let A = {z | n € w}.
Then I wins if and only if for no ¢ < p, we have that A ={zx e X | s~ z < q}.

e Third case: at some point, IT chooses not to interrupt I and to let him play
infinitely many successive times. Then I will continue to play points indefinitely
and the game will stop after w points have been played. In this case, the players
will have produced a finite sequence s = (yo, to, y1,t1,..-,ti—1,%;), and after that,
I will have produced an infinite sequence (z]")new; we can let A = {2]' | n € w}.
Then I wins if and only if for some ¢ $ p, we have that A ={z e X | s~ x < ¢}.

Using exactly the same proof as in lemma I1.29, we can show the following:

e player I has a strategy in A, to reach X if and only if he has a winning strategy
in CA,(X);

e player II has a strategy in A, to reach X'“ if and only if she has a winning strategy
in CA,(X).
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In particular, it is sufficient to show that for p € P and X € P(X¥) n L(R), the
notion “I has a winning strategy in C'A,(X)” relativizes to L(R). But this is true,
since strategies in this game are points of a Polish space and thus can be coded by real
numbers.

O]

Our results theorem I1.36, theorem I1.39 and corollary I1.40 are certainly not optimal,
since the statements on the adversarial Ramsey property they give are not enough to
recover the large cardinal assumptions used to deduce them, even in terms of consistency.
And they are not enough to compare the stength of Adv(I") with this of Det,(I") (for
the classes I" that are studied here), because the statements Det,,(I"') have already been
shown to be equiconsistent to large cardinal assumptions that are strictly weaker as those
used in our results. For instance, Harrington showed [26] that Det,,(21) is equivalent to
the existence of a sharp for every real number, an hypothesis that is weaker in consistency
than the existence of a measurable cardinal and that is not enough to deduce Detg(31)
(and thus, to deduce Adv(X21) using our methods). This particular case will be discussed
at the end of this section. Then, Woodin showed that the determinacy of games on w
with payoff in L(R) had the same consistency strength as the existence of w Woodin
cardinals (see [33] for a proof of the direction from determinacy to large cardinals,
and [50] for the other direction). However, it seems that w Woodin cardinals are not
enough to get the determinacy of games on real numbers with payoff in L(R), so to
get AdV(IT(TR/)) using our methods. The same occur for the case of Xl-sets for n > 2,
for which Det,,(X]) has been shown to be equivalent in consistency strength to large
cardinal assumptions by Woodin (see [48]). So the question of the comparison between
Adv(T") and Det,(I') remains widely open. However, Adv(I') seem, in general, to be
quite close to Det,,(I'), and to illustrate this, in the rest of this section, we will study the
link between the adversarial Ramsey property and the property of being homogeneously
Souslin, a property of sets of sequences closely linked to determinacy.

In what follows, if X and K are sets, and we consider a tree T on X x K as a
subset of X <% x K<“ whose elements are pairs of finite sequences of the same length.
Given s € X< we will let T, = {t € KI*l | (s,¢) € T}. We will often identify the
sets (X x K)* and X“ x K“ and thus consider [T']| as a subset of X¥ x K“. We
denote by p : X¥ x K¥ — X% the first projection. If m < n are integers, and if
U is an ultrafilter on K™, we will denote by ), () the ultrafilter on K™ defined by
Ae 7'['%(2/{) < {(k’o,...,knfl) e K" | (ko,...,k‘mfl) € A} elU.

Definition I1.41.
1. Let X, K be sets and T be a tree on X x K. We say that T is homogeneous if

there exists a family (Us)sex<w, where U is a max(|X |, Ry)-complete ultrafilter
on K5l satisfying the following properties:
(a) for every se X=Y T, € Us;

(b) for every s,t € X <% with s C ¢, we have Us = ol (Uy);

Is
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(c) for every x € p(|T]), and for every sequence of sets (Ap)new € | [hew Uzins
there exists k € K“ such that for every n € w, ky, € A,.

2. Let X be a set and X € X“. We say that X is homogeneously Souslin if there
exists a set K and an homogeneous tree 7' on X x K such that X = p([T]).

This is a classical fact that homogeneously Souslin sets are determined (see [50],
section 4). This fact is often used in proofs of determinacy from large cardinals; for
example, the results of Martin from a measurable cardinal, or of Martin and Steel, and
of Woodin, supposing the existence of Woodin cardinals with a measurable above them,
actually show the fact that the studied sets are homogeneously Souslin. Our result will
be the following;:

Theorem I1.42. Let G = (P, X, <, <*,<0) be a Gowers space and suppose that there
is no measurable cardinal < |P|. Then every homogeneously Souslin subset of X is
determined.

This result is interesting because unlike previous results, it does not deduce the
adversarial Ramsey property for a set X from an assumption on a set of real numbers,
but from an assumption on the set X himself. Before proving it, we recall an usual fact
about measurable cardinals: if U is a o-complete, nonprincipal ultrafilter on a set K,
then there exists a measurable cardinal x such that U is actually k-complete (this is a
consegence of the proof of lemma 10.2 in [29]).

Proof of theorem I1.42. Let X € X“ be a homogeneously Souslin set, K a set, T a
homogeneous tree on X x K such that X = p([T), and (Us)sex < a family of ultrafilters
witnessing that T' is a homogeneous tree. Given s € X <%, if U is nonprincipal, then by
the previous remark, it is k-complete for a measurable cardinal x, so in particular it is
| P|T-complete; and this is obviously also true if Us is principal.

Let p € P; we show that either I has a strategy in Kastanas’ game K, to reach X,
or IT has one to reach X°. For this, we consider the following game KJ:

I o, o, ko lo, 1, q1, k1

IT  po Yo, P1 Y1, p2
where the z;’s and the y;’s are elements of X, the p;’s and the ¢;’s are elements of P,
and the k;’s and the [;’s are elements of K. The rules are the following:

e for I: for all i € w, (o, y0,---,Ti—1,Yi-1, i) < p; and ¢; < p;;
e for IT: py < p, and for all i € w, (xo,yo.-.,Ti¥;) < ¢ and pj41 < ;.

The outcome of the game is the pair of sequences
((:Eo, Yo, 1, Y1, - - .), (k‘o, lo, ]{21, ll, .. )) e XY x K¥.

Since [T] is a closed subset of X« x K, then either I has a strategy to reach [T'] in
K, or IT has one to reach [T]°. So the conclusion will follow from the following fact:
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Fact I1.43.
1. If I has a strategy in K to reach [T], then he has a strategy in K to reach X.

2. If IT has a strategy in K, to reach [T]¢, then she has a strategy in K, to reach X°.

Proof. 1. If T has a strategy in K to reach [T], then the same strategy used in K,
but omitting to display the k;’s and the I;’s, will enable him to reach X.

2. Let 7% be a strategy for ITin K; toreach [T°. Let e = (po, 20, q0; Y0, - - - » Pns Tns Gn)
be a partial play of K, ending with a move of I, and let s = (zo,v0,...,2Zn).
Since Uy is |P|T-complete, there exist an unique pair (yn,pni1) € X x P such
that {(ko.lo,...,kn) € K> | 7%(po, 20, g0, ko, Y0, P1: 105 - - - s Prs ln—1> Ty G Kin)
= (Yn,pn+1)} € Us; let call this pair 7(e). This defines a strategy 7 for II in
K,; we will show that this strategy enables her to reach X*°.

Suppose  not. Then there exists a play  (po, o, 90, Y0, P1,---)
of K, during which II always plays according to 7 and
such that (=zo,v0,2z1,91,...) € X. For every n = 1, let

A2n+1 = {(k(]a l07 B kn) e K2l | T*(p(],.’L'(), q0, k07y07p17 lO <5 Pn, ln—laxna dn, kn)
= (ynaanrl)}' This is an element of U(mo,yo,...,xn)v s0 Bopy1 = A2n+1 N T(:Jco,yo,...,:vn)
is also in Uy yo,....zn)- Since (To,Y0, 71, Y1, - --) € p([T]), then by the definition of
a homogeneous tree, we get that there exists a sequence (ko,lo, k1,01,...) € K¥
such that for every n € w, (ko,lo,...,kn) € DBopyi.  This shows that
(Po; T, 90, ko, Yo, P1,lo, 1, q1, k1,...) is a play of K during which II always
plays according to 7*, so ({xo,¥o,--.), (ko,lo,-..)) € [T]°. But on the other

hand, we have for every n € w, (ko,lo,---,kn) € Bont1 S T(agyo,...zn)> 5O
((k‘o, lo, ... ,kn), (:Eo,yo, R ,xn)) e T, and thus ((.To, Yo, - - .), (k‘o, lo, .. )) € [T], a
contradiction.
O
O

Though being determined is not so far from being homogeneously Souslin, theorem
I1.42 still does not enable us to compare Det,(I') and Adv(T'), since the minimal hy-
potheses to get consistantly Det,(I') do not enable to prove that, consistently, every
I-subset of w* is homogeneously Souslin. We can illustrate this on the case I' = X1, As
we already mentioned, Det,, ()} is equivalent to the existence of a sharp for every real
(for a definition of the sharps, see [30], section 9). The proof of Det, (%) assuming the
existence of sharps is very similar to the proof of theorem I1.42 (see [30], theorem 31.2),
however everything is done in L[z], for some real number x. This does not enable to
generalize to the determinacy of Kastanas’ game: indeed, in this game, players play ele-
ments of P, that are in general reals, and for this reason they do not necessarily belong
to L[z]. In general, it seems that the main obstacle to prove the equivalence between
Adv(T") and Det,,(T") is the fact that the parameters played by players in Kastanas’ game
do not belong to the inner models with large cardinals given by Det,,(I"). This should
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be taken into account when trying to prove, either that Det,(I') and Adv(I') have the
same consistency strenght, or that they do not.

72



Chapter 111

Ramsey theory in uncountable
spaces

In the setting of Gowers spaces defined in the last chapter, the set of points is always
countable: this is necessary to perform the diagonal arguments in the proof of our
dichotomies. As it will be shown in the first section of this chapter, this hypothesis
is necessary: when X in uncountable, we can find very simple sets that are neither
adversarially Ramsey nor strategically Ramsey (see proposition III.1). Thus this chapter
is devoted to present weak versions of the results of the last chapter in the case where
X is uncountable.

The results we will present are inspired by Gowers’ theorems I.8 and I1.11: they
are based on metrical approximation. In section III.2, we will define the setting of
approzimate Gowers spaces, where the set of points is a Polish space. In such a space,
analogs of theorem II1.4, theorem II.14 and corollary I1.21 involving approximation, will
be shown (these are theorem III.6 and corollary III.11). The proof of the first one is
based on the corresponding result without approximation.

In section II1.3, we present a general method to get, from statements involving a
strategy for I in the asymptotic game, non-strategical Ramsey conclusions as in Mathias—
Silver’s theorem, Milliken’s theorem, or one of the conclusions of Gowers’ theorem I.8.
Our method enables as well to get such results in Gowers spaces, without approximation,
and in approximate Gowers spaces, with approximation (actually, our results are stated
for structures more general than approximate Gowers spaces, that are called approzimate
asymptotic spaces). Our central result, theorem II1.16, can be seen as a generalization of
lemma I1.18. From this and from the results of section II1.2, we can deduce an abstract
version of Gowers’ theorem (corollary II1.17) that immediately implies as well Gowers’
theorems 1.8 and 1.11 and Mathias—Silver’s theorem.
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III.1 A counterexample

In this section, we present a counterexample showing the necessity of the hypothesis
that the set of points is countable in the definition of a Gowers space: without this
hypothesis, theorems I1.4 and I1.14 are not true in general.

Let X be the R-vector space R, endowed with the product topology. This makes it
a Polish vector space. For x = (2%);e, € X, we let supp(z) = {i € w | 2* # 0}, and we
let N(x) = z™nswPp(@) if 3 = 0, and N(0) = 0. A block sequence is an infinite sequence
(Zn)new of nonzero vectors of X such that supp(zg) < supp(x1) < supp(x2) < .... The
closed linear span of a block sequence is called block subspace. Remark that if YV is a
block subspace generated by a block sequence (¥ )new, then for (a™)pew € RY, the sum
Zf:o a™y, is always convergent, and the elements of Y are exactly the vectors of X
that can be expressed as such a sum. We denote by P the set of all block sequences.
For (z,), (yn) € P, we say that (z,) < (yy) if for every n € w, z, is a (finite) linear
combination of the y,,’s; and we say that (z,) <* (y,) if there exists ng € w such that
(Tntng)new < (Yn)new- Finally, for x € X and (z,,) € P, we say that x < (z,,) if = belongs
to the block subspace generated by (x,).

It is easy to verify that the space G = (P, X, <, <*, <) satisfies all the axioms defining
a forgetful Gowers space, apart from the fact that X is not countable (here, we defined
<1 as a subset of X x P); to verify the diagonalisation axiom, use a similar method as
for the Rosendal space. Remark that, for (z,),(y,) € P with (z,) < (y,), we have
(xn) S (yn) if and only of there exists ng € w such that for every n large enough, x,, and
Yn+no are colinear. We can define, for G, the notions of strategically Ramsey sets and of
adversarially Ramsey sets exactly in the same way as for a genuine Gowers space. We
equip X“ with the product topology. We will show the following;:

Proposition II1.1. There exist a Borel set X € X% that is not strategically Ramsey.

Remark that the set X we will build has the form {(xy)new € X* | (x0,21) € Y} for
some set Y € X?; so if we endow X with the discrete topology and X* with the product
topology, then X is actually clopen.

Also  recall that X is strategically Ramsey if and only if

{(zn)new € X¥ | (mo,22,...) € X} is adversarially Ramsey. So we deduce the
following corollary:

Corollary II1.2. Not all Borel subsets X are adversarially Ramsey.

Proof of proposition II1.1. The set P can be seen as a subset of X“ with the product
topology; it is a Gg-subset, so a Polish space. Therefore, there is a Borel isomorphism
¢ : R — P. We define the set ) € X? in the following way: (x,y) € Y if y is
equal to a term of the block sequence @(N(z)). This is a Borel subset of X?2. Let
X = {(zn)new € X¥ | (0, z1) € Y}. We show that X is not strategically Ramsey.

Firstly suppose that there exists p € P such that player II has a strategy in G, to
reach X and consider the following play of G,,, where II uses her strategy:
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L p q

11 x Y
Player I starts the game by playing p (his move actually does not matter). Accord-
ing to her strategy, II answers by some vector xz. Let (zp)new = @(N(x)). Let
A ={n€w |z, < p}. There are two cases.

First case: A is finite. Then let ¢ = (yn)new be a final segment of the sequence p such
that Vn € A supp(x,) < supp(yp). We make I play g. Then, whatever is the answer
y < q of II, we have supp(x,) < supp(y) for every n € A, so y is different from all the
Zp's, n € w. So (z,y) ¢ Y and II loses the game, a contradiction.

Second case: A is infinite. Then let (n;)ie, be an increasing enumeration of A and let
q = (Tng + TnysTny + Tng, Tny + Tns,...). We make I play g. Then, whatever is the
answer y <1 ¢ of I, y is different from all the x,’s, n € w, so (x,y) ¢ Y and II loses the
game, a contradiction.

Now suppose that there exists p = (25, )new € P such that player I has a strategy in

F,, to reach X and consider the following play of F},, where I uses his strategy:

I ¢ T

II T Tk
Player I starts by playing some ¢ < p according to his strategy. Now consider a real
number u such that ¢(u) = p. II can always answer by an x <1 ¢ such that N(z) = u.
Then, according to his strategy, I answers by r = (yn)new. Since (yn) < (zn), there
exists k, [l € w such that x; and y; are colinear, so x; <t r. We make II play x;, which is
a term of the block sequence (x,,)new = @(N(x)), so (z,zx) € Y and I loses the game, a
contradiction.

O]

II1.2 Approximate (Gowers spaces

The counterexample given in the last section shows that the formalism of Gowers spaces
is not sufficient if we want to work with uncountable spaces, like Banach spaces. In
this section, following an idea introduced by Gowers for his Ramsey-type theorem 1.8,
we introduce an approximate version of Gowers spaces, allowing us to get approximate
Ramsey-type results in situations where the set of points is uncountable. The results
of this section, along with these of the next section, will allow us to directly recover
results like Gowers’ theorems 1.8 and 1.11. The interest of the spaces we introduce here
is more practical that theoretical: their main aim is to allow applications, for instance
in Banach-space geometry.

Definition II1.3. An approximate Gowers space is a sextuple G = (P, X, d, <, <*, <),
where P is a nonempty set, X is a nonempty Polish space, d is a compatible distance on
X, < and <* are two quasiorders on P, and <« € X x P is a binary relation, satisfying
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the same axioms 1. — 3. as in the definition of a Gowers’ space and satisfying moreover
the two following axioms:

4. for every p € P, there exists x € X such that x < p;

5. for every x € X and every p,q€ P, if t <« p and p < ¢, then z < .

The relation g and the compatibility relation on P are defined in the same way as for
a Gowers space.

For p € P, we define the games A,, B,, F},, and G, exactly in the same way as for
Gowers spaces (see definitions I1.2 and I1.12), except that we naturally replace the rules
(0, Y0, - - > Ti—1,Yi—1, i) < p; and (xo, Yo, . . ., T4, Yi) < ¢; in the definition of A, and B,
and the rule (zo,...,2;) < p; in the definition of F}, and G), respectively by z; < p;,
1y; < q; and x; < p;. The outcome is, there, an element of X%.

Remark that, with this definition, approximate Gowers spaces are always forgetful,
that is, we define the relation < as a subset of X x P and not as a subset of Seq(X) x P.
Indeed, for technical reasons, to be able to get the results we want (in particular theorem
II1.6), we can only make depend the range of possible choices of points of a player in the
games on the subspace played just before by the other player (for example, the range of
possible choices of x; in G, can only depend on p;). That is not a real problem since all
interesting examples we currently know satisfy this requirement.

In the rest of this section, we fix an approximate Gowers space
G = (P, X,d,<,<*,<). An important notion in the setting of approximate Gow-
ers spaces is that of expansion.

Definition ITI1.4.

l.Let A € X and § > 0. The 0d-expansion of A is the set
(A); ={re X |Iye Ad(z,y) <o}

2. Let X c XY and A = (Ap)new be a sequence of pos-
itive real numbers. The A-expansion of X is the set
(X)a ={(zn)new € X¥ | I Yn)new € X Y € w d(zy, yn) < An}.

We can now define the notions of adversarially Ramsey sets and of strategically
Ramsey sets in an approximate Gowers space:

Definition ITI.5. Let X € X¥.

1. We say that X is adversarially Ramsey if for every sequence A of positive real
numbers and for every p € P, there exists ¢ < p such that either player I has a
strategy in A, to reach (X')a, or player IT has a strategy in B, to reach (X)a.

2. We say that X is strategically Ramsey if for every sequence A of positive real
numbers and for every p € P, there exists ¢ < p such that either player I has a
strategy in Fj to reach X, or player IT has a strategy in Gy to reach (X)a.
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Remark that if Gy = (P, X, <,<*,<) is a forgetful Gowers space (where we con-
sider <o as a subset of X x P), then we can turn it into an approximate Gowers space
G, = (P, X,d,<,<*,<) by taking for d the discrete distance on X (d(z,y) = 1 for
x # y). In this way, for 0 <0 <1 and A € X we have (A)s = A, and for A a sequence
of positive real numbers strictly lower than 1 and for X € X, we have (X)a = X. So
for a set X € X%, the definition of being adversarially or strategically Ramsey in Gy and
in G| coincide. Therefore, we will consider forgetful Gowers spaces as particular cases of
approximate Gowers spaces.

Another interesting family of examples of approximate Gowers spaces is the following.
Given a Banach space E with a Schauder basis (€;)iew, We can consider the canonical
approximate Gowers space over E, Gg = (P,Sg,d,S,<*,€), where P is the set of all
block subspaces of E, Sg is the unit sphere of F, d the distance given by the norm, and
X c* Y if and only if Y contains some finite-codimensional block subspace of X. We
will see in the next section how to get Gowers’ theorems 1.8 and 1.11 from the study of
this space.

The results that generalize theorems I1.4 and I1.14 to adversarial Gowers spaces are
the following:

Theorem III.6.

1. Fvery Borel subset of X% is adversarially Ramsey;

2. Every analytic subset of X“ is strategically Ramsey.

Proof. Remark that to prove 2., it is actually sufficient to prove the following apparently
weaker result: for every X € X“ analytic, for every sequence A of positive real numbers
and for every p € P, there exists ¢ < p such that either player I has a strategy in Fj to
reach (X)a, or player II has a strategy in G, to reach (X)a. Indeed, if X is analytic,

then (X')a is analytic too; so applying the last result to (X)a and to the sequence %,
2 2

C
and using the fact that (((X)é) )A C X°¢ and <(X)A>A c (X)a, we get that X is
2 5 2 2

2

strategically Ramsey.

Now let D € X be a countable dense subset, and A be a sequence of positive real
numbers. Consider the Gowers space Gan = (P, D, <, <* ,<a), where <ip is defined by
(Yo, ---,Yn) <A p if there exists z, € X with x, < p and d(z,,y,) < A,. To avoid
confusion, we denote by A,, B,, F, and G, the games in the space G, and by Aﬁ, BpA7
FpA and Gﬁ the games in the space Ga.

If X is Borel (resp. analytic) then the set X' n D“ is Borel (resp. analytic) too
(when D is endowed by the discrete topology), so it is adversarially (resp. strategically)
Ramsey in GA. So to prove the theorem, it is enough to show that for every p € P, we
have that:

(i) if player I has a strategy in FpA to reach X¢, then he has a strategy in I}, to reach
(X)a;
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(i)

(iii)

(iv)

if player IT has a strategy in Gﬁ to reach &, then she has a strategy in G, to reach
(X)a;

if player I has a strategy in Aﬁ to reach X, then he has a strategy in A, to reach
(X)a;

if player II has a strategy in BpA to reach X¢, then she has a strategy in B, to
reach (X°)A.

We only prove (i) and (ii); the proofs of (iii) and (iv) are naturally obtained by combining
the proofs of (i) and (ii).

(i)

(i)

As usual, we fix a strategy for I in FPA, enabling him to reach X¢, and we describe
a strategy for I in F), to reach (X°)a by simulating a play (po, zo, p1,21,...) of F),
by a play (po,yo,p1,¥1,--.) of FpA in which I always plays using his strategy; we
suppose moreover that the same subspaces are played by I in both games.

Suppose that in both games, the first n turns have been played, so the p;’s, the
x;’s and the y;’s are defined for ¢ < n. According to his strategy, in FpA, I plays
some p, $ p. Then we let I play the same p,, in F),, and in this game, IT answers
with x,, € X such that z, < p,. Then we choose y,, € D such that d(z,,y,) < Ap;
by the definition of <ia, we have that (yo,...,yn) <A Pn, so we can let IT play y,
in FPA, and the games can continue!

Due to the choice of the strategy of I in FpA, we get that (Yn)new € XC, soO
(Tn)new € (XA as wanted.

We simulate a play (po,xo,p1,21,...) of Gp by a play (po,vo,p1,y1,-..) of GpA
where II uses a strategy to reach X', and we suppose moreover that I plays the
same subspaces in both games. Suppose that the first n turns of boths games have
been played. In G, I plays p,. We make I copy this move in Gﬁ, and according
to her strategy, IT answers, in this game, by a y,, € D such that (yo,...,¥n) <A Pn-
We can find z,, € X such that x,, < p, and d(z,,y,) < Ap; we let IT play this
zn in G, and the games continue. At the end, we have that (yn)new € &, so
(Tn)new € (X)a as wanted.

O

Say that the approximate Gowers space G is analytic if P is an analytic subset of a
Polish space, if the relation < is a Borel subset of P?, and if for every open set U € X,
the set {p € P | 3z € U x < p} is a Borel subset of P. Also recall that if Y is a Polish
space, and if F(Y') is the set of all closed subsets of Y, the Effros Borel structure on
F(Y) is the o-algebra generated by the sets {F' € F(Y) | F nU # @} where U varies
over open subsets of Y. If P is an analytic subset of F(X) endowed with the Effros Borel
structure, and if € and <1 are respectively the inclusion and the membership relation,
then G is an analytic approximate Gowers space. This is, for instance, the case of the
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canonical approximate Gowers space Gg over a Banach space E with a basis: indeed,
the fact that F' € F(Sg) is the unit sphere of a block subspace of E can be written
“there exists a block sequence (z;);e, such that for every U in a countable basis of open
subsets of Sg, ' n U # @ if and only if there exists n € w and (a;)i<, € Q"\{0} with
Zicn GTi o [
1% < i

Remark that if G is an analytic approximate Gowers space and A a sequence of
positive real numbers, then the Gowers space Ga defined in the proof of theorem IIIL.6 is
analytic. So this proof, combined with corollaries I1.8 and II.16, gives us the following:

Corollary IIL.7. Let I' be a suitable class of subsets of Polish spaces. Suppose that
every I'-subset of R¥ is determined. Then for every analytic approximate Gowers space
G =(P,X,d,<,<* <), we have that:

1. every I'-subset of X% is adversarially Ramsey;

2. every dI'-subset of X% is strategically Ramsey.

However, it is not straightforward, in the setting of approximate Gowers spaces, to
get results in ZF + DC' + ADg, because the proof of II1.6 uses the full axiom of choice.
Indeed, since there is, in general, an uncountable number of subspaces, in the proof of
(ii) (and the same will happen in the proofs of (iii) and (iv)), player II needs AC to
choose x,, such that d(z,,y,) < A, and x,, < p,. However, under a slight restriction,
we can get a positive result. Define the notion of an effective approrimate Gowers space
exactly in the same way as for effective Gowers spaces. Effective forgetful Gowers spaces
are obviously effective when seen as approximate Gowers spaces, but also, the canonical
approximate Gowers space G is effective (this can be shown in the same way as for the
Rosendal space). If G is an effective approximate Gowers space and A a sequence of
positive real numbers, then the Gowers space Ga defined in the proof of theorem III.6
is also effective. And we have:

Corollary II1.8 (ZF + DC'+ ADg). Let G = (P, X,d, <,<*,<1) be an effective approz-
imate Gowers space such that P is a subset of a Polish space, and such that for every
p € P, the set {x € X | x < p} is closed in X. Then every subset of X* is adversarially
Ramsey and strategically Ramsey.

Proof. We follow the proof of theorem III.6, using corollaries I1.10 and I1.16 to get that
the set X n D“ is adversarially Ramsey and strategically Ramsey in Ga. The only thing
to do is to verify that the proofs of (i)—(iv) can be carried out with only DC' instead of
AC'; as previously, we only do it for (i) and (ii). In the proof of (i), we have to be able
to choose y,, € D such that d(x,,y,) < Ay; this can be done by fixing, at the beginning
of the proof, a well-ordering of D, and by choosing, each time, the least such y,. In the
proof of (ii), the difficulty is to choose z,; so we have to prove that given p € P, n € w,
and y € D, if there exists x € X with x < p and d(z,y) < A,, then we are able to choose
such an x without using AC.
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Using countable choices, for every y € D and n € w, we choose f, ,, : v — B(y, Ap)
a continuous surjection. Given p, n and y as in the previous paragraph, we can let
F = {uewY]| fyn(u) < p}, a closed subset of w*. Consider T" € w=“ the unique
pruned tree such that F' = [T']. Then we can let u be the leftmost branch of 7" and let

T = fy,n(u)'
O

Remark that in the proof of theorem III.6, the most important hypothesis on X is
its separableness, and the only interest of its Polishness is the fact that if X is analytic,
then (X)a is analytic too. Thus, if we only suppose X separable, then the 1. of this

2

theorem remains true, and the 2. can be replaced with “for every 2%—subset X of X%,
for every sequence A of positive real numbers and for every p € P, there exists ¢ < p
such that either player I has a strategy in Fj to reach (X°)a, or player II has a strategy
in G, to reach (X)A”. In the same way, given a suitable class I' of subsets of Polish
spaces, say that a subset ) of a topological space Y is potentially I' if for every Polish
space Z and every continuous mapping f : Z — Y, f~1()) is a I'-subset of Z. Then
corollary II1.7 remains true for X only assumed separable, if we modify the conclusion
of 2. in the same way as for theorem III.6, and if in 7. and 2., we replace I'-subsets and
dI'-subsets respectively by potentially I'-subsets and potentially 3I'-subsets. However,
the proof of corollary II1.8 does not adapt to arbitrary separable metric spaces; but it
remains true if we only suppose that X is an analytic subset of a Polish space. All of
these extensions can be combined to the other results of this section and of the next
section, since their proof will only use the separableness of X (or the fact that X is an
analytic subset of a Polish space, if we work in ZF + DC).

We now introduce the pigeonhole principle in an approximate Gowers space and its

consequences. We actually only need an approximate pigeonhole principle in this setting.
For g€ P and A € X, we write abusively ¢ € A to say that Vx € X (x < g =z € A).

Definition III.9. The approximate Gowers space G is said to satisfy the pigeonhole
principle if for every pe P, A € X, and § > 0 there exists ¢ < p such that either ¢ € A€,
or g < (A)s.

For example, by theorem 1.10, the canonical approximate Gowers space G satisfies
the pigeonhole principle if and only if F is ¢p-saturated.

As for Gowers spaces, we have the following proposition:

Proposition II1.10. Suppose that the approrimate Gowers space G satisfies the pigeon-
hole principle. Let X € X“, p € P and A be a sequence of positive real numbers. If
player IT has a strategy in G, to reach X, then there exists ¢ < p such that player I has
a strategy in Fy to reach (X)a.

Before proving this proposition, let us make some remarks. Using again the fact that
<(X ) é) L € (X)a, we deduce from proposition I11.10 the following corollary:
2/ 2

2
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Corollary ITI.11. Suppose that the approrimate Gowers space G satisfies the pigeonhole
principle. Let X € X% be a strategically Ramsey set. Then for every p € P and every
sequence A of positive real numbers, there exists ¢ < p such that in Fy, player I either
has a strategy to reach X, or has a strategy to reach (X)a.

Conversely, if the conclusion of corollary III.11 holds for sets of the form
{(zp)new € X¥ | xo € F}, where F' € X is closed, then the space G satisfies the pigeonhole
principle. Indeed, let pe P, AS X and 6 > 0. Let F' = {z € X |Vy € A d(z,y) = J},
and X = {(zn)new € XY | o € F}. Then by assumption, there exists ¢ < p such
that I either has a strategy to reach X’°, or has a strategy to reach (X)a, in Fj, where
A = (%, %, ...). As in the case of Gowers spaces, in the first case we find ¢y < ¢ with
go S F°¢ < (A)s, and in the second case we get qp < ¢ with ¢y S (F)g c A°.

Also remark that if Gy is a forgetful Gowers space, and if G|, is the associated approx-
imate Gowers space, then the pigeonhole principle in Gy is equivalent to the pigeonhole
principle in G, and proposition III.10 and corollary III.11 are respectively the same as
proposition 11.20 and corollary I1.21.

We now prove proposition III1.10.

Proof of proposition II1.10. Unlike the previous results about approximate Gowers
spaces, here we cannot deduce this result from its exact version; thus, we adapt the
proof of proposition I1.20. To save notation, we show that there exists ¢ < p such that
I has a strategy in Fj to reach (X)s3a.

We fix 7 a strategy for II in G|, to reach X. We call a state a partial play of G,
either empty or ending with a move of II, during which IT always plays according to
her strategy. We say that a state realises a sequence (zg,...,z,—1) € X =% if it has the
form (po,xo,...,Pn—1,Tn—1). The length of the state 4, denoted by |7|, is the length of
the sequence it realises. We define in the same way the notion of a total state (which is
a total play of G,) and of realisation for a total state; if an infinite sequence is realised
by a total state, then it belongs to X'. We say that a point x € X is reachable from a
state 7 if there exists r < p such that 7(s ~ r) = z. Denote by A, the set of all points
that are reachable from the state 4. We will use the following fact.

Fact III.12. For every state 4 and for every q < p, there exists r < q such that
rc (AJ)AM‘ .

Proof. Otherwise, by the pigeonhole principle, there would exist r < ¢ such that
r € (As)°. But then I could play r after the partial play 4, and IT would answer,
according to her strategy, by « = 7(s ~ r) that should satisfy x < r. Since r € (A4,)¢,
this would imply that z € (A4,)¢. But we also have, by the definition of A, that z € Ay,
a contradiction.

O]

For two sequences s,t € X<% of the same length, we denote by d(s,t) < A the fact
that for every i < |s|, we have d(s;,t;) < A;. Let D € X be a countable dense set and
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let (sp)new be an enumeration of D=* such that if s, € s,, then m < n. We define, for
some n € w, a state 4, realising a sequence t,, satisfying d(s,,t,) < 2A, by induction in
the following way: 49 = @ and for n > 1, letting s, = s,,, ~ y for some m < n and some
yeX,

e if 4, has been defined and if there exists z € X reachable from 4,, such that
d(y,z) < 2A,,|, then choose a r < p such that z = 7(4,, " r) and put ¢, = t,,, ~ 2
and 4, = I, ~ (1, 2),

e otherwise, 4, is not defined.

Remark that if 7, is defined and if s,, € s,, then 4,, is defined, and we have 4,, € 4,
and t,, C t,.

We now define a <-decreasing sequence (¢, )new Of elements of P in the following
way: qo = p and

o if 4, is defined, then g,,1 is the result of the application of fact 1I11.12 to 4,, and
qn;

® (¢n+1 = qn otherwise.

Finally, let ¢ < p be such that for every n € w, ¢ <* ¢,. We will show that I has a

strategy in Fj; to reach (X)sa. We describe this strategy on the following play of Fj:

I UuQ Ui

11 o T ...
We moreover suppose that at the same time as this game is played, we build a se-
quence (n;)ie, of integers, with ng = 0 and n; being defined during the i*" turn,
such that (sy,)ie, is increasing and for every i € w, |sp,| = i, Jp, is defined, and
d(sn;, (0,...,2i—1)) < A. This will be enough to conclude: indeed, | J,c, 7n, Will be
a total state realising the sequence | ., tn;, showing that this sequence belongs to X’;
and since d (| e, tnis (Ti)iew) < d(Uiew, tnis Uicw Sni) 74 (Uiew, Snis (Ti)iew) < 3A, we will
have that (2;)iew € (X)3A-

Suppose that the i*" turn of the game has just been played, so the sequence
(zo,...,zi—1) and the integers ng,...,n; has been defined. Then by construction of
Qn;+1, we have that ¢, ;1 S (Ajni)Aljni‘. We let I play some u; such that u; $ ¢ and
u; € @n+1. Thenu; € (A In, ) Ay - Now, suppose that IT answers by x;. Then we choose
a y; € D such that d(z;,y;) < A; and we choose n;41 in such a way that s,,,, = sp, ™ .
So we have that y; € (Ajni)QAl L this shows that J,,,, has been defined. Moreover we
have d(sp,,,, (%0, ...,%;)) <A as wanted, what ends the proof.

O

Again, this proof can be done in ZF + DC, even if the space G is not supposed
effective.
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III.3 Eliminating the asymptotic game

Unlike Mathias—Silver’s theorem which ensures that in some subspace, all of the increas-
ing sequences have the same color, and unlike Gowers’ theorem, one of whose possible
conclusions says that all block sequences in some subspace have the same color, all the
results we proved by now only have game-theoretical conclusions. The aim of this section
is to provide a tool to deduce, from a statement of the form “player I has a strategy in
F, to reach X, a conclusion of the form “in some subspace, every sequence satisfying
some structural condition is in X”. This tool can be seen as a generalization of lemma
11.18. It will allow us to get, from Ramsey results with game-theoretical conclusions,
stronger results having the same form as Mathias—Silver’s theorem or Gowers’ theorem.

We will actually not add any structure on the set of points, but rather provide a
tool enabling, in each concrete situation, to build this structure in the way we want.
Our result could be stated in the setting of approximate Gowers spaces, but we prefer
to state it in the more general setting of approximate asymptotic spaces, since it could
be useful in itself in situations where we have no natural Gowers space structure.

Definition IT1.13. An approxzimate asymptotic space is a quintuple A = {P, X, d, 5, <},
where P is a nonempty set, (X, d) is a nonempty separable metric space, 5 is a quasiorder
on P, and <« € X x P is a binary relation, satisfying the following properties:

1. for every p,q,r € P, if ¢ < p and r 5 p, then there exists u € P such that u ¢
and u < 7;

2. for every p € P, there exists x € X such that = < p;

3. for every every x € X and every p,q € P, if x < p and p < ¢, then x < q.

Every approximate Gowers space has a natural structure of approximate asymptotic
space. In an approximate asymptotic space, we can define the notion of expansion, and
the asymptotic game, in the same way as in an approximate Gowers space.

In the rest of this section, we fix A = {P, X,d,<,<} an approximate asymptotic
space. To be able to get the result we want, we need some more structure. Recall that
a subset of X is said to be precompact if its closure in X is compact. In what follows,
for K € X and p € P, we abusively write K < p to say that the set {x € K | z < p} is
dense in K.

Definition III.14. A system of precompact sets for A is a set IC of precompact subsets
of X, equipped with an associative binary operation @, satisfying the following property:
for every p € P, and for every K, L€ K, if K <<p and L < p, then K ® L < p.

If (KC, @) is a system of precompact sets for A and if (K, )new is & sequence of elements
of IC, then:

e for A C w finite, we denote by @, 4 Ky the sum K, ®... @K, , where ny,...,ny
are the elements of A taken in increasing order;
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e a block sequence of (K,,) is, by definition, a sequence (x;)iew € X* for which there
exists an increasing sequence of nonempty sets of integers Ag < A1 < Ay < ...
such that for every ¢ € w, we have xz; € @neAi K,.

We denote by bs((K;, )new) the set of all block sequences of (K,,).

We can already give some examples. For the Mathias—Silver space N, let ICnr be
the set of all singletons, and define the operation @ar by {m} @& {n} = {mazx(m,n)}.
Then (Kpr, ®yr) is a system of precompact sets. If (m;)e, is an increasing sequence of
integers, then the block sequences of ({m;})ie. are exactly the subsequences of (m;).

Now, for a Banach space E with a basis, consider the canonical approximate Gowers
space Gp. Let Kp be the set of all unit spheres of finite-dimensional subspaces of F.
We define the operation @ on Kg by Sp &g S¢ = Sp+g. Then (Kg,®p) is a system
of precompact sets for Gp. If (z,)nen is a (normalized) block sequence of F, then for
every n, Srz, = {®n, —n} is in Kg, and the block sequences of (S, )new in the sense of
KC are exactly the (normalized) block sequences of (x,) in the Banach-theoretical sense.
More generally, it is often useful to study the block sequences of sequences of the form
(SF, )new, where (Fy)new is @ FDD of a closed, infinite-dimensional subspace F' of F
(that is, a sequence such that every x € F can be written in a unique way as a sum
o Tn, where for every n, z,, € F),).

In general, in an asymptotic space, a sequence (K )neo oOf elements of a system of
precompact sets can be seen as another kind of subspace. Sometimes, some subspaces of
the type (K, )new can be represented as elements of P; that is, for example, the case in
the Mathias—Silver space and in the canonical approximate Gowers space over a Banach
space with a basis, as we just saw. We now introduce a theorem enabling us to build
sequences (Kp,)new such that bs((K;,)new) € X, knowing that player I has a strategy in
an asymptotic game to reach X. Firstly, we have to define a new game.

Definition ITI.15. Let (IC,®) be a system of precompact sets for the space A, and
p € P. The strong asymptotic game below p, denoted by SF},, is defined as follows:

I po p1
11 Ky Ki

where the K,’s are elements of K, and the p,’s are elements of P. The rules are the
following:

e for I: for all n € w, p, ép;

o for II: for all n € w, K, <t py.

The outcome of the game is the sequence (K )new € £¥.

Theorem II1.16. Let (K,®) be a system of precompact sets on the space A, p € P,
X € X%, and A be a sequence of positive real numbers. Suppose that player I has a
strategy in F, to reach X. Then he has a strategy in SF, to build a sequence (Kp)new
such that bs((Kp)new) S (X)A.
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Proof. For each K € K, each ¢ € P such that K < ¢, and each i € w, let OM; 4(K) be
a Aj-net in K (that is, a finite subset of K such that K < (9 4(K))a,), such that for
every x € M; ((K), we have x < q. We fix 7 a strategy for I in F,, enabling him to reach
X. As in the proofs of fact II.15 and lemma II.18, we consider that in F},, IT is allowed
to play against the rules, but that she immedately loses if she does; so we will view 7 as
a mapping from X =% to P, such that for every s € X< we have 7(s) < p.

Let us describe a strategy for I in SF, on a play (po,Ko,p1,Ki1,...) of this
game. Suppose that the first n turns have been played, so the p;’s and the Kj’s, for
J < n, are defined. Moreover suppose that the sequence (p;);<n is S-decreasing. Let
S(Ko,...Kn_1) S X =% be the set of all finite sequences (yo, - . ., yr—1) satisfying the follow-
ing property: there exists an increasing sequence Ag < ... < Ag_1 of nonempty subsets
of n such that for every i < k, we have y; € M;p ., (Djea, K;). Then S, .k, 1)
is finite and for every s € Sk, . k,_,), We have 7(s) § p, so by iterating the axiom 1.
in the definition of an approximate asymptotic space, we can find p, < p such that for
every s € S(x,,. ... K, 1), We have py S 7(s). Moreover, if n > 1, we can choose p,, such
that p, < pn—1. The strategy of I will consist in playing this p,,.

Now suppose that this play has been played completely; we show that
bs((Kp)new) S (X)a. Let (z;)ien be a block sequence of (K,) and Ay < A; < ...
be a sequence of nonempty subsets of w such that for every i, we have z; € @, 4, Kn.
For every ¢ € w, we have (E'—)nEAi Kn) < Pmin(4;)s SO mizpmin(Ai) (G_DneAi Kn) has been
defined and we can choose a y; in it such that d(z;,y;) < A;. We have to show that
(%4)iew € (X)A, so it is enough to show that (y;)iew € X. Knowing that 7 is a strategy
for T in F), to reach X, it is enough to show that, letting ¢; = 7(yo, ..., yi—1) for all 4, in

the following play of F),, IT always respects the rules:

I q
II Yo Y1 e
In other words, we have to show that for all k£ € w, we have y. < q.
So let k € w. We let ng = min Ay. Since the sets Ay, ..., A;_1 are subsets of ng, we
have that (yo,...,yx—1) € S(Ko,...Jng _1)> and therefore pr, S 7(Yos - Yk—1) = qr. But

Yk € mk,pno ((—D%Ak Kn>, SO Yk <1 Py, SO Yk < q, as wanted. O

Again, under slight restrictions, we can prove theorem II1.16 without using the full
axiom of choice. Say that the approximate asymptotic space A is effective if there exist
a function f : P2 — P such that for every ¢, € P, if there exist p € P such that ¢ S p
and r T p, then we have f(q,7) < ¢ and f(q,7) < r. Effective approximate Gowers
spaces, when seen as approximate asymptotic spaces, are effective. We will show that
if A is an effective approximate asymptotic space, if X is an analytic subset of a Polish
space, if for every p € P, the set {x € X | x < p} is closed in X, and if every element of
K is compact, then theorem II1.16 for A4 and K can be shown in ZF + DC. In the proof
of theorem II1.16, AC' is only used:

e to choose p, such that for every s € Sk, .k, ,), we have p, < 7(s), and such
that p, < pn_1 if n = 1;
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e to choose the nets M; ,(K);

e and to choose y; € My o ) ((—BneAi Kn) such that d(x;,y;) < A;.

The choice of the p,,’s can be done without AC' as soon as the space A is effective. For
the choice of the nets and of the y;’s, firstly remark that, given K € I and ¢ € P, since
{xre X |z <q}is closed in X, we have that K < ¢ if and only if K € {z € X | x < ¢};
so M; 4(K) can actually be an arbitrary A;-net in K, and does not need to depend on
g. Thus, to be able to chose these nets and the y;’s without AC, it is enough to show
that we can choose, without AC, a A;-net 9;(K) in K and a wellordering <; x on it, for
every K € K and every 7 € w. This can be done in the following way. Let ¢ : w¥ — X
be a continuous surjection. If K € K, then p~!(K) has the form [Tk], where Tk is a
pruned tree on w. We can easily build, without choice, a countable dense subset of [Tk],
for example the set of all the us’s where for every s € Tk, us is the leftmost branch of
Ty satisfying s € us. Since Tk can naturally be wellordered, then this dense subset can
also be wellordered. Pushing forward by ¢, this enables us to get, for every K € K, a
countable dense subset Dxg S K with a wellordering <. From this we can naturally
wellorder the set of all finite subsets of Dy, take for 9;(K) the least finite subset of Dx
that is a Aj-net in K and take for <; g the restriction of <x to 9 (K).

Theorem II1.16, combined with the results of the last section and with the last
remark, gives us the following corollary:

Corollary IIT.17 (Abstract Gowers’ theorem). Let G = (P, X,d, <,<*,<1) be an ap-
prozimate Gowers space, equipped with a system of precompact sets (KC,@®). Let X < X¥,
and suppose that one of the following conditions holds:

o X is analytic;

e G is analytic and X is T", for some suitable class I' of subsets of Polish spaces
such that every I'-subset of R¥ is determined;

o ADg holds, the space G is effective, P is a subset of Polish space, for every p € P,
the set {x € X | x < p} is closed in X, and every element of K is compact.

Let p € P and A be a sequence of positive real numbers. Then there exists ¢ < p such
that:

e cither player I has a strategy in SF, to build a sequence (Kp)pe, such that
bs((Kn)new) S X¢;

o or player IT has a strategy in G4 to reach (X)a.

Moreover, if G satisfies the pigeonhole principle, then the second conclusion can be re-
placed with the following stronger one: player I has a strategy in SFy to build a sequence
(Kn)nEw such that bs((Kn)new) = (X)A
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Now see how to deduce Mathias—Silver’s theorem, Gowers’ theorem 1.8, and Gowers’
theorem for ¢g (theorem 1.11) from corollary III1.17.

e For Mathias—Silver’s theorem, work in the Mathias—Silver space N with the sys-
tem (KCar, ®pr) of precompact sets introduced before. Let M be an infinite set of
integers, and X < [w]“ be analytic, that we will consider as a subset of w* by
identifying infinite subsets of w with increasing sequences of integers. Applying
corollary II1.17 to X, to M, and to the constant sequence equal to %, we get an
infinite N € M such that either I has a strategy in SFx to build ({n;})ic. with
bs(({n;})iew) € X, or he has one to build ({n;})icw with bs(({n;})iew) S X°. Re-
mark that in SFy, IT can always play in such a way that the sequence (n;)iew is
increasing. So in the first case, we get an increasing sequence (n;);e. of elements
of N such that every block sequence of ({n;})ie, belongs to X, or in other words,
such that every infinite subset of {n; | i € w} belongs to X; and in the second
case, in the same way, we get an infinite subset of N every infinite subset of whose
belongs to X°.

e For Gowers’ theorem, let £ be a Banach space with a Schauder basis and work in
the canonical approximate Gowers space Gg with the system (Kg,®g) of precom-
pact sets introduced before. Given Y € P, in SFy, whatever I plays, II can always
ensure that the outcome will have the form (Sgry, )new, Where (yn)new is a block
sequence. So given X € [E] analytic, X € F a block subspace, and A a sequence
of positive real numbers, corollary I11.17 gives us either a block sequence (Y )new
in X such that bs((Sry, Jnew) S X¢, or a block subspace Y € X such that IT has a
strategy in Gy to reach (X)) a. In the first case, denoting by Y the block subspace

generated by the sequence (yy,), this precisely means that [Y] € X°. In the second
case, we have to be careful because the Gowers’ game of the space G is not exactly
the same as this defined in the introduction: in the one of the introduction, player
II is required to play vectors with finite support forming a block sequence, while
in the one of Gg, she she can play any vector in the unit sphere of the subspace
played by I. This is not a real problem as, by perturbating a little bit the vectors
given by her strategy, player IT can reach XA playing vectors with finite support;
and without loss of generality, we can assume that the subspace Y, played by I
at the (n + 1) turn is choosen small enough to force IT to play a ¥, such that

supp(Yn—1) < supp(yn)-

e To deduce Gowers’ theorem for ¢y, the method is the same except that this time,
O satisfies the pigeonhole principle so corollary II1.17 will give us a conclusion
with a strong asymptotic game in both sides.

To finish this section, let us show on an example that the hypothesis “I has a strategy
in F}, to reach X” does not always imply that for some subspace ¢, every sequence below
q satisfying some natural structural condition (for instance, being block) is in Xa. To
see this, consider the Rosendal space R = (P, E\{0}, S, <%, €) over a field K. We have
the following fact:
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Fact ITI.18. Suppose that K is a finite field. Let X < (E\{0})* and X € P, and suppose
that I has a strategy in Fx to reach X. Then there exists a block subspace Y < X such
that every block sequence of Y is in X.

Proof. Let K be the set of all sets of the form F\{0}, where F' is a finite-dimensional
subspace of E. Since the field K is finite, the elements of IC are finite too. For F,G € E
finite-dimensional, we let (F\{0}) @ (G\{0}) = (F' + G)\{0}. Then (K,®) is a system
of precompact sets. The conclusion follows from theorem II1.16 applied to this system,
using the same method as previously.

O

Remark that this proof does not work when K is infinite, and actually, this
result is false. Let us give a counterexample. Let (e;)i<w be the basis of
E with respect to whose block subspaces are taken, and let ¢ : K* — w
be a bijection. For z € E\{0}, let N(zx) be the first nonzero coordinate
of . We let YV = {(z,y) € (E\{0})> | ¢(N(z)) < minsupp(y)} and

X = {(zn)new € (E\{O})* | (x0,21) € V}. Then player I has a strategy in Fg to
reach X’; this strategy is illustrated on the following diagram:

I FE span({e; | i > ¢(N(z))})

11 x Y
But there is no block subspace Y of E such that every block sequence in Y belongs to
X. Indeed, given Y € E a block subspace generated by a block sequence (y,)new, we
can take A € K such that ¢(N(Ayo)) = minsupp(y; ), and we have (Ayo,y1,y2,...) ¢ X.

Just like the counterexample to the pigeonhole principle presented in section II.2,
this counterexample could be avoided by working in the projective Rosendal space
PRik = (P,P(E),c,c* <) (where we recall that P(E) is the set of all vector lines
in E). However, even in this space, counterexamples to the natural analogue of fact
II1.18 can be found. For example, for Kz € P(F), denote by N'(Kxz) the quotient of the
last nonzero coordinate of x by its first nonzero coordinate (which does not depend of the
choice of the representative z); and let X = {(1;)iew € P(E)* | o(N'(lp)) < minsupp(l1)}.
Then X is a counterexample as well.

Therefore, many cases, the “subspaces” of the form (K, )nen, where the K,’s are
elements of a system of precompact sets, cannot always be identified with “genuine”
subspaces (i.e. elements of P): we always need a form of compactness for that.
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Chapter IV

Hilbert-avoiding dichotomies and
ergodicity

Recall that Johnson’s problem ask whether there exists a separable Banach space with
exactly two subspaces, up to isomorphism (a Johnosn space), and that Ferenczi and
Rosendal’s ergodic conjecture ask whether there exists a non-ergodic separable Banach
space non-isomorphic to fo, where a space is ergodic if Eg reduces to the isomorphism
relation between its subspaces. In this chapter, we try to answer the following question:
if counterexamples to these conjectures exist, do there necessarily exist such counterex-
amples having an unconditional basis? More precisely, we will work on the following
conjectures:

Conjecture IV.1. Let E be a separable Banach space, non-ergodic and non-isomorphic
to lo. Then E has a subspace with an unconditional basis that is non-isomorphic to ls.

Conjecture IV.2. Every Johnson space has an unconditional basis.

Remark that conjecture IV.2 is a consequence of conjecture IV.1: indeed, a result by
Anisca [3] implies that a Johnson space necessarily has a subspace isomorphic to fo.

We do not manage to solve these conjecture, but we prove results that should help
for them. The basic idea is the following. Recall that Rosendal [55] proved that HI
spaces cannot be ergodic; so if a space F is non-ergodic, then by Gowers’ first dichotomy
(theorem 1.21), it must have a subspace with an unconditional basis. However, this does
not give us anything interesting, since this space could be isomorphic to #3. So what
we will do is to prove Hilbert-avoiding dichotomies, i.e. dichotomies ensuring that the
subspace obtained is non-isomorphic to 5.

The basic ideas to prove such dichotomies was given to the author by Ferenczi.
The fact that a Banach space is isomorphic to ¢ can be verified only on its finite-
dimensional subspaces, and this implies that we can diagonalize among subspaces that
are not isomorphic to #». Thus, a Banach space E non-isomorphic to /5 can be made
an approximate Gowers space by taking for subspaces only subspaces of E that are not
isomorphic to f5. In this manner, we will be able to prove Hilbert-avoiding versions of
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Gowers’ first dichotomy, and of Ferenczi-Rosendal’s dichotomy between minimal spaces
and tight spaces (theorem 1.25). Obviously, Gowers’ game and the adversarial Gowers’
games change in our new approximate Gowers space, and the consequence of this is that
the possible conclusions in our Hilbert-avoiding dichotomies will be weaker than in their
“original versions”.

Using these dichotomies, we get interesting consequences about conjectures IV.1 and
IV.2. In particular, we define the class of hereditarily Hilbert-primary (HHP) spaces as
follows: a Banach space F is HHP if there is no topological direct sum of subspaces
of F that are both non-isomorphic to £5. Then we get that, to prove conjecture IV.1,
it would be enough to prove that an HHP space cannot be embedded in any subspace
of itself that is not isomorphic to ¢5, and to prove conjecture IV.2; it would be enough
to prove that an HHP space must at least have two non-isomorphic subspaces that are
non-isomorphic to f». The two last statements are quite similar to Gowers—Maurey’s
result IV.33 that an HI space cannot be isomorphic to a proper subspace of itself; thus,
it is tempting to try to prove them using the same methods.

This chapter is organized as follows. In section IV.1, we recall some facts and prove
some preliminary results about finite-dimensional decompositions. In section IV.2, we
introduce our Hilbert-avoiding approximate Gowers space and we use it to prove a
Hilbert-avoiding version of Gowers Ramsey-type theorem, theorem IV.9. Then, we use
this theorem to prove our first dichotomy, the Hilbert-avoiding version of Gowers’ first
dichotomy (theorem IV.12). In section IV.3, we prove our Hilbert-avoiding version of
Ferenczi-Rosendal’s minimal-tight dichotomy (theorem IV.14). Note that here, since
the argument is quite technical, we will not use approximate Gowers spaces, but rather
a Gowers space and apply the results of chapter II. In section IV.4, using, among others,
recent unpublished results by Ferenczi, we set the consequences of our two dichotomies
for non-ergodic spaces and Johnson spaces; in particular, we get the results stated in
the last paragraph. Finally, in section IV.5, we give a new and simple proof of Gowers—
Maurey’s result that HI spaces are isomorphic to no proper subspaces. This proof is
only based on Fredholm theory and works as well in the real and the complex case. We
hope that the method used here could help to finish to solve conjectures IV.1 and IV.2,
combined with our dichotomies.

IV.1 Preliminaries

In this section, we recall some preliminary results that will be useful in the next sections.

A finite-dimensional decomposition (FDD) of a Banach space E is a sequence (Fy,)pnew
of nonzero finite-dimensional subspaces of F such that every x € E can be decom-
posed in a unique way as a convergent sum x = Y, ,T,, where for every n € w,
xn € E,. With these notation, we let P,(z) = > ,_, x;; this defines a linear projection
P,: E— @,_, Ei. As for Schauder bases, we can show that the P,’s are uniformily

bounded; the number C' = sup,, || P, is called the constant of the FDD. FDDs are
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a generalisation of Schauder bases: given (zy)ne, a normalized sequence in E, we have
that (x,)new 18 a basis of F if and only if (Rzy,)ne, is an FDD of E| and in this case,
the constants are the same.

If a sequence (Fy,)new of finite-dimensional subspaces of E is a FDD of @, Fn,
then (F),)new will simply be called a FDD. We have the same characterisation for
FDDs as for basic sequences: if (F,)n<, is a sequence of nonzero finite-dimensional
subspaces of E and if there exists a constant C' such that, for every m < n and for every
(@i)i<n € [ [, Fi, we have |3, x| < C|X;-, xill, then (Fy,)new is a FDD. Moreover,
the constant of this FDD is the least C' satisfying this property.

A block-FDD of an FDD (F),)ne, is a sequence (G;)qe, of nonzero finite-dimensional
subspaces of F such that there exists a sequence Ay < A; < ... of finite subsets of w
such that for every i € w, G; S @nea, Fy,. By the previous characterisation, a block-FDD
of (F)new is an FDD and its constant is less or equal to than the constant of (F},)pew-
For z = Zf:o Zn, where Vn € w x, € F,, the support of x on the FDD (F),)ne, is
supp(z) = {n € w | x, # 0}. A block-sequence of (Fy)ney, is a sequence (zp)new Of
normalized vectors of @pe,F,, such that supp(zp) < supp(x1) < .... Remark that a
normalized sequence (zp)ne, is a block-sequence of (F),)ne, if and only if (Rxy,)pew is
a block-FDD of (F},)ne,- In particular, a block-sequence of (F},)neo is a basic sequence
with constant less or equal to than the constant of (F;)new-

An unconditional finite-dimensional decomposition (UFDD) is an FDD (F},)pew such
that for every (zn)new € [l,e, Fn, if the series >z, converges, then for every
A < w, the series ), _,z, also converges. If this holds, it can be shown that for
every a = (an)new € Yoo and, the series T, (Z;O:O .’L‘n) = Zfzo anTy converges. More-
over, letting F' = new Fn, this defines a bounded operator 7T, : ' — F, and
K := supyeg, ||Tufl < . The constant K is called the unconditional constant of

the FDD.

A sequence (F),)ne, of nonzero finite-dimensional subspaces of E is a UFDD
if and only if there exists a constant K such that for every n € w, for
every (go,...,en—1) € {=1,1}", and for every (;)i<n € |[l[;=, Fn, we have
1Dicn izl < KJ|2,-,,zi]- In this case, the unconditional constant of (F)ne. is
the least K satisfying this property. This characterisation shows that a block-FDD
of (Fp)new is a UFDD with unconditional constant less or equal than the uncondi-
tional constant of (F),)ne,. We can also show that a sequence (F,)new of nonzero finite-
dimensional subspaces of E is a UFDD if and only if there exists a constant K’ such
that for every n € w, for every A € n, and for every (x;)i<n € [[,_, Fn, we have

12iea will < K22 il

Before going further, let us recall some facts about the equivalence of sequences.
Here, o will denote an integer or w. Two sequences (Zp)n<a and (yn)n<a of elements
of a Banach space E are said to be C-equivalent, for some constant C > 1, if there
exist A, B > 1 such that AB < C and for every (ap)n<q € R® with finite support, we
have 4 |3, - 0 anynl < X ea @n@n| < BlXY,, <o anyn|. Two sequences are equivalent
if they are C-equivalent for some C. If two normalized sequences (Z,)n<a and (Yn)n<a

<n
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are C-equivalent, and if X and Y denote the respective closed subspaces spanned by the
T,’s and the y,’s, then there exists a unique C-isomorphism 7' from X to Y, such that
for every n < a, T'(xy,) = yn. Moreover, if (zy,)ne, is a basic sequence with constant M,
then (yn)new is a basic sequence with constant less or equal than C'M.

A classical result says that a small perturbation of a basic sequences is still a basic
sequence, equivalent to the first one. We will later need a generalization of this result;
we state it now. Recall that, given a finite-dimensional normed space F', a normalized
basis (f;)i<q of F' is said to be an Auerbach basis if all of the biorthogonal functionals
ff e F*, for i@ < d, have norm 1. Auerbach’s lemma says that such bases always
exist; for a proof see problem 12.1 in [2]. Here, we will say that a sequence (z;)i<q of
normalized vectors in a Banach space is M -Auerbach, for M > 1, if for every sequence
(ai)i<a € R* with finite support, and for every n < o, we have |a,| < M| Y,_, aizi|.
Remark that if two sequences (2, )n<a and (yn )n<a are C-equivalent, and if (2, )p<q is M-
Auerbach, then (y,)n<q is CM-Auerbach. Obviously, Auerbach bases are 1-Auerbach,
and basic sequences with constant M are 2M-Auerbach. But there also exist other
examples of Auerbach sequences. For exemple, take (F;)ie, a FDD with constant C,
let n; = >, _; dim(F}), and for every i € w, let (Zn)n,<n<n;;, be a normalized basis of
F; which is M-Auerbach, for a fixed M. Then the sequence (zy,)ne, is 2C M-Auerbach;
however, this is not necessarily a basic sequence.

The principle of small perturbations we will use here is the following.

Lemma IV.3. Let (z;)i<a be a C-Auerbach sequence, and let (y;)i<a be a normalized

sequence in the same Banach space. Let ¢ < %, and suppose that >.__ |z; — yi| < e.

Then the sequences (;)i<a and (Y;)i<a are %fcg—equz’valent.

<o

Proof. Let (a;)i<a € R* be a sequence with finite support. We have:

2 aiyi| < Z a;ri| + 2 |ailllyi — i
< <Q <
< D) a| +C D aim| - ]y — il
< <o <«
< (1+C€) Eaimi .
<o
On the other hand, we have:
Z a;Ti|| < Z a;yi|| + Z |ail[lyi — 4
<o <o <
< Z a;y;i| + Ce Z a; ;|
< <
S0:
(1—Ce¢) Z a; x| < Z aiy;
i<a <o




The result immediately follows.
O

We now turn back to FDDs and introduce a method for constructing them. The
idea is the same as the usual method for building basic sequences: each term has to
be choosen “far enough” from the previous ones. We give here a formulation of this
criterion that will be quite convenient for our work. We start by giving a new version of
the asymptotic game.

Definition IV.4. Let E be a Banach space. The subspace-asymptotic game below E,
denoted by SubFg, is the following two-players game:

I X X4

11 Ey By ..
where the X,,’s are finite-codimensional subspaces of FE, and the F),’s are finite-
dimensional subspaces of E, with the constraint for IT that for all n € w, F,, € X,,.
The outcome of the game is the sequence (F,)new-

Our criterion will be the following.

Lemma IV.5. Let E be a separable Banach space and € > 0. Then player I has a
strategy in SubF, to build a FDD with constant less or equal than 1 + €.

Proof. Recall that C(]0, 1]), the space of continuous functions [0,1] — R with the sup
norm, has a Schauder basis (e;);e, with constant 1 (see [2], theorem 1.2.1). We denote
by P;, i € w, the projections relative to this basis. Recall also Banach-Mazur’s theorem
(theorem 1.4.3. in [2]), saying that every separable Banach space can be isometrically
embedded in C(]0, 1]). So we can assume that £ < C([0,1]). Remark that a strategy for
I in the subspace-asymptotic game into C([0, 1]) to reach some target immediately gives
a strategy for I in the same game played in E to reach the same target: I can play in E
the intersection of E and of the subspace he would play in C([0,1]). So we can assume
that £ = C([0, 1]).

Consider the approximate asymptotic space (P, Sg,d, 5, €) where P is the set of all
infinite-dimensional subspaces of E, d is the distance of the norm on Sg, and X VY if
X is a finite-codimensional subspace of Y. On this space, we can consider the system of
compact sets (KC,®) where K is the set of balls of nonzero finite-dimensional subspaces
of F and Sp®Sg = Sriqg. In this space, the strong asymptotic game below F is exactly
the same as the subspace-asymptotic game below E. Moreover, denote by Xo the set of
basic sequences in E with constant less or equal than C. Then, for a sequence (F},)p<w
of nonzero finite-dimensional subspaces of E, if bs((Sg, )new) € Xite, then (F)pew is
a FDD with constant less or equal than 1 4+ . However, by lemma IV.3, we have that
for a well-chosen sequence A of positive real numbers, (XH%) A € X14e. So by theorem
IT1.16, it is enough to show that player I has a strategy in the asymptotic game FE to

build a basic sequence with constant 1 + 5.
Fixd e (0, %) be such that ﬁ—%g < 1+5. We describe a strategy for Iin Fi on a play
(X0, 0, X1, 21, . ..) of this game. We suppose moreover that at the same time as each z;,
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a vector y; is built such that |z; — y;|| < 2{% and such that (y;)ie. is a block-sequence of

(én)new- This will be enough to conclude: indeed, (y;)ie, Will be a basic sequence with
constant 1, so by lemma IV.3, (z;)ie, Will be a basic sequence with constant 1 + 5.

At the first turn of the game, I plays Xy = E. II answers with xqg. Then, for ng € w
large enough, we can let 1 = ”I;ZS% and we have ||xg—yol| < g. Suppose now that the
first ¢ turns of the game have been played, so xo,...,z; and yg,...,¥y; have been built.
Let m; = maxsupp(y;). Player I plays X;+1 = Ker P,,,. Then IT answers by ;11 > v;;
fpg(ifﬁ)ﬁ we have i1 — yi1] < 5. We
have y;11 > y; as wanted, what finishes the proof.

for n; 1 € w large enough, letting y;41 =

d

It will be very important, in the following work, to be able to characterise separable
spaces that are not isomorphic to /5. Recall that it is a well-known fact that if a
separable Banach space X is not isomorphic to /o, then for every C = 1, there exists a
finite-dimensional subspace F' of X which is not C-isomorphic to Kgim(F). We state here

a little stronger result.

Lemma IV.6 (Folklore). Let X be a Banach space and (Fy)new be an increasing se-
quence of finite-dimensional subspaces of X such that | ., Fn is dense in X. Then

dBM(X, fg) = Supnew dBM(Fn, fglm(Fn)) .

Proof. Let C = 1 and suppose that for every n, F,, is C-isomorphic to ¢3. We need to
show that X is C-isomorphic to ¢. For every n, let ¢, : F,, — F, an isomorphism,
where E,, is a subspace of {2, ||¢n|| < C, and ||¢; || < 1. By composing successively
the ¢,’s by isometries between finite-dimensional subspaces of f2, we can moreover
assume that £y € E; € .... Let U be a nonprincipal ultrafilter on w. For every
2 € Ui, Fi, we let p(z) = lim;y @i(x). As, if z € Bp, (R), we have for every i large
enough, ¢;(z) € Bg,(CR), this limit is well-defined. This defines a linear mapping
¢+ Unew Fn — €2 with, for every z, |z|| < |¢(z)| < C|lz|. So ¢ can be extended to an
C-isomorphism between X and a subspace Y of #5, and since Y is isometric to #o, this
concludes.

O

We can now state a characterisation of non-isomorphism to ¢ based on FDDs. This
characterisation will be central in the following work.

Lemma IV.7. Let E be a separable Banach space. Then E is non-isomorphic to
Uy if and only if there is a FDD (Fp)new in E such that for every n € w, we have
dBM(Fn,Kgim(F")) = n. Moreover, if such a FDD exist, it can be choosen with constant
as close as 1 as we want.

Proof. Tt is immediate that if there is a FDD (F},)peo in E with dga(F, Kgim(F")) =n

for every n, then E is not isomorphic to fo. Now suppose that E is not isomorphic to
£5. Then no finite-codimensional subspace of E is isomorphic to £2, so by lemma IV.6,
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when playing the subspace-asymptotic game in E, player II can, at the n*® turn, play
F,, with dgy (Fn,ﬁglm(Fn)) > n. Lemma IV.5 concludes immediately.

O]

An FDD satisfying the conclusion of lemma IV.7 will be called a good FDD in the
rest of this manuscript.

To finish this section, we recall some simple facts about directs sums and HI spaces.
Recall that two subspaces Y, Z of a Banach space X are in topological direct sum if
Y n Z = {0} and if the natural projection Y @ Z — Y is bounded. This is equivalent
to say that the mapping Y x Z — Y @ Z defined by (y, 2) — y + z is an isomorphism;
thus, by the open mapping theorem, saying that Y and Z are in topological direct sum
is equivalent to say that Y n Z = {0} and Y + Z is closed in X. In particular, a space X
is HI if and only if no pair of subspaces of X are in topological direct sum. Also recall
that Y and Z are not in topological direct sum if and only if d(Sy,Sz) = 0: indeed,
saying that the projection Y @ Z — Y is unbounded is equivalent to say that we can
find y € Sy and z € Z such that ||y+ z| is arbitrarily small, so that y and z are arbitrarily
close.

IV.2 The first dichotomy

In this section, we give a Hilbert-avoiding version of Gowers’ first dichotomy I1.21. We fix
E a separable Banach space non-isomorphic to £5. We let P be the set of its subspaces
that are not isomorphic to £2, and on P, we put the usual quasi-order * defined by
X Cc*Y if X nY has finite codimension in X. We let d be the distance on Sg induced
by the norm.

The results presented in this section take their roots in an idea of Valentin Ferenczi.
He remarked that lemma IV.6 has the following corollary:

Proposition - definition IV.8. The space HAg = (P, Sp,<S,<*,€), called the Hilbert-
avoiding space over E, is an approximate Gowers space.

Proof. The verification of the axioms 1., 4., and 5. in the definition of a Gowers space
are straightforward. The axiom 2. follows from the fact that if a space X has a finite-
codimensional subspace isomorphic to f£5, then X is itself isomorphic to £. We now
verify 3.. Let (X,)ew be a S-decreasing sequence of elements of P. Since X, is non-
isomorphic to £5, then by the lemma there exist a finite-dimensional subspace F,, € X,
such that Fj, is not n-isomorphic to Zgim(F"). Then we let X* = Znew F,. Since X
contains all the F},’s, it is infinite-dimensional and non-isomorphic to ¢5. Moreover, for
every n e w, X* € X, + >, F;, so X* €* X,, as wanted.

O]
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In the same way as we deduced Gowers’ Ramsey-type theorem from its abstract
version theorem II1.17, we can, using this space, give a Hilbert-avoiding version of this
theorem:

Theorem IV.9. Let X € (Sg)¥ be an analytic set, A be a sequence of positive real
numbers, and € > 0. Then:

e cither there exists a good FDD (Fy,)nen in E, with constant at most 1 + ¢, such
that no block-sequence of this FDD belongs to X ;

e or there exists a subspace X of E, non-isomorphic to ls, such that II has a strategy
in Gowers’” game below X to reach (X)a.

Beware: here, when talking about Gowers’ game, we talk about the version of Gow-
ers’ game corresponding to the approximate Gowers space HAg. This means that in
this game, player I is only allowed to play subspaces of X that are not isomorphic to £s.

Proof of theorem IV.9. Let K be the set of unit spheres of nonzero finite-dimensional
subspaces of E. For F,G € F finite-dimensional, let Sp @ Sg = Sp.g. This defines a
system (IC,@®) of compact sets on HAg. Apply the abstract Gowers’ theorem II1.17 to
HAE, to this system, to the set X', the subspace E, and the sequence A. It gives us a
subspace X of E, non-isomorphic to #o, such that:

e cither player I has a strategy 7 in SFx to build a sequence (SF,)new such that
bs((SF, Jnew) € X

e or player II has a strategy in Gx to reach (X')a.

In the second case we are done, so suppose now that we are in the first case. By
lemma IV.5, player I has also a strategy ¢ in SubFx to build a FDD with constant at
most (1 + ¢). Remark that in this case, the games SFx and SubFx can be identified.
We let I play to this unique game using both of the strategies 7 and o at the same
time, that is, at each turn, he plays the intersection of the subspace given by o and of
the subspace given by 7, which is still finite-codimensional in X. This ensures that the
outcome (Fy,)ne, will be a FDD with constant at most 1+& such that bs((SF, Jnew) S X°.
On her side, since I always plays subspaces that are non-isomorphic to o, IT can play
at the n'® turn a subspace F, such that dBM(Fn,Egim(F”)) > n. This ensures that the
outcome will be a good FDD. To finish, block-sequences of (Sg,)ne, are exactly the
block-sequences of the FDD (F},)pew, so the fact that bs((Sg, )new) S X ensures that
the outcome will have the wanted property.

O

We can now turn to our dichotomy. Recall that a Banach space X is said to be
primary if for every subspaces Y, Z of X, if X = Y@ Z, then either Y or Z is isomorphic
to X. This motivates the following definition, that can be seen as a variant of primary
spaces, or as a weakening of HI spaces:
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Definition IV.10.

1. A separable Banach space X is said to be Hilbert-primary if for every subspaces
Y, Z of X,if X =Y @ Z, then either Y or Z is isomorphic to #s.

2. The space X is hereditarily Hilbert-primary (HHP) if every subspace of X is
Hilbert-primary.

Remark that, in the same way as we did for HI spaces in the last section, HHP
spaces can be characterized as spaces X such that no pair of subspaces Y, Z € X non-
isomorphic to £5 is in topological direct sum. Obviously, £5 is HHP, and every HI space
is HHP. The following proposition gives us another example of an HHP space.

Lemma IV.11. If X is a separable HI space, then X @ {y is HHP.

Proof. Suppose not. Then X @ /5 has two subspaces Y and Z, non-isomorphic to /o,
and whose sum is a topological direct sum. We denote respectively by P, and Px the
projections of X @ ¢y onto X and £ and we suppose that the norm on X @ ¢ has been
choosen in such a way that these projections have norm 1.

We describe a play (Up, Rug, U1, Ruyq,...) of the game SubFxge, where (u;)iew is a
normalized sequence and where I plays using his strategy to build a FDD with constant
at most 2. Describe how II plays. Suppose that we are at turn ¢, so player I just
played U;; and suppose that ¢ is even. Since U; is a finite-codimensional subspace of
X @ {5, we have that U; n'Y is not isomorphic to ¢z, so in particular, Py, [(U; nY) is
not an isomorphism onto its image. In particular, there exists u; € Sy,~x such that
| Pe, (u;)]| < ﬁ. We let II play Ru; in SubFxgye,. If 7 is odd, we do the same but with
Z instead of Y.

In this way we have built a basic sequence (u;)ie, With constant at most 2 such that
u; € Y for i even and u; € Z for i odd. Let U be the closed subspace spanned by the
u;’s, and let x € U with norm 1. We write z = Z?io x;u;. Then for every i € w, |x;| < 4.
And we have:

e¢] e¢]
1
1P @) = |Y 2P| < 4] Patu)| < 5.
1=0 1=0
So |Px(z)| = ||z — Pr,(x)| = 3. In particular, Px U is an isomorphism between

U and its image. Since both Y n U and Z n U are infinite-dimensional, and are in
topological direct sum, the same holds for their images by Px. But Px(Y n U) and
Px(Z n U) are subspaces of X which is HI, so this is a contradiction.

O

By now, we do not know any other example of an HHP space. It would be particularly
interesting for us to know if there exist HHP spaces that are non-isomorphic to £ and
that do not have any HI subspace; such spaces should be f3-saturated (i.e. ¢2 can be
embedded in every subspace of such a space).

Our dichotomy is the following.
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Theorem IV.12. Let E be a separable Banach space, non-isomorphic to £5. Then there
exists a subspace X of E, non-isomorphic to £y, such that:

o cither X has a good UFDD;

e or X is HHP.

This is a dichotomy between two classes that are, in some sense, hereditary. The
second one is hereditary with respect to taking subspaces that are non-isomorphic to
fy, and the first one is hereditary with respect to good block-FDDs: a block-FDD of
a UFDD is a UFDD. Moreover, these classes are disjoint: if (F})ie. is a good UFDD
of X, then for every infinite and coinfinite A € w, we have a decomposition of X in a
direct sum of two subspaces that are not isomorphic to fo, @, 4 Fi and @), 4 F;. Thus,
we have a genuine dichotomy of spaces non-isomorphic to ¢5 in the sense of Gowers; we
know how to build lots of operators on a space X with a good UFDD, the only missing
thing would be a better understanding of the operators on a HHP space that is not
isomorphic to £5.

Proof of theorem IV.12. Fix A a sequence of positive real numbers that will be deter-
mined at the end of the proof. For every integer N > 1, let Xy be the set of sequences
(i)iew € (Sp)“ such that there exists n € w and a sequence (a;)i<, € R™ such that

2 a;r;| > N ECLZ‘.TZ‘

i<n i<n
i even

the following property (#) holds:

. The Xn’s are open subsets of (Sg)“. Firstly suppose that

(#) There exists N € w and a good FDD (F),)ne, in E such that no block-sequence of
(F)new belongs to Xy .

We then show that (F})new is a UFDD. More precisely, we will show that given
mew, ASm, and (¥;)i<m € [ [;-,, Fi, we have | >4 vill < (N + 1) 1222, vil; by the
criterion given in the last section, it will be enough to conclude.

Let B={i <m|y; #0}. If B= @&, then there is noting to prove, so we suppose

B # @. If minB € A, then we can build a sequence Ay < A1 < ... < A,_1 of
subsets of B such that B = U A; and An B = U A;. Then, we let, for i < n,
<<n <n

i even

_ . _ 1 4 is L -
a; = HZ]GAZ_ yJH and z; = aﬁzjeA,- yj. In this way, we have Zyl = Z a;z; and
€A i<n
i even

2 Y = 2 a;x;. Moreover, (x;)i<n is a finite block-sequence of (F})new, S0 it can
<<m <n
be prolonged to an (infinite) block-sequence, that will belong to X5, Therefore, we

3 o

<n

have that 2 a;xil| < N

i<n
i even

, or in other words >, .4 uill < N |2, vil, as
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wanted. Now, if min B ¢ A, then we can apply the previous result to A¢ and get that

1 ieac vill < NXicm yills s0 [ 2iea yill < 12icm vil + 1 20eac vill < (N + 1) 2520 vl
as wanted.

We now suppose that the property () is not satisfied. We build a decreasing sequence
(XN)New of subspaces of E, non-isomorphic to {2, in the following way. We let Xy = E.
If X has been constructed, knowing that (*) is not satisfied and applying theorem IV.9
to the space Xy, the sequence A and the set Xyy1, we get Xny,1 € Xy non-isomorphic
to £ such that player IT has a strategy in Gy, , to reach (XN+1)a. The sequence
(XN)New being built, there exists a subspace X € E non-isomorphic to ¢ such that for
every n, we have X €* Xy. This show that for every N = 1, player II has a strategy
in Gx to reach (Xn)a.

We now show that X is HHP. Suppose not, then there exists two subspaces Y, Z of
X, non-isomorphic to #o, such that Y @ Z is a topological direct sum. We let P be the
projection from Y @ Z to Y and we choose an integer N > || P||. We consider a play of
Fx and a play of Gx played simultaneously, and having the same outcome (z;)icw, as
represented on the diagrams below:

I Uo Ui Us Us
Fx
II i) T xTo I3
I UoﬁY UlﬁZ UQﬁY U3ﬁZ
Gx
11 X0 I X9 T3

This is how these games are played:

e In Fx, I plays using a strategy enuring that the outcome is a basic sequence with
constant at most 2. Such a strategy exists by lemma IV.5 (here, the games F'x
and SubFx can be identified, since IT only plays vectors). We denote by (U;)iew
the sequence of his moves.

e At the turn i of Gy, if 7 is even, I plays U; n'Y, and if ¢ is odd, he plays U; n Z.

e In Gy, IT plays using her strategy to reach (Xyn)a. The sequence of her moves
will be denoted by (x;)ies-

e At the turn ¢ of Fx, IT plays x;. This is always a legal move: indeed, by the rules
of Gx, we have z; € U;.

This ensures that the sequence (z;)ie, built in this way is a basic sequence with
constant at most 2, is in (AXyn)a, and that for i even, we have z; € Y, and for i odd, we
have z; € Z.
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We now choose A in such a way that if (y;)ie. is a basic sequence with constant
at most 2, and if (z;)ien € (SE)“ is a sequence such that for every i, |y; — zil| < Ay,
then (y;)icw and (2;)iew are 2-equivalent; such a A exists by lemma IV.3. Remark that if
(Yi)iew and (z;)iew are 2-equivalent, and if (y;)iew € Xan, then (z;)iew € Xn. In particular,
we deduce that (z;)iew € Xn. So there exists n € w and a sequence (a;)i<, € R™ such

that Z a;xi| > N Z a;x;|. Now let y = Z a;x; and z = Z a;x;. We have

a<n i<n i<n <n
i even i even 10

yeY, ze Z and |y| > N|y + z|; this contradicts the fact that the projection from
Y @ Z to Y has norm less or equal than N.

d

IV.3 The second dichotomy

In this section, we give a Hilbert-avoiding version of Ferenczi and Rosendal’s dichotomy
between minimal subspaces and tight subspaces (theorem 1.25). We begin with some
definitions. Given a FDD (F}),e, in some Banach space E, and A € w, we will denote
by [F; | i € A] the subspace @, 4 F;.

Definition IV.13.
1. A separable Banach space X non-isomorphic to £s is minimal among non-hilbertian
spaces (MNH) if it embeds in all of its subspaces that are not isomorphic to fs.
2. Let (F})iew be a FDD in some Banach space E. A Banach space X is tight in

(F})iew if there is an infinite sequence of intervals Iy < I; < ... of integers such
that for every infinite A € w, we have X © [E i¢ UjeA Ij].

3. A good FDD (F});e, is said to be tight for non-hilbertian spaces (TNH) if every
Banach space non-isomorphic to ¢y is tight in it. A Banach space X is tight for
non-hilbertian spaces (TNH) if it has a good FDD which is TNH.

Some more properties of TNH spaces will be proved in the next setion. The di-
chotomy we will prove is the following:

Theorem IV.14. Let E be a Banach space with a good FDD (E;)ie.,. Then (F;)iecw has
a good block-FDD (F;)ie. such that:

e cither |F; | i€ w| is MNH;
® Or (Fi)iEw 1s TNH.

In particular, every separable Banach space non-isomorphic to £o has either an MNH
subspace, or a TNH subspace.
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Again, this a genuine dichotomy in the sense of Gowers. A subspace of a MNH space
that is not isomorphic to ¢o is itself MNH; and a good block-FDD of a TNH FDD is
itself TNH. Moreover, a TNH space cannot be MNH.

The rest of this section is devoted to prove this dichtomy. Remark that the “in
particular” part of the theorem is a direct consequence of the first part, since every
separable Banach space non-isomorphic to ¢2 contains a good FDD. So we prove the
first part. We fix a Banach space E with a good FDD (F;);cw-

Since the proof is quite technical, it is inconvenient to deal with approximation, so
we will work with vector spaces on a countable field. For every i € w, we fix a basis
(e;'.) j<d; of E;. In this way, every x € E' can be decomposed in a unique way as a sum
T = 2;’10 z* with 2 € E; for every i, and every 2 can be decomposed in a unique way
asasum x! = ) <d; x;e; We fix K a countable subfield of R such that for every = € E,
if all the x; are in K and if all them are zero except for a finite number, then ||z| € K.
Such a field can be built inductively: begin with Ky = Q, and define K, ;1 the subfield
of R generated by K, and all of the |z|’s, for x € E such that for every = € F, all the xé
are in K and all them are zero except for a finite number; and then let K = |, Kn-
In the rest of this section, vector spaces on K will be denoted by capital script roman
letters, and closed subspaces of E (of finite or infinite dimension) will be denoted by
capital printscript roman letters. We let 7 be the K-vector subspace of E generated

by all the ez-’s. For 27 a K-vector subspace of E, we let .27 be its closure in E, and

Sz be the set of its normalized vectors. Remark that 9 is a R-vector subspace of
E, that &7 is R-finite-dimensional if and only &’ is K-finite-dimensional, and that
in this case, their dimensions are equal. We have 7~ = E. Also remark that since,
for x € 7, we have ﬁ € 7, then for &7 a vector subspace of 7, S, is always
non-trivial.

We now define a Gowers space. For every i € w, we let &; be the K-vector
subspace of F; generated by the e}’s for j < d;. Obviously we have ¢; = E; and

7" = @y, i - We define a block-FDD of (& )iew as a sequence (.7 )ie, of
nonzero finite-dimensional K-vector subspaces of E such that there exists a sequence
Ag < A1 < ... of finite sets of integers such that for every i, we have .7, < Djea; gzpj .
A Dblock-FDD (.%; )ie., will often be denoted by the letter .7 ; thus, when we speak
about a block-FDD .% without further explanation, it will be supposed that its terms

are denoted by .%; . Remark that if .% is a block-FDD of & , then (&7; ) is a
1EW

block-FDD of (E;)ie,- So we will say that .7 is good if and only if (7; ) ~is a good
block-FDD of (E;)ieo- e

We let P be the set of good block-FDDs of & . If .% |, & € P, welet .7 < <
if 7 is the block-FDD of <. We let .% <* < if there exists n € w such that
(.Zi Jizn < < . Welet X be the set of pairs (%7 ,x) where & is a finite-dimensional
subspace of 7 and x an element of S . For .# € P and (& ,x) € X, we say that

Lemma IV.15. § = (P, X, <, <*,<) is a Gowers space.

1EwW
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Proof. The only non-trivial property to verify is the diagonalization property. So, sup-
pose that we have a <-decreasing sequence (.7 !); € w of elements of P (with for every
i, 7 "= (%] Yjew). Then we can verify, by induction, that for every k € w and i < j,
we have .7, 1 € @2, 71 *. Letting .7 * = (.7 ")jew, this proves that .7 * is a good
block-FDD and that for every i € w, (.7 *)i=; < .7 ¢, as wanted.

=

d

In this proof, we will use variants of the usual games F o, G+, A+, B+ of the
Gowers space G, but with additional rules. These games will be denoted with a prime:
F'o G-, A, B . We define these games below.

Definition IV.16. Let .% € P.

e The game G’ - is defined in the following way:

1 70 T
11 Q@O,l‘o @1,$1

where the .7 ¥’s are good block-FDDs of .7 , the Z7?’s are finite-dimensional
subspaces of 7, and the z;’s are elements of S5, with the constraints for II
that for all i < w, ' C @Pjen i iand ;€ X0 + ...+ 2. The outcome
of the game is the sequence (z;)icw € (S 7 )".

o The game F'- is defined in the same way as G’ - apart form the fact that this
time, player I has to choose the .7 " in such a way that .7 "' g .7 .

e The game A’_- is defined in the following way:
I 20 a0, G P, G

=

II ‘*70 L(/)O » Y0, ‘771 f/l > Y1, ‘772

where the .7 s and the ¢ "’s are elements of P, the &7 ’s and the .7 ’s are
finite-dimensional subspaces of 7, and the x;’s and the y;’s are elements of S & .
The rules are the following:

—for T : for all i € w, (g)l 2
r,e RO 4.+ R

— for IT: for all 7 € w, ﬂ_igf/T’ i c®

QA

, P S @, 7 ' and

R 0 i
jew T andy; € SV 4457

and the outcome of the game is the pair of sequences ((;)iew, (i )iew) € ((S 7+ )¥)2.

e The game B’ - is defined in the same way as A’ -, except that this time the .7 “’s
are required to satisfy .7 ¢ g .7 , whereas the % are only required to satisfy

The starting point of this proof will be the following lemma.
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Lemma IV.17. There exists .% € P such that either player I has a strategy in A’ -
to ensure that the sequences (x;)ie, and (Yi)iew are not equivalent, or player II has a
strategy in B'~ to ensure that the sequences (2;)icw and (Y;)ic, are equivalent.

Proof. The idea is that the games A’ and B’ can be seen as special cases of the
games A ~ and B by coding the rules in the target set. Let X be the set of sequences
(20 29, S0 yo, F',21,...) € X¥ satisfying one of the two following conditions:

e The sequences (z;)iew and (y;)ie, are inequivalent, and for every i € w, we have
zi€ R0 +. .+ F

e There exists i € w such that y; ¢ .0 + ...+ %%, and for every j < i,
xje@0+...+¢6f].

The first condition says that I reaches his target without cheating, and the second one
says that II cheats, and is the first player to do so. Then we have that:

o If player I has a strategy in A to reach X, then he has a strategy in A’ to
ensure that the sequences (z;)e, and (y;)iew are inequivalent;

e If player IT has a strategy in B+ to reach X, then he has a strategy in B’ to
ensure that the sequences (z;)e, and (y;)iew are equivalent.

Since the set X is a Gg-subset of X*“, the conclusion of the lemma immediately
follows from the adversarial Ramsey property in the space G (theorem I1.4).
O

In the rest of this proof, we fix the block-FDD .% given by the last lemma. We say
that a sequence (u;)iew € (S.7 )¥ is .7 -correct if there exists < < .7 and a partition
of w in successive intervals Iy < I} < ... such that for every i € w, the finite sequence
(uj)jer, is a basis of ¢ . The next proposition contains the combinatorial content of
theorem IV.14.

Proposition IV.18. One of the following statements is satisfied:

(1) For every .7 -correct sequence (u;)iew, player I has a strategy in F'~ to build a
sequence (I;)iew that is not equivalent to (u;)iew;

(2) There exists a .7 -correct sequence (u;)ie, such that player II has a strategy in

G' - to build a sequence (x;)ie., that is equivalent to (u;)iew-

Proof. Suppose that (1) is not satisfied. For the rest of the proof, we fix a .7 -correct
sequence (u;)e. such that player I has no strategy in F’- to build a sequence (z;)iew
that is not equivalent to (u;)ien. By the determinacy of this game, player IT has a
strategy 7 in F’- to build a sequence which is equivalent to (u;)ie.. By correctness of
this sequence, we can also fix ¢« < .7 and a partition of w in successive intervals
Ip < I < ... such that for every i € w, (uj) ey, is a basis of <5 .
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Step 1. We prove that IT has a strategy in A’ - to build two equivalent sequences.
We describe this strategy on a play (¢, Z2° ,zo, 7°,.5Y yo, © ,...) of A/~ in
which the FDDs played by II will always be equal to ¢ and that will be played at the
same time as an auxiliary play (#°, 270,29, #*, 2%, z1,...) of F'- during which
player IT always plays according to her strategy 7. Actually, the Z7° s played by I in
A’ will not matter at all in this proof, so we will omit them in the notation. At the
same time as the games are played, a sequence of integers 0 = ng < ny < ... will be
constructed. The idea is that the turn i of A’ - will be played at the same time as the
turns n;, n; +1,...,n,41 — 1 of the game F'-. Suppose that we are just before the turn
i of the game A’_-, so the z;’s, the .77 s, the .77 ’s, and the y;'s have been defined
for all j < i. Suppose also that the integers n; have been defined for all j < 4, and that
we are just before the turn n; of the game F' -, so the #™ ’s, the 77" ’s and the z,’s
have been played for all n < n;. We represent on the diagram below the turn ¢ of the

game A’ and the turns n;,...,n;11 — 1 of the game F’-.
I 7l e T
/
F
Im ... 4L A N S
I cee Ti, L%—i
!
Ay .
11 ey @ N T

We now describe how these turns are played. In A’_-, player II plays ¢ . Then
player I answers by a FDD .77 < .7 and a vector x; € @y, ©k . Thus, z; can be
decomposed on the basis (U, )men: we can find n;41 € w and (a*)m<n,,, € K™+ such
that x; = Zm<ni+1 a;u,,. Moreover, we can assume that n;.1 > n;.

Now, during the n;1; — n; following turns of the game F'-, we will let player I

play .7#% (So we will have, for every n; < m < n; 1, #™ = .7'). According to
the strategy 7, player IT will answer with 7™ | z,,,..., Z"+1— 1 Zn;y1—1- We now

let .7 = 7™ ...+ "+~ and y; = Dim<nsi, O #m. Since all the Z4UCY
for n; < m < n;yq are finite-dimensional subspaces of @, 7t then .7 is itself a
finite-dimensional subspace of @, 7% *. And since all the z,,, for n; <m < n;41, are
elements of 70 + ...+ Zmi+i-l = 90 4 [+ 97 then y; is itself an element of
0 +...+.7" . Sowe can let IT play . and y; in A’ -, what finishes the description
of the strategy.

The fact that in F”_- | player IT always plays according to the strategy 7, ensures that
the sequences (um)mgw and (zmn)mew are equivalent. Remark that the sequence (x;)iew
is built from (u;,)mey in exactly the same way that the sequence (y;)iew is built from
(Zm)mew; O this ensures that (x;)ie, and (y;)ien are equivalent, concluding this step of
the proof.
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Step 2. II has a strategy o in B’ to build two equivalent sequences. Indeed, by step
1, I has no strategy in A’_~ to build inequivalent sequences; so the conclusion follows
from lemma IV.17.

Step 3. We conclude, proving that player IT has a strategy in G’_~ to build a sequence
(Yi)iew that is equivalent to (u;)ien. We describe this strategy on a play of G’ - that will
played simultaneously with a play of B’ where II will play according to her strategy
o, and a play of F’ - where IT will play according to her strategy 7 (for a fixed i € w, the
turn ¢ of each game will be played at the same time). The moves of the players during
the turn ¢ of the games are described in the diagram below.

Py y
I ... Rz
I R,y O
B'- , ,
I G
G- ,
o ... Sy

We describe more precisely these moves. Suppose that in G'_-, player I plays <.
We look at the move % made by II in B’ according to her Strategy o, and we let I
copy this moves in F'-. In this game, accofding to her strategy 7, player IT will answer
with some &% and z;. Now, in B'-, we can let I answer with &7%, z; and < *. In
this game, according to her strategy o, player IT answers with some . and some ;.
Then the strategy of player II in G’ - will consist in answering with 7" and y;.

Let us verify that this strategy is as wanted. The outcome of the game F' - is the
sequence (r;)ieo; the use of the strategy 7 by II ensures that this sequence is equivalent
to (ui)iew. The outcome of the game B’ - is the pair of sequences ((2;)iew, (Yi)iew); the
use by IT of her strategy o ensures that these two sequences are equivalent. We deduce

that the sequences (u;)e, and (y;)iew are equivalent, concluding the proof.
O

We now let, for every i € w, F; = .%; . The sequence (F})ien is a good block-FDD
of (F;)iew and we can let F' = [F; | i € w]. By proposition IV.18, theorem IV.14 will be
proved once we have proved the two following lemmas:

Lemma IV.19. Suppose that there exists a .5 -correct sequence (u;)ie., such that player
IT has a strategy in G'~ to build a sequence (x;)ie., that is equivalent to (u;)iew. Then
(F})iew has a good block-FDD (G})iew such that G = [G; | i € w] is MNH.
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Lemma IV.20. Suppose that for every .7 -correct sequence (u;)iew, player I has a
strategy in F'~ to build a sequence (;)ie. that is not equivalent to (u;)iew. Then the
FDD (Fi)iew is TNH.

In order to prove these, we need two more lemmas. The first one is due to Ferenczi
and Rosendal and its proof can be found in [18] (lemma 3).

Lemma IV.21 (Ferenczi — Rosendal). For every n € w, there exists ¢(n) = 1 such that
for every Banach space U, and every subspaces V. and W having both codimension n, V.
and W are c(n)-isomorphic.

Lemma IV.22. Let ¢ € P, U a subspace Of[ '

xS w] non-isomorphic to £s, and

e > 0. Then there exists # < < such that [%/Z
U.

i€ w] can be 1 + e-embedded in

Proof. Let C be the constant of the FDD ( 7 ) . We fix A a sequence of positive

real numbers that will be defined in the course of lte]caue proof. We build inductively the
block-sequence 7. We will let, for every i € w, n; = 3;;_;dim (77 ), and we will
build, at the same time as the block-sequence &#, two normalized sequences (Z)new
and (Yn)new, with the property that for every 4, the sequence (5 )n;<n<n,,, Will be a
basis of &, , and for every n € w, ||z, — yn|| < Ap.

Fix i € w and suppose that the -7 ’s have been built for j < 7, that the n;” have been
built for j < ¢, and that the x;’s and the y;’s have been built for n < n;. Let m; € w be
such that for every j <i, #; <@ “'m (take for example for m; the supremum

Cm = [Z)m ‘m)mz] has

m<m;

of the supports of the z,’s for n < n;). Then @

mzm;
finite codimension in [ Cm ‘m € w], soUN@,,>m, Gm isnot isomorphic to £, and
contains a R-finite-dimensional vector subspace H; such that H; is not 2e’-isomorphic
to €gim(Hi). We let n;1 = n; + dim(H;) and we let (Yn)n;<n<n,.; be an Auerbach basis
of H;. We choose xp,,...,Tn,,,—1 normalized vectors in @,,,,. “m such that for
n; < n < nit1, we have |z, — yn| < A,. We now let 2#; be the vector subspace of
7" generated by the x,’s for n; < n < n;.1. This achieves the construction of % .
This is a good FDD: indeed, since (2 )n;<n<n,,, is 1-Auerbach, we can choose A small
enough to ensure that (y;)n,<n<n;y, 1S 2-equivalent to it, so % is 2-isomorphic to H;

dim( ;)
5 )

and hence cannot be e’-isomorphic to ¢

Since all the (2, )n,<n<n,,, are 2-Auerbach and since the FDD («7/Z ~ has constant

1EW
at most C, this ensures that (,)pe, is 4C-Auerbach. So if A has been choosen small
enough, we can ensure that the sequences (2, )new and (yn)new are (1 + €)-equivalent.

Since the closed subspace of E generated by the x;’s is [(//Z 1 € w|, and since all the

yi’s are in U, this ensures that [c/ﬁ 1€ w] can be (1 + ¢)-embedded in U.

O]
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Proof of lemma IV.19. Since the sequence (u;)iew is -7 -correct we can fix ¢ < .7
and a partition of w in successive intervals Iy < I; < ... such that for every i € w,
the finite sequence (u;)jer, is a basis of <5 . We let G; = <5 . Then (G)ics is a
good block-FDD of (F})ie,; we will show that G = [G; | i € w]| is MNH. By lemma
IV.22, it is enough to show that for every -# < <, the space G can be embedded in
H=[7
each turn, and IT answers with her strategy to build a sequence (x;);e,, that is equivalent
t0 (u;)iew- Since all the x;’s are in H and since the closed space generated by the w;’s is
G, the mapping u; — z; extends to an embedding of G into H.

i€ w]. Fix such an & and consider a play of G’ - where I plays -# at

O]

Proof of lemma IV.20. We have to prove that every Banach G space non-isomorphic to
Uy is tight in (F})iew. By lemma IV.22) it is enough to prove it in the case where G
has the form [7‘@ € w], where & < .7 . So we fix such a < . For every i € w,
we let n; = >

that is 2-Auerbach (this can be done by firstly, choosing an Auerbach basis of ¢ and
then, perturbing it a little bit in order to have all the terms in < ). In this way, the

sequence (ug)re, is -7 -correct. We let C' be the constant of the FDD ( 7 ) . We

1EW
then have that the sequence (uy)ke, is 4C-Auerbach. Since the proof is quite technical,
we will proceed in several steps.

i< dim ( Z; ), and we let (up)n;<n<n;y; b€ a normalized basis of

Step 1. The hypothesis of this lemma says that I has a strategy 7 in F”- to build
a sequence that is inequivalent to (uy)ke,. We reinterpret this statement using the
asymptotic game of an approximate asymptotic space we now define. The space will be
A= (w,Y,D, 5,<), where:

e the set of subspaces is w, and the order g is defined by m g n < n < m;

e an element of Y is a pair (I, x) where I is a finite interval of w and x is an element
of Sr; the distance on Y is defined by d((I,z),(J,y)) = |z —y| if I = J and 1

otherwise;

o (I,x)<nifn<I,ie. every element of I is greater or equal than n.

In this proof, we will denote by F) the asymptotic game of the space A under the
subspace n of A in order to avoid confusion with F'-. We fix K > 1, and A a sequence
of positive real numbers, less than 1, such that for every normalized sequences (;)iew
and (Vi )iew, if (%i)iew is 16 KC-Auerbach and if for every i € w, ||x; — y;i| < 24, then
(%4)iew and (yi)iew are 2-equivalent. We let X be the set of sequences (1o, zg, I1, 21, .. .)

Ojei(Brer, 1) ) . then

(%;)iew is not 4K-equivalent to (u;)iew. The aim of this step is to show that I has a
strategy to reach X in F{J. For this, we describe a play (ng, lo, o, n1,I1,21,...) of Fj

of elements of Y such that if for every ¢ € w, we have x; € (S
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at the same time as a play (.7°, 2% ,yo, F ', ' y1,...) of F/- during which I
always plays according to his strategy 7 and such that for every i € w, ||x; — y;|| < 2A;.
Suppose that the first ¢ turns of both games have been played; at the turn 4, in F'-,
according to his strategy, player I plays .7#?. Since .%' S .7 , there is n; € w such
that (7% k=n; < -7 ; we let I play this n; in F{/. In this game, IT answers with I; and

x;, and we can suppose that z; € (S’ otherwise II has lost the game.

®j<i (@kelj Fk) A,
So we can find a nomalized element y; € @, ((—Bkdj T ) such that |z; — yil| < 24A;.

In F'~, we let II play %" = @, 1, -7 and y; this finishes the description of the
strategy.

Now verify that this strategy is as wanted, that is, that (Io,zo,I1,21,...) € X.
Suppose not. Then (x;);e, is 4K-equivalent to (u;)iew, SO (%;)iew 18 16 K C-Auerbach. By
the choice of A, we get that (z;)ie, and (y;)ie, are equivalent, so (y;)iew is equivalent to
(1;)iew, thus contradicting the assumption on the strategy .

Step 2. We prove that for every K > 1, there exists a sequence of intervals of
integers Iy < I; < ... such that for every infinite A S w containing 0, we have

G £k [F, ‘z ¢ UjeAIj]‘ We fix K > 1, and we keep the sequence A and the set X

defined at the previous step relatively to K. We define a system of compact sets on
A. For J a nonempty finite interval of integers, let K; = {J} x S(®_< o F) this

is a compact subset of Y. We let K be the set of all the K;’s, and for K;,K, € K,
we let Kj @ K, = K;, where J is the smallest interval of w containing J; and J;.
Then (K, ®) is a system of compact sets on A. By step 1, player I has a strategy
in Fjj to reach X; so by theorem III.16, he has a strategy in SF{, the strong asymp-
totic game of the space A under the subspace 0, to build a sequence (K j,)ie, with
bs((KJ,)iew) € (X)a. In particular, there exists such a sequence with min(.Jy) > 0 and
for every ¢ > 1, max(J;—1) + 1 < min(J;). We let Iy = [0, min(Jy) — 1] and for every
i>1, I; = [max(J;_1) + 1, min(J;) — 1], in such a way that we have a partition of w in
intervals Iy < Jo < I; < Jp <.... We prove that the sequence (I;);e, is as wanted.

Suppose not. Then there exists an infinite A < w containing 0 such that
G Ex [Fl 1¢ UjeAIj]' In particular, in [F,
quence (r;)ie, that is K-equivalent to (u;)iew. We can then find a normalized se-
quence (y;)iew that is close enough to (x;)ien to be 2-equivalent to it, and such that
moreover, every y; has finite support on the FDD (F})e,; so we can find integers
0 =ng <ng < ...in A such that for every 4, supp(y;) < minl,,, . For every i,
we let Ly = Jp, 11U dpp1 0.0 dy 20y, -1V Jy,,,—1. In this way we
have K1, = ®n,<n<nis, KJ,, and (L;,y;) € K. Since bs((Kj, )new) S (X)a, we deduce
that (Lo, vyo, L1,y1,---) € (X)a. So there exists (z;)iew € (Sp)¥ such that for every i,
|zi — yi| < A, and such that (Lo, 20, L1, 21, ...) € X. Since the n;’s are in A, and since

1¢ UjeA Ij], there is a normalized se-

supp(y;) < min(Z,,, ), we have that for every i, y; € [Fk ‘k: <min(ly,,,), k¢ U;; In, ]
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Remark that the set of k& < min(/

Ni+1

) such that k ¢ Uj<i I,; is exactly Uj@» L;, so
Yk € S®j<i(®keLj Fk) So for every i, z; € (S(JDJ-@- (®kELJ Fk) . By the definition of
X, this implies that (z;)iew and (u;)iew are not 4K-equivalent. But on the other hand,
(Yi)iew is 2-equivalent to (x;)se, which is K-equivalent to (u;)ien which is 4C-Auerbach.
S0 (Yi)iew is 16 KC-Auerbach, and by the choice of A, we get that (2;):e, is 2-equivalent
t0 (¥ )iew, so 4K-equivalent to (u;)iew, & contradiction.

Step 3. We show that G is tight in (F},)new. For this, for every N > 1, we consider
a sequence of intervals of integers Iév < IfV < ... given by step 2, such that for every
infinite A € w containing 0, we have G Ty [Fn ‘n ¢ Uica IZN] For every d € w, we
denote by ¢(d) the constant given by lemma IV.21 such that for every Banach space U,
and every subspaces V and W having both codimension d, V and W are ¢(d)-isomorphic.
We build a sequence J; < Jy < ... of intervals of integers in the following way. All the
Ji’s, for | < k, being defined, we can choose Jj such that:

e for every N < k, Jj, contains at least one interval of the sequence (I}¥);ey;

o max(Jy) = d —i—max([év’“), where dj, = dim([F}, | n < min(Jg)]) and Ny = [ke(dy)].

We show that for every infinite A € w, we have G & [F, [n ¢ | Jiea Jr]- Suppose
not, and let A be witnessing it. Let K > 1 such that G Sk [Fy, |n ¢ Jpea Ju]- Let
ko € A such that K < ko. Let ng = minJy,. Since max(Jx,) = dj, + max([évko),
we have in particular dp, < dim([F), | max([évko) < n < max(Jyg,)]), so we can find
a subspace H € [F), | max([évko) < n < max(Jy,)] of dimension di,. Remark that
[Fr |(n < ng) v (n¢ Ukea Ji) ] and [F, |(n = no) A (n ¢ Upea Ji) 1 @ H both have codi-
mension dg, in their sum, so they are ¢(dy,)-isomorphic. In particular, since G' can be
ko-embedded in the first of these spaces, then it can be Ny, = [koc(dg,)]-embedded in

N
the second one. So in particular, G = Ny, F,n¢l, oy U Jr | |. But the set

keA
k>k0

N, N, . . . N,
I, ko (Ukke? Jk> contains infinitely many of the I, 0 i € w, and in particular I, ko
> K0

so this contradicts the hypothesis.
O

IV.4 Links with ergodicity and Johnson’s problem

In this section, we discuss some consequences of the two previous dichotomies that could
help for Johnson’s problem and for Ferenczi and Rosendal’s conjecture about ergodic
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spaces. We start by looking at the form that the first dichotomy takes for non-ergodic
spaces. The result we will prove is the following:

Theorem IV.23. Let FE be a non-ergodic separable Banach space, non-isomorphic to
ly. Then there exists a subspace X of E, non-isomorphic to lo, such that:

e cither X has a unconditional basis;

e or X is HHP.

This theorem is an immediate consequence of the first dichotomy and of the following
proposition, which is an unpublished result by Ferenczi:

Proposition IV.24 (Ferenczi). Let E be a non-ergodic separable Banach space, non-
isomorphic to {s, having a good UFDD. Then E has a subspace X, non-isomorphic to
ly, with an unconditional basis.

We reproduce here the proof of this proposition. We start by introducing two results
that will be needed in the proof. The first one involves the following property, defined
and studied by Pisier [53]:

Definition IV.25. A Banach space X is said to have the property (H) if for every
A = 1, there exists a constant K () such that for every finite sequence (;);<n € (Sx)=%,

if (2;)i<n is A-unconditional, then % < | Dicn @il < K(A\)y/n.

A Hilbert space has property (H): indeed, a A-inconditional normalized sequence in
a Hilbert space is A2-equivalent to an orthonormal sequence (see, for example, [36], page
71). So property (H) characterizes spaces that are, in some sense, “close” to f3. In [5]
and [4], Anisca proved the following result:

Theorem IV.26 (Anisca). FEvery separable Banach space non-isomorphic to ly and
having the property (H) is ergodic.

The second result we need is due to Rosendal ([55], theorem 15). Let Ef be the
equivalence relation on [w]“ defined as follows: if A, B € [w]¥, we say that AEyB if
there exists n € w such that |A nn| = |B n n| and A\n = B\n. Rosendal proved the
following:

Proposition IV.27. Let E be a meager equivalence relation on [w]¥, with Ey € E.
Then EO <B E.

(In [55], this result is stated and proved for equivalence relations on P(w), however,
the same proof works in the case of [w].)
We now prove proposition 1V.24. For s € 2<%, we denote by Ny the basic open subset

{Ae|w]¥ |Vn <|s|(ne A< s(n) =1)} of [w]“. We begin with a lemma.

Lemma IV.28 (Ferenczi). Let X be a non-ergodic Banach space with an FDD (F;)iew-
Then there exists a constant K such that for every i e w, [F} | j <i] Ex [Fj|j = 1].
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Proof. For every i € w, let n; = >}, _; dim(F}). Let (2y)n,<n<n;,, be a normalized basis
of F;. For A € P(w), let X4 be the closed subspace of X generated by the x,’s, for
n € A. Remark that for A € [w]* and for a cofinite B = A, we have X4 = Xp ® X4 p:
indeed, up to reducing B, we can suppose that there exists ¢ € w such that B > n; and
A\B < n;; but in this case we have Xp S [Fj | j > i] and X \p S [F} | j <], so the
answer follows. In particular, if A, B € [w]¥ are such that AEyB, then X4 and Xp have
the same finite codimension in X 4., p, so by lemma IV.21, they are isomorphic.

We define an equivalence relation E on [w]¥ by A E B if X4 and Xp are isomorphic.
As we just saw, Ej € E. Also remark that the mapping A — X4 from [w]“ to Sub(X)
with the Effros Borel structure is a Borel mapping. Indeed, if U is an open subset of X
and if X4 n U # @, then there exists m € w such that X4~m, N U # @, so for B € [w]¥,
as soon as Anm = B nm, we have Xp nU # @&. In particular, since X is non-ergodic,
then Eqg does not reduce to E. So by proposition IV.27, we deduce that F is non-meager.

F is analytic so has the Baire property, so by Kuratowski-Ulam theorem, there exists
A € [w]“ such that the E-equivalence class of A, denoted by [A], is non-meager. For
K > 1, denote by [A]k the set of B € [w]®¥ such that X4 and Xp are K-isomorphic.
Since [A] = [ Jgs1[A]k, then for some K > 1, [A]x is non-meager. So it is comeager in
a basic open set N, for some s € 2<%, We let N = |s| and m = |{n < |s| | s(n) = 1}|.
We denote by c¢(m) (resp. ¢(N — m)) the constant given by lemma IV.21 such that
two subspaces of a Banach space having both codimension m (resp. N — m) are m-
isomorphic (resp. (N — m)-isomorphic). We show that for ¢ € w such that n; > N, we
have [Fj | j <] Eg2e(m)e(n—m) [Fj | J = i]; the conclusion will follow.

Let i be such that n; > N. Consider t; = s (0,...,0) and to = (0,...,0)" s, where in
each definition, there are n; 0’s. Since [A]x is dense in N, there exists By € Ny, n[A] k.
We define B € [w]“ in the following way: for n > N + n;, we let n € By iff n € By, and
for n < N + n;, we let n € By iff t3(n) = 1. The set B has been obtained by shifting m
1’s at the beginning of B;. In particular, |(By v B2)\Bi| = [(B1 v B2)\Ba| = m so Xp,
and Xp, are ¢(m)-isomorphic. Thus, Xp, is Kc(m)-isomorphic to A.

In the same way, we can consider u; = s~ (1,...,1) and ug = (1,...,1) ~ s, where
in each definition, there are n; 1’s. Then there exists C; € N,, and Cy € N,, such
that C1\(N + n;) = Co\(N + n;), and C; € [Ag]. The set Cy has been obtained by
shifting N —m 0’s at the beginning of Ci. Thus, X¢, and X¢, are ¢(IN —m)-isomorphic.
Therefore, X¢, and Xp, are K2c(m)c(N — m)-isomorphic. Since [F} | j < i] € Cs and
By C [F; | j = 1], the conclusion follows.

O

Proof of proposition IV.2}. Let (E;)ie, be a good UFDD of E, and let K be its uncon-
ditional constant. If there exists a block-sequence of this UFDD that spans a subspace
that is non-isomorphic to f2, then we can take for X this subspace and we are done. So
we will suppose that every block-sequence of (F;) spans a subspace isomorphic to £s.
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Step 1. We show that there exists a constant C' such that every block-sequence of (E;)
spans a subspace C-isomorphic to £. If not, then for every ¢ € w and every C, there
exists a block-sequence (xi{c)%w of [Ej | j = i] spanning a block-subspace that is not
C-isomorphic to f3. By lemma IV.6, for every i and C, we can find an integer n; ¢
such that (a:f{c)n<mc spans a finite-dimensional subspace that is not C-isomorphic to
K;”’C. Now we build an increasing sequence of integers (muy)n=1 in the following way

my1 = 0 and my having been built, let my;1 = min supp(x?g]\’f{\]fv). In this way,

0,1 0,1 ma,2 m2,2 ms3,3

the sequence (z Y AR PE /| R PRERRE SR PE /| R
having subsequences spanning finite-dimensional spaces that are arbitrarily far away
from euclidean spaces; so the subspace spanned by this sequence is not isomorphic to £o,

a contradiction.

..) is a block-sequence of (E;)

Step 2. We show that there is a constant M such that every block-sequence of (E;)
is M-equivalent to the canonical basis of 2. Let (x,)new be such a sequence. It is K-
unconditional and by the previous step, it spans a block-subspace that is C-isomorphic
to o, so it is C-equivalent to a sequence (yp)ne, in ¢ that is KC-unconditional. Re-
mark that (y,) is not necessarily normalized, but by C-equivalence with the normal-
ized sequence (z,), we get that for every n, & < |yu| < C. Let z, = .. By
K C-unconditionality of (y,), we get that (2, )nes is K2C*-equivalent to (y;), so K2C®-
equivalent to (z;). Moreover, (z;) is a normalized K C-unconditional sequence in f2, so
it is K2C?-equivalent to the canonical basis of f3. So (z;) is K*C"-equivalent to the
canonical basis of 5. Hence, M = K*C7 is as wanted.

Step 3. We show that there exists = 1 such that for every A = 1 and ig € w, there
exists jo = ig and a p-unconditional normalized sequence (Tk)k<k, € [Ei | 1o < 1 < jo]=¥
spanning a subspace that is not A-isomorphic to E’;O. Since FE is non-ergodic and
non-isomorphic to ¢, by theorem IV.26, it does not have property (H); so there ex-
ists A > 1 such that for every B > 1, there exists a finite A-unconditional sequence
(uk)k<ko € (Sp)¥o with either |3, _, x| < )\4—‘/27, or NM'B"\/n < ||¥;_,, xi|. In particular,
this sequence is not A*B7-equivalent to the orthonormal basis of a euclidean space, but
it is A-unconditional, so by the same method as in the previous step, we can show that
span({ug | k < ko}) is not B-isomorphic to a 4°. We can take a sufficiently small per-
turbation (vg)k<k, of (Uk)k<k,, still normalized and whose elements have finite support,
to ensure that (vg)g<g, is 2A-unconditional and spans a space that is not g—isomorphic
to a euclidean space. Now recall that lemma IV.28 gives a constant D such that for
every i € w, [E; | j < i] Ep [Ej | j = i]. Using these embeddings, we can find,
given ig € w, a sequence (Wi )k<k, that is 2DA-unconditional and that spans a subspace
that is not %—isomorphic to a euclidean space, such that for every k& < kg, we have
wy, € [E; | i = do). Finally, we can choose a sufficiently small perturbation (zy)g<g, of
(Wk)ke>ko» still normalized, and such for every k < ko, zj, is a vector of [Fj | i > ip] with
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finite support, such that (zj)k<k, is 4DA-unconditional and spans a subspace that is not

%—isomorphic to a euclidean space. So we can take u = 4DA.

Step 4. We conclude. Using step 3, we can build a sequence (z,)n<, € (Sp)“ and in-
tegers 0 = ng < ny < ... such that, for every i, letting F; = span({z,, | n; <n < njt1}),
we have that (F})se, is a good block-FDD of (E;), and the sequence (Zy)n,<n<n;,, 18

p-unconditional. Since (F;) is good, we have that F := [F; | i € w]| = span({z,, | n € w})
is not isomorphic to ¢2. So to conclude the proof, it is enough to show that the se-
quence (Tp)new is unconditional. So let (an)new € R“ be with finite support, and
(en)new € {—1,1}*, we will show that |3 . enanzn| < M?u|X, ., anzn|. For i € w,

.= N -
let bl - HZnién<ni+1 AnTn |, Yi = b; (Zni<n<ni+1 Andn |, C = Zni<n<ni+1 EnlnTn
1

¢ Zni<n<ni+1
have that ¢; < ub;. Also remark that (y;)ie and (2;)ie, are normalized block-sequences
of the FDD (e;), so by step 2, they are M-equivalent to the canonical basis of 5. Thus,
we have:

new

Y

Z; =

=<

€ianTy |. Since the sequence (5)n;<n<n,;,, 1S p-unconditional, we

2 EndnTn 2 Cizj

new 1Ew

< M Zcf
1EW

< My, [0
1Ew

< M?p Zbiyi
1EW

= MZ,u Zanxn .
new

O]

We now give an interesting consequence of theorem IV.23 for Johnson spaces. In [3],
Anisca proves a result implying that a separable Banach space with a finite number of
subspaces, up to isomorphism, must contain a subspace isomorphic to £5. In particular,
a Johnson space must contain a subspace isomorphic to #5. So theorem 1V.23 has the
following corollary:

Corollary IV.29. A Johnson space either has an unconditional basis, or is HHP.

Thus, to prove that a Johnson space necessarily has an unconditional basis, it would
be enough to prove that a non-trivial HHP space must have at least three subspaces,

113



up to isomorphism. By similarity with Gowers-Maurey’s result that an HI space is
not isomorphic to any proper subspace of itself, this seems plausible. However, we did
not manage to prove this conjecture. In the next section, a simple proof of Gowers—
Maurey’s theorem will be presented; this could be a good starting point to try to prove
that non-trivial HHP spaces have many non-isomorphic subspaces.

We now turn to the consequences of the second dichotomy. In [15], Ferenczi and
Godefroy studied the links between tightness and Baire-category. In particular, they
proved that if (e;);e, is a basis and X a Banach space, then X is tight in (e;) if and only
if the set of A € w such that X E span({e; | i € A}) meager in P(w). Using the same
ideas, and the result of Rosendal IV.27 linking ergodicity with Baire category, we get
the following result:

Theorem IV.30. Every TNH space is ergodic.

Proof. Let X be a TNH space with a TNH FDD (F});co. As in the proof of lemma
1V.28, we let, for every i € w, n; = 2j<¢ dim(F}), and (25 )n;<n<n;,., be a normalized
basis of F;. For A € [w]®, we let X 4 be the closed subspace of X generated by the x,,’s,
for n € A. And we define an equivalence relation F on [w]|“ by AE B if X4 and Xp
are isomorphic. We will show that Eg <p E. Since Ej € E, it is enough to show, by
proposition 1V.27, that E is meager, so by Kuratwski—Ulam’s theorem, that for every
A € [w]“, the E-equivalence class [A] of A is meager. We distinguish two cases.

First case: X 4 is isomorphic to . For N = 1, we let Dy the set of B € [w]¥ such
that Xp is not N-isomorphic to f5. This is an open set: indeed, if Xp is not N-
isomorphic to 9, then by lemma IV.6, there exists n € w such that Xpg., is not N-
isomorphic to a euclidean space, so as soon as C € [w]“ satisfies Bnn = C nn, we
have C' € Dy. The set Dy is also dense: indeed, if s € 2<%, the set B € [w]* defined
by ne B< (n=|s| vs(n) =1)isin Ny and Xp has finite codimension in X, so it is
not isomorphic to ¢ and thus, B € Dy. Since [A] = (>, Dy)¢, we have that [A] is
meager.

Second case: X4 is not isomorphic to f3. In this case, since the FDD (F}) is
TNH, then there is an infinite sequence of intervals Iy < I; < ... of integers
such that for every infinite M < w, we have X, & [E i¢ UjeM Ij]. We can let
Ji={new|3jel;nj <n < mnji}, in such a way that Jo < J; < ... and that for
B € [w]¥, if for an infinite number of i, we have BN J; = &, then Xp is not isomorphic to
X 4. For k € w, we let Dy, the set of B € [w]“ such that there exists i > k with BnJ; = @.
Then Dy, is an open dense set, and by the previous remark, [A] N (e, Dk) = 9, so
[A] is meager.

O

Corollary IV.31. Every separable Banach space, non-ergodic and non-isomorphic to
by, has a MNH subspace.

This corollary, combined with theorem IV.23, show that to prove the conjecture IV.1,
it is enough to prove the following conjecture, seeming much easier:
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Conjecture I1V.32. A HHP space cannot be MNH.

The methods presented in next section could help for this conjecture as well.

IV.5 A simple proof of Gowers—Maurey’s theorem

In this section, we present a new proof of the following result by Gowers and Maurey
[25]:

Theorem 1V.33 (Gowers—Maurey). An HI space is not isomorphic to any proper sub-
space of itself.

Recall that a bounded operator 7' : X — Y between two Banach space is said
to be bounded below if there is a constant ¢ > 0 such that for every z € X, we have
|T(x)| = ¢|z| (by the open mapping theorem, it is equivalent to say that it is one-to-one
and has closed range), and strictly singular if no restriction of T' to a subspace of X is
bounded below. In [25], Gowers and Maurey prove theorem IV.33 in the following way:
they prove, using spectral theory and Fredholm theory, that every bounded operator
from a complex HI space to itself has the form AId +S, where S is a strictly singular
operator (this is not true for real HI spaces), and they deduce the theorem for complex
and real HI spaces using Fredholm theory. Here, we present a simple proof using only
Fredholm theory and working as well for real and complex spaces. We suppose here that
the spaces we consider are real, but the proof is the same for complex spaces.

We start by recalling some basic Fredholm theory; for more details and for proofs,
the reader can refer to [1], section 4.4.

Definition IV.34. Let T': X — Y be a bounded operator between two Banach spaces.

1. We denote by n(T) € w u {+o} the dimension of the kernel of T, and
d(T) € wu {+w} the codimension of the range of T.

2. We say that T is semi-Fredholm if it has closed range and if at least one of the
numbers n(7") and d(T) is finite.

3. We say that T is Fredholm if both numbers n(T") and d(T') are finite (this implies
that T has closed range).

4. If T is  semi-Fredholm, we  define its  Fredholm  index  as
i(T)=n(T)—d(T) e Z v {—o0, +0}.

We denote by Fred(X,Y) and Fred(X,Y) respectively the set of Fredholm operators
and of semi-Fredholm operators between X and Y. We equip Z u {—0, +o0} with the
topology such that Z is a discrete subset, the sets [n, +00] form a basis of neighborhoods
of +00, and the sets [—o0, n] form a basis of neighborhoods of —oo. We have the following
theorem:
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Theorem 1V.35. ]:“red(X, Y') is an open subset of the space of bounded operators from
X toY, and the Fredholm indez i : Fred(X,Y) — Z v {—o0, +0} is continuous.

We now present the proof of theorem IV.33. Let X be a Banach space (at this point,
we do not need to assume that X is HI). We say that a bounded operator T : X — X is
infinitely singular if for every £ > 0, there exists a subspace Y of X such that [T}y || < e.
We say that A is an infinitely singular value of a bounded operator T' : X — X if
T — Aldx is infinitely singular.

Lemma IV.36. Let T : X — X a bounded operator. We have equivalence between:
(1) T is not infinitely singular;

(2) There exists a finite-codimensional subspace Y of X such that Tyy is bounded below;
(3) T is semi-Fredholm and i(T) < 4o0.

Proof. (2) = (1) is obvious.

(3) = (2) Since i(T) < 4+, then ker(T') is finite-dimensional; let Y be a closed com-
plement of ker(7"). Then T is a bijection between Y and im(7") and im(7") is closed,
by the open mapping theorem, T}y is bounded below.

(2) = (3) Letting F' be a complement of Y in X, we have im(T") = T(Y)+T(F). Since
T is bounded below on Y, we have that T(Y") is closed; moreover T'(F') has finite
dimension so im(7") is closed. Since ker(T) is finite-dimensional, the result follows.

(1) = (2) Suppose that (2) is not satisfied, and let € > 0. Then by lemma IV.5, there
exists a normalized basic sequence ( fy,)new in X, with constant at most 2, such that,
for every n € w, | T(fn)|| < zazs (in the game SubFy, player I plays with a strategy
to build a FDD with constant at most 2, and in the subspace X, played by I at the
(n +1)*™" turn, IT can always choose a convenient f, by the assumption). We let Y’
be the closed subspace of X generated by the f,,’s. Then for x = 2;?:0 TnfneY,
we have [T(2)] < S g leal|T(f)]| < 52 4l 35 = <l So [Ty ]| < <. and
T is infinitely singular.

O

Lemma IV.37. Let T : X — Y be an isomorphism, where Y 1is a proper subspace of
X. Then T has at least two infinitely singular values, a positive one and a negative one.

Proof. Forte [0,1], define Ty = tT'+(1—t) Idx. We show that there exists t € (0, 1) such
that T} is infinitely singular; this will imply that % is a negative infinitely singular value
of T. Suppose not. Then by lemma IV.36, for every t € [0,1], T} is semi-Fredholm. So
letting f(t) = i(1;) we define a function f : [0,1] — Z U {—o0, +0}; by the continuity
of Fredholm index, this function is continuous, so constant. This is a contradiction since
f(0) =0 and f(1) < 0.
We prove in the same way that T has a positive infinitely singular value, considering
the operators T} = tT — (1 —t) Idx.
O
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Using lemma IV.37, the proof of Gowers—Maurey theorem will be complete once we
prove the following lemma:

Lemma IV.38. A bounded operator from an HI space into itself has at most one in-
finitely singular value.

Proof. Suppose that X is HI and let T': X — X be a bounded operator. Suppose
that T" has two infinitely singular values A and p. Let € > (0. We can find subspaces
Y,Z < X such that |[(T'— Adx)y|| <€ and ||(T— Aldx)z|| <e. Since X is HI, Y
and Z are not in topological direct sum, so we have d(Sy,Sz) = 0. In particular, we
can find y € Sy and z € Sz with |y — z|| <. So we have:

A= ul 1Az = [nyl

1Ay — pzl|

Ay =T )|+ [T(y) = T(2)| + [|T(2) — pzl|
e+ |7 -y — =] +e

@+ [IT]e-

NCINCIN N

So by making e — 0, we get that A = pu.
O

We hope that this kind of methods could also apply to show that HHP spaces cannot
be MNH, or at least that they must have two non-isomorphic subspace that are non-
isomorphic to £, thus respectively proving the conjectures IV.1 or IV.2. However, this
seems quite difficult, since here, we should replace the use of infinitely singular operators
with fo-singular operators, that is, operators T : X — X such that for every ¢ > 0,
there exists a subspace Y, non-isomorphic to ¢s, such that ||7}y|| < e. These operators
are not Fredholm in general. Thus, an idea could be to define an analog of Fredholm
index allowing us to deal with operators T" such that ker(T') is isomorphic to ¢2, but not
necessarily finite-dimensional.
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