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II. Résumé 
 

Les aptamères sont des acides nucléiques capables de se lier sélectivement à un ligand ou à 
une famille de molécules. Les aptamères sont la partie sensible des riboswitches, qui sont des 
segments régulateurs de l'ARN messager impliqués dans l'expression génétique. Les 
aptamères ont aussi des applications prometteuses comme sondes artificielles et capteurs 
Pour ces technologies, il est crucial de comprendre comment la liaison se produit, de la 
quantifier, et de comprendre comment les changements conformationnels sont induits par 
les ligands. Les objectifs de cette thèse sont d'explorer l'applicabilité de la spectrometrie de 
mobilité ionique (IMS) couplée à la spectrométrie de masse (SM) native aux aptamères d'ADN 
et d'ARN, d'abord dans la quantification de liaison, ensuite dans la détection du changement 
conformationnel lors de la liaison du ligand. 

Dans la première partie, nous avons évalué la détermination des valeurs de constantes 
d’équilibre de dissociation (KD) par MS, en tenant compte des facteurs de réponse relatifs (Rx) 
des aptamères libres et liés. Les titrages en SM sont comparés, pour validation, avec la 
calorimétrie par titrage isotherme (ITC). Deux aptamères d'ARN sont pris comme modèles : 
l'aptamère du vert de malachite, largement étudié par ITC, et l'aptamère de la riboflavine 
mononucléotide , un cas réaliste d'ARN Mg2+-dépendant pour la liaison du ligand. Nous avons 
observé que l'acétate d'ammonium et l'acétate de triméthyl ammonium conviennent à 
l'étude des aptamères et leurs complexes, et que les valeurs de KD obtenues par ITC et SM 
native sont comparables. Les aptamères ARN de la néomycine et de la tobramycine ont été 
choisis pour tester la limite de détection en SM native. Nous concluons que la SM native est 
adaptée pour déterminer des valeurs de KD comprises entre 50 nM et 30 µM. La correction 
apportée par Rx est relativement modeste dans tous les cas, en suggerant que la liaison du 
ligand n'est pas associée à une différence conformationnelle significative lors de l'ionisation. 
Pour ces aptamères, nous concluons que l'hypothèse de Rx égaux est acceptable. 

Dans la deuxième partie, nous avons évalué si le mécanisme de "liaison adaptative" des 
aptamères peut être révélé par IMS. À cette fin, en plus des systèmes énumérés ci-dessus, 
nous avons étudié l'aptamère ARN de la tétracycline et une série d'aptamères ADN capables 
de lier la cocaïne, pour lesquels le changement conformationnel par liaison du ligand est 
largement documenté dans la littérature. Pour tous les aptamères à l'exception de l'aptamère 
de la tétracycline, nous n'avons pas observé de différences significatives dans la conformation 
en phase gazeuse des ions liés aux ligands ou Mg2+. Cependant, nous avons observé un 
changement significatif dans la mobilité des ions de l'aptamère de la tétracycline. Le Mg2+ 
(100 µM) s’avère essentiel pour la liaison du ligand. Pour la série des aptamères de la cocaïne, 
même si nous ayons observé dans des conditions douces de pré IMS des ions compacts aussi 
bien pour les aptamères libres que pour les aptamères liés, une extension conformationnelle 
est visible à haute activation pre-IMS, bien révélée par l'état de charge 7-, qui suggère des 
réarrangements de phase gazeuse. Pour mieux étudier ces réarrangements, nous avons 
modifié les séquences avec des extensions dA, afin de comparer des systèmes ayant un 
nombre similaire de degrés de liberté sans modifier la structure cœur. Nous proposons 
également de nouvelles façons de présenter ces données, mieux adaptées quand la 
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dissociation du ligand, la perte d’aduits et le dépliement d’ion arrivent dans les mêmes 
gammes d’énergie. L'augmentation graduelle de l'activation collisionnelle avant l'IMS, a 
révélé que l’energie de dépliement est corrélée au contenu en paires de bases, ce qui suggère 
que les paires de bases sont conservées dans les structures en phase gazeuse. Nous avons 
également observé que le ligand se perd à des énergies inférieures à celles du dépliage. 

 

Mots clés :  
Spectrométrie de masse ; mobilité ionique ; ADN ; ARN ; aptamère. 
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III. Abstract 
 

Aptamers are single-stranded nucleic acids capable to bind selectively to a ligand or to a family 
of molecules. Aptamers are the sensing part of riboswitches, which are regulatory segments 
of messenger RNA involved in gene expression. Aptamers are also promising artificial probes, 
sensors and stimuli-responsive elements. In the development of aptamer-based technology, 
it is crucial to understand how binding is occurring, to quantify affinities, and ligand-induced 
conformational changes. The objective of this thesis is to explore the applicability of native 
IM-MS to DNA and RNA aptamers to quantify binding and to detect conformational change 
upon binding. 

In the first part, we evaluated the quantitative determination of equilibrium dissociation 
constants (KD) by mass spectrometry (MS), and the necessity of including a correction for 
relative response factors of free and bound aptamers. We compared isothermal titration 
calorimetry and MS titrations to validate the quantifications. Two RNA aptamers were taken 
as models: the malachite green aptamer, extensively studied by ITC, and the riboflavin 
mononucleotide aptamer, a case of Mg2+-dependent ligand binding. We observed that typical 
volatile electrolytes ammonium acetate and trimethyl ammonium acetate are suitable to 
study RNA aptamer binding, and that comparable KD values are obtained from ITC and native 
MS. The neomycin and tobramycin RNA aptamers were chosen to test the limit of detection 
of native MS. We found that native MS is appropriate to determine KD values in the range 
from 50 nM to 30 µM. The relative response factor correction was relatively modest in all 
cases, suggesting that the ligand binding is not associated to a significant conformational 
difference upon ionization. For these aptamers, we conclude that assuming equal response 
factors is acceptable. 

In the second part, we evaluated whether the aptamers’ “adaptive binding” mechanism can 
be revealed by ion mobility spectrometry (IMS). To this aim, in addition to the systems listed 
above we studied the tetracycline RNA aptamer and a series of cocaine-binding DNA 
aptamers, for which the conformational change upon binding is reported in literature. For all 
aptamers except the tetracycline aptamer, we did not observe a significant difference in the 
shape of the gas-phase structure upon ligand or Mg2+ binding. However, a significant change 
was observed in tetracycline RNA aptamer’s ion mobilities, at biologically relevant 
concentration of Mg2+ (100 µM), and we found that Mg2+ is essential for ligand binding, in 
agreement with previous solution studies. For the cocaine-binding DNA aptamer series, 
although we observed similar compactness for the free and bound aptamers in soft pre-IMS 
conditions, a conformational extension occurs at high pre-IMS activation, best revealed by 
charge state 7-, suggesting gas-phase rearrangements. To better investigate whether the 
energetics of these rearrangements depend on pre-folding or on ligand binding, we modified 
the sequences with dA overhangs, to compare systems with similar numbers of degrees of 
freedom without altering the core structure. We also propose new ways of presenting the 
data, adapted to the cases where ligand dissociation, declustering and unfolding occur at 
similar voltages. The gradual increase of the pre-IMS collisional activation revealed that the 
unfolding energetics is correlated with the base pairs content, suggesting that base pairs are 
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conserved in the gas-phase structures. We also found that ligand is lost at lower energies than 
unfolding.  

In summary, gas-phase compaction occur for both the free aptamers and bound aptamers, 
and memories of the solution-phase structures can only be revealed in some particular cases. 
However, the compaction towards similar shapes might constitute an advantage for the 
quantification, because molecular systems of similar shapes have similar electrospray 
responses. Consequently, native MS provides reliable estimations of KD values.  

 

Keywords: 
Mass spectrometry; ion mobility; DNA; RNA, aptamer. 
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1. Introduction 
1.1 Nucleic acids structure 
 

One can describe nucleic acids structure in four level of complexity. The primary structure is 
the linear order of nucleic acid building blocks. The secondary structure is a two-dimensional 
representation of interaction between the building blocks (base pairing) that define some 
structural elements (e.g. double helices). Nucleic acids tertiary structure arise from the 
arrangements of two or more secondary structure in the three-dimensional space, through 
contacts called “tertiary interactions”. Finally the quaternary structure rises from the 
interaction of tertiary structures, often called domain because of their large size. 

To visualize nucleic acids structure, all its diverse components and how they interact, is not 
easy. This chapter will introduce the basic principles of nucleic acid structural elements.  

 

1.1.1 Primary Structure (Sequence) 
 

Nucleic acids are linear sugar-phosphodiester biopolymers constituted by four nucleotides. 
Nucleic acid primary structure (or sequence) is defined as the order of the nucleotides. By 
convention this sequence is ordered from the 5’ to the 3’ end of the polyribose 
phosphodiester chain (Figure 1).  

Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) differ in sugar structure in that the 
2’-hydroxyl group is missing on deoxyribose of DNA (Figure 1) nucleotides. The nucleoside 
composition (bases) is also different: the pyrimidine base thymine (thymidine (T)) is present 
in DNA and uracil in RNA, while Adenosine (A), cytosine (C), guanine (G) are shared in both 
DNA and RNA. The sequence is conveniently written with the letter of each nucleotide as 
d(GATC…) for DNA and r(GAUC…) for RNA.  

The key interactions are the covalent bonds, such as the glycosidic bond that hold the 
nucleobase on the sugar scaffold and the phosphodiester bond that create the sequence. The 
Presence of the 2’-OH hydroxyl group makes RNA capable of three specific interactions 
involving the Sugar Edge (Figure 2), but RNA is less chemically stable than DNA[1]. This makes 
DNA a better candidate for large genetic information, whereas RNA is more adapted to serve 
as dynamic (and transient) actor into transient cellular conditions. 

A sequence of DNA or RNA not involved in any base pairing is commonly defined as single 
stranded region. Often these unpaired regions may occur, but not only, close to the sequence 
ends [2]. 
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Figure 1 - Nucleic Acids sequence. Nucleoside is formed by a nitrogenous base (blue) and its 
sugar scaffold (green), ribose in RNA and  deoxyribose in DNA. Nucleotide is the 5'-
phosphorylated (orange) form. For convention, the direction of the chain is from the 5' to the 
3'-end. 

 

1.1.2 Secondary structure 
 

Intramolecular non-covalent interactions among nucleotides define the secondary structure 
of the nucleic acid, normally represented in two dimensions. Base pairing is classified in three 
patterns (Figure 2A): 

• The Watson-Crick (WC) “canonical” base pair (C=G, A-T in DNA and A-U in RNA) is the 
most common pattern. Double helices (Figure 3) are constituted by anti-parallel WC 
base pairs[3].  

• The non-canonical (non-WC) Hoogsteen base (e.g.: when the N7 and C6 edge is used 
to pair with the WC edge of the other nucleotide[4]). This pattern is involved in 
secondary structures such as G-quartets [5] and triplets [6].  

• The non-canonical Sugar edge base pair where the 2’-OH group of RNA nucleotides, 
can participate as an H-bond donor or acceptor.[7] These structures are 
thermodynamically driven by the base stacking, which stems from the hydrophobic 
effect, but the specificity comes from the h-bonding pattern. 

The non-canonical base pairing is an important difference between DNA and RNA helices. The 
RNA ability to adopt many conformations is due to the extra  –OH group on the 2’ C ribose, 
opening to various and diverse secondary structures (Figure 4).  
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Figure 2 - A) Base pairing mode for purines (Guanine) and pyrimidines (Thymine or Uracil), WC, 
Hoogsteen, Sugar edge readapted from ref.[8]; B) Watson-Crick "canonical" base pairing in 
double helix (e.g. B-DNA); C) Example of base triad, here a pyrimidine (C•G-C) motif. Here light 
blue G-C are part of a duplex and the red C belongs to the third strand; D) Guanine quartet. 
Ribose ring is represented in C2’-endo conformation (common in B-DNA).  
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Helices: From base stacking to three-dimensional structures 

The conventional representation of WC pairing secondary structure in Figure 2B describes 
some structural elements like helices[9]. The WC base pairing is accompanied by the stacking 
of the aromatic nucleic acid base. that brings a characteristic turn of nucleic acid helices[10]. 

 
Figure 3 – Models of DNA double helices. The B form is a right-handed double helix of 10 nt per 
turn (0.34 nm per bp, 3.57 nm per turn, Ø 2.0 nm). The more compact A form of 11 nt per turn 
(0.26 nm per bp, 2.86 nm per turn, Ø 2.3 nm)[11]. Both strands are antiparallel. Nucleobases 
color code: A-Blue; G-Green; T-Yellow; C-Red; 

A double-helical tract is often referred to as “duplex region” or “stem”. The B-form duplex is 
the most common in DNA under physiological conditions (Figure 3). It forms when two single 
strands associate into a right-handed double helix structure wherein the opposing bases are 
paired along the WC edge (Figure 2A,B). A single turn of B-DNA about the axis of the molecule 
contains ten base pairs. The distance spanned by one turn of B-DNA is 3.4 nm (10 nt). The 
width (helical diameter) of the double helix in B-DNA is 2 nm.The A-form duplex is a more 
compact helix of 11 nt per turn with the base pairing aligned with helix axis. A-form duplex is 
found almost only in RNA[12] or in dehydrated DNA[13]. 

Other helices also exist. Triplex helices are formed when the base pairing follows triplet 
scheme (Figure 2C), for example when a duplex of two WC complementary polypurine and 
polypyrimidine strands, are bound by a third polypyrimidine strand via Hoogsteen 
intercations. G-quadruplexes are formed in guanines-rich DNA or RNA[14]. G-quadruplexes are 
organized by the consecutive stacking of G-quartets (Figure 2D). The base stacking across 
piled quartets is furthermore stabilized by the coordinated cation between the guanines[5a, b]. 
G-quadruplex structures are found e.g. DNA telomeres, telomeric-transcibed RNA[15], DNA 
aptamers[16] and in fluorescent RNA aptamers [5d, 17]. 
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Loops 

Loops are interruptions of a base pairing that lead to a local single stranded portion. 
“Interruption” may suggest a lack of structure but only the canonical WC pattern is 
interrupted. The unpaired bases in these portions can adopt various specific conformations 
and establish non-canonical base pairing or non-covalent interaction with other molecules 
(e.g. nucleic acids, proteins, small molecules, ions). Because of this variety, ligand binding is 
often detected in loops (Figure 4). The different types of loops are: 

 

 
Figure 4 - Scheme of RNA secondary structure motifs. 

Hairpin loops: A hairpin loop is a single strand portion that links the 5’ and 3’-ends of a double 
helix, for instance when a single strand sequence is self-associating into a duplex region 
(Figure 4). This structural element is present in DNA but more common in RNA. It varies in 
length from 2 to 14 nucleotides. Tetraloops are the most frequent and studied[18], e.g. the 
GNRA type (where N and R are exchangeable nucleotides)[18]. Notable examples are the T-
loop in ribosomal RNA (rRNA)[19] and D-loop motifs of tRNA [20]. 

Internal loops: When a double helix is not perfectly paired all the way, we have an internal 
loop. The internal loops can be symmetric or asymmetric, if the two opposing strands differ 
in length. Two special case of internal loops exists: bulges, when a single nucleotide is 
unpaired, and mismatches when this unpairing involves two opposed nucleotides on each 
strands[21]. 
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1.1.3 Tertiary structure 
 

Kissing loops 

When two hairpins interact with the loop nucleotides by canonical base pairings, we have 
“kissing” loops. This pairing starts from a minimum of two up to several base pairs[22]. The 
formation of kissing loops is favoured by others structural elements or tertiary interactions 
(e.g. junctions) that put in contact the two hairpins (Figure 5A). An example of this kissing-
loops is the HIV-1 dimerization site [23]. 

 

Pseudoknot  

A pseudoknot is formed when a hairpin loop is complementary (by canonical WC) to a single-
stranded distal region of the sequence [24] (Figure 5B). This element often shows coaxial 
stacking between the new hairpin and the new complementary portion [25] and triplex 
characteristic (Figure 5B - orange-violet contact) 

 
Figure 5 – A. Crystal structure of kissing loops (2jlt.pdb) and B. pseudoknot (1ymo.pdb) with the 
relative 2D representations. To notice, the triplex characteristic of the middle part of the 
pseudoknot (orange-violet contact). 

 

Junctions (Multiloops) 

When three or more duplexes intersect, a junction is formed (Figure 6). Single strand portions 
connect the helices[26]. Three-way and four-way junctions are common in RNA[27] and often 
promote the coaxial stacking of the duplexes. The increased base stacking of such 
arrangements[10] contributes to the formation of other tertiary structures (some times called 
“long-range” contacts) such as the hairpin-duplex contact next to the three-way junction in 
tetracycline RNA aptamer[28] (Figure 8B). 
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Figure 6 - 2D representation of a ternary junction. Often unpaired loops are located in the 
junction.  A tridimensional example is visible in Figure 8B. 

 

1.1.4 Metal cations in nucleic acid structure 
 

Nucleic acids are large poly-anions and all the phosphates of the sequence require a 
surrounding ionic atmosphere. These ions have many roles in tertiary structure definition. 
Three cases can be outlined (Figure 7): 

1. “Diffuse” ions ensure a global charge counter balancing. The hydrated nucleic acid and 
the hydrated ion interact with their reciprocal second (outer) coordination sphere of 
water molecules. The diffuse ions are not tightly bond and can readily exchange. 

2. When the ions penetrate in the reciprocal second coordination sphere, ion and nucleic 
acid interact through some shared water molecules. 

3. Finally, nucleic acid and ions can be in direct contact when they are in the reciprocal 
first (inner) coordination sphere contact and form an ion pair. 

The direct contact with the nucleic acid may help in a specific charge balancing (Tetracycline 
- Figure 8B)[28-29] or in tight structural contacts (as G-quartets)[30]. 

 
Figure 7 - Ionic contacts in function of the solvation sphere. Water molecules are represended 
by cicrled Y. Inner(first) and outer(second) coordination sphere are represented by the 
concentric shades. Readapted from ref [31].  
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1.1.5 Structure-function relation and tertiary structure 
 

The role of each secondary structural element is clearer if we observe the whole RNA 
structure of two valid examples: Malachite green RNA aptamer and tetracycline RNA aptamer 
x-ray crystal structures in figure Figure 8. 

Malachite green aptamer is an hairpin-loop shaped RNA with an asymmetrical bulge within 
the duplex region Figure 8A. The binding site for the ligand (light blue) occurs at this point. 
Here the “lack” of base pairing associated to the bulging (orange) is functional to host the 
ligand and preserving the hairpin shape of MGA[32].  
In tetracycline RNA aptamer the three-way junction (Red) allows to bend the hairpin loop 
(cyan) towards the adiacent duplex forming the ligand (shaded green) binding site through a 
triplex-like contact with the duplex. Metal ineractions with Mg2+ also contributes to structure 
stabilization. One Mg2+ is chelated metal by the ligand and it is paired with one phosphate of 
the hairpin loop. The other Mg2+ cations acts as both outer-bound and diffused around the 
aptamer backbone to overall structure stabilization[28]. 

 

 
Figure 8 – Examples of structural elements in RNA aptamers. A. Malachite green aptamer is 
composed by a hairpin with an an internal loop (orange) mid-way in the duplex region, where 
ligand is hosted (light blue); B. In the tetracycline aptamer one finds a three-way junction (Red), 
a hairpin (cyan), a triplex with the adiacent duplex forms the ligand binding site (green) through 
a triplex-like contact. Several Mg2+ ions are highlighted in pink. A specific loop (blue), that binds 
selenomethionyl U1A protein (lime), has been added for crystal growth. 
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1.2 Aptamers and SELEX 
 

Aptamers are short DNAs and RNAs capable to interact with their target molecules because 
of a unique three-dimensional structure. For this they are also called “chemical antibodies”, 
with the advantage of no immunogenicity, relatively cheap production (they can be 
chemically synthetized) and longer storage time compared to their protein-based 
counterparts[33]. The targets can be very diverse, from metal cations [34] small molecules[28, 

35]/ions to proteins, nucleic acids[36] and cells[37] Natural aptamers also exists in riboswitches, 
a genetic control element, where they act as the recognition element for several 
metabolites[38]. 

 
Figure 9 – Example of gene regulation in bacteria using engineered riboswitches. The aptamer 
(green) is separated from the Shine-Dalgarno (SD) sequence (magenta) by a hairpin-loop 
structure. Gene translation is active. Once added, the ligand (L) the induce conformational 
change into aptamer structure and gene translation is inactivated. SD sequence becomes paired 
into an hairpin and ribosomal unit 30S cannot bind. Readapted from [39]. 

Aptamers oftend bind to their targets via an “adaptive binding” mechanism. This term aims 
to mark the difference compared to rigid and pre-structured ligand receptors such as often 
found in proteins (e.g. enzymes). Aptamers binding site Often the binding site comprise 
unpaired regions (e.g. loops), which are disordered and acquire a defined conformation only 
folding around the ligand and sometimes others co-factors like metal cations (e.g.: Mg2+, K+). 
Physically, one can see the “adaptive binding” mechanism as conformational selection. The 
“unstructured” free aptamer may populate many slightly different conformers at equilibrium 
by binding preferentially to one of these conformations, thereby displacing the 
conformational equilibria and seemingly forcing the aptamer to adopt only one structure, or 
a very limited population of shapes. (an example can be found in chapters 5 and 5.6). 

Aptamer are artificially obtained in vitro by a combinatorial chemistry method called SELEX 
(Systematic Evolution of Ligands by Exponential enrichment)[40]. Here we introduce its general 
principles.  

The method starts with a large initial library of randomized DNA (or RNA) sequence, up to 
1015 unique sequences. Each sequence is composed by a random region of arbitrary length 
(normally from 22 to 200 nt). To allow PCR (or RT-PCR) amplification, this region is flanked by 
two conserved primer. The large number of unique sequences is required to have the widest 
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sequences coverage (# unique sequences) and structural diversity (Length of single 
sequence…more likely to form complex structures), during the selection step. 

 

 
Figure 10 – Scheme of SELEX procedure. Target ligands are represented as red spheres; Negative 
targets are blue triangle and purple star. 

 

The procedure follows an iterative procedure commonly divided in six steps: 

1. Initial library design; 
2. Incubation, the library and the target are incubated in the desired conditions (buffer 

composition, temperature, …) for a given time, to allow the most adapted structure 
to bind the target molecule. Normally the target is immobilized (e.g. on a solid phase 
chromatography), so that non binding sequences can be easily removed; 

3. Partitioning, putative aptamers are separated from the remaining pool (low or no 
affinity sequences), for example by affinity chromatography or other separation 
techniques (e.g. capillary electrophoresis, ligand decorated magnetic beads); 

4. Recovery, chemical or physical dissociation of putative sequences from the target 
molecule. For instance, if the ligand is bound to a solid phase (e.g.: chromatography 
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column beads) and putative sequences are released via saturated ligand mobile phase 
elution or denaturation; 

4a. Negative-selection, undesired non-specific sequences are eliminated using one or 
more negative-target molecules. This step can be added before re-amplification and 
sequencing (optional). 

5. Amplification, the enriched library of candidate sequences is amplified via PCR (DNA 
library) or RT-PCR (RNA library); This library can initiate a new selection round. 

6. Sequencing, enriched library is analyzed to find the best binders by Sanger or next-
generation sequencing. 

The procedure is re-iterated using the amplified enriched pool as starting library. Normally an 
enrichment is obtained within 15 rounds[41]. 

Some limitations however are present: a standard method of SELEX does not exist. All the 
variations today explored on the first publications procedure proposed in Gold, Joyce and 
Szostak labs[40, 42], were made to improve one or more aspects of the procedure depending 
on the function of the target or the conditions of use. 

Choices in selection buffer composition, concentrations and temperature are likely to favour 
some secondary and tertiary structures compared to others. Thus, the reproducibility of the 
SELEX could be affected [43].  

On the  target side, enrichments on large size targets often result in lower KD, compared to 
small molecule targets[44]. The chemistry of targets may also affect the the selection process, 
as not all target are suitable: very hydrophobic (poor solubilization) or strongly negative-
charged targets (strong repulsion forces aptamer-target) could be difficult or not amenable 
to induce an enrichment. 

In general, common bottlenecks are the high time demand of the SELEX procedure and the 
characterization of aptamer functionality. Given the wide range of applications, a 
standardized method of analysis is not available [45]. 
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1.3 Standard state and equilibrium constant 
 

The parameter that describes the binding strength of two interacting partners (i.e.: an 
aptamer to its ligand) is the equilibrium constant of the binding reaction. This concept comes 
from thermodynamics. The direction of a process (i.e. binding reaction) is dictated by the 
changes in its Gibbs free energy. For a given chemical reaction as eq.(1), we can define this 
change, ∆𝐺𝐺, as the first derivative of Gibbs energy with respect to the extent of reaction. The 
actual ratio between reactants and product activities, the reaction quotient 𝑄𝑄, will tell us if 
the reaction is going rightward (∆𝐺𝐺 < 0) or leftward (∆𝐺𝐺 > 0)  

 𝜈𝜈𝑎𝑎𝐴𝐴 +  𝜈𝜈𝑏𝑏𝐵𝐵 ⇄  𝜈𝜈𝑐𝑐𝐶𝐶 + 𝜈𝜈𝑑𝑑𝐷𝐷 (1) 

 ∆𝐺𝐺 = ∆𝐺𝐺𝑜𝑜 + 𝑅𝑅𝑅𝑅 ln𝑄𝑄 (2) 

 𝑄𝑄 = 𝑝𝑝𝑝𝑝𝑜𝑜𝑑𝑑𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝 𝑎𝑎𝑐𝑐𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝 
𝑝𝑝𝑎𝑎𝑎𝑎𝑐𝑐𝑝𝑝𝑎𝑎𝑟𝑟𝑝𝑝𝑝𝑝 𝑎𝑎𝑐𝑐𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝 

= ∏ 𝑎𝑎𝑎𝑎𝜈𝜈𝑖𝑖𝑎𝑎   (3) 

At the equilibrium the ∆𝐺𝐺 is zero (no net reaction). This gives a useful relationship between is 
the standard Gibbs energy of reaction ∆𝐺𝐺𝑜𝑜 and the composition at the equilibrium: 

 ∆𝐺𝐺𝑜𝑜 = −𝑅𝑅𝑅𝑅 ln𝐾𝐾     ;     𝐾𝐾 = (∏ 𝑎𝑎𝑎𝑎𝜈𝜈𝑖𝑖𝑎𝑎 )𝑎𝑎𝑒𝑒𝑝𝑝𝑎𝑎𝑒𝑒𝑎𝑎𝑏𝑏𝑝𝑝𝑎𝑎𝑝𝑝𝑒𝑒  (4) 

Activities (𝑎𝑎𝑎𝑎 ) are dimensionless, thus the thermodynamic equilibrium constant 𝐾𝐾  is a 
dimensionless number. However, in the biophysics and biochemistry literature, K values are 
often reported in molarity. This is an approximation where activities are replaced by 
concentrations, eq (5), assuming that all activity coefficients 𝛾𝛾𝑎𝑎 are equal to 1 (ideal solute), 
so the equilibrium constant is expressed in molar concentrations, eq (6). 

 𝑎𝑎𝑎𝑎 = 𝛾𝛾𝑎𝑎𝑀𝑀𝑎𝑎 
(5) 

 𝐾𝐾 ≈ 𝐾𝐾𝑀𝑀𝑖𝑖 
(6) 

In this thesis the reference state is defined as p= 1 atm, 𝑎𝑎𝑎𝑎=1 and pH=7, more appropriate for 
biomolecule description, and the approximation (6) is used for consistency with most of 
publications on nucleic acids, where solutes are considered ideal (same interaction energy 
between solute-solute and solute-solvent). [46] 

The concept of cumulative equilibria is often implied in biophysics. Thermodynamic functions 
and binding constants reported as “apparent” (i.e. ∆𝐺𝐺𝑎𝑎𝑝𝑝𝑝𝑝𝑜𝑜 ) convey the message the reaction 
under study is instead the combination of many equilibria. For biomolecules as DNA or RNA 
we may imagine the binding of a ligand as the result of consecutive reactions like hydration 
of the molecule, specific Mg2+ binding, biomolecule conformational change to an active form 
and ligand binding: 
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 𝑀𝑀 +  𝑎𝑎𝐻𝐻2𝑂𝑂 ⇄  𝑀𝑀(𝐻𝐻2𝑂𝑂)𝑎𝑎 (7) 

 𝑀𝑀(𝐻𝐻2𝑂𝑂)𝑎𝑎 +  𝑏𝑏𝑀𝑀𝑏𝑏  ⇄ [𝑀𝑀(𝐻𝐻2𝑂𝑂)𝑎𝑎 ⋅ 𝑀𝑀𝑏𝑏𝑏𝑏] 𝑐𝑐𝑜𝑜𝑟𝑟𝑐𝑐 𝐴𝐴 (8) 

 [𝑀𝑀(𝐻𝐻2𝑂𝑂)𝑎𝑎 ⋅ 𝑀𝑀𝑏𝑏𝑏𝑏] 𝑐𝑐𝑜𝑜𝑟𝑟𝑐𝑐 𝐴𝐴  ⇄ [𝑀𝑀(𝐻𝐻2𝑂𝑂)𝑎𝑎 ⋅ 𝑀𝑀𝑏𝑏𝑏𝑏] 𝑐𝑐𝑜𝑜𝑟𝑟𝑐𝑐 𝐵𝐵 (9) 

 [𝑀𝑀(𝐻𝐻2𝑂𝑂)𝑎𝑎 ⋅ 𝑀𝑀𝑏𝑏𝑏𝑏] 𝑐𝑐𝑜𝑜𝑟𝑟𝑐𝑐 𝐵𝐵 +  𝑐𝑐𝑐𝑐  ⇄ [𝑀𝑀(𝐻𝐻2𝑂𝑂)𝑎𝑎 ⋅ 𝑀𝑀𝑏𝑏𝑏𝑏]𝑐𝑐𝑐𝑐 (10) 

 

Here the charges were omitted for clarity. The sum of these reactions is: 

 𝑀𝑀 +  𝑎𝑎 𝐻𝐻2𝑂𝑂 + 𝑏𝑏 𝑀𝑀𝑏𝑏 + 𝑐𝑐 𝑐𝑐 ⇄ [𝑀𝑀(𝐻𝐻2𝑂𝑂)𝑎𝑎 ⋅ 𝑀𝑀𝑏𝑏𝑏𝑏]𝑐𝑐𝑐𝑐 (11) 

with a global cumulative equilibrium constant 𝛽𝛽4 = 𝐾𝐾1𝐾𝐾2𝐾𝐾3𝐾𝐾4, the ∆𝐺𝐺 of reaction in eq (11) 
could be written as 

 ∆𝐺𝐺 = ∑ ∆𝐺𝐺𝑟𝑟𝑜𝑜 + 𝑅𝑅𝑅𝑅 ln𝐾𝐾𝑟𝑟4
𝑟𝑟=1 = ∆𝐺𝐺𝑜𝑜 + 𝑅𝑅𝑅𝑅 ln𝛽𝛽4  (12) 

The equilibrium constant 𝛽𝛽4  is also influenced by the conditions such as temperature, 
pressure, ionic strength, 𝑀𝑀𝑏𝑏2+ concentration, pH, reactants and product concentrations (i.e.: 
when the assumption of ideal solute do not apply). For this, is hard to tell about the merit of 
a technique when it is taken alone. Even more challenging is to compare KD obtained from 
different techniques when relying on literature values, expecially if experimental conditions 
have to differ. That’s the case of aptamers. One of the challenges of this work is the 
comparison of KD obtained from different techniques, mass spectrometry and isothermal 
titration calorimetry.  
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1.4 Isothermal titration calorimetry (ITC) 
 

Isothermal titration calorimetry (ITC) allows one to directly measure the heat associated to a 
given reaction, and is frequently used for aptamers. A typical experiment consists in the 
successive injection of small volumes of titrant (i.e.: ligand) into the titrate solution in the 
sample cell (i.e.: nucleic acid or protein), and measuring the heat.  

 
Figure 11 – A. Cells of an ITC calorimeter into an adiabatic jacket. The signal baseline is provided 
by the heater power applied to keep ΔT1=ΔT2= 0. Temporary variations in ΔT1 trigger the heater 
compensation (heat pulse). These deflections from the power base line are plotted as a function 
of time and integrated to obtain reaction heat (readapted from [47]); B. Heat pulse vs time or 
thermograms; C. Wisemann isotherm fitting of integration points expressed as kcal mol-1 of 
injectant vs molar ratio of titrant and titrate. 

The instrument records the amount of power needed to keep the sample cell at the same 
temperature as the reference cell (heat pulse), into their adiabatic jacket. The instrumental 
output is a heat pulse vs time [µcal s-1]. This pulse corresponds the sum of all the heats 
measured upon ligand injection. In addition to reaction heat, other contributions are the 
partners dilution, eventual buffer dilution (in case of buffer mismatch) and additives within. 
Heats of dilution are taken into account by subtracting a control run with buffer into the 
reference cell. We will annotate thermodynamic function states and equilibrium constant 
with “apparent” (app) subscript because they will still depend on how M, L and ML interact 
with buffer components (see section 1.3). 

Thanks to a direct measurement of the heat generated or absorbed, ITC is particularly 
convenient to study binding reactions on biomolecules through the enthalpy of reaction. 
Assuming the simplest case of macromolecule (M)-ligand (L) in molecularity 1:1, we have the 
binding equilibrium:  
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 𝑀𝑀 +  𝑐𝑐 ⇄  𝑀𝑀𝑐𝑐  (13) 

The heat associated to reaction (13) is related to the ligand concentration by the Wisemann 

isotherm (14), where 𝑑𝑑𝑑𝑑
𝑑𝑑[𝐿𝐿]𝑡𝑡

 is the heat per ligand injection, 𝑐𝑐𝑅𝑅 is the ratio of [𝑐𝑐]𝑝𝑝 [𝑀𝑀]𝑝𝑝⁄  (total 𝑐𝑐 

and 𝑀𝑀 concentration) , and the parameter 𝑎𝑎 = 𝑁𝑁𝐾𝐾𝐴𝐴[𝑀𝑀]𝑝𝑝, where 𝑁𝑁 is the number of sites[48]. 

 
𝑑𝑑𝑄𝑄
𝑑𝑑[𝑐𝑐]𝑝𝑝

= ∆𝐻𝐻 𝑉𝑉0 �
1
2

+
1 − 𝑐𝑐𝑅𝑅 − 𝑎𝑎

2�(1 + 𝑐𝑐𝑅𝑅 + 𝑎𝑎)2 − 4𝑐𝑐𝑅𝑅
� (14) 

Points on the thermogram are the integrals of each heat pulse. By non linear least squares 
curve fitting, one can extract as parameters (assuming a 1:1 binding model) the enthalpy 
(ΔHapp) of binding, reaction stoichiometry (inflection point, N) and association constant (KA, 

app) [49]. Finally, the entropy (ΔSapp) and Gibbs free energy (ΔGapp) can be derived, giving a 
complete thermodynamic characterization of binding[49-50] 

 ∆𝐺𝐺𝑜𝑜𝑎𝑎𝑝𝑝𝑝𝑝 =  −𝑅𝑅𝑅𝑅 ln𝐾𝐾𝐴𝐴,𝑎𝑎𝑝𝑝𝑝𝑝 = 𝑅𝑅𝑅𝑅 ln𝐾𝐾𝐷𝐷,𝑎𝑎𝑝𝑝𝑝𝑝  (15) 

 ∆𝐺𝐺𝑜𝑜𝑎𝑎𝑝𝑝𝑝𝑝 = ∆𝐻𝐻𝑜𝑜
𝑎𝑎𝑝𝑝𝑝𝑝 − 𝑅𝑅∆𝑆𝑆𝑜𝑜𝑎𝑎𝑝𝑝𝑝𝑝  (16) 

In summary, ITC is a label-free technique that provides information on the thermodynamic 
parameters of the observed system and allows to measure KD values in the range of 10-6–10-

11 [51]. However, some constraints should be considered[50a, c]: additional heats may contribute 
significantly to the measured heats (e.g.: buffer differences); and the model of binding must 
be chosen a priori by the user. 
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1.5 Mass spectrometry 
 

This thesis will evaluate mass spectrometry as a complementary method to evaluate aptamer 
binding stoichiometries, affinities and ligand-induced conformational changes. Mass 
spectrometry (MS) measures the mass-to-charge ratio (m/z) of ions generated from an 
ionization source. As ion movement is influenced by electric or magnetic fields, analytes are 
manipulated in the gas phase. 

In the 1980’s, innovative ionization methods were developed to analyse large synthetic 
polymers and biopolymers such as proteins and nucleic acids: electrospray ionization (ESI) 
from liquid samples, by Fenn et al.[52], and matrix assisted laser desorption ionization (MALDI) 
from co-crystallized samples, by Karas et al.[53].  

ESI is nowadays the most popular ionization method for biomolecules analysis, because it 
handles liquid samples (suitable for most of proteins and nucleic acids) and is capable to 
generate multiply charged ions, easier to analyse by the mass analyser (many charges reduce 
the mass-to-charge ratio). When sample quantities are limited or tolerance for elevated salt 
concentration is required[54], a miniaturized version of ESI, called nano ESI (nESI) can be used 
[55]. 

The physical principle of ESI is summarized in Figure 12. The solution is delivered into a 
capillary in front of the mass spectrometer, usually at atmospheric pressure. A voltage is 
applied between the capillary and the entrance of the instrument. The charges in the solution 
migrate, and charges of one sign accumulate on the surface of the droplets pending at the 
extremity of the capillary, shaping the liquid into a Taylor cone from which smaller charged 
droplets are emitted. In electrospray, the flow rates are typically > 1 µL/min, and a coaxial 
flux of gas (usually nitrogen) comes around the capillary and/or from the entrance of the 
instrument (depending on instrument design) to facilitate solvent evaporation.  

In their path towards the entrance, the charged droplets lose progressively their solvent until 
they reach a critical point where the charge density is too high for the surface tension to cope 
with it. Here ions are generated, and three different mechanisms are proposed:  

• In the ion-evaporation model (IEM) [56] the charged droplet reduce its charge ejecting 
ions, to contrast the rising charge density due to solvent removal. This “evaporation” 
of molecules as ions is accepted for small molecules and metal ions (Figure 12B). 

• In the charged-residue model (CRM) [57] the solvent evaporation and fission events 
produce final charged droplets that contain only a single molecule complex. When the 
solvent is removed, the residual charge is transferred to the molecule (Figure 12C). 

• The unfolded biopolymers can be expelled in gas phase following the chain ejection 
model (CEM) [58]. While exiting the droplet, excess charges are transferred to the chain 
end of the biopolymer until complete expulsion of the chain as gas phase ion (Figure 
12D). 

CRM and CEM models are commonly accepted for folded (e.g. globular proteins) or unfolded 
molecules (e.g. disordered proteins), respectively. For DNA and RNA, the situation is less clear, 
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as both folded and unfolded strands can be ionized by the CRM if analysed at high ionic 
strength[59]. 

 
Figure 12 - Electrospray ionisation in negative mode. A) Scheme of the Electrolytic cell imposed 
between source capillary and mass spectrometer inlet; Ionization modes following B) ion 
evaporation model (IEM), C) charge residue model (CRM) with the charged droplet fission or D) 
chain ejection model (CEM). Solutes are represented as colored dots or chains. 

 

1.5.1 Native mass spectrometry 
 

When the analyte is a biomolecule (e.g. a nucleic acid) and one wants to analyse it by mass 
spectrometry while preserving the natural non-covalent interactions, particular care should 
be taken in sample preparation: ionic strength, additives and pH are carefully chosen to mimic 
the biological habitat of the analyte. 

Commonly, NaCl/phosphate buffers used for in vitro studies are replaced with volatile salts 
(e.g. NH4OAc) from 100 to 300 mM in total. The aim is twofold: I. volatile buffers avoid ion 
suppression and signal broadening due to clustering (p.18); II. this range of concentrations 
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mimics the ionic strength of physiological solutions, e.g. extracellular [NaCl] is 145 mM[60]. 
Starting solutions in MS-friendly salts (i.e.: NH4OAc 150 mM) have the advantage to be pH 
neutral[61], but it is not buffered: that’s a disadvantage.  

Thus, the adjective “native” in mass spectrometry means that the sample is prepared to keep 
the native folded state of the analyte before the ionization (in solution) and preserve the 
relevant interaction that characterize this state until the ion detector.  

 

1.5.2 Ion activation in mass spectrometry  
 

An ion that moves in vacuum is an isolated system with no energy exchanges with the 
environment. A way to activate an ion (increase the ion internal energy) is called “collisional 
activation”. Via inelastic collisions with neutral gas (e.g. in “high pressures” portions like pre-
IMS of Agilent 6560, collision quadrupoles), a fraction of the kinetic energy is converted in ion 
internal energy. This increase of internal energy lead to an excitation of the ion that can 
redistribute the converted energy in all the vibrational states availables, altering the balance 
between repulsive (Coulomb repulsion, … ) and attractive forces (intramolecular H-bonds, 
Van der Waals, … ) [62].  

Commonly one can act on the strength of collisions in two ways: 

i) On the ions, varying their kinetic energy, using higher electric fields into the 
instrument (e.g.: High E, RFs, …); 

ii) On the gas, controlling the kinetic energy of the collisions through its temperature, 
the gas mass and the pression[63].  

The magnitude of the converted energy can bring different effects. These effects are listed 
here for conceptual clarity and not to convey a consecutively order: 

Desolvation/Declustering 

The redistributed energy can break the weak interaction that hold neutral molecules (i.e. 
water) to the ion. If collisions are more energetic, also the buffer adducts can be removed 
after proton exchange. Equation (17) schematizes the removal/declustering of an ammonium 
ion from a biomolecule ion B in gas phase. 

  [𝐵𝐵(𝑟𝑟+1)− • 𝑁𝑁𝐻𝐻4]𝑟𝑟−   →   𝐵𝐵𝐻𝐻𝑟𝑟− + 𝑁𝑁𝐻𝐻3 ↑ (17) 

This pathway to remove adducts is not accessible for alkali and alkaline earths cations, which 
are thus detrimental for biomolecules MS signal and should be exchanged for volatiles cations 
during sample preparation. Often the declustering is followed by the restructuring of the DNA 
ion[64], and in compaction of some globular protein complexes[65]. 

  



 

19 

Conformational changes 

When the collisional activation overcomes the attractive intramolecular interactions, some 
ions can unfold due the Coulomb repulsion of like charges. This unfolding process is called 
Collision Induced Unfolding (CIU) and can be tracked by setting a so called CIU-experiment 
(ion mobility)[59, 66] (pp.22,47). 

Dissociation of the complexes 

Considering an ion of a complex, further activation can lead to its dissociation. This occurs 
when the increase of internal energy overcomes the interaction between the binding 
partners, leading for instance to the loss of a neutral ligand. In the case of a charged ligand, 
the charge state of the complex ion and the ability of the ligand to undergo proton transfer, 
have an influence on the dissociation. Because of the strong Columb interaction between ions 
in gas phase, if the binding partners have opposite charges (e.g. RNAn- and cationic ligand), 
the complex is likely to be more stable in the gas phase compared to condensed phase and 
activation could lead to fragmentation (of covalent bonds) in one of the two partners (i.e. 
RNA) rather than complex dissociation. If partners have like charges, the Coulomb repulsion 
will contribute to complex dissociation. Thus, the higher the charge state the easier the 
dissociation. 

 

1.5.3 How solution concentrations translate into MS intensities 
 

How concentration in solution correlates with ESI-MS peak intensity is until now not 
completely understood [67]. This relation is of strong interest for the basics of ESI technique 
and for quantitative MS methodologies, and we will explore it further in this thesis.  

In Figure 13, decyltrimethylammonium ion (DTMA+) has a detected intensity five times higher 
compared to Cs+, even though they are injected at the same concentration[67a]. 

 
Figure 13 - Equimolar mixture (10 µM) of Decyltrimethylammonium (DTMA) bromide and CsBr 
show different ESI-MS response when sprayed from a 50/50 water-methanol solution. Adapted 
from ref [67a] .  
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This difference is a consequence of the respective surface activities: the alkyl quaternary 
ammonium is likely to be on the surface of the droplet and it will be more competitive for 
surface during droplet fissioning in ESI. On contrast, the droplet surface will be less enriched 
in Cs+, more solvophillic. Thus, Cs+ will produce a lower signal after ESI process compared to 
DTMA+. 

The common assumption that intensities directly correlate with concentration in solution 
(same response factors) can be adequate when analytes have similar chemical nature. In such 
case, surface activity is likely to be similar because of similar solute-solvent interactions (e.g.: 
net charge, dipole-moment, lipophilicity) . When some changes of surface activities are 
suspected, it is desirable to account for ionization response through response factor 
correction (p.39). 

ESI response factor (𝑟𝑟) is the proportionality constant that relates MS intensity (𝐼𝐼𝑀𝑀) of an 
analyte 𝑀𝑀 to its concentration in solution: 

 𝐼𝐼𝑀𝑀 = 𝑟𝑟𝑀𝑀[𝑀𝑀] (18) 

The response factor is a term that depends on all factors that influence the intensity of M, 
observed on the ESI-MS spectrum. The intensity difference of Cs+ and DTMA+ in Figure 13 is 
an example of different partitioning of analytes in the droplet. Other factors are, for instance, 
ionization efficiency (e.g. ionic vs polar analyte, adduct formation), desolvation/declustering 
efficiency, the efficiency of transmission of M ions across the mass spectrometer and the 
detection efficiency. 

Aptamers being DNA or RNA that bind their partner ligand (guest) through a shape-adaptive 
binding mode [40a, 68], we were interest om studying their ESI response: if a ligand induces a 
significant conformational change in its host and this new conformation results in a different 
exposure to the solvent, different ESI response factors (𝑟𝑟𝑀𝑀) may occur for the bound and free-
aptamer. Recently this effect has been studied on globular proteins, where the charge state 
distribution of protein and its complex can be influenced by the change of solvent-accessible 
surface areas upon ligand binding.[69] However, for nucleic acids one should account for the 
phosphodiester backbone: the variations in exposure of hydrophobic and polar groups, and 
their influence on response factors, might be modest if the negatively charged backbone 
effects predominate. 

Lastly, intensity ratios (M vs ML) are also affinity dependent. This means that an aptamer that 
has, hypothetically, the same KD for two different ligands but different response factors (for 
ML1 and ML2) would show up with different complex intensities (hence different “conditional” 
KD).  
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1.5.4 Ion mobility mass spectrometry 
 

Ion mobility mass spectrometry (IM-MS) is a powerful analytical technique that is increasingly 
being used in the field of structural biology. Ion mobility separates ions according to shape 
and allows one to compare data measured by other biophysical methods, such as CD, NMR, 
x-ray crystallography[70], microscopy [71] and in silico calculated structures[72].  

An important feature of IM-MS is the capability to discern molecules with the same mass but 
different shape and arrival times. Common examples are topoisomers (e.g. leucine and iso-
leucine) and conformational polymorphic molecules[73]. 

 

 
Figure 14 - Ions enters the ion mobility cell at the same time. Here the balance between 
acceleration from the electric field and the frictions with the buffer gas (i.e. He), move each ion 
with a different steady state velocity. This velocity difference results in different arrivals times 
to the detector, hence in a separation according to the shape of each ion. 

In an ion mobility experiment, in our case into a linear drift tube, ions are accelerated by a 
constant electric field and drift through a buffer gas. The ions reach a steady state velocity as 
a result of balance between the gas friction and the force applied by the electric field. The 
ratio between the resulting steady state drift velocity (𝒗𝒗𝒅𝒅) and the applied electric field (𝑬𝑬) 
defines the ion mobility (𝐾𝐾) of the ion as follows: 

 𝐾𝐾 =
𝑣𝑣𝑑𝑑
𝐸𝐸

=
𝑐𝑐
𝑡𝑡𝑑𝑑  𝐸𝐸

     ,𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒      𝐸𝐸 =
∆𝑉𝑉
𝑐𝑐

 (19) 

Where ∆𝑉𝑉 is the potential difference (drift voltage) between the two ends of the drift tube of 
length 𝑳𝑳. 

𝐾𝐾 is related to the temperature (𝑅𝑅, i.e. 296 K) and gas pressure (𝑝𝑝, i.e. 3.89 mBar) of the 
experiment. The reduced ion mobility (𝐾𝐾0 ), scaled to standard temperature at pressures 
(273.15 K , 760 mBar), allows comparisons across different experiments. 𝐾𝐾0 is defined as: 

 𝐾𝐾0 = 𝐾𝐾
𝑝𝑝 𝑅𝑅0
𝑅𝑅 𝑝𝑝0

 (20) 

The knowledge of 𝐾𝐾 or 𝐾𝐾0 allows one to determine Ω (momentum transfer collision 
integral)[74] as: 
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𝑚𝑚𝑎𝑎𝑜𝑜𝑟𝑟 + 𝑚𝑚𝑔𝑔𝑎𝑎𝑝𝑝
 (21) 

Ω is thus related to 𝑡𝑡𝑑𝑑, the drift time (spent into the drift tube), by the following equation: 

 

 Ω =
𝑡𝑡𝑑𝑑  
𝑐𝑐
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 (22) 

𝑡𝑡𝑑𝑑 is the difference between the arrival time (𝑡𝑡𝑎𝑎), measured by the TOF detector, and the 
time spent outside the drift tube (𝑡𝑡0). So we can reformulate the eq (22) as: 

 Ω =
(𝑡𝑡𝑎𝑎 −  𝑡𝑡0)

𝑐𝑐
3

16
�

2𝜋𝜋
𝜇𝜇𝑘𝑘𝐵𝐵𝑅𝑅

𝑧𝑧 𝑒𝑒 𝐸𝐸
𝑁𝑁

        ,𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒     𝑡𝑡𝑑𝑑 = 𝑡𝑡𝑎𝑎 −  𝑡𝑡0 (23) 

Ω is the orientationally averaged momentum transfer collision integral between the buffer 
gas molecules and the ions, often called “Collision Cross Section” (CCS). Ω is a property of the 
gas-ion couple and has a dimension of an area (conveniently, Å2). 

CCS is a derived property of the ion-gas pair, derived from 𝐾𝐾 (ion mobility). However Ω itself 
is little informative about ion structure. Atomistic level of information on ion structure can be 
provided in silico by molecular modelling methods: candidate structures in the gas phase are 
generated and their CCS is then calculated with the appropriate model accounting for the gas 
nature, are compared with experimental CCS[72b]. Helium at room temperature can be 
considered as a hard sphere colliding with our ion, and thus a larger CCS value indicates either 
more extended structures (larger rotationally averaged projected area), or structures with a 
rougher surface or deeper cavities (parachute effect). In the present work we did not tackle 
the interpretation by comparison with simulated structural models, so we will discuss only 
differences in CCS values (for example between a free aptamer and its complex, or depending 
on the instrumental conditions) and relative peak widths. When measured in helium, a 
smaller CCS will mean a more compact structure. 

 

1.5.5 Collision Induced Unfolding 
 

Compact ions (short arrival time/low CCS) are normally generated from structures that are 
folded in solution. That means that two hypothetical ions with different structures, but 
equally compact, are not distinguishable by simply native IM-MS. However, ions can be 
differentiated by their response to collisional activation. At high activation , the ion mobility 
spectrum of a DNA aptamer (M7-) changes completely, from one distribution centred to 
another more extended one (Figure 15). One can monitor how extension occurs as a function 
of a voltage serving to change the collisional activation prior to IM measurement, by setting 
a so-called collision-induced unfolding (CIU) experiment (p. 47). Once the voltage that induces 
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the ATD change is identified with a preliminary experiment like in Figure 15, one can perform 
an acquisition where the voltage is varied step-by-step, while all the other parameters kept 
constant.  

 
Figure 15 – Ion mobility of  M7-, a DNA aptamer, at low collisional activation (fragmentor 460 V) 
shows a CCS distribution (grey) that on the ion mobility spectrum. At higher activation 
(fragmentor 560 V) the extension to a second (red) population is visible. 

The observation of the CIU plot is useful to understand how the ions respond to collisional 
activation. For example, to reveal if the extension pass through intermediate shapes 
(according to their CCS values), or to have an insight on the energetics of the transition 
(according to the voltage at which a shape change occurs). An unfolding that occurs at lower 
voltage suggests that weaker intramolecular interactions are involved in the compact 
structure.  
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2. Objective of the thesis 
 

Aptamers are single-stranded nucleic acids that often change structure or shape upon ligand 
binding. This feature makes them promising probes, sensors and stimuli-responsive elements, 
i.e. in riboswitches for synthetic biology [75]. The major challenge is to understand how 
aptamers change conformation upon binding, alone or when included into larger molecules. 
Nowadays, there are no standardized procedures or preferred techniques for aptamer 
characterization. In this context, additional capabilities to screen a range of aptamer 
candidates in vitro, without labelling, is of high interest. Aptamers are routinely studied using 
fluorescence anisotropy[76], surface plasmon resonance [77], ITC [78]. Magnetic resonance 
techniques are used for structural and dynamic elucidations [79]. Here we explore the 
applicability of native IM-MS to DNA and RNA aptamers.  

The first aim is to observe if binding proprieties of RNA aptamers are preserved in NH4OAc or 
TMAA solutions, and whether the complexes survive upon transfer in gas phase in native ESI. 
To evaluate quantitative aspects, we will compare ITC and MS titrations in the exact same 
conditions. A challenge is the choice of intergation range and background estimation for the 
extraction of MS intensities, which could bias the relative response factor correction (if 
necessary) and data fitting for binding affinity determination. Another challenge is to observe 
and quantify aptamer binding in presence of Mg2+ cations, which are essential co-factor for 
some aptamers. We benefit also of MS stoichiometry determination to support ITC data 
fitting, where data interpretation may result biased by a given stoichiometry assumption.  

The second aim is to determine whether the aptamers’ “adaptive binding” mechanism can be 
observed based on the ion mobility of free and bound aptamers. In light of the “adaptive 
binding” we would expect significantly different conformational populations for bound and 
unbound aptamers, provided that the gas phase ions keep a memory of their in-solution 
structures. We want also to study if Mg2+ will give distinct ATDs, as reported for some RNA 
aptamers. 

 

2.1 Aptamers analysed in this thesis 
 

Five RNA and four DNA aptamers have been studied (Figure 16). Quantitative native MS, with 
relative response factors correction, has been used to measure the ligand affinity (expressed 
in KD) of malachite green aptamer (MGA)[32, 80], riboflavin mononucleotide aptamer 
(1FMN)[35a, 81], neomycin aptamer (1NEM)[82] and tobramycin aptamer (1TOB)[83]. These 
aptamers covers a range of KDs from 10 to 10-3 µM (respectively 1; 0.5; 0.1; 0.009 µM) via 
intercalating binding mode (MGA, 1FMN) and electrostatic binding mode (1NEM, 1TOB). MGA 
has been studied extensively with ITC in conventional buffers, making it a convenient system 
to compare native MS and ITC in the same volatile salts. 1FMN is Mg2+ dependent and its 
reported KD is in the same range of MGA’s KD[80]. 1NEM is not sensitive to Mg2+ and has a KD 
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(0.1 µM) similar to MGA and 1FMN[81]. The KDs of 1NEM and 1TOB (0.009 µM) make them a 
good system to test the limits of native MS quantification. 

 

Table 1 – Ligands, KDs and conditions available in literature for the aptamers condidered in this 
work. 

Type Aptamer nt Ligand KD Conditions 

RNA 

1NEM[82] 23 Neomycin 0.100 µM[84] 5 mM Mg2+; 50 mM Tris•HCl 
(pH 7.6); 250 mM NaCl[84] 

1TOB[83a] 27 Tobramycin 

9 nM 
(1 Ligand); 

2.7 µM 
(2 ligands)[83b] 

20 mM TrisAc (pH 7.4); 1 mM 
MgCl2; 1 mM CaCl2; 5 mM 

KCl; 140 mM NaCl[83b] 

1FMN[35a] 36 RiboFMN 0.500 µM[81] 5 mM Mg2+; 50 mM Tris•HCl 
pH 7.6; 250 mM NaCl [81] 

MGA[85] 38 Malachite 
green 0.28 µM [80a] 

25 °C, 10 mM sodium 
phosphate (pH 6.7), 150 mM 

NaCl[80a] 

TCA[28] 57 Tetracycline 0.770 nM [86] 
25°C, 20 mM Tris•HCl (pH 

7.5), 10 mM MgCl2, 100 mM 
NaCl[86] 

DNA 

MN4[87] 36 

Quinine 

0.15 µM [80b] 
10°C, 20 mM Tris (pH 7.4, 

140 mM NaCl, 5 mM KCl) [80b] 
MN19[87] 30 0.23 µM [80b] 
OR8[88] 28 11.2 µM[80b] 
OR7[88] 26 n.d. [80b] 

 

On the IM-MS side, we want to compare free and bound forms and see if they are 
differentiable by IM-MS. In addition to the previous list, we studied tetracycline (TC) aptamer 
and four DNA cocaine binding aptamers (CBA), for which a conformational change upon 
binding is reported in the literature. Supported by the x-ray coordinates for TC-Apt and NMR 
topologies for CBA, we want to see if these conformational differences are observable by IM-
MS and in which extent. 
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Figure 16  – I-IV. RNA aptamers studied by native MS to quantify their KD in MS-friendly volatile 
salts; V. RNA tetracycline aptamer (x-ray crystal with U1A protein in red) and -VI. DNA cocaine 
binding aptamers, studied by IM-MS, for which large conformational change upon binding is 
expected (see text). Only NMR toloplogies are available for VI. PDB coordinates are availables 
for aptamers 1NEM.pdb (I), 1TOB.pbd (II), 1FMN.pdb (III), 1Q8N.pdb (IV) and 3EGZ.pdb (V). 
Nucleobases color code: A-Blue; G-Green; U-Yellow; C-Red; Mg2+ rose.  
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3. Materials and Methods 
3.1 UV melting 
 

DNA and RNA have a strong absorption band at ~260 nm, due to the aromatic character of 
the nucleobases[89]. This facilitates their quantification measuring their optical absorbance 
using the Beer-Lambert law: 

 𝐴𝐴 = log10
𝐼𝐼0
𝐼𝐼

= 𝜀𝜀𝜀𝜀𝑐𝑐 
(24) 

𝐼𝐼0  and 𝐼𝐼  are the incident and emerging light (to the sample), 𝜀𝜀  is the molar extinction 
coefficient [cm-1 M-1], 𝜀𝜀 is the optical path [cm] and 𝑐𝑐 is the molarity of the sample. One can 
follow how the absorbance a given wavelength changes with the temperature, in order to 
monitor the structural transitions of DNA or RNA. This is called “thermal denaturation” and is 
a common method used to evaluate the stability of nucleic acids secondary structures (e.g.: 
self-complementary DNA duplex, quadruplex), or nucleic acids complexes. For example, the 
conversion of duplex regions to single strands is accompanied by a hyperchromism at 260 nm. 

Assuming the case of a single stranded (𝑆𝑆𝑆𝑆) DNA that self-associate into a hairpin (𝐻𝐻𝑝𝑝) with a 
self-complementary duplex region, the curve will be sigmoidal shaped (Figure 17A) typical for 
a two-state transition (hairpin folding). 

 𝑆𝑆𝑆𝑆 ⇄ 𝐻𝐻𝑝𝑝 (25) 

The melting temperature (Tm) is defined as the temperature at which half of the structure is 
unfolded. To determine folded fraction, first two baselines, at low (𝑐𝑐1(𝑇𝑇)) and high (𝑐𝑐0(𝑇𝑇)) 
temperature, should be found (red lines in Figure 17A). Then the ordinate 𝐴𝐴(𝑇𝑇)  can be 
converted into the fraction folded 𝜃𝜃(𝑇𝑇): 

 𝜃𝜃(𝑇𝑇) =
𝑐𝑐1(𝑇𝑇) − 𝐴𝐴(𝑇𝑇)

𝑐𝑐0(𝑇𝑇) − 𝑐𝑐1(𝑇𝑇)
 (26) 

The Tm can determined from the intersection of data points and median of the two baselines 
(𝜃𝜃(𝑇𝑇) = 0.5 ). However we will use the maximum of the first derivative of data points 
(𝑑𝑑𝐴𝐴260/𝑑𝑑𝑅𝑅) that is unaffected by the choice of baselines. We will use the the sigmoidal fitting 
of 𝜃𝜃(𝑇𝑇) vs 𝑅𝑅 curve (Figure 17B) allows to to estimate the fraction folded at room temperature. 
The folded fraction is related to the association constant of the two partners, eq. (27). Then 
one can determine the ∆𝐺𝐺𝑜𝑜 of the transition[90] (p.12). 

 𝐾𝐾𝐴𝐴 = 𝜃𝜃(𝑇𝑇)/(1 − 𝜃𝜃(𝑇𝑇)) (27) 
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Figure 17 – A) Absorbance recorded at 260 nm is plotted vs temperature of the cell. The red 
straight lines are the baselines for the A260 transition associated to the melting. B) A260 is 
converted as folded fraction 𝜃𝜃(𝑇𝑇) using eq. (26) . The melting temperature Tm is reported as 
sigmoid centroid (blue solid curve) and as maximum of A260 derivative (red dotted curve). 

Nucleic acid aptamers have a secondary structure more complex rather than a simple duplex 
(e.g. hairpin, bulges, junctions at pp. 5-7). In this case, several successive or overlapping 
transitions may complicate the Tm determination, Tm a qualitative parameter about the global 
stability of a sequence. In those cases, plotting the first derivative of the melting curve can 
help to find the inflexion points to provide a rough estimate of the Tm (e.g. when is difficult 
to define one or both baselines). 

 

In this work, we used 400 µL QS quartz cuvettes (model 115B-10-40 - Hellma, Müllheim, 
Germany) of 10 mm path length, and a SAFAS UVmc1 (SAFAS, Monaco) UV-
spectrophotometer. The temperature ramp was set to 0.2°C/min from 4°C to 90°C and back. 
Samples were prepared at 2 µM concentration to have an A260 between 0.5 and 0.8 a.u. (2*105 
< ε260 < 4*105) at 25°C, to stay far from detector saturation. 
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3.2 Circular Dichroism 
 

Circular dichroism is a visible technique that probes the asymmetry of a system. Nucleobases 
are achiral but their environment is chiral when included in DNA or RNA, because of the chiral 
sugar-phosphate backbone and the resulting helical structures. In addition, the spatial 
orientation (e.g. secondary structure) of the base chromophores contributes to chirality. B-
DNA signature has a broad positive band at 275 nm and a negative band at 245 nm[91]. 

A Jasco J-1500 spectrophotometer (JASCO Co., Ltd., Hachioji, Japan) was used to perform the 
CD experiments over 220-350 nm at 100 nm/min. A quartz cell of 2 mm path length (𝜀𝜀) and 
10 mm width was used. The temperature was set to 20 °C. Each spectrum was acquired in 
triplicate. The buffer was used as blank, recorded in the same cuvette with the same method, 
and subtracted by the instrument from each spectrum. 

CD data were converted from ellipticity (𝜃𝜃 - mdeg) to molar circular-dichroic absorption (∆𝜀𝜀 
– cm2 mmol-1) based on DNA concentration (𝐶𝐶) using the following equation[92]: 

 ∆𝜀𝜀 = 𝜃𝜃 (32980 ⋅ 𝐶𝐶 ⋅ 𝜀𝜀)⁄  (28) 

 

3.3 ITC instrumental set up and data treatment 
 

Isothermal titrations were conducted at 25 °C using an ITC200 microcalorimeter from 
Microcal (Northampton, USA). All sequences were exchanged extensively on spin columns  
against NH4OAc or TMAA 100 mM buffer (pH 6.8 were verified with an InoLab – Multi 9420 
IDS (WTW, Xylem Analytics, Weilheim, Germany) and MgCl2 200 µM when needed, by dilution 
of Magnesium chloride BioUltra 1M from Sigma Aldrich (Saint-Quentin Fallavier, France). RNA 
and ligand concentrations were determined by UV-Vis spectroscopy on solutions before 
loading into ITC200. The concentrations used in the ITC cell are in the range of 10 to 15 μM 
for the RNA aptamer. The concentration of ligand inside the syringe was between 140 and 
160 μM, prepared by dilution of concentrated ligand. Samples and buffers were degassed 
before use in a sonic bath for 5 minutes at 20°C. 

Two injection methods (Table 2) have been used in order to explore a thermogram sampling 
between 19 and 25 points. Even though the methods are similar, the first (I) gave optimal 
(less noisy) heat pulse intensities for integration.  

All ITC experiments were replicated from three to five times. Data sets are analysed using the 
embedded Origin 7.0 provided by the manufacturer. Manual correction of baseline on 
thermograms has been necessary only to exclude spikes from false peak identification and to 
correct baseline definition in spike proximity. Ligand dilution control runs were always 
subtracted to account for dilution heats. Origin 7.0 one binding site model, eq. (14) , was used 
for point fitting after thermograms integration, discarding the first injection of 0.5 µL. Number 
of sites (N) was kept as an adjustable parameter, to can accommodate for errors on the 



 

30 

ligand/target concentration ratios. The standard deviation of fitted parameters across the 
replica is reported. 

 

Table 2 – Instumental settings for isothermal calorimetry. a. for exact values, refer to text and 
annexes 

Injection Method - I  Injection Method - II 
Cell temperature 25°C  Cell temperature 25°C 
Reference power 10 µcal/s  Reference power 6 µcal/s 
Initial delay 300 s  Initial delay 300 s 
Syringe concentrationa 140-155 µM  Syringe concentrationa 140-155 µM 
Cell concentrationa 10-15 µM  Cell concentrationa 10-15 µM 
Stirring speed 750 rpm  Stirring speed 750 rpm 
Feedback Mode/Gain High  Feedback Mode/Gain Low 
     
Total Injections 19  Total Injections 25 

First injection V 0.5 µL  First injection V 0.5 µL 
Duration 1 s  Duration 1 s 
Spacing 180 s  Spacing 120 

Filter 5 s  Filter 5 s 
Injections 2 to 19 V 2.0 µL  Injections 2 to 25 V 1.5 µL 

Duration 4 s  Duration 1 s 
Spacing 180 s  Spacing 120 s 

Filter 5 s  Filter 5 s 
Run time ~65 min  Run time ~55 min 
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3.4 Mass spectrometers 
3.4.1 Agilent 6560 ESI-IM-Q-ToF 

 
Figure 18 - Agilent 6560 is composed by an ESI source (Agilent Jet stream in the schema), the 
heated sampling capillary (Fragmentor parameter higlighted) before the pre-IMS funnels, the 
trapping (grids) region before the IMS drift tube; After the drift tube we have a focusing funnel, 
a quadrupole (Q), the collision cell filled with N2 and the time of flight (TOF) region. Adapted 
from ref [93]. 

The Agilent 6560 is a quadrupole time-of-flight mass spectrometer coupled to anion mobility 
drift tube on its front end. This instrument is capable to separate ions by their mobilities (p.21) 
thanks to the drift tube, and then to separate them according to their m/z ratio by the time-
of-flight (TOF) with resolution up to 42 000[94]. The Q-TOF allows one to do MS/MS. In our 
case high purity helium is flowed into the ion mobility part using the “alternate gas kit” and 
with in-house modified pumping[95], to perform IMS experiments in 100% helium.  

The ion mobility part is divided in three regions: front funnels with trapping gate/region, the 
linear drift tube and the rear ion funnel.  

 

Pre-IMS parameters 

Here are summarized the parameters critical for our study. Values are summarized in Table 3 
and Table 4 at p.34. 

• Fragmentor 

The “fragmentor” parameter is the voltage difference between the heated capillary (entrance 
of the instrument) and the first electric lens of the front funnels (High pressure funnel - HPF) 
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reported in Figure 18 and Figure 19. Because the gas pressure in this region is about 4-3 mbar 
(of a mixture of N2 and He), this parameter acts directly on ion activation: how ions are 
“pulled” towards the front funnels will induce more or less energetic collisions with the gas. 
Depending on the set value, it is possible to control the extent of desolvation, declustering or 
even dissociation. The voltage range is 200-600 V. 

• Front funnels  

Ion funnels reduce ion losses when transferring ions. The focusing provided by ion funnels is 
particularly suitable to limit ion radial diffusion for high sensitivity and resolution in IM-MS 
experiments [96]. However, in typical IM-MS conditions (i.e. pHe 3.76 Torr) RF fields in ion 
funnels leads to collisional activation [97]. Voltages in this region may thus also influence the 
activation of ions [66a]. 

• Trapping region  

The trapping region before the drift tube IM is necessary to form a discrete packet of ions to 
send into the drift tube, and define the start time (time zero) for the mobility drift. Three grids 
permit ion trapping in this region. Trapping time, release time and the voltages profile can 
also influence ion activation. The trap fill time range can vary from 100 µs (min. release time) 
to 60 ms (drift time duty cycle/max drift time). Using longer trap fill times does not influence 
ion activation but tends to lower the total ion count of the spectra. The reason is still not 
clear. [66a] The parameter Trap Entrance Grid Delta (TEGD) is the voltage difference between 
the trap entrance grid in trapping and release mode (Figure 19). A higher TEGD value gives a 
steeper voltage profile of trap region during release mode, and induces an higher activation 
[66a, 98]. Fragmentor and TEGD are the main parameters to control ion activation on our 
instrument and perform CIU experiments [59, 66a, 98]. 

 

Ion Mobility Drift Tube 

Ion mobility separation occurs in this region. The drift tube is filled with Helium, at 3.89 Torr. 
One should prevent N2 contamination into the tube (i.e.: from the front funnels), otherwise 
mobility measurements will be the result of collisions with a N2-He mixture of undefined. 
Partial pressures. To do so, a pressure differential of minimum 0.18 Torr is maintained 
between the drift tube and the front funnels [72b]. 

Helium pressures and the differentials were adjusted on daily basis by verifying that the 
correct CCS of [d(TG4T)4•(NH4)3]5- was within a tolerance of 1 Å2 (DTCSSHe= 788 Å2)[72b] and dT6

2- 
within a tolerance of 1 Å2 (DTCSSHe= 306 Å2)[99], using a mixture of d(TG4T)4 10 µM and dT6 5 
µM in NH4OAc 100 mM. 
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Post-IMS parameters 

 

The quadrupole can be used either in RF-only mode as simple ion guides or as m/z filter to 
allow a specific m/z value to pass towards the TOF. The collision cell allows to do MS² 
experiments by accelerating ions (or selected ions) into the cell containing 2 × 10-3 mbar N2. 
We also minimized collisional activation in all these regions (Table 3). This is necessary to 
avoid post-IMS dissociation of our complexes, and measure the same m/z ratio that were 
present into the DT-IMS. 

The TOF analyser (~7 × 10-8 bar) measures the time elapsed between the ion arrival at the 
detector and their start time from the pusher. One reflectron (electrical lens mirrors) is 
present to extend the ion flight path, time-focus the ions and thus achieve higher mass 
resolution. The detector is a microchannel plate that amplifies the hit of an ion with an 
electron cascade. The electric current is then converted to give the spectrum of flight times. 
Flight times are then converted to mass over charge ratio (m/z) by a calibration with Agilent 
Tunemix. 

 

 
Figure 19 - Pre-IMS DC voltages of regular tuning and CIU tuning. The two activation parameter 
(fragmentor and Trap Entrance Grid Delta - TEGD) are marked in orange. Voltage of CIU are 
showed (Table 4). Voltages are in relative value to the IM entrance. 
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Agilent 6560 tuning 

 

Table 3 - The following tuning parameters were used for all RNA and DNA samples acquired on 
Agilent 6560. 

Pre-IMS Parameter Value post-IMS Parameter Value 

Source: gas temperature 200 °C IM drift tube: Drift tube exit -210 V 

Source: drying gas 5 L/min IM rear funnel: Rear funnel 
entrance 

-200 V 

Source: nebulizer pressure 13 psig  IM rear funnel: Rear funnel 
RF 

-130 
Vp-p 

Source: capillary -3500 V IM rear funnel: Rear Funnel 
Exit 

-35 V 

Optics 1: Fragmentor -350 V IM rear funnel: IM Hex 
Entrance 

-32 V 

IM front funnel: high pressure funnel delta -110 V IM rear funnel: IM Hex Delta -3 V 

IM front funnel: high pressure funnel RF -180 Vp-p
  Optics 1: Oct Entrance Lens -27 V 

IM front funnel: trap funnel delta -160 V Optics 1: Oct 1 DC -25 V 

IM front funnel: trap funnel RF -180 Vp-p Optics 1: Lens 1 -23 V 

IM front funnel: trap funnel exit -10 V Optics 1: Lens 2 Off 

IM trap: trap entrance grid low -82 V Quad: Quad DC -21 V 

IM trap: trap entrance grid delta -2 V Quad: PostFilter DC -21 V 

IM trap: trap entrance -79 V Cell: gas flow 22 psi 

IM trap: trap exit -76 V Cell: Cell Entrance -16 V 

IM trap: trap exit grid 1 low -72 V Cell: Hex DC -16 V 

IM trap: trap exit grid 1 delta -6 V Cell: Hex Delta -3 V 

IM trap: trap exit grid 2 low -71 V Cell: Hex2 DC -14.6 V 

IM trap: trap exit grid 2 delta -13 V Cell: Hex2 DV -1.5 V 

Acquisition: Trap fill time 1000 µs Cell: Hex3 DC -12.9 V 

Acquisition: Trap release time 100 µs Extractor: Ion Focus -10 V 
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Table 4 – Pre-IMS Parameters for direct CCSHe and collisional induced unfolding on cocaine 
aptamers (p. 118). The key parameters to obtain the CIU are in bold. Fragmentor was varied up 
to 600V by steps of 10V; This method was obtained from a previous test using the optimized 
method for in ubiquitin 7+ in He from ref[66a]; Comparison at p.213 - Figure 129. 

Pre-IMS parameter Value 

Source: gas temperature 200 °C 

Source: drying gas 5 L/min 

Source: nebulizer pressure 13 psig  

Source: capillary -3500 V 

Optics 1: Fragmentor -350-600 V 

IM front funnel: high pressure funnel delta -110 V 

IM front funnel: high pressure funnel RF -160 Vp-p
  

IM front funnel: trap funnel delta -140 V 

IM front funnel: trap funnel RF -160 Vp-p 

IM front funnel: trap funnel exit -10 V 

IM trap: trap entrance grid low -70 V 

IM trap : trap entrance grid delta -2 V 

IM trap: trap entrance -69 V 

IM trap: trap exit -67 V 

IM trap: trap exit grid 1 low -64 V 

IM trap: trap exit grid 1 delta -5 V 

IM trap: trap exit grid 2 low -63 V 

IM trap: trap exit grid 2 delta -9 V 

Acquisition: Trap fill time 1000 µs 

Acquisition: Trap release time 100 µs 
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Table 5 – Pre-IMS Parameters for direct CCSHe for Tetracycline RNA aptamer (p. 95). The key 
parameters to remove TMAA adducts and clustering in general are in bold; Fragmentor was 
fixed to 600V; This method was already reported from ref[98]. † Source parameters refer to a 
nESI source and nebulizer pressure is used as back pressure to the emitter. 

Pre-IMS parameter Value 

Source: gas temperature 200 °C 

Source: drying gas† 3 L/min 

Source: nebulizer pressure† 1 psig  

Source: capillary† -1050 V 

Optics 1: Fragmentor -600 V 

IM front funnel: high pressure funnel delta -160 V 

IM front funnel: high pressure funnel RF -180 Vp-p  

IM front funnel: trap funnel delta -160 V 

IM front funnel: trap funnel RF -180 Vp-p 

IM front funnel: trap funnel exit -10 V 

IM trap: trap entrance grid low -125 V 

IM trap : trap entrance grid delta -20 V 

IM trap: trap entrance -100 V 

IM trap: trap exit -99 V 

IM trap: trap exit grid 1 low -97 V 

0.IM trap: trap exit grid 1 delta -6 V 

IM trap: trap exit grid 2 low -96 V 

IM trap: trap exit grid 2 delta -10 V 

Acquisition: Trap fill time 1000 µs 

Acquisition: Trap release time 100 µs 
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3.4.2 Thermo Exactive 
 

Orbitrap mass spectrometers are high-resolution instruments. The ions are trapped in stable 
orbits around the central spindle-like electrode, where the oscillation frequency is related to 
its mass-to-charge ratio. This design and its improvements allow resolution up to >1 000 000 
[100] , (only 50 000 on our instrument), large dynamic and m/z range [101]. 

 
Figure 20 –The Thermo Exactive mass spectrometer and its components. 

Samples are injected using a syringe pump connected to the ESI source. Ions are then 
transferred through four stages of differential pumping using radiofrequency (RF)-only 
multipoles into a RF-only trapping curved quadrupole filled with nitrogen, termed “C-trap”. 
Packets of ions are stored and thermalized before injection into the orbitrap mass analyser. 
In the analyser, ions oscillate between the spindle-like central electrode and the outer 
electrodes using only electrostatic fields. The high vacuum into the analyser chamber (< 10-9 
mbar) allows ions to oscillate during to 250 ms, inducing an image current that is detected 
and Fourier-transformed to oscillation frequencies (of each ion package) and finally converted 
to a mass spectrum[101b, 102]. If needed, an octapole termed “High Collision energy 
Dissociation” (HCD) cell allows fragmentation before injection into the analyser. 

The Exactive ESI-Orbitrap mass spectrometer (Thermo Scientific, Bremen, Germany) was used 
to titrate 1FMN in TMAA and NH4OAc 100 mM with MgCl2 200 µM. Parameters are 
summarized in Table 6. 
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Table 6 - Samples acquisiton and native MS titrations were acquired with the following 
parameters. Fragmentation cel (HCD) was used only with 1FMN aptamer to reveal Mg2+ adducts 
(p.77). 

Scan Parameters Value 

Scan Range 800 – 3200 m/z 

Fragmentation (HCD) Off 

Only for 1FMN aptamer + Mg2+ 15 ev 

Resolution High 

Polarity Negative 

Microscans 2 

Lock masses Off 

AGC target High dynamic range 

Maximum Inject time 250 ms 

HESI Source Value 

Sheath gas flow rate 55 

Aux gas flow rate 5 

Sweep gas flow rate 0 

Spray voltage -3 kV 

Capillary temperature 180 °C 

Capillary voltage -15 V 

Tube lens voltage -160 V 

Skimmer voltage -14 V 

Heather temperature 25 °C 
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3.5 Relative response factor determination 
 

In the introduction we defined the ESI response factor (𝑟𝑟) as the proportionality constant that 
relates MS intensity (𝐼𝐼𝑀𝑀) of an analyte 𝑀𝑀 to its concentration in solution. In our work we will 
use the method proposed by Gabelica et al.[103] to determine relative response factors using 
an internal standard. Here we briefly summarize the principles. 

In the simplest case of a non-covalent complex formed by the binding of the host M with the 
guest L, the equilibrium dissociation constant (𝐾𝐾𝐷𝐷) is: 

𝑀𝑀 +  𝑐𝑐 ⇄  𝑀𝑀𝑐𝑐 

 𝐾𝐾𝐷𝐷 =
[𝑀𝑀][𝑐𝑐]
[𝑀𝑀𝑐𝑐]

 (29) 

and considering the response factors can be reformulated including eq. (18) : 

 𝐾𝐾𝐷𝐷 =
𝑟𝑟𝑀𝑀𝐿𝐿
𝑟𝑟𝑀𝑀

𝐼𝐼𝑀𝑀
𝐼𝐼𝑀𝑀𝐿𝐿

[𝑐𝑐] = 𝑅𝑅
𝐼𝐼𝑀𝑀
𝐼𝐼𝑀𝑀𝐿𝐿

[𝑐𝑐] , 𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒     𝐼𝐼𝑀𝑀 = 𝑟𝑟𝑀𝑀[𝑀𝑀] (30) 

The method compares the intensity of each ion to that of an internal standard (𝑆𝑆𝑡𝑡𝑑𝑑 ), 
chemically similar enough that, if some factor influence the response, both will be affected in 
the same way. The internal standard in our case is the DNA hexamer dT6, kept at constant 
concentration during all the experiments. Knowing the concentration of 𝑆𝑆𝑡𝑡𝑑𝑑, we define the 
relative response factor (i.e. 𝑅𝑅𝑀𝑀, 𝑅𝑅𝑀𝑀𝐿𝐿) for each with respect to the internal standard: 

 
[𝑀𝑀]

[𝑆𝑆𝑡𝑡𝑑𝑑]
=
𝑟𝑟𝑆𝑆𝑝𝑝𝑑𝑑
𝑟𝑟𝑀𝑀

𝐼𝐼𝑀𝑀
𝐼𝐼𝑆𝑆𝑝𝑝𝑑𝑑

= 𝑅𝑅𝑀𝑀
𝐼𝐼𝑀𝑀
𝐼𝐼𝑆𝑆𝑝𝑝𝑑𝑑

     𝑎𝑎𝑎𝑎𝑑𝑑     
[𝑀𝑀𝑐𝑐]
[𝑆𝑆𝑡𝑡𝑑𝑑]

=
𝑟𝑟𝑆𝑆𝑝𝑝𝑑𝑑
𝑟𝑟𝑀𝑀𝐿𝐿

𝐼𝐼𝑀𝑀𝐿𝐿
𝐼𝐼𝑆𝑆𝑝𝑝𝑑𝑑

= 𝑅𝑅𝑀𝑀𝐿𝐿
𝐼𝐼𝑀𝑀𝐿𝐿
𝐼𝐼𝑆𝑆𝑝𝑝𝑑𝑑

 (31) 

and knowing that [𝑀𝑀]𝑝𝑝𝑜𝑜𝑝𝑝 = [𝑀𝑀] + [𝑀𝑀𝑐𝑐] it is possible to reformulate eq. (31) as: 

 
[𝑀𝑀]𝑝𝑝𝑜𝑜𝑝𝑝
[𝑆𝑆𝑡𝑡𝑑𝑑]

= 𝑅𝑅𝑀𝑀
𝐼𝐼𝑀𝑀
𝐼𝐼𝑆𝑆𝑝𝑝𝑑𝑑

+ 𝑅𝑅𝑀𝑀𝐿𝐿
𝐼𝐼𝑀𝑀𝐿𝐿
𝐼𝐼𝑆𝑆𝑝𝑝𝑑𝑑

= 𝐶𝐶 (32) 

where C is the ratio between [𝑀𝑀]𝑝𝑝𝑜𝑜𝑝𝑝 and [𝑆𝑆𝑡𝑡𝑑𝑑]. 

A titration experiment provides many points of measurable intensities 𝐼𝐼𝑀𝑀 and 𝐼𝐼𝑀𝑀𝐿𝐿, and each 
one gives a linear equation like (32) as part of a set, which can be written in matrixes as 
follows: 

⎝

⎜⎜
⎛

𝐼𝐼𝑀𝑀,1

𝐼𝐼𝑆𝑆𝑝𝑝𝑑𝑑,1

𝐼𝐼𝑀𝑀𝐿𝐿,1

𝐼𝐼𝑆𝑆𝑝𝑝𝑑𝑑,1
⋮ ⋮

𝐼𝐼𝑀𝑀,𝑒𝑒

𝐼𝐼𝑆𝑆𝑝𝑝𝑑𝑑,𝑒𝑒

𝐼𝐼𝑀𝑀𝐿𝐿,𝑒𝑒

𝐼𝐼𝑆𝑆𝑝𝑝𝑑𝑑,𝑒𝑒⎠

⎟⎟
⎞
� 𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀𝐿𝐿

� = �
𝐶𝐶
⋮
𝐶𝐶
� 

 𝑰𝑰 ∙ 𝑹𝑹 = 𝑪𝑪 (33) 
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The intensity matrix 𝑰𝑰  is a m x n matrix where m are the experimental points (titration 
solutions, kinetics point, …) and n are the different forms of the host M (M, ML, …). If we have 
only species M and ML, n is equal to 2. The vector 𝑹𝑹 has the same dimension as n (columns 
of 𝑰𝑰) and vector 𝑪𝑪 has the same dimension as m (rows of 𝑰𝑰). 

Albeit a square matrix is enough to solve the relation (33), it is desirable to use all the data 
points and have an overdetermined system (m rows ≥ n columns) in which the relative 
intensities of the ions vary significantly. Thus the relative response factor vector 𝑹𝑹  is 
calculated as 

 𝑹𝑹 = 𝑰𝑰+ ∙ 𝑪𝑪 (34) 

Where 𝑰𝑰+ is the Moore-Penrose pseudoinverse of the intensity matrix 𝑰𝑰, commonly used to 
compute a least squares solution of a system in linear algebra. 

The conditions for method validity are that  

i. The relative response factors of each species remain constant along the 
experiment; 

ii. The complex(es) remains intact (no dissociation or further association) upon ESI-
MS analysis (no ML converts to M after part of the process); 

iii. Relative intensities between analyte and complex(es) should vary enough (e.g. up 
to saturation of M by the ligand) to permit the calculation of response factors; 

iv. Vector 𝑪𝑪  (ratio [𝑀𝑀]𝑝𝑝𝑜𝑜𝑝𝑝  / [𝑆𝑆𝑡𝑡𝑑𝑑] ) should be the most constant as possible. For 
example, M and Std pooled before preparing the samples at different ligand 
concentrations (titration points), will maintain their mixing ratio besides handling 
or errors. 

 

Data treatment  

Ion peaks to consider are integrated using an in-house developed R-script, for Agilent 6560, 
and a Python script for Thermo Exactive. In this work, MS peak intensities were extracted 
using in-house developed R or Python script. An example of script input is reported in Figure 
91 at p.145. 

 

3.5.1 Determination of dissociation constant using MS titrations 
 

One of the basic assumptions in using mass spectrometers for KD determination, is that during 
ESI process the reactions are “kinetically trapped”, because droplet Rayleigh fissions (µs time 
scale) occurs faster than analytes diffusion rate constants, minimizing equilibrium 
displacement (dissociation of ML or association of M and L)[104]. But also, multiple fission and 
evaporation of droplets helps in keeping the analytes concentration low [105]. 
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During a titration of a binding equilibrium such as eq. (29), one varies the concentration of 
one partner of the reaction (i.e. 𝑐𝑐 ) and monitors a physical change related to the 
concentration of at least one of the others reactant or products (i.e. 𝑀𝑀 and or 𝑀𝑀𝑐𝑐). In a MS 
titration the physical change are the intensities (ion currents) of the reactants and products 
(in our case, 𝑀𝑀 and its complex 𝑀𝑀𝑐𝑐). Concretely, several samples of the analyte (i.e. nucleic 
acid) are acquired with increasing ligand concentrations. Each sample is an equilibrium point 
of the binding reaction between nucleic acid and its ligand, from which it is possible to 
determine the relative response factors for analyte and complex(es) and reconstruct the 
binding isotherm(s). 

To respect the balance of mass we combine equations (31) and (32) we define [𝑀𝑀]𝑐𝑐𝑜𝑜𝑝𝑝𝑝𝑝 and 
[𝑀𝑀𝑐𝑐]𝑐𝑐𝑜𝑜𝑝𝑝𝑝𝑝 as 

[𝑀𝑀]𝑐𝑐𝑜𝑜𝑝𝑝𝑝𝑝 = [𝑀𝑀]𝑝𝑝𝑜𝑜𝑝𝑝
𝑅𝑅𝑀𝑀

𝐼𝐼𝑀𝑀
𝐼𝐼𝑆𝑆𝑝𝑝𝑑𝑑

�𝑅𝑅𝑀𝑀
𝐼𝐼𝑀𝑀
𝐼𝐼𝑆𝑆𝑝𝑝𝑑𝑑

+ 𝑅𝑅𝑀𝑀𝐿𝐿
𝐼𝐼𝑀𝑀𝐿𝐿
𝐼𝐼𝑆𝑆𝑝𝑝𝑑𝑑

�
  ; [𝑀𝑀𝑐𝑐]𝑐𝑐𝑜𝑜𝑝𝑝𝑝𝑝 = [𝑀𝑀]𝑝𝑝𝑜𝑜𝑝𝑝

𝑅𝑅𝑀𝑀𝐿𝐿
𝐼𝐼𝑀𝑀𝐿𝐿
𝐼𝐼𝑆𝑆𝑝𝑝𝑑𝑑

�𝑅𝑅𝑀𝑀
𝐼𝐼𝑀𝑀
𝐼𝐼𝑆𝑆𝑝𝑝𝑑𝑑

+ 𝑅𝑅𝑀𝑀𝐿𝐿
𝐼𝐼𝑀𝑀𝐿𝐿
𝐼𝐼𝑆𝑆𝑝𝑝𝑑𝑑

�
 (35) 

Remembering that we defined the relative response factors as 𝑅𝑅𝑥𝑥 = 𝑝𝑝𝑆𝑆𝑡𝑡𝑆𝑆
𝑝𝑝𝑥𝑥

, the equilibrium 

dissociation constant (30) can be expressed for each experimental point as 

 𝐾𝐾𝐷𝐷,𝑐𝑐𝑜𝑜𝑝𝑝𝑝𝑝 =
[𝑀𝑀]𝑐𝑐𝑜𝑜𝑝𝑝𝑝𝑝[𝑐𝑐]
[𝑀𝑀𝑐𝑐]𝑐𝑐𝑜𝑜𝑝𝑝𝑝𝑝

=
𝑅𝑅𝑀𝑀
𝑅𝑅𝑀𝑀𝐿𝐿

𝐼𝐼𝑀𝑀
𝐼𝐼𝑀𝑀𝐿𝐿

[𝑐𝑐]𝑐𝑐𝑝𝑝𝑎𝑎𝑎𝑎 (36) 

And [𝑐𝑐]𝑐𝑐𝑝𝑝𝑎𝑎𝑎𝑎 is obtained from the mass balance equation: 

 [𝑐𝑐]𝑐𝑐𝑝𝑝𝑎𝑎𝑎𝑎 =  [𝑐𝑐]𝑝𝑝𝑜𝑜𝑝𝑝 − [𝑀𝑀𝑐𝑐]𝑐𝑐𝑜𝑜𝑝𝑝𝑝𝑝 (37) 

Using these questions a KD value can be determined for each titration point. To use the entire 
titration curve, we plot the binding isotherm, which consists of the values of [ML]corr as a 
function of [L]tot. Dissociation constants, 𝐾𝐾𝐷𝐷, in our work have been determined by non-linear 
fitting of the binding isotherms using the software DynaFit (4.07.082, BioKin Ltd Watertown, 
MA)[106]. We preferred this method because single “poor” data points can lead to biased 
equilibrium constant, whereas examining the entire titration curve allows to evaluate quality 
of points by examining how well the curves fit the data (Figure 21). Dynafit is also able to fit 
the titration data of more complex reaction stoichiometries if required. 
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Figure 21 - Example of DynaFit output for a binding isotherm and residuals for a MS titration on 
a RNA aptamer (M) and its complex (ML). On ordinate, concentrations of M and ML after rlative 
response factor correction; on abscissa, ligand concentration. KD = 0.598 ± 0.046 µM (R2 
0.994684). Fit output is available in Table 23 at p.151.  

Based on the reaction mechanism that we give as input, the DynaFit software computes the 
composition at equilibrium by solving simultaneously the mass balance equations for the 
component species by using the multidimensional Newton−Raphson method[107]. Data are 
then fitted by the iteration method chosen by the user (e.g. by default a Levenberg–
Marquardt algorithm for squared residuals minimization). A modified Monte-Carlo 
method[108] is implemented to determine the confidence intervals of the parameters (i.e.: KD), 
simulating 1000 data set permutations, without assuming a specific statistical distribution of 
the experimental data. However, the algorithm assumes no error on ligand concentrations 
(abscissa). DynaFit typical script and output are available at p.150. 

In this work, we calculated the relative response factor correction for each charge state of 
each MS replica. The uncertainty of relative response factors is expressed as the standard 
deviation over the replicas. Both methods were repeated considering relative response factor 
equal to 1 (i.e.: fixing both at 1) for comparison purposes. 
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Dissociation constants (KD) have been calculated using two methods: 

I) Concentrations (M and ML) of the single charge states per each replica are used 
as DynaFit input. Then an averaged KD is calculated over the replicas per each 
charge state, with uncertainty expressed as standard deviation. 
 

II) Averaged concentrations of the single charge state over the replicas are used as 
input for DynaFit. The uncertainty on KD of single charge state, is the confidence 
interval provided by Monte-Carlo iteration of DynaFit algorithm. 

∆𝐺𝐺𝑜𝑜 was calculated from these KDs and we propagated the uncertainty a using the following 
rule in quadrature on eq. (4): 

 ∆𝐺𝐺𝑜𝑜 = 𝑅𝑅𝑅𝑅 ln𝐾𝐾𝐷𝐷           𝛿𝛿∆𝐺𝐺𝑜𝑜 = |∆𝐺𝐺𝑜𝑜|��
𝛿𝛿𝑅𝑅
𝑅𝑅 �

2

+ �
𝛿𝛿 ln𝐾𝐾𝐷𝐷
ln𝐾𝐾𝐷𝐷

�
2

 
(38) 

The basics assumption behind equation (38) are that the averaged values of variables are 
normally distributed, uncertainties (𝛿𝛿𝑅𝑅, 𝛿𝛿 ln𝐾𝐾𝐷𝐷) are independent and random[109]. 

 

3.5.2 Extraction of MS peak Intensity and background subtraction 
 

For a given MS signal, one has to choice to integrate only the first fully desolvated peak only 
(+0 adducts - Figure 22) or a larger m/z-window that embraces adducts considered as 
belonging to the same species. In Figure 22, three spectra of M at 10 µM in 
trimethylammonium acetate (TMAA) 100 mM, with 0, 0.5 and 2 equivalents of L are shown. 
A background contribution to the peak should be subtracted; however, the definition of peak 
background is a choice of the user and thus a source of uncertainty on the final values. One 
simple solution is to take an adjacent m/z-window (to the peak) as representative 
background. This is feasible for well-separated peaks, but overlap problems may rise in case 
of close peaks, or peaks with long adducts tails. A stratagem is to consider a narrow m/z-
window with the minimal background intensity (i.e. orange and bright bue ranges in Figure 
22) as representative background for the second. 

The choice of only one peak (no adducts), like the Mn- in Figure 22, has the advantage of a 
better signal-to-noise ratio, but it induces a bias in the case of variations in the adduct 
distribution over the titration. The choice of summing up all adducts, like Mn- and 3 TMA+ in 
Figure 22, has the advantage of a higher intensity and it accounts for eventual variations in 
adducts distribution, at cost of a higher background that could lower the signal-to-noise ratio 
and eventually increase uncertainties after subtraction. 
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Figure 22 – Mass-to-charge range definition for MS peak intensity extraction, for an isolated 
peak (M) and two close-range peaks (M and ML). Fully desolvated peak only (red) and up to 3 
adduct (dark blue) ranges are depicted. The background range is depicted in orange and bright 
bue, respectively. Spectra correspond to charge state 6- of MGA (Mn-) 10 µM in TMAA 100 mM 
with 0, 0.5 and 2 equivalents of MG (L).  
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3.6 Ion Mobility methods 
 

3.6.1 CCS determination and CCS distribution reconstruction 
 

An IM-MS spectrum can be represented as a three-dimensional plot with m/z on abscissa, 
arrival time (ms) on ordinate and intensity (counts) in z-coordinate, usually rendered with a 
heat map in false colours (Figure 23A). On the IM-MS spectra, one can readily read the typical 
information about of conventional MS spectra (m/z ratio of ions, isotopic pattern, 
stoichiometry) with the benefit of the ion mobility separation on the arrival time axis. 

In Figure 23A we have a 7- ion of a DNA aptamer with its NH4+ adduct distribution. The ion 
mobility and its corresponding averaged CCS are determined by recording ion’s arrival time 
distributions (ATDs) at many drift voltages. For direct CCS determination, IM-MS spectra are 
recorded using five drift voltages (390.5, 490.5, 590.5, 690.5 and 790.5 V). This method is 
termed “step-field”. The arrival time (𝑡𝑡𝑎𝑎) corresponds to the peak maximum determined by 
Gaussian fit of the ATD, in our case using the software PeakFit 4.11 (Systat Softwares, San 
Jose, CA-USA) using “GaussArea” with smoothing Savitzky–Golay 5% and no baseline or Origin 
2016. The linear regression of the arrival times 𝑡𝑡𝑎𝑎 as function of 1/𝛥𝛥𝑉𝑉, eq. (24), gives access 
to 𝑡𝑡0 and 𝐾𝐾0 (Figure 23B). Charge and reduced mass are known from the mass spectrum, and 
the CCS of the peak maximum can thus be calculated using eq. (24) (Figure 23C). 

When subjected to pre-IMS collisional activation (with a single drift voltage of 390.5 V), the 
M7- in Figure 23D loses part of its NH4+ adduct distribution. From the arrival time, we notice 
that the MS spectrum is the superimposition of two form of M7-: One more compact (MC7-), 
with its NH4+ adduct distribution, the second more extended (ME7-) and with fewer NH4+ 
adducts. 

In order to compare these two peaks in the same ATD, we used the empirical method of 
single-field reconstruction reported recently [99].  

 𝐶𝐶𝐶𝐶𝑆𝑆 = 𝑎𝑎
𝑧𝑧
√𝜇𝜇

𝑡𝑡𝑎𝑎     ,𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒      𝑎𝑎 =
𝐶𝐶𝐶𝐶𝑆𝑆 (𝑆𝑆𝑡𝑡𝑒𝑒𝑝𝑝 − 𝑓𝑓𝑓𝑓𝑒𝑒𝜀𝜀𝑑𝑑)

𝑡𝑡𝑎𝑎(390.5𝑉𝑉)
√𝜇𝜇
𝑧𝑧

 (39) 

Where 𝑡𝑡𝑎𝑎(390.5 𝑉𝑉) and CCS are determined from the previous IM-MS step-field acquisition 
(Figure 23A-C). The parameter 𝑎𝑎 takes into account instrumental contributions of CCSin the 
total drift time. This reconstruction is valid only for ions of the same charge state (𝑧𝑧) and have 
been done in SigmaPlot 12.5.0.38 (Systat Softwares, San Jose, CA-USA) using eq. (39) (script 
at p. 148). 

Compared to step-field, the second method is more imprecise but is convenient to extract 
CCS values for the visualization of collisional induced unfolding experiments (described in next 
paragraph). 
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Figure 23 – A. IM-MS spectrum of a M7- ion (𝐹𝐹𝑟𝑟𝑎𝑎𝑏𝑏 = 350 𝑉𝑉,∆𝑉𝑉 = 390.5 𝑉𝑉); B. Linear regression 
of 𝑡𝑡𝑎𝑎 of step-field segments; C. derived CCS distribution with its center value. D. A second, more 
extended, coformation is visible for M7- at fragmentor 530V. E. The two ATD peaks for MC

7- and 
ME

7- are reconstructed to CCS via eq. (39). 

  



 

47 

3.6.2 Collision-induced unfolding experiments 
 

3.6.2.1 Principles 
 

Instrumental parameters before IM drift tube affect the compactness of ions. Collision-
induced unfolding is a popular pre-IMS activation experiment largely described in the 
literature[59, 65-66, 110]. On our instrument, we need first a first step-field IM-MS acquisition, to 
determine the value of 𝑎𝑎 to be used in eq.(39). We typically performed this at low activation 
energies (i.e. fragmentor at 350 V). This acquisition defines the 𝐶𝐶𝐶𝐶𝑆𝑆𝐻𝐻𝑎𝑎𝐷𝐷𝑇𝑇  distribution of IM-
spectra at each activation point 

Two activation parameters are accessible on Agilent 6560: trap entrance grid delta (TEGD) 
and fragmentor (details at p.31). In this thesis the CIU are carried by varying the fragmentor 
voltage (if not otherwise specified) from 350 to 600 V. The fragmentor voltage is increased by 
steps of 10 V, and IM-MS spectra are recorded for 1 minute per voltage segment. The ATDs 
are extracted using Agilent IM-MS Browser v. B.07.01 (Build 7.01.147.0). Chosen the m/z 
range of a given ion, its ATD is normalized to 1, segment per segment, and converted in CCS. 
Segments converted this way can be represented as in the stacked plot in Figure 24A. This 
plot is convenient to fit (Gaussian area fit) the populations that contributes to the CCS 
distribution, and extract the peak areas to build the breakdown diagrams to define the 
transition point(s) between the populations (Figure 25). A common graphical visualization of 
CCS segments is the contour plot in Figure 24B (CIU plot), where axes of Figure 24A are 
transposed and the normalized intensity is rendered in false colours. 

 
Figure 24 – A. Extract of ATDs converted to CCS distributions (normalized to 1) and gaussian 
fitting of the two distributions (black and red areas) that contribute to the signal. B. CIU contour 
plot obtained by transposed axes from A. 

 



 

48 

The observation of the CIU plot in Figure 24B is useful to have a glimpse of how the ions 
respond to collisional activation. For example, the plots reveal if the extension pass through 
intermediate shapes (according to their CCS values), or to have an insight on the energetics 
of the transition (according to the voltage at which a shape change occurs). An unfolding that 
occurs at lower voltage suggests that weaker intramolecular interactions are involved in the 
compact structure. However, the colour coding of CIU plots (Figure 24B) makes the transitions 
look sharper than when the actual breakdown curves are constructed (Figure 25). We used 
the CIU breakdown plots to extract the transition voltages.  

 

3.6.2.2 How to construct CIU plots and breakdown diagrams in practice 
 

IM-MS segments are exported using Agilent IM-MS Browser and ATDs extracted with an in-
house developed R script. SigmaPlot 12.5 has been used to normalize the extracted ATDs 
(script at p. 148) and build the CIU plot in Figure 24B using a xyz-plot scheme for heat-maps 
(Figure 92 - p.149). Areas of each CCS distribution are obtained by fitting the ATD with 
Gaussian curves in Origin 2018 SR1 b9.5.1.195. 

 

CIU breakdown plots 

CIU breakdown plots are built with the MS relative intensities of compact and extended ions, 
per each fragmentor voltage. Normally only desolvated ions are used, except when specified 
(as discussed at p. 124 - Figure 79) 

Data points can be m/z integration of a defined arrival time (or CCS) interval (Figure 25A), as 
described just above. Alternatively, Gaussian area fitting of CCS distributions (Figure 24A) can 
be used as data points to built the breakdown curve in Figure 25B. In principle, given the same 
m/z range, the two ways to built the plot are superimposable.  
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Figure 25 - CIU breakdown plot obtained from A. m/z integration of defined attival time intervals 
(see Figure 26); B. fitted area of ATDs vs activation parameter. Mid-point of transition is 
determined by sigmoidal fit following eq. (40). 

However, the first method should be preferred because ATDs from noisy data may encounter 
some difficulties in fitting procedure. For instance, points below 450 V and above 560V in 
Figure 25B are forced to 0 and 1 (following the evolution of the curve). The characteristic mid-
point of transition is then obtained by sigmoidal fit of the points. 

A sigmoidal equation as in eq. (40) is appropriate to describe a phenomenon such the ion 
transition from one compact CCS distribution to a more extended one: 

 𝑦𝑦(𝑥𝑥) =
𝐴𝐴1 − 𝐴𝐴2

1 + 𝑒𝑒(𝑥𝑥−𝑥𝑥𝑐𝑐)/𝑑𝑑𝑥𝑥 + 𝐴𝐴2  (40) 

Where 𝐴𝐴1 and 𝐴𝐴2 are the initial and final state relative abundancy, respectively. And 𝑥𝑥𝑐𝑐 is the 
critical voltage value in the middle of the transition, for which 𝑦𝑦(𝑥𝑥𝑐𝑐) = 0.5. 

𝑥𝑥𝑐𝑐, from here called transition voltage, is obtained via non-linear regression analyses such as 
the least squares method on data points of CIU plots. Relative abundancies 𝐴𝐴1 and 𝐴𝐴2 are not 
fixed to take into account the stochastic error of data points (if not mentioned). 

 

CID/U diagrams  

MS Intensities of compacted and extended population has been extracted via Agilent IM-
Browser selecting two ta x m/z range for the two CCS distributions, alike the example in Figure 
26: For the two conformation a threshold value around 1100 Å2 as been considered to define 
the two tA x m/z areas to extract (p.214) . The MS spectra corresponding of each area, is 
exported as .csv data file (m/z vs int). The procedure is repeated for each segment of the CIU 
experiment. From each single MS export is created a two column (m/z vs Intensity) .txt file to 
extract the integral corresponding to M and ML has been extracted using a python in-house 
developed script (p.145). tA x m/z areas in Figure 26 and m/z integration ranges are reported 
in annexes at p.214. No background subtraction is applied for these m/z ranges. 
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Figure 26 – IM-MS at fragmentor 520 V for charge state 7- for a mixture of MN4 with quinine 
(DNA and quinine 10 µM) in NH4OAc 25 mM. Data selection for CIU breakdown plots and CID/U 
diagram. tA for extended ion are in orange, compact are in red. m/z-ranges for aptamer and 
complex, are reported in white with the number of NH4

+ adducts in brakets. 

Integral values obtained as described, are used as data points to build the CIU breakdown 
plots and CID/U diagrams in Origin 2018. CID/U diagrams are built with MS relative intensities 
of all ions (i.e.: compact M(0), M(1-5) and extended M(0), M(1-5) - Figure 27) per each 
fragmentor voltage. The integral values of each ion is normalized over their sum per each 
fragmentor voltage. 

These relative intensities are plotted as a stacked diagram on Origin 2018, normalized to 1 
per each fragmentor voltage. 

 
Figure 27 - Example of CID/U diagram. M7- intensities from Figure 26 are normalized to 1 per 
each fragmentor voltage. Subscript “C” states for compact ions, “E” for extended ions. Their 
relative aboundance is plotted as stacked diagram (see text).  
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3.7 Sample preparation 
 

3.7.1 Nucleic acids 
 

DNA and RNA sequences were obtained from Integrated DNA Technologies (Leuven - 
Belgium) in standard desalting purified lyophilized form and dissolved in RNase-Free water 
from Ambion™ (ThermoFischer Scientific, Illkirch, France) at 60°C for 10 min. The 
concentrations were determined using the Beer-Lambert law by measuring the absorbance 
at 260 nm and adjusted between 0.4 and 1.0 mM concentration. DNA and RNA extinction 
coefficients provided by Integrated DNA Technologies were obtained applying the Cavaluzzi-
Borer correction [111]. Samples were desalted on Amicon Ultra-0.5 mL centrifugal filters, 3 kDa 
cut-off, in successive steps with trimethylammonium acetate 500 mM (x2, 13 krpm, 30 min), 
ammonium acetate 500 mM (x2, 13 krpm, 30 min), and water (x5, 13 krpm, 30 min). Desalting 
allows to remove traces of contaminants (e.g.: alkali, deprotection reagents) that may 
interfere with sample folding or simply its analysis. After desalting, 100 µM DNA solutions 
were prepared in water for further sample preparation by dilution in desired buffer. 

The d(TG4T)4 and dT6 (10 and 5 µM) solution for daily helium pressure setting was prepared 
as follows: d(TG4T) 800 µM single strand was incubated overnight at 4°C in NH4OAc 150 mM 
to allow the formation of d(TG4T)4 G-quadruplex 200 µM. Final solution was obtained by 
dilution and adding appropriate aliquot of dT6 1mM. For quantitative MS, samples were 
prepared from solutions of 100µM DNA or RNA with 25 µM dT6 used as internal standard, to 
ensure a constant ratio of dT6 with the analytes for the relative (to dT6) response factor 
determination (p.39). 

 

Tetracycline RNA Aptamer preparation  

TCA was provided from Dr. Vogel Marc (Pr. Suess Lab – Darmstadt, Germany). We report here 
their procedure to RNA transcription. 

RNA was transcribed in vitro using a HindIII linearized plasmid as template. The plasmid codes 
for the T7 promoter followed by the aptamer sequence and a self-cleaving hepatitis delta 
virus (HDV) ribozyme, to ensure homogeneous 30-ends. In vitro transcription was performed 
at 37°C overnight in a total volume of 10 ml 20 mM magnesium acetate (0.2M Tris-HCl pH 8.0, 
20 mM DTT, 2 mM spermidine, 0.2 mg/ml linearized plasmid, 4 mM of each NTP, 7.5 mg/ml 
of T7 polymerase (made in-house)). After transcription, precipitated pyrophosphate was 
pelleted by centrifugation and 10% (v/v) EDTA (0.5 mM, pH 8.0) was added to the 
supernatant. After ethanol precipitation, we performed a denaturing polyacrylamide gel 
electrophoresis (8% PAA, 8M urea). The RNAwas detected via ultraviolet (UV) shadowing, cut 
out, and eluted from the gel in 0.3 M sodium acetate pH 6.5 at 4°C overnight. To remove the 
remaining gel slices, the supernatant was filtered using a 0.45 mm filter and again the RNA 
was precipitated using ethanol. Finally, the RNA was redissolved in double-distilled water and 
stored at 20°C  
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DNA Sequences used: 

Name Sequence (5’ –> 3’) MW (Da) 
ε(260nm) 
[cm-1 M-1] 

T6 TTT TTT 1763.22 48406 

TG4T TGG GGT 1863.3 57800 

MN4 GGC GAC AAG GAA AAT CCT TCA ACG AAG TGG GTC GCC 11128.3 354516 

MN19 GAC AAG GAA AAT CCT TCA ACG AAG TGG GTC 9273.1 303242 

MN19-A AAA GAC AAG GAA AAT CCT TCA ACG AAG TGG GTC AAA 11152.3 377106 

OR8 ACA AGG AAA ATC CTT CAA CGA AGT GGG T 8654.7 285742 

OR8-A AAA AAC AAG GAA AAT CCT TCA ACG AAG TGG GTA AAA 11160.4 382496 

OR7 CAA GGA AAA TCC TTC AAC GAA GTG GG 8037.3 263839 

OR7-A AAA AAC AAG GAA AAT CCT TCA ACG AAG TGG GAA AAA 11169.4 384911 

 

RNA Sequences used: 

Name Sequence (5’ –> 3’) MW (Da) 
ε(260nm) 
[cm-1 M-1] 

MGA 
GGA UCC CGA CUG GCG AGA GCC AGG UAA CGA AUG 
GAU CC 

12300.5 377500 

1FMN GGC GUG UAG GAU AUG CUU CGG CAG AAG GAC ACG CC 11337.9 347200 

1NEM GGA CUG GGC GAG AAG UUU AGU CC 7442.5 232700 

1TOB GGC ACG AGG UUU AGC UAC ACU CGU GCC 11337.9 347200 

TCA 
GGG CUA AAA CAU ACC AGA UUU CGA UCU GGA GAG 
GUG AAG AAU ACG ACC ACC UAG CUC A 

18690.4 659600 
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3.7.2 Ligands 
 

From preliminary ITC studies using the published molar extinction coefficient, [112] malachite 
green concentrations appeared overestimated (fitted stoichiometry N > 1 – Thermograms 
shifted toward the right), thus we re-determined ε(617). The purity grade of malachite green 
was verified by quantitative NMR (qNMR), using the relative quantification method on a 
Bruker 700 MHz NMR. In the relative quantification method, one can define the molar ratio 
of analyte X vs the internal standard (Std) as: 

 
𝑎𝑎𝑋𝑋
𝑎𝑎𝑆𝑆𝑝𝑝𝑑𝑑

=
𝐼𝐼𝑋𝑋
𝐼𝐼𝑆𝑆𝑝𝑝𝑑𝑑

𝑁𝑁𝑆𝑆𝑝𝑝𝑑𝑑
𝑁𝑁𝑋𝑋

 (41) 

Where 𝑎𝑎 are the number of moles, 𝐼𝐼 the peak integral and 𝑁𝑁 the number of nuclei of the 
integrated peak. This way, knowing the number of moles of the internal standard added into 
the tube, is possible to deduce the right molar ratio with the analyte using the 1H peaks [113]. 

 

Sample preparation qNMR 

 

A 2,2-Dimethyl-2-silapentane-5-sulfonate (100% - Sigma 178837) (DSS) solution of known 
concentration has been used as internal standard, starting from the exact weight of the DSS 
sodium salt. 1.046 mg of DSS-d6 (Prd n° 178837 – Batch n° BCBM2365V) were weighted using 
a Sartorius ME5 microbalance (Sartorius France S.A.S. - Aubagne), and dissolved into 1 mL of 
Nuclease-free water. From this stock solution (4791 µM) we obtained, by dilution, a 1500 µM 
“standard” solution used into relative quantification. 

A Malachite green solution at exactly about 1.5 mM has been prepared based on the nominal 
purity (97.3%) of the batch (Prd n° 38800 – Batch n° 1405586): 0.751 mg of MG were weighted 
and dissolved into 1.3 mL of nuclease-free water. An aliquot of this stock (1540 µM) was then 
diluted to 1000 µM in nuclease-free water + 10% D2O. 

Finally 5-mm NMR tube was prepared with 400 µL of ligand solution in D2O 10% + 50 µL of 
DSS (Std) 1500 µM, and Parafilm M (Bremis Company, Inc. – WI (USA)) sealed until 1H-NMR 
spectra acquisition (Figure 28). From spectrum in Figure 28 we obtained a number of moles 
of 342 ± 10 nmol for malachite green in 400 µL. The stock solution was therefore deduced to 
be 1317 µM of malachite. Based on the Beer-Lambert law. 

 𝐴𝐴(𝜆𝜆) = 𝜀𝜀(𝜆𝜆)𝜀𝜀[𝐶𝐶] (42) 

A series of solution from 8 to 1 µM has been prepared by dilution in water from the malachite 
green stock (1317 µM), determined by qNMR. 𝜀𝜀(617𝑎𝑎𝑚𝑚)= 81675 ± 543 (M cm)-1 has been 
determined by linear regression of A(617 nm) vs Ligand concentration Figure 29.  
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Figure 28 - Malachite green chloride resonances (and assignement) used for relative 
quantification to DSS methyl singlet. 400 µL in H2O/D2O (9:1) in 1mM 50 µL DSS – 1.5 mM at 298 
K. 

 

 
Figure 29 - Linear regression of extinction coefficient at 617nm for ligand malachite green 
chloride. 
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Ligands used 

Ligands has been bought by Sigma Aldrich (Saint-Quentin Fallavier, France) and Janssen 
(Beerse, Belgium):  

Name Ref - ID MW (Da) ε(λmax) [cm-1 M-1]* 

Malachite green chloride (analytical 
standard) 

SA - 38800 364.91 
ε(617 nm)= 81675 ± 

543 (this work) 

Riboflavin 5′-monophosphate 
sodium salt hydrate (synthetic) 

SA - F2253 478.33 ε(347 nm)= 12500[114]  

Quinine anhydrous 
Janssen Chimica – 

16.370.74 
324.42 ε(349 nm)=5700[115] 

Neomycin trisulfate salt SA – 1458009 (USP std) 908.88 n.d. 

Tobramycin standard SA - T1500000 (EP std) 467.51 n.d. 

Tetracycline hydrochloride SA - T3383 480.90 ε(355 nm)=13320[116] 

Ammonium acetate (BioUltra, ~5 M 
in H2O) 

SA - 09691 77.08 n.d. 

trymethylammonium acetate 
(BioUltra, ~1 M in H2O) 

SA - 92286 119.16 n.d. 

Magnesium chloride (BioUltra, ~1 
M in H2O) 

SA - 63069 95.21 n.d. 

 

 

  



 

 

  



 

 

Part I: Quantitative MS 
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4. Quantitative comparison of Native MS and ITC  
 

4.1 Why comparing native MS with ITC? 
 

We want to establish how mass spectrometry can complete the picture in aptamer 
characterization, first to resolve unambiguous stoichiometry assignment of ligands and co-
factors (i.e.: Mg2+); secondly, to quantify binding (KD). We also want to establish the lower and 
higher KD limits attainable. 

Phosphate buffers with alkali and alkaline-earth counterions (i.e. K+, Mg2+) are commonly 
employed in nucleic acid and aptamer studies, to mimic the ionic strength of physiological 
solutions (up to 150 mM)[117]. These conditions are compatible with Isothermal titration 
calorimetry (ITC), NMR and other liquid phase techniques, but are unfortunately detrimental 
to ESI-MS analysis, because of abundant clustering on analyte ions and ion suppression due 
to salt and buffer cluster ions. 

The first ESI-MS studies on aptamers where run in hydroalcoholic solutions containing 
ammonium acetate (50 mM aqueous NH4OAc + 10 to 50 % iPr-OH) and binding was 
successfully detected [118]. Recently Gulbakan et al.[119] compared MS and ITC data of some 
DNA aptamers in NH4OAc (up to 300 mM), however not in presence of Mg2+.  

NH4+ has an ionic radius similar to that of other common alkali cations [120], and thus stabilizes 
nucleic acid structure. On the other hand, NH4+ may compete with additives such as K+ or 
Mg2+ (e.g. detection of lower Mg2+ stoichiometries). In native MS, manganese (Mn2+) is often 
used as a surrogate for Mg2+ [98, 118a] because its higher mass gives well-spaced adducts, and 
prevents overlapping with NH4+ or Na+ adducts. Yet, although Mn2+ has a very similar ionic 
radius to Mg2+, it belong to the d-group and its different chemistry could make it a 
questionable surrogate of alkaline-earth metals[121]. Our lab showed that 
trimethylammonium acetate (TMAA) is adapted to study specific interaction of alkali cations 
with DNA, in this case K+ in G-quadruplex structure [122]. We think that TMAA could be a good 
candidate electrolyte to study Mg2+‒aptamers interaction for three reasons: i. TMA+ 
bulkiness[123] prevents it from competing for specific Mg2+ sites[122]; ii. TMA+ adduct 
distribution is spaced enough to avoid superimposition with additives such as Mg2+; iii. TMA+ 
can be easily removed through collisional activation (e.g. MS2 cell) leaving only metal adducts 
on the adduct distribution of the analyte ion. However some precautions are needed, because 
TMAA buffer can be detrimental for kissing-loop interactions [7]. 

In this chapter, we show that native MS buffers at biologically relevant ionic strength (i.e. 100 
mM) are suitable to study RNA aptamers, including in presence of Mg2+. Native MS and ITC 
are used to determine dissociation constants (KD) in comparable experimental conditions 
([RNA], [Ligand], buffers, [Mg2+], …), and ITC is used to validate the constants determined by 
MS.  
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4.2 Malachite Green aptamer: a model RNA aptamer to compare ITC 
and MS 

 

The malachite green aptamer (MGA) is a 38-nt RNA with riboswitch activity that binds the 
malachite green (MG) dye[35c, 85]. NMR and X-ray structures are available for its complexes, 
respectively with MG[85] (Figure 30) and its analogue tetramethylrosamine (TMR) [32].  

 
Figure 30 – A. Secondary structure topology [80a] and NMR structure (1Q8N.pdb) of malachite 
green aptamer complexed with its ligand malachite green chloride (MG)[85]; The binding pocket 
is constituted by a base quartet (orange) and a tilted WC base pair (light blue). Readapted from; 
B. Malachite green chloride structure; Color code: A-Blue; G-Green; U-Yellow; C-Red. 

Both MG and TMR bind by intercalation, and the complex is stabilized by π-stacking with 
nucleobases and electrostatic interactions [32, 85]. Compared to MG, the planarity of TMR leads 
to a stronger affinity with the aptamer[32]. A KD in the same range as the RNA concentration is 
preferable, in order to have informative binding isotherms [124]. MG binding has been studied 
with ITC in four different buffers and Mg2+ was not essential for binding[80b, 85]. MG showed 
KDs of 0.1 - 0.8 µM in these buffers. [80b] 

MGA-MG binding is thus a good candidate complex for our aims: KD in “µM” range is a suitable 
concentration range for both ITC and MS and the absence of Mg2+ dependence simplifies the 
binding and experiment design in MS. 
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4.2.1 MS buffers TMAA and NH4OAc do not alter malachite green binding 
mode 

 

With no participation of Mg2+, malachite green aptamer binding reaction follow the simplest 
scheme: 

𝑀𝑀 +  𝑐𝑐 ⇄  𝑀𝑀𝑐𝑐 

In 150 mM NaCl the KD is 0.28 µM, ΔH° = -25.93 kcal/mol and –TΔS° = 16.95 kcal/mol (T = 298 
K) [80b], the typical thermodynamic profile of intercalating ligands[50b]. Our ITC runs were 
acquired in TMAA and NH4OAc 100 mM at 25°C (Figure 31), in four or five replica (p.177) with 
the methods described at paragraph 3.3. The nature of the electrolyte does not alter the 
thermodynamic profile of binding, which remains enthalpically driven (ΔH°<0). The apparent 
KD between NH4OAc and TMAA is comparable within the uncertainty range (Table 7). This 
suggests that MGA binding mode to MG is unchanged from NaCl to TMAA or NH4OAc, and 
that the intercalation binding mode is maintained. 

Table 7 – ITC parameters obtained form OneBindingSite fitting model. Experiments were done 
in triplicate and uncertainties are the standard deviations across the 5 replicas in NH4OAc and 
4 replicas in TMAA (p.177). 

Electrolyte KD 
(µM) N ΔHo 

(kcal/mol) 
-(298)ΔSo 
(kcal/mol) 

ΔGo 
(kcal/mol) 

NH4OAc 100 
mM (A) 0.85 ± 0.48 0.99 ± 0.07 -14.5 ± 0.7 6.2 ± 2.4 -8.37 ± 0.32 

TMAA 100 mM 
(B) 1.51 ± 0.58 1.04 ± 0.05 -14.6 ± 0.7 6.6 ± 2.8 -7.99 ± 0.25 

 

 
Figure 31 - ITC of A. malachite green aptamer 15µM vs 142 µM MG in NH4OAc 100 mM and B. 
139 µM MG TMAA 100 mM  at 25 °C. The single replicas are at p.177.  
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4.2.2 Determination of MGA-MG binding constant with native MS titration  
 

To verify the stoichiometry, we tested two mixtures of 10 µM MGA with 5 µM of MG in 100 
mM TMAA and NH4OAc (Figure 32). MGA is ionized to the 7-, 6- and 5- charge states in both 
buffers, and ligand binding is detected for all charge states. In TMAA, slightly lower charge 
states are favoured, as often for secondary and tertiary amines buffers [125].  

The aptamer is approximately half-saturated in TMAA: MGA and MGA+Lig have nearly the 
same intensity. However in NH4OAc the intensities ratios differs visibly across the charge 
states (i.e., compare 7- and 5-). If we were assuming that intensities reflect the concentrations 
in solution (ratio of relative response factors is equal to 1, p.39), we can define the equilibrium 
dissociation constant of the following binding reaction: 

 𝑀𝑀 +  𝑐𝑐 ⇄  𝑀𝑀𝑐𝑐          𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒       𝐾𝐾𝐷𝐷 =
[𝑀𝑀][𝑐𝑐]
[𝑀𝑀𝑐𝑐]

=
𝐼𝐼𝑀𝑀
𝐼𝐼𝑀𝑀𝐿𝐿

[𝑐𝑐] (43) 

And calculate the actual concentrations: 

 [𝑀𝑀]𝑐𝑐𝑎𝑎𝑒𝑒𝑐𝑐 = [𝑀𝑀]𝑝𝑝𝑜𝑜𝑝𝑝
𝐼𝐼𝑀𝑀

𝐼𝐼𝑀𝑀 + 𝐼𝐼𝑀𝑀𝐿𝐿
  𝑎𝑎𝑎𝑎𝑑𝑑 [𝑀𝑀𝑐𝑐]𝑐𝑐𝑎𝑎𝑒𝑒𝑐𝑐 = [𝑀𝑀]𝑝𝑝𝑜𝑜𝑝𝑝

𝐼𝐼𝑀𝑀𝐿𝐿
𝐼𝐼𝑀𝑀 + 𝐼𝐼𝑀𝑀𝐿𝐿

 (44) 

 [𝑐𝑐]𝑐𝑐𝑝𝑝𝑎𝑎𝑎𝑎 =  [𝑐𝑐]𝑝𝑝𝑜𝑜𝑝𝑝 − [𝑀𝑀𝑐𝑐]𝑐𝑐𝑎𝑎𝑒𝑒𝑐𝑐 (45) 

From the corresponding intensities of M and ML, we can calculate the KD per each charge 
state in both buffers, listed in Table 8. 
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Figure 32 – MS spectra of MGA 10 µM in presence of 5 µM of MG chloride in A. TMAA 100 mM 
and B. NH4OAc 100 mM. Notice that dT6

- become part of M7- background in spectrum B. The 
symbol “ ” highlight an impurity coming from the stock solution of MGA aptamer. 

 

Table 8 – Average binding partners concentrations from MS spectra of 10 µM MGA and 5 µM 
MG (Figure 32), calculated using eq. (35) over three replica. The reported uncertainty is the 
standar deviation over three replicas; .n.d. are KD not calculable because of [𝑐𝑐]𝑐𝑐𝑝𝑝𝑎𝑎𝑎𝑎<0. 

 z [𝑀𝑀]𝑐𝑐𝑎𝑎𝑒𝑒𝑐𝑐 (µM) [𝑀𝑀𝑐𝑐]𝑐𝑐𝑎𝑎𝑒𝑒𝑐𝑐 (µM) [𝑐𝑐]𝑐𝑐𝑝𝑝𝑎𝑎𝑎𝑎 (µM) 𝐾𝐾𝐷𝐷 (µM) 

TMAA 
100 mM 

7- 5.84 ± 0.96 4.16 ± 0.96 0.84 ± 0.96 1.96 ± 2.47 
6- 5.01 ± 0.21 4.99 ± 0.21 0.01 ± 0.21 0.03 ± 0.23 
5- 4.69 ± 0.55 5.31 ± 0.55 -0.31 ± 0.55 n.d. 

      
 z [𝑀𝑀]𝑐𝑐𝑎𝑎𝑒𝑒𝑐𝑐 (µM) [𝑀𝑀𝑐𝑐]𝑐𝑐𝑎𝑎𝑒𝑒𝑐𝑐 (µM) [𝑐𝑐]𝑐𝑐𝑝𝑝𝑎𝑎𝑎𝑎 (µM) 𝐾𝐾𝐷𝐷 (µM) 

NH4OAc 
100 mM 

7- 4.18 ± 0.04 5.82 ± 0.04 -0.82 ± 0.04 n.d. 
6- 4.96 ± 0.07 5.04 ± 0.07 -0.04 ± 0.07 n.d. 
5- 5.25 ± 0.75 4.75 ± 0.75 0.25 ± 0.75 0.57 ± 1.17 
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The problem is that the complex ML has a higher intensity compared to M, for 7- and 6- charge 
states in NH4OAc and 5- in TMAA. 

After checking across three replica, the [ML] over estimation is recurrent only for ligand 
concentrations below 5 µM. This could suggest either that the assumption of equal response 
factors for M and ML is not licit, but could also be related to non-random error like errors in 
the concentration ratios of ligand to aptamer (for low volumes of added ligand). Thus, a 
determination of response factors could be necessary, to correctly quantify the binding 
constant for this complex. 

 

4.2.3 Native MS titration without and with response factor correction 
4.2.3.1 Generalities 
 

In order to determine the dissociation constant of MGA, we used the MS titration method 
(3.5.1 – p.40) up to 20 µM MG while MGA and dT6 are kept at 10 µM and 2.5 µM, in 100 mM 
NH4OAc or 100 mM TMAA (see annexes p.152). MS Thermo Exactive has been used for sample 
acquisition. The ion current from the last 5 min of 8-min acquisition was summed and 
exported using Thermo software Xcalibur. Peak areas were obtained by summing the ion 
counts over the appropriate m/z range (p.152). We compared two data treatment strategies: 
integrating only the desolvated ions (no adducts and less noise), or summing up to 3 adducts 
(higher integrals, more noise). In each case, the background was defined with the same m/z 
range of the observed peak as at p. 43. Each charge state was considered separately for 
relative response factors determination. KD was determined with both methods described at 
p. 40, first assuming equal relative response factors, secondly with M and ML concentrations 
corrected for relative response factors. Finally, we evaluate the effect of this correction on 
the dissociation constants. 

MS spectra of titration replica are reported in Figure 100 and Figure 101 at pp.166-167. 

4.2.3.2 Native MS titration without response factor correction 
 

Charge state 7- peaks have relevant superimposition with other background peaks, notably 
in TMAA 100 mM (Figure 32A and Figure 33A). This introduce a large noise on peaks signal, 
making charge state 7- a bad candidate for quantification. Charge state 5- is also a non-
optimal charge state for quantification if one decide to consider the electrolyte adducts for 
integration. As we can see in Figure 32A, the TMA+ adducts distribution provide a significant 
background distribution. In a case such this, it is preferable to use only the desolvated peak 
for quantification. Charge state 6- is a good candidate for quantification because the strong 
peak intensity provides good signal-to-noise ratio for desolvated ions in both electrolytes. On 
top of this, charge state 6- has also the benefit of sharp peaks and wide TMA+ adducts 
distribution, when sprayed from TMAA (Figure 32A).  
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Figure 33 – Detail of charge state 7- for MGA 10 µM with 5 µM MG in A. TMAA and B.  NH4OAc 
100 mM. Only the desolvate peaks could be considere for integration, because of intensity and 
superimposition issues. Spectrum in TMAA is zoomed (x8) compared to NH4OAc .“ ” peaks are 
RNA degradation traces. 

 
Figure 34 - Detail of background contribution for charge state 5- for MGA 10 µM with 5 µM MG 
in A. TMAA and B. NH4OAc 100 mM. 
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4.2.3.3 On the evaluation of uncertainty 
 

We introduced the two methods to obtain the dissociation constant (KD) at p. 43. We compare 
averaged KD from replicated experiments (Method 1 - Table 9), with KD determined from 
averaged MGA and MGA+L concentrations (Method 2 - Table 10). The two ways to treat the 
data give almost similar results, meaning that both methods are valid. We suggest to follow 
the first method (independent data treatment on each replica) to better evaluate the quality 
of data on single replica level. Major advantages are the easier evaluation of errors and 
outliers. We highlight that standard deviations (outputs of DynaFit software) from method 2 
in Table 10 tend to be lower, as expected (p.42). 

Table 9 – Averaged KD over 3 replicas (Method 1 - Table 27 and Table 28 - p.155). Single charge 
state KD is calculated from fitting of binding isotherm assuming equal relative response factors 
for MGA and MGA+L. Outliner values are higlighted in italic; a. KD uncertainty is the standard 
deviation over 3 replicas; b. “add” states for buffer adducts in integrated m/z-ranges.  

z KD  (µM) in TMAA 100 mM a 
0 add b 3 add b 

7- 0.52 ± 0.09 5.38 ± 1.34 
6- 0.71 ± 0.03 0.62 ± 0.03 
5- 0.78 ± 0.07 0.36 ± 0.05 
     

z KD (µM) in NH4OAc 100 mM a 
0 add b 3 add b 

7- 0.65 ± 0.24 0.77 ± 0.30 
6- 1.30 ± 0.43 1.42 ± 0.43 
5- 1.78 ± 0.56 1.48 ± 0.29 

 

Table 10 - KD calculated from averaged concentrations (Method 2 - Table 31 p. 165) of MGA and 
MGA+L over 3 replicas. Fitting of binding isotherm assuming equal relative response factors. 
Outlier values are higlighted in italic; a. KD uncertainty is calculated from DynaFit statistic with 
a Monte-Carlo simulation [107-108] ; b. “add” states for buffer adducts in integrated m/z-ranges.  

z KD (µM) in TMAA 100 mM a 
0 add b 3 add b 

7- 0.52 ±0.05 5.84 ±0.64 
6- 0.73 ±0.05 0.65 ±0.08 
5- 0.79 ±0.06 0.35 ±0.14 
     

z KD (µM) in NH4OAc 100 mM a 
0 add b 3 add b 

7- 0.58 ±0.13 0.84 ±0.15 
6- 1.22 ±0.16 1.39 ±0.20 
5- 1.72 ±0.18 1.45 ±0.20 

 

Besides important peak superimposition (i.e.: ch st 7-), the choice of m/z-range have a milder 
impact on the determination of KD in both electrolytes. In TMAA we have a clear example of 
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how the choice of m/z-range can influence binding isotherms (Figure 35). While charge state 
6- is not significantly affected by the change of the mass range, we observe that the same 
titrations give a worse curve if the first three TMA+ adducts are included in peak integration 
for charge state 7-. This is a consequence of superimposed peaks close to MGA7- and MGA+L7-

(Figure 33A). A similar effect is visible for first points of charge state 5-, but for strong 
background contribution of TMA+ adducts (Figure 34A) ML5- signal. However, desolvated ion 
works best across the three charge states with very similar curves and KDs. In NH4OAc 100 
mM the two data processing strategies provides equivalent curves: we notice that the choice 
of m/z-range have a milder impact compared to TMAA.  

Conversely, the choice of supporting electrolyte can play a role in the quality of data for which 
we notice (assuming relative resp fact equal to 1) a two-fold factor between the two, TMAA 
and NH4OAc. For example, we attribute charge state 5- isotherms deviations in TMAA (Figure 
35) to the background contribution in thus the lower signal-to-noise ratio, compared to 7- 
and 6- (Figure 34A). 

 
Figure 35 - Binding isotherm from averaged concentrations averaged over three replicas of MGA 
and MGA+L (Method 2) in NH4OAc and TMAA 100 mM, assuming equal relative respose factors 
for MGA and MGA+L. Desolvated ion or three buffer adduct are compared as peak integration 
strategies. (Figure 94 – pp.157-162)  

 

The quality of the signal should be always take into account, like before data treatment such 
as the correction for relative response factor. As we observe in Figure 35, the correction 
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method is biased by the low signal quality of charge state 7- (considering 3 adducts) in TMAA 
and charge state 5- in NH4OAc. In other words, the relative response factor correction method 
introduces a large error on the final concentrations. 

 

4.2.3.4 Native MS titration with response factor correction 
 

Isotherms are not changing much when taking into account the relative response factor 
correction. Relative response factors (to the Int. Std. dT6) were determined as described at p. 
39. KD for the three charge states are listed in Table 11 and corresponding (average) relative 
response factors are listed in Table 12. (Rf TMAA replicas in Table 25 and Rf NH4OAC replicas 
in Table 26). 

For quantification purposes we suggest to use the charge state(s) with the highest signal-to-
noise ratio, in this case 6-. This will minimize the uncertainty of the measures and, as 
consequence, on the final calculated values 

 

Table 11 – Averaged KD over 3 replicas (Method 1). Single charge state KD (Table 27 and Table 
28– p.155) is calculated from fitting of binding isotherm with relative response factors 
correction for MGA and MGA+L; a. KD uncertainty is the standard deviation (and percent error) 
over 3 replicas; b. “add” states for buffer adducts in integrated m/z-ranges. 

z KD (µM) in TMAA 100 mM a 
0 add b 3 add b 

7- 1.05 ± 0.24 (23%) 10.12 ± 2.99 (30%) 
6- 1.09 ± 0.16 (15%) 1.10 ± 0.11 (10%) 
5- 1.16 ± 0.21 (18%) 0.80 ± 0.14 (17%) 
     

z KD (µM) in NH4OAc 100 mM a 
0 add b 3 add b 

7- 1.72 ± 0.79 (46%) 1.82 ± 1.08 (59%) 
6- 1.96 ± 0.40 (20%) 2.10 ± 0.41 (20%) 
5- 4.63 ± 1.13 (24%) 4.04 ± 1.09 (27%) 
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Table 12 –Relative response factors used for fitting of binding isotherm; a. uncertainty is the 
standard deviation across the replicas.  

TMAA 100 mM 
 Desolvated 3 add 
z X rSTD/rX σ a rML/rM σ a X rSTD/rX σ a rML/rM σ a 

7- 
M 59.62 ± 21.85 

1.45 ± 0.14 
M 20.61 ± 6.72 

1.55 ± 0.08 
ML 41.19 ± 13.81 ML 13.25 ± 3.73 

6- 
M 7.12 ± 0.25 

1.25 ± 0.09 
M 3.01 ± 0.24 

1.39 ± 0.08 
ML 5.75 ± 0.61 ML 2.29 ± 0.28 

5- 
M 15.60 ± 1.01 

1.22 ± 0.07 
M 4.99 ± 0.61 

1.42 ± 0.08 
ML 12.81 ± 1.61 ML 3.52 ± 0.51 

NH4OAc 100 mM 
 Desolvated 3 add 
z X rSTD/rX σ a rML/rM σ a X rSTD/rX σ a rML/rM σ a 

7- 
M 2.87 ±0.71 1.48 ± 0.28 

M 2.36 ±1.60 1.50 ± 0.29 
ML 1.94 ±0.28 ML 1.58 ±0.86 

6- 
M 0.80 ±0.21 1.31 ± 0.21 

M 0.45 ±0.25 1.26 ± 0.25 
ML 0.61 ±0.05 ML 0.36 ±0.20 

5- 
M 6.99 ±1.54 1.40 ± 0.53 

M 2.78 ±1.41 1.72 ± 0.43 
ML 4.99 ±2.51 ML 1.62 ±0.71 
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The dissociation constants determined from MS titrations vary between 0.3 and 2 µM, 
correcting either for relative response factor or not (respectively Table 9 and Table 11). 
Variations in absolute values of KDs may appear moderate. These variations are very small for 
MGA6- (Table 13) and are distributed within the same order of magnitude for charge states 7- 
and 5- (Table 29 and Table 30 – p.163).  

 

4.2.3.5 Comparison with ITC 
 

To understand if the MGA dissociation constant obtained from ITC and MS titrations are 
comparable, we can compare the obtained KD values considering their expanded uncertainty 
(with 95% confidence). Interestingly we found that KDs (and derived ΔG° - Table 13, Table 14) 
superimposes within their confidence interval of expanded uncertainty (Figure 36). 

 

 
Figure 36 – Comparison between KD determined via ITC and MS, on MGA6-. The expanded 
uncertainties (for a 95% confidence interval) are reported as error bars. MS titration were 
acquired in triplicate (coverage factor = 4.303); ITC (TMAA) in quadruplicate (coverage factor = 
3.182) and ITC (NH4OAc) in pentaplicate (coverage factor = 2.776). 
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Table 13 - logKD and ∆G° calculated from MS titrations of MGA6- considering relative response 
factors correction and assuming equal response factors. “σ” is the standard deviation and “Exp. 
σ” is the expanded uncertainty over three replicas (coverage factor = 4.303 for a 95% confidence 
interval) (Table 29 and Table 30 – p.163) . 

MGA6- 
TMAA 100 mM 

Corrected Not corrected (r/r=1) 

 σ Exp. σ  σ Exp. σ 

Desolvated 
KD (µM) 1.09 ± 0.16 ± 0.70 0.71 ± 0.03 ± 0.15 

LogKD -5.97 ± 0.07 ± 0.29 -6.15 ± 0.02 ± 0.09 

ΔG° (kcal/mol) -8.18 ± 0.09 ± 0.40 -8.43 ± 0.03 ± 0.12 

3 adducts 
KD (µM) 1.10 ± 0.11 ± 0.48 0.62 ± 0.03 ± 0.13 
LogKD -5.96 ± 0.04 ± 0.19 -6.21 ± 0.02 ± 0.09 
ΔG° (kcal/mol) -8.17 ± 0.06 ± 0.26 -8.50 ± 0.03 ± 0.13 

   

MGA6- 
NH4OAc 100 mM 

Corrected Not corrected (r/r=1) 

 σ Exp. σ  σ Exp. σ 

Desolvated 
KD (µM) 1.96 ± 0.40 ± 1.72 1.30 ± 0.43 ± 1.84 

LogKD -5.72 ± 0.08 ± 0.36 -5.91 ± 0.17 ± 0.72 

ΔG° (kcal/mol) -7.83 ± 0.12 ± 0.50 -8.10 ± 0.23 ± 0.99 

3 adducts 
KD (µM) 2.10 ± 0.41 ± 1.77 1.42 ± 0.43 ± 1.86 
LogKD -5.69 ± 0.08 ± 0.35 -5.87 ± 0.15 ± 0.66 
ΔG° (kcal/mol) -7.79 ± 0.11 ± 0.48 -8.05 ± 0.21 ± 0.90 

 

Table 14 – KD and ΔG° obtained from ITC on MGA with OneBindingSite fitting model. “σ” is the 
standard deviation and “Exp. σ” is the expanded uncertainty. Experiments were done in 4 
replicas in TMAA (coverage factor = 3.182 for a 95% confidence interval) and 5 replicas in 
NH4OAc (coverage factor = 2.776 for a 95% confidence interval) (p.177). 

Electrolyte KD (µM) σ Exp. σ ΔGo (kcal/mol) σ Exp. σ 

TMAA 100 mM 1.51 ± 0.58 ± 1.84 -7.99 ± 0.25 ± 0.80 

NH4OAc 100 mM 0.85 ± 0.48 ± 1.34 -8.37 ± 0.32 ± 0.88 
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Given these pros and cons of using each charge state, for MGA we consider the desolvated 
peak as best integration strategy. This way we can obtain the highest signal from each charge 
state. We decided to keep charge state 6- for quantification, because it has the best signal-
to-noise ratio and do not present significant integration issue (i.e.: superimposed peaks, 
difficult background extimation).  

The small difference of KD between the two electrolytes suggest that both NH4OAc and TMAA 
do not interfere with ligand binding between MG and MGA as showed in ITC (Table 7). From 
Table 12 we observe that the ratio 𝑟𝑟𝑀𝑀𝐿𝐿 𝑟𝑟𝑀𝑀⁄  remains between 1.2 and 1.7, which means that 
the response of MGA+L is not dramatically higher compared to MGA and is almost unchanged 
between the two electrolytes. 

Besides, the discrepancy between KDs with and without relative response corrected 
concentrations is limited. Thus, for MGA the assumption of equal relative response factors 
would not severely bias the quantification of binding partners. Interestingly, this result is in 
line with previous studies of our lab where a single ligand intercalating in pre-folded duplex, 
showed a low or negligible variation of complex relative response factors at low 
stoichiometries [103, 126]. However, it is the first time that a thourough uncertainty assessment 
and comparison with an independent method has been made. 

Comparing results that we obtained from native MS titrations and ITC (Table 13 and Table 14) 
we have a good agreement, besides we are comparing KDs obtained from two different 
techniques and in two different electrolytes. KDs superimpose within the expanded 
uncertainty range. Interestingly, we observe the greater uncertainty on NH4OAc titrations 
from the KDs visual comparison with TMAA titrations (Figure 36). 

Here the malachite green RNA aptamer is a simple model where only 1:1 binding 
stoichiometry is allowed and no particular additive, like Mg2+, is needed. The relative response 
factor correction was useful to take into account the small differences in MGA and MGA+MG 
intensities during the MS titrations. Now we examine the case of a Mg2+-dependent RNA 
aptamer selected to bind RiboFlavinMonoNucleotide[81]. 
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4.3 RiboFMN aptamer: an Mg2+-dependent RNA aptamer  
 
Flavins have been the target of RNA aptamers since the early days of the SELEX technology[40, 

127] because Flavin adenine dinucleotide (FAD) is an important enzyme cofactor involved in 
crucial metabolic pathways, both redox[128] and non-redox[129]. Several flavoenzymes utilize 
flavins for metabolic reactions, for example during glycolysis, the citric acid cycle, and fatty 
acid synthesis and oxidation[128]. FAD contains a riboflavin (vitamin B2) moiety, which forms 
from a tricyclic heteronuclear isoalloxazine and the polyalcohol ribitol. Riboflavin is a 
precursor of FAD and forms Flavin mononucleotide when a phosphate group is present at the 
ribitol moiety. Famulok and co-workers isolated some aptamers for riboFMN with the aim to 
interfere with some of Flavin-related metabolic pathways and eventually open the path 
towards ribozymes with redox activity [35a, 81]. The secondary structure of these aptamers 
show a conserved internal asymmetric loop, flanked by two stabilizing helix patterns. In this 
loop, ligand riboflavin-5′-phosphate (riboFMN) binds via intercalation π-π stacking of 
isoalloxazine ligand moiety with the G10-U12-A26 triplet and a Hoogsteen H-bond with 
adenine A26 [35a] (Figure 37). For our study we decided to use the 35-nt unimolecular 
sequence reported as 1FMN.pdb[35a]  

 
Figure 37 – A. Sequence of 1FMN. The aptamer is an hairpin with an asymmetric loop in the 
middle, where it binds the ligand RiboFMN. Ligand binding occurs with a Hoogsteen H-bound to 
A26 (cyan) and a π-π stacking with the triplex G10-U12-A25 (magenta); B. NMR structure of the 
complex from 1FMN.pdb [35a]. 
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The 1FMN aptamer needs Mg2+ to bind riboFMN with a KD of 0.5 µM[81], notably 4 mM Mg 
was needed during structure elucidation by NMR[35a]. We decided to test this in MS-friendly 
electrolytes (TMAA and NH4OAc) by ITC and native MS on 1FMN aptamer. In our lab a 
previous thesis showed that TMAA can interfere with some RNA-RNA contacts, such as kissing 
loop interactions [98]. Given that 1FMN does not involve any particular RNA-RNA contact in 
binding, the use of TMAA should may however not interfere with ligand binding to the 
aptamer. 

 

4.3.1 Does RiboFMN aptamer (1FMN) need Magnesium? 
 

No significant binding is detected by ITC of 10 µM RNA by the ligand in 100 mM NH4OAc 
(Figure 38): After ligand dilution heat subtraction, the thermogram appears close to 
instrument detection limit (0.02 µcal/sec). However, some differences between injection 
points are visible, last points are partially above the baseline. This trend could mean either 
very low binding enthalpy or no binding. 

 
Figure 38 - ITC thermogram of 1FMN 10 µM by riboFMN in NH4OAc 100 mM at 25 °C. After ligand 
dilution heat subtraction, poor information is associated to heat pulses of each injection. The 
trend higlighted with the two blue parallel lines could be a low heat binding event either just 
noise associated to the injections (Table 48)  
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4.3.2 ITC of 1FMN in MgCl2 200 µM and NH4OAc 100 mM or TMAA 100 mM 
 

The thermograms changed completely once we carried out the ITC run in presence of 200 µM 
MgCl2 in both NH4OAc and TMAA 100 mM (Figure 39): we observe ligand binding in both 
electrolytes. 

 
Figure 39 – ITC in 200 µM MgCl2 and 25°C of A. 1FMN 10.19 µM and RiboFMN 150.0 µM in TMAA 
100 mM B. 1FMN 10.20 µM and RiboFMN 159.6 µM in NH4OAc 100 mM. Replica are at p.177. 

On RNA aptamer 1FMN, no ITC data are available to our knowledge. From the fitted 
parameters in Table 15, we find a ΔH°<0 and a derived -TΔS°>0 in both conditions. This 
thermodynamic profile is compatible with an intercalating binding mode[50b], in agreement 
with the reported NMR structure[35a]. The obtained KDs are within the respective uncertainty 
range. We note that ΔH° and -TΔS° differs of 2.2 Kcal/mol between the two conditions.  

Table 15 - ITC fit output of 1FMN vs RiboFMN in 200 µM MgCl2. Uncertainties are the deviation 
standard across four replica in NH4OAc and three replica in TMAA (Figure 110 and Figure 111 at 
p. 181). 

Electrolyte KD (µM) N ΔHo 
(kcal/mol) 

-(298)ΔSo 
(kcal/mol) 

ΔGo 
(kcal/mol) 

NH4OAc 100 mM, 
MgCl2 200 µM 3.28 ± 0.51 0.97 ± 0.07 -16.8 ± 1.0 9.3 ± 1.1 -7.51 ± 0.10 

TMAA 100 mM, 
MgCl2 200 µM 3.36 ± 0.24 1.00 ± 0.03 -19.1 ± 0.5 11.6 ± 0.6 -7.47 ± 0.04 
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4.3.3 1FMN native MS 
 

We decided to analyse an equimolar mixture of 1FMN (M) and RiboFMN (ML) at 10 µM in in 
NH4OAc 100 mM by native MS. 1FMN is capable to bind up to 2 riboFMN in absence of Mg2+ 
(Figure 40).  

In order to determine the KD in absence of Mg2+, we performed a MS titration with up to 3 
equivalents of RiboFMN (in 5 replicas) using Agilent 6560 to monitor the IM-MS spectra of 
1FMN and its complex with riboFMN. Only charge state 6- has been considered for 
quantification. The second complex with two ligands (ML2) has too low intensity and 
extracting its relative response factor is not possible. 

 
Figure 40 – A. Equimolar 10 µM mixture of 1FMN (M) and RiboFMN in NH4OAc 100 mM. Charge 
states 7-, 6- and 5-, and relative 1:1 complexes are detected. B. A second complex ML2

6- is 
detected in prsence of 30 µM RiboFMN. 
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Figure 41 –  A. Binding isotherm for 1FMN and it complex with RiboFMN in NH4OAc 100 mM 
with relative response factor correction and B. assuming response factor ratio equal to 1. Points 
are averaged over 5 replica (Figure 103 - p.171).  

 

MS titration on 1FMN The KD were determined per each replica following the method 2 at 
p.43: on the concentrations corrected for relative response factors. Then each KD was 
averaged. The procedure was repeated assuming response factor ratio equal to 1. From the 
MS titrations of 1FMN6- and 1FMN+L6- we calculated the relative response factors (𝒓𝒓𝑺𝑺𝑺𝑺𝒅𝒅 𝒓𝒓𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏⁄ ) 
of 0.62 ± 0.03 and (𝒓𝒓𝑺𝑺𝑺𝑺𝒅𝒅 𝒓𝒓𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏+𝑳𝑳⁄ ) 0.22 ± 0.08 for which we have a ratio of 3.21 ± 0.98 
(𝒓𝒓𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏+𝑳𝑳 𝒓𝒓𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏⁄ ) (Table 37 – p.172).  

The fittings on the corrected concentrations provides an average KD of 110.8 ± 40.7 µM 
(Figure 41A), whereas the same data sets, assuming relative response factor equal to 1 in 
Figure 41B, provides an average KD of 27.6 ± 2.4 µM (Table 34 and Table 35- p.170). The 
uncertainty on 𝒓𝒓𝑺𝑺𝑺𝑺𝒅𝒅 𝒓𝒓𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏+𝑳𝑳⁄  is very large (38% - Table 36 p.170). This is probably due to the 
low signal-to-noise ratio of the MS peak. This cause a large uncertainty on the corrected 
concetrations, thus on the fitted KDs. Therefore we think that the assumption of relative 
response factor for these titrations is a better estimate of 1FMN and 1FMN+L concentrations 
and KD. 

However, we can affirm that riboFMN binds weakly to 1FMN in absence of Mg2+, at least 50-
fold lower to what reported in presence of magnesium (~ 0.5 µM)[81]. 

We then tested various concentrations of MgCl2 to estimate how magnesium favours 
RiboFMN binding. We limited to 800 µM MgCl2, for two reasons: bioavailability of Mg2+ in the 
cytosol is normally not above 1 mM[130]; Mg2+ concentrations from 1mM would lead to drastic 
signal suppression by Mg2+ clusters[7]. In the MS spectra in Figure 42, the complex/free-
aptamer ratio is increasing with the Mg2+ concentration and a different adduct distribution 
for 1FMN+L6- is observed: the desolvated signal of riboFMN complex disappears and the Mg2+ 
adducts distribution starts from 1 adduct. Conversely, adduct-free 1FMN6- remains visible up 
to 400 µM Mg2+. This different adducts distribution suggest that Mg2+ takes part in the 
formation of the complex.  
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Figure 42 - MS spectra acquired on Agilent 6560 of 1FMN+riboFMN (5+5 µM) from 0 to 800 µM 
Mg2+ in NH4OAc 100 mM. 

 

The adducts distribution (i.e.: Mg2+, NH4+) on M6- and ML6- looks similar from 100 to 800 µM 
MgCl2. We calculated on this Mg2+ concentration range the relative response factors of the 
peaks, with the entire adduct tails, obtaining (𝒓𝒓𝑺𝑺𝑺𝑺𝒅𝒅 𝒓𝒓𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏⁄ ) of 0.30 and (𝒓𝒓𝑺𝑺𝑺𝑺𝒅𝒅 𝒓𝒓𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏+𝑳𝑳⁄ ) 0.37 for 
which we have a ratio of 0.82 (𝒓𝒓𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏+𝑳𝑳 𝒓𝒓𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏⁄ ) (Table 37 – p. 172). Interestingly, we found a 
ratio of response factors close to one, while without Mg2+ we found a pronunciated difference 
(3.21). This difference in ESI response would suggest a significant conformational difference 
between M and ML in absence of Mg2+. 

The signal was integrated over the complete visible m/z-range of each ion, as for the MS 
titration in absence of MgCl2. Point-by-point KDs are reported in Table 16. 

The calculated KDs as a function of MgCl2 concentration allow to estimate the Mg2+ uptake 
stoichiometry in the riboFMN binding. We can write the following reaction where Mg2+ 
participates with unknown stoichiometry “𝑏𝑏”: 

 𝑀𝑀 + 𝑐𝑐 +  𝑏𝑏𝑀𝑀𝑏𝑏2+  ⇄ [𝑀𝑀𝑐𝑐 ∙ 𝑏𝑏𝑀𝑀𝑏𝑏2+] (46) 

If we assume that the point-by-point dissociation constant is independent from [𝑀𝑀𝑏𝑏2+]𝑏𝑏 (as 
if it is part of the milieu), we can separate the apparent dissociation constant 𝐾𝐾𝐷𝐷

𝐴𝐴𝑝𝑝𝑝𝑝 (where all 
forms of M and ML are considered) from [𝑀𝑀𝑏𝑏2+]𝑏𝑏: 
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 𝐾𝐾𝐷𝐷 =
[𝑀𝑀][𝑐𝑐][𝑀𝑀𝑏𝑏2+]𝑏𝑏

[𝑀𝑀𝑐𝑐 ∙ 𝑏𝑏𝑀𝑀𝑏𝑏2+]
= 𝐾𝐾𝐷𝐷

𝐴𝐴𝑝𝑝𝑝𝑝 ∙ [𝑀𝑀𝑏𝑏2+]𝑏𝑏 (47) 

and from its logarithmic form we have the following linear relation from which we can obtain 
Magnesium stoichiometry “𝑏𝑏” by linear regression: 

 log𝐾𝐾𝐷𝐷
𝑎𝑎𝑝𝑝𝑝𝑝 = log𝐾𝐾𝐷𝐷 − 𝑏𝑏 log[𝑀𝑀𝑏𝑏2+] (48) 

 

Table 16 - Estimated 1FMN+L KDs for each MgCl2 concentration in NH4OAc 100 mM. 

Mg2+ (µM) KD Log [Mg2+] Log KD 

0 1.71E-05 -- -4.77 
10 1.33E-05 1 -4.88 
20 1.13E-05 1.30 -4.95 
30 1.04E-05 1.48 -4.98 

100 4.77E-06 2.00 -5.32 
200 3.30E-06 2.30 -5.48 
300 2.71E-06 2.48 -5.57 
400 2.44E-06 2.60 -5.61 
800 1.87E-06 2.90 -5.73 

 

 
Figure 43 - Effect of Mg2+ concentation on 1FMN+L KD

App, expressed in logaritmic scale. From 
the slope modulus of linear regression we have a stoichiometry of 0.45 ± 0.02 for Mg2+ (only 
points from Mg2+ 100 µM were considered). 

From the linear regression in Figure 43 we obtain a Mg2+ stoichiometry of 0.45 ± 0.02. A 𝑏𝑏 <1 
suggests that Mg2+ cations are acting like “spectator” ions, diffused around the reactants but 
not influencing the binding reaction. This supposition is coherent with the weak binding 
detected in Mg2+ absence (Figure 40) but in contrast with the ITC experiments, where a 
significative heat of reaction is detected when Mg2+ is part of the medium. The linear 
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regression with the assumption of (𝒓𝒓𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏+𝑳𝑳 𝒓𝒓𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏⁄ )=1 give a similar stoichiometry (0.47 - Figure 
104, p.172). On this result is difficult to speculate if magnesium cations favour the folding of 
a given conformation for 1FMN aptamer, acting as diffused ions (indirectly involved in 
binding) or if they binds specifically to the aptamer. 

To have a better extimate of the KD of 1FMN+L, we perform a full MS titration by ligand 
riboFMN with 200 µM MgCl2, because we expect a KD in the same range of RNA concentration 
(~3 µM - Table 16) and acceptable signal intensities. 

 

4.3.4 MS titrations of 1FMN in presence of magnesium 
 

We did the MS titrations on the Thermo Exactive mass spectrometer (no need for IM-MS) in 
both NH4OAc and TMAA to compare our results to ITC. To have an appreciable signal for 1FMN 
and its complex, we applied 15 eV HCD in the collision cell to remove TMA+ or NH4+ as neutrals 
and reveal the Mg2+ adduct distribution. In Figure 44, 1FMN6- and 1FMN+L6- show different 
adduct distributions when we change the supporting electrolyte. In the spectra in Figure 44, 
1FMN6- (M6-) carries two Mg2+ adducts minimum in TMAA whereas in NH4OAc the non-
adducted peak is visible. 1FMN+L6- (ML6-) in TMAA has a distribution starting from 3 Mg2+ ions 
while in NH4OAc the adducts distribution start from 1 Mg2+. 

 
Figure 44 - 1FMN 10 µM + 0.5 eq RiboFMN in A. 200 µM Mg Cl2 and NH4OAc 100 mM and B. 200 
µM MgCl2 and TMAA 100 mM buffer. Integration ranges: up to 5 adducts (red bar), whole 
adducts distribution (blue bar). 
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Comparing the two electrolytes, we notice two effects:  

i. TMAA facilitates the uptake of Mg2+ on both aptamer and complex, adding 
two Mg2+ on their adducts distribution; 

ii. riboFMN complex have one Mg2+ more compared to unbound aptamer; 
iii. The binding affinity seems higher in TMAA than in NH4OAc. 

 

We performed MS titrations up to 50 µM of riboFMN (Lig) in both buffers, considering the 
mass ranges for the first 5 adducts (red bar in Figure 44) of Mg+ for peak integration (Figure 
45 and Figure 47 ). Regarding data analysis, the choice of n° adducts (5 adducts or the whole 
distribution) does not affect the KD for TMAA while for NH4OAc a worse fit is observed (Figure 
102 - p.169). This is the consequence of the increasing background along the titration leading 
to difficulties to the appropriate estimation of the background. 

 

Table 17 - Averaged KD over 3 replicas (Method 1). Apparent KD for 1FMN6- is calculated from 
fitting of binding isotherm of corrected concentrations for 1FMN and 1FMN+L and assuming 
equal relative response factors; †. KD uncertainty are the standard deviation over 2 replicas for 
TMAA and 3 replicas for.NH4OAc (a third replica has been discarded) (Table 44).  

Electrolyte 
KD apparent (µM) † 

Correction r/r=1 

TMAA 100 mM 
MgCl2 200 µM 

2.43 ± 0.12 2.31 ± 0.24 

NH4OAc 100 mM 
MgCl2 200 µM 

3.08 ± 1.44 5.36 ± 0.82 

 

Table 18 - Relative response factors for 1FMN6- and 1FMN+L6- considering 5 adducts. a. 
Uncertainty on the relative response factors are the standard deviation over 2 replicas for TMAA 
(a third replica has been discarded)  and 3 replicas for.NH4OAc (Table 39 - p.173). 

Electrolyte rStd/r1FMN ± σ a rStd/r 1FMN+L ± σ a r1FMN+L/r1FMN± σ a 

TMAA 100 mM 
MgCl2 200 µM 7.49 ± 0.27 6.83 ± 0.93 1.11 ± 1.40  

NH4OAc 100 mM 
MgCl2 200 µM 4.04 ± 2.35 3.15 ± 2.77 0.69 ± 1.09 

 

We observe also that the ratio of relative response factors is nearly 1 in TMAA. Conversely, is 
0.69 ± 1.09 in NH4OAc: the complex 1FMN+L6- has a lower response compared to the unbound 
aptamer. Not fully removed NH4+ might reduce the ESI response of the ions, as opposed to 
TMA+ that get completely removed. 



 

82 

Comparing the KDs issued from ITC (Table 19) with MS titrations ones, we found that KDs (and 
derived ΔG° -Table 19 and tables from p.173) superimposes within their confidence interval 
of expanded uncertainty (with 95% confidence - Figure 46) Similarly to what obtained for 
MGA, we can say that ITC and MS dissociation constants are comparable. 

 
Figure 45 - Binding isotherm considering up to 5 Mg2+ addcucts for 1FMN6- and its complex with 
RiboFMN in 200 µM Mg2+ in A. TMAA and B. NH4OAc 100 mM. Titrations are acquired in and 
duplicate (TMAA) And triplicate (NH4OAc). 
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Figure 46 -Comparison between log KD determined via ITC and MS, on 1FMN6-. The extended 
uncertainties (for a 95% confidence) are reported as error bars. MS values “Corr” are calculated 
with relative response correction, “r/r=1” assuming equal relative response factors. MS 
titrations were acquired in duplicate (coverage factor = 12.706); ITC (TMAA) in triplicate 
(coverage factor = 4.303) and ITC (NH4OAc) in quadruplicate (coverage factor = 3.182). Single 
replicas are plotted in Figure 105 at p. 175. 

 

Table 19 - KD and ΔG° obtained from ITC on 1FMN with OneBindingSite fitting model. “σ” is the 
standard deviation and “Exp. σ” is the expanded uncertainty. Experiments were done in 4 
replicas in NH4OAc (coverage factor = 3.182 for a 95% confidence interval) and 3 replicas in 
TMAA (coverage factor = 4.303 for a 95% confidence interval) (p.181). 

Electrolyte KD (µM) σ Exp σ ΔG° (kcal/mol) σ Exp σ 

TMAA 100 mM 
MgCl2 200 µM 

3.28 ± 0.51 ± 1.61 -7.51 ± 0.10 ± 0.32 

NH4OAc 100 mM 
MgCl2 200 µM 

3.36 ± 0.24 ± 1.02 -7.47 ± 0.04 ± 0.17 
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Figure 47 – NativeMS titrations of 1FMN 10 µM up to 5 eq of RiboFMN in 200 µM Mg2+ and A. 
TMAA and B. NH4OAc 100 mM. 
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4.4 Aminoglycoside RNA aptamers 
 

Aminoglycosides are an old class of antibiotics with a broad-spectrum antibacterial activity, 
composed by three or four amino-modified carbohydrates. These molecules target various 
RNA sites[131] such as the 16S rRNA [132], HIV-1 Rev response element [133], and hammerhead 
ribozyme[134]. This variety of targets can be bound because aminoglycosides are polycationic 
molecules at physiological pH. 

We studied two RNA aptamers selected in vitro for neomycin (1NEM)[82] and tobramycin 
(1TOB)[83a]. Their secondary structure is a hairpin with some mismatched base pairs. The 
binding mode for neomycin and tobramycin is very similar: the ligand is partially encapsulated 
into the major groove of the hairpin. The structural change detected for these aptamers is the 
stabilization of a complete hairpin structure by “zipping” the mismatched/loop region upon 
binding. The binding is driven by electrostatic interactions (H-bonding) with nucleobases and 
phosphate backbone, and Van der Waals interactions between the flanked nucleobases (A15 
for 1NEM from the GNRA loop, C15 for 1TOB) [82-83] and sugar rings of the ligand.  

 
Figure 48 – A. 1NEM sequence and structure with B. neomycin (orange) ligand; C. 1TOB 
sequence and structure with D. tobramycin (violet) Color code: A-Blue; G-Green; U-Yellow; C-
Red; “•” is used to indicate a base mismatch. 
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4.4.1 Neomycin RNA aptamer (1NEM) 
 

For the Neomycin RNA aptamer (1NEM) a KD of 100 nM is reported (in 5 mM Mg2+; 50 mM 
Tris•HCl pH 7.6; 250 mM NaCl) [84]. When dissociation constants are particularly low, like in 
the case of neomycin to 1NEM, is preferable to have a [𝑅𝑅𝑁𝑁𝐴𝐴]𝑝𝑝𝑜𝑜𝑝𝑝 ≈ 𝐾𝐾𝐷𝐷 to have an informative 
titration curve (with a significant non-linear portion)[124]. Thus, we decided to titrate at 50 nM 
RNA, on an expected KD of 100 nM. 

When sprayed 1NEM at 50 nM in NH4OAc 100 mM, the MS spectrum shows two charge states, 
a dominant 5- and a low intensity 4- (Figure 49). We decided to consider the charge state 5- 
for quantification, because it provides the best signal intensity. 

 

 
Figure 49 – Neomycin RNA aptamer 1NEM (RNA 50 nM, dT6 50 nM) in NH4OAc 100 mM show 
the charge states 5- and 4-. Only 5- is used for response factor determination and quantification. 

From our titrations, the neomycin is more tightly bound compared to what expected: the 
binding isotherm for first complex at 50 nM RNA (Figure 50) show the saturation of the 
aptamer with an estimated KD of 0.13 nM. Unfortunately below 50 nM RNA no signal is 
detectable and for this aptamer we can conclude only that neomycin complex has a KD << 100 
nM. As we can see in Figure 50, we do not have any non-linear portion of the binding curve 
near the equivalence point. Such situation is the consequence of a [𝑅𝑅𝑁𝑁𝐴𝐴]𝑝𝑝𝑜𝑜𝑝𝑝 ≫ 𝐾𝐾𝐷𝐷, for which KD 
estimation becomes too uncertain to be trustable[124]. A second titration at 0.5 µM was done 
only for response factor determination (Figure 113 and Figure 114). 

However, we can calculate the relative response factors for the aptamer and it complex. For 
M we have 0.84 ± 0.05 and ML we have 0.68 ± 0.04 (over four replica). Their ratio 𝑹𝑹𝟏𝟏 𝑹𝑹𝟏𝟏𝑳𝑳⁄  is 
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1.23 (over four replica). This means that neomycin complex has response (a little) higher 
compared to the free-aptamer. Even if neomycin binding mode is not an intercalator, we 
found a similar ratio to MGA and 1FMN aptamers. 

 

 
Figure 50 - 1NEM aptamer titrated at 50 nM in NH4OAc 100 mM . The non-linear portion of the 
binding isotherm is almost absent, suggesting the saturation of the RNA by the neomycin at this 
concentration. 
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4.4.2 Tobramycin RNA aptamer (1TOB) 
 

For the tobramycin RNA aptamer (1TOB), two complexes are reported, the first with a KD1 of 
9 nM, the second with KD2 2.7 µM [83b]. Both complexes are detectable by native MS (Figure 
51). 1TOB shows a pronounced difference in aptamer/complex ratio between the charge 
states 6- and 5-, which suggest a marked difference in response factor ratios.  

 

 
Figure 51 - MS titration of 1TOB 0.5 µM (dT6 0.5 µM) with tobramycin up to 1 µM in NH4OAc 
100 mM. Charge states 6- and 5- are visible. 

From the titration up to 2 equivalents of tobramycin (1 µM) we obtain fairly different relative 
response factors between the two charge states, in line with the expectations (Table 20). The 
correction is minimal for 5-, between 0.45 and 1.10, while more pronounced for 6-. Here we 
deduce that both complexes ML and ML2 have an higher response, because the required 
correction is lower compared to M (eq. (31)– p. 39; 𝑅𝑅𝑀𝑀 = 𝑝𝑝𝑆𝑆𝑡𝑡𝑆𝑆

𝑝𝑝𝑀𝑀
). 

From binding isotherms at 0.5 µM RNA (Figure 52) we obtain KD1 = 7.8 ± 1.8 nM ; KD2 = 0.25 ± 
0.09 µM (charge state 6-) and KD1 = 11.1 ± 3.4 nM ; KD2 = 0.18 ± 0.07 µM (charge state 5-), 
over two replicas. Interestingly, we found a KD1 similar to what reported in literature and a 
10-fold discrepancy on KD2. Unfortunately, this aptamer was no more detectable for [RNA] < 
0.5 µM, so we cannot further dilute [1TOB]tot to improve titration points.  
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Table 20 - Relative response factors for 1TOB and its tobramycin complexes. a. the uncertainty 
is the standard deviation over two replicas. 

6- 5- 

𝒓𝒓𝑺𝑺𝑺𝑺𝒅𝒅/𝒓𝒓𝟏𝟏 𝒓𝒓𝑺𝑺𝑺𝑺𝒅𝒅/𝒓𝒓𝟏𝟏𝑳𝑳 𝒓𝒓𝑺𝑺𝑺𝑺𝒅𝒅/𝒓𝒓𝟏𝟏𝑳𝑳𝑴𝑴 𝒓𝒓𝑺𝑺𝑺𝑺𝒅𝒅/𝒓𝒓𝟏𝟏 𝒓𝒓𝑺𝑺𝑺𝑺𝒅𝒅/𝒓𝒓𝟏𝟏𝑳𝑳 𝒓𝒓𝑺𝑺𝑺𝑺𝒅𝒅/𝒓𝒓𝟏𝟏𝑳𝑳𝑴𝑴 
15.01 ± 0.34a 3.63 ± 0.45a 5.11 ± 1.22a 0.65 ± 0.06a 0.45± 0.01a 1.10 ± 0.24a 

 

 
Figure 52 - Binding isotherms of 1TOB A. ch st 6- and B. ch st 5-. 1TOB aptamer was titrated at 
0.5 µM up to 1 µM of tobramycin in NH4OAc 100 mM. 
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4.5 Conclusions  
 

Typical native MS electrolytes, NH4OAc and TMAA, are suitable also for ITC studies. The 
thermodynamic profile for MGA was in line with the literature in various non-volatile buffers 
[80]. 

KD values determined by MS and ITC were comparable for both MGA and 1FMN (same order 
of magnitude and values within the expanded uncertainty for a 95% confidence interval). 
These two RNA have a 1:1 stoichiometry exclusively, and ITC can benefit of the unambiguous 
binding stoichiometry (from native MS) for the choice of the fitting model. In this sense, native 
MS can help to unravel multiple stoichiometries or binding events with very low reaction 
heats in ITC (Figure 38). 

The use of TMAA on MGA and 1FMN didn’t bring any significant drawback in comparison with 
NH4OAc [98]. On the contrary, TMAA helps maximizing the signal-to-noise ratio (on both MGA 
and 1FMN) because of a lower number of TMA+ adducts and more spacing between them 
compared to NH4+. In TMAA, the 1FMN binding activity is preserved and we revealed an 
interesting Mg2+ distribution for 1FMN, higher than in NH4OAc. We think that NH4+ could 
compete with other cations (in solution) for RNA because it has a similar ionic radius to alkali 
metals[123]. TMA+ is too bulky to compete or simply shield the aptamer from other cations, 
such as Mg2+, so in that case a higher number of “small” cation binding sites can be filled by 
Mg2+[135]. Although we tested the buffers for only two RNA aptamers, we think that TMAA 
could be an useful volatile electrolyte to study cations interactions on RNA and DNA. 

From our preliminary results, Mg2+ showed a stoichiometry of ½ (0.47) that would suggest a 
role of diffused ions in the ligand binding. But the riboFMN complex appeared to be always 
bound to at least 1 Mg2+ in both electrolytes and also ITC thermograms changed significantly 
in presence of MgCl2. A further verification about the presence of un-specific Mg2+ adducts 
could be addressed in two ways: by using a control sequence (e.g. of conveniently randomized 
sequence)[98] and by nano ESI using sub-micrometer emitters[136]. Also more titrations, in the 
KD range of 100-1000 µM, are necessary to extrapolate the Mg2+ stoichiometry in riboFMN 
binding (on logarithmic scale log KD/log Mg2+). 

We also recommend to choose the charge state(s) with higher signal-to-noise ratio for relative 
response factor correction and quantification, in order to minimize the uncertainty on the 
signals and finally on the results. The user could decide which electrolyte choose (and its 
concentration) depending on how the aptamer charge state distribution changes, to improve 
signal-to-noise ratio of minor charge states and the uncertainty related to their data sets 
(MGA7- ). However, this is very analyte (RNA and DNA) dependent.  

The relative response factors of free and bound aptamer were analysed. Even for the scenario 
where conformational changes were the most probable (1FMN in presence of Mg2+), the 
response factor correction was relatively modest. The pronounced difference in relative 
response factors observed for 1FMN, in absence of Mg2+, is probably related to the low signal-
to-noise of the complex (~38% on rstd/r1FMN+L) and therefore high uncertainty. We think that 
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the ligand binding was not associated to a significant conformational change that would lead 
to a substantial variation of ESI-MS response between aptamers and their complexes. For 
these aptamers, we believe that the assumption of equal response factors (ratio=1) is 
acceptable. Besides, the property that matters most is the log(KD) (related to ΔG°). 

We quantified KDs from 30 µM for 1FMN (Figure 41B) to 0.1 µM for 1TOB (Figure 52). 
Potentially KDs about 50 nM would be accessible in our conditions, but the KD of 1NEM go 
beyond our spectrometer detection limit (Figure 50). In general, for quantification it is 
recommended to have [RNA]tot at least in the same order of magnitude of dissociation 
constant, and spectrometer detection limit may be passed. That is the case of 1NEM, but we 
think that is very analyte (RNA) dependent. 

 

In summary: 

1- ITC and native MS give comparable KD values 
2- We preserved aptamer binding in a “non conventional” electrolyte such as TMAA, with 

the benefit of clear metal adduct stoichiometries on aptamer and its complex. 
However, the adducts distribution was different than in NH4OAc, suggesting a 
different competition for the cation binding sites. 

3- Relative response factor correction is not required for MS aptamer quantification, 
simplifying the use of this technique to non-experts. 

4- The range of KD values that can be quantified by native MS depends on the total signal 
response. This is aptamer-dependent. In our conditions, we could have quantified KD 
values from 50 nM to 30 µM. 

  



 

 

  



 

 

Part II: Ion Mobility 
Spectrometry 
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5. IM-MS of aptamers and their complexes 
 

Our aim is to observe the aptamer conformers via their ion mobilities, for example to 
discriminate free and bound aptamer conformations based on their CCS distributions, and see 
if ion mobility spectromstry can detect “adaptive binding” mechanisms (p. 9). In this chapter 
we present the CCS distributions observed for the RNA aptamers studied above (MGA, 1FMN, 
1NEM, 1TOB). We also study tetracycline RNA aptamer (a well known aptamer with a 
successful riboswitch implementation in yeast) and a group of cocaine binding DNA aptamer 
with a modulable secondary structure (by ligand binding and chain length).  

RNA aptamers MGA, 1FMN, 1TOB and 1NEM were analyzed by IM-MS, in NH4OAc and TMAA 
100 mM, in order to differentiate free and complexed forms by their ion mobilities. 
Unfortunately, CCS distributions did not change significantly to infer a conformational change 
upon ligand or Mg2+ binding (for 1FMN). Upon collisional activation in pre-IMS with 
fragmentor at 600V, all aptamers and complexes undergo a sligh compaction if present. 

We observe a small increase in CCS distribution of each complex, compared to the relative 
unbound aptamers. Such small increase is probably due to a global increase of overall volume 
of the aptamer after ligand incorporation, rather than a significant shape change upon 
binding. All CCS values are listed in Table 21. 

 

5.1 1TOB 

1TOB shows CCS distributions of a single distribution for both aptamer and tobramycin 
complexes in charge states 5- and 6-. Aptamer CCS increases upon tobramycin binding, but 
this increase is limited (Table 21). We describe this by a volume increase consequent to ligand 
encapsulation (Figure 48). Pre-IMS activation induces a modest compaction effect both 
charge states for which CCS is substantially unchanged. 

 
Figure 53 – CCS distributions of charge states 6- and 5- of 1TOB and its tobramycin complex at 
low pre-IMS activation (fragmentor 350 V).  
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5.2 1NEM 

1NEM5- in Figure 54 shows a little increase in CCS upon ligand binding, ascribable to the 
encapsulation of neomycin (see NMR structure in Figure 48). For the single 1NEM5- and 
1NEM+L5- CCS distributions, a minor compaction is observed upon pre-IMS activation with 
fragmentor at 600 V. 

 
Figure 54 - CCS distributions for 1NEM5- and its relative complex at low and high pre-IMS 
collisional activation (rispectively fragmentor 350 and 600V). A minor CCS increase is observed 
upon ligand binding at bot activation conditions. 

 

5.3 MGA  

At low activation, the large adduct distributions on MGA aptamer shades the declustered ion, 
so we have IMS data only at high activation (fragmentor 600V). CCS increase between free-
aptamer and its complex remain modest for each charge state (Figure 55). On these results, 
we cannot differentiate free and bound aptamers solely on their ion mobilities. 
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Figure 55 - CCS distributions (fragmentor 600 V) for charge states 7-, 6- and 5- of MGA and its 
complex with MG. Distributions remains almost unchanged by the ligand binding. 

 

5.4 1FMN 

For 1FMN aptamer ion mobilities were analyzed only for charge state 6-, because the low 
intensity of 7- and 5-. Similarly to 1TOB, for 1FMN6-. We observe a modest CCS increase upon 
binding, if present, and collisional activation induces a compaction on both 1FMN6- and 
complex (Figure 56). 
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Figure 56 - CCS distributions for 1FMN6- and relative complexes at low and high pre-IMS 
activation. 1FMN6- CCS remains almost unchanged by the ligand binding. 

 

1FMN6- does not show a significant change in its CCS distribution when bound to magnesium 
(Table 21). At low activation, CCS distributions are broad and superimposed. At high activation 
(fragmentor 600V) the distributions undergo a little compaction and become sharper, but 
desolvated 1FMN become slightly more compact compared to Mg2+ adducts (Figure 57). 

 

 
Figure 57 - CCS distributions for 1FMN6- and its first three Mg2+ adducts at low activation 
(fragmentor 350 V) and high activation (fragmentor 600V). 

The complex with riboFMN is visible up to 30 µM MgCl2. 1FMN+L6- CCS distribution is lightly 
compact and narrower, compared to its first three Mg2+ adducts (Figure 58). We suggest that 
Mg2+ adducts stabilize a conformational population that does not compact at high pre-IMS 
activation, whereas desolvated 1FMN+L6- compacts following a mechanism similar to wha 
observed for B-DNA duplexes[64]. A similar but smaller effect is observed for 1FMN6- and its 
Mg2+ adducts in Figure 57. 
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Figure 58 - CCS distributions for 1FMN+L6- (acquired in absence of Mg2+) and its first three Mg2+ 
adducts at high pre-IMS activation (fragmentor 600V). 

 

 

Table 21 - DTCCSHe of 1TOB, 1NEM, 1FMN and MGA aptamer and relative complexes. Uncertainty 
is the standard deviation over the replicas (Table 54 and Table 55-  p.189). 

Fragmentor 350 V 600 V 

Ion z 
DTCCSHe (Å2) 

M ML M ML 
[1TOB-zH+]z- 6 871 ± 4 895 ± 2 840 ± 3 864 ± 2 

 5 792 ± 4 840 ± 3 786 ± 2 820 ± 1 
      

[1NEM-zH+]z- 5 726 ± 6 762 ± 7 719 ± 2 753 ± 2 
      

[MGA-zH+]z- 7   1035 ± 17 1054 ± 14  
6   986 ± 8 1011 ± 3  
5   958 ± 9 989 ± 4 

      
[1FMN-zH+]z- 6 1001 ± 24 1011 ± 15 942 ± 1 954 ± 7 

+1 Mg2+ 
 

1019 ± 7 1023 ± 2 956± 11 980 ± 21 
+2 Mg2+ 

 
1014 ± 6 1033 ± 11 959 ± 7 984 ± 7 

+3 Mg2+  1001 ± 9 1029 ± 5 956 ± 7 985 ± 4 
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5.5 Tetracycline RNA aptamer 
 

The RNA tetracycline aptamer (TCA) has been selected in vitro by Berens et al[137] and is 
among the few artificial aptamers with riboswitch activity in yeast[138]. The aptamer secondary 
structure is composed by a three-way junction of two hairpin-loop and the duplex at 3’,5’ end. 
Two single-stranded portions forms the junction (Figure 59). The very high binding affinity 
reported TCA (KD = 0.770 nM in [Mg2+] = 10 mM) [139] is due to the formation of a loop-loop 
interaction between the loop (in cyan) and the junction (in purple) in Figure 59A. This 
interaction is mediated by the ligand, chelated to one Mg2+ cation, and by an unusual triple 
helix pattern around the circled adenines in Figure 59A.  

 
Figure 59 - A. RNA tetracycline aptamer sequence, B. tetracycline hydrochloride (ligand) 
structure and C. x-ray crystal structure of the complex with focus on tertiary contacts (from pdb 
3EGZ) [28]. Squared bases are directly involved in ligand binding. Circled bases are involved in 
the irregular triplex pattern. Pink spheres are Mg2+ cations. Bases color code: A-Blue; G-Green; 
U-Yellow; C-Red. 

Ligand binding is possible only in presence of Mg2+[137] (Figure 60). For Mg2+ concentrations 
between 0.2 and 0.8 mM[140], the aptamer populates many conformational states at the 
equilibrium. Once added, the ligand binds and perturbs this equilibrium towards the complex 
with the appropriate tertiary interactions. For Mg2+ concentrations above 1.5 mM, the 
aptamer already forms the tertiary contacts already in absence of the ligand[79a, 137]., resulting 
in the very high affinity reported for this RNA aptamer in high Mg 2+ conditions [140-141]. 
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Figure 60 – TCA binding scheme at three different concentration range of Mg2+, proposed by 
Reuss et al[140]. No binding occurs in absence of Mg2+. Between 0.2-0.8 mM, Mg2+ allow the 
aptamer to adopt multiple conformations and ligand (green) binding can occur. For Mg2+ above 
1.5 mM TCA tertiary contacts almost fully formed and the final complex conformation is 
obtained by ligand binding. 

According to previous studies[140], at [Mg2+] 100 µM , tertiary contacts of unbound aptamer 
are partially stabilized. The complex, instead, is restrained to the structure showed in Figure 
59C made by long-range interactions. We expect to observe two different conformational 
ensembles for complex and unbound aptamer, by IM-MS. The relative small size of TCA (58 
nt) and its ability to form a tertiary structure in presence of Mg2+[140], make this aptamer an 
interesting candidate for MS analysis. 

In this work TCA was transcribed in vitro using a Hind-III linearized plasmid. A solution of 10 
µM TCA was analysed, by nESI-IM-MS, in a mixture 5 µM tetracycline, TMAA 100 mM, 100 
µM MgCl2 and 100 µM KCl. Regardless of repeated desalting steps with NH4OAc and TMAA, 
the TCA signals are partially suppressed by a large currents of alkali clusters, presumably from 
the precipitation steps after transcription. However, the aptamer is visible from 7- to 17- 
charge state and complex is visible on charge states from 9- to 12-. We found that tetracycline 
binding is visible only in presence of Mg2+, as expected (Figure 61). Agilent 6560 pre-IMS 
parameter are listed in Table 5. 

M and ML maxima in Figure 61 correspond to the ions with two Mg2+ and two K+. Interestingly, 
a minor signal of tetracycline complex with only one Mg2+ is visible for charge states 9-, 10- 
and 11-. These ions with the minimal Mg2+ required for binding, could be a complex not fully 
folded as consequence of ligand binding on (at least) one of the free-aptamer conformers 
possible at this Mg2+ concentration. 

However the intense noise on the spectrum prevent for unambiguous adduct stoichiometry 
assignment, and for further analysis totally synthetic aptamers would be needed. 
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Figure 61 – Black spectrum: TCA 10 µM and 5 µM tetracycline in TMAA 100 mM with 100 µM 
MgCl2 and KCl. Spectrum is 20-fold zoomed from 1050 m/z. Charge states are from 7- to 18-. 
Binding is visible up to 12-. M and ML peak maxima are with 2 Mg2+ and 2 K+ for all charge states, 
in brackets are reported the m/z values of declustered ion The symbol “ ” highlight a complex 
with only one Mg2+ adduct. Superimposed Mg2+ and K+ distributions are visible on dT6

2-. Red 
spectrum: no binding is detected and a very low charge state distribution is visible in absence 
of MgCl2 and KCl. 

Interestingly, from the CCS distribution of M and ML we observe at least two broad 
conformational ensembles. In Figure 61 we report the CCS distribution of charge state 9- 
because it provides the best compromise between intensity and clustering (Figure 117 – 
p.193). For TCA9- we observe a main broad peak centred at 1400 Å2, followed by the 
background alkali currents from 1600 Å2. The unbound aptamer shows two distributions: the 
main one at 1359 Å2 and a broader and more extended one at 1488 Å2. For [TCA+L•Mg2]9- is 
possible to deconvolute three CCS distributions: the most intense at 1360 Å2, 1456 and 1497 
Å2. For [TCA+L•Mg2K2]9- we found a reversed situation to TCA9-: we have a minor distribution 
at 1377 Å2 and the main distribution at 1487 Å2.  

A priori, one would expect to find a compact CCS distribution for fully folded complex and a 
more extended distributions for the free-aptamer conformers, rather than what we see in 
Figure 62. But in ESI-MS we would expect that the not fully folded conformers are prone to 
compact upon transfer into gas phase[64], whereas some native conformation would be 
retained thanks to the tertiary contacts of its characteristic structure (X-ray crystal in Figure 
60C). 
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The broad distributions for TCA9- and [TCA+L•Mg2]9- are coherent with the anticipated 
mechanism of Figure 60 at relatively low Mg2+: the unbound aptamer explores multiple 
conformations at the equilibrium and tertiary contacts are not formed without the 
appropriate number of metal adducts[141-142], even with ligand bound[79a, 140].The reversed 
proportions of CCS distributions for [TCA+L•Mg2K2]9-, compared to TCA9- and [TCA+L•Mg2]9-, 
suggest that the distribution centred at 1487 Å2 is the complex fully folded thanks to the 
minimal Mg2+ and K+ necessary for (backbone) charge shielding. Conversely, the minor 
distribution at 1377 Å2 is a fraction of not fully folded complex or simply a tailoring effect of 
[TCA+L•Mg2]9- adducts tail that superimposes. 

IM-MS spectra of charge states 8- and up to 12- are in line with this interpretation (Figure 119 
and Figure 120 at p.195). CCS values are listed in Table 57 at p.197. 

However, some precautions should be taken: a better Mg2+ and K+ adduct stoichiometry 
should be addressed. A synthetic RNA aptamer would provide better-resolved peaks, avoiding 
the intense alkali contamination coming from yeast plasmid transcription and successive 
purification an precipitation steps. 

 
Figure 62 – A. IM-MS spectrum of TCA9- and ATDs extraction ranges reported as colored bars B. 
CCS distribution of TCA9- (cyan), TCA+L9- (violet) and [TCA+L•Mg2K2]9- (red). Dashed distributions 
are from salt clusters.  
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5.6 Cocaine Binding Aptamers 
5.6.1 Introduction 

Cocaine Binding Aptamers (CBA) were selected during the early 2000s to design molecular 
beacons for cocaine and its metabolites[15] [35b]. These aptamers share a relatively simple 
secondary structure constituted by two hairpin-loops (stem 2, stem 3), a duplex/helical 
segment (stem 1) with a three-way junction. The cocaine binding site is located between the 
junction and the bulge (Figure 63) 

This aptamer family is also capable to bind other alkaloids and steroids such as cocaine 
metabolites, quinine and some of its analogs[87, 143], and sodium deoxycholate[144]. This large 
array of potential targets is atypical for an aptamer, normally intended to be specific for a 
ligand. During SELEX protocols, the “evolutionary” pressure is supposed to select a sequence 
that will bind the target specifically. At the time, cocaine presence in SELEX induced an 
‘evolutionary’ stimulus to specifically bind either a saturated polycyclic moiety or a bicyclic 
aromatic ring, rather than cocaine itself [143]. This peculiarity leaves room to conceive sensors 
based on molecular beacons, for which CBAs are still widely studied today. 

 
Figure 63 - A) Topology for DNA cocaine binding aptamers [145].The “•” represent a non-WC base 
pairing. Quinine (Ligand) binding site is proposed in the junction. B) Aptamers analyzed in this 
chapter. The topologies are Sequence numbering and topology is maintained from Johnson and 
co-workers[88, 145] for consistency. 

The junction in CBAs (Figure 63A) is required to form the binding site and bind quinine. Stem 
1 length is critical in the appropriate folding of this junction: in MN4 stem 1 is 6-bp long, is 
folded and participates to the junction in free and quinine bound form [145]. When stem1 is 3-
bp or less (i.e. MN19, OR8, OR7), it is less folded. Consequently, the junction is less folded and 
the aptamer has a lower affinity for quinine(KD between 11.2 and 0.14 µM in function of stem 
1 length)[88]. However, quinine binding contributes to the formation of the junction and of 
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stem1, following the concept of “adaptive binding” [68, 88]. This hypothesis is supported by ITC, 
NMR[145], spin-labelled EPR[79c] and enzyme digestion[146]. 

We will focus on the sequences MN4, MN19, OR8 and OR7 (Figure 63), a series of CBAs 
reported by Johnson’s lab [88], and their quinine complexes. The sequences differ in length of 
stem 1, from 1 bp (OR7) to 6 bp (MN4), keeping the same core sequence.  

The stabilization of secondary (stem1) and tertiary structure (junction) makes CBAs good 
candidates to explore whether the adaptive binding of aptamers can be studied by ion 
mobility mass spectrometry (IM-MS). Thus, for complexes we would expect CCS values 
corresponding to more compact conformations, compared to the free aptamers. 

 

5.6.2 IM-MS to track adaptive binding 
 

MN4 is expected to be fully folded both in its free and quinine-bound forms. We thus expect 
similar collision cross sections for free and bound MN4. Analysing by ESI-IM-MS a solution of 
10 µM MN4 with 5 µM quinine in NH4OAc 100 mM, we observe three dominant charge states 
(7-, 6- and 5-) (Figure 64), with the same arrival times and thus collision cross section 
distributions for free aptamer and its quinine complex (Figure 65). 

 
Figure 64 - MS spectra of MN4 (10 µM + 1 µM dT6) with 5 µM of quinine in NH4OAc 100 mM. 
Low charge states distribution of 7-, 6- and 5- is visible with quinine binding on each and NH4

+ 
adduct distribution. Impurities “ ” from missing nucleotide coupling (up to M-2nt) are visible 
on the dominant charge states. Fragmentor 350V and parameters as at p.35. 
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Figure 65 - Normalized 𝐶𝐶𝐶𝐶𝑆𝑆𝐻𝐻𝑎𝑎𝐷𝐷𝑇𝑇 distributions for MN4 ch st 7-, 6-, 5- and relative quinine 
complexes at low pre-IMS activation (350V) in NH4OAc 100 mM. Only desolvated ions (no NH4

+ 
adducts) are considered for CCS determination.  

At low activation, MN47- shows a single conformational ensemble for the free-aptamer and 
its quinine complex, and the same goes for charge states 6-and 5- (Figure 65). The CCS 
distributions of bound and unbound MN4 are very close. This observation is compatible with 
the accommodation of quinine without a significant shape change of the aptamer, but is not 
in line with our expectations for of an adaptive binding. One cannot differentiate quinine 
complex from free-aptamer solely on the CCS distributions as in Figure 65. 

Upon activation (Fragmentor 600 V) we observe the dissociation of quinine complex 
(MN4+Q7- peak is absent at this voltage) and a significant change in ion mobility spectrum of 
MN47- (Figure 65B): a transition from the conformational ensemble centred at 1037 Å2, at low 
activation, to a second centred at 1197 Å2. This CCS increase of 11.5% indicates a shape 
change towards an extended conformational ensemble. This extension is compatible with the 
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unfolding of the ion, such as either the stem1 opening proposed for this CBA[79c] or the 
opening of the whole base pairing pattern. 

 
Figure 66 – IM-MS of MN4 10 µM and 5 µM quinine in NH4OAc 100mM (Ch St 7-). A. Spectrum 
acquired with fragmentor at 350V and reconstructed CCS distribution for MN47- and its quinine 
complex. Very similar CCS are consistent with a pre-formed aptamer that binds to its ligand.  
B. At 600V we observe complex dissociation “ ”, NH4

+declustering of MN47- with a significant 
change of CCS distribution. Normalized CCS distribution for MN47- show the transition from one 
ensemble, centered at 1037 Å2 (350V), to a second ensemble, centered at 1197 Å2 (600V) upon 
ion activation. 

The pre-IMS activation do not alter the CCS distributions of charge states 6- and 5-, 
presumably because the lower charge bring an higher kinetic stability of the ions. 

In contrast to MN4, the aptamers MN19 and OR8 are not pre-structured before ligand 
binding, but upon binding their secondary structure (at least for MN19) should change 
towards a topology similar to MN4 aptamer[87-88, 145]. In this framework, if MN19 and OR8 in 
gas phase keep a memory of their solution structures, these aptamers are more likely to show 
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differences in arrival time distributions, e.g. a more compact quinine complex compared to 
the free aptamer. 

Before direct gas phase comparison, we notice that MN19 and OR8 have a different charge 
state distribution compared to MN4 (Figure 67):. This shift is a consequence of the different 
sequence length of the aptamers, MN4 (36 nt), MN19 (30 nt) and OR8 (28 nt). We also observe 
a progressive decrease of quinine complex (Figure 67). This is consistent with the lower extent 
of pre-folding, being associated with lower binding affinity as suggested by Neves et al.[88].  

 
Figure 67 - MS spectra of MN4, MN19 and OR8 (10 µM + 1 µM dT6) + 5 µM quinine in NH4OAc 
100 mM (Fragmentor 350V). All CBA show a distribution of low charge state, 7- to 5- for MN4 
and 6- to 4- for MN19 and OR8.This difference in charge uptake is due to the different chain 
length of the aptamers. Quinine binding is detected for all the sequences with progressive lower 
ratio, as reported from Neves et al.[88].  

Besides the difference in the number of nucleotides, we can qualitatively compare MN4, 
MN19 and OR8 at charge states 7- and 6-. Upon collisional activation, charge state 7- passes 
from one single distribution to a second one (Figure 68). However, charge state 6- does not 
(Figure 68BDF) 
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Figure 68 – Normalized reconstructed CCS distributions of MN4 MN19 and OR8 charge states 7- 
and 6-. Black curve are at low activation (F350V) and red curves are at high activation (F600V). 
Charge state 7- is reported on the left and charge state 6- on the right. CCS values with 
uncertainty are reported in Table 59,Table 60 - p.209 

Charge state 7- could be a good candidate for further investigations if this CCS extension is 
related to the specific secondary (and tertiary) structure common to these aptamers. 
However the different chain length complicates a direct comparison of the energetics 
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between these ions, because aptamers of different lengths have different numbers of degrees 
of freedom and thus different internal energies at a given fragmentor voltage. Also, their 
internal Coulomb repulsion forces differ if the length differs, because the charge density 
differs. CCS distributions for charge state 6- exemplify these concepts: at low activation we 
observe that aptamers have a single distribution. 

But discrepancies appear with activation. Setting fragmentor at 600 V, we observe a minor 
extension for MN196- with two minor distributions at 960 and 1026 Å2 (Figure 68D) while for 
OR86- we observe a more significant fraction of the population extended at 1003 Å2 (Figure 
68F). 

 

5.6.3 Maximizing the CBA7- signal by changing the [NH4OAc]  
 

In parallel to sequence modifications with dA overhangs, we decided also to optimize the 
intensity of charge state 7-, which gives the most prominent unfolding upon activation. One 
can vary the concentration of NH4OAc to shift the charge state distribution[147]. At 25 mM 
NH4OAc the distribution shifted to higher charge states (Figure 69B - up to 9-) and charge 
state 7- intensity is increased. 

 
Figure 69 - MN4 10 µM and dT6 2.5 µM at 100 (A), 25 (B) and 10 (C) mM NH4OAc. Decreasing 
the ionic strength MS spectrum shifts from one charge low state distribution, 9- to 4- (green),  
to a coexistence with a second distribution of high charge states, 20- to 10- (yellow). 

How MS high/low charge state distributions is related to DNA or RNA folding in solution, is 
still not fully understood[148]. When the NH4OAc concentration is further decreased to 10 mM 
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a second charge state distribution emerges below 1200 m/z (Figure 69C). The appearance of 
a distribution of high charge states can be interpreted as consequence of partial unfolding of 
the aptamer, if one borrows the conceptual framework from protein mass spectrometry, 
where unfolded proteins give high charge states [149]. However, UV-melting profiles of MN4 
suggest a fully folded state (at 20°C) in NH4OAc 25 mM and 96 % folded in NH4OAc 10 mM 
(Figure 70). Thus the abundance of a high-charge distribution isn’t necessarily indicative of 
MN4 unfolding in solution. We think that DNA ions can easily compete for the droplet surface 
during ESI when using the lower ionic strength of 10 mM NH4OAc. The bimodal charge state 
distribution could be interpreted in the framework of co-existing ionization via the CRM (low 
charge states) and CEM (high charge states) pathways[59] (see p.16). Evidence of such 
apparent bimodal distribution have been reported in our group on i-motif structures and 
unstructured controls, for which the supporting electrolyte concentration similarly influenced 
the charge state distribution. One should bear in mind that DNA carries a negatively charged 
phosphodiester backbone, in contrast to proteins, and thus could have a different behaviour 
in ESI.  

 
Figure 70 – MN4 aptamer result fully folded at 20°C in NH4OAc 25 mM and 96% folded in 10 
mM.  
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5.6.4 Model constructs for comparison in gas phase: extra dA 
 

To circumvent the problem of shifted charge distribution and different number of degrees of 
freedoom, we designed some constructs of the same length of MN4 (36nt). By adding 6 (in 
MN19), 8 (in OR8) and 10 (in OR7) extra deoxyadenosines on the 3’ and 5’-ends, we have 
nearly the same molecular weight while keeping the core sequence un-altered. This leads to 
the same charge distribution across the constructs. We added “-A” to distinguish these 
modified constructs. 

Deoxyadenosine was chosen because is one of the weakest homo base pairs mismatches, for 
which we have the following stability trend: GG > TT ≥ AA > CC [150]. Overhangs of dG and dC 
repeats where excluded a priori to avoid secondary structure formation like G-
quadruplexes[91a, 151] or i-motifs [152]. We tested dT repeats initially, but discarded this 
modification because the overhangs seemed to perturb significantly the secondary structure. 

 
Figure 71 – A. Constructs of cocaine of cocaine binding aptamers with extra adenosines 
overhangs (red); B. dA-dA mismatch isomerism from ref[153]. 
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5.6.5 Do the dA modifications alter aptamer structure in solution? 

To be sure that the aptamers with dA constructs correctly mimic the non-modified aptamers 
in solution (MN4, MN19, OR8 and OR7 - Figure 63), we compared their UV-melting, CD spectra 
(annexes p.205) and 1H-NMR of original sequences [88, 144a, 145] in our MS sample conditions 
(25 mM NH4OAc).  

 

5.6.5.1 UV-Melting profiles 

UV-melting experiments for MN4, MN19-A, OR8-A and OR7-A were carried at [DNA] = 2 µM 
in NH4OAc 25 mM as described at p. 27. We found a melting temperature of 39.5 ± 1.0°C for 
MN4 (Figure 72) and no melting for MN19-A, OR8-A and OR7-A (p.201 - Figure 122). In 
presence of one equivalent of quinine, the melting temperature of MN4 is little increased to 
43.4 ± 0.1°C, MN19-A shows a melting temperature at 24.3 ± 0.1°C (Figure 72) and no melting 
for OR8-A and OR7-A (p.201 - Figure 122). 

The relative stability order that we found in NH4OAc 25 mM, is the same reported by Neves 
et al. (in NaCl 140 mM and NaH/H2PO3 20 mM buffer) [88]. We highlight that the absolute 
values of melting transitions in NH4OAc 25 mM are lower to by Neves et al. [88] because of the 
lower ionic strength of the solution[154]. 

The absence of UV-melting for unbound aptamers MN19-A, OR8-A and OR7-A suggests the 
absence of a folded structure in this range of temperature (Figure 122, Figure 123), as 
expected. Notably, MN19-A does not show significant difference compared to MN19 that 
melts only in presence of quinine (Figure 72 and p.202 - Figure 123). 

So we conclude that aptamers structure and their binding mode are unaltered by the dA 
overhangs. More detail about the base pairing can be addressed by 1H-NMR in the next 
paragraph. UV-meltings in NH4OAc 100 mM are reported at p. 188. 
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Figure 72 - UV-melting plots in NH4OAc 25 mM of MN4 2 µM, MN4 with 2 µM quinine, MN19 
and MN19-A 2 µM with 2 µM quinine. MN19 and MN19-A do not show any melting transition in 
this buffer and temperature range (p.202 - Figure 123). Baselines for curve fitting are reported 
in red filled line, first derivative of A260 is reported in red dotted line. 
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5.6.5.2 1H-NMR in NH4OAc 
 

Imino protons 1H-NMR resonances of nucleobases (and base pairs) fall in the window of 10-
14 ppm and a complete peak assignment by 2D NMR in H2O/D2O (9:1) at 278 K [87, 145] is 
available for MN4 and MN19 (quinine complex only). First we can check if MN4 and MN19 
secondary structures [87, 145] are present in NH4OAc 25 mM. Secondly, we can qualitatively 
estimate if the construct MN19-A has a similar secondary structure to MN19. 

Spectra are acquired on a 700 MHz Bruker spectrometer in [DNA] 100 µM / 450 µL, NH4OAc 
25 mM, 5% D2O at 278K. The low temperature is necessary to populate folded structures as 
much as possible. 

From the MN4 spectrum (Figure 73B), we found all the characteristic imino resonances 
assigned for the “y-shaped” topology proposed from Johnson and co-workers[145]: the two 
hairpins are represented, T15,16,28 and G9,10,27, the 3’,5’-duplex with G2,4 and T32, and 
finally the non-canonical pairing on G29,30.[145] 

For MN19 the base pairing assignment is available only for its quinine complex in water[87]. In 
NH4OAc 25 mM and absence of quinine, we detect a partial folding: the highly conserved 
imino resonances T15, T18 and for G9, G10, G27, G24 and G30 support the folding of the two 
hairpins and the duplex pattern between the junction and the 3’,5’ ends. However, stem 1 
doesn’t seems to be folded, as there is no resonance for G31. 

For MN19-A, we do not have a NOESY spectrum for fine assignment of bases, but the strong 
similarities with MN19 spectrum suggest that secondary structure is similar. T18 and G29,30 
are present, suggesting that the two hairpins are well preserved. Caution should be taken for 
the junction and the 3’,5’-duplex: if conserved G29,30 resonances would support the junction 
as depicted in Figure 73A, the attribution to G4, G31 and T28 (asterisks on Figure 73B) remains 
tentative, and their confirmation would require further 2D-NMR investigation. 

Globally, for MN19 and MN19-A, imino proton peaks are less sharp compared to MN4. This 
means that the relative protons are either in chemical exchange (more exposed to the 
solvent) or in conformational exchange (protons in fast equilibrium between different 
nucleobases). This is compatible with a less rigid secondary structure compared to MN4, 
coherently with literature [87, 155]. Thus we could reasonably expect a similar secondary 
structure for MN19 and MN19-A in our conditions. 

 



 

116 

 
Figure 73 – A. Proposed topologies for MN4, MN19[87, 145] OR8, OR7 and relative adenine 
constructs; B. Comparison of imino proton resonances. A shared secondary structure is 
suggested by the characteristic resonances (green boxes). Orange boxed peaks suggest a 3’,5’-
end stabilization for MN19-A and OR8-A. Base assignement (*) are indicative and deduced by 
comparisons with MN4 and MN19 (see text). Spectra are acquired in [DNA] 100 µM / 450 µL , 
NH4OAc 25 mM, 5% D2O at 278K.  
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For OR8 and OR7 sequences no 2D-NMR are available so the comparison remains qualitative. 
Compared to MN4 and MN19, the spectra show fewer peaks and many are broad (Figure 73 
– pink, violet and green), in particular for OR8-A and OR7-A constructs. This means that the 
imino protons can exchange with the solvent because they are little engaged in base pairing. 
So we may expect a structure with two hairpins (Figure 74), similarly to what Cekan et al[79c] 
reported. 

 
Figure 74 - Hypothetical structure of unbound OR8, OR7 and relative extra dA constructs OR8-
A and OR7-A. 

NMR spectra in Figure 73B and the hypothetical structure in Figure 74 agrees with the results 
of UV-Melting (Figure 72 and p.201 - Figure 122, Figure 123). Thus, the absence of UV-melting 
in OR8, OR7 and OR8-A, OR7-A constructs is ascribable to the low base pair content (thus low 
hypercromycity – p.27) of these sequences. 

From these spectra we can suggest that G4,31* in MN19-A and G31* in OR8-A (Figure 73) 
contributes to 3’,5’-ends stabilization, thus to the second CCS distribution at 1045 and 1069 
Å2 for MN19-A7- and OR8-A7- as visible in Figure 76. We attribute it to dA overhangs that 
induce a minor, but visible, stem 1 stabilization. However, a definitive evidence dA 
contribution should be addressed by further NMR experiments (e.g. NOESY). 
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5.6.6 Adenine constructs in NH4OAc 25 mM 
 

We observed that MN4 is fully folded at 25 mM NH4OAc and show a dominant low charge 
states distribution after ESI. Constructs MN19-A, OR8-A and OR7-A are fully unfolded at 25 
mM NH4OAc but their MS spectra have a bimodal charge states distribution distribution. Thus, 
the unfolded structure do not shift completely the MS spectrum to high charge states, as 
anticipated for MN4 in Figure 69 

On the other hand, we obtain the expected optimization for gas phase comparison: 

- Same charge state distribution from MN4 to OR8-A, with similar m/z ratio for charge 
states 7- (sequence length effect); 

- Similar intensities for charge states 7- (NH4OAc concentration effect). 

 
Figure 75 -MN4 and CBA+extra dA constructs at 10 µM + dT6 2.5 µM in NH4OAc 25 mM. The 
length lead to the same low charge states distribution across the sequences. This simplify gas 
phase comparisons on ions of the same charge state across different sequences. dT6

2- as been 
cutted for clarity. 

 

5.6.7 IM-MS of CBA-dA aptamers 
 

Focusing our attention on the CCS distributions of charge state 7- for each aptamer (Figure 
76), we observe that all the modified constructs pass from a single distribution at low pre-IMS 
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activation (Fragmentor 350V) to a single and more “extended” distribution at high activation 
(Fragmentor 600V), similarly to what we observed for unmodified aptamers (Figure 68). 
Secondly, the reduced ionic strength has no influence on MN47- CCS distribution: compact 
and extended distribution are centred, respectively, at 1037 and 1197 Å2 from NH4OAc 100 
mM (Figure 68) and 1036 Å2 and 1205 Å2 NH4OAc 25 mM (Figure 76). Besides MN47-, the 
difference between the CCS distribution is not significant, therefore, we can exclude ESI 
effects on charge state 7- CCS values related to a low ionic strength. For MN47- the center 
position of the CCS distribution does not vary significantly in NH4OAc 25 mM, but it becomes 
broader. 

 
Figure 76 - Normalized CCS distributions of CBA+dA7-. Each anion has a single distribution at low 
activation (F350V - black) that extends towards a second one at high activation (F600V – red), 
similarly to MN47-. 

At low activation we found that MN19-A7- and OR8-A7- have two CCS distributions: one major 
and narrow between 984 and 996 Å2; a second between 1045 and 1069 Å2 (for OR7-A7- it is 
not resolved or absent). 

We speculate that the dA overhangs (stem1 -Figure 71), that may compact upon transfer in 
gas phase[64], are compatible with the major and compact distribution. In this sense, the 
second distribution (close to the CCS distribution of MN47-) could be attributed to a memory 
(in gas phase) of folded aptamer in solution. From 1H-NMR spectra (Figure 73) we may support 
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this hypothesis of the minor CCS distributions for MN19-A7- and OR8-A7- in Figure 76, based 
on resonances of G4,31* in MN19-A and G31* in OR8-A, that contributes to 3’,5’-ends 
stabilization. However, a definitive evidence of dA contribution should be addressed by 
further NMR experiments (e.g. NOESY). Unfortunately, UV-melting are not informative 
because MN19-A and OR8-A melting profiles do not have a transition that would suggest a 
minor folded fraction (pp. 113,188).  
Conversely, at high activation all sequences show a single distribution between 1205-1244 Å2 

(Table 22). Thus, the starting shape for MN19-A7-, OR8-A7-, OR7-A7- is more compact 
compared to MN47- and the end point has a comparable shape for all the sequences. 

Table 22 – DTCCSHe of MN4 and dA constructs. Reported values are the average values with their 
relative standard deviation (tables at pp.  209-211). † CCS obtained from CIU experiments with 
CCS reconstruction at 350V, otherwise we used the step-field method. 

  350 V 600 V 
Ion z DTCCSHe (Å2) 

[MN4-zH+]z- 8 1158 ± 22  1351 ± 13† 
 7 1032 ± 13  1205 ± 5 
 

 
  1204 ± 8† 

 6 974 ± 7  966 ± 4 
 

 
  963 ± 2† 

 5 919 ± 16  934 ± 6 
[MN19-A-zH+]z- 8 1163 ± 9  1388 ± 22† 

 7 996 ± 9 Main 1244 ± 3† 
  1069 ± 18 Shoulder  
 6 962 ± 3  971 ± 5† 
 5 924 ± 14  938 ± 3† 

[OR8-A-zH+]z- 8 1356 ± 18  1374 ± 1† 

 7 987 ± 11 Main 1231 ± 3† 
  1045 ± 20 Shoulder  
 6 966 ± 1  973 ± 3† 
 5 944 ± 12  951 ± 8† 

[OR7-A-zH+]z- 8 1344 ± 4  1364 ± 10† 
 7 984 ± 7  1230 ± 3† 

 6 957 ± 1  967 ± 2† 
 5 935 ± 7  938 ± 2† 
 

 
   

 

To know if the differences found at low activation between MN47- and MN19-A7-, OR8-A7-, 
OR7-A7- are significant, we can look for similar trends in charge states 8-, 6- and 5- (Table 22). 

For 6- and 5- we observe that CCS values are all grouped to similar values, from which we 
expect a similar conformation in gas phase for all the ions. This would suggest that either no 
memory of conformation in solution is retained in gas phase or no conformational differences 
are present initially. 
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Oppositely, for 8- we have a more compact CCS for MN48- and MN19-A8-, between 1158-1163 
Å2, and a significantly extended CCS for OR8-A8- and OR7-A8-, between 1344-1356 Å2. This 
divergence is compatible with the lower base pairs content of the unfolded OR8-A and OR7-
A in solution. In support of this hypothesis, we have the absent UV melting and the missing 
peaks of stem1 nucleobases (G4,31*) in 1H-NMR spectra, for  (see UV and NMR pp.113,115). 

Therefore, the Coulomb repulsion is probably enough to extend OR8-A8- and OR7-A8- to higher 
values of CCS. Conversely, MN48- and MN19-A8- have more base pairs (attractive forces) that 
oppose to the Coulomb repulsion, resulting in lower CCS values for MN48- and MN19-A8- 
compared to OR8-A8- and OR7-A8-. This suggests that these base pairs are conserved in the 
gas phase. 

 

5.6.8 IM-MS of quinine complexes 
 

Comparing the CCS distributions of unbound aptamers with their complexes, we notice a 
double distribution for quinine complex of MN19-A7-, OR8-A7- and OR7-A7-, an intense one 
between 984 and 996 Å2, and a minor one between 1098-1116 Å2 (Figure 77). We can 
attribute the main distribution to a population where the dA overhangs (at the unpaired 3’,5’-
ends) compact during the transfer in gas phase[64]. The second distribution to a minor 
population that keeps a conformation more similar to MN4+Q7-, alike to what we concluded 
for free-aptamers low activation (Figure 76). 

Interestingly, we notice that quinine binding make visible the two distributions for OR7-A+Q7-

, whereas the second distribution is not well resolved for  OR7-A7-. 

Based solely on IM-MS results at low pre-IMS activation we can differentiate MN47- (1036 Å2) 
from the others dA constructs, because they appear to be more compact with CCS values 
between 984 and 996 Å2 . For MN19-A7-, OR8-A7-and OR7-A7- and relative quinine complexes 
we observe two distributions and a minimal increase in CCS likely due to the presence of 
ligand. 

These findings at low pre-IMS activation, taken alone, do not suggest a significant change 
upon binding according to the “adaptive binding” mode commonly attributed to aptamers, 
and cocaine binding aptamers in this case. 
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Figure 77 - Normalized CCS distributions of CBA+dA7- and quinine complexes at low pre-IMS 
activation (fragmentor 350V). Two distributions are visibles for MN19-A7- and OR8-A7- (blue and 
green) and for MN19-A7-, OR8-A7-and OR7-A7- quinine complexes (yellow and green). The minor 
distribution in green is attrributed to a folded complex alike to MN47- and MN4+Q7-, whereas 
blue and yellow are compact populations due to dA overhangs (see text). 

 

However, comparing the CCS distributions at 600V of MN47- and CBA-dA7- (Table 22), we think 
that base pairs are preserved in gas phase. If this is true we can discriminate the sequences 
over their stability in gas phase of these ions, by observing how each sequence reacts to the 
pre-IMS collisional activation activation. 

 

5.6.9 Collisional induced unfolding of MN47- and CBA+dA7- 
 

To check if the IM-MS preserves a memory of the fact that MN4 is folded, MN19-A is partially 
folded in solution whereas OR8-A and OR7-A are unfolded, we used the IM-method “collision-
induced unfolding” (CIU - p.22). If a memory of the conformations in solution is preserved in 
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gas phase, we expect a different sensitivity of each sequence to pre-IMS activation. We 
performed these experiments on MN47- and CBA+dA7- by varying the pre-IMS activation 
(fragmentor voltages between 350 and 600V by steps of 10 V). 

Charge state 7- of aptamer MN4 is used as main example: its CCS distribution change 
completely from a single ensemble at 1037 Å2 to one at 1197 Å2 (Figure 66). However, at the 
same voltages MN47- still undergoes a progressive NH4+ declustering (lost as NH3) (Figure 78). 
Thus, collisional activation causes both NH4+ adduct removal and the extension of MN47-. We 
recall that incomplete declustering at low activation energies is typically more acute in DNA 
and RNA than for proteins of the same size, because of the physiological counterion cloud 
that surrounds nucleic acids (i.e. phosphate backbone) [156]. 

 
Figure 78 - Collisional activation on MN47- cause NH4

+ declustering, that accompain CCS 
extension. 

When building a CIU plot for MN47- we can integrate the signals of either the declustered ion 
or the entire NH4

+ adduct distribution (Figure 79). The 2D-plot on MN47- without NH4
+  with 

false colour rendering between 350 and 450V (intensities normalized per voltage segment) 
exhibits a dotted distribution due to the low signal-to-noise ratio of declustered MN47- at low 
voltage. If one considers the entire NH4

+ adduct distribution (Figure 79A-right), the 2D plot 
has a more uniform rendering. However, this latter choice also results in a shifted transition 
point, because aptamers with adducts are more compact. This shift is clearer in the 
breakdown diagrams: the transition voltage is shifted at 529V if one account for NH4

+ adducts 
(compared to 521 V for the fully desolvated MN47-). We conclude that, for the CIU plot to 
render only the unfolding effect, it is better to consider just the declustered ion.  
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Figure 79 - A. CIU plots considering declustered MN47- (left) or with 5 NH4

+ adducts (right). B. 
Breakdown diagram from the CIU plots. A sigmoidal fit gives 521 V as CCS mid-point transition. 

However, the information of NH4
+ declustering is missing on the single CIU plot in itself, as 

well as on the derived breakdown diagram. In Figure 80 we propose a way to depict together 
the dissociation of NH4+ and the extension of MN47-. 
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Figure 80 – CID/U breakdown curves of MN47- (M7-). Relative aboundance of each population is 
reported for each voltage (method at p. 48) . Compact and extended form are marked as C and 
E, and the number of adducts are reported in brackets. CCS transition considering only 
desolvated ion is marked with a vertical dotted line, transition considering the NH4

+ series cross 
the 0.5 horizontal dotted line (from Figure 79). 

We underline that no background subtraction has been done, resulting in a significant portion 
of extended MN47- (M7-E) at low voltages, as well ascompact MN47- (M7-C) at high voltages. 
This is due to the background currents at those arrival times. 

This CID/U breakdown curve is suited to describe all the species involved in both unfolding 
(U) and dissociation (D), and allow us to extract:  

1. the removal of NH4
+ adducts from compact MN47- (M7-C) starts at 425 V, and precedes 

the formation of extended MN47- (M7-E) which starts at 450V; 
2. The CIU considering the NH4+ adducts is shifted to 529 V because of the intensity 

contribution of M7-
E (1-5); 

3. M7-
C (0) and M7-

E (0) intensities are equal at 521 V, the transition voltage obtained from 
CIU of only declustered ions ( 0 NH4+); 

More generally, we can follow the reactions (in gas phase), dissociation of NH4
+ and 

conformational extension, reported in the scheme of Figure 81.  
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Figure 81 - Reaction scheme for NH4

+ desolvation and unfolding (Compact, Extended) on MN47- 
(M7-). MC

7-(0) → ME
7-(0) is the extension followed in CIU in Figure 79A. These are reactions in 

gas phase, thus the use of single arrows because are not equilibria.  

The aptamers with fewer base pairs but same total length (MN19-A, OR8-A and OR7-A) show 
a similar removal of NH4+ adducts accompanied by the extension of the charge state 7- (Figure 
82), and a two-state CCS transition with no intermediate population (Figure 82A and B). 

Interestingly, the aptamers are in the same relative kinetic stability order in the gas phase as 
the stability order in solution (UV-meltings at p.113 and 188). This suggests the preservation 
of base pairing interaction from solution to gas phase and allow to discriminate MN4 from 
the three constructs MN19-A, OR8-A and OR7-A. 
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Figure 82 - A. CIU plots of declustered MN19-A7-, OR8-A7- and OR7-A7-; B. CIU breakdown 
diagram of M(0); C. CID/U breakdown curve of each ion shows the loss of NH4

+ adducts during 
the transition. Boltzmann fit fails for these data sets. Transition points (crossing of follow line 
with ±5V estimation) are reported with double arrows on CID/U breakdown curves.   
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The CIU plots of Figure 79 and Figure 82 highlight that it is not possible to differentiate 
whether aptamers were folded or unfolded in solution based on their gas-phase unfolding 
pathway: folded aptamers (MN4, MN19-A) unfolded ones (OR8-A, OR7-A) unfold via a two-
state transition. In addition, the orders of magnitudes of the collision cross sections of the 
states are similar. However, we can differentiate the sequences based on the observed 
relative gas phase stabilities. The breakdown diagrams, from CIU plots, show that the lower 
is the base pair content, the lower is the transition voltage. 

 

 
Figure 83 - The CIU transition points of charge state 7- increase with the base pair content of 
the ion. Note that all ions have the same chain length of 36 nt (Figure 71Errore. L'origine 
riferimento non è stata trovata.). 

We therefore propose the following mechanism:  

I. Aptamer structures undergoe a compaction during their transfer in gas phase (ESI 
process). We suggest by phosphates auto-solvation alike to B-DNA helices, 
previously reported from our lab [64]; 

II. Collisional activation induces the unfolding and dissociation of base pairing. 

 

 
Figure 84 – Putative unfolding mechanism for cocaine binding aptamer ions. After compaction 
upon ESI (alike B-DNA helices), pre-IMS collisional activation breaks the base pairing pattern in 
a unique step. 
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5.6.10 CIU of aptamer-quinine complexes 
 

Following the same approach for charge state 7- of the aptamers alone, we also carried out 
the CIU experiments in presence of one equivalent of quinine for MN4 (10 µM DNA and 10 
µM quinine). This little shift is due to the lower intensity of MN47-. However, we do not think 
that is significant, especially if the others sequences would not change.  

For MN4+Q7- (ML7- in Figure 85) we observe that the pre-IM collisional activation induces I) 
NH4+ dissociation from both M7- and ML7- and II) the ligand dissociation (conversion of ML7- 
to M7-). These two types of information are missing on the CIU plot reconstructed on the ML7- 
ion (Figure 85B). From the derived breakdown diagram (Figure 85C) we have a CCS transition 
at 574 V that suggests a partial extension of MN4+Q7- just before complete dissociation, and 
a stabilization compared to MN47- without ligand.  
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Figure 85 -  A. Collisional activation on MN4+Q7- cause NH4

+ removal and ligand dissociation; B. 
CIU plot considering declustered MN4+Q7-; C. The sigmoidal fit of intensity points diagram gives 
574 V as CCS transition point (filled arrows); D. CID/U diagram of MN4+Q7-(ML). Compact and 
extended form are marked as C and E, and the number of adducts are reported in brackets. 
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However, this still does not represents all of the concomitant events, as the ligand dissociation 
is not shown. We thus constructed the CID/U breakdown diagram of MN47- and MN4+Q7- 
(Figure 85D) to portray together the dissociation of NH4+, ligand, and the unfolding of all ions 
(Figure 86).  

 
Figure 86 - CID/U breakdown diagram of MN47- (M - cyan) and MN4+Q7-(ML - red). Compact and 
extended form are marked as C and E, and the number of adducts are reported in brackets. CCS 
transition point for M7- and ML7- are reported as vertical dotted lines. 

The CID/U breakdown diagram of MN47- (M7-) and MN4+Q7- (ML7-) gives a global vision on 
how the relative abundances vary with the “pre-IMS” activation (fragmentor voltage): 

I. At low voltages (350-475 V) the ratio M/ML remains substantially unchanged. Only 
partial NH4

+ declustering (i.e. MLC (1-5) to MLC (0)) occurs between 450 and 475 V.  
II. From 475 V on, the ligand dissociation becomes substantial, and free-aptamer M is 

progressively populated, mainly in the extended form ME. 
III. The range from 475 to 600 V, ligand dissociation and NH4+ declustering occurs at the 

same time. For this “middle” ions of the plot may result graphically distorted over the 
total intensity, as is the case of MLE and MC (relative variations remains unaltered). 

Thus we conclude that: a. dissociation (i.e. NH4+ , ligand) and extension occur in parallel; b. 
ML7- (MN4+Q7-) does not extend significantly before dissociation; c. M7- (MN47-) extends 
following the dissociation of NH4

+.  

The scheme in Figure 87 summarizes the reactions that may occur between M7- and ML7- 

(NH4
+ solvated or declustered) ions.  
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Figure 87 - Reaction scheme of dissociation and extension of ions MN47- and MN4+Q7-. The most 
probable events, deduced from CIU and CID/U are marked with blue dashed arrows. 

Observing the intensities distributions (Figure 86) we propose the mechanism highlighted in 
blue in Figure 87. MLC7-(1-5) loses its NH4+ adducts and dissociate, without showing any 
extension. Finally the MC7- (0) populated this way, undergoes the extension observed in CIU 
plot and CID/U diagram (Figure 86). The CCS transition at 574 V for MLC7-, in Figure 85D, could 
represent a useful information to differentiate M7- and ML7-in terms of gas phase stability. 

With this reaction scheme, one can interpret CIU plots and CID/U diagrams of MN19-A, OR8-
A and OR7-A in presence of Q (Figure 88,Figure 89 and Figure 90). We know that these 
aptamers have a lower affinity for quinine, because of the missing base pairs at 3’,5’-end 
(stem1) compared to MN4[88]. Thus, the complex abundance is lower (red areas of CID/U 
diagrams - Figure 88C,Figure 89C and Figure 90C). The ML7- CIU plots are difficult to interpret 
because quinine dissociation is not represented (false rendering from the intensity 
normalization and the concomitant ligand dissociation), whereas we included this 
information into CID/U plot.. We see on the CID/U breakdown diagrams in diagrams (Figure 
88C,Figure 89C and Figure 90C) that the intensity of ML7-  is significantly lower compared to 
M7-. The “two overplayed CIU plots” is a signal-to-noise problem.  
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Figure 88 – Ion extension represented as A. CIU plot of declustered MN19-A7- (M7-) and MN19-
A+Q7- (ML7-), and relative B. breakdown plots (as relative aboundances of extended and compact 
form); C. CID/U diagram for MN19-A7- and MN19-A+Q7-; (DNA 10 µM, quinine 10 µM, NH4OAc 
25 mM).  
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Figure 89 – Ion extension represented as A. CIU plot of declustered OR8-A7- (M7-) and OR8-A+Q7- 
(ML7-), and relative B breakdown plots (as relative aboundances of extended and compact form); 
C. CID/U diagram for OR8-A7- and OR8-A+Q7-; (DNA 10 µM, quinine 20 µM, NH4OAc 25 mM).  
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Figure 90 - Ion extension represented as A. CIU plot of declustered OR7-A7- (M7-) and OR7-A+Q7- 
(ML7-), and relative B. breakdown plots (as relative aboundances of extended and compact 
form);C. CID/U diagram for OR7-A7- and OR7-A+Q7-; (DNA 10 µM, quinine 20 µM, NH4OAc 25 
mM).  
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Even if acquired in excess of ligand, the very low signal intensity of quinine complex for MN19-
A, OR8-A and OR7-A prevents us to say if free-aptamer have a different kinetic stability and 
quinine complex. 

Here we underline a limitation of our instrument design: we can’t m/z-select prior to the drift 
tube. Consequently, we encounter a misleading CIU contour plot for ML7- because signal 
intensity varies. Additionally, without m/z-selection we cannot be certain if the complex 
dissociates before extension, generating a compact free-aptamer (filled arrows - Figure 87). 
We cannot exclude a priori that dissociation may occur after extension, generating an 
extended aptamer (dotted arrows - Figure 87). Actually, none of the intermediates (Mcompact 
or MLextended) is very abundant at any of the intermediate voltages. Further investigations are 
needed using a different instrumental design that allows m/z-selection (to avoid dissociation) 
before activation and IMS. 

 

5.7 Conclusions  
 

We studied a series of RNA and DNA aptamers and investigated whether the conformational 
changes upon ligand binding are transposed into the gas phase when probed by ion mobility 
spectrometry. 

For the four RNA aptamers of the quantitative MS part, (MGA, 1FMN, 1NEM and 1TOB) we 
observed similar CCS distributions for both free and bound aptamers. This may suggest that 
either aptamers do not significantly change their shape upon ligand binding in solution, or 
that we observe ions that went through a compaction during the transfer in gas-phase. In this 
regard, our lab previously showed that DNA anions, at low charge states, undergo a 
compaction upon ESI and transfer in gas phase[64]. A similar phenomenon is probably 
responsible for the impossibility to differentiate the single unbound aptamer from its complex 
solely on their ion mobilities (at low pre-IMS activation). 

High pre-IMS activation induces only a small compaction on the CCS distributions of both free 
and bound aptamers. We suggest that the small CCS difference (increase) observed for these 
aptamers upon binding (Table 21) are compatibles with ligand binding modes: via 
intercalation for MGA[32] and 1FMN[35a], and encapsulation for 1NEM[82] and 1TOB[83a]. These 
binding modes are likely to induce small change in aptamer conformation. 
Phenomenologically, we can describe the free-aptamer alike a sphere that increases its 
volume to accommodate the ligand. 

Only between 1FMN bound aptamer and its Mg2+ adducts, we observe a small but significative 
difference in CCS distributions, that support the hypothesis of different conformational 
ensembles for desolvated and Mg-bound complex. The Mg2+ ions may contribute to shield 
the negative charges on the glucophosphate backbone, reduce the Coulomb repulsions, and 
facilitate some chain contacts within the secondary structure of the bound 1FMN. 

A clearer example of RNA conformational change, in presence of metal additives, is 
tetracycline RNA aptamer (TCA). We observed a pronounced difference between free TCA 
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and its metal bound complex. The tertiary contacts mediated by Mg2+ in bound TCA give two 
extended populations corresponding to the partially and fully folded complex[140]. From IM-
MS we observe three distinct populations: a compact CCS population for free TCA and two 
CCS populations for its complex, as function of the Mg2+ and K+ adducts (Figure 62). This 
suggest the absence of tertiary structure in free TCA that may compacts upon ESI and transfer 
in gas phase[64], whereas the tertiary contacts prevents the compaction in the tetracycline 
complex. These observation are in agreement with the TCA binding scheme documented in 
literature at low (~ 200 µM) Mg2+ concentrations (Figure 60)[140]. 

 

For DNA cocaine binding aptamers the conformational changes upon quinine binding are 
widely reported in literature[35b, 79c, 87-88, 144a, 145, 157]. In the experimental design, it was 
important to add dA overhangs at 3’,5’-ends to have ions of comparable degrees of freedom, 
without altering the core secondary structure. 

At low collisional activation, we observed similar CCS distributions for both free and quinine-
bound aptamers, similarly to what observed for MGA, 1FMN, 1NEM and 1TOB RNA aptamers. 
However, comparing different aptamers within the series, we noticed that known folded 
sequences (MN4, MN19-A) and unfolded ones (OR8-A, OR7-A) all show a significant 
compaction, which depends on the charge state (5.6.6 – p.118). Charge state 7- is the most 
interesting one: at low activation MN19-A7-, OR8-A7-, OR7-A7- aptamers have a main CCS 
distribution that suggest a conformation more compact to MN47-. A second CCS distribution, 
comparable to MN47-, is observed and would suggest a minor fraction of folded aptamer. We 
believe that dA overhangs may help in 3’,5’-ends stabilization but compacts more in gas phase 
than MN4 unmodified ends, in light of the absent (or minimal) dA-dA base pairing. 
Speculations on the characteristic NMR imino resonances of stem1 and junction nucleobases 
in MN19-A, OR8-A (5.6.5.2 – p.115) support this thesis, but further two-dimensional NMR 
investigation in our conditions are required. 

Charge state 7- shows equally extended CCS distributions at high pre-IMS activation, 
suggesting the same extended conformational ensemble for all aptamers. Unfortunately, in 
quinine complexes the ligand is completely lost at maximum pre-IMS activation, so no 
comparison can be made. However, aptamers can be differentiated following the extension 
pathway of charge state 7- (MN47-, MN19-A7-, OR8-A7-, OR7-A7-). Gradually increasing the pre-
IMS collisional activation, we revealed a common two-state transition, which occurs at lower 
voltages if the number of base pairs is lower. This tells us that base pairing interactions prior 
to ESI are preserved in the gas phase.  

It was also possible to observe a different transition voltage for MN4+Q7- from free aptamer 
(Figure 80 and Figure 85). However, this was not possible for the other complexes, because 
of the low quinine affinity that accompanies the removal of base pairs in the structure (Figure 
88,Figure 89 and Figure 90). We suggest to test higher excess of quinine or ligands with higher 
affinity that may not undergo complete dissociation, or to work with a different instrument 
allowing precursor ion m/z selection. The absence of mass selection before the IM drift tube 
obliges us to activate all ions generated from the source. This could be a disadvantage when 
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fragile ions dissociate during the pre-IMS activation, because other reactions take place in gas 
phase during the “CIU” experiment in the same energy range. In our case, we couldn’t address 
unambiguously the sequential order of dissociation/extension for quinine complexes. In this 
regard, further investigations with instruments capable to perform m/z-selected IMS would 
be useful to asses if quinine-bound aptamers (i.e. MN4+Q7-) do extend before dissociation or 
not. 

Finally, we also highlight a limitation in the CIU plots. The intensity normalization per segment 
could provide a false rendering because does not account for the variations of global signal 
intensity, expecially when collisional activation provoque dissociation events that vary the 
relative abundance of different ions. This was the case of cocaine binding aptamers’ adducts 
and aptamers’quinine complexes. To include this information, we propose a new plot for 
breakdown curves called “CID/U” (Figure 80). 

 

In summary: 

1- We observed only small ΔCCS upon ligand binding on RNA aptamers as MGA, 1FMN, 
1NEM and 1TOB. Ligand may be associated to small conformational change 
(intercalation, encaplsulation) to be detected in gas phase. 

2- Aptamer complexes with a tertiary structure are likely to give conformational 
ensembles that prevent gas phase compaction. Thus we can differentiate 
unstructured (free) aptamers from their complexes by IM-MS. 

3- Sequence modifications that do not alter aptamer’s core sequence are useful in 
comparing a series of similar aptamers. 

4- CIU experiments can be used to discriminate a series of similar aptamers based on 
their different base pairs content (i.e.: CBA-dA). 

5- We propose a new CID/U plot to show unfolding and dissociation events on the same 
graph. 
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6. General conclusions and perspectives 
 

6.1 Quantitative MS 
 

In chapter 4, we showed that NH4OAc and TMAA electrolytes could be used in ITC and do not 
alter the binding capabilities of RNA aptamers in solution. For example, the thermodynamic 
parameters derived for the malachite green aptamer (MGA) are in line with the literature 
values in other non-volatile buffers. This suggests that the ligand binding mode remains 
unchanged (entalpically driven). In support of this observation, the KD values obtained in 
NH4OAc and TMAA are comparable within the expanded uncertainty range (95% confidence 
interval). 

More importantly, the KDs derived from native MS titrations are also comparable to those 
derived from ITC within the expanded uncertainty range. These observations prove that ITC 
and native MS, when carried out in similar experimental conditions ([RNA], [electrolyte], T), 
report comparable KDs. In this work we detected KDs from 30 µM, and estimated that the 
lower limit is ~50 nM. 

In addition to reliable KD determination, aptamers analysis via native MS can be of great 
interest to rapidly screen aptamer binding. The stoichiometry of ligands and additives (Mn+, 
co-factors) can be unambiguously assigned, and this is important to guide the choice of data 
fitting models in other biophysical methods on the same molecular system. 

 

6.1.1 The choice of the electrolyte 

The outcome of the ESI process (charge state distribution, peak intensities) is very analyte 
dependent. The choice of the supporting electrolyte (NH4OAc, TMAA) can also influence some 
aspects of this process and change the appearance of the MS spectrum. The charge state 
distribution changes with the nature of the supporting electrolyte and its concentration. 
While ammonium salts favour higher charge states distribution (especially at high 
concentrations) [148], lower charge states are favoured in alkyl-functionalized ammonium 
salts, like TMAA [125]. 

TMAA provides also more spaced and less abundant adducts compared to NH4OAc, resulting 
in better signal-to-noise ratios. This reduces the uncertainty on peak integration when 
quantification is required, and Mg2+ adduct series are more easily revealed. On the 1FMN 
aptamer, we observed a higher number of Mg2+ adducts and higher ligand affinity (lower KD) 
compared to the same conditions in NH4OAc. Our interpretation is that NH4+ may compete 
with Mg2+ for RNA binding, whereas the bulky TMA+ cations does not. 

For these reasons, we conclude that TMAA is adapted to study aptamers and their 
interactions with ligands and additives such as Mg2+. We recommend to explore TMAA as 
supporting electrolyte for aptamer analysis, and nucleic acids in general, but also to check 
that the molecular process is identical to that in NH4OAc. 
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6.1.2 Relative response factor correction  
 

The relative response factor correction on the analysed RNA aptamers was relatively small. 
This means that either the conformational change upon ligand binding is not sufficient to 
significantly change the ESI response of aptamers and complexes, or that even if the free and 
bound aptamers have different conformation in the bulk solution, they converge to more 
similar ones before their final charging/declustering. Therefore, the assumption of equal 
response factors (ratio of response factor equal to 1) is justified. Indeed, when ranking 
aptamer or ligand series, what matters is to have significant differences in the order of 
magnitude of KD values.  

MS peaks’ signal-to-noise ratio influence the calculation of relative response factors. These 
factors are themselves source of uncertainty that sums to the integral uncertainty (i.e.: 
intensity ratios) in KD determination. Therefore, is highly recommended to use MS peaks with 
the best signal-to-noise ratio for both relative response factor calculation and the eventual 
concentration correction. 

 

6.1.3 One point measurement, full titration and data treatment 
 

Whether relative response factor correction is taken into account or not, KDs could be 
determined with a single point measurement. This method have minimum time and sample 
consumption but should be chosen on a very well-known ligand-aptamer couple, to minimize 
the sources of uncertainty ([ligand], [aptamer], model assumption…). A full titration provides 
a larger set of information and lower uncertainty, compared to a single point measurement.  

In general, on MS titration data elaboration we recommend to do a complete data treatment 
of each replica until non-linear fitting for KD determination (method 1). This afford a better 
control on uncertainties associated on KDs, the presence of outliers (or replicas) and the 
eventual relative response factors (if any). 

6.1.4 Saturated binding and detection limits 
 

However, in case the aptamer concentration was too high compared to the KD (binding 
reaction too displaced toward the products), the uncertainty on KD would be high as well. In 
this case, full titrations should be repeated at lower aptamer concentrations, to afford a 
reliable KD determination. A disadvantage of aptamer dilution is the risk to reach the 
detection limit of the instrument: while equilibrium is displaced towards the reactants, the 
overall signal response is also lowered. It is the case of aminoglycosides aptamer, where the 
dilution below 50 nM give signal loss on our instrument.  
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6.2 Ion Mobility Spectrometry 
 

6.2.1 Tertiary structural elements prevent RNA compaction upon ESI 
 

The comparable CCS distributions observed for free and bound form of MGA, 1FMN, 1NEM 
and 1TOB aptamers, suggest that either their conformational change upon binding in solution 
is not significant, or that ions went through a compaction during ESI. These four RNA aptamers 
have a hairpin-loop secondary structure and ligands are bound via intercalation or 
encapsulation, with very little conformational change. We think that RNAs without a rigid 
secondary (e.g.: G-quartets)[122] or a tertiary structure that preserves their native 
conformation during ESI and transfer in gas phase, are likely to compact with the mechanism 
of phospodiesters pairing (auto-solvation) recently documented in our lab for low charged 
anions of DNA double helices [64]. Only the 1FMN complex in presence of Mg2+ gave a small 
but significant difference in CCS distributions. We think that Mg2+ may stabilize a 
conformational population that resists gas phase compaction. 

In support to this hypothesis for 1FMN complex, we observe the conformational change of 
tetracycline RNA aptamer (TCA) upon ligand binding. In presence of ligand, MgCl2 and KCl (100 
µM each), we discern three conformational populations: the unbound aptamer, the partially 
folded complex and the fully folded TCA, in line with previous in solution studies[140]. The CCS 
values of unbound TCA are significantly lower, indicating a more compact unbound aptamer 
compared to the complex (both partially and fully folded). This would appear counterintuitive 
to what we expect from unfolded RNAs in solution, but if we account for gas phase 
compaction we have a meaningful picture: The tertiary contacts formed with ligand and metal 
cations (Mg2+) prevent the full compaction of the TCA complex, whereas the unbound 
aptamer undergoes a full compaction alike to what described for DNA double helices. This 
explains the three population observed and their relative order in terms of CCS. 

Interestingly, we observe that TCA was unable to bind its ligand in the absence of MgCl2 and 
that its charge state distribution was much lower in the same supporting electrolyte (TMAA) 
without MgCl2 and KCl. 

 

6.2.2 Some secondary structure aptamers can be discriminated via IM-MS 
 
The cocaine binding aptamer series is marked by differences in secondary structures. Their 
different sequence length obliged us to add some extra dA hangovers on the 3’,5’ ends to 
have ions of comparable numbers of degrees of freedom. At low pre-IMS activation, the 
charge state 7- allows to distinguish only the fully folded aptamer MN4 from the others. 
Shorter aptamers MN19-A, OR8-A and OR7-A all show a more compact CCS distribution. 

Contrarily to aptamers in chapter 4, it was possible to discriminate cocaine-binding aptamers 
progressively increasing the pre-IMS activation: charge state 7- the four aptamers show a two-
state transition, from their respective compact CCS distribution to a similarly extended one. 
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Interestingly, the relative order at which the transition occurs is correlated with the base pair 
content, and the same as observed in solution with UV-melting. We conclude that the 
nucleobase pairing is preserved during ESI and that the stability order reported in gas phase 
and in solution depicts the separation of base pairs. 

Unfortunately, at low activation the quinine complexes show just a small increase of CCS with 
similar distributions to their free-aptamer, so we could not infer any conformational change. 
Moreover, only MN4 quinine complex was distinguishable with the increasing pre-IMS 
activation from its free-aptamer. The other complexes undergo dissociation are lost during 
collisional activation. We think that cocaine-binding aptamers do have different gas phase 
stabilities but this observation was possible only for MN4. On the other aptamers, the lower 
quinine affinity and the ligand dissociation, prevent to observe the extension to a population 
of higher CCS.  

 

6.2.3 CIU/D breakdown curves 
 

In chapter 5 we observed for the cocaine binding aptamers that ligands and volatile salts 
adduct could dissociate from the aptamer-ligand complexes in similar pre-IMS activation that 
cause unfolding. This results in a false rendering on conventional “CIU plots” [158], wherein the 
normalization per segment does not account for the variation of global intensity. When the 
unfolding of fragile ions is studied at variable pre-IMS activation, we recommend to build full 
breakdown curves, including both CCS and m/z partitioning of the ion signal. In this work we 
called such diagram as “CID/U” breakdown curves and used color codes to distinguish each 
ion among the stacked breakdown curves. 
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6.3 Outlook 

In this work we showed that aptamers and their complexes can be analysed in volatile 
electrolytes such as NH4OAc and TMAA. What matters is the ionic strength provided by the 
electrolyte and the eventual presence of metal additives. 

A valuable outlook of the first part this work would be to: 

- Determine whether TMAA systematically favours the Mg2+ binding to RNA, by 
comparing the number of specific Mg2+ adducts visible in TMAA and NH4OAc on 1FMN 
and other Mg2+ dependent aptamers. This work can be done using a control sequence, 
similarly to what described by Klassen [159] and Rabin [98]; 

- Extend the ITC and native MS comparisons to other aptamers of diverse structure and 
size, to strengthen or broaden our conclusions. In particular, we would be curious to 
test the response factors for other aptamer systems with large structural change and 
some difference in shape seen by ion mobility. The TCA systems could be a good 
candidate, but we would need a synthetic TCA sequence, to minimize salt 
contaminations.  

- Competitive titrations methods could be envisaged to overcome the lower 
determination limit of 50 nM, and better estimate very low KD values of  complexes 
such as aminoglycosides and tetracycline aptamer. 

 

A valuable outlook of the second part of this work would be to: 

- Simulate the gas phase transfer of RNA double helices and hairpins, to understand if 
compaction upon ESI and gas phase transfer is applicable to such RNA structures, alike 
to DNA double helices. 

- Expand the variety of secondary and tertiary structures to test the resistance of such 
nucleic acid structures capable to resist to compaction upon ESI. Some examples of 
aptamers with tertiary contacts are TPP [160], SAM [161] and guanine [162] aptamers 
domains of the relatives riboswitches. 

- Test the gas phase stability of cocaine binding aptamers bound to other ligands than 
quinine, and eventually on other instruments with m/z-selection prior IMS (e.g. 
Waters Synapt series) to determine unambiguously if extension occurs before or after 
dissociation of the complex. 

- Generalize the use of “CID/U” breakdown diagram to multiple ions with more than 
two CCS transitions. This could be particularly valuable for proteins. 
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145 

7. Annexes 
 

7.1 Material and Methods 
7.1.1 R-script file imputs for ATD extraction 
 

 
Figure 91 - Example of m/z ranges for peak integration (MGA aptamer) 

 

 

 

  

Ranges for Peak (fully desolvated only) 
(m/z)_i (m/z)_f Output file 

879.8 882.4 001PeakT6.txt 
876.8 879.4 002BackgroundT6.txt 
2048 2050.5 003PeakM6m.txt 

2042.5 2045 004BackgroundM6m.txt 
2102.5 2105.5 005PeakM+L6m.txt 
2042.5 2045 006BackgroundM+L6m.txt 
   
Ranges for Peak + 3 adducts 
(m/z)_i (m/z)_f Output file 

2048 2080 003PeakM6m.txt 
2015 2047 004estrattoBgM6m.txt 

2102.5 2134.5 005PeakM+L6m.txt 
2015 2047 006BackgroundM+L6m.txt 
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7.1.2 R script for Integrals from Agilent 6560 
 

 

 

 

 

 

  

#######INPUT###### 
################## 
 
#you should set the work directory as the same of files:  
#window on the right 1) find the directory; 2)More>set as working directory 
 
#####Give the name of species 
#Exemple: 
#If one: Name_Species = "1NEM5m" 
#If more: Name_Species = c("1NEM5m","dT6") 
 
#these are just the labels of each integral. 
#NOTA BENE: write them in the right order! 
Name_Species = c("T6", "1NEM5m", "1NEM-neo5m") 
 
#these are the patterns to insert: 1st - 2nd 
#the script see them as couples...so the first file red with "pattern_file" - the second 
with "pattern_background" 
pattern_file = "Si"   
pattern_background ="Bg" 
 
#name of the output file 
Name_File = "Intensities1NEM+0" 
#click "Source" & be happy 
############################## 
 
files = list.files(path= getwd(), pattern = pattern_file) 
files_background = list.files(path= getwd(), pattern = pattern_background) 
 
name = 1 
 
for(i in 1:length(files)) { 
   
  file = read.table(files[i], header=TRUE) 
  background = read.table(files_background[i], header=TRUE) 
   
  Intensity = sum(file$Int, file$Int.1, file$Int.2, file$Int.3, file$Int.4) -  
    sum(background$Int, background$Int.1, background$Int.2, background$Int.3, 
background$Int.4) 
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7.1.3 Python Script for integrals Thermo EXACTIVE and CIU/CID plots 
 

 

  

testlist = list() 
 
def PeakIntegrator(file,lomz,himz): 
     
    mz = [] 
    intensity = [] 
     
    File = open(file) 
    lines = File.readlines() 
    size = len(lines) 
    File.close() 
 
    for j in range(size):              
        splitline = lines[j].split() 
        #print(splitline[0]) 
        mz.append(float(splitline[0])) 
        intensity.append(float(splitline[1]))  
     
    prange = [] 
    low = 0 
    hi = 0 
    n=-1     
    for j in range(len(mz)): 
        #print(mz[j]) 
        if(mz[j] >= lomz and mz[j] <= himz): 
            #print(prange) 
            prange.append(j) 
            n=n+1 
 
    low = prange[0] 
    hi = prange[n]  
    sumfrag = 0 
    sumtotal = 0 
    for j in range(low, hi): 
        sumfrag = sumfrag+intensity[j] 
 
    return sumfrag 
     
def PeakSum(filelist,lomz,himz):# filelist = list containing file names+directory, lomz 
= low range for sum, himz = high range for sum. 
    for i in range(len(filelist)): 
        holder = PeakIntegrator(filelist[i],lomz,himz) 
        print(holder) 
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7.1.4 Sigma Plot Scripts for CIU 
 

ATD to CCS conversion 

 
 

ATDs intensities normalization segment per segment 

 

 

jsv5G.; 
'col(1)=tA distribution@600V' 
'col(2)=counts of the distribution@600V'  
'cell(3,2)=calculated CCS'  
'cell(3,4)=peak center of the tA@390.5V' 
'cell(3,6)=z' 
'cell(3,8)=Mass of the ion' 
 
'define µ=(M*m)/(M+m)' 
cell(3,10)=(cell(3,8)*4)/(cell(3,8)+4) 
 
'define conversion factor --> a=(CCS/tA@390.5V)*(sqrt(µ)/z)' 
cell(3,12)=(cell(3,2)/cell(3,4))*((sqrt(cell(3,10))/cell(3,6))) 
 
'CCS reconstruction --> CCS=tA*a*(z/sqrt(µ)' 
col(4)=col(1)*cell(3,12)*(cell(3,6)/sqrt(cell(3,10))) 
col(5)=col(2) 
 

jsv5G., 
col(3)=col(3)/(max(col(3))) 
col(4)=col(4)/(max(col(4))) 
col(5)=col(5)/(max(col(5))) 
col(6)=col(6)/(max(col(6))) 
col(7)=col(7)/(max(col(7))) 
[…] 
col(28)=col(28)/(max(col(28))) 
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Figure 92 - Axes pattern for CIU plot rendering in SigmaPlot 12.5 (filled contour plot). 
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7.1.5 DynaFit Scripts 

 
Figure 93 - A. DynaFit script to fit MS titration points. We highlight the instruction “??” that 
compute the full confidence interval for the corresponding parameter. K1 = 1 is a realistic seed 
value to start the fitting algoritm. B. Example of input (plain text) files  with [L]tot versus [M]corr 
and [ML]corr per each titration point. 

 

 

 

[task] 
   data = equilibrium 
   task = fit 
       
[mechanism] 
   M + L <==> ML        :  K1 dissoc 
 
[constants] 
   K1 = 1 ?? 
 
[concentrations] 
   M = 10 
 
[data] 
  variable  L 
  directory C:\...\folder 
  file M.txt     |  response M = 1  | label M 
  file ML.txt     |  response ML = 1 | label ML 
 
[output] 
   directory  C:\...\folder\output 
 
[end] 
 

#[L]tot [M] corr 
0.00 10.0000 
3.00 7.78332 
5.00 5.32025 
7.00 3.62962 
9.50 2.31706 
10.00 1.99476 
11.00 1.75659 
12.00 1.68236 
15.00 1.0766 
20.00 0.72372 

A B 

#[L]tot [ML] corr 
0.00 0 
3.00 2.21668 
5.00 4.67975 
7.00 6.37038 
9.50 7.68294 
10.00 8.00524 
11.00 8.24341 
12.00 8.31764 
15.00 8.9234 
20.00 9.27627 
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Table 23 - Dynafit output summary of isobar of Figure 21 (p.42) 

 
 

  

Regression summary 
Levenberg-Marquardt Algorithm 

 
sum of squares 1.12877 
mean square 0.0564383 
r.m.s. deviation 0.237567 
relative r.m.s. (%) 2.37567 
R2 0.994684 
R2adj 0.994684 
log(determinant) 1.4429 
data points 20 
optimized parameters 1 
iterations 23 
subiterations 0 
elapsed time (sec) 0.062 
error status 1 
error message 

 

 

Par#Set Initial Final Std. Err CV (%) 

KD 1 0.598 0.046 7.7 
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7.2 Native MS and Calorimetry 
 

7.2.1 Malachite green aptamer - MS titrations 
 

MGA Mass ranges for data extraction 

Table 24 – m/z ranges for signal integration in MS titration and for IM-MS ATDs extraction. 

TMAA 100 mM 
desolvated  3 adducts  

m/zi m/zf  m/zi m/zf Ion 
879.8 882.4  879.8 882.4 T6 2- 
876.8 879.4  876.8 879.4 Background T6 2- 
1755 1757  1755 1789.5 MGA7- 
1750 1752  1720.5 1755 Background MGA7- 

1802.25 1804.25  1802.3 1836.75 MGA+Lig7- 
1750 1752  1720.5 1755 Background MGA+Lig7- 
2048 2050.5  2048 2069.5 MGA6- 

2042.5 2045  2026.5 2048 Background MGA6- 
2102.75 2105.25  2102.75 2124.25 MGA+Lig6- 

2042.5 2045  2026.5 2048 Background MGA+Lig6- 
2457.75 2460.75  2457.8 2484 MGA5- 

2454 2457  2430.8 2457 Background MGA5- 
2523 2526  2523 2549.3 MGA+Lig5- 
2454 2457  2430.8 2457 Background MGA+Lig5- 

      
NH4OAc 100 mM 

desolvated  3 adducts  
m/zi m/zf  m/zi m/zf Ion 
879.8 882.4  879.8 882.4 T6 2- 
876.8 879.4  876.8 879.4 Background T6 2- 
1755 1757.3  1755 1764.5 MGA7- 
1750 1752.3  1745.5 1755 Background MGA7- 
1802 1804.3  1802.3 1811.8 MGA+Lig7- 
1750 1752.3  1745.5 1755 Background MGA+Lig7- 
2048 2050.5  2048 2059 MGA6- 

2042.5 2045  2037 2048 Background MGA6- 
2102.7 2105.2  2102.7 2113.7 MGA+Lig6- 

2042.5 2045  2037 2048 Background MGA+Lig6- 
2457.7 2461  2457.7 2471 MGA5- 
2454.4 2457  2443.7 2457 Background MGA5- 
2523 2526.3  2523 2536.3 MGA+Lig5- 

2454.4 2457  2443.7 2457 Background MGA+Lig5- 
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Table 25 - - ESI relative response factors in TMAA 100 mM of MGA and MGA+L.. a. “σ” is the 
standard deviation across the replicas. 

 0 TMA+ adducts 
7m rSTD/rM σ a rSTD/rML σ a rML/rM σ a 

I 45.82  28.98  1.58  
II 42.57  34.10  1.25  
III 90.46  60.49  1.50  

Average 59.62 ± 21.85 41.19 ± 13.81 1.44 ± 0.14 
6m       

I 7.02  5.21  1.35  
II 6.88  5.44  1.26  
III 7.47  6.59  1.13  

Average 7.12 ± 0.25 5.75 ± 0.61 1.25 ± 0.09 
5m       

I 14.98  11.54  1.30  
II 14.80  11.79  1.26  
III 17.03  15.08  1.13  

Average 15.60 ± 1.01 12.81 ± 1.61 1.23 ± 0.07 
  

 3 TMA+ adducts 
7m rSTD/rM σ a rSTD/rML σ a rML/rM σ a 

I 16.77  11.73  1.43  
II 15.00  9.65  1.55  
III 30.06  18.39  1.63  

Average 20.61 ± 6.72 13.25 ± 3.73 1.54 ± 0.08 
6m       

I 2.90  2.02  1.44  
II 2.79  2.18  1.28  
III 3.35  2.67  1.25  

Average 3.01 ± 0.24 2.29 ± 0.28 1.32 ± 0.08 
5m       

I 4.69  3.04  1.54  
II 4.44  3.29  1.35  
III 5.84  4.22  1.38  

Average 4.99 ± 0.61 3.52 ± 0.51 1.43 ± 0.08 
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Table 26 - ESI relative response factors in NH4OAc 100 mM of MGA and MGA+L. a. “σ” is the 
standard deviation across the replicas.  

 0 NH4+ adducts 
7- rSTD/rM σ a rSTD/rML σ a rML/rM σ a 
I 2.10  1.62  1.29  
II 11.10  5.62  1.98  
III 3.58  2.22  1.61  

Average 5.59 ± 3.94 3.15 ± 1.76 1.63 ± 0.28 
6-       
I 0.58  0.57  1.02  
II 2.54  1.90  1.33  
III 1.00  0.66  1.53  

Average 1.37 ± 0.84 1.04 ± 0.61 1.29 ± 0.21 
5-       
I 5.09  2.51  2.03  
II 18.97  7.93  2.39  
III 8.53  7.50  1.14  

Average 10.86 ± 5.90 5.98 ± 2.46 1.85 ± 0.53 
  
 3 NH4+ adducts 

7- rSTD/rM σ a rSTD/rML σ a rML/rM σ a 
I 1.18  0.98  1.20  
II 6.44  3.39  1.90  
III 1.78  1.21  1.47  

Average 3.13 ± 2.35 1.86 ± 1.09 1.53 ± 0.29 
6-       
I 0.24  0.25  0.96  
II 1.14  0.86  1.32  
III 0.41  0.26  1.56  

Average 0.60 ± 0.39 0.46 ± 0.29 1.28 ± 0.25 
5-       
I 1.71  1.00  1.71  
II 7.36  3.08  2.39  
III 2.93  2.16  1.36  

Average 4.00 ± 2.43 2.08 ± 0.85 1.82 ± 0.43 
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MS KD method 1 - MGA TMAA  

 

Table 27 - Fitted KD for each MS replica of MGA in 100 mM TMAA following method 1; a. “σfit” 
is the uncertainty provided from Monte-Carlo algorithm of DynaFit. 

Replica per  
MGA 

 charge state 

0 TMA+ adducts 

Corrected Not corrected (rx/rx+1=1) 

7- KD (µM) σfit
a Log KD KD (µM) σfit

a Log KD 
I 1.38 0.11 -5.86 0.57 0.04 -6.24 
II 0.88 0.05 -6.06 0.58 0.03 -6.24 
III 0.88 0.06 -6.06 0.39 0.03 -6.40 
6-             
I 1.24 0.04 -5.91 1.18 0.04 -5.93 
II 1.18 0.04 -5.93 0.76 0.03 -6.12 
III 0.87 0.04 -6.06 0.67 0.04 -6.17 
5-             
I 1.34 0.02 -5.87 0.81 0.04 -6.09 
II 1.29 0.02 -5.89 0.85 0.04 -6.07 
III 0.86 0.04 -6.06 0.68 0.05 -6.17 

       
 3 TMA+ adducts 

 Corrected Not corrected (rx/rx+1=1) 
7- KD (µM) σfit

a Log KD KD (µM) σfit
a Log KD 

I 6.52 0.38 -5.19 3.81 0.25 -5.42 
II 9.99 0.71 -5.00 5.27 0.43 -5.28 
III 13.84 0.57 -4.86 7.08 0.33 -5.15 
6-             
I 1.23 0.02 -5.91 0.60 0.05 -6.22 
II 1.09 0.04 -5.96 0.67 0.05 -6.18 
III 0.96 0.06 -6.02 0.61 0.06 -6.22 
5-             
I 0.96 0.10 -6.02 0.37 0.10 -6.43 
II 0.80 0.09 -6.10 0.41 0.09 -6.39 
III 0.63 0.10 -6.20 0.29 0.09 -6.54 
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Method 1 - MS KD replicas of MGA in 100 mM NH4OAc 

Table 28 – Fitted KD for each MS replica of MGA in 100 mM NH4OAc following method 1; a. “σfit” 
is the uncertainty provided from Monte-Carlo algorithm of DynaFit. 

Replica per  
MGA 

 charge state 

0 NH4+ adducts 

Corrected Not corrected (rx/rx+1=1) 
7- KD (µM) σfit

a Log KD KD (µM) σfit
a Log KD 

I 1.48 0.15 -5.83 0.86 0.13 -6.06 
II 2.79 0.15 -5.55 0.77 0.10 -6.12 
III 0.90 0.08 -6.05 0.31 0.06 -6.51 
6-             
I 1.75 0.16 -5.76 1.70 0.16 -5.77 
II 2.52 0.15 -5.60 1.50 0.13 -5.82 
III 1.60 0.13 -5.80 0.71 0.08 -6.15 
5-             
I 4.96 0.28 -5.30 1.45 0.17 -5.84 
II 5.82 0.21 -5.23 1.34 0.14 -5.87 
III 3.11 0.20 -5.51 2.57 0.17 -5.59 

       
 3 NH4+ adducts 
 Corrected Not corrected (rx/rx+1=1) 

7- KD (µM) σfit
a Log KD KD (µM) σfit

a Log KD 
I 1.34 0.14 -5.87 0.91 0.12 -6.04 
II 3.32 0.18 -5.48 1.04 0.12 -5.99 
III 0.82 0.08 -6.09 0.35 0.05 -6.46 
6-             
I 1.70 0.17 -5.77 1.83 0.18 -5.74 
II 2.67 0.17 -5.57 1.62 0.14 -5.79 
III 1.92 0.15 -5.72 0.82 0.09 -6.09 
5-             
I 3.53 0.26 -5.45 1.32 0.18 -5.88 
II 5.56 0.24 -5.25 1.23 0.15 -5.91 
III 3.04 0.18 -5.52 1.88 0.12 -5.73 
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Figure 94 – Fitted isotherm binding curve of each MS replica for MGA ch st 7- in TMAA 100 mM. 
Integration strategies of 0 or 3 electrolyte adducts are reported, considering relative response 
factor (Rf) correction or assuming equal response factor (rx/rx+1=1). 
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Figure 95 – Fitted isotherm binding curve of each MS replica for MGA ch st 6- in TMAA 100 mM. 
Integration strategies of 0 or 3 electrolyte adducts are reported, considering relative response 
factor (Rf) correction or assuming equal response factor (rx/rx+1=1). 
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Figure 96 – Fitted isotherm binding curve of each MS replica for MGA ch st 5- in TMAA 100 mM. 
Integration strategies of 0 or 3 electrolyte adducts are reported, considering relative response 
factor (Rf) correction or assuming equal response factor (rx/rx+1=1). 
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Figure 97 - Fitted isotherm binding curve of each MS replica for MGA ch st 7- in NH4OAc 100 
mM. Integration strategies of 0 or 3 electrolyte adducts are reported, considering relative 
response factor (Rf) correction or assuming equal response factor (rx/rx+1=1). 
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Figure 98 - Fitted isotherm binding curve of each MS replica for MGA ch st 6- in NH4OAc 100 
mM. Integration strategies of 0 or 3 electrolyte adducts are reported, considering relative 
response factor (Rf) correction or assuming equal response factor (rx/rx+1=1). 
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Figure 99 - Fitted isotherm binding curve of each MS replica for MGA ch st 5- in NH4OAc 100 
mM. Integration strategies of 0 or 3 electrolyte adducts are reported, considering relative 
response factor (Rf) correction or assuming equal response factor (rx/rx+1=1). 
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MS log KD and ΔG° - TMAA 

Table 29 – Averaged KD, and calculated Log KD and ΔG°, from MS titration of MGA in TMAA 100 
mM; “σ” is the standar deviation over the replica; “Exp. σ” is the expanded uncertainty 
considering a 95% confidence interval with coverage factor of 4.303. 

  0 TMA+ adducts (Desolvated) 
  Corrected Not corrected (rx/rx+1=1) 

   σ Exp. σ  Σ Exp. σ 

7- 
KD (µM) 1.05 ± 0.24 ± 1.01 0.52 ± 0.09 ± 0.37 

Log KD -5.99 ± 0.09 ± 0.40 -6.29 ± 0.08 ± 0.33 

ΔG° (kcal/mol) -8.21 ± 0.13 ± 0.54 -8.62 ± 0.11 ± 0.46 

6- 
KD (µM) 1.09 ± 0.16 ± 0.70 0.71 ± 0.03 ± 0.15 

Log KD -5.97 ± 0.07 ± 0.29 -6.15 ± 0.02 ± 0.09 

ΔG° (kcal/mol) -8.18 ± 0.09 ± 0.40 -8.43 ± 0.03 ± 0.12 

5- 
KD (µM) 1.16 ± 0.21 ± 0.92 0.78 ± 0.07 ± 0.32 
Log KD -5.94 ± 0.09 ± 0.37 -6.11 ± 0.04 ± 0.18 
ΔG° (kcal/mol) -8.14 ± 0.12 ± 0.51 -8.37 ± 0.06 ± 0.25 

  3 TMA+ adducts 
  Corrected Not corrected (rx/rx+1=1) 

   σ Exp. σ   σ Exp. σ 

7- 
KD (µM) 10.12 ± 2.99 ± 12.87 5.38 ± 1.34 ± 5.76 
Log KD -5.02 ± 0.13 ± 0.58 -5.28 ± 0.11 ± 0.47 
ΔG° (kcal/mol) -6.87 ± 0.18 ± 0.79 -7.24 ± 0.15 ± 0.65 

6- 
KD (µM) 1.10 ± 0.11 ± 0.48 0.62 ± 0.03 ± 0.13 
Log KD -5.96 ± 0.04 ± 0.19 -6.21 ± 0.02 ± 0.09 
ΔG° (kcal/mol) -8.17 ± 0.06 ± 0.26 -8.50 ± 0.03 ± 0.13 

5- 
KD (µM) 0.80 ± 0.14 ± 0.59 0.36 ± 0.05 ± 0.22 
Log KD -6.11 ± 0.08 ± 0.33 -6.45 ± 0.07 ± 0.28 
ΔG° (kcal/mol) -8.37 ± 0.11 ± 0.45 -8.84 ± 0.09 ± 0.38 
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MS log KD and ΔG° - NH4OAc 

 

Table 30 – Averaged KD, and calculated Log KD and ΔG°, from MS titration of MGA in NH4OAc 
100 mM; “σ” is the standar deviation over the replica; “Exp. σ” is the expanded uncertainty 
considering a 95% confidence interval with coverage factor of 4.303. 

  0 NH4+ adducts (Desolvated) 
  Corrected Not corrected rx/rx+1=1) 

   σ Exp. σ  σ Exp. σ 

7- 
KD (µM) 1.72 ± 0.79 ± 3.41 0.65 ± 0.24 ± 1.05 

Log KD -5.81 ± 0.20 ± 0.87 -6.23 ± 0.20 ± 0.87 

ΔG° (kcal/mol) -7.96 ± 0.28 ± 1.19 -8.54 ± 0.28 ± 1.19 

6- 
KD (µM) 1.96 ± 0.40 ± 1.72 1.30 ± 0.43 ± 1.84 

Log KD -5.72 ± 0.08 ± 0.36 -5.91 ± 0.17 ± 0.72 

ΔG° (kcal/mol) -7.83 ± 0.12 ± 0.50 -8.10 ± 0.23 ± 0.99 

5- 
KD (µM) 4.63 ± 1.13 ± 4.87 1.78 ± 0.56 ± 2.39 
Log KD -5.35 ± 0.12 ± 0.50 -5.77 ± 0.13 ± 0.54 
ΔG° (kcal/mol) -7.33 ± 0.16 ± 0.68 -7.90 ± 0.17 ± 0.74 

  3 NH4+ adducts 
  Corrected Not corrected (rx/rx+1=1) 

   σ Exp. σ    σ Exp. σ  

7- 
KD (µM) 1.82 ± 1.08 ± 4.63 0.77 ± 0.30 ± 1.29 
Log KD -5.81 ± 0.25 ± 1.08 -6.16 ± 0.21 ± 0.91 
ΔG° (kcal/mol) -7.97 ± 0.34 ± 1.48 -8.44 ± 0.29 ± 1.25 

6- 
KD (µM) 2.10 ± 0.41 ± 1.77 1.42 ± 0.43 ± 1.86 
Log KD -5.69 ± 0.08 ± 0.35 -5.87 ± 0.15 ± 0.66 
ΔG° (kcal/mol) -7.79 ± 0.11 ± 0.48 -8.05 ± 0.21 ± 0.90 

5- 
KD (µM) 4.04 ± 1.09 ± 4.70 1.48 ± 0.29 ± 1.23 
Log KD -5.41 ± 0.11 ± 0.48 -5.84 ± 0.08 ± 0.34 
ΔG° (kcal/mol) -7.41 ± 0.15 ± 0.66 -8.00 ± 0.11 ± 0.47 
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MGA Method 2 (Non-linear fitting with averaged [Conc] titration points as input) 

Table 31 – Ratios of relative response factors (defined as RMGA/ RMGA+Lig) and the corresponding 
KD calculated from fitting of binding isotherm are reported; a. uncertainty is the standard 
deviation across the replicas; b. KD uncertainty is calculated from DynaFit statistic with a Monte-
Carlo simulation [107-108].  

TMAA 100 mM 
z Desolvated 3 adducts 
  Rxa RM/RML KD (µM) b Rxa RM/RML KD (µM) b 

7- 
M 59.62 ±21.85 

1.45± 0.14 1.01 ±0.09 
20.61 ±6.72 

1.55± 0.08 10.90 ±1.10 
ML 41.19 ±13.81 13.25 ±3.73 

6- 
M 7.12 ±0.24 

1.25± 0.09 1.10 ±0.05 
3.01 ±0.21 

1.39± 0.08 1.11 ±0.06 
ML 5.70 ±0.60 2.17 ±0.25 

5- 
M 15.60 ±1.01 

1.22± 0.07 1.15 ±0.04 
4.99 ±0.61 

1.42± 0.08 0.80 ±0.14 
ML 12.81 ±1.61 3.52 ±0.51 

            

NH4OAc 100 mM 
z Desolvated 3 adducts 
  Rxa RM/RML KD (µM) b Rxa RM/RML KD (µM) b 

7- 
M 2.87 ±0.71 

1.48± 0.28 1.61 ±0.17 
2.36 ±1.60 

1.50± 0.29 1.64 ±0.17 
ML 1.94 ±0.28 1.58 ±0.86 

6- 
M 0.80 ±0.21 

1.31± 0.21 1.93 ±0.19 
0.45 ±0.25 

1.26± 0.25 2.07 ±0.22 
ML 0.61 ±0.05 0.36 ±0.20 

5- 
M 6.99 ±1.54 

1.40± 0.53 4.49 ±0.23 
2.78 ±1.41 

1.72± 0.43 3.93 ±0.26 
ML 4.99 ±2.51 1.62 ±0.71 
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Figure 100 – MS replica of MGA (10 µM) titrated up to 2 eq. of MG (20 µM) in TMAA 100 mM. 
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Figure 101 – MS replica of MGA (10 µM) titrated up to 2 eq. of MG (20 µM) in NH4OAc 100 mM. 
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7.2.2 RiboFMN aptamer - MS titrations 
 

Table 32 - m/z ranges for MS peak integration 1FMN aptamer in NH4OAc and TMAA 100 mM. 

1FMN in TMAA 100 mM, MgCl2 200 µM 
All adducts  5 adducts  

m/zi m/zf  m/zi m/zf Ion 
879.8 882.4  879.8 882.4 T6 2- 
876.8 879.4  876.8 879.4 Background T6 2- 
1894 1924  1894 1912.5 1FMN6- 
1864 1894  1875.5 1894 Background 1FMN6- 
1978 2008  1978 1996.5 1FMN+Lig6- 
1864 1894  1875.5 1894 Background 1FMN+Lig6- 

      
1FMN in NH4OAc 100 mM, MgCl2 200 µM 

All adducts  5 adducts  
m/zi m/zf  m/zi m/zf Ion 
879.8 882.4  879.8 882.4 T6 2- 
876.8 879.4  876.8 879.4 Background T6 2- 
1890 1920  1890 1908.5 1FMN6- 
1860 1890  1871.5 1890 Background 1FMN6- 
1971 2001  1971 1989.5 1FMN+Lig6- 
1860 1890  1871.5 1890 Background 1FMN+Lig6- 

 

Table 33 - m/z ranges for MS peak integration 1FMN in NH4OAc 100 mM and MgCl2 
concentration test. 

NH4OAc 100 mM (all visible adducts) 
m/zi m/zf  

448.6 452.0 Background riboFMN 
454.8 458.2 riboFMN 
876.8 879.4 BackgroundT6 2- 
879.8 882.4 T6 2- 
1875 1893 Background 
1894 1912.5 1FMN6- 
1978 1996.5 1FMN+L6- 
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Figure 102 - Comparison of binding isotherm considering oly 5 Mg2+ or the whole visible adduct 
serie, for 1FMN6- and it complex with RiboFMN6- in 200 µM Mg2+ and A. NH4OAc or B. TMAA 100 
mM. Points are averaged over 3 replica. 

  



 

170 

 

MS titr NH4OAc - 1FMN  
Table 34 – 1FMN+L KD of each replica of MS titration in NH4OAc 100 mM with relative response 
factor correction (Corr) and assuming ratio of response factor equal to 1 (r/r=1). “σ” is the 
standard deviation of DynaFit’s Monte-Carlo algorithm. 

 Corrected Not corrected (rx/rx+1=1) 
Replica KD (µM) σ Log KD KD (µM) σ Log KD 

I 128.7 ± 5.20 -3.89 29.33 ± 1.50 -4.53 
II 167.2 ± 6.40 -3.78 30.01 ± 1.50 -4.52 
III 92.94 ± 4.00 -4.03 29.22 ± 1.50 -4.53 
IV 44.61 ± 2.10 -4.35 24.23 ± 1.30 -4.62 
V 120.5 ± 6.30 -3.92 25 ± 1.60 -4.60 

 

Table 35 –Averaged KD, log KD and calculated ΔG° for 1FMN MS titration in NH4OAc 100 mM with 
relative response factor correction (Corr) and assuming ratio of response factor equal to 1 
(r/r=1).. “σ” is the standard deviation over the replicas, “Exp.σ” is the expanded uncertainty 
over 5 replicas (coverage factor = 2.776 for a 95% confidence interval). 

Averaged 
values 

Corrected Not corrected (rx/rx+1=1) 
 σ Exp.σ  σ Exp.σ 

KD (µM) 110.79 ± 40.73 ± 113.09 27.56 ± 2.43 ± 6.75 
Log KD -3.99 ± 0.20 ± 0.54 -4.56 ± 0.04 ± 0.11 

ΔG° (kcal/mol) -5.48 ± 0.27 ± 0.75 -6.25 ± 0.05 ± 0.15 
 

 

Response Factors replicas 

Table 36 - 1FMN 6- and 1FMN+L 6- relative response factors for MS titration in NH4OAc 100 mM. 
“σ” is the standard deviation over the replicas. Instrument: Agilent 6560. 

Replica rSTD/rM rSTD/rML rML/rM 

I 0.61  0.17  3.59  

II 0.63  0.14  4.50  

III 0.58  0.22  2.68  

IV 0.61  0.37  1.62  

V 0.69  0.19  3.65  

 Avrg. σ Avrg. σ Avrg. σ 

 0.62 ± 0.03 0.22 ± 0.08 3.21 ± 0.98 
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Figure 103 – Replicas of MS titration binding isotherm of 1FMN6- in NH4OAc 100 mM. Corrected concentrations and assumption of equal response 
factor (rx/rx+1=1) are compared. 
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Table 37 - 1FMN 6- and 1FMN+L 6- Averaged relative response factors for MS titration in NH4OAc 
100 Mm with 100, 200, 300, 400 and 800 µM MgCl2. 

Mg2+ dependency Rfs from 100 to 800 uM Mg2+ 

1FMN6- rSTD/rM rSTD/rML rML/rM 

All adducts 0.30 0.37 0.82 
 

Table 38 Estimated 1FMN+L KDs for each MgCl2 concentration in NH4OAc 100 mM, assuming 
ratio of relative response factors equal to 1. 

Mg2+ (µM) KD Log [Mg2+] Log KD 

0 2.21E-05 -- -4.65 
10 1.73E-05 1 -4.76 
20 1.48E-05 1.30 -4.83 
30 1.36E-05 1.48 -4.87 

100 6.44E-06 2.00 -5.19 
200 4.51E-06 2.30 -5.35 
300 3.72E-06 2.48 -5.43 
400 3.37E-06 2.60 -5.47 
800 2.60E-06 2.90 -5.59 

 

 
Figure 104 - Effect of Mg2+ concentation on 1FMN+L KD

App, expressed in logaritmic scale. From 
the slope modulus of linear regression we have a stoichiometry of 0.49 ± 0.02 for Mg2+. 
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MS titr Response factors in NH4OAc+Mg and TMAA+Mg - 1FMN  

 

Table 39 -1FMN 6- and 1FMN+L 6- relative response factors for MS titration in NH4OAc and TMAA 
100 Mm with 200 µM MgCl2; First replica (italic) in TMAA has been discarded. Instrument: 
Thermo Exactive. 

5 Mg2+ adducts in NH4OAc  
6- rSTD/rM σ a rSTD/rML σ a rML/rM σ a 
I 4.47  6.84  0.65  

II 5.11  5.00  1.02  

III 0.98  2.42  0.41  

Average 3.52 ± 1.82 4.75 ± 1.81 0.69 ± 0.25 
       

5 Mg2+ adducts in TMAA 
6- rSTD/rM σ a rSTD/rML σ a rML/rM σ a 
I 9.10  4.26  2.14  

II 7.22  5.91  1.22  

III 7.77  7.76  1.00  

Average 7.49 ± 0.27 6.83 ± 0.93 1.11 ± 0.11 
 

MS titr NH4OAc+Mg - 1FMN  
Table 40 -1FMN+L KD

app of each replica of MS titration in NH4OAc 100 mM and MgCl2 200 µM 
with relative response factor correction (Corrected) and assuming ratio of response factor equal 
to 1 (rx/rx+1=1). “σ” is the standard deviation of DynaFit’s Monte-Carlo algorithm. Signal were 
integrated only the 5 first Mg2+ adducts.  

1FMN in NH4OAc 100 mM and MgCl2 200 µM (5 Mg2+ adducts) 
 Corrected Not corrected (rx/rx+1=1) 

Replica KD
app σ Log KD KD

app σ Log KD 
I 3.51 0.18 -5.45 6.43 0.30 -5.19 
II 4.59 0.18 -5.34 4.44 0.18 -5.35 
III 1.15 0.06 -5.94 5.23 0.17 -5.28 

 

Table 41 - Averaged KD, log KD and calculated ΔG° for 1FMN MS titration in NH4OAc 100 mM and 
MgCl2 200 µM (considering 5 Mg2+ adducts) with relative response factor correction (Corr) and 
assuming ratio of response factor equal to 1 (rx/rx+1=1). “σ” is the standard deviation over the 
replicas, “Exp.σ” is the expanded uncertainty over 3 replicas (coverage factor = 4.302 for a 95% 
confidence interval). 

1FMN in NH4OAc 100 mM and MgCl2 200 µM (5 Mg2+ adducts) 
  Corrected Not corrected (rx/rx+1=1) 
   σ Exp.σ   σ Exp.σ 

 KD (µM) 3.08 ± 1.44 ± 6.19 5.36 ± 0.82 ± 3.51 

 Log KD -5.58 ± 0.26 ± 1.12 -5.28 ± 0.07 ± 0.28 

 ΔG° (kcal/mol) -7.64 ± 0.36 ± 1.54 -7.23 ± 0.09 ± 0.39 
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Table 42 -1FMN+L KD
app of each replica of MS titration in NH4OAc 100 mM and MgCl2 200 µM 

with relative response factor correction (Corr) and assuming ratio of response factor equal to 1 
(r/r=1). “σ” is the standard deviation of DynaFit’s Monte-Carlo algorithm. Signal were integrated 
only the entire range of Mg2+ adducts. 

1FMN in NH4OAc 100 mM and MgCl2 200 µM (All Mg2+ adducts) 
 Corrected Not corrected (rx/rx+1=1) 

Replica KD
app σ Log KD KD

app σ Log KD 

I 4.80 0.26 -5.32 6.32 0.32 -5.20 
II 3.32 0.18 -5.48 4.09 0.17 -5.39 
III 1.23 0.06 -5.91 4.71 0.16 -5.33 

 

Table 43 - Averaged KD, log KD and calculated ΔG° for 1FMN MS titration in NH4OAc 100 mM and 
MgCl2 200 µM (considering All Mg2+ adducts) with relative response factor correction (Corr) and 
assuming ratio of response factor equal to 1 (rx/rx+1=1). “σ” is the standard deviation over the 
replicas, “Exp.σ” is the expanded uncertainty over 3 replicas (coverage factor = 4.302 for a 95% 
confidence interval). 

1FMN in NH4OAc 100 mM and MgCl2 200 µM (All Mg2+ adducts) 
 Corrected Not corrected (rx/rx+1=1) 

  σ Exp.σ  σ Exp.σ 

KD (µM) 3.55 ± 1.64 ± 7.07 5.04 ± 0.94 ± 4.03 
Log KD -5.52 ± 0.27 ± 1.18 -5.30 ± 0.08 ± 0.34 
ΔG° (kcal/mol) -7.57 ± 0.38 ± 1.62 -7.27 ± 0.11 ± 0.46 
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MS titr TMAA+Mg - 1FMN  
Table 44 - 1FMN+L KD

app of each replica of MS titration in TMAA 100 mM and MgCl2 200 µM with 
relative response factor correction (Corr) and assuming ratio of response factor equal to 1 
(r/r=1). “σ” is the standard deviation of DynaFit’s Monte-Carlo algorithm. Signal were integrated 
only the 5 first Mg2+ adducts. 

1FMN in TMAA 100 mM and MgCl2 200 µM (5 Mg2+ adducts) 
 Corrected Not corrected (rx/rx+1=1) 

Replica KD
app σ Log KD KD

app σ Log KD 
I 1.12 0.08 -5.95 0.19 0.04 -6.72 
II 2.31 0.12 -5.64 2.07 0.10 -5.68 
III 2.55 0.12 -5.59 2.55 0.12 -5.59 

 

Table 45 - Averaged KD, log KD and calculated ΔG° for 1FMN MS titration in TMAA 100 mM and 
MgCl2 200 µM (considering 5 Mg2+ adducts) with relative response factor correction (Corr) and 
assuming ratio of response factor equal to 1 (rx/rx+1=1). “σ” is the standard deviation over the 
replicas, “Exp.σ” is the expanded uncertainty over 2 replicas (coverage factor = 12.706 for a 
95% confidence interval). 

1FMN in TMAA 100 mM and MgCl2 200 µM (5 Mg2+ adducts) 
 Corrected Not corrected (rx/rx+1=1) 

  σ Exp.σ  σ Exp.σ 

KD (µM) 2.43 ± 0.12 ± 1.54 2.31 ± 0.24 ± 3.04 
Log KD -5.62 ± 0.12 ± 1.54 -5.64 ± 0.24 ± 3.04 
ΔG° (kcal/mol) -7.69 ± 0.17 ± 2.12 -7.73 ± 0.33 ± 4.17 

 

 

 
Figure 105 -Comparison between replica of log KD determined via ITC and MS on 1FMN6-. MS 
values “Corr” are calculated with relative response correction, “r/r=1” assuming equal response 
factors. Values in bold were discarded for the average calculation in picture Figure 46.  
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Figure 106 – Replicas of MS titration binding isotherm of 1FMN6- in presence of MgCl2 200 µM 
in TMAA 100 mM and NH4OAc 100 mM. Corrected concentrations and assumption of equal 
response factor (rx/rx+1=1) are compared. 
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7.2.3 Malachite green aptamer - ITC 

 
Figure 107 - MGA ITC NH4OAc 100 mM [RNA]= 15.35 µM [Lig]=142.3 µM. Injection method n.II 
at p. 27. See Table 46 for fit output.  



 

178 

 
Figure 108 - MGA ITC NH4OAc 100mM [RNA]= 15.19 µM [Lig]=139.2 µM. Injection method n.I at 
p. 27. See Table 46 for fit output. 

 

  

 



 

179 

 
Figure 109 - - MGA ITC TMAA 100 mM 1-2. [RNA]= 15.02 µM [Lig]=135.1 µM with method 1and 
3-4. [RNA]= 15.20 µM [Lig]=152.3 µM with method 2  Second Series  at p. 27. See Table 47 for 
fit output. 
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ITC MGA vs Ligand in NH4OAc 100 mM 

Replica 1-3 were acquired with method (II) (Figure 107)and method (I) for replica 4-5 (Figure 
108), reported at p. 27. Uncertainties reported come from the one binding site fitting model 
of Origin 7, embedded in ITC200 Microcal. 

Table 46 – Replicas of MGA in NH4OAc 100 mM. [MGA] = 15.35 µM and [MG] = 142.3 µM (replica 
1-3); [MGA] = 15.19 µM and [MG] = 139.2 µM (replica 4-5); a. KD has been derived from KA. Run 
temperature for each replica is 298 K. 

#replica KA KD(µM)a N ΔH0 (kcal/mol) ΔS0 (cal/mol/K) 

1 1.46E+06 ± 1.04E+05 0.68 ± 0.05 1.04 ± 0.01 -12.24 ± 0.12 -12.9 

2 2.12E+05 ± 1.86E+05 0.47 ± 0.04 0.95 ± 0.01 -14.00± 0.15 -18.0 

3 2.57E+05 ± 2.27E+05 0.39 ± 0.0.03 0.92 ± 0.01 -13.48± 0.14 -15.9 

4 1.04E+06 ± 5.10E+05 0.96 ± 0.47 1.09 ± 0.06 -14.40 ± 1.16 -20.8 

5 5.78E+05 ± 2.80E+05 1.73 ± 0.84 0.95 ± 0.08 -18.55± 2.13 -35.9 

 

ITC MGA vs Ligand in TMAA 100 mM 

The replicas in Figure 109 were acquired with method (II) for replica 1-3 and method (I) for 
replica 4-5, reported at p. 27. 

Table 47 - Replicas of MGA in TMAA 100 mM. [MGA] = 15.20 µM and [MG] = 152.3 µM (replica 
1-2); [MGA] = 15.02 µM and [MG] = 135.1 µM (replica 4-5); a. KD has been derived from KA. Run 
temperature for each replica is 298 K. 

# replica KA KD (µM)a N ΔH0 (kcal/mol) ΔS0 (cal/mol/K) 

1 4.47E+05 ± 1.06E+05 2.24 ± 0.53 0.96 ± 0.04 -17.76 ± 1.10 -33.7 

2 5.34E+05 ± 1.00E+05 1.87 ± 0.35 1.09 ± 0.03 -15.91 ± 0.66 -27.2 

3 8.77E+05 ± 3.42E+05 1.14 ± 0.44 1.06 ± 0.05 -10.67± 0.72 -8.59 

4 1.29E+06 ± 2.63E+05 0.78 ± 0.16 1.04 ± 0.02 -13.92 ± 0.42 -18.7 
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7.2.4 RiboFMN aptamer - ITC 

 
Figure 110 - 1FMN ITC in NH4OAc 100mM + MgCl2 200 µM, [RNA]=10.20 µM [Lig]=159.6 µM. 
Injection method 1 (p. 27). See Table 49 for fit output. Note: the spike in second run is the 
tipycal signal of an air boubble into the cell.  
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Figure 111 - 1FMN ITC in TMAA 100 mM + MgCl2 200 µM, [RNA]=10.19 µM [Lig]=150.0 µM. 
Injection method 1 at p. 27. See Table 50 for fit output.  
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Figure 112 - 1FMN ITC test in Ammo 100mM without Mg [RNA]=15.10 µM [Lig]=149.5 µM; 
Qualitatives tests adding 200µM and 1000 µM Mg2+ directly into the initial solution. Injection 
method p. 27. See Table 48 for fit output.  
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ITC 1FMN vs Ligand in NH4OAc 100 mM + Mg2+ 0/0.2/1 mM 

The replica in Figure 112 were acquired with method (I) reported at p. 27. Uncertainties 
reported come from the one binding site fitting model of Origin 7, embedded in ITC200 
Microcal. 

Table 48 - Replicas of 1FMN in NH4OAc 100 mM at three concentrations of MgCl2. [1FMN] = 
15.10 µM and [riboFMN] = 149.5 µM; a. KD has been derived from KA; n.d. no binding detected; 
Run temperature for each replica is 298 K. 

[MgCl2] KA KD (µM)a N ΔH0 (kcal/mol) ΔS0 (cal/mol/K) 

0 µM n.d. n.d. n.d. n.d. n.d. 

200 µM 8.69E+05 ± 7.36E+05 1.15 ± 3.45 0.92 ± 0.01 -8.59 ± 1.34 -1.63 

1000 µM 1.24E+06 ± 2.51E+05 0.81 ± 0.17 1.42± 0.01 -7.44± 0.34 -16.5 

 

ITC 1FMN vs Ligand in NH4OAc 100 mM + Mg2+ 200 µM 

The replica in Figure 110 were acquired with method (I) reported at p. 27. 

Table 49 - Replicas of 1FMN in NH4OAc 100 mM and MgCl2 200 µM. [1FMN] = 10.12 µM and 
[riboFMN] = 159.6 µM; a. KD has been derived from KA; Run temperature for each replica is 298 
K. 

# replica KA KD (µM)a N ΔH0 (kcal/mol) ΔS0 (cal/mol/K) 

1 3.61E+05 ± 1.95E+04 2.77 ± 0.15 1.04 ± 0.02 -15.88 ± 0.33 -27.8 

2 2.48E+05 ± 2.76E+04 4.03 ± 0.45 0.95 ± 0.04 -14.40 ± 1.08 -35.0 

3 3.48E+05 ± 2.67E+04 2.87 ± 0.22 1.03 ± 0.02 -18.55± 0.41 -27.3 

4 2.89E+05 ± 2.34E+04 3.46 ± 0.22 0.88 ± 0.03 -18.55± 0.75 -35.0 

 

ITC 1FMN vs Ligand in TMAA 100 mM + Mg2+ 200 µM 

The replica in Figure 111 were acquired with method (I) reported at p. 27. 

Table 50 - Replicas of 1FMN in TMAA 100 mM at and MgCl2 200 µM. [1FMN] = 10.19 µM and 
[riboFMN] = 150.0 µM; a. KD has been derived from KA; Run temperature for each replica is 298 
K. 

# replica KA KD (µM)a N ΔH0 
(kcal/mol) 

ΔS0 
(cal/mol/K) 

1 3.15E+05 ± 3.25E+04 3.18 ± 0.328 1.040 ± 0.034 -18.43 ± 0.38 -36.7 

2 2.48E+05 ± 2.76E+04 3.21 ± 0.27 0.991 ± 0.030 -19.03 ± 0.71 -38.7 

3 3.48E+05 ± 2.67E+04 3.69 ± 0.40 0.975 ± 0.040 -19.75± 1.04 -41.4 
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7.2.5 Aminoglycoside Aptamers 1NEM and 1TOB 
 

1NEM 

 
Figure 113 – MS titration of 1NEM 0.5 µM (dT6 0.5 µM) with neomycin up to 1 µM in NH4OAc 
100 mM. 

 

 
Figure 114 - -1NEM aptamer titrated at 0.5 µM in NH4OAc 100 mM . The non-linear portion of 
the binding isotherm is almost absent. The estimated KD is 1 nM. 
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1TOB 

 
Figure 115 – Binding isotherm for 1TOB aptamer for charge states 6- and 5- . On the left is 
assumed that ratio of relative response factor is equal to 1. On the right, the relative response 
factor correction is applied. Titration obtained at 1TOB 0.5 µM, tobramycin up to 1 µM in 
NH4OAc 100 mM. 

 

Table 51 – Dissociation constant obtained by DynaFit without (assuming R=1) and with 
correction for relative response factors. a. uncertainties are obtained from DynaFit, based only 
on a monte-carlo resampling of the data points. 

KD (nM) 
6- 5- 

1TOB+L 1TOB+L2 1TOB+L 1TOB+L2 
No correction 

(rx/rx+1=1) 0.18 ± 0.7 a 380 ± 130a 2.6 ± 0.8 a 338 ± 40 a 

Corrected 3.8 ± 1.0 a 201 ± 32 a 2.4 ± 0.8 a 380 ± 48 a 
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Table 52 - 1NEM MS titration m/z integration ranges. 

1NEM MS titration in NH4OAc 100 mM 
m/zi m/zf Ion 

879.8 882.4 BackgroundT6 2- 
876.8 879.4 T6 2- 

1486.5 1516.5 1NEM5- 
1450 1480 Background 1NEM5- 

1609.1 1639.1 1NEM+L5- 
1450 1480 Background 1NEM+L5- 

 

 
Table 53 – 1TOB MS titration m/z integration ranges 

1TOB MS titration in NH4OAc 100 mM 
m/zi m/zf Ion 

879.8 882.4 BackgroundT6 2- 
876.8 879.4 T6 2- 

1486.5 1516.5 1TOB6- 
1435.5 1447.5 Background 1TOB6- 
1414.5 1426.5 1TOB+L6- 
1513 1525 Background 1TOB+L6- 

1414.5 1426.5 1TOB+2L6- 
1591.2 1603.2 Background 1TOB+2L6- 
1722.5 1752.5 1TOB5- 
1691.5 1721.5 Background 1TOB5- 
1816 1846 1TOB+L5- 

1691.5 1721.5 Background 1TOB+L5- 
1909.8 1939.8 1TOB+2L5- 
1691.5 1721.5 Background 1TOB+2L5- 
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7.3 IM-MS 
 

7.3.1 IM-MS of quantified RNA aptamers 
 

 
Figure 116 - DTCSSHe for charge states 6- and 5- of 1TOB aptamer and its complex with 
tobramycin. Black curves are at low activation (Fragmentor 350V), red curves are at high 
activation (fragmentor 600V). 
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Table 54 - ta, t0 K0 and CCS value, with their standard deviation for 1NEM, 1TOB and 1FMN aptamers at fragmentor 350V. Only ta at ΔV=390.5 V is 
shown; # are the number of replica. 

Ion MW (Da) z T (K) ta (ms) t0 (ms) K0 (cm²/Vs) DTCCSHe(Å2) # 
[1NEM-zH+]z- 7442.5 5- 298.3 ± 0.4 23.76 ± 0.22 3.95 ± 0.14 3.695 ± 0.029 726 ± 6 8 

         
[1NEM+L-zH+]z- 8057.1 5- 298.4 ± 0.4 24.94 ± 0.20 4.13 ± 0.13 3.519 ± 0.031 762 ± 7 8 
         

[1TOB-zH+]z- 8624.2 6- 298.4 ± 0.5 24.07 ± 0.06 4.25 ± 0.08 3.693 ± 0.015 871 ± 4 4 
  5- 298. ± 0.5 26.34 ± 0.05 4.74 ± 0.04 3.386 ± 0.020 792 ± 4 4 
         
[1TOB+L-zH+]z- 9091.7 6- 298.5 ± 0.5 24.78 ± 0.02 4.43 ± 0.03 3.592 ± 0.011 895 ± 2 3 
    5- 298.5 ± 0.5 27.79 ± 0.02 4.87 ± 0.01 3.190 ± 0.013 840 ± 3 3 

[1FMN-zH+]z- 11337.9 6- 298.6 ± 0.7 27.12 ± 0.56 4.39 ± 0.05 3.212 ± 0.076 1001 ± 24 5 
[1FMN+1Mg2+-(2+z)H+]z- 11817.6  298.5 ± 0.6 27.66 ± 0.20 4.42 ± 0.19 3.143 ± 0.021 1022 ± 7 3 
[1FMN+2Mg2+-(4+z)H+]z- 11841.9  298.5 ± 0.6 27.53 ± 0.17 4.48 ± 0.04 3.157 ± 0.017 1017 ± 6 3 
[1FMN+3Mg2+-(6+z)H+]z- 11866.2  298.5 ± 0.6 27.28 ± 0.14 4.54 ± 0.18 3.200 ± 0.026 1003 ± 8 3 
         
[1FMN+L-zH+]z- 11452.7 6- 298.8 ± 0.7 27.36 ± 0.46 4.39 ± 0.23 3.180 ± 0.049 1011 ± 15 5 
[1FMN+L+1Mg2+-(2+z)H+]z- 11477.0  298.5 ± 0.6 27.96 ± 0.12 4.69 ± 0.09 3.131 ± 0.008 1025 ± 3 3 
[1FMN+L+2Mg2+-(4+z)H+]z- 11501.3  298.5 ± 0.6 28.05 ± 0.22 4.59 ± 0.12 3.101 ± 0.034 1035 ± 11 3 
[1FMN+L+3Mg2+-(6+z)H+]z- 11525.6  298.5 ± 0.6 28.09 ± 0.18 4.71 ± 0.12 3.111 ± 0.013 1032 ± 4 3 
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Table 55 - ta, t0 K0 and CCS value, with their standard deviation for 1NEM, 1TOB, 1FMN and MGA aptamers at fragmentor 600V. Only ta at ΔV=390.5 
V is shown; # are the number of replica. 

Ion MW (Da) z T (K) ta (ms) t0 (ms) K0 (cm²/Vs) DTCCSHe(Å2) # 
[1NEM-zH+]z- 7442.5 5- 298.1 ± 0.2 23.65 ± 0.03 4.02 ± 0.04 3.732 ± 0.012 719 ± 2 4 
         
[1NEM+L-zH+]z- 8057.1 5- 298.5 ± 0.3 24.78 ± 0.02 4.20 ± 0.04 3.561 ± 0.012 753 ± 2 3 
         
[1TOB-zH+]z- 8624.2 6- 298.4 ± 0.5 23.39 ± 0.08 4.27 ± 0.03 3.832 ± 0.016 840 ± 3 4 
  5- 298.4 ± 0.5 26.08 ± 0.02 4.63 ± 0.02 3.413 ± 0.010 786 ± 2 4 
         
[1TOB+L-zH+]z- 9091.7 6- 298.3 ± 0.5 23.90 ± 0.05 4.25 ± 0.06 3.725 ± 0.010 864 ± 2 3 
    5- 298.3 ± 0.5 27.17 ± 0.01 4.80 ± 0.01 3.272 ± 0.007 820 ± 1 3 

[1FMN-zH+]z- 11337.9 6- 298.9 ± 0.2 25.38 ± 0.01 4.00 ± 0.01 3.413 ± 0.006 942 ± 1 4 
[1FMN+1Mg2+-(2+z)H+]z- 11817.6  298.5 ± 0.6 26.15 ± 0.39 4.34 ± 0.13 3.348 ± 0.038 959 ± 11 3 
[1FMN+2Mg2+-(4+z)H+]z- 11841.9  298.5 ± 0.6 26.00 ± 0.02 4.22 ± 0.12 3.338 ± 0.024 962 ± 7 3 
[1FMN+3Mg2+-(6+z)H+]z- 11866.2  298.5 ± 0.6 26.12 ± 0.11 4.36 ± 0.10 3.349 ± 0.025 958 ± 7 3 
         
[1FMN+L-zH+]z- 11452.7 6- 298.8 ± 0.7 25.85 ± 0.13 4.21 ± 0.07 3.370 ± 0.026 954 ± 7 3 
[1FMN+L+1Mg2+-(2+z)H+]z- 11477.0  298.5 ± 0.6 26.86 ± 0.33 4.67 ± 0.41 3.270 ± 0.068 982 ± 21 3 
[1FMN+L+2Mg2+-(4+z)H+]z- 11501.3  298.5 ± 0.6 26.88 ± 0.11 4.59 ± 0.18 3.252 ± 0.024 987 ± 7 3 
[1FMN+L+3Mg2+-(6+z)H+]z- 11525.6  298.5 ± 0.6 26.98 ± 0.05 4.55 ± 0.12 3.251 ± 0.013 987 ± 4 3 

[MGA-zH+]z- 12300.5 7- 298.7 ± 0.2 24.02 ± 0.13 3.93 ± 0.28 3.625± 0.059 1035± 17 3 
  6- 298.6 ± 0.2 26.66 ± 0.13 4.27 ± 0.06 3.263± 0.026 986 ± 8 5 
  5- 298.6 ± 0.2 31.12 ± 0.16 4.94 ± 0.18 2.797 ± 0.027 958± 9 4 
         
[MGA-zH+]z- 12665.4 7- 298.9 ± 0.2 24.69 ± 0.13 4.18 ± 0.24 3.558 ± 0.047 1054 ± 14 3 
  6- 298.8 ± 0.3 27.39 ± 0.04 4.43 ± 0.06 3.180 ± 0.010 1011 ± 3 4 
  5- 298.8 ± 0.3 32.06± 0.11 5.12 ± 0.06 2.708 ± 0.012 989± 4 4 
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7.3.2 Tetracycline aptamer 
Table 56 - m/z ranges for IM-MS intensities extraction from TCA spectra. 

m/zi m/zf Ion 
879.8 882.4 T6 2- 
1430 1455 TCA13- 
1550 1582 TCA12- 
1582 1597 TCA+Lig12-—1 
1597 1620 TCA+Lig12-—2 
1695 1730 TCA11- 
1735 1747 TCA+Lig11-—1 
1747 1767 TCA+Lig11-—2 
1865 1900 TCA10- 

1905 1922 TCA+Lig10-—1 
1922 1950 TCA+Lig10-—2 
2065 2115 TCA9- 
2115 2135 TCA+Lig9-—1 
2135 2160 TCA+Lig9-—2 
2330 2405 TCA8- 
2406 2510 TCA+Lig8- 
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Figure 117 – Full scan IM-MS spectrum of TCA 10 µM and 5 µM tetracycline in TMAA 100 mM 
with 100 µM MgCl2 and KCl. The large salts cluster contaminations are visible on the ion mobility 
spectrum. MS spectrum is 20-fold zoomed from 1050 m/z. In brackets are reported the m/z 
values of declustered ion The symbol “ ” highlight a complex with only one Mg2+ adduct. 



 

194 

 

 

 

 

 
Figure 118 -– Two conformational ensembles are deducibles from CCS distributions of charge 
states 8-- of TCA and TCA+L. 
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Figure 119 – Two conformational ensembles are deducibles from CCS distributions of charge 
state 10- TCA and TCA+L, similarly to charge state 9-. 
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Figure 120 – Two conformational ensembles are deducibles from CCS distributions of charge 
states 11- and 12- of TCA and TCA+L. Charge state 13- low intensity and superimposition with 
background noise make difficult to identify more than one distribution solely for TCA. 
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Table 57 - ta, t0 K0 and CCS value, with standard deviation (over two replica) for tetracycline apramer. Only ta at ΔV=390.5 V is shown. 

Ion MW (Da) z T (K) ta (ms) t0 (ms) K0 (cm²/Vs) DTCCSHe (Å2) 
[TCA-zH+]z- 18687 8- 298.4 ± 0.3 26.81 ± 0.08 4.30 ± 0.14 3.248 ± 0.033 1319 ± 13 
 Minor 8- 298.4 ± 0.3 28.47 ± 0.17 4.67 ± 0.24 3.082 ± 0.059 1391 ± 27 
  9- 298.4 ± 0.3 24.45 ± 0.01 3.89 ± 0.08 3.547 ± 0.018 1359 ± 7 
 Minor 9- 298.4 ± 0.3 26.65 ± 0.06 4.19 ± 0.34 3.240 ± 0.047 1488 ± 22 
  10- 298.4 ± 0.3 23.09 ± 0.05 3.58 ± 0.01 3.738 ± 0.005 1433 ± 2 
 Minor 10- 298.4 ± 0.3 25.02 ± 0.32 3.77 ± 0.19 3.423 ± 0.082 1566 ± 38 
  11- 298.4 ± 0.3 24.13 ± 0.10 4.13 ± 0.15 3.653 ± 0.044 1613 ± 20 
 Minor 11- 298.4 ± 0.3 22.03 ± 0.02 3.63 ± 0.02 3.961 ± 0.003 1487 ± 1 
  12- 298.4 ± 0.3 24.50 ± 0.31 4.22  ± 0.10 3.600 ± 0.044 1785 ± 22 
 Minor 12- 298.4 ± 0.3 22.01 ± 0.32 3.84 ± 0.04 4.040 ± 0.060 1591 ± 24 
  13- 298.4 ± 0.3 23.24 ± 0.41 3.39 ± 0.61 3.677 ± 0.164 1897 ± 85 
        

[TCA+Lig+Mg2+-(2+z)H+]z- 19156 9- 298.4 ± 0.3 24.43 ± 0.06 3.85 ± 0.02 3.543 ± 0.005 1360 ± 2 
 Minor-I 9- 298.4 ± 0.3 25.96 ± 0.01 3.93 ± 0.23 3.311 ± 0.034 1456 ± 15 
 Minor-II 9- 298.4 ± 0.3 27.19 ± 0.22 4.54 ± 0.17 3.219 ± 0.009 1497 ± 4 
  10- 298.4 ± 0.3 23.19 ± 0.09 3.63 ± 0.03 3.741 ± 0.032 1432 ± 12 
 Minor 10- 298.4 ± 0.3 25.39 ± 0.37 3.99 ± 0.01 3.660 ± 0.312 1563 ± 37 
 Minor 11- 298.4 ± 0.3 22.08 ± 0.19 3.87 ± 0.12 3.993 ± 0.056 1476 ± 21 
  11- 298.4 ± 0.3 23.83 ± 0.09 4.86 ± 0.01 3.814 ± 0.029 1545 ± 12 
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(Table 57 continued) 

Ion MW (Da) z T (K) ta (ms) t0 (ms) K0 (cm²/Vs) DTCCSHe(Å2) 
[TCA+Lig+2Mg2++2K+-(10+z)H+]z- 19258 8- 298.4 ± 0.3 27.35 ± 0.17 4.54 ± 0.15 3.204 ± 0.047 1338 ± 19 
 Minor 8- 298.4 ± 0.3 29.23 ± 0.22 4.99 ± 0.32 3.014 ±0.069 1423 ± 33 
  9- 298.4 ± 0.3 27.08 ± 0.04 4.55 ± 0.30 3.242 ± 0.047 1487 ± 21 
 Minor 9- 298.4 ± 0.3 24.80 ± 0.13 3.90 ± 0.15 3.501 ±0.007 1377 ± 3 
  10- 298.4 ± 0.3 25.94 ± 0.07 4.28 ± 0.28 3.369 ± 0.053 1590 ± 25 
 Minor 10- 298.4 ± 0.3 23.23 ± 0.04 3.63 ± 0.18 3.725 ± 0.022 1438 ± 8 
  11- 298.4 ± 0.3 25.27 ± 0.31 4.01 ± 0.41 3.448 ± 0.102 1710 ± 51 
 Minor 11- 298.4 ± 0.3 22.52 ± 0.08 3.45 ± 0.16 3.814 ± 0.009 1545 ± 4 
  12- 298.4 ± 0.3 24.48 ± 0.33 3.69 ± 0.63 3.510 ± 0.046 1832 ± 24 
 Minor 12- 298.4 ± 0.3 22.23 ± 0.11 3.27 ± 0.61 3.878 ± 0.101 1658 ± 43 
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7.3.3 CBA - UV-melting profiles 

UV-melting experiments for MN4, MN19 and OR8 was also carried in NH4OAc 100 mM and 2 
µM DNA as described at p. 27. We found a melting temperature of 54.9 ± 0.7°C for MN4 and 
no melting for MN19 (Figure 121), OR8 and OR7 (Figure 122). In presence of one equivalent 
of quinine, the melting temperature of MN4 do not change significantly (55.1 ± 0.2°C), MN19 
shows a melting temperature at 31.6 ±0.2°C (Figure 121). OR8 and OR7 show no melting 
(Figure 122). These melting profiles are very similar to those reported by Neves et al.[88] in 
140 mM NaCl + 20 mM sodium phosphate buffer (pH 7.4) for which MN4 melts at 57.6 ± 0.4 
°C, MN19 and OR8 have no melting, whereas in presence of quinine MN19 melts at 35.6 ± 
0.3°C, OR8 at 28 ± 1°C and MN4 is unchanged. 
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Figure 121- UV-melting plots in NH4OAc 100 mM of A. MN4 2 µM and B. with 2 µM quinine; C. 
MN19 2 µM and D. with 2 µM quinine. Baselines for curve fitting are reported in filled red, first 
derivative of A260 is reported in dotted red. OR8 and OR7 sequences didn’t show a melting 
transition in this buffer and temperature range (p.201 - Figure 122)  
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Figure 122 - UV-melting profiles of OR8 and OR7 (2 µM) in NH4OAc 100 mM. No melting 
detectable even in presence of 2 µM of qinine.  
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Figure 123 - UV-melting profile of MN19-A (2 µM) in NH4OAc 25 and 100 mM. Only in presence 
of quinine (2 µM) a melting at 33 °C is detectable in NH4OAc 100 mM.  
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Figure 124 - Replicas of MN4 at different NH4OAc concentrations, with and without quinine. 
MN4 at 2 µM and quinine at 2 µM.  
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7.3.4 CBA - 1H-NMR of MN4 quinine complex 
 

Aptamer binding mode towards quinine can be verified comparing diagnostic 1H-NMR 
resonances of un-modified aptamers, previously assigned in Johnson’s Lab, to our CBA+dA 
constructs in NH4OAc 25 mM and 1 equivalent of quinine. If NH4OAc does not alter the binding 
mode, we should find the same peaks position (or very similar) for quinine binding. Base 
numbering of Johnson’s papers is kept for consistency. 

Many peaks are visible as reported from 11.1 ppm (G31 – Stem 3 and junction), 12.4 
(G4/9/10/27), 13.1 (T15 - Stem2) and 13.3 ppm (T19/28/32) [87, 155] (Figure 125). These peaks 
suggest that MN4 is capable to bind quinine in NH4OAc 25 mM with the expected topology.  

 
Figure 125 - 1H-NMR imino resonances of MN4 and MN4 with 1 equivalent of quinine. 
Characteristic peaks “  ” at 11.1, 12.4, 13.1 and 13.3  ppm denote quinine binding in NH4OAc 
25 mM in H2O/D2O (9:1) at 278 K.  

 

  

 

MN4 
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7.3.5 CBA - Circular Dichroism verify the B-DNA signature of dA constructs 
 

In the case of cocaine binding aptamers we can follow the B-DNA signals, proportional to 
hairpin formation and stem closing (i.e. MN4 in Figure 63). For an anti-parallel B-DNA we 
expect two bands, a positive one around 280 nm and a negative band at 245 nm.[163] 

Our aim is to verify if the aptamers MN4, MN19-A, OR8-A and OR7-A show a B-DNA pattern 
in NH4OAC 25 mM, if this signature remains after ligand binding (or in other words, to exclude 
a dramatic change to others structures like A-DNA, Z-DNA, …), and if the signature is increased 
(which could indicate additional stem closing upon ligand binding). 

 

 
Figure 126 - CD spectra of free MN4, MN19-A, OR8-A and OR7-A (red curves) and in presence of 
1 eq of quinine (black curves). Spectra were acquired in NH4OAc 25 mM at 25°C. 

 

From Figure 126 shows a typical B-DNA pattern for all the sequences. Upon ligand binding we 
observe an increase of B-DNA pattern for MN19-A, and a little for MN4, whereas for OR8-A 
and OR7-A the spectra remain unchanged. First we can exclude that quinine induce a 
transition towards totally different structures.  



 

206 

The low increase on MN4 spectrum upon quinine binding is consistent with a pre-structured 
aptamer, where the minor changes on bands (i.e. the little increase at 275 nm) could be 
interpreted as minor structural rearrangements after binding. 

The unchanged spectra of OR8-A and OR7-A tell us that in presence of quinine there is no 
structural change (detectable by CD). This support the hypothesis that these sequences, 
deprived of stem 1 nucleotides/cut at 3’,5’ end, in free state have only the two hairpins stem 
2 and 3, and binds quinine very weakly. The increase of B-DNA bands amplitude in MN19-A 
spectrum is similar to the hairpin-duplex transitions[164]. This increase can be described with 
the pairing of nucleotides in stem 1 that are now contributing with their relative orientation 
(like a B-DNA). 

 

 
 

Figure 127 - Hypothetical folding of 3',5' end in B-DNA duplex after quinine (ligand) binding in 
MN19 and MN19-A proposed in ref [87]. 

 

The shape of the spectra also changes across the four sequences. This could be due to a 
different relative orientation between the base pairs that form the structure of these 
aptamers. For instance, stem 1 is very short in OR8-A and OR7-A and probably they are not 
represented by the topology proposed for MN4 (Figure 74). By superimposing the CD spectra 
of the original aptamers (MN4, MN19, OR8, OR7) and adenine-modified (MN19-A, OR8-A, 
OR7-A) in Figure 128, we notice a similar deeper negative band (245 nm) and steeper 
spectrum for λ <240 nm, common for adenine-modified constructs. This two features could 
be a contribution of dA overhangs. Although they do not super impose perfectly (275-nm 
band of OR8 looks higher), we suggest that the adenine modification do not alter dramatically 
aptamers structure. We deduce that the B-DNA secondary structure character of original 
aptamers (MN4, MN19, OR8, OR7) is maintained in adenine-modified constructs. . Jointly with 
UV and NMR comparisons at paragraphs 5.6.5 (p.113), we consider the constructs MN19-A, 
OR8-A and OR7-A as good model sequences for gas phase comparisons. 
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Figure 128 – A. Superimposition of MN4, MN19, OR8 OR7 to MN19-A, OR8-A and OR7-A show 
the contribution of extra dA construct to the negative band and lower λ (<240 nm); B. Controls 
on MN19 show a minor increase of band 275 nm upon quinie binding whereas OR8 and OR7 
remains unchanged. Spectra were acquired in NH4OAc 25 mM at 25°C. 
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7.3.6 CBA - CCS 
 

Table 58 - m/z ranges for IM-MS ATDs extraction of DNA cocaine binding aptamers. 

m/zi m/zf Ion  m/zi m/zf Ion 
879.8 882.4 T6 2-  1234.5 1236.5 OR87- 

1389.5 1391 MN48-  1280.7 1282.7 OR8+Lig7- 
1430 1432.5 MN4+Lig8-  1440.5 1443 OR86- 

1587.8 1590 MN47-  1494.5 1497 OR8+Lig6- 
1634 1636.2 MN4+Lig7-  1728.5 1732 OR85- 

1852.5 1855.5 MN46-  1793.8 1797.3 OR8+Lig5- 
1906.5 1909.5 MN4+Lig6-  1393.2 1395 OR8-A8- 
2223.5 2226.5 MN45-  1592.5 1594.5 OR8-A7- 
2288.5 2291.5 MN4+Lig5-  1638.5 1641.5 OR8-A+Lig7- 
1157.5 1159 MN198-  1858 1860.5 OR8-A6- 
1197.7 1200.2 MN19+Lig8-  1912 1914.5 OR8-A+Lig6- 
1322.8 1324.8 MN197-  2230.5 2233 OR8-A5- 
1369 1372 MN19+Lig7-  2294.5 2297 OR8-A+Lig5- 

1543.5 1546 MN196-  1394.3 1395.7 OR7-A8- 
1597.5 1600 MN19+Lig6-  1593.6 1595.6 OR7-A7- 
1852 1855.5 MN195-  1640.3 1642.3 OR7-A+Lig7- 

1917.2 1920.5 MN19+Lig5-  1859.5 1862 OR7-A6- 
1392 1394 MN19-A8-  1913.5 1916 OR7-A+Lig6- 

1432.6 1434.6 MN19-A+Lig8-  1968 1970.5 OR7-A5- 
1591.2 1593.2 MN19-A7-  2231.5 2234 OR7-A+Lig5- 
1637.5 1639.5 MN19-A+Lig7-  
1856.5 1859.2 MN19-A6-  
1910.5 1913.2 MN19-A+Lig6-  
2228.5 2231.5 MN19-A5-  
2293.5 2295.5 MN19-A+Lig5-  
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Table 59 - ta, t0 K0 and CCS value, with their standard deviation, for cocaine binding apramers at fragmentor 350V. Only ta at ΔV=390.5 V is shown; 
# is the number of replica. 

Ion MW (Da) z T (K) ta (ms) t0 (ms) K0 (cm²/Vs) DTCCSHe(Å2) # 
[MN4-zH+]z- 11128.3 8- 298.4 ± 0.2 24.08 ± 0.28 4.34 ± 0.13 3.706 ± 0.069 1158 ± 22 4 
  7- 298.5 ± 0.3 24.49 ± 0.31 4.41 ± 0.08 3.636 ± 0.047 1032 ± 13 7 
  6- 298.4 ± 0.2 26.90 ± 0.20 4.79 ± 0.09 3.302 ± 0.025 974 ± 7 6 
  5- 298.6 ± 0.2 30.51 ± 0.32 5.50 ± 0.15 2.915 ± 0.053 919 ± 16 2 
         
[MN4+Q-zH+]z- 11452.72 7- 298.5 ± 0.1 24.00 ± 0.08 4.40 ± 0.29 3.551 ± 0.049 1056 ± 15 4 
  6- 298.5 ± 0.1 27.52 ± 0.06 5.05 ± 0.04 3.247 ± 0.005 990 ± 2 2 
  5- 298.5 ± 0 31.74 ± 0 5.63 ± 0 2.794 ± 0 959 ± 0 1 
[MN19-zH+]z- 11169.4 8- 298.5 ± 0.1 25.35 ± 0.61 4.88 ± 0.11 3.564 ± 0.099 1204 ± 32 3 
  7- 298.5 ± 0.1 22.45 ± 0 4.37 ± 0.24 4.032 ± 0.039 931 ± 9 2 
  6- 298.6 ± 0.1 24.51 ± 0.01 4.37 ± 0.10 3.603 ± 0.058 893 ± 14 3 
  5- 298.5 ± 0.1 28.02 ± 0.03 5.04 ± 0.01 3.183 ± 0.007 842 ± 2 2 
         
[MN19+Q-zH+]z- 11493.82 7- 298.5 ± 0.2 23.32 ± 0.25 4.40 ± 0.03 3.868 ± 0.043 970 ± 11 2 
  6- 298.6 ± 0.1 25.27 ± 0.03 4.60 ± 0.02 3.536 ± 0.008 910 ± 2 2 
  5- 298.8 ± 0.3 28.95 ± 0.06 4.87 ± 0.38 3.032 ± 0.066 885 ± 19 2 

[MN19-A-zH+]z- 11152.3 8- 298.6 ± 0.1 24.56 ± 0.44 4.65 ± 0.27 3.686 ± 0.028 1163 ± 9 2 
 Main 7- 298.5 ± 0.1 23.59 ± 0.17 4.18 ± 0.10 3.768 ± 0.035 996 ± 9 5 
 Second  298.5 ± 0.1 25.79 ± 0.29 4.85 ± 0.27 3.510 ± 0.059 1069 ± 18 5 
  6- 298.6 ± 0.1 26.46 ± 0.12 4.63 ± 0.05 3.345 ± 0.010 962 ± 3 3 
  5- 298.6 ± 0.1 30.42 ± 0.32 5.28 ± 0.05 2.902 ± 0.044 924 ± 14 2 
         
[MN19-A+Q-zH+]z- 11476.72 7- 298.6 ± 0.1 24.47 ± 0.12 4.39 ± 0.11 3.635 ± 0.005 1032 ± 2 2 
  7- 298.6 ± 0.1 26.82 ± 0.50 4.39 ± 0.03 3.419 ± 0.081 1098 ± 26 2 

  6- 298.7 ± 0 27.20 ± 0 4.78 ± 0 3.253 ± 0 988 ± 0 1 
  5- 298.7 ± 0 31.57 ± 0 5.03 ± 0 2.749 ± 0 975 ± 0 1 
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(Table 59 continued) 

ion MW (Da) z T (K) ta (ms) t0 (ms) K0 (cm²/Vs) DTCCSHe(Å2) # 
[OR8-zH+]z- 11169.4 7- 298.5 ± 0.1 23.12 ± 0.52 4.22 ± 0.09 3.872 ± 0.110 970 ± 27 2 
 shoulder  298.6 ± 0.1 25.45 ± 0.65 4.79 ± 0.29 3.543 ± 0.059 1059 ± 18 2 
  6- 298.5 ± 0.1 24.02 ± 0.24 4.32 ± 0.08 3.713 ± 0.055 866 ± 13 3 
  5- 298.5 ± 0 27.09 ± 0.02 4.98 ± 0.10 3.307 ± 0.014 811 ± 3 3 
         
[OR8+Q-zH+]z- 11493.82 7- 298.7 ± 0 22.94 ± 0 4.33 ± 0 3.930 ± 0 955 ± 0 1 
  6- 298.5 ± 0.2 24.65 ± 0.04 4.55 ± 0.02 3.637 ± 0.003 884 ± 1 2 
  5- 298.8 ± 0.2 28.06 ± 0.04 5.08 ± 0.01 3.180 ± 0.004 843 ± 1 2 
         

[OR8-A-zH+]z- 11160.4 8- 298.6 ± 0.1 28.63 ± 0.36 5.53 ± 0.05 3.164 ± 0.044 1356 ± 18 2 
 main 7- 298.4 ± 0.2 23.46 ± 0.22 4.24 ± 0.07 3.801 ± 0.042 987 ± 11 4 
 shoulder  298.4 ± 0.2 24.99 ± 0.40 4.71 ± 0.15 3.594 ± 0.069 1045 ± 20 4 
  6- 298.5 ± 0.2 26.53 ± 0.07 4.56 ± 0.08 3.330 ± 0.003 966 ± 1 3 
  5- 298.6 ± 0.1 31.19 ± 0.51 5.44 ± 0.19 2.839 ± 0.038 944 ± 12 3 
         
[OR8-A+Q-zH+]z- 11484.82 7- 298.3 ± 0.2 24.73 ± 0.01 4.45 ± 0.24 3.601 ± 0.028 1042 ± 8 2 
   298.3 ± 0.2 26.94 ± 0.38 5.29 ± 0.06 3.389 ± 0.051 1108 ± 16 2 

[OR7-A-zH+]z- 11169.4 8- 298.8 ± 0.2 28.78 ± 0.12 5.76 ± 0.15 3.188 ± 0.009 1344 ± 4 2 
  7- 298.7 ± 0.2 23.37 ± 0.18 4.22 ± 0.08 3.811 ± 0.028 984 ± 7 3 
  6- 298.7 ± 0.2 26.37 ± 0.09 4.63 ± 0.09 3.358 ± 0.002 957 ± 1 3 
  5- 298.7 ± 0.2 30.73 ± 0.19 5.25 ± 0.09 2.865 ± 0.021 935 ± 7 3 
         
[OR7-A+Q-zH+]z- 11493.82 7- 298.7 ± 0.2 24.18 ± 0.05 4.73 ± 0.30 3.739 ± 0.058 1004 ± 16 2 
  7- 298.7 ± 0 26.58 ± 0 5.06 ± 0 3.362 ± 0 1116 ± 0 1 
  6- 298.7 ± 0 27.12 ± 0 4.68 ± 0 3.256 ± 0 988 ± 0 1 
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600V  

Table 60 - ta, t0 K0 and CCS values, with their standard deviation, for CBAs at fragmentor 600 V. Only ta at ΔV=390.5 V is shown; † obtained from CIU; 
# number of replica 

ion MW (Da) z T (K) ta (ms) t0 (ms) K0 (cm²/Vs) DTCCSHe(Å2) # 
[MN4-zH+]z- 11128.3 8- 298.5 ± 0.1    1351 ± 13† 3 
  7- 298.5 ± 0.1 28.81 ± 0.17 5.34 ± 0.05 3.115 ± 0.012 1205 ± 5 3 
  7- 298.6 ± 0.3    1204 ± 8† 5 
  6- 298.6 ± 0.1 26.74 ± 0.10 4.78 ± 0.04 3.328 ± 0.011 966 ± 4 3 
  6- 298.5 ± 0.1    963 ± 2† 3 
  5- 298.6 ± 0.1 31.03 ± 0.17 5.58 ± 0.03 2.869 ± 0.017 934 ± 6 3 
         
[MN4+Q-zH+]z- 11452.72 6- 298.5 ± 0.1 27.40 ± 0.13 4.92 ± 0 3.252 ± 0.014 989 ± 5 2 
  5- 298.5 ± 0.1 31.77 ± 0.13 5.73 ± 0.12 2.805 ± 0.001 956 ± 1 2 
         
[MN19-zH+]z- 11169.4 8- 298.5 ± 0 28.25 ± 0 5.45 ± 0 3.252 ± 0.014 1337 ± 0 1 
  7- 298.6 ± 0.1 27.86 ± 0.08 5.29 ± 0.02 2.805 ± 0.001 1159 ± 3 2 
  6- 298.6 ± 0.1 24.73 ± 0.01 4.55 ± 0.03 3.252 ± 0.014 891 ± 3 3 
    26.63 ± 0.01 4.97 ± 0.30 3.352 ± 0.055 960 ± 16 3 
    28.72 ± 0.11 5.46 ± 0.23 3.136 ± 0.047 1026 ± 15 3 
  5- 298.5 ± 0.1 28.11 ± 0.10 5.05 ± 0.05 2.805 ± 0.001 846 ± 5 2 
         
[MN19+Q-zH+]z- 11493.82 6- 298.5 ± 0 25.33 ± 0 4.76 ± 0 3.552 ± 0 905 ± 0 1 
  5- 298.5 ± 0 28.93 ± 0 5.28 ± 0 3.091 ± 0 867 ± 0 1 
         
[MN19-A-zH+]z- 11152.3 8- 298.5 ± 0.1    1388 ± 22† 3 
  7- 298.5 ± 0.1    1244 ± 3† 5 
 

 6- 298.5 ± 0.1    971 ± 5† 3 
 

 5- 298.8 ± 0.2    938 ± 3† 2 
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600V 

(Table 60 continued) 

ion MW (Da) z T (K) ta (ms) t0 (ms) K0 (cm²/Vs) DTCCSHe(Å2) # 
[OR8-zH+]z- 11169.4 7- 298.5 ± 0.1 27.35 ± 0.27 5.36 ± 0.05 3.322 ± 0.048 1130 ± 16 2  

Main 6- 298.6 ± 0.1 27.90 ± 0.07 5.15 ± 0.12 3.207 ± 0.017 1003 ± 5 3  
second 

 
298.6 ± 0.1 25.29 ± 0.04 4.45 ± 0.42 3.486 ± 0.070 923 ± 19 3   

5- 298.5 ± 0.1 27.17 ± 0.05 4.90 ± 0.02 3.280 ± 0.013 817 ± 3 3          

[OR8+Q-zH+]z- 11493.82 5- 298.7 ± 0.3 28.14 ± 0.09 5.14 ± 0.02 3.183 ± 0.009 843 ± 2 2          

[OR8-A-zH+]z- 11160.4 8- 298.5 ± 0.1    1374 ± 1† 2 
  7- 298.5 ± 0.1 

   
1231 ± 3† 4   

6- 298.5 ± 0.1 
   

973 ± 3† 3   
5- 298.5 ± 0.1 

   
951 ± 8† 3          

[OR7-A-zH+]z- 11169.4 8- 298.5 ± 0.1 
   

1364 ± 10† 3  
 7- 298.5 ± 0.1 

   
1230 ± 3† 3   

6- 298.5 ± 0.1 
   

967 ± 2† 3   
5- 298.5 ± 0.1 

   
938 ± 2† 3 
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7.3.7 Comparison pre-IMS tuning Agilent 6560 
 

 

 
Figure 129 - Comparison between pre-IMS DC voltages of regular tuning (Table 3) and CIU tuning 
(Table 4). Trap Entrance Grid Delta (TEGD) is marked with an orange circle. Voltages are in 
absolute value. 
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7.3.8 CIU/CID Breakdown diagram  
 

Table 61 - MS and ta ranges for CIU/D diagram. a. CCS scale calibrated at fragmentor 350V. 

 MS ranges (m/z) Conf A ConfB 
Ion 0 add. 0-5 add. 1-5 add. tot range ta (ms) CCS (Å2)a ta (ms) CCS (Å2)a 

[MN4-7H+]7- 1587-1590 1587-1602 1950-1602 1586-1610 22-26.4 935-1120 26.4-31 1120-1308 

         
[MN4+Q-7H+]7- 1634-1636.2 1634-1648.5 1636.2-1648.5 1586-1658 22.3-26.7 935-1120 26.7-31.2 1120-1308 

         
[MN19-A-7H+]7- 1591.2-1593.2 1591.2-1605.7 1593.2-1605.7 1589-1611 21.5-26.7 915-1135 26.7-32.2 1135-1370 

         
[MN19-A+Q-7H+]7- 1637.5-1639.5 1637.5-1652 1639.5-1652 1589-1661 21.5-26.75 915-1135 26.75-32.2 1135-1370 

         
[OR8-A-7H+]7- 1592.2-1594.2 1592.2-1607 1594.2-1607 1591-1615 21.6-26.1 911-1097 26.1-32 1907-1344 

         
[OR8-A+Q-7H+]7- 1638.5-1641.5 1639.5-1655 1641.5-1655 1591-1670 21.62-26.14 911-1103 26.14-32 1103-1351 

         
[OR7-A-7H+]7- 1593.6-1595.6 1593.6-1607.1 1595.6-1607.1 1591-1615 21-26 910-1100 26-32 1100-1335 

         
[OR7-A+Q-7H+]7- 1640.5-1642.5 1640.5-1651 1642.5-1651 1591-1670 21-26 884-1090 26-32 1090-1344 
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