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Abstract

The microstructural modelling of multiple microcracking with competing crack paths
and complex crack intersections, branching and interactions in heterogeneous quasi-
brittle cohesive grain-based materials is a complex task with many far-reaching
applications. For instance, transfer properties in grain-based rocks are strongly
impacted by microcracking, which requires its modelling. The numerical modelling
of such phenomena requires three main ingredients: (i) a proper account for the
microstructural heterogeneous geometry representation, i.e. a description of grain
boundaries, (ii) a discretization of the governing equations, allowing a kinematical
description of crack propagation, and (iii) the formulation of an efficient crack
propagation model.

In this thesis a flexible and general stable displacement–Lagrange multiplier
mixed formulation is developed to model distributed cracking in cohesive grain-based
materials in the framework of the cut finite element method using a non-conforming
background mesh. The displacement field is discretized on each grain separately, and
the continuity of the displacement and traction fields across the interfaces between
grains is enforced by Lagrange multipliers. The design of the discrete Lagrange
multiplier space is detailed for bilinear quadrangular elements with the potential
presence of multiple interfaces/discontinuities within an element. We give numerical
evidence that the designed Lagrange multiplier space is stable and provide examples
demonstrating the robustness of the method. Relying on the stable discretization, a
cohesive zone formulation equipped with a damage constitutive formulation expressed
in terms of the traction is used to model the propagation of multiple cracks at the
interfaces between grains. The damage propagation is governed by an energetic
formulation. To prevent the crack faces from self-penetrating during unloading,
a contact condition is enforced. The solutions for the mechanical fields and the
damage field are separately obtained and an explicit damage update algorithm allows
using a non-iterative approach. The damage formulation couples the normal and
tangential failure modes, accounts for different tension and compression behaviours
and takes into account the compression-dependent fracture energy in mixed mode.
The framework is applied to complex 2D problems inspired by indirect tension tests
and compression tests on heterogeneous rock-like materials.
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1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . 3
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Major contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 9

The aim of this chapter is three-fold. A short introduction to the challenges
of rock mechanics modelling is given. Then, with the application of the developed
computational framework in mind, a series of objectives and major modelling steps
are formulated, indicating which sections of the work elaborate on them. Finally, the
major contributions of the present work are emphasized.

This introductory chapter starts with the motivation of the thesis, explaining
why it is relevant to simulate cracking in heterogeneous grain-based materials. It
is well-known that heterogeneous materials exhibit complex behaviours which are
difficult to capture at the macroscopic level with phenomenological constitutive
equations. Therefore, the modelling is carried out at the meso-scale where the shape,
size distribution and material properties of the constituents can be taken into account.
These microstructural properties are considered as parameters and the developed
framework allows carrying out simulations on different realizations of aggregates of
grains. We focus our attention on quasi-static crack propagation in rocks as a practical
application. It turns out from the available literature that in many practically relevant
cases, it is a good approximation to assume that the cracks propagate along grain
boundaries (interfaces).

Restricting the possible crack paths to grain boundaries allows relatively cheap
simulations. For representing cracks, models can be based on the incorporation of
degradation of those interfaces according to a failure criterion. Alternatively, one can
assume that the cracks are possibly present on all the interfaces from the beginning,
but they are only activated at a position when a physical criterion predicts so. This
way, maintaining closed, a priori positioned would-be cracks leads to constraint
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2 Chapter 1. Introduction

equations. Their mathematical treatment is classical in the continuous setting but
can cause instability when the governing equations are discretized.

Experiments on rocks show that they can fail under compression if the accompa-
nying shear is large enough. Another experimental observation is that the shearing
fracture energy increases with normal compression. These phenomena, that have to
be accounted for, make the modelling challenging.

In view of such challenges, the major contributions of this work include the
formulation of a stable mixed cut finite element method with non-conforming Cartesian
meshes of Q1 elements arbitrarily cut by interfaces, choosing the crack path for
multiple competing cracks, and a cohesive model which takes into account the
variable fracture energy. The solution scheme allows an embarrassingly parallel
implementation.
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1.1 Background and motivation
Rocks are geological materials with complex behaviour due to many factors [103].
Some rock types are porous and in certain applications, the thermo-or hydromechanical
coupling cannot be neglected. Rocks, in most cases, contain pre-existing fractures both
at the macro- and at the micro-scale. Moreover, they are elastically inhomogeneous and
anisotropic. In “weak” rocks, creep and relaxation may be relevant mechanisms [103].
Also, rocks cannot be considered as virgin materials and due to tectonic movements,
rock masses are subjected to a pre-existing stress state.

Figure 1.1: Microstructure of a Lac du Bonnet granite. Mineral types: quartz (Qtz),
plagioclase (Plag), potassium feldspar (Kfsp), biotite (Bt). Microcracking types: grain
boundary (Grb), intragranular (Intr), transgranular (Tr). Picture taken from [115].

Making decisions in rock engineering problems is made more difficult due to
size effects. Commonly used rock mechanics tests typically operate on samples of
sizes ranging from 10mm to 500mm. By measuring their stress-strain response,
macroscopic data (Young’s modulus, Poisson’s ratio, etc.) can be obtained. However,
it is known that the variation in the type and size of the constituents may influence
the macroscopic properties. It is important to take the size effect into account when
making predictions on rock masses based on experiments. The surface roughness
of rock joints depends on the specimen size, leading to size effect as well. As the
hydromechanical properties also depend on the surface roughness, it is relevant to
characterize it somehow. The authors in [71] carried out experiments on different
sample sizes and realized that a minimum size is necessary so that the surface roughness
in a rock mass can be characterized by measurements on laboratory samples.
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Various failure mechanisms act in rocks. Experiments showed that failure of
granite in compression is governed by the following phenomena [120]: (i) closure of
existing microcracks, (ii) linear elastic deformation, (iii) crack initiation and stable
crack growth, (iv) unstable crack growth (v) post-peak behaviour. Microcracking
leads to the progressive degradation of the macroscopic properties.

We will consider here cohesive grain-based materials that are made up of tight
packing of constituents without significant void parts. To separate these grains,
non-zero traction is needed. Working with such cohesive grain-based materials,
including rocks, is important in many geomechanical applications. Nuclear waste
disposal in geological formations is nowadays considered. Although the type of the
neighbouring rock is selected to have low permeability, the excavation required for
disposal alters the stress state in the surrounding of the underground opening [190].
The stress redistribution in the excavation disturbed zone initiates microcracking in
the rock. The microcracks grow and nucleate to form larger scale fractures which act as
preferential pathways for fluid. The infiltration of nuclear waste to the surface through
these channels has serious environmental consequences. One of the major sources of
material nonlinear behaviour in brittle rocks such as granite is microcracking [175]. It
is therefore of significant importance to study the permeability increase with respect
to microcracking, which requires robust computational tools representing distributed
cracking.

Several experimental techniques exist to measure the material parameters at the
micro-scale and at the macro-scale. The ultrasonic pulse velocity testing was used
in [195] to determine the tensile and compressive strengths and Young’s modulus in
granites. Macroscopic laboratory tests such as the direct tension test, uniaxial and
triaxial compression tests, or the Brazilian test can provide the global strength and
Young’s modulus based on the measured stress-strain curve. The individual phases
(mineral species) often have different material properties that may be difficult to eval-
uate. Micro-indentation is a test procedure used to determine the micro-mechanical
properties. For heterogeneous materials, grid indentation is better suited [119]. The
fracture toughness can also be extracted from scratch test results. Similarly to the
characterization of the microstructure, numerical methods can also be used to investi-
gate which microscopic material property values allow reproducing an experimentally
observed probability distribution.

Newer modelling strategies and the improving computational capabilities made
numerical simulations a useful technique, complementing experimental approaches
to solve engineering problems in rock mechanics. Due to the lack of available data
and the complexity of rock behaviour, numerical simulations can often only provide
qualitative results [103]. They are however important because they can complement
experiments that have their own difficulties:

• long sample preparation time

• in heterogeneous materials, such as rock, the experimentally observed crack
path substantially differs for each sample. It is therefore almost impossible to
obtain the local characteristic material properties and the repeatability of the
experiments is also an issue.

• the response of rock samples is often brittle. Hence the loading device must
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have a very careful displacement control or mixed control facility; suitable
loading speed must be applied to achieve a quasi-static response and prevent
abrupt failure [194]

• due to size effect, the properties measured on the sample may not represent the
value of parameters in the large scale

Numerical methods allow the user developing a qualitative understanding of rock
fracturing and allows quickly performing parametric studies and sensitivity analy-
ses [103]. Depending on a specific engineering problem at hand, only few of the
previously mentioned mechanisms are considered in the developed model to manage
the complexity. Comparing the numerical and the experimental results is made harder
by the fact that real-world materials always contain heterogeneities and existing mi-
crocracks. If measurements are available only at the macro-scale, careful calibration
of the fine-scale quantities is required in the numerical model.

Rocks are heterogeneous both at the macroscopic and at the microscopic scales.
Macroscopic heterogeneity comes from the different rock types and from the pre-
existing fractures. The micro-level heterogeneity is partly caused by pre-existing
microcracks and the different mineral species with distinct material properties present
in the rock [118]. Accounting for such heterogeneities is crucial for an accurate
description of such geomaterials. The distribution and shape of the grains can be
determined by µCT, followed by image processing to map the colours of the CT image
to the aggregate types [119]. If the exact microstructure of a particular sample is not
considered important, computer-generated microstructures can be cheap alternatives.
They allow analysing the effect of specific features such as the size distribution, the
convexity and the clustering of species. Among the many microstructure generation
frameworks, we mention the one in [174], which is able to generate a wide variety
of, possibly densely packed, microstructures with great control. For cohesive grain-
based materials, Voronoi tessellations have long been applied [4, 121, 191]. Assigning
different elastic properties (E, ν) to the Voronoi cells was demonstrated to be able to
capture the effect of elastic heterogeneity [109].

The challenges of distributed microcracking modelling and the many important
applications motivated the topic of this thesis.
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1.2 Objectives
From the above introduction it becomes clear that the proper characterization of the
microstructure and the microcracks is crucial to understand the failure of rock-like
materials. This thesis is concerned with the numerical modelling of diffuse or multiple
microcracking in cohesive grain-based materials, with an emphasis on rocks such as
granite. By diffuse or multiple cracking, we mean a configuration in which cracks
can propagate along multiple, a priori known, paths with potential related crack
interactions, intersections and branching. This is not to be confused with completely
arbitrary, a priori unknown, microcracks modelled as damage growth in the bulk.
Although there exist numerous numerical techniques, some of them being reviewed
in Section 2.1, there is still room for new models and solution methods which are
accurate, consisting of physical parameters, and that require little user intervention.
It is not our intention to replace the existing modelling methodologies, rather we
wish to develop an efficient framework endowed with the following capabilities.

P. The physical model must capture some relevant mechanisms in the failure
process of rocks. It includes

P.1 an intergranular crack propagation framework. In grain-based rock mi-
crostructure the preferential locations for microcrack formation are often
the grain boundaries. This mechanism is called intergranular cracking.
Cracks going through the grain are referred to as transgranular crack prop-
agation. Several factors have an influence on the nature of the fracture
of polycrystalline materials. When studying piezoelectric polycrystals, it
was found that intergranular cracks are mainly present for small grains,
while transgranular cracks emerge as the average grain size increases [197].
Intergranular fracture is favourable in polycrystalline materials if the frac-
ture toughness of the interfaces is less than that of the grains, as reported
in [135]. The competition between inter-and transgranular fracture was
thoroughly analysed in [162], where the authors identified that the mag-
nitude of the fracture toughness of the grains and the grain boundaries
have a significant impact whether intergranular or transgranular fracture
is realized in quasi-brittle materials.

P.2 a failure criterion which takes into account the compression for damage
initiation. The compression-dependence of the mechanical response is
significant in rocks, especially considering heterogeneity and deep con-
figurations. It was observed that rocks do not only fail in tension but
also in shear combined with compression. In rock mechanics, two of the
most commonly used failure criteria are the Mohr-Coulomb and the Hoek-
Brown [95] criteria. Although well-suited for the shear and compression
regime, these two empirical failure envelopes are not successful in fitting
experimental results in tension. Therefore, both criteria were combined
with cut-offs in the tension part of the stress state.

P.3 a non-negligible fracture process zone. Initially, two types of approaches
were used in rock mechanics: the strength of materials and the linear
elastic fracture mechanics (LEFM). The first one predicts the onset of
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damage initiation when a certain failure criterion is met, but does not
model the post-peak response. LEFM can be used to investigate the
conditions for the propagation of a crack, but the validity requirements
of LEFM do not generally hold in rock masses. Indeed, cracks have
a considerable characteristic length compared to the whole sample size.
Furthermore, [154] noticed that in a deep underground configuration at
large confining pressure, the process zone is significant. This is why rocks
should be modelled as quasi-brittle and not completely brittle materials.

P.4 non-uniform fracture energy. Material parameters, including fracture
properties, of rocks are not uniform in general. The dependence of the
fracture energy on the compressive stress is indicated in Fig. 3.9. in [83].

P.5 a continuum-based model. Discrete modelling methods are a natural
choice for granular materials such as sand, but computations on initially
cohesive rocks can efficiently be carried out by discretization methods
that rely on a continuum description. The finite element method is widely
used because of its mature mathematical basis, its accuracy, and the
accumulated experience with it.

M. The mechanical model should

M.1 give rise to simple equations, the discretization of which does not lead to
a too costly numerical scheme. The grains of the rock are considered to
undergo small deformation and rotation, and are therefore described by
the equations of linear elasticity. All the complex phenomena are assumed
to take place at the grain boundaries. Recalling what we wrote in P.3,
this modelling choice begs for the use of the cohesive zone concept.

M.2 make use of the a priori known potential crack paths. Owing to criteria P.1
and M.1, all the interfaces are assumed to be completely open. To
suppress these openings before the crack actually appears there, constraint
equations are needed, which are detailed in Section 2.4. In addition to the
displacement field defined on the individual grains, the Lagrange multiplier
field is also present, responsible for enforcing the constraints.

M.3 couple well with the cohesive model. As the cohesive tractions of the
cohesive zone formulation are related to the Lagrange multipliers (shown
in Appendix A), the Lagrange multipliers are not eliminated from the
two-field formulation.

D. The discretization method

D.1 must lead to a stable discrete mixed method for reliability and optimal rate
of convergence. The background for stability is discussed in Sections 2.4.2.2
and 2.4.3, and is applied to our problem in Section 3.6.

D.2 should require no intervention from the user. Mesh generation for com-
plicated grain configurations can be challenging for an automatic mesh
generator. Human help in the meshing is tiring and time-consuming,
especially when many grain realizations are tested in statistical studies. To
decouple the function approximation from the mesh, the cut finite element
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method will be used. The idea behind mesh-independent methods is ex-
plained in Section 2.5 and will be used for our problem in Sections 3.4–3.5
of Chapter 3. By mesh-independent in this thesis, we point to a method
that allows solving the equilibrium problem based on a non-conforming
mesh, i.e. the mesh is decoupled from the domain. This is not to be
confused with meshless methods, which only contain nodes without a mesh
data structure.

D.3 should be scalable. The computational geometric algorithms ideally have
linear or close to linear complexity so that many grains can be handled in
a reasonable amount of time. Large grain count is necessary to represent
the real microstructure. Parallelization of the main steps of the complete
framework is also desirable.
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1.3 Major contributions
To complete the objectives worded above, the following main originalities are presented
in this thesis.

• A stable discrete Lagrange multiplier space is constructed for the displacement
space discretized with bilinear quadrilateral elements. The inf-sup conditions
are verified computationally to demonstrate that the constructed Lagrange
multiplier space is stable.

• An unfitted structured background mesh is sufficient to treat complex heteroge-
neous aggregates of grains with arbitrary polygonal shapes.

• An explicit interfacial damage formulation is developed for crack propagation
combining a Mohr-Coulomb criterion with tension cut-off and compression cap.
Contact is handled in this formalism and different behaviours for tension and
compression are taken into account with normal compressive stress-dependent
mixed mode fracture energy.

• The above features and the careful implementation enable to conduct fast
computations on highly heterogeneous structures.

• The use of the developed framework is illustrated based on indirect tension
test-like configurations (e.g. Brazilian test) and on uniaxial compression tests,
as frequently used on rock specimens in the literature.
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This chapter provides a literature review on research areas the subsequent chapters
heavily rely on.

The first topic is about crack propagation in rocks and is structured around three
concepts: the main phenomena underlying it, the existing models to describe it and
the numerical methods developed so far. All of these aspects are discussed in the view
of the objective to represent multiple, concurrent cracking in cohesive grain-based
materials.
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The continuity of the displacement and traction fields in the primal formulation
of the elasticity equations for disjoint bodies can be enforced by constraints. The
various techniques to achieve this are discussed in this chapter, and their strengths
and weaknesses are compared. Imposing constraint equations at the discrete level
for non-matching meshes requires special care and robust algorithms borrowed from
computational geometry.

When constraints are enforced with Lagrange multipliers or when mixed finite
elements are used, the discretized weak form gives rise to an algebraic saddle point
problem. The existence and uniqueness of such linear systems is important when
designing stable formulations. The solution of saddle point systems is more intricate
than linear systems arising from the single-field finite element methods, partly because
they are indefinite and often ill-conditioned.

Partition of unity based discretization methods became very popular over the last
twenty years. After giving the rationale of why they are useful in certain situations,
we compare some of these techniques, the way they generalize the finite element
method and the corresponding emerging challenges. We provide some applications
of these discretization methods, mainly concentrating on cracking. Our focus is on
the extended finite element method (X-FEM) and the cut finite element method
(CutFEM).
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2.1 Some modelling techniques for rocks

A very detailed overview of the use of computational methods in rock mechanics can
be found in [103]. Here we only highlight microstructure-based and phenomenological
models, homogenization and the discrete element method as the main class of models.

As mentioned in Section 1.1, the complex behaviour of rocks can be partly
attributed to their microstructure. It is rather difficult to construct phenomenological
constitutive laws at the macro-scale accounting for microstructural features. An
accurate macroscopic stress-strain relation therefore usually requires constructing
empirical expressions which fit the experimental data. However, except for a few
cases, experimental information is scarce. Furthermore, repeating experiments for
each loading case and material remains very time-consuming. An alternative for
modelling is to take into account the heterogeneity of the microstructure, on a scale
at which the behaviour of the constituent materials can be characterized by simpler
and well-understood constitutive models. When dealing with cohesive grain-based
geomaterials, the grains can be assumed to behave in a linear elastic way, and the
complex phenomena related to cracking can be assumed to remain restricted to the
grain boundaries (interfaces).

Some publications use macroscopic variables motivated by phenomena at the
micro/meso-scale. In [87], a macroscopic damage tensor – a symmetric second-order
tensor – was introduced. Its spectral decomposition shows that three mutually
orthogonal meso-cracks can be described by such a tensor. Their model also handled
meso-crack closure under compressive loading, resulting in the recovery of the elastic
moduli. This macroscopic damage model was extended in [88] by considering frictional
sliding on the surfaces of the meso-cracks as another dissipative mechanism. This
improvement allowed the partial recovery of the shear moduli as well. Frictional
sliding has a blocking effect on crack growth and is an important ingredient in
the microstructural modelling of rocks. The authors of [89] further modified their
previous model, keeping the macroscopic description. In that work, damage-induced
anisotropy was complemented with initial anisotropy by incorporating additional
tensors (so-called fabric tensors). In some rocks, irreversible strains can be important.
In [163], the authors added a term to the free energy function of [87] to account for
such irreversible strains without introducing plasticity. They tested their model on
the degradation of a Lac du Bonnet granite around a tunnel.

Modelling the whole rock mass at the micro-level is, of course, impossible with the
current numerical methods and computers. This is why homogenization techniques
became popular. Among the several homogenization methods, computational homog-
enization is the most successful for complex (evolving) microstructures, accompanied
by possibly large rotations (e.g. fragmentation of rocks). It was first used by [171]
and its main features are described in [78].

Homogenization is a powerful approach, allowing the incorporation of inter- and
transgranular cracking and multiphysics at the micro-scale. The effect of microcrack-
ing on the permeability increase in granite was analysed in [121] using first-order
computational homogenization for the mechanical problem. The RVE consisted
of an assembly of grains generated by Voronoi tessellation and intrinsic cohesive
elements were inserted between each pair of grains. An exponential cohesive law was
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parametrized with the interfacial damage, from which the permeability was computed.
Loading the RVE causes the microcracks to open, acting as fluid channels. The
phenomenological coupling of the permeability and the microcracking in [121] was
replaced by the parallel plate flow model in [122], relying on the computed crack
opening. The PhD thesis [190] and the related papers [191, 192] were dedicated
to the hydro-mechanical coupling at the micro-scale, combined with a macroscopic
second-order gradient model, to determine the localization in claystone.

Besides continuum models, rocks are often described by discrete particles at the
microstructural scale. These methods are preferred to continuum-based approaches
in case of fragmentation. The discrete element method (DEM) models granular
materials as an assembly of rigid or deformable parts, tracking the motion of the
constituents and their contact. It is well-suited for naturally fragmented materials or
when the complete understanding of the model is not known. On the other hand,
DEM simulations usually require many parameters to be calibrated based on available
experimental test data [149]. The DEM usually contains more parameters than a
continuum-based model. Those parameters can be classified as material properties
and numerical parameters [52]. The material properties at the scale of the particles
are either calibrated through macroscopic tests (Brazilian test, direct shear test,
compression tests) or directly measured (which is experimentally complicated). The
material properties in the DEM are similar to the that of the continuum models
at the scale of the grains (e.g. bond strength, Young’s modulus, bond stiffness).
On the other hand, the DEM requires several parameters that are based on purely
numerical grounds, such as the particle shape (often taken spherical to ease the
contact detection), damping parameters, resistance to particle rotation, etc. Among
these parameters, the particle shape has a major effect on the tensile to compressive
strength ratio [50]. The problem with spherical particles is alleviated by the clumped
particle model in [50], grouping neighbouring particles, handled as a single rigid body,
to achieve irregular shapes. To ease the process of calibration, calibration charts were
introduced in [70] to form dimensionless quantities. The combination of the FEM and
DEM, the so-called FEM-DEM, was introduced in [133] in which a finite element mesh
is associated with each discrete element which allows their deformation. An intrinsic
cohesive zone with a large initial stiffness is used to detect the onset and propagation of
damage. When the cohesive zone fails (complete separation), the discrete elements are
handled as individual bodies. Their positions are tracked by explicit time integration
and various contact algorithms ensure the non-penetration of the fragments. For
loading with high strain-rate, FEM-DEM is especially advantageous. However, FEM-
DEM models generally contain more parameters than the pure FEM method, resulting
in longer calibration time. Moreover, FEM-DEM simulations are computationally
more demanding.
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2.2 Modelling the degradation of quasi-brittle ma-
terials

The fracture process zone is the region ahead of the crack tip where nonlinearities
take place. Quasi-brittle materials are characterized by a relatively large fracture
process zone. Materials such as concrete, rocks, ice, masonry and some ceramics are
considered quasi-brittle. Their degradation is characterized by strain localization at
the continuum level. During this intensive deformation, caused by the initiation and
coalescence of microcracks, the gradient of the (equivalent) strain becomes large in a
narrow band. As the load increases, this band becomes narrower and narrower, and
finally, a macroscopic crack emerges. The macroscopic crack can be described by the
discontinuity of the displacement field across the crack surface. This representation
is referred to as discrete crack model. An energetically equivalent characterisation
is the smeared crack approach in which the crack is not represented as a surface of
discontinuity, but rather as a damaged region of finite width. Both approaches have
their advantages as detailed below.

2.2.1 Discrete crack models
Discrete crack approaches idealize the strain localization band as a sharp interface.
In continuum mechanics, the displacement solution to the boundary value problem
(BVP) describing an elastic body under loading is the minimizer of the potential
energy Π = U − F , where U is the strain energy and F is the work done by external
forces. Griffith’s theory of fracture [84] laid the foundation of fracture mechanics.
The amount of energy required to open a crack of surface area A is called the surface
energy and is computed as S = GcA, where the material constant Gc is the fracture
energy. On the other hand, the formation of a new crack dissipates a portion of the
so-far accumulated elastic energy of the body. This is characterized by the energy
release rate giving the decrease of the potential energy upon the formation of crack
faces:

G = −∂Π
∂A

(2.1)

If the released energy can cover the surface energy, the appearance of the crack
is favourable. Therefore, the energy balance according to Griffith can be written,
reformulated into a variational setting [76], as

ȦA ≥ 0 the crack can only grow (irreversibility) (2.2)
G ≤ Gc the energy release rate is bounded (2.3)
(G−Gc)ȦA = 0 crack propagates when the energy release rate is critical (2.4)

In Griffith’s model the crack path is assumed to be known beforehand. Then, the
computed crack increment determines the position of the crack tip. In many real-world
situations, the crack path is not known a priori. In those cases, additional techniques
have to be used to determine the direction of the crack growth (see [32] for a comparison
of some of those techniques in conjunction with the finite element method), which is
particularly difficult in three-dimensional crack propagation. Another drawback of
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the Griffith model is that only existing cracks can be propagated, it cannot initiate a
crack.

Linear elastic fracture mechanics (LEFM) builds on Griffith’s model, assuming
that the body is linear elastic everywhere except along the crack. In LEFM the
displacement and stress fields have singularities at the crack tip. The LEFM is
valid for brittle fracture in which the inelastic deformations are confined to the
neighbourhood of the crack tip.

The variational approach to brittle fracture was developed to compensate for the
deficiencies of the Griffith model. After reformulating Griffith’s original theory with
equations (2.2)–(2.4), the authors in [76] developed a variational framework which
contains the crack path as an unknown. The quasi-static displacement solution and
the energetically optimal crack path are obtained at the same time by finding the
global minimum of the total energy Π + S. In [33] an elliptic regularization was
proposed. A detailed description and the summary of its numerical implementation
can be found in the monograph [34].

In the previous models, it was assumed that the size of the fracture process zone
is negligible compared to the size of the body. In ductile and quasi-brittle materials
this assumption is not valid. The cohesive zone model (CZM) was introduced by
Dugdale [66] for ductile and by Barenblatt [16] for quasi-brittle materials. According
to this model, the nonlinearities (coalescence of microcracks, crack bridging, etc.) in
the fracture process zone are lumped to a single surface and are expressed in the
form of a traction-separation law. In other words, the CZM replaces the stress-strain
constitutive model of the localization band with a traction-separation relation. Let us
presume that the crack path for the whole fracturing process is known and is denoted
by Γ. Then the CZM distinguishes three parts of Γ as shown in Fig. 2.1. In the
fully developed crack region the tractions are zero. In the cohesive zone the tractions
change as a function of the displacement jump. Further away from the crack the
material is intact. The length of the cohesive zone is inversely proportional to the
brittleness of the material and is defined as [93]

ℓch =
EGc

f 2
t

, (2.5)

where ft is the tensile strength. The mathematical crack tip separates the cohesive
zone from the intact part of the body, while the physical crack tip marks the point
which still has zero traction. Originally written for mode I crack opening, the CZM
was later modified to work under local mixed mode loading. It is customary to define
equivalent, sometimes called effective, quantities in the cohesive zone: the equivalent
traction teq(tn, tt) and the equivalent displacement jump JuKeq(JunK, JutK), where the
subscripts denote the normal and tangential components of the traction vector t
and the displacement jump vector JuK. It is important to note that the tractions
remain finite as opposed to LEFM in which the stress is unbounded at the crack tip.
The CZM is a simple and powerful concept, being able to represent the continuous
degradation of the material through the softening law (marked in red in Fig. 2.1),
and can also predict the initiation of the crack due to the presence of the strength in
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the model. Moreover, the fracture energy of the Griffith model is also present in the
CZM:

Gc =

JuKeq,c∫︂
0

teq dJuKeq (2.6)

Another salient feature of the CZM is that it is unnecessary to track the position of
the crack tip as the traction-separation relation automatically gives the mathematical
crack tip when the strength teq,c is reached.
The shape of the traction-separation curve ideally comes from experiments. It does
not necessarily have to be a monotonically decreasing function but its maximum
value in a homogeneous body must be the strength, as explained in [67]. In the work
of Dugdale, the traction-separation function was constant. A linear relation was first
used in [93] and later polynomial and exponential functions were constructed. For
some quasi-brittle materials, the shape of the softening function has a significant
effect [198, 3]. For granite-type rocks, the strength and the fracture energy are the two
main parameters. The cohesive zone models can be derived from a potential function,
making them thermodynamically consistent in case of mixed mode loading [144].
Cohesive zone models were initially formulated with an initial elastic region [202], as
illustrated in Fig. 2.2a with linear softening. In contrast to these intrinsic cohesive
models, the extrinsic CZM of [42] is initially rigid with linear softening (see Fig. 2.2b).
It allows the adaptive insertion of the cohesive zones in the bulk when a certain
material failure criterion is met. The need for this additional failure criterion, not
contained in the cohesive zone formulation, led to the term extrinsic. The cohesive
zone is initiated when the equivalent traction teq at a point reaches the critical value
teq,c. This critical value is the strength and is given by some failure criterion.

fracture process zone

JuKeq

cohesive zone

teq

teq,c

JuKeq,c

mathematical
crack tip

physical
crack tip

fully developed crackintact material

crack lip

Figure 2.1: Cohesive zone

Common in the models reviewed so-far is that they represent the crack as a
sharp discontinuity. This allows handling contact and friction between the crack
lips, modelling fluid transport in open cracks and avoiding distorted meshes in the
FEM implementation. On the other hand, discrete crack models are valid only
after extreme localization. Therefore, they cannot describe precisely the microcrack
formation. Furthermore, their treatment in FEM needs special care as we will see in
Section 2.2.3.
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Figure 2.2: Two types of cohesive zone models

2.2.2 Smeared crack models
Continuum damage mechanics introduces a progressive degradation of continuum
properties of the material and is able to initiate and coalesce diffuse microcracks,
thereby naturally handling crack branching and crack interactions. The stress-strain
relation of isotropic damage in a linear elastic body is given by

σ = (1−D)C : ε, (2.7)

where D ∈ [0, 1] is the bulk damage. Standard continuum models using local stress-
strain relations are inadequate for softening because the width of the localization
band tends to zero upon mesh refinement, and therefore the dissipated energy tends
to zero as well. This way, failure can happen without energy dissipation, which is
clearly not physical. The reason for this behaviour of the model is that the governing
differential equations lose their ellipticity, indicated by the singularity of the acoustic
tensor [104].

To extend the validity of continuum damage models for highly localized strain,
they are regularized by introducing an internal length scale, which is a parameter of
the model and sets the size of the damaged zone [111]. Since this length is not zero,
the dissipated energy remains finite. In non-local constitutive models the stress at
a point depends not only on the strain at that point but also on the strain in the
neighbourhood [148]. Strain gradient models introduce higher-order gradients of the
strain field [146]. These higher-order strains appear with coefficients involving the
length scale. As they include higher-order derivatives, additional boundary conditions
need to be imposed. Others keep the Cauchy continuum description and introduce the
gradients of internal variables, such as the gradient of the damage. Introduced in [33],
the phase-field model is an elliptic regularization of the Francfort-Marigo functional
of [76] to tackle its two main difficulties: strong discontinuity and unknown crack
path, both difficult to implement in the conventional FEM. The solution proposed
in [33] consists of including a function – later called phase-field – varying between
0 (undamaged) and 1 (fractured), defined on the whole domain. An additional
parameter ℓ0, the length scale, was also introduced. It was proved that this modified
functional tends to the original one in [76] as ℓ0 → 0.

The crack band model was put forward in [21] as a simple alternative to the
previously mentioned regularization techniques. In this model, the stress-strain
relation is not fixed for a given material, but it is scaled according to the width of



2.2. Modelling the degradation of quasi-brittle materials 19

the localization band. The crack band model is equivalent to the CZM in the sense
that the same strength is used and the fracture energy is also set to be the same by
changing the constitutive law according to the width of the band. Its implementation
in FEM is easy because only the material stiffness needs to be reduced. Since the
correspondence of the fracture energy is derived for uniaxial tension, and the stress
state in the crack front is not uniaxial, not the same amount of energy is dissipated
for different band widths [105]. For skewed finite element meshes, an equivalent
crack band width must be determined, and simple criteria based on element area
do not give proper results [105]. Therefore, the crack band model is an easy-to-use
but inaccurate method to circumvent the pathological mesh-sensitivity of softening
materials in the FEM.

Given that continuum damage models are better at predicting the initial phase of
degradation and discrete crack models have advantages for fully developed cracks,
some attempts were made to implement a transition from continuum damage to
sharp discontinuity in an automated way. Reference [44] describes the transition
from a non-local damage model to CZM. The thick level set approach [130] is not
only a regularization technique but it also automatically inserts sharp discontinuities
in the location where the material is completely damaged. We refer to [189] for an
up-to-date review on the existing continuous-discontinuous models.

2.2.3 Discretization methods
The finite element discretization of continuum damage models requires sufficiently
many elements in the width of the band of localization to be able to capture the
large strain gradient. If the band is narrow, i.e. the characteristic length scale is
small, a fine mesh is needed. If it is initially not known where the localization takes
place, a very fine overall mesh is necessary, leading to a significant computational cost.
Moreover, occasional remeshing is required to avoid the overly distorted elements. In
phase-field models, the additional difficulty lies in finding the global optimum of the
phase-field functional which is numerically very challenging.
From now on, we concentrate on the discretization of discrete crack models.

The FEM working with C0 shape functions is not capable of representing strong
discontinuities within the element. The classical solution is to fit the mesh in such
a way that the crack lies on element edges. Assigning distinct degrees of freedom
to the nodes of the elements neighbouring the crack discontinuity allows the crack
to open. Every time the crack propagates, the mesh needs to be modified in the
vicinity of the new crack increment. Even though better and better meshing tools are
available, the solution from the previous mesh needs to be transferred to the current
mesh. Projecting functions between unrelated (i.e. unstructured) meshes is costly
and introduces errors. This motivated researchers to design finite element methods
which can capture the discontinuity within the element. The basic assumption of
the enhanced assumed strain (EAS) formulation [168] is that the strain tensor can
be decomposed into the sum of a compatible part, ∇su, and an incompatible part.
The incompatible part is again written as the sum of a bounded and an unbounded
term. Substituting these decomposed strain tensors into the Hu-Washizu weak form
and choosing the space of enhanced strain fields to be orthogonal to the space
of stress fields, the stress unknowns and then the incompatible strain unknowns
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can be eliminated at the element level. The advantage of EAS is that the extra
degrees of freedom (discretized enhanced strain field) are defined at the element
level. However, the EAS only provides a piecewise continuous displacement jump
(i.e. the crack path is not continuous) across the element boundaries. In [153] the
EAS formulation was extended to handle both strong (emerging microcracks) and
weak (matrix-inclusion boundary) discontinuities. A two-scale approach was used
to simulate crack propagation in concrete, where the aggregates were assumed to be
linear elastic bodies and the cohesive model was an extrinsic exponential CZM. The
paper demonstrated that such simple constitutive relations at the meso-scale are able
to represent the experimentally observed anisotropy at the macro-scale. The extended
finite element method (X-FEM) is a newer method, which is not an element-based
but a node-based approach. Therefore, the displacement jump can be interpolated
continuously across the element edges/faces. Moreover, the crack tip enrichment
further improves the accuracy of X-FEM. Also, the element type is not restricted as
opposed to the EAS method. On the other hand, the computational complexity is
higher than that of the EAS because the enriched degrees of freedom are coupled. The
X-FEM will be presented in details in Section 2.5.3, therefore only its applications to
cracking is discussed in this section.

Implementing the CZM into a FEM framework was first done in [93]. In the
conventional FEM, cohesive zones are zero-thickness interface elements. If the crack
path is known (e.g. debonding of composites), these interface elements can be inserted
along the crack path. In the intrinsic CZM, the initial elastic part of the constitutive
model permits to represent some elastic deformation. In case of an unknown crack
path, these cohesive elements are inserted between each pair of bulk elements. To
suppress the early activation of the intrinsic cohesive zones, a high penalty (also
called dummy) stiffness enforces the closure of the cohesive zone. This method is easy
to implement but a reasonably fine mesh is required to capture the true crack path.
Moreover, the crack path in the computation is restricted to element edges/faces,
which renders the result mesh-dependent. An equally unpleasant consequence of the
large penalty stiffness is the large condition number of the system matrix. Furthermore,
one has to choose a proper quadrature scheme for interface elements. The use of
Gauss-Legendre quadrature rules results in oscillating traction profiles. As the traction
appears in the cohesive relation (2.6), the computed opening becomes inaccurate.
The first explanation of this behaviour was published in [158] for interface elements.
It turned out that the exact Gauss-Legendre integration couples unrelated degrees of
freedom of the interface element. If the quadrature points are placed at the nodes of
the interface element, the spurious coupling is not present because the shape functions
are zero at the unrelated quadrature points. This is why low-order Gauss-Lobatto or
Newton-Cotes quadrature formulae solve the oscillation problem. On the other hand,
if the dummy stiffness approach is used in X-FEM, the coupling of the unrelated
degrees of freedom cannot be eliminated with this technique [169]. An alternative
to the a priori insertion of interface elements is the application of an extrinsic CZM
for which the complications mentioned before do not exist. The adaptive insertion
of extrinsic cohesive zones requires flexible data structures to rearrange the mesh
connectivity every time the crack is extended. Based on the extrinsic CZM of [42],
the authors in [143] described a reference implementation in C. The X-FEM was
also used with cohesive zones, first in [200], who inserted extrinsic cohesive zones
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on-the-fly. A similar approach in [124] used the phantom node method to represent
the discontinuity across the crack faces. In Ref. [125] instead of the four singular
crack tip functions used in LEFM, a single non-singular tip enrichment function was
introduced to account for the finite displacement at the cohesive crack tip. The crack
length control could tackle the snap-back of the load-displacement response and the
use of the stress intensity factors improved the accuracy of the crack growth condition
compared to the local stress evaluation. The CZM for 3D problems with contact
and unloading detection was considered in [74]. A three-field formulation inspired
by [199] was the starting point in [155] to create a stable X-FEM approximation for
a priori closed cracks.

A challenge in the discrete crack methods is how to locate the crack tip. In the
CZM the progressive evolution of the interfacial traction automatically separates
the traction-free (fully open) crack from the partially open cracks (fracture process
zone). However, in case of brittle fracture, the crack tip must additionally be located.
In [183] the same crack tip enrichments were used for 3D planar cracks as what is
conventionally utilized for 2D in LEFM. An alternative in 3D is to use the Heaviside
enrichment only but with h− p refinement [65]. If the crack tip is not represented, it
must lie on the element boundary. Therefore, the nodes of the edge containing the
crack tip are not enriched with the Heaviside function [200]. Similarly, the crack tip
element is not doubled in CutFEM [172].

The other difficulty in discrete crack models is crack branching. The authors
of [56] introduced special enrichment functions to enable crack branching, which
applied the Heaviside enrichment for each crack segment with additional enrichment
functions at the junctions. In [37] the growth of multiple cracks was modelled using
the theory of linear elastic fracture mechanics (LEFM), requiring the handling of
multiple crack faces and crack tips, and a crack growth condition. For an elaborate
overview of X-FEM applied to cracking problems, [186] is suggested for reading.

Finally, we mention the element deletion technique, an old and very simple method,
which does not need to represent the strong discontinuity, therefore it is applicable in
the conventional FEM without any remeshing. In the element deletion method the
crack is represented by a set of deleted elements. Technically, the elements are not
removed, but their stress and stiffness are set to zero. The element deletion technique
allows the standard FEM to model fracture with minimal modification of the code.
Although the energy dissipation on an element can be scaled so that it agrees with
the surface energy needed to open the crack segment, the method is inherently mesh-
dependent and produces unphysical crack paths especially for structured meshes. The
element deletion, the inter-element crack and the X-FEM were compared on several
benchmark problems for dynamic crack propagation in [173].

Intergranular cracking of polygonal grains has been investigated in many works
using different numerical techniques. Interpolation defined on polygons is useful when
a domain made up with polycrystalline grains need to be discretized. The Voronoi
cell finite element method (VCFEM) [79], which treats each Voronoi cell as a finite
element, was coupled with a three-level homogenization procedure in [80] to simulate
damage propagation in polycrystalline and porous materials. The quite recent virtual
element method (VEM) found an application in cracking of cohesive grain-based
materials in [26]. Brittle fracture in realistic polycrystalline microstructures was
examined using the X-FEM in [185] and in the related paper [182]. The competition
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between intergranular and transgranular fracture was determined by the ratio of the
grain internal and grain boundary fracture toughness values. The authors in [170]
introduced linearly independent generalized Heaviside enrichment functions along
with a cohesive zone formulation to allow intergranular crack opening. This framework
was utilized in [162] to thoroughly study the effect of the cohesive strength, fracture
energy and the resulting cohesive length on the crack path and the load-displacement
response. The boundary element method (BEM) with a linear cohesive law on the
grain boundaries was used in [161] to study intergranular cracking. Only the grain
boundaries need to be discretized in this formulation. Inter-and transgranular cracking
in 2D and 3D was analysed by BEM in [85].
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2.3 Variational formulation and discretization

To understand the subsequent techniques, let us consider the following abstract
variational problem {︄

Find u ∈ U such that
a(u, v) = ℓ(v), ∀v ∈ V

(2.8)

where U and V are vector spaces endowed with norms ∥ · ∥U and ∥ · ∥V , respectively.
Furthermore, a(·, ·) is a continuous bilinear form on U × V and ℓ(·) is a continuous
linear form on V . By ℓ(v) the duality pairing ⟨ℓ, v⟩V ′,V is meant, where V ′ is the
topological dual space of V , i.e. the space of continuous linear functionals on V . The
Lax-Milgram lemma, and under more general conditions, the Banach-Nečas-Babuška
theorem ensures the well-posedness of (2.8) [68].

In general, the variational problem (2.8) can only be solved numerically. The
Galerkin method is a discretization framework which replaces U and V with the
finite-dimensional vector spaces Uh (trial space) and Vh (test space). Then the discrete
version of (2.8) becomes:{︄

Find uh ∈ Uh such that
ah(uh, vh) = ℓh(vh), ∀vh ∈ Vh

(2.9)

A discretization method is said to be consistent if the exact solution u ∈ U satisfies
the discrete problem, i.e. ah(u, vh) = ℓh(vh),∀vh ∈ Vh. The method is conforming
if Uh ⊂ U and Vh ⊂ V . The bilinear form a(·, ·) is called coercive if ∃α > 0 such
that a(u, u) ≥ α∥u∥2U , ∀u ∈ U . The conditions for the well-posedness of the discrete
problem (2.9) and the error estimates depend on the type of the discretization.

In a conforming and consistent discretization, the well-posedness of the continuous
problem (2.8) directly implies the well-posedness of its discrete version (2.9) and Céa’s
lemma gives the best approximation property. Additional symmetry and coercivity
assumptions on a(·, ·) further sharpen the error bound. When the discretization is
conforming but inconsistent, the first Strang lemma is applicable, while in case of
an inconsistent and non-conforming case, the second Strang lemma can be used.
For the detailed mathematical background on these topics, see e.g. [68]. A special
case of the Galerkin method is the Bubnov-Galerkin method, which uses the same
space as trial and test function spaces: Vh = Uh. The finite dimensional space Vh is
given by its basis {ψi}dimVh

i=1 , with dim denoting the dimension of a vector space. The
finite element method (FEM) is one of the most common discretization methods to
systematically create the approximation functions ψi with the help of a mesh.

The discretization is demonstrated on the Poisson equation with inhomogeneous
Dirichlet boundary condition. Although this is the simplest elliptic PDE, it has all the
characteristics we will need later in the thesis. Moreover, this boundary value problem
(BVP) has a well-known treatment with weak constraints, making the methods of
Section 2.4.2 comparable. We note that the linear elasticity equation, used in this
thesis, could have been considered as well, but that would not add more information
about the core of the techniques and would make the presentation obfuscated. The
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model problem is the following.

−∆u = f on Ω

u = g on Γ
(2.10)

where Γ is the boundary of the domain Ω. We define the spaces V = H1(Ω),
Vg := {v ∈ V | v|Γ = g} and V0 := {v ∈ V | v|Γ = 0}, where v|Γ = g is the shorthand
notation for γv = g with γ : H1(Ω)→ H1/2(Γ) being the trace operator. The source
term f is assumed to be f ∈ L2(Ω). Then the weak form of (2.10) reads:⎧⎪⎨⎪⎩

Find u ∈ Vg such that
a(u, v) = ℓ(v), ∀v ∈ V0
where a(u, v) = (∇u,∇v)Ω, ℓ(v) = (f, v)Ω

(2.11)

with (·, ·)X denoting the L2 inner product on X. For a discussion on the spaces H1

and H1/2 the reader is referred to [69]. The Bubnov-Galerkin discretization of (2.11)
is: ⎧⎪⎨⎪⎩

Find uh ∈ Vg,h such that
ah(uh, vh) = ℓh(vh), ∀vh ∈ V0,h
where ah(uh, vh) = (∇uh,∇vh)Ω, ℓh(vh) = (f, vh)Ω

(2.12)

By comparing (2.12) with (2.11), it is clear that assuming ah = a, ℓh = ℓ, and
integrating by parts shows that the consistency error is zero: ah(u, vh)− ℓ(vh) = 0,
∀vh ∈ V0,h. We used an abuse of notation here: by u, the (unknown) representative (e.g.
an interpolant or projection) ŭu ∈ Vh of u ∈ V is meant. Therefore, the Lax-Milgram
lemma gives the well-posedness of the discrete problem. A boundary condition is said
to be strongly enforced if it is treated as an essential boundary condition, i.e. imposed
to the approximation space, as done so in this case.



2.4. Constraints 25

2.4 Constraints
As stated in the introduction, all the interfaces are assumed to be completely open
from the beginning in our model. Therefore, constraints are needed to suppress
these openings (displacement jumps) before the crack actually appears there. In this
section we review some techniques used for weakly enforcing constraint equations. It
is common in the different discretization methods which use non-matching meshes
(fictitious domain methods, immersed boundary methods, X-FEM, CutFEM, etc.)
that special care needs to be taken to obtain a stable solution when constraints are en-
forced weakly. After giving the rationale of dealing with constraints in computational
mechanics, this section provides an overview of the most commonly used constraint
enforcement techniques and their use in unfitted discretizations. As most of these
methods demand stabilization to achieve a non-oscillatory solution, we compare the
main stabilization approaches.

2.4.1 Applications leading to constraints
We focus on constraints in continuum solid mechanics. Such constraints may be
met in various contexts. Rubber-like materials are incompressible, a phenomenon
existing in solid mechanics that requires the use of constraints [17]. This example is
characteristic of the bulk behaviour. Conversely, jump conditions relate the states
of a quantity on two sides of an interface. Material inhomogeneity in solids causes
jump in the strain (also called weak discontinuity). On the other hand, a strong
discontinuity is associated with a jump in the displacement field, i.e. with the opening
of cracks. When two bodies are in contact, the displacement jump at the contact
point is zero, a constraint that should be enforced to avoid interpenetration.

As a reflection of such physical situations in which constraints are required,
constraints are naturally present in computational methods too. It is often convenient
both from the mesh generation and from the parallel solution viewpoints to generate
unrelated meshes on subdomains. The continuity across these subdomains that would
be physically required, has to be maintained by constraints. However, enforcing such
boundary or interface conditions in the function space is not possible in meshless and
unfitted finite element methods. In those cases, the conditions are therefore weakly
prescribed as constraints.

2.4.2 Methods to weakly enforce constraint equations
Non-conforming finite elements, e.g. the Crouzeix-Raviart element [54] have long
been used. An alternative weak formulation of (2.11) is⎧⎪⎨⎪⎩

Find u ∈ V such that
a(u, v) = ℓ(v), ∀v ∈ V, u|Γ = g

where a(u, v) = (∇u,∇v)Ω, ℓ(v) = (f, v)Ω

(2.13)

In the discretization, one may choose to select ah ̸= a or ℓh ̸= ℓ. Such a choice is
made for instance when the integration is performed with a non-exact quadrature
rule or when stabilizing terms are added to the weak form. In some cases, it renders
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(a) Conforming mesh (b) Non-conforming mesh

Figure 2.3: Conforming and non-conforming meshes for a square domain with a hole

the method inconsistent as in the penalty method. However, a wise choice of ah and
ℓh can restore the consistency as done in the Nitsche method. The lack of conformity
or consistency is sometimes referred to as a “variational crime” [178]. For further
information on such issues, the reader is referred to Chapter 10 in [35].
A particular discretization method needs to construct a basis for Vh. In the FEM, the
goal is to choose the mesh such that it fits to the boundaries and the internal material
interfaces. It that case, due to the Kronecker-delta property of the shape functions,
the constraints (including the boundary conditions) can be strongly prescribed by
simply modifying the nodal values. This was done in (2.12), which is the standard
H1

0 -conforming discretization of the Poisson equation. On the other hand, in many
practical cases, it is inconvenient to work with subspaces of H1

0 because the Dirichlet
boundary conditions need to be satisfied a priori. In FEM, if the mesh is not fitted
to the geometry (called unfitted, non-matching or non-conforming1 mesh), nodes
no longer reside on the material interfaces or the boundaries. The comparison of a
conforming and a non-conforming mesh is illustrated in Fig. 2.3. The high quality
conforming mesh in Fig. 2.3a was obtained with the Matlab code distmesh [147].
To the right, the same domain is embedded to a simple non-matching background
mesh.

One way to build in the constraints to the function approximation is (local)
remeshing so as to create a fitted mesh. Another possibility is the modification of
the basis functions so that collocation is made possible. However, neither of these
methods are convenient, especially for evolving interfaces. The remaining choice is
therefore to weakly enforce the constraints by modifying the variational formulation
instead of imposing them to the finite element space. Although it provides great
flexibility, the well-posedness of the discrete problem in this case cannot be derived
from the well-posedness of the continuous problem. In what follows, we show how the
three most common methods – penalty, Lagrange multiplier and Nitsche methods
– handle the constraints. The example is the Poisson problem analysed before, but
other constraints could have been regarded as well, e.g. the jump condition.

1The mesh-conformity is not to be confused with a conforming discretization. It is possible to
define a non-conforming discretization on a conforming mesh, as it is done in the discontinuous
Galerkin method.
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2.4.2.1 Penalty method

The penalty method was introduced in link with the FEM in [8] and later used in
non-matching discretization methods, e.g. in X-FEM [48]. The penalty discretized
formulation of (2.13) is the following⎧⎪⎪⎪⎨⎪⎪⎪⎩

Find uh ∈ Vh ⊂ V such that
ah(uh, vh) = ℓ(vh), ∀vh ∈ Vh

where
ah(uh, vh) = (∇uh,∇vh)Ω + τ⟨uh, vh⟩Γ

ℓ(vh) = (f, vh)Ω + τ⟨g, vh⟩Γ

(2.14)

Although simple to implement, one problem with the penalty method is that it is
inconsistent. It is easy to show that the consistency error is

ah(u, vh)− ℓ(vh) = ⟨∇nu, vh⟩Γ, (2.15)

which does not vanish for arbitrary vh ∈ Vh. The other disadvantage of the penalty
method is that a sufficiently large penalty parameter τ is needed to prescribe the
constraint accurately enough. However, for large penalty parameters, the interfacial
flux oscillates and the linear system arising from the discretization becomes ill-
conditioned. It was shown in [74] that the penalty approach to enforce zero opening
in the cohesive zone is not a robust method.

2.4.2.2 Lagrange multiplier method

As the penalty method, the Lagrange multiplier method was also first applied in
the FEM by Babuška in [9]. The Lagrange multiplier method is an instance of the
abstract mixed formulation⎧⎪⎨⎪⎩

Find (u, λ) ∈ V × Λ such that
a(u, v) + b(λ, v) = ℓ(v), ∀v ∈ V
b(u, µ) = m(µ), ∀µ ∈ Λ

(2.16)

where a(·, ·) and b(·, ·) are continuous bilinear forms [30]. The formulation (2.16) is
also called a saddle point problem which comes from the observation that if a(·, ·) is
symmetric, the solution to problem (2.16) is the saddle point of the functional

L(u, λ) = 1

2
a(u, u) + b(u, λ)− ℓ(u)−m(λ) (2.17)

Applying (2.16) to our model problem (2.10) yields⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Find (u, λ) ∈ H1(Ω)×H−1/2(Γ) such that
a(u, v) + b(λ, v) = ℓ(v), ∀v ∈ H1(Ω)

b(u, µ) = m(µ), ∀µ ∈ H−1/2(Γ)

where
a(u, v) = (∇u,∇v)Ω, b(u, µ) = ⟨u, µ⟩Γ

ℓ(v) = (f, v)Ω, m(µ) = ⟨g, µ⟩Γ

(2.18)
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where the Lagrange multiplier λ was introduced to enforce the Dirichlet boundary
condition as a constraint. Integration by parts allows us identifying the Lagrange
multiplier as the normal derivative of the unknown field u:

λ = −∇nu|Γ. (2.19)

The existence and uniqueness of the solution to (2.16) is guaranteed for any
(f, g) ∈ V ′ × Λ′ if the following two conditions are fulfilled [36]:

1. coercivity of a(·, ·) in the kernel of b(·, ·): ∃α > 0 such that

a(v, v) ≥ α∥v∥2V , ∀v ∈ ker b(v, λ) := {v ∈ V | b(v, λ) = 0,∀λ ∈ Λ} (2.20)

2. inf-sup condition on b(·, ·) (LBB condition): ∃β > 0 such that

inf
λ∈Λ\{0}

sup
u∈V \{0}

b(λ, v)

∥v∥V ∥λ∥Λ
≥ β (2.21)

Moreover, the a priori stability estimate

∥u∥V + ∥λ∥Λ ≤ c(∥f∥V ′ + ∥g∥Λ′) (2.22)

holds. The individual fields u and λ are bounded by the data, given as

∥u∥V ≤
1

α
∥f∥V ′ +

2∥a∥
αβ
∥g∥Λ′ , (2.23a)

∥λ∥Λ ≤
2∥a∥
αβ
∥f∥V ′ +

2∥a∥2

αβ2
∥g∥Λ′ , (2.23b)

which reflects the importance of the stability constants α and β. If these constants
are not bounded away from zero, the errors in the data are significantly magnified
and the a priori estimates (2.23a)–(2.23b) can only guarantee a poor approximation.
The conforming discretization of (2.16) is⎧⎪⎨⎪⎩

Find (uh, λh) ∈ Vh × Λh such that
a(uh, vh) + b(λh, vh) = ℓ(vh), ∀vh ∈ Vh
b(uh, µh) = m(µh), ∀µh ∈ Λh

(2.24)

with Vh ⊂ V and Λh ⊂ Λ.

Remark 1. A distinction is made between hybrid and mixed finite elements [139].
A hybrid finite element method uses independent approximations for the unknown
within the elements and for its trace on the boundary. A mixed finite element method
uses independent approximations for the unknown and for its derivatives within the
elements. Since more widespread in the literature, we will use the term mixed for the
rest of the work.
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Due to conformity and the unchanged linear and bilinear forms (compare (2.16)
with (2.24)), the discrete version of (2.18) is formally obtained by the writing the
h subscript. To have a stable discrete method, the constants αh, βh > 0 must be
bounded irrespective of the mesh size h. In practice, satisfying the discrete version of
(2.20) is usually simple. On the other hand, proving that the discrete inf-sup condition
(2.21) holds is often very difficult because it involves the interplay of two spaces, Vh
and Λh. In many cases, the most convenient choices of these spaces result in an
unstable approximation because limh→0 βh = 0 upon mesh refinement. The inf-sup
test [46], a numerical test, is a necessary condition for (2.21) to be satisfied. This
numerical validation proved to be robust in practice. In particular, the inf-sup test
has been used successfully to assess the stability of formulations for incompressible
materials [46], a contact algorithm with the Lagrange multiplier method [18], a shell
element [19], a thermo-hydro-mechanics problem [134], and a four-field formulation
of fluid flow in porous media [86], among others. We will present it in details for
our problem in Section 3.6.2. Well-known stable approximation schemes of saddle
point problems include the Taylor-Hood elements for the Stokes equation that use
one degree higher piecewise continuous polynomials for the velocity field than for the
pressure field. Stabilization techniques, discussed in Section 2.4.3, enable selecting
more versatile spaces Vh, Λh.

Two methods which use Lagrange multipliers to enforce the inter-subdomain
continuity of fields are the mortar method [24] and the FETI method [72]. The main
difference between them is how the Lagrange multiplier field is approximated [108].
Traditionally, the discrete Lagrange multiplier space in the mortar finite element
method consists of piecewise linear functions (P1), modified to constants at junctions
(where more than two subdomains meet). The corresponding mathematical theory
is mature for planar interfaces, while [150] demonstrated numerically how to do
mortaring on curved interfaces. The authors came to the conclusion that the piecewise
constant (P0) approximation is stable for closed interfaces (coinciding endpoints)
only, whereas P1 is stable with the constant modification at the endpoints.

The penalty method can be derived from the Lagrange multiplier method by
substituting λ = τ

2
(u− g) into (2.17) and taking the directional derivative.

One advantage of the Lagrange multiplier method is that general nonlinear
constraints can be prescribed. The Lagrange multiplier in interface problems often
has the physical meaning of the interfacial flux, which is usually of physical interest.
Obtaining it as part of the solution of a mixed method gives higher accuracy compared
to if it was computed by post-processing the primary field. Although finding a stable
pair (Vh,Λh) is problem-dependent and challenging, once it is done it provides a
high-performance element. Disadvantages of the Lagrange multiplier method include
the already discussed problem of selecting a stable discretization scheme, the increased
number of unknowns and that the matrix is indefinite which precludes the use of
some fast iterative solvers and makes the preconditioning more complex.

2.4.2.3 Nitsche method

The Nitsche method, proposed in [138], is a variationally consistent modification
of the penalty method. Its idea is to remove the inconsistency (2.15) by adding
the so-called consistency term ⟨∇nu, vh⟩Γ to ah. The symmetry term ⟨u− g,∇nvh⟩Γ
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is also added in the original version of Nitsche’s method. As u|Γ = g, it does not
introduce further inconsistency. The penalty term (often referred to as stability term)
is kept to provide the coercivity of ah, and is scaled with the reciprocal of the mesh
size. So the discretized expression of Nitsche’s formulation is⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Find uh ∈ Vh ⊂ V such that
ah(uh, vh) = ℓ(vh), ∀vh ∈ Vh

where
ah(uh, vh) = (∇uh,∇vh)Ω − ⟨∇nuh, vh⟩Γ − ⟨uh,∇nvh⟩Γ +

τ

h
⟨uh, vh⟩Γ

ℓ(vh) = (f, vh)Ω − ⟨g,∇nvh⟩Γ +
τ

h
⟨g, vh⟩Γ

(2.25)
There exist also unsymmetric and weighted versions of the original Nitsche formulation.

Nitsche’s method bears similarities with other discretizations. It can be obtained
from the Barbosa-Hughes stabilization as shown in [176] for matching meshes and
in [107] for coupling non-matching meshes. It can also be derived from the Lagrange
multiplier method with the substitution λ = −∇nu+

τ
2h
(u− g) in (2.17).

2.4.3 Stabilizing constrained formulations
In the FEM, special elements were designed specifically in order to satisfy the discrete
version of the inf-sup condition for certain PDEs. Here, we restrict our attention to
mixed methods arising from the introduction of constraints with Lagrange multipliers,
especially along interfaces when using non-matching meshes, as will be used in the
rest of the thesis. A straightforward way to construct the discrete Lagrange multiplier
space would be to create a mesh on the interface, consisting of nodes obtained by the
intersection of the element edges with the interface, see Fig. 2.4. This is a convenient
choice because the quadrature and the assembly can be readily done for each cut
element. However, such a choice results in oscillations in the Lagrange multiplier field,
as first demonstrated in [101]. The reason of this instability is that the dimension
of the Lagrange multiplier space is too large compared to the dimension of the
displacement space. By properly selecting a subset of the nodes on the interfacial
mesh, a stable approximation can be obtained [129]. This method therefore decreases
the dimension of Λh with respect to Vh. An improvement of that algorithm, based on
a bulk mesh, was published in [23].

Γ

ψ

1
2

3
4 Γ

ψ1 ψ2 ψ3 ψ4

1 2 3 4

Figure 2.4: Interfacial mesh for the discretization of the Lagrange multiplier field.
This naive approach is not stable [101].

Another way to avoid a too rich approximation space for Λh compared to Vh is to
keep the space Λh intact and increase dimVh. This strategy is followed in methods
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referred to as bubble stabilization. Bubble stabilization of classical finite elements
dates back to [7], in which the famous MINI element was invented for the Stokes
equation. The idea was to add a so-called bubble function, a function taking zero
value on the boundary of the element, to the finite element approximation such that

u = uFEM + ububble (2.26)

This approximation can be interpreted as a subgrid scale model, where the bubble
function ububble represents the unresolved scale (subscale) [98]. The bubble functions
are often polynomials and are chosen such that the finite element discretization
becomes stable. The variational formulation leads to two unknown fields, the standard
finite element field uFEM and the bubble-enrichment ububble. A single-field formulation
can be obtained by the static condensation of the bubbles. In [132], the authors
investigated the Laplace equation with interfacial constraints treated by the Lagrange
multiplier method on an unfitted mesh, and with stabilization ensured via bubble
functions. The method was extended to the linear elasticity problem in [156]. The
stability parameter of the model is computed element-wise from the element-level
bubble function. Hence, as soon as the bubble function is chosen, the stability can be
assured by computing the stability parameter at the element level. The residual-free
bubbles, developed in [60] on non-matching meshes, follows a different approach.
Instead of defining the bubble function a priori, it is computed by assuming the
coarse field uFEM and the Lagrange multiplier field given. Common in the Nitsche
and the bubble stabilization methods is that the Lagrange multiplier, if necessary,
is obtained through post-processing. Similarly to lowering the number of discrete
Lagrange multipliers discussed above, the bubble stabilized method is also free of
user-defined parameters.

The Lagrange multiplier method with carefully chosen discrete spaces and the
bubble stabilization methods are a priori stable: no tunable parameter remains in
the weak form. On the other hand, many stabilized methods contain one or more
stabilization parameters. Stabilized methods are often constructed from the pure
Lagrange multiplier formulation (2.24) [40]. In the model problem, the Lagrange
multiplier was identified as the normal derivative (see (2.19)). Their difference at
the discrete level can be used as a penalization, as done in the Barbosa-Hughes
stabilization, leading to a consistent mixed formulation:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Find (uh, λh) ∈ Vh × Λh such that ∀(vh, µh) ∈ Vh × Λh

(∇uh,∇vh)Ω + ⟨λh, vh⟩Γ + ⟨uh, µh⟩Γ − γ
∑︂
e∈E

he⟨λ+∇nu, µ+∇nv⟩Γ =

= (f, v)Ω + ⟨g, µ⟩Γ

(2.27)

where Vh ⊂ H1(Ω),Λh ⊂ H−1/2(Γ) and he is the element size on the mesh E on
Γ. Yet another modification of the Lagrange multiplier method is the augmented
Lagrange multiplier method in which the Lagrangian (2.17) is extended with the
penalty term 1/2∥√τ0(u− g)∥2 (cf. (2.14)):⎧⎪⎨⎪⎩

Find (uh, λh) ∈ Vh × Λh such that ∀(vh, µh) ∈ Vh × Λh

(∇uh,∇vh)Ω + ⟨λh, vh⟩Γ + ⟨uh, µh⟩Γ + τ0⟨uh, vh⟩Γ =

= (f, vh)Ω + ⟨g, µh⟩Γ + τ0⟨g, vh⟩Γ,
(2.28)
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where the extra terms compared to the pure Lagrange multiplier method (2.18) are
the terms with coefficient τ0. Setting λh = −∇nuh, µh = −∇nvh and τ0 = τ/h
gives the Nitsche method (2.25). In recent versions of CutFEM, the coercivity of the
bilinear form is maintained by the ghost penalty method [38] and the continuity is
weakly enforced by Nitsche’s method [138], although a stabilized Lagrange multiplier
method was also proposed in [39]. When applied to unfitted meshes, this parameter
strongly depends not only on the size of the cut element but also on the position
of the cut [58]. To achieve a robust method for a large range of values of τ , the
ghost penalty method was introduced in [38], which consistently penalizes the jump
of the normal derivative along some selected edges near the boundary or the interface.
Thanks to it, the condition number scales with mesh refinement in the same rate as
in the standard fitted FEM.

As a summary, Tab. 2.1 classifies the reviewed discretization techniques for the
model problem (2.10).

formulation equation conformity consistent mixed reference

unconstrained (2.12) H1
0 yes no [53]1

penalty (2.14) H1 no no [8]
Nitsche (2.25) H1 yes no [138]
Lagrange multiplier (2.18) H1, H−1/2 yes yes [9]
augmented Lag. mult. (2.28) H1, H−1/2 yes yes [82]
Barbosa-Hughes (2.27) H1, H−1/2 yes yes [15]
bubble (8) in [60] H1(Ω̃Ω)† yes no2 [60]
1 Courant’s method was not yet called finite element method, but it was the first

time when continuous piecewise linear functions, defined on a triangular mesh,
were used.

2 after the auxiliary fields (bubble, Lagrange multiplier) have been eliminated at
the element level

† embedded domain formulation with Ω̃Ω ⊃ Ω

Table 2.1: Comparison of some discretization methods for the BVP (2.10)
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2.5 Enriched finite element methods
There exist numerous closely related discretization techniques relying on similar
principles. To understand these methods, some of these techniques are described,
for each of them giving the basic idea, the challenges and some applications (mainly
related to cracks due to the objectives of the thesis). An emphasis is put on the
connection among these methods.

2.5.1 Partition of unity method (PUM)
If the solution of a boundary value problem admits singularities (jump discontinuities,
branch points, etc.), higher-order approximations do not necessarily have higher
order of convergence. The non-smoothness of the solution can be caused by, among
others, the rapidly changing coefficients in the PDE, non-convex domains and the
boundary data. One solution is a local refinement around the singularity, which
can be challenging for mesh-based discretization methods. In the extreme case, the
convergence can be arbitrary slow even upon refinement [11]. Another approach to
retain the optimal convergence order of an approximation is to include the type of
the singularity to the function approximation. In general – not only for singularities
– if information about the behaviour of the solution is known, it can be used to
improve the approximation properties of discretization methods. Although the use
of special functions to improve the accuracy in the presence of singularities was
already considered in [75] in 1973, the use of global basis functions caused the loss of
sparsity. To the knowledge of the author, the first contribution which incorporated
special functions with local support into the approximation was [12] and was coined
as special finite element method. The special function in that paper was the product
of the finite element hat functions with non-polynomial functions. It was realized
in [123] and in [13] that instead of the hat functions, any set of functions satisfying
the partition of unity (PU) property suffices. Hence the method was given the name
partition of unity method (PUM). These two papers laid the mathematical foundation
of PUM. In the PUM, the domain Ω is covered by a family of sets {ωi}Ni=1 on which the
local approximation spaces Vi (i = 1, . . . , N) can capture the local behaviour of the
solution [14]. The local spaces are then pasted together with the PU functions {ψi}Ni=1

such that the good local approximability is preserved in the global approximation.
The precise definition of the partition of unity is due to [13, 123]:
Definition 1. Let Ω ⊂ Rn be an open set, {ωi} be an open cover of Ω satisfying the
pointwise overlap condition

∃M ∈ N, ∀x ∈ Ω card {i | x ∈ ωi} ≤M.

Let {ψi} be a Lipschitz partition of unity subordinate to the cover {ωi} satisfying
suppψi ⊂ ωi, ∀i (2.29)∑︂

i

ψi ≡ 1 on Ω (2.30)

∥ψi∥L∞(Rn) ≤ C∞ (2.31)

∥∇ψi∥L∞(Rn) ≤
CG

diamωi

, (2.32)
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where C∞ and CG are two constants. Then {ψi} is called an (M,C∞, CG) partition
of unity subordinate to the cover {ωi}. The partition of unity {ψi} is said to be of
degree m if {ψi} ⊂ Cm(Rn). The covering sets {ωi} are called patches.

The PU spaces are constructed as

VPU =
N∑︂
i=1

ψiVi = span{ψiφ
i
j}, (2.33)

where φi
j constitute a basis for Vi. In other words, the PU functions ψi provide the

locality, whereas φi
j ensure the local approximating capabilities. Common choices

for PU functions include the finite element hat functions, Shepard functions and
certain particle shape functions used in meshless methods. The error estimates for
the PUM are problem-dependent, but the main achievement of the method can be
concluded as follows: the global error is bounded by the local/patch-wise errors. It
allows constructing finite element methods in which the convergence is not influenced
by the regularity of the solution.

The PUM has the ability to construct high regularity finite element spaces, being
an alternative to conforming elements and mixed formulations. The PUM can be used
to include so-called handbook functions in the approximation. Handbook functions
are solutions to handbook problems – simplified versions of the complex problem at
hand, for which the analytical solution is known. In the meshless method community,
the concept of PU is represented by the method of finite spheres [57] and the h-p
cloud method [63].

2.5.2 Generalized finite element method (GFEM)
In the context of the finite element method (FEM)2, the number of patches in the
PUM equals the number of nodes and each patch consists of elements incident to a
node. This combination of PUM and FEM is known under the name of generalized
finite element method (GFEM) [179] and the piecewise linear shape functions take
the role of the PU basis functions. It is easy to show that the FEM with C0 linear
shape functions is a special case of GFEM (cf. (2.33)):

VFEM = span{ψi}Ni=1 = span
(︁
{ψi}Ni=1 × {1}

)︁
= VGFEM. (2.34)

In 1D, a GFEM with a suitably chosen local basis can be constructed such that it is
equivalent to FEM based on continuous piecewise polynomial shape functions of degree
k [14]. The GFEM allows the standard FEM to become largely mesh-independent
and improves the approximation properties.

Although the local approximation and the “pasting” of the local approximants are
separated in the PUM-based methods, one has to take care of the linear independence
of the product shape functions ψiφ

i
j. There are two main approaches to solve this.

The first one uses specialized solvers which are not susceptible to linear dependency.
In [179] a specialized direct solver was selected that can handle singular matrices.

2Although the widely accepted definition of the finite element by Ciarlet [51] is general, under
standard FEM, or sometimes just FEM, we mean mesh-conforming finite element discretization
based on low order Lagrangian finite elements in this thesis.
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In the same paper, as an alternative, the singular system matrix was perturbed,
and based on that an iterative solution method was proposed. The second class of
approaches ensures that the PUM results in a linearly independent spanning set.

The GFEM was used in [187] to create an H2-conforming approximation for the
biharmonic equation. The GFEM allows constructing high-order approximations
without the complexity of the implementation of p-FEM [64] (in GFEM, all the
degrees of freedom are associated with the nodes). If the solution rapidly changes only
in one direction, as in case of boundary layers, it is possible to create higher-order
approximation only along that coordinate direction. This directional p-enrichment
was used in [61], allowing working with a regular mesh, therefore easing the mesh
generation process. In some problems, analytical enrichments are not known a
priori (e.g. the asymptotic displacement field at a crack tip for linear elastic fracture
mechanics in 3D). In such cases, numerical enrichments can be constructed by solving
local problems. The local problem is a BVP for which the boundary conditions come
from the solution of the global problem. Once the local solution is known, it can be
included in the global approximation with the partition of unity [62]. The advantage
of this method is that the global mesh can be coarse and that the local problems can
be solved in parallel as they can be assumed to be independent. This approach is
especially useful for propagating cracks because it avoids the need to transfer the
solution from one mesh to another, which is costly and inaccurate.

2.5.3 Extended finite element method (X-FEM)
Independently of GFEM, the extended finite element method (X-FEM) was developed
in [126]. In its original version, it was designed to allow simulating brittle fracture
in a mesh-independent way. The crack is modelled as a displacement jump across Γ
with the Heaviside function H, and the following four functions give the asymptotic
displacement field around the crack tip:

{Fℓ(r, θ)} =
{︃√

r sin
θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ

}︃
(2.35)

The first of these functions has a branch cut, while the other three are continuous,
and (r, θ) is the polar coordinate system attached to the crack tip. The X-FEM
approximation of the displacement field is

u =
∑︂
i∈I

ψiui +
∑︂
j∈J

ψjH(Γ)aj +
∑︂
k∈K

ψk

(︄
4∑︂

ℓ=1

Fℓb
k
ℓ

)︄
, (2.36)

where the first sum is the continuous part of the approximation, while the other
two are responsible for the discontinuous parts. The general form of X-FEM with P
number of enrichments fj is

u =
∑︂
i∈I

ψiui +
P∑︂

j=1

∑︂
k∈Jj

ψ̄ψj
kfjajk (2.37)

and we refer to it as standard X-FEM. Here, I is the set of all the nodes in the mesh,
and Jj ⊆ I. The shape functions used for the enrichments are often taken as the
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Figure 2.5: Some of the basis functions in the X-FEM for a 1D configuration

standard shape functions: ψ̄ψj
k = ψk. It is evident from (2.37) that the X-FEM falls

back to the FEM if there are no enrichments. The enrichment procedure for a single
discontinuity is illustrated in Fig. 2.5.

Remark 2. The Heaviside-enriched X-FEM and the GFEM approximations are the
same as shown with the example depicted in Fig. 2.5:

VXFEM = span{ψi}5i=1 + span{(ψ3 + ψ4)H(Γ)} =
= {ψ1} × {1}+ {ψ2} × {1}+ {ψ3} × {1,H(Γ)}+

+ {ψ4} × {1,H(Γ)}+ {ψ5} × {1} =
5∑︂

i=1

ψiVi = VGFEM

(2.38)

Compared to the standard X-FEM, the approximation in the intrinsic X-FEM [77],
yet another version of X-FEM, has the form of

u =
∑︂
i∈I

ψ⋆
i ui, (2.39)

showing that no additional unknowns are involved as in X-FEM (cf. Eq. (2.37)).
Rather, the same enrichments that can be used in X-FEM are incorporated to the
basis ψ⋆

i with the moving least squares technique – hence the name intrinsic.
Ill-conditioning in X-FEM applied to fracture mechanics may stem from the

Heaviside enrichment and from the singular crack tip enrichments. The former one
happens when a crack almost goes through a node. Consider the discontinuity shown
in Fig. 2.5. If ϵ = 0, H(Γ) = 0 on the element containing Γ. As the constant 0
is already in span{ψi}Ni=1 (cf. Eq. (2.37)), linear dependency is introduced between
the standard part and the Heaviside-enriched part of the approximation. When
0 ̸= ϵ ≪ h, the condition number becomes very high. The situation is similar in
2D and 3D too. One way to avoid very small cuts is to modify the interface to go
through the node [127]. This method is applicable if the interface originally passes
close to a node, otherwise the modification would significantly change the geometry.
Moreover, in the presence of several interfaces in 2D and 3D, small cuts can occur due
to junctions and it cannot be cured by this method. Instead of moving the interface
to the node, the node can also be shifted to the interface. However, it precludes the
use of Cartesian meshes. Junctions pose no problem if the volumetric criterion is
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applied [56]. In that approach, a node is not enriched with the Heaviside function (or
if already enriched, that degree of freedom is eliminated) if its support is small on
one side of the interface with respect to the support on the other side of the interface.
A more precise condition is the stiffness criterion introduced in [165]. The second
class of methods consists of dealing with the ill-conditioning at the matrix level by
applying specialised preconditioners as the Cholesky decomposition used in [22], or
a simple diagonal scaling used in [110]. The third type of techniques for the high
condition number is the stable GFEM (SGFEM) [10] which modifies the enrichment
functions in such a way that they become linearly independent from the finite element
shape functions. This works in 1D but is not too effective in 2D and 3D. Yet another
technique is the orthogonalization of (some of) the enrichment functions [167]. The
quasi-orthogonalization method in [2], applied for two and three-dimensional fracture
mechanics problems, removes the linear dependency among the enrichment functions,
but not the dependency among the PU functions and the enrichment functions. The
latter dependency is provably removed when the so-called flat-top partition of unity
functions are used [160]. However, this approach is less suitable for existing finite
element codes where the standard finite element shape functions are the PU functions.

Ill-conditioning emerges from the crack tip enrichments as well. The stress
singularity at the crack tip is characteristic to the PDE. If only the nodes of the
element containing the crack tip are enriched, the behaviour of the singularity is
localized to a smaller and smaller region as the mesh is finer and finer. This initial
strategy was called topological enrichment in [22] and it results in non-optimal
convergence. The optimal order of convergence is retained if the nodes in a disk
of fixed radius are enriched. It was named geometrical enrichment [22]. Instead
of associating the four crack tip enrichment functions (2.35) to vectorial degrees of
freedom, the vectorial enrichment strategy [49] associates three vectorial enrichment
functions

K1 =
√
r cos

θ

2
(κ− cos θ)(e1 + e2)

K2 =
√
r sin

θ

2
(κ+ 2 + cos θ)e1 +

√
r cos

θ

2
(κ− 2 cos θ)e2

K3 =
√
r sin

θ

2
e3

(2.40)

to scalar degrees of freedom, thereby decreasing the number of unknowns while still
keeping the same level of accuracy. In Eq. (2.40) κ = 3− 4ν, where ν is the Poisson’s
ratio.

Tracking (possibly non-straight, 3D) evolving interfaces (e.g. cracks) becomes very
difficult if the interfaces are explicitly described. The level set method is an interface
capturing technique in which a surface is represented by the zero isocontour of a
higher dimensional surface. It was first coupled with the X-FEM in [184] to model
voids and inclusions. Its principle is to discretize the level set function (often the
signed distance function) on the finite element mesh. Describing a crack which does
not completely cut the domain requires two level set functions [177]: the normal level
set is used to localize the crack discontinuity and the tangential level set gives the
position of the crack tip.

The X-FEM has been used for various applications, especially in which weak or
strong discontinuities are expected in the solution. It was invented for simulating
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2D brittle fracture in [126]. The use of X-FEM for cracks was already covered in
Section 2.2.3. The X-FEM was successfully applied to multiphase fluid and fluid-
structure interaction as well. It is a useful tool for computational homogenization
problems because there is no need to mesh a complicated microstructure in a unit
cell. The first such study along this line was [128] which described the microstructure
with level sets and used a periodic mesh to account for the periodicity. In [113] the
microstructure was not generated but directly obtained by a level set-based image
segmentation process from an existing 3D image. That level set was also used to create
the enrichment function, allowing an automatic finite element analysis. Probably the
earliest contribution to cope with frictional contact in X-FEM was [59]. Large sliding
was considered in [137], and [164] combined the previous two approaches using the
stable discrete displacement–Lagrange multiplier pair of [23]. The model was further
improved in [165] by allowing crack branching.

Since the early contributions to GFEM/X-FEM, several papers were published
on their computer implementation (see e.g. [31, 181]). In the beginning, they were
research codes mostly implemented from scratch. Indeed, the node-based programming
approach of X-FEM makes it difficult to integrate into existing FEM software, which
is element-based. Researchers then provided X-FEM plugins for proprietary finite
element programs such as Abaqus [81]. Finally, as of version 6.9, an official X-FEM
module is available in Abaqus, demonstrating the ubiquity, maturity and industrial
strength of the method.

2.5.4 Cut finite element method (CutFEM)
Another way to represent a jump in a function is the method first proposed in [91]
and later called under several names: phantom node method [172], virtual node
method [131] and cut finite element method (CutFEM) [41] – all referring to the
specific way it is implemented. For the rest of the thesis, we refer to it as CutFEM.
The idea of the method is to introduce the discontinuity across an interface Γ by not
enforcing the continuity of a function u between the two subdomains Ω+ and Ω−

separated by Γ. Therefore,
u ∈ V = V + ⊕ V −. (2.41)

In the finite dimensional setting, the finite element spaces V +
h and V −

h can be
constructed either on matching or on non-matching meshes. The non-matching
subdomain meshes can either be generated subdomain-wise or cut out from a common
background mesh. CutFEM was generalized to multiple intersecting meshes in a
recent paper [106]. Their multimesh finite element method allows arbitrary (possibly
moving) meshes to be superimposed on a background mesh. In this way, the individual
body parts can be meshed independently.

Since CutFEM uses the standard finite element approximation on Ω+ and Ω−,
the patches of the PUM are taken as shown in Fig. 2.6a. Note that no patches
overlap across Γ. This formulation would need a special construction of the shape
functions whose supports are intersected by Γ, i.e. ψ̂ψ3, ψ̂ψ4, ψ̂ψ5 and ψ̂ψ6 in Fig. 2.6a.
The explicit construction of these cut shape functions can be avoided by realizing
that one requires the integral of these shape functions and not the shape functions
themselves. Therefore, the cut-off can be taken into account during the integration
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(a) Phantom node method (CutFEM)
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Figure 2.6: Patches and some of the basis functions in the phantom node and floating
node methods

by performing the quadrature only on part of a cut element. This observation allows
an easy implementation of CutFEM to existing finite element codes. One can see in
Fig. 2.6a that the shape functions ψ̂ψ4 and ψ̂ψ5 can be associated with the nodes 4 and
5, respectively, which are not part of the physical domain. This is why CutFEM is
also called phantom node method. As opposed to the phantom node method, the
floating node method [47] creates sub-elements from a cut element by local remeshing,
see Fig. 2.6b.

CutFEM is also affected by ill-conditioning if a cut element part is small compared
to the whole element. Figure 2.7 shows such a configuration. In this figure, filled
circles represent the original nodes part of each subdomain, while hollow circles denote
the phantom nodes. Ill-conditioning originates from the stiffness matrix of the second
submesh of Fig. 2.8. We can see that suppψ1′ ∩ Ω2 is very small, resulting in an
almost linearly dependent basis. In the CutFEM community this is solved by adding
additional terms to the weak form, specifically tailored to avoid ill-conditioning in
the presence of small cuts. We saw this approach in Section 2.4.3 for the CutFEM
method with ghost penalty. Using CutFEM, the discontinuity along the interface Γ
is provided by overlapping meshes as depicted in Fig. 2.8.

Both in CutFEM and in the Heaviside-enriched X-FEM, one has to compute
integrals on cut elements. There are three main approaches to achieve this [180].
The earliest and most intuitive method was used in the first X-FEM paper [126]. It
works by decomposing the cut element part into geometrical primitives (most often
triangles in 2D and tetrahedra in 3D) on which quadrature rules are well-known.
The technique gives accurate results because the quadrature triangles/tetrahedra
are conforming. On the other hand, particularly in 3D and for the integration of
high degree polynomials, it results in a lot of quadrature points, which makes it
a computationally expensive strategy. Octree-based adaptive quadrature is widely
used in the finite cell method (introduced in [145], see [159] for a detailed review),
which creates a non-conforming subdivision of integration cells near an interface. It
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Figure 2.8: Representing the discontinuity using two overlapping meshes

is simple to implement but requires a lot of quadrature cells – and therefore many
function evaluations – for sufficient accuracy. Moment fitting is a promising way to
construct quadrature rules to integrate polynomials on arbitrary convex or concave
polyhedra [180]. The moment fitting equation is a nonlinear least squares problem,
being linear in the quadrature weights and nonlinear in the quadrature point locations.
The common way to handle the moment fitting equations is to fix the quadrature
points and then solve a linear least squares problem for the weights.

So far we saw that the CutFEM approximation uses broken polynomial spaces
implemented by taking the restriction of the continuous finite element shape functions
on the physical part of the domain. The same idea can be followed to construct
an approximation space on a surface by taking the restriction (trace) of the bulk
shape functions on the surface. This method was introduced in [23] for X-FEM and
independently in [141] for surface PDEs. The latter formulation was later coined as
TraceFEM [140].

For elements containing multiple elaborate discontinuity schemes in 2D or 3D,
the use of branch-enrichment in X-FEM is particularly complex due to dependency
issues among the basis functions. Conversely, CutFEM generalizes very easily for fully
general discontinuity configurations as one just needs to create as many overlapping
elements as the number of subdomains present in the element. Another useful property
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of CutFEM is that all the degrees of freedom have the meaning of function evaluation
at a node, as in the standard FEM. In contrast, the coefficients ajk in X-FEM have
no direct physical meaning. In CutFEM, all the nodes have the same number of
degrees of freedom, making the bookkeeping in the implementation easier. Although
the shape functions are different for the two methods, they span the same linear space
as it was shown for a single discontinuity in [25]. This is no longer the case when
junctions are present [152]. CutFEM concentrates more on the domain decomposition
nature of the problem, as shown by (2.41), while in the X-FEM more versatile local
features can be incorporated, not only discontinuities. Partially cracked elements
are also easier to use with X-FEM, although the phantom node method (CutFEM)
was successfully applied to that case too [151]. One can find publications about the
robust implementation of CutFEM as well [41].

We remind the reader that CutFEM in this thesis is used to represent the kine-
matics of strong discontinuities and must be combined with constraints to represent
continuity (in a weak sense) of the displacements when cracks did not propagate yet.
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In this chapter the strong and weak formulations of the linear elasticity equations
are derived for multiple non-overlapping domains.

The chapter starts with the definition of commonly used terms and notations.
For an initially intact body (containing no cracks), the linear elasticity equation is

written in the strong form. To enable potential cracks to appear along every interface,
the displacement field must allow a jump across the interfaces. Such a discontinuity
can be provided by considering the linear elasticity equations for each subdomain
(representing a grain) independently. For this formulation to be equivalent to the one
written for the whole domain (as if no cracks were present), it is necessary to impose
the continuity of the displacement and the traction fields.

The differential equations on the subdomains, the continuity conditions and the
boundary conditions will be weakly imposed using the Lagrange multiplier method,
which turns the constrained minimization problem into a saddle point problem. It
turns out that the Lagrange multiplier takes the role of the traction vector along
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interfaces between subdomains. The traction vector will be used in constructing a
crack propagation scheme, one of the major reasons why the Lagrange multiplier
method was chosen in the thesis. Based on smoothness requirements, we identify the
function spaces in which the displacement and the Lagrange multiplier solutions lie
to build an a priori stable framework. The scope of this chapter is the construction
of local finite element spaces for the two unknown fields: the displacement and the
Lagrange multiplier, assessing the stability of the corresponding formulations, and
creating robust algorithms.

The meshing of a complicated network of cracks is challenging even in 2D. There-
fore, the mesh generation and the function approximation are separated as much as
possible in this work. The method uses the cut finite element method (CutFEM)
to construct the local finite element spaces for the displacement field on each grain,
which are then patched together to form the global finite element space. The Lagrange
multiplier space is constructed in a similar vein, with the exception that a reduction
is introduced to decrease its dimension and therefore render the mixed method sta-
ble. One advantage of CutFEM is its embarrassingly parallel nature. Indeed, very
little communication is needed between the subdomains, therefore the geometrical
algorithms and the creation and assembly of the local finite element matrices and
vectors can be done independently for each grain and interface. The methodology
introduced so far is general, but for simplicity and computational efficiency, a global
Cartesian mesh is used as the background mesh.

The Lagrange multiplier space reduction algorithm is based on the relative position
of the interfaces with respect to the mesh. The stability of the resulting formulation
is verified with the inf-sup test, and the patch test proves that the constant stress
state can be reproduced by the designed method.

The ease of mesh generation comes at the price of mesh cutting requirements and
more complicated quadrature. Cutting the elements with the grains and with the
interfaces is a polygon clipping problem in computational geometry. Special care is
needed to carry out these cutting operations robustly so as not to introduce kinematic
inconsistency. Two detailed algorithms are given to tackle this problem. The first
one modifies the geometry, while the second one leads to an optimization problem.
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3.1 Definitions
Let us consider the domain Ω ⊂ Rd (d = 2, 3) partitioned into M non-overlapping
subdomains Ωi of polytope shapes, identified by the index set Is = {1, . . . ,M} such
that

Ω =
⋃︂
i∈Is

Ωi, Ωi
⋂︂

Ωj = ∅, ∀i, j ∈ Is, i ̸= j (3.1)

where the overline denotes the closure of a set. Without the loss of generality, it
is assumed that M > 1. When we talk about the physical nature of the problem,
we will use the word grain instead of subdomain. A straight segment between two
subdomains is called an interface and is denoted by Γi. Note that two subdomains
can have multiple common interfaces. The interfaces are indexed by Iint = {1, . . . , N}.
The neighbouring subdomains to Γi are denoted by Ωi+ and Ωi−, or Ωi± when dealing
with them as a collection. Parts of the boundary of Ω where non-zero Neumann
boundary conditions (BC) are prescribed are denoted by ΓN , whereas ΓD denotes
parts where zero or non-zero Dirichlet BCs are given. It is assumed that ΓN ∩ΓD = ∅.
These boundary parts are replaced by straight segments Γi

N (i ∈ IN ⊆ Is) and Γi
D

(i ∈ ID ⊆ Is) such that

Γi
N = ΓN

⋂︂
Ωi,

⋃︂
i∈IN

Γi
N = ΓN , (3.2)

Γi
D = ΓD

⋂︂
Ωi,

⋃︂
i∈ID

Γi
D = ΓD. (3.3)

The subdomain boundaries are oriented counter-clockwise and the interface and
boundary segments (Γi and Γi

N , Γi
D) are oriented according to their outward unit

normal attached to Ωi+. In other words, the orientation of the subdomain determines
the normal and tangent unit vectors of its boundary, and an interface inherits these
unit vectors from the first neighbouring subdomain it belongs to. These notations are
visualized in Fig. 3.1 in a general situation. The intuition behind these definitions
is the observation that the boundary conditions and the interface conditions can
be handled within a unified framework which is advantageous when the constraint
equations are weakly enforced, as will be explained in Section 3.3.

Ω1

Ω2

Ω3n2 n1

n3

n4

Γ3
D

Γ1
D

Γ2
N

Γ4

Γ3Γ1Γ2
Ω1 = Ω1+ = Ω2+ = Ω4−

Ω2 = Ω3+ = Ω4+

Ω3 = Ω1− = Ω2− = Ω3−

Figure 3.1: Notations used for the geometrical description of the domain of interest
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3.2 Governing equations
In this work, isotropic linear elastic grains are considered. Note that this assumption
is not critical and that grain anisotropy could be considered. The equilibrium,
constitutive and kinematic equations for these grains are therefore given as Eq. (3.4):

σ · ∇ = 0, x ∈ Ω

σ = C : ε, x ∈ Ω

ε = ∇su x ∈ Ω.

(3.4)

To simplify the presentation, body forces are neglected. The Hooke tensor C can
vary from grain to grain if the material residing in Ω is heterogeneous. The boundary
conditions are written as

u = uD, x ∈ ΓD,

σ · n = tN , x ∈ ΓN ,
(3.5)

where n is the outward unit normal to the boundary. Because of the (cohesive) granular
structure of the assumed material, it is straightforward to perform the calculation
grain-wise as done in [170]. To this end, the displacement field is decomposed as

u =
∑︂
m∈Is

χmum, (3.6)

where χm is the indicator function for grain m and is defined as

χm(x) :=

{︄
1 x ∈ Ωm

0 otherwise.
(3.7)

The boundary value problem Eq. (3.4)–(3.5) is then written for each grain as:

σm · ∇ = 0, x ∈ Ωm

σm = Cm : εm, x ∈ Ωm

εm = ∇sum, x ∈ Ωm

(3.8)

ui = ui
D, x ∈ Γi

D, (3.9)
σj · nj = tjN , x ∈ Γj

N , (3.10)

∀m ∈ Is, ∀i ∈ ID, ∀j ∈ IN . In addition, we need to provide the continuity of the
primary variable (the displacement) and its derivative along the interfaces. Physically,
this means prescribing along each interface the continuity of the displacement field

ui+
⃓⃓
Γi = ui−⃓⃓

Γi (3.11)

and of the interfacial traction

tj+
⃓⃓
Γj = tj−

⃓⃓
Γj (3.12)

σj+ · nj
⃓⃓
Γj = σj− · nj

⃓⃓
Γj (3.13)
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Introducing the shorthand notation J·Kj = (·)j+ − (·)j−, the above constraints take
the form:

JuKi = 0, x ∈ Γi, (3.14)
JσKj · nj = 0, x ∈ Γj. (3.15)

Equations (3.4)–(3.5) are equivalent to Equations (3.8)–(3.15).
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3.3 Mixed continuous formulation

Equations (3.8)–(3.15) are cast into the weak form for subsequent discretization.
First, we formally derive the equations and then choose the appropriate function
spaces based on mechanical reasoning.

The strain energy of the deformable body and the work done by the surface
tractions are the sum of the individual contributions on the grains, therefore the
energy functional takes the form:

Πb =
∑︂
m∈Is

1

2

∫︂
Ωm

σm(um) : εm(um) dΩ−
∑︂
i∈IN

∫︂
Γi
N

ui+ · tiN dΓ. (3.16)

Constraint equations are required to enforce the continuity equations (3.14)–(3.15).
During the discretization, we will see that the finite element nodes do not coincide
with the interfaces or the boundaries. Therefore, the continuity equations and the
Dirichlet BCs are taken into account weakly. An additional advantage of the weak
imposition of Dirichlet boundary conditions is that the system matrix does not need
to be modified. The weak solution to (3.8)–(3.15) is found by minimizing the total
potential energy (3.16) with respect to the weak constraints

Πc =
∑︂
i∈Iint

∫︂
Γi

JuKi · λi dΓ +
∑︂
i∈ID

∫︂
Γi
D

(︁
ui+ − ui

D

)︁
· λi dΓ, (3.17)

where λi are the vector-valued Lagrange multiplier functions. The constrained
optimization problem can be turned into a saddle-point formulation by constructing
the Lagrangian Π as

Π = Πb +Πc (3.18)

and taking its variation with respect to the two fields, i.e. the displacement and
Lagrange multiplier fields. The variational problem is then (cf. (2.16)):
Find u ∈ V and λ ∈ Λ such that

a(u,v) + b(λ,v) = f(v), ∀v ∈ V (3.19a)
b(u,µ) = g(µ), ∀µ ∈ Λ (3.19b)

As interfaces and Dirichlet boundaries are handled in the same way, with an abuse
of notation, both will be referred to as interfaces. In this way, Γ := Γi ∪ ΓD

is introduced. One can unify the interface and Dirichlet boundary conditions by
noticing that boundaries are only surrounded by subdomains from one side. Therefore,
the displacement jump on an arbitrary internal interface Γi or Dirichlet boundary ΓD

is redefined as

JuKi =

{︄
ui+ − ui− on Γi

ui+ on Γi
D

The symmetric bilinear and linear forms introduced in (3.19a)–(3.19b) are expressed
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by

a(u,v) =
∑︂
m∈Is

∫︂
Ωm

εm(vm) : Cm : εm(um) dΩ (3.20)

b(λ,v) =
∑︂

i∈Iint∪ID

∫︂
Γi∪Γi

D

JvKi · λi dΓ (3.21)

f(v) =
∑︂
i∈IN

∫︂
Γi
N

vi+ · tiN dΓ (3.22)

g(µ) =
∑︂
i∈ID

∫︂
Γi
D

µi · ui
D dΓ (3.23)

It can be identified from the equilibrium equation (3.19a) that the Lagrange multiplier
represents the traction vector on the interface:

σi+ · ni+ = −λi, σi− · ni− = λi, (3.24)

where ni+ = −ni−. The corresponding derivation can be found in Appendix A.
In the presence of cracks between the grains, the displacement field is discontinu-

ous. At a junction of interfaces (e.g. when two subdomains have multiple common
interfaces), the normal vector to the interfaces changes direction in a discontinuous
fashion. Hence, the Lagrange multiplier field representing the tractions across in-
terfaces must be discontinuous as well at such junction points according to (3.24).
Therefore, the weak solution (u,λ) ∈ (V,Λ) to the equations (3.8)–(3.15) is sought
in the broken Sobolev spaces

V =
[︁
H1(Ω)

]︁d
=×

i∈Is

[︁
H1(Ωi)

]︁d (3.25)

Λ =
[︁
H−1/2(Γ)

]︁d
= ×

i∈Iint∪ID

[︁
H−1/2(Γi)

]︁d (3.26)

where× is the direct product and d is the spatial dimension.
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3.4 Approximations
The equations of the bulk (Eq. (3.8)) are formulated on subdomains. This strategy fits
well for CutFEM in which the discrete displacement and Lagrange multiplier spaces are
created as broken polynomial spaces, i.e. the spaces of piecewise continuous functions
of low-degree polynomials, defined on certain submeshes. To create approximation
spaces in the bulk and on the surfaces, the continuous finite element basis functions
defined on a background mesh are restricted to the bulk and to the interfaces to obtain
approximations for the displacement and Lagrange multiplier fields, respectively. In
what follows, this intuition is made precise.

Generalizing (2.41) for multiple non-overlapping subdomains, the piecewise con-
tinuous space Vh on Ω can be constructed by patching the subspaces together (

⨁︁
denoting the direct sum):

Vh =
⨁︂
i∈Is

V i
h (3.27)

and hence it holds that uh|Ωi = ui
h. A similar decomposition was used in [170] for

polycrystals.

Remark 3. The displacement approximation can be constructed subdomain-wise (see
Eq. (3.27)). Therefore, it naturally results in a scheme prone to domain decomposition,
and hence to parallelism.

The basis for V i
h is constructed from a background mesh M as follows (the notations

can be followed in Fig. 3.2a). The background mesh M is chosen to be large enough
such that it contains ∪i∈IsΩi. For efficiency,M is chosen as a structured quadrilateral
mesh. To approximate the displacement field on subdomain i, we introduce the
approximation space constructed as

V i
h := span

{︂
ψ̂ψi

j | supp
(︂
ψ̂ψi

j

)︂
∩ Ωi ̸= ∅, j ∈M

}︂
, (3.28)

where ψ̂ψi
j are the vectorial nodal shape functions cut off on the boundaries of Ωi:

ψ̂ψi
j :=

{︄
ψi

j on Ωi

0 on Ω \ Ωi
. (3.29)

Since the support of the nodal finite element shape functions we use stretch to the
neighbouring elements, we define the submeshMi ⊆M, consisting of those elements
e which are at least partially cut by Ωi:

Mi := {e ∈M | e ∩ Ωi ̸= ∅}. (3.30)

Therefore, a basis for V i
h can be constructed from the nodal basis functions corre-

sponding to the mesh Mi. It is then sufficient to consider

V i
h := span{ψ̂ψi

j | j ∈Mi}. (3.31)

As explained in Section 2.5.4, the cut shape functions ψ̂ψi
j are replaced by the standard

shape functions ψi
j and the integrals are evaluated on Ωi. Note that without constraint

equations, uh is discontinuous between any two subdomains Ωi ̸= Ωj.
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Mi

Mj

M

Ωi

Ωj

(a) Submeshes for the bulk

Mi
Γ

M

Γi

(b) Submesh for the surface

Figure 3.2: Notations for the local meshes

Similarly to (3.30), the submesh containing the interface Γi is defined as (see
Fig. 3.2b)

Mi
Γ := {e ∈M | e ∩ Γi ̸= ∅}. (3.32)

The discrete Lagrange multiplier space, following [23], is assumed to be

Λi
h = span

{︂
ψ̃ψi

j | j ∈ M̃Mi
Γ

}︂
, (3.33)

where M̃Mi
Γ is the same mesh as Mi

Γ but not every node of it defines an independent
basis function. The Lagrange multiplier basis functions are created as the weighted
trace of the nodal basis functions on the interface:

ψ̃ψi
j =

∑︂
k∈Mi

Γ

αjkψk|Γi . (3.34)

The global approximation space is therefore

Λh =
⨁︂

i∈Iint∪ID

Λi
h. (3.35)

Our task is then to find M̃Mi
Γ and αjk for all interfaces such that a stable formulation

is obtained. An algorithm to accomplish this goal is detailed in Section 3.6.1. The
construction of the discrete spaces Vh in (3.27) and Λh in (3.35) allows seeking the
approximation on each subdomain and on each interface independently.
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3.5 Discrete weak form
The saddle point problem (3.19a)–(3.19b) is now discretized. Using the spaces (3.31)
and (3.33), the approximations are given by

ui
h =

∑︂
k∈Mi

ψi
kU

i
k, vi

h =
∑︂
j∈Mi

ψi
jV

i
j , i = 1, . . . ,M

λi
h =

∑︂
k∈M̃Mi

Γ

ψ̃ψi
kL

i
k, µi

h =
∑︂
j∈M̃Mi

Γ

ψ̃ψi
jM

i
j , i = 1, . . . , N

(3.36)

where U i
k, V i

k , Li
k, M i

k are vectorial degrees of freedom. By substituting (3.36) in
(3.19a)–(3.19b), the discrete saddle-point system reads:⎧⎪⎨⎪⎩

Find (uh,λh) ∈ Vh × Λh such that
a(uh,vh) + b(λh,vh) = f(vh), ∀vh ∈ Vh
b(uh,µh) = g(µh), ∀µh ∈ Λh

(3.37)

with the discretized symmetric bilinear and linear forms expressed as

a(uh,vh) =
∑︂
i∈Is

∑︂
j,k∈Mi

V i
jK

i
jkU

i
k, (3.38)

b(uh,µh) =
∑︂
i∈Iint

∑︂
j∈M̃Mi

Γ

∑︂
k∈Mi±

M i
jB

i
jk(U

i+
k − U

i−
k ) +

∑︂
i∈ID

∑︂
j∈M̃Mi

Γ

∑︂
k∈Mi+

M i
jB

i
jkU

i+
k ,

(3.39)

f(vh) =
∑︂
i∈IN

∑︂
j∈Mi+

V i+
j F i

j , (3.40)

g(µh) =
∑︂
i∈ID

∑︂
j∈M̃Mi

Γ

M i
jG

i
j, (3.41)

in which Mi± are the two submeshes corresponding to the neighbouring subdomains
of interface Γi.

Remark 4. Note that Vh ̸⊂ V and Λh ̸⊂ Λ as the geometry is taken into account
during the quadrature. As a result, our discretization is non-conforming, making the
stability more difficult to achieve and prove.

The stiffness matrix on Ωi, with εi
(︁
ψi

j

)︁
= ∇sψi

j, is given by

Ki
jk =

∫︂
Ωi

εi
(︁
ψi

j

)︁
: C
(︁
Ei, νi

)︁
: εi
(︁
ψi

k

)︁
dΩ, (3.42)

the coupling matrix is written as

Bi
jk =

∫︂
Γi∪Γi

D

ψ̃ψi
j ·ψi+

k dΓ (3.43)
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and the nodal force vectors are

F i
j =

∫︂
Γi
N

tiN ·ψi
j dΓ (3.44)

Gi
j =

∫︂
Γi
D

ui
D · ψ̃ψi

j dΓ. (3.45)

Note, that we use ψi+
k in (3.43) as it is the same as ψi−

k . The assembled matrices
have the saddle-point structure[︃

K B⊤

B 0

]︃ [︃
u
λ

]︃
=

[︃
f
g

]︃
, (3.46)

in which u contains the unknowns U i
k and λ contains the unknowns Li

k. The algebraic
saddle point system (3.46) is uniquely solvable if the following conditions hold [27]

kerB⊤ = 0, (3.47)
kerK ∩ kerB = 0 (3.48)

Equation (3.47) expresses that the Lagrange multipliers are linearly independent,
while (3.48) is the discrete version of the condition (2.20). We emphasize that the
second equation is a relaxed version of K being positive definite, which would not
hold in our case. In fact, the null space of K is spanned by the rigid body modes of
the individual grains.
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3.6 Stable mixed formulation
Although a unique solution exists if the equations (3.47)–(3.48) hold, a robust numer-
ical method must be stable too. Consider a discrete linear operator L mapping from
the solution space to the data space (image of L). The continuous dependence of the
solution on the data is given by the inverse mapping L−1. To quantify stability, L−1 is
measured in a suitable norm [5]. This definition applied to mixed formulations of the
type (2.16) has the form (2.22). For a conforming or non-conforming discretization
with discretization parameter h, (2.22) becomes

∥uh∥V + ∥λh∥Λ ≤ c∥fh∥V ′ + ∥gh∥Λ′ . (3.49)

It is relevant that stability is a stronger concept than uniqueness. If (3.49) holds
uniqueness is granted but the reverse is not true. One must take a series of discretiza-
tions and (3.49) must be satisfied for c independent of h.

In the first part of this section, an algorithm is developed to create the Lagrange
multiplier space. The second part discusses the stability of the resulting mixed
method.

3.6.1 Construction of the Lagrange multiplier space
Some additional notions used in the creation of a stable Lagrange multiplier space are
now defined. A cut edge is an element edge cut by an interface. A cut element is an
element the interior of which is fully or partially cut by an interface. An intersection
point is the intersection of an interface with an edge. An isolated node is a node
of a cut element that does not lie on a cut edge. A junction is the intersection of
interfaces. The connectivity graph is an undirected graph, the vertices of which are
the cut edges, and in which two of such vertices are connected if the corresponding
cut edges meet at a common node.

These concepts are represented in Fig. 3.3. The bottom of Fig. 3.3 shows the
connectivity graph of the intersection points. The vertices of this graph are circled.
We can see that vertex 1 of the graph matches a cut edge which does not connect to
any other cut edges. Therefore, vertex 1 is isolated in the graph (not to be confused
with the isolated nodes). This graph is used in this section to construct a stable
interpolation for the Lagrange multiplier field.

In order to avoid interface meshing, which can be complicated in 3D, the Lagrange
multiplier unknowns are defined at the nodes of the background finite element mesh
as in [23] (see also [141]). The corresponding question that needs to be addressed is
how to distribute the Lagrange multiplier degrees of freedom to the nodes of the mesh
M̃Mi

Γ. If each node of M̃Mi
Γ held an independent Lagrange multiplier, the dimension of

Λi
h would be too high. Therefore, a reduction is performed among them by associating

a certain Lagrange multiplier to a group of nodes. The identification of these groups
is done not element-by-element but at the global level, i.e. regarding all nodes of M̃Mi

Γ.
The groups are determined according to topological information, i.e. the location of
the nodes relative to the interface Γi. Once these groups are formed, the interpolation
within an element is built by taking the restriction of the bulk element basis functions
on Γi. An example is provided in Fig. 3.4, where the Lagrange multiplier on element
e is interpolated as λe = ψ2|ΓiLi

1 + (ψ1 + ψ3 + ψ4)|ΓiLi
2.
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Figure 3.3: Notions used for the stable Lagrange multiplier space
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Figure 3.4: Example for the interpolation of the Lagrange multiplier field within an
element

Triangle elements with linear interpolation were used in [23] with a single interface.
As a consequence, the trace of these linear shape functions resulted in a linear
interpolation for the corresponding Lagrange multiplier along the interface. The
procedure was next extended to quadratic triangles in [73]. In [102] the idea of [23]
was used with an additional crack tip enrichment. They concluded that both the
standard tip enrichments (2.35) and the vectorial tip enrichments (2.40) applied with
the Heaviside enrichment pass the inf-sup test, provided that constant interpolation
is used for the Lagrange multiplier field on the element containing the crack tip.

The present work generalizes this type of approach by considering the following
further improvements: (i) general multiple interface configurations, furthermore
(ii) incorporated within bilinear quadrilateral elements forming a Cartesian mesh.
Before outlining the algorithm for creating the shape functions for the Lagrange
multipliers, let us look at the requirements to be fulfilled by the Lagrange multiplier
space. The rationale behind it is that the best approximation property is achieved
upon polynomial completeness. We, therefore, seek a discretization that can at least
represent a uniform stress field Σ on Ω. This can be achieved if the material is
homogeneous (all grains have the same elastic properties, E and ν) and linear elastic.
Setting the Poisson ratio to 0, if a rectangular specimen is clamped on its left edge
and pulled horizontally from the right, the displacement field in Cartesian coordinates
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is
u = (αx+ β)ex. (3.50)

Since this analytical expression for u is continuous, JuKij = 0, and (3.19b) is auto-
matically fulfilled. After substitution of (3.50) into (3.37) and integration by parts,
we can observe that

• as Σ is uniform, the interface traction and therefore the Lagrange multiplier
shape functions must form a partition of unity. To be able to represent a uniform
stress field with the interpolation, due to the property that

∑︁4
k=1 ψk = 1 on an

element, all nodes of M̃Mi
Γ must contain a Lagrange multiplier.

• The integrand of ∫︂
ΓN

v · tN dΓ (3.51)

is discontinuous even if the traction is uniform on ΓN because the test functions
vm ∈ [H1(Ωm)]

d are discontinuous across the interfaces. Therefore, if we use
the standard Gauss-Legendre quadrature and want to integrate exactly, we
must integrate on ΓN segment-by-segment as (3.40) and (3.44) suggest.

• As noted at the end of Section 3.3, the Lagrange multiplier field is discontinuous
at junctions.

• Analogously to mortar methods, in which the junction points carry no Lagrange
multipliers [150], we use a constant interpolation for the Lagrange multiplier
on an element containing a junction.

• In order to avoid over-determination, Dirichlet boundaries are handled in the
same way as internal interfaces.

First, a method for building a discrete Lagrange multiplier space is given in case of a
single interface in Ω.

To avoid defining a too rich Lagrange multiplier space that causes the instability,
some of the multipliers are linked together and are prescribed to have the same values.
The nodes of the cut elements on the two sides of an interface are connected. A
straightforward approach that consists of using all the cut edges to link the nodes on
the two sides of an interface fails to satisfy the LBB condition in the general case.
This wrong, naive strategy is illustrated in Fig. 3.5. In such a strategy, the number
of tyings/constraints is too high with respect to what is strictly needed to enforce
the continuity of the fields. Therefore, a reduction of the Lagrange multiplier space
has to be performed similarly to [23] but tailored to quadrilateral elements. This is
done by first selecting some cut edges. The selection of the set of these cut edges to
reach a stable approximation is not unique hence we have some freedom in choosing
them. The following four rules are applied in this selection procedure based on the
connectivity graph illustrated in Fig. 3.3.
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1. A cut edge corresponding to an isolated vertex of the connectivity graph is
always selected.

2. A selected cut edge is not allowed to be connected to any other selected cut
edge in the connectivity graph.

3. A non-selected cut edge must be connected to at least one selected cut edge in
the connectivity graph.

4. A cut edge is never selected if the interface cutting it has a junction in an
element containing the cut edge.

The third rule makes the discrete Lagrange multiplier space as large as possible
but due to the second rule not too large to avoid dependencies. The fourth rule
is responsible for not introducing independent Lagrange multipliers at a junction.
Finally, the first rule guarantees that all nodes of the cut elements contain a Lagrange
multiplier, thereby satisfying the partition of unity requirement.

Li
1

Li
3Li

1 Li
2, L

i
3

Li
2

Γi

Figure 3.5: Naive strategy to equate Lagrange multipliers. The node links are denoted
by an elliptical shape.

Setting the discrete Lagrange multiplier space is performed according to Alg. 3.1
(follow also in Fig. 3.6). The links (ellipses in Fig. 3.5) can also be represented as a
graph, shown in Fig. 3.6.

Algorithm 3.1 Linking Lagrange multipliers
1: Nodes of an element which contains a junction are linked together to fulfil the

partition of unity
2: Determine the set of selected edges from the cut edges not part of the already

processed edges
3: Link the two nodes of a selected edge
4: The remaining node of a cut edge is linked the other node of the cut edge
5: An isolated node is linked to the opposite node of the cut element it belongs to

With these chosen links, the Lagrange multiplier shape functions inside the
elements are built as the trace of the nodal (bulk) displacement shape functions on
the interface. They are

• constant if there is a change in the normal vector in the underlying element

• linear if the interface passes through opposite edges
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• quadratic without the linear term if the interface passes through neighbouring
edges (cf. the third plot in Fig. 3.6)

Remark 5. The Lagrange multiplier shape functions constructed in this way are not
local to the considered element, their support can extend to the neighbouring elements.

Note that the use of the intersection points on the selected cut edges would not
constitute a robust solution to define a basis for Λi

h. This is due to the fact that

• the shape functions need to be created globally and not at the element level
since their support extends to neighbouring elements,

• for non-straight interfaces this process would be even more difficult

• the extension would become very complicated for 3D configurations in which
surface interfaces have to be considered, requiring global 2D shape functions to
be defined.

Remark 6. The algorithm proposed in [92] forms piecewise continuous Lagrange
multiplier shape functions, mentioning that the computation of the weights can be
done element-wise. In our case, the weights are also calculated element-wise and the
created shape functions are globally C0 continuous except inside those elements where
the normal vector to the interfaces changes in a discontinuous fashion. Moreover,
they are piecewise C1 continuous (see the third plot of Fig. 3.6).

For multiple interfaces, the procedure described above is performed on each of them,
independently from each other. This is illustrated in Fig. 3.7 where the Lagrange
multiplier field is constant on the element containing the junction.

The proposed general algorithm Alg. 3.1 for the selection of Lagrange multipliers
is now represented for different cases in Fig. 3.6, where the cut edges selected to
define them are drawn in green, the other non-selected cut edges are depicted in blue,
and the isolated nodes are connected in red. Figure 3.6 depicts this general case
in which the shape function ψ5 is used to interpolate both L1 and L2. If we chose
ψ5 to interpolate only λ1 for example, then ψ̃ψ2 would be constant on the element
with nodes 1-2-5-4. In Fig. 3.7 the selection procedure is shown in presence of a
triple junction. As mentioned before, the building of the discrete Lagrange multiplier
space is done interface-wise, therefore the method is represented on one of the three
interfaces (cf. first figure of Fig. 3.7). It is shown in the third figure of Fig. 3.7 that
the Lagrange multiplier field is constant on the element containing the junction.

A remaining situation to tackle is when a subdomain is fully embedded inside
an element. There is then no intersection point on the interfaces. As all the sides
of this embedded subdomain (i.e. its interfaces) are inside an element, a constant
Lagrange multiplier field is used on all these sides by linking all four nodes of the
element together.

In conclusion, the process of mesh tying and stiffness assembly (in the linear
elastic case) is the following.



3.6. Stable mixed formulation 59

1
2

3

4
5

6

7
8

9 1

5

2

3

6

L1 L1

L2L2

4

9

8

1
2L1,

1
2L2

1
2L1,

1
2L2

L1

L2

A

B

C
D

A B C D
0

1
ψ̃ψ1 ψ̃ψ2

Figure 3.6: Constructing the Lagrange multiplier basis functions for a single interface
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Figure 3.7: Constructing the Lagrange multiplier basis functions in the presence of a
junction

1. Cut the original mesh M into M pieces including the phantom displacement
degrees of freedoms, where M is the number of subdomains.

2. Compute the stiffness matrices on each subdomain (possibly in parallel).

3. Select some of the cut edges to define independent Lagrange multipliers.

4. Create the Lagrange multiplier space according to Alg. 3.1.

5. Calculate the coupling integrals in Eq. (3.43).

As the Lagrange multipliers are defined at the nodes of the background mesh, it
is not immediately apparent what their values should be on an interface. Associating
a geometrical point on an interface to a Lagrange multiplier is however important
because physically relevant quantities (traction vector, damage, energy release rate)
are defined on interfaces. As we will see in Chapter 4, the computations do not need
to know about these geometrical points, but useful insight can be gained by plotting
such a physical quantity on an interface. Let us use the variable i to index a vectorial
Lagrange multiplier DOF. A reasonably chosen geometrical point Pi corresponding
to an index i is called location and is determined by Alg. 3.2.

3.6.2 Stability of the discretization scheme
We now assess the stability of the designed mixed formulation. Two kinds of tests
are performed in this part: the patch test and the inf-sup test.
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Algorithm 3.2 Determine the geometric location of a Lagrange multiplier
1: Find the interface Γi the Lagrange multiplier indexed by i is associated to
2: Fetch all the nodes Ni,k which hold the Lagrange multiplier indexed by i
3: For all Ni,k find the closest points N ∗

i,k on Γi

4: Take the mean of the coordinates of N ∗
i,k, the resulting point Pi lies on Γi

The patch test is used to evaluate the polynomial completeness of the finite
element. For the elasticity equation of compressible solid, the Q1 quadrilateral
elements satisfy the patch test, i.e. the linear displacement solution can be reproduced
exactly (assuming no under-integration). We investigate here whether the Lagrange
multipliers can ensure perfect tying across the interfaces, i.e. zero displacement jump
can be achieved. This procedure is applied considering an assembly of ten subdomains,
generated using a Voronoi tessellation with uniformly distributed random seeds on the
unit square (Fig. 3.8a). Zero displacement is prescribed on the left side of the square
and uniform normal traction is applied on the right side. The elastic properties of
the grains were collectively set to E = 1 and ν = 0. As there is no contraction, the
vertical displacement component must be zero, and we expect a linear variation of the
horizontal displacement along x. Figure 3.9 shows that the included discontinuities
are successfully deactivated by the Lagrange multipliers and that the numerical result
matches with the exact solution (3.50). Hence, the patch test on a Cartesian mesh
is passed by the formulation. As an additional verification test, the numerically
determined strain energy is compared with the exact value, available in this simple
case. Since the strain and stress fields are uniform, the exact strain energy is

U =
1

2

∫︂
Ω

σ : ε dΩ =
1

2
ΩΣ : E =

1

2
, (3.52)

while the numerical value obtained is
1

2
u⊤Ku = 0.499999999999997. (3.53)

The computation of the domain integrals on polygonal element parts is handled
by triangulation (more details on quadrature can be found in Appendix B). It can be
seen in Fig. 3.10 that only the cut elements are decomposed into triangles, standard
Gauss-Legendre integration is performed on the uncut bilinear elements. We note that
the subdivision of an element into triangles is done only for the sake of computing
the integrals in the stiffness matrices (3.42), no additional degrees of freedom are
introduced.

The normal and tangential tractions are directly calculated from the Lagrange
multipliers knowing the interface normals. Note that the traction is also computed
on the Dirichlet boundary ΓD (Fig. 3.11). It can be seen in these figures that, as
expected, the traction vector is close to zero on interfaces with an orientation parallel
to the direction of the loading. On ΓD, tt = 0 and tn = 1. Computing∫︂

Γ

λ · JuK dΓ = λ⊤B(u+ − u−) (3.54)
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Figure 3.8: Geometry and mesh for the simple tension test. The interface endpoints
are marked with filled blue circles.
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Figure 3.9: Displacement field for the tension test
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Figure 3.10: Deformed mesh with the quadrature cells for the tension test
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Figure 3.11: Traction field for the tension test

with the displacement and Lagrange multiplier solution vectors u and λ gives
−1.7322× 10−16, indicating that the continuity of the displacement field across
the interfaces is weakly fulfilled.

We now focus on the inf-sup conditions. In case of mixed problems of the form (2.16),
the finite dimensional version of the inequalities (2.20)–(2.21) are

0 < α⋆ ≤ inf
0̸=uh∈Zh

sup
0̸=vh∈Zh

a(uh, vh)

∥uh∥V ∥vh∥V
, (3.55)

0 < β⋆ ≤ inf
0̸=λh∈Λh

sup
0̸=vh∈Vh

b(λh, vh)

∥vh∥V ∥λh∥Λ
(3.56)

with α⋆ and β⋆ being independent of the mesh size h [36]. The second condition
(3.56) is often called the inf-sup condition. We will refer to it as LBB3 condition
(which is another commonly used name) to distinguish it from the first one we will
refer to as coercivity condition.

Remark 7. The continuity of a(·, ·) and b(·, ·) need not be checked, it automatically
comes from the fact that we used the proper norms (see [30]).

Checking the fulfilment of the pair of conditions (3.55)–(3.56) is very difficult for
most BVPs. Even if the stability was proved for the continuous problem, it would not
imply the stability of the discrete problem due to the non-conforming discretization.
The inf-sup test provides practical means to determine the LBB constant. The
original version of the test was created for constraints prescribed on domains [46].
For interfacial constraints, the test was slightly modified in [18]. Its idea is to express
the LBB constant with the help of an eigenvalue problem. The square root of the
smallest non-zero eigenvalue of{︄

Find β ∈ R and 0 ̸= (uh, λh) ∈ Vh × Λh such that ∀(vh, µh) ∈ Vh × Λh

(uh, vh)V ;Ω + b(λh, vh) + b(uh, µh) = −β(λh, µh)Λ;Γ.
(3.57)

3the acronym of Ladyzhenskaya-Babuška-Brezzi
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is identified as the LBB constant: β⋆ =
√
βmin. In our problem, V i = [H1(Ωi)]2,

∀i ∈ Is and Λi = [H−1/2(Γi)]2, ∀i ∈ Iint ∪ ID. As it is difficult to deal with fractional
Sobolev spaces, they are replaced by mesh-dependent L2-norms as in [23]:

∥µh∥2−1/2;Γ :=
∑︂
e∈E

he∥µh∥20,e, (3.58)

∥vh∥21/2;Γ :=
∑︂
e∈E

1

he
∥vh∥20,e, (3.59)

where E is the one-dimensional mesh on Γ and he is the size of element e in E . We
note that in our Lagrange multiplier selection algorithm, no such situation arises that
he is arbitrarily close to zero, whatever the position of the interface and the mesh
used. This property and the norm equivalence allows replacing the one-dimensional
mesh segments he with the background mesh size h. We also use norm equivalence
between the H1-norm ∥ · ∥1;Ω and the energy norm ∥ · ∥E;Ω :=

√︁
a(·, ·) to replace

(uh, vh)1;Ω with a(uh, vh), therefore being able to use the already available stiffness
matrix. Using these norms, the matrix representation of the eigenvalue problem (3.57)
reads: [︃

K B⊤

B 0

]︃ [︃
u
λ

]︃
= β

[︃
0 0
0 hG

]︃ [︃
u
λ

]︃
, (3.60)

where the stiffness matrix K and the coupling matrix B are already defined in (3.42)
and in (3.43). The Gram matrix G = diagGi

kℓ is block diagonal, and the block matrix
corresponding to interface i is formed as Gi

kℓ = (ψ̃ψi
k, ψ̃ψ

i
ℓ)Γi . The assembly of Gi

kℓ is
similar to that of Bi

kℓ. It is a common practice to solve (3.60) either for u or for λ.
As K is singular, we chose to eliminate λ from (3.60) to obtain

1

h

(︁
B⊤G−1B

)︁
u = βKu. (3.61)

A series of generalized linear eigenvalue problems (3.61) are solved on increasingly
refined meshes. Then the inf-sup constant is approximated as

β⋆ = min
hi

√︁
βh;min. (3.62)

Computing βh;min on many meshes increases the reliability of the inf-sup test. However,
obtaining all the eigenvalues for matrices of size K is very demanding. This is even
so because Matlab’s eig function can compute all the eigenvalues of a generalized
eigenvalue problem for full matrices only. Iterative methods are able to return only a
selected few eigenvalues. The strategy used here is therefore the following. Assume
that our discretization is stable. Then the inf-sup constant should not decrease
significantly. Therefore, we determine βH,min out of all the eigenvalues for a coarse
mesh with mesh size H. In the model problem depicted in Fig. 3.12a, H was selected
to be 1/32, and the full spectrum could quickly be obtained for that mesh size on
a laptop. For meshes with h < H, we searched N eigenvalues in the vicinity of
βH,min, keeping the matrices in sparse storage format. If we had only looked for one
eigenvalue, the iterative method might have found a zero eigenvalue, corresponding
to a rigid body mode of K. Solving generalized eigenvalue problems with singular
matrices is difficult. Matlab’s built-in eigs function was not only slow for large
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Figure 3.12: Stability test

matrices, but it also lacked the robustness for our problem (3.61). Therefore, we
turned to version 2.8 of the Rational Krylov Toolbox [28]. The poles of the rational
functions associated with the rational Krylov space were set to 0.1βH,min. Using βH,min

allows the precise computation of the eigenvalues nearby. The 0.1 factor enables the
algorithm to find smaller values for βh,min in case of loss of stability. The Krylov
space was initialized with a random vector with a size agreeing with that of K and
its dimension was set to 51, hence N = 50 eigenvalues were obtained. The smallest
of them being larger than a chosen tolerance was returned. For the inf-sup test, the
same BVP was considered as for the patch test. The LBB constants on meshes with
1/h = 4, 8, 16, 32, 64, 128, 256 are shown in Fig. 3.12a, giving the hint that the choice
of the pair (Vh,Λh) is stable.

Most authors only check the LBB condition. It is not a problem if the coercivity
condition (2.20) is proved to hold on V and if a conforming discretization is used.
However, our discretization is non-conforming in both the displacement and the
Lagrange multiplier fields. Hence, it is necessary to investigate the behaviour of the
coercivity constant α⋆ in (3.55) as well. Similarly to the LBB condition, this inf-sup
condition can also be verified with an associated eigenvalue problem. Let us first
introduce (cf. (2.20)) the discrete version of the kernel of b(·, ·), i.e.

Zh = ker b(vh, µh) := {vh ∈ Vh | b(vh, µh) = 0, ∀µh ∈ Λh}. (3.63)

The smallest in modulus eigenvalue of the generalized eigenvalue problem{︄
Find α ∈ R and 0 ̸= uh ∈ Zh such that ∀vh ∈ Zh

a(uh, vh) = α(uh, vh)V ;Ω

(3.64)

gives the Brezzi coercivity constant: α⋆ = |αmin|. In most problems, Zh is not known
explicitly. An alternative eigenvalue problem is{︄

Find α ∈ R and 0 ̸= (uh, λh) ∈ Vh × Λh such that ∀(vh, µh) ∈ Vh × Λh

a(uh, vh) + b(λh, vh) + b(uh, µh) = α(uh, vh)V ;Ω.
(3.65)
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It was proved in [6] that the smallest in modulus eigenvalue of (3.65) and the smallest
in modulus eigenvalue of (3.64) agree. This time we cannot replace (uh, vh)V ;Ω with
a(uh, vh) as we did before because all the eigenvalues would be infinity or 1. Therefore,
the new term is directly evaluated as follows. By the definition of the broken Sobolev
spaces and given that in our problem V i = [H1(Ωi)]2 for i ∈ Is, we have

(uh, uh)1;Ω = ∥uh∥21;Ω =
∑︂
i∈Is

∥uh∥21;Ωi =

=
∑︂
i∈Is

(︁
∥uh∥20;Ωi + |uh|21;Ωi

)︁
= u⊤Su.

(3.66)

The subdomain matrices are formed as

Si
kℓ = (ψi

k,ψ
i
ℓ)Ωi + (∇ψi

k,∇ψi
ℓ)Ωi , i ∈ Is, (3.67)

where the global matrix is S = diag Si
kℓ and u is the global vector of the displacement

unknowns. The assembly of the subdomain matrices Si
kℓ and the global matrix S is

done exactly as for the stiffness matrices. However, more Gauss points were used
because S contains the shape functions as well, not only their derivatives as K. The
eigenvalue problem (3.65) with these matrices is[︃

K B⊤

B 0

]︃ [︃
u
λ

]︃
= α

[︃
S 0
0 0

]︃ [︃
u
λ

]︃
(3.68)

The calculation of |αmin| is performed with the same method as used for Eq. (3.61).
Figure 3.12b shows that for the investigated meshes the Brezzi coercivity constant is
also bounded away from zero.

Although numerical evidence is not equivalent to a proof, the patch test and the
careful examination of the inf-sup constants give us confidence about the stability of
the discretization scheme.
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3.7 Robustness
Mesh-independent methods, such as X-FEM, alleviate the mesh generation phase at
the expense of some additional care that must be taken. Ill-conditioning coming from
small cuts is an issue with X-FEM-like methods as was discussed in Section 2.5.3. In
this section two strategies are proposed, both having their advantages and drawbacks.

3.7.1 Interface adaptation
Care must be taken when an interface passes through a node or even coincides with
an edge. Such situations have to be considered if the interface is closer to a node
than a given tolerance. When an interface goes through a node (i.e. the intersection
point coincides with a node), one should decide which cut edge to use for building the
tyings. Although the intersection point could be associated with the node it coincides
with, that special case would make the implementation more difficult. Therefore, we
always associate an intersection point to an edge. One can always select a cut edge
containing that node and independent of the other selected edges, showing that the
special node always holds an independent Lagrange multiplier. However, to handle
this in a general setting, we rather choose to move the intersection point along one of
the four edges to which the node belongs. This is denoted in the sequel as geometry
adaptation. The corresponding algorithm is given in Alg. 3.3. Steps 3 to 6 of Alg. 3.3
are easy to understand but steps 1 and 2 require some explanation. Two strategies
can be followed. The first one is step 3 of Alg. 3.3. The second strategy consists of
steps 1–3 of Alg. 3.3. Assuming an interface that almost goes through a node (dashed
line in Fig. 3.13), two connecting edges to the centre node are cut. According to the
first strategy, the two intersection points are moved away from the node (Fig. 3.13a,
circles). The second strategy first moves the intersection points to the centre node,
deletes one of them, and finally shifts the remaining one along an edge (Fig. 3.13b,
middle circle). The newly created interface then cuts the other edge (Fig. 3.13b,
square). Both strategies work well in this case.

Algorithm 3.3 Geometry adaptation
1: Intersection points close to a node are moved to that particular node
2: Intersection points being at a node, stemming from the same interface, are deleted
3: Intersection points sitting at a node are moved away from that node on an edge
4: Construct new interfaces in place of those, whose intersection points were moved
5: Modify the subdomains according to the newly included interfaces
6: Find the new intersection points which emerge as the intersection of the new

interfaces with the mesh

Now let us consider the situation with an interface going exactly through a
node (Fig. 3.14). For the depicted configuration, four coinciding intersection points
appear on the edges incident to that node. According to the first strategy, these four
intersection points are moved along those edges, away from the node. The circles in
Fig. 3.14a show the displaced intersection points. The question is how to reconstruct
the modified interface. There is no unique choice as it was in the previous case (cf.
Fig. 3.13a). One way of connecting the intersection points to form new interfaces is
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Figure 3.13: The original interface (dashed line) almost goes through a node. Two
strategies to move an intersection point away from a node.
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(a) First strategy

Γ

(b) Second strategy

Figure 3.14: The original interface (dashed line) exactly goes through a node. Two
strategies to move an intersection point away from a node.

given in Fig. 3.14a. One can notice that this method results in a very jagged interface
configuration. Conversely, the second strategy works equally well as in the first case
(see Fig. 3.14b) because the number of intersection points is reduced to one, tracing
back this configuration to the previously discussed setup. This second strategy is
therefore selected.

3.7.2 Optimal background mesh generation
The interface adaptation method of the previous section has some drawbacks. Modify-
ing the interfaces based on the current background mesh introduces mesh-dependency
to the otherwise mesh-agnostic CutFEM. The other downside of this strategy is
that creating new, shorter interfaces without mesh refinement results in a worse
approximation of the Lagrange multipliers, which in turn deteriorates the accuracy
of the traction vector. Finally, it is not so simple to implement, especially when
considering future 3D extensions.

These deficiencies gave the idea to search an alternative, possibly simpler method.



68 Chapter 3. Problem formulation and discretization

Modifying the interfaces served two purposes. First, it avoids the special cases in the
mesh connectivity, allowing every possible interface-mesh intersection being carried
out with a common computational geometry algorithm. Second, it allows suppressing
the extreme ill-conditioning caused by the small cut areas. The aim is therefore to
create a background mesh for which small cuts do not occur. This can be achieved
by keeping the geometry fixed and moving the mesh optimally. This suggests the
existence of an optimization problem to determine the best position of the mesh.
Solvers evaluate the objective function for such an optimization problem at certain
points as part of an optimization algorithm. If the objective function is too costly to
evaluate, this new technique becomes unfeasible in practical situations with many
subdomains and a fine mesh. Therefore, instead of cutting the elements of the mesh
with the subdomains, an alternative measure is sought which characterizes the cut
part. In 2D, tiny cut element parts are present in the following two cases:

(i) an interface is close to a node (Fig. 3.15a),

(ii) an interface endpoint is close to an edge (Fig. 3.15b)

The goal is therefore to maximize the distance among interfaces and nodes, and
among interface endpoints and element edges, which leads to an optimization problem.
This heuristic approach is much cheaper than if an element-subdomain cutting was
executed. Such a measure based on distances clearly cannot provide good results if
a polygonal subdomain is very elongated, but in such cases, a finer or graded mesh
would anyway be required. As a single small element part causes a high condition
number for the global system matrix, it is not sufficient to maximize the sum of the
square-distances. Our aim is to maximize the minimum distance between each of the
geometrical entities involved (i.e. nodes, edges, interfaces). The general optimization
problem is therefore formulated as: find the location x of the nodes of the mesh such
that

max
x

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min
i∈I
j∈N

d(Ii, nj(x))

min
i∈I
j∈E
k=1,2

d(Pik, ej(x))
, such that Ω̃Ω ⊇ Ω, (3.69)

holds, where Pik are the two endpoints of interface Ii indexed by I, ej are edges
indexed by E , while nj are nodes of the mesh indexed by N . The constraint expresses
that the domain of the background mesh must cover the domain of the geometry,
containing the interfaces.

Task (3.69) can be simplified. Thinking of the optimization problem as moving the
background mesh in horizontal (x) and vertical (y) directions, and taking into account
that we deal with a uniform Cartesian mesh, it is easy to see that the translation of
the mesh must be in the range [−hx, hx]× [−hy, hy], where hx and hy are the mesh
sizes in x and y directions. These intervals give lower and upper bound constraints
to the optimization problem.

As the distance calculation needs to know only about the interfaces and the ele-
ment nodes and edges, the algorithm takes the interfaces and the mesh as inputs. The
background mesh stretches on a rectangular domain determined by the axis-aligned
bounding box (AABB) of the set of interfaces. Let this box be given by [a, b]× [c, d],
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(a) Interface close to a node (b) Interface endpoint close to an edge

Figure 3.15: 2D geometry-mesh configurations leading to small cuts. Zoom on a
triple junction with three subdomains. The subdomain filled in with green tilted lines
cuts a small part out of the element marked in yellow.

so that its lower-left corner is (a, c). As the mesh can translate by hx and hy distances
at most, one layer of elements is placed along the left, right, bottom and top sides of
the mesh defined on the AABB of the interfaces. The lower-left corner node is called
reference point. The location of all the nodes are determined by this reference point
and the uniform mesh size hx, hy. Hence, the background mesh at any iteration of
the solver is completely determined by the number of elements in x and y directions,
being user inputs.
The next step of the algorithm is the distance computation. It is not necessary to
compute the distance between every pair of entities of the mesh and the interfaces;
most of these distances will be greater than the minimum distance. Therefore, it
is enough to consider the nodes and edges of the neighbouring elements to a given
interface. As we do not wish to cut the elements with the interfaces, the candidate
elements to an interface are taken as the elements covering the AABB of the interface
plus an additional layer of elements around them – the same strategy we already used
in the initial background mesh construction. As only the position of the candidate
elements change when the mesh is moved (this was the goal), the ID of their edges
and nodes are stored. This offline part makes it possible to skip the identification
of candidate edges and nodes whenever the optimization code invokes the distance
computation function.
To solve the maximin problem (3.69), the fminimax solver of Matlab’s Optimization
Toolbox was used. As we need to solve a maximin problem, the negative of the objec-
tive function was passed to the solver. There are only two scalar degrees of freedom
(translation modes), so the objective function has two variables: x and y. When find-
ing the optimum, the lower and upper bound constraints must be met: x ∈ [a−2hx, a],
y ∈ [c− 2hy, c]. The initial guess was set to (x0, y0) = (a− hx/2, c− hy/2).

The algorithm is assessed by two examples. We are interested in how well the
proposed heuristic strategy works. The condition number of the block matrix in
Eq. (3.46) is estimated with Matlab’s condest function both for the initial and
for the optimal mesh. To eliminate the ill-conditioning of the saddle point problem
coming from the different scales present in matrices K and B, we choose the material
properties such that the entries of K are of the same order of magnitude as the entries
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Figure 3.16: Initial and optimal background meshes for a single interface

in B. We also measure the time required for generating the optimal mesh.
In the first test, the unit square domain is considered with an interface separating

it into two subdomains. The coordinates of the interface endpoints were randomly
chosen. Assume that the user wants a 2× 2 mesh on the domain on average. The
reference point of the initial mesh is at (−0.25,−0.25), shown in Fig. 3.16a. We can
see that the interface endpoint on the top side of the domain is close to an edge. The
cut element parts are of course not small in this case; this example merely wants to
visualize the working of the algorithm. The output of the optimization procedure is
the optimal mesh, shown in Fig. 3.16b. The optimal mesh in this simple test example
could have been found by “hand”. Indeed, the initial mesh should not be moved
vertically, it is already in perfect position along this direction. On the other hand, it
must be translated horizontally such that its distance from the closest two vertical
mesh lines becomes equal. It demonstrates that the algorithm acts reasonably, at
least for one interface.
To study the effect of mesh refinement on the conditioning and on the elapsed time,
equispaced meshes with 2i × 2i number of elements were used for i = 1, . . . , 6. The
results are collected in Tab. 3.1. Analysing the condition numbers, the following
consequences are apparent:

• the optimal mesh always results in a smaller condition number than the initial
mesh

• the optimal mesh is consistent in the sense that the condition number monoton-
ically increases with mesh refinement as opposed to the initial mesh in which
the condition number depends on how the mesh is positioned with respect to
the geometry

• for an unfortunate cutting situation, even a coarse initial mesh can result in
huge condition numbers

By measuring the elapsed time, it turned out that the cost of generating an optimal
initial mesh is negligible compared to creating the finite element spaces V i

h and Λi
h.
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Mesh size condition number generation time [s]initial mesh optimal mesh

2 2.73× 103 1.16× 103 0.107
4 1.04× 105 7.88× 103 0.087
8 1.29× 108 2.36× 105 0.091

16 8.45× 106 9.85× 105 0.107
32 1.58× 1010 3.86× 107 0.162
64 2.46× 108 1.34× 108 0.329

Table 3.1: Mesh optimization for a single interface
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Figure 3.17: Background mesh for multiple interfaces

In case of multiple interfaces, moving the mesh away from an interface can bring
it closer to another interface, making the mesh positioning dependent on the relative
location of the interfaces. It is therefore expected that the algorithm performs worse
than in the single interface case. To assess the capabilities of our algorithm in
such a situation, a more realistic example is taken. A circle of diameter 150mm is
tessellated with a bounded Voronoi diagram consisting of 100 seeds (see Fig. 3.17).
The tessellations were produced by the VoronoiLimit function [166].

Several mesh sizes are considered to see how the optimization strategy performs
with respect to mesh refinement. Table 3.2 reports the obtained data. The previous
observations for the condition numbers are valid here as well, the situation being more
severe in this example. The computational cost is mild compared to other operations
(mesh-subdomain intersection, assembly, solving).
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Mesh size condition number generation time (s)initial mesh optimal mesh

5 1.60× 1011 7.67× 1010 8.112
10 9.18× 1014 1.90× 1012 10.530
20 3.00× 1013 8.82× 1012 12.697
40 8.22× 1020 6.94× 1013 15.053
60 2.01× 1017 6.26× 1014 20.460
80 1.21× 1020 7.87× 1015 36.810

Table 3.2: Mesh optimization for multiple interfaces

Based on these two examples, the following conclusions can be drawn.

• The method is purely geometric, does not need any information about the
particular PDE. Therefore, it can be applied in fictitious domain methods,
X-FEM, CutFEM, etc.

• This method alone is not sufficient to handle the ill-conditioning coming from
the small cuts.

• Compared to the interface adaptation method, the mesh optimization technique

– is simpler and naturally extends to 3D, as it is based on simple distance
calculations

– does not modify the geometry and hence
∗ it retains the mesh independence of the discretization
∗ the Lagrange multiplier approximation is not deteriorated

– cannot reduce the condition number as effectively because the relative
position of the mesh and the geometry is taken into account globally and
not locally

The current algorithm could be improved by the following future developments.

• Instead of computing the condition number of the saddle point matrix, compute
the effective condition number of the stiffness matrix. This allows completely
getting rid of the possible ill-conditioning created by the saddle point structure.

• The squared distance between a point and a line gives a quadratic function.
The derivative of this objective function is computable analytically, therefore
the Jacobian matrix can be given by the user instead of relying on the finite
difference computation by the minimax solver.

• The distance computations are independent and hence easy to parallelize.

• An assessment with different initial mesh positions could be used to try finding
a global optimum.
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However, these enhancements are not yet implemented; this method should be
considered as a proof-of-concept in its current state.

The designed optimal background mesh strategy is purely geometric (independent
of the PDE), not complicated to implement (only requires distance calculation and a
black-box minimax solver) and the core idea does not depend on the spatial dimensions
(the objective function differs in 1D, 2D and 3D due to the different cause of small
cut parts, but the general idea remains the same).

Remark 8. Note that the randomly generated Voronoi cells may have very short
edges. This is a difficulty for mesh generators because even if they manage to produce
a mesh, it can be of low quality or excessively refined. In [1] the edges with length
under a specified threshold were removed by a two-step algorithm. In our method,
small edges do not make the simulation fail. It is true that the Lagrange multiplier
approximation is poor along very short edges but that can be remedied by a local
non-conforming mesh refinement. We did not experience any numerical issues in the
presence of short Voronoi edges.
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3.8 Brazilian test configuration
The flexibility of the discretization is demonstrated here on the numerical solution
for a geometrical configuration matching a classical experimental test. The Brazilian
test, proposed in [43] is an indirect tension test to determine the tensile strength
of brittle materials. A cylinder is compressed along its diameter. Assuming ideal
conditions (no friction between the loading device and the cylinder, concentrated
force applied, homogenous material), an analytical formula exists for the tensile stress
σ in the centre of the specimen [100]:

σ =
2P

πDt
, (3.70)

where P is the applied load, D is the diameter of the cylinder and t is its thickness. In
the numerical model D = 5mm, E = 40MPa, ν = 0.36, ft = 6MPa were chosen and
a plane strain assumption was considered. The circle is approximated by a regular
polygon of 200 sides. The discretized circle is clamped at the bottom along one
polygon side and is subjected to distributed force in the vertical direction at the top.
Both boundary conditions are prescribed along one polygon side of the discretized
circle. These short boundary segments are marked in red in Fig. 3.18a. The cracking
is assumed to start along the diameter of the circle along which the loading is applied
(blue segment in Fig. 3.18a). Therefore, we create one interface separating the circle
into two half-circles, shown in blue in Fig. 3.18a.

0 1 2 3 4 5
0

1

2

3

4

5

(a) Numerical model

0 20 40 60 80 100
10−3

10−2

10−1

100

Number of elements

|P
cr
it

n
u
m
−

P
cr
it

ex
a
ct
|

|P
cr
it

ex
a
ct
|

(b) Relative error in the critical load

Figure 3.18: Brazilian test

The simulation was performed on a series of finer and finer meshes made up of
the same number in horizontal and vertical directions. The exact critical force for
crack initiation obtained from (3.70) as P crit

exact = (1/2)πtDft is compared with the
numerically computed one P crit

num, determined by the maximum normal traction on
the interface. Equivalently, this boils down to estimating computationally the load at
which a given stress is obtained at the centre of the specimen. The relative error is
shown in Fig. 3.18b for different mesh densities. One can see that a sufficiently fine
mesh is necessary to achieve a good result and that the relative error 10−3 seems to
be a plateau. This behaviour could be explained by the fact that the exact solution
corresponds to a different BVP than the one considered in this model.
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It is also interesting to study the distribution of the normal traction on the vertical
diameter of the circle with mesh refinement. Assuming point loading, the normal
traction under both plane stress and plane strain conditions is given by the following
formula [99]:

tn =
P

πRt

ρ8 + 4ρ4 − 4ρ2 − 1 + 2(−2ρ6 + ρ4 + 1)

(ρ2 − 1)4
, (3.71)

which is very close to a constant function. This constant function for the critical load
P crit is the tensile strength ft. The non-dimensional variable ρ denotes r/R with r
being the radial polar coordinate and R = D/2. The numerically computed traction
profiles are shown in Fig. 3.19. One can see in the zoomed regions that for finer and
finer meshes the numerical solution approaches the analytical one. A perfect match
is not possible because the circle is approximated with a polygon and the loading is
not prescribed at a single point. This logically results in large compressive stresses
close to the perimeter of the circle.
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Figure 3.19: Normal traction distribution in the Brazilian test

This example shows that polygonal domains other than squares, seen in the
previous sections, can simply be embedded into a background mesh, and lead to
a proper stress distribution in the simulation. We note that the current test case
serves a verification purpose and is not a validation with experimental results. In
Section 5.2, the Brazilian test with multiple grains will be studied, following the
complete softening of the material.
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This chapter starts with the recognition that both from the kinematic and from
the material behaviour points of view, the introduction of a cohesive zone is required.
Then an unconventional damage-driven fracture solution procedure, instead of the
more common load-controlled computations, is developed.

For the more accurate enforcement of the contact conditions and to avoid the
ill-conditioning coming from an intrinsic cohesive zone formulation with a high initial
elastic stiffness, an extrinsic traction-separation relation is assumed. Following a
recent work, the completely failed cohesive elements are not removed from the mesh,
rather a modified Lagrangian formulation is applied in which only finite terms appear
in the compliance matrix upon complete failure. This approach greatly increases the
robustness of the method.
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Based on available experimental evidence, the Mohr-Coulomb failure criterion is
used in this work with a cut-off in the tensile regime and a cap in the compression
region.

The extrinsic cohesive zone model is reparametrized with an internal variable – the
interfacial damage – which (i) separates the crack propagation from the determination
of the mechanical fields (displacement and Lagrange multiplier), (ii) ensures the
irreversibility of the crack growth, (iii) allows an explicit treatment of both crack
growth and contact enforcement in the cohesive zone and (iv) provides an energetic
criterion for both crack initiation and crack growth. The damage variable is interpo-
lated with the same basis functions as the Lagrange multiplier which makes the crack
propagation easy: there is no need for tracking the crack tip.

The modified formulation includes some additional terms in the weak form. The
experimentally observed increase of the mode II fracture energy with compression on
interfaces is taken into account. However, it implies that the damage parameter no
longer corresponds to the level of degradation. Therefore, a new, physically meaningful
quantity related to energy dissipation is defined, through which the damage field is
updated.

Finally, the solution scheme of the crack propagation problem is summarized.
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4.1 Crack propagation along interfaces
To propagate cracks in the proposed discretization scheme, it seems natural to
deactivate some constraints (Lagrange multipliers) to let the interface open based
on some energy release principle. However, several aspects need to be tackled
to reach this objective. When simply fully deactivating a tying constraint, the
fictitious node method indeed creates a discontinuity along the whole element at once.
Consequently, the crack propagates along the whole element length. Moreover, if a
Lagrange multiplier is set to vanish, it affects the entire support of its basis function,
meaning that the crack will (partially) open on the neighbouring cut element as
well. A remedy for this would consist of using piecewise-constant Lagrange multiplier
approximations on the elements. A crack could then be opened on each element
separately by deactivating the corresponding Lagrange multipliers without affecting
the neighbouring element. However, this would deteriorate the accuracy of the
Lagrange multiplier approximation; and the piecewise constant Lagrange multiplier
approximation is not stable when used with a linear displacement interpolation [150].
Conversely, one could open a crack on a whole interface, but this would yield an
imprecise propagation for large grains. Opening a crack at a junction is also another
delicate issue in such cases as it results in a kinematic inconsistency when two crack
segments meet, while shifting the junctions towards element edges would introduce
significant geometrical errors and mesh dependency. An equally important aspect is
the length scale. In quasi-brittle materials, the nonlinear zone around the crack tip is
not negligible.

This motivates us to use a method which does not break an interface at once but
provides the possibility of the progressive opening of a crack. The cohesive model
allows convenient implementation, smoother crack opening and a better estimation
of the released energy from a traction-separation relation. This enables tracing the
softening response in a quasi-brittle failure context. To avoid the costly incremental-
iterative procedure most often used in cohesive approaches, an explicit solution
procedure based on a dissipation-driven scheme will be used to circumvent the need
to solve iteratively nonlinear problems.

Quasi-static crack simulations can be performed by fixing the load (traction or
displacement loading) and propagating the cracks by a distance stemming from
equilibrium solving. Alternatively, it can be implemented by propagating the cracks
by a certain distance and deducing the required load for this propagation to have
equilibrium [74]. The latter approach enables the use of an explicit algorithm, i.e.
to set the crack opening increments at the beginning of a step and to deduce the
load factor from this information using equilibrium. This principle will be used in
the sequel.
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4.2 Mixed method for cohesive cracks
With at hand a mixed discretization involving displacement and Lagrange multiplier
unknowns, an extrinsic CZM can be used. The use of a mixed formulation involving
displacements and tractions will also prove useful to enforce contact conditions
precisely. To this end, the two-field formulation of [45] is used within the CutFEM
setting instead of mesh-conforming cohesive elements.

To simplify the notations, we omit the interface and subdomain indices. The weak
form (3.19a)–(3.19b) then reads:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Find (u,λ) ∈ V × Λ such that ∀(v,µ) ∈ V × Λ∫︂
Ω

ε(v) : C : ε(u) dΩ +

∫︂
Γ

JvK · λ dΓ =

∫︂
ΓN

v · tN dΓ,

∫︂
Γ

µ · JuK dΓ =

∫︂
ΓD

µ · uD dΓ.

(4.1)

The cohesive traction λ(JuK) (which is a purely softening function for an extrinsic
formulation) is introduced in the weak formulation in its compliance form (see [45])
as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Find (u,λ) ∈ V × Λ such that ∀(v,µ) ∈ V × Λ∫︂
Ω

ε(v) : C : ε(u) dΩ +

∫︂
Γ

JvK · λ dΓ =

∫︂
ΓN

v · tN dΓ,

∫︂
Γ

µ · (JuK− JuK(λ)) dΓ =

∫︂
ΓD

µ · uD dΓ.

(4.2)

The second equation of (4.2) compares the displacement jump calculated from the
displacement field with the displacement jump obtained from the cohesive model
based on the cohesive traction. Until the activation of a cohesive zone, Eq. (4.1)
and Eq. (4.2) are the same. Using this formulation, an incremental-iterative solution
procedure would be required to solve this nonlinear problem. Since the opening is
computed from the Lagrange multiplier in the compliance form as JuK = Rλ, some
terms in the compliance matrix R tend to infinity when λ tends to 0 (i.e. failure of
the cohesive zone). This was identified in [45], which motivated the use of a modified
Lagrange multiplier method. An effective cohesive traction ζ is therefore introduced
as a Lagrange multiplier defined by

ζ = λ+ k · JuK, (4.3)

where

k =

[︃
kn 0
0 kt

]︃
(4.4)

with the parameters kn and kt being positive. This allows evaluating the compliance
matrix even when λ = 0. In Section 4.7, lower bounds will be determined for these
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parameters.
From (4.2), using (4.3), one obtains a new weak form expressed as:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Find (u, ζ) ∈ V × Λ such that ∀(v,η) ∈ V × Λ∫︂
Ω

ε(v) : C : ε(u) dΩ +

∫︂
Γ

JvK · (ζ − k · JuK) dΓ =

∫︂
ΓN

v · tN dΓ−
∫︂
ΓD

v · k · uD dΓ,

∫︂
Γ

η · (JuK− JuK(ζ)) dΓ =

∫︂
ΓD

µ · uD dΓ.

(4.5)
The opening of cracks can cause other cracks to close due to stress redistribution.

A contact condition must, therefore, be provided to avoid interpenetration of the
crack faces. During contact the conditions JunK = 0 and tn ≤ 0 hold. Therefore,
according to Eq. (4.3), ζn ≤ 0. To enforce this in Eq. (4.5), the interface stiffness is
only decreased when the cohesive zone is in loading state:∫︂

Ω

ε(v) : C : ε(u) dΩ +

∫︂
Γ

JvK · (ζ − k · JuK) dΓ =

∫︂
ΓN

v · tN dΓ−
∫︂
ΓD

v · k · uD dΓ,

∫︂
Γ

η · (JuK− χ(ζn > 0)JuK(ζ)) dΓ =

∫︂
ΓD

η · uD dΓ,

(4.6)
where χ is the indicator function acting only in normal direction to activate contact
upon closure.

In Section 4.4, the mixed formulation (4.6) is recast with the introduction of
interfacial damage. It will provide a damage propagation criterion and will allow for
a segregated solution procedure, i.e. the system solving for (u, ζ) is separated from
the damage update.
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4.3 Failure criterion
Mode I crack propagation was mainly considered in previous efforts [112]. Experiments
are however often carried out with triaxial tests for rock and geomaterials. The
modelling of such tests involves compressive-shearing loading on interfaces, and a pure
mode I crack propagation model would not be sufficient for such cases. Furthermore,
even if uni-axial tension is applied to heterogeneous materials, the slanted interfaces
undergo shearing as well. Assuming only mode I propagation is therefore not justified
for our purpose.

A model uncoupling failure along the normal and tangential directions is to be
avoided as residual normal (tangential) tractions should not be present after the
interface has failed in tangential (normal) direction.

A single Mohr-Coulomb criterion would predict an overestimated uni-axial tensile
strength. Such a criterion is therefore combined with a Rankine criterion to construct
the Mohr-Coulomb criterion with tension cut-off (see e.g. [142]). Expressed in the
space of normal and tangential cohesive tractions, tn and tt, the initial damage
criterion consists of the equations

tn − ft = 0,

tanφ tn + |tt| − c = 0,
(4.7)

giving the tension cut-off and the Mohr-Coulomb parts of the criterion, where ft is
the tensile strength, c is the cohesion and φ is the angle of friction. The criterion is
depicted in Fig. 4.1a.
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Figure 4.1: Mohr-Coulomb damage criterion with tension cut-off and compression
cap in the space of interfacial traction components

The Mohr-Coulomb criterion with tension cut-off and compression cap (see
Fig. 4.1b) consists of an additional part, described by

tn − ft = 0,

tanφ tn + |tt| − c = 0,

(tn + fc) tanψ − |tt| = 0,

(4.8)
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where fc is the compressive strength. In [157], the compression cap was an ellipsoid.
A compression cap will be shown necessary so that the parameter k to be selected
for defining the augmented Lagrangian remains finite for all traction component
combinations (see Section 4.7).

The failure criterion gives what combination of the tractions causes damage initia-
tion and therefore the start of softening. Figure 4.2 shows the Mohr-Coulomb criterion
for positive shear stresses with cut-off in the tension and cap in the compression
regime. One can differentiate four loading modes, depending on which part of the
criterion becomes active when the softening begins. Label 1 marks the tension cut-off
part, label 2 the part of the Mohr-Coulomb line being in the tension region, label 3 the
Mohr-Coulomb line in the compressive regime, while label 4 indicates the compression
cap. The corresponding traction-separation relations are also indicated in the figure.
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4.4 Damage-based cohesive zone formulation
In what follows, we consider an extrinsic cohesive model (i.e. without any elastic
behaviour before softening), suitable for initially perfect interfaces. Following [112], the
CZM is reformulated with an interfacial damage variable d. This allows formulating
evolution equations, which simplifies the numerical implementation of the CZM. Using
only one damage variable both for the normal and tangential directions ensures that
whenever the interface is fully failed, both the normal and the tangential cohesive
tractions vanish. The free energy functional is defined as

ϕ(JuK, d) =
1

2

(︃
1

d
− 1

)︃
JuK · k · JuK (4.9)

and k is given in Eq. (4.4).
Another internal variable y is defined as the dual of d, so that evolution laws

can be written. The state laws, i.e. the expressions of the cohesive traction t and of
the cohesive energy release rate y, respectively, are derived from the potential (4.9)
according to:

t =
∂ϕ

∂JuK
=

(︃
1

d
− 1

)︃
k · JuK, (4.10)

y = −∂ϕ
∂d

=
1

2d2
JuK · k · JuK. (4.11)

Equation (4.10) justifies the choice of the Helmholtz free energy expression: for a
vanishing damage, the interface stiffness is infinite, i.e. an extrinsic CZM is obtained.
We do not define the equivalent displacement jump and the equivalent traction as it
is usually done for mode-mixity. The reason is that the failure criterion discussed in
Section 4.3 mostly resides in the compression regime where JuK = JutKet and so no
equivalent displacement jump is required.

Remark 9. It is noted that using the damage to describe the traction-separation
relation was already used in [55], but in another context. They used the damage to
track the degradation of the bulk and when a certain damage value was reached, they
switched to a cohesive zone formulation. In our case, the damage d exists on the
interfaces and parametrizes the cohesive law in the whole softening regime (i.e. from
intact interface (d = 0) to the completely failed cohesive zone (d = 1)).

The Lagrange multiplier λ in the pure Lagrange multiplier formulation (4.2) was
identified as the traction vector: t = λ. The augmented Lagrange multiplier ζ in
Eq. (4.3) does not carry a specific meaning. On the other hand, using equations (4.3)
and (4.10), one recognizes the modified cohesive law

ζ =
1

d
k · JuK. (4.12)

Determining the fracture energy – discussed in Section 4.5.2 – requires the components
of the traction vector. However, only JuK and ζ are available after solving (4.6). The
previous equations allow us to determine the traction vector as

t = (1− d)ζ. (4.13)
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In this context, the Lagrange multiplier ζ can be thought of as the effective traction
vector. With the introduction of the damage variable, the damage indicator χ from
the second equation of (4.6) can be computed as

χ :=

{︄
1, ζn > 0 or ζn ≤ 0 and d = 0

0, otherwise
(4.14)

Written in terms of the normal and tangential components, and taking into account
contact, Eq. (4.13) is computed as

tn = (1− χd)ζn,
tt = (1− d)ζt.

(4.15)

Substituting JuK(ζ) from Eq. (4.12) into Eq. (4.6) defines the final set of equations
that will be used in the discretization procedure:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Find (u, ζ) ∈ V × Λ such that ∀(v,η) ∈ V × Λ∫︂
Ω

ε(v) : C : ε(u) dΩ +

∫︂
Γ

JvK · (ζ − k · JuK) dΓ =

∫︂
ΓN

v · tN dΓ−
∫︂
ΓD

v · k · uD dΓ,

∫︂
Γ

η ·
(︁
JuK− χdk−1 · ζ

)︁
dΓ =

∫︂
ΓD

η · uD dΓ.

(4.16)
The second term of the integrand of the second equation of Eq. (4.16) written in the
basis of the coordinate system local to the interface should be interpreted as

[︃
k−1
n 0
0 k−1

t

]︃ [︃
d 0
0 d

]︃ [︃
χζn
ζt

]︃
,

in which the contact condition makes the problem nonlinear. To solve the global
system in a linear fashion, at a given damage step s, ζ(s−1) is used as an approximation
in (4.16).

The discretization of equations (4.16) results a similar matrix as in (3.46). The
CutFEM discretization of the displacement and the Lagrange multiplier fields does
not require a mesh on the interface. To keep the robustness, we use the same basis
for the damage interpolation as for the Lagrange multiplier interpolation:

di =
∑︂
j∈M̃Mi

Γ

Di
jψ̃ψ

i
j, (4.17)
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where ψ̃ψi
j is a component of ψ̃ψi

j. The new discretized formulation then reads:

a(uh,vh) =
∑︂
i∈Is

∑︂
j,k∈Mi

V i
jK

i
jkU

i
k +

∑︂
i∈Iint

∑︂
j,k∈Mi±

(︁
V i+
j − V i−

j

)︁
P i
jk

(︁
U i+
k − U

i−
k

)︁
+

+
∑︂
i∈ID

∑︂
j,k∈Mi+

V i+
j P i

jkU
i+
k , (4.18)

b(uh,ηh) =
∑︂
i∈Iint

∑︂
j∈M̃Mi

Γ

∑︂
k∈Mi±

Ei
jB

i
jk(U

i+
k − U

i−
k ) +

∑︂
i∈ID

∑︂
j∈M̃Mi

Γ

∑︂
k∈Mi+

Ei
jB

i
jkU

i+
k , (4.19)

c(ζh,ηh) =
∑︂
i∈Iint

∑︂
j,k∈M̃Mi

Γ

Ei
jC

i
jkZ

i
k, (4.20)

f(vh) =
∑︂
i∈IN

∑︂
j∈Mi+

V i+
j F i

j +
∑︂
i∈ID

∑︂
j∈Mi+

V i+
j H i

j, (4.21)

g(ηh) =
∑︂
i∈ID

∑︂
j∈M̃Mi

Γ

Ei
jG

i
j, (4.22)

where the new matrices and vector are given by

P i
jk = −

∫︂
Γi∪Γi

D

ψi
j · k−1 ·ψi

k dΓ, (4.23)

Ci
jk = −

∫︂
Γi∪Γi

D

diψ̃ψi
j · k−1 · ψ̃ψi

k dΓ, (4.24)

H i
j = −

∫︂
Γi
D

ui
D · k ·ψi

j dΓ. (4.25)

The resulting algebraic system reads[︃
K+ L B⊤

B C

]︃ [︃
u
z

]︃
=

[︃
f
g

]︃
, (4.26)

where the stiffness matrix K, the coupling matrix B and the vector g are the same
as in Section 3.5 (cf. Eq. (3.42), (3.43), (3.45)). The matrix L has a block structure

L =

[︃
−P P
P −P

]︃
(4.27)

due to the jump operator.

Remark 10. The Lagrange multiplier field ζ is approximated in the same way as
the original Lagrange multiplier λ. This is made possible because both λ and JuK(ζ)
are defined in the same basis (as opposed to JuK, which is given in the nodal basis).

Remark 11. The matrix L couples displacement degrees of freedom from neighbouring
subdomains. It implies that the block-diagonal structure of K is not preserved in the
system matrix.
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The matrix of k in the {en, et} basis attached to the interface is diagonal:

k =

[︃
kn 0
0 kt

]︃
. (4.28)

Note that kn and kt do not represent by any means the elasticity of the CZM, as they
are only used to deal with completely open cracks.

Equations (4.16) are discretized in the standard basis {ex, ey} to obtain (4.26).
However, the cohesive model is formulated in the local basis {n, t}, aligned with
the interface. One must, therefore, express k and k−1 in the global frame. As the
quadratic form JuK · k · JuK is invariant, one has

JuK⊤(x,y)k(x,y)JuK(x,y) = JuK⊤(n,t)k(n,t)JuK(n,t). (4.29)

The change-of-basis matrix Q is constant for a given straight interface and is given
by [︃

n
t

]︃
=

[︃
nx ny

−ny nx

]︃ [︃
ex
ey

]︃
= Q

[︃
ex
ey

]︃
. (4.30)

Equations (4.29)–(4.30) yield

k(x,y) = Q⊤k(n,t)Q. (4.31)

and similarly in the matrices C and P:

k−1
(x,y) = Q⊤k−1

(n,t)Q. (4.32)

At the start of the simulation, assuming no initial damage (C = 0) and no penalty
term (L = 0), the stable u–λ approximation described in Section 3.6 ensures an
accurate calculation of the interfacial traction field.

Note that only the C matrix contains the damage variable. Therefore, only this
matrix needs to be updated during crack propagation, with all other matrices to be
computed only once. Furthermore, for efficiency reasons, the integral of the shape
functions in (4.24) can be precomputed so that only the multiplication by the nodal
damage values is required during the update part. More specifically, using the damage
interpolation (4.17), matrix (4.24) can be written as

Ci
jk =

∑︂
ℓ∈M̃Mi

Γ

C̃Ci
jkℓD

i
ℓ, (4.33)

where
C̃Ci

jkℓ = −
∫︂

Γi∪Γi
D

ψ̃ψi
j · k−1 · ψ̃ψi

kψ̃ψ
i
ℓ dΓ (4.34)

can be precomputed and stored. Equation (4.34) shows that computing C requires
more quadrature points than what is needed for the computation of B in (3.43) and
P in (4.23). Algorithm 4.1 gives the procedure to precompute the global matrices
that do not change with propagating damage (◦ denotes the Hadamard product).
One can see that both the local non-conforming mesh construction and the local
assembly are completely independent for each subdomain and interface, allowing
straightforward parallelization.
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Algorithm 4.1 Precomputing global matrices and vectors
1: ▷ Preprocessing
2: Input: grain configuration, elastic properties of grains, cohesive properties of

interfaces, boundary conditions
3: Generate a uniform Cartesian mesh covering all the grains
4: Adapt the geometry (Section 3.7.1) or optimize the mesh (Section 3.7.2)
5: ▷ Construct the subdomain stiffness matrices
6: for i ∈ Is do
7: Create the background mesh Mi for the subdomain Ωi

8: Find and store ∅ ̸= Ωi
e = Ωi ∩ e

9: for e ∈Mi do
10: Ki

e ← (ψ,ψ)Γi
e

(3.42)
11: Ki ← element-to-local(Ki

e)
12: end for
13: K ← local-to-global(Ki)
14: end for
15: ▷ Construct the matrices defined on the interfaces
16: for i ∈ Iint ∪ ID do
17: Create the background mesh Mi

Γ for the interface Γi

18: Find and store ∅ ̸= Γi
e = Γi ∩ e

19: for e ∈Mi
Γ do

20: Ti
e ← (ψ,ψ)Γi

e

21: Pi
e ← Ri

P ◦Ti
e ▷ Ri

P : reduction operator to get (4.23)
22: Bi

e ← Ri
B ◦Ti

e ▷ Ri
B: reduction operator to get (3.43)

23: f ie ← Ri
f ◦Ti

e ▷ Ri
f : reduction operator to get (3.44)

24: gi
e ← Ri

g ◦Ti
e ▷ Ri

g: reduction operator to get (3.45)
25: end for
26: P ← local-to-global(Pi)
27: B ← local-to-global(Bi)
28: f ← local-to-global(f i)
29: g ← local-to-global(gi)
30: end for
31: return K, P, B, f , g
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4.5 Computing the energetic quantities
Given the damage state, the discrete displacement and Lagrange multiplier values are
obtained by solving the generalized saddle point problem (4.26). The new damage
state at each point is computed from the evolution laws given by the classical Kuhn-
Tucker relations

ḋd ≥ 0, (4.35)
y − yc(d) ≤ 0, (4.36)

(y − yc(d))ḋd = 0, (4.37)

prescribing damage growth as an irreversible process, and expressing that damage does
not increase when the energy release rate remains under a critical value characteristic
of the interface. Damage propagation occurs when the critical energy release rate is
reached. In (4.36)–(4.37), yc(d) is an increasing function of d, so that an increasing
energy is required to further increase the damage on an interface. Section 4.6 deals
with the discretization of (4.35)–(4.37).

Depending on the normal and tangential traction components at a given location,
four characteristic loading modes can be distinguished. The notations can be followed
in Fig. 4.2. The remainder of this section is separated into three parts. First, the
energy release rate is determined, then assumptions on the mixed mode fracture
energy are introduced and finally, the critical energy release rate is computed.

4.5.1 Energy release rate
As k is diagonal according to Eq. (4.4), the energy release rate in Eq. (4.11) can be
rewritten as

y =
1

2d2
k
(︁
JunK

2 + JutK
2)︁, (4.38)

where the assumption k = kn = kt was made. Note that the displacements are
available in the mesh nodes, therefore un and ut are not directly available on the
interface. Taking their restriction on the interface results in an oscillatory approximate
displacement field. Therefore, we want to express JunK and JutK with the help of the
Lagrange multipliers because they are free of oscillations. This is doable because the
Lagrange multipliers are in connection with the tractions, which are in turn known
from the cohesive law. Since the softening in normal and tangential directions is
separated according to (4.10), we have

tn =

(︃
1

d
− 1

)︃
kJunK,

tt =

(︃
1

d
− 1

)︃
kJutK.

(4.39)

Based on this, the energy release rate can be decomposed to normal and tangential
parts as

y = yn + yt, yn =
1

2k

(︃
max{0, tn}

1− d

)︃2

, yt =
1

2k

(︃
tt

1− d

)︃2

, (4.40)
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where we postulated that no energy is released in pure compression. Although y is
not defined for d = 1 above, it does not pose any problem because a completely failed
cohesive zone cannot release energy anyway. In the implementation, this issue can be
avoided by noticing that d can be eliminated from y by using (4.13):

y = yn + yt, yn =
1

2k
(max{0, ζn})2, yt =

1

2k
ζ2t . (4.41)

4.5.2 Decomposing the mixed mode fracture energy
We make the hypothesis that the mixed mode fracture energy Gc can be additively
decomposed into a normal and a tangential part (Gn and Gt, respectively):

Gc = Gn +Gt, (4.42)

where Gn and Gt are determined from the failure criterion.
For geomechanical applications, the mixed mode fracture energy under compressive

stress states increases with compression. Therefore, a model inspired by [116, 193]
is applied, imposing a linear increase of the fracture energy as a function of the
compressive stress on the interface. The expressions of Gn and Gt, respecting (4.42),
are collected in Tab. 4.1 for the four possible loading modes. For a general loading
mode, the point (p, q) on the failure surface gives the strength values. Here, GI and
GII are the pure mode I and mode II fracture energies, and a > 0 is a coefficient
which sets the growth of the mixed mode fracture energy with increasing compressive
confinement on the interface. As a simplification, it is assumed that once the damage
initiates at a location, the fracture energy for that location does not change with tn
if tn further evolves in the course of degradation.

loading mode (see Fig. 4.2) Gn Gt

1
(︁
1− q

c

)︁
GI

q
c
GI

2
(︁
1− q

c

)︁
GI GII − c−q

c−qc

(︁
GII − qc

c
GI
)︁

3 0 GII − atn
4 0 GII − ap34

Table 4.1: Normal and tangential component of the mixed mode fracture energy
depending on the loading mode

4.5.3 Critical energy release rate
Given a cohesive relation expressed in traction-separation form t(JuK), the critical
energy release rate yc(d) is determined such that the potential-based cohesive model
is equivalent to the physical cohesive relation. The linear extrinsic cohesive relation
can be given by two parameters, the strength and the fracture energy (see Fig. 4.2):

tn = p− p2

2Gn

JunK, (4.43)

tt = q − q2

2Gt

JutK. (4.44)
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Equating them with the tractions derived from the free energy in Eq. (4.39), the
cohesive openings JunK and JutK can be isolated. They are then substituted to
Eq. (4.38), and using the fact that y = yc during damage propagation, the critical
energy release rate is obtained:

yc(d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k

2

[︄(︃
An

(1− d)k +Bnd

)︃2

+

(︃
At

(1− d)k +Btd

)︃2
]︄

tension and shear

k

2

(︃
ft

(1− d)k + f 2
t /(2GI)d

)︃2

pure tension

k

2

(︃
c

(1− d)k + c2/(2GII)d

)︃2

pure shear

k

2

(︃
At

(1− d)k +Btd

)︃2

compression and shear

(4.45)
where An = p, Bn = p2/(2Gn), At = q, Bt = q2/(2Gt). The restrictions on the
value of k can be found in Section 4.7. Table 4.2 summarizes the computation of the
energetic quantities for the four loading modes.

quantity
loading mode (see Fig. 4.2)

1 2 3 4

Gn

(︂
1− q

c

)︂
GI

(︂
1− q

c

)︂
GI 0 0

Gt
q

c
GI GII −

c− q
c− qc

(︂
GII −

qc
c
GI

)︂
GII − atn GII − ap34

yn
ζ2n
2k

ζ2n
2k

0 0

yt
ζ2t
2k

ζ2t
2k

ζ2t
2k

ζ2t
2k

yc,n
k

2

(︃
An

(1− d)k +Bnd

)︃2

with An = p, Bn =
p2

2Gn

yt,n
k

2

(︃
At

(1− d)k +Btd

)︃2

with At = q, Bt =
q2

2Gt

Table 4.2: Energetic quantities for the different loading modes

It is noted that the proposed damage formulation automatically handles damage
initiation except in the tension+shear case. To realize this, note that when the
damage grows from 0, y(d = 0) = yc(d = 0). Using Eq. (4.40) and Eq. (4.45), this
yields ⎧⎪⎪⎪⎨⎪⎪⎪⎩

t2n + t2t = p2 + q2 tension and shear
tn = ft pure tension
tt = c pure shear
tt = q compression and shear

(4.46)

Except in the tension+shear region, Eq (4.46) is the stress criterion for crack initiation.
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4.6 Damage update algorithm
The crack propagation is governed by the evolution equations (4.35)–(4.37). Upon
crack initiation or crack extension, certain amount of energy dissipates, governed by
the damage variable d. To explain the shortcoming of using d for energy dissipation,
let us introduce the so-far dissipated energy at any location: G : [0, 1] → [0, Gc]
defined as

G(d) =

d∫︂
0

yc(d̂d) dd̂d. (4.47)

Upon complete failure, G(1) = Gc. The dissipated energy increment is

∆G =

d+∆d∫︂
d

yc(d̂d) dd̂d. (4.48)

Substituting yc from (4.45) into (4.48), we realize that ∆G depends on the strength
and fracture energy parameters p, q, Gn, Gt. It means that the energy dissipation is
in general not the same for two locations i and j even if di = dj and ∆di = ∆dj. In
case of a pure Rankine failure criterion (without Mohr-Coulomb failure in compressive
states), and only one interface, as considered in [112], the strength and the fracture
energy is spatially uniform for all locations and therefore the dissipated energy at a
given step is proportional to the damage increment. This is no longer the case for
multiple interfaces having different material parameters or for non-uniform fracture
energy on a single interface. This would cause that with a pure control by the damage
d, the majority of the energy dissipation may not be attributed to the favourable
locations.

To cure this behaviour, a physically meaningful quantity, the so-far dissipated
energy G introduced above (rather than the damage), is chosen to describe the
degradation of the cohesive interfaces, in order to drive the computation. We wish
to express the evolution equations with G. Since G′(d) = yc from (4.47) and yc > 0,
Eq. (4.35) is replaced by

ĠG ≥ 0. (4.49)
By parametrizing yc with G, the other two evolution equations (4.36) and (4.37) are

y − yc(G) ≤ 0, (4.50)
(y − yc(G))ĠG = 0. (4.51)

As the function G is invertible,
∂f

∂G
= −y′c(G) = −y′c(d(G)) = −y′c(d)d′(G) = −y′c(d)

1

G′(d)
= −y

′
c(d)

yc(d)
. (4.52)

Note that we do not explicitly need G−1. Combining these results, the discrete
versions of evolution equations at step n read

∆G
(n)
i ≥ 0, (4.53)

f
(n)
i (µ,Gi) ≈ f

(n−1)
i + α

(n−1)
i ∆µ(n) + β

(n−1)
i ∆G

(n)
i ≤ 0, (4.54)

f
(n)
i ∆G

(n)
i = 0 (4.55)
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in which

α
(n−1)
i = 2µyi

(︂
d
(n−1)
i , t

(n)
i

)︂
, β

(n−1)
i = −

y′c

(︂
d
(n−1)
i

)︂
yc

(︂
d
(n−1)
i

)︂ . (4.56)

Step numbers are in superscript and between parentheses, while location indices are
in subscripts. In this section, the index i refers to a location on the set of all the
interfaces where the Lagrange multipliers are defined (i.e. on the internal interfaces
and on the Dirichlet boundaries). In other words, we do not make a distinction on
which interface a location lies on. This allows the damage field to evolve automatically,
no topological information is needed. The set of all locations is denoted by I. Some of
these locations have completely failed by step n. The not yet failed ones are indexed
with J ⊆ I.

Computing ∆G
(n)
i is performed similarly, but with relevant modifications, as it

was done in [112] for ∆d(n)i . Rather than prescribing load increments, the quasi-static
problem is solved stepwise by prescribing fractions of Gc increments4, and deducing
the load level µ multiplying a given reference load Fref,

F = µFref (4.57)

such that equilibrium is obtained for the prescribed dissipation state. The step indices
are omitted in the sequel for clarity, unless otherwise stated. From Eq. (4.41) we see
that y ∝ ζ2 and the linearity of Eq. (4.16) implies that ζ ∝ F ∝ µ, where the last
proportionality comes from the definition of the load factor in Eq. (4.57). It shows
that the energy release rate scales quadratically with the load factor. The energy
release rate obtained for the reference load can then be scaled in such a way that the
evolution criterion (4.50) is satisfied for all discrete Lagrange multipliers:

fi(µ,Gi) = µ2yi − yc(Gi) ≤ 0. (4.58)

Based on this information, the value of the load factor can then be identified as
corresponding to the most critical location:

µ = min
i∈J

√︄
yc(Gi)

yi
. (4.59)

Here, we note that yc must be computed with the true fracture energy, not with the
one which comes from the arbitrarily chosen reference load. This means that for
the calculation of Gc in (4.42), with Gn and Gt given in Tab. 4.2, the true normal
traction component is taken into account to evaluate the mixed mode fracture energy.
This is obtained by finding the intersection of the initial damage surface with the
half-line stemming from the origin and given by the loading direction.

Although (4.58) is fulfilled with the chosen µ, it does not optimize the new damage
front position, as one could wonder whether the damage should grow only at one
position (i.e. the most critical one), or at other positions too. An iteration between

4We will show soon how damage increments can be obtained from dissipated energy increments.
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the old and the new damage states could be used to answer this question [29] however,
a simpler scheme is used here. At this point, αi are known and βi are determined
from the cohesive model. Instead of the inequality (4.54), a prediction is used based
on

predfi(µ,Gi) = fi + αi
pred∆µ+ βi∆Gi = 0. (4.60)

To avoid the use of an iterative scheme, an explicit approach is used and we solve for
pred∆µ based on a chosen maximum energy dissipation increment ∆Gmax. First, the
predicted load factor increment is expressed as

pred∆µ = min
i∈J

−fi − βi∆Gmax

αi

(4.61)

and the corresponding dissipation increments are computed using

∆Gi = max

{︃
0,
−fi − αi

pred∆µ

βi

}︃
. (4.62)

Note that Eq. (4.62) filters out the possibly negative increments, thereby obeying
Eq. (4.53).

The remaining question is how to choose the step size ∆Gmax. Since the fracture
energy, in general, is different from location to location, dissipating a fixed amount of
energy would not be reasonable. Therefore, ∆Gmax is chosen to be a fraction of the
fracture energy corresponding to the most critical location (i.e. where the load factor
is determined for in Eq. (4.59)) at a given step:

∆Gmax = ∆G̃GmaxGc,ℓ, 0 < ∆G̃Gmax ≤ 1, ℓ is the most critical location (4.63)

We call the constant of proportionality ∆G̃Gmax maximum allowed relative energy
dissipation increment and it is a parameter of the solution procedure. As opposed to
∆G̃Gmax, the step size ∆Gmax is not a global parameter. Generally, it changes from
step to step because the most critical location also changes as the body continues
to deform and degrade. Given the explicit nature of the approach, a jagged load-
displacement response is expected, with larger oscillations for a larger ∆G̃Gmax. This
choice for ∆Gmax may cause another location i to dissipate more than what is available:
G

(n)
i = G

(n−1)
i +∆G

(n)
i > Gc,i. In that case, we set G(n)

i = Gc,i. This inaccuracy is
due to the explicit nature of our method; decreasing ∆G̃Gmax in (4.63) results in a
better resolution of the true dissipation.

One more ingredient is required for the algorithm to work properly. At any location,
as soon as the damage initiates, the strength and the fracture energy are assumed
to be constant for that location during the subsequent softening (cf. Section 4.5.2).
One can imagine a situation in which later in the course of softening, due to stress
redistribution, the local loading state at a location significantly changes. For instance,
a location on an interface was under compression, when Gc was fixed. Later in the
simulation, if that location experiences tension for which the corresponding fracture
energy is much smaller, fixing Gc to the compressive value would result in a major
inaccuracy. To avoid these cases, a tolerance is set such that energy starts being
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dissipated only if this dissipation is greater than that tolerance. Of course, the
tolerance b must be relative, and is therefore set to be a fraction of ∆G̃Gmax:

b =
1

f1
∆G̃Gmax, f1 > 0. (4.64)

By introducing the relative energy dissipation increment, defined as

∆G̃Gi =
∆Gi

Gc,i

, (4.65)

the dissipation increment predicted by (4.62) is not accepted if

∆G̃Gi < b, and Gi = 0. (4.66)

As the weak form (4.16) is coupled with d and not with G, we determine ∆d
(n)
i

from the following equation:

∆G
(n)
i =

d
(n−1)
i +∆d

(n)
i∫︂

d
(n−1)
i

yc(d̂d) dd̂d. (4.67)

Solving this equation for ∆d
(n)
i in the tension+shear case results in a very long

expression we obtained by version 16 of Maple. We only show the result when
dissipation occurs only in one direction (normal or tangential). Introducing the
dimensionless quantities

Kn = k
2Gn

p2
, Kt = k

2Gt

q2
, (4.68)

and K denoting one of them, the damage increment is given by

∆d
(n)
i =

(︂
K

(n)
i + d

(n−1)
i −K(n)

i d
(n−1)
i

)︂2
K

(n)
i

(︃
K

(n)
i − 1 +

Gc,i

∆G
(n)
i

)︃
−
(︂
K

(n)
i − 1

)︂2
d
(n−1)
i

. (4.69)

Finally, the damage field is updated to obtain the new damage state at every location:

d
(n)
i = d

(n−1)
i +∆d

(n)
i . (4.70)

Algorithm 4.2 summarizes the update of the damage field.
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Algorithm 4.2 Damage update

1: Inputs: ζ(n)i , d(n−1)
i ∀i ∈ I, numerical parameters: ∆G̃Gmax (4.63), f1 (4.64)

2: for i ∈ I do
3: Determine ζ(n)n,i and ζ

(n)
t,i from ζ

(n)
i using (4.30)

4: Calculate the damage indicators χ(n)
i according to (4.14)

5: Determine the cohesive tractions t(n)n,i and t
(n)
t,i from (4.15)

6: if Gn,i exists then ▷ pi, qi, Gn,i, Gt,i already fixed
7: Use pi, qi, Gn,i, Gt,i

8: else
9: Determine pi, qi from t

(n)
n,i , t

(n)
t,i and Fig. 4.2

10: Determine Gn,i and Gt,i from Tab. 4.2
11: end if
12: Compute y(n)i , y(n)c,i , y′ (n)c,i from Tab. 4.2
13: end for
14: Find locations j ∈ J ⊆ I which are prone to further damage, i.e. d(n−1)

j < 1

15: Compute the load factor µ(n) from (4.59)
16: Compute f (i)

i = µ(n)2y
(n)
i − y

(n)
c,i and α

(n−1)
i , β(n−1)

i from (4.56) ∀i ∈ I
17: Calculate the maximum energy dissipation ∆G

(n)
max from (4.63)

18: Compute the load factor increment pred∆µ(n) from (4.61) with j ∈ J
19: Compute the energy dissipation increments ∆G

(n)
i from (4.62)

20: for i ∈ I do
21: if (4.66) then
22: ∆G

(n)
i ← 0 ▷ Exclude excessively small energy dissipation increments

23: end if
24: if ∆G(n)

i > 0 AND ∆G
(n−1)
i = 0 then ▷ New initiation location

25: Store pi, qi, Gn,i, Gt,i, ∆G(n)
i

26: end if
27: Compute ∆d

(n)
i from (4.67)

28: Determine d(n)i from (4.70)
29: end for
30: return d

(n)
i ∀i ∈ I
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4.7 Choosing the parameter k
As mentioned in Section 4.5, the critical energy release rate must be an increasing
function of the damage. Taking the derivative of yc(d) in Eq. (4.45), one can easily
derive the sufficient condition

k > kmin = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max{Bn,max, Bt,max} tension and shear
f 2
t /(2GI) pure tension
c2/(2GII) pure shear
Bt,max compression and shear

(4.71)

The positivity of y′c(d) is required on all parts of the failure criterion. The maximum
values are to be found so that k is independent of the stress state. If k depended on
the local stress values, a complicated and very costly algorithm would have to be
used which results in a non-symmetric matrix and all global matrices would need
to be assembled at each step. This would clearly destroy all the advantages of the
presented method.

In the compression region of the failure criterion, along the Mohr-Coulomb line
(label 3 in Fig. 4.2), only Bt is active and is given by

Bt(q) =
q2

2(GII + ap(q))
=

q2

2
(︂
GII + a q−c

tanφ

)︂ . (4.72)

Asymptotically, Bt = O(q) and so it is unbounded. That is why the compression cap
was introduced to the model, which restricts the strength q to the interval [c, q34].
It is emphasized that the use of a compression cap is not physically motivated and
not even phenomenological, but rather numerical that allows choosing a finite value
for the k parameter. Function Bt takes its global maximum either at the end points
(0, c) and (−p34,±q34) or where its derivative vanishes. Therefore,

Bt,max = max

{︃
c2

2GII
,

q234
2(GII + ap34)

,
2 tanφ(ac−GII tanφ)

a2

}︃
. (4.73)

It can be seen in Fig. 4.2 that

p34 =

⃓⃓⃓⃓
c− fc tanψ
tanφ+ tanψ

⃓⃓⃓⃓
, q34 = c+ p34 tanφ (4.74)

In the tension region of the failure criterion, the safe choice

max{Bn,max, Bt,max} =
c2

2GI
(4.75)

is made. Taking into account the values in (4.73) and in (4.75), the lower bound on
the parameter k is set to

kmin = max

{︃
c2

2GI
,
c2

2GII
,

q234
2(GII + ap34)

,
2 tanφ(ac−GII tanφ)

a2

}︃
. (4.76)

For optimal conditioning, k must be selected such that the conditioning of (4.26)
is good, in which matrices L and C contain k. For the (1, 1) block be well-conditioned,
entries of similar magnitude must be present in K and in L. In one-dimensional finite
elements, k ≈ Eh is a good choice, where h is the characteristic mesh size.
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4.8 Outline of the global solution scheme
Combining the discretization proposed in Chapter 3 with the present damage update
procedure, a crack propagation problem for the heterogeneous grain assembly is solved
according to Alg. 4.3.

Algorithm 4.3 Quasi-static simulation
1: Inputs: parameters required by the algorithms called by this algorithm
2: Determine kmin by (4.76) in Section 4.7
3: Get global matrices K, P, B and vectors f , g by Alg. 4.1
4: Initialize the damage field
5: for n from 0 to Nstep do ▷ damage stepping loop
6: if n = 0 then
7: Precompute and store C̃C (4.34)
8: end if
9: Create C(n) from C̃C using (4.33)

10: Solve system (4.26) with C(n)

11: Save variables of interest, if desired
12: Update the damage field (Section 4.6, Alg. 4.2)
13: end for

Finally, we note that when computing the energetic quantities, we do not need to
know which interface a certain Lagrange multiplier corresponds to. In other words,
the update procedure is automatic, no geometrical or topological information is
required.
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In this chapter different grain assemblies of increasing complexity are tested in
configurations related to real tests. First, a classical three-point bending test is
performed which validates the model for pure mode I. As the crack is expected to
propagate vertically along the middle of the specimen, only one interface is considered
there. The next example consists of a configuration inspired by a Brazilian test,
widely used to obtain the tensile strength of quasi-brittle materials, and is used in the
literature for rocks as well. The influence of the numerical and model parameters on
the crack path obtained and on the load-displacement curve is thoroughly analysed in
this example. To show the ability of the methodology to be used in large parametric
studies, the effect of the heterogeneity is scrutinized. The last computational test is a
uniaxial compression test which demonstrates that the model is valid in compression
as well. Finally, based on these three examples, global conclusions are drawn.

101
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5.1 Three-point bending test
The proposed framework is first validated on a quite simple configuration, the three-
point bending test, which is a classical mode I problem for the fracture of quasi-brittle
materials. Although it consists of a single vertical interface, it incorporates two main
components developed so-far: a non-matching mesh and the damage formulation with
explicit solution procedure of the CZM. The three-point bending of an unnotched
rectangular homogeneous concrete body is considered as sketched in Fig. 5.1. The
body has length L = 1088mm, height c = 500mm, depth 40mm and is supported in
its bottom left and bottom right corners over a width v/2 = L/72. It is loaded in the
middle of the top edge over a width v = L/36. The geometrical and material data of
this test are taken from [96]. The concrete is considered to be isotropic and linear
elastic with Young’s modulus E = 37GPa and Poisson’s ratio ν = 0.21.

L

v

c

Figure 5.1: Sketch of the three-point bending problem

The linear cohesive model depicted in Figs. 2.2b and 4.2 is not a suitable model for
characterizing the softening of concrete. Using a bilinear softening law is appropriate
to approximate the load-displacement response measured in laboratories [20]. The
slope of the first part of the model, shown in Fig. 5.2, influences the peak load, while
the second part characterizes the pull-out process of the grains [201].

ft

tn,k

tn,2

Jun,cK JunK

tn

Jun,1KJun,kK

Figure 5.2: Bilinear softening function for pure mode I loading

The cohesive properties can be found in Tab. 5.1. Two fracture energy quantities
are defined in [20]: GF is the total fracture energy, i.e. GF = 1/2(ftJun,kK+ tn,kJun,cK),
while Gf = 1/2ftJun,1K corresponds to the area under the initial slope.
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ft (MPa) tn,k (MPa) Jun,cK (µm) Jun,1K (µm) Gf (Nm−1) GF (Nm−1)

3.92 0.588 94.8 25.3 49.56 70

Table 5.1: Cohesive properties of the three-point bending specimen from [96]. Nota-
tions can be followed in Fig. 5.2.

The numerical parameter k, involved in the definition of the effective cohesive
traction vector ζ, appears in the computation of the energy release rate and of the
critical energy release rate (Tab. 4.2), as well as in the weak form (4.16). As the
fracture energy is uniform in this test setup, the minimum value of k is determined
as

kmin =
f 2
t

2Gf

≈ 155Nmm−3 (5.1)

according to (4.71). In this problem k = 2000Nmm−3 was chosen, which is large
enough to avoid any numerical artefacts. We observed that k could take values from
a large interval without causing numerical difficulties. The simulation is performed in
plane strain conditions with different maximum damage increments ∆dmax. This is
possible because the single interface is in mode I, and therefore a computation based
on ∆G̃Gmax would lead to the same solution. A snapshot of the deformed state with a
magnification factor of 100 is shown in Fig. 5.3. The zero vertical displacement BCs
are taken into account by modifying the assembled matrix. For that, a conforming
mesh is required in our current implementation, that is why the element edges almost
coincide with the crack interface.

Figure 5.3: Crack opening in the three-point bending test (magnification: 100)

The resulting load-CMOD (crack mouth opening displacement) curves in Fig. 5.4
show excellent agreement with the experimental data and indicate that the solution
converges as ∆dmax → 0. The oscillations due to the explicit nature of the damage
update clearly decrease with small enough damage steps.
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Figure 5.4: Load-displacement curve of the three-point bending test
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5.2 Brazilian test inspired simulations
The Brazilian test, also known as indirect tension test, is a widely used laboratory
test to indirectly evaluate the tensile strength of quasi-brittle materials under the
assumptions of uniform homogeneous material properties [114]. An elastic simulation
of it was used as a verification of our discretization scheme in Section 3.8, where a
homogeneous body was considered. Assuming homogeneous material properties, the
centre of the specimen is subjected to a mode I stress state in the horizontal direction
if loaded by vertical concentrated forces. We determined the critical stress for the
onset of damage in Section 3.8.

5.2.1 Single interface
After having computed the critical load for damage initiation in Section 3.8, we
now follow the damage evolution. Similarly to the three-point bending test, the
Brazilian test with a homogeneous bulk and a single interface is a mode I problem
from the point of view of crack propagation. Therefore, the original damage update
algorithm [112] is used here, prescribing the maximum allowed damage increment
∆dmax at any step. The normal traction reaches its maximum in the centre of the
interface, therefore the largest energy dissipation should occur there. Figure 5.5 shows
the damage evolution for different step sizes. The damage initiates at the centre
of the disk and symmetrically propagates outwards – captured even by the crudest
steps size. The results were obtained for the configuration shown in Fig. 3.18a, with
a mesh of 80×80 elements. Plane strain conditions were assumed and the material
properties were set to E = 40GPa, ν = 0.36, ft = 6MPa, GI = 0.37Nmm−1.
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Figure 5.5: Damage front evolution for the Brazilian test in Fig. 3.18a for various
damage step sizes. The distance along the vertical diameter of the disk (in mm) is
measured on the vertical axis.

5.2.2 Grain assemblies
Using the Brazilian test for complex heterogeneous rocks is however made more
difficult to interpret as the heterogeneity introduces deviations with respect to a pure
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mode I tensile stress state in the centre of the body, and the resulting cracking may
be more jagged and distributed. In this section, we follow the softening response of
the sample until complete failure.

From a computational point of view, the Brazilian test on grain-based materials is
a good example to test the robustness of our discretization method and the damage
propagation criterion. It involves interfaces that are slanted with respect to the main
loading direction and that are therefore locally subjected to mixed mode loading.
Moreover, the contact formulation is important as well in this second problem. A
simplified 2D model of this test configuration is depicted in Fig. 5.6. As in the
homogeneous case in Section 3.8, the circle is approximated as a regular polygon.
The number of sides was set to 44 and the boundary conditions were explicitly given
along the top and bottom interfaces. This choice allows a proper representation of
the geometry, while at the same time not causing numerical problems in the presence
of excessively concentrated forces at the top. The zero Dirichlet boundary condition
is also prescribed along one segment at the bottom. We observed that a too small
Dirichlet boundary fails to properly fix the body and the disk rotates as the load is
applied. The application of the loading in the described manner corresponds to a
central angle of about 8.18°, which is close to 10°, recommended by the standard [100].
We consider a disk of diameter D = 150mm. The simulations are performed under
plane strain conditions. All grain configurations in this chapter were produced by the
Matlab function VoronoiLimit [166].

F

8.18°

75
m
m

Figure 5.6: Sketch of the Brazilian test problem

To make the example representative, samples with 500 grains were generated.
Figure 5.7 shows that it provides more than ten grains along the diameter, as
recommended by the standard [100]. The circle, or more precisely its polygonal
approximation, was embedded into a background mesh. In the whole Section 5.2,
the same background mesh with different element sizes will be used. The one with
50× 50 elements is depicted in Fig. 5.7. Note that this overly coarse mesh is used
only for the purpose of illustration, and not in actual computations. As opposed to
the three-point bending test in which a local mesh refinement would have contributed
to a major speed-up, this test problem would not benefit significantly from a locally
refined mesh. We also note that the large number of elements in the background
mesh which do not belong to any grain does not increase the computational time
because degrees of freedom are associated only with the nodes of the cut elements.



5.2. Brazilian test inspired simulations 107

0 50 100 150
0

50

100

150

Figure 5.7: Brazilian disk embedded to a background mesh

We are interested in the evolution of the microcracking patterns, in the final
crack pattern and in the load-displacement response of the samples. Three types of
plots will be used in the remaining of this chapter. For the load-displacement plots,
the vertical displacement is monitored at the point (0.5D, 0.99D) in the coordinate
system seen in Fig. 5.7. The second plot type will show the local relative energy
dissipation G/Gc (fraction of the fracture energy dissipated so far) on the interfaces,
where G is the so-far dissipated energy given in Eq. (4.47) and Gc is the mixed
mode fracture energy expressed by Eq. (4.42). These plots will come in three forms.
The coloured version maps data to colours with the parula colormap, see Fig. 5.8a.
It is useful to display all the interfaces, therefore visualizing which possible crack
paths are actually realized. The grayscaled version, shown in Fig. 5.8b, eases the
comprehension of the progressive development of cracking but does not show the
intact interfaces. The redscale colormap, see Fig. 5.8c, will be used to highlight the
crack paths for elastically heterogeneous microstructures. Finally, the third plots will
show the traction-free interfaces, i.e. those positions of the fully failed interfaces that
have d = 1 at the end of the simulations. Such completely failed locations will be
drawn in black according to the grayscale colormap.

0 0.5 1

(a) Parula

0 0.5 1

(b) Grayscale

0 0.5 1

(c) Redscale

Figure 5.8: Colormaps to represent the relative energy dissipation on the interfaces
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5.2.3 Elastically homogeneous sample
The rock sample is first considered elastically homogeneous with Young’s modulus
E = 40GPa and Poisson’s ratio ν = 0.36, corresponding to the elastic properties
of biotite [122]. In Section 5.2.3, the simulations will be performed on the grain
configuration seen in Fig. 5.7.

A parametric study was first carried out to investigate the effect of some of the
parameters of the model. In all cases, only one parameter was changed at a time. To
make the numerical study consistent, a so-called master configuration was identified,
with material parameter values inspired by the literature [194, 195, 196], and with
prescribed values of the solution procedure parameters. The values are contained
in Tabs. 5.2 and 5.3, respectively. In Tab. 5.2, K̃K = k/kmin and nElem denotes the
number of elements in the background mesh.

K̃K (-) ∆G̃Gmax (-) nElem (-)

1.01 0.1 150× 150

Table 5.2: Master configuration for the Brazilian test

The cohesive properties of the interfaces are assumed to be all identical and are
given in Tab. 5.3. The first five parameters characterize the Mohr-Coulomb criterion
with tension cut-off and compression cap (cf. Fig. 4.1b), the next two parameters
denote the pure mode I and mode II fractures energies, while the last one governs
the growth of the fracture energy with increasing compressive stress. Although the
pure mode I fracture energy is larger than the one measured in [194] for granite,
the fracture energy given in our model is characteristic to the meso-scale, i.e the
individual interfaces. Experiments, on the other hand, measure the fracture energy
at the sample scale, which therefore corresponds to the macro-scale. Similarly to
the fracture energies, the strengths ft, c and fc may differ from what is measured in
laboratories. If quantitative results are desired, the meso-scale parameters must be
obtained by calibration.

ft (MPa) c (MPa) fc (MPa) φ (°) ψ (°) GI (Nmm−1) GII (Nmm−1) a (mm)

6.36 36 500 30 60 1 10 0.1

Table 5.3: Cohesive properties of the Brazilian test specimen

5.2.3.1 Effect of the material parameters

The Brazilian test is expected to characterize a globally mode I failure. Therefore, we
were first interested in the effect of the interfacial tensile strength. As we observed
only minor differences in the crack path, only the global load-displacement response is
shown in Fig. 5.9. It shows that the peak load increases with increasing ft, implying
that interfaces indeed fail predominantly in mode I. One can also see that the peak
loads are proportional to the prescribed interfacial ft values, suggesting that using
the macroscopic tensile strength in the microscopic model is probably acceptable.
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The snapback is automatically handled by our damage framework because it works
by imposing damage increments and finding the corresponding load that satisfies the
equilibrium equations at that step. The jaggedness of the response curve is due to
the solution procedure. In classical load-controlled schemes, the load-displacement
response is smooth because the load is prescribed and the degradation is the end
result of the equilibrium state. In our case, finite energy dissipation steps are chosen,
for which the necessary load is deduced. A smooth response therefore cannot be
expected. Both the load-controlled and the damage-controlled solution procedures
have their advantages and drawbacks.
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Figure 5.9: Load-displacement response for various tensile strengths ft

Next, the compression dependency of the mixed mode fracture energy, governed
by the parameter a (see. Tab. 4.1), is shown in Fig. 5.10 and in Fig. 5.11. One can
notice that for small values of a (Figs. 5.10a, 5.10b), cracking at the centre of the
specimen is more distributed than for larger values of a (Figs. 5.10c, 5.10d). This can
be explained as follows. A small a parameter only marginally increases the mixed
mode fracture energy due to compression, therefore interfaces which happen to be
under compressive loading locally are prone to fail. On the contrary, large values
for a increase the fracture energy in compression so much that energy dissipation
becomes possible only in tension. Since the central vertical interfaces experience the
highest tensile stress levels, those interfaces become favourable for cracking. Close to
the application of the load, the cracking is more distributed in case of small a, which
is logical because failure in shear is more favourable for small values of a than for
large values. These experiments suggest that the major crack path remains similar
for a wide range of a.

(a) a = 1× 10−3 (b) a = 1× 10−2 (c) a = 1× 10−1 (d) a = 1

Figure 5.10: Relative dissipated energy on the interfaces for different parameters a
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(a) a = 1× 10−3 (b) a = 1× 10−2 (c) a = 1× 10−1 (d) a = 1

Figure 5.11: Traction-free cracks for different parameters a

5.2.3.2 Effect of the solution procedure parameters

Figure 5.12 compares the final cracking patterns obtained for different values of K̃K
(and therefore different k parameter values), see also Fig. 5.13 for the failure plots.
For K̃K = 50, the simulation was stopped because due to the large k, as observed
for the three-point bending as well, only a few locations dissipated energy at a step,
leading to very slow propagation. The crack path in Fig. 5.12d and Fig. 5.13d is, of
course, unrealistic and substantially differs from the ones obtained with smaller K̃K.
Our recommendation is therefore to use K̃K close to 1.

(a) K̃K = 1.01 (b) K̃K = 5 (c) K̃K = 10 (d) K̃K = 50

Figure 5.12: Relative dissipated energy on the interfaces for different parameters K̃K

(a) K̃K = 1.01 (b) K̃K = 5 (c) K̃K = 10 (d) K̃K = 50

Figure 5.13: Traction-free cracks for different parameters K̃K

The effect of the step size ∆G̃Gmax on the crack path can be seen in Fig. 5.14
(see also 5.15 for the fully open cracks). The resulting fracture patterns are similar,
the difference being particularly small for the two smallest step sizes. We are also
interested in the load-displacement curves, which are plotted in the same figure 5.16.
Similar conclusions can be drawn as for the crack path: the largest step size is only
suitable for capturing the qualitative response, a quantitatively matching solution
requires smaller steps, as a too large step size underestimates the peak load.
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(a) ∆G̃Gmax = 1× 10−1 (b) ∆G̃Gmax = 1× 10−2 (c) ∆G̃Gmax = 1× 10−3

Figure 5.14: Relative dissipated energy on the interfaces for different parameters
∆G̃Gmax

(a) ∆G̃Gmax = 1× 10−1 (b) ∆G̃Gmax = 1× 10−2 (c) ∆G̃Gmax = 1× 10−3

Figure 5.15: Traction-free cracks for different parameters ∆G̃Gmax
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Figure 5.16: Load-displacement response for various step sizes ∆G̃Gmax
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Next, the effect of the mesh density on the accuracy of the solution is studied.
The background meshes consist of 100, 150, 250 and 350 number of elements in both
directions. Figure 5.17 shows the failure patterns on these different meshes. Even the
coarsest mesh predicts the main crack path reasonably well.

(a) 100× 100 (b) 150× 150 (c) 250× 250 (d) 350× 350

Figure 5.17: Relative dissipated energy on the interfaces for different mesh sizes

Finally, the progressive energy dissipation evolution with the smallest step size
∆G̃Gmax = 0.001 can be followed in Fig. 5.18. One can see in Fig. 5.18a that interfacial
failure is preceded by diffuse microcracking along the whole vertical diameter of the
sample. Some interfaces experience higher tensile stresses than others as can be
observed in Fig. 5.18b. These interfaces are typically parallel to the loading direction
and are located near the place where the external load is applied. Figure 5.18c
suggests that the macro-crack propagates towards the centre. Once the centre is
reached, the crack continues downwards as illustrated in Fig. 5.18d. As the bottom
Dirichlet BC hinders the complete vertical separation of the disk, a secondary crack
appears on the boundary and merges with the existing crack.

(a) Snapshot 1 (b) Snapshot 2 (c) Snapshot 3 (d) Snapshot 4

Figure 5.18: Progressive crack propagation in the configuration corresponding to
Fig. 5.14c

Based on the parametric studies above, we can state that crack evolution is more
complex to interpret than it was in the fully homogeneous, single interface case in
Section 5.2.1.

5.2.4 Heterogeneity
We now investigate how the effect of the heterogeneity influences the preferential crack
paths. For the sake of illustration, this example will be simulated with properties of
the phases similar to the Lac du Bonnet granite the material properties of which are
taken from reference [122]. The three main mineral species of this type of granite
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are biotite, quartz and feldspar. The assumed Young moduli and Poisson’s ratios are
Ebiotite = 40GPa, Equartz = 100GPa, Efeldspar = 80GPa, νbiotite = 0.36, νquartz = 0.07
and νfeldspar = 0.32. Volume fractions of 0.07, 0.2, 0.73 are assumed for each phase.
Ten grain realizations were generated, two of which are shown in Fig. 5.20. The
constituents were associated with grains such that the same minerals form clusters.
For the remainder of this chapter, the colour codes in Fig. 5.19 will represent the
three constituents of the Lac du Bonnet granite.

feldspar quartz biotite

Figure 5.19: Colours representing the mineral species in the Lac du Bonnet granite

With the elastic heterogeneity itself, no significant difference in the solution was
found with respect to the elastically homogeneous sample in Section 5.2.3. Therefore,
higher tensile strengths and fracture energy values were set for those interfaces that
are located between two quartz grains. The combined effect of these two kinds of
heterogeneities is expected to influence the crack path. Indeed, cracks will develop
round the hard phase, i.e. the quartz grains. In the simulations the tensile strength
and the cohesion of these strengthened interfaces were set to 1.25 times the values
given in the master configuration in Tab. 5.3, while the mode I and mode II fracture
energies were multiplied by 10.

(a) Realization 1 (b) Realization 2

Figure 5.20: Distribution of the mineral species in the Lac du Bonnet granite used
for the Brazilian test. The interfaces among the quartz grains, marked in white, are
made stronger.

For the two grain realizations depicted in Fig. 5.20, we show in Figs. 5.21–5.23 the
damaging process. Four snapshots were selected for each grain configuration, showing
the relative dissipation on the interfaces. The load-displacement curves can be seen
in Figs. 5.22 and 5.24. The snapshots in Figs. 5.21a–5.21c correspond to the red
dots displayed in Fig. 5.22. Similarly, the snapshots in Figs. 5.23a–5.23c correspond
to the red dots displayed in Fig. 5.24. Looking at the completely failed structures
in Figs. 5.21d and 5.23d, and comparing them with the grain configuration shown
in Fig. 5.20a and Fig. 5.20b, the following observations can be made. As expected,
the main crack bypasses the hard phase and tends to go along the boundary of the
quartz clusters. Two crack propagation mechanisms can be identified for the two
grain assemblies. In the first realization in Fig. 5.20a, the quartz phases form a large
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cluster just below the centre of the disk. This causes the crack to stop (see Fig.5.21b).
Instead of breaking through the quartz group, it is more favourable to have new
crack initiations at the bottom, which is shown in Fig. 5.21c. Then this new crack
propagates upwards, finally leading to the failure of the quartz cluster (5.21d).

(a) Snapshot A (b) Snapshot B (c) Snapshot C (d) Final crack path

Figure 5.21: Progressive crack propagation in the configuration corresponding to
Fig. 5.20a
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Figure 5.22: Load-displacement response for the configuration in Fig. 5.20a

In the second realization in Fig. 5.20b, the small quartz cluster at the top and the
large quartz group at the bottom stand in the way of a vertical cracking, observed in
homogeneous configurations. As Fig. 5.23a shows, the crack does not initiate at the
top as in the elastically homogeneous case (cf. Fig. 5.18b), but slightly below. As
opposed to the previous configuration when the main crack stopped when reaching
the large quartz island, it now takes a sharp turn at about 45° to avoid the hard phase.
Also note that compared to the elastically homogeneous example, the unloading is
more pronounced when heterogeneity is included in the model.
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(a) Snapshot A (b) Snapshot B (c) Snapshot C (d) Final crack path

Figure 5.23: Progressive crack propagation in the configuration corresponding to
Fig. 5.20b
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Figure 5.24: Load-displacement response for the configuration in Fig. 5.20b

Due to the heterogeneity, we expect a larger influence of the parameter a, governing
the mixed mode compressive fracture energy, than what was experienced for the
elastically homogeneous disk. In both configurations, the crack paths in Fig. 5.25
demonstrate that when a is small, the cracks can easily bypass the quartz grains.
On the other hand, for large values of a, the crack tends to remain vertical. This is
logical because with increasing a the fracture energy increases in compression and
shear, making crack propagation possible only in tension. As the central vertical
interfaces are dominantly in tension, the cracking algorithm chooses those interfaces.
This is only qualitative reasoning because the strong heterogeneity changes the stress
state and the central vertical interfaces may not remain is tension.

(a) For configuration 5.20a

a = 0.001
a = 0.01
a = 0.1
a = 1

(b) For configuration 5.20b

Figure 5.25: Dependence of the crack path on the parameter a
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To show the versatility of our crack propagation framework, the remaining eight
grain realizations are briefly discussed. Figure 5.26 shows the final crack paths for the
master parameters. We can observe that the cracks tend to propagate in the softer
minerals and that the quartz cluster boundaries “attract” the cracks. In places where
large quartz clusters stand in the way of the propagating macrocrack, the macrocrack
either bypasses or if it cannot, new macrocracks initiate.

Figure 5.26: Failure patterns in further grain realizations for the Brazilian disk
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5.3 Uniaxial compression
A uniaxial compression test is now modelled in this section. The size of the rectangular
specimen is 108mm×54mm. To avoid localized failure in compression and shear near
the top and bottom edges, platens are attached, modelled as rigid grains (i.e. no
relative displacement is allowed between the specimen and the platen). The interfaces
of the grains touching the platens are assumed to be free of damage. A distributed
force is applied along the top edge, and the bottom edge is fixed. We note that such
boundary conditions do not impose locally a uniaxial stress state, but they are meant
to represent at best the real boundary conditions in a real test. Nevertheless, the
configuration is suitable to test whether our model works in compression-dominated
problems. The elastic, cohesive and numerical parameters are the same as used in the
Brazilian test in the previous section. This time 1000 grains were generated for the
specimens. The mechanical model can be seen in Fig. 5.27a, while the distribution of
the constituents for the heterogeneous version of the test is shown in Fig. 5.27b. The
load-displacement response is reported in terms of distributed force on the top edge
versus vertical displacement of the loading platen. All the uniaxial compression test
simulations were performed on a 100×200 mesh and under plane strain assumptions.

F = −Fey

ey
ex

u = 0

E

100E

100E

10
8
m
m

10
.8
m
m

10
.8
m
m

54mm

(a) Sketch of the uniaxial compression test

(b) Distribution of mineral species inspired
by the Lac du Bonnet granite used for the
uniaxial compression test. The interfaces
among the quartz grains, marked in white,
are made stronger.

Figure 5.27: Uniaxial compression test

Dilatancy, i.e. the relative change of volume, could be computed as εvol = ε1+2ε2,
where the assumption is made that the lateral principal strains are equal to the
unique lateral strain computed in a plane strain simulation. In a perfectly uniaxial
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stress state, ε1 and ε2 could be determined by keeping track of the axial and lateral
displacements, respectively. Due to our boundary conditions that do not allow rollers
on the top and bottom boundaries, the stress state is neither uniaxial nor uniform, and
the body deforms with barreling. With these boundary conditions, the elastic volume
change is expected to be smaller than in the case when the lateral displacement on
the horizontal boundaries is made possible (e.g. with Teflon sheets). More than that,
the current boundary conditions do not allow parallel vertical crack openings, hence
the volume of the opening cracks is also smaller than for the “proper” boundary
conditions.

5.3.1 Elastically homogeneous sample

In the uniaxial compression test, the whole body is loaded with a dominant compressive
loading due to the sample geometry. This is in contrast to the Brazilian test in which
the body is locally subjected to mode I loading at the centre of the specimen, which
triggered mode I cracking. On the other hand, the uniaxial stress state is not ensured,
so the cracking is assumed to be less distributed than what a pure mode loading would
give. The loading and the boundary conditions suggest that even in the case when the
whole domain consists of only one constituent, the (compressive) material parameters
have a more significant effect on the cracking pattern than what we experienced in
the Brazilian test. Since the various material and solution procedure parameters were
thoroughly tested for the Brazilian test, here we restrict ourselves to the study the
effect of those parameters that are presumed to play a significant role.

Different combinations of the tensile strength ft and the cohesion c were tried –
the crack paths being reported in Fig. 5.28. In the first setup, ft was set to 3MPa
and c was given the values 26, 40 and 45 MPa. These values are within the interval
of the measured (macroscopic) data [122]. The major crack initiates either from the
bottom left or from the bottom right corner of the specimen, which is probably due
to the prescribed zero horizontal displacement on the bottom edge. The figures show
that the orientation of the crack paths slightly changed with increasing c, but not
substantially between ft = 3MPa and ft = 6MPa with a given c. As c increases,
compressive-shearing failure of slanted interfaces is less likely, and the cracks tend to
grow on interfaces under tension. This explains why the crack path deflects towards
the vertical loading direction. Since the platen is modelled as a very stiff grain, the
crack could not break it, resulting in the onset of an auxiliary crack, growing parallel
to the platen. The load-displacement response for the investigated combinations of ft
and c are shown in Fig. 5.29.

The peak stress for the investigated parameter values is provided in Tab. 5.4.
They indicate that the macroscopic compressive strength is proportional to the
interfacial tensile strength and cohesion values, fed to the microstructure. Moreover,
these computationally determined compressive strengths are in the range 30MPa to
160MPa, measured for the Lac du Bonnet granite [196].

We can conclude that the uniaxial test, or at least the way it has been modelled
in this section, makes the results difficult to interpret, let alone predicting the crack
path before executing the simulations.
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(a) ft = 3MPa, c = 26MPa (b) ft = 3MPa, c = 40MPa (c) ft = 3MPa, c = 45MPa

(d) ft = 6MPa, c = 26MPa (e) ft = 6MPa, c = 40MPa (f) ft = 6MPa, c = 45MPa

Figure 5.28: Relative dissipated energy on the interfaces for different parameters ft
and c
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Figure 5.29: Load-displacement response for the investigated elastically homogeneous
uniaxial compression test
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c

26 40 45

ft
3 60 80 110
6 75 110 100

Table 5.4: Peak stress values obtained from the uniaxial compression test (all units
are in MPa)

5.3.2 Heterogeneity

As in the case of the Brazilian test, we also carry out simulations on heterogeneous
samples. First, the microstructure in Fig. 5.27b is considered. Several computations
were done with different parameters; the one with ft = 6MPa and c = 40MPa gave
an interesting result. Figure 5.30 shows the microcracking. The damaging process
starts with microcracks initiation all over the domain. A completely open crack
appears near the centre. (Fig. 5.30a). The crack then tends towards the bottom right
corner (Fig. 5.30b). Concurrently, a second main crack appears near the left edge of
the rectangle, probably due to the quartz cluster nearby. According to Figs. 5.30c
and 5.30d, crack branching near the left side is more favourable than further crack
growth along the diagonal.

(a) Snapshot A (b) Snapshot B (c) Snapshot C (d) Snapshot D

Figure 5.30: Progressive crack propagation in the configuration corresponding to
Fig. 5.27b

The effect of the compression cap on the crack paths is tested by choosing different
values for the compressive strength fc, while the other parameter values were fixed
according to Tab. 5.3. Besides the default value fc = 500MPa (see Tab. 5.3), 300MPa
and 400MPa were also considered. The results in Fig. 5.31 indicate that the position
of the cap can be changed in a large interval. However, further modifications for fc
may induce changes for which a map of the activation of the different loading modes
of the failure criterion would be useful (cf. I.4).
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(a) fc = 300MPa (b) fc = 400MPa (c) fc = 500MPa

Figure 5.31: Relative dissipated energy on the interfaces for different parameters fc
for the configuration in Fig. 5.27b

To test another realization, the one in Fig. 5.32 has been generated. With the
same parameter values as before, the response of the body to the loading is visualized
in Fig. 5.33. The large snapback between “times” A and B corresponds to the abrupt
crack arrest in Fig. 5.34b. The complete diagonal crack could not develop because of
the hard phase. Hence, cracks grow in the top left corner (Fig. 5.34c). This crack
growth becomes more intensive in Fig. 5.34d, and finally the quartz cluster at the
bottom right breaks.

Figure 5.32: Another grain realization for the uniaxial compression test

Similarly to the heterogeneous Brazilian test, the reinforced interfaces are also
not prone to break as it can be followed in Fig. 5.35 for the two investigated grain
realizations. This implies different damage initiation points, depending mainly on
the distribution of the phases but also on the grain configuration.
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Figure 5.33: Load-displacement response for the configuration in Fig. 5.20b

(a) Snapshot A (b) Snapshot B (c) Snapshot C (d) Final crack path

Figure 5.34: Progressive crack propagation in the configuration corresponding to
Fig. 5.32

(a) For the configuration in Fig. 5.27b (b) For the configuration in Fig. 5.32

Figure 5.35: Failure patterns due to heterogeneity in the uniaxial compression test
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5.4 Concluding remarks
Based on the computational experiments for the three test problems, the following
consequences can be drawn.

• Accurate crack paths are obtained on relatively coarse meshes.

• A large step size was sufficient for all the test cases to predict the main crack
path and to obtain a qualitatively correct load-displacement curve. Decreasing
the step size proportionally increased the computational time, but resulted in a
more accurate and smoother load-displacement response.

• Although k is a numerical parameter, it influences which locations dissipate
energy at a given step. The experiments show that this parameter should be
close to kmin (i.e. K̃K ≈ 1) to get correct results.

• The elastic heterogeneity alone had a minor effect, therefore we tried different
cohesive properties on some selected interfaces. These two types of hetero-
geneities produced physically meaningful crack paths, indicating that a real
microstructure also owes distinct local fracture energies, which are complicated
to measure.

• The boundary conditions play a fundamental role. As a crack approaches
a Dirichlet boundary, it would require more and more force to propagate
further. Therefore, other cracks tend to initiate at other parts of the body.
The inhomogeneous BCs, especially if they act on small surfaces, cause stress
concentration, which requires many elements to be evaluated accurately.

• The oscillations have two causes. One is physical and is attributed to the
stress redistribution in the body (occurs e.g. in case of heterogeneities). The
other kind of oscillation has a numerical origin and is particularly relevant in
configurations with more than one interface. It is caused by the fact that the
most critical location “jumps” from one place to another between two steps.

The proposed computational tool is useful to carry out numerical investigations
on microstructures in an automated way, without any intervention from the user.
One can freely vary the distribution of the mineral species, the grain size distribution,
etc. The explicit damage stepping can handle the complete softening behaviour of
the brittle Brazilian test, without any complicated path-following techniques.
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6.1 Summary and global comments

The principal aim of the thesis was to enable efficient and flexible microcrack sim-
ulations in grain-based materials. As a first step towards this goal, simplifying
assumptions were made on the possible crack paths and on the constitutive model
of the grains. Based on these assumptions, a two-field variational formulation was
developed to represent the displacement field on each grain, and the traction field on
each interface and Dirichlet boundary segment. The Lagrange multipliers provided
the (weak) continuity of the displacement field on the whole assembly of grains. This
construction allows independent local calculations, prone to parallelization. The
discretization of this mixed formulation is achieved with CutFEM, which makes the
meshing trivial. All the unknowns are defined at the nodes of the rectangular elements.
The displacement space is spanned by the bilinear shape functions of rectangular
elements. The Lagrange multiplier shape functions are constructed as a restriction
of the nodal shape functions on the interfaces, with some connections among them.
Establishing the reduction algorithm for the Lagrange multipliers on Q1 elements
is a novelty of our work. Interfaces are allowed to cross the elements arbitrarily.
Numerical evidence was given of the stability of the resulting discrete mixed method.

The gradual degradation due to microcracking was then modelled by an extrinsic
cohesive law, derived from a potential. The potential was defined as a function of the
cohesive opening, from which the traction-separation relation can be obtained, and
an internal variable, which plays a role in formulating the evolution equations. To
avoid the problem of infinite terms in the compliance matrix upon the failure of a
cohesive zone, an augmented Lagrangian method was used, modifying the original
pure Lagrangian formulation. Self-contact between the (partially) open crack lips
was enforced explicitly. It turned out that by discretizing this augmented Lagrangian
method, most of the matrices can be precomputed, therefore the additional matrix
assembly at each step is very cheap. As the cohesive parameters are not uniform
along the interfaces, the same damage increment at two different locations is not
associated with the same amount of degradation in general. To take this into account,
a physically meaningful quantity, the energy dissipation, was introduced to drive
the energy release. The damage increment, present in the weak form, was then
subsequently computed from the energy dissipation increment. Algorithms shed light
on the details of the overall solution process.

To harness the capabilities of the developed framework, three examples were
considered. The three-point bending test verified the numerical algorithms for mode
I cracking. A thorough analysis of the Brazilian test revealed the influence of the
material and solution procedure parameters. The number of grains in the Brazilian
disk allowed a meaningful representation of realistic microstructures. Our method
enables the user to easily perform statistical analysis by generating random grain
packings and running computations on them. The third test was the uniaxial
compression test, where even more grains were taken. Qualitatively correct results
were obtained both for the Brazilian test and for the uniaxial compression test, using
crude meshes and large step sizes.

We consider the discretization method and the energy-based solution procedure
for the propagation of multiple cracks as the main strength of the thesis. The
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discretization itself, without including the damage, is worth highlighting due to its
attractive properties: (i) no meshing difficulties, (ii) accurate computation of the
traction vector, (iii) block diagonal subdomain stiffness matrices Ki, and (iv) known
null-space of Ki, ∀i ∈ Is. The mesh-independence has the additional merit that the
same background mesh can be used to run simulations on different grain distributions,
which becomes useful for RVE computations or for parametric investigations as
illustrated in Chapter 5.
The quasi-static stepping based on the energy dissipation has the advantage over
the load-controlled solution procedures that a complex load-displacement response
can be tracked without sophisticated path-following techniques. It further increases
the automated nature of the framework since the user does not have to experiment
with the proper choice of the load-controlling parameters so that the nonlinear
iteration procedure does not fail. Its combination with an extrinsic cohesive zone
formulation, parametrized by the energy dissipation, results in the automatic tracking
of microcrack initiation and propagation. Another nice property is that the damage
update is separated from the solving of the mechanical system, making a segregated
solution procedure possible. Although the explicit update algorithm produces jagged
load-displacement curves, this is mostly aesthetic as an envelope of the graph is easily
recognizable.

The developed framework in its current stage has some deficiencies. Although attempts
were made in Section 3.7 to achieve matrices with smaller condition number, a more
efficient strategy is needed to be able to use iterative solvers. Some prospects are
recommended in item N.1 of the next section. The other main problem is that with
the introduction of the augmented Lagrangian method, the penalty term destroys
some good characteristics of the original saddle point system: (i) the choice of the
penalty-like parameter k is not dictated by the conditioning only, but its minimum
value is determined by the cohesive material constants and the failure criterion;
and (ii) the subdomain stiffness matrices Ki are complemented by interfacial terms,
increasing the bandwidth and making the preconditioning more difficult.
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6.2 Future work
Now, that the initial ideas were realized in a mature computational framework, several
further improvements are worth investigating in the future. These ideas are classified
as follows.

P. Additional physical phenomena

P.1 Frictional contact. Friction between surfaces of fractured rock may have a
significant effect and could be included in the framework.

P.2 Coupling with fluid flow in the microcracks for permeability computations.
In the introductory section 1.1, we saw that microcracking-induced per-
meability change is important in practice. We plan to couple our damage
model with low-velocity fluid flow in the channels formed by open cracks.
Existing attempts, such as the ones in [122] and [191], can benefit from
the non-conforming discretization.

P.3 Intrinsic cohesive zone model. Rock grains investigated in this thesis are
closely packed, therefore it was reasonable to apply extrinsic cohesive zone.
Our discretization was successfully tried on rubble masonry structures
with non-Voronoi grains, but the resulting crack path was not satisfactory.
This can be explained by the finite width and compliance of the mortar
joints around the stones, requiring the use of an intrinsic cohesive zone
model.

P.4 Different angles of friction among the phases.
For the Brazilian test and the compression test, the interfaces within a
quartz cluster were set to higher strength and fracture energy values than
for the other interfaces. It is worth checking what happens if the angle of
friction is also changed on the interfaces. The different angles of friction
on the interfaces might be obtained experimentally with a direct shear
test machine.

P.5 Determine the dilatancy.
Due to its practical relevance, the characterization of dilatancy is on high
priority on our list of future investigations. We noted in the discription of
the uniaxial compression test in Section 5.3 that computing the dilatancy
requires “roller-type” boundary conditions. See also N.2.

M. Modelling questions

M.1 3D modelling. Three spatial dimensions allow richer kinematics, essential
to capture the permeability increase of fractured geomaterials before the
occurrence of the full loss of the load-bearing capacity. The construction
of the discrete Lagrange multiplier space remains the same in 3D, i.e. the
cut edges play a role and not the intersected faces. The failure criterion
and the damage update scheme also remain almost identical. However,
it will be more difficult to cut the possibly concave polyhedral grains
with the elements. The development to perform is therefore essentially of
geometrical nature.
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M.2 Initial microcracks. Microcracks in rocks are results of either natural
processes (tectonic movements, etc.) or man-made activities (excavation,
boreholes, etc.) [90]. They act as stress-concentrators, significantly lower-
ing the strength of rocks. Higher microcrack density causes the increase
of permeability. The incorporation of pre-existing microcracks into our
model can be easily done by prescribing non-zero damage values for some
locations on some interfaces. Completely open cohesive cracks can be
easily incorporated by setting d = 1 at the desired locations (e.g. along
the interfaces lying between feldspar grains). This is an advantage of
our dissipation-driven solution method over the classical load-controlled
schemes in which it is not straighforward how to place the initial microc-
racks.

M.3 Effect of grain concavity. Our method works without further development
for concave grains too. It would be interesting to characterize the convexity
of grains and investigate how macroscopic dilatancy is influenced by the
uplifting effect of the shearing of convex-concave grain connectivities.

M.4 Quantification of the microstructure. Use statistical methods, such as
correlation functions, to quantify the clustering of the mineral species.

M.5 Homogenization. Computational homogenization is typically an applica-
tion our tool would excel at. With a single background mesh, a set of grain
realizations for statistical studies can be generated to obtain macroscopic
responses.

M.6 Reduced-order modelling. The calculations could be made much faster –
though sacrificing accuracy – by decreasing the number of unknowns in the
bulk and on the interfaces. Fewer degrees of freedom for the bulk can be
achieved by allowing fewer deformation modes for the elastic grains. The
number of interfacial unknowns (Lagrange multipliers) might be lowered
to three. These three scalar Lagrange multipliers would weakly enforce the
three interface opening modes: opening in the normal direction, opening
in the tangential direction and rotating around a point on the interface.
Finally, one could try reducing all the unknowns onto the interfaces by
static condensation. Reworking the current discretization framework to
be compatible with model reduction is probably not easy and therefore it
has low priority.

N. Numerical tasks

N.1 Preconditioning. An alternative to the attempts we tried to decrease the
condition number is adding extra terms to the weak form which efficiently
improves the conditioning, such as the ghost penalty method [38]. General-
purpose (black-box) preconditioners are often not powerful enough for
saddle point matrices [27]. With a deeper understanding of the continuous
operators, one increases the chance to construct effective precondition-
ers [94].

N.2 Support other types of boundary conditions. The use of periodic boundary
conditions in computation homogenization allows one generating a smaller
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RVE compared to the case when displacement or traction boundary con-
ditions are prescribed. The literature already contains solutions to weakly
enforce periodicity [188]. Periodicity conditions can be implemented sim-
ilarly to jump conditions, which are already contained in our method.
Another improvement is to be able to prescribe only one component of the
displacement vector. This corresponds to the mechanical model of roller
support, used for example in the three-point bending test and the uniaxial
compression test. A recent work discussing it in the non-conforming case
is [117].

N.3 Higher-order Lagrange elements. In [73] a stable Lagrange multiplier space
was designed for conventional P2 triangles in X-FEM. One could try
using higher-order elements with all degrees of freedom associated with
the nodes, as it was done in GFEM [64]. A nice generalization of the
current discretization would be a Qk −Qk⋆ interpolation, i.e. k-th order
polynomials for the displacements and reduced k-th order polynomials for
the Lagrange multipliers – all degrees of freedom placed at the nodes.

I. Implementation

I.1 Distributed computing capabilities. Most operations are local, therefore
little communication would be necessary among the distributed computing
nodes.

I.2 Local (non-conforming) mesh refinement. Currently, only a uniform mesh
is supported. In certain examples (e.g. the three-point bending test), a
local refinement would significantly reduce the memory and CPU resource
requirements. The refinement could either be linked to an a posteriori error
estimate or simply be purely geometric. For smooth boundary data (e.g.
L2-regularity), we expect a smooth displacement solution inside the grains
and jumps across the interfaces. Therefore, refining the mesh only in the
neighbourhood of the interfaces seems reasonable. It has the advantage
that the mesh can be fixed in the beginning, so the matrix sizes do not
change and therefore the matrices can be precomputed, as it is done in
the current implementation. Note that a non-conforming quadtree-based
refinement is sufficient in our framework.

I.3 Performant, non-proprietary software. Using Matlab was convenient
during the prototyping phase, but for reproducibility reason and to promote
open science, free tools are welcome. The C++ language is free, compiles
to fast executables, and is widely used in scientific computing with a large
number of existing libraries.

I.4 Be able to track the loading mode. To obtain more insight on why a given
crack path develops, it is helpful if we know which part of the failure
criterion is reached at a given location.

Some of these issues are part of ongoing work.
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A Physical meaning of the Lagrange multiplier

Integration by parts on Eq. (3.19a) yields

−
∑︂
m∈Is

∫︂
Ωm

vm · (σm · ∇) dΩ +
∑︂
m∈Is

∫︂
Sm

vm · σm · nm dΓ+

+
∑︂
i∈Iint

∫︂
Γi

(︁
vi+ − vi−)︁ · λi dΓ +

∑︂
i∈ID

∫︂
Γi
D

vi+ · λi dΓ =
∑︂
i∈IN

∫︂
Γi
N

vi+ · tiN dΓ,
(A.1)

where Sm is the boundary of Ωm. From the above domain integral we gain the
equilibrium equations (first equation of Eq. (3.8)). Each subdomain boundary Si can
be decomposed into a disjoint set of segments, where one of interface, Neumann or
Dirichlet conditions are prescribed. Regarding the Neumann BCs, from Eq. (A.1) we
get ∑︂

i∈IN

∫︂
Γi
N

vi+ ·
(︁
σi+ · ni+ − tiN

)︁
dΓ = 0, (A.2)

which yields Eq. (3.10) for arbitrary vi+. For the Dirichlet BCs, we obtain

∑︂
i∈ID

∫︂
Γi
D

vi+ ·
(︁
σi+ · ni+ + λi

)︁
dΓ = 0. (A.3)

The remaining terms in Eq. (A.1) represent the interface integrals:

∑︂
i∈Iint

∫︂
Γi

vi+ ·
(︁
σi+ · ni+ + λi

)︁
dΓ = 0, (A.4)

∑︂
i∈Iint

∫︂
Γi

vi− ·
(︁
σi− · ni− − λi

)︁
dΓ = 0, (A.5)

giving

σi+ · ni+ = −λi, σi− · ni− = λi (A.6)
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as stated in (3.24). Since ni+ = −ni−, (A.6) provides the traction continuity across
the interfaces, Eq. (3.15). Finally, (3.19b) reads∑︂

i∈Iint

∫︂
Γi

µi · JuKi dΓ = 0, (A.7)

∑︂
i∈ID

∫︂
Γi
D

µi · ui+ dΓ =
∑︂
i∈ID

∫︂
Γi
D

µi · ui
D dΓ, (A.8)

which directly gives the displacement continuity across the interfaces (cf. Eq. (3.14))
and the Dirichlet boundary condition (cf. Eq. (3.9)).
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B Quadrature
The use of formulation (4.16) requires computing domain (area) integrals on cut or
uncut elements and interface (line) integrals. The stiffness matrix on uncut elements
can be exactly integrated by the 2× 2 Gauss-Legendre quadrature.

A vast literature is available about quadrature on complicated domains. The
most relevant ones were discussed in Section 2.5.4. The most straightforward method
is to decompose the cut element into simpler shapes for which the integration is
easier. A constrained Delaunay triangulation, visualized in Fig. 3.10, is used here
for this purpose, together with a three-point Gauss-Legendre quadrature on each
triangle. The reason we applied subtriangulation is due to its simplicity and accuracy.
Low order elements (Q1 in our case) require few quadrature points, especially in 2D
where the number of subtriangles is low. Hence, not much would be gained by using
advanced techniques. The triangulation can be carried out either on the physical
domain or on the reference domain. If the interfaces bounding the cut element
part are mapped to the reference square, they become curved due to the bilinear
mapping. In [155], an improved integration is used to avoid this problem for bilinear
quadrangular elements. Therefore, the cut elements are partitioned into triangles
on the physical domain, these triangles being then mapped to a reference domain
(see Fig. B.1). Although the inverse bilinear mapping χ−1

2 exists in closed form [97],
the affine mapping between the reference square and the physical element allows a
simpler inversion for the Cartesian mesh we use in this work.

T

T ∗
χ1 : T

∗ → T

Q

χ−1
2 : Q→ Q∗

Q∗

Figure B.1: Improved integration on polygons

The integrand in the interface integrals is the product of the shape functions,
restricted on the interface. When a bilinear shape function is evaluated on a straight
segment, a complete linear or an incomplete quadratic (with a missing linear term)
polynomial is obtained. The integrand is therefore described by four parameters. A
two-point 1D Gauss-Legendre quadrature is sufficient to calculate the integral exactly.
On the other hand, the full integration of the Lagrange multipliers can produce
oscillations, as shown in [158]. As noted in [136], the fictitious node method has the
same interface matrices as that of interface elements, which motivates using the two-
point Gauss-Lobatto integration here as well. Note that the two-point Gauss-Lobatto
integration points in 1D are located at the interval endpoints. Hence, a quadratic
polynomial without the linear term cannot be integrated exactly. This means that
the line integrals are not computed exactly when the interface goes through the
neighbouring edges of a quadrilateral element. For the precomputed matrix (4.34),
the product of the three shape functions requires three Gauss-Legendre quadrature
points for exact integration.
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Titre :  Modélisation de la fissuration dans les matériaux cohésifs à grains par discrétisations non 
conformes 

Mots clés :  maillage-indépendante, endommagement, zone cohésive, CutFEM, fissuration, 
multiplicateur de Lagrange 

Résumé :  Dans cette thèse, une formulation 
stable mixte de déplacement–multiplicateur de 
Lagrange est développée pour modéliser la 
fissuration dans les matériaux  cohésifs à grains 
dans le cadre de la méthode des éléments finis 
etendus (CutFEM). Le champ de déplacement 
est discrétisé sur chaque grain  individuellement, 
et la continuité des champs de déplacement et 
de traction aux interfaces entre grains est 
assurée par des multiplicateurs de Lagrange. La 
construction de l'espace discret des 
multiplicateurs de Lagrange est détaillée pour 
les éléments quadrangulaires bilinéaires avec la 
présence d’interfaces  multiples dans un 
élément. Des preuves numériques sont données 
que cet espace de multiplicateurs de Lagrange 
est stable, et des exemples démontrant la 
robustesse de la méthode sont fournis.  Avec 
cette discrétisation stable, une formulation de 

zone cohésive permet de modéliser la 
propagation de fissures multiples aux 
interfaces entre grains. Pour éviter des 
interpénétrations aux faces des fissures 
pendant le déchargement, une condition de 
contact est imposée. Les solutions pour les 
champs mécaniques et le champ 
d’endommagement sont obtenues séparément 
et un algorithme explicite permet d'utiliser une 
approche non itérative. La formulation de 
l’endommagement associe les modes de 
rupture normal et tangentiel, tient compte de 
différents comportements de tension et de 
compression et prend en compte une énergie 
de rupture dépendante de la compression en 
mode mixte. La méthode est appliquée à des 
problèmes 2D complexes inspirés par des tests 
de tension indirecte et des tests de 
compression sur des matériaux hétérogènes 
ressemblant à de la roche. 

 

Title :  Mesh-independent modelling of diffuse cracking in cohesive grain-based materials 

Keywords :  mesh-independent, damage, cohesive zone, CutFEM, Lagrange multiplier, cracking 

Abstract :  In this thesis a flexible and general 
stable displacement–Lagrange multiplier mixed 
formulation is developed to model distributed 
cracking in cohesive grain-based materials in 
the framework of the cut finite element method. 
The displacement field is discretized on each 
grain separately, and the continuity of the 
displacement and traction fields across the 
interfaces between grains is enforced by 
Lagrange multipliers. The design of the discrete 
Lagrange multiplier space is detailed for bilinear 
quadrangular elements with the potential 
presence of multiple interfaces/discontinuities 
within an element. We give numerical evidence 
that the designed Lagrange multiplier space is 
stable and provide examples demonstrating the 
robustness of the method. Relying on the stable 
discretization, a cohesive zone formulation 

equipped with a damage constitutive model 
expressed in terms of the traction is used to 
model the propagation of multiple cracks at the 
interfaces between grains. To prevent the 
crack faces from self-penetrating during 
unloading, a contact condition is enforced. The 
solutions for the mechanical fields and the 
damage field are separately obtained and an 
explicit damage update algorithm allows using 
a non-iterative approach. The damage 
formulation couples the normal and tangential 
failure modes, accounts for different tension 
and compression behaviours and takes into 
account a compression-dependent fracture 
energy in mixed mode. The framework is 
applied to complex 2D problems inspired by 
indirect tension tests and compression tests on 
heterogeneous rock-like materials. 
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