
HAL Id: tel-02468246
https://theses.hal.science/tel-02468246v1

Submitted on 5 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancing Stream Processing and Complex Event
Processing Systems
Abderrahmen Kammoun

To cite this version:
Abderrahmen Kammoun. Enhancing Stream Processing and Complex Event Processing Systems. Net-
working and Internet Architecture [cs.NI]. Université de Lyon, 2019. English. �NNT : 2019LYSES012�.
�tel-02468246�

https://theses.hal.science/tel-02468246v1
https://hal.archives-ouvertes.fr

No d’ordre NNT: 2019LYSE012

THESE DE DOCTORAT DE L’UNIVERSITE DE LYON
opérée au sein de

L’UNIVERSITE JEAN MONNET

Ecole Doctoral N o 488
Sciences, Ingénierie et Santé

Spécialité de doctorat:
Discipline : Informatique

Soutenue publiquement le 08/07/2019, par:
Abderrahmen Kammoun

Enhancing Stream Processing and
Complex Event Processing Systems

Devant le jury composé de :

Jean-Marc Petit, PR, Institut National des Sciences Appliquées de Lyon, Rapporteur
Yann Busnel, PR, École Nationale Supérieure Mines-Télécom Atlantique Bretagne

Pays de la Loire, Rapporteur
Frédérique Laforest, PR, Institut National des Sciences Appliquées de Lyon,

Examinatrice
Jacques Fayolle, PR, Université Jean Monnet, Directeur de thèse

Kamal Singh, MCF, Université Jean Monnet, Co-Directeur

Je dédie cette thèse :
À mon père Habib Kammoun. Merci pour tous les sacrifices consentis pour moi.

c’est grâce à toi que je suis ce que je suis.
À la mémoire de ma mère Chédia Kammoun et mon grand-père Hedy Kammoun,
qui seront contents d’apprendre que leur fils a enfin terminé ces études. que leurs

âmes reposent en paix.
Aux familles KAMMOUN, BOUGHARIOU et GARGOURI.

Acknowledgements

Il me sera très difficile de remercier tout le monde car c’est à l’aide de nombreuses
personnes que j’ai pu mener cette thèse à son terme.

Je voudrais tout d’abord remercier mes encadrants, Jacques Fayolle et Kamal
Singh, pour leur aide et leurs conseils tout au long de ce travail de recherche.

Je remercie également Jean-Marc Petit et Yann Busnel d’avoir accepté de relire
cette thèse et d’en être les rapporteurs

Je tiens à remercier Frédérique Laforest pour avoir accepté de participer à
mon jury de thèse et pour sa participation scientifique ainsi que le temps qu’elle
a consacré à ma recherche.

Je remercie toutes personnes avec qui j’ai partagé mes études, notamment
pendant ces années de thèse.

Je tiens à remercier particulièrement Syed Gillani pour toutes nos discussions et
ses conseils qui m’ont accompagné tout au long des recherches et de la rédaction de
cette thèse. Il m’est impossible d’oublier Christophe Gravier, Julien Subercaze et
Tanguy Raynaud que j’ai régulièrement côtoyées pendant ces années, pour leurs
conseils précieux et leur aide.

Mer derniers remerciements vont à ma famille: Soutouty, Chouchou, Mi7ou,
Kouka et Fattouma, qui a tout fait pour m’aider, qui m’a soutenu et surtout
supporté pendant les moments les plus difficiles.

iv

Abstract

As more and more connected objects and sensory devices are becoming part of
our daily lives, the sea of high-velocity information flow is growing. This massive
amount of data produced at high rates requires rapid insight to be useful in various
applications such as the Internet of Things, health care, energy management, etc.
Traditional data storage and processing techniques are proven inefficient. This gives
rise to Data Stream Management (DSMS) and Complex Event Processing (CEP)
systems, where the former employs stateless query operators while the later uses
expressive stateful operators to extract contextual information.

Over the years, a large number of general purpose DSMS and CEP systems
have been developed. However,(i) they do not support complex queries that push
the CPU and memory consumption towards exponential complexity, and (ii) they
do not provide a proactive or predictive view of the continuous queries. Both of
these properties are of utmost importance for emerging large-scale applications.

This thesis aims to provide optimal solutions for such complex and proactive
queries. Our proposed techniques, in addition to CPU and memory efficiency,
enhance the capabilities of existing CEP systems by adding predictive feature
through real-time learning. The main contributions of this thesis are as follows:

• We proposed various techniques to reduce the CPU and memory requirements
of expensive queries with operators such as Kleene+ and Skip-Till-Any.
These operators result in exponential complexity both in terms of CPU
and memory. Our proposed recomputation and heuristic-based algorithm
reduce the costs of these operators. These optimizations are based on enabling
efficient multidimensional indexing using space-filling curves and by clustering
events into batches to reduce the cost of pair-wise joins.

• We designed a novel predictive CEP system that employs historical information
to predict future complex events. To efficiently employ historical information,
we employ an N-dimensional historical matched sequence space. Hence,
prediction can be performed by answering the range queries over the historical
sequence space. We transform N-dimensional space into 1-dimension using
space filling Z-order curves, enabling us to exploit 1-dimensional range search
algorithms. We propose a compressed index structure, range query processing
techniques and an approximate summarizing technique over the historical
space.

vi

• To showcase the value and flexibility of our proposed techniques, we employ
them over multiple real-world challenges organized by the DEBS conference.
These include designing a scalable system for the Top-k operator over non-
linear sliding windows and a scalable framework for accelerating situation
prediction over spatiotemporal event streams.

The applicability of our techniques over the real-world problems presented
has produced further customize-able solutions that demonstrate the viability of
our proposed methods.

Résumer

Alors que de plus en plus d’objects et d’appareils sensoriels connectés font partie
de notre vie quotidienne, la masse d’information circulante à grande vitesse ne
cesse d’augmenter. Cette énorme quantité de données produites à des débits élevés
exige une compréhension rapide pour être utile dans divers domaines d’activité
telles que l’internet des objets, la santé, la gestion de l’énergie, etc. Les techniques
traditionnelles de stockage et de traitement de données se sont révélées inefficaces
ou inadaptables pour gérer ce flux de données.

Cette thèse a pour objectif de proposer des solutions optimales à deux problèmes
de recherche sur la gestion de flux de données. La première concerne l’optimisation
de la résolution de requêtes continues complexes dans les systèmes de détection
d’évènements complexe (CEP). La deuxième aux problèmes liées à la prédiction
des événements complexes fondée sur l’apprentissage de l’historique du système.

Premièrement, nous avons proposé un modèle de recalcule pour le traitement de
requêtes complexes, basé sur une indexation multidimensionnelle et des algorithmes
de jointures optimisés. Deuxièmement, nous avons conçu un CEP prédictive qui
utilise des informations historiques pour prédire des événements complexes futurs.
Pour utiliser efficacement l’information historique, nous utilisons un espace de
séquences historiques à N dimensions. Par conséquence, la prédiction peut être
effectuée en répondant aux requêtes d’intervalles sur cet espace de séquences.

La pertinence des résultats obtenus, notamment par l’application de nos algo-
rithmes et approches lors de challenges internationaux démontre la viabilité des
méthodes que nous proposons.

viii

Contents

List of Figures xiii

List of Tables xv

I Introduction & Background 1

1 Introduction 3
1.1 Motivation . 3
1.2 Research Challenges and Contributions 5

1.2.1 Optimizing Expensive Queries for Complex Event Processing 5
1.2.2 Predictive complex event processing 7
1.2.3 Applying and testing our event processing solutions: challeng-

ing queries from the research community 8
1.3 Structure . 9
1.4 List of publications . 9

2 Background 11
2.1 Introduction . 12
2.2 Stream processing . 14

2.2.1 Active Database . 14
2.2.2 Data Stream Management System 15

2.3 Complex event processing . 16
2.3.1 Complex event processing Architectures 17
2.3.2 Event Processing models and definitions 19
2.3.3 Selection Policy and Query Operator 21
2.3.4 Event Detection models . 24

2.4 Query Optimization in CEP Systems 29
2.4.1 Optimizations according to predicates 30
2.4.2 Optimization of query plan generation 31
2.4.3 Optimization of memory . 34

2.5 Predictive Analytics & Complex Event Processing 35
2.5.1 Predictive Analytics for optimal decision making 37

ix

x Contents

2.5.2 Predictive Analytics for automatic rules generation 37
2.5.3 Predictive Analytics for complex events prediction 38

2.6 Processing Top-k queries . 39
2.6.1 Definitions . 39
2.6.2 Top-K Algorithms . 39

2.7 Conclusion . 41

II Enhancing Complex Event Processing 43

3 Enabling Efficient Recomputation Based Complex Event Process-
ing for Expensive Queries 45
3.1 Introduction . 46
3.2 Motivating examples . 46
3.3 Related Works . 48
3.4 Preliminaries and definitions . 51

3.4.1 Definitions . 51
3.4.2 Query Tree . 53

3.5 Baseline Algorithm . 55
3.6 RCEP: Recomputational based CEP 57

3.6.1 The Event Tree . 57
3.6.2 Creating the Complex Matches 59

3.7 RCEP: General Recomputation Model 65
3.7.1 Multidimensional Events . 65
3.7.2 Multidimensional Event Tree 66
3.7.3 Joins between Z-addresses 68
3.7.4 Handling Sliding Windows 72
3.7.5 Optimising Z-address Comparison 74

3.8 Experimental Evaluation . 74
3.8.1 Setup and Methodology . 74
3.8.2 Performance of Indexing and Join Algorithms 76
3.8.3 Performance of Sliding Windows 78
3.8.4 CEP Systems’ Comparison 79

3.9 Conclusion . 83

4 A Generic Framework for Predictive Complex Event Processing
using Historical Sequence Space 85
4.1 Introduction . 85
4.2 Contribution . 87
4.3 Our Approach . 88

Contents xi

4.3.1 Querying Historical Space for Prediction 89
4.3.2 Summarisation of Historical Space Points 91

4.4 Implementation . 93
4.4.1 System Architecture . 93
4.4.2 User Interface . 93

4.5 Experimental Evaluation . 94
4.5.1 Experiment Setup . 94
4.5.2 Datasets and CEP Queries 96
4.5.3 Accuracy Metrics . 96
4.5.4 Precision of Prediction with Summarisation 96
4.5.5 Comparison with other Techniques: 96

4.6 Conclusion . 97

III Real World Event Processing Challenges 99

5 High Performance Top-K Processing of Non-Linear Windows over
Data Streams 103
5.1 Introduction . 103
5.2 Input Data Streams and Query definitions 105

5.2.1 Input Data Streams . 105
5.2.2 Query definitions . 105

5.3 Architecture . 106
5.4 Query 1 Solution . 107

5.4.1 Data structures . 108
5.4.2 Algorithms . 110

5.5 Query 2 Solution . 112
5.5.1 Data Structures . 112
5.5.2 Algorithms . 115

5.6 Evaluation . 117
5.6.1 Experimental Settings . 118
5.6.2 Queues implementation . 119
5.6.3 Analysis of Query 1 Performance 119
5.6.4 Analysis of Query 2 Performance 121

5.7 Conclusion . 122

xii Contents

6 A Scalable Framework for Accelerating Situation Prediction over
Spatio-temporal Event Streams 123
6.1 Introduction . 123
6.2 Input Data Streams and Query definitions 125

6.2.1 Input Data Streams . 125
6.2.2 Query 1: Predicting destinations of vessels 126
6.2.3 Query 2: Predicting arrival times of vessels 126

6.3 Preliminaires . 127
6.4 The Framework . 127
6.5 Experimental Evaluation . 129

6.5.1 Evaluation [Gul+18b] . 129
6.5.2 Results and GC Benchmark 130

6.6 Conclusion . 131

IV Conclusion 133

7 Conclusion and Future Works 135
7.1 Enhancing CEP performance . 135
7.2 Predictive CEP . 136
7.3 Real world use cases and challenges 137

Appendices

A Upsortable an Annotation-Based Approach 141
A.1 Introduction . 141
A.2 The Case For Upsortable . 142
A.3 Upsortable solution . 143

A.3.1 AST modifications . 144
A.3.2 Bookkeeping . 144
A.3.3 Garbage Collection . 146

A.4 Discussion . 147

B DETAILED ANALYSIS 149
B.1 Evaluating Kleene+ Operator . 149
B.2 Proof Sketches . 150
B.3 Optimising Z-address Comparison 153
B.4 Operations over Virtual Z-addresses 154

B.4.1 Correctness of Comparing Virtual Z-addresses 154
B.4.2 NextJumpIn and NextJumpOut Computation 155

Works Cited 157

List of Figures

2.1 A high-level view of a CEP system [CM12b] 17
2.2 Typical Complex Event Processing Architecture 18
2.3 Sliding Window and Tumbling Window 21
2.4 Results found based on the selection strategies 25
2.5 Non-deterministic Finite Automaton example from [ZDI14a] 26
2.6 Finite State Machine example from [AÇT08] 27
2.7 A left-deep tree plan for Stock Trades Query [MM09] 28
2.8 Sequence Scan and Construction Optimazation [WDR06] 31
2.9 Postponing with early filters Optimazation [ZDI14b] 32
2.10 shared versioned buffer Optimization [Agr+08] 35

3.1 (a) Events stream S1 for the Stock Market, (b) matches for Query 1
over S2, (c) Events stream S2 of a patient’s heart beat, (d) matches
for Query 3 over S2 and three windows. 49

3.2 (a) Left-deep and (b) Right-deep Query tree for Query 1 in Example 1 53
3.3 An Event Tree for the stock market events (price and timestamps)

within a window ω . 58
3.4 Hybrid-Join execution between two events sequences ~Ei and ~Ej . . 62
3.5 Execution of the Kleene+ operator using the Banker’s sequence and

generated binary numbers . 64
3.6 (a) Two-dimensional Z-order curve, (b) Event Tree indexing of Z-order

Curve . 66
3.7 The dominance test between different Z-regions 69
3.8 Insertion and Query Time: Comparative Analysis of Event Tree and

RTree . 77
3.9 Analysis of Join Algorithms over different Data Distributions 78
3.10 Sliding Window Comparison . 79
3.11 Memory Performance. 80
3.12 Throughput Performance. 81
3.13 Average Detetion Latency . 82

4.1 Z-value encoding and calculation of gsb over a point in Hspace (left)
and the range query point (right) with two known dimensions. . . . 90

xiii

xiv List of Figures

4.2 Range Query Processing with Summarisation 91
4.3 System Architecture of Pi-CEP . 94
4.4 Interface of Pi-CEP . 95
4.5 (a) Credit Card Dataset (b) Activity Dataset: Accuracy comparison

of prediction for the number of matched sequence; 97
4.6 (a) Accuracy comparison of prediction for the number of matched

1-dimensional sequences (Credit Card Dataset); (b) Execution time
in seconds for the insertion and prediction 97

5.1 Abstract Architecture of the System 107
5.2 Computational complexity for the different operations on the various

data structures of Query 1. (DESC: Descendent) 108
5.3 Storage of the comments related to a post. The offset gives the index

of the first valid comment. 110
5.4 A sample array of sorted dense comment ids for a user. On the left

is the state of the array before an insertion. On the right, is the new
state of the array after an insertion occurs at a timestamp for which
the older comment in the window has a dense id value of 9. 115

5.5 Buffered Linked Blocking Queue. 120
5.6 Linked Blocking Queue. 120
5.7 Lock Free Blocking Queue. 121

6.1 labelInTOC . 126
6.2 The use of thescore and historical index to predict the destination of

a vessel . 128
6.3 System Design for predicting vessels’ destinations and arrival time . 128
6.4 Comparing average earliness rate and general accuracy with the

percentage of training dataset used 131

A.1 labelInTOC . 143
A.2 labelInTOC . 145

B.1 Mapping of the Banker’s sequences and a bitvector 150

List of Tables

2.1 CEP Optimisation Strategies & Detection Models 36

3.1 Definition of notations . 54

5.1 Main data structure used in Query 2 113
5.2 Performance of our solution on the large dataset for Query 2 only

provided by the organizers with respect to variation of window size (d)
in minutes, number of elements in top-k, and different event passing
queues (LinkedBlockingQueue, BufferedLinkedBlockingQueue and
LockFreeQueue). Throughput values (T column) are expressed in
kilo-events per seconds, latencies (L column) in 10−4 seconds, and
execution time (time column) in miliseconds. 118

6.1 DEBS GC Results from Hobbit platform (ns: nano seconds) 131

B.1 Banker Sequence for an events sequence 〈b1, b2, b3〉 150

xv

xvi

Part I

Introduction & Background

1

1
Introduction

Contents
1.1 Motivation . 3
1.2 Research Challenges and Contributions 5

1.2.1 Optimizing Expensive Queries for Complex Event Pro-
cessing . 5

1.2.2 Predictive complex event processing 7
1.2.3 Applying and testing our event processing solutions: chal-

lenging queries from the research community 8
1.3 Structure . 9
1.4 List of publications . 9

1.1 Motivation

In recent years, we have seen an unprecedented increase in continuously collecting
data from social networks, telecommunication networks, the stock market, sensor
networks, etc. The proliferation of data collected from these domains paves the
way towards building various smart services. These emerging smart services will be
enablers of the integration of the physical and the digital world. This will help us
to make more informative decisions by analyzing large volumes of data streams.

The integration of smart services provides tangible value to the day-to-day lives
of people by providing detailed and real-time observations of the physical world.
However, it also leads to various novel and challenging research problems. One of
such problems is the management of data with high volume and velocity. Existing
Database Management systems (DBMS) do not provide an efficient solution to this

3

4 1.1. Motivation

problem since such solutions assume that data is static and rarely updated. From a
DBMS point of view: (i) the data processing stage comes after storing and indexing
data, (ii) data querying is initiated each time by the user, i.e., in a pull manner.

In order to address these shortcomings, Data Stream Management Systems
(DSMSs) were introduced. Their primary goal is to process arriving data items
continuously by employing the main memory and running continuous queries. The
differentiating characteristic of this system class is the notion of data itself. Data is
assumed to be a continuous and possibly infinite resource, instead of resembling
static facts organized and collected together for future pull-based queries. DSMSs
have been an active research field for decades and a large number of highly-scalable
solutions have been proposed. However, DSMSs do not extract the situational
context from the processed data since they were initially considered for monitoring
applications: the main aim of DSMSs is to process query operators originating from
SQL such as selection, joins, etc. They leave the heavy task of extracting contextual
information to the end users. Conversely, in today’s increasingly connected world,
businesses require expressive tools to intelligently exploit highly dynamic data
with various different contexts.

The shortcomings of DSMS leads to a new class of systems referred as Complex
Event Processing (CEP). These systems are based on the notion of events, i.e.,
each incoming data item represent the happening of an event. These events depict
progressively minor changes about situations that when combined with others can
be turned into meaningful contextual knowledge. CEP aims to detect complex
events from incoming primitive events based on temporal and stateful operators.
The examples include temporal pattern matching of credit-card transaction streams
to detect fraudulent transactions [AAP17; Art+17a]; detecting Cardiac Arrhythmia
disease by analyzing heart beats [Pop+17]; monitoring Hadoop cluster logs to detect
cluster bottlenecks and unbalanced load distributions [Agr+08], etc.

In the last decade or so, a large number of industrial and academic CEP systems
have been proposed [WDR06; ZDI14b; MZZ12; Bre+07; MM09; ESP; Ani+12;
Agr+08; RLR16]. Due to the complexity of the patterns to be matched, the aim
of these systems is to reduce the time and space complexity over high volume
and velocity event streams. Since the complexity of CEP systems can become
exponential in terms of time and space, most of the provided solutions only target
the simplest query patterns. The existing optimization of these systems do not
handle the complex query patterns that are frequent in the aforementioned domains
well. For example, the space and time complexity of query execution for detecting
Cardiac Arrhythmia disease is exponential in nature. This leads to various challenges
to be addressed. Another functionality, which is missing in these existing solutions,
is the predictive or proactive matching of complex events. That is, these system

1. Introduction 5

are not able to predict if a complex pattern can happen in the future based on
historical behaviour: such advanced analysis is at the core of many smart services
and can provide a reactive insight to the problem at hand.

1.2 Research Challenges and Contributions

This section summarizes the research challenges and contributions of this thesis. The
main questions focus on whether CEP systems can handle higher amounts of data
for detecting complex patterns and if such systems can integrate more intelligent
predictive functionality. Based on the aforementioned shortcomings of existing CEP
systems, this thesis is focused on two main research challenges: high throughput CEP
for detecting complex patterns and predictive CEP. Finally, we adapted and tested
our algorithms on real-world problems and challenges proposed in international
conferences. This, in turn, generated ideas which helped us to refine our algorithms
further. We provide an overview of our contributions in the following text.

1.2.1 Optimizing Expensive Queries for Complex Event Pro-
cessing

Complex Event Processing (CEP) systems incrementally extract complex temporal
matches from an incoming event stream using a CEP query pattern. The general idea
of these systems is to incrementally produce query matches while first constructing
partial matches with the arrival of events. Hence, when a new event arrives,
the system (i) creates a partial match and (ii) checks with all existing partial
matches if a full match can be constructed. For example, let us consider an
application that monitors the incoming event stream of temperature and energy
consumption of server racks in a datacenter to detect anomalies. Let us assume
the pattern which we want to detect is as follows: two temperature events that
exceed a certain predefined threshold plus an increase in energy consumption.
To detect that existing CEP systems create a set of partial matches to store all
high temperature events that can later be matched with an energy consumption
event when it arrives to complete the match. The number of partial matches
grow over time as a function of query expressive and complexity. The query
complexity depends on the number of attributes and relations defined between
these attributes. This renders the management of partial matches as costly in
terms of memory and computation resources.

Challenge: The CEP engines show poor performance in terms of CPU and
memory consumption when executing expressive queries, referred to as expensive

6 1.2. Research Challenges and Contributions

queries. Thus, the needs are as follows: How to design efficient algorithms for
efficient CPU and memory utilisation while processing expensive queries?

Traditional approaches compress partial matches to minimize redundancies and
commonalities between partial matches. First, the system tracks the commonalities
between partial matches and compresses them using an additional data structure.
Later, it constructs complete matches while decompressing the set of common
partial matches. This can reduce memory consumption at the added cost of the
compression or decompression operations and redundant computation of partial
matches. Thus, existing CEP solutions fail to scale over real-world datasets due
to their space and time complexity.

In this thesis, we advocate a new type of model for CEP where instead of storing
the partial matches, we just store the events. Then, we compute matches only
when there is a possibility of finding a complete match. A system based on such
techniques reduces the memory and CPU complexity. This is because, contrary
to the incremental model, we do not have to keep all possible combinations of
the matches and only useful matches are produced. However, to materialise these
points, we require efficient indexing and querying techniques. Hence, our journey to
provide efficient techniques led us to explore various diverse fields such as theta-joins
(which allow the comparison of relationships such as ≤ and ≥), multidiemsnional
indexing and range query processing. Our provided techniques are generic in nature
and can be employed in general streaming-based systems.

Our key contributions are as follows:

• We provide a novel recomputation model for processing expressive CEP queries.
Our algorithms reduce space and time complexity for expensive queries.

• To efficiently employ a recomputation model, we propose a heuristic algorithm
to produce final matches from events in a batch mode.

• We provide multiple optimisation techniques for storing events using space-
filling curves enabling us to use efficient multidimensional indexing in streaming
environments.

• We experimentally demonstrate the performance of our approach against
state-of-the-art solutions in terms of memory and CPU costs under heavy
workloads.

1. Introduction 7

1.2.2 Predictive complex event processing

Analytic systems are evolving towards proactive systems, where machines will
simply do the work and leave strategy and vision to us. Proactive systems need
predictive capabilities, but existing CEP systems lack them. Predictive Complex
Event Processing (CEP) could become the next generation of CEP systems and
it could provide future complex events. That is, given a partial match, predictive
CEP should be able to provide future possible matches. The predictive CEP
problem resembles that of sequence pattern mining and prediction. However, on
the shelf data mining algorithms are use case specific. Moreover, they also require
considerable efforts to model each dataset. This is unlike CEP which are supposed
to be generic and can extract matches from any type of dataset.

Challenge: The questions are as follows: how to add predictive capabilities
to CEP systems, how to design algorithms to handle complex multi-dimensional
sequences, how to manage such complex data structures in a dynamic environment
and how to ensure accuracy and efficiency?

This thesis designs a novel predictive CEP system and shows that this problem
can be solved while leveraging existing data modelling, query execution and
optimisation frameworks. We model the predictive detection of events over an
N-dimensional historical matched sequence space. Hence, a predictive set of events
can be determined by answering the range queries over the historical sequence space.
We design range query processing techniques and an approximate summarisation
technique over the historical space.

Our design is based on two ideas:

• History can be a mirror of future and, thus, we can use historical matches
and events to predict future matches.

• Simply storing historical events and matches while operating in the main
memory is not scalable and therefore not possible for data stream settings. On
the other hand, discarding historical points may degrade prediction accuracy.
Thus, we summarised the older matches according to their importance as will
be defined in the later chapters.

Our experimental evaluation over two real-world datasets shows the significance
of our indexing, querying and summarising techniques for prediction. Our system
outperforms competitors by a considerable margin in terms of prediction accuracy
and performance.

8 1.2. Research Challenges and Contributions

1.2.3 Applying and testing our event processing solutions:
challenging queries from the research community

The research community has proposed a series of challenges to test stream event
processing techniques on real use cases. Such challenges allow researchers to
demonstrate the performance of their event processing systems and algorithms on
real datasets. Each year the tasks evolve considerably. They allow us to test and
apply some of our systems and algorithms to real data and use-cases.

Challenge: Are our algorithms generic enough to solve varying and challenging
real tasks, can our systems be adapted to different specific tasks and how do we fair
as compared to other competitive researchers, their systems and algorithms?

We participated in the challenges proposed by the Distributed and Event-Based
System (DEBS) community. The first challenge that we tackled was proposed in
2016. The DEBS Grand Challenge (GC) 2016 [Gul+16b] focused on processing
social networking data in real time. The aim was to design efficient top-k algorithms
for analysing social network data consisting of live content, evolving users and
their interactions.

While designing our solution, we carefully paid attention on optimizing every
part of the system. Fast data parsing, efficient message-passing queues, as well as
devising efficient fast lower and upper bounds to avoid costly computation, were
key to the success of our approach. Similarly, the choice and design behind the
most common data structures largely contributed to overall system performance.
In addition, we developed Upsortable, a data structure that offers developers a
safe and time-efficient solution for developing top-k queries on data streams while
maintaining full compatibility with standard Java[Sub+17].

Another challenge in which we participated was the DEBS GC 2018 [Gul+18a].
The DEBS community was interested in processing spatio-temporal streaming data.
The goal was to predict the destination of a vessel and its arrival time. We provided
a novel view of using historical data for the prediction problem in the streaming
environment. Our solution was based on predictive CEP system, efficient indexing,
querying and summarising techniques in a streaming environment.

These two challenges had an important impact on the work in this thesis. The
first challenge gave us the idea of using a lazy approach for efficient processing of event
streams. The idea of using lazy approach was carried forward in the recomputation
based approach and it will be seen in Chapter 3. The second challenge helped us
to further enhance our predictive CEP solution described in Chapter 4.

1. Introduction 9

1.3 Structure
The remainder of this thesis is organized as follows. In Chapter 2, we introduce
the necessary background on stream processing and complex event processing. In
Chapter 3, we present the techniques used to optimize expensive queries in complex
event processing. In Chapter 4, we present the design of our predictive CEP system
and show that this problem can be solved while leveraging existing data modelling,
query execution and optimisation frameworks. In Chapter 5 and 6, we demonstrate
that the proposed techniques, along with some additional ones, can be applied to
solve different challenges. We conclude in Chapter 7 and discuss future work.

1.4 List of publications
Parts of the work presented herein have been published in various international
workshops and conferences. We briefly introduce them as follows:

• At EDBT 2018, we presented a comparison of different event detection models
and concluded that traditional approaches, based on partial matches’ storage,
are inefficient for expressive queries. We advised a simple yet efficient approach
that experimentally outperforms traditional approaches on both CPU and
memory usage.

• At ICDM 2017 Workshops, we presented the design of our novel predictive
CEP system and showed that this problem can be solved while leveraging
existing data modelling, query execution and optimisation frameworks.

• We have also participated in different challenges in which we were inspired
from our proposed techniques to find solutions. Highlights include a paper
presented at ACM DEBS, providing a scalable system for top-k operator
over non-linear sliding windows using incremental indexing for relational data
streams. Furthermore, another paper proposed a Scalable Framework for
Accelerating Situation Prediction over Spatio-temporal Event Streams. Our
solution provides a novel view of the prediction problem in streaming settings.
Hence, the prediction is not just based on recent data, but on the whole useful
historical dataset.

• Moreover, much of the work will be submitted for review for the VLDB
conference, where we advocate a new type of model for CEP wherein we
reduce the memory and CPU cost, by providing efficient join techniques,
multidimensional indexing and range query processing.

Below is the complete list of related publications:

10 1.4. List of publications

• Abderrahmen Kammoun, Tanguy Raynaud, Syed Gillani, Kamal Singh,
Jacques Fayolle, Frédérique Laforest: A Scalable Framework for Accelerating
Situation Prediction over Spatio-temporal Event Streams. DEBS 2018: 221-
223

• Abderrahmen Kammoun, Syed Gillani, Julien Subercaze, Stéphane Frénot,
Kamal Singh, Frédérique Laforest, Jacques Fayolle: All that Incremental is
not Efficient: Towards Recomputation Based Complex Event Processing for
Expensive Queries. EDBT 2018: 437-440

• Julien Subercaze, Christophe Gravier, Syed Gillani, Abderrahmen Kammoun,
Frédérique Laforest: Upsortable: Programming TopK Queries Over Data
Streams. PVLDB 10(12): 1873-1876 (2017)

• Syed Gillani, Abderrahmen Kammoun, Kamal Singh, Julien Subercaze,
Christophe Gravier, Jacques Fayolle, Frédérique Laforest:Pi-CEP: Predictive
Complex Event Processing Using Range Queries over Historical Pattern Space.
ICDM Workshops 2017: 1166-1171

• Abderrahmen Kammoun, Syed Gillani, Christophe Gravier, Julien Subercaze:
High performance top-k processing of non-linear windows over data streams.
DEBS 2016: 293-300

2
Background

Contents

2.1 Introduction . 12
2.2 Stream processing . 14

2.2.1 Active Database . 14
2.2.2 Data Stream Management System 15

2.3 Complex event processing 16
2.3.1 Complex event processing Architectures 17
2.3.2 Event Processing models and definitions 19
2.3.3 Selection Policy and Query Operator 21
2.3.4 Event Detection models 24

2.4 Query Optimization in CEP Systems 29
2.4.1 Optimizations according to predicates 30
2.4.2 Optimization of query plan generation 31
2.4.3 Optimization of memory 34

2.5 Predictive Analytics & Complex Event Processing . . 35
2.5.1 Predictive Analytics for optimal decision making 37
2.5.2 Predictive Analytics for automatic rules generation . . . 37
2.5.3 Predictive Analytics for complex events prediction . . . 38

2.6 Processing Top-k queries 39
2.6.1 Definitions . 39
2.6.2 Top-K Algorithms . 39

2.7 Conclusion . 41

11

12 2.1. Introduction

2.1 Introduction

Our society has unequivocally entered the era of data analysis. Used exclusively in
large companies as well as institutional and scientific organisations for decades, data
analysis is now common in many disciplines. Moreover, new paradigms are emerging
which highly benefit from data analysis such as the Internet of Things (IoT). As
mentioned in the introduction to this dissertation, IoT reinforces the presence of
data that changes regularly over time and must be processed continuously, due
to the massive presence of sensors. To this end, it is a realistic step to consider
the representation of data in the form of flows and to use processing models
corresponding to such information. Moreover, according to some estimates, the
flow of information through the Internet of Things will be very significant and will
involve complex operations on large flows and high throughput.

In a general context, an increasing number of applications require continuous
processing of streaming data sensed in different locations, at different times and
rates, in order to obtain added value in their business and service domains. Real
time analytics is nowadays at the centre of companies’ concerns. This is an essential
practice to significantly increase turnover, but also to remain competitive in most
industries. Real time Analytics is the science of examining raw data in real time in
order to draw conclusions from this information without delay. Analytics tools are
used to enable companies and organisations to make better decisions. Analytics
over big data is one of the important tasks for success in many business and service
domains. Some examples of these domains include health [Blo+10], finance[Adi+06],
energy [Hil+08], security and emergency response[RED12], where several big data
applications in these domains rely on fast and timely analytics based on available
data to make quality decisions.

Regarding IoT scenarios, you will find that it is deeply embedded in the real
time analytics world.

• Businesses can send targeted incentives when prospective customers are nearby,
by tracking data from their locations sensed by their mobile devices.

• Financial institutions can monitor stock market fluctuations in real time
and rebalance investments based on carefully and precisely measured market
valuations to the nearest second. In addition, they could set up this same
capability, as an added-value service, for clients who want a more powerful
way to manage their investments.

• E-commerce companies can detect fraud the moment it happens by defining
patterns that might be suspicious and watching machine-driven algorithms.

2. Background 13

From the above examples, we can glean some key benefits of real time analytics:

• It can open the way for more advanced data analysis.

• It can work in addition to machine learning techniques to provide further
guidance for all kinds of companies.

• It can help companies improve their profitability, thereby reducing their costs
and increasing production.

• It can support brands to provide more relevant consumer experiences, which
is a key to success in the age of digital everything.

• It can provide new skills when it comes to fraud detection and management,
both in and outside the financial industry.

The domain of data analysis and data management has seen significant evolution.
Database management systems (DBMS) based on the OLTP (On Line Transaction
Processing) model have emerged to provide optimal management of this data.
The objective of OLTP is to allow insertion and modification in a fast and safe
way. DBMSs are especially suited to responding to requests for a small portion
of the data stored in the database. In this perspective, it is standard practice to
state that database systems allow basic data processing. In contrast, this model
has limitations in terms of providing an efficient and consistent timely analysis
of the collected data. To this end, Information Flow Processing (IFP) [CM12b]
paradigm has been developed through the work of several communities moving
from active databases [MD89] to complex events processing [LF98]. Information
Flow Processing aims to extract new knowledge as soon as new information is
being reported. The idea is to move the active logic from the application layer to
the database layer. This avoids redundancy of monitoring functionality in case
of a distributed application and a wrong verification frequency in the case of a
stand-alone monitoring application[MD89].

Real time data analysis can mean applying some simple or complex operations
on data, it could also mean extracting the most significant events, etc. Simple
operations can use basic stream processing techniques, whereas complex operations
like detecting patterns use complex events processing techniques. For tracking most
significant events, top-k monitoring systems can be used. Thus, the research aspect
of Information Flow Processing may be approached from several points of view. To
more suitably align the state of the art with my research goals, the following areas
were explored and are thus discussed in the following text: Real-time Analytics,
the Stream processing domain, Complex Event Processing, Optimization trends
for CEP, Predictive CEP, and Top-k queries.

14 2.2. Stream processing

2.2 Stream processing

Stream processing is about handling continuous information as it flows to the engine
of a stream processing system. In this paradigm, the user inserts a persisting query
in the form of a rule in the main memory that will be executed by the engine to
retrieve incrementally significant information from the stream. Indeed, the event
processing system requires that information be processed, asynchronously with
respect to its arrival, before it is stored and indexed if necessary. Both aspects
contrast with the requirements of the traditional database management system
(DBMS). DBMSs store and index data so they can be queried by users on demand.
While this is useful in case of low data update frequencies, in the context of IoT
real-time applications, it is not necessarily efficient. These applications require
continuous and timely processing of information in order to efficiently extract new
knowledge as soon as relevant information flows from the periphery to the centre
of the system. For example, water leak detection applications should be capable
of detecting the existence of a leak as fast as possible so timely actions can be
taken. Therefore, indexing and then requesting sensor data from a database, to
detect if a leak has happened or not, may not only delay the repair, but also
burden the workload and complicate the tasks.

2.2.1 Active Database

The roots of Stream Processing or Event processing can be traced back to the
area of Active Database Management Systems[MD89] (ADBMS). Active database
management systems were developed to overcome the passive nature of the database
management systems, in the sense that DBMSs are explicitly and synchronously
invoked by users or application layer initiated operations. In other words, using only
a DBMS, it is not possible to automatically take an action or send a notification
after the occurrence of a specific situation. Active database is a DBMS endowed
with an active behaviour, that has been moved from the application layer. The
application layer uses polling techniques to determine changes to data that must be
fine-tuned so as not to flood the DBMS with too frequent queries that mostly return
the same answers or, in the case of too infrequent polling, that the application not
miss important changes to data. The active behaviour of database management
systems supports rules with three components, listed below:

• Event: an event is an occurence that stimulates an action. This stimulator
can be an internal operator to the database, like a tuple update or insertion,
or an external stimulator such as the new value of an attribute or a clock
notification.

2. Background 15

• Condition: a condition defines the context in which the event occurs, for
example if the new value exceeds a pre-defined threshold.

• Action: an action is a list of tasks that should be carried out when both
the stimulator events and conditions have taken place. The action can be
internal to the database, such as the deletion of a tuple, or an external one,
like sending an alert to an external application.

Even though a series of applications such as tracking financial transactions [CS94]
and identifying unusual patterns of activity [SS04] have been made possible thanks
to the presence of active database. The active database is built around persistent
storage, like traditional DBMS, where irrelevant data can be kept and it can suffer
from poor performance in the case of a high rate of events and a significant
number of rules [Ter+92].

2.2.2 Data Stream Management System

As mentioned before, the massive presence of sensors reinforces the presence of an
unbounded high rate of events which must be processed continuously. It is not
optimal to load arriving data (event) into a traditional database management system
(DBMS) and operate on it from there. Traditional DBMSs do not support continuous
queries, and they are not designed for rapid and continuous loading of individual
data items. To achieve this, the database community has developed a new class
of system to handle continuous and unbounded data items in a timely way: Data
Stream Management Systems (DSMSs) [BW01; Bab+02] comes with an orthogonal
query processing mechanism compared to DBMS, where it processes continuously
arriving data items in the main memory and persists only defined queries.

To excel at a variety of real-time stream processing applications, the DSMS
brings new requirements [SÇZ05], listed below:

• To achieve low latency, DSMSs must keep data moving to avoid the expensive
cost of storage before initiating the knowledge extraction process.

• For expressive processing on continuous streams of data, a high level query lan-
guage expanding upon the SQL language with extended streaming operations
must be supported.

• To provide resiliency against stream imperfections, frequently present in
the real world data, a mechanism must be provided to handle missing and
out-of-order data.

16 2.3. Complex event processing

• To guarantee predictable and repeatable outcomes, meaning the system must
compute the same results for equivalent streams, a deterministic processing
must be maintained throughout the entire processing pipeline.

• To provide interesting features by integrating stateful operations, such as
aggregates and sequences.

• To ensure high availability and data safety. Where failure or loss of information
can be too costly, one must use a high-availability (HA) solutions with hot
backup and real-time failover schemes. [BGH87].

• To achieve incremental scalability by distributing processing across multiple
processors and machines.

• To enable a real-time response, the DSMS core employs optimized query plans
and minimizes processing overheads.

The above features are required for any system that will be used for high-volume
low-latency stream processing applications. We can see that most of the requirements
for generic stream processors are handled by [Aba+03; ABW06; Ara+03], with a
varying degree of success. In addition, it is necessary to deal with complex scenarios
by integrating dynamic operators (5th requirement), which give rise to the definition
of Complex Event Processing (CEP) [Luc08]. This requires better management of
CPU and memory to maintain the requirements of a flow processing system.

2.3 Complex event processing

A subset of event processing applications may involve detecting complex events such
as anomaly detection, pattern detection, etc. They are termed as complex event
processing (CEP) systems. The incoming events have specific semantics. They
describe something that happens in the real world, and CEP systems are in charge of
filtering, correlating and combining them. CEP systems detect patterns and extract
higher knowledge from raw events and then notify to event consumers (figure2.1).
Thus, it is quite different from the data processing done by simpler event processing
systems, where the operations are as light as filtering and transformation.

2. Background 17

Figure 2.1: A high-level view of a CEP system [CM12b]

The high-level view of a CEP system shares some similarities with the popular
publish/subscribe systems. The latter focuses on filtering incoming events from
publishers and produces notifications (events) consumed by subscribers. There-
fore, publishers and subscribers exchange information asynchronously, through
publish/subscribe systems. To organize and present information to the subscribers,
two approaches can be clearly established: Topic-based [Cas+02; Zhu+01] and
content-based [CDF01; BFP10], explained below (figure2.2):

• Topic-based model: limits choice for subscribers using a list that the publishers
have pre-defined. A subscriber can express its interest in one or more topics,
and then they receive all published messages related to these topics.

• Content-based model: provides more flexibility to subscribers to define their
event interests, by specifying constraints over the values of events’ attributes.
While remaining limited to accessing the history of the received events and
the relationship between them.

Publish/subscribe only processes and filters each event separately from the others
to decide on their importance to subscribers. CEP can be seen as a content-based
publish/subscribe system endowed with a pattern based language that provides
logic, sequence, window and iteration operators to capture the occurrence of high
level relevant events.

2.3.1 Complex event processing Architectures

The goal of complex event processing is to extend activity monitoring through
inferences from source events, and to send alerts pertaining to such inferences for
further action or analysis via dashboards, in order to respond to them as quickly as

18 2.3. Complex event processing

possible. CEP is an enrichment system that reports occurrences as they happen.
In a service-oriented architecture, a typical CEP architecture would be as follows:

Event Sources Complex Event Processing Event Targets
Pr

e-
pr

oc
es

si
ng

Po
st

-p
ro

ce
ss

in
g

Pattern Matching

Figure 2.2: Typical Complex Event Processing Architecture

• Event sources send or produce events that describe or report everything
happening in a particular situation. They act like publishers.

• Pre-processing includes converting the source-specific event format to an
understandable CEP engine format.

• CEP uses events-correlation and pattern-matching techniques to “infer” com-
plex events, which will be forwarded to event targets. Some post-processing
may supsequently be applied.

• Post-processing includes converting the complex event CEP format to the
target-specific format. Thus, the event could then be consumed by event
targets.

• Event targets are the consumers in the form of a monitoring application or
database, where the indexed results could be used for a prediction task.

To express the set of relevant events in the pattern matching step, CEP imposes
a window of valid events on the incoming event stream. The shifting of a window
over the event stream is defined by a Window Policy and the selection of relevant
events in the window is determined by a Selection Policy. These are defined in
more detail in the next sections.

2. Background 19

2.3.2 Event Processing models and definitions

This section discusses data and processing models for CEP and illustrates their
usage by referring to the SASE+ language [DIG07]. A CEP system essentially aims
to detect predefined sequences of events in an infinite flow of events [Cugola and
Margara, 2012b]. When a predefined sequence is detected by the CEP system, it
generates a combination of events, which may trigger certain associated actions like
generating an alert. The most central concept in the CEP field is therefore an event.

2.3.2.1 Event definition

An event is represented by a data element that encodes interesting occurrences
representing a change or a condition in the domain of analysis [CM15; May18].
Events can be simple events emitted from a sensor representing low-level information,
such as a temperature value update in a room, or can be a complex event emitted
from a CEP system that represents high level information, such as a fire alert. Each
event is characterized by meta data and content. The former is composed of a
timestamp and the event type: -timestamp defines ordering relationships among
events -the event type defines the abstract structure of a similar set of events,
for example the type Alert for all alert occurrences. The latter contains relevant
information, such as for an Alert, there are three fields: the first and second are
of type Double to geolocate the alert (latitude and longitude), the third of type
String to describe the Alert (Fire, Leak...).

Definition 1: Event

An event e is a tuple (A, t), where A = {A1, A2, . . . , Am} (m ≥ 1) is a set
of attributes and t ∈ T is an associated timestamp that belongs to a totally
ordered set of time points (T,≤).

2.3.2.2 Event Stream definition

An event stream includes a set of events. At a high level, a stream can be seen as
an infinite queue of events, to which new events are continuously added.

Definition 2: Event Stream

An event stream S is a possibly infinite set of events such that for any given
timestamps t and t′, there is a finite amount of events occurring between
them.

20 2.3. Complex event processing

2.3.2.3 Event sequence definition

An Event sequence is a chronologically ordered sequence of events, based on
timestamps given by T, is represented as ~E = 〈e1, e2, . . . , en〉 with e1 referring
to the first event and en to the last.

2.3.2.4 Window Policy definition

Window is a crucial concept in Data Stream Management System because an
application cannot store an infinite number of events. A window is an operator that
sets the validity of incoming events to the window size w. A window size can depend
on the timestamp or the number of events [WDR06; CM12a; DM17]. Furthermore,
it can also depend on the occurrence of a particular event or content where an event
can be used to define the beginning or the end of a window, known as value-based
windows [Bab+02]. Note that other types of windows are system-specific such as
jumping-windows and non-linear windows. Herein, we define the most commonly
used time-based sliding window and tumbling window for complex events processing.

Sliding Window
The time-based sliding window ωtime : Slτ × T → Slτ takes a logical stream S and
the window size as arguments. The window size w ∈ T,w > 0, represents a period
of time and w indicates the amount of time units captured by the window. The
operator continually shifts the time interval of size w time units over its input stream
to define the involved tuples. The default amount of window shift corresponds
to the finest granularity of the time domain [KS09].

Definition 3: Sliding Window

wtimew (S) := {(e, t̂, n̂))|∃X ⊆ S.X 6= 0 ∧
X = { (e, t, n) ∈ S | max { t̂− w + 1, 0 } ≤ t ≤ t̂ } ∧ n̂ = ∑

(e,t,n)∈X n }

At a time instant t̂, the window contains all tuples of S whose timestamp
value lies in the interval defined by max { t̂− w + 1, 0 } and t̂. In other words, a
tuple appears in the output stream at t̂ if it occurred in the input stream within
the last w time instants ≤ t̂.

It’s also possible that the sliding window takes an optional SLIDE clause
defined by x, where x ∈ N+. The slide defines the progression step at which
the window advances. In this case the window moves forward only once every x
time units by an amount of x time units and the set of valid events change at
time instance x − 1, 2.x − 1, 3.x − 1, and so on (if we assume that the window
starts at the earliest time instant 0).

2. Background 21

Definition 4: Sliding Window with Slide x

wtimew,x (S) := {(e, t̂, n̂))|t̂ ≥ x− 1 ∧ ∃X ⊆ S.X 6= 0 ∧
X = { (e, t, n) ∈ S | max {

⌊
t̂+1
x

⌋
. x− w + 1, 0 } ≤ t ≤⌊

t̂+1
x

⌋
. x− 1 } ∧ n̂ = ∑

(e,t,n)∈X n }

Tumbling Window
The Sliding window degenerates to a tumbling window, if x = w, in which case
all the events within a window expire at the same time.

Definition 5: Tumbling Window

wtimew,x (S) := {(e, t̂, n̂))|t̂ ≥ x− 1 ∧ ∃X ⊆ S.X 6= 0 ∧
X = { (e, t, n) ∈ S | max { (

⌊
t̂+1
w

⌋
− 1) .w, 0 } ≤ t ≤

⌊
t̂+1
w

⌋
. w − 1 } ∧ n̂ =∑

(e,t,n)∈X n }

7 9 10 14 16421 9 10 14 161 742

Sliding window at t=7 and w=8 Sliding window at t=9 and w=8

7 9 10 14 16421 9 10 14 161 742

Tumbling window of size w=8
where t is between 0 and 8

Tumbling window of size w=8
where t is between 9 and 17

Figure 2.3: Sliding Window and Tumbling Window

Figure 2.3 shows a sliding window where the optional SLIDE is omitted (i.e.,
x = 1) so multiple sliding windows can share the same data items. It also shows a
tumbling window where all the data items expire at the same time.

2.3.3 Selection Policy and Query Operator

Most CEP systems such as SASE [WDR06], define an Event Query Language
(EQL)[Bui09] to match candidate events to their described types in the query
languages. Complex query defines specific combinations of events using multiple

22 2.3. Complex event processing

event-queries and the conditions to describe the correlation between them. Con-
sidering the example of water leak detection, LowPressure(subregion(r1)) 7→
LowConsumption(subregion(r1)) is a high-level event that may represent a
leak event. That is, if the low-pressure event is followed by (7→) low consumption
in the sub-region r1 then it may point to a water leak. Typically, the expressivity
of EQLs is measured by their capabilities to detect patterns. Therefore, event
queries are a feature group that consists of:

• Conjunction operator: two or more events occur at the same time or during
the same period.

• Disjunction operator: one of two or more events occurs without having any
order constraints.

• Negation operator: the non-existence of an event.

• ANY operator: any event may occur.

• Kleene Closure (A∗/A+/Anum): an event may occur one or more times (+)
or zero or more times(*).

• Sequence Operator: a sequence of two events (SEQ(E1; E2)), means that E1
occurs before E2.

SASE [Agr+08; ZDI14a] has provided various selection strategies that overlap
the sequence operator with some constraints to mix relevant and irrelevant event
occurrence. In the following, the provided selection strategies are described and
compared with each other in the context of the example of a sensor data stream
in Figure 2.4. An event selection policy defines how a query submitted to a CEP
system will specify which of the candidate events will be selected to build the
corresponding complex event match based on a given pattern. Event selection
policy adds a certain functionality in the detection of high-level events, rather than
being limited to a regular expression’s operators.

• Strict Contiguity (SC): requires the two selected events within a sequence to
be contiguous in the events stream. This means that the input stream cannot
contain any other events in between, similar to regular expression matching
against strings.

• Partition Contiguity (PC): is a relaxation of strict contiguity strategy, to
remove SC where the sequence of events is portioned based on a condition, For
example when the partition condition is based on the region R1 (Region==R1),
all the events that do not hold this condition will be skipped.

2. Background 23

• Skip-Till-Next (STN): In this strategy, the two relevant events do not need
to be contiguous in a relevant partition. STN is a relaxation of the strict
contiguity strategy, where certain events considered as noise in the input
stream are ignored.

• Skip-Till-Any (STA): is a relaxation of Skip-Till-Next to compute transitive
closure over relevant events allowing non-determinism on relevant events. Such
that for a sequence (E1;E2) all the patterns where E2 follows E1 are output.

Consider the Water Sensor event stream in Figure 2.4(a) that records water
pressure, volume and occurrence time in different regions. For region r1, e1
represents, a pressure of 3 bar and a volume of 270 cubic metres at time 1.
To analyze water sensors’ data, consider the following pattern query: within a
period of 10ms, find three or more events with strictly increasing volume followed by
pressure of less than or equal to (≤) 1 bar in the same region. Figure 2.4(b) shows
five matches and one partial match for the defined query, plotted over time. Events
are displayed as circles and labeled with sensor region, water volume and pressure.

Figure 2.4 (b.1) shows a Strict Contiguity Match (coloured in Red) and Partition
Contiguity Match (coloured in Black). The Strict Contiguity Match consists of the
events e3, e4, e5, e6 and e7. Event e3 is te start of the match, e4, e5 and e6 are
subsequent events with strictly increasing volumes; and e7 is the closing event that
has a pressure value equal to 1. Event e0 could have started the match if the event
e1 did not occur. With the relaxation of the partition contiguity strategy, event
e1 is skipped for the Partition Contiguity Match based on the regional partition
condition. Thus, the Partition Contiguity Match contains all events except the
second one (e2) which is a region 2 (r2) event.

Figure 2.4 (b.2) shows a Partition Contiguity Match (coloured in Black) and
a Skip-Till-Next Match (coloured in Orange). The Partition Contiguity Match
consists of events e11, e12, e13, e14 and e15. Events e8 and e9 could have been
included in the match if event e10 did not occur. In the absence of contiguity
requirements brought by the relaxation of the Partition Contiguity strategy, event
e10 is considered as noise and skipped for the Skip-Till-Next Match, which will
contain all the events except e10.

Figure 2.4 (b.3) shows a Skip-Till-Next partial match (coloured in Orange)
and Skip-Till-Any match (coloured in Green). The Skip-Till-Next strategy finds
a partial match (e16, e17, e18) that will be deleted when the window ends, but
misses the e16, e17, e19, e20 match since only the partial match is considered to
decide whether an event is matched or ignored as noise. In this case, e18 is a
blocking noise for the Skip-Till-Next strategy. Skip-Till-Any brings more flexibility

24 2.3. Complex event processing

in selecting the next relevant event by allowing a non-deterministic decision between
including the event into the sequence and skipping it.

However, one important challenge is that the more flexible the selection strategy,
the more complex the event processing becomes, resulting in the over-consumption
of memory and CPU. Thus, we propose optimization techniques that will be
discussed in the later chapters.

Herein, we describe the query language operators and, for brevity, we omit some
operators which are not directly related to our topic such as Periodic and Aperiodic
operators. In the next section we introduce the CEP query matching process.

2.3.4 Event Detection models

A large number of CEP systems, both academic and industrial, have been proposed
in the literature. These systems share the goal of compiling high-level languages
(Pattern P) into a logical or physical plan in some form of an automaton or a tree
(reflecting the structure of P) to form the semantics and executional framework.
Those plans aim to evaluate query patterns progressively by monitoring partial
matches, which in turn express the potential for an imminent complex match. The
choice of a plan representation is mainly motivated by the performance metrics
which each approach tries to enhance. In this section, we review the main types
of models used in the literature.

2.3.4.1 Automata-based Models

These systems compile CEP languages into some form of deterministic or non-
deterministic automata. An Automaton consists of states set and conditional
transitions between them. The transitions are triggered by the arrival of primitive
events to verify conditions between events. Examples of these systems include
Cayuga [Bre+07], SASE+ [Agr+08], SASE++ [ZDI14b] and Apache Flink [Fli].
With the arrival of an event, an instance or run of the automaton is initiated or
older runs are processed. Runs that reach a final state generate the corresponding
matches and are removed from the set of active runs. Since each candidate run
needs to be inspected and updated for each new event, numerous systems store the
set of candidate runs in a compressed form. Whenever a candidate run reaches a
final state, this representation is partially decompressed to construct the output.
Multiple forms of compression have been investigated in the literature. For example,
SASE+ and Apache Flink factorize commonalities between runs that originate from
the same ancestor run. That is, each state has a stack structure with events stored
in each stack. To speed up the stack traversal, each event is augmented with a
pointer to its previous event in a match to share common events. These pointers are

2. Background 25

Ti
m

e
Re

gi
on

Vo
lu

m
e

Pr
es

su
r

e
0

r1
20

0
2

1
r2

27
0

3
3

r1
21

0
3

4
r1

25
0

3
5

r1
26

0
2

6
r1

30
0

4
7

r1
34

0
1

8
r1

10
0

3
9

r1
15

0
3

10
r1

10
0

3
11

r1
21

0
3

12
r1

25
0

3
13

r1
26

0
3

14
r1

30
0

2
15

r1
34

0
1

16
r1

20
0

3
17

r1
25

0
3

18
r1

40
1

3
19

r1
40

0
3

20
r1

50
0

1

(a
)

W
at

er
 S

en
so

r
Ev

en
t S

tr
ea

m

(b.1) SC Vs PC

Ti
m
e

St
ri

ct
 C

on
tig

ui
ty

 (
SC

)
M

at
ch

Pa
rt

iti
on

 C
on

tig
ui

ty
 (

PC
)

M
at

ch

(r
1,

20
0,

2)

(r
2,

27
0,

3)

(r
1,

21
0,

3)

(r
1,

25
0,

2)(r
1,

26
0,

3)

(r
1,

30
0,

4)
(r

1,
34

0,
1)

Volume

08517
0

25
5

34
0

0
1,
75

3,
5

5,
25

7

e0
e1

e3
e4

e5
e6

e7

Pa
rt

iti
on

 C
on

tig
ui

ty
 (

PC
)

M
at

ch
Sk

ip
-T

ill
-N

ex
t (

ST
N

)
M

at
ch

(r
1,

10
0,

3)
(r

1,
10

0,
3)

(r
1,

21
0,

3)

(r
1,

25
0,

3)

(r
1,

26
0,

3)

(r
1,

15
0,

3)

(r
1,

30
0,

2)

(r
1,

34
0,

1)

Ti
m
e

Volume

0

10
0

20
0

30
0

40
0

8
9,
75

11
,5

13
,2
5

15

e8
e9

e1
0

e1
1

e1
2

e1
3

e1
4

e1
5

(b.2) STN Vs PC (b.3) STN Vs STA

Sk
ip

-T
ill

-N
ex

t (
ST

N
)

pa
rt

ia
l M

at
ch

Sk
ip

-T
ill

-A
ny

 (
ST

A)
 M

at
ch

(r
1,

20
0,

3)(r
1,

25
0,

3)
(r

1,
40

0,
3)

(r
1,

50
0,

1)
(r

1,
40

1,
3)

Ti
m
e

Volume

0

12
5

25
0

37
5

50
0

16
17

18
19

20

e1
6

e1
7

e1
8

e1
9

e2
0

F
ig
ur
e
2.
4:

R
es
ul
ts

fo
un

d
ba

se
d
on

th
e
se
le
ct
io
n
st
ra
te
gi
es

26 2.3. Complex event processing

traversed using depth-first-search (DFS) to extract all complex matches. SASE++

breaks the query evaluation into pattern matching and results construction phases

and only stores so-called maximal runs from which other runs can be efficiently

computed. The pattern matching process computes the main runs of an automaton

with certain predicates postponed. Result construction derives all Kleene+ matches

by applying the postponed predicates to remove non-viable runs. Although these

compression techniques reduce the memory cost, the number of runs can still exceed

memory and CPU resources for large windows and frequent prefixed events that

would initiate a match. These techniques risk generating and updating many

candidate runs that are afterwards discarded without generating output. This may

be circumvented by delaying the evaluation of partial matches using so-called lazy

automata [KSS15a]. However, this requires precomputed selectivity measures of

the prefixed events. Furthermore, the cost of cloning runs on-the-fly for the partial

matches without common prefixed events and repeated operations of computing

events’ predicates remain the same.

Figure 2.5: Non-deterministic Finite Automaton example from [ZDI14a]

[AÇT08] chose a simpler way to express the detection of complex events by using

Finite State Machines (FSM), which have the same functionalities as NFA. However,

it is a pull-based event acquisition and processing system. The authors propose that

it is neither necessary nor efficient to process all generated events when only a small

fraction of them make up a complex event. Event acquisition is based on a cost

based plan that exploits temporal constraints among events and statistical event

models, to reduce latency and communication costs. An example is illustrated in

Figure 2.6 where an event detection plan is represented as Finite State Machine.

2. Background 27

Figure 2.6: Finite State Machine example from [AÇT08]

Automata-based techniques limit the adaptation of optimization techniques
provided by DSMSs, for which Tree-based models are usually used, but they also
provide new approaches inspired by the field of the regular expression.

2.3.4.2 Tree-based Models

An alternative to NFA, some works have proposed a tree-based model for both
query parsing and the evaluation of events. That is, the compiled tree parses the
CEP query operators, and the events from the stream are added to the buffers of
the operators. A realisation of such model has been presented in ZStream [MM09]
and grounded in Esper [ESP], where a set of query operators forms the left-deep or
right-deep tree and leaf nodes are assigned with buffers. Events from the stream
are stored into the leaf nodes’ buffers as they arrive, while intermediate nodes
store partial matches that are assembled from the leaf nodes’ or sub-tree buffers as
shown in the following figure 2.7. Then, the nesting of query operators in the tree
determines the executional order and matches are propagated while verifying all the
query predicates at all buffers. ZStream [MM09] defines an event-based system,
where events are processed as they arrive as well as batch-based systems, where the
operators are executed over a set of primitive batched events. The optimisation
techniques employed for this model are: cost-based joins and hash-based indexing
for the equality predicates (joins) in the CEP query. Systems based on this model
do not support Kleene closure computation under skip-till-any-match [MM09] and
they also store partial matches in the sub-tree buffers.

28 2.3. Complex event processing

Figure 2.7: A left-deep tree plan for Stock Trades Query [MM09]

2.3.4.3 Logic-based models

Some works use logic-based models for CEP: the CEP query is translated into logic
rules and is executed on a logic-based system. Notably, ETALIS [Ani+12] translates
rules into Prolog rules and employs a Prolog engine for their evaluation. It does not
explicitly provide any CPU or memory optimisation strategies. Instead, it shows
how rules can be nested to produce complex ones. This type of system is suitable
for the request-response computation, as they check if the defined pattern can be
inferred or not depending on when the given request is posted. Thus, a complex
event is detected only if the request is satisfied by the time it is processed. This
is contrary the event processing systems, which evaluate updated knowledge for
each newly arrived event. In addition, deductive systems choke under high stream
rate which explains the lack of optimisation strategies.

2.3.4.4 Graph-based models

Since their modelization, graph based models have been deployed to merge the
rules of logic-based models into a single graph [AÇT08; Was+12], with the aim
of serving as a rule index data structure to reveal event dependencies. Hence,
giving a general overview of the deployed complex patterns but not being used
as a query plan for the detection process. Recently, a graph-based system was
proposed to detect complex event trends (CET) [Pop+17]. It was designed to
detect the longest possible patterns within a window. CET stores and reuses partial
matches in a graph structure. On the expiration of a window, complete matches
are constructed with a DFS. In contrast to SASE++, it stores the complete set
of partial matches to avoid recomputation of common sub-patterns. Hence, it
results in exponential space complexity. Furthermore, to avoid the cost of DFS for

2. Background 29

every incoming event, the results are constructed at the end of each window. As
a consequence, it is based on pull-based semantics, in contrast to the push-based
semantics of general CEP systems.

2.4 Query Optimization in CEP Systems

As defined by [Hir+18], stream query optimization is the process of modifying a
stream processing query, often by changing its topology and/or operators, with
the aim of achieving better performance (such as higher throughput, lower latency,
or reduced resource usage), while preserving the semantics of the original query.
Performance is a fundamental concern for all users of computer systems. Achieving
acceptable performance at a reasonable cost is an important requirement. For a
computer, performance is measured by the amount of useful work accomplished
in relation to the time and resources used. For the users of a computer system,
performance is measured against expectations and negotiated levels of service,
known as Quality-of-Service (QoS). For more information on QoS in CEP, we
refer to the original paper [Pal+18]. In the context of Complex Event Processing,
performance metrics measure the efficiency of a query plan execution. The efficiency
of a query plan execution is reflected by how fast a CEP system processes incoming
data. The principal metrics used to measure performance are Memory and CPU
consumption, where the latter highly correlates with Throughput. Throughput
is typically measured in units of events per time unit, i.e, how many events per
second are processed. Memory in such systems is highly demanded in processing
events and storing active partial matches for matching patterns. Regardless of the
techniques used to achieve better performance, reducing active partial matches
is considered as a highly relevant performance optimization goal[KS18b; ZDI14b].
Considering this, each newly arrived primitive event needs to be checked against all
active partial matches, the number of which could be exponential to the number
of processed events in the worst case scenario. Thus monitoring all the partial
matches becomes a bottleneck in the case of all CEP-models.

Different approaches [WDR06; Agr+08; AÇT08; MM09; REG11; KSS15b;
Ray+13] were proposed in the literature to cope with the volume and velocity
aspects of the Big Data nature of event stream, with the aim of achieving high
throughput or low CPU costs and memory consumption. Thus one can differentiate
numerous aspects within the concept of optimization although they are also closely
interwoven with one another.

30 2.4. Query Optimization in CEP Systems

2.4.1 Optimizations according to predicates

A simple approach to reduce the runtime cost of queries is predicate-related
optimization, where three strategies stand out as explained in the following:

• Predicate pushdown is a common and important optimization technique for
pushing selection as well as window predicates down a query plan, in order to
apply those selections as early as possible during the evaluation process. Note
that here we assume that the raw events are input at the bottom of the plan.
SASE [WDR06] pushes predicate and window evaluation down to reduce
the cost of event sequence scan and NFA construction. In this work, the
authors define a smart data structure, called Partitioned Active instance Stack
(PAIS), where sequence construction is only performed in stacks of the same
partition. The crux of the decomposition into partitioned stacks, relevant to
the currently examined primitive event, is to evaluate partition predicates
early and thus limit the depth of sequence construction searches. While early
evaluation of sliding window limits the number of potential candidate events
for evaluation in the PAIS.

• With postponing using early filters, the pruning of inconsistent events is
applied as a function of the predicate’s type. It can be applied during edge
evaluation for state transition in the NFA model or postponed to the results
creation phase. In [ZDI14b] the authors focused on the Kleene+ operator as the
most expressive and expensive operator. To ensure high performance on these
expensive queries they use an optimization technique to prune inconsistent
events based on value predicates on-the-fly or by using a postponing method.
Accordingly, they break the query evaluation into two steps: pattern matching
and result construction. In the former step, they evaluate incoming events
without predicates for the Kleene+ operator while the evaluation of normal
state transition is performed during edge evaluation, thus they minimize the
number of active match instances for Kleene+ operator, as shown in figure
2.9. In the later step and based on the matches produced, they enumerate all
possible combinations while applying the early postponed predicates. To this
end, they define 4 categories of predicates and decide whether a predicate can
be evaluated on-the-fly or postponed until the results creation phase. Despite
these postponing techniques, the number of runs can still exceed memory and
CPU resources for large windows and frequent prefixed events that would
initiate a match: these techniques may generate and update many candidate
runs that are later discarded without generating output.

2. Background 31

• Hashing for equality predicates: A hash table is conceptually a contiguous
section of memory with a number of addressable elements in which data
can be quickly added, deleted and retrived. Hash tables increase memory
consumption for the purpose of gaining speed. They are certainly not the most
memory-efficient means of storing data, but they provide very fast look-up
times. ZStream [MM09] replaces equality predicates with hash-based lookups
wherever possible. Hashing can reduce search costs for equality predicates
between different event classes; otherwise, equality multi-class predicates
can be attached to the associated operators as other predicates. As shown
in Figure 2.7, the first event T1 is hashed on name and when the equality
predicates T1.name=T3.name is applied, a lookup in the hash table built on
T1 can be performed directly.

Figure 2.8: Sequence Scan and Construction Optimazation [WDR06]

2.4.2 Optimization of query plan generation

CEP systems take a query and should convert it to a query plan for execution. The
typical steps are as follows. First, the query is rewritten in a more efficient way.
Then, the cost models are used to be able to determine the optimal query plan.
Cost models can be static or dynamic using the characteristics of events such as
their arrival frequency or their predicate selectivity. The static cost model is based

32 2.4. Query Optimization in CEP Systems

F
igure

2.9:
Postponing

w
ith

early
filters

O
ptim

azation
[ZD

I14b]

2. Background 33

on fixed assumptions of events characteristics. Dynamic cost models are updated
and used on-the-fly based on such characteristics to swap to a new optimal plan.
This dynamic system must also take into account the cost of regenerating a new
plan. Automata-based CEP [Bre+07; SMP09], described in section 2.3.4.1, use
the order-based-plan to set the order in which arriving events will be processed.
The Order-based-plan consists of a permutation of primitive event types defined
by a pattern. While Tree-based CEP [MM09] use the tree-based plan to find
the optimal physical trees (e.g., left-deep, right-deep or bushy), that can be used
to evaluate the defined pattern.

[AÇT08] were the first to explore cost-based planning for complex event detection
with the aim of minimizing network traffic across distributed event sources, while
also helping to reduce the processing cost. The defined cost model was based on
temporal constraints among constituent events and events frequency statistics. In
NextCEP [SMP09], authors limit the query rewriting for three operators OR, SEQ
and NOT. For the OR operator, they use a greedy Huffman algorithm [Huf52]
to create a tree and the optimal order of the OR operator is generated with a
depth first traversal. For the NEXT and NOT operator they use a dynamic
programming solution where the lowest cost pattern can be found by enumerating
all the equivalent patterns and computing each cost. The NextCEP cost model
was based on the arrival frequency of the primitive events. In ZStream[MM09],
authors define a series of rules that generate an exponential number of equivalent
expressions, called algebraic rules, in order to avoid exhaustive searches of all
these expressions as done by NextCEP[SMP09]. Once a query expression has been
simplified using the algebraic rewrites, i.e. (SEQ(A,AND(!B,!C),D) is translated
simply to SEQ(A,!OR(B,C),D)), and hashing has been applied on the equality
attributes, the authors use a cost model for optimal tree-based plan generations,
where they apply a dynamic programming solution to enumerate all possible tree
topology costs. In contrast to NextCEP the cost model takes into account the arrival
rates of primitive events and the selectivity of their predicates. In addition, they
define a constant threshold t for the monitored statistics to trigger plan regeneration.
In [KSS15a; KSK16], authors propose a lazy evaluation approach where events of
high frequency are buffered until the rare event type instance is received. In case
the selectivity of events is already known and remains invariant, they use a simple
NFA structure to determine potential pattern matches. Otherwise, if the selectivity
of events may change over time they use a Tree-NFA, an NFA backed by a tree
structure, which reorganizes itself according to the present observed events rates,
similarly to Eddies[AH00]. The most important strength of these approaches is that
the optimal evaluation plan is guaranteed for any given set of events. However, it
results in an overload of plan generation where the process of creating and deploying

34 2.4. Query Optimization in CEP Systems

a new evaluation plan is very expensive. As discussed before, this was proposed in
ZStream[MM09] to avoid this overload, however, some re-optimization opportunities
may have been missed. Recently, [KS18a] presented a novel method for detecting
re-optimization opportunities by verifying a set of distances on the monitored data
characteristics. They formally prove that they avoid launching re-optimization plan
generation that does not improve the currently employed plan. To do this, they
define a list of in-variant distances. The idea is to use margins instead of a simple
thresholds to avoid the ping-pong effect i.e. keep changing query plan due to noise.
Thus in-variant distances are defined between events having the closest arrival rates,
in case even a slight oscillation in the events rates causes the event types to swap
positions periodically when ordered according to this statistic. They use some data
analysis methods to discover the minimal distance that will be used as a violation
constraint. However, finding the right distance remains as always a difficult task
and depends on the data and keeping in mind the overload of this method if it were
applied on-the-fly. These contributions aim to reduce the number of active partial
matches by rewriting/reordering the queries based on statistical characteristics of
the primitive events. However, the number of partial matches remains one of its
major problems, especially when dealing with expensive queries or large windows,
even if some existing work focused on their smart indexing.

2.4.3 Optimization of memory

In the context of CEP, memory management is critical for performance measurement
where workers aim to optimize throughput and not to shed the storage load directly.
With the arrival of primitive events, the number of storage data structures grow
proportionally, such as events’ buffers and partial active matches’ data structures. In
[Agr+08], the evaluation plan is set to the initial order of the sequence pattern, but
they design efficient data structures to enable smart runtime memory management.
They define a versioned system of shared buffer to compactly encode all active
partial and complete matches instead of having a single buffer for each one. To
avoid erroneous results they use version numbers that share the same prefix with
all the events of the same partial match, and a pointer to the previous event, as
shown in the figure 2.10. In addition, they incrementally prune all the used data
structures based the window size and reuse the expired instance whenever possible.
This strategy can reduce memory requirements from exponential to polynomial,
at the cost of the compression/decompression operations.

2. Background 35

Figure 2.10: shared versioned buffer Optimization [Agr+08]

To summarise, the table 2.1 concisely presents the optimization techniques
used, which show very promising results while still remain, largely, unsolved. Thus,
optimization issues are still far from being fully resolved.

2.5 Predictive Analytics & Complex Event Pro-
cessing

Predictive Analytics encompasses a variety of techniques from data mining, predictive
modelling and machine learning, which analyze current and historic facts to make
predictions about future or otherwise unknown events1[NC07]. Over the past several
years, this field has seen an explosion of interest from both academia and industry
and has been implemented in different contexts. Complex event processing and
Predictive Analytics both target detection of undesired behaviour and patterns of
interest, where results of one field can be readily applied to the other making it
more efficient and more powerful. Hence, with the help of PA, CEP could be made
more automatic and intelligent leading to improved accuracy, speed, consistency,
and easier maintenance. PA can be used to learn new rules from data, to make
optimal decisions for query optimization and to predict complex event detection
based on sequence prediction.

With regard to the focus on optimization trends in complex events processing in
section 2.4, we will first discuss how PA may influence the query plan adjustment
to avoid low throughput. Then, how automatic rules can be learned and created.
Finally, we discuss existing techniques to enable the prediction of complex events.

1https://www.predictiveanalyticsworld.com/predictive-analytics.

36 2.5. Predictive Analytics & Complex Event Processing

A
pproach

O
ptim

ization
Strategies

Predicate
R
elated

O
ptim

ization
Q
uery

rew
riting

M
em

ory
M
anagem

ent
Push

D
ow

n
Postponing

H
ashing

Detection Models

A
utom

ata
based

A
kdere

[A
Ç
T
08]

√
φ

φ
√

φ
C
ayaga

[Bre+
07]

φ
φ

φ
√

√

SA
SE

[W
D
R
06]

√
φ

√
φ

φ
SA

SE+
[A

gr+
08]

√
φ

√
φ

√

SA
SE+

+
[ZD

I14b]
√

√
√

φ
√

FLIN
K

[Fli]
√

φ
√

φ
√

LazyN
FA

[K
SS15a;K

S18a]
√

φ
φ

√
φ

N
extC

EP
[SM

P09]
φ

φ
φ

√
φ

Tree
Based

Zstream
[M

M
09]

√
φ

√
√

√

G
raph

Based
C
ET

[Pop+
17]

√
√

φ
φ

√

logic
based

Etalis
[A

ni+
12]

φ
φ

φ
φ

φ

Table 2.1: CEP Optimisation Strategies & Detection Models

2. Background 37

2.5.1 Predictive Analytics for optimal decision making

Predictive Analytics technologies are also implemented to improve performance
of complex event processing systems. As discussed previously, in [MM09; KSK16;
KS18a], statistics were used for query plan adaptation to avoid low throughput. A
slightly different approach is followed in [LG16], where workers assume that the
history could be a mirror to the future. They propose ACEP as an approximate
complex event processing system with the aim of maximizing the number of full
matches found. Their idea is to represent a history of past matches concisely into a
data structure. Then at run time they discard some matches that are unlikely to
result in a final full match. In the same context, other works deal with uncertainty
in the occurrence of events and prune intermediate results (partial matches) during
pattern matching process [Art+12]. Finally, PA is also used in a distributed CEP
context to reduce communication costs incurred while exchanging event information
between distributed systems [AÇT08].

2.5.2 Predictive Analytics for automatic rules generation

Faced with the complexity of defining complex queries and with the aim of reducing
human involvement, different works [TGW09; SSS10; MP12; MCT14; MTZ17] have
focused on the automatic generation of CEP rules. Thus they extract rules that
are driven by data and learned from history. [MP12] introduces a domain expert
dependent method based on hidden Markov models (HMM). The expert reports the
occurrence of a relevant complex event at a specific point in time, the system then
automatically deducts the rule allowing the recognition of such events in the future.
Similarly, [MCT14] proposed a framework that analyzes historical traces to infer
the hidden causality between received events and detected situations, and uses them
to automatically generate CEP rules. On the other hand, they solve the learning
problem by modelling rules and time series as a set of constraints and calculating
their intersections. Recently, [MTZ17] developed a generic system that extracts
predictive temporal patterns with time and sequence constraints and then transforms
these patterns on-the-fly into predictive CEP rules. To achieve this, they use a
Shapelet-based classification for rules discovery over multivariate (multi-dimensional)
time series [Lii91]. Most of these contributions were in complete agreement and
highlight the importance of handling multidimensional data mining algorithms.

38 2.5. Predictive Analytics & Complex Event Processing

2.5.3 Predictive Analytics for complex events prediction

Complex Event prediction aims to provide the possible future events of partially
matched sequences which can be turned into a full match. This would enable
users to mitigate or eliminate undesired future events or states and identify future
opportunities. The problem of predictive CEP has remarkable similarities with
the sequence pattern mining and prediction. In this context, a large body of
sequence prediction models have been proposed including: Prediction By Partial
Matching (PPM) [CW84], All-K-Order-Markov [PP99] and the Probabilistic Suffix
Tree [BYY04]. These models are based on the Markov property and suffer from
the catastrophic forgetting of older sequences [Kir+17]. Only k recent items of
training sequences are used for performing prediction: increasing k often induces a
very high state complexity and consequently such techniques become impractical
for many real-life applications [Gue+15].

2.5.3.1 Sequence Pattern Mining and Prediction

A large number of sequence prediction methods [BYY04; CW84; Gue+15; PP99]
come from the field of temporal/time-series pattern mining, where patterns are
defined using association rules or as frequent episodes. These methods employ
variants of decision trees and probabilistic data structures. Most of them are based
on the Markov property and suffer from the issue of forgetting older models and
have high computation costs. Recently, two methods CPT and CPT+ [Gue+15]
have been proposed, which keep all historic data in a compressed format and
offer increased accuracy. It is based on the prefix tree (aka trie) data structure
and supports only one dimensional sequences. Furthermore, these models are not
optimised for streaming applications, where the training dataset is unknown; a
large number of events arrive at a high rate; events occur at random intervals
rather than at the regular tick-tock intervals of traditional time series and, thus,
a real-time response is required.

2.5.3.2 Machine Learning-based Predictions

Further directions for tackling this problem are incremental (online) machine
learning algorithms which learn incrementally over event streams, such as Support
Vector Machines, recurrent Neural Networks and Bayesian Networks [FB12; AÇU10;
MRT12]. For these algorithms, classifiers are updated each time a new training
instance is found to provide a predictive response. The main disadvantages of
these algorithms in the context of CEP are as follows: (i) they are use-case specific
and require considerable effort (and training datasets) to model each dataset,
e.g. a model can either be based on recent history or is updatable based on

2. Background 39

the older values; (ii) they do not provide any performance guarantees in terms
of error bounds, which causes additional difficulty when runnig actions such as
performance tracking and regular maintenance: since the learned parameters keep
on changing dynamically [MRT12].

2.6 Processing Top-k queries
In this section, we take an interest in particular types of continuous queries which
monitor top-k data objects over sliding windows. Top-k queries cover many real-
time applications ranging from financial analysis to the system monitoring. We
distinguish CEP queries from top-k queries by the fact that the former aims to
detect data while the latter aims to filter data from an incoming stream. In the
first case, the final user will be provided the data that is extracted; in the latter,
the final user will be provided what is left after the data is filtered.

2.6.1 Definitions

The notion of continuous top-k queries was introduced by [MBP06] where a query
is defined as a linear scoring function determining the relevance of an item and
the result of such query is the K most highly ranked items. Top-k query replaces
the first ranking model proposed by [Lin+05] which defines a query as a set of
attributes to optimize (e.g minimize or maximize). They are known as Skyline
queries, where the skyline ranking was replaced by a linear function. The result of
such query is a set of tuples that are not dominated by any others, thus forming a
skyline. Where an item i1 dominates another item i2, if and only if i1 is preferable
to i2 in all the attributes of the query.

Definition 6: Top-k Query

Top-k Query provides only matches with the highest score, based on a
user-specified scoring function.

Definition 7: Scoring Function

The Scoring Function F (p1, p2, ..., pn) generates a score for each match of the
query by aggregating scoring predicates, where pi is a scoring predicate.

2.6.2 Top-K Algorithms

The top-k query problem has been investigated in static databases and used in various
applications where end-users are interested only in the most significant responses in
the huge response space. The well-known top-k algorithms, ONION [Cha+00] and

40 2.6. Processing Top-k queries

PREFER[HKP01], cannot be directly used in static databases nor can they be easily
adapted to fit streaming environments. Indeed, given the considerable volume of
data, the core of the problem which they have solved is as follows. How can the data
be pre-analyzed to prepare the appropriate meta-information, in order to effectively
respond to the top-k queries? Clearly, in a streaming environment, computing
complete changes for each update and re-initializing the process of identifying top-k
elements for each newly observed change is too expensive. Therefore, the main
challenge is to provide an incremental process that can effectively update top-k
results, even at extremely high throughput and in very large query windows. The
workers’ advanced efforts in continuous top-k query on data streams fall into two
groups, namely multi-pass approaches and single-pass approaches. The former is
a re-computation approach while the latter is an incremental approach.

2.6.2.1 Multi-pass-based approaches:

In Multi-pass-based approaches [Yi+03], the idea is to maintain a larger number
k

′ as a candidate set C instead of maintaining k objects in the current window,
where k ≤ k

′ ≤ kmax and kmax is the maximum capacity of C. Whenever a query
result expires from the window then recomputation of the top-k results is only
performed when the top-k′ window has less than k objects (|C| < k). This is
because recomputing the top-k results is the most expensive operation for top-k
maintenance. [MBP06] proposes the TMA algorithm (Top-k Monitoring Algorithm)
to reduce the re-computation cost by maintaining a “grid structure" to access only
a few cells by defining an influence region. The influence region of a query specifies
the data space to which an object must belong in order to modify the results of
the query. Therefore, any update in the influence region will modify the result of
the query. The re-computation process is involved only when some of the existing
top-k objects expire and new arrivals have a lower score than the expired records
(so that the influence region expands). The main drawback of this algorithm is
that it is data distribution dependent. At the same time, [MBP06] proposes a
SMA (Skyband Monitoring Algorithm to address the problem of re-computation
bottlenecks in the TMA algorithm. The authors use the K-Skyband as the minimal
set of objects required to be maintained in order to answer top-k queries where
K-Skyband consists of every object that is dominated by at most (k-1) other objects.
SMA is required to be faster than TMA at the expense of memory consumption
used to index K-Skyband objects, while both need to conduct expensive top-k
re-computations from scratch in certain cases.

2. Background 41

2.6.2.2 One-pass-based approaches:

In one-pass-based approaches, [Yan+11] proposed their algorithm named MinTopK.
This algorithm eliminates the re-computation bottleneck and thus realizes completely
incremental computations and minimal memory usage. Based on the assumption
that the life span of an incoming object is known upon its arrival, it is possible to
predict if its score allows it to be in the future top-k window sets. Thus it enables
the maintenance of partitioned sub-window candidate sets and to immediately
eliminate all objects that will never be in the top-k sets. MinTopK is highly
sensitive to data distribution, especially when the sliding window is too small,
thus the number of insertions/deletions required to maintain the candidates is
dramatically increasing. SAP [Zhu17] enhanced the MinTopk algorithm with a
dynamic self-adaptive partition of the window based on different query parameters
and data distributions. To the best of our knowledge, MinTopK and SAP are the
best solutions in the case of top-k algorithms that output exact results, with respect
to approximate ones such as [Zhu+17]. [Zhu+17] proposes a (ε, δ)-approximate
continuous top-k system that filters out arrived objects which have a probability
less than 1 - δ of being a query result, and generates summary information on
candidates with roughly the same scores.

All algorithms previously mentioned cover the needs for major top-k query
processing systems, but one size does not fit all and more complex top-k systems
have requirements that cannot be met by this paradigm. These conditions include,
for example, if the ranking score is related to the arrival time of the object, second,
if the arrival of a new object may change the scores of old ones in top-k or the
candidate set, and third, if the data expiration is not linear with the time, systems
based on sliding-windows are not adequate as they can only treat linear data
expiration. Therefore these real-world data stream processing applications require
ad hoc developments with standard programming languages.

2.7 Conclusion
In this chapter, we provided the concepts and the background to the topics
addressed in this thesis. We also provided specific background to understand
the challenges of processing expensive queries and designing predictive systems. We
discussed the recent advances and related works ranging from query optimization
to predictive analyses.

Obtaining high performance at reasonable cost is a key concern for stream
processing systems. Thus, different works address the big data aspects such as
volume and velocity of event streams. Some works focus on throughput optimization
and some works optimise memory consumption. They aim to reduce the number

42 2.7. Conclusion

of active partial matches, which consume memory, by rewriting/reordering the
queries or based on statistical characteristics of the primitive events. However, the
memory consumption due to a large amount of partial matches remains one of the
major problems. This is especially true when dealing with expensive queries or
large windows. Even if some existing works use smart indexing techniques with
promising results, still there are performance issues which are largely unsolved.
Thus, optimization issues remain fairly unexplored. Thus, in this thesis one of
the focus is on optimizing CEP performance by eliminating partial matches and
using intelligent indexing technique.

We also saw that one of the trends is to combine Predictive Analysis (PA)
with Complex Event Processing (CEP) systems. Hence, with the help of PA, CEP
could be made more automatic and intelligent leading to improved accuracy, speed,
consistency, and easier maintenance. PA can be used to make optimal decisions
for query optimization, to learn new rules from data, and to predict complex event
detection based on sequence prediction. In this thesis we focus on predicting
future complex events. For this problem, some of the existing solutions are not
suitable for streaming applications. Other works are use-case specific and require
considerable effort to model each dataset.

Finally, we consider also a particular type of continuous queries which monitor
top-k data objects over sliding windows to identify k highest-ranked data items.
Top-k queries face several challenges because they have to maintaining a candidate
list of data items that can be the part of top-k list in stream settings. Due to stream
settings, the regular arrival of new data may change the state of existing top-k
candidate list. Thus, it requires efficient incremental algorithms and data structures.

Above research gaps now set the context for the remaining chapters that will
detail our contributions.

Part II

Enhancing Complex Event
Processing

43

3
Enabling Efficient Recomputation Based
Complex Event Processing for Expensive

Queries

Contents

3.1 Introduction . 46
3.2 Motivating examples . 46
3.3 Related Works . 48
3.4 Preliminaries and definitions 51

3.4.1 Definitions . 51
3.4.2 Query Tree . 53

3.5 Baseline Algorithm . 55
3.6 RCEP: Recomputational based CEP 57

3.6.1 The Event Tree . 57
3.6.2 Creating the Complex Matches 59

3.7 RCEP: General Recomputation Model 65
3.7.1 Multidimensional Events 65
3.7.2 Multidimensional Event Tree 66
3.7.3 Joins between Z-addresses 68
3.7.4 Handling Sliding Windows 72
3.7.5 Optimising Z-address Comparison 74

3.8 Experimental Evaluation 74
3.8.1 Setup and Methodology 74
3.8.2 Performance of Indexing and Join Algorithms 76
3.8.3 Performance of Sliding Windows 78
3.8.4 CEP Systems’ Comparison 79

3.9 Conclusion . 83

45

46 3.1. Introduction

3.1 Introduction
As discussed earlier, traditional strategies of Complex Event Processing (CEP)
require extensive utilization of memory and CPU to extract complex temporal
matches from events stream defined via a CEP query pattern. This is mainly
due to the way in which complex temporal correspondences are extracted from
an event flow. In fact, matches incrementally emerge over time while partial
matches accumulate in the memory and then they are processed sequentially for
incoming events. The number of partial matches for expressive CEP queries can
be polynomial or exponential to the number of events within a window (proof: 3).
Reducing the number of partial matches by compressing them is not a satisfactory
solution because it is highly use case dependent and only aggravates the repeated
calculation of matches when they are compressed.

In this chapter, we demonstrate how the recomputation of matches, without
relying on the partial matches, can be made into a first-order CEP strategy for
complex operators such as skip-till-any-match and Kleene+. In particular, we show
how to efficiently store and query multi-attributed events within a window and how
to join them in batches to efficiently recompute matches for an incoming event.
Our hybrid-join algorithm reuses previously computed joins to further economise
on recomputation of matches. The proposed techniques result in the reduction of
memory and CPU requirements while increasing the throughput by many orders of
magnitude compared to existing solutions. Our experimental observations support
our arguments and the vast advantages of our techniques over previous methods
have been confirmed through experimentation.

3.2 Motivating examples
We now provide three real-world examples that use complex operators for CEP.

• (1) Stock Market Analytics: Stock market analytics platforms evaluate
expressive CEP queries against an events stream to identify and then exploit
opportunities in real time. A common query in this context is the V-shaped
or inverted V-shaped pattern [ZDI14a; Agr+08; Pop+17; MM09]. For such
patterns, we look for stock events that consist of downticks (denoted as a)
followed by one or more monotonically increasing upticks (denoted as b),
which is then followed by a downtick (denoted as c), thus an inverted V-shaped
pattern. Query 1 expresses such pattern, where a Kleene+ operator is used

3. Enabling Efficient Recomputation Based Complex Event Processing for
Expensive Queries 47

to select one or more monotonically increasing events (Stock + b[]) for each
distinct [comapnyID] within a window of 30 mins which slides every 2 minutes.

Query 1 . PATTERN SEQ (Stock a, Stock+ b[], Stock c)
WHERE [companyID] AND a.price < b.price AND

b.price < NEXT(b.price) AND c.price < FIRST(b.price)
WITHIN 30 mins SLIDE 2 mins

• (2) Credit-Card Fraud Analytics. The goal of credit card fraud management
is to detect fraud within a very short time, in order to prevent financial
loss [Art+17b]. A common query in this context is to detect the “Big after
Small” fraudulent transaction [AAP17; Art+17b]. That is, the attacker first
withdraws a large amount of money after one or a series of small amounts.
Query 2 shows such pattern, where it is matched for each distinct [cardID]
over the defined window and the granularity it slides with.

Query 2 . PATTERN SEQ (Card a, Card+ b[])
WHERE [cardID] AND a.amount ≥ b.amount * 5 AND

b.amount > NEXT(b.amount) WITHIN 30 mins SLIDE 5 mins

• (3) Health-Care Analytics. Cardiac arrhythmia is a group of serious heart
diseases in which the heartbeat is irregular, too fast or too slow. It can lead
to life-threatening complications such as stroke or heart failure.

Query 3 . PATTERN SEQ (Activity a, Activity+ b[])
WHERE [personID] AND a.rate*2 < b.rate AND b.rate < NEXT(b.rate) AND

b.type = ‘passive’ WITHIN 10 mins SLIDE 1 mins

Query 3 monitors physical activity per patient and detects life-threatening
conditions when the heart rate gradually increases until it doubles in compar-
ison to the first measurement, despite passive physical activity. The matched
patterns provide lifesaving monitoring in real-time during the critical stages
of cardiac arrhythmia [Pop+17].

48 3.3. Related Works

Complex Operators From the CEP Queries

In contrast to general regular expression matching, CEP employs complex operators
such as event selection strategies to select events within a matched pattern that
are not contiguous to each other. These event selection strategies are classified as
partition contiguity (PC), skip-till-next match (STN) and skip-till-any match (STA),
as explained in chapter 2. PC partitions the matches according to certain defined
attributes and requires an event to directly follow another given type of event in a
match. Both STN match and STA strategies determine how events can be skipped
between the produced matches. STN skips events until a relevant event arrives,
while STA skips all the events to find all possible combinations, and is the most
flexible of them all. Fig. 3.1 (a,b,c,d) shows the execution of Query 1 and Query 3
over events streams. From Fig. 3.1 (a,b), the execution of Query 1 with the STN
strategy would only produce the first two matches, while STA strategy provides all
combinations. Similarly from Fig. 3.1 (c,d), only the first match (in window W1)
is produced for the STN and remaining are produced for the STA strategy. The
use of STA strategy is essential in many use cases since it provides the flexibility
to skip local fluctuations. For instance, match number 9 (and its enumerations 3 -
8) in Fig. 3.1 (b) can only be produced with the STA strategy.

3.3 Related Works
Processing Model: Plenty of algorithms and CEP systems have been proposed
as discussed in the 2nd chapter. A common strategy used by these systems is to
incrementally produce query matches while first producing partial matches with
the arrival of events. Hence, when a new event arrives, the system (i) creates a
partial match and (ii) checks with all existing partial matches if a full match can be
constructed. The strategy may seem viable at first glance; to incrementally process
matches would seem to avoid the recomputation cost. However, the number of
partial matches to be stored and processed can be exponential to the number of
events within a window for the STA and Kleene+ operators. The system cannot
discard any partial match unless the window expires since each partial match can
lead to a possible match. For these reasons, existing CEP systems do not perform
well when stressed over the real-world work loads and expressive queries as described
above. One common remedy proposed to optimise the incremental approach is to
factorise the commonalities between partial matches that originate from the same
set of events [ZDI14a; KSS15a; Agr+08]. For this, the query evaluation is broken
into two phases. The first phase tracks commonalities between partial matches and
compresses them using an additional data structure. The second phase constructs
complete matches while decompressing the set of common partial matches. This

3. Enabling Efficient Recomputation Based Complex Event Processing for
Expensive Queries 49

(c) (d)

a1 b1 b2 b3

W3

W2

W1

Time

a1,b1 < >1

a1,b1,b2 < >4
3
2

W1

W2

W3

a1,b1 < >
a1,b2 < >

a1,b1,b2 < >

11
10
9
8
7
6
5 a1,b1 < >

a1,b2 < >

a1,b3< >
a1,b1,b3 < >
a1,b2,b3 < >

a1,b1,b2, b3 < >

(a) (b)

a1,b1,c1 < >
a2,b2,b3,c2 < >
a1,b1,c2 < >
a1,b2,c2 < >
a1,b3,c2 < >

a1,b1,b2,c2 < >
< >

a1, b2,b3,c2 < >
a1, b1, b2 , b3,c2 < >

a1, b1,b3,c2

9
8
7
6
5
4
3
2
1

0

10

20

30

40

60

70

80

90

100

50

S
to

c
k

P
ric

e

252015 30 35 40 45 50 55 60 7065

Time

a1

b2b1

b3

c2

a2 (c1)

W1

W1

Figure 3.1: (a) Events stream S1 for the Stock Market, (b) matches for Query 1 over
S2, (c) Events stream S2 of a patient’s heart beat, (d) matches for Query 3 over S2 and
three windows.

50 3.3. Related Works

strategy can reduce the memory cost. Nonetheless, it results in the added cost of
the compression/decompression operations and redundant computation of partial
matches that are shared by multiple complete matches.

Scalability: Existing CEP solutions fail to scale over real-world datasets due
to their space and time overheads. For example, SASE+ [ZDI14a] and Apache
Flink [Fli] require an index space that is two to three orders of magnitude larger
than the number of events in a window. This renders these solutions only applicable
on small size datasets and simple CEP queries.

Proposed Approach

In this chapter, we advocate a new type of model for CEP wherein we identify
two key points: (i) storing partial matches is expensive both in terms of CPU and
memory cost, hence only events within a certain window should be stored; (ii) the
matches should be recomputed from those set of events only when we are sure of
their existence.To materialise these points, we require efficient indexing and querying
techniques. That is, we need to avoid the recomputation process on all stored
events, and the existence of new matches for an incoming event should be identified
before starting the complete recomputation process. Hence, our journey to provide
efficient techniques led us to explore various diverse fields such as theta-joins (which
allows comparison relationship such as ≤ and ≥), multidiemsnional indexing and
range query processing. We employ space filling curve [Mor66] and a B+tree index
for events within a window, and provide multiple optimisation techniques so sush
an index is a viable option for the streaming settings. We also provide a hybrid-join
algorithm for theta-joins with inequality predicates. These optimisations enabled
us to efficiently prune events before starting the recomputation process, but also to
execute such process only when it is required. Our provided techniques are generic
in nature and can be employed in general streaming-based systems.

Contributions

Our key contributions are as follows:

• (1) We provide a novel recomputation model for processing expressive CEP
queries. Our algorithms reduce the time and space costs for complex queries
with Kleene+ and STA operators.

• (2) To efficiently employ a recomputation model, we propose a hybrid-join
algorithm to produce final matches from events in a batch mode. Our algorithm
leverages the dominance property between set of events and joins the clustered
events in batches to reduce the cost of pair-wise joins.

3. Enabling Efficient Recomputation Based Complex Event Processing for
Expensive Queries 51

• (3) We provide multiple optimisation techniques for storing events using space-
filling curves. These techniques enable us to use efficient multidimensional
indexing in streaming environments.

• (4) We experimentally demonstrate the performance of our approach against
state-of-the-art solutions in terms of memory and CPU costs under heavy
workloads (Section 3.8).

3.4 Preliminaries and definitions
In this section, we present CEP query representation and query evaluation techniques
and the notations are defined in table 3.1.

3.4.1 Definitions
CEP Query

Definition 8: CEP Query

A CEP Query Q is defined as a quadruple Q = (P,Θ, ω, s), where P =
〈p1, p2, . . . , pk〉 (k ≥ 1) is a sequence of pairwise disjoint variables of the form
p and p+, Θ={θ1, θ2, . . . θl} is a set of predicates over the variables in P . ω is
the time window and s specifies the slide parameter, which determines the
granularity at which the window content changes.

The p ∈ P variable binds the sequence of a single event 〈ei〉, while the qualified
variable p+ ∈ P binds a sequence of one or more events 〈e1, e2, . . . , en〉, with n ≥ 1,
for a query match. Θ is a set of predicates over variables which must be satisfied by
matching events. We further distinguish between constant and variable predicates,
i.e. Θ = Θc ∪ Θv. θ ∈ Θc has the form (p.Ax φ c): p.Ax refers to an attribute
of matching events and c ∈ N is a constant, φ ∈ {>,<,≤,≥,=}. The variable
predicates θ ∈ Θv have the following forms: (i) (pi.Ax φ pj.Ax), i.e. a relationship
between the attributes of two different matching events; (ii) (pi.Ax φ NEXT (pi.Ax)),
i.e. a relationship between the current and next event using the NEXT function;
and (iii) (pi.Ax φ FIRST (pi.Ax)), i.e, a relationship between the current and first
selected event in the specific ~E using the FIRST function.

Example 1: From Stock market query, we have three variables p1= a, p2 = b+

and p3 =c, where p2 has the Kleene+ operator applied to it. The query contains
the following variable predicates: Θ = Θv

a ∪ Θv
b ∪ Θv

c , such that Θv
a = {(a.id =

b.id), (a.price < b.price)}, Θv
b = {(b.id = c.id), (b.price < NEXT(b.price)), (a.price <

b.price), (c.price < FIRST(b.price))} and Θv
c ={(b.id = c.id), (c.price < FIRST(b.price))}.

Temporal relations, which are the sequences between the variables p ∈ P are

52 3.4. Preliminaries and definitions

described through the SEQ clause. The size of the window is 30 minutes and
it slides every 2 minutes.

CEP Query Matching

To define the matching of a CEP queryQ, we use a substitution γ ={p1/ ~E1, . . . , pk/ ~Ek}
to bind the events sequences (~E) with the variables. Each pair p/ ~E represents
a binding of p variable to a sequence ~E =〈e1, e2, . . . , en〉 of events in S. These
bindings are then evaluated over the set of predicates Θ in Q.

Definition 9: CEP Query Match

Given a CEP query Q = (P,Θ, ω, s) and an events stream S. A substitution
γ ={p1/ ~E1, . . . , pk/ ~Ek} is a match of Q in S iff the following conditions hold:

1. ∀θ ∈ Θ, Eval(θγ) = true,

2. ∀pi/ ~Ei, pj/ ~Ej(j > i) ∈ γ, ∀e ∈ ~Ei ∃e′ ∈ ~Ej such that e.t < e′.t.

3. ∀pi/ ~Ei, pj/ ~Ej(j > i) ∈ γ, ∧ en ∈ ~Ei, e
′
1 ∈ ~Ej, |en.t− e′1.t| ≤ ω.

The Semantics of the Eval Function

Herein, we provide details of the Eval function used in the CEP Query Match
definition 9. That is, how Next, First and Θ are evaluated on selected events.

The substitution γ ={p1/ ~E1, . . . , pk/ ~Ek} binds the events sequences (~E) with
the variables. Each pair p/ ~E represents a binding of a variable p to a sequence ~Ei
of events in S. These bindings are then evaluated over the set of predicates Θ in Q.
For a predicate θ ∈ Θ, θγ denotes the instantiation of θ by γ and is obtained from
θ by simultaneously replacing all variables p ∈ P with the corresponding events
sequences ~E. The instantiation of a set of predicates Θ is Θγ = {θ1γ, . . . θlγ}. The
evaluation of the instantiation Eval(Θγ) is defined as follows:

• Eval(Θγ) ≡ Eval({θ1γ, . . . θlγ}) ≡ Eval(θ1γ) ∧ · · · ∧ Eval(θlγ)

• Eval(~E.Ax φ c) ≡ ∀e ∈ ~E (e.Ax φ c)

• Eval(~Ei.Ax φ ~Ej.Ax) ≡ ∀e ∈ ~Ei, e
′ ∈ ~Ej (e.Ax φ e′.Ax)

• Eval(~E.Ax φ Next(~E.Ax)) ≡ ∀ei, ei+1 ∈ ~E (ei.Ax φ ei+1.Ax)

• Eval(~E.Ax φ First(~E.Ax)) ≡ ∀ei(i > 1), e1 ∈ ~E (ei.Ax φ e1.Ax)

3. Enabling Efficient Recomputation Based Complex Event Processing for
Expensive Queries 53

3.4.2 Query Tree

Given a CEP query, we need to compile it from a high-level language into some form
of automaton [Bre+07; WDR06; Agr+08; Fli] or a tree-like [MM09; ESP] structure
to package the semantics and executional framework. Since we are working with
the recomputation-based model, a traditional tree structure customised for the
streaming and recomputation settings would suit our needs. Given Q, we construct
a tree where leaf nodes are the substitution pairs, i.e. (pi/ ~Ei) to store the primitive
events and the internal nodes represent the joins on the defined predicates Θ and
temporal ordering. We call it a query tree Tq. Our model differs from other tree-
structures [MM09; ESP], since we do not store any partial matches. An example of
such a tree for Query 1 is shown in Fig 3.2, where we have three leaf nodes for the
variable bindings a/ ~E1, b/ ~E2 and c/ ~E3. The internal nodes in Fig. 3.2 evaluate the
defined Θ in terms of joins (denoted as 1Θ) for all the variables p ∈ P . Furthermore,
given that for CEP queries the matched events are required to follow the sequential
order, the joins on the timestamps (denoted as 1t) are also provided in the Tq.

!
"

Θ
a
Θ
b

#
a / E

1

#
b / E

2

#
c / E

3

#
a / E

1

#
b / E

2

#
c / E

3

(a) (b)

!
"

Θ
b
Θ
c

!
"

Θ
a
Θ
b !

"

Θ
b
Θ
c

Figure 3.2: (a) Left-deep and (b) Right-deep Query tree for Query 1 in Example 1

54 3.4. Preliminaries and definitions

Notation Definition
S An event stream
ei An event
Q Query
A A set of attributes
P A sequence of pairwise disjoint variables: 〈p1, p2, . . . , pk〉

of the form p and p+

pi A variable used in the query such as a, b+ and c in the
examples. See the definition of P above

p+
i A variable with Kleene+

Θ A set of predicates: {θ1, θ2, . . . θl} over the variables in
P

Θc Set of constant predicates
Θv Set of variable predicates
θ A predicate. See the definition of Θ above
φ An operator ∈ {>,<,≤,≥,=}
~E An event sequence

pi/ ~Ei A substitution pair representing a leaf node to store the
primitive events

γ A set of substitution pairs = {p1/ ~E1, . . . , pk/ ~Ek} to bind
the events sequences (~E) with the variables

Tq Query Tree
Te Event Tree
1Θ The leaf nodes evaluate the defined Θ in terms of joins
1t Join on the timestamp
B Bitvector
Bu,v Indicates whether a u element in ~Ei is joined with the

vth of ~Ej using the predicates
` Operator denoting dominance (Dominance is defined

later in the chapter)
0 Operator denoting not dominated
z Z-address

gtj(z) A function which takes a Z-address and returns a
bitstring by extracting tMSB bits for every j bits skipped

∨ XOR operator
ω The time window
w Size of the window
s The slide parameter of the time window

Table 3.1: Definition of notations

3. Enabling Efficient Recomputation Based Complex Event Processing for
Expensive Queries 55

3.5 Baseline Algorithm

The aim of baseline algorithm is to evaluate the query tree over events within a
defined window without storing partial matches and recomputing the matches for
each incoming event. Hence, it first stores events in the relevant leaf nodes (events
sequences) of the query tree. Second, it triggers the query evaluation to produce
complex matches. Given a query tree Tq, each incoming event e ∈ S can result in
the following main steps.

Algorithm 1: Baseline Algorithm
Input: Query Tree Tq and an events stream S
Output: Set of Matched Sequences

1 Q← (P,Θ, ω, s) ; // CEP Query
2 ~E ← { ~E1, ~E2, . . . , ~Ek}, k = |P | ; // Events sequences from Tq

3 for each e ∈ S do
4 for each ~Ei ∈ ~E do
5 if isCompatible(~Ei,e) then
6 ~Ei = ~Ei ∪ e ; // Step 1

7 if isCompatible(~Ek,e) then
8 ExecuteJoins(~E, Θ); // Step 2
9 ExecuteKleenePlus(~E, Θ); // Step 3

Step 1. Add e to the compatible events sequence ~Ei, so that constant predicates Θc

filter unwanted events for each ~Ei in Tq. This step corresponds to the accumulation
of events within a defined window. See Algorithm 1 from lines 4-6.

Step 2. For each incoming event e, check if such an event can trigger the query
evaluation to produce matches. That is, if e can be part of ~Ek (i.e. last event
sequence), it can complete a set of matches; since it contains the highest timestamp
within the window. Hence, execute the query tree by joining the events within each
~Ei using the predicates Θ and timestamps. This step assembles all the events for
each ~Ei that can produce the set of matches. See Algorithm 1 from lines 7-8.

Step 3. For a p+
i ∈ P , compute all the combinations for events in p+

i / ~Ei, i.e. a
power set of events in ~Ei. This step groups all the combinations by following the one
or more semantics of the Kleene+ operator. See Figure 3.5 and Algorithm 1 line 9.

We now present details of the two main processes of Algorithm 1, i.e. joining
the set of events and computing the power set of events for the Kleene+ operator.

56 3.5. Baseline Algorithm

Execution of Joins

Let ~Ei and ~Ej be two event sequences with theta-join ~Ei 1tΘ ~Ej over the timestamp
t and predicates Θ. Hence, we have joins on multiple relations in Step 2. The
generic cost of such joins, i.e. pairwise joins, is O(| ~Ei|| ~Ej|) and the problem of its
efficient evaluation resembles that of traditional theta-joins with inequality predi-
cates [Kha+17]. The wide range of methods for this problem include: the textbook
merge-sort, hash-based, band-join and various indices such as Bitmap [GUW02].
These techniques are mostly focused on equality joins using a single join relation.
Inequality joins on multiple join relations are notoriously slow and multi-pass
projection-based strategies [BF79; Kha+17] are usually employed. These strategies,
however, require multiple sorting operations, each for a distinct relation, and are
only optimised for static datasets, where indexing time is not of much importance.
Even with these strategies, the worst-case complexity of these algorithms remains
O(| ~Ei|| ~Ej|) as the output size can be as large as | ~Ei|| ~Ej|, where all events share the
same join keys and the join degenerates into a cartesian product. Considering this, we
employ the general nested-loop join for our preliminary algorithm. Our experimental
analysis showcases that even such algorithms provide competitive performance.

Execution of Kleene+ Operator

For Step 3, we need to create all the possible combinations of matches over the
joined events. That is, enumerating the powerset of event sequences with p+ bindings.
In this context, we used Banker’s sequence [LvHS00] to generate sequences of events
with p+ bindings, where we need only to count from 1 to 2m − 1. That is, we check
the number of events in event sequences with p+ bindings after the join process.
For |m| number of such events, we create 1 to 2m − 1 matches.

Complexity Analysis

Herein, we briefly present the complexity analysis for the three steps described in
Algorithm 1. Step 1 results in a constant time operation, since an incoming event
can be directly added to an event sequence. Step 2 has a polynomial time cost
(pair-wise joins) and depends on the number of patterns P defined in a CEP query.
For n events in a window and k = |P |, we have O(nk). Step 3 requires the creation
of an exponential number of matches for Kleene+ operators. For n events in a
window, we have O(2n). However, this would require storing predecessor matches
to produce the next one and would result in an extra load on memory resources.

3. Enabling Efficient Recomputation Based Complex Event Processing for
Expensive Queries 57

Drawbacks

The two main drawbacks of the baseline algorithm are as follows. (1) In the absence
of constant predicates, we cannot partition the events for specific events sequences
~Ei. Therefore, each event is added to all the events sequences. (2) Even if we could
have partitioned the events in their respective ~Ei, we require a costly pair-wise
join algorithm due to the multi-relational and inequality nature of the joins. This
results in a major performance bottleneck in Step 2, we cannot discard an event
within an ~Ei unless it is accessed and compared with all the other events. In the
following, we see how we can optimise these performance bottlenecks.

3.6 RCEP: Recomputational based CEP
In this section, we discuss optimisation techniques to cater for the bottlenecks of
the baseline algorithm. For the sake of clarity, we restrict ourselves to the one
dimensional case in this section. This allows us to present the generic optimisations
techniques clearly, without loss of generality. Section 3.7 will present specific data
structures for multidimensional events’ storage and retrieval.

• For each event e = (A, t) ∈ S, the size of the attribute set is |A| = 1. That is,
there is just one attribute to match with the defined query predicates.

• The size of the window is equal to its slide: ω. This results in a tumbling
window, where all the elements in the window expire at the same time.

The aforementioned restrictions mean we are able to concentrate on explaining
the most crucial ideas. Both restrictions will eventually be removed in later sections;
and our final algorithm still achieves the same upper bounds for both memory and
runtime complexities. It is worth mentioning that the presence of only one attribute
(|A| = 1) enables us to use a linear data structure for storing and retrieving events.

3.6.1 The Event Tree

To efficiently partition the events, we need an indexing structure to store events
within a defined window. Given S, we build a B+tree such that the keys of the
tree are the events’ attribute Ax ∈ A and value contains the timestamp τ (Step
1 in Algorithm 1). For brevity, we use this topology of keys and values. However,
the reverse topology is also possible. The tree is created incrementally with the
arrival of new events and the height of the tree is ≤ log n, where n is the total
number of events within a window ω. Fig. 3.3 shows an event tree of stock market
events with price as an attribute. It is rudimentary to construct such an event

58 3.6. RCEP: Recomputational based CEP

key
value

!

54 3 1
7 128 11

7 6
16 18

t
price

ϴb
ϴa

31 4 5
12 811 7

6 7
18 16

31 4 5
12 811 7

E1
→ E2

→

Figure 3.3: An Event Tree for the stock market events (price and timestamps) within a
window ω

tree in O(n · logbrn) for n events with br as a branching factor (number of children
at each node). We call such tree an event tree Te.

Given Te, our next task is to extract the partitioned set of events for each
events sequence ~E. This process is initiated when a trigger event arrives (Step 2
in Algorithm 1), i.e. if the incoming event is compatible with ~Ek. Using such a
trigger event and the predicates in the CEP query, we need to create a set of range
queries and extract the events from Te that fall under them.

Let RangeΘi
(~Ei) be a function which produces a range query q = [min(~Ei),max(~Ei)],

using the minimum and maximum attribute values of events e.Ax ∈ ~Ei and binary
relations from Θi. This range query can be executed over Te in a traditional manner.
That is, given an interval [min(~Ei),max(~Ei)] search down Te for min(~Ei) and
max(~Ei) values. All the leaf nodes between the ranges form the answer set and then
sorting it over timestamps yields ~Ej. For each range query, the tree search takes
O(2 · logbrn) and reporting c covered points by the ranges takes O(c), assuming that
the leaf nodes are linked together. Sorting operation over timestamps, using the

3. Enabling Efficient Recomputation Based Complex Event Processing for
Expensive Queries 59

traditional algorithms, can be performed in O(c · logc) to produce ~Ej . The following
example explains the construction and execution of such range queries.

Example 2:
Consider Te in Fig.3.3 and Tq in Fig.3.2 (b). Now consider that a trigger event

ei = (6, 9) (price = 6 and t = 9) arrives (note that we are detecting an inverted
V-shaped pattern). We use ei for the right-most leaf node c/ ~E3 in Tq; since it can
complete a set of matches. Next, we need to extract the events for b/ ~E2 that can
be joined with events in c/ ~E3. Hence, we create a range query q1 = [7, 18] (18 is the
max price) while considering the binary relation for predicate θb = c.price < b.price

and ei = (6, 9) in c/ ~E3. The events covered by q1 are shown in Fig. 3.3. We
sort them by timestamp to produce b/ ~E2. Finally we are left with a/ ~E1. Hence,
we create another range query using the predicate θa = a.price < b.price. Since
the maximum value of the price in b/ ~E2 is price = 18, the boundaries of this
range queries are as follows: q2 = [0, 18 − 1] (considering t an integer in this
example). The events covered by q2 are shown in Fig. 3.3 and sorting them by
timestamp yields the final contents of a/ ~E1.

The event tree solves our problem of filtering unnecessary events before the join
process. Next, we see how to optimise the execution of joins between filtered
events sequences.

3.6.2 Creating the Complex Matches

The set of range queries produces a set of events sequences for a query tree. To
produce a set of matches, we need to employ theta-joins between them since we
are dealing with both constant and variable predicates.

Problem Description

Considering the discussion in section 3.5 on theta-join execution problem, we propose
a light-weight hybrid-join algorithm that solves this problem heuristically, providing
significant performance gains over its counterparts. We first define the dominance
property between events, which is the backbone of our algorithm.

Definition 10: Event’s Dominance

Given two events e, e′ ∈ S and a binary condition φ, e dominates e′ iff
e.Ax φ e

′.Ax = true.

The dominance property can easily be extended for the set of attributes A within
an event and the set of binary conditions in Θ as described in Section 3.7.2. We
denote that e dominates e′ by e ` e′ and if not by e 0 e′. The dominance property
also enables the transitivity property: given e, e′, e′′, if e ` e′ and e′ ` e′′ then e ` e′′.

60 3.6. RCEP: Recomputational based CEP

Our hybrid-join algorithm uses a sort-merge approach and utilises the dominance
property to reuse the results of the previous join operations. Furthermore, we
use memory compressed bitvectors to store the intermediate join results, thus
reducing the memory footprint.

Hybrid-join Algorithm

Algorithm 2 shows our hybrid-join algorithm between two events sequences ~Ei and
~Ej, where the events in ~Ei should have lower timestamps than in ~Ej. For clarity,
we consider ~Ei as an outer relation. Note that in order to join events in b/ ~E2 with
it self (as an inner relation) we use the same algorithm. The algorithm first sets
up a list of bitvectors to indicate the position of joined events in ~Ej and ~Ei: let
{B1, B2, . . . , Bu, . . . } be a collection of v-dimensional bitvectors. It is a map that
will determine which element is joined with which other element. Consider that
u corresponds to uth element of ~Ei and v corresponds to vth element of ~Ej. This
means that the vth bit of Bu, denoted by Bu,v, indicates whether a u element in ~Ei

is joined with the vth of ~Ej using the predicates Θ. Furthermore, a variable start
is also used to indicate the position to start the join operation on ~Ej. For clarity,
we first describe the algorithm from lines 15 - 23 and then come back to lines 5
- 12. From line 15, the algorithm visits the events in e′ ∈ ~Ej for an event e ∈ ~Ei.
It first checks the temporal ordering of events, i.e, timestamps e.t, and then the
joined attribute e.Ax (line 17). Note that the attributes of events are not sorted.
If the temporal ordering and the attributes are matched between events, it sets
the bit in Bu at that position (line 18). Otherwise if (i) the temporal order does
not match, it stops visiting events in ~Ej for an event e – following the merge-sort
algorithm; (line 20) (ii) else it unsets the bit in Bu at that position (line 22). Now
we explain the operation of lines 5 - 12, where the dominance property is utilised
to reuse the previously computed join operations.

For this task, the algorithm first checks the dominance property between e

and e′′ in ~Ei at positions u and u + 1 (line 7). If a previously matched event e′′

is dominated by e, then for e we do not have to visit all the elements in ~Ei just
the ones that do not match with e′′. Hence, using Bu,v we only visit unset bits
and compare only the attribute values of the events e ∈ ~Ei and e′ ∈ ~Ej that do
not match with e′′ (line 8 - 12). The set bits are copied/reused for e and the
algorithm avoids the recomputation of joins.

Example 3: Fig. 3.4 shows how Algorithm 2 works for two events sequences
~Ei (outer relation) and ~Ej with φ = {>} for the attribute Ax. The numbered
operations in Fig. 3.4 are explained as follows. (1) Starting from the end of both
sequences, event (4, 40) with e.t = 4 in ~Ei is joined with three events in ~Ej, e.g.
{(5, 22), (6, 15), (7, 21)}. The bitvector Bu records the location of joined events in

3. Enabling Efficient Recomputation Based Complex Event Processing for
Expensive Queries 61

Algorithm 2: Hybrid-Join Algorithm between ~Ei and ~Ej

Input: Events sequences ~Ei, ~Ej , events in e ∈ ~Ei should follow events in e′ ∈ ~Ej , join
predicate e.Ax φ e

′.Ax

1 Initialise a Bitvector Bu, where u, v represents the joined events in ~Ei and ~Ej respectively,
and set all the bits to 0 ;

2 start← | ~Ej |
3 for u ← | ~Ei| to 1 do
4 e← ~Ei[u];
5 if u 6= | ~Ei| then
6 e′′ ← ~Ei[u+ 1]
7 if e.a ` e′′.a then
8 Bu ← Bu+1;
9 foreach unset bit at index v ∈ Bu and v ≤ start do

10 e′ ← ~Ej [v]
11 if e.Ax φ e

′.Ax then
12 Bu,v ← 1;

13 else
14 start← | ~Ej |;

15 while start > 0 do
16 e′ ← ~Ej [start];
17 if e′.t > e.t AND e.Ax φ e

′.Ax then
18 Bu,start ← 1;
19 else if e′.t < e.t then
20 break the while loop;
21 else
22 Bu,start ← 0;
23 start← start - 1;

~Ej. (2) Since the event (3, 50) at e.t = 3 in ~Ei dominates the event at e.t = 4
(e.Ax > e′′.Ax) in the same events sequences, i.e. ~Ei, we reuse the results of
previously computed joins (in step (1)) using Bu. (3) Since the event at e.t = 2
does not dominate the event at e.t = 3 in ~Ei, we restart the comparison process
from the end of ~Ej. (4) The event at e.t = 1 dominates the event at e.t = 2
in ~Ei. Therefore, we reuse the joins evaluated in step 3 and continue the join
procedure until the timestamps ordering fails.

The performance of the hybrid-join algorithm is highly dependent on the
distribution of events’ within the events sequences. We will see in Section 3.7.3 how
to arrange such distribution to get the benefits of a hybrid-join algorithm. The
complexity analysis of the algorithm is as follows: the outer loop in Algorithm 2
(line 3) in the worst case takes O(| ~Ei| · | ~Ej|), while it is clear to see that the
extra space complexity is only O(| ~Ei| · | ~Ej|) bits of space, which is one of the
main advantages of our algorithm.

62 3.6. RCEP: Recomputational based CEP

40

2 43

25

1

30 50

2

25 40

7

30

3

15

4 51 6

2150 22

<

> (!)
e.t
e.Ax

(1)

(2)

(3)

(4)

(i)

0 11 1000

Bitvector Bu
(ii)

110 1100

(iii)

110 1000

(iv)

110 1001

B4 B3

B2 B1

"
 Ei

"
 Ej

Figure 3.4: Hybrid-Join execution between two events sequences ~Ei and ~Ej

Matches for the Kleene+ Operator

Algorithm 2 only shows the joins between two events sequences. However, for the
Kleene+ operator (p+ ∈ P) we need to create all the possible combinations of
matches while following the temporal ordering (Step 3 in Algorithm 1). That is,
enumerating the powerset of events with p+ bindings. To implement Kleene+ oper-
ator efficiently, we reuse the bitvector Bu while generating the binary representation
of the possible matches using Banker’s sequence [LvHS00]. That is, we check the
number of set bits in each Bu. For b number of set bits in Bu, we need to create 1
to 2b − 1 matches. This means if we generate all binary numbers from 1 to 2|b| − 1,
and translate the binary representation of numbers according to the location of bits
in the bitvector Bu, we can produce all the matches for the Kleene+ operator.

Example 4: Now let’s see an example of an inner join corresponding to a
Kleene+ operator. This would mean joining elements of ~Ej with itself. For joining,
we already start with those elements of ~Ej joined with ~Ei in the previous step. For
example (1, 30) belonging to ~Ei was joined with ~Ej = 〈(2, 25), (5, 22), (6, 15), (7, 21)〉.
Starting from that, we iteratively apply the same join algorithm till we exhaust
the elements that need to be joined. For instance, we start with (2, 25) and join

3. Enabling Efficient Recomputation Based Complex Event Processing for
Expensive Queries 63

Algorithm 3: Matches for the Kleene+ Operator
Input: An event e ∈ ~Ei and its bitvector Bu with b number of set bits, sequence ~Ej with

Kleene+ operator to be executed
1 max← 2b − 1;
2 k ← 0
3 for i ← 1 to max do
4 OutputMatchElement(e);
5 k ← 0;
6 for j ← i to 0 do
7 if j & 1= 1 then
8 k ← k + 1;
9 index← NextSetBit(Bu, k);

10 OutputMatchElement(~Ej [index]);
11 j >>← 1 ; // bitwise right-shift operation

with the rest ~Ej = 〈(5, 22), (6, 15), (7, 21)〉. The algorithm will find that (2, 25)
can be joined with all of them in this example. In the next iteration, we start
with elements that were joined with (2, 25) i.e. now we try to find the joins with
(5, 22). In this case, all elements ~Ej = (6, 15), (7, 21)〉 can be joined with. Note
that just like dynamic programming, helped with dominance property, the results
of all joins are stored and reused.

Remember that the objective is to output all the possible combinations for
Kleene+ operator. For that, we proceed as follows: first, imagine join results are
stored using a tree data structure: for example (1, 30) as root, (2, 25) as its child
which in turn has (5, 22) (6, 15) and (7, 21) as children, and so on. To output all
the sequences our problem now resembles the classic problem of printing all paths
from root to leaf. Second, once these paths are generated, we generate yet more
combinations for each path using banker’s sequence.

Banker’s sequence will be applied on all the paths found during inner and outer
joins. Let’s assume for ~Ei (1, 30) the path is represented in the form of bitvector
B = 01001102 that represents joins location for ~Ej = 〈(2, 25), (5, 22), (6, 15)〉 with
set bits b = 3, the generated binary numbers from 1 to 2|b| − 1 are as follows: 0012,
0102 and 1002, etc (Figure 3.5). Now equate 1 as take element at the specified bit
location and 0 as do not take the element. Then using generated binary numbers,
B and ~E, we generate all the combinations of matched events. Interested readers
can refer to Appendix B.1 for further details regarding the Banker’s sequence
and its mapping for a bitvector.

Figure 3.5 shows the enumeration of all the combinations for a p+ ∈ P . For each
event e ∈ ~E2, we need to output all the combinations of events e′ ∈ ~E2 matched
with e. Algorithm 3 first determines the maximum number of matches that can be
generated from the number of set bits b in the bitvector Bu (line 1). That is, all

64 3.6. RCEP: Recomputational based CEP

c1b2b1a2a1 b2

0 0 1

0 1 0

1 0 0

0 1 1

1 0 1

1 1 0

1 1 1

a / E1 b+ / E2 c / E3

Figure 3.5: Execution of the Kleene+ operator using the Banker’s sequence and generated
binary numbers

events e′ ∈ ~Ej that are matched with an event e ∈ ~Ei. It then iterates over these
numbers and uses their binary representation to determine the position of set bits
(lines 6,7). For instance, if i = 3, then its binary representation 011 shows the last
two bits are set (employing bitwise AND (&) operation). Using this information, it
extracts the index of events in ~Ej using Bu (line 9). This index is used to output
the events within a complex match without storing them in the memory.

Multiway Joins

We have so far restricted our discussion of joins over two events sequences but our
join technique extends to multiple events sequences. For multi-way joins, not only
do we need to decide the order of the joins but also how to employ the intermediate
joined results. Building a cost-based query optimizer for the first task is a non-trivial
task and several works, in particular, ZStream [MM09], have addressed this problem.
These techniques can be applied to our approach. In fact, the pruned events from
the set of range queries provide strict cardinality measures for join ordering in an
adaptive manner. In this contirubution, we focus on the other side of the problem,
i.e. optimising the two-way theta-joins and how to index and query relevant events
from the event tree. The ordering of the joins is currently done by a static query
planner, where joined relations for the right-most leaf node in the query tree result
in the exact number of events to be joined. Furthermore, the intermediate results
are shared using the bitvector Bu from Algorithm 2.

3. Enabling Efficient Recomputation Based Complex Event Processing for
Expensive Queries 65

3.7 RCEP: General Recomputation Model

Here we provide the final RCEP algorithms by removing previous restrictions.
Thus, we are now ready to lift the first restriction (Section 3.6) and events can
have multiple attributes associated with a timestamp. Following this, we extend
our aforementioned algorithms.

3.7.1 Multidimensional Events
Problem Description

An events stream S arrives in the system, where each event e = (A, t) contains d
dimensions (d = |A|+ 1) and each dimension is of f bits. We can represent each
event as a point in a d-dimensional space. To extract the required events for events
sequence ~E, we need to employ d-dimensional range queries. One common approach
to this problem is to define a space hierarchy, where nearby multidimensional points
fall into same partition and points that are far away are stored in different partitions.
The resulting hierarchy can be stored in the form of multidimensional trees, such as
KD-tree, R-tress and their many variants [Sam05]. Since CEP is update-intensive,
such trees would not produce the required performance measures [QGT16] (as
confirmed in Section 3.8). Furthermore, the performance of these structures
deteriorates when data dimensionality increases [Bey+99]. An alternative approach
is to embed the multidimensional events into 1D space and perform indexing and
querying over the 1D space instead. This embedding is often achieved through
fractal-based space-filling curves [Hil91; Mor66], in particular Peano-Hilbert [Hil91]
and Z-order [Mor66] curves. These space-filling curves can ensure that events that
are near in the data space are clustered together.

Basic Design of Indexing

We employ a Z-order curve for indexing due to its superiority in the context of
its generation and monotonic ordering [NCB15]. Each point in a Z-order curve
is represented by a unique number called a Z-address. A Z-address is calculated
by interleaving the bits of all dimensions’ values of a data point (or event). The
Z-address of a d-dimensional event, with each dimension of f bits, contains df bits,
which can be considered f d-bit groups. Given a Z-address with f d-bit groups, the
first-bit group partitions the space into 2d equal sized subspaces, the second-bit
group partitions each subspace into 2d equal sized smaller subspaces, etc. Fig. 3.6
(a) shows a two dimensional Z-order curve, where the data points are divided into
four main quadrants. Given an event e = (A, t), we create a Z-address z by bit
interleaving in the following order: Interleave(t, A1, A2, . . . , Ad−1). The resulting

66 3.7. RCEP: General Recomputation Model

z is then stored in a compressed bitvector. Note that we use timestamp as the
first and most important dimension for Z-addresses. This ensures the sorting of
Z-addresses in a tree structure with timestamps as the most important dimension.
In the rest, we interchangeably used the term event and Z-address.

000

0

001

1

010

2

011

3

100

4

101

5

110

6

111

7

1
1
1

7

1
1
0

6

1
0
1

5

1
0
0

4

0
1
1

3

0
1
0

2

0
0
1

1

0
0
0

0

!!!

"

!

!! !

z
1

z
2

z
3

z
4

z
9

z
5

z
6

z
7

z
8

z
5

z
4

z
3

z
1

z
2 z

10
z
7

z
6

z
9

z
8

0

2

2 2

0

2

(a) (b)

0 2

z
10

2

Figure 3.6: (a) Two-dimensional Z-order curve, (b) Event Tree indexing of Z-order
Curve

3.7.2 Multidimensional Event Tree

Z-addresses are hierarchical by nature and the Z-order curve provides the two main
properties: monotonic ordering and clustering of events [Lee+07]. The first property
ensures that dominated events are placed before non-dominated ones, while the
second property ensures the natural clustering of events with identical d-bit groups
into regions called Z-regions. These describe the space covered by the Z-order curve’s
segment (see Fig. 3.6 with four main Z-regions). Let min(r) and max(r) are the two
functions useed to produce the smallest and largest Z-addresses in a Z-region r, i.e.
min(r) produces a Z-address which contains the smallest values in all the dimensions
in r, while the Z-address produced by max(r) contains the largest values in all the
dimensions in r given. Our first goal is to maintain similar Z-addresses within a
Z-region. This goal stems from the fact that we need block-based dominance tests
over Z-regions such that we can efficiently assert if a block of events is dominated
by others (or not) and whether it can be joined to produce matches.

3. Enabling Efficient Recomputation Based Complex Event Processing for
Expensive Queries 67

The seminal work of Orenstein and Merett [OM84] or the more recent UB-
tree [Ram+00a] stores linearly ordered Z-addresses (keys) in a B+tree: keys are
addresses of Z-regions enclosed in leaf nodes with [min(r),max(r)] as boundaries.
Since Z-addresses are monotonically ordered, their insertion in the UB-tree follows
the traditional B+tree algorithm. This means Z-regions can be of any size and
shape after the insertion of new Z-address. For example, in Fig. 3.6 (b), a leaf
node of size 5 encapsulates Z-addresses for different Z-regions. One solution in
this context would be to manually maintain the [min(r),max(r)] interval for each
leaf-node [Lee+07]. However, this requires continuous maintenance of min(r) and
max(r) with new updates and their propagation to the parents/ascendant nodes.
Such maintenance can be expensive for an update intensive application. Considering
this, we employ an incremental approach, where the multiple Z-regions within a
single leaf node are incrementally maintained during insertion and are retrieved
as clusters during the range query evaluation.

Insertion in Event Tree

The insertion process tracks the distance between neighbouring Z-addresses in a
leaf node. The distance is defined through a function Dis(zi, zj), which takes two
Z-addresses, zi and zj, and determines the common most significant bits (MSB)
between them. For example, Dis(zi, zj) = 4 for zi = 10110001 and zj = 10111010.
The complete insertion process is as follows. Each incoming event is first mapped
to a Z-address and a DFS (Deep First Search) is executed to locate the appropriate
leaf node. This leaf node (i) might have free space or (ii) may result in an overflow.
For the first case, we insert the Z-address and calculate (subsequently store) the
distance from its neighbours in the same leaf node. For the second case, we find
the split point based on the maximum distance between Z-addresses. That is, we
employ a binary search over the Z-addresses in a leaf node to determine the location
of the Z-address which has the greatest distance from its neighbour in the same
leaf node. This leads to two disjointed Z-regions (leaf nodes).

A leaf node can still contain Z-addresses of disjointed Z-regions after the insertion
process. These Z-regions will be identified during range query processing. Although
a leaf node can be divided into multiple disjoint Z-regions during the insertion
phase, we pack these points together to minimise the memory and CPU overheads
for higher throughput. Fig. 3.6 (b) shows that the distance between z1 and z2 is 0
since they belong to two different Z-regions and have no common MSB. However,
for z2 and z3 the distance is 2 for the common 2-bits.

68 3.7. RCEP: General Recomputation Model

Range-Query Processing

The creation of a set of range queries over the event tree follows a similar procedure
to that described earlier. Given a set of predicates Θ and the events sequences,
we create a set of range queries (bounding boxes), where each is of the form
q = [ql, qh]; ql = (t1, A1, · · · , Ad−1), qh = (t′, A′1, · · ·A′d−1) and ∀iAi ≤ A′i ∧ t ≤ t′ (l
means lowest and h means highest in the query range). To aid the range query
construction, we also maintain an inverted index to keep track of the lowest and
highest values of each dimension in the event tree. The bounding box boundaries
ql and qh are mapped to the Z-addresses zl and zh using bit interleaving. All the
Z-addresses in the event tree Te enclosed by zl and zh form the answer set. The
search procedure in Te for zl and zh is accomplished by fast bitwise operations.
Note that due to the nature of Z-order curves that sometimes goes outside the
bounding box, there can be some false positive points within the defined ranges.
While constructing the Z-regions, we will also remove those false-positive points.
After the execution of a range query, we get a list {(z1, dis), (z2, dis), . . . , (zc, dis)}
of Z-addresses, each accompanied by the distance measured from its neighbours.
Our task is to cluster the Z-addresses according to their Z-regions or common d-bit
group so that the Z-regions are smallest among the possible splits. To accomplish
this, we employ a sequential scan over the list of Z-addresses and split them into
Z-regions where there is a difference of common d-bit group between them. Since
Z-addresses are monotonically ordered, the Z-addresses that belong to the same
Z-regions are located next to each other in the list.

Example 5: Consider Fig. 3.6 (b) that both leaf nodes fall under a range query.
We sequentially scan each leaf node: starting from the first node, the distance
between z1 and z2 is 0, while z2 and z3 is 2. Hence, this results in two disjoint
Z-regions, where the first contains {z1} and the second contains {z2, z3, z4}. Moving
forward, the distance between z4 and z5 is 0, hence a new Z-region {z5} is created.
While moving to the next node, we check the distance between z5 and z6, and z6

and z7. If the distance is the same, i.g. 2, we insert z6 and z7 with z5. Finally,
after going through all the elements in the leaf nodes, we will have the following
Z-regions: {z1}, {z2, z3, z4}, {z5, z6, z7} and {z8, z9, z1}.

3.7.3 Joins between Z-addresses

We first describe the dominance property between two Z-addresses and then form the
notion of Z-region dominance. Let gtj(z) is a function which takes a Z-address and
returns a bitstring by extracting t MSB bits for every j bits skipped. For example,
for z = 110011, g1

2(z) takes all the first MSB jumped by 2 bits and g1
2(z) = 10.

3. Enabling Efficient Recomputation Based Complex Event Processing for
Expensive Queries 69

min(r
1
)

max(r
1
)

min(r
2
)

max(r
2
)

min(r
3
)

max(r
3
)

min(r
4
)

max(r
4
)

r
2

r
1

r
3

r
4

timestamp

price

Figure 3.7: The dominance test between different Z-regions

Definition 11: Z-address Dominance

Given two Z-addresses z and z′ and a set of binary relations {φ1, . . . φd} from
the set of variable predicates Θv in Q over d-dimensional events (Z-addresses),
z dominates z′ (z ` z′) iff g1

d−1(z) φ1 g1
d−1(z′) ∧ g2

d−1(z) φ2 g2
d−1(z′) · · · ∧

gdd−1(z) φd gdd−1(z′). Note that if there is domination in all dimensions then it
means that the z-value also dominates.

The Z-address dominance also follows the transitivity property, i.e. if z ` z′ and

z′ ` z′′ then z ` z′′. Based on this, we introduce a block-based dominance test over

Z-regions. Since Z-regions cluster similar points together, the dominance test at

the boundaries of the Z-regions i.e. min(r) and max(r), can provide proof of the

joins. Note that min(r) and max(r) provide Z-addresses containing the maximum

and minimum values of all the dimensions respectively in a region r.

70 3.7. RCEP: General Recomputation Model

lemma 1

Given two Z-regions (r and r′) and a set of binary relations {φ1, . . . φd} from
the variable predicates Θv in Q over d-dimensional events (Z-addresses), r
dominates r′ (r ` r′) iff

1. ∀igid−1(max(r)) φi gid−1(min(r′)) if φi = {<,≤}

2. ∀igid−1(min(r)) φi gid−1(max(r′)) if φi = {>,≥}

lemma 2

Given two Z-regions (r and r′) and a set of binary relations from Lemma 1,
r partially dominates r′ (r ∼ r′) iff Lemma 1 does not hold and only if the
following conditions hold:

1. ∀igid−1(min(r)) φi gid−1(max(r′)) if φi = {<,≤}

2. ∀igid−1(max(r)) φi gid−1(min(r′)) if φi = {>,≥}

To keep the discussion brief, we prove Lemmas 1 and 2 in appendix B. Herein,
we outline their intuition. The transitivity property and monotonic ordering of
Z-addresses in Z-regions dictate that if conditions 1 and 2 are satisfied regarding
max(r) and min(r) points, then ∀zi ∈ r also follows the same properties. However,
in this case, we have to check the binary conditions φ for each dimension to select
the appropriate boundaries. If Lemma 1 does not hold then it means that two
Z-regions either overlap, or that they do not. Lemma 2 checks if two Z-regions
overlap and hence some events that can be joined. If Z-regions do not overlap,
we are sure that no events can be joined between them. From Lemma 1 and
Lemma 2 we have the following theorem.

theorem 1

Given two Z-regions r and r′ and a CEP query Q, if Lemma 1 holds then
r ` r′ and all the events in r can be joined with all the events in r′. Otherwise,
if only Lemma 2 holds then r ∼ r′ and some events in r can be joined with
some other events in r′. If both Lemmas 1 and 2 do not hold then r 0 r′ and
no events in r can be joined with any event in r′.

Example 6: Consider two predicates θ1 = a.price < b.price with φ = {<}
and θ2 = a.time > b.time with φ = {>}. Using these predicates and binary
conditions, we determine the dominance property between Z-regions in Fig. 3.7.
(1) Z-regions r3 ` r2 (subsequently r2 0 r3) since all the events in r3 have prices
less and timestamps greater than all the events in r2. This compiles to Lemma 1
(2) r3 partially dominates r4, since for r3 all the events have lower prices but some

3. Enabling Efficient Recomputation Based Complex Event Processing for
Expensive Queries 71

have equal or greater timestamps. Similarly r1 partially dominates r4. This
compiles to Lemma 2.

Using Theorem 1, we present the join algorithm for the sets of Z-regions. Let
R and R′ be two sets of Z-regions, generated from the lists Z and Z ′ respectively
using the range queries as described in Section 3.7.2.

Algorithm for Joining Z-regions

Based on Theorem 1, Algorithm 4 presents how the events within the set of Z-regions
R and R′ are joined in a batch manner. It takes bitvector Bu as in Algorithm 2, to
store the intermediate joined results. Furthermore, it uses the lists of Z-addresses
Z and Z ′ (for result construction), that is covered by the range queries and are
used to produce the set of Z-regions R and R′. Finally, it initialises pointers startr
and endr to keep track of the bits to toggle in Bu . The algorithm iterates over
Z-regions r ∈ R, and for each region it evaluates the three cases in Theorem 1 over
Z-regions r′ ∈ R (lines 5-13). For Lemma 1, it sets all the bits using the pointers of
each region and using bit-level parallelism in the function setBits (a function that
set the bits between two given positions in a bitvector)(lines 7,8). For Lemma 2, it
simply uses Algorithm 2 since there can be some events in each Z-region that can be
joined (lines 9,10). Finally if Lemmas 1 and 2 do not hold, since no events in the
Z-regions can be joined, it unsets the bits in Bu using the aforementioned pointers
(lines 11, 12). Note that the unsetBits function is employed for brevity only, In
general, we do not have to unset the bits after the initialisation of a bitvector.

Algorithm 4: Join between the set of Z-regions R and R′
Input: Sets of Z-regions R, R′, Bitvector Bu, List Z and Z ′ of all the points in R and R′

respectively
1 Initialise a Bitvector Bu, where |Bu| = |Z| and each Bu,v = |Z ′|;
2 Initialise List pointers startr, endr, startr′ , endr′

3 for each r ∈ R do
4 endr ← |r|
5 for each r′ ∈ R′ do
6 endr′ ← |r′|
7 if Lemma 1 holds then
8 setBits(Bu, startr, endr, startr′ , endr′)
9 else if Lemma 2 holds then

10 Use Algorithm 2 to determine the joins between Z-addresses in r and r′;
11 else if Lemmas 1 and 2 do not hold then
12 unsetBits(Bu, startr, endr, startr′ , endr′)
13 startr′ ← endr′ + 1
14 startr ← endr + 1

72 3.7. RCEP: General Recomputation Model

Complexity Analysis of Join Algorithm The performance of joins between
the set of Z-regions R and R′ depends on the predicates and the data distribution.
For all types of predicates and data distribution combinations, we can always
identify 3 cases, which are named and explained as follows:

• Dominated regions: A type of data distribution that will have many regions
dominating other regions.

• Skipped regions: Another type of data distribution that will have many large
regions not satisfying the predicates and thus joining them can be skipped.

• Independent: Finally, there will be data distributions with mostly overlapping
regions. There will still be some dominating regions, which can be batch
joined. Other points will still need to be pairwise joined.

1- Dominated Regions data: In this case, only a few Z-regions within R and R′

have to be pair-wise joined (using Algorithm 2). The majority of Z-regions in R
and R′ would follow the dominance property and will be joined in a batch manner,
i.e. lines 7-8 in Algorithm 4. Consider if only r1 ∈ R and r2 ∈ R′ have to be
pair-wise joined, then the runtime complexity is O(|r1||r2|+ |

⋃
R \ {r1}|), where

|⋃R \ {r1}| is the cost of setting bits in the remaining Z-regions of R that are
joined in a batch manner with Z-regions in R′.
2- Skipped Regions data. In this case, most of the Z-regions in R′ are not dominated
by R, nevertheless, they will be skipped in a batch manner, i.e. lines 11-12 in
Algorithm 4. Using the same reasoning of the Dominated regions data points, this
case follows the same run-time complexity measures.
3- Independent data. For this case, m out of n Z-regions in R have to be pairwise
joined with the Z-regions in R′. The remaining can either pass or fail the dominance
test, i.e. lines 7-8 or lines 11-12 in Algorithm 4. Hence, the run-time complexity
is as follows: O(|⋃mR||⋃mR′| + |⋃mR \ ⋃n−mR|). In the worst case, it follows
the run-time complexity measures of the hybrid-join algorithm, i.e. O(|⋃R||⋃R′|)
runtime measures and O(|⋃R||⋃R′|) bits of space.

3.7.4 Handling Sliding Windows
We are now ready to lift the final constraint of the sliding windows. That is, the
size of the window ω and slide s can be of different sizes. This means with the
arrival of an event, we need to re-calculate the boundaries of the new window after
applying the sliding factor. This can result in some events in the event tree Te to
be outside the boundary of the window and hence to be deleted. We propose CPU
and memory friendly methods for this task. Let ValidTime(Te) be a function which
provides the validity time of Te, i.e. the insertion time of the newly arrived event
plus the window size.

3. Enabling Efficient Recomputation Based Complex Event Processing for
Expensive Queries 73

Memory Friendly Method

The first method deletes the expired events as soon as possible. It consists of
the following two steps: (i) if ValidTime(Te) > s, create a range query over Te to
determine the expired events; (ii) delete events covered by the range query. This
operation may trigger re-distribution and merge operations over Te. However, older
events are deleted as soon as possible.

CPU Friendly Method

For our second technique, we circumvent the cost of re-distribution and merge
operations by resorting to a technique based on the logarithmic method [BS80].
This technique is based on two event trees T 1

e and T 2
e and is described as follows.

1. At the beginning, we start with an empty T 1
e . For now, the insertion and

range query processing is only applied over T 1
e .

2. With the arrival of new events, we check if ValidTime(T 1
e) > s. If so, it means

some expired events are present in T 1
e . We keep these events and initiate T 2

e .
For now, the insertion will take place in T 2

e and range query processing in
both T 1

e and T 2
e . The temporal predicates in the range query make sure that

expired events in T 1
e are not selected.

3. With the arrival of new events, if ValidTime(T 1
e) > ω it means that all events

in T 1
e are outside of the window. Hence, we discard the older event tree and

all operations are executed over T 2
e .

4. With the arrival of further new events, if ValidTime(T 2
e) > s, we recycle T 1

e

and use it as secondary storage. Hence, we keep rotating between these two
event trees.

This second technique avoids the rebuilding cost of an event tree in the streaming
settings and results in a slight increase in memory by keeping the older events,
which still costs far less than maintaining the partial matches.

74 3.8. Experimental Evaluation

3.7.5 Optimising Z-address Comparison

We also used some optimisation techniques to save the cost of the bit interleaving
and comparison of Z-addresses during insertion, as well as range query processing
over an event tree. We do not provide details here, but full details are in the
appendix B.4. The idea is to avoid the cost of decoding the Z-values for comparison
and thus we used algorithms that can directly compare Z-addresses.

A second optimisation was used to address the nature of the Z-order curve:
it contains jumps and can go out of the bounding box of a range query. Hence
when calculating the range queries, we can have some false positive points, i.e.
Z-addresses that are not part of the result, within the answer set. Please refer
to [OM84; Ram+00a] for the detailed discussion on this problem. We used algorithms
to calculate such boundaries without going through the process of bit interleaving
and de-leaving called them NextJumpIn (NJI) and NextJumpOut (NJO).

3.8 Experimental Evaluation

3.8.1 Setup and Methodology

Experimental Infrastructure: Our proposed techniques have been implemented
in Java and our system is called RCEP. All the experiments were performed on a
machine equipped with an Intel Xeon E3 1246v3 processor, 32 GB of memory and
250 GB PCI express SDD. It runs a 64-bit Linux 3.13.0 kernel with Oracle’s JDK
8u05. For robustness, each experiment was performed several times and we report
median values.

Datasets: We employ both real and synthetic datasets to compare the performance
of our proposed techniques.

Synthetic Stock Dataset (S-SD):We use the SASE+ generator, as used in [Agr+08],
to produce the synthetic dataset. Each event carries a timestamp, company-id,
volume and the price of stock. This dataset enables us to tweak the selectivity mea-
sures #ofMatches

#ofevents to evaluate the performance of the systems at different workloads.
In total, the generated dataset contains 1 million events.

Real Credit Card Dataset (R-CCD): We use a real dataset of credit card
transactions [AAP17; Art+17b]. Each event is a transaction accompanied by
several arguments, such as the time of the transaction, the card ID, the amount of
money spent, etc. The total number of transactions in this summary dataset
was around 1.5 million.

Synthetic Correlation Dataset (S-CD): To compare our join techniques, as
described in Section 3.7.3, we generated a synthetic dataset [GB01] based on

3. Enabling Efficient Recomputation Based Complex Event Processing for
Expensive Queries 75

dominated and independent distributions. The data dimensionality (or joined
relations) varied from 2 - 6 and data cardinality from 10K to 100K.

Physical Activity Monitoring Dataset(PAM): We use a real dataset of physical
activity monitoring [Pop+17]. It contains data of 18 different physical activities
(such as walking, cycling, playing soccer, etc.) with inertial measurement sensors
and a heart rate monitor.
Queries: We consider the 3 different Queries as defined at the beginning of this
chapter (Section 3.2). Each of them is executed on the different datasets to compare
the performance of our system.

For our evaluations, we specifically chose an additional variation of query 2
(credit card) which has a constant predicate on a/ ~E1 to control the selectivity of
starting match a, which in turn also controls the produced matches. For example,
we used a.amount%17 = 0 which controls the starting match and in turn determines
the number of final matches. We used this to provide a worst case scenario for
our batch processing based algorithm. Our hypothesis is that a low number of
starting events (a/ ~E1) penalise our lazy approach. Thus, in the results, we call the
original query 2 as the case with high selectivity which equates to a high number
of matches in the data. We call the above variation of query 2 as the case with
low selectivity, which results in low number of matches.
Methodology: We compare our CEP system with ZStream [MM09], SASE+ [Agr+08]
and the open source industrial system Apache Flink [Fli]. Note that CEP module
of Flink is based on the optimizations proposed by SASE++ [ZDI14a]. All of these
systems support skip-till-any-match and Kleene+ operator. Note that, we do not
compare CET [Pop+17] due to the dissimilarity in semantics and its exponential
memory complexity. The executional model of Apache Flink is based on the
NFA design of SASE++ [ZDI14a] and CEP queries in Flink were expressed as
Flink operators. These operators are processed in parallel by Flink, however,
the events’ order is maintained. Unless otherwise specified, all experiments use
a slide granularity s = 1 and we employ the CPU friendly method of sliding
windows for our system. To demonstrate the effectiveness of our join evaluation
techniques, denoted as HJoin in figures, we compare it with the projection-based
IEJoin [Kha+17] and nested-loop join (NLJoin). To achieve a fair comparison, we
have implemented these join techniques on the top of our system. In a nutshell,
IEJoin sorts events in a set of lists according to all the join relations and then
determines the intersection of such lists; and the NLJoin is a standard join with
nested loops. Note that under certain parameters, SASE+, Apache Flink and
ZStream do not produce results for several hours. Thus, we discontinued the results
in the charts for these systems, for such cases.

76 3.8. Experimental Evaluation

Metrics: We measure three standard metrics common for CEP systems: through-
put, memory requirements and detection latency [Agr+08; ZDI14a; Pop+17;
RLR16].

Throughput is defined as the number of events processed per second by a CEP
system. The memory requirements were measured by considering the resident set
size (RSS) in MBs. RSS was measured using a separate process that polls the
/proc Linux file system once a second. Note that this method did not interfere
with the overall timing results, from which we concluded that it did not perturb the
experiments. Detection latency is the time between the occurrence of a complex
event (marked by the arrival of the last event completing the match) and its
detection and reporting by the CEP system. As described earlier, we use the
selectivity measures #ofMatches

#ofEvents to test different workloads. It is controlled by
changing the predicates and window sizes in the CEP queries. We varied the
selectivity, window size and the number of matches for our experiments to test
the CEP systems’ under a heavy workload.

3.8.2 Performance of Indexing and Join Algorithms
Comparing MultiDimensional Indexing

Herein, we investigate how an event tree compares with the traditional multidimen-
sional indexing techniques. As the R-tree is commonly believed to offer competitive
efficiency on multidimensional data and queries, we compare it with our event tree.
We use stock data streams with an event of four dimensions from our use case; we
change the number of events within a window; and we keep track of the total time
spent in the insertion of events and processing range queries for each incoming event.
Fig 3.8 presents the results. Since the proposed event tree is based on the linear
indexing data structure (single dimensional search), it outperforms the heuristics
structure R-tree (multi-dimensional indexing and search) considerably: by a factor
of 2 over small window sizes and one order of magnitude for large window sizes.

Effect of Data Dimensionality

Herein, we investigate different join execution techniques, starting with the question
of how data dimensionality (joined relations) effects different join techniques, i.e.,
HJoin, IEJoin and NLJoin. The answer to this question will showcase two of our
optimisation techniques: (i) how virtual Z-addresses reduce and maintain the CPU
cost in HJoin for the different number of dimensions; (ii) how the IEJoin algorithm
has a strong dependence on the number of used dimensions or joined relations.
Figs. 3.9 (a) and (b) show the total execution time of the two-way inequality joins
for dominated regions (as explained in Section 3.7.3) and independent distribution

3. Enabling Efficient Recomputation Based Complex Event Processing for
Expensive Queries 77

Figure 3.8: Insertion and Query Time: Comparative Analysis of Event Tree and RTree

datasets, while data cardinality is fixed at 50K in each relation. Note that we
tested our algorithms on dominated regions and independent datasets because such
distributions can impact the performance of any algorithm based on the dominance
property. The results from skipped regions data distribution is similar to the one of
dominated regions, since both have a similar complexity as discussed before. HJoin,
owing to the virtual Z-addresses, effective space pruning capability and block-based
dominance tests, performs better than IEJoin when the data dimensionality is
increased. HJoin performs better on the dominated regions dataset since a lot of Z-
regions pass the dominance test and hence events are joined in batches. Furthermore,
since virtual Z-addresses employ fast CPU friendly bitwise operations to compare
two events, its performance does not deteriorate with the increase in the number of
dimensions. In contrast, IEJoin requires indexing of each dimension and its cost
increases with the dimensions, thus becoming too expensive for a larger number
of dimensions and is even slower than NLJoin. NLJoin has no effect on changing
the dimensions since it is a pair-wise join technique.

Effect of Data Cardinality

How do different join techniques scale by varying the data cardinality for different
types of data distributions? This further measures how well HJoin works with the
overheads of recomputation by evaluating joins over batches of events. Figs. 3.9
(c) and (d) show the executional time of two-way inequality joins against the data
cardinality (10K to 100K) while data dimensions (joined-relations) are fixed at 3 -a
value taken from our use case. The execution times of all the algorithms rise with the
increase in data cardinality. However, HJoin is less costly than its competitors for

78 3.8. Experimental Evaluation

both data distributions. The IEJoin algorithm is even slower than NLJoin because it
uses a lot of time to create the indexes between the joined relations. That is the cost
of sorting both relations according to each dimension, producing a permutation of
indexes between each sorted dimension. Such a high index creation time outclasses
its benefits for the streaming settings. Furthermore, both IEJoin and NLJoin show
similar performance measures for both types of data distribution, since they do not
employ any data-related heuristics. In contrast, the HJoin algorithm is less costly
for the dominated regions dataset. This is because a large number of Z-regions pass
the dominance and hence are joined in batches using bitwise operations. HJoin
is slightly more costly for the independent dataset, relative to dominated regions
dataset, for large data cardinalities. This is due to the increase in the number of
pair-wise joins since a fewer Z-regions either pass or fail the dominance test. In any
case HJoin performs better than NLJoin and IEJoin over different distributions.

Figure 3.9: Analysis of Join Algorithms over different Data Distributions

3.8.3 Performance of Sliding Windows

In Section 3.7.4, we presented memory and CPU efficient methods for evaluating
sliding windows. Herein, we showcase actually how much better the CPU friendly
method is in terms of CPU cost. Fig 3.10 shows the performance of these two

3. Enabling Efficient Recomputation Based Complex Event Processing for
Expensive Queries 79

Figure 3.10: Sliding Window Comparison

methods over different windows size while considering the slide granularity of s = 1:
since it is the worst case behaviour in terms of per event cost due to the single
insertion and single eviction for each incoming event.

With small windows, the size of the event tree is small. Hence, the redistribution
cost of leaf nodes after insertion and deletion is small for both memory and CPU
efficient techniques. However, there is an extra cost of range query processing for
the memory efficient technique to determine which events are outside the window
and to be deleted. This cost increases with the increase in the window size. The
redistribution of the event tree with frequent deletions becomes so expensive that
it is outperformed by CPU efficient techniques by a large margin. Hence, the
overheads of memory efficient techniques, as to be expected, are considerably
higher than CPU efficient technique.

3.8.4 CEP Systems’ Comparison
Performance in terms of Memory

The first question we investigate is, what are the benefits, in terms of memory
cost, for only storing the events within a window. Fig. 3.11 answers such question.
As expected, the increase in the selectivity measures (or window size) results in a
large number of partial matches for traditional systems, and as a consequence, a
larger utilisation of memory. In all cases RCEP performs best in terms of memory
consumption. SASE+ and ZStream consume high memory due to exponential
partial matches generated. Surprisingly Apache Flink performs worst in terms of
memory. We found that it reuses instantiated runs instead of deleting older runs

80 3.8. Experimental Evaluation

for optimization purpose to reduce pressure on garbage collection. This enhances
the CPU performance at the cost of higher memory consumption. In fact this
reminds us about our CPU friendly method. In contrast, our recomputation-based
system, namely RCEP, scales almost linearly to the number of events within a
window. That is, for high selectivity, more events are selected to produce matches,
hence the memory requirement increases almost linearly to the number of events
and not to the number of partial matches. Additionally recall that, for memory
efficiency, we used memory efficient bitvectors to store intermediate join results.
The results confirm the aforementioned issues of storing partial matches and are
aligned with our design principles.

Figure 3.11: Memory Performance.

Throughput Performance

Next, we investigate from the point of view of the throughput: How do the
recomputation based systems perform compared to systems that incrementally
process partial matches. Figs. 3.12 shows the relative performance of the CEP
systems over all the datasets and with different selectivities. We can see that, in
general, RCEP has much higher throughput than Flink, ZStream and SASE+ As a

3. Enabling Efficient Recomputation Based Complex Event Processing for
Expensive Queries 81

Figure 3.12: Throughput Performance.

matter of fact, SASE+, ZStream and Flink do not produce results for several hours
for some values of selectivity and window sizes. This is because the throughput of
SASE+, ZStream and Flink are highly dependent on the number of partial matches
within a window. As the window size (or selectivity or number of matches) increases,
these systems produce and process a large number of partial matches. Flink spends
most of its time compressing and decompressing common events within the partial
matches. That is, it travers through the stack of pointers using DFS (Deep First
Search) to extract all matches. SASE+ utilises list structure to store all partial
matches and need to check them one by one. ZStream performs worst in general.
This is because ZStream uses a cost model which is highly dependent on data
statistics and would need to be optimised every time there is new data.

In contrast, RCEP first employs an event tree and the range queries to extract
a small set of events that can produce matches. Second, it employs hybrid-join
algorithms and partition events based on the Z-regions and creates matches in
batches. This results in a low cost per event within a window hence high throughput
and scalability over larger window sizes.

In figure 3.12(b) we consider the worst case scenario for our batch join based
algorithm, where the number of starting events (a/ ~E1) is low. In this case, RCEP’s
throughput performance is worse than that of Flink only for 1 point when the

82 3.8. Experimental Evaluation

Figure 3.13: Average Detetion Latency

window size is too small. After that, Flink, ZStream and SASE+ get relatively
worse when compared to RCEP as the window size increases. This can be explained
as follows: increasing window size automatically increases the number of partial
matches. All in all, these throughput experiments demonstrate that RCEP achieves
significant performance improvements over existing CEP solutions.

Average Detection Latency

To further reinforce the aforementioned results, in Fig. 3.13, we show the performance
in terms of average detection latency (this metric is explained in Section 3.8.1).
Note that for Figs. 3.13 (b) we use a query with low selectivity (which is a variant
of query 2 as explained before) and another with high selectivity (original query).
We compare the detection latency between RCEP, Flink, ZStream and SASE+.
From Figs. 3.13 (b), we can see that Flink and ZStream outperform, just initially,
our system and SASE+ in terms of average detection latency. This is because Flink
constructs matches as soon as events arrive and uses an optimised data structure
to index partial matches. RCEP suffers due to low selectivity combined with low
window sizes. This happens in the above particular case because of the following.
Here, RCEP extracts and collects all the events for batch processing, but in the
end there are only a few complete matches. Being a batch processing algorithm,

3. Enabling Efficient Recomputation Based Complex Event Processing for
Expensive Queries 83

our fixed cost is slightly higher than SASE+, ZStream and Flink as we have to
collect all the events for batch processing and getting only a few complete matches
in the end does not compensate for the high fixed cost. In any case this corresponds
to very special case of very low window sizes and low selectivity. However, after
the window size is more than 100, then RCEP performs better for this special case
of low selectivity query. Also note that the performance of Flink degrades very
rapidly with the increasing number of partial matches. This is due to the fact
that Flink has to compress and decompress more and more partial matches. For
same reasons we can see that Flink initially performs slightly better than RCEP
on activity dataset as shown in Figs. 3.13 (d). However, the performance of Flink
decreases with the increasing number of partial matches. In other cases RCEP
always performs better that other systems.

3.9 Conclusion
In this chapter, we proposed an efficient re-computation based, complex event
processing system for expensive queries. We observed that traditional systems
suffer from performance degradation as they store all partial matches in their
memory. Thus, they waste memory and additionally computation resources to
perform searches on these partial matches.

To solve this problem, we introduced an efficient multidimensional B-tree based
indexing of events. Instead of storing all partial matches, which are the different
combinations of matching events, we just store the events. When an event arrives
that can complete the match, we collect and process the events in batches to find the
complete matches. For events with multiple attributes, we employ a Z-address based
indexing scheme that converts multi-dimensional attributes into a single value. This
allows us to adapt the B-tree based indexing scheme for multi-dimensional events
and use range queries to extract a small set of events that can produce matches. We
employ a heuristic-based algorithm for theta-joins (HJoin) and partitioned events
based on Z-regions to join events and create matches in batches. Hence, RCEP
does not waste computational resources on sequential scans of large number of
partial matches and decompression operations of matches.

Results show that RCEP performs much better and consumes less memory than
existing systems such as SASE+, ZStream and Flink. This is consistent with our
analysis, and partial matching techniques result in a much higher cost per event
compared with recomputation-based techniques.

84

4
A Generic Framework for Predictive

Complex Event Processing using
Historical Sequence Space

Contents
4.1 Introduction . 85
4.2 Contribution . 87
4.3 Our Approach . 88

4.3.1 Querying Historical Space for Prediction 89
4.3.2 Summarisation of Historical Space Points 91

4.4 Implementation . 93
4.4.1 System Architecture . 93
4.4.2 User Interface . 93

4.5 Experimental Evaluation 94
4.5.1 Experiment Setup . 94
4.5.2 Datasets and CEP Queries 96
4.5.3 Accuracy Metrics . 96
4.5.4 Precision of Prediction with Summarisation 96
4.5.5 Comparison with other Techniques: 96

4.6 Conclusion . 97

4.1 Introduction

Today, analytics are moving towards a model of proactive computing [EE11],
and CEP is also experiencing a paradigm shift towards proactive and predictive

85

86 4.1. Introduction

computations. That is, given a partial match, predictive CEP systems provide the
possible future events of partially matched sequences which can then be converted
into full matches. This can enable users to mitigate or eliminate undesired future
events or states and identify future opportunities. Associating prediction and
automated decision making enables progressing towards proactive event-driven
computing. Proactive applications have attracted the attention of researchers from
different fields. The problems of predictive CEP bear remarkable similarities to
those of sequence pattern mining and prediction. Sequence prediction consists of
predicting the next element for a given input sequence by only observing its previous
items. The number of applications related to this problem is quite large. It covers
applications such as consumer product recommendations, i.e. given a sequence of
a consumer past purchases, it can predict its next purchases, weather forecasting,
i.e. given a sequence of observations about the weather over time, it can predict
the expected weather tomorrow; web page prefetching, i.e. given the history of
access data, it can predict the data that will be requested next time, and stock
market prediction, i.e. given a sequence of movements of a stock over time, it
can predict the next movement of said stock.

In this context, a large body of sequence prediction models have been pro-
posed, such as: Prediction By Partial Matching (PPM) [CW84], All-K-Order-
Markov [PP99], Dependancy Graph (DG) and Probabilistic Suffix Tree [BYY04].
Some important limitations are present in each of these models. First and foremost,
these models are based on the Markovion hypotheses that an event is only dependent
on its predecessor, however this is not the case in our application and many others.
Second, these models suffer from the catastrophic forgetting of older sequences,
where only the k recent items of training sequences are used to perform predictions:
increasing k often induces a very high state complexity and consequently such
techniques become impractical for many real-life applications [Gue+15]. These
limitations can have a major impact on the outcome of the prediction, causing
poor accuracy.

There are several challenges to build a swift and efficient approach. First, it
is necessary to have an efficient data structure in terms of memory to index all
sequences. The second challenge is in designing algorithms to handle complex data,
i.e. multidimensional sequences. Third, the data structure should be updated
efficiently when adding a new sequence. Finally, an algorithm must be precisely
defined to perform fast and more accurate sequence prediction.

4. A Generic Framework for Predictive Complex Event Processing using Historical
Sequence Space 87

4.2 Contribution
Our approach leverages two key observations: (i) historical matches can give an
“expert” view on future matches; (ii) in case that memory optimisation is needed,
summarising older matches according to their observed importance is a way to avoid
catastrophic forgetting, while operating in the main memory for a real-time response.

To administer the first observation, we propose a novel N dimensional (N-D)
historically matched sequence space Hspace. Based on this, we design an index
structure that leverages the embedding of a fractal-based space-filling curve, the
Z-order curve [Mor66], to map the coordinates of the N-D space into a 1-D space,
while preserving the locality of points. In order to query 1-D points, we propose a
novel range query algorithm that caters for the unbalanced nature of the partial
matches, and locates nearby points for predictive analysis.

To administer the second observation, since the index size expands proportionally
to the number of matched sequences, we need to compress the older matches while
at the same time preserving some of their information. By doing so, the result
will be a minor loss of knowledge. To summarise older points in Hspace, we first
gather the points covered by the top-k most infrequent range queries in a streaming
manner. Second, we use the weighted average mean to summarise the points that
are closer to each other. The weights of the points are determined by the frequency
by which they are queried, in Hspace. This not only provides an efficient way of
summarising older data but also offers an efficient way of maintaining some of the
information of the older matched sequences according to their importance.

Our experimental evaluation over two real-world datasets shows the significance
of our indexing, querying and summarising techniques. Our system outperforms
the competitor by a considerable margin in terms of accuracy and performance.

Integrating the contributions specified above, we demonstrate a system for
predictive CEP, called Pi-CEP (Predictive Complex Event Processing). It provides
the aforementioned complementary functionalities and can be integrated with
existing general purpose CEP systems. Additionally, we provide a user-friendly
interface for users to interact with and visualize results. Moreover, we provide
customized search components to meet the demands of advanced users.

This chapter studies the problem of sequence prediction in the context of CEP
systems. However, our techniques are also relevant in the context of general
multidimensional sequence prediction. We tackle this problem from a new point of
view, with the main aim of pushing the real-time predictive CEP capabilities to
the database layer so as to take advantage of and extend existing data structures,
query execution and optimisation techniques.

This chapter is organised as follows. Section 4.3 presents our approach, followed
by section 4.4 which describes our implementation. Finally, Section 4.5 shows some
results. Note that the related work is discussed in Chapter 2.

88 4.3. Our Approach

4.3 Our Approach
Given a pattern query Q, a stream S = {e1, e2, . . . } – where each event forms a
tuple e = (A, τ) of attribute values A = {a1, a2, . . . , al} associated with a timestamp
τ – the objective of the CEP system is to detect chronologically ordered sequences
of events, each of the form −→e f = 〈e1, . . . , em〉 m > 0, that occur in the event stream
and are correlated based on the values of attributes and defined temporal operators
in the pattern query Q. The pattern query Q over S is evaluated in a progressive
way. That is, partial matches −→e p = 〈e1, . . . , ei〉, where i < m, are formed before a
full match is detected. Then for a partially matched sequence −→e p, our task is to
predict future events that can turn −→e p into −→e f using the universe of fully matched
sequences. That is, if m is the length of the fully matched sequence, for a partially
matched sequence −→e p = 〈e1, . . . , ei〉, we would like to predict the future events
from ei+1 to em. To attain this, we model our solution based on an N-D historical
matched event database called historical space Hspace. Using Hspace, we can employ
range queries for the partially matched sequences to determine the predicted events.

Let Hs = {A1 × A2×, . . . , An} be an N-D lattice for the universe of fully
matched sequences, where an n-tuple X = (x1, x2, . . . , xn) defines a point in Hspace

and xi ∈ Ai ∀i ∈ n. Then with the arrival of a partially matched sequence −→e p, we
answer N-D range queries on Hspace, which in turn is detailed later in this section.
The idea behind this approach is that the points lying within the range queries or
its neighbours are the predicted events for the partially matched sequence −→e p.

A large number of works (such as Quad Trees, KD-Trees, etc.) [Hil91; Mor66;
Sam05] have been proposed for encoding N-D space. Considering the large number
of dimensions in our context, and the effectiveness of space-filling curves in spatial
domains [Sam05], we use the Z-order curve [Mor66] for N-D space encoding.

The indexing approach based on the Z-order curve is detailed in Section 3.7.2 of
Chapter 3. Let’s recall some of the properties of the Z-order curve: It preserves
the proximity properties among the points while leveraging the effectiveness of
linear data structures (such as B+tree) for range queries. The construction of the
Z-order curve is accomplished by the simple process of bit-shuffling. The Z-order
curve is used with B+tree for our indexing scheme [Ram+00b]. The nodes of
the B+tree are sequentialised using a Z-order curve to retrieve a given region
efficiently In order to provide the compact representation of encoded dimensions,
we employ compressed bitmaps [Cha+14] to store large Z-values and to compress
the sequence of homogeneous 1’s and 0’s within Z-values. This not only provides a
good compression ratio but also simplifies the comparison of Z-values by using fast
bitwise operations over the bitmaps which are supported by hardware. The Z-value,
the timeline of the Z-value and the number of time it appears in the history form
the fondation of our indexing scheme. We call it the temporal Z-value.

4. A Generic Framework for Predictive Complex Event Processing using Historical
Sequence Space 89

Definition 12: Temporal Z-value

Zτ = (Z, T, f) contains a Z-value Z, a set of timestamps T to denote its
timeline, and the frequency f of times Z appears in the historical space Hspace.

The essence of the temporal Z-value is that, due to the iterative nature of the
underlying fractal, it imposes the required sequential order of matched sequences on
Hspace. One other attractive feature of our indexing technique is that Hspace can be
efficiently stored and retrieved from the disk due to the linear properties of B+trees.

4.3.1 Querying Historical Space for Prediction
4.3.1.1 Pre-processing Stage

We first consider the case in which all the matched sequences in the Hspace are
of equivalent length (i.e. of same dimensions). In the pre-processing stage, we
first construct the range queries and their corresponding Z-values. For this task,
we maintain an inverted index to record the minimum and maximum values of
all dimensions in the Hspace. That is, if there are dp known dimensions in −→e p
and dm is the expected total dimensions of a −→e f , the minimum and maximum
values of the range query are defined as follows:

Xmin =
(
x1, . . . , xdp ,min(xdp+1), . . . ,min(xdm)

)
Xmax =

(
x1, . . . , xdp ,max(xdp+1), . . . ,max(xdm)

)
,

where ∀xi ∈ Ai,min(xi) ≤ xi ∧ max(xi) ≥ xi and note that x1, . . . , xdp are
already known as they correspond to the already known points in the partially
matched query. Also note that in case of summarisation, the procedure of tracking
minimum and maximum values is not affected because the values are not discarded,
but rather summarised. The range query points are then mapped onto the Z-values,
i.e. Zmin = Zval(Xmin) and Zmax = Zval(Xmax). These range query points are
used to traverse the B+tree. Furthermore, since both have the same values for
known dimensions, any of them can be used to determine if a point in the Hspace

can be enclosed by the range query points.
In the case of determining range queries when the Hspace contains variable

lengths (dimensions) matched sequences may be addressed in a similar way. For
example, if −→e f1= 〈e1, e2, e3〉 and −→e f2= 〈e1, e2, e3, e4〉 are two matched sequences in
the Hspace, a single range query will not cover both of them. One solution used
for this problem is to create different historical spaces and a set of range queries
covering different matched sequences of specific dimensions.

90 4.3. Our Approach

010101100

010 100 011

110001100

010 100 101

d1 d2 d3 d’
1 d’

2
d’

3

z zr

Two know
dimensions

10 010 0

g1
2 (z) g1

2 (zr)
10 010 0

Computing
Z-value

Computing
gs

Two know
dimensions

b

Figure 4.1: Z-value encoding and calculation of gsb over a point in Hspace (left) and the
range query point (right) with two known dimensions.

4.3.1.2 Post-processing Stage

In this stage, we search over the nodes of the B+tree that are intersected by a
range query constructed in the pre-processing stage. The idea is to extract elements
that lie in the range. This is done by checking the bits of known dimensions (i.e,
where values are known), of node’s Z-value Z and either the Zmin or Zmax value
of the range query that we call Zr. Let g be a function mapping the Z-value to a
bitstring (or binary number), we use gsb(z) (small caps for Z-value’s bitstring for
brevity) to denote all the b most significant bits of g(z), each skipped by s bits;
e.g. g1

2(z) = 1010 for z = 101101. We say that for two bitstrings z1 and z2 , z1 is a
b1-prefix-s1 of z2 , iff z1 is identical to all the highest (most significant) b1 bits in z2

each skipped by s1 bits ; e.g. 1010 is a 2-prefix-1 of 101101. Hence for a node’s
Z-value bitstring g(z) and given query range bitstring g(zr), we compute gsb(z),
gsb(zr), and if z is a t-prefix-s of zr, it shows that z is enclosed by the given range
query. The values of b and s are the number of known and unknown dimensions
in the given −→e p respectively. Thus, using fast bitwise operations, we can easily
find the contender set of points in the Hspace for prediction. Figure 4.1 shows the
computation of gsb(z) and the range query point gsb(zr).

The same gsb function is also used to match variable length sequence points
in the Hspace and range query points. However, in this case the values of t and
s are adjusted both for point z and range query point zr. For instance, if there
are two unknown dimensions and one known dimension in z, yet there are three
unknown dimensions and one known dimension in zr, the functions are as follows:
g2

1(z) and g3
1(zr). The skipping factor caters for the variability of length between

points in Hspace as well as the range query point.

4. A Generic Framework for Predictive Complex Event Processing using Historical
Sequence Space 91

QR QR in Top-k

No

Yes Increase QR
frequency in
Top-k and get

results

Top-k reaches
threshold

Yes

Summarise the
results of Top-k

queries in B+tree

Update QR
results in Top-k

from B+tree

Return
results

No
Search B+tree

and upate Top-k

Return
results

Figure 4.2: Range Query Processing with Summarisation

4.3.1.3 Reaching out to the Neighbours

The range query comparison and points in the Hspace are initially strict for each
prediction task. For a given partial match sequence −→e p, if the post-processing stage
cannot find similar sequences to generate a prediction, we assume that the partial
match contains some noise and the post-processing stage is dynamically relaxed.
This is done as follows: first we get the neighbouring points of the range query
Zr that lies under the same B+tree node; second we check the similarity of the
most significant bits (MSB) of the neighbouring point’s bitstrings gsb(z) and gsb(zr)–
called MSB similarity. Let h(gsb(z), gsb(zr)) be a function that determines the degree
of similarity between the MSB of two points; e.g. h(gsb(z1), gsb(z2)) = 4 for gsb(z1)
=011000 and gsb(z2) = 011011. Given two points zi and zj, if h(gsb(zi), gsb(zr)) <
h(gsb(zj), gsb(zr)), it shows that zj is closer to zr than it is to zi. Note that the above
similarity measures are designed by considering the nature of Z-order curves, and
techniques such as Hamming distance would not be appropriate in our context.
Furthermore, similarity measures are used to add ± error margins. The set of
neighbours with the highest MSB similarity according to the defined error margins
are then chosen for the predictive response.

4.3.2 Summarisation of Historical Space Points

Till now, we kept all the history. However, in the case if the memory optimisation
is desired we propose a summarisation technique. With summarisation, we aim
to maintain the advantages of both worlds: keeping all the history vs. forgetting

92 4.3. Our Approach

older points. Our idea is to compress the most infrequent queried matches while at
the same time preserving some of their information. The process of summarisation
is divided into two tasks: (1) continuously evaluating and updating top-k most
infrequent range queries generated by the system; (2) approximating summarising of
older points within the top-k range queries that are closer to each other in the Hspace,
according to their weights (i.e. f from Definition 12). This procedure is incremental
and applied continuously over the system’s life-time. The first task is well-studied
and we employ a sketch and heap structure to provide approximate frequencies and
the ordering of range queries. Our sketch stems from a count-min sketch [Cor11], but
we modify it to incorporate range query information. Once a defined window expires
for a pattern query, we extract the top-k most infrequent range queries in the sketch.

For the second task, as mentioned previously, the Z-order curve preserves the
proximity of points in Hspace. Hence, points under the same parent node in the
B+tree are inherently closer to each other. We use an approximate temporal Z-value
Ẑτ to summarise points under the same B+tree node which fall in the top-k most
infrequent range queries. Our approximation technique is based on the weighted
linear combinations (WLC) of Z-values. While other options exist, WLC has a
strong history of successfully modelling the irregular and continuous characteristics
of data according to observed weights. We compute Ẑnτ as a WLC of points closer
to each other, i.e. under the same B+tree node:

Ẑnτ =
n∑

i = 0
wi · Z iτ , and wi =

f(Z iτ)∑n
i=0 f(Z iτ)

where 0 < wi ≤ 1 denotes the weight given to a Z iτ . It is calculated from
the set of points to be summarised together. We assign higher weights to the
points having high frequency f in the Hspace, and f(Z iτ) is the frequency of the
ith point to be summarised.

The complete evaluation of range queries with summarisation is described in
Figure 4.2. Given an incoming range query QR, we first check whether QR exists
in the top-k or not. If not, we employ the usual range query search in the B+tree
and update the top-k for QR. Otherwise, we update the frequency of QR in the
top-k and return the result of QR. Furthermore, we check if the frequency of
the top-k range queries has reached the defined threshold. If so, we generate the
summary of range queries points and update the B+tree index. Otherwise, we
update the results of QR, if any, from the B+tree. Finally, the result generator
(in Figure 4.3) processes the results from the range query processor and sends it
to the user interface in an appropriate format.

4. A Generic Framework for Predictive Complex Event Processing using Historical
Sequence Space 93

4.4 Implementation

In this section, we would like to explain how Pi-CEP handles prediction using
pattern queries and customised parameters.

4.4.1 System Architecture

As mentioned already, the core functionality of Pi-CEP is implemented in Java, while
the user interface is implemented in HTML and JavaScript: the back-end interacts
with the user interface though Web Sockets. The high-level system architecture of
the Pi-CEP is shown in Figure 4.3. The event streams and pattern queries are fed
to the CEP engine, while customised parameters for the range queries, i.e. value
of k are fed to the range query processor. For our current implementation, we are
using the SASE CEP engine [WDR06]. This CEP engine produces full and partial
matches that are delegated to the Z-value and range query generator respectively.
The Z-values of the full matches are stored in B+tree index, while generated range
queries are delegated to the range query processor.

4.4.2 User Interface

The user interface is shown in Figure 4.4. It is used to provide the interactive results
of fully matched patterns and predictive events for partially matched patterns.
It consists of three main parts: the control panel (left); the graph display panel
(bottom right); and a fully/predictive matched pattern panel (top right). The
control panel is used to let users specify the input pattern queries (ready-made or
custom), and to select dataset and customised parameters for the range queries,
such as the k value etc. The graph display panel shows two real-time graphs: the
number of matched and predictive patterns; and the change in the size of the
underlying B+tree index with the arrival of events following the summarisation
process. The matched pattern panel shows the real-time matched set of events for a
defined pattern and the predictive events provided by our system. We use different
colour schemes for both of them to visualise it in an aesthetic fashion. Moreover,
the system can be paused and resumed to compare each produced result.

We designed three main features of Pi-CEP. (1) Our system can provide predictive
events. (2) Pi-CEP can efficiently evaluate and update top-k most infrequent range
queries generated by the system and then summarise the older points within top-k
range queries. The summarisation measures can be customised using different
values of k. (3) Pi-CEP equips a user-friendly interface to fulfil user-computer
interaction requirements in real-time.

94 4.5. Experimental Evaluation

Z-Value
Generator

Range Query
Generator

B+Tree
Based Index

Range Query
Processor

Top-k
Cache

Top-k Range
Query Index

CEP Engine

Match
Buffer

Fully Matched
Patterns

Partially Matched
Patterns

Trigger Range
Query

Search
Index

Update
Top-k Query

Results

Summarise
Index

Update
Range Query

Frequency

Return Results
from Cache

Result
Generator

Generate
Results
for UI

Pattern
Query

Data
Streams

Customised
Parameters

Insert
Full Matches

Figure 4.3: System Architecture of Pi-CEP

4.5 Experimental Evaluation

In this section, we evaluate the performance and precision of our proposed techniques.

4.5.1 Experiment Setup

Our algorithms are implemented using Java and evaluated on an Intel Xeon E3
1246v3 processor with 32GB of main memory and a 256Gb PCI Express SSD. It
runs a 64-bit Linux 3.13.0 kernel with Oracle’s JDK 8u112. For robustness, we
performed 10 independent runs and report the median values.

4. A Generic Framework for Predictive Complex Event Processing using Historical
Sequence Space 95

F
ig
ur
e
4.
4:

In
te
rf
ac
e
of

Pi
-C

EP

96 4.5. Experimental Evaluation

4.5.2 Datasets and CEP Queries

We use two real-world datasets for evaluation. All the datasets are first processed
using the SASE [WDR06] CEP system to generate partially matched sequences (PM)
and full matched sequences (FM) streams. These streams are then chronologically
fed to our system. The two real-world datasets include: the Activity Dataset and
the Credit Card Transactions Dataset (same datasets as chapter 3).

4.5.3 Accuracy Metrics

We provide the accuracy metrics as follows:

of correctly predicted PM
of PM

We keep the predicted PM until an FM arrives. Once an FM is detected, we
compare if the predicted PM satisfies the FM. Furthermore, k = 10 is set for all the
experiments and an error of ±5% is considered for correctly predicted PMs.

4.5.4 Precision of Prediction with Summarisation

The first question we investigate is “How useful is the summarisation process w.r.t
deleting older full matches?” This measures the effect of forgetting older matched
sequences on prediction. Figure 4.5(a) and (b) shows the prediction accuracy of
both datasets by varying the matched sequences. To showcase the effectiveness of
summarisation, we forget older matches after a window expires. From Figure 4.5, our
summarisation technique results in better accuracy as time passes, since older values
aid in predicting future matches. However, forgetting the history on the expiration
of a window results in reduced precision and only recently matched sequences are
used for prediction. Furthermore, since similar matched sequences repeat for the
activity dataset (Figure 4.5(b)), its evaluation provides better accuracy measures.

4.5.5 Comparison with other Techniques:

Next, we investigate “How our techniques compare to existing sequence prediction
techniques (i.e. CPT+ [Gue+15]) both in terms of performance and accuracy?” For
this task, we extend CPT+ to work on streams, i.e. the fully matched sequences are
inserted in a streaming fashion and partially matched sequences are used to predict
the sequences in a streaming manner. Note that CPT+ only supports sequences
with one-dimension, therefore, we use the Credit Card Transactions Dataset with
1-dimensional sequences. Figure 4.6(a) shows the accuracy comparison of both
systems. While Figure 4.6(b) shows the performance of inserting matched sequences
and querying predictive sequences while varying the number of fully matched

4. A Generic Framework for Predictive Complex Event Processing using Historical
Sequence Space 97

Figure 4.5: (a) Credit Card Dataset (b) Activity Dataset: Accuracy comparison of
prediction for the number of matched sequence;

Figure 4.6: (a) Accuracy comparison of prediction for the number of matched 1-
dimensional sequences (Credit Card Dataset); (b) Execution time in seconds for the
insertion and prediction

sequences. From Figure 4.6, our system outperforms CPT+ both in terms of
accuracy and performance. The reasons are summarised as follows: (i) CPT+
identifies frequent sequences in the training phase for efficient compression and
prediction. This however is not efficient in streaming settings (ii) Due to the
non-linear nature of CPT+ trie structure, it requires m comparisons for a sequence
of length m, and for n distinct sequences, the cost is O(m×n): the B+tree requires
O(log n) for the lookup and insertion with fast bitwise operations.

4.6 Conclusion
We proposed a solution for a predictive CEP system. Our aim was to predict future
matches from partially matched sequences using a historical sequence space. We
used a memory efficient and real time updatable data structure to index all historic
sequences. Then, we designed fast and accurate prediction algorithms. Additionally,
a summarisation approach was proposed to compress non-important sequences.

98 4.6. Conclusion

Our experimental analysis demonstrated the potential of our approach and
suggested that predictive CEP may well be best viewed as a distinct predictive
task. Our preliminary research indicates that the study of sequence mining and
prediction in CEP systems is promising and represents a new application of sequence
prediction in the field of the internet of things and sensor networks. Moreover, it
paves the way for further research possibilities on both predictive CEP systems
and sequential pattern mining algorithms. In future, we would like to improve the
prediction accuracy even more. We would like to also study if integrating machine
learning approaches with our system can improve the performance.

Part III

Real World Event Processing
Challenges

99

Introduction to DEBS Grand Challenges

In order to demonstrate the ability of our approaches, we participated in different
challenges. The overall goal of these Challenges is to provide a common ground
for researchers to evaluate and compare event-driven systems.

The ACM Conference on Distributed Event-Based Systems1 is a conference in
the area of event processing and offers a forum for researchers to exchange recent
developments around event-based systems.

The 2016 DEBS Grand Challenge [Gul+16a] focused on reasoning over social
network data to drive meaningful insights in real-time by defining two challenging
queries. These queries, each for a different reason, cannot be handled by traditional
techniques and therefore call for the development of specific architecture and data
structures. The main novel features of this challenge were defined as follows: In
the first query, the novelty was the non-linearity of the expiration of the elements.
Since a traditional sliding window is not suitable, we investigated data structures
offering the best tradeoffs for all the required operations. In the second query, unlike
traditional approaches where no persistent data is stored over the stream, we had to
manage a friendship graph which was persistent throughout the system execution.
Due to the centrality of this structure, a careful design was therefore required.

The 2018 DEBS Grand Challenge [Gul+18b] focused on spatio-temporal stream-
ing data. The novelty of this challenge was the combination of event processing
and predictive analytics. The goal of the challenge was to make the naval trans-
portation industry more reliable by providing predictions on vessel destinations
and arrival times.

Following this, in this part of this thesis, we present the questions asked in the two
Debs Grand challenges and the proposed techniques, which enabled as to contribute
to overcoming these challenges and to develop Upsortable – a portmanteau of
update and sort –. Upsortable is an annotation-based approach that allows
the use of existing sorted collections from the standard Java API for dynamic
data management.

The remainder of this part is structured as follows. Chapter 5 presents our
solution for the 2016 Debs Grand challenge. Chapter 6 presents our solution for the
2018 Debs Grand challenge which was ranked second in this challenge. Appendix
A provides guidance on the annotation-based approach Upsortable.

1http://debs.org.

101

102

5
High Performance Top-K Processing of

Non-Linear Windows over Data Streams

Contents
5.1 Introduction . 103
5.2 Input Data Streams and Query definitions 105

5.2.1 Input Data Streams . 105
5.2.2 Query definitions . 105

5.3 Architecture . 106
5.4 Query 1 Solution . 107

5.4.1 Data structures . 108
5.4.2 Algorithms . 110

5.5 Query 2 Solution . 112
5.5.1 Data Structures . 112
5.5.2 Algorithms . 115

5.6 Evaluation . 117
5.6.1 Experimental Settings 118
5.6.2 Queues implementation 119
5.6.3 Analysis of Query 1 Performance 119
5.6.4 Analysis of Query 2 Performance 121

5.7 Conclusion . 122

5.1 Introduction

Stream processing has matured into an influential technology over the past decades,
having a wide range of application domains including sensor networks and social
networks. As a result, we have seen a flurry of attention in the area of data stream

103

104 5.1. Introduction

processing. However, issues such as the identification of the most frequent elements
(top-k) over graph structured networks, while considering the non-linear dynamic
window model has not gained much attention in previous studies.

The 2016 DEBS Grand Challenge [Gul+16a] surfaced such issues, where a social
network use case is considered. We herein summarize the two main queries/re-
quirements for this challenge.

1. The identification of the top-3 active posts according to their scores which
are computed in streaming settings: Scores of posts are increased with the
arrival of new post-related comments and are decreased on expiration of
related-comments and own score. This conforms to a non-linear window
model.

2. The identification of social contagion in dynamic streaming settings. That
is, given a window and the value of k, determining the top-k comments
shared/liked between friends in the neighbourhood. The size of the largest
clique determines the influence of a certain comment posted by a person.

Both the aforementioned queries present two orthogonal domains of interest
and require different techniques to satisfy their requirements; however the basic
constraints of stream processing are shared by both.

One naïve way of addressing the requirements of both queries is to compute the
entirety of changes on each update and to reinitialize the process of identifying the
top-k element for each newly observed change. Clearly, this naive method is too
expensive in a streaming environment. In addition, the discussed state of the art Top-
K algorithms in section 2.6.2 are adequate only in the case of linear data expiration
and append-only data streams. However, to efficiently find the top-k posts according
to their scores and the top-k comments with the highest influence in the connected
network, the system should utilize certain guarantees to prune the search space
based on some upper bound scores, and postpone the evaluation of query operators.

In this chapter, we present the solutions to the questions asked in the DEBS GC
2016. We propose several efficient and effective methods of enabling a lazy evaluation
of non-linear window elements in Query 1. For this, we devise an easily computed
upper-bound based on the temporal evolution of the posts. For Query 2, we rely on
Turan’s theorem [Tur41] to obtain guarantees on the absence of k-cliques in a graph.
This lower-bound saves on numerous useless computations, especially in streaming
settings. To store the global friendship graph, we propose two alternatives based on
roaring bitmaps and Bloom-filter to handle the frequent updates and access in the
community graph (i.e., friendship graph). The community graph is implemented by

5. High Performance Top-K Processing of Non-Linear Windows over Data Streams105

an array-based data structure to efficiently determine cliques (i.e. identify social
contagion or community detection) in the streaming settings.

The remainder of this chapter is structured as follows. Section 5.2 provides
information about the data stream and query definition as defined by the DEBS
organizers. Section 5.3 outlines the architecture of our proposed approach. Section
5.4 and 5.5 discuss customised solutions for both Query 1 and 2. Section 5.6 presents
our experimental studies and Section 5.7 offers concluding remarks.

5.2 Input Data Streams and Query definitions

5.2.1 Input Data Streams

The input data is organized in four separate streams, each provided as a text file.
Namely, the following input data files were provided:

• friendships.stream: < ts, userid1, userid2 >, where ts is the friendship estab-
lishment timestamp, userid1 is the id of one user and userid2 is the id of
another.

• posts.stream: < ts, postid, userid, post, user >, where ts is the post timestamp,
postid is the unique id of the post, userid is the unique id of the user, post is
a string containing the actual post content and user is a string containing
the user’s actual name.

• comments.stream: < ts, commentid, userid, comment, user, commentreplied,

postcommented2 >, where ts is the comment timestamp, commentid is the unique
id of the comment, userid is the unique id of the user, comment is a string
containing the actual comment, user is a string containing the actual user
name, commentreplied is the id of the comment being replied to (-1 if the tuple
is a reply to a post) and postcommented2 is the id of the post being commented
on(-1 if the tuple is a reply to a comment).

• likes.stream: < ts, userid, commentid >, where ts is the like’s timestamp,
userid is the id of the user liking the comment, commentid is the id of the
comment.

5.2.2 Query definitions

The following are the criteria for the two main queries as defined by the chal-
lenge organizers:

106 5.3. Architecture

5.2.2.1 Goal of Query 1

The goal of query 1 is to compute the top-3 scoring active posts, producing an
updated result every time they change. The total score of an active post (P) is
computed as the sum of its own score plus the score of all its related comments.
Active posts with the same total score should be ranked based on their timestamps
(in descending order), and if their timestamps are also equal, they should be ranked
based on the timestamps of their last received related comments (in descending
order). A comment (C) is related to a post (P) if it is a direct reply to P or
if the chain of C’s preceding messages links back to P . Each new post has its
own initial score of 10 which decreases by 1 each time a span of 24 hours elapses
since the post’s creation. Each new comment’s score is also initially set to 10 and
decreases by 1 in the same way (every 24 hours since the comment’s creation).
Both post and comment scores are non-negative numbers. That is, they cannot
drop below zero. A post is considered no longer active (that is, no longer part
of present and future analysis) as soon as its total score reaches zero, even if it
receives additional comments in the future.

5.2.2.2 Goal of Query 2

Given an integer k and a duration d (in seconds), find the k comments with the
largest range, where the range of a comment is defined as the size of the largest
connected component in the graph defined by persons who (i) have liked that
comment (see likes, comments), (ii) know each other (friendships), and (iii) where
the comment was created no more than d seconds ago.

5.3 Architecture

Figure 5.1 illustrates the overall architecture of our system. In order to parallelize
query processing, the first step is to divide the system into a set of threads (i.e.,
Query 1 and 2 processors, input handler and output handlers for both queries), and
replace the method calls between task boundaries with queues accordingly. Thus,
given a set of files/streams containing events from Comment, Like, Friendship and
Post streams, the data parser efficiently parses the events for these streams. The
events are reordered according to their timestamps and queued into the respective
queues: Query 1 only takes events from the Post and Comment streams, while
Query 2 takes events from Likes, Friendship and Comment streams. We employ a
set of different types of queues (blocking, non-blocking) to determine bottlenecks
and the efficiency of our systems. Such discussion and explanations of queues
is provided in the later sections.

5. High Performance Top-K Processing of Non-Linear Windows over Data Streams107

Data Parser

Q1

Q2

Input Handler

Result Writer

Q2

Q1 Processor

Q2 Processor

Top-K
Manager

Clique
Manager

Friendship

Graph

Result Writer

Q1

Q1 Output Manager

Q2 Output Handler

Potential
Candidates

Manager

Non-linear
Window
Manager

Top-3
Manager

Figure 5.1: Abstract Architecture of the System

The specificity of Query 1 is the non-linearity of the expiration of its elements.
To tackle this issue, the non-linear window manager is a trade-off between fast
iteration – for removal – and fast update operations. The Query 2 processor employs
a persistent friendship graph which is updated continuously for each newly arrived
friendship event. This friendship graph is then utilised by the clique manager with
the arrival of a Comment or Like event to determine the top-k most influential
comments in the neighbourhood.

The query processors compute a list of top-k elements. When a change is
detected it is sent to an output handler in order to avoid I/O pressure on the
computing threads.

5.4 Query 1 Solution

In standard stream processing settings, elements expire in a linear fashion. Here
in Query 1, the expiration of an element (i.e., a post) is subjective to its score
reaching the value zero. Since the arrival of a new comment for a post increases
its value, the main interest and complication of Query 1 reside in the fact that
elements do not expire in a classical sliding window manner. Another interesting
point of Query 1 is the cost of the posts’ scores computation: it is an expensive
process and should therefore be avoided through the use of less expensive bounds
on scores. We first discuss the data structures used for managing expiration, upper-
bound and top-3 in Section 5.4.1. Algorithms that employ these data structures
are discussed in Section 5.4.2

108 5.4. Query 1 Solution

Remove expired
comments

Ordered by
expiration date DESC

Ordered by potential
Score DESC

O(1) O(log(n))

New post

New comment

O(1) O(log(n))

TOP 3

Modification
occurs in

update Top 3

Modification
occurs in

update Top 3

Remove
Update
Insert

O(log(n))

Update TOP 3 No changes No changes

O(n)

Remove
Update
Insert

O(log(n))

Figure 5.2: Computational complexity for the different operations on the various data
structures of Query 1. (DESC: Descendent)

5.4.1 Data structures
5.4.1.1 Posts eviction

To ensure that a post will expire, the simplest condition is that the last updates
it receives is older than 10 days. By an update, we understand here the fact that
a new comment has been linked to the post; therefore adding a value of 10 to
the current score. Hence, we do not need to compute the exact score which is a
computational expensive process, thus saving precious CPU resources.

To speed-up the process of posts eviction, we maintain the posts ordered by
their ascending expiration date in a data structure called expdate. The process of
updating the expiration date of a comment consists of first removing the post from
the structure; and updating its value and adding back the value into the sorted
structure: this process does not depends on the underlying sorted structure.

A simple sorted list is not a satisfying solution for sorting posts by their ascending
expiration date, since adding back the value has a worst case computational
complexity of O(n). The number of posts in this structure is large and such
complexity is not efficient. We therefore rely on a TreeSet structure backed by a
red-black tree, hence guaranteeing O(log(n)) for insertion and removal. To evict
comments at each tick, we poll the head of the tree – a constant time operation
– until the current head’s removal is valid.

5. High Performance Top-K Processing of Non-Linear Windows over Data Streams109

5.4.1.2 Score management

The potentialScore data structure holds the posts that are the candidates to
enter the top-3 structure. Since the computation of the exact score is an expensive
process, we aim to use a less expensive upper-bound to sort the candidates to avoid
the exact score computation as much as possible.

Following the procedure of the posts’ eviction, posts are sorted by their upper
bound albeit in descending order. When a post has a sufficient upper-bound to enter
the top-3 list, its exact score is computed to affirm such hypothesis. We rely on a
TreeSet structure to guarantee worst case O(log(n)) for all required operations:

Post expiration The post may be at any place in the tree, therefore complexity
is O(log(n)).

New post The post has a score of 10, which is neither guaranteed to be an upper
nor lower value in the tree, hence a O(log(n)) complexity.

New comment If the upper-bound of the related post has increased, we first
remove the post, update its upper-bound, and add it back to the structure.
Insertion and removal are both in O(log(n)).

Therefore the posts belong to two data structures: one for the management of
eviction process and the second for score management. The algorithm of Query
1 ensures that both structures remains consistent.

5.4.1.3 Comments related to posts

To store comments related to a post, we decided to use a compact representation: we
only store the ids of the comments into a list. Comments are added in chronological
order, and their expiration is also chronological. It provides the guarantee that an
earlier comment will expire before a later one, which is not the case for the posts.
We could only retain the valid comments by checking and removing comments
when required. This operation is costly and unnecessary, although keeping expired
comments in memory does not require much space, and the space-time trade-
off is definitely worth it. Comments related to a post are thus only removed
when the post expires.

Comments are stored in an array-list of long next to their time of arrival. The
time of arrival is used to determine whether a comment is still considered valid.
Figure 5.3 depicts this structure. At time 11, the first comment has expired, the
offset is set to 3. At time 21, the second comment also expired, thus the offset
points to the first valid comment at index 5.

110 5.4. Query 1 Solution

Figure 5.3: Storage of the comments related to a post. The offset gives the index of the
first valid comment.

5.4.1.4 Top-3

Query 1 retains only the top three elements, whereas Query 2 has k as an input
parameter. Thus, we use the low value of k = 3 to our advantage and use a special
implementation that is efficient for a low value of k: a top-k structure using a
primitive array of three pointers to the top three posts. We use an in-place insertion
sort algorithm to sort the array after removal/insertion. Insertion has a very
high computational complexity (O(n2)). However, for small arrays, it is the most
efficient sorting algorithm. Its space complexity is constant, therefore there is no
object creation/destruction that overloads the garbage collector (automatic memory
management). The small value of k implies that the complete array fits in a cache
line, thus guaranteeing high performance. Since there are many insertions/deletions,
at each clock time, the performance gain is quite noticeable.

5.4.2 Algorithms
5.4.2.1 Workflow

Our solution for Query 1 consists of the following three steps: first, we update the
internal timestamp; second, we process the post or the comment to update the
internal structures; third, we remove expired values, and update the top-3 list if
required. The first and last steps are independent of the nature of the input, while
the second step depends on whether a post or a comment has arrived.

For the arrival of a new post, we add this post to both potentialScore and
expdate. If a comment arrives, we first ensure that the post it relates to is
valid. If the related post is valid, we add the commenter to the list described in
Section 5.4.1.3. We increase the upper-bound of this post by 10, thus updating
the state of potentialScore. We also update the expiration date of the post;
resulting in a change in the state of expdate.

5. High Performance Top-K Processing of Non-Linear Windows over Data Streams111

5.4.2.2 Top-3 entrance

As stated in the previous section, we delay the computation of the exact score
using an upper-bound to filter out useless computations.

In order to determine the top-3 candidates, we iterate over the posts stored
in potentialScore until the current post’s potential score – an upper-bound on
the exact score – is smaller than the third element in the top-3. If a post is a
potential candidate, we compute its exact score, update the value of the potential
score to this score and, if the score is larger than the smallest one in the top-3,
the post is added to the top-3 array.

A trivial upper-bound can be computed by simply adding 10 to a post value
every time a new related comment arrives. However, such a bound, while correct,
is not efficient enough to avoid useless computation. We refine this upper limit by
calculating when the post will see its score decrease. This value, called nextDecay,
is initialized a day and a millisecond after the timestamp of the post. An associated
value, called maxDecay, indicates by how much the upper-bound can be refined.
These values are used to refine the upper-bound in the following way: at the
current timestamp ts, we use nextDecay to compute the number of days nDays
elapsed between ts and nextDecay. We can then safely decrease the value of the
upper-bound (potentialScore) while determining the minimum value between
nDays and maxDecay. maxDecay is used to avoid the following pitfall: the current
timestamp being 15 days after nextDecay (nDays = 15). It is impossible that the
decrease in the score, inputed to a single comment or to the post, be larger than
the days this comment/post has before expiration: nextDecay is updated during
the exact score computation. The next decay is computed for the post and each
of its valid comments, the minimum value is then kept.

5.4.2.3 Lazy commenters evaluation

The most costly operation, during the computation of the exact score of a post,
is to compute the set of commenters. A naive approach would use a multiset
to store the commenters of the post and to maintain this structure throughout
the life-time of a post. This method proves to be ineffective in practice due to
unnecessary computations. As we presented before in Section 5.4.1.3, we maintain
an array-list of long to store the id of the commenters along with their timestamp.
Hence, we use a lazy evaluation strategy for the set of commenters. The set (a
hashset), is initialized only when the score computation takes place and there is at
least one valid comment. On this first call to this set building method, all valid
commenters are added to the set. On subsequent calls, if some comments have
been flagged as expired by changing the offset during preceding steps, the set is
cleared. Otherwise, we add the newly added comments.

112 5.5. Query 2 Solution

In addition to this, we have to clear the set if some comments have expired,
since removing the commenter from the existing set could corrupt the data. Thus,
if a commenter has commented twice on the same post and his/her first comment
expires, he/she remains a commenter of the post.

5.5 Query 2 Solution

5.5.1 Data Structures

Given the Query 2 complexity, it is quite evident that several data structures are
required to provide a tractable solution – each catering for different level of indexes.

5.5.1.1 Dense Numbering and main indices

To store comment and user identifiers, we opt for a dense numbering scheme, which
has been proven to be very effective for real-time applications especially for the
streaming databases [Sub+16; Che+15]. This technique is summarized here for
completeness. Query 2 maintains two counters initialized with the value of 1 – one
for users and one for comments – which are the two dense number generators for
comments and users long identifier mapping to int values.

Using a dense numbering scheme not only prevents the explosion of memory
footprint (it’s upper bound is 8 Gigabyte for the setting of Grand Challenge), but
also serves the purpose of an array-based data structure for storing comments liked
by each user. Such details are discussed in subsection 5.5.1.5.

Table 5.1 presents the preliminaries of our two dense numbering schemes, and
a list of the main data structures utilised for Query 2.

5.5.1.2 Friendship graph

The friendship graph is a crucial data structure for Query 2 as it grows monotonically
(friendship links are added and never deleted), and its size evolves with time as new
users enter the system. It is highly solicited for testing friendships between users and
to determine who is affected by the arrival of a new event. Thus, it has to scale well
with respect to the number of users while maintining an acceptable memory footprint.

We tested several solutions, each providing a different space/time trade-off. We
recall first that the users are identified by a dense number, which could be used
as an index in a data structure. A first naive solution is to store the similarity
matrix of friendship between users as a two-dimensional array of boolean values.
Each cell is initialized to zero, and one entry encodes a friendship relation for the

5. High Performance Top-K Processing of Non-Linear Windows over Data Streams113

Table 5.1: Main data structure used in Query 2

Name Type Description
comments2dense Map<Long, Integer> long ids of comments are mapped to

an int using dense numbering.
dense2comments Map<Integer, Q2Comment> comments dense ids are mapped to

Query 2 comments instances.
userLikedComments Map<Integer, OffsetIntArrayList> Map a user dense id to the array

of dense comments it has replied on.
These array are tailored for out tasks
and described at Section 5.5.1.5.

commentLikes Map<Integer, List<Integer> > Inverse index of userLikedComments
: comment dense ids a remapped to
the user who like this comment.

dense2users LongArrayList Array whose index is a dense user
id and the corresponding value the
actual long original id of the user.

users2dense Map<Long, Integer> Reverse index of dense2users

user at the i-th line and the user at the j-th column1. Such a solution would be
lightning-fast given the nature of primitive arrays and their storage as contiguous
elements in the memory, but it would be very sparse: when the number of users
keeps growing, this does not scale in terms of memory footprint – even when
only considering the triangular superior matrix of friendships since the friendship
property is symmetric in this task.

In order to address sparsity and scalability, a common solution is to use bitmaps.
For each user, we can associate a vector of n bits, where n is the current number of
known users, or a sufficiently large number in order to scale with the task at hand.
For a user u1, when the i-th bit of its bitset is set, this encodes that u1 is a friend
of u2. This is a fairly better solution when the number of users is small. With the
increase in the number of users, however, it reaches the same memory footprint of
the first solution in the situation of a full dataset as provided by the organizers.

We therefore came up with two competitive alternatives, and selected the
one with the best performance.

5.5.1.3 Roaring bitmap friendship graph

Roaring bitmaps [Cha+15] are compressed bitmaps. Unlike their alternatives
[LKA10], roaring bitmaps provide random accesses without the extra overhead of
uncompressing the entire compressed bitset. That is, to check if the i-th value
is set, roaring bitmap splits the entire bitmap in chunks, where each chunk is

1providing our dense numbering scheme starts at 1, there is a −1 translation to be performed
when using their dense identifier as indexes in such array. This is also true for other solutions
relying on the dense numbers as indexes.

114 5.5. Query 2 Solution

an uncompressed bitmap. This is a valuable property that can be utilised in
our case, since the friendship graph is accessed frequently. At the same time,
the compression offered by the roaring bitmaps makes it possible to scale in
terms of memory footprint.

5.5.1.4 Friendship graph with hashmap and bloom-filter

As an alternative to roaring bitmaps, we utilise a combination of hashmaps and a
bloom filter for the friendship graph. The basic idea is as follows: the friendship
graph is a hashmap with int to Friend mappings, where the object Friend contains
a set of users that are friends of a user identified by a dense number (int) i =
dense(uk). This enables the addition of new friendship relations and to test the
friendship relation between two users. This may sound counter-intuitive to map
primitive data-types to an object (given objects instantiation time and garbage
collection), but keep in mind that we would only instantiate this object once per
user in the entire timeframe of the system. The interesting point therefore is how
the Friend object handles the collection of user’s friendship. In our implementation,
each Friend object holds a hashset to group the set of friends – each identified
with a dense generated number – for a specific user uk. This structure handles
the insertion of users’s new friends. To prevent frequent costly access to the
hashset and to test whether a user is a member of the hashset, we employ a bloom
filter. Since users are more likely not to know each other, bloom Filter presents
an interesting data structure increase in speed.

We evaluated them using the test set provided by the organizers2. The value
for parameter d (sliding window size) was set to 12 hours (as recommended by
the organizers) and k to 10. It follows that the roaring bitmap approach, on the
average of 10 runs, is significantly outperformed by the combination of hashmaps,
hashset, and the bloom filter approach – this makes it the solution of choice for
the friendship graph data structure in our submission.

5.5.1.5 Comments liked by each user

The friendship graph provides the basic building block for processing Query 2.
However, to compute the maximal friendship clique (i.e. community) for a comment
posted by a user, we require an additional data structure. The new data structure
stores comments liked by each user and is subjected to high insertion rates (each
time a Like event is received) with frequent read operations; the score of a comment
is updated by determining the neighbourhood it has influenced. For this task,
we employ an array-based data structure. The only issue is that the comments

2http://bit.ly/1QRZkU3

5. High Performance Top-K Processing of Non-Linear Windows over Data Streams115

2 1 238 XX X

Before insertion

0 1 2 3 4 5 6

o�set
obsolete
comment

valid
comments

null
values

3 1 238 X17 X

After insertion

0 1 2 3 4 5 6

o�set
obsolete
comments

valid
comments

null
values

Figure 5.4: A sample array of sorted dense comment ids for a user. On the left is the
state of the array before an insertion. On the right, is the new state of the array after an
insertion occurs at a timestamp for which the older comment in the window has a dense
id value of 9.

become obsolete when they leave the sliding window. We hereby devise a solution
similar to that used in Query 1. That is, using an offset to indicate the position
of the first valid comment in the array.

The offset utilised by the array to locate the first valid comments requires careful
management. It is not desirable to update this offset each time the window slides,
as in this case we need to update the offset for each newly arrived event for a
user. Thus, we utilize a lazy update technique that is executed on two different
occasions. The first update is on insertion in a specific array. Each time a new
value is added to the table by a right-to-left traversal of the array until an obsolete
comment is encountered. The second update is executed each time we actually
read the array to compute the intersection of a given array with another array
(actually computing the comments two users have in common). When computing
this intersection we will inevitably encounter obsolete comments but only once since
we will then update the offset of both arrays as we are traversing both of them
to compute the intersection. This approach provided us a factor of improvement
between 2 and 3 of the throughput in our solution.

5.5.2 Algorithms
5.5.2.1 Outline of Query 2 processing

Algorithm 5 illustrates the execution of Query 2 for each newly arrived event
(Comment, Friendship, or Like events). It has the following steps.

1. A preprocessing step updates the set of comments to be taken into account
(the method is named updateWindow). This methods returns the dense id

116 5.5. Query 2 Solution

of the oldest comment in the window (any comment whose id is lower then
this threshold will be discarded). This is useful in preventing an unnecessary
full scan of users for each iteration. Simply, we remove the comments’ Id a
user has replied to, if the returned comment Id is lower than the threshold.
However, this maintenance would be too expensive, and thus is only done
periodically. Due to memory footprint reasons, we cannot afford to keep all
comments’ Id in the other data structures. Hence, all the obsolete comment
ids are removed from the remaining data structures using a call to the clean()
method. This is also a mandatory step as the obsolete comments may have
been inserted as a top-k item. Thus, the method clean ensures that the top-k
list no longer contains obsolete items for this new clock tick.

2. A second step implements the main procedure for processing events from
Comment, Friendship or Like by employing the corresponding process. The
call to processComment() is very straightforward; a new dense Id is associated
to the new comment, the dense numbering indexes are updated accordingly
and the comment is added to the current window. The remaining processes
(processFriendship() and processLike()) encompass a complex behaviour
and are presented in the aforementioned discussion.

3. The last step is performed regardless of the type of event (e.g. Comment,
Friendship or Like). We first insert new items in the top-k if the cardinality
of the list is less than k. This happens if we removed comments in top-k in
the preprocessing step, and where the processing of the event did not allow
for the top-k to complete. In this case, older comments – which are still in
valid – should be promoted in the top-k. We first identify those comments
and then insert them in the top-k. This process is triggered when calling
updateTopkIfNecessary(). It is slightly tedious. It in fact relies on a sorted
list of the minimal size of the largest clique for each valid comment, See
Section 5.5.2.4 for detail on the lower bound used to minimize computation.
The second post-processing task is straightforward; if there is a change in the
top-k values/order, the results are passed on to the result-serialization thread,
as previously described in the global architecture (see Figure 5.1).

5.5.2.2 Process likes

Whenever a like is processed, we add the like to the list of integers in commentLikes.
We then recompute the friendship subgraph for the curren comment. If the number
of edges is larger than the lower-bound (see Section 5.5.2.4), the largest clique
is computed using the implementation of McCreesh [MP13], based on Tomita’s
algorithm [TS03], which is very efficient on dense numbered nodes.

5. High Performance Top-K Processing of Non-Linear Windows over Data Streams117

Algorithm 5: Outline of query 2 processing an event
Input: DebsRecord : event

1 � preprocessing threshold← updateWindow(event)
2 clean(event.getT imeStamp())
3 � actual event processing w.r.t its type
4 if the event type is comment then
5 processComment(event)
6 else if the event type is friendship then
7 processFriendship(event)
8 else if the event type is like then
9 processLike(event)

10 � postprocessing
11 updateTopkIfNecessary()
12 writeResult()

5.5.2.3 Process friendship

An incoming friendship modifies the state of the global friendship graph, and
consequently the subgraphs of the comments that are liked by the two users who
are now friends. We therefore compute the list of comments concerned and apply
for each of them the same process as the comment concerned by Process like.

5.5.2.4 Lower bound on clique computation

Turan’s Theorem [Tur41] gives an upper bound on the number of edges for a n
nodes graph to contain a r-clique, i.e. a clique of r nodes.

theorem 2: Turan’s Theorem

To find k-clique in G(V,E) with n vertices : k � n(n-1)/2 and k�E Theorem
of Turan: Let G(V,E), n vertices without k-cliques, then |E|� [(k-2)n2]/
[2(k-1)]

Whenever a change occurs and a comment is a candidate to enter the top-
k, we first validate that its number of edges is sufficient to contain a clique of
r nodes, where r is larger than the clique of the last comment from the top-k.
This provides a very quick way to determine if it is worth computing the size
of the maximal clique for this graph.

5.6 Evaluation
A global system evaluation was performed by the organizers and our system exhibits
the following performance: 142K events/second and 1 and 0.7 millisecond average
latency for the first and second queries, respectively. We therefore use this section
to detail query specific evaluations, with a particular focus on the impact of
the message-passing queues.

118 5.6. Evaluation

d k LinkedBlockingQueue BufferedLinkedBlockingQueue LockFreeBlockingQueue

T L time T L time T L time

1

1 352 1.06 158486 500 2.98 111714 505 0.95 110666
3 362 0.99 154107 520 2.91 107426 469 1.00 119125
10 359 0.89 155634 515 2.91 108476 514 0.97 108747
30 365 0.96 152904 522 2.87 107018 470 0.86 118808

60

1 384 0.24 145545 514 1.95 108716 505 0.25 110573
3 381 0.23 146472 504 2.04 110821 501 0.20 111453
10 386 0.24 144686 511 2.17 109369 487 0.21 114608
30 365 0.24 153101 513 1.99 108802 492 0.23 113483

72
0

1 394 0.40 141720 505 3.11 110500 495 0.47 112855
3 407 0.31 137499 502 2.52 111170 513 0.30 108969
10 373 0.41 149838 516 2.07 108231 496 0.30 112546
30 400 0.31 139762 496 3.44 112657 488 0.27 114480

14
40

1 405 0.80 137996 496 3.72 112670 490 0.70 114036
3 396 0.58 141140 491 6.25 113733 471 0.59 118764
10 410 0.68 136200 501 19.70 111407 478 0.74 116778
30 400 1.01 139680 493 246.61 113184 471 1.17 118644

Table 5.2: Performance of our solution on the large dataset for Query 2 only
provided by the organizers with respect to variation of window size (d) in minutes,
number of elements in top-k, and different event passing queues (LinkedBlockingQueue,
BufferedLinkedBlockingQueue and LockFreeQueue). Throughput values (T column) are
expressed in kilo-events per seconds, latencies (L column) in 10−4 seconds, and execution
time (time column) in miliseconds.

5.6.1 Experimental Settings

Metrics (Query 1). For Query 1, we varied the number of processed events while
employing different kinds of queues to evaluate its effect on performance. As the
window is of a non-linear type, the number of events determines the granularity
with which the window slides. We utilise different kinds of queues: the standard
blocking queue, the buffered blocking queue, and the lock-free queue.
Metrics (Query 2). For Query 2, we varied a number of different parameters
including: the size of the window in seconds, the value of the k, and the type of the
queue. These parameters have varying effects on performance and provide useful
insights for Query 2 performance.

Dataset. We use the same dataset that which was provided by the Grand Challenge
committee for the evaluation of both queries. The dataset contains four streams,
namely Comment, Post, Like and Friendship stream. In total the dataset contains
about 55 million events.

5. High Performance Top-K Processing of Non-Linear Windows over Data Streams119

Configurations. All the experiments were performed on an Intel Xeon E3 1246v3
processor with 8MB of L3 cache, and we report averages of over 10 runs. The
system is equipped with 32GB of main memory and a 256Go SSD hard disk drive.
It runs a 64-bit Linux 3.13.0 kernel with Oracle’s JDK 8u05.

5.6.2 Queues implementation

The architecture of our solution, described in Section 5.3 highlights the fact that
the various threads communicate via message-passing. We therefore heavily rely on
queues that are used to pass raw events from parser to query processors, and we
processed top-k from query processors to writer threads. We used three different
queues in this configuration, Java’s LinkedBlockingQueue (LBQ), a buffered version
of our own that holds n events in a single slot (BLBQ). We also use a lock-free
implementation, with the single producer single consumer Lock Free Queue (LFQ)
from JCJT 3, an implementation of [GMV08]. The lock free queue is expected to
have a lower latency than other queues, at the cost of a higher CPU usage. Since
there are no locks, threads keep running in loop, waiting for an event to arrive.

5.6.3 Analysis of Query 1 Performance

Figures 5.5, 5.6 and 5.7 showcase the effect of queues on the latency and throughput
values. From these figures, we can see that the BLBQ entails the highest throughput.
However, it does result in higher latency values. This phenomenon can be explained
as follows. The BLBQ queue works on a batch-based mode where a batch of events
are added at once. Conventionally, this is done using mutual exclusion; processes
modify the queue with a batch of events only and the process is guaranteed exclusive
access to the queue. This increases overall throughput, however, with dire effects
on the latency. The LFQ, contrary to LBQ and BLBQ, provides concurrent access
to the queue among multiple processes. Slow or stopped processes do not prevent
other processes from accessing the queue. Thus, the processes are not locked on
the queue and there are a fair gains in terms of latency, without compromising
the system throughput. For these reasons, we opt to use LFQ for the submission
of the Grand Challenge solution.

The second observation that can be inferred from the Figure 5.5, 5.6 and 5.7 is
as follows. With the increase in the number of events, there is no sharp drop in
throughput values. That is, the throughput value do not follow a linear behaviour
pattern per se. This is because of the lazy evaluation of the posts’ score. Thus, if a
post has a significant upper bound (i.e., probability) to enter the top-3 list; only then
is its exact score calculated. If its score is greater than the posts’ score in the top-3
list, it enters the top-3 list. This strategy greatly reduces computation overheads.

3http://jctools.github.io/JCTools

http://jctools.github.io/JCTools

120 5.6. Evaluation

Figure 5.5: Buffered Linked Blocking Queue.

Figure 5.6: Linked Blocking Queue.

5. High Performance Top-K Processing of Non-Linear Windows over Data Streams121

Figure 5.7: Lock Free Blocking Queue.

5.6.4 Analysis of Query 2 Performance

Table 5.2 presents the performance of Query 2 with respect to the changes of values
k and the size of the window. Different queue choices also had an effect on Query
2 performance, and the observations of different queues can be directly borrowed
from the analysis of Query 1. For example, consider the performance measures of
BLBQ in Table 5.2. It provides the best throughput as compared to other queues.
It results in higher latency values however. We also use LFQ for Query 2 in the
submission of Grand Challenge solution. Second, the value of k does not have any
significant effect on the query performance. The most noteworthy, however, of
the values of k are the lowest ones, as the query processing is faster for the small
values of k. This is because for a small value of k, each newly arrived comment can
become a contender for the top-k spot. This results in the reshuffling of comments
and computations of cliques resulting in the worst-case in terms of performance.
Third, the query performance does not degrade linearly with the increase in the
window size. Such behaviour is attributed to our lazy evaluation technique for
clique computations. Thus, deferring the complete computation of a clique does
not waste extra computer resources and results in lower latency values and higher
throughput. Clique is calculated if either some elements are removed from the top-k
data structure or if the changes in the friendship graph surpass the threshold.

122 5.7. Conclusion

5.7 Conclusion
In this chapter, we described our solution to the 2016 edition of the DEBS Grand
Challenge. In the design of our solution, we carefully took care of optimizing every
part of the system. Fast data parser, efficient message-passing queues as well as
devising efficient fast lower and upper bounds to avoid costly computation, were
the keys to the success of our approach. Similarly, the choices and designs behind
the most frequently used data structures (sorted elements, friendship graph) largely
contributed to overall system performance. On the basis of this experience, we
have realized that Programming languages have evolved to answer the need for
data stream processing. Be it with Domain Specific Languages [Bos+14; Su+14;
TKA02], language extensions [SB13; EJ09] or with the developement of standard
APIs like Stream for Java. This field demonstrated many advances in the last few
years. However, the existing data structures of these languages have been designed
for static data processing and their correct use with evolving data is cumbersome
– top-k query processing requires maintaining sorted collections. We identified
that maintaining sorted collections of dynamic data is particularly error-prone
and leads to hard-to-detect bugs. Thus, in the Appendix A, we tackle the issue
of maintaining dynamically sorted collections in Java in a safe and transparent
manner for the application developer. For this purpose, we developed an annotation-
based approach called Upsortable – a portmanteau of update and sort – that uses
compilation-time abstract syntax tree modifications and runtime bytecode analysis.
Upsortable is fully compatible with standard Java and is therefore available to
the greatest number of developers.

6
A Scalable Framework for Accelerating

Situation Prediction over Spatio-temporal
Event Streams

Contents
6.1 Introduction . 123
6.2 Input Data Streams and Query definitions 125

6.2.1 Input Data Streams . 125
6.2.2 Query 1: Predicting destinations of vessels 126
6.2.3 Query 2: Predicting arrival times of vessels 126

6.3 Preliminaires . 127
6.4 The Framework . 127
6.5 Experimental Evaluation 129

6.5.1 Evaluation [Gul+18b] 129
6.5.2 Results and GC Benchmark 130

6.6 Conclusion . 131

6.1 Introduction

The tremendous increase in the use of cellular phones, GPS-like devices and RFIDs
has resulted in the rapid increase in new spatiotemporal applications. Examples of
these applications include traffic monitoring, supply chain management, enhanced
911 services, etc. These applications continuously receive data from mobile objects
in the form of event streams that are processed in a continuous manner. Another
extension of these applications is to enable predictive analysis to envision proactive

123

124 6.1. Introduction

functionality. This adds to the existing challenges of processing event streams,
which are of high volume and velocity, with real-time responses.

This chapter deals with the DEBS Grand Challenge 2018, where we provide
a generic solution to a naval transportation problem of situation prediction over
spatiotemporal event streams. Our solution is an adjustment in the approach
previously presented in chapter 4, used for the prediction of complex events in
CEP systems. Note that the main common feature between the two problems is
the use of multidimensional data in a stream environment. The grand challenge
is composed of two queries. Query 1 (Q1) predicts the correct destinations of
vessels given information such as vessel id, timestamp and the current position
of the vessel. Query 2 (Q2) predicts the arrival time at a destination port given
a vessel’s respective bounding boxes of coordinates. Given these queries, the
traditional solution would involve techniques such as All-K-Order-Markov [PP99]
and Probabilistic Suffix Tree [BYY04], Naive Bayes [MKN10], Support Vector
Machines [Par+17], etc. Some of these techniques are based on the Markov property,
where k recent events from the training datasets are used to perform the prediction.
Increasing k would exponentially increase the state complexity. Therefore, these
techniques forget older events and they are not taken into account for prediction.
Furthermore, these techniques require customise tweaking for each use cases and
datasets, hence cannot be generalised.

Our work has two aims: first to provide a generic solution that is not only
applicable for DEBS Grand Challenge 2018, but can also be extended for other
use cases for spatiotemporal predictions. Second, we wanted to take care of older
events in the event streams that result in optimised precision. To materialise these
aims, we designed an optimised storage framework for storing historical information
from the training dataset and event streams. Our storage framework employs space-
filling curve (Z-order) to reduce the number of N dimensions to one dimension.
This enables us to use a linear data structure, i.e. ph-tree[ZZN14], for optimised
continuous insertions and querying over the event streams.

Our contributions are described as follows:

• Instead of relying on existing machine learning algorithms, we employ novel
multi-dimensional indexing optimised for event streams.

• Our proposed indexing solution enables optimised online learning from the
event streams.

• Based on our solution, the prediction is not just based on recent events but
also the older and important events.

• Our proposed system is memory and CPU efficient, hence can be used in
resource constraint environment.

6. A Scalable Framework for Accelerating Situation Prediction over Spatio-temporal
Event Streams 125

6.2 Input Data Streams and Query definitions

The challenge was co-organized by MarineTraffic, the BigDataOcean project and
the HOBBIT 1 project represented by AGT International 2. Grand Challenge data
was provided by MarineTraffic and hosted by Big Data Ocean while the automated
evaluation platform was provided by the HOBBIT project.

6.2.1 Input Data Streams

The data is an anonymized collection of sensor data from vessels’ Automated Identi-
fication System (AIS), the internationally accepted standard for self-identification of
big vessels. AIS transponders periodically send time-series data points to coastal-,
aircraft- or satellite-based AIS receivers. Data points of the provided dataset contain
static information (ship identifier, ship type) as well as dynamic one (coordinates,
speed, heading, course, draught, departure port name).Figure 6.1, shows the vessels’
trajectories in graphical form, where each colour represents a starting port and each
circle is a port. The schema of the tuples in the dataset is composed by attributes:

• SHIP ID, the anonymized id of the ship

• SHIP TY PE, the vessel type

• SPEED, speed measured in knots

• LON , the longitude of the current ship position

• LAT , the latitude of the current ship position

• COURSE, the direction in which the ship moves

• HEADING, the cardinal direction in which the ship is to be steered 3

• TIMESTAMP , the time at which the message was sent (UTC)

• DEPARTURE PORT NAME, the name of the last port visited by the
vessel

• REPORTED DRAUGHT , the vertical distance between the waterline and
the bottom of the ship’s hull

1https://project-hobbit.eu/
2http://www.agtinternational.com/
3https://en.wikipedia.org/wiki/Course_(navigation)

126 6.2. Input Data Streams and Query definitions

Latitude

Lo
ng

itu
de

Figure 6.1: Vessels trajectories between ports

6.2.2 Query 1: Predicting destinations of vessels
Predicting the correct destination of a vessel is a relevant problem for a wide
range of stakeholders including port authorities, vessel operators and many more.
The prediction problem is to generate a continuous stream of predictions for the
destination port of any vessel given the input data streams. The above data is
provided as a continuous stream of tuples and the goal of the system is to provide
for every input tuple, one output tuple containing the name of the destination port.

A solution is considered correct at time stamp t if the predicted destination
port matches the actual destination port for a tuple with this timestamp as well
as for all subsequent tuples. The goal of any solution is not only to predict the
correct destination port but also to predict it as soon as possible, counting from the
moment when a new port of origin appears for a given vessel. From port departure
to arrival, the solution must emit one prediction per position update.

6.2.3 Query 2: Predicting arrival times of vessels
There is a set of ports defined by respective bounding boxes of coordinates. Once
a ship leaves a port (i.e. the respective bounding box), the task is to predict the

6. A Scalable Framework for Accelerating Situation Prediction over Spatio-temporal
Event Streams 127

arrival time at its destination port (i.e. when the next defined bounding boxes
will be entered). Like for query 1, from port departure to arrival, the solution
must emit one prediction per position update.

6.3 Preliminaires
In this section, we introduce the notion used in the paper and provide the background
on the datasets; queries used to evaluate our framework and the space-filling curves
for indexing.

Notations. Let E = [e1, e2, . . . ei] donates a discrete stream of events and ei denotes
an individual event. Each event is a tuple (A, t), where A is a set of attributes,
such as vessel id, vessel location, port, etc., and t is the associated timestamp of
the event. Let H = {A1 × A2×, . . . , An} is an N-D lattice for the universe of all
the events in the training dataset, where an n-tuple X = (x1, x2, . . . , xn) defines a
point in H and xi ∈ Ai ∀i ∈ n. This N-D lattice is used to find the nearest points
given the input tasks for both queries for prediction.

Space-filling Curve (Z-order). As discussed in chapter 3, the Z-order curve
preserves the proximity properties among the points while leveraging the effectiveness
of linear data structures (such as B+tree) for range queries. The construction of
the Z-order curve, i.e, Z-values generation, is accomplished by the simple process of
bit-shuffling and this is one of its main advantages over other space-filling curves.
Considering this, we have employed the Z-order curve to map all the attributes
assigned to an event. The resulted mapping is added in the ph-tree for efficient
storage and processing of the given queries.

6.4 The Framework
In this section, we present our framework and the evaluation of DEBS Grand
Challenge 2018 queries. Fig.6.2 shows all the components of our framework. The
input manager parses the training dataset and incoming event streams before
indexing it. The historical store employs the Ph-Tree to index the main attributes
including longitude, latitude, heading, course, speed and reported draught. The
score index is used to prioritise the vessels that are custom to follow the same
routine. That is, if we are asked to predict the destination of a vessel A, yet vessel
A is usually following a certain path, then we give priority to this vessel rather
than ones which usually deviate from their path. From Fig.6.3, P1 is the new
event to find the destination of a vessel. Then from the historical index, we have
three possible destinations for such vessel. Hence, we update the destination and

128 6.4. The Framework

Input
Manager

Query
Processor

Output
Manager

Task
Manager

Training
Dataset

Event
Streams

Task Generator

Eval Storage

0

1 1

1

0

Historical Index

id,dest Score

Score Index

Figure 6.2: The use of thescore and historical index to predict the destination of a vessel

score table. At P2, the destination D1 persists from the initial computation and
is updated, hence it is more reliable than others. Finally, at P3, we are sure that
the vessel is heading for the destination D1 in our index table. Moreover, for Q2,
we use the time difference at nearest found vessels (at P1, P2, or P3) to predict
the arrival time for a vessel. Using this we can even predict the destination of

S1

D1

D2

1D1
D3 1

1D2
dest score

2D1
D3 1

1D2
dest score

3D1
D3 1

1D2
dest score

D3

(a) (b)

P1
P2

P3

S2

Figure 6.3: System Design for predicting vessels’ destinations and arrival time

the vessel, even if it has not been visited before by that particular vessel with a
departure from the same port. The query processor is in-charge of taking tasks
from the task manager and producing a range query over the historical index to

6. A Scalable Framework for Accelerating Situation Prediction over Spatio-temporal
Event Streams 129

find the nearest points of interest. Based on the resulting set of points, it employs
the score index to predict the destination and time of arrival for a vessel. The
predicted output is fed to the output manager which uses the eval storage of the
hobbit framework to determine the precision of the computed results.

Herein, we briefly describe the inner workings of our indexing and query
processing to extract the nearest point of interest for prediction. Given the training
dataset and event streams, we need to create an N-D lattice. To accomplish this,
we first convert the N-D points to single dimension points using Z-order curve as
described earlier. These points are added into a ph-tree, where the bit locations
of the points are used to cluster the N-D points in the tree. With the arrival
of a new task, we create a point query and then find the nearest neighbours of
these points using the Euclidean distance of each dimension. This task can be
efficiently done by comparing N-D points at bit-level.

6.5 Experimental Evaluation

Herein, we describe the set of evaluation metrics defined in this challenge and then
discuss the results of the participating solutions.

6.5.1 Evaluation [Gul+18b]

The Q1 score is calculated based on both how soon the correct predictions are made
(rank A1) and how long the system will take to complete (rank B1). Rank A1 is the
average time between a prediction and arrival at port. Only correct predictions are
taken into account. Arrival at a port is defined by the first event that is reported
inside the corresponding delimitation box. More formally:

Average Earliness Rate =
N Trips∑
k=0

length(of last correct sequence)
length(of trip sequence)

N trips

Score A1 = offset of the first tuple of the last correctly predicted sequence
before trip ends / total trip duration. Offset = tripEndTimestamp − FirstCor-
rectTupleTimestamp.

Example Score A1:
• Time:01, Predicted Destination: A (Start of Trip)
• Time:02, Predicted Destination: B
• Time:03, Predicted Destination: A
• Time:04, Predicted Destination: B
• Time:05, Predicted Destination: B

130 6.5. Experimental Evaluation

• Time:06, Predicted Destination: B (Arrival at B)
Score A1: (06-04)/(06-01) [higher is better] The overall ranking for query 1

(Rank Q1) is then computed as Rank Q1 = 0.75*Rank A1 + 0.25*Rank B1.
The Q2 evaluation is calculated based on the accuracy of predictions (Rank

A2) and the total runtime (Rank B2). Score A2 is the mean average error of all
predicted arrival times while Rank B2 ranks according to the total runtime. More
formally:

Mean Average Error =
Ntuples∑
k=0

|error per tuple|
Ntuples

The overall ranking for Query 2 (Rank Q2) is then computed as Rank Q2 =
0.75*Rank A2 + 0.25*Rank B2. Finally, The final ranking is given by the sum
of ranks Rank Q1 and Rank Q2.

6.5.2 Results and GC Benchmark

We use the given dataset and the two queries from the DEBS Grand Challenge 2018.
Herein, we showcase how we can use a subset of the training dataset to predict
the destination port of the vessels with the arrival of new tasks. Fig.6.4 shows
that general accuracy and average earliness rate in relation with the percentage of
data used from the training dataset for prediction task. Thus, even with a small
percentage of training dataset, we are able to have a higher average earliness rate
and general accuracy.

General Average = Correct predictions

totalnumber of predictions

The following table 6.1 summarizes the best participants’ results, where two
types of systems are found, in which machine learning approaches[NVA18; Bac+18;
Ros+18; Bod+18] and indexing [Ama+18] are used. Various experiments have
been carried out using different real datasets. [NVA18] (MT Detector) uses a
sequence-to-sequence model based on a Long Short Term Memory (LSTM) network,
[Ros+18] (KNN) uses a nearest neighbour search to find the training routes that
are closer to the AIS query point based on LAT/LONG only, [Bod+18] (VEL) uses
a Voting Ensemble Learning based on Random Forest: Gradient Boosting Decision
Trees (GBDT), XGBoot Trees and Extremely Randomized Trees (ERT), and the
[Bac+18] (Venilia) prediction mechanism is based on a variety of machine learning
techniques including Markov models and supports on-line continuous training. The
two best systems were based on indexing techniques, where the first (CellGrid)
was based on a sequence of hash tables specifically built for the targeted use case
and the second was our system (TrajectPM).

6. A Scalable Framework for Accelerating Situation Prediction over Spatio-temporal
Event Streams 131

Figure 6.4: Comparing average earliness rate and general accuracy with the percentage
of training dataset used

MT Detector [NVA18] CellGrid [Ama+18] KNN [Ros+18] Venilia [Bac+18] VEL [Bod+18] TrajectPM
A1 0,54 0,685 0,647 0,5 0,653 0,668

B1 seconds 86 99 157 129 102 102
AVG Latency ms 36 ns ns ns ns ns

A2 5193 894 2193 1482 1328 1002
B2 seconds 95 108 180 147 109 165

AVG Latency ms 41 117 51 38 48 93

Table 6.1: DEBS GC Results from Hobbit platform (ns: nano seconds)

6.6 Conclusion
This Challenge focused on spatio-temporal streaming data focusing on the com-
bination of event processing and predictive analytics.

We employed novel multi-dimensional indexing optimised for event streams
instead of relying on existing machine learning. In the results we outperformed
many approaches which used on-shelf data mining and machine learning algorithms.

In conclusion, we believe that the main strengths of our architecture is its more
generic approach, its suitability for a range of diverse real-life scenarios and its
ability to support on-line continuous training.

132

Part IV

Conclusion

133

7
Conclusion and Future Works

In this dissertation, we focused on enhancing the capabilities of Complex Event
Processing (CEP) systems, whose goal is to detect patterns over incoming event
streams. Existing CEP systems suffer from poor performance due to high memory
and high computation resource consumption for expensive pattern query operators
such as Kleene+ and Skip-Till-Any. In addition most of them cannot provide
predictive behaviour. The main contributions of this thesis is to propose a new
breed of CEP systems that can handle higher amounts of data for detecting complex
patterns and integrate more intelligent predictive behaviour. The main results
are described in the following text.

7.1 Enhancing CEP performance
In order to enhance the performance of CEP systems, we focused on optimizing
the memory and CPU performance for expensive queries. We provided multi-
ple optimization techniques. Our approaches leveraged concepts and methods
from multidimensional indexing techniques, dominance relationship analysis and
batch processing.

We provided a novel recomputation approach called RCEP for processing
expressive CEP queries. RCEP eliminates the need for storing partial matches
which were identified as the bottleneck of existing incremental approaches.

To efficiently store and process multi-attribute events, we employed space-
filling curves combined with B+tree indexing techniques. This enabled us to use
efficient multidimensional indexing in streaming environments. We then exploited
multidimensional indexing properties by constructing range queries to perform a
range search and retrieve potential events that can be part of complete matches.

135

136 7.2. Predictive CEP

To produce final matches from range query results, we proposed a heuristic
based join algorithm. Our algorithm leverages the dominance property between set
of events and joins the clustered events in batches to reduce the cost of pair-wise
joins. Additionally, dominance property allows to reuse previously computed joins
to further economize on recomputation of matches.

We proposed a transformation of online window management to batch-based
window management. Where instead of using traditional incremental deletions
of events outside the sliding window, we implemented batch deletion of expired
events. We called it CPU Friendly method which avoids the rebuilding cost of
the B+Tree in the streaming settings. This CPU friendly approach results in a
slight increase in memory consumption because of having to keep the older events,
nevertheless, it is still far better in memory performance as compared to when
maintaining the partial matches. Various experiments using various datasets have
demonstrated that our system outperforms existing approaches by several orders
of magnitude and consume less memory.

Perspectives: To go further, the work can be extended by exploring multi-query
optimizations, by exploiting sharing opportunities such as sharing the results of
one sub-query by another to reduce computational cost or by decomposing queries.
Another future idea is to treat the case of lossy data or out of order data. The out
of order problem can be easily solved by our system as our approach is based on lazy
approach. Our system waits till the final matching event arrives before processing
the relevant events. Thus, any out of order event will eventually arrive and will be
enqueued for being processed at a later time when the final matching event arrives.

7.2 Predictive CEP
Continuing in the direction of improving the functionalities of the CEP systems,
we investigated an open issue of designing a predictive CEP which permits better
understanding and proactively acting in response to potential upcoming future
complex events.

We addressed this issue from a new perspective, with the main objective of
bringing the real-time predictive CEP capabilities to the database layer. For
this objective, we extended the existing data structures, query execution and
optimization techniques.

Predictive CEP problem has a parallel in the domain of sequence prediction.
Some existing approaches for sequence prediction based on Markov Models depend
only on the previous state. Other models, including also Markov models, suffer
from catastrophic forgetting of older sequences, where only some recent items of

7. Conclusion and Future Works 137

training sequences are used to perform predictions. This makes these approaches
as lossy as some of the past information relevant for prediction is lost. Such
lossy techniques impact the prediction accuracy. Prediction with multidimensional
sequences becomes even worse.

In order to design an efficient predictive CEP, we used the following approaches:
First, we used a memory efficient data structure to index all historic sequences.
This data structure allowed our predictor to be updated, in real time, at each step
of new sequence detection. Secondly, we designed algorithms to perform fast as well
as accurate sequence prediction and handle complex data, i.e., multidimensional
sequences. Thirdly, in order to be memory efficient for storing the historical
sequences we proposed a summarisation approach, that results on minor loss of
information. Nevertheless, our algorithm looses only non important information
by tracking the less frequently retrieved or used historical sequences. We thus
proposed a generic solution for incorporating Predictive Analytics into any Complex
Event Processing system.

Preliminary results, show that our system outperforms an existing recent
sequence prediction approach in terms of accuracy and execution time.

Perspectives: In future, we would like to explore the integration of machine
learning techniques with our approach. Machine learning can help CEP in automa-
tisation of some processes like automatic query-pattern generation. Constructing
query-patterns is a difficult task which needs the intervention of an expert. Moreover,
we only output the future possible matches, but we do not provide the probability of
their occurrence. We would like to explore machine learning techniques to output
the occurrence probability.

7.3 Real world use cases and challenges
As a final contribution, we showed the ability of our approaches to be applied
on real use cases and different challenges proposed by the research community.
Such challenges provided a common ground for us to evaluate and compare our
event-driven systems with other systems of other researchers.

We participated to the 2016 DEBS Grand Challenge, which focused on reasoning
over social networks data to drive meaningful insights from it in real-time. One
novelty was the non-linearity of the expiration of the elements. We proposed
several efficient and effective techniques to enable a lazy evaluation of non-linear
window elements. In another part of the problem, we had to manage a graph
of ever growing social network data. Due to the centrality of this structure, a
careful design was therefore required.

138 7.3. Real world use cases and challenges

In the design of our solution, we carefully took care of optimizing every part of
the system. Fast data parser, efficient message-passing queues as well as devising
efficient fast lower and upper bounds to avoid costly computation, were the keys
to the success of our approach. Similarly, the choice and designs behind the
most frequently data structures (sorted elements, graph) largely contributed to
the overall system performance.

The 2018 DEBS Grand Challenge focused on spatio-temporal streaming data.
This challenge was about the combination of event processing and predictive
analytics. The goal of the challenge was to perform spatio-temporal prediction.

We employed novel multi-dimensional indexing optimized for event streams
instead of relying on existing machine learning. Our proposed solution had following
advantages: it performed optimized online learning, prediction, the prediction was
not just based on the recent events but also the older and important events, our
solution was memory and CPU efficient.

In addition, the main strengths of our architecture was its suitability for many
different real-life scenarios and its ability to support on-line continuous training.

In conclusion, we believe that real-time data processing is finally becoming an
important part of data management domain. Our work has widespread impacts
on a variety of applications: fraud detection, water management, event processing
in different types of networks. The results of our research have been published
in a number of international conferences.

Appendices

139

A
Upsortable an Annotation-Based

Approach

Contents
A.1 Introduction . 141
A.2 The Case For Upsortable 142
A.3 Upsortable solution . 143

A.3.1 AST modifications . 144
A.3.2 Bookkeeping . 144
A.3.3 Garbage Collection . 146

A.4 Discussion . 147

A.1 Introduction
Top-k queries over data streams are well studied problems. There are numerous
systems allowing the continuous processing of queries over sliding windows. At
the opposite, non-append only streams call for ad-hoc solutions, e.g. tailor-made
solutions implemented in a mainstream programming language. In the meantime,
the Stream API and lambda expressions have been added in Java 8, thus gaining
powerful operations for data stream processing. However, the Java Collections
Framework does not provide data structures to safely and conveniently support
sorted collections of evolving data. In this chapter, we explain Upsortable, an
annotation-based approach to allow the use of existing sorted collections from
the standard Java API for dynamic data management. Our approach relies on a
combination of pre-compilation abstract syntax tree modifications and the runtime

141

142 A.2. The Case For Upsortable

analysis of bytecode. Upsortable1 offers the developer a safe and time-efficient
solution for developing top-k queries on data streams while maintaining a full
compatibility with standard Java.

A.2 The Case For Upsortable

The standard Java Collections API contains three implementations of sorted data
structures: the java.util.TreeSet backed by a Red-Black tree, the java.util.PriorityQueue
that implements a priority heap and, for thread-safety purposes, the “java.util.concurrent.
ConcurrentSkipListSet” implements a concurrent variant of Skip List. These
structures especially implement add and remove primitives, as well as methods to
navigate within these collections. These structures are therefore well-suited for
the implementation of exact top-k queries: elements are kept sorted according
to either a comparator provided at the creation time of the data structure or
by the natural ordering of the elements. In both cases, a pairwise comparison
method is used to sort the objects and this method must provide a total ordering.
When dealing with data streams, the value of some fields of an object are subject
to evolution and this may require a reordering within the collections this object
belongs to. With the aforementioned sorted data structures – as well as third-party
Java Collections APIs such as Guava2 or Eclipse Collections3 – the developer must
first remove the object from each sorted collections, update its internal fields and
reinsert the object in these collections. The sorted collections may otherwise become
irredeemably broken. Figure A.1 depicts such an example. Hence, this remove,
update and then insert process is very error-prone, especially in large codebases
where objects belong to different sorted collections, depending on the state of the
application. Broken sorted collections are also hard to identify at runtime and
may go undetected for a while. This is typical for the top-k queries, where the
collections might be broken after the k-th element. The behaviour of the corrupted
data structure is unpredictable, it ranges from inconsistent results to wrong inserts
and impossible removals – as depicted in Figure A.1 where the removal of D is
impossible since it cannot be reached.

To circumvent this issue, the standard solution is to rely on the Observer design
pattern. This pattern implies that the objects must keep track of the collections
they belong to. This requires adding an extra data structure within the objects to
store pointers to the collections they belong to. The field setters must be updated
to remove, update and insert the object (acting as the notify in the pattern). Using

1https://github.com/jsubercaze/Upsortable
2https://github.com/google/guava
3https://www.eclipse.org/collections/

https://github.com/jsubercaze/Upsortable
https://github.com/google/guava
https://www.eclipse.org/collections/

A. Upsortable an Annotation-Based Approach 143

Figure A.1: Example of a corrupted Red-Black tree after update of Object A via call
to its setter.

a dynamic array to store the pointer is the most compact way, however it may lead
to useless removals and updates if the modified field does not participate in the
comparison of some sorted structures that the objects belong to. Using a Hashmap
circumvents this issue by mapping fields to the structures where the object belongs
and where the fields participate in the comparison. However in both cases, when
dealing with millions/billions of objects that are created and destroyed during the
application lifetime, this solution has a very high memory cost. Moreover, it still
requires heavy modifications of the source code by the application developer who
must handcraft these routines for each object definition and for each setter.

Listing A.1: Annotation based solution

@Upsortable
pub l i c c l a s s MyObject {

p r i va t e i n t f i r s t F i e l d ;
p r i va t e S t r ing secondFie ld ;

}

A.3 Upsortable solution
Our solution proposes an alternative to the Observer pattern that does not require
any other source code modification than adding an annotation and has a restricted
memory fingerprint. The developer simply uses the @Upsortable annotation at the
class level to declare that the internal fields are subject to modification and that
the sorted collections it belongs to must be dynamically updated – such as depicted
in Listing A.1. Our framework performs all the required updates to maintain the
collections correctly sorted when setters update values in the object fields.

The underlying idea of our solution is that in real-time applications the number
of sorted collections is very small compared to the number of objects that are sorted

144 A.3. Upsortable solution

within these collections – dozens against millions in practice. We leverage this
imbalance to devise an approach that does not require any extra data structure to
be added to the objects definition. Instead of linking objects to the collections they
belong to, as in the Observer pattern, a global map links each field definition to
the list of collections where it participates in the comparison process.

To relieve the developer from the burden of implementing this process, our
framework consists of two parts: a transparent source code injection during the
compilation phase and an encapsulation of the standard API sorted collections
to automatically manage the global collection.

A.3.1 AST modifications

The Java compilation is a two-step process. The first step parses and compiles the
source code and the second one processes the annotations. The Lombok project4

has demonstrated the feasibility of modifying and recompiling the Abstract Syntax
Tree (AST) during the second step, allowing annotations to transparently inject
source code. Our framework, based on Lombok, injects setter methods for the
classes annotated @Upsortable. The pseudo code of the setter method is given in
Algorithm 6. The setter retrieves the sorted collections associated to the current
field name – obtained via reflection – and performs the remove, update a ndinsert
operations. The algorithm keeps track of the sets the current object participates in
(by contract, remove() returns true if the object was present). As a consequence,
the insertion of the updated object in the correct collections is guaranteed. Usage
of WeakReference is detailed in Section A.3.3. Figure A.2 depicts the source code
injection via AST modification during the annotation processing phase.

A.3.2 Bookkeeping

To keep track of the mappings between field names and the sorted collections, we
encapsulate the creation of the sorted collections using the static factory pattern.

Listing A.2: Collection instantiation with upsortable

//Without upsor tab l e
TreeSet<MyObject> mySet = new TreeSet<>(comparator) ;

//With upsor tab l e
UpsortableSet<MyObject> mySet = Upsortab les . newTreeSet (comparator) ;

We created a class called Upsortables which exposes static methods to cre-
ate sorted structures backed by the standard Java API ones: TreeSet, Concur-
rentSkipList and PriorityQueue. These static factory methods require the usage

4https://projectlombok.org/

https://projectlombok.org/

A. Upsortable an Annotation-Based Approach 145

F
ig
ur
e
A
.2
:
U
ps
or
ta
bl
e
A
bs
tr
ac
t
Sy

nt
ax

Tr
ee

m
od

ifi
ca
tio

ns
at

an
no

ta
tio

n
pr
oc
es
sin

g
tim

e.

146 A.3. Upsortable solution

Algorithm 6: Injected Setter code during annotation processing
Input: newV alue: the new value of the field

1 � Fails fast if unchanged if this.field == newValue then
2 return;
3 � List of references to the collections concerned by this field
4 refsList← refMap.get(currentF ieldName);
5 � Remove this from the collections, remove cleaned references
6 participatingCollections = newArrayList();
7 for ref ∈ refsList do
8 if ref is cleaned then
9 remove from refList ;

10 if ref.deref().remove(this) then
11 participatingCollections.add(ref.deref());

12 � Update the value
13 this.field← newV alue;
14 � Reinsert in the right collections
15 for collection ∈ participatingCollections do
16 collection.add(this);

of comparators for the creation of sorted collections, disallowing the usage of
natural ordering. The comparator implements per definition a compare(MyObject
o1, MyObject o2) method. The static factory methods analyze the content of the
compare method via runtime bytecode analysis in order to extract the fields of
MyObject that participates in the comparison. For this purpose, we use Javassist,
a common bytecode manipulation library. The extracted field names are then
associated to the sorted collection that is being created in the global map. For
performance reasons, we provide two versions of this global collection, one being
thread-safe, the other not. On the developerside, besides the usage of the annotation,
the sorted collection instantiation is the only modification, albeit minor, that is
required to use Upsortable. Listing A.2 depicts the minor changes that this
encapsulation implies. The burden on the developer side is therefore very limited
and does not bring any particular difficulty.

A.3.3 Garbage Collection

Sorted collections may be created and deleted during the lifecycle of the application.
Our framework shall therefore not interfere with the lifetime of these collections and
shall especially not prevent them from being collected by the garbage collector (GC).
To prevent the Hashmap that maps fields definitions to the Upsortable collections to
hold a reference to these collections that would prevent their collection by the GC,
we use a WeakReference. Contrary to soft references, weak ones do not interfere
with the garbage collection of the objects they refer to. ’The injected setters’ code
takes care of removing weak references that have been cleaned up by the garbage

A. Upsortable an Annotation-Based Approach 147

collector. By relying on the ListIterator, we are able to both process valid references
and remove cleaned ones in a single iteration over the list of weak references.

A.4 Discussion
The Upsortable approach offers a convenient and safe solution to manage dynamically
sorted collections. Naturally, safety and convenience have a performance impact.
Keeping track of the relation between fields and sorted collections in Upsortable has
a very limited memory fingerprint – especially compared to the Observer design
pattern – and the CPU impact is also limited. Since we leverage the imbalance
between the number of objects and collections, this leads to very few useless removes
(a O(log(n)) operation for three data structures) and has a very limited impact of
several percents (< 5%) of the runtime in the practice, depending on the input data.

148

B
DETAILED ANALYSIS

Contents
B.1 Evaluating Kleene+ Operator 149
B.2 Proof Sketches . 150
B.3 Optimising Z-address Comparison 153
B.4 Operations over Virtual Z-addresses 154

B.4.1 Correctness of Comparing Virtual Z-addresses 154
B.4.2 NextJumpIn and NextJumpOut Computation 155

In this appendix as mentioned before we provide detailed analysis on algorithms
and proofs of the different theorem and lemmas defined in chapter3.

B.1 Evaluating Kleene+ Operator

The Kleene+ operator is executed after the joins evaluation and it employs the
bitvector Bu and Banker’s sequence for the set bits in Bu. An example of a Bankers
sequence for three set bits for an events sequence b+/ 〈b1, b2, b3〉 is shown in Table B.1.

The creation of sequences from the generated binary number requires mapping
to the Bu when there are unset bits in Bu. That is, the join size is less than the total
number of events in an events sequence. For instance, Fig. B.1 shows a bitvector
B1 = 01001012, where only three bits are set. Hence we need to map the index of the
set bit with the generated Banker’s sequence. Fig. B.1 shows such mapping for two
sequences. Such mapping is part of the Algorithm 3, where at line 9 a NextSetBit
function is employed to skip the unset bits during the generation of the matches.

149

150 B.2. Proof Sketches

010 1001

B1

0 1 1 1 1 0

Bitstring (3) Bitstring (6)

Mappings

Figure B.1: Mapping of the Banker’s sequences and a bitvector

Decimal Binary Sequence
1 001 〈b3〉
2 010 〈b2〉
3 011 〈b2, b3〉
4 100 〈b1〉
5 101 〈b1, b3〉
6 110 〈b1, b2〉
7 111 〈b1, b2, b3〉

Table B.1: Banker Sequence for an events sequence 〈b1, b2, b3〉

B.2 Proof Sketches
theorem 3

The total number of matches for n events with a CEP query Q are as
follows [Agr+08]:

1. Polynomial nk, where k = |P | and p+ /∈ P

2. Exponential (2n) for a p+ ∈ P

Proof Sketch. For a given k variable bindings and their respective events
sequences {p1/~e1, . . . , pk/~ek}, we need to perform a cross-product (in the worst case)
to extract all the possible matches with no strict time predicate. Hence for n events
within a window divided into k events sequences, the possible number of matches
amounts to nk. The Kleene+ operator determines all the possible combinations
or permutation of events within a sequence. Hence, the total number of such
combinations would amount to 2n for n events within a window for a qualified
variable binding (p+). �

B. DETAILED ANALYSIS 151

lemma: 1

Given two Z-regions r and r′ and a set of binary relations {φ1, . . . φd} from
the variable predicates Θv in Q over d-dimensional events (Z-addresses), r
dominates r′ (r ` r′) iff

1. ∀igid−1(max(r)) φi gid−1(min(r′)) if φi = {<,≤}

2. ∀igid−1(min(r)) φi gid−1(max(r′)) if φi = {>,≥}

Proof. We prove the aforementioned points case by case. Let us assume a point
z from region r and a point z′ from region r′. Furthermore, for brevity, we use
zl = min(r) and zh = max(r) The following is true:

∀igid−1(zhr) ≤ gid−1(z) ≤ gid−1(zlr) (B.1)

∀igid−1(zhr′) ≤ gid−1(z′) ≤ gid−1(zlr′) (B.2)

since by definition, zhr and zlr represent the extremities of region r having
maximum and minimum values in all dimensions and we follow the transitivity
property and monotonic ordering of Z-addresses in a Z-region.
Case 1. In the case i ∈ Φ<,≤ meaning φi = {<,≤} and thus, from the assumed
condition in the lemma, gid−1(zhr) φi gid−1(zlr′) true. Which in turn means that
gid−1(zhr) ≤ gid−1(zlr′) or gid−1(zhr) < gid−1(zlr′) respectively depending on φi.
Combining this with eq.(B.1) and (B.2), it follows that gid−1(z) ≤ gid−1(z′) or
gid−1(z) < gid−1(z′) depending on φi. Which means that for these i,

gid−1(z) φi g
i
d−1(z′) is true.

Case 2. Lets now take the case where i ∈ Φ>,≥ meaning φi = {>,≥} and
thus, from the assumed condition in the lemma, gid−1(zlr) φi g

i
d−1(zhr′) is true.

Which means that gid−1(zlr) ≥ gid−1(zhr′) or gid−1(zlr) > gid−1(zhr′) respectively
depending on φi. Combining this with eq.(B.1) and (B.2), it follows that gid−1(z) ≥
gid−1(z′) or gid−1(z) > gid−1(z′) depending on φi. Which means that for these
i, gid−1(z) φi g

i
d−1(z′) is true.

Thus, after combining cases 1 and 2, it follows that
∀i gid−1(z) φi g

i
d−1(z′),

which in turn forms Definition 5, which defines dominance, means that for any
given point z from region r and z′ from region r′, given the above conditions,
z ` z′ and hence r ` r′.

152 B.2. Proof Sketches

lemma: 2

Given two Z-regions r and r′ and a set of binary relations from Lemma 1 r
partially dominates r′ (r ∼ r′) iff Lemma 1 does not holds and only following
conditions hold

1. ∀igid−1(min(r)) φi gid−1(max(r′)) if φi = {<,≤}

2. ∀igid−1(max(r)) φi gid−1(min(r′)) if φi = {>,≥}

Proof. We prove the lemma as follows.
Case 1. In the case i ∈ Φ<,≤ meaning φi = {<,≤} and thus, from the assumed
condition in the lemma, gid−1(zlr) φi gid−1(zhr′) is true. Now lets take the region
defined by the range having the following bits same as the extremities gid−1(zlr) and
gid−1(zhr′). Lets arbitrarily divide this region into two sub-regions s1 and s′

1. This is
done by arbitrarily choosing 4 range values, lying inside the above range, such that
the following is true:
gid−1(zlr) φi gid−1(zls1) φi gid−1(zhs1) φi gid−1(zs′

1
)lφi gid−1(zhs′

1
) φi gid−1(zhr′).

Also, the division is done in a way that the sub-regions are not empty and
they only contain points from r and r′. There exists at least one division where
sub-regions are not empty as, in the extreme case, the two regions can have at least
a single common point each with the bits gid−1(zlr) and gid−1(zhr′), respectively. From
the above way of dividing, it is ensured that gid−1(zhs1) φi gid−1(zls′

1
).

Case 2. Now for other remaining i ∈ Φ>,≥ meaning φi = {>,≥} and thus, from
the assumed condition in the lemma, gid−1(zhr) φi gid−1(zlr′) is true. Again lets take
the region defined by the range having the following bits same as the extremities
gid−1(zlr′) and gid−1(zhr). Lets arbitrarily divide it into two sub-regions s2 and s

′
2.

This is done by arbitrarily choosing 4 range values, lying inside the above range,
such that the following is true:
gid−1(zlr′) φi gid−1(zsl

2′
) φi gid−1(zsh

2′
) φi gid−1(zls1)

φi g
i
d−1(zhs1) φi g

i
d−1(zhr).

Again, the division is done in a way that the sub-regions are not empty and
they only contain points from r and r′. There exists at least one division where
sub-regions are not empty as, in the extreme case, the two regions can have at least
a single common point each with bits gid−1(zhr) and gid−1(zlr′), respectively. From
the above way of dividing, it is ensured that gid−1(zls2) φi gid−1(zhs′

2
).

Now, let’s define a sub-region s = s1 ∩ s2 and another sub-region s′ = s
′
1 ∩ s

′
2.

The sets s and s′ are non empty. As from the last lines of the above cases, s at least
has a single point having bits gid−1(zlr)∀i ∈ Φ<,≤ and gid−1(zhr)∀i ∈ Φ>,≥. Similarly,
s′ at least has a single point having bits gid−1(zhr′)∀i ∈ Φ<,≤ and gid−1(zlr′)∀i ∈ Φ>,≥.

From the above 2 cases:

B. DETAILED ANALYSIS 153

∀i, gid−1(zhs1) φi gid−1(zls′
1
) and gid−1(zls2) φi gid−1(zhs′

2
) are true.

As s consists in the common points of s1 and s2, and s′ consists in common
points of s′

1 and s′
2, it implies that ∀i, gid−1(zhs) φi gid−1(zls′) and gid−1(zls) φi gid−1(zhs′)

are true. Using lemma 2 s ` s′. Thus, there are some points in r that dominate
some points in r′ and hence r ∼ r′.

B.3 Optimising Z-address Comparison
Herein, we describe an optimisation technique to save on the cost of the bit
interleaving and comparison of Z-addresses during insertion, as well as range query
processing over an event tree.

The aim of the bit-interleaving process is to compute the binary relations over
Z-addresses while inserting and querying in an event tree. That is, locating the MSB
difference between the Z-addresses in questions. For instance, if z1 = 001010 and
z2 = 001110 then z2 > z1. This means we have to (i) generate a Z-address using bit
interleaving for each event; (ii) de-interleave the Z-addresses to find the difference in
the MSB between them; and (iii) decode the Z-address to get their original values.
The first and third tasks can be performed using bit-level parallelism if the resulting
bitstring (of a Z-address) fits in the registers of the CPU at hand, e.g. |z| < 64 bits
on a 64-bit CPU. However, if |z| > 64, we need to iterate over the bits within each
dimension in a traditional manner. Our aim is to avoid this by getting rid of bit
interleaving and de-interleaving while still retaining the properties of Z-order curve.

Examining the comparison process between two Z-addresses (keys) reveals that
we do not have to actually interleave bits to determine the MSB difference. Instead,
we can directly compute and compare the MSB difference of each dimension (in keys)
independently and then following up by comparing just the dimension that won
the comparison, i.e. which has the leftmost MSB. The MSB comparison between a
dimension from each key can be performed using a bitwise XOR operation. We call
this process virtual Z-address comparison and, for brevity, Algorithm 7 presents
this process for 2-dimensional keys.

Algorithm 7 takes the two keys and first calculates the bitwise XOR (denoted as
∨) between the respective dimensions of both keys (lines 1,2). This provides the
means to determine the position of the MSB contributed by both dimensions. It then
finds out which dimension is responsible for the MSB bit in the virtual Z-addresses
(line 3). If the XOR between the first dimensions of the keys is less than the other
dimension, we are sure that the second dimension contributed to the MSB in the
virtual Z-addresses (lines 4-7). Otherwise, it is the first dimension (lines 9 -12).
Depending on the comparison result, it then checks which key’s dimension (first or
second) is greater or less than the other. This would provide us with the final results

154 B.4. Operations over Virtual Z-addresses

Algorithm 7: Comparing two virtual Z-addresses
Input: Two keys X = (x1, x2) and Y= (y1, y2), each with two dimensions

1 MSBd1 ← x1 ∨ y1 ; // bitwise XOR (∨) operation
2 MSBd2 ← x2 ∨ y2 ; // bitwise XOR (∨) operation
3 if MSBd1 < MSBd2 And MSBd1 < (MSBd1 ∨ MSBd2) then

// the second dimension contributes to the MSB;
4 if x2 < y2 then
5 Y is greater than X
6 else
7 X is greater than Y

8 else
// the first dimension contributes to the MSB;

9 if x1 < y1 then
10 Y is greater than X
11 else
12 X is greater than Y

of which virtual Z-address is greater/less than the other. Note that Algorithm 7 can
be extended to multiple dimensions by recursively checking all the dimensions to
find out which dimension contributes to the MSB in the virtual Z-address. The use
of virtual Z-addresses results in skipping the expensive process of bit interleaving
and de-interleaving. Follows, the details of the correctness of Algorithm 7.

B.4 Operations over Virtual Z-addresses

Herein, first, we describe how Algorithm 7 correctly compares two virtual Z-addresses
(keys) without going through the process of bit interleaving and de-interleaving.
Second, we show how NextJumpIn and NextJump are calculated for false positive
points in a range query over the Z-order curve.

B.4.1 Correctness of Comparing Virtual Z-addresses

Without loss of generality, let’s discuss how we can compare the two integer values
x and y using the position of the MSBs. If x = y then both have the same
location of MSB. However, if x < y then y has the highest MSB set than x. Now
consider how to compare x and y without comparing and calculating the position
of the MSBs directly. Without loss of generality, let us assume that x ≤ y. We
have the two following cases.

1. If x = y then both have the same MSB position. If we compute x ∨ y, the
result is that it will have the same MSB set and x < x ∨ y will be false.

B. DETAILED ANALYSIS 155

2. If x < y then x does not have the same position of the MSB than y, and the
position of y MSB will be higher than x. Then if we compute x ∨ y, it will
have same MSB of y and x < x ∨ y will be true.

The logic of the above-mentioned cases is used to describe the working of
Algorithm 7. In particular, line 3 of Algorithm 7 which determines the dimension
to compare in the virtual Z-address. Hence the first bitwise XOR (∨) operations
between each of the dimensions in Algorithm 7 (lines 1,2) are used to compare
the dimensions itself. That is, which dimension in the virtual Z-address would
have contributed to the MSB: this comparison is done at the first part of the if
statement on line 3. The second part of the if statement at line 3 is then used
to compare MSB difference between them, i.e. which dimensions have the highest
MSB between the two virtual Z-addresses.

B.4.2 NextJumpIn and NextJumpOut Computation

Due to the nature of the Z-order curve, it contains jumps and can go out of the
bounding box. Hence when calculating the range queries, we can have some false
positive points, i.e. Z-addresses that are not part of the result, within the answer set.
To resolve this problem, cursor-driven approaches are proposed to skip those false
positive points. This includes calculating the boundaries of next set of elements that
can be reached while skipping the false positive. Please refer to [OM84; Ram+00a]
for the detailed discussion on this problem. Herein, we discuss how to calculate such
boundaries without going through the process of bit interleaving and de-leaving.
These boundaries are called NextJumpIn (NJI) and NextJumpOut (NJO).

Algorithm 8: NextJumpIn and NextJumpOut Computation
Input: A Range query with q = [X,Y], X = (x1, x2) and Y= (y1, y2), each with two

dimensions
1 NJI← X;
2 NJO← Y ;
3 dim← DimToCompare(NJI,NJO);
4 cmsb← CommonMSB(NJI[dim],NJO[dim]);
5 mask ← ((¬(1 << (cmsb+ 1))− 1) & 0xFF ;
6 NJI[dim]← Y [dim] & mask) | (1 << cmsb)) // bitwise OR (|) and shif operator

(<<);
7 NJO[dim]← Y [dim] & mask) | (1 << cmsb)− 1)

Algorithm 8 presents the procedure of calculating NJI and NJO for a range
query. Without loss of generality, it shows the operations on 32 bits integers. It first
initialises the NJI and NJO points with that of the range query boundaries. When it
finds a value that comes out of the bounding boX. It then determines the dimension
in both NJI and NJO that contributes to the MSB. Then computes the common MSB

156 B.4. Operations over Virtual Z-addresses

for such dimension using both NJI and NJO. This common MSB is used to create a
mask, which later will be used to create the new values of the dimension in question.
Using the mask and common MSB, it changes the values of the dimension in both
NJI and NJO. This results in the new range value that can skip the false positives.

Works Cited

[Aba+03] Daniel J Abadi et al. “Aurora: a new model and architecture for data
stream management”. In: VLDBJ (2003), pp. 120–139.

[Adi+06] Asaf Adi et al. “Complex event processing for financial services”. In:
Services Computing Workshops, 2006. SCW’06. IEEE. IEEE. 2006,
pp. 7–12.

[Agr+08] Jagrati Agrawal et al. “Efficient Pattern Matching over Event Streams”. In:
Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’08. Vancouver, Canada: ACM, 2008,
pp. 147–160. url: http://doi.acm.org/10.1145/1376616.1376634.

[AÇT08] Mert Akdere, Ugur Çetintemel, and Nesime Tatbul. “Plan-based complex
event detection across distributed sources”. In: Proceedings of the VLDB
Endowment 1.1 (2008), pp. 66–77.

[AÇU10] Mert Akdere, Uur Çetintemel, and Eli Upfal. “Database-support for
Continuous Prediction Queries over Streaming Data”. In: VLDB (2010).

[AAP17] Elias Alevizos, Alexander Artikis, and George Paliouras. “Event
Forecasting with Pattern Markov Chains”. In: Proceedings of the 11th
ACM International Conference on Distributed and Event-based Systems.
DEBS ’17. Barcelona, Spain: ACM, 2017, pp. 146–157. url:
http://doi.acm.org/10.1145/3093742.3093920.

[Ama+18] Ciprian Amariei et al. “Cell Grid Architecture for Maritime Route
Prediction on AIS Data Streams”. In: Proceedings of the 12th ACM
International Conference on Distributed and Event-based Systems, DEBS
2018, Hamilton, New Zealand, June 25-29, 2018. 2018, pp. 202–204. url:
https://doi.org/10.1145/3210284.3220503.

[Ani+12] Darko Anicic et al. “Stream Reasoning and Complex Event Processing in
ETALIS”. In: Semant. web 3.4 (Oct. 2012), pp. 397–407. url:
http://dl.acm.org/citation.cfm?id=2590208.2590214.

[ABW06] Arvind Arasu, Shivnath Babu, and Jennifer Widom. “The CQL continuous
query language: semantic foundations and query execution”. In: The VLDB
Journal 15.2 (2006), pp. 121–142.

[Ara+03] Arvind Arasu et al. “STREAM: the stanford stream data manager
(demonstration description)”. In: Proceedings of the 2003 ACM SIGMOD
international conference on Management of data. ACM. 2003, pp. 665–665.

[Art+12] Alexander Artikis et al. “Event processing under uncertainty”. In:
Proceedings of the 6th ACM International Conference on Distributed
Event-Based Systems. ACM. 2012, pp. 32–43.

157

http://doi.acm.org/10.1145/1376616.1376634
http://doi.acm.org/10.1145/3093742.3093920
https://doi.org/10.1145/3210284.3220503
http://dl.acm.org/citation.cfm?id=2590208.2590214

158 Works Cited

[Art+17a] Alexander Artikis et al. “A Prototype for Credit Card Fraud Management:
Industry Paper”. In: DEBS. 2017, pp. 249–260.

[Art+17b] Alexander Artikis et al. “A Prototype for Credit Card Fraud Management:
Industry Paper”. In: Proceedings of the 11th ACM International
Conference on Distributed and Event-based Systems. DEBS ’17. Barcelona,
Spain: ACM, 2017, pp. 249–260. url:
http://doi.acm.org/10.1145/3093742.3093912.

[AH00] Ron Avnur and Joseph M Hellerstein. “Eddies: Continuously adaptive
query processing”. In: ACM sigmod record. Vol. 29. 2. ACM. 2000,
pp. 261–272.

[Bab+02] Brian Babcock et al. “Models and issues in data stream systems”. In:
Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. ACM. 2002, pp. 1–16.

[BW01] Shivnath Babu and Jennifer Widom. “Continuous queries over data
streams”. In: ACM Sigmod Record 30.3 (2001), pp. 109–120.

[Bac+18] Moti Bachar et al. “Venilia, On-line Learning and Prediction of Vessel
Destination”. In: Proceedings of the 12th ACM International Conference on
Distributed and Event-based Systems, DEBS 2018, Hamilton, New Zealand,
June 25-29, 2018. 2018, pp. 209–212. url:
https://doi.org/10.1145/3210284.3220505.

[BGH87] Joel Bartlett, Jim Gray, and Bob Horst. “Fault tolerance in tandem
computer systems”. In: The Evolution of Fault-Tolerant Computing.
Springer, 1987, pp. 55–76.

[BYY04] Ron Begleiter, Ran El-Yaniv, and Golan Yona. “On Prediction Using
Variable Order Markov Models”. In: J. Artif. Int. Res. 22.1 (Dec. 2004),
pp. 385–421. url:
http://dl.acm.org/citation.cfm?id=1622487.1622499.

[BF79] Jon Louis Bentley and Jerome H. Friedman. “Data Structures for Range
Searching”. In: ACM Comput. Surv. 11.4 (Dec. 1979), pp. 397–409. url:
http://doi.acm.org/10.1145/356789.356797.

[BS80] Jon Louis Bentley and James B. Saxe. “Decomposable Searching Problems
I: Static-to-Dynamic Transformation.” In: Journal of Algorithms 1.4 (1980),
pp. 301–358. url:
http://dblp.uni-trier.de/db/journals/jal/jal1.html#BentleyS80.

[Bey+99] Kevin S. Beyer et al. “When Is ”Nearest Neighbor” Meaningful?” In: ICDT.
1999, pp. 217–235.

[BFP10] Silvia Bianchi, Pascal Felber, and Maria Gradinariu Potop-Butucaru.
“Stabilizing distributed r-trees for peer-to-peer content routing”. In: IEEE
Transactions on Parallel and Distributed Systems 21.8 (2010),
pp. 1175–1187.

[Blo+10] Marion Blount et al. “Real-time analysis for intensive care: development
and deployment of the artemis analytic system”. In: IEEE Engineering in
Medicine and Biology Magazine 29.2 (2010), pp. 110–118.

http://doi.acm.org/10.1145/3093742.3093912
https://doi.org/10.1145/3210284.3220505
http://dl.acm.org/citation.cfm?id=1622487.1622499
http://doi.acm.org/10.1145/356789.356797
http://dblp.uni-trier.de/db/journals/jal/jal1.html#BentleyS80

Works Cited 159

[Bod+18] Oleh Bodunov et al. “Real-time Destination and ETA Prediction for
Maritime Traffic”. In: Proceedings of the 12th ACM International
Conference on Distributed and Event-based Systems, DEBS 2018, Hamilton,
New Zealand, June 25-29, 2018. 2018, pp. 198–201. url:
https://doi.org/10.1145/3210284.3220502.

[Bos+14] Jeffrey Bosboom et al. “StreamJIT: A commensal compiler for
high-performance stream programming”. In: OOPSLA. 2014, pp. 177–195.

[Bre+07] Lars Brenna et al. “Cayuga: A High-performance Event Processing
Engine”. In: SIGMOD. 2007, pp. 1100–1102.

[Bui09] Hai-Lam Bui. “Survey and comparison of event query languages using
practical examples”. In: Ludwig Maximilian University of Munich (2009).

[Cas+02] Miguel Castro et al. “SCRIBE: A large-scale and decentralized
application-level multicast infrastructure”. In: IEEE Journal on Selected
Areas in communications 20.8 (2002), pp. 1489–1499.

[Cha+14] Samy Chambi et al. “Better bitmap performance with Roaring bitmaps”.
In: CoRR (2014).

[Cha+15] Samy Chambi et al. “Better bitmap performance with Roaring bitmaps”.
In: Software: Practice and Experience (2015).

[CS94] Rakesh Chandra and Arie Segev. “Active databases for financial
applications”. In: Research Issues in Data Engineering, 1994. Active
Database Systems. Proceedings Fourth International Workshop on. IEEE.
1994, pp. 46–52.

[Cha+00] Yuan-Chi Chang et al. “The onion technique: indexing for linear
optimization queries”. In: ACM Sigmod Record. Vol. 29. 2. ACM. 2000,
pp. 391–402.

[Che+15] Jules Chevalier et al. “Slider: an Efficient Incremental Reasoner”. In:
SIGMOD. ACM. 2015, pp. 1081–1086.

[CW84] John G. Cleary and Ian H. Witten. “Data Compression using Adaptive
Coding and Partial String Matching”. In: IEEE Transactions on
Communications 32.4 (1984), pp. 396–402.

[Cor11] Graham Cormode. “Sketch techniques for approximate query processing”.
In: Foundations and Trends in DB. 2011.

[CDF01] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. “The JEDI
event-based infrastructure and its application to the development of the
OPSS WFMS”. In: IEEE transactions on Software Engineering 27.9 (2001),
pp. 827–850.

[CM12a] Gianpaolo Cugola and Alessandro Margara. “Low latency complex event
processing on parallel hardware”. In: Journal of Parallel and Distributed
Computing 72.2 (2012), pp. 205–218.

[CM12b] Gianpaolo Cugola and Alessandro Margara. “Processing flows of
information: From data stream to complex event processing”. In: ACM
Computing Surveys (CSUR) 44.3 (2012), p. 15.

https://doi.org/10.1145/3210284.3220502

160 Works Cited

[CM15] Gianpaolo Cugola and Alessandro Margara. “The complex event processing
paradigm”. In: Data Management in Pervasive Systems. Springer, 2015,
pp. 113–133.

[DM17] Tiziano De Matteis and Gabriele Mencagli. “Parallel patterns for
window-based stateful operators on data streams: an algorithmic skeleton
approach”. In: International Journal of Parallel Programming 45.2 (2017),
pp. 382–401.

[DIG07] Yanlei Diao, Neil Immerman, and Daniel Gyllstrom. “Sase+: An agile
language for kleene closure over event streams”. In: UMass Technical
Report (2007).

[EE11] Yagil Engel and Opher Etzion. “Towards Proactive Event-driven
Computing”. In: DEBS. 2011, pp. 125–136.

[ESP] ESPER. http://www.espertech.com/esper/.
[EJ09] Patrick Eugster and KR Jayaram. “EventJava: An extension of Java for

event correlation”. In: ECOOP. Springer. 2009, pp. 570–594.
[Fli] Apache Flink. https://flink.apache.org/.
[FB12] Lajos Jenő Fülöp and Beszédes. “Predictive Complex Event Processing: A

Conceptual Framework for Combining Complex Event Processing and
Predictive Analytics”. In: BCI. 2012.

[GUW02] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database
systems - the complete book (international edition). Pearson Education,
2002, pp. I–XXVII, 1–1119.

[GB01] Dimitrios Georgakopoulos and Alexander Buchmann, eds. Proceedings of
the 17th International Conference on Data Engineering, April 2-6, 2001,
Heidelberg, Germany. IEEE Computer Society, 2001. url: http:
//ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7304.

[GMV08] John Giacomoni, Tipp Moseley, and Manish Vachharajani. “FastForward
for efficient pipeline parallelism: a cache-optimized concurrent lock-free
queue”. In: SIGPLAN. ACM. 2008, pp. 43–52.

[Gue+15] Ted Gueniche et al. “CPT+: Decreasing the Time/Space Complexity of the
Compact Prediction Tree”. In: PAKDD. 2015, pp. 625–636. url:
http://dx.doi.org/10.1007/978-3-319-18032-8_49.

[Gul+16a] Vincenzo Gulisano et al. “The DEBS 2016 Grand Challenge”. In: to be
published in the DEBS 2016 proceedings. ACM. 2016, pp. 1–8.

[Gul+16b] Vincenzo Gulisano et al. “The DEBS 2016 grand challenge”. In: Proceedings
of the 10th ACM International Conference on Distributed and Event-based
Systems, DEBS ’16, Irvine, CA, USA, June 20 - 24, 2016. 2016,
pp. 289–292. url: http://doi.acm.org/10.1145/2933267.2933519.

[Gul+18a] Vincenzo Gulisano et al. “The DEBS 2018 Grand Challenge”. In:
Proceedings of the 12th ACM International Conference on Distributed and
Event-based Systems, DEBS 2018, Hamilton, New Zealand, June 25-29,
2018. 2018, pp. 191–194. url:
http://doi.acm.org/10.1145/3210284.3220510.

http://www.espertech.com/esper/
https://flink.apache.org/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7304
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7304
http://dx.doi.org/10.1007/978-3-319-18032-8_49
http://doi.acm.org/10.1145/2933267.2933519
http://doi.acm.org/10.1145/3210284.3220510

Works Cited 161

[Gul+18b] Vincenzo Gulisano et al. “The DEBS 2018 Grand Challenge”. In:
Proceedings of the 12th ACM International Conference on Distributed and
Event-based Systems, DEBS 2018, Hamilton, New Zealand, June 25-29,
2018. 2018, pp. 191–194. url:
https://doi.org/10.1145/3210284.3220510.

[Hil91] David Hilbert. Ueber stetige abbildung einer linie auf ein flachenstuck.
Mathematische Annalen. 1891.

[Hil+08] Matthew Hill et al. “Event detection in sensor networks for modern oil
fields”. In: Proceedings of the second international conference on
Distributed event-based systems. ACM. 2008, pp. 95–102.

[Hir+18] Martin Hirzel et al. “Stream Query Optimization”. In: (2018).
[HKP01] Vagelis Hristidis, Nick Koudas, and Yannis Papakonstantinou. “PREFER:

A system for the efficient execution of multi-parametric ranked queries”. In:
ACM Sigmod Record. Vol. 30. 2. ACM. 2001, pp. 259–270.

[Huf52] David A Huffman. “A method for the construction of minimum-redundancy
codes”. In: Proceedings of the IRE 40.9 (1952), pp. 1098–1101.

[Kha+17] Zuhair Khayyat et al. “Fast and Scalable Inequality Joins”. In: The VLDB
Journal (2017), pp. 125–150.

[Kir+17] James Kirkpatrick et al. “Overcoming catastrophic forgetting in neural
networks”. In: Proceedings of the national academy of sciences (2017),
p. 201611835.

[KS18a] Ilya Kolchinsky and Assaf Schuster. “Efficient Adaptive Detection of
Complex Event Patterns”. In: arXiv preprint arXiv:1801.08588 (2018).

[KS18b] Ilya Kolchinsky and Assaf Schuster. “Join Query Optimization Techniques
for Complex Event Processing Applications”. In: arXiv preprint
arXiv:1801.09413 (2018).

[KSK16] Ilya Kolchinsky, Assaf Schuster, and Danny Keren. “Efficient Detection of
Complex Event Patterns Using Lazy Chain Automata”. In: arXiv preprint
arXiv:1612.05110 (2016).

[KSS15a] Ilya Kolchinsky, Izchak Sharfman, and Assaf Schuster. “Lazy Evaluation
Methods for Detecting Complex Events”. In: DEBS. 2015, pp. 34–45.

[KSS15b] Ilya Kolchinsky, Izchak Sharfman, and Assaf Schuster. “Lazy evaluation
methods for detecting complex events”. In: Proceedings of the 9th ACM
International Conference on Distributed Event-Based Systems. ACM. 2015,
pp. 34–45.

[KS09] Jürgen Krämer and Bernhard Seeger. “Semantics and implementation of
continuous sliding window queries over data streams”. In: ACM
Transactions on Database Systems (TODS) 34.1 (2009), p. 4.

[Lee+07] Ken C. K. Lee et al. “Approaching the Skyline in Z Order”. In: VLDB.
2007, pp. 279–290.

[LKA10] Daniel Lemire, Owen Kaser, and Kamel Aouiche. “Sorting improves
word-aligned bitmap indexes”. In: Data & Knowledge Engineering 69.1
(2010), pp. 3–28.

https://doi.org/10.1145/3210284.3220510

162 Works Cited

[LG16] Zheng Li and Tingjian Ge. “History is a mirror to the future: Best-effort
approximate complex event matching with insufficient resources”. In:
Proceedings of the VLDB Endowment 10.4 (2016), pp. 397–408.

[Lii91] Helmut Liitkepohl. “Introduction to multiple time series analysis”. In:
Berlin et al (1991).

[Lin+05] Xuemin Lin et al. “Stabbing the sky: Efficient skyline computation over
sliding windows”. In: Data Engineering, 2005. ICDE 2005. Proceedings.
21st International Conference on. IEEE. 2005, pp. 502–513.

[LvHS00] J. Loughry, J.I. van Hemert, and L. Schoofs. “Efficiently Enumerating the
Subsets of a Set”. In: Applied-math (2000).

[Luc08] David Luckham. “The power of events: An introduction to complex event
processing in distributed enterprise systems”. In: International Workshop
on Rules and Rule Markup Languages for the Semantic Web. Springer.
2008, pp. 3–3.

[LF98] David C Luckham and Brian Frasca. “Complex event processing in
distributed systems”. In: Computer Systems Laboratory Technical Report
CSL-TR-98-754. Stanford University, Stanford 28 (1998).

[MCT14] Alessandro Margara, Gianpaolo Cugola, and Giordano Tamburrelli.
“Learning from the past: automated rule generation for complex event
processing”. In: Proceedings of the 8th ACM International Conference on
Distributed Event-Based Systems. ACM. 2014, pp. 47–58.

[MKN10] Steven Mascaro, Kevin B Korb, and Ann E Nicholson. “Learning abnormal
vessel behaviour from ais data with bayesian networks at two time scales”.
In: Tracks a Journal of Artists Writings (2010), pp. 1–34.

[May18] Ruben Mayer. “Window-based data parallelization in complex event
processing”. In: (2018).

[MD89] Dennis McCarthy and Umeshwar Dayal. “The architecture of an active
database management system”. In: ACM Sigmod Record. Vol. 18. 2. ACM.
1989, pp. 215–224.

[MP13] Ciaran McCreesh and Patrick Prosser. “Multi-threading a state-of-the-art
maximum clique algorithm”. In: Algorithms 6.4 (2013), pp. 618–635.

[MM09] Yuan Mei and Samuel Madden. “ZStream: A Cost-based Query Processor
for Adaptively Detecting Composite Events”. In: SIGMOD. 2009,
pp. 193–206.

[MRT12] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations
of Machine Learning. MIT Press, 2012.

[Mor66] G. M. Morton. “A Computer Oriented Geodetic Data Base; and a New
Technique in File Sequencing”. In: IBM. 1966.

[MBP06] Kyriakos Mouratidis, Spiridon Bakiras, and Dimitris Papadias.
“Continuous monitoring of top-k queries over sliding windows”. In:
SIGMOD. 2006, pp. 635–646.

Works Cited 163

[MTZ17] Raef Mousheimish, Yehia Taher, and Karine Zeitouni. “Automatic learning
of predictive cep rules: bridging the gap between data mining and complex
event processing”. In: Proceedings of the 11th ACM International
Conference on Distributed and Event-based Systems. ACM. 2017,
pp. 158–169.

[MZZ12] Barzan Mozafari, Kai Zeng, and Carlo Zaniolo. “High-performance
Complex Event Processing over XML Streams”. In: Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data.
SIGMOD ’12. Scottsdale, Arizona, USA: ACM, 2012, pp. 253–264. url:
http://doi.acm.org/10.1145/2213836.2213866.

[MP12] Christopher Mutschler and Michael Philippsen. “Learning event detection
rules with noise hidden markov models”. In: Adaptive Hardware and
Systems (AHS), 2012 NASA/ESA Conference on. IEEE. 2012, pp. 159–166.

[NCB15] Parth Nagarkar, K. Selçuk Candan, and Aneesha Bhat. “Compressed
Spatial Hierarchical Bitmap (cSHB) Indexes for Efficiently Processing
Spatial Range Query Workloads”. In: VLDB (2015).

[NVA18] Duc-Duy Nguyen, Chan Le Van, and Muhammad Intizar Ali. “Vessel
Destination and Arrival Time Prediction with Sequence-to-Sequence
Models over Spatial Grid”. In: Proceedings of the 12th ACM International
Conference on Distributed and Event-based Systems, DEBS 2018, Hamilton,
New Zealand, June 25-29, 2018. 2018, pp. 217–220. url:
https://doi.org/10.1145/3210284.3220507.

[NC07] Charles Nyce and A Cpcu. “Predictive analytics white paper”. In:
American Institute for CPCU. Insurance Institute of America (2007),
pp. 9–10.

[OM84] J. A. Orenstein and T. H. Merrett. “A Class of Data Structures for
Associative Searching”. In: PODS-SIGMOD. 1984, pp. 181–190.

[Pal+18] Saravana Murthy Palanisamy et al. “Preserving Privacy and Quality of
Service in Complex Event Processing through Event Reordering”. In:
Proceedings of the 12th ACM International Conference on Distributed and
Event-based Systems. ACM. 2018, pp. 40–51.

[Par+17] I Parolas et al. “Prediction of vessels’ estimated time of arrival (ETA)
using machine learning–a port of Rotterdam case study”. In: The 96th
Annual Meeting of the Transportation Research Board January. 2017.

[PP99] James Pitkow and Peter Pirolli. “Mining Longest Repeating Subsequences
to Predict World Wide Web Surfing”. In: USENIX Symposium on Internet
Technologies and Systems. 1999, pp. 13–13. url:
http://dl.acm.org/citation.cfm?id=1251480.1251493.

[Pop+17] Olga Poppe et al. “Complete Event Trend Detection in High-Rate Event
Streams”. In: SIGMOD. 2017, pp. 109–124.

[QGT16] Miao Qiao, Junhao Gan, and Yufei Tao. “Range Thresholding on Streams”.
In: Proceedings of the 2016 International Conference on Management of
Data. SIGMOD ’16. San Francisco, California, USA: ACM, 2016,
pp. 571–582. url: http://doi.acm.org/10.1145/2882903.2915965.

http://doi.acm.org/10.1145/2213836.2213866
https://doi.org/10.1145/3210284.3220507
http://dl.acm.org/citation.cfm?id=1251480.1251493
http://doi.acm.org/10.1145/2882903.2915965

164 Works Cited

[REG11] Ella Rabinovich, Opher Etzion, and Avigdor Gal. “Pattern rewriting
framework for event processing optimization”. In: Proceedings of the 5th
ACM international conference on Distributed event-based system. ACM.
2011, pp. 101–112.

[Ram+00a] Frank Ramsak et al. “Integrating the UB-Tree into a Database System
Kernel”. In: VLDB. 2000, pp. 263–272.

[Ram+00b] Frank Ramsak et al. “Integrating the UB-Tree into a Database System
Kernel”. In: VLDB. 2000.

[RLR16] Medhabi Ray, Chuan Lei, and Elke A. Rundensteiner. “Scalable Pattern
Sharing on Event Streams*”. In: Proceedings of the 2016 International
Conference on Management of Data. SIGMOD ’16. San Francisco,
California, USA: ACM, 2016, pp. 495–510. url:
http://doi.acm.org/10.1145/2882903.2882947.

[Ray+13] Medhabi Ray et al. “High-performance complex event processing using
continuous sliding views”. In: Proceedings of the 16th International
Conference on Extending Database Technology. ACM. 2013, pp. 525–536.

[RED12] Suchet Rinsurongkawong, Mongkol Ekpanyapong, and Matthew N Dailey.
“Fire detection for early fire alarm based on optical flow video processing”.
In: Electrical engineering/electronics, computer, telecommunications and
information technology (ecti-con), 2012 9th international conference on.
IEEE. 2012, pp. 1–4.

[Ros+18] Valentin Rosca et al. “Predicting Destinations by Nearest Neighbor Search
on Training Vessel Routes”. In: Proceedings of the 12th ACM International
Conference on Distributed and Event-based Systems, DEBS 2018, Hamilton,
New Zealand, June 25-29, 2018. 2018, pp. 224–225. url:
https://doi.org/10.1145/3210284.3220509.

[Sam05] Hanan Samet. Foundations of Multidimensional and Metric Data
Structures. Morgan Kaufmann Publishers Inc., 2005.

[SB13] Gereon Schueller and Andreas Behrend. “Stream fusion using reactive
programming, LINQ and magic updates”. In: FUSION. 2013,
pp. 1265–1272.

[SMP09] Nicholas Poul Schultz-Møller, Matteo Migliavacca, and Peter Pietzuch.
“Distributed complex event processing with query rewriting”. In:
Proceedings of the Third ACM International Conference on Distributed
Event-Based Systems. ACM. 2009, p. 4.

[SSS10] Sinan Sen, Nenad Stojanovic, and Ljiljana Stojanovic. “An approach for
iterative event pattern recommendation”. In: Proceedings of the Fourth
ACM International Conference on Distributed Event-Based Systems. ACM.
2010, pp. 196–205.

[SS04] Alex Spokoiny and Yuval Shahar. “A knowledge-based time-oriented active
database approach for intelligent abstraction, querying and continuous
monitoring of clinical data.” In: Medinfo. 2004, pp. 84–88.

[SÇZ05] Michael Stonebraker, Ugur Çetintemel, and Stan Zdonik. “The 8
requirements of real-time stream processing”. In: ACM Sigmod Record 34.4
(2005), pp. 42–47.

http://doi.acm.org/10.1145/2882903.2882947
https://doi.org/10.1145/3210284.3220509

Works Cited 165

[Su+14] Xueyuan Su et al. “Changing engines in midstream: A Java stream
computational model for big data processing”. In: PVLDB (2014),
pp. 1343–1354.

[Sub+16] Julien Subercaze et al. “Inferray: fast in-memory RDF inference”. In:
PVLDB 9.6 (2016), pp. 468–479.

[Sub+17] Julien Subercaze et al. “Upsortable: programming top-k queries over data
streams”. In: Proceedings of the VLDB Endowment 10.12 (2017),
pp. 1873–1876.

[Ter+92] Douglas Terry et al. Continuous queries over append-only databases.
Vol. 21. 2. ACM, 1992.

[TKA02] William Thies, Michal Karczmarek, and Saman Amarasinghe. “StreamIt: A
language for streaming applications”. In: International Conference on
Compiler Construction. 2002, pp. 179–196.

[TS03] Etsuji Tomita and Tomokazu Seki. “An efficient branch-and-bound
algorithm for finding a maximum clique”. In: Discrete mathematics and
theoretical computer science. 2003.

[Tur41] Paul Turán. “On an extremal problem in graph theory”. In: Mat. Fiz.
Lapok 48.436-452 (1941), p. 137.

[TGW09] Yulia Turchin, Avigdor Gal, and Segev Wasserkrug. “Tuning complex event
processing rules using the prediction-correction paradigm”. In: Proceedings
of the Third ACM International Conference on Distributed Event-Based
Systems. ACM. 2009, p. 10.

[Was+12] Segev Wasserkrug et al. “Efficient processing of uncertain events in
rule-based systems”. In: IEEE Transactions on Knowledge and Data
Engineering 24.1 (2012), pp. 45–58.

[WDR06] Eugene Wu, Yanlei Diao, and Shariq Rizvi. “High-performance Complex
Event Processing over Streams”. In: SIGMOD. 2006.

[Yan+11] Di Yang et al. “An optimal strategy for monitoring top-k queries in
streaming windows”. In: Proceedings of the 14th International Conference
on Extending Database Technology. ACM. 2011, pp. 57–68.

[Yi+03] Ke Yi et al. “Efficient maintenance of materialized top-k views”. In: Data
Engineering, 2003. Proceedings. 19th International Conference on. IEEE.
2003, pp. 189–200.

[ZZN14] Tilmann Zäschke, Christoph Zimmerli, and Moira C. Norrie. “The PH-tree:
A Space-efficient Storage Structure and Multi-dimensional Index”. In:
Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’14. Snowbird, Utah, USA: ACM, 2014,
pp. 397–408. url: http://doi.acm.org/10.1145/2588555.2588564.

[ZDI14a] Haopeng Zhang, Yanlei Diao, and Neil Immerman. “On Complexity and
Optimization of Expensive Queries in Complex Event Processing”. In:
SIGMOD. 2014, pp. 217–228.

http://doi.acm.org/10.1145/2588555.2588564

166 Works Cited

[ZDI14b] Haopeng Zhang, Yanlei Diao, and Neil Immerman. “On complexity and
optimization of expensive queries in complex event processing”. In:
Proceedings of the 2014 ACM SIGMOD international conference on
Management of data. ACM. 2014, pp. 217–228.

[Zhu17] Ruiand others Zhu. “SAP: Improving Continuous Top-K Queries over
Streaming Data”. In: TKDE (2017).

[Zhu+17] Rui Zhu et al. “Approximate Continuous Top-k Query over Sliding
Window”. In: Journal of Computer Science and Technology 32.1 (2017),
pp. 93–109.

[Zhu+01] Shelley Q Zhuang et al. “Bayeux: An architecture for scalable and
fault-tolerant wide-area data dissemination”. In: Proceedings of the 11th
international workshop on Network and operating systems support for
digital audio and video. ACM. 2001, pp. 11–20.

	Titlepage
	List of Figures
	List of Tables
	I Introduction & Background
	Introduction
	Motivation
	Research Challenges and Contributions
	Optimizing Expensive Queries for Complex Event Processing
	Predictive complex event processing
	Applying and testing our event processing solutions: challenging queries from the research community

	Structure
	List of publications

	Background
	Introduction
	Stream processing
	Active Database
	Data Stream Management System

	Complex event processing
	Complex event processing Architectures
	Event Processing models and definitions
	Selection Policy and Query Operator
	Event Detection models

	Query Optimization in CEP Systems
	Optimizations according to predicates
	Optimization of query plan generation
	Optimization of memory

	Predictive Analytics & Complex Event Processing
	Predictive Analytics for optimal decision making
	Predictive Analytics for automatic rules generation
	Predictive Analytics for complex events prediction

	Processing Top-k queries
	Definitions
	Top-K Algorithms

	Conclusion

	II Enhancing Complex Event Processing
	 Enabling Efficient Recomputation Based Complex Event Processing for Expensive Queries
	Introduction
	Motivating examples
	Related Works
	Preliminaries and definitions
	Definitions
	Query Tree

	Baseline Algorithm
	RCEP: Recomputational based CEP
	The Event Tree
	Creating the Complex Matches

	RCEP: General Recomputation Model
	Multidimensional Events
	Multidimensional Event Tree
	Joins between Z-addresses
	Handling Sliding Windows
	Optimising Z-address Comparison

	Experimental Evaluation
	Setup and Methodology
	Performance of Indexing and Join Algorithms
	Performance of Sliding Windows
	CEP Systems' Comparison

	Conclusion

	A Generic Framework for Predictive Complex Event Processing using Historical Sequence Space
	Introduction
	Contribution
	Our Approach
	Querying Historical Space for Prediction
	Summarisation of Historical Space Points

	Implementation
	System Architecture
	User Interface

	Experimental Evaluation
	Experiment Setup
	Datasets and CEP Queries
	Accuracy Metrics
	Precision of Prediction with Summarisation
	Comparison with other Techniques:

	Conclusion

	III Real World Event Processing Challenges
	High Performance Top-K Processing of Non-Linear Windows over Data Streams
	Introduction
	Input Data Streams and Query definitions
	Input Data Streams
	Query definitions

	Architecture
	Query 1 Solution
	Data structures
	Algorithms

	Query 2 Solution
	Data Structures
	Algorithms

	Evaluation
	Experimental Settings
	Queues implementation
	Analysis of Query 1 Performance
	Analysis of Query 2 Performance

	Conclusion

	A Scalable Framework for Accelerating Situation Prediction over Spatio-temporal Event Streams
	Introduction
	Input Data Streams and Query definitions
	Input Data Streams
	Query 1: Predicting destinations of vessels
	Query 2: Predicting arrival times of vessels

	Preliminaires
	The Framework
	Experimental Evaluation
	Evaluation DBLP:conf/debs/GulisanoJSSZZ18
	Results and GC Benchmark

	Conclusion

	IV Conclusion
	Conclusion and Future Works
	Enhancing CEP performance
	Predictive CEP
	Real world use cases and challenges

	Upsortable an Annotation-Based Approach
	Introduction
	The Case For Upsortable
	Upsortable solution
	AST modifications
	Bookkeeping
	Garbage Collection

	Discussion

	DETAILED ANALYSIS
	Evaluating Kleene+ Operator
	Proof Sketches
	Optimising Z-address Comparison
	Operations over Virtual Z-addresses
	Correctness of Comparing Virtual Z-addresses
	NextJumpIn and NextJumpOut Computation

	Works Cited

