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In computational electromagnetics, boundary integral equations are the sheme of hoice for solving extremely large forward electromagnetic problems due to their high eiciency. However, two of the most used of these formulations, the electric and combined ield integral equations (EFIE and CFIE), sufer from stability issues at low frequency and dense discretization, limiting their applicability at both ends of the spectrum. his thesis focusses on remedying these issues to obtain full-wave solvers stable from low to high frequencies, capable of handling scenarios ranging from electromagnetic compatibility to radar applications. he solutions presented include (i) extending the quasi-Helmholz (qH) projectors to higher order modeling thus combining stability with high order convergence rates; (ii) leveraging on the qH projectors to numerically stabilize the magnetic ield integral equation and obtain a highly accurate and provably resonance-free Calderón-augmented CFIE immune to both of the aforementioned problems; and (iii) introducing a new low frequency and dense discretization stable wire EFIE based on projectors and linear B-splines. In addition, a researh axis focussed on enhancing Brain Computer Interface (BCIs) with high resolution electromagnetic modeling of the brain has been opened; a particular atention is dedicated to the inverse problem of electromagnetics and the associated integral equation-based forward problem. he irst results of this new line of investigations include the development of one of the irst peer-reviewed, freely available framework for end-to-end simulation of BCI experiments.
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Low Frequency and

Dans le domaine de l'électromagnétisme computationnel, les équations intégrales de frontière sont très largement utilisées pour résoudre certains des plus grands problèmes directs, grâce à leur grande eicacité. Cependant ces équations soufrent de diverses instabilités, en particulier à haute et à basse fréquences qui restreignent leurs domaines d'applicabilités. Les travaux présentés dans cete thèse s'articulent autour de la stabilisation de plusieurs équations intégrales largement utilisées, aussi bien dans les milieux académiques que dans l'industrie, grâce à des analyses spectrales détaillées permetant dans un premier temps de caractériser les instabilités et dans un second temps de concevoir des familles de préconditionneurs adaptés aux diférents problèmes ainsi identiiés. Ces diférents aspects sont présentés de façon synthétique dans le Chapitre 1. Dans le Chapitre 2 certaines des équations intégrales principales de l'électromagnétisme sont dérivées à partir des équations de Maxwell ∇ × = --j , (0.1a)

∇ × = + j , (0.1b) 
∇ ⋅ = , (0.1c)

∇ ⋅ = . (0.1d)
En haute fréquence ces équations sont l'équation intégrale du hamp électrique (EFIE) et l'équation intégrale du hamp magnétique (MFIE)

j + + T + ( ) + K + ( ) tan + 1 2 ̂ × + ( ) = ( ) tan , ∈ , (0.2) 
j + + T + ( ) -K + ( ) tan - 1 2 ̂ × + ( ) = ( ) tan , ∈ , (0.3) 
qui seront le sujet de nombreux développements tout au long de cete thèse. Puisque le dernier hapitre de cete thèse se concentre sur le développement de nouvelles interfaces cerveau-mahine (sICMs), l'une des formations intégrales les plus utilisées pour la modélisation électromagnétique du cerveau est aussi introduite dans ce (0.7) Dans le Chapitre 3 une nouvelle approhe est présentée pour stabiliser l'EFIE à basse fréquence lorsqu'une modélisation d'ordre supérieur est employée. L'EFIE soufre en efet de problèmes de conditionnement et de précision à basse fréquence (low frequency breakdown), qui la rendent diicilement utilisable dans ce régime (Figures 0.1 et 0.2). Ces problèmes ont récemment été résolus de façon eicaces par l'utilisation de projecteurs dit quasi-Helmholz (qH). Ces projecteurs qui permetent de décomposer l'espace des fonctions de base en un sous-espace solénoïdal et un sous-espace non solénoïdal ne sont cependant pas directement applicables aux problèmes dont la géométrie est discrétisée à l'aide d'éléments d'ordre supérieur ou courbés (Figure 0.3). Les modélisations d'ordre supérieur ont de nombreux avantages en terme de nombre d'inconnues et de vitesse de convergence de la solution et sont donc nécessaires au développement de simulateurs haute performance. Pour étendre les projecteurs à ce type d'équation il est nécessaire de les redéinir à partir de la matrice Σ discrétisant l'opérateur gradient Σ T = ⟨ ( ), ∇ ⋅ ( ) ⟩ , (0.8) et les deux projecteurs (non-solénoïdal et solénoïdal) sont

Mie series EFIE

P Σ = Σ Σ T G -1
, Σ + Σ T , (0.9)

P Λ = I -P Σ .
(0.10) Une tehnique de calcul rapide de la pseudo-inverse nécessaire au calcul de P Σ est toujours en cours d'étude pour ateindre une résolution en complexité linéaire. En efet, la complexité linéaire de calcul des projecteurs obtenue pour les discrétisations traditionnelles ne peut pas être obtenue de la même façon car la matrice Σ T Σ ne se comporte plus comme une matrice de Laplace.

Dans le Chapitre 4 la version ilaire de l'EFIE

-j η 0 ̂ ( ) ⋅ ̂ ′ ′ ex -′ d ′ + 1 2 ̂ ( ) ⋅ ∇ ∇ ′ ⋅ ̂ ′ ′ -′ d ′ = -̂ ( ) ⋅ , (0.11)
est étudiée en profondeur en pour être stabilisée aussi bien en basse fréquence qu'en discrétisation. En particulier une analyse spectrale détaillée est obtenue pour les deux noyaux de l'équation = ex et = red , ce qui permet d'obtenir directement le spectre de l'opérateur intégral du hamp électrique (EFIO) dans le cas d'un dipôle ininiment long. Cete analyse a mis en évidence l'existence de deux régimes diférents des EFIEs ilaires qui sont la conséquence de la forte inluence du diamètre du il les propriétés de l'opérateur. Ces deux régimes, observables pour les deux noyaux, donnent donc naissance à quatre comportements spectraux devant être analysés indépendamment. Les expressions analytiques des spectres sont ensuite utilisées pour hoisir une famille de préconditionneurs hiérarhiques adaptés (Figure 0.4) et capables de compenser les instabilités en haute discrétisation dans les cas où cela est possible. Le préconditionneur hiérarhique est ensuite couplé avec une extension des projecteurs qH aux structures ilaires ce qui permet une stabilisation complète de l'équation sur une large bande de fréquence. L'équation ainsi obtenue peut correctement représenter le noyau statique de l'opérateur magnétique sur les structures à connexité multiple et ne soufre pas de perte de précision en basse fréquence (Figure 0.5). Cete nouvelle équation peut ensuite être combinée avec une EFIE régularisée pour former la nouvelle équation intégrale du hamp combiné (CFIE) Dans le Chapitre 6 une nouvelle approhe permetant d'améliorer considérablement la précision des ICMs en utilisant des tehniques d'imagerie cérébrale à haute résolution est présentée (Figure 0.7). Cete approhe est permise par le développement du premier logiciel libre de simulation de données ICM, qui permet d'obtenir un cadre de test robuste des nouveaux algorithmes proposés. En particulier l'utilisation de données ICM simulées permet de se passer dans un premier temps de la génération d'un jeu de données issus de sujets humains. Un autre avantage crucial de cete approhe est qu'elle permet de contrôler complètement le signal observé, ce qui permet de comprendre en profondeur les avantages et les points faibles de hacune des tehniques employées. Ce travail sera dans un future prohe l'élément fondateur d'un axe de reherhe sur le développement de nouveaux types d'ICM capables d'exploiter au maximum les données issues de l'imagerie cérébrale haute résolution.

2 I 2 -K -j I 2 + K ( ) + T -j T ( ) = I 2 -K -j ̂ × + T -j ̂ × , ( 
Ce manuscrit se termine dans le Chapitre 7 sur une rélexion du travail accompli durant cete thèse et propose de futurs axes de reherhe dans leurs continuation.

Chapter 1 Introduction T hanks to their numerous advantages, boundary integral formulations are widely used for solving predictive electromagnetic forward problems. In particular, they yield reduced-size interaction matrices because only the surfaces of the scaterer are discretized, as opposed to the full volume discretization of diferential methods (e.g. the inite element method (FEM)). In addition, these tehniques ofer a generally high precision due to their resilience to numerical dispersion. Among the numerous integral formulations that have been proposed in the literature the electric ield integral equation (EFIE) has seen widespread usage in applications ranging from electromagnetic compatibility to radio-frequency simulations thanks to its versatility. It sufers, however, from issues reducing its stability at both ends of the spectrum. At low frequency it becomes extremely ill-conditioned and its solutions undergo numerical cancellations. At high frequency, when the density of the discretization increases, its conditioning grows quadratically. he conditioning breakdowns are problematic because they reduce the performance of iterative solvers and thus jeopardize the linear in complexity resolution that can be atained with fast algorithms suh as the Multilevel Fast Multipole Method (MLFMM). Another source of ill-conditioning of the electric equation are the artiicial resonances whih cause it to become periodically ill-conditioned. his last problem is usually addressed by linearly combining the EFIE with the magnetic ield integral equation (MFIE) in order to form the resonance free combined ield integral equation (CFIE). However, while the magnetic equation does not sufer from dense discretization issues, it exhibits its own numerical instabilities at low frequency in addition to being applicable only to closed structures. In this thesis, ater reviewing the relevant electromagnetic (EM) bakground in Chapter 2, solutions to some of the aforementioned issues are introduced (or pre-existing solutions extended) to stabilize these equations and obtain solvers capable of reliably handling a wide range of scenarios.

he low frequency issues plaguing the EFIE have recently been addressed by introducing the quasi-Helmholz (qH) projectors that allow for a computationally eicient loop star decomposition and hence can be used to cure to the root cause of the so-called low frequency breakdown. In Chapter 3 the qH projectors are extended to higher order modeling. Because higher order tehniques enable beter discretization of the geometry and introduce electrically large basis function, they ofer signiicantly higher convergence rates than standard modeling. Extending the projectors to this family of shemes will open up the development of extremely stable, accurate and fast solvers.

he simulation of wire-like structures (or structures made of a combination of wires and surfaces) is oten performed using the wire EFIE whih takes advantage of the fact that, if the radius of the wires is small enough with regards to the wavelength, it is possible to modelize the structure with one dimensional basis functions, thus considerably reducing the dimensionality of the problem. he eiciency of this reduced problem is however compromised by both low frequency and dense discretization breakdowns. he underlying causes of this low frequency breakdown are similar to these of the surface EFIE hence a cure based on a onedimensional extension of the qH projectors is presented in Chapter 4, along with a reinement regularization. Diferently from the surface formulation, however, the dense discretization breakdown is not addressed with Calderón-like tehniques but with wavelet preconditioning (b-spline wavelets). he careful combination of these tehniques yields a stable formulation that is proved to be immune from both breakdowns in a canonical case, through a detailed spectral analysis of the wire electric ield integral operators (sEFIOs).

hanks to its resilience to artiicial resonances, the CFIE is a staple formulation in the integral equation community. However, while the low and high frequency limitations of the surface EFIE have been recently addressed, the low frequency issues of the MFIE are still salient and adversely impact the precision of the combined equation. Even though the numerical instabilities of the magnetic equation are radically diferent than these of the EFIE, they can be addressed by using the qH projectors on a newly introduced, symmetrized magnetic equation. Once stabilized, this new equation is combined, in Chapter 5, with the corresponding EFIE in order to form a new and highly stable combined ield equation that is proved to be immune to spurious resonances.

Finally, a line of investigations dedicated to the enhancement of Brain Computer Interfaces (sBCIs) through high precision anatomical modeling based on integral equations has been opened. It focusses mainly on the hallenges of the inverse problem in EM and, in particular, on improving the reconstruction of the brain activity from the electroencephalogram (EEG) signals. Despite still being in its early stages, this work, detailed in Chapter 6, has already produced one of the irst peer-reviewed framework for fully simulated BCI experiments whih is expected to help improve the pace of innovation in this ield by reducing the cost in both time and inances induced by human experiments.

his dissertation closes in Chapter 7 with a relection on the work ahieved and more importantly on how these contributions can be extended in the future.

Chapter 2 Bakground on Electromagnetic Scatering M axwell's eqations are the four fundamental equations governing the behaviour of electromagnetic waves and hence will serve as the starting point of this dissertation. In this hapter the formulations and operators that will be used throughout this thesis are derived starting from these relations. he bakground material presented in the following sections includes considerations for both high -non-zero -frequency and statics and on the solutions of the corresponding Helmholz's and Poisson's equations.

Maxwell's and Helmholz's equations are recalled in Sections 2.a and 2.b and used to derive relations for the ields generated by free current distributions in Section 2.c. hese expressions are then extended to the case of scatering by perfectly electrically conducting (PEC) objects in Section 2.e using the EM boundary condition introduced in Section 2.d. Tehniques for numerical solution of the newly introduced EM problems are then presented in Sections 2.f and 2.g. Finally, the EEG forward problem is introduced in Section 2.i using the static formulation of Maxwell's equations introduced in Section 2.h.

Because this thesis focuses on time-harmonic ields, the time-dependency e j will be omited throughout its developments.

a) Maxwell's Equations

In a homogeneous dielectric region of space the equations governing the behaviour of the electric ield and of the magnetic ield are, in the frequency domain,

∇ × = --j , (2.1a 
)

∇ × = + j , (2.1b) ∇ ⋅ = , (2.1c) ∇ ⋅ = , (2.1d)
where is the angular frequency, = , = , and are electric and magnetic current densities, and and are electric and magnetic harge densities; and are not physical quantities and are introduced for simplifying further developments.

b) Helmholz's Equation

To solve general scatering problems the solution of the inhomogeneous scalar Helmholz equation is required. Given a wavenumber and a function ∶ R 3 ↦ C with compact support, the equation can be writen

∇ 2 ( ) + 2 ( ) = -( ) , ∈ R 3 . (2.2)
Unicity of its solution requires a physically meaningful boundary condition to be enforced. In the case of electromagnetic ields this boundary condition is the Sommerfeld radiation condition, whih states that the energy radiated by the solution must disperse at ininity, i.e. if is a solution of eq. (2.2), then

lim ‖ ‖→∞ ‖ ‖ ‖ ‖ + j ( ) = 0 , (2.3) 
uniformly in all directions ̂ = /‖ ‖.

Under the Sommerfeld radiation condition, the solution of eq. (2.2) is the convolution of the right hand side (RHS) with the 3-dimensional free-space Green's function *

( ) = R 3 ( -′ ) ( ′ )d ′ ,
(2.4) and the Green's function is the solution of the inhomogeneous scalar Helmholz equation with the Dirac delta function as RHS

∇ 2 ( ) + 2 ( ) = -( ) , ∈ R 3 , (2.5) whih in R 3 is ( ) = e -j ‖ ‖ 4π‖ ‖ , ∈ R 3 . (2.6)

c) Fields Currents Distributions

Maxwell's equations can be used to model electromagnetic ields generated by current distributions living in free space. In this section the expressions of these ields are presented using two diferent approahes. his canonical case will serve as foundation for scatering problems introduced later on.

Section 2.c

Fields Currents Distributions

) Expression of the Fields he expression of the electric ield as a function of the electric and magnetic currents can be obtained by applying the curl operator to eq. (2.1a) before substituting eq. (2.1b) into the resulting equation, yielding

∇ × ∇ × -2 = -∇ × -j , (2.7) 
with = √ . Leveraging on the vector identity

∇ × ∇ × = ∇(∇ ⋅ ) -∇ 2 ,
(2.8) and using eq. (2.1c), eq. (2.7) can be re-writen as

∇ 2 + 2 = ∇ × + j + ∇ .
(2.9)

An expression for ∇ ⋅ is derived by applying the divergence operator to eq. (2.1b) and noting that ∇ ⋅ (∇ × ) = ,

∇ 2 + 2 = ∇ × + j - 1 j ∇ ∇ ⋅ .
(2.10) Equation (2.10) is actually an Helmholz's equation with the electric ield, whih must satisfy the Sommerfeld boundary condition, as unknown. herefore an expression for can be immediately derived using the results from Section 2.b,

( ) = -j R 3 -′ 1 + 1 2 ∇ ′ ∇ ′ ⋅ ′ d ′ - R 3 -′ ∇ ′ × ′ d ′ .
(2.11) his equation can be used to obtain an expression of the electric ield generated by arbitrary electric and magnetic current densities anywhere in space. A similar approah will deliver the magnetic counterpart of eq. (2.11)

( ) = -j R 3 -′ 1 + 1 2 ∇ ′ ∇ ′ ⋅ ′ d ′ + R 3 -′ ∇ ′ × ′ d ′ .
(2.12)

) Potentials

Another method to derive the expression of the electric ield relies on the explicit deinition of a vector and scalar potentials. Even though this approah yields results equivalent to these of the previous section, the potentials are useful for some theoretical considerations. heir deinitions will be recalled without going through their whole derivations.

In the absence of magnetic harges ∇ ⋅ = whih implies that there exists a magnetic vector potential suh that = 1 ∇ × .

(2.13) Using Maxwell's equations an electric scalar potential

= -j -∇ . (2.14)
can also be constructed. Considering that only curl of has been ixed so far, its divergence can be freely hosen. he usual hoice is the so-called Lorenz gauge

∇ ⋅ = -j , (2.15)
whih efectively cancels out one of the potentials. Ater simple derivations can be shown to be solution of the inhomogeneous vector Helmholz equation

∇ 2 + 2 = -, (2.16) 
thus it can be expressed as

( ) = R 3 ′ -′ d ′ ,
(2.17) and, inally,

( ) = -j 1 + 1 2 ∇∇⋅ ( ) . (2.18)
Similar considerations in the presence of magnetic harges will yield the expressions for the electric vector potential and the magnetic scalar potential

( ) = R 3 ( ′ ) -′ d ′ , (2.19) = - 1 j ∇ ⋅ , (2.20) 
whih can be used to express the magnetic ield as

( ) = -j [1 + 1 2 ∇∇⋅] ( ) .
(2.21)

Finally, the ields generated by arbitrary electromagnetic current distributions can be obtained by superposition, i.e. by summing the contributions of the electric and magnetic densities

( ) = -j 1 + 1 2 ∇∇⋅ ( ) - 1 ∇ × ( ) , (2.22) ( ) = -j 1 + 1 2 ∇∇⋅ ( ) + 1 ∇ × ( ) .
(2.23)

he careful reader will have noticed that 2.22 and 2.11 are diferent since the diferential operators do not act on the same variables. heir equivalence can be demonstrated through simple but cumbersome derivations that can be found in [START_REF] Jin | heory and Computation of Electromagnetic Fields[END_REF].

) Far Field Approximation

While the previous expressions are valid anywhere in space, it is suicient for numerous applications to study the behaviour of the electromagnetic ields far from the sources. In this case the distance between the sources and the observation point can be approximated as ‖ -′ ‖ ≈ ‖ ‖, when the term is used as an amplitude scaling; when it is used as a phase term -i.e. in the exponential of the Green's function -the more subtle approximation

‖ -′ ‖ ≈ ‖ ‖ -̂ ⋅ ′ , (2.24) 
should be used. his last approximation is derived by expanding ‖ -′ ‖ into its inner product deinition and neglecting ′ ⋅ ′ with regards to ⋅ . Furthermore, the derivatives in eqs. (2.22) and (2.23) contribute terms negligible in front of ‖ -′ ‖ -1 , thus

( ) ≈ -j ( ) - 1 ∇ × ( ) , (2.25) 
( ) ≈ -j ( ) + 1 ∇ × ( ) .
(2.26)

Ater introducing the notations

( ) = R 3 ′ e j ′ ⋅ ̂ d ′ , (2.27) ( ) = R 3 ′ e j ′ ⋅ ̂ d ′ ,
(2.28) the potentials can be writen in the far ield region

( ) ≈ 4π‖ ‖ e -j ‖ ‖ ( ) , (2.29) ( ) ≈ 4π‖ ‖ e -j ‖ ‖ ( ) , (2.30) because e -j ‖ -′ ‖ 4π‖ -′ ‖ ≈ e -j ‖ ‖ 4π‖ ‖ e j ′ ⋅ ̂ .
(2.31)

Before obtaining the inal expressions, it should be demonstrated that the radial components of the potentials are negligible with regards to the azimuthal and polar components. his can be demonstrated by properties of the integration in spherical coordinates, but for the sake of brevity this will not be detailed here; details can be found in [START_REF] Balanis | Advanced Engineering Electromagnetics[END_REF]. Finally, the complete expressions of the far ields, ater all simpliications have been carried out, are

( ) ≈ - j 4π‖ ‖ e -j ‖ ‖ ̂ ( ) + ( ) -̂ ( ) - ( ) , (2.32) 
( ) ≈ - j 4π ‖ ‖ e -j ‖ ‖ ̂ ( ) - ( ) + ̂ ( ) + ( ) . (2.33) 
) Radar Cross-Section When studying radiation paterns the radar cross-section (RCS) is oten preferred to the raw far ields. he RCS of a scaterer is deined as

( ) = lim ‖ ‖→∞ 4π‖ ‖ 2 ‖ ( )‖ 2 ‖ ( )‖ 2 , (2.34)
where is the far ield scatered by the object and is the incident ield. Note that the RCS only depends on the angle of observation of the object and not on the distance.

d) Boundary Conditions

To solve problems of scatering by arbitrary objects it is necessary to establish the behaviours of the electromagnetic ields at their boundaries. In a region of space with a smooth boundary haracterized by its outgoing unit surface normal vector ̂ , the ields must satisfy the following properties near

̂ × + --= -, (2.35a 
)

̂ × + --= , (2.35b) ̂ ⋅ + --= , , (2.35c 
)

̂ ⋅ + --= , , (2.35d) 
where the ± superscript indicates quantities at the inner and outer boundaries and the subscript indicates surface quantities. More formally,

{ , } + ( ) = lim → ′ { , }( ) , ∈ R 3 ⧵ , (2.36) { , } -( ) = lim → ′ { , }( ) , ∈ . 
(2.37)

A case of particular interest for the developments of this thesis is that of PEC objects, for whih the boundary conditions simplify as

̂ × + --= , (2.38a) 
̂ × + --= , (2.38b) 
̂ ⋅ + --= , , (2.38c) 
̂ ⋅ + --= 0 .

(2.38d)

e) Equivalence Principle

Another crucial element for solving scatering problems involving arbitrarily shaped objects is the equivalence principle whih states that any distribution of electromagnetic sources enclosed within a surface radiating ields ( , ) can be replaced by surface current densities , on that will radiate the same ields outside of the surface. If current densities are properly hosen, the ields inside can be replaced by any ields ′ , ′ satisfying Maxwell's equations without perturbing the outside ields. he hoice of current densities is imposed by the boundary conditions eq. (2.35) and are

= ̂ × -′ , (2.39) = -̂ × -′ , (2.40)
where ̂ is the outgoing normal unit vector of . Since these current densities create a ield identical to the original one on the outer surface, the uniqueness theorem dictates that the ields outside of are indeed ( , ).

In particular, since the ields inside the surface can be arbitrarily hosen, it is possible to set them to ′ , ′ = ( , ), so that the material enclosed by the surface can be set arbitrarily with no inluence on the ields. his is particularly useful since the presence of the object was preventing usage of the relations in eqs. (2.11), (2.12), (2.22) and (2.23).

Before trying to obtain expressions for the total ields in the domain, some additional notations should be introduced. First, the distinction is made between the total ields that would be present in the absence of the scaterer and the ields created by the equivalent surface current densities on the boundary of the scaterer. he former are the incident ields , and the later are the scatered ields ( , ). It is clear that, because of superposition, ( , ) = , + ( , ). To simplify the upcoming expressions the following operator notations are introduced for the electric and magnetic ields

(T )( ) = (T )( ) + 1 2 (T ℎ )( ) , (2.41) 
(T )( ) = ∯ ′ e -j ‖ -′ ‖ 4π‖ -′ ‖ d ′ , (2.42) 
(T ℎ )( ) = ∇ ∯ ∇ ′ ⋅ ′ e -j ‖ -′ ‖ 4π‖ -′ ‖ d ′ , (2.43) (K )( ) = ∯ e -j ‖ -′ ‖ 4π‖ -′ ‖ × ∇ ′ ′ d ′ .
(2.44)

Using the new notations in combination with the equivalence principle yields, in the exterior region,

+ = -̂ × = -̂ × + , (2.45) 
+ = ̂ × = ̂ × + .
(2.46) hese expressions are then combined with eqs. (2.11) and (2.12)

+ ( ) + ̂ × -j + + T + ( ) -K + ( ) = -̂ × ( ) , (2.47) + ( ) -̂ × - j + + T + ( ) + K + ( ) = ̂ × ( ) .
(2.48) Equations (2.47) and (2.48) are however not valid on itself because K has a nonzero Cauhy principal value when → ′ . his singularity requires a non-trivial treatment that can be found in [START_REF] Jin | heory and Computation of Electromagnetic Fields[END_REF] or in most electromagnetic books; once it has been addressed the previous expressions become, on a closed and smooth surface,

1 2 + ( ) + ̂ × -j + + T + ( ) -K + ( ) = -̂ × ( ) , ∈ , (2.49 
)

1 2 + ( ) -̂ × - j + + T + ( ) + K + ( ) = ̂ × ( ) , ∈ , (2.50)
if the surface is not ininitely thin. he current densities on the interior boundary can be derived via similar considerations, with the diference that the incident ields are ,

1 2 -( ) -̂ × -j --T -( ) -(K -)( ) = , ∈ , (2.51) 1 2 -( ) + ̂ × - j - -(T -)( ) + K -( ) = .
∈ .

(2.52)

In addition, Equations (2.49) to (2.52) can be reformulated in terms of tangential components on by using the vector identity where ∈]0 , 1[ (0 and 1 are excluded because they degenerate to the original, resonating equations). A case of particular interest is that of a PEC scaterer, in whih case the above equations simplify because = .

̂ × ̂ × = -[ ] tan (2.53) yielding, j + + T + ( ) + K + ( ) tan + 1 2 ̂ × + ( ) = ( ) tan , ∈ , (2.54) j + + T + ( ) -K + ( ) tan - 1 2 ̂ × + ( ) = ( ) tan , ∈ , (2.55) j --T -( ) + (K -)( ) tan - 1 2 ̂ × -( ) = , ∈ , (2.56) j - -(T -)( ) -K -( ) tan + 1 2 ̂ × -( ) = , ∈ . (2.
f) Discretization he diferent formulations derived so far can only yield analytic solutions for some simple, canonical cases (e.g. spheres). While these closed-form results will be useful for verifying the correctness of several shemes presented in this thesis, they are of litle practical use for real case scatering scenarios. To haracterize and predict the behaviour of electromagnetic ields when non-trivial structures are involved, numerical shemes must be employed. he irst step in the conception of a numerical method is the discretization of the problem. In this thesis only Petrov-Galerkin shemes are studied because they ofer, under certain conditions [START_REF] Sauter | Boundary Element Methods[END_REF], a guaranteed convergence to the exact solution. If applied to surface integral equations, these shemes form the boundary element methods (sBEMs) or methods of moments (sMoMs). In these approahes the unknown is irst expanded with basis functions living in the correct space and capable of representing the properties of the unknown; the resulting set of equations is then tested with functions living in the dual of the range of the operator. he functions are deined on a small subset of elements of the tessellated scater (in this thesis the tessellation is always made of tringles). Other approahes include Nyström [START_REF] Gedney | On Deriving a Locally Corrected Nystrom Sheme from a uadrature Sampled Moment Method[END_REF] or collocation methods.

he EFIE is commonly discretized with Rao-Wilton-Glisson (RWG) functions [START_REF] Rao | Electromagnetic Scatering by Surfaces of Arbitrary Shape[END_REF], whih live in -1/2 (div) -the correct functional space for the current density -and have a well deined divergence, i.e. they do not give rise to unphysical harges. An RWG function is deined on a pair of triangles + , + , sharing an inner edge connecting vertices + and -, as

( ) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ -+ 2 + for ∈ + , -- 2 - for ∈ -, otherwise, (2.59) 
where the vertices + and -are the vertices of + and -that do not belong to and include any normalization by the edge-length ‖ ‖, whih is used in some instances in the literature. he current is approximately expanded as a linear combination of RWG basis functions ,

( ) ≈ =1 [j ] ( ) , (2.60) 
where [j ] = ⟨ , ⟩ and ⟨ , ⟩ = ∬ ( ) ⋅ ( )d denotes the duality product. In the case of a PEC scaterer the EFIE is approximated as

T ( ) ≈ =1 [j ] ̂ × ∬ ( ) e -j ‖ -′ ‖ 4π‖ -′ ‖ d ′ , (2.61) T ℎ ( ) ≈ =1 [j ] ̂ × ∇ ∬ ∇ ′ ⋅ ( ) e -j ‖ -′ ‖ 4π‖ -′ ‖ d ′ , (2.62) T ℎ ( ) ≈ =1 [j ] -j T ( ) + j T ℎ ( ) .
(2.63) hese equations are then tested with the functions ̂ × in the dual of the range of the operators, giving rise to the matrix system

T j = -j T j + j T ℎ j = v , (2.64) 
where

[T ] = ⟨ ̂ × , T ⟩ , (2.65) [T ℎ ] = ⟨ ̂ × , T ℎ ⟩ , (2.66) [v ] = -⟨ ̂ × , ⟩ , (2.67) 
T = -j T + j T ℎ .
(2.68) he system then be solved for j in order to obtain the coeicients of the current in the interpolatory basis. he radiated ield is obtained by radiating this current using eqs. (2.11) and (2.12). he MFIE can be discretized in a very similar fashion. However particular care should be given to the testing basis functions. his equation has traditionally been tested with standard RWG basis functions, but this discretization yields inaccurate results [START_REF] Cools | Accurate and Conforming Mixed Discretization of the MFIE[END_REF]. A new, conforming, discretization has been introduced more recently [START_REF] Cools | Accurate and Conforming Mixed Discretization of the MFIE[END_REF] in whih rotated Bufa-Christiansen (BC) basis functions ̃ , whih live in the dual of the operator, are used for the testing. A formal deinition of the BC functions can be found in [START_REF] Bufa | A Dual Finite Element Complex on the Barycentric Reinement[END_REF]. he discretized MFIE is

G ̃ , 2 + K j = v ℎ , (2.69) 
where

[G] = ⟨ ̂ × ̃ , I ⟩ , (2.70) [K ] = ⟨ ̂ × ̃ , K ⟩ , (2.71) [v ℎ ] = ⟨ ̂ × ̃ , ⟩ .
(2.72) g) Iterative Methods and Conditioning

) Iterative Methods

Because of its cubic complexity, direct resolution of linear problems is seldom applicable in any practical case. In electromagnetics, the linear problem

M x = b , (2.73)
is usually solved using iterative methods that have a more tractable, quadratic, complexity. As their name indicates, iterative methods atempt to approximate the solution of the problem by iteratively minimizing a cost function. Every step usually involves matrix vector products whih explains their complexity. his quadratic cost, however, only holds if the number of iterations required for converging to a predetermined error is somehow bounded (with regards to the number of unknowns). For instance the generalized minimal residual method (GMRES) method atempts to minimize the residual distance

= ‖M x -b‖ , x ∈ , (2.74) 
where

= span b , M b , … , M -1 b . (2.75)
is the -th Krylov subspace of the system. In the case of a symmetric positive deinite (s.p.d) matrix, GMRES exhibits a convergence rate that is related to the conditioning of M (see Section 2.g. )

≤ cond(M ) 2 -1 cond(M ) 2 /2 0 .
(2.76)

his results also implies that, if the condition number of M is constant with regards to the number of unknowns, then a solution of the problem can be obtained in quadratic complexity. In addition, if a fast matrix-vector product can be obtained, for instance using fast methods suh as the MLFMM, the problem is efectively linearised.

) Condition Number he condition number of an invertible matrix M is deined as

cond(M ) = ‖M ‖‖M -1 ‖ .
(2.77)

In computational disciplines the conditioning plays a critical role because it afects the convergence rate of the iterative solvers and hence the complexity of solving the problem. And, as importantly, the condition number haracterizes the numerical stability of the problem. Assuming that an error e is made in the estimation of b in eq. (2.73) -either purely numerical or experimental -then (2.81)

x = M -1 b + M -1 e , ( 2 
In conclusion, in order for the system to be resilient to numerical errors (e.g. loating point calculation round of) or even measurement noise, it must be well conditioned.

Most of this thesis is dedicated to the pre-conditioning of EM problems to reduce their complexity and stabilize their numerical accuracy.

h) Maxwell's Equations in Statics

At low frequencies, when time derivatives can be neglected, Maxwell's equations decouple and new derivations are required. To detail some key passages of these new derivations, Maxwell's equations are re-stated with an explicit time dependency. One suh -non-symmetrized -form is

∇ × = - ∂ ∂ , (2.82) 
∇ × = ∂ ∂ + , (2.83) ∇ ⋅ d = , (2.84) ∇ ⋅ b = , (2.85)
whih, when the derivatives are negligible, implies the existence of a scalar potential suh that = -∇ . his result, in light of Ohm's law

= + 0 , (2.86)
where is the conductivity of the medium and 0 is a constant initial contribution, implies, ater few passages, that

∇ ⋅ ( ∇ ) = ∇ ⋅ 0 . (2.87)
whih is Poisson's equation. Because eq. (2.87) does not admit a unique solution, additional boundary conditions must be provided. To specify these conditions the trace operator that associates a function deined on a compact domain , with its generalized boundary function on ∂ is introduced

± 0 = | ± .
(2.88)

Similarly, the co-normal derivative is deined as

± 1 = ̂ ⋅ ± 0 ± ∇ .
(2.89)

In the cases relevant to this thesis, the boundary conditions are

+ 0 = - 0 , (2.90 
) Because the physiological electric phenomenons occurring inside the brain typically have a maximum frequency of 1 kHz, the quasi-static approximations of Maxwell's equations can be used for predictive modeling [START_REF] Baillet | Electromagnetic Brain Mapping[END_REF]. In addition, the source of the electrical activity in the brain are the neurons whih, conveniently, can be modeled as current dipoles [START_REF] De Munk | Mathematical Dipoles Are Adequate to Describe Realistic Generators of Human Brain Activity[END_REF]. In algebraic form, the current distribution generated by a neuron located at 0 and of moment is

+ 1 = - 1 , ( 2 
( ) = ( -0 ) , (2.95)
where denotes the Dirac delta function. he RHS of the corresponding Poisson's problem is

∇ ⋅ ( ) = ∇ ( -0 ) . (2.96)
Finally, in a homogeneous domain of unit conductivity, the dipole generates the potential

= ⋅ ( -0 ) 4π‖ -0 ‖ 3 .
(2.97)

) Nested Domains he BEM formulations of the EEG forward problem are not capable of handling fully anisotropic volumes (unlike FEM formulations). As a consequence the head is oten modeled as being composed of three nested layers of uniform conductivities1 -typically brain, skull and scalp -and Poisson's equation is solved in this multidomain context, whih requires additional developments. he head is irst decomposed into bounded, nested domains with uniform conductivity ; the domain +1 = R 3 ⧵ ⋃ =1 contains no sources. hen, if is the RHS of the problem in R 3 , it can be decomposed into a sum of functions , suh that (2.99) harmonic in +1 , that satisies Poisson's equation. In addition, the function and its normal derivatives are continuous across the diferent domain boundaries. Using the representation theorem and Green's identities [START_REF] Kybic | A Common Formalism for the Integral Formulations of the Forward EEG Problem[END_REF], it follows that

( ) = ( ) if ∈ 0 if ∉ . ( 2 
( ) = + +1 2 ( ) - =1 ( +1 -) D 0, ( ) , ∈ , (2.100) 
where D relates double layer potentials to their values on the domains' boundaries

(D )( ) = ′ 1 -′ ′ d ′ .
(2.101)

Other formulations are available for obtaining the surface potentials, however eq. (2.100) is the most straightforward and popular [START_REF] Baillet | Electromagnetic Brain Mapping[END_REF].

) Discretization

To solve the double layer formulation, the scalp, skull and cortex surfaces are tessellated into triangles and vertices and the unknown potential in eq. (2.100) is expanded with pyramid basis function

( ) ≈ =1 ( ) , ∈ , (2.102) 
where the pyramids are deined to have unit value on their deining vertex and to linearly go to zero over the triangles sharing this vertex. he equation is then tested using the pyramids as testing functions, yielding a system of equation that can be numerically solved

⎡ ⎢ ⎢ ⎢ ⎣ G 1 + D 1,1 D 1,2 D 1,3 D 2,1 G 2 + D 2,2 D 2,3 D 3,1 D 3,2 G 3 + D 3,3 ⎤ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎣ v 1 v 2 v 3 ⎤ ⎥ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎢ ⎣ b 1 b 2 b 3 ⎤ ⎥ ⎥ ⎥ ⎦ , (2.103) 
where

[ ] = + +1 2 ⟨ , ⟩ , (2.104) 
[ ] = ( +1 -) ⟨ , D ⟩ , (2.105) [ ] = ⟨ , ⟩ , (2.106) 
[ ] = .

(2.107)

A number of elementary results of EM theory have been presented in this introductory hapter. Most of the developments presented here will not be recalled in the next hapters but references will be made to the present section when necessary.

Chapter 3

High Order uasi-Helmholz Projectors

Boundary integral equations are particularly eicient for solving problems of scattering by conducting and penetrable objects. hese methods stand out in terms of performance because they only require the surface of the scaterer to be discretized, as opposed to the full volume discretization of diferential methods. However number of these formulations exhibit numerical instabilities at low frequency, a phenomenon designated as the low frequency breakdown in the literature. his chapter is devoted to presenting a recently introduced strategy based on quasi-Helmholz projectors to cure the low frequency breakdown of the EFIE and extending it to higher order modeling.

Because they preserve the convergence properties of the original formulations and do not necessitate the recovery of cycles of the structure -unlike several other solutions to the low frequency breakdown -projector approaches are well-suited for solving large problems at low frequencies. Hence the high order extension of the technique will enable the development of highly accurate formulations exhibiting higher order convergence rates.

a) Introduction

W hile the EFIE has several advantages over other formulations, suh as being able to handle open structures (unlike the MFIE or the CFIE) and yielding smaller matrices than FEM tehniques while automatically satisfying the radiation conditions, it sufers from ill-conditioning at low frequency [START_REF] Andriulli | Solving the EFIE at Low Frequencies With a Conditioning hat Grows Only Logarithmically With the Number of Unknowns[END_REF]. In addition, the formulation also sufers from ill-conditioning at high reinement [START_REF] Andriulli | Solving the EFIE at Low Frequencies With a Conditioning hat Grows Only Logarithmically With the Number of Unknowns[END_REF] but this problem is not detailed in the present hapter. Both ill-conditionings prevent numerical solvers from yielding accurate solutions or even prevent them from converging altogether. In addition, the EFIE sufers at low frequency from numerical cancellations in its solution vector [Yun+03; CTH08; QC10; Bog+11a; Bog+11b]. hese cancellations are due to the diferent scaling of the solenoidal and non-solenoidal parts of the solution. Because the former scales with the frequency while the later scales with its inverse, the solenoidal contribution is cancelled out by the non-solenoidal one when computed -and stored together -in inite precision. Even though it might appear negligible, this loss of current information results in a severe degradation of the accuracy of the electrical harge and becomes even more critical when computing the scatered ield. Indeed, for certain types of excitation the preserved and the cancelled out parts of the solution physically contribute with the same strength [START_REF] Andriulli | On a Well-Conditioned Electric Field Integral Operator for Multiply Connected Geometries[END_REF] to the ield. his means that a crucial part of the inal result will have been lost and replaced by numerical noise. his phenomenon together with the low-frequency ill-conditioning, are indiferently referred to as the low-frequency breakdown of the EFIE.

Because these limitations are intrinsic to the operator itself, they are also present when higher order modeling is employed. his is particularity deplorable since higher order shemes ofer signiicant improvements over traditional -low orderones in terms of eiciency and lexibility. hanks to their numerous advantages high order shemes are commonly used in a wide array of computational shemes [START_REF] Notaros | Higher Order Frequency-Domain Computational Electromagnetics[END_REF]. Two of their most signiicant improvements with regards to low order tehniques are (i) their more accurate discretizations -in less elements -of general geometries enabled by curved geometrical elements; (ii) their higher convergence rates permited by the usage of electrically large basis functions (of the order of the wavelength). Overall these high order tehniques are generally faster than the traditional ones. In particular the surface EFIE has been extended to higher orders using a wide array of tehniques [Che+01; Not+01; DN03], a thorough review of whih can be found in [START_REF] Notaros | Higher Order Frequency-Domain Computational Electromagnetics[END_REF]. A particularly popular approah is to use higher order divergence conforming interpolatory basis functions suh as the Graglia-Wilton-Peterson (GWP) functions [START_REF] Graglia | Higher Order Interpolatory Vector Bases for Computational Electromagnetics[END_REF] whih are the higher order counterpart of the standard RWG functions [START_REF] Rao | Electromagnetic Scatering by Surfaces of Arbitrary Shape[END_REF]. Other contributions have proposed high order hierarhical bases [START_REF] Kolundzija | Electromagnetic Modeling of Composite Metallic and Dielectric Structures[END_REF] that allow for adaptive -reinement of the mesh, however they are not as widely employed because of the conditioning issues they provoke. To address this issue, orthogonal high order hierarhical bases have been proposed more recently [START_REF] Djordjević | Higher-Order Hierarhical Basis Functions with Improved Orthogonality Properties for Moment-Method Modeling of Metallic and Dielectric Microwave Structures[END_REF]. he community has also proposed numerous tehniques permiting the integration of the singularity of the Green's function in the case of an higher order EFIE [START_REF] Jarvenpaa | Singularity Subtraction Tehnique for High-Order Polynomial Vector Basis Functions on Planar Triangles[END_REF]. In addition to its high order-related advantages, the high order EFIE still beneits from the properties of its standard counterpart. In particular it can be accelerated though the application of the MLFMM [START_REF] Donepudi | A Higher Order Parallelized Multilevel Fast Multipole Algorithm for 3-D Scatering[END_REF].

he previous diagnostic should make it clear that one way of addressing the lowfrequency breakdown is to separate and re-scale -in frequency -the solenoidal and non-solenoidal parts of the solution. his approah has traditionally been implemented via Loop-Star (LS) decompositions in both low [WG81a; Vec99; ZC00; LLB03; Eib04] and high order [START_REF] Wildman | An Accurate Broad-Band Method of Moments Using Higher Order Basis Functions and Tree-Loop Decomposition[END_REF]. However, LS decompositions have two major limitations : (i) they require the detection of the global loops of the structure [START_REF] Wilton | On Improving the Electric Field Integral Equation at Low Frequencies[END_REF] whih is an expensive -quadratic -operation and (ii) they increase the dense discretization ill-conditioning of the EFIE impedance matrix [START_REF] Eibert | Iterative-Solver Convergence for Loop-Star and Loop-Tree Decompositions in Method-of-Moments Solutions of the Electric-Field Integral Equation[END_REF]. he second issue is a consequence of the ill-conditioning of the LS decomposition operators that behave as graph Laplacians [START_REF] Andriulli | Loop-Star and Loop-Tree Decompositions: Analysis and Eicient Algorithms[END_REF][START_REF] Shanker | Time Domain Integral Equation Analysis of Scatering From Composite Bodies via Exact Evaluation of Radiation Fields[END_REF]. hese two problems render the LS tehniques impractical for the simulation of large structures. Other formulations, immune to the low frequency breakdown, and that do not require detection of global loops, have been proposed [START_REF] Qian | An Augmented Electric Field Integral Equation for High-Speed Interconnect Analysis[END_REF].

In this hapter a recently introduced family of solutions that rely on quasi-Helmholz (qH) projectors [START_REF] Andriulli | On a Well-Conditioned Electric Field Integral Operator for Multiply Connected Geometries[END_REF] to perform the LS decomposition is presented and extended to high order. Relying on projectors has the advantage of not degrading the conditioning of the matrices they decompose because they have lat spectrum. An even more remarkable property is that, because the solenoidal projector deduced from its non-solenoidal counterpart, global loops do not have to be detected. While this hapter focusses on the EFIE, high order projectors can be used to stabilize numerous formulations, some of whih are studied in this thesis.

To set the notations, this hapter opens with a summary of some key concepts of high order modeling in Section 3.b. In Section 3.c the standard LS matrices are deined before being used in Section 3.d to fully haracterise the low-frequency breakdown phenomenon and the shortcomings of its standard remedies. hese developments motivate the introduction of the qH projectors in Section 3.e and of their detailed analysis in Section 3.f. Strong of this knowledge, the projectors are extended to higher order in Section 3.g. he performances of the new projectors are illustrated in Section 3.i before introducing implementations details required to reproduce our results and obtain an optimal accuracy when using the shemes introduced throughout the hapter are presented in Section 3.h. Finally, the discussion is closed in Section 3.j. Most of the developments and illustrations of the low frequency breakdown throughout this hapter have been performed with order = 0 discretization for practical reasons, but they extend directly to higher order, as will be made clear in Section 3.g.

b) High Order Modeling

Geometrical high order modeling relies on high order elements, whih are more lexible than their order = 0 counterparts. Most of the standard BEM elements (triangles and quadrilaterals for surface and tetrahedrons and hexahedrons for volume) have been extended to curvilinear geometries. In this section only curved triangles are considered, but details about other shapes can be found in [GP97; Pet05; GP15].

) High Order Triangles

Curved triangles can be deined by leveraging on appropriate interpolation polynomials whih are zero at all interpolation points but one. hese points are usually provided by a mesher sotware and, for the simplicity of the discussion, are assumed to be uniformly distributed over the triangular elements. To clarify the discussion the interpolation points are designated via their simplex coordinates on the reference triangle. he simplex coordinates are deined as the ratios between the areas of the sub-triangles deined by the point under consideration and the complete triangle. For instance, in Figure 3.1, is uniquely identiied by its simplex coordinates

1 , 2 , 3 = 1 , 2 , 3 . (3.1)
It is clear that these coordinates are not independent since 1 + 2 + 3 = 1. In the case of a triangular element of order the interpolation points are, in simplex 

| | | | | ( , , ) ∈ [0, ] 3 ∧ + + = , (3.2) 
but for notation simplicity they are designated unequivocally with the triplet ( , , ).

A common hoice of interpolation polynomials for triangular elements are

( 1 , 2 , 3 ) = 1 2 3 , (3.3) 
where

= ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 1 ! -1 =0 - if > 0 1 if = 0 . (3.4)
are the Sylvester polynomials [START_REF] Silvester | Finite Elements for Electrical Engineers[END_REF]. his family of polynomials is well suited to the problem at hand since the zeros of its members are equally spaced and eah polynomial has unit value in a single point. In particular, the zeros of the polynomial are ∈ / ∶ ∈ [0, -1] and it has unit value in = / .

) High Order Basis Functions

In order to ensure optimal lexibility and higher order convergence rates, the curvilinear elements introduced in the previous section must be coupled with higher order basis function. A particularly convenient set of higher order functions are the so-called GWP [START_REF] Graglia | Higher Order Interpolatory Vector Bases for Computational Electromagnetics[END_REF] because they are, in part, constructed by multiplying the order = 0 RWG functions with a shited variation of the polynomials eq. (3.3) introduced for the curved elements. In addition, these functions are divergence conforming and are built to exhibit a representation complete to the same degree for both the basis function and its divergence. his prevents issues or ineiciencies when the functions are used to discretized an unknown quantity and its divergence, whih occurs in the EFIE.

To facilitate the following developments the RWG functions are re-introduced in the same formalism as the higher order functions. Eah triangle of the discretized geometry supports three RWG functions, that when mapped to the reference triangle, are expressed as

0 1 1 , 2 = 1 -1 ̂ 1 + 2 ̂ 2 , (3.5) 0 2 1 , 2 = 2 -1 ̂ 2 + 1 ̂ 1 , (3.6) 0 3 1 , 2 = 1 ̂ 1 + 2 ̂ 2 . (3.7)
he continuity of the normal component of the current across the edges of the deining triangle is imposed by coupling the functions with the corresponding functions on the adjacent triangles and weighted with the appropriate sign. he high order functions are then formed by multiplying the RWG functions with the shited Sylvester polynomials

̃ = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 1 ( -1)! -1 =1 - if ∈ [2, + 1] 1 if = 1 , (3.8) 
whih can be expressed from Sylvester polynomials (eq. (3.4)) as

̃ = -1 - 1 .
(3.9) he procedure described by [START_REF] Graglia | Higher Order Interpolatory Vector Bases for Computational Electromagnetics[END_REF] suggests to build one basis function per interpolation point located on an edge and two per point located within the cell. he general formula to build the functions deined on the edge 1 = 0 is

1 , 2 = 0 1 1 , 2 ⋅ ( 1 ) ̃ ( 2 ) ̃ (1 -1 -2 ) . (3.10)
he functions interpolating on the other edges can be obtained by using the corresponding order = 0 function and using shited Sylvester polynomial of the appropriate simplex coordinate.

In the case of order = 1 functions, six edge basis functions (two per edge) can be constructed. he shited polynomial ensure that all basis functions have a non-zero normal component a single interpolation point. In this relatively simple case, the basis edge basis functions are

102 1 , 2 = 0 2 1 , 2 ̃ 3 2 1 -1 -2 , (3.11) 201 1 , 2 = 0 2 1 , 2 ̃ 3 2 1 , (3.12) 012 1 , 2 = 0 1 1 , 2 ̃ 3 2 1 -1 -2 , (3.13) 021 1 , 2 = 0 1 1 , 2 ̃ 3 2 2 , (3.14) 120 1 , 2 = 0 3 1 , 2 ̃ 3 2 2 , (3.15) 210 1 , 2 = 0 3 1 , 2 ̃ 3 2 1 , (3.16) 
with ̃ 3 2 = 3 -1 and the three possible cell basis functions are

1 111 1 , 2 = 0 1 1 , 2 3 1 1 , (3.17) 2 111 1 , 2 = 0 2 1 , 2 3 1 2 , (3.18) 3 111 1 , 2 = 0 3 1 , 2 3 1 1 -1 -2 , (3.19) 
with 3 1 = 3 . Because the three inner basis functions are linearly dependant one of them should be discarded; at higher orders one function is discarded at every inner interpolation point.

c) Loop Star Matrices

To compare the qH projectors to the standard LS tehnique, the LS matrices are introduced in this section. For the remainder of this hapter the EFIE eq. (2.54) is supposed to be discretized on the tessellation of a surface composed of vertices, edges and faces (whih are the triangles of the mesh). he LS matrices decompose the space of standard RWG functions , ∈ [1, ], into a solenoidal subspace , a non-solenoidal subspace and a harmonic subspace .

he solenoidal subspace is composed of divergence-free functions (i.e. ∀ ∈ , ∇ ⋅ = ) whih, since they discretize the unknown of the EFIE, represent current density functions. It has been demonstrated [START_REF] Wu | A Study of Two Numerical Solution Procedures for the Electric Field Integral Equation at Low Frequency[END_REF] that solenoidal current density form closed path, whih is the origin of the term loop functions. hese considerations lead us to deine as the subspace of local -by opposition to global -loops. his space is generated by the loop basis functions , ∈ [1, ], respectively deined on eah of the vertices of the mesh. hese functions are a linear combination of the RWG basis functions deined on the edges connected to ( is the degree of ). More formally

( ) = =1 Λ ( ) , ∈ [1, ] , (3.20) 
where, for eah loop function , the non-zero elements of Λ are hosen so that ∇ ⋅ = . he matrix Λ ∈ R , is a transformation matrix from the RWG space to . Using the notations from Figure 5.1 the elements of the matrix are

Λ = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 1 if vertex is + , -1 if vertex is -, 0 otherwise. 
(3.21) he non-solenoidal subspace has several possible constructions, the hoice detailed thereater corresponds to the dual deinition to that of the loops, and will be designated as . his subspace is generated by a set of basis functions , ∈ 1,

; eah function is deined on the corresponding cell as a linear combination of all RWG functions that are partially deined on this cell. Using the notations of Figure 5.1 this means that is a linear combination of the basis functions for whih + = or -= . From trivial geometrical considerations it is clear that, in the absence of junctions, ∈ [1, 3] and in particular, for closed structures = 3. In matrix form

( ) = =1 Σ ( ) , ∈ 1, , (3.22) 
where Σ ∈ R , . For eah function the corresponding non-zero elements are set to ±1 and hosen so that all currents low out of the cell. he matrix Σ is an RWG to stars mapping, and its entries are

Σ = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 1 if cell is + , -1 if cell is -, 0 otherwise. (3.23)
he harmonic subspace is more hallenging to construct because it is spanned by the divergence free functions deined on the global loops of , that are computationally expensive to identify. If is the genus (or number of handles) of the structure, the number of global loops is 2 . In simple cases, suh as spherical geometries ( = 0) this space is empty because the structure is simply connected, i.e. it does not contain global loops. Tori are probably the simplest case of multiply connected surfaces ( = 1), and present two global loops corresponding to the toroidal and poloidal directions (Figure 3.3). Once the global loops have been identiied2 , it is possible to construct a mapping matrix H ∈ R 2 , from RWGs to the harmonic subspace whih contains the coeicients of the RWG functions composing the global loops as columns.

Before leveraging on the decomposition operators introduced thus far3 to perform a LS decomposition, the linear dependency of the Loop and Star functions should be addressed. Euler-Poincaré [START_REF] Wilton | Topological Consideration in Surface Path and Volume Cell Modeling of Electromagnetic Scaterers[END_REF] formula provides a relationship between the number of faces , vertices , inner edges , apertures and handles ℎ + -= 2 -2ℎ -.

(3.24)

his formula, when compared to the dimensions of the diferent transformation matrices implies that, for eah connected component of , (i) one loop function must be removed if the component is closed and (ii) one star function must always be removed. To illustrate this relations consider a plate for whih ℎ = 0 and = 1 then = -1 + , meaning that one star function (i.e. one column of Σ ) must be removed. In the case of a sphere (ℎ = 0, = 0, = -1 + -1) one column should be removed from both Σ and Λ. he linearly independant matrices Λ and Σ (corresponding respectively to Λ and Σ ) can be used to build the LS transformation matrix B as

B = [Λ H Σ ] , (3.25) 
where H = H did not require any modiications.

Finally, Σ T corresponds to a discretization of the divergence operator on the RWG space. As a consequence Σ T Λ = Σ T H = 0 whih means that the non-solenoidal subspace is orthogonal to the solenoidal and harmonic subspaces. d) Low-Frequency Breakdown his section focuses on the analysis of the low frequency breakdown itself and its root causes. he efects of the breakdown are irst illustrated through numerical examples. he origin of its diferent efects are then analyzed before presenting the standard LS solution oten used to address them.

) Illustration of the Problem

In order to beter describe the low frequency breakdown, its symptoms are demonstrated via numerical examples. Seting up these pathological cases will also serve to illustrate the efectiveness of the diferent shemes introduced to cure its underlying causes. To have an analytical solution as reference, the geometry in these examples is a PEC sphere for whih the Mie series serve as closed-form solution.

First, the validity the setup is demonstrated by simulating the RCS of the sphere in a non-pathological case, at relatively high frequency. he results, illustrated in Figure 3.4, demonstrate a perfect math between the computed RCS and the Mie series. Next, the efects of the low frequency breakdown on the far ield accuracy and on the conditioning of the system matrix are illustrated in Figures 3.5 and 3.6, respectively. he RCS was computed at 1 ⋅ 10 -40 Hz to conirm that the solutions proposed later on efectively address the low frequency breakdown at arbitrarily low frequency. However, the scatered ield shows a visible mismath with the Mie series as early as 1 MHz for a sphere of 1 m radius, and not only at extremely low frequencies.

It should be clear that, as is, the EFIE is not usable at low frequencies because (i) it yields the wrong solution and (ii) the conditioning of the impedance matrix will grow as -2 , whih reduces the convergence speed of iterative solvers, or prevent it altogether. here is a clear mismath between the Mie series and the EFIE solution caused by the low frequency breakdown of the formulation. 

) Analysis of the Low Frequency Breakdown

Now that the symptoms of the low frequency breakdown have been illustrated, its origins should be studied. he low frequency breakdown has two root causes: (i) the matrix bloks are ill-scaled as some bloks scale with the frequency while others scale with its inverse and (ii) numerical cancellations occur when the solution vector is stored in inite precision. To expose these two issues the solenoidal and non-solenoidal parts of the EFIE are separated and studied independently. his decomposition is ahieved by applying the decomposition matrix B introduced in Equation (3.25) to the discretized EFIE eq. (2.64)

B T -j T + -j T ℎ B y = B T v , (3.26) 
where j = B y . For notation simplicity the let-hand side of the equation is denoted Z ΛH Σ ; in blok notation this term can be writen

Z ΛH Σ = -j ⎡ ⎢ ⎢ ⎢ ⎣ Λ T Z Λ Λ T Z H Λ T Z Σ H T Z Λ H T Z H H T Z Σ Σ T Z Λ Σ T Z H Σ T Z + -2 Z ℎ Σ ⎤ ⎥ ⎥ ⎥ ⎦ (3.27)
where the relations

Z ℎ Λ = 0 , Z ℎ H = 0 , Λ T Z ℎ = 0 , H T Z ℎ = 0 , (3.28) 
Tab. 3.1.: Frequency scaling of diferent kinds of excitations.

Type of excitation

Λ H Σ Plane wave O( ) O( ) O(1) Capacitive voltage gap 0 0 O(1)
Inductive voltage gap

O(1) O(1) O(1)
have been used. he results in eq. (3.28) can be immediately deduced from the deinition of the loops, i.e. ∀ ∈ ⊕ , ∇ ⋅ = , and the presence of the divergence operators in T ℎ . At low frequencies, the botom-right blok eq. (3.27) can be approximated as

Σ T Z + -2 Z ℎ Σ ≈ →0 -2 Σ T Z ℎ Σ , (3.29) 
whih clearly demonstrates the incompatible scaling of the solenoidal and nonsolenoidal parts of the matrix since all terms scale as , while a single term scales as -1 . he consequences of this ill-scaling are explored in the next sections.

3.d. .1. Numerical Instability he numerical instabilities degrading the solution of the EFIE can be brought into light by analysing the frequency scaling of the solution of eq. (3.26)

B -1 j = Z -1 ΛH Σ B T V . (3.30)
First, the frequency behaviour of Z -1 ΛH Σ is determined using well known results on the inverse of blok matrix [HS81]

Z -1 ΛH Σ = ⎡ ⎢ ⎢ ⎢ ⎣ O(1/ ) O(1/ ) O( ) O(1/ ) O(1/ ) O( ) O( ) O( ) O( ) ⎤ ⎥ ⎥ ⎥ ⎦ . (3.31)
hen, given the scalings for diferent types of excitation recalled in Table 3.1 [START_REF] Qian | Enhanced A-EFIE With Perturbation Method[END_REF], speciic analyses can be performed for eah induced solution. he diferent excitation types present in the table are:

Plane-wave excitation corresponding to an impinging wave of the form ↦ 0 exp -j ̂ ⋅ ̂ where 0 is the amplitude of the wave, ̂ its direction of propagation and ̂ its polarization.

Capacitive voltage gap excitation corresponding to a delta gap that does not excite any of the global loops of the structure. A simple example of suh an excitation is a delta gap on the conductive strip between the two parallel plates of a capacitor.

Inductive voltage gap excitation corresponding to a delta gap excitation that does excite a global loop of the structure. A simple example can be obtained by adding a second conductive strip to the capacitor used as example for the capacitive voltage gap.

In the case of a plane-wave excitation

B -1 j = →0 O(1) O(1) O( ) T , (3.32)
whih implies that the current density scales as

= →0 O(1) ⋅ Λ + O(1) ⋅ H + O( ) ⋅ Σ . (3.33)
It is then clear that at low frequencies and in inite precision the non-solenoidal contribution of the current will be erased. hus the information about the harge

∇ ⋅ is lost since ∇ ⋅ = Σ T = O( ) ⋅ Σ T Σ . (3.34)
But even more severe problems arise when this current is used to compute the ield scatered by . Since the solenoidal and non-solenoidal parts of the current contribute equally to the far ield, numerical noise will be ampliied and corrupt the computations. his can be demonstrated by analyzing the solenoidal and nonsolenoidal parts of the far ield. First, following from eq. (2.32), the far ield operator

F is introduced F ( ) = - j 4π‖ ‖ e -j ‖ ‖ ̂ ( ) + ̂ ( ) , = - j 4π‖ ‖ e -j ‖ ‖ ̂ ̂ + ̂ ̂ ⋅ N ( ) . (3.35)
he solenoidal behaviour of this operator can be exposed by decomposing the exponential in N as exp(

) = 1 + exp( ) -1, yielding N ( ) = ∬ ′ e j ′ ⋅ ̂ -1 d ′ + ∬ ′ d ′ . (3.36)
While this procedure does not yield any insight for star functions, it is possible to simplify it when it is applied to divergence-free functions by noting that

∬ ′ d ′ = , ∀ ∈ ⊕ , (3.37) 
whih derives from Green's theorem. his simpliication, combined with a Taylor series expansion of ↦ exp( ) -1, provides the scaling of the solenoidal part of the far ield

(N )( ) = →0 ∬ ′ j ′ ⋅ ̂ + O 2 d ′ , ∀ ∈ ⊕ . (3.38)
As a consequence, the discrete far ield operator is equivalent to a multiplication by 1) and the scaling of the far ield e induced by a plane wave is

⋅ O( ) O( ) O(
-1 e = →0 O( ) O( ) O(1) ⋅ B -1 j = →0 O( ) + O( ) + O( ) . (3.39)
In accordance with earlier statements, in the case of a plane wave excitation, the far ield is composed in equal measures by the solenoidal and non-solenoidal current contributions, one of whih was lost in the resolution process. Hence, the far ield obtained through the standard EFIE can not be relied upon for this excitation. he situation is less dire for the voltage gap excitations: the capacitive voltage gap will not cause cancellations in the current and a physical cancellation will occur in the scatered ield

j = →0 O( ) ⋅ Λ + O( ) ⋅ H + O( ) ⋅ Σ , (3.40) -1 e = →0 O 2 + O 2 + O( ) ; (3.41)
the inductive gap is subject to numerical cancellation in its current but the lost term has a negligible contribution to the far ield,

j = →0 O(1/ ) ⋅ Λ + O(1/ ) ⋅ H + O( ) ⋅ Σ , (3.42) -1 e = →0 O(1) + O(1) + O( ) . (3.43)
In these last two cases no numerical noise is ampliied by the scatering operation and, as a consequence, the far ield paterns should remain accurate at low frequencies. However the inductive voltage gap exhibits a loss of harge information and all the excitations are still subject to the ill-conditioning of the impedance matrix that will degrade the precision of numerical current solutions, even if they are not subject to cancellations per se.

3.d. .2. Low-Frequency Ill Conditioning

To demonstrate the existence of the low frequency ill-conditioning of the EFIE, another matrix is shown to be well-conditioned and the conditioning of the original matrix is deduced from this result. Consider the matrix Z LR deined by let and right multiplying Z ΛH Σ by two diagonal matrices

Z LR = LZ ΛH Σ R = →0 L ⎡ ⎢ ⎢ ⎢ ⎣ Λ T Z Λ Λ T Z H -j Λ T Z Σ H T Z Λ H T Z H -j H T Z Σ -j Σ T Z Λ -j Σ T Z H Σ T Z ℎ Σ ⎤ ⎥ ⎥ ⎥ ⎦ R , (3.44) 
where L = diag -1/j , -1/j , 1 and R = diag 1, 1, -j , and its low frequency limit

Z 0 LR = lim →0 Z LR = L ⎡ ⎢ ⎢ ⎢ ⎣ Λ T Z Λ Λ T Z H 0 H T Z Λ H T Z H 0 0 0 Σ T Z ℎ Σ ⎤ ⎥ ⎥ ⎥ ⎦ R . (3.45) Because Z 0 LR is frequency independent, it is clear that Z LR is immune from the low frequency conditioning breakdown lim →0 cond Z LR = cond Z 0 LR ∈ R . (3.46)
Using properties of the condition number of products yields

cond Z ΛH Σ ≤ cond Z LR cond L -1 cond R -1 . (3.47)
In addition, because cond A T A = cond AA T for all square matrices, and ater re-writing Z LR as

Z LR = D Z ΛH Σ D , (3.48) 
where D = diag j/ , j/ , /j , a few manipulations provide the equality

cond D Z -1/2 ΛH Σ Z ΛH Σ Z -1/2 ΛH Σ D ≤ cond Z ΛH Σ cond Z LR . (3.49)
he condition number of Z ΛH Σ is then bounded by both inequalities

1 2 ≤ cond Z ΛH Σ ≤ 2 , (3.50) 
where = cond Z LR , whih immediately implies that

cond Z ΛH Σ = →0 O -2 , (3.51)
thereby demonstrating the existence of a low frequency ill-conditioning of the EFIE matrix, that grows with -2 .

) Traditional Loop-Star Decomposition

One of the traditional tehniques used to remedy the issues exposed in the previous sections is the Loop-Star (LS) decomposition. Despite its efectiveness this approah sufers from two crucial shortcomings: (i) it requires explicit detection of the global loops and (ii) it further degrades the EFIE conditioning behaviour with increasingly denser discretization. In this section the LS procedure is detailed to illustrate its shortcomings.

Given that the developments of the previous sections were actually already involving a LS decomposition, diferent passages of the required developments have already been detailed. he key motivation behind the LS tehnique is to re-scale the Z ΛH Σ decomposition with L and R, in order to obtain a numerically stable intermediate solution and a well-conditioned system matrix. he Loop-Star electric ield integral equation (LS-EFIE) then reads

LB T -j Z - 1 j Z ℎ B R y LS = LB T v , (3.52) 
where j = B R y LS . Previous developments immediately demonstrate the stability of the conditioning of this formulation, however its numerical stability is still to be demonstrated. Adapting eq. (3.30) and the related developments to the new formulation immediately yields

R -1 B -1 j = R -1 Z ΛH Σ L -1 LB T v , (3.53)
and the current scaling for a plane-wave excitation are

y LS = R -1 B -1 j = →0 O(1) O(1) O(1) T .
(3.54) he intermediate solution y LS is clearly immune from low frequency numerical cancellations and can be stored in inite precision. he loop and star components should then be radiated independently and j should never be explicitly computed, or numerical cancellations would occur.

To demonstrate the efectiveness of the sheme the same simulations as in Figures 3.5 and 3.6 have been performed with the LS formulation (Figures 3.7 and 3.8). It is clear from these results that the low frequency breakdown is cured. However, the LS matrices sufer from ill-conditioning for dense discretizations (Figure 3.9a). his, in turn, means that the decomposed formulation exhibits a worse reinement behaviour than the standard one (Figure 3.9b). hese last results are in accordance with the fact that Λ is a graph-Laplacian and hence behaves as an operator of order two [START_REF] Andriulli | Loop-Star and Loop-Tree Decompositions: Analysis and Eicient Algorithms[END_REF]. here is a clear mismath between the Mie series and the EFIE solution caused by the low frequency breakdown of the formulation. On the other hand the LS-EFIE mathes perfectly the Mie series. 

e) he uasi-Helmholz Projectors

To solve the low frequency breakdown without the limitations of the LS decomposition, qH projectors have been recently introduced. hey have the advantage of curing both aspects of the low frequency breakdown without (i) requiring detection of the global loops and (ii) degrading the dense discretization behaviour of the EFIE, as projectors have a lat spectrum. he qH projectors do not require the detection of global loops because only the non-solenoidal projector

P Σ = Σ Σ T Σ + Σ T , P Σ ∈ R × , (3.55) 
where + denotes the Moore-Penrose pseudo-inverse, is explicitly computed. he solenoidal projector

P ΛH = I -P Σ (3.56)
is computed as its remainder. In the case of simply connected geometries ( = ∅), the solenoidal projector can be computed directly

P ΛH = P Λ = Λ Λ T Λ + Λ T , (3.57)
but this is generally unnecessary.

It should be noted that the projectors are symmetric and, because they are complementary (by construction), they can decompose any RWG coeicient vector j into its solenoidal and non-solenoidal parts j = P ΛH j + P Σ j .

(3.58)

Another key practical consideration, is that, relying on an explicit pseudoinversion is computationally too expensive and would render the overall sheme at least as unpractical as the global loop detection of the standard LS approah. Alternatively the projectors can be computed in linear time with a fast matrix vector product based on multigrid tehniques. Given that the Σ T Σ matrix can be regularized with

1 Σ Σ T Σ + 1 1 Σ 1 T Σ + = Σ T Σ + 1 1 Σ 1 T Σ -1 , (3.59) = Σ T Σ + + 1 1 Σ 1 T Σ , (3.60)
and because 1 Σ is in the null-space of Σ , it can be proven that

P Σ = Σ Σ T Σ + 1 1 Σ 1 T Σ -1 Σ T . (3.61)
he inner term of the RHS is spectrally equivalent to a graph-Laplacian [START_REF] Andriulli | Loop-Star and Loop-Tree Decompositions: Analysis and Eicient Algorithms[END_REF], whih means that it is possible to perform fast matrix-vector products with its inverse thanks to multigrid preconditioning [LB12; NN12].

f) Solution of the Low-Frequency Breakdown for the EFIE

Because of the drawbaks of the standard LS tehnique presented in Section 3.d. , other methods should be investigated. A more satisfactory solution can be derived from the qH projector introduced in Section 3.e.

) Leveraging the uasi-Helmholz Projectors

Similarly to the LS decomposition, the qH projector tehniques separates and independently re-scales the solenoidal and non-solenoidal parts of the EFIE matrix. 

M -j Z + 1 -j Z ℎ N y qH = M T v , (3.64) 
where j = N y qH . To verify that the matrix does not have a low frequency illconditioning, consider the expansion of the system matrix

M -j Z + 1 j Z ℎ N = (P ΛH Z P ΛH + Z ℎ ) -(P ΛH Z P Σ + P Σ Z P ΛH )j -(P Σ Z P Σ ) 2 = (P ΛH Z P ΛH + Z ℎ ) + O( ) , (3.65)
where the relation

P ΛH Z ℎ = Z ℎ P ΛH = 0 , (3.66) 
has been used and derives from the matrix relations ΛZ ℎ = 0 and

P Σ Z ℎ = Z ℎ P Σ = Z ℎ , (3.67) 
whih can be demonstrated by writing

Z ℎ = (P ΛH + P Σ )Z ℎ = P ΛH Z ℎ + P Σ Z ℎ = 0 + P Σ Z ℎ . (3.68)
Given that the expansion of the qH-EFIE is composed of a frequency independent term and an O( ) remainder

lim →0 cond M Z N = cond P ΛH Z P ΛH + Z ℎ , (3.69) 
thus, the qH formulation is clearly immune from any low frequency conditioning breakdown. he stability of this conditioning is illustrated in Figure 3.11. Finally, the numerical stability of the qH sheme can be veriied by using the scaling obtained for the physical solution in eq. and that the projectors have no frequency scaling, the solenoidal and non-solenoidal parts of the intermediary solution both have an O(1) low frequency behaviour. Hence, y qH is numerically stable at low frequency. Numerical results conirm the stability and the accuracy of the far ield obtained using this tehnique (Figure 3.10). Overall, qH projectors completely cure the low frequency breakdown while (i) not requiring the detection of global loops, allowing the overall sheme to be nearlinear in complexity, and (ii) preserving the original conditioning of the EFIE matrix (Figure 3.11).

g) High Order Projectors he objective of this hapter if to combine the overall stability of the projector shemes with the many computational improvements permited by higher order modelling. Because the projectors are derived from Σ , it is crucial to extend this matrix to higher order. However, even though Σ was eiciently built out of connectivity information, this deinition does not generalize to higher orders. However, because Σ T is a discretization of the divergence operator it is possible to extend it to GWP functions. To discretize the operator, a set of scalar testing functions capable of representing any polynomial of degree over eah triangle of the dis- cretized geometry must be constructed4 , because the divergence of GWP functions is complete to order . Let { } be one suh set and be the set of vector GWP functions of order , then

Σ T = ⟨ ( ), ∇ ⋅ ( ) ⟩ .
(3.72)

While this matrix has been used for extending loop star decompositions tehniques to higher order [START_REF] Wildman | An Accurate Broad-Band Method of Moments Using Higher Order Basis Functions and Tree-Loop Decomposition[END_REF], it would sufer from the same limitations as its order = 0 counterparts (see Chapter 3). Instead, the divergence matrix is used to build quasi-Helmholz projectors extending the tehnique prescribed in Section 3.e for RWG functions, i.e.

P Σ = Σ Σ T G -1 , Σ + Σ T , (3.73) 
P Λ = I -P Σ , (3.74)
where I is the identity and the terms of the Gram matrix , are

G , = ⟨ ( ) , ( ) ⟩ . (3.75)
Even though explicit construction of the GWP to local loops mapping Λ is out of the scope of this work, it is interesting to study the efect of higher order modeling on the taxonomy loop functions. While in order = 0 modeling the loops are built around the vertices of the mesh (Figure 3.13a) [START_REF] Vechi | Loop-Star Decomposition of Basis Functions in the Discretization of the EFIE[END_REF], additional loops appear at order = 1 and = 2. Starting from order = 1 it is possible to construct loop functions associated to the edges of the mesh (in the same way that RWG are deined on the inner edges of the mesh), by linearly combining -ater adjusting their scalings and orientations -the two GWP functions crossing the edge and the six functions deined within the two adjacent triangle cells (Figure 3.13b). he order = 2 sees the appearance of a new family of functions that are deined within single cells as a linear combination of their inner functions (Figure 3.13c). he existence of these new families of functions further underlines the usefulness of the projectors that do not require their burdensome explicit computation unlike higher order loop star tehniques [START_REF] Wildman | An Accurate Broad-Band Method of Moments Using Higher Order Basis Functions and Tree-Loop Decomposition[END_REF] -in addition to not requiring the detection of the global loops of the structure. A detailed computation of the number of higher order loops is provided in [START_REF] Wildman | An Accurate Broad-Band Method of Moments Using Higher Order Basis Functions and Tree-Loop Decomposition[END_REF] and will not be recalled here.

While the higher order qH projectors will efectively address the low frequency limitations of the EFIO, they involve the computation of a pseudo-inverse. Because this operation is above linear complexity, it prevents usage of the projectors with fast shemes, suh as the MLFMM and reduce their practical applicability. For order = 0 the product Σ T Σ is a graph Laplacian making it possible to evaluate the matrix vector product

Σ T Σ + x , x ∈ R , (3.76)
in near-linear complexity by leveraging multigrid tehniques (see Section 3.e). However this approah is not directly generalizable to arbitrary order functions, since for order > 0 the Σ T Σ is no longer a graph Laplacian.

A consequent amount of time has already been dedicated to inding new tehniques for performing near-linear evaluation of the generalized projectors, however results have not been conclusive yet. Several approahes have been investigated, the most promising of whih is that the underlying graph Laplacian nature of the Σ T Σ term could be recovered by decomposing it as Kroneker product of the order = 0 Laplacian with a local, higher order, connectivity matrix.

To illustrate this approah, the elementary case of a structure composed of two triangles (Figure 3.14) is considered. It is clear that this structure will exhibit: at order = one RWG function and two path functions (one on eah triangle); at order = six GWP functions (two on the edge ( 1 , 3 ) and two on eah triangle) and six pyramid functions (three on eah triangle).

he blok structure of the order = 1 divergence matrix is straightforward to deduce from these consideration

Σ 1 = ⎡ ⎢ ⎢ ⎢ ⎣ A B C 0 0 D ⎤ ⎥ ⎥ ⎥ ⎦ (3.77)
where A and B correspond to the contributions of the two edge GWP functions respectively tested from the pyramids of eah triangle and C and D are the contributions of the inner GWP functions tested on the triangle on whih they are deined. From this expression, it is possible to deduce the structure of Σ T 1 Σ 1 as a blok product

Σ T 1 Σ 1 = A T A + C T C A T B B T A B T B + D T D . (3.78)
In addition, given the appropriate normalization of the functions involved, B = -A and D = C and thus eq. (3.78) becomes

Σ T 1 Σ 1 = A T A + C T C -A T A -A T A A T A + C T C . (3.79) 
In this extremely simple case this matrix form is generated by the order = 0 connectivity information in the form of Σ T 0 Σ 0 and higher order contributions

A T A and C T C Σ T 1 Σ 1 = A T A -A T A -A T A A T A + C T C 0 0 C T C = Σ T 0 Σ 0 ⊗ A T A + I ⊗ C T C , (3.80) 
where ⊗ denotes the Kroneker product. he structure of Σ T 1 Σ and Σ T 0 Σ 0 ⊗ A T A are illustrated in Figure 3.15 along with their relative diference, whih underlines the efect of the high order perturbation C T C. he decomposition in Kroneker products is particularly promising thanks to the well know result about the pseudo-inverse of a Kroneker product

(M ⊗ N ) + = M + ⊗ N + , (3.81) 
whih could be used as a way to invert the order = 1 product by inverting the small high order perturbations and leveraging on multigrid tehniques for inverting the order = 0 contribution. Several issues are preventing direct use of this approah: (i) a way to handle the I ⊗ C T C perturbation has not been found yet; (ii) the structure of eq. (3.79) seems to globally hold for more complex structures, but the ordering of the functions and their normalizations make its recovery more hallenging, especially for closed structures. In conclusion the Kroneker tehnique only seems applicable to very simple geometries but a more thorough study needs to be performed before discarding it. As of this writing these investigations are underway. Other approahes based on iterative solutions exploiting the nullspaces of the perturbations matrices are also being considered but are at very early stages of investigation and thus will not be detailed here. h) Implementation Details he numerical results presented so-far have relied on implementation details that have not been presented in the previous sections but are necessary for ataining optimal stability of the shemes.

he computation of the plane-wave RHS at low frequencies requires particular handling of the exponential term. he general expression of this excitation is

[v ] = 0 ∬ e -j ̂ ⋅ ′ f ′ ⋅ ̂ d ′ , (3.82) 
whih should be decomposed into solenoidal and non-solenoidal contributions using the qH projectors

v Σ = P Σ v , (3.83) v ΛH = - 1 P ΛH v . (3.84)
Following the reasoning behind eq. (3.38), the exponential in the solenoidal term of the RHS should be computed using ↦ exp( ) -1 + 1, where the second term is null. his relation must be explicitly enforced because the RHS will scale as O( ) for solenoidal functions, and, at low frequencies, this contribution will be hidden by the 0-th order term of the Taylor series expansion of the exponential. Additionally, ↦ exp( ) -1 can not be computed naively as a subtraction, to avoid further numerical cancellations, specialized implementations must be employed. In most scientiic computing libraries suh implementations are available under the name expm1. All these considerations lead to the following expression of the solenoidal RHS

[P ΛH V E ] = 0 ∬ expm1 -j ̂ ⋅ ′ ′ ⋅ ̂ d ′ , (3.85)
and the solenoidal contribution remains unhanged. he far ield is computed in a similar way. According to eq. (3.35) the far ield scatered by a solenoidal current is

(F )( ) = - j 4π‖ ‖ e -j ‖ ‖ ̂ ̂ + ̂ ̂ ⋅ ∬ ′ e j ̂ ⋅ ′ d ′ , (3.86) 
whih, for the same reasons as for the plane-wave excitation, should be computed as

(F )( ) = - j 4π‖ ‖ e -j ‖ ‖ ̂ ̂ + ̂ ̂ ⋅ ∬ ′ expm1 j ̂ ⋅ ′ d ′ .
(3.87) he computation of the impedance matrix the qH-EFIE also requires some special care. Because of limitations of inite precision arithmetic, it is necessary to explicitly cancel out the terms listed in eq. (3.66) in the development of M Z N , hence the impedance matrix should only be computed as detailed in eq. (3.65). his requirement can be explained by considering that in inite precision the problematic terms are not exactly null:

‖P ΛH Z ℎ P ΛH ‖ = MACH , (3.88) 
where MACH is typically around 1 ⋅ 10 -16 , meaning that, because of their frequency scaling they will be artiicially ampliied

‖ 1 j P ΛH Z ℎ P ΛH ‖ = MACH , (3.89)
when the frequency is low enough. For instance, at a frequency of 1 ⋅ 10 -40 Hz the norm of the term becomes of the order of 1 ⋅ 10 31 . Finally, as explained in Section 3.e, the projectors can be computed in near-linear complexity thanks to multi-grid preconditioning [LB12; NN12]. his tehnique being outside the scope of the hapter the reader is referred to pyamg [START_REF] Olson | PyAMG: Algebraic Multigrid Solvers in Python[END_REF] and AGMG [Not] whih are two well-established and freely available implementations of the tehnique.

i) Numerical Results

In this section, the diferent properties of the higher order qH formulation are illustrated through a series of numerical examples. Mie series EFIE T0-P0 EFIE T1-P1 Fig. 3.16.: Far ield scatered by a sphere of radius /30 -where is the wavelength of the impinging plane wave -using order = 0 and = 1 formulations. he Mie series are used as reference. Both formulations were computed with 75 element per wavelength but it is clear that the higher order formulation yields more accurate results for an equivalent discretization.

To verify the correctness of the order = 0 and = 1 qH projected formulations and of their implementations, the far ield scatered by a sphere is veriied against the Mie series at relatively low frequency (Figure 3.16). As expected both formulations converge to the analytical solution with the higher order formulation converging faster.

he low frequency stability of the conditioning of all formulations has been veriied on both a sphere and a torus (Figures 3.17a and 3.17b, respectively) to control that global loops are appropriately handled by the new shemes. hese results indicate that the projected formulations do not sufer from the low frequency ill-conditioning that their standard counterparts exhibit. In addition, the current cancellations introduced in Section 3.d. .1 are also addressed by the qH shemes. he numerical stability of the currents computed with the new formulations has been studied at low frequency (1 ⋅ 10 -10 Hz) by comparing the non-solenoidal and solenoidal parts of the solutions of order = 1 of qH and non-qH formulations (Figures 3.18a and 3.18b). he results demonstrate that the non-solenoidal parts of the solutions are in agreement and have not been cancelled out in neither formulations. However, the solenoidal part of the standard EFIE has undergone numerical cancellation and could not be recovered. hese results are only presented for the case of the toroidal structure, but similar ones have been obtained for order = 0 and = 1 on both spherical and toroidal structures; the remaining results are not presented here for conciseness.

Finally, the dense discretization stability of the projectors has been veriied on both a sphere and a torus by performing a reinement analysis of the condition number of the projected and non projected formulations (Figures 3.19a and 3.19b). Because the projectors have a lat spectrum, they are expected not to degrade further the dense discretization breakdown that intrinsically plagues the EFIO. Given that the projected and non-projected formulations exhibit a quadratic growth of their conditioning with increasing discretization, this property is veriied.

j) Conclusion

In this hapter the low frequency breakdown of the EFIE and its causes have been introduced and analysed. his study was followed by a presentation of the traditional LS decomposition and its acting principle. However, because it is unpractical in complex scenarios a qH projectors based solution that alleviates all the limitations of the original sheme was introduced. he qH projectors have then been extended to handle higher order discretization, in order to form highly eicient and accurate EFIE formulations. To allow the reader to reproduce the presented results, some of the most critical implementation details required for stability until arbitrarily low frequency were explained. Computational tehniques required to compute the projectors in near-linear time have also been presented for order = 0. he fast computation of the projectors for order > 0 is still the topic of active investigations and is crucial for applying the projectors to the largest application scenarios.

In Chapter 4 the projectors will be extended to the case of wire-like structures discretized with 1-dimensional basis functions. Finally, in Chapter 5 they will be used to build a fully stabilized and extremely accurate CFIE formulation.

Chapter 4

Low Frequency and Reinement Regularization for the hin-Wire EFIE hanks to its stability and eiciency, the wire Electric Field Integral Equation has been widely used to simulate scatering by wire-like structures. However, similarly to its surface counterpart, this formulation sufers from both a dense discretization and a low-frequency breakdown, which adversely impact its accuracy and solvability. In this chapter, new formulations, immune from both breakdowns, are introduced for the exact and reduced kernel formulations. hese formulations rely on an extension to wire structures of the surface quasi-Helmholz projectors, on a spectral analysis of both kernels in a canonical case and on a carefully chosen hierarchical preconditionner. he spectral analysis demonstrates the existence of two distinct simulation regimes, only one of which remains stable at high reinement. hese new formulations have the strong beneit of not requiring the identiication of global loops in the structure. Numerical results illustrate the regularization properties of our scheme.

a) Introduction

T hanks to its stability and computational eiciency, the thin-wire electric ield integral equation (wire EFIE) has been widely used, in researh and in commercial solvers, for simulating scatering problems by wire-like Perfect Electrical Conductors (PEC) structures. Provided that the simulated structures are thin enough not to have any radial current [START_REF] Wilton | Evaluation and Integration of the hin Wire Kernel[END_REF], the wire EFIE is more computationally eicient and stable than the traditional surface EFIE. his is why most solvers include hybrid wire-surface solvers [START_REF] Vipiana | Optimized Numerical Evaluation of Singular and Near-Singular Potential Integrals Involving Junction Basis Functions[END_REF].

Two diferent formulations of the wire EFIE, based on two diferent kernels, have been widely studied in the literature [WC06; CWR06; DDF01; MW06; FW01; BH07; WB76]. he so-called exact kernel has been proven to yield relatively well conditioned systems thanks to its logarithmic singularity [Pea75; WHW94; Ryn00], and is the one recommended [Ryn92; MW06] for accurate and stable simulations, regardless of the Right Hand Side (RHS). However this kernel includes an azimuthal integral on the wire surface making it computationally expensive. his is why the reduced kernel, whih assumes azimuthal invariance of the current density, has been introduced. However there has been a long discussion amongst the community regarding its solvability [Jon81; FPA08; Fik+11; PFM10; Fik01; BT07]. It turns out that the reduced kernel wire EFIE is ill-posed and only admits solutions for smooth enough RHS [START_REF] Fikioris | On the Use of Nonsingular Kernels in Certain Integral Equations for hin-Wire Circular-Loop Antennas[END_REF]. Furthermore the stability of the solution it yields is also dependant on the wire radius of the simulated geometry [START_REF] Van Beurden | Analysis and Regularization of the hin-Wire Integral Equation With Reduced Kernel[END_REF]. Hence, extra caution should be used when dealing with the reduced kernel wire EFIE.

Despite its advantages, the wire EFIE shares some of the limitations of its surface counterpart. Most notably, it sufers from both a low-frequency breakdown [START_REF] Cui | Accurate Analysis of Wire Structures from Very-Low Frequency to Microwave Frequency[END_REF] and a dense discretization breakdown [START_REF] Van Beurden | Analysis and Regularization of the hin-Wire Integral Equation With Reduced Kernel[END_REF]. When discretized via BEM, these issues will cause the EFIE to yield high condition number matrices. his, in turn, makes it diicult and expensive, or in extreme cases impossible, to solve the discretized system with iterative solvers. hese two issues should be addressed in order for the wire EFIE to retain its advantages when simulating highly reined structures and/or structures at low frequency.

he low frequency breakdown is the consequence of an ill-scaling of the solenoidal and non-solenoidal parts of the EFIE operator. Not only does it cause the condition number of the EFIE matrix to increase drastically when the frequency goes down, it also causes numerical cancellations in the solution. he accuracy of the solution will then degrade until, at low enough frequency, resolution becomes impossible. he low frequency breakdown has traditionally been addressed via loop-star decomposition [START_REF] Vipiana | Automatic Loop-Tree Sheme for Arbitrary Conducting Wire-Surface Structures[END_REF], whih is used to separate the solenoidal and non-solenoidal parts of the operator, in order to re-scale them appropriately. While efective, this solution requires the detection of global loops, whih can make it inconvenient for complex structures. In order to address this limitation [START_REF] Andriulli | On a Well-Conditioned Electric Field Integral Operator for Multiply Connected Geometries[END_REF] has recently introduced, for the surface EFIE, another tehnique whih relies on projectors to perform the quasi-Helmholz decomposition and the re-scaling. hese quasi-Helmholz projectors have the advantage of not requiring any loop detection, making them a good candidate for a scalable formulation.

Several contributions have focused on speeding up the resolution of the wire EFIE, in order to compensate the slowdown caused by the high-reinement breakdown. Many of these contributions [LL98; NGT97; GMS06; RBK15] have been using hierarhical basis functions in order to sparsify the BEM matrix. However this kind of tehniques will degrade the solution, given that they rely on thresholding the elements of the impedance matrix. here have also been investigations on addressing the high-reinement breakdown directly. For instance [START_REF] Van Beurden | Analysis and Regularization of the hin-Wire Integral Equation With Reduced Kernel[END_REF] notices that, in a particular regime of the equation, a Laplacian preconditioner can cure Section 4.b hin-Wire EFIE Formulation the high-reinement breakdown.

his hapter introduces, for both kernel, fully regularized wire EFIE formulations, immune from both breakdowns (in the amendable regime), that do not require the searh for global loops. he low frequency regularization has been ahieved by extending the quasi-Helmholz projectors to wire structures. he high-reinement regularization relies on the usage of a carefully selected hierarhical preconditioner. he selection of the right hierarhical basis derives from a complete spectral analysis of the spectral behaviour of the exact and reduced kernel wire EFIE formulations. To the best of our knowledge no suh formulation has yet been introduced.

his contribution is organized as follows. Bakground and notations are introduced in Section 4.b. In Section 4.c the spectral analysis of the exact and reduced kernel wire EFIE is developed. he extension of the quasi-Helmholz projectors to wire structures is presented in Section 4.d and the fully regularized formulations are introduced in Section 4.f along with details related to their implementation in Section 4.g. Finally Section 4.h contains numerical results that illustrate the properties of the newly introduced formulations.

b) hin-Wire EFIE Formulation

Let a PEC wire structure of length , external surface and radius reside in a space of permitivity and permeability . Any incident electric ield impinging on the wire will induce a surface electric current density radiating a scatered electric ield . If is small compared to the wavelength , the wire can be modeled by a curve of length , on whih the current density can be represented in terms of an unknown ilamentary current ( ) = 2π ( ), oriented along the wire axis, with no azimuthal variation [START_REF] Butler | Analysis of Various Numerical Tehniques Applied to hin-Wire Scaterers[END_REF]. In particular this means that the current can be expressed as ( ) = ( ) ̂ ( ), where ̂ ( ) is the unit tangent vector along the curve . Under these assumptions the tangential part of the standard surface EFIE

-j η 0 ̂ ( ) ⋅ T ( ) + 1 2 T ℎ ( ) = -̂ ( ) ⋅ , (4.1)
where the singular and hyper-singular operators T and T ℎ are respectively deined as

T ( ) = ∬ ′ e -j ‖ -′ ‖ 4π‖ -′ ‖ d ′ (4.2)
and

T ℎ ( ) = ∇ ∬ ∇ ′ ⋅ ′ e -j ‖ -′ ‖ 4π‖ -′ ‖ d ′ , (4.3) 
can be simpliied as

-j η 0 ̂ ( ) ⋅ ̂ ′ ′ ex -′ d ′ + 1 2 ̂ ( ) ⋅ ∇ ∇ ′ ⋅ ̂ ′ ′ ex -′ d ′ = -̂ ( ) ⋅ , (4.4)
where ex

-′ = 1 2π π -π e -j ‖ -′ ‖ 4π‖ -′ ‖ d ′ (4.5)
is the exact kernel of the wire EFIE and indicates the azimuthal direction along the wire cross-sections. To allow for numerical resolution of the problem, the wire is discretized into segments of average length ℎ. he current can then be approximated as a sum of triangle basis functions { } ( ) ≈ =0 ( ) .

(4.6) he triangle functions are deined, for eah pair of segments + and -sharing a vertex and whih other vertex is respectively + and -(Figure 4.1), as

( ) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ‖ -+ ‖ ‖ -+ ‖ for ∈ + 1 - ‖ --‖ ‖ --‖ for ∈ - 0 otherwise; (4.7)
his discretization is combined with a Galerkin sheme, yielding the matrix system where

Z i = -j η 0 Z - η 0 j Z ℎ i = v , ( 4 
[Z ] = ( ) ̂ ( ) ⋅ ( ′ ) ̂ ′ ex -′ d ′ d , (4.9) [Z ℎ ] = d ( ) d d ( ′ ) d ′ ex -′ d ′ d , (4.10) [v ] = - ( ) ̂ ( ) ⋅ ( )d , (4.11) 
Z = -j η 0 Zη 0 / j Z ℎ and [i ] = . Another widely used [START_REF] Jin | heory and Computation of Electromagnetic Fields[END_REF] formulation for wire EFIE can be derived in a similar fashion, with the exception that testing of the equation is performed on the axis of the wire -and no longer on its surface -and the radius is considered to be very small. he reduced kernel of this approximated formulation follows directly from , red -′ = e -j ‖ -′ ‖ 4π‖ -′ ‖ . (4.12) c) Spectral Analysis Several excellent works in literature have been analyzing the solvability of the reduced kernel EFIE concluding that it is questionable in general and that a naive use of this formulation may result in the well-known problem of numerical oscillations [Fik+11; PFM10; BT07; DDF01]. At the same time, the exact kernel EFIE has been traditionally considered to have a non critical spectrum. his section is propaedeutical to the next ones and it has the purpose to show that: i) the exact kernel EFIE still has a non-bounded condition number whih, as a consequence, requires regularization; ii) under certain discretization conditions, the ill-posedness of the reduced kernel EFIE can be treated by suitably tuned preconditioning. Regularization tehniques for both cases will then be the subject of Section 4.e.

) Spectrum of the Wire Equations he required haracterizations of the spectra of both exact and reduced kernels will be obtained on the ininite wire, efectively adapting to the case of interest the strategy in [START_REF] Fikioris | On the Application of Numerical Methods to Hallen's Equation[END_REF]. A generalization of the results to the inite wire case could be obtained, however, by leveraging on the strategies similar to those presented in [START_REF] Bekers | Spectral Analysis of Integro-Diferential Operators Applied in Linear Antenna Modelling[END_REF].

It is well known that for an ininite ̂ -oriented dipole of radius the eigenvalues of the vector potential for the ininite wire are

T , = √ 2πF[ ] , (4.13) 
where, for notation simplicity, refers to either ex or red and where F[ ] denotes the Fourier transform of . his result can be derived by irst considering that

(T )( ) = ∞ -∞ ( ′ ) ( , ′ )d = ( * )( ) , (4.14) 
whih ater applying the Fourier transform and using the convolution theorem yields

F (T )( ) = √ 2πF ( ) ⋅ F ( ) . (4.15)
Applying the ansaz ( ) = e j and noticing that F ( ) ( ) = √ 2π ( -2π ), the previous eq. (4.15) becomes

F (T )( ) = √ 2πF ( ) ⋅ √ 2π -2π , (4.16 
)

F (T )( ) = F ( ) 2π ⋅ ( -2π
) , (4.17) and, using the inverse Fourier transform,

(T )( ) = √ 2πF ( ) 2π ⋅ e j (4.18)
hence the eigenvalues of T are

T , = √ 2πF[ ] 2π . (4.19)
For simplifying further the analysis it is suicient to consider only the singular parts of the kernels since their dynamic remainder will only contribute a compact perturbation of the static spectrum. In addition, it is trivial to show that, in the case of an ininite -oriented antenna,

‖ -′ ‖ 2 = 2 2 1 -cos -′ + -′ 2 (4.20)
and under the thin wire approximation

‖ -′ ‖ 2 = 2 + 2 . (4.21)
Using these considerations it is possible to establish the following asymptotic analytic expressions for the singular values of both kernels:

T , ex ∼ (2π) -1 0 2π 0 2π , (4.22) 
and

T , red ∼ (2π) -1 0 2π , (4.23) 
where 0 and 0 are the modiied Bessel functions of the irst and second kind. Here the spectral variable will reside in the interval min , max where min is strictly positive and corresponds to the least oscillating eigenvector (structure dependent) and max correspond to its most oscillating eigenvector (discretization dependent), i.e. max ∝ (2ℎ) -1 .

) Asymptotic Behaviors

Given the asymptotic behaviors of the spectra deduced from eqs. (4.22) and (4.23), the condition number of the exact and reduced kernel EFIEs can be studied in two regimes: (i) the coarse reinement regime in whih ≪ ℎ and (ii) the high reinement regime in whih ≫ ℎ. he spectra of the kernels exhibit signiicantly diferent behaviours in these two regimes and require dedicated analyses to consistently address the dense discretization breakdown. he behaviour of the eigenvalues of the exact kernel in case (i) ( ≪ ℎ), whih in the spectral domain translates into ≪ 1, can be obtained by performing a power series expansion of eq. (4.22) near zero where is Euler's constant. From the power expansion of the vector potential, the behavior of the eigenvalues T ℎ , ex of scalar potential are obtained considering the net two derivative diference between vector and scalar potential operators A similar analysis can be readily performed for the reduced kernel. he results for when case (i) is applied to equation eq. (4.23) are the same as for the exact kernel Finally, in case (ii) the reduced kernel has the following behavior: surface counterpart, projector based solutions will retain their eiciency and their edge over traditional tehniques suh as loop star decompositions. he extension of the projectors relies on the fact that the non-solenoidal decomposition matrix Σ ∈ R × is actually a discretization of the gradient operator

T , ex ∼ ≪1 -(2π) -1 + log(π) + log + O 2 , ( 4 
T , red ∼ ≪1 -(2π) -1 + log(π) + log + O 2 , ( 4 
lim ℎ→0 min T , red = 1 √ 2π 0 (2π min ) = O(1) , (4.34) 
[Σ ] = ⟨ Λ , ⟩ , (4.36) 
where is the set composed of the constant function ↦ 1 over eah segments of the discretized geometry. his matrix can be computed only using connectivity information of the meshed geometry

[Σ ] = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 1 if is + , -1 if is -, 0 otherwise. 
(4.37) he solenoidal projector P Σ can then be deined as

P Σ = Σ Σ T Σ + Σ T , (4.38) 
and the solenoidal projector P ΛH as its remainder

P ΛH = I -P Σ . (4.39)
he wire counterpart of the solenoidal decomposition matrix Λ can not be established in simple terms because the solenoidal functions are cycles of the mesh, and can not be built from purely local information. he overall solenoidal mapping could be built using cycle and/or global loop detection algorithms, however these tehniques exhibit an above quadratic complexity [START_REF] Paton | An Algorithm for Finding a Fundamental Set of Cycles of a Graph[END_REF], hence it is more convenient and computationally eicient to use the deinition proposed in eq. (4.39). he quasi-Helmholz projectors can be used to decompose any hat function expansion coeicient vector into its solenoidal and non-solenoidal components i = P ΛH i + P Σ i .

(4.40)

One crucial property of the projectors is that they can be computed with a nearlinear cost through the algorithm detailed in Section 3.e, leveraging on multigrid preconditioner [START_REF] Napov | An Algebraic Multigrid Method with Guaranteed Convergence Rate[END_REF], making them a very eicient alternative to traditional tehniques.

) Leveraging uasi-Helmholz Projectors he quasi-Helmholz projectors can be used to deine the quasi-Helmholz decomposition operator

M = 1 √ P ΛH + j √ P Σ , (4.41) 
whih has the property M T = M . he result of applying M to the wire EFIE matrix can be expanded as M T Z M = -j(P ΛH Z P ΛH + P Σ Z ℎ P Σ ) + (P ΛH Z P Σ + P Σ Z P ΛH ) + (P Σ Z P Σ )j 2 = -j(P ΛH Z P ΛH + Z ℎ ) + O( ) (4.42) by recognizing that P Σ Z ℎ P Σ = Z ℎ -whih derives from the complementarity of the projctors P ΛH + P Σ = I -and that P ΛH Z ℎ = Z ℎ P ΛH = 0. Since the loop and star main contributions do not scale in frequency, this formulation is immune from the low frequency breakdown. In particular, following the reasoning detailed in Section 3.e it can be shown that both the numerical cancellations and the condition number breakdown are addressed.

Even with the low frequency breakdown cured, this formulation still sufers from an ill-scaling between the vector and scalar potential. his ill-scaling can be compensated, to further reduce the condition number, by adding a scaling term

= ‖Z ℎ ‖ ‖Z ‖ (4.43) to M M = P ΛH + j P Σ . (4.44)
Even though is deined using norms, it can be computed eiciently by using power methods.

e) Hierarhical Preconditioning

To stabilize the dense discretization breakdown of the wire EFIO, whih is asymptotically spectrally equivalent to a Laplacian operator in its quadratic regime, a hierarhical preconditioner based on linear B-splines can be employed. In addition, this preconditioner can also regularize the operator in its linear regime.

For this hapter to be clearer, some key passages in the demonstration of the efectiveness of the hierarhical sheme will be recalled. For a more complete discussion on the topic, the reader can refer to [START_REF] Dahmen | Multiscale and Wavelet Methods for Operator Equations[END_REF].

Let H be an Hilbert space equipped with a norm ‖ ⋅ ‖ H induced by the s.p.d operator O, i.e.

‖ ‖ 2 H = ⟨ , O( ) ⟩ , ∀ ∈ H , (4.45) 
whih can be re-writen in matrix form as , = 2 -and = 0 … 2 . he B-splines wavelets are well suited to the problem at hand since they are scaled and translated hat function

‖ ‖ 2 H = α T O α , ( 4 
( ) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 2 ( -, -1 ) if ∈ , -1 , 2 ( , +1 -) if ∈ , , 0 otherwise. 
(4.52) he hierarhical basis can then be built by complementing the set of functions of previous levels with the functions deined on the new nodes of the current level

+1 = ⊕ ,2 +1 = 0, … , 2 -1 . (4.53)
A construction of 3 is illustrated in Figure 4.7. While this construction is given on straight wire with uniform discretization, it can be generalized to less trivial cases in a way in a natural way.

f) Preconditioned Equation

Ater regularizing the frequency behaviour of the wire EFIE, its condition number still increases with ℎ -1 or ℎ -2 , depending on the regime. hese behaviours can be preconditioned using the hierarhical preconditioner

D H T Z H D , (4.54)
where D is a diagonal preconditioner and H is the matrix expressing the hierarhical B-pline functions as a linear combination of the triangle basis functions used to discretize Z . he fully regularized wire EFIE combines both the frequency and high reinement regularizations and yields the system

D H T M Z M H D y = D H T Mv , (4.55)
where D is a diagonal preconditioner and i = M H D y . However, particular care should be taken when computing the scaling factor of the quasi-Helmholz projectors. If eq. (4.43) was used directly would reintroduce a dependency on the reinement of the geometry, whih would counterbalance the regularization efect of the hierarhical preconditioner. However, because the gap in singular values addressed by is caused by the geometry only the top level hierarhical functions can be extracted for the re-scaling, i.e.

= ‖H T 0 Z ℎ H 0 ‖ ‖H T 0 Z H 0 ‖ , (4.56)
where H 0 is the part of H that only contains the coeicients for the top level (i.e. least reined) hierarhical functions. Since these functions still contain the structural informations but do not hange with increasing reinement, this is constant with regards to ℎ. his formulation is then well-conditioned and immune from both the low frequency and dense discretization breakdowns.

g) Implementation Details

his section will address some of the implementation details that need to taken into account for an efective implementation of the new shemes. First, in order to avoid numerical instabilities in the computation of M Z M , the matrix product has to be expanded as in eq. (4.42). his will allow explicit cancellation of the P ΛH Z ℎ and Z ℎ P ΛH terms, that may cause numerical instabilities.

Moreover, the RHS also requires careful treatment: ater rewriting eq. (4.55) as

D H T M Z M H D y = v ΛH + v , (4.57)
where

v ΛH = D H T P ΛH v , (4.58) v Σ = j D H T P Σ v , (4.59)
numerical cancellations need to be accounted for in the computation of v ΛH . When v is induced by a plane-wave excitation of the form exp(-j ̂ ⋅ ), for example, it should be replaced by its extracted version v , generated by exp(-j ̂ ⋅ ) -1 in eq. (4.58), as suggested by [START_REF] Zhao | Cancellations of Surface Loop Basis Functions[END_REF]. Dually, ater solving this system the solution i should be retrieved as

i ΛH = P ΛH H D y , (4.60) i Σ = j P Σ H D y , (4.61) i = i ΛH + i Σ . (4.62)
and the far ield must be computed from the two components i Σ and i ΛH separately so that the extracted exponential exp(-j ̂ ⋅ ) -1 can be used in the computation of the ield scatered by the solenoidal current i ΛH .

Finally, the singularity extraction of the kernels of both EFIEs should be computed with high accuracy in order for the transformations from triangles to wavelet functions to remain correct.

h) Numerical Results

To verify the correctness, preconditioning properties and stability of the fullyregularized formulations eq. (4.55), both with the exact and reduced kernels, a series of numerical experiments have been performed.

First, the new regularized formulations were tested for correctness by simulating the ield scatered by a dipole antenna of unit length and wire diameter of 1 ⋅ 10 -2 m. he simulation was performed at 3 ⋅ 10 7 Hz, with both the full and reduced wire EFIE kernels. he results, illustrated in Figure 4.8, are compared against the analytical expression of the ield radiated by a small dipole and demonstrate the accuracy of the formulation, regardless of the kernel used.

To conirm the stability of the new formulations at low frequency, their conditioning has been studied until 1 ⋅ 10 -40 Hz. While not practical, this extremely low frequency serves to illustrate the continued robustness of the shemes. his study has been performed on a square loop of radius 1 m and on the complex structure illustrated in Figure 4.9 (Figures 4.10a and 4.10b, respectively). Both cases exhibit a stabilized conditioning until arbitrarily low frequencies. he high (but stable) conditioning of the tower structure is due to the scalar potential contribution (whih has been veriied to exhibit an intrinsically high condition number) becoming more important at low frequencies because it is no longer dampened by its -1 scaling. In addition, the apparently stable conditioning at 1 ⋅ 10 16 of the standard formulations is due to numerical saturations in the computation of the condition number and should be disregarded. he numerical stability of the shemes have been veriied on the square loop by computing the loop and star components of the solution vectors of the standard full kernel EFIE, the corresponding qH formulation and a loop star decomposed EFIE for reference (Figures 4.11a and 4.11b). he simulations clearly demonstrate that, while all formulations preserve the non-solenoidal parts of their solutions, only the decomposed ones yield accurate solenoidal parts. For more details in the causes of these cancellations see Chapter 3.

he high-reinement behaviour of the new formulations is illustrated in the dense discretization regime in Figure 4.12a. Given the compactness of the reduced kernel, the condition number of the corresponding formulation is not regularized. However, as expected, the exact kernel formulations exhibits a lat condition number with increasingly denser discretization. A similar study, illustrated in Figure 4.12b, has been performed for the coarse reinement regime. Both formulations are stabilized in this regime, up to logarithmic increase in the condition number. Similar results also hold for the complex structure illustrated in Figure 4.9 (Figures 4.13a 

i) Conclusion

he new wire EFIE formulations presented in this work are immune from both the high-reinement and the low frequency breakdowns, and does not require the searh for global loops. he hierarhical preconditioner have been hosen to math the spectral behaviour of both wire EFIE kernels under both of their regimes. Numerical results demonstrated the accuracy and regularization properties of our shemes in non-trivial cases.

Chapter 5

Magnetic and Combined Field Integral Equations Based on the uasi-Helmholz Projectors

Boundary integral equation methods for analyzing electromagnetic scatering phenomena typically sufer from several of the following problems: (i) ill-conditioning when the frequency is low; (ii) ill-conditioning when the discretization density is high; (iii) ill-conditioning when the structure contains global loops (which are computationally expensive to detect); (iv) incorrect solution at low frequencies due to current cancellations; (v) presence of spurious resonances. In this chapter5 , quasi-Helmholz projectors are leveraged to obtain a MFIE formulation that is immune to drawbacks (i)-(iv). Moreover, when this new MFIE is combined with a regularized EFIE, a new quasi-Helmholz projector CFIE is obtained that also is immune to (v). Numerical results corroborate the theory and show the practical impact of the newly proposed formulations.

a) Introduction

T ime-harmonic scatering by PEC objects otentimes is modeled using fre- quency domain boundary integral equations. Among them, electric and magnetic ield integral equations (EFIE and MFIE) [START_REF] Van Bladel | IEEE Press series on electromagnetic wave theory[END_REF] are the most popular. Although the EFIE is easily discretized using RWG basis functions [START_REF] Rao | Electromagnetic Scatering by Surfaces of Arbitrary Shape[END_REF], it sufers from ill-conditioning when the frequency is low and/or the discretization density is high. he MFIE, on the other hand, remains well-conditioned in both regimes, provided that a mixed discretization sheme is employed [START_REF] Cools | Accurate and Conforming Mixed Discretization of the MFIE[END_REF]. In practice, however, it is not feasible to obtain accurate results for the MFIE at extremely low frequencies without resorting to highly precise numerical quadrature methods. In addition to the above issues, both the EFIE and the MFIE sufer from current cancellations at low frequencies [START_REF] Zhang | Magnetic Field Integral Equation at Very Low Frequencies[END_REF][START_REF] Qian | Enhanced A-EFIE With Perturbation Method[END_REF][START_REF] Qian | A uantitative Study on the Low Frequency Breakdown of EFIE[END_REF]. he EFIE's conditioning and current cancellation problems can be overcome by using loop-star or loop-tree decompositions [WG81a; Vec99; ZC00; LLB03; Eib04]. For multiply connected geometries, this requires the detection of global loops, whih is computationally expensive [START_REF] Wilton | On Improving the Stability of the Electric Field Integral Equation at Low Frequency[END_REF]. hese tehniques also fail to address the dense discretization breakdown phenomena [ATV10; And+08] whih causes the EFIE's condition number to grow quadratically with the mesh reinement parameter. Worse still, loop-star tehniques for combating the EFIE's low-frequency conditioning problems further degrade the equations dense discretization behavior [START_REF] Andriulli | Loop-Star and Loop-Tree Decompositions: Analysis and Eicient Algorithms[END_REF].

Several formulations have been introduced to address these low-frequency issues without the computational burden of global loop detection [START_REF] Qian | An Augmented Electric Field Integral Equation for High-Speed Interconnect Analysis[END_REF][START_REF] Zhu | A Rigorous Solution to the Low-Frequency Breakdown in Full-Wave Finite-Element-Based Analysis of General Problems Involving Inhomogeneous Lossless/Lossy Dielectrics and Nonideal Conductors[END_REF]. hese solutions, however, do not address the dense discretization ill-conditioning of the EFIE. Both issues can be concurrently takled by leveraging hierarhical quasi-Helmholz decompositions [VVP07; AVV08; Che+09; ATV10]. hese decompositions also have been successfully coupled with other approahes suh as Calderón preconditioning [CN02; Con+02; Ada04; Dar06; SL09; And+08; SJZ10] and Debye-inspired shemes [START_REF] Epstein | Debye Sources and the Numerical Solution of the Time Harmonic Maxwell Equations[END_REF]. he price to be paid for this dual stabilization is, once again, the need for global loop detection at very low frequencies. In addition, several of the aforementioned tehniques fail to properly address low-frequency numerical cancellations occurring in the solution vector [Yun+03; CTH08; QC10; Bog+14]. Several of the above drawbaks have been successfully addressed by the promising sheme in [START_REF] Vico | he Decoupled Potential Integral Equation for Time-Harmonic Electromagnetic Scattering[END_REF]. Alternative remedies to current cancellations include perturbation methods [Yun+03; CTH08; Sun+13] and Calderón regularization combined with loop star decompositions [SL09; SJZ10]. Both families of solutions do, however, have shortcomings: the former is only applicable at low frequencies and exhibits the same spectral issues as the formulation it is applied to -high reinement breakdown for the EFIE or global loop detection for the MFIE and Calderón EFIE -while the later also requires global loop detection and treatment of the high reinement instability of the loop-star decomposition. It should also be noted that some recent incarnations of augmented equations are immune to several of the above mentioned drawbaks, though they require the recovery of auxiliary quantities [START_REF] Cheng | Augmented EFIE With Normally Constrained Magnetic Field and Static Charge Extraction[END_REF][START_REF] Das | Modiied Separated Potential Integral Equation for Low-Frequency EFIE Conditioning[END_REF].

Recently, an electric type equation based on quasi-Helmholz projectors was proposed that is immune to all of the aforementioned issues [START_REF] Andriulli | On a Well-Conditioned Electric Field Integral Operator for Multiply Connected Geometries[END_REF]. A similar regularization has also been applied to the time domain electric ield integral equation [BCA15a; BCA15b] and both the time domain and the frequency domain PMCHWT equations [START_REF] Beghein | Handling the Low-Frequency Breakdown of the PMCHWT Integral Equation with the uasi-Helmholz Projectors[END_REF][START_REF] Beghein | A Robust and Low Frequency Stable Time Domain PMCHWT Equation[END_REF].

In this hapter, quasi-Helmholz projectors are used to obtain a new MFIE that no longer requires interaction integrals to be computed using extremely accurate quadrature rules. Additionally, the solenoidal and nonsolenoidal current components are scaled suh that low frequency cancellations are avoided. As a result, the formulation remains accurate down to extremely low frequencies. Scatering problems involving PEC objects can also be solved using the CFIE, whih is a linear combination of the EFIE and the MFIE. his equation has the added beneit that it does not support spurious resonances [START_REF] Chew | Gedanken Experiments to Understand the Internal Resonance Problems of Electromagnetic Scatering[END_REF]. In this hapter, the new regularization method for the MFIE is combined with that for the EFIE presented in [START_REF] Andriulli | On a Well-Conditioned Electric Field Integral Operator for Multiply Connected Geometries[END_REF]. he resulting CFIE is not only low-frequency stable but also immune to spurious resonances. Preliminary results of this researh have previously been presented as conference contributions [And+14;[START_REF] Andriulli | A Well-Conditioned Combined Field Integral Equation Based on uasi-Helmholz Projectors[END_REF].

his hapter is organized as follows. To set notation, Section 5.b deines the standard EFIE and MFIE as well as their discretizations and related quasi-Helmholz current decompositions. In Section 5.c, a quasi-Helmholz decomposition is applied to a new symmetrized form of the MFIE. he resulting equation can be discretized accurately using standard numerical quadrature methods, and can be scaled in frequency suh that no low frequency cancellations occur. In Section 5.d, this MFIE is combined with the regularized EFIE [START_REF] Andriulli | On a Well-Conditioned Electric Field Integral Operator for Multiply Connected Geometries[END_REF] to obtain an extremely low frequency stable CFIE. Section 5.e discusses numerical results that corroborate the theory and conclusions are presented in Section 5.f. b) Bakground and Notations he EFIE and MFIE operators T and K are deined as T ( ) = T , ( ) + T ℎ, ( ) ,

(5.1)

T , ( ) = j ̂ × -j 4π ( ′ )d ′ , (5.2) T ℎ, ( ) = -j ̂ × ∇ -j 4π ∇ ′ ⋅ ( ′ )d ′ , (5.3) 
K ( ) = -̂ × . . ∇ × -j 4π ( ′ )d ′ , (5.4) 
where = ‖ -′ ‖, is the boundary of a closed domain ⊂ R 3 and ̂ is its exterior normal vector. Furthermore, given the angular frequency , = √ and

+ - + - + -
Fig. 5.1.: Notations used for the deinition of an RWG basis function; denotes the deining inner edge that links vertices + and -and + and -the two triangles connected to this edge whih are completed by the vertices + and -, respectively.

= / ; here and the permitivity and permeability of vacuum, respectively. If is perfectly conducting, it supports an electric current ( ) satisfying both the EFIE

T ( ) = ̂ × ( ) (5.5)
and the MFIE

I 2 + K ( ) = ̂ × ( ) (5.6) 
for all ∈ ; where and denote the impinging electric and magnetic ields, respectively. To numerically solve these equations via a Galerkin procedure, ( ) is expanded into RWG basis functions ( ) [START_REF] Rao | Electromagnetic Scatering by Surfaces of Arbitrary Shape[END_REF] as

( ) ≈ =1 [j ] ( ) , (5.7) 
where is the number of edges of the mesh. Following [START_REF] Andriulli | On a Well-Conditioned Electric Field Integral Operator for Multiply Connected Geometries[END_REF], the RWG functions are normalized suh that the integrated lux through their deining edges equals one. Next, the EFIE (5.5) is tested with rotated RWG functions ̂ × ( ) , while the MFIE (5.6) is tested with rotated BC functions [BC07] ̂ × ( ) . he BC functions are divergence-conforming functions deined on the barycentric reinement of the mesh. In addition, they are quasi curl-conforming in the sense that the mixed Gram matrix between curl-conforming rotated BC functions and RWG functions is well conditioned. For an explicit deinition of these functions the reader is referred to [And+08; BC07]. Overall, the testing procedure results in the and

Σ = ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 1 if the cell equals + -1 if the cell equals - 0 otherwise , (5.19) 
where vertices -and + deine the oriented edge haracterizing RWG function , and -and + denote the corresponding cells (Figure 5.1). he matrix H represents the mapping from the RWG space to the quasi-harmonic or global loop space composed of 2 ℎ functions, where ℎ is the number of handles in the structure. For a complete description of this mapping and the associated harmonic functions, the reader is referred to [START_REF] Wilton | On Improving the Stability of the Electric Field Integral Equation at Low Frequency[END_REF] and [START_REF] Cools | Nullspaces of MFIE and Calderon Preconditioned EFIE Operators Applied to Toroidal Surfaces[END_REF].

A few properties of these matrices are recalled next to facilitate further developments. For the sake of simplicity we restrict ourselves to the case of a geometry with a single closed connected component. All derivations below can be extended to arbitrary geometries using the relations in [START_REF] Wilton | Topological Consideration in Surface Path and Volume Cell Modeling of Electromagnetic Scaterers[END_REF]. Given this assumption, Λ has a null-space spanned by the all-one vector Λ ∈ R , i.e. Λ Λ = .

(5.20)

Similarly, linear dependency of the star functions cause Σ to exhibit a one-dimensional null space spanned by the all-one vector Σ ∈ R , i.e.

Σ Σ = .

(5.21)

Finally, it is trivial to show that the loop and star subspaces are orthogonal, i.e.

Σ T Λ = 0.

(5.22)

As Λ and Σ are ill-conditioned and because of the high computational cost of detecting global loops required to build H , it is convenient to leverage the quasi-Helmholz projectors introduced in [START_REF] Andriulli | On a Well-Conditioned Electric Field Integral Operator for Multiply Connected Geometries[END_REF] to obtain a quasi-Helmholz decomposition of the EFIE and MFIE operators. he projectors are deined as

P Σ = Σ Σ T Σ + Σ T , (5.23) 
P ΛH = I -P Σ , (5.24) 
where + denotes the Moore-Penrose pseudo-inverse and I is the identity. Any RWG expansion coeicient vector can then be decomposed as j = P ΛH j + P Σ j (5.25)

where P ΛH j and P Σ j contain the RWG expansions of the solenoidal (loop) and non-solenoidal (star) components of the current, respectively. hese operators are self-adjoint and also can be used to decompose the RWG testing space. Similarly, the dual projectors P Λ and P Σ H , deined as

P Λ = Λ Λ T Λ + Λ T , (5.26) 
P Σ H = I -P Λ ,

(5.27) decompose any linear combination of BC (basis or testing) functions into a nonsolenoidal and solenoidal part, respectively. It should be noted that construction of these projectors does not require the detection of global loops, and that Σ T Σ + can be eiciently computed using multigrid preconditioners [And+13b; NN12].

c) Regularizing the MFIE at Extremely Low Frequencies

) Low Frequency Behaviour of the MFIE he standard RWG discretization of the MFIE fails to provide accurate results at low frequencies due to the unphysical scaling of the loop and star (or tree) components of the current [START_REF] Zhang | Magnetic Field Integral Equation at Very Low Frequencies[END_REF]. It was shown in [START_REF] Cools | Improving the MFIE's Accuracy by Using a Mixed Discretization[END_REF][START_REF] Cools | Accurate and Conforming Mixed Discretization of the MFIE[END_REF] that the mixed discretization of the MFIE (in whih BC or CW functions [START_REF] Chen | Electromagnetic Scatering by hree-Dimensional Arbitrary Complex Material/Conducting Bodies[END_REF] are used as testing functions) improves accuracy. In particular, the loop and star components of the current obtained from this formulation scale physically [START_REF] Bogaert | Low-Frequency Scaling of the Standard and Mixed Magnetic Field and Müller Integral Equations[END_REF]. his result also holds true for multiply connected geometries [START_REF] Bogaert | Low Frequency Scaling of the Mixed MFIE for Scaterers with a Non-Simply Connected Surface[END_REF]. he mixed MFIE formulation still sufers from three problems. First, the physical scaling of the current can only be retrieved when interaction integrals are computed to high accuracy [START_REF] Bogaert | Low-Frequency Scaling of the Standard and Mixed Magnetic Field and Müller Integral Equations[END_REF]. Second, the nonsolenoidal current component scales as O( ) whereas the solenoidal component is of O(1). As a result, at very low frequencies and when using inite precision, both components should be stored in diferent arrays to prevent the nonsolenoidal component from losing accuracy or even being cancelled out [Yun+03; CTH08; QC10; Bog+11b; Bog+11a]. hird, the static MFIE (at = 0) has a null space when applied to multiply connected geometries. It follows that the discretized MFIE has ℎ singular values that scale as O 2 [START_REF] Cools | Nullspaces of MFIE and Calderon Preconditioned EFIE Operators Applied to Toroidal Surfaces[END_REF]. Any accurate discretization of the MFIE operator must preserve this null-space. Standard RWG discretizations of the MFIE operators are not capable of correctly modelling this null space [And+14]. he mixed MFIE, on the other hand, correctly models this null-space in ininite precision. However, ater discretization, the null-space associated singular values will not be more accurate than the precision of the quadrature rule.

where K 0 is the static limit of K and K ′ = K -K 0 is the dynamic remainder,

K ′ = O 2 as → 0 [Bog+11a]
. When using this decomposition in (5.29), it can be veriied that K 0 satisies

P Σ H G T 2 -K 0 G T -1 G T 2 + K 0 P ΛH = 0 .
(5.35) he above equation holds the key to unloking a frequency-stable MFIE and can be proven by introducing P Pol , P Tor , P Pol , P Tor the orthogonal projectors into the right and let null-spaces of the internal and external MFIE operators, i.e.

G T 2 + K 0 P Pol = 0 , (5.36) 
G T 2 -K 0 P Tor = 0 , (5.37)

P Pol G T 2 -K 0 = 0 , (5.38) 
P Tor G T 2 + K 0 = 0 . (5.39) 
Note that G T 2 + K 0 P Tor = G T P Tor , (5.40)

G T 2 -K 0 P Pol = G T P Pol , (5.41) 
P Tor G T 2 -K 0 = P Tor G T , (5.42) 
P Pol G T 2 + K 0 = P Pol G T .
(5.43)

We can then deine ◗ Λ = P ΛH -P Pol -P Tor ,

(5.44) whih clearly satisies

P Λ ◗ Λ = ◗ Λ , (5.45) 
since the union of the right null spaces of the internal and external MFIE operators contains all the non-trivial cycles of the structure [START_REF] Cools | Nullspaces of MFIE and Calderon Preconditioned EFIE Operators Applied to Toroidal Surfaces[END_REF]. Dually,

Q Σ = P Σ H -P Pol -P Tor , (5.46) 
satisies

P Σ Q Σ = Q Σ .
(5.47)

It follows that

G T 2 -K 0 G T -1 G T 2 + K 0 P ΛH = G T 2 -K 0 G T -1 G T 2 + K 0 ◗ Λ + P Pol + P Tor = G T 2 -K 0 G T -1 G T 2 + K 0 ◗ Λ + G T 2 -K 0 G T -1 G T 2 + K 0 P Tor (5.48) = G T 2 -K 0 G T -1 G T 2 + K 0 ◗ Λ + G T 2 -K 0 P Tor = G T 2 -K 0 G T -1 G T 2 + K 0 ◗ Λ ,
and similarly that

P Σ H G T 2 -K 0 G T -1 G T 2 + K 0 =Q Σ G T 2 -K 0 G T -1 G T 2 + K 0 .
(5.49) he term P Σ H O P ΛH can now be studied. To this end, note that

2 P Σ H O P ΛH = = P Σ H G T 2 -K 0 G T -1 G T 2 + K 0 P ΛH +P Σ H G T 2 -K 0 G T -1 K ′ P ΛH -P Σ H K ′ -j G T -1 G T 2 + K 0 P ΛH (5.56) -P Σ H K ′ -j G T -1 K ′ P ΛH = 0 + O 2 + O 2 -O 4 ,
whih completes the low-frequency analysis of the overall operator

O = P Λ O P Σ + P Λ O P ΛH + P Σ H O P Σ + P Σ H O P ΛH = O 2 + O(1) + O(1) + O 2 2 . (5.57) 
To hoose , in addition to the conditioning constraint imposed by (5.57), we need to consider the physical scaling of the current, whih for a plane wave excitation, is [START_REF] Qian | Enhanced A-EFIE With Perturbation Method[END_REF] P ΛH j = O(1) , (5.58)

P Σ j = O( ) .
(5.59) hese scaling laws reveal that for a standard formulation, a severe numerical cancellation is expected due to the fact that the non-solenoidal component of the current (whih scales as O( )) will disappear when stored alongside the solenoidal component (whih scales as O(1)). Instead, for the regularized formulation proposed here, the equation is solved for i = M -1 j , whih scales as

P ΛH i = O( ) , (5.60) 
P Σ i = O( / ) .
(5.61)

It is now evident that by seting = √ , the above scaling behaviors become

P ΛH i = O √ , (5.62) 
P Σ i = O √ , (5.63) 
eliminating the low frequency cancellation and, at the same time, stabilizing the matrix at low frequencies. he later is seen upon inserting the new scalings into (5.57):

O = O 2 + O(1) + O(1) + O 2 2 = O( ) + O(1) + O(1) + O( ) .
(5.64) he deiciency of the MFIE in the static regime also is solved by the sheme proposed here. In fact, using (5.57) when = 0 we obtain

O P ΛH = P Λ O P ΛH , (5.65) 
whih proves the existence of an exact matrix null-space in statics of dimension exactly equal to that of the harmonic subspace. Summarizing, the proposed MFIE resolves the three main issues of prior standard and non-standard MFIE formulations and now can be linearly combined with EFIEs using projectors. d) A New CFIE he theoretical developments of the previous sections resulted in a magnetic ield operator that can be stably discretized for arbitrarily low frequencies using standard integration rules. he electric counterpart of this operator was obtained in [START_REF] Andriulli | On a Well-Conditioned Electric Field Integral Operator for Multiply Connected Geometries[END_REF]. We will now combine these two operators, irst proving the resonancefree property of their continuous combination at high frequencies, and then showing their compatibility at arbitrarily low frequencies.

Standard Calderón CFIE equations use a localization strategy for the EFIE component to obtain a resonance-free equation [START_REF] Adams | Physical and Analytical Properties of a Stabilized Electric Field Integral Equation[END_REF][START_REF] Contopanagos | Well-Conditioned Boundary Integral Equations for hree-Dimensional Electromagnetic Scatering[END_REF]. Here, we follow the Yukawa-Calderón approah in [START_REF] Contopanagos | Well-Conditioned Boundary Integral Equations for hree-Dimensional Electromagnetic Scatering[END_REF]. When the Yukawa-Calderón EFIE is linearly combined with the new magnetic operator deined in Section 5.c, the following symmetric Yukawa-Calderón CFIE is obtained:

2 I 2 -K -j I 2 + K ( ) + T -j T ( ) = I 2 -K -j ̂ × + T -j ̂ × . (5.66)
To demonstrate that this equation represents a valid CalderónCFIE, i.e. is free from internal resonances, we prove that the operator

2 I 2 -K -j I 2 + K ( ) + T -j T (5.67)
can be inverted for any . Since the operator I 2 -K (-j ) always admits an inverse, the invertibility of (5.67) is equivalent to the invertibility of

I 2 + K + I 2 -K -j -1
T -j T .

(5.68)

Given the anti-commutation property

T -1 K + KT -1 = 0, (5.69) 
whih follows directly from the second Calderón identity

T -1 K = T -1 KT T -1 = -T -1 T KT -1 = -KT -1
, and deining

A = I 2 -K -j -1 T -j , (5.70) 
it follows that

̂ × A T = ̂ × I 2 -K -j -1 T -j T = ⎛ ⎜ ⎜ ⎝ ̂ × T -1 -j I 2 -K -j -1 ⎞ ⎟ ⎟ ⎠ T = ⎛ ⎜ ⎜ ⎝ ̂ × I 2 + K -j T -1 -j -1 ⎞ ⎟ ⎟ ⎠ T = ̂ × T -j I 2 + K -j -1 T = I 2 + K -j -1 T ̂ × T -j = -̂ × I 2 -K -j -1 ̂ × ̂ × T -j = ̂ × I 2 -K -j -1 T -j = ̂ × A .
(5.71) 100 Section 5.d

A New CFIE

Given this result and the fact that

̂ × A = ̂ × I 2 -K -j -1 T -j
(5.72) is a real operator, the symmetry implies it being Hermitian, so that

x † ⎛ ⎜ ⎜ ⎝ ̂ × I 2 -K -j (j ) -1 T -j ⎞ ⎟ ⎟ ⎠ x (5.73)
is real and nonzero. By leveraging a straightforward extension of heorem 3.1 in [START_REF] Bruno | Electromagnetic Integral Equations Requiring Small Numbers of Krylov-Subspace Iterations[END_REF], it follows that

I 2 -K -j I 2 + K + T -j T (5.74)
is always invertible. Otherwise said, the Yukawa-Calderón CFIE we propose is resonance free. he discretization of the proposed Yukawa-Calderón CFIE follows directly from that of the new MFIE in Section 5.c and that of the EFIE in [START_REF] Andriulli | On a Well-Conditioned Electric Field Integral Operator for Multiply Connected Geometries[END_REF]:

2 ▼ T G T 2 -K -j G T -1 G T 2 + K M i + ▼ T ❚▼(G) -1 M T T M i = 2 ▼ T G T 2 -K -j G T -1 v ℎ + ▼ T ❚▼(G) -1 M T v . (5.75)
Here = 1 and = √ in the high and low frequency regime, respectively. We next study the later more in detail. Scaling in the later regime follows from the results of the previous section:

2 ▼ T G T 2 -K -j G T -1 G T 2 + K M i + ▼ T ❚▼(G) -1 M T T M i = -j P ❚ P G -1 T ℎ + j❚ ℎ G -1 P T P + j P ❚ P G -1 P T P + 2 P G T 2 -K 0 G T -1 G T 2 + K 0 jP + 2 jP G T 2 -K 0 G T -1 G T 2 + K 0 P + O( ) =O(1) + O(1) + O(1) + O(1) + O(1) + O( ) .
(5.76) Combining this result with the corresponding right hand side scalings (5.62) and (5.63) proves the overall low-frequency stability of new CFIE.

0

e) Numerical Results

his section presents numerical results that validate the above properties of the proposed MFIE and CFIE. he irst set of tests involve a PEC sphere of radius 1 m. Figure 5.2 shows the scatered far ield at = 200 MHz obtained using the new MFIE and CFIE as well as other established formulations (standard EFIE, EFIE with projectors, Calderón EFIE with projectors, Mixed MFIE, CFIE). For this high frequency case all formulations deliver accurate results, thus validating our implementations. A irst diference in performance between our new formulations and their standard counterparts is noted when lowering the frequency. Figure 5.3 shows data similar to Figure 5.2 but for = 1 ⋅ 10 -40 Hz. It is clear that accuracy breakdowns occur for the non-projected methods -the mixed MFIE, the EFIE, and the CFIE (for the later two the lak of accuracy also is due to conditioning problems). On the other hand, all projected formulations, including the two new ones, deliver accurate results for arbitrarily low frequencies.

he in Figure 5.4, whih illustrates the conditioning of the diferent operators for low frequencies. It is clear that the new MFIE remains as well-conditioned as its standard counterpart. he Calderón CFIE is also low-frequency stable, unlike the standard CFIE, whih exhibits a severe ill-conditioning caused by its EFIE contribution. Figure 5.5 shows that, despite its regularized low frequency behavior, the Calderón MFIE is prone to spurious resonances causing it to become periodically ill-conditioned. his issue is shared by all non combined formulations and can be overcome by combined ield strategies. It is clear from the igure that both the new Calderón CFIE and its standard counterpart exhibit resonance-free behaviour.

he last key property to be illustrated is the reinement stability of the proposed formulations. his property was veriied by studying the dependence of the condition number of the diferent formulations applied to a unit radius sphere with increasing discretization density (Figure 5.6). hese results conirm that the second kind nature of our new formulations renders them immune to the high-reinement breakdown.

In summary, the above results show that the new Calderón MFIE yields correct results for arbitrarily low frequencies and is well conditioned for both low frequencies and dense discretization. Additionally, when combined with the projector Calderón EFIE the new Calderón CFIE, whih is low frequency stable, immune to dense discretization breakdown, and free from non-physical resonances, is obtained.

To ensure that the properties illustrated so far still persist for multiply connected 10 -44 10 -34 10 -24 10 -14 10 -4 10 6 structures, many of the previous analyses were repeated for a square torus. he correctness of the formulation has been veriied by studying the far ield scatered by the torus at high and very low frequencies, respectively (Figures 5.7 and 5.8).

Since no analytic solution is readily available for the square torus, the solution of the Calderón EFIE was used as a reference and particular care was taken to avoid frequencies corresponding to an internal resonance. While the results are similar to those of the sphere, the reader should be aware that, because of its toroidal and poloidal null-spaces, the Calderón MFIE required the usage of a pseudo inversion to obtain current solutions at very low frequencies. he low frequency stability of the Calderón MFIE and Calderón CFIE on the toroidal structure are demonstrated in Figure 5.9, while their resonance free behaviors are illustrated in Figure 5.10. Finally, the resilience of both formulations to dense discretization breakdown is illustrated in Figure 5.11, whih presents the condition number of the integral operators with increasing discretization of the square torus.

One of the key advantages of the new Calderón MFIE sheme is that it does not require extremely accurate numerical integration rules because it allows explicit cancellation of near-zero terms that are hallenging to obtain numerically. he slow convergence of the standard numerical integration shemes can be seen in Figure 5.12, in whih the ratio of the norm of the term in (5.35) to the norm of the full operator with increasing number of integration points is presented. While this ratio does decrease with the number of Gaussian quadrature points, it does so very slowly and remains far from a mahine-precision zero value. he efect of these numerical inaccuracies is evident when comparing the singular value decompositions of the Mixed MFIE and of the new Calderón MFIE in Figure 5.13. It is clear that the null singular values corresponding to the toroidal and poloidal subspaces of the square torus immediately reah the mahine precision zero in the case of the Calderón MFIE, while for the Mixed MFIE they will require an unreasonably complex integration rules to even remotely resemble a nullspace. Finally, to demonstrate that our shemes can be readily applied to more complex problems we studied the low frequency conditioning of our operators (Figure 5.15) for the complex, multiply connected geometry in Figure 5.14.

f) Conclusion

his hapter presented a new symmetrized MFIE that can be stably and efectively discretized using quasi-Helmholz projectors. When linearly combined with a quasi-Helmholz projector-based Calderón EFIE, a new CFIE that is immune from all drawbaks that plague the majority of existing formulations is obtained. In fact, the proposed CFIE remains well-conditioned both at low frequencies and for high discretization densities, allows for an accurate solution at extremely low frequencies without requiring special numerical quadrature methods, does not require the detection of global loops when applied to multiply connected geometries, and is provably free from internal resonances. Numerical results conirm the theoretically predicted properties of the proposed equations.

Chapter 6

Impacting Brain Computer Interfaces with Computation Electromagnetics

Currently the most afordable and practical general purpose brain computer interfaces (BCIs) rely on electroencephalography (EEG) or magnetoencephalography which ofer a high temporal resolution. However these techniques are severely limited in spatial resolution, especially compared to the very high level of details that can be obtained from magnetic resonance imaging. A widely explored approach to compensate this limitation is to integrate EEG source imaging (ESI) techniques into the process. hese techniques are based on a model of the electromagnetic behaviour of the brain, oten leveraging on BEM or FEM to reconstruct the brain activity from scalp measurements, and have shown promising results in challenging BCI applications. his chapter presents the irst results of this thesis's work dedicated to enhancing the state of the art BCI via improvements to the integral equation models used for ESI. Early in this work, it became clear that the prohibitive cost of human experiments would make the research very challenging. In addition, because the human experiments are notoriously unreliable at small scales and because it is impossible to know what exactly happened in the head of the user, it was decided to use simulated BCI data. However, none of the few available works on the topic were matching the requirements to make strong statements about BCI performance. his state of facts motivated the development of a fully simulated BCI evaluation framework. While the simBCI framework is not a substitute for actual experiments, it makes it possible to study in details the impact of speciic changes to the processing scheme and to gain insight into the interactions of the diferent components. A large amount of time has been devoted to the development of simBCI in order to make sure that it was able to produce realistic BCI signals while still being modular enough for allowing investigations. For this reason only very early results related to the improvement of the ESI-augmented BCI have been produced as of this writing. However the scientiic contribution of simBCI itself has been recognized by its publication in a domain-speciic journal. In this chapter the motivations behind simBCI are presented and the framework and its usage are descried. An experimental protocol is described that will be used in the near future to investigate areas of improvements in integral equation based BCI.

a) Introduction B rain computer interfaces are systems designed to translate the diferent brain states of its users into predetermined commands for the target system. Application scenarios for BCIs range from therapeutic where they can be used to command assistive tehnologies suh as prostheses for amputees or spellers for patient sufering for loked-in syndrome [START_REF] Birbaumer | Breaking the Silence: Brain-Computer Interfaces (BCI) for Communication and Motor Control[END_REF] to innovative interfaces for a wide variety of systems [START_REF] Zander | Towards Passive Brain-Computer Interfaces: Applying Brain-Computer Interface Tehnology to Human-Mahine Systems in General[END_REF][START_REF] Coyle | Guest Editorial: Brain/Neuronal -Computer Game Interfaces and Interaction[END_REF]. Traditionally BCI systems are composed of an acquisition device, typically EEG or magnetoencephalogram (MEG), in harge of measuring part of the user's brain activity and of a processing pipeline that is trained to distinguish between the diferent mental states of the user and to translate them into the corresponding commands. In the case of non-invasive BCI, EEG remains the most widely used acquisition device thanks to its high temporal resolution, afordability and practicality. he signals it measures are, however, intrinsically diicult to work with because of their low signal-to-noise ratio (SNR) and low spatial resolution. hese hallenges have motivated the development of numerous and ever more advanced tehniques to improve the accuracy of EEGbased BCIs; a thorough review of these tehniques can be found in [START_REF] Lote | A Review of Classiication Algorithms for EEG-Based Brain-Computer Interfaces[END_REF] and its updated version in [START_REF] Lote | A Review of Classiication Algorithms for EEG-Based Brain-Computer Interfaces: A 10 Year Update[END_REF].

Usage of EEG source imaging (ESI), oten inherited from researh in epilepsy, in BCI have seen a steady increase over the last few years [START_REF] Handiru | EEG Source Imaging of Movement Decoding: he State of the Art and Future Directions[END_REF]. hese tehniques aim at reconstructing the current distribution inside the brain from the EEG scalp measurements. his reconstruction relies on an accurate anatomical modeling of the diferent components of the head (scalp, skull, cortical surface, white mater, etc.), whih can be obtained from magnetic resonance imaging (MRI), to compute the mapping from current sources -modeling the neurons [START_REF] De Munk | Mathematical Dipoles Are Adequate to Describe Realistic Generators of Human Brain Activity[END_REF] -within the brain to their efect on the electrodes. In the literature this problem is designated as the EEG forward problem (FP) and has been extensively studied [START_REF] Hallez | Review on Solving the Forward Problem in EEG Source Analysis[END_REF]. FPs taking into account the complex anisotropy proiles of the brain are built using FEM [START_REF] Wolters | Inluence of Tissue Conductivity Anisotropy on EEG/MEG Field and Return Current Computation in a Realistic Head Model: A Simulation and Visualization Study Using High-Resolution Finite Element Modeling[END_REF] yielding large matrices, making the leadield computationally expensive to compute. However, it is common to model the head as three concentric spheres with homogeneous conductivity proiles, in whih case smaller systems can be obtained by leveraging BEMs [START_REF] Hedrih | Comparison of the Spatial Resolution of Source Imaging Tehniques in High-Density EEG and MEG[END_REF]. Because this homogeneity approximation introduces non-negligible errors in the modelling, new BEM solvers capable of modeling the white mater anisotropy are being developed [START_REF] Olivi | Handling White-Mater Anisotropy in BEM for the EEG Forward Problem[END_REF][START_REF] Pillain | On the Handling of Brain Tissue Anisotropy in the Forward EEG Problem with a Conformingly Discretized Surface Integral Method[END_REF]. his mapping is obtained for every dipoles on grid within the brain (or on the cortex) in order to form the leadield matrix whih maps the efects of all dipoles to the electrodes. In the context of ESI the reciprocal mapping needs to be obtained. However, given that researh EEG headset are composed of, at most, 256 electrodes [START_REF] Song | EEG Source Localization: Sensor Density and Head Surface Coverage[END_REF] and that the number of reconstructed current sources is in the order of 10 000 [START_REF] Handiru | EEG Source Imaging of Movement Decoding: he State of the Art and Future Directions[END_REF], the inverse problem is severely ill-posed and admits several solutions. Tehniques based on regularization [START_REF] Greh | Review on Solving the Inverse Problem in EEG Source Analysis[END_REF] and genetic algorithms [START_REF] Uutela | Global Optimization in the Localization of Neuromagnetic Sources[END_REF], among others, have been used to obtain reliable solutions to this inverse problem (IP).

his hapter focuses on identifying the impact of the accuracy of the integral equation-based ESI can have on the performance of BCI systems. In other words, this work tries to determine to what extent and under what conditions increasing the precision and complexity of the integral modeling of the forward problem leads to improvements in BCI performance. Early developments of this work have identiied several issues with the traditional approah to BCI studies: (i) it is very costly and time consuming to train a large user base to perform statistically signiicant BCI experiments; (ii) using actual EEG recordings, even if acquired from freely available datasets, is unsatisfactory since it is not possible to know what actually happened in the brain of the user during the trial, and this lak of ground truth makes it almost impossible to draw insights or strong conclusions on the performance of BCI pipelines; (iii) in the case of ESI it is also complex to obtain and segment MRI models of every subject. hese hallenges have motivated the development of simBCI, the irst -to the best of our knowledge -freely available full simulator for BCI generation and analysis of EEG recordings for BCI tasks and BCI processing pipelines. Other works have been published on simulated BCI but they are either based on modiied actual EEG measurements [START_REF] Lote | Generating Artiicial EEG Signals To Reduce BCI Calibration Time[END_REF][START_REF] Castaño-Candamil | Post-Hoc Labeling of Arbitrary EEG Recordings for Data-Eicient Evaluation of Neural Decoding Methods[END_REF] or not freely available [START_REF] Tangermann | Review of the BCI Competition IV[END_REF]. he simBCI framework has been developed in collaboration with Dr. Jussi Lindgren and has been accepted for publication in a domain speciic peer-reviewed journal [Lin+18b]. his tool enables new ways of approahing BCI development and numerous researh axes are either under investigation or are to be in the near future. In order to take advantage of the new possibilities ofered by simBCI, whih allows for studies of very speciic parameters of the pipelines (whih is hardly possible with experimental approahes) an experimental protocol has been established and is being implemented. As a side efect this work has delivered the irst (to the best of out knowledge) publicly available reimplementations of 

b) Traditional BCI Systems

Traditional BCI systems include a large number of components suh as ilters, classiiers, optimizers, etc. some of whih need to be trained to learn the diferent features that haracterize the mental states of interest (Figure 6.1). Because of the variabilities between tasks, patients and even sessions, the training should be performed for eah patient at every session. During the training phase the system dictates the mental state its user should be in whih allows the mahine learning components to identify whih features of the EEG signal are discriminant and whih brain state or label, is also trained. he trained feature extractor and classiier are then used during the online phase to classify the unlabeled EEG signals and associate them to a speciic command. Alternative shemes based on neural networks or Riemannian spaces have been introduced to unify the feature extraction and classiication [START_REF] Lote | A Review of Classiication Algorithms for EEG-Based Brain-Computer Interfaces: A 10 Year Update[END_REF]. Others have atempted to use unsupervised learning approahes in order to do without the training phase altogether [START_REF] Lote | A Review of Classiication Algorithms for EEG-Based Brain-Computer Interfaces: A 10 Year Update[END_REF].

A simple example purely data-driven BCI pipeline can be obtained by using a common spatial patern (CSP) as feature extractor and a linear discriminant analysis (LDA) as classiier [Lin+18b]. Despite its simplicity this pipeline as been shown, in simBCI to yield up to 80% accuracy given a long enough training and a favorable enough SNR.

c) Integral Equations-enhanced BCI

Enhancing BCI with integral equations and ESI has promising applications. One of the key advantages of this tehnique is physiological interpretability of the dipoles activity, whih allows medical knowledge to be inserted in the problem to try to address its under-determination. his is in opposition with raw EEG signals that are reportedly less interpretable and potentially misleading in some instances. he spatial and anatomical informations provided by ESI make it possible, for instance, to only consider the signals coming from the region of interest (ROI) that is known to be associated with the BCI task under consideration (e.g. the motor cortex in the case of motor imagery (MI) [START_REF] Cincoti | High-Resolution EEG Tehniques for Brain-Computer Interface Applications[END_REF]). Suh physical priors have the potential to reduce the under-determination of the inverse problem and to improve understanding of the merits of demerits of diferent BCI approahes, whih is oten not possible for purely data-driven approahes. In addition, because of the blurring efect caused by the forward problem, accurate ROI selection is less straightforward in the electrode space, contributions of one region of the brain is spread across several electrodes that are not necessarily the closest ones. Finally, the features in the dipole space have been shown to be more statistically signiicant [START_REF] Cincoti | High-Resolution EEG Tehniques for Brain-Computer Interface Applications[END_REF], whih indicates that data-driven approahes applied to the source space can be expected to be more robust than in the electrode space.

) Forward Problem he forward problem (FP) leverages on Maxwell's equations in the quasi-static regime (see Section 2.h) to compute the scalp potentials generated by a single dipole located in the brain. Under the approximation of a head composed of three homogeneous concentric volumes, integral equations are the sheme of hoice to solve this problem: given the notations of Section 2.i, the D operator

(D )( ) = ′ 1 -′ ′ d ′ (6.1)
is used to build the mapping from source space -neurons -to measurement space -electrodes -by repeatedly solving the forward problem

( ) = + +1 2 ( ) - =1 ( +1 -) D 0, ( ) , ∈ , (6.2) 
with diferent RHSs , once for every dipolar source. he results of these inversions are then aggregated to form the leadield matrix G ∈ R × whih maps the signal of the dipolar sources in the brain s to the electrodes on the scalp v = Gs . (6.3)

In the distributed approahes, whih are the most popular in the literature, the dipoles are placed on a grid (either fully volumetric or restricted to the cortex), whih results in a leadield matrix composed of typically 10 000 columns and 256 rows. Alternatively, in the localized approahes, a few dipoles (typically less than ten) are placed in the brain, at arbitrary locations. hese modeling diferences in the FP are motivated by the diferent approahes used to solve the IP.

) Inverse Problem he inverse problem estimates s given a speciic set of EEG measurements and additional constraints ensuring unicity. Spatial iltering and/or mahine learning tehniques can then be applied on the reconstructed source activity s. he time dependency of the EEG signal is also oten taken into account by considering a set of solutions for diferent time samples; v and s then become matrices. he dimensions of G clearly indicate that the problem is ill-posed and admits more than one solution. To overcome this issue several tehniques have been developed. In particular regularization methods have been widely used. Given a noisy EEG measurement vector ṽ , a regularization term composed of a scalar and a function , these methods aim at minimizing the function (s) = ‖Gs -ṽ ‖ 2 + (s) .

(6.4) If = ‖ ⋅ ‖ 2 the problem becomes a Tikhonov regularization and its solution is

[Gre+08] s = G T G + I -1 G T ṽ . (6.5)
he appropriate hoice of is critical to obtaining a proper estimation of the solution, and several tehniques are available [START_REF] Greh | Review on Solving the Inverse Problem in EEG Source Analysis[END_REF]. In the literature the tehnique behind eq. (6.5) is oten referred to as the minimum norm estimate (MNE), and is know to yield poor results [Pas99] -in particular for deep sources. he weighted minimum norm estimate (WMNE) has been introduced to correct the depth bias of MNE by introducing of a weight matrix W in the deinition of the regularization function

(s) = ‖W s‖ 2 , leading to a diferent solution s = G T G + W T W -1 G T ṽ . (6.6)
he matrix W has several deinitions but usually relects the norm of the columns of the leadield matrix. he standardized low resolution brain electromagnetic tomography (sLORETA) is another closely related tehnique that normalizes the results of MNE by the diagonal of the matrix

S = G T GG T + I -1 G . (6.7)
hanks to its high accuracy [Pas02; Dal+00] sLORETA has been extensively used in the context of BCI [START_REF] Handiru | EEG Source Imaging of Movement Decoding: he State of the Art and Future Directions[END_REF]. A inal mention should be made for the low resolution brain electromagnetic tomography (LORETA) tehnique that uses a weighted Laplacian operator (s) = ‖ W s‖ 2 to obtain the smoothest solution while avoiding artiicial dampening of deep sources. To that end W is the column normalization of the leadield matrix.

he localized -or parametric -algorithms form another family of tehniques for solving the inverse problem. Instead of placing a large number of dipoles on a predeined grid and computing a single leadield matrix, dipoles (typically up to ten) are placed in the source space and their positions, moments and amplitudes are optimized to ind the coniguration that will yield scalp tensions as close to the actual measurement as possible. his can be ahieved by minimizing the 2 residual norm ‖v -G {d } s {d } ‖ , (6.8)

where {d } is a set of dipoles represented by their positions and moments. Traditional optimization methods suh as gradient descent or genetic algorithms [UHS98; Cuf95; FGG03; MKD02; KLH05] can be used to solve this problem and ind the optimal conigurations of dipole positions {d } and activations {d } . Since it requires re-computation of the leadield G {d } at every step of the optimization procedure this method is computationally demanding and does not seem to have found widespread adoption in the ESI-augmented BCI community.

) Inverse-Based BCI Leveraging on the ESI tehniques introduced above it is possible to add a spatial iltering phase to the standard BCI. One way of using these algorithms is to project the EEG signal, ater iltering, to the source space, in whih anatomical knowledge can be used to select a subset of dipoles that are relevant to the BCI task (Figure 6.2) [START_REF] Cincoti | High-Resolution EEG Tehniques for Brain-Computer Interface Applications[END_REF]. his has the advantage of reducing the number of features passed down the pipeline and hence should reduced the experimental training time [START_REF] Handiru | EEG Source Imaging of Movement Decoding: he State of the Art and Future Directions[END_REF]. However, anatomical ROI selection supposes that a subject-speciic head model has been used, or active dipoles could be excluded from the selected dipoles. If no anatomical model is available, data-driven approahes can be used for ROI selection [START_REF] Handiru | EEG Source Imaging of Movement Decoding: he State of the Art and Future Directions[END_REF]. It may seem that the beneit of ESI is lost altogether, however this approah still has numerous beneits: (i) the selected ROI is still in the source space and can be easily heked, giving insight into how the algorithms behave; (ii) statistical signiicance of the features has been reported to be beter in the source space [START_REF] Cincoti | High-Resolution EEG Tehniques for Brain-Computer Interface Applications[END_REF]; (iii) the deblurring efect of the IP allows for more speciic spatial iltering and facilitates artifact removal; (iv) inverse-based pipelines also increase the discriminability of nearby sources [START_REF] Edelman | EEG Source Imaging Enhances the Decoding of Complex Right-Hand Motor Imagery Tasks[END_REF] whih is required by more complex BCI tasks suh as 4 classes wrist movement.

Hybrid shemes have also been introduced, for instance the sheme presented by Edelman et al. irst decomposes the EEG signal into independent components using independent component analysis (ICA) before projecting the relevant components etc). Combined to the lak of absolute certainty that the user was actually performing the mental task at hand at every epoh of the trial, this makes experimental data unreliable for the irst phases of theoretical developments.

In the literature this hallenge is oten mitigated by recruiting a large number of users to perform the same simulations. In addition to being very time consuming this approah as numerous hallenges. Some researh teams are using a reference recording the quality of whih is assumed to be reasonable [START_REF] Tangermann | Review of the BCI Competition IV[END_REF]. Still, when trying to understand the underlying causes of any improvement or degradation in performance of a speciic BCI paradigm, this kind of data makes asserting any claim very diicult.

In order to address this situation, simulated data can be of great value. Hence, a consequent part of this thesis has been dedicated to the development and validation of the irst (to the best of our knowledge) framework for simulation of BCI data. A formal introduction of the simBCI framework has been published in [Lin+18a;Lin+18b]. he relevance of this work and the crucial need for fully controlled simulated BCI data is further illustrated by the almost concurrent development of another simulation framework [START_REF] Krol | SEREEGA: Simulating Event-Related EEG Activity[END_REF] by an independent group.

) Data Generation

Because the objective behind the development of simBCI was to be able to precisely describe every component of an EEG recording, the signal generation starts directly within the brain (and not e.g. on the electrode space). Algebraically the EEG signal is generated as

V = G(S + N ) + N , (6.9)
where G is the leadield matrix of the simulated setup, V ∈ R × contains the voltages measured at eah of the electrodes over the samples, S ∈ R × are the corresponding activations of the dipoles in the brain and N and N describe additive noise originating from the brain volume and the measurement surface, respectively. he forward model behind the provided leadield is mostly orthogonal to simBCI core functionalities, except regarding whether the dipoles moments have constrained orientation (typically orthogonal to the cortical surface) or if they are freely oriented (i.e. composed of three coordinates per dipole). his description implies that the signal is haracterized by both spatial and temporal haracteristics. Indeed, in order accurately simulate real EEG recording simBCI has to be able to express correlations between events in both time and space. In particular, the events generating the signals are placed on a timeline at the beginning of the simulation in order generate time sample that are not simply uncorrelated measurements of diferent events. he events simulating the BCI tasks are haracterized by three main descriptor:

When refers to the timeline generator whih are in harge of distributing the events over the diferent time samples of the simulation. hey are also used to associate event descriptions with the timeline labels. he events either be placed randomly on the timeline (e.g. eyeblinks) or associated with trials of the actual BCI task (Figure 6.3).

Where describes the location where the event occurs; for instance, in the case of let and right MI [START_REF] Pfurtsheller | Motor Imagery and Direct Brain-Computer Communication[END_REF] the activity is located in the corresponding motor cortices, while in the case of steady-state visually evoked potentials (SSVEP) [START_REF] Vialate | Steady-State Visually Evoked Potentials: Focus on Essential Paradigms and Future Perspectives[END_REF] it is located in the occipital lobe. he locations are either heuristically deduced by simBCI itself (e.g. eyes, let motor cortex, etc.) or, if the user has enough information about the physiological model, by the indices of speciic leadield rows. It is also possible to have more distributed efects, suh as bakground volumetric noise, applied to the whole domain.

What is the actual description of the physiological efect associated with the BCI task, or other event suh as eyeblinks or bakground noise. In the case of MI the main event is event-related desynhronisation (ERD) while in the case of SSVEP it is a spectral peak at the frequency of the observed stimulus. Generating this kind of realistic events is more hallenging than trivial power spikes, and has required in depth review of the literature. ) BCI Processing Pipelines he processing of the generated data is delegated to the pipelines whih are a succession of elementary processors whose individual output will be consumed by the following processor. Processors can include mahine learning components suh as CSP, support vector mahine (SVM), LDA but also inverse algorithms. For BCI experiments the content of the pipeline is completely to the user's discretion, but the inal processor must be a classiier and return a vectors containing, for eah trial, the probabilities that it belongs to speciic classes.

To reproduce a real BCI seting, the processing is composed of a training phase and a pseudo online phase. During the processing phase the processors that require training can adapt their parameters, while those who do not remain unmodiied. In the training phase the diferent processors do have access to the actual labels of the timeline. During the online phase a new timeline and dataset is generated and fed to the trained pipeline, the labels however are no longer accessible to the processors.

his arhitecture can support the simplest processing hains, suh as a CSP-LDA combination as well as some the most advanced one. In particular pipelines following these presented by Cincoti et al. [START_REF] Cincoti | High-Resolution EEG Tehniques for Brain-Computer Interface Applications[END_REF], Edelman et al. [START_REF] Edelman | EEG Source Imaging Enhances the Decoding of Complex Right-Hand Motor Imagery Tasks[END_REF], Lote et al. [START_REF] Lote | FuRIA: An Inverse Solution Based Feature Extraction Algorithm Using Fuzzy Set heory for Brain-Computer Interfaces[END_REF] and Besserve et al. [START_REF] Besserve | Improving uantiication of Functional Networks with EEG Inverse Problem: Evidence from a Decoding Point of View[END_REF] have been reimplemented in simBCI. he reimplementation of the irst two appear to be the irst openly available. One of the reasons behind these re-implementations is to be compare them in a consistent and, hopefully, fair seting in order to determine their respective strength and weaknesses.

e) Experimental Protocol

) Expected Outcomes he development of the simBCI was motivated by the objective of improving the state-of-the-art BCI performances via improvements in (i) the forward modeling of the brain using novel computational tehniques (ii) improving the speed of the overall process to ensure that the tehnology remains compatible with real-time applications and (iii) possibly improve upon the state-of-the-art pipelines.

) State of the Art Implementation

As stated previously, state-of-the-art BCI processing pipelines have been reimplemented in order to study the efects of several parameters on their accuracy. A quik overview of their behaviours is provided in the following. he pipeline introduced by Cincoti et al. [START_REF] Cincoti | High-Resolution EEG Tehniques for Brain-Computer Interface Applications[END_REF] is deigned for a two-class BCI system in whih the user can move a cursor up and down. he authors use WMNE in order to reconstruct the cortical current density (CCD) whih is then spatially iltered using anatomical knowledge of the ROIs related to the task. he spectral power of 30 frequency bands of eah remaining hannel are then estimated, yielding a relatively large number of features. Feature selection is then performed using 2 analysis; three of the features most correlated to the variation in labels were selected -two in the motor cortex and one in the mesial region. he authors report an improved accuracy when using ESI in this two-classes case, and have even atempted a height classes experiments where ESI signiicantly improved BCI performance.

he tehniques involved of the work introduced by Edelman et al. [EBH16] are signiicantly more complex but have the advantage of not requiring explicit selection of the ROI. he authors consider a BCI involving four diferent classes of movement of the right hand. he ROI is selected by performing an ICA in the electrode space. he most relevant independent component was selected by performing a time frequency analysis of the hannels based on Morlet wavelets where is the central frequency of the wavelet, its temporal resolution and the frequency under consideration. hese wavelets are particularity useful for evaluating the evolution of the spectrum of the signal over time. he wavelets were used to split eah trial into time-localized frequency bands that were used as features. he most relevant features were determined using a searh algorithm and Mahalanobis distance (MD) whih haracterizes the similarity of random distribution. he searh algorithm was used to iteratively add to the set of selected features the feature that would maximize the distance to the rest of the features; one suh set was built for eah BCI class. his signal was then projected on the cortical surface using WMNE and only the dipoles with the highest amplitude were kept. In the classiication the MD was used to determine whih class-dependant feature set was the closest to the trial data.

( ) = √ π -1/

) Experimental Protocol

To verify the hypotheses that motivated the investigation into ESI-augmented BCI an experimental protocol was put in place based on the following considerations:

Validation In order to make sure that the re-implemented state-of-the-art pipelines were behaving as intended by their original authors, simulations similar to the experiments described in their presentation papers were run. Given that the setings were identical -except for the fact that the data was simulated -, classiication accuracies were also expected to closely resemble the ones given in the literature. Because of missing parameters or inaccuracies in the original pipelines descriptions the re-implementation phase turned out to be more hallenging that expected. his lak of reproducibility further underlines the need for results from simulated BCI as the authors of new investigations could provide the actual coniguration iles of the simulator to the community for closer inspection.

Genrality Every hypotheses on the efect of a parameter on classiication accuracy (e.g. increased forward model resolution) are veriied against all available pipelines, in order to make sure if the improvement is anecdotal, general or restricted to speciic tehniques (e.g. speciic inverse algorithms). However, because the pipelines are very diferent there is a risk that under-performance of one of them could be due to an inadequate coniguration for the testing seting. For instance the number of ICA components in the pipeline presented in [START_REF] Edelman | EEG Source Imaging Enhances the Decoding of Complex Right-Hand Motor Imagery Tasks[END_REF] needs to be adapted to the number of classes of the BCI task. To address this issue, the hyper-parameters of the pipelines are optimized, for every new test, using mahine learning and/or big data approahes. his is expected to improve the fairness of the overall testing procedure.

Significance Because of the very high dimensionality of the simulation parameters (SNR, size of the ROI, etc.), one should carefully hek that any observed improvement or regression in classiication accuracy is not due to a speciic coniguration. hus all simulations are performed on a multi-parameter space where at least three parameter dimensions are explored at the same time.

Given the curse of high dimensionality the simulation must be evaluated on very large dataset in order to obtain statistically signiicant results. his is, once again, possible to perform the same level of inspection with actual user recordings because of the few number of samples available to the researhers.

One of the irst investigation direction coming to mind is the study of the efect of speciic inverse algorithms on the accuracy of the pipelines. Investigating whih type of inverse performs best in diferent classes is critical to determine if improvements are possible in this area or if algorithms originating from diferent communities can be transplanted in BCI. For instance the epilepsy localization community has been developing several ESI algorithms [START_REF] Beker | Brain-Source Imaging: From Sparse to Tensor Models[END_REF], however it is not clear if their most performing algorithms would be equally performing in a BCI seting. he algorithms designed for epilepsy are optimized for inding high power in very localized areas. It is possible that this family of inverse algorithms translates to BCI setings suh as SSVEP for whih the neural activity can be expected to have higher intensity in the occipital lobe, however it is muh less clear whether or not this also applies to MI where the main efect is ERD. Consequently part of the experimental protocol is dedicated to studying the raw localization accuracy of the inverse algorithms that have been re-implemented in simBCI and determine if they are potential candidates for ESI-augmented BCI. Because of the blurring efect of the FP and of the ill-posedness of the IP perfect reconstruction of the cortical activity is not to be expected. Hence inversion accuracy should rely on more sophisticated metrics than the relative error between the original and reconstructed data. When considering focal activity in the brain a large number of metrics have been introduced to haracterize the accuracy of the reconstruction:

• relative error between the amplitudes of the signals;

• average distance between the original and reconstructed amplitude maxima [Mic+04; Gre+08];

• distance from the center of the brain of the original and reconstructed maximum amplitude source [START_REF] Yvert | Improved Dipole Localization Using Local Mesh Reinement of Realistic Head Geometries: An EEG Simulation Study[END_REF]. While simple this metric permits identiication of depth-biased algorithms suh as MNE;

• percentage of intersection of the original dipoles with the strongest 5% of reconstructed dipoles [START_REF] Baillet | A Bayesian Approah to Introducing Anatomo-Functional Priors in the EEG/MEG Inverse Problem[END_REF];

• noise reliance is also considered using the previous metric and correlate the accuracy with the SNR [START_REF] Shwarz | Evaluation of a New MEG-EEG Spatio-Temporal Localization Approah Using a Realistic Source Model[END_REF].

While some of these metrics are used in the current protocol, the one described in [START_REF] Bradley | Evaluation of Electroencephalography Source Localization Algorithms with Multiple Cortical Sources[END_REF] is more adequate. he metric makes the distinction between the precision whih is haracterized by the number of original sources that have efectively been reconstructed and the recall whih fraction of the original sources were identiied by the ESI algorithm. Taken together these two measures are able to give a more robust indication of the quality of the algorithm, in particular if several sources are active at the same time (whih many of the other metrics fail to haracterize).

Numerous inverses that are either widely used or thought to exhibit properties worth investigating have been implemented into simBCI ; they include

• Minimum norm estimate (MNE);

• Weighted minimum norm estimate (WMNE);

• Minimum current estimates (MCE) [UHS99];

• Low resolution brain electromagnetic tomography (LORETA) [START_REF] Pascual-Marqui | Low Resolution Electromagnetic Tomography: A New Method for Localizing Electrical Activity in the Brain[END_REF];

• Cortical low resolution brain electromagnetic tomography (cLORETA) [START_REF] Wagner | Smooth Reconstruction of Cortical Sources from EEG or MEG Recordings[END_REF];

• Standardized low resolution brain electromagnetic tomography (sLORETA) [NN12];

• Champagne [START_REF] Wipf | Robust Bayesian Estimation of the Location, Orientation, and Time Course of Multiple Correlated Neural Sources Using MEG[END_REF];

• Standardized shrinking LORETA-FOCUSS (SSLOFO) [START_REF] Liu | Standardized Shrinking LORETA-FOCUSS (SSLOFO): A New Algorithm for Spatio-Temporal EEG Source Reconstruction[END_REF];

• Multiple signal classiication (MUSIC) [START_REF] Albera | Brain Source Localization Using a Fourth-Order Delation Sheme[END_REF];

• Extended source multiple signal classiication (ExSoMUSIC) [START_REF] Birot | Localization of Extended Brain Sources from EEG/MEG: he ExSo-MUSIC Approah[END_REF].

Other inverses are sheduled to be implemented in order to perform a thorough assessment of the compatibility of the most well know inverse algorithms with BCI. his kind of evaluation has already been performed in the context of epilepsy but not in the context of BCI and especially not in the context of more complicated shemes suh as multi-task MI.

In addition to the distributed inverses described above, localized algorithms are being implemented in the framework in order to determine why they seem to have fallen out use. Indeed, one of the last contributions on the topic dates bak to 2005 [START_REF] Kamousi | Classiication of Motor Imagery Tasks for Brain-Computer Interface Applications by Means of Two Equivalent Dipoles Analysis[END_REF]. It is not clear if this is due to the computational cost of repetitively recomputing leadield matrices, because of a low convergence rate of the optimization procedure or an overall lak of accuracy in the BCI context.

Using the tools and concepts introduced previously the inluence of diferent parameters can be studied on both inverses only and within an ESI-based BCI. As of this writing the following parameters are to be investigated: Resolution he resolution of the forward model could inluence the number of discriminable dipoles, whih in turn could improve BCI accuracy, especially in multi-class seting suh as the ones presented in [EBH16; Cin+08]. In the current literature the number of dipoles is usually around 10 000 [START_REF] Besserve | Improving uantiication of Functional Networks with EEG Inverse Problem: Evidence from a Decoding Point of View[END_REF] and it should be veriied if more dipoles could lead to beter BCI performance.

Anisotropy he tissue anisotropies of the skull and the white mater have been shown to signiicantly inluence ESI [START_REF] Wolters | Inluence of Tissue Conductivity Anisotropy on EEG/MEG Field and Return Current Computation in a Realistic Head Model: A Simulation and Visualization Study Using High-Resolution Finite Element Modeling[END_REF]. It is worth investigating whether or not it has an efect on BCI; if the ROI is selected by a data-driven process it is not clear if any gain will be noticed, however if it is hosen a priori by a physician the greater the accuracy of the model the beter.

Training length he time required for training the BCI system during human experiments is critical in practical BCI applications because it tires the user before any active usage of the system and is required at the beginning of every sessions. It has already been shown that the reduction in number of features that ESI can provide thanks to spatial iltering should allow for a reduced training time [START_REF] Handiru | EEG Source Imaging of Movement Decoding: he State of the Art and Future Directions[END_REF].

User specific model he importance of having a user-speciic model can be thoroughly heked thanks to the fully controlled environment of simBCI. Time, cost and tehnical constraints oten prevent obtention of MRI models for every user and several studies have been reported to use standard templates suh as [START_REF] Huang | he New York Head-A Precise Standardized Volume Conductor Model for EEG Source Localization and tES Targeting[END_REF] for constructing the leadield [Mic+04; HVG18]. he potential loss in BCI accuracy needs to be veriied in a fully controlled environment.

Noise/Artefact resilience Spatial iltering in the head volume is expected to yield increase resilience of the pipeline to artifacts suh as eye blinks and noise.

Early results presented in [Lin+18b] seem to indicate that this is the case.

In general, the ESI literature shows a tendency to compare very complex inverse pipelines with relatively simple pure mahine learning ones [START_REF] Lindgren | As above, so below? Towards Understanding Inverse Models in BCI[END_REF] making it diicult to question the merits of ESI-augmented and purely data-driven BCIs. To provide an unbiased comparison, state-of-the-art mahine learning pipelines are being implemented into simBCI. One of the main axis of researh are the Riemannian manifold approahes described in [START_REF] Lote | A Review of Classiication Algorithms for EEG-Based Brain-Computer Interfaces: A 10 Year Update[END_REF].

f) Future Work

Ater the experimental protocol described in above is completed, more complex questions will be addressed, e.g. regarding the inluence of ESI on the stability of transfer learning [WLL15; HVG18] or real-time applicability of the tehniques [START_REF] Dinh | Real-Time MEG Source Localization Using Regional Clustering[END_REF]. Some early results produced so far are detailed in [Lin+18b] and will not be recalled here because they focus mostly on data-driven approahes.

g) Conclusion

While investigating the inluence of beter modeling of the brain anisotropies [Rah+17] on BCI, it became clear that making scientiically sound claims would require an enormous investment in both time and money if human trials were to be used. his realization has motivated the development of the apparently irst fully simulated BCI development framework. Ater making sure that the simBCI framework was providing realistic data, it was published in a domain-speciic journal. his has laid the ground work for a thorough investigation into possible improvements to the state-of-the-art BCI systems, whih has already started by the development of a preliminary experimental protocol and will be acted upon in the near future. he work behind the development of simBCI has also been the opportunity to provide the irst publicly available reimplementation of several works, whih is expected to positively afect the community.

Chapter 7

Conclusions and Future Work I n this thesis a series of tehniques aiming to stabilize integral equations have been presented in order to obtain highly accurate and versatile formulations capable of handling low and high frequency scenarios alike. he novel scientiic contributions include the extension of the qH projectors to higher order modeling, thus enabling the development of formulations that exhibit both low frequency stability and higher order convergence rates. hese projectors were then applied to the wire EFIE in order to address the limitations it shares with its surface counterpart. However, while Calderón shemes are usually employed to stabilize the dense discretization behaviour of the surface formulation, b-spline wavelets were employed in the one-dimensional case. he projectors were inally leveraged upon to stabilize the numerical properties of the MFIE, whih could then be combined with an already stabilized surface EFIE thus forming an highly accurate CFIE capable of handling low and high frequency applications without loss of precision nor spurious resonances, making it highly potent formulation for closed structures.

Because the above-mentioned work performed for improving forward EM modeling was completed in advance with regards to this thesis' original plan, a new line of investigations on inverse EM modeling was pursued. Due to the existing expertise of the laboratory in brain modeling, these investigations naturally focussed on the hallenging domain of BCI. While the work is still in its early stages, a full assessment of the state-of-the-art has been performed and has led to the development and publication of what is probably the irst fully simulated experimental BCI environment. As a side efect, this framework has made possible the distribution of the irst publicly available implementation of some key contributions of the BCI community.

To complement the results reported in this thesis, several lines of researh are still to be investigated:

• the high order extension of the qH still requires the development of a fast algorithm to math the high eiciency of their low order counterpart and take full advantage of high order modeling;

• the implementation of the experimental protocol described for the BCI line of investigation is to be completed and run;

• investigations on real time inversion for BCI are required, to ensure the practicality of the most complex shemes;

• the high order tehniques presented in this Chapter 3 could be applied to both the new CFIE and wire EFIE equations.

Most of these tasks and researh axes are being worked on as of this writing and most of them are expected to yield publishable results in relatively short term. 
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 0 Figure 0.1. : Illustration de la dégradation de la solution de l'EFIE en basses fréquences, obtenue en simulant un sphère de rayon 1 m à 1 ⋅ 10 -40 Hz. Les séries de Mie représentent la solution analytique exacte.
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 00 Figure 0.2. : Évolution du conditionnement des matrices d'impédance de l'EFIE à diférentes fréquences pour une sphère de rayon 1 m.
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 0 Figure 0.4. : Exemple d'ondeletes construites sur un segment ilaire.
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 0 Figure 0.7. : Illustration d'un pipeline d'ICM augmenté par imagerie cérébrale.
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  Fig. 2.1.: Illustration of an RWG basis function deined on the inner edge between vertices+ and -, and connecting the cells + and -, whih are the two triangles atahed to the deining edge and completed by the vertices + and -, respectively.
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  .98) he solutions of the sub-problems that satisfy the Sommerfeld radiation condition are = - * , = 1 … . hese local solutions are combined into a single function = =1 ,
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 3 Fig. 3.1.: Illustration of the simplex coordinate system on the reference triangle. he coordinates are deined as the ratio / where is the area of the triangle, and the area of the sub-triangles deined by .
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  Fig. 3.2.: Illustration of a quadratic triangular element.
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 3 Fig. 3.3.: Illustration a toroidal structure and its associated global loops. he vertical -green -arrow indicates the poloidal direction while the horizontal -redone indicates the toroidal direction.

  Fig. 3.4.: RCS of a PEC sphere of radius 1 m, excited by a plane wave oscillating at one wavelength per diameter. In this high frequency case the EFIE yields a result perfectly mathing the Mie series.

  Fig. 3.6.: Evolution of the condition number of the EFIE matrices of a PEC sphere with unit radius at diferent frequencies. Because of numerical limitations in the computation of high condition numbers, very low frequency points are not displayed.

  Fig. 3.7.: RCS of a PEC sphere of radius 1 m, excited by a plane wave oscillating at 1 ⋅ 10 -40 Hz.here is a clear mismath between the Mie series and the EFIE solution caused by the low frequency breakdown of the formulation. On the other hand the LS-EFIE mathes perfectly the Mie series.

  Fig. 3.8.: Evolution of the condition number of the LS-EFIE and EFIE impedance matrices for a PEC sphere with unit radius at diferent frequencies. he condition number of the LS-EFIE remains constant until 1 ⋅ 10 -40 Hz. Because of numerical limitations in the computation of high condition numbers, very low frequency points are not displayed.

  Section 3.f Solution of the Low-Frequency Breakdown for the EFIE Dually to the decomposition and rescaling matrices LB T and B R, the matrices M = -1 j P ΛH + P Σ , (3.62) N = P ΛH -j P Σ (3.63) are used to build the quasi-Helmholz projected electric ield integral equation (qH-EFIE)
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  Fig. 3.10.: RCS of a PEC sphere of radius 1 m, excited by a plane wave oscillating at 1 ⋅ 10 -40 Hz. here is a clear mismath between the Mie series and the EFIE solution, because of the low frequency breakdown of the formulation, while the LS-EFIE and qH-EFIE math perfectly with the Mie series.
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 3 Fig. 3.13.: Diferent families of loop functions encountered in high order modeling. Figure 3.13a loop formed by the order = 0 functions; Figure 3.13b loop formed by the vertex and inner order = 1 functions over two adjacent cells; Figure 3.13c loop formed by linear combinations of the inner order = 2 functions of a single cell.
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 3 Fig. 3.15.: Illustration of the matrices computed on a structure composed of two symmetric triangles (Figure 3.14) : order = 1 product Σ T 1 Σ 1 (Figure 3.15a), tentative reconstruction of the Σ T 1 Σ 1 as Σ T 0 Σ 0 ⊗ A T A (Figure 3.15b) and relative error between the order Σ 1 Σ 1 and the corresponding Kroneker product (Figure 3.15c) whih underlines the non-negligible efect of C T C.

  Fig.3.17.: Evolution of the condition number of the order = 0 and = 1 formulations until extremely low frequencies, with and without qH projectors. he simulated structures are a sphere of radius 1 m discretized with a mesh parameter ℎ = 0.4 m (Figure3.17a) and a torus of large radius 1.3 m and small radius 1 m (Figure3.17b). he lat condition number of the non-qH projected formulation is caused by numerical saturation in the computation of the condition numbers.
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 3 Fig. 3.18.: Illustration of cancellations occurring in the solenoidal part of the current (Figure 3.18b) of the non-qH EFIE of order = 1. he non-solenoidal part of the current is fully preserved (Figure 3.18a). hese currents have been obtained for a torus of large radius 1.3 m and small radius 1 m, discretized with elements of average edge length 0.4 m at 1 ⋅ 10 -10 Hz. Similar results can be obtained for order = 0 and are omited for conciseness.
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 4 Fig. 4.1.: Illustration of hat basis functions, the doted lines indicate the value of the function on the corresponding segments.

Fig. 4 .

 4 Fig. 4.2.: Illustration of the behavior of the various functions involved in the spectral analysis of the exact and reduce kernels (Figure 4.2a) and their inverses (Figure 4.2b).

  of the spectrum of the exact kernel can be obtained by recalling that max = (2ℎ) -1 (where is an undetermined scaling factor) in eqs. (4.24) and (4.25) min T , ex ≈ -(2π) -1 + log(π) + log min , (4.26) and max T , ex ≈ -(2π) -1 + log( π ) -log(2) -log(ℎ) . (4.27) he study of case (ii) -≫ 1 -for the exact kernel requires an asymptotic analysis of eq. (4.22) lim ℎ→0 min T , ex = (2π) -1 0 2π min 0 2π min = O(1) , used [ON10]. Following the same reasoning as in the previous case yields for the scalar potential lim

  Fig. 4.4.: Condition number of the exact kernel vector potential (Figure 4.4a), scalar potential and EFIO (Figure 4.4b) for an increasingly denser discretization of a loop of radius equal to one half of the wavelength of the impinging plane wave. he wire radius of the loop is = 1.6 ⋅ 10 -5 m.

  Fig. 4.5.: Condition number of the reduced kernel vector potential (Figure 4.4a), scalar potential and EFIO (Figure 4.4b) for an increasingly denser discretization of a loop of radius equal to one half of the wavelength of the impinging plane wave. he wire radius of the loop is = 1.6 ⋅ 10 -5 m. he dip of the scalar potential's condition number is explained by the trends illustrated in Figure 4.3.

  Fig. 4.8.: Field scatered by a 1 m dipole antenna at 3 ⋅ 10 7 Hz.
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 4 Fig. 4.9.: Wire-discretized antenna structure.
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 4 Fig. 4.10.: Frequency behaviour of the condition number of the standard EFIEs and the new formulations, computed on a square loop of 1 m side (Figure 4.10a) and on the structure illustrated in Figure 4.9 (Figure 4.10b) both with a wire radius = 1 ⋅ 10 -3 m.

  and 4.13b).

  Fig. 4.11.: Non-solenoidal part (Figure 4.11a) and solenoidal part (Figure 4.11b) of the current on a square loop of 1 m radius induced by an impinging plane-wave at 500 Hz.
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 44 Fig. 4.12.: Spectral behaviour of the EFIEs on square loop of side 1 m at 6 ⋅ 10 7 Hz, in the dense reinement regime obtained with a wire radius = 0.159 m (Figure 4.12a) and in the coarse reinement regime obtained with a wire radius = 1.59 ⋅ 10 -8 m (Figure 4.12b).
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  Fig. 5.2.: Comparison of the far ield scatered by a PEC sphere of radius 1 m discretized with an average edge size of 0.15 m and excited by a plane wave oscillating at 200 MHz.
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 5 Fig. 5.3.: Comparison of the far ield scatered by a PEC sphere of radius 1 m discretized with an average edge size of 0.15 m and excited by a plane wave oscillating at 1 ⋅ 10 -40 Hz.

  Fig. 5.7.: Comparison of the far ield scatered by a PEC square torus with an inner radius of 0.5 m and a tube radius of 0.25 m, discretized with an average edge size of 0.15 m and excited by a plane wave oscillating at 200 MHz.
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 5 Fig. 5.10.: High frequency behaviour of the conditioning of the diferent operators on a PEC square torus of inner radius of 0.5 m and tube radius of 0.25 m, illustrating the resonances of non-combined formulations. he average edge size of the discretization has been kept at one-ith of the wavelength for every simulation.

  Fig. 5.11.: High-reinement behaviour of the conditioning of the diferent operators on a PEC square torus of inner radius of 0.5 m and tube radius of 0.25 m. he nonresonant frequency has been kept constant for all simulations and corresponds to a 5 unknowns per wavelength discretization for the least reined point.

  Fig.5.12.: Decay of the relative (with regards to the full operator) norm of cancelled out term (5.35) of the Calderón CFIE as a function of the number of Gaussian integration points. hese results correspond to a square torus of inner radius 0.5 m and tube radius 0.25 m simulated at 1 ⋅ 10 -10 Hz.
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 5 Fig. 5.13.: Accuracy of the toroidal and poloidal nullspaces obtained by the Calderón and Mixed MFIE as a function of the number of Gaussian integration points. he results correspond to a square torus of inner radius 0.5 m and tube radius 0.25 m simulated at 1 ⋅ 10 -10 Hz.
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 55 Fig. 5.14.: Complex multiply-connected geometry discretized with an average edge length of 0.35 m. he values represented on the geometry correspond to the intensity of the current induced on the PEC structure by a plane wave. he simulating frequency corresponds to 10 unknowns per wavelength.

  Fig. 6.1.: Illustration of a typical data-driven BCI pipeline. he blue color indicates com-ponents that need to be trained while the vertical arrow indicates that external information (prior) is provided to the system.

  Fig. 6.3.: Timeline generated by simBCI for a let-right MI experiment. his timeline illustrates most of the simulation capabilities of the framework as it includes: the bci tasks, rest periods, noise and artifacts (eye movements and eye blinks).
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  Illustration de la résilience de la nouvelle CFIE aux résonances.
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Figure 0.5. : Comparaison des hamps rayonnés par diférentes formulations à 1 ⋅ 10 -40 Hz.

  Evolution of the conditioning of the conditioning of the qH-EFIE, LS-EFIE and EFIE matrices with increasing reinement. he matrices correspond to a PEC sphere with radius 1 m at diferent levels of reinement.
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Fig. 3.11.: Evolution of the condition number of the qH-EFIE, LS-EFIE and EFIE matrices generated on a PEC sphere with radius 1 m at diferent frequencies. Because of numerical limitations in the computation of high condition numbers, very low frequency points are not displayed.

  low frequency stability of the new Calderón MFIE is further demonstrated
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  Low frequency behaviour of the conditioning of the diferent operators on a PEC sphere of radius 1 m. Because of numerical limitations in the computation of very high condition numbers (> 1 ⋅ 10 16 ) some points have been let out. High frequency behaviour of the conditioning of the diferent operators on a PEC sphere of radius 1 m sphere illustrating the spurious resonances occurring in non-combined formulations. he average edge size of the discretized sphere has been kept at one-ith of the wavelength for every simulation. High-reinement behaviour of the conditioning of the diferent operators on a PEC sphere of radius 1 m. he non-resonant frequency has been kept constant for all simulations and corresponds to 5 unknowns per wavelength discretization for the least reined point.

	Condition Number	10 3 10 7 10 11 10 15 Cald. MFIE Condition Number 10 1 10 2 10 3 10 4 EFIE	Cald. MFIE CFIE Cald. CFIE Mixed MFIE Cald. EFIE Proj. EFIE EFIE Proj. EFIE Cald. EFIE CFIE Cald. CFIE	Mixed MFIE
		10 0		
	10 -1 Fig. 5.4.: 2.6 2.8 3 3.2 3.4 3.6 3.8 4 Frequency [Hz] ⋅10 8 10 1 10 2 Frequency [Hz] Condition Number EFIE Proj. EFIE Cald. EFIE Mixed MFIE Cald. MFIE CFIE Cald. CFIE 4 6 8 1/ℎ [ 1 /m] Fig. 5.5.: 2 Fig. 5.6.:

  Low frequency behaviour of the conditioning of the diferent operators on a PEC square torus with an inner radius of 0.5 m, a tube radius of 0.25 m and meshed with an average edge length of 0.6 m. Because of numerical limitations in the computation of very high condition numbers (> 1 ⋅ 10 16 ) some points have been let out.
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  ) he simBCI Framework for Simulated BCI Human experiments are hallenging to work with, because individual results are extremely sensible to the user's own training, to its mental state between and even within runs and to a myriad of other factors (devices, electrode dryness, electrode positions,

	Signals EEG	Filtering Prior	Inverse Source Model	Feature Extraction	Feature Seletion	Classiication	Labels
	Fig. 6.2.: Illustration of a ESI-augmented BCI pipeline. he blue color indicates components that need to be trained while the vertical arrows indicate that external information (prior) is provided to the system.
	to the source space where additional feature extraction is performed [EBH16].
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his assumption has been disproved for the white mater[START_REF] Wolters | Inluence of Tissue Conductivity Anisotropy on EEG/MEG Field and Return Current Computation in a Realistic Head Model: A Simulation and Visualization Study Using High-Resolution Finite Element Modeling[END_REF], however standard BEM formulations are not capable of handling this anisotropy yet. New formulations addressing this limitation are being developed[Rah+17].

Global loops can be identiied via speciic graph-based searh algorithm, or for small cases, via singular value decomposition (SVD).

he space ⊕ ⊕ is equal to the RWG space.

For instance, for order = 0 the functions are the constant functions over eah triangle (one per triangle) while for = 1 a possible set of functions are the three pyramids deined on every edge of every triangle.

his work is the result of a collaboration with Dr. Yves Beghein, Assistant Prof. Kristof Cools, Prof. Eric Michielssen and Prof. Francesco P. Andriulli. Part of this work has been performed before the start of this thesis and is recalled here for the completeness of the discussion. he present work has been submited for publication in December, 2018[Mer+18a].

following matrix equations:

(5.8)

where

[T ] = ̂ × , T , (5.10)

[K ] = ̂ × , K , (5.13)

[G] = , ̂ × , (5.14)

[v ] = ̂ × , ̂ × , (5.15)

with ( , ) = ( ) ⋅ ( )d . In addition we denote by ❚, ❚ and ❚ ℎ the BCexpanded and tested counterparts of the discretized operators T , T and T ℎ computed with the complex wavenumber -j . he solutions of (5.8) and (5.9) can be expressed as linear combinations of divergence free (loop and harmonic functions) and of non-divergence free (star functions) contributions via a quasi-Helmholz decomposition j = Λl + Σ s + H h (5.17)

where the irst two matrices Λ ∈ R × and Σ ∈ R × represent mappings from the RWG subspace to the local loop and star subspaces, respectively. Here, and are the number of vertices and facets of the mesh, respectively [START_REF] Wilton | On Improving the Stability of the Electric Field Integral Equation at Low Frequency[END_REF][START_REF] Cools | Nullspaces of MFIE and Calderon Preconditioned EFIE Operators Applied to Toroidal Surfaces[END_REF]. hese two mappings can be deined using only the connectivity information of the discretized geometry as

) A Robust MFIE Formulation To address the above described MFIE deiciencies we propose the following symmetrized MFIE:

(5.28) his equation is the magnetic ield counterpart of the (localized) Calderón preconditioned electric operator in [START_REF] Andriulli | On a Well-Conditioned Electric Field Integral Operator for Multiply Connected Geometries[END_REF]. We propose to discretize (5.28) as

where

and M i = j . he coeicient allows for re-scaling of the loop and star components of the solution i of (5.29) to prevent numerical cancellations. Because P Σ + P ΛH = P Λ + P Σ H = I, operator O in (5.29) can be decomposed as O = (P Λ + P Σ H )O(P Σ + P ΛH ) = P Λ O P Σ + P Λ O P ΛH + P Σ H O P Σ + P Σ H O P ΛH , (5.32) whih allows for the study of the low-frequency behavior of eah of the separate terms. Analysis of the frequency behavior of the irst three terms is quite straightforward and yields

(5.33a)

(5.33b)

(5.33c)

Analysis of the last term in (5.32) requires special care. It is known that when decomposing K as

Combining the above equations it follows that

In the above expression we now insert the identity matrices P ΛH + P Σ and

Given that

and that

and considering the property

we obtain that

whih completes the proof.

Listing 1 Code used for generating a BCI competition IV type of BCI signal. he code snippet was retrieved from one of the examples of the oicial repository.

% These events mark starts of trials that are to be classified classEvents = {'left','right'}; % Parameters controlling experiment timeline generation: when events happen timelineParams = { 'samplingFreq', 200, 'eventList', { ... {'when', {@when_trials, 'events',classEvents, ... 'numTrials',10, ... 'trialLengthMs',4000, 'restLengthMs', 2000, ... 'trialOrder', 'random', 'includeRest', true}}, ... {'when', {@when_random, 'events',{'eyeblink'},'eventFreq',0.1}}, ... {'when', {@when_random, 'events',{'eyemove'},'eventFreq',0. he modularity of this arhitecture and of the whole simBCI framework guarantees that, in case the provided primitives are not enough, the user will be able to develop and integrate its own. In order to make sure that simBCI was capable of handling realistic simulations, the dataset generation procedure behind the BCI competition IV [START_REF] Tangermann | Review of the BCI Competition IV[END_REF] has been re-implemented. Incidentally, it appears to be the irst openly accessible re-implementation of the protocol to date. he speciications used to generate this signal are provided in Listing 1 for beter illustrating the above discussion. he modular arhitecture makes it possible to specify all the parameters explicitly in a single master ile and avoid lak of reproducibility caused by parameter scatering.

List of Variables and Other Mathematical Symbols

he following list summarizes frequently used variables and mathematical symbols.

Symbol Description

Accents and Operations

̂he standard hat denotes a unit vector ̃he wide tilde denotes the involvement of dual basis functions

Inverse of the matrix A (if it exists) Abstract : In computational electromagnetics, boundary integral equations are the scheme of choice for solving extremely large forward electromagnetic problems due to their high efficiency. However, two of the most used of these formulations, the electric and combined field integral equations (EFIE and CFIE), suffer from stability issues at low frequency and dense discretization, limiting their applicability at both ends of the spectrum. This thesis focusses on remedying these issues to obtain full-wave solvers stable from low to high frequencies, capable of handling scenarios ranging from electromagnetic compatibility to radar applications. The solutions presented include (i) extending the quasi-Helmholtz (qH) projectors to higher order modeling thus combining stability with high order convergence rates; (ii) leveraging on the qH projectors to numerically stabilize the magnetic field integral equation and obtain a highly accurate and provably resonance-free Calderón-augmented CFIE immune to both of the aforementioned problems; and (iii) introducing a new low frequency and dense discretization stable wire EFIE based on projectors and linear B-splines. In addition, a research axis focused on enhancing Brain Computer Interface (BCIs) with high resolution electromagnetic modeling of the brain has been opened; a particular attention is dedicated to the inverse problem of electromagnetics and the associated integral equation-based forward problem. The first results of this new line of investigations include the development of one of the first peer-reviewed, freely available framework for end-to-end simulation of BCI experiments.