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Neutrino Propagation in dense astrophysical environments: beyond the
standard frameworks

ABSTRACT

Since the discovery of neutrino oscillations in vacuum, it has been shown that the presence of a matter
background can greatly modify the flavor evolution. The inclusion of neutrino self-interactions in the stud-
ies of neutrino flavor conversions in dense astrophysical environments has triggered an intense theoretical ac-
tivity. This thesis enters into this context by going beyond usual approaches. In our first project, we explore
analytically and numerically the so-called helicity coherence, using for the first time a detailed astrophysical
simulation of binary neutron star merger remnants. This study shows that helicity coherence cannot lead
to conversions and, by doing so, strengthens the validity of the usually-employed mean-field equations in
dense media. It also brought a better understanding of the nonlinear feedback mechanism. Having done
s0, we examine in a second part the role of nonstandard matter-neutrino interactions in the same astrophys-
ical setting. We find that the presence of such interactions creates another MSW-like resonance, called the
inner resonance, which can have an interesting interplay with the matter-neutrino resonance, and leads to
flavor conversions very close to the central object. We also analyze the mechanism of such a resonance and
show that it can be met as a synchronized resonance in the presence of a strong self-interaction potential.
Finally, our last study is more formal, as it focuses on the fundamental question of decoherence by wave-
packet separation in the presence of strong gravitational fields. We use the density matrix formalism for the
neutrino wave packet in the Schwarzschild metric and derive the expression of the coherence length. This
work provides with the first study in the description of decoherence in curved space-time.

Keywords: neutrinos, astrophysics, binary neutron stars, helicity coherence, nonstandard, wave packets.

Depuis la découverte des oscillations de neutrinos dans le vide, il a été démontré que la présence d’'un
environnement de matiére peut avoir une grande influence sur les changements de saveurs. L’inclusion des
termes d’interactions neutrino-neutrino dans les études des conversions de saveurs dans les environnements
astrophysiques denses a créé une activité théorique tres intense. Cette these entre dans ce cadre en allant au-
dela des approches usuelles. Dans notre premier projet, nous explorons analytiquement et numériquement
le r6le de la cohérence d’hélicité, en nous basant pour la premiere fois sur une simulation astrophysique dé-
taillée d’'un rémanent de fusion de systeme binaire d’étoiles a neutrons. Cette étude montre que la cohérence

d’hélicité n'engendre pas de conversions, et par ce fait, renforce la validité des équations de champs moyens
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habituellement utilisées dans les milieux denses. Elle apporte également une meilleure compréhension du
mécanisme de nonlinear feedback. Apres cela, nous examinons dans une seconde partie le réle des interac-
tions non-standards entre mati¢re et neutrinos dans le méme contexte astrophysique. Nous trouvons que
la présence de telles interactions peut créer une nouvelle résonance de type MSW, appelée la résonance ”in-
ner”, qui peut avoir un couplage intéressant avec la résonance mati¢re-neutrino, et provoque des conversions
de saveurs tres proches de I'objet central. Nous analysons également le mécanisme d’une telle résonance, et
montrons quelle se manifeste comme une résonance synchronisée en présence d’un potentiel d’interaction
neutrino-neutrino fort. Enfin, notre derniere étude est plus formelle et se focalise sur la question fonda-
mentale de la décohérence par séparation de paquets d'ondes en présence de champs gravitationnels forts.
Nous utilisons le formalisme de la matrice densité pour le paquet donde du neutrino dans la métrique de
Schwarzschild, et dérivons I'expression de la longueur de cohérence. Ce travail constitue la toute premiere
¢tude dans la description de la décohérence en espace-temps courbe.

Mots clés : neutrinos, astrophysique, systemes binaires d’étoiles a neutrons, cohérence d’hélicité, non-

standard, paquets d’ondes.
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General introduction

The existence of neutrinos was first proposed in 1930 by Wolfgang Pauli, in order to explain the continuous
spectra of beta particles emitted in beta decay. The word “neutrino” itself was introduced to the scientific
community by Enrico Fermi in two conferences —Paris, in July 1932 and the Solvay conference in October
1933—, to differentiate this new, neutral particle from the heavier neutron. In 1934, Fermi postulated his
theory on beta decay, in which four fermions, including the neutrino, were interacting with one another.
This work was first submitted to Nature which rejected it, judging it “too remote from reality to be of in-
terest to the reader”. Today, we know that Fermi’s theory corresponds to the low-energy limit of the weak
interaction.

However, it was only in 1956 that neutrinos were detected for the first time. Cowan, Reines, Harrison,
Kruse and McGuire [1] announced the first detection of reactor electron antineutrinos through inverse beta
decay. The produced neutrons are captured on nuclei while the produced positrons annihilate with electrons,
both processes emitting photons that could be detected. Later, the first muon neutrino was detected in 1962
by Lederman, Schwartz, and Steinberger, hence showing that more than one type of neutrino exists. The
third lepton flavor, tau, was discovered in 1975 at the Standford Linear Acceleration Center and assumed to
have an associated neutrino. However, it was directly measured only in 2000 by the DONUT collaboration
at Fermilab.

In the late 6os, the Homestake experiment, headed by Davis detected and counted neutrinos emitted by
nuclear reactions in the Sun [2]. They observed a discrepancy in the number of neutrinos detected, with the

measured flux being about one-third of the flux predicted by Bahcall, creating the so-called solar neutrino



problem. This problem remained unsolved for about thirty years, triggering numerous experiments and lead
to the discovery of neutrino oscillations in 1998 [3]. In 1957, Pontecorvo introduced first the idea of neutrino-
antineutrino conversions by analogy with kaon oscillations [4]. After the existence of muon neutrinos was
established, Maki, Nakagawa and Sakata introduced in 1962 the notion of flavor mixing [s], leading to v <+
v, and v, <+ v, oscillations. Pontecorvo further elaborated on those oscillations in 1967. After the discovery
of the solar neutrino problem, Gribov and Pontecorvo published the first modern treatment of neutrino
oscillations, introducing neutrino masses in an article called "Neutrino astronomy and lepton charge” [6].
The Homestake measurement of solar neutrinos and the first detection of supernova neutrinos in 1987 were
two milestones for the field of neutrino astronomy.

The discovery of neutrino oscillations by the SuperKamiokande (1998) [3] and SNO (2001) [7] experi-
ments has proven that neutrinos are elementary massive particles with mixing, that is the mass (or propaga-
tion) basis and the flavor (or interaction) basis do not coincide. Since then, precision measurements have
determined most of the fundamental neutrino oscillation parameters. Crucial open questions remain, in
particular, the nature of neutrinos (Majorana or Dirac), the neutrino mass ordering, the existence of sterile
neutrinos and of CP violation in the lepton sector. It is also still unknown how neutrino masses are gener-

ated.

As neutrinos are very light and interact only through weak interactions, they also make wonderful mes-
sengers of the universe. Expanding the work of Wolfenstein [8], Mikheev and Smirnov noted in 1985 [9]
that neutrino oscillations could be drastically modified in the presence of a matter background. In particu-
lar, they showed the existence of the so-called Mikheev-Smirnov-Wolfenstein (MSW) resonance that could
be met in the Sun. It is now well-established that the MSW phenomenon is at the origin of the high-energy

8B solar neutrinos deficit.

Flavor evolution in dense astrophysical environments, such as core-collapse supernovae or compact bi-
nary objects, has turned out to be a complex problem. Indeed, the presence of neutrino self-interactions
in such environments makes the study of neutrino evolution a nonlinear problem [10]. The inclusion of
self-interaction terms [11] has triggered more than a decade of intense theoretical investigations, and models
of increasing complexity are used to unravel new flavor instabilities and mechanisms such as collective con-
version phenomena. Such studies are necessary to assess the actual impact of neutrino oscillations on the
physics of the environment, in particular, on the dynamics of supernovae, on the nucleosynthetic 7 process
abundances as well as for future observations of supernova neutrinos and of the diffuse supernova neutrino
background. Understanding the mechanism for the explosion of massive stars and identifying the sites where

heavy elements are produced (7 process) are two key longstanding open questions in astrophysics.



The recent observation of gravitational waves from a binary neutron star merger event GW170817 [12]
coincidently with a short gamma-ray burst and a kilonova constitute the first direct evidence for r process
nucleosynthesis in such sites. Moreover, recent works have shown that a significant part of the r process
elements is likely to be produced in the so-called neutrino-driven winds. Therefore, fully understanding
neutrino flavor conversions in this type of environment, as well as their role in nucleosynthesis is primordial.

The main goal of the present thesis is to investigate neutrino flavor conversions in dense astrophysical en-
vironments beyond the standard frameworks. We do so in three respects, encompassing the exploration of
the role of helicity coherence which is usually neglected, the effects of nonstandard interactions and neutrino

decoherence by wave packet separation.

The first project of this thesis is a study of the so-called helicity coherence correlators, which appear as
nonrelativistic corrections to our neutrino evolution equations. The corresponding contributions, propor-
tional to the absolute mass of neutrinos, create a coupling between active and sterile neutrino components
("wrong helicity” components) in case of Dirac neutrinos, or between neutrinos and antineutrinos in case
of Majorana neutrinos. While one first study of these terms has been done in a very simple model with one
Majorana neutrino flavor [13], no study was ever made on the effect of this new coupling in a realistic sce-
nario. In the first toy model, the authors found that the presence of helicity coherence coupling could create
a MSW-like resonance between neutrinos and antineutrinos, which could be amplified by a nonlinear feed-
back, created by the nonlinear nature of the equations, inducing strong flavor conversions. Our goal in this
thesis is to investigate the possible effects of helicity coherence coupling neutrinos to antineutrinos in a real-
istic framework with two Majorana neutrino flavors, based on detailed astrophysical simulations of a binary
neutron star merger remnants. After re-deriving the most general equations for neutrino propagation in the
mean-field approximation, we numerically explore a large number of trajectories as well as a large parame-
ter range. We find that MSW-like resonance conditions between neutrinos and antineutrinos can be met
in this detailed astrophysical scenario. We also analyze analytically our results in the light of nonlinear feed-
back, discussing general conditions for multiple MSW-like resonances that would increase the adiabaticity.
Our results also shed light more generally on nonlinear feedback mechanisms, which are observed in binary
neutron star mergers simulations such as the one associated with a flavor phenomenon called the matter-
neutrino resonance. The work presented in this thesis constitutes the first realistic investigation considering
helicity coherence and allows to assess the validity of the usual mean-field equations used in flavor evolution

studies.

The second project of this thesis is focused on the role of possible nonstandard matter-neutrino interac-

tions (NSI) in binary neutron star merger remnants. Indeed, experimental constraints on matter-neutrino



nonstandard interactions, obtained with scattering and oscillation experiments, are still rather loose. The
presence of NSI would modify the interpretation of oscillation experiments and may explain observed anoma-
lies. Studies of these interactions in core-collapse supernovae [14, 15, 16, 16] have shown that they can alter
neutrino flavor conversions, in particular by creating a new MSW resonance called the Inner (I) resonance
extremely close to the neutrino emission surface. Because of its location, this new resonance could have a
strong effect on 7 process nucleosynthesis. We explore for the first time the role of NSIin binary neutron star
merger remnants through numerical simulations and show that the I resonance condition can also be met,
creating strong flavor conversions very close to the neutrino emission surface. Moreover, we shed a new light
on its mechanism and show that it can be interpreted as a synchronized MSW resonance in the presence of
a significant self-interaction potential. This aspect of the I resonance has been overlooked in previous stud-
ies of NSI in core-collapse supernovae. Flavor conversions due to NSI such as the I resonance can have a
strong impact on the electron fraction —the proton-to-baryon ratio, which is a key parameter for 7 process
nucleosynthesis— as they are occurring very close to the central object, and could modify the abundances of
the elements produced through r process in the neutrino-driven winds. We discuss the potential impact of

NSI on the electron fraction in this environment.

The third project of the thesis goes towards a more fundamental direction with respect to the previous
two. In fact, it focuses on the investigation of decoherence by wave-packet separation on neutrino flavor
conversions, and in particular the effects of curved space-time. Indeed, as neutrinos are described by wave
packets rather than plane waves, it is possible for them to separate, leading to a damping of the oscillation
terms. After discussing the wave-packet description in dense astrophysical environments, we rederive consis-
tently the coherence length in flat space-time using the density matrix formalism and discuss the inclusion
of adiabatic matter effects. Then, we investigate the differences arising when considering the propagation of
neutrinos in strong gravitational fields. This is still an ongoing project for which final results have not been

included yet because of lack of time.

The thesis is organized as follows. First, we present the current understanding of neutrino physics in Chap-
ter 2. We discuss both the theoretical aspects of neutrino propagation in dense astrophysical environments
and the current status in neutrino physics. In Chapter 3, we describe the astrophysical scenarios of core-
collapse supernovae and binary neutron star merger remnants, as well as the neutrino emissions and key
features of their propagation in these environments. The following chapters are dedicated to the original
work developed in the course of this thesis, studying neutrino propagation in dense astrophysical environ-
ments beyond the standard frameworks. The role of helicity coherence correlators and nonlinear feedback

mechanisms are explored in Chapter 4 in the context of binary neutron star merger remnants. In Chapter s,



we present a study of the effects of nonstandard interactions on neutrino propagation in the same astrophys-
ical setting. The numerical results presented in Chapters 4 and 5 have been obtained using a FORTRAN
(90/95) developed during the course of this thesis. Decoherence by wave-packet separation in vacuum and
in the presence of gravitational fields is discussed in Chapter 6. In order to maintain the readability of this
manuscript, some calculations are detailed in the Appendices while only their main results are discussed in
the text. Our Conclusions are presented at the end of the manuscript.

The results obtained have made the object of two publications

* [17] A. Chatelain and M.C. Volpe, Helicity coberence in binary neutrino star mergers and nonlinear

feedback, Phys.Rev.Dos (2017) no.4, 04300s.

* [18] A. Chatelain and M.C. Volpe, Neutrino propagation in binary neutron star mergers in the presence
of nonstandard interactions, Phys.Rev.D97 (2018) no.2, 023014.



Unless specified otherwise, we adopt the following conventions and notations

* Natural unitsareused h = c = kg = G = 1,

* The signature of the metric is chosen to be (—, +, +, +),

* Greek indices j, v, ... run from o to 3.

* N =" = diag (—1,+1, +1, +1) is the Minkowskian metric,

* " denotes one the usual gamma matrices, satisfying the Clifford algebra {~*, 7"} = 20" and s is

defined as 75 = ivYy1y2%q3,

* Feynman slash notation is used: ¢ = a,v*,

* Flavor neutrinos are specified by v, 3, 7, ..., while massive neutrinos are specified by ¢, j, k, ...
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IN THIS CHAPTER, we will review the bases of neutrino physics. In Section 2.1.1, we start by introducing

neutrinos as elementary particles in the standard model. We present the minimal extension to the standard
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model, in which neutrinos get a mass, and introduce the notion of mixing. We discuss the differences be-
tween Majorana and Dirac neutrinos and show a first derivation of neutrino oscillation probabilities in vac-
uum. In Section 2.2, we derive the most general evolution equations for the neutrino density matrix in media
in the mean-field approximation and the element of the Hamiltonian involved in those equations. We dis-
cuss the limit of a homogeneous system and ultra-relativistic neutrinos. In Section 2.3, we use the equations
derived above to study the propagation of neutrinos in matter and show that the coupling to matter gives
rise to a resonance phenomenon called the Mikheev-Smirnov-Wolfenstein effect. Finally, in Section 2.4, we

present a brief overview of the experimental status of the domain.

2.1 INTRODUCTION TO NEUTRINO PHYSICS

2.1 NEUTRINOS IN THE STANDARD MODEL

IN THE STANDARD MODEL (SM) OF PARTICLE PHYSICS, neutrinos are introduced as massless particles sub-
ject only to the weak interaction. Neutrinos are fermions (intrinsic spin 1/2 particles), which exist in three
leptonic flavors: the electron neutrino, the muon neutrino, and the tau neutrino ™.

The fermionic free Lagrangian density is given by [20]

Eo (x)

~ (2) (@ +m) v (2), (2.1)

where m is the mass of the fermion, created through a Yukawa-type coupling between the fermionic field

and the Higgs boson. The fermionic field 1) can be expressed

d3q’ — wqr [ = — —1iqx —

@)= [ ST 3 (u@0)ea(.o) +o(d@.o)e Y @ o)), (22)
(2m)™" 5 /2

where o is the spin, p the four-momentum vector, u and v are four-component Dirac spinors, and a and b are,

respectively, the standard particle and antiparticle annihilation operators. The equal-time anti-commutation

relations are

{a(q,0),a"(q",0")} = {b(7,0),b'(7",0")} = 060 0D (T— 7). (2.3)
{a(q,0),a(q",0")} = {b(q,0),b(q",0")} = 0. (2.4)
To describe massless fermions, we introduce the projectors P, = 1;75 and P = H% In the SM of

particle physics, neutrinos are supposed to be massless fermions interacting only through their left-handed

“This introduction is adapted from Ref. [19].
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component ¥y, = Pr1) through Charged Current (CC) and Neutral Current (NC) interactions, with the

Lagrangian densities respectively given by

1g

22

1 . .
»CCC - % Z ¢Va7u(1 - 75)¢aWM + h.c. = ]Ii/LVW/L + h‘c'7 (2'5)

=€, T

g - - g .
L = 1% (R v, el Hley —cg o) Ly = %7 )
NC =5 O a:eZuT (w ey CaY5) WU, + hat(cy — cavs)Y ) =5 s QW]Z "
(2.6)
where g = Sin‘zw is the electro-weak coupling constant, e being the electric charge and Oy the Weinberg

angle, 1, denotes the fermionic field of the particle x, and ¢, ¢} are the vector and axial coupling constants
of the particle z, related to its isospin and its charge. W and Z are two bosonic vector fields, respectively the
charged and neutral weak interaction gauge boson fields, of masses my and m.

Itis interesting to notice that the masses of the vector bosons W and Z are of the order of 100 GeV, which
is much larger than the energy involved in the phenomena considered here. Therefore, the propagators of

the massive bosons Z and W can be simplified (for example, for W)

. nv pHp” .
—i T plPemd, —i pt

(2m)* p? + m3, (2m)t mE,

(2.7)

where p is the momentum carried by the boson. The interaction can be considered as a contact interaction,

as depicted in figure 2.1 for the CC process. Defining the Fermi constant % = 87312‘2,‘/ =3 cos2g:WmQZ , the CC
and NC Lagrangians can be rewritten
—Gr
Lo = gt 2.8
cc /2 IwIw (2.8)
—Gr o
Lnc = NG Jz)zu (2.9)
f3 fa [ Ja
=
Tt Low-energy limit
fi fa f1 fa

Figure 2.1: In the low-energy limit, the CC (or NC) interaction involving the propagation of a vector boson I (or Z) becomes a contact
interaction.

In the SM, neutrinos are massless. On the other hand, there is no symmetry in the SM imposing the

12



masslessness of neutrinos. Yet, the discovery and experimental confirmation of neutrino oscillations [3]
imply the existence of massive neutrinos and mixings. Thus, to have a more complete understanding of
neutrinos, it is necessary to extend the SM. In the next section, we will introduce the minimally extended

Standard Model, in which right-handed neutrinos exist.

2.1.22 MASSIVE NEUTRINOS AND MIXING
DIRAC NEUTRINOS

Neutrinos are neutral leptons, and since their charged-leptonic partners e, 1, 7 are Dirac fermions, it is nat-
ural to consider them as such. In the minimal extension of the SM, Dirac fermions, namely leptons and
quarks, acquire their mass through the Higgs mechanism. The Dirac mass term reads, for a fermion of mass
mp

LE = —mplp = —mprir + h.c.. (2.10)

However, the mass term and the CCinteraction term are not necessarily diagonal in the same basis: neutrinos
with a definite mass are not necessarily neutrinos with a definite flavor. This phenomenon is known as
neutrino mixing and is responsible for neutrino oscillations.

From now on, we will denote by v, a neutrino with a definite mass 1y, and v, a neutrino with a definite
flavor cv: the basis |v) is called the mass basis, while |v,, ) is called the flavor basis. These two bases are related

by a3 x 3 unitary matrix U, called the Pontecorvo - Maki - Nakagawa - Sakata (PMNS) matrix
Va) = > Usp lvi) - (2.11)
k

.. . . s 3 x 7 m . .
Rewriting the weak leptonic current in the mass basis jiy, = > ,— , + >_r1 Usp s, 7 (1 — 75) 0, it be-
comes obvious that flavor eigenstates, created through weak interactions, are a mixture of massive eigenstates.

. . . . . -1
A n X nunitary matrix has n? real independent parameters which can be parametrized by n{nl) angles and

2

1 . . . .
% phases. However, because of the invariance of the Lagrangian under global phase transformations,

2n — 1 phases can be eliminated. Therefore, in the case of three Dirac neutrinos, the PMNS matrix depends

on three mixing angles, 02, 023, 013 and one CP-violating phase, §, and can be parametrized as

1 0 0 C13 0 8136_26 C12 S12 0
U=10 co3 52 0 1 0 —s12 ci2 0], (2.12)
0 —S8923 (o3 —8136“s 0 C13 0 0 1

where Ci; = COS Qij and Sij = sin (91‘]‘ (’L,j = 1, 2, 3)
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MAJORANA NEUTRINOS

In 1937, Majorana suggested that the left-handed and right-handed component of the neutrino field, ¢z, and
YR, are not independent [21]. Let us define the charge-conjugate of a field 1, ¢ = CyT, where C = iy?4°
is the charge-conjugation matrix and T the transpose [19]. Then, one may notice that ¢, is right-handed,
namely Pr1;¢ = 0. Itis also possible to check that ¢, transforms as 17, under a Lorentz transformation.

As a consequence 17, and 1, can, in principle, form a mass term, called the Majorana mass term
Ly = — b, + b
mass _qu/}L wL + h.c., (2..13>

where the factor 1/2 comes from the fact that ¢, and ;¢ are not independent.

A Majorana field is therefore a field that satisfies the Majorana condition ¢r = 9, which can also be re-
expressed ¢ = n° (where 1) is a phase) by defining ) = 1, + 1. This condition requires the Majorana
field to be neutral, and neutrinos are (currently) the only known neutral fermions.

In terms of annihilation and creation operators, a Majorana fermionic field has a similar expression to the

Dirac field (2.2), but with the additional relation b(¢, o) = a(q, ), namely

35
Y= [ Y (w@ o al@o) tudoe i) ()
(2m)™" 25 /2
By convention, left-handed neutrinos are called neutrinos while right-handed neutrinos are called anti-neutrinos.
It is worthwhile to note that a Majorana neutrino has half as many degrees of freedom as a Dirac neutrino
(see figure 2.2). Indeed, from CPT invariance and Lorentz invariance, there are four possible helicity states
for a Dirac neutrino of a given momentum: vy, Vg, v, and vz. However, as a Majorana field is self-charge
conjugated, a CPT transformation only modifies its helicity, hence there are only two possible states for a
Majorana neutrino of a given momentum vy, and vg.
The presence of neutrino mixing doesn’t depend on the nature of neutrinos. There exists a mixing matrix
U such that |v,) = >, UZ, |vk). However, there is a major difference between Dirac and Majorana neu-
trinos. In the case of massive Dirac neutrinos, 2n — 1 phases of the mixing matrix are eliminated because of

the invariance of the Lagrangian under global phase transformations, but for Majorana neutrinos, the mass

/
vi,L

term is not invariant: if ¢, 1 — 1, | = €, 1, then @Eﬁk L =Y = ek &5;@ 1, and the lepton
number is violated. As a consequence, only n phases, corresponding to the re-phasing of the charged lepton
fields, can be eliminated. Therefore, in the case of three flavors, if neutrinos are Majorana particles, there are
two additional phases in the PMNS mixing matrix.

Experimentally, a signature of the Majorana nature of neutrinos would be the observation of neutrinoless

double beta decay (A4, Z) — (A, Z + 2) + 2e~, where (A, Z) is a nucleus with A nucleons and Z pro-

14



129 VR

vy, VR 179 VR

N\ \_/

CPT CPT CPT

Figure 2.2: Dirac (left) and Majorana (right) degrees of freedom.

tons, that is a double beta decay process with the emission of two electrons. This lepton-number-violating
phenomenon can occur only if a right-handed antineutrino emitted at a vertex can be reabsorbed at another
vertex as a left-handed neutrino, which would imply neutrinos are Majorana particles. This process is yet to
be detected.

Itis, therefore, possible to describe massive neutrinos with a single chiral component. Another Majorana
mass term can be introduced in extended versions of the SM as LE, = —1Imi)fr + h.c., where ¢p
describes a sterile, right-handed neutrino field. The so-called seesaw mechanism relies on the existence of
this mass term. This mechanism, proposed in the seventies, explains the lightness of the left-handed active
neutrinos with the presence of very heavy, sterile, right-handed neutrinos. It assumes that neutrino masses
are described by the Dirac and Majorana mass term, which is the most general mass term for Majorana neu-
trinos, involving both left-handed and right-handed neutrinos. In the following, we describe the main idea
of this mechanism.

We consider here the simplest case in which only one generation of neutrino exists, with two neutrino

fields v7, and V. The Dirac and Majorana mass term can be written in the matrix form

1
D+M __ — c
Lo = —§nLMnL + h.c., (2.15)
where ny, is a vector
vy,
ny = , (2.16)
C
VR
and M is the mass matrix
myp, Mp
M = : (2.17)
mp MR

We assume here CP invariance so that mp,, mg, mp are real parameters. This matrix can be diagonalized by
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a unitary matrix U so that (see e.g. Ref. [22])

ma 0
UTMU = : (2.18)
0 mo

with the eigenvalues m, mo given by

1
m =g ’mR—f—mL— \/(mR—mL)2+4m% , (2.19)
1 5 9
my =5 mgr+mp+ 1/ (mr —myg)” +4m3|. (2.20)
The mass term (2.15) can then be rewritten
pm L -
Lmass - _5 Z m;Vivy, (2.21)
i=1,2
where the fields v; and v, describe Majorana particles of definite masses
v (4
) = Uty + Ui (222)
Vo
The matrix U can be parametrized [19] as
cosf sind e 0
U= , (2.23)
—sinf cosf 0 1
with @ € [0,%] and X € [0, 27]. Using Eq. (2.18), we find for those parameters the relations
2
tan 26 = ﬁ, (2.24)
mpr —mp,

and tan 2\ = 0, as we assumed m,, mg, Mmp are real parameters.

The main assumptions of the seesaw mechanism presented here are the following

1. Assume that the Majorana mass term is null, that is m; = 0. This is a natural assumption, as the

presence of such a term is forbidden by the symmetries and renormalizability of the SM (see Ref.

[19]).

2. Assume that the Dirac mass mp is generated through a standard Higgs mechanism, and is therefore

of the same order as the electroweak scale.

3. Assume that the lepton number is violated by mp at a scale much larger than the electroweak scale:
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mpg > mp.

With these assumptions, the eigenvalues (2.19-2.20) become

2
m
my ~ —2 < mp, (2.25)
meg
and
Mg ~ Mpr > Mp. (2.26)

Therefore, m; is very light compared to other leptons, while my is very heavy. The parameter 0 (2.24) be-
comes very small: v; is mostly composed of active v/;, while 15 is mostly composed of sterile vz. This is
the so-called seesaw mechanism: a very heavy right-handed neutrino is responsible for the lightness of the
left-handed neutrino.

The suppression factor, 72 depends on the scale on which the lepton number is violated. Note that if
we take mp ~ 10? GeV, and if we consider mp to be of the order of the grand-unification scale mp ~
10 — 10'® GeV, then we find ol 107 — 107 '2: the seesaw mechanism would explain why neutrino

masses are so small compared to other leptons.

As described above, the inclusion of neutrino mass terms and mixing make it possible for neutrinos to
change their flavors, leading to the phenomenon of neutrino oscillations. In the section below, we discuss

the simplest case of neutrino oscillations in vacuum.

2.1.3 NEUTRINO OSCILLATIONS IN VACUUM

Neutrinos are produced through CC interaction processes and are therefore produced as flavor eigenstates
which are superpositions of mass eigenstates. Because the mass eigenstates have non-zero and non-degenerate
masses, and because of mixing, the superposition detected after propagation is not necessarily the same as
the initially produced one: the neutrino detected may have changed its flavor. This phenomenon, first in-
troduced by Bruno Pontecorvo in 1957 [4, 23], has been discovered by the SuperKamiokande and SNO
experiments [3, 24]. In this section, we will present the standard derivation of the neutrino oscillation prob-
abilities.

Let us assume that a neutrino of flavor ov and momentum ¢ 'is created through a CC weak process at the

instant ¢ = 0. As we have seen before, it is created as a pure flavor state and can be written as

|Ve) = Z o) (2.27)
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Note that the number of massive neutrinos is not limited: its minimum is three, but it may be larger than
three. If so, the additional neutrinos in the flavor basis would be sterile, namely, they would not participate
in any interaction except gravity. Therefore, the number of massive neutrinos will not be specified in the
following general derivation. We consider orthonormal massive neutrino states: (v|vy) = Jj, and since U
is unitary, (Vo |vg) = dap-

In a Schrodinger-like picture, the massive neutrino states are eigenvalues of the Hamiltonian H of the
system: H |v) = E, |vy) where E? = ¢7 + mj, and we consider that all neutrinos have equal momenta

@i = q. Therefore, they evolve according to the Schrédinger equation as |vg(t)) = ek 1), Using this

equation and |vy) = Y Uak |Va), we find
|l/a> = Z Z U;kUﬁke_iEkt |l/5>. (2.2.8)
3k

The transition probability is then given by

Py (8) = [(wslva ()] (229)
= UiUspUnyUpje 0t (230)
k?j
'Amsz
~ Z UakUprUaUgze™" 28, (2.31)
k7j

where we considered ultra-relativistic neutrinos detected ata distance L = t, with equal momenta g'such that
Ami .
o~ _ kj 2 2 2 _ . . .. 1.
Ey,—E; = , where Amj; = mj —m73 and E = |g]. Itis easy to verify that the transition probability

2E

does not depend on the (possible) Majorana phases of the mixing matrix U. The antineutrino transitions
Vo — Vg have different probabilities than neutrino transitions v, — /3 in the presence of a non-zero Dirac
CP-violating phase 0. The first evidence of neutrino oscillations was provided by the pioneering experiment
Super-Kamiokande [3]. In 1998, they observed an azymuthal asymetry in the number of atmospheric muon
detected (see figure 2.3). This can be explained by the fact that muon neutrinos converted into v, that were
not detected. The experimental evidence of neutrino oscillations are discussed in more detail in Section 2.4.

An interesting special case is the one of two-neutrino mixing. In this approximation, we consider only two
massive neutrinos out of three. While this simplifies greatly the oscillation formulas, it is also well justified
as most experiments are not sensitive to the influence of three-neutrino mixing. Therefore, we consider
two neutrino flavors v, and v, which can be either pure flavor neutrinos or a linear combination of pure
flavor neutrinos. The mixing matrix U is reduced to a 2 X 2 matrix, which is a rotation matrix in the Dirac

case, but includes an additional phase in case neutrinos are Majorana particles. However, it is easy to see in

the equations above that such a phase does not play any role [22]. In the Dirac case, the matrix U can be
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Figure 2.3: Zenith angle distributions of fi-like and e-like events for sub-GeV and multi-GeV data sets. Up- ward-going particles have

cos f < 0and downward-going particles have cos # > 0. Sub-GeV data are shown separately for p < 400 MeV/candp > 400 MeV/c.
Multi-GeV e-like distributions are shown for p < 2.5GeV/candp > 2.5 GeV/c and the multi-GeV pi-like are shown separately for FC
and PC events. The hatched region shows the Monte Carlo expectation for no oscillations normalized to the data live-time with statistical
errors. The bold line is the best-fit expectation for v/, <> v oscillations with the overall flux normalization fitted as a free parameter.
Figure and caption adopted from Ref. [3].

parametrized as

cosf sind
U= , (2.32)
—sinf cos@

where 0 is the effective mixing angle, and the appearance and survival probabilities take the simple forms

(for o # ), (233)

Am?2L
Py (L, E) = sin? 26 sin® (ZL—E>

(234)

Am?L
P, . (L, E) =1 —sin?20sin® ( m ),

4F

where Am? = Amj3,. Using different source-to-detector distances and different energy ranges enable to

explore different values of the parameters Am? and . The amplitude of the oscillations is controlled by

A7 FE
Am?

the value of the mixing angle 6, while the oscillation length, Lo = depends only on the energy of the
neutrino and on the difference of the squared masses of the massive neutrinos. Note that the oscillation
probabilities in vacuum do not depend on the sign of Am?. Therefore, neutrino oscillation experiments

give us access only to the absolute value of such a parameter.
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2.2 DESCRIBING NEUTRINO PROPAGATION IN DENSE MEDIA

WHEN NEUTRINOS ARE PROPAGATING IN DENSE ENVIRONMENTS, their flavor evolution can be drastically
modified because of the interactions with the particles composing the medium.

In this section, we derive the equations describing neutrino evolution in the mean-field approximation.
We start by writing the most general mean-field Hamiltonian, and introducing every relevant two-point cor-
relators. We use first principles to derive the most general evolution equations for those two-point correlators.
Then, we derive the different components involved in the effective Hamiltonian for a typical astrophysical
environment. Finally, we write down explicitly the equations derived above in the case of ultra-relativistic
neutrinos evolving in a homogeneous environment. We consider both Dirac and Majorana neutrinos and

highlight the differences between the two cases. Note that the results derived in this section are based on the

published work [25].

2.2.1 MOST GENERAL EQUATIONS IN THE MEAN-FIELD APPROXIMATION

IN THE MEAN-FIELD APPROXIMATION, neutrinos and antineutrinos are considered as free streaming, prop-
agating in an averaged background field.

In this section, we derive the most general equations for neutrino propagation in the mean-field approx-
imation, following the procedure of Ref. [25]. Alternative derivations can be found in the literature (for a
review, see e.g. Ref. [26]). The density matrix formalism used here has been first introduced in Ref. [27],
and used in several other works (see e.g. Ref. [28, 29, 30, 31, 32]). In Ref. [33], a coherent-state path formal-
ism is used, and it is shown that mean-field equations correspond to the stationary phase of the path integral
for the many-body system. The authors of Ref. [34] applied the Born-Bogoliubov-Green-Kirkwood-Yvon
(BBGKY) hierarchy to derive an unclosed set of equations, which can be truncated to its first equation to
obtain the mean-field evolution equations.

Starting with the most general mean-field Hamiltonian and every possible two-point correlators, we use
the Ehrenfest theorem and anti-commutation relations to derive the most general equations for those two-

point correlators. The differences between the Dirac and Majorana cases are discussed.

DIRAC NEUTRINOS

We start by writing the effective mean-field Hamiltonian of the propagating particle as a bilinear form

Healt) = / &2, ()T (2, (), (235)
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where I';; () is a Kernel that will be specified later on, depending on the interactions with the medium. Let
us notice that this expression of the Hamiltonian is very general: Eq. (2.9) is directly expressed as such, while
Eq. (2.8) can be rewritten in this form using a Wick-like transformation and Fierz identity (see Ref. [20]).
The fields v, are massive neutrino fields, though the equations derived below are valid in any basis. In the
interaction pictures, their expression is given by Eq. (2.2), with the non-zero anti-commutation relations at
equal time given by Eq. (2.3).

The most general equations in the mean-field approximation should involve the equal-time two-point

correlators

) = (al(@", )il 0)). (236)
pij(t,q,0,q",0') = <b 70’)>, (2.37)
kij(t.3.0.4",0') = (b;(q", o). 0)) (239)
Wt 4.0, 0") = <a}<@', o l(7,0)). (239)

where the brackets denote the expectation value of the operator, taking into account the quantum and sta-
tistical average over the background in which the neutrinos are propagating. Usually, only the neutrino
(2.36) and antineutrino (2.37) density matrices are considered when studying neutrino evolution in media.
Reference [34] first pointed out that the pairing correlators ( 2.38, 2.39) also contribute to the mean-field
evolution equations. The authors also discussed the possible contribution of terms due to non-zero neu-
trino mass, which are comprised here as the neutrino and antineutrino density matrices include all possible

helicity states.

() _

To derive the evolution equations of the two-point correlator, we use the Ehrenfest theorem 7=+~ =

([A, Heg(t)]). To this aim, we rewrite the effective Hamiltonian (2.35) as a function of the creation and

annihilation operators of the neutrinos and antineutrinos. Introducing the notations

/ﬁ = / 4%, (2.40)
=] o

Po=+1/2

-/

and the matrix product (A-B) (t,¢,0,¢",0') = fpdl A (q,0,p1,01) B (p1,01,q",0"), we get
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1 — | — — — —1 — T — —
Heg(t) = —3/ / /d3$ [Uz (P1, 00) Tij (@) (P2, 02) e P77l (5, 01) a; (Fa, 02)
(QW) P1,01Y P3,02

+1; (p1, 01) Dij(@)v; (P2, 02) e @270 (5, o) b} (2, 02)
+0; (P, 01) g () (D2, 02) e P P70, (5, 01) aj (o, 02)

+0; (B, 01) Tij (2)0; (B, 02) €7 PP, (5, 01) b (2, 02)| -

Defining the Fourier transform on the spatial part of T’

[ I 1 = —ik.@ =
Fl‘j(t, ]{3) = (27T)3 /d3l'@ k. Fl‘j(tfl]), (2‘42‘)
and the following matrix elements
— - _ - ~ N N = —3 o_,0
I‘;’J’/ <t7p170-17p270-2) = uz( 1,0'1)Fij(t,p1 —pg)u] (pg,O’g)@ (p2 pl)t7 (243)
7] — - _ N =~ N — _ —i(— 0o_.0
LY (t, P, 01, Pa, 02) = i (p1, 01) Tij(E, pr + p2)vj (P2, 02) € (—r5 pl)t7 (2.44)
] - = _ - ad = = N i (0] (0]
F;'jj%/ (t7p17017p2702) =V ( 1,0'1) Fij(t, —P1 —pg)Uj (p2,0'2)€ (p1+p2>t, (2_45)
i — - _ - ~ - = = —3 0o_ .0
]_"ZV <t7p17017p270-2) :Ui( 1,0_1)Fij(t,p2 _pl)vj (pQ,O'Q)e <P1 pQ)t’ (246>

we get the compact form for the effective Hamiltonian
He(t) = [a (t)-T(t)-a(t) + a' (£)-T""(t)-0'(t) + b(t)- L™ (t)-alt) + b(t)-T7(£)-b'(t)] . (2.47)

He, T and I'”” are Hermitian while T = T'””. Having expressed the effective Hamiltonian in terms
of the creation and annihilation operators, we use the Ehrenfest theorem. For this purpose, we have com-
puted commutation relations of the type ([aa', aa']) as functions of the different two-point correlators. In
the end, we get the following evolution equations for the neutrino and antineutrino density matrices, as well

as for the pair correlators

Zp(t) = ([Fyy7p] + FVD"L{T - H'FDV) ) (2'48>
ip(t) = ([0, p] + &T-T" = T"k) , (2.49)
iki(t) = (I Kk — kT =T p— p- T +T¥). (2.50)

These are the most general mean-field evolution equations. They correspond to the first equation trunca-

tion of the BBGKY hierarchy. They include corrections to the relativistic limit and neutrino-antineutrino
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correlations which have been first pointed out in Ref. [34]. Note thatall the matrices in the equations above
are 2ny X 2ny, where ny is the number of flavors, as they include both a flavor and helicity structure.

The effects of the neutrino-antineutrino correlations associated with the x terms have been recently dis-
cussed. Currently, no numerical study of these effects has been performed. However, it has been argued
in Ref. [35] that the contributions of these correlators are extremely small. Furthermore, the authors have
shown that the MSW-like resonance condition associated with these correlators is unlikely to be met in a
typical astrophysical environment.

The effects of the corrections to the relativistic limits, also called belicity coberence, are discussed in Chap-
ter 4 as this study is the goal of the first project of this thesis. Such corrections, proportional to the neutrino
masses, can create transitions between neutrinos and anti-neutrinos. We will explore their impact on neu-
trino flavor evolution in astrophysical environments.

We now discuss the differences between the Dirac and the Majorana cases.

MAJORANA NEUTRINOS

In the case of Majorana neutrinos, we write the effective Hamiltonian as the bilinear form

HY(t) = / ) (2)0y ()] (), (2.51)

where 1) are Majorana fields given in Eq. (2.14). Although the Hamiltonian has the same form as the Dirac
effective Hamiltonian (2.35), the kernel does not: the vacuum part of the Kernel has to be divided by 1/2, as

discussed in section 2.1.2. We define the two-point correlators as follow

Pi\f (t,¢.0,q"0") = <a; (¢, 0") ai (q, U)> ) (2.52)

=" (2.53)
ki (.G,0,4",0") = (a; (§',0") ai (§,0)) , (2.54)
K?J/‘[T (t, q, 0, q', U/) = a; <§/7 U/) a;r (q, ‘7>> . (2.55)

As before, we develop the effective Hamiltonian (2.51) in terms of a and a' and we get

He(t) = a' (t)-T"(t)-a(t) + a' (t)- T (t)-a' (t) + a(t) - T (t)-a(t) + a(t)-T7"(t)-a' (t). (2.56)
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Alternatively, it is possible to obtain a formulation closer to the one obtained in the Dirac case by defining

Fl]/\Z — Fw/ _ (FDD)T’ 11/\147 — Fw? _ (FZID)T’
e L O D% — T — (D7), (2.57)
From these definitions, we get the relations (I'{y)" = —I"%7 and (I'}Y)" = —I"7, and rewrite the effective

Hamiltonian (2.51) as

(2.58)
Using the Ehrenfest theorem and expressing the different commutation relations of the type ([aa', aa'])
as a function of the two-point correlators (2.52-2.55), we find that the evolution equations in the Majorana
case take the same form as in the Dirac case (2.48-2.50), with the I"y; matrices (2.57) replacing the I" matrices

(2.43-2.46), namely

ZpM(t) = ([F]V\Z7pM] + F]VME"{]\/[]L - RMF]D\Z) ) (2-59>

ikM ()

(D5 — 6M D57 — T4 g™ — pM T4 4+ T57) (2.60)

Note again that although the structure of the equations are the same as for Dirac neutrinos, the content of
the I'j; matrices is different.
2.2.2  DERIVING THE EFFECTIVE HAMILTONIAN IN THE MEAN-FIELD APPROXIMATION

Having derived the evolution equations for the two-point correlators (2.36 - 2.39) —respectively (2.52 - 2.55)
for Majorana neutrinos—, we derive the different elements of the F(’;ﬂ’; : in a typical astrophysical environment,
with alarge number of self-interacting (anti)neutrinos in a background of electrons and nucleons. Therefore,
three contributions have to be considered: i) the vacuum part of the effective Hamiltonian, ) the CC and
NC interactions of neutrinos with electrons, protons and neutrons in the medium, 7) the neutrino (NC)

self-interactions.

VacuuM CONTRIBUTION

The kernel of the vacuum (or free) Hamiltonian is

[ (¢, %) = 0y ((? + mz) 3 (2.61)
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for Dirac neutrinos. Note that for Majorana neutrinos, this kernel has to be divided by 2 to account for the

fact that the number of degrees of freedom is divided by 2. Using Dirac equation and ¢; ,¢!' = —m?, as
well as the different definitions (2.43 - 2.46), we get for Dirac neutrinos
L (4@ b, @' 1) = 656 (= 7") dnwd’ (2.62)
LY (t, 4, h, @' b)) = —6,;0% (7 — ") S d”, (2.63)
vv,vac — —/ n o
% (t, g, h,q",h') =0, (2.64)
vv,vac — —/ n o__
Fz‘j (t7 ’ h7 q :h ) - 07 (2.65)
and for Majorana neutrinos
Doy (6.4 h,q" h') = 569 (7 = q") O, (2.66)
DY (1,6 g ) = 0. (:67)

This vacuum contribution is, by definition, diagonal in the mass basis. We now discuss how to derive the
contributions to the kernel from CC and NC interactions.
GENERAL PROCEDURE FOR DERIVING THE INTERACTIONS KERNELS

(=)=) .
To compute the I'¥ ¥ matrices, we first need to compute the kernel ™" of the different interactions under-
p P
gone by neutrinos. According to the low-energy interaction Lagrangians (2.8, 2.9), we consider here that the

effective Hamiltonian of the interaction reads

Hint =c [ZZVQ’V‘LL (1 - 75) wl’@} [f(% (kl - k275) ¢] ) (2-68)

with c a coupling, 1, the fermionic field of a neutrino v, (k1, k2) € R2, and y and ¢ the fermionic fields
of the other two particles involved in the interaction. We introduce a,, and b, (respectively a, and by) the
annihilator operators of the particle described by  (respectively ¢) and its antiparticle. From Eq. (2.35), we

wish to compute the kernel

Fag =y (1 —75) T, (2.69)

where we introduced the expectation value over the background

T = (X" (k1 — kays) ¥ ) - (2.70)
The procedure is then the following.
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1. We expand x and ¢ in T* (2.70) using their Fourier decomposition

1 - —ip1-x — — — ip1-T g
" (r) = <—3/ / (@ (p1,01) €™ al'( (1, 01) + Uy (1, 01) €77y (P, 01))
(27)° Ji,o0 I ps,0

(= k) (1o (B2, 02) €977y (2, 02) + vy (B, 02) €778 (53, 02) ) )+ (270)

2. We develop the product and use normal ordering, making the different two-points correlators appear

T () = / / [y (B 01) 7 (ks — k) g (2, 02) PP (ad (51, 01) ag (s 02))
27T P1,01Y p2,02

ity (P1,01) 7 (k1 — kays) vg (P, o) €~ P72 <ax (1, 01) b, (B2, 02 >
+0y (P, 01) v (k1 — koys) ug (Do, 02) € PP (b, (51, 01) ag (P, 02))

—0y (P1,01) 7" (k1 — kys) vg (Do, 02) € 27" <b§s (P2, 02) b (p1701)>] . (272)

3. We use assumptions on the medium (e.g. homogeneity, neutrality, etc) to simplify the different cor-
relators and compute I', .
We now use this procedure to compute the matter contribution, induced by neutrino interactions with

electrons, protons and neutrinos in the medium, as well as the neutrino self-interaction contribution.

MATTER CONTRIBUTION

We consider CC and NC interactions of neutrinos with an unpolarized, electrically-neutral background of
electrons, protons, and neutrons (see figure 2.4). While electron neutrinos can interact through both pro-

cesses, muon and tau neutrinos are affected only by NC interactions.

Ve e e ,p,n Vg

W= A

- Ve Vg

e_7p7n

Figure 2.4: Feynman diagrams of the CC and NC interactions involved in the propagation of neutrino in a typical astrophysical environ-
ment. The CC interactions (left) involves only electron neutrinos, while the NC interactions are flavor blind: they can involve any neutrino
flavor.

=)=)
We derive the V¥ matter contributions in the flavor basis, as, by definition, the matter interaction kernel
is diagonal in this basis. We follow the procedure of section 2.2.2 in order to compute the CC contribution

due to neutrino electron scattering

) = (Ve (@) 7" (1 = 75) ve (2)) , (2.73)
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where 1), is the electron fermionic field, and the NC contribution

The(r) = > (s ()" (c] = vlvs) ¥y (2)) (274)

f:e_ 7p7n

where the 1) s are the fermionic field for particle f = €™, p, n. We assume that the background is homoge-

neous, and suppose that there are only forward and elastic scattering so that

py (t, Py, 01, D2, 02) = <jS (P2, 02) ay (p1, 01)> = 5a1,az5(3) (p1 — p2) py (1) (2.75)

with f = e, p, n. Using the procedure of section 2.2.2 and trace techniques, we get for the CC interaction

1 o i} 3
T (2) = / o (51, 00) 7 (1= 75) e (1, 1) pe (Frs 1) (2.76)
(27T) Pi,01
&g 2
= —/ @2n? pe (¢, De) (2.77)
= _jJom, (2.78)

which gives the CC kernel, in the flavor basis

—1G
TS = —Fq, (1 75) T Sup00e. (2.79)

V2

The same computation can be done for the NC contribution (2.74), and we get

—iG
o5 = \/§F7u (1 —=1s5) Z ) J M bp. (2.80)

f=e~,pn

Assuming that the background is electrically neutral, we have J** = JP*. We then use the value of the

coefficients ¢/ = I3 — 2q; sin® Oy and obtain

NC __ —ZGF

1 n
Fa,@’ = W’YM (]_ — ’75) (—51] ’M> 5aﬁa (2..81)

which finally gives the entire matter contribution, adding Egs. (2.79) and (2.81)

ma _ZGF e, 1 n,
Faﬂt = W’YM (]_ — ’75) 505 (50¢e<] H— 51] M) . (2.82)

Using the expression of the kernel and chiral spinor products A, introducing the notation § = (Q], where

q = |q], as the unit vector in the direction of ¢'and the vectors n,, (§) and €,, (¢) as defined in Appendix A,
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we obtain, for Dirac neutrinos

)

+(5h,—h’ (T;—qj(sh_ewﬁu* (cj) +

L7 (¢, G, h, G B = 6@ (§— §7) [—On+Onpem” () -

)

L™ (t,q, h,q' B = 6® (§+ q") [~On—0n—ne™ (4) -

v

+onn (2—q5h,+€ “nt (—q)

matii . -
where 377" is the matrix

1

expressed in the mass basis. For Majorana neutrinos, we get

Fl/l/mat (t (], h, CT,, h/) _ 5(3) ((T

[vvmat (t,(j,h, q—»/’ h/) — (5(3) (q’_ q—"’) [ (Sh (Sh h/n“( ) Y mat

/"1/71‘7

2q

E mat

JTRY]

i i _pk (A m; —id ma
—Op,—h <Z§h’+e e <Q)+Z5h, e et (g )) E;”tj}v

Emat

Hsig

my;
—Op €

m
5 /6 ‘U, Zmat Emat‘r
+0p,—pOp 1€ " Y () (2(1 + 2q>

+0p, 1 On %" () (zg‘“ :

m
2q

oy >) 2;2*;3} |

+ 2—;5 n—€n" (q )) 2;@;} ,

) [5hh’nu( )( 5}1 Emat+5 Emat T)

- EmatT
+261 )]

F]V\/[ﬁ,mat (t, q—; h, q—»/’ h/) _ 5(3) ((7+ q—»/) [5h,—h’€“* (_5h7_2mat + 5h7+zmat,'r)

@z )

+0p O e (n“ (—C])

IR (n (g s

where m is the mass matrix, m = diag (m;) in the mass basis.

2.8

2q

m
2q

Zmat _

— (=

Q)

2q

=)

(2.83)

(2.84)

(2.85)

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)



These terms can be reduced to the well-known matter potential, as discussed in section 2.2.3, and produce
the Mikheev-Smirnov-Wolfenstein (MSW) effect which will be discussed below (see section 2.3). Note that
the expressions above all include first order corrections to the relativistic limit, proportional to . The role

of these corrections is discussed in Chapter 4.

SELF-INTERACTION CONTRIBUTION

In dense astrophysical environments, neutrino self-interactions become relevant as neutrino densities can
be very large. It has been shown in 1993 [36] that these contributions can lead to new phenomena different
from the MSW effect, as they introduce nonlinearity in the evolution equations. Since the first numerical
investigation of this term in the context of Supernova neutrino [11], these interactions have triggered an
intense theoretical activity, which will be discussed in Chapter 3.

The NC neutrino self-interaction term Hamiltonian is, in the contact-interaction approximation (2.9)

H (@ Z B (1) 7 (L= 95) Wy (2)) (D ()7 (L= 75) Wy (@) . (290)

It was first pointed out by Pantaleone in 1992 [10] that this term is quite different from the matter term
derived above, as it also includes non-diagonal contributions. Furthermore, this interaction is intrinsically
nonlinear.

As this term involves a sum on neutrino flavors, it has the same form in the mass basis. Therefore, we
will compute the interaction kernel in this basis. We estimate the background potential created by these

interactions by using a Wick-like transformation and Fierz identity [36]

(@Eu(ﬂ“ (1 - 75) wua) (@Z_)uﬁ’yu ( — s 77/}1/[3) <77Z)ua ]- - '75) ¢Va> (@/;Vg'YM (]- - 75) wuﬁ)
+ (1/_}1/&7'u (1 - 75) ¢Va> < ?/_fu[ﬂy (1 - 75) ¢Vﬁ>
+ <1/)1,a 1 -5 ¢u5> (¢V57u ( 75) wua) + (&uaf)/'u (1 - 75) wug) <1ZVQPY/L (1 - 75) wua>

- <¢I/a 1 — 5 77Z}I/a> <wug’7u -5 1/JV,(3> <¢Va 1 — s ¢u5> < ¢V57}L ’75) wua> )
(2.92)

where we omitted the dependence on () for readability. Let us analyze and illustrate the different terms

involved in Eq. (2.92).

* The first two terms are diagonal contributions, meaning that the propagating neutrino doesn’t change

its flavor (see an example in the left panel figure 2.5).
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4 Vg A4

Va A % Vo A %

\1/5

Figure 2.5: Illustration of the interaction terms in Eq. (2.92) corresponding to the mean-field approximation for the neutrino self-
interaction terms. Background neutrinos are illustrated as dashed arcs, while the test neutrino is a solid straight line. The left panel cor-
responds to the diagonal contributions, and doesn’t involve a flavor change. The right panel corresponds to the off-diagonal contributions
and makes the test neutrino change its flavor. Antineutrinos also contributes to these terms.

* The third and fourth terms are oft-diagonal contributions. They involve the propagating neutrino

changing its flavor (see an example in the right panel figure 2.).

* The two last terms are not interaction terms and only contribute to the vacuum energy. We eliminate

them for the rest of the calculation.

Using the transformation (2.92), we get the following expression for the neutrino self-interaction kernel

self self,,u, self, i | —1 self,
Fij 2\/—’7M Z + Tij = 77 (1 -5 )Eij ) (2.93)
where we introduced
T = (7" (1= 75) ) - (2.94)

. . el .
Developing the neutrino fields in 77", we get the expression

isjmu (z) = 3 / / [ﬂj (D1 o1) Y (1 = 75) u; (P2, 02) €_i(p1_p2)mpij (t, P2, 02, P1,01)
(271-) 1,019 3,02

+j (P, 1) 7 (1 = 5) v; (B, 02) € P TP ] ; (t, P2, 09,1, 01)

+0; (P, 1) Y (1 = 45) w; (Pa, 09) € PP (8 5y 09, 1, 01)

—0; (P1, 01) 7" (1 = 75) vi (2, 02) €_i(p2_m)mﬁz‘j (t, P2, 02, 1, 01)} - (2.93)

Note that usually, the mean-field term associated to neutrino self-interactions do not include the x contri-
butions. Using the expression of the kernel and chiral spinor products (Appendix A), we obtain, for Dirac

neutrinos
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L (@ b g 0 = 60— ") [=0n-Onnm” (§) - 5

1] P B
m; ; % /A my; —ip (A se
+5h,—h’ (2—qjéh7_61¢€u (Q) + 2_q6h’+€ ¢€l ( )) Eulfj:| s (296)

FZp,self (t, 3 h,q' B = 53 (@—q" [ Snt On ™ (q) - Eszflzfg

m; i o —1 s€.
_5h,7h/ <2—qjéh7+€ ¢€M <Q)+Z5 h.—€ ¢)€'u( )) Eullf]:|, (2..9'7)

T (4, @ b, @' 1) = 6O (T4 §) [=0n—On—we™ (q) - B

ij
+5 m15 —ip,, 1 ( ) 4 m; S ip, ( ) Eself 8
hoh! Z hte 'n Z h—en wii| - (2.98)

For Majorana neutrinos, a similar expression to Eq. (2.95) is obtained by replacing the Dirac two-point

correlators by Majorana ones (2.52- 2.55). For the kernels, we get

FVMI/,self (t, (77 h, —/ h) (5 (q—» q—»/) |:5h h/nu( ) ( (5 Eself_'_ 5 ZSCIfT)
—id pay [T self self,p 1T
+5h,7h’5h,+e e” <q> (2—q : EN + EH T. 2_(])

. R sel m m se
+5h7,h/(5h’,€l¢€”* (Q) (Eulf . 2—q + 2_q : 2u1f7T):| ’ (2'99)

I—\K/l[_/,self (t, (77 h, q—»/’ hl) — 5(3) (J (7 ) [5h € *, 0L ( 5 Zself+ 5 Eself]’)
. m m
EYR e—zd) nt o Eself ~ Zself’T Y
+-O0n, 1 Oh, + < (—¢ )2q n* (q) 1 2
id A\ yoself T N T el
+0p,pOp,—€ (n“ (q) X5 % n* (—q) % Dy T)} . (2.100)
As mentioned before, the equations derived in this section include all first-order corrections to the rela-
tivistic limit. The corresponding contributions require an anisotropy of the medium to be non-zero. They
create a coupling between the active and sterile component ("wrong helicity” component) of (anti)neutrinos

in the Dirac case or between neutrinos and antineutrinos in the Majorana case. We explore their role in detail
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in Chapter 4 in a detailed astrophysical environment.
The equations above can be simplified in the case of ultra-relativistic neutrinos propagating in a homoge-

neous system (see below) and will be used hereafter when studying neutrino propagation.

2.2.3 HOMOGENEOUS SYSTEM IN THE ULTRA-RELATIVISTIC LIMIT

In this section, we compute the expressions for the F(; v matrices in the special case of a spatially homoge-
neous system and assuming that neutrinos are ultra-relativistic. Therefore, only positive-helicity neutrinos
and negative-helicity antineutrinos are involved. We also neglect the pair-correlators x, which role will not
be explored in this thesis; consequently, we do not need to calculate the matrices I'*” (or I'??).

The equations derived below are the equations generally used when studying neutrino flavor evolution
in astrophysical environments. In the first project (Chapter 4), we study the effects of the helicity coherence
terms and highlight how they modify the structure of the equations derived below. The same equations are
used in Chapter s to study the effect on nonstandard interactions.

For Dirac neutrinos, we can restrict ourselves to the following two-point correlators

P (t7 7 —, ilﬂ _> = 5(3) ((j_ le) P (t: Cf) ) (Z-IOI>
ﬁ (tv 677 +7 67,7 +) = 5(3) (CT_ J/) ﬁ (t7 _J) 5 (2.102.)

and as the spatial homogeneity implies I';; (t, §) = 6®) (q) I';; (t), the only non-zero contributions to the

(=)(=)
I'”¥ matrices are

™ (t,q,—,q",—) = 6@ (7— g T (t,q), (2.103)

r (tv 677 +7 67,7 +) = 5(3) ((7_ J/) FED (tv _CD . (Z'IO4>

The choice of sign in the argument is such that all particles appear with the same momentum ¢'in the evolu-
tion equations derived below.

For Majorana neutrinos, we introduce

PM (t7 (T, B Jla _) = 5(3) (J_ J/) PM (t7 @ ) (2"105)

v (67 +,¢"+) = 5@ (T—q") py (t,Q), (2.106)
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=)=)
and the only non-zero contributions to the I'y/” matrices are

FZZ (tv (Ta ) q_”7 _) = 5(3) ((7_ J,) FK/III (t7 CD 5 (2.107)

T (t, 4+, q', +) = =6 (7 — g TR (L, ) - (2.108)
We derive below the expressions for these new matrices. The evolution equations are, for Dirac neutrinos

p (t7 67) = [FVV (tv (j) P <t7 (j)] ) (2.109)

ip (tv (j) = [FDD (ta (f) P <t7 (T)] ) (2.110)

These are the equations generally used to study neutrino flavor evolution. Although their structure is similar
to the one of equations (2.48 - 2.50), taking © = 0, note that the matrices involved in (2.109, 2.110) are now

n¢ X ny matrices as they only involve a flavor structure. For Majorana neutrinos, we get the set of equations

ipm (t’ CT) = [FKZ (tv CT) y PM (tv (7)] ) (2.1m)

ipm (tv CT) = [Fig (tv (T) s PM (ta q_)] ) (2.112)

which have a similar structure as equations (2.59 - 2.60), taking £ = 0, but now involve s x n matrices.
Based on the equations derived in section 2.2.2, we now give the vacuum, matter and self-interaction
contributions to the kernels (2.103, 2.104) —(2.107, 2.108) for Majorana neutrinos—, for a homogeneous

system in the ultra-relativistic limit.

VACUUM CONTRIBUTION

Using the notation introduced previously, we use equations (2.62-2.65) and get for Dirac neutrinos

| (t, CD — _]Pvvac (t, @ — hO (q“) , (2.113)

with h® = diag (¢)) in the mass basis. For Majorana neutrinos, we get from equations (2.66, 2.67)

F]Vvl[wac (t,q) = _F?\/jﬁ’mc (t,q) = h? (q) - (2.114)

MATTER CONTRIBUTION

We introduce the particle number densities for the fermion f = e™,p, n

ny = J, (2.115)
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and the scalar and vector contributions, diagonal in the flavor basis

e = V2G pdag (n (t) Oqe — %nn (t)> : (2.116)
- - 1 -
op = V2G pdag (Je (t) 6ae — §Jn (t)) . (2.117)

With these definitions, we use equations (2.83-2.85) and get for Dirac neutrinos

vy mat (t, (j) — pmat _ é . Vmat7 (2,.118)

[Pt (4 @) = s 4 G jmat (2.119)

In the Majorana case, equations (2.87, 2.90) become
(¢ Q) = F’E’mﬂ (t,q) = h™ —q- /mat, (2.120)

The matter potentials (2.118, 2.119) —2.120) for Majorana neutrinos— are generally used when describing
neutrino propagation in matter. In section 2.3, we use these expressions to unravel the MSW effect.
SELF-INTERACTION CONTRIBUTION

Using the definitions (2.103, 2.104) and setting x = 0, Eq. (2.95) becomes for Dirac neutrinos

self, - _ ZL 0" (6) (s a5 (F — 2121
T (@) = <2 [ 10 (o 00~ s 1), (a2

and similarly for Majorana neutrinos, using (2.107, 2.108), with p and p replaced by pas and pys. We intro-

duce

T { / (0 () — p(t,—D) +1 / (Tep (4,3) - Tep(t, —@)} e

where 1 is the ny X 1 identity matrix, and

Ve = V2Gr {/q (p(t.q) = p(t, =) + ]l/ff (Trp(t,q) = Trp(t, —q‘>>} : (2123)
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Note that the terms proportional to the identity cannot be discarded, as usually done, in the presence of

helicity coherence. With these definitions, we use equations (2.96-2.98) and get for Dirac neutrinos

l—wl/,self (t, q') — hself _ q" . Vself7 (2..12.4)

Fl?l?,self (t, J) _ hself+ qA . Vself‘ (2_125)

In the Majorana case, equations (2.99, 2.100) become
FVMu,self (t, q—) _ Fi/z[?,self (t, q») — hself o Cj . ‘_/’self' (2.126)

These contributions to the kernels are the one generally used when describing neutrino propagation in
dense astrophysical environments. In Chapter 4, we use a modified version of these equations to study the
impact of helicity coherence terms on neutrino flavor evolution. In Chapter s, they will be used to assess the
effects of matter-neutrino nonstandard interactions.

In the following we discuss the impact of the matter terms derived above that produce the MSW effect.
This effect, nowadays well established experimentally, is a reference for the investigation of matter effects in
general in astrophysical environments such as core-collapse supernovae and accretion disks around compact

objects.

2.3 NEUTRINO PROPAGATION IN MATTER: THE MSW EFFECT

When neutrinos propagate in matter, they can undergo significant flavor conversions, due to the so-called
MSW eftect [8, 37]. This effect arises from the interactions of neutrinos with particles —neutrons, protons,
electrons— composing the medium through which neutrinos propagate. The solar neutrino deficit prob-
lem, first observed by the Homestake experiment and discussed in Section 2.4.1, led to the discovery of this
conversion phenomenon.
In this section, we study neutrino propagation in ahomogeneous environment where neutrino self-interaction

is negligible —typically, the Sun—, and in the ultra-relativistic approximation. We also consider the matter
as isotropic. We study here Dirac neutrinos, but the results in the Majorana case are unchanged. We consider
a two-neutrino scheme with one electron neutrino v, and another flavor v, with z = 1 or 7 —as muon and

tau neutrinos have the same potential in matter—, and two massive states v; and vs.
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With these assumptions, the equations (2.109, 2.110) become

ip(t,q) =[h(t,0),p (L, )], (2.127)
ip(t,q) = [h(t,0),p(t )], (2.128)

where I (t,§) = h° (§) + h™= (t) and h (¢, ) = —h° (§) + h™ (t), as well as p and p, are 2 X 2 matrices.

2
m;
q

5 2) where ¢ = |g] we express h

Using the expression of the mixing matrix (2.32), as well as ¢° = ¢ <1 +

and £ in the flavor basis

Am?2 [ —cog s 10
h(t,q) = mn 200 + \/§Gpne (t) , (2.129)
4q S20  Cop 00
_ Am? [ —cyp s 10
Wt =——=—| " | +V2Gun, (1) , (2.130)
4q S99 Cap 0 0

where we introduced cy9 = cos 260 and s9y = sin 20, removed the component proportional to identity in
the expression of A™* (2.116) and set ymas — (2.117), as the matter is isotropic.

For the discussion below, let us focus on the neutrino sector. A similar procedure can be used for antineu-
trinos, replacing i by h. The Hamiltonian A is a real matrix, and can be diagonalized instantaneously by the

orthogonal transformation

U (t,Dht, Ut Q) =K (t,q), (2.131)

where K (t,7) = diag (/;:1 (t,q) , ks (L, q_')> with ky (,q) , k2 (t, ) the instantaneous eigenvalues of h in

matter, and U (t, ¢) is the instantaneous mixing matrix in mactter,

. cosO(t,q) sind(t,q)
0 (t,q) = A 5 ’ (2.132)
—sinf (t,q) cosb(t,q)

and 6 (t, §) is the effective mixing angle in matter, related to the vacuum mixing angle # through the trans-

formation (from Eq. (2.129))

2hes (1, Q) - tan 26 ( |
- (t7 q_> — hee (t, q_> N 1 — 2v2G pqne(t) 2.133

AmQng

tan 26 (t, ) =

This transformation defines the so-called matter basis |7 ), in which the Hamiltonian is diagonal. The eigen-

values k1 (t, Q) , k2 (, §) can be easily found from the (instantaneous) diagonalization of h (¢, ¢) (2.129), and
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we get

/~€2 (t, @ — ]~€1 (Zf, @ = \/(A27Z2 Cog — \/iGpne (t)) + (AQ?ZQ) 839. (2,.134)

Introducing the density matrix in matter, j (t,q) = UT (t,q) p (t,q) U (t, §), its evolution equation be-

comes

5t = [B .9, 51, q)] , (2.135)

where

h(t,@) =K (t,@) +iUT (6,9 U (t,q) = kl 4.9 iw .9 : (2.136)
i0(t,q) ko (t,q)

From Eq. (2.133), it appears that the effective mixing angle in matter becomes maximal # = 7 when the

so-called MSW resonance condition

_ AmPey

hxx t; _hee t7 =0« e t?“a = Z - = .
(00 = e () =0 (1) = ) = £ 72 (157

is metat time ¢ = ¢,. Atvery large density (n. > n.), 0 ~ 5 and the flavor and mass bases almost coincide.
Near the resonance, the value of ¢ varies quickly as a function of the electron density. At very small density
(ne <K ny), 0 is close to the vacuum mixing angle 6. Note that for antineutrinos, the same approach gives us

the resonance condition

Am?Zeyy

Frow (,0) — hoe (£, 0) = 0 & 17 (q) = — 20 158
(00) ~ P (1.0 = 0 5wl ) = 7 e19)

As the maximum value of the matter mixing angle 6 does not depend on the value of the vacuum mixing
angle 0, it is possible to have complete transitions between two neutrino flavors even with a small vacuum
mixing angle. From equations (2.137, 2.138), it appears that the resonance condition can be fulfilled either by
neutrinos or by antineutrinos. Contrarily to neutrino oscillations in vacuum, the MSW resonance condition
depends on the sign of the Am?.

Because the matter mixing matrix U is not constant in time, the effective matter Hamiltonian h is not di-
agonal, which means that transitions between matter eigenstates can occur in time. Hence, we introduce the
notion of adiabaticity: the resonance is said adiabatic if there are no transitions between matter eigenstates,
and non-adiabatic if there are jumps between them. This notion can be quantified introducing the so-called

adiabaticity parameter at the MSW resonance

) ‘1%2 (t,q) — kr (t,g}(

@ (t,9)

v (t,q) : (2.139)
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Figure 2.6: Instantaneous eigenvalues l~€2 (blue, solid line) and l~€1 (magenta, dashed line) of the Hamiltonian h (t, zj) as a function of the
electron density 72.. As high density (n. > nl), the flavor and matter bases almost coincide. At low density (n, < n[), the mass and
matter bases almost coincide. The difference between the eigenvalues k1, k2 is minimal at the MSW resonance.

If v > 1 along the neutrino trajectory, then transitions between the matter eigenstates are negligible. From
the equation above, it appears that the evolution is adiabatic if the electron density varies smoothly enough.

Figure 2.6 can be used in order to understand how the presence of such an adiabatic MSW resonance
can lead to almost complete transitions from v, to v,. Consider here neutrinos produced near the core of a
star. If the electron density n. is very large, then electron neutrinos v, are produced almost as pure matter
eigenstates 5 as the effective mixing angle in matter is suppressed. Propagating outwards, the neutrinos will

ko — ko

is minimal.

cross the MSW resonance at n, = n, where the energy gap

If the evolution is adiabatic, then there are no transitions from 75 to ;. The neutrinos will continue to
propagate as matter eigenstates . As they exit the star and the electron density becomes null, the matter and
mass bases coincide and the emitted neutrinos become v5 = sin 0v, +cos v, ~ v, for a small mixing angle
6. Therefore, despite a small vacuum mixing angle, severe flavor conversions are achieved. This phenomenon
has attracted a lot of interest since, even with a small vacuum mixing angle, adiabatic evolution through the
resonance could produce significant flavor conversions. It turns out however that in the case of the Sun, the
vacuum mixing angle 0 is large enough to begin with (612 ~ 33°, see section 2.4.2). On the other hand, if
the evolution is not adiabatic, it is possible to have 7, to 7; transitions, and those 7; neutrinos become v in
vacuum, outside of the star, which is mostly v,. Therefore, in the non-adiabatic case, the MSW resonance
leads to little flavor conversions.

In the following section, we discuss the role of neutrino flavor conversions induced by matter in the case of
solar neutrinos, and how the MSW effect has been discovered. We discuss the values of neutrino oscillation

parameters and highlight key open questions which will be addressed by experiments in the future.
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Figure 2.7: The pp chain of stellar thermonuclear reactions. Protons (p) are converted into Helium, producing neutrinos (/) along the
way. The traditional names of the neutrino-producing reactions are given, and percentages indicate branching ratios. Figure adapted from
Ref. [19].

2.4 NEUTRINO OSCILLATIONS: EXPERIMENTAL STATUS

2.41 SOLAR NEUTRINOS

Thermonuclear reactions in main sequence stars are responsible for their energy and neutrino production.
The so-called pp chain (figure 2.7) produces 99% of the energy of low-mass stars such as the Sun, while the
CNO cycle (figure 2.8) dominates for high-mass stars [38]. Both processes transform protons into helium,
creating electron neutrinos through nuclear reactions. The fluxes received on earth can be predicted using
the standard solar model [39].

The first solar neutrino experiment was lead by R. Davis, Jr. and collaborators in the late 1960s, in the
Homestake mine, based on the v, absorption on *"Cl [1]

ve +37Cl =3 Ar + e, (2.140)

which threshold is 814 keV. From the standard solar model calculations, the dominant source in the chlorine

experimentis 8B neutrinos, with "Be neutrinos the second dominant source, and pep, '*N and 1°O neutrinos
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Figure adapted from Ref. [19].
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giving subdominant contributions (see Fig. 2.9). In this experiment, only a third of the expected fluxes
was measured. The measurements of such a reduced neutrino flux, compared to the standard solar model
predictions, defined the so-called "solar deficit neutrino problem”, and questioned the standard solar model.
Gallium experiments (SAGE from 1989 at Baksan in Russia [41], GALLEX from 1998 to 2003 [42, 43] and

GNO from 1998 to 2003 [44] at Gran Sasso in Italy) based on the reaction
Ve +1Ga =" Ge+ e, (2.141)

which threshold is 233 keV, were mostly sensitive to pp neutrinos and measured only about half on the
expected flux.
In 1987, the Kamiokande experimentin Kamioka, Japan observed in real-time neutrinos using a Cherenkov

dector [45], through the scattering
v +e — v, +e (ES), (2.142)

giving information on the time, energy and direction of the propagating neutrinos. Its successor, Super-
Kamiokande [3, 46, 47, 48] observed in 1996 pure ®B solar neutrinos and measured about half the expected
electron neutrino flux. In 1999, the new real-time experiment SNO in Sudbury, Canada brought an impor-
tant contribution to the solar neutrino problem [24]. This experiment used ultra-heavy pure heavy water

(D50) to observe ®B solar neutrinos via the NC and CC processes

Ve+d—e +p+p (CO), (2.143)

and

Ve +d— v, +n+p (NC), (2.144)

as well as elastic scattering on electrons (2.142). The observed total neutrino flux was consistent with the stan-
dard solar model predictions, showing that solar electron neutrinos convert into the other active flavor (see
e.g. figure 2.10). These results were consistent with the absence of a day-light asymmetry for solar neutrinos
in Super-Kamiokande.

The observed fluxes can be explained by neutrino oscillations in vacuum and the MSW effect. Indeed, in
the center of the Sun, the electron number density is about 100V 4 cm ™3 and decreases monotonically when
propagating towards the surface. Using standard neutrino oscillation parameters (see section 2.4.2), figure
2.11 shows the resonant electron number density (2.137) as a function of the neutrino energy, and compares

it to the electron number density in the center of the Sun. MSW resonant conversions are possible only
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Figure 2.11: Left panel: Resonant electron number density (2.137) (solid, purple line) in units of NAcm*3 as a function of the neutrino
energy in MeV. The electron number density in the center of the Sun is shown as a dashed, blue line. Right panel: Survival probabilities for
pp, pep, 7Be, and 8B neutrinos deduced from global solar neutrinos analyses, Borexino, and the SNO combined analyses, compared to the
MSW prediction, taking into account present uncertainties on mixing angles, from Ref. [49], with pep result from Ref. [50] added. Figure
adopted from Ref. [51].

if the MSW resonant electron density is smaller than the electron density at the neutrino emission point.
Therefore, for energies smaller than ~ 2 MeV, no resonant conversions are possible: the low energy neutrino
deficit can be explained using the average transition probability in vacuum. However, for energies larger than
~ 2 MeV, neutrinos undergo MSW resonant conversions.

Recently, the Borexino experiment in Gran Sasso, Italy measured the low-energy part of the solar neutrino
flux, namely pep, ppand “Be neutrinos [52, 50, 53], and the experiment KamLAND [54], an ultra-pure liquid
scintillator detector, measured the “Be neutrino flux. The ensemble of these results is consistent with vacuum
averaged-oscillations at low energy and MSW resonant conversions at high energy. Note that neutrinos from

CNO cycle are yet to be detected.
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2.4.2 NEUTRINO OSCILLATION PARAMETERS
StATUS

In the three-flavor neutrino framework, it appears from Eq. (2.31) that there are six oscillations parameters:
the mass-squared differences Am?,, Am%?) and Am§3, and the vacuum mixing angles 62, 613 and 053 in-

troduced as

2 2
2 |U€1| s 2 |Ue2|
COS 912 = ———— 5, S1n 912 = (2.145)
_|Ue3’2, - ’Ue3|2,
sin2 6)13 = |Ue3|2 s (2.146)
2 2
2 |UT3| -2 |Uu3|
COS 023 = ,SIn 623 =, (2..147)
1 — |Ugs|? 1 — |Ues)?

as well as the Dirac CP-violating phase . If neutrinos are Majorana particles, two additional phases a1, a3y

are included in the mixing matrix >. From the definition of the mass-squared differences Am?j, it appears
that

Am3, + Am3, = Amj,. (2.148)

Therefore, only two of the three mass-squared differences are independent.

‘We choose to order the massive neutrinos such that m; < msq such that Am%l > 0: then, we have either
mi < mg < mg (normal mass ordering) or mg < m; < my (inverted mass ordering). As the mass square
differences are such that |Am3;| ~ |Am3,| > Am3,, the larger difference Am3; (or Am3,) is associated
with the observation of oscillations of atmospheric and accelerator v/, and 7/,,, and of reactor 7, at a distance
L ~ 1 km, while the smaller difference Ams3, is associated with the observation of solar v, oscillations [s5].

From the observation of the MSW effect for v, in the Sun, it appears that Am3; cos 265, > 0, which
implies cos 205; > 0. In 2003, Chooz [56] provided an upper bound on the value of ;3. The T2K, Dou-
bleChooz, Daya Bay (with a 5.20 discovery) and RENO experiments later measured the small value of this
angle. The angle 05 is identified as the solar mixing angle, while 03 is identified as the atmospheric mixing
angle. A global analysis of neutrino oscillation datas was done in 2014 [57, 58, 59], and updated in 2016 [60]
including the results of the NOvA [61, 62] and T2K [63, 64] experiments, giving precise measurements of
Ami,y, Amis, Am3,, as well as 019, 013 and Oo3. The best fit values and the 30 allowed ranges are presented
in table 2.1 [55]. We will use these parameters for our numerical investigations.

For the Dirac CP-violating phase, the combined analysis [57] shows that the best fit value is 6 = 37”,
while the values § = 7 and 0 = 0 (2) are disfavored by 30 and 20 respectively, and § = 7 is allowed at

approximatively 1.60 CL (respectively 1.20 CL) with normal ordering (respectively inverted ordering).

*Note that the Majorana phases do not play a role in vacuum oscillations.
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Parameter Best fit 3o allowed range
Am2, 7.37 x 107°¢V? | 6.93 — 7.97 x 10~°eV?

|Am?2[,NO | 2.50 x 1073e¢V? | 2.37 — 2.63 x 10~ 3eV?

|Am?2[,IO | 2.46 x 1073eV? | 2.33 — 2.60 x 1073eV?

sin® 0y 0.297 0.250 — 0.354
sin? 693, NO 0.437 0.379 — 0.616
sin? 093, IO 0.569 0.383 — 0.637
sin? 0,5, NO 0.0214 0.0185 — 0.0246
sin? 0,5, 10 0.0218 0.0186 — 0.0248

Table 2.1: The best-fit values and 3¢ allowed ranges of the 3-neutrino oscillations parameters (from Ref. [60]). The parameter AmZis

2 2
definedas Am? = m% - w so that it is positive in case of normal mass ordering (NO), and negative in case of inverted mass
ordering (10).
ANOMALIES

The status above is based on the three-flavor neutrino framework, in which the three active neutrinos v, v,,, v;
are combinations of the three massive neutrinos vy, V5, 3 with masses m;, ma, ms, respectively. However,

three anomalies challenge this paradigm:

1. The reactor antineutrino anomaly [65], which is a deficit of about 6% of detected 7. compared to the
expected flux in several short-baseline reactor neutrino experiments, due to a re-evaluation of the 7,

spectra.

2. The GALLEX [66] and SAGE [41] experiments have reported anomalous results when calibrating

their detectors. Both measured an observed to calculated rate lower than one [67].

3. The LNSD experiment [68, 69], which reported an excess of electron (anti)neutrino events, in con-
tradiction with the results of the KARMEN experiment using similar beam and detection techniques.

Note that this anomaly was not resolved by the MiniBooNE experiment.

These anomalies could be due to the existence of a fourth light massive neutrino v4, which corresponds
to a sterile neutrino, which doesn’t couple to the gauge bosons. It is possible to use a global fit analysis of
these experimental results to get best-fit values of the corresponding additional oscillation parameters (see
e.g. Ref. [70]).

The experiments STEREO, DANSS, NEOS, PROSPECT, which have already started collecting data, as
well as SoLiD, are planned to check for the existence of €V sterile neutrinos. So far, they seem to have excluded

the best-fit values of the reactor antineutrino anomaly.

2.4.3 FUTURE PROGRESS

The following points are some of the main goals of the research program in neutrino physics.
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NEUTRINO NATURE —DIRAC OR MAJORANA

Determining the nature of massive neutrinos —whether they are Dirac or Majorana particle— is a ques-
tion of a fundamental importance, in particular, to understand the origin of neutrino masses as well as the
symmetries governing the lepton sector of the standard model.

Experiments studying neutrino flavor oscillations cannot provide information on the nature of massive
neutrinos. If neutrinos are of Majorana nature, the total lepton charge is not conserved. In order to po-
tentially establish that massive neutrinos are Majorana particles, experiments are searching for neutrino-less
double-beta decay (A, Z) — (A, Z+2) + e~ + e (see e.g. Ref. [71, 72]). The observation of such a
decay and the measurement of the corresponding half-life might also provide with information on the type
of neutrino mass hierarchy, the absolute neutrino mass scale and the Majorana phases in the PMNS mixing

matrix.

NEUTRINO MASS ORDERING

As mentioned previously, the sign of the mass squared difference Am3, (or Am3,) is still unknown, that is,
we need to determine the neutrino mass ordering. The neutrino mass spectrum also needs to be established,

as, depending on the values of the lightest neutrino mass, it could be

* normal hierarchical (NH) if m; < mo < mg,
* inverted hierarchical (IH) if m3 < my < ma,
* quasi-degenerate (QD) if m; = my = ms.
The combined analysis of all available experimental results shows a preference for normal ordering. The

sign of Am?3, is searched for in long baseline experiments (e.g. NOvA), as well as in experiments studying

the oscillations of atmospheric neutrinos (PINGU, ORCA) and in experiments with reactor antineutrinos
(JUNO [73])).
NEUTRINO ABSOLUTE MASS SCALE

The absolute scale of the neutrino mass is, currently, still unknown. Existing constraints on 172; come from
experiments measuring the spectrum of electrons near the endpoint in *H /3-decay experiments and from
cosmological and astrophysical data.

The Troitsk experiment [74] obtained the most stringent upper bound on the 7, mass

my, < 2.05€V, (2.149)
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with the Mainz experiment [75] giving similar results (my, < 2.3 V). The KATRIN experiment is expected
to reach a sub-€V precision [76].

Cosmological constraints on the neutrino mass are model-dependent. Data from the Cosmic Microwave
Background (CMB) observed in the WMAP experiments, along with supernovae data and data on galaxy
clustering can be used to obtain an upper bound on the sum of the neutrino masses. Depending on the

< 0.3 —1.3 €V [77]. Constraints from the Planck collaboration were

~

published in 2013 and updated in 2015 [78, 79], reporting >, m; < 0.57 €V with a 95% CL. Adding

model used, this bound reads > ;m;

supernovae data and data on the baryon acoustic oscillations lowers the limit to > ;m; < 0.23eV. Note
that these bounds imply that neutrino masses are much smaller than the masses of charged leptons and

quarks. Such a smallness may be induced by physics beyond the standard model.

NEUTRINO PARAMETERS

High-precision measurements of the neutrino mixing parameters 63, Am3,, O1o, |Am§1| and 03 are part
of the research goal. The status of C'P symmetry also needs to be clarified. In particular, searches for CP
violation effects are conducted in neutrino oscillation experiments with high-intensity accelerator neutrino

beams, such as T2K or NOvA, and will be pursued by experiments like DUNE.

46



47



Neutrino propagation in dense astrophysical
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Contents
30 Introduction . . . . . ... 48
3.2 Neutrinos in core-collapse supernovae . . . . .. .. .. ... ... oL 50
3.2.1 General description of core-collapse Supernovae . . . . . .. ... ... ... 50
3.2.2 Neutrino flavor evolution in SUPEINOVAE . .+ & v v v v e e e e 56
3.2.3 Recentdevelopments . . . . . ... .. ... .. L 59
3.3 Neutrinos in binary neutron star merger remnants . . . . . . . .. ... ... ... 60
3.3.1 General description of binary neutron star merger remnants . . . . . . . . . . 6o
3.3.2 Neutrino flavor evolution in binary neutron star merger remnants . . . . . . . 65
3.3.3 Recentdevelopments . . . . . . ... ... .. L L L 68

3.1 INTRODUCTION

IN DENSE ASTROPHYSICAL ENVIRONMENTS, such as supernovae (SNe) or binary neutron star (BNS) merger

remnants, a huge amount of neutrinos of all types is produced. Because of this, flavor evolution in dense
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astrophysical environments has turned out to be complex. The presence of sizable neutrino self-interactions
makes the study of neutrino evolution intrinsically nonlinear and of many-body nature, as first pointed out
by Pantaleone [10]. The inclusion of such terms [11] has triggered a decade of theoretical investigations.
Models of increasing complexity have revealed a variety of flavor instabilities, some of which have been in-
terpreted in terms of collective conversion phenomena (see, e.g., the reviews [80, 81]).

Flavor instabilities due to the neutrino self-interaction occur in core-collapse SNe, and in accretion disks
around black holes [82] and compact binary systems, including black hole-neutron star [ 83, 84] and neutron
star-neutron star binaries [83, 85, 86]. Such studies are necessary to assess the actual impact on the supernova
dynamics and on the nucleosynthetic 1 process abundances in neutrino-driven winds in these astrophysical
sites. Observations of future core-collapse SN explosions or of the diffuse supernova neutrino background
require a solid understanding of flavor evolution in media as well.

The origin of heavy elements remains one of the key open questions in nuclear astrophysics. Nucleosyn-
thetic abundances produced in the rapid neutron capture process (7 process) are formed in dense neutron-
rich environments [87] including core-collapse supernovae, accretion disks around black holes or binary
compact system remnants. It was first shown in Ref. [88] that r process nuclei could be formed in neutron
star matter. The occurrence of a weak or of a strong 7 process depends mainly upon the astrophysical condi-
tions and the properties of exotic nuclei. In particular, conditions for a strong " process are met in neutron
star mergers, whereas elements with A > 130 are not produced in core-collapse supernovae, long-considered
a favorite r process site (see e.g. [89, 90]).

The recent observation of gravitational waves from a BNS merger eventin coincidence with a short gamma-
ray burst and a kilonova constitute the first experimental evidence for 7 process nucleosynthesis in such sites
[91, 92]. Weak interactions and neutrinos bring the ejecta to being hot. The role of neutrino flavor evolution
in these environments still needs to be fully assessed.

Calculations of nucleosynthetic abundances of heavy elements show that dynamical ejecta can produce a
strong 1 process while a weak 7 process can take place in neutrino-driven winds [93]. In fact, the presence
of a significant amount of neutrinos in neutrino-driven winds influences the buildup of heavy elements
through the electron neutrino and antineutrino interactions with neutrons and protons respectively. Such
interactions tend to be detrimental to the 7 process since they reduce the number of available neutrons.
The occurrence of flavor conversion phenomena can produce swappings of the neutrino spectra and modify
the interaction rates that determine the electron fraction, that is, the proton-to-baryon ratio, as shown in
numerous studies (see e.g. Refs. [94, 82, 84]).

In this chapter, we focus on describing neutrino evolution in core-collapse SNe and BNS merger remnants,
starting in Section 3.2 with SNe. The astrophysical scenario, as well as neutrino emissions, are characterized

in Section 3.2.1. We then present how neutrino evolution is modified in SNe compared to neutrinos prop-
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agating in the Sun due to the presence of neutrino self-interactions in Section 3.2.2, and discuss the current
progress in the domain in Section 3.2.3. In Section 3.3, we follow the same outline to describe neutrino prop-
agation in BNS merger remnants. In particular, we focus in Section 3.3.1 on the astrophysical aspects of such
an event. In Section 3.3.2, we model neutrino emissions and discuss a new MSW-like resonance phenomenon
appearing in BNS merger remnants: the matter-neutrino resonance (MNR) as an example. Such aspects set

the bases for Chapters 4 and 5. We conclude in Section 3.3.3 by discussing some open questions remaining

in the field.

3.2 NEUTRINOS IN CORE-COLLAPSE SUPERNOVAE

3.2.1 GENERAL DESCRIPTION OF CORE-COLLAPSE SUPERNOVAE
ASTROPHYSICAL SCENARIO

The term supernova explosion was first introduced by Baade and Zwicky in 1934, describing the powerful
explosion at the end of the life of a star of mass M 2 8 M, creating a neutron star (NS).

Historically, SNe are labeled depending on their spectroscopic characteristics near their max luminosity
and the properties of their light curve. However, the most important physical characteristic is the mecha-
nism that generates the supernova. Type Ia SNe are created by thermonuclear explosions, while type Ib, Ic,
and II are core-collapse SNe. We are here interested in the latter mechanism, as they produce a large number
of neutrinos of all types. Indeed, during this process, the huge binding energy is mostly radiated as a pulse of
neutrinos and antineutrinos, making it a very interesting site in which to study neutrino flavor conversions.
Note that type Ia SNe can also produce neutrinos, which can be used to discriminate among the thermonu-
clear explosion mechanisms [95]. Because neutrinos typically carry away about 100 times more energy than
the kinetic energy of a typical core-collapse SN, they were proposed in 1966 as possible agents to drive the
SN explosion.

As stars evolve, they start by burning hydrogen to helium to produce energy, with the helium settling in
the core of the star. Because of gravity, the core density will then increase and heat up, so helium will start
burning to carbon. Again, the carbon being heavier will settle in the core, which will contract and heat up
and start burning to neon. Similarly, neon will burn to oxygen, and oxygen will burn to silicon. For stars
of masses larger than 8 — 11M,, that silicon can actually be burnt into iron. The star has, therefore, an
onion-shell structure, as shown in Fig. 3.1. At this stage, a typical core has a baryonic mass ranging between
roughly 1.3M, and 2M, a central temperature of around 10'° K, a central density ranging between roughly
10? g.cm ™% and 10'% g.cm ™ and a radius of about 2000 — 4000 km.

As iron has the highest binding energy per nucleon of all the elements, energy cannot be produced at the

core by fusion. Therefore, the core, under gravitational pressure, contracts and heats up. The instability of
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Figure 3.1: Onion-shell structure of a massive star towards the end of its stellar life, prior to the onset of its core collapse. The star is
composed of shells of progressively heavier elements produced during nuclear burning stages, forming a core of oxygen, neon, magnesium
or iron-group elements at the center. Layers are not drawn to scale.

the core is initiated by electron captures on nuclei and free protons,

e +p—v.+n, (3.1)
e +(A2Z) = v+ (A Z-1), (3.2)

as well as by photodesintegration of iron nuclei
v 4% Fe — 13*He + 4n, (3.3)

yielding to a reduction of the electron pressure and hence a further contraction of the core. Neutrinos pro-
duced by electron capture, which can initially escape freely, are trapped when the core density reaches around
1012 g.cm_3.

3 is reached at the center of the star, the

When the nuclear saturation density ppye ~ 2.7 X 10 g.cm”™
implosion of the inner core is stopped. A new stable state is reached, with the internal pressure of the nucleon
gas supporting the core against gravity. The collapse then bounces back, creating a supersonic shock wave at
the transition between the infalling outer core. This shock wave then starts propagating outwards. Because
the kinetic energy is dissipated in the infalling matter, the temperature increases in the shock wave. This
produces high-energy photons which leads to the photodissociation (3.3) of iron nuclei into free nucleons,
which dissipates more energy.

Within about a millisecond, the shock comes to a stop, still inside of the collapsing iron core. However, as

the shock reaches the neutrinosphere, surface at which the density of the medium is sufficiently low -less than
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about 1012 g.cm_3 - so that neutrinos can escape, electron neutrinos, produced in a large number by electron
captures, start free streaming. This creates aluminous neutrino flash, called the neutronization burst, which
is radiated and takes away additional energy —a few 10°! erg—, from the postshock layers.

In the delayed SN explosion model first proposed by Wilson and Bethe [96] and favored by SN1987A
observations [97, 98], the shock expansion stalls and becomes an accretion shock. However, as neutrinos are
produced in the proto-neutron star they deposit large amounts of energy behind the shock, causing the so-
called neutrino heating. Ifitis strong enough, the shock can then be revived and pushed outwards, launching
the SN explosion. ' During the revival of the shock, matter swept up by the shock is still accreted towards the
proto-neutron star and interacts with the hot shocked matter. Neutrinos and anti-neutrinos of all flavors are
produced during this accretion phase. As the shock wave propagates outwards through the progenitor star
mantle towards the stellar surface, the compact remnant at the center cools and deleptonizes by radiating
again neutrinos and antineutrinos of all flavors. Depending on the mass of the progenitor and on the mass
loss history, the remnant can be a black hole.

The question of how core-collapse SNe explode is still under intensive study. So far, explosions have been
successfully simulated for 2D models with relativistic effects, and 3D modeling has begun [101]. So far, only
stars of a mass M < 10M, explode in 3D simulations. In the next section, we focus on neutrino emissions

during such an event.

NEUTRINO FLUXES AND NEUTRINOSPHERES

During the formation of the proto-neutron star from the core collapse, the gravitational binding energy of
the newly formed neutron star liberated is of the order of 3 x 10°* erg. About 1% of this energy is released in
aform of kinetic energy of the ¢jecta, 0.01% is released as electromagnetic radiations, while the rest is carried
out by neutrinos produced at the different stages of the supernova explosion.

As stated before, electron neutrinos are produced in large amounts by electron capture (3.1, 3.2), while

electron antineutrinos are produced in positron capture

et +n— v, +p. (3-4)

Thermal neutrinos of all flavors are also produced in the core of the proto-neutron star through the processes
of electron-positron pair annihilation

e +et v+, (3.5)

"Note that the non-radial fluid instabilities such that the SAST instability also assists the neutrino-heating mechanism [99].
Other instabilities such as LESA have recently been found [100].
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electron-nucleon bremsstrahlung

eE4N—=e*+N+v+p, (3.6)
nucleon-nucleon bremsstrahlung
N+N-—->N+N+v+7, (3.7)
plasmon decay
Y= v+, (3.8)
and photoannihilation
et = et v+ (3.9)

Inside the core, the matter density is dense enough that the neutrinos are trapped, as their mean free path * is
shorter than the size of the core. As the density decreases away from the core, the neutrinos are released and
start free-streaming at densities of about 10! g.cm™®. As mentioned before, we define the neutrinosphere
as the idealized surface after which neutrinos start free-streaming (see Fig 3.2).

As this definition depends on the mean free path of the neutrinos, the neutrinospheres are dependent on
the flavor and on the energy of the neutrinos considered. The neutrinos produced interact with the medium,
composed of electrons, neutrons, and protons, through charged- and neutral- current weak interactions.

Only electron (anti)neutrinos undergo charged-current interactions, from the processes

Vo+n—>p+e, (3.10)

Ue+p—ntet. (3.11)

As the proto-neutron star is typically neutron-rich, electron neutrinos interact more frequently than electron
antineutrinos at the same energy. Therefore, the electron neutrino neutrinosphere has a larger radius than
the electron antineutrino one. Free-streaming electron antineutrinos are thus emitted from a denser, hotter
region and have then typically a higher average energy than electron neutrinos. On the other hand, neu-
trinos and antineutrinos from the other flavors (v, ,,, v, ;) interact only through neutral-current weak
interaction processes, which are flavor blind: they share —for a given energy— the same neutrinosphere.
As a consequence, this neutrinosphere has a smaller radius than the electron antineutrino one, and such

neutrinos are produced with a larger average energy than electron antineutrinos.

*The mean free path A = %p depends on the medium density p and the neutrino interaction cross section o with the particles
composing the environment.
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Figure 3.2: Schematic illustration of neutrino propagation in a core-collapse supernova, as well as different neutrino oscillation regimes
with typical values for the hot bubble. Inside the proto-neutron star (PNS), neutrinos are trapped because of the large matter density.
They are emitted at the so-called neutrinospheres, and undergo collective effects (see Section 3.2.2). The MSW resonances typically occur

further away from the core.
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According to the present supernova simulations, neutrino fluxes at the neutrinospheres can be well parametrized
either by pinched Fermi-Dirac distributions [102] or by modified-power law distributions [103]. In this the-

sis, we will use Fermi-Dirac spectra f,, of pinching parameter 17 = 0 to describe neutrino emissions, given by

1 1 p?

P B0 T e (£) 41 o

where T, is the neutrino temperature and p the energy of the emitted neutrino. In this expression, we have

F5(0) = 3¢(3) &~ 1.80, and F}(0) corresponds to the Fermi-Dirac integral of order k with zero degeneracy

parameter,
RO)= [Car L 613
M= 0 exp(z) +1 B
The average energy is then given by
£3(0)
E,)=1T, . I

Typically, the average energies of SN neutrinos range between 10 to 20 MeV. The primary fluxes released at

the neutrinosphere can then be defined as

L,

Fy(p)zm

fo (), (3.15)

where L, is the neutrino luminosity. Typical values of the parameters ( E,) and L,, depend on the progenitor
and on the model used for the simulations. Figure 3.3 shows typical parameters for a1D simulation of a 27M

progenitor.

NEUTRINO OBSERVATIONS

On February 23, 1987, the progenitor star Sanduleak —69 202 exploded, producing a type II supernova called
SNi1987A. Located in the Large Magellanic Cloud, it occurred approximatively 50 kpc away from the Earth.
Observing the light-curve and using numerical simulations, the total mass of the progenitor was estimated at
18 My, with a core of 6 M), while the radius was estimated at 10'? m. It is a unique event as it was observed
in all wavelengths, from gamma rays to radio. It was also the first time neutrinos known to be emitted from
a supernova were observed directly, these neutrinos being detected first by Kamiokande II [105], IBM [105],
and Baksan [106].

From those observations, an upper bound on the neutrino mass and charge, as well as the number of
neutrino flavors, were obtained using the absence of nonstandard signatures, the intrinsic neutrino signal
dispersion or the cooling time of the newborn star, for example. Since then, many of these results have been

confirmed or tightened by other neutrino experiments conducted on Earth. The neutrino observations from
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Figure 3.3: Neutrino luminosities (upper panel) and mean energies (lower panel) during the different phases of a supernova explosion
(burst, accretion and cooling phase), for 1/, I/, and the other neutrino flavors v/,.. These values come from a 1D simulation of a 27M@ star,
obtained by Garching group. Figure adapted from Ref. [104].

SN1987A also confirmed some features of supernovae neutrino predictions, such as the total gravitational
binding energy of 3 x 10°? erg (under the equipartition assumption) and the average energy or temperature
of neutrinos [97, 107].

After reviewing how neutrinos are produced during a supernova explosion and what parameters are used
to describe their emissions at the neutrinospheres, we now focus on their propagation outside the proto-
neutron star. In particular, we study how the presence of a large self-interaction potential creates collective

behaviors.

3.2.2% NEUTRINO FLAVOR EVOLUTION IN SUPERNOVAE

In the last years, important progress has been done in understanding how neutrinos change their flavors in
supernovae. Beside the MSW effect (Section 2..3), it has been pointed out that the presence of sizable neutrino
self-interactions, turbulence and shockwaves are responsible for new conversion phenomena.

As neutrinos of all types are produced during core-collapse supernovae, all three known neutrino flavors
have to be considered. A three-flavor treatment shows the presence of two MSW resonances: the low (L-)
resonance, governed by the mixing parameters Am?Z,, 0y, and the high (H-) resonance, governed by the mix-
ing parameters Amj3,, 031 [102]. The L-resonance typically occurs at densities of about 10* — 10? g.om ™3,
while the H-resonance occurs at densities of about 103 — 10% g.crn_3, for a neutrino energy of about 10 MeV.

These effects occur therefore in the outer layers of the SN. In this section, we focus on the region closer to

the production of neutrinos, assuming the mean-field description to be still valid, and discuss the impact of
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Neutrinosphere

Figure 3.4: Sketch of the neutrino bulb model. Neutrinos are emitted isotropically at the surface of the neutrino sphere, and, for a neutrino
propagating along the z-axis, a cylindrical symmetry is assumed. The neutrino background is made of the neutrinos being emitted at the
intersection of the neutrinosphere with the cone of opening angle 0,,,.«. Figure adapted from Ref. [11].

neutrino self-interactions on flavor conversions in this environment.

THE BULB MODEL

In order to evaluate the self-interaction term, we use here the widely popular bulb model, introduced in Ref.
[11]. Neutrinos are assumed to be emitted isotropically and uniformly at the surface of a sphere of radius
R, called the neutrinosphere, with an energy spectrum following a Fermi-Dirac distribution (3.12-3.14). We
assume that outside the neutrinosphere, the environment is spherically symmetric and stationary, with the
physical conditions of the medium depending only on the distance from the core center, 7. Furthermore,
the neutrino emission is assumed to have a cylindrical symmetry around the z-axis (see figure 3.4). We also
adopt here the single-angle approximation, in which the flavor evolution of a neutrino is assumed to be only
a function of its energy and its initial flavor, and not of its emission angle. This gives us, for the neutrino

density matrix introduced in Chapter 2, assuming that neutrinos follow light-like trajectories

p(t,q) =p(r,q), (3.16)

and similarly for the antineutrino density matrix.
Following the derivation of [11] and the expressions obtained in Section 2..2.3, we get the following form

for the self-interaction part of the Hamiltonian (2.124)

e )= 20 (2 [ (o o) 25 =2 ) ). )

14

where D (z) = % (1 -1 - x*2) 2, withx = RLV isa geometric factor, f, is the distribution of (anti)neutrinos
(3.12), L, is the (anti)neutrino luminosity, and (E, ) is the mean energy of the neutrinos (antineutrinos) asso-
ciated with the distribution f,. Note that as 7 becomes much larger than 7, the geometric factor behaves as
D ~ B2 Therefore, while the self-interaction effects dominate the deep region nearby the neutrinosphere,

rd
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matter terms —which typically behave as %3— matter further away from the core, at lower densities, pro-

ducing for example the MSW effect.

COLLECTIVE BEHAVIORS

As neutrinos are free streaming outwards in a supernova, they can experience different kinds of collective
behaviors [80]. In the bulb model, near the core, as the typical neutrino number density exceeds the ordinary
matter number density, neutrinos experience synchronized oscillations: neutrinos and antineutrinos of all
energy modes are coupled and oscillate with the same frequency. Any flavor conversion is therefore frozen
because of the neutrino self-interactions.

As the neutrinos propagate further away, the geometric factor decreases as ~;. Therefore, the strength
of the self-interaction potential decreases. When it becomes comparable to the vacuum scale, neutrinos
and antineutrinos of one flavor can simultaneously convert into the other flavor. These so-called bipolar
oscillations are related to an instability in flavor space, due to the non-vanishing vacauum mixing. It has been
shown that the onset of this instability was different when considering a full multiangle treatment, that is,
not using the approximation (3.16) [108]. To estimate such an onset, linearizing the equation of motions
has proven to be successful [109, 110, 111]. The authors of [112] also used the matter basis to describe such a
phenomenon. It triggers conversions and oscillations which can be seen as the nutation and the precession
of a gyroscopic pendulum [113].

Finally, neutrinos undergo a complete flavor conversion depending on their energy: this is called the spec-
tral split. The authors of Ref. [114] showed that this corresponds to a MSW resonance in the co-rotating
frame. Additionally, it has been shown in Ref. [115] that this split can be interpreted as a magnetic resonance
phenomenon. In particular, the authors showed that the neutrino energies for which the resonant criteria
are fulfilled are the same energies for which the spectral split phenomenon takes place, and that it occurs at
the same location in the supernova. In two flavors, collective effects observed in the bulb model can be seen
as VeUe — Uy, conversions, since the net electron number is a conserved quantity.

Asan example of these collective behaviors, we show numerical results for the cooling phase of a supernova
described by the bulb model developed above, using a single-angle treatment. These results were obtained
usinga FORTRAN9o code developed during the course of the thesis. We simulated the propagation of neu-
trinos emitted initially as pure electron neutrino at the neutrinosphere along with electron anti-neutrinos.
We took the following parameters for the self-interaction, assuming that all neutrinos shared the same neu-
trinosphere of radius /7, = 10 km, and the same luminosities L, = L; = 1 x 10! erg - s~1, and we
used the following average energies (E,,) = 12 MeV, (Ej,) = 15 MeV and (E,,) = (Ey,) = 18 MeV.

e

As before, we considered only two flavors, and we adopted the atmospheric parameters in inverted hierar-

chy Am? = —2.4 x 1072 éV? and sin? 20 = 0.087. For the matter profile, we adopted as in Ref. [11]
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Figure 3.5: Electron neutrino (left) and antineutrino (right) survival probabilities as a function of the distance from the center of a cooling
supernova. We show three different energy modes: 4 MeV (orange line), 8 MeV (red line) and 12 MeV, as well as the probabilites averaged
over the energy flux (black dotted line). Up to 50 km, (anti)neutrinos undergo synchronized oscillations. Then, they enter bipolar modes up
to 150 km, leading to a spectral split for neutrinos and full conversions for antineutrinos.

ne(r) = n? (%)3, wheren? =1 x 108g- ecm™.

Figure 3.5 shows the results in the case of two neutrino flavors. For clarity, we show the survival probabil-
ities for only three different energy modes as well as the probabilities averaged over the neutrino spectra. In
the calculation, 1000 neutrino energy bins were used from 1 to 100 MeV. The synchronization oscillations
occur in the first 50 km, freezing neutrino flavor conversions. Then bipolar oscillations take place between
50 and 150 km, leading to the spectral split.

While being investigated intensely for the past decade, several aspects of neutrino collective behaviors still
need to be better understood. For example, going beyond the single-angle approximation (3.16) has shown

that a large matter potential could lead to decoherence, suppressing collective conversions [116]. In the next

section, we discuss the state of the art as well as progress to be done in understanding neutrino conversions

in SNe.

3.2.3 RECENT DEVELOPMENTS

The results shown above were derived under the assumption that we have a stationary, spherically symmetric
supernova, where the neutrino fluxes evolve only as a function of the distance from the core. However, it
has been pointed out recently that releasing certain of these approximations could lead to new flavor insta-
bilities. For example, it has been shown, using simplified setups, that breaking the axial symmetry [117], the
spatial and directional symmetry [118] or introducing temporal instabilities [119] could induce new flavor
conversion phenomena. The models used go beyond the bulb model and are of increasing complexity.
Furthermore, it has been shown recently that the neutrino angular distributions from SNe could have
a leading role in neutrino flavor conversions. In particular, close to the neutrino decoupling region, "fast”

conversions could occur on a distance of G |n,, — ny.| = O (10) cm [32, 109, 120, 81, 121]. These fast
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conversions could lead to a quick flavor equilibration close to neutrino emission, and are driven only by the
angular distribution of the electron neutrino lepton number. In particular, they do not depend on neutrino
mass differences.

Therefore, modeling carefully the SN environment is necessary in order to study in detail the oscillation
phenomenology in this context. As the fast modes occur nearby the neutrinosphere, they could impact the
SN dynamics through an enhanced neutrino heating, while so far collective behaviors have been shown to
develop outside of the shock region. One of the aspects that have been questioned is the validity of the mean
field approximation. At large distances from the SN core, while the neutrino flux is essentially reduced to a
narrow beam, a non-zero flux of neutrino propagating inwards due to residual scattering may be significant
[122]. Collisions could, therefore, be relevant. Corrections appearing to the most general mean field ap-
proximation equations have also been discussed, including pairing correlations [34] and helicity coherence.
They have both been introduced in Section 2.2.1, with the corresponding neutrino evolution equations. In
Chapter 4, we explore the role of such helicity coherence correlators and their impact on neutrino flavor
evolution.

Despite the intense theoretical activity in this direction, our understanding is still incomplete, as neutrino
self-interactions are nonlinear and it has been shown that releasing some traditionally-adopted assumptions
could induce flavor instabilities. A good understanding of neutrino flavor conversion is also necessary for
nucleosynthesis studies and for future observations of an extragalactic SN. For example, the electron fraction
calculation [94] and the nucleosynthetic calculation in a schematic model [123] have clearly shown that flavor
conversion effects could impact the abundances. Regarding observations, a network of observatories called
SNEWS [124] is ready for the detection of the neutrino signal from a SN. The large size Hyper-K seems on
its way to approval, while SK-Gd should detect the diffuse supernova background in the coming decade.

In the next section, we study neutrino propagation in binary neutron star mergers. Being computationally

more demanding, this environment has been studied relatively recently with respect to the SN one.

3.3 NEUTRINOS IN BINARY NEUTRON STAR MERGER REMNANTS

3.3.1 GENERAL DESCRIPTION OF BINARY NEUTRON STAR MERGER REMNANTS
ASTROPHYSICAL SCENARIO

When two neutron stars orbit around each other closely, they spiral inwards because of gravitational radi-
ation. When eventually they meet, they form, depending on the mass, either a hypermassive neutron star
(HMNS) or a black hole, surrounded by a thick accretion disk. We focus here on the first scenario. These
compact binary mergers have been among the very early suggestions for the production short gamma-ray

bursts (sGRBs). They also produce kilonovae, which are radioactively powered transients from the decay of
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Figure 3.6: Schematic view of the neutrino-driven winds created from the remnants of a BNS merger. The HMNS and the accretion disk
emit neutrinos. A fraction of these neutrinos are reabsorbed by the disk and unbind some matter out of its gravitational potential. Figure
adopted from Ref. [126].

freshly produced 7 process elements [91, 125].

There are at least three different channels by which a BNS merger releases matter into space. First, during
the merger process, a small fraction of the total mass is ejected via gravitational torques and hydrodynamics
process, creating the so-called dynamic ejecta. The decompression of this cold and highly neutron-rich mat-
ter is favorable for the production of heavy elements through r process nucleosynthesis. While core-collapse
SNe were long believed to be the main source of those heavy elements, hydrodynamical and nucleosynthetic
numerical simulations consistently shows that the dynamic ejecta of a neutron star merger is an extremely
promising site for the formation of the heaviest elements with A > 130, while core-collapse SN seem not
to generate the conditions necessary for the production of elements with A > 90.

The second channel is the post-merger accretion disk. As the matter expands and cools, it is able to re-
combine into alpha particles, which together with viscous heating, can release enough energy to unbind an
amount of material comparable to dynamic ejecta. Finally, the third channel is related to neutrino-driven
winds. As neutrinos are emitted by the HMNS and the accretion disk, they can be reabsorbed by the disk and
unbind some matter. Figure 3.6 illustrates the formation of such winds. Neutrinos could play a significant
role in this environment by affecting the proton-to-neutron ratio —or equivalently, the electron fraction Y-,
which we define as
Tp

Yo=—17—,
Ny + 1y

(3.18)
where n,, and n,, are respectively the proton and the neutron number densities. Figure 3.7 shows how the
nucleosynthesis abundances produced in such neutrino-driven winds complement the production of the
heavier elements in dynamic ejecta.

Chapters 4 and s present flavor investigations based on detailed astrophysical simulations. In both cases,

we use results from a long-term three -dimensional Newtonian hydrodynamics simulation of the neutrino-

driven wind that emerges from the remnant of the merger of two non-spinning 1.4 M, neutron stars [126].

61



2 f|—— dynamic| =:

Figure 3.7: Comparison of the nucleosynthesis yields produced by dynamic ejecta (solid purple line) and neutrino-driven winds at different
post-merger times (yellow, green, and blue lines). While the dynamic ejecta produces heavy elements of the second and third peaks, the
neutrino-driven winds complement its abundance by producing elements of the first to the second peak. Figure adopted from Ref. [93].
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Figure 3.8: Matter density profile (left panel), electron fraction and matter temperature (right panel) as a function of the cylindrical coordi-
nates z and 1y, att = 100 ms after the merger (from Ref. [126]). On the left panel, the contour correspondsto p ~ 5 X 10 gem™3,
and delimits the part of the disk which density is higher than the typical surface density of a proto-neutron star. Figures adopted from Ref.
[86].

The HMNS is assumed to stay stable during the simulation time, thatis of the order of 100 ms and is treated
as a stationary rotating object. We also assume rotational symmetry around the HMNS rotational axis and
use the axisymmetric averages of hydrodynamical quantities (matter density, temperature and electron frac-
tion), which are shown in Figure 3.8 at time ¢ = 100 ms after the merger. In the next section, we focus on

neutrino production during such an event.

NEUTRINO FLUXES AND NEUTRINOSPHERES

During BNS merger events, neutrinos are produced through the same processes as the one mentioned in Sec-
tion 3.2.1. The amount of gravitational energy released during a BNS merger, and the time-scale over which

itis released is also comparable to the SN case, resulting in neutrinos with aluminosity of L,, ~ 1073 erg.s_l,
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Figure 3.9: Transport optical depths (color coded) for v, (left panel), 7. (middle panel) and v, (right panel) as a function of the cylindrical
coordinates 'y and z attime ¢ = 100 ms after the merger. The contours correspondto 7 = 2/3, and define the neutrino transport
surfaces. Figure adopted from Ref. [86].

and energies (£,) ~ 10 — 15 MeéV. However, in contrast with proto-neutron stars, the starting point is ex-
tremely neutron-rich matter, which makes electron antineutrinos dominate over electron neutrinos. More-
over, as the geometry of a BNS merger remnant is very different from the geometry of a supernova, the
neutrinospheres are also modified. Ref. [86] constructed the neutrino emission surfaces from the simula-
tion results of Ref. [126], by calculating the neutrino opacities in the remnants. The results are shown in
Figure 3.9.

In Section 3.3.2, we approximate these surfaces as infinitely thin disks to model neutrino emission and
compute the self-interaction potentials generated by such a neutrino emission. Figure 3.10 shows the range of
values obtained by different BNS merger simulations. Variations up to a factor 5 on the relative luminosities
(left panel) and up to a factor 7 (right panel) on the luminosity-over-energy ratio can be observed. By contrast,
Figure 3.11 shows a comparison of neutrino luminosities for different 1D supernova simulations, displaying

much smaller variations.

7 PROCESS NUCLEOSYNTHESIS AND OBSERVATIONS

On August, 17, 2017, the LIGO/Virgo collaboration detected a pulse of gravitational waves named GWr70817
[91, 125]. This corresponds to the merger of two neutron stars located in NGC 4993 (at ~ 40 Mpc), of
masses between 0.86 and 2.26 M. Along with the gravitational wave signal, a short gamma-ray burst, GRB
170817A, of approximately 2s was detected. The association of these two signals in both space and time is
strong evidence that neutron star mergers do create short gamma-ray bursts.

The astronomical transient AT 2017gfo was detected in the area in which GWr70817 and GRB 170817A
were known to have occurred, 11 hours after the gravitational wave event, and observed by numerous tele-
scopes from radio to X-ray wavelengths. It was shown to be a fast-moving, rapidly-cooling cloud of neutron-
rich material, as expected of debris ejected from a neutron-star merger, which are the expected characteristics

for a kilonova. This is strong evidence that BNS mergers do produce kilonovae. The presence of such a
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black point refers to the cooling luminosities of Ref. [126i Figure adopted from Ref. [86].
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kilonova implied the synthesis of about 0.05 M, of r process nuclei, proving that r process nucleosynthesis
indeed occurred in BNS merger. The observed signal is compatible with lanthanide free ejecta (cold, blue
component) and ejecta with lanthanides (hot, red component). As lanthanides are not produced for an elec-
tron fraction Y, > 0.25 (as shown in Fig. 3.12) and neutrinos typically push the electron fraction higher
than this value. This observation, compared with BNS mergers, indicate that the red component is most
likely produced by dynamical ejecta from the early merging phase. On the other hand, the blue component

would be produced by neutrino-driven winds and viscous ejecta in the post-merger phase.

3.3.2 NEUTRINO FLAVOR EVOLUTION IN BINARY NEUTRON STAR MERGER REMNANTS

The BNS merger remnant site brings many similarities with SNe, in particular as far as neutrino emission is
concerned, and flavor evolution studies have developed side by side. One of the main difference comes from
the fact that BNS studies involve a breaking of the spherical symmetry, in contrast with the simple bulb
model described in 3.2.2, making them more demanding. Indeed, they require to perform 2D interpolations
of the meaningful physical quantities (electron fraction and baryon number density), as well as solving the
evolution equations for many neutrino energy modes. Numerical investigations performed during this the-
sis showed that the convergence of the solutions was achieved for a much higher number of energy bins than
in the SN case. In addition, the excess of electron antineutrinos over electron neutrino introduces novel
flavor conversion phenomena that we will discuss. Since, as in SNe, the neutrino emission is significant,

in order to describe the neutrino flavor evolution in BNS mergers, the self-interaction contribution to the



Figure 3.13: Schematic view of our model. Neutrinos start free streaming at the neutrinospheres, shown as a solid blue (respectively
dashed and dotted) line for v/, (respectively I, and 1/;;). The trajectory of a test neutrino v/, is labeled by the coordinates of its emission
point (xo, zo), and the angle 0q between the direction of its momentum § and the 2 axis. The test neutrino propagates in a background of
matter and (anti)neutrinos v/, of momentum p.

Hamiltonian (2.124) needs to be computed. It reads
oy = V3G 3 [(1= 8- 5) [0, ) — Ao, ] (3.19)

where the quantity dn,,, (dng, ) denotes the differential number density of neutrinos (antineutrinos), the
underline refers to the neutrinos initially born with « flavor at the neutrinosphere. In the next section, we

focus on how to model the neutrino emission to compute this term.

MODELING THE NEUTRINO EMISSION: GEOMETRICAL COEFFICIENTS

In two-dimensional models, neutrino propagate with an azimuthal symmetry axis from point (zg, 2), at
the neutrinosphere following a straight line trajectory? characterized by a radial r and an angular 6, variables
(Fig. 3.13). Note that we approximate the neutrinospheres as infinitely thin disks of radii 12, that are flavor
dependent, as done in Refs. [82, 84, 85, 86, 17].

For the neutrino self-interaction Hamiltonian Eq.(s.7) the simplest assumption is [82, 84, 85, 86, 17],

pu(rvﬁ) = pV(Ta p)? (3'2‘0>

namely the angular dependence of the neutrino density matrix is not retained. Asa consequence, the neutri-
nos that are coupled by the self-interaction term have the same flavor history as the test neutrino. Assuming
spherical and azimuthal symmetry of the neutrino emission at the neutrinosphere, this azsarz reduces to the
single-angle approximation of the bulb model [80]. One can assume, as in the supernova case, that neutri-
nos are emitted as Fermi-Dirac distributions f,,, with luminosities L,,, and average energies (E,,,) at the

neutrinosphere with neutrinosphere radii 1?,,, (Table 3.1). Figure 3.10 shows the current spread on L, and

*In this description, we neglect the bending of the trajectory due to strong gravitational fields, shown to induce sizable effects
in Ref. [129].
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(E,) (M&V) L, (10" erg/s) R, (km)

Ve 10.6 15 84
7 15.3 30 60
Vg 17.3 8 58

Table 3.1: Electron and nonelectron neutrino flavors: Average neutrino energies from Ref. [86], luminosities from Ref. [126]. The last
column gives the outermost radii (km) from Ref. [86]. Such values correspond to the neutrinospheres of a neutron star merger at 100 ms
after the merging process. Please keep in mind that these luminosities have to be divided by two in Eq.(3.21) because we consider there
only neutrino emission in the half plane above the emission disk.

the neutrino fluxes according to available simulations of neutrino emission in binary neutron star mergers.

By using Eqs.(3.19) and (3.20), the neutrino self-interaction term becomes*

* Lugfug(p) _ Lz@fﬂg(p)
oy (7, Q7£q) = \/§GF a;x/ﬂ dp |:GV04 (7, £q>Pug(7”7 P)m - P‘g(ﬂ p)Gh, (, fq)m )
(3.21)
where the geometrical factor G, reads
Gulrita) = [ 400~ q-), (322)
Q.
with €, the angular variables and similarly for G, for the antineutrinos, and ¢, = (6, zo, z0). The

detailed procedure of how to derive geometrical factors is given in Appendix C.

NEUTRINO CONVERSION MECHANISMS: THE EXAMPLE OF THE MATTER-NEUTRINO RESONANCE

Because the electron antineutrinos in BNS are typically emitted in a larger number than electron neutrinos,
unique flavor conversions mechanisms appear compared to the SN case. For example, there can be a cancella-
tion of the matter and self-interaction potentials, since the large flavor-diagonal neutrino-neutrino potential
and the matter potential have an opposite sign close to the neutrino emission point. Such a cancellation is

easily seen by comparing the matter potential to the unoscillated neutrino potential

Ly,
RI%& <Eﬂ€ > ’
(3.23)

V2G L,
= —2F Gy, (1,4y) . — Gy, (1, 4)

/L(’f’, €q> — punosc (7’, £q> - hg’;?;;(?”, Eq) T m

vv,ee
and leads to large-scale MSW-like conversions. The bottom panel of Fig. 3.14 shows such a cancellation.
This phenomenon is known as the Matter-Neutrino Resonance (MNR) [83, 130, 131, 86]. Previous work
has shown that the presence of this resonance could trigger intense conversions for neutrinos, as shown in
the top panel of Fig. 3.14.

So far, two cases have been distinguished: the “standard” MNR [83], in which only neutrinos convert

#Note that here we show the full dependence on the variables for clarity.
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Figure 3.14: Top panel: Survival probabilities for electron neutrinos (solid red line) and antineutrinos (dashed blue line) compared with
their predictions. Bottom panel: matter (solid purple line) and unoscillated self-interaction (dashed green) (3.23) potentials. Conversion
occur when the two potentials cancel each other. Figure adopted from Ref. [83].

their flavor while antineutrinos do not, and the "symmetric” MNR [84], in which both neutrinos and an-
tineutrinos get converted into the other flavors. Such conversions could have a significant effect on nucle-
osynthesis. Figure 3.15 shows an example of the impact of the MNR on Y, (3.18) and on the nucleosynthetic
abundances. Note however that this is calculated along a single trajectory.

In the first two projects of this thesis (Chapters 4 and ), part of the investigation has been devoted to
the study of the MNR, discussing in depth the details of the resonance conditions and the corresponding

mechanism.

3.3.3 RECENT DEVELOPMENTS

Most flavor studies in the context of BNS merger remnants, in particular involving the MNR are based on the
single trajectory approximation (3.20) [82, 84, 16, 17, 85, 86]. Reference [132] has made the first investigation
of the MNR in a multiangle treatment, based on a schematic calculation with infinite plan emission and
constant matter profile. The author finds that the MNR does not survive under such conditions. Note,
however, that only the oscillated potential of an average angle is shown, while survival probabilities would
be needed to fully assess the adiabaticity of the MNR.

Clearly, simulations implementing the full angular dependence of the density matrix (3.19) are needed in
the future to determine for example the role of decoherence in the flavor evolution. The linearized analysis
of Ref. [133] has included the angular dependence. Ref. [134] made the first full multi-angle calculation,
using the bulb model though, and found that MNRs still occurred for a subset of angular bins, but were less

efficient than in the single-trajectory treatment. This is a promising result since multi-angle simulations are
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Figure 3.15: Comparison of the nucleosynthesis abundances produced in merging compact objects remnants using a multiple disks model.
In both figures, the black pluses show the scaled solar 7 process residuals. On the top panel, the black line shows the elements produced
without the inclusion of neutrino oscillations. On the bottom panel, the colored lines show the elements produced including neutrino
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necessary to definitely assess if the presence of MNRs can influence nucleosynthesis. They also found new
flavor conversion phenomena.

It is also worth noting that the presence of fast modes close to the neutrino decoupling region could lead
to flavor equilibration on a very short scale. Ref. [133] pointed out that, contrary to the SN case, fast flavor
conversions seemed to be unavoidable in compact mergers because of the typical angular distributions found
in those environments. Based on the flavor equilibration ansatz, Ref. [135] showed that neutrino conversions
due to fast modes would speed up lanthanides production. However, it needs to be emphasized that there
is currently no calculation performed in the full nonlinear regime showing that fast modes can induce flavor
equilibration.

In conclusion, further developments are necessary to quantify the impact of flavor evolution in neutrino-
driven winds where flavor conversion is treated in full multi-angle and nonstationary models. Such investi-

gations are important in relation to the recent and the future kilonovae observations.
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The goal of the first project is to investigate the possible role of helicity coherence within a two-flavor
framework, based on detailed astrophysical simulations. The aim is to identify under which conditions
the helicity coherence resonance can be fulfilled and nonlinear feedback can operate. The results presented
constitute the first exploration of these mean-field corrections in a realistic setting. They bring definite con-

clusions about the impact of helicity coherence in flavor evolution in dense environments.

41 INTRODUCTION

Theoretical investigations of neutrino flavor evolution in dense media are usually based on the Liouville-von
Neumann equations for one-body neutrino density matrices (Section 2.2) [30, 33]. Three corrections have
been discussed recently, coming from collisions [122], pairing correlations [34, 25], and helicity coherence
(34, 136, 136, 25]. In fact, at the neutrinospheres, a small fraction of the neutrino flux can still propagate
along non-forward directions due to final collisions. A small contribution of a backward flux can produce
significant flavor change, as shown in Ref. [122] in the context of a core-collapse supernova schematic model.
Demanding simulations that self-consistently implement collisions, neutrino mixings, and mean-field terms
in a full Boltzmann treatment are still missing.

Contributions from neutrino-antineutrino pairing correlators and non-zero neutrino mass appear in the
most general mean-field equations (Chapters 2 and 3). The authors of Ref. [34] obtained a rigorous deriva-
tion of the neutrino evolution equations based on the Born-Bogoliubov-Green-Kirkwood-Yvon hierarchy
approach. Moreover, neutrino-antineutrino pairing correlations were implemented explicitly for the first
time. Quantum kinetic equations for Majorana neutrinos including corrections due to the neutrino mass
first appeared in Ref. [136], where they were referred to as spin coberence. This terminology was then cor-
rected in [25] to belicity coberence. The concise quantum field theory derivation of Ref. [25] provided the
mass and the pairing mean-field contributions in both the Dirac and Majorana cases. As discussed in Chapter
2, these works have shown that both corrections introduce a coupling between neutrinos and antineutrinos.
The anisotropy of the medium is necessary for the mass and the pairing contributions to the neutrino Hamil-
tonian to be nonzero.

Spin coherence can produce a MSW-like phenomenon between neutrinos and antineutrinos, as shown
by the first one-flavor numerical study [13]. Under specific conditions, a cancellation between the matter and
neutrino self-interactions can fulfill the resonance condition. Moreover, the nonlinearity of the equations
can introduce a nonlinear feedback. This has a twofold effect: the region where the cancellation (and the
resonance) occur can be extended, and the adiabaticity of the evolution at the resonance can be increased.
The results of Ref. [13] show that significant swapping of the neutrino and antineutrino fluxes is produced

for some choices of the parameters. This nonlinear mechanism is particularly intriguing since the mass con-
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tributions turn out to be suppressed by the ratio of the neutrino mass over energy, as one would naively
expect [136, 25]. Note that a rough estimate of the size of mass and pairing mean-field terms was given in
[35], where it was also pointed out that a MSW-like phenomenon might be produced by the mass terms,
while the MSW-like resonance condition cannot be fulfilled for pairing contributions. In order to assess if
helicity coherence can influence flavor evolution, an in-depth analysis was needed.

In the first project, we explore the possible role of helicity coherence in a realistic astrophysical setting and
choose to set ourselves in a binary neutron star merger environment. We employ the results for the matter
density profiles, the electron fraction, and the neutrino luminosities from the binary neutron star (BNS)
merger simulation [126]. We perform numerical calculations to determine neutrino flavor evolution, oscil-
lation probabilities, and the associated adiabaticity parameters through the helicity coherence resonances.
We consider three model cases that are representative of the ensemble of astrophysical conditions that we ex-
plore. In order to interpret our numerical findings, we provide with a simple first-order perturbative analysis
of the conditions to have multiple resonances induced by a nonlinear feedback, producing efficient flavor
conversions. We take the cases of the matter neutrino resonance (MNR)—found in accretion disks around
black holes or binary neutron star mergers—and the model of Ref. [13] as examples of situations where this
mechanism operates and comparatively discuss the situation with helicity coherence in our setting.

The chapter is structured as follows. Section 4.2 introduces the helicity structure of the Hamiltonian and
of the mean-field evolution equations, with mass contributions, both for Majorana and Dirac neutrinos.
Then our schematic model is described and the geometrical factors are given. Section 4.3 presents the two-
flavor results on the neutrino flavor evolution. The resonance and the adiabaticity conditions are discussed
for three model cases. Section 4.4 provides a lowest-order linear analysis of multiple crossings induced by

nonlinear feedback. Section 4.5 contains our conclusions.

4.2 THEORETICAL FRAMEWORK

4.2..1 MEAN-FIELD EVOLUTION EQUATIONS WITH MASS CONTRIBUTIONS

We remind that neutrino evolution in an homogeneous astrophysical background of matter, neutrinos, and
antineutrinos is usually described through two-point correlation functions Eqgs. (2.36-2.39) for Dirac and
Egs. (2.52-2.55) for Majorana neutrinos. The mass contributions are due to corrections to the relativistic
limit, which are proportional to the mass and are associated with two-point correlators coupling particles
of helicity h # R/, which account for helicity changes [136, 25]. Obviously, neutrino evolution studies also
include the usual mixing terms that depend on the mass-squared differences. We will not refer to these when
discussing effects from mass contributions, although they are included in our simulations.

Neglecting collisions, the most general mean-field Hamiltonian has the form (2.35). We quote here results
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that are relevant for the investigation of the effects from mass contributions; while the explicit expression of
I" and the detailed derivation of neutrino evolution equations are given in Chapter 2 [25]. We will present
results for Majorana neutrinos, while those for Dirac are reported in Appendix B. The full set of equations
for Dirac and Majorana neutrinos with such contributions is given in Section 2.2.1 [25]. We start with the

evolution equation

ip'g (tv (7) = [hg (ta (j) ) PG (ta J)] ) (4.1)

where the generalized density matrix is’

po (L,3)=p(t.4,h. G, ) = ) , (42)

with pand p Ny x Ny submatrices, corresponding to the usual neutrino and antineutrino density matrices
(2.105,2.106). N is the number of neutrino families and the superscript 7" indicates transposition. The

generalized Hamiltonian is

hg (t.q)=T% (¢, h,q.h') = (4.3)

Both matrices have a 2N; x 2N flavor (or mass) and helicity structure. The quantities H and H are the
neutrino and antineutrino Hamiltonians respectively, while the off-diagonal term ® is the belicity coberence

matrix, coupling the neutrino and antineutrino sectors.

In the mass basis, the mean-field Hamiltonian contributions are given by

for the neutrino sector and

for the antineutrino sector. The quantity ¢ = ¢/q denotes the unit vector pointing in the neutrino momen-
tum direction (g is the modulus of §).
The Ny x Ny scalar S(t, ¢) and vector V'(t) matrices receive contributions from the neutrino mixings,

the neutrino-matter charged- and neutral-current interactions, as well as the neutral-current neutrino self-

"Note that here we denote with ¢ instead of —§ the momentum for antineutrinos. This former convention introduces sign
differences in the expressions where antineutrino momenta are present, compared to Ref. [25], where the latter convention was

employed.
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interactions. Their explicit expressions in the flavor basis read

S<t7 Q> = hO(Q) + hmat (t) + hse1f<t>7 (46)
g<t7 Q) = _hO(q) + hmat (t> + hself(t)a (47)

for neutrinos and antineutrinos, respectively. The first terms correspond to the vacuum contributions,

which are

h[) = UhvacUTa (4'8)

with hyae = diag(E;), Ejiz1 N ; being the eigenenergies of the propagation eigenstates. The quantity U
is the Maki-Nakagawa-Sakata-Pontecorvo (MNSP) Ny x N unitary matrix relating the mass to the flavor

basis [5]. The second terms in Egs. (4.6)-(4.7) are the scalar neutrino-matter contribution to the mean-field

hmat,a,@<t) = \/§GF50¢,8 |:ne<t)5oze - _nn(t> ) (49)

with the particle number density

3
nf(t) = 2/ (;17’;3pf<t7ﬁ)7 (4.10)

f = eand n standing for electrons and neutrons respectively. Note that, both the charged-current neutrino-
electron and the neutral-current neutrino-neutron contributions in (4.9) need to be included. In fact, in our
investigation, the neutral current term cannot be discarded from the Hamiltonian hg Eq. (4.3), as usually
done, since its contribution is not proportional to the identity matrix.

The third terms in Eqgs. (4.6)-(4.7) come from neutral-current neutrino-neutrino interactions

hself(t) = \/§GF/ (321;3 [p<t7]7) - ﬁ(taﬁj] + La (4-11)

with L the conserved lepton number in two flavors

L= VaGeu[[ S it~ pte)] (4

with tr indicating the trace. Note that, again, the trace terms have to be retained. The mean-field matrices

Eqs. (4.4)-(4.5) involve the vector term

V(t) = Vmat (t) + ‘_/;elf(t)v (4.13)
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that receives contributions from the matter-neutrino current

—

‘/mat,aﬁ(t) = \/§GF5QB |:tfe<t>5ae - ﬁL(t)} (4-14)

and the neutrino-neutrino one

Volt) = V3G S5 0.1~ ple. ]} + (45

(2

The particle velocity densities are

, a2
T =2 [ Gksiese.p), (416)

with ¥y = p/ B, E] = | /p* + m}%, and the quantity kis

—vaGeuf S5 o) - ot (47

where p = p//p. In Egs. (4.4)-(4.5) the inclusion of mass contributions gives a supplementary diagonal term

. 3 ,
Voo(t) = —V2Gr / (‘;T’;g{e—l%ep O, ﬁ)Qﬁ + h.c.} (4.18)
3
—V2Gr tr/ (27?];3{ “ire, Ot ﬁ) —|—h.c.},
with
Q(t,p) = ¢(t, ) + C(t, ). (4.19)

Finally the oft-diagonal belicity coberence matrix reads [136, 25]

d 1hg ~* _» m
Ot q) = e'é, - Vi), +2—qVT<> (4.20)

where m denotes the mass matrix, and ¢, is the polar angle of the vector ¢in spherical coordinates. This
off-diagonal term mixes neutrino and antineutrino evolution. The contributions in Egs. (4.18)-(4.20) come
from the matter and neutrino currents perpendicular to the neutrino direction of motion, since the complex

VECtors

e(p) = : (4.21)
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and € span the plane orthogonal to pi* As expected the mass terms are suppressed by m/q. Note that, in
the ultrarelativistic limit, the different helicity sectors are decoupled and one recovers the commonly used

theoretical description of neutrino propagation in media.

4.2.2 THE MAJORANA CASE WITH Ny = 2

Here we present our model to explore effects from the mass contributions on the neutrino propagation in
an astrophysical environment. We consider Majorana neutrinos within a two-flavor theoretical framework.
As we will discuss, such results are also representative of the Dirac case. The neutrino evolution can be
determined using (4.1). Unless otherwise specified, from now on all the expressions will be in the flavor

basis. The 4 x 4 generalized density matrix Eq. (4.2) is given by

pee pel’ p€_6+ pe_x+
B p| ¢ Pev  Prz | Poct Pra
pg (1,7) = | = . (422)
¢tp PL Pie | Pee  Pin
Per Piz | Pex Pz

Note that, to simplify notations, the explicit dependence on the variables (¢, ¢') is not shown on the rhs of
the equation.

For Majorana neutrinos in two flavors, the MNSP matrix reduces to

cosf  e?gind
U=VD= | : (4.23)
—sinf 2 cosf

where V is a rotation matrix, while D = diag(1, €’®/2) with « the (unknown) Majorana phase. The vac-

uum Hamiltonian in the flavor basis (4.8) reduces to the usual form

hO =w ) (42’4)

Am?
4F >

2 2

with w = Am? = m2 — m?, E = qis the neutrino energy, Sog = sin 20 and cyp = cos 20. The

matter term (4.9) is

V2

hmat,ap(t) = =~ Grdag [20aYe(t) = (1= Ye(t)] na(?), (4.25)

*In terms of an oriented triad of real orthogonal unit vectors (p, Pa, Py ), for instance the standard unit vectors associated to

p'in spherical coordinates, one has €, = pp — ipg. Note that, €, - €, = 0, €, - & = 2, € (p)e,(p) = 0, ¢*(p)e;,(P) = —2 and

thate, (—p) = €,,(D)-
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with n g the baryon number density, Y, the electron fraction. Note that we did not include the contributions

to the diagonal matrix elements from the matter currents, since they are much smaller than the scalar term.

The neutrino self-interaction Hamiltonian.(4.11)-(4.13) reads

ho (t,q) = V2G Z {/ (1—q¢-p)x (dn,,gpyg(t,ﬁ) — dnpgﬁgg(t,ﬁ)) +L—q- k, (4.26)

a=e,r

with L and k given by (4.12) and (4.17) respectively. The quantity dn,,, denotes the differential number

density of neutrinos and the underline refers to the neutrinos initially born with o flavor. Besides such

contributions that are usually included in flavor evolution studies, the Hamiltonian presents the diagonal

mass term and the off-diagonal one that depends on the matter and the neutrino currents. As we will discuss,

since the diagonal contribution from the neutrino mass (4.18) is very small, it will not be implemented in

our calculations.

The generalized Hamiltonian matrix (4.3) reads’®

—weag + AYe + heS wsog + AL b, b,
wSag + hIS wegg + hET D, L2
hg (t,7) =
Pl Pl —wegg + A(1 — 2Y,) — he Wsag — h¢
Pl Pl wsog — R weg + A1 —Y,) — h®
(4.27)

where A = v/2Gpng. Note that the quantity %(Ye — 1)lyx4, with [y 4 the identity matrix, has been

subtracted from the diagonal.

The helicity coherence terms (4.20) in the flavor basis are given by

O(t, ) = [ei%é; : V(t)] U%UT + U%UT [ei%g; : VT(t)} .

(4.28)

By using cg = cos § and sy = sin 0, one can rewrite the factor associated with the mass matrix as

m g4 ess  spep(e™™ — 1)

U—UT = my

2q sgco(e’* —1) s34 e'cl

Am? —c2+es?

+ .
4mg sgcp(e™ + 1)

where we have introduce the quantity mg = (my + my) /2.

*Here we have omitted again the explicit dependence on the variables not to overburden notations.
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4.2.3 THE DIRAC CASE WITH Ny = 2

We present here the explicit expression for the Hamiltonian in the Dirac case. The equations of motion are
given in Appendix B. The main difference from the Majorana case is that the subsectors with the “wrong”
helicities, p 4 and p__, involve sterile components. Moreover, in the Dirac case, there are two 4 X 4 gen-
eralized Hamiltonians that need to be evolved: one for neutrinos, and one for antineutrinos. For neutrino,

the generalized density matrix (B.4) reads

Pec  Pex | Peo’  Pen

B p| < Piv Prz | Poet Do

pog (1, q) = —| = — |- (430)
G P p:e_ P;E_ Pee Pex

Pic Paz | Piz  Prx

The (——) sub-sector in the generalized Hamiltonian (B.3) is very similar to the one in the Majorana case ;
however, due to the fact that the sterile component does not interact with matter or neutrinos, the (++)

sub-sector includes only the 2 x 2 vacuum Hamiltonian. The generalized Hamiltonian for neutrinos is

therefore
—wegg + N(3Y, — 1) + hee, wsgg + heE o, D,
wsgg + Ay wepg + N(Yy = 1)+ h22 | D, Dy
hD,g (ta J) - ) (430
(i)ie (i)l:r —WC WS2p
ot of WSap  WCap

with 2)\" = A. A similar expression can be written for the generalized Hamiltonian for anti-neutrinos, ip g

(B.6), with, of course, the (——) and (-++) sectors reversed.

4.2.4 OUR SCHEMATIC MODEL BASED ON NEUTRON STAR MERGERS SIMULATIONS

Neutron star mergers produce lots of low-energy neutrinos in the accretion disk during the post-merger
phase. Atsuchsites, flavor evolution studies show the presence of MNR conversion phenomena that require
a cancellation between the matter and the neutrino self-interaction contributions. As we will show, the
corresponding resonant condition is very close to one of the resonant conditions due to the helicity coherence
term. Moreover, MNR also shows a nonlinear feedback mechanism that presents a similarity (in the sense

that it is capable of maintaining the resonance over long distances) with the one found in the first (one-
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Figure 4.1: Geometry of our model. The blue surface shows the neutrinospheres, that we will approximate later on as infinitely thin disks.
We chose the emission point (a:o, zo) of our test neutrino 14 on this surface, while the angle 9q fixes the direction of its momentum ¢ (¢

-

is set to zero). The quantity J,#at indicates the perpendicular matter current. The momentum p of the background neutrino Vpalsohasa

component pL perpendicular to the test neutrino, creating a neutrino current perpendicular to the test neutrino trajectory.

flavor) study of mass effects in core-collapse supernovae [13]. In order to explore mass effects in more realistic
settings, we have built a two-flavor schematic model in an extended mean-field approximation, based on
simulations of BNS mergers. Our goal is to identify if and under which conditions the mass contributions
can produce efficient flavor conversion. Such effects could impact the r-process nucleosynthesis of heavy
elements. Indeed, this process can occur in neutrino-driven winds in BNS mergers, as investigated in [93].

According to the detailed simulations of Ref. [126] a central object is formed by the merging process, with
a radius of about 30 km. In our scenario neutrinos produced in such an event evolve in a static background
of matter, neutrinos, and antineutrinos. Therefore, we will replace the ¢ dependence of our variables with
a 7 dependence, i.c., the distance  traveled by the neutrino from its point of emission. To simplify the
problem while keeping the essential features, we approximate the neutrinospheres as infinitely thin disks
with maximal sizes I?,,, as previously done in the literature [82, 83, 85, 86]. Three different disk sizes are
considered for v, ¥, and v, (or ;) (Table 3.1). In particular, the v, and ¥, neutrinosphere radii are very
close and smaller than the v, outermost radius. Note that this difference in R, and in the luminosities
can induce a change of sign in the neutrino self-interaction potential, producing the so-called symmetric
matter neutrino resonance (SMNR) phenomenon where both electron neutrinos and antineutrinos modify
their flavor content. This phenomenon is first pointed out in an accretion-disk black hole scenario [82] and
further investigated in [83, 85, 86].

Our model is two-dimensional and has an azimuthal symmetry axis (see Figure 4.1). Neutrinos evolve
along a straight line trajectory (we neglect the bending due to the presence of strong gravitational fields).
In order to follow neutrino evolution along a given trajectory, we use a spherical coordinate system given
by (7,0, ¢) (Fig. 4.1)), while for the neutrino background it is useful to express (6, ¢) back to the emission
point (74, ¢, 0) on the disk, as first introduced in Ref.[137] (see Appendix C and Figure C.2). For the matter

Hamiltonian (4.9) we have used cylindrical averages of the the electron fraction and the baryon number
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density results of Ref.[126]. Therefore, in our calculations, both ng = np(r) and Y. = Y.(r).

As for the self-interaction Hamiltonian, one needs to implement the differential number density dn,,,
dn,, = ju. (p) dpdg,d cos b, (4.32)

for neutrinos emitted isotropically from any point on the surface of the disk. A similar expression holds for

antineutrinos. The quantity

LV 12
Jva (P) = %7 (433)

is the neutrino number density per unit angle per unit energy, and (6, ¢,,) the spherical coordinates of p
(Figure C.1). The angular integration is performed over the boundaries €2,,, (€25,) of the corresponding v (/)
neutrinosphere. Introducing Eq. (4.32)-(4.33) into (4.26) the explicit expression for the neutrino-neutrino

term reads

Ll/ vV,
hun (., bg) = V2Cr Z/ / dpdQ (1 —q-p)) pua('f’,p,fp)#zg%

_ Lz@fﬂg(p)
— Doy (75 D, gp)m , (434)

Va Yo

where the underline in v, and 7,, indicates the initial neutrino flavor. The variables, on which the neutrino
evolution depends, include ¢; = (6;, ¢;, Qo) with the angles (6;, ¢;) (i = p or ¢) defining the neutrino tra-
jectory and the coordinates Qo = (o, 20) giving the neutrino point of emission in the 7,, plane. The
functions L, (Ly,) are the total neutrino luminosities, that have to be divided by two in (4.34) since we
consider the neutrino emitted in only one hemisphere, whereas f,,, (f.,) are the neutrino (antineutrino)
spectra, at the neutrinospheres.

In this first exploratory work based on a two-dimensional model for two-neutrino flavors, we have used
an approximate treatment of the self-interaction Hamiltonian that consists in assuming that neutrino tra-

jectories are all coupled and follow the same flavor history as the test neutrino along a given trajectory, i.e.

pu(rvﬁ) = PV(T, p)v (4-35)

and similarly for p,,. This procedure is analogous to the so-called “single-angle” approximation in the core-
collapse supernova context, first introduced in the b#/b model [11]. We emphasize that our treatment of the
self-interaction reduces to the “single-angle” approximation, if one imposes spherical and azimuthal symme-
try, as in the bulb model. According to multi-angle studies of flavor evolution in core-collapse supernovae,

the inclusion of the full angular dependence of the density matrices can introduce decoherence of collective
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flavor conversion effects (see e.g. [138]). In the event of positive findings in future studies, one would need
to go beyond and implement the full angular dependence in Eq. (4.35).
By imposing Eq. (4.35) the integral over the angular variables can be performed giving the geometrical

factor

Gy (L) = /Q 41— G- p), (436)

Yo

and similarly for G, . As a consequence, Eq. (4.34) becomes

Ly, v, = Ly, [
huu(r,0,£y) = V2Gr 3 / dp[ v (7 L) P (1 )%Qf—éz)) — Poa (7, p) Gz, (1, eq)—WQRQf <g)>

(437)

a=e,r

The angular variables in (4.36) can be expressed as a function of the (74, ) variables defining the point in
the emission plane 7, (see Appendix C). The integral over ¢ is easily performed and the geometric factor

becomes

Rch
Gy, (r,l,) = z/ draral'(ra, €y, ), (4.38)
0

where the explicit expression for I' is given by Eqs.(C.13-C.14) (Appendix C).

For the mass effects, one needs to specify the matter and self-interaction contributions to the helicity co-
herence term (4.20) as well as the supplementary diagonal contribution (4.18). By taking constant matter
velocities, the matter currents contribution in Eq. (4.20) becomes

by Vo) = L2 GB35 28ucYer) — (1= V()] ). (439

For the self-interaction contribution to the helicity coherence term, one needs to calculate € Viert (1), that

is

hy, (1., ¢ \/—GFZ/dp{/ ) o (r, 9, £,) s
_/Q(é* (é)-ﬁ)ﬂa(r,p,gp)dnya}‘ (4.40)

Using the hypothesis (4.35), a perpendicular geometrical factor can be defined as

GL (r,0,) = / 40 (@) - ) (4.41)

Yo

Ru,

:/ drg (rqz) r+ (ra, Ly, 1),
0
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Figure 4.2: Geometrical factors for neutrinos (left) and antineutrinos (right figure), as a function of distance, in our schematic model based
on binary star mergers. The two curves correspond to G, (4.38) (solid line) and G- (4.41) (dashed line) in the self-interaction Hamilto-
nian Eq. (4.37) and Eq. (4.40) respectively. Results correspond to Model C (Table 4.3).

Symbol Name Expression
3 Vacuum contribution b —cop S99
=w
0 to the Hamiltonian 0 S20  C29
Diagonal matter
hmat Himiltonian hmat,a,@ = @GFTLB(SOLB [26a6}/6 - (1 - }/e)]
~ Oft-diagonal - NG
= V2 008 [200eYe — (1 = Y,
€ * Vinat matter Hamiltonian € - Vmatop = 3 GrnpBoas [2acYe = ( e)]
G, Geometrical factor Guo = Jq,. A1 —q-p)
Perpendicular
i p 1 dQ(e* (6) - b
G, geometrical factor Gra J Qv (€9 p)
Diagonal self-interaction Lug fou _ Loy foe,
fi Hamiltonian huw =V2Gr o [ dp [G”“ Pram?RZ (Bu) ~ P 70 Gra w2R§;<EEQ>}
Off-diagonal Lug fra _ Lig fra
hi_y 8 hi_u = \/iGF Za fdp [Gi_a Pra 7r2R3; (E/a> B ngGé_a 7r2R1277<E'7,7a>}

self-interaction Hamiltonian

Table 4.1: Symbols, names and expressions of the relevant quantities involved in the neutrino evolution equations (see text).

where the dependence on the emission variables is shown. The explicit expression for Itis given by Egs.

(C.9)-(C.10) C. Figures 4.2 and 4.3 show the geometrical factor (4.41) as a function of the distance travelled

by the neutrinos from the neutrinospheres. The results correspond to the cases A and C (Table 4.3) which

can be considered as representative of the the typical behaviors of G-, as we have been observing in our runs.

One can see that G;- have a similar 7 dependence as G, (4.38), as expected. Their absolute values turn out to

be suppressed by a few percents up to several factors, with respect to the G, value. As we will discuss, the 7

dependence of G, plays a crucial role on the possibility to have multiple crossings and a nonlinear feedback

mechanism in presence of helicity coherence (see Section 4.4). By including Eq.(4.41) into (4.40) one gets

the same expression Eq. (4.37) for h;},, with G,fa Eq.(4.41) replacing G, Eq.(4.36). Table 4.1 sums up the

relevant quantities involved in the generalized Hamiltonian.

The neutrino total luminosities and spectra at the neutrinospheres are an essential ingredient of the self-
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interaction Hamiltonians h,, and h,fl,. Asin Ref. [86], we take the neutrino spectra f; and f, at the neu-

trinospheres as Fermi-Dirac distributions,

o) = e (442
(p) = — 42
P B(0) TP exp(p/T) + 1 4
where T is the neutrino temperature. In this expression, we have F5(0) = 2((3) =~ 1.80, and F,(0)

corresponds to the Fermi-Dirac integral of order & with zero degeneracy parameter,
00 .flj'k
Fp(0) = de ———. .
k( ) /0 exp(x)+1 (443)

Table 3.1 gives the values of the luminosities and average energies for the different neutrino species used in
our investigation.

Unoscillated v self-interaction potentials constitute a useful quantity to search for the location of helicity
coherence resonances. They have been exploited in previous studies of the MNR and sMNR Ref. [82, 83,

85, 86]. Such potentials are defined as

) =vaee 3 [T |Gulnt s ”g‘éy)> (+.44)

a=e,r
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Figure 4.3: Same as Figure 4.2 for Model A (see Table 4.3).

4.3 REsULTs

4.3.1 RESONANCE CONDITIONS FOR HELICITY COHERENCE

We present here our analysis on the resonance conditions in presence of mass contributions. Such situations

can be identified by looking at the unoscillated potentials, which will use to characterize our model cases (A,
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B, C) that will be presented in Section 4.3.2. As shown previously, the extended equations with mass terms
include both the diagonal Eq. (4.18)-(4.19) and the off-diagonal Eq. (4.20) contributions. In the following
discussion, we will neglect the diagonal one since they are suppressed by several orders of magnitude com-
pared to the other terms, as we have been verifying numerically. This is due to the fact that Vi Eq. (4.18)

involves correlators with helicity change Eq. (4.2), in addition to being proportional to the neutrino mass.

MAJORANA CASE

Conditions for the occurrence of MSW-like resonances* are met when differences of diagonal elements of
the generalized Hamiltonian Eq. (4.3) become small, i.e. hg;; — hg ;; ~ 0fori, j = 1to4 (2 # j).

In treatments where neutrino evolution does not include mass terms, neutrino and antineutrino equa-
tions of motions are only coupled through the usual self-interaction Hamiltonian Eq. (4.37). In this case,

the resonance condition in the neutrino sector reads
hga1 — hg.as = —2weag + V2G pnpY, + heS, — h2® ~ 0. (4.45)

In accretion disks around neutron star merger remnants or black holes, the matter and neutrino self-interaction
terms have opposite signs, because the 7, luminosity is larger than the . one (see Table 3.1). This can pro-
duce a cancellation of the two contributions. The fulfillment of condition (4.45) and the presence of sizeable
H., triggers the MNR resonance phenomenon where v, change their flavors while 7. do not. The location
at which this instability starts can be identified by looking at the matter and unoscillated neutrino profiles,
as pointed out in Ref. [83]. The same cancellation as (4.45) can take place in the antineutrino sector, since

the resonance condition is given by
hg,gg — hg,44 = —2wcyy — \/§GF7”LBY; — h,ejey + hgg ~ (). (4.46)

Note that depending on the neutrino luminosities and the geometrical factors, the self-interaction term can
change sign twice, triggering flavor conversion also in the antineutrino sector. This is a necessary condition
for the symmetric matter-neutrino resonance (sMNR) where neutrinos and antineutrinos can modify their
flavors [82].

Since we are looking for a situation in which the neutrino-antineutrino coupling produced by the ® term
in Eq. (4.3) is effective, there are four resonant conditions between the neutrino and the antineutrino sectors.
The first one is

hg11 — hg3s = \/§GFnB(3Ye — 1) +2h5;, ~0, (4.47)

#Note that other resonance phenomena might take place that do not necessarily require such conditions.
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Name Type Condition
MNR (neutrino sector) Ve <+ Vy  hgi1 —hgos ~0
MNR (antineutrino sector) 7, <> U, hgss — hgas =0
Helicity coherence
(electron flavor)

Ve < Ve hg711 — hg733 ~0

Helicity coherence

Vp > Uy hgos —hgas >~ 0
(nonelectron flavor) v e 1G22 TG4

Table 4.2: Relevant resonance conditions to the study of the role of helicity coherence on neutrino propagation in BNS merger remnants.
Note that the resonance conditions Egs. (4.48) and (4.50) are not met in such environments (see text).

where we have made use of the explicit expressions for hg (4.27). Note that this relation does not involve
vacuum terms, and therefore will not depend on the neutrino hierarchy nor on the neutrino energy. Its
fulfillment involves a cancellation between the matter term and the self-interaction term that is very similar
to the MNR condition (4.45), and it can be identified by using the matter and the unoscillated neutrino
self-interaction potential (4.44). Relation (4.47) can be metif Y, > 1/3 for A, < Oorif Y, < 1/3 for
hgs, > 0. We recall that here h,,, terms also include trace terms Eqs. (4.12) and (4.17).

The second relation
hgi1 — hgas = —2wcyg + V2Grnp(2Y, — 1) + hes, + hit ~ 0, (4.48)

cannot be satisfied in the standard MNR set-up: a neutron-rich environment which is also 7, dominated
nearby the neutrinosphere with h{;, + k7 < 0. When a change of sign of hy;, + h; occurs, which is the

14

case in the SMNR, this resonance may appear. The third relation
hgao — hgas = —V2Gpnp (1 —Y,) + 202 ~ 0. (4.49)

is difficult to meet. Indeed, unless there is a SMNR, A7 is negative, hence (4.49) cannot be fulfilled since Y,

v

is always smaller than 1. Finally the last condition is given by
hga2 — hgas = 2weag + V2Gpnp(2Y, — 1) + S, + his ~ 0, (4.50)

which [like (4.48)] cannot be met in the case of a standard MNR. Note that the location of resonances from
the neutrino mass terms are affected by the presence of the MNR, since the MNR obviously modifies the
self-interaction contributions that appear in the helicity resonance conditions. Note that (4.47)-(4.50) agree
with those of Ref. [139]. Table 4.2 summarizes the resonance conditions which are relevant to our numerical
studies.

From (4.45)-(4.47), a general relation for the resonance conditions associated with the neutrino mass can
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be obtained
V2GrnpYe > V2Grnp(3Ye — 1) = 2|his| > [, — hit| > |hgs). (4.51)

The first inequality holds if Y. < 1/2, while the second is valid in the case of a standard MNR, where
|heS| > |hZZ|. The central approximate equality corresponds to relation (4.47), while the two quantities on
the left and on the right correspond to the MNR resonance condition (4.45). Relation (4.51) shows that the
standard MNR and the helicity coherence condition (4.47) cannot be satisfied simultaneously, while this is

possible in the case of a symmetric MNR.

DIRAC CASE

If neutrinos are Dirac particles, the generalized Hamiltonian that governs the evolution is given by Eq. (4.31).

In this case the resonance conditions read

1

hD,g,n - hD,g,33 = 5 [hg,n - hg,33] ~ 0, (4.52)
1
hpgos — hpgas = 3 [hg 2o — hg.a] ~ 0, (4.53)
1
hpgi1 —hpgas = 3 [hg 11 — hg s3] — 2weg ~ 0, (4.54)
1
hpgos —hpgss = 3 [hg22 — hg 4] + 2wey ~ 0. (4.55)

In the Dirac case the two conditions Eqs. (4.52) and (4.54) can be satisfied in the same conditions than (4.47);

while Eqgs. (4.53) and (4.55) requires a change of sign of h{;, + hl7.

4.3.2 NUMERICAL RESULTS ON FLAVOR EVOLUTION

We now present our numerical results on flavor evolution. We show neutrino survival probabilities and
quantify the adiabaticity of neutrino evolution through the resonances. We have studied a large ensemble of
conditions, both for the potential profiles and parameters. We emphasize that computations are particularly
demanding; indeed, we solve the coupled evolution equations of the full 4 x 4 generalized density matri-
ces with four different initial conditions, in a two-dimensional model, using 10° energy bins. We present
results on the neutrino evolution up to 300 km from the neutrinosphere, distance at which the numerical

convergence is achieved. Note that the inputs from BNS merger simulations Ref. [126] have been obtained
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Model Type o 20 bo
A MNR 15 32 15°
B helicity coherence 12 27 40°
C MNR and helicity coherence  -30 20 55°

Table 4.3: Characteristics of the three scenarios considered in our schematic model. The second and third columns give the location of the
neutrino emission point g (km), 2o (km) while 9,1 defines the neutrino trajectory in the ., plane (Figure 4.1).

following the same procedure as in Ref. [86].

In the present study, we have searched mostly for the helicity coherence resonance conditions (4.47),
which is the most interesting one in our astrophysical setting, as well as more generally when Y, < 1/2.
We choose to present three model cases A, B, and C, that correspond to different astrophysical conditions
during neutrino evolution. In Model A the MNR condition (4.45) is met, while mass contributions are
included without fulfillment of the helicity coherence resonance (4.47). In Model B, the helicity coherence
resonance condition (4.47) is met, while the MNR condition, which is also met, leads to no flavor conver-
sions. Model C has both the MNR (4.45) and helicity (4.47) conditions fulfilled and the MNR effectively
leads to flavor conversions. Table 4.3 shows the initial location and the angles defining the neutrino trajectory
followed in the three models. Note that we set ¢, = 0 since neutrinos follow straight-line trajectories.

In order to fully unravel the effects of the mass terms, we have explored a range of values for each parame-
ter. For the total neutrino luminosity, we have used values from Ref. [126] and rescaled ones, to investigate
luminosity variations within the range compatible with available BNS merger simulations (see Ref.[86] for
a detailed discussion). For the anisotropic matter term, we have considered matter velocities in the range
S € [0.05,0.1], the value of 5 = 0.1 being an upper bound for this type of scenarios. In particular, we
make the ansatz that the perpendicular quantity is of the same order as the radial ones (see Figures 15, 16, 19
of Ref. [126]). Our numerical results show that anisotropies from the matter currents are always suppressed
compared to the neutrino current anisotropies. Therefore our optimistic ansatz for the perpendicular ve-
locities will have little impact on our conclusions. The results shown below are all obtained with the value
B =0.1.

The additional contributions due to the neutrino mass depend on the mass matrix Eq.(4.29). The neu-
trino mixing parameters used in our simulations are Am? = 2.43 x 1072 ¢V? and sin? § = 0.087, which
are consistent with measured values [55]. As for the hierarchy, which is still unknown, the mass effects do not
appear to depend on the sign of Am?, Eq. (4.47). A slight dependence is present when the MNR occurs. We
have performed calculations both by taking/neglecting the Am? term in Eq.(4.29) and the Majorana phase.
Our results turned out to be insensitive to them.

Adiabaticity of the evolution at a resonance location is crucial for flavor or helicity conversions to occur.

Different approaches can be used to quantify it (see e.g. [80, 112]), including the SU(2) neutrino isospin
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formalism which is applicable to the two-flavor framework (Appendix D). Since in our model two neutrino
and antineutrino flavors are coupled to each other, the density matrix is a 4 X 4 matrix. However, it turns out
that in most cases either there are flavor conversions because of the MNR while neutrinos and antineutrinos
propagations are decoupled, or the helicity coherence resonance is met while MNR is ineffective. There-
fore, we can effectively apply the SU(2) neutrino isospin formalism to our system. In the numerical results
presented below, the angle between the effective isospin and magnetic field will be shown to quantity adia-

baticity.

MobEL A

In this first model, our goal is to establish whether some effects due to neutrino mass would appear in
the absence of a helicity coherence resonance. For this reference case, the luminosities used are rescaled as
Ly, ses = 0.65L,,, Ly, s = 1.16L,, , while the 7, luminosity is unchanged. Figure ?? shows the matter
and unoscillated v-v potential (4.44) for Model A. While neutrino self-interaction is larger than the matter
potential close to the neutrinosphere, they cross at 40 km, the location for a MNR resonance. In Model A,
though there is a helicity coherence resonance which would occur around 150 km due to flavor conversions,
we will focus on the region before to show a reference calculation where the resonance helicity condition is
not fulfilled. We expect that, in the absence of resonance condition for the mass terms, no new effects appear
in the MNR region, since the coupling % is small. Indeed, we find the same flavor conversion due to the

MNR, as in absence of mass contributions.
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Figure 4.4: Matrix elements appearing in the MNR Eq. (4.45) and helicity resonance conditions (4.47) for Model A (Table 4.3). The values
correspond to the matter and to the unoscillated self-interaction potentials Egs. (4.25) and (4.44) respectively. The green pentagon
shows the location of the beginning of the MNR, while the blue dot shows the location of the helicity coherence resonance.

5m

& and mo = 0.1 eV. The survival probabilities for neutri-

The numerical results here are given for o =
nos and antineutrinos are given in Figure 4.5 for the MNR resonance region only and for several neutrino

energies. One can see that electron neutrinos efficiently convert into v, whereas the antineutrinos do not
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modify their flavor content, which is characteristic of MNR.

For neutrinos, there is an energy range between 4 MeV and 13 MeV for which flavor conversions are
efficient. Above 13 MeV, though the resonance condition is fulfilled, Figure 4.5 shows that the isospins do
not follow the evolution of the effective magnetic field, making the resonance non-adiabatic. A detailed
discussion on adiabacity in presence of the MNR is made within schematic models in Refs. [131, 130]. In
order to establish the importance of each term in (4.45) to maintain the resonance over such a long distance,
we have performed a run where artificially the oscillating part of the term AZ is set to zero (keeping only the
trace part). The results are intriguing since we find that even with this term set to zero, the resonance still

maintains over tens of kilometers, the value of h{;, being readjusted at each time by the nonlinearity.

1.0
1.0 1.0 e
0.8 0.8 0.5
B.="4 MeV. E =4 MeV N
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Figure 4.5: Model A:Electron neutrino (left) and antineutrino (middle figure) survival probabilities for different energies, in presence of a
MNR starting at 40 km (see Figure 4.4). The averaged probability is also presented. The right figure shows the locally-averaged cosine of
the angle between the effective isospin and magnetic field.

MopEeL B

Having shown that in the absence of helicity coherence resonance, no effects arise from the mass terms, we
now explore the case in which there are resonances. Results for the matter and unoscillated v-v potential Eq.
(4.44) for Model B are shown in Figure 4.6. Nearby the neutrinosphere, the neutrino potential dominates
over the matter one, while after a few tens of km the situation gets reversed: the MNR condition is met at the
crossing point, around 12 km. However, the adiabaticity of the evolution is not sufficient to trigger flavor
conversions. On the other hand, the helicity coherence resonance Eq. (4.47) is met at 34 km.

As explained before, the computations in this scenario are very demanding. Since we established that in
the absence of a helicity coherence resonance, the results were the same for the full 4 x 4 problem as for two
decoupled 2 X 2 neutrino and antineutrino matrices, we solve the full problem around the helicity coherence
resonances using as initial conditions the results obtained in the absence of the mass couplings’. Note that
the results correspond to the first helicity coherence resonance in Figure 4.6. Similar results were obtained

for the second resonance.

$This is done to keep the computational times manageable.
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Figure 4.6: Same as Figure 4.4 but for Model B (Table 4.3).
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Figure 4.7: Model B:Resonance condition (4.47) (left) as well as the off-diagonal matrix element hg.13 (right) that is non-zero in pres-
ence of the neutrino mass. The helicity coherence resonance can be seen at 34 km. The different colors correspond to different neutrino

energies. The solid lines are the results for mg = 0.1 eV, while the dotted lines are for the unrealistic value of mg = 100 eV.

Figure 4.7 shows the resonance condition (4.47) as well as the off-diagonal matrix element hg ;3 that is
non-zero in presence of the neutrino mass, for an absolute mass of my = 0.1 €V, and for the unrealistic
value mg = 100 V. In both cases, the Majorana phase is taken to be a = Z. This case is taken as an example
to point out that, even when the off-diagonal terms are multiplied by a factor of 10° artificially, it is not

sufficient to trigger a nonlinear feedback mechanism and the resonance width stays very narrow. We will

elaborate on this aspect in Section 4.4.

Figure 4.8 shows the electron neutrino survival probability and the angle quantifying the adiabaticity
through the helicity coherence resonance for three different energies as typical examples. As one can see
the evolution is completely non-adiabatic at the resonance, explaining why there are no helicity conversions.

Note that the evolution stays non-adiabatic even when the absolute neutrino mass is larger by a factor of

103.
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Figure 4.8: Model B:Electron neutrino survival probability (left) and adiabaticity (right). The results for different energies are indistin-
guishable.
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Figure 4.9: Same as Figure 4.4 but for Model C (Table 4.3).

MopEeL C

In model C, we look into the scenario where both an effective MNR and the helicity coherence resonance
are met. The luminosities used here are rescaled v, and 7, luminosities L, res = 1.67L,,, Ly, res = 1.1L5,,
while the v, luminosities are unchanged. Figure 4.9 shows the matter potentials and the unoscillated neu-
trino potentials. In the first kilometers, the matter dominates over the neutrino potential, with two helicity
coherence resonances around 2 km and 7 km, up to 15 km where a first MNR crossing occurs. Then, the

neutrino potential dominates until the second MNR crossing at 59 km, which is a symmetric MNR. There

ee
vyl

is another helicity coherence resonance at 64 km. In this model, there is a change of sign for Ay, and a lictle
bit later, Y, goes from Y, > % oY, < %:because of these two changes, there is a fourth helicity coherence
resonance at 208 km.

The first two helicity coherence resonances are very similar to the one observed in model B because they

occur prior to any flavor conversions. Indeed, numerical computations give the same results as before: a

very narrow resonance, without any helicity conversion. The first MNR crossing does not lead to any flavor
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Figure 4.10: Model C:Electron neutrino (left) and antineutrino (right) survival probabilities for different energies, in presence of a symmet-
ric MNR at 59 km (see Figure 4.9) and of a helicity coherence resonance around 103 km. The averaged probabilities are also shown.
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Figure 4.11: Model C:Resonance condition (4.47) (left) and the off-diagonal matrix element hg713 (right) for two different value of the
absolute mass my.

conversions, the adiabaticity of the evolution being not sufficient, while the second MNR crossing is efficient.
Because of these conversions, the potential Ay, is modified and no longer changes of sign. The oscillated
neutrino potentials obtained with our 2 X 2 code shows that because of flavor conversions, the last two
helicity coherence resonances are turned into three resonances at 70, 82 and 91 km.

We numerically investigated these resonances, which are superimposed with the symmetric MNR, and
obtained the same results as for the symmetric MNR without mass terms. Neutrinos and anti-neutrinos
survival probabilities are shown in Figure 4.10 for different neutrino energies, in the region where both the
MNR and the helicity resonance condition are fulfilled. At the MNR, neutrinos undergo a strong (adiabatic)
conversion while antineutrinos evolve semi-adiabatically through the resonance. At the helicity coherence
resonance, both neutrinos and antineutrinos have a non-adiabatic evolution.

Figure 4.11 shows |hg 11 — hg 33| and its associated off-diagonal element with two different values of the
neutrino absolute mass my = 0.1 eV and my = 100 €V, around the helicity coherence resonance. As in

the case of model B, we take v = %. Their behaviors are similar to those of model B. In particular, despite
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having |hg 13| close to |hg 11 — hg 33| for the lower energies and for my = 100 €V, the resonance is too
narrow to render helicity conversions possible.

Note that, in this model, the MNR is symmetric, and h;;, + A7 changes of sign. Because of this, we
also meet the three other resonances Eqgs. (4.48), (4.50) and (4.49). Numerical investigations show that they

are very similar to the helicity coherence resonance (4.47): the evolution through these extremely narrow

resonances is completely non-adiabatic, hence, no conversion occurs.

4.4 NONLINEAR FEEDBACK MECHANISMS

We discuss here general aspects of the conditions to have multiple MSW resonances and a nonlinear feedback
mechanism. By using first-order perturbative developments of the matrix elements, we first analyze two cases
where such mechanisms operate, using heuristic arguments. Then, we study why the necessary matching
conditions are difficult to meet in more realistic helicity coherence models. Obviously, the arguments we

give are valid if the average variations on short timescales catch the behavior on larger timescales.

4.4.1 NONLINEAR FEEDBACK IN THE MNR

TThe MNR phenomenon can extend over long distances (several hundreds of kilometers) due to a nonlinear
feedback mechanism that appears because of the self-interaction term. It involves multiple MSW-like reso-

nances, as discussed in Refs. [131, 86]. Therefore to maintain the resonant phenomenon, condition (4.45)

AY, & — (B — hZ%) + 2w, (4.56)

has to be encountered several times. On the left-hand side, the matter profile depends on the distance r
and is determined by the model used. On the right-hand side, the self-interaction term depends on the
geometrical factors (C.1r)-(C.14) (Appendix C), the conversion probabilities and the neutrino fluxes. Note
that for antineutrinos, the vacuum term has an opposite sign, making the value of the electron density at
the resonance location slightly smaller than the one for neutrinos. In Eq. (4.56) the difference between the

diagonal elements of the self-interaction Hamiltonian can be rewritten as®

B — BT = \/aG / A {(2Po s — 1) (Cour — Coin)
0

- (273176%176 - 1) (Gﬂejf/e - Guzjuz)}- (4-57)

where trace conservation has been used. Figure 4.12 presents an enlarged region of the matter potential as well

as the oscillated self-interaction term hf;, — hZ? for neutrinos and antineutrinos. This is a typical example

®Note that, in this section, the dependence on time and energy of the various quantities is not explicitly shown for readability.
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of the situations encountered in simulations. One can see that the resonance condition is multiply crossed,

which is a characteristics of a nonlinear feedback.
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Figure 4.12: Matter profile AY for model A (solid line), and the right-hand side of Eq. (4.56) for neutrinos (dashed line) and antineutrinos
(dotted line). The pentagons show the multiple crossing where NMR resonance condition Eq. (4.56) is fulfilled.

Let us assume that the resonance condition (4.56) is reached for neutrinos at time ¢, and estimate if it
would be possible to encounter it at time ¢ + At. By assuming that the resonance triggers a small conversion

of neutrinos, during the time lapse ¢ — ¢ + At, the electron neutrino survival probability becomes
/PVE_>V€ — PV5_>V5 - AP? (4'58>

with AP > (07, while the matter term in (4.56) gets

Y.
Y, = \Y, + %At. (4.59)

On the other hand, the corresponding variation of the self-interaction term in Eq.(4.56) includes two con-

tributions

1 1
hee — hrT)
\/§GF ( vy 1/1/) \/§GF

(hye, = hiy)
i / ApAP (Go . — o)
0

+ At /0 O:ip [(QP,WVE -1) (Gy — G]) — (2Ppss. — 1) (G o — Gj)} . (4.60)

The second term, arising from AP, is negative because G, j,, > G, ju,. As for the third term, in the case

of the MNR, (2P, ., — 1) < (2P 5. — 1) and as it can be observed from Figures 4.2-4.3, ’G.f,ejpe —

7We assume that the amplitude of the oscillations of the probabilities are small compared to the conversions triggered by the
resonance, hence the sign of AP. Note that antineutrinos are not converted since we consider the MNR and not the sMNR.
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G,,I Jua| > |G'Z,E Jve — Gu,Ju, |- Hence, the third term has a positive sign since it is dominated by antineutri-
nos and the derivatives of the geometric coefhicients are always negative.

To fulfill condition (4.56) again at time ¢ + At, we need to have a matching between the variation of
the self-interaction contribution and the slope of the matter potential. This matching requires the flavor
conversions and the decrease of the geometric factors to compensate. For example, for an increasing matter
profile, we find that the flavor conversion must have a bigger weight than the decrease of the geometric factor
in order to have multiple crossings due to nonlinear feedback. Let us emphasize that the oscillations of the
self-interaction term, on the right-hand side of Eq. (4.56), around the matter potential, are possible because
these two contributions have opposite signs; hence, they create a yo-yo effect (see Fig. 4.12)%.

Interestingly we have observed that imposing the nontrace part of A7 to be zero does not prevent the
nonlinear feedback to happen. Indeed, the same analysis can be repeated and shows that nonlinear feedback

is still possible.

4.4.2  NONLINEAR FEEDBACK IN A ONE-FLAVOR MODEL

Having discussed under which conditions the nonlinearity of the equations enables multiple resonances for
the MNR, we perform a similar analysis for helicity coherence effects within the model of Ref. [13]. In fact,
it is found that a cancellation between the matter and the self-interaction terms occurs over long distances,
and a nonlinear feedback mechanism produces significant flavor change (depending on the parameters of
the model). Such a model considers only one neutrino flavor and the associated antineutrino, propagating
in a matter background of electrons, (anti)neutrinos, and neutrons. Neutrinos traveling along the symmetry
axis of a cone interact with those emitted with a fixed angle 6 = 45°.

With these assumptions, the generalized Hamiltonian is

V2G pnpY, + he, e
hg(t) = 7 (4.61)
m (hkee)! V2Grng (1 — 2Y,) — hee

where h%® = 2v/2G (1 —u) (n, — ny), u = cos(f), with the (anti)neutrino number density n,, (n;)

and

ny —nyg = /dp ¢ (p> Pee (7“, p) = /dp ¢ (p> ’Pueﬁ\l/e (7“, p) 5 (4-62'>

¢ being a function that includes the Fermi-Dirac distributions and other numerical factors (which are not

3Had they had the same sign, more peculiar conditions would have been needed to get several crossings.



relevant here). The oft-diagonal term in Eq. (4.61) is

hibee = 9V2G V1 — u? (ny, — ny) . (4.63)

With this generalized Hamiltonian, the helicity coherence resonance condition becomes
V2Gpng (3Y, — 1) + 21 ~ 0, (4.64)

and is satisfied if a cancellation between the matter and the self-interaction terms takes place. The Y, value
at resonance can be written as
4 n, — Ny

Yo~ % —5 (- T (4.65)
In [13], it is argued that the neutrino contribution being relatively small, this resonance is located around
Y0 = % In the model, np is taken to be a constant while Y is increasing according to the profile Y, =
YO+ % (1 + :—2) , where A and k are two parameters that are allowed to vary.

Let us perform the same analysis as for the MNR, and suppose that the resonance condition (4.65) has
been fulfilled at time ¢, and has triggered a small neutrino conversion P, —,,,, — P, — AP. Note that,
here, AP is due to a conversion of neutrinos into antineutrinos and vice versa. Then, the lepton number

density (4.62) decreases

Ny, =Ny =Ny, — Ny — An,_p, (4.66)

where An,_, = [dp ¢ (p) AP.

Therefore the Y, value at resonance increases according to

4 A v—u
Y'eres N Y'eres S (1 o u) n )

6
3 . (4.67)

Since the chosen Y, profile increases, it is possible to encounter the resonance more than once. However, as
in the case of the MNR, one needs the matching between the slope of Y, and the conversion AP of neutrinos
into antineutrinos on a short timescale, which is expected to be small. Therefore, this analysis indicates that,

provided that Y, increases very slowly, the resonance condition can be fulfilled several times®.

4.4.3 NONLINEAR FEEDBACK AND HELICITY COHERENCE

Let us now explore the possibility of having a nonlinear feedback for the helicity coherence resonance. We

study here the resonance condition (4.47), though the discussion can be easily extended to the three other

“Note that, since here there are no variations due to geometry, the small oscillations of the survival probabilities are sensible,
and lead oscillations of Y* (see Figure 3 of Ref. [136]).
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resonance conditions (4.48), (4.50) and (4.49). The resonance condition (4.47) is fulfilled for

2
np(3Ye —1) ~ BT o (4.68)
F

In most cases we have studied, the electron-antineutrino contribution dominates along the trajectories, hence
hgs, < 0, making resonance condition fulfilled for Y, > % The self-interaction term (4.37) can be written

as

1 oo
hl‘ile/: d PV& Ve_l_]' GVe ‘Ve
Sl = [ AP + )G

— (Po.sw. +1) Gy, .

+ (Puwﬁue - Pﬁxﬁﬁe) nyjyz] . (469)

We consider the case of Model B where the MNR resonance condition is not met while the helicity coherence

one is. In this case, P,

T

—wv. and Py, 5, are frozen and equal to zero, while the variations of P, _,,, and
Py, are both equal to AP.

Let us suppose that the resonant condition (4.68) is fulfilled at time ¢ and has triggered conversion of
neutrinos into antineutrinos. By using Eq. (4.58) and a similar relation for antineutrinos, the self-interaction

term varies as ™

1 o0
hee - 2 hee / AP (G v, — oo,
V2Gr 0 ( )

—I— At/ dp |:(731/5—>Ue + 1) Gyej’/e
0

1
V2Gr

— (Poosp. +1) Gﬁejfze} : (4.70)

The contribution due to AP is positive when antineutrinos dominate the emissions at the neutrinosphere,
while the one from the gradient of the geometrical factors is also positive in BNS merger environments. This
gives an overall positive sign. If the matter potential gradient is positive, the matching condition becomes
impossible. On the other hand, if the matter gradient is negative, peculiar conditions would be necessary to
produce oscillations (which is characteristic of a nonlinear feedback mechanism) of £, around the matter
term v/ 2G rng (3Y, — 1) (similarly to Fig. 4.12 for the MNR).

It can be noticed that even if we had an electron-neutrino-dominated environment such as core-collapse

supernovae, in which the fulfillment of the resonance condition (4.68) would require Y, < %, the two con-

*°As for the MNR, we suppose that the small oscillations in the survival probabilities are negligible in comparison with the
variations of the geometric coefficients.
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tributions to the variation of Ay, would still have the same sign®, making it difficult to establish a nonlinear
feedback mechanism. A different geometry with softer geometric factors might make the matching of the
two terms in the helicity resonance condition easier to meet.

Let us conclude that for such a resonance, a nonlinear feedback would enable to increase greatly the adi-
abaticity. Indeed, using the expression of the adiabaticity parameter 7,, introduced in (D.s), we find that
without a matching of the derivatives of hg 11 and hg 33, YV, is proportional to (%)2. For a typical value of

m ~ 107" — 1078, we see that this adiabaticity parameter is extremely small. A nonlinear feedback would

q
enable the matching of the derivative, and increase ,, up to v,,, = (’)(%).

4.5 CONCLUSIONS

We have explored the impact of mass contributions on neutrino flavor evolution in astrophysical environ-
ments. These nonrelativistic corrections appear in extended mean-field descriptions of neutrino propaga-
tion. We have discussed conditions for the resonances associated with such mass terms and pointed out that,
in particular, they require the matter potential to be larger than the neutrino self-interaction potentials.

We have presented the first study of mass effects in a binary neutron star merger environment. In par-
ticular, we have built a two-flavor model based on two-dimensional BNS merger simulations. We have
presented numerical results on the neutrino probabilities and adiabaticity during flavor evolution for the
following three model cases where resonance conditions are fulfilled: A) MNR, B) helicity coherence, and
C) MNR and helicity coherence. These are representative of the ensemble of results we have obtained. An
important result is that resonance conditions can be met in simulations of astrophysical environments such
as BNS mergers. However, adiabaticity is not sufficient to produce efficient flavor conversion due to helicity
coherence.

It has to be noted that our model is based on the ansatz that, in the self-interaction Hamiltonian, the
flavor evolution of the neutrino modes behaves the same as the test neutrino. This approximation gives more
weight to the geometrical factor present in the helicity coherence term. Therefore, one cannot exclude the
possibility that the implementation of the full geometrical dependence of the density matrix mightintroduce
some differences with respect to our findings. It is likely, however, that the induced decoherence among the
neutrino modes might also not be in favor of adiabaticity.

Some general conclusions can be drawn from the present investigation regarding mass effects. First of
all, resonance conditions for helicity coherence can be met in realistic astrophysical scenarios. On the other
hand, the factor m/q suppresses the mass terms values by 10~7 — 1078, if one considers a typical neutrino

energy and 0.1 €V as an upper limit on the absolute neutrino mass. However, their role could be magnified

"Unless there are very specific flavor conversions beforehand.
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by a nonlinear feedback mechanism. We have investigated why multiple crossings (which are characteristic
of such a feedback) are absent in our study. To this aim, two cases have been considered where nonlinear
feedback is operative: the neutrino-matter resonances and the model of Ref. [13]. In fact, in the case of
the MNR, there is a matching between the derivative of the matter potential and the variations of the self-
interaction contribution. Such a matching is possible if the variation arising from the flavor contribution
and the one arising from the decrease of the geometric factors have the proper weights in order to enable the
difference of the self-interaction terms to follow the matter term.

In the model of Ref. [13] the signs of the variations on short time scales still allow for multiple resonances.
Because the adiabaticity is governed by the derivative of the matter term, this matching produces sufficiently
adiabatic evolution and a nonlinear feedback. This is in agreement with the results of Ref. [13], where it was
shown that, for a given value of the mass m, A has to be chosen large enough so that the nonlinear mechanism
can take place. Note that there the nonlinear adjustment does not involve geometrical factors.

Our analysis reveals that the MNR and helicity coherence resonances are essentially of the same nature.
Indeed, they both come from the cancellation of a matter term and a self-interaction term. Moreover, the
conditions required to trigger a nonlinear feedback phenomenon are very similar, though the weighting of
the different terms differs.

For the case of helicity coherence we have argued that the peculiar conditions for multiple crossings of
the resonance condition are difficult to meet because of the strong r dependence of the geometrical factors,
the 7, over v, dominance in BNS mergers, and the derivative of the matter potentials. However, our find-
ings also show that —even in a core-collapse environment where Y, < 1/3 —it would still be difficult to
have multiple resonances under normal conditions. Softer geometric coefficients (found in different envi-
ronments) could make it easier to achieve this matching. Therefore, based on our results, we can state that
the findings of Refs. [13] and [140] are due to peculiar chosen mater profiles which are unlikely to be found
in general conditions.

In conclusion, the results obtained in the presented work confirm that the mean-field equations usually
employed are on a safe ground as far as flavor evolution is concerned and that helicity coherence is unlikely

to produce significant flavor changes in realistic astrophysical environments.
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The main goal of the second project of the thesis is to explore the role of nonstandard neutrino- matter
interactions on the neutrino evolution in accretion disks around binary neutron star merger remnants. The
study is based on the detailed simulation of [126] for the astrophysical setting. We employ the usual mean-

field equations for density matrices for this investigation.
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5.1 INTRODUCTION

The presence of nonstandard interactions can alter flavor conversion. Limits on nonstandard neutrino self-
interactions are rather loose [141], whereas scattering and oscillation experiments give tight bounds on non-
standard neutrino-matter interactions (NSI) [142, 143, 144]. The first measurement of neutrino-nucleus
coherent scattering provides interesting NSI constraints [145]. The existence of NSI would modify the in-
terpretation of oscillation experiments in particular for the inferred values of the squared-masses and the
mixings, and could provide with an explanation of observed anomalies.

Within a supernova core, flavor changing neutral current interactions would impact the scattering rates
and the electron fraction, altering the infall [146]. Nonstandard four-fermion neutrino self-interactions
might produce flavor equilibration both in normal and inverted mass ordering [147] or could modify the
neutronization burst signal of a supernova explosion [148]. Novel interactions can also produce resonant
conversion near the neutrinosphere and influence the r process in supernovae [149]. In particular, the Inner
(I) resonance —a Mikheev Smirnov Wolfenstein (MSW)-like resonance [8, 37]— can take place due to the
cancellation between the matter and the NSI contributions to the neutrino Hamiltonian [14]. Refs. [15, 16]
have pointed out that the I location appears to be little affected by neutrino self-interactions. Moreover,
Ref. [16] has shown that NSI contributions can provide with the necessary cancellation for the occurrence
of MNR in supernovae.

In the second project, we investigate nonstandard interactions in BNS remnants and focus on the NSI
impact on flavor evolution. We shed a new light on the I resonance mechanism and show that the neutrino
self-interactions can produce I resonances as synchronized MSW eftects. Moreover, we present how NSI
can modify both location and adiabaticity of the MNRs. Our calculations are based on the matter density
profiles and electron fractions taken from detailed astrophysical simulations of BNS remnants [126]. We
discuss the effects of nonstandard interactions on the electron fraction Y;, a key parameter for r process
nucleosynthesis in neutrino-driven winds, in the light of the study of Ref. [93].

The chapter is structured as follows. Section s.2 presents the model with NSI. Numerical results on the
flavor evolution for different sets of NSI parameters are given in Section s.3. The NSI effects on the I and

MNR resonances are discussed. Section 5.4 is a conclusion.
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5.2 THE MODEL

S.2.I NEUTRINO EVOLUTION EQUATIONS IN PRESENCE OF NONSTANDARD INTERACTIONS

We remind that the evolution of a system of neutrinos and antineutrinos in an astrophysical environment is

governed by the Liouville-Von Neumann equations

ip(t. ) =[h(t.d).pt. ), ip(t.q)=[h(t.]).p(t ], (1)

where p (t, ¢) (2.101) and p (¢, §) (2.102) are single-particle density matrices, and & (¢, @) = I'"” (¢, §) (2.103)
and h (t,q) = T (t,q) (2.104) mean-field Hamiltonians for neutrinos and antineutrinos respectively.
Since neutrinos propagate through an astrophysical background, the mean-field Hamiltonians include the
neutrino charged- and neutral-current interactions with the particles composing the medium, usually elec-

trons, protons, and neutrons, as we will be considering in the present work. Therefore / is given by
h = hO + hmat + huuy (5'2')

where the first term corresponds to the vacuum Hamiltonian, the second to the neutrino standard and non-
standard interactions with matter and the last one to neutrino self-interactions. The same expression holds

for h with 2 minus sign for the 1y contribution. In the flavor basis, the vacuum term reads
hO = Uh'vacUTa (53)

with hyae = diag(E;), Ei—y, N, being the eigenenergies of the propagation eigenstates with Ny the number
of neutrino flavors. The quantity U is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Ny x Ny unitary
matrix relating the mass to the flavor basis [s].

As for the matter term, it comprises the standard contribution from neutrino-electron charged currents'

and a nonstandard term related to neutrino-matter interactions

hmat = hcc + hust, (5.4)

where hee = diag(Vee, 0) and Voo = V2G ppe, with G the Fermi coupling constant and p. the net elec-

tron number density. Note that here anisotropic contributions to the matter Hamiltonian are notincluded®.

"We note that the standard neutrino-matter neutral current contributions are not included since they are proportional to the
identity matrix and therefore do not produce flavor modifications.

*Such contributions are e.g. implemented in Ref. [17]. Also, trace terms can be subtracted from the Hamiltonian whereas
this is not possible in presence of helicity coherence [17].
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The nonstandard interaction Hamiltonian is
hast = V2Gr Z nf€f7 (s5)
f

where a sum over the electron, down and up quark? number densities is performed (f = e, d,u). The
€ matrices correspond to the nonstandard interactions couplings, constrained by several observations [142,

143, 144, 145]. In the case of three neutrino flavors, these are [143]

| €ee | < 2.5 e |< 021 | €er | < 1.7
| €y | < 0.046 e |< 021 |, (5.6)
| €, | < 9.0

if matter is composed only of protons and electrons (solarlike). One can see that the bounds on the NSI
parameters are rather loose, with the exception of €,,,.

The third contribution in Eq.(5.2) corresponds to the neutrino self-interaction Hamiltonian
huy = V2GE Y / (1= G- ) [dnu,pu (§) — dni, P, ()] (57)

where the quantity dn,,(dng, ) denotes the differential number density of neutrinos (antineutrinos), the

underline refers to the neutrinos initially born with o flavor at the neutrinosphere.

§.2.2 TWO-NEUTRINO FLAVOR EVOLUTION IN BINARY NEUTRON STAR MERGERS

We employ the theoretical framework of two-neutrino flavors and stationary evolution*. In the flavor basis
the neutrino density matrix reads
)= Pie Pex ’ (5.8)
Pex Pz
and similarly for p. The vacuum Hamiltonian Eq. (s.3) involves the PMNS matrix that for three flavors
depends on three measured mixing angles and three unknown C' P-violating phases (one Dirac- and two

Majorana-type) [s]. In two flavors, these fundamental parameters reduce to one mixing angle 6 (one phase

as well in the case of Majorana neutrinos). Therefore the vacuum contribution becomes

hO =w ) (59)

*The heavy quark content of the nucleon is neglected.
*From now on, only the radial dependence of all quantities is retained and not explicitly shown to simplify notations.
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Figure 5.1: Schematic view of our model. Neutrinos start free streaming at the neutrinospheres, shown as a solid blue (respectively
dashed and dotted) line for v/, (respectively I, and 1/;;). The trajectory of a test neutrino v/, is labeled by the coordinates of its emission
point (xo, zo), and the angle 0q between the direction of its momentum § and the 2 axis. The test neutrino propagates in a background of
matter and (anti)neutrinos v/, of momentum p.

2 . .
%, Am? = m2 — m? with my, my the mass values of the mass eigenstates and &/ = ¢ the

with w =
neutrino energy, Sop = sin 260 and cyp = cos 26.

For the standard matter Hamiltonian in Eq.(5.4) we write
Voo = AYe, (5.10)

where A = v/2Grnp, with ng the baryon number density and Y. = p./(n + p) the electron fraction,
with 7 and p the neutron and proton number densities, respectively. As in Refs.[8s, 86, 17] our investiga-
tion is anchored to the detailed simulations in which the BNS merger remnant is a central object, lasts up
to 200 ms and has about a 30 km radius. We take information on the baryon number densities and elec-
tron fraction from cylindrical averages of detailed three-dimensional Newtonian simulations [126]. In our
two-dimensional model neutrino propagate with an azimuthal symmetry axis from point (o, 2o), at the
neutrinosphere following a straight line trajectory characterized by a radial r and an angular 6, variables
(Fig. s5.1). Note that we approximate the neutrinospheres as infinitely thin disks of radii R, that are flavor
dependent, as done in Refs.[82, 84, 85, 86, 17].

In two flavors, by retaining only the nonstandard contribution Egs. (s.5-5.6) with loosest constraints, we

get for the € matrix

| €ee | < 2.5 |€er | < 1.7

(5.11)

| €0 ] < 9.0

We rewrite the NSI potential Eq. (s.5) in terms of the fermion fraction Y. In fact, using the charge neutrality
of the medium, we get the relation

Yy = —f, (5.12)
which for up and down quarks can be rewritten as Yy = 2 — Y, and Y,, = 1 + Y,. The NSI contribution is
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then

hnst = V2Gpnp [Yee® + (14 Yo)e" + (2 — Yo )e] . (5.13)

Finally we follow Ref. [16] and impose the requirement that, at the MSW resonance in the Sun, with an
electron fraction Yo =~ 0.7, the NSI contribution should vanish as no effect has been observed (see also
[150]), namely

Yo 0€€ + (14 Y,)0e" 4 (2 — Yy )de? = 0, (5.14)

with de/ = €/, — €/ . This equation gives a relation between d¢° as a function of d¢*, de?. The off-diagonal

¢ e €% arefixed at the same value €y. As a result, the NSI Hamiltonian only depends on two

exr’) ~exr) “ex

couplings €

NSI parameters, the diagonal one d€™ and the off-diagonal ¢,

(X2=)5en (3 + YVo)eo
hnst = A e ) (s.15)
B+Yo)es, o
with the constraints [0€”| < O (10) and |eg| < O (1). For the neutrino self-interaction Hamiltonian

Eq.(s.7) we assume, as done in previous works [82, 84, 85, 86, 17], that

pu(rvﬁ) - pl,(T, p)7 (5.16)

namely that the angular dependence of the neutrino density matrix is not retained. As a consequence, the
neutrinos that are coupled by the self-interaction term have the same flavor history as the test neutrino. We
assume in our calculations that neutrinos are emitted as Fermi-Dirac distributions f,,, with luminosities L,
and average energies (£, ) at the neutrinosphere with neutrinosphere radii R,,, (Table 3.1). Concerning the
neutrino luminosities and average energies, these are stable for long times (see Ref. [126]). By using Egs.(s.7)
and (5.16), the neutrino self-interaction term is given by Eq. (3.21). The unoscillated neutrino potential is

given by Eq. 3.23.

53 IMPACT OF NONSTANDARD INTERACTIONS ON NEUTRINO FLAVOR EVOLUTION

In order to investigate the role of NSI on the flavor evolution we have performed simulations by varying €
and 0€" within the range given by relations (s5.11). We have explored a large set of trajectories with different
emission points (%o, 29) and angles 8, (Fig. s.1)*. By analyzing the neutrino flavor evolution behaviors along
numerous trajectories we have identified different regimes depending on the NSI parameters. Here we take

some trajectories as typical examples to illustrate the flavor mechanisms and their interplay we have observed

SHere also ¢ is set to zero.
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over the full set. As for the oscillation parameters we fix Am? = 2.43 x 103 V2 and sin” 26 = 0.087 [ss]
for the normal mass ordering, and Am? = —2.38 x 1073 éV? and sin? 20 = 0.092 for the inverted mass
ordering. We discuss the dependence of the results both on the normal and on the inverted mass ordering
since the neutrino mass ordering has not been determined yet.

In this section, we show examples with NSI parameters 0™ € [—0.9, —0.7]. These are the parameters for
which we observed the presence of the I resonance in most of the trajectories explored that were relevant for
nucleosynthesis [93]. Negative values of d¢™ with a greater absolute value lead to the disappearance of the I
resonances, as the matter potential Vj (5.17) would always be negative on the region of space studied, and
would also make the MNR further away. Negative values of d¢" with a smaller absolute value would still
present I resonances, but in a different region of space, and would also shift the MNRGs. It is worth noting
that positive values of d¢™ have also been considered as they can shift the MNR closer to the neutrinosphere.

As for the value of €;, we have restricted ourselves to values smaller than 1073, Indeed, values larger
than that create oscillation patterns analogous to vacuum oscillations but driven by the large matter off-
diagonal element. These oscillations have a very short wavelength —shorter than a kilometer— and can
start as soon as the neutrino propagation begins. Given that, in our calculations, we assume that neutrinos
are free streaming, our results are reliable only if flavor conversions happen well outside the neutrinospheres,
and therefore using larger values of €y would give unphysical results. These oscillations appearing because
of alarger € also have a large amplitude, making the behavior difficult to analyze. For all these reasons, we

chose to work with a value of € well below the current experimental constraints.

5.31 NEW CONDITIONS FOR THE | RESONANCE

The presence of NSI produces a new MSW-like resonance, called the I resonance [14]. Refs.[14, 15, 16] have
shown that its occurrence is due to the matter terms only. In the present work we will be discussing two
situations in which the I resonance occurs: 7) the self-interaction is subdominant, in accord with [14, 15, 16];
it) the neutrino self-interaction dominates and leads to a I resonance as a synchronized MSW mechanism.
We explore this scenario using the SU (2) spin formalism.

We would like to emphasize that the results presented in this section are independent of the approximation
(3.20) that is employed here. Indeed, the occurrence of the I resonance, synchronized or not, only depends
on the matter profile and on the unoscillated neutrino potentials, which are both independent of multiangle

effects. Therefore, the results we present here will remain unaffected in a full multiangle calculation.
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Figure 5.2: Left panel: Difference of the diagonal elements of the total neutrino Hamiltonian (solid line), matter potential Vs (dashed line)
Eq.(5.17) in presence of NSI contributions with 6¢* = —0.7 and ey = 1 x 10~* and self-interaction oscillated potential (dotted line), as
afunction of distance from the emission point. The initial parameters are tg = —30km, 29 = 20km,and 6, = 55°. Middle and right

panels: Survival probabilities for neutrinos (middle) and antineutrinos (right). Different energies corresponding to different colors as well
as the averaged probability (dotted line) are indistinguishable. The results are obtained by using baryon densities and electron fraction
from the detailed simulations [126].

I RESONANCE WITH NEGLIGIBLE SELF-INTERACTION

The I resonance occurs when the difference between the diagonal elements of the total Hamiltonian goes to
zero, requiring for the total matter potential to meet the condition

Yo — Y.

=\|Y.
Var [+ -

56”] ~ 2wegg — (WY — hYY) . (5.17)

References [14, 15, 16 ] have pointed out that the presence of vv self-interactions have negligible effects on the
location and adiabaticity of the I resonance, thus making it occur when the matter potential Eq.(s.17) is very
small.

First, we consider here a case in which the self-interaction potential is subdominant compared to the mat-
ter one. In such cases, the location of the I resonance coincides with the point where the matter potential
Vinat becomes very small, which is possible in the presence of NSI because of a cancellation between the stan-
dard matter term and the nonstandard contribution. Figure 5.2 (left panel) presents the difference of the
diagonal elements, the total matter potential with de” = —0.88 and g = 1 x 10~ and the oscillated self-
interaction potential. Condition (5.17) can be satisfied for both neutrinos and antineutrinos simultaneously
and is very little dependent on the neutrino energy. Depending on the value of the diagonal NSI parameter
d€", the I resonance can arise extremely close to the neutrinosphere, as already pointed out in the literature.
In this example, it occurs at 1 km from it.

The survival probabilities for neutrinos and antineutrinos as well as the average one are shown in Fig. 5.2
for different neutrino energies (middle and right panels). Given a specific matter profile, the resonance lo-
cation only depends on the value of the diagonal NSI parameter, d€”, whereas the value of €y impacts the
adiabaticity. For the case shown, the I resonance is adiabatic and induces significant conversion for both neu-

trinos and antineutrinos. It is worth noting that even in the presence of a small €j parameter, the flavor con-
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Figure 5.3: Left panel: Matter potential V3 (solid line) Eq.(5.17) in presence of NSI contributions §¢” = —0.88 and ey = 1 x 10~ and

self-interaction unoscillated potential Eq.(3.23) (dotted line), as a function of distance from the emission point. The initial parameters are
29 = 15km, 29 = 32km,and §, = 15°. Middle and right panels: Survival probabilities for neutrinos (middle) and antineutrinos (right).
Different energies corresponding to different colors as well as the averaged probability (dotted line) are indistinguishable.

version behaviors stay independent of the energy. This is due to the fact that the off-diagonal self-interaction
contribution to the Hamiltonian is, at the considered location, much larger than the vacuum one, therefore

suppressing the energy dependence.

I RESONANCE AS A SYNCHRONIZED MSW

While exploring the parameter space and different trajectories for the neutrino propagation, we have encoun-
tered situations where, although the self-interaction unoscillated potential is several orders of magnitude
larger than the matter potential, an I resonance takes place and leads to significant flavor conversions. Figure
5.3 shows a typical example of this situation with the NSI parameters de” = —0.88 and ¢g = 1 x 107
One can see that although the unoscillated self-interaction potential 1 (3.23) dominates the matter one A
(5.10), flavor conversions occur at the same location where the I resonance condition is fulfilled. Note that
the difference between the self-interaction oscillated diagonal elements do cancel at the same point. We will

be unraveling this effect in the light of synchronized flavor conversions.

SPIN DESCRIPTION In order to describe this phenomenon, we use the SU (2) isospin formalism in flavor
space. The effective isospin vector P, (7, ¢) denoting a neutrino of initial flavor v is related to the neutrino

density matrix according to

Pv (T59) = % (I] +7- P’Vg (r, q)> , (5.18)

and similarly for antineutrinos, where [ is the 2 x 2 identity matrixand & = (0, 0, 0,) is a vector in flavor
space whose components are the Pauli 0 matrices. In this theoretical framework, the Liouville-Von Neu-
mann equations are replaced by precession equations for ﬁ,,g (7, q) with an effective magnetic field defined
as

h(r,q) = (u - Br q)> . (5.19)
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and receiving three contributions

— — — —

B (Ta C]) = Bl <Q> + Binar (T) + Buy (7’) ) (5.20)

Note that the expressions for Pl—,g and B are analogous to Eqs.(s.18) and (5.20) respectively. In the antineu-

trino case, the vacuum contribution in Eq.(s.20) has a minus sign. The vacuum term is given by

526
ém = 2w§0 = 2w 0 (5.21)

—C29,

while the matter term includes the standard and nonstandard contributions

0 2 (3 + Yve) RGEO
Baw =AY |0 + | -2 (3+Y,) Imeg (5.22)
1 b (1522)

The third term in Eq.(5.20) comes from the self-interaction term of the neutrino Hamiltonian

B,, =V2Gr Y /0 oodp (Guajya (p) oo (9) — Grniinn (b) P (p)) , (5-23)

a=e,r

- Lug fu - . . .
where j,, (p) = #&(ﬁ and similarly for antineutrinos. Note that the explicit 7 dependences are not

shown for readability.

In order to describe the collective neutrino mode associated to the I resonance, we introduce the .J vector

T= % [ 0 (a9 Pt ) = Gosin, ) P () (524

a=e,r

We emphasize that, in a BNS merger scenario, one needs to include the geometrical factors in the definition
of the collective vector, contrary to what is usually done in the bulb model for supernovae (single-angle
approximation), as e.g. in [151]. The reason is that here the geometrical factors differ for different flavors
even when one employs the ansarz given by Eq.(s.16). With definition (5.24) one can write the neutrino

self-interaction term proportional to a unique vector .J, namely
Bias = \/§GFJ- (5.25)

The evolution equation for J can be derived from the ones of 15),,g (and :—g) and using the explicit expres-
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sions of B (é) One finds

2

OyJ = B X J + By X Z/ dp

a=e,xr

=3 [ a0 (0.6 0) P ) = G, ) P () - (529

a=e,r

o (Gradve (9) P ) + Govna () Pr (9))

Let us assume now that, during the evolution, the modes all start along the z axis, i.e. P, (r,p) ~
P, (0,p) J, and stay aligned with the collective mode J (similarly for antineutrinos). If neutrinos and
antineutrinos of any momentum stay synchronized in flavor space during the propagation, the evolution

equation for J becomes

O,J % B x J + By x J /U AQZL [Gudve (p) + Gl () = 2G v, (P)] + ] \/%SF , (527)

where 1 is the unoscillated neutrino self-interaction potential (3.23). While the first two terms are ordinary
oscillation terms, the last one is a damping term, taking into account that the norm of this collective mode
decreases with time. This is due to the fact that the geometry of the problem is included in the definition
of .J. Note that such a decrease should not be interpreted as lepton number conservation violation, butas a
neutrino density decrease along a given trajectory, due to the geometry. Let us characterize this decrease by

multiplying the evolution equation (5.27) by J

T 0.0 = M \/_GF (5.28)

J (r)| =~ ;G Plugging this expression into Eq. (5.27), one finds

which gives

Oyl
8J ByxJ+J .
J \/_GF (52‘9)

The effective magnetic field associated with the collective mode J is By = Wyyne Bo+ Buma which components

are
2X (34 Y.) Reeg + wynes20

By = —2)\ (3 +Y,) Ime . (5:30)

—WsyncC26 + VM

The synchronized frequency wen. is J precession frequency

[Gusjue (p) + Goo. () — 2Gy, ju, (P)]- (5:31)

wsync

0

Iz 2p
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Figure 5.4: Contributions to the 2 component of the effective magnetic field §J. The solid line represents wsynC2g, While the dashed line
shows the matter potential V. It can be seen that when Vs cancels, due to the presence of NSI, the synchronized resonance condition
(5.33) is met. The NSl and trajectory parameters used here are the same as the ones used in Fig. 5.3.

Assuming the fluxes follow Fermi-Dirac distributions, the integral above can be computed, and wy. can be
expressed as
V2GrAm2Fy (0) F5(0) | L, Gy, Ly, Gy, L,,G,,

Wsyne = + - ) 32
’ 203 (0) R} (E.)  R:(Bn) R (E,) 53

RESONANCE CONDITION Inaddition to a precession motion, the collective mode .J can also meeta MSW-

like resonance condition B 5, ~ 0, which requires

Wyne (1) C29 = Var (11) (5-33)

where r is the resonance location. From (5.32), it can be seen that Wy, o i: in situations where the neutrino
background dominates, the lhs of (5.33) is often several orders of magnitude smaller than the rhs. However,
in cases where the total matter potential Vj; goes to zero, this resonance condition can be met. The reversed
situation, in which the resonance condition is met because 11 goes to zero, has been already pointed out in
[86].

Figure 5.4 shows the rhs and the lhs of (5.33) corresponding to the case of Figure 5.3. One can see that
the synchronized MSW resonance condition given by Eq.(s.33) is met almost at the location where V3, goes
to zero, i.e. at the location of the I resonance, as can be seen from the conversion probabilities. Another
example of synchronized I resonance is shown in Fig. 5.5 with the neutrino self-interaction dominating over

the matter potential. Significant conversion can be seen at 29 km, 40 km, 65 km and 78 km.
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Figure 5.5: Left panel: Difference of the diagonal elements of the total neutrino Hamiltonian (solid line), matter potential Vs (dashed line)
Eq.(5.17) in presence of NSI contributions with ¢ = —0.90andeg = 1 X 1073 and self-interaction oscillated potential (dotted line),
as a function of distance from the emission point. The initial parameters are xg = —35km, zg = 25km,and ;, = 50°. Middle and

right panels: Survival probabilities for neutrinos (middle) and antineutrinos (right). Different energies corresponding to different colors
as well as the averaged probability (dotted line) are indistinguishable. Several synchronized | resonances are present in this case, at 29 km,
40 km, 65 km and 78 km.
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Figure 5.6: Left panel: Difference of the diagonal elements of the total neutrino Hamiltonian, as a function of distance from the emission
point. The initial parametersare xyg = 15km, zg = 32kmand 6, = 15°. Middle and right panels: Averaged survival probabilities
for neutrinos (middle) and antineutrinos (right). The NSl parameters are setto de”™ = —0.88andeg = 1 X 104 (solid lines) and
€0 = 1 x 1077 (dotted lines).

ADIABATICITY AND INFLUENCE OF € In order to characterize further flavor conversion at the I reso-

nance, we can define an adiabaticity parameter as

|B,[?

= — (5:34)
1482 % B, |

r=ry
From (5.33), it can be seen that the value of €y has no influence on the resonance location whereas it influences
the adiabaticity of the transformation.

Figure 5.6 shows an example of the influence of € on the adiabaticity. Going from ¢y = 1074 to 1072,
the oscillation probabilities for neutrinos and antineutrinos go from complete flavor conversion from v, to
v, to no conversion. The adiabaticity parameter Eq.(5.34) corresponding to this case is presented in Fig. 5.7.
It can be seen that, at the location of the resonance, the adiabaticity parameter in the case of g = 1 X 107°
is two orders of magnitude smaller than the one foreg = 1 x 1074, consistent with the behaviors observed
for the survival probabilities. Note that the cancellation of the adiabaticity parameter around the resonance
in the case of eg = 1 x 107° comes from the fact that for this value of €y, the matter contribution and the

Wsyne contribution in B, (5.30) are of the same order of magnitude and of opposite signs, making B ; ,, very
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Figure 5.8: Left panel: Difference of the diagonal elements of the total neutrino Hamiltonian, as a function of distance from the emission
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small. Therefore, at the resonance, as B, tendsto o,y — becomes much smaller at the same time.

EFFECT OF THE NEUTRINO MASS ORDERING  The sign of wiy,. changes when going from normal to in-
verted mass ordering. However, due to the fact that the resonance location almost coincides with the loca-
tion at which V) changes its sign, the mass ordering will have little impact on it. In our calculations, we
have found modifications of the resonance location smaller than 1 km between normal and inverted mass
ordering. As for the adiabaticity parameter (5.34), it also depends on wyy. and its derivative. Figure 5.8 shows
the effect of neutrino mass ordering on the adiabaticity of flavor evolution for a case with 6¢” = —0.90 and

€0 = 1 x 107* where the I resonance is located very close the neutrinosphere, at 5 km.

5.3.2 NSI, THE MNR AND THE ] RESONANCE

The occurrence of the MNR in BNS might impact 7 process nucleosynthesis in neutrino-driven winds. As
discussed previously, the MNR phenomenon is due to a cancellation between the standard matter term

Eq.(s.10) and the neutrino self-interaction Eq.(3.21). This occurs because of the excess of the antineutrino
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Name Condition
MNR (neutrino sector) Nee — gz >~ 0
MNR (antineutrino sector)  hee — gy =~
I resonance

(negligible self-interaction) Vi =~ 2wegg

Synchronized I resonance Vs > WyncCa0

Table 5.1: Relevant resonance conditions to the study of the role of nonstandard interactions on neutrino propagation in BNS merger
remnants and core-collapse supernovae.
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Figure 5.9: Left panel: Difference of the diagonal elements of the total neutrino Hamiltonian, as a function of distance from the emission
point, without NSI (dotted line) and with NSI parameters ¢ = —0.70andey = 1 X 10~ 4 (dotted line). The initial parameters
arerg = 12km,2y = 27kmand 6, = 40°. Middle and right panels: Averaged survival probabilities for neutrinos (middle) and
antineutrinos (right).

over the neutrino near the disk in the BNS context, compared to the supernova case, that gives a negative
sign to the neutrino self-interaction potential 1 (3.23). However, Ref. [16] has shown the presence of NSI
can trigger the MNR also in the supernova context. In our numerical investigations, we have observed var-
ious NSI effects on the flavor behaviors in presence of MNR. Table 5.1 summarizes the different resonance
conditions encountered in our numerical simulations. First, the existence of NSI can modify the location of
the MNR. Figure 5.9 shows that the cancellation between the matter and the neutrino self-interaction terms
shifts from 10 km to 30 km when NSI are included. Moreover, neutrino evolution turns from completely
nonadiabatic to adiabatic, as the survival probabilities show. By looking at the difference of the neutrino
Hamiltonian diagonal elements, one can see that they keep being very small from 30 km to 8o km due to the
non-linear feedback that matches the nonlinear neutrino self-interaction contribution to the matter poten-
tial as we have been discussing in Chapter 4 [17].

While exploring numerous trajectories and sets of NSI parameters, we have observed an intriguing inter-
play between the I resonance, synchronized or not, and the MNR. Figures s.10, s.11 and s.12 furnish three
examples of such behaviours. Figure s.10 shows a combination of I resonance and MNR. There are two I
resonances, the first at 5 km, which is partially adiabatic, and the second at 21 km, which triggers a MNR be-
tween 20 km and 100 km, followed by a second one between 160 km and 240 km where the 7, are converted

while v, are not °. Note that this is in opposition to what the MNR typically creates in the absence of NSI:

®Note that this corresponds to the same parameters as the ones of Fig. 5.8 with a larger range shown.
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Figure 5.10: Left panel: Difference of the diagonal elements of the total neutrino Hamiltonian (solid line), matter potential V) (dashed
line) Eq.(5.17) in presence of NSI contributions with ¢ = —0.90and €y = 1 X 10~* and self-interaction oscillated potential (dotted
line), as a function of distance from the emission point. The initial parameters are 29 = —10km, zg = 30 kmand 6, = 25°. Middle and

right panels: Survival probabilities for neutrinos (middle) and antineutrinos (right). Different energies correspond to different colors, and
the averaged probabilities (dotted line) are shows. The slight dependence on the energy is due to the fact that as the MNR occurs further
away from the emission point, the difference between the diagonal elements becomes comparable to the vacuum term, which then plays a

role.
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Figure 5.11: Left panel: Difference of the diagonal elements of the total neutrino Hamiltonian (solid line), matter potential V) (dashed
line) Eq.(5.17) in presence of NSI contributions with §e” = —0.70and ey = 1 x 1075 and self-interaction oscillated potential (dotted
line), as a function of distance from the emission point. The initial parameters are £y = —30km, zg = 20 km and Hq = 55°. Middle and

right panels: Survival probabilities for neutrinos (middle) and antineutrinos (right). Different energies corresponding to different colors as
well as the averaged probability (dotted line) are indistinguishable.

indeed, without NSI, the MNR tends to lead to flavor conversions for neutrinos while for antineutrinos the
evolution is generally non- or partially adiabatic. In Figure s.11, an I resonance is located at 2 km, followed
by a nonadiabatic MNR at 12 km. Then, between 60 km and 70 km MNR conversions take place. Between
100 km and 125 km the difference of the diagonal elements stays very small, creating small conversions. Fi-
nally, at 144 km, an I resonance occurs. The third example of a combination of MNR and I resonances is
given in Fig. s.12. This case in point is interesting as it shows four I resonances: the first, located around 2
km, being a standard one, completely adiabatic, and the other three being synchronized resonances. At 12
km, the second resonance is also very adiabatic, then the third, at 26 km creates only partial conversions. A
fourth resonance occurs at 58 km and produces a short MNR-like cancellation between 60 km and 66 km,
followed by a MNR between 96 km and 126 km. Notice, again, the peculiar behavior of this MNR, which

creates conversions for antineutrinos while the evolution for neutrino is nonadiabatic.
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Figure 5.12: Left panel: Difference of the diagonal elements of the total neutrino Hamiltonian (solid line), matter potential V) (dashed
line) Eq.(5.17) in presence of NSI contributions with ¢ = —0.90and €y = 1 X 10~* and self-interaction oscillated potential (dotted
line), as a function of distance from the emission point. The initial parameters are 29 = —30km, zg = 20 kmand 6, = 55°. Middle and
right panels: Survival probabilities for neutrinos (middle) and antineutrinos (right). Different energies correspond to different colors, and
the averaged probabilities (dotted line) are shown. The slight dependence on the energy is due to the fact that as the MNR occurs further
away from the emission point, the difference between the diagonal elements becomes comparable to the vacuum term, which then plays a
role.

5-4 Di1sCcUSSION AND CONCLUSIONS

In order to assess the role of flavor evolution on nucleosynthesis in neutrino-driven winds a self-consistent
calculation of the electron fraction modification coupled with the flavor evolution should be performed, as
e.g. the one performed in Ref. [152] in core-collapse supernovae. First steps in this direction are presented
in Refs.[82, 84]7. However, the trajectory dependence on the abundances and investigations without the
ansarz (3.20) need to be performed. Such studies go beyond the scope of the present work. Figure s.13 shows
the I resonance location according to Eq.(s.17) in the dimensional space. One can see that such a resonance
can occur close to the neutrinosphere and for a large set of NSI parameters. Obviously, for the cases where
only the matter term matters, the resonance location would keep unchanged if the ansarz (3.20) is relaxed.
Using the at-equilibrium Y, as a reference, one would expect that the Y, value should be increased by the
presence of I resonances since the v, and 7, conversion to v/, and 7, respectively, brings the former to have
the average energies of the latter. However, the at-equilibrium Y, is certainly not a good reference for the
conditions encountered very close to the neutrinosphere. Only a consistent calculation of Y, modification
including the feedback on the probabilities and the full angular dependence of the neutrino emission would
tell us how much flavor evolution impacts the electron fraction.

In our investigation of nonstandard matter-neutrino interactions within 22 flavor framework. In partic-
ular, we have included the electron-tau couplings for which current bounds from scattering and oscillation
experiments are still rather loose. By solving the mean-field Liouville-Von Neumann equations along a large
ensemble of trajectories, we have uncovered aspects of NSI impact on flavor evolution and, in particular, on
the I resonance and the MNR. First, we have shown the conditions for the I resonance are met in this kind of

setting, based on detailed BNS simulations, when the matter term dominates over the self-interaction contri-

’Note that in these calculations are not fully consistent since the feedback effect of the modified electron fraction on the
probeabilities is not included
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Figure 5.13: Locations where the | resonance condition Eq. (5.17) is fulfilled, depending on the NSI parameters 0€™. The curves from
outside (orange) to inside (brown) correspond to values from de”™ = —0.2to —0.9 in steps of —0.1. The Y, distribution is taken from
the BNS simulations of Ref. [126].

bution to the neutrino Hamiltonian. Then, we have uncovered the role of the neutrino self-interaction term
and shown that the I resonance can be a synchronized MSW effect if the self-interaction potential dominates
over the matter one. The synchronized precession frequency, depending on by the self-interaction potential,
matches the resonance condition when the total matter term becomes very small. This mechanism has been
dismissed in previous investigations. Note that in Ref. [86] a synchronized MSW effect is observed when,
on the contrary, the self-interactions become very small. Second, for the MNR we have shown that NSI lit-
tle modify the resonance location while the adiabaticity can be significantly changed. Third, we have shown
complex situations where MNR, I and synchronized I combine, producing intriguing flavor patterns.

To answer the longstanding puzzle of the origin of 7 process nuclei, one needs to assess the BNS rate as
well as the amount of elements from each individual event. In this respect, it is necessary to determine if and
under which conditions flavor evolution takes place as well as its influence on nucleosynthetic abundances.
The work presented here provides insight to progress in this direction, in particular if new physics such as

nonstandard interactions are discovered in the future.
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6.1 INTRODUCTION

When studying neutrino propagation in astrophysical environments such as core-collapse supernovae or

binary neutron star mergers, most studies do not include general relativity effects. The strong gravitational
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fields around these objects can affect neutrino oscillations through different effects: time dilation, energy
redshift, or yet trajectory bending. So far, these effects have been studied in the case of vacuum oscillations
(seee.g. [153,154]), or including effects on the localization and adiabaticity of the MSW resonance in the case
of propagation in matter (see e.g. [155]). The authors of Ref. [156] have included general relativity effects on
supernova neutrino flavor transformations and showed that the self-interaction potential can be increased
up to three times in this context. They showed that the presence of gravitational fields delays the appearance
of bipolar oscillations in the cooling phase of a supernova. Gravitational effects on neutrino emissions from
black hole accretion disks were considered in Ref. [129] and shown to have significant effects on the neutrino
fluxes.

Neutrino oscillations in vacuum appear to be a well-known quantum mechanicinterference phenomenon.
However, a closer look shows that the standard derivation is full of paradoxical issues. In particular, the tra-
ditional derivation usually makes the assumption that neutrinos have the same momentum, which comes
down to describing neutrinos as plane waves. Yet, plane waves are not localized in space which contradicts
the idea of localized production and detection processes. In order to solve these paradoxes, quantum me-
chanic and experimental uncertainties associated with the production and detection processes have to be
considered, hence neutrinos have to be described as wave packets (WPs). Ref. [157] proposed the first WP
description for neutrinos, and introduced the notion of decoherence by WPs separation. The first complete
analytical derivation of the oscillation probabilities using Gaussian WPs was performed in Ref. [158]. The
authors of this work showed explicitly how neutrino oscillations are destroyed when coherence conditions
are violated.

The question remains of how coherence is modified in the most general case including neutrino-matter
and neutrino-neutrino interactions. Ref. [159] studied coherence in case of adiabatic transformations in
a matter background, as well as in the case of propagation in a multi-layer medium with density jumps at
the borders of the layers. Ref. [160] considered decoherence effects within the density matrix formalism
and showed that it appears as a damping term in the equations of motion. They also considered neutrino
oscillations in a background including matter and neutrino interactions, in the adiabatic regime, and in two
specific models of adiabaticity violation. However, none of these studies include general relativity effects.

Formal equations for neutrino propagation in curved space-time have been discussed before. Ref. [28]
first derived the quantum mechanical phase associated with the propagation of a particle in a given external
gravitational field. The authors of Ref. [155] found, in agreement with the previous literature, that the
contributions from gravitational fields were diagonal in the flavor basis.

So far, studies in curved space-time have been limited to the effects of gravity on the oscillation phases. In
this chapter, we study for the first time decoherence by WP separation in curved space-time. This requires to

extend a WP treatment to the case of neutrinos propagating in an external gravitational field. This question
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is of particular interest as gravitational fields around compact objects (black holes or binary neutron stars) or
supernovae could be large enough to have an impact on neutrino flavor conversions.

The goal of this chapter is to explore decoherence in curved space-time, using a density matrix formalism.
In Section 6.2, we discuss the wave packet description and evaluate the size of the neutrino wave packets in
astrophysical environments such as supernovae and binary neutron star merger remnants. We estimate the
expected neutrino coherence length using heuristic arguments in flat space-time, and discuss the modifica-
tions in curved space-time. Then, in Section 6.3 we use the density matrix formalism to describe decoherence
as a damping term in flat space-time. We then adapt this procedure in Section 6.4 to the case of decoherence
in curved space-time, and in particular in the Schwarzschild metric. We discuss the modifications arising in

the presence of gravitational fields and conclude in Section 6.5.

6.2 NEUTRINO WAVE PACKETS

6.2.1 DESCRIBING NEUTRINOS AS WAVE PACKETS

In most studies describing neutrino oscillations, neutrinos are considered as particles described by plane
waves, with definite energy and momentum. However, as the processes of neutrino production and detec-
tion are localized, a plane wave description is not appropriate. Instead, real localized particles are described
by WDs.

As the production and detection processes occupy a finite region in space-time, two massive neutrinos of
different masses produced in the same region are not necessarily detected coherently. Figure 6.1 illustrates
this phenomenon, showing the propagation of two neutrino wave packets: one massless, and the other
ultrarelativistic.

Neutrinos are produced as flavor eigenstates and are therefore composed of a superposition of massive
neutrino WPs propagating with different group velocities (see Fig. 6.1). The size of a massive neutrino WP
0 can be estimated as the coherence time of the production process P through which it is produced. In this
simplified illustration, the separation of the wave packets in the detection process is Az = AvT', where Av
is the difference between the two massive neutrinos group velocities, and 7" is the time between the produc-
tion and detection processes. If the production-to-detection distance is large, this separation may be larger
than the size of the WPs itself, so that the neutrino WPs would cease to overlap. Because of this, the notion
of coherence length is introduced as the distance beyond which the interference of the massive neutrino is
suppressed because of the separation of their wave packets: they can no longer be detected coherently. *

Therefore, a wave-packet approach of the massive neutrinos is needed to understand decoherence in neu-

"Note that, if the individual detection processes have large enough space uncertainties (ie small enough energy resolutions),
separated neutrino WPs can still be detected coherently. However, we will not discuss this possibility as it is not relevant when
talking about the detection of Supernova neutrinos on Earth.
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Figure 6.1: Space-time diagram representing schematically the propagation of two neutrino WPs of mass 111 and 19, /1 being massless,
and 5 being ultrarelativistic, from one production process (P) to one detection process (D). Figure adapted from [19].

trino oscillations.

In the next section, we estimate the coherent time of neutrino production processes in typical dense envi-
ronments such as supernovae or binary neutron star merger remnants. This gives us an estimate of the size
of neutrino WPs in those sites. We will then use heuristic arguments to get a rough estimate of the coherence

length in flat and curved space-time.

6.2.2 NEUTRINO WAVE PACKETS IN ASTROPHYSICAL ENVIRONMENTS

We follow the reasoning of Ref. [160] to estimate the size of neutrino WPs in astrophysical environments
such as supernovae or binary neutron star merger remnants. As the energy uncertainty is smaller than the
momentum uncertainty, the spatial length of the neutrino WPs is determined mostly by the temporal local-
ization of the production process [161, 162], which is given by the overlap time o, of all the particles involved
in the process. We note 1 the particle in this process with the shortest WP, 2 the particle with the next-to-
shortest WP, and 7;, 0; (¢ = 1, 2) the respective velocities of the particles and spatial lengths of their WPs.
Assuming that all the particles involved in the process have velocities of the same order of magnitude, the
overlap time can be estimated as [161]

Oz2

(6.1)

O~ 5 — = -
U1 — U2
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This formula can be easily interpreted: as a process requires all the involved WPs to overlap, it is over as
soon as at least one ceases to overlap, that is, when the shortest WP slides over” the next-to-shortest WP.
Note that, in the case of neutrino production processes involving relativistic electrons and non-relativistic
nucleons, which are the main production processes in supernovae and binary neutron star merger remnants,
the assumption made above on the velocities of the particles is not true. However, as we will see below, the
estimate (6.1) remains correct.
We consider now the production of neutrinos through processes involving nucleons, such as beta-processes.

In that case, the particles with shortest and next-to-shortest WPs are the nucleons, of lengths 01 ~ 040 ~

70, where 1 is the average distance between the nucleons in the medium which can be estimated using

Pb 4 3 -
np ==~ | 57 , (6.2)

My

where 1y, is the baryon number density, p, the baryon matter density and m,, the nucleon mass. The relative

velocities of the nucleons can be estimated as their mean thermal velocities, © which satisfies the relation
= _Ta (63)

where T is the temperature at the neutrino production point. Using (6.2) and (6.3), we get for 7

Wl

—~ —13 Pb -
To ~ 7.36 x 10 X (m) cm, (64)

and for v

1
T 2
570179 [ ——— ) . 6.
’ (1OMeV) (65)

We estimate the length of the neutrino WP o, as 0, ~ v,0y, where v, < 1 is the mean group velocity of

the neutrino propagation eigenstates, and oy is given by (6.1), and we get

Wl

o, <41 % 10712 (L)

1
T 3
—_— cm. (6.6)
102 g.em=3 10 MeV

Note that this length depends weakly on the matter density. For typical values at the neutrino production

of T = 10 MeV and py, ~ 10'2 g.cm_3, this gives
0p $4.1 x 1072 em. (6.7)

This estimate is based on the formula (6.1) which was obtained under the assumptions that the velocities
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of the different particles involved in the process are of the same order of magnitude. However, this is not
true in the case of beta-processes, as relativistic electrons are involved. With the velocity of the electron being
much larger than the velocities of the nucleons, one could assume that the overlap time between the electron
and the nucleon WPs would be shorter than the overlap time between the two nucleons WPs, and would,
therefore, determine the spatial length of the neutrino WP. This approach was indeed used in [163]. We will
test this assumption by evaluating the electron-nucleon overlap time and comparing it with the nucleon-
nucleon overlap time given by (6.1).

We start by estimating the spatial length of the electron WP as [159]

W=

Ope ™~ (47Toz2ne)_ , (6.8)

where o is the fine structure constant and n, = Y1, is the electron number density, Y, being the electron
fraction and n;, the baryon number density (6.2). Using typical values of Y, ~ % and p, ~ 10" g.cm™?, we
get O 10~ em, which is much larger than the size of the nucleons WPs. We then calculate the ratio of

the electron-nucleon overlap time over nucleon-nucleon overlap time, and obtain

1 1
Oge 1 \3 T 2
BRECIYSYY (i R . 6.
T (zye) (1OMeV) (6.9)

|t — 2|

This estimate shows that for typical values of Y, and 7' given before, the electron-nucleon overlap time is
about four times larger than the nucleon-nucleon one. As a consequence, it will have a small effect on the
size of the neutrino wave packets, and the estimate (6.6) is valid. Note that the size of the neutrino WPs is
not increased by their propagation from their production site to the neutrinosphere, from which they start
free-streaming.

Having estimated the size of neutrino WPs, we now use first principles to define and then evaluate the

coherence length.

6.2.3 COHERENCE LENGTH: A HEURISTIC APPROACH

We consider here a flavor neutrino being produced at a given point of space-time as a combination of two
propagation eigenstate WPs v; (1 = 1, 2), of different group velocities. Because of the two propagation
eigenstates propagate with different group velocities, they will progressively separate. We define Lo the
distance after which the separation between the two WDs is larger than the length of one individual WP, 0.

In this section, we give a first approach to determine the coherence length Loy, using heuristic arguments

in flat space-time and discuss the modifications arising when working in curved space-time.
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COHERENCE LENGTH IN FLAT SPACE-TIME

In flat space-time, the coherence length can be simply estimated as

02V

)
Av,

Lcoh ~ (6.10)

where v, is the average group velocity and Av,, is the difference between the group velocities of the two WPs.

For the propagation eigenstates, the group velocities are well defined as [160]
(6.11)

where I is the energy of the corresponding eigenvalues of the effective neutrino Hamiltonian. In the case

of vacuum propagation, we find that

m2

Vgi = 1 — 2EiZ7 (6.12)

where E is the average energy of the two WPs, and hence equation (6.10) becomes

2F?
Lco ~ TA_59x, 6.
h |Am2|a (6.13)

with Am? = m3 — mZ. For the neutrino WPs to be detected coherently, the physical distance [ they travel
should satisfy

2E?
IS Loh el S ——0s. 6.

This defines the coherence condition: the separation between the two massive WPs has to be smaller than
the size of the WPs. If the physical distance traveled [ is much larger than the coherence length, then the
interference between the two massive neutrinos is suppressed, and oscillations are absent. This phenomenon
is illustrated in Fig. 6.2. In section 6.3, we use formal arguments to calculate the coherence length, and find
the same dependence on the parameters F and Am?.

In the next paragraph, we study the differences arising when neutrinos propagate in curved space-time

rather than flat space-time.

COHERENCE LENGTH IN CURVED SPACE-TIME

The same reasoning as above can be made in general relativity to determine the coherence condition. This
in performed in Ref. [155], although no justification of the relation is given. The width of the neutrino wave

packets Ad has to be larger than the separation between the two massive WPs, which gives, at constant time
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=0 [ ~ Leop [ > Lecon

Figure 6.2: lllustration of the separation of two WPs /] and /2, of different group velocities 1 and U, and of size o, as a function of
the physical distance traveled [. The WPs are produced together at [ = 0, then slowly separate. We define the coherence length L,
as the distance after which the separation between the two WPs is larger than o ,,. When the distance traveled [ is much larger than the
coherence length, the WPs do not overlap anymore and are not detected coherently. Figure adapted from [19].

Ad > '/(gijPQin)%d)\ — /(giijPf); d\ (6.15)

where A is an affine parameter along the neutrino world line, g,,,, is the metric tensor, and P; (¢ = 1, 2) is the
four-momentum operator that generates spacetime translations of the propagation eigenstate v;, and which
satisfies P! P;,, = —m?. Note again that no justification of this formula has been given in Ref. [155], and
the dimensions of the left and right hand side of the equation seem not to be compatible.

We assume that neutrinos follow null geodesics of tangent vector pl, ;; such as pl, ;pnan, = 0, and assume
PY = 0 and P! = p! (1 —¢), with e < 1 due to the neutrino small masses. It follows from the

neutrino mass-shell relation that

m?2

€6¢=—"—. (6.16)
20,1 PmatiPhan
Using this relation along with (6.15), and defining dI? = g;p” 0k = —900 (p?mu)2 the differential physical

distance at constant time, we get the condition

2
Ad > |Am | / . (6.17)
—4goo pnull)

This relation generalizes (6.14) in curved space-time. It depends on the metric describing the environment
in which neutrino propagates, on Am? and on p?; which is linked to the neutrino energy.

We have derived the evolution equation for the neutrino density matrices in Chapter 2. We wish to gener-
alize such equations for the neutrino WPs in curved space-time. To this aim, we first introduce the density
matrix formalism to derive mathematically the expression of the coherence length in flat space-time. In sec-
tion 6.4, we use the same formalism to make the first steps in the determination of the coherence length in

curved space-time.
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6.3 EvoLuTIiON EQUATION FOR THE NEUTRINO WP IN FLAT SPACE-TIME

In this section, we study decoherence in flat space-time through the density matrix formalism, following
the procedure described in Ref. [160]. Note that different approaches can be used, in particular, Ref. [19]
studies decoherence through the evolution of the neutrino state vector only. These methods both give the
same results.

We start by studying the evolution of the neutrino state vector and derive from it the evolution of the
density matrix. We then focus on the case of neutrino oscillations in vacuum. We will use the density matrix

formalism in our derivations of the results in curved space-time.

6.3.1 EVOLUTION OF THE NEUTRINO STATE VECTOR

In this section, we consider the evolution of a neutrino state vector in an homogeneous system of ultra-
relativistic neutrinos, propagating in a background of ordinary matter composed of electrons, protons, neu-

trons and neutrinos. The neutrino state vector in coordinate space | (¢, Z)) can be Fourier-expanded as

By
v (4, 7)) = / (27:)’3 77y (1 7)) (6.18)

where |v (, D)) represents the neutrino state vector of a neutrino of a given momentum p. We assume that

|v (t,p)) is solution of the Schrédinger-like evolution equation

P () = H D) v (1. 5)). (619)

where H (t,p) = I'" (¢, p) (2.103) has been derived in Section 2.2.3. It is given by
H(tp) =UL" (P)UT + W™ () — p- V™™ (t) + B () — p- VI (2), (6.20)

where the different components hO, hmat, Vma‘, e and Vself are explicitly given in Section 2.2.3. Note
that this expression assumes that neutrinos are particles of definite momenta, which corresponds to plane
waves. For WPs, it is still valid as long as the momentum spread o, of a WP is large enough compared to
the inverse of the distance over which the matter h™, 1/mat (2.116, 2.117) and self-interaction A, %l (2.122,
2.123) contributions vary significantly, while being still small enough compared to the momentum p.

In order to study WP separation, it is convenient to introduce the propagation basis, first mentioned in

Section 2.3, in which the Hamiltonian (6.20) is diagonal. The Hamiltonian # (¢, p) can be instantaneously
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diagonalized at any time ¢ by the unitary transformation

U (t,p)H(t,p)U (t,p) = K (t,7), (6.21)

where K (t,p) = diag </~€1 (t,ﬁj) is a diagonal matrix of eigenvalues ki (0= 1, ..ny), and U (t, ) is the
instantaneous mixing matrix. At any time ¢, the flavor neutrino state vector |1, (P)) can be represented as a

linear combination of the propagation eigenstates |7; (¢, D))
Vo (7)) = ZU;:] (8, 9) |7 (£, 1)) - (6.22)

If the evolution is adiabatic, there are no transitions between the propagation eigenstates |7; (¢, p)) and
studying coherence can be done by studying the separation of the different propagation eigenstates WDPs.
In the rest of this chapter, we consider the propagation of a neutrino WP, produced as a state of flavor «

at the position Ty = 0 and at time to = 0, which can be written according to equation (6.22) as
v (0,p)) = |va (D)) = :E: (0,) |7 (0,p)) - (6.23)

We assume that the propagation eigenstates initially describing our flavor state are described by WPs of
momentum-space wave functions fz, (7), where pj is the centroid of the momentum distribution, such

that

17 (0,9)) = f5, () 17" (0. 5)) . (6.24)

Here, |l7](-0) (0, p)) denotes the state vectors of the propagation eigenstates satisfying

(00,97 (0,57)) = (21)° 6* (F — 5") Oy (6.25)

and we normalize the amplitudes fz, (p) so that

d3p 2
[ G bin @I =1 (626

In the rest of this chapter, we describe neutrinos by Gaussian WPs of width o, such that

b = (%) o [—%} (627)
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We introduce the (one-particle) density matrix in the propagation eigenstate basis as
o (4, 7) = |7 (1, D)5 (1,7)] (628)

The formalism derived here will now be used to describe decoherence in vacuum. Note that the same pro-

cedure can easily be adapted in the case of the adiabatic evolution of neutrinos in a matter background (see

Ref. [160]).

6.3.2. VACUUM OSCILLATIONS IN FLAT SPACE-TIME

In this section, we consider again the propagation in vacuum of a neutrino WP, produced as a flavor state v,
at the position o = 0 and at time ty = 0. Since there is no matter background, the propagation and mass
bases coincide. We start by describing the neutrino state vector and then use the density matrix formalism
to study decoherence.

At (t, %), the neutrino state is described by
v (t,3) =Y Uz (t,7)|v). (6.29)
J

In the equation above, 1} (¢, Z) is the coordinate-space wave function of the jth neutrino mass eigenstate,

L
by () = / (gﬂfigeiﬁ% (t.7), (6.30)

where 1; (t, p) is the time-dependent wave function for a neutrino of given momentum p. It is solution of

the Schrodinger-like equation (6.19) in vacuum

it (69 = E; (5) 4 (0.5, (631

where E;j (p) is the energy of the jth neutrino WP, of momentum p. Solving this equation is straightforward,

and leads to

¥ (t,9) = ¥; (0,p) e O = fo (p) e FIPE, (6.32)

where the second equality derives from (6.24). We now use the density matrix formalism to study decoher-
ence. Using the definition (6.28), we introduce the one-neutrino density matrix in the mass basis whose

elements are

Pjk (t7 f) - U;jUakwj (ta f) ¢I: (ta f) : (6.33)

Assuming that the mass eigenstates are described in momentum space by Gaussian WPs of width o), (6.27),
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and using equations (6.30) and (6.32), we get for this matrix element

. . 21 2
pik (£, %) = UgUak (g)
P
A N T 0—5) (@)
//WW exp [z P—q)Z—1i(E; (p) — Ep(9)t — 1o? - 10?2 . (634)

In order to calculate the integrals in (6.34), we expand the neutrino energies about the peak momenta pj,

and retain only the first two terms of the expansion
E; (p) = E; + (5= p)) ¥ + O [(7 - 5))°] - (6.35)

We introduced here £; = E; (p;), and U; = Ba_?|ﬁ=ﬁj the group velocity of the jth WP. Note that ne-
glecting the high order terms in the expansion of E; (p) amounts to neglecting the spread of the neutrino
WP. Indeed, it has been shown in Ref. [163] that this spread has no effect on the coherence of supernova
neutrinos, as the coherence is determined by the original size of the WP without spread.

Expanding F; and E; according to (6.35), we find that the integrals in (6.34) can be integrated as Gaussian
integrals, and p (¢, Z) takes the form

pik (L, T) = Uo*szak;é

(2m02)>

. P 77 R (R O
exp |—i(E; — Eg)t +i (D — Di) & — Py , (636)

where we introduced o, = ﬁ the size of the neutrino WPs in coordinate space.
In the situations we are interested in, we observe decoherence as a function of the known distance & trav-
eled by a neutrino. Therefore, the matrix element (6.36) must be integrated over the unknown time ¢. 2
Since the WP amplitudes decrease very quickly as ¢ grows different from the stationary point of the ex-

U+

ponent tuue = i @, the integral can be extended over the coordinate to infinity, and we consider the
7 k

quantity

MM@E/&mMua. (637)

*Note that the opposite approach can also be used: we could have considered that we observe neutrino oscillations ata known
time, and integrate over the unknown region of space [160]. This leads to the same decoherence term.
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Performing the Gaussian integration in (6.36), we get

1 2
U* U,
pik (F) = k27ra§, \/ U]2- +v? eXP

_ (AE]k)Q g
V7 + vf

T

.. . 2AET, (T; — Tp)” 2
exp |4 - —— ex —————|, (638
p[{(p; Pk) — UjJHJk} ] p[ 107 (2 1 o)) (6.38)
where we introduced the difference of energy AEj, = E; — Ej, and the average group velocity v, =

3 (vj + U ). Note that, at first order, the dependence of U; on j or k can be omitted. The first exponential
term in Eq. (6.38) does not depend on & and has no influence on oscillations. The second exponential gen-

erates neutrino oscillations. Note that it resembles the standard oscillation formula, but with an additional

2AEj
2+ 02

term 2. This is because the density matrix in (6.38) is integrated over all its momentum modes. Finally,
the last exponential term is a damping term, responsible for decoherence. It sets the conditions on which
neutrino oscillations are observable.

Writing this damping term as
72
exp | =75 (6.39)
L?oh,jk
where Lcoh . is the coherence length, that is, the distance over which the jth and kth WPs will cease to

overlap, we get the expression

4 vy +v
L2 50 = % (6.40)
]

For ultra-relativistic neutrinos, we introduce £ the average energy of v; and ;. Equation (6.40) then be-

comes

42 F?

m% (6.41)

Lcoh,jk: -

Interestingly, this formula is extremely close to (6.14) obtained through the heuristic derivation of Section
6.2.3. From equation (6.40), it is clear that neutrino decoherence appears from the different group velocities
of the jth and kth WPs, making their overlap decrease when they propagate over long distances. Note also
that the coherence length depends on the assumed shape of the neutrino WPs.

As pointed out before, the damping in pjj for j # k corresponds physically to the separation of the
WDPs of the jth and kth propagation eigenstates. Therefore, we expect this to be modified in the presence of

gravity modifying the space-time geometry.
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6.4 EvoLuTIiON EQUATION FOR THE NEUTRINO WP IN CURVED SPACE-TIME

In this section, we make the first steps towards the investigation of decoherence by WP separation in curved
space-time through the density matrix formalism, generalizing the procedure described in Section 6.3.

We start by studying the evolution of the neutrino state vector and derive from it the evolution of the
density matrix. We then focus on the case of neutrino oscillations in vacuum, considering the case of a strong
static gravitational field with a spherical symmetry and without rotation. We have in mind the application
to a Schwarzschild black hole, a binary neutron star merger remnants, or the proto-neutron star in a core-
collapse supernova. The study is performed in two steps. First, we consider the case of a non-covariant
Gaussian WP, then the one of a covariant relativistic Gaussian WP. For the latter, unfortunately, final results

have not been obtained due to a lack of time. We conclude with a general discussion.

6.4.1 EVOLUTION OF THE NEUTRINO STATE VECTOR AND COVARIANT PHASE

We consider here a neutrino being produced at the space-time point A (t4, Z4), as a flavor state v/,
v (A)) = va) = > Uz (A) |vy) (6.42)

and that the mass eigenstates are described at production by Gaussian WPs of width o,,. We study here
the propagation of the different massive WPs from A to an averaged space-time region C' (¢, Z¢). This
assumes that the WPs are not completely separated, so that this region C' can be defined (see Fig. 6.3). When

propagating between A and C, the mass eigenstate becomes
lv; (A, C)) = e~ 13 (AC) lvj) (6.43)

The quantum mechanical phase ¢; associated with the propagation of the jth eigenstate in a gravitational

field is given by [28]
C

65 (A,C) = / pida, (6.44)

A

where p,(f ) is the canonical conjugate momentum to the coordinate x* for the jth eigenstates. It is given by

da?

P = UL (6.45)

with ds the line element along the jth neutrino trajectory, and g,,,, is the metric tensor.
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Figure 6.3: The jth (blue) and kth (green) neutrino WPs are produced together at the same point A. As they propagate through space-
time, they spread and separate themselves. We study the separation of the WPs in the region C', which is an averaged point on the two
trajectories.

6.4.2. VACUUM OSCILLATIONS IN SCHWARZSCHILD METRIC

From now on, we assume that the space-time is described by the Schwarzschild metric and use the specific
coordinates {t, r, 0, v} so that the line element ds becomes

1

ds® = g, dztdz” = —B (r) dt* + B0

dr? 4 r2d6? + r? sin® fdp?, (6.46)
where B (r) = 1 — =, where r, = 2M is the Schwarzschild radius, with M the mass of the mass of the
object. We follow the procedure of Ref. [153] to describe the neutrino trajectories. As the gravitational field

described by Eq. (6.46) is isotropic, the neutrino trajectories can be confined to a plane. We choose to work

/)

in the plan # = 7. The relevant components of pff are then
; dt
) =—m;B(r) o (6.47)
G _ My dr 6.48
p?‘ B (T) ds Y ( '4 )
. do
pfj) = myﬂg. (6.49)
They are all related by the on-shell mass relation p,(f) pi)r = —m?. As the metric tensor g,,,, does not depend

on t and ¢, the canonical momentum components pij ) and pfg ) are constant along the neutrino trajectory.
We denote those constants as £; (p) = —pij ) and J; (p) = pg ), They represent respectively the energy
and the angular momentum of the mass eigenstate ; observed at r = +o00, and depend on the neutrino

momentum at production p. Note that £ (p) and J; (p) differ from those measured by an observer at a
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position C or at the production point A. The local energy, that is, the energy measured by an observer at rest
at a given space-time point, can be related to E; through a transformation between the two frames. Having

defined those constants, we develop pg)dz“ in (6.44) as

. m; dr
pPdat = —F; (p) dt + = (; ) (£> dr + J; () de. (6.50)

As done in Ref. [153], it would be interesting to consider the case of radial propagation so that dp = 0 as

well as of non-radial propagation. We present here the case of radial propagation for which the on-shell mass

o () 5 () -

Using the relation (6.47) along with pgj ) = — I, the equation above reads

1 dr\? EZ(p) 1
B <&> = By (6:52)

J

relation becomes

which, assuming that neutrinos are propagating outwards, gives

dr _ \/ B0 g (653

ds m;

Combining the equations (6.50) and (6.53), under the assumption of radial propagation, we get

A 1
pff)dm“ =—F; (p)dt + m\/E]2 — B (r)mZdr. (6.54)

When studying the propagation of neutrinos in curved space-time, most of the literature (see e¢.g. Refs
[155, 153, 156]) calculates the phase differences along light-like trajectories so that ds? = 0. This gives a relation
between dt and dr. Since we want to study the separation of the mass eigenstates WPs, the trajectories
need to be slightly different (see Fig. 6.3). As described above, we consider that the WPs in the region C
(to, Zc) are still overlapping a bit, so that we can measure the phases ¢, and ¢y, at C. * In our derivation,
we also assume that neutrinos are relativistic at infinity, that is %j < 1. As pointed out in Ref. [153], this
assumption ensures that neutrinos are relativistic everywhere on their trajectory. This is not necessarily the

case if neutrinos are assumed to be relativistic at the source. Under this assumption, Eq. (6.54) becomes

Ddgt = —E. L . _m—? r r
P =~y @+ s (B0 - 5 =B (0)) ar (655)

3As discussed in Ref. [153], the use of classical trajectories for the interference of the different massive neutrinos at the same
space-time location should account from a difference in the production times. Since we consider neutrinos with very close masses,
we follow close-to light-ray trajectories.
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Plugging this in Eq. (6.44), we get

2

¢; (A, C;p) = —E; (p) (tc —ta) —|—/Tc L;j((f)jdr— 25](13) (rc —ra). (6.56)

This expression is also valid for the kth mass eigenstate produced with the momentum ¢. We now define the

phase difference ¢1; = ¢, — ¢;, which reads

2 2

o (A.C35,d) = (E; (7) — Ex () (tc e / %dr%(ﬁ m

) (rc —ra).
(6.57)
Following the procedure of Section 6.3, we develop E; (p) (respectively E}, (¢)) in the phase difference using

() 2B (D)

the first-order expansion (6.35) as a function of p'(respectively ¢). This gives

AC:F.D) = (B — E) (te—t Ly mo_mg
drj (A, C5p, q) = (B — Ey) C_A_/m B |+ 2_E]_2_Ek (rc —ra)

+ U (P —p;) [te —ta— N (re,ra)] — U (§— Pi) [tc —ta — M (re,7a)], (658)

where we introduced the notation

N (re,ra) = =5 (re —ra) + /TC Bl(r) dr. (6.59)

FIRST STEP: A NON-COVARIANT GAUSSIAN WP FORMULATION  In our investigation of decoherence in
curved space-time, we start by making some considerations by taking a non-covariant Gaussian WP, as done
in Refs. [164,165]. Ref. [164] has shown that the use of a non-covariant Gaussian WP can give quite different
results as far as the spread of the WP is concerned, compared to a covariant formulation. Clearly, one should
consider the spread of the WP, both at production but also due to propagation. For simplicity, here we
make first the assumption that the width of the WP is only due to its spread at production (as done in Refs.
(163, 160] in flat space-time). We use the definition of the density matrix for the entire neutrino WPs (6.28),
describing mass eigenstates as Gaussian WPs of width 0, which, similarly to Eqs. (6.33) and (6.34), gives us

in the mass basis

27?3
i (4.0) = U0 ()

p
&Py d3q . @—05)° (G- )
- 1 — (A, Cp,q) — S . (6.6
//(27?)3 (27)? P [ i ( P4 4o 402 (6.60)
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Using the first-order expansion in terms of p'and ¢'in ¢y, we perform the Gaussian integrals in (6.60) and

get for the density matrix the expression

1
Pik (A, C) = U;jUak2—2)3 exp {—0'12) [U,z (tc — tA — )\k (TC>7"A))2 + 1}]2 (tc — IfA — )\k (Tc,T’A))ﬂ }
Toz)?

exp {—z’ [(Ej _ B (tc g / :C Bl<r>dr) - (% - %) (ra— rc)] } (6.:61)

As we did in the case of propagation in flat space-time in Section 6.3, in order to interpret the formula above,

we perform the integration over t. Computing the Gaussian integral, we get

. 1 2
Pan (re,4) = /dtcpjk (4,0) = UeVoiyrn \ o+
m? m2 E.—F m? m?
. _ T kEf,2 " 2%
P {Z(TC ra) [(2@ 2Ek> VI ¥ o (Uszg R 2E§)H
V202 m2  m21°
Uk 2 | Mg j
e S R —  P— —Y . (6.6
Xp{ 402 (v,% —|—UJ2.) (re = ra) {2E,§ 2EJQ} (6.62)

Once again, the first exponential term in Eq. (6.62) does not depend on (r¢ — 74) and has no influence

(B Ey)o?
V7 + v}

on neutrino propagation. The second exponential term generates neutrino oscillations. Note that it has
the same form as in flat space time ; however, in the Schwarzschild metric, (r¢ — 74) does not represent a
physical distance, so the oscillation length is actually modified by the presence of gravity.

The last exponential term is a damping term, responsible for decoherence. For relativistic neutrinos, in-

my
E

viv? m2  m2]’ (re —ra)? [Am2 1
J "k 2 k j C A 7k
SR PN £ [ S B G (66
eXp{ 102 (o) O [2E,§ 2E]2] P 802 { 2E ] (6.63)

Note that in the flat space-time limit, (rc — r4) becomes the physical distance traveled by neutrinos and

troducing F the mean energy of v; and v, this damping term becomes, at first order in

this term gives back the damping term of Eq. (6.38). However, if r, is non-null, the coherence length does
not immediately appear in the damping term above as (rc — 74) does not represent a physical distance.
Furthermore, F does not represent the local energy of the neutrinos but rather the energy at infinity.

We introduce the differential proper distance d¢ = \/g_u,,da:“dx”, which becomes in the case of radial

propagation in the Schwarzschild metric

1

We define 7con the value of the coordinate r¢ after which the damping term (6.63) is equal to 1/e. Itis
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therefore given by

2F?
Teoh = 74 + 2V 205 ———— (6.65)
}A M ’
Using the definition of the proper distance (6.64), we then get for the coherence length
Tcoh TA+2\/§0'rc| 25; | 1
Leoh = dr = Bl — 4. (6.66)

\/ ra VB (r)

Note that this result is quite different from the expression obtained using (unjustified) heuristic arguments
in Eq. (6.17). Itis also apparent, comparing Egs. (6.41) and (6.66), that the proper coherent length is in-

creased in the presence of a gravitational field.

In order to assess the effects of gravity on the coherence length, we show here some numerical estimates.

We compare the coherence length in flat space-time (6.41) for the mass eigenstates v/, and v3

4v/2F?

Lf:i;t = TA 30 (6.67)
" | Amis|
to the coherence length in curved space-time (6.66) for the mass eigenstates v; and 13
At 4v2E? o 1
rges = [Ty (6.68)
TA B(r)

where we use the estimate of 0, ~ 4 x 1072 c¢m of Section 6.2.2.

We make an estimate here for the cooling phase of a core-collapse supernova. We assume that neutrinos
are emitted at a neutrinosphere of radius 1, =~ 10 km, with an energy of about £ = 11 MeV. We consider
values for the Schwarzschild mass between 0.8M¢ and 2.5M,. The coherence length estimates as well as
their relative difference are shown in Fig. 6.4 as a function of the Schwarzschild mass.

We notice first that, with the parameters used here, the coherence length for 71 and v3 is of the order of
tens of kilometers. This corresponds to the scale on which effects such as bipolar oscillations in supernovae
or matter-neutrino resonance in binary neutron star merger remnants. If the coherence length remains of
the same order of magnitude in the presence of matter and self-interaction, the decoherence could take place
before those oscillation phenomena and destroy the interference patterns. Note however that partial coher-
ence would be maintained as the coherence length for v/, and v is approximatively 100 times longer.

Second, we notice that, as pointed out before, the coherence length is increased by the presence of gravity.
This is analogous to the results of e.g. Ref. [156], where they find that gravitational fields shift the occurrence

of oscillations phenomena to further distances. Furthermore, the relative difference between the values of
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Figure 6.4: Numerical estimates of the coherence lengths in flat (6.67) (dashed, orange line) and curved (6.68) (solid, blue line) space-time
(left panel), as well as the relative difference between the two (right panel), as a function of the Schwarzschild mass M.

the coherence length in flat or in curved space-time can go up to 40% for M, = 2.5M,, which isa significant

effect.

SECOND STEP: A COVARIANT GAUSSIAN WP FORMULATION The second step in our procedure is to
implement a covariant Gaussian WP, as the ones discussed in Refs. [164, 165]. It is also worth noting that,
while Ref. [163] showed that the spread of the neutrino WPs during their propagation had no impact on
the coherence condition in flat space-time, this has not been shown in curved space-time.

It would also have been interesting to consider the case of non-radial propagation. These aspects have not

been completed unfortunately because of a lack of time.

6.5 DiscUSSIONS AND CONCLUSIONS

In this chapter, we have studied neutrino propagation and decoherence by WP separation in the presence
of gravitational fields. In particular, we have introduced the density matrix of a neutrino as a whole (that is,
including the integration over all its momentum modes) to describe decoherence as a damping term.

Decoherence occurs when the distance between the different propagation eigenstate WPs becomes larger
than the size of the WPs. Therefore, we have estimated the length of neutrino WPs in environments such
as supernovae or binary neutron star mergers and showed that it is of the other of 102 em. Then, we used
the density matrix approach of Ref. [160] to show that decoherence is characterized by a damping term in
the off-diagonal elements of the neutrino density matrix in the propagation basis.

We adapted this procedure to the case of neutrino propagation in vacuum in the presence of gravitational
fields and showed that this damping term is modified. We observed that the coherence length is increased
in curved space-time. These are the first steps towards a WP description of neutrino propagation in curved

space-time. We have first discussed the case of a non-covariant Gaussian WP and obtained a coherence length
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formula for which numerical estimates have been given. We also discussed the use of a covariant Gaussian
WP.

In order to fully assess decoherence effects in astrophysical environments, a calculation including neutrino-
matter and neutrino self-interactions effects would be needed as well. The authors of Ref. [160] included
these effects. They showed that if neutrino transformations were adiabatic, a damping term still appeared in
the density matrix expressed in the propagation basis, showing that decoherence still occurs. They also con-
sidered two specific models of adiabaticity violation and showed that no such term appears in general. This is
because, in the case of non-adiabatic conversions, the propagation eigenstates are not physically meaningful
as they are strongly mixed. As of now, these results have not been extended to the propagation of neutrinos
in the presence of strong gravitational fields. However, in the adiabatic case, the procedure should be fairly
similar. The work presented here provides with a first step in the description of neutrino WPs in curved

space-time.
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Conclusions

The present thesis has focused on neutrino flavor conversions in dense astrophysical environments. In par-
ticular, novel aspects have been explored in the context of binary neutron star mergers, including helicity
coherence and nonstandard interactions, and more generally neutrino decoherence in presence of strong
gravitational fields.

A sharp boundary between the dense, collision-dominated and the dilute, mean-field-treated regions is
often used both in core-collapse supernovae and accretion disk around compact mergers. The role of correc-
tions to the mean-field equations usually employed when studying neutrino propagation in astrophysical
environments has been debated in the last years. In the dilute region, such corrections could have an impact
on neutrino flavor evolution.

In our first project, we have tested the validity of the mean-field equations and explored, in particular, the
role of correlators, arising from the first order corrections to the relativistic approximation that couple left- to
right-handed neutrinos in the Dirac case, and neutrinos to antineutrinos in the Majorana case. This coupling
is referred to in the literature as helicity (or spin) coherence. We have chosen to explore their role in the
context of binary neutron star merger remnants, but the results we have obtained allow to draw conclusions
for the supernova case as well.

We have explored numerically a large range of trajectories and parameters, based on a detailed astrophys-
ical simulation of a binary neutron star merger remnant. We have found that while a MSW-like resonance
condition associated with helicity coherence is met in the context of binary neutron star merger remnants,

its adiabaticity is never enough to create conversions. This is in contraction with previous claims in a one
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flavor toy model. We have used a perturbative analysis to understand the conditions under which multiple
MSW-like resonances can occur through the so-called nonlinear feedback. Such an analysis not only explains
our results but also shows that they would remain valid in core-collapse supernovae. This study has shown
that, in a realistic astrophysical scenario, helicity coherence is unlikely to produce flavor conversions, making
the usually-employed mean-field equations reliable.

Our results have been derived under several approximations. First of all, the self-interaction term in the
Hamiltonian is computed under the assumption that the flavor history of a neutrino at a given point in
space does not depend on its emission point. This boils down to considering that the flavor content of
the background neutrinos at a given location is the same as the flavor content of the test neutrino, and is
usually referred to as the “single-trajectory” approximation. As the existence of nonlinear feedback relies on
the geometry of neutrino emission, using a full multi-angle treatment might change our results. However,
as such treatments usually lead to matter decoherence, it is unlikely that it would favor helicity-coherence-
induced conversions. Moreover, we used a two-neutrino mixing framework. The inclusion of a third flavor
should not change our conclusions since the matching condition between the self-interaction and the matter
potentials, necessary to increase the adiabaticity, should not be affected. Finally, the stationary hypothesis
has been employed. Its relaxation may have some effects on our results.

The presence of new physics beyond the standard model could influence neutrino flavor conversions
and, in particular, explain some anomalies observed in oscillation experiments. So far, the experimental
constraints on nonstandard matter-neutrino interactions are still rather loose, in particular for the e — 7
coupling. While the recent observation of coherent elastic neutrino-nucleus scattering did not tighten these
limits, it may bring more information in the future.

In the second project of this thesis, we have focused on the role of such nonstandard interactions in the
context of binary neutron star merger remnants, performing numerical simulations. We have found that the
inner resonance —a MSW resonance observed in the presence of nonstandard interactions in supernovae—
can be met and have an interesting interplay with the matter-neutrino resonance. Interestingly, such effects
occur even in the case of very small off-diagonal coupling €y —up to four or five order of magnitudes lower
than the experimental bounds—, as long as the diagonal coupling is not too small. Furthermore, we have
shed a new light on the inner resonance by showing that its condition can still be met in the presence of
sizable self-interaction potentials, and occur as a synchronized MSW resonance. Several examples have been
presented and analyzed in details in terms of flavor conversion mechanisms. Our results have shown that, in
the presence of nonstandard interactions, strong flavor conversions can occur very close to the central object.
Therefore, they could have a substantial effect on 7 process nucleosynthesis in neutrino-driven winds.

As in the first project, the results derived in presence of nonstandard interactions are based on the “single-

trajectory” approximation. However, the condition for having an inner resonance in the presence of non-
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standard interactions depend only on the matter profile. Therefore, relaxing this approximation has no
effect on its location. While in the case of a synchronized inner resonance the adiabaticity could be affected,
it remains unchanged for a "standard” inner resonance. Similarly, using a three-neutrino framework should
not impact this resonance. In fact, the two-neutrino framework is well-justified as the nonstandard parame-
ters coupling e — f1and p1 — 7 are much smaller than the e — 7 ones. Adopting a full-nonstationary model
could, however, have significant effects on flavor conversions.

As in supernovae or binary neutron star mergers, neutrinos are produced at large densities, they are de-
scribed by very short wave packets in configuration space. As the wave packets of the different propagation
eigenstates propagate with different group velocities, the very short neutrino wave packets are expected to
quickly separate in space, leading to a suppression of neutrino oscillations by decoherence.

In the third project of this thesis, we have studied decoherence by wave-packet separation. We have esti-
mated the size of neutrino wave packets produced in supernovae or binary neutrino star mergers. Then, we
used the density matrix formalism to show that decoherence appears as a damping term in the equations of
motion. This approach can be extended to the case of propagation in a matter and neutrino background.
We have also discussed the effects of strong gravitational fields on wave-packet separation. However, a fully
covariant derivation is needed in order to obtain an analytic formula for the coherence length.

Identifying the sites for heavy elements nucleosynthesis through the so-called 7 process is a longstanding
open question in astrophysics. The recent kilonova observation in coincidence with gravitational waves
has brought the first direct evidence for the production of heavy elements in binary neutron star mergers.
Neutrinos may have an effect on such a production in the so-called neutrino-driven winds in these sites, as
for core-collapse supernovae. Unraveling fully flavor conversions in this context could, therefore, bring a
new understanding of this open issue.

The results of this thesis shed a new light on neutrino flavor conversions in dense astrophysical environ-
ments in three different aspects. First, our analysis of helicity coherence strengthens the mean-field equations
generally used in these contexts. Furthermore, our investigations of nonstandard interactions show that the
presence of new physics could impact on neutrino flavor evolution in binary neutron star merger remnants,
as well as on nucleosynthesis. Finally, understanding decoherence by wave-packet separation in curved space-
time is a crucial point, as, if it occurs over short distances, it could suppress extensively-investigated oscilla-
tion phenomena. Our work provides with the first steps towards such an understanding which could have

significant theoretical and observational implications.
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Spinor products

We compute here the spinor products necessary to the derivation of the most general equations for neutrinos
(Section2.2.1). The Diracbispinors u (¢, o) and v (¢, o), which are solutions of the equations (i 4 m;) u; (¢, 0) =
(—z'p + mi) v; (¢, 0) = 0, have expressions that depends on the representation chosen for the gamma ma-
trices. We choose a specific representation in order to derive the spinor products which are useful for our
calculations.

Forany vector p'of normp, p = g denotes the unitary vector associated to the direction of p. We introduce

the two following light-like vectors

" (p) = , € (p) = : (A.)

where (€(p) , € (p)) spans the plane orthogonal to p. Then, it is possible to show the following expressions
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of the spinors associated with the massive neutrino fields

w; (@, h) " (1 =) us (¢ h) = 05 (¢, —h) ¥ (1 — 75) vi (¢, —h)

= —2idp_n" (p

(
),

i (@, =h) " (1= 5) wi (¢ h) = =05 (¢, ) " (1 = 5) vi (¢, —h)
" (p

= i@5h7+e h) + z—5h e ek (),
p

- o .My i ~ .My —i ~
v; (=p, )" (1 —5) ui (¢, h) = Z?5h,+€ O (—p) + Z?j(Sh,,e PpH (p)



Extended evolution equations with mass

contributions : Dirac case

In the investigation of helicity coherence, we have considered both the case of Majorana neutrino and of
Dirac neutrinos. In the case neutrinos are Dirac particles, one has to evolve two extended equations including

the mass contributions, namely
Z.IOD,Q (ta (T) = [hD,g (t7 q_') y PD,G (ta CT)] ) (BI)

and

ZﬁD,Q (t7 q_)> = [}_LD,Q <t7 (7) 7ﬁD,g (tv J)] . (BZ)

The explicit expressions of the generalised Hamiltonian in Eq.(4.1) is

hpg (t,7)= ( - (B.3)

while the generalized density is given by

PD.G (tv i) = (
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where the subscripts in the density matrix p__, p_, p; 4 indicate the possible helicity states. In particular,
the correlator p  refers to a sterile state and the p_ couples neutrinos to such sterile component.

For the antineutrino sector, the generalized density is given by
plt,q) ¢t
t

9

ﬁ——(tv J) ﬁ——i—(tv q_))
P+— (t> (7) ﬁ++(t7 (7) 5(15, J) ﬁ(

, (Bs)

_ . )
PD,G (t7 Q) = R
q
with py the usual density matrix for antineutrinos, p__ corresponding to a sterile state and p_ that cou-

ples the sterile with active antineutrino states. The generalized Hamiltonian in the antineutrino sector reads

gtz TED TED (B.6)
e AL ) |

Y

In the Hamiltonian expressions (B.3) and (B.6), the off-diagonal terms couple the neutrinos or antineutrinos
with sterile components, as in presence of magnetic fields [166].
Therefore one gets for the component of hp g(t) Eq.(B.3) the following expressions, by retaining contri-

butions up to order O(m/q) from the neutrino mass in the interaction terms

H(t,(f) = S(t7q) —CjV(t) _Cj' Vm(t)a (B7>
O(t,7) = e'Piel - V(t)Q—q, (B.8)
H(t,7) = ho(q), (B.9)
and for pp g(t) Eq.(B.6)

H(tv Cj) = S(tv q) - (j ’ V(t) - (j ’ Vm(t)7 (B-IO)
D @ % ﬁ 11
Bt 7) = ey V(t) (B)
If](tv (T) = _h0<Q)7 (B'IZ)

The quantities S(¢, q), S(t, ¢) and V(t) are defined in Eqgs. (4.6), (4.7), and (4.13) respectively. The mass

correction to the vector component of the self-interaction Hamiltonian reads

3
Voul(t) = —\/EGF/ dp {e_i%épﬂ(t,ﬁ)ﬁ + h.c.}

(2m)? 2p
d3 o
—V2Gr tr/ (2753 {e*“i’f’gp Q(t,ﬁ)% + h.c.}, (B.13)

which gives an extra contribution to the diagonal part of the generalized Hamiltonians.
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Geometric factor in the context of binary neutron

star merger remnants

) \\\ﬁffq‘;\‘

Figure C.1: Side view of the accretion disk, with the central object located at the center. The radius of the disk is flavor dependent and
is denoted R,,a. A neutrino is emitted near the disk at the point Qg, and then leaves it with a momentum cj’located by its spherical co-
ordinates (q, 9q, ¢q). The coordinate 7 is the distance between the location of the neutrino at time ¢ and its emission point, with the
corresponding cartesian coordinates (x, 0, 2).

We compute the geometric factor that is involved in [17, 18]
hi (1,0, Lg) = V2G> / dp { / (€(Q) - D) puo (1,0, p)dny,
—Jo Q,

),

where ¢ is the vector of the propagating neutrino, with coordinates (6,, ¢,), € (¢) is the unitary vector in-

(& @) - ) o (ro1. e,J)dnpa} | )

Doy
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troduced in Eq.(4.21), dn,,, denotes the differential neutrino number density. In the spherical coordinates

introduced before, € (§) reads

COS (g cos By + isin 0,
€(q) = go —iGy = | sinf, cosf, —icose, | (C2)

—sind,

hence,

€ (q) - p = (cos ¢, cos b, —isinb,)sinb, cos ¢,

+ (sin 6, cos 0, + i cos ¢,) sin B, sin ¢, — sinf, cos f,. (C.3)

With the approximation given by Eq.(4.35) for the density matrix, the angular integral that needs to be

performed is reduced and becomes

(€"(q) - p) dppd cos b, (C.4)

Yo

GL (r,0,) = /

Q

The procedure to perform the angular integral Eq.(C.4) is analogous to the case of the geometrical factor

appearing in the usual self-interaction Hamiltonian Eq.(4.34) (see Refs.[82, 84, 86]).

Emission point

rq ztan 0,

O g (qu»\

X

Vo

Figure C.2: Bird'’s eye view of the accretion disk. The emission point of the neutrino is located by its polar coordinates (rd, gp).

Following Ref.[137], we express the variables (6, ¢,,) as functions of the polar coordinates of the emission

point on the disk, (74, ¢) (Figure C.2). The following relations

1
tan 6, = ;\/x2 + 12 — 22714 CO8 P, (C.s)
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T — Trqcos Y
\/a:2 +r2 — 2ar 0080
d d ¥

(C.6)

cos ¢, =

withx = x¢+7rsinf,and 2 = 2o+ cos 0, enable to compute the Jacobian of the transformation, leading

to

Ry, 27 raz
/d(bpd cost, = / drd/ dep 572 (C.7)
e, 0 0o (224 22+ 71— 2xr c089)
Let us define ['* (ry4, 7, £,) such that

Ru,

GL () = [ dra(ras) T (rarty). (€3)
0

Then, using (C.3) and (C.7), the angular integration over ¢ can be performed and leads to :

% {(m+1) [z (cos ¢, cos B, — isin¢,) — zsinf,]

It (rg,r,t,) =
(d q) (ml

—4x73 (cos ¢, cos O, — isin Qﬁq)} , (C.9)

where m = (z +14)° + 22and | = (x — r4)> 4 2. Note that the integrals performed here are the same

as the ones in the case of the usual self-interaction term Eq.(4.37), but weighted differently. In the case of

¢q =0, 't is reduced to

T+ (rg, 7, ly) = LS/Q [(m+1) (zcosf, — zsinb,) — dar] cosb,] . (C.10)

(ml)

As for the geometrical factor along the neutrino direction of motion, one has

Rl/a
Gy, (r,0,) = / dra (raz) T (ras 1, £,) ()
0

where we define I (r4, 7, £,) similarly to I'*. It also involves angular integrals, with different weights as in

the case of the perpendicular term

21

I'(rg,rly) = /0 dp [1 — sin @, sin 6, (cos ¢, cos ¢, + sin ¢, sin ¢,,) — cos b, cos )]

1
. (22 + 22 +7r2 — 2ar 8/27 (Cr2)
d d COS 90)

where the angles 6, and ¢, must be expressed as functions of (7, ¢). The explicit -integration in (C.12)
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yields, for ¢, = 0

4 m —1 T
r ()= ——F — l 0 inf,) — 4xr?sin 0 .
(ra o) Iv/m ( m ) (ml)*/? [(m +1) (zcos b, + zsinb,) — dar;sinb,], (Cn3)

where the relation m — | = 4274 has been used, with m and [ defined previously, and E'(k) denotes Legen-

dre’s complete elliptic integral of the second kind
w/2
Ek) = / do V1 — k2sin 0, (C.14)
0

where we have extended the usual definition domain from k& € [0, 1] to & € [0, 1] N iR. Note that —I"/2
with the replacement ¢, — 7 — ¢, corresponds to the geometric factor C' given in [82]. Note also the

different convention used to denote the elliptic integral.
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Adiabaticity

We remind thatin the SU(2) isospin formalism the equations of motion are replaced by precession equations

where an effective magnetic field is built from the Hamiltonian. In the two flavor case it is given by

2 Re(H.;)
B=| —2mm(H.) |, (D)
Hee - Hx:c

and the effective isospins are constructed from the density matrices

2Re(pes)
—2 Im(pex> , (D.2)

gl
I
|

pee - pmc

The third component of the isospin vectors gives information on the flavor content, while the z- and y-
components of the isospins contain the mixings.

In our analysis of mass effects, we consider that at the helicity coherence resonance, flavor conversions are
frozen, which is well justified when MNR and the helicity coherence resonances are separated or the MNR
is ineffective. Hence, the system is effectively reduced to 2 X 2 corresponding to electron neutrinos and

electron antineutrinos. We can then define the effective magnetic field as a function of the elements of the
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generalized Hamiltonian (4.3), such that

2 Re(hg713)
—2 In’l(hg’lg) ) (D3)

1

v
3
|

hg i1 — hg 33

and the effective isospin
2Re(pe.")
Pn=51 —2Im(p") |- (D.4)
Pec — Pec
Within this formalism, the MSW resonance condition corresponds to the third component of the mag-
netic field being zero while the evolution is adiabatic if the precession of the isospins is fast compared to the
rate of change of the magnetic field. In this case, the isospins manage to approximately stay aligned with
the effective magnetic fields, so that the cosine of the angle between the total isospin and the magnetic fields
remains similar before and after the resonance. Another way of quantifying adiabaticity of the evolution is
through the gamma factor B
|BI°

dB )
D x B

v = . (D.s)

where B stands for B (D.1) or B, (D.3) in our notations. If v > 1 evolution is adiabatic.
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