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Abstract

Most statistical methods are not designed to directly work with incomplete data. The
study of data incompleteness is not new and strong methods have been established to
handle it prior to a statistical analysis. On the other hand, deep learning literature
mainly works with unstructured data such as images, text or raw audio, but very few
has been done on tabular data. Hence, modern machine learning literature tackling
data incompleteness on tabular data is scarce. This thesis focuses on the use of
machine learning models applied to incomplete tabular data, in an insurance context.
We propose through our contributions some ways to model complex phenomena in
presence of incompleteness schemes, and show that our approaches outperform the
state-of-the-art models.

Résumé

La plupart des méthodes statistiques ne sont pas nativement conçues pour fonctionner
sur des données incomplètes. L’étude des données incomplètes n’est pas nouvelle et
de nombreux résultats ont été établis pour pallier l’incomplétude en amont de l’étude
statistique. D’autre part, les méthodes de deep learning sont en général appliquées
à des données non structurées de type image, texte ou audio, mais peu de travaux
s’intéressent au développement de ce type d’approche sur des données tabulaires, et
encore moins sur des données incomplètes. Cette thèse se concentre sur l’utilisation
d’algorithmes de machine learning appliqués à des données tabulaires, en présence
d’incomplétude et dans un cadre assurantiel. Au travers des contributions regroupées
dans ce document, nous proposons différentes façons de modéliser des phénomènes
complexes en présence de schémas d’incomplétude. Nous montrons que les approches
proposées donnent des résultats de meilleure qualité que l’état de l’art.
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Résumé détaillé

La plupart des méthodes statistiques ne sont pas adaptées pour nativement tenir
compte de l’incomplétude des données, et attendent en général en entrée un ensem-
ble d’observations indépendantes et identiquement distribuées (i.i.d.). Le terme de
données incomplètes réfère souvent dans la littérature aux données manquantes, néan-
moins nous considérons dans ce document que cela fait référence à un ensemble de
phénomènes plus large, dont les données manquantes font partie. Dans le panel de
schémas d’incomplétude de données, on citera notamment les phénomènes de censure,
très présents en assurance et dans les études cliniques, les données manquantes ou
encore les données bruitées, pour n’en citer que quelques uns.
Par ailleurs, les travaux en deep learning se concentrent principalement sur l’étude de
données non structurées, comme les images, le texte, les vidéos ou encore le son, mais
très peu de travaux approfondis appliqués sur des données tabulaires ont été proposés,
et encore moins sur des données tabulaires incomplètes.

Les problèmes d’incomplétude de données sont omniprésents en pratique, et peu-
vent conduire à un biais significatif dans l’étude statistique. Une attention particulière
est donc à porter en amont de toute étude statistique afin de s’assurer de la cohérence
du jeu de données observé, et éventuellement effectuer un traitement statistique en
amont de l’étude (e.g. pour imputer des valeurs manquantes, ou correctement tenir
compte des valeurs aberrantes). Pour autant, peu de travaux proposent de travailler
sur des problèmes de modélisation en présence de données incomplètes.
Les données tabulaires et les séries temporelles n’ont pas reçu assez d’attention de la
part de la communauté autour du deep learning, et nécessitent un traitement particulier.
En effet, certaines métriques et fonctions de perte utilisées en analyse d’image ne sont
pas applicables sur des données tabulaires. De même, vérifier qu’un modèle a bien
estimé la distribution d’un ensemble d’images revient à vérifier "à la main" que le
modèle génère des images (ou du texte) cohérentes, i.e. vérifier si le modèle dépasse les
capacités humaines. Cela n’est en revanche pas applicable à un vecteur multivarié, et
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nécessite des outils plus complexes pour comparer des distributions.
Cette thèse se concentre sur l’utilisation de méthodes de machine learning appliquées à
des problèmes comportant des données incomplètes, dans un contexte assurantiel. Le
secteur de l’assurance est en train de changer de paradigme avec d’une part la collecte
de nouvelles données (e.g. les données GPS telematics, ou encore les photographies
et les descriptions textuelles des sinistres), et d’autre part l’émergence de nouvelles
méthodes d’analyse de données. Ce changement de paradigme représente un intérêt
fort pour le secteur de l’assurance, car cela permet de mieux estimer le risque encouru
par l’assureur de par son activité, et de mieux connaître ses clients.

Ce document regroupe trois contributions, regroupées dans trois chapitres distincts
précédés d’un chapitre qui introduit les éléments techniques nécessaires à la compréhen-
sion des contributions. La première contribution propose une structure de modélisation
permettant d’entraîner un modèle à prédire une variable cible fortement censurée.
Nous appliquons notre méthode sur des problèmes de provisionnement en assurance, et
comparons notre approche avec les outils standards de calcul de réserves en assurance,
et montrons que nous donnons des prédictions plus précises en matière de variance.
La deuxième contribution propose une architecture permettant de combiner plusieurs
jeux de données afin de construire un modèle prédictif sur chaque jeu de données qui
tient compte de l’information prédictive présente dans chaque autre jeu. Les assureurs
conçoivent souvent plusieurs produits différents couvrant le même risque. Cela est en
partie causé par le fait que la population couverte est fondamentalement différente
(e.g. pays différents, ou entités différentes de l’assurance). Cela conduit à des jeux
de données distincts portant sur l’étude d’un risque commun, et les combiner permet
potentiellement d’affiner l’étude du risque. Nous comparons notre approche proposée
avec l’état de l’art, et montrons que nous donnons de meilleurs résultats.
La troisième contribution propose une architecture qui permet d’estimer la distribution
conditionnelle d’une série temporelle. Cela permet à l’assureur de générer des scénarios
économiques de type "monde réel", et d’anticiper des changements significatifs dans
leurs placements financiers. Les méthodes usuelles employées pour répondre à ce type
de problématique font en général une hypothèse structurelle sur le processus stochas-
tique. Ici, nous proposons une méthode non-paramétrique pour estimer la distribution
conditionnelle d’une série temporelle, afin d’en générer de nouvelles réalisations. Nous
comparons notre approche avec l’état de l’art, et montrons qu’elle donne une meilleure
estimation des auto-corrélations du processus stochastique, ainsi que de son support.



Chapter 1

Introduction

1.1 DAMI Chair of research

This thesis has been realized in the context of the Data Analytics and Models for
Insurance1 (DAMI) chair of research. The DAMI chair of research (chair of excellence)
is the accomplishment of the relationship between BNP Paribas Cardif and the SAF
laboratory2 (Sciences Actuarielle et Financière), the latter being part of the ISFA
school3 (Institut de Sciences Financière et d’Assurances).
The DAMI chair of research is divided into two distinct research axes: the models for
insurance branch consists of studying the influence of the regulatory and accountant
environment on the construction of risk assessment models in insurance, whereas the
data analytics branch focuses on the use of modern Machine Learning models to
study the new challenges the insurer is facing with the multiple new available types of
data (e.g. telematics data).
The work presented in this document is part of the data analytics research of the
DAMI chair, and studies the use of machine learning methods to challenge existing
methods in insurance.

1http://chaire-dami.fr/fr/
2https://isfa.univ-lyon1.fr/recherche/
3https://isfa.univ-lyon1.fr/
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1.2 Importance of modern Machine Learning in
insurance

It is of high interest for the insurance industry to foster the development of new
statistical methods to improve their lines of business such as having more accurate loss
reserves, a better asset and liability management or an appropriate pricing, among
others. As an example, for regulation purposes, the insurer must have an accurate
estimation of the underlying risk inherent to its business. A good knowledge of the risk
allows the insurer to compute an appropriate premium for the customer, to calculate
accurate loss reserves for the outcoming claims and to have a better estimation of its
assets and liabilities, to name a few.
The insurance industry has a long history in econometrics research, carrying out studies
with the state-of-the-art models as well as fostering partnerships with universities (e.g.
the DAMI chair of research), which enable the insurer to have a profound knowledge
in statistics and to improve its lines of business.

The deep learning community grew up sharply over the last two decades with the
arrival of more efficient computational facilities (e.g. more performant GPUs, cloud
computing, TPUs, etc.) and the emergence of big companies having their own research
labs, carrying out state-of-the-art deep learning models and a skyrocketting research
activity in the last 20 years.
However, such labs mainly work on a kind of data which is of high interest to the
company hosting it, namely image data, video, text or raw audio. The insurance
industry mainly manipulates standard tabular data (collecting information about the
customer or a claim) or time series data. Tabular data and time series have not
received enough attention from the deep learning community. Indeed, a lot of work
focus on a kind of data which usually carries a lot of signal by nature (e.g. objects
in an image, words in a text or in an audio file) but very little has been done to
study the statistical properties of deep learning models applied to a multivariate
random vector. The latter point motivates the works presented in this document,
which are conducted in the context of the data analytics research axis of the DAMI chair.

This thesis contains works around two main axis: incomplete data and statistical
learning. Statistical learning theory is a field at the confluence of computer science,
statistics, functional analysis and signal processing, which focuses on the estimation of
a function based on given observations. The estimation of such a function is usually
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done by minimizing an appropriate loss function between a target variable and a
function of the observed explanatory variables.
Statistical learning has experienced multiple paradigm shifts according to the increasing
power of computational abilities.

Although statistical learning models are powerful tools to detect patterns and estimate
distributions, a particular attention has to be paid when applying such algorithms to
incomplete data. Indeed, most statistical learning methods are designed to work on a
complete, clean dataset. In practice, having a dataset of good quality is challenging,
almost no dataset is clean. Multiple phenomena can have a significant influence on the
quality of statistical learning models, e.g. missing data, outliers, noisy data, censored
and truncated data, among others.
In this work, we focus on the application of statistical learning models on incomplete
data in an insurance context.

The work presented in this document is organized in three research papers, established
in three distinct chapters, precedeed by an additional chapter introducing most of the
technical elements that we use in each contribution.

Chapter 2 gives details about the different methods used throughout each con-
tribution. We first dig through the multiple phenomena which lead to have incomplete
data. We define censored data, which is encountered when modelling a time related
random variable. We also discuss about missing data, which is a widely encountered
phenomenon of incomplete data in practice. We then give a word about extreme
values, which is a frequently observed phenomenon that can lead to a bias in the
statistical analysis if it is not correctly considered. Finally we enlighten a particular
incompleteness scheme, which is encountered when we want to carry out a statistical
analysis based on multiple distinct datasets.

Chapter 3 constitutes the first contribution of this thesis. We study the use of
statistical learning methods to compute the insurance loss reserves at an individual
level. The problem of loss reserving is that the target variable is highly censored,
hence the need to propose an appropriate framework to build an unbiased estimation
of individual loss reserves. We compare our approach with the chain ladder, which
is the standard tool in insurance to compute the loss reserves. Chain ladder requires
strong assumptions on the structure of the censored target variable, and estimates loss
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reserves at an aggregated level. We show that our approach outperforms the chain
ladder on a real insurance dataset as well as on simulated examples.

Chapter 4 is the second contribution of this thesis. Modern machine learning methods
usually require a large amount of data to be efficient. Such an amount of data may
not be always available in a single dataset, which means that the information is stored
in multiple distinct datasets. This context introduces what we call the structural
incompleteness, which refers to the fact that two distinct datasets may not share the
same attributes nor have the same distribution for common attributes. We propose
a method that combines multiple datasets and addresses the problem of structural
incompleteness by performing a style transfer through a latent representation of each
dataset. We show that our approach outperforms the state-of-the-art method to
leverage the predictive information from multiple datasets.

Chapter 5 is the third contribution of this thesis. In this chapter, we aim at estimating
the distribution of a time series without making any assumption on the structure of
the underlying stochastic process. For that matter, we propose an autoregressive deep
generative model which estimates the conditional quantile function of the time series,
while taking into account the fact that the stochastic process may be heavy tailed and
high dimensional. Traditional generative models are designed to work on images (or
on raw audio), which are low dimensional (usually 3 dimensions corresponding to the
RGB colors), discrete and compactly supported data. We show that our approach
outperforms the state-of-the-art model in terms of the estimation quality of the quantile
function and of the inner properties of the time series.



Chapter 2

Background

This thesis focuses on utilizing modern machine learning methods on incomplete data,
with applications to insurance. In the literature, incomplete data often refers to missing
values, but in this work we extend the notion of incompleteness to an ensemble of
phenomena which we define in this chapter. Most statistical learning methods are
designed to work on a complete dataset, i.e. a sequence of independent and identically
distributed (i.i.d.) random variables without any incompleteness phenomenon. In
practice, almost no dataset is complete, and the data analyst often needs to perform
a prior analysis on the data. Indeed, some incompleteness phenomena may have a
significant influence on the statistical analysis, hence the need to ensure that such an
analysis is not biased.
This chapter aims at introducing the technical elements used throughout the docu-
ment. In this thesis, we will use the terms statistical learning and machine learning
interchangeably. We introduce in Section 2.1 some incompleteness phenomena and
discuss the impact of such schemes on the study. We then define the standard elements
of statistical learning in Section 2.2 in order to enlighten the consequences that incom-
pleteness schemes can have on the study. Chapters 4 and 5 make use of particular
deep learning models. We define the technical elements of deep learning used in those
chapters in Section 2.3. Chapter 5 deals with time series, which is a particular kind of
data that needs an appropriate modelling. We define the usual properties and models
for time series modelling in Section 2.4.

2.1 Incomplete data

Multiple phenomena can lead to data incompleteness. Some are completely random
(e.g. a ponctual error of measure or a random loss of information), others are structural
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and can depend on the data values or more complex patterns.
The underlying phenomena which lead to data incompleteness have been largely studied
and some have a long history in the statistical literature. However, most methods
handling incompleteness rely on strong structural assumptions, and literature on the
use of statistical learning to address data incompleteness problems is still scarce.

This section gives an overview of some incompleteness phenomena and gives a word
about existing work in each domain. The outline of this section is the following.
Subsection 2.1.1 explains the censorship phenomenon, Subsection 2.1.2 focuses on the
missing values and its associated missingness schemes, Subsection 2.1.3 introduces the
study of rare events and Subsection 2.1.4 gives explanations on a particular missingness
scheme.

2.1.1 Survival data

One form of data incompleteness occurs when studying a time-related phenomenon.
Survival analysis focuses on the study of a random variable T , where T refers to a
certain time or duration. The problem of studying such a random variable is that
we usually have at our disposal a partial observation of the phenomenon. This is
due to the fact that recording a duration requires to wait for the phenomenon to be
terminated to have a full observation of T , whereas a "standard" record (i.e. not related
to a duration) is usually measured and recorded instantly.

Recording observations of a random variable T usually resuires to record it over
a certain time span [t0, t1]. Between time t = t0 and time t = t1, some observations of
T will be fully observed, others will be partially observed, i.e. the outcome of the event
will happen at a time t > t1. Such a partial observation is right censored. Likewise,
some occurences of T happened before t = t0, and are said to be left censored. Figure
2.1 depicts the censorship phenomenon.



2.1 Incomplete data 7

Fig. 2.1 Scheme describing the censorship phenomenon. Dashed lines (resp. plain lines)
represent unobserved (resp. observed) values; plain squares represent the outcomes
(e.g. death of an individual) and empty squares represent censored values (i.e. the
latest known values without outcome). T1, . . . , T7 are iid time-related random variables
with distribution p(T ). We observe T in a timespan [t0, t1]. T1, T5 and T6 are observed,
T2, T3 and T7 are right-censored, and T4 is left censored.

Removing censored observations prior to a statistical analysis or considering that a
censored value is a fully observed value introduces a bias in the analysis. Hence the
need for appropriate statistical methods handling censored data.

Let (T1, X1), . . . , (Tn, Xn) be an iid sample drawn from a random vector (T, X), where
X ∈ Rp is a vector of covariates which may have an influence on T . In practice, we do
not directly observe (Ti, Xi) (i ∈ {1, . . . , n}) but the vector (Yi, δi, Xi) instead, where:

⎧⎨⎩ Yi = min(Ti, Ci),
δi = 1Ti<Ci

,

and C1, . . . , Cn are iid copies of an unknown censoring random variable C such that
Y ⊥⊥ C.

One main objective of survival analysis is to estimate the distribution of T . It is
usually done by estimating distibution-related quantities such as the survival function
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or the hazard function, among others. For a time t > 0, the survival function S of T is
defined as the probability that a duration drawn from T goes beyond time t:

S(t) := P(T > t) = 1 − F (t), (2.1.1)

where F is the cumulative distribution function (c.d.f.) of T . In other words, when
T represents a duration for an individual, e.g. life expectancy, S(t) is the probability
that an individual survives beyond time t.
The probability density function (p.d.f.) f of T is trivially related to the survival
function by the following formula:

f(t) = −dS(t)
dt

. (2.1.2)

For a scalar random variable Z of c.d.f. F , the estimation of F using an iid sample
z1, . . . , zn ∼ Z is given by the empirical c.d.f. Fn:

Fn(z) = 1
n

n∑
i=1

1zi≤z, z ∈ R. (2.1.3)

However, the estimation of the c.d.f. of a time-related random variable T cannot be
done by using the formula of Equation 2.1.3 due to censored observations (which means
that some zj are not fully observed). Kaplan and Meier proposed a non-parametric
estimator [Kaplan and Meier, 1958] to estimate the c.d.f. of such a random variable:

F KM
n (t) := 1 − ∏

Yi≤t

(
1 − δi∑n

j=1 1Yj≥Yi

)
. (2.1.4)

This estimator is still widely used in practice and is the baseline of many works of
survival analysis. Another way to estimate the survival function is to compute the
cumulative hazard function H which is defined as:

H(t) =
∫ t

0
h(x)dx, (2.1.5)

where h is the hazard function which is defined by the following limit:

h(t) = lim
dt→0

P(t < T < t + dt|T > t)
dt

. (2.1.6)

In other words, the hazard function is the rate of events occurring for individuals who
survived beyond time t. In practice, we discretize the timespan [t0, t1] and compute
the values of h according to the discretization, then deduce the survival function from
the following relation:
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S(t) = exp(−H(t)). (2.1.7)

One other main objective of survival analysis is to predict a duration based on a set
of explanatory variables. This enables the study of the influence of each explanatory
variable on the duration. It is different from the previous objective since it does not
estimate the distribution of T but the distribution of T given X instead. One of the
most widely used model to perform a regression on a time-related random variable is
the so-called Cox model [Cox, 1972] which models the hazard function by:

h(t; x) = h0(t) exp(β′x), (2.1.8)

where x is a given vector of explanatory variables, β is a vector of parameters to
estimate and h0 is a baseline hazard which corresponds to the hazard when x = 0. Note
that such a model assumes that individuals with distinct attributes have proportional
hazard functions.

Litterature on how to estimate the survival function and how to perform a regression
on a time-related random variable is rich and instigated a lot of interest in the medical
field as well as in the insurance industry.
However, literature on how to perform a regression on a time variable by using modern
statistical learning methods is still scarce. [Lopez et al., 2016] propose to use a Classi-
fication and Regression Tree (CART) [Breiman et al., 1984] to perform a regression
on a time variable by weighting each terminal node by the Kaplan-Meier survival
function, therefore taking into account the censorship. Some working papers such as
[Gerber et al., 2018] carry on the same idea, and [Kuo, 2018] trains a neural network to
estimate aggregated values of time-related random variables (loss reserving in insurance,
at a macro level), but to the best of our knowledge, no other thorough work has been
done on the regression task under censorship.

In Chapter 3, we propose to use a statistical learning algorithm - the ExtraTrees
model [Geurts et al., 2006] - to accurately estimate individual loss reserves in insur-
ance, and show that our approach outperforms the state-of-the-art loss reserving
models.
Loss reserving refers to the computation of the amount of money that the insurer have
to reserve to anticipate the outcoming future claims. From an individual point of view,
when a policy holder declares a claim, reserving corresponds to the computation of the
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total amount that the insurer will have to pay until the claim is settled, e.g. monthly
payments of a loan (in case of unemployment or disability), legal actions (e.g. lawyers
or fines) or car repairs, among others. The total amount of a claim is usually unknown
at time of declaration, and more and more information about the final amount are
collected over time. This means that the total loss amount for each claim is censored,
which motivates the modelling of a claim amount with survival analysis methods.
Such a task is usually done by aggregating the losses of an insurance portfolio (the chain
ladder), then the aggregated amounts are modelled with strong structural assumptions.
Non-parametric literature to model such an aggregation is rare, and is even more rare
when tackling the problem at an individual level, which motivated this chapter.

2.1.2 Missing values

Missing data is a pervasive issue in the everyday life of every data analyst. This is a
well-known phenomenon that has a long history in the statistical literature, and many
methods have been proposed to handle missing values, in many statistical settings.
Almost all statistical methods are not designed to handle missing values, and generally
expect a real-valued matrix as input. Hence, many works have been done to perform
an appropriate data imputation prior to the statistical analysis.
This thesis does not present any contribution addressing the missing values issue with
statistical learning. However, missing values clearly are one of the most encountered
incompleteness scheme in practice, hence constitute a natural extension for future
contributions, and a word has to be given about such a phenomenon.

Let X = (X(1), . . . , X(d)) be a random variable taking its values in a d-dimensional
real-valued space X = X (1) ×. . .×X (d), and let D := {xi}n

i=1 be a dataset of realizations
of an iid sequence of random variables X1, . . . , Xn with distribution p(X).
In practice we do not directly observe D but D̃ := {(x̃i, mi)}n

i=1 instead, where
(m1, . . . , mn) are realizations of a sequence of random variables M1, . . . , Mn such that
M ∈ {0, 1}d, and (x̃1, . . . , x̃n) are realizations of a sequence of random variables
X̃1, . . . , X̃n such that X̃i = (X̃i

(1)
, . . . , X̃i

(d)) defined as:

X̃
(j)
i =

⎧⎨⎩ X
(j)
i if M

(j)
i = 1,

∗ otherwise,
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where ∗ is a missing value which is an out-of-support value for X (i). In other words,
M is the random variable representing the mask matrix indicating which components
of X are observed. Note that we always observe M .

The theory behind the study of missing values was first developped by [Rubin, 1976],
who defined three distinct mechanisms of missing values according to the dependency
between M and X. As an example for illustrating the different mechanisms, suppose we
make a census where the objective is to determine the average income of a population,
and for some reason several income values are missing.
If M is independent of X (M ⊥⊥ X), then the missingness mechanism is said to be
Missing Completely At Random (MCAR). This scheme is the strongest assumption we
can make on the missingness. It can be easily reproduced by considering a complete
dataset (i.e. with no missing values) and randomly removing observations without
taking into account the values of X. Such a missingness is usually caused by a random
noise introduced while recording the data. In our example, this corresponds to the
fact that by any chance some records have been lost between the collection and the
analysis.
If M depends on X only through its observed values, then the missingness mechanism
is said to be Missing At Random (MAR). This is the most popular scheme in prac-
tice, and requires an appropriate imputation method which takes into account the
dependencies between X and M . In our example, this corresponds to the fact that
some sub-populations, say the top-managers (assuming we have this information at
our disposal), were less willing to share their income. This means that among top
managers, the missingness scheme is MCAR.
Otherwise if there are inner correlations between the components of M and dependen-
cies between X and M , then the mechanism is said to be Missing Not At Random
(MNAR). In our example, this scheme corresponds to the fact that the missingness is
caused by the values of the income itself. For example, say people who earns less than
€1k/month are less likely share their income than others to the survey.

Strong theoretical and practical results are given in [Rubin, 1976] and [Little and Rubin, 2019]
for estimating the distribution of X in presence of missing values. This is usually done
by considering a parametric structure on the distribution of X and M (which depends
on the assumed missingness mechanism) and estimating its parameters by using an
Expectation-Maximization (EM) algorithm [Dempster et al., 1977]. Such approaches
allow to estimate the distribution of X (based on X̃) and are still widely used in
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practice to perform a statistical analysis in presence of missing values. However, this
requires a strong assumption on the structure of X and M .

As mentioned above, most statistical models are not designed to directly handle
missing values and often require a fully observed iid sequence X1, . . . , Xn ∼ X. There-
fore, it is of high interest to perform an appropriate data imputation prior to the
analysis. Among the many existing imputation methods, the simplest one is to im-
pute the missing entries by the mean of the observed attributes. The latter is highly
criticised in [Little and Rubin, 2019] since it highly distorts the distribution of X, but
paradoxically this is one of the most employed method in practice (except in domains
such as in medical settings or clinical studies, where the methodology used to impute
values is highly controlled).
There exist many other ways to impute missing entries of a given dataset. MissFor-
est [Stekhoven and Bühlmann, 2011] consists of training a Random Forest algorithm
[Breiman, 2001] to predict the missing entries based on their other attributes. The
latter approach is fairly used in practice because it is relatively simple to implement
and can handle mixed types of data to be imputed (discrete and continuous). Note
that the MissForest algorithm can handle MCAR and MAR mechanism.

Deep learning approaches have been proposed to impute data, such as [Vincent et al., 2008]
who use an Auto-Encoder1 (AE) model which takes a noisy input and is trained to
output a denoised output (Denoiser Auto-Encoder, DAE). However, this method is
trained by using a complete dataset of images in which the authors randomly change
the color of some pixels (note that this can be adapted to tabular data by randomly
removing some values of D). This means that such a model i) needs a complete dataset
to be trained, and ii) only consider the MCAR mechanism.

Other methods using Generative Adversarial Networks (GANs) [Goodfellow et al., 2014]
have been proposed. In particular, [Li et al., 2017] uses a GAN framework to denoise
images representing faces. The model is trained by injecting noise in faces and training
it to reconstruct the faces. This model gives excellent results for imputation, however
i) it requires a complete dataset to be trained, and ii) face reconstruction is a very

1An Auto-Encoder (AE) is a model which is trained to output its input. The simplest AE model
consists of training two Multi-Layer Perceptron (MLP) F, G, where F : X → Z encodes the data
to a latent space Z, and G : Z → X decodes back to the original feature space. F and G are joinly
trained to minimize a reconstruction error, and if F and G have no hidden layer, then the model
H(·) := G(F (·)) is an MLP with exactly one hidden layer.
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specific task which can be difficult to generalize on tabular data.
On the other hand, [Yoon et al., 2018a] trains a GAN to impute plausible values for
a dataset which contains missing values. The authors show that their approach out-
performs the usual imputation methods with respect to a specific prediction task for
several real-world datasets. However, such an approach does not give any insight on the
imputation quality in terms of the preservation of the structure of X, and no discussion
is given regarding the missingness mechanism. Hence comparing this method with
MissForest (and other methods) may not be appropriate and relevant.

Multiple Imputation
Independently of the imputation method, [Rubin, 2004] showed that performing a

single imputation on missing values (i.e. exactly one prediction of a missing entry)
can lead to systematically underestimate the variance of the distribution of X, and
proposed to address this issue by performing a multiple imputation on the dataset
instead.
Multiple imputation refers to the fact that instead of predicting only one value for a
missing entry, we rather predict multiple plausible values for that entry, which means
that we generate multiple imputed datasets, then perform a statistical analysis on each
imputed datasets and combine the results.

A widely used method to perform multiple imputation is the Multiple Imputation
by Chained Equation (MICE) approach [van Buuren and Groothuis-Oudshoorn, 2011].
MICE usually consists of assuming a parametric structure on X, then sampling (with
a Gibbs sampler) values along each dimension of X from the other dimensions (which
are iteratively imputed thanks to the updated estimated parameters) and then update
the parameters along with the generated samples.
From the side of the deep learning literature, [Gondara and Wang, 2017] propose an
adaptation of the DAE [Vincent et al., 2008] for multiple imputation. To the best of
our knowledge, no other thorough work have been done on multiple imputation on the
deep learning literature.

2.1.3 Extreme values

Extreme Value Theory (EVT) is a field of probability and statistics which aims at
modelling rare events. Rare events are particularly studied in the insurance industry
since they can lead to large claim amounts. Natural disasters such as the earthquake
and tsunami in Japan that occured in 2011 - which led to a total losses estimation of
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€147 billions - are examples of rare events.

This thesis does not make any contribution on the EVT field nor use EVT results,
however Chapter 5 focuses on the estimation of the conditional distribution of a time
series, which can be heavy tailed, e.g. financial time series. Unlike image processing or
raw audio modelling, a stochastic process takes its values in a non-compact, real-valued
space, which requires an appropriate modelling method. We propose an architecture
to accurately estimate the conditional distribution of a time series, which takes into
account the fact that it may be heavy tailed. EVT gives powerful tools to model the
distribution tails of a random variable, and we introduce the general concepts of rare
events modelling in this subsection.

From the statistical point of view, a rare event is an event of which the probabil-
ity of occuring is low. The difficulties in studying rare events are that:

• most of the observed data is concentrated around the mean of the distribution,

• there is a low amount of observed data which are located on the distribution
tails,

• below min(x1, . . . , xn) and beyond max(x1, . . . , xn), there is no more observation
of the distribution tail, and estimating the distribution tail needs to estimate
unseen values which is a difficult task.

The usual methods for modelling rare events is to assume a particular structure along the
distribution tail and estimate its parameters. The Fisher–Tippett–Gnedenko theorem
stands that for an iid sequence of random variables X1, . . . , Xn and its associated
maximum Mn = max(X1, . . . , Xn), if there exists a sequence of pairs (an, bn) ∈ R∗

+ ×R

such that

lim
n→∞P

(
Mn − bn

an

≤ x

)
= F (x),

then F belongs to the family of Generalized Extreme Value (GEV) distributions with
parameter ξ of which the c.d.f. is of the following form:

F (s; ξ) =
⎧⎨⎩ exp(−(1 + ξx)1/ξ) if ξ �= 0,

exp(− exp(−x)) otherwise.
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The GEV distributions are widely used in practice to model the asymptotic properties
of the distribution tail of a sequence of random variables.
In the first place, works on statistical learning dealing with extreme values mainly fo-
cused on anomaly detection [Denning, 1987, Anderson, 1980, Lunt, 1990, Kumar, 1995]
and the use of modern machine learning to detect intrusions have attracted a lot of
attention [Lane and Brodley, 1997, Shon and Moon, 2007] and many tools have been
developped to address such a task [E. King, 2009]. More generally, works on extreme
values and statistical learning are gathering more and more interest and strong results
(either theoretical or practical) have been established in the last two decades. To
cite a few, [Roos et al., 2006] determined an upper bound (which depends on the
observed dataset) of the difference between the train error and the generalization error,
which is useful when there are unseen extreme values; [Goix et al., 2016] propose an
algorithm based on low-rank models to detect anomalies in a high dimensional dataset;
[Brownlees et al., 2015] study the Empirical Risk Minimization (ERM) when the loss
function is not bounded (and yet is willing to have large values); [Jalalzai et al., 2018]
propose a general framework (with theoretical results) to address a binary classifica-
tion task where the explanatory variables X contain extreme values (in such cases,
traditional approaches usually perform poorly due to the rarity of observations in the
extremes). Deep learning literature on extreme values is still rare, and the few existing
works focus on intrusion detection [Xu et al., 2015, Javaid et al., 2016, Du et al., 2017],
and does not combine the use of deep learning tools with extreme value theory, which
constitutes a natural extension for future contributions.

2.1.4 Cross-Domain Incompleteness

Cross-Domain incompleteness refers to a particular missing values mechanism, usually
of type MNAR, which arises when combining multiple datasets (multiple domains) in a
single statistical study (cross-domain). Assume we have at our disposal an ensemble of
M distinct datasets D1, . . . , DM , each dataset recording values of the same nature (e.g.
distinct censuses about income, datasets from multiple hospital recording the same
disease on patients etc.).
Many statistical methods require a large amount of data to be efficient, therefore it is
of interest to utilize D1, . . . , DM to conduct the same statistical analysis, in order to
leverage the information lying in each dataset.

Combining multiple datasets raises two main issues: feature mismatch and distri-
bution mismatch. Feature mismatch refers to the fact that two distinct datasets Di
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and Dj may not share exactly the same attributes (e.g. Di records the gender and Dj

does not). Distribution mismatch refers to the fact that common attributes for two
distinct datasets may not share the same distribution (e.g. the proportion of male and
female may differ between Di and Dj).

The simplest way to combine multiple datasets of the same nature is to concate-
nate them. However, because of feature mismatch, attributes that are present in Di

but not in Dj will systematically introduce missing values in Dj.
The imputation of such missing values cannot be done with the usual imputation
tools such as MissForest [Stekhoven and Bühlmann, 2011]. Indeed, when training a
Random Forest [Breiman, 2001], it is assumed that the test set (to be imputed) shares
the same distribution as the train set, which is not the case because of the distribution
mismatch.

Chapter 4 focuses on combining multiple datasets to train a prediction model on
each dataset D1, . . . , DM by training an appropriate style transfer model through a
latent space. The prediction task is common for each dataset, and we show that our
method gives better performances than the concatenation benchmark and than the
state-of-the-art model.
Our proposed method can also be employed to perform an imputation in the same
setting, since it takes into account the distribution mismach between each dataset.
However, we only restrict our study to the prediction task, and further extended work
has to be done to study the ability of our approach to preserve the structure of the
distribution of each dataset.

2.2 Statistical Learning

Statistical learning refers to a particular field of statistics which makes an extensive
use of non parametric tools, and gathers many fields such as mathematics, computer
science, pattern recognition and optimization, to cite a few.
It is used to address many problems such as predicting an outcome based on some fea-
tures (attributes), detecting patterns in multivariate distributions, machine translation,
anomaly detection, among many others.

Let X be a random variable taking its values in a p-dimensional space X (typi-
cally Rp) and let Y be an outcome of interest taking its values in Y . According to the
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task, Y can be either discrete (e.g. binary classification) or continuous (e.g. regression
of an income). In statistical learning, we distinguish two main focuses: supervised
learning and unsupervised learning.
There is no formal definition of supervised and unsupervised learning, and methods
from supervised learning can be used to address unsupervised tasks. Unsupervised
learning usually refers to the task of extracting patterns from an observed distribution
of a multivariate random vector X.
Supervised learning refers to the task of predicting an outcome Y based on an observed
ensemble of explanatory variables (attributes) X. This is done by seeking a function
f : X → Y for predicting Y given the values of X, assuming a certain model for Y .
For example, the following model estimates the conditional expectation of Y given X:

Y = f(X) + ε, (2.2.1)

where f is a function belonging to a certain class of functions F , and ε is a noise term,
independent of X, such that E[ε] = 0, typically a white noise (which we define in
Section 2.4).

The estimation of f is usually done by minimizing the expectation of a certain loss
function L conditionally on the observed covariates X, which is called the risk in
the statistical learning literature. Hence, the estimation of f can be defined by the
following optimization problem:

f ∗ := arg min
f∈F

E[L(Y, f(X))], (2.2.2)

where f ∗ is the theoretical optimum function with respect to the class F , which
is called the oracle. In practice, we only observe a finite number of observations
(x1, y1), . . . , (xn, yn) of the couple (X, Y ), and we optimize the empirical version of the
risk of Equation 2.2.2:

f̂ := arg min
f∈F

1
n

n∑
i=1

L(yi, f(xi)). (2.2.3)

The latter optimization problem is called the Empirical Risk Minimization (ERM),
and forms the base of the statistical learning theory.
In practice, we usually observe a dataset D := {(xi, yi)}n

i=1 on which we estimate the pre-
dictor function f based on Equation 2.2.3, and a dataset Dnew := {xi}m

i=1 on which the
outcome has to be predicted. The predicted dataset is written D̂new = {(xi, f̂(xi))}m

i=1.
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The performance of a prediction model is usually measured by a metric criterion
denoted M. In practice, the data analyst will measure the performance of f by
splitting D into a train dataset Dtr which is used to estimate the predictor function f , a
validation dataset Dval which is used to tune the hyper-parameters of f (e.g. depth of a
tree, learning rate, etc.) and a test dataset Dtest on which we measure the performance
of f̂ by using M, such that:

D = Dtr 	 Dval 	 Dtest, (2.2.4)

where 	 represents the disjoint union. For a predicted test dataset D̂test = {(xi, f̂(xi))}ntest
i=1

and a metric M, the performance of f is measured by M({yi}ntest
i=1 , {f(xi)}ntest

i=1 ).

2.2.1 Linear Model

One of the oldest - and most popular - statistical learning model is the linear model.
It has a long history in the statistical and econometric literature and has been largely
studied. The class of functions F for such a model is the class of all linear functions of
X, i.e.:

F = {X ′β; β ∈ Rp} , (2.2.5)

where X ′ = (X1, . . . , Xp) is the input vector and β is the vector of parameters to be
optimized. Hence, the underlying model of Equation 2.2.1 can then be written as:

Y = X ′β + ε, (2.2.6)

where ε is a noise term such that E[ε] = 0 and V ar(ε) = σ2. The latter equation
assumes the homoscedasticity of the model (i.e. the variance of the noise term is the
same for each observation), but weaker assumptions are studied in the econometric
literature.

The most widely used and convenient loss function (not only for the linear model) is
the squared error loss, which is defined for a prediction Ŷ and a target outcome Y as
the quadratical error:

L(Y, Ŷ ) := (Y − Ŷ )2. (2.2.7)

Hence, the optimization problem of Equation 2.2.2 is then written:
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f ∗ = arg min
f

E[(Y − f(X))2], (2.2.8)

and its empirical version for the linear model is therefore written as the following
optimization problem:

β̂ = arg min
β

1
n

∑
i

(yi − x′
iβ)2, (2.2.9)

where x′
i = (x1

i , . . . , xp
i ). The solution of Equation 2.2.9 is given by the Ordinary Least

Squares (OLS) estimator:

βOLS = (X′X)−1X′y, (2.2.10)

where X is an n × p matrix representing the input dataset, and y is an outcome vector
of size n to be predicted. Note that βOLS only exists if X′X is non-singular.
The linear model can be written as a particular case of the empirical risk minimization
of statistical learning, where the loss function L is the squared error loss, and the class
of functions F is the class of all linear functions of X.

The choice of the loss function L is primordial when conducting a statistical learning
analysis. Indeed, when L is the squared error, then the solution of Equation 2.2.2 is
the conditional expectation:

arg min
f

E[(Y − f(X))2] = E[Y |X], (2.2.11)

which means that

f ∗(x) = E[Y |X = x]. (2.2.12)

In other words, the best predictor of Y at any point X = x - with respect to the
average squared error (L2 loss) - is the conditional expectation. On the other hand,
when L(Y, f(X)) = |Y − f(X)| (L1 loss), then the solution of Equation 2.2.2 is the
median of Y given X. Hence, the choice of an appropriate loss function is of high
importance according to the task.
Quantile regression is a method used to estimate a specific point in a distribution. It is
performed by optimizing the quantile loss function [Koenker and Hallock, 2001] which
is defined as:
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ρτ (u) := u(τ − 1{u≤0}), (2.2.13)

where τ ∈ [0, 1] is a target quantile and u is an estimation error which is the difference
between the observation and the estimated quantile. Hence, by using the quantile loss
function, it is possible to estimate the quantile function for multiple values of τ by
training the model with the appropriate loss each time. However, the latter method
needs to train a model for each quantile τ , which is computationally expensive. A more
effective way is to estimate the whole quantile function of X, F −1

X (τ), with a single
model f : [0, 1] → X , which takes as argument a quantile τ and maps it to F −1

X (τ). In
practice, this is done by generating a uniform distribution U ∼ U([0, 1]) and solving
the following problem:

arg min
f

E[ρτ (X − f(U))]. (2.2.14)

In Chapter 4, we perform a domain transfer between several multivariate vectors. We
do so by training a style transfer model which optimizes a sum of two distinct losses,
each corresponding to a constraint we give to our model. In Chapter 5, we train a
neural network to estimate the conditional distribution of a stochastic process. We do
so by estimating the conditional quantile function of the time series with an appropriate
loss that we detail in the paper.

One other parameter of high importance is the choice of the class of functions F .
Indeed, the choice of a class function is determined by the algorithm used to perform
the statistical analysis (e.g. linear model, gradient tree boosting, neural networks, etc.),
each having a different capacity.
The capacity of a model refers to its ability to learn complex patterns in the training
data, and is quantified by the Vapnik-Chervonenkis (VC) dimension [Vapnik, 1995].
Informally, the VC dimension is defined as the largest set of points that a binary
classifier can shatter (i.e. find a perfect split of the data). For example, in dimension
d = 2, a linear classifier can always shatter 3 points no matter how the positive and
negative labels are distributed, but cannot always shatter 4 points. This means that
the VC dimension of such a classifier is at least 3 and strictly less than 4, which means
that it is exactly 3.

The VC dimension constitutes a central part of the statistical learning theory de-
velopped by Vapnik and Chervonenkis. The most important results in statistical
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learning theory show that the discrepancy between the training error and the gener-
alization error (i.e. test error) is upper-bounded by a quantity that grows along the
model’s capacity, but decreases as the number of observations grows.
In practice, it is a difficult task to estimate the VC dimension of a model, particularly for
deep learning models where the type of architecture can sharply alter the VC dimension.

As the capacity of a statistical learning model grows, the variety of learnable functions
gets wider and therefore the training error diminishes. We expect from a statistical
model to i) have a low training error in order to estimate complex patterns in the
dataset, and ii) have a small generalization error, in order to preserve the performances
observed from the train to new unobserved values (i.e. Dtest). The two latter points
respectively refer to underfitting and overfitting. Figure 2.2 illustrates the underfitting
and overfitting phenomena.

Fig. 2.2 Example of overfitting and underfitting. The left graph uses a linear model (i.e.
low capacity) to fit the data, which is not appropriate since the underlying phenomenon
is not linear. The right graph uses a model with too much capacity, and therefore will
fail to generalize.

The whole stake of modelling with statistical learning tools is to find the optimal
capacity of a model. This can be done by measuring the generalization error on a
split of the training dataset as in Equation 2.2.4. A model with a too low capacity
will struggle fitting the data, hence leading to a low variance but a high bias on the
training set. On the other hand, a model with a too high capacity will learn "by heart"
some patterns in Dtrain which will not generalize well in Dtest, leading to a low bias
in the train set but a high variance. Figure 2.3 depicts the bias and variance tradeoff
according to the model capacity.
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Fig. 2.3 Illustration of the bias and variance tradeoff according to the model capacity.
A model with too low capacity will struggle fitting the data, hence inducing a low
variance but a large bias. On the contrary, a model with too high capacity will learn
signal that is basically noise and will not generalize, inducing a low bias in the train
set but a large variance.

2.2.2 Bagging and Boosting

Bagging and boosting are two distinct methods for performing supervised learning,
and are one of the most powerful and most widely used methods in practice.
Bootstrap aggregation (bagging) computes multiple prediction models on bootstraped
replicas of a dataset D = {(xi, yi)}n

i=1. More formally, the model to estimate the
prediction function f is defined by the following formula:

f(x) = 1
B

B∑
b=1

fb(x), (2.2.15)

where B ∈ N∗ and fb are prediction functions computed on b distinct bootstraped
replicas D1, . . . , Db of D.
One of the most powerful and widely used version of the bagging method is the Ran-
dom Forest algorithm [Breiman, 2001], which uses a classification and regression tree
(CART) [Breiman et al., 1984] as the prediction model fb ∀b.

A regression tree consists of computing a partition of the input space X such that each
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region has a distinct predictive power for the output Y . In other words, a classification
tree f is defined as:

f(x) =
M∑

m=1
cm1x∈Rm , (2.2.16)

where M is the number of distinct regions, Rm ⊂ X is the m-th region, and cm is a
constant value for region Rm.
Therefore, a tree is an estimated function constant by parts, where each constant cm

has a strong predictive power for Y . The tree is build by iteratively finding optimal
splits of X to compute the regions R1, . . . , Rm. Regions are defined by a variable j on
which the split is done, and a threshold s from which X is splitted. For example, R1

and R2 are defined as follow:

R1(j, s) = {X |Xj ≤ s}
R2(j, s) = {X |Xj > s}.

The optimal splitting consists of computing j and s which are the solutions of the
following minimization problem:

arg min
j,s

⎡⎣min
c1

∑
xi∈R1(j,s)

L(yi, c1) + min
c2

∑
xi∈R2(j,s)

L(yi, c2)
⎤⎦ , (2.2.17)

where L is an appropriate loss (objective) according to the prediction task. For example,
if L is the quadratic loss, then Equation 2.2.17 can be written as:

arg min
j,s

⎡⎣min
c1

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2

∑
xi∈R2(j,s)

(yi − c2)2

⎤⎦ , (2.2.18)

and therefore the constants c1, c2 which solve the inner minimization problem are the
average of yi among observations belonging to R1 and R2 respectively, i.e.:

cm = 1
card({xi ∈ Rm})

∑
xi∈Rm

yi. (2.2.19)

The minimization problem of Equation 2.2.17 is also called in the literature the impurity
criterion.
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The tree is iteratively built by computing optimal regions R1, . . . , Rm until reach-
ing a stopping criterion which can be either a maximum number M of regions or a
minimal number of observations in each region. In practice, the tree is grown until it
reaches its stopping criterion, then it is pruned, i.e. some regions are gathered to satisfy
a complexity criterion. More details about the growing procedure for classification and
regression trees can be found in [Hastie et al., 2001].

Boosting refers to a specific family of models which consists of training en ensemble of
M weak models, each model being trained from the errors of the previous models.
The predictor f is written as:

f(x) =
M∑

m=1
αmfm(x), (2.2.20)

where α1, . . . , αm are weights computed by the boosting algorithm, and reflect the
respective contributions of each fm for the prediction task. The boosting consists of
iteratively building the weak predictors fm, and giving weights w1, . . . , wn to the obser-
vations (x1, y1), . . . , (xn, yn), according to their misclassification distance (computed by
the loss). For example, at the first step we set w1 = w2 = . . . = wn = 1/n, then train f1

on D, compute the loss for each observation and reweight each observation according
to the error of f1, in order to give more importance to misclassified observations for f2.

Boosting is one of the most popular and powerful approach to perform supervised
learning, as well on classification tasks as on regression tasks. The first version of this
algorithm was first proposed by [Freund and Schapire, 1997] and the most popular ver-
sion today are the XGBoost [Chen and Guestrin, 2016] and the LightGBM algorithm
[Ke et al., 2017]. Such methods use the regression tree with low depth as the weak
predictor function fm.
Throughout this document, we focus on modelling complex phenomena by using statisti-
cal learning tools. In Chapter 3, we utilize an ExtraTree algorithm [Geurts et al., 2006],
which is a variant of the Random Forest, to perform a regression in the case where the
target variable Y is highly censored.

2.3 Neural Nets

Chapter 4 proposes a model for performing optimal transport between multiple multi-
variate domains while preserving the predictive signal of each domain, and Chapter
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5 focuses on estimating the conditional distribution of a stochastic process. Both
chapters use deep learning models, and this section aims at introducing the technical
elements used throughout those chapters.

Neural networks are a class of statistical learning methods, used to address both super-
vised and unsupervised tasks, which constitute a keystone in modern machine learning
modelling. Such models are not new and some have a long history in many distinct fields
such as statistics, computer science and signal theory [Rosenblatt, 1958, Cybenko, 1989,
Rumelhart et al., 1985, Rumelhart et al., 1988, Hinton et al., 2006, Bengio et al., 2007].
The popularity of neural networks skyrocketed in the last two decades, with the arrival
of new methods performing faster optimization, coupled with the development of
hardware tools allowing to train more complex models.

One of the most widely used families of architecture is the multi-layer perceptron
(MLP), also called feedforward neural network because the signal is propagated from an
input x to intermediate representations until reaching the output y, with no backward
connections. The signal is propagated through different units which can be of different
nature (e.g. convolutions) according to the task to be addressed.

Let X be a random variable taking its values in a d-dimensional real-valued space
denoted by X and Y be an output target variable taking its values in Y which can be
either discrete or continuous. Neural networks are designed to satisfy the optimization
problem of statistical learning presented in Equation 2.2.2, except that their nature
allows to estimate a function f of high complexity. Therefore, the class of functions F
belonging to neural networks is the class of all differentiable functions.

An MLP [Cybenko, 1989] with L layers is a function f : X → Y such that:

f(x) = f1 ◦ f2 ◦ . . . ◦ fL(x), (2.3.1)

where ◦ is the composition operator (i.e. f ◦ g(x) = f(g(x))), and each layer fl :
Rhi−1 → Rhi (l = 1, . . . , L) outputs a combination of its inputs:

(fl(x))i := w0 +
d∑

j=1
wjxj i ∈ {1, . . . hi}, (2.3.2)

where w1, . . . wd are parameters which are computed to satisfy the optimization problem
of Equation 2.2.2, and w0 is a bias term (also computed to satisfy the minimization
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problem). Note that the intermediate dimensions hi of each layer are hyperparameters of
an MLP, except for the input an output layers for which the dimensions are respectively
d and dim(Y). When there is one or more hidden layer in an MLP, then the number
of vector parameters from Equation 2.3.2 increases and we rather consider the weight
matrix to group the model parameters instead of separate vectors. In practice, we
usually pass the output of a layer through an activation function in order to detect
non-linearities in the intermediate representations of X. The most popular activation
functions are the sigmoid function

σ(x) = 1
1 + e−x

, (2.3.3)

the hyperbolic tangeant function

tanh(x) = e2x − 1
e2x + 1 , (2.3.4)

the Rectified Linear Unit (ReLU) ReLU(x) = max(x, 0), the latter being very popular
in practice, and the softmax function for a multidimensional output x = (x1, . . . , xK)

σ(x)i = exi∑K
j=1 exj

i = 1, . . . , K. (2.3.5)

The softmax function is often used when Y is discrete since it allows to normalize the
output such that it can be interpreted as a probability vector.

2.3.0.1 Optimization of a neural network

As for other statistical learning models, a neural network is trained to satisfy the
optimization problem of Equation 2.2.2, where the function class F is the class of all
differentiable functions of X . The optimization is done by changing the values of the
weights defined in Equation 2.3.2, and we denote by θ the parameter of the network
containing its weights.

The optimization of a network is usually done by backpropagation [Rumelhart et al., 1985,
Rumelhart et al., 1988], which consists of computing the gradient of f with respect to
θ by iteratively computing its differentiate functions with the chain rule. The use of
the chain rule is possible since a network can be written as a composition of multiple
functions, i.e. its layers. The optimization of the parameters θ of the network is
iteratively done by an appropriate optimization algorithm. One popular optimization
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strategy is the Stochastic Gradient Descent (SGD) which is defined by the following
recursion:

θt+1 = θt − λ∇θt

1
n

n∑
i=1

L(yi, fθt(xi)), (2.3.6)

where λ is a fixed learning rate, L is an appropriate loss function and θt are the
weights at iteration t. Therefore, we need to compute the gradient in order to update
the parameters θt. Although computing an analytical expression for the gradient in
Equation 2.3.6 is relatively straightforward, evaluating it can be numerically expensive,
which is the reason why we prefer to compute it by backpropagation.

The backpropagation algorithm lets the information from the loss flow backward
through the network and compute the gradient by using the chain rule. Let h be the
composition of two functions f, g such that h(x) = f(g(x)) and let y = g(x), z = f(y).
The derivative of the function h is h′(x) = f ′(g(x))g′(x), which can be rewritten by
using y and z with the Leibniz’s notation:

dz

dx
= dz

dy
· dy

dx
. (2.3.7)

The above expression can be generalized in the case when f : Rn → R and g : Rm → Rn:

∂z

∂xi

=
∑

j

∂z

∂yj

· ∂yj

∂xi

, (2.3.8)

which can be written with matrix notations by using the Jacobian matrix Jg(x) of g in
x and the gradient of z in y:

∇xz = Jg(x)′∇yz. (2.3.9)

The expression in the previous equation shows that computing the gradient of h is
equivalent to computing the Jacobian matrix of g, then multiplying it by the gradient
of h in y. Hence, this rule can also be applied when h is a composition of more than
two functions, which is very effective since we compute the derivative of each function
only once, the final gradient being a product.
Note that the expression of Equation 2.3.9 can aslo be generalized when f ∈ Rd

instead of R, and more generally to tensors of any dimension, but this requires complex
notations which are not necessary to conceptually understand the chain rule and the
backpropagation algorithm.
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The SGD algorithm defined in Equation 2.3.6 is popular, but we often use an alternative
version of this algorithm since the latter is quite slow in practice. [Sutskever et al., 2013]
propose to incorporate the Nesterov’s accelerated gradient method [Nesterov, 1983] as
an alternative of the SGD, which takes into account the values of previous gradients in
order to compute a velocity factor to accelerate the optimization process.
Also note that the learning rate is a crucial parameter in the optimization algorithm.
In Equation 2.3.6, we set λ to be constant over time, but in practice it is better
to consider a decreasing learning rate λt. Optimization strategies which adapts the
learning rate have also been proposed. Among them, the most popular by far is the
Adam algorithm [Kingma and Ba, 2014]. The RMSProp [Hinton, 2012] is also very
popular, particularly when dealing with sequences and recurrent neural networks.

2.3.0.2 Recurrent neural networks

Recurrent neural networks (RNN) are a family of neural networks architectures which
are designed to work with sequences. Sequences are observations for which the order
has a significant importance, e.g. observations recorded over time or text data.
Such networks have many applications, mainly in text modelling where text data is
considered as a discrete high dimensional random variable. RNNs have received a lot
of attention from the deep learning community and have a wide range of applications
to text data such as language modelling [Mikolov et al., 2010], speech recognition
[Graves et al., 2013] or text generation [Graves, 2013], to cite a few. Such works
on text modelling emerged with the recent advances in word embedding methods
such as Word2Vec [Mikolov et al., 2013], GloVe [Pennington et al., 2014] and FastText
[Bojanowski et al., 2016, Joulin et al., 2016].

The particularity of RNNs is that each hidden unit takes as input i) the output
of the previous cell and ii) an additional external input, corresponding to the next
element in the input sequence. Each input and hidden state are given weights in order
to modulate the importance of the past and current values of the sequence.
The standard framework of a recurrent neural network is depicted in Figure 2.4. Weights
are associated to internal representations and to the input to dynamically moderate
the signal according to the importance of past observations. A weight matrix U is
associated to the input x, W is associated to the previous hidden state, and V is
associated to the intermediate output of each cell. Hence, we can define the updating
process with the following equations:
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⎧⎪⎪⎨⎪⎪⎩
i(t) = θ1 + Wh(t−1) + Ux(t),

h(t) = σ(i(t)),
o(t) = θ2 + V h(t),

(2.3.10)

where i is the input state at time t, h(t) is the hidden state at time t and o(t) is the
output state at time t, σ is an appropriate activation function (e.g. tanh), and θ1, θ2

are biases, which are jointly optimized with U, V and W .

Fig. 2.4 Scheme of the standard framework of a Recurrent Neural Network (RNN).
Each hidden unit takes as input i) the current observation x(t) of the sequence and ii)
the previous hidden state h(t−1), and produce an output o(t) and an updated hidden
state h(t).

2.3.0.3 Long short-term memory

Long short-term memory (LSTM) [Hochreiter and Schmidhuber, 1997] is a family of
RNN models which introduce a self-loop inside each unit and pass the signal through a
gating mechanism which allows to dynamically change the time scale to use for past
observations. This cannot be done natively with the standard scheme of an RNN.
The LSTM update procedure is defined by the following equations:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (t) = σ(Wfx(t) + Ufh(t−1) + bf ),
i(t) = σ(Wix

(t) + Uih
(t−1) + bi),

o(t) = σ(Wox
(t) + Uoh

(t−1) + bo),
c(t) = f (t) � c(t−1) + it � tanh(Wcx

(t) + Uch
(t−1) + bc),

h(t) = o(t) � σ(c(t)),

(2.3.11)

where � refers to the Hadamard (element-wise) product, i(t) (resp. o(t)) is the input
(resp. output) state at time t; h(t), f (t) and c(t) are respectively the hidden state, the
forget gate and the cell state at time t. The forget gate f takes the same input as
i except that it associates distinct weight matrices, and f aims at modulating the
importance of previous cell states c in the updating of c. The update of the cell state
is performed by a gating mechanism (i.e. associating distinct weight matrices to the
inputs, and passing the signal through two distinct activation functions and aggregating
along an element-wise product) associated to the forget gate. As for the standard RNN,
the hidden state is updated by passing the input state through an activation function,
except that it is multiplied element-wise by the cell-state (activated by an appropriate
activation function). The components of an LSTM cell are depicted in Figure 2.5.

Fig. 2.5 Illustration of an LSTM cell. The inputs x(t) and h(t−1) are associated to four
distinct weights matrices (orange blocks) with two distinct activation functions for the
gating mechanism. The cell state is updated with the inputs and is then combined
with the results of the gating in order to modulate the time scale to use for previous
cell states.
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The LSTM model was one of the first groundbreaking work for RNNs, and attracted
many attention from the deep learning community. A popular variant of the LSTM
is the Gated Recurrent Unit (GRU) [Cho et al., 2014] which uses a single gating unit
to control both the forgetting factor and the hidden state. Although the state-of-the-
art models on text analysis use more complex architecture (e.g. the BERT model
[Devlin et al., 2018]), the LSTM and GRU models are still very popular and widely
used in practice.

In this document, we do not make any contribution on the RNN field. However,
Chapter 5 focuses on the estimation of the conditional distribution of a time series.
A time series is a real-valued sequence vector of observations recorded over time and
needs an appropriate modelling, hence the need of auto-regressive models. RNNs
are natively auto-regressive, hence find natural applications in time series modelling
[Connor et al., 1994, Giles et al., 2001, Esteban et al., 2017]. We propose in Chapter
5 an auto-regressive deep learning model which uses convolutions (CNN) to accurately
estimate the conditional distribution of a time series, and compare our approach with
the state-of-the-art models, which are RNN based.

2.3.0.4 Convolutional neural networks

Convolutional neural networks (CNN) are a family of neural networks which aims at
modelling spatial dependencies of the observations through a convolutional operator.
A convolutional layer consists of sliding a window (with associated weights to be
optimized) through the data and perform a convolution operation inside the window.
This allows to compute intermediate representations which can be aggregated by a
pooling layer, in order to lower the dimension and detect strong patterns in the data.
The idea of convolutional layers was first introduced by [LeCun et al., 1989] and con-
volutions are still widely used and very effective in practice.

For two real-valued functions f and g, the convolution operator is defined by the
following integral:

(f ∗ g)(t) :=
∫

f(x)g(x − t)dx =
∫

f(t − x)g(x)dx. (2.3.12)

In practice, f corresponds to the input data, and g refers to a kernel which corresponds
to a weight matrix. The output of the convolution is referred in the literature as the
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feature map. To compute the convolutional operator, we usually use the empirical
version of Equation 2.3.12 where the support of x is discretized:

(f ∗ g)(t) :=
+∞∑

x=−∞
f(x)g(t − x) =

+∞∑
x=−∞

f(t − x)g(x). (2.3.13)

In practice, we rather use the second expression of Equation 2.3.13 since it is more
convenient to implement. Moreover, since the kernel size is fixed and usually lower
than the dimension of the input x, the function g is then compactly supported, and the
infinite sum in the previous equation only sums the elements inside the sliding kernel.
The expression of the convolution operator in Equation 2.3.13 is defined for 1D data.
However, one may have to work with higher dimensional data, hence the definition of
the convolution operator can be extended to 2D data (e.g. images) by the following
formula:

(f ∗ g)(i, j) =
∑
m

∑
n

f(i − m, j − n)g(m, n). (2.3.14)

Most neural networks libraries such as TensorFlow2 and PyTorch3 implement a slightly
different version of the convolution operator, the cross-correlation operator, which is
defined for 1D data as follows:

(f ∗ g)(t) =
∑

x

f(t + x)g(x). (2.3.15)

Figure 2.6 illustrates the convolutional operation on 2D data for a sliding kernel
g : R2 → R2, also called a 2 × 2 kernel in the deep learning literature. Once the feature
map is computed, the signal is then passed through a non linear activation function
and then passed through a pooling layer, which aims at reducing the dimension by
aggregating each element in the feature map.

CNNs are a powerful tool to detect spatial correlations through the data, and are
widely used in practice in most state-of-the-art architectures. Note that the weights of
the kernels are shared thorough the data, which means that performing a convolution
involve having less parameters to optimize, which results in faster training phases.
In Chapter 5, we propose an architecture which makes use of convolutional layers
(actually masked convolutional layers), in order to train a neural network to estimate the
conditional distribution of a time series. We show that performing masked convolutions

2https://www.tensorflow.org/
3https://pytorch.org/



2.3 Neural Nets 33

Fig. 2.6 Illustration of a 2 × 2 convolutional operation on 2D data. The kernel
g : R2 → R2 slides through the data and compute the cross-correlation between the
data and the kernel, producing a new output at each step, called the feature map.
Source image: [Goodfellow et al., 2016].

instead of training an RNN results in i) a faster convergence and ii) a more accurate
estimation of the conditional distribution of the stochastic process. The proposed
model belongs to a particular family of neural networks: the deep generative models,
which we describe hereafter.

2.3.1 Generative modelling

Deep generative models are a family of neural networks which focus on the estima-
tion of the distribution PX of a multivariate random variable X without any prior
assumption on the structure of PX . Such models allow to generate new samples which
have the same distribution as X, and are used in many tasks such as image genera-
tion [Radford et al., 2015, van den Oord et al., 2016b, Pu et al., 2016], text generation
[Yu et al., 2017, Guo et al., 2017] or raw audio generation [van den Oord et al., 2016a].
Such models are also used to detect inner components of PX , and allow to generate sam-
ples along specific attributes of the distribution, e.g. fader networks [Lample et al., 2017]
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and multiview models [Chen and Denoyer, 2017].

There exist multiple families of generative networks, such as the Variational Auto-
Encoders (VAE) [Kingma and Welling, 2013], Generative Adversarial Networks (GAN)
[Goodfellow et al., 2014], Masked Autoencoders (MADE) [Germain et al., 2015] and
PixelCNN [Oord et al., 2016, van den Oord et al., 2016b], among others.

VAEs are Auto-Encoders (AE) with an additional constraint on the latent repre-
sentation of the data. An Auto-Encoder is a model which is trained to output its
input, and is usually defined as a function h which is a composition of two functions
f and g (h(x) = g(f(x))). For a random variable X which takes its values in X ,
f : X → Z encodes the data into a latent space Z, and g : Z → X decodes the
latent representation back to the original feature space. f and g are jointly trained to
minimize a loss function between X and X̂ := h(X) = g(f(X)). VAEs set an additional
loss on the latent representation f(X), which is a Kullback-Leibler (KL) divergence
[Kullback and Leibler, 1951] between f(X) and a Gaussian distribution Z ∼ N (μ, σ2).
In other words, VAEs constrain the latent representation to be Gaussian, which allows
to generate new samples by generating (z1, . . . , zn) ∼ N (μ, σ2) and getting new samples
of X with (g(z1), . . . , g(zn)). Figure 2.7 depicts the block diagram of a VAE.
Note that in practice, we allow μ and σ to be multi-dimensional, which allows the
model to detect mixtures in the distribution of X. VAEs are popular and easy to
implement (a few lines of code) and gives interesting results. However, the constraint
on the latent representation to be Gaussian indirectly forces the model to aggregate
latent values, often resulting in blurry images when tackling images.

MADE are a family of feedforward networks, usually a Multi-Layer Perceptron (MLP)
for which some weights from the weight matrix are forced to be zero. Zeroing such
weights constrains the model to utilize only a part of the input dimensions, in order to
output an estimate of the conditional distributions of all dimensions.
For a multivariate random variable X ∈ Rd, the distribution p(X) of X can be expressed
by the product of its conditional univariate distributions with Bayesian arguments, i.e.:

p(X) =
∏
j

p(Xj|Xj−1, Xj−2, . . . , X1). (2.3.16)

The MADE model is an MLP trained to output its input (as for the Auto-Encoder)
with a masked weight matrix. The choice of the mask is crucial and can be built
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Fig. 2.7 Block diagram of a Variational Auto-Encoder. The model is trained to output
its input via a composition of an encoder and a decoder and is given an additional
constraint on its latent representation to be Gaussian distributed. To generate new
samples, we generate Gaussian observations and decode it via the decoder to the
original feature space and get the new image.

automatically. More details about this model can be found in [Germain et al., 2015].
Figure 2.8 illustrates the architecture of the MADE.
Generative Adversarial Networks (GAN) [Goodfellow et al., 2014] are a family of
models which consist of training two neural networks: a generator G : Z → X which
takes a random noise as input (usually Gaussian) and aims at generating samples
with the same distribution as X, and a discriminator D : X → [0, 1] which aims at
predicting if a sample has the same distribution as X or not. Thus, G aims at inducing
D in error while D is trained to distinguish real samples from generated samples.
Therefore, G and D are adversarial and the loss of both models is defined by the
following minimax problem:

arg min
G

[
sup

D
[EX [log(D(X))] + EZ [log(1 − D(G(Z)))]]

]
. (2.3.17)

Hence, the GAN framework is a two-agent zero-sum problem, the whole stake being to
find a Nash equilibrium between the losses of G and D. Once the losses are balanced,
G generates samples realistic enough so that D cannot decide whether the samples
have the same distribution as X or not. Note that G can map any random noise
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Fig. 2.8 Illustration of the MADE model. The model is an MLP which is trained
to output its input. The associated weights matrix is masked in order to constrain
the model to utilize a part of the input dimensions and to be autoregressive in its
dimensions. Source image: [Germain et al., 2015]

independently of its initial distribution.
This method is a direct application of the optimal transport theory [Villani, 2009,
Peyré et al., 2019] since the generator can transport a distribution to another distribu-
tion. Note that the VAE is also a direct application of optimal transport theory, but
not the MADE, nor the PixelCNN of which we give details hereafter.

Finding an equilibrium in the losses of G and D is challenging as instabilities and
issues come up in the training phase [Salimans et al., 2016]. As an example of such
issues, we can cite the non-convergence of the minimax problem of Equation 2.3.17
or the mode collapse problem which refers to the fact that the generator only maps
the random noise to one of the modes of the target distribution. An example of mode
collapse in image processing is that G always generates one same image drawn from
X (the image being real, D is then not able to distinguish if it is real or fake). This
issue can be overcomed by giving D additional information about the sample to be
predicted, such as inner similarities, which constrains G to generate diverse samples
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(minibatch discrimination).
The issue of non-convergence have also been addressed with the Wasserstein GANs
(WGAN) [Arjovsky et al., 2017] which consists of setting D to be real-supported, i.e.
D : X → R. This is done by removing the activation function of the last layer (usually
a sigmoid) of D, and adding to the loss the norm of the gradient of D, which naturally
contrains D to be Lipschitz and therefore ensures a better stability in the gradient
computation.

Despite the troubles that the data analyst may encounter while training a GAN,
this model is very popular in practice and has enabled most of the state-of-the-art
results in many generative problems such as image processing [Radford et al., 2015,
Isola et al., 2017, Ledig et al., 2017], text generation [Yu et al., 2017, Guo et al., 2017],
image altering [Lample et al., 2017, Chen and Denoyer, 2017], domain transfer
[Zhu et al., 2017a, Kim et al., 2017, Choi et al., 2018, Yoon et al., 2018b] or time se-
ries generation [Esteban et al., 2017, Zhang et al., 2018], to cite a few.

PixelCNN are a family of autoregressive neural networks which aim at estimating the
conditional distribution of a multivariate random vector X. As for the MADE model,
the PixelCNN utilizes the relation from Equation 2.3.16. The PixelCNN was originally
proposed by [Oord et al., 2016] and decomposes the input shape to be vectorial. For
example, an n×n image is decomposed to be an n2 vector by concatenating all its rows
into a single vector. Then, the model is trained to predict each pixel conditionally to
the previous pixels. In the original paper, the authors used RNNs as the auto-regressive
model (RNNs are natively autoregressive), however due to the long training time of
RNNs, the authors later proposed to use CNNs with masked convolutions instead of
RNNs.

Masked convolutions are defined by zeroing the weights associated to the pixels
corresponding to future (unseen) pixels, and aim at making the model autoregressive.
Figure 2.9 illustrates the masked convolution on 1D data (time series). The generation
procedure for the PixelCNN is done iteratively by predicting the current pixel and
feeding it back as input to the model to predict the next pixel. Figure 2.10 shows the
iterative generation procedure for the PixelCNN.

In practice, PixelCNNs are quite popular, but not widely used because the generation
procedure has to be iterative (generate values pixel by pixel) and takes a huge amount



38 Background

Fig. 2.9 Illustration of a masked convolution on 1D data. The weights associated to
future values are forced to be zero so that the model is autoregressive.

of time when generating a large number of observations.
In Chapter 5 we propose a particular version of the PixelCNN which aims at estimating
the conditional quantile function for a time series. PixelCNNs are usually performed on
raw audio or on images, both having a discrete, low dimensional target, which is not the
case for time series. We show that such an approach outperforms the state-of-the-art
model which is a GAN model with an RNN network for G and D.

2.4 Time Series

Time series analysis refers to the study of a sequence vector of which observations
are recorded over time. Examples of such vectors are financial time series (e.g. stock
market), electricity consumption, electroencephalogram, among others.
Statistical analysis of time series has a long history in the econometric field, and
strong modelling results have been established to address multiple problems related to
time series such as analysis of the distribution, prediction, outlier detection, to cite a few.

A time series is a realization of a family of random variables (Xt)t∈Z, also called
a stochastic process. A stochastic process (Xt)t∈Z is said to be strictly stationary if
the distribution of (Xt1 , . . . , Xtn) is equal to the distribution of (Xt1+h, . . . , Xtn+h) ∀n,
∀h. In other words, a stochastic process is strictly stationary if all its sub-vectors are
equidistributed, i.e. the distribution of (Xt)t∈Z is time-invariant. In practice, besides
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Fig. 2.10 Illustration of the generation procedure for PixelCNN. An n × n image is
reashaped to an n2 vector, and each predicted pixel is fed back as input for predicting
the next pixel.

being a strong assumption, verifying the strict stationarity of a stochastic process can
be difficult since it needs to estimate the distribution of (Xt)t∈Z.

For a stochastic process (Xt)t∈Z of mean μt := E[Xt], we say that (Xt)t∈Z is weakly
stationary if: ⎧⎨⎩ μt = μt+h ∀t, ∀h,

CXX(t, s) = CXX(t + h, s + h) ∀t, s ∀h,
(2.4.1)

where CXX(t, s) = cov(Xt, Xs) = E[(Xt − μt)(Xs − μs)] is the autocovariance function
(ACF). Hence, (Xt)t∈Z is weakly stationary if its first moment and its ACF are time-
invariant. In practice, it is more convenient to assume and verify the weak stationarity
than the strict stationarity.

Structural models for time series usually assume a parametric structure on the stochas-
tic process. Such a structure allows one to generate new samples of (Xt)t∈Z, as well as
predicting future values of the time series. The core structure of time series modelling is
to consider an auto-regressive model, i.e. a model where Xt depends on (Xt−1, Xt−2, ...)
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with a noise term, and to assume a structure for the noise term.
The most convenient and widely used noise term in practice is the strong white noise,
which is a series of iid random variables (εt)t∈Z with the following characteristics:⎧⎨⎩ E[εt] = 0,

V ar(εt) = σ2 < ∞.
(2.4.2)

Another popular noise term is the weak white noise, which is a series of random
variables (εt)t∈Z with the same characteristics as the strong white noise, except that
the random variables are not independent but only need to satisfy cov(εt, εs) = 0, t �= s.
Throughout this document, unless explicitly precised, we will use the term white noise
to design a weak white noise.

As mentioned above, the usual time series modelling methods assume a paramet-
ric structure on (Xt)t∈Z. One of the most popular and widely used linear structural
model for time series modelling is the Auto-Regressive Moving Average (ARMA) model
of order p and q, denoted ARMA(p, q), defined by the following recursion:

Xt =
p∑

i=1
ϕiXt−i +

q∑
i=1

θiεt−i + εt, (2.4.3)

where (εt)t∈Z is a white noise, and ϕ1, . . . , ϕp, θ1, . . . , θq are the parameters of the
model. An ARMA(p, 0) is called an Auto-Regressive model of order p (AR(p)) and an
ARMA(0, q) is called a Moving Average model of order q (MA(q)). We respectively
define the latter models based on the recursion from Equation 2.4.3:

Xt =
p∑

i=1
ϕiXt−i + εt, (2.4.4)

Xt =
q∑

i=1
θiεt−i + εt. (2.4.5)

Another popular structural model for time series is the Generalized Auto-Regressive
Conditional Heteroskedasticity (GARCH) model [Bollerslev, 1986], which is an exten-
sion of the ARCH model [Engle, 1982]. Such a model is generally used to model the
conditional variance σ2

t of a stochastic process. It is particularly used in financial
time series modelling. A GARCH model of order p and q is defined by the following
recursion on σ2

t and the squared values of (Xt)t∈Z:
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σ2
t = α0 +

q∑
i=1

αiX
2
t−i +

p∑
i=1

βiσ
2
t−i,

where αi and βj are the parameters of the model to be estimated, Xt = σtεt, and
(εt)t∈Z is a white noise.

In practice, (Xt)t∈Z is usually of dimension d > 1. Therefore, we model (Xt)t∈Z

with an appropriate model for multivariate time series. A popular approach to model
(Xt)t∈Z in higher dimension is the Vector Auto-Regressive model of order p (VAR(p)),
which models each dimension of (Xt)t∈Z with the following recursion:

Xt = A1Xt−1 + A2Xt−2 + · · · + ApXt−p + εt, (2.4.6)

where the parameters to estimate are the matrices Ak = (ak
i,j)i,j∈{1,...,d}, k ∈ {1, . . . , p},

Xt := (X(1)
t , . . . , X

(d)
t )′ is the column vector of (Xt)t∈Z, and εt := (ε(1)

t , . . . , ε
(d)
t )′ is a

vector of white noises.
The Dynamic Conditional Correlation (DCC-) GARCH model is a multivariate version
of the GARCH model, and is defined as:

Xt = H
1/2
t εt,

where (εt)t∈Z is a vector of white noises, Ht = DtRtDt, Dt is the diagonal matrix of
conditional standard deviations of Xt, and Rt is the conditional correlation matrix for
Xt.

Structural models have a long history in the time series literature, and many models
have been proposed and strong results have been established [Box and Jenkins, 1970,
Brockwell and Davis, 1991, Hamilton, 1994]. Works on non-parametric modelling for
time series propose to model the time series as a function of its past values:

Xt = f(Xt−1, . . . , Xt−p) + εt, ∀t (2.4.7)

where εt is a white noise. However, the model defined in Equation 2.4.7 assumes that
the variance of (Xt)t∈Z is stationary. A more general expression of non-parametric
modelling for (Xt)t∈Z is to consider that the variance is also a function of the past
values of (Xt)t∈Z:

Xt = f(Xt−1, . . . , Xt−p) + g(Xt−1, . . . , Xt−p)εt. ∀t (2.4.8)
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The latter model allows to model a time series with a non-linear model, and many
works have been done to propose a proper estimation of the functions f and g.
[Robinson, 1983, Tsybakov, 1986, Hastie and Tibshirani, 1986].
However, deep learning literature on time series analysis is still scarce, and most of the
work mainly focuses on time series prediction [Che et al., 2018, Binkowski et al., 2017,
Borovykh et al., 2017]. Time series prediction refers to the estimation of the conditional
expectations of its future values

E[Xt+h|Xt, Xt−1, . . .], ∀h > 0, (2.4.9)

which is different from estimating the conditional distribution of (Xt)t∈Z, which is done
by estimating its conditional univariate distributions since the following relation stands
for any stochastic process:

p(Xt+h, . . . , Xt+1|Xt, Xt−1, . . .) =
h∏

j=1
p(Xt+j|Xt+j−1, . . .). (2.4.10)

Literature on deep generative modelling for time series is even scarcer, and the few works
estimate the distribution by using a GAN framework with recurrent neural networks
as the generator G and discriminator D [Esteban et al., 2017, Zhang et al., 2018].
As mentioned in the previous section, Chapter 5 focuses on the estimation of the
conditional multivariate distribution of (Xt)t∈Z with deep generative models.



Chapter 3

A Machine Learning approach for
individual claim reserving in
insurance

3.1 Introduction

With increased requirement on financial reporting and ongoing solvency concerns,
actuaries are faced with the need, more than ever, to deliver reliable estimates of claim
costs and reserves. A number of deterministic or stochastic methods based on aggregate
claims data structured in claims development triangles exist for calculating outstanding
claims reserves (e.g. Chain Ladder (CL) method, Bornhuetter-Ferguson method, ...).
These methods have had a great success to manage reserve risk for a variety of lines of
business but it is known that they can suffer from underlying strong assumptions that
give rise to several issues. Among them, one can cite: i) an over parameterization risk
induced by a large number of tail factors that have to be estimated as compared to the
number of components of the run-off triangles, ii) a risk of error propagation through
the development factors associated to a possible huge estimation error for the latest
development periods, iii) a potential lack of robustness and the need for appropriate
treatments of outliers, iv) the impossibility to separate the assessments of Incurred
But Not Reported (IBNR) and Reported But Not Settled (RBNS) claims,...

The existence of these issues and the substantial literature about them indicates
that the use of aggregate data is not so fully adequate for capturing the complexities
of stochastic reserving for general insurance, mainly because of an important loss of
information when aggregating the original individual claim data details (e.g. times of
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occurrence, reporting delays, times and amounts of payments,...). Further, significant
changes in technology (data collection, storage and analysis techniques) may make new
approaches like a proper individual claims modeling now accessible.

Therefore, recent research strongly promotes claims reserving on individual claims
data, see, for instance, [Antonio and Plat, 2014], [Badescu et al., 2016], [Hiabu et al., 2016],
[Larsen, 2007], [Pigeon et al., 2013], [Taylor et al., 2008], [Verbelen et al., 2017], [Jin, 2013],
among others... All these contributions assume a fixed and parametric structural form
for which the distribution hypotheses have to be discussed and tested (e.g.[Pigeon et al., 2013]
assumes a multivariate skew normal distribution to the claims payments). Such fixed
structural forms are moreover not very flexible and are sometimes very difficult to
estimate due to complex likelihood functions. Moreover the consideration of detailed
feature information with a great data diversity is not always compatible with these
rigid approaches.

On this basis, it has become crucial to implement more flexible models. Nowa-
days, Machine Learning techniques are very popular in data analytics and offer highly
configurable and accurate algorithms that can deal with any sort of structured and
unstructured information. [Wüthrich, 2018] has proposed for the first time a con-
tribution to illustrate how the regression tree techniques can be used for individual
claims reserving. However, for pedagogical purposes, he only considered the numbers
of payments but not the claims amounts paid. Moreover he assumed that the claims
occurrences and reporting process can be described by a homogeneous marked Poisson
point process, and, as a consequence these numbers of incurred but not reported (IBNR)
claims have been predicted by a Chain Ladder method exploiting the homogeneity
assumption.

On this basis, we have decided to propose a new non-parametric and flexible
approach to estimate separately individual IBNR and RBNS claims reserves that can:
i) include the key claim characteristics in order to allow for claims heterogeneity and
to take advantage of additional large datasets, ii) capture the specific development
pattern of claims, including their occurrence, reporting and cash-flow features, and iii)
detect potential trend changes, taking into account possible changes in the product
mix, the legal context or the claims processing over time, to avoid potential biases in
estimation and forecasting.

Our model is estimated on simulated data and the prediction results are compared
with those generated by the Chain Ladder model. When evaluating the performance
of our approach, we put emphasis on the impact of using micro-level information on
the bias and variances of the prediction errors. Simulating data is indeed the only way
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to have a precise idea of the performance of our new approach. Real data sets are in
general short duration time series and the number of years (or quarters) to assess the
bias and variances of the estimators is very small and can not be used to fairly compare
algorithms. We therefore illustrate our method on a synthetic insurance portfolio but
whose characteristics are very close to a real portfolio (we consider a (almost real)
mobile phone insurance that covers the devices in the event of theft, breakage or
oxidation). Simulating data gives us the opportunity to have at our disposal a very
large number of independent computations of IBNR and RBNS claims reserves and
then to derive precise estimates of bias and variances, which is definitively not possible
with real data.

It is also important to underline that we decided to compare our non-parametric
method with another non-parametric method, the Chain Ladder model, but not with
some parametric individual claims reserving approaches to avoid discussions on the
choices of their appropriate assumptions, which is against the objectives of our paper.
It is true that the Chain Ladder model only uses aggregate claims data with no
covariates, and it is expected that our approach will perform better. However we want
to understand what the real benefits are in terms of bias and variances of the estimators
and also to discuss the ability of our approach to still provide accurate estimators of
the reserves when some of the assumptions of the Chain Ladder model do not hold.

We implement our new approach with an ExtraTrees algorithm but many other pow-
erful machine learning algorithms can easily be adapted (RandomForest, XGBoost,...).

The outline of the paper is as follows. In Section 2 we introduce the claims reserving
problem and we theoretically define the several types of outstanding claims reserves
that we would like to estimate. In Section 3 we explain how we build the train and
test sets on which the Machine Learning algorithms will be respectively trained and
used to evaluate the individual outstanding claims reserves. Section 4 reminds the
Chain Ladder methodology and gives methodological comparisons with our approach.
In Section 5, we provide an explicit numerical example based on simulated data. We
first describe the simulation scheme, then we list the individual claims covariates which
are used by the ExtraTrees algorithm. We finally present and discuss the numerical
results, and we compare them with those obtained by the Chain Ladder approach. In
Section 6 we provide a short real case study based on a Dutch loan insurance portfolio.
In Section 7 we give an outlook, provide a discussion and conclude.
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3.2 The model

We consider an insurer who has been running business in one line of insurance and
who is subject to claims reserves computation at some time t. Only outstanding claims
for which liability has been assumed prior to time t are therefore relevant for this
computation.

We start from a time-continuous setting where the policies’ histories from their
underwriting (including in particular the development of the claim if one occurs) are
generated by a Position Dependent Marked Point Process (PDMPP). We equip the
probability space (Ω, F ,P) with a filtration F = (Ft)t≥0 which satisfies the usual
conditions. Note that such a PDMPP process is a mathematical model that can be
used to model very general real data sets, and that no structural assumptions are
made here, except for the measurability condition with respect to the filtration F (see
e.g. [Arjas, 1989], [Norberg, 1993, Norberg, 1999] and [Haastrup and Arjas, 1996] for
applications of such processes to model loss reserves with additional assumptions).

We assume that the insurer can use external information (if it is relevant) to predict
the total outstanding payments, like e.g. the economic environment (unemployment
rate, inflation rate, financial distress,...), or weather conditions and natural catastrophes
(storm, flood, earthquake, etc.), and so on. We denote by (Et)t≥0 the (multivariate)
continuous-time process that characterizes this information.

We now associate to each policy the following quantities:

- T0: the underwriting date (Δ will denote the insured period and the contract
will expire at T0 + Δ). Some features/risk factors are observed at T0 by the
insurer and can evolve over time: they will be plugged in the (multivariate)
continuous-time process (Ft)t≥T0 . For example, for a life insurance policy, such
features could be applicant’s current age, applicant’s gender (if allowed), height
and weight of the applicant, health history, applicant’s marital status, applicant’s
children, if any..., applicant’s occupation, applicant’s income, applicant’s smoking
habits or tobacco use)...

- T1: the occurrence date of the claim (T1 = ∞ if there is no claim). Only one
claim is considered during the insured period in this paper for expository purpose
(but the algorithm implemented in our computer program can deal with any
number of claims).

- T2: the reporting date (T2 is assumed to be infinite by the insurance company
until the claim is reported).
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- T3: the settlement date.

During the settlement period the insurance company receives information on the
individual claim like the exact cause of accident, the type of accident, the claims
assessment and the predictions by claims adjusters (incurred losses), the external
expertise, etc. We denote by (It)t≥T2 the (multivariate) continuous-time process
that characterizes this information.

The settlement period is the period within transitional claim payments are done.
We denote by (Pt)T2<t≤T3

the multivariate cumulated payment process (possibly
negative). We let Pt = 0 for T1 < t ≤ T2. The payments could be broken down
into several components in case of several insurance coverages and if some legal
and claims expert fees must be paid.

The mark associated to a policy is therefore given by

Z =
{
(Ft)t≥T0 , T1, T2, T3, PT1<t≤T3, , IT2<t≤T3

}
.

The insurer’s portfolio is characterized by the collection of points (T0,p, Zp)p≥1 where
the Zp are in the space of policies’ marks, as represented in Figure 1.

Note that we do not assume that the points (T0,p, Zp)p≥1 are independent. In
particular common inflation effects can be taken into account in a component of the
multivariate continuous-time process (Et)t≥0 (that is common to every policies) and
create an hidden dependence between policies.

3.2.1 Categories of outstanding claims

First it should be underlined that T1 must be smaller than T0 + Δ for the insurance
company to be liable for the claim because the contract must not be terminated at
the claim occurrence. Let t denote the reserving date. If t < T1 < (T0 + Δ), the
(potential) claim has not yet occurred at date t and therefore it is not considered as an
outstanding claim.

Let a ∧ b denote the minimum between the two constants a and b. The claims (that
have occurred before t) may be categorized into two categories.

- If T1 < t < T2, the claim has occurred but it has not yet been reported to the
insurance company. This claim is called an Incurred But Not Reported (IBNR)
claim. For such a claim we do not have individual claim specific information,
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Fig. 3.1 Graphical representation of the position-dependent marked point process

but we can use the risk factors as well as external information to predict the
likelihood of its occurrence and its cumulated payment. We hence define the
IBNRt for a policy at time t in the following way:

IBNRt = E
[
PT31T1<t∧(T0+Δ)|At

]
where

At = {t < T2, (Fu)T0≤u≤t, (Eu)0≤u≤t}.

- If T2 < t < T3, the claim has been reported to the company but the final
assessment is still missing. Typically, we are in the situation where more and more
information about the individual claim arrives, and the prediction uncertainty
in the final assessment decreases. However, this claim is not completely settled,
and therefore it is called a Reported But Not Settled (RBNS) claim. We can
use the reporting date, the occurrence date, the risk factors, the claim history
information as well as external information to predict the cumulated payment
from t to the settlement date. We hence define the RBNSt for a policy at time t
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Fig. 3.2 Graphical representation of incurred but not reported (IBNR) and reported
but not settled (RBNS) claims

for which a claim has been reported in the following way:

RBNSt = E [PT3 − Pt|Bt]

where

Bt = {T2 < t < T3, T1 < T0 + Δ, (Fu)T0≤u≤t, (Eu)0≤u≤t, (Iu)T2≤u≤t, (Pu)T1≤u≤t}.

The individual claim reserve is eventually defined as

ICRt = IBNRt1t<T2 + RBNSt1t≥T2 .

Examples of IBNR and RBNS claims are depicted on Figure 2.
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Fig. 3.3 The grid of times (ti)i≥0

3.2.2 Subdivisions of the outstanding claims over develop-
ment periods

We now assume that there exists a maximum delay Δmax,r to report the claim once it
has occurred, i.e. T2 − T1 < Δmax,r, and that there exists a maximum delay Δmax,s to
settle the claim once it has been declared, i.e. T3 − T2 < Δmax,s. These assumptions
can be easily weakened and are only used to write the outstanding claims reserves as
finite sums.

As for the Chain Ladder approach that used several development periods, we will
consider a grid of times tj = δ × j, where j ≥ 0 and δ is a fixed timestep. We will
assume that the reserving date belongs to this grid and is given by ti (see Figure 3).
We then focus on subdivisions of the outstanding claims over the development periods
(ti+j−1, ti+j] for j ≥ 1.

We define RBNSti,j, j = 1, 2, 3, ..., as the expected increase of the payment
process between ti+j−1 and ti+j given that a claim has been declared and given all the
information available on the policyholder and the claim history:

RBNSti,j = E
[
Pti+j

− Pti+j−1 |Bti

]
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and it follows that

RBNSti
=


Δmax,s/δ�∑
j=1

RBNSti,j.

In the same way, we split IBNRti
in the following way:

IBNRti,j = E
[
(Pti+j

− Pti+j−1)1T1<ti∧(T0+Δ)|Ati

]
, j = 1, 2, 3, ...

such that

IBNRti
=


(Δmax,r+Δmax,s)/δ�∑
j=1

IBNRti,j.

Moreover we break down IBNRti,j trough a frequency/severity formula:

IBNRti,j := IBNR_freqti,j × IBNR_lossti,j

where
IBNR_freqti,j = E

[
1(Pti+j −Pti+j−1 )1T1<ti∧(T0+Δ)>0|Ati

]
and

IBNR_lossti,j = E[(Pti+j
−Pti+j−1)1T1<ti∧(T0+Δ)|Ati

, (Pti+j
−Pti+j−1)1T1<ti∧(T0+Δ) > 0].

The quantities RBNSti,j, IBNR_lossti,j, resp. IBNR_freqti,j, for j = 1, 2, 3, ...,
will be estimated using Machine Learning algorithms that will be trained with the
quadratic loss function, resp. logistic loss, on specific train tests. We explain the
building of these data sets in the next section.

3.3 Estimation via Machine Learning

3.3.1 Test sets construction

Let us first recall that the reserving date is denoted by ti. The sets of policies for which
RBNSti

and IBNRti
have to be evaluated are then given respectively by

Pte,RBNS = {p : T2,p ≤ ti < T3,p, T1,p < T0,p + Δ}

and
Pte,IBNR = {p : ti < T2,p ∧ (T0,p + Δ + Δmax,r + Δmax,s)}.
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To estimate RBNSti,j, j = 1, 2, 3, ... for a policy p in Pte,RBNS, we will use the
following vector of variables

(
T0,p, ti − T0,p, Fti,p, ET0,p , ET1,p , ET2,p , Iti,p

)
.

This vector contains the underwriting date, the exposure of the policy from the
underwriting date to the reserving date, the risk factors associated to the policy valued
at ti, the external information observed at the underwriting date, the occurrence date
and the reporting date, and the claim history up to ti.

To estimate IBNR_freqti,j and IBNR_lossti,j, j = 1, 2, 3, ... for a policy p in
Pte,IBNR, we will only use the underwriting date, the exposure of the policy from the
underwriting date to the reserving date, the risk factors associated to the policy valued
at ti, the external information observed at the underwriting date,

(
T0,p, ti − T0,p, Fti,p, ET0,p

)
since the claim has not yet been reported to the insurance company (if ones occurs).

The matrices

Xte,RBNS =
(
T0,p, ti − T0,p, Fti,p, ET0,p , ET1,p , ET2,p , Iti,p

)
p∈Pte,RBNS

Xte,IBNR =
(
T0,p, ti − T0,p, Fti,p, ET0,p

)
p∈Pte,IBNR

are referred to as the X.TEST sets.
In Figure 4, X.TEST is built by using covariates of policies whose histories begin

in the red triangle. Figure 4 illustrates the case of predictions for j = 1 and Y.TEST
(represented as a green rectangle) then contains the increases of payments (or the
indicator functions of a positive increase of payments) between ti and ti+1 for all policies
in Pte,RBNS or in Pte,IBNR.

It is noteworthy that there is no prediction to make for the covariates with this
procedure. At time ti and for each development period j, the X.TEST for the RBNS
reserves uses T0,p, ti − T0,p, Fti,p, ET0,p , ET1,p , ET2,p , Iti,p, and, for the RBNS reserves,
T0,p, ti − T0,p, Fti,p, ET0,p . All these covariates are observed at time ti. We shall explain
in the following subsection how to put these covariates that are observed at time
ti−j−k+1, with j ≥ 1 and k ≥ 1 in the train sets such that they provide the same type
of information as for the test sets.
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Fig. 3.4 Graphical representation of X.TEST and Y.TEST for j = 1

3.3.2 Train sets construction

For each development period j, we consider several prediction models that will be
trained on different train sets. We therefore begin by defining three subsets of policies
for each development period j and each model k:

- for RBNSti,j

P(j,k)
tr,RBNS = {p : T2,p ≤ ti−j−k+1 < T3,p, T1,p < T0,p + Δ},

- for IBNR_freqti,j

P(j,k)
tr,IBNR_freq = {p : ti−j−k+1 < T2,p ∧ (T0,p + Δ + Δmax,r + Δmax,s)},

- for IBNR_lossti,j

P(j,k)
tr,IBNR_loss = {p : ti−j−k+1 < T2,p, (Pti−k+1 − Pti−k

)1T1,p<ti−j−k+1∧(T0,p+Δ) > 0}.
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We associate to P(j,k)
tr,RBNS, a X.TRAIN set defined by

X(j,k)
tr,RBNS =

(
T0,p, ti−j−k+1 − T0,p, Fti−j−k+1,p, ET0,p , ET1,p , ET2,p , Iti−j−k+1,p

)
p∈P(j,k)

tr,RBNS

and a Y.TRAIN set defined by

Y(j,k)
tr,RBNS =

(
Pti−k+1,p − Pti−k,p

)
p∈P(j,k)

tr,RBNS

.

We associate to P(j,k)
tr,IBNR_freq, a X.TRAIN set defined by

X(j,k)
tr,IBNR_freq =

(
T0,p, ti−j−k+1 − T0,p, Fti−j−k+1,p, ET0,p

)
p∈P(j,k)

tr,IBNR_freq

and a Y.TRAIN set defined by

Y(j,k)
tr,IBNR_freq =

(
1(Pti−k+1,p

−Pti−k,p
)1T1,p<ti−j−k+1∧(T0,p+Δ)>0

)
p∈P(j,k)

tr,IBNR_freq

.

We associate to P(j,k)
tr,IBNR_loss, a X.TRAIN set defined by

X(j,k)
tr,IBNR_loss =

(
T0,p, ti−j−k+1 − T0,p, Fti−j−k+1,p, ET0,p

)
p∈P(j,k)

tr,IBNR_loss

and a Y.TRAIN set defined by

Y(j,k)
tr,IBNR_loss =

(
Pti−k+1,p

− Pti−k,p

)
p∈P(j,k)

tr,IBNR_loss

.

Figure 5 (resp. 6, 7) illustrates the case j = 1, k = 1 (resp. j = 1, k = 2 and j = 2,
k = 1).

3.3.3 Final claim reserves prediction

We will denote the vectors of predictions for development period j and prediction
model k as

Ŷ(j,k)
te,RBNS = (R̂BNS

(k)
ti,j,p)p∈Pte,RBNS

Ŷ(j,k)
te,IBNR_freq = (ÎBNR_freq

(k)
ti,j,p)p∈Pte,IBNR

Ŷ(j,k)
te,IBNR_loss = (ÎBNR_loss

(k)
ti,j,p)p∈Pte,IBNR

where k denotes the prediction model associated to the k-th train sets.
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Fig. 3.5 Graphical representation of X.TRAIN and Y. TRAIN for j = 1, k = 1

Fig. 3.6 Graphical representation of X.TRAIN and Y. TRAIN for j = 1, k = 2
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Fig. 3.7 Graphical representation of X.TRAIN and Y. TRAIN for j = 2, k = 1

For a policy p in Pte,RBNS, we average predictions over the different models consid-
ered:

R̂BNSti,j,p =
∑

k

pj,k

(
ti−k+1, Eti−k+1

)
R̂BNS

(k)
ti,j,p

where
(
pj,k

(
ti−k+1, Eti−k+1

))
k

are sets of positive weights such that

∑
k

pj,k

(
ti−k+1, Eti−k+1

)
= 1 for each j=1,2,...

In the same way, for p in Pte,IBNR, we average predictions over the different models
considered:

ÎBNR_freqti,j,p =
∑

k

qj,k

(
ti−k+1, Eti−k+1

)
ÎBNR_freq

(k)
ti,j,p

ÎBNR_lossti,j,p =
∑

k

rj,k

(
ti−k+1, Eti−k+1

)
ÎBNR_loss

(k)
ti,j,p

where
(
qj,k

(
ti−k+1, Eti−k+1

))
k

and
(
rj,k

(
ti−k+1, Eti−k+1

))
k

are sets of positive weights
such that ∑k qj,k

(
ti−k+1, Eti−k+1

)
= 1 and ∑k rj,k

(
ti−k+1, Eti−k+1

)
= 1 for each j =

1, 2, .... It is advised to use decreasing weights with respect to k to get more responsive
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aggregated models in case of non-stationarity of the generating process. If one wants
to take into account information based on E, the exercise is actually more complex
since weights should themselves be determined by an additional learning (train/test)
task that uses a more complex cross-validation approach.

We denote by ICRti,p the claim reserve, at date ti, for a policy p. The estimation
of this quantity is computed by summing IBNR and RBNS reserves for p:

ÎCRti,p = ÎBNRti,p1ti<T2,p + R̂BNSti,p1ti≥T2,p

where

ÎBNRti,p =

(Δmax,r+Δmax,s)/δ�∑

j=1
ÎBNR_freqti,j,pÎBNR_lossti,j,p

and

R̂BNSti,p =

Δmax,s/δ�∑

j=1
R̂BNSti,j,p.

We can finally compute the global claims reserve of the portfolio by summing all
the reserves predictions: ∑

p∈Pte,RBNS∪Pte,IBNR

ÎCRti,p

3.4 Estimation via Chain Ladder

In this section we present the famous Chain Ladder technique used by actuaries, such
that the reader is able to compare it with our approach. The first step is to aggregate
claims data in a development triangle organized by origin period (occurrence time) and
development period. Since we have considered until now the underwriting time as the
second axis in our graphical representation (see Figure 1), we must project the claim
history lines on this axis such that it now depicts the occurrence time (see Figure 8).

The second step of the Chain Ladder technique is to compute the development
factors for j = 1, .., J where J = �(Δ + Δmax,r + Δmax,s)/δ�. The set of policies to
compute the j-th development factor at time ti is characterized by:

P(j|i)
tr,CL = {p : T2,p ≤ ti−j}.

For a policy p, let T
(δ)
1,p = inftj≥T1,p tj be the smallest tj greater than T1,p, i.e. the

smallest time on the time grid greater than the occurrence date of the claim of the
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Fig. 3.8 From underwriting time to occurrence time

policy. Then the j-th development factor is computed as

F̂j|i =

∑
p∈P(j|i)

tr,CL

P
T

(δ)
1,p +δj,p∑

p∈P(j|i)
tr,CL

P
T

(δ)
1,p +δ(j−1),p

.

Figure 9 (resp. 10) illustrates the computation for the first (resp second) development
factor. The numerator of F̂1|i (resp. F̂2|i) is the sum of the payments from the
occurrence time to T

(δ)
1,p + δ (resp. T

(δ)
1,p + 2δ) over P(1|i)

tr,CL (resp. P(2|i)
tr,CL) (green squares).

The denominator is the sum of the payments from the occurrence time to T
(δ)
1,p (resp.

T
(δ)
1,p + δ) over P(1|i)

tr,CL (resp P(2|i)
tr,CL) (red squares).

The second step of the Chain Ladder technique is to compute the predictions
of the sum the payments step by step by using recursively the previously estimated
development factors. The set of policies for which the predictions used the j-th
development factor at time ti is given by:

P(i,j)
te,CL = {p : ti−j ≤ T2,p ≤ ti}}.
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Fig. 3.9 Graphical representation of the first development period for CL method

Figure 10 (resp. 12) illustrates the computation for the predictions that use the
first (resp second) development factor.

The final claims reserve prediction for the whole portfolio with the Chain Ladder
method is therefore given by:

J∑
j=1

⎛⎜⎜⎝ ∑
p∈P(i,j)

te,CL

P
T

(δ)
1,p +δ(j−1),p

⎞⎟⎟⎠×
⎛⎝J−j∏

k=1
F̂k+(j−1)|i − 1

⎞⎠ .

Let us discuss the main underlying technical assumption of such a prediction. The
j-th individual development factor for the accident period (tk−1, tk] is defined as

f̂j|k =

∑
p∈R(k)

tr,CL

P
T

(δ)
1,p +δj,p∑

p∈R(k)
tr,CL

P
T

(δ)
1,p +δ(j−1),p

where R(k)
tr,CL = {p : tk−1 ≤ T1,p ≤ tk}. The Chain Ladder predictions are based on the

assumption that the individual development factors do not depend on the accident
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Fig. 3.10 Graphical representation of the second development period for CL method

Fig. 3.11 Graphical representation for the predictions of the first development period
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Fig. 3.12 Graphical representation for the predictions of the second development period

periods and are roughly equal to a constant fj, or equivalently that for k = 1, 2, ..., i,
f̂j|k ≈ fj. Therefore the Chain Ladder method is appropriate when loss developments
patterns have been historically stable and when they can be reasonably assumed as
not to be varying in the future. There are plenty of reasons for which this assumption
would not hold. For example, if the underwriting date (or the occurrence date) has
an impact on the payment delay or on the reporting delay, this assumption is clearly
broken. When comparing alternative prediction methods to the Chain Ladder, it is
important to keep this point in mind. It is well-known by actuaries that they should
be very cautious from relying solely on standard Chain Ladder techniques when there
could be changes in the developments patterns of claims due e.g. to significant company
operational changes or also to important changes in the insurance regulatory, legislative,
or judicial landscapes.

It is also noteworthy to say that the choice of the aggregation level in the Chain
Ladder method could be very important and that it is in general discussed neither from
a theoretical point of view nor from a practical point of view. In practice aggregation
is usually done in years because the reliability of the data is higher at the end of
the calendar year for accountability reasons. Here we have decided to take the same
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aggregation level, δ, as the one used for characterizing the fixed timesteps of the grid
of times for the Machine Learning approach in order to get comparable results.

3.5 Simulation study - mobile phone insurance

In this section, we illustrate our method on a synthetic insurance portfolio. Although a
detailed real data study would be better, it is very hard (even impossible) to get enough
individual data from a single insurance portfolio to have accurate assessments of the
bias and variances of the estimators. In some sense a synthetic insurance portfolio
appears as a compromise between reality and ability to get lots of data.

Most people now have a mobile phone and it has become an essential part of
everyday life. Losing or damaging their mobile phone can be a total nightmare and
they may turn down to insurance coverage. For this case study, we consider a mobile
phone insurance that covers the devices in the event of theft, breakage or oxidation.
The insurance company provides cover for an insured period of one year and for a
range of four brands and up to four models by brand with three policy types available:
“breakage”, “breakage and oxidation” and “breakage, oxidation and theft”.

Such an insurance product has short-tailed lines compared to e.g. a general liability
contract. It does not present a large risk for the insurance company as soon as it can
be assumed that it has been sold directly to the customer in a perfect environment
where there would be any asymmetric information and no moral hazard and adverse
selection risk. In practise, this is not the case since such a contract is linked to a service
or product distributed by a company (not always in insurance business), which is not
the main customer’s purchase motive (it is called an affinity insurance product). Such
a product could be very risky due to adverse behaviors from policyholders and should
be monitored with care by the insurance company.

To illustrate our method and compare it to the Chain Ladder approach, we will first
consider a central scenario with very simplified portfolio assumptions (in particular
they guarantee that the individual development factors of the Chain Ladder method are
approximately constant over the accident periods). We will then study several scenarii
around this central scenario for which we will modify one of these simplified assumptions
(and the assumptions of the Chain Ladder method will no more necessarily hold). Such
alternative scenarii for which there is one modification of the “ideal” assumptions are
also used to take into account potential adverse behaviors from policyholders.

The underwriting period will be from the first day of 2016 to the last day of 2017
(after this date, the portfolio starts its run-off period). We will perform the reserving
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exercises for each end of month from September 2016 to July 2017 and will compute
IBNR and RBNS claims reserves with our Machine Learning method, and the global
claims reserves with the Chain Ladder method. We will compare these computed
reserves with the true reserves and study forecast bias and variance for both methods.
Note that the timestep we fixed for this illustration is a uniform monthly timestep
(actually we assume that each month has 30 days and that a year has then 360 days).
We discuss what happens when a true calendar is used in an additional scenario.

The aim of this section is to discuss the “Best Estimate” loss reserving and not the
“Risk Margin” computation (as defined by the Solvency II directive). That is why we
compare the mean values of the predictions to evaluate bias of the predictions of the
Best Estimate values and the standard errors (or equivalently 95% confidence intervals
under the assumption of Gaussian distributions) to have an idea of their accurateness,
but not to discuss the reserve uncertainty. An additional algorithm is actually needed
to estimate conditional quantiles of the predictive distributions and an appropriate
bootstrap strategy has to be proposed.

3.5.1 Technical assumptions of the central scenario

The central scenario aims at being very simple in order to benchmark the Chain
Ladder and Machine Learning methods when the portfolio is in an almost stationary
environment. We now present its assumptions.

The underwriting Poisson point process has a constant intensity λ0(t) = 700 (daily
basis), i.e. the insurance company sells roughly 500,000 insurance policies over the two
underwriting years. Each policy is generated independently from the other policies.

The three available policy types are assumed to be sold according to the following
constant over time distribution

Probability
Breakage 0.25
Breakage + oxidation 0.45
Breakage + oxidation + theft 0.30

Table 1: Policy types distribution

The policyholders are assumed to insure mobile phone whose brand is distributed
according to the following constant over time distribution (note that the basis price of
a mobile phone also depends on its brand)
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Probability Basis price
Brand 1 0.45 600
Brand 2 0.30 550
Brand 3 0.15 300
Brand 4 0.10 150

Table 2: Brand distribution

The price of a mobile phone is equal to a basis price multiplied by a factor that
depends on the model type according to the following table (Table 3 also provides the
model type distribution)

Model type Multiplicative factor Probability
0 1 0.05
1 1.15 0.10
2 1.152 0.35
3 1.153 0.50

Table 3: Model type distribution and multiplicative factors with respect to the model types

The policy type, the mobile phone brand and the mobile phone model type are
independent from each other.

We assume that claim frequencies are generated through a competing model between
risks, with constant incidence hazard rates that can depend on the mobile phone model
type (but neither on the brand nor the model type), in the following way

Yearly incidence rate
Breakage 0.15
Oxidation 0.05
Theft 0.05× model type

Table 4: Incidence hazard rates

We assume that the claim amount is a percentage of the buying price of the mobile
phone and the distribution of this percentage is a Beta distribution with parameters
depending on the claim type

α β

Breakage 2 5
Oxidation 5 3
Theft 5 0.5
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Table 5: Parameters of the Beta distributions

Once a claim occurs, we assume that the reporting delay hazard rate is given by

λ1(t + T0) = tα−1 (1 − t)β−1∫ 1
t uα−1 (1 − u)β−1 du

, 0 < t < 1,

with α = 0.4, β = 10 (the mean reporting delay is roughly 14 days). Claims are settled
in one payment and the payment delay hazard rate is given by

λ(t + T1) = ((t − d)/m)α−1 (1 − (t − d)/m)β−1

m
∫ 1

(t−d)/m uα−1 (1 − u)β−1 du
, d < t < m + d,

with α = 7, β = 7, and with m = 40/360, d = 10/360 (the mean payment delay is
roughly 30 days). These hazard rates do not depend neither on the brand, the model,
the coverage type, nor the occurrence date.

3.5.2 Selected features

The main strength of our Machine Learning approach is to take into account any
information about the policy (for IBNR and RBNS claims), and the claim history (for
RBNS claims). No external information is considered here. For this case study, we use
the following policy-related features (embedded in Ft):

- phone brand,

- phone price,

- phone model type,

- coverage type (“Breakage”, “Breakage and Oxidation”, “Breakage and Oxidation
and Theft”).

We moreover use the following claim-related features (embedded in It):

- type of damage (“Breakage”, “Oxidation”, “Theft”),

- reporting delay (in days)

- number of days since the claim has been declared.

In case of transitional payments, additional features could be the amount paid and
the number of payments made until the reserving date.
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3.5.3 Algorithm used for prediction

Once the train sets have been built (see Section 3), we can train a prediction algorithm.
For this case study, we decided to illustrate our methodology by using the ExtraTrees
algorithm (Geurts et al. (2006)). This algorithm builds an ensemble of unpruned
regression trees according to a classical top-down procedure. Its two main differences
with other tree-based ensemble methods are:

1. it splits nodes by choosing cut-points fully at random;

2. it uses the whole learning sample (rather than a bootstrap replica) to grow the
trees.

The predictions of the trees are aggregated to yield the final prediction, by majority
vote in classification problems and arithmetic average in regression problems. From the
bias-variance point of view, the rationale behind the Extra-Trees method is that the
explicit randomization of the cutpoint and attribute combined with ensemble averaging
should be able to reduce variance more strongly than the weaker randomization schemes
used by other methods. The usage of the full original learning sample rather than
bootstrap replicas is motivated in order to minimize bias. From the computational
point of view, the complexity of the tree growing procedure is like most other tree
growing procedures.

Note however that the algorithm used for prediction is not the keystone of our
method since we can use other Machine Learning algorithm to make predictions such
as RandomForests or Gradient Boosting algorithms like XGBoost (which can make
slightly better predictions than ExtraTrees).

3.5.4 Results in the central scenario

We performed 40 simulations of the portfolio over the two years. For each end of month
from September 2016 to May 2018, we computed the outstanding claims reserves with
both predictive methods (40 times). Note that for the ML method we only used one
model (k = 1).

We first averaged the true values of the sum of the cumulated payments called here
Ground Truth (GT), the Machine Learning predictions (ML), and the Chain Ladder
predictions (CL). These values are represented by solid lines on the left part of Figure
13.

We can observe that both methods are almost unbiased except from January 2017
to March 2017 for the ML method and to July 2017 for the CL method. January 2017
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Means of reserve predictions − central scenario
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Means of relative errors for reserve predictions − central scenario
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Fig. 3.13 Means of reserve predictions and mean relative errors for the machine learning
(ML) and chain ladder (CL) methods — central scenario (the vertical dashed segments
provide the 95% prediction spans for each prediction). GT, ground truth

is actually the first month where the portfolio size and its exposure to risk has begun
to be stabilized (i.e. underwritings and terminations are balanced). Both algorithm
need time to adjust their predictions, but the ML method does it more quickly.

The vertical dashed segments provide the 95% prediction spans for each prediction
(they are based on the assumption of a Gaussian distribution, i.e. their lengths are
approximately equal to four times the standard errors computed over the 40 simulations).
We can see that the standard errors of the ML predictions are really lower than the
CL predictions (around 3 or 4 times smaller). So one first conclusion here is that
the ML method outperforms the CL method in the variance-of-reserves point of view
because it takes into account the heterogeneity between claims to provide more accurate
predictions.

It should be underlined that the variances of the CL predictions are very close to
the variances computed with the Mack’s formulas (Mack (1999)) in this case study.
Moreover we observed that the standard errors of the ML predictions are a little larger
than the standard errors of the GT values (around 1.6 time larger). Note that the
spans of the GT values have not been plotted.

On the right part of Figure 13, we plot the average values of the relative errors
between the true values of the sum of the increases of payments and respectively
the ML predictions and the CL predictions (ratios of the differences between both
predictions and the GT over the GT). The vertical solid segments provide the 95%
confidence intervals of the means of the relative errors and show that the bias of the
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Means of RBNS reserve predictions − central scenario

Uniform scale

se
p 

16

oc
t 1

6

no
v 1

6

de
c 1

6

jan
 1

7

feb
 1

7

m
ar

 1
7

av
r 1

7

m
ay

 1
7

jun
 1

7
jul

 1
7

au
g 

17

se
p 

17

oc
t 1

7

no
v 1

7

de
c 1

7

jan
 1

8

feb
 1

8

m
ar

 1
8

av
r 1

8

m
ay

 1
8

800K

900K

1000K

1100K

1200K

ML
GT

Means of IBNR reserve predictions − central scenario
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Fig. 3.14 Means of the incurred but not reported (IBNR) and reported but not settled
(RBNS) reserve predictions for the machine learning (ML) method (the vertical dashed
segments provide the 95% prediction spans for each prediction). GT, ground truth

relative errors are statistically significant for almost all CL predictions, but not for the
ML predictions.

On the other hand, we plot on Figure 14 the averages of the ML RBNS reserves and
of the ML IBNR reserves, as well as the averages of their respective true values. One
can see that the ML RBNS reserves are really precise since they are unbiased and their
standard errors are not very large. The ML IBNR reserves are however a bit biased
when the portfolio size starts to be stabilized. This is due to the fact that when the
algorithm learns exposures as of the first day of 2017, it has never seen that exposures
are actually bounded since the insured period is equal to one year (this means that
policies underwritten at the beginning of January 2016 are no more exposed to the
whole month of January 2017, and the algorithm has never learnt such a behavior).
This leads to a punctual mis-prediction.

3.5.5 The other scenarii

We now study several scenarii around this central scenario for which we will modify
one (and only one) of the assumptions. The assumptions that we changed are the
following ones:

- monthly scale instead of uniform scale,

- time-dependent underwriting rate,
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- increase/decrease of 10% of the payment delay,

- arrivals of new phone models (more expensive) at the beginning of the year 2017,

- increase of 40% of the claim rate from mid-December 2016 to mid-January 2017,

- multiple payments.

Note that we also studied the scenario where the intensity of the underwriting
Poisson point process is divided by 10 (λ0(t) = 70). We did not write any sub-section of
this scenario since the comparisons between both prediction methods gave qualitatively
the same results. The lengths of 95% prediction spans are naturally larger, but let us
underline all the same that the standard errors of the ML predictions are even lower
than the CL predictions (around 4.5 times smaller).

3.5.5.1 Monthly scale

We first wanted to study the consequences of using a true calendar rather than using a
uniform timestep and dividing a whole year in twelve equal parts (the timestep size
on the central scenario was 30 days). On Figure 15, we plot the average values of the
relative errors between the true values of the sum of the increases of payments and
respectively the ML predictions and the CL predictions. We notice a strong month-
dependent bias for the CL method (the assumption about a constant aggregation level
compulsory for the CL method is not satisfied), but a moderate month-dependent
bias for the ML method. These bias are the consequences of the fact that months do
not have the same length, leading to a mis-learning of the true exposure as well as a
mis-prediction for the true future exposure (although this last issue could be fixed by
taking into account the true number of days of the month for which the predictions
are made). These are interesting result from the insurer’s point of view because the
ML method can adapt quite well when the timestep length is not constant over time.

The vertical solid segments provide the 95% confidence intervals of the means of
the relative errors and show that the bias are statistically significant for almost all CL
predictions. We also see that the ML method has very shorter confidence intervals.

3.5.5.2 Time-dependent underwriting rate

In this scenario, we let the underwriting rate change over time: we multiplied the
constant hazard rate by the density of a Beta distribution with α = 1.6 and β = 2.5,
scaled over the two years. Figure 16 shows the reserves evolution for the Ground Truth
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Means of relative errors for reserve predictions − central scenario
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Fig. 3.15 Mean relative errors of reserve predictions for the machine learning (ML) and
chain ladder (CL) methods (the vertical dashed segments provide the 95% prediction
spans for each prediction)

(GT), the ML method and the CL method. We can see that both methods perform
well, and we still observe a better standard error for the ML method as we observed
for the central scenario.

Note that, although the underwriting rate depends on time, the distributions of the
reporting delay and the payment delay are not modified and therefore the assumptions
of the CL model are still satisfied.

3.5.5.3 Payment delay modification

In this scenario, we reduce (resp. increase) all the payments delays by 10% starting
from the first day of 2017 until the total run-off of the portfolio. This means that a
claim that was settled in 10 days will now be settled in 9 days (resp. 11 days). Hence
the assumption of a stationary payment delay is no more satisfied and it is expected
that the CL method fails. We can actually see from Figure 17 and 18 that this change
of assumptions leads to a huge effect on the CL reserves. It is however not the case for
the ML reserves. This is due to a combination of some reasons explained here:

- An increase of the number payments will be observed for the month of January
2017. This increase will immediately affects the computation of the first devel-
opment factor of the CL method. And this factor will have a strong impact on
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Means of reserve predictions − non−constant underwriting rate
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Fig. 3.16 Means of reserve predictions for the ML and CL methods - time-dependent
underwriting rate (the vertical dashed segments provide the 95% prediction spans for
each prediction)

the estimated values of the ultimate cumulated payments for the claims that
have occurred and have been reported during the last month. This leads to an
important over-estimation of the reserves if the computation of the CL method is
done mechanically (which is fortunately not the case in practice, because such a
result would alarm the actuary in charge of the reserving exercise). Since the ML
prediction is not based on a multiplicative form (that leads to the propagation of
the errors), this shock on the payment delay will be softer when using the ML
method.

- This phenomenon is amplified by the fact that the average payment delay is
around 30 days on the central scenario. This leads to a huge amount of claims
which are paid in January compared to December.

In practice, it is the strong difference between the ML and CL computations that
should be highlighted. It seems to provide an indicator of important changes whose
source could be looked for in the payment delays.

On the other hand, we observe the opposite behavior if the payment delay is
lengthened by 10% leading to a huge under-estimation of the reserves.
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Means of reserve predictions − shock on the payment delay
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Fig. 3.17 Means of reserve predictions for the ML and CL methods - negative shock
on the payment delay (the vertical dashed segments provide the 95% prediction spans
for each prediction)

Means of reserve predictions − positive shock on the payment delay
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Fig. 3.18 Means of reserve predictions for the ML and CL methods - positive shock on
the payment delay (the vertical dashed segments provide the 95% prediction spans for
each prediction)
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Means of reserve predictions − arrivals of new mobile phones
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Fig. 3.19 Means of reserve predictions for the ML and CL method - arrival of new
phone models (the vertical dashed segments provide the 95% prediction spans for each
prediction)

3.5.5.4 Arrival of new phone models

In this scenario, we decided to change our portfolio structure by letting each brand
introduce its Model 3 successively from October 2016 to December 2017. Brand 1 will
release its model 3 at the end of October 2016, Brand 2 at the end of November 2016,
etc... The distribution of the model types before (resp. after) the release of Model 3 is
given in Table 6.

Moreover, it has been assumed that Model 3 of Brand 1 has a claim hazard rate
twice as much as the other Model 3 of Brands 2, 3 and 4. Remind moreover that theft
damage depends on phone model, so by introducing new phone models over time, we
increase the global claim rate of our portfolio. The assumption of a stationary portfolio
structure is no more satisfied, and this could introduce a bias in the CL reserves. Figure
19 shows that both methods actually handle correctly this change of structure in the
portfolio (we also see the same differences between the CL and ML reserves variances):
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Means of reserve predictions − positive shock on the claim rate
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Fig. 3.20 Means of reserve predictions for the ML and CL methods - temporary claim
rate shock (the vertical dashed segments provide the 95% prediction spans for each
prediction)

Model type Prob dist before Prob dist after
0 0.15 0.05
1 0.35 0.10
2 0.50 0.35
3 0 0.50

Table 6: Model type distributions

3.5.5.5 Temporary claim rate shock

In this scenario, we set a raise of 40% on the claim hazard rate between mid-December
2016 and mid-January 2017. Then the hazard rate just comes back to its normal value.
The assumption of a stationary claim rate and of a stationary occurrence delay are no
more satisfied and this could make wrong predictions with the CL method.

We take from Figure 20 three comments. First, both methods under-estimate
reserves for the reserving month of December 2016. Second, for the reserving month
of January 2017, the CL method over-estimates the reserves whereas ML method is
correct. Third, between February 2017 and June 2017, reserves are over-estimated
with the ML method whereas the CL method is back to normal.
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We explain these observations in the following way:

1. The CL reserves are computed using the ‘stationary’ development factor for
reserving month December 2016. This factor is indeed under-estimated because
we set a sharp raise of hazard rate between mid-December 2016 and the end
of December 2016. This leads to an under-estimation of claim reserves in
December 16 for January 2017, and this error is then propagated although correct
development factors have been used.

The ML reserves are computed by learning the claim rate observed in December
for reserving month December 2016. Hence, the algorithm learns that there is a
sharp raise in mid-December. But those additional claims which are happening
in December are, for many of them at the end of December, declared in January.
This explains the fact that the ML method is able to learn that there is a hazard
rate rise, but the fact that those claims are not known yet by the insurer leads
to a slight under-estimation of the real reserve (IBNR).

2. The CL reserves are computed using the new development factor, which takes
into account the claim rate rise of December 2016. This development factor is
over-estimated compared to the GT because we know that the claim rate rise is
over by the end of January. Thus, we observe in January the additional claims
which occurred in the end of December and in January. Hence, the reserves for
the first month are computed using an over-estimated development factor, and on
a higher amount of paid claims. This leads to a wide over estimation of reserves.

The ML reserves are computed by learning the claim rate observed in January,
and since it as the same as December, the estimation is just fine.

3. The CL reserves are computed using an over-estimated development factor, but
this bias tends to zero over time since the claim rate is back to normal since
mid-January 2017.

The ML reserves are computed using one sub-model (i.e. k = 1). Thus, the
large claim rate of December and January is learnt several times to compute
long-horizon reserves over time. This leads to a bias in reserves calculation, which
tends to zero over time, but slower than the CL method. This behavior can be
overcome by using more than one sub-model (i.e. k > 1), because the bias is
time-punctual. This means that we will have a few number of biased sub-models,
and averaging the predictions of each sub-model would vanish the bias when k

grows.
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Means of reserve predictions − with multiple payments
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Fig. 3.21 Means of reserve predictions for the ML and CL methods - multiple payments
(the vertical dashed segments provide the 95% prediction spans for each prediction)

This scenario illustrates a limit of our method, when we use only one sub-model to
compute the ML reserves.

3.5.5.6 Multiple payments

In this scenario, we decided to modify the central scenario by allowing multiple payments
although it is rarely the case for such a product. We permit the insurance company
to pay the loss through four payments (the loss has been uniformly spread over the
payments) and we assumed that the mean loss inter payment delay is 30 days. As a
consequence, the IBNR reserves are not modified and the CL assumptions still hold.
Only the RBNS reserves increase due to the multiple payments (the reserve are actually
in general multiplied by 2). On the following figure, we depict the means and the 95%
confidence intervals of the reserve predictions for the ML and CL methods.

We observe that the CL reserve predictions behave as in the one-payment case
(the 95% confidence intervals are slightly larger). The ML reserve predictions have
however a positive bias. To understand this bias, one has to look at the RBNS and
IBNR reserves. Despite the additional uncertainty brought by the multiple payment
dates and multiple payment amounts, the RBNS reserves are still well estimated by the
ML algorithm without bias. However the IBNR reserves now include a bias although
nothing has been changed with respect to the reporting delay. The main reason is that
our IBNR reserve estimation is based on several frequency-loss models for each payment
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and not on a unique frequency-loss model for the sum of the multiple payments in
the previous case. The differences between the sizes of train and test databases make
very small individual bias on the frequency predictions, which, when they are added in
the final prediction, lead to a bias. Nevertheless the accurateness of the ML reserve
predictions is still far better than the CL reserve predictions.

3.5.6 Discussion about individual/collective approaches

We present and discuss in this section prediction methods that we can classify between
the CL method and the ML method. The CL method can be viewed as a collective
model while the ML method can be viewed as an individual model with covariates. We
therefore decided to consider an individual model without covariates relating to the
policy or the policyholder (we call it an individual model without prior information)
and an individual model where the “prior information” included in the covariates is not
informative enough (we call it an individual model with no predictive power covariates).

Individual model without prior information
We considered the same model as in the central scenario, but we imposed to the

ML algorithm not to use the policy-related features, which are the phone brand, the
phone price, the phone model type, the coverage type (“Breakage”, “Breakage and
Oxidation”, “Breakage and Oxidation and Theft”), and the following claim-related
feature: the type of damage (“Breakage”, “Oxidation”, “Theft”). But we kept the date
related features such as the underwriting date, the reporting delay, the number of days
since the claim has been declared ..., because these features can be used anyway by all
the insurance companies.

The results concerning the means of the reserve predictions and their 95% confidence
intervals are depicted in the following figure.

It can be seen that the ML approach is not necessarily better than the CL approach
as long as the size of the portfolio does not become constant around January 2017.
The main reason is that the IBNR reserves are actually very poorly evaluated by
the ML algorithm when it can not use the policy-related features and therefore there
is no significant differences between ML and CL approaches for the global reserves.
Nevertheless after January 2017, the ML algorithm improves the accurateness of the
IBNR reserves (by stabilizing its predictions) and the individual approach (without
prior information) becomes competitive even if the policy-related features are not used.
Therefore the other features still bring a small but useful signal.
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Means of reserve predictions − without prior information
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Fig. 3.22 Means of reserve predictions for the ML and CL methods - without prior
information (the vertical dashed segments provide the 95% prediction spans for each
prediction)

We assume that claim frequencies are generated through a competing model between
risks, with constant incidence hazard rates that can depend on the mobile phone model
type (but neither on the brand nor the model type), in the following way

Individual model with no predictive power covariates
We decided to modify the model of the central scenario by making the more

informative covariates uninformative. More specifically:
- the prices of all mobile phones (for each brand and each mobile type) have been

fixed to 500;
- the yearly incidence rate for each coverage types and for each model type has

been fixed to 0.05;
- the parameters of the Beta distributions that characterize the distribution of the

percentage of the price of the mobile phone to pay have been fixed to the parameters
of Oxidation, i.e. 5 and 3 for the three coverage types (Breakage, Oxidation, Theft).

The results concerning the means of the reserve predictions and their 95% confidence
intervals are depicted in Figure 23.

As for the previous model, we observe that ML approach is not necessarily better
than the CL approach. It is quite natural to get such a result since the ML algorithms
cannot use the uninformative covariates to improve the individual predictions.
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Means of reserve predictions − features without signal
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Fig. 3.23 Means of reserve predictions for the ML and CL methods - features with-
out signal (the vertical dashed segments provide the 95% prediction spans for each
prediction)

3.6 A real data set example

We illustrate our methodology with a Dutch loan insurance portfolio (provided by
BNP Paribas Cardif). A first data set contains variables about 875 912 policyholders
who underwrote an insurance cover from death, temporary or permanent disability, or
unemployment. The underwriting period begins in 1998 and ends in 2018. A second
data set contains 9581 claims, and a third data set records 128 890 payments (payment
amount and payment date) for these claims.

The available variables characterizing the insurance policies and the policyholders
are listed in Table 1. The insurance portfolio gathers 71 different types of contracts,
distributed on 9 main networks, over 290 agencies, for a total of 10 124 brokers, implying
a strong heterogeneity between policies.
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% ANNUITY DECREASING GENDER
% CHOSEN COMMISSION YEAR 1 SAMPLE AUTHORIZATION
% CHOSEN COMMISSION YEAR 2 INSURED AMOUNT / CAPITAL
% CHOSEN COMMISSION YEAR 3 INSURED AMOUNT TYPE
% PREMIUM INCREASE INSURED ID
AGENCY NR. ENTRY DATE IN THE SYSTEM
DISABILITY COVERAGE TYPE LAST COVERAGE STATUS CHANGE
BIRTH DATE LAST PAID BILLING DATE
BROKER NR. NETWORK NR.
CERTIFICATE NR. PROFESSION
CHILD ADDITION PROFESSION CLASS
CLAIM PAYMENT DURATION OCCUPATION CODE
CLAIM WAITING PERIOD PREMIUM DURATION IN YEARS
COMMISSION SCHEMA BANK (who borrows the mortgage amount)
COMMISSION TYPE PAYMENT RECEIVED
CONTRACT TYPE POLICY NR.
COVERAGE STATUS PREMIUM INCREASE
COVERAGE TYPE PREMIUM SCHEMA
COVERED JOB (ONLY FOR DISABILITY) PREMIUM TYPE
COVERAGE END REASON PRODUCT CODE
CURRENCY PROFESSIONAL STATUS
DEATH COVERAGE TYPE REPATRIATION
DISCOUNT AMOUNT REVOLVING COMMISSION
DISCOUNT TYPE SINGLE COMMISSION
DURATION IN MONTHS SMOKING
EFFECT DATE SURRENDERDATE
FISCALITY TARIFF

Table 1: Overview of the available variables

Figure 24 illustrates how the portfolio size and the underwriting rate vary over time.
It can be seen that, after a first period with a strongly increasing underwriting rate, it
has been decided by the insurance company to lower the number of new policies from
2005, and, as a consequence, the portfolio will probably start its run-off period by the
end of 2018.

For this case study, we decided to only focus on the coverages from disability and
unemployment because these risks are the most difficult to predict since they heavily
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Fig. 3.24 Underwriting rate and risk exposure from 1998 to 2018

rely on the economical environment, although policyholders’ characteristics (such as
the professional status, the smoking habits, the age,...) are also important risk factors.

Figure 25 provides the time series of the monthly claim rates for both coverages.
The unemployment claim rate is quite stable overtime, while the disability claim
rate is multiplied by 6 over the ten year period, providing a possible explanation
of the withdrawal of the insurance company from this market. Figure 26 visualizes
the reporting delay over time. This time, the unemployment reporting delay is more
stable than the disability reporting delay which significantly decreases from 2008. An
explanation could come from changes of the claim waiting periods included in policies,
as well as the economic context (beginning of the subprime crisis).

When considering claims, it is observed that payment durations can be very long
(from a few months to several years). As a consequence there are many censored
durations in the payment data set and it is not possible to compare predictions with
respect to the true values (what we called previously the Ground Truth), even for the
first underwriting years.

Therefore we decided to create artificial insurance policies where the payment
duration is bounded by two years. In this way the true values of the payment durations
are quickly observed and can be compared to predictions of models. Figure 27 illustrates
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Fig. 3.25 Monthly claim rates for disability and unemployment from 1998 to 2018
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Fig. 3.26 Average reporting delays for disability and unemployment from 1998 to 2018
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Fig. 3.27 Average settlement periods for disability and unemployment from 1998 to
2018

the average settlement periods (from the declaration date) for these artificial policies.
The unemployment settlement period is roughly constant over time, while the disability
settlement period increased a lot during the first 4 years of the portfolio.

The issue of censored data leads to difficulties to compare loss reserving methods.
The right way to fairly do such an exercise is to wait until the observations are no
more censored. In practice it is of course impossible so actuaries use statistics that
take into account censoring to compare data and models. Here we decided to create
artificial insurance policies.

We now use our approach for computing individual and aggregate claims reserves
and compare them to the CL predictions. Before using the ExtraTrees algorithm,
we build additional explanatory variables from the initial variables given in Table 1,
and we create new variables describing claims (in particular in case of multiple and
successive claims). We provide claim reserve predictions (overall, IBNR, RBNS) from
2004 to 2010, with their 95% confidence intervals, on respectively Figures 28, 29 and
30.

The 95% confidence intervals for the ML predictions are computed by bootstrapping
the data and the 95% confidence intervals for the CL predictions use the standard
errors based on Mack’s formulas (Mack (1999)) with the Gaussian assumption. The
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Fig. 3.28 Overall claim reserve predictions from 2004 to 2010

intervals for the GT are also computed by bootstrapping the data and are only used
to provide an idea of the variability of the individual claim amounts. We used a
traditional bootstrap procedure and considered random sampling with replacement.
Bootstrapping indeed allows estimation of the sampling distribution of almost any
unconditional statistic. But note that this type of bootstrapping can not be used to
estimate conditional statistics, and particular procedure have to be implemented.

The ML predictions and CL predictions are quite equivalent from 2004 to 2007.
However only the ML algorithm is able to take into account structural changes of the
loan insurance portfolio after 2007. Note that the CL method strongly underestimates
the true amounts of the reserves.

Figures 29 and 30 show that our approach leads respectively to very good IBNR
and RBNS claim reserve predictions.

3.7 Summary, discussion and conclusion

We have proposed a new non-parametric approach for individual claims reserving. Our
model is fully flexible and allows to consider (almost) any kind of feature information.
As a result we obtain IBNR and RBNS claims reserves for individual policies integrating
all available relevant feature information.
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Fig. 3.29 IBNR reserve predictions from 2004 to 2010
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Fig. 3.30 RBNS reserve predictions from 2004 to 2010
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In the Introduction, we have identified several issue concerning the CL method that
we can now compare to our approach.

- First, we have underlined that there could be an over parameterization risk
induced by a large number of tail factors that have to be estimated as compared
to the number of components of the run-off triangles. Since the CL method works
with aggregated data, it is clear that the number of parameters of the model is large
with respect to the number of observations. In our ML method, we used all the
individual data, but we rather decided to favor a non-parametric procedure. Therefore
the comparison is not evident on this point.

- Second, we have explained that there could be a risk of error propagation
through the development factors associated to a possible huge estimation error for
the latest development periods. Our ML method is additive while the CL method is
multiplicative. Therefore the risk of propagation of error disappears with our approach.

- Third, we have identified that there could be a potential lack of robustness
and the need for appropriate treatments of outliers. To compare the CL and ML
methods, we have to know whether the value of the outliers is the consequence of
extreme values or the consequence of some (e.g. operational) changes. In the first case
aggregated methods as CL method are in general more robust while in the second case,
our individual method will perform better.

- Fourth, we have said that it is impossible to separate the assessments of
IBNR and RBNS reserves. Our ML method clearly proposes a way to separate IBNR
from RBNS.

In our case study where we used a Machine Learning algorithm known as ExtraTrees
algorithm, we observe that the method provides almost unbiased estimators of the
claims reserves with very small standard deviations (actually four to five times smaller
than the Mack Chain Ladder standard deviation based on aggregate data). Moreover
the ML estimators are more responsive to any changes in the development patterns of
claims including occurrence, reporting, cost modifications,... than the CL estimators
based on aggregate loss data. This is also what we have observed in our real data
example.

We however have to shade these statements in light of the durations of the liabilities
of the insurance company. It is well-known that the Chain Ladder method tends to
perform better for short-tailed lines than for long-tailed lines. The reason is that
any accident year reaches final settlement in a relatively short period of time. For
long-tailed lines, the CL method has fewer and fewer points from which to calculate the
individual development factor as long as the computation is done in the tail. Actually,
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it is needed to decide at which development period to incorporate a tail factor that
estimates development beyond the last observations. There are several techniques to
estimate a tail such as using an implied industry-wide tail factor (if available), using an
inverse power or Weibull curve-fitting technique, or estimating the decay in the selected
development pattern and extending that decay assumption into future development
periods. However the actuary must decide when to incorporate other methods from
which to estimate ultimate losses. For long-tailed lines, our algorithm will also suffer
from the small number of data when predicting loss reserves for policies with very
long payment delays. For these policies, the depths of the trees used by the ExtraTree
algorithm will be very small and the predictions will be close to the empirical means
computed on the train sets. It is therefore clear that the ML algorithm would also
benefit from experts’ opinions.

Besides, other more complex case studies using unstructured information like texts
or images could be considered. Text mining algorithms or Deep Convolution Neural
networks could actually be then used to build informative features that would be
incorporated in the process (It)t≥T2 that gathers information on the individual claim
history. As we experienced, such features can be very useful. However these more
complex case studies will not change the main conclusion of the discussed case study of
the paper, which is that our approach can provide for some insutance portfolios more
efficient estimators of the claims reserves than the oldest aggregated data methods.
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Chapter 4

RadialStyle: an efficient Algorithm
to Leverage multiple datasets for
predictive modelling

4.1 Introduction

Machine Learning models usually require a large amount of data to be efficient. This
is caused by the complexity of the phenomenon to be modeled and/or by the fact that
the model is complex by nature.
Such an amount of data may not be always available in a single dataset, which can be
caused by several reasons. For example, mergers and acquisitions for companies lead
to having multiple datasets (from multiple companies) tackling the same prediction
problem. On the other hand, clinical studies usually have a small amount of data
available in a single dataset, but many laboratories carry out the same study, which
motivates the use of a framework to share the predictive information lying in each
study.
The use of a framework to fuse the multiple sources of information allows to leverage the
predictive power from multiple datasets since it takes into account the heterogeneous
behavior of sub-populations from one dataset to another.

Training a prediction model from multiple datasets raises two main challenges: feature
mismatch, and distribution mismatch.
We define the feature mismatch as the fact that two datasets may not share exactly
the same attributes.
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We define the distribution mismatch as the fact that the common attributes from
one dataset to another are not necessarily identically distributed. For example, the
proportion of male and female from one dataset to another is not necessarily the same.
One simple way (yet efficient) to combine distinct datasets is to concatenate them and
force each missing value (due to feature mismatch) to be zero (or another relevant
value). However, this method performs poorly when the feature mismatch proportion
is high.

An efficient way to combine multiple datasets is to transport the distribution of
one dataset to another. This allows to perform an efficient data augmentation by
transforming one dataset to another. Hence, it opens the way to training a prediction
model on a larger number of rows while taking into account i) the feature and distri-
bution mismatch and ii) the predictive power of each dataset. Such a task is refered
as the domain translation area, which is a direct application of optimal transport
(see [Villani, 2009, Peyré et al., 2019]). Deep translation models have been largely
studied in image translation [Isola et al., 2016, Zhu et al., 2017b, Zhu et al., 2017a,
Choi et al., 2018, Kim et al., 2017], as well as in Natural Language Processing (NLP)
[Collobert and Weston, 2008, Sutskever et al., 2011, Socher et al., 2010, McCann et al., 2017,
Lample et al., 2018, Lample and Conneau, 2019], but very few has been done on tab-
ular data.
Another issue that occurs when we want to transform one dataset to another is the
quadratical number of transfer models to train. For example, if f is a model trained to
transform exactly one dataset to another, and M is the number of available datasets,
then we need to train M(M − 1) distinct models f to transform any of the M datasets
to another one.
[Yoon et al., 2018b] addresses the problem of feature and distribution mismatch as
well as the quadratical number of transfer models to train by training an ensemble of
adversarial encoders and decoders to project each dataset in a latent central space and
decode it back to the original domain.

RadialGAN rely on Generative Adversarial Neworks (GANs) [Goodfellow et al., 2014],
which are known to be hard to train and can have some instability issues (e.g. mode
collapse) [Salimans et al., 2016]. This motivates us to propose a transfer method for
tabular data without the need to use a GAN framework. For that matter, our proposed
method is inpired by the Style Transfer literature.
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Style Transfer networks [Gatys et al., 2015a] have received a lot of attention, par-
ticularly with the recent improvements due to the use of layers such as Feature-wise
Linear Modulation (FiLM) [Perez et al., 2018] and Adaptive Instance Normalization
(AdaIN) [Huang and Belongie, 2017]. [Dumoulin et al., 2016] propose a network which
outputs its content input picture, but in the same style than the style input picture by
introducing conditional normalization layers. On the other hand, [Ghiasi et al., 2017]
improves the same task by using FiLM blocks in its architecture. More generally,
feature-wise transformations are applied in a broad range of deep learning applications
detailed in [Dumoulin et al., 2018], and allows to process efficiently multiple heteroge-
neous inputs.

To the best of our knowledge, Style Transfer models have been applied to image
processing or equivalently video processing [Yang et al., 2018], but not on tabular data.
This is due to the fact that the Style Transfer losses are designed to work on images.
In this paper, we propose a Style Transfer framework, which we call RadialStyle, to
transform one dataset to another, in order to perform a data augmentation without
losing the content of a dataset (i.e. the predictive signal), allowing to leverage the
predictive signal of multiple distinct datasets. To do so, we define an appropriate
content and style losses for the Style Transfer network. We address the problem of
feature and distribution mismatch by jointly training an ensemble of auto-encoders,
then performing the style transfer directly through a latent space.

We illustrate our method with several experiments built from three real-world datasets
(which have distinct properties), and show that it outperforms the RadialGAN al-
gorithm and give better results than the trivial benchmark. We also change the
experimental setup to study the behavior of RadialGAN and RadialStyle, and discuss
the results. Section 4.3 and 4.4 give more details about the Style Transfer networks
and the RadialGAN algorithm (coupled with related work), Section 4.5 gives details
about the RadialStyle and Section 4.6 illustrates the method and discusses the results.

4.2 Related Work

The problem of leveraging multiple datasets to impove a prediction task has already
been addressed in different settings. This section situates our approach with existing
methods
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Multi-Source Learning
[Heskes, 2000, Evgeniou and Pontil, 2004, Liao et al., 2005] successfully address the

problem of distribution mismatch but assume that each dataset share exactly the same
attributes, hence those approaches are not appropriate in presence of feature mismatch.
[Wiens et al., 2014] address the problem of feature mismatch, but does not take into
account the distribution mismatch between two distinct datasets.

Domain Translation
Domain translation models are neural networks which are trained to transport

an observed distribution to another target distribution. Image-to-Image translation
models such as Pix2Pix [Isola et al., 2016], CycleGAN [Zhu et al., 2017a] or DiscoGAN
[Kim et al., 2017] focus on the task of transforming one characteristic of an image to
another. Those models address both feature and distribution mismatch since they are
trained on unpaired heterogeneous images. However, these methods only perform a
pairwise domain translation, which means that they are not designed to address the
multi-domain issue (which leads to a quadratical number of transfer models to train).

Multi-Domain Translation
StarGAN [Choi et al., 2018] address the problem of multi-domain translation by

mapping all datasets to the target domain at once (using a single generator), but the
latter only works when there is no feature mismatch.
RadialGAN [Yoon et al., 2018b] address the problem of multi-domain translation as
well as the feature and distribution mismatch by jointly training an ensemble of encoders
and decoders to i) map all datasets to a latent space and ii) map back to the original
feature spaces. However, such a method does not take into account the specificity of
the target domain that the other datasets have to be mapped to. This leads in some
cases to unexpected underperformance due to the fact that each encoder/decoder is
forced to be domain agnostic.

4.3 Style Transfer

Convolutional Neural Networks (CNN) [LeCun et al., 1989] are composed of layers of
small computational units (kernels) that slide through the data and process visual
information hierarchically in a feed-forward framework. Each layer of units can be seen
as a collection of image filters, each of which extracts a certain feature from the input
image. The output of such a layer is called feature map, which contains differently
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filtered versions of the input image.

In computer vision, a lot of work has been done in training computers to capture
the artistic style of a painting in order to reproduce this style in an arbitrary pic-
ture. Advances on image texture representation have shown that deep convolutional
networks are able to estimate intermediate representations of the image, and such
representations contain more and more details of the image as the depth of the layer
increases [Gatys et al., 2015b, Mahendran and Vedaldi, 2015]. Therefore, through the
convolutions of the network, the input image is transformed into representations that
increasingly care about the details of the content image. The information contained in
each layer about the input image can be directly visualised by constructing the image
from the feature map of that layer.
Higher layers in the network capture the macro-level content in terms of objects and
their arrangement in the input image without taking care about the exact values of
each pixel in the reconstruction. In contrast, lower layers reproduce the exact pixel
values of the input image.

[Gatys et al., 2015a] show that the style and the content of a painting are separable by
proposing a method to reproduce an input content image in a given painting style, based
on the intermediate representation of the state-of-the-art Deep Convolutional Neural
Network (DCNN) trained on image recognition [Simonyan and Zisserman, 2014]. This
enlightens a new family of neural networks: Style Transfer nets.

The total loss Ltotal of such networks is decomposed in content and style losses Lc and
Ls respectively.
The underlying philosophy of such losses is the following:

• Two images are similar in content if their high-level feature maps as extracted by
an image recognition system are close in Euclidean distance.

• Two images are similar in style if their low-level features as extracted by an image
recognition system share the same spatial statistics.

The second definition measures the spatial statistics distance by computing the
correlations of the activations of the lower feature maps through the underlying Gram
matrices of such feature maps. We denote by G[.] the gram matrix associated with
a given feature map. One may either use a known Deep CNN (DCNN) architec-
ture like the VGG-Network [Simonyan and Zisserman, 2014] or the inception network
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[Szegedy et al., 2015, Szegedy et al., 2016, Szegedy et al., 2017] as the image recogni-
tion system, or train a CNN from scratch from ImageNet for example.

More formally, for a content image c and a style image s, we can write the opti-
mization problem for a generated image x as the following:

min
x

Ltotal(x, c, s) = min
x

λcLc(x, c) + λsLs(x, s), (4.3.1)

where λc, λs > 0 are hyper-parameters. Usually, we fix λc = 1 and λs is seen as a
Lagrange multiplier weighting the relative strength of the style loss.
We denote by C (resp. S ) the higher (resp. lower) level layers of an image classification
system. Thus, we can write the content and style losses as follows:

Lc(x, c) =
∑
j∈C

1
nj

||fj(x) − fj(c)||2L2 , (4.3.2)

Ls(x, s) =
∑
i∈S

1
ni

||G[fi(x)] − G[fi(c)]||2F , (4.3.3)

where fi are the network activations at layer i, ni is the number of units at layer i, and
||.||F is the Frobenius norm.

Feature-wise transformations
Style transfer models, among many other models, have to deal with multiple hetero-

geneous inputs. The stake is to properly take into account such an heterogeneity in
order to be able to generalize to multiple contexts. The problem of finding an effective
way to fuse multiple sources of information is still open. One effective approach is
to process feature-wise transformations, which consists of adding a block to a neural
network which aims at modulating the information conditionally on a given context
input.

[Perez et al., 2018] propose to use Feature-wise Linear Modulation (FiLM) blocks to
apply a feature-wise affine transformation to the input x conditionally on an additional
input z :

FiLM(x) := α(z) ∗ x + β(z), (4.3.4)

where α and β are z-dependent scaling and shifting parameters respectively, and ∗
is the Hadamard (element-wise) product. The FiLM block predicts the scale and shift
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parameters according to the conditional input z, then the transformation is applied to
x.

[Huang and Belongie, 2017] propose an Adaptive Instance Normalization which
does not have learnable affine parameters, but instead apply a rescaling of the input x
to the scale and shift of the conditional input z:

AdaIN(x, z) := σ(z)
(

x − μ(x)
σ(x)

)
+ μ(z). (4.3.5)

4.4 Background

Let X(1), . . . , X(M) be M random variables taking values in X (1), . . . , X (M) respectively,
where X (i) ⊂ Rpi , i ∈ {1, . . . , M}, and let Y be a random variable taking its values in
a label space Y , either continuous or discrete.
Let Di := {(x(i)

j , yi
j)}ni

j=1 be M datasets. (x(i)
j , yi

j) are iid samples drawn from the joint
distribution (X(i), Y ) ∈ X (i) × Y .

We aim at building M predictors fi : X (i) → Y such that each predictor uses the
predictive information of every other dataset Dj, j �= i. One way to take into account
such information is to build M augmented datasets D′

i := Di ∪j 
=i D̂ji ∈ X (i) ×Y , where
D̂ji are estimated transformation of Dj into Di (j �= i), then train fi on D′

i.

4.4.1 RadialGAN

RadialGAN [Yoon et al., 2018b] uses an adversarial framework to simultaneously train
M encoders and decoders Fi, Gi, such that Fi : X (i) × Y → Z and Gi : Z → X (i) × Y ,
where Z is a latent space in which all the datasets are projected.
The i-th adversarial loss for such a model is defined by:

Li
adv(Di, Gi, {Fj; j �= i}) = E[log Di(X(i), Y )] +

∑
j 
=i

αijE[log(1 − Di(Gi(Fj(X(j), Y ))))],

(4.4.1)
where αij = nj∑

k �=i
nk

and Di : X (i) × Y → [0, 1] is the discriminator of the i-th domain,
which attempts to distinguish between the real samples (drawn from (X(i), Y )) from
the fake samples (drawn from (X̂(i), Ŷ ) = Gi(Fj(X(j), Y ))). The i-th cycle-consistency
loss is defined by:
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Li
cyc(Gi, F) = E[||(X(i), Y ) − Gi(Fi(X(i), Y ))||2]

+∑j 
=i αijE[||Fj(X(j), Y ) − Fi(Gi(Fj(X(j), Y )))||2],
(4.4.2)

where F = (F1, . . . , FM) and ||.||2 is the L2 norm.

The cycle-consistency loss ensures that encoding to the latent space then decoding gives
a result close to the original input. In other words, we expect that Gi(Fi(X(i), Y )) ≈
(X(i), Y ) and Fi(Gi(Z)) ≈ Z.

The global objective function for the RadialGAN framework is defined, using the
losses Ladv and Lcyc, as the following minimax problem:

min
G,F

max
D

(
M∑

i=1
Li

adv(Di, Gi, {Fj; j �= i}) + λ
M∑

i=1
Li

cyc(Gi, F)
)

, (4.4.3)

where F = (F1, . . . , FM), G = (G1, . . . , GM), D = (D1, . . . , DM), and λ is a hyper-
parameter.

The training of the RadialGAN is done by alternatively training D with fixed F
and G, then training F and G with fixed D until an equilibrium between the loss of
D and the loss of F and G is found.

4.5 Model

We start from the notations defined in Section 4.4. Recall that we aim at training
M predictors fi : X (i) → Y, i ∈ {1, . . . , M}, and leverage the predictive information
contained in every other dataset Dj (j �= i) by performing a data augmentation with
an estimated transformation of each dataset Dj to a dataset close to Di, denoted D̂ji

(dataset transferred from the j-th domain to the i-th domain).

We first train M encoders and decoders Fi, Gi, such that each dataset Di can be encoded
to a latent space Z and decoded from Z to D̂i ≈ Di. We denote by DZ

i := Fi(Di) the
projection of Di in Z. The encoders and decoders aim at disentangling the hetero-
geneity between each feature space X (i), since such spaces may not share the same
dimension and the random variables X(i) may not share the same distribution.
We then train a style transfer model Si to perform a (latent) domain transfer directly
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through Z by transferring from a latent domain DZ
j to Si(DZ

j ) := D̂Z
ji which is close to

DZ
i .

Si is trained to minimize the L2 norm between DZ
i and D̂Z

ji and a loss L between Y

and Ŷ := Gpi+1
i (Z), where Gpi+1

i (.) ∈ Y is the last element of the vector Gi(.). The
first loss ensures that we translate well through the latent space to the appropriate
target domain, and the second loss ensures that we translate with a minimum loss of
predictive information between Z and Y .

For a dataset Dj to be translated into a target dataset Di, we perform the trans-
lation by the following steps:

1. We encode Di (resp. Dj) to the latent space Z to get DZ
i = Fi(Di) (resp.

DZ
j = Fj(Dj)).

2. We translate DZ
j to D̂Z

ji through Z with a style transfer model Si, such that
D̂Z

ji = Si(DZ
i , DZ

j ) ≈ DZ
i .

3. We then decode the estimated latent translation with Gi, i.e. D̂ji = Gi(D̂Z
ji).

The global architecture of our approach is depicted in Figure 4.1. Figure 4.2
illustrates the domain transfer and how each elements of our structure are used.

Fig. 4.1 RadialStyle Architecture. X (i) × Y: domain of dataset Di, Z: latent space,
Fi, Gi: encoder and decoder of the i-th dataset, Di: i-th predictor from Z to Y, DZ

i :
projection of Di in Z, Si: style transfer model, transferring latent domains DZ

j , j �= i
to the target latent domain DZ

i .
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4.5.1 Encoders and Decoders

The first step of our method consists of encoding each dataset Di to a latent space Z.
We do so to address the problem of dimension mismatch between X (i) and X (j) (i �= j)
and distribution mismatch between X(i) and X(j).
Such a mismatch is caused by the fact that there is no reason for two distinct datasets
to share the same amount of attributes nor the same distribution.

Let Fi : X (i) × Y → Z and Gi : Z → X (i) × Y be respectively M encoders and
decoders. We jointly train Fi, Gi to satisfy the auto-encoding loss, i.e. the ability to
encode to the latent space and decode back to the original domain with a minimum
loss of information.
We denote by DZ

i the projection of the dataset Di to Z. Hence we have DZ
i = Fi(Di).

The auto-encoders are trained to minimize the L2 distance between Di and D̂i :=
Gi(DZ

i ). We define the objective of the auto-encoders with the following formula:

min
F,G

M∑
i=1

E [||(Di − Gi(Fi(Di)))||F ] = min
F,G

M∑
i=1

E

[∣∣∣∣∣∣((X(i), Y ) − Gi(Fi(X(i), Y ))
)∣∣∣∣∣∣2

2

]
,

(4.5.1)
where F = (F1, . . . , FM) and G = (G1, . . . , GM), ||.||2 is the L2 norm and ||.||F is the
Frobenius norm.

The loss in Equation 4.5.1 is the first term of the cycle-consistency loss from the
RadialGAN in Equation 4.4.2. Moreover, such auto-encoders are different from the
RadialGAN’s objective since we do not give an additional adversarial loss.
In our experiments, we implemented Fi and Gi as multi-layer perceptrons.

4.5.2 Transfer

The transfer step aims in training M Style Transfer models Si : Z × Z → Z such that
D̂Z

ji := Si(DZ
i , DZ

j ) is close to DZ
i ∀j while preserving the predictive signal between DZ

j

and the target of Dj.
We define the first input of Si as the style input, and the second input as the content
input.

The Style Transfer model Si is trained to minimize the style and content losses Li
s

and Li
c, which we define with the following formulas:
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Li
s(Si, F) =

∑
j 
=i

E
[∣∣∣∣∣∣Si(Fi(X(i), Y ), Fj(X(j), Y )) − Fi(X(i), Y )

∣∣∣∣∣∣
2

]
, (4.5.2)

Li
c(Si, Gi, F) =

∑
j 
=i

E
[
L(Gpi+1

i (Si(Fi(X(i), Y ), Fj(X(j), Y ))), Y )
]

, (4.5.3)

where L is an appropriate loss according to the nature of Y, e.g. the cross-entropy
loss if Y is discrete, and the L2 loss if Y is continuous. The latter loss ensures that we
transfer DZ

j to DZ
i without losing the predictive information of DZ

j .

Using the losses Li
s and Li

c we define the objective of the RadialStyle as the following
optimization problem:

min
Si

Li
c(Si, Gi, F) + λLi

s(Si, F) ∀i ∈ {1, . . . , M}, (4.5.4)

where F = (F1, . . . , FM), and λ > 0 is a hyperparameter.

The architecture of the Style Transfer model is detailed in Figure 4.3

4.6 Experiments

In this section, we illustrate and compare our method with RadialGAN. We were not
able to get a set of multiple datasets tackling the same prediction problem. However,
we reproduced such a setup (for the sake of the experiments) by making a random split
of a single dataset (both on rows and columns) then by training the transfer model
(RadialGAN or RadialStyle) from the multiple splits.

Note that in this particular setup (splitting a single dataset) we do not expect a
predictor f ′

i trained on an augmented dataset D′
i (built from multiple splits of a larger

dataset) to give better performances than a predictor trained on the whole raw dataset.
However, we expect it to outperform a predictor trained on a single split and to give
better performances than the Simple-Combine benchmark, which we define in the next
subsection.

We illustrate our approach through experiments built from several real-world datasets,
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namely the Census Income KDD dataset [Dua and Graff, 2017], the Facebook Com-
ments dataset [Kamaljot et al., 2015] and the BNP Paribas Cardif’s Claim Management
dataset1 from the Kaggle challenge hosted in 2015.

4.6.1 Experimental setup

For a dataset D, we sampled (without replacement) M sub-datasets D1, . . . , DM from
D. Each sub-dataset Di, i ∈ {1, . . . , M}, contains pi attributes (drawn at random)
and ni rows (also drawn at random).
We perform an additional sampling of D into M holdouts Dho

1 , . . . , Dho
M , except that we

keep the same pi attributes as Di, and we do not include the same rows as Di in the
random choice of rows.

Once we splitted D, we train the RadialGAN and RadialStyle models from D1, . . . , DM

and build M augmented datasets D′
i,G = Di∪i
=j D̂ji following the RadialGAN algorithm

and M augmented datasets D′
i,S following RadialStyle.

We then train a prediction model fi on Di and two other prediction models f ′
i,G and

f ′
i,S, trained on D′

i,G and D′
i,S respectively, and compare the performance gain between

fi and f ′
i,G, and between fi and f ′

i,S.
We also compare f ′

i,G and f ′
i,S with a prediction model f c

i trained on a simple combi-
nation of all datasets denoted Dc := {(xi, yi)}n

i=1, where n = ∑
i ni and (xi, yi) are iid

samples drawn from (X, Y ) ∈ X × Y , where X := ∪iX (i). In other words, we compare
each augmentation method against the simple-combine benchmark which consists of
concatenating each datasets and zeroing each missing values.

Validation
Performing a cross-validation directly on the augmented datasets D′

i,G and D′
i,S leads

to side effects due to the target-leakage behavior of both methods. RadialGAN and
RadialStyle both encode and decode the target Y in the latent space along with the
explicative variables X, in order to preserve the predictive information between X and
Y .
Encoding and decoding the target Y introduce a leakage of Y in X, which leads to a
systematical overfitting when training a predictive model on the augmented datasets
D′

i,G and D′
i,S.

Hence we train f ′
i,G and f ′

i,S on the augmented (yet leaked) datasets D′
i,G and D′

i,S, but
1https://www.kaggle.com/c/bnp-paribas-cardif-claims-management/
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we compute our results on the holdouts Dho
1 , . . . , Dho

M which were not used for training
the transfer models.

We show in our experiments that even though D′
i,G and D′

i,S are target-leaked, we still
observe a significant performance gain on the prediction of the holdout. This leads to
a tradeoff between overfitting the augmented dataset and improving the performance
on the holdout.

4.6.2 Dataset Description

Census Income
The Census Income KDD dataset contains weighted census data collected by the

U.S. Census Bureau between 1994 and 1995. The prediction task consists of predict-
ing whether or not an individual earns more than $50k per year based on census
attributes such as the age, the workclass or the education level, among others. The
Census Income dataset contains 199,523 rows and 41 attributes, each attribute can
contain missing values and the dataset contains both continuous and discrete attributes.

Facebook Comments
The Facebook Comments dataset contains informations about posts published on a

Facebook page, such as the length of the post, the page popularity in which the post
was published, the weekdays, to cite a few.
The dataset contains 40,949 posts and 54 attributes. The preciction task consists of
predicting the number of comments the post will recieve. Hence, this is a regression
task, where the target variable to predict has a significant mass in zero (55%), and is
heavy-tailed, with posts having more than one thousand comments.

Claims Management
The Claims Management dataset contains data related to policies and policy holder

form the insurer BNP Paribas Cardif. The dataset was proposed as the train set for a
Kaggle challenge in 2015. The associated prediction task is to predict a claim category
based on features available early on the process.
The dataset contains 114,321 rows and 131 anonymized attributes which can be either
continuous or discrete. Some discrete attributes can have a large number of modalities
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(some have hundreds of modalities, and one attribute have more than 18,000 modalities).

4.6.3 Results

We compare (in terms of performance gain) each augmentation method along several
configurations, e.g. by varying the number ni and pi of rows and columns randomly
drawn for each split and by changing the dataset D (Census Income, Bank Marketing,
Claims Management).
We repeated each configuration over 20 distinct seeds, in order to measure the mean
(and standard deviation) of the performance gain of f ′

i,G and f ′
i,S over fi and f c

i .

Mean Performance Gain: for a random seed s ∈ {1, . . . , ns} and a splitted dataset
Ds

1, . . . , Ds
M , we define the Performance Gain (PG) of a prediction model gi,s trained on

D′
i,s over a prediction model trained on Di,s for a metric M by the following formula:

PG(fi,s, gi,s, M) := M(gi,s(X), Y ) − M(fi,s(X), Y ), (4.6.1)

and we define the Mean Performance Gain by the following formula:

MPG(fi, gi, M) := 1
ns

∑
s

PG(fi,s, gi,s, M). (4.6.2)

Central Experiment
We start from a central experiment, from which we give variants to study the behavior

of both RadialGAN and RadialStyle. We use the Census KDD dataset for this experi-
ment, which we split in M = 3 sub-datasets, of ni = 1000 rows and pi = 10 attributes ∀i.

Figure 4.4 shows the MPG(fi, f ′
i,G, AUC) (blue bar), the MPG(fi, f ′

i,S, AUC) (yellow
bar) and MPG(fi, f c

i , AUC) (green bar) for each dataset.
This central experiment illustrates that both RadialGAN and RadialStyle i) have a
positive MPG, which means that it gives better performances to train on augmented
dataset than to train on a each single splits, ii) give better performances than the
Simple-Combine benchmark (except for the RadialGAN on the third dataset), and iii)
the RadialStyle outperforms the RadialGAN.

Variants of the Central Experiment
We start from the central experiment previously described, and change some pa-
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rameters of the setup of this experiment, to show the behavior of the RadialGAN and
RadialStyle. Figure 4.5 illustrates the MPG on the central experiment, except that we
drew p1 = 10, p2 = 20 and p3 = 30 attributes instead of p1 = p2 = p3 = 10. In this
experiment, we see that i) the RadialStyle outperforms the RadialGAN, ii) the MPG
of D1 is higher than the MPG of D2 and D3, which is explained by the fact that D2

and D3 have more columns to train on, and iii) the RadialGAN does not give better
performances than the Simple-Combine benchmark.

Figure 4.6 shows the MPG on the central scenario, except that we splitted D into
M = 5 sub-datasets instead of M = 3. In this particular experiment, we see that
the RadialStyle gives better performances than the Simple-Combine benchmark, and
outperforms the RadialGAN, the latter does not give better performances than the
Simple-Combine. Note that, by nature, Dc is less noisy than D′

i, which means that
when the number of rows increases linearly, the Simple-Combine’s performance also
increases.
Also note that in the central experiment we draw pi = 10 attributes ∀i, which rep-
resents roughly 1/4 of all attributes (recall that the Census KDD dataset contains
41 attributes), meaning that the feature mismatch phenomenon vanishes when M

increases and the need of a transfer model is inapropriate, especially if the splits are
drawn uniformly (there is no distribution mismatch if the splits are drawn uniformly).
The inappropriateness discussed above is depicted in Figure 4.7, where none of Radial-
GAN and RadialStyle beat the Simple-Combine benchmark.

Now consider the central experiment, except that we vary the number of rows of
each dataset. In this experiment, we have n1 = 300, n2 = 1000 and n3 = 2000. Figure
4.8 shows the MPG of both methods for this experiment. We see that our method
gives a better performance gain (in terms of AUC gain) than the RadialGAN and the
Simple-Combine benchmark (except for the first dataset). Note that the performance
gain is inversely proportional to ni. This is explained by the fact that D1 has 2,300 rows
to train instead of 300, meaning that the additional 2k rows carry a lot of predictive
signal. The same applies for D2 and D3, but the latter is less sensitive to signal gain
due to its relatively large number of rows.
Figure 4.9 shows the MPG of RadialGAN and RadialStyle on the same experiment,
except that we now let pi and ni varying. In this experiment, we have p1 = 10, p2 = 20
and p3 = 30, and n1 = 300, n2 = 1000 and n3 = 2000. We see that none of RadialStyle
and RadialGAN gives a better performance gain than the Simple-Combine benchmark.
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Note that the MPG of D1 is significantly higher than D2 and D3 since it has less rows
and less columns.

Non-uniform Sampling
For this experiment, we start from the central experiment, except we weight the

sampling of D1 and D2 along two distinct attributes of D respectively, and we perform
a uniform sampling for D.
This experiment aims at illustrating the ability of both RadialGAN and RadialStyle
to handle the distribution mismatch, which is not the case in the central experiment
because of the uniform sampling.
Figure 4.10 shows the MPG of this experiment. Note that we did not include the
attributes used to weight the sampling of D1 and D2 in the random choice of attributes
for each seed and for each dataset. We see that RadialStyle outperforms both Radial-
GAN and the Simple-Combine benchmark.

We also illustrate in Figure 4.11 the same experiment, except that we explicitly
give to each dataset the two attributes used to weight the sampling of D1 and D2. In
this case, the Simple-Combine approach fully observe the two attributes, and therefore
is better since it is less noisy by nature. However, RadialStyle still leverages the
distribution mismatch and gives better performances on the third dataset.

Non-binary case
All the experiments described above deal with the case where Y is binary. We now

consider the same setup as the central experiment on the Facebook Comments dataset.
In this case, the loss L used in Equation 4.5.3 is the L2 loss, and the metric used to
compute the MPG is the Root Mean Squared Error (lower the better):

RMSE(y, ŷ) =
√√√√ 1

N

∑
i

(yi − ŷi)2, (4.6.3)

where y and ŷ are the ground truth and the predicted vector respectively.

Figure 4.12 shows the MPG on this experiment. We observe that the RadialStyle outper-
forms both RadialGAN and Simple-Combine, and we also see that the Simple-Combine
approach gives performance degradation on D1 and D2
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Claims Management
All experiments previously described deal with categorical data with a small number

of modalities in their attributes. In this experiment, we challenge the RadialGAN and
RadialStyle on their ability to handle a categorical attribute with a large number of
modalities.
The categorical data is one-hot encoded in each experiment, which means that a
categorical attribute with a large number of modalities will result in an input dataset
with a large number of columns (in our case, more columns than rows).

For this experiment, we use the same setup as the central experiment on the Claims
Management dataset, and force a categorical attribute to be selected on the random
choice of attributes. The forced attribute contains 18,210 unique modalities.

Figure 4.13 shows the MPG for this experiment, and Figure 4.14 shows the MPG
for the same experiment, except that we do not include the attribute with a large
number of modalities. We observe that although none of RadialGAN and RadialStyle
achieve better performances than the Simple-Combine, both models leverage predictive
information of such an attribute.

Correlations of the predictions
We showed in the previous experiments that the RadialGAN and RadialStyle have

distinct behaviors according to the experimental setup. We are now interested in the
case where both models have an equivalent quality, i.e. when the MPG of both method
is equivalent (e.g. in the central experiment), so that we can enlighten the points where
the two methods do not agree.
In other words, if both method have equivalent performances but the predictions of
f ′

i are widely different whether the augmentation comes from RadialGAN (f ′
i,G) or

RadialStyle (f ′
i,S), we believe that a combination of both methods can give a better

performance gain than both methods marginally.

Figure 4.15 shows the scatterplots of the predictions of f ′
i,G (x-axis) and f ′

i,S (y-axis)
for each dataset (one column per dataset) and for 3 distinct seeds of the experiment
(one row by seed). We see that the predictions are highly correlated. This is explained
by the fact that both f ′

i,G and f ′
i,S utilize Di when training, which means that both

prediction models have a common sub-dataset to train on which do not come neither
from RadialGAN nor RadialStyle.
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Figure 4.16 shows the scatterplots of the predictions of f ′
i,G (x-axis) and f ′

i,S (y-axis),
except that we substracted the predictions of fi to the predictions of f ′

i,G and f ′
i,S, in

order to vanish the correlation which comes from fi. We see that for each dataset, the
predictions are highly correlated, which means that there is no interest in combining
the predictions of f ′

i,G and f ′
i,S.

On the central experiment, the average correlation coefficient between the predictions
of f ′

i,G and f ′
i,S is .78 for D1, .83 for D2 and .80 for D3.

Computational efficiency
For each experiment presented above, we recorded the total computational time for

each method (RadialGAN and RadialStyle) to perform the experiment across the 20
bootstraps. Table 4.1 regroup the total run time of each method according to the
setup of each experiment. We see that i) our proposed method is significantly faster
than the RadialGAN for each experiment, and ii) that for both methods, the number
of splits M and the number of rows ni for each dataset have the most impact on the
computational time.
The total computational time to run the central experiment on 20 distinct seeds
depending on the number M of sub-datasets is depicted in Figure 4.17. We see that
both method have a quadratical increasing computational time according to M , but
the RadialGAN’s computational time is significantly higher than RadialStyle.

4.6.4 Discussion

We showed in our experiments that the RadialStyle globally gives a better performance
improvement than the RadialGAN. However, recall that we fine tuned each model only
once for all seeds.
This means that we did not measure the overall ability of each model to beat the
Simple-Combine benchmark, but the cost-efficiency of each method. Indeed, we fixed
the cost of tuning of each model, then we run it for 20 distinct seeds, which means
that the results previously described are pessimistic.

Thus, it does not mean that the RadialStyle is a uniformly better approach than
the RadialGAN, but that it is more stable once the model is tuned, even though
RadialGAN could give more performance than both RadialStyle and Simple-Combine.

For each experiment, the column-rate for the random column sampling is a very
important parameter to take into account. Indeed, the more the datasets D1, . . . , DM
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Table 4.1 Computational efficiency of the RadialStyle and RadialGAN algorithms
according to the experiment setup. The time presented below refers to the total time
for each method to perform the experiments on the 20 different seeds. We see that i)
our proposed method is significantly faster than the RadialGAN for each experiment,
and ii) except for the number of splits M and the number of rows ni, the experimental
setup has no significant influence on the computational time for both methods.
Footnote captions - PF: Preferential sampling, SCNI: Sampling columns not included,
SCI: Sampling columns included, LC: Large categorical.

Dataset M ni pi RadialStyle RadialGAN

Census KDD (central exp) 3 1k each 10 each 23min 1h 8min

Census KDD 5 1k each 10 each 2h 4min 3h 10min

Census KDD 10 1k each 10 each 8h 59min 14h 49min

Census KDD 15 1k each 10 each 19h 20min 1d 8h 48min

Census KDD 3 1k each 10, 20, 30 36min 1h 15min

Census KDD pf
2
, scni

3
3 1k each 10 each 36min 1h 14min

Census KDD pf, sci
4

3 1k each 10 each 35min 1h 13min

Census KDD 3 300, 1000, 2000 10 each 23min 21min
Census KDD 3 300, 1000, 2000 10, 20, 30 23min 23min

Facebook comments 3 1k each 10 each 36min 1h 12min

Claims management lc
5

3 1k each 10 each 35min 1h 10min

Claims management no lc 3 1k each 10 each 39min 1h 11min

will share common attributes, the more Simple-Combine is relevant over a transfer
method such as RadialGAN or RadialStyle.
On the other hand the more the datasets’ distributions are different, the more relevant
it is to use such a transfer method.

We also showed that in some experiments, none of RadialStyle and RadialGAN could
give a better performance gain than the Simple-Combine method. This is particularly
true when the proportion of common columns between Di and Dj increases. This
enlightens the worthiness of performing a domain transfer between each dataset, since
the RadialGAN is difficult to train and implement, and does not give systematically
better results.

4.7 Conclusion

We proposed a method to perform a multi-domain translation which addresses the
feature and distribution mismatch issues while taking into account the characteristics
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of the target domain. Our approach is similar to the RadialGAN, i.e. we map all the
datasets into a latent space, but we train an additional style transfer model directly
into the latent space to better translate from one domain to the target domain.

We proposed an appropriate loss for the style transfer model, which is designed
to work with the problem of domain translating with an additional constraint on the
fact that we want to preserve the predictive signal lying in each dataset.

We showed that our approach outperforms the RadialGAN, achieving the state-of-
the-art performances in domain translation applied to tabular data. Moreover, our
approach, besides being more performant, is much faster than the RadialGAN algo-
rithm.

However, in some experiments we showed that our method cannot beat the Simple-
Combine benchmark, which motivates our future works. Our approach can be improved
by considering an appropriate processing of categorical data, and also by performing a
distinct processing according to the nature of data (e.g. text data, high-dimensional
datasets etc.). Another possible future extension of our work is to study the worthi-
ness of performing a complex transfer method which does not systematically give a
performance improvement.



4.7 Conclusion 109

Fig. 4.2 Block diagram of the RadialStyle for transferring the source domain X (i) × Y
to the target domain X (j) × Y. First, the source and target domains Di = X (i) × Y
and Dj = X (j) × Y are mapped to Z, denoted DZ

i and DZ
j respectively. Then DZ

i is
translated by Sj to a latent domain D̂Z

j ≈ DZ
j . Finally, D̂Z

j is decoded by Gj to give
an approximation of the target domain Dj, denoted D̂ij.
During the training phase, we first train the encoders and decoders Fi, Gi with the
cycle-consistency loss, then we train Si with the content and style loss.
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Fig. 4.3 Architecture of the Style Transfer model. Green blocks represent fully connected
layers. We input the target domain DZ

i to a FiLM generator which predicts the scale
and shift parameters α and β, and inject those parameters to a FiLM block. The FiLM
block passes the domain DZ

j to be transferred through a fully connected layer, then
applies the affine transformation. We compose k FiLM blocks, the last output being
the transferred latent dataset D̂Z

ji.
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Fig. 4.4 Central experiment: we uniformly sample without replacement the Census
KDD dataset into M = 3 sub-datasets, each of 10 attributes and 1,000 rows. We see
that each method gives better performances than the Simple-Combine benchmark, and
the RadialStyle is uniformly better than RadialGAN.

Fig. 4.5 Cental experiment with a vary-
ing number of attributes. The datasets
have respectively 10, 20 and 30 at-
tributes. We see that i) RadialStyle
gives better performances than Radial-
GAN, and ii) the performance gain on
the first dataset is higher because is has
less columns.

Fig. 4.6 Central experiment with a
uniform sampling of M = 5 sub-
datasets. We see that RadialStyle
still outperforms both Simple-Combine
benchmark and RadialGAN, but the
Simple-Combine benchmark gives better
performances when M = 5 than when
M = 3, due to the fact that it is less
noisy by nature.
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Fig. 4.7 Central experiment with a uniform sampling of M = 15 sub-datasets. We
see that none of RadialStyle and RadialGAN is able to beat the Simple-Combine
benchmark.
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Fig. 4.8 Central experiment with a varying number of rows. The datasets have
respectively 300, 1k and 2k rows. We see that the RadialStyle ourperforms the
RadialGAN as well as the Simple-Combine benchmark (except for the first dataset).
Moreover, we see that for the Simple-Combine and the RadialStyle methods, the
performance gain is inversely proportional to the number of rows of each dataset.
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Fig. 4.9 Central experiment with a varying number of rows and columns. The datasets
have respectively 300, 1k and 2k rows and 10, 20 and 30 columns. We see that none
of RadialStyle and RadialGAN is able to give better performances than the Simple-
Combine benchmark (except on the third dataset for RadialStyle). Note that the
performance gain of D1 is significanly higher than D2 and D3 since it has less columns
and less rows.
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Fig. 4.10 Central experiment with a sam-
pling of D weighted by two disctinct
attributes for D1 and D2, and a uni-
form sampling for D3. Note that the
attributes used to weight the sampling
of the first two datasets carry a non-
neglictible predictive power. We see
that RadialStyle is able to levereage the
distribution mismatch induced by the
weighted sampling, and that it outper-
forms both RadialGAN and the Simple-
Combine benchmark. Note that we
did not include the two attributes used
to weight the sampling in the random
choice of attributes.

Fig. 4.11 Central experiment with a
sampling of D weighted by two disct-
inct attributes for D1 and D2, and a
uniform sampling for D3. Note that
the attributes used to weight the sam-
pling of the first two datasets carry a
non-neglictible predictive power. We
included for this experiment the two
attributes used to weight the first two
datasets. We see that RadialStyle is able
to levereage the distribution mismatch
induced by the weighted sampling, but
none of RadialGAN and RadialStyle is
able to beat the Simple-Combine bench-
mark due to the fact that the latter is
less noisy.



116
RadialStyle: an efficient Algorithm to Leverage multiple datasets for predictive

modelling

Fig. 4.12 Central experiment on the Facebook Comments dataset. The target to predict
is continuous, and the metric used to measure the performance gain is the root mean
squared error (RMSE), hence the lower the better. We see that RadialStyle gives better
performances than the RadialGAn and the Siple-Combine benchmarks.
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Fig. 4.13 Central experiment on the
Claims Management dataset. In this
experiment, we included a categorical
attribute which contains 18,200 modali-
ties (this attribute carry a lot of predic-
tive power). We see that the RadialStyle
gives better performances than the Ra-
dialGAN, but none of these methods
is able to uniformly beat the Simple-
Combine benchmark. However, the per-
formance gain is still higher than if we
do not include the attribute (see Figure
4.14), which means that the methods
still leverage predictive signal although
too noisy to beat the Simple-Combine
benchmark.

Fig. 4.14 Central experiment on the
Claims Management dataset. We did
not include the attribute with a large
number of modalities in this experiment.
We see that none of RadialStyle and
RadialGAN is able to beat the Simple-
Combine benchmark. Note that this
dataset contains less predictive signal
than the Facebook Comments and Cen-
sus KDD datasets. The dataset trans-
fer introduces noise, thus the Simple-
Benchmark is hard to beat on this ex-
ample.
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Fig. 4.15 Scatterplots of the predictions of f ′
i,G (x-axis) and f ′

i,S (y-axis), for each dataset
(one dataset per column), and for 3 distinct seeds of the central experiment (one row
per seed). We see that the predictions are highly correlated, which is explained by the
fact that both models utilize the raw dataset Di (which carry most of the predictive
information) as a common part of their training.
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Fig. 4.16 Scatterplots of the predictions of f ′
i,G (x-axis) and f ′

i,S (y-axis), for each
dataset (one dataset per column), and for 3 distinct seeds of the central experiment
(one row per seed). We substracted to each predictions the predictions of fi, in order
to vanish the correlation due to the training of f ′

i,G and f ′
i,S on a common dataset Di

which does not come from RadialGAN nor RadialStyle. We see that the predictions are
relatively correlated, but are still quite different, which enlightens a potential interest
of combining both approaches.
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Fig. 4.17 Computational time of RadialGAN (blue marks) and RadialStyle (yellow
marks) to run the central experiment on 20 distinct seeds. We vary the number M of
sub-datasets in the x-axis and record the computational time in hours on the y-axis.
We see that both method have a quadratical increasing computational time, but the
RadialGAN is significantly longer to train than the RadialStyle.



Chapter 5

Autoregressive Implicit Quantile
Networks for Time Series
Generation

5.1 Introduction

Time series analysis gathered significant interest in a wide range of applications such
as weather forecasting, stock market analysis, sales forecasting, among many others.
We distinguish two problem-dependent focuses on time series analysis : forecasting and
generating. Forecasting refers to the estimation of conditional expectations whereas
generating focuses on the estimation of conditional distributions.
The interest of forecasting (predicting) a time series is to estimate what is most likely to
realize in the future values (path) of the time series. For example, forecasting answers
the question of "what the weather will be like tomorrow (or any other future date)?".
On the other hand, generating a time series refers to the fact that we need to estimate
the distribution of the observed stochastic process, allowing us to consider a large
amount of potential future realizations of the time series. For example, it gives multiple
appropriate answers to the question of "what the weather could be like tomorrow?",
including extreme scenarios.

Time series generation is usually done by setting a parametric structure and gen-
erating observations along that model, allowing us to get as many possible future paths
as needed. Structural models have an old history in econometrics literature, e.g. linear
time series [Box and Jenkins, 1970, Brockwell and Davis, 1991, Hamilton, 1994]. Such
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models are widely used in practice, e.g. by the insurance industry to build Economic
Scenarios Generators (ESG), in order to evaluate the "Best Estimate liabilities". It can
also be used to simulate different weather scenarios coupled with electricity consump-
tion to optimize the energy distribution. It is useful to generate GPS data for traffic
prediction to prevent traffic jams. It also opens the way for video generation since it
takes into account the temporal dependencies between each observation, to cite a few.
Moreover, being able to learn the distribution of any time series may overcome legal
issues by working with generated samples instead of personal or sensitive data.

Deep generative models such as Generative Adversarial Networks (GAN)
[Goodfellow et al., 2014], Variational Auto-Encoders (VAE) [Kingma and Welling, 2013],
and autoregressive density estimation (PixelCNN) [Oord et al., 2016] have recieved
a lot of attention from the deep learning community, leading to significant recent
advances in many application domains, such as image generation [Radford et al., 2015,
Karras et al., 2017], text generation [Guo et al., 2017, Yu et al., 2017] and raw audio
generation [van den Oord et al., 2016a]. However, the deep learning literature dealing
with time series is still scarce, and the few significant works mainly focus on time series
prediction (i.e. forecasting).
Recent work in deep learning for time series forecasting seeks to model complex non-
linear patterns. In particular, the use of Recurrent Neural Networks (RNN)
[Hochreiter and Schmidhuber, 1997] and Convolutional Neural Networks (CNN)
[LeCun et al., 1998] has led to outstanding performances in time series prediction
[Giles et al., 2001, Krishnan et al., 2017, Borovykh et al., 2017], achieving the state-of-
the-art performances in multivariate, asynchronous time series [Binkowski et al., 2017,
Che et al., 2018].

Deep generative modeling applied to time series have not revieved enough attention from
the deep learning community. Recent work includes [van den Oord et al., 2016a] who in-
troduced the WaveNet architecture to perform raw audio generation, [Esteban et al., 2017]
who applied GANs to generate real-valued medical time series and [Zhang et al., 2018]
who generate smart grid data by using GANs. All of these works successfully managed
to estimate the underlying distribution of the stochastic process, hence generating
realistic new potential future paths for the time series.
To the best of our knowledge, no other thorough work has been proposed to estimate
the family of conditional distributions of a time series. This is explained by the lack of
a reliable data-agnostic criterion to assess the quality of a generative model applied
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on time series. The usual metrics to assess the generation quality are the Inception
Score (IS) [Salimans et al., 2016] and Fréchet Inception Distance [Heusel et al., 2017],
which both rely on an Inception network [Szegedy et al., 2016] pretrained on ImageNet
[Deng et al., 2009], which is not usable with time series.

In this paper, we propose an autoregressive implicit quantile network (AIQN) ap-
proach to estimate the conditional distributions of a time series. Our method is inpired
by the WaveNet model [van den Oord et al., 2016a] except that i) it estimates the
quantile function instead of the likelihood and ii) it is designed to work with continuous
data. The latter point is of high importance in time series generation since it allows us
to accurately estimate the distribution tails of the stochastic process, which cannot be
done with the WaveNet model.
Our approach has strong implications for performing time series simulation without
any structural model, opening the way to estimate complex patterns in the time series
while being able to generate new samples along its distribution.

We first challenge the ability of our approach to learn and simulate simple time
series, e.g. AR, ARMA, VAR, ARCH/GARCH models (see [Hamilton, 1994]) and give
an illustration of our method on a simulated high dimensional time series.
We also evaluate our approach on two real-world datasets: a subsample of a financial
portfolio of equities, and GPS car data trajectories.

We propose to evaluate the generation quality by focusing on three key time se-
ries characteristics: i) the Auto-Correlation Function (ACF), which quantifies the
temporal dependencies in the time series, ii) the Quantile-Quantile plot between real
and generated marginals, which measures the ability of the model to fit the true distri-
bution, and iii) the MMD statistic [Gretton et al., 2008] which measures the closeness
of two multivariate, high dimensional distributions.
We also compute the Cross Auto-Correlation Function (CACF) between each dimen-
sions of the time series in the multivariate case.

We show that in almost every example, our approach provides excellent results with
respect to these characteristics, and is able to learn complex properties and time de-
pendencies of the time series, while taking into account the limited size of the training
sample. We also address the problem of high dimensional time series by proposing a
way to embed a stochastic process to a latent space.
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In this paper, we make the following contributions:

• we also propose an AIQN architecture with residual blocks designed for 1D data,
coupled with an additional gating mechanism and an extra residual connection,

• we perform an importance sampling on the target quantiles and add multivariate
inputs to be more accurate on the estimation of the marginal distribution and
on the time dependencies,

• we show that our approach outperforms the state-of-the-art models,

• we propose a framework to embed a time series in a latent space of low dimension
to adress the problem of high dimension.

The outline of this paper is organized as follows. Section 5.2 gives the context of this
paper and on related works on time series and deep generative modelling, Section 5.3
gives details about structural time series, the metrics we use to assess the performance
of the generative models and on the loss we use for our approach. Section 5.4 describes
our proposed approach and Section 5.5 propose an adaptation of our model on high
dimensional time series. Section 5.6 illustrates our approach and compare it with the
state-of-the-art model on time series generation, and Section 5.7 discuss the results.

5.2 Related work

Literature on time series is rich and has led to a broad range of works in econometrics
which makes extensive use of stochastic structural models such as AR, ARMA, VAR
and ARCH/GARCH, among others. Such structural models can be used to forecast a
time series as well as to sample new observations, which is widely used in practice to
perform Monte Carlo experiments.
Deep learning literature on time series is scarce, and mainly focuses on the forecasting
exercise. [Binkowski et al., 2017] proposed the use of CNN to modelize non-linear
patterns of the offset and volatility of time series, and achieved state-of-the-art per-
formances in financial time series forecasting. [Che et al., 2018] proposed a deep
hierarchical hidden Markov model to capture autoregressive patterns and led to excel-
lent results in time series forecasting.

Literature on deep generative modelling is quite recent but is rich and has led to
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several advances in the way of modelling a target distribution. Variational Auto-
Encoders (VAE) [Kingma and Welling, 2013] approximate the density by maximizing
a tractable lower bound of the likelihood. Generative Adversarial Networks (GAN)
[Goodfellow et al., 2014] directly learn an implicit density by setting a two-player
zero-sum game between two networks: a generator G and a discriminator D which
aims at distinguishing real and fake (generated) samples while G aims at generating
data realistic enough to induce D in error. The whole stake of GAN is to find a
Nash equilibrium between G and D. On the other hand, PixelCNN architectures
[Oord et al., 2016, van den Oord et al., 2016b] provide autoregressive models which
learn tractable densities by performing masked convolutions with residual gated blocks,
and allow to estimate the conditional distribution of each observed point given its past.

Literature on deep learning for time series generation is even scarcer, and mainly
focuses on the use of GANs to directly modelize the distribution. [Esteban et al., 2017]
applied GAN using LSTM [Hochreiter and Schmidhuber, 1997] network for the gen-
erator and discriminator to generate real-valued medical sequences, and introduced
the use of the Maximum Mean Discrepancy (MMD) criterion [Gretton et al., 2008]
to evaluate the performance of the GAN. On the other hand, the WaveNet model
[van den Oord et al., 2016a] can be used to generate time series since raw audio data is
basically a time series. However, the latter does not fit when the dimension of the time
series is greater than the number of realizations (i.e. the high dimensional case), and is
desingned to work with discrete data, which is not the case for a real-valued time series.
Note that it is of significant interest to give a good estimation of the tails of distribu-
tion for a time series, and the WaveNet does not take such a behavior in its architecture.

The use of the Kullback-Leibler (KL) divergence as a part of the loss function has been
recently challenged [Dabney et al., 2018a, Dabney et al., 2018b], leading to the use of
a quantile loss to introduce a new kind of networks: Implicit Quantile Networks (IQN).
The adaptation of the conditional PixelCNN architecture [van den Oord et al., 2016b]
to IQN network for image generation has been proposed by [Ostrovski et al., 2018] to
extend the IQN to autoregressive models, leading to a new family of generative models:
Autoregressive Implicit Quantile Networks (AIQNs). AIQN architectures, relying on
the reparameterization of a quantile τ drawn from a uniform distribution, allow to
directly estimate the quantile function of a distribution without the need to analyze
the likelihood by optimizing a KL divergence. Thus, in this work, we leverage the
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AIQN architecture to generate time series, and propose to use additional criteria to
evaluate our model.

5.3 Background

Let (Xt)t∈Z be a multivariate stochastic process in Rd. Forecasting the future values of
(Xt)t∈Z is equivalent to estimating the conditional expectation of its future values

E[Xt+h|Xt, Xt−1, . . .], ∀h > 0, (5.3.1)

whereas generating new samples is equivalent to estimating its conditional multivariate
distributions by considering the product of its univariate conditional distributions

p(Xt+h, . . . , Xt+1|Xt, Xt−1, . . .) =
h∏

j=1
p(Xt+j|Xt+j−1, . . .),

and generate samples along the estimated distributions. This is equivalent to estimating
the conditional quantile functions of (Xt)t∈Z.

5.3.1 Maximum Mean Discrepancy

Maximum Mean Discrepancy (MMD) [Gretton et al., 2008] is a powerful non paramet-
ric tool to compute a distance between two multivariate, high dimensional distributions
p, q from which we observe two finite samples x := (x1, . . . , xn), y := (y1, . . . , ym). For
a class of functions F , the MMD is defined by the following formula:

MMD(p, q) := sup
f∈F

(Ex[f(x)] − Ey[f(y)]) . (5.3.2)

An estimator of the MMD can be computed by replacing the expectations by their
empirical estimators along x and y:

M̂MD(p, q) := sup
f∈F

(
1
n

∑
i

f(xi) − 1
m

∑
i

f(yi)
)

. (5.3.3)

Note that due to the fact that we replaced the expectations by their natural
estimator directly in the sup, the MMD estimator in Equation 5.3.3 has an upward
bias. However, [Gretton et al., 2008] showed that the MMD can be written in terms of
kernel functions if F is taken as the unit ball of a universal Reproducting Kernel Hilbert
Space (RKHS). More formally, the MMD2 can be written using kernel functions:
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MMD2(x, y) = Ex,x′ [k(x, x′)] − 2Ex,y[k(x, y)] + Ey,y′ [k(y, y′)], (5.3.4)

where x′ (resp. y′) is an independant copy of x (resp. y) following the same distribution
as x (resp. y), and k is a kernel, usually Gaussian. From that fromula, an unbiased
estimator can be build by replacing the conditional expectations from Equation 5.3.4
by their natural estimator:

M̂MD2(x, y) = 1
n(n − 1)

∑
i
=j

k(xi, xj) − 2
mn

∑
i,j

k(xi, yj) + 1
m(m − 1)

∑
i
=j

k(yi, yj).

More details about the construction of the unbiased MMD estimator and the link
between Equations 5.3.2 and 5.3.4 can be found in [Gretton et al., 2008].

MMD non parametric test
The quality of the generated time series can be assessed by a non parametric test

using the MMD2 statistic. The null hypothesis H0 of such a test is the equidistribution
of p and q, i.e. H0 : p = q. We estimate the empirical distribution of the MMD2

statistic under H0 by computing bootstraped replicas of MMD2(x̃, ỹ), where x̃, ỹ ∼ r

and r is a mixture of p and q (e.g. r = 1
2p + 1

2q) and then compute the empirical
p-value of MMD2(x, y) under H0.
Note that we also can take r = p or r = q equivalently, but a mixture of p and q allows
us to bootstrap x̃ and ỹ with more observations.

Figure 5.1 illustrates the sensitivity of the test T : (H0; MMD2) when p is a standard
bivariate normal distribution of mean μ = (0, 0) and variance matrix Σ = I2 (identity),
and q is a standard bivariate normal distribution of mean μ = (μ1, μ2) and identity
variance matrix. We see that when μ1, μ2 slightly increases (from 0 to 0.2), the test
rejects H0.

In practice, this test is very sensitive, and tends to systematicallty reject H0 since the
generated samples do not match exactly the target distribution. For that matter, we
rather compute the average MMD2 value over many replicas of the same experiment
then computing the p-value of the non parametric test.
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Fig. 5.1 Illustration of the non-parametric test T : (H0; MMD2). Recall that H0
corresponds to the equidistribution of p and q, and that the distribution of MMD2

under the null hypothesis is computed by drawing iid replicas of MMD2(x̃, ỹ), where
x̃, ỹ ∼ r, and r is a mixture of p and q. In this example, p and q are both standard
bivariate normal distributions, except that we slightly change the mean of q from (0, 0)
to (.2, .2). The star value corresponds to the MMD2 value between the two samples
x ∼ p and y ∼ q to test, i.e. MMD2(x, y). We see that the test is very sensitive,
detecting slight changes in the distribtuions.

5.3.2 Auto-Correlation Function

Besides evaluating our model with the MMD2 statistic, we propose to consider an
additional criterion to decompose its ability to estimate the time series’ dependencies in
and between each dimensions of (Xt)t∈Z, which is not possible with the MMD2. For a
stationary stochastic process (Xt)t∈Z of mean μ and variance σ2, the Auto-Correlation
Function (ACF) for a lag integer h ≥ 0 measures the correlation between Xt and Xt−h

∀t ∈ Z, i.e.

ACF (h) := E[(Xt − μ)(Xt−h − μ)]
σ2 .

When (Xt)t∈Z is multivariate, the Cross Auto-Correlation Function (Cross-ACF)
for dimensions i and j of (Xt)t∈Z is defined as

CACF (h)ij := E[(X(i)
t − μi)(X(j)

t−h − μj)]
σiσj

,

where μi (resp. μj) is the mean of the i-th (resp. j-th) component (X(i)
t )t∈Z (resp.

(X(j)
t )t∈Z) of (Xt)t∈Z.

In our experiments, we assess the quality of the generated sample by computing



5.3 Background 129

the ACF and the CACF of both (Xt)t∈Z and the generated sample for multiple values
of h (usually h vary from 0 to 50).

5.3.3 Structural Time Series Models

An Auto-Regressive Moving Average (ARMA) model of order p and q is defined by the
following recursion:

Xt =
p∑

i=1
ϕiXt−i +

q∑
i=1

θiεt−i + εt,

where (εt)t∈Z is a white noise. Such a linear model is widely used in practice, and we
challenge the ability of our model to estimate this specific structure without any prior.
The Generalized Auto-Regressive Conditional Heteroskedasticity (GARCH) model of
order p and q focuses on the conditional variance σ2

t of a stochastic process (Xt)t∈Z

over time, and is defined as

σ2
t = α0 +

q∑
i=1

αiX
2
t−i +

p∑
i=1

βiσ
2
t−i,

where Xt = σtεt, and (εt)t∈Z is a white noise. Although we input the raw stochastic
process (Xt)t∈Z to the model, we expect it to modelize the time dependencies of the
squared stochastic process (X2

t )t∈Z.
The Dynamic Conditional Correlation (DCC-) GARCH model is a multivariate version
of the GARCH model, and can be defined as:

Xt = H
1/2
t εt,

where (εt)t∈Z is a vector of white noises, Ht = DtRtDt, Dt is the diagonal matrix of
conditional standard deviations of Xt at time t, and Rt is the conditional correlation
matrix for Xt at time t. As for the GARCH model, we show that our model is able to
learn the ACF and CACF of the squared data.

5.3.4 Auto-Regressive Quantile Networks

Quantile regression is a method used to estimate a specific point in a distribution.
It is performed by optimizing the quantile loss function ρτ (u) := u(τ − 1{u≤0})
[Koenker and Hallock, 2001], which takes as arguments a target quantile τ and an
estimation error u which is the difference between the observation and the estimated
quantile.



130 Autoregressive Implicit Quantile Networks for Time Series Generation

Although quantile regression is not new, using it as the loss function of a neural
network is recent and opened the way to the use of AIQNs [Dabney et al., 2018b,
Dabney et al., 2018a, Ostrovski et al., 2018] for generative modelling. Such approaches
give an extra input τ ∼ U([0, 1]) to the network to be reparametrized directly on the
quantile function.
Once the model is trained, the generation process takes as input i) a new realization
τ ∼ U([0, 1]), seen as the expected quantiles to be generated, and ii) a time series,
either empty or partially realized, to be generated. If we input a non-empty time series,
then we generate a future path conditionally to the given realizations.

In practice, AIQN models actually use an alternative version of the quantile loss,
the Huber loss [J. Huber, 1964], which allows the gradient to scale with the magnitude
of the error u under a threshold κ:

ρκ
τ (u) =

⎧⎨⎩
|τ−1u≤0|

2κ
u2, if |u| ≤ κ

|τ − 1u≤0|(|u| − 1
2κ), otherwise.

(5.3.5)

In this paper, we propose an AIQN architecture designed for time series, which
directly learns the underlying conditional quantile functions of the stochastic process
(Xt)t∈Z.

5.4 Model

The model presented in this work follows the architecture of a regular gated conditional
PixelCNN [van den Oord et al., 2016b], except that:

• we substitute the residual gated block by a 1D version and we add an additional
residual connection at the end of the network in order to better learn the
distribution shape,

• our additional input τ follows a beta distribution instead of a uniform distribution,
for reasons we detail later in this section.

The benefit of using an AIQN for time series is that once the model is trained, it
allows us to generate paths along any wanted range of quantiles τ , which means that
it is possible to generate a large range of distinct scenarios (like extreme ones), which
is of high interest in the financial industry.
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5.4.1 Estimating the auto-correlations

This steps consits of estimating the auto-correlations and cross auto-correlations of
(Xt)t∈Z. To do so, we use the AIQN architecture (PixelIQN) proposed in [Ostrovski et al., 2018]
as our baseline for our 1D adaptation of the residual block, and train the model to
optimize the Huber loss defined in Equation 5.3.5.

Our AIQN model is built upon several residual blocks in which we input the tar-
get quantile τ for reparameterization, and pass the input time series through masked
convolutions such that each observation is a function of the past observations. Masked
convolutions, illustrated in Figure 5.2, consist of zeroing the weights of the kernel
which correspond to future observations, allowing i) the model to be causal and ii) the
parallelization of the training phase.

Fig. 5.2 Illustration of 1D masked convolutions. Mask A convolution does not use the
current observation in order to ensure that the model is causal. Mask B convolution
allows us to use the encoding of the current observation.

The amount of signal passed through the output of the residual block number b is
computed along a gating mechanism of the following form:

x̂t = tanh(Wb,f ∗ x + Ub,f ∗ τ) � σ(Wb,g ∗ x + Ub,g ∗ τ),
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where Wb,f and Wb,g are k × 1 kernels for an uneven integer k, Ub,f and Ub,g are 1 × 1
kernels, x = (xt− k−1

2
, . . . , xt, . . . , xt+ k−1

2
), σ is the sigmoid function, ∗ is the convolution

operator and � is the Hadamard (element-wise) product. Figure 5.3 illustrates the 1D
AIQN.

Fig. 5.3 Illustration of the AIQN architecture we use. Green blocks are mask A convo-
lutions, blue blocks are mask B convolutions, yellow blocks are regular convolutions.
An additional gating mechanism and a residual connection on the output layer have
been added to better estimate the marginal distribution of the time series.

Validation setup
Let x = (x1, . . . , xn) be a realization of the stochastic process (Xt)t∈Z. In practice,

since we often have only one realization, we split x into sub-vectors of fixed size m << n

by sliding a window of size m through x, in order to build the training, validation
and holdout datasets. Such a split introduces dependencies between each input of the
model, but on the other hand it overcomes the fact that we have a dataset with only
one row.
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5.4.2 Estimating a continuous distribution

Generative models tackling on image related tasks usually provide a probability on a
range of integer color levels (from 0 to 255) for each pixel.
In our case, the output of the model is a value in a continuous, non-compact, high
dimentional space (usually Rd). This implies that generative models on time series
have to cover a potentially unbounded support for (Xt)t∈Z, which can raise issues for
the model to learn some quantiles in the frontier of the output space.

For that reason, we propose to perform an importance sampling and use the beta
distribution B(α, β) for τ instead of a uniform distribution (see Figure 5.4).
For example, when (Xt)t∈Z is heavy tailed, setting α = β = 1/2 gives a privileged
direction for the model to learn the distribution tails (i.e. quantiles close to 0 and 1).
Note that the regular quantile regression can still be performed by fixing α = β = 1,
which corresponds to the uniform distribution.
Besides, such an importance sampling for τ is done only in the training phase. For the
generation phase, we input a uniform distribution for τ to the model.

Fig. 5.4 Example of the use of beta distribution for τ when α = β = 1/2. It gives more
weight to the quantiles corresponding to the distribution tails for reparameterization
in the learning phase (left). On the sampling phase (right), we still use the uniform
distribution.

An important thing to note here is that in this paper, we only have at our disposal the
conditional distributions, and by definition we do not observe the marginal distributions.
This explains why the model may have difficulties estimating the marginal distributions,
but it gives excellent results on the estimation of conditional distributions. We partially
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overcome this issue by giving additional channels to the input of the model, which
aims at giving more information on the marginals.

5.5 Linear High Dimensional Time Series

In this section, we study the behavior of our approach in high dimension. Let (Xt)t∈Z

be a stochastic process in Rd, and let x = (x1, . . . , xm) be m realizations of (Xt)t∈Z.
Training an AIQN model (as defined in Section 5.4) directly on x when m >> d is very
effective, and we illustrate this in Section 5.6. However, when m << d, the AIQN model
is no longer able to optimize the loss defined in Equation 5.3.5. This is explained by the
fact that the number of dimensions d is greater than the number of available realizations
m of (Xt)t∈Z, which means that the model cannot be identified in a reasonable amount of
time, hence the need to sum up the information contained in (Xt)t∈Z in lower dimension.

Such an issue is not adressed in image processing since an image (or equivalently
a video) is an object of low dimension (usually 3 dimensions corresponding to the red,
green and blue channels). On the other hand, this issue is adressed in the Natural
Language Processing (NLP) literature, and the most effective way to lower the dimen-
sion is to let a model estimate a latent reprezentation of the input data (namely word
embedding in NLP) wiht a minimum loss of information, then to work directly through
the latent space.

In order to make the AIQN work in high dimension, we encode (Xt)t∈Z in a latent
space Z of dimension k << m, then we train the AIQN directly through Z to es-
timate the auto-correlations, then we rebuild the time series in the original feature space.

Let F : Rd → Z and G : Z → Rd be an encoder and a decoder respectively, and let Z
be a real-valued space of dimension k << d. We jointly train F and G to map (Xt)t∈Z

in Z and map back to the original input domain Rd with a minimum loss of information.
More specifically, we expect F and G to i) correcly encode the auto-correlations of
(Xt)t∈Z, and ii) to correctly rebuild the support of (Xt)t∈Z.We do so by minimizing the
L2 loss between (Xt)t∈Z and G(F ((Xt)t∈Z)):

min
F,G

∑
t

E[||Xt − G(F (Xt))||22], (5.5.1)
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where ||.||2 is the L2 norm. Figure 5.5 depicts the block diagram of the training phase
of F and G.

Fig. 5.5 Auto encoder of the time series. F aims at encoding a high dimensional
stochastic process (Xt)t∈Z to a latent real-valued space Z of lower dimension k without
losing the auto-correlation and cross auto-correlation information. G aims at rebuilding
the time series form its latent reprezentation.

Once the auto-encoders F and G are trained, we train the AIQN model as defined
in Section 5.4 directly through the latent space. The whole training phase is then
decomposed in the following two steps:

1. train F and G to respectively sum up (Xt)t∈Z in a lower dimension space Z and
rebuild (Xt)t∈Z from Z to Rd,

2. estimate the auto-correlations directly through Z.

Figure 5.6 shows the diagram of the training phase of the AIQN in high dimension.
The hyperparameter k = dim(Z) can be chosen by cross-validation or by making

an additional assumption on the fact that most of the variance of (Xt)t∈Z can be
summarized in k dimensions.

5.6 Experiments

In this Section, we evaluate the sampling quality of our model on generated data from
models presented in Section 5.3.3. We also have at our disposal a financial dataset,
composed of a subsample of an equities portfolio, and GPS records of car trajectories.
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Fig. 5.6 Block diagram showing the training phase of the AIQN in high dimension.
We first encode (Xt)t∈Z in Z by using F , then we train the AIQN direclty through Z,
then we rebuild the time series by using G.

For all the examples presented in this Section, we compare our model with the state-of-
the-art generative model for time series, the RGAN introduced in [Esteban et al., 2017].
For the sake of fairness for each comparison, we used exactly the same datasets for
training, validation and testing for each model, and we illustrate our results on the
test set, which was not used neither for training nor tuning.

We compute the MMD2 statistic between the real and fake (i.e. generated) sam-
ples, drawn from our AIQN model and from the RGAN model. Then, we compare it
to the MMD2 value between two subsamples drawn from the real dataset. This allows
us to compare the MMD2 value of each model against a proxy of the "perfect" model,
i.e. the model which generates the data.

As explained in Section 5.3.2, stationary time series may be characterized by the
following quantities: i) the autocorrelations and the cross autocorrelations for multi-
variate time series, ii) the marginal distributions. We expect our model to learn and
generate samples which reproduces i) and ii).
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For a stochastic process (Xt)t∈Z in which we observe one realization x := (x1, . . . , xn),
we denote by s := (s1, . . . , sm) and z := (z1, . . . , zm) two generated samples of length
m drawn respectively from AIQN and RGAN. In all our experiments, we considered
m = n.
We denote by xh the lagged values of order h of x, i.e. (xh)i = (xi, . . . , xi−h). We
compute the MMD2 on sh and zh against xh. The motivation behind giving the lagged
values as input of the MMD2 is to take into account the time dependencies of x, s

and z when computing their distribution distance. We also compute a proxy of the
MMD2 from a "perfect" model by computing MMD2

perfect = MMD2(x:t̃, xt̃:), where
t̃ = (t − h)/2, x:t̃ = (x1, . . . , xt̃) and xt̃: = (xt̃, . . . , xn).

To compare the ability of AIQN and RGAN to estimate the conditional distribu-
tions of the time series, we also compute the MMD2 between xh and the realigned
samples sh

(r) and zh
(r), defined (with a slight abuse of notation) as sh

(r) := Qx(Fs(sh)),
where Qx is the empirical quantile function of x, and Fs is the empirical Cumulative
Distribution Function (c.d.f) of s.

5.6.1 Simulated data

We evaluated the ability of our model to generate samples drawn from time series
presented in Section 5.3.3. More precisely, we considered the AR(1) model (i.e.
ARMA(1,0)) with a positive and a negative coefficient, the ARMA(1,1) model, the
GARCH(1,1) model and the DCC-GARCH (with dimension d = 3) model, all with
Gaussian white noise (εt)t∈Z.

Table 5.1 summarizes the mean and standard deviations of the MMD2 values MMD2
perfect,

MMD2(xh, zh) and MMD2(xh, sh) for each dataset (synthetic and real data). We
computed those values on raw generated samples, as well as on samples on which
we realigned quantiles, such that the MMD2 only measures the time dependencies.
It shows that, in almost every example, our architecture outperforms the RGAN
benchmark. Moreover, the standard deviations of the MMD2 values of our model are
generally lower than the RGAN, which means that our method provides more stable
results.
Figures 5.8, 5.9, 5.10 and 5.11 illustrate the ACF and CACF on some of the examples.
It shows that the autocorrelations of our model are more accurate than the RGAN.

Figures 5.10 and 5.11 show the ACF and CACF for the DCC-GARCH example, on
squared samples. We can see that our approach gives reasonably good estimations of
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Table 5.1 MMD2 statistics. For each model, we present the average and standard
deviation (in brackets) of the MMD2 statistic (the lower the better) computed along
50 simulations of each experiment (except for real data, for which we cannot have more
than one realization). Results with the symbol (∗) are computed on realigned quantiles,
in order to measure the ability of each model to estimate the autocorrelations. The
best results -except the "perfect" model ("Real" column)- are denoted in bold font.

Model h Real AIQN RGAN

AR(1) coef
1
2 (∗) 5 0.000865 (0.001043) 0.002054 (0.001306) 0.006024 (0.005145)

AR(1) coef −1
2 (∗) 5 0.000338 (0.000430) 0.001935 (0.001793) 0.003200 (0.002924)

ARMA(1,1) (∗) 5 0.000827 (0.000853) 0.003143 (0.001068) 0.004142 (0.002866)

GARCH (∗) 3 0.000616 (0.001313) 0.001912 (0.001540) 0.004129 (0.002628)

DCC-GARCH (∗) 3 0.000203 (0.000267) 0.000337 (0.000389) 0.000586 (0.000337)
AR(1) coef

1
2 5 0.000865 (0.001043) 0.030233 (0.012370) 0.054767 (0.040990)

AR(1) coef −1
2 5 0.000338 (0.000430) 0.034425 (0.012898) 0.032442 (0.038371)

ARMA(1,1) 5 0.000827 (0.000853) 0.019256 (0.010948) 0.035712 (0.044200)

GARCH 3 0.000616 (0.001313) 0.029475 (0.016888) 0.044454 (0.047202)

DCC-GARCH 3 0.000203 (0.000267) 0.003337 (0.002567) 0.075253 (0.005377)

Financial data 1 0.006594 (-) 0.036849 (-) 0.072214 (-)

Financial (squared) 1 0.003596 (-) 0.052112 (-) 0.095664 (-)

GPS Trajectories 10 0.001954 (-) 0.002361 (-) 0.024256 (-)

the significant autocorrelation on the squared observations, whereas RGAN fails to
estimate such quantities.

Linear High Dimensional Time Series
We illustrate our approach on two simulated high dimensional time series of dimension

d = 200. We simulate the i-th component with the following formula:

X
(i)
t = βiYt + ε

(i)
t , (5.6.1)

where Yt is an auto regressive model AR(1) with coefficient 1/2 and variance 4/3
(the variance of an AR(1) model with corefficient ϕ is 1/(1 − ϕ2)), βi ∼ U([0, 2]) is a
coefficient which can be interpreted as the amount of observed signal (the higher βi

the higher the observed signal), and ε
(i)
t is a Gaussian white noise of variance 1/15

independant of Yt. Note that each dimension i has a separate white noise ε
(i)
t and that

ε
(i)
t ⊥⊥ ε

(j)
t for i �= j.

We challenge the ability of our model to i) estimate the auto-correlations of each
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Fig. 5.7 Plots of real (left), AIQN (middle) and RGAN (right) samples. The real
sample follows an auto regressive model AR(1) with coefficient .9.

Fig. 5.8 ACF of real (left), AIQN (middle) and RGAN (right) samples when the
underlying model is an AR(1) with coefficient .9. We can see that the RGAN’s
autocorrelations are less accurate than AIQN.

component of (Xt)t∈Z, and ii) accurately estimate the support of each dimension. Note
that the approach defined in Section 5.5 cannot accurately rebuild the noise term ε

(i)
t .

For that matter, we rebuilt such a noise term by performing a bootstrap of the observed
error term e(i) := (Xt)t∈Z − G(F ((Xt)t∈Z))(i), then add the bootsrapted empirical error
to G(F ((Xt)t∈Z)).

Figure 5.12 shows the ACF of the generated sample (using our method) the ACF of
the true sample on the first ten dimensions. On this example, we do not show the
ACF of the RGAN since the latter did not converge. We see that our model is able
to accurately estimate the ACF function on most of the dimensions. On the other
hand, Figure 5.13 shows the associated scatterplot between the real sample and the
generated sample on the first ten dimensions. We see that our approach gives excellent
estimations of the support of the generated sample.
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Fig. 5.9 ACF of real (left), AIQN (middle) and GAN (right) samples on the AR(1)
coefficient −1/2 model.

Fig. 5.10 ACF of real (left), AIQN (middle) and GAN (right) squared samples on the
DCC-GARCH model.

We also challenge our model to estimate the distribution of a high dimensional
stochastic process (Xt)t∈Z of dimension d = 200 when the error term is heteroskedastic.
We simulated the i-th dimension of such a phenomenon according to the following
formula:

X
(i)
t = βiYt + ε

(i)
t , (5.6.2)

where Y is an autoregressive model AR(1) with coefficient 7/10, βi is a random co-
efficient uniformly draw between 0 and 2, and ε

(i)
t is a Gaussian white noise which

variance depends on the values of X
(i)
t . In this experiment, the variance of ε

(i)
t is

equal to (X(i)
t−1/10)2. Note that we performed the same bootstrap as in the previous

experiment to empirically rebuild the error term ε
(i)
t .
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Fig. 5.11 Cross-ACF of real (left), AIQN (middle) and GAN (right) squared samples
on the DCC-GARCH model.

Figures 5.14 and 5.15 show respectively the ACF and the scatterplots of the gen-
erated sample and the real sample for the first ten dimensions. We see that our
approach gives accurate estimations of the auto correlations and is able to correctly
estimate the support of (Xt)t∈Z, even if the latter is heteroskedastic.

5.6.2 Financial data

We test our method on a real-world dataset which is a subsample of a financial port-
folio1. We have at our disposal the daily end-of-day values for each equity, recorded
from 2012-01-01 to 2017-12-31. We train our model on increments of the end-of-day
prices from 2012-01-01 to 2014-12-31 and generate data from 2015-01-01 to 2017-21-31
and compare the generated sample to the real one.

Figure 5.16 shows the Q-Q plots of the real sample against the generated samples drawn
from AIQN (circle blue markers) and RGAN (triangle green markers) respectively.
We see that our model gives a better quantile alignment, which is confirmed by the
corresponding MMD score of Table 5.1 (on non-squared sample). Moreover, Figure
5.17 shows that the RGAN’s squared sample estimates significant autocorrelations
whereas there is no such autocorrelations in the real sample. This is also observed on
most of the other equities, whereas our model respects that criterion.

1 This dataset is freely available with the Quandl API for academic purposes only. https:
//www.quandl.com/.
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5.6.3 GPS data

Telematics data are very promising for car insurers to measure the risk of a policy
holder as he drives, allowing to analyze its driving habits and adapt the insurance
premium according to the risk. Generative modelling on such data implies that we
expect the model to learn the driving style of each driver.
For this experiment, we have at our disposal a dataset recording at each second the
GPS coordinates of 1,753 individual car drivers. For each driver, we have 200 individual
trajectories.
Works on such data have been done to extract statistics which enlight the user’s driving
style by computing the v-a heatmap [Wüthrich, 2017], which displays the average
speed on the x-axis with corresponding acceleration on the y-axis. Such a map inspired
us to evaluate the ability of our model to generate paths which share the same driving
style for each driver, and we quantify this by looking at the v-a levels of generated paths.

This kind of data is worth studying since the time dependencies are strong. In-
deed, the speed at time t highly depends on the speeds at time t − 1, . . . , t − h with h

up to more than 100 (seconds).

Figure 5.18 shows the joint distribution between the speed (km/h) and the accel-
eration (m/s−2), computed over the 200 trajectories of one driver, which somehow
characterizes the driver’s style. We can see that our model gives a better estimation of
such a distribution, which is consistent with the associated MMD2 score in Table 5.1.
On the other hand, Figures 5.19 and 5.20 show the ACF of speed and acceleration.
Our model outperforms the RGAN, particularly on the acceleration.

5.6.4 Training details

In this Section, we detail the framework setup we used to train our model. Note that
for the sake of fairness when comparing our model to RGAN, we used exactly the
same datasets for training, validating and testing, as well as exactly the same sequence
length for both models.

For simulated data, we fixed the dataset size for training at 5000 independant rows of
sequences of length 10. In all simulated examples, we used the same hyperparameters
for our architecture. The simulated examples discussed above were trained using 5 1D
residual blocks, with a causal convolutional input layer of length k = 7 (green block in
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Figure 5.3), and masked convolutions of type B of length k = 3 (blue blocks in Figure
5.3), the stride was fixed to 1 and padding to (k − 1)/2 in both cases. The feature
map size was fixed at h = 256 in all examples. We implemented these experiments
by using PyTorch [Paszke et al., 2017]. The training time is reasonable, taking a few
minutes using one NVIDIA TITAN V. The inherent structure of our model imposes
the generation step to be sequential (i.e. each prediction needs to be fed back to the
input), leading to potentially very long generation step, particularly when the wanted
sample length is long, but in all our cases, it does not excess half an hour.

The choice of the prior distribution of τ has been challenged and is promising to
estimate heavy-tailed distributions. Figure 5.21 shows the influence of the prior distri-
bution of τ on the financial dataset, for a uniform and a beta prior. The beta prior
gives a significantly better estimation of the shape of the marginal distribution. This
change of distribution for τ does not have a significant impact on the quality of the
autocorrelation’s estimation.

For high dimensional time series, we implemented F and G as multi-layer percep-
trons (MLP), and we cross-validated the value of the latent space dimension. In this
case, the optimal value for dim(Z) is set to 1, which is to be expected since (Xt)t∈Z is
defined along a unidimensional underlying autoregressive AR(1) process. Note that
G is not able to reconstruct the error term εi of Equation 5.6.1. Thus, to correctly
rebuild the support of the time series, we bootstrapted the empirical error between
(Xt)t∈Z and the generated sample.

5.7 Discussion

In this paper, we proposed an AIQN architecture designed for time series generation.
This method has proven to give excellent results on the MMD2 score as well as on the
ACF. The choice of the beta distribution as a prior helps the model to better fit the
marginal distributions, especially when the distributions are heavy-tailed. Moreover,
we proposed an appropriate embedding to deal with high dimensional time series which
gives accurate results on the ACF and scatterplots.

The proposed method could be extended to non-stationary time series by adding
an additional mechanism inside the residual blocks, whose aim would be to learn
a potential trend and/or seasonality in the time series. It can also be extended to
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asynchronous time series by either considering an adjusted data representation of the
input or by adding an extra input layer which aims at projecting potentially incomplete
sequences directly in the feature map.
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Appendices

This section contains additionnal illustrations about the simulations we performed. We
study the behavior of the RGAN and AIQN algorithms along four additional simulated
experiments: an autoregressive model AR(1) with a positive coefficient and a Student
noise, the GARCH model and two distinct configurations of the Vector Auto-Regressive
(VAR) model.

Autoregressive model with Student noise

We simulated an auto regressive stochastic process (AR(1)) as defined in Equation
5.3.3, except that the noise term (εt)t∈Z follows a Student distribution with parameter
ν = 4 (degrees of freedom), meaning that the stochastic process is heavy tailed. For this
experiment, we fixed the beta prior’s parameters to α = β = 1 (uniform distribution),
and we compare our approach with the RGAN algorithm.
Figures 5.22 and 5.23 show respectively the ACF and the Q-Q plots of the generated
samples. We see that RGAN, althought it slighlty underestimates the auto correlations,
gives a better estimation of the ACF, and gives a better quantile alignment.

GARCH model

We challenge our approach and the RGAN model to estimate a GARCH(1,1) stochastic
process. The parameters of the GARCH model are fixed to α0 = .2, α1 = .5 and
β1 = .3. Recall that the GARCH model can be interpreted as a white noise of which
squared values has auto-correlations. Hence, we expect each model to estimate the auto-
correlations on the squared values of (Xt)t∈Z. Figures 5.24 and 5.25 show respectively
the ACF (computed on squared data) and the Q-Q plots of the real and the generated
sample (generated from AIQN and form RGAN). We see that both models give a
good estimation of the quantiles, however the RGAN gives better estimations of the
autocorrelations on the squared data.

Vector Auto-Regressive model

In this experiment, we challenge our approach and the RadialGAN to estimate the
distribution of a Vector Auto-Regressive (VAR) model. The VAR model of order p

and dimension d is the multivariate analogue of the AR(p) model, and is defined by
the following recursion:
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X1,t = a1
1,1X1,t−1 + · · · + a1

1,dXd,t−1 + · · · + ap
1,1X1,t−p + · · · + ap

1,dXd,t−p + ε1,t

X2,t = a1
2,1X1,t−1 + · · · + a1

2,dXd,t−1 + · · · + ap
2,1X1,t−p + · · · + ap

2,dXd,t−p + ε2,t

...
Xd,t = a1

d,1X1,t−1 + · · · + a1
d,dXd,t−1 + · · · + ap

d,1X1,t−p + · · · + ap
d,dXd,t−p + εd,t.

The parameters of the model defined above are the elements of the matrix A :=
(aij)i,j∈{1,...,d}, where aij ∈ R. In this experiment, we illustrate our method on two
distinct configurations of the matrix A, and we set d = 3 and p = 1. In both config-
urations, εt is a multivariate normal distribution of mean μ = (0, 0, 0) and identity
correlation matrix.

First configuration of the VAR(1)
The first configuration corresponds to the following matrix:

A =

⎛⎜⎜⎝
.5 .2 .2
.2 .5 .2
.2 .2 .5

⎞⎟⎟⎠ . (5.7.1)

Figures 5.26, 5.27 and 5.28 show the ACF of the real and generated samples, on
the first, second and third dimension of (Xt)t∈Z respectively. We see that for each
dimension, our method gives a better estimation of the auto-correlations.

Figures 5.29, 5.30 and 5.31 show the CACF of the real and generated samples. The
CACF of Figure 5.29 measures the auto-correlation between the first dimension and
the lagged values of the second dimension, which we denote CACF0,1. Figures 5.30 and
5.31 respectvely show CACF0,2 and CACF1,2. We see that in each case, our method
gives a better estimation of the cross auto-correlations between each dimensions.
Note that since A is symmetric, we have CACFij = CACFji.

On the other hand, Figures 5.32, 5.33 and 5.34 show the Q-Q plots between the
real and generated samples for each dimension respectively. We see that RGAN gives
a better quantile alignment.
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Second configuration of the VAR(1)
The second configuration corresponds to the following matrix:

A =

⎛⎜⎜⎝
.5 −.2 −.2
.2 .5 −.2
.2 .2 .5

⎞⎟⎟⎠ . (5.7.2)

Figures 5.35, 5.37 and 5.37 show the ACF of the real and generated samples, on
the first, second and third dimension of (Xt)t∈Z respectively. We see that for each
dimension, our method gives a better estimation of the auto-correlations.

Figures 5.38, 5.39 and 5.40 show the CACF of the real and generated samples. The
CACF of Figure 5.38 measures the auto-correlation between the first dimension and
the lagged values of the second dimension, which we denote CACF0,1. Figures 5.39
and 5.40 respectvely show CACF0,2 and CACF1,2. We see that in each case, our
method globally gives a better estimation of the cross auto-correlations between each
dimensions.
We do not give the values of CACF1,0, CACF2,0 and CACF2,1, but we observed equiv-
alent results.

On the other hand, Figures 5.41, 5.42 and 5.43 show the Q-Q plots between the
real and generated samples for each dimension respectively. We see that RGAN gives
a better quantile alignment.
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Fig. 5.12 ACF of the real sample (left)
and ACF of the generated sample (right)
using our proposed method (first ten di-
mensions). The underlying stochastic
process is of dimension d = 200 and is
defined by Equation 5.6.1. We see that
our model is able to accurately estimate
the auto correlations of most of the di-
mensions.

Fig. 5.13 Scatterplots of the real sam-
ple (left) and scatterplot of the gener-
ated sample (right) using our proposed
method (first ten dimensions). The un-
derlying stochastic process is of dimen-
sion d = 200 and is defined by Equation
5.6.1. We see that our model is able to
accurately estimate the marginal distri-
bution of most of the dimensions.
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Fig. 5.14 ACF of the real sample (left)
and ACF of the generated sample (right)
using our proposed method (first ten
dimensions). The underlying stochas-
tic process is of dimension d = 200
and is defined by Equation 5.6.2 and is
heteroskedastic. The variance depends
on the values of the underlying AR(1)
stochastic process. We see that our
model is able to accurately estimate the
auto correlations of most of the dimen-
sions.

Fig. 5.15 Scatterplots of the real sam-
ple (left) and scatterplots of the gener-
ated sample (right) using our proposed
method (first ten dimensions). The un-
derlying stochastic process is of dimen-
sion d = 200 and is defined by Equation
5.6.2 and is heteroskedastic. The vari-
ance depends on the values of the un-
derlying AR(1) stochastic process. We
see that our model is able to accurately
estimate the marginal distributions of
most of the dimensions.
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Fig. 5.16 Q-Q plots of the real sample (x-axis) vs the generated samples drawn from
AIQN (blue, circle markers) and RGAN (green, triangle markers), on each equity of
the financial dataset.
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Fig. 5.17 ACF of real (left), AIQN (middle) and GAN (right) computed on the squared
increments of the end-of-day prices, on one equity of the financial dataset.

Fig. 5.18 Joint plot of speed and acceleration of the real (left), AIQN (middle) and
RGAN (right) samples.

Fig. 5.19 ACF of speed of the real (left), AIQN (middle) and RGAN (right) samples.
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Fig. 5.20 ACF of acceleration of the real (left), AIQN (middle) and RGAN (right)
samples.

Fig. 5.21 Q-Q plots of the real sample vs the generated sample drawn from AIQN with
a beta B(1/2, 1/2) prior (left) and with a uniform U([0, 1]) prior (right), on one equity
of the financial dataset.
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Fig. 5.22 ACF of the real (left), AIQN (middle) and RGAN (right) samples. The
underlying stochastic process is an autoregressive AR(1) model with a coefficient of .7.
In this experiment, the noise term of the AR(1) model is Student distributed with 4
degrees of freedom, such that the model is heavy tailed. RGAN gives a globally better
estimation of the auto correlations.

Fig. 5.23 Q-Q plots of the real sample (x-axis) vs the AIQN sample (y-axis, left) and the
RGAN sample (y-axis, right). The underlying stochastic process is an autoregressive
AR(1) model with a coefficient of .7. In this experiment, the noise term of the AR(1)
model is Student distributed with 4 degrees of freedom, such that the model is heavy
tailed. RGAN gives a better quantile alignment on this experiment.
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Fig. 5.24 ACF of the real (left), AIQN (middle) and RGAN (right) samples. The ACF
is computed on the squared data for this experiment since the underlying stochastic pro-
cess is a GARCH(1,1). RGAN gives more accurate estimations of the auto-correlations
of the squared data.

Fig. 5.25 Q-Q plots of the real sample (x-axis) vs the AIQN sample (y-axis, left) and
the RGAN sample (y-axis, right). The underlying stochastic process is a GARCH(1,1),
and we see that both models give an accurate estimation of the quantiles.

Fig. 5.26 ACF of the real (left), AIQN (middle) and RGAN (right) samples on the first
dimension of a Vector Auto-Regressive (VAR) model in the first configuration. We see
that our method gives a better estimation of the auto-correlations.
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Fig. 5.27 ACF of the real (left), AIQN (middle) and RGAN (right) samples on the
second dimension of a Vector Auto-Regressive (VAR) model in the first configuration.
We see that our method gives a better estimation of the auto-correlations.

Fig. 5.28 ACF of the real (left), AIQN (middle) and RGAN (right) samples on the
third dimension of a Vector Auto-Regressive (VAR) model in the first configuration.
We see that our method gives a better estimation of the auto-correlations.

Fig. 5.29 CACF of the real (left), AIQN (middle) and RGAN (right) samples of the first
dimension with respect to the second dimension. The underlying stochastic process
is a Vector Auto-Regressive (VAR) model in the first configuration. We see that our
method gives a better estimation of the auto-correlations.
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Fig. 5.30 CACF of the real (left), AIQN (middle) and RGAN (right) samples of the
first dimension with respect to the third dimension. The underlying stochastic process
is a Vector Auto-Regressive (VAR) model in the first configuration. We see that our
method gives a better estimation of the auto-correlations.

Fig. 5.31 CACF of the real (left), AIQN (middle) and RGAN (right) samples of the
second dimension with respect to the third dimension. The underlying stochastic
process is a Vector Auto-Regressive (VAR) model in the first configuration. We see
that our method gives a better estimation of the auto-correlations.
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Fig. 5.32 Q-Q plots of the real sample (x-axis) vs the AIQN sample (y-axis, left) and
RGAN sample (y-axis, right), on the first dimension of a Vector Auto-Regressive (VAR)
model in the first configuration. We see that the RGAN gives a better estimation of
the support of (Xt)t∈Z.

Fig. 5.33 Q-Q plots of the real sample (x-axis) vs the AIQN sample (y-axis, left) and
RGAN sample (y-axis, right), on the second dimension of a Vector Auto-Regressive
(VAR) model in the first configuration. We see that the RGAN gives a better estimation
of the support of (Xt)t∈Z.
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Fig. 5.34 Q-Q plots of the real sample (x-axis) vs the AIQN sample (y-axis, left) and
RGAN sample (y-axis, right), on the third dimension of a Vector Auto-Regressive
(VAR) model in the first configuration. We see that the RGAN gives a better estimation
of the support of (Xt)t∈Z.

Fig. 5.35 ACF of the real (left), AIQN (middle) and RGAN (right) samples on the
first dimension of a Vector Auto-Regressive (VAR) model in the second configuration.
We see that our method gives a better estimation of the auto-correlations.

Fig. 5.36 ACF of the real (left), AIQN (middle) and RGAN (right) samples on the
second dimension of a Vector Auto-Regressive (VAR) model in the second configuration.
We see that our method gives a better estimation of the auto-correlations.
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Fig. 5.37 ACF of the real (left), AIQN (middle) and RGAN (right) samples on the
third dimension of a Vector Auto-Regressive (VAR) model in the second configuration.
We see that our method gives a better estimation of the auto-correlations.

Fig. 5.38 CACF of the real (left), AIQN (middle) and RGAN (right) samples of the first
dimension with respect to the second dimension. The underlying stochastic process is
a Vector Auto-Regressive (VAR) model in the second configuration. We see that our
method gives a better estimation of the auto-correlations.
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Fig. 5.39 CACF of the real (left), AIQN (middle) and RGAN (right) samples of the
first dimension with respect to the third dimension. The underlying stochastic process
is a Vector Auto-Regressive (VAR) model in the second configuration. We see that our
method gives a better estimation of the auto-correlations.

Fig. 5.40 CACF of the real (left), AIQN (middle) and RGAN (right) samples of the
second dimension with respect to the third dimension. The underlying stochastic
process is a Vector Auto-Regressive (VAR) model in the second configuration. We see
that our method gives a better estimation of the auto-correlations.
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Fig. 5.41 Q-Q plots of the real sample (x-axis) vs the AIQN sample (y-axis, left) and
RGAN sample (y-axis, right), on the first dimension of a Vector Auto-Regressive (VAR)
model in the second configuration. We see that the RGAN gives a better estimation of
the support of (Xt)t∈Z.

Fig. 5.42 Q-Q plots of the real sample (x-axis) vs the AIQN sample (y-axis, left) and
RGAN sample (y-axis, right), on the second dimension of a Vector Auto-Regressive
(VAR) model in the second configuration. We see that the RGAN gives a better
estimation of the support of (Xt)t∈Z.
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Fig. 5.43 Q-Q plots of the real sample (x-axis) vs the AIQN sample (y-axis, left) and
RGAN sample (y-axis, right), on the third dimension of a Vector Auto-Regressive
(VAR) model in the second configuration. We see that the RGAN gives a better
estimation of the support of (Xt)t∈Z.



Conclusion

Summary of contributions and main ideas

This thesis focuses on the use of modern machine learning methods in presence of
incomplete data with applications in insurance. The litterature of machine learning
dealing with incomplete data is scarce. Moreover, many deep learning works focus
on working with data such as images, text, video or audio data, but few works have
been done dealing with tabular data and time series (more generally, data which needs
statistical arguments to assess the quality of a model).

In Chapter 3, we focused on building a prediction model to predict a highly cen-
sored time-related random variable. Very few works including [Lopez et al., 2016,
Gerber et al., 2018, Wüthrich, 2018] address such a task with machine learning. The
usual method (chain ladder) for such a task makes strong assumtions on the structure
of the data and on the censoring scheme. In this contribution, we showed that we are
able to give more accurate predictions than the chain ladder.
In Chapter 4, we proposed a neural architecture to combine multiple datasets to
build a better predictive model on each dataset. The usual deep learning tools to
perform a domain transfer are applied to image-to-image translation [Zhu et al., 2017a,
Choi et al., 2018, Kim et al., 2017] (among other applications), but very few has been
proposed on tabular data [Yoon et al., 2018b]. We showed that our proposed approach
outperforms the state-of-the-art model for domain transfer applied on tabular data.
In Chapter 5, we proposed an auto-regressive model to accurately estimate the con-
ditional distribution of a time series. Deep learning works on time series are rare,
and most of the contributions focus on predicting future values of a time series. In
this paper, we showed that we give a better estimation of the support of the time
series and of its auto-correlations (and cross auto-correlations) than the state-of-the-art
model. We also proposed an adaptation of our approach to address the case when the
underlying stochastic process is heavy tailed and high dimensional.
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From all the contributions presented in this thesis, the takeaway message is that
developping methods to perform advanced tasks on tabular data (e.g. estimating the
distribution of a random vector, identifying mixtures in a multivariate distribution or
transporting a measure to an other) is challenging. Indeed, the model’s quality can be
easily assessed when addressing a prediction task, but requires more complex tools on
other tasks such as distribution estimation, which is not addressed in image processing
or text analysis.

Perspectives of future contributions

This thesis is far form tackling every data incompleteness scheme, and we identified
some future potential contributions:

• Missing values imputation. Missing values are almost omnipresent in practice,
and are a natural extension of this thesis. As evocated in Chapter 2, deep learning
works tackling missing values imputation are scarce, either focus on a particular
missingness mechanism or on filling missing entries to address a prediction task,
and lack of statistical arguments to assess the imputation’s quality. No thorough
work on multiple imputation using deep learning methods has been proposed,
and yet such approaches have a lot of potential to identify the true underlying
distribution of a dataset.

• Going deeper with cross-domain modelling. Chapter 4 proposed to per-
form a domain transfer between multiple datasets in order to transform each
dataset to another without losing predictive information. Working with la-
tent representations of multivariate domains is a field of research which is
getting more and more popular [Lample et al., 2017, Chen and Denoyer, 2017,
Xu and Veeramachaneni, 2018, Yang et al., 2018], and a natural extension of the
work we proposed would be to compute an efficient latent representation of each
datasets and train a prediction model directly through the latent space instead
of performing a data augmentation. This allows to train a latent model which
can be later used when a new dataset enters in the study, without the need to
re-train the domain transfer model.

• Cross-domain modelling for addressing train/test distribution mis-
match. In the classical supervised learning task, the distributions of the train
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and test datasets are supposed to be identical. Although being reasonable, this
assumption is not always true in practice, particularly when the train and test
datasets are time-dependant (e.g. the train dataset corresponds to observations
recorded at year I and the test at year I + 1), where change-points can occur.
This often leads to a bias in predictions. Hence, the cross-domain modelling
introduced in Chapter 4 opens the way to equalize the distributions of the train
and test sets, then training an unbiased prediction model on the unified datasets.

• Non stationary time series. The proposed method in Chapter 5 assumes that
the stochastic process is stationnary. An extension of this work is to propose an
architecture to modellize a non-stationnary time series, by dynamically detect
trend and seasonality factors while estimating the auto-correlation structure on
raw and squared data at the same time. This needs to train separate models, each
designed to detect one property of the time series, and combine their intermediate
representations.

• Asynchronous time series. Another strong assumption we made in Chapter 5
besides the stationarity was that the records of the time series were synchronous,
i.e. all dimensions of the time series were recorded simultaneously and at a regular
time interval. Works on asynchronous time series prediction have been proposed
[Binkowski et al., 2017, Che et al., 2018], but to the best of our knowledge, no
work has been proposed to estimate the distribution of an asynchronous stochastic
process.
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