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ABSTRACT 

In this work a methodology for service life monitoring of mooring lines of floating 

wind turbines is proposed. 

First, an empirical expression of dynamic stiffness of a nylon rope is obtained from the 

testing data in the literature. A practical modeling procedure is proposed which allows 

accounting for the non-linear dynamic axial stiffness of nylon mooring ropes. 

The second part is devoted to the prediction of fatigue life of mooring lines. Cutting-

edge methods for fatigue analysis in frequency domain and for simulation of nonlinear 

mooring response (e.g. Artificial Neural Network) are investigated in order to perform 

a quick fatigue estimate and strength check in a reliability framework. The present 

methodology aims to support making decisions regarding maintenance or replacement 

of lines based on the level of reliability estimated during the expected service life. 

Keywords: Floating Wind Turbine, Mooring line, Nylon, Fatigue, Reliability, 

Nonlinear simulation 
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RÉSUMÉ 

On propose dans ce travail une méthodologie pour le suivi en service des lignes 

d'ancrage des éoliennes flottantes.  

Tout d’abord, une expression empirique de la raideur dynamique d'un câble en nylon 

est obtenue à partir des données d'essais dans la littérature. Une procédure pratique de 

modélisation est proposée en tenant compte de la raideur axiale dynamique non-

linéaire des câbles en nylon.  

La deuxième partie est consacrée à la prédiction de la durée de vie des lignes 

d’ancrages. Des méthodes avancées pour l’analyse de fatigue dans le domaine 

fréquentiel et la simulation des réponses non-linéaires (par exemple le réseau de 

neurones artificiels) sont donc également étudiées afin de réaliser une estimation 

rapide de la fatigue et de la résistance dans un cadre fiabiliste. La présente 

méthodologie vise à faciliter la prise de décisions concernant la maintenance ou le 

remplacement des lignes en fonction du niveau de fiabilité estimé à différents instants 

pendant la durée de vie prévue. 

Mots clés : Eolienne flottantes, Ligne d’ancrage, Nylon, Fatigue, Fiabilité, Simulation 

non-linéaire 
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1. Introduction 

Nowadays, the service life monitoring of mooring lines attracts more and more 

attention from the Marine Renewable Energy (MRE) industry where developers desire 

to have a closer look on the safety margin in order to reduce the Levelized Cost of 

Energy (LCOE). There is also motivation for the MRE industry to adopt existing 

lessons from the offshore industry and to improve current offshore mooring standards 

in order to assure safe and cost-effective design of MRE devices. A better estimate of 

fatigue damage and reliability is believed to be the key, which can be achieved by 

better modeling combined with monitoring.  

 

Figure 1-1: A met-ocean buoy installed at the SEM-REV site. 

 

Figure 1-2: The FLOATGEN FWT installed at the SEM-REV site. 

Figures 1-1 and 1-2 illustrate the met-ocean buoy and the FLOATGEN FWT currently 

installed for monitoring and testing at the SEM-REV site located 20km off the coast 
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Le Croisic, France. SEM-REV is a sea test site for multi-technology offshore testing 

which plays a decisive role in meeting the challenge of MRE development in France. 

It is operated by the Research Laboratory in Hydrodynamics, Energetics and 

Atmospheric Environment (LHEEA), Ecole Centrale de Nantes/CNRS, with the aim 

of helping industrialists to develop new energy production capacities.  

The first main objective of this thesis is to propose a comprehensive methodology for 

modeling and service life monitoring of mooring lines of Floating Wind Turbines 

(FWTs) where it is believed that monitoring and modeling should be implemented in 

parallel, in a so-called digital twin, in order to better estimate the actual state of the 

mooring system during deployment. Indeed, it seems crucial to clarify the mechanics 

of the mooring line responses, to understand why and how they are modified during 

deployment, and how those modifications can be accounted for in order to update the 

actual fatigue damage and predict the remaining allowable service life. The present 

methodology is based on the reliability approach where the reliability regarding 

strength resistance (Ultimate Limit State – ULS) and fatigue endurance (Fatigue Limit 

State – FLS) are checked. Then, decisions regarding maintenance or replacement of 

lines can be made based on their levels of reliability estimated during the expected 

service life. The methodology may also be considered for a more detailed mooring 

design once the information from similar structures, projects, sites, etc. are known. 

Although the chosen case study is focused on FWT mooring lines, it is believed that 

the methodology could be equally applicable to other types of MRE devices and Oil & 

Gas platforms.  

 

Figure 1-3: A MRE Mooring System (Flory et al., 2016). 

Besides, recent interest in floating wind and wave energy draws the attention of 

industrialists (e.g. by IDEOL, SAIPEM, WindFloat, etc.) on synthetic moorings where 

the application of nylon as a mooring component might provide a more cost-effective 

design thanks to its low-stiffness, low-cost and corrosion-free. However, the nonlinear 
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behaviors of nylon ropes (e.g. load-elongation properties, fatigue characteristics) 

complicate the design and modeling of such mooring systems. Those nonlinear 

behaviors should, therefore, be carefully investigated, which are the second main 

objective of the present work. 

Figures 1-3 illustrates the mooring system of a Marine Energy Converter (Flory et al., 

2016) which employs nylon mooring rope as a principal mooring component. 

For convenience, section 2 of this chapter presents a literature review on the state-of-

the-art in mooring design, fatigue and reliability analysis where a large amount of 

information is based on the recent research work of Harris (2014) and Parish (2015). 

Section 3 presents the research questions that the author addresses in the present work 

based on the research methodology proposed in section 4. The scope of work is 

discussed in section 5. 

2. Background 

The emergency of fighting against global warming effect of the planet leads to an ever 

increasing need of substituting conventional coal and fossil fuels by green energy 

sources where wind energy is one of the promising alternatives. Wind can be captured 

on the mainland (onshore wind turbines) or on the ocean (offshore wind turbines). 

Offshore wind turbines can be either: fixed to the sea bottom (bottom-fixed offshore 

wind turbines) or self-floated and moored to the sea bed by a mooring system 

(Floating Offshore Wind Turbines). Floating Wind Turbines (FWTs) have several 

advantages as they are less dependent on the constraint of water depth, thus can be 

installed further offshore. Therefore, not only a low or even inexistent visual impact 

from the mainland is achievable but also more stable and strong wind may be 

captured. The latter is very important since it can increase directly the efficiency of 

power generation. FWTs are, therefore, often referred as the future of offshore wind.  

More than 3200 offshore wind turbines have been installed worldwide (corresponding 

to the capacity of nearly 12 GW), only 6 floating units installed by the end of 2015 

such as in Norway (1 unit), Portugal (1 unit) and Japan (4 units). In 2015, Statoil 

launched the first floating wind farm project in the world, Hywind, off Peterhead in 

Scotland. In October 2017, Hywind has started powering the Scottish grid. In April 

2018, the Floating Offshore Wind Turbine FLOATGEN was tugged to its permanent 

offshore installation site – the SEM-REV sea-test site (Le Croisic, France) and became 

fully operational since September 2018. In France, 6 commercial projects of fixed 

offshore wind turbines of 500MW each (at the sites of Tréport, Fécamp, Courseulles-

sur-Mer, Saint-Brieuc, Noirmoutier-en-l'Ile / Isle of Yeu and Saint-Nazaire) and 4 pre-
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commercial floating wind turbine projects of 25 MW each (at the sites of Groix, 

Leucate, Gruissan and Fos-sur-Mer) have already been awarded by the French 

government with the installation objectives between 2020 and 2021. 

Four technologies which are currently competing for the prospects of the floating wind 

market are presented in Figure 1-4. Each of them leads to a different mooring design. 

Moorings are therefore innovation driven, which reinforce the need for better 

understanding, modeling, and monitoring. The floating structure and tensioned legs 

mooring system (4) developed by SBM Offshore and IFP Energies nouvelles is 

inspired by technologies that has been already used for the O&G industry. The 

“WindFloat” technology (2) developed by Principle Power using concrete or steel 

“semi-submersible” floaters is also a variation of technologies from the O&G industry. 

The “Spar” technology (3) developed by Staloil is based on the use of a steel cylinder 

anchored foundation which allows the installation of FWTs at water-depths up to 800 

meters. This technology has already been producing electricity for 20,000 households 

off the Scottish coast at the water-depth of 95 to 130 meters. The “Free Floating” 

technology (1) driven by the start-up Ideol was classified by the Carbon Trust and IHS 

Markit as a damping pool semi-submersible platform but was claimed as a “unique 

barge design” by the developer. The technology is being experimented by two 

demonstrators, off Le Croisic coast in Britany (France) and in Kitakyushu (northern 

Japan) where it suffered 3 typhoons without flinching (LesEchos, 2019). 

  

Figure 1-4: Different floating wind foundation technologies (LesEchos, 2019). 

2.1 Mooring design and standards 

The aim of a mooring design is to ensure safe and cost-effective deployment of 

floating devices for a certain period of time against environmental actions (i.e. wave, 

wind, current, marine growth, corrosion, etc.).  
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Mooring design for Oil & Gas platforms has been extensively addressed by standards 

such as DNV-OS-E301 (DNV, 2010), API-RP-2SK (API, 2005), BV-NR-493-DT-

R03-E (Bureau Veritas, 2015), etc. The main design issues such as strength and fatigue 

analysis, manufacturing, handling, installation, operation, maintenance and reliability 

are investigated. More specific guides and recommended practices such as BV-NI-

604-DT-R00-E (Bureau Veritas, 2014), DNV-OS-E302 (DNV, 2008), DNVGL-RP-

E305 (DNVGL, 2015), API-RP-2SM (API, 2014), BV-NI-432-DTO-R01E (Bureau 

Veritas, 2007), DNVGL-OS-E304 (DNVGL, 2015), DNV-RP-E303 (DNV, 2005), etc. 

are also available for different mooring components such as chains, fiber ropes, wire 

ropes, anchors, etc.. However, it has been witnessed by the O&G industry that 

mooring failures still happened although the design guides recommended by standards 

had been respected (Ma et al., 2013). Mostly, it is due to the fact that there is no clear 

industry consensus on failure mechanisms or even defect initiation that may incur 

(Angulo et al., 2017). Indeed, due to the lack of experience and validation from 

deployment and testing facilities, there is a great need to improve current offshore 

standards in order to ensure a safe and cost-effective design of newly developed 

devices such as FWTs. Some recent standards includes DNVGL-RP-0286 (DNVGL, 

2019) for Coupled analysis of floating wind turbines and floating offshore wind 

turbine installations (ABS, 2014), etc. 

2.2 Mooring components and configurations 

A mooring system is a station keeping structure used to tether and keep in position a 

floating structure under varied effect of the environment (e.g. wind, wave, current, 

tide, etc.). It should also limit horizontal excursions of the floating body and in some 

cases, restrict the range of heading. Mooring systems have been used for thousands of 

years to moor boats (Bradney, 1987) and fish farms (Seaweb, 2013). Permanent 

mooring systems have been developed for O&G platforms in the late 40’s (ABS, 

2012) in order to keep them in position for a long period of time (e.g. 20 to 30 years) 

even in extreme (i.e. storm) conditions. Currently, there is a great interest to develop 

mooring systems for marine renewable energy devices such as floating wind turbines 

(Pham et al., 2019; Zhao et al., 2012), wave energy converters (Hanois, 2014; Parish, 

2015; Johanning et al. 2005; Harris et al., 2004), etc.  

Harris et al. (2004) highlighted that it is crucial to consider the mooring system as an 

integral part of the Wave Energy Converter (WEC) which contribute not only to the 

capital costs but also other costs from installation, deployment, maintenance and 

decommissioning.  
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Mooring components  

A mooring system comprises lines, connectors, clump weights, sub-surface buoys and 

sea-bottom anchors. Three different materials are usually used for a mooring lines 

such as: chains, wire ropes and fiber ropes. The mechanical characteristics of these 

materials are briefly discussed in the following. 

1, Chain 

Chains have been widely used for offshore mooring applications for a long time. Chain 

can be studless or studlink as shown in Figure 1-5. 

 

Figure 1-5: Common studlink and studless chains (Ramass, 2014). 

Different grade of chains depending on the quality of steel employed can be obtained 

as R3, RS3, K3, R4, R4S, R5, etc. Material loss due to seabed fiction and vertical 

loads on anchors can be reduced or avoided thank to the excellent abrasion-resistance 

and heavy weight of chains. However, the considerable weight and the sensitivity to 

corrosion may limit simple chain catenary mooring applications to some extends such 

as MRE devices. 

2, Wire ropes  

Wire ropes might be a better option for deepwater moorings than chains since they 

offer greater elasticity, lighter weight and lower cost for a corresponding strength 

(Barltrop, 1998). There are several types of constructions for wire ropes which result 

in different load-elongation and fatigue characteristics. Common wire rope 

constructions are presented in Figure 1-6. 
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Figure 1-6: Common wire ropes constructions (Engineeringcontent, 2018). 

3,  Fiber ropes  

Compared with steel wire ropes, synthetic fiber ropes are lighter in weights and have 

lower stiffness for a given breaking strength. Moreover, their elastic and hysteresis 

characteristics are of great interest for reducing extreme and snap loads in mooring 

systems. Fiber ropes are typically made of polyester (polyethylene terephthalate), 

aramid (para-aramid), HMPE (High Modulus Polyethylene), liquid Crystal Aromatic 

Polyester (LACP) or nylon (polyamide). They are hierarchical structures made of 

filaments that are twisted together to form yarns, which are in turn twisted together to 

form assembles of yarns and then strands, which finally form the ropes either in 

twisted or braided construction (Davies, 2014). In order to obtain ropes at large scale, 

the common practice is to group together smaller ropes (so-called sub-ropes) in a 

protective jacket. Synthetic ropes have nonlinear load-elongation behaviors and fatigue 

characteristics which are strongly different in static and dynamic conditions. One of 

the most important properties of fiber ropes is the axial stiffness that can be 

determined either by the slope of the tension/strain curve in the unit of Newtons (N) 
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(McKenna et al., 2004) or by a relative tensile property in term of the applied stress in 

the unit of N/tex (Davies et al., 2014), where tex is the linear density of fibers which 

equals to 1 gram per kilometer. The tenacity of different synthetic fibers are compared 

in Figure 1-7 showing clearly low modulus for nylon fibers comparing with other 

materials. In addition to the fiber category, the rope construction also influences its 

stiffness, strength and fatigue behaviors (Weller et al., 2017). Some rope constructions 

are illustrated in Figure 1-8. 

 

Figure 1-7: Single filament tensile properties for different fibers (Weller et al., 2015). 

 

Figure 1-8: Some rope constructions: 1, parallel yarns; 2, parallel strands, 3, 

stranded (wire-lay), 4, plaited and 5, braided (Tension Technology International -TTI, 

2019). 

Offshore standards such as DNVGL-RP-E305 (DNVGL, 2015), API-RP-2SM (API, 

2014), ABS BV-NI432DTO-R01E (BV, 2007) have given guides and specifications 

for design and tests of synthetic mooring ropes. However, specific standards for 

floating MRE applications are still awaited, particularly, for nylon mooring. Basically, 
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unlike polyester which is commonly used for deep-water mooring, nylon shows nearly 

a double in compliance but far more nonlinear behaviors in load-elongation 

characteristics (François et al., 2010). This is illustrated in Figure 1-9 by Ridge et al., 

(2010). Moreover, it is found that conventional nylon has very low fatigue endurance 

when wetted. This is mainly due to its poor inter-strand behavior under dynamic loads. 

Based on the fatigue tests on a superline nylon sub-rope performed by the TTI (Figure 

1-10), Ridge et al. (2010) argue that nylon mooring endurance could be improved by 

replacing the commonly-used double braid or 8 strand constructions by the parallel lay 

construction. The application of recent coating technologies (i.e. marine finish) plays 

also a significant role for improving the endurance of such nylon mooring. However, 

the load levels tested were at the mean tension of 40% of Minimum Breaking Load 

(MBL) with the tension ranges vary from 40% to 70% of MBL, which raise the 

concern about whether or not this fatigue testing data can be extrapolated to lower 

tension levels in order to capture internal abrasion fatigue. 

 

Figure 1-9: Comparison of the load-elongation characteristics of nylon and polyester 

ropes (Ridge et al., 2010). 
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Figure 1-10: Comparison of the fatigue tests results on the Bridon’s “Superline” 

nylon sub-rope, with other material mooring components (Ridge et al., 2010). (LR 

stands- Load Range, BL- Breaking Load). 

Mooring configurations 

A mooring system can be either in Single Point Mooring (SPM) and spread mooring 

configuration. The former refers to a concept where one or several mooring lines are 

attached at one end to the seabed and at the other end to an intermediate buoy which is 

connected to the floating structure.  The buoy contains a bearing system that allows a 

part of it to rotate around the moored geostatic part. When moored to this rotating part 

of the buoy with a mooring connection, the vessel is able to freely weathervane around 

the geostatic part of the buoy (Culofsea, 2019). The later refers to a concept where 

multiple mooring lines are attached at one end to the seabed and at the other end at 

different locations on the floating structure. While the vessel is in a fixed heading 

relative to the seabed, its bow typically heads into the dominant environment which is 

usually the direction where the largest waves are coming from (2b1Consulting, 2019). 

Figures 1-11 and 1-12 illustrate a SPM system and a spread mooring system 

respectively.  
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Figure 1-11: A Single Point Mooring (SPM) system (Culofsea, 2019). 

 

Figure 1-12: A spread mooring system (2b1Consulting, 2019). 

Mooring lines can be either in catenary (slack) or taut configuration which offer 

compliance through changes in the catenary geometry or in the compliance of the 

mooring lines themselves. Specifically, in catenary mooring systems the restoring 

force is provided by the weight of the catenary chain while in taut mooring systems it 

depends strongly on the axial stiffness of the mooring line components. Some possible 

mooring configurations for MRE devices are presented in Figure 1-13.  
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Harris et al. (2004) argue that free hanging chain catenary configurations may induce 

excessive loads on the mooring systems. Fitzgerald et al., 2007 also confirmed the 

disadvantages of simple catenary mooring systems for WECs. They argue that a 

mooring system that employs synthetic materials or added hydrostatic stiffness (e.g. 

using buoys or clump weights) would be a better alternative.  

 

Figure 1-13: Mooring configurations for Marine Energy Converters (MEC): 1- Single 

taught line (rope); 2- Multiple taught lines (rope); 3- Catenary shape (rope and 

chain); 4- Catenary shape with surface buoy (fiber rope and chain); 5- Lazy wave 

(rope and chain) (Karimirad et al., 2014). 

In conclusion, a hybrid mooring system that employs chain catenary and synthetic 

ropes seems to be an effective mooring solution for floating MRE devices. 

2.3 Mooring analysis and software applications 

Mooring analysis 

a,  Static catenary equations 

For an inextensible, flexible line without bending stiffness, the catenary shape (Figure 

1-14) is well known as the static equilibrium configuration of such an element.  

The catenary equation for inelastic lines (i.e. those are considered axially un-stretched) 

can be expressed as (Orcina, 2018). 
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where s is the arc-length from the end A, w is the weight per unit length, Tha and Tva 

are the horizontal and vertical tension components at the end A respectively. 

 

Figure 1-14: The catenary shape of mooring lines. 

For synthetic materials with large axial elongation, it is then crucial to consider such 

an elastic behavior. Therefore, the catenary equations are modified as (Orcina, 2018). 
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where K is the axial stiffness of the elastic line component. 

b, Dynamic mooring analysis (DMA) 

The tension in mooring lines is the combination of: i- the pre-tension which resulted 

from the static equilibrium of the floating structure and its mooring system without 

environmental forces; ii- the static tension induced by the sum of the steady wind, 

current and wave drift forces; iii- the dynamic tension induced by the sum of the Low 

Frequency (LF) forces (0-0.02 Hz) induced by the slowly varying wave drift forces, 

unsteady wind forces, slowly varying tide forces, and the Wave Frequency (WF) 

forces (0.03-0.3 Hz) induced by the first order wave forces (DNV, 2010).  



38 

 

A coupled analysis considering both the floating structure motions and the mooring 

system stiffness is required for a full dynamic mooring analysis where the following 

motion equations must be solved (Barltrop, 1998) 

 
2

a Mooring Static WF LF2

d x dx
M+M  + B  + Kx = F + F + F + F

dt dt
  (1.5) 

where  M, Ma are the mass and added mass matrices 

  B is the damping matrix 

  K is the stiffness matrix (which includes the hydrostatic stiffness of the 

floating body and the mooring stiffness) 

  FMooring - the pre-tension force 

  FStatic       - the static forces 

  FWF   - the wave frequency force due to the first order wave 

  FLF   - the low frequency force due to the second order wave drift 

force 

  x   - the displacement vector 

c, Environmental loads 

The environmental loads are site-specific and are characterized by combinations of 

wave, current and wind conditions with an associated return period.  

Wind varies with time and with the height from the sea surface. In practice, wind can 

be modeled either as constant or random in speed and direction. Typically, wind is 

represented by the mean wind speed calculated for 1 minute, 10 minutes or 1 hour and 

a gust spectrum to consider fluctuation. The sea current is resulted from the 

superposition of several flows: the constant current of general circulation of seas, the 

wind current and tidal stream. Practically, a current profile which considers the current 

speed and direction corresponding to the water depth is used. 

Ocean waves are produced by the wind. The regular waves which never occur in the 

real ocean environment have a single frequency (wavelength) and amplitude (height). 

Ocean waves are almost always irregular and can be viewed as the superposition of a 

number of regular waves (wave components) with different frequencies and 
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amplitudes. A regular and an irregular wave are illustrated in Figure 1-15. It is 

admitted that for a duration of 3 hours, the sea conditions remain stationary and the 

statistical properties of the wave do not change.  

There are two types of sea states such as 

- Short term sea states which are extreme conditions or Ultimate Limit State 

(ULS) of wave (plus associated wind and current) during a storm with a 

duration of 3-6 hours and a return period N (10, 20, 50 or 100 years, etc.). 

Those are used for the strength design problem. 

- Long term sea states are the short term statistical set under normal operating 

conditions or Fatigue Limit State (FLS) of wave (plus associated wind and 

current) during one year. Those are used for the fatigue design problem (i.e. 

to calculate the cumulative fatigue damage of mooring lines). 

 

Figure 1-15: A regular wave (up) and an irregular wave (down). 

Ocean waves are often described by typical wave spectra for fully developed sea 

conditions (i.e. after having been blew for a sufficiently long period of time by a wind 

with constant velocity). In general, the wave energy spectrum derived from an analysis 

of irregular wave record obtained at a particular place and time in the ocean will be a 

unique result that will never be exactly repeated. Current practice is to use different 
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formulae of idealized wave spectra for open oceans and coastal areas (i.e. with limited 

fetch). The commonly-used JONSWAP formulation is based on an extensive wave 

measurement program known as the Joint North Sea Wave Project. The spectrum 

represents wind-generated seas with fetch limitation. The formulation is more general 

and englobes the spectrum of Pierson- Moskowitz, which is a particular case. It is 

written as 
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where   ω – the wave angular frequency 

  HS – the significant wave height 

  ω p – the peak wave angular frequency 

  σ – the relative measure of the width of the peak 

  γ – the peak-enhancement factor, the effect of increasing the peak of 

Pierson-Moscowitz spectrum. 

For most of the cases σ = 0.07 for ω < ω p and σ = 0.09 for ω > ω p 

 0.803

1
A=

5 0.065γ +0.135
 

A Jonswap spectrum of a random wave is illustrated in Figure 1-16. 

 

Figure 1-16: A random wave characterized by the Jonswap spectrum. 
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Software applications 

For structural analysis of offshore mooring lines, first, the hydrodynamic properties of 

the floating structure such as motion Response Amplitude Operators (RAOs), added 

masses, radiation damping, Quadratic Transfer Functions (QTFs) are calculated for 

each angular frequency and for each of 6 degrees of freedom based on a 

diffraction/radiation code such as HydroStar, Wamit, Nehmo, etc. Then, a Finite 

Element software such as Orcaflex (Orcina, 2012), Deeplines (Principia, 2012), etc. 

are used to perform the coupled mooring analysis where the mooring lines are 

considered together with the floating structure. In order to perform such analysis, 

Orcaflex (or Deeplines) considers the floating structure as a rigid body and requires its 

hydrodynamic database which can be estimated as mentioned above. The Orcaflex 

finite element model of a line and a simplified hydrodynamic analysis for mooring 

analysis of FWT mooring lines are illustrated in Figures 1-17 and 1-18 respectively. 

For FWT application, a specific modeling tool, FASTlink, has also been developed in 

order to integrate the aerodynamic load effect in Orcaflex (Masciola, et al., 2011). 

 

Figure 1-17: The finite element model of a line (Orcina, 2012). 
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Figure 1-18: A simplified hydrodynamic analysis for mooring analysis of FWT 

mooring lines. 

2.4 Survivability and fatigue analysis 

Survivability analysis 

A survivability analysis is for ensuring the survivability of mooring systems under 

extreme conditions (so-called Ultimate Limit State - ULS) where the maximum 

tension in the mooring lines is designed to remain below the minimum breaking 

strength of the mooring components, and accidental conditions (so-called Accidental 

Limit State – ALS) where mooring systems are designed to survive the event of one-

line-failure.   

Fatigue analysis 

A mooring analysis for Fatigue Limit State (FLS) is for ensuring that the individual 

mooring line have adequate capacity to withstand moderate cyclic loading for a design 

service life (e.g. 20 to 30 years). 

The fatigue analysis of offshore mooring lines is usually based on the Palmgren-

Miner’s rule (the cumulative damage model or the S-N approach) where fatigue 

damage is assumed to be linearly accumulated, and the fatigue life is defined at 

detectable crack initiation (i.e. 1st stage of fatigue) on the structure elements. DNV-

OS-301 (DNV, 2010) and API-RP-2SK (API, 2005) recommend S-N curves (Figure 

1-19) and T-N curves (Figure 1-20) for calculating the fatigue damage for different 

mooring materials where failures will occur after a number of cycles N at a particular 

stress (tension) range S (T). 
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The fatigue curves are used to calculate the fatigue life of mooring components as 

-mN = K.S       (1.7) 

where   N- the number of cycles to failure under a stress range S 

  K, m- the parameters of S-N curves  

The fatigue damage accumulation is calculated following the Palmgren-Miner’s rule as 

 
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where   Si- the stress range of the stress cycle number i. 

n- the number of stress cycles Si. 

The Fracture Mechanics (FM) approach could be another interesting alternative for 

fatigue assessment. The approach assumes that failures will occur when dominant 

cracks have grown to the critical dimension (i.e. 2nd stage of fatigue). The cracks are 

often resulted from defects that may exist in the material due to an initial 

manufacturing defect or the initiation of a detectable crack caused by fatigue. The FM 

approach allows detectable cracks to exist, and thus a longer fatigue life comparing 

with the S-N approach. However, it also requires an important amount of costly and 

sophisticated tests. 

According to the industry experience, it is require that mooring lines should be 

inspected every 4-5 years in order to ensure the required safety level. The inspection 

relies on the detection and measurement of cracks developed in the chain links. The 

obtained information of crack size can be used to re-evaluate the level of fatigue 

damage.  
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Figure 1-19: Mooring S-N fatigue curves (DNV, 2010). 

 

Figure 1-20: Mooring T-N fatigue curves (API, 2005). 

Mooring fatigue analysis can be implemented either by time domain method or 

frequency domain method. The former is considered as the most accurate approach for 

fatigue analysis but is also time consuming. The later refers to an analytical approach 

which is very effective in term of computational time. However, cutting-edge 

approaches for frequency domain fatigue analysis should be investigated in order to 

ensure reliable fatigue estimate. 

Due to the issues mentioned above, in the present work, the S-N approach based on the 

Palmgren-Miner’s rule and the frequency domain fatigue analysis are employed in 

order to estimate the fatigue damage. 
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2.5 Methodology for reliability assessment 

There are two mooring design approaches developed by the offshore industry: 

Deterministic (Total Safety Factor Format) and LRFD (Load and Resistance Factor 

Design) (API, 2005).  

The deterministic approach considers a design environmental condition corresponding 

to a return period and employs a total safety factor on mooring component strength to 

ensure redundancy against mooring breakage. This approach has been widely used by 

the offshore industry for over 40 years thanks to its simplicity regarding the design 

procedure. However, there are still shortcomings since the approach has been 

developed based on past experience of the offshore industry which may need further 

effort to ensure sufficient reliability for new applications such as MRE devices. Also, 

another limitation is that the safety is included in only one safety factor (γ) of the 

material strength while there must be uncertainties on both environmental conditions 

and material resistance. Besides, the industry reliability studies also confirmed that 

mooring designs based on this approach may result in significant difference in term of 

reliability (API, 2005). The deterministic approach is recommended by API-RP-2SK 

(API, 2005) as 

maxMBL - γT 0     (1.9) 

Where  MBL  - the Minimum Breaking Load of the mooring component 

  γ - the safety factor 

  Tmax - the maximum tension in the mooring section 

The LRFD approach is referred as a partial safety factor format where a number of 

load factors for the load components and a number of material factors for the line 

components strength are employed in the limit state as Eq. (1.10). This concept of 

partial safety factors (i.e. mγ , Tγ ) allows accounting for the diversity of the effect of 

uncertainties of loads and material on reliability. The second fundamental quantity 

involved in the limit state is the characteristic values of load (Tmax,k) and material 

(MBL,k) which are quantities of their distribution. It is believed that this approach 

may yield mooring designs with more consistent reliability since more detailed 

reliability analysis is required.  

T max

m

MBL,k
 - γ T ,k 0

γ
    (1.9) 



46 

 

For mooring lines of floating wind turbines where experience is limited or non-

existent, it seems preferable to use directly a reliability approach where factors of 

safety are replaced by the definition of an acceptable probability of failure. The 

number of simulations required, however, increases dramatically as many parameters 

are uncertain. 

2.6 Methodology for service life monitoring of mooring lines 

Health monitoring of mooring lines is essential since many mooring failures have been 

observed by the offshore industry although guides and specifications for design 

recommended by standards had been respected. One of the main reasons is that some 

failure mechanisms may still need further understanding. Therefore, early diagnostic 

of mooring damage plays a key role for ensuring a safe performance of floating 

structures (Aqdam et al., 2018). Mooring monitoring should be performed by carefully 

considering potential failure mechanisms (Ma et al., 2013; Brindley et al., 2014), 

fatigue damage estimate (Thies et al., 2014), extended-period environmental loads 

(Huang et al., 2010; Harnois, 2014). Moreover, since maintenance or replacement of 

mooring lines for MRE devices in shallow water seems simpler and less costly than for 

deep-water O&G platforms, they could be better options rather than an over-

engineered mooring system which would not be commercially viable for large scale 

deployments. 

3. Objectives 

The first main objective of this work is to develop a reliability-based methodology for 

modeling and service life monitoring of mooring lines of FWTs which aims to support 

making decisions regarding maintenance or replacement of lines based on the 

reliability levels estimated during the expected service life. It can be done by using 

numerical model for fatigue estimate and reliability assessment not only a priori (i.e. 

during the design phase), but also during the operation phase, until the end of the 

exploitation. The methodology can also be considered as a more detail mooring design 

approach that could be adopted once the information from similar structures, projects, 

sites are known. 

Secondly, hybrid moorings are likely to be used for commercial applications, for 

instance FLOATGEN, which justifies the need for better understanding of the load-

elongation behaviors and fatigue characteristics of nylon mooring ropes since there is 

few experience from the offshore industry and current standards on such issues.  

The following research questions will be addressed: 
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 1, Is mooring monitoring necessary? Which methodology should be 

employed? 

 2, How to improve the modeling and fatigue damage estimate of nylon 

mooring ropes? 

 3, How to estimate fatigue damage based on numerical modeling and in-

situ measurements? Which approaches? 

 4, How reliability analysis can be performed to support making decisions 

regarding maintenance or replacement of lines? 

4. The research methodology 

In order to answer the research questions mentioned above, the following research 

methodology is used: 

 1, Identify the state-of-the-art in mooring design, mooring material 

behaviors, fatigue estimate approaches, reliability assessment and mooring monitoring. 

This is done by reviewing the existing literature and current standards as presented in 

Chapter 1. 

 2, Focus on the modeling and testing procedures in order to capture the 

non-linear load-elongation behaviors and fatigue damage mechanisms of nylon 

mooring ropes. Also, for a comprehensive modeling and service life monitoring 

methodology, there is needs of identifying not only the mechanical behaviors of all 

mooring components but also the marine environmental factors (e.g., marine growth, 

corrosion, environmental loads, etc.) that influences such behaviors. These are 

discussed in Chapter 2. An article has been published in the journal of Applied Ocean 

Research (see Appendix) where a practical modeling procedure was proposed which 

allows accounting for non-linear dynamic axial stiffness of nylon mooring ropes. 

3, A methodology for modeling and service life monitoring of mooring 

lines is proposed based on the reliability approach. In order to select a quick but 

reliable method to calculate fatigue damage, cutting edge frequency domain 

approaches have been investigated as an alternative to time domain fatigue analysis. 

Besides, for reliability assessment of mooring lines in extreme conditions (ULS), it 

seems necessary to perform an important number of Monte Carlo simulations (MCS) 

in order to better capture the nonlinearities of mooring responses and to obtain a low 

probability of failure. In that case, the application of a meta-model such as an Artificial 

Neural Network (ANN) could be an interesting alternative for nonlinear mooring 
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response simulation rather than time-consuming time domain modeling. This work is 

presented in Chapter 3. An article has been published in the journal of Ocean 

Engineering (see Appendix) where the present methodology for modeling and service 

life monitoring of mooring lines is discussed. 

4, Draw conclusions for the present work and outline future work. This is 

presented in Chapter 4. 

5. Scope 

This work presents a methodology for monitoring of mooring lines of FTWs which 

can be equally applied to other types of MRE devices and Oil & Gas platforms. 

However, the methodology is limited to the technical aspects where mooring design 

and decisions regarding maintenance or replacement of lines are based on strength, 

fatigue estimate and reliability assessment. The economic aspects are not significantly 

considered or addressed which would be the subject of separate work.
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1. Introduction 

For shallow-water offshore floating structures such as semi-submersibles, FPSOs, etc., 

the mooring lines are usually constituted of long, large diameter chain lines in order to 

provide necessary catenary offset. For deep-water applications, hybrid mooring lines 

composed of chain, wire and fiber ropes (e.g. polyester, HMPE, aramid, etc.) are often 

used in order to reduce the weight of mooring lines and the mooring cost.  For Marine 

Renewable Energy (MRE) devices operating in shallow water, the use of low modulus 

ropes such as polyester, nylon can provide more compliant and cost-effective design 

(Weller et al., 2015) (e.g. the unit length cost of nylon is about half that of chain with 

the same breaking strength). Obviously, longer mooring footprints would be required 

for polyester in order to reduce extreme tension responses. It is also interesting to 

highlight that due to the higher stiffness of polyester, the tension responses in fatigue 

condition are also more important than for nylon. Consequently, that might result in a 

critically low fatigue life not only for polyester itself but also (more importantly) for 

the chain sections in the mooring lines. That is to say, nylon could be preferable option 

for MRE mooring applications. 

In the present case study, the mooring configuration is derived from a 2 MW FWT 

installed at the SEM-REV test site since 2017 as part of the FP7-EU FLOATGEN 

project (Berhault et al., 2016). The layout of the mooring system connected to a semi-

submersible type FWT is illustrated in Figure 2-1 in which a line composed of upper 

and touchdown chains, with nylon ropes in between. A similar floating structure and 

mooring configuration have been published by Spraul et al. (2017) based on the 

publically available information from IDEOL and the Ecole Centrale de Nantes. 

However, one should be aware that the floater and mooring characteristics used in this 

case study were selected only for the study purpose and are not representative of the 

IDEOL’s real floating structure and the FLOATGEN mooring system.  
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Figure 2-1: The layout of the floating structure and its hybrid mooring lines (chains 

plus nylon ropes). 

This chapter focuses on the mechanical behaviors of the two mooring components, i.e. 

chain and nylon, and the marine environmental factors that influence such behaviors. 

The objectives are to identify and calibrate the major factors influencing the modeling 

and monitoring of mooring lines during operation. Based on such information, the 

design, modeling and service life monitoring of mooring lines can be better 

implemented. For these general purposes, the strength and fatigue behaviors of chain 

and the deteriorating factors will be briefly discussed herein. The mechanical 

behaviors of nylon mooring ropes have been carefully investigated where modeling 

and testing issues are addressed for both load-elongation characteristics and fatigue 

mechanisms. An empirical expression for determining the dynamic stiffness of nylon 

mooring ropes is drawn based on existing data in the literature. The internal-abrasion 

fatigue requires further studies where a Non Destructive Test procedure has been 

proposed. A large part of this chapter is based on one of the authors’ published papers 

(Pham et al., 2019) where the dynamic modeling of nylon mooring ropes is tackled. 

2. Chain 

With more than 50000 tons in service according to the data from Fernandez et al. 

(2014), a huge effort has been putting on studying the characteristics and behaviors of 

chain mooring lines. The outcomes of several JIPs have been integrated to the offshore 
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standards such as API-RP-2SK (API, 2015), DNV-OS-E301 (DNV, 2010), BV-NI-

493 (BV, 2012), etc. Together with wire ropes and connectors (e.g. shackles, H-link, 

etc.), chain make one of the top three components that caused most incidents in 

mooring lines. Some failure mechanisms are listed by Ma et al. (2013) such as Out-of-

Plane Bending (OPB), chain hockling, flawed flash welds, pitting corrosion, etc. 

Therefore, it is vital to understand all these mechanisms in order to identify the 

potential weak points of the lines, why and how the structural responses are modified 

during operation, and finally how to consider those modifications in mooring strength 

and fatigue design. 

For preliminary design the effective elastic modulus applied in the mooring analysis 

may be taken as (DNV, 2010) 

- Stud chain R3/R4/R5: Not less than 5.6 × 10^10 N/m2 

- Studless chain R3: (5.40 - 0.0040 × d) × 1010 N/m2  

- Studless chain R4: (5.45 - 0.0025 × d) × 10^10 N/m2   

- Studless chain R5: (6.00 - 0.0033 × d) × 10^10 N/m2 

where d is the nominal diameter of the chain links in mm. 

According to DNV-OS-E301 (DNV, 2010) the Young’s Modulus of the chains can be 

approximated as 

E = 5.44 × 10^7 kN/m2 (studless) or  

E = 6.40 × 10^7 kN/m2 (studlink)   (2.1) 

The Minimum Breaking Strength (MBS) of the chain can be estimated as 

MBL = c × d2 × (44 - 0.08 × d)    (2.2) 

where c is the grade dependent constant, given in the catalogue of Ramnäs (2012). 

In addition to the tension-tension fatigue BV-NI-604 (BV, 2014) requires to consider 

the combined fatigue (i.e. tension-tension plus in-plane and out-of-plane bending) at 

the top chain when the pre-tension in mooring lines at intermediate draft is higher than 

10% of the Minimum Breaking Strength of a chain of the same diameter in Oil Rig 

Quality (ORQ) grade and when the design life on site is higher than 2 years. The 

phenomena of in-plane and out-of-plane bending are due to the fact that at 

fairlead/chain-stopper location, the motions of the vessel are imposed to the fairlead 
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and the link retained in fairlead pocket whereas the motions of the adjacent links are 

imposed by the mooring line dynamic motions following mooring line catenary. Due 

to the angular differences between fairlead and chain and to friction between links, 

high bending moments are imposed to the first links of the top chain. A mooring 

system with its underwater fairlead and the in-plane and out-of-plane bending modes 

are shown in Figures 2-2 and 2-3. 

 

Figure 2-2: A mooring system and the influencing factors (Brown et al., 2012). Right: 

An underwater fairlead (Royal IHC, 2018). 

 

Figure 2-3: In-plane bending and out-of-plane bending modes (Kim et al., 2017).  

3. Nylon 

Synthetic fibers have been widely used since the deployment of fiber rope offshore 

moorings for deep-water oil production systems in the late 80’s. For deep-water 

offshore applications, polyester is commonly used thanks to its light weight and good 

fatigue resistance. For floating wind turbine operating in shallow waters from 50 to 

100m, nylon is preferred because of its lower stiffness, reduced mooring footprints and 

maximum tension. Therefore, The MRE industry shows currently a great interest on 

developing mooring systems using nylon ropes. Conventional nylon has, however, 

never been used for permanent mooring applications mostly due to its poor wet fatigue 
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characteristics. Indeed, typical nylon SPM hawsers are often retired every one or two 

years. Due to the limit amount of research on the recent nylon ropes, it is therefore 

crucial to focus on the mechanical behaviors of such material in order to optimize its 

design and utilization.  

3.1 Load-elongation characteristics 

Unlike rigid material, synthetic material such as polyester, nylon, etc., exhibit highly 

nonlinear and time-dependent load-elongation characteristics. Such behaviors should 

be determined by relevant tests before the design and application of those fiber rope 

mooring components. The tests should exhibit not only the nonlinear behaviors of 

ropes as hysteretic materials but also the dynamic loading conditions that ropes 

undergo during operation (e.g. tension magnitude, the frequency of loading, loading 

history, etc.).   

Testing and modeling methods for polyester have been studied by the offshore 

industry since the early 80’s. The outcomes of several Joint Industry Projects (JIPs) 

have been integrated into offshore standards such as API-RP-2SM (API, 2014), 

DNVGL-RP-E305 (DNV, 2015), ABS (ABS, 2014), BV-NI432-DTO-R01E (BV, 

2007). Although the above-mentioned methods are very good examples, they cannot 

be applied directly on nylon due to its highly non-linear load-elongation and complex 

fatigue behaviors. Besides, the idea of using nylon ropes for permanent mooring 

applications is quite new to the offshore industry since conventional nylon has very 

low fatigue life. It is therefore crucial to focus on the mechanical behaviors of nylon 

mooring ropes in order to cope with the modeling issue and assure the safety and cost-

effectiveness of the mooring design. 

 

Figure 2-4: The spring-dashpot model (Flory et al., 2007). 

Figure 2-4 illustrates the spring-dashpot model proposed by Flory et al. (2007). It can 

be seen that the elastic stretch includes the instant-elastic stretch and visco-elastic 

stretch resulting from a fast spring and a damped spring respectively. On the other 

hand, the permanent stretch comprises the construction stretch represented by a 
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construction ratchet-spring and the visco-plastic stretch represented by a ratchet-

dashpot.  

The visco-elastic behavior of synthetic ropes was explained by Flory et al. (2007) and 

illustrated in Figure 2-5. 

 

Figure 2-5: Fast + slow springs tension-stretch curve (Flory et al., 2007). 

DNVGL-RP-E305 (DNVGL, 2015), Falkenberg et al. (2017, 2018) introduce the 

concept of the Syrope model with the following definitions, which are illustrated in 

Figure 2-6. 

- The original curve: the tension-stretch curve obtained during the very first 

and quick loading of the new ropes. 

- The original working curve: the lower-bound original curve for very slow 

loading so that visco-elastic stretch can be obtained without delay. 

- Working curves: Tension-stretch curves accounting for the historical 

maximum tension that the rope has been through. 

- Instant-elastic (dynamic) stiffness: A stable stiffness (after stabilization of 

working strain) in response to very fast changes in tension under cyclic 

loading. The dynamic stiffness results from instant-elastic strain only.  
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Figure 2-6: The Syrope model (Falkenberg et al., 2017, 2018). 

Falkenberg et al. (2017, 2018) recommend selecting a pertinent working curve for 

static mooring analysis to determine the floating structure excursions (i.e. the 

excursions at the equilibrium position due to mean environmental loads). This working 

curve should account for the historical maximum tension that the rope has been 

through. DNVGL-RP-E305 (DNV, 2015) requires using a correct dynamic stiffness 

model to calculate the designed tension responses. An earlier research by Bitting 

(1980) reported an important factor of 3 to 4 times between the dynamic and quasi-

static stiffness of nylon ropes. This, again, highlights the importance of using different 

stiffness models for structure excursions and tension response analysis.  

An empirical formula for determining dynamic stiffness of nylon ropes 

Offshore standards and researchers have given empirical expressions of dynamic 

stiffness for synthetic ropes. Generally, the dynamic stiffness of fiber ropes depends 

strongly on the mean tension, moderately on the tension amplitude and mildly on the 

frequency of loading (François et al., 2000; Vecchio, 1992). Practically, the loading 

frequency and tension amplitude impacts are negligible for polyester (François et al., 

2010). Nylon, although seems to have closely similar behaviors as polyester, its 

responses are found to be more nonlinear than the latter. Liu et al. (2014) also studied 

the main factors influencing the dynamic stiffness of synthetic fiber ropes under cyclic 

loading. According to their conclusions, the mean tension is the main factor that 

influences significantly the dynamic stiffness, also the effects of strain amplitude and 

loading cycles cannot be ignored. Huang et al. (2013) highlighted the importance of 

understanding the change-in-length properties including creep, hysteresis, recovery, 

stiffness evolution of synthetic ropes.  
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Vecchio (1992) and Fernandes et al. (1999) proposed an empirical expression of 

dynamic stiffness for polyester ropes as 

0

E
 = α + βLm - γLa - δlog(T )

ρ             (2.3) 

where   
E

ρ
: Specific modulus (N/tex);  Lm: Mean load (% of MBL); 

  La: Load amplitude (% of MBL);  T0: Period of loading; 

  α, β, γ, δ: Empirical coefficients. 

A non-dimensional axial stiffness of ropes can be expressed as   

   Kr = (La.l) / (∆l.MBL)               (2.4) 

MBL: Minimum Breaking Load La: Tension amplitude  

l: Initial Length of the rope ∆l: Stretch 

François et al. (2000) proposed empirical expressions of quasi-static and dynamic 

stiffness for typical polyester ropes depending on the mean tension in the lines (as 

mentioned above the impacts of tension amplitudes and frequency of loading are 

considered negligible). These have been integrated into BV-NI432-DTO-R01E (2007) 

as 

 Quasi-static stiffness:   Krs = 13 to 15 

 Dynamic stiffness:   Krd = 18.5 + 0.33.Lm       (2.5) 

 for normally stiff polyester ropes. 

Based on recent dynamic stiffness tests on a wire-lay 3-strand nylon rope from 

Huntley (2016), it is found that the dynamic stiffness of the nylon rope depends 

strongly on both the applied mean tension and the tension amplitude. This is illustrated 

in Figures 2-7 and 2-8. 

An expression of dynamic stiffness for nylon can be proposed as, 

Krd = a.Lm – b.La + c               (2.6) 

where a, b, c are determined from a multiple linear regression on the nylon dynamic 

stiffness testing data reported by Huntley (2016). These values (with 95% of upper-

confidence limits) are presented in Table 2-1. 
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Table 2-1: Empirical coefficients for determining the dynamic stiffness of the nylon 

rope. 

a b c 

0.39 0.21 2.08 

 

Figure 2-7: Dynamic stiffness of the wire-lay nylon rope depending on the mean 

tension, Lm (data obtained from Huntley, 2016). 

 

Figure 2-8: Dynamic stiffness of the wire-lay nylon rope depending on the tension 

amplitude, La (data obtained from Huntley, 2016). 
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A practical modeling procedure for nylon mooring analysis 

A mooring analysis procedure considering the dynamic stiffness of polyester ropes 

was proposed by Kim et al. (2003) for a SPAR. Since tensions in the mooring lines of 

a SPAR are often dominated by slow drift motions, this procedure cannot be applied 

for semi-submersible type floating structures where first-order wave motions are the 

dominating ones, Arnal et al. (2016). Also, Kim’s procedure has its limitation relating 

the convergent principle since the high-frequency tension component in mooring lines 

does not result from the motion of the SPAR but more likely from the resonance 

vibration of the polyester rope. Tahar et al. (2008) extended the traditional elastic rod 

theory to allow large elongation and nonlinear stress-strain relationships for the 

modeling of polyester mooring lines. The empirical expression for determining the 

axial stiffness of polyester proposed by Bosman (1999) was adopted considering a 

non-constant stiffness depending on the applied mean load. A similar attempt was 

made by Lin et al. (2015) for the modeling of polyester mooring for a SPAR-type 

floating wind turbine. The mooring tension responses were validated against the 

Orcaflex software (Orcina, 2012). 

 

Figure 2-9: Mooring analysis procedure taking into account the impact of tension 

amplitudes on the dynamic stiffness of nylon ropes. 
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The recent standard DNVGL-RP-E305 (DNV, 2015) and Falkenberg et al. (2017, 

2018) recommend a very practical procedure for fiber rope mooring analysis including 

the following steps. 

- Step 1: Perform the mooring static analysis using the appropriate nonlinear 

working curves for each mooring line considering the mean environmental 

loads (i.e. if the mean tension in any of the lines is higher than the preceding 

highest working tension then the working curve for these lines needs to be 

updated). 

- Step 2: Determine the mean tensions, Lm, at the top of the synthetic lines 

and update the model with an axial stiffness depending on the mean tension, 

Lm (the empirical expression as Eq. (2.5) can, therefore, be applied without 

difficulty). A stress-free length of the lines corresponds to this stiffness and 

the mass per unit length of the line are also updated. 

- Step 3: Perform static and dynamic analysis with the updated mooring line 

properties.  

Since this procedure ignores the tension amplitude effect, it cannot be applied for the 

dynamic modeling of nylon ropes. Based on that, the author proposed a modified 

procedure for the numerical mooring analysis of a semi-submersible type floating 

wind turbine considering the dynamic axial stiffness of nylon ropes. The present 

procedure composed of the following steps that were basically proposed by DNVGL-

RP-E305 (DNV, 2015), Falkenberg et al. (2017, 2018), but some modifications are 

added (highlighted in red color in Figure 2-9) in order to take into account the impact 

of the tension amplitude on the dynamic stiffness of nylon. 

- Step 1: Same as above. 

- Step 2: Determine the mean tension, Lm, at the top of each synthetic line 

and update the model with an axial stiffness (determined by the Eq. (2.6)) 

depending on the mean tension, Lm, and an initial tension amplitude, La 

(with the corresponding standard deviation, 1

La
σ =

2
), chosen optionally. A 

stress-free length of the lines corresponds to this stiffness and the mass per 

unit length of the line are also updated. 

- Step 3: Perform static and dynamic analysis with the updated mooring line 

properties. Calculate the standard deviation σ2 of the tension response. 
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- Step 4: Check if the convergent criterion σ2 = σ1 is satisfied with a certain 

tolerance. If not, go back to step 2 and input a new tension amplitude, La, 

and continue the procedure iteratively up to convergence. 

The idea is to find a convergent dynamic stiffness for each sea state based on the 

empirical expression in Eq. (2.6) for the specific mean tension and the convergent 

tension amplitude determined for each sea state. As can be seen in Figure 2-9, the 

present procedure works as an iterative process in order to determine a convergent 

dynamic stiffness of the nylon rope for the sea state by comparing the standard 

deviation of the input tension amplitude with the standard deviation of the tension 

response. The compromise is implied, however, by comparing the standard deviation 

of a deterministic loading process (i.e. with a constant tension amplitude of variation) 

with the standard deviation of a random tension response process due to the floating 

structure wave-frequency motions. In fact, it can be seen that the dynamic stiffness 

tests are performed for regular loading where the tension amplitude is related to its 

standard deviation as 1La = σ × 2 . However, due to the fact that the incoming waves 

are normally irregular processes, the tension responses must have the same 

characteristics. For that reason, we have to accept a compromise by choosing 

2La = σ × 2 as tension amplitude of the irregular tension response in order to apply the 

present empirical dynamic stiffness model for irregular sea states. First, for a harmonic 

signal, the amplitude is equal to 1La = σ × 2 . Secondly, an irregular process can be 

described by the sum of a very large number of sinusoidal processes (with different 

amplitudes and phases). Therefore, in our opinion, it seems acceptable to assume a 

tension amplitude, 2La = σ × 2 , to represent the variation of the tension response for 

each specific irregular sea state. However, validation with field measurements on 

nylon mooring lines seems necessary to check the appropriateness of this assumption. 

Although one might also argue that the convergence check in the present procedure 

(Figure. 2-9) should be made for both wave frequency and low frequency motions, we 

believe that it would be difficult and computationally expensive considering them at 

the same time by using coupled time domain simulations. Moreover, since low 

frequency motions are small compared to the wave frequency responses for semi-

submersible type FWTs (or at least for existing concepts) which is the subject of this 

study, it seems, therefore, acceptable not to consider low frequency motions in the 

convergence check. However, the converged dynamic stiffness once determined will 

be updated in the model in order to calculate the mooring responses considering the 

coupled wave and low frequency motions.  
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The present modeling procedure will be applied later in section 3.3 for dynamic 

modeling of nylon mooring ropes. 

3.2 Fatigue characteristics 

The main fatigue mechanisms for synthetic ropes are creep, hysteresis heating, internal 

abrasion, axial compression, etc. (Hearle et al., 1993; Parsey et al., 1982) 

Table 2-2: Classification of fatigue characteristics of fiber ropes (Weller et al., 2015) 

 

It is believed that hysteresis heating is not a concern for offshore mooring applications 

where the fiber ropes remain under-water throughout its service life. Likewise, the 

axial compression fatigue affects only stiff fibers such as aramid and should not be a 

concern for nylon. However, the design practice for polyester mooring lines 

recommended by Bureau Veritas NI 432 (BV, 2007) is to keep the minimum tension 

in mooring lines not lower than 2% of MBS to avoid axial compression fatigue. The 

internal abrasion and creep, therefore, remain two critical fatigue modes for nylon 

ropes. Table 2-2 (Weller et al., 2015) illustrates the classification of the durability 

characteristics of fiber ropes for offshore mooring applications.  

Creep 

Creep is a static fatigue damage mode that the rope fails after a certain duration of time 

at a constant tension. Creep is either recoverable (primary creep - at low tension) or 

non-recoverable (secondary creep – at high tension). The latter is relevant to creep 

fatigue failure of fiber ropes. Creep fatigue failure can be critical for typical nylon that 

might fail in less than 5 hours being tensioned at 80% of its breaking strength 

(McKenna et al., 2004). For wet nylon 66, the creep process is the dominating fatigue 

mechanism for load levels above 30% its breaking strength. For cyclic loading, the 

creep effect is the same as if the peak load (i.e. maximum load) has been applied 

continuously. The creep fatigue mechanism is independent of the frequency of loading 
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and can be predicted by the linear relationship between the maximum load and the log 

time to failure in second. Creep effect doesn’t lead to the reduction of strength of ropes 

at least up to 75 to 80% of the fatigue life time (Mandell, 1987). Figure 2-10 illustrated 

the static (i.e. creep) fatigue and cyclic fatigue of polyester yarns. It can be seen that 

the two curves are closely similar, therefore, it confirms that at high load levels creep 

is the dominant fatigue mechanism. 

 

Figure 2-10: Failure time vs. maximum stress for polyester yarns under creep rupture 

(Ra=1) and cyclic fatigue (Ra=0.1, f=1Hz) – Ra = Minimum Load/ Maximum Load 

(Mandell et al., 1987). 

Internal abrasion 

Internal abrasion is a dynamic fatigue damage mode that the rope fails after a certain 

number of cycles under cyclic loading. Internal abrasion is caused by relative motions 

between strands which are directly related to the tension range and inversely related to 

the mean tension. Therefore, it can be concluded that the severity of internal abrasion 

is directly related to the tension amplitude and inversely related to the mean tension 

(Flory et al., 2006). Internal abrasion is a serious problem for highly structured, wet 

nylon ropes at moderate tension (McKenna et al., 2004). Severe internal abrasion can 

lead to significant loss of strength of ropes during operation and, therefore, might 

modify mooring system behaviors and even lead to failure in ultimate and fatigue 

conditions. The severity of internal abrasion can be reduced by using long-lay-length 

stranded subrope in parallel construction and special marine finish (Ridge et al., 2010; 

Banfield et al., 2017). Some rope constructions that may improve internal abrasion 

fatigue behaviors other than the braided construction such as parallel ropes or wire-lay 

ropes are illustrated in Figure 2-11.  
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Figure 2-11: Some rope construction (Ridge et al., 2010; Banfield et al., 2017; 

Huntley, 2016). 

If the design tension is kept at low levels (i.e. under 30% of the nylon breaking 

strength), it is believed that internal abrasion should be the only fatigue damage mode 

of concern for nylon. Internal abrasion can be avoided or reduced by proper design (by 

increasing mean tension and reducing tension amplitude). While the mean tension can 

be simply increased by modifying the line length or positions between the anchor 

points and the fairlead, the tension amplitude depends strongly on the floating 

structure motions due to the first and second order excitation wave loads and the rope 

stiffness. It has also been shown that rope stiffness and creep fatigue are directly 

related to the mean (or maximum static) tension. Therefore, an over-increasing mean 

tension might be unfavorable for mooring behaviors. An integrated mooring-floater 

design seems to be preferred over the uncoupled design in order to reduce the tension 

amplitude in fiber rope mooring components. Figure 2-12 illustrates inter-strand 

abrasion damage in a polyester rope after a 48-million-cycles fatigue test and a nylon 

subrope after ten-million-cycles fatigue tests.  

 

Figure 2-12: Inter-strand damage in a polyester rope (left) after a 48-million-cycle 

fatigue test (Banfield et al., 2018) and a nylon subrope (right) after a ten-million-

cycles fatigue tests (Banfield et al., 2017). 
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A review of existing fatigue tests on nylon mooring ropes 

Unlike polyester that several JIPs have proven its very good fatigue and abrasion 

characteristics for mooring application, the adequacy of nylon for permanent mooring 

application stay still questioned for many people. However, there are actually a lack of 

long cycle fatigue tests for nylon ropes. Currently, fiber rope fatigue testing methods 

in offshore standards are still limited and focused on specific applications. The method 

“Thousand Cycle Load Levels” (TCLL) (OCIMF, 2000) is commonly applied by rope 

producers. However, this accelerated fatigue testing method was proposed specifically 

for Single Point Mooring (SPM) hawsers and does not seem appropriate for a 

permanent mooring application. Also, since low load level fatigue tests are costly and 

time-consuming, most tension-tension fatigue tests have been done at high load levels. 

This, however, can give misleading results when extrapolated to low load levels 

(Flory, 1989). For instance, the load levels tested to establish the T-N fatigue curve for 

the nylon subrope proposed by the Tension Technology Insternational (TTI) (Ridge et 

al., 2010; Banfield et al., 2017) Figure 2-13) are at the mean tension of 40% of MBL 

with the tension ranges vary from 40% to 70% of MBL where creep is believed to be 

the dominating effect. Indeed, when extrapolated to low load level (e.g. 10 to 15% of 

breaking load as for nylon SPM hawsers), the fatigue curve proposed by the TTI gives 

a number of cycles to failure of 1000 times greater than the field data retirement value 

(about 2.5 million cycles) of the nylon hawsers operated by the Whitehill 

Manufacturing Corporation as illustrated in Figure 2-14 (Huntley, 2016). 

 

Figure 2-13: A nylon fatigue curve based on the testing data of the TTI (Ridge et 

al.2010, Banflield et al., 2017). 
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Figure 2-14: Comparison of nylon fatigue characteristics (Huntley, 2016) (the red line 

is the fatigue curve obtained from the nylon subrope tests performed by the Ridge et 

al., 2010) (LR- Load Range, BL: Breaking Load).   

 

Figure 2-15: A creep model fatigue curve, Tmax- maximum tension in the rope. 

Figure 2-15 shows a semi-log relationship between the maximum tension ratio, 

max
max

T
R  = %

MBS
and the number of cycles to failure. The data of the high load level 

fatigue tests on the Bridon’s superline nylon subrope (Ridge et al., 2010) where the 

dynamic tension ranges are recalculated as the maximum static tension ratios, Rmax, 

and the TCLL fatigue curve of the Bexco’s ultraline nylon rope are plotted together 

showing very good match. This explains again the domination of creep fatigue 

behavior at high load levels, and proves that the high load level fatigue tests seem only 

capture the creep fatigue behavior of the ropes.  
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The ten million and twenty million cycles fatigue tests performed by the Tension 

Technology International (Banfield et al., 2017; Flory et al., 2016) which show almost 

no loss of strength for the Bridon’s nylon subrope can be explained by the high mean 

tension (30% of MBS) and low tension range (6% of MBS). Indeed, it seems obvious 

that at such a tension level the relative motions between strands are locked and as a 

consequence, resulting in no abrasion damage. Also, as mentioned above creep fatigue 

is not a concern at around 30% of MBS. Therefore, these fatigue tests doesn’t seem to 

cover all the critical tension ranges for fatigue behaviors of nylon ropes.  

Another approach to study the inter-strand abrasion behavior of synthetic ropes is 

based on the yarn-on-yarn abrasion tests. These tests have been performed for nylon 

yarns of Bridon and Bexco (Flory et al., 2016; Chevillotte et al., 2018). Although an 

excellent improvement in abrasion resistance is observed for both the nylon yarns 

where new coating technologies (i.e. marine finish) are applied, it is difficult to 

extrapolate the testing results to full-scale ropes. A yarn-on-yarn abrasion machine is 

illustrated in Figure 2-16. 

 

Figure 2-16: A yarn-on-yarn abrasion machine (Chevillotte et al., 2018). 

It seems important to stress that in current standard fatigue testing approaches there 

has been no clear precision and distinction of which mechanisms of fatigue causing 



74 

 

rope failure (Lechat, 2007). The author would argue that creep and internal abrasion 

fatigue should be considered separately as two different fatigue criteria when it comes 

to fatigue estimate of nylon mooring ropes. Also, internal abrasion fatigue should be 

carefully assessed since it induces not only strength reduction but also modified 

structural responses due to material loss. Indeed, besides the strength reduction due to 

inter-strand damage, it is also crucial to investigate the residual stiffness of the ropes 

since a modified rope stiffness might result in modified structure behaviors. The issue 

has been studied by Bandfield et al. (2018) where the residual stiffness of a polyester 

rope that has been through 15 million cycles of at the mean tension of 40% of MBL 

and the tension range of 20% of MBL is compared with its as new stiffness as in 

Figure 2-17. It is noted that only 8% loss of strength was found after 15 million cycles 

due to inter-strand abrasion. The curves are shown to be closely matched up to around 

50% of break load. It proves that the 10 cycles of bedding-in from 1% to 50% of break 

load is sufficient to remove most of the construction stretch. The deviation from 50% 

of the breaking load to failure is most likely due to the additional structural bedding-in 

of both rope and splices of the fatigued rope.  

 

Figure 2-17: 6t sub-rope load/extension curves up to break for new rope (after 10 

conditioning cycles) and after fatigue testing (Bandfield et al., 2018). 

Liu et al. (2015) investigated the influence of the internal abrasion damage on the 

dynamic stiffness of polyester ropes and found significant dynamic stiffness reduction 

due to material loss. Their results are illustrated in Figure 2-18 where dynamic 

stiffness of polyester ropes corresponding to different damage levels are compared. 
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An empirical expression of dynamic stiffness for damaged ropes is expressed as (Liu 

et al., 2015) 

 
ψω

r m a mK = α (1-D) + β 1-D L - γε - δL exp(-κN)   (2.7) 

where   

α, ω, β, ψ, γ, δ and ĸ are coefficients related to the material and structure of the 

fiber ropes; 

D is the damage levels (% of MBS);   

Lm is the mean tension (% of MBS); 

Ɛa is the amplitude of strain;    

N is the number of loading cycles. 

 

Figure 2-18: The influence of material loss on the residual dynamic stiffness of 

polyester ropes (Liu et al., 2015) (D- the damage level in % of MBS) 

A non-destructive testing approach to characterize internal abrasion fatigue 

Although internal abrasion fatigue tests are costly and time consuming, a 

comprehensive procedure for fatigue testing of fiber ropes that can be applied for 

every levels of loading is of great interest. Therefore, the author proposes, as an 

alternative, a non-destructive testing approach as in the following in order to capture 

the internal abrasion damage effects on nylon ropes without having to perform fatigue 

tests until failure. The present non-destructive fatigue test procedure is presented in 

Figure 2-19 where the aim is to characterize the residual strength and stiffness of 

damaged ropes as a function of the levels of loading (i.e., mean tension and tension 
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amplitude) and the corresponding number of effective cycles. Ultimately, the author 

expects that the testing results could be extrapolated in order to determine the number 

of cycles to failure at every level of loading. The tests are to be performed on nylon 

subropes in wet condition. 

In the following, in order to characterize the internal-abrasion fatigue, a tension ratio 

Ra ( min

max

T
Ra=

T
) is used to represent the level of loading. The relationship between Ra 

and the number of Cycles to Failure (CTF) – N should be determined for every load 

level (i.e. R) (DNVGL, 2015). The rope failure is defined as a complete loss of load-

carrying capacity, i.e. the Residual Breaking Strength (RBS) equals to 0. However, 

one might argue that only the ratio Ra would not be enough to represent every load 

ranges (i.e. different mean tensions and tension amplitudes may result in the same R). 

The author suggests to verify this assumption by performing the same tests (i.e. same 

number of cycles) for the same ratio Ra but with different mean tensions and tension 

amplitudes (e.g. Ra= 0.25 at the mean tension, Lm= 10% of MBL, and the tension 

amplitude, La= 6% of MBL, comparing with R= 0.25 at the mean tension, Lm= 20% 

of MBL, and the tension amplitude of La= 12% of MBL). 

The following fatigue cyclic tests should be performed 

- N1= 100,000.00 cycles (f=0.65Hz) ≈ 1.78 days 

- N2= 200,000.00 cycles (f=0.65Hz) ≈ 3.56 days 

- N3= 300,000.00 cycles (f=0.65Hz) ≈ 5.34 days 

- N4= 400,000.00 cycles (f=0,65Hz) ≈ 7.12 days 

- N5= 800,000.00 cycles (f=0,65Hz) ≈ 14.24 days 

- N6= 1,600,000.00 cycles (f=0,65Hz) ≈ 28.48 days 

Then break test to check the residual strength and stiffness of ropes. 
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Figure 2-19: Non-destructive fatigue tests on nylon subropes (MBS: Minimum 

Breaking Strength). 

4 levels of loading are chosen as in the Figure 2-19 at the mean tension equals to 10% 

of MBL and the corresponding tension amplitude of 6% (Ra= 0.25), 7% (Ra= 0.176), 

8% (Ra= 0.111), 9% (Ra= 0.052). The expected testing results are presented in Figure 

2-19 where a function that represents the residual breaking strength of ropes 

considering the effective cycles could be obtained for each level of loading such as 

f(Ra= 0.25), f(Ra= 0.176), f(Ra= 0.111), f(Ra= 0.052). Based on that, a function of the 

residual breaking strength of ropes at every level of loading together with the number 

of effective cycles can also be obtained as Eq. (2.8) 

RBS = f(Ra, N)    (2.8) 

where   Ra- the ratio defining the tension level, ( min

max

T
Ra = 

T
) 

  N- the number of effective cycles corresponding to the ratio Ra 

Also, the testing results presented in Figure 2-19 and Eq. (2.8) could be extrapolated to 

determine the number of cycles to failure at each level of loading as in Figure 2-20. 

Based on that, an internal abrasion fatigue curve could be obtained for every levels of 

loading as illustrated in Figure 2-21. Basically, the greater Ra gets, the lower effect of 

inter-strand damage is expected. Also, there should be a minimum value of Ra where 

no damage due to internal abrasion fatigue would be found. This is illustrated as the 

red horizontal line in Figure 2-21. 
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Figure 2-20: Extrapolating the non-failure fatigue test results. 

 

Figure 2-21: An internal abrasion fatigue curve. 

The quasi-static and dynamic stiffness tests (as discussed in Figure 2-6, section 3.1) 

are to be re-performed on damaged ropes. An empirical expression of dynamic 

stiffness for damaged rope could be obtained as in the Eq. (2.9).  

ω

rd m aK = α(1-D)  + βL - γL     (2.9) 

where   D-   the damage level (%MBS);   

Lm-   the mean tension (%MBS); 

La-  the tension amplitude (%MBS); 

α, β, ω, γ-  empirical coefficients 

In conclusion, the present internal abrasion fatigue tests could be considered for 

substituting current testing approaches in the literature which are costly and time-

consuming but still cannot cover every possible levels of loading. Moreover, for 

hybrid mooring lines with applications of nylon mooring ropes, the methodology for 

modeling and service life monitoring of mooring lines presented in Chapter 3 of this 

manuscript requires a sound understanding of the residual breaking strength and 

stiffness of nylon ropes during exploitation. 
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3.3 Application for numerical modeling of nylon mooring ropes 

The results discussed in this section have been published in one of the authors’ papers 

(Pham et al., 2019) where the primary objective is to assess the impact of the dynamic 

stiffness of nylon mooring ropes on the dynamic mooring behaviors in real sea 

conditions. It is done by applying the suggested nylon mooring analysis procedure 

described in Figure 2-9 and the empirical expression of nylon rope dynamic stiffness 

in Eq. (2.6).  

Dynamic mooring analysis is performed for both ULS and FLS cases in order to 

investigate the impact of the present nylon dynamic stiffness model on both strength 

and fatigue design of mooring lines. A chain-polyester-chain mooring system and a 

chain-nylon-chain system are also compared to study the impact of the different 

stiffness cases corresponding to the two synthetic materials on the design motions and 

tension responses of the system.  

Floating structure and mooring line properties 

The mean water depth of the site is taken as 36 m in this case study. The considered 

FWT has a total mass of about 5000 t and a draft of approximately 7 m. The floater is 

considered as a square ring with a 36 m width, a height of 10 m, and a 21 m wide 

moonpool. The wind turbine’s nacelle is located 60 m above the free surface. The 

floating structure model is illustrated in Figure 2-22.  

 

Figure 2-22: Left- The FLOATGEN FWT (ECN, 2018); Right- The floating structure 

modeled by HydroStar (BV, 2016).  

The mooring line properties are presented in Table 2-3 in which the same minimum 

breaking strength is chosen for all the mooring components. 
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Table 2-3: Mooring line properties. 

Materials/Properties 
Diameter 

(m) 

Axial stiffness  

EA_dynamic (kN) 

Minimum 

Breaking Strength 

(kN) 

Nylon 0.216 

Determined by the 

Eq. (2.6) and the 

procedure Fig. 6 

10.000E3 

Polyester 0.188 

Determined by the 

Eq. (2.5) and the 

DNVGL's procedure 

10.000E3 

Chain/R4S 0.095 1.10E6 9.987E3 

Dynamic mooring analysis 

For simplification, wind and current loads are approximated as a steady contribution 

included in the mean tension. The mooring lines dynamic analysis is performed using 

OrcaFlex with a simulation duration set to 3 hours. The hydrodynamic database is 

calculated using HydroSTAR. The wave-frequency and low-frequency floating-body 

motions are then computed within OrcaFlex using a coupled analysis with the mooring 

system. Although no dynamic wind forces are considered, the wind turbine assembly 

has an influence on the mass and inertia of the system. Quadratic viscous damping on 

the structure is also included in order to achieve realistic vertical motions.  

 

Figure 2-23: Power spectral density of the incoming wave and the tension response. 
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Table 2-4: Extreme and moderate sea states at the SEMREV sea test site. 

Sea state Spectra type Hs (m) Tp (s) Gamma 

Extreme  Jonswap 10 15.7 3.3 

Moderate - Fatigue Jonswap 2.61 13.8 3.3 

The extreme and moderate sea states at the SEMREV sea test site (as presented in 

Table 2-4) are used in the calculation. 

The Power Spectral Density (PSD) of the tension response in a mooring line is 

presented in the Figure 2-23 showing clear dominance of wave frequency responses. 

Dynamic modeling of nylon mooring ropes 

Table 2-5: Different dynamic stiffness cases of the nylon rope and the resulting 

standard deviation of the tension response. 

Sea state 

Mean 

Tension (% 

of MBL) 

Tension  

Amplitude 

(% of 

MBL) 

Axial 

stiffness 

EA_dynamic 

(kN) 

Standard deviation 

of the tension 

response (kN) 

Extreme -100 year 

return period 
30 30 74.8E3 0.571E3 

Extreme -100 year 

return period 
30 26 83.2E3 0.655E3 

Extreme -100 year 

return period 
30 21 93.7E3 0.757E3 

Extreme -100 year 

return period 
30 15.32 105.628E3 1.0833E3 

Moderate - 

Fatigue 
10 10 38.8E3 0.045E3 

Moderate - 

Fatigue 
10 7 45.1E3 0.052E3 

Moderate - 

Fatigue 
10 5 49.3E3 0.056E3 

Moderate - 

Fatigue 
10 0.9 57.91E3 0.064E3 
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Table 2-6: Different dynamic stiffness cases of the nylon rope and the resulting 

platform motions. 

Stiffness case / 

Motions 

30 +- 30 % MBL 30 +- 26 % MBL 

Mean STD Min Max Mean STD Min Max 

Surge (m) -0.58 5.84 -25.4 13.8 -0.62 6.2 -25.7 14.56 

Sway (m) -0.01 0.02 -0.08 0.06 -0.01 0.02 -0.1 0.09 

Heave (m) 0.02 2.53 -9.93 8.34 0.03 2.53 -9.93 8.31 

Roll (deg) 0 0.01 -0.02 0.02 0 0.01 -0.02 0.02 

Pitch (deg) -0.51 2.58 -8.89 7.14 -0.51 2.57 -8.87 7.13 

Yaw (deg) 0.06 0.01 0.02 0.09 0.06 0.01 0.02 0.09 

30 +- 21 % MBL 30 +- 15.32 % MBL 

Mean STD Min Max Mean STD Min Max 

Surge (m) -0.69 6.54 -27.5 15 -0.81 6.98 -30.30 15.40 

Sway (m) -0.01 0.02 -0.12 0.11 -0.01 0.02 -0.16 0.16 

Heave (m) 0.03 2.53 -9.94 8.27 0.04 2.54 -9.96 8.23 

Roll (deg) 0 0.01 -0.02 0.02 0.00 0.01 -0.02 0.03 

Pitch (deg) -0.52 2.55 -8.85 7.01 -0.53 2.51 -8.81 6.68 

Yaw (deg) 0.06 0.01 0.01 0.1 0.06 0.01 0.01 0.11 

The fiber rope mooring analysis procedure presented in Figure 2-9 is applied to 

determine the dynamic tensions in mooring lines based on the convergent dynamic 

stiffness determined for each specific sea state. The procedure starts with a tension 

amplitude, La, that is equal to the mean tension, Lm (the lowest realistic stiffness case 

in our experience), then converges very quickly after a few iterations. For instance, the 

dynamic stiffness case, 30 % +- 15.32 % of MBL, determined for the ULS case 

represents the mean tension, Lm, at 30 % of MBL and the convergent tension 

amplitude, La, equals to 15.32 % of MBL, determined by the procedure. The 

corresponding convergent dynamic stiffness of 10 % +- 0.9 % of MBL is found for the 

FLS case. The results presented in Table 2-5 show the important impact of the tension 

amplitude on the dynamic stiffness of nylon and the resulting dynamic tension 
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responses in the mooring lines. The corresponding platform motion statistics are 

presented in Table 2-6. 

Figures 2-24 and 2-25 show the tension time histories at the fairlead point of the front 

line 1 comparing different cases of stiffness (i.e. with the same mean tension but 

different tension amplitudes). It can be seen that at the same mean tension, with a 

lower tension amplitude, the rope gets stiffer which results in more severe tension 

responses in the line (both in peak and trough values). This confirms the important 

impact of the tension amplitude on the dynamic stiffness of nylon ropes and the 

resulting dynamic tension in both strength and fatigue conditions. 

 

Figure 2-24: Dynamic tension of a mooring line in ULS condition applied the present 

fiber rope mooring analysis procedure presented in Figure 2-9.  

 

Figure 2-25: Dynamic tension of a mooring line in FLS condition applied the present 

fiber rope mooring analysis procedure presented in Figure 2-9. 
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The maximum design tension of the mooring component is chosen as 

MBL
Tmax_design= 

SF
   (2.10) 

where   MBL - The Minimum Breaking Load of the mooring component. 

SF – The minimum safety factor of the mooring components taken as 

1.67 according to API-RP-2SK (API, 2005). 

 

Figure 2-26: Comparison of maximum tensions for different cases of stiffness with the 

design breaking tension (i.e. which considers the safety factor of 1.67 according to 

API-RP-2SK (API, 2005)). 

It can be seen in Figure 2-26 that if the tension amplitude is not correctly considered 

while determining the rope stiffness, the maximum tension in the mooring lines can be 

underestimated. Indeed, the line is still considered correctly designed for the three 

stiffness cases (30 % +- 30 % of MBL, 30 % +- 26% of MBL, 30 % +- 21 % of MBL) 

whereas it has already failed if the convergent dynamic stiffness (i.e. determined 

following the procedure in Fig. 6), 30 % +- 15.32 % of MBL is considered. 

As there is currently limited publically available research on the fatigue behavior of 

nylon ropes, the fatigue analysis will be performed hereafter for only the chain section 

at the fairlead point. This, however, shows the importance of the present dynamic 

stiffness model on the global fatigue responses of the mooring lines.  

The T-N fatigue curve approach according to API-RP-2SK (API, 2005) is applied as 

-m

RN=K.T              (2.11) 

where   N - the number of cycle to failure under a tension range TR 

  K = 1000, m = 3 for studlink chain (API, 2005) 



85 

 

The fatigue damage accumulation is calculated following the Palmgren-Miner’s rule, 

 

n n
m

Ri

i=1 i=1Ri

1 1
D= = T

N T K
               (2.12) 

where   TRi - the tension range at tension cycle number i. 

n- the number of tension cycles TRi. 

                                                                       

Figure 2-27: Expected fatigue lives for different stiffness cases (a safety factor of 3 

according to API-RP-2SK (API, 2005) is already consider for the fatigue life in each 

case).  

The time domain fatigue analysis is performed by Orcaflex. Figure 2-27 compares the 

fatigue life of the front line 1 at the fairlead point for different cases of stiffness. It 

shows that the convergent dynamic stiffness model gives a more conservative fatigue 

life estimate. For instance, the fatigue life considering the dynamic stiffness equivalent 

to the case 10 +- 10% of MBL is about 89 years whereas it is only about 22 years for 

the convergent dynamic stiffness case, i.e. 10% +- 0.9% of MBL. 

Comparison of chain-nylon-chain and chain-polyester-chain mooring systems 

Two mooring systems composing of chain-nylon-chain and chain-polyester-chain are 

compared to study the impact of the different cases of stiffness for the two synthetic 

materials on mooring line responses. The same MBL (as presented in Table 2-3) and 

the same mean tensions in each sea state are chosen for the two mooring systems in 

order to investigate the required fiber rope lengths and the resulting tension responses. 

The un-stretched lengths of polyester and nylon ropes are chosen according to the 

mean tension for each sea state. For this, the quasi-static stiffness (as in Eq. (2-5)) and 
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the static modulus reported Varney et al. (2013) are used for polyester and nylon 

respectively. 

Table 2-7: Mooring line properties. 

Materials/Properties 
Mean 

Tension 

Axial 

Stiffness 

EA_dynamic 

(kN) 

Un-stretched 

length (m) 

Nylon 
30 % of 

MBL 
105.628E3 681.195 

Polyester 
30 % of 

MBL 
284E3 722.530 

Nylon 
10 % of 

MBL 
57.91E3 713.896 

Polyester 
10 % of 

MBL 
218E3 732.362 

The line characteristics and motion statistics of the floating structure are presented in 

Tables 2-7 and 2-8. It can be seen that at the same mean tension significantly higher 

stiffness is found for polyester. Consequently, that results in not only longer required 

un-stretched lengths of the lines but also restricted levels of motions corresponding 

with more severe dynamic tension responses. In the following example, it is the 

author’s intention to choose the same mean tension for different mooring 

configurations (i.e. with nylon and with polyester). This allows to investigate the un-

stretched length required for each mooring component for the same footprint and the 

corresponding mooring responses. 

The tension responses in both ULS and FLS conditions are also compared in Figures 

2-28 and 2-29. The significant increases in tension extremes (i.e. peak and trough) is 

found in the chain-polyester-chain mooring system. This confirms the advantage of 

nylon for reducing the extreme tension responses in mooring lines, which is favorable 

for both extreme and fatigue designs. 

In conclusion, the numerical results show the advantages and conservativeness of the 

present nonlinear dynamic stiffness model for nylon mooring modeling in both ULS 

and FLS cases. However, comparison with field measurements on real nylon mooring 

lines or dynamic stiffness tests under irregular loading are necessary in order to 

validate and improve the model. Furthermore, the coupled aero-hydrodynamic analysis 

could be of great importance for the modeling of FWT responses but is not considered 
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in this work. The results show also the advantage of nylon on reducing the required 

mooring line lengths and tension responses which are favorable for both strength and 

fatigue design.  

Table 2-8: Motion statistics. 

Stiffness cases / 

Motions 

Surge 

(m) 

Sway 

(m) 

Heave 

(m) 

Roll 

(deg) 

Pitch 

(deg) 

Yaw 

(deg) 

  Mean -0.81 -0.01 0.04 0.00 -0.53 0.06 

Nylon STD 6.98 0.02 2.54 0.01 2.51 0.01 

 30% of 

MBL 
Min -30.30 -0.16 -9.96 -0.02 -8.81 0.01 

  Max 15.40 0.16 8.23 0.03 6.68 0.11 

  Mean -1.35 0.00 -0.40 0.00 -0.56 0.06 

Polyester STD 6.98 1.11 2.55 0.18 2.16 0.47 

30% of 

MBL  
Min -27.80 -5.83 -9.31 -1.06 -6.95 -3.39 

  Max 16.31 4.82 7.17 1.18 6.54 2.35 

  Mean -0.04 0.00 -0.01 0.00 0.00 0.00 

Nylon STD 0.98 0.00 0.77 0.00 1.43 0.00 

 10% of 

MBL 
Min -4.03 -0.01 -2.50 -0.01 -4.09 0.00 

  Max 2.65 0.01 2.30 0.01 4.13 0.00 

  Mean -0.30 0.00 -0.08 0.00 -0.14 0.06 

Polyester STD 2.07 0.01 0.72 0.00 1.37 0.02 

10% of 

MBL  
Min -6.23 -0.04 -2.24 -0.01 -3.55 0.01 

  Max 4.84 0.03 1.87 0.01 3.18 0.13 
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Figure 2-28: Tension responses, ULS. 

 

Figure 2-29: Tension responses, FLS. 

4. Marine environmental impacts 

For the present in-service monitoring methodology, it is also important to understand 

and consider the marine environmental factors that influence the modeling and health 

monitoring of mooring lines. These environmental factors include the water depth, the 

environmental loads (e.g. wind, current, wave), marine species, etc.  

Spraul et al. (2017), Yang et al. (2017) and Wright et al. (2016) studied the effects of 

marine growth on the mooring lines of marine renewable energy devices. According to 

their conclusions, the biofouling has an important impact on the tension responses and 

thus on the fatigue life of mooring lines. For fiber rope mooring without covering and 

filters, junior harsh marine species such as mussels can even penetrate and growth 

inside the ropes, then accelerate the inter-strand abrasion (Weller et al., 2015). The 

marine species colonization measured at the Ecole Centrale Nantes/SEM-REV test site 

(Spraul et al., 2017) is shown in Figure 2-30 for illustration. 
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Figure 2-30: Biofouling colonization survey using under-water camera at the SEM-

REV test site (Spraul et al., 2017).  

Others marine environmental effects such as accelerated corrosion of chain links in sea 

water, wear at the fairlead connection point and seabed touchdown sections of the 

lines, etc. should be listed and understood for a comprehensive modeling and service 

life monitoring approach. Indeed, experiences from the Oil & Gas industry show 

several mooring line failures due to the fatigue damage induced by the crack 

propagation which can be accelerated by corrosion in marine environment and wear 

between chain links or at connection points (Lardier et al., 2008). Corrosion results in 

the reduction of steel surface, variation in residual stresses, therefore, influences both 

strength and fatigue design of mooring lines. Corrosion in sea water of chains is a 

complex phenomenon since it depends on both the mooring material properties and the 

marine environment characteristics (the composition of sea water, temperature, 

salinity, dissolved oxygen, etc.). Most of corrosion models are simply based on a 

constant rate of corrosion. For instance, API-RP-2SK (API, 2005) recommends an 

industry practice to increase the chain diameter in the splash zone and the dip or thrash 

zone on hard bottom by 0.2 to 0.4 mm/year, this increasing diameter is reduced to 0.1 

to 0.2 mm/year for the remaining length. Bureau Veritas Guidance Note NI-493 (BV, 

2015) requires a 0.4 mm/years of corrosion and wear allowance for the chain section 

in splash zone and the bottom length, and 0.3mm/year in the remaining length. DNV 

OS-E301 (DNV, 2010) recommends considering a corrosion rate of 0.4 mm/year in 

chain diameter in the catenary and bottom parts and a higher rate of 0.8 mm/year for 

the splash zone. Melchers et al. (2007) proposed a probabilistic model for fully 

submerged chains with the mean value of corrosion rate about 0.44mm/year with a 

standard deviation of 0.1mm/year. Schoefs et al. (2009) suggested an inspection model 

of the steel loss in view to account for the variability of the corrosion rate with time. 
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Figure 2-31: Corroded chain mooring lines of a met-ocean buoy at the SEM-REV sea 

test site (Berhault, 2017). 

The corrosion observed in the catenary mooring lines of a met-ocean buoy operated at 

the Ecole Centrale Nantes/SEM-REV sea test site (Berhault, 2017) is illustrated in 

Figure 2-31. 

During their design life-time, material loss in synthetic ropes can also be induced and 

accelerated by some external factors such as, 

- Harsh granular and shell marine species penetration inside the ropes, and the 

forming of salt crystal (i.e. a phenomenon that happens when the ropes undergo 

regularly through consecutive dry-wet cycles, e.g. at the splash zone section) 

that induce and accelerate inter-strand abrasion. These problems can be avoided 

by proper design such as the use of rope jacket and filter, and by keeping the 

fiber rope section always underwater during operation. 

- Excessive wear at the top-connection point and sea-bed connection. This can be 

avoided by using additional chain sections at the upper and touch-down part of 

the lines. 

For the safety operating objectives discussed above, a clump weight is applied near the 

top connection point of the nylon rope in order to keep it always underwater during 

operation. Also, the distributed buoys are applied to avoid contact between the fiber 

ropes with the sea-bed.  
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5. Conclusions 

This chapter discusses the mechanical behaviors of the two mooring components, i.e. 

chain and nylon, and the marine environmental factors influencing such behaviors. 

The objectives are to identify and calibrate major factors influencing the modeling and 

monitoring of mooring lines during operation. Based on the information mentioned 

previously, the design, modeling and service life monitoring of mooring lines can be 

improved. Indeed, it can be seen that monitoring and inspection should focus on the 

first link of the top chain that is more vulnerable due combined fatigue damage (i.e. 

tension-tension plus in-plane and out-of-plan bending). Corrosion and wear were 

found more severe at splash zone and sea-bed contact sections of the chain whereas 

lower rate of corrosion was found for fully submerged sections.  

The critical parameters for monitoring and investigating should be floating structure 

motions, mooring tensions and the angle differences between fairlead and chain, 

marine growth, corrosion and wear, etc. Those parameters should be carefully 

investigated and monitored in order to update the structure behaviors and reliability, 

and to forecast necessary maintenance or replacement of lines.  

As for the nylon rope, an empirical expression of axial dynamic stiffness depending on 

both the mean tension and the tension amplitude is drawn based on rope stiffness tests 

in the literature. A practical procedure for dynamic modelling of nylon mooring ropes 

is proposed (Pham et al., 2019). Moreover, creep and internal abrasion are identified as 

two major fatigue mechanisms for nylon ropes which should be studied separately. 

Internal-abrasion fatigue, however, is a non-linear and complex fatigue mode which 

may induce severe material loss and modified stiffness of nylon ropes. In order to fully 

understand internal abrasion fatigue without having to perform exhausting long-cycle 

fatigue tests, a non-destructive fatigue testing approach is proposed which will be 

among the authors’ future scope of work.  

The marine environmental factors such as marine growth, corrosion and environmental 

loading are also discussed in order to identify and calibrate factors influencing the 

modeling and monitoring of mooring lines during exploitation. This is important for 

the methodology presented in chapter 3 where a sound understanding of the actual 

states of the mooring system during exploitation is required in order to improve the 

accuracy of the mooring resistance check, fatigue estimate via reliability assessment.
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1. Introduction 

The modeling and monitoring of offshore mooring lines require a sound understanding 

of both the relating mechanical behaviors of all the mooring components (i.e. load-

strain behaviors, breaking strength, critical modes of failure, etc.) and the marine 

environmental factors (i.e. environmental loading, corrosion, abrasion, colonization of 

marine species, etc.) that influence such behaviors. The design of offshore mooring 

lines are often checked against three limit states (DNV, 2010). 

- Ultimate Limit State (ULS) where the lines maximum tension are designed to 

remain below the minimum breaking strength of the mooring components. A good 

estimate of the working tension is, therefore, mandatory for a reliable design. It 

also means that in order to perform a detailed mooring design, the mechanical 

properties (i.e. load-strain properties, breaking strength, etc.) of all the mooring 

components and the relating deterioration factors must be well understood. 

- Fatigue Limit State (FLS) where mooring lines are designed for a certain service 

life (usually between 20 and 25 years for FWTs). The fatigue life of a mooring line 

is affected by not only the mechanical fatigue behaviors of the materials 

composing that line but also the material deterioration due to the marine 

environmental factors. 

- Accident Limit State (ALS) where the mooring system is designed with a certain 

redundancy in order to ensure their capability of surviving against the failure of 

one line. 

The previous issues have been subjects of a large amount of research work (Aqdam et 

al., 2018; Xue et al., 2018; Wu et al., 2015). Ma et al. (2013) investigated several 

accidental events in permanent mooring systems and found that many line failures 

occurred in early service years of mooring lines. Even if fatigue is generally the 

dominant cause, Gryphon incident (Finucane, 2012) teaches us a case of failure due to 

a combination of failure of heading control and overload. Moreover, the failure 

mechanisms have surprised the industry experts. A limit number of known failures for 

mooring lines of marine renewable energy devices (e.g. Oceanlinx in 2010 and 

Wavedragon in 2004) has been discussed by Christensen et al. (2005), but the reasons 

of failure stay still unclear. Brindley et al. (2014) stressed that only strength 

requirements do not fully reflect the system reliability. Pham et al. (2004), Pham 

(2018) studied the interaction between the reliability in the ULS and FLS. According 
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to their conclusions, the total reliability should be considered either by multiplying the 

reliability of the two design criteria (for the reliability in the ULS case) or by adding 

the fatigue damage caused by extreme sea states that might probably occur at any point 

during the expected service life of structures (for the reliability in the FLS case).  

Unlike O&G platforms, MRE devices are generally small compared to the incident 

wave length and thus will tend to dynamically respond to first-order and second-order 

wave loading as well as the combined effects of wind and currents. There is usually 

strong coupling between the device and mooring system responses and hence complex 

motions can occur which may be large if the system response is resonant (Weller et al., 

2013). For the FLOATGEN project that the present case study is based on, nylon is 

used as a principal mooring component and the modeling of mooring responses lacks 

validation. It is mainly due to the non-linear load-elongation behavior and fatigue 

characteristics of nylon mooring ropes that cannot be captured following the same 

testing and modeling procedures for polyester as recommended by the present O&G 

standards.  

Thies et al. (2014) argued that numerical modeling seems still scantily validated for 

new applications such as floating marine renewable energy devices. They proposed, as 

an alternative, an approach to predict fatigue damage using directly in-situ load 

measurements. Their approach has been concluded to allow a better fatigue assessment 

and an optimization of safety factors at the design state where on-site measurements 

are available. Also, the approach may be used for the in situ monitoring in order to 

predict the fatigue damage and the remaining service life of the structure during 

deployment. However, the author believe that only load measurements are not enough 

to characterize the actual state of mooring lines that actually includes the likely 

modified mooring line mechanical behaviors (e.g. strength and stiffness reduction, etc. 

due to material loss (Gao et al., 2005; Liu et al., 2015), modified mass and 

hydrodynamic damping due to biofouling (Spraul et al., 2017; Yang et al., 2017; 

Wright et al., 2016) and other marine environmental factors such as corrosion, wear, 

extreme environmental conditions, etc. (DNV, 2010; API, 2005; BV, 2015; Lardier et 

al., 2008; Melchers et al., 2007; Schoefs et al., 2009). These mechanical behaviors of 

mooring materials and marine environmental factors should be fully understood and 

accounted for. Indeed, it is vital to clarify the mechanics of the mooring line responses, 

to understand why and how they might be modified during deployment, and how those 

can be accounted for in order to update the actual fatigue damage and predict the 

remaining allowable service life of the system. That is why, in the author’s opinion, 

modeling and monitoring should be implemented in parallel in order to better control 
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and update the actual state of mooring lines, better estimate the fatigue damage and 

reliability of the system during deployment. Based on that, decisions regarding 

required maintenance or replacement of lines can be made.  

This chapter focuses on the service life monitoring of mooring lines. For this general 

objective, first, fatigue damage estimate based on cutting-edge frequency domain 

approach has been investigated in order to select a quick but reliable approach for 

fatigue analysis as an alternative to time domain fatigue analysis. Secondly, a 

methodology for modeling and service life monitoring of mooring lines of FWTs is 

proposed based on the reliability approach. The methodology can be applied for the 

Ultimate Limit State (ULS) in order to check if the mooring lines can still sustain the 

design extreme load case after years of operation. Also, by applying the methodology 

for the Fatigue Limit State (FLS), the remaining allowable service life can be predicted 

based on the information obtained from the previous operating years. Furthermore, the 

present methodology can also be considered for a more detailed mooring design once 

the information from similar structures, projects, sites, etc. are known. Finally, in order 

to perform a more accurate reliability assessment for extreme conditions (ULS) the 

application of a meta-model such as an Artificial Neural Network is investigated for 

nonlinear mooring response simulation. The aim is to avoid time-consuming time 

domain mooring modeling by building an identification system based on field 

measurements. 

The selected frequency domain fatigue analysis approach and the present methodology 

for modeling and monitoring of mooring lines have been presented in another under-

review paper of the author (Pham et al., 2019-b). 

2. State-of-the-art in mooring line fatigue analysis 

For mooring lines of offshore structures subjected to irregular and nonlinear loadings, 

time domain analysis is the most accurate method for simulating tension time histories. 

However, the method is also computationally expensive since it requires many lengthy 

realizations of responses in order to assure reliable statistical estimations. In addition, 

it also requires an appropriate cycle counting method and a damage accumulation 

hypothesis (e.g. Palgren-Miner rule, etc.) for fatigue damage estimate. Thus, the 

frequency domain fatigue analysis (or spectral method) seems to be an efficient 

alternative (Mršnik et al., 2013). Besides, in order to ensure the safety integrity level of 

structures and the cost-effectiveness of the design, structural reliability analysis is 

often required. In that case, the analytical spectral method is preferable since it can be 

applied to reliability analysis by considering directly the randomness of the structural 
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responses due to environmental loadings together with the material uncertainties. 

However, the conventional frequency-domain fatigue analysis cannot capture the 

actual wide-band and nonlinear behaviors of the mooring responses. The comparison 

between time-domain and conventional frequency-domain fatigue analysis is 

illustrated in Figure 3-1. 

 

Figure 3-1: Comparison of time-domain and frequency-domain fatigue analyses. 

 

Figure 3-2: A bi-modal spectrum (Gao et al., 2010). 

Several research has been focused on improved frequency domain methods that can 

take into account the wide-band effect of structural responses. One of the pioneered 

methods was proposed by Jiao et al. (1990), in which they presented a combination 

rule for two well–separated narrow-band Gaussian processes (as illustrated in Figure 

3-2) based on the statistical properties of the combined process. The method proposed 

by Tovo (2002), Benasciutti et al. (2004, 2005) has been recognized as one of the most 

accurate method. Moreover, since mooring response is in principle non-Gaussian 

random process, conventional frequency domain method often lead to bias results 

(Sarkani, 1994). The use of a corrective coefficient multiplying with the Gaussian 

fatigue damage (Dg) in order to account for non-Gaussian effect seems to be an 

effective solution (Winterstein, 1988; Yu et al., 2003; Cianetti et al., 2017; Preumont, 

1994).  

2.1 Time domain fatigue analysis 

It is commonly accepted that during a short-term sea state, mooring response is 

considered as a stationary random process which can be represented by samples of 
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time history thanks to the Monte Carlo simulation method. On the one hand, the 

duration of each sample of time history must be long enough to ensure the stationarity 

(i.e. the unconditional joint probability distribution does not change when shifted in 

time. As a consequence, statistical parameters such as mean and variance do not 

change over time) and ergodicity (i.e. its time average is the same as its average over 

the probability space). On the other hand, it is necessary to simulate for each sea state 

a set of tension time history samples (10 to 30 samples) in order to ensure good 

statistical estimate, (API, 2005). For each sample of stress time history, a counting 

method is applied to determine the number of cycles corresponding to the stress 

variation, S = Smax - Smin, where Smax and Smin are the consecutive maximum and 

minimum stress respectively. Among several counting methods, the rainflow counting 

(RFC) method (Rychlik, 1987) illustrated in Figure 3-3, is the most commonly used. 

 

Figure 3-3: The rainflow counting method (Pham, 2010). 

2.2 Frequency domain (spectral) fatigue analysis 

Random processes and spectral density 

In frequency domain analysis, a random process is represented by its Power Spectral 

Density (PSD) which is used to estimate both the cycle distribution and fatigue 

damage (Preumont, 1994; Bendat, 2000). Mooring response is often combined of 

Wave Frequency (WF) and Low Frequency (LF) tension components. In principle, due 

to the motions of the floating structures, the drag force acting on mooring lines and the 

geometrical nonlinearity of lines, the combined WF and LF mooring response is 

usually a wide-band non-Gaussian process. 

https://en.wikipedia.org/wiki/Joint_probability_distribution
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Variance
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Let X(t) represent a stationary random process, the spectral moments of its spectral 

density 
XW (ω) can be calculated as 

n

n X

0

λ = ω W (ω)dω



     (3.1) 

The standard deviation of X(t):   X 0σ = λ      (3.2) 
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For different mooring line components, the corresponding fatigue S-N curves are used 

to estimate fatigue damage of such components. A typical single-slope S-N fatigue 

curve can be seen in Eq. (3.7). 

-mN= KS      (3.7) 

where   N- the cycle number to failure under constant stress range, S (S = Smax - 

Smin).  

K, m- the S-N-curve parameters. 

The fatigue damage accumulation is followed the Palmgren-Miner's rule and is 

described as 

 

n n
m

i
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1 1
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N Si K
      (3.8) 

where   Si is the stress range at stress cycle number i 

  n- is the number of stress cycles Si 

The expected damage 
_

D  is then estimated as 
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where N0 is the mean number of stress cycles. 

 
_
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1
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Narrow-band process 

If X(t) is a narrow-band Gaussian process, its amplitude, A, follows a Rayleigh 

distribution 

      
2

A 2 2

x x

a a
f a  = exp -

σ 2σ

 
 
 

             (3.11) 

The stress range S is then exactly 2A and is written as 
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where    - Gamma function  
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The expected damage due to X(t) in a time period T (s) is estimated as  

 
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0
NB x

ν T m
D = 2 2σ Γ +1

K 2

 
 
 

            (3.13) 

Wide-band process 

For a wide-band Gaussian process, however, the Rayleigh distribution assigns larger 

probabilities to larger stress ranges, the fatigue damage estimated by Eq. (3.13) might 

result in too conservative estimation (Jiao et al., 1990). The idea is, first, to estimate 

the fatigue damage based on the narrow-band assumption, then multiply with a 

correction coefficient to find the damage of the actual wide-band process: 

  
_ _

WB NB
 = ρD D                        (3.14) 

A bimodal process which includes two separated narrow-band contributions can be 

represented as:  

     1 2X t  = X t  + X t             (3.15) 

where  1X t  and  2X t  represent the Low-Frequency (LF) and Wave-Frequency 

(WF) narrow-band Gaussian process respectively. 

The fatigue damage due to X(t) is assumed to be a combination of the envelop P(t) of 

X(t) (as determined by Eq. (3.16)) and the envelop of the WF process X2(t). 

     1 2P t  = X t  + R t             (3.16) 

where  2R t  is the envelop of the WF process  2X t . 
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The closed-form expression of ρ proposed by Jiao and Moan (Jiao et al., 1990): 
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The closed-form expression in Eq. (3.17) can give very good fatigue estimation 

comparing with time domain simulations and RFC technique for well-separated 

bimodal spectrum. For the case of closely-spaced spectrum, however, it may lead to 

too conservative fatigue estimation (Jiao et al., 1990). In that case, an alternative 

approach is preferable. 

According to Tovo (2002) and Benasciutti et al. (2004), The rainflow damage can be 

estimated as      

         
_ _ _ _ _ _

m-1

2 TBX,WB X,RFC X,NB X,RMC X,NB X,NB
 = =  +  = (b + (1-b)α ). = ρ .1-b bD D D D D D           (3.18) 

where 
_

X,RMCD  is the damage given by range-mean counting, which can determined as 

(Preumont, 1994). 
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 b is the weighting index depends on the spectral density 
XW (ω) approximated as 

(Benasciutti et al. (2004)): 

   
      

 

22.22α

1 2 1 2 1 2 1 2

2

2

α -α 1.112 1+α α - α +α e + α -α
b

α -1

 
 

           (3.20)  

Non-Gaussian process 

Sarkani et al. (1994) showed that the main error between non-Gaussian and Gaussian 

fatigue estimate is related to the kurtosis of the process and the slope, m, of the 

material fatigue curve. Winterstein (1988) demonstrated the relationship between the 

non-Gaussian and Gaussian fatigue damage depending on the kurtosis of the process 

and m as following: 
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24
D

                      (3.21) 
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where ku is the kurtosis (fourth order moment of the Probability Distribution Function 

- PDF) of the process. 

Others formula of 
NGλ are also proposed by Cianetti et al. (2017) and Braccesi et al. 

(2009): 
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    for low ku (i.e. small than 5)              (3.22) 
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  for high ku (i.e. greater than 5)          (3.23) 

where sk is the skewness of the process. 

Wide-band non-Gaussian process 

The wide band non-Gaussian fatigue damage is then determined by 

_ _ _ _

NG G WB NBNG NG NGD = λ .D = λ .D = λ .ρ.D                     (3.24) 

2.3 Comparison of fatigue damage calculated by spectral fatigue approaches 

and time domain analysis 

Table 3-1: Comparison of fatigue damage calculated by time domain analysis and 

different frequency domain fatigue analysis approaches for different sea states (Pham 

et al., 2019-b). 

Sea states Fatigue damage 

Hs Tp D_TimeDomain D_TB+C D_TB+W D_NB D_JM+W 

1.25 4.5 5.78E-05 5.36E-05 5.51E-05 6.35E-05 6.86E-05 

4.75 10.5 1.27E-02 1.33E-02 1.26E-02 1.44E-02 1.56E-02 

2.71 13.8 2.93E-03 2.92E-03 2.93E-03 3.15E-03 3.40E-03 

4.25 9.5 8.91E-03 9.11E-03 8.80E-03 1.01E-02 1.09E-02 

4.75 12.5 1.72E-02 1.75E-02 1.78E-02 1.89E-02 2.05E-02 

3.75 16.5 1.62E-02 1.64E-02 1.69E-02 1.76E-02 1.91E-02 

2.25 16.5 3.05E-03 3.03E-03 3.08E-03 3.32E-03 3.59E-03 

3.75 13.5 8.79E-03 8.37E-03 8.47E-03 8.86E-03 9.58E-03 

3.75 18.5 2.04E-02 2.03E-02 2.02E-02 2.15E-02 2.33E-02 

2.25 18.5 4.03E-03 3.80E-03 3.88E-03 4.23E-03 4.58E-03 

Table 3-1 and Figure 3-4 show a comparison of fatigue damage calculated by time 

domain fatigue analysis and different frequency domain fatigue analysis approaches 

for different sea states observed at the SEM-REV sea test site (Pham et al., 2019-b). It 

can be seen that, the method of Tovo and Benasciutti (Benasciutti et al., 2004; Tovo et 

al., 2002) with the non-Gaussian corrected coefficient proposed by Cianetti et al. 
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(2009) or Braccesi et al. (2017) gives the most accurate fatigue estimate comparing 

with time domain fatigue analysis. This spectral fatigue approach is selected in the 

following for fatigue analysis based on field measurements. 

 

Figure 3-4: Comparison of different improved frequency-domain fatigue analysis 

methods with time domain simulations (Pham et al., 2019-b). (D_TB+C: the Tovo & 

Benasciutti approach (Benasciutti et al., 2004; Tovo et al., 2002) with the non-linear 

coefficient proposed by Cianetti et al. (2009) or Braccesi et al. (2017). D_NB: The 

narrow-band approach. D_ TB+W: the Tovo & Benasciutti approach (Benasciutti et 

al., 2004; Tovo et al., 2002) with the non-linear coefficient proposed by Winterstein 

(1988). D_JM+W: the Jiao & Moan approach (Gao et al., 2007) with the non-linear 

coefficient proposed by Winterstein (1988). 

3. Methodology for modeling and service life monitoring of mooring lines 

A methodology for modeling and service life monitoring of mooring lines is discussed 

in the following based on reliability approach. On the one hand, the reliability 

approach allows accounting for the uncertainties of the materials and environmental 

loading (Pham et al. (2004); Pham (2018), Bitner-Gregersen et al., 1995; Horn et al., 

2019; Rendón-Conde et al., 2015). On the other hand, based on the corresponding 

required reliability level, the design safety coefficients can be optimized for a more 

cost-effective but reliable design. Finally, decisions regarding the required 

maintenance or replacement of mooring lines can be made based on the level of 

reliability predicted during operation.  

The methodology is presented in Figure 3-5 where the mechanical behaviors of all 

mooring components (i.e. strength, stiffness, fatigue characteristics, etc. as presented 

in block 2 of the flowchart) and the environmental factors that influence such 

behaviors (i.e. water depth, environmental loading, marine species, corrosion and 

wear, etc. as presented in block 1 of the flowchart) are identified. The measured 
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environmental factors (block 1) and mechanical properties of mooring components 

(block 2) are input to the mooring analysis tool to calculate the mooring response 

which is then checked against the measured one. Basically, for the present 

methodology, it is very important to determine and clarify which changes will occur 

(i.e. material deterioration, modified mass and damping due to bio-colonization, 

modified length or pretension due to creep of the synthetic mooring components, etc.), 

and how to update those changes in the modeling and fatigue life monitoring of 

mooring lines. For instance, after years of exploitation, the material loss (e.g. due to 

corrosion for chain or internal abrasion for nylon) may induce significant 

modifications on not only stiffness but also strength and fatigue characteristics of 

mooring components. Finally, the collecting information is updated in the mooring 

analysis tool in order to assess the reliability of the mooring lines following their 

expected service life. As a consequence, a full control of the actual state of mooring 

lines, and a better estimate of fatigue and reliability can be achieved. In the present 

methodology, the probabilities of failure (Pf) in the ULS and FLS are calculated 

following the expected service life of mooring lines considering modified mechanical 

behaviors of mooring components and relating environmental factors. The Pf for ULS 

(Pf_ULS) is calculated to ensure a sufficient level of reliability to sustain the design 

extreme sea states that might probably happen at any moment during the service life. 

The Pf for FLS (Pf_FLS) is estimated to ensure a sufficient level of reliability that the 

cumulative fatigue damage is minor than the critical damage. Moreover, the author 

also predicts the reliability level in the FLS considering the added damage due to the 

design extreme sea states (e.g. with a return period of 100, 50, 20, 10 years, etc.) 

assuming that they might probably happen at any moment during the expected service 

life of mooring  lines. These probabilities of failures in ULS and FLS are used to 

support making decisions regarding maintenance or replacement of lines.  
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Figure 3-5: Methodology for modeling and service life monitoring of mooring lines 

4. Methodology for reliability assessment 

It is commonly known that reliability plays a key role in the cost-effectiveness of 

design where uncertainties are important. In structural reliability analysis, it’s about 

estimating uncertainties in the predictions of structural resistance and applied loads. 

These uncertainties include the randomness of the environmental impacts and 

loadings, the material uncertainties, the statistical uncertainties and the modeling 

uncertainties, etc. In fact, any prediction of environmental loadings and the structural 

resistance is based on a certain model which approximates the reality. Therefore, it is 

of great importance to assess the uncertainties of the adopted model since they 

influence directly the accuracy of the reliability analysis (Gao, 2008).  

For reliability assessment, the probability of failure is estimated as 

   fP = P G < 0 = P R - S < 0                  (3.25) 

where   G- the failure function 

  R- the structural resistance 

  S- the load effect 
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Reliability analysis can be solved by using analytical methods such as First and 

Second Order Reliability Methods (FORM and SORM) and simulation methods such 

as crude Monte Carlo simulation, importance sampling, Latin Hypercube simulation, 

etc. (Hasofer et al., 1974; Rackwitz et al., 1978; Liu et al., 1961;  Fiessler et al., 1979; 

Breitung, 1984; Der Kiureghian et al., 1987; Tvedt, 1990). Time-invariant and time-

variant reliability analyses have been studied by Thoft-Christensen et al. (1982), 

Madsen et al. (1986), Melchers (1987), Hagen et al. (1991), Marley et al. (1992), and 

Ayala-Uraga et al. (2007). In the DEEPMOOR project, the mooring reliability analysis 

has been studied for two type of floating structures (i.e. FPSO and semi-submersible) 

considering thee limit states, i.e. Ultimate Limit State (ULS), Fatigue Limit State 

(FLS) and Accidental Limit State (ALS) (Hørte et al., 1998; Mathisen et al., 1998; 

Mathisen et al., 2005). The outcomes of the project has been integrated in DNV-OS-

E301 (DNV, 2010). The mooring reliability analysis is also adopted in several 

international standards such as API-RP-2SK (API, 2005), BV-NR-493 (BV, 2015), 

etc. where partial safety factors have been recommended based on reliability analyses. 

Mooring reliability analysis has also been the subject of an important amount of 

research (Brindley et al., 2014; Pham, 2010; Pham et al., 2014; Pham, 2018; Rendón-

Conde et al., 2015; Luo et al., 1991; Larsen et al., 1996; Snell et al., 1999; Vazquez-

Hernandez, 2006). 

For mooring lines of floating wind turbines, in this work, the author focuses on two 

limit states, i.e. ULS and FLS. The time-variant reliability analysis is performed based 

on the modeling and service life monitoring methodology presented in the previous 

section.  

4.1 Reliability in strength condition (ULS) 

The time-dependent failure function in strength condition (ULS) can be written as 

 ULS BS smaxG t  = T (t) - T (t)              (3.26) 

where BST (t) - the time-dependent breaking strength of the mooring components 

 t- the number of operating years 

 smaxT t - the time-dependent maximum tension in the mooring components 

The time-dependent probability of failure in strength condition is calculated as 

  f ULSP _ULS (t) = P G t <0             (3.27) 
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4.2 Reliability in fatigue condition (FLS) 

The probability of failure in fatigue condition can be calculated as 

  f FLSP _FLS = P G t <0              (3.28) 

where        FLS FLS_1 cumulativeG t  = G t  =  - D   

    Dcummulative – the cumulative fatigue damage  

    ∆ – the critical damage  

4.3 Reliability assessment for the case study 

As an illustration, in the following case study, the author considers corrosion in chain 

sections of the mooring lines as an annual constant reduction of diameter of chain 

links. This phenomenon leads to material loss and likely modified mooring response. 

The same exercises have been done by Gao et al. (2005) and Lardier et al. (2008) for 

the reliability of chain links accounting for their reduced breaking strength and the 

increased stress due to corrosion. The frequency domain fatigue analysis is chosen to 

calculate the fatigue damage directly from the measured tension responses. The 

advantages are two-fold: first, the fatigue damage can be estimated without having to 

perform RFC technique as in time domain analysis, second, the analytical formula of 

the fatigue damage can be used directly for reliability analysis considering the 

uncertainties of the environmental loading and the S-N fatigue curves of mooring 

components.  

It’s worth to acknowledge that standards DNV-OS-E301 (DNV, 2010), API-RP-2SK 

(API, 2005), Bureau Veritas NR 493 (BV, 2015) recommend to consider an additional 

thickness of chain links at the initial design stage in order to compensate the material 

loss due to corrosion. In our opinion, this is a good practice for Oil & Gas platforms 

mooring lines in deep-water where maintenance or replacement of lines are difficult 

and costly. However, that also increases the cost and the tension in the mooring system 

as they become heavier and stiffer. For mooring systems of MRE devices where it 

seems easier and less costly to maintain or replace damage lines, the present 

monitoring methodology discussed in section 3 of this chapter might be a promising 

alternative to ensure cost-effective design and safe operation. 

In the following example, instead of choosing a greater diameter of chain links to 

account for the corrosion effect, the mooring system is designed for the expected 

fatigue life of 20 years with a safety factor of 3 (Lardier et al., 2008). The probabilities 

of failure in ULS and FLS are calculated following the expected service life in order to 
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investigate how material loss (e.g. due to corrosion as in the present case study) 

influences the modeling and service life monitoring of mooring lines, and how 

decisions on maintenance or replacement of lines can be made based on the estimated 

levels of reliability. Although the material loss due to the internal abrasion fatigue 

damage of the nylon rope is not considered here due to the lack of available data for 

this fatigue mechanism, it can be accounted for in the same manner by following the 

present methodology. For the sake of simplification, we do not consider marine growth 

and the additional damage due to In-Plane and Out-of-Plane Bending (IPB and OPB) 

in this example either. However, it should be stressed that in shallow water and at high 

pretension (i.e. greater than 10% of the Minimum Breaking Strength of the top chain) 

IPB and OPB are important and the combined fatigue (i.e. tension-tension plus IPB 

and OPB should be investigated (BV, 2014). 

The time-dependent diameter of the chain links considering the corrosion effect is 

determined as (Lardier et al., 2008) 

  0d t  = d  - t.rc             (3.29) 

where    t - the operation time in years;               d0 - the diameter of chain links at t=0, 

             rc- the annual corrosion rate; 

The time-dependent axial stiffness of the chain sections considering the corrosion 

effect is determined as (Orcina, 2016) 

   
28EA t  = 0.854×10 × d(t)  (kN)    for studless chain  

    
28EA t  = 1.01×10 × d(t)   (kN)     for studlink chain          (3.30)        

The instantaneous stress response process, X(t), of the chain links is calculated from 

the tension process Ts(t) as 

 
 sT t

X t  = 
A(t)

            (3.31)         

where   A(t) – the time-dependent cross section of the chain links, 
  

2

d t
A(t) = 2.π×

4
 

The corrosion in the chain sections are considered as a reduction in the diameter of 

chain links and the axial stiffness of the sections as in Eq. (3.29) and Eq. (3.30). Those 

are updated in the Orcaflex model to calculate the modified mooring response. The 
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same mooring configuration and floating body as presented in section 3.3 of chapter 2 

is used for the present case study. 

The time-dependent Minimum Breaking Strength (MBS) of the chain links is 

determined as 

         
22MBS(t) = c . d t .(44-0.08.d(t))                       (3.32) 

where c is the grade dependent coefficient (Ramnäs, 2013). 

In the following example, due to the small discrepancy for comparativeness of the 

probability of failure, another estimate of reliability, i.e. the reliability index, is 

compared. The reliability analysis is performed based on the First Order Reliability 

Method (FORM) using the open source initiative OpenTURNS (2016).   

Reliability in strength condition (ULS) 

It is commonly accepted by the offshore industry that for the duration of 3 to 6 hours 

(i.e. corresponding to the duration of an extreme sea state), the tension response 

process, Ts(t), can be considered as stationary. Assuming that the process is normally 

distributed, the probability density function of the maximum tension, smaxT , is 

expressed as 

 
TT ss

2

smax
smax 22

T1
p T = exp -

2σσ 2π

 
 
 
 

            (3.33)        

Where 
sTσ is the standard deviation of the tension response process Ts(t). 

The time-dependent breaking tension of the chain links, BST (t) , is assumed to be log-

normally distributed with the mean value equals to 1.2 × MBS(t) and the Coefficient 

of Variation (COV) equals to 0.05 (Gao et al., 2005). These are presented in Tables 3-

2 and 3-3 where the material loss in the chain links due to corrosion is considered as 

an annual reduction in diameter, rc, equals to 0.4 mm/year and 0.8 mm/year 

respectively.  
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Table 3-2: The time-dependent Breaking Tension of chain link at the fairlead 

connection point considering an annual reduction in diameter, rc = 0.4 mm/year. 

t (years) 

Residual 

thickness 

(mm) 

Residual MBS 

(kN) 
Mean BS (kN) 

Variance of 

BS  

0 95 9.987E3 11.984E3 359.043E3 

1 94.6 9.911E3 11.894E3 353.655E3 

5 93 9.613E3 11.535E3 332.655E3 

8 91.8 9.391E3 11.269E3 317.476E3 

10 91 9.244E3 11.093E3 307.624E3 

13 89.8 9.025E3 10.830E3 293.243E3 

15 89 8.88E3 10.657E3 283.917E3 

18 87.8 8.665E3 10.398E3 270.313E3 

20 87 8.523E3 10.227E3 261.498E3 

 

 Table 3-3: The time-dependent Breaking Tension of chain links at the fairlead 

connection point considering an annual reduction in diameter, rc = 0.8mm/year. 

t (years) 

Residual 

thickness 

(mm) 

Residual MBS 

(kN) 
Mean BS (kN) 

Variance of 

BS  

0 95 9.987E3 11.984E3 359.043E3 

1 94.2 9.836E3 11.804E3 348.323E3 

5 91 9.244E3 11.093E3 307.624E3 

8 88.6 8.809E3 10.570E3 279.331E3 

10 87 8.522E3 10.227E3 261.498E3 

13 84.6 8.101E3 9.721E3 236.246E3 

15 83 7.824E3 9.389E3 220.382E3 

18 80.6 7.416E3 8.899E3 197.996E3 

20 79 7.149E3 8.579E3 183.984E3 
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In this exercise, as an example, the time domain dynamic mooring analysis is 

performed using OrcaFlex in order to get the time histories of the tension responses 

that will be latter considered as measured signals. The effect of corrosion is considered 

by reducing the diameter of the chain links and the stiffness of the chain sections 

which are updated in the model. The time history and the Power Spectral Density of 

Ts(t) due to an extreme sea state (as presented in Table 2-4, section 3.3 of chapter 2) 

are shown in Figure 3-6. It must also be highlighted that the assumption of Gaussian 

distribution may lead to an under-estimate of the extreme maximum tension response 

and a corresponding unrealistically low probability of failure, which will be discussed 

further in section 5 of this chapter. However, it is acceptable here as the purpose of the 

case study is to illustrate the present methodology by showing the importance of 

updating the material loss during the expected service life in order to better estimate 

the reliability of the system. 

The time-dependent failure function and probability of failure in strength condition is 

written as Eq. (3.26) and Eq. (3.27). 

 

Figure 3-6: Time history and PSD of the tension response, Ts(t), in the design extreme 

sea state.  
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Figure 3-7: Time-dependent reliability index in strength condition of the chain link. 

The time-dependent reliability index of the chain link connected to the fairlead for the 

extreme sea state are presented in Figure 3-7. It can be seen that due to corrosion, the 

reliability index decreases as the breaking strength of the chain links decreases over 

time. Therefore, if corrosion is not considered in the design (e.g. by increasing the 

diameter of chain links (DNV-OS-E301, 2010; API-RP-2SK, 2005; BV-NR-493, 

2015), it might be possible that after a few years of deployment, the structure would no 

longer be able to withstand the initial extreme design sea state.  For instance, if we 

consider that a reliability index of 3.7 (Schulze, 2006; Vazquez-Hernandez et al., 

2006) is acceptable, the mooring line is then considered failed under the same design 

extreme sea state only after 10 years of deployment with an annual reduction in 

diameter of 0.8 mm/year. In other words, maintenance or replacement of lines should 

be done after 10 years of operation in order to ensure the safety requirement in 

extreme condition. 

Reliability in fatigue condition (FLS) 

The time history and the Power Spectral Density of Ts(t) due to a moderate sea state 

(as presented in Table 2-4, section 3.3 of chapter 2) are shown in Figure 3-8. 

The DNV’s S-N fatigue curve for chain links (DNV-OS-E301, 2010) is used to 

calculate the fatigue damage. The estimated fatigue life is 20 years with a safety factor 

equals to 3 (Lardier et al., 2008). The objective for this setting is to investigate the 

added effect of corrosion on the cumulative fatigue damage by calculating the time-
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dependent reliability index of the chain links taking into account an annual reduction 

in diameter of the chain links (Lardier et al., 2008). 

 

Figure 3-8: The tension response PSD obtained from the tension time history 

calculated by Orcaflex using Fast Fourier Transformation (FFT). 

 

Figure 3-9: Different approaches to calculate the fatigue damage of the chain links 

highlighting the effect of corrosion. The added damage due to extreme sea states (e.g. 

those with a return period of 10, 20, 50 or 100 years that might probably happen 

during operation) are illustrated in green, yellow, violet and red color of the case S4. 

Figure 3-9 illustrates different approaches for calculating the cumulative fatigue 

damage of the chain links considering corrosion effect. S1: the cumulative fatigue 

damage is calculated without corrosion. S2: the cumulative fatigue damage is 

calculated with the same quantity of material loss (reduced diameter) as it would be at 
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the end of 20 years of deployment. S3: the cumulative fatigue damage is calculated 

considering an annual reduction in diameter of the chain link. S4: the cumulative 

fatigue damage is calculated in the same manner as the case S3 but the added fatigue 

damage due to the design extreme sea states (e.g. with a return period of 100, 50, 20, 

10 years, etc.) that might probably happen at any moment within the expected service 

life of the mooring lines is also considered. As we consider here an annual reduction in 

diameter of the chain links, the stress response is considered unchanged within one 

year for the same sea states, so as the fatigue damage Dannual. With a more frequent 

measurement, the cumulative fatigue damage can be determined by summing the 

damage calculated from the measured data for every month or couple of months. 

The probability of failure of the chain links can be calculated as 

  f FLSP _FLS = P G t <0            (3.34) 

where          FLS FLS_1 annualG t  = G t  = Δ - t.D  for the cases S1 and S2           

         
t

FLS FLS_3 annual

k=1

G t  = G t  = Δ - D   for the case S3 

         
t

FLS FLS_4 annual ULS

k=1

G t  = G t  = Δ - D +D
 
 
 
  for the case S4 

      Δ - the model uncertainty in the Palmgren-Miner rule, presented in Table 3-

4. 

Table 3-4: The uncertainties of the Palmgren-Miner rule and the DNV’s S-N curve 

(Lardier et al., 2008; Mathisen et al., 2005). 

Parameters Distribution Mean value Standard 

deviation 

Model uncertainty in the Palmgren-Miner 

rules, Δ  

Log-normal 1 0.3 

Log(K) (where K, the S-N curve 

parameter) 

Normal 11.55 0.24 

m Fixed 3 - 

The time-dependent reliability index of the chain link connected to the fairlead is 

shown in Figures 3-10 and 3-11 considering the effect of corrosion as an annual 

reduction in diameter of the chain links of 0.4 mm/year and 0.8 mm/year respectively. 

It is observed in the Figure 3-10 that the reliability index is more precisely calculated 

in the case FLS_rc = 0.4_Cumulated (case S3) where the fatigue damage is 

cumulatively summed considering an annual reduction in diameter of chain links. By 
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contrast, the case FLS_rc = 0.4 (case S2) seems overly conservative since only the 

final reduced diameter at the end of the 20 years is considered to calculate the annual 

damage, then multiplied with the number of operating year. With the assumption that 

there might be an sea state happen during the expected service life, the reliability index 

is calculated as FLS_rc = 0.4_Cumulated+Ext (case S4) by summing the added 

damage caused by this extreme sea state into the cumulative fatigue damage. The 

added damage caused by the extreme sea states is an interesting view that allows 

forecasting the level reliability of structures in FLS considering disadvantage events 

such as extreme sea states. This can be useful to inform stake-holders about the 

probable risk and to support making decisions regarding maintenance or replacement 

of lines.   

 

Figure 3-10: Time-dependent reliability index calculated based on different 

approaches, rc = 0.4 mm/year. 

 

Figure 3-11: Time-dependent reliability index calculated based on different 

approaches, rc = 0.8 mm/year. 
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Again, if a reliability index that is not smaller than 3.7 is considered acceptable, the 

fatigue life of the chain link should be 15 years for the case S3 and 13 years for the 

case S4 instead of 20 years where the corrosion effect is not considered. Therefore, 

maintenance or line replacement should be done after 13 or 15 years of deployment. In 

other words, the safety coefficient should not be smaller than 4 for the case S3 and 5 

for the case S4 in order to ensure a design fatigue life of 20 years. It’s also worth 

noting that the recommended design safety factor proposed by DNV-OS-E301 (DNV, 

2010) for the present S-N curve is 5. Similar conclusions can be made for Figure 3-11 

where an annual reduction in diameter of the chain links of 8 mm/year is considered. 

5. Simulation of non-Gaussian processes based on Artificial Neural Network 

Probabilistic modeling of mooring response is of vital importance for reliability 

assessment of structural elements. For offshore platforms, mooring responses are often 

non-Gaussian due to the combination of non-normal input loadings and non-linear 

system behaviors. A common practice relies on the Gaussian assumption to model 

uncertainties due to irregular environmental loads and the corresponding structural 

dynamic responses. Non-linear effects, however, can considerably affect both the 

extreme and fatigue design of structures (Winterstein, 1988).  

 

Figure 3-12: Example of a mild (top) and a strong (bottom) non-Gaussian processes 

and its underlying Gaussian ones. 
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A mild and a strong non-Gaussian processes are illustrated in Figure 3-12. It can be 

seen that, a strong non-Gaussian response may have significantly higher peaks and 

lower troughs comparing with the corresponding Gaussian one. Therefore, it is not 

correct to estimate such response statistics based on the Gaussian model. Time domain 

simulation is a common solution to deal with such issue since all nonlinearities can be 

included in the equations of motion. However, it is also computationally expensive 

especially when it comes to reliability analysis where an important number of 

simulations are required for an accurate assessment. Therefore, alternative approaches 

for simulating non-linear mooring response are of great interest.  

Recently, the application of Artificial Neural networks (ANN) attracts more and more 

attention from the offshore industry. This is mainly due to its ability to model complex 

non-linear structural behaviors and to deal with large set of data. Several applications 

have been published such as: Guarize et al. (2007) proposed an efficient hybrid 

Artificial Neural Network (ANN)–Finite Element Method (FEM) procedure for 

nonlinear mapping of the current and past system excitations (input) to produce 

subsequent system response (output) for the random dynamic analysis of mooring 

lines and risers. Christiansen et al. (2015) proposed a hybridmethod combining 

classical numerical models and artificial neural networks (ANN) to reduce 

computational time for active truncated experiments. Several other applications of 

ANN for fatigue estimate, reliability assessment and health monitoring have also been 

investigated by Sidarta et al. (2017), Li et al. (2017), Kalra et al. (2005), Kim et al. 

(2016), Yasseri et al. (2010), Pinna et al. (2013), Aqdam et al. (2018), Vazquez-

Hernandez et al. (2006), etc. 

ANNs are computer models inspired by the biological neural networks that constitute 

animal brains. An ANN is a collection of connected processing units called artificial 

neurons. Each connection (so-called edge) between neurons, like the synapses in a 

biological brain, can transmit a signal from one neuron to another. Artificial neurons 

and edges typically have a weight which adjusts as learning proceeds. In an ANN 

model, first, the neurons at its input layer receive input signals. Then, the signals 

propagate through the hidden layers and reach the output layer, producing the output 

signals of the ANN model. A neural network with only one intermediate (hidden) layer 

is illustrated in Figure 3-13. The following description of ANN is based on the recent 

research work of Sidarta et al. (2017).  

https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Synapse
https://en.wikipedia.org/wiki/Weight_(mathematics)
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An input signal (xi) is transferred to an output signal (yi) by each neuron i based on an 

activation function (which is commonly sigmoidal with a scaling parameter α and a 

constant ɛ) written as following  

i

i

2α
y  =  - α

1 + exp(-εx )
            (3.35) 

where  α, ɛ are often assumed equal to 1. 

 

The connection (edge) of a neuron i in a layer to a neuron j in the next layer typically 

have a weight (wij), the input signal to neuron j is computed as  

            
m

j ij i j

i=1

x  = w y +b                       (3.36)         

where  m- the number of neurons in the layer containing neuron i. 

  wij- the connection weight 

  bij- the weight of the connection between a bias neuron and neuron j. 

The back-propagation learning algorithm is employed to train the ANN model where 

the connection weights between neurons are modified by having the computed output 

errors back-propagated through the neural network. 

An output error (ej) for each neuron j can be calculated as  

j j je  = t  - y                        (3.37)            

where    tj- the target value;   yj- the computed output 

A total error (E) can be calculated as  

j

n
2

j=1

1
E = e

2
                            (3.38) 

The computed error is then used to modify the connection weights as (Sidarta et al., 

2017) 

j j j

ij

ij j j j ij

e y xE E
Δw = η = η

w e y x w

   

    
             (3.39)    

where    η - the learning rate       

The new connection weight can be calculated as  
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new old

ij ij ijw  = w  + Δw                           (3.40)

           

 

Figure 3-13: A neural network with only one intermediate (hidden) layer (based on 

Sidarta et al., 2017). 

In the following, an Artificial Neural Network (ANN) is used in order to build a 

system identification model based on a measured input (e.g. floater motions) and a 

measured output (e.g. tension response in mooring lines).  

On the one hand, the ANN model could be an interesting tool for mooring monitoring 

since based on measured floater motions (which can be obtained via on-board and off-

the-shelf 6 degrees of freedom sensors) one can simulate directly tension response in 

mooring lines (which means being less relied on tension measurements from tension 

sensors). On the other hand, when a large number of simulation is required, the ANN 

model can also be used to simulate mooring response based on simulated floater 

motions as input instead of performing time-consuming time-domain simulation. 

In section 5.1, first, the ANN model is used to simulate mooring response for a full 3-

hours sea state based on a part of measured data for the same sea state (e.g. calibration 

for one sea state). Furthermore, it can also be used to simulate mooring response for 

another sea state that the network has never been trained for (calibration for multiple 

sea states). The same exercises have been performed by Gurley et al. (1996) and 

Sidarta et al. (2017).  

In section 5.2, the authors attempt to evaluate the statistical properties of the simulated 

mooring tension response by performing different number of simulations (i.e. 1, 5, 10, 

30, 100, 1000, 2000, 5000 and 10000 as it can be seen in section 5.2) in order to 

eventually study the influence of the number of simulations on reliability estimate 

based the so-called ANN-based Monte Carlo simulations. Moreover, it is found that 

mooring reliability analysis can be performed with a very impressive computational 

time based on the present approach. This is done by using the author’s Matlab script 

incorporated with the Neural Net Fitting app in Matlab (Matlab, 2017). 
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5.1 Artificial Neural Network (ANN) for simulation of nonlinear mooring 

response 

Calibration for one sea state 

In the following, a neural network with a single hidden layer containing 10 neurons is 

trained in order to simulate the tension response at the fairlead point of a mooring line 

for an extreme sea state (as discussed in Table 2-4 in Chapter 2). Time domain 

dynamic mooring analysis is performed using OrcaFlex in order to obtain 3-hours time 

histories of the 6 degree of floater motions and tension response in mooring lines 

which will be later considered as measured signals. The training is done by using 10 

realizations of 3-minutes long of 6-degrees of floater motions as input and 10 

realizations of 3-minutes long of the corresponding tension time history at the fairlead 

connection point in a mooring line as output. The increase in the number of neurons 

did not improve significantly the results. Once the neural network has been trained, 

full 3-hours signals of the 6-degrees of floater motions are required as input to the 

neural network in order to simulate the full 3-hours tension response signal. The input 

floater motions are chosen randomly between 10 realizations of floater motions time 

histories calculated by Orcaflex. Indeed, it is recommended by API-RP-2SK (API, 

2005) that five to ten 3-hours simulations are required for a good confidence of 

standard deviation and extreme responses. 

It should also be noted that the total 30-minutes training period was not optimized but 

leads to acceptable computational time (2 to 6 seconds for a standard computer) and is 

only 17% of the full 3-hours signal.  

The neural network training, which includes the training step (70 % of the input data), 

validation step (15 % of the input data) and test step (15 % of the input data), is 

performed using the Neural Net Fitting app in Matlab (Matlab, 2017). Figure 3-14 

shows the regression results for each step where the relationship between network 

predictions and targets are plotted. It can be observed that the network is well trained 

since all data points remain near the Y=T line and the Regression values, R, are nearly 

unity.  

Figures 3-15 and 3-16 show a comparison of the sample tension computed by using 

time domain simulation in Orcaflex (which is considered here as the measured tension) 

and the simulated tension based on the neural network. It can be seen that a very good 

match between the measured tension and the ANN-simulated one is observed (Figure 

3-15). Moreover, the corresponding PDFs are also found in a very good match (Figure 
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3-16) which show the advantage of the ANN when it comes to preserving PDF shape 

and statistical properties (as can also be seen in Table 3-6). 

 

Figure 3-14: Regression results. 
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Figure 3-15: Comparison of a tension sample with the simulated tension based on the 

neural network. 
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Figure 3-16: Comparison of the PDF of a tension sample with the simulated tension 

based on the neural network. 

Calibration for multiple sea states 

Table 3-5: Different sea states taken as input to train the neural network. 

Sea states / Spectral type Jonswap 

Hs (m) Tp (s) Gamma 

1.25 4.5 3.3 

4.75 10.5 3.3 

2.61 13.8 3.3 

4.25 9.5 3.3 

4.75 12.5 3.3 

3.75 16.5 3.3 

2.25 16.5 3.3 

3.75 13.5 3.3 

3.75 18.5 3.3 

2.25 18.5 3.3 

3.75 11.25 3.3 

1.25 3.5 3.3 

2.25 6.5 3.3 

3.75 17.35 3.3 

3.25 7.5 3.3 



131 

 

 

Figure 3-17: Sea states used for training the neural network and sea state to be 

simulated. 

In the following example, measured signals for different sea states are used as input to 

train the neural network and then simulate the full response signal for another sea state 

that the network has never been trained for. In the following, input data (which is 2-

minutes long for each signal) for 15 sea states as presented in Table 3-5 and Figure 3-

17 have been used as input to train the neural network. For the sake of simplication, 

only one wave direction is considered as in Figure 2-1, chapter 2. Current and wind is 

not considered for the same reason. The trained neural network is then used for 

simulating the tension response at the fairlead point of the font line 1 for another sea 

sate (i.e. Hs = 2.75 m, Tp = 12.5 s). 

It can be observed in Figure 3-18 that the network is well trained since all data points 

remain near the Y=T line and the Regression values, R, are nearly unity. It worth to 

note that the training is done by using the input data for only 15 sea states (blue points 

in Figure 3-17) but not the sea state that needs to be simulated (orange point in Figure 

3-17). 

Figures 3-19 and 3-20 show a comparison of the sample tension computed by the 

numerical time domain simulation (so-called here the measured tension) and the 

simulated tension based on the neural network. It can be seen that a very good match is 

observed between the measured tension and the ANN-simulated one (Figure 3-19) and 

also between corresponding PDFs (Figure 3-20).  
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Figure 3-18: Regression results. 
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Figure 3-19: Comparison of a tension sample with the simulated tension based on the 

neural network (fatigue sea state Hs = 2.75 m, Tp = 12.5 s). 
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Figure 3-20: Comparison of the PDF of a tension sample with the simulated tension 

based on the neural network (fatigue sea state Hs = 2.75 m, Tp = 12.5 s). 

5.2 Comparison and application for reliability assessment 

Comparison of statistical parameters 

The first application of the neural network (calibration for one sea state) mentioned in 

the previous section is further discussed here in order to assess the reliability in storm 

condition (ULS). It seems necessary to define here the maximum tension of each 3-

hours signal, which is the maximum value observed during that 3-hours simulation. In 

Table 3-6 maximum tension means the mean value of every maximum tensions 

observed for a number of, Ns, simulations (i.e. 
sN

max,i

i=1 s

T
MeanTmax = 

N
 where Tmax,i is 

the maximum tension of the ith simulation). The values of statistical moments (i.e. 

mean, standard deviation, skewness, kurtosis) presented in Table 3-6 are also the mean 

values of such moments for Ns simulations. It can be seen that, the neural network 

gives good and stable prediction of maximum tension and statistical moments. 

Moreover, the computational time is very efficient (i.e. ≈ 4s in average for one 

simulation). It is interesting to see quite significant differences between the mean 

standard deviation of the 10 so-called measured tension signals and what obtained 

from the ANN simulations (i.e. for 1, 5, 10, 30, 100, 1000, 2000, 5000 and 10000 
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simulations). However, another run of 10 ANN simulations was performed resulting in 

a mean standard deviation of 1158.4 kN, which raises the question that 10 3-hours 

realizations might not be enough to provide stable estimate of standard deviation of the 

response for the present case study? 

 

. 
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Table 3-6: Statistical properties considering the number of simulations   

Properties/ 

Methods 

10 time 

domain 

simulations 

(so-called 

measured 

signals) 

ANN_1 

simulation  

ANN_5 

simulations  

ANN_10 

simulations  

ANN_30 

simulations  

ANN_100 

simulations  

ANN_1000 

simulations  

ANN_2000 

simulations  

ANN_5000 

simulations  

ANN_10000 

simulations 

Mean (kN) 3078.7  3080 3078.4 3076.9 3078.3 3077.4 3078.2 3079.1 3078.3 3077.7 

Std (kN) 1124.8  905.69 907.35 904.81 908.67 909.28 905.19 909.97 912.1226 918.736 

Skewness 0.4605 0.4543 0.4673 0.4404 0.4767 0.4851 0.4748 0.4707 0.4474 0.4774 

Kurtosis 3.0113 2.9488 3.0476 2.9052 3.2023 3.4105 3.944 3.0351 6.6202 6.6907 

Maximum 

tension (kN) 
7177.43  6740.1 7177.1  6875.9  7536.1 7232.1 7167.3 7176.6 7261.2 7296.3 

Average 

CPU time  
≈ 1800 s *10 ≈ 4 s ≈ 9 s ≈ 36 s ≈ 98 s ≈ 305 s ≈ 3324 s  ≈ 7042 s ≈ 27918 s ≈ 48160 s 
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ANN-based Monte Carlo simulation for reliability assessment of mooring lines 

It is concluded by Rendón-Conde et al., (2015) that the ANN model could be a 

promising option for reliability assessment considering nonlinear structural response 

thanks to its accuracy and computational efficiency. This is particularly interesting for 

mooring reliability assessment in extreme sea states (ULS) where nonlinear mooring 

response which relates extreme peak mooring loads are largely significant and should 

be carefully considered. For that, an ANN-based Monte Carlo reliability assessment 

approach is discussed in the following. 

The ULS case study discussed in section 3.3 of chapter 2 of this manuscript (or Pham 

et al. (2019-a)) is re-considered in the following for reliability assessment. The 

extreme sea state observed at the SEMREV sea test site (as presented in Table 2-4 of 

chapter 2) is used in the calculation. It should be noted that in the following, the 

author focuses only on capturing the nonlinearity of mooring response in term of 

extreme peak mooring loads. Therefore, only mooring response due to this extreme sea 

state at a specific point during operation is considered. In other words, for a 3-hours 

sea state, the mooring response can be considered as a stationary random process, i.e. 

its statistical parameters are independent of time. 

The failure function in the Ultimate Limit State (ULS), GULS, can be calculated as 

     
ULS BS smaxG  = T  - T                       (3.41)   

where 

TBS- the Breaking Strength of the mooring component, which is considered as a 

time-independent log-normal distributed random variable (with Mean_TBS = 1.2 

× MBS, and the Coefficient of Variation (COV) equals to 0.05 for the chain 

link connected to fairlead (Gao et al., 2005)). 

Tsmax- the maximum tension estimated by the ANN-based Monte Carlo 

simulation. 

The probability of failure (Pf) is approximated by the number of observations, Ns, 

where   GULS ≤ 0, which can be written as  

N

f

i=1
f

s

N

P _ULS = 
N


              (3.42) 
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where   Nf = 1 if GULS ≤ 0;  Nf = 0 if GULS > 0. 

In the following, reliability assessment is implemented using the ANN-based Monte 

Carlo simulation approach considering different number of simulations, Ns = 1000, 

2000, 5000, 10000. The probability of failure estimated for different run (th) and the 

are shown in Table 3-7. 

Table 3-7: Reliability assessment by using the ANN-based Monte Carlo simulation  

Run 

(th) 

Number of 

simulations 

Probability 

of failure 

Number of 

simulations 

Probability 

of failure 

Number of 

simulations 

Probability 

of failure 

Number of 

simulations 

Probability 

of failure 

1st 1000 0.002 2000 0.0045 5000 0.0028 10000 0.004 

2nd 1000 0.003 2000 0.005 5000 0.0036 10000 0.0048 

3rd 1000 0.005 2000 0.002 5000 0.0042 

  4th 1000 0.005 2000 0.001 5000 0.006 

  5th 1000 0.004 2000 0.004 

    6th 1000 0.004 2000 0.0025 

    7th 1000 0.005 2000 0.0035 

    8th 1000 0.006 2000 0.007 

    9th 1000 0.001 2000 0.005 

    10th 1000 0.003 2000 0.0035 

    11th 1000 0.004 

      12th 1000 0.007 

      13th 1000 0.002 

      14th 1000 0.003 

      15th 1000 0.002 

      16th 1000 0.007 

      17th 1000 0 

      18th 1000 0.004 

      19th 1000 0.004 

      20th 1000 0.003 

      
 

Table 3-8: Mean Probability of failure for each number of simulations 

Number of simulations  Mean probability of failure 

1000 (20) 0.0037 

2000 (10) 0.0038 

5000 (4) 0.0042 

10000 (2) 0.0044 

 

 

 

 



139 

 

 

Figure 3-21 (a, b): Probability of failure (Pf) for different run (th) considering the 

number of simulations (Ns). 
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Figure 3-22: Mean probability of failure (Pf) for different number of simulations (Ns). 

The results presented in Table 3-7 are plotted in Figure 3-21 (a, b) showing that the 

larger the number of simulations the less dispersion between the estimates of Pf for 

different runs is observed. Therefore, increasing the number of simulations seems to be 

the best option to obtain a more precise estimate of the probability of failure. The 

mean probability of failure for each number of simulations (i.e. mean Pf for the 20 runs 

of 1000 simulations, mean Pf for the 10 runs of 2000 simulations, mean Pf for the 4 

runs of 5000 simulations, mean Pf for the 2 runs of 10000 simulations) is presented in 

Table 3-8 and Figure 3-22 showing that closely similar mean probability of failure 

might be expected for the same total number of simulations.  

Finally, it only takes approximately less than 14 hours to run a 10,000 simulations 

sample, which confirms that the ANN-based Monte Carlo simulation could be a 

promising solution for reliability assessment of mooring lines in extreme sea 

conditions (ULS). 

The design safety factor approach, API-RP-2SK (API, 2005) 

Another common design approach recommended by API-RP-2SK (API, 2005) is to 

use a total safety factor on mooring component strength to ensure redundancy against 

mooring breakage. 

The maximum design tension of the mooring component is chosen as 

MBS
Tmax_design < 

SF
              (3.43) 
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where   
MBS

SF
 – the design breaking strength of the mooring component 

MBS – the Minimum Breaking Strength of the mooring 

component. 

SF – the minimum safety factor of the mooring components taken 

as 1.67 according to API RP 2SK (API, 2005). 

 

Figure 3-23: A time history of the tension response at fairlead point of the front line 1 

in the ULS condition. 

A time history of the tension response at the fairlead point of the front line 1 in storm 

condition (ULS) is plotted together with the designed breaking tension (i.e. 

considering the strength safety factor) in Figure 3-23 for illustration. It is concluded by 

Pham et al. (2019-a) that in this case study, the studied line is considered fail 

according to API-RP-2SK (API, 2005) if a safety factor equals to 1.67 is applied on 

the Minimum Breaking Strength (MBS) of the chain section. This is coincident with 

the conclusion made above where the probability of failure estimated by the ANN-

based Monte Carlo simulation approach for 10000 simulations is also quite high (i.e. 

Pf = 0.0048 for the second run of 10000 simulations). It is worth to note that DNV-OS-

E301 (DNV, 2010) requires a target annual probability of failure equals to 10-4 for the 

ULS for the consequence class 1 (i.e. where mooring system failure is unlikely to lead 

to unacceptable consequences such as loss of life, collision with an adjacent platform, 

uncontrolled outflow of oil or gas, capsize or sinking). 

 



142 

 

 

6. Conclusions 

A hybrid methodology which combines modeling and monitoring of mooring lines has 

been proposed. The methodology aims to clarify the mechanics of the mooring lines 

response, to understand why and how those responses are modified during 

deployment, and how those modifications can be accounted for in order to update the 

actual state and predict the remaining allowable service life of the system. The author 

believes that once the present methodology can be properly implemented, not only the 

actual state of the mooring lines (i.e. residual breaking strength and stiffness of 

mooring components, marine growth, corrosion, etc.) will be better controlled but also 

the cumulative fatigue and reliability will be better estimated. Based on that, decisions 

regarding maintenance or replacement of lines can be made. Furthermore, a 

comprehensive methodology for modeling and life monitoring also means a closer 

look on the design safety factor, and as a consequence, a more cost-effective design. 

However, the methodology requires a full understanding of the mechanical behaviors 

of all the mooring components and the marine environmental factors involved which 

are usually complicated to comprehend such as the modified mechanical behaviors due 

to the internal abrasion of nylon, the development and influence of marine growth, 

corrosion and wear on structural dynamic behaviors, etc. These should be the topic of 

the future work that might include a great amount of laboratory tests and site 

measurements. 

Cutting edge methods for fatigue analysis, reliability assessment and simulation of 

mooring responses have also been adopted in order to better estimate the fatigue 

damage and reliability of mooring lines. The improved frequency domain fatigue 

approach is proven capable of capturing the non-Gaussian and wide-band effect of 

mooring response. Moreover, the analytical formula of the fatigue damage allows 

considering directly the uncertainties of the environmental loading and the S-N fatigue 

curves of mooring components. The ANN-based Monte Carlo simulation appears to be 

a promising option for reliability assessment of mooring lines in extreme sea 

conditions (ULS) where an important number of simulations is required. Such analysis 

can be implemented with a reasonable computational time (i.e. 14 hours for 10000 

simulations with a standard computer) based on the so-called ANN-based Monte Carlo 

reliability assessment. It was found that a large number of simulations are required for 

a reasonable estimate of probability of failure which is comparable with the reliability 
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criteria according to DNV-OS-E301 (DNV, 2010)  and the safety factor approach 

according to API RP 2SK (API, 2005).  
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1. Conclusions  

In this chapter conclusions are drawn according to the research question posed in 

section 2 of chapter 1 and relating finding.  

For convenience, the research questions posed in section 3 of chapter 1 are repeated: 

1, Is mooring monitoring necessary? Which methodology should be employed? 

As mentioned above, mooring monitoring is currently of great interest for not only 

MRE developers but also O&G stakeholders since many line failures were observed 

although they have been designed according to standards. In the chapter 3 of this 

manuscript, a comprehensive methodology for modeling and service life monitoring of 

mooring lines is discussed by the author based on the reliability approach. In our 

opinion, in order to understand why and how mooring responses are modified during 

deployment, it is crucial to identify and account for not only the likely modified 

mechanical behaviors of mooring components but also the marine environmental 

factors influencing such behaviors. Therefore, we believe that in addition to the current 

monitoring approach (Thies et al., 2014) that uses directly field measurement to 

calculate fatigue damage, the numerical modeling should also be implemented in 

parallel, in a so-called digital twin. Indeed, once the present methodology is properly 

implemented, not only the actual state of the mooring lines will be better controlled 

but also the cumulative fatigue will be better estimated. As a consequence, the 

reliability of the system can be better predicted by fully understanding the actual state 

of mooring lines such as, residual breaking strength and stiffness of mooring 

components, better estimating the cumulative fatigue damage and better forecasting 

disadvantage events (e.g. added damage due to extreme sea states). Then, decisions 

regarding maintenance or replacement of lines can be made once the estimated 

reliability level reaches the critical value. Furthermore, a comprehensive methodology 

for modeling and life monitoring also means a closer look on the design safety factor, 

and as a consequence, a more cost-effective design. Moreover, since maintenance or 

replacement of lines for MRE devices in shallow water seems simpler and less costly 

than for deep-water O&G platforms, the present methodology suggests that those 

could be the other potential options rather than an over-engineered mooring system 

which would not be commercially viable for large scale deployments. Finally, the 

author believes that different safety factors should be considered for MRE devices 

since those are unmanned structures which are significantly different from Oil & Gas 
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platforms where the consequences for environment, economy and human losses are 

not in the same order of magnitude. These factors of safety could be selected based the 

corresponding allowable levels of reliability of mooring lines and the experience 

earned during exploitation. 

2, How to improve the modeling and fatigue damage estimate of nylon mooring 

ropes? 

In chapter 2 of this manuscript, an effort has been made for studying the mechanical 

behaviors of nylon mooring ropes (i.e. load-elongation behaviors, critical modes of 

fatigue damage and influencing factors) since there is still limit of work on such 

issues. A practical mooring analysis procedure is suggested by the authors in order to 

account for the dynamic stiffness of nylon ropes on the mooring line modeling of a 

semi-submersible type FWT. The procedure is based the original methodology 

recommended by DNVGL-RP-E305 where the author aims to improve the DNV’s 

procedure in order to capture the tension amplitude effect on dynamic mooring 

analysis of nylon mooring ropes. However, the present procedure still need to be 

validated with field measurements in order to check the appropriateness of the 

proposed modeling assumption. The fatigue characteristics of nylon ropes have also 

been comprehensively discussed in chapter 2. Due to the lack of available data in the 

literature, a non-destructive testing campaign has been proposed in order to 

characterize the internal abrasion fatigue of nylon ropes. The procedure might be 

considered for substituting current internal abrasion fatigue tests approach for nylon 

ropes which are not fully representative of the ropes real behavior or time-consuming 

and costly. 

3, How to estimate fatigue damage based on numerical modeling and in-situ 

measurements? Which approaches? 

Cutting edge frequency-domain approaches for calculating fatigue damage in mooring 

lines have also been investigated. More interestingly, the analytical fatigue damage 

formulation obtained in frequency domain analysis can be applied directly to 

reliability analysis in fatigue condition (FLS) using the First Order Reliability Method 

(FORM). This work is presented in chapter 3. 

4, How reliability analysis can be performed to support making decisions 

regarding maintenance or replacement of lines? 

For mooring lines of floating wind turbines where experience is limited or non-

existent, it seems preferable to use directly a reliability approach where partial factors 
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of safety and characteristic values are replaced by the definition of an acceptable 

probability of failure. The reliability in both strength criterion (Ultimate Limit State – 

ULS) and fatigue criterion (Fatigue Limit State – FLS) are checked. Decisions 

regarding maintenance or replacement of lines can, then, be made based on the 

reliability estimated during the expected service life. This work is presented in 

chapter 3. 

The ANN seems to be an interesting approach for simulation of nonlinear mooring 

response based on field measurements or numerical samples. For health monitoring of 

mooring lines, ANN is also an interesting tool for mooring response simulation based 

on measurements since it allows less required measurements and being less relied on 

tension sensor. This work is discussed in Chapter 3. 

2. Future work  

The following task will be included in the author’s future scope of work: 

1, Validate the practical procedure for dynamic modeling of nylon mooring ropes with 

model tests.  

2, Perform the NDT procedure to characterize the internal abrasion fatigue for nylon 

ropes. 

3, Applying the present methodology in order for Accidental Limit State (ALS) and 

address another common mooring failure mode which is from poor Quality Analysis/ 

Quality Control (QA/QC) in manufacturing or damage from handling and installation.  

4, Focus on the economic aspects in order to compare different design approaches in 

order to answer the following question: Which design approach is more economically 

favorable? An over-engineered design or design with lower reliability but considering 

maintenance and replacement of lines?  

5, Further work will be needed in order to optimize the utilization of neural network 

and to aim for a more complicated application, e.g., a neural network that allows 

following the likely modified mooring response during the operation due to the 

modified mechanical behaviors of the system and environmental factors. 

6, Focus on the ANN for simulation of nonlinear mooring response based on field 

measurements and the ANN-based Monte Carlo simulation for reliability assessment 

to draw partial safety factors in order to compare with standards. 



157 

 

7, Adopt more complex models for corrosion and marine growth in order to better 

estimate the fatigue and reliability of mooring lines. 
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Titre : Modélisation et Suivi en Service des Lignes d’Ancrages des Éoliennes Flottantes 

Mots clés : Eolienne flottantes, Ligne d’ancrage, Nylon, Fatigue, Fiabilité, Simulation non-linéaire 

Résumé :  On propose dans ce travail une 
méthodologie pour le suivi en service des lignes 
d'ancrage des éoliennes flottantes.  
Tout d’abord, une expression empirique de la 
raideur dynamique d'un câble en nylon est 
obtenue à partir des données d'essais dans la 
littérature. Une procédure pratique de 
modélisation est proposée en tenant compte de 
la raideur axiale dynamique non-linéaire des 
câbles en nylon.  
 
 
 

La deuxième partie est consacrée à la prédiction 
de la durée de vie des lignes d’ancrages. Des 
méthodes avancées pour l’analyse de fatigue 
dans le domaine fréquentiel et la simulation des 
réponses non-linéaires sont donc également 
étudiées afin de réaliser une estimation rapide 
de la fatigue et de la résistance dans un cadre 
fiabiliste. La présente méthodologie vise à 
faciliter la prise de décisions concernant la 
maintenance ou le remplacement des lignes en 
fonction du niveau de fiabilité estimé à différents 
instants. 
 

 

Title : Modeling and Service Life Monitoring of Mooring Lines of Floating Wind Turbines 

Keywords : Floating Wind Turbine, Mooring line, Nylon, Fatigue, Reliability, Nonlinear simulation 

Abstract:   In this work a methodology for 
service life monitoring of mooring lines of 
floating wind turbines is proposed. 
First, an empirical expression of dynamic 
stiffness of a nylon rope is obtained from the 
testing data in the literature. A practical 
modeling procedure is proposed which allows 
accounting for the non-linear dynamic axial 
stiffness of nylon mooring ropes. 
 
 

The second part is devoted to the prediction of 
fatigue life of mooring lines. Cutting-edge 
methods for fatigue analysis in frequency 
domain and for simulation of nonlinear mooring 
response are investigated in order to perform a 
quick fatigue estimate and strength check in a 
reliability framework. The present methodology 
aims to support making decisions regarding 
maintenance or replacement of lines based on 
the level of reliability estimated during the 
expected service life. 
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