, Licence CC BY

, Licence CC BY

C. Perraudeau, P. Dublanche-tixier, C. Tristant, and . Chazelas, Dynamic mode optimization for the deposition of a large surface TiO2 thin film by atmospheric pressure PECVD using a microwave plasma torch, Liste des publications, présentations et projets menés dans le cadre de ces travaux de thèse Articles dans des revues internationales avec comité de lecture A, vol.493, pp.703-709, 2019.

A. Perraudeau, C. Dublanche-tixier, P. Tristant, C. Chazelas, S. Vedraine et al., Low-temperature deposition of TiO2 by atmospheric pressure PECVD: photoanode elaboration for perovskite solar cells, European Physical Journal -Photovoltaics, vol.10, p.5, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02408015

A. Proceeding, L. Perraudeau, C. Vatant, C. Dublanche-tixier, P. Chazelas et al., Films de TiO2 déposés par PECVD à la pression atmosphérique : Optimisation des dépôts et évaluation des propriétés optiques pour le photovoltaïque, 2018.

A. Perraudeau, C. Dublanche-tixier, P. Tristant, C. Chazelas, S. Vedraine et al., Deposition of titanium dioxide films by atmospheric pressure plasma torch: design of the layer in the view of photovoltaic applications

A. Perraudeau, C. Dublanche-tixier, P. Tristant, C. Chazelas, S. Vedraine et al., Low-temperature deposition of TiO2 by atmospheric pressure PECVD: photoanode elaboration for perovskite solar cells". i-PVTC -Cassis, vol.12, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02408015

A. Perraudeau, C. Dublanche-tixier, C. Chazelas, and P. Tristant, Films de dioxyde de titane déposés par PECVD à la pression atmosphérique : Comparaison des modes statique et dynamique, 2017.

A. Perraudeau, C. Dublanche-tixier, C. Chazelas, and P. Tristant, Titanium dioxide films deposited by atmospheric pressure PECVD torch: comparison of the static and the dynamic modes". CIP MIATEC -Nice -27 au, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01898632

A. Perraudeau, L. Vatant, C. Dublanche-tixier, C. Chazelas, P. Tristant et al., Élaboration et propriétés d'un dépôt TiO2/ZnO pour le photovoltaïque en associant une technique PECVD à la pression atmosphérique et une synthèse sol-gel, 2018.

A. Perraudeau, L. Vatant, C. Dublanche-tixier, C. Chazelas, P. Tristant et al., Films de TiO2 déposés par PECVD à la pression atmosphérique : Optimisation des dépôts et évaluation des propriétés optiques pour le photovoltaïque, Prix de la meilleure présentation poster Amélie Perraudeau | Thèse de doctorat | Université de Limoges |2019 Licence CC

A. Perraudeau, C. Dublanche-tixier, C. Chazelas, and P. Tristant, Films de TiO2 réalisés en dynamique par PECVD à pression atmosphérique : Optimisation du procédé pour l'obtention de couches cristallisées, Journées du Réseau Plasmas Froids -La Rochelle -17 au 20 Octobre, 2016.

B. Amaury, D. Natacha, L. Jessica, L. E. Claire, P. Corre et al., -« Fonctionnalisation de polymères avant peinture par plasma froid » Océane GILLET, Monica MEY Coralie MEYNARD Bénédicte MORLAY -2017/2018 -« Fonctionnalisation de la surface de polymères par plasma froid, Isolation électrique de fils métalliques par PECVD -Projet Silifilm, 2016.

M. Benjamin and S. Dimitri, , 2018.

, Films TiO2/SiO2 réalisés en dynamique par PECVD à pression atmosphérique : étude paramétrique

, Synthesis and characterization of titania doped films with ZnO nanoparticles

, Léo Vatant -2018 -« Films TiO2 réalisés en dynamique par PECVD à pression atmosphérique : influence d'un dopage avec des particules ZnO

, Grigore Cirlan -2019 -« Study of SiO2/TiO2 film made by atmospheric pressure plasma enhanced chemical vapor deposition for optical properties

, Arthur Derien -2019 -«Élaboration de dépôts duplex SiO2/Al2O3 anti-usure déposés par PECVD et par APS » Couches mésoporeuses de TiO2 déposées par PECVD à la pression atmosphérique en vue d'applications photovoltaïques

, Licence CC BY

, Références bibliographiques

, Chiffres clés des énergies renouvelables -Edition, 2018.

S. Astier, Conversion photovoltaïque: du rayonnement solaire à la cellule, Tech. Ing, p.24, 2013.

P. Janolin, De l'effet photovoltaïque aux cellules photoélectriques, Tech. Ing, p.21, 2013.

P. P. Kumavat, P. Sonar, and D. S. , An overview on basics of organic and dye sensitized solar cells, their mechanism and recent improvements, Renew. Sustain. Energy Rev, vol.78, pp.1262-1287, 2017.

N. Park, Perovskite solar cells: an emerging photovoltaic technology, Mater. Today, vol.18, pp.65-72, 2015.

C. Tendero, Torche plasma micro-onde à la pression atmosphérique : application au traitement de surfaces métalliques, 2005.

A. S. Salman, Torche plasma micro-onde à la pression atmosphérique : application au dépôt de couches minces d'oxyde de silicium, 2009.

X. Landreau, Dépôts organosiliciés par torche plasma micro-onde à la pression atmosphérique : de l'échelle micrométrique à l'échelle nanométrique, 2012.

Y. , Étude de la croissance de couches minces de TiO2 et TiO2/SiO2 par torche plasma micro-ondes à la pression atmosphérique, 2015.

S. Sundaram, D. Benson, and T. K. Mallick, Solar photovoltaic technology production : potential environmental impacts and implications for governance, 2016.

P. Destruel and I. Seguy, Les cellules photovoltaïques organiques, p.11, 2004.

V. A. , S. Liu, and K. Wong, Organic polymeric and small molecular electron acceptors for organic solar cells, Mater. Sci. Eng. R Rep, vol.124, pp.1-57, 2018.

M. L. Parisi, S. Maranghi, and R. Basosi, The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: a life cycle assessment approach, Renew. Sustain. Energy Rev, vol.39, pp.124-138, 2014.

,

A. Antonacci and V. Scognamiglio, Photosynthesis-based hybrid nanostructures: electrochemical sensors and photovoltaic cells as case studies, TrAC Trends Anal. Chem, vol.115, pp.100-109, 2019.

M. E. El-khouly, E. El-mohsnawy, and S. Fukuzumi, Solar energy conversion: from natural to artificial photosynthesis, J. Photochem. Photobiol. C Photochem. Rev, vol.31, pp.36-83, 2017.

J. Gong, K. Sumathy, Q. Qiao, and Z. Zhou, Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends, Renew. Sustain. Energy Rev, vol.68, pp.234-246, 2017.

A. Perraudeau and |. ,

J. Gong, J. Liang, and K. Sumathy, Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials, Renew. Sustain. Energy Rev, vol.16, pp.5848-5860, 2012.

U. Mehmood, A. Al-ahmed, F. A. Al-sulaiman, M. I. Malik, F. Shehzad et al., Effect of temperature on the photovoltaic performance and stability of solid-state dyesensitized solar cells: a review, Renew. Sustain. Energy Rev, vol.79, pp.946-959, 2017.

H. Melhem, Nouvelles électrodes poreuse de TiO2 à base de nanocristaux synthétisés par pyrolyse laser pour cellules solaires sensibilisées à colorant à l'état solide, 2011.

D. Sengupta, P. Das, B. Mondal, and K. Mukherjee, Effects of doping, morphology and filmthickness of photo-anode materials for dye sensitized solar cell application -A review, Renew. Sustain. Energy Rev, vol.60, pp.356-376, 2016.

,

M. R. Narayan, Review: dye sensitized solar cells based on natural photosensitizers, Renew. Sustain. Energy Rev, pp.208-215, 2011.

,

C. C. Pablo, R. Enrique, A. R. José, M. Enrique, L. Juan et al., Construction of dye-sensitized solar cells (DSSC) with natural pigments, Mater. Today Proc, vol.3, pp.194-200, 2016.

S. Sharma, B. Siwach, S. K. Ghoshal, and D. Mohan, Dye sensitized solar cells: from genesis to recent drifts, Renew. Sustain. Energy Rev, vol.70, pp.529-537, 2017.

V. Trifiletti, R. Ruffo, C. Turrini, D. Tassetti, R. Brescia et al., Dye-sensitized solar cells containing plasma jet deposited hierarchically nanostructured TiO2 thin photoanodes, J. Mater. Chem. A, vol.1, p.11665, 2013.

F. Kong, S. Dai, and K. Wang, Review of recent progress in dye-sensitized solar cells, Adv. Optoelectron, pp.1-13, 2007.

.. K. Md, E. Nazeeruddin, M. Baranoff, and . Grätzel, Dye-sensitized solar cells: a brief overview, Sol. Energy, vol.85, pp.1172-1178, 2011.

A. Arunachalam, S. Dhanapandian, C. Manoharan, and R. Sridhar, Characterization of sprayed TiO2 on ITO substrates for solar cell applications, Spectrochim. Acta. A. Mol. Biomol. Spectrosc, vol.149, pp.904-912, 2015.

M. I. Asghar, J. Zhang, H. Wang, and P. D. Lund, Device stability of perovskite solar cells -A review, Renew. Sustain. Energy Rev, vol.77, pp.131-146, 2017.

,

C. Zuo, H. J. Bolink, H. Han, J. Huang, D. Cahen et al., Advances in perovskite solar cells, Adv. Sci, vol.3, p.1500324, 2016.

X. Tong, F. Lin, J. Wu, and Z. M. Wang, High performance perovskite solar cells, Adv. Sci, vol.3, p.1500201, 2016.

A. Taleb, F. Mesguich, A. Hérissan, C. Colbeau-justin, X. Yanpeng et al., Optimized TiO2 nanoparticle packing for DSSC photovoltaic applications, Sol. Energy Mater. Sol. Cells, vol.148, pp.52-59, 2016.

S. Yang, Y. Hou, J. Xing, B. Zhang, F. Tian et al., Ultrathin SnO2 scaffolds for TiO2-based heterojunction photoanodes in dye-sensitized solar cells: oriented charge transport and improved light scattering, Chem. -Eur. J, vol.19, pp.9366-9370, 2013.

, Couches mésoporeuses de TiO2 déposées par PECVD à la pression atmosphérique en vue d'applications photovoltaïques

, Licence CC BY

G. Varshney, S. R. Kanel, D. M. Kempisty, V. Varshney, A. Agrawal et al., Nanoscale TiO2 films and their application in remediation of organic pollutants, Coord. Chem. Rev, vol.306, pp.43-64, 2016.

,

X. Chen and S. S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem Rev, vol.107, pp.2891-2959, 2007.

,

X. Chen, Titanium dioxide nanomaterials and their energy applications, Chin, J. Catal, vol.30, pp.60126-60132, 2009.

U. Diebold, Structure and properties of TiO2 surfaces: a brief review, Appl. Phys. Mater. Sci. Process, vol.76, pp.681-687, 2003.

D. A. Hanaor and C. C. Sorrell, Review of the anatase to rutile phase transformation, J. Mater. Sci, vol.46, pp.855-874, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02308408

A. S. Barnard and L. A. Curtiss, Prediction of TiO2 Nanoparticle Phase and Shape Transitions Controlled by Surface Chemistry, Nano Lett, vol.5, pp.1261-1266, 2005.

J. M. Macák, H. Tsuchiya, A. Ghicov, and P. Schmuki, Dye-sensitized anodic TiO2 nanotubes, Electrochem. Commun, vol.7, pp.1133-1137, 2005.

,

S. Yang, D. Yang, J. Kim, J. Hong, H. Kim et al., Hollow TiO2 hemispheres obtained by colloidal templating for application in dye-sensitized solar cells, Adv. Mater, vol.20, pp.1059-1064, 2008.

A. M. Bakhshayesh, M. R. Mohammadi, H. Dadar, and D. J. Fray, Improved efficiency of dyesensitized solar cells aided by corn-like TiO2 nanowires as the light scattering layer, Electrochimica Acta, vol.90, pp.302-308, 2013.

,

P. Shen, C. Tseng, T. Kuo, C. Shih, M. Li et al., Microwave-assisted synthesis of titanium dioxide nanocrystalline for efficient dye-sensitized and perovskite solar cells, Sol. Energy, vol.120, pp.345-356, 2015.

,

R. T. Ako, P. Ekanayake, A. L. Tan, and D. J. Young, La modified TiO2 photoanode and its effect on DSSC performance: a comparative study of doping and surface treatment on deep and surface charge trapping, Mater. Chem. Phys, vol.172, pp.105-112, 2016.

A. S. Nair, Y. Shengyuan, Z. Peining, and S. Ramakrishna, Rice grain-shaped TiO2 mesostructures by electrospinning for dye-sensitized solar cells, Chem. Commun, vol.46, pp.7421-7423, 2010.

A. Hegazy, N. Kinadjian, B. Sadeghimakki, S. Sivoththaman, N. K. Allam et al., TiO2 nanoparticles optimized for photoanodes tested in large area dye-sensitized solar cells (DSSC), Sol. Energy Mater. Sol. Cells, vol.153, pp.108-116, 2016.

Y. Lee, J. Chae, and M. Kang, Comparison of the photovoltaic efficiency on DSSC for nanometer sized TiO2 using a conventional sol-gel and solvothermal methods, J. Ind. Eng. Chem, vol.16, pp.609-614, 2010.

L. Meng, C. Li, and M. P. Santos, Structural modification of TiO2 nanorod films with an influence on the photovoltaic efficiency of a dye-sensitized solar cell (DSSC), J. Inorg. Organomet. Polym. Mater, vol.23, pp.787-792, 2013.

A. Perraudeau and |. ,

L. Meng, C. Li, and M. P. Santos, Effect of annealing temperature on TiO2 nanorod films prepared by dc reactive magnetron sputtering for dye-sensitized solar cells, J. Inorg. Organomet. Polym. Mater, vol.21, pp.770-776, 2011.

L. Meng, T. Ren, and C. Li, The control of the diameter of the nanorods prepared by dc reactive magnetron sputtering and the applications for DSSC, Appl. Surf. Sci, vol.256, pp.3676-3682, 2010.

Y. Zhao, X. Gu, and Y. Qiang, Influence of growth time and annealing on rutile TiO2 singlecrystal nanorod arrays synthesized by hydrothermal method in dye-sensitized solar cells, Thin Solid Films, vol.520, pp.2814-2818, 2012.

M. Xi, Y. Zhang, L. Long, and X. Li, Controllable hydrothermal synthesis of rutile TiO2 hollow nanorod arrays on TiCl4 pretreated Ti foil for DSSC application, J. Solid State Chem, vol.219, pp.118-126, 2014.

X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa et al., Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications, Nano Lett, vol.8, pp.3781-3786, 2008.

A. Kumar, A. R. Madaria, and C. Zhou, Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells, J. Phys. Chem. C, vol.114, pp.7787-7792, 2010.

B. Liu and E. S. , Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells, J. Am. Chem. Soc, vol.131, pp.3985-3990, 2009.

W. Wu, B. Lei, H. Rao, Y. Xu, Y. Wang et al., Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells, Sci. Rep, vol.3, p.1352, 2013.

,

F. Sauvage, F. D. Fonzo, A. L. Bassi, C. S. Casari, V. Russo et al., Hierarchical TiO2 photoanode for dye-sensitized solar cells, Nano Lett, vol.10, pp.2562-2567, 2010.

K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays, Nano Lett, vol.7, pp.69-74, 2007.

Y. Lee and M. Kang, The optical properties of nanoporous structured titanium dioxide and the photovoltaic efficiency on DSSC, Mater. Chem. Phys, vol.122, pp.284-289, 2010.

T. K. Yun, S. S. Park, D. Kim, Y. Hwang, S. Huh et al., Pore-size effect on photovoltaic performance of dye-sensitized solar cells composed of mesoporous anatase-titania, J. Power Sources, vol.196, pp.3678-3682, 2011.

,

D. Wu, Y. Wang, H. Dong, F. Zhu, S. Gao et al., Hierarchical TiO2 microspheres comprised of anatase nanospindles for improved electron transport in dye-sensitized solar cells, Nanoscale, vol.5, pp.324-330, 2013.

,

Y. Qiu, W. Chen, and S. Yang, Double-layered photoanodes from variable-size anatase TiO2 nanospindles: a candidate for high-efficiency dye-sensitized solar cells, Angew. Chem. Int. Ed, vol.49, pp.3675-3679, 2010.

, Couches mésoporeuses de TiO2 déposées par PECVD à la pression atmosphérique en vue d'applications photovoltaïques

, Licence CC BY

S. Chuangchote, T. Sagawa, and S. Yoshikawa, Efficient dye-sensitized solar cells using electrospun TiO2 nanofibers as a light harvesting layer, Appl. Phys. Lett, vol.93, p.33310, 2008.

H. Chen, T. Zhang, J. Fan, D. Kuang, and C. Su, Electrospun hierarchical TiO2 nanorods with high porosity for efficient dye-sensitized solar cells, ACS Appl. Mater. Interfaces, vol.5, pp.9205-9211, 2013.

T. Belmonte, Dépôts chimiques à partir d'une phase gazeuse, Tech. Ing, p.16, 2010.

K. L. Choy, Chemical vapour deposition of coatings, Prog. Mater. Sci, vol.48, pp.57-170, 2003.

K. F. Jensen and W. Kern, III-1 -Thermal Chemical Vapor Deposition, Thin Film Process, pp.283-368, 1991.

L. Martinu, O. Zabeida, and J. E. Klemberg-sapieha, Plasma-Enhanced Chemical Vapor Deposition of Functional Coatings, Handb. Depos. Technol. Films Coat. Third Ed, pp.392-465, 2010.

C. Jiménez, D. De-barros, A. Darraz, J. Deschanvres, L. Rapenne et al., Deposition of TiO2 thin films by atmospheric plasma post-discharge assisted injection MOCVD, Surf. Coat. Technol, vol.201, pp.8971-8975, 2007.

,

L. Bárdos and H. Baránková, Cold atmospheric plasma: sources, processes, and applications, Thin Solid Films, vol.518, pp.6705-6713, 2010.

,

D. Merche, N. Vandencasteele, and F. Reniers, Atmospheric plasmas for thin film deposition: a critical review, Thin Solid Films, vol.520, pp.4219-4236, 2012.

F. Fanelli and F. Fracassi, Atmospheric pressure non-equilibrium plasma jet technology: general features, specificities and applications in surface processing of materials, Surf. Coat. Technol, vol.322, pp.174-201, 2017.

F. Massines, C. Sarra-bournet, F. Fanelli, N. Naudé, and N. Gherardi, Atmospheric pressure low temperature direct plasma technology: status and challenges for thin film deposition, Plasma Process. Polym, vol.9, pp.1041-1073, 2012.

T. Belmonte, G. Henrion, and T. Gries, Nonequilibrium Atmospheric Plasma Deposition, J. Therm. Spray Technol, vol.20, pp.744-759, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02190527

C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, Atmospheric pressure plasmas: a review, Spectrochim. Acta Part B At. Spectrosc, vol.61, 2006.

M. Jubault, Étude de la formation et du rôle des nanoparticules dans l'élaboration de couches minces d'oxyde d'étain par PECVD, 2009.

Y. Wang, Rapid thermal synthesis of nano titanium dioxide powders using a plasma torch, Aerosol Air Qual. Res, 2013.

A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn et al., The atmospheric-pressure plasma jet: a review and comparison to other plasma sources, IEEE Trans. Plasma Sci, vol.26, pp.1685-1694, 1998.

A. Perraudeau and |. ,

D. Chang, X. Li, T. Zhao, J. Yang, and A. Zhu, Non-thermal effect of atmospheric-pressure RF cold plasma on photocatalytic activity of as-deposited TiO2 film, Chem. Vap. Depos, vol.18, pp.121-125, 2012.

W. Liu and Y. Lai, Investigation of novel low temperature atmospheric pressure plasma system for deposition photo-catalytic TiO2 thin film, Surf. Coat. Technol, vol.206, pp.959-962, 2011.

S. Kment, P. Kluson, H. Zabova, A. Churpita, M. Chichina et al., Atmospheric pressure barrier torch discharge and its optimization for flexible deposition of TiO2 thin coatings on various surfaces, Surf. Coat. Technol, vol.204, pp.667-675, 2009.

J. L. Hodgkinson, H. M. Yates, A. Walter, D. Sacchetto, S. Moon et al., Roll to roll atmospheric pressure plasma enhanced CVD of titania as a step towards the realisation of large area perovskite solar cell technology, J. Mater. Chem. C, vol.6, 1988.

N. D. Boscher, S. Olivier, R. Maurau, S. Bulou, T. Sindzingre et al., Photocatalytic anatase titanium dioxide thin films deposition by an atmospheric pressure blown arc discharge, Appl. Surf. Sci, vol.311, pp.721-728, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01299259

,

R. Maurau, N. D. Boscher, S. Olivier, S. Bulou, T. Belmonte et al., Atmospheric pressure, low temperature deposition of photocatalytic TiOx thin films with a blown arc discharge, Surf. Coat. Technol, vol.232, pp.159-165, 2013.

D. Bernardi, V. Colombo, E. Ghedini, and A. Mentrelli, Three-dimensional modeling of inductively coupled plasma torches, Pure Appl. Chem, vol.77, pp.359-372, 2005.

P. André, J. Ondet, G. Bouchard, and A. Lefort, Optical emission spectroscopy, thermodynamical and thermal disequilibrium aspects in an inductively coupled plasma torch. Experimental applications to N2-O2 mixtures, J. Phys. Appl. Phys, vol.32, pp.920-929, 1999.

.. M. Md, Q. H. Hossain, D. B. Trinh, M. S. Nguyen, Y. S. Sudhakaran et al., Formation of plasma-polymerized superhydrophobic coating using an atmospheric-pressure plasma jet, Thin Solid Films, vol.675, pp.34-42, 2019.

J. Juang, H. Lin, C. Liang, P. Li, W. Chen et al., Effect of ambient air flow on resistivity uniformity of transparent Ga-doped ZnO film deposited by atmospheric pressure plasma jet, J. Alloys Compd, vol.766, pp.868-875, 2018.

S. E. Babayan, J. Y. Jeong, A. Schütze, V. J. Tu, M. Moravej et al., Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet, Plasma Sources Sci. Technol, vol.10, p.573, 2001.

, Licence CC BY

K. Gadonna, O. Leroy, L. L. Alves, C. Boisse-laporte, and P. Leprince, Study of an axial injection torch, Proc. COMSOL Conf. Paris, p.5, 2010.

R. Rincón, J. Muñoz, M. Sáez, and M. D. Calzada, Spectroscopic characterization of atmospheric pressure argon plasmas sustained with the Torche à Injection Axiale sur Guide d'Ondes, Spectrochim. Acta Part B At. Spectrosc, vol.81, pp.26-35, 2013.

J. Jonkers, J. M. De-regt, J. A. Van-der-mullen, H. P. Vos, F. P. De-groote et al., On the electron temperatures and densities in plasmas produced by the "torche à injection axiale, Spectrochim. Acta Part B At. Spectrosc, vol.51, pp.1385-1392, 1996.

J. Hnilica, J. Schäfer, R. Foest, L. Zají?ková, and V. Kudrle, PECVD of nanostructured SiO2 in a modulated microwave plasma jet at atmospheric pressure, J. Phys. Appl. Phys, vol.46, p.335202, 2013.

J. Martínez-aguilar, C. González-gago, E. Castaños-martínez, J. Muñoz, M. D. Calzada et al., Influence of gas flow on the axial distribution of densities, temperatures and thermodynamic equilibrium degree in surface-wave plasmas sustained at atmospheric pressure, Spectrochim. Acta Part B At. Spectrosc, vol.158, p.105636, 2019.

S. Vacquié and L. Électrique, , 2000.

S. Förster, C. Mohr, and W. Viöl, Investigations of an atmospheric pressure plasma jet by optical emission spectroscopy, Surf. Coat. Technol, vol.200, pp.827-830, 2005.

A. Sarani, A. Y. Nikiforov, and C. Leys, Atmospheric pressure plasma jet in Ar and Ar/ H2O mixtures: optical emission spectroscopy and temperature measurements, Phys. Plasmas, vol.17, p.63504, 2010.

E. A. Timmermans, J. Jonkers, I. A. Thomas, A. Rodero, M. C. Quintero et al., The behavior of molecules in microwave-induced plasmas studied by optical emission spectroscopy. 1. Plasmas at atmospheric pressure, Spectrochim. Acta Part B At. Spectrosc, vol.53, pp.1553-1566, 1998.

, , pp.186-190

G. Wattieaux, M. Yousfi, and N. Merbahi, Optical emission spectroscopy for quantification of ultraviolet radiations and biocide active species in microwave argon plasma jet at atmospheric pressure, Spectrochim. Acta Part B At. Spectrosc, vol.89, pp.66-76, 2013.

C. Wang, N. Srivastava, S. Scherrer, P. Jang, T. S. Dibble et al., Optical diagnostics of a low power-low gas flow rates atmospheric-pressure argon plasma created by a microwave plasma torch, Plasma Sources Sci. Technol, vol.18, p.25030, 2009.

S. Y. Moon and W. Choe, Parametric study of atmospheric pressure microwave-induced Ar?O2 plasmas and the ambient air effect on the plasma, Phys. Plasmas, vol.13, p.103503, 2006.

M. Moisan, G. Sauve, Z. Zakrzewski, and J. Hubert, An atmospheric pressure waveguidefed microwave plasma torch: the TIA design, Plasma Sources Sci. Technol, vol.3, pp.584-592, 1994.

S. R. Wylie, A. I. Al-shamma'a, J. Lucas, and R. A. Stuart, An atmospheric microwave plasma jet for ceramic material processing, J. Mater. Process. Technol, pp.288-293, 2004.

A. Perraudeau and |. ,

L. L. Alves, R. Álvarez, L. Marques, S. J. Rubio, A. Rodero et al., Modeling of an axial injection torch, Eur. Phys. J. Appl. Phys, vol.46, p.21001, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00480164

S. Y. Moon, W. Choe, H. S. Uhm, Y. S. Hwang, and J. J. Choi, Characteristics of an atmospheric microwave-induced plasma generated in ambient air by an argon discharge excited in an open-ended dielectric discharge tube, Phys. Plasmas, vol.9, pp.4045-4051, 2002.

E. A. Timmermans, M. J. Van-de-sande, and J. J. Van-der-mullen, Plasma characterization of an atmospheric microwave plasma torch using diode laser absorption studies of the argon 4s 3 P2 state, Plasma Sources Sci. Technol, vol.12, pp.324-334, 2003.

S. Li, C. Chen, J. Zhang, Y. Wang, and H. Li, Characteristic investigation of an atmospheric-pressure microwave N2 -Ar plasma torch, IEEE Trans. Plasma Sci, vol.43, pp.1683-1687, 2015.

,

D. Xiao, C. Cheng, J. Shen, Y. Lan, H. Xie et al., Characteristics of atmospheric-pressure non-thermal N2 and N2/O2 gas mixture plasma jet, J. Appl. Phys, vol.115, p.33303, 2014.

S. Jovicevic, M. Ivkovic, Z. Pavlovic, and N. Konjevic, Parametric study of an atmospheric pressure microwave-induced plasma of the mini MIP torch. I. Two-dimensional spatially resolved electron-number density measurements, At. Spectrosc, vol.55, pp.285-293, 2000.

R. P. Cardoso, T. Belmonte, F. Kosior, G. Henrion, and E. Tixhon, High-rate deposition by microwave RPECVD at atmospheric pressure, Thin Solid Films, vol.519, pp.4177-4185, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02190532

R. Rincón, J. Muñoz, and M. D. Calzada, Departure from Local Thermodynamic Equilibrium in argon plasmas sustained in a Torche à Injection Axiale sur Guide d'Ondes, Spectrochim. Acta Part B At. Spectrosc, pp.14-23, 2015.

,

C. Chen and S. Li, Spectroscopic measurement of plasma gas temperature of the atmospheric-pressure microwave induced nitrogen plasma torch, Plasma Sources Sci. Technol, vol.24, p.35017, 2015.

A. Kilicaslan, O. Levasseur, V. Roy-garofano, J. Profili, M. Moisan et al., Optical emission spectroscopy of microwave-plasmas at atmospheric pressure applied to the growth of organosilicon and organotitanium nanopowders, J. Appl. Phys, vol.115, p.113301, 2014.

C. Chen and S. Li, Investigation of a nitrogen post-discharge of an atmosphericpressure microwave plasma torch by optical emission spectroscopy, Phys. Plasmas, vol.24, p.33512, 2017.

S. Jovicevic, M. Ivkovic, and N. Konjevic, Parametric study of an atmospheric pressure microwave-induced plasma of the mini MIP torch. II. Two-dimensional spatially resolved excitation temperature measurements, At. Spectrosc, p.10, 2001.

E. Alfonso, J. Olaya, and G. Cubillos, Thin film growth through sputtering technique and its applications, Cryst. -Sci. Technol, 2012.

Y. Kajikawa and S. Noda, Growth mode during initial stage of chemical vapor deposition, Appl. Surf. Sci, vol.245, pp.281-289, 2005.

, Couches mésoporeuses de TiO2 déposées par PECVD à la pression atmosphérique en vue d'applications photovoltaïques

, Licence CC BY

A. Anders, A structure zone diagram including plasma-based deposition and ion etching, Thin Solid Films, vol.518, pp.4087-4090, 2010.

J. A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings, J. Vac. Sci. Technol, vol.11, pp.666-670, 1974.

G. Springholz, N. Frank, and G. Bauer, The origin of surface roughening in latticemismatched Frank van der Merwe type heteroepitaxy, Thin Solid Films, vol.267, pp.6591-6592, 1995.

A. Baskaran and P. Smereka, Mechanisms of Stranski-Krastanov growth, J. Appl. Phys, vol.111, p.44321, 2012.

A. Rockett, The materials science of semiconductors, 2008.

S. Jung, S. Kim, N. Imaishi, and Y. Cho, Effect of TiO2 thin film thickness and specific surface area by low-pressure metal-organic chemical vapor deposition on photocatalytic activities, Appl. Catal. B Environ, vol.55, pp.253-257, 2005.

A. Borrás, J. R. Sanchez-valencia, R. Widmer, V. J. Rico, A. Justo et al., Growth of crystalline TiO2 by Plasma Enhanced Chemical Vapor Deposition, vol.9, pp.2868-2876, 2009.

D. Li, A. Goullet, M. Carette, A. Granier, Y. Zhang et al., Structural and optical properties of RF-biased PECVD TiO2 thin films deposited in an O2/TTIP helicon reactor, Vacuum, vol.131, pp.231-239, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01372799

A. Granier, T. Begou, K. Makaoui, A. Soussou, B. Bêche et al., Influence of ion bombardment and annealing on the structural and optical properties of TiOx thin films deposited in inductively coupled TTIP/O2 plasma, Plasma Process. Polym, vol.6, pp.741-745, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00476040

A. Borrás, A. Yanguas-gil, A. Barranco, J. Cotrino, and A. R. González-elipe, Relationship between scaling behavior and porosity of plasma-deposited TiO2 thin films, Phys. Rev. B, vol.76, 2007.

R. Alvarez, P. Romero-gomez, J. Gil-rostra, J. Cotrino, F. Yubero et al., Growth of SiO2 and TiO2 thin films deposited by reactive magnetron sputtering and PECVD by the incorporation of non-directional deposition fluxes, Phys. Status Solidi A, vol.210, pp.796-801, 2013.

A. Borrás, J. R. Sánchez-valencia, J. Garrido-molinero, A. Barranco, and A. R. González-elipe, Porosity and microstructure of plasma deposited TiO2 thin films, Microporous Mesoporous Mater, vol.118, pp.314-324, 2009.

,

A. Sobczyk-guzenda, S. Owczarek, H. Szymanowski, and M. Gazicki-lipman, Amorphous and crystalline TiO2 coatings synthesized with the RF PECVD technique from metalorganic precursor, Vacuum, vol.117, pp.104-111, 2015.

,

A. Borrás, A. Barranco, and A. R. González-elipe, Design and control of porosity in oxide thin films grown by PECVD, J. Mater. Sci, vol.41, pp.5220-5226, 2006.

,

A. Borrás, J. Cotrino, and A. R. González-elipe, Type of plasmas and microstructures of TiO2 thin films prepared by plasma enhanced chemical vapor deposition, J. Electrochem. Soc, vol.154, pp.152-157, 2007.

A. Perraudeau and |. ,

K. M. Srivatsa, D. Chhikara, and M. S. Kumar, Synthesis of anatase titania nanostructures at room temperature by PECVD technique, J. Mater. Sci. Technol, vol.27, pp.696-700, 2011.

C. Wu, B. Chiang, S. Chang, and D. Liu, Determination of photocatalytic activity in amorphous and crystalline titanium oxide films prepared using plasma-enhanced chemical vapor deposition, Appl. Surf. Sci, vol.257, pp.1893-1897, 2011.

T. Busani and R. A. Devine, Dielectric and infrared properties of TiO2 films containing anatase and rutile, Semicond. Sci. Technol, vol.20, pp.870-875, 2005.

,

A. Sobczyk-guzenda, M. Gazicki-lipman, H. Szymanowski, J. Kowalski, P. Wojciechowski et al., Characterization of thin TiO2 films prepared by plasma enhanced chemical vapour deposition for optical and photocatalytic applications, Thin Solid Films, vol.517, pp.5409-5414, 2009.

,

Y. Gazal, C. Dublanche-tixier, C. Chazelas, M. Colas, P. Carles et al., Multistructural TiO2 film synthesised by an atmospheric pressure plasma-enhanced chemical vapour deposition microwave torch, Thin Solid Films, vol.600, pp.43-52, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01875369

S. Collette, J. Hubert, A. Batan, K. Baert, M. Raes et al., Photocatalytic TiO2 thin films synthesized by the post-discharge of an RF atmospheric plasma torch, Surf. Coat. Technol, vol.289, pp.172-178, 2016.

D. Wang, Q. Yang, Y. Guo, X. Liu, J. Shi et al., One step growth of TiO2 crystal trees by atmospheric pressure plasma jet, Mater. Lett, vol.65, pp.2526-2529, 2011.

T. Aita, K. Ogawa, Y. Saito, Y. Sumiyoshi, T. Higuchi et al., Microstructures of SiO2 and TiOx films deposited by atmospheric pressure inductively coupled micro-plasma jet, Surf. Coat. Technol, vol.205, pp.861-866, 2010.

,

H. Ha, M. Yoshimoto, H. Koinuma, B. Moon, and H. Ishiwara, Open air plasma chemical vapor deposition of highly dielectric amorphous TiO2 films, Appl. Phys. Lett, vol.68, pp.2965-2967, 1996.

H. Fakhouri, D. B. Salem, O. Carton, J. Pulpytel, and F. Arefi-khonsari, Highly efficient photocatalytic TiO2 coatings deposited by open air atmospheric pressure plasma jet with aerosolized TTIP precursor, J. Phys. Appl. Phys, vol.47, p.265301, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01225670

Y. Gazal, C. Chazelas, C. Dublanche-tixier, and P. Tristant, Contribution of optical emission spectroscopy measurements to the understanding of TiO2 growth by chemical vapor deposition using an atmospheric-pressure plasma torch, J. Appl. Phys, vol.121, p.123301, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01886094

, Fonctionnalisation de surfaces d'aciers par des procédés CVD compatibles avec le traitement de plaques au défilé : dépôts de TiO2 et Fe, 2004.

J. Krowka, Étude des modes de résonance d'une torche à plasma d'arc associée à une injection synchrone pour la réalisation de dépôts par voie liquide, 2014.

S. Florek and H. Becker-ross, High-resolution spectrometer for atomic spectrometry, J. Anal. At. Spectrom, vol.10, p.145, 1995.

, Couches mésoporeuses de TiO2 déposées par PECVD à la pression atmosphérique en vue d'applications photovoltaïques

, Licence CC BY

F. Bernoux, J. Piel, B. Castellon, C. Defranoux, J. Lecat et al., Ellipsométrie -Théorie, p.14, 2003.

P. J. Bruggeman, N. Sadeghi, D. C. Schram, and V. Linss, Gas temperature determination from rotational lines in non-equilibrium plasmas: a review, vol.23, p.23001, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01006011

N. Lepikhin, Fast energy relaxation in the afterglow of a nanosecond capillary discharge in nitrogen/oxygen mixtures, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01739847

V. Sanchez, Réseau Plasmas froids, Plasmas froids: réactivité en volume et en surface, Réseau Plasmas froids, Réseau Plasmas froids, 2004.

A. , Centre national de la recherche scientifique, Réseau Plasmas froids, Plasmas froids: génération, caractérisation et technologies, Publications de l'Université, 2004.

G. Lelièvre, Réseau Plasmas froids, Centre national de la recherche scientifique, Réseau Plasmas froids, Plasmas froids: cinétiques, transports et transferts, Publications de l'Université, 2005.

K. Aumaille, C. Vallée, A. Granier, A. Goullet, F. Gaboriau et al., A comparative study of oxygen/organosilicon plasmas and thin SiOxCyHz films deposited in a helicon reactor, Thin Solid Films, p.9, 2000.

A. B. Panda, S. K. Mahapatra, P. K. Barhai, A. K. Das, and I. Banerjee, Understanding of gas phase deposition of reactive magnetron sputtered TiO2 thin films and its correlation with bactericidal efficiency, Appl. Surf. Sci, vol.258, pp.9824-9831, 2012.

,

E. A. Timmermans, J. Jonkers, A. Rodero, M. C. Quintero, A. Sola et al., The behavior of molecules in microwave-induced plasmas studied by optical emission spectroscopy. 2. Plasmas at reduced pressure, Spectrochim. Acta Part B At. Spectrosc, vol.54, pp.1085-1098, 1999.

, , pp.50-56

Y. Honda, A. Álvaro-gonzález, A. Nezu, and H. Akatsuka, Spectroscopic examination of fulcher-? band of microwave discharge H2-D2 and H2-He plasmas, Energy Procedia, vol.131, pp.312-318, 2017.

K. S. Ershov, S. A. Kochubei, V. G. Kiselev, and A. V. Baklanov, Decomposition pathways of titanium isopropoxide Ti(O i Pr)4 : new insights from UV-photodissociation experiments and quantum chemical calculations, J. Phys. Chem. A, vol.122, pp.1064-1070, 2018.

A. N. Kolmogorov, Geometric selection of crystals, Dokl. Akad Nauk Minerol. USSR, 1976.

K. Baba, S. Bulou, P. Choquet, and N. D. Boscher, Photocatalytic anatase TiO2 thin films on Polymer optical fiber using atmospheric-pressure plasma, ACS Appl. Mater. Interfaces, vol.9, pp.13733-13741, 2017.

R. A. Spurr and H. Myers, Quantitative analysis of anatase-rutile mixtures with an X-Ray diffractometer, Anal. Chem, vol.29, pp.760-762, 1957.

,

C. X. Dong and Y. J. Wang, XPS investigation of carbon-doped TiO2 photocatalysts, pp.1-4, 2012.

A. Perraudeau and |. ,

D. Li, S. Dai, A. Goullet, and A. Granier, The effect of plasma gas composition on the nanostructures and optical properties of TiO2 films prepared by helicon-PECVD, Nano, vol.13, p.1850124, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01972272

D. Li, S. Bulou, N. Gautier, S. Elisabeth, A. Goullet et al., Nanostructure and photocatalytic properties of TiO2 films deposited at low temperature by pulsed PECVD, Appl. Surf. Sci, vol.466, pp.63-69, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01972335

Z. Lei, Effect of substrate temperature on structural properties and photocatalytic activity of TiO2 thin films, Trans Nonferrous Met SOCChina, vol.17, pp.60172-60173, 2007.

L. Huang, Z. Hu, J. Xu, K. Zhang, J. Zhang et al., Multi-step slow annealing perovskite films for high performance planar perovskite solar cells, Sol. Energy Mater. Sol. Cells, vol.141, pp.377-382, 2015.

J. Zhang, Roles of the n-type oxide layer in hybrid perovskite solar cells, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01343937

M. Meier and A. Keudell, Temperature dependence of the sticking coefficient of methyl radicals at hydrocarbon film surfaces, J. Chem. Phys, vol.116, p.5125, 2002.

M. Meier, A. Keudell, and W. Jacob, Consequences of the temperature and flux dependent sticking coefficient of methyl radicals for nuclear fusion experiments, Nucl. Fusion, vol.43, pp.25-29, 2003.

Y. Xing, P. Han, S. Wang, P. Liang, S. Lou et al., A review of concentrator silicon solar cells, Renew. Sustain. Energy Rev, vol.51, pp.1697-1708, 2015.

M. B. De-la-mora, O. Amelines-sarria, B. M. Monroy, C. D. Hernández-pérez, and J. E. Lugo, Materials for downconversion in solar cells: perspectives and challenges, Sol. Energy Mater. Sol. Cells, vol.165, pp.59-71, 2017.

, Couches mésoporeuses de TiO2 déposées par PECVD à la pression atmosphérique en vue d'applications photovoltaïques

A. Perraudeau and |. ,

, Licence CC BY