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Abstract

The present thesis is devoted to the study of the effect of a perturbation on the spectrum
of a Hermitian matrix by a random matrix with small operator norm and whose entries in
the eigenvector basis of the first one were independent, centered and with a variance pro-
file. This is carried out through perturbative expansions of various types of spectral laws
of the considered perturbed large matrices. First, we demonstrate different perturbative
expansions of the empirical spectral measure in the cases of the perturbative regime and
the semi-perturbative regime and highlight well known heuristic patterns in Physics, as
the transition between semi-perturbative and perturbative regimes. Secondly, we provide
a thorough study of the semi-perturbative regime and prove the new fact that this regime
could be decomposed into infinitely many sub-regimes. Finally, we prove, through a per-
turbative expansion of spectral measures associated to the state defined by a given vector,
a perturbative expansion of the coordinates of the eigenvectors of the perturbed matrices.

Résumé

La présente thèse est consacrée à l’étude de l’effet d’une perturbation sur le spectre d’une
matrice hermitienne perturbée par une matrice aléatoire de petite norme opérateur et
dont les entrées dans la base propre de la première matrice sont indépendantes, centrées et
possèdent un profil de variance. Ceci est réalisé au travers de développements perturbat-
ifs de divers types des lois spectrales des grandes matrices perturbées considérées. Dans
un premier temps, nous démontrons différents développements perturbatifs de la mesure
spectrale empirique dans les cas du régime perturbatif et du régime semi-perturbatif et
mettons en évidence des modèles heuristiques bien connus en physique, comme la transi-
tion entre les régimes semi-perturbatifs et perturbatifs. Dans un deuxième temps, nous
proposons une étude approfondie du régime semi-perturbatif et prouvons le fait nouveau
que ce régime peut être décomposé en un nombre infini de sous-régimes. Enfin, nous dé-
montrons, au travers d’un développement perturbatif des mesures spectrales associées à
un vecteur donné, un développement perturbatif des coordonnées des vecteurs propres des
matrices perturbées que nous considérons.
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1.2 Eigenvectors in random matrix theory . . . . . . . . . . . . . . 22
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1.4 Purpose of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 29

1.4.1 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . 29

Numerous mathematical problems naturally lead us to fill a matrix with random coefficients
and to study its spectral properties. Thus, in the 1920s, the statistician Wishart initiated
the random matrix theory by studying in [Wis28] the first ever model of a random matrix:
a random covariance matrix. Given n centered i.i.d. random vectors, X1, . . . , Xn in Rp

modeling a sample of a given population, assume that we want to estimate the covariance
matrix Σ of their common distribution. We know from the law of large numbers that
the random matrix Sn = 1

n
(X1, . . . , Xn)(X1, . . . , Xn)

T is a good estimator of Σ, as long
as p remains small compared to n. But one of the reasons we may be interested in the

13



Chapter 1. Introduction

spectrum of these matrices, Sn, now identified as Wishart matrices, is that in the case
where p has an order close to that of n, to obtain satisfying information about Σ, we need
to use other statistical methods, such as a principal component analysis, which involve the
largest eigenvalues of Sn and their associated eigenvectors.

However, it was not until the 1950s that a concrete mathematical theory of the spectrum of
random matrices emerged through the work [Wig55] of Nobel Prize winner Eugene Wigner.
In the context of his physical studies of heavy nuclei, the behavior of a nucleus is determined
by a Hamiltonian operator. Wigner’s idea was then to approximate this Hamiltonian
operator by a Hermitian random matrix of high dimension. The interest for the spectrum
of these matrices followed the postulate that the spacings between the lines in the spectrum
of a heavy atom nucleus should resemble the spacings between their eigenvalues. Indeed,
during this last study Wigner then conjectured a phenomenon of universality, namely that
the asymptotic spectral properties of random matrices are described by universal laws.

This latter conjecture, which will be illustrated in Section 1.1, as well as the work of Dyson
and Mehta, marked the beginning of the interest in random matrices as pure mathemat-
ical objects. Indeed, many important tools aiding the analysis of the properties of the
spectrum of random matrices were then developed, for example, the method of orthogonal
polynomials by Mehta and Gaudin in [MG60]. In addition, two years later in [Dys62],
Dyson classified Hamiltonians into several categories based on their symmetry properties,
implying the existence of three major sets of matrices: the Gaussian orthogonal ensem-
ble (GOE), the Gaussian unitary ensemble (GUE) and the Gaussian symplectic ensemble
(GSE). Those three ensembles of Gaussian random matrices, which are respectively real
symmetric, complex Hermitian, and quaternionic self-dual, rapidly became fundamental in
various areas of theoretical physics, mesoscopic physics, disordered electron systems, and
in the field of quantum chaos.

Until the late 1980s, research on the properties of random matrices in the mathematical
community was apparently not as intensive as it was in theoretical physics. Among the few
purely mathematical articles of the two decades after the 1960s, we can cite in particular
three works that greatly influenced the theory of random matrices: the work [MP67] of
Marcenko and Pastur describing the spectrum of random covariance matrices, the work
[FK81] of Furedi and Komlos on the distribution of eigenvalues in ensembles of random
matrices with independent entries and finally Montgomery’s work [Mon73], which provided
an important link between the theory of random matrices and deep-rooted problems of
number theory. Indeed, he revealed a certain similarity between the eigenvalues of matrices
of the GUE and the zeros of the Riemann zeta function.

The situation changed considerably after the 1990s, thanks, in particular, to the works
[Voi91, DVDN92] of Voiculescu et al, who developed the free probability theory. Since
then, random matrices have been increasingly studied. Today, random matrix theory is a
very large subject with applications in many disciplines of natural science, engineering and
finance.

14



1.1. Universality: from square matrices to circular distributions

In the following sections of this introduction, we present some fundamental results of
random matrix theory that will help us progressively introduce the main ideas and tools
that we will use in this thesis, as well as presenting the historical context in which this
thesis is ingrained. Finally, the last subsection presents the precise subject of this thesis.

1.1 Universality: from square matrices to circular dis-

tributions

The first, and perhaps the most fundamental, mathematical object used to study the
eigenvalues of a random matrix was introduced by Eugen Wigner and corresponds to the
following probability measure, commonly known as empirical spectral measure.

Definition 1 (Empirical spectral measure). For any n×n square matrix A, the probability
measure, µn, which puts equal mass on each eigenvalue of A is called the empirical spectral
measure (or distribution) of A.

For example, in the specific case where we consider an n×n Hermitian (or real symmetric)
matrix A, as the eigenvalues λ1, . . . , λn of A are all real, its empirical spectral measure is
a real probability measure that could be expressed as

µn =
1

n

n∑

i=1

δλi .

Moreover, one can note that in this last case for any Borel set B ⊆ R,

µn(B) =
1

n
#{λi ∈ B | i ∈ J1, nK}

is the proportion of eigenvalues of A contained in the set B. For this reason, many studies
have investigated the empirical spectral measure of various models of random matrices in
order to study the distribution of their eigenvalues. As we will see in the next fundamental
examples presented in this introductory chapter, many studies have focused on the limiting
spectrum of an n× n matrix An when its dimension, n, tends to infinity.

1.1.1 Wigner’s semi-circle law

The matrix model initially introduced by Eugen Wigner in 1955 was a specific model of
a random Hermitian matrix. He introduced it to study the eigenvalues of such a matrix
when its dimension tends to infinity in order to analyze by approximation a self-adjoint
operator that interested him in his work in the field of physics of heavy nuclei. This model
is given as follows.
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Chapter 1. Introduction

Definition 2 (Wigner matrix). A Wigner matrix is a random Hermitian matrix, Wn =
(Wn(i, j))

n
i,j=1 such that the entries above its diagonal {Wn(i, j) , 1 ≤ i < j ≤ n} are real or

complex valued i.i.d. random variables with zero mean and unit variance, and the diagonal
entries {Wn(i, i) , 1 ≤ i ≤ n} are i.i.d. centered real-valued random variables with bounded
mean and variance and are independent from the upper-triangular entries.

Remark 1. This definition may vary; rather than considering that the upper-triangular
entries have a second moment equal to 1, other authors consider that the entries have just
a bounded moment of order 2, or bounded moments of any order.

By studying the eigenvalues of this last model, Wigner demonstrated the following theorem
which can be considered as the starting point of random matrix theory.

Theorem 3 (Wigner’s semi-circle law). The empirical spectral measure, µ 1√
n
Wn

, of an

n× n normalized Wigner matrix, 1√
n
Wn, converges almost surely as n tends to infinity to

the Wigner semi-circle distribution with parameter 2:

µ 1√
n
Wn

a.s.−−−→
n→∞

µsc

with

µsc :=
1

2π

√
4− x2 ✶x∈[−2,2] dx.

In other words, the eigenvalues of a normalized large Wigner matrix will be approximately
distributed in a semi-circle of radius 2. This phenomenon is illustrated in Figure 1.1,
where we can observe the convergence to the semi-circle distribution of the eigenvalues as
the dimension, n, grows.

The reason we have to normalize the matrix Wn by 1√
n

comes from the fact that we want
its spectrum to be bounded. Indeed, the magnitude of the eigenvalues of Wn is of order
O(

√
n). Various proofs of this order of magnitude can be found in the literature. We can

cite for example the so-called Bai-Yin Theorem which was proved in [BY86] and states
that, in the case where the entries of Wn have finite fourth moment, almost surely:

lim
n→∞

‖Wn‖op√
n

= 2.

Another noteworthy fact of Wigner’s theorem is that since the eigenvalues of a random
matrix are random variables, the involved empirical spectral measure is a random measure.
It is therefore a convergence theorem of a random probability measure to a deterministic
probability measure.

Finally, as for the classical central limit theorem, this last result shows a limiting distri-
bution which does not depend on the initial laws of the entries of the considered matrix.
In random matrix theory this phenomenon is called universality. In the next subsections,
we present three other historically important results of universality for different classes of
random matrices.
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1.1. Universality: from square matrices to circular distributions
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Figure 1.1: Illustration of the Wigner’s semi-circle law. The red curve represents the density
x 7→ 1

2π

√
4− x2 ✶x∈[−2,2] of the semi-circle distribution with parameter 2 and the blue histogram

is that of the eigenvalues of an n× n Gaussian Wigner Matrix 1√
n
Wn for different values of n.

1.1.2 Girko’s circle law

In 1965 the French mathematical physicist, Jean Ginibre, noticed and demonstrated in
[Gin65] that the limiting spectral distribution of an n× n random matrix which lacks any
condition of symmetry and whose entries are all i.i.d. centered Gaussian random variables,
all with variance equal to 1/n, is the uniform distribution over the unit disc.

Since this study, the ensemble of square matrices with Gaussian distribution of entries is
called the Ginibre ensemble and has been very successful in describing various physical
phenomena.

Despite the fact that, in 1984, Vyacheslav Girko introduced in [Gir85], an approach that
allowed for the establishment of the circular law for more general distributions, it was not
until 45 years after the initial result of Ginibre that, in 2010, Tao and Vu proved in [TV10]
the universality of the so-called Girko’s circle law under the minimum assumptions set out
below.
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Chapter 1. Introduction

Theorem 4 (Girko’s circle law). Let (Gn)n∈N∗ be a sequence of n × n matrix ensembles
whose entries are i.i.d. copies of a complex random variable with mean 0 and variance
1. Then, the empirical spectral measure of 1√

n
Gn converges almost surely to the uniform

measure on the unit disk as n tends to infinity:

µ 1√
n
Gn

a.s.−−−→
n→∞

µdisk

with

µdisk :=
1

π
✶{x2+y2≤1}(x, y) dxdy

The eigenvalues, which are in this case complex random variables, will be approximately
distributed in a disk of the complex plane of radius 1. This phenomenon is illustrated in
Figure 1.2, where we can observe the convergence to the uniform distribution on the unit
disk of the eigenvalues as the dimension n grows.
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Figure 1.2: Illustration of the Girko’s circle law. The blue dots represent the eigenvalues in
the complex plane of a real Ginibre matrix 1√

n
Gn for different values of n.

1.1.3 Marchenko-Pastur’s quarter circle law

In 1967, two years after the first result of Jean Ginibre on the eigenvalues of Gaussian ma-
trices, the two Ukrainian mathematicians Vladimir Marchenko and Leonid Pastur proved
in [MP67] that the limiting distribution of the singular values of a large rectangular random
matrix is a probability distribution, hence named the Marchenko-Pastur distribution.
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1.1. Universality: from square matrices to circular distributions

We recall that the singular values of a matrix M are the eigenvalues of the matrix
√
MM∗.

Thus, in the case where M is a rectangular matrix and therefore does not have eigenvalues,
its singular values are helpful to compute its pseudoinverse, to determine its rank, its range,
its operator norm, etc.

We present here a simpler, reformulated version, of the initial Marchenko-Pastur theorem
which illustrates the convergence of the empirical spectral measure to the quarter circle
distribution.
Theorem 5 (Marchenko-Pastur’s quarter circle law). If Xn is an n × n random matrix
such that its entries are independent, centered and have variance 1, then the empirical
spectral distribution, µ 1√

n

√
MM∗, of the n × n random matrix 1

n

√
MM∗ converges to the

Marchenko-Pastur’s quarter circle distribution:

µ 1√
n

√
MM∗

a.s.−−−→
n→∞

µMP

with

µMP :=
1

π

√
4− x2 ✶[0,2](x) dx
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Figure 1.3: Illustration of the Marchenko-Pastur’s quarter circle law. The red curve
represents the density x 7→ 1

π

√
4− x2 ✶[0,2](x) of the quarter circle distribution and the blue

histogram is that of the singular values of an n × n random matrix such that its entries are
Gaussian random variables which are independent, centered and with unit variance, for different
values of n.
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Chapter 1. Introduction

1.1.4 Single Ring Theorem

A more recent result of universality that we can cite in this introduction is that of Guionnet,
Krishnapur and Zeitouni. In 2011, they demonstrated, in an article entitled Single Ring
Theorem, a new universality result for another class of matrices. For a fixed n-tuple
(s1, . . . , sn) of non-negative reals, these matrices could be defined as the matrices which are
uniformly distributed among the matrices with singular values (s1, . . . , sn). More explicitly,
any matrix of this class can be written under the form,

An = UnDnVn

for Un and Vn two independent Haar distributed random matrices, that is to say two matri-
ces uniformly distributed among the ensemble of unitary matrices, andDn = diag(s1, . . . , sn)
a non-negative diagonal matrix independent of Un and Vn. This result [GKZ11], was ini-
tially partially demonstrated by the physicits Feinberg and Zee in [FZ97], and its assump-
tions have since been amended. Specifically, in [RV14], Rudelson and Vershynin showed
that a hard-to-check assumption on the smallest singular value of (An − z.In) was unnec-
essary and in [BD+13], Basak and Dembo weakened the hypotheses so that the empirical
spectral measure of Dn allows for the existence of some atoms. We state here a shortened
version with optimal assumptions of the Single Ring Theorem borrowed from the very re-
cent work [BES16] of Bao, Erdös and Schnelli which applies, like the first paper [BG+17] of
Benaych-Georges, to study the Local Single Ring Theorem, that is to say the Single Ring
Theorem whithin the bulk regime.

Theorem 6 (Single Ring Theorem). Let (An)n∈N∗ be a sequence of n×n matrices defined
as previously. If the empirical spectral measure, µDn

, of Dn converges weakly to a measure
µ whose support contains more than one point and the sequence of matrices (Dn)n∈N∗ is
uniformly bounded, then then the empirical spectral measure of An converges in probability
to a deterministic probability measure ν which possesses a radially-symmetric density, ρ(z),
with respect to the Lebesgue measure on C depending only on µ and supported on the single
ring {z ∈ C, r ≤ z ≤ R} for

r =
1√∫

x−2µ(dx)
and R =

√∫
x2µ(dx)

To put it another way, the distinctive property of matrices (An) is that their eigenvalues
tend to spread over a single annulus centered in the origin. For example, if the eigenvalues
of the matrix Dn are distributed such that the empirical spectral measure of Dn tends to
the uniform measure on an interval [a, b], then the eigenvalues of An will spread as n tends

to infinity over the single ring {z ∈ C, r =
√
ab ≤ z ≤ R =

√
a2+ab+b2

3
}. We illustrate this

phenomenon in Figure 1.4 in the case where µ is the uniform measure on the interval [1, 6].
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1.1. Universality: from square matrices to circular distributions
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Figure 1.4: Illustration of the Single Ring Theorem. The blue dots represent the eigenvalues
in the complex plane of the matrix An = UnDnVn, for different values of n and for Un and Vn
two n× n Haar distributed random matrices and Dn an n× n random diagonal matrix such that
its empirical spectral measure converges to the uniform measure on [1, 6]. The smaller circle has

radius r =
√
6 ≈ 2.45 and the bigger one has radius R =

√
43
3 ≈ 3.78.

Furthermore, one can note that if the measure µ verifies
√∫

x−2µ(dx) = ∞, then r = 0

and the support of the limiting measure ν is a disk, leading to the previously presented
Ginibre case. Moreover, in the case where µ is a Dirac measure, r = R so that the support
of ν is simply a circle. These relations are illustrated in Figure 1.5.
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Figure 1.5: Relation of the Single Ring Theorem to other results. In the three figures
above, the blue dots represent the eigenvalues in the complex plane respectively from left to right
of a real Ginibre matrix 1√

n
Gn, of a matrix An = UnDnVn such that µ is the uniform measure on

[0,
√
3] and of a matrix An = UnDnVn such that µ = δ1.
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Chapter 1. Introduction

1.2 Eigenvectors in random matrix theory

Although the earliest foundational works of random matrix theory were concerned with
eigenvalues, many studies were subsequently focused on eigenvectors. Indeed, many prob-
lems, particularly related to graph theory, naturally lead to questions about the eigen-
vectors of random matrices. We can mention for example problems related to spectral
clustering or even the famous PageRank algorithm used by Google to sort its search re-
sults. Nevertheless, the eigenvectors literature is currently narrower than the eigenvalues
one. Nevertheless, the literature concerning eigenvectors is currently scarce compared to
that relating to eigenvalues.

This could be explained in particular by the fact that many ensembles of random matrices,
such as those of the GOE or the GUE, are rotationally invariant in law which makes the
study of their eigenvectors pointless as they are uniformly distributed on the unit sphere.

1.2.1 Spectral measure

In this section dedicated to eigenvectors, we introduce one of the tools that will be later
addressed in this thesis: the spectral measure.

Definition 7 (Spectral measure over a vector). For an n× n hermitian matrix, Hn, with
eigenvalues λ1, . . . , λn and associated eigenvectors u1, . . . ,un, we define the spectral mea-
sure of Hn over a vector v, µHn,v, by

µH,v =
n∑

j=1

|v · uj|2δλj

In contrast with the empirical spectral measure, the spectral measure over a vector v does
not weigh all the eigenvalues of a matrix Hn equally; the weighting depends here on the
eigenvectors of Hn. Thus, the spectral measure gives information on the eigenvector basis
of Hn. Moreover, this measure is often applied over specific vectors as vectors (ei)ni=1 of the
canonical base of Rn, as in this case it satisfies, for any function φ defined on the spectrum
of Hn, the identity

(φ(Hn))i,i =
n∑

j=1

|ei · uj|2φ(λj) =
∫
φ(x) dµHn,ei

which follows directly from the spectral theorem.

For this reason as well as others, this measure is often used in studies on the eigenvectors
of random matrices. For example, many estimates on eigenvectors of a random matrix,
Hn, are obtained from its resolvent matrix, (Hn − zIn)

−1 and using the previous formula
with φ : x 7→ 1

x−z could be helpful in the sense that the entries of the resolvent matrix are
easy to compute.
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1.2. Eigenvectors in random matrix theory

1.2.2 Anderson’s transition

One of the sizeable current issues concerning the eigenvectors of random matrices is the
so-called Anderson’s transition. It concerns matrices called band matrices, that is to say
Hermitian matrices whose entries are null beyond a band located around their diagonal,
and which represent physical systems with local interactions. The question is then to know
to which bandwidth, W , the spectral properties remain local, that is to say close to those
of a diagonal matrix with independent diagonal entries. Roughly speaking, we say that an
eigenvector is localized if it is essentially carried by few of its coordinates (see e.g. [Cha10]).

Although this topic is not addressed in this thesis, it may be interesting to give some
fundamental results, because as we will later see we will approach it by studying the
spectrum of a diagonal matrix summed with a random band matrix.

Despite the fact that this has not yet been formally demonstrated, a phase transition be-
tween the localized regime and the delocalized regime of the eigenvectors seems to occur
when the bandwidth of an n × n random matrix is of order

√
n. Another way of formu-

lating this latter conjecture could be the following: the average localization length of the
eigenvectors of an n× n band matrix, of bandwidth W , is of the order of W 2. Figure 1.6
illustrates this transition for a 4000× 4000 band matrix, as

√
4000 ≈ 63.

In [Sch09], Jeffrey Schenker shows that the localization length of the eigenvectors of a
band random matrix whose bandwidth is equal to W , is lower than W 8. Similarly, in
2012, Erdös, Yau and Yin demonstrated, in [EYY12a] that, under certain assumptions,
the localization length of the eigenvectors of a band matrix is greater than W . We can also
mention the work [EKYY13] of Erdös, Knowles, Yau and Yin in which they prove that
the eigenvectors of an n × n random band matrix are delocalized when the width of the
strip W is of order greater that n4/5. More generally, all the results currently in existence
regarding this subject are in agreement with the conjecture previously mentioned.
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Figure 1.6: Illustration of Anderson’s transition. For an n × n random band matrix whose
entries are standard Gaussian variables, we have represented one of its eigenvectors for a bandwith
equal to W = 30 (left), 63 (center) and 70 (right). Here n = 4000.
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Chapter 1. Introduction

1.3 Perturbation theory

A natural and central question, in Mathematics and Physics, is to understand how the
spectral properties of an operator are altered when the operator is subject to a small
perturbation. This question is at the center of Perturbation Theory and was more precisely
introduced by Rayleigh and Schrödinger as follows.

Let us consider a Hamiltonian operator, H, whose eigenvectors and eigenvalues are known
and a second operator, X, whose entries are small compared to those of H. Thus, if we look
at the operator H +X, the effect of X is to modify the spectrum of H. This can model,
physically speaking, the perturbation by a weak magnetic or electric field represented by
X of an atomic nucleus represented by H. The purpose of Perturbation Theory is then
to give an approximate expression of the eigenvalues and eigenvectors of H +X in terms
of those of H. We refer the reader to Kato’s book [Kat13] for a thorough account on this
subject which has been studied in many different contexts.

1.3.1 The problem of Weyl

In 1912, the German mathematician, theoretical physicist and philosopher Hermann Weyl
stated in [Wey12] the following problem: if A and B are two Hermitian matrices, how are
the eigenvalues of the matrix A+B related to those of A and B ?

This problem, which is more general than that of a perturbation, because here no hy-
pothesis is made on the "smallness" of the perturbing matrix, currently does not have so
many answers. For instance, by using the notation λ1(M) ≤ · · · ≤ λn(M) to denote the
eigenvalues of an n× n Hermitian matrix M , it is easy to see, from linearity of the trace,
that

Tr(A+B) = Tr(A) + Tr(B) ⇐⇒
n∑

i=1

λi(A+B) =
n∑

i=1

λi(A) +
n∑

i=1

λi(B),

or that if A and B commute, so that A and B are diagonalizable in a same eigenbasis,
then for any i ∈ J1, nK,

λi(A+B) = λi(A) + λi(B),

but overall precise answers under broad hypotheses are scarce. Nevertheless, Weyl’s answer
to this problem has remained one of the most satisfactory thus far.

Theorem 8 (Weyl’s inequality). Let A and B be two n× n Hermitian matrices, then for
any i ∈ J1, nK, i ∈ J0, n− iK,

λi(A+B) ≤ λi+j(A) + λn−j(B)

Moreover, if A and B have no common eigenvector, then every inequality is strict.
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1.3. Perturbation theory

From this first theorem many other inequalities have been deduced, for instance,

Corollary 9. Let A and B be two n× n Hermitian matrices, then for any i ∈ J1, nK,

λi(A) + λ1(B) ≤ λi(A+B) ≤ λi(A) + λn(B)

or even,

Corollary 10. Let A and B be two n×n Hermitian matrices, then for any (i, j) ∈ J1, nK2

such that i+ j − 1 ≤ n,
λi+j−1(A+B) ≤ λi(A) + λj(B)

All these inequalities, known today as Weyl’s inequalities, are very useful in estimating
perturbations in the spectrum of Hermitian matrices. In fact, in the case of a perturbation,
H+P , if we have a bound on the perturbing matrix, P , in the sense that we know that its
operator norm satisfies ‖P‖op ≤ ε, then it follows, by definition of the operator norm, that
all the eigenvalues of P are bounded in absolute value by ε. Applying Weyl’s inequalities,
it follows that the spectra of H + P and H are close in the sense that for all i ∈ J1, nK,

|λi(H + P )− λi(H)| ≤ ε.

In other words, these inequalities guarantee that the spectrum of a Hermitian matrix is
stable with respect to small perturbations, and are therefore a good starting point for any
study of a perturbed system.

1.3.2 Eigenvalues of a perturbed matrix: bulk and outliers

Questions about perturbed matrices are as diverse (global, local, bulk, edge...) as questions
about non perturbed matrices in random matrix theory. Namely, if we consider a deter-
ministic n × n Hermitian matrix, Hn, perturbed by a random matrix Xn, as various new
asymptotic behaviors of the spectrum of Hn +Xn can appear, we can study, for instance,
questions relating to the extreme eigenvalues of Hn +Xn or the typical spacings between
two consecutive eigenvalues of Hn +Xn.

We can distinguish two categories of perturbations; those which are small in terms of rank
and those which are small in terms of operator norm.

Those of the first category are often referred to as low rank perturbations. They consist in
perturbing a matrix Hn by a matrix Xn whose rank is a fixed integer which does not vary
with n or by a matrix Xn whose rank is small compared to its dimension (as for example
log(n)). Weyl’s inequalities guarantee that such perturbations do not influence the global
statistics of the eigenvalues as the dimension n tends to infinity. Thus, the empirical
spectral measures of Hn + Xn and Hn have the same asymptotics and are governed by
the universal law associated to the matrix ensemble to which Hn belongs. However, at a
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Figure 1.7: Illustration of a finite rank perturbation. In both figures, the red curve represents
the density x 7→ 1

2π

√
4− x2 ✶[−2,2](x) of the semi circle distribution. The blue histogram of the

left figure is that of the eigenvalues of an n×n Wigner matrix, 1√
n
Wn, whose entries are standard

Gaussian variables. The blue histogram of the right figure is that of the eigenvalues of the same
Wigner matrix but perturbed this time by a random diagonal matrix of rank 3, two outliers
represented here by red dots are exhibited out of the bulk spectrum.

microscopic scale, the behavior of individual eigenvalues may change dramatically under
such a perturbation. Indeed, the perturbed matrix may exhibit outliers , that is to say
eigenvalues detached from the bulk spectrum.

Regarding the outliers of a matrix perturbed by a low rank matrix, there is a phase tran-
sition called the BBP phase transition, from the names of the authors Baik, Ben Arous
and Péché who have highlighted it in [BAP+05] in the case of covariance matrices, after
the initial work [Joh01] of Johnstone. The general principle of this transition is that if the
amplitude of the perturbation remains below a certain threshold, the largest eigenvalues of
the perturbed system do not move significantly, whereas beyond this threshold, they are
at a macroscopic distance from the bulk spectrum. Studies on other ensembles of matri-
ces, such as the Wigner ensemble, have shown similar phase transitions. We can cite for
example the pioneering work [FK81] of Füredi and Komlós about the outliers of perturbed
Wigner matrices, and the works [BGN11] or [BGGM+11] of Benaych-Georges, Guionnet,
Maida and Nadakuditi that have generalized this transition to larger ensembles.

In this thesis we are interested in perturbations belonging to the second category: those
which are small in terms of operator norm. This second kind of perturbation has, unlike the
first, a tendency to macroscopically perturb the bulk spectrum of the considered matrix,
and also has a phase transition phenomenon.

More precisely, in the typical case where the spacing between two consecutive eigenvalues
of the matrix, Hn, is of order n−1 the phase transition takes place at ‖Xn‖op ∼ n−1. The
regime ‖Xn‖op ≪ n−1 is called the perturbative regime and the regime n−1 ≪ ‖Xn‖op ≪ 1
is often called the semi-perturbative regime, as the more the operator norm of a perturbation
approaches the order 1, the more the considered regime begins to resemble that of a simple
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1.3. Perturbation theory

matrix addition. We illustrate this phase transition in Figure 1.8, where the distinction
between the spectra of Hn and Hn +Xn begins to be observable effectively as soon as the
operator norm of the perturbative matrix, Xn, begins to be of order greater than n−1.
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Figure 1.8: Illustration of the phase transition phenomenon. The blue histogram is that
of the eigenvalues of the diagonal matrix Hn = diag( 1n ,

2
n , . . . ,

n
n) and the beige histogram is that

of the eigenvalues of Hn+Xn where Xn is a Gaussian Wigner Matrix. Here ‖Xn‖op ∼ n−1.2 (top
left), n−1 (top right), n−0.5 (bottom left) and n−0.2 (bottom right).

In general, and as it is very well explained in [Fer00], the study of the perturbative regime
mainly concerns applications in quantum mechanics, while the semi-perturbative regime
deals with applications in the context of covariance matrices, as in [LP11], or applications
to finance, as in [AB12].

1.3.3 Eigenvectors of a perturbed matrix

Currently, the existing results about the spectral properties of perturbed systems mostly
concern the eigenvalues, and we have very little knowledge about eigenvectors. We can
distinguish two major themes among the works focused on the study of the eigenvec-
tors of a perturbed Hermitian matrix; those that provide bounds on the deviations of
these eigenvectors under perturbation, as [OVW16, OVW17, vSW17, Zho17], and those,
as [AB12, AB14, ABB14, Ben17], that provide explicit perturbative expansions.
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Chapter 1. Introduction

For example, in [AB12], Allez and Bouchaud investigate the stability under a small pertur-
bation of the subspace spanned by some consecutive eigenvectors of a generic symmetric
matrix, and in [AB14] they consider the perturbation of a matricial stochastic process and
they study the effect of this perturbation on the dynamics of a given eigenvector. In more
recent work [Zho17], Zhong gives bounds of deviations of the eigenvector associated to the
maximal eigenvalue of the perturbed matrix.

Let us suppose for exemple Hn to be diagonal. In this sense, it is possible to understand
the current problem of perturbation as that of a perturbation of the canonical basis. Figure
1.9 illustrates this interpretation of the problem.
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Figure 1.9: Effect of a perturbation on an eigenvector. For a diagonal matrix Hn =
diag( 1n ,

2
n , . . . ,

n
n) and a Gaussian Wigner matrix, Xn, which operator norm is of order n−0.4, one

can visualize in the left figure the n
2 -th eigenvector of the original matrix, Hn, and in the right

figure the n
2 -th eigenvector of the perturbed matrix, Hn +Xn. Here n = 1000.

Major technical difficulties remain to approximate precisely the eigenvectors of a perturbed
matrix. However, it is possible to find in the recent literature, some advances on this specific
subject. We can cite for example the paper [Ben17] of Benigni, in which he shows that in
the case of a perturbation of a diagonal matrix, Hn, by a Wigner matrix, Xn, with operator
norm of order n−1/2 ≪ ε≪ 1, we have for m specifically selected eigenvectors, (uki)

m
i=1, of

Hn+Xn and any unit vector q, the convergence in moments of the quantities (〈uki ,q〉)mi=1

to those of a Gaussian vector if Xn is symmetric or to those of a complex Gaussian vector
if Xn is Hermitian. By choosing, in particular, a unit vector q of the canonical basis this
result could then specify an average on some coordinates of an eigenvector of the perturbed
matrix, Hn +Xn.
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1.4 Purpose of this thesis

The present thesis is devoted to the study of the sensitivity of the eigenvalues and the
eigenvectors of a given operator under small perturbations, and more precisely to the
understanding of the effect of a perturbation on the spectrum of a Hermitian matrix by a
random matrix with small operator norm and whose entries in the eigenvector basis of the
first one were independent, centered and with a variance profile.

Throughout this thesis we will consider the following model:

We perturb an n × n Hermitian matrix, Dn, by a random Hermitian matrix with small
operator norm. Moreover, as we can diagonalize Dn up to a change of basis, we suppose it
is diagonal and consider that the entries of the pertubative matrix, Xn, are independent
in the eigenvector basis of Dn with a variance profile1. Furthermore, to better describe the
magnitude of the perturbations, we suppose that the operator norm of Xn is of order 1,
introduce a real sequence εn that tends to zero, and consider the perturbed matrix

Dε
n := Dn + εnXn

for different rates of convergence of εn to zero. In the following we prove that, depending
on the order of magnitude of the perturbation, different regimes appear.

1.4.1 Organization of the thesis

This thesis is organized as follows:

- In Chapter 2, we introduce some useful tools and results which will be used through-
out the thesis.

- In Chapter 3, we are interested in the empirical spectral distribution µεn of the per-
turbed matrix, Dε

n = Dn + εnXn, in the regime where the matrix size n tends to
infinity and εn tends to 0. We shall prove the following perturbative expansion of µεn,

µεn ≈ µn +
εn
n
dZ if εn ≪ n−1

µεn ≈ µn +
εn
n

(cdF + dZ) if εn ∼ c

n
µεn ≈ µn + ε2ndF if n−1 ≪ εn ≪ 1

for µn the empirical spectral measure of Dn, dZ a Gaussian random linear form
related to the so-called one-dimensional Gaussian free field, and dF a deterministic

1Note that if the perturbing matrix belongs to the GOE or GUE, then its law is invariant under this
change of basis
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linear form related to free probability theory. We will prove, moreover, that if n−1 ≪
εn ≪ n−1/3, then the last of those three convergences can be refined as follows:

µεn ≈ µn + ε2ndF +
εn
n
dZ.

- The aim of Chapter 4 is to provide a thorough study of the semi-perturbative regime
n−1 ≪ εn ≪ 1. We will see that this regime could be decomposed into infinitely many
sub-regimes and that for all positive integer p, when n−1/(2p−1) ≪ εn ≪ n−1/(2p+1),
the perturbative expansion of µεn could be decomposed in the following manner,

µεn ≈ µn +
εn
n
dZ + ε2ndC2 + ε4ndC4 + · · ·+ ε2pn dC2p

for some deterministic linear forms (dC2k). In this chapter we will explain how we
should reinforce the hypothesis of our model each time we choose a slower rate of
convergence to zero for εn and how the deterministic terms appear then.

- Finally, in Chapter 5, we will provide a perturbative expansion of the coordinates
of the eigenvectors of the perturbated matrix Dε

n. This will be done through a
perturbative expansion of spectral measures associated to the state defined by a
given vector.

Chapters 3 and 5 correspond respectively to the publications [BGEM17] and [BGEM18]
done in collaboration with Florent Benaych-Georges and Nathanaël Enriquez. Chapter 4
corresponds to work still undergoing study and unpublished as of yet. Some of the concepts
mentioned in this introduction have not been removed from these chapters so that they
can be read and understood independently of the rest of this thesis.
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Contents
2.1 Stieltjes transform . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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2.3 CLT extension lemma . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 A functional density lemma . . . . . . . . . . . . . . . . . . . . 34

The tools and results we use along this thesis, namely the Stieltjes transform, the Helffer-
Sjöstrand formula, the CLT extension lemma of Shcherbina and Tirozzi and a functional
density lemma with its proof, can be found by the reader in the following sections.

2.1 Stieltjes transform

In this section we present one of the fundamental tools of random matrix theory called
Stieltjes transform and which is very useful for proving the convergence of a sequence of
measures.

Definition 11 (Stieltjes transform). Given a probability measure µ on R we define, for
any z outside of its support, its Stieltjes transform by

sµ(z) :=

∫

R

1

x− z
dµ(x)

One of the main advantages of the Stieltjes transform is that, as it is invertible, we can
use the following theorem to study the convergence of a sequence of measures.

Theorem 12. If (µn)n∈N is a sequence of measures on R and µ another measure on R,
then µn converges almost surely to µ as n tends to infinity if and only if sµn(z) converges
almost surely as n tends to infinity to sµ(z) for any z ∈ C \ R.
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Moreover, in the special case of the study of the empirical spectral measure, µn = 1
n

∑n
i=1 δλi

of a matrix Mn, this theorem allows us to resume our study to the convergence of the
normalized trace of its resolvent matrix,

sµn(z) =
1

n

n∑

i=1

1

λi − z
=

1

n
Tr (Mn − zIn)

−1 .

Finally, we will use in the next three chapters the following identity,

Lemma 13 (Resolvent expansion). For two hermitian matrices A and B, and for any z
that is not in the spectrum of A, B and A+B, we have

1

z − (A+B)
=

1

z − A
+

1

z − A
B

1

z − (A+B)
.

2.2 Hellfer-Sjöstrand formula

The Helffer-Sjöstrand formula expresses a regular function φ on R as an integral against
functions x 7→ 1

x−z and is very useful to extend to any Cp compactly supported function on
R a convergence which has been previously proven for test functions of the type x 7→ 1

x−z .
In the next chapters, this formula will allow us to extend the convergence results initially
demonstrated for the resolvent of the Hermitian matrixDε

n to its empirical spectral measure
against regular functions.

Proposition 14 (Helffer-Sjöstrand formula). Let n ∈ N and φ ∈ Cp+1(R). We define the
almost analytic extension of φ of degree p through

φ̃p(x+ iy) ..=

p∑

k=0

1

k!
(iy)kφ(k)(x) .

Let χ ∈ C∞
c (C; [0, 1]) be a smooth cutoff function. Then for any λ ∈ R satisfying χ(λ) = 1

we have

φ(λ) =
1

π

∫

C

∂̄(φ̃p(z)χ(z))

λ− z
d2z ,

where d2z denotes the Lebesgue measure on C and ∂̄ ..= 1
2
(∂x+ i∂y) is the antiholomorphic

derivative.

The proof of this formula can be found, e.g. in [BGK16].
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2.3 CLT extension lemma

The following CLT extension lemma is borrowed from the paper of Shcherbina and Tirozzi
[ST10]. We state here the version that can be found in the Appendix of [BGGM14].

Lemma 15. Let (L, ‖ · ‖) be a normed space with a dense subspace L1 and, for each n ≥ 1,
(Nn(φ))φ∈L a collection of real random variables such that:

• for each n , φ 7−→ Nn(φ) is linear,

• for each n and each φ ∈ L, E[Nn(φ)] = 0,

• there is a constant C such that for each n and each φ ∈ L, Var(Nn(φ)) ≤ C‖φ‖2,

• there is a quadratic form V : L1 → R+ such that for any φ ∈ L1, we have the
convergence in distribution Nn(φ) −→

n→∞
N (0, V (φ)).

Then V is continuous on L1, can (uniquely) be continuously extended to L and for any
φ ∈ L, we have the convergence in distribution Nn(φ) −→

n→∞
N (0, V (φ)).

One of the assumptions of previous the lemma concerns a variance domination. The next
proposition provides a tool in order to check it. Let us first remind the definition of the
Sobolev space Hs.

For φ ∈ L1(R, dx), we define

φ̂(k) :=

∫
eikxφ(x)dx (k ∈ R)

and, for s > 0,
‖φ‖Hs

:= ‖k 7−→ (1 + 2|k|)s φ̂(k)‖L2 .

We define the Sobolev space Hs as the set of functions with finite ‖ · ‖Hs
norm. Let us now

state Proposition 2 of the paper [ST10] of Shcherbina and Tirozzi.

Proposition 16. For any s > 0, there is a constant C = C(s) such that for any n, any
n× n Hermitian random matrix M , and any φ ∈ Hs, we have

Var(Trφ(M)) ≤ C‖φ‖2Hs

∫ ∞

y=0

y2s−1e−y
∫

x∈R
Var(Tr((x+ iy −M)−1))dxdy.
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2.4 A functional density lemma

We did not find Lemma 18 in the literature, so we provide its proof. Subsequently, the
latter will be used with the CLT extension Lemma 15. Recall that for any z ∈ C\R,

ϕz(x) =
1

z − x
.

Lemma 17. For any z ∈ C\R, we have, in the L2 sense,

ϕ̂z = (t 7−→ − sgn(Imz)2πi✶Im(z)t>0e
itz) (2.1)

and ϕz belongs to each Hs for any s ∈ R.

Proof. It is well known that if Rez > 0, then
1

z
=

∫ +∞

t=0

e−tzdt.

Let z = E + iη, E ∈ R, η > 0. For any ξ ∈ R, we have

ϕz(ξ) =
−i

i(ξ − z)
= −i

∫ +∞

t=0

e−it(ξ−z)dt = −i

∫ +∞

t=0

e−itξeitzdt.

We deduce (2.1) for Imz > 0.
The general result can be deduced by complex conjugation. �

Lemma 18. Let L1 denote the linear span of the functions ϕz(x) := 1
z−x , for z ∈ C\R.

Then the space L1 is dense in Hs for any s ∈ R.

Proof. We know, by Lemma 17, that L1 ⊂ Hs. Recall first the definition of the Poisson
kernel, for E ∈ R and η > 0,

Pη(E) =
1

π

η

E2 + η2
=

1

2iπ
(ϕiη(E)− ϕ−iη(E))

and that, by Lemma 17,
P̂η(t) = e−η|t|.

Hence for any f ∈ Hs, we have

‖f − Pη ∗ f‖2Hs
=

∫
(1 + 2|x|)2s|f̂(x)|2(1− e−η|x|)2dx,

so that, by dominated convergence, Pη ∗ f −→ f in Hs as η → 0.
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To prove Lemma 18, it suffices to prove that any smooth compactly supported function
can be approximated, in Hs, by functions of L1. So let f be a smooth compactly supported
function. By what precedes, it suffices to prove that for any fixed η > 0, Pη ∗ f can be
approximated, in Hs, by functions of L1. For x ∈ R,

Pη ∗ f(x) =
1

π

∫
f(t)

η

η2 + (x− t)2
dt

= − 1

π

∫
f(t)Im(ϕt+iη(x))dt

=
1

2πi

∫
f(t)(ϕt−iη(x)− ϕt+iη(x))dt.

Without loss of generality, one can suppose that the support of f is contained in [0, 1].
Then, for any n ≥ 1,

Pη ∗ f(x) =
1

2nπi

n∑

k=1

f

(
k

n

)(
ϕ k

n
−iη(x)− ϕ k

n
+iη(x)

)
+Rn(x) (2.2)

where for [t]n := ⌈nt⌉/n,

Rn(x) =
1

2πi

∫
f(t) (ϕt−iη(x)− ϕt+iη(x))− f([t]n)

(
ϕ[t]n−iη(x)− ϕ[t]n+iη(x)

)
dt.

The error term Rn(x) rewrites

Rn(x) =
1

2πi

∫
(f(t)− f([t]n))(ϕt−iη − ϕt+iη)(x)dt

+
1

2πi

∫
f([t]n)(ϕt−iη − ϕ[t]n−iη + ϕt+iη − ϕ[t]n+iη)(x)dt.

Now, note that for any t ∈ R and η ∈ R\{0}, we have by Lemma 17,

ϕ̂t+iη = (x 7→ − sgn(η)2πi✶ηx>0 e
ixz),

so that when, for example, η > 0, for any t ∈ R,

‖ϕt+iη‖2Hs
= 4π2

∫ ∞

0

(1 + 2|x|)2se−2ηxdx

does not depend on t and for any t, t′ ∈ R,

‖ϕt+iη − ϕt′+iη‖2Hs
= 4π2

∫ ∞

0

(1 + 2|x|)2s|eitx − eit
′x|2e−2ηxdx

= 4π2

∫ ∞

0

(1 + 2|x|)2s|ei(t−t′)x − 1|2e−2ηxdx

depends only on t′ − t end tends to zero (by dominated convergence) when t′ − t→ 0.

We deduce that ‖Rn‖Hs
−→ 0 as n→ ∞, which closes the proof, by (2.2). �
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3.8.3 Proof of the convergences in distribution of Theorem 19 . . . . . 63

3.1 Introduction

In this chapter, we provide a perturbative expansion for the empirical spectral distribution
of a Hermitian matrix with large size perturbed by a random matrix with small operator
norm whose entries in the eigenvector basis of the first one are independent with a variance
profile. More explicitly, let Dn be an n×n Hermitian matrix, that, up to a change of basis,
we suppose diagonal1. We denote by µn the empirical spectral distribution of Dn. This
matrix is additively perturbed by a random Hermitian matrix εnXn whose entries are
chosen at random independently and scaled so that the operator norm of Xn has order
one. We are interested in the empirical spectral distribution µεn of

Dε
n := Dn + εnXn

in the regime where the matrix size n tends to infinity and εn tends to 0. We shall prove
that, depending on the order of magnitude of the perturbation, several regimes can appear.
We suppose that µn converges to a limiting measure ρ(λ)dλ and that the variance profile
of the entries of Xn has a macroscopic limit σd on the diagonal and σ elsewhere. We then
prove that there is a deterministic function F and a Gaussian random linear form dZ on
the space of C6 functions on R, both depending only on the limit parameters of the model
ρ, σ and σd such that if one defines the distribution dF : φ 7−→ −

∫
φ′(s)F (s)ds, then, for

large n:

µεn ≈ µn +
εn
n
dZ if εn ≪ n−1 (3.1)

µεn ≈ µn +
εn
n

(cdF + dZ) if εn ∼ c

n
(3.2)

µεn ≈ µn + ε2ndF if n−1 ≪ εn ≪ 1 (3.3)

and if, moreover, n−1 ≪ εn ≪ n−1/3, then convergence (3.3) can be refined as follows:

µεn ≈ µn + ε2ndF +
εn
n
dZ. (3.4)

In Section 3.3 several figures show a very good matching of random simulations with these
theoretical results. The definitions of the function F and of the process Z are given below
in (3.6) and (3.7). In many cases, the linear form dF can be interpreted as the integration
with respect to the signed measure F ′(x)dx. The function F is related to free probability
theory, as explained in Section 3.4 below, whereas the linear form dZ is related to the
so-called one-dimensional Gaussian free field defined, for instance, at [Dub09, Sect. 4.2].

1If the perturbing matrix belongs to the GOE or GUE, then its law is invariant under this change of
basis, hence our results in fact apply to any self-adjoint matrix Dn.
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If the variance profile of Xn is constant, then it is precisely the Laplacian of the Gaussian
free field, defined in the sense of distributions.

The transition at εn ∼ n−1 is the well-known transition, in quantum mechanics, where the
perturbative regime ends. Indeed, one can distinguish the two following regimes:

• The regime εn ≪ n−1, called the perturbative regime (see [Fer00]): the size of the
perturbation (i.e. its operator norm) is much smaller than the typical spacing be-
tween two consecutive eigenvalues (level spacing), which is of order n−1 in our setting.

• The regime n−1 ≪ εn ≪ 1, sometimes called the semi-perturbative regime, where
the size of the perturbation is not small compared to the level spacing. This regime
concerns many applications [LP11, AB12] in the context of covariance matrices and
applications to finance.

A surprising fact discovered during this study is that the semi-perturbative regime n−1 ≪
εn ≪ 1 decomposes into infinitely many sub-regimes. In the case n−1 ≪ εn ≪ n−1/3,
the expansion of µεn − µn contains a single deterministic term before the random term
εn
n
dZ. In the case n−1/3 ≪ εn ≪ n−1/5, the expansion of µεn − µn contains two of them.

More generally, for all positive integer p, when n−1/(2p−1) ≪ εn ≪ n−1/(2p+1), the expansion
contains p of them. For computational complexity reasons, the only case we state explicitly
is the first one. We refer the reader to Section 3.6.5 for a discussion around this point.

In the papers [WW95, AB12, AB14, BABP16, ABB14], Wilkinson, Walker, Allez, Bouchaud
et al have investigated some problems related to this one. Some of these works were mo-
tivated by the estimation of a matrix out of the observation of its noisy version. The
present work differs from these ones mainly by the facts that firstly, we are interested in
the perturbations of the global empirical distribution of the eigenvalues and not of a single
one, and secondly, we push our expansion up to the random term, which does not appear
in these papers. Besides, the noises they consider have constant variance profiles (either a
Wigner-Dyson noise in the four first cited papers or a rotationally invariant noise in the
fifth one). The transition at εn ∼ n−1 between the perturbative and the semi-perturbative
regimes is already present in these texts. They also consider the transition between the
perturbative regime εn ≪ 1 and the non perturbative regime εn ≍ 1. As explained above,
we exhibit the existence of an infinity of sub-regimes in this transition and focus on εn ≪ 1
for the first order of the expansion and to εn ≪ n−1/3 for the second (and last) order. The
study of other sub-regimes is postponed to forthcoming papers.

This chapter is organized as follows. Results, examples and comments are given in Sections
3.2 to 3.4, while the rest of the chapter is devoted to the proofs, except for Section 3.6.5,
where we discuss the sub-regimes mentioned above.

Notations. For an, bn some real sequences, an ≪ bn (resp. an ∼ bn) means that an/bn
tends to 0 (resp. to 1). Also,

P−→ and
dist.−→ stand respectively for convergence in probability

and convergence in distribution for all finite marginals.
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3.2 Main result

3.2.1 Definition of the model and assumptions

For all positive integer n, we consider a real diagonal matrix Dn = diag(λn(1), . . . , λn(n)),
as well as a Hermitian random matrix

Xn =
1√
n
[xni,j]1≤i,j≤n

and a positive number εn. The normalizing factor n−1/2 and our hypotheses below ensure
that the operator norm of Xn is of order one. We then define, for all n,

Dε
n := Dn + εnXn.

We now introduce the probability measures µn and µεn as the respective uniform distribu-
tions on the eigenvalues (with multiplicity) of Dn and Dε

n. Our aim is to give a perturbative
expansion of µεn around µn.

We make the following hypotheses:

(a) the entries xni,j of
√
nXn are independent (up to symmetry) random variables, cen-

tered, with variance denoted by σ2
n(i, j), such that E|xni,j|8 is bounded uniformly on

n, i, j,

(b) there are f, σd, σ real functions defined respectively on [0, 1], [0, 1] and [0, 1]2 such
that, for each x ∈ [0, 1],

λn(⌊nx⌋) −→
n→∞

f(x) and σ2
n(⌊nx⌋, ⌊nx⌋) −→

n→∞
σd(x)

2

and for each x 6= y ∈ [0, 1],

σ2
n(⌊nx⌋, ⌊ny⌋) −→

n→∞
σ2(x, y).

We make the following hypothesis about the rate of convergence:

ηn := max{nεn, 1}× sup
1≤i 6=j≤n

(|σ2
n(i, j)− σ2(i/n, j/n)|+ |λn(i)− f(i/n)|) −→

n→∞
0.

Let us now make some assumptions on the limiting functions σ and f :

(c) the function f is bounded and the push-forward of the uniform measure on [0, 1] by
the function f has a density ρ with respect to the Lebesgue measure on R and a
compact support denoted by S,
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(d) the variance of the entries of Xn essentially depends on the eigenspaces of Dn,
namely, there exists a symmetric function τ( · , · ) on R2 such that for all x 6= y,
σ2(x, y) = τ(f(x), f(y)),

(e) the following regularity property holds: there exist η0 > 0, α > 0 and C < ∞ such
that for almost all s ∈ R, for all t ∈ [s − η0, s + η0], |τ(s, t)ρ(t) − τ(s, s)ρ(s)| ≤
C|t− s|α.

We add a last assumption which strengthens assumption (c) and makes it possible to
include the case where the set of eigenvalues of Dn contains some outliers:

(f) there is a real compact set S̃ such that

max
1≤i≤n

dist(λn(i), S̃) −→
n→∞

0.

Remark 1 (About the hypothesis that Dn is diagonal). (i) If the perturbing matrix Xn

belongs to the GOE (resp. to the GUE), then its law is invariant under conjugation by
any orthogonal (resp. unitary) matrix. It follows that in this case, our results apply to any
real symmetric (resp. Hermitian) matrix Dn with eigenvalues λn(i) satisfying the above
hypotheses.

(ii) As explained after Proposition 20 below, we conjecture that when the variance profile of
Xn is constant, for εn ≫ n−1, we do not need the hypothesis that Dn is diagonal neither.
However, if the perturbing matrix does not have a constant variance profile, then for a
non-diagonal Dn and ε ≫ n−1, the spectrum of Dε

n should depend heavily on the relation
between the eigenvectors of Dn and the variance profile, which implies that our results
should not remain true.

(iii) At last, it is easy to see that the random process (Zφ) introduced at (3.7) satisfies, for
any test function φ,

1

εn

n∑

i=1

(
φ(λn(i) +

εn√
n
xii)− φ(λn(i))

)
dist.−→
n→∞

Zφ.

Thus, regardless to the variance profile, the convergence of (3.8) rewrites, informally,

µεn =
1

n

n∑

i=1

δλn(i)+(εn/
√
n)xii + o(εn/n). (3.5)

A so simple expression, up to a o(εn/n) error, of the empirical spectral distribution of Dε
n,

with some independent translations ε√
n
xii, should not remain true without the hypothesis

that Dn is diagonal or that the distribution of Xn is invariant under conjugation.
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Chapter 3. Empirical spectral distribution of a matrix under perturbation

3.2.2 Main result

Recall that the Hilbert transform, denoted by H[u], of a function u, is the function

H[u](s) := p. v.

∫

t∈R

u(t)

s− t
dt

and define the function
F (s) = −ρ(s)H[τ(s, ·)ρ(·)](s). (3.6)

Note that, by assumptions (c) and (e), F is well defined and supported by S. Besides, for
any φ supported on an interval where F is C1,

−
∫
φ′(s)F (s)ds =

∫
φ(s)dF (s),

where dF (s) denotes the measure F ′(s)ds.

We also introduce the centered Gaussian field, (Zφ)φ∈C6 , indexed by the set of C6 complex
functions on R, with covariance defined by

EZφZψ =

∫ 1

0

σd(t)
2φ′(f(t))ψ′(f(t))dt and Zψ = Zψ. (3.7)

Note that the process (Zφ)φ∈C6 can be represented, for (Bt) is the standard one-dimensional
Brownian motion, as

Zφ =

∫ 1

0

σd(t)φ
′(f(t))dBt.

Theorem 19. For all compactly supported C6 function φ on R, the following convergences
hold:

• Perturbative regime: if εn ≪ n−1, then,

nε−1
n (µεn − µn)(φ)

dist.−→
n→∞

Zφ. (3.8)

• Critical regime: if εn ∼ c/n, with c constant, then,

nε−1
n (µεn − µn)(φ)

dist.−→
n→∞

−c
∫
φ′(s)F (s)ds+ Zφ. (3.9)

• Semi-perturbative regime: if n−1 ≪ εn ≪ 1, then,

ε−2
n (µεn − µn)(φ)

P−→
n→∞

−
∫
φ′(s)F (s)ds, (3.10)

and if, moreover, n−1 ≪ εn ≪ n−1/3, then,

nε−1
n

(
(µεn − µn)(φ) + ε2n

∫
φ′(s)F (s)ds

)
dist.−→
n→∞

Zφ. (3.11)
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Remark 2 (Sub-regimes for n−1/3 ≪ εn ≪ 1). In the semi-perturbative regime, the
reason why we provide an expansion up to a random term, only for εn ≪ n−1/3, is that
the study of the regime n−1/3 ≪ εn ≪ 1 up to such a precision, requires further terms in
the expansion of the resolvent of Dε

n that make appear, beside dF , additional determistic
terms of smaller order, which are much larger than the probabilistic term containing Zφ.
The computation becomes rather intricate without any clear recursive formula. As we will
see in Section 3.6.5, there are infinitely many regimes. Precisely, for any positive integer p,
when n−1/(2p−1) ≪ εn ≪ n−1/(2p+1), there are p deterministic terms in the expansion before
the term in Zφ.

Remark 3 (Local law). The approximation

µεn(I) ≈ µn(I) + ε2n

∫

I

dF

of (3.10) should stay true even for intervals I with size tending to 0 as the dimension n
grows, as long as the size of I stays much larger than the right-hand side term of (3.30),
as can be seen from Proposition 23.

Remark 4. The second part of Hypothesis (b), concerning the speed of convergence of
the profile of the spectrum of Dn as well as of the variance of its perturbation, is needed in
order to express the expansion of µεn− µn in terms of limit parameters of the model σ and
ρ. We can remove this hypothesis and get analogous expansions where the terms dF and
dZ are replaced by their discrete counterparts dFn and dZn, defined thanks to the “finite
n" empirical versions of the limit parameters σ and ρ.

3.3 Examples

3.3.1 Uniform measure perturbation by a band matrix

Here, we consider the case where f(x) = x, σd(x) ≡ m and σ(x, y) = ✶|y−x|≤ℓ, for some
constants m ≥ 0 and ℓ ∈ [0, 1] (the relative width of the band). In this case, τ( · , · ) =
σ( · , · )2, hence

F (s) = ✶(0,1)(s) p. v.

∫

t

τ(s, t)

s− t
dt = −✶(0,1)(s) log

ℓ ∧ (1− s)

ℓ ∧ s (3.12)

and (Zφ)φ∈C6 is the centered complex Gaussian process with covariance defined by

EZφZψ = m2

∫ 1

0

φ′(t) ψ′(t) dt and Zψ = Zψ.

Theorem 19 is then illustrated by Figure 3.1, where we ploted the cumulative distribution
functions.
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Chapter 3. Empirical spectral distribution of a matrix under perturbation

(a) n = 104, εn = n−0.4, ℓ = 0.2 (b) n = 104, εn = n−0.4, ℓ = 0.8

Figure 3.1: Deforming the uniform distribution by a band matrix. Cumulative distribution
function of ε−2

n (µεn − µn) (in blue) and function F ( · ) of (3.12) (in red). The non smoothness of
the blue curves results of the noise term Zφ in Theorem 19. Each graphic is realized thanks to
one single matrix (no averaging) perturbed by a real Gaussian band matrix.

3.3.2 Triangular pulse perturbation by a Wigner matrix

Here, we consider the case where ρ(x) = (1− |x|)✶[−1,1](x), σd ≡ m, for some real constant
m, and σ ≡ 1 (what follows can be adapted to the case σ(x, y) = ✶|y−x|≤ℓ, with a bit longer
formulas). In this case, thanks to the formula (9.6) of H[ρ( · )] given p. 509 of [Kin09], we
get

F (s) = (1− |s|)✶[−1,1](s) {(1− s) log(1− s)− (1 + s) log(1 + s) + 2s log |s|} . (3.13)

and the covariance of (Zφ)φ∈C6 is given by

EZφZψ = m2

∫ 1

−1

(1− |t|) φ′(t) ψ′(t) dt and Zψ = Zψ.

Theorem 19 is then illustrated by Figure 3.2 in the case where εn ≫ n−1/2. In Figure 3.2,
we implicitly use some test functions of the type φ(x) = ✶x∈I for some intervals I. These
functions are not C6, and one can easily see that for εn ≪ n−1/2, Theorem 19 cannot work
for such functions. However, considering imaginary parts of Stietljes transforms, i.e. test
functions

φ(x) =
1

π

η

(x− E)2 + η2
(E ∈ R, η > 0)

gives a perfect matching between the predictions from Theorem 19 and numerical simu-
lations, also for εn ≪ n−1/2 (see Figure 3.3, where we use Proposition 22 and (3.17) to
compute the theoretical limit).

3.3.3 Parabolic pulse perturbation by a Wigner matrix

Here, we consider the case where ρ(x) = 3
4
(1−x2)✶[−1,1](x), σd ≡ m, for some real constant

m, and σ ≡ 1 (again, this can be adapted to the case σ(x, y) = ✶|y−x|≤ℓ). Theorem 19 is
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3.3. Examples

Figure 3.2: Triangular pulse perturbation by a Wigner matrix: density and cumulative
distribution function. Top left: Cumulative distribution function of ε−2

n (µεn−µn)(in blue) and
function F ( · ) of (3.13) (in red). Top right and bottom: Density ρ (red dashed line), histogram of
the eigenvalues of Dε

n (in black) and theoretical density ρ + ε2nF
′(s) of the eigenvalues of Dε

n as
predicted by Theorem 19 (in blue). Here, n = 104 and εn = n−α, with α = 0.25 (up left), α = 0.4
(up right), 0.25 (bottom left) and 0.1 (bottom right).

Figure 3.3: Triangular pulse perturbation by a Wigner matrix: Stieltjes transform.
Imaginary part of the Stieltjes transform of ε−2

n (µεn − µn) (in blue) and of the measure dF (in
red) at z = E + i as a function of the real part E for different values of εn. Here, n = 104 and
εn = n−α, with α = 0.2, 0.5 and 0.8 (from left to right).

then illustrated by Figure 3.4. In this case, thanks to the formula (9.10) of H[ρ( · )] given
p. 509 of [Kin09], we get

F (s) = − 9

16
(1− s2)✶[−1,1](s)

{
2s− (1− s2) ln

∣∣∣∣
s− 1

s+ 1

∣∣∣∣
}

(3.14)
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Chapter 3. Empirical spectral distribution of a matrix under perturbation

and the covariance of (Zφ)φ∈C6 is given by

EZφZψ =
3m2

4

∫ 1

−1

(1− t2) φ′(t) ψ′(t) dt and Zψ = Zψ.

Figure 3.4: Parabolic pulse perturbation by a Wigner matrix. Top left: Cumulative
distribution function of ε−2

n (µεn−µn)(in blue) and function F ( · ) of (3.14) (in red). Top right and

bottom: Density ρ (red dashed line), histogram of the eigenvalues of Dε
n (in black) and theoretical

density ρ+ ε2nF
′(s) of the eigenvalues of Dε

n as predicted by Theorem 19 (in blue). Here, n = 104

and εn = n−α, with α = 0.25 (up left), α = 0.4 (up right), 0.2 (bottom left) and 0.18 (bottom
right).

3.4 Relation to free probability theory

Let us now explain how this work is related to free probability theory. If, instead of letting
εn tend to zero, one considers the model

Dt
n := Dn +

√
tXn

for a fixed t > 0, then, by [CG93a, CG93b, Shl96, AZ06], the empirical eigenvalue dis-
tribution of Dt

n has a limit as n → ∞, that we shall denote here by µt. The law µt can

46



3.4. Relation to free probability theory

be interpreted as the law of the sum of two elements in a non-commutative probability
space which are free with an amalgamation over a certain sub-algebra (see [Shl96] for more
details). The following proposition relates the function F from (3.6) to the first order
expansion of µt around t = 0.

Proposition 20. For any z ∈ C\R, we have

∂

∂t |t=0

∫
dµt(λ)

z − λ
= −

∫
F (λ)

(z − λ)2
dλ = −

∫
F (λ)

∂

∂λ

(
1

z − λ

)
dλ.

This is related to the fact that in Equations (3.1)–(3.4), for εn large enough, the term ε2ndF
is the leading term.

In the particular case whereXn is a Wigner matrix, µt is the free convolution of the measure
ρ(λ)dλ with a semicircle distribution and admits a density ρt, by [Bia97b, Cor. 2]. Then,
Theorem 19 makes it possible to formally recover the free Fokker-Planck equation with null
potential : {

∂
∂t
ρt(s) +

∂
∂s
{ρt(s)H[ρt](s)} = 0,

ρ0(s) = ρ(s),

where H[ρt] denotes the Hilbert transform of ρt. This equation is also called McKean-
Vlasov (or Fokker-Planck) equation with logarithmic interaction (see [Bia97a, BS98, BS01]).

Note also that when Xn is a Wigner matrix, the hypothesis that Dn is diagonal is not
required to have the convergence of the empirical eigenvalue distribution of Dt

n to µt as
n→ ∞. This suggests that, even for non diagonal Dn, the convergence of (3.10) still holds
when Xn is a Wigner matrix.

Proof of Proposition 20. By [Shl96, Th. 4.3], we have
∫

dµt(λ)

z − λ
=

∫ 1

x=0

Ct(x, z)dx, (3.15)

where Ct(x, z) is bounded by |Imz|−1 and satisfies the fixed-point equation

Ct(x, z) =
1

z − f(x)− t
∫ 1

y=0
σ2(x, y)Ct(y, z)dy

.

Hence as t→ 0, Ct(x, z) −→ 1
z−f(x) uniformly in x. Thus

Ct(x, z)−
1

z − f(x)
=

t
∫ 1

y=0
σ2(x, y)Ct(y, z)dy

(z − f(x)− t
∫ 1

y=0
σ2(x, y)Ct(y, z)dy)(z − f(x))

= t
1

(z − f(x))2

∫ 1

y=0

σ2(x, y)Ct(y, z)dy + o(t)

= t
1

(z − f(x))2

∫ 1

y=0

σ2(x, y)

z − f(y)
dy + o(t)
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Chapter 3. Empirical spectral distribution of a matrix under perturbation

where each o(t) is uniform in x ∈ [0, 1]. Then, by (3.15), we deduce that

∂

∂t |t=0

∫
dµt(λ)

z − λ
=

∫

(x,y)∈[0,1]2

σ2(x, y)

(z − f(x))2(z − f(y))
dxdy.

The right-hand side term of the previous equation is precisely the number B(z) introduced
at (3.17) below. Then, one concludes using Proposition 22 from Section 3.6.1. �

3.5 Strategy of the proof

We shall first prove the convergence results of Theorem 19 for test functions φ of the form
ϕz(x) :=

1
z−x . This is done in Section 3.6 by writing an expansion of the resolvent of Dε

n.

Once we have proved that the convergences hold for the resolvent of Dε
n, we can extend

them to the larger class of compactly supported C6 functions on R.

In Section 3.7, we use the Helffer-Sjöstrand formula to extend the convergence in probability
in the semi-pertubative regime (3.10) to the case of compactly supported C6 functions on
R.

In Section 3.8, the convergences in distribution (3.8), (3.9) and (3.11) are proved in two
steps. The overall strategy is to apply an extension lemma of Shcherbina and Tirozzi
which states that a CLT that applies to a sequence of centered random linear forms on
some space can be extended, by density, to a larger space, as long as the variance of the
image of these random linear forms by a function φ of the larger space is uniformly bounded
by the norm of φ. Therefore, our task is twofold. We need first to prove that the sequences
of variables involved in the convergences (3.8), (3.9) and (3.11) can be replaced by their
centered counterparts nε−1

n (µεn(φ) − E[µεn(φ)]) (i.e. they differ by o(1)). In a second step,
we dominate the variance of these latter variables, in order to apply the extension lemma
which is precisely stated in Chapter 2 as Lemma 15.

3.6 Stieltjes transforms convergence

As announced in the previous section, we start with the proof of Theorem 19 in the special
case of test functions of the type ϕz := 1

z−x . We decompose it into two propositions.
Their statement and proof are the purpose of the three following subsections. The two
last subsections 3.6.4 and 3.6.5 are devoted respectively to a local type convergence result
and to a discussion about the possibility of an extension of the expansion result to a wider
range of rate of convergence of εn, namely beyond n−1/3.
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3.6. Stieltjes transforms convergence

3.6.1 Two statements

Let denote, for z ∈ C\R,

Z(z) := Zϕz
for ϕz(x) :=

1

z − x
(3.16)

where (Zφ)φ∈C6 is the Gaussian field with covariance defined by (3.7). We also introduce,
for z ∈ C\R,

B(z) :=

∫

(s,t)∈[0,1]2

σ2(s, t)

(z − f(s))2(z − f(t))
dsdt (3.17)

and

∆Gn(z) := (µεn − µn)(ϕz) =
1

n
Tr

1

z −Dε
n

− 1

n
Tr

1

z −Dn

. (3.18)

Proposition 21. Under Hypotheses (a), (b), (f),

• if εn ≪ n−1, then for all z ∈ C\R,

nε−1
n ∆Gn(z)

dist.−→
n→∞

Z(z) (3.19)

• if εn ∼ c/n, with c constant, then for all z ∈ C\R

nε−1
n ∆Gn(z)

dist.−→
n→∞

cB(z) + Z(z) , (3.20)

• if n−1 ≪ εn ≪ n−1/3, then for all z ∈ C\R

nε−1
n

(
∆Gn(z)− ε2nB(z)

) dist.−→
n→∞

Z(z) . (3.21)

• if n−1 ≪ εn ≪ 1, then for all z ∈ C\R,

ε−2
n ∆Gn(z)− B(z)

P−→
n→∞

0 . (3.22)

Remark. Note that (3.20) is merely an extension of (3.21) in the critical regime.

The following statement expresses B(z) as the image of a ϕz by a linear form. So, in the
expansion of the previous proposition, both quantities Z(z) and B(z) depend linearly on
ϕz. Note that as F vanishes at ±∞, Proposition 22 does not contradicts the fact that as
|z| gets large, B(z) = O(|z|−3).

Proposition 22. Under Hypotheses (c), (d), (e), for any z ∈ C\S, for F defined by (3.6),

B(z) = −
∫

F (s)

(z − s)2
ds = −

∫
ϕ′
z(s)F (s)ds.
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3.6.2 Proof of Proposition 21

The proof is based on a perturbative expansion of the resolvent 1
n
Tr 1

z−Dε
n
. To make

notations lighter, we shall sometimes suppress the subscripts and superscripts n, so that
Dε
n, Dn, Xn and xni,j will be respectively denoted by Dε, D, X and xi,j. Let us fix z ∈ C\S̃.

We can deduce from the expansion of the resolvent of Dε:

∆Gn(z) = An(z) + Bn(z) + Cn(z) +Rε
n(z),

with

An(z) :=
εn
n

Tr
1

z −D
X

1

z −D
=
εn
n

1√
n

n∑

i=1

xi,i
(z − λn(i))2

Bn(z) :=
ε2n
n

Tr
1

z −D
X

1

z −D
X

1

z −D
=
ε2n
n2

∑

i,j

|xi,j|2
(z − λn(i))2(z − λn(j))

Cn(z) :=
ε3n
n

Tr
1

z −D
X

1

z −D
X

1

z −D
X

1

z −D

=
ε3n
n5/2

n∑

i,j,k=1

xi,j xj,k xk,i
(z − λn(i))2 (z − λn(j)) (z − λn(k))

Rε
n(z) :=

ε4n
n

Tr
1

z −D
X

1

z −D
X

1

z −D
X

1

z −D
X

1

z −Dε
.

The purpose of the four following claims is to describe the asymptotic behavior of each of
these four terms.

Claim 1. The finite dimension marginals of the centered process

(nε−1
n An(z))z∈C\S̃

converge in distribution to those of the centered Gaussian process (Z(z))z∈C\S̃ . Besides,

there is C > 0 such that for any z ∈ C\S̃,

E[|nε−1
n An(z)|2] ≤ C

dist(z, S̃)4
. (3.23)

Proof. Estimate (3.23) follows from

E[|An(z)|2] =
ε2n
n3

n∑

i=1

E [|xi,i|2]
|z − λn(i)|4

≤ ε2n
n3

n∑

i=1

σ2
n(i, i)

dist(z, S̃)4

and from the existence of a uniform upper bound for σ2
n(i, i) which comes from Hypothesis

(a) which stipulates that the 8-th moments of the entries xi,j are uniformly bounded.
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3.6. Stieltjes transforms convergence

We turn now to the proof of the convergence in distribution of nε−1
n An(z) which actually

does not depend on the sequence (εn). For all α1, β1, . . . , αp, βp ∈ C and for all z1, . . . , zp ∈
C\S̃,

p∑

i=1

αi
(
nε−1

n An(zi)
)
+ βi(nε−1

n An(zi)) =
1√
n

n∑

j=1

xj,j

(
p∑

i=1

ξn(i, j)

)

for ξn(i, j) =
αi

(zi − λn(j))2
+

βi
(zi − λn(j))2

.

On one hand, by dominated convergence, the covariance matrix of the above two dimen-
sional random vector converges.

On the other hand, E|xi,j|4 is uniformly bounded in i, j and n, by Hypothesis (a). Moreover,
for n large enough, for all i, j,

|ξn(i, j)| ≤ 2 max
1≤i≤p

(|αi|+ |βi|)× ( min
1≤i≤p

dist(zi,S))−1.

Hence, the conditions of Lindeberg Central Limit Theorem are satisfied and the finite
dimension marginals of the process (nε−1

n An(z))z∈C\S̃ converge in distribution to those of
the centered Gaussian process (Zz)z∈C\S̃ defined by its covariance structure

E

(
Z(z)Z(z′)

)
= lim

n→∞
E

[(
nε−1

n An(z)
)
.
(
nε−1

n An(z′)
)]

= lim
n→∞

1

n

n∑

i,j=1

E [xi,i xj,j]

(z − λn(i))2 (z′ − λn(j))2

=

∫ 1

0

σd(t)
2

(z − f(t))2 (z′ − f(t))2
dt

and by the fact that Z(z) = Z(z) which comes from An(z) = An(z). �

Claim 2. There is a constant C such that, for ηn as in Hypotheses (b),

• if εn ≪ n−1, then

E[|nε−1
n Bn(z)|2] ≤ C(nεn)

2

dist(z, S̃)6
+

Cη2n

dist(z, S̃)8
,

• if εn ∼ c/n or if n−1 ≪ εn ≪ 1, then

E[|nε−1
n (Bn(z)− ε2nB(z))|2] ≤ Cε2n

dist(z, S̃)6
+

Cη2n

dist(z, S̃)8
.

Proof. Remind that,

Bn(z) =
ε2n
n2

∑

i,j

|xi,j|2
(z − λn(i))2(z − λn(j))

.
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Introduce the variable b◦n(z) obtained by centering the variable nε−2
n Bn(z):

b◦n(z) := nε−2
n (Bn(z)− EBn(z)) =

1

n

∑

i,j

|xi,j|2 − σ2
n(i, j)

(z − λn(i))2(z − λn(j))

and the defect variable

δn(z) := ε−2
n EBn(z)− B(z)

=
1

n2

∑

i,j

σ2
n(i, j)

(z − λn(i))2(z − λn(j))
−
∫

(s,t)∈[0,1]2

σ2(s, t)

(z − f(s))2(z − f(t))
dsdt.

In the two regimes εn ≪ n−1 and εn ≥ c/n, we want to dominate the L2 norms respectively
of

nε−1
n Bn(z) = εnb

◦
n(z)+nεn(δn(z)+B(z)) and nε−1

n (Bn(z)−ε2nB(z)) = εnb
◦
n+nεnδn(z).

For this purpose, we successively dominate b◦n, δn(z) and B(z).

Using the independence of the xi,j’s, the fact that they are bounded in L4 and the fact
that z stays at a macroscopic distance of the λn(i)’s, we can write for all z ∈ C\S̃

E[|b◦n(z)|2] =
1

n2
Var

(∑

i≤j

(
x2i,j + ✶i 6=jxi,j

2
) 1

(z − λn(i))2(z − λn(j))

)

=
1

n2

∑

i≤j
Var

((
x2i,j + ✶i 6=jxi,j

2
) 1

(z − λn(i))2(z − λn(j))

)

≤ C dist(z, S̃)−6 . (3.24)

Now, the term δn(z) rewrites

δn(z) = O(n−1)

+

∫

(s,t)∈[0,1]2
✶⌊ns⌋6=⌊nt⌋

(
σ2
n(⌊ns⌋, ⌊nt⌋)

(z − λn(⌊ns⌋))2(z − λn(⌊nt⌋))
− σ2(s, t)

(z − f(s))2(z − f(t))

)
dsdt.

Since, for Mσ := sup0≤x 6=y≤1 σ(x, y)
2 and for any fixed z /∈ S̃, the function

ψz : (s, λ, λ
′) ∈ [0,Mσ + 1]× {x ∈ R ; dist(x, S̃) ≤ dist(z, S̃)/2}2 7−→ s

(z − λ)2(z − λ′)

is C dist(z, S̃)−4-Lipschitz, for C a universal constant, by Hypothesis (b),

δn(z) = O(n−1) +
O (ηn)

max{nεn, 1} dist(z, S̃)4
. (3.25)

52



3.6. Stieltjes transforms convergence

Finally, the expression of B(z) given in (3.17) implies,

B(z) ≤ C

dist(z, S̃)3
(3.26)

Collecting estimations (3.24), (3.25) and (3.26), we conclude. �

Claim 3. There is a constant C such that for any z ∈ C\S̃,

E[|nε−1
n Cn(z)|2] ≤ Cε4n

dist(z, S̃)8
.

Proof. We start by writing for all z ∈ C\S̃

E[|nε−1
n Cn(z)|2] =

ε4n
n3

E



∣∣∣∣∣

n∑

i,j,k=1

xi,j xj,k xk,i
(z − λn(i))2 (z − λn(j)) (z − λn(k))

∣∣∣∣∣

2



.=
ε4n
n3

n∑

i,j,k,l,m,p=1

E (xi,j xj,k xk,i xl,m xm,p xp,l)

(z − λn(i))2 (z − λn(j)) (z − λn(k)) (z − λn(l))2 (z − λn(m)) (z − λn(p))
.

Generically, the set of "edges" {(l,m), (m, p), (p, l)} must be equal to the set {(i, j), (j, k), (k, i)}
in order to get a non zero term. Therefore, the complexity of the previous sum is O(n3).
Note that other non zero terms involving third or fourth moments are much less numerous.
Hence,

E[|nε−1
n Cn(z)|2] ≤

ε4n
n3

× O(n3)

dist(z, S̃)8
≤ Cε4n

dist(z, S̃)8

�

Claim 4. There is a constant C such that for any z ∈ C\R,

E[|nε−1
n Rε

n(z)|2] ≤ O(n2ε6n)

|Im(z)|2 dist(z, S̃)8
.

Proof. Remind that,

Rε
n(z) :=

ε4n
n

Tr
1

z −D
X

1

z −D
X

1

z −D
X

1

z −D
X

1

z −Dε
.
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Chapter 3. Empirical spectral distribution of a matrix under perturbation

Hence,

E[|nε−1
n Rε

n(z)|2] ≤ ε6n E

[∣∣∣∣Tr
1

z −D
X

1

z −D
X

1

z −D
X

1

z −D
X

1

z −Dε

∣∣∣∣
2
]

≤ ε6n E


Tr

∣∣∣∣∣

(
1

z −D
X

)4
∣∣∣∣∣

2

× Tr

∣∣∣∣
1

z −Dε

∣∣∣∣
2



≤ ε6n E

[
Tr

((
1

z −D
X

)4(
1

z −D
X

)4
)

n

|Im(z)|2

]

≤ nε6n
|Im(z)|2 E

[
Tr

((
1

z −D
X

)4(
1

z −D
X

)4
)]

≤ nε6n
|Im(z)|2

O(n5)

n4 dist(z, S̃)8
≤ O(n2ε6n)

|Im(z)|2 dist(z, S̃)8
.

The inequality of the last line takes into account that

• the L8 norm of the entries of
√
nX is uniformly bounded

• the norm of the entries of X is of order n−1/2

• the norm of the coefficients of (z −D)−1 is smaller than dist(z, S̃)−1

• the complexity of the sum defining the trace is of order O(n5) since its non-null terms
are encoded by four edges trees which have therefore five vertices.

�

We gather now the results of the previous claims.

For any rate of convergence of εn, Claim 1 proves that the process nε−1
n An(z) converges in

distribution to the centered Gaussian variable Z(z). Moreover,

• if εn ≪ n−1, then as Claims 2, 3 and 4 imply that the processes nε−1
n Bn(z), nε−1

n Cn(z)
and nε−1

n Rε
n(z) converge to 0 in probability, we can conclude, by Slutsky’s theorem,

that for any z ∈ C \ R:

nε−1
n ∆Gn(z)

dist−−−→
n→∞

Z(z)

• if εn ∼ c
n
, then, as Claims 2, 3 and 4 imply that the processes nε−1

n Bn(z), nε−1
n Cn(z)

and nε−1
n Rε

n(z) converge respectively to cB(z), 0 and 0 in probability, we can con-
clude, by Slutsky’s theorem, that for any z ∈ C \ R:

nε−1
n ∆Gn(z)

dist−−−→
n→∞

Z(z) + cB(z)
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3.6. Stieltjes transforms convergence

• if n−1 ≪ εn ≪ n−1/3, then, as Claims 2, 3 and 4 imply that the three processes
nε−1

n (Bn(z) − ε2nB(z)), nε−1
n Cn(z) and nε−1

n Rε
n(z) converge to 0 in probability, we

can conclude, by Slutsky’s theorem, that for any z ∈ C \ R:

nε−1
n

(
∆Gn(z)− ε2nB(z)

) dist.−→
n→∞

Z(z)

Regarding the convergence in probability (3.22), in the case n−1 ≪ εn ≪ 1, Claims 1,
2, 3 and 4 imply that the processes ε−2

n An(z), ε−2
n Bn(z) − B(z), ε−2

n Cn(z) and ε−2
n Rε

n(z)
converge to 0.

This finishes the proof of the convergences of Proposition 21.

3.6.3 Proof of Proposition 22

Recall that

B(z) =

∫

(s,t)∈[0,1]2

σ2(s, t)

(z − f(s))2(z − f(t))
dsdt.

Recall that ρ is the density of the push-forward of the uniform measure on [0, 1] by the
map f .
Let τ be as in Hypotheis (d). We have

B(z) =

∫

R2

τ(s, t) ρ(s) ρ(t)

(z − s)2 (z − t)
dsdt.

By a partial fraction decomposition we have for all a 6= b

1

(z − a)2(z − b)
=

1

(b− a)2

(
1

z − b
− 1

z − a
− b− a

(z − a)2

)
.

Thus, as the Lebesgue measure of the set {(y1, y2) ∈ [0, 1]2 ; y1 = y2} is null, we have

B(z) =

∫

R2

τ(s, t) ρ(s) ρ(t)

(t− s)2

(
1

z − t
− 1

z − s
− t− s

(z − s)2

)
dsdt.

Moreover, for ϕz the function ϕz : x 7−→ 1
z−x , we obtain

B(z) =

∫

R2

τ(s, t) ρ(s) ρ(t)

(t− s)2
(ϕz(t)− ϕz(s)− (t− s)ϕ′

z(s)) dsdt.

Now, we want to prove that B(z) = −
∫

R2

τ(s, t) ρ(s) ρ(t)

t− s
ϕ′
z(s) dsdt.
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Chapter 3. Empirical spectral distribution of a matrix under perturbation

To do this, we will use a symmetry argument: in fact both terms in ϕz(t) and ϕz(s)
neutralize each other, and it remains only to prove, that we did not remove ∞ to ∞ and
that the remaining term has the desired form.

Let us define

Bη(z) :=

∫

|s−t|>η

τ(s, t) ρ(s) ρ(t)

(t− s)2
(ϕz(t)− ϕz(s)− (t− s)ϕ′

z(s)) dsdt.

By the Taylor-Lagrange inequality we obtain:
∣∣∣∣
τ(s, t) ρ(s) ρ(t)

(t− s)2
(ϕz(t)− ϕz(s)− (t− s)ϕ′

z(s))

∣∣∣∣ ≤
ρ(s) ρ(t) ‖τ(·, ·)‖L∞ ‖ϕ′′

z‖L∞

2
.

So that, since ρ is a density, by dominated convergence, we have

lim
η→0

Bη(z) = B(z).

Moreover, by symmetry, for any η,

Bη(z) =

∫

|s−t|>η

τ(s, t) ρ(s) ρ(t)

t− s
(−ϕ′

z(s))dsdt.

So

B(z) = lim
η→0

∫

|s−t|>η

τ(s, t) ρ(s) ρ(t)

t− s
(−ϕ′

z(s))dtds

= − lim
η→0

∫

s∈R
Fη(s)ϕ

′
z(s)ds (3.27)

where for η > 0 and s ∈ R, we define

Fη(s) := ρ(s)

∫

t∈R\[s−η,s+η]

τ(s, t) ρ(t)

t− s
dt.

Note that that by definition of the function F given at (3.6), for any s, we have

F (s) = lim
η→0

Fη(s). (3.28)

Thus by (3.27) and (3.28), to conclude the proof of Proposition 22, by dominated con-
vergence, one needs only to state that Fη is dominated, uniformly in η, by an integrable
function. This follows from the following computation.

Note first that by symmetry, we have

Fη(s) = ρ(s)

∫

t∈R\[s−η,s+η]

τ(s, t) ρ(t)− τ(s, s) ρ(s)

t− s
dt. (3.29)
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3.6. Stieltjes transforms convergence

Let M > 0 such that the support of the function ρ is contained in [−M,M ]. Then, for
η0, α, C as in Hypothesis (e), using the expression of Fη(s) given at (3.29), we have

|Fη(s)| ≤ 2Cρ(s)

∫ s+η0

t=s

|t− s|α−1dt+

∫

t∈[s−2M,s−η0]∪[s+η0,s+2M ]

∣∣∣∣
τ(s, t)ρ(s)ρ(t)

t− s

∣∣∣∣ dt

≤ 2Cρ(s)

α
ηα0 +

1

η0

∫

t∈R
|τ(s, t)ρ(s)ρ(t)| dt

≤ 2Cρ(s)

α
ηα0 +

‖τ(·, ·)‖L∞

η0
ρ(s).

3.6.4 A local type convergence result

One can precise the convergence (3.22) by replacing the complex variable z by a complex
sequence (zn) which converges slowly enough to the real axis. This convergence won’t be
used in the sequel. As it is discussed in [BGK16], this type of result is a first step towards
a local result for the empirical distribution.

Proposition 23. Under Hypotheses (a), (b), (f), if n−1 ≪ εn ≪ 1, then for any nonreal
complex sequence (zn), such that

Im(zn) ≫ max

{
(nεn)

−1/2 ,

(
ηn
nεn

)1/4

, ε2/5n

}
(3.30)

the following convergence holds

ε−2
n ∆Gn(zn)− B(zn)

P−→
n→∞

0 .

Remark. In the classical case where
ηn
nεn

= sup
i 6=j

(|σ2
n(i, j)− σ2(i/n, j/n)|+ |λn(i)− f(i/n)|)

is of order
1

n
, the above assumption boils down to Im(zn) ≫ max

{
(nεn)

−1/2 , ε
2/5
n

}
.

Proof. Assume n−1 ≪ εn ≪ 1. One can directly obtain, for all non-real complex sequences
(zn), that

• by Claim 1, if dist(zn, S̃) ≫ (nεn)
−1/2, then

E[|ε−2
n An(zn)|2] ≤ C

(nεn)2 dist(zn, S̃)4
−→
n→∞

0,

• by Claim 2, if dist(zn, S̃) ≫ max
{
n−1/3 , (ηn/(nεn))

1/4
}
, then

E[|ε−2
n Bn(zn)− B(zn)|2] ≤ C

n2 dist(zn, S̃)6
+

Cη2n

(nεn)2 dist(zn, S̃)8
−→
n→∞

0,
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Chapter 3. Empirical spectral distribution of a matrix under perturbation

• by Claim 3, if dist(zn, S̃) ≫ (εn/n)
1/4, then

E[|ε−2
n Cn(zn)|2] ≤ Cε2n

n2 dist(zn, S̃)8
−→
n→∞

0,

• by Claim 4, if |Im(zn)| dist(zn, S̃)4 ≫ ε2n, then

E[|ε−2
n Rε

n(zn)|2] ≤ O(ε4n)

|Im(zn)|2 dist(zn, S̃)8
−→
n→∞

0.

Therefore, when

dist(zn, S̃) ≫ max

{
(nεn)

−1/2 , n−1/3 ,

(
ηn
nεn

)1/4

,
(εn
n

)1/4
}

and |Im(zn)| dist(zn, S̃)4 ≫ ε2n,

the four processes, ε−2
n An(zn), ε−2

n Bn(zn)−B(zn), ε−2
n Cn(zn) and ε−2

n Rε
n(zn) converge to 0

in probability. Since dist(zn, S̃) ≥ Im(zn), the above condition is implied by

Im(zn) ≫ max

{
(nεn)

−1/2 , n−1/3 ,

(
ηn
nεn

)1/4

,
(εn
n

)1/4
, ε2/5n

}
.

Observing finally that the two terms n−1/3 and
(
εn
n

)1/4
are dominated by the maximum of

the three other ones, we conclude the proof. �

3.6.5 Possible extensions to larger εn

The convergence in distribution result of Theorem 19 is valid for εn ≪ n−1/3 but fails above
n−1/3. Let us consider, for example, the case where n−1/3 ≪ εn ≪ n−1/5. In this case, the
contribution of the first term An(z) in the expansion of ∆Gn(z) which yields the random
limiting quantity, is dominated not only by the term Bn(z) as it used to be previously. It
is also dominated by a further and smaller term Dn(z) of the expansion

∆Gn(z) = An(z) + Bn(z) + Cn(z) +Dn(z) + En(z) +Rε
n,

with:

An(z) :=
εn
n

Tr
1

z −D
X

1

z −D
...

En(z) :=
ε5n
n

Tr
1

z −D
X

1

z −D
X

1

z −D
X

1

z −D
X

1

z −D
X

1

z −D

Rε
n(z) :=

ε6n
n

Tr
1

z −D
X

1

z −D
X

1

z −D
X

1

z −D
X

1

z −D
X

1

z −D
X

1

z −Dε
.
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3.7. Convergence in probability in the semi-perturbative regime

In this case, the random term Z(z) is still produced by An(z) and has an order of magnitude
of εn/n. Meanwhile, the term Dn(z) writes

Dn(z) :=
ε4n
n3

n∑

i,j,k,l=1

xi,j xj,k xk,l xl,i
(z − λn(i))2 (z − λn(j)) (z − λn(k)) (z − λn(l))

.

All the indices satisfying j = l contribute to the previous sum, since they produce a term
in |xi,l|2|xk,l|2. Their cardinality is of order n3. Therefore, the term Dn(z) is of order ε4n
which prevails on the order εn/n of An(z), as soon as εn ≫ n−1/3. One can also observe
that the odd terms Cn(z) and En(z) in the expansion are negligible with respect to An(z)
due to the fact that the entries xi,j are centered. One can then state an analogous result
to Proposition 21, but the deterministic limiting term D(z) arising from Dn(z) does not
find a nice expression as the image of ϕz by a linear form as it was the case for B(z) in
Proposition 22. Therefore we did not state an extension of Theorem 19.

More generally, for all positive integer p, when n−1/(2p−1) ≪ εn ≪ n−1/(2p+1), the expansion
will contain p deterministic terms, produced by the even variables, Bn(z), Dn(z), Fn(z),
Hn(z) . . . All the other odd terms, Cn(z), En(z), Gn(z) . . . being negligible due to the
centering of the entries. The limits of the even terms Bn(z), Dn(z), Fn(z), Hn(z) . . . can
be expressed thanks to operator-valued free probability theory, using the results of [Shl96]
(namely, Th. 4.1), but expressing these limits as the images of ϕz by linear forms is a quite
involved combinatorial problem that we did not solve yet.

3.7 Convergence in probability in the semi-perturbative

regime

Our goal now is to extend the convergence in probability result (3.22) of Proposition 21,
proved for test functions ϕz(x) := 1

z−x , to any C6 and compactly supported function on R.
We do it in the following lemma by using the Helffer-Sjöstrand formula which is stated in
Proposition 14 of Chapter 2.

Lemma 24. If n−1 ≪ εn ≪ 1, then, for any compactly supported C6 function φ on R,

ε−2
n (µεn − µn)(φ)

P−−−→
n→∞

−
∫
φ′(s)F (s) ds .

Proof. Let us introduce the Banach space C1
b,b of bounded C1 functions on R with bounded

derivative, endowed with the norm ‖φ‖C1
b,b

:= ‖φ‖∞ + ‖φ′‖∞.

On this space, let us define the random continuous linear form

Πn(φ) := ε−2
n (µεn − µn)(φ) +

∫
φ′(s)F (s) ds.
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Chapter 3. Empirical spectral distribution of a matrix under perturbation

Convergence (3.22) of Proposition 21 can now be formulated as

∀z ∈ C \ R, Πn(ϕz)
P−−−→

n→∞
0.

Actually, we can be more precise by adding the upper bounds of Claims 1, 2, 3 and 4, and
obtain, uniformly in z,

E[|Πn(ϕz)|2] = E[|ε−2
n ∆Gn(z)− B(z)|2]

≤ (nεn)
−2

min
(
dist(z, S̃)4 , dist(z, S̃)8 , |Im(z)|2 dist(z, S̃)8

) . (3.31)

Now, let φ be a compactly supported C6 function on R and let us introduce the almost
analytic extension of degree 5 of φ defined by

∀z = x+ iy ∈ C, φ̃5(z) ..=
5∑

k=0

1

k!
(iy)kφ(k)(x) .

An elementary computation gives, by successive cancellations, that

∂̄φ̃5(z) =
1

2
(∂x + i∂y) φ̃5(x+ iy) =

1

2× 5!
(iy)5φ(6)(x). (3.32)

Furthermore, by Helffer-Sjöstrand formula (Proposition 14), for χ ∈ C∞
c (C; [0, 1]) a smooth

cutoff function with value one on the support of φ,

φ(·) = − 1

π

∫

C

∂̄(φ̃5(z)χ(z))

y5
y5ϕz(·) d2z

where d2z denotes the Lebesgue measure on C.

Note that by (3.32), z 7→ ✶y 6=0
∂̄(φ̃5(z)χ(z))

y5
is a continuous compactly supported function and

that z ∈ C 7→ ✶y 6=0y
5ϕz ∈ C1

b,b is continuous, hence,

Πn(φ) =
1

π

∫

C

∂̄(φ̃5(z)χ(z))

y5
y5Πn(ϕz) d

2z.

Therefore,

E
(
|Πn(φ)|2

)
= E



∣∣∣∣∣
1

π

∫

C

∂̄(φ̃5(z)χ(z))

y5
y5Πn(ϕz) d

2z

∣∣∣∣∣

2



≤ E


 1

π2

∫

C

∣∣∣∣∣
∂̄(φ̃5(z)χ(z))

y5
y5Πn(ϕz)

∣∣∣∣∣

2

d2z




=
1

π2

∫

C

∣∣∣∣∣
∂̄(φ̃5(z)χ(z))

y5

∣∣∣∣∣

2

y10 E
(
|Πn(ϕz)|2

)
d2z .
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Since the function
∣∣∣ ∂̄(φ̃5(z)χ(z))y5

∣∣∣
2

is continuous and compactly supported and that, by (3.31),

for n−1 ≪ εn ≪ 1, uniformly in z,

y10 E
(
|Πn(ϕz)|2

)
≤ y10

o(1)

min(y4, y10)
−→
n→∞

0.

Thus, for any compactly supported C6 function on R,

E
(
|Πn(φ)|2

)
≤ 1

π2

∫

C

∣∣∣∣∣
∂̄(φ̃5(z)χ(z))

y5

∣∣∣∣∣

2

y10 E
(
|Πn(ϕz)|2

)
d2z −→

n→∞
0

which implies that Πn(φ) converges to 0 in probability. �

3.8 Convergence in distribution towards the Gaussian

variable Zφ

The purpose of this section is to extend the convergences in distribution of Proposition
21, from test functions of the type ϕz := 1

z−x , to compactly supported C6 functions on R.
To do so, we will use an extension lemma of Shcherbina and Tirozzi, stated as Lemma
15 in Chapter 2, which concerns the convergence of a sequence of centered random fields
with uniformly bounded variance. Hence, we need to show first that our non centered
random sequence is not far from being centered, which is done in subsection 3.8.1 by using
again the Helffer-Sjöstrand formula (14). In subsection 3.8.2, we dominate the variance
of this centered random field thanks to another result of Shcherbina and Tirozzi stated in
Proposition 16 of Chapter 2. Subsection 3.8.3 collects the preceding results to conclude
the proof.

3.8.1 Coincidence of the expectation of µεn with its deterministic
approximation

The asymptotic coincidence of the expectation of µεn with its deterministic approximation
is the content of next lemma:

Lemma 25. Let us define, for φ a C1 function on R,

Λn(φ) :=





nε−1
n (E[µεn(φ)]− µn(φ)) if εn ≪ n−1,

nε−1
n

(
E[µεn(φ)]− µn(φ) + ε2n

∫
φ′(s)F (s)ds

)
if εn ∼ c/n or n−1 ≪ εn ≪ n−1/3 .

Then, as n→ ∞, for any compactly supported C6 function φ or any φ of the type ϕz(x) =
1

z−x , z ∈ C\R, we have
Λn(φ) −→

n→∞
0.
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Chapter 3. Empirical spectral distribution of a matrix under perturbation

Proof. First note that, as the variables xi,j are centered, E[An(z)] = 0. Moreover, by
adding the renormalized upper bounds of Claims 2, 3 and 4 one can directly obtain the
two following inequalities for any z ∈ C \ R:

• If εn ≪ n−1, then

|Λn(ϕz)| = nε−1
n |E[∆Gn(z)]|

≤ nε−1
n (|E[An(z)]|+ E[|Bn(z)|] + E[|Cn(z)|] + E[|Rε

n(z)|])

≤ C(nεn + ηn)

min
{
dist(z, S̃)3, dist(z, S̃)4, |Im(z)| dist(z, S̃)4

} −→
n→∞

0 .

• If εn ∼ c/n or n−1 ≪ εn ≪ n−1/3, then

|Λn(ϕz)| = nε−1
n |E[∆Gn(z)− ε2nB(z)]|

≤ nε−1
n

(
|E[An(z)]|+ E[|Bn(z)− ε2nB(z)|] + E[|Cn(z)|] + E[|Rε

n(z)|]
)

≤ C(εn + ηn + nε3n)

min
{
dist(z, S̃)3, dist(z, S̃)4, |Im(z)| dist(z, S̃)4

} −→
n→∞

0 .

Hence, in all cases, Λn(ϕz) −→
n→∞

0.

The extension of this result to compactly supported C6 test functions on R goes the same
way as for Πn in the proof of Lemma 24. �

3.8.2 Domination of the variance of µεn

The second ingredient goes through a domination of the variance of µεn(φ):

Lemma 26. Let s > 5. There is a constant C such that for each n and each φ ∈ Hs,

Var(nε−1
n µεn(φ)) ≤ C‖φ‖2Hs

.

Proof. By Proposition 16, it suffices to prove that
∫ ∞

y=0

y2s−1e−y
∫

x∈R
Var(ε−1

n Tr((x+ iy −Dε
n)

−1))dxdy
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are bounded independently of n.

Note that for ∆Gn(z) defined in (3.18),

Var(ε−1
n Tr((z −Dε

n)
−1)) = n2ε−2

n Var(∆Gn(z)).

Moreover, the sum of the inequalities of Claims 1, 2, 3 and 4 yields

Var(nε−1
n ∆Gn(z)) ≤ C

dist(z, S̃)4
+

C

|Im(z)|2 dist(z, S̃)8
.

Let M > 0 such that S̃ ⊂ [−M,M ]. Then

dist(z, S̃) ≥
{
y if |x| ≤M,√
y2 + (|x| −M)2 if |x| > M.

Thus dist(z, S̃) ≥ y if |x| ≤M and, for |x| > M ,

1

dist(z, S̃)
≤ y−1

√
1 + ((|x| −M)/y)2

and for any y > 0,
∫

x∈R
Var(nε−1

n ∆Gn(x+ iy))dx ≤ 2CM(y−10 + y−4) + 2C

∫ +∞

0

y−4

(1 + (x
y
)2)2

+
y−10

(1 + (x
y
)2)4

dx

≤ 2CM(y−10 + y−4) + C

(
π

2
y−3 +

5π

16
y−9

)

≤ k
(
y−10 + y−3

)
,

for a suitable constant k.

We deduce that, as soon as 2s− 10 > 0, i.e. s > 5,
∫ ∞

y=0

y2s−1e−y
∫

x∈R
Var(ε−1

n Tr((x+iy−Dε
n)

−1))dxdy ≤ k

∫ ∞

0

y2s−1e−y(y−10+y−3)dy < ∞.

�

3.8.3 Proof of the convergences in distribution of Theorem 19

Since we have proved in Lemma 25 that for all compactly supported C6 function φ, the
deterministic term µn(φ) could be replaced by E[µεn(φ)], we only have to prove, that for all
φ ∈ C6,

nε−1
n (µεn(φ)− E[µεn(φ)])

dist.−→
n→∞

Zφ.
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Chapter 3. Empirical spectral distribution of a matrix under perturbation

For the time being, we know this result to be valid for functions φ belonging to the space
L1, defined as the linear span of the family of functions ϕz(x) := 1

z−x , z ∈ C\R.

By applying Lemma 15 to the centered field µεn − E[µεn], we are going to extend the result
from the space L1 to the Sobolev space (Hs, ‖ · ‖Hs

) with s ∈ (5, 6). Note that, since s < 6,
this latter space contains the space of C6 compactly supported functions (see [Hör03, Sec.
7.9]).

It remains to check the two hypotheses of Lemma 15. First, the subspace L1 is dense in
every space (Hs, ‖·‖Hs

). This is the content of Lemma 18 of Chapter 2. Second, by Lemma
26, since s > 5, Var(nε−1

n µεn(φ)) ≤ C‖φ‖2Hs
for a certain constant C.

This concludes the proof.
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Chapter 4. Expansions of the empirical spectral measure of a perturbed matrix

4.1 Introduction

In the present chapter, we study this problem in the special case of Hermitian matrices.
Namely, we perturb an n × n Hermitian matrix, Dn, by a random Hermitian matrix
with small operator norm. Moreover, as up to a change of basis, we can diagonalize Dn,
we suppose it diagonal and consider that the entries of the pertubative matrix, Xn, are
independent in the eigenvector basis of Dn with a variance profile1. Furthermore, to better
describe the magnitude of the perturbations, we suppose that the operator norm of Xn is
of order 1 and introduce a real sequence εn that tends to zero, so as to interest us in the
empirical spectral distribution, µεn, of the perturbed matrix

Dε
n := Dn + εnXn

for different rates of convergence of εn to zero. In the following we prove that, depending
on the order of magnitude of the perturbation, an infinity of different regimes appear.

Previously, in [BGEM17] (Chapter 3), we have explicited the three first regimes, respec-
tively called pertubative, critical and semi-perturbative regimes, and appear under the three
following expressions:

µεn ≈ µn +
εn
n
dZ if εn ≪ n−1

µεn ≈ µn +
εn
n

(cdC2 + dZ) if εn ∼ c

n
µεn ≈ µn + ε2ndC2 if n−1 ≪ εn ≪ 1

where, µn is the empirical spectral measure of Dn, dC2 a deterministic linear form depend-
ing of the limit parameters of the off-diagonal entries of Xn and dZ a random linear form
on the space of C1 functions on R depending only on the limit parameters of the diago-
nal entries of Xn. This transition at εn ∼ n−1 is the well-known transition, in quantum
mechanics, where the perturbative regime ends. A surprising fact discovered during this
first study was that the semi-perturbative regime n−1 ≪ εn ≪ 1, which concerns many
applications in the context of covariance matrices in finance (see, for example, [AB12] or
[ABB14]), decomposes into infinitely many sub-regimes. In the case n−1 ≪ εn ≪ n−1/3,
the expansion of µεn−µn contains a single deterministic term before the random term εn

n
dZ.

In the case n−1/3 ≪ εn ≪ n−1/5, the expansion of µεn − µn contains two of them. And
more generally, for all positive integer p, when n−1/(2p−1) ≪ εn ≪ n−1/(2p+1), the expansion
contains p of them:

µεn ≈ µn +
εn
n
dZ + ε2ndC2 + ε4ndC4 + · · ·+ ε2pn dC2p.

In this case, each linear form dC2k may concern up to the k first derivatives of the test
function φ on which we evaluate the measure µεn.

1Note that if the perturbing matrix belongs to the GOE or GUE, then its law is invariant under this
change of basis
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4.2. Main results

Thereby, the aim of this chapter is, now, to provide a thorough study of thoses sub-
regimes of the semi-pertubative regime, explaining how we should reinforce the hypothesis
of our model each time we choose a slower rate of convergence to zero for εn and how the
deterministic terms appear then.

The perturbative expansion of the empirical spectral measure is, in this paper, done for
real test-functions of the type ϕz(x) = 1

z−x , for a non-real complex number z. This class of
test functions, which plays a central role in random matrix theory, is very useful because
it can be used to extend easily a convergence in law to larger classes of test functions, as
it is discussed in Section 4.6.

In this case, the deterministic terms (Ck), which come from the linear forms (dCk), of this
expansion are related to some combinatorial objects as, for example, rooted planar trees
and the random linear form dZ is related to the so-called one-dimensional Gaussian free
field defined, for instance at [Dub09, Sect. 4.2] (if the variance profile of Xn is flat, then it
is precisely the Laplacian of the Gaussian free field, defined in the sense of distributions).

This chapter is organized as follows; the main results, comments and examples are given in
Sections 4.2 and 4.3. Sections 4.4 and 4.5 are devoted to the proofs. And finally, Section
4.6 is a discussion about possible extensions of the main results to larger classes of test
functions.

Notations. For an, bn some real sequences, an ≪ bn (resp. an ∼ bn) means that an/bn
tends to 0 (resp. to 1). Also,

P−→ and
dist.−→ stand respectively for convergence in probability

and convergence in distribution for all finite marginals.

4.2 Main results

4.2.1 Definition of the model and assumptions

For all positive integer n, we consider a real diagonal matrix Dn = diag(λn(1), . . . , λn(n)),
as well as a Hermitian random matrix

Xn =
1√
n
[xni,j]1≤i,j≤n

and a positive number εn. The normalizing factor n−1/2 and our hypotheses below ensure
that the operator norm of Xn is of order one. We then define, for all n,

Dε
n := Dn + εnXn.

We now introduce the probability measures µn and µεn as the respective uniform distribu-
tions on the eigenvalues (with multiplicity) of Dn and Dε

n. Our aim is to explicit all the
different perturbative expansions of µεn around µn when n−1 ≪ εn ≪ 1.

We make the following general hypotheses:
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Chapter 4. Expansions of the empirical spectral measure of a perturbed matrix

(a) the entries xni,j of
√
nXn are independent (up to symmetry) random variables, cen-

tered, with variance denoted by σ2
n(i, j),

(b) there are f, σd, σ real functions defined respectively on [0, 1], [0, 1] and [0, 1]2 such
that, for each x ∈ [0, 1],

λn(⌊nx⌋) −→
n→∞

f(x) and σ2
n(⌊nx⌋, ⌊nx⌋) −→

n→∞
σd(x)

2

and for each x 6= y ∈ [0, 1],

σ2
n(⌊nx⌋, ⌊ny⌋) −→

n→∞
σ2(x, y).

We make the following hypothesis about the rate of convergence:

ηn := max{nεn, 1}× sup
1≤i 6=j≤n

(|σ2
n(i, j)− σ2(i/n, j/n)|+ |λn(i)− f(i/n)|) −→

n→∞
0.

Let us now make a last general assumption which makes it possible to include the case
where the set of eigenvalues of Dn contains some outliers:

(c) there is a real compact set S̃ such that

max
1≤i≤n

dist(λn(i), S̃) −→
n→∞

0.

Furthermore, we add a last particular hypothese which depends on the rate of convergence
of εn. In the case n−1/(2p−1) ≪ εn ≪ n−1/(2p+1) :

(d) the moment E|xni,j|4p+4 is bounded uniformly on n, i, j

Finally, we must introduce the last notion of rooted planar tree that is used in the two
main results.

Definition 27 (Dyck path). A Dyck path of length k ∈ 2N, also called non-negative
Bernoulli walk or Bernoulli excursion, is a function γ : J0, kK 7→ N satisfying

γ(0) = γ(k) = 0 and ∀i ∈ J1, k − 1K, |γ(i+ 1)− γ(i)| = 1

Remark 5. The set of Dyck paths of length k ∈ 2N is in bijection with several other sets
of combinatorial objects, as the set of rooted planar trees with k/2 edges, that is to say the
set of trees which are embedded in the plane and are given one distinguished vertex called
the root. One can find, for example, a proof of this well known result in the Subsection
1.1.2 of [Gui08]. Namely, the bijection consists in considering a clockwise path around the
tree which begins and finishes at its root. This way, each time the walk around the tree
meets a vertex for the first time then the Dyck path rises by one unit and each time the
walk around the tree meets an already visited vertex the Dyck path descends from one
unit, as it can be seen in Figure 4.1.
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1

2

0 1 2 3 4 5 6 7 8

Figure 4.1: A Dyck path and its corresponding rooted planar tree (root is white)

Notation. In the following we formulate the main results in terms of rooted planar trees
rather than in terms of Dyck paths. In order to be able to precisely designate the different
vertices and edges of these rooted planar trees we labeled them in the following way: for a
rooted planar tree with k+1 vertices, the root is labeled 1 and as the other vertices could
be arbitrarly labeled from 2 to k+1 (only the structure of the tree matters), we choose the
so-called left-to-right depth-first labelling with source the root, that is to say we label the
vertices in the order that the clockwise walk around the tree begining at the root, induced
by the associated Dyck path, discover them. This arbitrary labeling could be observed in
Figure 4.2.

1

52

43

1

2

543

1

3

54

2

Figure 4.2: Three different labeled planar rooted trees

Moreover, we denote T (k) the set of the rooted planar trees with k edges. Thereby, for
any tree T ∈ T (k), we denote by ET the set of its (un-oriented) edges and by vTℓ the degree
of the vertex ℓ.

4.2.2 Convergence in distribution of µεn

Let introduce, for z ∈ C\S̃, a centered Gaussian process, (Z(z))z∈C\S̃ , with distribution
defined by its covariance structure

E (Z(z)Z(z′)) =

∫ 1

0

σd(t)
2

(z − f(t))2 (z′ − f(t))2
dt
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and by the fact that Z(z) = Z(z).

Note that the field (Z(z))z∈C\S̃ can be represented as

Z(z) =

∫ 1

0

σd(t)

(z − f(t))2
dBt

where (Bt) is the standard one-dimensional Brownian motion.

We also introduce, for z ∈ C\S̃,

∆Gn(z) := (µεn − µn)(ϕz) =
1

n
Tr

1

z −Dε
n

− 1

n
Tr

1

z −Dn

.

Theorem 28. Let p ∈ N∗. Under the semi-perturbative regime n−1/(2p−1) ≪ εn ≪
n−1/(2p+1) and under Hypotheses (a), (b), (c), (d), the following convergence in distribution
holds,

nε−1
n


(µεn − µn)(ϕz)−

2p∑

k=2
k even

εknCk(z)


 dist.−→

n→∞
Z(z)

where the terms (Ck(z)) are deterministic functions of z, defined by

Ck(z) =
∑

T∈T( k
2 )

∫

[0,1]
k
2
+1

∏
{i,j}∈ET σ

2(xi, xj)

(z − f(x1))
∏k/2+1

i=1 (z − f(xi))v
T
i

dx1 . . . dx k
2
+1 (4.1)

Remark 6. The second part of Hypothesis (b), concerning the speed of convergence of
the profile of the spectrum of Dn as well as of the variance of its perturbation, is needed
in order to express the expansion of µεn − µn in terms of limit parameters of the model
σ and ρ. We can remove this hypothesis and get analogous expansions where the terms
Ck(z) and dZ are replaced by their discrete counterparts C(n)

k and dZn, defined thanks to
the "finite n" empirical versions of the limit parameters σ and ρ.

4.2.3 A local type convergence result

One can precise the convergence of Theorem 28 by replacing the complex variable z by a
complex sequence (zn) which converges slowly enough to the real axis. As it is discussed
in [BGK16], this type of result is a first step towards a local result for the empirical
distribution.

Theorem 29. Under Hypotheses (a), (b), (c), (d), and if n−1 ≪ εn ≪ 1, then for any
nonreal complex sequence (zn), such that

Im(zn) ≫ max

{
(nεp−1

n )−1/2 ,

(
ηn

nεp−1
n

)1/4

, ε
2

p+3

n

}
.
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and any even p ≥ 2, the following convergence in probability holds

ε−pn (µεn − µn)(ϕzn)−
p−2∑

k=0
k even

ε−kn Cp−k(zn)
P−→

n→∞
0 ,

Remark. In the classical case where
ηn
nεn

= sup
i 6=j

(|σ2
n(i, j)− σ2( i

n
, j
n
)|+ |λn(i)− f( i

n
)|) is

of order
1

n
, the above assumption boils down to Im(zn) ≫ max

{
(nεp−1

n )−1/2 , ε
2

p+3

n

}
.

4.3 Examples and simulations

To illustrate Theorem 28 we explicit, in Subsection 4.3.1, the terms of the expansion of µεn
until the semi-perturbative regime where εn ∼ n−1/7 and give some simulations based on
them in Subsection 4.3.2.

4.3.1 Explanation of the first three deterministic terms of the ex-
pansion of µεn

In accordance with Theorem 28, the three first sub-regimes, n−1 ≪ εn ≪ n−1/3, n−1/3 ≪
εn ≪ n−1/5 and n−1/5 ≪ εn ≪ n−1/7, of the semi-perturbative regime, involve the three
first deterministic terms, C2(z), C4(z) and C6(z), that we explicit in this subsection in order
to re-use them in the next subsection which is dedicated to simulations.

The term first deterministic term C2(z) is linked to the only planar rooted tree with a
single double-edge of the set T(1),

1 2

Thus, one can deduce directly deduce from formula (4.1) that

C2(z) :=

∫

(x1,x2)∈[0,1]2

σ2(x1, x2)

(z − f(x1))2(z − f(x2))
dx1dx2.

Similarly, as C4(z) is linked to the set, T(2) containing the 2 planar rooted trees with 2
double-edges,
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1

2

3

1

32

we deduce from formula (4.1) that,

C4(z) =

∫

[0,1]3

σ2(x1, x2) σ
2(x2, x3)

(z − x1)2 (z − x2)2 (z − x3)
dx1dx2dx3

+

∫

[0,1]3

σ2(x1, x2) σ
2(x1, x3)

(z − x1)3 (z − x2) (z − x3)
dx1dx2dx3.

And finally, as C6(z) is linked to the set T(3) containing the 5 planar rooted trees with 4
double-edges,

1

2

3

4

1

2

43

1

3

4

2

1

42

3

1

432

one can deduce from formula (4.1) and by symmetry between two of those trees that,

C6(z) =

∫

[0,1]4

σ2(x1, x2) σ
2(x2, x3) σ

2(x3, x4)

(z − f(x1))2 (z − f(x2))2 (z − f(x3))2 (z − f(x4))
dx1dx2dx3dx4

+

∫

[0,1]4

σ2(x1, x2) σ
2(x2, x3) σ

2(x2, x4)

(z − f(x1))2 (z − f(x2))3 (z − f(x3)) (z − f(x4))
dx1dx2dx3dx4

+ 2

∫

[0,1]4

σ2(x1, x2) σ
2(x1, x3) σ

2(x3, x4)

(z − f(x1))3 (z − f(x2)) (z − f(x3))2 (z − f(x4))
dx1dx2dx3dx4

+

∫

[0,1]4

σ2(x1, x2) σ
2(x1, x3) σ

2(x1, x4)

(z − f(x1))4 (z − f(x2)) (z − f(x3)) (z − f(x4))
dx1dx2dx3dx4
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4.3.2 Numerical simulations

Parabolic pulse pertubation by a Wigner matrix

We consider the case where
ρ(x) = 3

4
(1 − x2)✶[−1,1](x), σd ≡ m, for some real constant m, and σ ≡ 1 (this can be

adapted to the case σ(x, y) = ✶|y−x|≤ℓ). Theorem 28 is then illustrated by Figure 4.3,
where we have considered, for visual reasons, the imaginary parts of the studied Stieltjes
transforms,

1

π
Im(µεn(ϕz)− µn(ϕz)),

which boils down to replace, in Theorem 28, the function ϕz by the function

φ(x) =
1

π

η

(x− E)2 + η2
(E ∈ R, η > 0).
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0.000020
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0.00002

0.00001

0.00000

0.00001

0.00002

4 3 2 1 0 1 2 3 4
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0.000100
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0.000025

0.000050

0.000075

Figure 4.3: Parabolic pulse perturbation by a Wigner matrix. For different regimes of
n−1/(2p−1) ≪ εn ≪ n−1/(2p+1) (from left to right and from top to bottom εn = n−α for α =
0.5,0.25,0.17 and 0.143): imaginary part of the term (µεn−µn)(ϕz)−

∑p−1
k=1 ε

k
nC2k(z) (in blue) and

imaginary part of the last deterministic term of the expansion C2p(z) (in red) at z = E + i as a
function of the real part E. In the four cases, n = 104.
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As it can be seen on Figure 4.3, the predictions from Theorem 28 give a perfect matching
with the numerical simulations for any n−1/7 ≪ εn ≪ 1.

Uniform measure perturbation by different band matrices

The deterministic terms, Ck(z), of the perturbative expansion we provide are functions of
the non-diagonal entries of the pertubative matrix Xn. Thus if Xn is a band matrix then a
natural question might be that of the precision of the theoritical model, stated in Theorem
28, as a function of the width, ℓ, of the band. Indeed, the thinner the band, the fewer
non-diagonal elements are taken into account in the terms (Ck(z)).

To study this question, we consider, here, the case where f(x) = x, σd(x) ≡ m and
σ(x, y) = ✶|y−x|≤l, for some constants m ≥ 0 and ℓ ∈ [0, 1], which is the relative width of
the band.

Theorem 28 is then illustrated by Figure 4.4 where we ploted once again the imaginary
parts of the Stieltjes transforms, for different band matrices.

Figure 4.4 shows that the predictions from Theorem 28 give a perfect matching with the nu-
merical simulations and, finally, that the width of the band does not influence significantly
the accuracy of the result.

4.4 Strategy of the proof

The proof of Theorems 28 and 29 is based on an iteration of the resolvent formula, which
states that for two hermitian matrices A and B, and for any z that is not in the spectrum
of A, B and A+B the following egality holds;

1

z − (A+B)
=

1

z − A
B

1

z − (A+B)
.

This formula permits to subdivise (µεn − µn)(ϕz) into several terms that either converge
in distribution to Z(z), either converge in probability to the previously cited deterministic
terms, or are negligible in probability compared to the other ones. This is the purpose
of Subsection 4.5.3. Note that, the deterministic terms, Ck(z), are to be related to pla-
nar rooted trees and Catalan numbers. The way that they are obtained is explicited in
Subsection 4.5.2.

Once, those convergences are proved, then, thanks to Slutsky’s theorem one can deduce
both Theorems 28 and 29 as it is done respectively in Subsections 4.5.4 and 4.5.5.
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Figure 4.4: Uniform measure perturbation by a Gaussian band matrix. Imaginary part
of the Stieltjes transform of (µεn − µn)(φ) − ε2nC2(z) (in blue) and of the imaginary part of the
last deterministic term ε4nC4(z) (in red) at z = E + i as a function of the real part E for different

widths of the band of the perturbative matrix Xn. Here, n = 104, εn = n− 1

4 and the band’s width
take the following values, from left to right and from top to bottom, ℓ = 0.25, ℓ = 0.5, ℓ = 0.75
and ℓ = 1.

4.5 Proofs

4.5.1 Statements

Moreover, for p ∈ N∗, let suppose that n−1/(2p−1) ≪ εn ≪ n−1/(2p+1). One can deduce from
the expansion of the resolvent of Dε

n that,

∆Gn(z) = A
(n)
1 (z) + A

(n)
2 (z) + A

(n)
3 (z) + · · ·+ A

(n)
2p+1(z) + Aε2p+2(z), (4.2)
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for

A
(n)
1 (z) :=

εn
n

Tr
1

z −D
X

1

z −D
=
εn
n

1√
n

n∑

i=1

xi,i
(z − λn(i))2

A
(n)
2 (z) :=

ε2n
n

Tr
1

z −D
X

1

z −D
X

1

z −D
=
ε2n
n2

∑

i,j

|xi,j|2
(z − λn(i))2(z − λn(j))

...

A
(n)
k (z) :=

εkn
n

Tr
1

z −D
X

1

z −D
X . . .

1

z −D
X

︸ ︷︷ ︸
k times 1

z−D
X

1

z −D

=
εkn

n
k+2

2

n∑

i1,...,ik=1

xi1,i2 xi2,i3 . . . xik−1,ik xik,i1
(z − λn(i1))2 (z − λn(i2)) . . . (z − λn(ik))

...

A
(n)
2p+1(z) :=

ε2p+1
n

n
Tr

1

z −D
X

1

z −D
X . . .

1

z −D
X

︸ ︷︷ ︸
(2p+1) times 1

z−D
X

1

z −D

Aε2p+2(z) :=
ε2p+2
n

n
Tr

1

z −D
X

1

z −D
X

1

z −D
X

1

z −D
X

︸ ︷︷ ︸
(2p+2) times 1

z−D
X

1

z −Dε
.

Notations. To make notations lighter, we shall sometimes suppress the subscripts and
superscripts n, so that Dε

n, Dn, A
(n)
k , Xn and xni,j will be respectively denoted by Dε, D,

Ak, X and xi,j.

4.5.2 How the deterministic terms Ck(z) appear

In order to lighten the proof of Theorems 28 and 29, the way the deterministic terms Ck(z)
are obtained is explicited in the following lemma.

Lemma 30. For any k ∈ N and any z ∈ C\S̃,

lim
n→∞

ε−kn E [Ak(z)] =

{
0 if k is odd

Ck(z) if k is even
.

Remark 7. The limits of the even terms A2(z), A4(z), A6(z), . . . could also be expressed
thanks to operator-valued free probability theory, using the result [Shl96, Th. 4.1].

To prove Lemma 30, we shall provide first a lemma of graph theory which provides a link
beetween the cardinality of the set of the vertices, V , and the cardinality of the set of the
edges, E, of a graph G.
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Lemma 31. For any connected graph, G = (V,E), the following inequality holds,

|V | ≤ |E|+ 1.

Moreover, the equality holds if and only if G is a tree.

Proof. The proof is performed by induction over |V |.
If the graph is composed of only one vertex then the property is true.
Assume now that |V | ≥ 1. Let’s choose a vertex v of V and list e1, . . . , el the l edges of G
that contain v. One can split the graph G into m connected graphs G1, . . . , Gm such that
each of the edges e1, . . . , el is contained in only one of those m graphs. Note that, m ≤ l.
By denoting, for i ∈ {1, . . . ,m}, Gi := (Vi, Ei), by induction hypothesis, |Vi| ≤ |Ei| + 1
and thus

|V | = 1 +
m∑

i=1

|Vi| = 1 +
m∑

i=1

(|Ei|+ 1) = 1 +m+
∑

i=1

|Ei| = 1 +m+ |E| − l ≤ 1 + |E|

In addition, for the case of equality, note that if |V | = |E| + 1 then we must have, for all
i, |Vi| = |Ei|+ 1 and m = l. But, if there is a loop in G, then one can find a vertex v such
that m < l. So, by contradiction, the case of equality is verified only and only if G is a
tree. �

Proof. [of Lemma 4.1] Note that for any k ∈ N and any z ∈ C \ S̃,

ε−kn E [Ak(z)] =
1

n
k
2
+1

n∑

i1,...,ik=1

E
[
xi1,i2 xi2,i3 . . . xik−1,ik xik,i1

]

(z − λn(i1))2 (z − λn(i2)) . . . (z − λn(ik))

- If k is odd, as the variables (xij) are centered, in order to get a non zero term in
E
[
xi1,i2 xi2,i3 . . . xik−1,ik xik,i1

]
, we need to consider all the couplings such that no first

order moment appear. In other words, one should consider all the sets of edges
{(i1, i2), . . . , (ik−1, ik), (ik, i1)} verifying that every edge is equal at least to an other one.
Thus, as we need to consider graphs with at most ⌊k

2
⌋ different edges, by Lemma 31, we

know that those graphs have at most ⌊k
2
⌋+ 1 vertices i1, . . . , i⌊ k

2
⌋+1.

Thus, since the indices i1, i2, . . . vary from 1 to n, there at most n⌊ k
2
⌋+1 = n

k+1

2 indices
contributing in the previous sum and finally,

ε−kn E [Ak(z)] =
1

n
k
2
+1

n∑

i1,...,ik=1

E
[
xi1,i2 xi2,i3 . . . xik−1,ik xik,i1

]

(z − λn(i1))2 (z − λn(i2)) . . . (z − λn(ik))
︸ ︷︷ ︸

O

(
n

k+1
2

)

−→
n→∞

0

- If k is even, as the variables (xi,j) are centered, we need once again to consider all the
sets of edges {(i1, i2), . . . , (ik−1, ik), (ik, i1))} that are, at least, equal two by two, in order
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to get a non zero term in E
[
xi1,i2 xi2,i3 . . . xik−1,ik xik,i1

]
. Namely, we have to consider all

the graphs that have at most k
2

edges which are at least double.

From Lemma 31 one can deduce that among all these graphs, those whith a triple-edge or
more have at most k

2
− 1 edges and so at most k

2
vertices. So the indices i1, i2, . . . which

are associated to those last graphs contribute at most for O(nk/2) in the previous sum.

Moreover, for the remaining case of graphs having exactly k
2

double-edges, note that a cyclic
path of k edges, {i1, i2}, {i2, i3}, . . . , {ik−1, ik}, {ik, i1}, such that each edge is repeated
exactly twice, that is to say such that

∀ℓ ∈ J1, k − 1K, ∃!ℓ′ ∈ J1, k − 1K, ℓ 6= ℓ′, {iℓ, iℓ+1} = {iℓ′ , iℓ′+1}
corresponds to a unique Dyck path, and so, to its associated rooted planar tree. Indeed,
as a Dyck path of length k is non-negative and return at time k to 0, all the edges of
its associated rooted planar tree form a cyclic path of k/2 edges, from the root to the
root, which are visited exactly twice (see Remark 5). Thus, as the cyclic order of the
edges, {(i1, i2), . . . , (ik−1, ik), (ik, i1)}, induces a unique orientation to those trees which
make them planar with k

2
edges and with root i1 (the only vertex which is "visited" twice),

one can deduce from Lemma 31 that they are constituted by k
2
+ 1 vertices. Thereby, the

indices i1, i2, . . . which contribute the most to the previous sum, that is to say for O(n
k
2
+1),

are exactly those that "reconstitute" the planar rooted trees of the set T(k
2
).

Therefore, as the number of rooted planar trees with k
2

edges is equal to the (k
2
+ 1)-th

Catalan number, that is to say to 2
k+2

(
k+2
k
2
+1

)
, one can conclude that the sum

n∑

i1,...,ik=1

E
[
xi1,i2 xi2,i3 . . . xik−1,ik xik,i1

]

(z − λn(i1))2 (z − λn(i2)) . . . (z − λn(ik))

could be decomposed into 2
k+2

(
k+2
k
2
+1

)
sums related to rooted planar trees and which com-

plexity is O(n
k
2
+1), and other sums which complexity is at most O(n

k
2 ). In other words,

ε−kn E[Ak(z)] =
1

n
k
2
+1

n∑

i1,...,i k
2
+1

=1



∑

T∈T( k
2 )

∏
(i,j)∈ET E [xi, xj]

(z − λn(x1))
∏k/2+1

i=1 (z − λn(xi))v
T
i

+O(n
k
2 )




Thus, by recognition of Riemann sums, as n tends to infinity, the term ε−kn E[Ak(z)] tends
to the term Ck(z) defined in (4.1). �

4.5.3 Asymptotic behavior of the terms resulting from the expan-
sion of the resolvent of Dε

n.

The purpose of the four following claims is to describe the asymptotic behavior of each of
the terms (Ak(z)). Namely, we prove in Claim 5 that the first term, A1(z), of the expan-
sion converges in distribution to a Gaussian variable, in Claim 6 that all the even terms
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A2(z), A4(z), A6(z) . . . of the expansion converge in probability respectively to the deter-
ministic terms C2(z), C4(z), C6(z) . . . , in Claim 7 that all the even termsA3(z), A5(z), A7(z) . . .
converge in probability to zero and in Claim 8 that the last remainder term, Aε2p+2(z) con-
verge in probability to zero and is negligible compared to the other terms.

Claim 5. The finite dimension marginals of the centered process

(nε−1
n A1(z))z∈C\S̃

converge in distribution to those of the centered Gaussian process (Z(z))z∈C\S̃ . Besides,

there is C > 0 such that for any z ∈ C\S̃,

E[|nε−1
n A1(z)|2] ≤ C

dist(z, S̃)4
. (4.3)

Proof. Estimate (4.3) follows from

E[|nε−1
n A1(z)|2] =

1

n

n∑

i=1

E [|xi,i|2]
|z − λn(i)|4

≤ 1

n

n∑

i=1

σ2
n(i, i)

dist(z, S̃)4

and from the existence of a uniform upper bound for σ2
n(i, i) which comes from Hypothesis

(f) which stipulates that the (4p+4)-th moments of the entries xi,j are uniformly bounded.

We turn now to the proof of the convergence in distribution of nε−1
n A1(z) which actually

does not depend on the sequence (εn). For all α1, β1, . . . , αp, βp ∈ C and for all z1, . . . , zp ∈
C\S̃,

p∑

i=1

αi
(
nε−1

n A1(zi)
)
+ βi(nε−1

n A1(zi)) =
1√
n

n∑

j=1

xj,j

(
p∑

i=1

ξn(i, j)

)

for ξn(i, j) =
αi

(zi − λn(j))2
+

βi
(zi − λn(j))2

.

On one hand, by dominated convergence, the covariance matrix of the above two dimen-
sional random vector converges.

On the other hand, E|xi,j|4 is uniformly bounded in i, j and n, by Hypothesis (f). Moreover,
for n large enough, for all i, j,

|ξn(i, j)| ≤ 2 max
1≤i≤p

(|αi|+ |βi|)× ( min
1≤i≤p

dist(zi,S))−1.

Hence, the conditions of Lindeberg Central Limit Theorem are satisfied and the finite
dimension marginals of the process (nε−1

n A1(z))z∈C\S̃ converge in distribution to those of
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the centered Gaussian process (Zz)z∈C\S̃ defined by its covariance structure

E

(
Z(z)Z(z′)

)
= lim

n→∞
E

[(
nε−1

n A1(z)
)
.
(
nε−1

n An(z′)
)]

= lim
n→∞

1

n

n∑

i,j=1

E [xi,i xj,j]

(z − λn(i))2 (z′ − λn(j))2

=

∫ 1

0

σd(t)
2

(z − f(t))2 (z′ − f(t))2
dt

and by the fact that Z(z) = Z(z) which comes from A1(z) = A1(z). �

Claim 6. For any even k ∈ {2, . . . , 2p + 1}, there is a constant C such that for any

z ∈ C \ S̃,

E

[∣∣nε−1
n

(
Ak(z)− εknCk(z)

)∣∣2
]
≤ Cε2k−2

n

dist(z, S̃)2k+2
+

Cη2nε
2k−4
n

dist(z, S̃)2k+4

Proof. Introduce the variable Aok(z) obtained by centering the variable nε−kn Ak(z):

Aok(z) := nε−kn (Ak(z)− EAk(z))

=
1

n
k
2

n∑

i1,...,ik

xi1,i2 xi2,i3 . . . xik−1,ik xik,i1 − E
[
xi1,i2 xi2,i3 . . . xik−1,ik xik,i1

]

(z − λn(i1))2 (z − λn(i2)) . . . (z − λn(ik))

and the defect variable

δn(z) := ε−kn EAk(z)− Ck(z)

=
1

n
k+2

2

n∑

i1,...,ik=1

E
[
xi1,i2 xi2,i3 . . . xik−1,ik xik,i1

]

(z − λn(i1))2 (z − λn(i2)) . . . (z − λn(ik))

− lim
n→∞

1

n
k+2

2

n∑

i1,...,ik=1

E
[
xi1,i2 xi2,i3 . . . xik−1,ik xik,i1

]

(z − λn(i1))2 (z − λn(i2)) . . . (z − λn(ik))

we want to dominate the L2 norm of nε−1
n

(
Ak(z)− εknCk(z)

)
= εk−1

n Aok(z) + nεk−1
n δn(z).

For this purpose, we successively dominate Aok(z), δn(z) and Ck(z).

Using the independence of the xi,j’s, the fact that they are bounded in L4p+4 and the fact
that z stays at a macroscopic distance of the λn(i)’s, we can write for all z ∈ C\S̃

E[|Aok(z)|2] ≤ E[|nε−kn Ak(z)|2]

≤ E



∣∣∣∣∣
1

n
k
2

n∑

i1,...,ik=1

xi1,i2 xi2,i3 . . . xik−1,ik xik,i1
(z − λn(i1))2 (z − λn(i2)) . . . (z − λn(ik))

∣∣∣∣∣

2



≤ 1

nk

n∑

i1,...,i2k=1

E
[
xi1,i2 . . . xik,i1 xik+1,ik+2

. . . xi2k−1,i2k

]

dist(z, S̃)2k+2
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Generically, the set of "edges" {(i1, i2), (i2, i3), . . . , (ik−1, ik)} must be equal to the set
{(ik+1, ik+2), . . . , (i2k−1, i2k)} in order to get a non zero term. Therefore the complexity
of the previous sum is O(nk). Note that other non zero terms involving third or fourth
moments are much less numerous. Hence,

E[|Aok(z)|2] ≤
O(nk)

nkdist(z, S̃)2k+2
≤ C

dist(z, S̃)2k+2
. (4.4)

Now, note that the expression of the finite and deterministic term of Ck(z), defined in
(4.1), implies that,

Ck(z) ≤
C

dist(z, S̃)k+1
. (4.5)

Finally, the term δn(z) rewrites

δn(z) = O(n−1) +
∑

T∈T( k
2 )

∫

[0,1]
k
2
+1

✶B

( ∏
{i,j}∈ET σ

2(⌊nxi⌋, ⌊nxj⌋)
(z − λn(⌊nx1⌋))

∏k/2+1
i=1 (z − λn(⌊nxi⌋))vTi

−
∏

{i,j}∈ET σ
2(xi, xj)

(z − f(x1))
∏k/2+1

i=1 (z − f(xi))v
T
i

dx2 . . . dx k
2
+1

)
dx1 . . . dx k

2
+1,

where B :=
{
(x1, . . . , x k

2
+1) ∈ [0, 1]

k
2
+1 ; ∀i 6= j, ⌊nxi⌋ 6= ⌊nxj⌋

}
.

Since, for Mσ := sup0≤x 6=y≤1 σ(x, y)
2 and for any fixed z /∈ S̃, the function

ψz(s, λ1, . . . , λ k
2
+1) 7→

s

(z − λ1))
∏k/2+1

i=1 (z − λi)v
T
i

defined for (s, λ1, . . . , λ k
2
+1) ∈ [0,Mσ + 1]× {x ∈ R ; dist(x, S̃) ≤ dist(z, S̃)/2} k

2
+1

is C dist(z, S̃)−(k+2)-Lipschitz, for C a universal constant, by Hypothesis (b),

δn(z) = O(n−1) +
O (ηn)

max{nεn, 1} dist(z, S̃)k+2
. (4.6)

Collecting estimations (4.4), (4.5) and (4.6) we conclude. �

Claim 7. For any odd k ∈ {3, . . . , 2p+1} there is a constant C such that for any z ∈ C\S̃,

E[|nε−1
n Ak(z)|2] ≤ Cε2k−2

n

dist(z, S̃)2k+2
.
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Proof. We start by writing for all z ∈ C\S̃,

E[|nε−1
n Ak(z)|2] =

ε2k−2
n

nk
E



∣∣∣∣∣

n∑

i1,...,ik=1

xi1,i2 xi2,i3 . . . xik−1,ik xik,i1
(z − λn(i1))2 (z − λn(i2)) . . . (z − λn(ik))

∣∣∣∣∣

2



.=
n∑

i1,...,i2k=1

ε2k−2
n E

[
xi1,i2 xi2,i3 . . . xi2k−1,i2k

]

nk (z − λn(i1))2(z − λn(i2)) . . . (z − λn(ik))(z − λn(ik+1))2(z − λn(ik+2)) . . . (z − λn(i2k))
.

Generically, the set of "edges" {(i1, i2), (i2, i3), . . . , (ik−1, ik)} must be equal to the set
{(ik+1, ik+2), . . . , (i2k−1, i2k)} in order to get a non zero term. Therefore, as k is odd, the
complexity of the previous sum is O(nk). Note that other non zero terms involving third
or fourth moments are much less numerous. Hence,

E[|nε−1
n Ak(z)|2] ≤

ε2k−2
n

nk
× O(nk)

dist(z, S̃)2k+2
≤ Cε2k−2

n

dist(z, S̃)2k+2

�

Claim 8. For any z ∈ C\R,

E[|nε−1
n Aε2p+2(z)|2] ≤ O(n2ε4p+2

n )

|Im(z)|2 dist(z, S̃)4p+4
.

Proof. Remind that,

Aε2p+2(z) :=
ε2p+2
n

n
Tr

1

z −D
X . . .

1

z −D
X

︸ ︷︷ ︸
(2p+2) times 1

z−D
X

1

z −Dε

Hence,

E[|nε−1
n Aε2p+2(z)|2] ≤ ε4p+2

n E




∣∣∣∣∣∣∣∣∣
Tr

1

z −D
X . . .

1

z −D
X

︸ ︷︷ ︸
(2p+2) times 1

z−D
X

1

z −Dε

∣∣∣∣∣∣∣∣∣

2


≤ ε4p+2
n E


Tr

∣∣∣∣∣

(
1

z −D
X

)2p+2
∣∣∣∣∣

2

× Tr

∣∣∣∣
1

z −Dε

∣∣∣∣
2



≤ ε4p+2
n E

[
Tr

((
1

z −D
X

)2p+2(
1

z −D
X

)2p+2
)

n

|Im(z)|2

]

≤ nε4p+2
n

|Im(z)|2 E

[
Tr

((
1

z −D
X

)2p+2(
1

z −D
X

)2p+2
)]

≤ nε4p+2
n

|Im(z)|2
O(n(2p+3))

n2p+2 dist(z, S̃)4p+4
≤ O(n2ε4p+2

n )

|Im(z)|2 dist(z, S̃)4p+4
.
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The inequality of the last line takes into account that

• the L4p+4 norm of the entries of
√
nX is uniformly bounded

• the norm of the entries of X is of order n−1/2

• the norm of the coefficients of (z −D)−1 is smaller than dist(z, S̃)−1

• the complexity of the sum defining the trace is of order O(n2p+3) since its non-null
terms are encoded by (2p+ 2) edges trees which have therefore (2p+ 3) vertices.

Moreover, note that, as we have assumed that n−1/(2p−1) ≪ εn ≪ n−1/(2p+1), the term
n2ε4p+2

n is o(1). �

4.5.4 Proof of Theorem 28

The proof of Theorem 28 is based on the perturbative expansion (4.2) of the resolvent
1
n
Tr 1

z−Dε
n

and the four previous Claims.

Proof. We gather now the results of the previous claims. If n−1/(2p−1) ≪ εn ≪ n−1/(2p+1),
then, for any z ∈ C \R, we need to make the following expansion until the order (2p+ 2),

nε−1
n ∆Gn(z) = nε−1

n

(
A1(z) + A2(z) + A3(z) + · · ·+ A2p+1(z) + Aε2p+2(z)

)

and

• Claim 5 proves that the process nε−1
n A1(z) converges in distribution to the centered

Gaussian variable Z(z),

• Claim 6 proves that for any even k ∈ {2, . . . , 2p} each term nε−1
n Ak(z) converges in

probability to the deterministic term Ck(z),

• Claim 7 proves that for any odd k ∈ {3, . . . , 2p+ 1} each term nε−1
n Ak(z) converges

in probability to zero,

• and Claim 8 proves that the remainder term nε−1
n Aε2p+2(z) converges in probability

to zero.

Thus, by Slutsky’s theorem, for any z ∈ C \ R:

nε−1
n

(
∆Gn(z)− ε2nC2(z)− ε4nC4(z) · · · − ε2pn C2p(z)

) dist.−→
n→∞

Z(z)

This finishes the proof of Theorem 28. �

83



Chapter 4. Expansions of the empirical spectral measure of a perturbed matrix

4.5.5 Proof of the local type convergence result

Thanks to the perturbative expansion (4.2) of the resolvent 1
n
Tr 1

z−Dε
n

and Claim 5, Claim
6, Claim 7 and Claim 8 we can also proceed to the proof of Theorem 29.

Proof. Assume n−1 ≪ εn ≪ 1 and note that ε−pn ∆Gn(zn)−
p−2∑

k=0
k even

εknCp−k(zn) rewrites

ε−pn (A1(zn))+ε
−p
n

(
A2(zn)− ε2nC2(zn)

)
+ε−pn A3(zn)+ε

−p
n

(
A4(zn)− ε4nC4(zn)

)
+· · ·+ε−pn Aεp+2(zn)

One can directly obtain, for all non-real complex sequences (zn), that

• by Claim 5, if dist(zn, S̃) ≫ (nεp−1
n )−1/2, then

E[|ε−pn A1(zn)|2] ≤ C

(nεp−1
n )2 dist(zn, S̃)4

−→
n→∞

0,

• by Claim 6, for any even k ∈ {2, p}, if dist(zn, S̃) ≫ max

{(
ε2−p
n

n

)1/3
, (ηn/(nε

p−1
n ))1/4

}
,

then

E

[∣∣ε−pn
(
Ak(zn)− εknCk(zn)

)∣∣2
]
≤ Cε

2(k−p)
n

n2 dist(zn, S̃)2k+2
+

Cη2nε
−2p
n

n2 dist(zn, S̃)2k+4
−→
n→∞

0

• by Claim 7, for any odd k ∈ {3, p+ 1}, if dist(zn, S̃) ≫
(
ε3−p
n

n

)1/4
, then

E[|ε−pn Ck(zn)|2] ≤ Cε
2(k−p)
n

n2 dist(zn, S̃)2k+2
−→
n→∞

0,

• by Claim 8, if |Im(zn)| dist(zn, S̃)p+2 ≫ ε2n, then

E[|ε−pn Aεp+2(zn)|2] ≤ O(ε4n)

|Im(zn)|2 dist(zn, S̃)2p+4
−→
n→∞

0.

Therefore, when

dist(zn, S̃) ≫ max

{
(nεp−1

n )−1/2 ,

(
ε2−pn

n

)1/3

,

(
ηn

nεp−1
n

)1/4

,

(
ε3−pn

n

)1/4
}

and
|Im(zn)| dist(zn, S̃)p+2 ≫ ε2n,
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all the processes that constitute the process ε−pn ∆Gn(zn)−
∑p−2

k=0
k even

ε−kn Cp−k(z) converge to

0 in probability. Since dist(zn, S̃) ≥ Im(zn), the above condition is implied by

Im(zn) ≫ max

{
(nεp−1

n )−1/2 ,

(
ε2−pn

n

)1/3

,

(
ηn

nεp−1
n

)1/4

,

(
ε3−pn

n

)1/4

, ε
2

p+3

n

}
.

Observing finally that the two terms
(
ε2−p
n

n

)1/3
and

(
ε3−p
n

n

)1/4
are dominated by the maxi-

mum of the three other ones, we conclude the proof. �

4.6 A possible extension to other classes of test func-

tions

Theorems 28 and 29 could be extented from test functions of the type ϕz(x) := 1
z−x to

larger classes of test functions. To make this extension possible it is necessary to succeed
in expressing the terms Ck(z), defined in (4.1), as linear expressions of the function ϕz(x).
Thereby, the expansions of (µεn − µn)(ϕz) that we have previously considered, would be
expressed entirely as linear forms of ϕz, which will allow to extend this convergence, by
density of the linear span of the functions ϕz(x) in the fractional Sobolev space Hs, for
any s > 0, to a larger class of regular functions through a CLT extension theorem. For
example, one could use the CLT extension lemma of Scherbina and Tirozzi which could be
found in [ST10].

This extension have been done in [BGEM17], for all the regimes where εn ≪ n−1/3, that is
to say for all the regimes that involve at most one deterministic term, which comes from
C2(z). In fact, in this paper the expression C2(z) have been expressed under the following
form which is linear in ϕz(x):

C2(z) =

∫

[0,1]2

σ2(x1, x2)

(z − f(x1))2 (z − f(x2))
dx1dx2 = −

∫

R

ϕ′
z(s)F (s)ds

where F (s) =
∫
R

τ(s,t)ρ(s)ρ(r)
s−t dt for τ a function such that τ(s, t) = σ2(f−1(s), f−1(t)) and ρ

the density of the push-forward of the uniform measure on [0, 1] by the function f .

But from the second deterministic term C4(z) it becomes much more difficult to give a
linear expression in ϕz(x) of Ck(z) without making too restrictive assumptions on the
diagonal entries of the matrix Xn.

If one succeeds in overcoming this technical limitation on the diagonal entries of Xn, then
by a similar approach that in [BGEM17] a result, as for example the following that in
addition to using the above-mentioned CLT extension lemma uses the Helffer-Sjőstrand
formula (see [HS89]) and the fact that C2p+4(R) ⊂ Hs for s < 2p + 4 (see [Hör03]), could
be proved:
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Chapter 4. Expansions of the empirical spectral measure of a perturbed matrix

Let p ∈ N∗. Under the semi-perturbative regime, if n−1/(2p−1) ≪ εn ≪ n−1/(2p+1) then
there exist p linear deterministic functions, D1, . . . , Dp, defined on the space of compactly
supported C2p+4 functions on R such that for any compactly supported C2p+4 function, φ,
on R, the following convergence holds :

nε−1
n ((µεn − µn)(φ) +D1(φ) + · · ·+Dp(φ))

dist.−→
n→∞

Zφ.

where (Zφ)φ∈C1 is the centered Gaussian field indexed by the set of C1 complex functions on
R, with covariance structure defined by

EZφZψ =

∫ 1

0

σd(t)
2φ′(f(t))ψ′(f(t))dt and Zψ = Zψ

and which can be represented as

Zφ =

∫ 1

0

σd(t)φ
′(f(t))dBt

where (Bt) is the standard one-dimensional Brownian motion.

Note that the computation of the deterministic functions D1, . . . , Dp is rather intricate and
without any clear recursive formula. Indeed, each term Dk comes from the deterministic
term C2k(z) after some computations which have no clear reccurence relation such that
partial fraction decompositions. Also, according to this link between Dk and C2k(z), all
the determistic terms D1(φ), . . . , Dp(φ) have a much larger order than the probabilistic
term containing Zφ and, more precisely, for any k ∈ {2, . . . , p− 1} the deterministic term
Dk(φ) has a smaller order than Dk−1(φ) and a larger than Dk+1(φ). Namely, Dk(φ) is of
order (εn)

k.
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Eigenvectors of a matrix under random
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5.1 Introduction

This last chapter is devoted to the study of the sensitivity of the eigenvectors of a given
operator under small perturbations. In the previous chapters we studied the effect of
a perturbation on the spectrum of a Hermitian matrix by a random matrix with small
operator norm and whose entries in the eigenvector basis of the first one were independent,
centered, with a variance profile. We provided a perturbative expansion of the empirical
spectral distribution, but did not consider the deformation of the eigenvectors basis with
respect to the canonical basis. In the present paper, to complete this first study, we deal
with the spectral measure of our matrix associated to the state defined by a given vector.

To define this measure, let us introduce some notations. We consider a real diagonal matrix
Dn = diag(λ1, . . . , λn) (the eigenvalue λi implicitly depends on n), as well as a Hermitian
random matrix

Xn =
1√
n

[
xni,j
]
1≤i,j≤n
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Chapter 5. Eigenvectors of a matrix under random perturbation

such that the xij are independent (up to the symmetry), centered, with a variance profile.
The normalizing factor n−1/2 and our hypotheses below ensure that the operator norm of
Xn is of order one. We then define, for ε > 0,

Dε
n := Dn + εXn.

In contrast with [BGEM17], where we studied the empirical spectral measure µεn of the
matrix Dε

n, we consider here the spectral measure µεn,ei of Dε
n over a vector ei of the

canonical basis, defined through an eigenvector basis (uεj)j∈{1,...,n} of Dε
n and the related

eigenvalues (λεj)j∈{1,...,n} by

µεn,ei :=
n∑

j=1

|〈uεj , ei〉|2δλεj .

The interest of these measures is that they give information on the eigenvector basis of Dε
n,

while being tractable since they satisfy, for any test function ϕ, the key identity
∫
ϕ(x) dµεn,ei(x) =

n∑

j=1

|〈uεj , ei〉|2ϕ(λεj) = (ϕ (Dε
n))i,i . (5.1)

Our main result, Theorem 32, gives a perturbative expansion of µεn,ei . More precisely, using
a resolvent expansion and the Helffer-Sjöstrand formula, we give an asymptotic expansion
of ∫

R

ϕ(t)dµεn,ei(t)

for any C5 test function ϕ. From that, we deduce, at Equation (5.17), a heuristic first order
estimation of the overlaps |〈uεj , ei〉|2 between the eigenvectors u

ε
j of Dε

n and the ones ei of
Dn.

Some other works, on models closed to our one or contained in it, are devoted to the sen-
sitivity to perturbations of the eigenvectors. Some of them, as [OVW16, OVW17, vSW17,
Zho17], provide bounds on the deviations of these eigenvectors under perturbation, while
some other, as [AB12, AB14, ABB14, Ben17], provide explicit perturbative expansions. As
we explained in the previous paragraph, this is what we do here, and it allows us to recover
(see (5.17)) the fact that the overlaps |〈uεj , ei〉|2 have order ε2(λj − λi)

2/n. This cannot be
proved for all i, j but only on average over more or less large windows. This is why estimates
of this flavor have already appeared in various papers, as in [AB12, AB14, ABB14, Ben17]
under various forms (for example, one of the differences between our result and [Ben17,
Coro. 1.6] is that we average on j and not on i, as explained in Remark 5). In addition to
the fact that it only relies on short and elementary computations, one of the interests of
this paper is also to consider rather general perturbations, since we do not suppose that
all entries of Xn have the same variance nor that they are Gaussian. Another interest is
to provide, with the functional Ξs(ϕ) from (5.5) and (5.9), an expression for the first order
expansion of the measure µεn,ei from (5.1), which, up to our knowledge, did not appear so
far.
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5.2. Main result

The paper is organized as follows. Results and comments are given in Section 5.2, proofs
in Section 5.3, while Section 5.4 is devoted to the heuristic derivation of the consequences
of Theorem 32, and to some simulations which corroborate our predictions.

Notation. For u = un, v = vn some sequences, u≪ v means that un/vn tends to 0.

5.2 Main result

We consider a real diagonal matrix Dn = diag(λ1, . . . , λn) (the eigenvalue λi implicitly
depend on n), as well as a Hermitian random matrix

Xn =
1√
n

[
xni,j
]
1≤i,j≤n

and define, for ε > 0,
Dε
n := Dn + εXn.

We make the following hypotheses:

(a) the entries xni,j of
√
nXn are independent (up to symmetry) random variables, cen-

tered, with variance denoted by σ2
n(i, j), such that E|xni,j|6 is bounded uniformly on

n, i, j,

(b) there are two bounded real functions, f and σ, defined respectively on [0, 1] and [0, 1]2

such that, denoting λi by λn,i to emphasize the implicit dependence in n, the error
bound

ηn := sup
x∈[0,1]

|λn,⌊nx⌋ − f(x)|+ sup
(x,y)∈[0,1]2

|σ2
n(⌊nx⌋, ⌊ny⌋)− σ2(x, y)| (5.2)

satisfies
ηn −→

n→∞
0.

Let us now make some assumptions on the limiting functions σ and f :

(c) the push-forward of the uniform measure on [0, 1] by the function f has a density ρ
with respect to the Lebesgue measure on R and a compact support denoted by S,

(d) the variances of the entries ofXn essentially depend on the eigenspaces of Dn, namely,
there exists a symmetric function τ( · , · ) on R2 such that for all x 6= y, σ2(x, y) =
τ(f(x), f(y)).
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Chapter 5. Eigenvectors of a matrix under random perturbation

Let µεn,ei denote the probability measure defined, for any test function ϕ, by

∫
ϕ(t)dµεn,ei(t) := (ϕ(Dε

n))ii. (5.3)

One can equivalently define µεn,ei by

µεn,ei :=
n∑

j=1

|〈uεj , ei〉|2δλεj , (5.4)

where ei denotes the i-th vector of the canonical basis, the λεj ’s denote the eigenvalues of
Dε
n and the u

ε
j ’s denote the associated eigenvectors.

We now introduce a functional which is central in the statement of our result. This func-
tional admits another expression, given in Proposition 33 below.

Let, for s ∈ R and ϕ : R → C a C2 function,

Ξs(ϕ) :=

∫

R

τ(s, t)ρ(t)
(ϕ(t)− ϕ(s)− (t− s)ϕ′(s))

(t− s)2
dt (5.5)

Theorem 32. Let us suppose that ε ≪ 1. Let ϕ : R → C be a compactly supported C5

function. For x ∈ [0, 1], set i = i(n, x) = ⌊nx⌋. Then we have

∫

R

ϕ(t)dµεn,ei(t) = ϕ

(
λi +

ε√
n
xii

)
+ ε2Ξf(x)(ϕ) +OL2

(
ε2‖ϕ(5)‖∞(ε+ n−1/2 + ηn)

)

for ηn as in (5.2).

Remark 2 (Leading order transition). Note that for any C1 test function ϕ,

ϕ

(
λi +

ε√
n
xii

)
= ϕ(λi) +

ε√
n
xiiϕ

′(λi) +OL2

(
ε2

n
‖ϕ′′‖∞

)
.

Thus the previous theorem allows to expand the measure µεn,ei around δλi as follows. With
the notations and the hypothesis of the theorem,

∫
ϕ(t)dµεn,ei(t) = ϕ(λi) +

ε√
n
xiiϕ

′(λi) + ε2Ξs(ϕ)

+OL2

(
ε2‖ϕ(5)‖∞(ε+ n−1/2 + ηn) +

ε2

n
‖ϕ′′‖∞

)
. (5.6)

As far as the leading term of the expansion of µεn,ei − δλi is concerned, we deduce the
following transition: for ηn small enough, if ε≪ n−1/2, then the leading term is ε√

n
xiiϕ

′(λi),

whereas if n−1/2 ≪ ε≪ 1, the leading term is ε2Ξs(ϕ).
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Remark 3. Strikingly, the image of a function ϕ by the operator Ξf(x) is not changed if
one adds an affine function to ϕ. This can be understood because the measure µεn,ei − δλi
is of null mass and with first moment of order o(ε2) since by (5.1),∫

R

x d
(
µεn,ei − δλi

)
= (Dε

n)ii − λi =
ε√
n
xii = o(ε2).

Note that when both ϕ(f(x)) and ϕ′(f(x)) are null, the function Ξf(x)(ϕ) boils down to
the integral

Ξf(x)(ϕ) =

∫

R

τ(f(x), t)ρ(t)
ϕ(t)

(t− f(x))2
dt. (5.7)

We will use this fact in Section 5.4 for test functions ϕ whose support does not contain
f(x).

Proposition 33. Let us define, for any s ∈ R, the function ζs defined on R by

ζs(y) :=

∫ +∞

1

r − 1

r2
τ(s, s+ r(y − s))ρ(s+ r(y − s))dr. (5.8)

Then for any C2 function ϕ and any s ∈ R, the functional Ξs defined at (5.5) rewrites

Ξs(ϕ) =

∫

R

ϕ′′(y)ζs(y)dy. (5.9)

Proof. Taylor formula yields

ϕ(t)− ϕ(s)− (t− s)ϕ′(s) =

∫ t

s

ϕ′′(x)(t− x)dx = (t− s)2
∫ 1

u=0

ϕ′′(s+ u(t− s))(1− u)du.

Hence,

Ξs(ϕ) =

∫

t∈R

∫ 1

u=0

ϕ′′(s+ u(t− s))(1− u)du τ(s, t)ρ(t)dt

We now perform the change of variable (r, y) = Ψs(u, t) with

Ψs : (u, t) ∈ (0, 1)× R 7→ (r, y) =

(
1

u
, u(t− s) + s

)
∈ (1,∞)× R

which gives the result �

5.3 Proof (of Theorem 32)

The proof is divided into two parts. We shall first prove a convergence result for test
functions ϕ of the type ϕz := 1

z−x . This is the purpose of Subsection 5.3.1. It will be
obtained by writing an expansion of the resolvent of Dε

n.

Once we have proved that such a convergence holds for the resolvent of Dε
n, we will be able

to extend it to the class of compactly supported C5 functions on R, by using the Helffer-
Sjöstrand formula (see [HS89] or [BGK16]) which expresses a regular function ϕ on R as
an integral against functions ϕz of the previous type. This is done in Subsection 5.3.2.
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Chapter 5. Eigenvectors of a matrix under random perturbation

5.3.1 Stieltjes transform

Let us introduce the Banach space C2
b of bounded C2 functions on R with bounded first

and second derivatives, endowed with the norm ‖ϕ‖C2
b
:= ‖ϕ‖∞ + ‖ϕ′‖∞ + ‖ϕ′′‖∞.

On this space, let us define, for x ∈ [0, 1] and i = ⌊nx⌋, the random continuous linear form

Πn(ϕ) := ε−2

(∫
ϕ(t)dµεn,ei(t)− ϕ(λi +

ε√
n
xii)

)
− Ξf(x)(ϕ).

Lemma 34. Uniformly in z ∈ C \ R,

E[|Πn(ϕz)|2] = O

((
η2n +

1

n

)
|Imz|−6

)
+O(ε2|Imz|−8). (5.10)

Remark 4. This result implies that ∀z ∈ C \ R, Πn(ϕz)
P−−−→

n→∞
0.

Let us prove the above lemma. We denote, for short, xni,j by xij and introduce the diagonal
matrix

D̃ε
n := diag

((
λ̃εn(i) := λi +

ε√
n
xii

)

i=1,...,n

)
(5.11)

which is the diagonal part of the matrix Dε
n. Note that with this notation and by using

identity (5.1), the quantity we are interested in can be written:

Πn(ϕz) = ε−2
(
(z −Dε

n)
−1 − (z − D̃ε

n)
−1
)
ii
− Ξf(x)(z). (5.12)

To deal with this quantity we introduce the null diagonal matrix

X̃n := ε−1(Dε
n − D̃ε

n) = Xn − n−1/2 diag((xii)i=1,...,n)

obtained by vanishing the diagonal of the matrix X.

A perturbative expansion of the resolvent of Dε
n = D̃ε

n + εX̃n yields

(z −Dε
n)

−1 − (z − D̃ε
n)

−1 = ε(z − D̃ε
n)

−1X̃n(z − D̃ε
n)

−1 (5.13)

+ε2(z − D̃ε
n)

−1X̃n(z − D̃ε
n)

−1X̃n(z − D̃ε
n)

−1

+ε3(z − D̃ε
n)

−1X̃n(z − D̃ε
n)

−1X̃n(z − D̃ε
n)

−1X̃n(z −Dε
n)

−1.

We now want to analyze the corresponding expansion of
(
(z −Dε

n)
−1 − (z − D̃ε

n)
−1
)
ii
.

Claim 9. For all i ∈ J1, nK,
(
(z − D̃ε

n)
−1X̃n(z − D̃ε

n)
−1
)
ii
= 0.
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Proof. This comes from the fact that the matrix X̃n has a null diagonal. �

Claim 10. If, for all i ∈ J1, nK, we denote

Bn(z, i) :=
(
(z − D̃ε

n)
−1X̃n(z − D̃ε

n)
−1X̃n(z − D̃ε

n)
−1
)
ii
,

then, for all x ∈ [0, 1], Bn(z, ⌊nx⌋)− Ξf(x)(ϕz) = OL2

((
ηn +

1√
n

)
|Imz|−3

)
.

Proof. With the notations of (5.11), the term Bn(z, i) writes

Bn(z, i) =
1

n

∑

j

|xij|2(
z − λ̃εn(i)

)2 (
z − λ̃εn(j)

) ,

and, for x ∈ [0, 1],

Ξf(x)(ϕz) =

∫

t∈R

τ(f(x), t)ρ(t)

(t− f(x))2

(
1

z − t
− 1

z − f(x)
+

t− f(x)

(z − f(x))2

)
dt

=

∫

t∈R

τ(f(x), t)

(z − f(x))2(z − t)
ρ(t)dt (5.14)

=

∫

y∈[0,1]

σ(x, y)2

(z − f(x))2(z − f(y))
dy. (5.15)

The difference of these quantities writes,

Bn(z, ⌊nx⌋)− Ξf(x)(ϕz)

=
1

n

n∑

j=1

|x⌊nx⌋,j|2 − σ2
n

(
⌊nx⌋
n
, j
n

)

(
z − λ̃εn(⌊nx⌋)

)2 (
z − λ̃εn(j)

)

+
1

n

n∑

j=1

σ2
n

(
⌊nx⌋
n
, j
n

)

(
z − λ̃εn(⌊nx⌋)

)2 (
z − λ̃εn(j)

) −
σ2
n

(
⌊nx⌋
n
, j
n

)

(
z − λ⌊nx⌋

)2
(z − λj)

+

∫

y∈[0,1]

σ2
n

(
⌊nx⌋
n
, ⌊ny⌋

n

)

(z − λ2⌊nx⌋)(z − λ⌊ny⌋)
dy −

∫

y∈[0,1]

σ(x, y)2

(z − f(x))2(z − f(y))
dy.

The L2 norm of the first line of the right hand side of the previous equality writes

∥∥∥∥∥
1

n

n∑

j=1

|xij|2 − σn(i/n, j/n)
2

(z − λi)2(z − λj)

∥∥∥∥∥
L2

=
1

n

(
n∑

j=1

E[(|xij|2 − σn(i/n, j/n)
2)2]

|z − λi|4|z − λj|2

) 1

2

= O

(
1√

n |Imz|3
)
,
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the L1 norm of the second line is bounded, for C > 0, by

C

n

n∑

j=1

E

[
ε√
n

|x⌊nx⌋,⌊nx⌋|+ |xjj|
|Im(z)|3

]
= O

(
ε√

n |Im(z)|3
)

and, finally, from assumption (b), the third line is O(ηn|Imz|−3). �

Claim 11. For all i ∈ J1, nK,
(
(z − D̃ε

n)
−1X̃(z − D̃ε

n)
−1X̃(z − D̃ε

n)
−1X̃(z −Dε

n)
−1
)
ii
= OL2(|Imz|−4)

Proof. By taking into account that the L6 norm of the entries of
√
nX is finite, and that

the norms of the coefficients of (z − D̃ε
n)

−1 and of (z −Dε
n)

−1 are smaller than |Im(z)|−1,
we deduce that

E

[∣∣∣
(
(z − D̃ε

n)
−1X̃n(z − D̃ε

n)
−1X̃n(z − D̃ε

n)
−1X̃n(z −Dε

n)
−1
)
ii

∣∣∣
2
] 1

2

= E



∣∣∣∣∣

n∑

j,k,l=1

((z − D̃ε
n)

−1)i,i(X̃n)i,j((z − D̃ε
n)

−1)j,j(X̃n)j,k((z − D̃ε
n)

−1)k,k(X̃n)k,l((z −Dε
n)

−1)l,i

∣∣∣∣∣

2



1

2

≤ 1

Im(z)4
E



∣∣∣∣∣

n∑

j,k,l=1

(X̃n)i,j(X̃n)j,k(X̃n)k,l

∣∣∣∣∣

2



1

2

≤ 1

Im(z)4 n3/2
E



∣∣∣∣∣

n∑

j,k,l=1

xi,j xj,k xk,l

∣∣∣∣∣

2



1

2

≤ 1

Im(z)4 n3/2
E

[
n∑

j,k,l,m,p,q=1

xi,j xj,k xk,l xi,m xm,p xp,q

] 1

2

.

Since the entries (xi,j) are independent and centered, the set of “edges” {(i,m), (m, p), (p, q)}
must be equal to the set {(i, j), (j, k), (k, l)} in order to get a non zero term. Therefore,
the complexity of the previous sum is O(n3). Note that other non zero terms involving
third or fourth moments are much less numerous.

Therefore,

E

[(
(z − D̃ε

n)
−1X̃n(z − D̃ε

n)
−1X̃n(z − D̃ε

n)
−1X̃n(z −Dε

n)
−1
)2
ii

] 1

2

≤ 1

Im(z)4

�

Gathering Formulas (5.12), (5.13) and Claims 1, 2 and 3, we prove Lemma 34.
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5.3. Proof (of Theorem 32)

5.3.2 From Stieltjes transform to C5 functions

Now, let ϕ be a C5 function on R with bounded fifth derivative and let us introduce the
almost analytic extension of degree 5 of ϕ defined by

∀z = x+ iy ∈ C, ϕ̃4(z) :=
4∑

k=0

1

k!
(iy)kϕ(k)(x) .

An elementary computation gives, by successive cancellations, that

∂̄ϕ̃4(z) =
1

2
(∂x + i∂y) ϕ̃4(x+ iy) =

1

2× 4!
(iy)4ϕ(5)(x). (5.16)

Furthermore, by Helffer-Sjöstrand formula [BGEM17, Propo. 9], for χ ∈ C∞
c (C; [0, 1]) a

smooth cutoff function with value one on the support of ϕ,

ϕ(·) = − 1

π

∫

C

∂̄(ϕ̃4(z)χ(z))

y4
y4ϕz(·) d2z

where d2z denotes the Lebesgue measure on C.

Note that by (5.16), z 7→ ✶y 6=0
∂̄(ϕ̃4(z)χ(z))

y4
is a continuous compactly supported function and

that z ∈ C 7→ ✶y 6=0y
4ϕz ∈ C1

b is continuous, hence,

Πn(ϕ) =
1

π

∫

C

∂̄(ϕ̃4(z)χ(z))

y4
y4Πn(ϕz) d

2z.

Therefore, using the Cauchy-Schwarz inequality and the fact that χ has compact support
at the second step, for a certain constant C, we have

E
(
|Πn(ϕ)|2

)
= E

(∣∣∣∣
1

π

∫

C

∂̄(ϕ̃4(z)χ(z))

y4
y4Πn(ϕz) d

2z

∣∣∣∣
2
)

≤ CE

(∫

C

∣∣∣∣
∂̄(ϕ̃4(z)χ(z))

y4
y4Πn(ϕz)

∣∣∣∣
2

d2z

)

= C

∫

C

∣∣∣∣
∂̄(ϕ̃4(z)χ(z))

y4

∣∣∣∣
2

y8 E
(
|Πn(ϕz)|2

)
d2z .

By (5.16), the function
∣∣∣ ∂̄(ϕ̃5(z)χ(z))

y5

∣∣∣
2

is continuous and compactly supported and bounded

by C‖ϕ(5)‖2∞ for some constant C. Besides, by Lemma 34, uniformly in z,

y8 E
(
|Πn(ϕz)|2

)
= O

(
(1 + y2)

(
η2n +

1

n
+ ε2

))
.

We deduce that

E
(
|Πn(ϕ)|2

)
≤ C

∫

C

∣∣∣∣
∂̄(ϕ̃4(z)χ(z))

y4

∣∣∣∣
2

y8 E
(
|Πn(ϕz)|2

)
d2z = O

(
‖ϕ(5)‖2∞

(
η2n +

1

n
+ ε2

))
,

which closes the proof of Theorem 32.
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5.4 Consequence for the eigenvectors

In this section we want to present some concrete applications of our main result and some
numerical simulations that comfort well our developments. Therefore, some of the following
considerations will be at a heuristic level.

Let x0 ∈ [0, 1] and t ∈ f ([0, 1]), with t 6= f(x0). Let us assume that the function f is
invertible (which significantly lessens the generality of the model).

If we denote by µεn the empirical spectral measure of Dε
n, namely

µεn :=
1

n

n∑

j=1

δλεj ,

the definition of µεn,ei implies, for t 6= f(x0),

µεn,ei(dt) ≈ n|〈uε⌊nf−1(t)⌋, e⌊nx0⌋〉|2µεn(dt).

In addition, Formulas (5.7) and (5.6) give, for t 6= f(x0), the following expansion

µεn,ei ≈ ε2
τ(f(x0), t)ρ(t)

(t− f(x0))2
dt.

Keeping in mind the convergence of µεn(t) towards the measure ρ(t)dt, we conclude that
we have the asymptotic equality, in the sense of distributions, between functions of t,

ε−2n|〈uε⌊nf−1(t)⌋, e⌊nx0⌋〉|2 ≈ τ(f(x0), t)

(t− f(x0))2
. (5.17)

We present now two simulations (displayed in Figures 5.1 and 5.2) which show a good
matching with this theoretical prediction. First we consider the case where the deter-
ministic matrix Dn is perturbed by a Gaussian Wigner matrix, Xn. More precisely, we
take for Dn the diagonal matrix with i

n
as ith entry, so that f(x) = x and the density ρ

is equal x 7→ ✶[0,1](x). The entries of the perturbating matrix Xn are all Gaussian and
independent with variance one. Then, we consider the case where the same matrix Dn

is perturbed by a band matrix. In other words, we consider now that σ(x, y) = ✶|x−y|≤ℓ,
where ℓ ∈ [0, 1] is the relative width of the band. Note that in this second example, even
though there is absolutely no deterministic reason why 〈uε⌊ny⌋, e⌊nx⌋〉 would vanish when
|y−x| > ℓ, we see that at first order, it is actually almost zero (Figure 5.2). This is related
to the question of the localization of the eigenvectors of band random matrices (see e.g.
[Cha10, EKYY13, EK11b, EK11a, EYY12b, EYY12a, FM91, Sch09]).
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Figure 5.1: Uniform measure perturbation by a Wigner matrix. The red curve represents
(part of) the function t ∈ [0, 1] 7−→ ε−1√n|〈uε⌊nf−1(t)⌋, e⌊nx0⌋〉|, which results from the numeric
computation of the eigenvectors of Dε

n and the blue curve represents our theoretical prediction
t 7−→ |t − x0|−1. As (5.17) is an equality between distributions, we have smoothed both curves
thanks to a simple moving average with window length

√
n. Here n = 104, ε = n−0.7 and x0 =

1
2 .

Figure 5.2: Uniform measure perturbation by a Gaussian band matrix. The red curve
represents (part of) the function t ∈ [0, 1] 7−→ ε−1√n|〈uε⌊nf−1(t)⌋, e⌊nx0⌋〉|, which results from
the numeric computation of the eigenvectors of Dε

n and the blue curve represents our theoretical
prediction t 7−→ ✶|t−f(x0)|≤ℓ|t − x0|−1. As (5.17) is an equality between distributions, we have
smoothed both curves thanks to a simple moving average with window length

√
n. Here n = 104,

ℓ = 0.1, ε = n−0.7 and x0 =
1
2 .

Remark 5. It could be interesting to compare (5.17) with the recent work [Ben17] of
Benigni. Corollary 1.6 of [Ben17] precisely implies the same estimate as the one we give
in (5.17). More precisely, it says that if the distribution of the eigenvalues of Dn is regular
enough (in our case, these conditions can be expressed as a bound on our error term ηn
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of (5.2)), if Xn is a Wigner matrix (in our case, it amounts to suppose that τ ≡ 1), if ε
satisfies, roughly, n−1 ≪ ε≪ 1 and if γj,ε denotes the quantile of the density ρε of the free
convolution of the spectral distribution of Dn with a semicircle law with variance ε2, i.e.

∫ γj,ε

−∞
ρε(x)dx =

j

n
,

then the approximation

ε−2n|〈uεj0 , ei〉|2 ≈ 1

(λi − γj0,ε)
2 +O(ε4)

,

holds when empirical means on i in the neighborhood of a fixed j0 have been taken. We
recover the first order approximation from (5.17). Note however that here, empirical means
are taken on i, whereas in our result, with these notations, they are taken on j0.
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Abstract

The present thesis is devoted to the study of the effect of a perturbation on the spectrum
of a Hermitian matrix by a random matrix with small operator norm and whose entries in
the eigenvector basis of the first one were independent, centered and with a variance pro-
file. This is carried out through perturbative expansions of various types of spectral laws
of the considered perturbed large matrices. First, we demonstrate different perturbative
expansions of the empirical spectral measure in the cases of the perturbative regime and
the semi-perturbative regime and highlight well known heuristic patterns in Physics, as
the transition between semi-perturbative and perturbative regimes. Secondly, we provide
a thorough study of the semi-perturbative regime and prove the new fact that this regime
could be decomposed into infinitely many sub-regimes. Finally, we prove, through a per-
turbative expansion of spectral measures associated to the state defined by a given vector,
a perturbative expansion of the coordinates of the eigenvectors of the perturbed matrices.

Résumé

La présente thèse est consacrée à l’étude de l’effet d’une perturbation sur le spectre d’une
matrice hermitienne perturbée par une matrice aléatoire de petite norme opérateur et
dont les entrées dans la base propre de la première matrice sont indépendantes, centrées et
possèdent un profil de variance. Ceci est réalisé au travers de développements perturbat-
ifs de divers types des lois spectrales des grandes matrices perturbées considérées. Dans
un premier temps, nous démontrons différents développements perturbatifs de la mesure
spectrale empirique dans les cas du régime perturbatif et du régime semi-perturbatif et
mettons en évidence des modèles heuristiques bien connus en physique, comme la transi-
tion entre les régimes semi-perturbatifs et perturbatifs. Dans un deuxième temps, nous
proposons une étude approfondie du régime semi-perturbatif et prouvons le fait nouveau
que ce régime peut être décomposé en un nombre infini de sous-régimes. Enfin, nous dé-
montrons, au travers d’un développement perturbatif des mesures spectrales associées à
un vecteur donné, un développement perturbatif des coordonnées des vecteurs propres des
matrices perturbées que nous considérons.
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