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ABSTRACT 

Genome-wide association studies (GWAS) of asthma have been successful in identifying 

novel asthma-associated loci, but the genes at these loci account only for a part of the whole 

genetic component. One limitation of GWAS is that they rest on single-marker analyses 

which are underpowered to detect variants with small marginal effects but rather influence 

jointly on disease risk. To complement the single-marker approaches, more sophisticated 

strategies, which integrate biological knowledge, such as protein-protein interactions (PPI) or 

gene networks with GWAS outcomes to identify disease-associated gene modules, have 

become prominent. The objectives of this thesis were to develop network-based analysis 

methods, and apply them to asthma GWAS data to identify biological processes and prioritize 

new candidate genes related to asthma. 

This thesis consists of two main studies. The first study was to extend an existing network-

based method (dmGWAS) to identify novel genes associated with asthma. We used two 

GWAS datasets, each consisting of the results of a meta-analysis of nine childhood-onset 

asthma GWAS (5,924 and 6,043 subjects, called META1 and META2, respectively). We 

developed a novel method to compute gene-level p-values from SNP p-values (fastCGP), and 

proposed a bi-directional module search method to identify asthma-associated gene modules. 

Application of these methods to the asthma data detected a gene module of 91 genes 

significantly associated with asthma (p < 10-5). This module consisted of a core network and 

five peripheral subnetworks including high-confidence candidates for asthma. Out of the 91 

genes, 19 genes were nominally significant in both META1 and META2 datasets. They 

included 13 genes at 4 loci previously found associated with asthma (2q12, 5q31, 9p24.1, 

17q12-q21), and six genes at six novel loci: CRMP1 (4p16.1), ZNF192 (6p22.1), RAET1E 

(6q24.3), CTSL1 (9p21.33), C12orf43 (12q24.31) and JAK3 (19p13-p12). Functional analysis 

of the module revealed four functionally related gene clusters involved in innate and adaptive 

immunity, chemotaxis, cell-adhesion and transcription regulation, which are biologically 

meaningful processes underlying asthma risk. 

The second study of this thesis was to develop a novel network-based method, named 

SigMod, to search disease-associated gene modules. SigMod takes a list of gene p-values and 

a gene network as input. It identifies a set of genes that are enriched in high association 
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signals and tend to have strong interconnection via the formulation of a binary quadratic 

optimization problem. We proposed an algorithm based on graph-cut theory to solve the 

optimization problem exactly and efficiently. SigMod has several advantages compared to 

existing methods, including the ability to find the module enriched in highest association 

signals, the capacity to incorporate edge weights in the network, and the robustness to 

background noise. Also, the emphasis of selecting strongly interconnected genes can lead to 

the identification of genes with close functional relevance. We applied SigMod to both 

simulated and real datasets. This new method outperformed existing approaches. When 

SigMod was applied to childhood-onset asthma data, it successfully identified a module made 

of 190 functionally related genes that are biologically relevant for asthma. 
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RESUME 

Les études d'association pan-génomiques (GWAS) ont permis d'identifier de nouveaux locus 

associés à l'asthme, mais ces loci n'expliquent qu'une partie de la composante génétique de 

cette maladie. Une limite de ces études est qu'elles sont basées sur des analyses simple-

marqueurs qui manquent de puissance pour détecter des variants génétiques à effet marginal 

faible et influençant conjointement le risque de maladie. Des stratégies, qui intègrent des 

connaissances biologiques, comme les interactions protéine-protéine (PPI) ou des réseaux de 

gènes avec des résultats de « GWAS », ont été proposées pour identifier des modules de 

gènes associés aux maladies. Les objectifs de cette thèse étaient de développer des méthodes 

d'analyse de réseaux de gènes, et de les appliquer à des données pan-génomiques de l'asthme 

pour identifier de nouveaux gènes candidats et des processus biologiques potentiellement 

impliqués dans l'asthme. 

Le premier travail de thèse a consisté à étendre une méthode de recherche de réseau de gènes 

à partir de données de « GWAS » (dmGWAS) pour identifier de nouveaux gènes associés à 

l'asthme. Nous avons utilisé deux jeux de données, chacun correspondant aux résultats d'une 

méta-analyse de neuf études d'association pan-génomiques de l'asthme de l'enfant (5,924 et 

6,043 sujets, et appelés META1 et META2). Nous avons développé une nouvelle méthode 

pour calculer les p-valeurs de chaque gène à partir des p-valeurs des SNPs et proposé une 

stratégie de recherche bidirectionnelle à partir des deux jeux de données pan-génomiques pour 

identifier un module de gènes. Nous avons détecté un module de 91 gènes associé à l'asthme 

(p < 10-5). Ce module est composé d'un réseau central et de cinq réseaux périphériques. Parmi 

les 91 gènes, 19 gènes étaient nominalement significatifs (p < 0.05) dans les deux jeux de 

données et incluaient 13 gènes à 4 loci trouvés précédemment associés à l'asthme (2q12, 

5q31, 9p24.1, 17q12-q21), et six gènes à six nouveaux loci: CRMP1 (4p16.1), ZNF192 

(6p22.1), RAET1E (6q24.3), CTSL1 (9p21.33), C12orf43 (12q24.31) et JAK3 (19p13-p12). 

L'analyse fonctionnelle du module identifié a révélé quatre clusters de gènes impliqués dans 

l'immunité innée et adaptative, la chimiotaxie, l'adhésion cellulaire et la régulation de la 

transcription, qui sont des processus biologiquement pertinents pour l'asthme. 

Le deuxième travail de thèse a consisté à développer une nouvelle méthode de réseau de 

gènes appelée SigMod. SigMod permet de sélectionner un module de gènes enrichis en 
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signaux d'association avec la maladie et montrant de fortes inter-connexions. Par rapport aux 

méthodes précédentes SigMod offre plusieurs avantages, notamment la robustesse au bruit de 

fond, la capacité de prendre en compte une pondération sur les liens entre gènes, et de rendre 

les résultats facilement interprétables. Nous avons proposé un algorithme basé sur la théorie 

des découpages de graphes pour résoudre le problème d'optimisation de manière exacte et 

efficace. Des simulations ont montré une meilleure performance de SigMod par rapport aux 

méthodes existantes. L'application de SigMod aux données de l'asthme a permis d'identifier 

un module de 190 gènes qui présentent des relations fonctionnelles et sont biologiquement 

pertinents pour l'asthme. 
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CHAPTER I. INTRODUCTION 

1    Human genetic variation 

1.1    The human genome 

The human genome is the complete set of nucleic acid sequence for humans. It is encoded as 

DNA within chromosomes in cell nuclei and in a small molecule in individual mitochondria. 

The DNA molecular consists of two strands and has a "double helix" structure. Each strand 

consists of an assembly of basic building blocks called nucleotide or nucleotide base. 

Nucleotides in DNA contain four different bases: Adenine (A), Guanine (G), Thymine (T) 

and Cytosine (C). The pairing of two nucleotides by hydrogen bonds forms a base pair (bp). 

Adenine always pairs with Thymine (forming the A/T pair); Guanine always pairs with 

Cytosine (forming the G/C pair) (Figure 1.1). 

The total length of the human genome is about 3 billion base pairs. There are 23 pairs of 

human chromosomes: 22 pairs of autosomal chromosomes and one pair of sex chromosomes. 

Somatic cells usually have one copy of chromosome 1-22 inherited from each parent, one X 

chromosome inherited from the mother, and another X or Y chromosome inherited from the 

father. These chromosomes contain the genetic blueprint for building a human being. 

1.2    The genes 

A gene is a sequence of nucleotides along a segment of DNA (Figure 1.2). On average, a gene 

is 10-15kb (1kb=1,000 base pairs) long, but this size can vary greatly from ~0.2kb (Tyrosine 

tRNA gene) to ~2,500kb (DMD dystrophin gene). Each person has two copies of each gene 

that are inherited from each parent. The number of human protein-coding genes are estimated 

to be 19,000 to 20,000 (Ezkurdia et al., 2014). 

Every gene consists of a protein coding region, which begins with a Start codon and 

concludes with a Stop codon, and might be contiguous or broken up into a series of introns 

and exons (Figure 1.2). Every gene also contains regulatory sequences flanking the open 

reading frame (the part of a reading frame that has the potential to be translated), which can 

expand many kilobases upstream or downstream of the open reading frame. These are 
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stretches of DNA that do not themselves code for protein but act as binding sites for RNA 

polymerase and its accessory molecules as well as transcription factors. A promoter is a 

regulatory element that the RNA polymerase initially binds before starting the transcription of 

the DNA into RNA. The binding and activation of the RNA polymerase is controlled by 

transcription factors which bind the promoters and cis-regulatory sequences conventionally 

referred to as Enhancer and Silencer. 

 

Figure 1.1: The structure of DNA. From http://sciencewithmrsb.weebly.com/genetic-
variation.html. 
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Figure 1.2: The structure of a eukaryotic protein-coding gene. Regulatory sequence controls 
when and where expression occurs for the protein coding region (red). Promoter and enhancer 
regions (yellow) regulate the transcription of the gene into a pre-mRNA which is modified to 
remove introns (light grey) and add a 5' cap and poly-A tail (dark grey). The mRNA 5' and 3' 
untranslated regions (blue) regulate translation into the final protein product. From 
https://en.wikipedia.org/wiki/Gene. 

1.3    Human genetic variation 

Variation of human genome arises from point mutation (single base modification), base pair 

insertion/deletion (indel), chromosome rearrangement and gene copy-number variation. Each 

form of variation at a given point in the genome is called an allele. The two alleles at the same 

position on homologous chromosomes form the genotype of an individual. 

The most common type of genetic variation among people is single nucleotide polymorphism, 

abbreviated as SNP. A SNP is defined as a variation in a single nucleotide that occurs at a 

specific position in the genome. For example, a SNP may replace the nucleotide Cytosine 

with the nucleotide Thymine in a certain stretch of DNA, as depicted in Figure 1.3. SNPs 

occur frequently throughout a person's DNA. On average, there is one SNP in every 300 

nucleotides, which indicates there are around 10 million SNPs in the human genome. 
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Figure 1.3: An illustrative example of SNP. The upper DNA molecule differs from the lower 
DNA molecule at a single base-pair location (a C/T polymorphism). From 
http://isogg.org/wiki/Single-nucleotide_polymorphism. 

On average, the proportion of nucleotides that differ between two individuals is estimated to 

be 0.1% (Jorde et al., 2004) to 0.4% (Tishkoff et al., 2004) of the whole base pairs. The 1000 

Genomes Project was set out to provide a comprehensive description of common human 

genetic variations by applying whole-genome sequencing to 2,504 individuals from 26 

populations (The 1000 Genomes Project Consortium, 2015). The completion of the project 

has characterized in total over 88 million variants, including 84.7 million SNPs, 3.6 million 

short insertions/deletions, and 60,000 structural variants. 

1.4    Linkage disequilibrium 

Linkage disequilibrium (LD) describes the non-random association of alleles at different loci 

in a population. Consider two biallelic loci 1Locus and 2Locus , the two alleles at these loci 

are a/A and b/B respectively. The relationship between the frequencies of gametes carrying 

each allele and allele pairs (known as the haplotype) is summarized in Table 1.1, where ( )f •

represents the frequency of an allele or a haplotype. The level of LD between allele A and 

allele B can be quantified by a statistic defined as 

 : .AB AB A BD ff f− ×=  
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Table 1.1: 2 × 2 table of allele and haplotype frequencies at two loci. ( )f • represents the 
frequency of an allele or a haplotype. 

                     

2Locus  
a  A  Total 

b  abf  Abf  bf  

B  aBf  ABf  Bf  

Total af  Af  1 
 

Through the relationship among the frequencies described in Table 1.1, it can be deduced that 

 AB aB Ab abD D D D= − = − = . 

Therefore any of these four statistics is sufficient to characterize the LD between the alleles at 

the two loci. The indications of a value of ABD are given as below 

• 0ABD = , i.e., AB A Bf f f×= : A and B are in complete linkage equilibrium 

• 0ABD ≠ , i.e., AB A Bf f f≠ × : A and B are in linkage disequilibrium 

• 0ABD > , i.e., AB A Bf f f×> : A and B are preferentially associated 

• 0ABD < , i.e., 0AbD > : A and b are preferentially associated 

It is of note that although ABD  is a measure of the extent to which two alleles are associated, it 

is not always the best statistic to be used because the range of its possible values are 

constrained by the allele frequencies. The smallest possible value of ABD is 

{ }max , (1 )(1 )A B A Bf f f f− − − − , while its largest possible value is { }min (1 ), (1 )A B B Af f f f− − . 

This makes it less favorable to compare the LD between different loci. Two alternate 

measures have been proposed. They are the 'D  (Slatkin, 2008): 

 
( )

( )

0
min ,

'
0

min ,

 if  

 if  D

AB
AB

A B

AB

a

B b
B

b

A
a A

D
f f

D
D

D
f f

f ff f

 <
= 
 >

×

× ×

×



 

1Locus
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and the 2r  (also called 2∆ ) (Hill et al., 1968): 

 
2

2 AB

a A Bb

Dr
f f f f× × ×

= . 

The definition of 'D has the convenient property that it indicates at least one of the four 

possible haplotypes is absent when | ' | 1D = , a situation commonly described as complete 

linkage disequilibrium. The 2r statistics is a measure of the correlation between allele A  and 

allele B (ranges from 0 to 1). When 2 1r = , there is perfect linkage disequilibrium, which 

means only two of the four possible genotypes are present in the population. As a result, the 

two loci have the same allele frequencies. 
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2    Exploring the genetic component of human diseases 

Researchers are learning that many human diseases have a genetic component. Some diseases, 

such as sickle-cell anemia, Tay-Sachs disease, xeroderma pigmentosa and cystic fibrosis, 

arise from the change or alteration in a single gene, and are inherited according to Mendel's 

law (Riordan et al., 1989). These diseases often cluster in families and can be predicted based 

on the medical history with the help of a family tree. The causes of many other diseases, 

however, are much more complex. Common medical problems such as inflammatory bowel 

disease (IBD), diabetes, Alzheimer's disease, asthma, and many chronic disorders do not have 

a single genetic cause—they are likely to be associated with the effects of multiple genes in 

combination with lifestyle and environmental exposure. This complex mechanism is 

illustrated in an example given in Figure 1.4. The diseases that are caused by many 

contributing factors are called complex or multifactorial diseases. Most of the multifactorial 

diseases are common in the population and represent a major challenge for public health. 

 

Figure 1.4: Inflammatory bowel disease (IBD) as an example of a complex disease. As 
indicated by the dashed line, IBD cases that arise from the change or alteration in a single 
gene are rare, and often cluster in families. Instead, most of the cases are associated with the 
effects of multiple genes in combination with environmental factors. Particularly, the gene 
environmental interactions (red arrows) play an important role in disease susceptibility, 
revealing the complexity of the disease mechanism. Figure adopted from http://www.genes-
environment-inflammation.de/rtg/vision. 

The methodologies employed to understand the role of genetic component in human diseases 

have evolved in recent years due to technological advances and accumulation of biological 
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knowledge. The general principle of these methods is to evaluate the correlation between 

genetic variants and the disease under study. Two of the major analysis methodologies are 

linkage study and association study, as will be described below. 

2.1    Genetic linkage study 

A genetic linkage study is a family-based method used for mapping a disease trait to a 

genomic location by demonstrating co-segregation of the disease with genetic markers at a 

known chromosomal location. It is based on the observation that genetic markers residing 

physically close on a chromosome tend to remain linked during meiosis. Linkage study is a 

powerful tool to detect the chromosomal location of disease genes, and has been employed to 

identify a number of genes involved in monogenic Mendelian diseases (Genin et al., 2008). 

For example, by genotyping family members affected by cystic fibrosis using a collection of 

genetic markers across the genome, and examining how those genetic markers segregate with 

the disease across multiple families, researchers have identified multiple mutations in the 

CFTR (Cystic fibrosis trans-membrane conductance regulator) gene as the cause of cystic 

fibrosis (Kerem et al., 1989). Linkage studies were also proven to be powerful in discovering 

some variants that contribute to familial forms of multifactorial diseases, from 

neurodegenerative diseases such as Alzheimer, Parkinson, to tumour syndromes such as 

neurofibromatosis type 1 and type 2 (Pulst, 1999). However, they are less suited for the study 

of multifactorial diseases as a whole (Khoury et al., 1998; Risch et al., 1996). The lack of 

success can be attributed to various factors, but mainly to its limited power in pinpointing 

genetic factors that have moderate or low effect (level of marker-trait correlation), and the 

complex mechanisms (gene-gene interactions, gene-environment interactions etc.) (Tabor et 

al., 2002). Moreover, the relatively high prevalence of these multifactorial diseases suggested 

that the risk alleles are common in the general population, raising the "Common Diseases-

Common Variants" hypothesis that motivates researchers to conduct genetic analyses at 

genome-wide scale (Schork et al., 2009) (although this hypothesis has long been debated). 

2.2    Genetic association study: from candidate gene study to genome-
wide study 

Genetic association study aims at finding genetic variants or genomic regions that are 

associated with disease susceptibility by means of testing their correlation with the disease 

status. For a binary trait (affected/unaffected or case/control), a significantly higher frequency 
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of a SNP allele in the disease-affected group can be interpreted as that the tested genetic 

variant is associated with the disease risk.  

The first wave of association studies, applied in the 1990s and early 2000s, were focused on 

candidate genes. Most of the candidate genes were selected because they are either functional 

candidates (i.e., they encode a protein implicated by an etiological hypothesis), or positional 

candidates located in chromosomal regions implicated by previous linkage studies. Candidate 

gene association studies were relatively cheap and quick to perform at that time (Patnala et al., 

2013). One limitation of candidate gene approaches is that they rely heavily on the basis of 

biological hypothesis or the location of candidate within a previously defined region of 

linkage. Therefore, results gained from these "hypothesis-driven" approaches depend on the 

ability to select plausible candidates from the genome. 

Advantageously, genome-wide association studies (GWAS), such as the pioneering work 

conducted by Klein et al. (2005), allow a systematic, comprehensive survey of genetic 

variants (SNPs) in the entire genome, and in a hypothesis-free manner. The extension from 

candidate gene approach to genome-wide approach has become realistic thanks to the fast 

growing understanding of human genome, the advancement in micro-array and sequencing 

technologies, and the abundance of analysis tools. One crucial advance that enables efficient 

genome-wide studies is the characterization of LD patterns across the genome. LD has an 

important role in the selection of SNPs for performing GWAS. For a chromosome region with 

known LD pattern, a few tag SNPs can be chosen such that they capture most of the common 

variations within that region (Frazer et al., 2007; Hirschhorn et al., 2005). Consequently, the 

disease-association of a genotyped SNP is tested directly, while the association of a SNP that 

is not genotyped but in LD with the genotyped SNPs can be tested indirectly (as illustrated in 

Figure 1.5). The progress of international HapMap project (Frazer et al., 2007), the 1000 

Genomes Project (Genomes Project Consortium, 2010), and recently the Haplotype Reference 

Consortium (HRC) (Haplotype Reference Consortium, 2016) have enabled to elucidating 

common human genetic variants and LD patterns across the genome in various populations. 

Today, comprehensive catalogs of SNPs are deposited in public databases and are available 

for use without much restriction. Individual genotyping was also made possible along with the 

availability of advanced chip-based microarray technology. Two primary platforms have been 

used in most GWAS—Illumina (San Diego, CA) and Affymetrix (Santa Clara, CA).  
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Figure 1.5: Testing SNPs for disease-association via direct or indirect association. (a) A case 
in which a genotyped SNP (red diamond) is tested for association with a disease trait directly. 
(b) A case in which an ungenotyped SNP (blue diamond) is tested for association with a 
disease trait indirectly, as it is in LD with the other three genotyped SNPs. Adopted from 
Hirschhorn and Daly (2005). 

GWAS has experienced tremendous success since its first publication in 2005 on a study of 

age-related macular degeneration (Klein et al., 2005). Up to the time of March 2017, 2,518 

human GWAS have been conducted. These studies examined more than 280 diseases or traits. 

Hundreds or thousands of individuals have been involved in these studies. More than 24,000 

SNP-trait associations have been found (Figure 1.6). These results are collected in a GWAS 

catalog established by National Human Genome Research Institute (NHGRI) and European 

Bioinformatics Institute (EBI) that are available at https://www.ebi.ac.uk/gwas/ (MacArthur et 

al., 2017; Welter et al., 2014). 

https://www.ebi.ac.uk/gwas/�
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Figure 1.6: Published GWAS results for 17 trait categories. Figure retrieved from 
https://www.ebi.ac.uk/gwas/. Accessed in March 2017. 

The GWAS approaches are primarily based on single-SNP analysis of hundreds of thousands 

to millions of SNPs. They survey each SNP one by one for their association with the disease 

trait under study. In the following, we describe several of the major components involved in 

the procedure of conducting a GWAS analysis. 

Data pre-processing. Data pre-processing is an important step prior to perform association 

analysis. Essentially, quality control (QC) procedures should be conducted at the first stage. 

These include data filtering at both SNP-level and sample-level. SNP-level filtering aims at 

removing SNPs that have low variability, high genotyping error, or a large amount of missing 

data. Typically, SNPs with a call rate less than 95% (missing in more than 5% samples) are 

removed. SNPs having a minor allele frequency (MAF) less than 1%, which may result in 

inadequate statistical power or false positive results (if exact tests are not performed) in 

downstream association analysis are also excluded. The existence of genotyping error of a 

SNP is examined by testing for derivation from Hardy-Weinberg equilibrium (HWE) using a 

one degree-of-freedom Pearson goodness-of-fit test, often known as the 2χ  test (Reed et al., 

2015). SNPs for which the HWE test have a p-value less than a certain threshold (for example 
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1×10−4) are excluded for downstream analysis. Sample-level filtering aims at removing 

individuals due to sample contamination, missing data, correlation (for population-based 

investigations), and racial/ethnic or gender ambiguity or discordance. Criteria used for 

sample-level filtering were described in, for example, Anderson et al. (2010). The exact 

criteria can be study-dependent (Reed et al., 2015). 

Next, the existence of population stratification (the presence of a systematic difference in 

allele frequencies between subpopulations possibly due to different ancestry) needs to be 

checked. This can be achieved by computing the principal components (PCs) of the genotype 

data using software such as EIGENSTRAT (Patterson et al., 2006). The computed PCs will 

be included as a covariate in the consequent association analysis to reduce spurious 

associations caused by systematic difference in allele frequencies in different populations. 

Unmeasured SNPs (SNPs that are not on the chips, which often differ from one study to 

another) can be imputed based on reference haplotypes and their LD structure derived from 

extensive resources, such as the HapMap and 1000 Genomes data. Several imputation 

algorithms based on Markov Chain Monte Carlo (MCMC) technique have been proposed. 

Well-described packages for SNP imputation include BEAGLE, IMPUTE2, and MACH 

(Reed et al., 2015). 

Choosing the genetic model. The genetic model describes the disease risk in subjects with 

different genotypes. Considering a genetic marker at a biallelic locus with two alleles a  and 

A , where the risk allele a  (or effect allele that may increase or decrease the risk) is often 

chosen as the allele that has the lower frequency among two alleles of a SNP, but can be also 

defined as the alternate allele compared to the reference sequence. The three possible 

genotypes of a subject at the locus are aa , aA , and AA . The disease penetrance associated 

with each genotype (denoted as aaγ , aAγ  and AAγ  respectively) is the probability of getting the 

disease in subjects carrying that genotype. The relative risk of a genotype is the ratio of its 

penetrance to that of a reference genotype. To give an example, if AA  is chosen as the 

reference genotype, the relative risks for individuals carrying aa  or aA are defined as 

 a

A
aa

a

A

RR γ
γ

= and aA
aA

AA

RR γ
γ

= , respectively. 
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The models for disease penetrance include additive, recessive and dominant model. Their 

associated penetrance functions are defined as 

• Additive model: 2
aa aA AARR RRγ γ γ× ×= = ; 

• Dominant model: aa aA AA RRγ γ γ= = × ; 

• Recessive model: aa aA AARR RRγ γ γ×= ×= . 

The additive model assumes the logarithm of the penetrance of a genotype is proportional to 

the number of risk alleles it has. The recessive or dominant model assume the penetrance is 

the same for homozygous ( aa  or AA ) and heterozygous ( aA ) for a given allele (the a allele 

for dominant model, the A allele for recessive model). Generally, there is no accepted answer 

to the question of which model to use. One could choose the optimal model if the underlying 

mechanism is known, however, this is often not the case. A common practice is to examine 

the additive model, since it has reasonable power to detect both additive and dominant effects 

(Bush et al., 2012). Yet, an additive model may also be underpowered to detect some 

recessive effects (Lettre et al., 2007). Sophisticated approaches have considered performing 

analysis using all three models then combining their results using a weighing strategy, which 

could allow detecting both additive and strong non-additive effects (Balding, 2006). A general 

regression model that includes an additive effect and deviation from additive effect was also 

proposed and often used in animal and plant genetics (Wilson, 1980). The power of this 

general model was recently compared to that of the additive model through simulations 

(Dizier et al., 2017). 

Statistical methods. Several statistical methods for single-marker analysis have been 

proposed (Balding, 2006). Quantitative traits (e.g., height, blood pressure and cholesterol 

level) are generally analyzed using linear models, such as linear regression and Analysis of 

Variance (ANOVA). These methods test the null hypothesis of no difference between the trait 

means in different genotype groups. A requirement for applying these methods is that the trait 

measurements are approximately normally distributed within each genotype group and share a 

common variance. Binary traits are analysed using contingency table or logistic regression 

approaches. The contingency table approach explores the association of a genotype with the 

trait via the construction of a frequency table that compares the counts of genotypes between 

case group and control group (Fisher, 1922). The logistic regression approach is extended 
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from the linear regression approach and has the goal to search for the dependence between a 

SNP and the probability of expressing a trait. An advantage of logistic regression is that it has 

the flexibility to incorporate covariates, such as age, sex, environmental exposures (exposure 

to the sun, tobacco etc.), and also principal components of genotype data to account for 

potential population stratification. 

Result diagnosis. Given the penetrance model and the statistical analysis method, the 

association analysis can be performed conveniently using any of the available software, 

including PLINK (Purcell et al., 2007), STATA, and R/Bioconductor (Gentleman et al., 2004; 

R development core team, 2014). Prior to interpreting the outcomes, the existence of spurious 

associations, especially those resulting from population stratification, needs to be diagnosed. 

A Quantile-Quantile (Q-Q) plot that compares the observed SNP association statistics with 

their expected values under the null hypothesis of no association with the disease is routinely 

created. The observation that the majority of the SNP statistics follow the null distribution 

while only a handful of them deviate from it suggests there is no population structure 

unaccounted for when perform the analysis. This is revealed in the Q-Q plot that most of the 

data points fall on (or close to) the y x= line. The degree of deviation from this line is 

measured by the genomic inflation factor λ , defined as 1 2/Med Medλ = , where 1Med is the 

median of the observed SNP statistics, and 2Med  is the median of the statistics under the null 

hypothesis (Devlin et al., 1999). A λ value close to 1 suggests the (potential) population 

substructure has been appropriately adjusted. 

Multiple testing correction. There are generally hundreds of thousands to millions of 

statistical tests conducted simultaneously in a GWAS. With each test bearing its own false 

positive probability, the cumulative likelihood of finding one or more false positive 

associations can therefore be high. GWAS imposes a strict level of significance to reduce the 

number of false positives. This level is routinely determined based on Bonferroni correction, 

where the actual significance level α is specified as the nominal significant value of 0.05 

divided by the number of SNPs that are tested (denoted as N ), i.e., 0.05 / Nα = . This 

criterion controls strictly the family-wise error rate at 0.05 (FWER, defined as the probability 

of making at least one false discoveries (Thomas, 1989)). However, Bonferroni correction is 

known to be too conservative because the number of tests is huge and these tests are generally 

correlated as a consequence of LD among SNPs. This leads to over-correction and decreased 
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power. Alternate methods that aim at increasing power include the use of false discovery rate 

(FDR) criterion (e.g., FDR 0.05≤ ) (Benjamini et al., 1995), or replacing the correction factor 

( N ) by the number of effective (independent) tests (Li et al., 2005). Yet, because highly 

confident results are essential for downstream analysis and pharmaceutical operation, the 

significance level of 5×10-8 (equivalent to a nominal significant p-value of 0.05 after 

Bonferroni correction for testing one million SNPs) emerged as a standard for reporting 

significant associations (Jannot et al., 2015). 

Replication analysis and meta-analysis. SNPs passing the significance threshold in a 

discovery study are urged to be replicated in one (or more) independent studies. The NHGRI 

working group outlined several criteria for establishing a positive replication (Chanock et al., 

2007). These include using identical phenotype definition, collecting sufficient amount of 

replication samples, and conducting replication studies in independent datasets drawn from 

the same population as in the discovering study. For the purpose of increasing significance 

and refining effect size estimated from multiple studies, the results of multiple GWAS can be 

pooled together to perform a meta-analysis. Meta-analyses empower the synthesis of results 

from multiple studies without requiring the sharing of individual-level data—only summary 

statistics from a study need to be shared. Several software packages can be used to perform 

meta-analyses, including STATA, METAL and GWAMA (Mägi et al., 2010; Willer et al., 

2010). 
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3    Further exploring the missing heritability of human diseases 
via multi-marker analysis of GWAS data 

Up to now, genome-wide association studies are mainly based on single-marker analysis 

which requires stringent threshold (5×10-8) to declare significance. Although such studies 

have successfully led to the identification of many genetic variants associated with complex 

traits, most of these variants confer relatively small increments in risk and explain only a part 

of the whole genetic component underlying diseases or traits, leading many to the question of 

how the remaining, missing heritability can be explained (Eichler et al., 2010; Manolio et al., 

2009). This may potentially due to various factors (as discussed in detail in Manolio et al. 

(2009) and Eichler et al. (2010)), including the presence of larger number of variants of 

smaller effect yet to be discovered; the existence of rare variants (with MAF ≤ 0.01) not 

present on the genotyping chips or difficult to impute; the presence of complex mechanisms 

not taken into account (gene-gene and gene-environment interactions etc.). It can also be 

attributed to the joint effect of multiple SNPs, each having a low marginal effect but acting 

jointly on disease risk. 

To address the limitations of single-SNP approaches commonly used in GWAS and to capture 

more of the complex genetic component underlying multifactorial diseases, many multi-

marker analysis approaches have been proposed to aggregate the information of multiple 

SNPs into an integrative model and to study their joint effect on a disease. Multi-marker 

analysis provides various advantages over the single-SNP approach. First, by aggregating 

SNPs into sets and analyzing each set as a unit, it could reduce the number of tests thus 

relaxes the stringent threshold for reaching statistical significance. Secondly, by grouping 

SNPs properly, the power can be improved in settings where SNPs are individually only 

moderately significant. In particular, though any single SNP may serve as a poor surrogate of 

an ungenotyped SNP underlying disease susceptibility, by considering them together, it can 

better capture the true effect of the causal SNP. Thirdly, when there are multiple causal SNPs, 

conducting a joint analysis has the potential to inspect the cumulative effect of these SNPs on 

the disease as a whole. With these advantages, multi-marker analysis approaches are expected 

to discover more disease-associated variants and explain more of the missing heritability that 

has been missed by single-SNP analysis. 
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Multi-marker analysis methods have emerged over the last decade. They differ from one 

another according to their way of grouping SNPs, the type of data required for the analysis 

(individual genotype/phenotype data or GWAS summary statistics), the detailed analysis 

strategy they implement, etc. Based on the level of primary genetic entity that is studied, we 

classify multi-marker analysis into three categories: (1) SNP-based analysis, (2) gene-based 

analysis, and (3) pathway/network-based analysis (Figure 1.7). In the following, we first 

illustrate the main components involved in each of the analysis categories. 

 

Figure 1.7: Three level of multi-marker analysis (SNP-based, gene-based, and 
pathway/network-based). 

3.1    SNP-based multi-marker analysis 

SNP-based multi-marker analysis surveys the genetic component of a disease at SNP-level. 

SNPs can be grouped if they are in the same gene, pathway, or a specific genomic region. In 

the following, we introduce several SNP-based analysis approaches that fall in the linear 

regression framework and machine learning framework. 

Linear regression approaches. Linear regression models have the ability to search for linear 

combinations of SNPs that can best explain the trait. They are also flexible in incorporating 
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covariates (age, gender, environmental exposure etc.), in modeling the interaction between 

SNPs and covariates, and can provide statistical significance measure over each factor that is 

evaluated. Ordinary least squares (OLS) regression is a well-studied technique for modeling 

the relationship between a dependent variable and explanatory variables. In an OLS model for 

a quantitative trait, the trait Y  is modeled as a linear combination of the SNPs 1, pX X and 

possible covariates 1,p mX X as
0
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Y X  
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 β , where n is the number of samples. However, OLS 

requires n m , thus are generally inapplicable for GWAS data in which the number of SNPs 

is typically larger than the sample size. Additionally, in an OLS the estimator of regression 

coefficients can be highly unstable when the SNPs are correlated (De Vlaming et al., 2015). 

Penalized least squares regressions, also called shrinkage methods, are more appropriate for 

multi-marker regression analyses. In a shrinkage method, the loss function ( )L β is usually 

defined as OLS( )= ( + ( , )) PL L β β β , in which ( , )P  β  is a penalty with a tuning parameter  . It 

has the effect of shrinking the coefficients of SNPs that are less correlated with the phenotype 

towards zero. There are many types of penalties, including 2
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 β for Elastic Net regression (Zou et al., 2005). There is also 

a shrinkage method called HyperLasso that is designed specifically for simultaneous 

analyzing a set of SNPs and covariates (Hoggart et al., 2008). This method implements a 

Bayesian-inspired penalized maximum likelihood approach with a Normal-Exponential-

Gamma (NEG) prior over each regression coefficient. The NEG distribution has a sharp peak 

at zero, which imposes a strong penalty on the coefficients when they are close to zero, thus 

leads to sparse models. 
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Shrinkage methods have been applied to various GWAS studies for detecting the marginal 

and interactive effect of SNPs. For example, Sun et al. (2009) used Ridge regression to detect 

SNPs associated with rheumatoid arthritis. By incorporating information on multiple 

correlated genetic variants, they identified a SNP near the HLA-B gene that was not 

significant in their single-SNP analysis. Wu et al. (2009) applied Lasso regression to GWAS 

data of celiac disease and identified both marginal and interactive factors associated with this 

disease. Waldmann et al. (2013) used both Lasso and Elastic Net to identify SNPs affecting 

milk fat content. Barrett et al. (2015) applied HyperLasso to identify functional variants of 

melanoma from genetic loci that were pinpointed by earlier GWAS analyses. 

As for the performance of different shrinkage methods, each of them has its own strengths 

and limitations. Ridge regression has a better performance for predicting phenotype labels 

given new genotype data. However, it does not achieve SNP selection. Lasso regression 

allows for automatic SNP selection by shrinking some of the coefficients to zero, but it tends 

to have problems when the SNPs are highly correlated (Waldmann et al., 2013). Elastic Net 

regression incorporates a combined penalty of Lasso and Ridge regression, thus holds the 

features of both methods. Yet, there is no conclusive evidence as for which method 

outperform others overall. For instance, using a simulation study, Ogutu et al. (2012) found 

Lasso outperformed Ridge regression, whereas other studies found that Ridge regression and 

Elastic Net outperformed Lasso (Bøvelstad et al., 2007; Waldmann et al., 2013). 

Machine learning approaches. Machine learning approaches employ models and algorithms 

that have the ability to learn the SNP-trait association pattern. Random Forests (RF) is a 

machine learning method that has been successfully applied to genetic studies for the purpose 

of prioritizing SNPs, predicting disease status, and identifying SNP-SNP interactions (Li et 

al., 2016; Schwarz et al., 2007; Sun et al., 2007; Szymczak et al., 2016). A RF is an ensemble 

of decision trees, where each tree is grown using a bootstrap sample of the whole dataset 

(Breiman, 2001). A node in a tree is chosen as the SNP that can best reduce the trait impurity 

within child nodes. The effect of each SNP on the trait can be quantified by a variable 

importance score (Zhang et al., 2009). One prominent feature of RF is that it can capture the 

nonlinear interactions between SNPs, making it a desirable technique for unveiling the 

complex genetic architecture underlying multifactorial diseases. 
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RF was shown to perform well in simulations and real applications but these studies included 

no more than hundreds of SNPs (Lunetta et al., 2004; Schwarz et al., 2007). Technique 

advances such as the implementation of the Random Jungle (RJ) tool have made it possible to 

construct large RFs for genome-wide data (Schwarz et al., 2010). However, direct application 

of RF to genome-wide data still poses a computational challenge, and only a few studies were 

reported in the literature (Goldstein et al., 2010; Schwarz et al., 2007; Zou et al., 2012). For 

these reasons, two-stage RFs, which select candidate SNPs at the first stage and apply RF to 

the selected SNPs at the second stage, were exploited in more detail. For example, in a study 

of WTCCC coronary artery disease, Roshan et al. (2011) first performed a single-SNP 

analysis to assess the significance of association for each SNP. Then only SNPs ranked at the 

top of the whole list were selected for downstream RF analysis. Chung et al. (2012) proposed 

a similar two-stage RF to prioritize candidate SNPs in each pathway. At the first stage, a RF 

was built using all SNPs in a pathway. Then SNPs with a variable importance score greater 

than a threshold were selected to rebuild the RF. These two-stage approaches were shown to 

avoid overfitting and can generate more accurate models with a lower prediction error. 

Support Vector Machine (SVM) is a supervised learning method that can be used for both 

classification and regression. In its simplest form, a SVM seeks to identify the optimal 

hyperplane that can separate the samples into two classes and achieve the largest margin 

between the classes. SVM was shown to have excellent power in detecting epistasis in both 

simulated and real genetic data (Chen et al., 2008; Listgarten et al., 2004). In Listgarten et al. 

(2004), a number of genetic variants associated with breast cancer risk were discovered using 

a SVM model. These variants are collectively better at predicting breast cancer patients than 

single variants. Chen et al. (2008) explored several SVM-based strategies that were able to 

uncover the interaction among SNPs. Nonetheless, due to the same computational and 

overfitting issue as for RF, two-stage SVMs were favored as compared to applying SVM 

directly to genome-wide data (Kim et al., 2013; Roshan et al., 2011). 

3.2    Gene-based multi-marker analysis 

Gene-based analyses are those studying the genetic component of a disease at gene-level. 

They have emerged as a major complement to GWAS (Neale et al., 2004). Several reasons 

are behind. First, genes are the basic physical and functional unit of heredity. Cellular 

processes are ultimately directed by genes and driven by their products (proteins). Secondly, 
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aggregating SNP-level information into genes can reduce the multiple testing burden. A large-

scale GWAS usually involves testing of more than one million SNPs while these SNPs can be 

mapped to around 20,000 genes. Additionally, gene-based analysis is an essential 

intermediate step for performing integrative analysis of GWAS results with biological 

knowledge at gene pathway and network level, as will be described in Section 3.3. 

Various gene-based analysis methods have been proposed. These methods share an initial step 

of mapping SNPs to genes. Typically, SNPs located between the 5' UTR (five prime 

untranslated region) and 3' UTR (three prime untranslated region) of a gene can be mapped to 

that gene. More sophisticated strategies such as those taking into account the LD structure or 

regulatory effect were also investigated (Pers et al., 2015; Taşan et al., 2015), and will be 

discussed in more detail in the Discussion section of this thesis. Apart from the SNP to gene 

mapping issue, gene-based methods differ from each other for various features. In the 

following, we describe them in terms of whether they are based on analyzing individual 

genotype/phenotype data or GWAS summary data. 

3.2.1    Methods based on analyzing individual genotype/phenotype data 

Among the methods that analyze individual genotype/phenotype data, the SKAT method 

(Sequence Kernel Association Test) allows borrowing information between different SNPs to 

improve the power to detect the effect of a gene (Wu et al., 2011). SKAT is based on a 

logistic kernel-machine model and has the flexibility to include covariates in the analysis. It 

estimates a matrix of genetic similarity between pairs of individuals at the level of all SNPs of 

the gene using kernel functions. The significance of a gene is evaluated using a variance-

component score test under a mixed model, whose test statistic follows a mixture of chi-

square distributions. Several extensions of SKAT were also proposed, which make it feasible 

for conducting analysis of familial data (Chen et al., 2013; Oualkacha et al., 2013; Svishcheva 

et al., 2014), and analysis including both rare variants and common variants (Ionita-Laza et al., 

2013). 

Another useful gene-based analysis toolkit is MAGMA (Multi-marker Analysis of GenoMic 

Annotation) (Leeuw et al., 2015). MAGMA includes both the tool to analyze individual-level 

data and also the tool to analyze summary data. The tool that analyzes individual-level data 

characterizes the relationship between the phenotype and the SNPs of a gene via multiple 
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linear principal components regression. This model has a similar form as the OLS model as 

described previously. The major difference is that instead of modeling directly on the 

genotype data, it projects the SNP matrix of a gene onto its principal components (PC), then 

prunes away PCs with very small eigenvalues before using the remaining ones as predictors 

for the phenotype in the regression model. This improves power by removing redundant 

parameters and guarantees the model is identifiable in the presence of highly correlated SNPs. 

The association of a gene with the disease is assessed using an F-test. 

Multifactor Dimensionality Reduction (MDR) is a powerful method in detecting gene-gene 

(also SNP-SNP) interaction using individual genotype/phenotype data (Hahn et al., 2003). 

The main idea of MDR is to reduce the dimensionality of multi-locus information by pooling 

multi-locus genotypes into high-risk and low-risk groups, thus reducing to a one-dimensional 

variable. Cross-validation (CV) and permutation test are used to select the interaction pattern 

that has the best ability to classify and predict disease status. Yet, it is can be difficult to 

perform high order gene-gene interaction analyses via MDR at genome-wide level because it 

requires exploring a huge search space and suffers from a computational burden due to high 

dimensionality (Oh et al., 2012). Many MDR extensions have been proposed, including Gene-

based MDR that allows for perfroming fast and efficient high order gene-gene interaction 

analysis (Oh et al., 2012), and the model-based MDR (MB-MDR), which is a parametric 

extension of the MDR method that was shown to have increased power over MDR in 

identifying gene-gene interactions for most genetic models (Cattaert et al., 2011). 

3.2.2    Methods based on analyzing GWAS summary data 

Many gene-based methods are based on analyzing GWAS summary data. Such methods are 

becoming more and more prominent since summary data have become abundant after years of 

GWAS effort. These methods are typically conducted by combing the p-values of SNPs 

mapped to a gene into a gene p-value. One naive while popular approach is to take the most 

significant SNP p-value among all SNPs mapped to that gene. This strategy is easy to 

implement and is sensitive in capturing the best association signal. It has been utilized in 

various early studies (Askland et al., 2012; Wang et al., 2007). However, taking only the best 

SNP to represent the whole gene, other SNP signals present in the gene will be ignored. Thus 

the overall gene effect can be under-evaluated if a trait is highly polygenic. Another limitation 

of this approach is that long genes harboring many SNPs tend to have a lower p-value, even if 
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none of its SNPs is truly associated with the disease. This is the consequence of performing 

multiple tests simultaneously, for which testing K hypotheses there is a chance of 1 (1 ) Ky− −  

to get the smallest p-value lower than y (for any 0 1y< < ). Thereby the resulted gene p-

values are inflated by gene length. 

Various strategies have been introduced to address these issues. They typically combine SNP 

p-values (or test statistics) into a representative statistic (denoted as T ), then evaluate its 

significance of deviation from the background distribution under the null hypothesis of no 

gene-disease association. The schematic diagram of such approaches is depicted in Figure 1.8. 

Some examples of defining T are presented in Table 1.2. 

Computing the probability density functions of these statistics requires the correlation 

information of the SNP p-values, which, however, is generally unknown. Two strategies are 

employed to account for the correlation between SNP p-values. One strategy approximates 

the correlation using SNP LD estimated from HapMap or 1000 Genome Project reference 

panels, or from a custom set of individual genotype data when they are available (Liu et al., 

2010). The idea is intuitive—two SNPs tend to have high dependence in their p-values if they 

are in high LD, whereas they are likely to have independent p-values if they are not in LD. 

Given the estimated correlation structure among SNP p-values, the gene p-value based on T
can be computed either by Monte Carlo approximation such as employed by the VEGAS 

method (Liu et al., 2010), or by analytical calculation as employed by the MAGMA (Leeuw 

et al., 2015) and PASCAL method (Lamparter et al., 2016). 
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Table 1.2: Commonly used gene representative statistics for gene-based analysis. 

Gene representative statistics ( iP represent SNP p-values) Related method 
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Figure 1.8: Diagram of computing gene p-values using GWAS summary data. A gene 
representative statistic T is first computed from the p-values of SNPs mapped to that gene. 
Then the gene p-value is computed by evaluating the significance of T  for its deviation from 
the background distribution under the null hypothesis of no gene-disease association. To 
compute the significance of T , one strategy (Strategy 1) is based on Monte Carlo 
approximation or analytical calculation, where the SNP p-value correlation structure is 
approximated by the LD computed from a reference population or individual genotype data. 
Another strategy (Strategy 2) is based on phenotype or summary data permutation. For 
phenotype permutation, the individual genotype/phenotype data is required. 
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Figure 1.9: An illustrative example of the Circular Genomic Permutation strategy. CGP 
considers the genome as a circle. SNP p-values of a GWAS are ordered on the circle 
according to the position of the SNP. A CGP sample is generated by rotating the p-values for 
a randomly chosen position (=2 in this example) and reassigning these p-values to each SNP. 

Another strategy to incorporate the correlation among SNP p-values is to use permutation 

techniques (Figure 1.8). Phenotype permutation is the gold standard of generating the null 

distribution, for which the LD structure and other possible confounding factors, such as gene 

size, are accounted for (Liu et al., 2010). Computing gene p-values via permutation is 

conceptually simple and is implemented as the "set-based test" in the PLINK software 

package (Purcell et al., 2007). Nevertheless, heavy computational demand has restricted its 

application at genome-wide scale. Moreover, there are several cases in which permutation-

based method cannot be applied, including family-based GWAS, GWAS meta-analyses based 

on summary statistics, and studies in which the individual genotypic data are unavailable. 

Another permutation strategy, which applies directly to SNP summary data by randomly 

shuffling the SNP p-values, was proposed as an alternate to phenotype permutation. Though 

convenient and efficient, it is criticized for treating the SNP p-values as if they were 

independent (thus the correlation is not accounted for). Cabrera et al. (2012) proposed a 

permutation strategy called Circular Genomic Permutation (CGP) that is applied to summary 

data and can partly preserve the p-value correlation structure. As illustrated in Figure 1.9, 

CGP considers the genome as a circle, starting from chromosome 1 and ending at 

chromosome 22 then restarting from chromosome 1. SNP p-values of a GWAS are ordered on 

the circle according to the position of the SNP. A CGP sample is generated by rotating the p-

values for a random position and reassigning them to each SNP at their new position. In this 
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manner, CGP keeps the relative position between SNP p-values unchanged during the 

permutation process, thus the correlation structure is partly preserved. This strategy has been 

applied to several studies and was shown to have similar performance compared to phenotype 

permutation when applied to a pathway-based analysis (Brossard, 2013; Chambers et al., 

2013; Mott et al., 2014; Stainton et al., 2015). Thereby, we have taken advantage of the CGP 

strategy and developed an efficient method to compute gene p-values, as will be introduced in 

Chapter III. 

3.3    Pathway-based and network-based multi-marker analysis 

As mentioned previously, the single-SNP analysis approaches have methodological 

bottlenecks and have resulted in limited power. Gene-based analysis could partly overcome 

their limitations, but it is not flawless. Genes that are genuinely associated with disease status 

but do not reach the multiple testing significance threshold cannot be captured. The joint and 

interactive effects of multiple genes are also missed. This urges the investigators to develop 

alternate and complementary strategies. Integrative analysis approaches that combine 

knowledge of biological pathways and/or biological networks with GWAS results to identify 

functional gene modules associated with disease status have emerged as a prominent research 

direction (Figure 1.10). The rationale behind these methods is that biological organizations 

are fundamentally modular—instead of working in isolation, groups of genes, proteins or 

metabolites are known to work together through physical and/or functional interaction (Mitra 

et al., 2013). 

Pathway and network-based approaches appear to be well suited for the analysis of massive 

GWAS data. They have a number of benefits relative to the analyses performed at individual 

SNP or gene level either from biological or statistical considerations. First, they aggregate 

molecular events across multiple genes in the same pathway or network subunit, thus reduce 

the number of hypotheses to be tested and can increase the likelihood that a test passes the 

statistical significance threshold. Secondly, a common disease is the result of the joint action 

of multiple genes within a pathway. Although each single gene may confer only a small 

disease risk, their collective action is likely to have a significant role in the development of a 

disease. Thirdly, locus heterogeneity, in which alleles at different loci cause disease in 

different populations, will increase the difficulty in replicating associations of a single-marker 

with a disease. Therefore, replication of association findings at the SNP or gene level can be 
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difficult if there are redundant genes with similar roles present (Sun, 2012). In comparison, 

pathway and network-based approaches that combine information from multiple loci in a 

functional unit could produce more stable and robust results than single-marker approaches do 

(Qiu et al., 2008). Furthermore, the ultimate goal of genetic studies of complex diseases is to 

decipher the link between genotype and phenotype. Despite the efforts made by extensive 

studies in search for genes causing complex diseases, the links between genetic variants and 

complex traits, which are essential for unraveling the pathogenesis of complex diseases, have 

remained elusive. In this sense, pathway and network-based approaches provide a 

complementary role to single-marker approaches for interpreting the molecular basis 

underlying human diseases. 

In the following sections, I will first summarize the biological pathway and network resources 

that are hugely available for performing integrative analyses. Afterwards, I will introduce 

pathway-based analysis, and then network-based analysis that is the main focus of this thesis. 

 

Figure 1.10: Diagram of integrative analysis of GWAS data. 

3.3.1    Resources of biological pathways and networks 

Thanks to the high-throughput "omics" (e.g., genomics, transcriptomics, proteomics, and 

metabolomics) technologies, our resources of biological data are increasing at exponential 

rate. According to a report published in 2013 in the journal Nucleic Acid Research, there are 

1552 biological databases publically accessible online (at the time of writing that report) 

(Fernández-Suárez et al., 2013). These databases are developed for various purposes, curated 

at different knowledge levels and via diverse approaches. A comprehensive overview of these 
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biological databases was given in Zou et al. (2015). Among them, those describing biological 

pathways and networks are most widely used for integrative analysis of GWAS data and are 

the main focus of this thesis. They will be introduced below. 

Biological pathways. Pathways are an important component in systems biology. A pathway 

is defined as a series of actions among molecules in a cell that leads to a certain product or a 

change in a cell. A pathway can trigger the assembly of new molecules, such as a protein or 

lipid, can turn genes on and off, or spur a cell to move. These actions are usually controlled 

and catalyzed by enzymes. Some of the most well-known pathways are involved in 

metabolism, the transmission of signals, and the regulation of gene expression. Perturbations 

in pathways are found to cause disorders. 

Pathway resources are accumulating rapidly. Researchers have discovered many important 

pathways through laboratory studies of cultured cells, bacteria, fruit flies, mice and other 

organisms, many of which are similar to the counterparts in humans. For the purpose of 

effectively archiving and easily accessing to the ever-expanding knowledge of established 

pathways, an increasing number of databases have been established during the last decade. 

The Pathguide resource collects links to many databases of manually curated and 

computationally predicted pathways (http://www.pathguide.org). Some of the well-known 

collections are listed in Table 1.3. These include Kyoto Encyclopedia of Genes and Genomes 

(KEGG) (Kanehisa et al., 2016), Reactome (Croft et al., 2013), and Gene Ontology (GO) 

(Ashburner et al., 2000). Both KEGG and Reactome contain manually curated (MC) 

pathways for different biological processes, whereas GO contains mostly electronic 

annotations (EA) for human genes and attempts to describe gene functions using three 

hierarchical categories: molecular functions, biological processes, and cellular components. 

Other commercial pathway providers, such as Pathway Studio 

(https://www.pathwaystudio.com/) and Ingenuity Pathway Analysis platform 

(https://www.qiagenbioinformatics.com/), also curate pathways from multiple sources of 

information, including literature reviews as well as experimental evidence. Still, many 

biological pathways remain to be discovered or explored in more detail. It will take years of 

effort to identify and understand the complex connections among all the molecules in all 

biological pathways, as well as to understand how these pathways work interactively. 

http://www.pathguide.org/�
https://www.pathwaystudio.com/�
https://www.qiagenbioinformatics.com/�
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Table 1.3: Some of the well-known pathway databases. MC: manually curated; EA: electronic annotations. 

Pathway database Curation method Description URL 

KEGG MC KEGG pathway is a collection of manually drawn pathway 
maps representing the knowledge on the molecular 
interaction and reaction networks for metabolism, genetic 
information processing, cellular processes, etc. 

http://www.genome.jp/kegg 

Reactome MC Reactome is an open-source, open access, manually curated 
and peer-reviewed pathway database. Pathway annotations 
are authored by expert biologists, in collaboration with 
Reactome editorial staff and cross-referenced to many other 
bioinformatics databases 

http://www.reactome.org 

Gene Ontology MC/EA GO provides controlled vocabularies for the description of 
biological process, molecular function, and cellular 
component of gene products. The controlled vocabularies of 
terms are structured to allow annotation of gene products to 
GO terms at varying levels of detail 

http://www.geneontology.org 

WikiPathways MC/EA WikiPathways is an open space for biological pathway 
editing. Users can freely contribute and modify the content 

http://wikipathways.org/index.ph
p/WikiPathways 

Ingenuity Pathway Analysis MC/EA IPA is a large curated database of biological pathways 
created from millions of individually modeled relationships 
between proteins, genes, complexes, cells, tissues, drugs, 
and diseases 

http://www.ingenuity.com/produc
ts/ipa 

Pathway Commons EA Pathway Commons aims to store and disseminate 
knowledge about biological pathways. Information is 
sourced from public pathway databases and is readily 
searched, visualized, and downloaded 

http://www.pathwaycommons.org 
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Biological networks. Biological networks and pathways are similar concepts but with certain 

distinctions. Both comprise functionally related genes, proteins, and other molecular 

components that carry out biological processes. In comparison, a pathway describes the series 

of biochemical reactions and physical events among molecules (e.g., complex formation, 

phosphorylation events, and conformation changes), whereas a network characterizes the 

relationship among molecules and represents them by means of graph. Unlike pathways 

resources that are mostly acquired through laboratory studies or careful manual curation by 

domain experts, biological networks are constructed via a broader range of techniques and can 

capture various types of relationships among biological entities.  

Many types of biological networks have been characterized to date. These include metabolic 

network, cell signaling network, gene regulation network, drug interaction network, protein-

protein interaction network, and many others. Protein-protein interaction (PPI) contributes to 

the most of our current knowledge of biological networks and has been the major resource 

used for performing integrative analysis of GWAS data. In a narrow sense, PPI describes the 

highly specific physical contacts established between two or more protein molecules as a 

result of biochemical events. In a broad sense, the word "PPI" has been used for describing 

various types of relationship among proteins and their coding genes, including physical 

interaction, gene co-expression, and co-occurrence of them in literature. For this reason, a PPI 

is sometimes synonymous to a "functional protein network", "protein association network", or 

"gene network". 

Interactions between proteins can be detected by many techniques. These techniques fall into 

three major categories according to where the analysis is performed: in vivo, in vitro, and in 

silico. For in vivo techniques, a given experiment is conducted in a whole living organism. In 

vivo PPI detection methods include yeast two-hybrid and synthetic lethality (Brückner et al., 

2009; Nijman, 2011). In vitro studies are performed in a controlled environment outside their 

normal biological context. Several in vitro methods for detecting PPI are affinity 

chromatography, tandem affinity purification, protein arrays, protein fragment 

complementation, phage display, X-ray crystallography, co-immunoprecipitation, and NMR 

spectroscopy (Junker et al., 2011; Lehne et al., 2009; Rao et al., 2014). In silico methods refer 

to the analyses conducted via computational algorithms. Some in silico PPI 

detection/prediction methods are protein sequence-based approaches (Singh et al., 2010), 
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protein 3D structure-based approaches (Porollo et al., 2007), gene fusion, gene co-expression 

analyses and text-mining approaches (Papanikolaou et al., 2015). A limitation of in silico 

method is that the resulted interactions may not have experimental evidence, and can contain 

spurious information. Nonetheless, its ability to perform large-scale analysis will provide a 

more comprehensive and deeper coverage of the protein interaction map. 

Numerous PPI databases have been established to collect published PPI data and to provide 

convenient access to the data. Table 1.4 lists some of the major PPI databases. They can be 

divided into three subgroups according to their source of origin: (1) primary databases, which 

include experimentally verified protein interactions collected from either small-scale or large-

scale published studies that have been manually curated; (2) meta-databases, which contain 

only experimentally proven PPIs obtained by integrating multiple primary databases; (3) 

prediction databases, which include mainly PPIs predicted in silico. Many databases also 

provide friendly graphical user interfaces (GUI) for data accessing, where users input one or 

multiple identifiers such as protein names or accession number according to RefSeq, 

Universal Protein Resource (UniProt), Ensembl gene ID or Entrez gene ID. In return, users 

obtain interaction information about the input proteins (or their coding genes). This 

information usually contains the interactors of the proteins, the evidence/source of 

interactions, and the description of protein entities. Some databases also provide primary tools 

for customized network visualization and manipulation. It is of note that although all of them 

provide knowledge on protein interactions, each database has its own knowledge source, 

curation and storage protocols. It was observed that the overlap between these PPI databases 

is relatively small (Rao et al., 2014), thereby a combined investigation of multiple databases 

in a research work can be beneficial. In the following, we will introduce two PPI databases 

that are utilized in this thesis work. 
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Table 1.4: PPI databases. These databases are divided into three subgroups: (1) primary databases that include experimentally verified protein 
interactions collected from either small-scale or large-scale published studies that have been manually curated; (2) meta-databases that include 
experimentally proven PPIs obtained by integrating multiple primary databases; (3) prediction databases that include mainly predicted PPIs 
derived using different approaches, combined with experimentally proven PPIs. Data was accessed in March 2017. 

Database name #proteins #interactions  Species URL 

Primary Databases 

HPRD 30,047 41,327 Human http://www.hprd.org/ 

BioGRID 65,617 1,423,105 All http://thebiogrid.org/ 

MINT 25,530 125464 All http://mint.bio.uniroma2.it/ 

IntAct 98,289 720711 All http://www.ebi.ac.uk/intact/ 

DIP 28877 81784 All http://dip.doe-mbi.ucla.edu/dip/Main.cgi 

OPHID/I2D unknown 1,279,157 Human http://ophid.utoronto.ca/ophidv2.204/ 

Meta-Databases 

PINA 17,109 166,776 All http://omics.bjcancer.org/pina/ 

APID 29,701 349,144 All http://cicblade.dep.usal.es:8080/APID/init.action 

InWeb_InBioMap 17,653 625,641 Human https://www.intomics.com/inbio/map/#home 

Prediction Databases 

STRING 9,643,763 1,380,838,440 All https://string-db.org 

PIPs 7750 79441 Human http://www.compbio.dundee.ac.uk/www-pips/dbStats.jsp 

UniHI 36023 573995 Human http://www.unihi.org/ 
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PINA. The Protein Interaction Network Analysis (PINA) platform is a comprehensive web 

resource for protein interaction network construction, filtering, visualization, and management 

(Cowley et al., 2011). PINA integrates PPI data from six public curated databases (IntAct, 

MINT, BioGRID, DIP, HPRD and MIPS/MPact), and builds a non-redundant protein 

interaction dataset for six model organisms (Homo sapiens, Mus musculus, Rattus norvegicus, 

Drosophila melanogaster, Caenorhabditis elegans and Saccharomyces cerevisiae). PINA 

also provides a variety of built-in tools to filter and analyze the network for gaining insight 

into it, such as to retrieve protein interaction modules identified by clustering algorithms, and 

to identify topologically important proteins. PINA can be accessed via its 

website http://omics.bjcancer.org/pina/ or via the Cytoscape plugin 

PINA4MS http://apps.cytoscape.org/apps/pina4ms. 

STRING. The Search Tool for the Retrieval of INteracting Genes/proteins (STRING) is 

currently the largest PPI database (Szklarczyk et al., 2017). Up to the time of March 2017, it 

contains 1,380,838,440 interactions among 9,643,763 proteins for a comprehensive coverage 

of diverse organisms. Each interaction represents a known or predicted relationship between 

genes or gene products (proteins). These include direct (physical) and indirect (functional) 

relationship derived from various sources, such as integration from primary PPI databases, 

systematic genome comparisons, high-throughput experiments, gene co-expression and text-

mining analyses. Notably, all interactions in STRING are provided with a probabilistic 

confidence score, derived by separately benchmarking groups of interaction against the 

manually curated functional classification scheme of the KEGG database and generally 

correspond to the probability of finding the linked proteins within the same KEGG path 

(Kanehisa et al., 2009). A final "combined score" quantifying the overall interaction 

confidence between a pair of proteins is computed by combing all sub-scores via the formula 

( )1 1Combined sub
sub

S S= − −∏ . This combined score is often higher than the sub-scores, 

expressing increased confidence when the interaction is supported by multiple sources of 

evidence. Based on this score, the overall interaction between two proteins is classified as low 

confidence if 0.4CombinedS < , medium confidence if 0.4 0.7CombinedS< < , and high confidence if 

0.7CombinedS > . The STRING database can be assessed conveniently through the 

website https://string-db.org, the stringApp Cytoscape 

http://omics.bjcancer.org/pina/�
http://apps.cytoscape.org/apps/pina4ms�
https://string-db.org/�
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application http://apps.cytoscape.org/apps/stringapp, and the STRINGdb R/Bioconductor 

package. 

3.3.2    Pathway-based analysis of GWAS data 

Pathway-based analysis of GWAS data has the goal of identifying pathways with their genetic 

architecture significantly altered for a disease status. Over recent years, various pathway-

based methods have been proposed (Chen et al., 2010; Guo et al., 2009; Wang et al., 2007; 

Zhang et al., 2010). Some of them overlap with the methods designed for gene-based analysis, 

such as those based on analyzing individual-level data or combining SNP p-values. This is 

because a pathway is similar to a gene in that it also consists of a fixed set of SNPs, thus a 

pathway can be viewed as a "giant gene". 

The methods that are designed more specifically for pathway analysis include over-

representation analysis (ORA) and functional class scoring (FCS) analysis (Khatri et al., 2012) 

(Figure 1.11). ORA, also known as functional enrichment analysis, has the goal to identify 

pathways over-represented by a list of susceptible genes selected on the basis of gene-level 

significance, for example, those having a significant p-value (p ≤ 0.05) after multiple testing 

correction. Over-representation of a pathway is usually computed by hypergeometric test or 

binomial test. The related methodologies and analyzing tools will be presented in more detail 

in Section 3.3.3. ORA has been widely utilized for pathway-based analysis because it is easy 

to implement. Nonetheless, ORA has limitations. The definition of a list of susceptible genes 

is not straightforward. They are usually chosen based on a stringent significance threshold, 

which can be a salient issue when a GWAS is underpowered. Consequently, the majority of 

genes that do not reach the significance threshold are neglected in the analysis, including 

those bearing small to moderate marginal effects. 

The FCS methods aim at pinpointing pathways enriched in overall high association signals. 

Unlike ORA that focuses on a set of selected susceptible genes and thus ignores the effect of 

remaining genes, a FCS takes into account the overall effect of all genes in the pathway 

(genes not involved in the GWAS are not included). In a FCS analysis, testing for the 

enrichment of signals of a pathway can be conducted either in a self-contained (association) 

or a competitive (enrichment) manner (Khatri et al., 2012). In a self-contained test, the null 

hypothesis is "a pathway is not associated with the disease under study". This test usually 

http://apps.cytoscape.org/apps/stringapp�
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includes two steps. At first, a pathway statistics (T ) is formed either directly from the SNP 

statistics, or indirectly by first computing gene statistics (SNP statistics → (gene statistics) → 

pathway statistics). Then, the association significance of the pathway can be evaluated on the 

basis of T using the same methodologies as that of the gene-based analysis (i.e., Monte Carlo 

simulation, analytical computation, and permutation). Therefore the approaches introduced in 

Section 3.2.2 can be applied directly. 

Alternately, in a competitive (enrichment) test, the null hypothesis is "the pathway genes are 

no more associated with the disease than genes outside the pathway". The first 

implementation of a competitive approach is the GSEA method introduced by Wang et al. 

(2007), based on an adaptation of an earlier method proposed by Subramanian et al. (2005) 

designed for the analysis of gene expression data. In their approach, genes are ranked in 

descending order according to their association with the trait (computed by gene-based 

methods). The statistics of a pathway, called enrichment score (ES) in their approach, is 

defined as a Kolmogorov-Smirnov running sum statistic. This statistic measures the 

difference in the rank of pathway genes relative to the rank of genes outside the pathway. A 

high ES value indicates a pathway includes genes of strong association evidence that are 

ranked at the top of the gene list. ES is tested for its derivation from the null distribution by 

permutation. Several variants of this approach, as well as other types of GSEA, have been 

proposed for the purpose of correcting biases and increasing power. These include GSA-SNP 

(Holden et al., 2008), SSEA (Weng et al., 2011), i-GSEA4GWAS (Zhang et al., 2010), and 

SeqGSEA (Wang et al., 2014). The relative strengths of these approaches have been evaluated 

in many genetic studies (Chen et al., 2010; Guo et al., 2009; Wang et al., 2007; Zhang et al., 

2010).  
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Figure 1.11: The principle of over-representation analysis (ORA) and functional class scoring 
(FCS) analysis. For ORA, susceptible genes are selected on the basis of gene-level 
significance computed using gene-based methods, then the pathways enriched in these genes 
are identified. For FCS, the statistic for each pathway is computed from GWAS results; then a 
pathway is tested for its significance of signal enrichment using either a self-contained test or 
a competitive test, or both. 

3.3.3    Network-based analysis of GWAS data 

Pathway-based analysis has been successfully applied to unveil the biological mechanism of 

many diseases. The identified pathways provide new insights that may be missed in a single-

marker analysis. However, such approaches also have limitations: (1) although some 

prominent pathways are well studied, the knowledge on biological pathways remains 

fragmented and incomplete (Jin et al., 2014); (2) existing pathway annotations cover 

predefined pathways that may be too general in their delivery of disease-related biological 

functions (Ruano et al., 2010; Sun, 2012); (3) the connection information among genes is 

lacking within major annotation databases used for pathway analysis, such as the GO 

database; (4) most pathway-based method consider different pathways as independent sets 

and ignore their possible crosstalk. Specifically, the crosstalk between pathways refers to 

instances for which one or more components of one signal transduction pathway affects 

another (Figure 1.12). Two pathways are suspected to crosstalk with each other if there is a 

considerable interaction between their protein members (Li et al., 2008). Crosstalks were 

commonly observed between signaling pathways, for example, between Camp-dependent 

kinase and MAP kinase through a protein tyrosine phosphatase (Saxena et al., 1999). 
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Nonetheless, they are seldom considered by existing methods for pathway-based analysis of 

GWAS data.  

 

Figure 1.12: An example of pathway cross-talk. A cross-talk exists between two pathways A 
and B when both of the following criteria are met: functionally, the combinatorial signal from 
A and B must produce a different response than that triggered by A or B alone; 
mechanistically, A and B must be connected in at least one of the three depicted ways: (a) 
components of the two pathways physically interact; (b) components of one pathway are 
enzymatic or transcriptional targets of the other; and (c) one signal modulates or competes for 
a key modulator or mediator ("M") of the other. Figure adapted from Guo et al. (2009). 

Compared to pathways that contain information of fixed sets of genes, biological networks 

include richer knowledge on the interaction or relatedness of genes and molecules. This 

knowledge allows generating novel gene sets that may represent novel biological functions. 

Thereby, integrating network information with GWAS data to perform network-based 

analysis may enable complementary discovery of disease-relevant markers and their 

interactive effects. In the following, we will go through several components that are involved 

in network-based analysis of GWAS data. 

3.3.3.1    Network terminologies 

A network is conventionally denoted as ( , )G V E= , where V  is a set of nodes (also called 

vertices), and { }= ( , ) | ,E p q p q V∈  are edges connecting the nodes. In the case of protein-

protein interaction network, the nodes represent proteins/genes and the edges represent their 

interactions. Each edge can have a weight (or score), typically ranging from 0 to 1, which 
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describes the strength/confidence of a connection. When a network has weights on its edges, 

it is called a weighted network. 

A network can be either undirected or directed. In an undirected network, there is no direction 

on its edges, whereas in a directed network there is a direction on its edges, such that an edge 

p q→ is different from an edge q p→ . In biological systems, many relationships are 

directed, for instance, gene A regulates gene B ( A B→ ), protein C phosphorylates protein D 

(C D→ ), but the reverse relationship does not exist or represents a different process. Yet, 

due to the difficulties for precisely characterizing complex biological system, the directions 

are generally unknown.  

Using mathematical representation, all the above network features can be fully described by a 

N N× matrix A , called adjacency matrix ( | |N V= is the number of nodes). For an 

unweighted network, pqA  takes a binary value that indicates whether there is an edge from p

to q . =1pqA  if there is an edge from p to q ; =0pqA  otherwise. For a weighted network, pqA  

takes a real value representing the edge weight. For an undirected network, this matrix is 

symmetric ( =pq qpA A ). 

Two nodes in the network are called neighbors if there is an edge connecting them. The 

degree of a node p is defined as the number of neighbors it has, and can be computed by

( )d 0eg( ) q pqp I A= ≠∑ , where ( )I ⋅ is the indicator function. Nodes that have a degree 

greatly exceeds the average node degree of the network are called hub nodes. Hub nodes have 

an important role in maintaining the network structure. Particularly, the degree distributions 

of biological networks are known not to be at random. Several studies have revealed that the 

degree distributions of many biological networks have a scale-free property (Maslov et al., 

2002; Nacher et al., 2009). In such networks, the probability that a randomly selected node 

has degree k  approximately follows a power-law ( )~P k k γ− , where γ  is a constant that 

typically ranges from 2 to 3. The biological networks possessing this scale-free property are 

more tolerant to random functional failures and errors, but are also more vulnerable to hub 

nodes perturbations (He et al., 2006). 
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The distance between two nodes p and q is the minimum number of edges that needs to be 

traversed to reach q from p . The path through the network which achieves this distance is 

called their shortest path. In a biological network, this distance can partially reveal the 

functional relevance between two molecules. For example, nodes with a distance of one 

(neighbors) usually have a direct functional relationship (regulation, phosphorylation, 

transport across membranes), while nodes with a larger distance can be involved at a different 

stage of the same biological process such as those involved in the same pathway. 

An induced subnetwork of G , denoted by ' ( ', ')G V E= , is the network formed by a subset of 

the whole nodes ( 'V V⊆ ) and the edges among them. For example, the interaction network of 

proteins involved in the immune system is a subnetwork of the whole interaction network. 

Although the global network structure has been extensively explored to analyze the properties 

of biological networks, recently much attention has been paid to the subunits of the networks, 

called network modules, which represent a connected subnetwork that can carry out a specific 

biological function or event. Perturbations in modules are found to be the cause of many 

complex diseases. The searching of such functional modules associated with a disease is the 

major goal of this thesis, and will be discussed in more detail in the following sections. 

3.3.3.2    Tools for network visualization and manipulation 

Visualization concerns the representation of data in a pictorial or graphical format. A proper 

visualization can help answer existing questions and raise new hypotheses. Network 

visualization is particularly essential for understanding the global network conformation and 

highlighting important substructures. An increasing volume of research has benefited from 

network visualization and manipulation to gain insight into the complex systems under 

investigation. 

Many network visualization and manipulation tools/packages have been developed in the last 

years and others are constantly created. Table 1.5 lists some of the well-known ones in the 

field of biology. Among many of these tools stands the Cytoscape open-source software for 

integration, visualization and computation modeling of molecular networks together with 

other systems-level data (Shannon et al., 2003). Cytoscape is versatile in that it can be 

conveniently extended through adding plugins (also called Apps) of various functionalities, 

thus enables scientists from multidisciplinary fields to contribute to the expansion of the 
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ecosystem. In the last five years, both the amount of available Cytoscape plugins and the 

number of installations have grown dramatically. Up to the time of March 2017, there are 310 

plugins available with a total of 777 thousand downloads. These plugins cover a broad range 

of utilities, including online network data import, network visualization, manipulation, 

topological analysis, functional module detection, enrichment analysis, pathway annotation, 

and so on. A comprehensive travel guide to Cytoscape plugins has been previously provided 

by Saito et al. (2012), and can be found directly from the Cytoscape homepage 

(http://www.cytoscape.org/). 

Table 1.5: Network visualization and analysis tools. 

Tool Description URL 

Gephi An open-source and free software for graph 
visualization and manipulation 

https://gephi.org/ 

Cytoscape 

An open source software platform for 
visualizing, manipulating and annotating 
molecular interaction networks and biological 
pathways. Plugins of various functions can be 
installed through Cytoscape App Store 

http://www.cytoscape.org/ 

Graphviz An open source graph visualization software http://www.graphviz.org/ 

Igraph 
A programming package implemented in R, 
Python and C/C++ language for network 
visualization and analyzing 

http://igraph.org/redirect.html 

GraphWeb 
A public web server for graph-based analysis of 
biological networks http://biit.cs.ut.ee/graphweb/ 

NaviCom 
A web application for visualization of 
multilevel omics data on top of biological 
network maps 

https://navicom.curie.fr./bRidge.php 

 

http://www.cytoscape.org/�
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Figure 1.13: An illustrative example of the guilt-by-association principle. Proteins assigned to 
the same network community (represented in different colors) are found to be functionally 
closely related. Figure adapted from Palla et al. (2005). 

3.3.3.3    Methods for conducting network-based analysis 

Network-based analysis of GWAS data is based on the principle of "guilt-by-association", 

first raised by Oliver (2000). This principle states if two genes/proteins interact with one 

another in a network, they usually participate in the same, or related, cellular functions. It has 

been widely tested and supported in various studies (Li et al., 2016; Petsko, 2009). One 

example that well demonstrated this principle is given in Palla et al. (2005). The author 

identified protein communities (sets of strongly interconnected proteins) using a k-clique-

percolation method. Their results indicated the proteins assigned to the same community have 

very similar function annotations (Figure 1.13). This "guilt-by-association" principle severs as 

the basis for many network-based applications with various objectives, including gene/protein 

function prediction (Piovesan et al., 2015; Tian et al., 2008), gene set over-representation 

analysis (Glaab et al., 2012), patients subgroup classification (Hofree et al., 2013), and here 

for network-based analysis of GWAS data. 
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Table 1.6: Tools for performing network-based analysis. 

Tool URL Ref 

jActiveModules http://apps.cytoscape.org/apps/jactivemodules Ideker et al. (2002) 

dmGWAS https://bioinfo.uth.edu/dmGWAS/ Jia et al. (2011) 

Heinz https://github.com/ls-cwi/heinz Dittrich et al. (2008) 

LEANR https://cran.r-project.org/ Gwinner et al. (2016) 

EW_dmGWAS http://bioinfo.mc.vanderbilt.edu/dmGWAS Wang et al. (2015) 

STAMS https://simtk.org/projects/stams Hillenmeyer et al. (2016) 

PINBPA http://apps.cytoscape.org/apps/pinbpa Wang et al. (2014) 

DAPPLE http://archive.broadinstitute.org/mpg/dapple/dapp
le.php 

Rossin et al. (2011) 

NETAM http://www.sailing.cs.cmu.edu/ Lee et al. (2016) 

ancGWAS http://www.cbio.uct.ac.za/~emile/software.html Chimusa et al. (2015) 

PUPPI https://sourceforge.net/projects/puppi/ Lin et al. (2016) 

PANOGA http://panoga.sabanciuniv.edu/ Bakir-Gungor et al. (2014) 

COSINE https://cran.r-project.org/ Ma et al. (2011) 

cMonkey http://djreiss.github.io/cMonkey/ Reiss et al. (2006) 

Network-based analysis has been extremely popular in recent years. Many methods have been 

developed and many analysis tools have been implemented (Table 1.6). These methods can be 

broadly divided into two categories: the active module search category and the seed gene 

oriented category, as will be described below. 

Category 1: active module search methods. Active module search methods are conducted 

by overlaying GWAS outcomes onto a PPI to identify disease-dependent "active modules"—

subunits of the network showing significant enrichment of association signals. These subunits 

are also called as "functional module", "response modules", or "network hotspots" (Nibbe et 

al., 2010; Wang et al., 2015; Wu et al., 2009). To identify active modules, GWAS SNP p-

values are first summarized into gene scores. This step involves the SNP to gene mapping and 

the combination of multiple SNP p-values into a single gene p-value. The related 

methodologies were described in Section 3.2.2 for gene-based analysis. The obtained gene p-

values are transformed into gene scores, with a larger score indicating higher association 

significance. A common practice is to use the inverse normal transformation of p-value to z-
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scores 1(1 )z p−Φ= − , such that z follows the standard normal distribution under the null 

hypothesis of no gene-disease association. This scoring function, however, usually results in 

about half of the genes have a positive score, which can lead to generating large modules even 

with random inputs (Rajagopalan et al., 2004). More sophisticated scoring methods that aim 

at addressing this issue have been developed. Rajagopalan and Agarwal (2004) corrected z by 

a linear factor such that only genes having a p-value less than a threshold (for example 0.05) 

will get a positive score. Dittrich et al. (2008) considered a signal-noise decomposition of the 

raw gene p-values, implemented as a mixture model that enables controlling the resultant 

subnetwork size by an adjustment parameter and achieving automated statistical significance 

over the resulted module.  

The resulted gene scores are overlaid onto the PPI to build a disease-specific scored network. 

Given this network, the methods for searching "active modules" can vary substantially 

according to the different definitions of "active module" and the strategies to find them. 

Conventionally, the activeness of a module S  is quantified by a module score defined as the 

summation of scores over the module genes g( ) : gSZ S z∈∑= , or its normalized form that is 

adjusted for the background mean and variation (Dittrich et al., 2008; Ideker et al., 2002). Yet, 

the definition of a "module" can be more diversified. Various publications have defined a 

module as a connected subnetwork (i.e., its genes are connected to each other directly or 

indirectly within the subnetwork) (Dittrich et al., 2008; Ideker et al., 2002). Under such 

specification, the task of searching "active modules" is equivalent to solving the Maximum-

Weight Connected Subnetwork (MWCS) problem as illustrated in Figure 1.14. 
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Figure 1.14: The Maximum-Weight Connected Subnetwork (MWCS). Given an undirected 
and connected network ( , )G V E= , with each node associated with a weight z , its subnetwork 

( , )S S SG V E= is called a Maximum-Weight Connected Subnetwork if SG is a connected 
network, and it has the maximum weight among all connected subnetworks, where the weight 

of a subnetwork is defined as ( ) :
Sv V vZ S z∈= ∑ . In the example given in this figure, the 

subnetwork colored in red is a MWCS. 

Finding the exact solution of the MWCS problem, however, is computationally challenging. 

The only known approach that allows for finding the exact MWCS was the HEINZ method 

proposed by Dittrich et al. (2008). In HEINZ, the MWCS problem was transformed into a 

prize-collecting Steiner tree problem (PCST) and solved by an integer-linear programming 

method. Several studies have considered the simpler variant of this problem as the constrained 

MWCS problem (Backes et al., 2012; Qiu et al., 2008). For example, Qiu et al. (2008) 

considered finding the MWCS that contains a root node and includes k  nodes. Then active 

modules are found by starting from each node in the network as a root and setting k at all 

possible values to find the corresponding constrained MWCSs, though this approach can be 

computationally less efficient. 

Table 1.7: The principles of three heuristic optimization strategies. 

Simulated annealing. Simulated annealing is a probabilistic optimization technique that mimics the 
physical process of heating a material and then slowly decreasing its temperature. It was the first 
heuristic approach applied to the active module search problem (Ideker et al., 2002). To begin, a 
connected subgraph is chosen at random. At each iteration, nodes are added or removed from this 
subgraph. These changes are retained if they result in a connected subgraph with a higher score. The 
changes may also be kept with a probability that scales with the "annealing temperature" if they result 
in a subgraph with a lower score. After each iteration, the temperature decreases such that the accepted 
changes are increasingly likely to be beneficial. The final high-scoring subgraph is returned as the 
"active module". 
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Genetic algorithms. Genetic algorithms mimic natural selection among individuals of a population 
that drives biological evolution. The evolution usually starts from a population of randomly generated 
individuals. At each iteration, more fit individuals are stochastically selected to produce the next 
generation population. Over successive generations, the population evolves toward an optimal 
solution. 

Greedy algorithms. Greedy algorithms are heuristic optimization algorithms that make the locally 
optimal choice at each stage. A greedy strategy does not, in general, produce an optimal solution, but 
may yield locally optimal solutions that approximate a global optimal solution in a reasonable time. 

Beside the approaches that aim at finding exactly a MWCS, heuristic search strategies, such 

as those based on simulated annealing (Ideker et al., 2002), genetic algorithms (Klammer et 

al., 2010; Ma et al., 2011), or greedy algorithms (Jia et al., 2011), have been exhaustively 

explored to identify active modules. The principles of these heuristic strategies are 

summarized in Table 1.7. The rationality behind them is that although the MWCS is the 

optimal module from a mathematical point of view, other high-scoring subnetworks are also 

of biological interest regardless of whether their scores are strictly maximal.  

The first heuristic method designed for identifying active modules is jActiveModules (Ideker 

et al., 2002). It searches modules in a way of simulated annealing. Several variants of 

jActiveModules were also developed and were applied to various genetic studies (Nacu et al., 

2007; Rajagopalan & Agarwal, 2004; Ulitsky et al., 2009). Another widely applied heuristic 

method is the Dense Module Search algorithm implemented in the dmGWAS R package (Jia 

et al., 2011). The schematic diagram of DMS is shown in Figure 1.15. Briefly, DMS defines 

the score of a module of k  genes as /iSZ z k= ∑ . It grows a module from a seed gene and 

iteratively adds the neighboring gene that can lead to the maximum increment of the module 

score. Module growth terminates if adding neighboring genes does not yield an increment of 

module score by at least SZ r× ( 0.1r = by default). Each gene in the gene network is set as a 

seed once to generate a module. The modules with their scores ranked at the top x% of all 

modules (determined by the user) are selected as the final result. 

 

 



CHAPTER I. INTRODUCTION 

47 
 

 

Figure 1.15: The DMS active module search strategy. DMS defines the score of a module of 

k  genes as /iSZ z k= ∑ . It grows a module from a seed gene and adds iteratively the 
neighboring gene that can lead to the maximum increment of the module score. Module 
growth (along the arrows) terminates if adding neighboring genes does not yield an increment 
of module score by at least 0.1SZ × . Each gene in the gene network is set as a seed once to 
generate a module. Modules with their scores ranked at the top x% (determined by the user) 
are selected for downstream analysis. 

It is worth noting that the module defined as a connected subnetwork does not utilize 

information on edge weights (when they exist), and has no emphasis on the module 

interconnection strength (denoted as ρ , usually defined as the ratio of the number of edges to 

the number of possible edges in the module). Several methods have considered searching for 

modules that are both enriched in high signals and have strong interconnection. For these 

methods, the module quality is quantified by 1 ( )( ) ( )Q S Z S Sλ ρ×= + , where λ is a tuning 

parameter which keeps a balance between the module score and module connectivity. 

Approaches for finding modules that maximize 1( )Q S  include the genetic algorithm 

implemented in the COSINE tool (Ma et al., 2011), the greedy algorithm implemented in 

EW_dmGWAS (Wang et al., 2015) and STAMS (Hillenmeyer et al., 2016), and a convex 
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optimization approach which approximates the discrete combinatorial problem by a 

continuous optimization problem (Wang et al., 2008).  

There is also another method, named SConES (Azencott et al., 2013), designed for searching 

active modules. Unlike the approaches that find the MWCS or the approaches that maximize 

1( )Q S , SConES identifies modules by maximizing a module quality defined as 

2 ( ) ( ) ( ) | |S SQ S Z S λ ζ η× −= − . In this function, the second term ( )Sλ ζ− ×  is a function that 

has the effect to encourage connected nodes to be selected together. The third term | |Sη− is a 

sparsity regularizer that controls the number of nodes to be selected thus leads to sparse 

results. An exact algorithm based on graph-cut theory was provided to solve the maximization 

problem exactly. 

Inspired by the formulation of SConES, we developed an active module search method, 

named SigMod, in order to identify modules that are both enriched in high signals and have 

strong interconnection. The detail of SigMod was described in Liu et at. (2017) and will be 

presented in Chapter IV of this thesis. 

Category 2: seed gene oriented methods. Other than overlaying all GWAS association 

information onto a network to perform a global search for active modules, seed gene oriented 

methods focus on the topological property among or around a set of "seed genes". Seed genes 

are typically chosen as those having a strong disease-association evidence summarized from 

GWAS outcomes, for example, genes harbouring SNPs reaching genome-wide significance (p 

≤ 5×10-8) (Rossin et al., 2011), or genes having a significant p-value from gene-based method 

after multiple comparison correction, although a less stringent threshold can be used when 

highly significant signals are lacking. Disease genes reported from previous studies can also 

be added to the seed gene pool to increase the volume of prior knowledge. 

Providing these genes that are of biological interest, the study objectives are mainly to screen 

genuine causal/functional genes within the seed gene list and to prioritize novel candidate 

genes beyond this list. The network approach for identifying disease susceptibility genes is 

motivated by the observation that genes contributing to the same trait often share functional 

relationships (King et al., 2003). Therefore, one may increase the power to detect disease 

genes by pinpointing genes located closest on the network or connected to other causal genes. 

One pioneering study implementing this idea was conducted by Taşan et al. (2015). In their 
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work, all genes that overlap with the genome-wide significant loci were collected as candidate 

disease genes (seed genes). A prix fixe-constrained optimization procedure was conducted to 

prioritize genes that form a functionally coherent network. This procedure finds the optimal 

combination of genes, such that only one gene is picked from each locus while those picked 

genes have the strongest interconnection. This approach was shown to have increased power 

than the approach that chooses the gene closest to the best SNP in terms of elucidating the 

mechanism of complex diseases. 

For the purpose of prioritizing novel candidate genes, genes outside the candidate list are 

ranked according to their topological distances to genes inside the list. Early methods have 

used definitions of distance mainly as the shortest path (Schwikowski et al., 2000). However, 

many biological networks have a heavy-tailed scale-free degree distribution and the average 

shortest path length between nodes is small, making the shortest path a less desirable measure. 

More refined distance measures that take into account the overall network topology are 

proposed. Probably the most widely used technique for defining gene proximity is based on 

the property of network propagation, or network flow, as described in Qi et al. (2008) and 

illustrated in Figure 1.16. Briefly, fluid is pumped into each of the seed genes at a constant 

rate. It diffuses from the seed gene to other genes in the network via the edges connecting 

them. At the meantime of receiving fluid, each gene also pumps the received fluid to its 

neighboring genes. This process continues until the fluid system becomes stable. The 

resulting fluid represents the influence of seed genes over other genes. Genes retaining more 

fluid are likely to be functionally closer to seed genes and thus of higher possibility to be 

involved in disease susceptibility. Several approaches implementing this idea are 

GeneWanderer (Köhler et al., 2008), HotNet (Vandin et al., 2012), TieDIE (Paull et al., 2013) 

etc. A study conducted by Lee et al. (2011) has exploited six network propagation methods to 

assess their capability in boosting the statistical power to prioritize disease candidate genes. It 

is of note that network propagation approaches greatly depend on the quality of reference 

network. Both the accuracy and completeness of the network information play an essential 

role in the study performance. This is a key issue for network-based analysis as a whole, 

which will be discussed later in more detail in this thesis. 
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Figure 1.16: An illustrative example of network propagation. Nodes represent genes and lines 
represent their interactions. S1, S2, S3 represent seed genes. Fluid is pumped into each of the 
seed node at a constant rate. At every iteration of the network propagation process, nodes 
pump flow to their neighbors (thus also receive flow from their neighbors). Node greyscale 
represents the amount of flow they receive at each iteration. After multiple iterations, the 
amount of flow of each node converges. P5 stands out as the best candidate gene since it 
receives the largest amount of flow. 

3.3.3.4    Methods for evaluating network-based analysis outcomes 

It is well known that analyses performed at genome-wide scale tend to have high rates of false 

positives (Brzyski et al., 2017; Shen et al., 2013). To improve the reliability of findings, strict 

criteria have been established for reporting GWAS results, such as the use of a stringent 

threshold to declare significance, and to replicate findings in a replicating dataset, as 

introduced in Section 2.2. However, similar criteria are less well defined for network-based 

analysis. The performance of a network analysis is known to be influenced by noise from both 

the GWAS and the network data. Besides, many network algorithms have a heuristic nature 

and cannot find the optimal solution to their established problem. To reduce the amount of 

false positives caused by either the noise from input data or by the analyzing method, the 

outcomes need to be evaluated for their genuine relevance with the disease. 

Nonetheless, currently there is no gold standard for network-based analysis result evaluation. 

Ideally, experimental verification of the role of identified genes on the disease can be 

conducted. Several studies have used experimental techniques to verify the co-expression, 

transcription regulation or other interaction relationship among genes in an identified module 

(Li et al., 2015). However, due to the complexity of disease mechanisms, the expense of 

experimental materials, and the demand of laboratory work, this approach is only applicable 
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for small modules that consist of a few genes, whereas it is nearly impossible to be conducted 

for assessing the role of large modules.  

As an alternate option, in silico approaches are more feasible for assessing module-disease 

relevance. In silico approaches address whether the identified result is statistically relevant to 

the disease. Two types of test have been widely formulated and used. The competitive test 

evaluates whether the association signals enriched in a module are significantly higher than 

the signals outside the module. The self-contained test evaluates whether the module is 

significantly associated with the disease. These tests are conceptually the same as those 

performed for pathway analysis, which was introduced in Section 3.3.2. They are usually 

conducted in a combinatory manner to increase the overall confidence (Jia et al., 2012; Jia et 

al., 2011). 

Using multiple datasets to perform discovery and replication analysis is another way to 

improve result reliability. In a study to identify gene modules associated with schizophrenia, 

the authors used two schizophrenia GWAS data to identify replicable results (Jia et al., 2012). 

They generated raw modules independently in each dataset and evaluated each module in the 

other dataset. Only those showed consistent association signals were selected to build the final 

module. Furthermore, the final module was assessed again using a third independent dataset 

to ensure its genuine-association with schizophrenia. This strategy provides robust results 

with multistage evaluation and replication, hence are more likely to identify genes underlying 

the disease susceptibility. 

3.3.3.5    Methods for interpreting network-based analysis outcomes 

As opposed to single-marker analysis that leads to the identification of genetic variants having 

highest significance (the amount of which is generally small), network-based analysis usually 

results in a collection of moderately significant genes that jointly influence the disease status. 

Additional to inspecting the function of each gene individually, it is a routine step to conduct 

annotation analysis to investigate the biological process in which they jointly involve. Such 

analysis helps inspect the genes in a view of systems biology and can shed light on the 

understanding of the biological mechanisms of the disease. It also justifies that these genes 

are indeed functionally related—as assumed by the "guilt-by-association" principle placed at 

the beginning of network-based analysis. 



CHAPTER I. INTRODUCTION 

52 
 

To annotate a gene list, one common approach is to perform over-representation analysis 

(ORA), as has been mentioned in Section 3.3.2 for pathway-based analysis. In general, ORA 

accepts a list of querying genes that will be compared with a given background set to test 

whether some functional categories, e.g., GO terms or KEGG pathways, are significantly 

enriched in the querying genes. Many tools for ORA have been developed. Table 1.8 lists 

some of them. These tools differ mainly by the annotation database they use. For example, 

BINGO only uses GO terms, while DAVID includes multiple pathway databases. Several 

tools, such as g:Profiler, GOrilla, and GSEAPreranked, also allow annotation of a ranked 

gene list, where the rank can be specified based on the disease-association score of each gene. 

It has been argued that the agnostic gene overlap approach which assumes the equal weight of 

each gene in a functional process, or each gene has equivalent chance to be assigned to a 

biological term, is not optimal (Dong et al., 2016; Glaab et al., 2012). On the one hand, genes 

are not independent. They are rather linked with each other in the pathway map. On the other 

hand, genes in a pathway or a gene set are not of equal importance. For example, a gene may 

act as the regulator of a number of genes in the same pathway. The perturbation of this gene 

may have a larger impact on the pathway than the perturbation of its target genes. To address 

this issue, there is a trend to take into account the functional relationship among genes when 

performing ORA. For example, the IF method measures the contribution of a gene to a 

pathway based on the type of interaction (e.g., induction or repression) it has with upstream 

genes and its position in the pathway (Draghici et al., 2007). GANPA assigns a gene in a 

pathway with higher weight if it has more connections with other pathway members (Fang et 

al., 2012). A comprehensive review of these methods was given by Mitrea et al. (2013). 
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Table 1.8: Gene function annotation tools. 

Annotation tool Annotation databases URL Ref 

PANTHER GO, Reactome, PANTHER 

pathways 

http://pantherdb.org/ Mi et al. (2013) 

g:Profiler GO, KEGG, Reactome http://biit.cs.ut.ee/gprofiler/ Reimand et al. (2016) 

clusterProfiler GO, KEGG https://bioconductor.org/ Yu et al. (2012) 

EnrichNet GO, KEGG, Reactome, Wiki 

Pathways, BioCarta and others 

http://www.enrichnet.org/ Glaab et al. (2012) 

DAVID Over 60 functional categories https://david.ncifcrf.gov Huang et al. (2009) 

PathwAX KEGG http://pathwax.sbc.su.se/ Ogris et al. (2016) 

LEGO GO http://tianlab.cn/Research/softwares/ Dong et al. (2016) 

BINGO GO http://apps.cytoscape.org/apps/bingo Maere et al. (2005) 

EnrichmentMap GO http://apps.cytoscape.org/apps/enrichmentmap Merico et al. (2010) 

ClueGO GO, KEGG and BioCarta http://apps.cytoscape.org/apps/cluego Bindea et al. (2009) 

GOlorize GO http://apps.cytoscape.org/apps/golorize Garcia et al. (2006) 

GSEAPreranked MSigDB or customized gene sets http://software.broadinstitute.org Subramanian et al. (2005) 

GOrilla GO http://cbl-gorilla.cs.technion.ac.il/ Eden et al. (2009) 
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Beside exploiting the module genes for the pathways they over-represent, clustering them into 

functionally similar groups is another useful annotation strategy that enables to summarize the 

major functions these genes have. The biological mechanisms are known to be extremely 

complex and reveal a "many-genes-to-many-terms" mapping profile. In one direction, 

individual genes can be associated with multiple biological terms, while in the opposite 

direction, individual biological terms can involve multiple genes. One powerful tool that 

allows to overcome this nested complexity and to present a summarized overview of the 

annotation structure is DAVID (Huang et al., 2009). DAVID considers two genes as 

functionally similar if their annotation profiles are similar. For example, if two genes encode 

similar sodium transporters, they are expected to have major functional annotations in 

common. Providing a list of query genes, DAVID constructs a gene-term annotation matrix 

using thousands of annotation terms from 14 categories integrated into the DAVID database 

(including GO terms, KEGG Pathways, Swiss-Prot Keywords, SMART Domains, UniProt 

Sequence Features etc.). Genes are clustered into the same functional group if their chance-

corrected measure of co-occurrence is above a certain threshold. This analysis can be 

particularly useful if the gene list is large and contains genes sharing highly similar function, 

such as they represent gene families or protein complexes. 
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4    Asthma 

The major objective of this thesis is to develop network-based analysis methods, and apply 

them to asthma GWAS data to identify biological processes and prioritize new candidate 

genes related to asthma. In the following, I will give an introduction to the definition, the 

epidemiology and pathogenesis of asthma. I will also outline the environmental and genetic 

components of asthma. 

4.1    Definition of asthma 

Asthma is a common chronic inflammatory disease of the airways of lungs. It is characterized 

by variable and recurring symptoms, reversible airflow obstruction, and bronchospasm. 

During asthma attacks, patients suffer from symptoms including episodes of wheezing, 

coughing, chest tightness, and shortness of breath, that may occur a few times a day mostly in 

the early morning or in the night. Depending on the person, the symptoms can become worse 

at night or with exercise. Recurrent asthma symptoms frequently cause sleeplessness, daytime 

tiredness, reduced activity levels and school and work absenteeism (WHO media center, 

2017). Though there is no clear consensus on how to precisely define asthma, most cases are 

mild and can be diagnosed and treated by family doctors. 

It is recognized that asthma is not a single disease but that the syndrome encompasses 

consistent groups of various characteristics (Wenzel, 2012), including age of asthma onset 

(childhood-onset, adult-onset asthma), the severity of disease (mild, moderate and severe 

asthma), occupational exposures and the varying response to treatment. Other subtypes may 

be defined by the character of the inflammatory infiltrate (eosinophilic or neutrophilic).   

4.2    Epidemiology of asthma 

Asthma is one of the most common chronic diseases in the world. It is currently estimated 

that 334 million people suffer from asthma worldwide and approximately 250,000 annual 

deaths are attributed to asthma (Martinez et al., 2013). Asthma prevalence varies from country 

to country, with the lowest value of less than 1% and highest value of up to 20% (Figure 

1.17). Asthma has been found to have a higher prevalence in developed countries than in 

developing countries. Asthma is the most frequent chronic disease in children with the highest 

prevalence (>20%) observed in Anglo-Saxon countries (UK, New Zealand, Australia) and the 
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lowest prevalence in Greece (4-7%), India (6%) or China (4%). The prevalence of asthma in 

adults is lower, varying on average between 4% and 9% but with large variation according to 

geographical location. Asthma prevalence also varies according to ethnicity: in the US, 

asthma is more prevalent in Latino-Americans (14.2%) and in people of African-ancestry (9.5 

%) than in people of European-ancestry (7.8%) (Moorman et al., 2011). Though asthmatic 

patients have benefited from the regular use of inhaled glucocorticoids and the number of 

deaths caused by asthma has been decreasing, the overall impact of asthma remains high and 

the prevalence of asthma has been increasing since the 1960s. 

 

Figure 1.17: Asthma prevalence in different countries of the world as of 2004. From 
https://en.wikipedia.org/wiki/Asthma. 

4.3    Pathogenesis of asthma 

Asthma consists of a dynamic process involving immune mechanisms, chronic inflammation 

and airway epithelium remodeling which occur concomitantly or successively.  Inflammation 

plays a central role in the pathophysiology of asthma. Airway inflammation involves an 

interaction of many cell types and mediators within the airways. It gives rise to the main 

features of the disease: bronchial inflammation and airflow limitation that cause recurrent 

episodes of cough, wheeze, and shortness of breath. The detailed processes by which these 

interactive events occur and lead to clinical asthma are still not fully known. However, despite 

the existence of distinct asthma subtypes (e.g., intermittent, mild persistent, moderate 

persistent, or severe persistent), airway inflammation remains a ubiquitous mechanism.  
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4.4    The environmental component of asthma 

The increase of asthma prevalence in recent decades is probably due in large part to a change 

in lifestyle and exposure to environmental factors, including the many factors that have been  

associated with asthma occurrence and exacerbation, such as smoking (active and passive), air 

pollution, exposure to allergens, viral infections, unhealthy working conditions, diet. 

Epidemiological studies have also established that the timing of exposure to environmental 

factors in the life cycle is a crucial variable in determining risk (Figure 1.18), and the risks 

differ for childhood-onset and adult-onset asthma (Ober et al., 2011). 

The prenatal environment is the first exposure of life and can establish lifelong risks for 

asthma. It has been reported that maternal asthma is among the most significant and 

consistent risk factors for childhood asthma (Abdulrazzaq et al., 1994; Holberg et al., 1998; 

Litonjua et al., 1998), thereby suggesting the prenatal environment differs between asthmatic 

and non-asthmatic mothers and contributes to subsequent risk of asthma in the fetus. Other 

studies have also shown that exposure to smoking during pregnancy is associated with a 

greater risk of asthma-like symptoms for the child (Gergen et al., 1998; Gilliland et al., 2001; 

Gold, 2000). These observations demonstrate the influential effect of prenatal environment on 

asthma. 

Early life exposure to smoking or viral respiratory infections, such as respiratory syncytial 

virus and rhinovirus, can increase the risk of developing asthma in early childhood (National 

Asthma Education Prevention Program, 2007). Other factors can act as protective factors for 

developing asthma. For example, the exposure to farm animals, attending daycare, having a 

dog in the home, or drinking unprocessed cow's milk, during the first years of life, have been 

associated with protection against asthma in childhood, and this provides an explanation for 

the increasing prevalence of asthma risk in westernized countries (Ober & Vercelli, 2011). 

This is in line with the so-called “hygiene hypothesis” which proposes that exposure to 

infectious agents, symbiotic microorganisms (such as the gut flora or probiotics), and 

parasites, triggers protective responses during the development of the immune system (Okada 

et al., 2010). 
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Figure 1.18: Risk and protective factors that influence asthma risk throughout the lifecycle. 
(a): Environmental exposures that have been associated with increased risk for asthma; (b): 
Stages of the lifecycle that are "sensitive" to the epidemiologic risk and protective factors; (c): 
Environmental exposures associated with protection from asthma. From Ober and Vercelli 
(2011). 

Risk factors for asthma in adults include obesity or a high body mass index (BMI) (Chen et 

al., 2002; Gilliland et al., 2003), occupational exposures (e.g. to latex gloves, substances like 

ammonia, chemicals such as adhesives) (Bardana, 2008) and air pollution (Schwartz, 2004). 

Indoor allergens such as dust mites, animal dander, and mold are also important factors for 

triggering asthma both in children and adults. 

4.5    The genetic component of asthma 

Early studies have indicated that genetics plays an important role in the development of 

asthma and allergy (Willemsen et al., 2008). Studies of familial aggregation of asthma 

showed that the relative risk of developing asthma for siblings of asthmatic subjects with 

respect to subjects from the general population varies between 2.5 and 3.0. Twin studies 

consistently reported higher concordance rates for asthma in monozygotic twins (between 

0.43 and 0.75) than in dizygotic twins (between 0.21 and 0.45). Analyses of familial 

transmission of asthma suggested a polygenic pattern of inheritance and did not reveal the 

effect of a major gene in a consistent manner (Los et al., 1999). 

Given the substantial role of genetic factors in asthma and asthma-related phenotypes 

(including skin tests to allergens, IgE levels, lung function phenotypes), many genetic studies 
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have been conducted to identify these factors, including genetic linkage studies, candidate 

gene studies and, more recently, genome-wide association studies. Genome-wide linkage 

screens, mostly based on the affected sib-pair method and related methods, have revealed 

more than 70 regions linked to asthma or asthma-related phenotypes, although some of these 

regions were not consistently replicated. These regions included candidate genes but also 

novel genes identified by positional cloning (i.e., association analysis within linkage regions), 

but the functional role of these genes is still not well known (Bouzigon et al., 2010; March et 

al., 2013). To date, more than 1,000 association studies with candidate genes have been 

published with more than 200 loci reported associated with asthma and related phenotypes. 

However, only about 30 genes were found consistently associated with asthma in at least five 

independent studies (Table 1.9). These genes can be classified into four main categories: (1) 

genes involved in innate immunity and immune-regulation (e.g., CD14, TLR2, TLR4); (2) 

genes involved in Th2 immune response (e.g., IL4, IL13, IL4RA, FCER1B); (3) genes 

involved in airway epithelium biology and mucosal immunity (CCL5, CCL11, SPINK5); 

genes involved in lung function and airway epithelium remodelling (ADRB2, TNF, NOS1, 

ADAM33) (Halapi et al., 2004; Kabesch, 2005; Levy et al., 2005)  

The availability of high-density genotyping arrays has led to the genome-wide association 

study era of asthma. GWAS are advantageous over candidate gene studies for their 

hypothesis-free nature and ability to systematically screen the genome, allowing for discovery 

of novel asthma-associated loci. Up to now, 23 loci have been associated with asthma per se 

by 15 GWAS (Table 1.10). Ten of these GWAS were conducted in populations of European 

ancestry (at least at the discovery stage), two in Japanese, one in Latino and one in ethnically-

diverse populations (including populations of European-ancestry, African-Ancestry, and 

Latino). Of these 15 GWAS, seven studies included only childhood asthma and two studies 

included only adult asthma. These studies led to the identification of 23 loci, among which 

five (2q12, 5q22.1, 6p21.32, 9p24.1, 17q12-q21) were reported by at least two independent 

studies at the genome-wide significance level. The most strongly associated locus is the 

17q12-q21 locus (ORMDL3, GSDMB and GSDMA genes) that was reported by the first 

asthma GWAS (Moffatt et al., 2007) and was confirmed by several GWAS in populations of 

various ethnic origin. This locus was reported to confer stronger risk in childhood-onset 

asthma than in adult-onset asthma and to interact with environmental exposure to smoking in 

early life (Bouzigon et al., 2008). Beside the 17q12-q21 locus, the 2q12 (IL1RL1 / IL18R1) 
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and 9p24 (IL33) loci were reported by two large meta-analyses of asthma GWAS, one 

conducted in the European GABRIEL consortium (Moffatt et al., 2010) and the other one in 

the American EVE consortium that included multi-ancestry populations (Torgerson et al., 

2011). The broad HLA region at the 6p21.32 locus was reported by GWAS performed in 

European-ancestry populations and in Japanese, and included association signals for both 

childhood asthma and adult asthma. The 5q22.1 locus (TSLP) was identified in ethnically-

diverse populations and in Japanese. Altogether, these asthma GWAS uncovered a smaller 

number of loci than similarly sized studies of other multifactorial diseases, which may be 

partly due to the significant role of environmental exposures on disease risk and the 

phenotypic heterogeneity that is a hallmark of this disease. Because the genetic loci identified 

to date explain only part of the genetic risk, complementary approaches to GWAS, such as the 

network-based analysis proposed in this work, may prove useful in revealing novel genes 

underlying asthma and bringing further insight into the genetic component of this complex 

disease.  

Table 1.9: Genetic loci associated with asthma and asthma-related phenotypes (bronchial 
hyper-responsiveness, IgE levels) through candidate-gene studies and replicated in at least 
five independent studies. Adapted from March et al. (2013). 

Gene Chromosomal 
locus 

Function 

GSTM1 1p13.3 Detoxification, removal of products of oxidative stress 
FLG 1q21.3 Epithelial integrity and barrier function 
IL10 1q31-q32 Cytokine — immune regulation 
CTLA4 2q33 Control/inhibition of T cell responses/immune regulation 
IL13 5q31 Induces TH2 effector functions 
IL4 5q31.1 TH2 differentiation 
CD14 5q31.1 Microbe detection — recognizes pathogen associated molecular 

patterns 
ADRB2 5q31-q32 Smooth muscle relaxation 
SPINK5 5q32 Epithelial serine protease inhibitor 
HAVCR1 5q33.2 T cell responses — hepatitis A virus receptor 
LTC4S 5q35 Leukotriene synthase — inflammatory mediator 
LTA 6p21.3 Inflammatory mediator 
TNF 6p21.3 Inflammatory mediator 
HLA-DRB1 6p21 Major histocompatibility complex class II — antigen presentation 
GPRA 7p14.3 Regulation of metalloprotease expression, neuronal effects 
NAT2 8p22 Detoxification 
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Gene Chromosomal 
locus 

Function 

GSTP1 11q13 Detoxification, removal of products of oxidative stress 
FCER1B 11q13 Receptor for IgE — atopy 
IL18 11q22.2-q22.3 Inflammation 
CC16 11q12.3-q13.1 Potential immunoregulatory function — epithelial expression 
STAT6 12q13 IL-4 and IL-13 signaling 
NOS1 12q24.2-q24.31 Nitric oxide synthase — cellular communication 
CMA1 14q11.2 Chymase — mast cell expressed serine protease 
IL4R 16p12.1-p12.2 Alpha chain of receptors for IL-4 and IL-13 
CCL11 17q21.1-q21.2 Eoxtaxin-1 — eosinophil chemoattractant 
CCL5 17q11.2-q12 RANTES — chemoattractant for T cells, eosinophils, basophils 
ACE 17q23.3 Regulation of inflammation 
TBXA2R 19p13.3 Platelet aggregation 
TGFB1 19q13.1 Influences cell growth, differentiation, proliferation, apoptosis 
ADAM33 20p13 Cell—cell and cell—matrix interactions 
GSTT1 22q11.23 Detoxification, removal of products of oxidative stress 
Genes are ordered according to chromosomal location. Abbreviations: IgE, immunoglobulin 
E; IL, interleukin; RANTES, regulated and normal T cell expressed and secreted; TH, Thelper. 
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Table 1.10: Genetic loci associated with asthma per se by genome-wide association studies. 

Discovery 
population 

Replication 
population 

Phenotype Region Significance of 
the best signal 

Reported genes Ref 

European 
ancestry 

European 
ancestry  Asthma  1q21.3  2.3×10-8  IL6R Ferreira et al. (2011) 

African 
ancestry 

African 
ancestry Asthma  1q23.1 4.0×10-9  PYHIN1 Torgerson et al. (2011) 

European 
ancestry 

European & 
African 
ancestries   

Childhood 
asthma (3-12 
years of age)   

1q31.3  1.6×10-13 DENND1B Sleiman et al. (2010) 

Multi-
ancestry  

Multi-
ancestry Asthma  

2q12  

2.0×10-15 IL1RL1 Torgerson et al. (2011) 

European 
ancestry 

European 
ancestry Adult asthma 1.1×10-9  IL1RL1, IL18R1 Ramasamy et al. (2012) 

European 
ancestry 

European 
ancestry Asthma  3.4×10-9  IL18R1 Moffatt et al. (2010) 

European 
ancestry 

Multi-
ancestry 

Childhood 
asthma (5-12 
years of age) 

4q12  2.0×10-8  SRIP1 MIR548AG1 Ding et al. (2013) 

Japanese Japanese  Adult asthma 4q31  1.9×10-12 USP38, GAB1 Hirota et al. (2011) 

European 
ancestry 

Multi-
ancestry  

Childhood 
asthma (4-12 
years of age) 

5q12.1   3.0×10-8  PDE4D Himes et al. (2009) 

Multi-
ancestry  

Multi-
ancestry  Asthma  5q22.1 1.0×10-14  TSLP Torgerson et al. (2011) 
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Discovery 
population 

Replication 
population 

Phenotype Region Significance of 
the best signal 

Reported genes Ref 

Japanese Japanese  Adult asthma 1.2×10-16 TSLP, WDR36 Hirota et al. (2011) 

European 
ancestry 

European 
ancestry Asthma 5q31 1.4×10-8 IL13 Moffatt et al. (2010) 

Latino 
Americans 

Latino 
Americans 

Childhood 
asthma 6p21.33 

p < 5×10-6 
(admixture 
mapping; p-value 
based on 
permutation) 

MUC22 Galanter et al. (2014) 

Japanese  Japanese  Adult asthma 

6p21.32 
 

4.1×10-23 NOTCH4 Hirota et al. (2011) 

Japanese  Japanese  Childhood 
asthma  2.3×10-10  HLA-DPA1, HLA-

DPB1 Noguchi et al. (2011) 

European 
ancestry Mixed Adult asthma  2.0×10-8 HLA-DQA1 Lasky-Su et al. (2012) 

European 
ancestry 

European 
ancestry Adult asthma  1.1×10-8   BTNL2,HLA-DRA Ramasamy et al. (2012) 

European 
ancestry 

European 
ancestry Asthma 7.0×10-14  HLA-DQ Moffatt et al. (2010) 
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Discovery 
population 

Replication 
population 

Phenotype Region Significance of 
the best signal 

Reported genes Ref 

European 
ancestry 

European 
ancestry 

Severe 
childhood 
asthma (2-6 
years of age)   

7q22.3 

3.0×10-14 (but 
significant 
heterogeneity; 
prandom=2.7×10-7) 

CDHR3 Bønnelykke et al. 
(2014) 

Japanese  Japanese, 
Koreans 

Childhood 
asthma 8q24.11  5.0×10-13  SLC30A8 Noguchi et al. (2011) 

European 
ancestry 

Multi-
ancestry 

Childhood 
asthma (1-18 
years of age) 

9p23  8.0×10-9  JKAMPP1 TYRP1 Ding et al. (2013) 

Multi-
ancestry 

Multi-
ancestry Asthma 

9p24.1  
2.0×10-12   IL33 Torgerson et al. (2011) 

European 
ancestry 

European 
ancestry Asthma 9.2×10-10  IL33 Moffatt et al. (2010) 

Japanese  Japanese  Adult asthma 10p14  1.8×10-15  LOC338591 Hirota et al. (2011) 

European 
ancestry 

Multi-
ancestry 

Childhood 
asthma (1-18 
years of age) 

10q24.2   5.0×10-8 HPSE2 Ding et al. (2013) 

European 
ancestry 

European 
ancestry Asthma  11q13.5 2.0×10-8 LRRC32 Ferreira et al. (2011) 

Japanese  Japanese  Adult asthma 12q13.2   2.3×10-13  
IKZF4 Hirota et al. (2011) 

European 
ancestry 

European 
ancestry Asthma 15q22.2 2.4×10-9 RORA Moffatt et al. (2010) & 

Ramasamy et al. (2012)  
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Discovery 
population 

Replication 
population 

Phenotype Region Significance of 
the best signal 

Reported genes Ref 

European 
ancestry 

European 
ancestry Asthma  15q22.33 3.9×10-9  SMAD3 Moffatt et al. (2010) 

European 
ancestry 

European 
ancestry 

Severe 
childhood 
asthma (2-6 
years of age)   

17q12-
q21  

6.4×10-23  GSDMB Bønnelykke et al. 
(2014) 

European 
ancestry 

European 
ancestry Asthma  

6.4×10-23  
(childhood-onset 
asthma) 

GSDMB Moffatt et al. (2007) 

Multi-
ancestry  

Multi-
ancestry  Asthma  2.0×10-16  GSDMB Torgerson et al. (2011) 

European 
ancestry 

European 
ancestry Severe asthma  1.0×10-8  ORMDL3 Wan et al. (2012) 

Latino 
Americans 

Latino 
Americans 

Childhood 
asthma 5.7×10-13  IKZF3 Galanter et al. (2014) 

European 
ancestry 

European 
ancestry 

Severe 
childhood 
asthma (2-6 
years of age)  

3.0×10-21   
GSDMA 

Bønnelykke et al. 
(2014) 

European 
ancestry 

European 
ancestry Asthma  

3.0×10-17 
(childhood-onset 
asthma) 

GSDMA Moffatt et al. (2010) 

European 
ancestry 

European 
ancestry Asthma 22q12.3  1.0×10-8  IL2RB Moffatt et al. (2010) 



CHAPTER I. INTRODUCTION 

66 
 

5    Outline of the thesis work 

Genetic association studies of asthma have been successful in identifying novel asthma-

associated loci. As for many other complex diseases, the genetic variants at these loci account 

for a relatively small part of the whole asthma genetic susceptibility. Up to now, genome-

wide association studies are mainly based on single-marker analysis which requires stringent 

threshold (5×10-8) to declare significance. This may miss genetic variants having a small 

marginal effect and/or interacting with other variants. To complement the single-marker 

approaches, more sophisticated strategies, such as those integrating pathways and/or protein-

protein interaction (PPI) networks with GWAS data to identify disease-associated functional 

gene modules, have become prominent. The main objectives of this thesis, thereby, were to 

develop network-based analysis methods and apply them to asthma GWAS data to identify 

biological processes and prioritize new candidate genes for asthma. 

The asthma genetic data used in this thesis was acquired from the European GABRIEL 

Consortium that is hosted in UMR-946 laboratory (http://genestat.inserm.fr/fr/), which will be 

introduced in Chapter II. 

The first study of this thesis, presented in Chapter III, aimed at extending an existing network-

based analysis method and applying it to childhood-onset asthma GWAS data. This study 

included the development of a novel gene-based method, named fastCGP, to compute gene-

level p-values from SNP p-values, and a bi-directional module searching strategy that 

extended the dmGWAS (Jia et al., 2011) approach to identify gene modules consistently 

associated with asthma. The results of this network analysis and their biological interpretation 

are presented in an article published in Scientific Reports. 

The second study of this thesis, presented in Chapter IV, was to develop a novel active 

module search method, named SigMod, which has the potential to boost the performance of 

network-based analysis in general. SigMod aims at selecting a set of genes that are enriched 

in high association signals and tend to have strong interconnections. Compared to previous 

network analysis methods, SigMod has several advantages, including the high interpretability 

of the result, the robustness to background noise, and the ability to incorporate edge weights. 

SigMod was applied to both simulated data and childhood-onset asthma GWAS data using a 

biological network from the STRING database (Szklarczyk et al., 2017). The methodological 

http://genestat.inserm.fr/fr/�
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developments of SigMod together with the results of simulations and analysis of asthma 

GWAS data are presented in an article published in Bioinformatics. 

The discussion, perspectives, and conclusion of this thesis are presented in Chapter V. 
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CHAPTER II. GABRIEL ASTHMA DATA 

1    Description of the GABRIEL asthma genetic consortium 

The asthma GWAS data used in this thesis comes from the GABRIEL consortium—a 

multidisciplinary study to identify the genetic and environmental factors of asthma in the 

European Community, that was funded by the European Community and the Wellcome Trust. 

This consortium consisted of over 150 scientists from 14 European countries. 

The GABRIEL GWAS data includes a total of 10,365 case subjects and 16,110 controls 

recruited from 23 studies, all of which are European-ancestry. Details of these studies were 

given in Moffatt et al. (2010). Data on case subjects and population-matched controls were 

obtained from clinics and from cohort and cross-sectional population surveys in Europe. The 

study also included a few family studies, case subjects and controls of European descent from 

Canadian, Australian, and U.S. surveys. Asthma was considered to be present if it had been 

diagnosed by a physician. Childhood-onset asthma was defined as the presence of the disease 

in a person younger than 16 years of age and later-onset asthma as the disease that developed 

at 16 years of age or older. Some surveys contributed samples to both childhood-onset and 

later-onset groups. Other subgroups consisted of subjects with asthma that were developed at 

an unknown age, subjects with occupational asthma, and subjects with severe asthma. All 

participants or their parents provided written informed consent for their participation in the 

study, in accordance with the rules of local ethics committees. 
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2    Genotyping, quality control (QC) and genotype imputation of 
GABRIEL studies 

All GABRIEL consortium datasets, except for the MRCA and MAGICS datasets, were 

genotyped at Centre National de Génotypage (CNG, Evry, France) using the Illumina 

Human610-Quad array. The MRCA and MAGICS datasets were genotyped using Illumina 

Sentrix Human-1 and Sentrix HumanHap300 BeadChips, as part of the first asthma GWAS 

(Moffatt et al., 2007). QC of individuals and SNPs genotyped at CNG was done in each 

dataset following the same protocol. Briefly, individuals were removed from analysis if they 

were not of European descent (based on principal component analysis of each GABRIEL 

dataset with all HapMap populations), had a low genotyping call rate (<95%) or were 

discrepant or ambiguous for genetic sex. Single Nucleotide Polymorphisms (SNPs) with call 

rate lower than 95% or minor allele frequency (MAF) lower than 0.01, or with Hardy-

Weinberg equilibrium p-value < 10-4 were removed. QC for MRCA and MAGICS is detailed 

in Moffatt et al. (2007). 

In each dataset, genome-wide imputations were performed using MACH 1.0 software and 

HapMap Phase 2 (Release 21) as reference panel. SNPs with imputation quality score (rsq) ≥ 

0.5 and MAF ≥ 0.01 were kept for analysis.  
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3    Statistical analysis of childhood-onset asthma GWAS 

In each study, association analysis between asthma and individual SNPs was performed using 

a logistic regression model that included allele dosage for each SNP and principal 

components to account for population structure. In family data, a robust sandwich estimation 

of the variance and a family cluster were used to take into account familial dependencies. All 

analyses were performed using Stata® version 10 (distributed by Stata Corporation, College 

Station, Texas, USA). The GWAS summary statistics of all GABRIEL studies are hosted by 

the Inserm unit UMR-946 (http://genestat.inserm.fr/fr/), where I am conducting my work. 

For this thesis, we focused on childhood-onset asthma (COA), because it represents a more 

homogeneous entity. We randomly divided the 18 GABRIEL studies with childhood-onset 

asthma into two groups of nine studies each while keeping a total sample size similar in each 

group. The studies contained in each group are shown in Table 2.1. A total of 3,031 

cases/2,893 controls were in the first group and 2,679 cases/3,364 controls were in the second 

group. The splitting of asthma COA GWAS into two groups was motivated by the need to use 

two sets of GWAS outcomes as input for the network analyses performed in this thesis. This 

allowed finding consistent results and cross-validating the results, as will be detailed in the 

following sections. 

Meta-analyses of the study-specific asthma GWAS summary statistics were performed in 

each of the two groups and also in the whole set of 18 studies. We used both inverse variance 

fixed-effects model and random-effects model. Under the random-effect model, the estimate 

of the between-study variance was based on the DerSimonian and Laird method (Higgins et 

al., 2002). All meta-analyses were done with Stata® version 14.1 (STATA Corp., College 

Station, Texas, USA). Tests of significance of the meta-analyzed SNP effect sizes were 

performed using the Wald test. A conventional threshold of 5×10-8 was used to declare 

genome-wide significance. Tests of heterogeneity across studies in each group were based on 

the Cochran's Q statistic. To minimize the false-positive findings, we only examined SNPs for 

which at least two-thirds of the studies contributed to a meta-analysis, as done before in 

Moffatt et al. (2010). The outcomes of the meta-analyses (single-SNP p-values) of the two 

groups were named META1 and META2 respectively. 

http://genestat.inserm.fr/fr/�
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Table 2.1: The list of 18 GABRIEL COA GWAS surveys. 

Study Country #Cases #Controls Total 

META 1: 9 studies 

ALSPAC United Kingdom 607 609 1 216 

BAMSE Sweden 239 246 485 

CAPPS* Canada 266 156 422 

ECRHS Pan European 279 620 899 

MAGICS Germany 630 572 1 202 

MAS (pooled with MAGICS) Germany 171 0 171 

SLSJ* Canada 373 390 763 

TOMSK* Russia 197 91 288 

UFA Russia 269 209 478 

Total (META1)   3,031 2,893 5,924 

META 2: 9 studies 

B58C United Kingdom 213 200 413 

BUSSELTON Australia 188 390 578 

EGEA* France 482 598 1,080 

GABRIELA   Germany 841 851 1,692 

KSMU Russia 112 116 228 

MRCA-UKC* United Kingdom 177 399 576 

PIAMA Netherlands 172 187 359 

SAGE* Canada 257 267 524 

SAPALDIA Switzerland 237 356 593 

Total (META2)  2,679 3,364 6,043 

Total (META1 + META2) 5,710 6,257 11,967 

* Family study 
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4    Results 

There was a total of 2,370,689 SNPs that passed all QC filters in the meta-analysis of META1 

and META2. Estimates of the genomic control parameter (λ ) showed little inflation of the 

test statistics under the fixed-effects model (lambda = 1.039 in META1 and 1.017 in META2); 

the lambda estimates were less than one (lambda = 0.873 in META1 and 0.870 in META2) 

under the random-effects model. Because there was evidence for heterogeneity across studies 

at a few loci, we used the p-values obtained under a random-effects model (prandom) as input 

for our network analyses, although this may be somehow a conservative choice. The Q-Q 

plots of META1 and META2 under a random-effects model are shown in Figure 2.1. 

The SNP prandom-values of each meta-analysis is shown by a double Manhattan plot (called 

Miami plot) in Figure 2.2.  

 

Figure 2.1: Log quantile-quantile (Q-Q) p-value plot. Left: Q-Q plot of META1; right: Q-Q 
plot of META2. The observed GWAS prandom-values for SNPs are plotted against the 
expected p-values. The genomic control parameter λ is 0.873 for META1 and 0.870 for 
META2. 
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Figure 2.2: Double Manhattan plot of the results of two meta-analyses. The horizontal dashed 
lines indicate the genome-wide significance threshold (p < 5×10−8). 

The distribution of prandom values for different thresholds is shown in Table 2.2. When using 

the genome-wide significance level of 5×10-8, we observed 64 SNPs associated with COA in 

META1. All these SNPs are located at 2 loci, the 6p21.33 and 17q12-q21 loci (Figure 2.2 and 

Table 2.3). The strongest association on chromosome 17 was with rs9303281 within the 

GSDMB gene (prandom=2.6×10-16; odds ratio (OR)=1.36, 95% CI= (1.27-1.47)). The strongest 

association on chromosome 6 was with the SNP rs2596560 (prandom=7.9×10-9; OR=1.30, 95% 

CI=(1.19-1.43)), which is approximately 5kb downstream of HLA-B gene. In META2, only 

one SNP on 17q12-q21 reached the genome-wide threshold, rs4794820 (prandom=3.1×10-8, 

OR=0.79, 95% CI=(0.73-0.86)). This SNP is located 15kb apart from the top SNP in META1 

and is distal to ORMDL3 gene. 
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When we used a less stringent threshold of 5×10-7 that is suggestive of association, no 

additional locus was identified in META1 (five additional SNPs meeting that level were in 

the 6p21.33 region). However, in META2, one additional locus, 9p24.1, was detected; the top 

SNP (rs7848215) was close to the genome-wide level; prandom=5.1×10-8) and is proximal to 

IL33 gene. 

These results were compared to those of the meta-analysis of all 18 studies. In the latter 

analysis, two loci were genome-wide significant, 2q12 and 17q12-q21, and two other loci, 

6p21.33 and 9p24.1, showed suggestive association (prandom ≤ 5×10-7). We can note that the 

2q12 locus was not detected in META1 or META2, the SNPs with the strongest association 

having prandom =1.9×10-5 and 2.2×10-5 in META1 and META2 respectively. Finally, among 

the four loci evidenced in these analyses, three of them, 2q12, 9p24.1 and 17q12-q21 were 

previously reported by the GABRIEL meta-analysis of asthma GWAS based on genotyped 

SNPs (Moffatt et al., 2010), while the 6p21.33 locus is a new locus in European-ancestry 

populations, as it was only reported in an admixture mapping analysis in Latino populations. 

Table 2.2: This table lists the number of SNPs that have a Prandom value falling into each 
interval in META1, META2, and in the meta-analysis of the 18 GABRIEL studies. 

                             Dataset 
 
Interval of Prandom  

META1 META2 Meta-analysis of all 18 studies 

(-∞, 5×10-8] 64 1 138 

(5×10-8, 1×10-7] 5 9 3 

(1×10-7, 1×10-6] 32 24 30 

(1×10-6, 1×10-5] 67 40 89 

(1×10-5, 1×10-4] 394 184 266 
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Table 2.3. Loci significantly associated with asthma in META1, META2 and in the meta-analysis of all 18 GABRIEL studies 

Loci with genome-wide significance - prandom ≤ 5×10-8 

 META1 (9 studies) META2 (studies) Meta-analysis of all 18 studies 

Region SNP 
(position)† Nearest genes‡ prandom  SNP (position)† Nearest genes‡ prandom SNP 

(position) † 
Nearest 
genes‡ Prandom 

2q12 
rs3771166 
(102,986,222) 

IL18R1, IL1RL1, 
IL18RAP 1.9×10-5 

rs10206753 
(102,968,362) 

IL1RL1, 
IL1RL2, 
IL18R1 2.2×10-5 

rs3771166 
(102,986,222) 

IL18R1, 
IL1RL1, 
IL18RAP 1.8×10-9 

6p21.33 
rs2596560 
(31,355,318) HLA-B, MICA 7.9×10-9 

rs2596560 
(31,355,318) HLA-B, MICA 0.34 

rs2596464 
(31,412,961) 

MICA, 
HCP5 2.5×10-7 

17q12-q21 
rs9303281 
(38,074,046) 

GSDMB, 
ZPBP2, 
ORMDL3 2.6×10-16 

rs4794820 
(38,089,344) 

LRRC3, 
ORMDL3, 
GSDMA 3.1×10-8 

rs9303277 
(37,946,469) 

IKZF3, 
GRB7, 
ZPBP2 1.7×10-20 

Additional loci - prandom ≤ 5×10-7 

9p24.1 rs7848215 RANBP6, IL33 1.6×10-2 rs7848215 RANBP6, IL33 5.1×10-8 
rs1342326 
(6,190,076) 

RANBP6, 
IL33 5.1×10-7 

†The SNP position is according to build 37; 

‡The gene where eventually the SNP lies is first indicated followed by the previous gene and next gene; 

SNPs that reached the genome-wide significance level (prandom ≤ 5×10-8) are in bold; 
Results are indicated for the top SNP at a locus in each meta-analysis if prandom was ≤10-4 otherwise we used the SNP showing the strongest 
association across the three meta-analyses. 



CHAPTER III. NETWORK-BASED ANALYSIS OF ASTHMA GWAS DATA 

76 
 

CHAPTER III. NETWORK-BASED ANALYSIS OF 
CHILDHOOD ASTHMA GWAS DATA 

1    Summary 

Asthma is a multifactorial disease arising from many genetic and environmental factors. 

Genome-wide association studies (GWAS) of asthma have been successful in identifying 

novel asthma-associated loci, but as for other complex diseases, genetic variants at these loci 

account for only a part of asthma genetic susceptibility. One limitation of GWAS is that they 

rest on single-marker analysis and is underpowered to detect genetic variants with small 

marginal effects and interacting with other genetic variants.  

To complement the typical single-marker analysis in GWAS, more sophisticated analysis 

strategies, such as network-based analysis that integrates biological networks with GWAS 

outcomes, have been proposed to allow detecting sets of functionally related genes that jointly 

affect disease risk. In this study, we performed a network-based analysis of asthma. We used 

two GWAS outcomes (named META1 and META2, respectively) that are the results of meta-

analyses of nine childhood-onset asthma (COA) GWAS each (5,924 subjects for the first 

dataset, 6,043 subjects for the second dataset). These GWAS were part of the European 

GABRIEL asthma consortium data as described in Chapter II. The PPI data we used was 

retrieved from PINA database (http://omics.bjcancer.org/pina/), which contains protein 

interaction information integrated from multiple primary databases and has been introduced in 

Section 3.3.1 of Chapter I. 

To conduct network-based analysis, we first proposed an exact and efficient gene-based 

method, named fastCGP, to compute gene p-values from SNP p-values. fastCGP takes 

advantage of the CGP technique (as introduced in Section 3.2.2 of Chapter I) to correct the 

best-SNP p-value for gene length while takes into account the LD among SNPs. We have 

implemented fastCGP in an analytical manner so that to achieve computational efficiency. 

The gene p-values computed by fastCGP were transferred into scores and overlaid to the PPI 

to build a scored-network. We proposed a bi-directional module searching method that 

extended the dmGWAS (Jia et al., 2011) approach in order to identify consistent gene 

modules from the scored-network. 

http://omics.bjcancer.org/pina/�
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Application of these strategies to the asthma GWAS outcomes (META1 and META2) 

detected a gene module of 91 genes significantly associated with COA (p ≤ 10-5). This 

module consists of a core network and five peripheral subnetworks including known and 

high-confidence candidates for asthma. Out of the 91 genes that belonged to the selected 

module, 19 genes had nominally significant p-value in both META1 and META2 datasets. 

They included 13 genes at 4 loci found significantly associated with asthma in previous 

GWAS (2q12, 5q31, 9p24.1, 17q12-q21), and six genes at six distinct loci that are novel: 

CRMP1 (4p16.1), ZNF192 (6p22.1), RAET1E (6q24.3), CTSL1 (9p21.33), C12orf43 

(12q24.31) and JAK3 (19p13-p12). Additionally, we found the core genes of the module were 

connected to APP (encoding amyloid beta precursor protein), a major player in Alzheimer's 

disease that is known to have immune and inflammatory components. This link between APP 

and asthma-associated genes indicates that asthma and Alzheimer's disease may share 

common underlying mechanisms. It can open new routes for elucidating the functional role 

and relationships of these genes in asthma, and also potentially, in Alzheimer's disease. 

Functional analysis of the module genes using the DAVID tool (Huang et al., 2007) revealed 

four functionally related gene clusters involved in innate and adaptive immunity, chemotaxis, 

cell-adhesion and transcription regulation, which are biologically meaningful processes 

underlying asthma risk. Altogether, this study prioritized new candidate genes and brought 

deeper insight into their functional relationships with asthma. 
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Network-assisted analysis of GWAS 
data identifies a functionally-
relevant gene module for 
childhood-onset asthma
Y. Liu  1,2, M. Brossard1,2, C. Sarnowski1,2, A. Vaysse1,2, M. Moffatt3, P. Margaritte-Jeannin1,2, 
F. Llinares-López4, M. H. Dizier1,2, M. Lathrop5, W. Cookson  3, E. Bouzigon1,2 & F. 
Demenais1,2

The number of genetic factors associated with asthma remains limited. To identify new genes with an 
undetected individual effect but collectively influencing asthma risk, we conducted a network-assisted 
analysis that integrates outcomes of genome-wide association studies (GWAS) and protein-protein 
interaction networks. We used two GWAS datasets, each consisting of the results of a meta-analysis of 
nine childhood-onset asthma GWASs (5,924 and 6,043 subjects, respectively). We developed a novel 
method to compute gene-level P-values (fastCGP), and proposed a parallel dense-module search and 
cross-selection strategy to identify an asthma-associated gene module. We identified a module of 91 
genes with a significant joint effect on childhood-onset asthma (P < 10−5). This module contained a core 
subnetwork including genes at known asthma loci and five peripheral subnetworks including relevant 
candidates. Notably, the core genes were connected to APP (encoding amyloid beta precursor protein), 
a major player in Alzheimer’s disease that is known to have immune and inflammatory components. 
Functional analysis of the module genes revealed four gene clusters involved in innate and adaptive 
immunity, chemotaxis, cell-adhesion and transcription regulation, which are biologically meaningful 
processes that may underlie asthma risk. Our findings provide important clues for future research into 
asthma aetiology.

Asthma is a common chronic inflammatory disease of the airways, characterized by varying age at onset and 
clinical presentation1. It is currently estimated that 334 million people suffer from asthma worldwide and 14% 
of the world’s children experience asthma symptoms1. Although environmental factors play an important role 
in asthma, estimates of heritability of asthma range from 35% to 75%2, which suggests significant genetic con-
tribution. There have been considerable efforts to characterize the genetic factors underlying asthma, including 
candidate gene studies, positional cloning studies and more recently genome-wide association studies (GWAS)3, 4.  
Although these studies have been successful in identifying novel loci, the genetic factors identified to date explain 
only a small part of asthma risk. Moreover, heterogeneity is a hallmark of asthma. Genetic heterogeneity accord-
ing to age of onset of asthma has been evidenced, with genetic factors appearing to play a more important role in 
childhood-onset asthma5, 6.

Typically, GWAS focus on testing association of disease with individual SNPs over the genome and only 
top-ranked SNPs with strongest statistical evidence for association are reported. GWAS are therefore under-
powered to detect genetic variants which have small marginal effect but rather act jointly or interact with each 
other in disease or trait variability. To complement the typical single-marker analysis, more sophisticated anal-
yses of GWAS data, which integrate biological knowledge with GWAS outcomes, have been proposed to allow 
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detecting sets of functionally related genes that jointly affect disease risk. Among many of these approaches stands 
the network-assisted analysis that integrates GWAS results with protein-protein interaction (PPI) network to 
identify gene modules (subnetworks) enriched in association signals. The rationale behind it is the principle of 
“guilt-by-association”, which states connected genes (or gene products) are usually participating in the same, or 
related, cellular functions7, 8. Therefore, network-assisted analysis is a promising approach to discover functionally 
related genes that have a small marginal effect but rather act jointly in disease susceptibility.

In spite of such advantages, network-assisted analysis is also facing challenges. In a classical GWAS, associa-
tion tests are typically performed at the SNP level, yet the basic entity of PPI network is gene products (proteins). 
An essential question is how to aggregate signals at SNP-level into gene-level. A popular approach is to take the 
best SNP from all SNPs mapped to a gene as gene-level P-value. However, longer genes represented by more 
SNPs are more likely to have small P-values by chance9, 10. Another challenge of network-assisted analysis is that 
most algorithms for searching gene modules are sensitive to the input data: the PPI network and GWAS results. 
It is well known that GWAS vary in their results for many reasons such as study design, genetic background 
of the populations, disease heterogeneity, and influence of environmental exposures or simply because of ran-
dom variation. Therefore, appropriate network-analysis strategies need to be implemented to identify reliable 
disease-associated gene modules.

In the present study, we conducted a network-assisted analysis by integrating childhood-onset asthma (COA) 
GWAS results with experimentally verified human PPI network information to identify a set of interconnected 
genes that significantly contributes to COA risk. We used two large GWAS datasets which consisted of the results 
of meta-analyses of nine COA GWAS each (5,924 subjects for the first dataset, 6,043 subjects for the second 
dataset), that were part of the European Gabriel asthma consortium. To address the challenges mentioned above, 
we first developed an efficient method, named fastCGP, to compute gene-level P-values from GWAS SNP-level 
P-values. Then, we used a parallel dense-module search and cross-selection strategy to search for a consist-
ent gene module between the two datasets. We identified a module of 91 genes significantly associated with 
childhood-onset asthma, including both known and novel candidate genes. Inspection of the interconnected 
components of this module together with functional enrichment analysis revealed biologically meaningful pro-
cesses that underlie the risk of childhood-onset asthma.

Results
The different steps of the proposed parallel dense-module search and cross-selection strategy are summarized in 
Fig. 1.

Identification of a module enriched with childhood-onset asthma-associated genes. We 
used individual SNP-level P-values from two independent COA GWAS datasets as input data to perform 
network-assisted analysis. These two datasets were the results of meta-analyses of nine COA GWAS each 
(named META1 and META2, respectively) and included 2,370,689 unique SNPs. The two datasets that were 
meta-analysed were obtained by randomly splitting the total set of 18 Gabriel Consortium COA GWAS into two 
sets of similar size (3,031 cases and 2,893 controls in the first set; 2,679 cases and 3,364 controls in the second set).

We first combined SNP-level P-values into gene-level P-values using a novel gene-based method named 
fastCGP. fastCGP starts by mapping SNPs to genes (between the start site and 3′-untranslated region of each 
gene) using dbSNP Build 132 and human Genome Build 37.1, making a total of 24,120 genes with at least one 
SNP mapped. Then, gene-level P-values were taken as the best SNP P-values among all SNPs mapped to the 

Figure 1. Workflow of the parallel dense-module search and cross-selection strategy. Individual SNP-level 
P-values from two independent childhood-onset asthma GWAS datasets (META1 and META2) were used as 
input for our network analysis. Gene-level P-values, computed from SNP-level P-values using fastCGP were 
converted to z-scores and overloaded to the PPI. The Dense Module Search algorithm was applied to each 
scored-PPI in parallel to search for dense modules. Modules with highest consistency between the two datasets 
were selected to build the final module.
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gene and were corrected for the gene length bias using circular genomic permutation of SNP P-values, which 
allows taking into account the linkage disequilibrium (LD) between SNPs (see Methods and Supplementary 
Information for details). The resulting gene-level P-values in META1 and META2 are shown in Supplementary 
Fig. S1. Gene-level P-values were transformed to z-scores and overloaded to PPI, resulting in a scored-PPI for 
META1 and a scored-PPI for META2. The scored-PPIs consisted of 12,709 proteins and 123,608 interactions.

The Dense Module Search (DMS) algorithm11 was applied to each scored-PPI in parallel to identify modules 
enriched in association signals (quantified by a module score, which is the mean of z-scores of module genes). 
A total of 10,439 modules were generated in META1 and 10,429 modules in META2. As expected, because of 
the nature of DMS algorithm, there is considerable gene overlap between the modules generated in each dataset 
(Supplementary Fig. S2). We reduced such redundancy by hierarchically merging the raw modules within dataset 
until all pairwise module similarities were smaller than 0.5 (a similarity of r implies two modules share ~100r% 
of their genes), which resulted in 1,127 modules in META1 and 952 modules in META2. The overlap between the 
merged modules was largely reduced (Supplementary Fig. S2).

To identify consistent modules between the two datasets, we computed all pairwise module similarities across 
datasets. The similarity between two modules was defined by the proportion of genes they share (see Methods). 
Among a total of 1,072,904 module pairs, 95% had low similarity of less than 0.20 but 77 pairs had similarity over 
0.40, showing notable consistency of the involved modules (Supplementary Fig. S3). In order to obtain the most 
consistent results, we selected the top 10 module pairs with highest pairwise similarities. These module pairs 
had similarity ranging from 0.42 to 0.63. The modules belonging to these 10 module pairs were further merged 
within each dataset, resulting in a single connected subnetwork of 171 genes with 243 interactions in META1 and 
201 genes with 289 interactions in META2 (Supplementary Fig. S4). Finally, we took the intersection of the two 
subnetworks and obtained a final module of 91 genes with 106 interactions (Fig. 2 and Supplementary Table S1).

Module assessment. The identified gene module showed significant association with childhood-onset 
asthma, with Passoc < 10−5 in both META1 and META2 (using 100,000 circular genomic permutations). This mod-
ule had a significantly higher score than expected by chance, with Pzm < 10−5 and < . × −P 7 9 10z

mhrw 5
m

 evaluated 
in both META1 and META2, where Pzm was computed by comparing the identified module score with the scores 
of 100,000 topology-free random modules, and Pz

mhrw
m

 with the scores of 12,709 random modules generated by the 
modified Metropolis-Hasting Random Walk (MHRW) algorithm that takes into account the connection among 
genes (see Methods for details). The gene module was also enriched in genes that are nominally significant in at 
least one dataset ( = . × −P 2 3 10sig

hyper 12 and < . × −P 7 9 10sig
mhrw 5). Moreover, the number of pairwise connections 

Figure 2. The gene module identified for childhood-onset asthma. The red coloured nodes represent genes 
at known asthma associated loci and nominally significant in both META1 and META2 datasets; the blue 
coloured nodes represent new module genes that are nominally significant in both META1 and META2 
datasets; the black coloured nodes represent new module genes that are nominally significant in either dataset; 
the grey coloured nodes are not significant. The node size indicated the strength of the association (the 
maximum z-score of its corresponding gene in the two datasets).
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among nominally significant genes was significantly higher for genes in the selected module than for genes out-
side the selected module (Pcon = 3.0 × 10−5), implying more functional relatedness among the selected genes.

Out of the 91 genes that belonged to the selected gene module, 19 genes had nominally significant P-value 
in both META1 and META2 datasets. These 19 genes included 13 genes at 4 loci found significantly associated 
with asthma in previous GWAS (2q12, 5q31, 9p24.1, 17q12-q21)4, 6, and six genes at six distinct loci that are 
novel: CRMP1 (4p16.1), ZNF192 (6p22.1), RAET1E (6q24.3), CTSL1 (9p21.33), C12orf43 (12q24.31) and JAK3 
(19p13-p12). Among the other 72 genes, 16 genes were nominally significant in one dataset (META1 or META2) 
while the remaining genes were connected to the nominally significant genes (Supplementary Table S1). The 
overall module contained a core subnetwork and five peripheral subnetworks connected to the core. The core 
subnetwork included genes at the known 2q12, 9p24.1 and 17q12-21 loci that were all connected through the APP 
gene (amyloid beta precursor protein) which occupies a central position in this subnetwork. The five peripheral 
subnetworks, each harbouring multiple nominally significant genes, were brought together through these core 
genes (Fig. 2). It is of note that the APP gene, which encodes the amyloid beta precursor protein, predisposes to 
dominant forms of Alzheimer’s disease (AD) but also harbours rare variants with a protective effect on AD12. 
This protein is cleaved by secretases to form a number of peptides, some of which contribute to amyloid plaques 
in the brains of patients with AD while others have bactericidal and antifungal activities. We noticed that APP is 
a hub gene in the scored-PPI network, as it has the second highest number of interactors (1,727). Nonetheless, 
two elements show that it was identified in the final module not only for its “hubness”, but also for its interac-
tions with genes strongly associated with COA. First, APP was present in 97% of the raw modules generated by 
DMS, while two other hub genes with comparable number of interactors, NRF1 (2,174 interactors) and SUMO2 
(1,098 interactors), were included in less than 5% of the raw modules. Second, setting the score of all direct inter-
actors of APP in the identified module to zero led to a dramatic decrease from 97% to 4% of the raw modules 
containing APP. This demonstrates that APP was identified in the final module mainly for its interactions with 
strongly COA-associated genes. This link between APP and asthma-associated genes suggests potential relation-
ship between AD and asthma that will be further discussed.

Functional clustering and annotations of the identified module genes. The functional and biolog-
ical relatedness of the module genes were explored using the gene functional classification tool of DAVID13. This 
tool clusters genes into functionally related groups according to gene-to-gene annotation similarities using over 
75,000 terms from 14 annotation sources (including KEGG, Gene ontology etc.), allowing a much more com-
prehensive analysis than enrichment analysis based solely on Gene ontology categories or KEGG pathways. We 
identified four functional gene clusters which altogether included 48% of the module genes (Fig. 3 and Table 1). 

Figure 3. Clusters of functionally-related genes in the COA module. Four genes cluster including a total of 44 
out of 91 module genes were identified using DAVID13, 41. The genes coloured in black belong to the Immune 
Response cluster; the genes coloured in red belong to the Chemokines/Chemotaxis cluster; the genes coloured 
in green belong to the Cadherins/Cell-adhesion cluster and the genes coloured in blue belong to the Zinc finger 
proteins/Transcription regulation cluster. Genes belonging to multiple clusters are marked by mixed colours.
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The largest cluster (cluster 1) encompassed 22 genes scattered across the module while the three other functional 
clusters showed almost complete overlap with the peripheral subnetworks. These clusters were annotated by the 
most representative terms that were “immune response”, “chemokines/chemotaxis”, “cadherins/cell-adhesion” and 
“zinc finger proteins/transcription regulation”, respectively (Table 1).

Discussion
Network-assisted analysis provides a powerful approach to explore the joint effects of multiple genetic factors 
on disease and to discover new candidate genes that are missed by single-marker analysis. This is of particular 
interest for asthma where the number of loci reported by GWAS is relatively small as compared to other common 
diseases. By integrating the results of two large-scale meta-analyses of childhood-onset asthma with a compre-
hensive protein-protein interaction network, we identified a gene module of 91 genes that significantly influences 
COA. This module includes known genes and novel promising candidates. Functional annotation of this module 
revealed biologically meaningful processes underlying childhood asthma.

The core of the identified module included 11 genes at the three loci that reached genome-wide significance in 
the meta-analysis of all 18 Gabriel Consortium childhood-onset GWAS, and were also replicated by many other 
studies4, which demonstrates the validity of our strategy. The connection of these genes with APP in the core 
subnetwork is of great interest and is supported by a number of studies indicating that asthma and Alzheimer’s 
disease (AD) may share common underlying mechanisms. Epidemiological studies have reported an increased 
risk of AD and dementia in patients with asthma or other allergic diseases14, 15. Genetic factors involved in 
immune-related and inflammatory processes, which are key in asthma, are associated with AD16. Epigenetic sig-
natures for both neuronal and immune-response genes were found in a mouse model of AD and in orthologous 
regions in humans17. It has also been recently suggested, in mouse and worm models of AD, that amyloid-β pep-
tide may play a protective role in innate immunity18. Finally, in a mouse model of AD, an asthma drug was found 
to have a potential beneficial impact in AD by decreasing the levels of amyloid-β peptides19. The link between APP 
and asthma genes, as highlighted in our module, can open new routes of research for elucidating the functional 
role and relationships of these genes in asthma, and also potentially, in AD.

The identified module highlighted six novel genes that were nominally significant in both META1 and 
META2 datasets. The functions of at least four of these genes make them strong candidates for asthma. RAET1E 
(retinoic acid early transcript 1E) belongs to the major histocompatibility complex (MHC) class I-related genes 
of the RAETA family which encode ligands for NKG2D receptor, known to be involved in innate and adaptive 
immune responses. In the identified module, RAET1E is connected to the NKG2D encoding gene KLRK1, and 
through KLRK1, to several genes of MIC and RAET/ULBP families which all encode NKG2D ligands that appear 
on the surface of stressed cells, such as virus-infected cells20. Some of these genes were also nominally significant. 
This clearly illustrates the usefulness of network analysis in pointing out a set of functionally-related genes that 
may collectively influence COA, while, individually, they only show nominal association or even no association. 
Another candidate is CTSL1, which encodes a proteinase that acts on the alpha-1 protease inhibitor, a major con-
trolling element of neutrophil elastase activity associated with allergic airway inflammation and severe asthma21. 
JAK3 (19p13-p12) encodes Janus kinase 3, a member of the Janus kinase family of tyrosine kinases that is pre-
dominantly expressed in immune cells and involved in cytokine receptor-mediated intracellular signal transduc-
tion. CRMP1 (collapsin response mediator protein 1) encodes a member of a family of cytosolic phosphoproteins 
that are expressed in the nervous system but is also an interactor of IL33, a cytokine with a prominent role in 
asthma6. The other two potential candidates, C12orf43 (chromosome 12 open reading frame 43) and ZNF192 
(encoding a zinc finger protein) have less well known functions.

Our network-assisted analysis is based on the assumption of “guilt-by-association” which states connected 
genes are usually participating in the same or related cellular functions. We certified the validity of this assump-
tion through gene function clustering analysis. We characterized four gene clusters involving nearly half of the 
module genes. Three of these clusters, annotated as “chemokines”, “cadherins” and “zinc finger proteins”, are top-
ologically overlapping with three peripheral subnetworks of the module and are related to the core subnetwork in 
various ways. The “chemokines” cluster is made of chemokines and their receptors, which are all interconnected 
in the PPI and are involved in several biological processes that may contribute to asthma pathogenesis, such as 
recruitment and activation of immune and inflammatory cells, collagen deposition and airway wall remodeling22. 
One component of this cluster, CCBP2 (chemokine binding protein 2), shows direct interaction with the core 

Gene cluster Functional annotation Number of genes List of genes in a cluster

1 Immune response 22
BAI3, BTN3A3, CCBP2, CCR8, CCR9, CCRL1, CD48, 
CMKLR1, CXCR5, IL18R1, IL18RAP, IL1RL1, IL1RL2, 
KLRC4, LPHN3, MICB, NCR3LG1, RAET1E, RAET1G, 
SIRPD, ULBP1, ULBP3

2 Chemokines/Chemotaxis 15
CCBP2, CCL1, CCL13, CCL16, CCL19, CCL25, CCL27, 
CCL4, CCL8, CCR8, CCR9, CCRL1, CMKLR1, CXCL13, 
CXCR5

3 Cadherins/Cell-adhesion 8 DCHS1, FREM2, ITGAX, PCDH20, PCDH21, 
PCDHGA11, RAET1E, RAET1G

4 Zinc finger proteins/Transcription regulation 8 IKZF3, ZNF165, ZNF174, ZNF192, ZNF20, ZNF24, 
ZNF434, ZNHIT3

Table 1. Clusters of functionally-related genes characterised in the childhood-onset asthma module using 
DAVID13, 41.
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protein APP and two nominally significant chemokines, CCL8 and CCL19. It is also part of the broad functional 
immune response cluster. Furthermore, CCBP2 was found associated with CCL2 chemokine levels in the cere-
brospinal fluid of Alzheimer patients23. The “cadherins” cluster includes mainly protocadherins that are part of the 
cadherin superfamily involved in cell adhesion24. While protocadherins may contribute to the defect in epithelial 
barrier function observed in asthma, as suggested for some of them25, a role of other protocadherins in asthma 
is still unknown. These proteins, which are interacting in the network, are also functionally clustering together 
with RAET1E, which is a strong asthma candidate (as described above) and is part of the broad immune response 
cluster. The “zinc finger proteins” cluster includes proteins that show widespread binding to regulatory regions 
across the genome26 but their role in regulating expression of cytokines and other inflammatory proteins, as other 
transcription factors known to be implicated in asthma27, 28, remains to be established. The zinc finger proteins 
cluster is linked to the core subnetwork in two ways: through direct interaction of CRMP1 protein, encoded by a 
nominally significant candidate, with IL33, known to be associated with asthma and part of the core network, and 
through functional relationship with IKZF3, a zinc finger transcription factor regulating B lymphocyte differen-
tiation, encoded by a gene at the known 17q12-q21 asthma locus5, 6 and part of the core network. All these results 
show that the integration of association signals with protein-protein interaction network plus functional cluster-
ing analysis bring together interrelated biologically meaningful processes that may underlie the risk for asthma.

The analysis strategy proposed in this study included a novel, exact and efficient algorithm to compute 
gene-level P-values from SNP-level P-values. Although other existing methods also allow such computation, 
including VEGAS229, MAGMA30 and PASCAL31, these methods use raw genotype data, or an external reference 
SNP panel (e.g., Hapamap2 or 1000 Genomes panel) when the original genotype data are unavailable, to compute 
the correlation among SNP statistics. Use of an external reference SNP panel has two limitations. First, some SNPs 
from a GWAS may not be part of the reference panel, thus will be discarded from the analysis and therefore the 
results of corresponding genes will be affected. Second, the LD structure estimated from an external reference 
SNP panel may not always reflect the true correlations among SNP P-values, especially in datasets from large 
genetic consortiums which are usually composed of different populations. Advantageously, fastCGP keeps all 
SNPs for analysis and utilizes the LD pattern existing in the input data. Though fastCGP is permutation-based 
in nature, the exact implementation we proposed does not require generating any CGP sample, and provides 
the best obtainable P-value without relying on a limited number of samples as required by typical permuta-
tion test procedures. It also avoids variation of the outcomes compared to simulation-based methods, such as 
VEGAS2. Our analytical implementation of fastCGP reduces considerably the computational time as compared 
to simulation-based approaches (see Supplementary Information). A potential limitation of fastCGP is that the 
circular genomic permutation strategy it implements corrects each gene-level P-value for the average LD across 
the genome. Thus, genes with higher LD level than average will be undercorrected while genes with lower LD 
will be overcorrected. However, this issue of within-gene LD variation may not be so critical for fastCPG as it 
only uses the best SNP P-value instead of all SNP P-values to compute the gene P-value. Moreover, compari-
son of fastCGP with VEGAS2 and MAGMA showed strong correlation between the results of fastCGP and the 
other two methods (use -bestsnp sub-model for VEGAS2 and -snp-wise = top,1 sub-model for MAGMA. See 
Supplementary Information for details).

Besides correlations between SNPs within a gene, linkage disequilibrium may extend over a broad genomic 
region and create correlations between gene-based P-values of nearby genes. This issue of gene clusters has been 
addressed in pathway-based analysis32, 33, where sensitivity analysis is usually done by including and excluding 
such genomic regions (e.g., HLA region). For network analysis, such sensitivity analysis is not easy to imple-
ment because of the dynamic nature of the module search algorithm and the risk of dismantling the network by 
removing a few genes. Novel strategies that enable to address this linkage disequilibrium issue deserve further 
investigation.

It is well known that analyses performed at a genome-wide scale are prone to high rates of false positives. To 
ensure the reliability of findings, strict criteria have been established for reporting GWAS results, such as the 
use of a stringent threshold to declare significance and replication of results. However, such criteria are less well 
defined in pathway and network analyses. It is also worth noting that most module searching methods, includ-
ing DMS, are based on heuristic or greedy algorithms which do not guarantee finding the module with highest 
score but may include irrelevant genes by chance34. To reduce the amount of false positive findings caused by 
either the noise from input data or by the module search method, previous network-based studies have used 
two or more GWAS datasets and implemented cross-evaluation strategies to identify modules showing consist-
ent association signals across datasets35, 36. In the current study, we used two large GWAS datasets, resulting 
from a meta-analysis of nine GWAS each, and designed a parallel dense-module search and consistency-based 
cross-selection strategy to increase the reliability of results. The consistency, defined in terms of similar gene com-
position between modules obtained from two independent datasets, has the ability to take into account the mod-
ule topology, and hence to select modules that share genes with association signals and genes closely connected 
to these disease-associated genes, both of which may play a role in COA susceptibility. We also compared our 
parallel strategy to a non-parallel strategy by repeating network analysis using a single GWAS dataset made of the 
meta-analysis results of all 18 childhood-onset asthma GWAS. We selected the same number of genes (91) using 
the approach proposed by dmGWAS11. We found the non-parallel strategy selected less genes that were replicated 
across datasets (it selected 13 genes nominally significant in both META1 and META2 while the parallel strategy 
selected 19 such genes), and were less functionally related based on DAVID analysis (the non-parallel module 
contains two gene clusters that includes 9% of the module genes while the parallel module contains four clusters 
that includes 48% module genes). This indicates the advantage of using a parallel strategy at least for these asthma 
data but further studies applied to various datasets are needed to confirm these findings.

As for many other module selection strategies11, 36, our strategy involves the choice of a cut-off defined as the 
number of consistent modules across datasets to be selected for downstream analysis. We chose the 10 module 
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pairs (out of 1,072,904 pairs) having highest pairwise module similarity between the two datasets. Although selec-
tion of more module pairs may allow including additional candidate genes, it may also increase the complexity 
of downstream analysis. When we repeated the analysis by loosening the cut-off of module pairs selection, i.e. by 
selecting 15 or 20 module pairs instead of 10 pairs, no additional relevant information was obtained. Indeed, only 
one gene out of a maximum of 34 additional genes selected in the final module was nominally significant in the 
two datasets and belonged to a well-known asthma-associated region on chromosome 17q12-q21. In addition, 
clustering analysis using DAVID did not identify any additional functional cluster. This shows that our choice of 
the 10 most consistent module pairs is reasonable. Nonetheless, modules that contribute to asthma susceptibility 
but did not rank in the top modules may have been missed. More sophisticated methods that allow finding an 
optimal similarity cut-off deserve further consideration.

In summary, we have derived a comprehensive network-assisted analysis strategy and identified a module 
of 91 genes significantly contributing to asthma risk. As part of this strategy, we developed an exact and effi-
cient gene-based method (fastCGP) to compute gene-level P-values, and a parallel dense-module search and 
cross-selection strategy to identify an asthma-associated module, both of which are key elements of our network 
analysis. This study was able to confirm known asthma genes and to pinpoint novel relevant candidates. It also 
highlighted many links between subnetworks of the identified module and functional relationships both within 
and across subnetworks, thus providing new clues for future research in both the genetics and pathogenesis of 
asthma.

Methods
Childhood-onset asthma (COA) GWAS datasets. We used two COA GWAS datasets that consisted 
of the outcomes of meta-analysis of nine COA GWAS each. These GWAS were part of the European GABRIEL 
Consortium and have been described in detail elsewhere6. Briefly, in these studies, asthma was considered to 
be present if it had been diagnosed by a physician and childhood-onset asthma was defined as the presence of 
the disease in a person younger than 16 years. The genotyping of all datasets was performed using the Illumina 
Human610-Quad Beadchip. Imputations were done using MACH 1.0 and Hapmap2 reference panel (release 
21). After quality control filtering (imputation quality score ≥0.50 and minor allele frequency ≥1%), a total of 
2,370,689 autosomal SNPs were kept in the analysis. A total of 18 GABRIEL childhood-onset asthma GWAS, all 
of European-ancestry, were randomly split into two datasets of 9 GWAS each of similar size (3,031 cases/2,893 
controls in the first dataset and 2,679 cases/3,364 controls in the second dataset). A random-effect meta-analysis 
was performed in each dataset using Stata™ V10.0 (distributed by Stata Corporation, College Station, Texas, 
USA). The outcomes of these meta-analyses (single-SNP P-values) were named META1 and META2 respectively.

Computing gene-level P-values by fastCGP. To perform network analysis, gene-level P-values repre-
senting the significance of each gene for association with COA were computed. We developed an exact and effi-
cient algorithm, named fastCGP, to calculate gene-level P-values from SNP-level P-values. To start, SNPs were 
mapped to genes (between the start site and 3′-untranslated region of each gene) using dbSNP Build 132 and 
human Genome Build 37.1. Each gene-level P-value Pg is taken as the best SNP P-value among all SNPs mapped to 
the gene. These P-values are biased by gene length (number of SNPs being mapped) since genes with more SNPs 
mapped tend to have a lower best SNP P-value by chance. We corrected for such bias using permutation-based 
approach. To keep similar patterns of LD among SNPs in the permutated data as in the original data, we imple-
mented the Circular Genomic Permutation (CGP) strategy37. Briefly, CGP considers the genome as a circle, start-
ing from chromosome 1 and ending at chromosome 22. SNP-level P-values of a GWAS are ordered on the circle 
according to the position of the SNPs. A CGP sample can be generated by rotating the P-values from a randomly 
chosen position and reassigning these P-values to each SNP. As in a typical permutation test, we defined the cor-
rected gene-level P-value as Pcorrected = 1 − l/(L + 1), where L is the total number of CGP samples, and l is the num-
ber of samples with Pπ,g > Pg (Pπ,g is the best SNP P-value of gene g based on a permutation sample). Particularly, 
in contrast to general permutation tests classically relying on a limited number of samples, we considered all 
non-repeating CGP samples in order to obtain the best obtainable P-value within this permutation-based frame-
work. In such a case, L becomes the total amount of SNPs placed on the circle (hence the number of SNPs in a 
GWAS), while l can be calculated analytically and efficiently without generating any CGP sample. The detail of 
this analytical approach along with an illustrative example is given in Supplementary Information. We imple-
mented fastCGP in R and made it publically available at https://github.com/YuanlongLiu/fastCGP.

We applied fastCGP separately to META1 and META2 to compute gene-level P-values. A total of 24,120 genes 
were analysed for each dataset.

Overloading gene-level signals to protein-protein interaction network. We converted gene-level 
P-values to z-scores by zi = Φ−1(1 − pi), where Φ is the cumulative distribution function of the standard normal 
distribution. We downloaded the human protein-protein interaction network (PPI) from the Protein Interaction 
Network Analysis platform38 (release of May 21, 2014). It integrates annotated protein-protein interaction data 
from six public curated databases (IntAct, BioGRID, MINT, DIP, HPRD and MIPS/MPact). To reduce the uncer-
tainty of network data, we kept only the interactions having experimental evidence. We overloaded gene scores to 
the PPI to build a scored-PPI for each of META1 and META2.

Identification of a module enriched with childhood-onset asthma-associated genes. We 
applied the dense module search (DMS) algorithm implemented in dmGWAS R package11 within each scored-PPI 
to search modules that consist of high score genes. Briefly, DMS defines the score of a module of k genes as 

= ∑Z z k/m i . It grows a module from a seed gene and adds the neighbouring gene that can lead to the maxi-
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mum increment of the module score. Module growth terminates if adding neighbouring genes does not yield an 
increment of module score by at least Zm × 0.1.

Due to the nature of DMS algorithm that uses every gene in the scored-PPI as a seed to grow module, thou-
sands of modules might be generated and there is extensive overlap among them. To reduce such redundancy, we 
hierarchically merged the raw modules within each dataset until all pairwise Dice similarity were less than 0.50, 
where the Dice similarity between two modules A and B is defined as ∩= +s A B A B A B( , ) 2 /( )39. Here |•| 
represents the number of genes in a module; ∩A B represents the genes shared by module A and module B.

The original dmGWAS paper suggested selecting 1% of the modules with highest normalized module score. 
In our study, we were rather interested in modules generated independently from separate datasets but having 
similar compositions across datasets, thus to improve the reliability of results. Module consistency was assessed 
by computing all pairwise module similarities, with one module from META1 and another module from META2. 
We selected the 10 module pairs with highest pairwise similarities and the selected modules were then merged 
within each dataset. The final module was constructed by taking the shared genes between the two merged 
modules.

Module assessment. We performed various types of statistical tests to assess different features of the final 
gene module. First, we assessed whether the module is significantly associated with COA, using META1 and 
META2 respectively. The null distribution of the module score was estimated by permuting the SNP-level 
P-values n = 100,000 times through CGP that takes into account the genomic structure. For each CGP permuta-
tion, gene-level P-values were recalculated using fastCGP and module scores were computed. The P-value of 
association of the module with COA was defined as = ≥ + +P Z Z n(#{ } 1)/( 1)assoc m s m( ) .

Second, we evaluated whether the module selected by our strategy has a higher score than by chance. Two sets 
of random modules were generated as background. The first consists of n = 100,000 modules sampled from the 
scored-PPI without considering their connections (topology-free). Each module has the same number of genes 
as that of the module under test. The corresponding P-value is = ≥ + +P Z Z n(#{ } 1)/( 1)z m s m( )m

. The second 
set of random modules was generated by taking the connection among genes into account. Specifically, we con-
strained the genes to be connected with each other (directly or indirectly) within each random module, so that 
they are more biologically related and is more comparable to the module under test. We inherited the 
Metropolis-Hasting Random Walk (MHRW) algorithm40 to generate random modules (see Supplementary 
Information). A total of N  =  12,709 modules were generated. The P-value was defined as 

= ≥ + +P Z Z N(#{ } 1)/( 1)z
mhrw

m s m( )m
. We computed Pzm and Pz

mhrw
m

 in META1 and META2 respectively.
Third, we assessed whether the selected module is enriched in genes nominally significant in at least one data-

set. These genes have high probability of association with asthma hence are of high interest. We used a hyperge-
ometric test to assess whether the selected module contains a higher proportion of such genes than the 
background. The P-value is defined by = −P F k K n N1 ( ; , , )sig

hyper
h , which is the tail probability of a hyperge-

ometric distribution that a module of K genes contains at least k nominally significant genes, while the whole 
scored-PPI of N genes contains n nominally significant genes. We also evaluated the significance by comparing 
with the MHRW random modules. The P-value was defined as = ≥ + +P k s k N(#{ ( ) } 1)/( 1)sig

mhrw , where k(s) 
is the number of nominally significant genes in a random module.

Finally, we evaluated whether the nominally significant genes in the selected module are more interconnected 
than those outside the module. We sampled n = 100,000 times the same number of genes from the unselected 
nominally significant genes and computed the amount of the connections between them. The P-value is 

= ≥ + +P e s e n(#{ ( ) } 1)/( 1)con , where e is the number of connections between nominally significant genes in 
the identified module, while e(s) is the corresponding number in a sample.

Functional clustering and annotation identified genes. To explore the functional relatedness of genes 
belonging to the selected module, we conducted the gene functional classification analysis provided by DAVID 
Bioinformatics Resource41. This tool generates a gene-to-gene similarity matrix based on shared functional anno-
tation profiles using over 75,000 terms from 14 annotation sources of different types (ontology, protein domain/
family, pathways, functional categories, or disease association) and use a heuristic fuzzy multiple-linkage parti-
tioning to identify functionally related gene clusters. The gene functional classification analysis was run for the list 
of genes in the final module. We set the genes mapped to the PPI as background and used the default parameters 
of DAVID in our analysis.
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Supplementary Figure S1. Double Manhattan plot of gene-level P-values in META1 and META2. Gene-level P-values were computed 
from SNP-level P-values using fastCGP. META1 and META2 correspond to the results of meta-analysis of 9 COA GWAS each. The GWAS are 
part of the GABRIEL asthma consortium (ALSPAC, BAMSE, ECRHS, MAS/MAGICS, SLSJ, TOMSK, UFA, CAPPS studies for META1; 
B58C, BUSSELTON, EGEA, GABRIEL Advanced Surveys, KSMU, MRCA-UKC, PIAMA, SAPALDIA, SAGE studies for META2; see 
Moffatt et al1 for details on these studies) 
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Supplementary Figure S2. Distribution of pairwise module similarities before and after merging the raw modules generated by the 
Dense Module Search algorithm. The pairwise module similarities (indicating overlaps between modules) were remarkably reduced in both 
META1 (left panel) and META2 (right panel) after hierarchically merging similar raw modules 
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Supplementary Figure S3. Distribution of pairwise module similarities between modules in META1 and modules in META2. A total of 
1,072,904 module pairs were constructed. The bins represent histograms of pairwise module similarities. The ticks represent rug plot of the 
similarities. Each tick represents one pairwise module similarity. The red ticks highlight the 10 highest pairwise module similarities 
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Supplementary Figure S4. Consistent gene modules between META1 and META2. We selected top 10 module pairs showing highest 
pairwise module similarities among all module pairs between META1 and META2. The involved modules were merged within each dataset, 
resulting in a subnetwork of 171 genes in META1 (a) and a subnetwork of 201 genes in META2 (b). The intersection of the two subnetworks 
was retrieved to construct the final module, resulting in a module of 91 genes (nodes in red). The node sizes in this plot are proportional to the 
gene z-scores 
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Supplementary Figure S5. An illustrative example of fastCGP. An artificial GWAS result consisting of 
L=100 SNP P-values were created. All P-values were set as 0.1 except 𝑃11 = 0.05,𝑃12 = 0.02,𝑃14 = 0.04, 
and 𝑃18 = 0.07 . These P-values are ordered on a circle according to the chromosomal position of 
corresponding SNPs. A gene g  has three SNPs mapped to its genomic region. Its uncorrected P-value gP is 

set as the minimum SNP P-value among the three mapped SNPs (𝑃𝑔 = 𝑃18 = 0.07). There are four extreme 
SNP P-values on the circle  𝑃11 , 𝑃12  ,  𝑃14  and 𝑃18  (≤𝑃𝑔 ) . The consecutive extreme P-value pairs are

11 12 12 14 14 18 18 11~ , ~ , ~ , ~P P P P P P P P  
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Supplementary Figure S6. Comparison of gene-level P-values obtained by fastCGP and VEGAS22. 
Gene-level P-values were computed from asthma META2 dataset using fastCGP and VEGAS2 (-bestsnp 
sub-model). Their results (-log10 (P-value)) were compared for each chromosome from chromosome 1 
(Chr1) to chromosome 22 (Chr22). The red diagonal lines indicate perfect match (identical) of the two 
results. ρ  represents the Pearson correlation coefficient between the two results 
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Supplementary Figure S7. Comparison of gene-level P-values obtained by fastCGP and MAGMA3. 
Gene-level P-values were computed from asthma META2 dataset using fastCGP and MAGMA (-snp-
wise=top,1 sub-model). Their results (-log10 (P-value)) were compared for each chromosome from 
chromosome 1 (Chr1) to chromosome 22 (Chr22). The red diagonal lines indicate perfect match (identical) 
of the two results. ρ  represents the Pearson correlation coefficient between the two results 
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Supplementary Table S1. Gene-level P-values in META1 and META2 datasets for the 91 genes in the 
final childhood-onset asthma module 

Chr Gene Start End # SNPs 

META1 META2 

Best SNP Best SNP 
 P-value 

Corrected  
Best SNP  

P-value (by 
fastCGP) 

Best SNP Best SNP 
 P-value 

Corrected  
Best SNP  

P-value (by 
fastCGP) 

Genes nominally significant in both META1 and META2 

2 IL1RL1 102 927 962 102 968 497 80 rs4988957 2.9E-05 1.5E-03 rs10192157 2.2E-05 5.6E-04 

2 IL18R1 102 979 097 103 015 218 48 rs3771166 1.9E-05 8.2E-04 rs1974675 2.4E-05 4.1E-04 

2 IL18RAP 103 035 254 103 069 025 71 rs6543135 2.6E-03 4.5E-02 rs2310300 2.6E-05 6.9E-04 

4 CRMP1 5 822 491 5 894 785 60 rs13144677 2.7E-03 4.1E-02 rs10011385 1.3E-03 1.7E-02 

5 RAD50 131 892 630 131 979 599 35 rs2240032 1.2E-03 1.5E-02 rs2897443 3.8E-04 3.9E-03 

6 ZNF192 28 109 716 28 125 236 21 rs13205911 6.4E-05 1.2E-03 rs2622321 7.4E-03 4.1E-02 

6 RAET1E 150 209 601 150 212 097 10 rs9371533 1.1E-02 4.5E-02 rs9371533 1.0E-02 3.6E-02 

9 IL33 6 241 678 6 257 982 20 rs7019575 4.8E-03 3.2E-02 rs7019575 8.7E-05 6.7E-04 

9 CTSL1 90 340 974 90 346 384 4 rs2378757 1.8E-03 5.6E-03 rs2378757 6.9E-03 1.4E-02 

12 C12orf43 121 440 848 121 454 300 10 rs3751150 4.4E-04 3.1E-03 rs3751151 1.2E-02 4.3E-02 

17 PNMT 37 824 507 37 826 728 1 rs876493 1.3E-07 3.1E-05 rs876493 4.0E-05 7.3E-05 

17 ERBB2 37 844 393 37 884 915 7 rs1058808 3.5E-06 1.6E-04 rs1058808 1.6E-05 8.2E-05 

17 IKZF3 37 921 198 38 020 441 48 rs907091 2.5E-15 4.6E-05 rs9909593 1.6E-07 7.1E-05 

17 GSDMB 38 060 848 38 074 903 12 rs9303281 2.6E-16 5.5E-06 rs2305480 7.5E-08 1.9E-05 

17 ORMDL3 38 077 296 38 083 854 4 rs12603332 4.6E-15 9.7E-06 rs8076131 7.3E-08 7.2E-06 

17 GSDMA 38 119 226 38 134 019 6 rs7212938 2.4E-13 2.7E-05 rs3902025 3.2E-07 3.3E-05 

17 PSMD3 38 137 060 38 154 212 21 rs11655264 1.0E-07 9.6E-05 rs12453334 6.9E-05 5.8E-04 

17 MED24 38 175 350 38 210 889 21 rs12309 3.0E-06 2.5E-04 rs12451897 1.2E-04 9.2E-04 

19 JAK3 17 935 591 17 958 841 12 rs2110586 5.8E-03 2.8E-02 rs3212701 1.2E-02 4.5E-02 

Genes nominally significant in either META1 or META2 

2 MARCH4 217 122 585 217 236 750 113 rs1477235 3.0E-02 4.0E-01 rs1510836 1.3E-03 2.8E-02 

3 CCRL1 132 316 094 132 321 382 2 rs7626622 3.0E-04 8.5E-04 rs7626622 1.7E-01 2.2E-01 

6 BTN3A3 26 440 763 26 453 643 15 rs13220495 1.8E-04 1.9E-03 rs3846845 1.3E-01 4.3E-01 

6 ZNF165 28 046 572 28 057 341 9 rs1321505 3.7E-03 1.6E-02 rs203878 2.8E-02 8.8E-02 

6 MICA 31 371 371 31 383 090 41 rs2844518 3.1E-08 1.0E-04 rs12213831 6.4E-02 4.0E-01 

6 MICB 31 465 855 31 478 901 26 rs3130614 2.9E-05 7.6E-04 rs2855814 3.5E-01 9.0E-01 

6 BAI3 69 345 632 70 099 403 770 rs3757043 4.6E-05 1.3E-02 rs17502590 3.7E-02 9.5E-01 

6 ULBP1 150 285 143 150 294 846 6 rs9478311 1.2E-01 2.8E-01 rs9478311 1.2E-03 3.2E-03 

9 CCL19 34 689 567 34 691 274 2 rs3176813 4.1E-02 5.5E-02 rs3136658 2.6E-02 3.3E-02 

9 SHC3 91 628 046 91 793 682 134 rs1331180 2.0E-05 1.6E-03 rs2316280 3.6E-02 4.9E-01 
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10 CNNM2 104 678 114 104 838 241 129 rs943036 2.3E-05 1.8E-03 rs2296569 6.5E-02 6.7E-01 

12 STAT6 57 489 191 57 505 161 10 rs324015 8.7E-04 5.3E-03 rs1059513 2.0E-02 6.8E-02 

17 CCL8 32 646 066 32 648 421 2 rs3138036 9.2E-01 9.7E-01 rs3138036 2.2E-02 2.8E-02 

18 ZNF24 32 912 178 32 924 426 12 rs7239712 4.2E-03 2.2E-02 rs1064753 1.9E-02 7.2E-02 

19 JSRP1 2 252 252 2 255 344 3 rs7250822 1.1E-02 2.2E-02 rs7250822 2.0E-01 3.2E-01 

19 FCER2 7 753 643 7 767 032 22 rs2287866 1.4E-03 1.3E-02 rs2303112 1.4E-02 7.8E-02 

Other genes 

1 FBXO6 11 724 150 11 734 411 2 rs747863 6.1E-01 7.5E-01 rs747863 6.1E-02 7.9E-02 

1 CD48 160 648 536 160 681 585 14 rs3796502 1.6E-02 7.2E-02 rs10489636 8.2E-02 2.9E-01 

1 CD247 167 399 877 167 487 847 116 rs864537 2.7E-03 6.7E-02 rs864537 3.0E-03 6.0E-02 

1 CR2 207 627 670 207 663 240 41 rs17258982 4.6E-02 3.2E-01 rs7543913 9.1E-02 5.1E-01 

2 CEBPZ 37 428 772 37 458 740 12 rs2239650 3.4E-02 1.3E-01 rs11689186 1.0E-01 3.3E-01 

2 IL1RL2 102 803 433 102 855 811 134 rs17026782 6.6E-02 6.9E-01 rs12987222 1.4E-02 2.4E-01 

2 DNER 230 222 345 230 579 286 353 rs10192168 1.6E-03 1.1E-01 rs6726280 3.2E-03 1.6E-01 

3 CCR8 39 371 197 39 375 171 2 rs2853699 5.4E-02 7.2E-02 rs4676633 2.3E-01 3.0E-01 

3 CCBP2 42 850 964 42 908 775 36 rs13093968 8.3E-03 7.4E-02 rs4396867 4.4E-01 9.7E-01 

3 CCR9 45 928 019 45 944 667 12 rs17714101 4.5E-02 1.6E-01 rs6441931 2.6E-01 6.7E-01 

3 RYK 133 875 978 133 969 586 52 rs4280635 8.4E-02 5.4E-01 rs10935104 7.5E-02 4.9E-01 

3 SEC62 169 684 580 169 716 161 23 rs9813592 1.8E-02 1.1E-01 rs16854694 3.2E-01 8.5E-01 

4 LNX1 54 326 437 54 457 724 156 rs2117600 2.6E-02 4.4E-01 rs9312642 1.5E-02 2.9E-01 

4 LPHN3 62 362 839 62 938 168 336 rs17082520 1.3E-02 4.6E-01 rs1497906 8.9E-03 3.4E-01 

4 CXCL13 78 432 907 78 532 988 27 rs17406477 2.1E-01 7.3E-01 rs355687 2.8E-02 1.6E-01 

5 PCDHGA11 140 800 537 140 892 546 57 rs11958830 4.5E-02 3.7E-01 rs1423149 1.8E-01 8.1E-01 

6 RAET1G 150 238 014 150 244 214 4 rs6927913 2.3E-01 4.2E-01 rs9397070 5.0E-02 9.7E-02 

6 ULBP3 150 385 743 150 390 202 7 rs12202737 3.0E-01 6.3E-01 rs2010212 2.7E-02 7.3E-02 

6 PARK2 161 768 590 163 148 834 1776 rs4623220 1.6E-03 3.9E-01 rs11966738 1.9E-03 4.0E-01 

7 TPST1 65 670 259 65 825 438 68 rs778732 3.8E-01 9.8E-01 rs4149463 1.9E-01 8.6E-01 

8 TERF1 73 921 097 73 959 987 26 rs12334686 2.4E-01 7.7E-01 rs10107605 5.8E-01 9.9E-01 

9 CCL27 34 661 893 34 662 689 1 rs11575584 6.3E-01 6.1E-01 rs11575584 3.4E-01 3.1E-01 

9 SPTLC1 94 793 427 94 877 690 74 rs16908106 9.5E-02 6.6E-01 rs12235495 4.1E-03 5.8E-02 

10 PCDH21 85 954 517 85 977 122 34 rs12781048 2.1E-01 7.6E-01 rs12781048 4.1E-02 2.5E-01 

11 DCHS1 6 642 558 6 677 080 28 rs11607376 7.1E-02 3.6E-01 rs997263 2.0E-01 7.1E-01 

11 NCR3LG1 17 373 279 17 398 868 13 rs6486364 4.9E-02 1.9E-01 rs12791318 1.1E-01 3.7E-01 

11 IL18 112 013 976 112 034 840 17 rs1834481 1.0E-01 3.9E-01 rs2043055 1.5E-01 5.1E-01 

11 CXCR5 118 754 541 118 766 971 14 rs12363277 1.0E-01 3.6E-01 rs12363277 5.1E-02 1.9E-01 

12 KLRK1 10 524 952 10 542 640 20 rs2617149 1.5E-02 8.2E-02 rs12826560 9.0E-02 3.7E-01 
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12 KLRC4 10 559 983 10 562 356 5 rs2734565 1.4E-01 2.9E-01 rs2617170 4.2E-01 7.2E-01 

12 KIF21A 39 687 030 39 836 918 71 rs11171691 2.4E-02 2.6E-01 rs11172108 4.9E-02 4.3E-01 

12 BIN2 51 674 822 51 717 938 20 rs4761998 6.4E-02 2.9E-01 rs4761995 5.9E-02 2.6E-01 

12 IFNG 68 548 550 68 553 521 4 rs1861494 6.6E-01 8.9E-01 rs1861493 3.4E-01 5.8E-01 

12 CMKLR1 108 681 821 108 733 094 48 rs11113818 8.2E-02 5.1E-01 rs10861889 5.1E-02 3.6E-01 

13 FREM2 39 261 173 39 461 268 220 rs11618650 4.1E-03 1.5E-01 rs2218722 1.3E-02 3.3E-01 

13 PCDH20 61 983 818 61 989 655 6 rs3829388 1.8E-01 3.9E-01 rs3812872 3.0E-01 6.1E-01 

15 CD276 73 976 622 74 006 859 35 rs12591553 3.1E-01 8.9E-01 rs12594595 9.0E-02 4.7E-01 

16 ZNF434 3 432 085 3 451 025 14 rs28603 8.1E-02 2.9E-01 rs17136367 2.3E-01 6.4E-01 

16 ZNF174 3 451 190 3 459 364 5 rs39728 3.7E-01 6.6E-01 rs37811 2.1E-01 4.3E-01 

16 ITGAX 31 366 509 31 394 318 16 rs2929 1.9E-01 6.0E-01 rs8052139 4.7E-02 1.9E-01 

17 CCL13 32 683 471 32 685 629 2 rs159313 7.2E-01 8.5E-01 rs2072069 8.5E-01 9.4E-01 

17 CCL1 32 687 399 32 690 252 5 rs3136682 4.4E-02 1.0E-01 rs3136682 2.3E-01 4.5E-01 

17 CCL16 34 303 535 34 308 523 4 rs2063979 8.2E-01 9.7E-01 rs11080369 3.4E-02 6.6E-02 

17 CCL4 34 431 220 34 433 014 2 rs1719147 4.4E-02 6.0E-02 rs1634517 5.0E-01 6.3E-01 

17 ZNHIT3 34 842 473 34 851 662 4 rs2306589 8.1E-02 1.6E-01 rs2277662 2.4E-01 4.3E-01 

18 SERPINB3 61 322 431 61 329 197 3 rs1065205 4.5E-01 6.7E-01 rs7228687 2.0E-01 3.3E-01 

19 ELAVL1 8 023 457 8 070 529 24 rs7251814 3.9E-01 9.1E-01 rs12977189 8.3E-02 3.8E-01 

19 CCL25 8 117 934 8 127 547 8 rs2287936 3.9E-01 7.7E-01 rs2032887 3.5E-01 7.2E-01 

19 C19orf66 10 196 806 10 203 928 2 rs2232066 3.9E-02 5.3E-02 rs2232066 9.5E-02 1.2E-01 

19 CDKN2D 10 677 138 10 679 655 1 rs1465701 6.3E-01 6.1E-01 rs1465701 2.7E-01 2.4E-01 

19 ZNF20 12 242 803 12 251 140 2 rs155955 2.1E-01 2.8E-01 rs12608894 1.9E-01 2.5E-01 

19 RCN3 50 030 875 50 046 890 5 rs10419198 3.3E-01 6.1E-01 rs8108243 1.9E-01 3.9E-01 

20 SIRPD 1 514 897 1 538 343 26 rs16995146 5.1E-02 2.7E-01 rs2249673 2.3E-01 7.5E-01 

21 APP 27 252 861 27 543 446 306 rs7281055 8.2E-03 3.2E-01 rs2830076 3.1E-02 6.8E-01 

21 COL18A1 46 825 097 46 933 634 82 rs2236483 1.3E-01 7.8E-01 rs17004785 2.0E-01 9.1E-01 

22 TPST2 26 921 714 26 986 089 94 rs5752349 3.4E-02 4.0E-01 rs4149484 4.7E-02 4.8E-01 

 Start and end positions of each gene are in accordance with Build 37.1. 
 The genes at known asthma loci are in bold. 

100



Supplementary Methods 1: computing gene-level P-values via fastCGP. We take 

advantage of the Circular Genomic Permutation (CGP) strategy4 and propose an efficient and 

exact method, named fastCGP, to compute gene-level P-values from SNP-level P-values of a 

GWAS. CGP is a randomization method that permutes SNP-level statistics in a genomic manner 

to preserve the genomic structure such as regional linkage disequilibrium (LD), thereby to keep 

similar patterns of correlation in the permutated data as in the original data. Briefly, it considers 

the genome to be circular and ordered from chromosome 1 to chromosome 22. SNP-level P-

values of a GWAS are ordered according to the position of the SNPs on the circle. A CGP sample 

is generated by rotating the ordered statistics for a random position and reassigning them to each 

SNP. This randomization strategy has been successfully applied to several studies5–7, and was 

shown to have similar performances compared to the gold standard of phenotype permutation in 

the context of pathway analysis8.  

Our method starts by mapping SNPs to genes (between the start site and 3'-untranslated 

region of each gene) using dbSNP Build 132 and human Genome Build 37.1 (a user can choose 

another mapping strategy). The gene-level P-value of a gene g , denoted as gP , is represented by 

the best SNP P-value among all SNPs mapped to the gene. This P-value is biased by gene length 

(amount of mapped SNPs) as genes with more SNPs mapped tend to have a lower best SNP P-

value by chance. We correct for such bias using a permutation test framework. We define the 

corrected P-value as corrected / ( 1)1P l L= +− , where L  is the total number of CGP samples; l is 

the number of samples with ,g gP Pπ > , which we call as normal CGP samples (nCGP). 

Particularly, we include all non-repeating CGP samples so that to obtain the best obtainable P-

value within this permutation test framework. In this case, L becomes the total amount of SNPs 

placed on the circle (hence is the number of SNPs in a GWAS), while l  can be calculated 

analytically without generating any CGP sample. For illustration convenience, we call a SNP P-

value as an extreme P-values if it is less than or equal to gP . We say two extreme P-values are 

consecutive if there is no other extreme P-value placed between them on the circle. Note that the 

SNPs mapped to a gene are consecutive on the circle, hence by rotating the SNP P-values, it 

generates a nCGP only if all P-values reassigned to gene g are located between some pair of 

consecutive extreme P-values, say, ~i jP P  ( 1 ,i j L≤ ≤  are the SNP positions on the circle). 

Denote ijd  as the number of positions between iP  and jP on the circle, m  as the number of SNPs 

assigned to the gene, ( )I as the indicator function. Then the number of unique rotations with all 

reassigned P-values located within ~i jP P is equal to ( )( 1)
ijij ij d md m Iγ ≥= − + . Since the total 

amount of non-repeating nCGPs is the summation of ijγ for all pairs of consecutive extreme P-
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values, this leads to the formula corrected ~1 / ( 1)i j ijP Lγ= − +∑ . The complete algorithm is 

summarized below 

 

Algorithm Computation of corrected gene-level P-values via fastCGP 
 

Step 1. Order GWAS SNP P-values on a circle according to the genomic positions of SNPs  

Step 2. Map SNPs to genes according to their genomic positions 

Step 3. For a gene g , set gP as the minimum P-value of all SNPs mapped to it 

Step 4. Find all extreme SNP P-values on the circle: { | }SNP S gNPP P P≤  

Step 5. Compute ( )( 1)γ ≥= − +
ijij ij d md m I  for all pairs of consecutive extreme P-value ~i jP P  

Step 6. Compute the corrected gene-level P-value: corrected ~1 / ( 1)i j ijP Lγ= − +∑  

In the following we present an illustrative example of fastCGP. We constructed an artificial 

GWAS result consisting of 100L = SNP P-values (Supplementary Fig. S5). We set all P-values 

as 0.1 except 𝑃11 = 0.05,𝑃12 = 0.02,𝑃14 = 0.04, and 𝑃18 = 0.07. These P-values are ordered on 

a circle according to the chromosomal position of corresponding SNPs. A gene g has 3m =  SNPs 

mapped to its genomic region. Its uncorrected P-value gP is set as the minimum SNP P-value 

among the three mapped SNPs (𝑃𝑔 = 𝑃18 = 0.07). There are four extreme SNP P-values on the 

circle : 11 12 14, ,P P P and 18.P  The consecutive extreme P-value pairs are

11 12 12 14 14 18 18 11~ , ~ , ~ , ~P P P P P P P P . For each pair, the amount of unique rotations with all 

SNP P-values reassigned to gene g  falling into this pair is 0, 0, 1 and 92 respectively. Thereby 

𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 1 − (0 + 0 + 1 + 92 ) 101⁄ = 0.079. 

We compared the performance of fastCGP with two other popular methods VEGAS22 and 

MAGMA3. The META2 asthma dataset in our study was used for the comparison. For both 

VEGAS2 and MAGMA we implemented their best-SNP sub-model (use -bestsnp option for 

VEGAS2 and snp-wise=top,1 option for MAGMA). Both methods apply Monte-Carlo 

simulations to correct the best-SNP P-value for the gene length bias. During simulation, the LD 

patterns between SNPs within a gene are estimated on the basis of the LD structure of a set of 

reference individuals. As we could not use the original genotypes of our asthma dataset, we used 

the 1,000 Genomes European population as external reference. We observed that the results 

obtained by fastCGP were concordant with those obtained using VEGAS2 or MAGMA. At the 

chromosome level, the Pearson correlation coefficients between the gene-level P-values (-log10 

transformed) of fastCGP and VEGAS2 range from 0.93 to 0.97, with an average value of 0.96 

(Supplementary Fig. S6). The correlation coefficients of gene-level P-values between fastCGP 

and MAGMA range from 0.95 to 0.98, with an average value of 0.97 (Supplementary Fig. S7). As 
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for computational efficiency, both fastCGP and MAGMA took ~30 minutes on a PC (Intel Core 

i7 3.40GHz CPU, 8GB RAM); while VEGAS2 took 13 hours to perform the analysis. 

 

Supplementary Methods 2: generating random modules via Metropolis-Hasting 

Random Walk algorithm.  We inherited the Metropolis-Hasting Random Walk (MHRW) 

algorithm9 to generate random modules. It has the property that the stationary probability of each 

node to be sampled follows the uniform distribution, and has been demonstrated to work well in 

practice9. In the beginning, a seed gene V is chosen from the scored-PPI. The next gene W is 

selected at random from all neighbours of V . W is added to the module and set as the next seed if 

the degree ratio of V  and W  is smaller than a random number drawn from uniform distribution

(0,1)U . Otherwise stay at V  and repeat the step. The procedure iterates until the module has the 

same number of genes as the module under test. To ensure sufficient coverage of the whole 

scored-PPI, we set each gene in the network as a seed to generate a module. Then, a total of N
(equals to the number of genes in the scored-PPI) random modules are generated. 
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CHAPTER IV. THE SIGMOD METHOD FOR 
IDENTIFYING DISEASE-ASSOCIATED GENE 
MODULES 

1    Summary 

The search for active modules consisting of closely related genes and enriched in high 

association signals plays an essential role in network-based analysis of GWAS data. This is a 

difficult task when confronted with the noise in the GWAS outcomes, the heterogeneity of 

quality of information in gene/protein network, and the huge search space at genome-wide 

scale. Ideally, a module search method should have as much as these properties: (1) the 

capability of finding the module having the maximum disease association score; (2) the 

ability to take the network quality into account; and (3) can be executed in an affordable time. 

Nonetheless, due to the underlying algorithmic complexity, most existing active module 

search methods were only able to focus on one or two of these aspects, thus limiting the 

performance of network-based analysis as a whole. 

In this Chapter, I will present a novel efficient and robust active module search method, 

named SigMod, which has the ability to select a gene module that has the maximum disease-

association score and tends to be strongly interconnected. This method was formulated as a 

binary quadratic optimization problem. We showed that solving this optimization problem is 

equivalent to finding the min-cut on a graph, hence it can be solved via many available graph-

cut algorithms. SigMod has several advantages compared to existing module search 

algorithms: (1) it can find the module having exactly the maximum disease association score; 

(2) it allows incorporating edge weights that usually reflect the confidence or strength of 

connections between genes in the network; (3) its selection path can be computed rapidly 

hence offers the flexibility for users to select a desirable amount of genes, and (4) the 

identified gene module tend to have strong connectivity, thus includes genes of close 

functional relevance. 

We first evaluated the performance of SigMod using simulated data. We used the gene 

network retrieved from the STRING database (introduced in Section 3.3.1 of Chapter I), that 
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contains various types of gene/protein relationship information including direct (physical) and 

indirect (functional) interactions. Each edge in the STRING gene network is associated with a 

weight varying from 0 to 1, which represents the combined confidence of the relationship 

between two genes derived from multiple sources of information. We chose five strongly 

interconnected gene modules identified in STRING using CFinder (Adamcsek et al., 2006) as 

candidate causal modules. The p-values of the genes belonging to the causal module were set 

uniformly distributed between 0 and 10−3 (representing signals) whereas p-values of other 

genes were set uniformly distributed between 0 and 1 (representing noise). Experiments 

performed on these simulated data showed SigMod has the best power and lowest false 

discovery rate as compared to two state-of-the-art methods—dmGWAS (Jia et al., 2011) and 

SConES (Azencott et al., 2013). This high performance was preserved when additional noise 

was intentionally added to both the gene p-values and the STRING gene network, 

demonstrating the robustness of SigMod. 

We then applied SigMod to the GABRIEL childhood-onset asthma GWAS outcomes. Using 

META1 as discovery dataset, we identified a gene module enriched in high association 

signals and made of 190 genes that are biologically interesting for studying the genetic 

mechanism underlying asthma. All these genes have a nominally significant p-value (p ≤ 

0.05), which shows the ability of SigMod to identify high score genes. When we evaluate this 

module using META2 dataset, 30 genes were again significant, hence they were significant in 

both the discovery and replication dataset. Functional clustering analysis using the DAVID 

tool (Huang et al., 2009) and KEGG pathway enrichment analysis of the genes belonging to 

the module pinpointed nine functionally closely related gene clusters and 15 enriched 

pathways. These gene clusters and pathways include biological processes that are known to be 

related to asthma risk, and also mechanisms that are novel and deserve further investigation of 

their role in asthma occurrence. 

Overall, we proposed an exact and efficient method, named SigMod, for integrative analysis 

of GWAS data with network-based knowledge. This method enabled to find a relevant gene 

module enriched with high disease-association signals. It is robust against noise from either 

the GWAS data or the background network. SigMod can be also applied to any other 

network-based feature selection problem sharing the same concept. 



CHAPTER IV. THE SIGMOD METHOD 

107 
 

2    Article published in Bioinformatics 
(doi:10.1093/bioinformatics/btx004) 



Systems biology

SigMod: an exact and efficient method to

identify a strongly interconnected disease-

associated module in a gene network

Yuanlong Liu1,2,*, Myriam Brossard1,2, Damian Roqueiro3,

Patricia Margaritte-Jeannin1,2, Chloé Sarnowski1,2,
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Abstract

Motivation: Apart from single marker-based tests classically used in genome-wide association

studies (GWAS), network-assisted analysis has become a promising approach to identify a set of

genes associated with disease. To date, most network-assisted methods aim at finding genes con-

nected in a background network, whatever the density or strength of their connections. This can

hamper the findings as sparse connections are non-robust against noise from either the GWAS re-

sults or the network resource.

Results: We present SigMod, a novel and efficient method integrating GWAS results and gene net-

work to identify a strongly interconnected gene module enriched in high association signals. Our

method is formulated as a binary quadratic optimization problem, which can be solved exactly

through graph min-cut algorithms. Compared to existing methods, SigMod has several desirable

properties: (i) edge weights quantifying confidence of connections between genes are taken into

account, (ii) the selection path can be computed rapidly, (iii) the identified gene module is strongly

interconnected, hence includes genes of high functional relevance, and (iv) the method is robust

against noise from either the GWAS results or the network resource. We applied SigMod to both

simulated and real data. It was found to outperform state-of-the-art network-assisted methods in

identifying disease-associated genes. When SigMod was applied to childhood-onset asthma

GWAS results, it successfully identified a gene module enriched in consistently high association

signals and made of functionally related genes that are biologically relevant for asthma.

Availability and implementation: An R package SigMod is available at: https://github.com/

YuanlongLiu/SigMod

Contact: yuanlong.liu@inserm.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) have achieved consider-

able success in genetic analysis of complex traits. Thousands of

single nucleotide polymorphisms (SNPs) associated with human

traits and diseases have been identified since the first GWA study

was published (Klein et al., 2005) (http://www.genome.gov/gwastu
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dies/). However, the single marker analysis commonly used in

GWAS has limitations. Under the very conservative genome-wide

significant level of P ¼ 5� 10�8, only a few of the most significant

signals are reported, while many polymorphisms with small mar-

ginal effects are missed. The reported SNPs often explain a limited

part of the genetic component of a disease or trait (Eichler et al.,

2010; Maher, 2008).

To overcome these limitations, a variety of knowledge-based

methods have been proposed for integrative and joint analysis of

multiple genes. Examples include, but are not limited to the gene set

enrichment analysis (GSEA) methods that identify biological path-

ways enriched in association signals (Subramanian et al., 2005);

text-mining methods that build links between genes from scientific

literature (Raychaudhuri et al., 2009), etc. Among these approaches

stands the network-assisted analyses that overlay gene-level P-values

onto a gene network (GeneNet) to search for connected genes (also

known as gene module) enriched in association signals. The ration-

ale behind this is the principle of ‘guilt-by-association’, which states

that genes (or gene products) connected in a network are usually

participating in the same, or related, cellular functions (Li et al.,

2015; Oliver, 2000; Wolfe et al., 2005). Although a number of

methods have been developed for this purpose (Cabusora et al.

2005; Ideker et al., 2002; Jia et al., 2011), they often search modules

using heuristic or greedy algorithms, hence cannot guarantee to

identify the module enriched in highest signals, and are prone to in-

clude biologically irrelevant genes by chance. Also, many of them

have the limitation that edge weights are not taken into account dur-

ing the module searching process, although edge weights represent

the confidence or strength of connections between genes and can

contain useful information.

Azencott et al. (2013) have proposed a module searching method

that overcomes some of these limitations. Their method, named

SConES, was originally developed for identifying a set of SNPs that

are maximally associated with a phenotype and tend to be connected

in an underlying network. SConES formulates the module searching

task as a binary optimization problem that can be solved exactly

and efficiently via graph min-cut algorithms. It also allows incorporat-

ing edge weights, making it more robust to false connections.

Nevertheless, SConES sets its tuning parameters via a cross-validation

strategy that requires using raw genotype data, and therefore cannot

be applied to studies in which only summary-level statistics are avail-

able, as it is often the case in large genetic consortiums. Also, as indi-

cated in their paper, SConES may select several disconnected

subnetworks along with multiple isolated nodes, which may lead to

an overall low interconnection among selected nodes. These discon-

nected subnetworks and especially the isolated nodes, are likely to be

less functionally related to the other nodes and the selected module

may be less associated with disease as compared to a module whose

nodes are strongly connected.

In this article, we propose a novel method SigMod that has the

ability to select a Strongly Interconnected Gene MODule maximally

associated with the disease. We formulate this module selection task

as an optimization problem similar to SConES, but we incorporate a

modification in the objective function to explicitly encourage the

overall strong interconnection among selected genes. We believe

that a set of strongly interconnected genes are more functionally

related and biologically relevant. We show that our method has the

same advantage as SConES in terms of allowing incorporation of

edge weights, and can also be solved exactly and efficiently via

graph min-cut algorithms. In addition, we propose an algorithm to

compute the module selection path, which provides the ability to

trace the selection change and to select a desirable amount of genes.

We also develop a parameter setting strategy to identify the optimal

selection. Our strategy does not require using raw genotype data,

hence can be applied to a broader range of studies than SConES. We

evaluated SigMod using both simulated and real data, and made

comparisons with SConES and another popular network-based

method dmGWAS (Jia et al., 2011). The results showed our method

is more powerful in identifying a module made of functionally rele-

vant genes and enriched in consistent association signals.

2 Methods

SigMod aims to identify a disease-associated gene module using two

types of input data: a list of gene-level P-values obtained from GWAS

SNP-level P-values, and a GeneNet. To get gene-level P-values, SNPs

need to be first assigned to genes using dbSNP and RefSeq genes with

genomic coordinates in the corresponding genome build, but methods

vary according to the choice of gene boundaries that can be strictly

limited to the start and stop positions of the genes, or extended be-

yond these positions up to 500 kb. This SNP to gene assignment issue

has been previously debated in Jia and Zhao (2014) and will be fur-

ther discussed in Section 5. Once SNPs have been assigned to genes,

gene-level P-values, which represent the significance of gene–disease

associations, are computed from GWAS SNP-level P-values using any

gene-based method that has been previously proposed (e.g., Liu et al.,

2010; Lamparter et al., 2016; Li et al., 2011). One of the most popu-

lar gene-based methods consists of using the best SNP P-value as-

signed to a gene but this P-value needs to be corrected for variation in

gene length (as explained in Section 4.2). The GeneNet represents the

biological knowledge of gene-gene relationships, such as physical

interactions between gene products (proteins), gene co-expression or

co-occurrence of gene-related terms in the literature. Each connection

can have a weight that measures the confidence or strength of the con-

nection. This type of information can be derived from experiments

like co-expression analysis or retrieved from databases such as

STRING (Szklarczyk et al., 2014).

In the following sections, we will first introduce the formulation

of SigMod, and then provide an efficient and exact algorithm to

solve the optimization problem. Afterwards we will present a tuning

parameter setting strategy to find the parameters leading to an opti-

mal gene module selection. A flowchart summarizing these steps is

shown in Figure 1.

2.1 Formulation of the SigMod method
We first transform gene-level P-values into scores by

z ¼ U�1ð1� PÞ, where U�1ð�Þ is the inverse normal distribution

function. These gene scores are overlaid onto the GeneNet to build a

scored GeneNet, denoted as G ¼ ðV ;AÞ, where V are nodes repre-

senting genes, and A is the weighted adjacency matrix representing

connections among genes. We define u as a vector of binary vari-

ables indicating whether a gene Vp is selected (up ¼ 1) or not

(up ¼ 0). We formulate this selection task as an optimization prob-

lem that maximizes the following objective function:

f ðuÞ ¼ zTuþ kuTAu� gjjujj0: (1)

The first component zTu defines the joint effect of the gene module

on the phenotype (disease) by summing up the scores of its gene

members. The second component uTAu quantifies its connection

strength as the summed edge weights in the module, since

uTAu ¼
P

p;qApqupuq. The third component is the sparsity regular-

izer controlling the size of the gene module, where the module

size is represented by jjujj0, i.e., the number of non-zero elements in
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109



u. k and g are positive tuning parameters specifying the importance

of the corresponding components. Therefore, we are able to select a

strongly interconnected gene module enriched in high association

signals, by choosing proper parameters and solving the optimization

problem:

arg maxu f ðuÞ: (2)

Note that our formulation differs from the formulation of SConES

(Azencott et al., 2013). SConES selects genes by maximizing the ob-

jective function defined as gðuÞ ¼ zTu� kuTLu� gjjujj0, where L is

the Laplacian matrix defined as L ¼ D� A, and D is the diagonal

matrix of weighted node degrees, i.e. Dpp ¼ dp :¼
P

qApq. The differ-

ence between the two objective functions f ðuÞ and gðuÞ
is in the second component, which leads to different behaviors

of each method. Specifically, SConES incorporates the Laplacian

matrix to encourage adjacent nodes to be selected together. However,

this does not guarantee the overall strong interconnection among se-

lected nodes. Contrariwise, the SigMod formulation incorporates the

adjacency matrix to explicitly encourage selection of strongly inter-

connected nodes. More specifically, since A ¼ D� L, it has

f ðuÞ ¼ zTuþ kuTðD� LÞu� gjjujj0
¼ ðzþ kdÞTu� kuTLu� gjjujj0:

¼ gðuÞ þ kdTu

Therefore for each given k, additional scores kd are added to the

nodes in SigMod compared to SConES. Nodes with higher degrees

are thereby given more preferences. Additional differences between

these two methods will be presented in the following sections.

2.2 Optimization algorithm
We show that the optimization of Equation (2) can be solved exactly

using a similar graph min-cut approach as presented in Azencott

et al. (2013). To achieve this, we construct an augmented network

of G (denoted as Gst), by first adding two artificial nodes s and t to

G, then redefining its adjacency matrix as B:

Bpq ¼ kApq

Bsp ¼ ðzp þ kdp � gÞ � Iðzp þ kdp � gÞ for 1 � p; q � n:

Btp ¼ ðg� zp � kdpÞ � Iðzp þ kdp < gÞ

8>><
>>:

(3)

Definition 1. Given a network G ¼ ðV ;AÞ, for any s; t 2 V , a s-t

cut C ¼ fX; �Xg is defined as a node partition of V such that:

(1)X [ �X ¼ V ; (2) s 2 X and t 2 �X :

Definition 2. A s-t cut is called a s-t min-cut if jðCÞ is minimized,

where jðCÞ is the capacity of a s-t cut C, defined as

jðCÞ ¼
P

Vp2X ;Vq2 �X Apq.

Therefore according to Proposition (1) in Azencott et al. (2013),

if C� ¼ ðX�;X� Þ is a s-t min-cut of Gst, then u� is the solution of the

optimization problem of Equation (2), where u�p ¼ 1 if Vp 2 X�, and

u�p ¼ 0 otherwise. Hence solving the optimization problem is equiva-

lent to finding a s-t min-cut on the augmented network Gst . Thus

any s-t min-cut algorithm can be applied to find the solution.

2.3 Determination of the tuning parameters g and k

The SigMod objective function Equation (1) includes two tuning par-

ameters, g and k, that need to be determined. To find the parameter val-

ues leading to an optimal gene module selection, we first propose a path

algorithm that allows computing all distinct selections at a given k while

varying g over a range of values. Based on this algorithm, we provide a

procedure to find the tuning parameters that can lead to the optimal

gene module selection. These different steps are described as follows.

2.3.1 Computing the selection path at any given k value

For a given value of k, the module selection by solving Equation (2)

has the nesting property that Sðg1Þ � Sðg0Þ if g1 > g0, where SðgÞ
represents the module selected by setting the sparsity parameter as g
(see Supplementary Materials for proof). Therefore increasing g re-

sults in removing genes from a previously selected module. To con-

veniently trace this selection change, we develop the path algorithm

that allows computing the sequence of distinct modules selected by

increasing g from gmin to gmaxð0 � gmin < gmaxÞ. We denote this se-

quence as P ¼ hSðgminÞ; . . . ; SðgmaxÞi and call it as the selection path

over ½gmin; gmax	. Note that these modules are nested according to

the nesting property, i.e., SðgminÞ 
 � � � 
 SðgmaxÞ. An example of se-

lection path is given in Supplementary Figure S1.

Fig. 1. Workflow of SigMod. SigMod takes a list of gene-level P-values computed

from genome-wide association studies (GWAS) and a gene network (GeneNet) as

input. The gene-level P-values are converted into scores and overlaid onto the

GeneNet to build a scored network. SigMod identifies a module that is strongly

interconnected and enriched in high association signals from this network using a

3-step procedure, as outlined in this figure and detailed in the text (Section 2.3.2).

The k in this figure is the connectivity parameter that controls the balance be-

tween module score and module connectivity. The selection path in the figure

represents the sequence of distinct modules selected by increasing the sparsity

parameter g from a starting value toþ1, as described in Section 2.3.2
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Our path algorithm aims to compute P efficiently. It is de-

veloped by exploring the property of s-t min-cut on the augmented

graph Gst, since computing SðgÞ is equivalent to finding the s-t min-

cut as stated in Section 2.2. We define the capacity function j�ðgÞ as

the capacity of the s-t min-cut on Gst, where the capacity of a cut is

defined in Definition 2 (Section 2.2). It is apparent that j�ðgÞ is a

continuous and piecewise linear function of g. Its slope changes at

either a break-point or a change-point, where a value of g is a break-

point if it leads to the change of selection, and is a change-point if it

causes the rewiring of an edge of Gst from s to t according to

Equation (3). Thus, computing the selection path is equivalent to

finding all break-points of j�ðgÞ, which can be achieved by correct-

ing j�ðgÞ at each change-point to transform it to a concave function,

then applying the iterative contraction algorithm described in Gallo

et al. (1989). Once all break-points are obtained, the selection path

can be computed by setting g at each of the break-points and solving

the problem defined by Equation (2). A detailed description of this

algorithm is presented in Supplementary Materials.

We also notice that the module selection by solving Equation (2)

has the memoryless property, that if a gene is not selected by setting

g at some value (e.g., g ¼ gmin), then it can be removed from the

GeneNet when computing the selection at a g value greater than

gmin. The mathematical description of this property and its proof is

given in Supplementary Materials (Proposition 1). This property can

be utilized to speed up the computation of selection path over

½gmin; gmax	, using the following two-step procedure:

� Step 1: compute SðgminÞ on the complete network G;

� Step 2: compute selection path over ½gmin; gmax	 on the subnet-

work Gsub induced by the genes in SðgminÞ.

This speed-up strategy makes the computation of selection path

more efficient, especially when the size of SðgminÞ is far less than the

total amount of genes in the whole network. It is the case for many

studies in which only a small portion of genes are intended to be se-

lected while the majority of genes are left out at the first stage of the

selection process.

2.3.2 Hierarchical procedure to find the tuning parameters

leading to an optimal gene module selection

As mentioned above, the module selection in SigMod depends on

two parameters g and k. The selection as a function of g can be

tracked through the selection path at any given value of k. The par-

ameter k, which allows a balance between the module score and

module connectivity, needs to be chosen carefully. On one hand, if k
is too small, the selection mainly focuses on gene scores while it ig-

nores the connections among genes. This results in the top scored

genes scattered in the network to be selected, whichever their con-

nections. On the other hand, if k is too big, the network topology

dominates the selection, while the gene scores do not influence the

module selection. This leads to a set of most strongly interconnected

genes to be selected, whichever their association scores. Since the

goal of our method is to find a gene module that is strongly intercon-

nected and is enriched in high association signals, we propose the

following procedure to set the parameters properly:

� Step 1: do an exhaustive search for k equally spaced k values in

½kmin; kmax	. Compute for each k the selection path PðkÞ to col-

lect all modules with module size less than max select;

� Step 2: compute the size difference between consecutive mod-

ules in each path PðkÞ, i.e. Dsi ¼ jSij � jSiþ1j, where Si is the ith

module in the path. Then choose Si� within each path, where

i� ¼ maxfijDsi � sg;

� Step 3: remove genes not connected to others in each Si� .

Choose from all resulting Si� the one with highest standardized

score as final selection, denoted as S�:

In Step 1, we explore the module selection for k different k val-

ues. For each value, we calculate its selection path PðkÞ to collect all

distinct modules whose number of genes is less than max select

(specified by the user). This can be achieved by starting at a trial

value g ¼ g0 and computing the path over the sparsity range ½g0;1	.
If jSðg0Þj < max select, decrease g and compute the path in the ex-

tended range, until the size of the largest selected module surpasses

max select. The range ½kmin; kmax	 should be broad enough, so that

an optimal selection is contained in these paths. Though exhaustive

search is potentially expensive, the incorporation of our speed-up

path algorithm can largely reduce the computational burden.

In Steps 2, the goal is to find a local optimum module within

each path, where by local optimum we mean the selected module is

strongly interconnected and enriched in high scores relative to that

path. We identify this local optimum by examining the size differ-

ence between consecutive modules in P, i.e., jS1j � jS2j; jS2j � jS3j,
etc. This is because, by our formulation, if the connectivity regular-

izer does not have an effect, the genes will be removed one by one

from the module; while if the regularizer has an effect, some strongly

interconnected genes are non-separable and are removed together,

which corresponds to a large size jump (s) between consecutive se-

lections in the selection path, as shown in Supplementary Figure S2.

We select the smallest module in the path that contains such non-

separable genes (by choosing i� ¼ maxfijDsi � sg). We set s ¼ 5 by

default, but it can be adjusted based on actual situation.

In the final step, we first remove the genes that are not connected

to any other gene in each local optimum module. Then we choose

from these local optima the one with highest standardized score,

where the standardized score of a module S is defined as

z�ðSÞ ¼ zðSÞ � jSj � blffiffiffiffiffi
jSj

p br :

Here zðSÞ ¼
P

s2S zs: bl and br are the sample mean and standard de-

viation of all gene scores in GeneNet.

A summary of this procedure is shown in Figure 1. Through this

hierarchical procedure we increase the possibility to find the true

disease-associated gene module.

3 Implementation

We implemented our method in an R package SigMod (available at

https://github.com/YuanlongLiu/SigMod). SigMod takes a list of

gene-level P-values and a GeneNet as input. Each connection in the

GeneNet can be assigned a weight to quantify the confidence or

strength of the connection. When the weight of a connection is un-

available, it can be specified as 1 or 0 to indicate presence or absence

of the connection.

The SigMod package consists of the main function select_subnet

to solve the optimization problem of Equation (2); the selection_path

function to calculate the selection path as described in Section 2.3.1;

and additional functions to help identify the optimal module selection.

We use the graph.maxflow function in R package igraph 0.7.1

(Csardi and Nepusz, 2006) to find the s-t min-cut. It implements the

Goldberg-Tarjan Push-Relabel algorithm (Goldberg and Tarjan,

1988), and has the smallest known time complexity of

Oðn1n2 log ðn2
1=n2ÞÞ, where n1 is the number of genes in GeneNet and

n2 is the number of connections.
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4 Results

We evaluated the performance of SigMod using both simulated and

real datasets. We downloaded a comprehensive human GeneNet

from the STRING database version 10 (Szklarczyk et al., 2014),

which contains information on various types of connections among

genes. This GeneNet includes 19 247 genes and 4 274 001 edges.

Each edge represents a known or predicted interaction between

genes or gene products (proteins), including direct (physical) and in-

direct (functional) associations derived from four sources including

systematic genome comparisons, high-throughput experiments, co-

expression and previous knowledge from literature. Each edge in the

STRING GeneNet is assigned a weight varying from 0 to 1, which

represents the combined confidence of the connection between two

genes derived from different sources of information.

4.1 Results of the simulated data
We first conducted simulations using the STRING GeneNet. We

chose five strongly interconnected gene modules identified by

CFinder (Adamcsek et al., 2006) as candidate causal modules

(Supplementary Fig. S3). The sizes of these modules ranged from 47

to 87.

In each simulation, a single module was set as the causal module.

We followed the proposal of Rajagopalan and Agarwal (2005) to

set P-values of the genes belonging to the causal module to be uni-

formly distributed between 0 and 10�3. P-values of other genes were

uniformly distributed between 0 and 1. We set ½kmin; kmax	 ¼ ½0:005;

0:05	 and computed selection paths for k ¼ 100 values of k in this

range. Other parameters were set as s ¼ 5 and max select ¼ 1000.

We compared our method with two state-of-the-art module

search methods dmGWAS (Jia et al., 2011) and SConES (Azencott

et al., 2013). The dmGWAS method identifies gene modules by

starting from each gene in the GeneNet and repeatedly adding

neighboring genes that generate the maximum increment of the

module score (zðSÞ ¼
P

s2S zs). Module growth terminates if adding

neighboring genes does not yield more than r% (r¼10 by default)

increment of the score. As in dmGWAS the number of genes to be

selected is determined by the user, we selected approximately the

same number of genes as that of the causal module under study. To

do so, we first set parameters to their default values to generate raw

modules. Then we ordered the raw modules according to their mod-

ule scores. Top modules were selected sequentially until the cumula-

tive size of these modules exceeded that of the causal module. The

SConES method, as described in Section 2.1, selects genes by maxi-

mizing the objective function gðuÞ. It should be noticed that its ori-

ginal implementation uses a cross-validation approach to set tuning

parameters, which does not apply to our study as raw genotype

data are not used. Nonetheless, according to the relationship be-

tween f ðuÞ and gðuÞ described in Section 2.1, it is straightforward

that our path algorithm can also be applied to SConES. Thereby, we

computed its selection paths using the same ks as for SigMod. In

each path, we chose the first module selection whose size exceeded

that of the causal module. Among these selections we chose the one

with largest standardized score.

We ran 20 repetitions for each of the five candidate gene mod-

ules (hence 20� 5 experiments for each method). We computed the

power (fraction of causal module genes selected) and false discovery

rate (FDR, fraction of selected genes that are not causal) of each ex-

periment. SigMod has systematically higher power and lower FDR

over all experiments, as presented in Figure 2 (results are aggregated

for all experiments; see Supplementary Fig. S4 for individual re-

sults). SConES has lower power and higher FDR than SigMod while

dmGWAS performs worst in these simulations. We further com-

pared the standardized connection strength of the selected modules,

defined as q ¼ 2x=mðm� 1Þ, where m is the module size; x is the

sum of pairwise edge weights in the module. As shown in Figure 3

and Supplementary Figure S5, the connection strengths of gene mod-

ules selected by SigMod are much higher than the other two

methods.

The performance of these methods against noise was also eval-

uated. Two sources of noise were considered simultaneously. The

first one is standard Gaussian noise added to the scores of the causal

module genes. The second noise is added to the topology of

GeneNet by randomly rewiring 5% of the edges, where at a rewire

step, two edges V1 � V2; V3 � V4 becomes V1 � V4; V3 � V2.

This rewire process keeps the distribution of node degree un-

changed. We observed that SigMod still has the best performance

among the three methods, with an average power of 0.83 and FDR

of 0.18 (Fig. 2 and Supplementary Fig. S4). Interestingly, dmGWAS

has an improved performance when noise is added (higher power

and lower FDR). This is because it selects genes with highest scores.

Fig. 2. False discovery rate (FDR) versus power of three network analysis

methods applied to simulated data. The results of 20 replicates of five causal

modules are aggregated. Five-number statistics (minimum, first quartile, me-

dian, third quartile, and maximum) of each quantity are shown by ellipse plot

(Tomizono, 2013). Plot (a) shows the results without adding noise to the

GWAS data or GeneNet. Plot (b) shows the results with noise added to both

GWAS data and GeneNet
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By adding Gaussian noise to the scores, genes with increased score

are more likely to be selected.

4.2 Identification of a gene module associated with

childhood-onset asthma
We applied SigMod to the meta-analysis results of 18 childhood-

onset asthma GWASs, which were part of the European GABRIEL

asthma consortium (Moffatt et al., 2010). The data are described in

detail elsewhere (Moffatt et al., 2010). In order to check the consist-

ency of results of SigMod, we used a discovery-evaluation scheme.

Therefore, the 18 childhood-onset asthma GWASs were randomly

split into two groups of nine GWASs while preserving a similar sam-

ple size for the two groups: 3031 cases/2893 controls in the first

group for discovery and 2679 cases/3364 controls in the second

group for evaluation. In each group, a meta-analysis was applied to

2 370 689 single SNP association statistics (Hapmap2-imputed

SNPs after quality control), using a random-effects model im-

plemented in STATA V12 (distributed by Stata Corporation,

College Station, Texas, USA). The results of these two meta-

analyses (SNP-level P-values) were respectively named META1 and

META2.

To aggregate SNP-level results into genes, SNPs were mapped to

genes (between the start site and 3’-untranslated region of each

gene) using dbSNP Build 132 and human Genome Build 37.1, mak-

ing a total of 24 120 genes with at least one SNP mapped. Each

gene-level P-value was taken as the best SNP P-value among all

SNPs mapped to the gene, and was further corrected for gene length

using permutations. We applied the circular genomic permutation

(CGP) approach that can preserve linkage disequilibrium (LD)

among SNPs when permuting SNP-level statistics (Cabrera et al.,

2012). It was shown to have similar performance to the highly time-

consuming gold standard of phenotype permutation (Brossard et al.,

2013). These corrected gene-level P-values were converted to scores

by inverse normal transformation. The scores were mapped to the

STRING-based GeneNet to build a scored network, which consisted

of 15 724 genes and 3 055 850 edges.

We applied SigMod to the META1 discovery set. We used the

same parameter settings as described in simulations, i.e.

kmin ¼ 0:005, kmax ¼ 0:05, k ¼ 100, s ¼ 5 and max select ¼ 1000.

We identified a strongly interconnected gene module of 190 genes

and 1295 connections (Supplementary Fig. S6).

4.2.1 Enrichment of the identified gene module in high association

signals

The selected gene module has a standardized score of 36.09, which

is significantly higher than the scores of 100,000 random modules

(each has the same number of genes as in the identified module)

sampled from the scored GeneNet (P < 10�5; Supplementary Fig.

S7). All module genes have significant P-values (P�0.05), ranging

from 5:48� 10�6 to 1:88� 10�2
. These P-values are ranked at the

top of the whole gene list, with highest rank of 1 and lowest rank of

581 (Supplementary Table S1).

We then evaluated whether the selected gene module was en-

riched in consistent association signals, by computing its score using

META2 dataset. The gene module had a standardized score of 5.85,

which was again significantly higher than scores of 100 000 ran-

domly generated modules (P < 10�5; Supplementary Fig. S7). This

shows the ability of SigMod to select a module displaying consistent

association signals.

4.2.2 Association of the identified gene module with asthma

The association of the identified module with childhood-onset

asthma was evaluated through CGP permutation of SNP P-values

that can preserve the genomic structure, using META1 and META2

respectively. For each evaluation, a total of 100 000 CGP samples

were generated and scores of the identified gene module were

recomputed using these samples. The observed score of the identi-

fied module was significantly higher than those obtained from the

permutation samples (P < 10�5 evaluated using either META1 or

META2) (Supplementary Fig. S8). This shows the gene module is

significantly associated with childhood-onset asthma.

4.2.3 Functional clustering and annotations of genes belonging to

the identified gene module

Our method is based on the ‘guilt by association’ principle. To ex-

plore the functional relatedness of genes belonging to the selected

module, we used the gene functional classification tool of the

DAVID Bioinformatics Resource (Huang et al., 2009). This tool

generates a gene-to-gene similarity matrix based on shared func-

tional annotation profiles using over 75 000 terms from 14 annota-

tion sources and classifies highly related genes into functionally

related groups. We identified nine functional gene clusters of which

seven included genes having strong connections within our selected

module (Fig. 4 for these seven groups and Supplementary Figure S9

for the additional two groups). Altogether the nine functionally

related groups included 68 out of the 190 module genes (36%). The

function of each gene cluster was annotated by the most representa-

tive gene ontology (GO) category shared by all genes within a cluster

and with highest (or close to highest) enrichment in these genes. For

the seven clusters with strong gene–gene connections, these GO cate-

gories corresponded to the MHC protein complex, known to be

associated with many immune-related diseases including asthma,

and potentially novel mechanisms such as nucleosome assembly,

regulation of ubiquitin-protein ligase activity, protein catabolic pro-

cess, zinc ion binding, as well as regulation of transcription (clusters

6 and 7) which plays a key role in autoimmune diseases (Farh et al.,

2015) that share susceptibility loci with asthma (Welter et al.,

2014).

Finally, we performed KEGG pathway enrichment analysis to

further annotate the module genes. We used the enrichKEGG func-

tion of the R package clusterProfiler (Yu et al., 2012), which interro-

gates KEGG on the fly to get the latest pathway information. We

found 15 pathways (Table S2) significantly enriched in genes from

Fig. 3. Box plots of the standardized connection strength (q) of gene modules

identified by three network analysis methods (SigMod, SConES and

dmGWAS). The results of 20 replicates of five causal modules were

aggregated
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the identified module (FDR<0.05). Of particular interest is that

five KEGG pathways are related to virus infection, which supports

previous findings of the modulating effect of genetic variants associ-

ated with asthma at the 17q21 locus on the association of asthma

with viral infections (Çalışkan et al., 2013; Smit et al., 2010).

Moreover, the antigen presentation pathway was already identified

by DAVID as the MHC complex GO, and the Inflammatory Bowel

Disease and Type 1 Diabetes pathways represent two auto-immune

diseases that share susceptibility loci with asthma (Welter et al.,

2014). All of this adds further evidence that the selected gene mod-

ule includes genes of functional relevance for asthma.

4.2.4 Comparison of results using SigMod, dmGWAS and SConES

For purpose of comparison, we also applied dmGWAS and SConES

to the META1 dataset to identify modules. We used the same strat-

egy as described in the simulation study to select approximately the

same number of genes as selected by SigMod. We compared the

identified modules for their enrichment of association signals (quan-

tified by the module score z�), and evaluated the replicability of

these signals in the independent META2 dataset.

As shown in Table 1, the module identified by SConES has a

slightly lower score than the module selected by SigMod. All genes

of SigMod and SConES modules have a significant P-value

(P�0.05), hence are likely to be bona fide genes. Comparatively,

the module identified by dmGWAS has a score that is twice as small

as the SigMod module score. Also only half of its module genes have

a significant P-value. This shows dmGWAS has a lower ability to

identify genes having strong association signals. This is likely be-

cause: dmGWAS uses a heuristic search algorithm that does not

guarantee the maximization of the module score; while SigMod and

SConES use exact algorithms to ensure the maximization.

When these modules were evaluated for replication of results

using the independent META2 dataset, the module identified by

SigMod again had the highest score (see Table 1). Specifically, 30

genes out of the 190 genes were significant when evaluated from

META2 (Supplementary Table S1), hence were significant in both

META1 and META2 and are thus of biological interest. These mod-

ule genes account for almost half of the 70 genes in the GeneNet

that are significant in both datasets, demonstrating the ability of

SigMod to identify genes displaying consistently high association

signals. Comparatively, the signals in the module identified by

dmGWAS or by SConES were less replicated, as indicated in Table 1

by the module score and the number of significant genes evaluated

using META2. Specifically, 18 out of 190 genes identified by

Fig. 4. Seven strongly interconnected functional gene clusters identified by DAVID in the selected gene module associated with childhood-onset asthma. The

main function of each cluster is represented by the gene ontology (GO) category that has highest enrichment in the cluster genes. The P-values correspond to the

significance of enrichment of the shown GO term in the corresponding gene cluster

Table 1. Comparison of the performance of SigMod with dmGWAS

and SConES in identifying a gene module associated with child-

hood-onset asthma

META1 META2

#Genes #Edges q z� #sig z� #sig

SigMod 190 1295 0.022 36.08 190 5.85 30

SConES 190 232 0.004 35.52 190 4.14 18

dmGWAS 191 679 0.011 17.18 92 3.65 25

Various features of the identified gene module were compared, including

the number of genes and edges, the connection strength (q), the standardized

module score (z�), and the number of nominally significant genes (#sig) in the

module. META1 and META2 are the two datasets consisting of SNP-level

P-values obtained from meta-analyses of childhood-asthma GWAS.
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SConES from META1 remained significant in META2. This lower

replication rate (60% of the SigMod replication rate) may be due to

the lower overall interconnection among genes selected by SConES.

As shown in Table 1, the number and strength of connections be-

tween genes in the SConES module are both 18% of the values

observed in the SigMod module. These genes with lower overall

connection strength are likely to be less functionally relevant, and to

have a less consistent joint effect on disease.

As for computational efficiency, all three methods (with SConES

using our tuning parameter setting strategy) have comparable run

time of �3 h on a server (2.66 GHz IntelV
R

XeonVR Processor X5650

and 160 GB of RAM).

5 Discussion and conclusion

Network-assisted analysis of GWAS data to identify gene modules

enriched in high association signals has received increasing attention

over the last decade. In this article, we proposed a novel method

SigMod, tailored for such purpose. SigMod takes a gene network

and a list of gene-level P-values as input. The gene network can be

retrieved from databases or derived from experiments that are best

suitable to the study. In our application to the asthma data, we

chose the STRING network that has the advantage of integrating

connection information from various sources. The gene-level P-val-

ues, which represent the significance of gene–disease association,

can be computed from GWAS SNP-level P-values using any proper

gene-based methods (e.g., Lamparter et al., 2016; Liu et al., 2010).

In our study, gene-level P-values were chosen as the best SNP

P-value in a gene and were corrected for gene length using Circular

Genomic Permutation that can preserve the LD pattern between

SNPs. One challenge in network-assisted analysis is the assignment

of SNPs to genes, as discussed in Jia and Zhao’s review (Jia and

Zhao, 2014). In our study, we used a stringent definition of gene

boundaries, which were represented by the start site and 3’-untrans-

lated region of each gene to reduce false positives. Although gene

boundaries can be extended to a few kilobases both upstream and

downstream of a gene, it was shown that a change of boundaries

from 0 to 250 kb did not significantly affect the power of the related

network analysis (Lee et al, 2011), although this needs to be further

confirmed. Moreover, extension of boundaries to flanking regions

of a gene may increase the degree of overlap of nearby genes and

thus the number of wrong SNP-to-gene assignments. More sophisti-

cated SNP to gene annotation strategies that take into account func-

tional information, such as gene expression through expression

quantitative trait loci (eQTLs), or that define a regulatory domain

for each gene (McLean et al, 2010), may be considered. However,

the performance of such annotation strategies with respect to the

classical ones need to be further assessed.

SigMod selects a strongly interconnected gene module enriched

in association signals by optimizing a binary quadratic objective

function. We showed the optimization problem can be solved

exactly through graph min-cut algorithms. We also designed a path

algorithm that allows computing the selection path at any given k
value. This provides the flexibility to select an appropriate number

of genes. In combination with the path algorithm, we proposed a

strategy that enables choosing proper parameters to keep a balance

between module score and module connectivity. This strategy does

not require using raw genotype data. We believe that a proper par-

ameter setting strategy is as important as the formulation of the ob-

jective function, as inappropriate parameters can lead to unwanted

results, especially for network-assisted analysis where numerous

gene modules can be selected. Comparatively, in the original

SConES method the parameters are determined using a cross-

validation approach, which cannot be applied to situations where

raw genotype data are unavailable, as often encountered.

In comparison to previous approaches that only require the se-

lected genes being connected in a network, SigMod encourages se-

lecting genes having overall strong interconnection. This emphasis is

well grounded as the identified module is more robust against noise.

In particular, genes that have some false connections in the selected

module may still be kept in the module after removing such connec-

tions, whereas for a loosely interconnected module, removal of false

connections may destroy the module structure. Also, a strong inter-

connection among genes can reflect close functional relationships, as

implied by the ‘guilt by association’ principle and demonstrated by

our application to the asthma dataset.

SigMod has a different focus compared with SConES.

Specifically, SConES focuses on co-selection of adjacent nodes ra-

ther than the overall strong interconnection among selected nodes.

The node preference between SigMod and SConES is also different.

SConES favors low degree nodes while SigMod rewards nodes of

higher degrees, as indicated in Section 2.1. We believe that reward-

ing high degree nodes is particularly suitable for some applications.

It has been widely observed that many disease-causing genes have

high degrees in a gene network, especially those playing a central

role in complex diseases (Lee et al. 2013; Xiong et al., 2014). These

genes can even show higher connectivity in an integrated gene net-

work (e.g. STRING) that aggregates connection information from

various sources. Although SigMod rewards genes of higher degree,

the scale of rewarding is controlled by a tuning parameter k. This

parameter keeps the balance between the module score and the con-

nectivity, which can be chosen properly using our parameter setting

strategy. The validity of this strategy was verified in the simulation

study and in the application to asthma GWAS data, where all se-

lected genes were nominally significant (after correction for gene

length) and were ranked at the top of the gene list in the whole net-

work (Supplementary Table S1). We did not observe any gene was

selected just because it is a hub gene even when it had a very low

score.

In our simulations, we found SigMod outperforms SConES and

another state-of-the-art method dmGWAS. It has the best power

and lowest false discovery rate. This high performance was pre-

served in presence of noise from both GWAS results and network in-

formation, demonstrating its robustness. Further application of

SigMod to childhood-onset asthma GWAS results successfully iden-

tified a gene module significantly associated with disease. The ana-

lyses of functional relationships among genes highlighted known

asthma-related gene functions and novel ones which allow generat-

ing new hypotheses regarding the mechanisms underlying asthma

pathogenesis. Though the module identified by SConES was also en-

riched in high association signals in the META1 discovery dataset,

these signals were less well replicated in the independent META2

dataset. A possible explanation is that the genes in the SConES mod-

ule are less connected than those identified by SigMod, as reflected

by the overall connection measure (q). They are thus likely to be less

functionally related and may have a less consistent joint effect on

disease. This emphasizes again the importance of favouring strong

interconnection as achieved by SigMod.

To our knowledge, our method is one of the very few methods in

related work that both take edge weights into account and can be

solved using exact algorithms. As there are emerging approaches to

define connections among genes (e.g., physical or functional, experi-

ment verified or computational based interaction), edge weights are

8 Y.Liu et al.

115



an important indicator of the confidence or strength of the connec-

tion. For those methods that do not incorporate edge weight, an ar-

bitrary hard cutoff has to be given to define the presence or absence

of a connection, which can lose useful information.

Our current formulation of SigMod did not take into account

the LD pattern that may exist among SNPs belonging to adjacent

genes or gene clusters in a chromosomal region that may share simi-

lar functions. This may cause over selection of genes belonging to

such clusters. However, when many genes possess high scores but

are in the same LD interval, the algorithm picks automatically those

having stronger connections with other genes located in different

chromosomal regions. This matches the concept of Taşan et al.

(2015) that genes with more connections are of higher importance.

Nonetheless, SigMod is different from their approach, in that the al-

gorithm decides itself the optimal number of genes to be selected in

a LD interval, instead of given a ‘prix fixe’ constraint to select only

one gene from it. We believe this is more rational as it is generally

unsure whether there is only one causal gene in a LD interval.

In conclusion, we proposed an exact and efficient method

SigMod for integrative analysis of GWAS data with network-based

knowledge. Our method enables to find a functionally relevant gene

module enriched with high association signals. It is robust against

noise from either the GWAS results or the background network.

Though our method is especially designed for identifying a gene

module associated with disease (or trait), it can be applied to any

other network-assisted feature selection problem of the same

concept.
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SigMod: an exact and efficient method to identify a strongly

interconnected disease-associated module in a gene network

Yuanlong Liu, Myriam Brossard, Damian Roqueiro, Patricia Margaritte-Jeannin,
Chloé Sarnowski, Emmanuelle Bouzigon, Florence Demenais

1 Supplementary Figures

1( )S  ( )mS 2( )S  3( )S  1( )mS  

… 

… 

Figure S1: The selection path at a given λ value over the sparsity range [ηmin, ηmax], defined as
P = 〈S(η1), ..., S(ηm)〉 . Here S(η1), ..., S(ηm) are the sequence of distinct modules selected by moving
η from ηmin to ηmax, and η1, ..., ηm are some sparsity values leading to these distinct selections (ηmin ≤
η1 < ... < ηm ≤ ηmax). Red nodes represent genes and the curved lines are their connections. The
nesting property is reflected by S(η1) ⊇ · · · ⊇ S(ηm).
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Figure S2: The number of genes in each module (S) from the selection path (P). Four paths cor-
responding to four λ values are shown. The x-axis represents the order of each module in the path.
The y-axis represents the number of genes in a module. Each path contains 100 distinct modules
which end with an empty module (no gene selected). In a given path, a big size jump between two
consecutive modules indicates some strongly interconnected genes are non-separable and are selected
together. For larger λ values, the jumps are usually bigger, such as for λ = 0.05 (blue line).
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Figure S3: Five strongly interconnected gene modules identified by CFinder were chosen as causal
module for simulation study.
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Figure S4: False discovery rate (FDR) versus power of three network analysis methods (SigMod,
dmGWAS and SConES) applied to simulated data. In each experiment, one of the five modules
identified by CFinder was set as the causal module. Plot (a) shows the results without adding noise to
the GWAS data or GeneNet. Plot (b) shows the results with noise added to both gene-level P -values
and gene network data.
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Figure S5: Box plots of the standardized connection strength (ρ) of gene modules identified by three
network analysis methods (SigMod, SConES and dmGWAS). In each experiment, one of the five
modules identified by CFinder was set as the causal module.
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Figure S6: The gene module identified by applying SigMod to asthma META1 dataset. This module
contains 190 genes and 1295 connections. In the figure the edge widths are proportional to edge
weights, with smallest weight of 0.151 and largest weight of 0.999. Chromosome lengths have been
rescaled for better layout.
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Figure S7: Histogram of the standardized module scores z∗ of 100,000 random modules sampled from
GeneNet (each module has 190 genes). The selected gene module has a significantly higher score than
the random modules (P < 10−5), evaluated using META1 and META2 dataset respectively.
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Figure S8: Histogram of the scores of selected gene module based on 100,000 random permutations
of SNP-level statistics using Circular Genomic Permutation (CGP). The observed module score is
significantly higher than those obtained from the permutation samples (P < 10−5), evaluated using
META1 and META2 dataset respectively.
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Figure S9: Two additional loosely connected or unconnected functional gene clusters out of nine
gene clusters identified by DAVID in the selected gene module. The main function of each cluster is
annotated using the gene ontology (GO) category with highest enrichment in these genes. P -values
indicate the significance of enrichment of each GO category.
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Figure S10: An example of min-cut capacity curve κ∗(η) and its corrected curve κ∗c(η). κ∗(η) has three
change-points {c1, c2, c3} and two break-points {b1, b2}. It is piece-wise linear and concave between
any consecutive change-points. The corrected curve κ∗c(η) is concave throughout its domain. The
correction at η0 is ∆ = 2η0 − c1 − c2 according to Equation (S2).

8
124



2 Supplementary Tables

Table S1: Association statistics of 190 genes in the selected gene module for childhood asthma.
Pbest-SNP is the best SNP P -value among all SNPs mapped to a gene. Gene P -value is the best SNP
P -value corrected for gene length using CGP-permutation. “Rank” is the rank of a gene P -value
among all genes mapped to the GeneNet evaluated using the META1 discovery dataset. The genes
having significant P -values (P ≤ 0.05) in both META1 and META2 datasets are shown in bold.

META1 (Discovery data) META2 (Replication data)

No. Chr. Gene best SNP best SNP position Pbest SNP Gene P-value Pbest SNP Gene P-value Rank

1 1 FAM46C rs17037485 118162124 4.30E-04 1.45E-01 7.35E-03 6.80E-01 272

2 1 HIPK1 rs7545300 114503636 2.46E-04 5.32E-02 3.41E-03 2.64E-01 165

3 1 OLFML3 rs7364 114524661 3.66E-04 8.76E-01 9.63E-04 9.52E-01 58

4 1 PGM1 rs855311 64091739 3.87E-04 7.21E-03 8.28E-03 8.09E-02 294

5 1 FOXO6 rs7539614 41831047 1.22E-03 1.76E-04 7.89E-03 8.90E-04 284

6 1 SLC2A1 rs841847 43402708 8.64E-04 3.67E-02 1.30E-02 2.64E-01 422

7 1 YARS rs2282294 33246177 2.59E-03 5.08E-01 1.67E-02 9.36E-01 524

8 1 HPCA rs1284371 33352771 4.96E-03 7.86E-01 1.06E-02 9.39E-01 351

9 1 CDA rs818202 20916791 3.63E-04 1.02E-01 3.91E-03 4.02E-01 178

10 1 ACTRT2 rs3795262 2938697 2.18E-03 3.06E-01 5.34E-03 4.76E-01 215

11 1 PRUNE rs4970989 151003600 9.11E-04 1.24E-02 8.47E-03 6.48E-02 301

12 1 RNASEL rs486907 182554557 2.15E-03 4.14E-02 1.19E-02 1.41E-01 387

13 1 C1ORF107 rs126280 210019824 3.31E-04 4.35E-01 5.72E-03 9.70E-01 227

14 1 IRF6 rs674433 209964875 1.14E-03 2.84E-01 1.07E-02 8.03E-01 353

15 1 ARF1 rs1188975 228277690 1.13E-03 1.49E-01 6.59E-03 4.17E-01 254

16 2 TIA1 rs2706769 70473453 2.93E-04 2.39E-01 3.05E-03 6.82E-01 157

17 2 RPS27A rs2028139 55460017 9.54E-04 6.39E-01 3.26E-03 8.82E-01 161

18 2 C2ORF63 rs13032294 55404883 4.16E-04 5.01E-01 7.71E-03 9.90E-01 282

19 2 MTIF2 rs2043712 55480022 3.71E-04 3.29E-01 3.84E-03 8.24E-01 177

20 2 RTN4 rs11677099 55254165 4.09E-05 4.25E-02 2.12E-03 4.27E-01 124

21 2 IL18R1 rs3771166 102986222 1.87E-05 2.36E-05 8.20E-04 4.08E-04 52

22 2 IL1RL1 rs4988957 102968075 2.86E-05 2.17E-05 1.49E-03 5.63E-04 84

23 2 INSIG2 rs889904 118860471 9.40E-04 2.23E-01 8.66E-03 6.95E-01 309

24 2 SDPR rs4853645 192704044 1.07E-03 2.50E-01 5.50E-03 5.73E-01 220

25 2 SCG2 rs2894511 224465827 9.31E-03 8.30E-01 8.56E-03 8.19E-01 305

26 3 NFKBIZ rs604521 101550578 1.26E-03 1.17E-01 7.62E-03 3.55E-01 279

27 3 ZNF660 rs939649 44632212 3.27E-03 3.90E-02 7.55E-03 6.46E-02 277

28 3 NKTR rs1062051 42672486 7.97E-04 1.01E-01 9.94E-03 4.88E-01 333

29 3 CEP97 rs2554962 101445118 7.15E-04 8.28E-02 4.25E-03 2.42E-01 187

30 3 ZBTB11 rs4683854 101385261 1.18E-03 7.80E-01 4.97E-03 9.77E-01 207

31 3 DRD3 rs324022 113887298 1.18E-04 5.06E-02 2.86E-03 3.57E-01 151

32 3 NPHP3 rs11708051 132410648 1.14E-03 5.87E-02 1.07E-02 2.74E-01 356

33 3 UBA5 rs1378807 132385190 1.27E-03 1.85E-01 6.34E-03 4.54E-01 247

34 3 ACAD11 rs2305627 132346992 2.84E-04 1.57E-01 4.12E-03 6.26E-01 183

35 5 IQGAP2 rs10514071 75994211 4.53E-05 1.54E-02 6.96E-03 5.35E-01 264

36 5 IL13 rs848 131996500 2.71E-04 1.02E-03 1.44E-03 2.44E-03 76

37 6 PRSS16 rs9393795 27217719 4.17E-04 3.34E-02 1.41E-03 5.54E-02 75

38 6 ZNF192 rs13205911 28124114 6.42E-05 7.37E-03 1.19E-03 4.14E-02 67

39 6 ZNRD1 rs8321 30032522 1.07E-03 1.89E-01 7.07E-03 5.34E-01 266

40 6 ZSCAN12 rs2232423 28366151 4.08E-04 9.53E-03 6.39E-03 7.38E-02 249

41 6 TREML4 rs7774363 41198145 2.36E-04 5.65E-02 4.30E-03 3.49E-01 188

42 6 ABCF1 rs3132610 30544401 7.59E-04 6.93E-01 5.32E-03 9.82E-01 213

43 6 AGPAT1 rs2269423 32145707 1.62E-04 1.28E-01 1.53E-03 3.82E-01 86

44 6 BAT1 rs2734583 31505480 3.56E-05 2.62E-01 9.48E-04 8.19E-01 55

45 6 BAT2 rs3132450 31596138 7.72E-04 6.16E-03 8.60E-03 4.01E-02 306

46 6 C6ORF136 rs9262135 30618906 4.69E-04 7.70E-01 6.79E-04 7.55E-01 44

47 6 CCHCR1 rs130073 31111180 3.05E-04 8.34E-02 6.46E-03 5.38E-01 252
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48 6 CLIC1 rs3131383 31704294 5.20E-04 3.68E-01 1.23E-03 4.76E-01 70

49 6 CSNK2B rs9267531 31636742 5.29E-04 2.83E-01 2.31E-03 5.39E-01 129

50 6 DDR1 rs1049633 30867527 4.07E-05 1.71E-01 8.85E-04 6.01E-01 54

51 6 GNL1 rs3130247 30515043 9.78E-04 7.82E-01 3.83E-03 9.70E-01 175

52 6 GTF2H4 rs1264308 30879987 5.96E-05 1.55E-01 7.56E-04 4.31E-01 46

53 6 HCG27 rs3132511 31170020 3.92E-04 6.01E-02 4.52E-03 2.79E-01 195

54 6 HFE rs1045537 26096748 7.39E-04 7.24E-03 4.92E-03 2.73E-02 206

55 6 HLA-C rs2001181 31236998 5.32E-04 3.91E-01 4.73E-03 8.67E-01 205

56 6 HLA-DQA1 rs9272853 32610705 3.09E-05 2.31E-01 3.04E-04 4.57E-01 23

57 6 HLA-DQB2 rs9276584 32730835 6.99E-04 3.83E-02 8.24E-03 2.16E-01 293

58 6 HLA-G rs1610696 29798803 1.25E-03 6.60E-01 8.39E-03 9.78E-01 297

59 6 ITPR3 rs3736893 33639760 2.51E-05 2.02E-01 1.44E-03 9.22E-01 78

60 6 LTA rs909253 31540313 1.52E-03 1.40E-01 4.71E-03 2.64E-01 203

61 6 MDC1 rs3094093 30679628 2.67E-03 3.46E-01 9.87E-03 6.62E-01 330

62 6 MSH5 rs3117574 31725230 4.35E-04 7.34E-02 4.72E-03 3.16E-01 204

63 6 NFKBIL1 rs2071592 31515340 7.20E-05 4.85E-02 1.04E-03 1.85E-01 60

64 6 NOTCH4 rs436388 32186264 2.40E-04 1.07E-01 6.29E-03 6.75E-01 245

65 6 POU5F1 rs13409 31132140 6.15E-04 3.29E-02 6.05E-03 1.58E-01 237

66 6 PSMB8 rs9276810 32810443 4.43E-04 4.09E-01 2.55E-03 7.66E-01 142

67 6 RNF39 rs9261290 30038647 1.03E-03 3.14E-01 5.75E-03 6.92E-01 229

68 6 SLC44A4 rs9267659 31846234 1.69E-04 1.30E-01 2.00E-03 4.60E-01 117

69 6 TAP1 rs6457684 32814447 1.09E-04 3.08E-01 1.81E-03 8.37E-01 101

70 6 TCF19 rs7750641 31129310 2.14E-05 3.52E-02 4.99E-04 1.59E-01 31

71 6 TNXB rs3130286 32042322 3.28E-04 2.53E-01 6.68E-03 8.91E-01 259

72 6 TRIM10 rs2523735 30122657 4.04E-04 3.24E-02 5.17E-03 1.79E-01 211

73 6 TRIM31 rs1116221 30071330 6.70E-04 3.52E-02 8.10E-03 2.05E-01 290

74 6 TUBB rs8233 30692965 8.13E-04 3.59E-01 2.87E-03 6.03E-01 152

75 6 UBD rs404240 29523957 4.22E-04 4.36E-01 2.68E-03 8.14E-01 148

76 6 VARS rs915652 31749142 3.83E-04 1.66E-01 2.46E-03 4.16E-01 133

77 6 ABT1 rs4634439 26598004 1.69E-03 9.26E-02 7.37E-03 2.36E-01 273

78 6 ZNF323 rs13217619 28306671 3.45E-04 1.22E-02 6.25E-03 1.03E-01 244

79 6 ZSCAN16 rs4713140 28097193 2.09E-03 6.35E-02 9.56E-03 1.79E-01 324

80 6 ZSCAN23 rs7766356 28400538 3.06E-04 3.15E-02 2.27E-03 9.84E-02 128

81 6 TRIM27 rs3135293 28877247 4.96E-05 1.60E-01 7.80E-04 4.87E-01 50

82 6 HIST1H1A rs16891235 26017542 4.19E-04 2.46E-01 6.34E-04 2.17E-01 35

83 6 HIST1H1B rs17763089 27835218 6.04E-04 6.24E-01 1.38E-03 7.58E-01 72

84 6 HIST1H2BL rs200485 27775697 3.76E-03 7.01E-01 6.42E-03 8.28E-01 250

85 6 PGBD1 rs13211507 28257377 2.51E-04 1.66E-02 3.69E-03 1.01E-01 171

86 6 ZKSCAN3 rs6921919 28325201 5.77E-04 1.22E-02 6.43E-03 7.14E-02 251

87 6 HIST1H2AA rs4711095 25726774 4.69E-03 4.21E-01 1.00E-02 6.25E-01 336

88 6 HIST1H2BA rs9358872 25727517 4.18E-03 5.56E-01 1.11E-02 8.18E-01 366

89 6 NT5E rs3812139 86196990 2.62E-04 5.67E-02 4.34E-03 3.26E-01 191

90 6 ASF1A rs7772912 119218470 2.63E-03 1.73E-01 1.25E-02 4.52E-01 406

91 6 SUMO4 rs237025 149721690 5.64E-03 4.78E-01 5.44E-03 4.47E-01 219

92 6 PSMB1 rs12207633 170847181 2.53E-04 7.94E-02 4.16E-03 4.15E-01 185

93 6 RNASET2 rs1077453 167360024 4.28E-04 1.23E-01 5.33E-03 5.15E-01 214

94 6 TBP rs12200657 170872108 1.34E-03 8.92E-02 9.76E-03 3.25E-01 325

95 7 HECW1 rs2330785 43276428 3.90E-05 2.26E-02 7.58E-03 7.27E-01 278

96 7 TRIM56 rs6948536 100731829 8.86E-04 6.55E-01 1.91E-03 7.87E-01 110

97 7 SLC12A9 rs314370 100453208 2.93E-04 2.25E-02 2.46E-03 7.99E-02 132

98 7 TRIP6 rs6706 100471044 3.32E-04 1.88E-02 1.20E-03 3.11E-02 68

99 7 UFSP1 rs12666989 100486754 2.02E-04 3.55E-01 6.35E-04 4.60E-01 36

100 8 GEM rs1050616 95262253 9.92E-05 5.39E-01 1.40E-03 9.54E-01 74

101 8 BAALC rs2454014 104154965 2.34E-04 1.97E-02 8.87E-03 2.86E-01 315

102 8 MYC rs4645956 128750212 7.80E-03 5.32E-02 1.89E-02 1.04E-01 581

103 8 ARC rs10097505 143694184 3.65E-03 6.81E-02 3.78E-03 5.54E-02 173

104 9 TLN1 rs10972567 35728019 1.42E-03 4.26E-02 1.10E-02 1.82E-01 363

105 9 PGM5 rs7874438 71114809 1.51E-04 7.30E-02 6.17E-03 6.58E-01 240

106 9 CTSL1 rs2378757 90343780 1.84E-03 6.89E-03 5.58E-03 1.37E-02 222
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107 9 S1PR3 rs7858626 91612639 5.42E-06 1.50E-01 2.18E-04 4.03E-01 19

108 9 SHC3 rs1331180 91630548 1.98E-05 3.57E-02 1.63E-03 4.86E-01 91

109 10 MKX rs2637277 27969032 3.54E-04 7.69E-03 8.82E-03 9.77E-02 314

110 10 KLF6 rs17731 3821561 1.24E-03 2.48E-01 4.64E-03 4.85E-01 200

111 10 TUBAL3 rs7097775 5435918 6.60E-04 3.12E-01 6.00E-03 8.04E-01 235

112 10 ADO rs9990 64567938 3.35E-03 3.13E-01 9.24E-03 5.41E-01 317

113 10 DNA2 rs10998202 70224310 4.06E-04 3.75E-02 6.95E-03 2.64E-01 263

114 10 ARL3 rs2251772 104470918 1.52E-04 2.94E-01 1.74E-03 7.53E-01 98

115 10 ACTR1A rs3781290 104244948 7.32E-04 3.68E-01 6.99E-03 8.76E-01 265

116 10 FRAT1 rs3781373 99080585 1.38E-03 6.45E-01 2.73E-03 7.77E-01 149

117 10 CYP17A1 rs10786712 104596396 4.21E-05 3.61E-01 7.25E-04 8.11E-01 45

118 10 C10ORF26 rs284858 104573936 6.52E-05 7.40E-02 2.59E-03 5.86E-01 145

119 10 CNNM2 rs943036 104836047 2.34E-05 6.52E-02 1.76E-03 6.72E-01 99

120 10 NT5C2 rs746293 104897254 1.78E-05 5.67E-02 9.50E-04 4.69E-01 56

121 10 SFXN2 rs1475644 104491164 2.21E-04 1.59E-01 2.26E-03 4.98E-01 127

122 10 TLX1 rs2235128 102896801 1.89E-03 5.71E-02 1.01E-02 1.81E-01 337

123 10 AS3MT rs1591915 104646849 2.73E-05 3.42E-01 6.64E-04 8.71E-01 39

124 10 PGAM1 rs764223 99191935 9.68E-03 2.07E-01 8.87E-03 1.80E-01 316

125 11 TRIM34 rs3740998 5664831 4.94E-04 4.19E-02 7.55E-03 2.70E-01 276

126 11 PSMD13 rs577298 248002 9.13E-04 2.63E-03 1.35E-02 2.49E-02 430

127 11 SLC22A18 rs11024581 2939705 4.02E-04 1.48E-01 5.59E-03 6.17E-01 224

128 11 ANGPTL5 rs7109121 101766771 4.72E-04 1.48E-02 5.05E-03 7.64E-02 209

129 11 CD3G rs3212264 118216234 3.83E-04 6.50E-01 1.83E-03 9.14E-01 104

130 11 POU2F3 rs7484249 120142118 7.26E-05 2.13E-02 2.38E-03 2.02E-01 131

131 11 RNF214 rs655023 117127620 1.09E-03 6.22E-02 9.43E-03 2.68E-01 322

132 11 UBE4A rs12576486 118235490 2.42E-04 1.20E-01 3.12E-03 4.71E-01 159

133 11 BACE1 rs490460 117163765 1.01E-03 1.20E-01 8.31E-03 4.33E-01 295

134 12 STAT6 rs324015 57490100 8.73E-04 2.01E-02 5.35E-03 6.78E-02 216

135 12 AMIGO2 rs854889 47471037 4.42E-03 5.58E-01 7.31E-03 6.91E-01 270

136 12 ATP5G2 rs12422531 54067827 2.09E-03 4.83E-01 1.02E-02 8.70E-01 340

137 12 RDH16 rs901068 57346805 5.45E-04 2.77E-02 2.67E-03 6.94E-02 146

138 12 TAC3 rs733629 57406444 6.95E-04 7.30E-01 2.50E-03 9.36E-01 137

139 12 ZBTB39 rs4016338 57399015 3.46E-03 1.37E-03 9.48E-03 2.73E-03 323

140 12 MYO1A rs17119344 57422934 7.69E-04 2.90E-01 6.63E-03 7.68E-01 257

141 12 C12ORF43 rs3751150 121442214 4.36E-04 1.25E-02 3.15E-03 4.30E-02 160

142 13 NUPL1 rs9551192 25904797 6.09E-04 7.89E-02 4.41E-03 2.65E-01 192

143 13 CCNA1 rs4245378 37007040 3.71E-03 2.62E-01 1.29E-02 5.40E-01 420

144 13 SPG20 rs9547247 36892264 2.99E-04 5.33E-01 6.17E-03 9.94E-01 241

145 13 FOXO1 rs7323267 41204015 5.74E-05 1.80E-01 2.55E-03 8.84E-01 143

146 13 MRPS31 rs9549281 41330171 1.73E-04 4.16E-01 1.59E-03 8.41E-01 90

147 13 ATP4B rs11164142 114309226 5.49E-03 6.28E-01 8.79E-03 7.62E-01 313

148 14 GCH1 rs10498472 55354869 7.14E-04 1.21E-01 1.00E-02 5.86E-01 334

149 14 HSPA2 rs17101919 65007547 1.25E-02 3.02E-01 1.83E-02 3.94E-01 562

150 15 SLC12A1 rs11857986 48571605 2.74E-04 1.02E-01 6.60E-03 6.39E-01 255

151 15 IREB2 rs11630228 78736325 2.12E-04 4.52E-02 4.66E-03 3.39E-01 202

152 16 ITGAL rs2230434 30518096 1.64E-04 2.28E-03 2.58E-03 1.58E-02 144

153 16 CACNA1H rs4984637 1261282 1.02E-03 5.14E-01 7.44E-03 9.34E-01 275

154 16 RPS2 rs6366 2014031 1.38E-02 6.58E-01 1.23E-02 6.35E-01 397

155 16 TERF2 rs3785073 69401937 3.33E-03 9.11E-02 1.18E-02 2.16E-01 381

156 17 KIAA0664 rs11078312 2600186 9.92E-04 3.44E-02 5.59E-03 1.07E-01 223

157 17 IKZF3 rs907091 37921742 2.49E-15 1.55E-07 4.56E-05 7.09E-05 7

158 17 CSF3 rs25645 38173143 2.41E-06 1.19E-04 1.24E-04 4.50E-04 12

159 17 ERBB2 rs1058808 37884037 3.47E-06 1.62E-05 1.61E-04 8.19E-05 16

160 17 STARD3 rs11869286 37813856 4.57E-07 2.28E-04 9.08E-05 8.64E-04 9

161 17 CRKRS rs11658678 37680096 1.91E-04 4.66E-02 2.54E-03 2.26E-01 141

162 17 MED1 rs10445306 37591422 4.30E-04 4.99E-02 2.50E-03 1.33E-01 136

163 17 ORMDL3 rs12603332 38082807 4.59E-15 7.31E-08 9.71E-06 7.18E-06 2

164 17 PERLD1 rs903502 37829604 5.32E-07 7.03E-05 1.55E-04 6.33E-04 15

165 17 PNMT rs876493 37824545 1.34E-07 4.00E-05 3.08E-05 7.35E-05 6
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166 17 PPP1R1B rs2271309 37784990 2.20E-04 1.01E-03 1.07E-03 2.09E-03 62

167 17 TCAP rs1053651 37822311 8.12E-06 3.65E-03 6.80E-05 2.68E-03 8

168 17 ZPBP2 rs12936231 38029120 1.03E-14 1.01E-07 2.24E-05 1.94E-05 4

169 17 FBXL20 rs8069451 37504933 4.12E-04 6.10E-02 7.84E-03 4.18E-01 283

170 17 GSDMA rs7212938 38122680 2.42E-13 3.22E-07 2.66E-05 3.25E-05 5

171 17 GSDMB rs9303281 38074046 2.59E-16 7.53E-08 5.49E-06 1.94E-05 1

172 17 MED24 rs12309 38175462 3.03E-06 1.20E-04 2.53E-04 9.25E-04 21

173 17 PSMD3 rs11655264 38138995 1.00E-07 6.93E-05 9.63E-05 5.80E-04 10

174 17 TOP2A rs2586112 38572366 2.39E-04 7.33E-03 1.89E-03 2.44E-02 107

175 17 TBX21 rs12721470 45822579 1.91E-03 9.12E-03 1.14E-02 3.60E-02 372

176 18 MYO5B rs7237973 47514403 6.74E-05 4.26E-04 1.21E-02 4.78E-02 389

177 18 TCF4 rs10515970 52980635 9.62E-05 2.95E-02 6.79E-03 5.24E-01 261

178 19 RAB3A rs2271882 18309365 2.89E-03 1.38E-01 5.17E-03 1.79E-01 210

179 19 GPX4 rs713041 1106615 1.20E-03 4.01E-01 1.46E-03 3.70E-01 79

180 19 FBL rs11083539 40325680 1.85E-03 3.51E-01 9.28E-03 7.41E-01 320

181 19 LHB rs1800447 49519905 1.02E-02 5.45E-01 9.27E-03 5.17E-01 318

182 19 SYMPK rs7258364 46356548 1.97E-04 8.16E-02 3.42E-03 4.42E-01 167

183 19 ZNF329 rs159667 58648359 2.79E-05 4.68E-01 4.01E-04 8.58E-01 28

184 19 ZNF628 rs4801677 55990975 3.54E-03 5.80E-01 8.04E-03 7.92E-01 289

185 20 PANK2 rs6052169 3896449 3.75E-04 2.88E-01 3.33E-03 7.33E-01 163

186 20 GHRH rs4988492 35882698 6.86E-04 3.29E-01 1.54E-03 4.28E-01 88

187 21 KCNE2 rs1010668 35738158 4.47E-04 2.22E-01 1.48E-03 3.55E-01 83

188 21 RCAN1 rs1557270 35957254 2.52E-05 7.41E-02 1.96E-03 7.29E-01 113

189 22 TTLL1 rs5759126 43455665 3.11E-04 1.15E-01 6.81E-03 6.59E-01 262

190 22 EP300 rs1569857 41540934 8.82E-04 7.32E-02 1.29E-02 4.38E-01 419

Table S2: 15 KEGG pathways enriched in the selected gene module for childhood asthma

Enriched KEGG P -value Ratio

Epstein-Barr virus infection 3.28E-04 12/202

Herpes simplex infection 1.57E-03 10/185

Thyroid hormone signaling pathway 1.57E-03 8/118

HTLV-I infection 3.34E-03 11/258

Antigen processing and presentation 3.34E-03 6/77

Inflammatory bowel disease (IBD) 9.14E-03 5/65

Type I diabetes mellitus 1.15E-02 4/43

Proteasome 1.15E-02 4/44

Phagosome 1.50E-02 7/154

Viral carcinogenesis 1.78E-02 8/205

Viral myocarditis 2.42E-02 4/59

Glucagon signaling pathway 3.07E-02 5/101

Central carbon metabolism in cancer 3.20E-02 4/67

Allograft rejection 3.55E-02 3/38

Graft-versus-host disease 4.08E-02 3/41

Note: P-values are FDR adjusted; Ratio is the number of genes from
the 190 module genes that map to the pathway divided by the total
number of genes that map to the canonical pathway.
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3 Supplementary Notes

3.1 Computing the selection path at any given λ value

In our formulation, a module is selected by solving the optimization problem

arg max
u

zᵀu + λuᵀAu− η‖u‖0. (S1)

Therefore the selection can vary for different values of λ and η. To conveniently trace the selection
change, we develop the path algorithm that enables computing all distinct module selections at any
fixed λ value. Specifically, we define the selection path of a given λ value over a sparsity range
[ηmin, ηmax] as the sequence of distinct modules selected by moving η from ηmin to ηmax, denoted as
P = 〈S(η1), ..., S(ηm)〉 (as described in the main paper). Note that the entire selection path can be
obtained by setting ηmin = 0 and ηmax = +∞.

To compute P, we define the capacity function κ∗(η) as the capacity of the s-t min-cut on Gst
(s-t min-cut, capacity and Gst are defined in the main paper). Note that κ∗(η) can be expressed as
κ∗(η) = (k1 − k2) × η + C, where k1 is the number of edges connecting the selected nodes and the
sink node t in Gst; k2 is the number of edges connecting the unselected nodes and the source node
s; C is some constant independent of η. Vary the value η will not change the cut edges unless: (1)
η is set as a value that causes the rewiring of an edge of Gst from s to t according to Equation (3)
(given in the main paper), or (2) η is set a a value that leads to the change of a selection. Therefore
κ∗(η) is a continuous and piece-wise linear function of η. Its slope changes at either a break-point or
a change-point, where a η value is called a break-point if it leads to the change of selection, and called
a change-point if it causes the rewiring of an edge.

Thus, computing the selection path is equivalent to finding the break-points of κ∗(η). As our
formulation satisfies all conditions of parametric maximum flow algorithm (Gallo et al., 1989), hence
κ∗(η) is concave between any consecutive change-points (Gallo et al., 1989). Therefore we can trans-
form κ∗(η) into a concave function throughout its domain, by correcting at each of its change-points
so that the slope does not change at these values (as shown in Figure 10). We achieve this by using
the following correction function

κ∗c(η) = κ∗(η)−
∑

cp∈C;cp≤η
(η − cp), (S2)

where C represents the change-points that can be obtained from Equation (3) in the main paper,
simply, C = {cp | cp > 0; cp = zp + λdp; 1 ≤ p ≤ n}.

The corrected capacity function κ∗c(η) has no change-points but the same break-points as κ∗(η). It
is also piece-wise linear and strictly concave throughout its domain. Thereby all break-points can be
calculated by applying the iterative contraction algorithm described in Gallo et al. (1989). When all
break-points are obtained, the selection path can be computed by setting η at each of the break-points
and solving the corresponding optimization problem defined by Equation (S1). The pseudocode is
given in Algorithm 1.

3.2 The nesting property and memoryless property of our module selection method

The module selection by solving Equation (S1) has the nesting property that S(η1) ⊆ S(η0) if η1 > η0.
It also has the memoryless property, that if a gene is not selected by setting η at some value (e.g.,
η = η0 ), then it can be removed from the GeneNet when computing the selection at a η value greater
than η0, as demonstrated by the following proposition. Here S(η) represents the module selected by
setting the sparsity parameter as η.

Proposition 1. Denote the selected genes by setting the sparsity parameter at η0 as S(η0). The
subnetwork of G induced by S(η0) is denoted as Gsub. Then, for any η1 > η0,

S(η1) = Ssub(η1),

where Ssub(·) represents the selection by solving Equation (S1) defined on the subnetwork Gsub.
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Proof. As the module selection via Equation (S1) satisfies all conditions of parametric maximum flow
algorithm (Gallo et al., 1989), therefore the selection has the nesting property (according to Lemma
2.4 in Gallo et al. (1989)):

S(η1) ⊆ S(η0) for any η1 > η0.

Denote S0 as the node indices of S(η0), then maximizing f(u, η1) is equivalent to maximizing

f
([

uᵀ
S0
,0ᵀ
]ᵀ
, η1

)
. This is because according to the nesting property, the nodes unselected by set-

ting the sparsity parameter at η0 will not be selected by setting at a larger value η1 neither. Note

f
([

uᵀ
S0
,0ᵀ
]ᵀ
, η1

)
≡ f(uS0 , η1), where the latter is the objective function defined on the induced

network Gsub. This leads to S(η1) = Ssub(η1), hence Proposition 1 holds.

Algorithm 1 Compute the selection path P over a sparsity range [ηmin, ηmax]

1: function Selection path(ηmin, ηmax)
2: Compute S(ηmin) and S(ηmax) . As described in the main paper
3: if S(ηmin) == S(ηmax) then . No more selection between them
4: path← S(ηmin)
5: else . Use the divide-and-conquer strategy
6: Compute κ∗(η) at ηmin and ηmax

7: Compute κ∗c(η) at ηmin and ηmax according to Equation (S2)
8: Compute the tangent lines of κ∗c(η) at ηmin and ηmax

9: ηmid ← η ∈ [ηmin, ηmax] where two tangent lines intersect . The middle point
10: path head ← Selection path(ηmin, ηmid)
11: path tail ← Selection path(ηmid, ηmax)
12: path← path head ∪ path tail . Put two sub-paths together
13: end if
14: path← order the selections in path by the size (number of nodes) of each selection
15: return path
16: end function

References

Gallo, G. et al. (1989). A fast parametric maximum flow algorithm and applications. SIAM Journal on Computing, 18(1), 30–55.

14
130



CHAPTER V. DISCUSSION, PERSPECTIVES, AND CONCLUSION 

131 
 

CHAPTER V. DISCUSSION, PERSPECTIVES, AND 
CONCLUSION 

Genome-wide association studies of multifactorial diseases, such as asthma, have identified 

many genetic variants associated with these diseases, but these variants usually explain only a 

part of the whole genetic component. The limitations of current methods for GWAS 

motivated us to investigate in alternate approaches that can complement the conventionally 

used single-marker approach. As stated in the introduction section, the primary goal of this 

thesis is to explore network-based analysis strategies that combine GWAS outcomes with 

biological networks to identify functionally-relevant gene modules underlying disease, and to 

design novel methods to facilitate similar studies. The studies conducted in this thesis 

involved majorly five issues to be addressed at different stages: (1) SNP to gene mapping; (2) 

combining SNP p-values into gene p-values; (3) choosing the gene network; (4) searching for 

active modules; and (5) evaluation and interpretation of results. In the following, I will focus 

on point (1)-(4) to discuss the strategies and improvements we made to address related issues. 

I will also talk about the perspectives that can be made to optimize the performance at each 

stage. 
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1    Mapping SNPs to genes 

A GWAS is performed at SNP-level whereas the network knowledge is generally given at 

gene/protein-level. To bridge this gap, SNPs need to be first mapped to genes. While an 

intragenic SNP that locates between the start site and 3'-untranslated region of a gene is 

usually mapped to that gene, methods can vary when considering SNPs outside this region. 

The most commonly used approach is to define a "flanking window" that extends the start and 

stop positions of a gene by some kilobases (kb). The SNP database dbSNP (Sherry et al., 

2001), for example, uses an upstream extension of 2 kb and a downstream extension of 0.5 kb 

to define gene boundaries. Several studies have used larger extensions of 100 kb or up to 500 

kb (Luo et al., 2010; Wang et al., 2007). When a SNP can be mapped to multiple genes as a 

result of overlapping windows, the closest gene is usually chosen (Lehne et al., 2011; Wang et 

al., 2007). A few studies also considered mapping intergenic SNPs to genes if a SNP falls 

within a LD block spanning the gene (Chapman et al., 2003). Hybrid approaches that combine 

the flanking window strategy and the LD strategy were also considered (Hong et al., 2009; 

Lehne et al., 2011). 

In this thesis work, we used a stringent intragenic mapping criterion that does not consider 

any extension of the gene boundaries. This criterion has been used in the analysis of Ballard 

et al. (2009) and Peng et al. (2010), among others. Our choice may lead to a loss in power but 

may reduce false positives. Although a flanking window approach can be used to extend a 

few kilobases both upstream and downstream of a gene, it was shown in a comparison study 

that varying the window size from 0 to 250 kb did not significantly affect the power of the 

related network analysis (Lee et al., 2011). Moreover, the extension of boundaries to flanking 

regions of a gene may increase the degree of overlap of nearby genes and thus increase the 

number of inappropriate SNP to gene mapping. 

On the other hand, this SNP to gene mapping issue reveals the limitation of analyzing GWAS 

dataset at the gene-level, and, by extension, the limitation of network-based analysis and other 

gene-based analyses as a whole. It was reported that the majority of SNPs in a GWAS were 

found to fall in intergenic regions (Macintyre et al., 2014; Schork et al., 2013). The genes 

which these SNPs have an effect on can be difficult to determine (Macintyre et al., 2014; 

Witte, 2010). In our study of asthma GWAS data, 1,388,029 out of a total of 2,370,689 SNPs 

were not mapped to any gene (57%). Though the flanking window or the LD-based mapping 
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strategy may help link some of these SNPs to nearby genes, their contributions are relatively 

small. This results in many GWAS hits left with no link to any gene and are discarded for 

downstream network analysis. More sophisticated SNP to gene mapping strategies that extend 

the distance-based mapping to function-based mapping, such as based on gene expression 

through expression quantitative trait loci (eQTLs), or by defining a more precise regulatory 

domain for each gene (McLean et al., 2010), may be considered and have the potential to 

boost the performance of network-based analysis. 

An alternate strategy that can circumvent the SNP to gene mapping issue and include more 

SNPs into the analysis is to use a SNP network instead of a gene/protein network, although 

this is less feasible at present because SNP-SNP interactions are poorly characterized and the 

established knowledge is relatively sporadic. Nonetheless, there exist several studies that 

described the construction of SNP network at genome-wide level. Azencott et al. (2013) 

constructed a SNP network by linking SNPs if they are adjacent on the genomic sequence, or 

near the same gene (within a specified distance), or near two interacting genes in a gene 

network. Liu et al. (2012) described the construction of a trait-specific SNP network by 

testing statistical interaction between SNPs for all pairwise SNP combinations. Given the 

interaction statistics, an unweighted network can be built based on a user-defined significance 

cut-off, whereas a weighted network can also be constructed with the edge weights revealing 

the interaction significance. The construction of such a trait-specific SNP interaction network 

will become more practical along with the progress of techniques for testing genome-wide 

SNP-SNP interactions (Lin et al., 2016; Prabhu et al., 2012; Wan et al., 2010), thus will make 

network-based analysis at SNP-level more feasible. An additional benefit to performing 

network-analysis at SNP-level is that the SNP statistics are overloaded directly onto the SNP 

network. Therefore there is no more need to combine SNP p-values into gene p-values. The 

potential false positives/negatives caused by methodological limitations of p-value 

combination methods can be avoided. However, the biological interpretation of the analysis 

results at SNP-level will require complex investigations. 
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2    Combining SNP p-values to gene p-values 

After mapping SNPs to genes, a statistical question is how to aggregate p-values at SNP-level 

into gene-level. Our study described in Chapter III included a novel, exact and efficient 

algorithm named fastCGP that was designed for this purpose. Although there exist various 

methods addressing this question, they require individual genotype data or an external SNP 

reference panel to compute the correlation among SNP p-values (or the intermediate metrics 

transformed from SNP p-values). It is of note that the use of an external reference panel may 

not always reflect the correlation structure in the dataset under survey, especially in those 

obtained from large genetic consortiums which are usually composed of different populations. 

Advantageously, fastCGP utilizes the LD pattern existing in the dataset that is under survey, 

thus can be more appropriate in some cases. 

Given the advantages of fastCGP, our next goal is to explore whether it can be applied to 

compute the p-value of a general genetic entity that is defined as an arbitrary collection of 

genes. This includes pathways and gene modules. Unfortunately, the current design of the 

analytical computational algorithm has a restriction that the SNPs annotated to the genetic 

entity should be consecutive on the genome, i.e., the entity represents a continuous segment of 

the chromosome. This is true for genes, but not the case for pathways or gene modules in 

general. Yet, adopting the definition of the corrected p-value and other terminologies as 

described in the fastCGP algorithm presented in Chapter III, it is possible to adapt our 

analytical algorithm to compute the p-value in the general case. We will investigate the details 

in the future. 

Currently, the fastCGP method takes only the best SNP p-value (top 1) to represent the gene. 

We will further seek the feasibility of combining top x% of the SNP p-values to represent the 

gene p-value. This top x% option can be more powerful when the trait is highly polygenic (Li 

et al., 2011), and has been implemented in several of the gene-based methods, like MAGMA, 

VEGAS, and VEGAS2. There is no question that the top x% option can be combined with the 

CGP strategy, but a brute-force implementation needs to be used to compare the observed 

gene representative statistic (T ) with that of CGP samples, which, its time complexity is 

similar to that of VEGAS and thus will lose its "fast" nature. A more efficient strategy 

implementing this functionality deserves to be further explored. 
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3    Choosing the gene/protein network 

The performance of network-based analysis depends heavily on the network data used for the 

analysis. Both the extensive coverage and high accuracy of interaction information are 

important to success. Yet, it is widely recognized that our knowledge of protein interaction is 

far from complete (Kelly et al., 2012; Menche et al., 2015). The interaction information stored 

in different databases also have relatively low overlap with each other (Mbiyavanga, 2014). 

These databases are likely to provide complementary network knowledge instead of replicable 

knowledge. Another concern is the quality of protein interaction information. Unlike pathway 

resources that are acquired through laboratory studies or careful manual curation by domain 

experts, protein interactions are identified via diverse techniques including in vivo/in vitro 

experiments and also in silico predictions, thus can be more heterogeneous in data quality. 

Some early studies used network information retrieved from a single primary database (Tu et 

al., 2006; Wu et al., 2009) , while the rapid growth of available network collections has 

allowed recent studies to recruit multiple databases (or a meta-database) to increase quality 

and/or coverage, such as conducted in Hillenmeyer et al. (2016); Jia et al. (2011); Wang et al. 

(2015), and in our study as described in Chapter III and IV. A useful level of information 

provided in some databases is the interaction score summarised from various sources of 

evidence. This score quantifies the quality/confidence of an interaction and has the advantage 

that it can be updated constantly and is expected to converge to the ground truth. Integration 

of this level of information into network-based analysis, as enabled by our SigMod method, 

can improve the performance for finding meaningful results. 

Another concern of network data is that most available resources are static and lack the 

temporal and spatial dependence of interactions in real biological systems. Ignoring context 

information can affluence the study performance since gene/protein expression levels and 

interactions are known to vary across cells and tissue types (Barshir et al., 2012; Kotlyar et al., 

2016). Taking the tissue-specific information into account in a network-based analysis is 

essential to find bona-fide disease mechanisms and can reduce false positives. In recent years, 

tissue-specific networks are accumulating. For example, the TissueNet database (Barshir et al., 

2012) and the IID database (Kotlyar et al., 2016) provide tissue-specific protein-protein 

interactions for various tissues of human and other module organisms. We foresee tissue-

specific network data will become more and more abundant. In the future, more network-
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based analysis will be performed in its tissue-specific context that can best capture the 

biological activities relevant to the disease condition. 
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4    Searching for active modules 

The search for gene modules consisting of related genes and enriched in high and replicable 

association signals is the main objective of a module search method. Given the noise in the 

GWAS dataset, the heterogeneity of quality over the interaction information in a gene/protein 

network, and the huge search space at genome-wide scale, this objective can be difficult to 

reach. In this thesis, we have designed two strategies to best approach this goal. They are 

discussed below. 

4.1    The DMS-based bi-directional module search strategy 

We have first exploited the DMS module search strategy implemented in the dmGWAS 

package (Jia et al., 2011). DMS searches module in a greedy manner, and has been used in 

several network-based GWAS analyses (Han et al., 2013; Jia et al., 2012). One limitation of 

DMS is that it has a heuristic nature, thus does not guarantee to find the module having the 

highest association score but can include irrelevant genes by chance. To reduce the amount of 

irrelevant findings, previous studies have considered using two or more datasets, and 

implemented cross-evaluation strategies to identify modules possessing consistent association 

signals across datasets (Han et al., 2013; Jia et al., 2012). Such approaches were shown to be 

able to identify reliable and replicable results. This motivated our choice, as described in 

Chapter III, to use two large datasets, which resulted from a meta-analysis of nine asthma 

GWAS each, and implemented the bi-directional approach to search for consistent gene 

module(s). Our strategy used the DMS algorithm to generate raw gene modules within each 

dataset and then selected modules that had consistent gene compositions between the two 

datasets. Unlike previous studies that defined consistency based on module score, we 

quantified it in terms of gene composition. This consistency measure takes into account the 

module topology, thus leads to select modules that share genes having high association 

signals and other genes closely connected to these genes—both types of genes may play a role 

in childhood-onset asthma susceptibility. 

We demonstrated our bi-directional strategy is more appropriate than a pooled analysis 

strategy performed on a single dataset made of the meta-analysis results of all 18 childhood-

onset asthma GWAS. The genes selected by the later strategy have less replicable signals in 

the subdatasets, and were less functionally related based on DAVID functional clustering 
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analysis. This demonstrated the advantage of using a bi-directional strategy at least in our 

study. 

4.2    The SigMod strategy 

Through the application of the DMS method and the exploration of many other active module 

search algorithms, we realized their limitations in general. Most of them do not guarantee to 

find the global optimum result, do not utilize information on the strength of protein-protein 

interaction (when it exists), and are prone to be affected by noise from input GWAS and 

network data. Though the design of a sophisticated strategy by using multiple discovery 

datasets could improve the performance, such implementation increases the analysis 

complexity, and is restricted to a few studies that include more than one dataset. Ideally, a 

module search method should hold as many of these properties: the capability of taking the 

network quality into account, the ability to find the exact or close-to-exact solution, and can 

be executed in affordable time. The awareness of both the importance of these properties and 

the limitations of current tools motivated us to design a novel module search method named 

SigMod, as described in chapter IV and detailed in Liu et al. (2017). 

In SigMod, the active module search task was formulated as a binary optimization problem. 

Its goal was to select a set of genes that are enriched in high association signals and tend to be 

strongly interconnected. An exact and efficient algorithm was proposed to solve the 

optimization problem. This novel method has several advantages compared to existing 

methods, including the ability to find the exact solution, to incorporate edge weights, and its 

robustness to background noise. This method was applied to both simulated and real data, and 

was shown to outperform two state-of-the-art methods in terms of increased power and 

decreased false discovery rate. When SigMod was applied to childhood-onset asthma data, it 

successfully identified a gene module enriched in consistently high association signals and 

made of functionally related genes that are biologically relevant for asthma. This method was 

implemented in an R package and is available to the public. 

One future direction of updating SigMod is to improve the strategy for setting its tuning 

parameters. Setting the tuning parameters is a common issue involved in many active module 

search methods, including the popular methods DMS and jActiveModules. There are two 

tuning parameters in SigMod: the interconnectivity parameterλ  and the sparsity parameter η . 
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As was discussed previously, η controls the number of genes to be selected. Increasing η  

results in removing genes that have less contribution to the module quality. Our selection path 

algorithm enables to compute all distinct selections for varying η values. In the next step, we 

will implement a visualization function, either within the R package or in a Cytoscape 

application, so that users can easily trace the selection change. This will facilitate the user to 

select a desirable amount of genes based on interactive result diagnosis, hence serves as an 

additional level of prior information for selecting modules according to "expert knowledge" 

instead of using a fixed parameter setting strategy that may be suitable in some situations but 

may not be optimal in other situations. 

Our principle of determining the interconnectivity parameter λ  is to set it as large as possible, 

as long as the selected module is enriched in high association signals. This encourages 

selecting strongly interconnected genes, for which the advantages have been detailed in our 

article (Liu et al., 2017) and discussed in Chapter III. The strategy we implemented is based 

on an empirical observation, that some strongly interconnected genes will be 

selected/unselected simultaneously whenλ is big enough. Yet this strategy has limitations. It 

involves the computation of selection path for various λ values that will multiply the 

computational time, and requires careful inspection of size jump in each selection path. The 

results can also vary according to the range and different numbers of λ values to be computed. 

We will explore further strategies that make the determination of λ  easier. 

4.3    Possible extensions of the DMS-based method and the SigMod 
method 

As described in the introduction to this thesis, there are two categories of network-based 

methods for analysing GWAS in general—the active module search methods that search for 

signal enriched modules in a scored network, and the seed gene oriented methods that explore 

the topological feature of the network with respect to a list of seed genes (seed genes are 

genes that have disease-association evidence reported from previous studies or summarized 

from the current GWAS outcomes). Yet, there is rarely a method which combines these two 

directions, i.e., using seed genes to guide the selection of active modules in a scored network. 

Such approaches are biologically rational since genes both interacting with known disease 

genes and having high association scores are very likely to be associated with disease risk. 
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We are conceiving such strategies either in the DMS framework or in the SigMod framework. 

In the DMS framework, we could first apply the DMS algorithm to generate raw modules (the 

number of raw modules to be generated is approximate to the number of genes in the 

network). Then modules are selected so that they contain most of the seed genes. This task is 

closely related to the well-known budgeted maximum coverage problem: given a collection of 

raw modules M  generated by DMS, a number q  as the maximum number of genes allowed 

to be selected, and a list of seed genes, choose a subset of raw modules 'M M⊆ such that the 

number of unique genes included in 'M is less or equal to q , and the number of seed genes 

covered by 'M  is maximized. Variations of this problem that takes into account the module 

score can also be considered, and are related to several extensions of the budgeted maximum 

coverage problem (Khuller et al., 1999). These problems can be readily solved by existing 

algorithms, which ensures the feasibility of our strategy. 

In the SigMod framework, using seed genes to guide active module search can be done in a 

way by setting the indicator variable corresponding to the seed gene as 1 ( 1iu = ) in the 

SigMod objective function 0( ) || ||T Tf λ η= + −u z u u Au u , so that the seed genes are selected 

by default. We have already figured out that, with this modification, the optimization problem 

has a similar form as that of SigMod, thus can be readily solved using the same algorithm as 

the one described in Chapter IV and detailed in Liu et al. (2017). 

We foresee such seed-gene-guided active module search methods will help identify more 

genes and functional processes underlying a multifactorial disease such as asthma, and will 

improve the performance of network-based analysis as a whole. This is because our 

knowledge of disease-gene association is accumulating rapidly thanks to the advancement of 

genetic technologies and years of study efforts. These gene-disease links serve as an 

additional level of prior information, which can help to narrow down the genome-wide search 

space and focus on the network area of interest. 
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5    Conclusion 

In this thesis, we developed several methods and strategies to facilitate network-based 

analysis of GWAS data. Application of them to the asthma GWAS data identified biological 

meaning processes and prioritized new candidate genes related to asthma. Our work revealed 

the value of performing network-based analysis in unveiling the genetic components 

underlying complex diseases. We foresee such methods will become more and more useful, 

especially in the post-GWAS era when a large amount of GWAS datasets are accumulated 

after years of research efforts, and when various types of biological network are 

comprehensively characterized. 

We believe network-based analysis will further benefit from the methodological 

improvements with respect to the various steps involved in the analysis, including the use of 

more appropriate SNP to gene mapping strategy, to design of more powerful approaches to 

compute gene p-values, the choice of appropriate biological network fitting the disease 

context, and the development of analysis methods to mine useful network knowledge. Our 

thesis work has contributed to some of these aspects but there is still large space to progress.  

Overall, we foresee with ever more GWAS and network data available, and with the right 

analysis strategies placed in the proper biological context, we can definitely understand the 

genetic mechanisms underlying asthma and many other complex diseases. 
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APPENDIX: RESUME DE LA THESE EN LANGUE 
FRANÇAISE 

1    Introduction 

Des efforts considérables ont été mis en œuvre pour caractériser les facteurs génétiques de 

l'asthme, notamment des études de gènes candidats, des études de liaison génétique et, plus 

récemment, des études d'association pan-génomiques (appelées « GWAS » dans la littérature 

anglo-saxonne). Bien que ces études aient permis d'identifier avec succès un certain nombre 

de loci associés à l'asthme, les facteurs génétiques identifiés, à ce jour, n'expliquent qu'une 

partie de la composante génétique de l'asthme  

Les études d'association pan-génomiques ont principalement recherché des associations de la 

maladie avec des SNPs considérés individuellement sur l'ensemble du génome. Seuls les 

SNPs les plus fortement associés à la maladie et atteignant un seuil strict de significativité 

statistique qui prend en compte les tests multiples (classiquement, p < 5×10-8) sont rapportés. 

Les études d'association pan-génomiques manquent donc de puissance pour détecter des 

variants génétiques qui ont un effet marginal faible et qui agissent conjointement ou en 

interaction avec d'autres variants dans la susceptibilité génétique aux maladies. Pour 

compléter les analyses classiques simple-marqueurs, des analyses plus sophistiquées, qui 

intègrent les connaissances biologiques aux résultats de « GWAS », ont été proposées pour 

permettre de détecter un ensemble des gènes qui influencent conjointement le risque de 

maladie. 

Parmi ces approches, les analyses basées sur les réseaux de gènes, qui intègrent les résultats 

de « GWAS » avec les réseaux d'interaction protéine-protéine (PPI), permettent d'identifier 

des modules de gènes (sous-réseaux) enrichis en signaux d'association avec la maladie. Le 

principe sous-tendant ces approches est le « guilt-by-association », qui stipule que les gènes 

(ou produits de ces gènes) qui sont connectés ont tendance à participer aux mêmes fonctions 

cellulaires ou mêmes processus biologiques. Par conséquent, les analyses basées sur les 

réseaux de gènes constituent une approche prometteuse pour identifier les gènes ayant des 

relations fonctionnelles qui ont un effet marginal faible mais agissent conjointement dans la 

susceptibilité à la maladie. Les principaux objectifs de cette thèse sont de développer des 
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méthodes d'analyse basée sur les réseaux de gènes et de les appliquer aux résultats d'études 

d'association pan-génomiques de l'asthme, afin d'identifier de nouveaux gènes candidats et 

des processus biologiques impliqués dans l'asthme. 
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2    Données du consortium GABRIEL sur la génétique de 
l'asthme utilisées dans cette thèse 

Les données pan-génomiques de l'asthme utilisées dans cette thèse proviennent du consortium 

GABRIEL, une étude pluridisciplinaire pour identifier les facteurs génétiques et 

environnementaux de l'asthme dans la Communauté Européenne (financement européen). 

Les données pan-génomiques du consortium GABRIEL concernaient un total de 10 365 cas 

d'asthme et 16 110 témoins provenant de 23 études. Ces sujets étaient tous d'origine 

européenne. Les détails de ces études sont fournis dans l'article de Moffatt et collègues 

(Moffatt et al., 2010). Les données sur les cas et les témoins proviennent d'études cliniques et 

d'études en population générale en Europe (études de cohortes et études transversales). 

Plusieurs études sont des études familiales, et des cas et témoins d'origine européenne ont 

également été recrutés par des études réalisées au Canada et en Australie. L'asthme a été 

défini comme un asthme survenu au cours de la vie et diagnostiqué par un médecin. L'asthme 

de l'enfant a été défini par l'apparition de l'asthme chez une personne de moins de 16 ans, et 

l'asthme de l'adulte a été défini par l'apparition de l'asthme à 16 ans ou après 16 ans. 

Tous les sujets du consortium GABRIEL, à l'exception de ceux des études MRCA et 

MAGICS, ont été génotypés au Centre National de Génotypage (CNG, Evry, France) à l'aide 

de la puce Illumina Human610-Quad. Les sujets des études MRCA et MAGICS ont été 

génotypés avec les puces Illumina Sentrix Human-1 et Sentrix HumanHap300 BeadChips, 

dans le cadre du premier « GWAS » de l'asthme (Moffatt et al., 2007). Le contrôle de qualité 

des individus et des SNPs génotypés avec la puce Illumina 610K a suivi le même protocole. 

En résumé, les individus ont été retirés de l'analyse s'ils n'étaient pas de descendance 

européenne (basé sur l'analyse en composantes principales de chaque jeu de données avec les 

populations du projet HapMap) ou avaient plus de 5% de données génotypiques manquantes. 

Les SNPs ayant plus de 5% de données manquantes, une fréquence de l'allèle mineure (MAF) 

inférieure à 1% et/ou un test de l'équilibre de Hardy-Weinberg significatif au seuil de 10-4 ont 

été supprimés. Le contrôle de qualité des études MRCA et MAGICS a été détaillé dans 

l'article de Moffatt et collègues (Moffatt et al, 2007). 

Dans chaque jeu de données, des imputations génotypiques ont été effectuées en utilisant le 

logiciel MACH 1.0 et les données HapMap Phase 2 (version 21) comme panel de référence. 
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Les SNP dont le score de qualité d'imputation (rsq) était supérieur à 0,5 et la fréquence de 

l'allèle mineur était supérieure à 0,01 ont été inclus dans les analyses, conduisant à un total de 

2,370,689 SNPs analysés. 

Les analyses d'association de l'asthme avec chacun des 2.37 millions de SNPs ont été réalisées, 

dans chaque étude, en utilisant un modèle de régression logistique qui incluait le dosage 

allélique pour chaque SNP et les composantes principales pour tenir compte des problèmes de 

stratification de population à l'aide du logiciel Stata version 10 (distributed by Stata 

Corporation, College Station, Texas, USA). Pour les études familiales, les dépendances 

familiales ont été prises en compte  par une estimation robuste de la variance et en spécifiant 

l'option cluster dans Stata. Les résultats des analyses des « GWAS » de toutes les études 

GABRIEL sont hébergées au sein de l'unité UMR-946 (http://genestat.inserm.fr/fr/). 

Dans cette thèse, nous nous sommes focalisés sur l'asthme de l'enfant, car il représente une 

entité plus homogène. Nous avons réparti aléatoirement les 18 études GABRIEL sur l'asthme 

de l'enfant en deux groupes de neuf études chacun, avec une taille d'échantillon totale 

similaire dans chaque groupe. Au total, 3 031 cas / 2 893 témoins étaient dans le premier 

groupe et 2 679 cas / 3 364 témoins dans le deuxième groupe. La répartition des « GWAS » 

de l'asthme de l'enfant en deux groupes a été motivée par la nécessité d'utiliser deux séries de 

résultats de GWAS pour les analyses de réseaux effectuées dans le cadre de cette thèse. Cela 

permettait de disposer de deux échantillons comme fichiers d'entrée pour l'analyse de réseau 

et ainsi de s'assurer de la cohérence des résultats obtenus par cette analyse à partir de deux 

échantillons. 

Les méta-analyses des effets des SNPs sur l'asthme estimés dans chacune des études 

d'association pan-génomiques ont été réalisées dans chacun des deux groupes de 9 études et 

dans l'ensemble des 18 études. Nous avons utilisé des modèles à effets fixes et à effets 

aléatoires. Dans le modèle à effets aléatoires, l'estimation de la variance entre les études a 

utilisé la méthode de Der Simonian et Laird (Higgins et Thompson, 2002). Le test de l'effet 

combiné de chaque SNP sur l'asthme est basé sur le test de Wald. Les tests d'hétérogénéité 

entre les études dans chaque groupe sont basés sur le test Q de Cochran. Pour minimiser les 

résultats faussement positifs, nous avons examiné les effets des SNPs pour lesquels au moins 

deux tiers des études dans chaque groupe contribuaient à la méta-analyse (Moffatt et al., 

2010). Etant donné que certaines régions du génome montraient une hétérogénéité 
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significative des effets des SNPs entre études, nous avons utilisé les valeurs de p obtenues à 

partir des méta-analyses effectuées avec des modèles à effets aléatoires. Les résultats des 

méta-analyses (p-valeurs des tests d'association pour chaque SNP) des deux groupes de 9 

études ont été nommés META1 et META2, respectivement, et correspondent aux deux 

fichiers d'entrée pour les analyses de réseaux de gènes.  
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3    Résumé du premier travail de thèse  

Mon premier projet de thèse, présenté dans le chapitre III, a consisté à étendre une méthode 

d'analyse de réseau de gènes, l'algorithme dmGWAS (Jia et al., 2011), et à l'appliquer aux 

résultats des méta-analyses de GWAS de l'asthme de l'enfant. Nous avons proposé une 

solution exacte de la méthode CGP « Circular Genomic Permutation », appelée fastCGP, pour 

calculer les valeurs de p au niveau du gène à partir des p-valeurs des SNPs assignés au gène. 

Nous avons aussi proposé une stratégie de recherche bidirectionnelle du module de gènes 

associé à l'asthme à partir des deux échantillons META1 et META2: les deux modules 

sélectionnées à partir de META1 et META2 devaient montrer une cohérence en terme de 

proportion de gènes partagés par ces modules; le module final était formé par l'intersection de 

ces deux modules. 

L'application de cette méthodologie aux résultats des méta-analyses de « GWAS » de l'asthme 

de l'enfant (META1 et META2) a permis de détecter un module de 91 génes 

significativement associé à l'asthme de l'enfant (p ≤ 10-5, en effectuant 100 000 permutations 

des p-valeurs des SNPs sur le génome). Ce module a une structure intéressante, constituée 

d'un réseau central et de cinq réseaux périphériques. Parmi les 91 gènes appartenant au 

module sélectionné, 19 gènes ont une valeur de p significative à 5% dans les deux jeux de 

données META1 et META2. Ces 19 gènes incluaient 13 gènes situés au sein de 4 loci connus 

et rapportés par l'analyse pan-génomique du consortium GABRIEL (2q12, 5q31, 9p24.1, 

17q12-q21; Moffatt et al, 2010), et six gènes à six nouveaux loci qui sont des candidats 

pertinents pour l'asthme : CRMP1 (4p16.1), ZNF192 (6p22 .1), RAET1E (6q24.3), CTSL1 

(9p21.33), C12orf43 (12q24.31) et JAK3 (19p13-p12). De plus, les gènes connus associés à 

l'asthme et appartenant tous au réseau central étaient liés au gène APP (codant pour la 

protéine précurseur bêta-amyloïde), gène qui prédispose aux formes familiales de la maladie 

d'Alzheimer. Cette maladie a une composante inflammatoire et il existe un faisceau 

d'arguments d'ordre épidémiologique, génétique, épigénétique et même thérapeutique qui 

suggèrent des liens entre asthme et maladie d'Alzheimer. La connexion observée entre APP et 

gènes associés à l'asthme dans notre module renforce l'hypothèse que ces deux pathologies 

partageraient des mécanismes génétiques communs. Par ailleurs, l'analyse fonctionnelle des 

gènes du module issu de notre analyse de réseau à l'aide de DAVID (Huang et al., 2007) a 

révélé quatre clusters fonctionnels de gènes qui correspondent aux fonctions suivantes: 
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immunité innée et adaptative, chimiotaxie, adhésion cellulaire et régulation de la transcription. 

Au total, cette étude a permis de mettre en évidence de nouveaux gènes candidats pour 

l'asthme et d'apporter un nouvel éclairage sur les relations fonctionnelles entre gènes de 

susceptibilité à l'asthme de l'enfant. 
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4    Résume du deuxième travail de thèse 

Mon deuxième projet de thèse, présenté au chapitre IV, a consisté à développer une nouvelle 

méthode de réseau de gènes, nommée SigMod, qui a le potentiel d'améliorer la performance 

des analyses de réseaux, en général. SigMod vise à sélectionner un module de gènes enrichis 

en signaux d'association avec la maladie et montrant de fortes inter-connexions. Par rapport 

aux méthodes d'analyse de réseau précédemment proposées, SigMod a plusieurs avantages, 

notamment la robustesse au bruit de fond, la capacité de prendre en compte une pondération 

sur les liens entre gènes (ou produits de gènes) selon le type d'information utilisé, et rend les 

résultats plus facilement interprétables. 

Nous avons d'abord évalué la performance de SigMod sur des données simulées. Nous avons 

utilisé un réseau de gènes issu de la base de données STRING (présenté dans la section 3.3.1 

du chapitre I), qui contient divers types d'informations sur les relations entre gènes et 

protéines, y compris des interactions directes (physiques) et indirectes (fonctionnelles). A 

chaque lien entre deux gènes dans le réseau est associé un poids variant de 0 à 1, qui 

représente la force de la relation entre ces gènes, estimée à partir de multiples sources 

d'information. Nous avons effectué cinq jeux de simulations (20 répétitions par jeu de 

simulation), en choisissant, pour chaque jeu de simulations, un module de gènes fortement 

interconnectés identifié dans STRING en utilisant CFinder (Adamcsek et al., 2006) ; chacun 

des modules représentait un module causal. Les valeurs p des gènes appartenant à un module 

causal ont été uniformément réparties entre 0 et 10-3 (représentant ainsi des signaux 

d'association avec la maladie), alors que les valeurs de p d'autres gènes du réseau ont été 

uniformément réparties entre 0 et 1 (représentant le bruit). Les analyses effectuées sur ces 

données simulées ont montré que SigMod a la meilleure puissance et le taux de faux positifs 

le plus bas, comparés à deux autres méthodes récemment proposées—dmGWAS (Jia et al., 

2011) et SConES (Azencott et al., 2013). Cette bonne performance de SigMod a été préservée 

lorsque du bruit supplémentaire a été ajouté à la fois aux valeurs de p du gène et au réseau de 

gènes issue de STRING, démontrant ainsi la robustesse de SigMod. 

Nous avons ensuite appliqué SigMod aux résultats des méta-analyses de « GWAS » de 

l'asthme de l'enfant (META1 et META2). En utilisant META1 comme jeu de données de 

découverte, nous avons identifié un module de gènes enrichis en signaux d'association avec 

l'asthme et composé de 190 gènes pertinents sur le plan biologique. Tous ces gènes ont une 
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valeur de p significatives au seuil nominal de 5%, ce qui montre la capacité de SigMod à 

identifier des gènes avec un score élevé. Lorsque ce module a été évalué en utilisant le jeu de 

données META2, 30 gènes étaient significatifs au seuil de 5% et, donc, dans les deux jeux de 

données. L'analyse fonctionnelle des gènes du module associé à l'asthme de l'enfant à l'aide de 

DAVID (Huang et al. 2009) et l'analyse de pathways utilisant la base de données KEGG ont 

permis de mettre en évidence neuf clusters de gènes ayant des relations fonctionnelles et 15 

pathways enrichis en gènes du module; plusieurs de ces pathways sont en lien avec la réponse 

aux infections virales, qui sont récemment apparus comme jouant un rôle de plus en plus 

important dans l'asthme. Les clusters de gènes et les pathways correspondent à des processus 

biologiques connus pour être impliqués dans l'asthme, ainsi qu'à des processus nouveaux qui 

méritent d'être étudiés de manière plus approfondie pour mieux comprendre leur rôle dans 

l'asthme. 
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5    Discussion et conclusion 

Les études d'association pan-génomiques (GWAS) de maladies multifactorielles, comme 

l'asthme, ont identifié de nombreuses variants génétiques associées à ces maladies, mais ces 

variants n'expliquent qu'une partie de la composante génétique de ces maladies. Les limites 

des méthodes actuelles des études d'association pan-génomiques nous ont motivés à explorer 

d'autres approches qui peuvent être considérées comme complémentaires de l'analyse 

classique simple-marqueur. 

Comme indiqué dans l'introduction de cette thèse, notre objectif principal était d'explorer des 

stratégies d'analyse basées sur les réseaux de gènes qui combinent les résultats de « GWAS » 

avec des réseaux biologiques entre gènes (ou produits de gènes) issus de bases de données 

pour identifier des modules de gènes associés à la maladie. Nous avons développé plusieurs 

méthodes et stratégies pour faciliter cette analyse de réseau. L'application de ces méthodes 

aux données GWAS de l'asthme ont permis d'identifier des processus biologiques pertinents 

et ont mis en évidence de nouveaux gènes candidats pour l'asthme. Notre travail a montré 

l'intérêt d'effectuer des analyses de réseaux de gènes afin de révéler des ensembles de gènes 

influençant conjointement le risque de maladie. Nous anticipons que ce type d'approches sera 

de plus en plus utilisé, en particulier dans l'ère actuelle post-GWAS, alors que des résultats de 

GWAS se sont accumulés au cours des dernières années et que les réseaux biologiques sont 

de mieux en mieux caractérisés. 

Nous pensons que l'analyse basée sur les réseaux de gènes pourra bénéficier de nouvelles 

améliorations sur le plan méthodologique en ce qui concerne les différentes étapes impliquées 

dans l'analyse, y compris l'utilisation de stratégies plus appropriées pour assigner les SNPs 

aux gènes, d'approches plus puissantes pour calculer les valeurs de P des gènes, le choix du 

réseau biologique adapté au contexte de la maladie et le développement de méthodes 

d'analyse pour extraire de manière optimale les informations à partir du réseau. Notre travail 

de thèse a contribué à certains de ces aspects, mais de nouvelles extensions restent à faire. 

Au total, nous anticipons qu'avec une quantité croissante de données disponibles à la fois sur 

les « GWAS » et les réseaux biologiques, et avec des stratégies d'analyse appropriées et 

adaptées aux connaissances biologiques, il sera possible de progresser rapidement dans la 
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connaissance des mécanismes génétiques impliqués dans l'asthme et dans de nombreuses 

autres maladies complexes. 
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