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Introduction

Remote sensing data from Synthetic Aperture Radar (SAR) sensors offer a unique oppor-
tunity to record, to analyze, to predict the evolution of the Earth. SAR are moving radar
systems capable of producing high-quality images of the Earth’s surface. They consist in
emitting an electromagnetic wave which is reflected on the Earth surface. The backscat-
tered signal from the scatterers illuminated surface is then processed to build an image of
the scene. SAR systems are known for their usability in all weather, illumination conditions.
They are thus capable to monitor all kinds of areas of interest. Recent years have seen an
increase in the number of SAR systems.

In the last decade, numerous satellite remote sensing missions have been launched
(Sentinel-1, UAVSAR, TerraSAR X, etc.). This resulted in a dramatic improvement in
the Earth image acquisition capability, accessibility. The growing number of observation
systems allows now to build high temporal/spatial-resolution Earth surface images data-
sets.

This new scenario significantly raises the interest in time-series processing to monitor
changes occurring over large areas. On the other hand, developing new algorithms to process
such a huge volume of data represents a current challenge. Notably, the modern trend of
deep-learning approaches shows its limits since most of this data is not annotated, corrupted
by a problematic speckle noise (inherent to SAR images).

In this context, the present thesis aims at developing methodologies for change detection
in high-resolution time series of images. These series raise some notable challenges that we
will tackle in this thesis.

• Standard statistical methods rely on multivariate data corresponding to a diversity of
some kind in order to infer a result which is often superior to a one of a monovariate
approach. When it concerns SAR images, the data is often released as monovariate in
which case, there is no diversity to exploit. In this case, if the resolution of the images
is high enough, it is possible to build multivariate images corresponding to a physical
diversity using time frequency analysis. We will thus develop wavelet tools to tackle
this issue.

• The improvement in terms of resolution obtained from the latest generation of sensors
comes with an increased heterogeneity of the data obtained. For this setup, the stan-
dard Gaussian assumption used to develop change detection methodologies is no longer
valid. In order to tackle this issue, we consider the family of elliptical distributions
which accurately describe the data, develop new change detection methodologies.

• In order to further analyse the image time series, it is of interest to estimate the time at
which these changes occur in the time series. For this problem, an iterative procedure
based on robust detection schemes will be proposed.

Since this methodology relies on the principle of the spatial sliding windows, the
number of samples used is directly linked ot the spatial resolution of detection. In
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order to analyze the impact of the window size, we will consider the development of a
lower bound on the error of estimated changes.

• We will finally explore, as an opening of this work, the potential use of Riemannian
geometry to analyze changes in the image time series.

By tackling these issues, the present work has allowed to achieve promising results in
order to analyse changes in time series of high resolution SAR images.
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This first introductory chapter aims at giving a brief overview of issues, concerning the
analysis of changes in a SAR image time series that we will consider in the context of this
thesis. To that end, we will describe shortly the specificities of acquisition of SAR images
which differ from other images acquisition approaches. We will detail the notion of diversity

23



24 CHAPTER 1. SAR IMAGE TIME SERIES ISSUES

which allows considering multivariate data. Then we will discuss how the traditional Gaus-
sian model does not accurately describe the data for high-resolution SAR images. From
that point, we will give a brief overview of the change detection problem associated with
statistical methodologies and focus peculiarly on covariance equality testing approach. Fi-
nally, we will consider the alternative problem of change-point detection and estimation for
which we will describe an interesting algorithm from the literature.

1.1 specificities of sar data

Synthetic Aperture Radar (SAR) is a technology developed in the 1950s as a military re-
connaissance tool with all-weather and 24-hour aerial remote surveillance capabilities. It
was first introduced by Carl A. Wiley in 1951 under the terminology “Doppler radar beam
sharpening” and patented under patent number 3,196,436 dated July 20, 1965, [Love, 1985].

The idea behind this technology was to solve the resolution limitations of radars of
this time. Indeed, the resolution of an antenna is inversely proportional to its size, thus
improving resolution means obtaining antenna of a size which was impractical on airborne or
spaceborne sensors. SAR sensors tackle this problem by taking advantage of the movement
of the sensors to create an equivalent larger synthetic antenna. As presented in Figure 1.1,
since the swath of the antenna is large, the same objects are illuminated several times during
the movement of the sensor meaning that it is possible to coherently sum the backscattering
over time to improve the resolution in the direction of the moving radar.

θ1
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Swath at time t1

Swath at time t2

dir
ect

ion
of
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vin

g r
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Figure 1.1: Illustration of SAR image acquisition principle: a scatterer (building) is seen at
two different acquisition angles (θ1 and θ2) during the processing time.

As a result of this technology, azimuth integration has improved allowing us to obtain
images with resolution lower than 1m. The drawback lies however in the presence of a typ-
ically multiplicative noise called speckle which is due to the coherent processing of various
scattered signals [Goodman, 1976]. The speckling in an image reduces the ability of a human
observer to resolve fine details within the image as well as making typical processing tech-
niques based on additive noise unadapted. As an example, Figure 1.2 shows a comparison
between an optical and a SAR image of the same scene. The SAR image presents a high
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level of noise while comparatively, the optical image does not present such level of noise.
The speckle noise must then be taken into account in order to develop well-adapted image
processing methodologies.

@UAVSAR (Pauli decomposition) @Google Maps (RGB)

Figure 1.2: Comparison between a SAR and an optical image of the same scene (Los Angeles,
Californie).

Another distinction between optical images and SAR images lies in the nature of the
data which is real-valued in optical images but complex-valued for SAR images. The com-
plex nature of the images comes from the SAR reconstruction techniques which work on
modulated signals to generate the images [Carrara et al., 1995]. As a consequence, the
literature on SAR processing literature usually separates into two categories depending on
the nature of the data considered. A high number of works considers the amplitude of the
complex value while discarding the phase, in order to develop methodologies based on the
backscattered amplitude. On the other hand, techniques such as interferometry require the
phase value for the fine measurement of displacements [Gens and Genderen, 1996].

In the context of this thesis, we will consider complex SAR images in order to take
advantage of all the information (amplitude and phase) available.

1.2 the principle of diversity: exploiting multivariate data

In the context of this thesis, we consider a time series of multivariate images as illustrated
in Figure 1.3. For each pixel we assume that a vector of data is available and we have the
evolution of those vectors over time.

1.2.1 Interest of multivariate data

Intuitively, having more information about a system allows us to better infer about its
properties. When it concerns the comparison between datasets, as illustrated in Figure 1.4,
multivariate data can lead to better discrimination compared to a monovariate dataset. It
is often desirable to obtain the most of information possible about the objects of interest.

Multivariate data is however not always informative. Indeed, when the dimension is
high, the proportion of channels bringing discriminative information about an object can
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Figure 1.3: Illustration of data dimensionality
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Figure 1.4: Illustration of monovariate versus multivariate points comparison.

decrease. In such cases, considering all dimensions can be seen as counterproductive with
respect to complexity. Moreover, in statistical adaptive schemes, when the dimension of
the parameter space increases, it is well known that the number of samples required for
inference grows fast as well. This is why many high-dimensional processing methodologies
rely on low-rank structure1 assumption or dimension reduction techniques such as Principal
Component Analysis (PCA) [F.R.S., 1901].

1.2.2 Sources of diversity in SAR images

As explained earlier, exploiting diversity allows considering advanced processing method-
ologies to improve results in classical target detection and change detection schemes. The
literature on the diversity concerning SAR images is vast as many kinds of diversities can
be exploited.

First of all, the polarimetric diversity is the most obvious one when it concerns SAR
images. Since SAR sensors are based on electomagnetic waves, it is possible to control their
polarization. As illustrated in Figure 1.5, the direction of the electric field lies in the plane
perpendicular to the direction of propagation and defines the polarization of the wave.

1See for example the Ph.D. thesis [Breloy, 2015].



1.2. THE PRINCIPLE OF DIVERSITY: EXPLOITING MULTIVARIATE DATA 27

E

z

x

y

E
z

x

y

Vertical Polarization Horizontal Polarization

Figure 1.5: Illustration of polarized electromagnitic waves. Depending on the direction of
the magnetic field E, the polarization is either horizontal or vertical.

Polarimetric SAR sensors are able to receive and transmit waves in Horizontal (H) and
Vertical (V) polarization modes on alternate pulses. Hence, depending on the setup, the
signal obtained is either HH (transmit and receive in H mode), VV (transmit and receive
in V mode), HV (transmit in H mode and receive in V mode) or VH (transmit in V mode
and receive in H mode). The amount of returned signal for different polarizations depends
on the physics of the interaction of microwaves with the surface. This allows to characterize
the different scatterers present in a scene.

Note that for most situations, the canals HV and VH are identical yielding a diversity
vector of dimension p = 3.

Another source of diversity can be obtained through interferometry sensors. In this case,
the scene is seen at two different close looking-angles as illustrated in Figure 1.6. The dif-
ference of phase between the two acquisitions is usually used for altitude measurements.
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Figure 1.6: Illustration of a repeat-pass interferometry acquisition system.

However, in many cases, these diversities are not available due to the fact that they
require specific sensors. Thus, the most common available data corresponds to the com-
monly referred to as Single Look Complex (SLC) data. On the other hand, polarimetric or
interferometric diversities may not be sufficient to discriminate subtle changes.

For such situations, it has been shown that if the resolution is high enough, it is possible
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to obtain a diversity corresponding to the physical behavior of the scatterers present in the
scene. This point will be detailed hereafter.

1.2.3 Spectro-angular diversity using wavelet analysis of SAR images
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Scatterers have different behavior with regards to the frequency and direction of 
illumination: it means that this diversity can offer useful information to any detector 
exploiting it 

True Physical Behavior of Scatterers in SAR Imaging

6

Figure 1.7: An ONERA RGB color-coded SAR image acquired for three consecutive fre-
quency bands.

Figure 1.7 presents an ONERA SAR image in X-band. The responses of the scene
relative to three consecutive frequency bands have been coded in RGB color-coding. The
three consecutive frequency bands correspond to the frequencies emitted by the antenna of
the moving radar system. This image correspond to a campaign measurement of the same
scene where 3 different bands of frequency have been used by splitting the total bandwidth
of the antenna in 3. Then the amplitude of each image obtained with the different band is
coded to the RGB color scheme. Red points are responding only on the first band, green
ones on the second band and the blue ones on the third band. They are called colored
scatterers. Gray points are called white scatterers as they are responding equivalently in
the three sub-bands. This image perfectly illustrates how some scatterers have different
behavior given the band used. Similar results can be achieved when looking at the scene at
different ranges of angles.

In HR SAR Images, the hypothesis of isotropy and non-dispersivity of the scatterers
is no longer obvious. When a target is illuminated using a large bandwidth and a large
range of angles, it is more reasonable to assume that its response is dependent on the wave
vector. Recent studies of the spectral and angular behavior of the scatterers have shown the
variation of the scatterers’ response for several angles of illumination and several frequencies
[Bertrand and Bertrand, 1996, Duquenoy et al., 2010, Tria, 2005] as illustrated in Figure 1.8.
This diversity is of interest as it can allow to discriminate between objects when polarimetric
diversity is neither present of suficient.

Several works have investigated methods for retrieving the spectro-angular diversity. For
example, approaches such as steerable pyramids [Simoncelli et al., 1992, Unser et al., 2011],
curvelets [Candès et al., 2006] or subspaces [Durand et al., 2009, Brigui et al., 2014] are
possible. However, they are usually heavy methods. For example, subspace methods have
high-computational cost and are not adaptive. They also assume the knowledge of a physical
model, which makes them specific to an application. Linear Time-Frequency Distributions
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Figure 1.8: Illustration of an image with isotropy and non-dispersity hypothesis respected
(Left) and not respected (Right). Credit: Michael Duquenoy.

(LTFD) is a simpler approach that allows analyzing SAR data to retrieve non-stationary
information such as spectral and angular behaviors.

Retrieval of spectro-angular diversity using LTFD have in peculiar been investigated
in work such as [Tria et al., 2007, Ovarlez et al., 2003]. Time-Frequency has been used
in [Brekke et al., 2013], where the azimuth bandwidth has been separated into two sub-
bands for ship detection. In those works, the spectro-angular information has presented
promising results. The Short Time Fourier Transform (STFT) has been used for target
detection applications in [Ovarlez et al., 2017] or for change detection in [Mian et al., 2017].
However, the decomposition induced side lobes on the sub-images which may decrease the
performance.
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Figure 1.9: Left: SAR image amplitude (dB). Right: Coefficient amplitude of a 3 × 3
decomposition using STFT (dB).

Indeed, the works presented here relied on the STFT which is known in Time-frequency
literature for its high level of side-lobes with regards to other wavelet alternatives. As an
example, if we consider the decomposition in Figure 1.9, an undesired linear pattern appears
at the bright point location. It is well known that wavelet can be used in order to tackle
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problems of sidelobes.

Wavelet decomposition of SAR images have been studied for many applications. In
[De Grandi et al., 2007, De Grandi et al., 2009], wavelet frames have been used in order to
derive a measure of polarimetric texture used in segmentation and target detection schemes.
Wavelet transforms on SAR images have been used in [Zecchetto and Biasio, 2008] to retrieve
wind fields. In [Lopez-Martinez and Fabregas, 2002], wavelets have been used to reduce
speckle noise in interferometric SAR images. Fusion techniques on wavelet coefficients have
been used in [Ma et al., 2012] in order to compute a change detection map. In [Subotic et al.,
1994, Irving et al., 1997], multi-resolution information is used for target detection schemes.
However, those works did not consider specifically the sidelobe problem. This point will be
tackled in Chapter 2 where new wavelet packets will be introduced to reduce the level of
sidelobes.

Once the diversity needed has been obtained (either naturally present or thanks to time-
frequency tools), each pixel is represented by a vector. Since SAR images are noisy, the
pixels can be modelled as the realization of a random variable in order to dervive adapted
processing techniques. We propose, in the next section, to consider multivariate statistical
distributions adapted to model the values of the pixel vectors.

1.3 models considered for the distribution of multivariate sar
images

1.3.1 The data

Denote by W1,T = {X1, . . . ,XT } a collection of T mutually independent groups of p-
dimensional i.i.d complex vectors: Xt = [xt1, . . . ,x

t
N ] ∈ Cp×N . With regards to SAR images

these sets correspond to the local observations on a spatially sliding windows as illustrated
in Figure 1.10. The subscript k correspond to a spatial index while the superscript t corre-
sponds to a time index.

p

t = 1

x1
1 x1

2 x1
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Figure 1.10: Illustration of local data selection (p = 3, N = 9) for detection test. The gray
area corresponds to W1,T and the central pixel (xt5) is the test pixel.

Following SAR clutter analysis, we assume ∀(k, t) ∈ J1, NK × J1, T K, E{xtk} = 0p. This
assumption is indeed well-respected in complex SAR images and is a classic assumption in
SAR data processing literature [Deng et al., 2017].
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Given t ∈ J1, T K, we denote for any k ∈ J1, NK, Σt = E{xtkxtk
H} the shared covariance

matrix among the elements of the group Xt.

1.3.2 The Gaussian model

The centered complex Gaussian distribution is the most encountered one in the SAR lit-
terature with regards to analysis of covariance matrices. Its sole parameters are the set of
covariance matrices {Σt|t ∈ J1, T K} such that:

xtk ∼ CN (0p,Σt). (1.1)

The probability density function (p.d.f) of x ∼ CN (0p,Σ) is given by:

pCNx (x; Σ) =
1

πp |Σ| exp
(
−xH Σ−1 x

)
. (1.2)

Note: While it is defined as a complex model, the distribution is assumed to be cir-

cular (i.e. E{xtk(xtk
T

)} = 0p×p) meaning that it is equivalent to a real-valued Gaussian
distribution of a the stacked vector of real and imaginary parts.

1.3.3 Non-Gaussianity of high-resolution images

The Gaussian model has been widely popular to model the empirical distribution of the
data for standard resolution images [Conradsen et al., 2001]. Since each pixel consists of the
coherent sum of the contribution of many scatterers, it is expected that, thanks to the central
limit theorem, the Gaussian model is not too far from the actual empirical distribution.

However, as described in [Greco and Gini, 2007], [Gao, 2010] or in [Ollila et al., 2012b],
while the Gaussian hypothesis is the most popular one, it fails to accurately describe the
heterogeneity observed in very high-resolution images. Indeed, in those images, the number
of scatterers in each resolution cell has been greatly reduced with regards to low-resolution
images.

To better describe the observed distribution of data, other models have been considered.
For example, the K-distribution has been considered in [Yueh et al., 1989, Muller, 1994], the
Weibull distribution in [Bucciarelli et al., 1995] or inverse Generalized Gaussian distribution
in [Freitas et al., 2005]. These various models belong to the family of complex elliptical
distributions which generalizes them as discussed in [Ollila et al., 2012a].

Figure 1.11: Selection of a subset for analysing the empirical distribution of real data.
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As an example, let us consider a high-resolution image obtained from the UAVSAR
dataset2. From this image, we consider the HH polarization where we consider a small
subset as shown in Figure 1.11.
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Figure 1.12: Empirical distribution of data on the selected subset.

The histogram of both real and imaginary parts, plotted in Figure 1.12, shows an im-
pulsive behaviour with a heavy tail which does not correspond typically to a Gaussian
distribution. Fitting for Gaussian model is shown in Figure 1.13 and generalized Gaussian
model is shown in Figure 1.14. From these results it is clear that the Gaussian model fails at
describing the empirical distribution while the Generalized Gaussian has an overall better
description. This distribution is part of the more general family of distributions known as
the elliptical distributions which will be considered hereafter.

−1 0 1
0

1

2

3

4

R(x)

p
.d
.f

−1 0 1
0

1

2

3

4

I(x)

p
.d
.f

Figure 1.13: Gaussian fitting of the empirical distribution of data on the selected subset.

1.3.4 The Complex Elliptical model

This model is a extension of the Gaussian distribution, depending on a function g : R+ →
R+ called density generator that satisfies the finite moment condition mp,g =

∫
R+ t

p−1g(t)dt <
∞ and a set of scatter matrices {Ξt ∈ SpH|t ∈ J1, T K}. The complex elliptical model will be
written as follows:

xtk ∼ CE(0p, g,Ξt). (1.3)

2Available at https://uavsar.jpl.nasa.gov.
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Figure 1.14: Generalized Gaussian fitting of the empirical distribution of data on the selected
subset.

The p.d.f of x ∼ CE(0p, g,Σ) is given by:

pCEx (x; Ξ, g) = Cp,g|Ξ|−1
g
(
xHΞ−1x

)
, (1.4)

where Cp,g is a normalization constraint ensuring that
∫
Cp p

CE
x (x; Ξ, g)dx = 1, such that:

Cp,g
∆
= 2(Spmp,g)

−1
, (1.5)

where Sp = 2πp/Γ(p) is the surface area of the complex unit p-sphere CSp =
{s ∈ Cp; ‖s‖2 = 1} and Γ is the gamma function.

In practice, as shown in [Ollila et al., 2012a], the scatter matrix is equal to the covari-
ance up to a scale factor which only depends on the dimension of the matrix and the density
generator function. It means that, if we assume that the samples share the same density
generator function, testing an equality of scatter matrices or covariance matrices is equiv-
alent. Thus as a simplification, we will consider the equality of scatter matrices when we
refer to covariance equality in the elliptical case.

Note: A classic parametrisation of the covariance matrix is of the following form:

Σt = τtξt, (1.6)

where:

• τt ∈ R+ is the scale parameter3 which is equivariant under multiplication by a positive
constant.

• ξt ∈ SpH is called the shape matrix which is invariant under multiplication by a positive
constant. It accounts for the local structure between the elements of the vectors
without consideration about the norm of the matrix.

To ensure identifiability, ξt is assumed to be normalized either by the first diagonal
element [Randles, 2000] (ξt = Σt/(Σt)11), the trace [Ollila et al., 2012a] (ξt = pΣt/Tr(Σt))

or the determinant [Tatsuoka and Tyler, 2000] (ξt = Σt/ |Σt|1/p).
In practice, all choices are essentially equivalent with regards to covariance equality

testing problem under mild regularity conditions as studied in [Hallin and Paindaveine,

3This is often referred as the texture parameter in the radar literature. We will use alternatively both
terms when referring to this parameter.
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2007]. We will consider the normalization by the trace in the chapters 3 and 4 in order
to keep consistent with [Ollila et al., 2012a] which is a reference in the robust statistics
literature: ξt = pΣt/Tr(Σt).

In Chapter 5, we will see that the determinant constraint yields some simplification in
Riemannian geometry, which explains why we will shift to the determinant normalization.

Some properties of the elliptical distributions are provided below:

• Stochastic representation: if x ∼ CE(0p, g,Σ), we can write x as:

x
d
= RΣ1/2u, (1.7)

where R ∆
=
√
Q is a non-negative real random variable called the modular variate

which is independent of the complex random vector u having a uniform distribution
on CS denoted as U(CSp). The p.d.f of the modular variate is given by:

pQ(Q) = m−1
p,gQ

p−1g(Q), (1.8)

which is also the p.d.f of the quadratic form xHΣ−1x.

This representation can be related to the sub-family of distributions called Complex
Compound-Gaussian (CCG) or Spherically Invariant Random Vectors (SIRV) [Yao,
1973]. They are families of distributions of the form:

x ∼ √τz, (1.9)

where
√
τ , called the texture, follows a distribution on R+ and z is random vector

distributed as a complex Gaussian distribution. Depending on the model assigned to
the texture, a different elliptical distribution ensue.

• Projection on CSp: Let x ∼ CE(0p, g,Σ) and define

z =
x

‖x‖2
. (1.10)

The self-normalized vector z is said to have a Complex Angular Elliptical distribution
which is denoted as CAE(0p,Σ). Its p.d.f is given by:

pCAEz (z; ξ) = Sp
−1|ξ|−1 (

zHξ−1z
)−p

. (1.11)

Note that this p.d.f is defined for vectors on CSp and not the standard set Cp which
means that the corresponding measure is not the standard Lebesgue measure but one
on the unit sphere. Since we normalized the observations, the matrix ξ consists in
solely the shape matrix while the scale is lost.

Examples of Elliptical distributions:

• The complex t-Distribution: A vector x is said to have the complex multivari-
ate t-distribution with ν degrees of freedom (0 < ν < ∞) if it follows an elliptical
distribution with density generator:

g(t) = (1 + 2t/ν)−(2p+ν)/2. (1.12)
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The CCG representation is obtained for τ =d ν/x where x ∼ χ2
ν and χ2

ν is the Chi-
squared distribution with ν degrees of freedom.

A limit case is the complex Cauchy distribution, obtained using ν = 1, for which the
second order moment does not exist. The complex Gaussian distribution is a limit
case when ν →∞.

• The K-Distribution: A vector x is said to have the complex multivariate K-
distribution with texture shape ν > 0 if it follows an elliptical distribution with density
generator:

g(t) = t(ν−p)/2Kν−p(2
√
νt), (1.13)

where K`(.) denotes the modified Bessel function of the second kind of order `. The
CCG representation is obtained when τ follows a Γ-Distribution with shape parameter
ν and scale parameter θ = 1/ν. The complex Gaussian distribution is obtained as a
limit case when ν →∞.

• The generalized Gaussian Distribution: A vector x is said to have the complex
multivariate generalized distribution with exponent s > 0 and scale b > 0 if it follows
an elliptical distribution with density generator:

g(t) = exp(−ts/b). (1.14)

The CCG representation is obtained when τ follows a Γ-Distribution with shape pa-
rameter ν = p/s and scale parameter θ = b. The complex Gaussian distribution is
obtained when s = 1 and for s = 1/2 we obtain the Laplace distribution.

Note: The elliptical and CCG distributions are probability models which are in the
scope of the robust statistical litterature iniated by works such as [Maronna, 1976a, Yohai,
1974, Martin and Pierre, ]. More details can be found in the books [Maronna et al., 2006]
and [Zoubir et al., 2018]. Following their definition, a method is said to be robust, in the
context of this thesis, when its statistical properties are independent of the density generator
function.

1.3.5 The deterministic compound-Gaussian model

Following the compound-Gaussian model of (1.9) defined earlier, it is possible to consider the
texture as a deterministic value which varies at each observation. This model, which we call
deterministic compound-Gaussian model, assumes a homogeneity of the shape matrix and a
heterogeneity of the scale for each observation on the local spatial windows. Its parameters
include deterministic scale parameters T = [τ 1, . . . , τT ] and set of shape matrices4 {ξt|t ∈
J1, T K}. The model is written as follows:

xtk ∼ CN (0p, τ
t
kξt), (1.15)

where τ tk is the k-th element of vector τ t.

Note: This model does not strictly follow the parametrisation defined in eq. (1.6) since
here each observation has a different scale parameter while in the parametrisation only one
for each date would be defined. However the same constraints assigned to the different
set of parameters the set of parameters. Namely, ∀(k, t) ∈ J1, NK × J1, T K, τ tk ∈ R+ and

4In the sense that they are normalized by the trace.
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∀t ∈ J1, T K, Tr(ξt) = p. That is why, we will refer them as scale and shape parameters as
well.

The interest of choosing deterministic scale parameters in this model is to be able to
generalize the Gaussian model without adding any prior on the distribution of the scale
parameter.

1.4 change detection in sar image time series

In this section, we briefly give an overview of change detection techniques relative to the
SAR image time series. We hereby present a broad overview of recent techniques observed
in the SAR literature. Among them, it is worth detailing some methodologies relying on
a statistical framework since they consist in an interesting approach to tackle the noise
inherent to SAR data. Then we focus on change detection based on covariance equality
testing approach, which has been the main interest of the current thesis.

1.4.1 An overview of change detection techniques for SAR images

Change detection has been a popular subject of study for recent decades. Remote sensing,
in peculiar, has attracted a plethora of scholars due to the various applications to military
(activity monitoring) or civil (geophysics, the study of global warming, etc) applications.
Thus literature on the subject is dense and a variety of methodologies are available5.

For example, IEEEXplore database registers more than 1,000 papers on the sole subject
of SAR change detection. It is then impossible to discuss all methodologies while keeping a
clear picture. Indeed, these various approaches are based on different modalities, considers
various input data and output different kind of results. In this case, we will choose to
classify general families of methodologies while detailing more precisely the approaches that
are closely related to the work undertaken in the present thesis.

General process

Broadly speaking, as illustrated in Figure 1.15, a change detection algorithm relies on three
separate elements :

• A pre-processing phase in which the time series of images have to be co-registred, which
means that by applying geometric transforms, each pixel of every image corresponds
to the same physical localization. Depending on the nature of the data (single sensor,
multiple sensors for example), various methodologies exist [Scheiber and Moreira, 2000,
Bentoutou et al., 2005, Sansosti et al., 2006]. This step is critical in the whole process
since a misaligned time series will result in many false alarms.

Various methodologies also consider a denoising step in which the speckle noise is re-
duced thanks to filtering techniques [Achim et al., 2003, Foucher and Lopez-Martinez,
2014].

Lastly, features can be selected from the images in order to obtain a more concise
or informative representation for the change detection purpose. As discussed earlier,
the choice of spectro-angular features can yield a better representation than the raw
monovariate data. Other possibilities include Markov fields [Wang et al., 2013] or PCA
[Yousif and Ban, 2013] among others.

5Notably, see [Hussain et al., 2013] or [Hecheltjen et al., 2014] for an overview.
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Figure 1.15: General procedure for a change detection methodology.

• A comparison step in which the features at each date are compared among themselves.
Many techniques exist based on various principles. We will delay the overview of those
methods to the next subsection in order to give a more comprehensive description since
this step has been the main subject of study of the present thesis. At this point several
outputs can be obtained: a value corresponding to the amplitude of change or a list
of labels corresponding to various classes.

• A post-processing step which varies depending on the methodology used for the com-
parison phase. It can either correspond to a thresholding [Bruzzone and Prieto,
2000, Kervrann and Boulanger, 2006] or involves machine learning classification al-
gorithms [Gong et al., 2016].

Comparison step methodologies

In order to distinguish the various approaches [Hussain et al., 2013] proposed to differentiate
pixel level methodologies from object level ones6:

• Object level methodologies consider the object7 as the basic unit. As such, the detec-
tion can be done as a function of spatial coordinates (sub-pixel level).

• Pixel-level methodologies consider that the pixel is the atomic analytical unit for the
detection mostly without considering the spatial context. The work presently done in
this thesis considers the pixel level approach.

For pixel level methodologies, two types of methodologies exist:

6Another distinction made by [Hussain et al., 2013] consists of data mining methods such as [Petitjean
et al., 2010] which considers pattern matching methods from computer science literature in order to analyze
the time series. But the methodology involves computer science literature on database searching which does
not enter the field of signal processing methodologies.

7An object is an abstraction which can be constituted of various concepts such as texture, geometric
shape, relationships with neighbors among others. An overview of those methods can be found in [Chen
et al., 2012].
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• Supervised methodologies: in this case, machine learning techniques such as Support
Vector Machine (SVM) [Jia et al., 2014] or deep learning [Gong et al., 2016] are used
on an extensive database of labeled samples in order to obtain a decision rule to apply
for other non labeled datasets.

• Non-supervised methodologies: in this case, no secondary labeled data is assumed to
be available which is often the case in SAR problems. Indeed, since these types of
images usually span a very large area, it is very difficult to obtain reliable ground
truth. As a consequence, the unsupervised methodologies are more attractive from a
practical standpoint. We considered this paradigm.

Finally, non-supervised methods at pixel level decompose into:

• Model-free methodologies: no probability model is assigned to the data for change de-
tection. one of the most popular approaches consists in the Coherent Change Detection
(CCD) [Preiss and Stacy, 2006] where a coherence measure is computed between pair
of complex images in order to highlight zones with dissimilarities8. This technique is
popular since it considers a difference in phase which allows detecting very fine changes
in the scene. There is however a limitation due to the well-known coherence loss over
time. Moreover, since it relies mostly on the phase, the methodology yields a signifi-
cant number of false alarms for zones such as forests. Another popular approach is the
log-ratio operator [Gong et al., 2012, Garzelli and Zoppetti, 2017] on local neighbor-
hoods around the test pixel for a pair of two amplitude only images. The idea behind
these methods is to reduce the effect of speckle noise by transforming into an additive
noise through the logarithm function. Other approaches have considered PCA [Yousif
and Ban, 2013] or wavelet analysis [Atto et al., 2016]. The advantage of those ap-
proaches is that they do not depend on a probability model which can be inaccurate
sometimes. The main drawback, however, concerns the choice of a threshold value for
the detection which cannot be based on the statistic of the distance function.

• Statistical based methodologies: in this case, the methodology relies on a probability
model in order to infer about changes9. Statistical methods can rely on a model with
associated parameters in which case they are referred to as parametric methodolo-
gies. Non-parametric methods consider statistical tools without considering parame-
ters [Aiazzi et al., 2013] or Bayesian models [Prendes et al., 2015] with a prior on the
distribution of those parameters.

Note: An alternative approach called post-classification scheme, consists in detecting
changes by first classifying the time series and then comparing the labels over time to detect
the changes. This methodology can be at pixel or object level, involves supervised training
and can be based or not on statistical approaches. It was not mentioned up to this point
in order to avoid unnecessary complication since the literature of SAR classification is also
prolific.

Statistical change detection based on a parametric model

We will consider here parametric methods which rely on a probability model on the data
associated with parameters. In such setup, the change detection can be seen as obtaining a

8There also exist variant of this approach based on a Gaussian model to derive a distance [Barber,
2015, Novak, 2005].

9Some works also considered possibilities models based on fuzzy logic theory to design distances adapted
to SAR images [Carincotte et al., 2006, Lesniewska-Choquet et al., 2017].
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Figure 1.16: Summary of various change detection methodologies.

distance between the distributions of the data over time such that it the distributions over
time coincide, the value is low and high otherwise. These methodologies have been widely
popular in recent years thanks to the preliminary work of [Conradsen et al., 2003] which
showed good results for analyzing changes for polarimetric SAR data.

Literature on the subject consists in two distinct approaches:

• Information-theoretic measures [Atto et al., 2013, Inglada and Mercier, 2007, Nasci-
mento et al., 2010, Nascimento et al., 2019, Ratha et al., 2017]: the idea behind this
approach is to consider distances from information theory to compare the data over
time. Suppose that the local data at data t = 1 is modelled by the distribution
px(x;θ1) and at date t = 2 by px(x;θ2), it is possible to compare the similarity be-
tween these two models thanks to well-known distances such as the Kullback-Leibler
distance (which is a symmetrized version of the Kullback-Leibler divergence):

δKL =
1

2

(∫
log

px(x;θ1)

px(x;θ2)
px(x;θ1)dx +

∫
log

px(x;θ2)

px(x;θ1)
px(x;θ2)dx

)
. (1.16)

In practice, since the parameters are unknown they are estimated using, for example,
the Maximum Likelihood Estimator (MLE). The limitation of this methodology lies
in the fact that there is no general result allowing to obtain a decision threshold for
any pair of distributions (px(x;θ1), px(x;θ2)). Indeed, although [Frery et al., 2014]
showed that information theoretical distances on covariances do have an asymptotic
χ2 distribution under the null hypothesis, there is no result such as the Constant False
Alarm Rate (CFAR) property at finite distance.

• Hypothesis testing schemes [Nielsen et al., 2016, Barber, 2015, Carotenuto et al.,
2015, Ciuonzo et al., 2017]: the idea is to define a detection problem for choosing
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between to alternatives in which either the parameter stays constant or change over
time. For multivariate SAR images, the test can be done on the covariance parameter.
This methodology, which we will detail later, has interesting advantages with regards
to the previous one: on the one hand, it allows to consider the whole time series while
in the previous case, the methodologies apply on a pair of images. On the other hand,
literature on hypothesis testing is very prolific and many theoretical results, notably
on thresholding can be applied here. As a consequence, we will consider this approach
in the development of this thesis.

A summary of the related litterature in the form of an illustration can be found in Figure
1.16.

1.4.2 Defining the problem of covariance equality testing

The test of equality of covariances, sometimes referred as homogeneity of covariances, can
be written as a binary hypothesis testing problem of the following form:

{
H0 : θ1 = . . . = θT = θ0 & Φ1 6= . . . 6= ΦT ,
H1 : ∃(t, t′) ∈ J1, T K2, θt 6= θt′ & Φ1 6= . . . 6= ΦT

. (1.17)

where θ is either a covariance matrix, a scale parameter or a shape matrix. The nui-
sance parameters which we do not want to test are gathered in the set Φ. These nuisances
parameters are either the scale parameter, the shape matrix or the empty space, depending
on the definition of θ.

Notes:

• When testing homogeneity of the shape matrix in the Gaussian context, the test can
be seen as equivalent to the proportionality testing which is written in the following
form (for T = 2): {

H0 : (Σ1 ∝ Σ2) ≡ (Σ1 = αΣ2)
H1 : (Σ1�∝Σ2) ≡ (Σ1 6= αΣ2)

. (1.18)

This problem has been considered in works such as [Federer, 1951, Liu et al., 2014a]
or more recently in [Taylor et al., 2017] for radar applications.

• The test of covariance homogeneity is well-known for its use in the Multivariate Analy-
sis Of Variance (MANOVA) technique found in numerous statistical references [Wilks,
1932, Roy, 1946]. This technique relies on the homogeneity of covariances among
group of datasets in order to check the statistical significance of comparing the means
of those datasets.

1.4.3 On the hypothesis problem and test statistics

In order to decide between the two alternatives (1.17), it is necessary to obtain a test statistic
compared to a threshold value.

A statistic Λ̂ is a function of the input data W1,T = {X1, . . . ,XT } which is expected to
be high when hypothesis H1 is true while being low under H0 hypothesis. In this way, its
value gives an insight about the probability of H1 to be true.

Since it is a function of random variables, this test statistic is a random variable as well.
It is then possible to consider the distribution of the statistic in both regimes as illustrated
in Figure 1.17. Given the distribution under H0, it is possible to select a threshold λ in
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Figure 1.17: Illustration of false alarm/good detection probabilities for a given threshold
λ. The dark area corresponds to the probability of false alarms while the line filled area
correspond to the probability of good detection.

such a way that the probability of the statistic being superior to the threshold is fixed. This
probability is usually referred as the probability of false alarms10 (or type I errors) which are
a situation where the statistic is greater than the threshold is not due to the data being in
H1 hypothesis. Conversely, the threshold is also linked to the probability of false negatives
(or type II errors) that are events in which a H1 regime is falsely rejected. The trade-off
between these two types of errors is dependent on the threshold value used. This paradigm
of detection is, however, not applicable when the distribution of the statistics under null
hypothesis varies with the parameters.

y
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Figure 1.18: Illustration of CFAR property: if the distribution varies when the parameter
of the distribution changes, it is impossible to guarantee a false alarm rate.

A critical concept to guarantee a false alarm rate is the Constant False Alarm Rate
(CFAR) property. This property is obtained when the distribution of the statistic under the
null hypothesis is independent of the parameters of the problem. As illustrated in Figure
1.18, if the distribution of the statistic varies along with the parameter of the problem, the
threshold becomes a function of this parameter. Since in many detection applications the
parameter under null hypothesis is not known, it is not possible to guarantee a false alarm
rate.

There are many possibilities to define a test statistic for a given problem, as will be
discussed in subsection 1.4.4. Under some conditions, it is possible to obtain the Uniformly
Most Powerful (UMP) test statistic which maximizes the probability of detection11 at fixed

10It is often referred as the significance level in the statistical literature.
11Also known as the power of the test in the statistical literature.
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false alarm rate. Unfortunately as discussed in [Lehmann, 2009] and [Ciuonzo et al., 2017],
this statistic does not exist for the covariance equality testing problem.

Nonetheless, various test statistics can be obtained thanks to standard derivation tech-
niques, which we will detail in the next subsection.

1.4.4 On the GLRT technique and known alternatives

Since we will rely extensively on the GLRT technique to obtain test statistics, we remind
here its core principle and interesting statistical properties. Then we present briefly some
other alternative techniques and explain why they were not considered in our work.

Given a hypothesis testing problem of the form presented in (1.17), the GLRT is formu-
lated as follows:

Λ̂ =

max
θ1,...,θT ,Φ1,...,ΦT

pW1,T
(W1,T ;θ1, . . . ,θT ,Φ1, . . . ,ΦT )

max
θ0,Φ1,...,ΦT

pW1,T
(W1,T ;θ0,Φ1, . . . ,ΦT )

H1

≷
H0

λ. (1.19)

This test differs from the standard likelihood ratio test [Kay, 1998] in the fact that the
parameters being tested are assumed to be unknown. These unknown parameters are thus
estimated using the prior that the model is either under H0 or H1 hypothesis. Note that this
also differs from a two-step methodology which would consist in plugging estimates of the
parameters in the test statistic obtained assuming the assumption of known parameters12.
This technique is very popular due to interesting statistical properties such as invariance
of the statistic with regards to the parameter space [Kay and Gabriel, 2003]. The most
notable result which is of interest is known as the Wilks Theorem and is given in the
following proposition:

Proposition 1.4.1. (Wilks Theorem) Assume that the joint distribution of {Xt|1 ≤ t ≤ T}
depends on K unknown parameters under H1 and that, under H0, the joint distribution
depends on K0 unknown parameters. Let ν = K −K0. Then, under some regularity con-
ditions (K > K0), when the null hypothesis is true, the distribution of the statistic 2 log(Λ̂)
converges to a χ2

ν distribution as the sample size N → ∞, i.e when H0 is true and N is
large, we have:

2 log(Λ̂) ∼
approx

χ2
ν (1.20)

Proof. First demonstrated in [Wilks, 1938]. The result is a consequence of the asymptotic
consistency property of the maximum likelihood estimation.

This proposition allows to obtain a confidence region to guarantee a false alarm rate
without having to resort to extensive Monte-Carlo simulations, which is interesting. We
must note however that this is only an asymptotic result which means that if the sample
size N is small, the result will no longer apply.

Many alternatives exist to the GLRT13, from which the most well known are the Rao
statistic [Radhakrishna Rao, 1948], Terell gradient statistic [Terrell, 2002] and the Wald

12In target detection schemes, the well known Adaptive Normalized Matched Filter (ANMF) is an example
of a two-step statistic.

13See [Ciuonzo et al., 2017] for an exhaustive list in the context of covariance testing in Gaussian context.
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statistic [Wald, 1943]. These tests also enjoy asymptotic χ2 distributions under null hy-
pothesis when the sample size is large and are thus interesting alternatives to the GLRT14.
These tests require however most of the time heavier derivations. For instance, the Rao and
Wald statistics require the inversion of the Fisher Information Matrix (FIM) which is ob-
tained from the computation of the Hessian of the likelihood function while the GLRT only
need to compute the gradient in order to optimize when the likelihood function is convex.
Thus, since they share similar properties, we will rely on the GLRT technique which is the
simplest one.

Note: It is also possible to obtain a statistic using the principle of the maximal invariant
statistic as done in [Ciuonzo et al., 2017]. The idea is to find a group of transformations
for the parameter space which leaves the detection problem invariant. A maximal invariant
statistic is a statistic which is invariant by the same group of transformation and yields the
least data compression (due to the transformation) compared to all other invariant statistics.
This principle allows us to derive statistics by analyzing the invariances of the problem and
results in a statistic with Constant False Alarm Rate (CFAR) property while the property
is not guaranteed for other tests. In our detection problem, we did not consider such a
technique since it requires a fine analysis of the complex non-Gaussian detection problem
in order to find a suitable group of transformations and the maximal invariant statistic.
Moreover, there is no general result such as Wilks theorem in this case as well.

Once a statistic of decision with its associated null hypothesis distribution, it is possible
to test a single hypothesis. When a decision is based on multiple hypothesis testing schemes,
some additional issues have to be considered, as we will see in the next subsection.

1.4.5 A note on the false discovery rate and familywise error rate

When considering a large number of multiple hypothesis tests, it is necessary to consider
the problems associated with false alarms. Indeed, it is well known that when a decision is
made according to n hypothesis tests, the significance level of the procedure does not equal
that of the tests. For instance, it is necessary to consider the family wise rate error which
is defined as:

αFWER = 1− (1− α)n, (1.21)

where α is the chosen significance level for the n tests. From this, it is clear that the
significance level grows as the number of tests done increases. In order to tackle this issue,
the well known Bonferroni correction [Dunn, 1961] or the false discovery rate [Benjamini
and Hochberg, 1995] help to reduce the number of false alarms in such setups.

In our case, we have to consider two issues: we consider a test on each pixel which
considers several data over time and we consider as many tests as the number of pixels of
the image.

For the first case, our detection is based on a single test of detection as opposed to
multiple detection tests between pair of images. This approach considers the two alternatives
as either no change at all in the series or any possible change (either one or more). Thus
since only one test is done, there is no need to consider the temporal aspect.

For the second case, the decision is taken independently for each pixel of the image.
However, depending on the image size a high number of tests are done. For example, say
that an image is constituted of 1000×1000 pixels, 106 tests are done in a pixelwise approach.

14It has also be shown that in [De Maio et al., 2010], that under mild regularity conditions, the GLRT,
Rao and Wald statistics are asymptotically equivalent
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If we fix a false alarm rate to 10−3, there is expected to be at least 1000 pixels corresponding
to a false alarm which is arguably a high number. To reduce these false alarms, it is possible
to correct the detection threshold according to the false discovery rate as presented in [Efron,
2007] which provides a correction based on the number of false discoveries among the number
of total H1 outcomes. In that regard, the Benjamini–Hochberg procedure [Benjamini and
Hochberg, 1995] can be implemented to decide for each pixel if it has to be counted as a
detection. This comes however at a cost of detection performance. Thus the decision to
use the correction depends on the type of data considered: if we expect a few changes in
a globally non-changing image, adapting the threshold is a necessity while in a situation
where many pixels can change, the actual detection performance is important.

1.4.6 Results on the equality of covariance in Gaussian context

Many works have considered the testing of covariance homogeneity problem [Nagao, 1973,
Schott, 2001, Anderson, 2003, Hallin and Paindaveine, 2009] and many statistics have been
proposed. The case for T = 2 has been especially studied for change detection purposes
[Conradsen et al., 2001, Carotenuto et al., 2015]. Recently, [Ciuonzo et al., 2017] did a
comparative study and showed that many test statistics for the covariance homogeneity are
statistically equivalent and redure to the following decision rules:

• the GLRT statistic:

Λ̂G =

∣∣∣Σ̂SCM
0

∣∣∣
TN

T∏

t=1

∣∣∣Σ̂SCM
t

∣∣∣
N

H1

≷
H0

λ, (1.22)

where:

∀t, Σ̂SCM
t =

1

N

N∑

k=1

xtkx
t
k

H
and Σ̂SCM

0 =
1

T

T∑

t=1

Σ̂SCM
t . (1.23)

• the t1 statistic which is obtained from Terrell or Rao tests:

Λ̂t1 =
1

T

T∑

t=1

Tr

[((
Σ̂SCM

0

)−1

Σ̂SCM
t

)2
]

H1

≷
H0

λ. (1.24)

• the Wald statistic:

Λ̂Wald =N

T∑

t=2

Tr

[(
Ip − Σ̂SCM

1 (Σ̂SCM
t )−1

)2
]

− q
(
N

T∑

t=1

(Σ̂SCM
t )−T ⊗ (Σ̂SCM

t )−1, vec

(
T∑

t=2

Υt

))
H1

≷
H0

λ,

(1.25)

where
Υt = N

(
(Σ̂SCM

t )−1 − (Σ̂SCM
t )−1Σ̂SCM

1 (Σ̂SCM
t )−1

)
. (1.26)

The Gaussian GLRT can be interpreted easily as a ratio of volumes. Indeed, it is
well known that the determinant of Positive Definite Hermitian (PDH) matrix is equal
to the volume of the ellipsoid whose axes correspond to the eigenvalues of the matrix as
illustrated in Figures 1.19 and 1.20. Then, the ratio between the determinants of respectively
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Figure 1.19: Representation of Gaussian GLRT for p = 2, T = 2 when matrices are different.
Left: Ellipsoids representing the covariance matrices. Right: Ellipsoids representing the
arithmetic and geometric mean.
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Figure 1.20: Representation of Gaussian GLRT for p = 2, T = 2 when matrices are equal.
Left: Ellipsoids representing the covariance matrices. Right: Ellipsoids representing the
arithmetic and geometric mean.

the arithmetic and the geometric means of the matrices can be seen as the ratio of their
repective ellipsoid volume. The ratio is expected to be one when the matrices are equal and
greater than one otherwhise due to the well known arithmetic/geometric mean inequality.
Concerning the other two statistics, there is no trivial interpretations such as this one.

It can be noted that in practive the Wald statistic is numerically challenging for high-
dimensional vectors. Indeed, since it involves the inverse of a Kronecker product, the com-
putational complexity grows much faster compared to the other two methods.

Concerning theoretical analysis, [Anderson, 2003] has considered the distribution of the
GLRT for the real case under the null hypothesis based on a theory of asymptotic expansion.
Later [Conradsen et al., 2003] adapted the result to work in the complex case:

Proposition 1.4.2. Under hypothesis H0, the probability of false alarms of the GLRT for
the covariance homogeneity under Gaussian model with θ = Σ and Φ = ∅ can be obtained
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using the following formula:

P
{

2ρ log(Λ̂G) ≤ z
}
≈ P

{
χ2
f2 ≤ z

}
+ ω2

[
P
{
χ2
f2+4 ≤ z

}
− P

{
χ2
f2 ≤ z

}]

f = (T − 1)p2, ρ = 1− (2p2 − 1)

6(T − 1)p

(
T

N
− 1

NT

)
,

ω2 =
p2(p2 − 1)

24ρ2

(
T

N2
− 1

(NT )2

)
− p2(T − 1)

4

(
1− 1

ρ

)2

.

(1.27)

This approximation allows one to obtain detection threshold without having to resort
to expensive Monte-Carlo simulations. Although the result is asymptotic, the relevance
of the approximation is obtained faster than the one obtained using the Wilks theorem
as shown in Figure 1.21. This result is a better approximation than the one obtained
through Wilks theorem. The other test statistics mentioned in (1.24) and (1.25), have χ2

approximations under the null hypothesis resulting from asymptotic properties of Terell and
Wald methodologies.

1.4.7 An extension to the Elliptical case using local Normal
Asymptotic theory

Study of the covariance homogeneity test under non-Gaussian context has been an active
area of research for the past decades and many developments have been carried to bootstrap
the Gaussian GLRT in order to make it more robust to non-Gaussianity. A classic reference
about this subject consists of [Muirhead and Waternaux, 1980] in which the authors provide
an in-depth study of the problem of turning standard Gaussian tests about covariance ma-
trices into pseudo-Gaussian ones remaining valid under elliptical densities. In this reference,
the authors conclude that turning the Gaussian GLRT into a pseudo-Gaussian test is an
arduous task for which no solution had been found yet.

Later, under elliptical distributions assumption, [Yanagihara et al., 2005] studied the
distribution of the Bartlett test defined as:

Λ̂B =

∣∣∣Σ̂SCM
0

∣∣∣
T (N−1)

T∏

t=1

∣∣∣Σ̂SCM
t

∣∣∣
N−1

H1

≷
H0

λ, (1.28)

which is a variant of the Gaussian GLRT [Bar, 1937]. The following result has been estab-
lished:

Proposition 1.4.3. Assuming an elliptical model with an equality of kurtosis between the T
groups of observations (homokurticity), the asymptotic distribution of Λ̂B for the real case:

(1 + κp)

{[
1 +

pκp
2(1 + κp)

]
χ2
T−1 + χ2

(T−1)(p−1) p+2
2

}
, (1.29)

where κp is the common kurtosis of the T groups of samples.

This result generalizes the χ2 approximation of the test statistic since we obtain the
approximation for a Gaussian context (the kurtosis are null). From this result, several
attempts have been made to correct the Bartlett statistic to improve robustness to non-
Gaussianity[Zhang and Boos, 1992, Goodnight and Schwartz, 1997, Zhu et al., 2002]. These
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Figure 1.21: Experimental validation (104 Monte Carlo trials) of PFA approximation of eq.
(1.27) with p = 15, T = 5. Top-Left: non-asymptotic regime (N = 20). Top-right: non-
asymptotic regime (N = 50). Bottom-left: asymptotic regime (N = 200). Bottom-right:
asymptotic regime (N = 1500).

attempts aim at correcting the statistic so that it keeps the CFAR property under the
context of elliptical distributions.

On the other hand, based on Wald statistic [Schott, 2001] proposed a robustification
to handle non-Gaussianity. Following this approach, Hallin and Pandaveine proposed in
[Hallin and Paindaveine, 2009] to use the Local Asymptotic Normality theory of Le Cam
[LeCam, 1960] in order to design pseudo-Gaussian tests which share the same asymptotic
results than the Wald and Gaussian GLRT while being robust and optimal (in Le Cam
sense) to non-Normality.
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As such the optimal test obtained is given by:

Proposition 1.4.4. Pseudo-Gaussian test (homokurtic real case)

QN = 2
∑

1≤t<t′≤T
QN ;t,t′ ,where (1.30)

QN ;t,t′ =
1

4(1 + κ̂p)

{
Tr
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0 )−1(Σ̂SCM
t − Σ̂SCM

t′ )2
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−

κ̂p
(p+ 2)κ̂p + 2

Tr2
[
(Σ̂SCM

0 )−1(Σ̂SCM
t − Σ̂SCM

t′ )
]}

,

κ̂p = p(p+ 1)/2
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t=1

∑N
k=1 d

4(x
(t)
k , Σ̂SCM

0 )− 1 and d(x,Σ) = ‖Σ−1/2x‖.
Under H0, the statistic is distributed as χ2

(T−1)p(p+1)
2

.

Other tests having less restrictive assumptions about homokurticity have also been pro-
posed in the same paper. The authors have also considered the case where the kurtosis is
not a finite moment and proposed a rank-based test in [Hallin and Paindaveine, 2008].

These various works appear to be a good alternative to the Gaussian-based test for the
change detection problem in SAR time series. However, tests on real images proved to be
numerically unstable and did not yield satisfactory results compared to the Gaussian-based
tests. Indeed, these tests do not have optimality at a finite distance which is the case in SAR
change detection application. Moreover, the test assumes the computation of an estimate
of the kurtosis which is known to be unstable if the number of samples is not high. The
problem is that in this context where we have a sliding windows approach, in order to obtain
good estimates that are well conditioned, the size of the windows has to be very large. Thus
in practice, there was aberrant results (NaN or infinite values) in the value the statistic on
real images. Finally, the estimates of the covariance matrix is based on the SCM which is
not robust to outliers. For those reasons, this approach was not pursued in the present thesis.

We will consider in the chapter 3 of this thesis the GLRT under elliptical distributions
and deterministic compound-Gaussian, which to the best of our knowledge has not yet been
considered in the litterature15. The advantage of this methodology is that we can introduce
robust estimates of the shape matrices in the statistic of decision while the SCM is always
the one used in pseudo-Gaussian tests.

1.4.8 Some attempts of equality testing under deterministic
compound-Gaussian model

Under this model, the estimation of ξ has been studied in [Tyler, 1987, Pascal et al., 2008a,
Soloveychik and Wiesel, 2015, Drašković and Pascal, 2016, Gini and Greco, 2002]. When
the textures are considered deterministic, an approximation in the form of a fixed-point
estimator also known as Tyler estimator can be used:

ξ̂
TE

t =
p

N

N∑

k=1

xtkx
t
k

H

xtk
H{ξ̂TE

t }−1xtk

. (1.31)

15For the elliptical case, it is mostly due to the impracticality of the approach which requires the knowl-
edge of the density generator function. As a consequence, this single distribution based approach can
hardly be seen as a robust method. On the other hand, the deterministic compound-Gaussian model allows
adding more degrees of freedom to the problem without additional knowledge about the underlying elliptical
distribution, which makes it a good candidate for a robust change detection methodology.
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In [Formont et al., 2011], it was proposed for the case T = 2, to use this estimator in
the statistic of eq. (1.22) in place of the SCM estimator in order to obtain a robust distance
between covariance matrices. In fact, when considering this methodology, the statistic loses
its CFAR matrix property. Indeed, this is caused by the normalisation that has to be
imposed for the shape matrix (Tr(ξ̂t) = p): the ratio is not invariant when the estimates of
covariance matrices are scaled. Since the normalisation is performed by scaling the estimates
ξ̂t by p/Tr(ξ̂t), the statistic introduces a ratio of trace terms which is not CFAR.

Moreover, this methodology omits the scale parameters which may be useful for account-
ing changes. Indeed, since the shape matrices are normalised, the relative power between
the images is contained in these scale parameters.

Another approach was considered in [Liu et al., 2014b], where estimates of both tex-
tures and covariance are plugged into a similarity measure for the case T = 2. In [Liu
et al., 2011], a 2-step LRT plug-in approach was considered using deterministic compound-
Gaussian model to detect a change in the shape matrix. However in these two works, the
study was limited to the case of T = 2 and there was no theoretical study. Moreover, it is
expected that plug-in approaches have poorer performance compared to the GLRT which
considers the whole problem from the beginning. Notably in those approaches, the CFAR
property is lost due to the normalization as well.

As a consequence, we will consider the GLRT methodology in the chapter 3 which has
not yet been applied to the compound-Gaussian case.

1.5 change-point estimation in time series

In this section, we consider the problem of change-point detection/estimation. While the
change detection problem developed in the previous section considers the sole problem of
detecting all changes in the series, the change-point detection/estimation problem aims at
obtaining at the same time a detection of the changes while also determining the time at
which those changes have occurred. It is thus an alternative problem which brings more
information about the changes in the time series with regards to basic change detection.
This also means that the problem is more complex since the number of changes is also
unknown (ranging from 0 to T − 1).

We stress here that we consider change-points as impulsive changes in the statistics of
the data over time. This definition does not consider slowly changing series for which specific
tools relying upon time series modeling are used16.

While the subject on change-points detection/estimation is well known in the statistical
signal processing literature, the choice has been made to consider the methodology of [Con-
radsen et al., 2016] which relies on iterative hypothesis testing. This choice has been made
since it allows to advantageously use the developments of the chapter 3 which focusses on
this point. This does not mean however that this methodology yields the best performance
from a practical standpoint.

The problem considered presently is the following:

Assume we have a time series of T ordered sets Xt = {xti ∈ Cp : 1 ≤ i ≤ N}. As-
suming each set at date t follows a parametric model with parameter θt, find all the indexes
{t1, . . . , tK} so that ∀1 ≤ i ≤ K, θti−1 6= θti . The number of change-points K is not known.

16See for example [Scharf, 1991].
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1.5.1 Some techniques for estimating the change-point

We describe shortly some methodologies relative to change-point detection and estimation
in time series. Far from being comprehensive, the aim here is to situate the methodology
we will rely upon with regards to other existing literature17.

Broadly, two types of methodologies exist within the literature: the parametric and non-
parametric approaches. In the first case, the distribution of the data must be known and
inference can be done thanks to the estimations of parameters through time. For the other
case, Bayesian inference is often used to introduce priors on the parameters seen as random
variables and then consider the posterior probability density for inference.

Algorithm 1 CUSUM Algorithm

1: Initialize Z0 = 0

2: for t = 1, 2, . . . do Zt = max

{
0, Zt−1 + log

pXt
(Xt;θ1)

pXt
(Xt;θ0)

}

3: if Zt ≥ h then t̂C = t
4: end if
5: end for

Concerning parametric methodologies, the Cumulative Sum Control Chart (CUSUM)
algorithm [Page, 1954] is a sequential algorithm well known in industrial control context
where a shift from an expected value is to be detected. The methodology consists in summing
a ratio of the instantaneous log-likelihoods of the data being under models pXt

(Xt;θ1) and
pXt(Xt;θ0), where θ1 is the parameter in case of a change and θ0 the expected value
of the parameter to control. The algorithm continues until its value exceeds a certain
threshold value h. This process is summed-up in Algorithm 1. A major drawback of this
approach concerns the fact that both θ0 and θ1 must be known to be applicable. Although
methodologies exist when these parameters are unknown, they often suppose additional
constraints [Willsky and Jones, 1976]. Moreover, the setting of the threshold h can be
arduous depending on the probability model considered, which makes it impractical in the
context of SAR change-point estimation.

Conradsen approach is similar in the way that its corresponds to a sequential hypothesis
testing but differs from the fact that it does not consider the instantaneous log-likelihood
ratio but an alternative GLRT which take into account the whole data before the time con-
sidered. This allows to set the threshold as a function of the false alarm rate but increases
the complexity.

When it concerns Bayesian methodology, an interesting approach consists in defining
binary variables rt for each time such that:

rt =

{
1 If Xt is a change-point
0 otherwise

(1.32)

By assigning a Bernoulli prior to these random variables, [Tourneret et al., 2003] de-
veloped a scheme to estimate the change-points for monovariate SAR image segmentation
problem. A more recent approach under the same principle considering multivariate vec-
tors has been introduced in [Harlé et al., 2016] which could be adapted to the context of
change-point estimation in SAR images. This, however, moves away from the analysis on

17See [Basseville and Nikiforov, 1993, Brodsky and Darkhovsky, 2013, Gustafsson, 2000, Aminikhanghahi
and Cook, 2017] or the ph.d thesis of Flore Harlé [Harle, 2016] for a more comprehensive overview.
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covariance matrices obtained from a local spatial neighborhood which is the main subject
of the present work and has thus not been considered.

The approach introduced by [Conradsen et al., 2016], which we will present in more detail
hereafter, has the advantage to be directly generalized to non-Gaussian context thanks to
the work done in Chapter 3 on covariance homogeneity testing. As a direct application, this
methodology has been chosen to tackle the change-point estimation problem.

1.5.2 Joint detection and estimation of change-points for SAR images

Based on the methodology of [Conradsen et al., 2016], the change-point detection/estimation
problem can be decomposed in two sub-problems consisting in:

• A detection problem: we first want to know if there is any change-point in the time-
series. If the detection process does not yield a detection, the scheme can end here.

• An estimation problem: when a detection has been made, the change-point location
(time-stamp) has to be estimated.

Detection problem: Binary Hypothesis testing

The first step consists in detecting the presence of a change in the time series. If the series is
stationary, we assume that there is no change-point to be estimated. The so-called omnibus
test scheme is intended to choose between the two following hypotheses:

Let (t1, t2) ∈ J1, T K2, so that t2 > t1,{
Ht1,t2

0,omni : θt1 = . . . = θt2 = θt1,t2
Ht1,t2

1,omni : ∃(t, t′) ∈ {t1, . . . , t2}2, θt 6= θt′

(1.33)

An appropriate statistic of the observations must be used to decide between the two
hypotheses. This problem has been tackled for various data models in chapter 3.

Estimation Strategy

The scheme (1.33) determines if there is one or more changes. In the case of a positive
outcome, the location of the changes in the time series has to be estimated. To this end,
successive bi-date detection schemes can be implemented:

∀t ∈ J2, T K,
{

Ht
0,bi−date : θt−1 = θt = θt−1,t

Ht
1,bi−date : θt−1 6= θt

(1.34)

However, this scheme exploits at most the data of two successive dates which is sub-
optimal. Moreover, this methodology relies on multiple hypothesis testing in order to derive
a decision, for which as we saw in 1.4.5, we must consider corrections on the threshold.

An alternative scheme proposed is to consider successively the following marginal hy-
potheses:

Consider (t1, t2) ∈ J1, T K2, so that t2 > t1,{
Ht1,t2

0,marg : θt1 = . . . = θt2−1 = θt1,t2−1 and θt2−1 = θt2
Ht1,t2

1,marg : θt1 = . . . = θt2−1 = θt1,t2−1 and θt2−1 6= θt2

(1.35)

In this scheme, the data which are not considered as a change are used, leading to
a better estimation of the parameters concerning the null hypothesis. This is expected to
improve the performance of both detection and estimation given that the number of samples
available is an important parameter. Moreover, since each test does not rely on the previous
one, there is no need to consider threshold corrections.
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The algorithm

Both detection and estimation can be done jointly using problems (1.33) and (1.35). [Con-
radsen et al., 2016] has proposed the Algorithm 2.

Algorithm 2 Change-Point Detection and Estimation

1: Initialize t1 ← 1
2: while Ht1,T

1,omni do . Omnibus test
3: Initialize r ← 1
4: while Ht1,t1+r

0,marg do . Successive marginal tests
5: Update r ← r + 1
6: end while
7: Store t1 + r − 1 as a change point
8: Update t1 ← t1 + r
9: end while

The presented algorithm allows to detect several change points by first detecting a global
change in the series and then refining the detection by iterating on the number of processed
dates. One key-point in the algorithm is that the statistics of decision for both omnibus
and marginal schemes should have the Constant False Alarm (CFAR) property which means
that their distribution is independent of the covariance matrix of the input data. Hence, the
strength of this method lies in the possibility to select detection thresholds as a function of
the probability of false alarm (PFA) and the fact that the number of changes is not required
to be known a priori.

Statistics for marginal scheme under Gaussian case

The Gaussian GLRT for the marginal scheme has also been derived in [Conradsen et al.,
2016]:

Λ̂t1,t2CN ,marg =

∣∣∣∣∣
1

t2 − t1

t2∑

t=t1

Σ̂t

∣∣∣∣∣

(t2−t1)N

∣∣∣∣∣Σ̂t2

∣∣∣∣∣

N ∣∣∣∣∣
1

t2 − t1 − 1

t2−1∑

t=t1

Σ̂t

∣∣∣∣∣

(t2−t1−1)N

H1

≷
H0

λ. (1.36)

The associated PFA-treshold relationship has also been obtained:

P
{

2ρ log(Λ̂t1,t2CN ,marg) ≤ z
}
≈ P

{
χ2
f2 ≤ z

}
+ ω2,t
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P
{
χ2
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}
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{
χ2
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}]
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1
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2
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1− 1
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(
1 +

2t− 1

t2(t− 1)2

)
1

ρ2
t

,

(1.37)

where t = t2 − t1.

This allows to obtain a thresold to decide for each test without requiring expensive Monte
Carlo simulations.



1.6. SUMMARY 53

With regards to this algorithm, the work presented in the Chapter 4 consists in replacing
the Gaussian-derived statistics with those obtained using the broader compound-Gaussian
model. This, in theory, allows to bring robustness to the methodology as it is the case for
the change detection problem in Chapter 3.

1.6 summary

We described in this chapter a few issues related to the processing of SAR image time series
for change detection purposes. We explained that different types of images can be obtained
depending on the acquisition methods. In the context of this thesis, we will consider images
corresponding to complex values, usually denominated as single look complex images.

Then, we explained that change detection based on statistical framework relies on the
concept of diversity which can be naturally present (polarimetry) but is sometimes lacking.
In this case, spectro-angular diversity is an interesting track to characterize the scatterers
present in SAR images. However, depending on the methodology used, the wavelet decom-
position along sub-apertures and sub-bands can lead to unwanted patterns on the resulting
images. For such purposes, we will consider the development of new wavelet packets in the
chapter 2.

Using this diversity, it is possible to consider change-detection through the statistical
problem of covariance homogeneity testing which has shown promising results in the litera-
ture. However, these works have considered a Gaussian hypothesis, which is as we showed
inaccurate in high-resolution images. For that purpose, we will consider in the chapter 3 the
problem of covariance equality testing in the context of the broader elliptical family of distri-
butions as well as deterministic compound-Gaussian model. Then, exploiting the hypothesis
testing schemes, we will consider the problem of change-point detection and estimation in
chapter 4.

Finally, we will present in Chapter 5, an opening of this work based on Riemannian
geometry which is able to solve problems related to on-line change-point detection as well
as clustering problems.
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In this chapter, we consider the design of wavelet packet formalism adapted to SAR im-
age analysis of dispersibility and anisotropy. As described in 1.2.3, Time-Frequency analysis
tools have been successfully used in retrieving those behaviors of scatterers. This chapter
aims at providing a comprehensive wavelet packet formalism, which as we will see, is an
interesting generalization of linear time-frequency tools. To that end, we first describe the
geometry of acquisition for a SAR system and give the definition of relevant physical pa-
rameters. Then we link standard linear time-frequency tools to wavelet packets formalism.
From there the wavelet packet formalism is adapted from cartesian representation to polar
one better suited to SAR geometry. Finally, we propose a new wavelet packet aimed at
reducing sidelobes related effects.

Notations relevant to his chapter: Given a 2-dimensional (2D) function g ∈ L1(C2)∪
L2(C2), the 2D Fourier transform (resp. inverse Fourier Transform) is denoted by Fg(ω1, ω2) =∫
R g(x1, x2)e−i ω1 x1e−i ω2 x2dx1dx2 (resp. F−1g) and define τ[p,q]g(x, y) = g(x − p, y − q).

55
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For a function, 〈•, •〉 is the inner product on L1(C2)∪L2(C2) and ‖ • ‖ is the L2 norm. 1lK
denotes the indicator function of a given set K.

2.1 reminding the principle of sar image reconstruction
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Figure 2.1: SAR acquisition geometry. A reflector is viewed at two different angles of
illumination θ1 and θ2 in a given frequency. This information is summarized through the
wave vectors k1, k2.

Figure 2.1 presents the geometry of acquisition for a SAR system. The moving radar
transmits an electromagnetic wave represented by the wave vector k = [kx, ky]

T
and recovers

the backscattering signal in order to obtain a map of the reflectors of the scene. k is related
to the emitted frequency f by ‖k‖ = K = 2f/c, c being the celerity of the light, and to the
angle of illumination θ by θ = arctan(ky/kx).

The emitted signal is located in a certain range of frequencies defined by: [f0 −B/2, f0 +B/2],
f0 being the carrier and B being the bandwidth of the radar. This translates in terms of
spatial frequencies K to: [K0 − KB/2,K0 + KB/2] with K0 = 2f0/c, KB = 2B/c. The angles
θ of illumination lies in [−θB , θB ] angular domain. The spatial SAR resolutions are given
respectively in azimuth by δy = c/(4 f0 θB) and in radial range by δx = c/(2B). We de-
fine D = [K0 − KB/2,K0 + KB/2] × [−θB , θB ], and US,] as the space of functions having
spectro-angular features in D.

In algorithms such as RMA [Carrara et al., 1995], the aim is to collect a backscattering
reflection coefficient Ĩ(k) and then perform Fourier based spectral estimation in order to
build the conventional complex single look (monovariate) SAR image I(r) for each point

r = [x, y]
T

on the ground:

I(r) =

∫

D
Ĩ(k) exp

(
2 i π kT r

)
dk , (2.1)

where the integration is performed on the whole spectral and angular domains.
As described in section 1.2.3, this methodology relies on the assumption that all scatters

have an isotropic and non-dispersive behavior. These assumptions are no longer respected
in HR SAR images which lead to artifacts on the resulting image. However, this behavior
can, in return, be considered as a source of diversity to characterize the objects present in
the scene.
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In order to retrieve the behavior of the scatters in the space of spectral and angular
features [K, θ], works such as [Tria et al., 2007] or [Ovarlez et al., 2003] have proposed to
consider the anisotropic and non-dispersive behavior in terms of non-stationarities of the
spectra. Using this model, wavelet analysis is a powerful tool for analyzing the behavior of
the colored scatterers. For instance, an hyperimage representing the reflectivity of the scene
for any sub-space E ⊂ D is given by:

ĨE(r) =

∫

E
Ĩ(k) ΨS

E (k, r) dk , (2.2)

where ΨS
E (k, r) is a wavelet function with spectro-angular support E . When considering

several subsets E1,...,M , a wavelet packet {ΨS
Ei(k, r)/i = 1, . . . ,M} can be defined. As an

example, an ilustration of a partioning of the spectra into 9 subsets is presented in Figure
2.1. The problematic is then to choose the shape of the wavelets and a relevant partition of
D in terms of Ei as to decompose the image in separate frequency bands and range of angles
for a given purpose.

Partition

Figure 2.2: Illustration of SAR spectra partioning

This approach was used in [Ovarlez et al., 2017] where it was adapted to work in target
detection problems. However, in this work, the Short Time Fourier Transform (STFT)
was considered with no analysis of the algebraic properties of the ensued decomposition.
Another issue with the STFT concerns the known relative high side lobes introduced by the
rectangular windows while others wavelet alternatives allow limiting this phenomenon with
a cost of deforming the input signal. To tackle these issues in a comprehensive manner, we
will consider, in the next sections, the problem in terms of wavelet packet decomposition.
Indeed, as we will see in the next section, the formalism of wavelet packets is an interesting
generalization of the STFT which allows considering the time-frequency analysis in terms
of decomposition in algebraic space to analyze problems of signal deformation analysis,
reconstruction properties and so on.

2.2 adapting shannon wavelet packets to sar geometry

In this section, new wavelet packets adapted to SAR geometry are developed. The par-
ticularity of these new wavelet packets with regards to existing wavelet packets literature
is the choice of polar representation which better describes the data with regards to the
spectro-angular diversity of interest. To this end, we use classic Shannon M-band filters
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that we adapt to take into account the spectral support of SAR images and then we correct
the edge effects of those wavelets.

The adaptation of wavelet packets in this geometry can be done using many classic
wavelets packets (Gabor, Debaucheries, etc.). However, Shannon M-band filters have been
chosen as a basis of our design for the following reasons:

• They are separable with regards to the two dimensions (K, θ) of the decomposition,
which makes them ideal when we want to choose the number of sub-bands and sub-
looks (as in looking angle) separately.

• Since we expect to exploit the decomposition in classic statistical detection schemes,
there is a need for each coefficient to deliver different information than the others.
Otherwise, correlations between sub-bands/sub-looks would be introduced due to the
shape of the wavelets and may deteriorate detection performance. This leads to a
choice of an orthogonal wavelet packet.

• To better describe the behavior of a possible target as a function of the frequencies
and looking angle, we consider wavelets corresponding to a connected subset of the
frequency/angular domain.

2.2.1 Shannon M-band wavelets theory
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Figure 2.3: Shannon 2×3 multi-band decomposition tree associated with j = 2. The positive
part of ∆1,+

j,• of ∆1
j,• are given in the upper tree whereas ∆2,+

j,• , positive part of ∆2
j,• are given

at the bottom tree. The frequency tiles associated with the decomposition are the intervals
∆1
j,• × ∆2

j,• for every fixed j: the whole tree involves all combination of nodes given at a
fixed resolution level j.

Let M1 and M2 be natural numbers that are both greater than or equal to 2. The
Shannon 2D M1 ×M2 multi-band wavelet filters used in this work follows from a separable
2D extension of 1D filters presented in [Hess-Nielsen, 1994], [Nielsen, 2002]. These filters
give a multi-resolution framework for decomposing any image.

We define US as the 2D Paley-Wiener (PW) space composed by elements of L2(R2)
whose Fourier transform is supported within [−π, π]2. Any element of this space satisfies
Shannon’s sampling theorem. Therefore, when the M1 × M2 multi-band decomposition
concerns the PW space US, the input data for the decomposition of any element g of this
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functional space are the samples {g[k, `]}k,`∈Z of g (corresponding to the pixels of the image
to decompose).

The 2D Shannon wavelet packet function at resolution level j and 2D shift parameters
(n1, n2), with nε ∈ {0, . . . ,M j

ε − 1} for ε ∈ {1, 2}, is given by its Fourier transform as:

ΨS
j,[n1,n2] = M

j/2
1 M

j/2
2 (kx, ky) 1l∆0

j,G[1](n1)
×∆1

j,G[2](n2)

(kx, ky) , (2.3)

where

∆ε
j,k =

[
− (k + 1)π

M j
ε

,− kπ

M j
ε

]
∪
[
kπ

M j
ε

,
(k + 1)π

M j
ε

]
, (2.4)

and (G[ε])ε∈{1,2} are the permutation maps defined respectively, for ε ∈ {1, 2}, by G[ε](0) = 0
and by recursively setting, for k = 0, 1, . . . ,Mε − 1 and ` = 0, 1, 2, . . .

G[ε] (M`+ k)

=

{
MG[ε](`) + k if G[ε](`) is even,
MG[ε](`)− k +M − 1 if G[ε](`) is odd.

(2.5)

Define ΦS
j,[n1,n2] = F−1ΨS

j,[m,n]. A 2D wavelet packet subspace ΦS
j,[n1,n2] is generated as

the closure of the space spanned by the following translated versions of ΦS
j,[n1,n2]:

ΦS
j,[m,n] = Clos

〈
τ[Mj

1p,M
j
2q]

ΦS
j,[m,n] : p ∈ Z, q ∈ Z

〉
. (2.6)

These subspaces are such that for any fixed j,

US =
⊕

m=0,1,...,Mj
1−1

n=0,1,...,Mj
2−1

ΦS
j,[m,n]

where ⊕ denotes the direct sum of functional subspaces.
As an illustration, the Shannon 2× 3 multi-band wavelet packet tree is given by Figure

2.3 as a tree product resulting from a 2-band and a 3-band 1D trees, where the tree-product
involves all combination of nodes given at a fixed resolution level j. In this figure, the
positive part ∆ε,+

j,k of ∆ε
j,k is given for each resolution level j under consideration.

The Shannon M1 ×M2 multi-band coefficients of the projection of g on a 2D wavelet
packet subspace ΦS

j,[n1,n2] defines the wavelet coefficients:

CS
j,[n1,n2][p, q] =

∫∫

R2

g(z, t)τ[Mj
1p,M

j
2q]

ΦS
j,[n1,n2](z, t)dzdt. (2.7)

Proposition 2.2.1. The coefficients of the projection of g on a wavelet packet subspace
ΦS
j,[n1,n2] is a discrete sequence Cj,[n1,n2] = (CS

j,[n1,n2][p, q])p,q∈Z where

CS
j,[m,n][p, q] = M

−j/2
1 M

−j/2
2 F−1Uj,[m,n](M

jp,M jq) , (2.8)

with

Uj,[m,n] = [Fg]× 1l∆0
j,G(m)

×∆1
j,G(n)

. (2.9)

Proof. See in Appendix 2.A.1.
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Figure 2.4: Peacock image - Its Cartesian Fourier magnitudes - Shannon M = 4 band
frequency sub-selections and the corresponding 4-band wavelet subimages.

In practice, g is a discrete image to be decomposed. This proposition shows how wavelet
coefficients can be easily obtained in practice through a simple Fast Fourier Transform
(FFT). [p, q] are the pixels of the wavelet coefficient for shift parameters [n1, n2] at a fixed
resolution j. Note that, a decomposition at a given resolution j assumes that the wavelets
coefficients correspond to a decimated version of the image (by a factor of M j

1 and M j
2 ). This

methodology enables to compute efficiently the coefficients with a low-complexity. Indeed,
since only a Hadamard product and an FFT is necessary, the complexity is linear with
regards to the number of coefficients desired.

The wavelets presented here are designed for images respecting Shannon sampling theo-
rem. The decomposition is done on functions whose frequencies are contained in the space
[−π, π]

2
. We adapt hereafter Shannon wavelets from the Cartesian space [−π, π]

2
to the

polar space D.

The representation space has indeed a great impact on the ensuing decomposition. To
better understand how the representation can impact the decomposition results, an example
of M-band decomposition on a classic image of a peacock is presented in Figure 2.4 using
a Cartesian representation and polar representation in Figure 2.5 of this response. The
comparison between the two Figures highlights that information is represented differently
when considering Cartesian and polar features: in the Cartesian 4-band splitting (see Figure
2.4), the main highlighted information is the approximation of the peacock with different
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|F “PCK” |
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Figure 2.5: Peacock image - Its Polar Fourier magnitudes - Shannon M = 4 band frequency
sub-selections and the corresponding 4-band wavelet subimages.

edge details. On the contrary, circular peacock’s tail range is the main information associated
with the polar wavelet domain implementation (see Figure 2.5). When decomposing a SAR
image, this difference is primordial since when using a Cartesian representation will not
result in a decomposition suited for analyzing the spectro-angular behavior.

2.2.2 Adaptation of Shannon wavelets to SAR geometry

Define
ΨS,]
j,[m,n](K, θ) = Rj/2 Lj/2 1l∆j,Km×∆j,θn

(K, θ) , (2.10)

where

∆j,Km = K0 − KB +

[
mKB
Rj

,
(m+ 1)KB

Rj

]
, (2.11)

∆j,θn =

[
nθB
Lj

,
(n+ 1)θB

Lj

]
. (2.12)

In contrast to eq. (2.3), these functions are defined in polar coordinates in order to
span the spectrum of the SAR image as illustrated in Figure 2.1. From this, we define the
wavelet functions ΦS,]

j,[m,n](x, y) = F−1ΨS,]
j,[m,n](K, θ). Here, the variables x and y correspond
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Figure 2.6: Cartesian product ⊗ of spectral and angular multi-resolution trees associ-
ated with radial ‘2 bands - 2 resolutions’ and angular ‘3 looks - 2 resolutions’ splitting
ΨS,]
j,[m,n](K, θ) defined by Eq. (2.16) when considering [f0 −B/2, f0 +B/2] × [−θB , θB ] =

[1GHz, 5GHz]× [−45 deg, 45 deg]. The intervals represented are given for illustration.

to the range and cross-range positions as in Figure 2.1. Note that this definition requires
computing the Fourier transform on spectral and angular variables. Among the different
possible solutions of this problem, we use interpolation from the Fractional Fast Fourier
Transform (FFFT or 3FT) in order to fill the polar grid [K0 − KB/2,K0 + KB/2]× [−θB , θB ]
from the Cartesian one corresponding to variables kx, ky. Among the 3FT implementations,
we recommend using that of [Averbuch et al., 2006].

The wavelets thus defined constitute a wavelet packet as per the following proposition:

Proposition 2.2.2 (Vanishing moments). For any non-negative integers j,m, n, p, q, we
have ∫∫

R2

xp yq ΦS,]
j,[m,n](x, y) dx dy = 0.

Proof. See Appendix 2.A.2.

Functions ΦS,]
j,[m,n] defined above have thus an infinite number of vanishing moments.

Since they are well localized in space/frequency/angle, they are wavelet functions.

Define the wavelet subspaces ΦS,]
j,[m,n] similarly to eq. (2.6). Then we have:

Proposition 2.2.3 (Orthogonality of wavelet packet subspaces). For any given j and any
(m,n) 6= (m′, n′) we have:

ΦS,]
j,[m,n] ⊥ ΦS,]

j,[m′,n′] ,

where ⊥ denotes orthogonality symbol.

Proof. See Appendix 2.A.3.
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Proposition 2.2.4 (Completion of wavelet packet subspaces). For any given j, and any
(m,n), we have ⋃

m = 0, 1, . . . , Rj − 1
n = 0, 1, . . . , Lj − 1

ΦS,]
j,[m,n] = US,,].

Proof. See Appendix 2.A.4.

Propositions 2.2.2, 2.2.3 and 2.2.4 highlight that wavelet subspaces ΦS,]
j,[m,n] : j >

1,m = 0, 1, . . . , Rj − 1, n = 0, 1, . . . , Lj − 1 can thus be used to define several multi-resolution
frameworks (specific sub-selection of j,m, n) for analyzing SAR data.

Analyzing SAR data is done by computing the wavelet coefficients as previously stated
in (2.2). We have:

Proposition 2.2.5 (Wavelet coefficients). In practice, at a resolution level j, we obtain the
wavelet coefficients by computing the following:

CS,]
j,[m,n][p, q] = R−j/2 L−j/2 F−1Vj,[m,n](R

j p, Lj q) , (2.13)

where Vj,[m,n] follows from the back-projection of the SAR image with respect to spectral and
illumination features:

Vj,[m,n](K, θ) = Ĩ(K, θ) 1l∆j,Km×∆j,θn
(K, θ) . (2.14)

Proof. Analog to the proof of proposition 2.2.5.

Again, the complexity of this methodology is linear with regards to the number of co-
efficients (R × L) since coefficients are obtained from a Hadamard product and a 3FT. In
practice, any SAR data can efficiently be analyzed using this methodology.

An example of a multi-resolution analysis is given in Figure 2.6 for spectral features and
angular illumination in [f0 −B/2, f0 +B/2]× [−θB , θB ] = [1, 5]GHz× [−45, 45] deg.

2.3 design of a new wavelet packets to reduce sidelobes

When considering Shannon wavelets, the decomposition is subject to hard transitions in the
sense that each filter is an ideal band-pass filter. When considering the wavelet coefficients,
this results in a convolution with a cardinal sine function which has high side lobes (see fig.
2.7 for an illustration). This dispersion of energy is problematic in detection schemes when
secondary data, corresponding to the surrounding pixels, are needed.

To limit the side lobes on the wavelet coefficients which are due to the sharp edge of
the Shannon wavelets, we look for alternatives that are subject to smooth transitions. We
derive hereafter, a new family of parametrized R-band / L-look wavelet functions including
the Shannon wavelets as a limit case.

We propose the following criteria for the design of the new family of wavelets:

• Well located in frequencies and angles (wavelet function).
• Similar behaviour to Shannon wavelets to preserve the framework presented in 2.2.2.
• Smooth transition with a parameter controlling the decay (for adaptability purposes).
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Figure 2.7: Example of bright point decomposition. Left: Image I. Right: CS,]
1,[1,1] with

R = L = 2.
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Figure 2.8: Bell-shaped function with width a = 3, center c = 0 and different slope param-
eters b ∈ {1, 3, 10, 50}.

Many functions respect the two first criteria. However, Bell-shaped membership func-
tions appear to be a good choice as they allow to control both center, extent and slope (and
thus smoothness). They are a family of one-dimensional functions defined by:

gBell
a,b,c(x) =

1

1 +

∣∣∣∣
x− c
a

∣∣∣∣
2b
. (2.15)

where the parameter a stands for the width of the function, where the parameter b controls
the slope and the parameter c is a location parameter.

Figure 2.8 gives an example of Bell function with different slopes and shows that these
functions are good candidates for our problem. Using them as a basis, we define:

Ψ
[d1,d2],]
j,[m,n] (K, θ) = R

j
2L

j
2H

[d1,d2],]
j,[m,n] (K, θ) 1lD , (2.16)
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where H
[d1,d2],]
j,[m,n] is defined as a product of two Bell functions:

H
[d1,d2],]
j,[m,n] (K, θ) = Hd1,]

j,m (K)Hd2,]
j,n (θ) (2.17)

with:

Hd1,]
j,m (K) = gBell

KB
2Rj

,d1,K0−KB
2 +

(2m+1)KB
2Rj

(K) ,

Hd2,]
j,n (θ) = gBell

θB
Lj
,d2,−θB+

(2n+1)θB
2Lj

(θ) .

The definition is similar to that of eq. (2.10): the center and width of Bell functions have
been adapted to span the SAR geometry domain D through Rj translations along K and Lj

translations along θ. The slope parameters d1 and d2 are let open as a parametrization of
the wavelet family.

Define Φ
[d1,d2],]
j,[m,n] = F−1Ψ

[d1,d2],]
j,[m,n] (K, θ), the wavelet function. We have the following

properties:

Proposition 2.3.1 (Vanishing moments). For any non-negative integers j,m, n, p, q, we
have ∫∫

R2

xp yq Φ
[d1,d2],]
j,[m,n] (x, y) dx dy = 0.

Proof. Similar to 2.2.2. The null derivative in (0, 0) is assured by the indicator 1lD.

Proposition 2.3.1 indicates that the functions presented by eq. (2.16) define wavelets.

Proposition 2.3.2 (Convergence to Shannon wavelets). The R-band L-look wavelet trans-
form obtained by using Eq. (2.16) is associated with the Shannon wavelet transform when
d1, d2 → +∞:

lim
d1→+∞

lim
d2→+∞

Ψ
[d1,d2],]
j,[m,n]

a.e
= ΨS,]

j,[m,n] . (2.18)

where equality holds true almost everywhere (a.e).

Proof. See Appendix 2.A.5.

Proposition 2.3.2 highlights that the Bell-shaped wavelets have similar behaviour than
Shannon wavelets for high value of d1 and d2 and can thus be used for analyzing SAR im-

ages. For convenience purposes, we use alternatively the notation Ψ
[∞,∞],]
j,[m,n] = ΨS,]

j,[m,n].

Figure 2.9 provides the shapes associated with wavelet Φ
[d1,d2],]
1,[•,•] and their corresponding

Fourier transforms, when d1 = d2 ∈ {0.1, 0.5, 1, 10}. As it can be seen in this figure,

functions Φ
[d1,d2],]
1,[•,•] are highly selective in frequency and orientation when d1, d2 are small.

When d1, d2 are large, these functions behave as ΦS,]
1,[•,•].
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Figure 2.9: Real Part (R), Imaginary Part (I) and Fourier transform (F) shapes of wavelet

Φ
[d1,d2],]
1,[•,•] functions, for d1 = d2 ∈ {0.1, 0.5, 1, 10}.

Selection of slope parameters

A problem arises in the choice of these slope parameters. One can intuit that given their
values, the properties of orthogonality and completion of wavelet packet subspaces are not
assured. Unfortunately, given the expression of the wavelets, finding an interval of values
using orthogonality or completion properties is not possible to our knowledge. As such,
we propose to consider the wavelet packet in terms of frames (see [Christensen, 2002] for
details) which relaxes the conditions of orthogonality and completion. As suggested in
[Cohen et al., 1992], a wavelet packet has good reconstruction property if the energy of the
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signal is preserved when doing the decomposition and reconstruction. In practice, this can
be ensured if the following condition is respected [Kovacevic et al., 2002]:

Q(K, θ) =
∑

m,n

|H [d1,d2],]
j,[m,n] (K, θ)|2 ≈ 1, ∀K, ∀θ. (2.19)

This criterion can be used to grasp qualitatively how the decomposition will treat the
frequencies present in the image. If Q > 1, the energy increases which means that the packet
is redundant. When Q < 1, there is a loss of energy and thus information. We propose to
use this criterion to select the values of d1, d2 which preserves energy the most.

Since the expression in eq. (2.17) is separable in K and θ, we can treat both separately
and solve the problems: ∀(K, θ) ∈ D,

find d1 subject to QK(K) =
∑
m,n |H

d1,]
j,[m,n](K)|2 ≈ 1 and

find d2 subject to Qθ(θ) =
∑
m,n |H

d2,]
j,[m,n](θ)|2 ≈ 1.
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Figure 2.10: Frequencies selectivity of wavelet packet for f0=9.6GHz, B=640MHz, θB=0.25
rad, j=1, R=L=2.

Figure 2.10 gives the values of Q for several values of d1 and d2 for a given set of
(j, R, L, f0, B, θB). We notice that for small values of dε∈{1,2}, there is a loss of energy at
the transitions between the filters. For values of dε∈{1,2} ∈ [10,∞[, this loss is acceptable.
Indeed, since the wavelet packet is developed for target detection schemes, there is a need to
know the spectro-angular behavior in a vector of a fixed size. This means that if the energy
of most of each band is preserved in the coefficients, this will not impact much the detection
scheme.

Finally we can compute the wavelets coefficients simply by taking expression at eq. (2.13)

and using Vj,[m,n](K, θ) = Ĩ(K, θ)H
[d1,d2],]
j,[m,n] .
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2.4 application to real sar images

2.4.1 Datasets considered

Two dataset have been used to test the wavelet decompositions and their impact on target
detection schemes:

• SANDIA Dataset, available at http://www.sandia.gov/radar/complex_data/. The image
referenced as MiniSAR20050519p0010image002 is selected.

• SDMS Dataset [Scarborough et al., 2010], available at https://www.sdms.afrl.af.mil/

index.php?collection=ccd_challenge. The image referenced as FP0120 is selected.

Table 2.1 summarizes the information on both datasets.

Table 2.1: Description of Dataset

Dataset Band Frequency Resolution Scene description

SANDIA Ku 16.8 GHz 0.10 m Stationary aircraft, trees
SDMS X 9.6GHz 0.20 m Foliage, buildings, vehicles

2.4.2 Analysis of high-resolution SAR images decomposition

Figure 2.11 shows a 2-Band/2-Look decomposition of a portion of SDMS Image. First,
the spectro-angular behavior of the data can be analyzed: given the sub-image considered,
different patterns emerge. Indeed, for example the object in the bottom-right corner (0 >
x > 100 and −50 < y < 0), is not present in the coefficients C1,[1,2] and C1,[2,2]. Next,
the wavelet decomposition is compared with two parameters d1 and d2. When comparing
both Shannon and Bell decomposition in Figure 2.11, we observe that for Shannon wavelets,
linear patterns (sidelobes for the strong scatterers present in the scene). When considering
d1 = d2 = 3, the undesired linear patterns are less prominent. This result was expected as
Bell-shaped wavelets make a more concise decomposition in the spatial domain.

Figure 2.12 shows a 3-Band 3-Look decomposition of a portion of SANDIA Image. The
decomposition shows here as well that the scatterers do not behave as isotropic and non-
dispersive since the coefficients share dissimilarities. The choice of Bell wavelets has also
reduced sidelobes of the strong scatterers considerably compared to the Shannon wavelets.

2.4.3 Preliminary results in target detection applications

In this subsection, we consider a target detection problem, as an illustration, to show that the
wavelet decomposition presented here fits well with statistical adaptive detection schemes.
Hence, we propose to use the wavelet decomposition of the previous section in order to detect
a target in a noisy SAR image. First, we give a statistical model for noise disturbances.
Then we present the target detection problem.

Data Model

In the following, each pixel location (p, q) of the SAR image will be represented, at a reso-
lution level j, by a set of R-radius and L-look wavelets features encapsulated in the random
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Figure 2.11: Coefficients for Shannon and Bell-Shaped wavelets on SDMS Image with R = 2,
L = 2. The improvement in terms of linear patterns (side lobes of bright points) for
d1 = d2 = 3 are highlighted using dashed boxes.
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Figure 2.12: Coefficients for Shannon and Bell-Shaped wavelets on SANDIA image with
R = 3, L = 3.
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complex vector

cj [p, q] ,
{

C
[d1,d2],]
j,[m,n] [p, q]

}
m = 0, 1, . . . , Rj − 1
n = 0, 1, . . . , Lj − 1

∈ CN ,

where N = Rj × Lj .
In standard applications, the vector cj [p, q] is modeled as a multivariate Gaussian vector:

cj [p, q] follows a Gaussian distribution CN (0,Σ) where Σ is the unknown covariance matrix
of the data. This model is accurate for SAR images where each pixel is often assumed to
be the sum of the contributions of all the scatterers inside its range.

However, as descrbed in section 1.3, when considering HR SAR images, the number of
scatterers present in any pixel of the image is small, meaning that the Central Limit Theorem
may no longer be applicable. Moreover, there are many non-stationarities inherent to this
kind of images where the backscattered power can vary greatly spatially inside the analysis
windows. Thus, the Gaussian hypothesis may no longer be applicable. To generalize the
Gaussian statistic, we assume that cj [p, q] follows a CES distribution CE(0, g,Σ) as defined
in 1.3.4 where the scatter matrix Σ is unknown and where g stands for any characteristic
function generator.

In both models, the matrix Σ characterizes the angular and the spectral behaviour of
each scatterer. To estimate this matrix, the following K secondary vectors surrounding the
pixel (p, q) under test (supposed homogeneous in terms of angular and spectral behaviour)
are used:

{cj [p− `1, q − `2]} `1 = −K1, . . . , K1

`2 = −K2, . . . , K2

(`1, `2) 6= (0, 0)

with K = (2K1 + 1)(2K2 + 1)− 1.
We consider two covariance matrix estimators on wavelet feature vectors: the standard

Sample Covariance Matrix (SCM) which can be written, under zero-mean wavelet coefficient
assumption, in the form

Σ̂SCM,j [p, q] =
1

K
×

∑

`1=−K1,...,K1
`2=−K2,...,K2

(`1,`2)6=(0,0)

cj [p− `1, q − `2] cHj [p− `1, q − `2], (2.20)

and, as alternative to SCM (which can have poorer performance under generalized CES
model assumption), the Tyler’s Estimator (TE) which has proven some robustness in both
Gaussian and non-Gaussian cases and which is defined as the solution of the fixed point
equation [Pascal et al., 2008b]:

Σ̂TE,j [p, q] =
N

K
×

∑

`1=−K1,...,K1
`2=−K2,...,K2

(`1,`2)6=(0,0)

cj [p− `1, q − `2] cHj [p− `1, q − `2]

cHj [p− `1, q − `2] Σ̂−1
TE,j [p, q] cj [p− `1, q − `2]

.

(2.21)

The TE estimator is robust to non-stationarities that are naturally present in HR SAR
images.
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For both SCM and TE estimators, the number K has to be around K ≈ 2N for a
good estimation [Robey et al., 1992]. For high values of R or L, the vectors become very
large. The target detection problem necessitates the estimation of the covariance matrix of
the noise in order to compute the detectors. This covariance is estimated using a window
with some guard pxiels around the test pixel. As the dimension increases, more samples are
needed for the estimation which means that we have to increase the size of the window. This
leads to a very poor spatial resolution of detection. That’s why we usually prefer to keep the
size of the window to the lowest possible value. In those cases, regularized versions of SCM
and TE exist in the literature and have shown good results for many applications [Chen
et al., 2011, Pascal et al., 2014].

Note that both estimators are used to estimate the covariance matrix of the clutter
around a target. Hence, the test pixel (namely (`1, `2) 6= (0, 0)) is excluded in the process.

Detection Schemes

Target detection schemes usually consist in estimating the statistics of the background
around the possible location of a target and computing a ratio measuring the likelihood
of a target being present. Most of the time, an appropriate scaling is chosen to guarantee a
certain probability of false alarm. This is possible if the statistic of the ratio is independent
of the data being tested and is known as the Constant False Alarm Rate (CFAR) property
(see [Li and Zelnio, 1996] or [Tao et al., 2016] for an accurate description of such detection
schemes).

We assume that a target with a known steering vector p ∈ CN could be present in some
pixels in the SAR image. It is an a priori information about the spectro-angular behaviour of
the target we want to detect. In practice, it can be obtained by experimental measurements
or by means of wavelet transform on an image where we have isolated the target1. We have
for each pixel I[p, q] to solve the standard binary hypothesis test:

{
H0 : cj [p, q] = n, ck = nk ∀k ∈ [1,K]
H1 : cj [p, q] = ap + n, ck = nk ∀k ∈ [1,K] ,

(2.22)

where (n,nk) both represent a noise with the same distribution, a is an unknown complex
amplitude of the potential target with spectro-angular steering vector p to be detected and
{ck}k∈[1,K] being the K secondary data.

In this detection issue, we decide to test different adaptive detectors like the well-known
Adaptive Matched Filter which corresponds to a two-step Generalized Likelihood Ratio Test
(GLRT) in homogeneous Gaussian noise [Robey et al., 1992]):

AMF

Λj [p, q] =

∣∣∣pH Σ̂−1
SCM,j [p, q] cj [p, q]

∣∣∣
2

pH Σ̂−1
SCM,j [p, q] p

H1

≷
H0

λ , (2.23)

where λ is the detection threshold.

For partially homogeneous Gaussian noise or for CES distributed noises [Ollila et al.,
2012a], the derivation of the detection problem leads to the Adaptive Normalized Matched

1 Note that when the steering vector is not known, it is possible to develop Bayesian target detection
schemes using works such as [Besson et al., 2017, Coluccia and Ricci, 2017].



2.4. APPLICATION TO REAL SAR IMAGES 73

Filter [Kraut et al., 2001, Greco and De Maio, 2016]:

ANMF

Λj [p, q] =
∣∣∣pH Σ̂−1

TE,j [p, q] cj [p, q]
∣∣∣
2

(
pH Σ̂−1

TE,j [p, q] p
)(

cHj [p, q] Σ̂−1
TE,j [p, q] cj [p, q]

)
H1

≷
H0

λ .
(2.24)

The AMF detector has the Constant False Alarm (CFAR) property relative to the Gaus-
sian distribution, while the ANMF is CFAR for both Gaussian and CES distributions. This
is an important property since it allows to select a unique detection threshold to ensure a
probability of false alarm (PFa) independently of the data being tested.

Concerning the complexity of these methods, the limiting factor is the need to compute
the inverse of the covariance matrix for both AMF and ANMF schemes. Then, if the number
of coefficients is high, this operation becomes time-consuming (typically O

(
(R× L)3

)
).

Methodology for simulating targets

For a given SAR image, an artificial target with a given steering vector (representing its
spectro-angular behavior) is embedded. In this way, we can control both position and
Signal to Noise Ratio (SNR) of the target to be detected. For a given image I, steering
vector p ∈ CR×L, a pixel [it, jt]

T corresponding to position rt = [x(it),y(jt)]
T and a given

SNR in dB, an image with the target is obtained through:

It = I +
T

‖T‖l2
σ 10

SNRdB

20 (2.25)

with:
T =

∑

m=0,...,Rj−1
n=0,...,Lj−1

F−1
{
p[m,n] 1l∆j,Km×∆j,θn

ei 2π kT rt
}

and

σ2 =
∑

i=−10,...,10

I(it + i, jt + i)2, the variance of the noise on a window around the target.

T is an image generated to only possess the target at the position wanted. It is con-
structed in the spectral domain by generating a piecewise constant spectra where each
constant part corresponds to the value of the steering vector in this band of frequency and
interval of angles. Then it is multiplied by a phase term to input the location of the target.
Finally, the image is obtained by inverse Fourier transform as usually done in SAR image
reconstruction.

This process is done as follows:

• Choose a steering vector p.

• Build spectrum according to the steering vector and create image of the targets using
eq. (2.25)

• Perform the wavelet decomposition and create the hyperimage using eq. (2.13).

• Apply the detectors (2.23), (2.24) with the given steering vector.
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Figure 2.13: PFA-λ curves (j = 1, R = 5, L = 5, K = 88). d1 = d2 =∞. Left: AMF, Right:
ANMF. Top: SANDIA dataset, Bottom: SDMS dataset.

Analysis of Pfa regulation over datasets

Next, we plot in Figure 2.13, the PFA-λ (probability of false alarm versus threshold of
detection) relationships for both AMF and ANMF detectors to study the CFAR behavior
of the detectors on the datasets. We choose a random steering vector and apply detectors
on the image without any target. It can be observed that the ANMF detector fares a lot
better in terms of regulation of false alarm than the AMF. When compared to the theoretical
relationship, the AMF detector has an experimental threshold higher at low PFA whereas the
ANMF detector stays close to its theoretical performance. This can be interpreted by the
heterogeneous nature of the datasets which are not well modeled by Gaussian assumption.

Analysis of of a scenario of detection near a bright point

We choose R = L = 5 and j = 1 and we place the target to be detected, with an SNR of
20 dB, near a synthetic bright point with Gaussian spectro-angular behavior. Figure 2.14
gives the steering vector of the target to detect, the spectrum of both targets and the image
obtained by the procedure presented previously. The dataset used here is the SANDIA one.
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Figure 2.14: A target near a bright point. Dataset is SANDIA, R = L = 5. The target has
an amplitude of -60 dB when compared to the bright point
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Figure 2.15: Results at PFA = 10−3. Top: d1 = d2 =∞. Bottom: d1 = d2 = 10. Dataset is
SANDIA, R = L = 5. The target has an amplitude of -60 dB when compared to the bright
point.

Then we apply both detectors on the wavelet coefficients characterized by d1 = d2 =∞
and d1 = d2 = 10. Figure 2.15 shows the result of the detection at PFA = 10−3. The
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threshold guaranteeing the PFA was picked-up from the experimental curves of figure 2.13.
Discussion: We focus first on the test of detection with d1 = d2 =∞ (top of the figure).

It can be observed that for both detectors, the target is not detected. The AMF detector
outputs a false detection at the position of the bright point, which is expected given that
this detector is mostly a power-based detector, whereas, the ANMF detector does not detect
the bright point as it does not have similar spectro-angular behavior as the steering vector.
However, a false alarm is still present which can be explained by a similar of the scene
signature than the steering vector. If we take a look at detection tests for d1 = d2 = 10
(bottom of the figure), we observe that the target is detected with the ANMF detector but
not the AMF one. This can be explained by the fact that with d1 = d2 = 10, we have
reduced the sidelobes of the bright point which does not pollute the pixel of the target
anymore resulting in better detection. The AMF detector does not yield better results for
the same reason as previously.

These results confirm that the parametrization of the wavelet decomposition impacts the
performance of detection.

PD-SNR Curves

By randomizing the spatial location of the target for Monte Carlo trials, we obtain PD-SNR
relationships for both detectors presented in Figure 2.16. The steering vector is set to fixed
values for all the trials.

Discussion: We first observe that the ANMF detector performs better in terms of
detection than the AMF one for both datasets: if we look at PD = 0.7, a gain of almost 7
dB is observed for the ANMF for SDMS dataset and 10 dB for SANDIA Dataset. This can
be interpreted by the non-Gaussian nature of the data which makes regulation of false alarm
difficult for the AMF detector and by the fact that ANMF is better suited for heterogeneous
data.

The plots for the SANDIA dataset show overall lower performance than the SDMS
dataset. This can be explained by the different nature of the datasets: the SANDIA image
is more heterogeneous than the SDMS one and the speckle noise is more important.

Next, the different plots for each d1 = d2, lead to a significant gain when considering
d1 = d2 = 3 or 10 compared to d1 = d2 =∞ for the SDMS dataset (about 8 dB at PD = 0.6).
This result is coherent with the observations done previously when considering near bright-
point detection. Indeed, the sidelobes are contained in the secondary data that is used for
the estimation of the covariance matrix. These outliers lead to a loss of accuracy in the
estimation which in turn decrease the performances of detection. It can be also observed a
loss in detection for d1 = d2 = 1. This is coherent with the analysis of the previous section.

The gain using the new wavelet is lower on the SANDIA image (about 1 dB at PD = 0.6).
It is to be expected since the SANDIA dataset contains few bright points spread over the
scene.

Impact of the steering vector

In order to assess the impact of the steering vector, another Monte-Carlo simulation has
been done by setting the SNR to 0 dB and randomizing the target signature at each trial.
For each trial, the target has been set to 100 different location to compute a probability
of detection. Table 2.2 gives the performance of detection for two values of d1 = d2 and
for both datasets. The same conclusions as previously can be drawn: the ANMF detector
performs better than the AMF one on both datasets and using a bell-shaped wavelet with
a parameter d1 = d2 = 10 allows to improve the detection rate.
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SDMS SANDIA

mean min max mean min max

AMF d1 = 10 0.81 0.67 0.91 d1 = 10 0.04 0 0.11

d1 =∞ 0.50 0.42 0.70 d1 =∞ 0.02 0 0.10

ANMF d1 = 10 0.95 0.89 1 d1 = 10 0.50 0.34 0.71

d1 =∞ 0.79 0.68 0.92 d1 =∞ 0.46 0.22 0.66

Table 2.2: Results of detection when randomising steering vector. SNR=0 dB, 100 different
signatures have been tested for 100 different target positions on each image.
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Figure 2.16: Pd-SNR plots for several values of d1 = d2. Top: AMF Detector. Bottom:
ANMF Detector.
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2.5 conclusions

This chapter presented an adaptation of Shannon wavelet packets to SAR geometry in order
to retrieve a physical diversity of interest. To reduce the side lobes, which are inherent to
time frequency decomposition, a new family of parametrized wavelets has been proposed.
These wavelets have the Shannon wavelets as a limit case and are tuned using a redundancy
criterion.

This wavelet decomposition has been used in target detection schemes. It has been
shown that the spectro-angular diversity, inherent to HR SAR Images, can be used in classic
adaptive detection framework. First, the robust framework has proven to be more effective
over the Gaussian one in both false alarms regulation and performance of detection. Then,
the reduction of side lobes with the new family of wavelets, yields significantly gain in the
performance of detection when the image contains numerous bright points.



80 CHAPTER 2. WAVELET PACKETS FOR SAR ANALYSIS

2.a appendix

2.A.1 Proof of proposition 2.2.1 at p. 59

Proposition. The coefficients of the projection of g on a wavelet packet subspace ΦS
j,[n1,n2]

is a discrete sequence Cj,[n1,n2] = (CS
j,[n1,n2][p, q])p,q∈Z where

CS
j,[m,n][p, q] = M

−j/2
1 M

−j/2
2 F−1Uj,[m,n](M

jp,M jq) , (2.26)

with
Uj,[m,n] = [Fg]× 1l∆0

j,G(m)
×∆1

j,G(n)
. (2.27)

Proof. Defining the wavelet coefficients from the following integral

CS
j,[n1,n2][p, q] =

∫∫

R2

g(z, t)τ[Mj
1p,M

j
2q]

ΦS
j,[n1,n2](z, t)dzdt.

we have (through Parseval):

CS
j,[m,n][p, q] =

1

4π
×

∫∫
Fg(ω1, ω2)Fτ[Mj

1p,M
j
2q]

ΦS
j,[m,n](ω1, ω2) dω1dω2).

As (Fourier transform property on the translation)

Fτ[Mj
1p,M

j
2q]

ΦS
j,[m,n](ω1, ω2) = ei (Mj

1 pω1) ei (Mj
2 q ω2) ×

FΦS
j,[m,n](ω1, ω2) ,

we obtain:

CS
j,[m,n][p, q] =

1

4π
×

∫∫
ei (Mj

1 pω1) ei (Mj
2 q ω2) FgFΦS

j,[m,n](ω1, ω2) dω1dω2.

The integral corresponds to the 2D inverse Fourier transform of [Fg] ΨS
j,[m,n].

2.A.2 Proof of proposition 2.2.2 at p. 62

Proposition (Vanishing moments). For any non-negative integers j,m, n, p, q, we have

∫∫

R2

xp yq ΦS,]
j,[m,n](x, y) dx dy = 0.

Proof. Function ΦS,]
j,[m,n](x, y) being separable with respect to x and y, we have:

∫∫

R2

xp yq ΦS
j,[m,n](x, y) dxdy =

−ip+q d
dKp

d
dθq ΨS,]

j,[m,n](K, θ)
/

K=0,θ=0

Proposition 2.2.2 follows by noting that ΨS
j,[m,n] has null derivatives.
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2.A.3 Proof of proposition 2.2.3 at p. 62

Proposition (Orthogonality of wavelet packet subspaces). For any given j and any (m,n) 6=
(m′, n′) we have:

ΦS,]
j,[m,n] ⊥ ΦS,]

j,[m′,n′] ,

where ⊥ denotes orthogonality symbol.

Proof.

〈
ΦS,]
j,[m,n],Φ

S,]
j,[m′,n′]

〉
=

∫∫
R2 ΦS,]

j,[m,n](x, y) ΦS,]
j,[m′,n′](x, y) dxdy

By using Parseval formula, we derive

〈
ΦS,]
j,[m,n],Φ

S,]
j,[m′,n′]

〉
=

1
4π2

∫∫
R2 FΦS,]

j,[m,n](K, θ)FΦS,]
j,[m′,n′](K, θ) dKdθ.

which reduces to
〈

ΦS,]
j,[m,n],Φ

S,]
j,[m′,n′]

〉
=

RjLj

4π2

∫∫
R2 1l∆j,Km×∆j,θn

(K, θ) 1l∆j,K
m′
×∆j,θ

n′
(K, θ)dKdθ.

For m 6= m′ or n 6= n′, intersection ∆j,Km × ∆j,θn ∩ ∆j,Km′ × ∆j,θn′ of the supports of
FΦS

j,[m,n] and FΦS
j,[m′,n′](K, θ) are either disjoint, or reduce to a null set. This ends the

proof.

2.A.4 Proof of proposition 2.2.4 at p. 63

Proposition (Completion of wavelet packet subspaces). For any given j, and any (m,n),
we have ⋃

m = 0, 1, . . . , Rj − 1

n = 0, 1, . . . , Lj − 1

ΦS,]
j,[m,n] = US,,].

Proof. The proof is a consequence of Shannon band-limited function representation and the
fact that for any j > 1, the sets ∆j,Km×∆j,θn , form = 0, 1, . . . , Rj − 1 and n = 0, 1, . . . , Lj − 1,
are constructed so as to form a partition of D.

2.A.5 Proof of proposition 2.3.2 at p. 65

Proposition (Convergence to Shannon wavelets). The R-band L-look wavelet transform
obtained by using Eq. (2.16) is associated with the Shannon wavelet transform when d1, d2 →
+∞:

lim
d1→+∞

lim
d2→+∞

Ψ
[d1,d2],]
j,[m,n]

a.e
= ΨS,]

j,[m,n] . (2.28)

where equality holds true almost everywhere (a.e).
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Proof.

It suffices to show that lim
d1,d2→+∞

Ψ
[d1,d2],]
0,[0,0] = ΨS,]

0,[0,0]. From Eq. (2.17), we have

H
[d1,d2]
0,[0,0] (K, θ) =

1

1 +

∣∣∣∣
2

KB
(K− K0)

∣∣∣∣
2 d1

1

1 +

∣∣∣∣
θ

θB

∣∣∣∣
2 d2

, (2.29)

As a consequence, if |K− K0| <
KB
2

and |θ| < θB , then:

lim
d1,d2→+∞

H
[d1,d2]
0,[0,0] (K, θ) = 1.

In contrast, if |K− K0| >
KB
2

or |θ| > θB , then:

lim
d1,d2→+∞

H
[d1,d2]
0,[0,0] (K, θ) = 0,

which ends the proof.
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In this chapter, we consider the problem of testing the equality of covariances matrices
in a robust framework and its application to SAR change detection. We mentioned in the
introductory chapter 1 that although the testing of covariances is a promising methodology
for change detection in SAR images, the results could be limited by the Gaussian model
assumption in high-resolution images. Thus, we consider here the development of new
statistics for testing the equality of covariances using broader and more robust data models:
the elliptically distributed random vectors and the deterministic compound-Gaussian model.

We consider the derivation of statistics using the generalized likelihood technique for
both elliptical and deterministic compound-Gaussian models. The new derived statistics
require the computation of fixed-point estimates for which we will consider the convergence
properties. Next, we will consider the statistical properties (constant false alarm rate) of
the new statistics. Finally, simulations on synthetic and real data are undertaken to study
the effectiveness of the proposed approaches.

An extension of this work when the covariance matrices are assumed to be low rank
has also been investigated for both Gaussian and deterministic compound-Gaussian models.
This work has been done in collaboration with Arnaud Breloy of Paris Nanterre University.
In order to keep a synthetic chapter centered about the extension of standard approaches to
non-Gaussian model, we will omit this study in the main body of this chapter and provide
alternatively the two papers describing these approaches in appendices 3.B and 3.C.

Notations relevant to his chapter: Given (a, b) ∈ N2, b > a, Ja, bK denotes the
set {a, . . . , b}. δik is the Kronecker symbol. Θ is an arbitrary parameter space. Given a
scalar valued function f , ∂f

∂• denotes the gradient of f w.r.t • arranged in a column. x
will always represent a random vector of size p. Any subscript or superscript serves to
indicate a specific observation. Σ and ξ will always be Hermitian matrices of size p× p and
ξ will always be normalized by the trace. The symbol ∼ means ”distributed as”. H0 and
H1 denote both possible hypothesis in a binary hypotheses test scheme. The abbreviation
i.i.d means independent identically distributed. To simplify the equations, we define the
following quantities:

q (ξ,x) = xHξ−1x ,

∀k, ∀t, Stk = xtk xtk
H
.

(3.1)

3.1 description of the problem

In this section, we remind the problem of covariance equality testing in the general context.

3.1.1 Definitions

Denote by W1,T = {X1, . . . ,XT } a collection of T mutually independent groups of p-
dimensional i.i.d complex vectors: Xt = [xt1, . . . ,x

t
N ] ∈ Cp×N . With regards to SAR

images these sets correspond to the local observations on a spatially sliding windows of
size N1 × N2 as illustrated in Figure 1.10. The subscript k corresponds to a spatial index
while the superscript t corresponds to a time index.

3.1.2 Defining the problem of covariance equality testing

The testing of equality of covariances, sometimes referred as homogeneity of covariances,
can be written as a binary hypothesis testing problem of the following form:

{
H0 : θ1 = . . . = θT = θ0 & Φ1 6= . . . 6= ΦT ,
H1 : ∃(t, t′) ∈ J1, T K2, θt 6= θt′ & Φ1 6= . . . 6= ΦT

, (3.2)
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Figure 3.1: Illustration of local data selection (N1 = N2 = p = 3) for detection test. The
gray area corresponds to W1,T and the central pixel (xt5) is the test pixel.

where θ is either covariance, scale parameter only or shape matrix only. The nuisances
parameters which we do not want to test are denoted Φ. Theses nuisances parameters are
either scale, shape matrix or the empty space, depending on the definition of θ.

The problem is formulated as testing that all the parameters θt are equal to some value
θ0 against all possible alternatives. In this case, the derivation of the GLRT must take into
account the worst possible case which is that all parameters are different.

It would be possible to test others alternatives that some subgroup of θt are equal
while other are different but there are many possibilities which are incompatible between
themselves. This is also why there is no Uniformly Most Powerful test for this problem. So
the only possibility way to compute a GLRT is to assume that every parameter is different
which was the methodology used in [Anderson, 2003].

3.2 adapting robust m-estimation and tyler’s theory to covari-
ance testing

We saw in the introductory chapter 1 that the covariance equality test is a promising ap-
proach to local change-detection in SAR images. We explained that this approach was con-
sidered using the Gaussian model solely, which could be innapropriate for high-resolution
SAR images. Thus we introduced the elliptical families of distributions better suited for
modeling the data distribution, presented some results of the statistical litterature under
this assumption and explained how these approaches did not yield satisfactory results in
SAR data analysis. Then we saw in chapter 2 that the robust Tyler estimator associated
with the ANMF detection scheme had significantly improved the detection performance in
target detection problems for SAR images. Thus, the non-Gaussian framework is valid when
it concerns the processing of multivariate SAR data. In those regards, it would be interest-
ing to consider these robust approaches in the context of change detection using covariance
equality method. In this section, we will consider the derivation of new detection using
GLRT methodology for both elliptical and deterministic compound-Gaussian model. The
analysis of the obtained statistics will rely on the well-known M-estimation and Tyler theory
of covariance matrix estimation.
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3.2.1 GLRT under Elliptical model

We consider here the elliptical model defined in 1.3 associated with the problem of detecting
a change in both shape matrix and scale parameter:

θt = {Σt} = {τt, ξt},
Φt = ∅ .

(3.3)

Here the density generator function is assumed to be the same for every single date and
is known. We have the following result:

Proposition 3.2.1. The GLRT under problem (3.3) is the following quantity:

Λ̂gCE =

∣∣∣Σ̂M
0

∣∣∣
TN

T∏

t=1

∣∣∣Σ̂M
t

∣∣∣
N

k=N
t=T∏

k=1
t=1

g
(
q(Σ̂M

t ,x
t
k)
)

g
(
q(Σ̂M

0 ,x
t
k)
)

H1

≷
H0

λ, (3.4)

where:

Σ̂M
t = ft(Σ̂

M
t ), Σ̂M

0 = 1
T

T∑

t=1

ft(Σ̂
M
0 ) and

ft(Σ) =
1

N

N∑

k=1

−g′ (q(Σ,xtk))

g (q(Σ,xtk))
xtkx

t
k

H
(3.5)

Proof. See Appendix 3.A.1

Discussion: The statistic obtained shares similarities to the Gaussian GLRT one. We
recognize indeed the ratio of determinants which is equal to one if all matrices are equals.
The estimates, however, are no longer the SCM of the samples but can be seen as the
M-estimators described in [Ollila et al., 2012a] if we consider the ratio u = −g′/g as an
arbitrary function not dependent of g with some regularity conditions. However, in this
case, the choice of a function u different from the ratio −g′/g is of no interest since the
statistic requires the knowledge of the density generator function g. This in practice is a
very restrictive hypothesis that cannot be guaranteed since SAR images are diverse. Indeed,
we could estimate the g function and we wouldn’t even need to rederive the GLRT since we
just have to replace the g by its expression in the expression of the GLRT at eq. (3.4). The
problem is that it requires to selection the model by fitting a large family of distribution
which is a heavy approach. Moreover, we can’t guarantee that the function will not change
over time. In which case, the computation of the GLRT is more difficult.

Nonetheless, the study of convergence of fixed-point estimates still stands. This means
that for any valid density generator g, the estimates will converge to a unique value allowing
to compute the detection test.

3.2.2 GLRT under CAE model

An interesting alternative to tackle the problem of not knowing the density generator g is
to consider the normalized observations: {ztk = xtk/‖xtk‖2|1 ≤ k ≤ N, 1 ≤ t ≤ T}. The
intuitive idea behind this approach is normalizing two groups of observations with the same
shape matrix will result in the same distribution over the unit sphere. As an example,
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Figure 3.2: Example of normalization effect when the shape matrix is the same for two K-
distributed group of samples (blue and red dots). Left: The original bivariate data. Right:
Normalized data in polar representation. In polar representation both histograms coincide.
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Figure 3.3: Example of normalization effect when the shape matrix is the different for two
K-distributed group of samples (blue and red dots). Left: The original bivariate data. Right:
Normalized data in polar representation. In polar representation the two histograms do not
coincide.

Figures 3.2 and 3.3 present histograms of bivariate K-distributed groups of data for which
the shape matrix is either the same or different. As described in the chapter 1, the p.d.f
of those vectors is known to be CAE distributed which is not dependent of the density
generator function. However, since we normalized the vectors, the model only considers the
shape matrix for which we can test equality through the following scheme:

θt = {ξt},
Φt = ∅ .

(3.6)

The derivation of the GLRT leads to the following result:
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Proposition 3.2.2. The GLRT under problem (3.6) is the following quantity:

Λ̂CAE =

∣∣∣ξ̂TE

0

∣∣∣
TN

T∏

t=1

∣∣∣ξ̂TE

t

∣∣∣
N

k=N
t=T∏

k=1
t=1

(
q(ξ̂

TE

0 ,xtk)
)p

(
q(ξ̂

TE

t ,xtk)
)p

H1

≷
H0

λ, (3.7)

where:

ξ̂
TE

t = fTE
t (ξ̂

TE

t ), ξ̂
TE

0 = 1
T

T∑

t=1

fTE
t (ξ̂

TE

0 ) and

fTE
t (ξ) =

p

N

N∑

k=1

xtkx
t
k

H

q(ξ,xtk)
(3.8)

Proof. See Appendix 3.A.2

Discussion: The statistic obtained here can be seen as a special case of the one at eq.
(3.4) where g = 1/xp. This result is similar to the link between Maronna M-estimators
[Maronna, 1976b] and Tyler’s estimator [Tyler, 1987] where the same choice of u = g′/g =
1/x leads from the M-estimator to the Tyler one. This is precisely what is observed in the
fixed-point estimates where the MLE estimates are replaced by the Tyler estimate. The
convergence of the estimate is a direct consequence of Tyler’s analysis.

The fixed-point equation is computed as follows: We initialise to the indentity matrix(
ξ̂
)

0
then we compute

(
ξ̂
)
n+1

= fTE
t

((
ξ̂
)
n

)
until that the criterion:

∥∥∥∥
(
ξ̂
)
n+1
−
(
ξ̂
)
n

∥∥∥∥
F∥∥∥

(
ξ̂
)
n

∥∥∥
F

≥ δ,

where δ is a tolerance value, is no longer respected.
The resulting statistic allows testing a change in the shape without regards to the density

generator g which makes it a robust statistic. In fact, the assumption that the density
function is the same for every date can be dropped here since the GLRT would yield the
same result.

Although we have obtained a distribution-free statistic, it only allows to test a change
in the shape matrix and discard any variation of the scale parameter over time. This can
limit the effectiveness in SAR change detection applications where the scale accounts for
the power of scatters and would thus be a piece of great information in order to account
for changes. From this work, there appears to be no solution for testing jointly the scale
and shape while being distribution free while considering the robust M-estimation/Tyler
approach. We will thus restrict our model to the deterministic compound-Gaussian one for
which derivations are possible.

3.2.3 GLRT under deterministic compound-Gaussian model

Since in this model, the scale parameter corresponds to a vector of deterministic values, we
consider the following problems:
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• Scale and shape matrix testing:

θt =
{
τ t1, . . . , τ

t
N , ξt

}
,

Φt = ∅ .
(3.9)

• Shape matrix testing:
θt = {ξt} ,
Φt =

{
τ t1, . . . , τ

t
N

}
.

(3.10)

• Scale testing:
θt =

{
τ t1, . . . , τ

t
N

}
,

Φt = {ξt} .
(3.11)

We derive hereafter the GLRT for each problem of detection:

Proposition 3.2.3. The GLRT ratio under hypotheses of Problem (3.9) is the following:

Λ̂MT =

∣∣∣ξ̂MT

0

∣∣∣
TN

T∏

t=1

∣∣∣ξ̂TE

t

∣∣∣
N

N∏

k=1

(
T∑

t=1

q
(
ξ̂

MT

0 ,xtk

))Tp

TTp
T∏

t=1

(
q
(
ξ̂

TE

t ,xtk

))p
H1

≷
H0

λ , (3.12)

where

ξ̂
MT

0 = fMT
N,T

(
ξ̂

MT

0

)
=

p

N

N∑

k=1

T∑

t=1

Stk

T∑

t=1

q
(
ξ̂

MT

0 ,xtk

) . (3.13)

Proof. See Appendix 3.A.3.

Discussion: The statistic obtained here is similar to the one obtained using the Gaussian
assumption. The term involving determinant is the same except that now the estimates are

the solution of a fixed-point equation. ξ̂
TE

t is the Tyler estimator described previously. ξ̂
MT

0

is similar but corresponds to a different fixed-point equation involving the observations for
all the dates. The properties of this new estimate will be studied in the next section.

Due to the normalization of covariance matrices, the term involving determinants is a
test involving solely the structure of the covariance matrices and do not consider the relative
power of the pixels between the dates. The ratio of the quadratic forms allows testing the
change in power in the same way it is done for the correlations in the determinants term: a
ratio of arithmetic and geometric means.

Proposition 3.2.4. The GLRT ratio under hypotheses of problem (3.10) is the following:

Λ̂Mat =

∣∣∣ξ̂Mat

0

∣∣∣
TN

T∏

t=1

∣∣∣ξ̂TE

t

∣∣∣
N

k=N
t=T∏

k=1
t=1

(
q
(
ξ̂

Mat

0 ,xtk

))p

(
q
(
ξ̂

TE

t ,xtk

))p
H1

≷
H0

λ , (3.14)
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where

ξ̂
Mat

0 = fMat
N,T

(
ξ̂

Mat

0

)
=

p

T N

k=N
t=T∑

k=1
t=1

Stk

q
(
ξ̂

Mat

0 ,xtk

) .

Proof. See Appendix 3.A.4.

Discussion: Without surprise, the statistic obtained is exactly the same as the one
obtained through the CAE model. Indeed, it is known that Tyler estimator can be obtained
doing an MLE estimation under either CAE [Ollila et al., 2012a] or deterministic compound-
Gaussian model [Pascal et al., 2008a]. Thus, the same result is expected when it comes to
the GLRT which relies on an MLE estimation.

Proposition 3.2.5. The GLRT ratio under hypotheses of problem (3.11) is the following:

Λ̂Tex =

T∏

t=1

∣∣∣ξ̂Tex

t

∣∣∣
N

∣∣∣ξ̂TE

t

∣∣∣
N

N∏

k=1

(
T∑

t=1

q
(
ξ̂

Tex

t ,xtk

))Tp

TTp
T∏

t=1

(
q
(
ξ̂

TE

t ,xtk

))p
H1

≷
H0

λ , (3.15)

where

ξ̂
Tex

t = fTex
N,T,t

(
ξ̂

Tex

1 , . . . , ξ̂
Tex

T

)
, (3.16)

=
T p

N

N∑

k=1

Stk
T∑

t′=1

q
(
ξ̂

Tex

t′ ,xtk

) . (3.17)

Proof. See Appendix 3.A.5

Discussion: In this last statistic, the detection is done solely on the texture parameters.

This leads to an interesting estimation: each ξ̂
Tex

t is solution of a fixed-point equation

which involves all the estimates ξ̂
Tex

t′ . In practice, this can lead to convergence issues when
considering the computation. This problem will be treated in the next section and it can
be shown that the estimates can be implemented simply.

3.2.4 Convergence considerations

Theoretical study of convergence

We consider here the validity of the alternate maximization done when deriving the new
statistics and the convergence problems that arise. We will, however, limit ourselves to the
case of compound-Gaussian derived statistics, since the optimizations in the CE and CAE
cases are well-known problems for which extensive analysis exist 1. To this end, we consider
geodesic convexity (g-convexity) on the manifold SpH as presented in [Wiesel, 2012] which is
defined as follows:

1See for example [Ollila et al., 2012a, Wiesel, 2012] among many works.
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Definition 1. (Geodesic convexity) Let M be an arbitrary manifold. For each pair q0, q1 ∈
M, we define a geodesic qq0,q1t ∈M for t ∈ [0, 1]. A real valued function f with domain M
if g-convex if f(qq0,q1t ) ≤ tf(q1) + (1− t)f(q0) for any q0, q1 ∈M and t ∈ [0, 1].

The g-convexity, which is illustrated in Figure 3.4, extends the definition of the traditional
Euclidean convexity to curved spaces. This concept is useful for optimizations done on
covariances matrices which are known to lie on the SpH manifold.

Figure 3.4: Illustration of g-convexity concept: For any set (q0, q1) ∈ M2, the function is
convex when following the geodesic path between these two points.

Notably, we can use this property of the log-likelihood to show the following propositions:

Proposition 3.2.6. ξ̂
MT

0 , ξ̂
Mat

0 and ξ̂
Tex

t are the unique arguments of the global maxima of
their respective log-likelihood cost functions over the observations.

Proof. See Appendix 3.A.6.

This proposition is necessary to justify the alternate maximization done when deriving
the expression of the statistics. However, when considering optimization on manifolds, this
in itself does not guarantee that the solution corresponding to the global maxima is part of
the manifold. This point is important since we want a solution that is both computable and
in the set SpH. The following proposition can be effectively shown:

Proposition 3.2.7. ξ̂
MT

0 , ξ̂
Mat

0 and ξ̂
Tex

t are the arguments to the global minima obtained
inside SpH.

Proof. See Appendix 3.A.7.

Now that we know that the solution of the fixed-point equations is the unique arguments
to the global maxima of their log-likelihood and that they are obtained inside the manifold
SpH, the convergence of the fixed-point algorithms can be considered.

We have:

Proposition 3.2.8. Let {xtk|k ∈ J1, NK, t ∈ J1, T K} be a set of observations. Let us de-

fine vectors vi ∈ Rp such that ∀k,∀t, v(T−1)∗N+k = (<(xtk)T,=(xtk)T)
T

and v(2T−1)∗N+k =

(−=(xtk)T,<(xtk)T)
T

. Let P2TN (•) be the empirical distribution of samples {vi|i ∈ J1, 2TNK}.
Then the fixed-point algorithms

(
ξMT

0

)
k+1

= fMT
N,T

((
ξMT

0

)
k

)
and

(
ξMat

0

)
k+1

= fMat
N,T

((
ξMat

0

)
k

)
converge to unique solutions up to a scale factor if and only

if the following condition is respected:
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Algorithm 3 Computation of ξ̂
Tex

t

1: Initialize ∀t ∈ J1, T K,
(
ξ̂

Tex

t

)
0

= Ip

2: while d > ε do
3: for t ∈ J1, T K do
4:

Compute:
(
ξ̂

Tex

t

)
n+1

= fTex
N,T,t

(
(ξ̂

Tex

1 )n, . . . , (ξ̂
Tex

T )n

)
.

5: Impose Trace normalization by:

(
ξ̂

Tex

t

)
n+1

=
p
(
ξ̂

Tex

t

)
n+1

Tr(
(
ξ̂

Tex

t

)
n+1

)
.

6: end for
7: Compute criterion
8:

d = max





∥∥∥∥
(
ξ̂

Tex

t

)
n+1
−
(
ξ̂

Tex

t

)
n

∥∥∥∥
∥∥∥
(
ξ̂

Tex

t

)
n

∥∥∥
/t ∈ J1, T K




.

9: end while

(C1) P2TN ({0}) = 0 and for all linear subspaces V ⊂ R2p, we have P2TN (V ) < dim(V )/2p.

Proof. See Appendix 3.A.8.

For practical purposes the condition (C1) can be achieved when there are at least p+ 1
linearly independent observations xtk, that is ensured if the size of the window is sufficient.
Again, the uniqueness is guaranteed by the trace normalization which has to be imposed at
each step of the algorithm. It is important to notice that the convergence of the algorithms is
ensured for any set of observations {xtk|t ∈ J1, T K, k ∈ J1, NK} that respects condition (C1),
even if the observations do not follow the same distributions (typically if the hypothesis H1

is correct).

The case of ξ̂
Tex

t is in this regard trickier. Indeed, since each step requires the knowledge
of the other estimates, we propose the cyclic Algorithm 3 which will iterate each matrix
alternatively. While it is easy to show that if only one of the matrices is unknown2 , the
fixed-point algorithm will converge, it is difficult to conclude on a theoretical standpoint
about the convergence of the alternate estimation algorithm. Nonetheless, when doing
extensive simulations, as will be shown shortly afterward, on both theoretical and real-data,
there has been no case when the algorithm does not converge, except when the condition
(C1) is not respected.

2using the same considerations as in the previous theorem.
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Experimental study of convergence

In order to test the convergence property of matrix estimates, we consider realisations of
random variables x =

√
τ z where τ follows a Γ-distribution with shape parameter α and

scale parameter β. z is generated through a Gaussian realization with covariance matrix
chosen to be Toeplitz structured of the form:

ξ = (σm,n)1≤m≤p
1≤n≤p

,

where : σm,n = ρ|m−n|.

We consider two settings: first, we generate a time series {xtk|k ∈ J1, NK, t ∈ J1, T K}
where each xtk is distributed with the same covariance matrix ξ0. Then, we generate a
time series where each xtk is distributed with a covariance matrix ξt different for each date.

Figure 3.5 presents a Monte-Carlo (MC) simulation where the criterion d =
‖(ξ)n+1−(ξ)n‖2
‖(ξ)n‖2

of convergence is plotted against the number of iterations n of the fixed-point algorithm.
The plot shows that for whatever the setting, all estimates converge since the criterion

reaches the working precision of the machine. We observe that ξ̂
Tex

t needs more iterations
to converge. This was expected, since in this case three different matrices were estimated
while for the others a single matrix was computed. These results comfort the theoretical
considerations of 3.2.4.
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Figure 3.5: Convergence property of estimates. Left: Same matrices at each date (p = 3,
N = 25, T = 3, 1000 Trials, ρ0 = 0.70, α = 0.30, β = 0.10). Right: Different matrices at
each date (p = 3, N = 25, T = 3, 1000 Trials, ρ1 = 0.08, ρ2 = 0.90, ρ3 = 0.10, α = 0.30,
β = 0.10). The textures are different at each date for both settings.

3.2.5 Statistical properties

Asympotitic distribution of statistics in Elliptical case

We have the following result:

Proposition 3.2.9. The distribution of 2 log(Λ̂gCE) under H0 is asymptotically equivalent to
a χ2

(T−1)p2 distribution.

Proof. Property inherited from Wilks theorem.
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This asymptotic result is a direct application of the Wilks theorem presented in 1.4.4
and allows to obtain an approximation when the sample size is large, which can be limited
in practice.

This asymptotic behavior has been studied through simulations as well for the case of a
Student-t distribution associated with the Student-t GLRT. Figure 3.6 shows the empirical
distribution obtained through a small sample size compared to the theoretical one from
proposition 3.2.9. It can be seen that the approximation is not accurate which is expected
since the result is only asymptotic.
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Figure 3.6: Distribution of statistic under small sample size (p = 3, T = 5, N = 9, 105

Monte-Carlo Trials)

Figure 3.7 shows the same plots with large sample size. In this figure, the approximation
is accurate.
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Figure 3.7: Distribution of statistic under large sample size (p = 3, T = 5, N = 100, 105

Monte-Carlo Trials)

For the compound-Gaussian derived statistics including scale parameters, the Wilks
theorem does not apply since the dimension of the parameter space grows with the number
of samples. Obtaining the distribution of the tests is no longer evident in this case. We will
thus first show that these statistics have the CFAR property.
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Study of the CFAR property in deterministic compound-Gaussian case

We consider the CFAR property which is primordial if we want to apply the statistic in a
decision scheme where the significance level is important. We have the following proposi-
tions:

Proposition 3.2.10. Λ̂MT is CFAR texture and matrix for Problem (3.9).

Proof. See Appendix 3.A.9.

Proposition 3.2.11. Λ̂Mat is CFAR texture and matrix for Problem (3.10).

Proof. The same arguments as used in Proposition 3.2.10 are applied here.

Proposition 3.2.12. Λ̂Tex is CFAR texture but is not CFAR matrix for Problem (3.11).

Proof. See Appendix 3.A.10.

The CFAR texture and matrix behavior of the new statistics have been tested in simula-
tion using the same methodology as in 3.2.4. To this end, a time series has been generated
under the H0 regime of problem (3.9) which also corresponds to H0 for the other problems.
The statistics have been computed in MC trials to generate the plots shown at Figure 3.8.
The Gaussian-derived statistics have also been computed. The plots show that these Gaus-
sian statistics vary when the texture changes and thus, have not the texture CFAR property.
In contrast, the new statistics, do not vary for any texture parameter tested, which is an
improvement. In this regards, Λ̂Mat is the most robust one since the statistic does not vary
even if the texture equality between the dates is not respected.
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Figure 3.8: Texture CFAR behaviour. Top-left: Λ̂G. Top-center: Λ̂t1 . Top-right: Λ̂Wald.
Bottom-left: Λ̂MT. Bottom-center: Λ̂Mat. Bottom-Right: Λ̂Tex. ρ = 0.3 at each date for all
the curves.

Next, the matrix CFAR behaviour is tested using ∀k, ∀t, τ tk = 1. Figure 3.9 presents
plots of Monte Carlo trials where the coefficients for the covariance matrix vary. The plots
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show that the Gaussian statistics are CFAR which was demonstrated in [Ciuonzo et al.,
2017]. It shows that Λ̂MT, Λ̂Mat have the CFAR matrix behaviour while Λ̂Tex has not. This
result is coherent with the theoretical analysis.
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Figure 3.9: Matrix CFAR behaviour. Top-left: Λ̂G. Top-center: Λ̂t1 . Top-right: Λ̂Wald.
Bottom-left: Λ̂MT. Bottom-center: Λ̂Mat. Bottom-Right: Λ̂Tex.

Bias and Consistency of new estimates

As a first step in analysing the distribution of Λ̂MT and Λ̂Tex, we consider analysing the

statistical properties of bias and consistency of the estimates ξ̂
MT

0 and ξ̂
Tex

t . Indeed, well
known methods, such as delta method [Oehlert, 1992], rely on those assumptions in order
to obtain results about asymptotic distributions of estimates which in turn can be used in
the analysis of the asymptotic distribution of the statistics. The following propositions can
be obtained:

Proposition 3.2.13. ξ̂
MT

0 and ξ̂
Tex

t are unbiased estimators of ξ0, the true covariance
under null hypothesis.

Proof. See Appendix 3.A.11

Proposition 3.2.14. ξ̂
MT

0 and ξ̂
Tex

t are consistent estimators of ξ0, the true covariance
under null hypothesis.

Proof. See Appendix 3.A.12

We consider the consistency properties in simulation as well. We generated a time series
under deterministic compound-Gaussian model using the same methodology as in 3.2.4,

where we ensured that ∀t ∈ J1, T K, τ tk = τ0
k . For ξ̂

MT

0 and ξ̂
Mat

0 , a single covariance matrix

Σ0 has been used for all the dates, while for ξ̂
Tex

t , each were different. Figure 3.10 presents a
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Monte Carlo simulation where the Mean Square Error (MSE) of estimation is plotted against
the number of observations. The plots show the decrease at a constant rate of the MSE for
all the different estimates and confirm the consistency of those estimates in practice. We

also notice that in this situation ξ̂
MT

0 is a better estimate than ξ̂
Mat

0 . This is not surprising

since ξ̂
MT

0 takes into account the equality of texture parameters between the dates.
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Figure 3.10: Asymptotic consistency of estimates. Left: p = 3, T = 3, 1000 Trials, ρ0 = 0.70,
α = 0.3, β = 0.1, same textures for each date. Right: p = 3, T = 3, 1000 Trials, ρ1 = 0.29,
ρ2 = 0.56, ρ3 = 0.58, α = 0.3, β = 0.1, same textures for each date.

These results are interesting since they can be used in an analysis of the null distributions
for the compound-Gaussian derived statistics. This work has not yet been considered due
to time constraints but will be treated as an extension at a later time.

3.2.6 Performance study of new statistics

Elliptical case

In this section, in order to compare the performance of detection, we choose to compute the
probability of detection PD, through means of M-C trials, on a simple situation where there
is only one change at date tC . Before the change, a covariance Σ0 is chosen and after the

change a covariance Σ1 is used. We use covariance of the form (Σε=0,1)i,j = τερ
|i−j|
ε .

The Bartlett distance [Frery et al., 2014] on covariance matrices is used as a measure of
the amplitude of the change:

dB(Σ1,Σ2) = log

(
|Σ1 + Σ2|2
|Σ1| |Σ2|

)
− 2p log(2). (3.18)

This quantity will be considered as an equivalent Signal to Noise Ratio (SNR) for the
covariance equality testing problem.

We compare the following statistics: Λ̂G, Λ̂t1 , The Student-t GLRT (obtained using
g(t) = (1 + 2t/ν)−(2p+ν)/2) supposing ν = 2, Λ̂MT, Λ̂CAE , Λ̂Tex. The Wald statistic proved
to be numerically instable when used on heavy tailed distributions and was thus omitted for
this simulation. The thresholds for guaranteeing the PFA are computed numerically through
104 Monte-Carlo simulations.



98 CHAPTER 3. ROBUST CHANGE DETECTION

We consider three separate setups:

• Gaussian case with either a change in scale or shape:

The results plotted in Figure 3.11, show that for a change in shape matrix, the Gaussian
statistic yields the best detection performance while the other robust statistics have
slightly worse performance. This result is expected since usually robustness comes with
a slight trade-off in performance in Gaussian case. Λ̂Tex doen’t yield any detection
since it is not sensitive to a change in shape.

For a change in scale, it is interesting to see that that both Λ̂t1 and Λ̂Tex slightly
outperforms Λ̂G. There is no theoretical explanation about that fact. The Student-t
detector yields poorer performance since for ν = 2, it expects the distribution of the
data to be heavy-tailed while it is not. Finally, Λ̂CAE , which is not sensitive to a
change in scale, does not yield a detection.
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Figure 3.11: PD as a function of dB(Σ0,Σ1) for a Gaussian case. Left: Change in Shape
only. Right: Change in scale only. Parameters: p = 5, N = 15, T = 10, PFA = 10−3.
Curves are computed with 600 Monte Carlo trials.

• Student-t case with either a change in scale or shape:

The results, plotted in Figure 3.11, shows that for a change in shape matrix, Λ̂CAE and
Λ̂Student−t have much better detection compared to others. This is expected since their
respective model assumption is respected while for other statistics, it is not resulting
in much higher thresholds of detection.

For a change in scale, the best detector is Λ̂Student−t while Λ̂CAE , which is not sensi-
tive to scale, doesn’t yield a detection. For other scale sensitive detectors, the same
conclusions as for shape explain their relative lower detection rate. In this case, the
Gaussian GLRT outperforms the t1 statistic. This might indicate better robustness of
this detector with regards to non-Gaussianity.

• K-distribution with either a change in scale or shape:

In this case, the performance of Λ̂CAE with regards to shape doesn’t vary while has
a comparatively lower detection rate. This is expected since Λ̂CAE is adapted to all
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Figure 3.12: PD as a function of dB(Σ0,Σ1) for a Student-t with degrees of freedom ν = 2.
Left: Change in Shape only. Right: Change in scale only. Parameters: p = 5, N = 15,
T = 10, PFA = 10−3. Curves are computed with 600 Monte Carlo trials.

elliptical distributions making it more robust. Again The Gaussian GLRT appears to
be better than t1 statistic, which is coherent with results in Student-t case.
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Figure 3.13: PD as a function of dB(Σ0,Σ1) for a K-distributed data with shape parameter
ν = 0.1. Left: Change in Shape only. Right: Change in scale only. Parameters: p = 5,
N = 15, T = 10, PFA = 10−3. Curves are computed with 600 Monte Carlo trials.

Concerning scale, it appears that Gaussian statistics outperforms the other statistics.
There is no real insight to this result since for all detectors, their model assumption is
not respected.
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Deterministic compound-Gaussian case

For this case, the same methodology as section 3.2.4 about convergence is used: we consider
realisations of random variables x =

√
τ z where τ follows a Γ-distribution with shape

parameter α and scale parameter β. z is generated through a Gaussian realization with
covariance matrix chosen to be Toeplitz of the form:

ξ = (σm,n)1≤m≤p
1≤n≤p

,

where : σm,n = ρ|m−n|.

We consider analyzing the theoretical performance of the compound-Gaussian derived
statistics with regards to Gaussian ones. The statistic derived under elliptical model is
omitted here since from a practical point of view, the performance vary greatly in case of
mismatch as seen in previous simulation results. We consider a time series with T = 10,
p = 3, N = 7 with a change at t = 5 and plot Receiver Operating Characteristic (ROC)
curves for each problem since the SNR is difficult to define in this case.

• Problem (3.9): Before change, the covariance matrix is associated with ρ = 0.1. The
textures are generated with α = 0.3, β = 0.1 and are equal for each date. After the
change, we have ρ = 0.8 and α = 0.3, β = 0.3 and the textures are equal for each date.

• Problem (3.10): Before change, the covariance matrix is associated with ρ = 0.1.
After the change, we have ρ = 0.8. For any date, the textures are generated using
α = 0.3, β = 0.1 and are different for each date.

• Problem (3.11): Before and after the change, the covariance matrix is obtained using
a random value for ρ and the textures are generated using α = 0.3, β = 0.3. Before
change, the textures are equal and after the change, they are different.

• Gaussian problem: the textures are all fixed to one. Before the change, the covariance
matrix is associated with ρ = 0.1. Ater the change, the covariance matrix is associated
with ρ = 0.8.

Figure 3.14 gives the results obtained by MC trials. The thresholds for a given PFA

are computed numerically using the H0 regime of the problem considered. Although not
realistic on real images, this allows, on synthetic data, to have an experimental threshold
that matches the objective PFa even if the test is not CFAR for the problem considered.

For each problem, the derived statistic yields the best result. The Gaussian statistics
have poorer performance than Λ̂MT and Λ̂Tex for testing a change in the texture. Λ̂Mat

performs the best when there is only a change in the covariance matrix shape. For the third
problem, since there is no change in the matrices, it is not surprising that the detection rate
is low. Λ̂MT appears to be the best option for testing changes on the textures since for both
problems (3.9) and (3.11), the performance are good. This is explained by the fact that the
distribution under H0 of the statistic is less sensitive to a violation of the matrix equality
assumption than it would be from a texture one. Since in Problem (3.11) the textures are
equal before the change, the threshold to guarantee the PFa is still low enough to guarantee
good performance. Finally, when the data is strictly Gaussian, Λ̂t1 and Λ̂G have better
results than the robust statistics. This result is expected since there is a trade-off between
robustness and performance when considering robust methods. Among the new statistics,
Λ̂Tex does not allow to detect a change in the shape so its results are expected to be lowest.
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Figure 3.14: ROC curves obtained on synthetic data (104 Monte-Carlo trials). Top-left:
Problem (3.9). Top-right: Problem (3.10). Bottom-left: Problem (3.11). Bottom-right:
Gaussian setting.

3.3 application of robust statistics to sar change detection

In this section, we will only consider the performance of the compound-Gaussian-derived
statistics and compare them to the classic Gaussian ones. Indeed, since for elliptical-derived
statistics need the knowledge of the density generator function g, they are impractical for
real datasets.

3.3.1 Data description

The proposed statistics have been tested on real images coming from two different datasets:
SDMS (Courtesy AFRL/RYA) [Scarborough et al., 2010] and UAVSAR (Courtesy NASA/JPL-
Caltech). From SDMS, three images of the same scene, presented in Figure 3.16, are used.
The ground truth is obtained from [Carotenuto et al., 2016] for the two dates and [Ciuonzo
et al., 2017] for the three dates. From UAVSAR, two scenes with two images each are
used. They are presented in Figure 3.15. The ground truth is collected from [Ratha et al.,
2017, Nascimento et al., 2019]. Table 3.1 gives an overall perspective of the scenes used in
the study.
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Figure 3.15: UAVSAR Dataset in Pauli representation. Left: April 23, 2009. Middle: May
15, 2011. Right: Ground Truth. Top: Scene 1. Bottom: Scene 2.

Figure 3.16: SDMS Dataset. Top-left: FP0120. Top-middle: FP0121 . Top-right: FP0124.
Bottom-left: Ground Truth FP0120-FP0121-FP0124. Bottom-right: Ground Truth FP0121-
FP0124.
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Table 3.1: Description of SAR data used

Dataset
SDMS

CCD challenge
UAVSAR

SanAnd 26524 03 Segment 4

URL https://www.sdms.afrl.af.mil/ https://uavsar.jpl.nasa.gov
Tim interval Within a day April 23, 2009 - May 11, 2015
Resolution 0.2m by 0.2m 1.67m by 0.6m
Scenes FP0121 and FP0120-FP0.121-FP0124 Scene 1 and Scene 2
p 3 3
T 3 2
Size 1000px × 1000px 2300px × 600px

3.3.2 First analysis

We first try the various Gaussian and new statistics on the three dates of SDMS and
UAVSAR dataset. Figure 3.17 presents the results relative to the statistics for SDMS data
and Figure 3.18 for UAVSAR. The values for Λ̂t1 and Λ̂Wald are omitted since they have
similar behaviour than Λ̂G. Qualitatively, each statistic is high at the location of the changes
given by the ground truth. For both dataset, Λ̂Mat seems to have poorer performance since
the values of the statistic are not much higher on the changes compared to the background.
For UAVSAR data scene 1, a linear pattern appears in the bottom-right corner and responds
highly for all detectors except for Λ̂MT and Λ̂Tex. However, it is difficult to conclude solely
on those qualitative terms.

Figure 3.17: Value of the different statistics for SDMS FP0120-FP0121-FP0124. p = 3,
N1 = N2 = 11.
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Figure 3.18: Value of the different statistics for UAVSAR Scene 1. p = 3, N1 = N2 = 11.
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Figure 3.19: Value of the different statistics for UAVSAR Scene 2. p = 3, N1 = N2 = 11.
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Figure 3.20: PD versus PFA on real data. Top-left: SDMS FP0121-FP0124. Top-right:
FP0120-FP0121-FP0124. Bottom-left: UAVSAR Scene1. Bottom-right: UAVSAR Scene 2.
For all images, p = 3, N1 = N2 = 11.

To quantify the performance of the statistics, experimental ROC curves are plotted
using the Ground truth, denoted 1lGt(x, y) associated with spatial coordinates (x, y), by
computing the following:

• Probability of false alarm:
PFA = NFD/NNC ,

where: NFD =
∑

x,y

(
Λ̂(x, y) ≥ λ

)
× (1− 1lGt(x, y)) ,

NNC =
∑

x,y

(1− 1lGt(x, y)) .

• Probability of detection:
PD = NGD/NC ,

where: NGD =
∑

x,y

(
Λ̂(x, y) ≥ λ

)
× 1lGt(x, y) ,

NC =
∑

x,y

1lGt(x, y) .
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Figure 3.20 shows the results for each dataset and a size of analysis window of N1 =
N2 = 11. It appears that Λ̂MT has the overall best performance: it has similar results to
Λ̂G on SDMS dataset but performs better on UAVSAR dataset. Each Gaussian-derived
statistic has similar performance but Λ̂G appears to have better results than Λ̂t1 and Λ̂Wald.

These results can be interpreted as follows: on the SDMS dataset, while the resolution is
high, the images are globally homogeneous. In fact, much of the details are not visible and
the objects appear to be blurry. This means that in practice, on a small local neighborhood,
the Gaussian model is accurate and thus that the Gaussian-derived statistics perform well.
Nonetheless, the new statistics, except Λ̂Mat, do not have lower performance and can still
have better performance when the size of the neighborhood chosen is high as will be shown
afterward. On the other hand, the objects are better resolved on the UAVSAR. The transi-
tions are sharper which means that a heterogeneous model is more accurate and thus that
the new statistics will perform better. The difference of performance for UAVSAR scene 2
can be explained by the fact that dynamic between the darker zones and the bright ones is
much higher than in scene 1.

For the datasets used here, Λ̂Mat does not perform well. This is due to the fact that
the detection omits the texture parameters which are responsible for the power. In these
datasets, the ground truth corresponds to the arrival or disappearance of strong scatterers
and thus, the power has an important role. As explained before, Λ̂Mat allows detecting
changes which are focused on the correlation structures and is not appropriate for those
kinds of change.

Increasing the size of window

In order to test the impact of the size of the analysis window, we fix an experimental
PFA = 10−2 and plot the PD against the size of the window. Figure 3.21 gives the results
for all datasets.

By increasing the size of the window, the detection rate improves. It can be explained
by the fact that the estimation step has been performed on more data and is thus more
precise. The drawback is that the detection is obtained with a lower spatial resolution.

When increasing the size of the window, Λ̂MT and Λ̂Tex perform better than the Gaus-
sian statistics, especially on UAVSAR Scene 2. This is expected, since increasing the size
of the window means that the data are spread over a large spatial leading to an increase of
the heterogeneity due to the presence of many scatterers in the scene.

Increasing the dimension of pixels

Finally, we consider the performance if the size of vector p increases. To this end, we exploit
the wavelet decomposition method presented in the chapter 2. Using this decomposition
on all polarimetric canals of SDMS dataset allows having an image with p = 27. The
decomposition is not performed on UAVSAR dataset since it does not exhibit a physical
diversity using the wavelet decomposition. Figure 3.22 gives the result of the CD for all
the statistics. When compared to the performance using solely polarimetric information,
it appears that using this method, the performance is lower when the PFA is very low,
while they are improved for PFA > 10−1. The case of Λ̂Tex, which has significantly better
performance, highlights again that the texture parameter plays a significant role in CD
applications.
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Figure 3.21: PD as a function of window size at PFA = 10−2. Top-left: SDMS FP0121-
FP0124. Top-right: FP0120-FP0121-FP0124. Bottom-left: UAVSAR Scene1. Bottom-
right: UAVSAR Scene2. For all images, p = 3.
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Figure 3.22: PD versus PFA on SDMS FP0121-FP0124 with wavelet decomposition. N1 =
N2 = 11.
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3.4 conclusions

We have derived new statistics under both elliptical and compound-Gaussian models in order
to bring robustness to the covariance equality problem. We have both studied the usability
of those statistics (convergence properties of estimates) as well as the statistical properties
(namely distribution under the null hypothesis for the elliptical case). Performance has also
been tested through simulations and real datasets for which improvement has been shown
with regards to Gaussian-derived statistics.

The model (3.10) was the first one considered in our work since it allows to test the shape
matrix without being influenced by the scale. This has proved, however, to be insufficient
with regards to change detection since it discards the relative power between the images
which accounts for the changes. However, when the images are not well calibrated or when
they are acquired at different elevation angles, there can be an arbitrary change of this
power between the acquisitions which is not significative. In that case, this approach is still
interesting.

When we want to take into account the scale as well, it lead us to the model (3.9) which
test both scale and shape matrix. It is the equivalent of the Gaussian one in this robust
context. In practice this one has been shown to work the best.

The model (3.11) is only sensitive to the scale and discard the shape matrix information
which makes it less preformant than the (3.9) so there is no real interest to this approach.

The exact or asymptotic distribution under null for compound-Gaussian statistic has not
yet been achieved but the consistency properties of estimates are a first step which can be
exploited to that end. Indeed, since asymptotically the estimates are consistent, it would
be possible to obtain an asymptotic approximation by replacing the estimates by the true
matrix and analyze the distribution of quadratic terms.
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3.a appendix

3.A.1 Proof of proposition 3.2.1 at p. 86

Proposition. The GLRT under problem (3.3) is the following quantity:

Λ̂CEg =

∣∣∣Σ̂M
0

∣∣∣
TN

T∏

t=1

∣∣∣Σ̂M
t

∣∣∣
N

k=N
t=T∏

k=1
t=1

g
(
q(Σ̂M

t ,x
t
k)
)

g
(
q(Σ̂M

0 ,x
t
k)
)

H1

≷
H0

λ, (3.19)

where:

Σ̂M
t = ft(Σ̂

M
t ), Σ̂M

0 = 1
T

T∑

t=1

ft(Σ̂
M
0 ) and

ft(Σ) =
1

N

N∑

k=1

−g′ (q(Σ,xtk))

g (q(Σ,xtk))
xtkx

t
k

H
(3.20)

Proof. The GLRT in this problem reads:

Λ̂ =

max
θ1,...,θT

pW1,T
(W1,T ;θ1, . . . ,θT )

max
θ0

pW1,T
(W1,T ;θ0)

(3.21)

where θ0 = {Σ0} and ∀t ∈ J1, T K, θt = {Σt}.

Given that the observations are independent, we can write:

max
θ1,...,θT

k=N
t=T∏

k=1
t=1

pCExtk
(
xtk;θt, g

)

max
θ0

k=N
t=T∏

k=1
t=1

pCExtk
(
xtk;θ0, g

)
. (3.22)

This expression can be computed by optimizing the numerator and denominator sepa-
rately. Then, the idea is to estimate each unknown parameter separately and plugging back
the estimates. Thus we can compute:

Λ̂ =
L1

(
θ̂1, . . . , θ̂T

)

L0

(
θ̂0

) , (3.23)
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where

L1(θ1, . . . ,θT ) =

k=N
t=T∏

k=1
t=1

pCExtk
(
xtk;θt, g

)
,

L0(θ0) =

k=N
t=T∏

k=1
t=1

pCExtk
(
xtk;θ0, g

)
,

θ̂0 = argmax
θ0

L0(θ0),

∀t ∈ J1, T K, θ̂t = argmax
θt

L1(θ1, . . . ,θT ).

The optimizations can be done by obtaining the stationary point of the log-likelihood.
Indeed, it is shown in [Ollila and Tyler, 2014] that the negative of the log-likelihood is g-
covex towards the scatter matrix given that ρ = − log g is differentialbe, u = −g′/g is a
function having values on R+ and φ(t) = tu(t) is non-decreasing.

• Considering the numerator, we have:

logL1 ≈ −N
N∑

k=1

log |Σt|+
N∑

k=1

ρ
(
q(Σt,x

t
k)
)

Using chain-rule and recalling complex differentiation results [Gini and Greco, 2002]:

∂ log |ξ|
∂ξ

= ξ−1,

∂q (ξ,xtk)

∂ξ
= −Stk ξ

−2 ,

(3.24)

we have:

∂ logL1

∂Σt
= −NΣt

−1 +

N∑

k=1

1

g(q(Σt,xtk))

(
dg

dα

)

α=q(ξ,xtk)

(
∂q(Σt,x

t
k)

∂Σt

)

= −NΣt
−1 +

N∑

k=1

−g
′(q(Σt,x

t
k))

g(q(Σt,xtk))
Stk

Solving
∂ logL1

∂Σt
= 0p2 yields:

Σ̂t =
1

N

N∑

k=1

−g
′(q(Σ̂t,x

t
k))

g (q(Σ0,xtk))
Stk (3.25)

• Considering the denominator, we have:

logL0 ≈ −TN
T∑

t=1

N∑

k=1

log |Σ0|+
T∑

t=1

N∑

k=1

ρ
(
q(Σ0,x

t
k)
)
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Using the same opimization procedure as for the numerator yields:

Σ̂0 =
1

TN

T∑

t=1

N∑

k=1

− g
′(q(Σ̂0,x

t
k))

g
(
q(Σ̂0,xtk)

)Stk (3.26)

Finally, plugging the estimates in the expression of the GLRT at eq. (3.A.1) yields:

Λ̂CEg =

∣∣∣Σ̂M
0

∣∣∣
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t
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k)
)
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λ,

3.A.2 Proof of proposition 3.2.2 at p. 88

Proposition. The GLRT under problem (3.6) is the following quantity:

Λ̂CAE =

∣∣∣ξ̂M

0

∣∣∣
TN
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∣∣∣ξ̂TE

t
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TE
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TE
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λ, (3.27)

where:

ξ̂
TE

t = fTE
t (ξ̂

TE

t ), ξ̂
TE

0 = 1
T

T∑

t=1

fTE
t (ξ̂

TE

0 ) and

fTE
t (ξ) =

p

N

N∑

k=1

xtkx
t
k

H

q(ξ,xtk)
(3.28)

Proof. The expression of the GLRT can be obtained using the expression of the GLRT under
CE at eq. (3.4) with the density generator g = 1/xp. Although the conditions mentioned to
guarantee the convexity of the log-likelihood are not respected (mainly the non-decreasing
property of φ(t) = tg′(t)/g(t)), it has been shown in [Ollila and Tyler, 2014] that the well
known Tyler estimator [Tyler, 1987] is the MLE of the shape matrix.

3.A.3 Proof of proposition 3.2.3 at p. 89

Proposition. The GLRT ratio under hypotheses of Problem (3.9) is the following:

Λ̂MT =

∣∣∣ξ̂MT

0
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(
ξ̂

MT
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))Tp

TTp
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(
q
(
ξ̂

TE
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))p
H1

≷
H0

λ , (3.29)
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where

ξ̂
MT

0 = fMT
N,T

(
ξ̂

MT

0

)
=

p

N

N∑

k=1

T∑

t=1

Stk

T∑

t=1

q
(
ξ̂

MT

0 ,xtk

) . (3.30)

Proof. In this problem, we test a change in both texture and covariance parameters. Thus,
the GLRT for this problem has the following form:

Λ̂ =

max
θ1,...,θT

pW1,T
(W1,T ;θ1, . . . ,θT )

max
θ0

pW1,T
(W1,T ;θ0)

(3.31)

where θ0 = {τ1, . . . , tN , ξ0} and ∀t ∈ J1, T K, θt = {τ t1, . . . , τ tN , ξt}.

Using the assumption that all observations are independent, we can rewrite:

Λ̂ =

max
θ1,...,θT

k=N
t=T∏

k=1
t=1

pCNxtk
(
xtk;θt

)

max
θ0

k=N
t=T∏

k=1
t=1

pCNxtk
(
xtk;θ0

)
.

This expression can be computed by optimizing the numerator and denominator sep-
arately. Then, the idea is to estimate each unknown parameter separately and plugging
back the estimates. Indeed, as we show in 3.2.4, the negative log of the likelihood functions
considered here are jointly g-convex with regards to the covariance and texture parameters.
In this case, each stationary-point of the negative log-likelihood corresponds to a global
minima which in turn corresponds to the global maxima of the likelihoods. Thus we can
compute:

Λ̂ =
L1

(
θ̂1, . . . , θ̂T

)

L0

(
θ̂0

) , (3.32)

where

L1(θ1, . . . ,θT ) =

k=N
t=T∏

k=1
t=1

pCNxtk
(
xtk;θt

)
,

L0(θ0) =

k=N
t=T∏

k=1
t=1

pCNxtk
(
xtk;θ0

)
,

θ̂0 = argmax
θ0

L0(θ0),

∀t ∈ J1, T K, θ̂t = argmax
θt

L1(θ1, . . . ,θT ).

We optimize L0 and L1 separately:
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• Consider

logL0 = −πTNp − T N log |ξ0| − T p
N∑

k=1

log(τk)−
t=T
k=N∑

t=1
k=1

q (ξ0,x
t
k)

τk
.

Let k ∈ J1, NK, we solve:

∂ logL0

∂τk
= −Tp
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τk
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q (ξ0,x
t
k)

τ2
k

= 0 ,

which leads to:

τ̂k =
1

Tp
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q
(
ξ0,x

t
k

)
. (3.33)

Now we consider the optimization with regards to ξ0. We solve:

∂ logL0

∂ξ0

= −T N ξ0
−1 +

t=T
k=N∑

t=1
k=1

Stk
τk
ξ−2

0 = 0p2 ,

which yields:

ξ̂0 =
1

T N

t=T
k=N∑

t=1
k=1

Stk
τk

. (3.34)

Then by plugging back the estimates of textures at eq. (3.33) in eq. (3.34), we obtain:

ξ̂0 =
p

N

N∑

k=1

T∑

t=1

Stk

T∑

t=1

q
(
ξ̂

MT

0 ,xtk

) , (3.35)

that we denote ξ̂
MT

0 .

• For L1, we consider the same procedure and optimize alternatively for each τ tk and ξt.
We have:

logL1 = −πT N p −N
T∑

t=1

log |ξt| − p
t=T
k=N∑

t=1
k=1

log
(
τ tk
)
−

t=T
k=N∑

t=1
k=1

q (ξt,x
t
k)

τ tk
.

Let k ∈ J1, NK, t ∈ J1, T K, solving

∂ logL1

∂τ tk
= 0 ,
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yields:

τ̂ tk =
1

p
q
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t
k

)
. (3.36)

Let t ∈ J1, T K, we have to solve:

∂ logL1
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which yields:
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Then by plugging estimates of eq. (3.36) in (3.37), we obtain:
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) , (3.38)

that we denote ξ̂
TE

t .

Finally, we have to compute:
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τ̂ tk

}

k=N
t=T∏

k=1
t=1

1

πp
∣∣∣ξ̂MT

0

∣∣∣ (τ̂k)
p

exp

{
−q(ξ̂

MT

0 ,xtk)

τ̂k

}

=

∣∣∣ξ̂MT

0

∣∣∣
TN

T∏

t=1

∣∣∣ξ̂TE

t

∣∣∣
N

k=N
t=T∏

k=1
t=1

(τ̂k)
p

(τ̂ tk)
p

exp




−
k=N
t=T∑

k=1
t=1

q(ξ̂
TE

t ,xtk)

τ̂ tk





exp




−
k=N
t=T∑

k=1
t=1

q(ξ̂
MT

0 ,xtk)

τ̂k





Now, if we replace the texture estimates by their expression at eq. (3.33) and eq. (3.36), we
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have:

Λ̂ =

∣∣∣ξ̂MT

0

∣∣∣
TN

T∏

t=1

∣∣∣ξ̂TE

t

∣∣∣
N

N∏

k=1

(
T∑

t=1

q
(
ξ̂

MT

0 ,xtk

))Tp

TTp
T∏

t=1

(
q
(
ξ̂

TE

t ,xtk

))p

exp




−p

k=N
t=T∑

k=1
t=1

q(ξ̂
TE

t ,xtk)

q(ξ̂
TE

t ,xtk)





exp




−Tp

k=N∑

k=1

t=T∑

t=1

q(ξ̂
MT

0 ,xtk)

t=T∑

t=1

q(ξ̂
MT

0 ,xtk)





=

∣∣∣ξ̂MT

0

∣∣∣
TN

T∏

t=1

∣∣∣ξ̂TE

t

∣∣∣
N

N∏

k=1

(
T∑

t=1

q
(
ξ̂

MT

0 ,xtk

))Tp

TTp
T∏

t=1

(
q
(
ξ̂

TE

t ,xtk

))p
.

Since the covariance estimates are solution to fixed-point equations, we do not replace
them and have the final form of the statistic.

3.A.4 Proof of proposition 3.2.4 at p. 89

Proposition. The GLRT ratio under hypotheses of problem (3.10) is the following:

Λ̂Mat =

∣∣∣ξ̂Mat

0

∣∣∣
TN

T∏

t=1

∣∣∣ξ̂TE

t

∣∣∣
N

k=N
t=T∏

k=1
t=1

(
q
(
ξ̂

Mat

0 ,xtk

))p

(
q
(
ξ̂

TE

t ,xtk

))p
H1

≷
H0

λ , (3.39)

where

ξ̂
Mat

0 = fMat
N,T

(
ξ̂

Mat

0

)
=

p

T N

k=N
t=T∑

k=1
t=1

Stk

q
(
ξ̂

Mat

0 ,xtk

) .

Proof. In this problem, we test a change in the covariance shape only. Thus, the GLRT for
this problem has the following form:

Λ̂ =

max
θ1,...,θT ,Φ1,...,ΦT

pW1,T
(W1,T ;θ1, . . . ,θT ,Φ1, . . . ,ΦT )

max
θ0,Φ1,...,ΦT

pW1,T
(W1,T ;θ0,Φ1, . . . ,ΦT )

(3.40)

where θ0 = {ξ0}, ∀t ∈ J1, T K, θt = {ξt} and ∀t ∈ J1, T K, Φt = {τ t1, . . . , τ tN}.

Using the assumption that all observations are independent, we can rewrite:

Λ̂ =

max
θ1,...,θT ,Φ1,...,ΦT

k=N
t=T∏

k=1
t=1

pCNxtk
(
xtk;θt,Φt

)

max
θ0,Φ1,...,ΦT

k=N
t=T∏

k=1
t=1

pCNxtk
(
xtk;θ0,ΦT

)
.



116 CHAPTER 3. ROBUST CHANGE DETECTION

This expression can be computed by optimizing the numerator and denominator sepa-
rately just as done in the previous derivations at section 3.A.3 and computing:

Λ̂ =
L1

(
θ̂1, . . . , θ̂T , Φ̂

1

1, . . . , Φ̂
1

T

)

L0

(
θ̂0, Φ̂

0

1, . . . , Φ̂
0

T

) , (3.41)

where

L1(θ1, . . . ,θT ,Φ1, . . . ,ΦT ) =

k=N
t=T∏

k=1
t=1

pCNxtk
(
xtk;θt,Φt

)
,

L0(θ0,Φ1, . . . ,ΦT ) =

k=N
t=T∏

k=1
t=1

pCNxtk
(
xtk;θ0,Φt

)
,

θ̂0 = argmax
θ0

L0(θ0,Φ1, . . . ,ΦT ),

∀t ∈ J1, T K, Φ̂
0

t = argmax
Φt

L0(θ0,Φ1, . . . ,ΦT ),

∀t ∈ J1, T K, θ̂t = argmax
θt

L1(θ1, . . . ,θT ,Φ1, . . . ,ΦT ),

∀t ∈ J1, T K, Φ̂
1

t = argmax
Φt

L1(θ1, . . . ,θT ,Φ1, . . . ,ΦT ).

Here, the optimization towards θt and Φ1
t is exactly the same as done in section 3.A.3

where the parameters Φt were compromised in the θt. Thus we will omit them here and
only remind the results:

∀t ∈ J1, T K, τ̂ tk = τ̂ t1k =
1

p
q
(
ξt,x

t
k

)
,

∀t ∈ J1, T K, ξ̂t =
p

N

N∑

k=1

Stk

q
(
ξ̂t,x

t
k

) .

Concerning the others estimation problems, we have:

logL0 = −πT N p − TN log |ξ0| − p
t=T
k=N∑

t=1
k=1

log
(
τ tk
)
−

t=T
k=N∑

t=1
k=1

q (ξ0,x
t
k)

τ tk
.

The optimization towards each τ tk leads to:

∀k ∈ J1, NK, ∀t ∈ J1, T K, τ̂ tk = τ̂ t0k =
1

p
q
(
ξt,x

t
k

)
(3.42)

The optimization towards ξ0 was solved using the same procedure that led to eq. (3.34)
gives:

ξ̂0 =
1

T N

t=T
k=N∑

t=1
k=1

Stk
τ t0k

. (3.43)
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By plugging back eq. (3.42) in eq. (3.43), we obtain:

ξ̂0 =
p

TN

k=N
t=T∑

k=1
t=1

Stk

q
(
ξ̂t,x

t
k

) , (3.44)

that we denote ξ̂
Mat

0 .

Finally, we have to compute:

Λ̂ =
L1

(
θ̂1, . . . , θ̂T , Φ̂

1

1, . . . , Φ̂
1

T

)

L0

(
θ̂0, Φ̂

0

1, . . . , Φ̂
0

T

) ,

=

k=N
t=T∏

k=1
t=1

1

πp
∣∣∣ξ̂TE

t

∣∣∣ (τ̂ t1k)
p

exp

{
−q(ξ̂

TE

t ,xtk)

τ̂ t1k

}

k=N
t=T∏

k=1
t=1

1

πp
∣∣∣ξ̂Mat

0

∣∣∣ (τ̂ t0k)
p

exp

{
−q(ξ̂

Mat

0 ,xtk)

τ̂ t0k

}

=

∣∣∣ξ̂Mat

0

∣∣∣
TN

T∏

t=1

∣∣∣ξ̂TE

t

∣∣∣
N

k=N
t=T∏

k=1
t=1

(τ̂ t0k)
p

(τ̂ t1k)
p

exp




−
k=N
t=T∑

k=1
t=1

q(ξ̂
TE

t ,xtk)

τ̂ t1k





exp




−
k=N
t=T∑

k=1
t=1

q(ξ̂
Mat

0 ,xtk)

τ̂ t0k





When replacing the texture estimates by their expression, we obtain:

Λ̂ =

∣∣∣ξ̂Mat

0

∣∣∣
TN

T∏

t=1

∣∣∣ξ̂TE

t

∣∣∣
N

k=N
t=T∏

k=1
t=1

(
q
(
ξ̂

Mat

0 ,xtk

))p

(
q
(
ξ̂

TE

t ,xtk

))p . (3.45)

3.A.5 Proof of proposition 3.2.5 at p. 90

Proposition. The GLRT ratio under hypotheses of problem (3.11) is the following:

Λ̂Tex =

T∏

t=1

∣∣∣ξ̂Tex

t

∣∣∣
N

∣∣∣ξ̂TE

t

∣∣∣
N

N∏

k=1

(
T∑

t=1

q
(
ξ̂

Tex

t ,xtk

))Tp

TTp
T∏

t=1

(
q
(
ξ̂

TE

t ,xtk

))p
H1

≷
H0

λ , (3.46)
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where

ξ̂
Tex

t = fTex
N,T,t

(
ξ̂

Tex

1 , . . . , ξ̂
Tex

T

)
, (3.47)

=
T p

N

N∑

k=1

Stk
T∑

t′=1

q
(
ξ̂

Tex

t′ ,xtk

) . (3.48)

Proof. In this problem, we test a change in the texture parameters only. Thus, the GLRT
for this problem has the following form:

Λ̂ =

max
θ1,...,θT ,Φ1,...,ΦT

pW1,T
(W1,T ;θ1, . . . ,θT ,Φ1, . . . ,ΦT )

max
θ0,Φ1,...,ΦT

pW1,T
(W1,T ;θ0,Φ1, . . . ,ΦT )

(3.49)

where θ0 = {τ1, . . . , τN}, ∀t ∈ J1, T K, θt = {τ t1, . . . , τ tN} and ∀t ∈ J1, T K, Φt = {ξt}.

Using the assumption that all observations are independent, we can rewrite:

Λ̂ =

max
θ1,...,θT ,Φ1,...,ΦT

k=N
t=T∏

k=1
t=1

pCNxtk
(
xtk;θt,Φt

)

max
θ0,Φ1,...,ΦT

k=N
t=T∏

k=1
t=1

pCNxtk
(
xtk;θ0,ΦT

)
.

This expression can be computed by optimizing the numerator and denominator sepa-
rately just as done in the previous derivations at section 3.A.3 and computing:

Λ̂ =
L1

(
θ̂1, . . . , θ̂T , Φ̂

1

1, . . . , Φ̂
1

T

)

L0

(
θ̂0, Φ̂

0

1, . . . , Φ̂
0

T

) , (3.50)

where

L1(θ1, . . . ,θT ,Φ1, . . . ,ΦT ) =

k=N
t=T∏

k=1
t=1

pCNxtk
(
xtk;θt,Φt

)
,

L0(θ0,Φ1, . . . ,ΦT ) =

k=N
t=T∏

k=1
t=1

pCNxtk
(
xtk;θ0,Φt

)
,

θ̂0 = argmax
θ0

L0(θ0,Φ1, . . . ,ΦT ),

∀t ∈ J1, T K, Φ̂
0

t = argmax
Φt

L0(θ0,Φ1, . . . ,ΦT ),

∀t ∈ J1, T K, θ̂t = argmax
θt

L1(θ1, . . . ,θT ,Φ1, . . . ,ΦT ),

∀t ∈ J1, T K, Φ̂
1

t = argmax
Φt

L1(θ1, . . . ,θT ,Φ1, . . . ,ΦT ).
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Here, the optimization towards θt and Φ1
t is exactly the same as done in section 3.A.3

where the parameters Φt were compromised in the θt. Thus we will omit them here and
only remind the results:

∀t ∈ J1, T K, τ̂ tk = τ̂ t1k =
1

p
q
(
ξt,x

t
k

)
,

∀t ∈ J1, T K, ξ̂t =
p

N

N∑

k=1

Stk

q
(
ξ̂t,x

t
k

) .

Concerning the others estimation problems, we have:

logL0 = −πT N p −N
t=T∑

t=1

log |ξt| − p
k=N∑

k=1

log (τk)−
t=T
k=N∑

t=1
k=1

q (ξt,x
t
k)

τk
.

The optimization towards each τ tk leads to:

∀k ∈ J1, NK, τ̂k = τ̂0k =
1

pT

t=T∑

t=1

q
(
ξt,x

t
k

)
. (3.51)

The optimization towards each ξt gives:

ξ̂0 =
1

N

k=N∑

k=1

Stk
τ0k

. (3.52)

And by plugging back eq. (3.42) in eq. (3.43), we obtain:

ξ̂t =
Tp

N

t=T∑

t=1

Stk
t′=T∑

t′=1

q
(
ξ̂t′ ,x

(t′)
k

) , (3.53)

that we denote ξ̂
Tex

t .

Finally, we have to compute:

Λ̂ =
L1

(
θ̂1, . . . , θ̂T , Φ̂

1

1, . . . , Φ̂
1

T

)

L0

(
θ̂0, Φ̂

0

1, . . . , Φ̂
0

T

) ,

=

k=N
t=T∏

k=1
t=1

1

πp
∣∣∣ξ̂TE

t

∣∣∣ (τ̂ t1k)
p

exp

{
−q(ξ̂

TE

t ,xtk)

τ̂ t1k

}

k=N
t=T∏

k=1
t=1

1

πp
∣∣∣ξ̂Tex

t

∣∣∣ (τ̂ t0k)
p

exp

{
−q(ξ̂

Tex

t ,xtk)

τ̂ t0k

}
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=

T∏

t=1

∣∣∣ξ̂Tex

t

∣∣∣
N

∣∣∣ξ̂TE

t

∣∣∣
N

k=N
t=T∏

k=1
t=1

(τ̂ t0k)
p

(τ̂ t1k)
p

exp




−
k=N
t=T∑

k=1
t=1

q(ξ̂
TE

t ,xtk)

τ̂ t1k





exp




−
k=N
t=T∑

k=1
t=1

q(ξ̂
Mat

0 ,xtk)

τ̂ t0k





When replacing the texture estimates by their expression, we obtain:

Λ̂Tex =

T∏

t=1

∣∣∣ξ̂Tex

t

∣∣∣
N

∣∣∣ξ̂TE

t

∣∣∣
N

N∏

k=1

(
T∑

t=1

q
(
ξ̂

Tex

t ,xtk

))Tp

TTp
T∏

t=1

(
q
(
ξ̂

TE

t ,xtk

))p
H1

≷
H0

λ , (3.54)

3.A.6 Proof of proposition 3.2.6 at p. 91

Proposition. ξ̂
MT

0 , ξ̂
Mat

0 and ξ̂
Tex

t are the unique arguments of the global maxima of their
respective log-likelihood cost functions over the observations.

Proof. We will consider here only the proof for ξ̂
MT

0 , since the same procedure can be applied
to show the property for the others. In other words, we will show that τ̂k at eq. (3.33) and

ξ̂
MT

0 at eq. (3.35) are the global maxima of the following log-likelihood function:

logL (τ1, . . . , τN , ξ0) =− πTNp − T N log |ξ0| −

T p

N∑

k=1

log(τk)−
t=T
k=N∑

t=1
k=1

q (ξ0,x
t
k)

τk
.

(3.55)

We first recall two useful results:

Lemma 1. Any local minimum of a g-convex function over a manifold M is a global
minimum.

Lemma 2. Consider the manifold SpH and the following geodesic:

ξ
ξ0,ξ1
t = ξ

1
2
0

(
ξ
− 1

2
0 ξ1 ξ

− 1
2

0

)t
ξ

1
2
0 , t ∈ [0, 1] ,

between two points ξ0, ξ1.
Let hi ∈ Cp, a ∈ ±1, a′ ∈ ±1 for i = 1, . . .m and Hi ∈ Cq,p for i = 1, . . . n. The

function

L(ξ) = log

∣∣∣∣∣
n∑

i=1

Hi ξ
a HH

i

∣∣∣∣∣+

m∑

i′=1

hHi′ ξ
a′ hi′ , (3.56)

is strictly g-convex in ξ ∈ SpH.

When looking at the negative of function logL in eq. (3.55), straightforward application
of Lemma 2 allows to conclude that it is jointly g-convex in ξ0 and for all τk:
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• the g-convexity for each τk is obtained by rewriting the negative of eq. (3.55) in the
form of eq. (3.56), if we take3:

ξ = τk,

a = 1 ,

a′ = −1 ,

{hi|i ∈ J1,mK} =
{

xtkξ
− 1

2
0 |k ∈ J1, NK, t ∈ J1, T K

}
,

Hi = τiδik.

Here, ξ and Hi are taken as matrices of size 1× 1.

• the g-convexity in ξ0 is obtained by rewriting the negative of eq. (3.55) in the form of
eq. (3.56), if we take4:

ξ = ξ0,

a = 1 ,

a′ = −1 ,

{hi|i ∈ J1,mK} =

{
xtk√
τk
|k ∈ J1, NK, t ∈ J1, T K

}
,

Hi = δi1.

Here, Hi are taken as matrices of size 1× 1.

So we have the strict g-convexity, application of Lemma 1 allows us to conclude that the
estimates correspond to unique global maxima.

3.A.7 Proof of proposition 3.2.7 at p. 91

Proposition. ξ̂
MT

0 , ξ̂
Mat

0 and ξ̂
Tex

t are the arguments to the global minima obtained inside
SpH.

Proof. Again, we will only consider the case of ξ̂
MT

0 , since the same considerations lead to
the result for the others. Up to now we have only shown that the negative log-likelihood
− logL is g-convex. To show that it has a unique minimum in SpH, and thus that the fixed-

point equation to ξMT
0 admits a unique solution within the manifold, it suffices to show

that the minimum of logL occurs in the interior of SpH. To this end we have to show that
logL(ξ)→∞ as ξ → Bound(SpH), the boundary of SpH.

Let λ1(ξ), . . . , λp(ξ), be the ordered eigenvalues of ξ. We can rewrite − logL as5:

T N

p∑

j=1

log λj(ξ) +

t=T
k=N∑

t=1
k=1

q (ξ,xtk)

τk
.

3Considering solely the terms involving the considered texture parameter.
4Considering solely the terms involving the covariance matrix.
5Omitting the constants with regards to ξ0
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Now, decomposing ξ as ξ =
EVD

PHDP we can write q (ξ,xtk) as:

p∑

j=1

∣∣[ytk]j
∣∣2 /λj(ξ),

where [ytk]j is the j-th element of ytk = PHxtk. Then we have:

− logL(ξ) ≥

t=T
k=N
j=p∑

t=1
k=1
j=1

|[ytk]j |2
λj(ξ)τk

+ T N

p∑

j=1

log λj(ξ),

Finally, ξ → Bound(SpH) if and only if λ1(ξ) → ∞ and/or λp(ξ) → 0. Under both regimes
the right-hand side of the previous equation goes to ∞, which concludes the proof.

3.A.8 Proof of proposition 3.2.8 at p. 92

Proposition. Let {xtk|k ∈ J1, NK, t ∈ J1, T K} be a set of observations. Let us define

vectors vi ∈ Rp such that ∀k,∀t, v(T−1)∗N+k = (<(xtk)T,=(xtk)T)
T

and v(2T−1)∗N+k =

(−=(xtk)T,<(xtk)T)
T

. Let P2TN (•) be the empirical distribution of samples {vi|i ∈ J1, 2TNK}.
Then the fixed-point algorithms

(
ξMT

0

)
k+1

= fMT
N,T

((
ξMT

0

)
k

)
and

(
ξMat

0

)
k+1

= fMat
N,T

((
ξMat

0

)
k

)

converge to unique solutions up to a scale factor if and only if the following condition is re-
spected:
(C1) P2TN ({0}) = 0 and for all linear subspaces V ⊂ R2p, we have P2TN (V ) < dim(V )/2p.

Proof. The proof is done in three steps: we first go from the complex dataset to an equivalent
real one. Then, we prove the sufficient implication and then the necessary one.

1. Let us define, as done in [Mahot et al., 2013], the mapping from Cp×p to R2p×2p as a
function denoted fCR : SpH → S2p

++, whose definition is:

fCR (ξ) =
1

2

[
<(ξ) −=(ξ)
=(ξ) <(ξ)

]
. (3.57)

Given the observations {xtk|k ∈ J1, NK, t ∈ J1, T K}, we define vi ∈ Rp such that

∀k,∀t, v(T−1)∗N+k = (<(xtk)T,=(xtk)T)
T

and v(2T−1)∗N+k = (−=(xtk)T,<(xtk)T)
T

.

Using identities of Theorem 1 in [Ollila et al., 2012a], we can show that fCR
(
ξ̂

MT

0

)
is

solution to the following fixed-point equation:

ξ =
p

2N

2N∑

k=1

T∑

t=1

vtiv
t
i
T

T∑

t=1

vti
T
ξ−1vti

. (3.58)

Since there is an equivalence between R2p and Cp, we can consider the convergence of

fCR
(
ξ̂

MT

0

)
and the result will apply to the complex case.
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2. Now we prove that if the condition C1 is respected, the fixed-point algorithm to com-
pute the solution of eq. (3.58) converges. Since the transformation x→Mx, for any
non-singular matrix M, leads to the transformation ξ →MξMT in eq. (3.58), we can
assume ξ = I2p without loss of generality. We will show the convergence in three steps:

Step 1. Let λ1(ξk), . . . , λ2p(ξk), be the ordered eigenvalues of ξk the matrix at

iteration k of the algorithm. We remark that for any x ∈ R2p, xTξ−1
k x ≥ λ1(ξk)

−1
xTx

so we can write the following inequality:

ξk+1 ≤ λ1(ξk)(2N)
−1
p

2N∑

i=1

T∑

t=1

vtiv
t
i
T

T∑

t=1

vti
T
vti

= λ1(ξk)Ip,

where the ordering refers to the partial ordering of symmetric matrices. Similarly, we
can write ξk+1 ≥ λ2p(ξk)I2p. These two inequalities imply that

λ1(ξk+1) ≤ λ1(ξk) andλ2p(ξk+1) ≥ λ2p(ξk). (3.59)

Step 2. Let Pk be the 2p× 2p symmetric idempotent matrix which projects orthog-
onally into the eigenspace Ek = {x ∈ R2p|ξkx = λ1(ξk)x}. We will show here that if
λ1(ξk+1) = λ1(ξk) then

Ek+1 ⊂ Ek, with equality only if Ek = R2p. (3.60)

To this end, we use the fixed-point equation multiplied by Pk+1, the inequality v ∈
R2p, vTξ−1

k v ≥ λ1(ξk)
−1

vTv and the fact that ξ = I2p is a solution to the fixed point
equation, to show that λ1(ξk+1)Pk+1 ≤ λ1(ξk)Pk+1. Equality is obtained if and only
if the following condition is respected:

∀k, ∀t, Pk+1v
t
k = 02p or Pkv

t
k = vtk. (3.61)

Assume that this condition is respected and thus λ1(ξk+1) = λ1(ξk). Then multiplying
eq. (3.58) by Pk+1 and (I2p−Pk) and using (3.61) leads to λ1(ξk+1)Pk+1(I2p−Pk) =
02p,2p. Thus, we have: Pk+1 = PkPk+1. This means that Ek+1 ⊂ Ek. If equality
holds, then (3.61) implies P2TN (Ek)+P2TN (E⊥k ) = 1. This contradicts condition (C1)
unless Ek = R2p.

Step 3. Statement (3.59) implies that λ1(ξk) → λ1 and λ2p(ξk) → λ2p for some λ1

and λ2 such that 0 < λ2p ≤ λ1 < ∞. It just suffices to be shown at this point that
λ1 = λ2p which implies ξk → λ1I2p.

Since {ξk} has bounded eigenvalues, there exist a convergent subsequence, for example,
ξk(2p) → A0 ∈ S2p

++, which implies

ξk(2p)+1 → A1 = (2N)
−1
p

N∑

k=1

(
T∑

t=1

vtkv
t
k

T

)
/

(
T∑

t=1

vtk
T
A−1

0 vtk

)
.
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The largest and smallest eigenvalues of both A0 and A1 must be λ1 and λ2p. Let
E∞,k = {x ∈ R2p|Akx = λ1x}. We can assume without loss of generality that
dim(E∞,1) ≥ dim(E∞,0). If this assumption is not respected, we can replace the sub-
sequence {ξk(2p)} by {ξk(2p)+1} and so on until the assumption is met . This condition

on the dimension together with (3.60), implies that E∞,1 = R2p. Thus, ξk(2p) → λ1I2p

which implies λ1 = λ2p.

3. Finally we show that if a solution to eq. (3.58) exists, then condition (C1) is respected.

Without loss of generality, we assume again that ξ = I2p. Let S be a proper subspace
and Q be the idempotent matrix which projects orthogonally into S. Letting ξ = I2p,
then multiplying both sides of eq. (3.58) by (I2p − Q) and finally taking the trace
yields:

2p− dim(S) = (2N)
−1
p

N∑

k=1

(
T∑

t=1

vtk
T

(I2p −Q)vtk

)
/

(
T∑

t=1

vtk
T
vtk

)
. (3.62)

Since xT(I2p −Q)x = 0 for x ∈ S and xT(I2p −Q)x ≤ xTx for x /∈ S, it follows from
eq. (3.62) that 2p− dim(S) ≤ 2p(1−P2TN (S)) which is equivalent to condition (C1).

3.A.9 Proof of proposition 3.2.10 at p. 95

Proposition. Λ̂MT is CFAR texture and matrix for Problem (3.9).

Proof. We consider separately the texture and matrix properties:

• Texture CFAR: First, ξ̂
MT

0 and ξ̂
MT

t are invariant by the substitution xtk → xtk/τ
(0)
k .

Then, the different (
T∑

t=1

q
(
ξ̂

MT

0 ,xtk

))Tp

TTp
T∏

t=1

(
q
(
ξ̂

MT

t ,xtk

))p

terms are also invariant by the same substitution. This means that the values of{
τ

(0)
k |k ∈ J1, NK

}
do not affect the statistic of Λ̂MT, which is the definition of texture

CFAR property in this problem.

• Matrix CFAR: As said in the discussion of 1.4.8, the estimates of matrices are subject
to an indetermination which is resolved by an appropriate normalization. For any

estimate ξ̂ ∈
{
ξ̂

MT

0 , ξ̂
MT

1 , . . . , ξ̂
MT

T

}
, when replacing ξ̂ by p ξ̂/Tr(ξ̂) in eq. (3.12), the

trace terms simplify in the expression of Λ̂MT. Thus, the statistic is homogeneous by
the normalization constraint.

Then, the statistic is invariant for the group of transformation:

G =
{
G xtk|t ∈ J1, T K, k ∈ J1, NK, G ∈ SpH

}
.
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Indeed, we can write:

Λ̂MT =

∣∣∣G ξ̂
MT

0 G
∣∣∣
TN

T∏

t=1

∣∣∣G ξ̂
TE

t G
∣∣∣
N

N∏

k=1

(
T∑

t=1

q
(
ξ̂

MT

0 ,G xtk

))Tp

TTp
T∏

t=1

(
q
(
ξ̂

TE

t ,G xtk

))p
,

where all terms G ξ̂
MT

0 G, G ξ̂
TE

t G, q
(
ξ̂

MT

0 ,G xtk

)
, q
(
ξ̂

TE

t ,G xtk

)
can be written as

functions of {G xtk|t ∈ J1, T K, k ∈ J1, NK}.

Finally by taking G = ξ
−1/2
0 , the statistic is a function of

{
ξ
−1/2
0 xtk|t ∈ J1, T K, k ∈ J1, NK

}

where ξ
−1/2
0 xtk ∼ CN (0p, Ip). It follows that the statistic is independent of ξ0 that

ends the proof.

The same arguments of invariance are used for Λ̂marg
MT .

3.A.10 Proof of proposition 3.2.12 at p. 95

Proposition. Λ̂Tex is CFAR texture but is not CFAR matrix for Problem (3.11).

Proof. The texture CFAR property is done using the same procedure as propositions 3.2.10
and 3.2.11.

The matrix CFAR property cannot be ensured due to the trace normalization. For any

estimate ξ̂ ∈
{
ξ̂

TE

1 , . . . , ξ̂
TE

T , ξ̂
Tex

1 , . . . , ξ̂
Tex

T

}
, when replacing ξ̂ by p ξ̂/Tr(ξ̂) in eq. (3.15),

we have:

Λ̂Tex =

T∏

t=1

∣∣∣ξ̂Tex

t

∣∣∣
∣∣∣ξ̂TE

t

∣∣∣Tr(ξ̂
Tex

t )
×

N∏

k=1

(
T∑

t=1

Tr(ξ̂
Tex

t )q
(
ξ̂

Tex

t ,xtk

))Tp

TT p
T∏

t=1

(
q
(
ξ̂

TE

t ,xtk

))p
.

In this expression, the trace terms do not simplify.

3.A.11 Proof of proposition 3.2.13 at p. 96

We first consider the following Lemma:

Lemma 3. Be ξ ∈ SpH,

∀U ∈ Cq,p so that U is a unitary matrix, UξUH = ξ ⇔ ∃α ∈ R, ξ = αIp.

Proof.

• If ξ = αIp, ∀U ∈ Cq,p so that U is a unitary matrix, UξUH = UαIpU
H = αIp = ξ.
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• Since ξ is in SpH, ∃∆ ∈ Dp ∃P ∈ Cp,p, unitary so that: ξ = P∆PH. By taking U = P,
it follows that ξ ∈ Dp.

Now take U =




0 1 0 · · · 0
...

. . .
. . .

...
...

. . .
. . . 0

0
. . . 1

1 0 · · · · · · 0




, which is a unitary matrix.

We have ∀i ∈ {1, . . . , p − 1}, {UξUH}i,i = ξi+1,i+1 and {UξUH}p,p = ξ1,1. Using

UξUH = ξ, it follows that ∀(i, j) ∈ {1, . . . , p}2, ξi,i = ξj,j . In conclusion, ∃α ∈ R, ξ =
αIp.

Then we can consider the proposition at hand:

Proposition. ξ̂
MT

0 and ξ̂
Tex

t are unbiased estimators of ξ0, the true covariance under null
hypothesis.

Proof. We will consider here only the case of ξ̂
MT

0 since the same analysis will lead to the

result for ξ̂
Tex

t .

Define ∀k ∀t, ytk = ξ0
− 1

2
xtk
τ0
k

, and Ξ̂
MT

0 = ξ0
− 1

2 ξ̂
MT

0 ξ0
− 1

2 , where ξ0 is the true shape

matrix and {τ0
k |1 ≤ k ≤ N} are the true texture parameters. We have:

Ξ̂
MT

0 =
p

N

N∑

k=1

T∑

t=1

ytk ytk
H

T∑

t=1

ytk
H{Ξ̂MT

0 }
−1

ytk

Let U ∈ Cq,p so that U is a unitary matrix, we define ∀k ∀t, ζtk = Uytk.
We have:

UΞ̂
MT

0 UH =
p

N

N∑

k=1

T∑

t=1

ζtk ζ
t
k

H

T∑

t=1

ζtk
H{UΞ̂

MT

0 UH}
−1

ζtk

Since ∀k ∀t, ytk ∼ CN (0p, Ip), we have: ∀k ∀t, ζtk ∼ CN (0p,UIpU
H). And U is unitary

so ∀k ∀t, ζtk ∼ CN (0p, Ip). From this, we have that UΞ̂
MT

0 UH follows the same distribution

as Ξ̂
MT

0 and thus:

E
{
UΞ̂

(t1,t2)

MT UH
}

= UE
{

Ξ̂
(t1,t2)

MT

}
U = E

{
Ξ̂

(t1,t2)

MT

}
.

Using Lemma 3, it follows that ∃α ∈ R, E
{

Ξ̂
(t1,t2)

MT

}
= αIp.

Moreover, E
{

Ξ̂
MT

0

}
= ξ0

− 1
2E
{

ˆΞMT
0

}
ξ0
− 1

2 . From this, we can write E
{

Ξ̂
MT

0

}
= αξ(0).

Finally we use the normalization constraint: Tr(ξ0
−1ξ̂

MT

0 ) = p, which guarantees that
α = 1.
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3.A.12 Proof of proposition 3.2.14 at p. 96

We first give a useful lemma to demonstrate our proposition:

Lemma 4. [Vaart, 1998, p. 46, Th. 5.9]
Let ΨN be random vector-valued functions and let Ψ a fixed valued vector of θ ∈ Θ, such
that for every ε > 0:

(C1): max
θ∈Θ
‖ΨN (θ)−Ψ(θ)‖ Pr

→
N→+∞0,

(C2): min
d(θ,θ0)>ε

‖Ψ(θ)‖ > 0 = ‖Ψ(θ0)‖ . (3.63)

Then any sequence θ̂N such that ΨN (θ̂N ) = oP(1) converges in probability to θ0.

Then, we have:

Proposition. ξ̂
MT

0 and ξ̂
Tex

t are consistent estimators of ξ0, the true covariance under null
hypothesis.

Proof. Again, we will consider here only the case of ξ̂
MT

0 since the same analysis will lead

to the result for ξ̂
MC

t .
To show the property, we use the Lemma 4. In our situation,

Θ = SpH, d(θ,θ0) = ‖θ − θ0‖2, θ̂N = f1,N (f1,N ), θ0 = ξ0,

ΨN (ξ) :

{
SpH → SpH

ξ → ξ − f1,N (f1,N )
, Ψ(ξ) :

{
SpH → SpH

ξ → ξ − E {f1(ξ)} ,

f1,N :





SpH → SpH

ξ → 1
N

N∑

k=1

fk(ξ)
, where fk(ξ) = p

T∑

t=1

xtk xtk
H

T∑

t=1

xtk
H
ξ−1xtk

.

• By construction, ΨN (θ̂N ) = 0. Thus, ΨN (θ̂N )
Pr
→

N→+∞0, which is the definition of

oP(1).

• First (C1) is ensured using the Strong Law of Large Numbers (SLLN):

Since f1,N (ξ)
a.s
→

N→+∞E {f1(ξ)}, ∀ξ ∈ SpH, ‖ΨN (ξ)−Ψ(ξ)‖ Pr
→

N→+∞0.

• Then (C2) is ensured by using proposition 3.2.13 (unbiasedness):

We have E
{
f1(ξ̂

MT

0 )
}

= ξ0, which means that if ξ 6= ξ0, Ψ(ξ) 6= 0 and thus ‖Ψ(ξ)‖ >
0.

Since all the conditions of the theorem are respected, we can conclude that ξ̂
MT

0 is a
consistent estimate of ξ0.

3.b detection methods based on structured covariance matri-
ces for multivariate sar images processing
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Detection Methods Based on Structured Covariance
Matrices for Multivariate SAR Images Processing

R. Ben Abdallah, A. Mian , A. Breloy , A. Taylor, M. N. El Korso, and D. Lautru

Abstract— Testing the similarity of covariance matrices (CMs)
from groups of observations has been shown to be a relevant
approach for change and/or anomaly detection in synthetic
aperture radar images. Although the term “similarity” usually
refers to equality or proportionality, we explore the testing of
shared properties in the structure of low rank (LR) plus identity
CM, which are appropriate for radar processing. Specifically,
we derive two new generalized likelihood ratio tests to infer:
1) on the equality of the LR signal component of CMs and 2) on
the proportionality of the LR signal component of CMs. The
formulation of the second test involves nontrivial optimization
problems for which we tailor efficient majorization–minimization
algorithms. Eventually, the proposed detection methods enjoy
interesting properties that are illustrated on simulations and on
an application to real data for change detection.

Index Terms— Change detection, covariance testing, gener-
alized likelihood ratio test (GLRT), low-rank (LR) structure,
synthetic aperture radar (SAR).

I. INTRODUCTION

STATISTICAL testing of covariance matrix (CM) equality
(or proportionality) has received increasing interest in the

context of synthetic aperture radar (SAR) image processing.
Indeed, this well-established hypothesis test has been suc-
cessfully studied and applied to change/anomaly detection
and classification in SAR images. Notably, equality testing
has been proposed for change detection in SAR in [1]–[8].
A clear overview and statistical analysis of this topic is
proposed in [9]. The extension to proportionality testing has
been proposed in [10] and [11]. In this scope, elliptical noise
modeling has also been studied to develop robust CM-based
SAR image processing in [12]–[15].

In this letter, we propose new statistical tests in the context
of structured CM. Indeed, the CM of radar measurements
usually exhibits inherent structures. In a very general case,
the samples can be modeled as a realization of a low-rank (LR)
signal component plus white Gaussian (thermal) noise. This
leads to a CM structured as � = �R + σ 2I, where �R is the
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LR signal CM. Taking this prior knowledge in the detection
process offers several advantages.

1) Introducing relevant prior information (here, the LR CM
structure) in the model improves detection performances.

2) LR-structured models allow dealing with low-sample-
support issues since fewer samples are required to esti-
mate the CM. In particular, it allows performing tests
even when the sample CM (SCM) is not invertible, while
this condition is restrictive for standard tests.

3) The considered formulation can go beyond equality
and proportionality testing. For example, consider local
power fluctuations of ground response modeled as �i =
τi�R + σ 2I, where τi ∈ R+ and i denotes the index
of a homogeneous set. Such model leads to �i �= � j
as well as �i �∝ � j for i �= j . If the goal is to
detect a signal anomaly in �R , detectors based on CM
equality/proportionality testing may lead to an excessive
number of false alarms.

Specifically, we propose two novel generalized likelihood
ratio tests (GLRTs) that account for the considered LR struc-
ture, with assumed known rank. Formally, these detectors
reexpress the equality and proportionality tests, but only
on the signal LR component �R of the total CM. The
derivation of the second test requires solving some nontriv-
ial optimization problems, for which we tailor appropriate
majorization–minimization (MM) algorithms in the Supple-
mentary material attached to this letter. It is worth mentioning
that the proposed formulations and optimization methods
can also be adapted to design various other tests—such as
eigenvectors (or principal subspace) equality testing—for other
specific applications.

Finally, the performance of the proposed detectors is illus-
trated on the simulated data, where they exhibit interesting
properties. Furthermore, the benefits of the proposed meth-
ods are also illustrated for a change detection application
on a UAVSAR data set (courtesy of NASA/JPL-Caltech,
https://uavsar.jpl.nasa.gov). For this application, our conclu-
sions are as the following.

1) Incorporating the LR structure in CM equality testing
offers an improvement of the detection performance
(especially for small local windows) with a small
increase in the computational cost.

2) Testing the CM proportionality (either with LR or full
rank model) requires more computational time, which
does not appear to be beneficial to obtain a high prob-
ability detection (PD). This is due to the fact that these
detectors are designed to be insensitive to power fluc-
tuations, while this phenomenon is relevant in change
detection. However, these detectors are still interesting

1545-598X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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for a number of other purposes, such as ensuring a
low probability of false alarm (PFA) in local anomaly
detection [10].

3) Both of the LR methods allow increasing the spatial
resolution of the detection process, as they are defined
for lower sample support.

Notations: Italic type indicates a scalar quantity, lower case
boldface indicates a vector quantity, and upper case boldface
a matrix. The transpose conjugate operator is H . Tr{ } and
| | are, respectively, the trace and the determinant operators.
etr{.} is the exponential of trace operator. {wn}n∈[[1,N]] denotes
the set of elements wn , with n ∈ [[1, N]], often contracted
in {wn}. Definition of the needed eigenvalue decomposition
will be through the equality symbol

EVD= . H++
M denotes the

set of M × M Hermitian positive definite matrices. ∝ stands
for “proportional to.” x ∼ CN (μ,�) is a complex-valued
random Gaussian vector of mean μ and CM �. x ∼ �(ν, ξ)
is a random variable following a Gamma distribution of shape
ν and scale ξ .

II. MODEL AND PROBLEM STATEMENT

A. Signal Model

In the following, zi
k denotes a sample, in which the super-

script i ∈ [[0, I ]] refers to the index of a set of independent
identically distributed variables, and k ∈ [[1, Ki ]] to the index
of the sample in this set (of size Ki ). Depending on the context,
i may stand either for the index of a local patch or for the index
of a time series. For a given sample set {zi

k} of multivariate
pixels, we consider the following data model:

zi
k = si

k + ni
k (1)

where:
1) si

k is the ground response, which consists of a mixture
of LR signal contributions. The resulting observation
is modeled as si

k ∼ CN (0, Ci ) with unknown LR CM
Ci . As commonly assumed in the literature [16], [17],
the rank R is considered known, or already preestab-
lished1

2) ni
k ∼ CN (0, σ 2IM ) is the thermal noise of known

variance σ 2. The extension of proposed algorithms to
unknown σ 2 is trivial and is tested on real data in
Section V.

Consequently, the samples are distributed as zi
k ∼

CN (0,�i ) where the total CM has a LR plus identity
structure. To reflect this structure, we consider the following
parameterization:

�i = τi Vi�i VH
i + σ 2I

�= τi�
i
R + σ 2I (2)

where τi is a positive scaling factor, Vi is a M × R unitary
matrix, and �i is an R × R positive diagonal matrix. Eventu-
ally, the likelihood of the data set is

L
({

zi
k

}∣∣θ
) =

I∏
i=0

etr
{ − Si�

−1
i (θ)

}
| �i (θ) |Ki

(3)

1 Indeed, the proposed results can still be applied using plug-in rank
estimates or by integrating physical prior knowledge on this parameter [18]
About rank estimation, the reader is referred to the overview [19] and recent
methods using shrinkage [20] or random matrix theory [21].

with Si = ∑Ki
k=1 zi

kzi H
k and where θ denotes the set of

parameters defining the �i (specified in the following). Note
that this model generalizes the LR compound Gaussian plus
white Gaussian noise distribution, which is a realistic model
for radar measurements embedded in thermal noise [17], [22].
The latter corresponds to the special case Ki = 1,∀i ∈ [[0, I ]]
in our setting.

B. Problem Statement
For the general model in (2) and (3), we turn to the

problem of testing whether the CM of the sample set under
test i = 0 shares some common properties with the secondary
sets i ∈ [[1, I ]]. These properties are related to the parameters
of the decomposition in (2) (i.e., τi , Vi , and �i ) and will
be specified depending on the proposed test. This problem
is relevant to detect, e.g., a local anomaly in the patch with
respect to adjacent patches, or a temporal change in the last
sample of a time series.

III. STATE OF THE ART: EXISTING GLRTS

A. Equality Testing
The standard hypothesis test [9] reads{

H0 : �0 = �, �i = � ∀i ∈ [[1, I ]]
H1 : �0 �= �, �i = � ∀i ∈ [[1, I ]]. (4)

The GLRT for this hypothesis test, denoted tE
glr, reads

|�̂H0 |
/(∣∣�̂0

H1

∣∣ρ0
∣∣�̂


H1

∣∣ρ

) H1

≷
H0

δE
glr (5)

with the quantities K = ∑I
i=0 Ki , K
 = K − K0, the ratios

ρ0 = K0/K , ρ
 = K
/K , and the SCMs �̂H0 = ∑I
i=0 Si/K ,

�̂
0
H1

= S0/K0 and �̂


H1

= ∑I
i=1 Si/K
.

B. Proportionality Testing
The classical hypothesis test [10] is{

H0 : �0 = β0�, �i = βi� ∀i ∈ [[1, I ]]
H1 : �0 �= β0�, �i = βi� ∀i ∈ [[1, I ]]. (6)

The GLRT on proportionality, denoted by tP
glr, is given as⎛

⎝
∣∣β̂0

H0
�̂

gfp
H0

∣∣∣∣�̂0
H1

∣∣
⎞
⎠

K0 I∏
i=1

⎛
⎝

∣∣β̂ i
H0

�̂
gfp
H0

∣∣∣∣β̂ i
H1

�̂
gfp
H1

∣∣
⎞
⎠

Ki
H1
≷
H0

δP
glr (7)

where {β̂ i
H0

} and �̂
gfp
H0

are the proportionality coefficients
and shape matrix estimated with the generalized fixed point
estimator (GFPE) [11] applied on the set {Si }i∈[[0,I ]], {β̂ i

H1
}

and �̂
gfp
H1

are obtained from the GFPE on the set {Si }i∈[[1,I ]],
and where �̂

0
H1

is the SCM defined above.

IV. PROPOSED DETECTORS

A. GLRT for LR CM Equality Testing
In this section, we develop a GLRT that is sensitive to a

variation of any parameter of the LR signal CM in the set
i = 0. Thus, for the CM model in (2), consider the following
hypothesis test:⎧⎨

⎩
H0 : ∣∣ τi�

i
R = �R ∀i ∈ [[0, I ]]

H1 :
∣∣∣∣ τi�

i
R = �R ∀i ∈ [[1, I ]]

τ0�
0
R �= �R

(8)



BEN ABDALLAH et al.: DETECTION METHODS BASED ON STRUCTURED CMS 3

that reads almost identical to the standard equality testing of
Section III, except that the CMs belong to the set of LR plus
identity structured matrices S++

LR . Hence, the hypothesis test
can be recasted as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H0 :
∣∣∣�i = �R,H0 + σ 2I

�= �H0 ∈ S++
LR ∀i ∈ [[0, I ]]

H1 :
∣∣∣∣∣∣
�0 = �0

R,H1
+ σ 2I �= �0

H1
∈ S++

LR

�i = �

R,H1

+ σ 2I
�= �


H1
∈ S++

LR ∀i ∈ [[1, I ]].
The expression of the GLRT is therefore

maxθ lrE
H1

L
({

zi
k

}∣∣H1, θ
lrE
H1

)
maxθ lrE

H0
L

({
zi

k

}∣∣H0, θ
lrE
H0

) H1
≷
H0

δlrE
glr (9)

with sets θ lrE
H1

= {�0
H1

,�

H1

} and θ lrE
H0

= {�H0}. In the
context of Gaussian data, the maximum-likelihood estima-
tor (MLE) of LR-structured CM is obtained by thresholding
the eigenvalues of the SCM [16] with the operator TR . This

operator associates to any Hermitian matrix �
EVD= V�VH

the regularization TR{�} EVD= V�̃VH with

[�̃]i,i =
{

max([�]i,i , σ
2), i ≤ R

σ 2, i > R.
(10)

Therefore, it can be easily shown that

θ̂
lrE
H0

= {TR{�̂H0}} and θ̂
lrE
H1

= {
TR

{
�̂

0
H1

}
,TR

{
�̂




H1

}}
with �̂H0, �̂

0
H1

, and �̂


H1

defined in III. Finally, the GLRT
for testing the equality of LR structured matrices, denoted t lrE

glr ,
reads as

L
({

zi
k

}|H1, θ̂
lrE
H1

)
/L

({
zi

k

}|H0, θ̂
lrE
H0

) H1
≷
H0

δlrE
glr . (11)

To evaluate this test, three singular value decompositions
(SVDs) of SCMs are required. In comparison, tE

glr requires
to compute the determinant of the same three SCMs.
The proposed t lrE

glr is, therefore, slightly computationally
more expensive.

B. GLRT for LR CM Proportionality Testing

In this section, we derive a GLRT to infer on the propor-
tionality of the LR signal component of the CM. Note that this
test differs from strict proportionality testing. Indeed, scaling
fluctuations should only apply on the LR part of the signal CM,
and not to the identity, related to the thermal noise. For the
CM model in (2), this leads to the following hypothesis test:⎧⎪⎨

⎪⎩
H0 : ∣∣�i

R = �R ∀i ∈ [[0, I ]]

H1 :
∣∣∣∣∣ �

i
R = �R ∀i ∈ [[1, I ]]

�0
R �= �R

(12)

which reads as signals sharing the same CM structure, but
with fluctuating power τi with respect to sample set i . The
test (12) can be recasted as⎧⎪⎨

⎪⎩
H0 : ∣∣ �i = τi VH0�H0(VH0)

H + σ 2I ∀i ∈ [[0, I ]]

H1 :
∣∣∣∣∣ �0 = V0

H1
A0
H1

(V0
H1

)H + σ 2I

�i = τi V

H1

�

H1

(V

H1

)H + σ 2I ∀i ∈ [[1, I ]]
(13)

where we collapsed a redundant parameter as A0 = τ0�0
(that is still diagonal). The expression of the corresponding
GLRT, denoted t lrP

glr is given by

maxθ lrP
H1

L
({

zi
k

}∣∣H1, θ
lrP
H1

)
maxθ lrP

H0
L

({
zi

k

}∣∣H0, θ
lrP
H0

) H1
≷
H0

δlrP
glr (14)

with sets of parameters θ lrP
H0

= {{τi }i∈[[0,I ]], VH0 ,�H0} and
θ lrP
H1

= {{τi }i∈[[1,I ]], V

H1

,�

H1

, V0
H1

, A0
H1

}. It is clear that
the maximization of the likelihood function is not trivial,
due notably to the unitary constraints on the eigenvectors.
To overcome this issue, we propose the use of the block-MM
algorithm [23]. This methodology can be applied to our
problem by generalizing some results of [22]. Due to space
constraints, the full derivation of the proposed algorithms
is left in the Supplementary material attached to this letter.

Eventually, these algorithms allow to evaluate the MLEs θ̂
lrP
H0

and θ̂
lrP
H1

and the GLRT as

L
({

zi
k

}∣∣H1, θ̂
lrP
H1

)/
L

({
zi

k

}∣∣H0, θ̂
lrP
H0

) H1
≷
H0

δlrP
glr . (15)

In terms of computational cost, it is noted that each update
of our proposed MM algorithm is obtained in closed form.
Empirically, this algorithm converges quite fast, and we used
only 10 iterations in our application to the real data. The
main bottleneck is in the update of the eigenvectors, which
requires to compute thin-SVD of an M × R matrix. Thus,
this test is more computationally expensive than tE

glr or t lrE
glr .

However, it is on the same scale as its full rank counterpart
tP
glr, which involves fixed-point iterations of SCMs inversions.

V. SIMULATIONS AND APPLICATION

A. Numerical Simulations

In this section, the performance of the aforementioned
detectors is illustrated through simulations. We use as a
criterion the receiver operating characteristic (ROC) curve
which displays the PD versus the PFA.

1) Simulation Setup: We consider M = 20, R = 5,
Ki = 25 ∀ i with I = 3. The sample set {zi

k} is generated
according to zi

k ∼ CN (0,�i ) with �i given in (2): Vi are
the first R eigenvectors of the Toeplitz matrix [�T ]i, j =
ρ|i− j | with ρ = 0.9(1 + √−1)/

√
2 and [�i ]r,r = α(R +

1 − r), where α is set so that the signal to noise ratio fits
SNR = Tr{�i }/Rσ 2 = 15dB with σ 2 = 1. The variable
τi is specified in the following for each scenario. Under H1,
the anomaly in the LR signal CM of the set i = 0 is generated
by either: 1) reversing the eigenvalues, i.e., [�0]r,r = αr
(“structure change”) or 2) changing one of the eigenvectors in
Vi (“subspace change”). Note that the structure change is more
challenging since a subspace change is easier to detect at high
SNR. In order to compute the ROC curves, 104 Monte-Carlo
runs are performed under both H0 and H1 and the PD and
PFA are computed with respect to a threshold grid for each
detector.

2) Compared Detectors: We compare the following
detection statistics: the GLRT for equality testing tE

glr from
Section III-A, the GLRT for proportionality testing tP

glr from
Section III-B, the proposed GLRT for LR equality testing
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Fig. 1. ROC curves for the model discussed in Section IV-A: H1 is either
a (Top) structure change or a (Bottom) subspace change.

Fig. 2. ROC curves for the model discussed in Section IV-B. H1 is either
a (Top) structure change or a (Bottom) subspace change.

t lrE
glr from Section IV-A, and the proposed GLRT for LR

proportionality testing t lrP
glr from Section IV-B.

3) Results: Fig. 1 displays the ROC curves of the detectors
for the signal model from Section IV-A (homogeneous power),
i.e., τi = 1 ∀i . Under this settings, the performances of
tE
glr and tP

glr are almost identical. The same observation is
made for t lrE

glr and t lrP
glr , which both outperform their full-rank

counterparts since they exploit the LR structure of the CM
appropriately. Fig. 2 displays the ROC curves of the detectors
for the signal model from Section IV-B (fluctuating power)
with τi ∼ �(ν, 1/ν) and ν = 1. Under these settings, t lrP

glr
exhibits the best performance, as expected. This is mainly
due to a high false alarm rate of the other detectors, as the
fluctuation of the signal power generates CMs that are not
equal, nor proportional, even under H0. Hence, t lrP

glr appears
interesting for reducing the false alarms rate when the signal
has a varying power over the observed sets.

B. Change Detection on Real Data

In this section, the performance of the proposed detectors
is illustrated for change detection on a UAVSAR data set.

1) Setup: The considered data set is
SanAnd_26524_03 Segment 4, of coordinates (top left
pixel) [2891, 28 891], with two acquisition dates: April 23,
2009 and May 11, 2015. For one acquisition, the initial
datacube size is 2360 × 600 × 3 and is preprocessed using

Fig. 3. UAVSAR data set in Pauli representation. (Left) April 23, 2009.
(Middle) May 15, 2011. (Right) Ground truth for change detection.

Fig. 4. ROC curves (PD versus PFA) of the different detectors on the
UAVSAR data set.

the wavelet-decomposition transform presented in [24]. This
transformation, which allows decomposing a SAR image into
canals corresponding to a physical behavior of the scatterers,
has been shown to increase the detection performance [24].
This transformation increases the depth of the datacube from
M = 3 to M = 12. To form local patches, we use a 5 × 5
sliding window centered around each pixel. As I = 2, these
patches provide two sets: {z0

k} and {z1
k} with k ∈ [[1, 25]]. The

different presented detectors are then applied on these two
sets to test a change in the properties/parameters of the CM
between i = 0 and i = 1.

The ground truth for change detection is taken from [25]
and presented in Fig. 3. This provides observations under both
H0 and H1, which allows us to compute the ROC curves
empirically.

2) Compared Detectors: We compare the same detectors
as in Section V-A.2. The proposed LR detection methods
are applied with R = 1, as a rank one signal component can
be assumed by analyzing the spectrum of the data matrix.
This simplification still allows obtaining interesting results in
average, and the use of local adaptive rank selection is left
as a potential extension. The noise variance σ 2 is estimated
locally with the mean of the (M − 1) lowest eigenvalues
computed with an SVD of the SCM of all samples {zi

k} in
the patch. To show the benefits of the multivariate setting,
we also compare the results with a monovariate detector
applied to the summed entries of each pixel, denoted tm ,
as well as the so-called normalized mean-differences detector,
denoted tNdiff [26].

3) Results: The ROC curves of the different detectors are
displayed in Fig. 4. In this example, t lrE

glr offers an improvement
of the detection performance compared to the standard equality
testing tE

glr. This improvement is obtained for only a slight
increase in the computational time, highlighting the interest of
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Fig. 5. PD versus spatial window size
√

K for fixed PFA = 5% of the
different detectors on the UAVSAR data set.

the proposed LR formulation. t lrP
glr offers similar performance,

but only for low false alarm rate. Thus, for this application, this
test may not be worth the increase in the computational time.
This is also the case for its counterpart tP

glr, which exhibits
the lowest performance in this context. Intuitively, a power
fluctuation seems interesting to be captured when it comes
to change detection. Therefore, proportionality testing (not
sensitive to this change) may not be the most appropriate
for this application, as illustrated by the performance of tP

glr.
However, this detector is still interesting for other purposes,
such as local anomaly detection [10].

For each detector, Fig. 5 displays the PD with respect
to the spatial window size

√
K with fixed PFA = 5%.

Up to a reasonable window size, the detection performance
increases with respect to K . However, this is at the detriment
of the spatial resolution of the process. This figure, hence,
illustrates the interest of the proposed LR methods, as they
offer an improvement of the performance/resolution tradeoff.
Notably, the proposed methods allow for K < M , where other
standard covariance-based detectors are not defined (due to
noninvertible SCMs).

VI. CONCLUSION

This letter proposed two new detectors for CM-based detec-
tion process. These detectors extend, respectively, the equality
and proportionality testing to LR-structured CM models, with
a mild increase in the computational cost with respect to their
corresponding full-rank counterparts. Numerical simulations
illustrated their properties and interest depending on the con-
text. An application to real data for change detection in SAR
images time-series showed the interest of the LR approach.
Specifically, the LR equality testing offers a gain in detection
performance, while the LR proportionality testing does, but
only for low PFA. Most notably, both of the proposed LR
methods allow increasing the spatial resolution of the detection
process, as they require fewer samples than the size of the data.
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ABSTRACT
This paper considers the problem of detecting changes in mul-
tivariate Synthetic Aperture Radar image time series. Classi-
cal methodologies based on covariance matrix analysis are
usually built upon the Gaussian assumption, as well as an
unstructured signal model. Both of these hypotheses may
be inaccurate for high-dimension/resolution images, where
the noise can be heterogeneous (non-Gaussian) and where all
channels are not always informative (low-rank structure). In
this paper, we tackle these two issues by proposing a new
detector assuming a robust low-rank model. Analysis of the
proposed method on a UAVSAR dataset shows promising re-
sults.

Index Terms— Change detection; Synthetic aperture
Radar; Low Rank; Compound Gaussian;

1. INTRODUCTION

Analysis of Synthetic Aperture Radar (SAR) Image Time Se-
ries (ITS) has become a popular topic of study since it has
many practical applications for Earth monitoring such as dis-
aster assement or land-cover analysis. Developing reliable
methodologies for Change Detection (CD) in SAR-ITS is thus
an active topic of research. The CD problem is challenging
due to the lack of ground truths, which does not allow to ap-
ply supervised methods from the image processing literature.
Moreover, it is well known that SAR images are subjected
to speckle noise, which makes traditional optical approaches
unreliable. Under these conditions, unsupervised methodolo-
gies, often based on statistical tools, have been popular ap-
proaches in recent decades [1].

The CD problem can be seen as designing a distance.
Among popular methodologies, Coherent Change Detection
(CCD) [2] and the log-ratio operator [3] have received no-
ticeable attention. However, these methodologies are limited
to pairs of one-dimensional images, while modern sensors al-
low obtaining multidimensional ones (using e.g., polarimetric

The work was partially supported by PHOENIX ANR-15-CE23-0012
and MARGARITA ANR-17-ASTR-0015 grants of the French National
Agency of Research.

or spectro-angular channels [4, 5]). Exploiting this diversity
allows an improvement of performance in terms of CD appli-
cations for SAR-ITS.

For multivariate data, the covariance matrix has been
shown to be a relevant feature so as to assess changes [6].
Assuming a complex Gaussian model, [7] has considered
statistical information theory to design a distance, while [8]
have adapted covariance homogeneity tests from the statis-
tical literature [9], such as the Generalized Likelihood Ratio
Test (GLRT). These methodologies allow to reach good per-
formance, but suffer nonetheless from two issues encountered
in high-dimension/resolution images:

i) The Gaussian model has been shown to be inaccurate
in recent radar clutter analysis [10] due to the inherent
heterogeneity of these images. In order to be robust
to this non-Gaussianity, [11] proposed various GLRTs,
assuming a Compound Gaussian distribution.

ii) Standard detectors are derived assuming unstructured
covariance matrices, while the signal of interest usu-
ally lies in a low-dimensional subspace (e.g., only one
polarisation among HH, HV and VV).

In this scope, [12] proposed to extend some GLRT approaches
to Low-Rank (LR) structured covariance matrices.

To enjoy the best of both worlds, this paper proposes a
new detector based on both robust and LR model: we derive a
GLRT for Compound Gaussian distributed observations that
have a LR structured covariance matrix. This proposed de-
tector is then applied for CD on a SAR-ITS UAVSAR dataset
and exhibits promising results.

2. GENERIC FRAMEWORK

2.1. Data: We consider a multidimensional ITS, that means
each pixel at a given date corresponds to a vector of data
of dimension p. These p channels can correspond to a po-
larimetric diversity (p = 3), or to another kind of diversity
such as a spectro-angular one, obtained through wavelet
transforms [5]. The CD is applied using a local window ar-
round the pixel of interest. Locally, the data set is denoted
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Fig. 1. Illustration of data for p = 3, N = 9. The pixels
highlighted in black correspond to the local observations.

{xt
k}(k,t)∈[[1,K]]×[[1,T ]], corresponds to the concatenation of all

channels for pixel at date t and spatial index k, as described
in Figure 1.

2.2 GLRT for CD: For a given time t, the data is assumed
to follow a given distribution of parameter θt, leading to the
likelihood denoted L( {xt

k}k∈[[1,K]] | θt ). The parameters θt

characterise the local data at each date. Hence, if there is a
change, the parameter is expected to vary.

For the sake of clear exposition, we will focus on T =
2 (CD between two acquisitions), which can be straightfor-
wardly extended to T > 2. The CD problem can be formu-
lated as a binary hypothesis test:

{
H0 : θ1 = θ2 (no change),
H1 : θ1 6= θ2 (change). (1)

In order to derive a metric of decision, the Generalized Like-
lihood Ratio Test (GLRT), is considered. This test consists in
computing the following quantity:

Λ̂ =

max
θ1,θ2

∏2
t=1 L

(
{xt

k}k∈[[1,K]] | H1; {θ1, θ2}
)

max
θ1

∏2
t=1 L

(
{xt

k}k∈[[1,K]] | H0; θ1

) , (2)

where {θ1, θ2} (resp. θ1) corresponds to the parameters
of the distribution of the observations under H1 (resp. H0).
Hence, to develop efficient detectors, the problem remains to
select an assumed distribution (and corresponding parame-
ters) that accurately reflects the behavior of the data. Addi-
tionally, depending on the assumptions, the evaluation of the
GLRT may lead to complex optimization problems.

3. GLRTS ON COVARIANCE MATRICES

3.1. Gaussian CD [6]: Assuming Gaussian distributed sam-
ples, the CD can be performed by testing a change in the co-
variance matrix. The corresponding GLRT, denoted Λ̂G cor-
responds to (2) with the following distribution/parameters:

xt
k ∼ CN (0,Σt) and θt

G = {Σt} (3)

this test has a closed-form expression and is well studied in
the statistical literature [8].

3.2. LR-Gaussian CD [12]: Radar signals usually lie in
lower dimensional subspaces, leading to a LR structured co-
variance matrix. The Gaussian GLRT that accounts for this
prior knowledge, denoted Λ̂LRG, can be formulated as (2)
with distribution/parameters:

xt
k ∼ CN (0,Σt

R + σ2I) and θt
LRG = {Σt

R} (4)

where Σt
R is the rank R signal covariance matrix and σ2I

is the covariance matrix of the thermal noise. More details
about this GLRT (setting R, σ2, computation...) can be found
in [12] and section 5.2 of this paper.

3.3. Compound Gaussian CD [11]: For heterogeneous im-
ages, the Gaussian assumption may be a poor approxima-
tion of the underlying physics. In order to be robust to lo-
cal power disparities, we can rely on the Compound Gaussian
(CG) model (also referred to as a mixture of scaled Gaus-
sian), which can accurately fit the empirical distribution of
high-resolution data [10]. This model corresponds to a Gaus-
sian one, where each realization is scaled by a local power
factor τ referred to as texture (assumed unknown determinis-
tic in this work). Hence, a corresponding GLRT for change
detection, denoted Λ̂CG, can be formulated as (2) with distri-
bution/parameters:

xt
k ∼ CN (0, τ tkΣt) and θt

CG = {Σt, {τ tk}k∈[[1,K]]} (5)

i.e., we test if both the covariance matrix Σt and the textures
{τ tk} change between acquisitions. The computation of this
quantity involves fixed-point equations that can be computed
numerically. A study of this approach can be found in [11].

4. PROPOSED DETECTOR

In order to enjoy the improvement brought by both non-
Gaussian and structure assumptions, we propose the follow-
ing detector:

4.1. LR-Compound Gaussian CD: Assuming samples dis-
tributed as CG with a LR structured covariance matrix, the
proposed GLRT, denoted Λ̂LRCG, corresponds to (2) with dis-
tribution/parameters:

xt
k ∼ CN (0, τ tk(Σt

R + σ2I))

θt
LRCG = {Σt

R, {τ tk}k∈[[1,K]]}
(6)

where Σt
R is the rank R signal covariance matrix and σ2I is

the covariance matrix of the thermal noise. Again, we test if
both the covariance matrix and the textures change between
acquisitions. The computation of this quantity involves opti-
misation techniques similar to ones used in [11] and [12]. The



Fig. 2. UAVSAR Dataset used in this study. Left: April 23, 2009. Middle: May 15, 2011. Right: Ground Truth.
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Fig. 3. Repartition of eigenvalues mean over the ITS.

cumbersome and technical calculus is left for a forthcoming
paper1. The following section will present an application of
this detector for CD in SAR-ITS.

5. STUDY ON REAL UAVSAR DATASET

5.1. Description of data

To assess the performance of the proposed method, a pair
of two images from UAVSAR SanAnd 26524 03 Segment 4
dataset2 has been chosen since a ground truth has been es-
tablished in [7] by using comparison with optical data. The
images presented in Figure 2, correspond to full-polarisation
data with a resolution of 1.67m in range and 0.6m in azimuth.
Since the scatterers present in this scene exhibit an interesting
spectro-angular behaviour, each polarisation of these images
has been subjected to the wavelet transform presented in [5],
allowing to obtain images of dimension p = 12.

5.2. Selection of rank and noise level

To compute the proposed detector, the rank R must be es-
timated beforehand. Several approaches exist in the litera-
ture [13] for its estimation. In this paper, we consider a sim-
ple approach by considering the distribution of the mean of
eigenvalues over the ITS plotted in Figure 3. For this dataset,
R = 3 appears to be an interesting value to separate signal

1A python code for the proposed methodology is available at
https://github.com/AmmarMian/Robust-Low-Rank-CD

2Available at https://uavsar.jpl.nasa.gov/.

Fig. 4. Output of detectors (normalised) with (p = 12, N =
25). Top-Left: Λ̂G. Top-Right: Λ̂LRG. Bottom Left: Λ̂CG.
Bottom Right: Λ̂LRCG (proposed).

from noise components. Notably, this rank gathers 81% of
the total variance. The noise variance σ2 is estimated locally
with the mean of the (p − R) lowest eigenvalues computed
with an SVD of the SCM of all samples {xt

k} in the patch.

5.3. Results

As a mean to assess the effectiveness of combining LR struc-
ture with a robust model, it is compared to the following de-
tectors: i) the classic Gaussian statistic proposed in [6] (Sec-
tion 3.1); ii) the LR Gaussian statistic of [12] (Section 3.2);
iii) the CG statistic proposed in [11] (Section 3.3). Figure
4 presents the outputs of each detector for a window size of
5× 5. It appears that the LR detectors outputs (right column)
contain less visual false alarms compared to the non-LR ones,
which is expected since the most relevant channels are used
to compute the CD, making it less sensitive to noise.

Figure 5 shows the Receiver Operator Curve (ROC) for
the results of Figure 4. The proposed method allows ob-
taining the best performance of detection for any given false
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alarm rate, which is an interesting result. The gain is most
apparent with regards to the LR Gaussian detector which per-
forms poorly for false alarms rate greater than 10%. This is
explained by the fact that an LR structure in Gaussian context
results in the loss of some signal power while in our model,
the texture parameters account for the entirety of this power.

Finally, Figure 6 shows the evolution of the performance
in terms of PD at PFA = 5% when increasing the size of the
window used to compute the detectors. Increasing the win-
dow improves the results at the cost of a resolution loss. The
interest of LR methods is well demonstrated here: they al-
low to obtain good detection results with a lower size of win-
dow compared to their non-LR counterparts. The proposed
method exhibits the best performance, which was to be ex-
pected given that it has been derived using a model more ap-
propriated to the data.
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In this chapter, we consider the utilization of the robust covariance equality testing
schemes developed in Chapter 3 in order to tackle the problem of change-point estimation
for SAR images. We have seen in Chapter 1 that several approaches can be considered
for change-point estimation in time-series of multivariate datasets which could be adapted
in the robust data model. However, as discussed we will consider here only an extension
of the methodology presented in [Conradsen et al., 2016] since it is an approach based on
covariance equality testing for which the extension to non-Gaussian models is immediate.

We will thus adapt the statistics of chapter 3 to work in this setup. We will consider
only the deterministic compound-Gaussian model since we have seen that the elliptical one
is impractical in real data applications (due to the fact that g is unknown in most real
images application and that depending on the changes, the density generator most fitting
the data could change). Moreover, we will not derive the scale only statistic since we have
shown it does not possess the matrix CFAR property making it unable to guarantee a false
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alarm rate. Simulations will be done to demonstrate the utility of this extension to robust
models.

Finally, we will consider a side problem which consists in tuning the size of the window
needed for the change-point estimation. To that end, we will derive a lower-bound on the
mean square error of estimation for any Bayesian estimator of the change-point. Although
the setup considered in this case will be in Gaussian context and assume a Bayesian estima-
tion strategy, the insights offered by this study are of interest since they allow to compare
the performance of estimation of our methodology to more standard Bayesian estimators.

4.1 derivation of statistics under robust model adapted to this
strategy

In order to use the algorithm 2 in the robust context, we will need statistics of decision for
the following marginal scheme:

Consider (t1, t2) ∈ J1, T K2, so that t2 > t1, decide between:
{

Ht1,t2
0,marg : θt1 = . . . = θt2−1 = θt1,t2−1 and θt2−1 = θt2

Ht1,t2
1,marg : θt1 = . . . = θt2−1 = θt1,t2−1 and θt2−1 6= θt2

(4.1)

This section is dedicated to the derivation of such statistics, under the deterministic
compound-Gaussian model, for testing equality of either shape or shape and scale. We will
keep the notations of Chapter 3 regarding the problems of detection and statistic names and
refer to the new statistics as marginal statistics.

We have the following results:

Proposition 4.1.1. The GLRT ratio under hypotheses of problem (3.9) (Scale and shape)
for marginal scheme (4.1) is the following:

Λ̂marg,t1,t2
MT =

∣∣∣ξ̂MT

t1,t2

∣∣∣
(t2−t1)N

∣∣∣ξ̂MT
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(t2−t1−1)N ∣∣∣ξ̂TE

T

∣∣∣
N

((t2 − t1 − 1)p)(t2−t1−1)NppNp

((t2 − t1)p)(t2−t1)Np
×
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(
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))p
H1

≷
H0

λ ,

(4.2)

where

ξ̂
MT

t1,t2 =
p

N

N∑

k=1

t2∑

t=t1

Stk

t2∑

t=t1

q
(
ξ̂

Mat

t1,t2 ,x
t
k

) . (4.3)

Proof. See Appendix 4.A.1.
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Proposition 4.1.2. The GLRT ratio under hypotheses of problem (3.10) (Shape only) for
marginal scheme (4.1) is the following:

Λ̂marg,t1,t2
Mat =

∣∣∣ξ̂Mat

t1,t2

∣∣∣
(t2−t1)N

∣∣∣ξ̂Mat
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(4.4)

where

ξ̂
Mat

t1,t2 =
p

N

t2∑

t=t1

N∑

k=1

Stk

q
(
ξ̂

MT

t1,t2 ,x
t
k

) . (4.5)

Proof. See Appendix 4.A.2.

Notes:

• Since the optimizations have been done similarly to the one in chapter 3, the conver-
gence analysis still stands, meaning that the detectors can be implemented in practice
for any dataset given that the number of linearly independent samples is sufficient.

• At this point, no theoretical approximation of the distribution under the null hypoth-
esis of those statistics has been obtained. The CFAR property is nonetheless obtained
for those statistics (in the same way it has been shown for the omnibus ones). Thus
we shall consider Monte-Carlo simulations for the choice of the threshold of decision.

4.2 simulation on synthetic dataset

4.2.1 Results on synthetic time-series

Description of the simulation

A simulation to assess the performance of the algorithm with robust statstitics has been
undertaken. A synthetic time series has been generated where the observations are of the
form xtk =

√
τ tk x̃ for (k, t) ∈ J1, NK × J1, T K, where x̃ ∼ CN (0p,Σ) and τ tk is a realization

of a random variable with values on R+.
Three possible situations have been considered:

• The Gaussian model
√
τ tk = 1.

• An elliptical model obtained with τ tk ∼ Γ(α, β), where Γ(α, β) denotes the Gamma
distribution with shape parameter α and scale parameter β.

• A model in which τ tk ∼ Γ(α, β) except that ∀(t1, t2) ∈ J1, T K2, τ t1k = τ t2k . This allows

to have a texture equality constraint which was the model for detector Λ̂MT.
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The covariance matrices are chosen to be Toeplitz of the form (Σt)m,n = ρ
|m−n|
t . We

consider a situation of a single change-point to be detected/estimated similarly as what was
considered in subsection 3.2.6 of Chapter 3.

As for the previous chapter, we consider the Bartlett distance to measure the amplitude
of change:

dB(Σ1,Σ2) = log

(
|Σ1 + Σ2|2
|Σ1| |Σ2|

)
− 2p log(2). (4.6)

This allows to have an equivalent SNR quantity. In order for this quantity to be defined
for all problems, we only consider a change in the shape matrix so the SNR is defined as
dB(Σ0,Σ1) where Σ0 is the shape matrix before the change-point and Σ1 is the shape
matrix after the change-point.

Finally, the thresholds of detection are computed numerically through Monte Carlo trials
using the H0 regime of the problem considered.

To assess the performance of change-point detection, we consider the following probabil-
ity of detection:

PD =
∑

t̂C∈T̂C(Λ̂)

P
(
t̂C = tC

)
, (4.7)

where T̂C(Λ̂) = { t̂1, . . . , t̂K} is the set of detected change-points using the iterative algorithm
associated with statistic Λ̂ and tC is the true value of change-point. This probability of
detection differs from the one in Chapter 3 for which any detection resulted in a positive
outcome while in this case, the detection has to done at the true change-point. This allows
to take into account the estimation problem as well.

Results
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Figure 4.1: PD = f(SNR) for a Gaussian model. p = 10, N = 25, T = 10, tC = 5,
ρt<tC = 0.01. The false alarm rate is fixed at PFA = 10−3 and each point of the curve is
plotted using 4800 Monte-Carlo trials.

First, we consider a Gaussian context in Figure 4.1. In this case, the algorithm associated
with Gaussian-derived statistics yields the best results while the performance is slightly
degraded for robust statistics. This result is coherent with the change detection results of
Chapter 3.
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Figure 4.2: PD = f(SNR) for an Elliptical model. p = 10, N = 25, T = 10, tC = 5,
ρt<tC = 0.01, α = 0.1, β = 0.3. The false alarm rate is fixed at PFA = 10−3 and each point
of the curve is plotted using 4800 Monte-Carlo trials.

Next, in the elliptical model plotted in Figure 4.2, only the statistic associated with
a change in shape matrix yields a detection. Indeed, the almost null detection for other
statistics is explained by the fact that the detectors do not regulate well the false alarm rate
in this model. Indeed, the detectors are not adapted for the model of the change in this
simulation which means that even though there is no change according to this model, the
test statistic will have a high value. Thus, the experimental thresholds obtained are much
higher meaning that detection at the exact true change-point is a rare occurrence.
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Figure 4.3: PD = f(SNR) for an elliptical model with texture equality constraint. p = 10,
N = 25, T = 10, tC = 5, ρt<tC = 0.01, α = 0.1, β = 0.3. The false alarm rate is fixed at
PFA = 10−3 and each point of the curve is plotted using 4800 Monte-Carlo trials.

Finally, in Figure 4.3, a texture equality constraint has been imposed between the dates
to match the model assosiated with statistic Λ̂MT (meaning that ∀t ∈ J1, tCKτ tk = τk and
t ∈ JtC + 1, T K, τ tk = τ ′k). In this case, only the Gaussian-derived statistic does not allow a
detection.

From these simulations, we can conclude that the observations of Chapter 3 with regards
to the statistics still stand: Λ̂Mat statistic allows to have the most robust behavior since its
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performances does not vary for the three models considered. However, it is expected that
on real data, the performances are poorer since the scale is an important parameter of the
change.

4.2.2 Results on synthetic images

To briefly illustrate the usability of the algorithms on real images, we first generate synthetic
images. To generate the data we consider the three models of the previous simulation:
Gaussian, elliptical and elliptical with a texture equality constraint. We generate a noisy
background and two types of changes: a cross-shaped pattern that appears and disappears
and a growing circle. The data has been generated with parameters described in Figure 4.4.
The circle corresponds to a moderate change in scale and an important one in shape while
the cross-shaped pattern corresponds to an important change in scale and a small one in
shape.

ρ = 0.1 (1+i)√
2

α = 0.1
β = 3

ρ = 0.8 (1+i)√
2

α = 0.1
β = 5.5
Change in scale and shape

ρ = 0.2 (1+i)√
2

α = 0.1
β = 7
Change in scale only

Figure 4.4: Description of synthetic images parameters. Parameters α and β only apply for
elliptical model.

In order to visualize the results, we present the results as series of images on which a
zero value (corresponding to black color) at pixel (x, y) for a time t means that no change
was detected and estimated. A non-zero value (corresponding to white color) correspond to
change detected at pixel (x, y) and time t.

Figure 4.5 presents the results associated with a Gaussian model. It appears that all
statistics detect and estimate correctly the growing circle while Λ̂Mat does not allow to dis-
cern the cross-shaped pattern. This result is sound since it is mainly consist in a change of
scale.

Next, Figure 4.6 presents the results associated with the elliptical model and no texture
equality constraint. In this case, only Λ̂Mat has usable output: the growing circle is still well
detected and estimated. However, the cross is not detected since it mostly corresponds to a
change in scale. For the other two statistics, almost every pixel of the second and fourth im-
ages are marked as a change. This is explained by the fact that they are not able to regulate
false alarms in this model. The statistic grows higher than the threshold for almost every
pixel even though there is no apparent change. For the few pixels that were not mapped as
change, the statistic’s value grows significantly higher at next iteration resulting in a map
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at the next timestamp as a change.

Finally, Figure 4.7 presents the results associated with the elliptical model and texture
equality constraint. In this model, the Gaussian statistic’s behavior does not change while
Λ̂Mat statistic allows detecting both change patterns. This is explained by the fact that in
this model the false alarm is well regulated for this statistic. Λ̂Mat statistic’s output doesn’t
change much from Figure 4.6 since from its perspective both models allow to regulate false
alarms.
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Figure 4.5: Estimation/Detection results at PFA = 10−3 for synthetic Gaussian data (p = 5,
N = 25, T = 5). A change-point detected and estimated corresponds to non-zero value on
the resulting image.
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Figure 4.6: Estimation/Detection results at PFA = 10−3 for synthetic K-distributed data
(p = 5, N = 25, T = 5). A change-point detected and estimated corresponds to non-zero
value on the resulting image.
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Figure 4.7: Estimation/Detection results at PFA = 10−3 for synthetic K-distributed data
with texture equality constraint between dates (p = 5, N = 25, T = 5). A change-point
detected and estimated corresponds to non-zero value on the resulting image.



4.2. SIMULATION ON SYNTHETIC DATASET 149

4.2.3 Application to SAR image time series

The change point detection/estimation strategy has been assessed on real data coming from
the SDMS CCD Challenge dataset. A subset (2 and 3 images) dataset was used in chapter
3 to compare change detection performances.

In this case, we consider the whole time series consisting of 10 images taken during the
same day. The change-points mainly consist in vehicles appearing or disappearing in the
several parking lots of the area. However, no ground truth is available for this time series.
Figures 4.8 and 4.9 show the result of detection and estimation. In order to keep information
about the amplitude of the change, the pixels detected as change-point have been mapped
to a value in (0, 1] according to the value Λ̂/threhsold which led to the detection.

Discussion: A first analysis of the results shows a high number of false alarms, especially
at dates t = 6 and t = 7. Two main reasons explain this output: the linear patterns
correspond to artifact already present in some images which can appear during the processing
of the SAR images. Moreover, the great number of false detections at dates t = 6 and t = 7
is due to the co-registration which is off by several pixels. This leads to a situation where
from a pixel point of view, the objects have shifted which correspond to a change. This
highlights that the algorithm is not robust to co-registration issues and must only be used
on well registered time series.

Concerning the Gaussian GLRT statistic, the non-Gaussian nature of the data can also
explain that the threshold of detection is estimated to be too low to actually guarantee the
false alarm rate. For Λ̂Mat, the detection is done solely on the shape matrix which can be
in a sense linked to the coherence between the images. The zones appearing as changes are
mostly corresponding to trees or other similar natural objects which are known for their
non-coherent behavior between acquisitions.

Comparison between the different statistics shows that Λ̂MT yields an overall better de-
tection by reduction a significant amount of false alarms. This can be explained by the fact
that, even though it can detect a change in both shape and scale, the value of the statistic
is more sensitive to the scale. Indeed, while a change in shape is limited in amplitude due
to the normalization, this is not the case for a change in scale which is not bounded. Thus,
the detection of a change in shape is not as frequent as Λ̂Mat.

In conclusion, these results reveal the fact that the change detection problem is an ill-
defined one. Indeed, while we wanted to detect changes corresponding to vehicles, other
types of changes have also been included: some corresponding to the co-registration, others
due to the non-coherent behavior of some objects and finally artifacts due to the SAR im-
ages construction. In absolute, these detections do not correspond to false alarms since they
effectively impacted the covariance over time however they can be undesirable depending
on the definition of change considered. From a practical standpoint, it appears that covari-
ance based methods are useful for discovering any type of change in the series but not for
specifically oriented applications.
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Figure 4.8: Estimation/Detection on SDMS dataset results at PFA = 10−4
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Figure 4.9: Estimation/Detection on SDMS dataset results at PFA = 10−4
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4.3 a bayesian mse lower-bound for the tuning

In this section, we will consider the derivation of a lower bound on the MSE of any Bayesian
estimator of change-point in Gaussian context. This study distances itself from the previous
scenario in which there was no knowledge of the number of change-points as well as any
prior about their distribution. As such, the input obtained from the lower bound is not
applicable to the unknown number of change-points context. However, the study aims at
being able to compare the performance of the estimation strategy with regards to more
standard Bayesian change-point estimation schemes. The study presented here has been
done in collaboration with Lucien Bacharach and Alexandre Renaux of Laboratoire des
Signaux et Systèmes, CentraleSupélec who have considered the derivation of the bound in a
general case without specifying a model.

Another aim of this study is to consider the problem of parameter tuning. Indeed, in our
model, the dimension of the data, as well as the number of samplesN for each date, are linked
to the performance of detection and estimation. Concerning the detection performance, the
number of samples impact has been studied experimentally on a real dataset in Section 3.3.

This study is aimed at tackling the problem of tuning the size of the windows with
regards to the estimation performance. Indeed, intuitively having more samples is better
for both estimation and detection performance but from a practical standpoint, the size of
the window is linked to the resolution of detection. A window too large will yields detection
at a poor spatial resolution while also increasing the heterogeneity of the data considered.
Moreover, this estimation step must be done by taking into account the dimension of the
dataset p which can be controlled thanks to the wavelet decomposition presented in Chapter
2. Thus one would want to tune this parameter in order to obtain a compromise between
estimation performance and spatial resolution of detection.

Here, we consider this problem by using the Mean Square Error (MSE) of the estimated
change-points as a measure of performance and propose a lower bound on its expected
value. Indeed, the only available theoretical results on change-point estimation concern spe-
cific problems such as monovariate Gaussian time series with an asymptotic assumption of
a large number of data before and after the change [Fotopoulos and Jandhyala, 2001, Fo-
topoulos et al., 2010]. In order to overcome this difficulty, the signal processing community
generally focusses on MSE analysis with Monte Carlo simulations, which are computation-
ally expensive, or the Cramer-Rao Bound (CRB). However, in the context of change-point
estimation, a part of the unknown parameter vector lies on a discrete space violating the
regularity condition of the CRB.

Lower-bound for change-point estimation has been firstly considered in [Rosa et al.,
2010, Ferrari and Tourneret, 2003] where only the Barankin Bound (BB) was considered.
Then, the extension to a tighter Bayesian bound (i.e. the WWB) has been proposed in
[Bacharach et al., 2017] where a general semi-closed-form expression focussing on change-
points without specifying the distribution of the data, is given. This work has been extended
by including the possibility of unknown additional parameters in [Bacharach et al., 2019].

As a first step, we will only consider the Gaussian context, since the derivation of the
bound becomes more intricate in the elliptical and compound-Gaussian context. More
specifically, we will consider the distribution of the SCM over the observations which in
the Gaussian model is known to be the Wishart distribution. We will thus, adapt hereafter
this semi-closed expression to the case of Wishart distributed data.
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4.3.1 Data model

We consider a time series of T independent, Wishart-distributed matrices {St ∈ SpH | t ∈
J1, T K}, where SpH is the set of positive definite Hermitian matrices, subjected to a single
change-point tC . This scenario corresponds to a case where the user has the knowledge
that there is an abrupt change and wants to know its precise localization. This kind of
problem can arise, for example, when looking for the time at which some flood has occurred
or a region where a forest has been cut. The case of multiple change-points has also been
considered but requires heavier derivations. Thus for the sake of clear exposition, we will
focus on the case of one change-point. The studied scenario is then written as follows:

{
St ∼ CW(p,N,Σ0) for t = 1, . . . , tC
St ∼ CW(p,N,Σ1) for t = tC + 1, . . . , T

, (4.8)

where CW is the central complex Wishart distribution with Probability Distribution Func-
tion (PDF):

pSt;Σ(St; Σ) =
|St|N−p

Γp(N) |Σ|N
etr
(
Σ−1St

)
, (4.9)

where, Γp(N) = πp(p−1)/2
∏p
j=1 Γ(N − j + 1), Γ(.) is the Gamma function and etr(.) is the

exponential trace function.

In order to deal with complex parameters, we define the mapping from complex to real-

case as a function [•]CR : Cm → R2m, whose definition is: [z]CR = [<(z)
T
,=(z)

T
]
T

.
We also define:

x =
[
[vech (S1)]TCR, . . . , [vech (ST )]TCR

]T ∈ RTp
2

,

σ =
[
[vech (Σ0)]TCR, [vech (Σ1)]TCR

]T ∈ R2p2 ,

where vech(•) is the vectorisation operator with the upper triangular portion excluded.
The problem considered in this work is about the estimation of the unknown parameter

θ =
[
σT, tC

]T
, compromised of the covariance parameters as well as the change-point. We

define M = 2p2 + 1, the number of total unknown parameters.

Note that, in this work, the change-point tC is assumed to be random and the covariance
matrices are assumed to be deterministic. This is due to the fact that the tightest lower
bound (with good regularity conditions) is the deterministic BB which has already been
shown to exhibit too optimistic results in the context of change-point estimation [Ferrari
and Tourneret, 2003, Rosa et al., 2010] contrary to the WWB. Concerning the covariance
matrices, it is well known that the CRB is an efficient approximation [Kay, 2010]. This
is why we consider such a hybrid bound which allows us to manage a trade-off between
tightness and regularity conditions.

Finally, the distribution of the observations in this model denoted px,tC ;σ(x, tC ;σ) =
px|tC ;σ(x|tC ;σ)ptC (tC) where:

px|tC ;σ(x|tC ;σ) =

tC∏

t=1

pSt;Σ0(St; Σ0)

T∏

t=tC+1

pSt;Σ1(St; Σ1) . (4.10)

The aim is to obtain a lower bound on the performances of any estimator θ̂ of θ ∈
Θ = R2p2 × N using the hybrid CR/WWB. Note that, this does not consist only in the
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concatenation of the CRB of the unknown covariances σ and the WWB of the unknown
change-point tC but in obtaining a matrix that considers also the coupling between the
parameters. To this end, we consider the global MSE defined as follows:

MSE(θ̂) = Ex,tC ;σ

{
(θ̂(x)− θ)(θ̂(x)− θ)

T
}
, (4.11)

in which, Ex,tC ;σ denotes the expectation w.r.t the distribution px,tC ;σ(x, tC ;σ).

4.3.2 Covariance inequality

It has recently been shown in the literature [Ren et al., 2015] that eq. (4.11) can be bounded
using the covariance inequality. In the context of our problem, we have the following propo-
sition:

Proposition 4.3.1. Covariance Inequality
Let {Ψk(x,θ) | k ∈ J1,MK} be real-valued function set defined on RTp2 × Θ such that the

following integral exists and satisfies for almost every (a.e.) x ∈ RTp2 , ∀k ∈ J1,MK,∫
Θ

Ψk(x,θ)f(x,θ)dθ = 0 . Then, using the definition of MSE at eq. (4.11), the folow-
ing inequality holds:

MSE(θ̂) � VP−1VT, (4.12)

where A � B means that A − B is positive semi-definite, V is a M ×M matrix whose
elements are given by

(V)k,l = Ex,tC ;σ

{(
(θ̂(x))k − (θ)k

)
Ψl(x,θ)

}
, (4.13)

(•)k,l is the k-th line and l-th column of a matrix, and P is a M×M matrix whose elements
are given by

(P)k,l = Ex,tC ;σ{Ψk(x,θ)Ψl(x,θ)}. (4.14)

To obtain a hybrid CR/WWB, Ψk are chosen as follows:

Ψk(x,θ) =

{
ΨCRB
k (x,θ) for k = 1, . . .M − 1

ΨWWB(x,θ) for k = M
, (4.15)

where

ΨCRB
k (x,θ) =





∂ ln px,tC ;σ(x, tC ;σ)

∂(σ)k
if θ ∈ Θ′

0 if θ /∈ Θ′
(4.16)

and
ΨWWB(x,θ) =



psx,tC ;σ(x, tC + h;σ)

psx,tC ;σ(x, tC ;σ)
− p1−s

x,tC ;σ(x, tC − h;σ)

p1−s
x,tC ;σ(x, tC ;σ)

if θ ∈ Θ′

0 if θ /∈ Θ′

(4.17)

for s ∈]0, 1[, h is such that tC +h ∈ J1, T − 1K and Θ′ = {θ ∈ Θ | f(x,θ) > 0 a.e.x ∈ RTp2}.
Note that, any value for the terms h and s will lead to a lower bound on the MSE.

However, they must be chosen cautiously in order to obtain the tightest bound. To obtain
the tightest bound on the change-point, we have to compute:

HCRWWB = sup
h,s

VP−1VT. (4.18)
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4.3.3 Hybrid bound for the change-point model

In the context of change-point estimation, the right-hand side of the inequality at eq. (4.12)
can be obtained by using the semi closed-form expression provided in [Bacharach et al.,
2019]:

V =

[
−I2p2 02p2,1

01,2p2 v22

]
and P =

[
P11 P12

P12
T P22

]
, (4.19)

where the block-matrices are defined as follows:

• P11 = T/2 diag (F(Σ0),F(Σ1)), where F(Σ0) (resp. F(Σ1)) is the Fisher information
matrix with regards to Σ0 (resp. Σ1).

• P22 = u(h)
(
ρ|h| (εh(2s)) + ρ|h| (εh(2s− 1))

)

−2u(2h)ρ|h| (εh(s)) , where

u(h)
∆
=

{
(T − 1− |h|) /(T − 1) if |h| < T − 1

0 otherwise
,

εh(s) =

{
s if h > 0
1− s if h < 0

and

ρ(s)
∆
=

∫

SpH
psSt;Σ0

(St; Σ0)p1−s
St;Σ1

(St; Σ1) dSt . (4.20)

• P12 =
[
pT,qT

]T
, where the elements of vectors p and q are given by:

(p)` = −hu(h)ρ|h|−1 (εh(s))φσ0,` (εh(s)) ,

(q)` = hu(h)ρ|h|−1 (εh(s))φσ1,` (εh(s)) ,

and given j ∈ {0, 1}, ` ∈ J1, p2K, s ∈]0, 1[:

φσj ,`(s)
∆
=

∫

SpH

∂ ln pSt;Σ(St; Σ)

∂ ([vech (Σ)]CR)`

∣∣∣∣
Σ=Σj

×

psSt;Σ0
(St; Σ0) p1−s

St;Σ1
(St; Σ1) dSt .

(4.21)

• v22 = hu(h)ρ|h|(εh(s)).

4.3.4 Derivation of F(Σ), ρ(s) and φσj ,`(s)

In order to compute the bound, we finally need the closed-form expressions of F(Σ), ρ(s)
and φσj ,`(s). We have:

Proposition 4.3.2. The closed-form expression of ρ(s) is given by:

ρ(s) =

∣∣sΣ−1
0 + (1− s)Σ−1

1

∣∣−N

|Σ0|sN |Σ1|(1−s)N
. (4.22)
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Proof. Derived in [Frery et al., 2014]. The result can be obtained by doing the substitution

Y = ASA, with A =
(
sΣ−1

0 + (1− s)Σ−1
1

) 1
2 , in the integral.

Proposition 4.3.3 (FIM of the Covariance for a CW distribution). For Σ ∈ SpH, we have:

F(Σ) = fCR
(
NDp

T(Σ−1 ⊗Σ−1)Dp

)
, (4.23)

where Dp is the duplication matrix defined for any matrix S ∈ Cp×p, by

Dpvech (S) = vec (S) ,

and pCR : Sp
2/2

H → Sp
2

++, where Sp
2

++ is the set of real symmetric matrices, is defined as

fCR (Σ) =
1

2

[
<(Σ) −=(Σ)
=(Σ) <(Σ)

]
.

Proof. The result comes by noticing that the score function w.r.t. the covariance matrix of
a Wishart distribution is the same as the score function of a Gaussian distribution, and by
an appropriate change of variable (St =

∑N
i=1 ziz

H
i where {zi}i=1,...N ∼ CN (0p,Σ), and

CN is the complex Normal distribution). The mapping pCR allows obtaining its form in the
real parametrisation.

Proposition 4.3.4. The different terms of φσj ,`(s) for ` ∈ J1, p2K, j ∈ {0, 1} are given by
φσj ,`(s) = ([vech (Φj(s))]CR)`, where Φj(s) is a p× p matrix given by:

Φj(s) =Nρ(s)Σ−1
j

(
sΣ−1

0 + (1− s)Σ−1
1

)−1
Σ−1
j −Nρ(s)Σ−1

j . (4.24)

Proof. See Appendix 4.A.3.

Note: The extension of these results to non-Gaussian model becomes intricate due to the
fact that ρ(s), also known as the Rényi distance of order s, has yet been derived. Indeed,
since in elliptical context, the distribution relies on the function g, it is not clear how a
closed-form expression of the distance can be obtained.

4.3.5 Computation of the tightest bound

Let h = [h1, . . . , hK ]
T ∈ J−T, T KK and s ∈]0, 1[K . we want to compute the tightest bound

which means that we need to compute the following quantity:

HCRWWB = sup
s,h

W (h, s) = VP−1VH. (4.25)

Since it can be computationally expensive, we can choose s = 0.5 × 1K,1. Indeed, this
value seems in many cases to deliver the tightest bound [Weinstein and Weiss, 1988, Van
Trees and Bell, 2007, Wen, 2001]. The maximum is obtained the Löwner-John ellipsoid as
illustrated in Figure 4.10. This convex problem can be done by using standard toolbox such
as cvx [Boyd and Vandenberghe, 2004] or more efficiently using Frank-Wolfe optimization
methodology [Jambawalikar and Kumar, 2008]. We will, however, use a simple trace norm
since these methodologies require heavy implementation procedure in order to be time-
efficient.
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Löwner-John Ellipsoid

sup
h∈J−T,T KK
s∈]0,T [K

W (h, s)

Ellipsoids W (h, s)

Figure 4.10: Illustration of the problem

4.3.6 Simulations

In order to validate the bound derived, Wishart time series subjected to a change-point
as described in eq. (4.8) have been generated. tC is generated using a uniform ran-
dom prior and the covariance matrices have been chosen as Toeplitz matrices of the form:

(Σk=0,1)i,j = α
|i−j|
k .

Three estimators of the change-point have been considered:

• The Maximum A Posteriori (MAP) estimator which has the knowledge of the covari-
ance matrices before and after the change:

t̂C = argmax
tC∈J1,T−1K

px,tC (x, tC) . (4.26)

• The following hybrid estimator, derived from the Maximum A Posteriori/Maximum
Likelihood [Yeredor, 2000], which estimates the covariance matrices before and after
the change as well as the change point:

t̂C = argmax
tC∈J1,T−1K

px,tC ;σ̂(x, tC ; σ̂) , (4.27)

where σ̂ =
[
[vech(Σ̂0)]TCR, [vec(Σ̂1)]TCR

]T
with:

Σ̂0 =
1

tCN

tC∑

t=1

St and Σ̂1 =
1

(T − tC)N

T∑

t=tC+1

St .

• The iterative algorithm described in the first part of this chapter using Gaussian-
derived statistics. Even though the time series is subjected to a change-point, since
the algorithm relies on multiple hypothesis testing, there is a non null probability
(although small) that all the tests would yield a rejection of the change hypothesis.
When we do extensive Monte Carlo trials, this possibility arises. For the same reasons,
when doing hypothesis tests, there is a probability that several hypotheses testing will
yield a positive detection while we know that there is only one. Thus, the algorithm
has been adapted to deliver always one change-point as follows:
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Figure 4.11: MSE on the change-point for p = 3, T = 20, α0 = 0.1, α1 = 0.5. The estimators
curves have been computed with 4800 Monte Carlo trials.

– If no change is detected, a random value using the uniform prior is outputed.

– If there is more than one change point, the one having the highest ratio Λ̂/treshold
is selected.

The false alarm rate has been fixed to 1%. It is expected, that this algorithm will
have poor results but it is interesting to compare the performance with regards to the
Bayesian schemes presented earlier.

First, let us consider Figure 4.11: the MSE of the estimated change-point for all esti-
mators as well as the proposed bound has been plotted for several values of N . Without
surprise, the MAP estimator has the best performance since it assumes the true knowledge of
true change parameters. The derived bound behaves similarly to the MLEMAP estimator:
the drop in the error for high N is well described by the bound. Although the gap between
the bound and the hybrid estimator is rather high at low N , it decreases significantly for
higher values. Since our aim is to design algorithms having good estimation performance,
the region of interest is the one where the performance of the hybrid estimator is lower than
those for 1 sample. In this region, the bound accurately describes the expected performance
and can thus be used as an approximation for this peculiar estimator. Finally, the iterative
algorithm has the poorest performance since it has to simultaneously detect and estimate the
change-point. The gap between this estimator and the Bayesian ones increases significantly
for high values of N, meaning that if a prior knowledge about the number of change-points
is known, it might be better to consider the MLEMAP for the estimation problem.

The benefit of the bound is well described by Table 4.1 where the time-consumption1

needed to compute the points of Figure 4.11 are given. Since the bounds need at least a
thousand times less computational cost, it is preferable in a design context where many
values for the parameters have to be tested.

In order to illustrate the usability of the bound in a design context, the bound has been
computed for an extensive set of parameters (p,N) in Figure 4.12. Since for p < N , the
empirical covariance matrices cannot be inverted, the bound is not usable that explains the
lack of performance in this region. We can observe the drop in the error for any value of p at

1The simulations were done on two Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz processors.
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Table 4.1: Time-consumption in seconds.

N Bound MAP MLEMAP Conradsen

3 0.524 468.349 469.125 1380.398
21 0.533 499.488 484.306 1467.237
57 0.521 499.442 499.466 1518.321
155 0.527 497.900 492.285 1620.447
254 0.518 494.653 494.678 1646.803
416 0.524 488.274 497.050 1638.840
682 0.530 528.987 511.411 1779.224
1118 0.526 500.287 581.645 1656.353
1831 0.526 654.252 674.176 3229.751
3000 0.526 755.564 743.614 3327.090

some point when increasing N . The dashed line which corresponds to the region at which
the bound is accurate enough, allows to limit a region where, for a given situation with fixed
p, an appropriate value for N can be chosen to guarantee good estimation performance.

An interesting observation arises through this simulation: when the dimension of vectors
increase (assuming that all dimensions provide useful information), the number of samples
required to obtain a given estimation performance decreases. For example, for p = 3 (po-
larimetric diversity), a window of 11× 11 appear to be a good compromise while for p = 10,
a window of 9 × 9 would suffice. This observation which could appear counter-intuitive is
explained by the fact that as the dimension grows, the data before and after the change are
more distant making it easier to discriminate.

101 102
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10

N

p

−8

−6

−4

−2

0

Figure 4.12: Evolution of log10

√
(HCRWWB)M,M for several parameters p and N ,

T = 100, α0 = 0.1 and α1 = 0.3. The dashed line corresponds to the region where√
(HCRWWB)M,M = 10−2.

4.4 conclusions

We have derived robust statistics that can be used in the algorithm designed by [Conradsen
et al., 2016] and showed that they improved robustness of detection to some point. Study
on real SDMS dataset showed better results for the algorithm associated with statistic Λ̂MT

(scale and shape) compared to the Gaussian and Λ̂Mat statistics. This study also highlighted
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that this approach is not robust to both co-registration and calibration problems of the time
series. Moreover, depending on the coherence between the acquisitions testing the shape
might not be an interesting approach since it results in too many false alarms.

We also considered the design of a lower bound in a Bayesian context, which allowed
us to compare the estimation performance of the algorithm, in Gaussian case, with regards
to more standard Bayesian estimations schemes. The Bayesian schemes perform better
since they possess the knowledge of the number of change-points but they do not possess
the properties of the recursive hypothesis algorithm, namely that we do not need to know
the number of changes and can guarantee a false alarm rate if the distribution of data is
adequate.

The lower bound also allowed us to consider the problem of tuning the number of samples
needed to ensure good estimation performance. While not accurate when the number of
samples is low, the distance between the bound and MSE decreases significantly at a high
number of samples, which is the regime where a good estimation performance is possible.
Since the bound is very time-efficient, it allowed to consider an extensive set of parameters
(p,N) and showed that if p increases and assuming all dimensions provide useful information,
the number of samples needed decreases.

A problem not considered in this chapter concerns the complexity of the proposed
methodology relying on robust statistics as well as its online implementation capabilities.
This point will be considered in the next chapter, where a novel approach based on Rieman-
nian geometry will be developed to develop a recursive detection scheme.
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4.a appendix

4.A.1 Proof of proposition 4.1.1 at p. 140

Proposition. The GLRT ratio under hypotheses of problem (3.9) for marginal scheme (4.1)
is the following:

Λ̂marg,t1,t2
MT =

∣∣∣ξ̂MT

t1,t2

∣∣∣
(t2−t1)N

∣∣∣ξ̂MT

t1,t2−1

∣∣∣
(t2−t1−1)N ∣∣∣ξ̂TE

T

∣∣∣
N

((t2 − t1 − 1)p)(t2−t1−1)NppNp

((t2 − t1)p)(t2−t1)Np
×

N∏

k=1

(
t2∑

t=t1

q
(
ξ̂

MT

t1,t2 ,x
t
k

))(t2−t1)p

(
t2−t1−1∑

t=t1

q
(
ξ̂

MT

t1,t2−1,x
t
k

))(t2−t1−1)p(
q
(
ξ̂
T
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(4.28)

where

ξ̂
MT

t1,t2 =
p

N

N∑

k=1

t2∑

t=t1

Stk

t2∑

t=t1

q
(
ξ̂

Mat

t1,t2 ,x
t
k

) . (4.29)

Proof. For the marginal scheme, we have to compute the following GLRT:

Λ̂ =

max
θt1,t2−1,θt2

pWt1,t2
(Wt1,t2 ;θt1,t2−1,θt2)

max
θt1,t2

pWt1,t2
(Wt1,t2 ;θt1,t2)

(4.30)

where θt1,t2 =
{
τ t1,t21 , . . . , τ t1,t2N , ξt1,t2

}
, θt1,t2−1 =

{
τ t1,t2−1
1 , . . . , τ t1,t2−1

N , ξt1,t2−1

}
and

θt2 =
{
τ t21 , . . . , τ

t2
N , ξt2

}
.

Using the assumption that all observations are independent, we can rewrite:

Λ̂ =

max
θt1,t2−1,θt2

k=N∏

k=1

(
t=t2−1∏

t=t1

pCNxtk
(
xtk;θt1,t2−1

)
)
pCN
x
t2
k

(
xt2k ;θt2

)

max
θt1,t2

k=N
t=t2∏

k=1
t=t1

pCNxtk
(
xtk;θt1,t2

)
.

Just as for the omnibus problem in 3.A.3, we optimise the numerator and denominator
separately by plugging estimates in the likelihood functions:

Λ̂ =
L1

(
θ̂t1,t2−1, θ̂t2

)

L0

(
θ̂t1,t2

) , (4.31)
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where

L1(θt1,t2−1,θt2) =

k=N∏

k=1

(
t=t2−1∏

t=t1

pCNxtk
(
xtk;θt1,t2−1

)
)
pCN
x
t2
k

(
xt2k ;θt2

)
,

L0(θt1,t2) =

k=N
t=t2∏

k=1
t=t1

pCNxtk
(
xtk;θt1,t2

)
,

θ̂0 = argmax
θt1,t2

L0(θt1,t2),

θ̂t1,t2−1 = argmax
θt1,t2−1

L1(θt1,t2−1,θt2),

θ̂t2 = argmax
θt2

L1(θt1,t2−1,θt2).

We consider optimising L0 and L1 separately:

• For L0, the problem is exactly the same as for the omnibus scheme presented in 3.A.3,
if we remap the indices 1 to t1 and T to t2.

• For L1, we optimize alternatively for τ t2k , τ t1,t2−1
k , ξt2 and ξt1,t2−1. We have:

logL1 =− π(t2−t1)N p − (t2 − t1 − 1)N log
∣∣ξt1,t2−1

∣∣−N log
∣∣ξt2

∣∣

− (t2 − t1 − 1)p

k=N
t=t2−1∑

k=1
t=t1

log
(
τ tk
)
− p log

(
τ t2k
)
−
t=t2−1
k=N∑

t=t1
k=1

q
(
ξt1,t2−1,x

t1,t2−1
k

)

τ t1,t2−1
k

−
k=N∑

k=1

q
(
ξt2 ,x

t
k

)

τ t2k
.

Using the same optimisation procedure as omnibus scheme (taking the derivative and
equalling it to 0), we obtain:

τ̂ t2k =
1

p
q
(
ξt,x

t2
k

)
,

τ̂ t1,t2−1
k =

1

(t2 − t1 − 1)p

t=t2−1∑

t=t1

q
(
ξt1,t2−1,x

t
k

)
,

ξ̂t2 =
1

N

k=N∑

k=1

St2k
τ t2k

,

ξ̂t1,t2−1 =
1

(t2 − t1 − 1)N

k=N
t=t2−1∑

k=1
t=t1

Stk
τ t1,t2−1
k

, that we denote ξ̂
MT

t1,t2−1.

(4.32)
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Finally, we have:

Λ̂ =

k=N∏

k=1



t=t2−1∏

t=t1

1
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Now, if we replace the texture estimates by their expression, we have:

Λ̂marg,t1,t2
MT =

∣∣∣ξ̂MT
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))p
H1

≷
H0

λ ,

Since the covariance estimate are solution to fixed-point equations, we do not replace
them and have the final form of the statistic.

4.A.2 Proof of proposition 4.1.2 at p. 141

Proposition. The GLRT ratio under hypotheses of problem (3.10) for marginal scheme
(4.1) is the following:

Λ̂marg,t1,t2
Mat =

∣∣∣ξ̂Mat

t1,t2

∣∣∣
(t2−t1)N
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where

ξ̂
Mat

t1,t2 =
p

N

t2∑

t=t1

N∑

k=1

Stk

q
(
ξ̂

MT

t1,t2 ,x
t
k

) . (4.34)

Proof. For the marginal scheme, we have to compute the following GLRT:

Λ̂ =

max
θt1,t2−1,θt2 ,Φt1

,...,Φt2

pWt1,t2
(Wt1,t2 ;θt1,t2−1,θt2 ,Φt1 . . . ,Φt2)

max
θt1,t2 ,Φt1

,...,Φt2

pWt1,t2
(Wt1,t2 ;θt1,t2 ,Φt1 , . . . ,Φt2)

(4.35)

where θt1,t2 =
{
ξt1,t2

}
, θt1,t2−1 =

{
ξt1,t2−1

}
, θt2 =

{
ξt2
}

and ∀t ∈ Jt1, t2K, Φt =
{τ t1, . . . , τ tN}.
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Using the assumption that all observations are independent, we can rewrite:

Λ̂ =

max
θt1,t2−1,θt2 ,Φt1

,...,Φt2

k=N∏

k=1

(
t=t2−1∏

t=t1

pCNxtk
(
xtk;θt1,t2−1,Φt

)
)
pCN
x
t2
k

(
xt2k ;θt2 ,Φt2

)

max
θt1,t2 ,Φt1 ,...,Φt2

k=N
t=t2∏

k=1
t=t1

pCNxtk
(
xtk;θt1,t2 ,Φt

)
.

This expression can be computed by optimising the numerator and denominator sepa-
rately just as done in all previous derivations:

Λ̂ =
L1

(
θ̂t1,t2−1, θ̂t2 , Φ̂

1

t1 , . . . , Φ̂
1

t2

)

L0

(
θ̂0, Φ̂

0

t1 , . . . , Φ̂
0

t2

) , (4.36)

where

L1(θt1,t2−1,θt2 ,Φt1 , . . . ,Φt2) =

k=N∏

k=1

(
t=t2−1∏

t=t1

pCNxtk
(
xtk;θt1,t2−1,Φt

)
)
pCN
x
t2
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(
xt2k ;θt2 ,Φt

)
,

L0(θ0,Φt1 , . . . ,Φt2) =

k=N
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k=1
t=t1

pCNxtk
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xtk;θt1,t2 ,Φt

)
,

θ̂t1,t2 = argmax
θt1,t2

L0(θt1,t2 ,Φt1 , . . . ,Φt2),

∀t ∈ Jt1, t2K, Φ̂
0

t = argmax
Φt

L0(θt1,t2 ,Φt1 , . . . ,Φt2),

θ̂t1,t2−1 = argmax
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L1(θt1,t2−1,θt2 ,Φt1 , . . . ,Φt2),

θ̂t2 = argmax
θt2

L1(θt1,t2−1,θt2 ,Φt1 , . . . ,Φt2),

∀t ∈ Jt1, t2K, Φ̂
1

t = argmax
Φt

L1(θt1 , . . . ,θt2 ,Φt1 , . . . ,Φt2).

Concerning the derivation of θ̂t1,t2 and Φ̂
0

t1,t2 , it has already been done in 3.A.4 by
remapping date 1 to t1 and date T to t2. We will refer to these estimates when putting a
superscript 0 on the parameters.

We consider here the case for logL1:

logL1 =− π(t2−t1)N p − (t2 − t1 − 1)N log
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q
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t
k

)

τ t2k
.
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Optimizing using the same methodology as before, leads to:

∀t ∈ Jt1, t2 − 1K, τ̂ tk =
1

p
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t
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)
, that we donote τ̂ t,1k ,
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p
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)
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(4.37)

Finally, we have:
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Now, if we replace the texture estimates by their expression, we have:
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4.A.3 Proof of proposition 4.3.4 at p. 156

Proposition 4.A.1. The different terms of φσj ,`(s) for ` ∈ J1, p2K, j ∈ {0, 1} are given by
φσj ,`(s) = ([vech (Φj(s))]CR)`, where Φj(s) is a p× p matrix given by:

Φj(s) =Nρ(s)Σ−1
j

(
sΣ−1

0 + (1− s)Σ−1
1

)−1
Σ−1
j −Nρ(s)Σ−1

j . (4.38)
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Proof. Considering the complex nature of the matrices, we use the Wirtinger derivative
[Wirtinger, 1927] in our derivations. The result is then obtained using the complex to real
mapping. Then we remark that since the derivative in eq. (4.21) does not involve the
variable of integration and the fact that the right-hand side of the integral is made of scalar
terms, it is possible to compute the following expression:

Φj(s) =

∫

SpH

∂ ln pSt;Σ(St; Σ)

∂Σ

∣∣∣∣
Σ=Σj

×

psSt;Σ0
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St;Σ1
(St; Σ1) dSt .

and we obtain our result by taking φσj ,`(s) = ([vech (Φj(s))]CR)`.
The Wirtinger derivative leads us to:

∂ ln pSt;Σ′(St; Σ
′)

∂Σ′
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StΣ
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.

Thus,
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j ρ(s)ES;A {St}Σ−1
j ,

where A =
(
sΣ−1

0 + (1− s)Σ−1
1

)−1
. Finally using the expectation of a Wishart distribution,

we obtain the result.
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The work done in previous parts has shown that the deterministic compound-Gaussian
model with its set of texture parameters has led to attractive results in change detection
applications over Gaussian or CAE models. This is due to the fact that the Gaussian model
does not allow to consider a heterogeneity on the scattered power over the local observation
window. On the other hand, while the CAE brings welcome robustness to the detection,
discarding the scale does not allow a good detection performance. As such the deterministic
compound-Gaussian model has proven to be a good trade-off on real-time series change
detection.
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Despite those promising results, several issues can still be raised. On the one hand,
the change-point detection algorithm presented in chapter 4 suffers from a computational
high-complexity which becomes unmanageable when the number of images in the series is
large. The complexity comes from the expression of the fixed point estimators used in the
test:

ξ̂
MT

t1,t2 =
p

N

N∑

k=1

t2∑

t=t1

Stk

t2∑

t=t1

q
(
ξ̂

MT

t1,t2 ,x
t
k

) . (5.1)

When the number of images t2 − t1 + 1 grows, it requires that we keep in memory all the
data corresponding to these dates and it requires that we compute the fixed-point from the
beginning for each new image which grows in complexity since the sum goes from t = t1 to
t = t2.

On the other hand, the binary nature of change detection can be a limit the interpretabil-
ity of detected changes. Ciclycity means that a pixel could be subjected to seasonal changes
such as a field which is always collected at the same time. Impulsivity would mean a pixel
which change dramatically very fast such as the apparition of a building over a field. Nature
of the objects subjected to change refers to the type of objects that the pixel represent.

It would be interesting to be able to cluster the time series while not putting the same
class to a field, a car or a building while also taking into account the temporal evolution
of those objects. That’s what we are trying to do in this part.Indeed, from a practical
standpoint, one might want to analyze the change patterns, such as cyclicity or impulsivity,
or consider the nature of the objects subjected to change.

In order to consider those two aspects, we propose to introduce Riemannian geometry
as a potential solution. Indeed, covariance matrices, which we considered up to this point,
usually lie in a Riemannian manifold for which it is possible to consider the associated
Riemannian geometry. In differential geometry as well as SAR litterature, this approach
has been successfully integrated in online estimation and clustering problems. In our case,
we will consider Riemannian geometry on the set of parameters (shape matrix and texture
parameters) of the CCG distribution for which we will construct the associated geometry
since it has not been done previously in the litterature.

Riemannian geometry has already been considered in subsection 3.2.4, when we treated
the convergence properties of the novel fixed-point estimates through the concept of geodesic
convexity. However, we only considered the manifold of PDH matrices. In the present
chapter, we define a new manifold which considers the global structure of the CCG model
parameters.

This work emerged as a collaboration with Florent Bouchard, a post-doc at LISTIC
laboratory whose knowledge about Riemannian geometry has allowed us to consider the
analysis of SAR time series through this novel point of view. The aim of this chapter is to
present preliminary reflexions and results that have been considered in the last months of
the thesis. As such, a large amount of work has yet to be done on this subject, which we let
open to future extensions.

The chapter is organized as follows: We first recall classical results of Riemannian ge-
ometry over covariance matrices lying in SpH and restrain it to the submanifold of unitary
determinant matrices. We then consider as well the manifold of texture elements in (R+)N .
Then we define formally the new manifold which is obtained through the Cartesian product
of these two manifolds and derive its Riemannian geometry. Finally, both clustering and
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change-point detection problems are treated using the new tools developed and preliminary
results are presented.

5.1 some elements of riemannian geometry

5.1.1 Riemannian geometry basics

We introduce here briefly the diverse Riemannian geometry objects that will be considered
in further developments. Far from being a formal introduction to the domain1, our aim is
to illustrate intuitively the concepts we will refer to from this point.

As described in [Absil et al., 2009] p.18, a d-dimensional manifold can be informally
defined as a set M which can be covered with a collection of coordinates patches that
identify certain subsets of M with open subsets of Rd. In other terms, it is a topological
space that locally resembles Euclidean space near each point. As an example, a Boy’s surface
has been plotted in Figure 5.1 for which a collection of patches in R3 has been plotted. We
consider in this study, manifolds which lie in the ambient space Mp, of matrices of size p×p.

Figure 5.1: Example of manifold: Boy’s surface in a 3-dimensional space. Credit: Maksim.

A Riemannian manifold is a manifold M for which it is possible to define an inner
product 〈•, •〉 on the tangent space TΣM at each point Σ that varies “smoothly” in the
manifold. This property makes it possible to define several geometric notions such as:

• The orthogonal projection PMΣ , which is an application from the ambient space Mp,
of matrices of size p× p, into the tangent space TΣM;

• The geodesic γM : R→M, which is a function which allows to move from one point
γM(0) = Σ0 to another γM(1) = Σ1;

• The exponential mapping expMΣ which allows to obtain a point lying in the Manifold
M from a tangent vector in TΣM;

• The logarithm mapping logM, which is the inverse of expMΣ , i.e. it is an application
from M onto TΣM;

• The geodesic distance δM between two points belonging to the manifold.

These various concepts are illustrated in Figure 5.2.
Riemannian geometry offers an alternative approach to more traditional Euclidean method-

ologies. One interesting point is that the metric in the tangent space of the manifold can be
defined while taking into account the statistical properties of the objects considered. Say
that θ ∈ M defines the parameters of a probability distribution px, and suppose that M
defines a manifold. Then each point of the manifold can be mapped to a given distribution.

1See [Absil et al., 2009] for an overview of Riemannian geometry over matrices.
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M

TM
Σ

Σ1

PMΣ (Z)
δM(Σ,Σ1)

Z

logMΣ
expMΣ

Figure 5.2: Illustration of Riemannian geometry concepts.

It is then possible to define the Fisher information metric [Smith, 2005], which is a metric
that allows computing the informational difference between these distributions. For two
close points in the manifold, the metric can be related to the Kullback-Leibler divergence
between the distributions engendered by the two parameters. This metric can be equipped
as a Riemannian metric in the tangent space of the manifold. Hence, this approach allows
to consider the natural geometry associated with the manifold while also considering the
probability model, which makes it attractive.

In the context of this thesis, our analysis is based on covariance matrices which lie in
a Riemannian manifold. We will give hereafter examples of Riemannian geometry tools
obtained using the Fisher information metric in a Gaussian context.

5.1.2 Riemannian geometry over covariance matrices in Gaussian
context

Let us consider a set X = {xk ∈ Cp|k ∈ J1, NK} i.i.d realizations of a Gaussian-distributed
random variable x with covariance parameter Σ. The log-likelihood of this set of observa-
tions is given by (up to constants):

logL(X; Σ) = −NTr{Σ̂SCMΣ−1}+N log |Σ|, (5.2)

where Σ̂SCM = 1
N

N∑

k=1

xkx
H
k .

Given a positive definite Hermitian matrix Σ ∈ SpH and the model presented in eq.
(5.2), it is possible to define the Fisher information metric for two points ζ,η ∈ TΣSpH as
[Skovgaard, 1984, Smith, 2005]:

〈ζ,η〉S
p
H

Σ = Tr
(
Σ−1ζΣ−1η

)
. (5.3)

The Riemannian geometry associated with this metric is well-known2. We have:

• The orthogonal projection PSpH
Σ at Σ ∈ SpH from Cp×p to the tangent space TΣSpH:

PSpH
Σ (Z) = herm(Z), (5.4)

where herm(Z) = 1
2 (Z + ZH).

2See [Bhatia, 2009] for an extensive description.
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• The geodesic between two points Σ0 and Σ1, also denoted Σ0#
SpH
t Σ1, is given by:

γS
p
H(t) = Σ

1
2
0

(
Σ
− 1

2
0 Σ1 Σ

− 1
2

0

)t
Σ

1
2
0 , (5.5)

where (•)t corresponds to the power function over matrices defined through the expo-
nential and logarithm matrix.

• The exponential mapping of η ∈ TΣSpH is given by:

exp
SpH
Σ (P) = Σ

1
2 exp(Σ−

1
2 ηΣ−

1
2 )Σ

1
2 , (5.6)

where exp(•) is the matrix exponential.

• The logarithm mapping at Σ0 ∈ SpH of Σ1 ∈ SpH is given by:

log
SpH
Σ (Σ1) = Σ

1
2 log(Σ−

1
2 Σ1 Σ−

1
2 )Σ

1
2 , (5.7)

where log(•) is the matrix logarithm.

• The geodesic distance is given by:

δ2
SpH

(Σ0,Σ1) = ‖ log(Σ
− 1

2
0 Σ1 Σ

− 1
2

0 )‖22. (5.8)

Up to this point we considered the covariance matrix as a whole without taking into ac-
count the scale/shape parametrization which is primordial in the definition of the compound-
Gaussian model. We recall briefly that this model is parametrized by a set of two pa-
rameters: the shape matrix ξ which is a PDH matrix normalized by either the trace or
the determinant and a texture vector τ = [τ1, . . . , τN ]T ∈ (R+)N . A set of observations
X = {xk ∈ Cp|k ∈ J1, NK} is said to follow a deterministic compound-Gaussian model if
every xk are independent and we have:

xk ∼ CN (0p, τkξ) (5.9)

In order to consider Riemannian geometry adapted to the deterministic compound-
Gaussian model, we will first consider separately the space of shape matrices SpH,|•| = {ξ ∈
SpH| |ξ| = 1} and the space of texture parameters (R+)N .

5.1.3 The case of shape matrices

Although we considered the normalization by the trace through this document as discussed
in 1.3, we choose to consider the determinant one for this development. The reason for this
change in normalization comes from the fact that, as discussed in [Hallin and Paindaveine,
2007], the Fisher information matrix towards the parameters of an elliptical distribution
becomes block-diagonal, with no correlations between shape matrix and texture parameters,
for a normalization by the determinant. Although this phenomenon was not of interest until
now, it implies tremendous simplifications when it comes to the derivation of the Fisher
information metric in the deterministic compound-Gaussian case. Thus, we will consider
the manifold defined by: SpH,|•| defined as {ξ ∈ SpH : |ξ| = 1}.

Since in the Gaussian case, there is no change in the Fisher information metric if the
covariance is normalized, we can equip SpH,|•| with the metric defined at eq. (5.3). Thus, we

can define:
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• The tangent space at a point ξ is the space:

TξSpH,|•| = {η ∈ SpH : Tr(ξ−1η) = 0}. (5.10)

• The orthogonal projection PSpH,|•|
ξ from Cp×p to TξSpH,|•| as:

PSpH,|•|
ξ (Z) = herm(Z)− 1

p
Tr(ξ−1Z)ξ. (5.11)

Concerning the other quantities, SpH,|•| is a closed submanifold of SpH, i.e the geodesics are

the same as for SpH. As a consequence, the distance, as well as the exponential and logarithm
mappings, are the same as the previous case.

5.1.4 The case of texture parameters

We consider here the geometry of (R+)N which is the manifold of the vector of texture
parameters τ of the deterministic compound-Gaussian model.

Let us first define the Hadamard product operator � on RN which is the elementwise
product of two vectors. We define the notations �Nk=1τ i = τ 1 � · · · � τN . We also define
the Hadamard power of a vector τM = eM log(τ ), where exp and log are the elmentwise
exponential and logarithm operators. A useful property for further derivations is:

〈τ 0 � τ 1, τ 2〉R
N

= 〈τ 0, τ 2 � τ 1〉R
N

, (5.12)

where 〈•, •〉RN is the usual Euclidean inner product on RN .
It is interesting to notice that space RN , equipped with the operator �, is isomorphic

to the space of diagonal matrices DN of size N ×N , equipped with the matricial product.
Analogously, (R+)N can be linked to the space of diagonal matrices with positive elements
DN++, which is a closed sub-manifold of SpH. This allows to keep the Riemannian geometry
described previously in subsection 5.1.2 for the case of texture parameters by implicitly
taking the transformation τ → diag(τ ).

As such, we will refer to the Riemannian geometry of SpH when we use the metric

〈•, •〉(R+)N as well as other Riemannian concepts on the space (R+)N . We have follow-
ing results:

• As (R+)N is an open of RN , its tangent space Tτ (R+)N can be identified with RN .

• The natural Riemannian metric between ζ ∈ Tτ (R+)p,η ∈ Tτ (R+)p is:

〈ζ,η〉(R+)N

τ = 〈ζ � τ−1,η � τ−1〉RN . (5.13)

• The geodesic between τ 0, τ 1 ∈ (R+)N is:

τ 0#
(R+)N

t τ 1 = τ 1−t
0 � τ t1. (5.14)

• The exponential mapping at point τ is given by:

exp(R+)N

τ (ζτ ) = τ � exp(τ−1 � ζτ ), (5.15)

where exp is the pointwise exponential for vectors.
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• The logarithm mapping is given by:

log(R+)N

τ0
(τ 1) = τ 0 � log(τ−1

0 � τ 1), (5.16)

where log is the pointwise logarithm for vectors.

• The natural distance between two points τ 0 and τ 1 is given by:

δ2
(R+)N (τ 0, τ 1) = ‖ log(τ−1

0 � τ 1)‖22. (5.17)

5.2 development of riemannian geometry adapted to determin-
istic compound-gaussian model

Let us consider a set X = {xk ∈ Cp|k ∈ J1, NK} independent realizations of a deterministic
compound-Gaussian distribution with shape parameter ξ and texture τ = [τ1, . . . , τN ]T.
The log-likelihood of this set of observations is given by (up to constants):

logL(X;θ) =

N∑

k=1

LG(xk; τkξ), where:

LG(xk; Σ) = −Tr{xkxH
k Σ−1} − log |Σ|,

(5.18)

where parameter θ = (ξ, τ ) of the deterministic compound-Gaussian model lies in the space
Mp,N = SpH,|•|× (R+)N which defines a manifold. Indeed, a product of two usual manifolds

defines itself a manfiold as explained in [Absil et al., 2009]. Its tangent space TθMp,N at
θ = (ξ, τ ) is simply given by:

TθMp,N = TξSpH,|•| × Tτ (R+)p. (5.19)

We have the following result concerning the Fisher information metric:

Proposition 5.2.1. The Fisher information metric of the deterministic compound-Gaussian
model over Mp,N is defined for θ = (ξ, τ ) ∈ Mp,N , ζ = (ζξ, ζτ ) ∈ TθMp,N and η =
(ηξ,ητ ) ∈ TθMp,N by:

〈ζ,η〉Mp,N

θ = 〈ζξ,ηξ〉
SpH,|•|
ξ + 〈ζτ ,ητ 〉(R

+)N

τ . (5.20)

Proof. See appendix 5.A.

It is peculiarly important to notice that the simple expression of the metric is obtained
thanks to the normalization by the determinant constraint which allow discarding crossed
terms between the two manifolds as in eq. (5.45). The metric obtained is attractive since
the geometries of SpH,|•| and (R+)N are both known.

From this result, we can derive the other Riemannian concepts by considering the ge-
ometry associated with SpH,|•| for the shape matrix part and the geometry associated with

(R+)N for the texture part of the parameters. We have:

• The projection on the tangent space is given by:

PMp,N
θ (Zξ,Zτ ) =

(
PSpH,|•|
ξ (Zξ),Zτ

)
. (5.21)
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• The geodesic γMp,N : R → Mp,N between two points θ0 = (ξ0, τ 0) = γMp,N (0) and
θ1 = (ξ1, τ 1) = γMp,N (1) belonging to Mp,N is given by:

γMp,N (t) = θ0#
Mp,N

t θ1 =

(
ξ0#

SpH,|•|
t ξ1, τ 0#

(R+)N

t τ 1

)
. (5.22)

• The exponential mapping on Mp,N at a point θ = (ξ, τ ) ∈ Mp,N for a point ζ =
(ζξ, ζτ ) ∈ TθMp,N :

exp
Mp,N

θ (ζ) =

(
exp

SpH,|•|
ξ (ζξ), exp(R+)N

τ (ζτ )

)
. (5.23)

• The logarithm mapping on Mp,N at a point θ0 = (ξ0, τ 0) ∈ Mp,N for a point θ1 =
(ξ1, τ 1) ∈Mp,N :

log
Mp,N

θ0
(θ0) =

(
log

SpH,|•|
ξ0

(ξ1), log(R+)N

τ0
(τ 1)

)
. (5.24)

• The natural distance between two points θ0 = (ξ0, τ 0) and θ1 = (ξ1, τ 1) belonging to
Mp,N is given by:

δ2
Mp,N

= δ2
SpH,|•|

(ξ0, ξ1) + δ2
(R+)N (τ 0, τ 1). (5.25)

The Riemannian geometry developed here allows us to manipulate compound-Gaussian
distributions for various purposes. For instance, this distance can be seen as an alternative
to the statistic Λ̂MT derived in chapter 3 for the case of two images. However, since there is
no evident statistical property such as CFARness and given the fact it is limited to a pair
of distributions, it is impractical for the sole purpose of change detection.

For others purposes such as online estimation and clustering, these tools may consist in
a promising solution as we will see hereafter.

5.3 recursive change-point detection

We consider here the problem of change-point detection/estimation as described in chapter
4. The algorithm developed to find the change-points relies on iterative hypothesis testing for
which a statistic of decision has to be computed at each iteration. This statistic involves the
data of the whole time series which makes it in principle highly-complex from an algorithmic
point of view since at each iteration the statistic has to fetch all the data.

5.3.1 Online implementation in Gaussian context

In practice, depending on the statistic of decision, it can be factorized in functions of only
one set of data at a time. Indeed, if consider the Gaussian GLRT omnibus and marginal
statistics of decision defined as:

Λ̂t1,t2CN ,omni =

∣∣∣Σ̂SCM
t1,t2

∣∣∣
(t2−t1)N

t2∏

t=t1

∣∣∣Σ̂SCM
t

∣∣∣
N

, and
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Λ̂t1,t2CN ,marg =

∣∣∣Σ̂SCM
t1,t2

∣∣∣
(t2−t1)N

∣∣∣Σ̂t2

∣∣∣
N ∣∣∣Σ̂SCM

t1,t2−1

∣∣∣
(t2−t1−1)N

,

where Σ̂SCM
t1,t2 =

1

t2 − t1

t2∑

t=t1

Σ̂SCM
t and Σ̂t = 1

N

∑N
k=1 xtkx

t
k

H
.

It can be noticed that both omnibus and marginal statistics can be implemented in an
online fashion. Indeed, we have:

Λ̂t1,t2+1
CN ,omni = Λ̂t1,t2CN ,omni ×

∣∣∣
{

(t2 − t1)Σ̂SCM
t1,t2 + Σ̂SCM

t2+1

}
/(t2 + 1− t1)

∣∣∣
(t2+1−t1)N

∣∣∣Σ̂SCM
t1,t2

∣∣∣
(t2−t1)N ∣∣∣Σ̂SCM

t2+1

∣∣∣
N

, and (5.26)

Λ̂t1,t2+1
CN ,marg = Λ̂t1,t2CN ,marg ×

∣∣∣Σ̂t2

∣∣∣
N ∣∣∣Σ̂SCM

t1,t2−1

∣∣∣
(t2−t1−1)N

∣∣∣Σ̂SCM
t1,t2

∣∣∣
2(t2−t1)N ∣∣∣Σ̂SCM

t2+1

∣∣∣
N
. (5.27)

Σ̂SCM
t1,t2 and Σ̂SCM

t2 have already been computed for the previous iterations of the statistic

so we only need to estimate Σ̂SCM
t2+1 for the computation.

This means that in practice, say that we want to test a change-point of a new image in
a time series of 1000 images, we do not have to iterate through the data of all the series in
order to compute the statistics of decision.

5.3.2 Problems relative to an online implementation in robust case

While true for Gaussian statistics, the statistics derived under deterministic compound-
Gaussian model Λ̂MT cannot be implemented in an online fashion if the shape matrix
estimates are computed using the MLE solution which requires the use of a fixed-point
algorithm.

Indeed, unlike with SCM estimators, if ξ̂
MT

t1,t2 is the solution of the fixed-point estimate
between dates t1 and t2, we do not have the strict equality:

ξ̂
MT

t1,t2+1 6=
(t2 − t1)ξ̂

MT

t1,t2 + ξ̂
MT

t2+1

t2 + 1− t1
. (5.28)

Computing an iteration of the detector necessitate to re-compute the estimates using the
fixed-point which means that the complexity grows with the number of dates (t2 − t1) and
we must keep in memory all the data.

Although there is no strict equality, the arithmetic mean of the fixed-point estimates at
each date is still expected to be somewhat close. The intuition comes from the fact that the
asymptotic distribution of Tyler’s estimate is known to be Gaussian with a fixed-variance.
Thus taking an arithmetic mean of estimates with same asymptotic distributions should
reduce considerably the variance if the number of dates is high. Thus in practice, it consists
in a viable option.

On the other hand, another possibility to tackle this problem consists of stochastic
optimization of the log-likelihood cost function. This approach aims at minimizing the
cost-function by taking the gradient descent of the log-likelihood restricted to one subset of
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Algorithm 4 Resursive estimation with decreasing step

1: Inputs: {Xt1 , . . . ,Xt2}, initialisation using MLE θt1,t1 = {ξ̂MT

t1 , τ̂ t1} ∈ Mp,N , initial
step α0 > 0

2: Ouputs: (t2 − t1) iterates {θ̂t1,t1+r : r ∈ J1, t2 − t1K} in Mp,N

3: for r = 1, . . . , t2 − t1 do

4: θ̂t1,t1+r = exp
Mp,N

θ̂t1,t1+r−1

(α0

r
gradMp,N

logLCG(Xt, θ̂t1,t1+r−1)
)

5: end for

Algorithm 5 Resursive estimation with constant step

1: Inputs: {Xt1 , . . . ,Xt2}, initialisation using MLE θt1,t1 = {ξ̂MT

t1 , τ̂ t1} ∈ Mp,N , step
γ > 0

2: Ouputs: (t2 − t1) iterates {θ̂t1,t1+r : r ∈ J1, t2 − t1K} in Mp,N

3: for r = 1, . . . , t2 − t1 do

4: θ̃t1,t1+r = exp
Mp,N

θ̃t1,t1+r−1

(
γ gradMp,N

logLCG(Xt, θ̂t1,t1+r−1)
)

5: θ̂t1,t1+r = θ̃t1,t1+r−1#
Mp,N

1
r+1

θ̃t1,t1+r

6: end for

the whole data and iterate those subsets. This approach is widely popular for distributed
optimizations such as done in deep learning [Roy et al., 2018]. Recently, [Zhou and Said,
2018] has considered the stochastic optimization of parameters lying in Riemannian manifold
and showed an asymptotic efficiency of the approach. Since, as we described in this chapter,
the parameters of the log-likelihood of a deterministic compound-Gaussian model lie in a
Riemannian manifold, it is interesting to study this methodology and compare it to the
arithmetic mean presented before in eq. (5.28).

5.3.3 Recursive Stochastic optimization in Mp,N

Let us consider T = (t2 − t1) group of observations {Xt|t ∈ Jt1, t2K} following the same de-
terministic compound-Gaussian model parametrized by θt1,t2 compromised of shape matrix
ξt1,t2 and texture τ t1,t2 = [τ1, . . . , τN ]T:

∀(k, t) ∈ J1, NK× Jt1, t2K, xtk ∼ CN (0p, τkξt1,t2). (5.29)

The global log-likelihood towards all the observations {xtk|(k, t) ∈ J1, NK × Jt1, t2K} is
given by:

logLglob(Xt1 , . . . ,Xt2 ;θt1,t2) =

t2∑

t=t1

logLCG(Xt,θt1,t2), where:

logLCG(Xt,θt1,t2) =

N∑

k=1

LG(xk; τkξt1,t2).

(5.30)

The MLE estimation of parameter θt1,t2 has been tackled in Chapter 3 for the computa-
tion of the GLRT. Considering stochastic optimization, following the methodology of [Zhou
and Said, 2018], a recursive optimization of parameter θt1,t2 can be obtained through either
algorithm 4 or 5, in which logLCG is defined at eq. (5.18).
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In order to implement the algorithms, we need to compute the gradient of logLCG , the
log-likelihood of one set of observations towards the parameter θ. We have the following
result:

Proposition 5.3.1. The Riemannian gradient of logLCG(Xt;θ) at θ = (ξ, τ ) is:

gradMp,N
logLCG(Xt;θ) =

(
PSpH,|•|(

N∑

k=1

τ−1
k xtkx

t
k

H
),gτ

)
, (5.31)

where for 1 ≤ k ≤ K, the k-th element of gτ is (gτ )k = Tr(ξ−1xtkx
t
k

H
)− τkp.

Proof. See appendix 5.B.

5.3.4 Application to recusive change-point detection

Computing Λ̂t1,t2CCG,omni and Λ̂t1,t2CCG,marg in an online fashion can be done by considering the
intantaneous likelihood-ratio as follows:

Λ̂t1,t2+1
CCG,omni = Λ̂t1,t2CCG,omni ×

L(Xt2+1; τ̂mle
t2+1, ξ̂

mle

t1,t2+1)

L(Xt2+1; τ̂ rec
t1,t2+1, ξ̂

rec

t1,t2+1)
(5.32)

Λ̂t1,t2+1
CCG,marg = Λ̂t1,t2CCG,marg ×

L(Xt2 ; τ̂ rec
t1,t2 , ξ̂

rec

t1,t2)L(Xt2+1; τ̂mle
t2+1, ξ̂

mle

t2+1)

L(Xt2 ; τ̂mle
t2 , ξ̂

mle

t2 )L(Xt2+1; τ̂ rec
t1,t2+1, ξ̂

rec

t1,t2+1)
(5.33)

where the superscript mle indicates an estimation using MLE while rec indicates a re-
cursive estimator which is either the Euclidian arithmetic mean or the recursive stochastic
estimation.

5.3.5 Numerical illustrations

Methodologies considered

In order to compare the attractiveness of the Riemannian optimization strategy, we compare
it to various methodologies:

• The MLE computed trough fixed-point equation:

ξ̂
mle

t1,t2 =
p

N

N∑

k=1

t2∑

t=t1

Stk

t2∑

t=t1

q
(
ξ̂

mle

t1,t2 ,x
t
k

)

τ̂mle
t1,t2 =

1

p

t2∑

t=t1

q
(
ξ̂

mle

t1,t2 ,x
t
k

)

(5.34)
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• A recursive Euclidean arithmetic mean of the MLE at each date:

ξ̂
rec,euc

t1 = ξ̂
mle

t1

τ̂ rec,euc
t1 = τ̂mle

t1

∀t > t1, ξ̂
rec,euc

t1,t =
(t− t1)ξ̂

rec,euc

t1,t−1 + ξ̂
mle

t

t− t1 + 1

∀t > t1, τ̂
rec,scm
t1,t =

(t− t1)τ̂ rec,euc
t1,t + p−1q

(
ξ̂

rec,euc

t1,t ,xtk

)

t− t1 + 1

(5.35)

• The recursive estimation thanks to algorithms 4 and 5 that we denotes ξ̂
rec,rie

, τ̂ rec,rie.

Data generation

A synthetic time series has been generated where the observations are of the form xtk =√
τ tk x̃ for (k, t) ∈ J1, NK× J1, T K, where x̃ ∼ CN (0p,Σ). We impose ∀k ∈ J1, N, , K∀(t, t′) ∈
×J1, T K, τ tk = τ t

′

k (texture equality constraint) and we generate τ1
k as a realization of Γ(α, β),

where β = 1/α.
The covariance matrices are chosen to be Toeplitz of the form (ξ)m,n = ρ|m−n|.

Results

Figure 5.3 shows the results of optimization error in natural distance. The estimation has
been done between t1 = 1 and t2 = t1 + r for r ∈ J1, T K. The time needed to compute the
estimates has also been given. Although this measure is highly dependent of the machine
considered, it gives a first insight about time consumption of the different methodologies.

Several observations can be made from this preliminary result:

• The MLE is the best estimator in all regards which is expected since it is the true
maximum of the log-likelihood. However, the complexity grows with r making it
unattractive for online schemes.
• The arithmetic mean of fixed points appears to be a good alternative since the per-

formance of estimation are near the MLE even at a finite distance for both shape and
texture estimation.
• The recursive Riemannian methodology with constant step appears to be unstable

since the error on shape matrix grows at some point. It seems that the estimate
distance itself from the optimum due to an inappropriate tuning of the step.
• The recursive Riemannian methodology with constant step appears to work better.

However, the choice of the step has made a good estimation of the shape while it
appears too small for the textures. Indeed, we can choose a greater step to improve
texture estimation but this result in numerical instability concerning shape matrix.
This means that it would be advantageous to choose the steps separately for shape
and texture. This method appears to be smewhat faster than the arithmetic mean
one which is advantageous in an online setup.
• As an alternative to choosing the steps separately, we considered a composite esti-

mator where the Riemannian method has been used for shape estimation while the
textures are computed through an arithmetic mean of quadratic forms as for the re-
cursive Euclidean counter-part. This methodology seems to obtain asymptotically the
same performance than the MLE just as the Euclidean arithmetic mean which is an
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Figure 5.3: Top-left: Natural distance to shape matrix. Top-Right: Natural distance to
texture parameters. Bottom-left: Natural compound-Gaussian distance. Bottom-Right:
Mean time of computation over the Monte-Carlo trials. Parameters: p = 10, N = 49,
ρ = 0.71 + i ∗ 0.71, α = 0.01, β = 100.00, T = 400, 4800 Monte-Carlo Trials.

improvement. The time needed to compute the estimate appears to slightly lower as
well for this composite methodology.
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From those preliminary results, it would appear that the recursive Euclidean methodol-
ogy is a good candidate for online implementation of the robust change-point algorithm. The
composite Riemannian methodology has good asymptotic performance in this simulation,
making it a valid alternative for a large number of images.

These results were done without taking an appropriate time for the tuning of the step in
Riemannian methodologies. Moreover, these results were done on a limited set of parameters
due to time constraints and must thus be still validated.

Moreover, the estimation is not the sole criterion to assess the quality of the different
methodologies. Indeed, from a detection perspective, the analysis of the online robust
statistics with different estimation is schemes has still to be done. It would be interesting
to consider the CFARness property and consider the detection performance as well.

5.4 clustering sar image time series

In this last section, we consider a clustering problem for which Riemannian geometry has
potential applications. We will describe shortly hereafter, the problem and its applications.
Then we will describe the k-means algorithm, which has been considered for the clustering,
and how Riemannian geometry can be plugged into the process. Finally, we will present
preliminary results on real SAR data.

5.4.1 Description of the problem

Let us consider a time series of T SAR images for which we want to consider automatic
clustering of objects according to their physical properties (polarimetric, or spectro-angular
properties among others) or their temporal evolution.

When it concerns the clustering in such time series, two problems can be considered:

• Problem (1): Global clustering of the data without taking into account the time di-
mension. In this case, features are selected for each pixel at each spatial and time
location, and a clustering algorithm allows to discriminate between classes. For SAR
images, covariance matrices estimated using a local spatial neighborhood is often cho-
sen as a feature for the clustering [Rignot et al., 1992, Formont et al., 2013, Reigber
et al., 2010, Anfinsen et al., 2007].

• Problem (2): Time Series clustering in which, for each spatial location, the time vari-
ation of the vectors are taken into account for the clustering. For this case, distances
adapted to time-series comparison such as dynamic time-warping [Bankó and Abonyi,
2012] have been adapted to work in time-series clustering. Otherwhise, computing the
sample covariance matrix of the data along the time dimension has also been considered
to obtain a feature representing the whole time seires [Hallac et al., 2017, Frambourg
et al., 2013].

We will consider, in this preliminary work, these two problems by using the Riemannian
geometry tools developed in the present chapter. The idea is to consider features coming
from a robust estimation of covariance and textures in a compound-Gaussian model and
consider the underlying Riemannian geometry in the clustering methodology. We have
indeed seen that those parameters have been relevant to compare data across time for change
detection. Thus, it would be expected that they would improve clustering with regards to
covariance-only based methods.
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Algorithm 6 General implementation of the algorithm with arbitrary distance d and mean
function fµ

Initialise Centers of classes {µ(0)
k }1≤k≤K

Compute features ŷi
while maxk d(µ

(iter)
k ,µ

(iter−1)
k ) > δ or iter ≤ iter max do

for i = 1 . . . Npx do
for k = 1 . . .K do

Compute d(µ
(iter)
k , ŷi)

end for
Assign sample i to class argmink d(µ

(iter)
k , ŷi)

end for
for k = 1 . . .K do

Update mean of class t: µ
(iter)
k = fµ({ŷi : i ∈ Ct})

end for
iter=iter+1

end while

5.4.2 K-mean algorithm for clustering

To cluster the images, we consider the use of the well-known k-means algorithm [MacQueen
et al., 1967] which has been frequently considered in SAR clustering literature [Zhang et al.,
2015, Doulgeris et al., 2008, Pallotta et al., 2019]. The methodology presented at Algorithm
6, relies on two functions: a distance and a mean function. The idea is to compute means
of data belonging to the same class, then assign for each point the class corresponding to
the closest (using the distance function) mean and iterate until stability of assigned classes.

Concerning problem (1), we compute covariance and textures parameters for each pixel
using the spatial neighborhood. While for the problem (2), we compute for each pixel, the
covariance and texture parameters along the time dimension. The distance used correspond
to the natural distance on Mp,N given at eq. (5.25). While for the mean, we consider the
geometric mean of points in Mp,N which will be detailed later in subsection 5.4.3.

This methodology assumes the knowledge of the number of classes, which can be a
limiting factor since for an arbitrary image, the number of relevant classes to discriminate
the objects present in the scene. To tackle this issue, we consider, for the problem (1), the
H−α decomposition of polarimetric images [Cloude and Pottier, 1997]. This decomposition
highlights physical scattering behaviors of objects present in the scene by defining 9 zones
according to their values in the H −α plane as presented in Figure 5.4. This allows for any
image to obtain an initial classification based on physical scattering behaviors. Then using
this initialization, the k-means algorithm can be done.

Concerning problem (2), there is no reason to use this initial classification since the
physical behavior of each object can change over time. It is thus difficult to choose the
number of classes using such methodology. However, other approaches [Doulgeris et al.,
2011, Formont et al., 2011] based on class merging schemes can be considered . Due to time
constraints, we will, however, not be able to consider those algorithms.

5.4.3 Geometric mean on Mp,N

In order to implement the k-means algorithm with Riemannian metrics, we need to be able
to compute the geometric mean of M points θ1, . . . ,θM = (ξ1, τ 1), . . . , (ξM , τM ) lying in
manifold Mp,N . This geometric mean is formally defined as the solution to the following
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Figure 5.4: H−α clustering. Z1: High Entropy Multiple Scattering, Z2: High Entropy Veg-
etation Scattering, Z3: (Not a Feasible Region), Z4: Medium Entropy Multiple Scattering,
Z5: Medium Entropy Vegetation Scattering, Z6: Medium Entropy Surface Scattering, Z7:
Low Entropy Multiple Scattering, Z8: Low Entropy Dipole Scattering, Z9: Low Entropy
Surface Scattering.

optimization problem:

θmean = argmin
θ∈Mp,N

M∑

m=1

δ2
Mp,N

(θ,θm) (5.36)

Since δ2
Mp,N

decomposes in two separate terms, δ2
SpH,|•|

for shape matrix and δ2
(R+)N for

textures, the mean θmean is equal to (ξmean, τmean), where ξmean is geometric mean on SpH,|•|
and τmean is the geometric mean on (R+)N .

The geometric mean in SpH,|•| is the unique element in SpH,|•| such that [Moakher, 2005]:

M∑

m=1

log(ξ−1
meanξm) = 0 (5.37)

For M > 2, there exists no analytical form of the solution but it can be obtained through
an iterative algorithm minimizing the objective function3:

f(ξ) =

M∑

m=1

δ2
SpH,|•|

(ξ, ξm). (5.38)

Concerning (R+)N , the geometric mean is simply given by:

τmean =
(
�Mm=1τm

)1/M
. (5.39)

3See [Fletcher and Joshi, 2004] or [Jeuris et al., 2012] for a detailed description of those algorithms.
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5.4.4 Application to real SAR images

Classification under problem (1)

We consider the EMISAR image4, shown at Figure 5.5, which is a well-known image in the
SAR clustering litterature [Feng et al., 2014, Doulgeris et al., 2019, Doulgeris et al., 2011].
Since we do not consider the temporal aspect for the clustering, we only consider a single
image as a first step.

Figure 5.5: Left: Span of EMISAR SAR image (Span) over Foulom region in Denmark.
Right: Optical image for comparison (@Google)

In order to apply our methodology, we compute covariance and textures parameters on
a 7× 7 spatial windows using the MLE of a deterministic compound-Gaussian distribution
corresponding to the Tyler estimator for shape matrix and quadratic form for texture pa-
rameters. Then we cluster the data according to algorithm 6 using natural distance and
geometric mean. The initialization is done using H − α decomposition.

In order to compare the results, we compare several other clustering methodologies:

• The classic Wishart classifier [Guo et al., 2015] which consider covariance matrices es-
timated rhrough SCM as features. The Wishart distance is used to compute distances
between those covariances Σ̂ and mean of class µ:

δCW = log |µ|+ Tr(µ−1Σ̂). (5.40)

The mean is computed by doing a simple arithmetic mean between elements of the
same class.

• The Wishart classifier but with a geometric mean in the Riemannian sense on the
manifold SpH as described in [Ovarlez et al., 2011].

• The heterogeneous classification methodology of [Formont et al., 2011] which considers

a modified distance on shape matrices estimated through Tyler’s estimator ξ̂:

δCW = log
|µ|∣∣∣ξ̂
∣∣∣

+ Tr(µ−1ξ̂). (5.41)

The mean is computed through the geodesic mean on SpH.

• The Riemannian clustering based on shape matrix and texture that we developed here.

The H−α initialisation is presented at figure 5.6 and the results of the k-means algorithm
are presented at Figure 5.7.
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Z1 Z2 Z4 Z5 Z6 Z7 Z8 Z9

Figure 5.6: H − α initialisation

As always, with no ground truth available it is difficult to compare the outputs provided
by the different methodologies. Moreover, the interpretation of the classification is subjective
relative to the observer’s zones of interest in the image.

However, as a first analysis we can have the following remarks:

• Concerning the Wishart classifier, some classes (for example Z9) have been assigned
to very few pixels corresponding of outliers. Since there are fewer classes available,
the overall classification of the scene is more homogeneous than the others.

• While using the Riemannian mean, in place of the arithmetic mean, improves the
situation, it can be noticed that the lake is mapped to the same class as most of the
fields which is surprising since they do not correspond to the same physical objects as
was observed in the initialization.

• The use of the classification methodology based on Tyler’s estimator allows differenti-
ating the lake from the fields. However, the classification is much more heterogeneous:
many pixels of the same field can be mapped to different classes.

• Finally, our Riemannian methodology appears to obtain a more homogeneous classifi-
cation which is coherent with the H − α initialization. There is, however, a problem
at the interface between fields: the upper border of a field is not necessarily matched
with the lower border. The same observation can be done for left and right borders.
This is due to the fact that the texture parameters are ordered in a vector. Thus
depending on the border, the textures parameters corresponding to the field do not
have necessarily the same order. As a consequence, the distance between pixels at two
different borders can be high.

4Available at https://earth.esa.int/web/polsarpro/data-sources/sample-datasets#EMISAR.
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Z1 Z2 Z4 Z5 Z6 Z7 Z8 Z9

Figure 5.7: Results of clustering on EMISAR image. Top-left: Wishart classifier. Top-
right:Wishart classifier with geodesic mean. Bottom-left: Robust shape clustering. Bottom-
right: Shape and texture Riemannian clustering (proposed).

In conclusion, it appears that the methodology proposed has interesting results but
suffers from a transition problem which could be solved by a similarity matching strategy
between textures at the cost of some complexity.

Classification under problem (2)

We consider a time series of UAVSAR data referenced as Snjoaq dataset compromising of
17 co-registred time series, from which we selected a zone corresponding to crop fields. The
data is presented in Figure 5.8.

Results of clustering for K = 4 classes is given in Figure 5.10. The initialization has
been done using random samples as mean for each class. In the outputs presented, there
is an impulsional behavior in the interior of the fields. This is due to the fact that the
algorithm has been stopped before convergence to have a reasonable computation time with
the limited resources available. The results can be made more homogeneous by having more
iterations.

It is interesting to see that again for these images, the Wishart classifier with arithmetic
mean does not fare well. Indeed, similarly as previously, classes C2 and C4 represent a few
outlier pixels while the whole image is panned by two classes. It is difficult to interpret what
those classes represent.
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Figure 5.8: UAVSAR Snjoaq dataset in Pauli representation

The Riemannian mean allows being more robust to those outliers. Thus, the four classes
can now span the whole image. It appears that in this case, class C1 corresponds to zones
subjected to changes while the other 3 classes correspond to zones that do not vary signifi-
cantly over time as can be seen in Figure 5.9, where the change detection statistic Λ̂MT has
been used to highlight changing zones.

Clustering using the robust distance associated with shape alone yields a very hetero-
geneous classification such as obtained for the problem (1). In this case, the output is not
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Figure 5.9: Output of Λ̂MT statistic with a window size of 7× 7.

interpretable.
Finally, the proposed approach yields a single class (C4) for the nonchanging zones.

The changing zones are classified into three different classes according to their pattern of
evolution which was the purpose of the problem. As such the output obtained is interesting.

We must, however, note that the methodology used only works for objects that change
exactly in the same patterns such as fields that are planted and harvested at the same time.
Indeed, since the distance used does not consider time-shifts or warping, it does not allow
to compare objects having similar patterns which are not synchronized in time.
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C1 C2 C3 C4

Figure 5.10: Results of Snjoaq temporal clustering with K = 4 classes. Top: Wishart
classifier. Middle-Top: Wishart classifier with Riemannian mean. Middle-Bottom: Robust
shape clsutering. Bottom: Proposed approach.
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5.5 conclusions

We have developed in this chapter Riemannian geometry adapted to deterministic compound-
Gaussian model as an opening to several subjects presented in this thesis.

First, the complexity of the change-point detection algorithm of chapter 4 has been
considered. We presented a recursive stochastic gradient descent to obtain an online imple-
mentation of the algorithm. This work is still ongoing but as a preliminary result, we found
that compared to recursive arithmetic mean, the gain in term of estimation performance is
not apparent. However, the methodology seems to be more time-efficient.

It still remains to conduct an analysis of the online scheme in terms of false alarm regu-
lation and detection performance.

We also considered a clustering problem in order to bring more information about changes
than a simple detection: either a list of classes that each pixels transition to or a clustering
according to the pattern of evolution. For the first case, we showed that the use of Rieman-
nian mean over arithmetic, even in the Gaussian case, improves the robustness to outliers.
The methodology proposed has interesting results but suffers from an ordering problem at
the interface between objects. For the second clustering problem, the methodology proposed
appears to allow to discriminate change patterns better than a simple covariance-based ap-
proach.

This work, however only considered non-elastic distances5, while the literature on time-
series clustering mostly relies on such elastic distances. Thus an interesting extension of
this work could be to adapt this formalism to the Riemannian tools we used here. Notably,
as a first step, a composite distance on covariance and dynamic time warping on textures
parameter over time can be of interest.

5Meaning that it does not account shift and distortions in time.
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5.a proof of proposition 5.2.1 at p. 169

Proposition. The Fisher information metric of the deterministic compound-Gaussian model
over Mp,N is defined for θ = (ξ, τ ) ∈ Mp,N , ζ = (ζξ, ζτ ) ∈ TθMp,N and η = (ηξ,ητ ) ∈
TθMp,N by:

〈ζ,η〉Mp,N

θ = 〈ζξ,ηξ〉
SpH,|•|
ξ + 〈ζτ ,ητ 〉(R

+)N

τ . (5.42)

Proof. Let us define for k ∈ J1, NK, the functions φk(θ) = τkξ. The directional derivative of
φk in the direction ζ = (ζξ, ζτ ) is given by:

Dφk(θ)[ζ] = (ζτ )kξ + τkζξ, (5.43)

where (•)k is the k-th element of vector •.
By definition, the Fisher information metric is given by:

〈ζ,η〉Mp,N

θ = EX {D logL(X;θ)[ζ] × D logL(X;θ)[η]} , (5.44)

which can be written as:

〈ζ,η〉Mp,N

θ =

N∑

k=1

EX {D (LG(X, φk(θ))) [ζ] × D (LG(X, φk(θ))) [η]}

=

N∑

k=1

EX {DLG(X, φk(θ))[Dφk(θ)[ζ]]×

DLG(X, φk(θ))[Dφk(θ)[η]]}

We recognize here the definition of the Fisher information metric in the Gaussian case,
thus:

〈ζ,η〉Mp,N

θ =

N∑

k=1

〈Dφk(θ)[ζ],Dφk(θ)[η]〉S
p
H,|•|
φk(θ).

Through cumbersome manipulations we find that the metric reads:

〈ζ,η〉Mp,N

θ =〈ζξ,ηξ〉
SpH,|•|
ξ + 〈ζτ ,ητ 〉(R

+)N

τ + Tr{ξ−1ζξ}(ητ � τ−1)T1N,1

+ Tr{ξ−1ηξ}(ζτ � τ−1)T1N,1.
(5.45)

Now since ζξ and ηξ both belong to TξSpH,|•|, we have Tr{ξ−1ζξ} = 0 and Tr{ξ−1ηξ} =

0, which concludes the proof.

5.b proof of proposition 5.3.1 at p. 179

Proposition. The Riemannian gradient of logLCG(Xt;θ) at θ = (ξ, τ ) is:

gradMp,N
logLCG(Xt;θ) =

(
PSpH,|•|(

N∑

k=1

τ−1
k xtkx

t
k

H
),gτ

)
, (5.46)

where for 1 ≤ k ≤ K, the k-th element of gτ is (gτ )k = Tr(ξ−1xtkx
t
k

H
)− τkp.
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Proof. As for the proof of proposition 5.2.1, we define for k ∈ J1, NK, the functions φk(θ) =
τkξ.

Let k ∈ J1, NK, the directional derivative D logLCG(Xt;θ)[η] of logLCG(Xt;θ) at point
θ = (ξ, τ ) towards direction η =

(
ηξ,ητ

)
∈ TθMp,N is given by:

D logLCG(Xt;θ)[η] =

N∑

k=1

Tr
(
xtkx

t
k

H
(φk(θ))−1Dφk(θ)[η](φk(θ))−1

)

−
N∑

k=1

Tr
(
(φk(θ))−1Dφk(θ)[η]

)

=

〈
N∑

k=1

τ−1
k xtkx

t
k

H
,ηξ

〉SpH,|•|

ξ

+

N∑

k=1

Tr
(
ξ−1(xtkx

t
k

H − τkξ)
)
τ−1
k (ητ )kτ

−1
k

=

〈
N∑

k=1

τ−1
k xtkx

t
k

H
,ηξ

〉SpH,|•|

ξ

+ 〈gτ ,ητ 〉(R
+)N

τ .

The result is obtained by identifying the directional derivative to the Riemannian gra-
dient:

D logLCG(Xt;θ)[η] = 〈gradMp,N
logLCG(Xt;θ),η〉Mp,N

θ .





Conclusions

The present thesis has considered the problem of change detection in time series of high-
resolution SAR images. As presented in Chapter 1, these type of images raise issues towards
their processing: on the first hand, there is a need to obtain a diversity in order to use effi-
cient multivariate based methodologies. On the other hand, the non-Gaussian distribution
of high-resolution SAR images has to be taken into account to develop efficient methodolo-
gies.

The diversity issue was tackled in Chapter 2 where a wavelet packet was proposed to
decompose the SAR images in order to obtain a spectro-angular diversity. Then, we have
showed that the wavelet decomposition can be used in classic statistical detection method-
ologies. Moreover, the packet proposed allows controlling the sidelobes level while acting
similar to the standard STFT. The benefit of sidelobes reduction has been illustrated in a
target detection where the classic ANMF detector has better performance of detection with
lower sidelobes.

The wavelet packet we proposed, does, however, split the spectra of the SAR image
uniformly in both frequencies and angles domain. This can be a problem for images, where
the spectral density is not uniformly distributed: some wavelet coefficients may contain a
very small portion of the signal while other coefficients could still be split to improve the
representation. This problem can partly explain why low-rank methodologies presented in
3.B and 3.C have better detection performance than their full-rank counterparts.

In order to improve the situation, it may be interesting to use the multi-resolution frame-
work to select a decomposition which yields the best possible diversity of a given image
while keeping the size of vector low. To this end, a solution can be for example the use of an
entropy-based criterion when doing the decomposition. Indeed, by selecting a basis thanks
to criterion such as developed in [Coifman and Wickerhauser, 1992], it would be possible to
obtain more coefficients in dense energy zones and fewer in sparse ernergy zones.

Concerning the non-Gaussian issue, we have considered, in Chapter 3, the development
of new statistics for testing the homogeneity of covariances matrices. We assumed both ellip-
tical and compound-Gaussian models in order to bring robustness to the covariance equality
problem. Through theoretical and experimental analysis, we have shown the attractiveness
of the approach based on the deterministic compound-Gaussian model. Indeed, the model
has allowed extending the Gaussian model by adding more degrees of freedom while also
being less restrictive than the elliptical families which require the knowledge of the density
generator function. We have also seen that a detection of the shape matrix alone is not
satisfactory for a change detection application since the relative power between the images
of the time series is an important factor to account for the changes.

A possible extension of this work consists of obtaining an approximation of the distribu-
tion of the statistic Λ̂MT for testing a change in both texture and shape. We have seen that
the Wilks theorem does not apply since the number of parameters grows as much as the
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number of samples. As a first step, we have shown the unbiasedness and consistency of the
shape matrices estimates used in the statistic. This result can be used in delta method tech-
niques to obtain an approximation. However, since the expression of the statistic involves a
ratio of dependent terms, the derivation is not trivial.

Another possible extension has been partially explored in 3.B and 3.C, where a low-rank
structure on the matrices has been assumed. The new statistics obtained under this as-
sumption have shown promising results on real SAR images. As such it might be interesting
to study the problem of covariance homogeneity testing to other structured models such as
Toeplitz or persymmetric matrices or Kronecker models.

We have also considered the problem of joint detection and estimation of change-points
in Chapter 4. Based on the work of [Conradsen et al., 2016], we have adapted the statistics
of Chapter 3 in order to obtain a robust methodology which has presented interesting results
with regards to Gaussian-based methodology.

This work could benefit from more comparison to other change-points estimation algo-
rithms. Notably, adapting the concept of the Bernoulli detector of [Harlé et al., 2016] by
assigning a prior on the covariance matrices of the series, is an interesting possibility.

Thanks to a collaboration with Lucien Bacharach, we have considered the change-point
problem in a Bayesian context. We developed a lower-bound on the MSE for the estima-
tion of change points in Gaussian context. This lower bound has allowed considering the
interesting problem which consists of tuning the size of the spatial window used for the
estimation in order to obtain a good trade-off between spatial resolution and performance of
estimation. This work has been done in the Gaussian context due to the difficulty associated
with computing some of the bound elements in the elliptical case. Indeed, for most of the
density generators, the derivation of the Renyi distance, which is needed in the bound, is
still an open problem. However, an extension of the bound to CAE distribution may be
tractable since the density generator is not needed.

Finally, we have seen in Chapter 5, some perspectives involving the use of Riemannian
geometry. We have developed a new geometry adapted to deterministic compound-Gaussian
models based in order to consider two issues:

• With the new geometry, we have explored the use of stochastic gradient descent as a
mean of optimization to compute the statistics under compound-Gaussian assumption.
This allowed considering a recursive implementation of the change-point detection
algorithm that is usable in an online context.

The preliminary study has showed a potential interest of this approach in order to
improve the complexity of change-point estimation. The study is, however, still on
going. Notably, an issue with the tuning of the stepsize has been raised. Improving
the situation by taking an adaptive stepsize (based for example on the Fisher Infor-
mation Matrix of the model) could raise the attractiveness of the proposed approach.
Moreover, the study of change-point estimation performance has not been conisdered
yet. This point will be considered in collaboration with Jialun Zhou, Salem Said and
Yannick Berthoumieu of the IMS laboratory in Bordeaux.

• In order to bring more information about the changes, we have considered the problem
of clustering the image time series according to its temporal evolution. We have thus
considered two problems consisting of clustering using spatial features or temporal
features. In the first case, the ordering of texture parameters has raised an issue
on borders which may be solved by a costly reordering. For the second case, the
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proposed methodology has shown very interesting results allowing to discriminate
zones according to their temporal evolution.

Several extension of this preliminary work can be considered:

– The use of an elastic distance such as dynamic time warping [Petitjean et al.,
2012] can be considered on texture parameters in order to compare series with
same modalities with a time-shift.

– Other manifolds with respect to low-rank or other structures on the shape matrix
can be considered. By developing a new geometry adapted to these models, the
clustering could be improved similarly to the change detection.

– It might be more relevant to consider the geometry associated with the parame-
ters over the whole time series rather than considering the geometry of a single
parameter. Indeed, for each pixel, the time series of parameters can be seen
as a sequence defining a curve in a manifold. Then, methodologies to compare
curves, such as done in [Le Brigant, 2017], can be adapted to work for clustering
purposes.





Résumé en français

En télédétection, l’imagerie par Radar à Synthèse d’ouverture (SAR) est une technique
prometteuse de par sa capacité à produire des images de bonne qualité à une très haute
résolution. Les systèmes SAR sont connus pour leur fonctionnement dans toute sortes de
conditions d’illumination et météo. Les dernières décennies ont vu l’avènement de missions
spatiales, telles que Sentinel-1 ou TerraSAR-X, qui permettent d’avoir accès à un grand
volume de données acquises régulièrement. L’augmentation du nombre de missions per-
met d’obtenir des images multi-temporelles et multi-dimensionnelles de la surface Terrestre,
avec de grandes résolutions spatiales et temporelles. Dans ce contexte, l’utilisation du traite-
ment des séries temporelles est un axe intéressant pour diverses applications qui vont de la
détection de changement, à de la surveillance de trafic maritime.

Ce nouveau scénario de données massives engendre toutefois une nouvelle complexité
qui constitue une recherche active dans les domaines de la télédétection et du traitement du
signal. Dans ce contexte, les objectifs de cette thèse sont la prise en compte des spécificités
des nouveaux systèmes radar (Très haute résolution) afin de développer des méthodologies
pour la détection de changement dans des séries d’images SAR multi-temporelles.

L’axe de travail porte d’une part, sur l’analyse temps-fréquence des images SAR haute
résolution afin d’extraire une information physique de dispersivité et d’anisotropie sur les
diffuseurs présent dans une scène. D’autre part, le vecteur multivarié contenant cette infor-
mation peut être modélisé par une loi de probabilité. En particulier, le travail se concentre
sur la comparaison des matrices de covariance des données entre plusieurs dates. Des outils
statistiques sont ainsi mis en œuvre à cet effet.

La thèse s’organise en cinq chapitres considérant chacun un aspect de l’analyse des
changements dans une série temporelle d’images SAR. Dans le premier chapitre, nous intro-
duisant les principales problématiques et enjeux que nous considérerons tout au long de la
thèse. Nous résumons également les résultats de base de la littérature concernant l’analyse
de changements pour les images SAR. Dans le second chapitre, nous nous intéressons à
l’utilisation de transformées en ondelettes pour extraire une information de dispersitivité et
d’anisotropie qui permet de caractériser les diffuseurs présents sur les images. Cette infor-
mation peut ainsi être utilisée dans un cadre statistique comme nous le verrons au chapitre
3. Dans ce chapitre, nous considérons le problème de détection de changements par le prisme
d’un test d’égalité de matrices de covariance. Dans ce cadre, nous développons de nouveaux
tests statistiques basés sur un modèle de gaussienne-composée, plus adaptée aux images
SAR que la gaussienne, et nous analysons leurs propriétés théoriques. Nous étendons ces
tests statistiques dans un cadre qui permet la détection des points de ruptures en chapitre
4. Enfin, nous proposons une ouverture en chapitre 5 basée sur la géométrie Riemannienne
afin de considérer le problème de la détection en ligne et un problème de classification non
supervisée des images.

Les différentes contributions de cette thèse sont résumées à présent ici-bas.
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analyse des images sar par transformées en ondelettes

Dans un premier temps, nous nous sommes intéressés aux images SAR très haute résolution
monovariés. Celle-ci sont obtenus par des algorithmes tels que Range Migration Algorithm
(RMA) à travers l’intégration d’un coefficient de rétro-diffusion Ĩ(k) qui correspond à la
réponse de la scène pour chaque vecteur d’onde k donné:

I(r) =

∫

D
Ĩ(k) exp

(
2 i π kT r

)
dk , (5.47)

où r correspond à la position du diffuseur et D corresponds au support spectral et angulaire
du système SAR.

On peut reconstruire une l’image sur une partition de D afin de récupérer la réponse
de la scène correspondant au bandes de fréquences et intervalles d’angles correspondants en
considérant l’image formée par :

ĨE(r) =

∫

E
Ĩ(k) ΨS

E (k, r) dk , (5.48)

où ΨS
E (k, r) est une fonction ondelette avec un support E . Lorsque nous considérons plusieurs

partitions E1,...,M de D, on peux définir un packet en ondelettes {ΨS
Ei(k, r)/i = 1, . . . ,M}.

Ainsi, nous avons proposé un nouveau paquet d’ondelettes avec un support sur le domaine
polaire des angles de visé et des fréquences du système SAR. Pour cela nous considérons
dans un premier temps les ondelettes de Shannon [Hess-Nielsen, 1994, Nielsen, 2002] dans
le domaine cartésien que nous adaptons à ce domaine polaire. Enfin, nous considérons le
développement d’une nouveau paquet basé sur des fonctions en cloche :

gBell
a,b,c(x) =

1

1 +

∣∣∣∣
x− c
a

∣∣∣∣
2b
. (5.49)

Ce nouveau paquet permet de réduire les lobes secondaires des diffuseurs forts, afin
d’améliorer la résolution spatiale des images ainsi obtenues.

développement de nouveaux tests statistiques

Nous montrons dans le premier chapitre de cette thèse que le modèle de la gaussienne,
souvent utilisé pour caractériser les images SAR polarimétriques, ne fonctionne plus pour des
images très haute résolution. Ainsi le modèle des distributions elliptiques a été introduit pour
modéliser les données. Ces distributions se caractérisent par la distribution de probabilité
suivante :

px(x; Σ, g) = Cp,g|Σ|−1
g
(
xHΣ−1x

)
, (5.50)

où Cp,g est un facteur de normalisation, Σ est la matrice de covariance associée aux données
et g une fonction respectant certaines conditions de régularité. Nous associons ainsi à chaque
date une matrice Σt = τtξt. ξt correspond à une matrice normalisée (Tr(ξt) = p) et τt un
facteur d’échelle. Nous considérons le problème qui consiste, pour T images différentes, à
décider entre les deux alternatives suivantes:

{
H0 : Σ1 = . . . = ΣT = Σ0 ,
H1 : ∃(t, t′) ∈ J1, T K2, Σt 6= Σt′
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Dans ce problème, nous voulons détecteur un changement à la fois dans la forme de la
matrice de covariance et du facteur d’échelle (correspondant à la puissance locale des dif-
fuseurs) et si possible discriminer entre les deux. Cette approche a pour but de distinguer
différents types de changements. En effet, un changement dans la puissance locale ne corre-
spond pas au même phénomène qu’un changement uniquement dans la forme de la matrice
de covariance.

Après avoir obtenu deux tests statistiques en utilisant la technique de Test de Vraisem-
blance Généralisé (TRVG), nous considérons un nouveau modèle de gaussienne-composée qui
permet de s’abstraire de la connaissance de la fonction g qui dépend de l’image considérée.

Partant de ce nouveau modèle, trois statistiques ont été développées :

• une statistique sensible à un changement dans la forme de la matrice de covariance
ainsi que dans l’échelle de puissance. Elle sera nommée Λ̂MT.

• une statistique sensible uniquement à la forme de la matrice de covariance. Elle sera
nommée Λ̂MG.

• une statistique sensible uniquement à une variation dans la puissance locale. Elle sera
nommée Λ̂Tex.

Ces statistiques nécessitent la résolution d’une équation de point fixe, pour lequel un algo-
rithme a été proposé. Les propriétés de convergence de cet algorithme ainsi que les propriétés
statistiques des nouvelles statistiques introduites ont également été étudiés d’un point de vue
strictement théorique mais également lors de simulations numériques. Les propriétés statis-
tiques démontrent une robustesse de nos détecteurs dans le cadre des gausienne-composée
du fait qu’elles respectent la propriété de taux de fausse alarme constante.

Enfin, des exprérimentations sur données rélles ont permis de valider une öeilleure
détection en pratique du détecteur Λ̂MT vis-à-vis de l’état de l’art.

détection de ruptures et borne hybride

Dans le quatrième chapitre de cette thèse, nous considérons un algorithme de détection et
d’estimation de points de ruptures développé par [Conradsen et al., 2016] basé sur des tests
d’hypothèses dans un cadre gaussien. Nous extendons cette approche dans le cadre des dis-
tributions gaussienne-composées à l’aide des résultats du chapitre 3. Des expérimentations
sur données réelles montrent l’intérêt de la méthode.

Dans un second temps, nous considérons à la dérivation d’une borne hybride de Cramér-
Rao/Weiss-Weinstein sur l’erreur quadratique moyenne de l’estimation d’un point de rupture
dans une série temporelle de matrices distribuées selon un modèle de Wishart. La borne fait
appel à un résultat obtenu par [Bacharach et al., 2019] qui permet une dérivation rapide
du résultat. Cette borne permet ainsi de s’intéresser à une problématique de design sur le
compromis entre résolution spatiale de la détection de la rupture et performance d’estimation
temporelles de celle-ci.

géométrie riemannienne

Dans ce dernier chapitre, nous proposons une ouverture basée sur le principe de la géométrie
riemannienne afin de considérer deux problèmes :

• l’algorithme de détection de ruptures du chapitre 4 repose sur une procédure itérative
de tests de détection. Or dans le cadre de la gaussienne-composée, ces tests statistiques
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reposent sur la résolution d’une équation de point-fixe couteuse. Des travaux basés
sur cette géométrie riemannienne ont permis dans un cadre similaire d’obtenir une
estimation en ligne de la matrice de covariance sans considérer d’algorithme de point-
fixe. Ainsi, nous considérons la même approche.

• il serait intéressant de pouvoir classifier les séries d’images SAR selon le type de change-
ment qu’elles subissent. Dans le cadre de la classification des images SAR, l’utilisation
de la géométrie riemannienne a permis dans la littérature d’améliorer la robustesse
des méthodes de classification non-supervisée, ce qui nous amène á considérer le même
cadre.

Ce chapitre considère alors la dérivation d’une métrique sur la variété riemannienne des
paramètres d’une loi de gaussienne-composée afin de pouvoir adapter les approches de la
littérature dans ce cadre non-gaussien robuste. Les premiers résultats obtenus concernant
les deux problèmes sont prometteurs.
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[Harlé et al., 2016] Harlé, F., Chatelain, F., Gouy-Pailler, C., and Achard, S. (2016).
Bayesian model for multiple change-points detection in multivariate time series. IEEE
Transactions on Signal Processing, 64(16):4351–4362.

[Harle, 2016] Harle, F. (2016). Multiple change-point detection in multivariate time series :
application to the inference of dependency networks. Theses, Université Grenoble Alpes.
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Titre : Contributions à l’analyse de séries temporelles d’images SAR
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Résumé : La télédétection par Radar à Synthèse d’Ouverture (RSO) o˙re une opportunité unique d’enregistrer,
d’analyser et de prédire l’évolution de la surface de la Terre. La dernière décennie a permis l’avènement de
nombreuses missions spatiales équipées de capteurs RSO (Sentinel-1, UAVSAR, TerraSAR X, etc.), ce qui a
engendré une rapide amélioration des capacités d’acquisition d’images de la surface de la Terre. Le nombre
croissant d’observations permet maintenant de construire des bases de données caractérisant l’évolution
temporelle d’images, augmentant considérablement l’intérêt de l’analyse de séries temporelles pour carac-
tériser des changements qui ont lieu à une échelle globale. Cependant, le développement de nouveaux
algorithmes pour traiter ces données très volumineuses est un déf qui reste à relever. Dans ce contexte,
l’objectif de cette thèse consiste ainsi à proposer et à développer des méthodologies relatives à la détection
de changements dans les séries d’images RSO à très haute résolution spatiale.

Le traitement de ces séries pose deux problèmes notables. En premier lieu, les méthodes d’analyse
statistique performantes se basent souvent sur des données multivariées caractérisant, dans le cas des
images RSO, une diversité polarimétrique, interférométrique, par exemple. Lorsque cette diversité n’est pas
disponible et que les images RSO sont monocanal, de nouvelles méthodologies basées sur la décomposition
en ondelettes ont été développées. Celles-ci permettent d’ajouter une diversité supplémentaire spectrale
et angulaire représentant le comportement physique de rétrodi˙usion des di˙useurs présents la scène de
l’image. Dans un second temps, l’amélioration de la résolution spatiale sur les dernières générations de
capteurs engendre une augmentation de l’hétérogénéité des données obtenues. Dans ce cas, l’hypothèse
gaussienne, traditionnellement considérée pour développer les méthodologies standards de détection de
changements, n’est plus valide. En conséquence, des méthodologies d’estimation robuste basée sur la
famille des distributions elliptiques, mieux adaptée aux données, ont été développées.

L’association de ces deux aspects a montré des résultats prometteurs pour la détection de changements.

Title: Contributions to SAR image time series analysis
Keywords: SAR imaging; Time series; Change detection; Robust detection; Wavelet; Remote Sensing

Abstract: Remote sensing data from Synthetic Aperture Radar (SAR) sensors o˙ers a unique opportunity
to record, to analyze, and to predict the evolution of the Earth. In the last decade, numerous satellite
remote sensing missions have been launched (Sentinel-1, UAVSAR, TerraSAR X, etc.). This resulted in a
dramatic improvement in the Earth image acquisition capability and accessibility. The growing number of
observation systems allows now to build high temporal/spatial-resolution Earth surface images data-sets.
This new scenario significantl raises the interest in time-series processing to monitor changes occurring
over large areas. However, developing new algorithms to process such a huge volume of data represents a
current challenge. In this context, the present thesis aims at developing methodologies for change detection
in high-resolution SAR image time series.

These series raise two notable challenges that have to be overcome: On the one hand, standard statistical
methods rely on multivariate data to infer a result which is often superior to a monovariate approach. Such
multivariate data is however not always available when it concerns SAR images. To tackle this issue, new
methodologies based on wavelet decomposition theory have been developed to fetch information based on
the physical behavior of the scatterers present in the scene. On the other hand, the improvement in resolution
obtained from the latest generation of sensors comes with an increased heterogeneity of the data obtained.
For this setup, the standard Gaussian assumption used to develop classic change detection methodologies is
no longer valid. As a consequence, new robust methodologies have been developed considering the family
of elliptical distributions which have been shown to better fi the observed data.

The association of both aspects has shown promising results in change detection applications.
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