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General introduction
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Thanks to their specific properties, refractories are essential for several

industries such as steel, cement and glass processing. In these industries,

refractories face severe working environments such as extra high temperatures,

brutal thermal shocks, mechanical loadings and corrosion. The present work deals

specifically with the thermal shock resistance of refractories which is not easy

to characterized and managed. However, this property is crucial to increase the

lifetime of refractories in many applications. Thanks to previous experimental

works, it was demonstrated that the thermal shock resistance is closely related

to the crack growth resistance of such materials. More specifically, in several

cases, the thermal shock resistance of refractories could be increased by properly

introducing micro-cracks within their microstructure during elaboration. In fact,

those preexisting micro-cracks allow to increase fracture energy, thus, limit crack

propagation. Depending on micro-cracking level, the mechanical behavior could

be tuned from pure elastic to a so-called nonlinear behavior (the relation between

stress and strain is no longer proportional). This empirical knowledge offers a great

interest to improve thermal shock resistance of refractories by a better design of

their microstructure. However, up to now, the application of such concept has not

been fully understood and is not predictable.

In order to investigate the relationships between microstructure and

thermomechanical properties of refractories, several experimental works were

already carried out at the Institute of Research for Ceramics (IRCER, formerly

SPCTS). In these researches, model materials with simplified microstructure,

namely glass-alumina composites, were investigated. Despite their simplified

microstructure, these model materials exhibit behaviors close to that of the

industrial refractories. In particular, the key aspect of such simplified material is to

play with the thermal expansion mismatch between its constituents in order to tune

the micro-crack network within its microstructure. This micros-crack network can

be modulated by the choice of different constituents and by the thermal treatment

involved in processing.

In this context, the present research is a first step of a long term objective:

development of a reliable modeling platform to give insights for experimental

approach in order to enhance thermal shock resistance of industrial refractories.

Therefore, the developed modeling platform must be able to take into account

complex damage phenomena of heterogeneous material due to thermal expansion

mismatch during different thermal treatments. For this purpose, the Discrete

Element Method (DEM) is used in the present study as a promising way to model

the damage phenomena at microscopic scale.
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Thanks to the spectacular development of computer technology, this kind of

numerical approach is used extensively in order to solve complex practical problems

in science and engineering.

The present PhD dissertation is structured in 3 parts, each part includes 2

chapters.

Part A is dedicated to a literature review of thermal shock resistance of

refractories and numerical method for damage modeling. Firstly, the classical

analytical approaches of thermal shock resistance are briefly presented. The

crack growth resistance and nonlinear mechanical behavior of refractories are

then discussed. Thermomechanical behavior of 2 typical refractories dedicated to

thermal shock are then presented in order to highlight the relation between initial

thermal damages and thermal shock resistance. Secondly, the motivation of the

so-called model materials and selection of two specific materials are discussed. In

addition, the Hashin&Strickman analytical model is introduced as a reference for

experimental and numerical results for undamaged material. Finally, the selection

of numerical methods for damage modeling is presented as a promising support

to experimental approach. In the present research, the DEM has been selected

for its significant advantages in damage modeling, in comparison with continuous

methods.

In Part B, the development of the discrete element platform, GranOO is

presented. Firstly, a general review of GranOO is introduced: the architecture

of DEM platform, the key steps of DEM simulation and the contact model.

In addition, the new developments of stress computation associated with DEM

simulation are also detailed. Secondly, a direct calibration method of local

input parameters required by DEM is proposed in order to remove classical

trial-and-error calibration, which is tedious and time-consuming. The proposed

direct calibration method and virial stress concept are then applied to conduct

quantitative DEM simulation of thermomechanical test. In addition, the accuracy

of virial stress concept is examined through a confrontation of thermal stress

between DEM and Finite Element Method (FEM) computations.

In part C, quantitative simulations of cooling stage are carried out in order to

investigate the influence of thermal damage due to thermal expansion mismatch on

apparent behavior of model materials. Firstly, the main steps and assumptions of

cooling simulation are detailed. Especially, numerical process to create Statistical

Volume Element of heterogeneous material is explained. Secondly, the DEM

results are confronted with experimental data and Hashin&Strickman model.

3



The evolutions of Young’s modulus and coefficient of thermal expansion as

functions of temperature are analyzed in order to highlight the influence of thermal

damages. In addition, qualitative DEM results of nonlinear tensile behavior

on model materials are discussed in comparison with experimental observations

reported in literature.

Finally, this dissertation will be closed by general conclusions and perspectives.
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Introduction

For a long time, refractory materials have been extensively used in many industrial

areas which have severe working environments at extra high temperature.

Therefore, the main requirements of refractory materials are to resist to thermal

shock and to sustain significant mechanical loading and corrosion.

In this context, the knowledge concerning the improvement of thermal shock

resistance of refractory materials is highly requested to enhance their lifetime.

For a long time, the thermal shock resistance of refractories has been intensively

studied, but it has not been fully explored. Several experimental researches

have reported that thermal shock resistance could be improved by introducing

appropriately thermal expansion mismatch between constituents of refractory

materials. The occurrence of damages due to thermal expansion mismatch could

make mechanical behavior of refractory materials deviate from linear elastic to

nonlinear behavior.

The improvement of thermal shock resistance of refractories requires a better

understanding of the relationships between the microstructure and the associated

thermomechanical properties at macroscopic scale. However, this is not an

easy task due to the complex microstructures of industrial refractory materials.

Therefore, several researches have investigated this problematic by considering

model materials with simplified microstructure, namely glass-alumina composites,

with thermal expansion mismatch [TD03, Jol06]. In order to reinforce these

experimental results, some numerical approaches have been carried out. However,

up to now, numerical researches have been mainly based on continuous approaches,

which are still not compatible to describe physical phenomena that involves high

amount of discontinuity.

Part A is structured in 2 chapters. The first chapter is dedicated to state of

the art of relationships between thermal damages and thermal shock resistance of

refractory materials. The second chapter is dedicated to the selection of numerical

approach to model appropriately the considered relationships.
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Chapter A.I

Thermal shock resistance of

refractory materials

A.I.1 Influence of thermal damages on thermal

shock resistance of refractory materials

A.I.1.1 Thermal shock resistance of refractory materials

A.I.1.1.a Definition of thermal shock resistance

Thermal shock resistance is the ability of the material to withstand thermal stresses

with minimal cracking [Bax04]. Among several approaches in the literature, the

energetic approach, introduced by Hasselman, has been widely used to characterize

thermal shock resistance of materials [Has63, Has69]. In Hasselman’s approach, it

was supposed that the material is initially damaged and the thermal shock causes

the propagation of existing cracks in unstable or stable ways. In this approach,

crack propagation was assumed to be managed by the minimization of total energy

of the system. According to Hasselman, the total energy (Wtotal) is the sum of

elastic energy plus the surface energy of the cracks [Has69].

Wtotal = Welastic + Wsurface (A.I.1)

where: Welastic =
1
2

σ2

E
is elastic energy, σ is stress, E is Young’s modulus; Wsurface

is surface energy which corresponds to energy to create crack surfaces of the system.

Hasselman proposed two parameters to characterize the thermal shock

resistance of material, i.e. R′′′′ and Rst which are given by equations A.I.2 and
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A.I. Thermal shock resistance of refractory materials

A.I.3. [Has63, Has69]

R′′′′ =
E.γs

σ2
c

(A.I.2)

Rst =
√

γs

E.α2
(A.I.3)

where γs (J.m−2) is surface energy of the material, σc (MPa) is material

strength, E (GPa) is Young’s modulus and α (K−1) is Coefficient of Thermal

Expansion (CTE). R′′′′ (m) is the thermal shock damage resistance parameter

which corresponds to the case of small initial cracks. By contrast, Rst (K.
√

m)

is a quasi-stable crack growth resistance parameter which characterizes thermal

shock resistance of materials with large initial cracks.

According to equations A.I.2 and A.I.3, it can be noticed that both R′′′′ and Rst

depend on Young’s modulus and surface energy. By using a simple approximations

of elastic energy, E.α2 is considered to be proportional to
σ2

E
. Thus, both R′′′′ and

Rst are inversely proportional to
σ2

E
, which corresponds to the stored elastic strain

energy [PB99]. This energy can be considered as a resistance for crack growth

whether the thermal shock damage is either kinetic or quasi-static.

In equations A.I.2 and A.I.3, surface energy γs is considered at microscopic

scale [Has63, Has69]. In order to apply Hasselman’s energetic approach to

heterogeneous materials, it was proposed to compute thermal shock resistance by

the fracture energy at macroscopic scale, namely work-of-fracture γW OF [Nak65].

More specifically, the fracture energy γW OF is the energy consumed to propagate

a crack through a sample. The value of γW OF is calculated from the total energy

(W) to propagate the crack and the area A as follows:

γW OF =
W

2A
(A.I.4)

Hence, several authors [LCH74, Nak65] suggested to use this fracture energy in

the Hasseman’s energetic approach:

R′′′′ =
E.γW OF

σ2
c

(A.I.5)

Rst =
√

γW OF

E.α2
(A.I.6)

An other important remark on Hasselman’s approach is that thermal shock

damage resistance parameter decreases as strength increases. In other words, a

high strength could make refractories more sensitive to thermal shock damage. For
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A.I. Thermal shock resistance of refractory materials

where: E is Young’s modulus, α is CTE, ν is Poisson ratio of material and ∆T is

temperature change.

Secondly, the thermal stress could be generated by the thermal expansion

mismatch between different constituents of heterogeneous material and/or by

anisotropic thermal expansion of homogeneous material [GK07]. These phenomena

have been investigated in several researches by considering a simplified composite

material that contains only two constituents [TD03, Jol06]. Generally, for ceramic

materials, tensile strength is much lower than compressive strength. Thus, the

damages are mainly generated due to tensile stresses. In the case of a two-phases

material composed of a matrix (m) and spherical inclusions (p), during a uniform

cooling stage, there are two configurations that cause the damages (Fig. A.I.3):

• αm > αp: the inclusion contracts less than the matrix and therefore prevents

the free shrinkage of the matrix. Thus, the matrix is subjected to radial

compressive stresses and orthoradial (circumferential) tensile stresses (Fig.

A.I.3(a)). The increase of circumferential tensile stress leads to radial micro

cracking;

• αm < αp: the inclusions contracts more than the matrix. Thus, a debonding

can occur at the interface since the matrix is subjected to radial tensile

stresses (Fig. A.I.3(b)). The interfacial gap can be enlarged due to the

increase of thermal expansion mismatch.

Thirdly, thermal shock could be also an origin of thermal stresses. It may occur

under specific conditions such as the presence of severe thermal gradient resulting

from sudden temperature change at the surface of object.

In reality, thermal stress could be generated by a complex combination of

the possible cases presented above. Generally, refractories could be considered,

at macroscopic scale, as a homogeneous media. However, at microscopic scale,

refractories involve sophisticated microstructures that mix several phases. Hence,

the heterogeneity at microscopic scale has important effects on apparent properties

at macroscopic scale of refractories. In the next section, thermomechanical

behaviors of typical refractories will be presented in order to clarify the influence

of their microstructures.
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A.I. Thermal shock resistance of refractory materials

suitable approach is to use model materials that contain only 2 constituents. More

specifically, only thermomechanical interactions between constituents of model

materials are permitted whereas other phenomena are prohibited, e.g. physico-

chemistry interaction. Despite their simplified microstructures, model materials

must have behaviors close to that of the industrial refractories. Such a type of

material has been developed and studied in severals researches [TD03, Jol06].

A.I.3.2 Model materials selection

In order to investigate the role of thermal expansion mismatch without influence

of other phenomena, Tessier-Doyen developed several two-phases materials with

simplified microstructure, namely glass-alumina composites [TD03]. Firstly, the

alumina was chosen as inclusion because it corresponds to physico-chemical

characteristic of aggregates generally used in industrial refractories. Secondly,

it is easy to adjust the thermal expansion coefficient of glass by changing its

chemical composition. Therefore, glass were chosen as matrix in order to introduce

the thermal expansion mismatch. In addition, the fabrication of glass was

suitable at laboratory scale. Regarding the fabrication of model materials, the

alumina inclusions has spherical shape with a monomodal distribution of radii. A

controlled volume ratio of inclusions was incorporated in the glass and milled to

ensure the random dispersion of alumina in glass matrices. In the present study,

three different volume fractions of alumina were considered in order to study the

influence of alumina content on behaviors of model materials: 15%, 30%, 45%.

In the present research, two configurations of thermal damages were considered:

radial microcracks and interfacial debonding. Although the studied of Tessier-

Doyen was carried out in 2002, the reported results are closely related to the

phenomena that are interested in the present PhD thesis. Therefore, Tessier-

Doyen’s results on glass-alumina composites [TD03] were used as reference to

evaluate thermo mechanical modeling. After analyzing experimental results, two

model material were chosen:

1. Cofer glass-alumina composite corresponds to the case αm > αp in which

microcracks occurs in the glass matrix;

2. BA glass-alumina composite corresponds to the case αm < αp in which

interfacial debonding occurs around alumina inclusion [TD03].

Thermomechanical properties of the 2 considered model materials are

synthesized in Tab. A.I.1.
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A.I. Thermal shock resistance of refractory materials

computed from radii of inclusion (ri) and sphere (rs) as follows:

fi =
(

ri

rs

)3

In this model, the volume fraction of inclusion is the same for all composite spheres.

These composite spheres of different sizes are distributed randomly in space in

order to fill an arbitrary volume. Tab. A.I.2 synthesizes analytical predictions of

the apparent Young’s modulus and the apparent CTE of two-phases material from

volume fraction of inclusion and thermomechanical properties of its constituents.

Tab. A.I.2: Analytical expressions of Hashin&Strikman to predict
thermomechanical properties of two-phases materials

Lower bound HS- Upper bound HS+

KHS− = Km +
fi

1

Ki −Km

+
3(1− fi)

3Km + 4Gm

KHS+ = Ki +
1− fi

1

Km −Ki

+
3fi

3Ki + 4Gi

GHS− = Gm +
fi

1

Gi −Gm

+
6(Km + 2Gm)(1− fi)

5Gm(3Km + 4Gm)

GHS+ = Gi +
1− fi

1

Gm −Gi

+
6(Ki + 2Gi)fi

5Gi(3Ki + 4Gi)

αHS− = αi + (αm − αi)

1

KHS−
− 1

Ki

1

Km

− 1

Ki

αHS+ = αi + (αm − αi)

1

KHS+
− 1

Ki

1

Km

− 1

Ki

EHS− =
9KHS− ·GHS−

3KHS− + GHS−
EHS+ =

9KHS+ ·GHS+

3KHS+ + GHS+

where: Km, Ki are bulk modulus of matrix and inclusion; Gm, Gi are shear modulus of matrix

and inclusion; fi is volume fraction of inclusion; αm, αi are coefficient of thermal expansion of

matrix and inclusion.

In literature, various researches have reported that the HS model could give

a good estimation of thermomechanical properties of undamaged heterogeneous

materials [TD03, CLTC05, Jol06]. As an example, in [TD03], the author used HS

model to predict thermomechanical properties of FCu-TAB_AL composite from

volume fraction of alumina and elastic properties of its contents (Fig. A.I.12).

In the cited research, the Young’s modulus was measured by ultrasonic technique

at ambient temperature whereas the CTE was measured by thermodilatometry

technique. In Fig. A.I.12, the experimental values are quite close to the lower
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A.I. Thermal shock resistance of refractory materials

and experimental measurements allows to quantify the effect of thermal damages

on material properties.

A.I.4 Conclusion

This chapter has allowed to present the microstructures-properties relationships

of several refractory materials.

Several researches have reported that in some specific cases, thermal

damages could have positive influence on thermal shock resistance of refractories,

e.g. decrease of Young modulus, decrease of CTE, decrease of strength,

increase of strain-to-rupture and increase of fracture energy. The experimental

observations showed a great interest to investigate and to take advantages of

the microstructures-properties relationships in order to improve thermal shock

resistance of refractories. However, this is not an easy task due to the complex

microstructures of industrial materials. Hence, a more suitable approach is to

investigate model material that contains only 2 constituents. Despite its simplified

microstructures, model materials have behaviors close to those of industrial

material.

As discussed previously, HS model could give quite good estimation of

thermomechanical properties of undamaged material. However, up to now, it

is still complicated to take into account the effects of damages by using analytical

prediction. Nowadays, numerical methods could predict thermomechanical

properties of heterogeneous materials by considering their microstructure,

including microcrack network, in addition to their intrinsic properties. The

longterm purpose is to predict quantitatively the influence of thermal damages

on behavior of complex industrial materials by using numerical method. This

could give insights for microstructure design of refractories. Therefore, the desired

numerical approach must be able to model high amount of discontinuity within

heterogeneous media. The present research is a first step in order to achieve

the long term purpose. It focused on the modeling of the behaviors of model

materials developed by Tessier-Doyen, i.e. Cofer glass-alumina and BA glass-

alumina [TD03]. The next chapter is dedicated to the selection of numerical

approach.
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Chapter A.II

Numerical method for damages

modeling

A.II.1 Overview of numerical methods

Nowadays, thanks to the spectacular development of computer technology,

numerical simulation is used extensively in order to solve complex practical

problems in engineering and science. In material science, numerical simulations

is an efficient tool to validate analytical models, to assists in the interpretation

of physical phenomena and to offer valuable insights for experimental research.

Generally, in thermomechanical area, numerical methods can be classified into

continuum method and discontinuum method, each one has its advantages and

drawbacks. Despite their different natures, these numerical methods have similar

procedure in order to solve the targeted problem [Jeb13]:

• Governing equations: mathematical models are derived with some possible

assumptions in order to describe the observed physical phenomena. These

mathematical models are generally expressed in terms of governing equations

with boundary conditions. The governing equations are mainly expressed by

using differential equations and/or partial differential equations;

• Discretization: the problem is discretized into finite discrete components in

order to solve numerically the governing equations;

• Solving of governing equations: Numerical algorithms that allow to solve

governing equations of the discretized domain from boundary conditions

needs to be developed;
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A.II. Numerical method for damages modeling

• Programming: the developed algorithm is implemented into a computer code

in some programming languages.

A.II.2 Continuous methods

A.II.2.1 Overview

The Continuum Methods (CMs) has been developed for a long time. Hence,

this class of numerical method have been widely applied to various area of

Computational Mechanics, e.g. solid mechanic, fluid dynamic. The main

assumption of CMs is that matter is a continuum that completely fills the space.

In CMs, the considered continuum domain is discretized into discrete components

(element) made up of reference points (node). Then, the governing equations are

changed into a system of algebraic equations. The resolution of this system gives

the solutions at the reference points. For other points in the occupied space, the

field variables can be approximated by interpolation or averaging of the solutions

at the reference points.

The CMs are well adapted for simulating physical phenomena in which the

continuity assumption is valid and remains valid during the simulation. However,

this class of method faces some difficulties related to discontinuities that occurs.

Indeed, additional treatments must be carried out to described the new surfaces.

In literature, there are several techniques to deal with the discontinuities problem

for different CMs.

A.II.2.2 Finite element method

Finite Element Method (FEM) describes the behavior of material by discretizing

object (sample) into subdomains (elements) which are interconnected through

common discrete nodes. Hence, the assembly of elements is called a mesh. Based

on an adequate mesh, governing equations can be approximated by a set of

algebraic equations for each finite element. The system of algebraic equations for

the whole domain can be formed by assembling the elementary algebraic equations

for all the elements. In this method, reliable constitutive laws between the stress

and strain field have been developed for a long time. The primary unknown field

variables are nodal values. The FEM formulation reduces the problem to the

solution of a system of algebraic equations in terms of the nodal variables. FEM

is capable to model complex geometries, boundary conditions and heterogeneous
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material. In spite of its successes in various area of computational mechanics, the

major problem of FEM is that remeshing and mesh refinement are required in

order to take into account discontinuities. More specifically, remeshing technique

involves superposition of a new mesh on the old one in order to describe new

surfaces of cracks (Fig. A.II.1). This process is very time consuming, making

FEM inadequate for discontinuous problems.

Fig. A.II.1: Illustration of crack propagation in tensile test by FEM: mesh refinement and
remeshing are required around crack tips [SMAA09]

Later on, the eXtended Finite Element Method (XFEM) has been developed in

order to alleviate the issue of FEM to describe arbitrary cracks in regular meshes.

Initially, XFEM was proposed by Belytschko et al. [BB99, MDB99]. In this

method, finite element discretization is enriched with additional nodal degrees of

freedom, which carry local discontinuous functions, able to describe cracks within

elements. More specifically, equations of displacement field of the elements that

contain crack are enriched. Hence, cracks can be described accurately in a single

mesh, removing the need of continuous remeshing to describe crack propagation

(Fig. A.II.2)

This method has been applied to model phenomena involving discontinuities

such as crack growth in rock, concrete or alloy [GJ16, LZG+18, RLK19]. However,

the use of XFEM to model problems with multiple cracks remains limited due to

its cumbersomeness to deal with high amount of discontinuity.

As an example, Vijay and Rafael used XFEM in order to model crack

propagation at microscopic scale of an aluminum alloy under tensile loading [GJ16]

(Fig. A.II.3). However, in this research, crack location still needed to be prescribed

and crack branching was not modeled.
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methods and continuous methods. The former is based on Newtonian mechanics

whereas the latter is based on continuum mechanics which consider matter as a

continuum.

As discussed in chapter I, the present research investigates the effects of thermal

damages on thermomechanical behavior of refractories in order to strengthen

experimental results and to give insight for microstructure design. Therefore, this

investigation involves high amount of discontinuities. As reported in Sect. A.II.2,

reliable constitutive laws between stress and strain field have been developed for

continuous method for a long time. However, in order to manage high amount

of discontinuities or simultaneous cracking, additional treatments are required

for continuous methods. Despite significant successes of several technique, e.g.

XFEM, PFM, their applications for complex crack phenomena still, up to now,

remain problematic. Especially, the minimization of computational time for 3D

simulations of multiple cracks is still in progress.

Thanks to the ability to describe discontinuities, the discrete methods is a

good candidate for the present research. Indeed, in this class of method, matter is

consider as assembly of point/rigid bodies that interact with each other through

interaction laws. The initiation of crack could be simply handled by breaking

interaction between elements. The discrete methods were divided into two main

subclasses: lattice models and particle models. Since these two subclasses are quite

complementary, a “hybrid” method that combines their advantages was retained.

Specifically, the variant of the Discrete Element Method (DEM) developed by

André et al. [ACI15, JATI15] and the associated DEM modeling platform were

chosen in order to achieve the purpose of the present research. The main

specificities of this methods as well as the development of DEM modeling platform,

namely GranOO, will be detailed in part B.
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Part B

Development of discrete element

modeling platform
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Introduction

The main purpose of the present research is to investigate the influences of

thermal damages on the behaviors of heterogeneous materials and the associated

phenomena, e.g. the nonlinear behavior of refractories. According to the

bibliographic study in part A, the Discrete Element Method (DEM) has shown

several advantages in the modeling of fracture phenomena, e.g. the simultaneous

damage propagations which is typical for refractories. For this reason, the

GranOO DEM platform was used in the present works to study the behaviors of

heterogeneous material. However, there are two main challenges for the application

of DEM to model continuous media:

• establishment of relationships between input parameters and output results

in order to facilitate its usage for non specialist;

• further development of stress computations in order to describe accurately

fracture phenomena due to complex loading.

Part B is therefore dedicated to the development of GranOO platform during the

present research. This part includes 2 chapters.

The first chapter is dedicated to a general review of GranOO platform. In this

chapter, the architecture of DEM platform, the key elements of DEM simulation

and the contact model are presented. Furthermore, the new developments of virial

stress computation is also detailed.

In the second chapter, a novel calibration method of input parameters for

the used DEM approach is proposed and validated through various simulation

configurations. Moreover, the accuracy of virial stress computation was examined

through its application to the modeling of the residual stress due to thermal

expansion mismatch and the associated damages within an elementary composite

materials. Indeed, the stress field obtained with DEM will be confronted with FEM

and theoretical predictions. Moreover, the DEM results of damage propagations

will also be compared with experimental observations [TD03, Jol06].
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Chapter B.I

GranOO - A versatile discrete

element modeling platform

B.I.1 DEM explicit dynamic resolution

algorithm

B.I.1.1 Positions and orientations computations in DEM

In general, all DEM modelings involve the computation of acceleration of discrete

elements at each time step. Indeed, the calculation of the new position of

the discrete elements requires the integration of acceleration to provide position

and velocity at the considered time step. In computer simulations of physical

processes, explicit and implicit integration schemes can be used to obtain numerical

approximate solutions of partial differential equations that describes a time-

dependent problem. The explicit scheme calculates the state of a system at a

later time from the current state of the system, whereas implicit scheme finds a

solution by solving an equation involving both the current state of the system

and the later one. Explicit scheme gives a faster solution in dynamic phenomena

whereas the implicit method is privileged when the physical phenomena are much

slower. The choice of implicit or explicit scheme depends on the goal of the

computation. In the frameworks of the Granular Object Oriented Workbench

(GranOO), the numerical resolution is based on an explicit integration scheme,

which is well adapted to massive DEM simulation and high velocity phenomena

such as fracturing or impact [JATI15]. Many explicit schemes can be found in

literature, e.g. the Verlet velocity, Runge-Kutta or gear’s method, etc. Several

researches have pointed out that all of these schemes give approximately the same
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efficiency [RMJ04]. Consequently, André et al.. have implemented in GranOO,

the explicit dynamic resolution algorithm based on the Verlet velocity scheme,

for its simplicity. This implementation is used for all DEM simulations presented

in this study. More specifically, the discrete element positions and velocities are

estimated by:

p(t + ∆t) = p(t) + ∆t ṗ(t) +
∆t2

2
p̈(t) (B.I.1)

ṗ(t + ∆t) = ṗ(t) +
∆t

2
(p̈(t) + p̈(t + ∆t)) (B.I.2)

where:

• t is the current time and ∆t is the integration time step.

• p(t), ṗ(t) and p̈(t) are the linear position, velocity and acceleration of the

discrete elements.

In GranOO, the discrete element orientations are described by quaternions, which

is defined as the quotient of two vectors [Har81]. More specifically, the quaternion

is an operator which modifies the direction and the norm of a vector. A quaternion

q can be considered as a linear combination of four quaternions units, i.e. 1, i, j,

and k (Eq. B.I.3)

q = a.1 + a1.i + a2.j + a3.k (B.I.3)

where a, a1, a2, a3 are real numbers, and i, j, k are the fundamental quaternion

units. The usage of quaternions gives an efficient way to compute the rotation of

the local frames associated with the discrete elements [PS05]. The angular velocity

of discrete elements is obtained by using Eq. [Ebe10]:

q̇(t) =
1

2
ω(t) q(t) (B.I.4)

where q(t) is the orientations of discrete element, ω(t) is the angular velocity of

discrete element. The Verlet velocity scheme is also applied to quaternion q(t),

with:

q(t + ∆t) = q(t) + ∆t q̇(t) +
∆t2

2
q̈(t) (B.I.5)

q̇(t + ∆t) = q̇(t) +
∆t

2
(q̈(t) + q̈(t + ∆t)) (B.I.6)
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Finally, to prevent quaternion numerical drifts, the quaternion must be normalized

at each time step.

B.I.1.2 Overview of the resolution algorithm

Algorithm 1 shows the implementation of the Verlet velocity scheme in the explicit

dynamic resolution of GranOO. This simplified algorithm hides the main difficulty

of the elaboration of a numerical experiment, whose loadings, boundary conditions,

micro mechanical models or involved geometries can be complex. This is one of the

main advantages of GranOO platform: ability to provide tools and mechanisms,

in a coherent environment, to perform DEM simulations in a quite easy way. This

aspect will be presented briefly hereafter.

Algorithm 1: Explicit dynamic resolution [JATI15]
input: p(0) ṗ(0) p̈(0) q(0) q̇(0) q̈(0)

t← 0;
foreach iteration n do

foreach discrete element i do

pi(t + ∆t)← Verlet velocity scheme (B.I.1);
Fi(t + ∆t)← Sum of forces acting on i;
p̈i(t + ∆t)← Newton’s second law;
ṗi(t + ∆t)← Verlet velocity scheme (B.I.2);

qi(t + ∆t)← Verlet velocity scheme (B.I.5);
qi(t + ∆t)← Normalization;
Mi(t + ∆t)← Sum of torques acting on i;
q̈i(t + ∆t)← Angular momentum law;
q̇i(t + ∆t)← Verlet velocity scheme (B.I.6);

t← t + ∆t

B.I.2 Architecture overview of GranOO

platform

B.I.2.1 GranOO - a C++ object oriented workbench

The Granular Object Oriented Workbench (GranOO) has been developed since

2010 by the collaboration of 3 laboratories: Institute of Research for Ceramics

(IRCER, Limoges, France), Institute of Mechanics and engineering (I2M,

Bordeaux, France), Laboratory of Industrial and Human Automation control,
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Mechanical engineering and Computer Science (LAMIH, Valenciennes, France)

[And12, JATI15]. This platform of discrete element modeling is designed based

on explicit dynamic resolution algorithm to perform a wide range of numerical

experiments. The conditions of computation platform, i.e. upgrade ability,

robustness and performance, need to be well guaranteed. To reach this purpose, the

C++ programing language, which is standardized and efficient, has been chosen

to implement GranOO. In fact, C ++ is a compiled language, whose performances

have become comparable to those of the C or the Fortran languages, which

are part of the fastest programming language. In addition, the object oriented

(OO) approach is used to design GranOO, whose architecture is based on an

organization in libraries. This kind of architecture facilitates the upgrade process.

Robustness aspect of computation is ensured by the systematic application of the

concept of programming by contract [McK96]. Finally, an operating architecture

based on the usage of macro-command, which was also called plugin in the

existing documentations of GranOO, ensure a flexible utilization of platform. The

integration and scheduling of macro-command are done through modifiable input

files in eXtensible Markup Language (XML) format. More informations about

this original and versatile computation platform are given in [And12, JATI15]

B.I.2.2 Input files and macro-command

In order to facilitate the manipulation of DEM simulations for non-specialist user,

a modifiable input file in XML format is used as an interface between GranOO

source code and user. Indeed, the input files, which can be easily configured by

user, is dedicated to integration and scheduling of macro-commands. In addition,

the macro-commands facilitate the usage of source code in order to develop

specific configurations of DEM simulation, e.g. loading, boundary condition, etc.

By using standard and user-defined macro-commands, the users could develop

their own configuration of DEM simulation, without a high requirement of C++

programming knowledge. Typically, an input files has two fundamental parts,

i.e. pre-processing and processing. The first part corresponds mainly to macro-

commands that are related to the reading of discrete domain and the contact

properties. The second part is dedicated to macro-commands that are related to

configurations DEM simulations, e.g. boundary conditions, stress computations

and saving results options, etc. An other important point is related to the saving

of output discrete domains with several associated informations. This allows to

develop a DEM simulation based on the results of the other ones. More specifically,
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the discrete domain can be saved in a granoo discrete domain file (gdd), which

contain complete characteristics of domain, e.g. positions, accelerations of discrete

elements; mechanical properties of contact, etc. In summary, the concept of

input file and macro-command makes the DEM simulations much more easier

and promotes the application of DEM to the modeling of brittle elastic media.

B.I.2.3 Essential libraries and tools

The architecture of the GranOO discrete element modeling platform is designed

based on an OO approach where classes are grouped into libraries. The GranOO

platform is composed of 11 libraries written in C ++ language. The 5 fundamental

libraries, and the visualization and post processing features are briefly presented

hereafter.

libUtil is dedicated to manage computer issues, i.e. reading and writing XML

files, management of macro-commands, data compression, digital sensors, etc.

libMath integrates mathematical tools, i.e. usual mathematical functions and

statistical calculations.

libGeom is dedicated to Euclidean geometry calculations in a 3D space. This

library models the concepts of basic entities in Euclidean geometry, e.g. coordinate

system, point, vector, quaternion, etc. It proposes also various common operations

for 3D calculations, e.g. change of local frame, projection, rotation, norm, etc. A

DEM simulation is intensively based on the usage of the entities developed in the

libGeom. Consequently, this library has been developed with high attention in

terms of performance, robustness and accessibility.

libShape provides the concepts of geometric shapes, e.g. sphere, cone, cylinder,

box, rectangle, etc.

libDEM is specifically dedicated to the implementation of DEM simulations.

This library provides the concepts of discrete elements, cohesive bond, boundary

condition, discrete domain, etc. These concepts are based on the three previous

libraries. The libDEM provides also various features to manipulate efficiently

DEM simulations, e.g. containers, simple expressions of boundary conditions and

loadings, etc. In fact, to perform a DEM simulation, the user needs to be able to
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extract sets of entities (discrete elements, contacts, etc.) in order to apply specific

treatments to them, e.g. loading or boundary conditions. As a result, libDEM

provides tools to facilitate this type of action. The identification is carried out

via specific containers, called SetOf, and the treatments are applied by macro-

command. The SetOf is one of the fundamental mechanisms of GranOO. It allows

a simple and exact identification of DEM entities of different types and guarantees

also an efficient extraction of numerical data.

Visualization and post processing features provide the abilities to visualize

and manipulate easily the results of DEM simulations, e.g. stress field, temperature

field or damage propagation, etc. Firstly, the granoo-viewer feature, which

is dedicated to the visualization of simulations results, has been developed in

GranOO platform. This feature allows a visualization the contents of a gdd file in

3D interactive mode. Therefore, the user could check the progress of simulations

and get a better description of the results. More recently, a new feature, dedicated

to further post-treatments of DEM results has been implemented. Indeed,

simulations results could be saved in a pvd file, which is compatible with Paraview

software1. Thus, it makes the visualization of DEM results easier and more

efficient. Moreover, the numerical data could be easily manipulated by Paraview

and/or by Python, which enables the comparison of DEM against theoretical

predictions and/or other numerical approaches, e.g. FEM, as it will be described

in section B.II.4

B.I.2.4 The main steps of DEM simulations

In summary, the GranOO platform is based on 5 fundamental libraries, i.e. libUtil,

libMath, libGeom, libShape, libDEM. In order to develop a DEM simulation, the

user needs to communicate with these libraries via the input file and macro-

commands, as presented in B.I.2.2. The main steps to develop and exploit a

DEM simulation are resumed in Fig. B.I.1. Generally, there are 3 main steps:

1. Implementation and selection of macro-commands: The macro-

commands, including user-define and standard ones, are fundamental to

generate the executable file, which is used to run the simulation.

2. Execution: The simulation is facilitated and configured thanks to the input

file as an interface between source code and user. During the simulation,

1www.paraview.org
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the executable file could produce different output files, i.e. output gdd

files, output pvd file and a txt file. The gdd and pvd files are presented in

B.I.2.3. Beside, the output txt file records the measured results of different

phenomena during DEM simulation, e.g. normal stress, displacement, etc.

3. Analyses of results: the gdd and pvd files could be read and visualized

by using granoo-viewer and Paraview, respectively. The txt file could be

analyzed by different tools. In this study, the analysis of txt file is performed

by using of Python scripts.
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B.I.3 Construction of discrete domain

B.I.3.1 Required properties of discrete domain

In DEM simulation, sample is represented by discrete domain which is an assembly

of non deformable spherical discrete elements. Naturally, when a space is filled by

an assembly of sphere, voids and overlapping exist. However, in order to mimic

the continuous media. the discrete domain must give a good compromise between

four important criteria:

• isotropic distribution of elements;

• density of assembly;

• overlapping between elements;

• average direct neighbor number which is calculated as follows:

Average direct neighbor number =
2× Number of contacts

Number of discrete elements

Thus, the cooker algorithm, dedicated to the domain construction, has been

developed in GranOO platform [JATI15]. In this algorithm, discrete element radii

are randomly chosen through a uniform distribution with a range equal to 25%

[AIlCN12]. This randomization process prevents ordered configuration, also known

as crystallization, in the obtained discrete domain [PL01]. The cooker algorithm

ensures also that the average direct neighbor number is close to 6.2 and the density

is about 0.63, in order to produce a good representation of continuous media

[GF74, Fin70]. Furthermore, the overlapping between discrete elements could be

managed as it will be explained hereafter.

B.I.3.2 Construction domain algorithm

The cooker algorithm is able to fill a space of arbitrary shape with spherical discrete

elements. Fig. B.I.2 illustrates the main steps of domain construction, which could

be divided in 4 main steps:

1. Random filling: At the beginning, the discrete elements are randomly

added until no longer free space exists. In other words, the random filling

is stopped after a given number (to be fixed by the user) of unsuccessful

attempts to insert a new discrete element.
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2. Forced filling: After the random filling, the discrete elements are forced to

be inserted by packet, e.g. 1 or 10 elements, until the average direct neighbor

number reach the 6.2 value that corresponds to the definition of a random

close packing [GF74] (step 2a). Since the discrete elements are forced to be

added, a high level of overlapping between elements is induced. Hence, the

discrete domain is reconfigured after each forced insertion (step 2b). The

reconfiguration of domain is done by performing a granular simulation of

domain until the kinetic energy decreases to a negligible value. Once the

average direct neighbor number reaches the targeted value, the forced filling

step is stopped.

3. Relaxation of domain: Once the forced filling is stopped, the discrete

domain is relaxed in order to remove the remaining overlapping. This

relaxation consists of decreasing the boundary wall stiffness until this stiffness

reaches a negligible value.

4. Generation of interaction pairs network: As it was shown in

[ZYR+18], structural properties of assemblies has strong effects on apparent

elastic responses. Therefore, a post-processing step, able to manage the

coordination number, has been implemented to study the influence of this

input parameter on the macroscopic Young’s modulus and Poisson’s ratio

(Chapter B.II). Hence, after the filling process, a specific algorithm is

involved to generate interaction pair network. In this step, the value of the

global coordination number, which is the average number of interaction pair

per element, can be tuned. In order to reach a targeted value of coordination

number, a radius of interaction is assigned to each discrete element in order

to generate interaction pairs. More specifically, the radii of interaction of

discrete elements are considered to gradually increase until the expected

coordination number value is reached. This algorithm allows us to choose

the coordination number value and to connect elements even if they are not

really in contact.
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cross-section lying on the contact plane and centered at the contact point [CMS07].

The cross-section of contact could be rectangular in 2D or circular in 3D. More

precisely, the parallel bond model has two components that act parallelly, i.e.

parallel-bond component and linear component (Fig. B.I.3(b)). Hence, parallel

bond can transmit both force and moment through contact. The transmitted

force and moment can be related to maximum normal and shear stresses acting

within the parallel-bond component. If one of these maximum stresses exceeds

its corresponding bond strength, the parallel bond is broken and becomes linear

model (Fig. B.I.3(b)). The properties of contact bond and parallel bond models

are synthesized in Tab. B.I.1.

Tab. B.I.1: Properties of contact bond and parallel bond models

Contact bond properties Parallel bond properties Descriptions
TF - Tensile force limit [force]
SF - Shear force limit [force]
kn kn Normal stiffness [force/length]
ks ks Shear stiffness [force/length]
gs gs Surface gap [length]
µ µ Friction coefficient [-]
- σ′

c Tensile strength [stress]
- c′ Cohesion [stress]
- φ′ Friction angle [degrees]
- k′

n Normal stiffness [stress/disp.]
- k′

s Shear stiffness [stress/disp.]

The bonded-particle models have been widely used to study fracturing

and fragmentation processes of brittle materials. These methods have been

implemented in many common DEM softwares, such as PFC [Inc12] and YADE

[KD08]. However, one of major drawbacks of the bonded-particle models is that

determining the proper set of bond properties (microscopic parameters) is quite

difficult. In fact, the input parameters of the model are set at the microscopic

scale and they do not correspond to the material properties. A pre-processing step

is necessary (calibration process) to reach quantitative results. This drawback is

due to the high number of microscopic parameters, for example, 10 microscopic

parameters are needed to determine the contact-bonded model [WC17], e.g.

contact modulus, stiffness ratio, friction coefficient, contact-bond normal strength,

contact-bond shear strength, etc.

More recently, the Cohesive Beam Model (CBM) has been developed by

different authors [LHG17, HNKK17, ACI15]. In the CBM proposed by André
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et al. [AIlCN12, ACI15], discrete elements are connected by cylindrical cohesive

beams which are able to work in tension, compression, bending and torsion. The

Euler-Bernoulli beam theory is implemented to compute the beam forces and

moments. In this framework, the behavior of modeled material could be reached

by calibrating only two microscopic parameters. The calibration process of this

model seems to be less complex than the previous bond models. Hence, the contact

model of Granoo platform has been implemented by using CBM model, which is

presented hereafter.

B.I.4.2 Why cohesive beam model?

The present study focuses on the Cohesive Beam Model proposed by André et

al. [AIlCN12, ACI15], due to a rather simple calibration process. The CBM

was first introduced by H. J. Herrmann in 1988 [Her88]. This model was first

used for 2D ordered lattice network [SVM92b, SvM92a], and later, for disordered

2D lattice networks [SG96, KH96, DKR02, ?, DR06]. In reference [SG96],

microscopic parameters of 2D lattice model and mechanical properties of material

were proposed to be equal similar. However, the trial-and-error calibration

has mainly been recommended, using experimental and numerical approaches to

determine relationships between microscopic and macroscopic outputs of CBM. In

the present study, mechanical properties of the cohesive beams are different from

corresponding properties of modeled material. So, microscopic local properties

could be tuned to produce the targeted behaviors at the macroscopic scale.

Fig. B.I.4 draws two discrete elements bonded by a cohesive beam. The

cylindrical geometry is chosen because it’s dimensional description requires only

two independent parameters: a length Lm and a radius Rm. Mechanical properties

of cohesive beams are described by a Young’s modulus Em and a Poisson’s ratio

νm. These four microscopic geometric and mechanical parameters allow a complete

description of a cohesive beam. Hereafter, in order to distinguish micro from macro

properties, micro parameters and macro parameters are denoted by ’m’ and ’M ’

indexes, respectively. In addition, in this contact model, cohesive beams are mass-

less; mass properties are then assigned only to discrete elements.

For the sake of clarity Fig. B.I.5 shows a configuration in which the discrete

elements have been moved away. The cohesive beam is symbolized by its median

line. Both cohesive bond ends are fixed to the discrete element centers O1 and

O2. The discrete element frames F1 (O1, X1, Y1, Z1) and F2 (O2, X2, Y2, Z2) are

oriented such that X1 and X2 are normal to the beam cross section ends. At
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bending rotations at O1 and O2 are defined, respectively, by θ1 = ̂(X, X1) and

θ2 = ̂(−X, X2). In addition, the small rotation hypothesis is used at local frame

to make the following equalities applicable: θ1 = sin θ1, θ2 = sin θ2. In GranOO

framework, θ1 and θ2 are assumed to be smaller than 10◦. Consequently, the force

and torque reactions acting on discrete elements 1 and 2 are:

FDE1 = +EmAm

∆lm

lm
X− 6EmIm

l2
m

((θ2z + θ1z) Y + (θ2y + θ1y) Z) (B.I.7)

FDE2 = −EmAm

∆lm

lm
X +

6EmIm

l2
m

((θ2z + θ1z) Y− (θ2y + θ1y) Z) (B.I.8)

TDE1 = +
GmIom

lm
(θ2x − θ1x) X− 2EmIm

lm
((θ2y + 2θ1y) Y− (θ2z + 2θ1z) Z)

(B.I.9)

TDE2 = −GmIom

lm
(θ2x − θ1x) X− 2EmIm

lm
((2θ2y + θ1y) Y− (2θ2z + θ1z) Z)

(B.I.10)

where:

• FDE1 and FDE2 are the beam force reactions acting on discrete elements 1

and 2.

• TDE1 and TDE2 are the beam torque reactions acting on discrete elements

1 and 2.

• Beam force and torque reactions are expressed in the beam local frame

F (O, X, Y, Z).

• lm and ∆lm are the initial beam length and the longitudinal extension.

• (θ1x, θ1y, θ1z) and (θ2x, θ2y, θ2z) are respectively the components of rotations

vectors of cross section of the beam at the points O1 and O2, expressed in

the beam local frame: θDE1 = θDE1(θ1x, θ1y, θ1z); θDE2 = θDE2(θ2x, θ2y, θ2z)

• Am, Im and Iom are the beam cross section area, second moment of area and

polar second moment of area along Y and Z

• Em and Gm are the Young’s and shear modulus of the cohesive beam.
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As described previously, the cohesive beam bond is defined by four parameters:

length Lm , radius Rm, Young’s modulus Em and Poisson’s ratio νm. In fact, the

cohesive beam length value Lm depends on the distance between discrete element

centers and is not a free parameter because it is defined through the compact

process (section B.I.3). In addition, the νm has no influence on the macroscopic

elastic behavior [AIlCN12]. In this study, the beam radius ratio denoted by rm

is preferred to the beam radius Rm. The beam radius ratio is defined as the

ratio between the cohesive beam radius and the average discrete element radius.

The rm value is the same for all the cohesive beams involved in a discrete model.

Consequently, elastic behavior of materials could be macroscopically matched by

calibrating only two parameters Em and rm. This allows us to consider the cohesive

beam as a length-free model. In other words, the mechanical elastic property of a

discrete sample, defined by its apparent Young’s modulus and Poisson’s ratio, do

not depend on its size. This is an important feature of the cohesive beam model.

B.I.4.3 Calibration of cohesive beam elastic parameters

B.I.4.3.a Tensile test simulation and computational methods of

macroscopic mechanical responses

In discrete element models, macroscopic outputs can not be introduced directly

as input parameters. Indeed, they need to be measured numerically through

numerical simulations. In this study, quasi-static uniaxial tensile test are simulated

to deduce the apparent Young’s modulus EM , Poisson’s ratio νM and failure

strength σM . For such simulations, cubic samples are built by using the cooker

algorithm (see previous section), with length of 2 millimeters and contains around

10,000 discrete elements. As it was shown in [AIlCN12, AJI+13, ALTDH17],

for a cubic domain, the quantity of 10,000 discrete elements ensures a good

level of convergence. In other words, if higher numbers of element are chosen,

the obtained results will not be different from those ones obtained with 10,000

elements. Consequently, in this study, a number of 10,000 discrete elements is

considered as sufficient for an acceptable level of precision.

In order to load the sample, opposite displacements at constant velocity are

imposed to the discrete elements that belong to the Sx+ and Sx− faces of these

cubic domains (Fig. B.I.6). The normal forces Fx+ and Fx− resulting from these

displacements are measured by summing the measured forces fi of each discrete

element that belong to Sx+ and Sx− faces:
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So, the macroscopic Young’s modulus EM is :

EM =
σMxx

εMxx

(B.I.13)

The macroscopic Poisson’s ratio νM is computed by averaging the macroscopic

Poisson’s ratio values along the y and z axes as :

νM =
1
2

(νMy + νMz) = −1
2

(
εMyy

εMxx

+
εMzz

εMxx

) (B.I.14)

Finally, the macroscopic failure stress σM is the macroscopic tensile stress σMxx

when the failure occurs. The failure at the scale of structure is detected by a brutal

decrease of normal stress.

B.I.4.3.b Classical trial-and-error calibration method

This section describes briefly the classical trial-and-error calibration method,

introduced by André et al., in order to quantify the value of the microscopic

parameters to fit the targeted macroscopic properties [AIlCN12, JATI15]. In

these researches, only two microscopic parameters need to be calibrated, i.e.

microscopic Young’s modulus Em and beam radius ratio rm (Sect. B.I.4.2). Hence,

to analyze the evolution of macroscopic outputs versus microscopic parameters,

several simulations of quasi-static uniaxial tensile test need to be performed with

different value of cohesive beam properties. According to the parametric study in

[JATI15], macroscopic Poisson’s ratio νM is independent from microscopic Young’s

modulus Em. By contrast, both macroscopic Young’s modulus EM and Poisson’s

ratio νM are nonlinearly dependent upon rm. Therefore, the calibration process

can be achieved in two main steps:

1. the calibration of the microscopic beam radii by dichotomy in order to reach

the required value of Poisson’s ratio νM and then

2. the calibration of the microscopic beam Young’s modulus in order to reach

the required value of Young’s modulus EM . This calibration is accomplished

by using a linear regression since EM is proportional to Em.

This calibration method involves fastidious parametric study of several

simulations, which is time consuming and non-normalized. For example, the

calibration process to reach the targeted elastic properties of one material involves

10 simulations which could take 4 hours to perform. In order to avoid repeating

trial-and-error calibration and facilitate the usage of DEM for non-specialists, a
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beams and the αM is the resulting thermal expansion of the bounding shape of the

discrete domain. According to the analysis in [ALTDH17], the thermal expansion

is identical at microscopic and macroscopic scales. Therefore, thermal expansion

coefficient can be introduced directly without any calibration.

B.I.4.5 Thermal conduction modeling

The temperature filed exhibits an important role in many manufacturing processes,

such as steel casting, machining, etc. Conduction is the most predominant mode

of heat transfer within a solid or between solids in physical contact. Nevertheless,

quite a few other DEM researches on this phenomena could by found in the

literature [HGF14, Flo18]. Terreros et al. has developed an original method to

simulate heat conduction within continuous media using DEM [?, JATI15]. The

method proposed by Terreros et al. has been implemented in GranOO and has

been validated through several thermal test simulations, e.g. cylindrical beam in

contact with a hot plane, dynamically heated sheet. The DEM results shown

a good agreement with analytical results and FEM results, which proved the

compatibility of the proposed method to model thermal conduction phenomena

in continuous media [?]. In the present study, since the temperature field was

considered to be uniform in the whole sample, the thermal conduction was not be

taken into account.

B.I.5 Virial stress and microscopic fracture

model

B.I.5.1 Standard fracture model and its limitations

In discrete element approach, damage within the material is simulated by breaking

the cohesive beam that connect discrete elements. Different criteria have been

established in literature, e.g. maximal bond stress or maximal bond strain. In

the research of André et al. [And12], the authors introduced a maximum bond

stress criterion to study brittle material. The introduced failure model is based on

the Euler-Bernoulli beam theory [Wit91] and Rankine criterion. The maximum

principal stress of a cohesive beam is given by Eq. B.I.16.

σI =
1
2

(

σmax +
√

σ2
max + 4 τ 2

max

)

(B.I.16)
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where:

• Ω is the volume associated to the virial stress computation,

• σΩ is the equivalent Cauchy stress tensor of the considered volume Ω,

• j takes values 1 to N neighbors of the discrete element i,

• ⊗ is the tensor product between two vectors,

• f ij is the force imposed on the discrete element i by a cohesive beam that

bonds the discrete element i to its "neighbour discrete element" j,

• rij is the relative position vector between the center of the two bonded

discrete elements i and j.

As illustrated in Fig. B.I.11, the stress tensor is always computed for the central

discrete element. Thus, different volumes Ω can be considered depending on the

neighbor level. Neighbor elements that connect directly to the central element

through cohesive beams are defined as neighbor level 1. Discrete elements that

connect directly to the discrete elements in neighbor level 1 are defined as neighbor

level 2 and so on. The volume Ω is simply defined as :

Ω =
1
fv

∑

i∈Ω

Ωi (B.I.20)

where :

• i is related to a discrete element;

• Ωi is the volume of the discrete element i;

• fv is the global volume fraction of the discrete domain.

With such a model, high value of neighbor level corresponds to non-local stress

tensor whereas low value of neighbor level is related to local value with lower

precision. The accuracy of different neighbor levels have been examined in order

to choose the most appropriate configuration.

Several simulations of tensile tests with neighbor levels 1 and 2 were carried

out. The tensile test simulations followed the same principles that was described in

B.I.4.3.a. In the performed simulation, the value of microscopic Young’s modulus

Em was arbitrary fixed at 500 GPa. Radius ratio was set from 0.2 to 1.0 and the

coordination number varied from 6 to 13. Based on obtained results, the average
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B.I.5.4 Fracture model based on virial stress

B.I.5.4.a Fracture mechanism at microscopic scale

The present work has focused on brittle fracture which is assumed to be initiated

under tensile stress in mode I. Therefore, two fracture criteria at the scale of

discrete element were proposed to model the fracture phenomena. The first

criterion, called Rankine criterion, is related to the maximum principal stress.

Whereas the second criterion, called Hydrostatic criterion, is related to hydrostatic

stress.

In the Rankine criterion, a computation of the maximal principal stress σI is

required. Indeed, σI is deduced from the virial stress tensor σΩ thanks to the

linear algebra computations that able to compute eigenvalues (σXX , σY Y , σZZ) of

symmetric matrices [Str88]. The maximal principal stress is simply deduced as:

σI = max(σXX , σY Y , σZZ) (B.I.22)

If the maximal principal stress associated to an element exceeds the microscopic

Rankine fracture threshold σran
m , some of its connected cohesive beams will be

broken:

σI ≥ σran
m (B.I.23)

In the Hydrostatic criterion, the hydrostatic stress is computed by:

σhyd =
1
3

trace(σ)

If the hydrostatic stress associated to an element exceeds the microscopic

hydrostatic fracture threshold σhyd
m , some of its connected cohesive beams will

be broken:

σhyd ≥ σhyd
m (B.I.24)

In order to describe more precisely the fracture propagation, the cohesive

beams that have to be broken should be defined in a reasonable way. In the

previous studies of Andé et al., all the beams that belong to a discrete element

that reaches the microscopic fracture threshold were broken [AJI+13, JATI15]. As

a consequence, a debonded discrete element occurs and a debris is created. In the

present study, to avoid this problem, a new microscopic fracture mechanism was

proposed: only half of total cohesive beams that belong to the discrete element is

broken when the microscopic fracture threshold is reached (Fig. B.I.12). Hence,
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in the following parts of this dissertation to ensure an accurate investigation of

influences of damages on the apparent properties of material.

B.I.6 Conclusion

The main objective of this chapter is to explain the GranOO platform and some

key elements of the proposed Discrete Element Method, i.e. sample constructions,

main steps of a simulations and contact model. In addition, this chapter explained

how the proposed Discrete Element Method describes the thermal mechanical

behaviors and also fracture phenomena of continuous media. Furthermore, the

new developments of virial stress computation are also detailed. Due to the

lack of research on application of virial-stress-based modeling to continuous

media, several computational configurations were examined, i.e. neighbor levels,

microscopic fracture thresholds, microscopic fracture mechanisms (see B.I.5.2).

The obtained results show that the proposed microscopic fracture mechanism

and the microscopic Hydrostatic fracture criterion seem to be able to describe

accurately the damage propagation due to complex mechanical loading. These

configurations will be used in the next chapters in order to examine the adaptability

of the proposed method to study the damage phenomena resulting from thermal

expansion mismatch within heterogeneous material.
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Chapter B.II

Direct calibration method of

microscopic parameter

In the discrete element method, the physical phenomena could be considered in

2 scales: microscopic scale and macroscopic scale. The microscopic scale is related

to the properties of the discrete elements and interactions between them. Whereas,

the macroscopic scale is related to the apparent properties of the considered

material. Generally, the output macroscopic properties are different from the input

microscopic parameters. Therefore, the input microscopic parameters needs to be

carefully calibrated in order to obtain the expected value of macroscopic properties.

Up to now, calibration is usually achieved through a trial-and-error procedure

in which microscopic parameters are adjusted until the DEM results match the

expected macroscopic behavior. Such a calibration step is mandatory to achieve

quantitative results but it is a complicated and time consuming process. In order

to avoid this trial-and-error calibration, the relationships between macroscopic

outputs and microscopic parameters, called micro-to-macro relationship, has been

proposed in many DEM researches for different contact model. However, there

is a lack of calibration method that is dedicated to the Cohesive Beam Model

(CBM). Thus, this chapter presents a novel calibration method which allows to

compute directly the microscopic parameters of CBM from desired properties of

the modeled material.

68



B.II. Direct calibration method of microscopic parameter

B.II.1 Available calibration methods in

literature - a review

Many calibration methodologies has been reported in literature in order to avoid

the trial-and-error calibration. Among them, the dimensionless micro-to-macro

relationship has been introduced in different researches [FV07, ROLK11, YJL06].

In this calibration method, the evolution of macroscopic outputs are described

by functions of dimensionless entities, e.g. ratio between contact stiffness in

the normal direction and contact stiffness in the tangential direction. Rojek

et al. introduced a dimensionless micro-to-macro relationships for 2D and 3D

discrete element models [ROLK11]. These authors considered the contact model

which was determined by 7 microscopic parameters, i.e. 2 contact stiffnesses,

2 force limits, 2 damping coefficients and Coulomb friction coefficient. In the

cited research, the Unconfined Compression Tests (UCT) simulations was used

to obtain the Young’s modulus, compressive strength and the Poisson’s ratio of

rock. Whereas, the Brazilian test was used to determine the tensile strength.

Simulations of the UCT and Brazilian tests have been performed with different

values of stiffness ratio in order to provide specific curves that describe the micro-

to-macro relationships. Then, the microscopic parameters could be computed

based on the obtained curves. The proposed calibration method were applied

for modeling rock cutting and seemed to give satisfactory results. However,

this calibration method assumed that the normal and shear force limits were

equal. In addition, no analytic function was determined to describe micro-to-

macro relationships. An other methodology is the fitting approach, which allows

to compute microscopic parameters from macroscopic properties [HWP17]. Han et

al. propose a fitting function to determine relationship between macroscopic tensile

strength and the micro mechanical breakage parameters by using simulations of

Brazilian test [HWP17]. The proposed micro-to-macro relationship was then

validated through uniaxial tensile tests. In the cited research, the calibration

method is applied for only one macroscopic parameter and validated through only

one type of numerical experiment. The calibration methods for elastic parameters

was not discussed in this research of Han et al. The list of the main calibration

methods that were proposed in literature for continuous media is presented in Tab.

B.II.1. As mentioned previously, in this list, there is a lack of calibration method

that is dedicated to the Cohesive Beam Model.

Recognizing this issue, the present study proposes a novel calibration
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Tab. B.II.1: List of the main calibration methods in literature

Authors
Contact
model

Nb of
microscopic
parameters

in total

Nb of
considered
microscopic
parameters

Considered
macroscopic
parameters

*

Calibration
method

Input
simulations

**

Validation
simulations

***

J. Rojek
E. Onate

(2011)

Spring
-like

contact
7 4

E
ν

σt

Dimension
-less

method

Unconfined
compressive
test (UCS),
Brazilian

test

Rock
cutting

B. Yang,
Y. Jiao,
(2006)

Parallel
-bond

12 4
E
ν

σc

Dimension
-less

method

Biaxial
test

Biaxial
test

A. Fakhimi
T. Villegas

(2006)

Slightly
overlapped

circular
particle

interaction

8 4
E
ν

σt

Dimension
-less

method

UCS,
Brazilian

test

Biaxial
test,

Brazilian
test

Z. Han,
R. Puscasu

(2017)

Spring
-like

contact
6 2 σt

Fitting
method

Brazilian
test

Tensile
test

* E, ν, σt, σc are Young’s modulus, Poisson’s ratio, tensile strength and compressive strength

*The simulations that were used to generate data to analyze the micro-to-macro relationships

***The simulations that were used to validate the proposed micro-to-macro relationships

method which allows direct computation of DEM microscopic parameters from

experimental values of mechanical properties of materials. In other words, the

mechanical properties of simulated materials could be used directly to perform

quantitative DEM simulations. Further more, the influences of arrangement of

discrete elements on macroscopic outputs, which has not been discussed in the

cited researches (Tab. B.II.1), was also taken into account. The proposed direct

calibration method could eliminate the need of repeating trial-and-error calibration

and facilitate the usage of DEM for non-specialists. The following section describes

in detail the proposed direct calibration method.
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B.II.2 Direct calibration of microscopic

elastic parameters

B.II.2.1 Tensile test simulations: database to analyze

micro-to-macro relationships

In order to define the analytical expressions of micro-to-macro relationships in

Cohesive Beam Model, data of macroscopic responses need to be generated from

a series of simulations with reasonable ranges of microscopic parameters. In this

study, the relationships between microscopic parameters and macroscopic outputs

of CBM were deduced from simulations results of uniaxial tensile tests, whose

the configuration is described in section B.I.4.3.a. The tensile test was used to

generate data since all the important mechanical properties that describe a brittle

elastic material could be measured by this type of simulation, i.e. Poisson’s ratio,

Young’s modulus and later, the tensile strength. The simulations were carried out

with different values of microscopic parameters (Table B.II.2). The total number

of simulations was 4 × 5 × 5 × 16 = 1, 600 for this parametric study. Each set of

microscopic parameters (rm, Em, cn) gives an unique set of macroscopic outputs

(νM , EM). Based on the obtained data, nonlinear least squares method [Lev44,

Mor78] was applied in order to define the analytical expressions, called fitting

functions, that best describe the micro-to-macro relationships.

Tab. B.II.2: Value of microscopic parameters

Values Tot. number

Sample 1 2 3 4 4
Em (GPa) 500 1000 1500 2000 2500 5

rm (-) 0.2 0.4 0.6 0.8 1.0 5
cn (-) 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12.5 13 16

The main steps to define and validate the elastic micro-to-macro relationship

are illustrated in Fig. B.II.1. As discussed previously, in CBM, there are 3

microscopic parameters that influence macroscopic outputs: rm, Em and cn. Since

the determination of analytical expression that contains all of these 3 parameters

is not simple, the evolution of elastic macroscopic outputs in function of rm and

Em was firstly investigated, without influence of cn (see f1 and f2 in step 1). Then,

the evolution of coefficients that are involved in f1 and f2 were studied (step 2).
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The determination of analytical expressions in step 1 and step 2 has the same

principles which contains two tasks:

• Selection of a type of analytical expression in order to fit the data;

• Refinement of the involved coefficients within the analytical expressions

thanks to nonlinear regressions.

After the selection of the most relevant analytical expressions and nonlinear

regression, the obtained fitting functions were verified by using academic test cases,

i.e. tensile tests and hydrostatic compression tests. The goal of this work is to

propose a fast and robust DEM calibration method that allows direct deduction

of microscopic parameter values from material properties.

B.II.2.2 Elastic micro-to-macro relationships

B.II.2.2.a Selection of fitting functions - the main principles

There are probably many functions which can describes the micro-to-macro

relationships of CBM. Therefore, the following criteria were defined in order to

select the fitting function:

1. The coefficient of determination must be close to 1: R2 ∈ [0.99; 1];

2. The relative difference between the fitted curves/surfaces and the data

scatter must be lower than 1%;

3. The evolutions of coefficients involved in fitting functions f1 and f2 versus

coordination number must be describable by fitting functions F ′

1, F ′

2, ...;

4. If many functions satisfy three previous criteria, the function that involves

the lowest number of coefficients is chosen;

5. The fitting function must be validated by it’s application to different DEM

simulations, i.e. uniaxial tensile tests and hydrostatic compression tests.

As shown in Fig. B.II.1, in order to determine the elastic micro-to-macro

relationships of CBM, the following steps were carried out :

1a. As it was observed in the previous study of André et al. [And12], in

this study, macroscopic Poisson’s ratio νM is independent from microscopic

Young’s modulus Em. Therefore, νM was firstly considered to depend only

on rm. The following fitting function was investigated: νM = f1(rm);
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In the considered fitting functions (Eq. B.II.1 and B.II.2), the coefficients

a1, b1, c1, d1 and a2, b2, c2, d2 depend on coordination number. Again, analytical

expressions of relationships between these coefficients and coordination number

cn were found by using the nonlinear least squares method. The chosen fitting

functions are :

coeff1 = F1(cn) = A1 + B1.tanh[C1.(cn− 7) + D1] (B.II.3)

coeff2 = F2(cn) = A2 + B2.cn + C2.cn2 + D2.cn3 (B.II.4)

In these formulas, coeff1 is related to a1, b1, c1, d1 whereas coeff2 is associated

to a2, b2, c2, d2. For more clarification, the following expressions describe the

evolutions of a1, b1, c1, d1 and a2, b2, c2, d2 :

a1 = F ′

1(cn); b1 = F ′′

1 (cn); c1 = F ′′′

1 (cn); d1 = F ′′′′

1 (cn)

a2 = F ′

2(cn); b2 = F ′′

2 (cn); c2 = F ′′′

2 (cn); d2 = F ′′′′

2 (cn)

where: F ′

1, F ′′

1 , F ′′′

1 , F ′′′

1 are different variants of F1 and F ′

2, F ′′

2 , F ′′′

2 , F ′′′′

2 are different

variants of F2.

The fitted curves associated to Eq. B.II.3 are shown and detailed in Fig. B.II.3

and Tab. B.II.3. The fitted curves associated to Eq. B.II.4 are shown and detailed

in Fig. B.II.4 and Tab. B.II.4.

Tab. B.II.3: Values of A1, B1, C1, D1 in Eq. B.II.3

coeff1 A1 B1 C1 D1

a1 0.430 -0.185 0.373 0.026
b1 -0.500 0.503 0.423 -0.079
c1 0.257 -0.495 0.518 -0.110
d1 -0.105 0.168 0.602 -0.137

Tab. B.II.4: Values of A2, B2, C2, D2 in Eq. B.II.4

coeff2 A2 B2 C2 D2

a2 -0.0229 0.0145 -0.0021 0.0001
b2 0.2072 -0.1454 0.0213 -0.0007
c2 -0.3658 0.2543 -0.0306 0.0011
d2 -0.0151 0.0270 0.0142 -0.0005
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the Equations B.II.1, B.II.2, B.II.3 and B.II.4 were chosen to describe the elastic

micro-to-macro relationships of CBM.

B.II.2.2.c Deduction of microscopic parameters from elastic properties

of material - Reverse analysis

As it was shown previously, the proposed fitting functions allow us to compute

the macroscopic properties from the microscopic parameters of CBM. However,

in practice, the purpose is to compute microscopic parameters from macroscopic

properties of material in order to performed quantitative DEM simulations.

Therefore, in this study, the microscopic parameters are deduced from elastic

properties of material by using a reverse analysis, which could be divided in 3

steps (Fig. B.II.5):

1. Firstly, from a given value of coordination number, the coefficients of fitting

functions νM = f1(rm) and EM = f2(Em, rm) are deduced by using Eq.

B.II.3 and B.II.4. In this study, the coordination number is in range from 6

to 13.

2. Secondly, the value of rm is computed from the Poisson’s ratio of material

(νM) by solving Eq. B.II.5. Theoretically, this third order equation could

have three solutions. However, in this study, only solution in range from 0 to

1 of this equation is taken into account: rm ∈ ]0; 1]. This condition ensures

mainly the uniqueness of solution.

a1 + b1.rm + c1.r
2
m + d1.r

3
m − νM = 0 (B.II.5)

3. Finally, the value of Em is computed from the Young’s modulus of material

(EM) and the obtained value of rm from previous step, by solving the

following equation:

Em =
EM

(a2 + b2.rm + c2.r2
m + d2.r3

m)
(B.II.6)

As explained, the proposed fitting functions allow to compute directly elastic

microscopic parameters from elastic properties of material. This calibration

method will be validated hereafter.
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computed for the two reference materials by using the proposed fitting functions

(Eq. B.II.1, B.II.2, B.II.3, B.II.4). These values were used as microscopic

parameters to perform tensile test simulations. The macroscopic Young’s modulus

and Poisson’s ratio computed by these numerical tests were then compared to the

corresponding values of reference materials (Table B.II.5).

Validation results are summarized in Tables B.II.6 and B.II.7. As expected,

the maximal difference between computed value and targeted values is lower than

2%, which is an acceptable result.

Tab. B.II.6: Validation results through uniaxial tensile test for glass

cn
rm

(-)
Em

(GPa)
Targeted

ν (-)
Computed
νM (-) *

Difference
(%)

"Targeted"
E (GPa)

Computed
EM (GPa) *

Difference
(%)

6 0.506 613.94 0.230 0.231 0.533 72.0 72.26 0.365
7 0.461 613.52 0.230 0.230 0.000 72.0 72.06 0.085
8 0.417 636.18 0.230 0.230 0.000 72.0 71.61 0.538
9 0.380 655.58 0.230 0.230 0.000 72.0 72.44 0.616
10 0.348 677.94 0.230 0.230 0.000 72.0 71.74 0.364
11 0.320 705.07 0.230 0.230 0.000 72.0 71.36 0.884
12 0.298 723.72 0.230 0.230 0.000 72.0 71.00 1.378
13 0.283 725.14 0.230 0.230 0.000 72.0 71.22 1.077

* Average result of the simulations with 4 different samples

Tab. B.II.7: Validation results through uniaxial tensile test for alumina

cn
rm

(-)
Em

(GPa)
Targeted

ν (-)
Computed
νM (-) *

Difference
(%)

"Targeted"
E (GPa)

Computed
EM (GPa) *

Difference
(%)

6 0.478 3378.29 0.240 0.241 0.490 340.0 341.37 0.404
7 0.431 3439.53 0.240 0.240 0.000 340.0 340.29 0.085
8 0.384 3695.23 0.240 0.240 0.000 340.0 337.98 0.593
9 0.338 4058.51 0.240 0.240 0.000 340.0 341.88 0.554
10 0.294 4646.18 0.240 0.241 0.324 340.0 337.70 0.677
11 0.251 5576.21 0.240 0.241 0.353 340.0 335.66 1.276
12 0.215 6820.35 0.240 0.240 0.000 340.0 336.62 0.995
13 0.189 8187.01 0.240 0.239 0.404 340.0 345.80 1.705

* Average result of the simulations with 4 different samples

B.II.2.3.b Validation through hydrostatic compression test simulation

In order to reinforce the validity of the proposed calibration method, it’s sensitivity

is examined by changing sample shape, sample size, discrete element number and

boundary conditions. For this purpose, hydrostatic compression test was used

to determine bulk modulus of reference materials. In the proposed configuration
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of hydrostatic compression test, spherical samples have diameter of 10 mm and

contain around 15,000 discrete elements (Fig. B.II.6)

Fig. B.II.6: Configuration of hydrostatic compression test simulation

According to mechanical theory, the bulk elastic properties of a material

determines how much it will compress under a given pressure. However, in discrete

element framework, the pressure could not be computed in the same way as in the

theoretical definition. Thus, in order to simulate an "equivalent pressure", external

forces are uniformly imposed to all discrete elements that belong to the surface of

the spherical sample. More specifically, the applied forces have the same value, but

different directions, which depend on relative position vectors between the center

of sample and discrete elements (Fig. B.II.6). Hence, the imposed pressure can be

computed as:

P =
1
S

N
∑

j=1

fj =
1

4ΠR2

N
∑

j=1

fj (B.II.7)

where j is an element that belongs to the sample surface, fj is the value of imposed

force on element j, S is the total surface and R is sample radius.

In the DEM simulation, the bulk modulus K of material was computed by

dividing the imposed pressure by the fractional volume compression of sample

(Eq. B.II.8).

K = − P

∆V

V

(B.II.8)

where V is the sample volume, ∆V is the volume change and P is the imposed

pressure.
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However, according to the elasticity theory, the bulk modulus can be computed

through Young’s modulus and Poisson’s ratio as:

K =
E

3(1− 2ν)
(B.II.9)

Hereafter, the results of DEM simulations is confronted with elasticity theory. On

the one hand, theoretical bulk modulus values of glass and alumina were computed

by using Eq. B.II.9 and Table B.II.5. Thus, the theoretical bulk properties of glass

and alumina are 44.4 GPa and 218.0 GPa, respectively. On the other hand, values

of macroscopic bulk modulus KM were measured through DEM simulations, using

Eq. B.II.7 and B.II.8. These numerical results are then compared to the theoretical

values.

Series of hydrostatic compression tests were performed in order to validate

the proposed micro-to-macro relationships. More specifically, value of microscopic

parameters, computed by using the proposed fitting function, were used as input

parameters of DEM simulations (Tab. B.II.6, B.II.7). As expected, validation

results (Table B.II.8 and B.II.9) show that difference between numerical and

theoretical values of bulk modulus are lower than 2% for the two reference

materials. Consequently, the proposed micro-to-macro relationship, related to

elastic behavior, can be validated through hydrostatic compression test.

Tab. B.II.8: Validation results through hydrostatic compression test for glass

cn
rm

(-)
Em

(GPa)
Targeted
K (GPa)

Computed
KM (GPa) *

Difference
(%)

6 0.506 613.94 44.4 44.319 -0.282
7 0.461 613.52 44.4 44.555 0.249
8 0.417 636.18 44.4 44.428 -0.036
9 0.380 655.58 44.4 44.564 0.269
10 0.348 677.94 44.4 44.566 0.274
11 0.320 705.07 44.4 44.320 -0.280
12 0.298 723.72 44.4 44.201 -0.548
13 0.283 725.14 44.4 44.307 -0.310

* Average result of the simulations with 4 different samples

B.II.2.4 Partial conclusions

Up to now, the calibration of microscopic parameter is still a major challenge for

DEM research. In the literature, there is a lack of research that is dedicated to this

problematic, especially in continuous media modeling. In this section, the elastic
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Tab. B.II.9: Validation results through hydrostatic compression test for alumina

cn
rm

(-)
Em

(GPa)
Targeted
K (GPa)

Computed
KM (GPa) *

Difference
(%)

6 0.478 3378.29 218.0 215.312 -1.210
7 0.431 3439.53 218.0 216.325 -0.745
8 0.384 3695.23 218.0 215.526 -1.112
9 0.338 4058.51 218.0 216.146 -0.827
10 0.294 4646.18 218.0 216.054 -0.869
11 0.251 5576.21 218.0 214.793 -1.448
12 0.215 6820.35 218.0 215.718 -1.024
13 0.189 8187.01 218.0 221.124 1.457

micro-to-macro relationships were proposed to be described by fitting functions.

These mathematical functions were deduced from the data resulting from 1,600

simulations by using the nonlinear regression technique. One tensile test

simulation lasts around 2 hour, therefore, the data generation process took around

15 days (360 hours) by using the computation server that could run simultaneously

8 simulations. The proposed fitting functions were then examined through

uniaxial tensile tests and hydrostatic compression tests. Indeed, the proposed

calibration method remained accurate with different configurations of simulation,

i.e. loading, sample shape/size, discrete element numbers. Consequently, the

proposed calibration method allows to compute precisely the elastic microscopic

parameters, regardless of type of numerical experiment, discrete elements number

and geometrical properties of sample. The direct calibration method of microscopic

fracture threshold will be proposed in the next section.

B.II.3 Direct calibration of microscopic fracture

threshold

B.II.3.1 Tensile test simulation: database to determine

fitting function

In this section, relationships between macroscopic tensile strength σM and

microscopic parameters are studied. In addition to the microscopic elastic

parameters, the microscopic fracture threshold σm was considered in this analysis.

Following the same method used in Sect. B.II.2, series of tensile test simulations

with different values of (Em, rm, σm and cn) were carried out in order to determine
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micro-to-macro relationships which involve the microscopic fracture parameter.

The total number of simulations is 4× 4× 5× 10× 8 = 6, 400 for this parametric

study (Table B.II.10). Due to a high number of simulations, the data generation

was carried out on a new computational server of IRCER laboratory, which could

run simultaneously 32 simulations. The data generation time was then reduced

from 60 days to 15 days for this parametric study.

Tab. B.II.10: Value of microscopic parameters

Values Tot. number

Sample 1 2 3 4 4
Em (GPa) 500 1000 1500 2000 4

rm (-) 0.2 0.4 0.6 0.8 1.0 5
σm (MPa) 2 4 6 8 50 100 300 500 700 1000 10

cn (-) 6 7 8 9 10 11 12 13 8

The main steps to determine the fitting functions that describe the fracture

micro-to-macro relationships are synthesized in Fig. B.II.7.

Theoretically, the macroscopic fracture tensile strength σM depends on 4

microscopic parameters: rm, Em σm and cn. However, after a first analysis, it

was observed that σM is proportional to σm. Moreover, the ratio between σM and

σm does not depend on microscopic Young’s modulus Em. Therefore, a fitting

function of this ratio versus rm and cn is expected:
σM

σm

= f3(rm, cn). The number

of variables was reduced from 4 to 2. Consequently, this approach made the

regression more simple. The determination of analytical expressions contains two

tasks:

• Selection of a type of analytical expression in order to fit the data;

• Refinement of the involved coefficients within the analytical expressions

thanks to nonlinear regression.

After the selection of the most relevant analytical expression and nonlinear

regression, the obtained fitting function was verified by simulations of common

destructive tests, i.e. Brazilian tests and torsion tests.

B.II.3.2 Fracture micro-to-macro relationships

B.II.3.2.a Selection of fitting function

The selection of fitting function that describe the fracture micro-to-macro

relationship must satisfy the following criteria:
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discrete elements. According to experimental and numerical studies in literature,

crack initiation at the center of the disk sample is considered to be crucial for the

test validity [WJK+04, Fai64, EW12]. C. Fairhurst, in [Fai64], stated that “ failure

may occur away from the center of the disk for small angles of loading contact area

with material of low compression tension ratios. In such cases, the tensile strength

as usually calculated from test results, is lower than the true value". Conforming

to this observation, opposite vertical displacements are imposed on two circular

arcs of 2α=24◦ of virtual sample (Fig. B.II.11).

Fig. B.II.11: Configuration of the virtual Brazilian test

Vertical forces at upper and lower loading area, Pup and Pdown respectively,

resulting from the imposed displacement are measured during simulations. Hence,

the average applied force P is computed as:

P =
|Pup|+|Pdown|

2
(B.II.13)

According to literature [WJK+04], the tensile strength can be computed as:

σM =
2 · Pc

π · t ·D (B.II.14)

where Pc is the critical load (it is also the maximum applied load during the test),

t and D are the disk thickness and diameter, respectively.

The typical behaviours resulting from the Brazilian test simulation are reported

in Fig. B.II.12, B.II.13, and B.II.14. In Fig. B.II.12, a sudden decreasing of the

average force P indicates the failure of the virtual sample. The corresponding

value of P is considered as the critical load in order to compute the macroscopic
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tensile strength σM of the sample by using Equation B.II.14. Fig. B.II.13 shows

that the crack is initiated near the center of the disk and propagate along vertical

diameter, as expected. Consequently, the crack initiation and propagation are

relevant with theoretical predictions and experimental observations [EW12].

In order to highlight the interest of the virial stress computation, as described in

section B.I.5, the evolution of stress along the diameter is monitored. Fig. B.II.14

shows both the theoretical horizontal stress evolution and the numerical one. This

comparison was performed before the failure of sample, when the applied force

P ≈ 36.48 kN (Fig. B.II.12). The theoretical stress distribution on the loading

diameter is given by the following relationship [Hon59] [SAKK07]:

σ =
2p

π

{

sin 2α

1− 2ρ2 cos 2α + ρ4

[

1− ρ2
]

− arctan

[

ρ2 sin 2α

1− ρ2 cos 2α

]

− α

}

(B.II.15)

where :

• σ is the horizontal normal stress,

• p is the load per unit area,

• t is the disk thickness,

• R is the disk radius of the disk,

• r is distance from a point in disk to the center,

• ρ is equal to r/R and

• α is the half central angle of the applied distributed load.

Please notice that, in Fig. B.II.14, the numerical blue curve is given thanks to

the Gaussian Kernel interpolation method available in the Paraview software. This

figure reveals a good quantitative accordance between theoretical curve (continuous

dotted curve) and numerical curve, although there are discrepancies towards the

loading areas. The possible reason for these discrepancies may come from the edge

effect that influence the virial stress computation at the boundaries. In fact, at

the boundaries of domain, discrete elements are cut by domain boundaries, then

their coordination numbers are one half of the coordination numbers of the internal

elements. This could raise errors in the computation.

Based on the typical behaviors resulting from the Brazilian test simulation, it

is noticed that the proposed fracture criterion (section B.I.5) and the virial stress
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B.II.3.3.b Validation through torsion test simulation

In this section, the proposed calibration method is applied for brittle torsion

test simulation. Fig. B.II.15 presents the geometric model used to simulate the

quasi-static torsion test. The virtual cylindrical samples have diameter of 4 mm,

radius

xMax

xMin

Fig. B.II.15: Discrete domain for torsion tests

length of 100 mm and contain around 10,000 discrete elements. The samples are

subjected to progressive rotations φx and −φx about the X axis on the xMin and

xMax opposite faces. The coordination number is arbitrary set at 10 and the

corresponding values of microscopic parameters (i.e. rm, Em and σm, Tab. B.II.12,

B.II.13) are used to perform simulations of both reference materials.

To compute the macroscopic fracture stress, the forces Fp and torques Mp

applied on opposite faces are monitored. The macroscopic torsion torque MMx

can be obtained from these quantities as follows:

MxMin
Mx =

NxMin
∑

p=1

(Mp + O1Gp ∧ Fp) .X (B.II.16)

MxMax
Mx =

NxMax
∑

p=1

(Mp + O2Gp ∧ Fp) .X (B.II.17)

where the points O1 and O2 are the centers of xMin and xMax faces and GP is

the center of a discrete element p. Then, the macroscopic torsion torque MMx is

taken as the mean of MxMin
Mx and MxMax

Mx . Based on the material strength theory,

the maximal macroscopic shear stress can be obtained as:

τMmax
=

MMx

Io
RM (B.II.18)
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Tab. B.II.14: Torsion simulation results

rm σm (MPa)
Targeted
σ (MPa)

Computed
σM (MPa) *

Difference
(%)

Glass 0.348 60.08 50 53.04 6

Alumina 0.294 461.84 380 394.23 3.69

* Average result of the simulations with 4 different samples

(a) View showing all discrete elements (b) View showing only critical
elements

Fig. B.II.17: View of crack path in a torsional test; the discrete elements in which the fracture
criterion is fulfilled are highlighted

B.II.3.4 Partial conclusions

In this study, the fracture macro-to-micro analysis were validated through Brazilian

tests and torsion tests. As expected, the proposed fitting function allows to

compute accurately the microscopic fracture threshold to reach the tensile strength

of reference materials. Combining with the elastic macro-to-micro analysis (Sect.

B.II.2), this methodology enables a direct deduction of microscopic parameters of

CBM from mechanical properties of elastic brittle material, which is described by

Poisson’s ratio, Young’s modulus and tensile strength. This calibration method

ensures also an unique solution of microscopic parameters to match the expected

macroscopic behaviors. Moreover, the virial stress concept seemed to be able

to describe the crack phenomena, in terms of crack position and crack path,

in comparison with experimental observations. These results were published in

the Computational Particle Mechanics international journal [NAH19]. Hereafter,

the virial stress concept will be further examined through its application to the

modeling of residual stresses induced by thermal expansion mismatch.
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B.II.4 Application to the modeling of thermal

stresses in elementary composite material

B.II.4.1 Introduction

This section deals with the modeling of thermal stress due to thermal expansion

mismatch within composite materials. Indeed, simulations of cooling stage

of different composite-like materials were performed by using DEM and FEM

approaches. In these preliminary simulations, the single-particle configuration was

used for its simplicity. The stress field obtained with DEM was then confronted

with FEM results and theoretical predictions to verify accuracy of the virial stress

computation. In this study, two cases of thermal expansion mismatch are studied:

• thermal expansion coefficient of matrix is higher than inclusion: ∆α > 0

• thermal expansion coefficient of matrix is lower than inclusion: ∆α < 0.

The purpose is to confront the developed stress computation of DEM with FEM

and theoretical approaches, which has been well developed in the literature. In

the present study, the model materials used by Tessier-Doyen [TD03], which

exhibit the considered cases of thermal expansion mismatch, were used as reference

materials, i.e. Cofer glass-alumina and BA glass-alumina composites (Section

A.I.3). Hereafter, Cofer glass - alumina and BA glass - alumina composites are

called material 1 and material 2, respectively. The experimental values of thermo

mechanical properties of the components of reference materials are synthesized in

Tab. B.II.15

Tab. B.II.15: Thermo-mechanical properties of reference composite materials
[TD03]

Properties Cofer glass matrix BA glass matrix Inclusion

Young’s modulus E (GPa) 72 68 340
Poisson’s ratio ν (-) 0.23 0.20 0.24
Tensile strength σ (MPa) 60 86 300*
Coef. of thermal expansion α (°K−1) 11.6e-6 4.6e-6 7.6e-6
Glass transition temperature (°C) 455-475 575-595 -

* Value from literature

In first step, the elastic behavior was investigated and damages were not

modeled. Hence, in these first simulations, the decrease of temperature was set at

120°C in order to generate thermal residual stresses without any damage.
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In second step, the damages due to thermal expansion mismatch during cooling

were modeled by using DEM approach. In these simulations, in order to generate

the thermal damages, the reference materials were subjected to a critical decrease

of temperature, from the vitreous transition temperature of glass matrices (Tg)

to ambient temperature (20°C). Indeed, reference materials exhibit a visco-elasto-

plastic behavior when the temperature is greater than Tg. However, since this

study focused only on solid behaviors, temperatures higher than Tg were not

considered.

In the research of Tessier-Doyen [TD03], the transition temperature of glasses,

determined by dilatometry experiments, corresponded to an interval of temperature

(Tab. B.II.15). In the present study, the starting point of cooling simulation

was tested with both maximal and minimum value of transition temperature.

However, the minimum value seemed to give more relevant results in comparison

with experimental ones. Consequently, only the results associated to the minimum

value of Tg will be discussed in this section. The starting points of cooling

simulations were 455 and 555°C for material 1 and material 2, respectively. The

resulting damages were then compared to the experimental observations in order

to examine the adaptability of the proposed DEM model to study the thermal

damage phenomena.

B.II.4.2 Modeling configuration: single-inclusion

composite

B.II.4.2.a Discrete element modeling

In this study, the numerical results will be compared with theoretical predictions

of thermal stresses. In the compared theoretical prediction, the configuration of

a spherical inclusion embedded in an isotropic infinite matrix was used [LSB00].

However, the boundary condition that is usually used in FEM approach to describe

the assumption of infinite media, e.g. periodic boundary condition, has not yet

been available in the developed DEM. Therefore, in the performed numerical

simulations, the concept of Representative Elementary Volume (REV) was used.

More specifically, a cubic sample with a spherical inclusion embedded inside

was modeled. The length of edges of the cubic sample and the radius of the

inclusion were set to be equal to 2.2 mm and 0.275 mm, respectively (Fig. B.II.18)

These specific dimensions ensured the accuracy of simulations with a reasonable

time cost. Indeed, it was a compromise between number of discrete elements
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surfaces of FEM samples were free to shrink during cooling stage. As illustrated

in Fig. B.II.21, the displacements at the centers of 3 surfaces of sample are

clamped along the direction of sample edges. These boundary conditions prevent

the movements of rigid bodies, which are forbidden in static FEM simulations.

Fig. B.II.21: Boundary conditions of FEM simulation

The thermo mechanical properties of references materials were then used to

performed simulations (Tab. B.II.15).

B.II.4.3 DEM-FEM confrontation: validation of virial-

stress-based modeling

B.II.4.3.a Principles of DEM-FEM comparison

In this study, the modeling of thermal stress was performed for the two reference

materials. Firstly, the comparison of stress fields on the vertical median cross

section of the sample were carried out (Fig. B.II.22(a)). Secondly, the comparison

was further investigated by evaluating the thermal stress profile within the

horizontal median line of the considered cross section (Fig. B.II.22(b)).

As it was shown previously, the discretization methods used in DEM and

FEM are different (figures B.II.19(b) and B.II.20(b)). Therefore, the stress values

obtained by DEM and FEM needed to be extracted in a common grid/line in order

to perform quantitative comparisons. More specifically, the stress values on the

median cross section were extracted by using the Gaussian kernel interpolation tool

in Paraview software. The first analyses showed that the shear stress components

were negligible in comparison with normal stress components. Hence, the present

comparison focused only on the normal stress components, i.e. σxx, σyy and σzz.
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(a) Vertical median cross section (b) Horizontal median line

Fig. B.II.22: Investigated zone of stress field comparison

Moreover, in order to decrease the effect of the random filling process of sample

construction (Sect. B.I.3), the DEM results was obtained by averaging the results

of 5 different discrete samples. In summary, the DEM-FEM comparison were

accomplished in 3 steps (Fig. B.II.23):

1. Gaussian kernel interpolation of DEM results of 5 discrete samples on

a common grid for the vertical median cross section. This enables the

computation of average results of 5 samples which have different spatial

distributions of discrete elements. In this study, the grid has configuration

of 500×500 points. Thus, the average DEM results could be easily computed

on this common grid;

2. Gaussian kernel interpolation of FEM results on the same grid that was used

for averaging DEM results;

3. Computation of difference between DEM and FEM results in the common

grid

In a further step, the numerical results were confronted with theoretical

predictions to examine the accuracy of performed simulations. In this section,

the theoretical prediction of thermal stress proposed by Lauke et al. [LSB00] is

used (equations B.II.21 and B.II.22).

σ
p
rad =

12GmKp (αm − αp) ∆T

4Gm + 3Kp

, σ
p
orth = σ

p
rad (B.II.21)
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Tab. B.II.17.

Tab. B.II.17: Thermal stresses within the matrix due to thermal expansion
mismatch

Materials ∆α Radial stress Orthoradial stress
Material 1 (Cofer-alumina) αm > αp Compressive Tensile
Material 2 (BA-alumina) αm < αp Tensile Compressive

Logically, the accuracy of stress computation is crucial for the modeling of

damage phenomena. However, up to now, the accuracy of virial stress computation

in DEM has not usually been investigated. Whereas, the stress computation of

FEM and theoretical approaches has been developed for a long time. Therefore,

in this study, the DEM was confronted with these approaches in order to verify its

adaptability to study the thermal damage phenomena.

B.II.4.3.b Case of cofer-alumina composite

The DEM-FEM comparison of stress field for material 1 are synthesized in Fig.

B.II.24, which correspond to the case αm > αp. In this figure, the first column,

i.e. figures B.II.24(a), B.II.24(d) and B.II.24(g), corresponds to DEM results. The

second column, i.e. figures B.II.24(b), B.II.24(e) and B.II.24(h), corresponds to

FEM results. These first two columns illustrate that, the normal stress components

(σxx, σyy, σzz) on the median cross section obtained by DEM and FEM are quite

identical. Indeed, the inclusion is under compressive stresses, whereas, the matrix

is under both tensile stress and compressive stresses. These observations are

compatible with theoretical predictions of thermal stress proposed in [LSB00].

In the third column, i.e. figures B.II.24(c), B.II.24(f) and B.II.24(i), the

absolute differences between DEM and FEM results are shown:

Absolute difference = σDEM
ii − σF EM

ii where ii = xx, yy, zz (B.II.23)

As illustrated, the differences are quite acceptable. Indeed, the DEM-FEM

difference in the matrix varied mainly from 2 to 5 MPa. Whereas, the difference

in the inclusion varied from 2 to 8 MPa. The highest value of difference, about 8

MPa, were detected in the interfacial zone between matrix and inclusion.

Finally, the confrontation between DEM, FEM and theoretical approaches

is shown in Fig. B.II.25. As illustrated, the normal stress profiles (σxx, σyy,

σzz) within the median line obtained by FEM, DEM and theoretical approaches

(Eq. B.II.21 and B.II.22) show a good accordance. It can also be observed
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B.II.4.5 Partial conclusions

The confrontation with FEM and theoretical approaches reveals the adaptability

of the proposed discrete elements method to simulate the thermal stress due to

thermal expansion mismatch and the associated damage phenomena. Indeed,

in these preliminary configurations, i.e. single-inclusion composite, the virial-

stress-based modeling given acceptable stress fields for 2 reference materials, in

comparison with the FEM and theoretical approaches. Moreover, in the thermal

damages modeling, the DEM produced quite adequate damage propagations,

i.e. radial crack and debonding, in comparison with experimental observations

available in the literature [TD03, Jol06]. The influence of thermal damages on the

reference material will be further investigated in the case of multi-inclusion in part

C.

B.II.5 Conclusion

The main objective of this chapter was to explain the direct calibration method

and the virial stress concept. Indeed, the proposed calibration method allows

us to compute directly the microscopic parameters from mechanical properties of

material, regardless of type of numerical experiment, discrete elements number

and geometrical properties of sample. This could eliminate the classical trial-and-

error calibration method which is complicated and time consuming. The validation

results highlight the accuracy of the proposed calibration method through different

simulations, i.e. uniaxial tensile tests, hydrostatic compression tests, Brazilian

tests and torsion tests. Up to now, this kind of macro-to-micro analysis has not

been well established in the literature. Therefore, the direct calibration method

was an important part of the present research. Moreover, the adaptability of virial-

stress-based modeling to study thermal residual stresses and associated damages

were also investigated on single-inclusion composites in this chapter (see B.II.4).

In fact, the virial stress has been widely used in DEM only as a post-treatment

analysis. However, this kind of computation has not been applied to the modeling

of fracture phenomena, especially for continuous media. Thus, in the present

research, the accuracy of the virial stress computation was evaluated with high

attention. In the first simulations with single-inclusion configuration, the DEM

results showed qualitatively and quantitatively a good agreement with FEM and

theoretical results. These results validated the stress computation at scale of

discrete element by using the proposed virial stress concept. Thus, this concept
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was used in order to investigate the thermal damages by using the microscopic

fracture threshold developed in Sect. B.I.5. As expected, the damage propagations

in the 2 reference materials obtained by DEM were compatible with experimental

observations [TD03, Jol06]. The influence of the damage phenomena due to

thermal expansion mismatch will be further investigated in Part C by using multi-

inclusion composites.
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Numerical modeling of

microstructure-properties

relationship of model materials
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Introduction

Part C focuses on the modeling of thermal damage phenomena and their influence

on apparent behaviors of model materials. Again, the model material developed by

Tessier-Doyen [TD03] were used in this part to evaluate numerical results obtained

by DEM. Part C includes two chapters.

The first chapter is dedicated to the main steps of cooling simulation. Virtual

samples that contain multiple spherical inclusions are used in order to reproduce

Statistical Volume Element of model materials. In order to study the influence

of alumina content on the damage phenomena, three volume fractions were

considered: 15%, 30% and 45%. The main assumptions that were used in part C

are also detailed.

The second chapter presents the confrontation of DEM results against

experimental data of Tessier-Doyen as well as the Hashin & Strickman model.

The evolution of Young’s modulus and coefficient of thermal expansion (CTE)

as functions of temperature is investigated, regarding the effect of thermal

damages. In addition, qualitative DEM results of nonlinear tensile behavior of

model materials are discussed, regarding the experimental observations that were

reported in literature. These comparisons allows to evaluate the ability of the

developed DEM modeling platform to model complex damage phenomena and

their effects on thermomechanical properties of heterogeneous materials.
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More specifically, the generation of multi inclusion sample was carried out through

3 steps (Fig. C.I.2).

Step 1 - Generation of homogeneous discrete domain: in this step, the

Cooker algorithm is used to create homogeneous domain (Sect. B.I.3.2);

Step 2 - Creation of each inclusion: From the initial domain and the targeted

properties (volume fraction of inclusion, average radius of inclusion and

radius dispersion), inclusions are created one by one thanks to a finite loop.

In this step, the center of spherical inclusion is distributed randomly within

the homogeneous domain. The radius of inclusion varies randomly around an

averaged value with a predefined dispersion. More specifically, a controlled

number of discrete elements around the center of new inclusion are assigned

to a temporary set of elements. The distance between the affected elements

and the center of new inclusion must be lower than the radius of inclusion.

During this process, the overlapping between inclusions is forbidden. If

overlapping between the temporary set of elements with the other inclusions

is detected, the affected discrete elements are withdrawn from this temporary

set. Then, the insertion of newest inclusion restarts by choosing an other

position of inclusion center. Step 2 is repeated until the insertion of new

inclusion succeeds and the process switches to the next step;

Step 3 - Computation of volume fraction of inclusion: in this step, the

current volume fraction of inclusion is computed in order to control the

creation of inclusions. In this study, the computation of volume fraction

involves only number of interaction pair that link discrete elements together

(Sect. B.I.3.2). Here, the heterogeneous sample could have three types of

interaction pairs (called bond): matrix, inclusion and interface bonds (Fig.

C.I.1(b)). In the present research, for simplicity, the interface bonds that link

matrix discrete elements and inclusion discrete elements were considered to

have properties of inclusion bonds. The proposed computational method of

volume fraction will be detailed in the next section.

Steps 2 and step 3 are repeated until the current volume fraction of inclusion

reaches the targeted value. Finally, the Statistical Volume Element of model

material is obtained.
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C.I.1.2 Synthesis of numerical investigation

In order to investigate the influence of thermal damages on behavior of Tessier-

Doyen’s model materials [TD03], numerical processes were carried out through 4

main steps:

Step 1 - Creation of Statistical Volume Element: Samples that contains

multiple spherical inclusions were built. As presented in paragraph C.I.1.1,

spherical inclusions were created and distributed randomly in a cubic sample

with a controlled volume fraction, i.e. 15%, 30% and 45%. The radius

of inclusion was the same as in the real material, i.e. 250 µm± 10%.

The dimensions of the virtual cubic sample were set as 2.2 mm in order

to reproduce an adequate Statistical Volume Element with a reasonable

number of inclusion within the matrix (Fig. C.I.1(a)). In the present study,

number of discrete elements was around 120,000 in order to ensure a good

compromise between the precision of the results and the computational

time. Thus, the number of discrete elements of each inclusion was about

900. Moreover, three Statistical Volume Elements were created from three

different homogeneous domains for each volume fraction of inclusion. The

purpose of this duplication is to ensure the reproducibility of numerical

results and to alleviate the influence of random distribution of discrete

elements in the cooker algorithm (Sect. B.I.3.2). Consequently, hereafter,

numerical results associated to each volume fraction of inclusion are average

results of three different heterogeneous samples;

Step 2 - Cooling simulation of two-phases material: Input parameters

were set at scale of discrete elements in order to obtain thermomechanical

properties of the two reference materials, e.g. Cofer glass-alumina and BA

glass-alumina. The same values of input parameters in Tab. B.II.16 (Young’s

modulus, radius ratio, fracture threshold and CTE) were used here. Since the

present study focused only on solid behavior, the cooling stage were modeled

from vitreous transition temperature of glasses to 20°C (See paragraph

B.II.4.1). The transition temperatures Tg of glasses are taken from [TD03]:

Tg are 455 and 555°C for Cofer glass and BA glass, respectively. During

cooling simulation, thermal stress increases as the temperature decrease

from Tg, due to thermal expansion mismatch. Consequently, when thermal

stresses exceed critical value, damages occurs within material;

Step 3 - Measurements of apparent Young’s modulus: Thermally
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damaged samples obtained in step 2 were submitted to tensile tests in

order to measure their apparent Young’s modulus. Following the same

principles presented in paragraph B.I.4.3.a, opposite displacement of 50 µm

are imposed to two opposite surfaces of damaged samples. In addition, the

tensile strength of materials was set to an infinite value in order to forbid the

crack extension. This technique is comparable with measurement of Young’s

modulus by the Ultrasonic technique, which is non destructive;

Step 4 - Measurements of apparent CTE: The CTE α of damaged samples

could be simply deduced from the results of cooling simulations:

α =
ε

∆T
(C.I.1)

where, ε is the thermal deformation of numerical sample during cooling

simulation and ∆T is the temperature variation.

Globally, in order to focus on damage phenomena due thermal expansion

mismatch during cooling stage, the following assumptions were used:

• The temperature field was considered as uniform in the whole virtual sample

(heat transfer was considered as infinite);

• Intrinsic evolution of Young’s modulus of each constituents as a function of

temperature was considered in the simulation (Fig. A.I.13);

• In order to model brittle materials, damage occurred only in tensile mode.

More specifically, crack initiation is managed by virial stress concept (Sect.

B.I.5): if the computed virial stress of a discrete elements exceeds predefined

thresholds for each glass matrix, its connected beams are destroyed. By

contrast, the failure in compression was not considered;

• In the present research, only crack opening was considered. The crack

closure could be modeled, however, the crack healing phenomenon was not

investigated.
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C.I.2 Simulation of evolution of Young’s

modulus versus temperature

C.I.2.1 Main principles

This chapter focuses on the effect of thermal damages on thermomechanical

properties of the two reference materials, regarding the evolution of elastic

properties versus temperature of their constituents. Therefore, the direct

calibration method (Sect. B.II.2) was used to vary input parameters as function

of temperature, in order to reproduce the evolution of elastic properties of each

constituent. In the present study, only evolution of Young’s modulus of the

constituents (Cofer glass, BA glass, alumina) was taken into account. In fact,

from transition temperature of glass to ambient temperature, the Poisson’s ratio

and CTE of these constituents are quite stable and independent from temperature.

Therefore, in DEM simulations, the Poisson’s ratio and CTE of the constituents

were considered as constant.

Firstly, the input parameter rm (radius ratio) is computed from Poisson’s ratio

νM of material by using the direct calibration method:

a1 + b1.rm + c1.r
2
m + d1.r

3
m − νM = 0 (C.I.2)

As discussed in paragraph B.II.2.2.c, Eq. C.I.2 has generally unique solution of

rm in range from 0 to 1. Since νM is considered as constant, rm is also constant

during cooling simulation.

Secondly, the ratio between Young’s modulus of material EM and input

parameter Em is given by:

KE =
EM

Em

= a2 + b2.rm + c2.r
2
m + d2.r

3
m (C.I.3)

Since rm is constant, KE is also constant during cooling simulation. Hence, in

order to reproduce the evolution of Young’s modulus of material EM(T ), the input

parameter Em(T ) could be set by using the following equation:

Em(T ) =
EM(T )

KE

(C.I.4)

In this study, the Young’s modulus obtained by Ultrasonic technique of the

3 considered constituents [TD03] were described by algebraic equations EM(T )
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not affect the computation of volume fraction of inclusion:

f I
V =

V o
Iset

V o
Total

=

V e
Iset

fv

V e
Total

fv

=
V e

Iset

V e
Total

(C.I.8)

To simplify the Eq. C.I.8, the sum of discrete element volumes V e
Iset and V e

Total

could be computed as follows:

V e
Iset = N e

I × V e (C.I.9)

V e
Total = N e

T × V e (C.I.10)

where N e
I is the number of elements in Inclusion set, N e

T is the total number of

discrete element and V e is the average volume of discrete elements.

Thus, Eq. C.I.8 could be simplified as follows, involving only element number:

f I
V =

V e
Iset

V e
Total

=
N e

I

N e
T

(C.I.11)

Herein, the Eq. C.I.11 need to be modified in order to match with the specific

Statistical Volume Element of heterogeneous material. Indeed, in the present

research, the interface bonds are considered to have properties of inclusion bonds

(Sect C-C.I.1.1). In order to take into account this specification, the number of

bonds should be involved. For this purpose, the number of elements is related to

the number of bonds as follow:

N e
I =

2N b
I

cn
; N e

T =
2N b

T

cn
(C.I.12)

where, cn is the coordination number (paragraph B.I.3.2); N b
I is the number of

inclusion bonds and N b
T is the total number of bonds.

Hence, the volume fraction could be computed as follows:

f I
V =

N e
I

N e
T

=
(
2N b

I

cn
)

(
2N b

T

cn
)

=
N b

I

N b
T

(C.I.13)

As mentioned above, in this study, the interface bonds are considered as inclusions

bonds (Fig. C.I.5).

Therefore, the interface bonds and the inclusion bonds should be counted
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of this observation is still questionable, it is perhaps interesting to investigate if

the Periodic boundary conditions could reduce the differences. However, since

this feature has not been available in the modeling platform yet, the Statistical

Volume Elements were used to investigate the effect of thermal damages on

thermomechanical properties of model materials.
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Chapter C.II

Modeling of thermomechanical

damages in model materials

As mentioned in Part A, the key advantage of DEM is to take into account complex

damage phenomena to model behavior of refractories. Herein, the obtained DEM

results on damaged model materials will be confronted with experimental data

and HS model. This chapter is structured in 4 sections:

• Visualization of damage morphology;

• Evolution of Young’s modulus during cooling;

• Thermomechanical properties at room temperature of damaged samples after

cooling;

• Qualitative simulation of nonlinear tensile behavior due to thermal damages.

C.II.1 Qualitative simulation of thermal

damages

In this section, the DEM results of thermal damage phenomena will be presented

and compared with experimental observations for the two reference materials.

More specifically, the initiation and propagation of thermal damages as well as

the morphology of damage network will be discussed.
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C.II.2 Mechanical properties versus

temperature

C.II.2.1 Determination of tensile strength of glass

matrices

In the present research, the thermomechanical properties of model material

reported in [TD03] were used in order to performed DEM simulations:

Young’s modulus, Poisson’s ratio, CTE and tensile strength. Obviously, these

thermomechanical properties of material are key input parameters that govern the

results of numerical simulations. Generally, quantitative numerical simulations are

difficult to carry out if robust experimental value of tensile strength is missing. In

addition, for ceramic material, the value of tensile strength depends strongly on

the dimension of sample and characterization technique. Therefore, in this study,

the chose of experimental value of tensile strength of glass is still questionable.

In [TD03], for cofer glass and BA glass, the author estimated their tensile

strength σf by using analytical expression of thermal stress [Sel61]:

σf =
(αm − αp)∆T

1 + νm

2Em

+
1− 2νp

Ep

(C.II.1)

where ∆T is the critical variation of temperature that initiate thermal damages

within the matrix.

Typically, ∆T could be computed by the difference between Tg of glass and

the critical temperature Tc, from which thermal damages appears significantly

within the glass. In practice, Tc could be detected by a brutal decrease of Young’s

modulus during cooling. By using this method, tensile strength of Cofer glass and

BA glass were estimated as 60 MPa and 86 MPa, respectively [TD03]. Later on,

in [Jol06], the author determined tensile strength of BA glass by 4 point bending

test. The dimension of sample were 4x4x50 mm3.

These values of tensile strength of glasses are summarized in Tab. C.II.1.

Tab. C.II.1: Tensile strength of glasses by different techniques

Value (MPa) Technique Reference

Cofer 60 Analytical formula [TD03]

BA 86 Analytical formula [TD03]

BA 45 4 Points Bending test [Jol06]

129



C.II. Modeling of thermomechanical damages in model materials

In the present study, these values of tensile strength of glasses were used in

order to perform DEM simulations.

C.II.2.2 Model material with radial-propagated crack

In this paragraph, the results of cofer glass-alumina composite are discussed.

Again, the apparent Young’s modulus during cooling obtained by DEM were

compared to experimental data of two-phases model material and HS model (Fig.

C.II.5).

As a remark, the measurement of Young’s modulus during the final stage of

cooling is usually not possible due to failure of the alumina cement used to stick

the sample to the waveguide because of thermal expansion mismatch between this

alumina cement and the sample. Therefore, in the results of Tessier-Doyen [TD03],

the Young’s modulus was measured at room temperature after the thermal cycle.

Hence, the final evolution at the end of cooling is plotted in dotted line. In Fig.

C.II.5, experimental value of Young’s modulus at 20°C is averaged results of 3

samples.

Herein, two values of tensile strength of Cofer glass were used for DEM

simulation. The left column (Fig. C.II.5(a), C.II.5(c) and C.II.5(e)) corresponds to

tensile strength proposed in [TD03], based on analytical model of thermal stress

[Sel61], i.e. σf = 60 MPa. The right column (Fig. C.II.5(b), C.II.5(d) and

C.II.5(f)) corresponds to higher value of tensile strength, i.e. σf = 90 MPa. The

purpose is to observe the dependence of numerical results on input value of tensile

strength.

Considering the DEM results, at the beginning of cooling, since material is

free of damage, the numerical results is very close to the experimental curve

and HS- curve. Then, since the thermal stresses increase as the temperature

decreases, damages occur and cause an important decrease of Young’s modulus.

The DEM results has a similar tendency with experiment data: the drop of

Young’s modulus due to micro-cracks increase as the alumina content increases

(Fig. C.II.5). This observation is quite reasonable because the increase of alumina

content promotes micro-crack network and therefore, increases the drop of Young’s

modulus. Regarding the value of tensile strength, firstly, σf = 60 MPa gives more

relevant results of Young’s modulus at room temperature, in comparison with

experimental data. Secondly, in case of σf = 90 MPa, the damages occurred at

lower temperature than in case of σf = 60 MPa. However, with both these two

values, damages occurred at higher temperature during cooling, in comparison with
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Similarly to the case of Cofer glass-alumina, the Young’s modulus at the end

of experimental cooling was measured at room temperature, after the thermal

cycle. In this paragraph, two values of tensile strength of BA glass were used.

The left column (Fig. C.II.6(a), C.II.6(c) and C.II.6(e)) corresponds to tensile

strength that were measured by 4 points bending test in [Jol06], i.e. σf = 45 MPa.

The right column (Fig. C.II.6(b), C.II.6(d) and C.II.6(f)) corresponds to tensile

strength proposed in [TD03], based on analytical model of thermal stress [Sel61],

i.e. σf = 86 MPa.

As a first remark, DEM results show that, in case of debonding, the Young’s

modulus drops less than in the case of micro-crack. This tendency is comparable

with experimental data. These observations are reasonable since in debonding

case, thermal damages do not connect and do not interact with each other as in

the case of micro-cracking.

The second remark is related to the dependence of DEM results on value of

tensile strength of BA glass. As shown in Fig. C.II.6(a) and C.II.6(b), for case

of 15% alumina, the DEM results obtained with σf = 45 MPa is less relevant

than that obtained with σf = 86 MPa, in comparison with experimental data.

However, for cases of 30% and 45% alumina, the tensile strength value proposed

by Joliff give more relevant value of Young’s modulus at 20°C, in comparison with

experimental data. Indeed, the tensile strength value proposed by Tessier-Doyen

seems to underestimate the effect of damage on Young’s modulus in case of high

alumina content.

Finally, for both two values of tensile strength, in case of 45% alumina, the

Young’s modulus decreases less than in cases of lower alumina contents. This

remark is not observed in experimental data. Hence, as a perspective, further

investigation should be carried out in order to clarify this remark.

C.II.3 Influence of volume fraction of inclusion

on thermomechanical properties of

materials

In this Section, the effect of thermal damages on thermomechanical properties at

room temperature of model materials is evaluated, considering different volume

fractions of alumina: 15%, 30% and 45%. The DEM results were confronted with

both experimental data and HS model in order to evaluate their accuracy. Two
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C.II.8(a), for the case of 15% alumina, the DEM results seems to overestimate the

influence of debonding on the apparent Young’s modulus. However, with higher

volume fraction of alumina, the DEM values are quite close to the experimental

values of the apparent Young’s modulus of damaged samples. In Fig. C.II.8(b),

numerical results show that there is a slight decrease of CTE due to debonding

phenomenon. However, there is a lack of experimental curve since it is not available

in the data of Tessier-Doyen [TD03]. Despite this lack of information, the obtained

results allowed to quantify the occurrence of debonding phenomenon and it’s effect

on the apparent CTE.

C.II.4 Simulation of nonlinear behavior of model

materials

In this section, DEM results of nonlinear tensile behavior due to thermal damages

are discussed. In literature, several experimental researches reported that thermal

damages could change the tensile behavior from linear to nonlinear: decrease

of Young’s modulus, decrease of stress-at-peak and increase of strain-to-rupture

[Hug92, GK07, GB11, Bel15]. Since the influence of micro-crack is more important

than that of debonding, hereafter, only results of Cofer glass-alumina is presented.

In this investigation, thermally damaged samples after cooling simulation were

subjected to tensile test in order to observe stress-strain curve. Here, the average

normal stress σxx of sample is computed as follows:

σxx =
Fxx

A
(C.II.2)

where: Fxx is the applied tensile force and A is the area of cross section of sample.

In addition, the fracture threshold were set to reproduce tensile strength of

Cofer glass, i.e. σf = 60 MPa. In other words, damages generated during cooling

were allowed to propagate during these tensile test. This numerical process is

comparable with experimental researches in [GK07, GB11]. Three volume fraction

of alumina are considered: 15%, 30% and 45%.

Tensile simulations were carried out for damaged samples obtained at 3 instants

of cooling: when T = Tg = 455°C, when T = 238°C and when T = 20°C. The

purpose was to investigate the relationships between thermal damage levels and

mechanical behavior of model material. The stress-strain curves of Cofer glass-

alumina composite are shown in Fig. C.II.9.
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examined by confrontation of DEM results with experimental data in [TD03] and

HS model. Indeed, ’DEM non damaged samples’ configuration globally matched

with HS model, which could predict accurately thermomechanical properties of

undamaged heterogeneous material. Moreover, ability of DEM to model thermal

damage was examined. Damage morphologies obtained with DEM are comparable

with experimental observations reported in literature, for both micro-cracking

and debonding phenomena [TD03, GB11]. DEM results of influence of thermal

damages show a good agreement with experimental data: the Young’s modulus and

the CTE of material decrease as the thermal damages develop within the material.

The influence of thermal damages becomes more significant when the volume

fraction of alumina increases. In addition, DEM results reported a gradual change

of tensile behavior of model material from linear to nonlinear during cooling. In

literature, up to now, there is a lack of numerical and analytical researches on

this problematic. The obtained results in part C show that investigation of these

phenomena by DEM is very promising. Although some improvements still needs

to be carried out in the future works, the proposed numerical approach could help

to improve the thermal shock resistance of refractories by better designing their

microstructures.
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perspectives
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In many industries, refractories are subjected to severe working conditions:

extra high temperature, brutal thermal shock, mechanical loading and corrosion.

Among these conditions, the high local thermal stresses induced by thermal shocks

can lead to critical failure for many industrial cases, even if the other required

properties are satisfied. Therefore, thermal shock resistance is a key parameter

of refractories to enhance their lifetime. For the last decades, experimental

researches has proved that the thermal shock parameter is related to the local crack

growth resistance mechanisms as well as the non-linearity of their tensile behavior.

More specifically, in several cases, by introducing properly micro-damages within

the microstructure of such materials, their thermal shock resistance could be

tuned positively: decreasing of Young modulus, decreasing of CTE, decreasing

of strength, increasing of strain-to-rupture and increasing of fracture energy.

However, up to now, the method of applying these phenomena to improve the

thermal shock resistance of refractories has not been fully understood and is not

predictable. In this context, the numerical approaches could help and give insights

for experimental researches.

The present thesis aimed at investigating the relationships which exist between

the microstructure of refractories and their thermomechanical properties by

developing an efficient and reliable modeling platform. For this purpose, the

developed modeling platform must be able to reproduce complex morphology of

micro-crack within continuous media in order to predict the apparent properties of

damaged material. Generally, in thermomechanical area, numerical methods can

be classified into continuous methods and discrete methods. Despite significant

successes of several continuous methods, e.g. XFEM (eXtended Finite Element

Method), PFM (Phase Field Method), their applications for complex crack

phenomena still, up to now, remain problematic. To overcome limitations of

continuous methods for the present research, the discrete methods is a good

candidate thanks to the ability to describe discontinuities. Moreover, in this class

of method, initiation of crack could be simply handled by breaking interaction

between elements. In the present research, the variant of the Discrete Element

Method (DEM) developed by André et al. [ACI15, JATI15] and the associated

DEM modeling platform GranOO were chosen.

The Granular Object Oriented Workbench (GranOO) has been developed since

2010 by the collaboration of 3 French laboratories. This platform of discrete

element modeling is based on explicit dynamic resolution algorithm to perform

a wide range of numerical experiments. In this modeling platform, the Cohesive

Beam Model (CBM) has been implemented in order to model continuous media.
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However, similarly to other discrete methods which were initially developed for

granular media, the CBM faces two main challenges to model continuous media.

Firstly, the calibration of microscopic parameter is still a major challenge for DEM

until present due to the lack of research dedicated for this problematic. Indeed,

the calibration process is very tedious and time-consuming, however it is inevitable

each time the modeled material is changed. Secondly, stress computations of DEM

applied to continuous media has not been fully developed.

To overcome the first challenge, a direct calibration method has been developed

in the present research in order to facilitate the DEM simulation. More specifically,

novel macro-to-micro relationships were established to enable direct deduction of

local input parameters from thermomechanical properties of considered material.

This method does not depend on sample shape, discrete element number, loading

conditions and thus, can be considered as constitutive law of numerical material.

This proposed direct calibration method was validated through its application to

classical mechanical simulation tests: uniaxial tensile test, hydrostatic compression

test, Brazilian test and torsion test. This allows to skip the classical trial-and-error

calibration method, which is very complicated and time consuming.

The second challenge of DEM is related to the lack of stress tensor consideration

because, the DEM is force-displacement method and it was initially applied for

granular media. To deal with this issue, the virial stress concept has been

developed in GranOO platform since 2013 [JAD+13, AJI+13]. In the present

research, the virial stress concept was studied and improved in order to enable

quantitative simulation of complex damage phenomena within continuous media.

Firstly, the dependence of accuracy on the computation range (neighbor levels)

was investigated by comparison between virial stress tensor and theoretical

computation. This comparison demonstrated that ’neighbor level 2’ could ensure

a good compromise between accuracy and computational time. Secondly, two

different local fracture criteria were examined: Rankine criterion and Hydrostatic

criterion. The latter criterion give more adequate post-peak behavior for brittle

material: a brutal drop towards 0 of Young’s modulus after macroscopic fracture.

Therefore, Hydrostatic criterion was qualified for the present study. Finally, the

proposed configuration of virial stress concept was validated through different

loading conditions: Brazilian test and torsion test. The obtained results

demonstrated that virial stress could reproduce adequate stress states and crack

morphologies for the considered numerical tests.
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In term of application, the main objective of the development of GranOO

modeling platform was to model the thermal damages in some simplified model

materials and to examine their effect on apparent properties of damaged materials.

In the present research, 2 model materials developed by Tessier-Doyen et al.

were used, i.e. Cofer glass alumina and BA-glass alumina composites. In

the first step, a single-inclusion configuration was used for cooling simulation.

More specifically, the comparison with FEM and Lauke’s analytical approach

demonstrated the accuracy of DEM and virial stress concept to simulate thermal

stress and the associated damage phenomena. In the second step, to model

heterogeneous materials, Statistical Volume Elements were generated by using the

methodology proposed by André et al. [ALTDH17]. This methodology consists of

distributing randomly a predefined volume fraction of spherical inclusions within

a cubic discrete domain. Thanks to the proposed direct calibration method, the

modulation of local parameters allows to reproduce the evolution of Young’s

modulus of these heterogeneous composites as a function of temperature. The

obtained results were then validated by confrontation with experimental data and

HS model. Indeed, DEM results of undamaged configuration matched with HS

model, which could predict accurately thermomechanical properties of undamaged

heterogeneous composites. Regarding thermal damages simulation, damage

morphologies obtained with DEM are consistent with experimental observations,

for both micro-cracking and debonding phenomena. Quantitatively, thermal

damages modeled by DEM exhibits a good agreement with experimental data: the

Young’s modulus and the CTE of model materials decrease as the thermal damages

develop within their microstructure. The influence of thermal damages becomes

more significant when the volume fraction of alumina increases. Finally, DEM

results allowed to reproduce the change in tensile behavior of model material from

linear to non linear due to micro-cracking. These important results demonstrated

the ability of the proposed DEM approach to take into account the effect of

microscopic damages on macroscopic properties in a multi-scale approach.

The present research should be considered as a first step of a long term

objective: development of a reliable modeling platform to give insights for

experimental approach in order to enhance thermal shock resistance of industrial

refractories. Consequently, the perspectives of this work could be numerous. From

technical point of view, 3 investigations should be considered: voids within discrete

domain in the current GranOO version, necessity to increase discretization level of

discrete domain and potential interest to implement periodic boundary conditions.
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Firstly, artificial voids between spherical discrete elements could be removed

thanks to Voronoi-based discrete elements in the new version of GranOO. Secondly,

the increase of discretization level could be managed thanks to increase of computer

performance or by application of suitable computational strategy. This strategy

could be conducted by modulation of discrete element size (using small size of

discrete element in critical zone and coupling with classical FEM computation

in other areas). This allows to discretize some specific zones of discrete domain

with higher element number, e.g. the interfacial zone in heterogeneous materials.

Thirdly, the periodic boundary conditions has demonstrated its efficiency in FEM

to study heterogeneous material. Hence, it is perhaps interesting to implement

the periodic boundary conditions in GranOO and examine its impacts.

In the present research, the proposed DEM approach does not take into account

some specific phenomena: surface energy consumed during crack propagation and

energy dissipation due to friction mechanism between crack lips (between discrete

element in DEM). The role of these phenomena should be taken into account by

improving the current DEM approach.
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Appendix: Data analysis by least

square method

In order to define the analytical expressions of micro-to-macro relationships in

Cohesive Beam Model, data of macroscopic responses need to be generated from

a series of simulations with reasonable ranges of microscopic parameters. In this

study, the relationships between microscopic and macroscopic elastic parameters

of CBM were deduced from 8,000 simulations of uniaxial tensile tests, whose the

configuration is described in section B-B.I.4.3.a. Hence, the nonlinear least squares

method was used to analyze the data issued from tensile test simulations. The

nonlinear least squares method is the form of least squares analysis, used to fit a

set of m observations with a non-linear function including n unknown coefficients

(m > n). In order to obtain an approximate solution, the coefficients of the

non-linear functions are refined by successive iterations.

Let us consider, for example, a set of m data points, (x1, y1) , (x2, y2),...,

(xm, ym), and a model function y = f(x, β), that depends on variable x and n

coefficients, β = (β1, β2, ..., βn), with m ≥ n. The non-linear least squares method

allows to find the vector β of coefficients such that the model function fits best

the given data in the least square sense. In other words, the sum of squares

S =
m

∑

i=1

r2

is minimized. The residuals ri are given by :

ri = yi − f(xi, β) for (i = 1, 2, ..., m)

The minimum value of S occurs when the gradient is zero. Since the model
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contains n coefficients, there are n gradient equation:

∂S

∂βi

= 2
∑

i

ri

∂ri

∂βi

= 0 (j = 1, 2, ..., n)

In a nonlinear system, the derivatives
∂ri

∂βj

are functions of both the independent

variable x and the vector β of coefficients. Thus, these gradient equations do not

have a closed solution. Consequently, initial values are chosen as solution for the

coefficients. Then, the coefficients are refined iteratively, that is, the values are

obtained by successive approximation.

In the present study, the routine named optimize.curve_fit, which is based

on the Levenberg-Marquardt algorithm [Mor78, Lev44], is selected to find the

fitting solutions. This implementation, included by Python library, is very robust

and has strong convergence properties. By analyzing the data extracted from

8,000 simulations of uniaxial tensile tests, the fitting functions that best describe

the macro-to-micro relationships are determined.
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Abstract: The present thesis aimed at investigating the relationships between

the microstructure of refractories and their thermomechanical properties in order

to increase their thermal shock resistance. In particular, numerical modeling

were carried out in order to better understand the design of microstructure

involving damages due to thermal expansion mismatch during processing. For

this purpose, experimental results on simplified materials were used as reference

for this numerical approach. In order to obtain quantitative results of complex

phenomena, new developments of an existing discrete element modeling platform,

namely GranOO, were carried out. More specifically, direct calibration method

of input parameters and improvement of virial stress concept were proposed.

This DEM approach was then applied to reproduce thermal damages during

cooling of simplified materials and to examine their effects on macroscopic

properties. The obtained DEM results of evolution of Young’s modulus and

thermal expansion coefficient as a function of temperature exhibited similar

tendencies with experimental results.

Keywords: Discrete Element Method, refractory materials, thermal shock

resistance, micro-cracking, thermal expansion mismatch.

Résumé : Cette thèse avait pour objectif d’étudier les relations entre la

microstructure de matériaux réfractaires et leurs propriétés thermomécaniques

afin d’améliorer leur résistance aux chocs thermiques. En particulier, des

modélisations numériques ont été réalisées afin de mieux comprendre la conception

de la microstructure liée à des endommagements dus au différentiel de dilatation

thermique. A cette fin, des résultats expérimentaux de matériaux simplifiés

ont été utilisés comme référence pour l’approche numérique. Afin d’obtenir des

résultats quantitatifs des phénomènes d’endommagement complexes, de nouveaux

développements ont été apportés à une plate-forme de modélisation d’éléments

discrets existante, nommée GranOO. Entre autre, une méthode de calibration

direct des paramètres locaux ainsi une amélioration du concept de contrainte viriel

ont été proposées. Ensuite, l’approche DEM a été appliquée afin de reproduire

les endommagement thermiques lors du refroidissement des matériaux simplifiés

et d’examiner leurs effets sur les propriétés apparentes. Les résultats obtenus

de l’évolution du module de Young et du coefficient de dilatation thermique en

fonction de température ont montré des tendances similaires avec les résultats

expérimentaux.

Mots clés : Méthode des Éléments Discrets, matériaux réfractaires, résistance

au choc thermique, micro-fissuration, différentiel de dilation thermique.


	Contents
	List of Figures
	List of Tables
	General introduction
	A State of the art
	Introduction
	Thermal shock resistance of refractory materials
	Influence of thermal damages on thermal shock resistance of refractory materials
	Thermal shock resistance of refractory materials
	Thermal stresses and associated damages

	Thermomechanical behaviors of 2 typical refractories dedicated to thermal shock
	Magnesia-spinel refractories
	Andalusite-based refractories

	Model material to investigate microstructure -properties relationships of refractories
	Why model material?
	Model materials selection
	Hashin & Strickman model: analytical prediction for undamaged material
	Limitations of Hashin & Strickman model

	Conclusion

	Numerical method for damages modeling
	Overview of numerical methods
	Continuous methods
	Overview
	Finite element method

	Discrete methods
	Overview
	Lattice models
	Particle models
	Hybrid lattice-particle model

	What class of numerical methods to achieve the purpose of the present research?


	B Development of discrete element modeling platform
	Introduction
	GranOO - A versatile discrete element modeling platform
	DEM explicit dynamic resolution algorithm
	Positions and orientations computations in DEM
	Overview of the resolution algorithm

	Architecture overview of GranOO platform
	GranOO - a C++ object oriented workbench
	Input files and macro-command
	Essential libraries and tools
	The main steps of DEM simulations

	Construction of discrete domain
	Required properties of discrete domain
	Construction domain algorithm

	Thermo-mechanical behavior modeling of continuous media
	Springs-like interaction laws and their limitations
	Why cohesive beam model?
	Calibration of cohesive beam elastic parameters
	Thermal expansion modeling
	Thermal conduction modeling

	Virial stress and microscopic fracture model
	Standard fracture model and its limitations
	Virial stress formulation
	Novel development of virial stress formulation
	Fracture model based on virial stress

	Conclusion

	Direct calibration method of microscopic parameter
	Available calibration methods in literature - a review
	Direct calibration of microscopic  elastic parameters
	Tensile test simulations: database to analyze micro-to-macro relationships
	Elastic micro-to-macro relationships
	Validation of calibration formulations
	Partial conclusions

	Direct calibration of microscopic fracture threshold
	Tensile test simulation: database to determine fitting function
	Fracture micro-to-macro relationships
	Validation of calibration formulation
	Partial conclusions

	Application to the modeling of thermal stresses in elementary composite material
	Introduction
	Modeling configuration: single-inclusion composite
	DEM-FEM confrontation: validation of virial-stress-based modeling
	Thermal damages modeling
	Partial conclusions

	Conclusion


	C Numerical modeling of microstructure-properties relationship of model materials
	Introduction
	Development of numerical laboratory
	Simulation of cooling stage
	Construction of heterogeneous sample
	Synthesis of numerical investigation

	Simulation of evolution of Young's modulus versus temperature
	Main principles
	Computation of volume fraction
	Application on undamaged heterogeneous material


	Modeling of thermomechanical damages in model materials
	Qualitative simulation of thermal damages
	Micro-crack propagation
	Debonding at interfaces

	Mechanical properties versus temperature
	Determination of tensile strength of glass matrices
	Model material with radial-propagated crack
	Model material with debonding at interfaces

	Influence of volume fraction of inclusion on thermomechanical properties of materials
	Model material with radial-propagated crack
	Model material with debonding at interfaces

	Simulation of nonlinear behavior of model materials
	Conclusion


	General conclusion and perspectives
	Appendix: Data analysis by least square method
	Bibliography


