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General introduction



Thanks to their specific properties, refractories are essential for several
industries such as steel, cement and glass processing. In these industries,
refractories face severe working environments such as extra high temperatures,
brutal thermal shocks, mechanical loadings and corrosion. The present work deals
specifically with the thermal shock resistance of refractories which is not easy
to characterized and managed. However, this property is crucial to increase the
lifetime of refractories in many applications. Thanks to previous experimental
works, it was demonstrated that the thermal shock resistance is closely related
to the crack growth resistance of such materials. More specifically, in several
cases, the thermal shock resistance of refractories could be increased by properly
introducing micro-cracks within their microstructure during elaboration. In fact,
those preexisting micro-cracks allow to increase fracture energy, thus, limit crack
propagation. Depending on micro-cracking level, the mechanical behavior could
be tuned from pure elastic to a so-called nonlinear behavior (the relation between
stress and strain is no longer proportional). This empirical knowledge offers a great
interest to improve thermal shock resistance of refractories by a better design of
their microstructure. However, up to now, the application of such concept has not
been fully understood and is not predictable.

In order to investigate the relationships between microstructure and
thermomechanical properties of refractories, several experimental works were
already carried out at the Institute of Research for Ceramics (IRCER, formerly
SPCTS). In these researches, model materials with simplified microstructure,
namely glass-alumina composites, were investigated. Despite their simplified
microstructure, these model materials exhibit behaviors close to that of the
industrial refractories. In particular, the key aspect of such simplified material is to
play with the thermal expansion mismatch between its constituents in order to tune
the micro-crack network within its microstructure. This micros-crack network can
be modulated by the choice of different constituents and by the thermal treatment
involved in processing.

In this context, the present research is a first step of a long term objective:
development of a reliable modeling platform to give insights for experimental
approach in order to enhance thermal shock resistance of industrial refractories.
Therefore, the developed modeling platform must be able to take into account
complex damage phenomena of heterogeneous material due to thermal expansion
mismatch during different thermal treatments. For this purpose, the Discrete
Element Method (DEM) is used in the present study as a promising way to model

the damage phenomena at microscopic scale.



Thanks to the spectacular development of computer technology, this kind of
numerical approach is used extensively in order to solve complex practical problems
in science and engineering.

The present PhD dissertation is structured in 3 parts, each part includes 2
chapters.

Part A is dedicated to a literature review of thermal shock resistance of
refractories and numerical method for damage modeling. Firstly, the classical
analytical approaches of thermal shock resistance are briefly presented. The
crack growth resistance and mnonlinear mechanical behavior of refractories are
then discussed. Thermomechanical behavior of 2 typical refractories dedicated to
thermal shock are then presented in order to highlight the relation between initial
thermal damages and thermal shock resistance. Secondly, the motivation of the
so-called model materials and selection of two specific materials are discussed. In
addition, the Hashin&Strickman analytical model is introduced as a reference for
experimental and numerical results for undamaged material. Finally, the selection
of numerical methods for damage modeling is presented as a promising support
to experimental approach. In the present research, the DEM has been selected
for its significant advantages in damage modeling, in comparison with continuous
methods.

In Part B, the development of the discrete element platform, GranOO is
presented. Firstly, a general review of GranOO is introduced: the architecture
of DEM platform, the key steps of DEM simulation and the contact model.
In addition, the new developments of stress computation associated with DEM
simulation are also detailed. Secondly, a direct calibration method of local
input parameters required by DEM is proposed in order to remove classical
trial-and-error calibration, which is tedious and time-consuming. The proposed
direct calibration method and virial stress concept are then applied to conduct
quantitative DEM simulation of thermomechanical test. In addition, the accuracy
of virial stress concept is examined through a confrontation of thermal stress
between DEM and Finite Element Method (FEM) computations.

In part C, quantitative simulations of cooling stage are carried out in order to
investigate the influence of thermal damage due to thermal expansion mismatch on
apparent behavior of model materials. Firstly, the main steps and assumptions of
cooling simulation are detailed. Especially, numerical process to create Statistical
Volume FElement of heterogeneous material is explained. Secondly, the DEM

results are confronted with experimental data and Hashin&Strickman model.



The evolutions of Young’s modulus and coefficient of thermal expansion as
functions of temperature are analyzed in order to highlight the influence of thermal
damages. In addition, qualitative DEM results of nonlinear tensile behavior
on model materials are discussed in comparison with experimental observations
reported in literature.

Finally, this dissertation will be closed by general conclusions and perspectives.



Part A

State of the art



Introduction

For a long time, refractory materials have been extensively used in many industrial
areas which have severe working environments at extra high temperature.
Therefore, the main requirements of refractory materials are to resist to thermal
shock and to sustain significant mechanical loading and corrosion.

In this context, the knowledge concerning the improvement of thermal shock
resistance of refractory materials is highly requested to enhance their lifetime.
For a long time, the thermal shock resistance of refractories has been intensively
studied, but it has not been fully explored. Several experimental researches
have reported that thermal shock resistance could be improved by introducing
appropriately thermal expansion mismatch between constituents of refractory
materials. The occurrence of damages due to thermal expansion mismatch could
make mechanical behavior of refractory materials deviate from linear elastic to
nonlinear behavior.

The improvement of thermal shock resistance of refractories requires a better
understanding of the relationships between the microstructure and the associated
thermomechanical properties at macroscopic scale. However, this is not an
easy task due to the complex microstructures of industrial refractory materials.
Therefore, several researches have investigated this problematic by considering
model materials with simplified microstructure, namely glass-alumina composites,
with thermal expansion mismatch [TDO03, Jol06]. In order to reinforce these
experimental results, some numerical approaches have been carried out. However,
up to now, numerical researches have been mainly based on continuous approaches,
which are still not compatible to describe physical phenomena that involves high
amount of discontinuity.

Part A is structured in 2 chapters. The first chapter is dedicated to state of
the art of relationships between thermal damages and thermal shock resistance of
refractory materials. The second chapter is dedicated to the selection of numerical

approach to model appropriately the considered relationships.



Chapter A.I

Thermal shock resistance of

refractory materials

A.I.1 Influence of thermal damages on thermal

shock resistance of refractory materials

A.I.1.1 Thermal shock resistance of refractory materials
A.l.1.1.a Definition of thermal shock resistance

Thermal shock resistance is the ability of the material to withstand thermal stresses
with minimal cracking [Bax04]. Among several approaches in the literature, the
energetic approach, introduced by Hasselman, has been widely used to characterize
thermal shock resistance of materials [Has63, Has69]. In Hasselman’s approach, it
was supposed that the material is initially damaged and the thermal shock causes
the propagation of existing cracks in unstable or stable ways. In this approach,
crack propagation was assumed to be managed by the minimization of total energy
of the system. According to Hasselman, the total energy (W) is the sum of

elastic energy plus the surface energy of the cracks [Has69].

VVtotal = Welastic + Wsurface (AIl)

2
where: Wgstic = SE is elastic energy, o is stress, E is Young’s modulus; Wy, face
is surface energy which corresponds to energy to create crack surfaces of the system.

Hasselman proposed two parameters to characterize the thermal shock

resistance of material, i.e. R" and R, which are given by equations A.I.2 and
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A.1.3. [Has63, Has69]

E s
R" = = (A.L2)
Vs
= AL

where v, (Jm™2) is surface energy of the material, . (MPa) is material
strength, F (GPa) is Young’s modulus and a (K~') is Coefficient of Thermal
Expansion (CTE). R (m) is the thermal shock damage resistance parameter
which corresponds to the case of small initial cracks. By contrast, Ry (K. /m)
is a quasi-stable crack growth resistance parameter which characterizes thermal
shock resistance of materials with large initial cracks.

According to equations A.1.2 and A.I.3, it can be noticed that both R”” and R,
depend on Young’s modulus and surface energy. By using a gimple approximations
of elastic energy, E.ao? is considered to be proportional to %. Thus, both R”” and

2
o
R are inversely proportional to ok which corresponds to the stored elastic strain

energy [PB99]. This energy can be considered as a resistance for crack growth
whether the thermal shock damage is either kinetic or quasi-static.

In equations A.I.2 and A.I.3, surface energy -, is considered at microscopic
scale [Has63, Has69]. In order to apply Hasselman’s energetic approach to
heterogeneous materials, it was proposed to compute thermal shock resistance by
the fracture energy at macroscopic scale, namely work-of-fracture 7y, [Nak65].
More specifically, the fracture energy vy,.0r is the energy consumed to propagate
a crack through a sample. The value of 7, is calculated from the total energy
(W) to propagate the crack and the area A as follows:

|74
Ywor = ﬂ (AI4)

Hence, several authors [LCHT74, Nak65] suggested to use this fracture energy in

the Hasseman’s energetic approach:

E vwor
R" = 03‘0 (A.L5)
Ywor
R, = AlGb6
! E.o? ( )

An other important remark on Hasselman’s approach is that thermal shock
damage resistance parameter decreases as strength increases. In other words, a

high strength could make refractories more sensitive to thermal shock damage. For
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this reason, according to specific purposes, industrials need to privilege thermal
shock resistance of refractories or their strength and to make a best compromise

between them.

A.l.1.1.b R-curve approach

This paragraph explains the relation between thermal damage and thermal shock
resistance by introducing the R-curve concept. Indeed, it has been observed in
several researches that in some cases, refractories exhibit an increasing crack
propagation resistance when the crack length increases [HJ77, ALS81]. This
behavior is due to energy-absorbing phenomena occurring around the cracks and
demanding more energy for crack propagations [Rit88, Bra81]. Such a phenomena
could be described by R-curve behavior which was first proposed by Irwin and
Kies in 1954 [IK54]. As a remark, the R-curve depends on the sample volume, the
depth and location of the crack initially introduced, the testing conditions and the
evaluation technique [MS88].

The R-curve measurement consists in determining the crack propagation
resistance (or fracture toughness) as a function of the crack extension Aa. Two

typical kinds of R-curves have been identified in the literature (Fig. A.I.1).

A

Rising R-curves

Flat R-curves

Crack propagation resistance
(MPa.m?)

>

Crack extension (m)

Fig. A.I.1: Two typical R-curves

The first one, named flat R-curves, corresponds to brittle linear elastic materials.
In the flat R-curves, R remains constant during crack extensions. The second one,
named rising R-curves, is often observed for refractories. In the rising R-curves,
when crack extends, it gets more difficult for crack to grow since the total energy
release rate becomes higher. This phenomenon could lead to a better thermal
shock resistance of refractory before its failure and generate a nonlinear mechanical
behavior. This nonlinear behavior has been associated to the improvement of
thermal shock resistance in the late 1970s [GGS78, Gog93].
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A.l.1.1.c Nonlinear mechanical behavior of refractories associated to

thermal shock resistance

Generally, non-damaged refractories exhibit a linear elastic mechanical behavior
which is resulting from the behaviors of its constituents. However, in some
cases, these materials can advantageously exhibit complex nonlinear mechanical
behaviors that result from the interactions between the different phases that
compose their microstructure.  This kind of nonlinear behavior has been
investigated in many researches by using experimental approaches [Hug92, GKO07,
GBI11, Bell5]. Nonlinear mechanical behavior of specific refractories could be
characterized by a low stress-to-rupture, a high strain-to-rupture and a high
irreversible strain (Fig. A.1.2). Consequently, according to the R-curves concept
and Hasselman’s definition of thermal shock resistances (equations A.I.2 and
A.1.3), this nonlinear behavior could lead to a better thermal shock resistance

which is key property of refractories.

o

Orup

Eirr €pic Erl‘]p €

Fig. A.1.2: Nonlinear behavior of refractories obtained by tensile test

A.1.1.2 Thermal stresses and associated damages

Thermal stress phenomena has been intensively investigated since it exhibits a very
important influences on the behaviors of refractories. The thermal stress could be
generated by different possible origins.

The first possible origin is the mechanical restraint that prevents free expansion
of a homogeneous, isotropic material. For 2D slab with uniform temperature

change, the thermal stress could be computed by Eq. A.L.7 [Kin55].

E.a.AT

1—v

(ALT)

g =

10
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where: E is Young’s modulus, « is CTE, v is Poisson ratio of material and AT is
temperature change.

Secondly, the thermal stress could be generated by the thermal expansion
mismatch between different constituents of heterogeneous material and/or by
anisotropic thermal expansion of homogeneous material [GK07]. These phenomena
have been investigated in several researches by considering a simplified composite
material that contains only two constituents [TDO03, Jol06]. Generally, for ceramic
materials, tensile strength is much lower than compressive strength. Thus, the
damages are mainly generated due to tensile stresses. In the case of a two-phases
material composed of a matrix (m) and spherical inclusions (p), during a uniform

cooling stage, there are two configurations that cause the damages (Fig. A.I.3):

e «,, > oy the inclusion contracts less than the matrix and therefore prevents
the free shrinkage of the matrix. Thus, the matrix is subjected to radial
compressive stresses and orthoradial (circumferential) tensile stresses (Fig.
A.L.3(a)). The increase of circumferential tensile stress leads to radial micro

cracking;

ey, < ay: the inclusions contracts more than the matrix. Thus, a debonding
can occur at the interface since the matrix is subjected to radial tensile
stresses (Fig. A.L.3(b)). The interfacial gap can be enlarged due to the

increase of thermal expansion mismatch.

Thirdly, thermal shock could be also an origin of thermal stresses. It may occur
under specific conditions such as the presence of severe thermal gradient resulting
from sudden temperature change at the surface of object.

In reality, thermal stress could be generated by a complex combination of
the possible cases presented above. Generally, refractories could be considered,
at macroscopic scale, as a homogeneous media. However, at microscopic scale,
refractories involve sophisticated microstructures that mix several phases. Hence,
the heterogeneity at microscopic scale has important effects on apparent properties
at macroscopic scale of refractories. In the next section, thermomechanical
behaviors of typical refractories will be presented in order to clarify the influence

of their microstructures.

11
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am > a, am < Qp
(material 1) (material 2)

(a) Radial microcrack (b) Debonding at
interface

Fig. A.1.3: 2D illustration of damages due to thermal expansion mismatch during cooling
[GKO7]

A.I.2 Thermomechanical behaviors of 2 typical

refractories dedicated to thermal shock

A.1.2.1 Magnesia-spinel refractories

Nowadays, magnesia-based refractories have been widely used in industries for
their high thermal shock resistance and durability. In the past, thanks to
empirical knowledges, it appeared that thermal shock resistance of magnesia brick
is increased by the addition of 9-30% of magnesium aluminate spinel (MgAl,Oy).
The so-called magnesia-spinel refractories have been intensively investigated in
order to understand why the thermal shock resistance increases and how to take
advantage of this phenomenon. Then, it has been proved that the thermal
expansion mismatch between magnesia (13-15-107% K~') and spinel (8-9-1076
K~1), causing microcracks around spinel inclusions, was one of the main reason of
the raise of thermal shock resistance [ARRW02, AWO03].

In order to understand better this phenomenon, Grasset-Bourdel studied

materials which contained only magnesia and spinel [GB11]. In this cited research,

12
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the results of tensile and wedge splitting tests highlighted that the increase of spinel

content improved the thermal shock resistance parameter Ry (Fig. A.1.4).

10 - e
T+ Wedge splitting test results
& Tensiletest results

8 4

6 4

R, (K.m'?)

0% 10% 20% 30% 0%
Inclusion fraction

Fig. A.I.4: Influence of spinel content on thermal shock resistance parameter Ry of magnesia
spinel refractory, taken from [GB11]

Fig. A.l.4 shows that the spinel addition allowed to increase progressively
the thermal shock resistance. More quantitatively, R, increased about 3 times
with 35 wt.% of spinel inclusions. The increase of thermal shock resistance could
be explained by considering the influence of spinel content on thermomechanical
properties of magnesia-spinel refractory (Fig. A.L5). As previously presented in
Sect. A.L.1, for heterogeneous materials, thermal shock resistance R depends on
work-of-fracture yy,0-, Young’s modulus £ and thermal expansion coefficient o as

follows:

P)/VVOF
Ry = AlS8
! E.a? ( )

The first explanation is that the spinel addition allowed to increase work-of-
fracture yyor (Fig. A.L5(a)). In this figure, G’ and YG’; are related to the

work-of-fracture vy, obtained by wedge spiting test and tensile test, respectively

(GB11]. These results reported that with only 5 wt.% of spinel inclusions, the
increase of work-of-fracture was around 65% (Fig. A.L.5(a)).

The second explanation is the decrease of Young’s modulus and thermal
expansion coefficient due to the increase of spinel content (Fig. A.L.5(b) and
A.L5(c)). Indeed, only 5 wt. % of spinel inclusion could divide the Young’s
modulus by two, in comparison with analytical HS model (Fig. A.1.5(b), the used
analytical model will be explained hereafter, in paragraph A.1.3.3). Regarding the
thermal expansion coefficient, the experimental values after thermal treatment was
lower than the analytical HS model (Fig. A.L.5(c)). As a remark, the analytical

model does not take into account thermal damages. Therefore, the discrepancy

13
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between experimental measurement and analytical model allowed to recognize the

influence of thermal damages on thermomechanical properties of materials.
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Fig. A.I.5: Influence of spinel content on thermomechanical behavior of magnesia-spinel
composites, taken from [GB11]

As presented before, the increase of thermal shock resistance of refractory
materials has close relationship with nonlinear mechanical behavior due to thermal
damages. In Fig. A.L.6, the stress-strain curves show that the increase of
spinel content could promote the development of nonlinear behavior and residual
strain. Moreover, tensile strength and Young’s modulus decreased as spinel content
increased.

The experimental results reported by Grasset-Bourdel showed a great interest
to manage the microstructure of refractory materials in order to improve their

thermal shock resistances.

14
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Fig. A.I.6: Nonlinear tensile behaviors obtained with different magnesia-spinel composites
[GKO7]

A.1.2.2 Andalusite-based refractories

For a long time, refractory concretes with andalusite aggregates has been
extensively used in industries for its good thermal shocks resistance. This kind
of material contains cement matrix and andalusite aggregate. Andalusite is an
aluminium nesosilicate mineral with the chemical formula AlSiOs;. At high
temperature, andalusite is transformed into mullite, which is well recognized for
its good thermal shock resistance and creep resistance. Several researches have
reported that such type of refractory has atypical behaviors at high temperature
[Roo06, YF06].

In the research of Ghassemi Kakroudi, the relationships between microstructure
and mechanical behavior of this refractory concrete has been investigated [GK07].
In order to investigate the mnonlinear behavior of the considered material,
uniaxial tensile tests at room temperature were carried out. More specifically,
the considered refractory concrete was treated by thermal cycles at different
temperatures and then, the thermally damaged samples were subjected to tensile
test at room temperature. The obtained results are reported in Fig. A.L.7.

The obtained stress-strain curves reveal significant decrease of Young’s modulus
and development of nonlinear behavior when temperatures of thermal cycles
increased. This could be explained by the fact that thermal damages are generated
more as the temperature of thermal treatment increases. More quantitatively,
Fig. A.L.7 shows that the Young’s modulus decreases from 68 GPa to 13 GPa
after thermal treatment at 1100°C. In parallel, the strain-to-rupture increased and
tensile strength decreased after thermal treatment. Moreover, the fracture energy

increase by 2.5 times as thermal damages occurred (Fig. A.L.8).
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14 O MPa)

110°C : E,= 68 GPa
12

10 r 500°C : E,= 44 GPa

700°C : Ey=39 GPa

900°C : Ey=21 GPa
1100°C : Ep= 13 GPa

€ (%)

0 g L 1 1
0,00% 0,02% 0,04% 0,06% 0,08% 0,10%

Fig. A.L.7: Tensile behavior at room temperature of Andalusite-based refractories after thermal
treatments at different temperature [GKO07]
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Fig. A.I.8: Evolution of fracture energy versus temperature of thermal treatment [GKO07]

By using ultrasonic technique which is able to measure elastic properties, it
was observed that there was a significant decrease of Young’s modulus when
this material had been subjected to different thermal cycles (Fig. A.1.9(a)). As
explained previously, this phenomenon was caused by thermal damages due to the
thermal expansion mismatch between cement matrix and andalusite aggregates
(Fig. A.L9(b)).

In this case, the andalusite monocrystal has very different thermal expansion
coefficients in the 3 different directions: a; = 11.2.107% K%, ap = 3.1.107% K1,
az = 9.6:107% K~!. Thus, there was a strong difference of thermal expansion
between andalusite inclusion and cement matrix (a,, = 7.6-107¢ K™): a; > a,, >
as. Consequently, in this special case, complex thermal stresses are generated and
therefore, both radial cracks and interfacial debonding could occurs during cooling

stage of thermal cycles (Fig. A.1.10).
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Fig. A.I.9: Atypical behavior of andalusite-based refractory and proven reason, take from
[GKOT7]
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Fig. A.I.10: Thermal stresses around andalusite inclusion and associated damages during
cooling, taken from [GKO07]

A.I.3 Model material to investigate
microstructure -properties relationships

of refractories

A.1.3.1 Why model material?

As explained in the previous section, a high number of researches has pointed
out that microstructures and thermal shock resistance of industrial refractories
have strong relationships. However, understanding this phenomenon is not an

easy task due to complex microstructures of industrial refractories. Therefore, a
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suitable approach is to use model materials that contain only 2 constituents. More
specifically, only thermomechanical interactions between constituents of model
materials are permitted whereas other phenomena are prohibited, e.g. physico-
chemistry interaction. Despite their simplified microstructures, model materials
must have behaviors close to that of the industrial refractories. Such a type of

material has been developed and studied in severals researches [TD03, Jol06].

A.1.3.2 Model materials selection

In order to investigate the role of thermal expansion mismatch without influence
of other phenomena, Tessier-Doyen developed several two-phases materials with
simplified microstructure, namely glass-alumina composites [TDO03]. Firstly, the
alumina was chosen as inclusion because it corresponds to physico-chemical
characteristic of aggregates generally used in industrial refractories. Secondly,
it is easy to adjust the thermal expansion coefficient of glass by changing its
chemical composition. Therefore, glass were chosen as matrix in order to introduce
the thermal expansion mismatch. In addition, the fabrication of glass was
suitable at laboratory scale. Regarding the fabrication of model materials, the
alumina inclusions has spherical shape with a monomodal distribution of radii. A
controlled volume ratio of inclusions was incorporated in the glass and milled to
ensure the random dispersion of alumina in glass matrices. In the present study,
three different volume fractions of alumina were considered in order to study the
influence of alumina content on behaviors of model materials: 15%, 30%, 45%.
In the present research, two configurations of thermal damages were considered:
radial microcracks and interfacial debonding. Although the studied of Tessier-
Doyen was carried out in 2002, the reported results are closely related to the
phenomena that are interested in the present PhD thesis. Therefore, Tessier-
Doyen’s results on glass-alumina composites [TD03] were used as reference to
evaluate thermo mechanical modeling. After analyzing experimental results, two

model material were chosen:

1. Cofer glass-alumina composite corresponds to the case «,, > «, in which

microcracks occurs in the glass matrix;

2. BA glass-alumina composite corresponds to the case «,, < «, in which

interfacial debonding occurs around alumina inclusion [TDO03].

Thermomechanical properties of the 2 considered model materials are
synthesized in Tab. A.I.1.
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Tab. A.I.1: Thermo-mechanical properties of reference composite materials
[TDO03]

Properties Cofer glass matrix BA glass matrix Inclusion
Young’s modulus E (GPa) 72 68 340
Poisson’s ratio v (-) 0.23 0.20 0.24
Tensile strength o (MPa) 60 86 300*
Coef. of thermal expansion o (°K 1) 11.6e-6 4.6e-6 7.6e-6
Glass transition temperature (°C) 455-475 575-595 -

* Value from literature

Due to the thermal expansion mismatch between constituents of these model
materials, thermal damages were generated (Fig. A.L.11), as described previously

for industrial refractory materials.

ina grain

Glass matrix

. Debonding
= Alumina
inclusion

Glass matrix *"

(a) Microcracks within Cofer glass-alumina, (b) Interfacial debonding within BA glass-
highlighted by fluorescent UV dye [TDO03] alumina composite by SEM [Ber16]

Fig. A.I.11: Visualization of thermal damages in the considered model materials

A.1.3.3 Hashin & Strickman model: analytical prediction

for undamaged material

In literature, numerous analytical models have been proposed in order to
estimate the thermoelastic properties of a multiphase composite from those of
its constituents. Among these approaches, the Hashin & Shtrikman (HS) model
has been extensively used to predict behaviors of undamaged heterogeneous
materials [HS63]. In the composite spheres assemblage constructed by Hashin,
each composite sphere consists of a spherical inclusion that is surrounded by a

concentric matrix shell [Has62]. The volume fraction of inclusion of each sphere is
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computed from radii of inclusion (r;) and sphere (r,) as follows:

r; 3
)
Ts
In this model, the volume fraction of inclusion is the same for all composite spheres.
These composite spheres of different sizes are distributed randomly in space in
order to fill an arbitrary volume. Tab. A.I.2 synthesizes analytical predictions of

the apparent Young’s modulus and the apparent CTE of two-phases material from

volume fraction of inclusion and thermomechanical properties of its constituents.

Tab. A.L.2: Analytical expressions of Hashin&Strikman to predict
thermomechanical properties of two-phases materials
Lower bound HS- Upper bound HS+
HS— fi HS+ 1— i
A S N (e A S/
. 1—f;
GHS— =G fl GHS+ =G ?
mt T 6 +2G,) (1= 1) it 6(K: + 2G0) ],
G, — G, 5Gm(3Km + 4Gm) Gm — G, 5Gi(3KZ’ + 4G1)
1 1 1 1
HS— ) HS ,
04H37:Oéi+(06m—04i) Kl 11(7, aHS+:ai+(Oém—Oéi Kl + 11{7,
Kn K; Kn K
EHS? B QK HS— . QHS- EHS+ o QRS+ . GHS+
T 3KHS- L GHS- T 3KHSH + GHS+

where: K,,, K; are bulk modulus of matrix and inclusion; GG,,, G; are shear modulus of matrix
and inclusion; f; is volume fraction of inclusion; au,, a; are coefficient of thermal expansion of

matrix and inclusion.

In literature, various researches have reported that the HS model could give
a good estimation of thermomechanical properties of undamaged heterogeneous
materials [TD03, CLTC05, Jol06]. As an example, in [TDO03], the author used HS
model to predict thermomechanical properties of FCu-TAB AL composite from
volume fraction of alumina and elastic properties of its contents (Fig. A.I1.12).
In the cited research, the Young’s modulus was measured by ultrasonic technique
at ambient temperature whereas the CTE was measured by thermodilatometry

technique. In Fig. A.I.12, the experimental values are quite close to the lower
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Fig. A.I.12: Comparison of Young’s modulus and CTE at room temperature between
experimental measurements and HS model [TD03]

bound of HS model (HS- bound). Please notice that in this case, there is no
damage within the considered material. Hence, these results demonstrated the

accuracy of HS model to predict elastic properties of undamaged materials.

A.1.3.4 Limitations of Hashin & Strickman model

In paragraph A.1.3.3, the accuracy of HS model to predict thermomechanical
properties of undamaged material was discussed. Herein, the application of HS
model to damaged material will be also studied. In Tessier-Doyen’s study [TD03],
thermal damages occurred during cooling at about 200°C for Cofer glass-alumina
composite and at about 280°C for BA glass-alumina composite. The reported
results showed that thermal damages influenced significantly the behaviors of these
materials.

Fig. A.I.13 shows the comparison of evolution of Young’s modulus between
experimental measurements and HS model. Similar tendencies could be observed
for the two model materials. At the beginning of cooling, when material is
still undamaged, the HS- bound follows well the experimental curves. Again,
these results confirm the accuracy of HS model to describe undamaged material.
However, when thermal damages occur, the experimental curves diverge from
HS- bound. Indeed, the decrease of Young’s modulus of Cofer glass-alumina is
about 40 GPa (Fig. A.l.13(a)). Whereas the decrease of Young’s modulus of
BA glass-alumina is only 6 GPa (Fig. A.I.13(b)). This could be explained by
different thermal damages within these materials (Fig. A.[.3 and A.L.11). In
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Cofer

glass-alumina composite, the radial cracks are initiated around the inclusions

and interact with each other. By contrast, in BA glass-alumina, debonding

occurs separately around inclusions, without interaction. Consequently, thermal

damages are more developed in Cofer glass-alumina composite than in BA glass-

alumina composite. These results reveal that the difference between experimental

measurement and HS model allow to quantify the effect of thermal damages on

properties of materials.
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Fig. A.I.13: Comparison of Young’s modulus during cooling between experimental

measurements and HS model [TD03]

Typically, the evolution of Young’s modulus as function of temperature could
be divided into 4 main zones [TDO03, Jol06] (Fig. A.L.14):

The first zone, from 20°C to the transition temperature 7j: low and quite

constant values of Young’s modulus;

The second zone, from T} to sintering temperature: increases of Young’s
modulus as temperature increases. At the beginning, damages that existed
already within material are resorbed. After a sudden increase, viscosity of
materials decreases, thus, their mechanical properties decrease. Hence, a
dwell and/or a decrease of Young’s modulus could appear which indicate the

competition between flaws resorption process and the material softening;

The third zone: increase of Young’s modulus as temperature decrease
(cooling). In this zone, materials in viscous state harden again as the

temperature decreases;

22



A.I. Thermal shock resistance of refractory materials

o The fourth zone: brutal drop of Young’s modulus. In this zone, thermal
stresses within materials reach critical value and therefore, damages initiated

and propagated.
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Fig. A.I.14: Typical evolution of Young’s modulus versus temperature of refractory materials

As a consequence, the alumina content had a strong impact on Young’s modulus
and coefficient of thermal expansion of model materials. As shown in Fig. A.1.15,
experimental value of E and a are lower than the HS- bound. These observations

highlight significant loss of E and « values due to thermal damages.
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Fig. A.I.15: Comparison between experimental thermomechanical properties at room
temperature and Hashin & Strikman model, case of Cofer glass-alumina composite [TD03]

As discussed above, the HS model is able to predict thermomechanical

properties of undamaged materials. In addition, the difference between HS model
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and experimental measurements allows to quantify the effect of thermal damages

on material properties.

A.1.4 Conclusion

This chapter has allowed to present the microstructures-properties relationships
of several refractory materials.

Several researches have reported that in some specific cases, thermal
damages could have positive influence on thermal shock resistance of refractories,
e.g. decrease of Young modulus, decrease of CTE, decrease of strength,
increase of strain-to-rupture and increase of fracture energy. The experimental
observations showed a great interest to investigate and to take advantages of
the microstructures-properties relationships in order to improve thermal shock
resistance of refractories. However, this is not an easy task due to the complex
microstructures of industrial materials. Hence, a more suitable approach is to
investigate model material that contains only 2 constituents. Despite its simplified
microstructures, model materials have behaviors close to those of industrial
material.

As discussed previously, HS model could give quite good estimation of
thermomechanical properties of undamaged material. However, up to now, it
is still complicated to take into account the effects of damages by using analytical
prediction.  Nowadays, numerical methods could predict thermomechanical
properties of heterogeneous materials by considering their microstructure,
including microcrack network, in addition to their intrinsic properties. The
longterm purpose is to predict quantitatively the influence of thermal damages
on behavior of complex industrial materials by using numerical method. This
could give insights for microstructure design of refractories. Therefore, the desired
numerical approach must be able to model high amount of discontinuity within
heterogeneous media. The present research is a first step in order to achieve
the long term purpose. It focused on the modeling of the behaviors of model
materials developed by Tessier-Doyen, i.e. Cofer glass-alumina and BA glass-
alumina [TDO03]. The next chapter is dedicated to the selection of numerical

approach.
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Numerical method for damages

modeling

A.I1.1 Overview of numerical methods

Nowadays, thanks to the spectacular development of computer technology,
numerical simulation is used extensively in order to solve complex practical
problems in engineering and science. In material science, numerical simulations
is an efficient tool to validate analytical models, to assists in the interpretation
of physical phenomena and to offer valuable insights for experimental research.
Generally, in thermomechanical area, numerical methods can be classified into
continuum method and discontinuum method, each one has its advantages and
drawbacks. Despite their different natures, these numerical methods have similar

procedure in order to solve the targeted problem [Jeb13]:

» Governing equations: mathematical models are derived with some possible
assumptions in order to describe the observed physical phenomena. These
mathematical models are generally expressed in terms of governing equations
with boundary conditions. The governing equations are mainly expressed by

using differential equations and/or partial differential equations;

o Discretization: the problem is discretized into finite discrete components in

order to solve numerically the governing equations;

o Solving of governing equations: Numerical algorithms that allow to solve
governing equations of the discretized domain from boundary conditions

needs to be developed;
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e Programming: the developed algorithm is implemented into a computer code

in some programming languages.

A.I1.2 Continuous methods

A.I1.2.1 Overview

The Continuum Methods (CMs) has been developed for a long time. Hence,
this class of numerical method have been widely applied to various area of
Computational Mechanics, e.g. solid mechanic, fluid dynamic. The main
assumption of CMs is that matter is a continuum that completely fills the space.
In CMs, the considered continuum domain is discretized into discrete components
(element) made up of reference points (node). Then, the governing equations are
changed into a system of algebraic equations. The resolution of this system gives
the solutions at the reference points. For other points in the occupied space, the
field variables can be approximated by interpolation or averaging of the solutions
at the reference points.

The CMs are well adapted for simulating physical phenomena in which the
continuity assumption is valid and remains valid during the simulation. However,
this class of method faces some difficulties related to discontinuities that occurs.
Indeed, additional treatments must be carried out to described the new surfaces.
In literature, there are several techniques to deal with the discontinuities problem
for different CMs.

A.I1.2.2 Finite element method

Finite Element Method (FEM) describes the behavior of material by discretizing
object (sample) into subdomains (elements) which are interconnected through
common discrete nodes. Hence, the assembly of elements is called a mesh. Based
on an adequate mesh, governing equations can be approximated by a set of
algebraic equations for each finite element. The system of algebraic equations for
the whole domain can be formed by assembling the elementary algebraic equations
for all the elements. In this method, reliable constitutive laws between the stress
and strain field have been developed for a long time. The primary unknown field
variables are nodal values. The FEM formulation reduces the problem to the
solution of a system of algebraic equations in terms of the nodal variables. FEM

is capable to model complex geometries, boundary conditions and heterogeneous
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material. In spite of its successes in various area of computational mechanics, the
major problem of FEM is that remeshing and mesh refinement are required in
order to take into account discontinuities. More specifically, remeshing technique
involves superposition of a new mesh on the old one in order to describe new
surfaces of cracks (Fig. A.IL.1). This process is very time consuming, making

FEM inadequate for discontinuous problems.

Fig. A.IL.1: Hlustration of crack propagation in tensile test by FEM: mesh refinement and
remeshing are required around crack tips [SMAAQ9]

Later on, the eXtended Finite Element Method (XFEM) has been developed in
order to alleviate the issue of FEM to describe arbitrary cracks in regular meshes.
Initially, XFEM was proposed by Belytschko et al. [BB99, MDB99]. In this
method, finite element discretization is enriched with additional nodal degrees of
freedom, which carry local discontinuous functions, able to describe cracks within
elements. More specifically, equations of displacement field of the elements that
contain crack are enriched. Hence, cracks can be described accurately in a single
mesh, removing the need of continuous remeshing to describe crack propagation
(Fig. A.IL.2)

This method has been applied to model phenomena involving discontinuities
such as crack growth in rock, concrete or alloy [GJ16, LZG 18, RLK19]. However,
the use of XFEM to model problems with multiple cracks remains limited due to
its cumbersomeness to deal with high amount of discontinuity.

As an example, Vijay and Rafael used XFEM in order to model crack
propagation at microscopic scale of an aluminum alloy under tensile loading [GJ16]
(Fig. A.IL.3). However, in this research, crack location still needed to be prescribed

and crack branching was not modeled.
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Fig. A.I1.2: Tllustration of XFEM discretization for describing cracks in regular mesh [Ngul5]

Fig. A.I1.3: Crack propagations in microstructure of an aluminum alloy (grains were assigned
different colors in order to display the microstructure) [GJ16]

In order to deal with the modeling of phenomena that involves high amount
of discontinuity, the Phase Field Method (PFM) has been developed. The
PFM, initially proposed in 1998 by Marigo and Francfort, is based on an
energy minimization framework, related to Griffith’s theory for brittle fracture
[FMO98, BEMO8, PM10]. More specifically, a regularized variational approach is
discretized by a finite element procedure. Thanks to this technique, both evolution
of the mechanical problem and evolution of an additional field d describing the
damage (called phase field) could be modeled. Hence, this technique strongly
alleviates meshing problems for describing brittle cracking by using a fixed mesh
and a regularized description of the discontinuities. In addition, the PFM does
not require any prescription of the shape geometry and allows crack nucleation
and branching. Hence, this method is able to model complex phenomena such as:
initiation, coalescence and propagation of arbitrary crack morphologies. The PFM
has been used for describing 2D and 3D quasi-static fracture [KM10, MWHI0],
dynamic crack propagation [BLR11, BVST12, BHLV 14|, brittle fracture under
multiphysics environment [MSU15, MHSA15, NBR*17]. Nevertheless, the main
limitation of this method is that 3D simulations could be quite time consuming.

As an example, in the research of Nguyen et al. [NBR™17], the authors applied
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the PFM to model stress corrosion crack propagation in a nickel-base alloy . In this
research, complex crack network was modeled and compared with experimental
observation obtained by Digital Image Correlation. The comparison show a good
agreement between numerical results and experimental observations in terms of
crack geometry and crack length. However, since stress corrosion cracking of
homogeneous material was investigated in this research, prescriptions of locations

and moments of crack initiation were still needed.
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Fig. A.I1.4: Comparison between experimental crack obtained from DIC procedures and from
PFM of the Inconel 600 alloy sample in sub-volume size 2x3x3 mm? (left: experiment; right:
numerical simulation) [NBR*17]

A.I1.3 Discrete methods

A.I1.3.1 Overview

The discrete methods (DMs) consist in simulation of an assembly of points/rigid
bodies that interact with each other through interaction laws. Initially, the
DMs has been developed for problems of granular materials in rock mechanics
[Cun71]. Later on, DMs has been applied to continuous media in order to
model complex damage phenomena that involve high amount of discontinuity.
This class of numerical method has been applied successfully in several type
of materials, e.g. concrete [HDDO04, NT18], rocks [BFJT09, LG14, NI15] and
ceramics [TYS09, ZH15, JLZ"18]. In these researches, the continuous media is
modeled by an assembly of discrete elements which interact via contact laws to
ensure the cohesion of the medium. In literature, various types of contacts law
to model continuous media have been proposed: parallel bond model [CMS07],
cohesive bond model [AJIT13, ACIL5, JATIL5], flat-joint model [WXI16], etc.

9
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The application of DMs in continuous media simulations faces two significant

challenges:

o Choice of the contact laws that involves limited number of input parameters
in order to describe behavior of continuous media. In addition, an adequate
calibration method of input parameters needs to be established in order to

obtained quantitative results;

o Construction of assembly of discrete elements such that the mechanical
properties of simulated domain are independent of the discrete elements
number. Moreover, the so-called discrete domain must take into account
the structural properties of the problem domain, e.g. homogeneity, isotropy
and anisotropy [CLPG18].

Nowadays, DMs have been increasingly used in order to study physical
phenomena at microscopic scale, where the continuity assumption is no longer
valid, or phenomena that involve discontinuities which cannot be easily treated by
CMs.

A.I1.3.2 Lattice models

Lattice models was firstly proposed by Hrennikoff in 1941 [Hre41]. This models
consists in discretizing a solid into an assembly of nodes interconnected by beam

elements (Fig. A.IL5). In general, nodes have neither masses nor volumes.

Node Beams

\%V/ /%

VAN,
AVAVAYA

Fig. A.IL.5: 2D regular triangular lattice of beams [JATT15]

In lattice models, mechanical problems are solved by constructing a global
stiffness matrix from local properties of beam. Schlangen et al. demonstrated that
the torques at local scale influence strongly the crack behavior [SG97]. Indeed, the

displacement and rotation of node assembly could be obtained as follow:

X=K"!'F (A.IL1)
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where: X is the unknown vector of problem, it contains displacement and rotation
vectors of node assembly; K is the global stiffness matrix; F is the loading vector,
which contains force and torque vectors of beams.

Despite its "simple" formulas at local scale, lattice models are able to model
elastic continuum and fracture phenomena of materials with complex microscopic
structures [SG96, SG97, NKIM18]. As an example, Schlangen et al. used lattice
models in order to study fracture phenomena of concrete [SG96, SG97]. In these
researches, crack pattern observed in shear experiment on concrete plate were

modeled accurately by using beam elements (Fig. A.I1.6)

Shear load

Fig. A.I1.6: Crack pattern of shear experiment on concrete plate obtained by lattice model
[SGI6]

The main drawback of lattice models is that the nodes do not have volumes,
which causes difficulty to model crack closure phenomena. To deal with this issue,
Ibrahimbegovic et al. [ID03] proposed to assign to each node an equivalent volume,
based on the spacial Voronoi decomposition. However, this solution seems to be

quite time-consuming for 3D problems.

A.11.3.3 Particle models

Particle models consist in simulation of an assembly of rigid bodies (elements) that
interact with each other through interaction laws. This class of methods is very
similar to the discrete approach proposed by Cudall and Strack [Cun71, CS79].
In general, elements often have disk shape (2D) or spherical shape (3D). Thus,
computational time decreases since only radius is needed to determine geometry of
elements (geometrically, no additional memory is needed when spherical elements
rotate). In addition, in particle models, mass and volume are assigned to each
element in order to facilitate the modeling of crack closure. In literature, to model

phenomena that involved significant shear effects, more complex shapes (ellipsoids,

31



A.II. Numerical method for damages modeling

polygons or polyhedra) has been proposed in order to limit the rotation of elements.
Nevertheless, these complex shapes could increase significantly the computational
time.

Particle models could be divide in two main variants: smooth contact particle
models and non-smooth contact particle models. The former is suitable to model
continuous media whereas the latter is generally used to study quasi-static problem
or granular media. Thus, in this paragraph, only the smooth contact is presented in
detail. The resolution of smooth contact particle models involves two main steps.
Firstly, interaction forces are computed when overlapping between elements occurs.
The associated force-interpenetration formula is called "smooth contact" model. It
involves mechanical interaction laws that describe simple relation between forces
and displacements. Thanks to these interaction laws, smooth contact model could
take into account easily elasticity of material. Generally, linear interaction laws

(spring models) are often used when overlapping between elements occurs (Fig.
AILT).

Smooth contact

Elements

Fig. A.I1.7: 2D example of smooth contact model

Secondly, Newton’s second law is applied to compute acceleration of each
element. Based on acceleration and previous state, new velocities and positions
of element are computed by using "dynamic explicit" schemes. This process is
repeated iteratively during simulation.

As an example, Fleissner et al. applied a particle method to simulate
orthogonal cutting processes [FGEO07]. In this research, a 3D model of a breakable
solid was generated by bonding rigid spherical particles. The workpiece is
machined using a tool represented by triangles and moved according to a function

of time. A 2D illustration of this simulation is shown in Fig. A.IL.8.
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t
%
Fig. A.IL.8: Simulation of cutting process of elastic-plastic solid by particle method [FGEQT7]

A.Il.3.4 Hybrid lattice-particle model

As presented before, the lattice and particle models have their own advantages
and drawbacks. However, their advantages could complete each other in order to
alleviate their drawbacks. This give insight to combine the lattice and particle
models in one model, namely hybrid lattice-particle model or bonded-particle
model, as it was first proposed by Potyondy [PC04] (Fig. A.IL.9).

Particles

M,
?Né
B

eam element

Fig. A.I1.9: 2D example of hybrid lattice-particle model [JATI15]

Indeed, the smooth contact particle models is suitable to model continuous
media since elasticity is naturally taken into account in their interaction laws.
However, this class of model faces difficulties when significant shear effects are

involved [JATI15]. This drawback can be overcome by using cohesive beams in
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hybrid model in order to connect elements, as in lattice models. Moreover, since
volume is assigned to each element, it is possible to restore beam contacts that
were broken before. This make the so-called hybrid model able to deal with the
crack closure phenomena of continuous media.

As an example, a versatile modeling platform with hybrid lattice-particle model
has been developed by André et al. since 2009 [AIICNI12, ACIL5, JATII5].
This discrete model platform allows to describe an elastic solid by a set of
discrete elements linked by cohesive beams [JATI15]. Up to now, the developed
modeling platform has been able to describe quantitatively mechanical, thermal
and electrical behavior of continuous media [AJIT13, ACI15, HAD*17, TICI13].
For example, in mechanical area, André et al. [AJIT13] used hybrid model in
order to simulate brittle fracture of glass in indentation test (Fig. A.I1.10). Fig.
ALTT1.10 shows that the developed hybrid model could reproduce crack shape in 3D

which is similar to experimental. observation.

silica discrete sample

bottom surface

e d=~13.5um -l
B ~7.5 P

(a) The hertzian cone crack after (b) Discrete model simulation and
indentation test [Roe506] associated crack shape [AJIT13]

Fig. A.I1.10: Simulation of brittle fracture in indentation test by hybrid lattice-particle model

A.Il.4 What class of numerical methods to
achieve the purpose of the present

research?

As presented previously, there are many numerical methods applied in

Computational Mechanics. These methods can mainly be classified into discrete
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methods and continuous methods. The former is based on Newtonian mechanics
whereas the latter is based on continuum mechanics which consider matter as a
continuum.

As discussed in chapter I, the present research investigates the effects of thermal
damages on thermomechanical behavior of refractories in order to strengthen
experimental results and to give insight for microstructure design. Therefore, this
investigation involves high amount of discontinuities. As reported in Sect. A.I1.2
reliable constitutive laws between stress and strain field have been developed for
continuous method for a long time. However, in order to manage high amount
of discontinuities or simultaneous cracking, additional treatments are required
for continuous methods. Despite significant successes of several technique, e.g.
XFEM, PFM, their applications for complex crack phenomena still, up to now,
remain problematic. Especially, the minimization of computational time for 3D
simulations of multiple cracks is still in progress.

Thanks to the ability to describe discontinuities, the discrete methods is a
good candidate for the present research. Indeed, in this class of method, matter is
consider as assembly of point/rigid bodies that interact with each other through
interaction laws. The initiation of crack could be simply handled by breaking
interaction between elements. The discrete methods were divided into two main
subclasses: lattice models and particle models. Since these two subclasses are quite
complementary, a “hybrid” method that combines their advantages was retained.
Specifically, the variant of the Discrete Element Method (DEM) developed by
André et al. [ACI15, JATI15] and the associated DEM modeling platform were
chosen in order to achieve the purpose of the present research. The main
specificities of this methods as well as the development of DEM modeling platform,
namely GranOQO, will be detailed in part B.
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Introduction

The main purpose of the present research is to investigate the influences of
thermal damages on the behaviors of heterogeneous materials and the associated
phenomena, e.g. the nonlinear behavior of refractories. According to the
bibliographic study in part A, the Discrete Element Method (DEM) has shown
several advantages in the modeling of fracture phenomena, e.g. the simultaneous
damage propagations which is typical for refractories. For this reason, the
GranOO DEM platform was used in the present works to study the behaviors of
heterogeneous material. However, there are two main challenges for the application

of DEM to model continuous media:

o establishment of relationships between input parameters and output results

in order to facilitate its usage for non specialist;

o further development of stress computations in order to describe accurately

fracture phenomena due to complex loading.

Part B is therefore dedicated to the development of GranOO platform during the
present research. This part includes 2 chapters.

The first chapter is dedicated to a general review of GranOO platform. In this
chapter, the architecture of DEM platform, the key elements of DEM simulation
and the contact model are presented. Furthermore, the new developments of virial
stress computation is also detailed.

In the second chapter, a novel calibration method of input parameters for
the used DEM approach is proposed and validated through various simulation
configurations. Moreover, the accuracy of virial stress computation was examined
through its application to the modeling of the residual stress due to thermal
expansion mismatch and the associated damages within an elementary composite
materials. Indeed, the stress field obtained with DEM will be confronted with FEM
and theoretical predictions. Moreover, the DEM results of damage propagations

will also be compared with experimental observations [TD03, Jol06].
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Chapter B.I

GranOO - A versatile discrete

element modeling platform

B.I.1 DEM explicit dynamic resolution

algorithm

B.I.1.1 Positions and orientations computations in DEM

In general, all DEM modelings involve the computation of acceleration of discrete
elements at each time step. Indeed, the calculation of the new position of
the discrete elements requires the integration of acceleration to provide position
and velocity at the considered time step. In computer simulations of physical
processes, explicit and implicit integration schemes can be used to obtain numerical
approximate solutions of partial differential equations that describes a time-
dependent problem. The explicit scheme calculates the state of a system at a
later time from the current state of the system, whereas implicit scheme finds a
solution by solving an equation involving both the current state of the system
and the later one. Explicit scheme gives a faster solution in dynamic phenomena
whereas the implicit method is privileged when the physical phenomena are much
slower. The choice of implicit or explicit scheme depends on the goal of the
computation. In the frameworks of the Granular Object Oriented Workbench
(GranOO), the numerical resolution is based on an explicit integration scheme,
which is well adapted to massive DEM simulation and high velocity phenomena
such as fracturing or impact [JATI15]. Many explicit schemes can be found in
literature, e.g. the Verlet velocity, Runge-Kutta or gear’s method, etc. Several

researches have pointed out that all of these schemes give approximately the same
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efficiency [RMJ04]. Consequently, André et al.. have implemented in GranOO,
the explicit dynamic resolution algorithm based on the Verlet velocity scheme,
for its simplicity. This implementation is used for all DEM simulations presented
in this study. More specifically, the discrete element positions and velocities are

estimated by:

(t+ Af) = p(t) + At(t) + S (1) (B1L1)
Bt + At) = () + o (B(t) + Blt + Ab)) (B.12)

2

where:
o tis the current time and At is the integration time step.

o p(t), p(t) and P(t) are the linear position, velocity and acceleration of the

discrete elements.

In GranOO, the discrete element orientations are described by quaternions, which
is defined as the quotient of two vectors [Har81]. More specifically, the quaternion
is an operator which modifies the direction and the norm of a vector. A quaternion
g can be considered as a linear combination of four quaternions units, i.e. 1,1, 7,
and k (Eq. B.1.3)

g=al+ay.i+asj+ask (B.1.3)

where a,ay,as,as are real numbers, and 7,7, k are the fundamental quaternion
units. The usage of quaternions gives an efficient way to compute the rotation of
the local frames associated with the discrete elements [PS05]. The angular velocity

of discrete elements is obtained by using Eq. [Ebel0]:

4(t) = 5 w(t) q(t) (B.1.4)

where ¢(t) is the orientations of discrete element, w(t) is the angular velocity of
discrete element. The Verlet velocity scheme is also applied to quaternion ¢(t),
with:

gt + At) = q(t) + At g(t) + A;Qc'j(t) (B.L5)
it + A1) = )+ 5 @) + e+ An) (B16)
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Finally, to prevent quaternion numerical drifts, the quaternion must be normalized

at each time step.

B.I.1.2 Overview of the resolution algorithm

Algorithm 1 shows the implementation of the Verlet velocity scheme in the explicit
dynamic resolution of GranOOQ. This simplified algorithm hides the main difficulty
of the elaboration of a numerical experiment, whose loadings, boundary conditions,
micro mechanical models or involved geometries can be complex. This is one of the
main advantages of GranOOQO platform: ability to provide tools and mechanisms,
in a coherent environment, to perform DEM simulations in a quite easy way. This

aspect will be presented briefly hereafter.

Algorithm 1: Explicit dynamic resolution [JATI15]
input: p(0) p(0) p(0) ¢(0) 4(0) 4(0)
t <+ 0;
foreach iteration n do
foreach discrete element ¢ do
pi(t + At) < Verlet velocity scheme (B.1.1);
F;(t + At) < Sum of forces acting on i;
Pi(t + At) < Newton’s second law;
pi(t + At) < Verlet velocity scheme (B.1.2);

¢i(t + At) < Verlet velocity scheme (B.1.5);
¢;(t + At) < Normalization;

M, (t + At) < Sum of torques acting on i;
Gi(t + At) <= Angular momentum law;

¢;(t + At) < Verlet velocity scheme (B.1.6);

Lt t+ At

B.1.2 Architecture overview of GranOO

platform

B.I.2.1 GranQOO - a C++ object oriented workbench

The Granular Object Oriented Workbench (GranOO) has been developed since
2010 by the collaboration of 3 laboratories: Institute of Research for Ceramics
(IRCER, Limoges, France), Institute of Mechanics and engineering (I2M,

Bordeaux, France), Laboratory of Industrial and Human Automation control,
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Mechanical engineering and Computer Science (LAMIH, Valenciennes, France)
[And12, JATT15]. This platform of discrete element modeling is designed based
on explicit dynamic resolution algorithm to perform a wide range of numerical
experiments. The conditions of computation platform, i.e. upgrade ability,
robustness and performance, need to be well guaranteed. To reach this purpose, the
C++ programing language, which is standardized and efficient, has been chosen
to implement GranOO. In fact, C ++ is a compiled language, whose performances
have become comparable to those of the C or the Fortran languages, which
are part of the fastest programming language. In addition, the object oriented
(OO) approach is used to design GranOO, whose architecture is based on an
organization in libraries. This kind of architecture facilitates the upgrade process.
Robustness aspect of computation is ensured by the systematic application of the
concept of programming by contract [McK96]. Finally, an operating architecture
based on the usage of macro-command, which was also called plugin in the
existing documentations of GranOO, ensure a flexible utilization of platform. The
integration and scheduling of macro-command are done through modifiable input
files in eXtensible Markup Language (XML) format. More informations about

this original and versatile computation platform are given in [And12, JATI15]

B.I.2.2 Input files and macro-command

In order to facilitate the manipulation of DEM simulations for non-specialist user,
a modifiable input file in XML format is used as an interface between GranOO
source code and user. Indeed, the input files, which can be easily configured by
user, is dedicated to integration and scheduling of macro-commands. In addition,
the macro-commands facilitate the usage of source code in order to develop
specific configurations of DEM simulation, e.g. loading, boundary condition, etc.
By using standard and user-defined macro-commands, the users could develop
their own configuration of DEM simulation, without a high requirement of C+-+
programming knowledge. Typically, an input files has two fundamental parts,
i.e. pre-processing and processing. The first part corresponds mainly to macro-
commands that are related to the reading of discrete domain and the contact
properties. The second part is dedicated to macro-commands that are related to
configurations DEM simulations, e.g. boundary conditions, stress computations
and saving results options, etc. An other important point is related to the saving
of output discrete domains with several associated informations. This allows to

develop a DEM simulation based on the results of the other ones. More specifically,
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the discrete domain can be saved in a granoo discrete domain file (gdd), which
contain complete characteristics of domain, e.g. positions, accelerations of discrete
elements; mechanical properties of contact, etc. In summary, the concept of
input file and macro-command makes the DEM simulations much more easier

and promotes the application of DEM to the modeling of brittle elastic media.

B.1.2.3 Essential libraries and tools

The architecture of the GranOO discrete element modeling platform is designed
based on an OO approach where classes are grouped into libraries. The GranOO
platform is composed of 11 libraries written in C ++ language. The 5 fundamental
libraries, and the visualization and post processing features are briefly presented

hereafter.

libUtil is dedicated to manage computer issues, i.e. reading and writing XML

files, management of macro-commands, data compression, digital sensors, etc.

libMath integrates mathematical tools, i.e. usual mathematical functions and

statistical calculations.

libGeom is dedicated to Euclidean geometry calculations in a 3D space. This
library models the concepts of basic entities in Euclidean geometry, e.g. coordinate
system, point, vector, quaternion, etc. It proposes also various common operations
for 3D calculations, e.g. change of local frame, projection, rotation, norm, etc. A
DEM simulation is intensively based on the usage of the entities developed in the
libGeom. Consequently, this library has been developed with high attention in

terms of performance, robustness and accessibility.

libShape provides the concepts of geometric shapes, e.g. sphere, cone, cylinder,

box, rectangle, etc.

libDEM is specifically dedicated to the implementation of DEM simulations.
This library provides the concepts of discrete elements, cohesive bond, boundary
condition, discrete domain, etc. These concepts are based on the three previous
libraries. The libDEM provides also various features to manipulate efficiently
DEM simulations, e.g. containers, simple expressions of boundary conditions and

loadings, etc. In fact, to perform a DEM simulation, the user needs to be able to

42



B.I. GranOO - A versatile discrete element modeling platform

extract sets of entities (discrete elements, contacts, etc.) in order to apply specific
treatments to them, e.g. loading or boundary conditions. As a result, [ibDEM
provides tools to facilitate this type of action. The identification is carried out
via specific containers, called SetOf, and the treatments are applied by macro-
command. The SetOf is one of the fundamental mechanisms of GranOO. 1t allows
a simple and exact identification of DEM entities of different types and guarantees

also an efficient extraction of numerical data.

Visualization and post processing features provide the abilities to visualize
and manipulate easily the results of DEM simulations, e.g. stress field, temperature
field or damage propagation, etc. Firstly, the granoo-viewer feature, which
is dedicated to the visualization of simulations results, has been developed in
GranOO platform. This feature allows a visualization the contents of a gdd file in
3D interactive mode. Therefore, the user could check the progress of simulations
and get a better description of the results. More recently, a new feature, dedicated
to further post-treatments of DEM results has been implemented. Indeed,
simulations results could be saved in a pwvd file, which is compatible with Paraview
software!. Thus, it makes the visualization of DEM results easier and more
efficient. Moreover, the numerical data could be easily manipulated by Paraview
and/or by Python, which enables the comparison of DEM against theoretical
predictions and/or other numerical approaches, e.g. FEM, as it will be described
in section B.I1.4

B.1.2.4 The main steps of DEM simulations

In summary, the GranOO platform is based on 5 fundamental libraries, i.e. [ibUtil,
libMath, libGeom, libShape, libDEM. In order to develop a DEM simulation, the
user needs to communicate with these libraries via the input file and macro-
commands, as presented in B.[.2.2. The main steps to develop and exploit a

DEM simulation are resumed in Fig. B.I.1. Generally, there are 3 main steps:

1. Implementation and selection of macro-commands: The macro-
commands, including user-define and standard ones, are fundamental to

generate the executable file, which is used to run the simulation.

2. Execution: The simulation is facilitated and configured thanks to the input

file as an interface between source code and user. During the simulation,

Lwww.paraview.org
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the executable file could produce different output files, i.e. output gdd
files, output pud file and a tzt file. The gdd and pud files are presented in
B.I1.2.3. Beside, the output tzt file records the measured results of different

phenomena during DEM simulation, e.g. normal stress, displacement, etc.

3. Analyses of results: the gdd and pwvd files could be read and visualized
by using granoo-viewer and Paraview, respectively. The txt file could be
analyzed by different tools. In this study, the analysis of txt file is performed
by using of Python scripts.
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The main steps of DEM simulations using GranOO
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B.I.3 Construction of discrete domain

B.1.3.1 Required properties of discrete domain

In DEM simulation, sample is represented by discrete domain which is an assembly
of non deformable spherical discrete elements. Naturally, when a space is filled by
an assembly of sphere, voids and overlapping exist. However, in order to mimic
the continuous media. the discrete domain must give a good compromise between

four important criteria:
« isotropic distribution of elements;
o density of assembly;
« overlapping between elements;

o average direct neighbor number which is calculated as follows:

2 x Number of contacts

Average direct neighbor number =
& & Number of discrete elements

Thus, the cooker algorithm, dedicated to the domain construction, has been
developed in GranOO platform [JATI15]. In this algorithm, discrete element radii
are randomly chosen through a uniform distribution with a range equal to 25%
[ATICN12]. This randomization process prevents ordered configuration, also known
as crystallization, in the obtained discrete domain [PLO1]. The cooker algorithm
ensures also that the average direct neighbor number is close to 6.2 and the density
is about 0.63, in order to produce a good representation of continuous media
[GF74, Fin70]. Furthermore, the overlapping between discrete elements could be

managed as it will be explained hereafter.

B.1.3.2 Construction domain algorithm

The cooker algorithm is able to fill a space of arbitrary shape with spherical discrete
elements. Fig. B.1.2 illustrates the main steps of domain construction, which could

be divided in 4 main steps:

1. Random filling: At the beginning, the discrete elements are randomly
added until no longer free space exists. In other words, the random filling
is stopped after a given number (to be fixed by the user) of unsuccessful

attempts to insert a new discrete element.
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2. Forced filling: After the random filling, the discrete elements are forced to
be inserted by packet, e.g. 1 or 10 elements, until the average direct neighbor
number reach the 6.2 value that corresponds to the definition of a random
close packing [GF74] (step 2a). Since the discrete elements are forced to be
added, a high level of overlapping between elements is induced. Hence, the
discrete domain is reconfigured after each forced insertion (step 2b). The
reconfiguration of domain is done by performing a granular simulation of
domain until the kinetic energy decreases to a negligible value. Once the
average direct neighbor number reaches the targeted value, the forced filling

step is stopped.

3. Relaxation of domain: Once the forced filling is stopped, the discrete
domain is relaxed in order to remove the remaining overlapping. This
relaxation consists of decreasing the boundary wall stiffness until this stiffness

reaches a negligible value.

4. Generation of interaction pairs network: As it was shown in
[ZYR™18], structural properties of assemblies has strong effects on apparent
elastic responses. Therefore, a post-processing step, able to manage the
coordination number, has been implemented to study the influence of this
input parameter on the macroscopic Young’s modulus and Poisson’s ratio
(Chapter B.II). Hence, after the filling process, a specific algorithm is
involved to generate interaction pair network. In this step, the value of the
global coordination number, which is the average number of interaction pair
per element, can be tuned. In order to reach a targeted value of coordination
number, a radius of interaction is assigned to each discrete element in order
to generate interaction pairs. More specifically, the radii of interaction of
discrete elements are considered to gradually increase until the expected
coordination number value is reached. This algorithm allows us to choose
the coordination number value and to connect elements even if they are not

really in contact.
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B.I.4 Thermo-mechanical behavior modeling of

continuous media

B.I.4.1 Springs-like interaction laws and their limitations

The elastic behavior of isotropic materials is characterized by Young’s modulus
and Poisson’s ratio. Since the modeling of this behavior with DEM has been
intensively studied, several DEM contact models can be found in the literature. As
explained in Sect. A.IL.3, in the bonded-particle method, proposed by Potyondy et
al. [PC0O4], the material is modeled as assembly of nonuniform-sized rigid spherical
particles that may be bonded together at their contact points. Mainly, two models
of bonds are frequently used in bonded-particle method: contact bond and parallel
bond (Fig. B.1.3).

Linear component

Parallel bond

o Lok | i tc. o)
kn%r Ky Y

Broken parallel-bond
ol [ ol [
K

kn%’ ks r‘ %’ ks r‘
Parallel-bond component

(a) Contact bond model (b) Parallel bond model

Contact bond

T
kn ks Sr

Broken bond

Fig. B.1.3: Rheological components of the contact models used in bonded-particle method
[Inc18]

The contact bond model can be considered as a pair of elastic springs with
constant normal and shear stiffnesses that act at contact points between particles
(Fig. B.1.3(a)). These two springs have specific tensile and shear force limits.
The bond is broken if the normal force or shear force exceeds the corresponding
bond force limits. The broken contact bond has the same behavior than the linear
bond, in which the dashpots are replaced by a gap and a friction (Fig. B.1.3(a)).
The linear bond is active if and only if the surface gap is less than zero; the
force-displacement law is skipped for inactive contacts.[CS79].

By contrast, the parallel bond model, can be considered as a set of elastic

springs with constant normal and shear stiffnesses, uniformly distributed over a
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cross-section lying on the contact plane and centered at the contact point [CMS07].
The cross-section of contact could be rectangular in 2D or circular in 3D. More
precisely, the parallel bond model has two components that act parallelly, i.e.
parallel-bond component and linear component (Fig. B.1.3(b)). Hence, parallel
bond can transmit both force and moment through contact. The transmitted
force and moment can be related to maximum normal and shear stresses acting
within the parallel-bond component. If one of these maximum stresses exceeds
its corresponding bond strength, the parallel bond is broken and becomes linear
model (Fig. B.I1.3(b)). The properties of contact bond and parallel bond models
are synthesized in Tab. B.I.1.

Tab. B.I.1: Properties of contact bond and parallel bond models

Contact bond properties Parallel bond properties Descriptions

Tr - Tensile force limit [force]

Sr - Shear force limit [force]

k., ky, Normal stiffness [force/length]
ks ks Shear stiffness [force/length]
Js Js Surface gap [length]

w u Friction coefficient [-]

- ol Tensile strength [stress]

- d Cohesion [stress]

- ¢ Friction angle [degrees]

- k! Normal stiffness [stress/disp.]
- K. Shear stiffness [stress/disp.]

The bonded-particle models have been widely used to study fracturing
and fragmentation processes of brittle materials. These methods have been
implemented in many common DEM softwares, such as PFC [Inc12] and YADE
[KDO08]. However, one of major drawbacks of the bonded-particle models is that
determining the proper set of bond properties (microscopic parameters) is quite
difficult. In fact, the input parameters of the model are set at the microscopic
scale and they do not correspond to the material properties. A pre-processing step
is necessary (calibration process) to reach quantitative results. This drawback is
due to the high number of microscopic parameters, for example, 10 microscopic
parameters are needed to determine the contact-bonded model [WCI17], e.g.
contact modulus, stiffness ratio, friction coefficient, contact-bond normal strength,
contact-bond shear strength, etc.

More recently, the Cohesive Beam Model (CBM) has been developed by
different authors [LHG17, HNKK17, ACI15]. In the CBM proposed by André
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et al. [AIICN12, ACI15], discrete elements are connected by cylindrical cohesive
beams which are able to work in tension, compression, bending and torsion. The
Euler-Bernoulli beam theory is implemented to compute the beam forces and
moments. In this framework, the behavior of modeled material could be reached
by calibrating only two microscopic parameters. The calibration process of this
model seems to be less complex than the previous bond models. Hence, the contact
model of Granoo platform has been implemented by using CBM model, which is

presented hereafter.

B.1.4.2 Why cohesive beam model?

The present study focuses on the Cohesive Beam Model proposed by André et
al. [AIICN12, ACI15], due to a rather simple calibration process. The CBM
was first introduced by H. J. Herrmann in 1988 [Her88]. This model was first
used for 2D ordered lattice network [SVM92b, SvM92a], and later, for disordered
2D lattice networks [SG96, KH96, DKRO02, ?, DRO06]. In reference [SGI6],
microscopic parameters of 2D lattice model and mechanical properties of material
were proposed to be equal similar. However, the trial-and-error calibration
has mainly been recommended, using experimental and numerical approaches to
determine relationships between microscopic and macroscopic outputs of CBM. In
the present study, mechanical properties of the cohesive beams are different from
corresponding properties of modeled material. So, microscopic local properties
could be tuned to produce the targeted behaviors at the macroscopic scale.

Fig. B.I.4 draws two discrete elements bonded by a cohesive beam. The
cylindrical geometry is chosen because it’s dimensional description requires only
two independent parameters: a length L,, and a radius R,,,. Mechanical properties
of cohesive beams are described by a Young’s modulus FE,, and a Poisson’s ratio
Vpm. These four microscopic geometric and mechanical parameters allow a complete
description of a cohesive beam. Hereafter, in order to distinguish micro from macro
properties, micro parameters and macro parameters are denoted by 'm’ and "M’
indexes, respectively. In addition, in this contact model, cohesive beams are mass-
less; mass properties are then assigned only to discrete elements.

For the sake of clarity Fig. B.I.5 shows a configuration in which the discrete
elements have been moved away. The cohesive beam is symbolized by its median
line. Both cohesive bond ends are fixed to the discrete element centers O; and
Os. The discrete element frames F; (O1, X1, Y1,Z;1) and F3 (O, X2, Y2, Zs) are

oriented such that X; and X, are normal to the beam cross section ends. At
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Fig. B.I.4: The cohesive beam bond [ATICN12]

the initial time, the beams are relaxed (Fig. B.I.5(a)). Fig. B.I.5(b)) shows the

cohesive beam in a arbitrary loading state.

Discrete Element 2

(a) Relaxing state (b) Loading state

Fig. B.I.5: Cohesive beam bond configurations [AIICN12]

The well-known analytic model of Euler-Bernoulli beam [Tim82] is used in this
contact beam model to describe the interactions between elements. Fig. B.1.5(b)
illustrates the beam local frame positioning. The center of discrete element 1
(Oy) is considered as the origin. The "aligned" configuration, in which O;05 =
kX, = —kX5, is considered as the non-bending state and is taken as reference.
Consequently, the cohesive beam local frame F (O, X,Y,Z) is oriented such that
(see Fig. B.I.5(b)):

0,0,

X=—"andY¥Y=XAX;jand Z=XAY
0102 !

In the local frame F, the deflections at O; and Oy are null. Cross section
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bending rotations at O; and Oy are defined, respectively, by 6, = (ﬁ) and
0y = (—ﬁz). In addition, the small rotation hypothesis is used at local frame
to make the following equalities applicable: 6, = sin#;, 0, = sinf,. In GranOO
framework, #; and 6, are assumed to be smaller than 10°. Consequently, the force

and torque reactions acting on discrete elements 1 and 2 are:

Al _ 6EnIy

FDEI — +EmAmT:X l2 ((02Z + 917;) Y + (egy + 01y> Z) (BI?)
Al,, 6L, 1,
FDE2 - —EmAmKX + 2 ((922 + 912) Y — (egy + ‘913/) Z) (BIS)
Gnlo,, 2F,.1,,
Tpg1 = + I (Oap — 012) X — ((O2y +201y) Y — (62, +201.) Z)
(B.1.9)
Gnlo,, 2FE,. 1,
Topz = ——— (02 — 1) X - ((202y +01y) Y — (205 + 01.) Z)
(B.1.10)
where:

e Fpg; and Fpgs are the beam force reactions acting on discrete elements 1
and 2.

e Tpg; and Tpge are the beam torque reactions acting on discrete elements
1 and 2.

e Beam force and torque reactions are expressed in the beam local frame
F(O,X,Y,Z).

e [, and Al,, are the initial beam length and the longitudinal extension.

o (01,014, 61.) and (0a, 04y, 62,) are respectively the components of rotations
vectors of cross section of the beam at the points O; and Oy, expressed in

the beam local frame: 0DE1 = ODEl (9195, Hly, Glz); 0DE2 = 9DE2(92x7 92y, QQZ)

e A, I, and o, are the beam cross section area, second moment of area and

polar second moment of area along Y and Z

e I, and G, are the Young’s and shear modulus of the cohesive beam.
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As described previously, the cohesive beam bond is defined by four parameters:
length L,, , radius R,,, Young’s modulus F,, and Poisson’s ratio v,,. In fact, the
cohesive beam length value L,, depends on the distance between discrete element
centers and is not a free parameter because it is defined through the compact
process (section B.I.3). In addition, the v, has no influence on the macroscopic
elastic behavior [AIICN12]. In this study, the beam radius ratio denoted by r,,
is preferred to the beam radius R,,. The beam radius ratio is defined as the
ratio between the cohesive beam radius and the average discrete element radius.
The r,, value is the same for all the cohesive beams involved in a discrete model.
Consequently, elastic behavior of materials could be macroscopically matched by
calibrating only two parameters E,, and r,,. This allows us to consider the cohesive
beam as a length-free model. In other words, the mechanical elastic property of a
discrete sample, defined by its apparent Young’s modulus and Poisson’s ratio, do

not depend on its size. This is an important feature of the cohesive beam model.

B.1.4.3 Calibration of cohesive beam elastic parameters

B.I.4.3.a Tensile test simulation and computational methods of

macroscopic mechanical responses

In discrete element models, macroscopic outputs can not be introduced directly
as input parameters. Indeed, they need to be measured numerically through
numerical simulations. In this study, quasi-static uniaxial tensile test are simulated
to deduce the apparent Young’s modulus FE);, Poisson’s ratio vy, and failure
strength o,;. For such simulations, cubic samples are built by using the cooker
algorithm (see previous section), with length of 2 millimeters and contains around
10,000 discrete elements. As it was shown in [AIICNI12, AJI*13, ALTDHI17],
for a cubic domain, the quantity of 10,000 discrete elements ensures a good
level of convergence. In other words, if higher numbers of element are chosen,
the obtained results will not be different from those ones obtained with 10,000
elements. Consequently, in this study, a number of 10,000 discrete elements is
considered as sufficient for an acceptable level of precision.

In order to load the sample, opposite displacements at constant velocity are
imposed to the discrete elements that belong to the S, and S,_ faces of these
cubic domains (Fig. B.I1.6). The normal forces F,, and F,_ resulting from these
displacements are measured by summing the measured forces f; of each discrete

element that belong to S, and S,_ faces:
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Fig. B.I1.6: Configuration of tensile test simulation

Fx— = Z fi.X

1€ESy—

Fx+ — Z fi.X

1€Sp4+

During the tensile simulations, the normal force F, is computed by averaging

these two opposite forces :
1

F, = §(Fx—_Fz+)

The lengths L., L, and L. of the bounding box associated to the discrete
domains are updated during the computation. From the knowledge of the
bounding box lengths and the applied force F, (Fig. B.l.6(a)), the average
macroscopic normal stress o,,,, along the x axis can be deduced as:

F,
or = ———— B.I.11
OMez =T L (B.L11)

The macroscopic engineering strain €44 , €ayy and €y, along the x, y and z axes

are expressed as

(B.L12)
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So, the macroscopic Young’s modulus F); is :

O Mzz

Ey = (B.113)

EMzx

The macroscopic Poisson’s ratio vy, is computed by averaging the macroscopic

Poisson’s ratio values along the y and z axes as :

1 1 €Myy EMzz
_ 1 == B.I14
= g ) = 5 T ) (BLIY

Finally, the macroscopic failure stress o), is the macroscopic tensile stress o /..

when the failure occurs. The failure at the scale of structure is detected by a brutal

decrease of normal stress.

B.1.4.3.b Classical trial-and-error calibration method

This section describes briefly the classical trial-and-error calibration method,
introduced by André et al., in order to quantify the value of the microscopic
parameters to fit the targeted macroscopic properties [AIICN12, JATI15]. In
these researches, only two microscopic parameters need to be calibrated, i.e.
microscopic Young’s modulus F,, and beam radius ratio r,, (Sect. B.1.4.2). Hence,
to analyze the evolution of macroscopic outputs versus microscopic parameters,
several simulations of quasi-static uniaxial tensile test need to be performed with
different value of cohesive beam properties. According to the parametric study in
[JATT15], macroscopic Poisson’s ratio vy is independent from microscopic Young’s
modulus FE,,. By contrast, both macroscopic Young’s modulus F;; and Poisson’s
ratio vy, are nonlinearly dependent upon r,,. Therefore, the calibration process

can be achieved in two main steps:

1. the calibration of the microscopic beam radii by dichotomy in order to reach

the required value of Poisson’s ratio vy, and then

2. the calibration of the microscopic beam Young’s modulus in order to reach
the required value of Young’s modulus E;. This calibration is accomplished

by using a linear regression since E); is proportional to F,,.

This calibration method involves fastidious parametric study of several
simulations, which is time consuming and non-normalized. For example, the
calibration process to reach the targeted elastic properties of one material involves
10 simulations which could take 4 hours to perform. In order to avoid repeating

trial-and-error calibration and facilitate the usage of DEM for non-specialists, a
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Fig. B.I.7: Thermal expansion of the cohesive beams at the initial temperature Tj (a) and at
a given temperature T (b)

direct calibration method of microscopic parameter of DEM has been established

in the present work and is presented in chapter B.II.

B.1.4.4 Thermal expansion modeling

In this study, the thermal expansion is modeled by using the solution proposed by
André et al. [ALTDHI17]. This solution consists in incrementing the free length
of the cohesive beams [y by a Aly value computed from the temperature variation
AT (see Fig. B.1.7). It could generate the thermal expansion of the whole domain
without adding any internal forces, in the case of homogeneous isotropic material
and homogeneous temperature in the whole volume. In this approach, the free

length of cohesive beams is linearly dependent on temperature (Eq. B.1.15)

Io(T) = 1292 (1 4+ A(T) x «) (B.1.15)
where A(T) = T — T, is the temperature variation, « is the linear thermal
expansion coefficient and /%! is the initial free length for the initial temperature

Ty. Please notice that the current length [ is not directly affected by these
computations. Changing the current length [, for the given cohesive beam, could
change the reaction forces acting on the bonded discrete elements. To avoid this
issue, if the related discrete elements are unconstrained, the current length [ of the
beam converges toward the most updated value of its free length [, after a given
number of iterations.

Similar to the mechanical microscopic parameters, the linear thermal expansion
is considered at two scales : microscopic «,, and macroscopic ay;. The «,, is

the input parameter related to the thermal expansion coefficient of the cohesive
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beams and the oy is the resulting thermal expansion of the bounding shape of the
discrete domain. According to the analysis in [ALTDH17], the thermal expansion
is identical at microscopic and macroscopic scales. Therefore, thermal expansion

coefficient can be introduced directly without any calibration.

B.I.4.5 Thermal conduction modeling

The temperature filed exhibits an important role in many manufacturing processes,
such as steel casting, machining, etc. Conduction is the most predominant mode
of heat transfer within a solid or between solids in physical contact. Nevertheless,
quite a few other DEM researches on this phenomena could by found in the
literature [HGF14, Flo18]. Terreros et al. has developed an original method to
simulate heat conduction within continuous media using DEM [?, JATI15]. The
method proposed by Terreros et al. has been implemented in GranOO and has
been validated through several thermal test simulations, e.g. cylindrical beam in
contact with a hot plane, dynamically heated sheet. The DEM results shown
a good agreement with analytical results and FEM results, which proved the
compatibility of the proposed method to model thermal conduction phenomena
in continuous media [?]. In the present study, since the temperature field was
considered to be uniform in the whole sample, the thermal conduction was not be

taken into account.

B.I.5 Virial stress and microscopic fracture

model

B.1.5.1 Standard fracture model and its limitations

In discrete element approach, damage within the material is simulated by breaking
the cohesive beam that connect discrete elements. Different criteria have been
established in literature, e.g. maximal bond stress or maximal bond strain. In
the research of André et al. [And12], the authors introduced a maximum bond
stress criterion to study brittle material. The introduced failure model is based on
the Euler-Bernoulli beam theory [Wit91] and Rankine criterion. The maximum

principal stress of a cohesive beam is given by Eq. B.I.16.

1
ar = 5 <0max + \/M) <B116)
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where 0,4, is the maximal normal stress (due to tensile and bending loadings)

and 7,4, i the maximal shear stress (due to torsion loading) (Fig. B.1.8).
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Fig. B.I.8: Stress distributions of a cylindrical beam under tension, bending and torsion,
according to Euler-Bernoulli beam theory

The cohesive beam is broken if the maximal equivalent Rankine stress ,,q, i

higher than the tensile strength of the beam o,,:
or > o, (B.I.17)

This fracture model has been applied to different fracture test simulations, i.e.
tensile test and torsion test on cylindrical discrete domain and bending test on
parallelepiped discrete domain [JATI15]. The crack path obtained by these tests
were compatible with theoretical predictions and experimental observations, for
example, in torsion test, the simulated crack surface is oriented 45° to the main
axis of sample (Fig. B.[.9(a)). However, in the application to indentation test
with a spherical indenter, this model could not produce reasonable results in term
of crack geometry. Indeed, the simulations with the standard failure criterion
produce a crack that occurs near the indenter and propagates throughout the
thickness of the material (Fig. B.1.9(b)). Whereas, the experimental observation
show a crack in form of a Hertzian cone [Roe56]. This could be explained by
the fact that in beam-based fracture criterion, the state of stress at each discrete
element is not describe by an stress tensor. By contrast, in this fracture model,
damage is modeled by taking account only a scalar threshold of cohesive beam (Eq.
B.I1.17), which may not be representative for the cases of complex loadings. More
recently, in order to overcome the limitations of beam-based fracture model, the
virial-stress-based fracture criterion has been developed. This will be introduced

in the next section.q
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Spherical indenter

\ Failure path

(a) Torstion simulation (b) 2D indentation simulation

Fig. B.I.9: Crack path obtained with beam-based fracture criterion, taken from [JATIL5]

B.1.5.2 Virial stress formulation

The virial stress approach was initially developed to measure stress in Molecular
Dynamic (MD). This formalism is a generalization of the virial theorem of Clausius
(1870) for gas pressure. Since the new millennium, it has been widely implemented
in different discrete methods [WKC12, TSVA15, RAHA13]. Several researches
have pointed out that virial stress-based model seems to be suitable to simulate
elastic brittle material [AJIT13, JDIG17, HLG'15]. This approach enables the
stress computation at the scale of discrete elements and therefore, bridges the
discrete and continuum mechanics. Mainly, virial stress tensors are used as post-
processing tool to compute stress fields in DEM calculation. Recently, André et al.
[AJIT13, JATI15] proposed a fracture criterion at discrete element scale, based on
the computation of an equivalent Cauchy stress tensor (the so-called virial stress
tensor), to model damage within brittle materials. In order to ensure the symmetry
condition of the stress tensor, the same authors made a slight modification of
the formulation introduced by Zhou [Zho03] to compute virial stress tensor (Eq.
B.I.18).

G, = —

1 (1Y
20, | 24

Z (r; ® £y + £i; @ 135) (B.1.18)

j=1

where :
e (); is the volume of discrete element 7,

e T, is the equivalent Cauchy stress tensor of the considered volume €2,
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7 takes values 1 to N neighbors of the discrete element i,

® is the tensor product between two vectors,

fi; is the force imposed on the discrete element 7 by a cohesive beam that

bonds the discrete element 7 to its "neighbor discrete element" 7,

r;; is the relative position vector between the center of the two bonded

discrete elements ¢ and j.

Consequently, thanks to virial stress concept, the state of stress at a discrete
element could be well described by an equivalent Cauchy stress tensor. In this
virial formulation, only the interactions between the associated discrete element
and its direct neighbor are considered (Fig. B.1.10(a)). In the case of indentation
tests, the virial-based model reproduce a Hertzian cone crack, which is compatible
with experimental observation (Fig. B.I.10(b)). These results reveal that the
virial-based fracture model seems to be able to describe more precisely the cracking

propagation issued from complex loading than the beam-based approach.

Spherical indenter
Discrete element i

Discrete element j

Cracks

.

(a) 2D illustration of the concept of virial stress (b) 2D simulation of indentation
computation test with virial-stress-based
[JATI15]

Fig. B.I.10: Virial stress formulation and associated results

B.1.5.3 Novel development of virial stress formulation

In the present study, a new formulation has been proposed to improve the accuracy
of virial stress tensor, by considering several neighbor level as explained hereafter
(Eq. B.I.19).
_ 1 1Y
20 1€Q 2 j=1
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where:

e () is the volume associated to the virial stress computation,

T is the equivalent Cauchy stress tensor of the considered volume (2,

7 takes values 1 to N neighbors of the discrete element i,

® is the tensor product between two vectors,

f;; is the force imposed on the discrete element ¢ by a cohesive beam that

bonds the discrete element ¢ to its "neighbour discrete element" j,

r;; is the relative position vector between the center of the two bonded

discrete elements ¢ and j.

As illustrated in Fig. B.I.11, the stress tensor is always computed for the central
discrete element. Thus, different volumes €2 can be considered depending on the
neighbor level. Neighbor elements that connect directly to the central element
through cohesive beams are defined as neighbor level 1. Discrete elements that
connect directly to the discrete elements in neighbor level 1 are defined as neighbor

level 2 and so on. The volume €2 is simply defined as :

Q- Ly, (B.1.20)

v ieQ
where :
e i is related to a discrete element;
e (); is the volume of the discrete element 7;
e f, is the global volume fraction of the discrete domain.

With such a model, high value of neighbor level corresponds to non-local stress
tensor whereas low value of neighbor level is related to local value with lower
precision. The accuracy of different neighbor levels have been examined in order
to choose the most appropriate configuration.

Several simulations of tensile tests with neighbor levels 1 and 2 were carried
out. The tensile test simulations followed the same principles that was described in
B.I.4.3.a. In the performed simulation, the value of microscopic Young’s modulus
E,, was arbitrary fixed at 500 GPa. Radius ratio was set from 0.2 to 1.0 and the

coordination number varied from 6 to 13. Based on obtained results, the average
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‘ Central element
O Neighbor level 1
(O Neighbor level 2

Q, Volume associated to the _Qz Volume assogiated to the
virial stress of neighbor level 1 virial stress of neighbor level 2

Fig. B.I.11: 2D illustration of neighbor levels used for virial stress computation

value of the zz component of local virial stress tensor < o,,,, > was computed.
The macroscopic normal stress oy, was also computed thanks to Eq. B.[.11.
The relative difference between < o, > and oy, was then computed by the

following equation.

Mew =
Tmas = “OMer o) (B.1.21)

difference =
O Mza
In Eq. B.1.21, the discrete elements in the loaded boundaries were not taken into
account in the computation of < o,,,, >. This could be explained by the fact that,
in the performed simulations, the value of virial stress in the loaded boundaries
was lower than in other areas of discrete domain.

The results of the case cn = 10 are summarized in Table B.[.2. These results
show that simulations with neighbor level 2 have lower difference between oy, and
< Opm,, > (lower than 2%). The same tendency was observed for other coordination
numbers. Consequently, the neighbor level 2 seemed to ensure a good compromise
between computation accuracy and time consumption. Hence, this configuration

will be used to perform DEM simulations in the present study.

Tab. B.1.2: Relative differences between local virial stress and global normal stress

Tm Iv1 lv 2

0.2 1.48% 0.66%
0.4 1.28% 1.25%
0.6 1.44% 1.38%
0.8 1.59% 1.42%
1.0 1.62% 1.51%

Averaged errors  1.48% 1.24%
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B.I.5.4 Fracture model based on virial stress
B.I.5.4.a Fracture mechanism at microscopic scale

The present work has focused on brittle fracture which is assumed to be initiated
under tensile stress in mode I. Therefore, two fracture criteria at the scale of
discrete element were proposed to model the fracture phenomena. The first
criterion, called Rankine criterion, is related to the maximum principal stress.
Whereas the second criterion, called Hydrostatic criterion, is related to hydrostatic
stress.

In the Rankine criterion, a computation of the maximal principal stress o is
required. Indeed, o; is deduced from the virial stress tensor oo thanks to the
linear algebra computations that able to compute eigenvalues (oxx,oyy,0zz) of

symmetric matrices [Str88]. The maximal principal stress is simply deduced as:
oy = maX(O'X)(,O'yy,0'22> (BIZQ)

If the maximal principal stress associated to an element exceeds the microscopic

ran
m

Rankine fracture threshold o some of its connected cohesive beams will be
broken:

or > op," (B.1.23)

In the Hydrostatic criterion, the hydrostatic stress is computed by:

hyd 1 =

oM =g trace(o)

If the hydrostatic stress associated to an element exceeds the microscopic

hydrostatic fracture threshold ¢4 some of its connected cohesive beams will
be broken:
ol > ghvd (B.1.24)

In order to describe more precisely the fracture propagation, the cohesive
beams that have to be broken should be defined in a reasonable way. In the
previous studies of Andé et al., all the beams that belong to a discrete element
that reaches the microscopic fracture threshold were broken [AJIT13, JATI15]. As
a consequence, a debonded discrete element occurs and a debris is created. In the
present study, to avoid this problem, a new microscopic fracture mechanism was
proposed: only half of total cohesive beams that belong to the discrete element is

broken when the microscopic fracture threshold is reached (Fig. B.1.12). Hence,
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this half of total beams need to be well defined. Since the brittle failure occurs
in tensile mode (mode I), the broken beam set should follow a specific surface. In
this research, a specific surface and its associated direction, named the failure
surface S; and the failure direction d; respectively, were used to describe the
fracture mechanism (Fig. B.[1.12). The failure direction d; of discrete element
7 has been assumed to be the direction of the eigenvector of virial stress tensor

that corresponds to the maximal principal stress o; (Eq. B.1.22).

Discrete elementi  Fracture surface (S;)

Discrete element j

% Broken beam &
Failure direction (d;)

Fig. B.I.12: 2D illustration of the microscopic fracture mechanism

Finally, to mimic the creation of failure surface .S;, the cohesive beams between
the discrete elements 7 and j, included in the neighbor level 1, are broken, assuming

the following condition:

where r;; is the relative position vector between the bonded discrete 7 and j. This

method allows to create a crack path along the surface S; (Fig. B.1.12).

B.1.5.4.b Comparison of microscopic fracture criteria

A series of tensile test simulations was carried to compare the proposed microscopic
fracture criteria. In this task, the Cofer glass was chosen as reference material.
Hence, the microscopic parameters were calibrated by using the principle described

in B.[.4.3.a. The calibration were accomplished in 2 steps:

1. calibration of r,, and E,, to reach the expected value of Poisson’s ratio and

Young’s modulus vy, Ej at macroscopic scale

2. calibration of microscopic fracture thresholds (Eq. B.1.23, B.1.24) to reach
the expected value of tensile strength o), at macroscopic scale of reference

material
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The mechanical properties of Cofer glass and related microscopic parameters are

summarized in Tab. B.1.3

Tab. B.1.3: Mechanical properties of Cofer glass for the two scales

Macroscopic parameter Microscopic parameter

Vm Ey oM T'm E,, oy Ufnyd
(-)  (GPa) (MPa) (-)  (GPa) (MPa) (MPa)

0.23 72 50 0.35 677.94 60.08  22.98

The stress-strain curves issued from tensile test simulations with two fracture

criteria are illustrated in Fig. B.[.13. In the performed tensile test simulations,

Mechanical behavior Mechanical behavior

50 50 F

40 40

w
=)

Stress (MPa)

N
S

10 10+

0
E)0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

strain (micro def) strain (micro def)

(a) Tensile behavior obtained with (b) Tensile behavior obtained with
Hydrostatic fracture criterion Rankine fracture criterion

Fig. B.1.13: Comparison of proposed microscopic fracture criteria

the fracture was detected by a sudden decrease of macroscopic normal stress
computed during the simulations (Eq. B.1.13). In Fig. B.I.13, as expected,
the tensile behavior before the fracture was linear and the maximum value of
normal stress were close to the tensile strength of reference material, i.e. 50 MPa.
However, the discrepancy between two microscopic fracture criteria arose after
the fracture. The Hydrostatic fracture criterion seemed to describe more precisely
the fracture behavior at macroscopic scale than the Rankine fracture criterion,
in comparison with theoretical and experimental observations. Indeed, with the
Hydrostatic fracture criterion, after fracture, the normal stress decreased quickly
towards zero value (Fig. B.1.13(a)). Whereas, with Rankine fracture criterion,
the normal stress after fracture remained significant in comparison with the peak

value (Fig. B.1.13(b)). Consequently, the Hydrostatic fracture criterion was used
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in the following parts of this dissertation to ensure an accurate investigation of

influences of damages on the apparent properties of material.

B.I1.6 Conclusion

The main objective of this chapter is to explain the GranOO platform and some
key elements of the proposed Discrete Element Method, i.e. sample constructions,
main steps of a simulations and contact model. In addition, this chapter explained
how the proposed Discrete Element Method describes the thermal mechanical
behaviors and also fracture phenomena of continuous media. Furthermore, the
new developments of virial stress computation are also detailed. Due to the
lack of research on application of virial-stress-based modeling to continuous
media, several computational configurations were examined, i.e. neighbor levels,
microscopic fracture thresholds, microscopic fracture mechanisms (see B.1.5.2).
The obtained results show that the proposed microscopic fracture mechanism
and the microscopic Hydrostatic fracture criterion seem to be able to describe
accurately the damage propagation due to complex mechanical loading. These
configurations will be used in the next chapters in order to examine the adaptability
of the proposed method to study the damage phenomena resulting from thermal

expansion mismatch within heterogeneous material.
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Chapter B.1I

Direct calibration method of

microscopic parameter

In the discrete element method, the physical phenomena could be considered in
2 scales: microscopic scale and macroscopic scale. The microscopic scale is related
to the properties of the discrete elements and interactions between them. Whereas,
the macroscopic scale is related to the apparent properties of the considered
material. Generally, the output macroscopic properties are different from the input
microscopic parameters. Therefore, the input microscopic parameters needs to be
carefully calibrated in order to obtain the expected value of macroscopic properties.
Up to now, calibration is usually achieved through a trial-and-error procedure
in which microscopic parameters are adjusted until the DEM results match the
expected macroscopic behavior. Such a calibration step is mandatory to achieve
quantitative results but it is a complicated and time consuming process. In order
to avoid this trial-and-error calibration, the relationships between macroscopic
outputs and microscopic parameters, called micro-to-macro relationship, has been
proposed in many DEM researches for different contact model. However, there
is a lack of calibration method that is dedicated to the Cohesive Beam Model
(CBM). Thus, this chapter presents a novel calibration method which allows to
compute directly the microscopic parameters of CBM from desired properties of

the modeled material.
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B.Il.1 Available calibration methods in

literature - a review

Many calibration methodologies has been reported in literature in order to avoid
the trial-and-error calibration. Among them, the dimensionless micro-to-macro
relationship has been introduced in different researches [FV07, ROLK11, YJLOG].
In this calibration method, the evolution of macroscopic outputs are described
by functions of dimensionless entities, e.g. ratio between contact stiffness in
the normal direction and contact stiffness in the tangential direction. Rojek
et al. introduced a dimensionless micro-to-macro relationships for 2D and 3D
discrete element models [ROLK11]. These authors considered the contact model
which was determined by 7 microscopic parameters, i.e. 2 contact stiffnesses,
2 force limits, 2 damping coefficients and Coulomb friction coefficient. In the
cited research, the Unconfined Compression Tests (UCT) simulations was used
to obtain the Young’s modulus, compressive strength and the Poisson’s ratio of
rock. Whereas, the Brazilian test was used to determine the tensile strength.
Simulations of the UCT and Brazilian tests have been performed with different
values of stiffness ratio in order to provide specific curves that describe the micro-
to-macro relationships. Then, the microscopic parameters could be computed
based on the obtained curves. The proposed calibration method were applied
for modeling rock cutting and seemed to give satisfactory results. However,
this calibration method assumed that the normal and shear force limits were
equal. In addition, no analytic function was determined to describe micro-to-
macro relationships. An other methodology is the fitting approach, which allows
to compute microscopic parameters from macroscopic properties [HWP17]. Han et
al. propose a fitting function to determine relationship between macroscopic tensile
strength and the micro mechanical breakage parameters by using simulations of
Brazilian test [HWP17]. The proposed micro-to-macro relationship was then
validated through uniaxial tensile tests. In the cited research, the calibration
method is applied for only one macroscopic parameter and validated through only
one type of numerical experiment. The calibration methods for elastic parameters
was not discussed in this research of Han et al. The list of the main calibration
methods that were proposed in literature for continuous media is presented in Tab.
B.II.1. As mentioned previously, in this list, there is a lack of calibration method
that is dedicated to the Cohesive Beam Model.

Recognizing this issue, the present study proposes a mnovel calibration
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Tab. B.I1.1: List of the main calibration methods in literature

Nb of Nb of Considered 1
. . . . . . Input Validation
Contact microscopic  considered  macroscopic Calibration . . . -
Authors . . simulations  simulations
model parameters microscopic  parameters method ok ..
in total parameters *
Unconfined
J. Rojek Spring E Dimension  compressive Rock
E. Onate -like 7 4 v -less test (UCS), cuttin
(2011) contact o method Brazilian &
test
B. Yiang, Parallel B Dimension Biaxial Biaxial
Y. Jiao, Dbond 12 4 v -less test tost
(2006) O¢ method
Slightly -
A. Fakhimi overlapped E Dimension UCs, Biaxial
. . - test,
T. Villegas circular 8 4 v -less Brazilian Bragilian
(2006) particle oy method test
. . test
interaction
Z. Han, Sp.rmg Fitting Brazilian Tensile
R. Puscasu -like 6 2 ot method tost test
(2017) contact

* E,v, 04,0 are Young’s modulus, Poisson’s ratio, tensile strength and compressive strength

*The simulations that were used to generate data to analyze the micro-to-macro relationships

***The simulations that were used to validate the proposed micro-to-macro relationships

method which allows direct computation of DEM microscopic parameters from
experimental values of mechanical properties of materials. In other words, the
mechanical properties of simulated materials could be used directly to perform
quantitative DEM simulations. Further more, the influences of arrangement of
discrete elements on macroscopic outputs, which has not been discussed in the
cited researches (Tab. B.IL.1), was also taken into account. The proposed direct
calibration method could eliminate the need of repeating trial-and-error calibration
and facilitate the usage of DEM for non-specialists. The following section describes

in detail the proposed direct calibration method.
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B.11.2 Direct calibration of microscopic

elastic parameters

B.I1.2.1 Tensile test simulations: database to analyze

micro-to-macro relationships

In order to define the analytical expressions of micro-to-macro relationships in
Cohesive Beam Model, data of macroscopic responses need to be generated from
a series of simulations with reasonable ranges of microscopic parameters. In this
study, the relationships between microscopic parameters and macroscopic outputs
of CBM were deduced from simulations results of uniaxial tensile tests, whose
the configuration is described in section B.I1.4.3.a. The tensile test was used to
generate data since all the important mechanical properties that describe a brittle
elastic material could be measured by this type of simulation, i.e. Poisson’s ratio,
Young’s modulus and later, the tensile strength. The simulations were carried out
with different values of microscopic parameters (Table B.I1.2). The total number
of simulations was 4 x 5 x 5 x 16 = 1,600 for this parametric study. Each set of
microscopic parameters (r,,, F,,, cn) gives an unique set of macroscopic outputs
(vam, En). Based on the obtained data, nonlinear least squares method [Lev44,
Mor78] was applied in order to define the analytical expressions, called fitting

functions, that best describe the micro-to-macro relationships.

Tab. B.I1.2: Value of microscopic parameters

Values Tot. number
Sample 1234 4
E,, (GPa) 500 1000 1500 2000 2500 5
Tm (-) 0.20.40.6 0.81.0 5
en (-) 5566.577588599.51010.51111.512.513 16

The main steps to define and validate the elastic micro-to-macro relationship
are illustrated in Fig. B.II.1. As discussed previously, in CBM, there are 3
microscopic parameters that influence macroscopic outputs: r,,, £, and cn. Since
the determination of analytical expression that contains all of these 3 parameters
is not simple, the evolution of elastic macroscopic outputs in function of r,, and
E,, was firstly investigated, without influence of cn (see f; and fs in step 1). Then,

the evolution of coefficients that are involved in f; and fy were studied (step 2).
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Fig. B.IL.1: Main steps to define and validate the elastic micro-to-macro relationships of CBM
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The determination of analytical expressions in step I and step 2 has the same

principles which contains two tasks:
o Selection of a type of analytical expression in order to fit the data;

o Refinement of the involved coefficients within the analytical expressions

thanks to nonlinear regressions.

After the selection of the most relevant analytical expressions and nonlinear
regression, the obtained fitting functions were verified by using academic test cases,
i.e. tensile tests and hydrostatic compression tests. The goal of this work is to
propose a fast and robust DEM calibration method that allows direct deduction

of microscopic parameter values from material properties.

B.11.2.2 Elastic micro-to-macro relationships
B.I1.2.2.a Selection of fitting functions - the main principles

There are probably many functions which can describes the micro-to-macro
relationships of CBM. Therefore, the following criteria were defined in order to

select the fitting function:
1. The coefficient of determination must be close to 1: R? € [0.99;1];

2. The relative difference between the fitted curves/surfaces and the data

scatter must be lower than 1%;

3. The evolutions of coefficients involved in fitting functions f; and f5 versus

coordination number must be describable by fitting functions F{, Fj, ...;

4. If many functions satisfy three previous criteria, the function that involves

the lowest number of coefficients is chosen;

5. The fitting function must be validated by it’s application to different DEM

simulations, i.e. uniaxial tensile tests and hydrostatic compression tests.

As shown in Fig. B.IL.1, in order to determine the elastic micro-to-macro

relationships of CBM, the following steps were carried out :

la. As it was observed in the previous study of André et al. [Andl12], in
this study, macroscopic Poisson’s ratio vy, is independent from microscopic
Young’s modulus FE,,. Therefore, vy, was firstly considered to depend only

on 7,,. The following fitting function was investigated: vy = f1(rm);
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1b. Then, the relationship between macroscopic Young’s modulus E); versus

microscopic Young’s modulus F,, and radius ratio r,, was studied: F,; =

fo(Em, mm);

2. Finally, since the coefficients involved in f; and f; depend on the coordination

number, the following fitting functions was investigated: a; = Fj(cn),
by = F/'(en), ag = Fi(en), by = Fi(cn), ...
B.I1.2.2.b Data analyses and nonlinear least squares regression

The nonlinear least square method was used to fit the data resulting from tensile
test simulations. The main principles of this type of nonlinear regression are
summarized in appendix C.II.5. After examining several fitting functions, the
relations vy, = fi(r,,) and Ey = fo( Ep, ) were proposed to be described by the

following functions :

v = fi(rm) = ay + byry, + c1.r), + dyry, (B.IL.1)

Ervi =fo(Bryrm) = Ep.(ag + ba.r, + 012 + dyr?) (B.IL.2)

The fitted curves and surface, associated to Eq. B.II.1 and B.Il.2, are shown in
Fig. B.I1.2(a) and B.IL.2(b).

r squared=0.999999894285 -+ . data points
— fitted surface

0.35 — fitted curve
«+ .+ data points

]
A 1] 1]
%

0.05

500
Z, 2
0.2 0.4 06 08 1.0 " (Grgy 2090 005
rm () 3000

(a) Fitted curve vy = fi(rm) (b) Fitted surface Epy = fo(Em, Tm), case of
corresponding to all values of cn cn =6

Fig. B.I1.2: Fitted curves and surface for macroscopic Young’s modulus and Poisson’s ratio
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In the considered fitting functions (Eq. B.II.1 and B.IL.2), the coefficients
ai,by,c1,dy and as, by, co,dy depend on coordination number. Again, analytical
expressions of relationships between these coefficients and coordination number
cn were found by using the nonlinear least squares method. The chosen fitting

functions are :

coefr; = Fi(en) = Ay + By.tanh[Cy.(en — 7) + D4 (B.I1.3)

coefpy = Fy(en) = Ay + By.cn + Cy.cn® + Dy.cn? (B.IL.4)

In these formulas, coefy; is related to ai,bi,c1,d; whereas coefyy is associated
to asg, by, co,dy.  For more clarification, the following expressions describe the

evolutions of ay, by, c1,dy and as, bs, co, ds :
a; = F{(en); by = F/(en); ¢ = F"(en); dy = F{"(cn)

as = Fy(en); by = Fy(cn); ¢y = Fy'(en);  dy = Fy"(cn)

where: F|, F|', F{" F]" are different variants of F and Fy, Y, Fy' F)" are different
variants of Fj.

The fitted curves associated to Eq. B.I1.3 are shown and detailed in Fig. B.I1.3
and Tab. B.I1.3. The fitted curves associated to Eq. B.I[.4 are shown and detailed
in Fig. B.Il.4 and Tab. B.I1.4.

Tab. B.I1.3: Values of 4,, B;, C;, D, in Eq. B.IL.3

coefr; Ay B Cy D,

a; 0.430 -0.185 0.373 0.026
by -0.500 0.503 0.423 -0.079
c1 0.257 -0.495 0.518 -0.110
dy -0.105 0.168 0.602 -0.137

Tab. B.I1.4: Values of Ay, By, Cy, D, in Eq. B.I1.4

coeff2 A2 BQ Cg D2

as -0.0229 0.0145 -0.0021 0.0001
by 0.2072 -0.1454 0.0213 -0.0007
Co -0.3658  0.2543 -0.0306 0.0011
dy -0.0151  0.0270 0.0142 -0.0005
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Fig. B.I1.3: Fitted curves for ay, by, c; and d; coefficients of f; versus coordination number ¢,
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Fig. B.11.4: Fitted curves for as, by, co and ds coefficients of f5 versus coordination number ¢,

As expected, Fig. B.I1.2, B.I1.3 and B.I1.4 reveal that the fitted curves and
the fitted surface are in good accordance with data points. More specifically,
these curves respect the criterion of coefficient of determination (R? ~ 1). Hence,

the proposed fitting functions satisfy the defined fitting criterion. Consequently,
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the Equations B.II.1, B.I1.2, B.I1.3 and B.I1.4 were chosen to describe the elastic

micro-to-macro relationships of CBM.

B.I1.2.2.c Deduction of microscopic parameters from elastic properties

of material - Reverse analysis

As it was shown previously, the proposed fitting functions allow us to compute
the macroscopic properties from the microscopic parameters of CBM. However,
in practice, the purpose is to compute microscopic parameters from macroscopic
properties of material in order to performed quantitative DEM simulations.
Therefore, in this study, the microscopic parameters are deduced from elastic
properties of material by using a reverse analysis, which could be divided in 3
steps (Fig. B.IL5):

1. Firstly, from a given value of coordination number, the coefficients of fitting
functions vy, = fi(ry) and Ey = fo(En, ) are deduced by using Eq.
B.I1.3 and B.I1.4. In this study, the coordination number is in range from 6
to 13.

2. Secondly, the value of r,, is computed from the Poisson’s ratio of material
(vam) by solving Eq. B.IL5. Theoretically, this third order equation could
have three solutions. However, in this study, only solution in range from 0 to
1 of this equation is taken into account: r,, € ]0;1]. This condition ensures

mainly the uniqueness of solution.

ay 4+ by A+ err? Fdird — vy =0 (B.IL.5)

3. Finally, the value of F,, is computed from the Young’s modulus of material
(Ey) and the obtained value of 7, from previous step, by solving the

following equation:

Eyv
(ag + byt + cor2, + daor)

E,, = (B.IL6)

As explained, the proposed fitting functions allow to compute directly elastic
microscopic parameters from elastic properties of material. This calibration
method will be validated hereafter.

7



B.II. Direct calibration method of microscopic parameter
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a,, b,, ¢;, d, (Eq. 11.4)

i

e 2
Resolution of: O

’ F1(rm) -y = 0
4 J

i

Resolution of:
f2(Ems M) -Ew =0

I

Fig. B.IL.5: Main steps of reverse analysis to compute microscopic parameters

©)

B.I1.2.3 Validation of calibration formulations

To validate the proposed fitting functions, the behaviors of two typical brittle
materials, i.e. soda-lime glass and alumina, were used as reference. These
materials, which were used in the research of N. Tessier-Doyen [TDO03], will be
later investigated to study the thermal damages. The main mechanical properties

of reference materials are given in Table B.IL.5.

Tab. B.I1.5: Mechanical parameters of reference materials

Properties Glass Alumina
Young’s modulus E (GPa) * 72 340
Poisson’s ratio v * 0.23 0.24
Tensile strength o (MPa) ** 50 380

* Experimental value taken from [TDO03]
** Estimated value taken from [Berl6]

B.I1.2.3.a Validation through tensile test simulation

To validate the proposed calibration method, series of tensile test simulations were
carried out for the two reference materials. Values of microscopic parameters

(rm, Em), corresponding to coordination numbers varied from 6 to 13, were
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computed for the two reference materials by using the proposed fitting functions
(Eq. B.IL1, B.IL2, B.IL3, B.Il.4). These values were used as microscopic
parameters to perform tensile test simulations. The macroscopic Young’s modulus
and Poisson’s ratio computed by these numerical tests were then compared to the
corresponding values of reference materials (Table B.IL5).

Validation results are summarized in Tables B.I1.6 and B.I1.7. As expected,
the maximal difference between computed value and targeted values is lower than

2%, which is an acceptable result.

Tab. B.I1.6: Validation results through uniaxial tensile test for glass

o M E,. Targeted Computed Difference | "Targeted" Computed  Difference
() (GPa) | v() vm (-) * (%) E (GPa) Ey (GPa) * (%)
6 0506 613.94 0.230 0.231 0.533 72.0 72.26 0.365
7 0.461 613.52 0.230 0.230 0.000 72.0 72.06 0.085
8 0417 636.18 0.230 0.230 0.000 72.0 71.61 0.538
9 0.380 655.58 0.230 0.230 0.000 72.0 72.44 0.616
10 0.348 677.94 0.230 0.230 0.000 72.0 71.74 0.364
11 0.320 705.07 0.230 0.230 0.000 72.0 71.36 0.884
12 0.298 723.72 0.230 0.230 0.000 72.0 71.00 1.378
13 0.283 725.14 0.230 0.230 0.000 72.0 71.22 1.077
* Average result of the simulations with 4 different samples
Tab. B.I1.7: Validation results through uniaxial tensile test for alumina
o M E,, Targeted Computed Difference | "Targeted"  Computed  Difference
() (GPa) | wv() vm (-) * (%) E (GPa) Ey (GPa) * (%)
6 0478 3378.29 0.240 0.241 0.490 340.0 341.37 0.404
7 0.431 3439.53 0.240 0.240 0.000 340.0 340.29 0.085
8 0.384 3695.23 0.240 0.240 0.000 340.0 337.98 0.593
9 0.338 4058.51 0.240 0.240 0.000 340.0 341.88 0.554
10 0.294 4646.18 0.240 0.241 0.324 340.0 337.70 0.677
11 0.251 5576.21 0.240 0.241 0.353 340.0 335.66 1.276
12 0.215 6820.35 0.240 0.240 0.000 340.0 336.62 0.995
13 0.189 8187.01 0.240 0.239 0.404 340.0 345.80 1.705

* Average result of the simulations with 4 different samples

B.I1.2.3.b Validation through hydrostatic compression test simulation

In order to reinforce the validity of the proposed calibration method, it’s sensitivity
is examined by changing sample shape, sample size, discrete element number and
boundary conditions. For this purpose, hydrostatic compression test was used

to determine bulk modulus of reference materials. In the proposed configuration
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of hydrostatic compression test, spherical samples have diameter of 10 mm and
contain around 15,000 discrete elements (Fig. B.11.6)

Fig. B.II.6: Configuration of hydrostatic compression test simulation

According to mechanical theory, the bulk elastic properties of a material
determines how much it will compress under a given pressure. However, in discrete
element framework, the pressure could not be computed in the same way as in the
theoretical definition. Thus, in order to simulate an "equivalent pressure’, external
forces are uniformly imposed to all discrete elements that belong to the surface of
the spherical sample. More specifically, the applied forces have the same value, but
different directions, which depend on relative position vectors between the center
of sample and discrete elements (Fig. B.I1.6). Hence, the imposed pressure can be
computed as:

1Y 1
P= szjlfj = 4HR?j§:1fj (B.IL.7)
where j is an element that belongs to the sample surface, f; is the value of imposed
force on element j, S is the total surface and R is sample radius.

In the DEM simulation, the bulk modulus K of material was computed by

dividing the imposed pressure by the fractional volume compression of sample

(Eq. B.ILS).
P

ar
%4

where V' is the sample volume, AV is the volume change and P is the imposed

K = (B.IL8)

pressure.
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However, according to the elasticity theory, the bulk modulus can be computed

through Young’s modulus and Poisson’s ratio as:

E

K = m (B.IL.9)
Hereafter, the results of DEM simulations is confronted with elasticity theory. On
the one hand, theoretical bulk modulus values of glass and alumina were computed
by using Eq. B.I1.9 and Table B.I1.5. Thus, the theoretical bulk properties of glass
and alumina are 44.4 GPa and 218.0 GPa, respectively. On the other hand, values
of macroscopic bulk modulus K,; were measured through DEM simulations, using
Eq. B.IL.7 and B.I1.8. These numerical results are then compared to the theoretical
values.

Series of hydrostatic compression tests were performed in order to validate
the proposed micro-to-macro relationships. More specifically, value of microscopic
parameters, computed by using the proposed fitting function, were used as input
parameters of DEM simulations (Tab. B.I1.6, B.IL.7). As expected, validation
results (Table B.II.8 and B.I1.9) show that difference between numerical and
theoretical values of bulk modulus are lower than 2% for the two reference
materials. Consequently, the proposed micro-to-macro relationship, related to

elastic behavior, can be validated through hydrostatic compression test.

Tab. B.I1.8: Validation results through hydrostatic compression test for glass

o Tm B, Targeted  Computed  Difference
(-) (GPa) | K (GPa) Ky (GPa) * (%)
6 0.506 613.94 44.4 44.319 -0.282
7 0.461 613.52 44.4 44.555 0.249
8 0417 636.18 44.4 44.428 -0.036
9 0.380 655.58 44.4 44.564 0.269
10 0.348 677.94 44.4 44.566 0.274
11 0.320 705.07 44.4 44.320 -0.280
12 0.298 723.72 44.4 44.201 -0.548
13 0.283 725.14 444 44.307 -0.310

* Average result of the simulations with 4 different samples

B.I1.2.4 Partial conclusions

Up to now, the calibration of microscopic parameter is still a major challenge for
DEM research. In the literature, there is a lack of research that is dedicated to this

problematic, especially in continuous media modeling. In this section, the elastic

81



B.II. Direct calibration method of microscopic parameter

Tab. B.I1.9: Validation results through hydrostatic compression test for alumina

on Tm E,, Targeted Computed  Difference
(-) (GPa) | K (GPa) K (GPa) * (%)
6 0.478 3378.29 218.0 215.312 -1.210
7 0.431 3439.53 218.0 216.325 -0.745
8 0.384 3695.23 218.0 215.526 -1.112
9 0.338 4058.51 218.0 216.146 -0.827
10 0.294 4646.18 218.0 216.054 -0.869
11 0.251 5576.21 218.0 214.793 -1.448
12 0.215 6820.35 218.0 215.718 -1.024
13 0.189 8187.01 218.0 221.124 1.457

micro-to-macro relationships were proposed to be described by fitting functions.
These mathematical functions were deduced from the data resulting from 1,600
simulations by using the nonlinear regression technique. One tensile test
simulation lasts around 2 hour, therefore, the data generation process took around
15 days (360 hours) by using the computation server that could run simultaneously
8 simulations. The proposed fitting functions were then examined through
uniaxial tensile tests and hydrostatic compression tests. Indeed, the proposed
calibration method remained accurate with different configurations of simulation,
i.e. loading, sample shape/size, discrete element numbers. Consequently, the
proposed calibration method allows to compute precisely the elastic microscopic
parameters, regardless of type of numerical experiment, discrete elements number
and geometrical properties of sample. The direct calibration method of microscopic

fracture threshold will be proposed in the next section.

B.11.3 Direct calibration of microscopic fracture
threshold

B.I1.3.1 Tensile test simulation: database to determine

fitting function

In this section, relationships between macroscopic tensile strength o,; and
microscopic parameters are studied. In addition to the microscopic elastic
parameters, the microscopic fracture threshold o,, was considered in this analysis.
Following the same method used in Sect. B.I1.2, series of tensile test simulations

with different values of (E,,, r,, 0, and cn) were carried out in order to determine
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micro-to-macro relationships which involve the microscopic fracture parameter.
The total number of simulations is 4 x 4 x 5 x 10 x 8 = 6,400 for this parametric
study (Table B.I1.10). Due to a high number of simulations, the data generation
was carried out on a new computational server of IRCER laboratory, which could
run simultaneously 32 simulations. The data generation time was then reduced

from 60 days to 15 days for this parametric study.

Tab. B.II.10: Value of microscopic parameters

Values Tot. number
Sample 1234 4
E,, (GPa) 500 1000 1500 2000 4
Tm (=) 0.20.40.60.81.0 5
om (MPa) 246 850 100 300 500 700 1000 10
en (-) 678910111213 8

The main steps to determine the fitting functions that describe the fracture
micro-to-macro relationships are synthesized in Fig. B.I1.7.

Theoretically, the macroscopic fracture tensile strength o,; depends on 4
microscopic parameters: 7,,, F,, 0, and cn. However, after a first analysis, it
was observed that o), is proportional to o,,. Moreover, the ratio between o,; and
om does not depend on microscopic Young’s modulus F,,. Therefore, a fitting
function of this ratio versus r,, and cn is expected: M _ f3(rm, cn). The number
of variables was reduced from 4 to 2. Consequel(ljtTy, this approach made the
regression more simple. The determination of analytical expressions contains two
tasks:

o Selection of a type of analytical expression in order to fit the data;

o Refinement of the involved coefficients within the analytical expressions

thanks to nonlinear regression.

After the selection of the most relevant analytical expression and nonlinear
regression, the obtained fitting function was verified by simulations of common

destructive tests, i.e. Brazilian tests and torsion tests.

B.I1.3.2 Fracture micro-to-macro relationships
B.11.3.2.a Selection of fitting function

The selection of fitting function that describe the fracture micro-to-macro

relationship must satisfy the following criteria:
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B.I1.3.2.b Data analyses and nonlinear least squares regression

As with elastic parameters (Sect. B.I1.2), the nonlinear least square method was
used to determine the fracture micro-to-macro relationship of the proposed discrete
element model. After initial analyses, as illustrated on Fig. B.I1.8(a), it is noticed

that if values of E,,, 7, 0, and cn are fixed, o, is proportional to o,,:
oy =k Xop (B.IL.10)

In addition, Fig. B.IL.8(b) reveals that the coefficient of proportionality & (Eq.

B.I1.10) does not depend on value of microscopic Young’s modulus E,,.

2.6
2000
2.4
1500 2.2
L O
o z
= 5
= 1000 < 2.0/
° © o r=0.2
1.8l r=0.4
500 oo r=0.6
o—o r=0.8
1.6fle— r=1.0
% 200 200 600 800 1000 500 1000 1500 2000
om (MPa) E,, (GPa)
(a) Evolution of oy versus oy, when E,,, 7., (b) Evoluation of k versus E,,(case ¢,=10)

and cn are fixed

Fig. B.I1.8: Evolution of o), versus microscopic parameters

Based on theses results, a fitting function k& = f3(r,,, cn) is expected. After
examining many functions, it was found that the relation k = f3(r,,, cn) could be

well described by the following relation:

k= f3(rm,cn) =[(mo +ng - cn + po - en®) + 1y - (my +ny - cn+py - en® + qp - en®)
+ 72, - (mg + ny - cn + pa - en?)]

(B.IL11)

The coefficients of Eq. B.II.11 were refined by using the nonlinear least square
regression (Tab B.IL.11).

Fig. B.IL.9 reveals that the obtained fitted surface is in good accordance
with data points. Indeed, the nonlinear regression has a good coefficient of

determination (R? =~ 1). Consequently, Eq. B.IL.11 was chosen to describe the

85



B.II. Direct calibration method of microscopic parameter

Tab. B.II.11: Refinement of fitting function related to microscopic fracture
threshold

mo no Po
-0.66972 0.30934 -0.00618
mi ni p1 q1
-2.83372 1.25549 -0.11087 0.00254
mo n2 P2

1.54739 -0.46791  0.02653

r squared=0.999241724918 o data points
— fitted surface
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Fig. B.I1.9: Fitting results of function k = f3(r,, cn)

fracture micro-to-macro relationship of CBM.

B.I1.3.2.c Deduction of microscopic fracture threshold from tensile

strength of material - Reverse analysis

In this study, the fitting functions were determined to describe the micro-to-macro
relationships of CBM. As explained in paragraph B.I1.2.2.c, this approach enables
the computation of microscopic parameters from mechanical properties of material

by using reverse analysis, which could be divided in 2 main steps (Fig. B.I1.10):

1. Firstly, the value of k is computed from value of r,, and cn (Eq. B.IL11).
In this step, the value of 7, and cn are taken from previous analysis in

paragraph B.I1.2.2.c.
2. Then, the value of microscopic fracture threshold o, could be computed by:

T = %M (B.IL12)
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Fig. B.I1.10: Main steps of reverse analysis to compute microscopic fracture threshold

As explained, the proposed calibration method allows to compute directly the
microscopic fracture threshold of CBM from tensile strength of material. The
fitting function related to microscopic fracture threshold o,, will be validated

hereafter, through Brazilian tests and torsion tests.

B.I1.3.3 Validation of calibration formulation
B.I1.3.3.a Validation through Brazilian test simulation

To validate the proposed relationships between macroscopic tensile strength o,
and microscopic parameters, series of Brazilian test simulations were carried out.
Brazilian tests are commonly used for characterization of brittle materials such
as ceramic, concrete, refractory. In experimental techniques, Brazilian tests are
performed by applying a vertical compressive load across the diameter of a disk
sample. In the rupture phase, a crack appears along the vertical diameter of
the disk, due to tensile stresses induced horizontally by the geometry of sample
[BDP*17].

Again, validation process is given for glass and alumina materials. For each
value of coordination number, the corresponding value of r,, obtained in the
previous section (Table B.I11.6 and B.I1.7) was used to compute microscopic fracture
threshold o, value by using the Equation B.II.11. This value of o, was used to
perform Brazilian test simulations. In the proposed configuration, the virtual disk

samples have diameter of 50 mm, thickness of 10 mm and contain around 20,000
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discrete elements. According to experimental and numerical studies in literature,
crack initiation at the center of the disk sample is considered to be crucial for the
test validity [WJK ™04, Fai64, EW12]. C. Fairhurst, in [Fai64], stated that ¢ failure
may occur away from the center of the disk for small angles of loading contact area
with material of low compression tension ratios. In such cases, the tensile strength
as usually calculated from test results, is lower than the true value'. Conforming
to this observation, opposite vertical displacements are imposed on two circular
arcs of 2a=24° of virtual sample (Fig. B.IL.11).

i

Fig. B.II.11: Configuration of the virtual Brazilian test

Vertical forces at upper and lower loading area, P,, and Pywn respectively,
resulting from the imposed displacement are measured during simulations. Hence,

the average applied force P is computed as:

_ |Pup‘+’Pd0wn|
2

P (B.IL13)

According to literature [WJK'04], the tensile strength can be computed as:

2-P.
T-t-D

oM = (B.I1.14)
where P, is the critical load (it is also the maximum applied load during the test),
t and D are the disk thickness and diameter, respectively.

The typical behaviours resulting from the Brazilian test simulation are reported
in Fig. B.I1.12, B.I1.13, and B.I1.14. In Fig. B.I1.12, a sudden decreasing of the
average force P indicates the failure of the virtual sample. The corresponding

value of P is considered as the critical load in order to compute the macroscopic
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tensile strength oy, of the sample by using Equation B.I1.14. Fig. B.I1.13 shows
that the crack is initiated near the center of the disk and propagate along vertical
diameter, as expected. Consequently, the crack initiation and propagation are
relevant with theoretical predictions and experimental observations [EW12].

In order to highlight the interest of the virial stress computation, as described in
section B.I.5, the evolution of stress along the diameter is monitored. Fig. B.I1.14
shows both the theoretical horizontal stress evolution and the numerical one. This
comparison was performed before the failure of sample, when the applied force
P =~ 36.48 kN (Fig. B.I1.12). The theoretical stress distribution on the loading
diameter is given by the following relationship [Hon59] [SAKKO07]:

p?sin 2

Zp{ sin 2«
o=—

7 | 1 —2p?cos2a + p?

[-o} @

{1 — ,02} — arctan [1 7 cos 20

where :

e 0 is the horizontal normal stress,

p is the load per unit area,

t is the disk thickness,

R is the disk radius of the disk,

r is distance from a point in disk to the center,

p is equal to r/R and

« is the half central angle of the applied distributed load.

Please notice that, in Fig. B.I1.14, the numerical blue curve is given thanks to
the Gaussian Kernel interpolation method available in the Paraview software. This
figure reveals a good quantitative accordance between theoretical curve (continuous
dotted curve) and numerical curve, although there are discrepancies towards the
loading areas. The possible reason for these discrepancies may come from the edge
effect that influence the virial stress computation at the boundaries. In fact, at
the boundaries of domain, discrete elements are cut by domain boundaries, then
their coordination numbers are one half of the coordination numbers of the internal
elements. This could raise errors in the computation.

Based on the typical behaviors resulting from the Brazilian test simulation, it

is noticed that the proposed fracture criterion (section B.1.5) and the virial stress
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computation seem to be able to simulate fracture phenomena of brittle materials

under complex loadings, i.e. (indirect) tensile test.

40

Comparison point P = 36.48 kN
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Fig. B.I1.12: Force - displacement curve during Brazilian test, case cn =10, glass

Fig. B.I1.13: Crack propagation of Brazilian test

The macroscopic tensile strength o), obtained by Brazilian tests were compared
to the theoretical values of the tensile strength of glass and alumina (50 MPa
and 380 MPa, respectively, Table B.IL.5). Synthesis of the validation through
Brazil test simulation is shown in the Table B.I1.12 and B.I1.13. Quantitatively,
differences are quite acceptable for two reference materials. Consequently, the
proposed relationships between o), and microscopic parameters of DEM could be

validated through Brazilian test simulation.
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Fig. B.I1.14: Horizontal stress distribution along vertical diameter of sample, case cn = 10,
glass, when applied force P = 36.48 kN (see Fig. B.I1.12)

Tab. B.I1.12: Validation of brittle behavior calibration for glass

Targeted  Computed  Difference
enrmo o (MPa) | SNp Ry ¢ (%)
6 0.506 78.08 50.0 50.94 1.88
7 0.461 70.58 50.0 49.59 1.80
8 0.417 65.79 50.0 49.13 1.74
9 0.380 62.43 50.0 49.74 2.20
10 0.348 60.08 50.0 50.27 2.05
11 0.320 58.44 50.0 52.08 4.16
12 0.298 57.37 50.0 53.08 6.15
13 0.283 56.80 50.0 53.49 6.99

* Average result of the simulations with 4 different samples

Tab. B.I1.13: Validation of brittle behavior calibration for alumina

Targeted  Computed  Difference
en rmoom (MPa) | Sy o (MPa) < (%)
6 0.478 601.22 380.0 377.30 0.97
7 0431 543.05 380.0 363.01 4.47
8 0.384 505.90 380.0 359.54 5.38
9 0.338 480.10 380.0 369.24 2.83
10 0.294 461.84 380.0 368.16 3.12
11 0.251 448.82 380.0 385.09 2.00
12 0.215 439.89 380.0 396.17 4.26
13 0.189 435.00 380.0 406.88 7.08

* Average result of the simulations with 4 different samples
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B.I1.3.3.b Validation through torsion test simulation

In this section, the proposed calibration method is applied for brittle torsion
test simulation. Fig. B.I[.15 presents the geometric model used to simulate the

quasi-static torsion test. The virtual cylindrical samples have diameter of 4 mm,

:

Fig. B.I1.15: Discrete domain for torsion tests

length of 100 mm and contain around 10,000 discrete elements. The samples are
subjected to progressive rotations ¢, and —¢, about the X axis on the zMin and
xMazx opposite faces. The coordination number is arbitrary set at 10 and the
corresponding values of microscopic parameters (i.e. r,,, E,, and o,,, Tab. B.I1.12,
B.I1.13) are used to perform simulations of both reference materials.

To compute the macroscopic fracture stress, the forces F,, and torques My
applied on opposite faces are monitored. The macroscopic torsion torque My,

can be obtained from these quantities as follows:

NzMin
Mt = 3" (Mp+ 0:G, AF,) X (B.IL.16)
p=1
NzMaz
Ml = 3" (Mp + 02Gp AFp) X (B.IL17)
p=1

where the points O; and O, are the centers of zMin and zMax faces and Gp is

the center of a discrete element p. Then, the macroscopic torsion torque My, is

taken as the mean of M#M™ and MM Based on the material strength theory,

the maximal macroscopic shear stress can be obtained as:

My
e = 1o Rt (B.IL18)
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Fig. B.I1.16: Shear stress curve during torsion test for glass

where Ry, is the radius of the discrete domain and lo is the polar moment of
inertia which is defined as:
T Ry,
lo= —3 (B.I1.19)
Using the Rankine criterion, the macroscopic tensile strength which is the maximal

macroscopic principal stress can be expressed as:

oM = (TMyas) fracture (B.I1.20)

where (7p,,..) is the maximal macroscopic shear stress measured at the

racture

fracture of thé numerical sample. The values of macroscopic tensile strength
measured through torsion test simulations are compared with targeted values of
tensile strength for 2 reference materials.

A typical behavior resulting from torsion test is reported in Fig. B.I1.16 and
B.II1.17. As illustrated in B.I1.16, a sudden decreasing of maximal macroscopic
shear stress indicates the failure of samples. In addition, at the structure scale, the
crack geometry seems in agreement with the brittle fracture theory that predicts
an helical crack surface oriented at 45° to the main axis of the numerical sample
(Fig. B.IL.17). Moreover, the quantitative simulation results, summarized in Tab.
B.I1.14, show that difference between computed values of o,; and targeted values
are quite acceptable for two materials. Consequently, the proposed micro-to-
macro relationships seemed to be compatible to describe brittle failure in shear

experiments.
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Tab. B.I1.14: Torsion simulation results

Targeted  Computed | Difference

o (MPa) oy (MPa) * (%)
Glass 0.348 60.08 50 53.04 6

Alumina || 0.294 461.84 380 394.23 3.69

Tm  om (MPa)

* Average result of the simulations with 4 different samples

(a) View showing all discrete elements (b) View showing only critical
elements

Fig. B.I1.17: View of crack path in a torsional test; the discrete elements in which the fracture
criterion is fulfilled are highlighted

B.11.3.4 Partial conclusions

In this study, the fracture macro-to-micro analysis were validated through Brazilian
tests and torsion tests. As expected, the proposed fitting function allows to
compute accurately the microscopic fracture threshold to reach the tensile strength
of reference materials. Combining with the elastic macro-to-micro analysis (Sect.
B.I1.2), this methodology enables a direct deduction of microscopic parameters of
CBM from mechanical properties of elastic brittle material, which is described by
Poisson’s ratio, Young’s modulus and tensile strength. This calibration method
ensures also an unique solution of microscopic parameters to match the expected
macroscopic behaviors. Moreover, the virial stress concept seemed to be able
to describe the crack phenomena, in terms of crack position and crack path,
in comparison with experimental observations. These results were published in
the Computational Particle Mechanics international journal [NAH19]. Hereafter,
the virial stress concept will be further examined through its application to the

modeling of residual stresses induced by thermal expansion mismatch.
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B.11.4 Application to the modeling of thermal

stresses in elementary composite material

B.I1.4.1 Introduction

This section deals with the modeling of thermal stress due to thermal expansion
mismatch within composite materials. Indeed, simulations of cooling stage
of different composite-like materials were performed by using DEM and FEM
approaches. In these preliminary simulations, the single-particle configuration was
used for its simplicity. The stress field obtained with DEM was then confronted
with FEM results and theoretical predictions to verify accuracy of the virial stress

computation. In this study, two cases of thermal expansion mismatch are studied:
o thermal expansion coefficient of matrix is higher than inclusion: Aa > 0
o thermal expansion coefficient of matrix is lower than inclusion: Aa < 0.

The purpose is to confront the developed stress computation of DEM with FEM
and theoretical approaches, which has been well developed in the literature. In
the present study, the model materials used by Tessier-Doyen [TDO03], which
exhibit the considered cases of thermal expansion mismatch, were used as reference
materials, i.e. Cofer glass-alumina and BA glass-alumina composites (Section
A.1.3). Hereafter, Cofer glass - alumina and BA glass - alumina composites are
called material 1 and material 2, respectively. The experimental values of thermo

mechanical properties of the components of reference materials are synthesized in
Tab. B.IL.15

Tab. B.I1.15: Thermo-mechanical properties of reference composite materials
[TDO03]

Properties Cofer glass matrix BA glass matrix Inclusion
Young’s modulus E (GPa) 72 68 340
Poisson’s ratio v (-) 0.23 0.20 0.24
Tensile strength o (MPa) 60 86 300*
Coef. of thermal expansion o (°K 1) 11.6e-6 4.6e-6 7.6e-6
Glass transition temperature (°C) 455-475 575-595 -

* Value from literature

In first step, the elastic behavior was investigated and damages were not
modeled. Hence, in these first simulations, the decrease of temperature was set at

120°C in order to generate thermal residual stresses without any damage.
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In second step, the damages due to thermal expansion mismatch during cooling
were modeled by using DEM approach. In these simulations, in order to generate
the thermal damages, the reference materials were subjected to a critical decrease
of temperature, from the vitreous transition temperature of glass matrices (7)
to ambient temperature (20°C). Indeed, reference materials exhibit a visco-elasto-
plastic behavior when the temperature is greater than T,. However, since this
study focused only on solid behaviors, temperatures higher than T, were not
considered.

In the research of Tessier-Doyen [TD03], the transition temperature of glasses,
determined by dilatometry experiments, corresponded to an interval of temperature
(Tab. B.IL.15). In the present study, the starting point of cooling simulation
was tested with both maximal and minimum value of transition temperature.
However, the minimum value seemed to give more relevant results in comparison
with experimental ones. Consequently, only the results associated to the minimum
value of T, will be discussed in this section. The starting points of cooling
simulations were 455 and 555°C for material 1 and material 2, respectively. The
resulting damages were then compared to the experimental observations in order
to examine the adaptability of the proposed DEM model to study the thermal

damage phenomena.

B.11.4.2 Modeling configuration: single-inclusion

composite
B.I1.4.2.a Discrete element modeling

In this study, the numerical results will be compared with theoretical predictions
of thermal stresses. In the compared theoretical prediction, the configuration of
a spherical inclusion embedded in an isotropic infinite matrix was used [LSB00].
However, the boundary condition that is usually used in FEM approach to describe
the assumption of infinite media, e.g. periodic boundary condition, has not yet
been available in the developed DEM. Therefore, in the performed numerical
simulations, the concept of Representative Elementary Volume (REV) was used.
More specifically, a cubic sample with a spherical inclusion embedded inside
was modeled. The length of edges of the cubic sample and the radius of the
inclusion were set to be equal to 2.2 mm and 0.275 mm, respectively (Fig. B.I1.18)
These specific dimensions ensured the accuracy of simulations with a reasonable

time cost. Indeed, it was a compromise between number of discrete elements
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Inclusion

e R = 0.275 mm

2.2 mm

L=

L=2.2mm

Fig. B.I1.18: Median cross section of 3D sample

of sample and number of discrete elements associated to the inclusion, in order
to model precisely the thermal stresses. Regarding the boundary conditions, in
DEM simulations, 6 surfaces of cubic samples are free to have displacement under
loading. In the performed DEM simulations, cubic discrete domains composed of
80,000 discrete elements were generated to study the considered phenomena. The
coordination number was arbitrary set to 10. An user-defined macro-command was
implemented in order to generate the spherical inclusion inside the cubic discrete
domain. More precisely, if the distance between a discrete element and the center
of sample does not exceed the radius of inclusion, i.e. 0.275 mm, it will be assigned
to the inclusion. By contrast, the remaining discrete elements are assigned to the
matrix (Fig. B.I1.19). Thus, the number of discrete elements that belong to the
inclusion was about 750. The microscopic parameters was then computed for each
components of reference materials by using the direct calibration method proposed
in Sect. B.I.2 and Sect. B.I[.3. The values of microscopic parameters used to

perform DEM simulation are synthesized in Tab. B.I1.16.

Tab. B.I1.16: Input parameters used to model reference materials

Input parameters Cofer glass matrix BA glass matrix Inclusion
Young’s modulus E,, (GPa) 677.94 290.31 4646.14
Radius ratio v, (-) 0.35 0.49 0.29
Fracture threshold o, (MPa) 22.98 37.80 00
Coef. of thermal expansion o (K1) 11.6e-6 4.6e-6 7.6e-6
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B.11.4.

In this study, the FEM simulations were performed by using Code Aster software’,

The mesh was generated by using

-

developed by EDF (Electricité de France).

Netgen algorithm [Sch97]. The maximum and minimum linear dimensions of mesh

Hence, the mesh is composed of

cells were 0.1 mm and 0.02 mm, respectively.
50,792 nodes and 288, 055 elements (Fig. B.I1.20).

RS SRR

(b) Median cross-section of mesh

(a) 3D view of the mesh

Mesh discretization of sample generated by using Netgen algorithm in Code Aster

.
.

Fig. B.IL.20

The same boundary conditions used in DEM simulations were applied here: the

Lwww.code-aster.org
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surfaces of FEM samples were free to shrink during cooling stage. As illustrated
in Fig. B.I1.21, the displacements at the centers of 3 surfaces of sample are
clamped along the direction of sample edges. These boundary conditions prevent

the movements of rigid bodies, which are forbidden in static FEM simulations.

V o
z
y=0 o

Fig. B.I1.21: Boundary conditions of FEM simulation

The thermo mechanical properties of references materials were then used to
performed simulations (Tab. B.IL.15).

B.11.4.3 DEM-FEM confrontation: validation of wvirial-

stress-based modeling
B.I1.4.3.a Principles of DEM-FEM comparison

In this study, the modeling of thermal stress was performed for the two reference
materials. Firstly, the comparison of stress fields on the vertical median cross
section of the sample were carried out (Fig. B.I1.22(a)). Secondly, the comparison
was further investigated by evaluating the thermal stress profile within the
horizontal median line of the considered cross section (Fig. B.I1.22(b)).

As it was shown previously, the discretization methods used in DEM and
FEM are different (figures B.I1.19(b) and B.I1.20(b)). Therefore, the stress values
obtained by DEM and FEM needed to be extracted in a common grid/line in order
to perform quantitative comparisons. More specifically, the stress values on the
median cross section were extracted by using the Gaussian kernel interpolation tool
in Paraview software. The first analyses showed that the shear stress components
were negligible in comparison with normal stress components. Hence, the present

comparison focused only on the normal stress components, i.e. 04, 0,y and o...
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Vertical cross section
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(a) Vertical median cross section (b) Horizontal median line

Fig. B.I1.22: Investigated zone of stress field comparison

Moreover, in order to decrease the effect of the random filling process of sample
construction (Sect. B.I1.3), the DEM results was obtained by averaging the results
of 5 different discrete samples. In summary, the DEM-FEM comparison were
accomplished in 3 steps (Fig. B.I1.23):

1. Gaussian kernel interpolation of DEM results of 5 discrete samples on
a common grid for the vertical median cross section. This enables the
computation of average results of 5 samples which have different spatial
distributions of discrete elements. In this study, the grid has configuration
of 500 x 500 points. Thus, the average DEM results could be easily computed

on this common grid;

2. Gaussian kernel interpolation of FEM results on the same grid that was used

for averaging DEM results;

3. Computation of difference between DEM and FEM results in the common

grid

In a further step, the numerical results were confronted with theoretical
predictions to examine the accuracy of performed simulations. In this section,
the theoretical prediction of thermal stress proposed by Lauke et al. [LSB00] is
used (equations B.I1.21 and B.11.22).

o 12G K, (a, — o) AT
rad AG,, + 3K, ’

Ugrth = o-fad (BIIQl)
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Fig. B.I1.23: Main steps of quantitative DEM-FEM comparison

m m

rp 12G K (0, — ) AT L,
rad — . ) Oorth = ~50%rad
r 4G, + 3K, 2

(B.I1.22)

where: (p, m) superscripts denote particle and matrix respectively; (rad,orth)
subscripts denote radial stress component and orthoradial (circumferential) stress
component, respectively (Fig. B.I1.30); G, K,« denote shear modulus, bulk
modulus and coefficient of thermal expansion, respectively; AT denotes the
temperature difference; 7, is the radius of inclusion, r is the distance between
considered point and inclusion center.

According to equations B.I1.21 and B.I1.22, in the case of a,, > «,, (material
1), the radial stress component and orthoradial stress component in the matrix
are respectively compressive and tensile. Whereas, the inclusion of material 1
is under compressive stress. By contrast, in the case of a,, < «, (material 2),
the radial stress component and orthoradial stress component in the matrix are
respectively tensile and compressive. Whereas, the inclusion of material 2 is under

tensile stress. The thermal stresses of the two reference material are resumed in
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Tab. B.IL.17.

Tab. B.I1.17: Thermal stresses within the matrix due to thermal expansion
mismatch

Materials Aa Radial stress Orthoradial stress
Material 1 (Cofer-alumina) «,, > a, Compressive Tensile
Material 2 (BA-alumina) Ay < Tensile Compressive

Logically, the accuracy of stress computation is crucial for the modeling of
damage phenomena. However, up to now, the accuracy of virial stress computation
in DEM has not usually been investigated. Whereas, the stress computation of
FEM and theoretical approaches has been developed for a long time. Therefore,
in this study, the DEM was confronted with these approaches in order to verify its
adaptability to study the thermal damage phenomena.

B.I1.4.3.b Case of cofer-alumina composite

The DEM-FEM comparison of stress field for material 1 are synthesized in Fig.
B.I1.24, which correspond to the case «,, > «a,. In this figure, the first column,
i.e. figures B.I1.24(a), B.I1.24(d) and B.I1.24(g), corresponds to DEM results. The
second column, i.e. figures B.I1.24(b), B.I1.24(e) and B.I1.24(h), corresponds to
FEM results. These first two columns illustrate that, the normal stress components
(Ozzs Oyy, 02) on the median cross section obtained by DEM and FEM are quite
identical. Indeed, the inclusion is under compressive stresses, whereas, the matrix
is under both tensile stress and compressive stresses. These observations are
compatible with theoretical predictions of thermal stress proposed in [LSB00].

In the third column, i.e. figures B.I1.24(c), B.I1.24(f) and B.I1.24(i), the

absolute differences between DEM and FEM results are shown:

Absolute difference = o2 "M — ¢FFM where ii = xx, yy, zz (B.I1.23)

As illustrated, the differences are quite acceptable. Indeed, the DEM-FEM
difference in the matrix varied mainly from 2 to 5 MPa. Whereas, the difference
in the inclusion varied from 2 to 8 MPa. The highest value of difference, about 8
MPa, were detected in the interfacial zone between matrix and inclusion.

Finally, the confrontation between DEM, FEM and theoretical approaches
is shown in Fig. B.IL25. As illustrated, the normal stress profiles (0., oy,
0,,) within the median line obtained by FEM, DEM and theoretical approaches
(Eq. B.IL.21 and B.I1.22) show a good accordance. It can also be observed
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Fig. B.I1.24: DEM-FEM comparison of thermal stresses on median cross section, case of cofer
glass-alumina (c,, > o), AT = 120°C

-3e+7
-de+7
-4.8e+07

9e+06
8e+06
6e+06
4e+06
3e+06
2e+06
0e+00
-2e+06
-3e+06

) Absolute difference o,

(h) 0., (FEM)

that the maximum differences between numerical and theoretical predictions
were positioned in the interfacial zone between matrix and inclusion. Despite
the observed discrepancies, the comparison results were globally acceptable with
regard to the whole cross section.

B.I1.4.3.c

Case of BA - alumina composite

The DEM-FEM comparison of stress field for material 2 are synthesized in Fig.
B.I1.26, which correspond to the case o, < o,. In this figure, the first column,
i.e. figures B.I1.26(a), B.I1.26(d) and B.11.26(g), corresponds to DEM results. The
second column, i.e. figures B.I1.26(b), B.I1.26(e) and B.I1.26(h), corresponds to

FEM results. These first two columns show that the normal stress components
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Fig. B.I1.25: Profile of normal stresses along the median line, case of cofer glass-alumina
(o > ap), AT = 120°C

on the median cross section (04, 0y, 0..) obtained by DEM and FEM are quite
identical. Indeed, the inclusion is under tensile stress, whereas, the matrix is
under both tensile stress and compressive stresses. These observations show a
good agreement with theoretical predictions [LSBOO].

The third column, i.e. figures B.I1.26(c), B.I1.26(f) and B.I1.26(i), shows
absolute difference between DEM and FEM results. The same tendency as in
the case of material 1 were observed here. In this case, the absolute difference in
the matrix was about -1 MPa. Whereas, the absolute difference in the inclusion
varied from 0 to 5 MPa. The highest value of difference were mainly detected in
the interfacical zone between inclusion and matrix.

Finally, the confrontation between DEM, FEM and theoretical approaches is
shown in Fig. B.I1.27. As in the case of material 1, the normal stress profiles
within the median line (0,,, 0,y, 0..), obtained by three confronted approaches,
had similar shape. It can also be observed that the maximum differences between

numerical and theoretical predictions were positioned in the interfacial zone
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