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ABSTRACT

Genome-wide association studies (GWAS) of asthma have been successful in identifying
novel asthma-associated loci, but the genes at these loci account only for a part of the whole
genetic component. One limitation of GWAS is that they rest on single-marker analyses
which are underpowered to detect variants with small marginal effects but rather influence
jointly on disease risk. To complement the single-marker approaches, more sophisticated
strategies, which integrate biological knowledge, such as protein-protein interactions (PPI) or
gene networks with GWAS outcomes to identify disease-associated gene modules, have
become prominent. The objectives of this thesis were to develop network-based analysis
methods, and apply them to asthma GWAS data to identify biological processes and prioritize

new candidate genes related to asthma.

This thesis consists of two main studies. The first study was to extend an existing network-
based method (dmMGWAS) to identify novel genes associated with asthma. We used two
GWAS datasets, each consisting of the results of a meta-analysis of nine childhood-onset
asthma GWAS (5,924 and 6,043 subjects, called METAL1 and METAZ2, respectively). We
developed a novel method to compute gene-level p-values from SNP p-values (fastCGP), and
proposed a bi-directional module search method to identify asthma-associated gene modules.
Application of these methods to the asthma data detected a gene module of 91 genes
significantly associated with asthma (p < 10™°). This module consisted of a core network and
five peripheral subnetworks including high-confidence candidates for asthma. Out of the 91
genes, 19 genes were nominally significant in both METAL1 and METAZ2 datasets. They
included 13 genes at 4 loci previously found associated with asthma (2912, 5931, 9p24.1,
17g12-g21), and six genes at six novel loci: CRMP1 (4p16.1), ZNF192 (6p22.1), RAET1E
(6924.3), CTSL1 (9p21.33), C120rf43 (12g24.31) and JAK3 (19p13-p12). Functional analysis
of the module revealed four functionally related gene clusters involved in innate and adaptive
immunity, chemotaxis, cell-adhesion and transcription regulation, which are biologically

meaningful processes underlying asthma risk.

The second study of this thesis was to develop a novel network-based method, named
SigMod, to search disease-associated gene modules. SigMod takes a list of gene p-values and

a gene network as input. It identifies a set of genes that are enriched in high association



signals and tend to have strong interconnection via the formulation of a binary quadratic
optimization problem. We proposed an algorithm based on graph-cut theory to solve the
optimization problem exactly and efficiently. SigMod has several advantages compared to
existing methods, including the ability to find the module enriched in highest association
signals, the capacity to incorporate edge weights in the network, and the robustness to
background noise. Also, the emphasis of selecting strongly interconnected genes can lead to
the identification of genes with close functional relevance. We applied SigMod to both
simulated and real datasets. This new method outperformed existing approaches. When
SigMod was applied to childhood-onset asthma data, it successfully identified a module made

of 190 functionally related genes that are biologically relevant for asthma.



RESUME

Les etudes d'association pan-génomiques (GWAS) ont permis d'identifier de nouveaux locus
associés a l'asthme, mais ces loci n'expliquent qu'une partie de la composante génétique de
cette maladie. Une limite de ces études est qu'elles sont basées sur des analyses simple-
marqueurs qui manquent de puissance pour détecter des variants génétiques a effet marginal
faible et influencant conjointement le risque de maladie. Des stratégies, qui intégrent des
connaissances biologiques, comme les interactions protéine-protéine (PPI) ou des réseaux de
genes avec des résultats de « GWAS », ont été proposées pour identifier des modules de
genes associés aux maladies. Les objectifs de cette these étaient de développer des méthodes
d'analyse de réseaux de genes, et de les appliquer a des données pan-génomiques de I'asthme
pour identifier de nouveaux geénes candidats et des processus biologiques potentiellement

impliqués dans I'asthme.

Le premier travail de thése a consisté a étendre une methode de recherche de réseau de géenes
a partir de données de « GWAS » (dmGWAS) pour identifier de nouveaux génes associés a
I'asthme. Nous avons utilisé deux jeux de données, chacun correspondant aux résultats d'une
méta-analyse de neuf études d'association pan-génomiques de I'asthme de I'enfant (5,924 et
6,043 sujets, et appeles METAL et METAZ2). Nous avons développé une nouvelle méthode
pour calculer les p-valeurs de chagque gene a partir des p-valeurs des SNPs et proposé une
stratégie de recherche bidirectionnelle a partir des deux jeux de données pan-génomigques pour
identifier un module de génes. Nous avons détecté un module de 91 genes associé a I'asthme
(p < 10®). Ce module est composé d'un réseau central et de cing réseaux périphériques. Parmi
les 91 génes, 19 génes étaient nominalement significatifs (p < 0.05) dans les deux jeux de
données et incluaient 13 géenes a 4 loci trouvés précédemment associés a l'asthme (2912,
5931, 9p24.1, 17g12-g21), et six génes a six nouveaux loci: CRMP1 (4p16.1), ZNF192
(6p22.1), RAET1E (6024.3), CTSL1 (9p21.33), C120rf43 (12q24.31) et JAK3 (19p13-p12).
L'analyse fonctionnelle du module identifié a révélé quatre clusters de génes impliqués dans
I'immunité innée et adaptative, la chimiotaxie, I'adhésion cellulaire et la régulation de la

transcription, qui sont des processus biologiquement pertinents pour I'asthme.

Le deuxieme travail de these a consisté a développer une nouvelle méthode de réseau de

genes appelée SigMod. SigMod permet de sélectionner un module de genes enrichis en



signaux d'association avec la maladie et montrant de fortes inter-connexions. Par rapport aux
méthodes précédentes SigMod offre plusieurs avantages, notamment la robustesse au bruit de
fond, la capacité de prendre en compte une pondération sur les liens entre génes, et de rendre
les résultats facilement interprétables. Nous avons proposé un algorithme basé sur la théorie
des découpages de graphes pour résoudre le probleme d'optimisation de maniere exacte et
efficace. Des simulations ont montré une meilleure performance de SigMod par rapport aux
méthodes existantes. L'application de SigMod aux données de I'asthme a permis d'identifier
un module de 190 génes qui présentent des relations fonctionnelles et sont biologiquement

pertinents pour I'asthme.
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CHAPTER |. INTRODUCTION

CHAPTER I. INTRODUCTION

1 Human genetic variation

1.1 The human genome

The human genome is the complete set of nucleic acid sequence for humans. It is encoded as
DNA within chromosomes in cell nuclei and in a small molecule in individual mitochondria.
The DNA molecular consists of two strands and has a "double helix" structure. Each strand
consists of an assembly of basic building blocks called nucleotide or nucleotide base.
Nucleotides in DNA contain four different bases: Adenine (A), Guanine (G), Thymine (T)
and Cytosine (C). The pairing of two nucleotides by hydrogen bonds forms a base pair (bp).
Adenine always pairs with Thymine (forming the A/T pair); Guanine always pairs with
Cytosine (forming the G/C pair) (Figure 1.1).

The total length of the human genome is about 3 billion base pairs. There are 23 pairs of
human chromosomes: 22 pairs of autosomal chromosomes and one pair of sex chromosomes.
Somatic cells usually have one copy of chromosome 1-22 inherited from each parent, one X
chromosome inherited from the mother, and another X or Y chromosome inherited from the

father. These chromosomes contain the genetic blueprint for building a human being.

1.2 The genes

A gene is a sequence of nucleotides along a segment of DNA (Figure 1.2). On average, a gene
is 10-15kb (1kb=1,000 base pairs) long, but this size can vary greatly from ~0.2kb (Tyrosine
tRNA gene) to ~2,500kb (DMD dystrophin gene). Each person has two copies of each gene
that are inherited from each parent. The number of human protein-coding genes are estimated
to be 19,000 to 20,000 (Ezkurdia et al., 2014).

Every gene consists of a protein coding region, which begins with a Start codon and
concludes with a Stop codon, and might be contiguous or broken up into a series of introns
and exons (Figure 1.2). Every gene also contains regulatory sequences flanking the open
reading frame (the part of a reading frame that has the potential to be translated), which can

expand many kilobases upstream or downstream of the open reading frame. These are
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stretches of DNA that do not themselves code for protein but act as binding sites for RNA
polymerase and its accessory molecules as well as transcription factors. A promoter is a
regulatory element that the RNA polymerase initially binds before starting the transcription of
the DNA into RNA. The binding and activation of the RNA polymerase is controlled by
transcription factors which bind the promoters and cis-regulatory sequences conventionally
referred to as Enhancer and Silencer.

Chromosome
Talomere

Cantromars

Human cell

Mitechaondria
Muclaus

Endoplasmic reticulum
Golgi apparatus

Call mambranea

DNA (double helix)

Adenineg
Guanineg

Mucleotides

Cylosine
Thiymine

Figure 1.1: The structure of DNA. From http://sciencewithmrsb.weebly.com/genetic-
variation.html.



CHAPTER |. INTRODUCTION

Regulatory sequence Regulatory sequence
Enhancer
/silencer Promoter 5'UTR Open reading frame /silencer
Proximal Core Start Stop
ova <P W -
Transcription Evon Exon
mRNA Post-transcription
modification Protein coding region
5'cap Poly-A tail
RS —_
mMRNA
Translation
Protein

Figure 1.2: The structure of a eukaryotic protein-coding gene. Regulatory sequence controls
when and where expression occurs for the protein coding region (red). Promoter and enhancer
regions (yellow) regulate the transcription of the gene into a pre-mRNA which is modified to
remove introns (light grey) and add a 5' cap and poly-A tail (dark grey). The mRNA 5" and 3'
untranslated regions (blue) regulate translation into the final protein product. From
https://en.wikipedia.org/wiki/Gene.

1.3 Human genetic variation

Variation of human genome arises from point mutation (single base modification), base pair
insertion/deletion (indel), chromosome rearrangement and gene copy-number variation. Each
form of variation at a given point in the genome is called an allele. The two alleles at the same

position on homologous chromosomes form the genotype of an individual.

The most common type of genetic variation among people is single nucleotide polymorphism,
abbreviated as SNP. A SNP is defined as a variation in a single nucleotide that occurs at a
specific position in the genome. For example, a SNP may replace the nucleotide Cytosine
with the nucleotide Thymine in a certain stretch of DNA, as depicted in Figure 1.3. SNPs
occur frequently throughout a person's DNA. On average, there is one SNP in every 300

nucleotides, which indicates there are around 10 million SNPs in the human genome.
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Figure 1.3: An illustrative example of SNP. The upper DNA molecule differs from the lower
DNA molecule at a single base-pair location (a C/T polymorphism). From
http://isogg.org/wiki/Single-nucleotide_polymorphism.

On average, the proportion of nucleotides that differ between two individuals is estimated to
be 0.1% (Jorde et al., 2004) to 0.4% (Tishkoff et al., 2004) of the whole base pairs. The 1000
Genomes Project was set out to provide a comprehensive description of common human
genetic variations by applying whole-genome sequencing to 2,504 individuals from 26
populations (The 1000 Genomes Project Consortium, 2015). The completion of the project
has characterized in total over 88 million variants, including 84.7 million SNPs, 3.6 million

short insertions/deletions, and 60,000 structural variants.

1.4 Linkage disequilibrium
Linkage disequilibrium (LD) describes the non-random association of alleles at different loci
in a population. Consider two biallelic loci Locus,and Locus,, the two alleles at these loci

are a/A and b/B respectively. The relationship between the frequencies of gametes carrying

each allele and allele pairs (known as the haplotype) is summarized in Table 1.1, where f

represents the frequency of an allele or a haplotype. The level of LD between allele Aand

allele B can be quantified by a statistic defined as

Dy =g — faxfy.
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Table 1.1: 2 x 2 table of allele and haplotype frequencies at two loci. f represents the
frequency of an allele or a haplotype.

Locus, | a A Total
Locus,
b fab fAb 1:b
B faB fAB fB
Total f, f, 1

Through the relationship among the frequencies described in Table 1.1, it can be deduced that
Dpg =—Dg =—Dyy =Dy,

Therefore any of these four statistics is sufficient to characterize the LD between the alleles at

the two loci. The indications of a value of D, are given as below

e D,=0,ie,f,="f,xf;:Aand Bare in complete linkage equilibrium
e D,#0,1e, fz=f,xf;: Aand Bare in linkage disequilibrium
e D,>0,ie,f,>f,xf,: Aand Bare preferentially associated

e D, <0,ie,D, >0: Aand b are preferentially associated

It is of note that although D,; is a measure of the extent to which two alleles are associated, it
is not always the best statistic to be used because the range of its possible values are
constrained by the allele frequencies. The smallest possible value of D,; is
max {—f, fs,—(1— f,)(1- f5)}, while its largest possible value ismin{ f,(1- f;), f;(1-f,)}.
This makes it less favorable to compare the LD between different loci. Two alternate

measures have been proposed. They are the D' (Slatkin, 2008):

D,e .
if D,, <0

min(f,x fg, f,x ,) e
Dy if D, >0

min(f,x fg, f,x )
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and the r? (also called A®) (Hill et al., 1968):

2
2 DAB

N foxfoxfxfy

The definition of D'has the convenient property that it indicates at least one of the four

possible haplotypes is absent when |D'|=1, a situation commonly described as complete

linkage disequilibrium. The r?statistics is a measure of the correlation between allele A and

allele B (ranges from 0 to 1). When r® =1, there is perfect linkage disequilibrium, which
means only two of the four possible genotypes are present in the population. As a result, the

two loci have the same allele frequencies.
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2 Exploring the genetic component of human diseases

Researchers are learning that many human diseases have a genetic component. Some diseases,
such as sickle-cell anemia, Tay-Sachs disease, xeroderma pigmentosa and cystic fibrosis,
arise from the change or alteration in a single gene, and are inherited according to Mendel's
law (Riordan et al., 1989). These diseases often cluster in families and can be predicted based
on the medical history with the help of a family tree. The causes of many other diseases,
however, are much more complex. Common medical problems such as inflammatory bowel
disease (IBD), diabetes, Alzheimer's disease, asthma, and many chronic disorders do not have
a single genetic cause—they are likely to be associated with the effects of multiple genes in
combination with lifestyle and environmental exposure. This complex mechanism is
illustrated in an example given in Figure 1.4. The diseases that are caused by many
contributing factors are called complex or multifactorial diseases. Most of the multifactorial

diseases are common in the population and represent a major challenge for public health.

POPULATION,
FAMILIAL " PREVALENCE ™. SPORADIC

ki

MONOGENIC
ONINOWS
‘SNOILI3ANI

"--.\-_._..

OLIGOGENIC POLYGENIC

LINKAGE GWAS

Figure 1.4: Inflammatory bowel disease (IBD) as an example of a complex disease. As
indicated by the dashed line, IBD cases that arise from the change or alteration in a single
gene are rare, and often cluster in families. Instead, most of the cases are associated with the
effects of multiple genes in combination with environmental factors. Particularly, the gene
environmental interactions (red arrows) play an important role in disease susceptibility,
revealing the complexity of the disease mechanism. Figure adopted from http://www.genes-
environment-inflammation.de/rtg/vision.

The methodologies employed to understand the role of genetic component in human diseases
have evolved in recent years due to technological advances and accumulation of biological

7
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knowledge. The general principle of these methods is to evaluate the correlation between
genetic variants and the disease under study. Two of the major analysis methodologies are

linkage study and association study, as will be described below.

2.1 Genetic linkage study

A genetic linkage study is a family-based method used for mapping a disease trait to a
genomic location by demonstrating co-segregation of the disease with genetic markers at a
known chromosomal location. It is based on the observation that genetic markers residing
physically close on a chromosome tend to remain linked during meiosis. Linkage study is a
powerful tool to detect the chromosomal location of disease genes, and has been employed to
identify a number of genes involved in monogenic Mendelian diseases (Genin et al., 2008).
For example, by genotyping family members affected by cystic fibrosis using a collection of
genetic markers across the genome, and examining how those genetic markers segregate with
the disease across multiple families, researchers have identified multiple mutations in the
CFTR (Cystic fibrosis trans-membrane conductance regulator) gene as the cause of cystic
fibrosis (Kerem et al., 1989). Linkage studies were also proven to be powerful in discovering
some variants that contribute to familial forms of multifactorial diseases, from
neurodegenerative diseases such as Alzheimer, Parkinson, to tumour syndromes such as
neurofibromatosis type 1 and type 2 (Pulst, 1999). However, they are less suited for the study
of multifactorial diseases as a whole (Khoury et al., 1998; Risch et al., 1996). The lack of
success can be attributed to various factors, but mainly to its limited power in pinpointing
genetic factors that have moderate or low effect (level of marker-trait correlation), and the
complex mechanisms (gene-gene interactions, gene-environment interactions etc.) (Tabor et
al., 2002). Moreover, the relatively high prevalence of these multifactorial diseases suggested
that the risk alleles are common in the general population, raising the "Common Diseases-
Common Variants" hypothesis that motivates researchers to conduct genetic analyses at

genome-wide scale (Schork et al., 2009) (although this hypothesis has long been debated).

2.2 Genetic association study: from candidate gene study to genome-
wide study

Genetic association study aims at finding genetic variants or genomic regions that are
associated with disease susceptibility by means of testing their correlation with the disease

status. For a binary trait (affected/unaffected or case/control), a significantly higher frequency
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of a SNP allele in the disease-affected group can be interpreted as that the tested genetic

variant is associated with the disease risk.

The first wave of association studies, applied in the 1990s and early 2000s, were focused on
candidate genes. Most of the candidate genes were selected because they are either functional
candidates (i.e., they encode a protein implicated by an etiological hypothesis), or positional
candidates located in chromosomal regions implicated by previous linkage studies. Candidate
gene association studies were relatively cheap and quick to perform at that time (Patnala et al.,
2013). One limitation of candidate gene approaches is that they rely heavily on the basis of
biological hypothesis or the location of candidate within a previously defined region of
linkage. Therefore, results gained from these "hypothesis-driven™ approaches depend on the

ability to select plausible candidates from the genome.

Advantageously, genome-wide association studies (GWAS), such as the pioneering work
conducted by Klein et al. (2005), allow a systematic, comprehensive survey of genetic
variants (SNPs) in the entire genome, and in a hypothesis-free manner. The extension from
candidate gene approach to genome-wide approach has become realistic thanks to the fast
growing understanding of human genome, the advancement in micro-array and sequencing
technologies, and the abundance of analysis tools. One crucial advance that enables efficient
genome-wide studies is the characterization of LD patterns across the genome. LD has an
important role in the selection of SNPs for performing GWAS. For a chromosome region with
known LD pattern, a few tag SNPs can be chosen such that they capture most of the common
variations within that region (Frazer et al., 2007; Hirschhorn et al., 2005). Consequently, the
disease-association of a genotyped SNP is tested directly, while the association of a SNP that
is not genotyped but in LD with the genotyped SNPs can be tested indirectly (as illustrated in
Figure 1.5). The progress of international HapMap project (Frazer et al., 2007), the 1000
Genomes Project (Genomes Project Consortium, 2010), and recently the Haplotype Reference
Consortium (HRC) (Haplotype Reference Consortium, 2016) have enabled to elucidating
common human genetic variants and LD patterns across the genome in various populations.
Today, comprehensive catalogs of SNPs are deposited in public databases and are available
for use without much restriction. Individual genotyping was also made possible along with the
availability of advanced chip-based microarray technology. Two primary platforms have been
used in most GWAS—IIllumina (San Diego, CA) and Affymetrix (Santa Clara, CA).
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Direct association Indirect association

Figure 1.5: Testing SNPs for disease-association via direct or indirect association. (a) A case
in which a genotyped SNP (red diamond) is tested for association with a disease trait directly.
(b) A case in which an ungenotyped SNP (blue diamond) is tested for association with a
disease trait indirectly, as it is in LD with the other three genotyped SNPs. Adopted from
Hirschhorn and Daly (2005).

GWAS has experienced tremendous success since its first publication in 2005 on a study of
age-related macular degeneration (Klein et al., 2005). Up to the time of March 2017, 2,518
human GWAS have been conducted. These studies examined more than 280 diseases or traits.
Hundreds or thousands of individuals have been involved in these studies. More than 24,000
SNP-trait associations have been found (Figure 1.6). These results are collected in a GWAS
catalog established by National Human Genome Research Institute (NHGRI) and European
Bioinformatics Institute (EBI) that are available at https://www.ebi.ac.uk/gwas/ (MacArthur et
al., 2017; Welter et al., 2014).
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Figure 1.6: Published GWAS results for 17 trait categories. Figure retrieved from
https://www.ebi.ac.uk/gwas/. Accessed in March 2017.

The GWAS approaches are primarily based on single-SNP analysis of hundreds of thousands
to millions of SNPs. They survey each SNP one by one for their association with the disease
trait under study. In the following, we describe several of the major components involved in

the procedure of conducting a GWAS analysis.

Data pre-processing. Data pre-processing is an important step prior to perform association
analysis. Essentially, quality control (QC) procedures should be conducted at the first stage.
These include data filtering at both SNP-level and sample-level. SNP-level filtering aims at
removing SNPs that have low variability, high genotyping error, or a large amount of missing
data. Typically, SNPs with a call rate less than 95% (missing in more than 5% samples) are
removed. SNPs having a minor allele frequency (MAF) less than 1%, which may result in
inadequate statistical power or false positive results (if exact tests are not performed) in
downstream association analysis are also excluded. The existence of genotyping error of a

SNP is examined by testing for derivation from Hardy-Weinberg equilibrium (HWE) using a
one degree-of-freedom Pearson goodness-of-fit test, often known as the y° test (Reed et al.,

2015). SNPs for which the HWE test have a p-value less than a certain threshold (for example
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1x10™) are excluded for downstream analysis. Sample-level filtering aims at removing
individuals due to sample contamination, missing data, correlation (for population-based
investigations), and racial/ethnic or gender ambiguity or discordance. Criteria used for
sample-level filtering were described in, for example, Anderson et al. (2010). The exact

criteria can be study-dependent (Reed et al., 2015).

Next, the existence of population stratification (the presence of a systematic difference in
allele frequencies between subpopulations possibly due to different ancestry) needs to be
checked. This can be achieved by computing the principal components (PCs) of the genotype
data using software such as EIGENSTRAT (Patterson et al., 2006). The computed PCs will
be included as a covariate in the consequent association analysis to reduce spurious

associations caused by systematic difference in allele frequencies in different populations.

Unmeasured SNPs (SNPs that are not on the chips, which often differ from one study to
another) can be imputed based on reference haplotypes and their LD structure derived from
extensive resources, such as the HapMap and 1000 Genomes data. Several imputation
algorithms based on Markov Chain Monte Carlo (MCMC) technique have been proposed.
Well-described packages for SNP imputation include BEAGLE, IMPUTE2, and MACH
(Reed et al., 2015).

Choosing the genetic model. The genetic model describes the disease risk in subjects with
different genotypes. Considering a genetic marker at a biallelic locus with two alleles a and
A, where the risk allele a (or effect allele that may increase or decrease the risk) is often
chosen as the allele that has the lower frequency among two alleles of a SNP, but can be also
defined as the alternate allele compared to the reference sequence. The three possible
genotypes of a subject at the locus are aa, aA, and AA. The disease penetrance associated
with each genotype (denoted as y,,, 7., and y,, respectively) is the probability of getting the
disease in subjects carrying that genotype. The relative risk of a genotype is the ratio of its
penetrance to that of a reference genotype. To give an example, if AA is chosen as the

reference genotype, the relative risks for individuals carrying aa oraAare defined as

RR,, =22 andRR,, =72, respectively.

a
Y ra Y ra
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The models for disease penetrance include additive, recessive and dominant model. Their

associated penetrance functions are defined as

e Additive model: y,, =y, xRR=y,, xRR?;
e Dominant model: y,, =y, =7 XRR;

e Recessive model: y,, =7.,xRR=y,,xRR.

The additive model assumes the logarithm of the penetrance of a genotype is proportional to
the number of risk alleles it has. The recessive or dominant model assume the penetrance is
the same for homozygous (aa or AA) and heterozygous (aA) for a given allele (theaallele
for dominant model, the Aallele for recessive model). Generally, there is no accepted answer
to the question of which model to use. One could choose the optimal model if the underlying
mechanism is known, however, this is often not the case. A common practice is to examine
the additive model, since it has reasonable power to detect both additive and dominant effects
(Bush et al., 2012). Yet, an additive model may also be underpowered to detect some
recessive effects (Lettre et al., 2007). Sophisticated approaches have considered performing
analysis using all three models then combining their results using a weighing strategy, which
could allow detecting both additive and strong non-additive effects (Balding, 2006). A general
regression model that includes an additive effect and deviation from additive effect was also
proposed and often used in animal and plant genetics (Wilson, 1980). The power of this
general model was recently compared to that of the additive model through simulations
(Dizier et al., 2017).

Statistical methods. Several statistical methods for single-marker analysis have been
proposed (Balding, 2006). Quantitative traits (e.g., height, blood pressure and cholesterol
level) are generally analyzed using linear models, such as linear regression and Analysis of
Variance (ANOVA). These methods test the null hypothesis of no difference between the trait
means in different genotype groups. A requirement for applying these methods is that the trait
measurements are approximately normally distributed within each genotype group and share a
common variance. Binary traits are analysed using contingency table or logistic regression
approaches. The contingency table approach explores the association of a genotype with the
trait via the construction of a frequency table that compares the counts of genotypes between

case group and control group (Fisher, 1922). The logistic regression approach is extended
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from the linear regression approach and has the goal to search for the dependence between a
SNP and the probability of expressing a trait. An advantage of logistic regression is that it has
the flexibility to incorporate covariates, such as age, sex, environmental exposures (exposure
to the sun, tobacco etc.), and also principal components of genotype data to account for

potential population stratification.

Result diagnosis. Given the penetrance model and the statistical analysis method, the
association analysis can be performed conveniently using any of the available software,
including PLINK (Purcell et al., 2007), STATA, and R/Bioconductor (Gentleman et al., 2004;
R development core team, 2014). Prior to interpreting the outcomes, the existence of spurious
associations, especially those resulting from population stratification, needs to be diagnosed.
A Quantile-Quantile (Q-Q) plot that compares the observed SNP association statistics with
their expected values under the null hypothesis of no association with the disease is routinely
created. The observation that the majority of the SNP statistics follow the null distribution
while only a handful of them deviate from it suggests there is no population structure
unaccounted for when perform the analysis. This is revealed in the Q-Q plot that most of the

data points fall on (or close to) the y=Xline. The degree of deviation from this line is
measured by the genomic inflation factor 4, defined as 4 = Med, / Med,, where Med, is the
median of the observed SNP statistics, and Med, is the median of the statistics under the null

hypothesis (Devlin et al., 1999). A A value close to 1 suggests the (potential) population

substructure has been appropriately adjusted.

Multiple testing correction. There are generally hundreds of thousands to millions of
statistical tests conducted simultaneously in a GWAS. With each test bearing its own false
positive probability, the cumulative likelihood of finding one or more false positive
associations can therefore be high. GWAS imposes a strict level of significance to reduce the
number of false positives. This level is routinely determined based on Bonferroni correction,
where the actual significance level « is specified as the nominal significant value of 0.05
divided by the number of SNPs that are tested (denoted as N ), i.e., « =0.05/N . This
criterion controls strictly the family-wise error rate at 0.05 (FWER, defined as the probability
of making at least one false discoveries (Thomas, 1989)). However, Bonferroni correction is
known to be too conservative because the number of tests is huge and these tests are generally

correlated as a consequence of LD among SNPs. This leads to over-correction and decreased
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power. Alternate methods that aim at increasing power include the use of false discovery rate
(FDR) criterion (e.g., FDR <0.05) (Benjamini et al., 1995), or replacing the correction factor
(N ) by the number of effective (independent) tests (Li et al., 2005). Yet, because highly
confident results are essential for downstream analysis and pharmaceutical operation, the
significance level of 5x10® (equivalent to a nominal significant p-value of 0.05 after
Bonferroni correction for testing one million SNPs) emerged as a standard for reporting

significant associations (Jannot et al., 2015).

Replication analysis and meta-analysis. SNPs passing the significance threshold in a
discovery study are urged to be replicated in one (or more) independent studies. The NHGRI
working group outlined several criteria for establishing a positive replication (Chanock et al.,
2007). These include using identical phenotype definition, collecting sufficient amount of
replication samples, and conducting replication studies in independent datasets drawn from
the same population as in the discovering study. For the purpose of increasing significance
and refining effect size estimated from multiple studies, the results of multiple GWAS can be
pooled together to perform a meta-analysis. Meta-analyses empower the synthesis of results
from multiple studies without requiring the sharing of individual-level data—only summary
statistics from a study need to be shared. Several software packages can be used to perform
meta-analyses, including STATA, METAL and GWAMA (Mégi et al., 2010; Willer et al.,
2010).
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3 Further exploring the missing heritability of human diseases
via multi-marker analysis of GWAS data

Up to now, genome-wide association studies are mainly based on single-marker analysis
which requires stringent threshold (5x10®) to declare significance. Although such studies
have successfully led to the identification of many genetic variants associated with complex
traits, most of these variants confer relatively small increments in risk and explain only a part
of the whole genetic component underlying diseases or traits, leading many to the question of
how the remaining, missing heritability can be explained (Eichler et al., 2010; Manolio et al.,
2009). This may potentially due to various factors (as discussed in detail in Manolio et al.
(2009) and Eichler et al. (2010)), including the presence of larger number of variants of
smaller effect yet to be discovered; the existence of rare variants (with MAF < 0.01) not
present on the genotyping chips or difficult to impute; the presence of complex mechanisms
not taken into account (gene-gene and gene-environment interactions etc.). It can also be
attributed to the joint effect of multiple SNPs, each having a low marginal effect but acting

jointly on disease risk.

To address the limitations of single-SNP approaches commonly used in GWAS and to capture
more of the complex genetic component underlying multifactorial diseases, many multi-
marker analysis approaches have been proposed to aggregate the information of multiple
SNPs into an integrative model and to study their joint effect on a disease. Multi-marker
analysis provides various advantages over the single-SNP approach. First, by aggregating
SNPs into sets and analyzing each set as a unit, it could reduce the number of tests thus
relaxes the stringent threshold for reaching statistical significance. Secondly, by grouping
SNPs properly, the power can be improved in settings where SNPs are individually only
moderately significant. In particular, though any single SNP may serve as a poor surrogate of
an ungenotyped SNP underlying disease susceptibility, by considering them together, it can
better capture the true effect of the causal SNP. Thirdly, when there are multiple causal SNPs,
conducting a joint analysis has the potential to inspect the cumulative effect of these SNPs on
the disease as a whole. With these advantages, multi-marker analysis approaches are expected
to discover more disease-associated variants and explain more of the missing heritability that

has been missed by single-SNP analysis.

16



CHAPTER |. INTRODUCTION

Multi-marker analysis methods have emerged over the last decade. They differ from one
another according to their way of grouping SNPs, the type of data required for the analysis
(individual genotype/phenotype data or GWAS summary statistics), the detailed analysis
strategy they implement, etc. Based on the level of primary genetic entity that is studied, we
classify multi-marker analysis into three categories: (1) SNP-based analysis, (2) gene-based
analysis, and (3) pathway/network-based analysis (Figure 1.7). In the following, we first

illustrate the main components involved in each of the analysis categories.

++* SNP-based analysis:
identify disease-associated markers at
SNP-level

+* Gene-based analysis:
identify disease-associated markers at
gene-level

L)

++ Pathway/network-based analysis:
identify disease-associated markers at

e S e gene pathway/module level
Gene pathways / modules

Figure 1.7: Three level of multi-marker analysis (SNP-based, gene-based, and
pathway/network-based).

3.1 SNP-based multi-marker analysis

SNP-based multi-marker analysis surveys the genetic component of a disease at SNP-level.
SNPs can be grouped if they are in the same gene, pathway, or a specific genomic region. In
the following, we introduce several SNP-based analysis approaches that fall in the linear

regression framework and machine learning framework.

Linear regression approaches. Linear regression models have the ability to search for linear

combinations of SNPs that can best explain the trait. They are also flexible in incorporating
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covariates (age, gender, environmental exposure etc.), in modeling the interaction between
SNPs and covariates, and can provide statistical significance measure over each factor that is
evaluated. Ordinary least squares (OLS) regression is a well-studied technique for modeling
the relationship between a dependent variable and explanatory variables. In an OLS model for
a quantitative trait, the trait Y is modeled as a linear combination of the SNPs X,... X jand

X, a8 Y= +> X, +¢&, where S, is the intercept and f,

i=1

possible covariates X ;.

(i=1,...,m)are regression coefficients for the SNPs and covariates. ¢ is the error term. The

coefficients B=(ﬂ0,ﬂ1,...,ﬂm)are routinely estimated by minimizing a loss function defined

2
as LOLS(B)=Z(yi_ﬂO_ZXijﬂjJ , where n is the number of samples. However, OLS
= =1

requires n=m, thus are generally inapplicable for GWAS data in which the number of SNPs
is typically larger than the sample size. Additionally, in an OLS the estimator of regression

coefficients can be highly unstable when the SNPs are correlated (De Vlaming et al., 2015).

Penalized least squares regressions, also called shrinkage methods, are more appropriate for

multi-marker regression analyses. In a shrinkage method, the loss function L(p) is usually
defined as L(B)=L,.s(B)+P(A4,B), in which P(4,B) is a penalty with a tuning parameter A . It

has the effect of shrinking the coefficients of SNPs that are less correlated with the phenotype

towards zero. There are many types of penalties, including PRidge(B,ﬂ):AZﬂiz for Ridge

i=1

regression (Hoerl et al., 1970), P, (B,2)=2) |B| for Lasso regression (Tibshirani, 1996),

i=1
and P, (B, 1)=2)_|B+(1-1)_ B? for Elastic Net regression (Zou et al., 2005). There is also
i=1 i=1

a shrinkage method called HyperLasso that is designed specifically for simultaneous
analyzing a set of SNPs and covariates (Hoggart et al., 2008). This method implements a
Bayesian-inspired penalized maximum likelihood approach with a Normal-Exponential-
Gamma (NEG) prior over each regression coefficient. The NEG distribution has a sharp peak
at zero, which imposes a strong penalty on the coefficients when they are close to zero, thus

leads to sparse models.
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Shrinkage methods have been applied to various GWAS studies for detecting the marginal
and interactive effect of SNPs. For example, Sun et al. (2009) used Ridge regression to detect
SNPs associated with rheumatoid arthritis. By incorporating information on multiple
correlated genetic variants, they identified a SNP near the HLA-B gene that was not
significant in their single-SNP analysis. Wu et al. (2009) applied Lasso regression to GWAS
data of celiac disease and identified both marginal and interactive factors associated with this
disease. Waldmann et al. (2013) used both Lasso and Elastic Net to identify SNPs affecting
milk fat content. Barrett et al. (2015) applied HyperLasso to identify functional variants of

melanoma from genetic loci that were pinpointed by earlier GWAS analyses.

As for the performance of different shrinkage methods, each of them has its own strengths
and limitations. Ridge regression has a better performance for predicting phenotype labels
given new genotype data. However, it does not achieve SNP selection. Lasso regression
allows for automatic SNP selection by shrinking some of the coefficients to zero, but it tends
to have problems when the SNPs are highly correlated (Waldmann et al., 2013). Elastic Net
regression incorporates a combined penalty of Lasso and Ridge regression, thus holds the
features of both methods. Yet, there is no conclusive evidence as for which method
outperform others overall. For instance, using a simulation study, Ogutu et al. (2012) found
Lasso outperformed Ridge regression, whereas other studies found that Ridge regression and
Elastic Net outperformed Lasso (Bgvelstad et al., 2007; Waldmann et al., 2013).

Machine learning approaches. Machine learning approaches employ models and algorithms
that have the ability to learn the SNP-trait association pattern. Random Forests (RF) is a
machine learning method that has been successfully applied to genetic studies for the purpose
of prioritizing SNPs, predicting disease status, and identifying SNP-SNP interactions (Li et
al., 2016; Schwarz et al., 2007; Sun et al., 2007; Szymczak et al., 2016). A RF is an ensemble
of decision trees, where each tree is grown using a bootstrap sample of the whole dataset
(Breiman, 2001). A node in a tree is chosen as the SNP that can best reduce the trait impurity
within child nodes. The effect of each SNP on the trait can be quantified by a variable
importance score (Zhang et al., 2009). One prominent feature of RF is that it can capture the
nonlinear interactions between SNPs, making it a desirable technique for unveiling the

complex genetic architecture underlying multifactorial diseases.
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RF was shown to perform well in simulations and real applications but these studies included
no more than hundreds of SNPs (Lunetta et al., 2004; Schwarz et al., 2007). Technique
advances such as the implementation of the Random Jungle (RJ) tool have made it possible to
construct large RFs for genome-wide data (Schwarz et al., 2010). However, direct application
of RF to genome-wide data still poses a computational challenge, and only a few studies were
reported in the literature (Goldstein et al., 2010; Schwarz et al., 2007; Zou et al., 2012). For
these reasons, two-stage RFs, which select candidate SNPs at the first stage and apply RF to
the selected SNPs at the second stage, were exploited in more detail. For example, in a study
of WTCCC coronary artery disease, Roshan et al. (2011) first performed a single-SNP
analysis to assess the significance of association for each SNP. Then only SNPs ranked at the
top of the whole list were selected for downstream RF analysis. Chung et al. (2012) proposed
a similar two-stage RF to prioritize candidate SNPs in each pathway. At the first stage, a RF
was built using all SNPs in a pathway. Then SNPs with a variable importance score greater
than a threshold were selected to rebuild the RF. These two-stage approaches were shown to

avoid overfitting and can generate more accurate models with a lower prediction error.

Support Vector Machine (SVM) is a supervised learning method that can be used for both
classification and regression. In its simplest form, a SVM seeks to identify the optimal
hyperplane that can separate the samples into two classes and achieve the largest margin
between the classes. SVM was shown to have excellent power in detecting epistasis in both
simulated and real genetic data (Chen et al., 2008; Listgarten et al., 2004). In Listgarten et al.
(2004), a number of genetic variants associated with breast cancer risk were discovered using
a SVM model. These variants are collectively better at predicting breast cancer patients than
single variants. Chen et al. (2008) explored several SVM-based strategies that were able to
uncover the interaction among SNPs. Nonetheless, due to the same computational and
overfitting issue as for RF, two-stage SVMs were favored as compared to applying SVM

directly to genome-wide data (Kim et al., 2013; Roshan et al., 2011).

3.2 Gene-based multi-marker analysis

Gene-based analyses are those studying the genetic component of a disease at gene-level.
They have emerged as a major complement to GWAS (Neale et al., 2004). Several reasons
are behind. First, genes are the basic physical and functional unit of heredity. Cellular
processes are ultimately directed by genes and driven by their products (proteins). Secondly,
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aggregating SNP-level information into genes can reduce the multiple testing burden. A large-
scale GWAS usually involves testing of more than one million SNPs while these SNPs can be
mapped to around 20,000 genes. Additionally, gene-based analysis is an essential
intermediate step for performing integrative analysis of GWAS results with biological

knowledge at gene pathway and network level, as will be described in Section 3.3.

Various gene-based analysis methods have been proposed. These methods share an initial step
of mapping SNPs to genes. Typically, SNPs located between the 5 UTR (five prime
untranslated region) and 3' UTR (three prime untranslated region) of a gene can be mapped to
that gene. More sophisticated strategies such as those taking into account the LD structure or
regulatory effect were also investigated (Pers et al., 2015; Tasan et al., 2015), and will be
discussed in more detail in the Discussion section of this thesis. Apart from the SNP to gene
mapping issue, gene-based methods differ from each other for various features. In the
following, we describe them in terms of whether they are based on analyzing individual

genotype/phenotype data or GWAS summary data.

3.2.1 Methods based on analyzing individual genotype/phenotype data

Among the methods that analyze individual genotype/phenotype data, the SKAT method
(Sequence Kernel Association Test) allows borrowing information between different SNPs to
improve the power to detect the effect of a gene (Wu et al., 2011). SKAT is based on a
logistic kernel-machine model and has the flexibility to include covariates in the analysis. It
estimates a matrix of genetic similarity between pairs of individuals at the level of all SNPs of
the gene using kernel functions. The significance of a gene is evaluated using a variance-
component score test under a mixed model, whose test statistic follows a mixture of chi-
square distributions. Several extensions of SKAT were also proposed, which make it feasible
for conducting analysis of familial data (Chen et al., 2013; Oualkacha et al., 2013; Svishcheva
et al., 2014), and analysis including both rare variants and common variants (lonita-Laza et al.,
2013).

Another useful gene-based analysis toolkit is MAGMA (Multi-marker Analysis of GenoMic
Annotation) (Leeuw et al., 2015). MAGMA includes both the tool to analyze individual-level
data and also the tool to analyze summary data. The tool that analyzes individual-level data

characterizes the relationship between the phenotype and the SNPs of a gene via multiple
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linear principal components regression. This model has a similar form as the OLS model as
described previously. The major difference is that instead of modeling directly on the
genotype data, it projects the SNP matrix of a gene onto its principal components (PC), then
prunes away PCs with very small eigenvalues before using the remaining ones as predictors
for the phenotype in the regression model. This improves power by removing redundant
parameters and guarantees the model is identifiable in the presence of highly correlated SNPs.

The association of a gene with the disease is assessed using an F-test.

Multifactor Dimensionality Reduction (MDR) is a powerful method in detecting gene-gene
(also SNP-SNP) interaction using individual genotype/phenotype data (Hahn et al., 2003).
The main idea of MDR s to reduce the dimensionality of multi-locus information by pooling
multi-locus genotypes into high-risk and low-risk groups, thus reducing to a one-dimensional
variable. Cross-validation (CV) and permutation test are used to select the interaction pattern
that has the best ability to classify and predict disease status. Yet, it is can be difficult to
perform high order gene-gene interaction analyses via MDR at genome-wide level because it
requires exploring a huge search space and suffers from a computational burden due to high
dimensionality (Oh et al., 2012). Many MDR extensions have been proposed, including Gene-
based MDR that allows for perfroming fast and efficient high order gene-gene interaction
analysis (Oh et al., 2012), and the model-based MDR (MB-MDR), which is a parametric
extension of the MDR method that was shown to have increased power over MDR in

identifying gene-gene interactions for most genetic models (Cattaert et al., 2011).

3.2.2 Methods based on analyzing GWAS summary data

Many gene-based methods are based on analyzing GWAS summary data. Such methods are
becoming more and more prominent since summary data have become abundant after years of
GWAS effort. These methods are typically conducted by combing the p-values of SNPs
mapped to a gene into a gene p-value. One naive while popular approach is to take the most
significant SNP p-value among all SNPs mapped to that gene. This strategy is easy to
implement and is sensitive in capturing the best association signal. It has been utilized in
various early studies (Askland et al., 2012; Wang et al., 2007). However, taking only the best
SNP to represent the whole gene, other SNP signals present in the gene will be ignored. Thus
the overall gene effect can be under-evaluated if a trait is highly polygenic. Another limitation

of this approach is that long genes harboring many SNPs tend to have a lower p-value, even if
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none of its SNPs is truly associated with the disease. This is the consequence of performing

multiple tests simultaneously, for which testing « hypotheses there is a chance of 1-(1-Y) )
to get the smallest p-value lower than Y (for any 0 <y <1). Thereby the resulted gene p-

values are inflated by gene length.

Various strategies have been introduced to address these issues. They typically combine SNP
p-values (or test statistics) into a representative statistic (denoted as T ), then evaluate its
significance of deviation from the background distribution under the null hypothesis of no
gene-disease association. The schematic diagram of such approaches is depicted in Figure 1.8.

Some examples of defining T are presented in Table 1.2.

Computing the probability density functions of these statistics requires the correlation
information of the SNP p-values, which, however, is generally unknown. Two strategies are
employed to account for the correlation between SNP p-values. One strategy approximates
the correlation using SNP LD estimated from HapMap or 1000 Genome Project reference
panels, or from a custom set of individual genotype data when they are available (Liu et al.,
2010). The idea is intuitive—two SNPs tend to have high dependence in their p-values if they
are in high LD, whereas they are likely to have independent p-values if they are not in LD.
Given the estimated correlation structure among SNP p-values, the gene p-value based on T
can be computed either by Monte Carlo approximation such as employed by the VEGAS
method (Liu et al., 2010), or by analytical calculation as employed by the MAGMA (Leeuw
et al., 2015) and PASCAL method (Lamparter et al., 2016).
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Table 1.2: Commonly used gene representative statistics for gene-based analysis.

Gene representative statistics ( P, represent SNP p-values)

Related method

COMBASSOC (Curtis et al., 2008)

T= —2i In(1-P)

Pearson's method (Pearson, 1938)

T= ZXi; where X, :Qﬁz(Pi) is the upper quantile of the y/ distribution
i=1

evaluated at P,

VEGAS (Liu et al., 2010), VEGAS2 (Mishra et al., 2015), PASCAL
(Lamparter et al., 2016), fastBAT (Bakshi et al., 2016), MAGMA (Leeuw et
al., 2015)

T =max,_, X, , or equivalently, T =min,_, P

<m "1

VEGAS, VEGAS2, PASCAL, MAGMA

T =max,, Z;; where Z; =Qy,, (P) is the upper quantile of the standard

normal distribution evaluated at P,

MAGENTA

T =-2xQ,(InP,InP,,---,InP,); Q,: the first quartile

TopQ (Lehne et al., 2011)

k
T(k) = H Py s 1< k < N is a truncation point chosen a priori by user
i=1

Rank Truncated Product (Dudbridge et al., 2003)

7 is a truncating parameter, typically set as 7=0.05

T :ﬁ[ PiI(PiSz‘) :
i=1

Truncated Product (Zaykin et al., 2002)
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Figure 1.8: Diagram of computing gene p-values using GWAS summary data. A gene
representative statistic T is first computed from the p-values of SNPs mapped to that gene.
Then the gene p-value is computed by evaluating the significance of T for its deviation from
the background distribution under the null hypothesis of no gene-disease association. To
compute the significance of T , one strategy (Strategy 1) is based on Monte Carlo
approximation or analytical calculation, where the SNP p-value correlation structure is
approximated by the LD computed from a reference population or individual genotype data.
Another strategy (Strategy 2) is based on phenotype or summary data permutation. For
phenotype permutation, the individual genotype/phenotype data is required.
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Figure 1.9: An illustrative example of the Circular Genomic Permutation strategy. CGP
considers the genome as a circle. SNP p-values of a GWAS are ordered on the circle
according to the position of the SNP. A CGP sample is generated by rotating the p-values for
a randomly chosen position (=2 in this example) and reassigning these p-values to each SNP.

Another strategy to incorporate the correlation among SNP p-values is to use permutation
techniques (Figure 1.8). Phenotype permutation is the gold standard of generating the null
distribution, for which the LD structure and other possible confounding factors, such as gene
size, are accounted for (Liu et al., 2010). Computing gene p-values via permutation is
conceptually simple and is implemented as the "set-based test” in the PLINK software
package (Purcell et al., 2007). Nevertheless, heavy computational demand has restricted its
application at genome-wide scale. Moreover, there are several cases in which permutation-
based method cannot be applied, including family-based GWAS, GWAS meta-analyses based
on summary statistics, and studies in which the individual genotypic data are unavailable.
Another permutation strategy, which applies directly to SNP summary data by randomly
shuffling the SNP p-values, was proposed as an alternate to phenotype permutation. Though
convenient and efficient, it is criticized for treating the SNP p-values as if they were
independent (thus the correlation is not accounted for). Cabrera et al. (2012) proposed a
permutation strategy called Circular Genomic Permutation (CGP) that is applied to summary
data and can partly preserve the p-value correlation structure. As illustrated in Figure 1.9,
CGP considers the genome as a circle, starting from chromosome 1 and ending at
chromosome 22 then restarting from chromosome 1. SNP p-values of a GWAS are ordered on
the circle according to the position of the SNP. A CGP sample is generated by rotating the p-

values for a random position and reassigning them to each SNP at their new position. In this
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manner, CGP keeps the relative position between SNP p-values unchanged during the
permutation process, thus the correlation structure is partly preserved. This strategy has been
applied to several studies and was shown to have similar performance compared to phenotype
permutation when applied to a pathway-based analysis (Brossard, 2013; Chambers et al.,
2013; Mott et al., 2014; Stainton et al., 2015). Thereby, we have taken advantage of the CGP
strategy and developed an efficient method to compute gene p-values, as will be introduced in
Chapter I11.

3.3 Pathway-based and network-based multi-marker analysis

As mentioned previously, the single-SNP analysis approaches have methodological
bottlenecks and have resulted in limited power. Gene-based analysis could partly overcome
their limitations, but it is not flawless. Genes that are genuinely associated with disease status
but do not reach the multiple testing significance threshold cannot be captured. The joint and
interactive effects of multiple genes are also missed. This urges the investigators to develop
alternate and complementary strategies. Integrative analysis approaches that combine
knowledge of biological pathways and/or biological networks with GWAS results to identify
functional gene modules associated with disease status have emerged as a prominent research
direction (Figure 1.10). The rationale behind these methods is that biological organizations
are fundamentally modular—instead of working in isolation, groups of genes, proteins or
metabolites are known to work together through physical and/or functional interaction (Mitra
etal., 2013).

Pathway and network-based approaches appear to be well suited for the analysis of massive
GWAS data. They have a number of benefits relative to the analyses performed at individual
SNP or gene level either from biological or statistical considerations. First, they aggregate
molecular events across multiple genes in the same pathway or network subunit, thus reduce
the number of hypotheses to be tested and can increase the likelihood that a test passes the
statistical significance threshold. Secondly, a common disease is the result of the joint action
of multiple genes within a pathway. Although each single gene may confer only a small
disease risk, their collective action is likely to have a significant role in the development of a
disease. Thirdly, locus heterogeneity, in which alleles at different loci cause disease in
different populations, will increase the difficulty in replicating associations of a single-marker
with a disease. Therefore, replication of association findings at the SNP or gene level can be
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difficult if there are redundant genes with similar roles present (Sun, 2012). In comparison,
pathway and network-based approaches that combine information from multiple loci in a
functional unit could produce more stable and robust results than single-marker approaches do
(Qiu et al., 2008). Furthermore, the ultimate goal of genetic studies of complex diseases is to
decipher the link between genotype and phenotype. Despite the efforts made by extensive
studies in search for genes causing complex diseases, the links between genetic variants and
complex traits, which are essential for unraveling the pathogenesis of complex diseases, have
remained elusive. In this sense, pathway and network-based approaches provide a
complementary role to single-marker approaches for interpreting the molecular basis

underlying human diseases.

In the following sections, I will first summarize the biological pathway and network resources
that are hugely available for performing integrative analyses. Afterwards, | will introduce

pathway-based analysis, and then network-based analysis that is the main focus of this thesis.

Integrative analysis Disease moduler\

Prior knowledg

Pathways
Protein interactions

L

Figure 1.10: Diagram of integrative analysis of GWAS data.

3.3.1 Resources of biological pathways and networks

Thanks to the high-throughput "omics" (e.g., genomics, transcriptomics, proteomics, and
metabolomics) technologies, our resources of biological data are increasing at exponential
rate. According to a report published in 2013 in the journal Nucleic Acid Research, there are
1552 biological databases publically accessible online (at the time of writing that report)
(Fernandez-Suarez et al., 2013). These databases are developed for various purposes, curated

at different knowledge levels and via diverse approaches. A comprehensive overview of these
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biological databases was given in Zou et al. (2015). Among them, those describing biological
pathways and networks are most widely used for integrative analysis of GWAS data and are

the main focus of this thesis. They will be introduced below.

Biological pathways. Pathways are an important component in systems biology. A pathway
is defined as a series of actions among molecules in a cell that leads to a certain product or a
change in a cell. A pathway can trigger the assembly of new molecules, such as a protein or
lipid, can turn genes on and off, or spur a cell to move. These actions are usually controlled
and catalyzed by enzymes. Some of the most well-known pathways are involved in
metabolism, the transmission of signals, and the regulation of gene expression. Perturbations

in pathways are found to cause disorders.

Pathway resources are accumulating rapidly. Researchers have discovered many important
pathways through laboratory studies of cultured cells, bacteria, fruit flies, mice and other
organisms, many of which are similar to the counterparts in humans. For the purpose of
effectively archiving and easily accessing to the ever-expanding knowledge of established
pathways, an increasing number of databases have been established during the last decade.
The Pathguide resource collects links to many databases of manually curated and

computationally predicted pathways (http://www.pathquide.org). Some of the well-known

collections are listed in Table 1.3. These include Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Kanehisa et al., 2016), Reactome (Croft et al., 2013), and Gene Ontology (GO)
(Ashburner et al., 2000). Both KEGG and Reactome contain manually curated (MC)
pathways for different biological processes, whereas GO contains mostly electronic
annotations (EA) for human genes and attempts to describe gene functions using three
hierarchical categories: molecular functions, biological processes, and cellular components.
Other commercial pathway providers, such as Pathway Studio

(https://www.pathwaystudio.com/)  and  Ingenuity = Pathway  Analysis  platform

(https://www.qgiagenbioinformatics.com/), also curate pathways from multiple sources of

information, including literature reviews as well as experimental evidence. Still, many
biological pathways remain to be discovered or explored in more detail. It will take years of
effort to identify and understand the complex connections among all the molecules in all

biological pathways, as well as to understand how these pathways work interactively.
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Table 1.3: Some of the well-known pathway databases. MC: manually curated; EA: electronic annotations.

Pathway database

Curation method

Description

URL

KEGG

MC

KEGG pathway is a collection of manually drawn pathway
maps representing the knowledge on the molecular
interaction and reaction networks for metabolism, genetic
information processing, cellular processes, etc.

http://www.genome.jp/kegg

Reactome

MC

Reactome is an open-source, open access, manually curated
and peer-reviewed pathway database. Pathway annotations
are authored by expert biologists, in collaboration with
Reactome editorial staff and cross-referenced to many other
bioinformatics databases

http://www.reactome.org

Gene Ontology

MC/EA

GO provides controlled vocabularies for the description of
biological process, molecular function, and cellular
component of gene products. The controlled vocabularies of
terms are structured to allow annotation of gene products to
GO terms at varying levels of detail

http://www.geneontology.org

WikiPathways

MC/EA

WikiPathways is an open space for biological pathway
editing. Users can freely contribute and modify the content

http://wikipathways.org/index.ph
p/WikiPathways

Ingenuity Pathway Analysis

MC/EA

IPA is a large curated database of biological pathways
created from millions of individually modeled relationships
between proteins, genes, complexes, cells, tissues, drugs,
and diseases

http://www.ingenuity.com/produc
ts/ipa

Pathway Commons

EA

Pathway Commons aims to store and disseminate
knowledge about biological pathways. Information is
sourced from public pathway databases and is readily
searched, visualized, and downloaded

http://www.pathwaycommons.org
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Biological networks. Biological networks and pathways are similar concepts but with certain
distinctions. Both comprise functionally related genes, proteins, and other molecular
components that carry out biological processes. In comparison, a pathway describes the series
of biochemical reactions and physical events among molecules (e.g., complex formation,
phosphorylation events, and conformation changes), whereas a network characterizes the
relationship among molecules and represents them by means of graph. Unlike pathways
resources that are mostly acquired through laboratory studies or careful manual curation by
domain experts, biological networks are constructed via a broader range of techniques and can

capture various types of relationships among biological entities.

Many types of biological networks have been characterized to date. These include metabolic
network, cell signaling network, gene regulation network, drug interaction network, protein-
protein interaction network, and many others. Protein-protein interaction (PPI) contributes to
the most of our current knowledge of biological networks and has been the major resource
used for performing integrative analysis of GWAS data. In a narrow sense, PPI describes the
highly specific physical contacts established between two or more protein molecules as a
result of biochemical events. In a broad sense, the word "PPI" has been used for describing
various types of relationship among proteins and their coding genes, including physical
interaction, gene co-expression, and co-occurrence of them in literature. For this reason, a PPI

is sometimes synonymous to a "functional protein network", "protein association network™, or

"gene network™.

Interactions between proteins can be detected by many techniques. These techniques fall into
three major categories according to where the analysis is performed: in vivo, in vitro, and in
silico. For in vivo techniques, a given experiment is conducted in a whole living organism. In
vivo PPI detection methods include yeast two-hybrid and synthetic lethality (Briickner et al.,
2009; Nijman, 2011). In vitro studies are performed in a controlled environment outside their
normal biological context. Several in vitro methods for detecting PPl are affinity
chromatography, tandem affinity purification, protein arrays, protein fragment
complementation, phage display, X-ray crystallography, co-immunoprecipitation, and NMR
spectroscopy (Junker et al., 2011; Lehne et al., 2009; Rao et al., 2014). In silico methods refer
to the analyses conducted via computational algorithms. Some in silico PPI

detection/prediction methods are protein sequence-based approaches (Singh et al., 2010),
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protein 3D structure-based approaches (Porollo et al., 2007), gene fusion, gene co-expression
analyses and text-mining approaches (Papanikolaou et al., 2015). A limitation of in silico
method is that the resulted interactions may not have experimental evidence, and can contain
spurious information. Nonetheless, its ability to perform large-scale analysis will provide a

more comprehensive and deeper coverage of the protein interaction map.

Numerous PPl databases have been established to collect published PPI data and to provide
convenient access to the data. Table 1.4 lists some of the major PPl databases. They can be
divided into three subgroups according to their source of origin: (1) primary databases, which
include experimentally verified protein interactions collected from either small-scale or large-
scale published studies that have been manually curated; (2) meta-databases, which contain
only experimentally proven PPIs obtained by integrating multiple primary databases; (3)
prediction databases, which include mainly PPIs predicted in silico. Many databases also
provide friendly graphical user interfaces (GUI) for data accessing, where users input one or
multiple identifiers such as protein names or accession number according to RefSeq,
Universal Protein Resource (UniProt), Ensembl gene ID or Entrez gene ID. In return, users
obtain interaction information about the input proteins (or their coding genes). This
information usually contains the interactors of the proteins, the evidence/source of
interactions, and the description of protein entities. Some databases also provide primary tools
for customized network visualization and manipulation. It is of note that although all of them
provide knowledge on protein interactions, each database has its own knowledge source,
curation and storage protocols. It was observed that the overlap between these PPI databases
is relatively small (Rao et al., 2014), thereby a combined investigation of multiple databases
in a research work can be beneficial. In the following, we will introduce two PPI databases

that are utilized in this thesis work.
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Table 1.4: PPI databases. These databases are divided into three subgroups: (1) primary databases that include experimentally verified protein
interactions collected from either small-scale or large-scale published studies that have been manually curated; (2) meta-databases that include
experimentally proven PPIs obtained by integrating multiple primary databases; (3) prediction databases that include mainly predicted PPIs
derived using different approaches, combined with experimentally proven PPIs. Data was accessed in March 2017.

Database name #proteins #interactions Species URL

Primary Databases

HPRD 30,047 41,327 Human http://www.hprd.org/

BioGRID 65,617 1,423,105 All http://thebiogrid.org/

MINT 25,530 125464 All http://mint.bio.uniroma2.it/

IntAct 98,289 720711 All http://www.ebi.ac.uk/intact/

DIP 28877 81784 All http://dip.doe-mbi.ucla.edu/dip/Main.cgi
OPHID/12D unknown 1,279,157 Human http://ophid.utoronto.ca/ophidv2.204/
Meta-Databases

PINA 17,109 166,776 All http://omics.bjcancer.org/pina/

APID 29,701 349,144 All http://cicblade.dep.usal.es:8080/APID/init.action
InWeb_InBioMap | 17,653 625,641 Human https://www.intomics.com/inbio/map/#home
Prediction Databases

STRING 9,643,763 1,380,838,440 All https://string-db.org

PIPs 7750 79441 Human http://www.compbio.dundee.ac.uk/www-pips/dbStats.jsp
UniHI 36023 573995 Human http://www.unihi.org/
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PINA. The Protein Interaction Network Analysis (PINA) platform is a comprehensive web
resource for protein interaction network construction, filtering, visualization, and management
(Cowley et al., 2011). PINA integrates PPI data from six public curated databases (IntAct,
MINT, BioGRID, DIP, HPRD and MIPS/MPact), and builds a non-redundant protein
interaction dataset for six model organisms (Homo sapiens, Mus musculus, Rattus norvegicus,
Drosophila melanogaster, Caenorhabditis elegans and Saccharomyces cerevisiae). PINA
also provides a variety of built-in tools to filter and analyze the network for gaining insight
into it, such as to retrieve protein interaction modules identified by clustering algorithms, and
to identify topologically important proteins. PINA can be accessed via its

website http://omics.bjcancer.org/pina/ or via the Cytoscape plugin

PINA4MS http://apps.cytoscape.org/apps/pina4dms.

STRING. The Search Tool for the Retrieval of INteracting Genes/proteins (STRING) is
currently the largest PPl database (Szklarczyk et al., 2017). Up to the time of March 2017, it
contains 1,380,838,440 interactions among 9,643,763 proteins for a comprehensive coverage
of diverse organisms. Each interaction represents a known or predicted relationship between
genes or gene products (proteins). These include direct (physical) and indirect (functional)
relationship derived from various sources, such as integration from primary PPI databases,
systematic genome comparisons, high-throughput experiments, gene co-expression and text-
mining analyses. Notably, all interactions in STRING are provided with a probabilistic
confidence score, derived by separately benchmarking groups of interaction against the
manually curated functional classification scheme of the KEGG database and generally
correspond to the probability of finding the linked proteins within the same KEGG path
(Kanehisa et al., 2009). A final "combined score" quantifying the overall interaction
confidence between a pair of proteins is computed by combing all sub-scores via the formula

SCOmbinedzl—H(l—Ssub). This combined score is often higher than the sub-scores,

sub
expressing increased confidence when the interaction is supported by multiple sources of
evidence. Based on this score, the overall interaction between two proteins is classified as low

confidence if S ¢ <0.4, medium confidence if 0.4 < S ¢ <0.7, and high confidence if

Combinei Combine

S >0.7 . The STRING database can be assessed conveniently through the

Combined

website https://string-db.org, the stringApp Cytoscape
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application http://apps.cytoscape.org/apps/stringapp, and the STRINGdb R/Bioconductor

package.

3.3.2 Pathway-based analysis of GWAS data

Pathway-based analysis of GWAS data has the goal of identifying pathways with their genetic
architecture significantly altered for a disease status. Over recent years, various pathway-
based methods have been proposed (Chen et al., 2010; Guo et al., 2009; Wang et al., 2007;
Zhang et al., 2010). Some of them overlap with the methods designed for gene-based analysis,
such as those based on analyzing individual-level data or combining SNP p-values. This is
because a pathway is similar to a gene in that it also consists of a fixed set of SNPs, thus a

pathway can be viewed as a "giant gene".

The methods that are designed more specifically for pathway analysis include over-
representation analysis (ORA) and functional class scoring (FCS) analysis (Khatri et al., 2012)
(Figure 1.11). ORA, also known as functional enrichment analysis, has the goal to identify
pathways over-represented by a list of susceptible genes selected on the basis of gene-level
significance, for example, those having a significant p-value (p < 0.05) after multiple testing
correction. Over-representation of a pathway is usually computed by hypergeometric test or
binomial test. The related methodologies and analyzing tools will be presented in more detail
in Section 3.3.3. ORA has been widely utilized for pathway-based analysis because it is easy
to implement. Nonetheless, ORA has limitations. The definition of a list of susceptible genes
is not straightforward. They are usually chosen based on a stringent significance threshold,
which can be a salient issue when a GWAS is underpowered. Consequently, the majority of
genes that do not reach the significance threshold are neglected in the analysis, including

those bearing small to moderate marginal effects.

The FCS methods aim at pinpointing pathways enriched in overall high association signals.
Unlike ORA that focuses on a set of selected susceptible genes and thus ignores the effect of
remaining genes, a FCS takes into account the overall effect of all genes in the pathway
(genes not involved in the GWAS are not included). In a FCS analysis, testing for the
enrichment of signals of a pathway can be conducted either in a self-contained (association)
or a competitive (enrichment) manner (Khatri et al., 2012). In a self-contained test, the null

hypothesis is "a pathway is not associated with the disease under study”. This test usually
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includes two steps. At first, a pathway statistics (T ) is formed either directly from the SNP
statistics, or indirectly by first computing gene statistics (SNP statistics — (gene statistics) —
pathway statistics). Then, the association significance of the pathway can be evaluated on the
basis of T using the same methodologies as that of the gene-based analysis (i.e., Monte Carlo
simulation, analytical computation, and permutation). Therefore the approaches introduced in

Section 3.2.2 can be applied directly.

Alternately, in a competitive (enrichment) test, the null hypothesis is "the pathway genes are
no more associated with the disease than genes outside the pathway". The first
implementation of a competitive approach is the GSEA method introduced by Wang et al.
(2007), based on an adaptation of an earlier method proposed by Subramanian et al. (2005)
designed for the analysis of gene expression data. In their approach, genes are ranked in
descending order according to their association with the trait (computed by gene-based
methods). The statistics of a pathway, called enrichment score (ES) in their approach, is
defined as a Kolmogorov-Smirnov running sum statistic. This statistic measures the
difference in the rank of pathway genes relative to the rank of genes outside the pathway. A
high ES value indicates a pathway includes genes of strong association evidence that are
ranked at the top of the gene list. ES is tested for its derivation from the null distribution by
permutation. Several variants of this approach, as well as other types of GSEA, have been
proposed for the purpose of correcting biases and increasing power. These include GSA-SNP
(Holden et al., 2008), SSEA (Weng et al., 2011), i-GSEA4GWAS (Zhang et al., 2010), and
SeqGSEA (Wang et al., 2014). The relative strengths of these approaches have been evaluated
in many genetic studies (Chen et al., 2010; Guo et al., 2009; Wang et al., 2007; Zhang et al.,
2010).
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Figure 1.11: The principle of over-representation analysis (ORA) and functional class scoring
(FCS) analysis. For ORA, susceptible genes are selected on the basis of gene-level
significance computed using gene-based methods, then the pathways enriched in these genes
are identified. For FCS, the statistic for each pathway is computed from GWAS results; then a
pathway is tested for its significance of signal enrichment using either a self-contained test or
a competitive test, or both.

3.3.3 Network-based analysis of GWAS data

Pathway-based analysis has been successfully applied to unveil the biological mechanism of
many diseases. The identified pathways provide new insights that may be missed in a single-
marker analysis. However, such approaches also have limitations: (1) although some
prominent pathways are well studied, the knowledge on biological pathways remains
fragmented and incomplete (Jin et al., 2014); (2) existing pathway annotations cover
predefined pathways that may be too general in their delivery of disease-related biological
functions (Ruano et al., 2010; Sun, 2012); (3) the connection information among genes is
lacking within major annotation databases used for pathway analysis, such as the GO
database; (4) most pathway-based method consider different pathways as independent sets
and ignore their possible crosstalk. Specifically, the crosstalk between pathways refers to
instances for which one or more components of one signal transduction pathway affects
another (Figure 1.12). Two pathways are suspected to crosstalk with each other if there is a
considerable interaction between their protein members (Li et al., 2008). Crosstalks were
commonly observed between signaling pathways, for example, between Camp-dependent

kinase and MAP kinase through a protein tyrosine phosphatase (Saxena et al., 1999).
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Nonetheless, they are seldom considered by existing methods for pathway-based analysis of
GWAS data.
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Figure 1.12: An example of pathway cross-talk. A cross-talk exists between two pathways A
and B when both of the following criteria are met: functionally, the combinatorial signal from
A and B must produce a different response than that triggered by A or B alone;
mechanistically, A and B must be connected in at least one of the three depicted ways: (a)
components of the two pathways physically interact; (b) components of one pathway are
enzymatic or transcriptional targets of the other; and (c) one signal modulates or competes for
a key modulator or mediator ("M") of the other. Figure adapted from Guo et al. (2009).

Compared to pathways that contain information of fixed sets of genes, biological networks
include richer knowledge on the interaction or relatedness of genes and molecules. This
knowledge allows generating novel gene sets that may represent novel biological functions.
Thereby, integrating network information with GWAS data to perform network-based
analysis may enable complementary discovery of disease-relevant markers and their
interactive effects. In the following, we will go through several components that are involved

in network-based analysis of GWAS data.

3.3.3.1 Network terminologies

A network is conventionally denoted as G = (V,E), where V is a set of nodes (also called
vertices), and E={(p,q)| p.qeV} are edges connecting the nodes. In the case of protein-

protein interaction network, the nodes represent proteins/genes and the edges represent their

interactions. Each edge can have a weight (or score), typically ranging from 0 to 1, which
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describes the strength/confidence of a connection. When a network has weights on its edges,

it is called a weighted network.

A network can be either undirected or directed. In an undirected network, there is no direction
on its edges, whereas in a directed network there is a direction on its edges, such that an edge
p — q is different from an edge q— p . In biological systems, many relationships are
directed, for instance, gene A regulates gene B (A — B), protein C phosphorylates protein D
(C — D), but the reverse relationship does not exist or represents a different process. Yet,
due to the difficulties for precisely characterizing complex biological system, the directions

are generally unknown.

Using mathematical representation, all the above network features can be fully described by a

N x N matrix A, called adjacency matrix ( N =[V | is the number of nodes). For an

unweighted network, A takes a binary value that indicates whether there is an edge from p
to q. A, =1 if there is an edge from pto q; A =0 otherwise. For a weighted network, A,

takes a real value representing the edge weight. For an undirected network, this matrix is

symmetric (A=A, )-

Two nodes in the network are called neighbors if there is an edge connecting them. The

degree of a node p is defined as the number of neighbors it has, and can be computed by
deg(p) =2, 1 (A, #0), where 1() is the indicator function. Nodes that have a degree

greatly exceeds the average node degree of the network are called hub nodes. Hub nodes have
an important role in maintaining the network structure. Particularly, the degree distributions
of biological networks are known not to be at random. Several studies have revealed that the
degree distributions of many biological networks have a scale-free property (Maslov et al.,
2002; Nacher et al., 2009). In such networks, the probability that a randomly selected node

has degree k approximately follows a power-law P(k)~k™, where ¥ is a constant that

typically ranges from 2 to 3. The biological networks possessing this scale-free property are
more tolerant to random functional failures and errors, but are also more vulnerable to hub

nodes perturbations (He et al., 2006).
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The distance between two nodes p and qis the minimum number of edges that needs to be
traversed to reach qfrom p. The path through the network which achieves this distance is

called their shortest path. In a biological network, this distance can partially reveal the
functional relevance between two molecules. For example, nodes with a distance of one
(neighbors) usually have a direct functional relationship (regulation, phosphorylation,
transport across membranes), while nodes with a larger distance can be involved at a different

stage of the same biological process such as those involved in the same pathway.

An induced subnetwork of G, denoted by G'=(V ',E"), is the network formed by a subset of

the whole nodes (V 'V ) and the edges among them. For example, the interaction network of
proteins involved in the immune system is a subnetwork of the whole interaction network.
Although the global network structure has been extensively explored to analyze the properties
of biological networks, recently much attention has been paid to the subunits of the networks,
called network modules, which represent a connected subnetwork that can carry out a specific
biological function or event. Perturbations in modules are found to be the cause of many
complex diseases. The searching of such functional modules associated with a disease is the

major goal of this thesis, and will be discussed in more detail in the following sections.

3.3.3.2 Tools for network visualization and manipulation

Visualization concerns the representation of data in a pictorial or graphical format. A proper
visualization can help answer existing questions and raise new hypotheses. Network
visualization is particularly essential for understanding the global network conformation and
highlighting important substructures. An increasing volume of research has benefited from
network visualization and manipulation to gain insight into the complex systems under

investigation.

Many network visualization and manipulation tools/packages have been developed in the last
years and others are constantly created. Table 1.5 lists some of the well-known ones in the
field of biology. Among many of these tools stands the Cytoscape open-source software for
integration, visualization and computation modeling of molecular networks together with
other systems-level data (Shannon et al., 2003). Cytoscape is versatile in that it can be
conveniently extended through adding plugins (also called Apps) of various functionalities,

thus enables scientists from multidisciplinary fields to contribute to the expansion of the
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ecosystem. In the last five years, both the amount of available Cytoscape plugins and the
number of installations have grown dramatically. Up to the time of March 2017, there are 310
plugins available with a total of 777 thousand downloads. These plugins cover a broad range
of utilities, including online network data import, network visualization, manipulation,
topological analysis, functional module detection, enrichment analysis, pathway annotation,
and so on. A comprehensive travel guide to Cytoscape plugins has been previously provided
by Saito et al. (2012), and can be found directly from the Cytoscape homepage
(http://www.cytoscape.org/).

Table 1.5: Network visualization and analysis tools.

Tool Description URL

An open-source and free software for graph

Gephi C . .
P visualization and manipulation

https://gephi.org/

An open source software platform for
visualizing, manipulating and annotating
Cytoscape | molecular interaction networks and biological http://www.cytoscape.org/
pathways. Plugins of various functions can be
installed through Cytoscape App Store

Graphviz An open source graph visualization software http://www.graphviz.org/

A programming package implemented in R,
Igraph Python and C/C++ language for network http://igraph.org/redirect.html
visualization and analyzing

A public web server for graph-based analysis of

Graph\eb biological networks

http://biit.cs.ut.ee/graphweb/

A web application for visualization of
NaviCom multilevel omics data on top of biological https://navicom.curie.fr./bRidge.php
network maps
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Figure 1.13: An illustrative example of the guilt-by-association principle. Proteins assigned to
the same network community (represented in different colors) are found to be functionally
closely related. Figure adapted from Palla et al. (2005).

3.3.3.3 Methods for conducting network-based analysis

Network-based analysis of GWAS data is based on the principle of "guilt-by-association™,
first raised by Oliver (2000). This principle states if two genes/proteins interact with one
another in a network, they usually participate in the same, or related, cellular functions. It has
been widely tested and supported in various studies (Li et al., 2016; Petsko, 2009). One
example that well demonstrated this principle is given in Palla et al. (2005). The author
identified protein communities (sets of strongly interconnected proteins) using a k-clique-
percolation method. Their results indicated the proteins assigned to the same community have
very similar function annotations (Figure 1.13). This "guilt-by-association™ principle severs as
the basis for many network-based applications with various objectives, including gene/protein
function prediction (Piovesan et al., 2015; Tian et al., 2008), gene set over-representation
analysis (Glaab et al., 2012), patients subgroup classification (Hofree et al., 2013), and here
for network-based analysis of GWAS data.
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Table 1.6: Tools for performing network-based analysis.

Tool URL Ref
JActiveModules | http://apps.cytoscape.org/apps/jactivemodules Ideker et al. (2002)
dmGWAS https://bioinfo.uth.edu/dmGWAS/ Jiaetal. (2011)
Heinz https://github.com/Is-cwi/heinz Dittrich et al. (2008)
LEANR https://cran.r-project.org/ Gwinner et al. (2016)
EW_dmGWAS http://bioinfo.mc.vanderbilt.edu/dmGWAS Wang et al. (2015)
STAMS https://simtk.org/projects/stams Hillenmeyer et al. (2016)
PINBPA http://apps.cytoscape.org/apps/pinbpa Wang et al. (2014)
DAPPLE http://archive.broadinstitute.org/mpg/dapple/dapp | Rossin et al. (2011)
le.php
NETAM http://www.sailing.cs.cmu.edu/ Lee et al. (2016)
ancGWAS http://www.cbio.uct.ac.za/~emile/software.html Chimusa et al. (2015)
PUPPI https://sourceforge.net/projects/puppi/ Lin et al. (2016)
PANOGA http://panoga.sabanciuniv.edu/ Bakir-Gungor et al. (2014)
COSINE https://cran.r-project.org/ Ma et al. (2011)
cMonkey http://djreiss.github.io/cMonkey/ Reiss et al. (2006)

Network-based analysis has been extremely popular in recent years. Many methods have been
developed and many analysis tools have been implemented (Table 1.6). These methods can be
broadly divided into two categories: the active module search category and the seed gene

oriented category, as will be described below.

Category 1: active module search methods. Active module search methods are conducted
by overlaying GWAS outcomes onto a PPI to identify disease-dependent "active modules”—
subunits of the network showing significant enrichment of association signals. These subunits
are also called as "functional module”, "response modules”, or "network hotspots” (Nibbe et
al., 2010; Wang et al., 2015; Wu et al., 2009). To identify active modules, GWAS SNP p-
values are first summarized into gene scores. This step involves the SNP to gene mapping and
the combination of multiple SNP p-values into a single gene p-value. The related
methodologies were described in Section 3.2.2 for gene-based analysis. The obtained gene p-
values are transformed into gene scores, with a larger score indicating higher association

significance. A common practice is to use the inverse normal transformation of p-value to z-
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scores z=®*(1-p), such that z follows the standard normal distribution under the null

hypothesis of no gene-disease association. This scoring function, however, usually results in
about half of the genes have a positive score, which can lead to generating large modules even
with random inputs (Rajagopalan et al., 2004). More sophisticated scoring methods that aim
at addressing this issue have been developed. Rajagopalan and Agarwal (2004) corrected z by
a linear factor such that only genes having a p-value less than a threshold (for example 0.05)
will get a positive score. Dittrich et al. (2008) considered a signal-noise decomposition of the
raw gene p-values, implemented as a mixture model that enables controlling the resultant
subnetwork size by an adjustment parameter and achieving automated statistical significance

over the resulted module.

The resulted gene scores are overlaid onto the PPI to build a disease-specific scored network.
Given this network, the methods for searching "active modules™ can vary substantially
according to the different definitions of "active module” and the strategies to find them.

Conventionally, the activeness of a module S is quantified by a module score defined as the

summation of scores over the module genesZ(S) =%  z,, or its normalized form that is

adjusted for the background mean and variation (Dittrich et al., 2008; Ideker et al., 2002). Yet,
the definition of a "module” can be more diversified. Various publications have defined a
module as a connected subnetwork (i.e., its genes are connected to each other directly or
indirectly within the subnetwork) (Dittrich et al., 2008; Ideker et al., 2002). Under such
specification, the task of searching "active modules” is equivalent to solving the Maximum-
Weight Connected Subnetwork (MWCS) problem as illustrated in Figure 1.14.

44



CHAPTER |. INTRODUCTION

Figure 1.14: The Maximum-Weight Connected Subnetwork (MWCS). Given an undirected
and connected network G = (V, E), with each node associated with a weight z, its subnetwork

G =(V,,Eg) is called a Maximum-Weight Connected Subnetwork if G is a connected
network, and it has the maximum weight among all connected subnetworks, where the weight
of a subnetwork is defined as Z(S):= ZVEVS z,. In the example given in this figure, the

subnetwork colored in red is a MWCS.

Finding the exact solution of the MWCS problem, however, is computationally challenging.
The only known approach that allows for finding the exact MWCS was the HEINZ method
proposed by Dittrich et al. (2008). In HEINZ, the MWCS problem was transformed into a
prize-collecting Steiner tree problem (PCST) and solved by an integer-linear programming
method. Several studies have considered the simpler variant of this problem as the constrained
MWCS problem (Backes et al., 2012; Qiu et al., 2008). For example, Qiu et al. (2008)
considered finding the MWCS that contains a root node and includes k nodes. Then active
modules are found by starting from each node in the network as a root and setting K at all
possible values to find the corresponding constrained MWCSs, though this approach can be

computationally less efficient.

Table 1.7: The principles of three heuristic optimization strategies.

Simulated annealing. Simulated annealing is a probabilistic optimization technique that mimics the
physical process of heating a material and then slowly decreasing its temperature. It was the first
heuristic approach applied to the active module search problem (ldeker et al., 2002). To begin, a
connected subgraph is chosen at random. At each iteration, nodes are added or removed from this
subgraph. These changes are retained if they result in a connected subgraph with a higher score. The
changes may also be kept with a probability that scales with the "annealing temperature™ if they result
in a subgraph with a lower score. After each iteration, the temperature decreases such that the accepted
changes are increasingly likely to be beneficial. The final high-scoring subgraph is returned as the
"active module".

45




CHAPTER |. INTRODUCTION

Genetic algorithms. Genetic algorithms mimic natural selection among individuals of a population
that drives biological evolution. The evolution usually starts from a population of randomly generated
individuals. At each iteration, more fit individuals are stochastically selected to produce the next
generation population. Over successive generations, the population evolves toward an optimal
solution.

Greedy algorithms. Greedy algorithms are heuristic optimization algorithms that make the locally
optimal choice at each stage. A greedy strategy does not, in general, produce an optimal solution, but
may yield locally optimal solutions that approximate a global optimal solution in a reasonable time.

Beside the approaches that aim at finding exactly a MWCS, heuristic search strategies, such
as those based on simulated annealing (Ideker et al., 2002), genetic algorithms (Klammer et
al., 2010; Ma et al., 2011), or greedy algorithms (Jia et al., 2011), have been exhaustively
explored to identify active modules. The principles of these heuristic strategies are
summarized in Table 1.7. The rationality behind them is that although the MWCS is the
optimal module from a mathematical point of view, other high-scoring subnetworks are also

of biological interest regardless of whether their scores are strictly maximal.

The first heuristic method designed for identifying active modules is jActiveModules (Ideker
et al., 2002). It searches modules in a way of simulated annealing. Several variants of
JActiveModules were also developed and were applied to various genetic studies (Nacu et al.,
2007; Rajagopalan & Agarwal, 2004; Ulitsky et al., 2009). Another widely applied heuristic
method is the Dense Module Search algorithm implemented in the dnMGWAS R package (Jia
et al., 2011). The schematic diagram of DMS is shown in Figure 1.15. Briefly, DMS defines

the score of a module of k genes as Z, =X 7, 13K . 1t grows a module from a seed gene and

iteratively adds the neighboring gene that can lead to the maximum increment of the module
score. Module growth terminates if adding neighboring genes does not yield an increment of
module score by at least Z; xr (r =0.1by default). Each gene in the gene network is set as a
seed once to generate a module. The modules with their scores ranked at the top x% of all

modules (determined by the user) are selected as the final result.
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Figure 1.15: The DMS active module search strategy. DMS defines the score of a module of
k genes as Z; =27, N grows a module from a seed gene and adds iteratively the

neighboring gene that can lead to the maximum increment of the module score. Module
growth (along the arrows) terminates if adding neighboring genes does not yield an increment
of module score by at least Z; x0.1. Each gene in the gene network is set as a seed once to

generate a module. Modules with their scores ranked at the top x% (determined by the user)
are selected for downstream analysis.

It is worth noting that the module defined as a connected subnetwork does not utilize
information on edge weights (when they exist), and has no emphasis on the module
interconnection strength (denoted as o, usually defined as the ratio of the number of edges to
the number of possible edges in the module). Several methods have considered searching for
modules tha