, Dans un bicol de 100 mL, 1,76 g (14,41 mmol) de 4-hydroxybenzaldéhyde et 25 mL, p.361

. De, Le ballon est désoxygéné sous argon pendant 15 minutes. Ensuite, 0,11 mL de TFA sont additionnés et le milieu réactionnel est laissé sous agitation magnétique pendant 20 minutes

. Naoh, Après évaporation, une huile violette persiste. Les produits sont séparés sur chromatographie flash avec comme éluant CH2Cl2 / acétate d'éthyle (19 :1). Un produit rose pâle est obtenu avec une masse de 2,487g soit un rendement molaire de 72, p.5

, RMN 1 H (CDCl3,500 MHz) ?H, ppm : 7,91 (s, 2H, NH), vol.7, p.70

, RMN 13 C (CDCl3) ?c

, 158 mmol) de méthoxyporphyrine (7) sont solubilisés dans 3,78 mL d'une solution de BBr3 à 1M dans CH2Cl2. Le milieu est laissé sous agitation pendant 16 heures à température ambiante. Puis, 20 mL de méthanol sont ajoutés et le milieu est neutralisé avec de la triéthylamine. Le produit est évaporé à sec, solubilisé dans 100 mL d'acétate d'éthyle puis lavé trois fois avec l'eau distillée. Après purification sur plaques préparatives

2. , 2H, J= 6 Hz, O-CH2-), vol.3, p.31

, SM (ESI) : m/z = C??H??N?O?, vol.761, p.761

, Synthèse de la, vol.5, p.20

, 146 mmol) de porphyrine (8) sont solubilisés dans 6 mL de DMF. Ensuite, 0,5 g (3,62 mmol) de K2CO3 et 434 µL (3,62 mmol) de dibromobutane sont ajoutés successivement. Après 5 h d'agitation à 110 °C, le DMF est évaporé et le brut réactionnel est repris dans 10 mL de chloroforme. La phase organique est lavée trois fois avec l'eau distillée, afin d'éliminer le K2CO3. Le brut réactionnel est purifié sur plaques préparatives de silice en utilisant pour éluant du chloroforme pur

H. Nmr, CDCl3, 500 MHz) ?H, vol.8, p.21

4. Hz-;-d, , vol.8, p.24

. Ch2-Éthyle, CH2-C=O), vol.4, p.23

C. Hz, , vol.2, p.1

. Hz, 75 (s, 2H, NH pyrole)

, SM (ESI) : m/z = C??H??BrN?O?

, Synthèse de la Bromure de, vol.5, p.20

, 186 mmol) de porphyrine (9) sont solubilisés dans 13 mL de DMF. Ensuite, 0,766 g (2,92 mmol) de triphénylphosphine sont ajoutés. La réaction est conduite pendant 24 h à 110 °C. Après purification sur plaque préparatives de silice (éluant : éthanol/chloroforme 5/95), 151 mg de la porphyrine (10) sont obtenus, vol.0

H. Nmr, CDCl3, 500 MHz) ?H, ppm: 8,88 (dd, 8H, J= 4,6 Hz, J= 4,4 Hz, H?-pyrroliques), 8,19 (d, 4H, J= 6,4 Hz, H 2,6 phényles), 8,07 (dd, 4H, J= 8,1 Hz, J= 7,76 Hz, H 2,6 aryles), 7,91 (dd, 6H, J= 7,46 Hz, J= 7,5 Hz H2,6 PPh3), vol.7, p.27

, SM (ESI) : m/z = C??H??N?O?P

, Synthèse de la, vol.5, p.20

, 03 mmol, 25 éq.) de K2CO3 et 1,95 g (9,03 mmol, 25 éq.) de dibromobutane sont ajoutés successivement. Après 5 h d'agitation à 110 °C, le DMF est évaporé et le brut réactionnel est repris dans 15 mL de chloroforme. La phase organique est lavée trois fois avec l'eau distillée, afin d'éliminer le K2CO3. Le brut réactionnel est purifié sur plaques préparatives de silice en utilisant pour éluant du chloroforme pur, mmol, 1éq.) de porphyrine (13) sont solubilisés dans 12 mL de DMF. Ensuite, 1,24 g, p.361

H. Nmr, CDCl3, 500 MHz) ?H, vol.8, p.21

4. Hz-;-d, 46 Hz, H 2,6 aryles), 7,74 (m, 6H, H 3,4,5 phényles), vol.8, p.2

O. Hz,

, Synthèse de la bromure de, vol.5, p.20

, ) de porphyrine (14) sont solubilisés dans 10 mL de DMF. Ensuite, 1,03 g (3,93 mmol, 16éq.) de triphénylphosphine sont ajoutés. La réaction est conduite pendant 24 h à 110 °C. Après purification sur plaque préparatives de silice (éluant : éthanol/chloroforme 5/95), 210 mg de la porphyrine (15) sont obtenus

H. Nmr, CDCl3, 500 MHz) ?H, ppm: 8,84 (m, 8H, H?-pyrroliques), vol.8, p.6

. Pph3, ,69 (m, 15H, H3,4,5 phényles et H3,4,5 PPh3), 7,27 (d, 2H, J= 8,4 Hz, H 3,5 aryleester), vol.7, p.41

, SM (ESI) : m/z = C??H??N?O?P

, Synthèse de la bromure de, vol.5, p.20

, Après 2 heures de réaction à température ambiante et sous agitation, le solvant est évaporé et le brut réactionnel repris dans 30 mL de dichlorométhane. Ensuite, la phase organique est neutralisée avec 100 mL d'une solution saturée d'hydrogénocarbonate de sodium

H. Nmr, CDCl3+10% TFA, 500 MHz) ?H, ppm: 8,7 (m, 6H, H?-pyrroliques), 8,61 (m, 2H, H?-pyrroliques), 8,53 (d, 4H, J= 7,4 Hz, H 2,6 phényles), vol.8, p.1

. Hz, CH2-CH2-C=O), vol.2, p.25

, SM (ESI) : m/z = C?0H58N?O?P

. Uv-vis, DMSO) ? max nm (?, 10 3 L.mol -1 .cm -1 ) : 422 (274), vol.518, p.649

, Greffage de la porphyrine (16) sur le xylane de hêtre

, Dans un ballon de 25 mL, 0,043 g (0,038 mmol, 1éq.) de porphyrine (16) sont solubilisés dans

, Après 24 h de réaction à 60 °C, 100 mg de xylane solubilisé dans le DMSO, sont ajoutés. La réaction est maintenue 48h à 80 °C. À la fin de la réaction, le xylane est précipité avec l'éthanol absolu, puis filtré et séché sous vide

. Le, X. Xp-snps, and . Snps, Dans un erlenmeyer de 50 mL, 0,01 g de xylane modifié (XP ou XP-TPP) sont solubilisés dans 20 mL d'eau distillée. Le mélange est placé dans un bain à ultrason, puis l'équivalent de 100 mg de la suspension de nanoparticules de silice dans l'éthanol est ajouté goutte à goutte, Après ajout des Xyl-Ac3

. Xyl-ac6,

, 53 mmol d'unité xylose, 1éq.) de xylane S5 sont solubilisés dans 7 mL de DMSO, puis 3,5 mL (43,90 mmol) de N-méthylimidazole sont ajoutés. Le mélange est laissé sous agitation à 80 °C pendant 1 h. Ensuite, le mélange est refroidi à température ambiante, puis 0,108 g (1,06 mmol, 2éq.) d'anhydride acétique sont ajoutés. Le milieu réactionnel est ensuite agité pendant deux heures, sous atmosphère inerte, à température ambiante. À la fin de réaction

, Fonctionnalisation des xylanes acétylés par la TPPOH

, 108 g (0,15 mmol, 1éq.) de TPPOH sont solubilisés dans 20 mL de DMSO, puis 0,147 g (0,903 mmol, 6éq.) de CDI sont ajoutés, Après, vol.0

, 757 mmol de xylose) de xylane acétylé sont ajoutés. La réaction est conduite à 50 °C pendant 24 h. À la fin de réaction le xylane est précipité à l'éthanol, filtré sur fritté, lavé plusieurs fois avec l'éthanol, puis séché sous vide, La même procédure a été appliquée pour les trois échantillons Xyl-Ac3-TPPOH, Xyl-Ac4-TPPOH, et Xyl-Ac5-TPPOH, vol.100

, regroupe les rendements massiques ainsi que les masses de xylanes obtenues

. 10% and . Ensuite, un dernier lavage à l'eau est effectué et le chloroforme est évaporé à l'évaporateur rotatif. Après purification par chromatographie flash

H. Nmr-;-s and 1. , acétone-d6, 500 MHz) ?H, ppm: 8 (dd, 1H, J=11,62/11,57 Hz, H16), vol.6, pp.13-19

, SM (ESI) : m/z = C??H??N?O?

. Uv-vis, DMSO) ? max nm (?, 10 3 L.mol -1 .cm -1 ) : 416 (64), vol.509, p.669

, Dans un ballon de 25 mL, 0,036 g (0,06 mmol, 1éq.) de phéophorbide a sont solubilisés dans 6

, Après 24 h de réaction à 60 °C, 40 mg de xylane solubilisé dans le DMSO, sont ajoutés, La réaction est maintenue, p.24

, À la fin de la réaction, le xylane est précipité avec l'éthanol absolu, puis filtré et séché sous vide. Le conjugué XylDMSO-ph est obtenu avec une masse de 20 mg

H. Nagai and Y. Kim, Cancer prevention from the perspective of global cancer burden patterns Journal of thoracic disease, vol.9, pp.448-451, 2017.

F. Bray, . Ferlay, R. Soerjomataram, L. Siegel, and . Torre, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J Clin, vol.0, pp.3-31, 2018.

T. Vincent and R. Gatenby, An evolutionary model for initiation, promotion, and progression in carcinogenesis, Int. J. Oncol, vol.32, pp.729-737, 2008.

R. Weinberg and . Hanahan, The hallmarks of cancer, Cell, vol.100, pp.57-70, 2000.

R. Weinberg and . Hanahan, Hallmarks of Cancer: The Next Generation, Cell, vol.144, pp.646-674, 2011.

R. Lacave, C. Larsen, and J. Robert, Cancérologie fondamentale, éditions John Libbey Eurotext Paris, 2005.

D. Boujard, C. Anselme, C. Cullin, and . Raguenes-nicol, Biologie cellulaire et moléculaire 2 e édition, 0468.

M. Barberi-heyob, C. Frochot, D. Bezdetnaya-bolotine, D. Brault, F. Dumas et al.,

P. Krausz, . Maillard, J. Maunit, . L-merlin, J. Mordon et al., , pp.308-309, 2007.

M. Huang, A Review of Progress in Clinical Photodynamic Therapy, Technol Cancer Res Treat, vol.4, pp.283-293, 2005.

C. Ringot, . Sol, N. Barriere, P. Saad, . Bressollier et al., Triazinyl Porphyrin-Based Photoactive Cotton Fabrics: Preparation, Characterization, and Antibacterial Activity, vol.12, pp.1716-1723, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00697184

C. Frochot, . Barberi-heyob, L. Blanchard-desce, . Bolotine, C. Bonneau et al.,

. Vicendo, La thérapie photodynamique : état de l'art et perspectives, l'actualité chimique, pp.397-398, 2015.

D. D-e-dolmans, R. Fukumura, and . Jain, Photodynamic therapy for cancer, Nature Reviews Cancer, vol.3, pp.380-387, 2003.

O. Raab, The action of fluorescent material on infusorien, Z Biol, vol.39, pp.524-546, 1900.

A. Jesionek and . Tappeiner, Therapeutische Versuche mit fluorescieren, Muench. Med. Wochschr, vol.41, pp.2042-2051, 1903.

H. V. Tappeiner and A. Joldlbauer, On the effect of photodynamic (fluorescent) substances on protozoa and enzymes, Arch. Klin. Med, vol.80, pp.427-487, 1904.

W. Haussmann, Die sensibilisierende wirkung des ham-atoporphyrins, Biochem. Z, vol.30, pp.276-316, 1910.

F. Meyer-betz, Investigations on the biological (photodynamic) action of haematoporphyrin and other derivatives of blood and bile pigments, Dtsch. Arch. Klin. Med, vol.112, pp.476-503, 1913.

À. Policard, Etude sur les aspects offerts par des tumeurs experimentales examinees a la lumiere de Wood, CR Soc Biol, vol.91, pp.1423-1424, 1924.

H. Auler and . Banzer, Untersuchungen uber die Rolle der Porphyrin bei geschwulstkranken Menschen und Tieren, Z Krebsforschung, vol.53, pp.65-68, 1942.

. F-h-j-figge, L. G-s-weiland, and . Manganiello, Cancer detection and therapy. Affinity of neoplastic, embryonic, and traumatized tissues for porphyrins and metalloporphyrins, Proc. Soc. Exp. Biol. Med, vol.68, pp.640-641, 1948.

K. Schwartz, . Absolon, and . Vermund, Some relationships of porphyrins, Xrays and tumors, Univ. Minn. Med. Bull, vol.27, pp.7-8, 1955.

,. E. R-lipson and . Baldes, The photodynamic properties of a particular hematoporphyrin derivative, Archives of Dermatology, vol.82, issue.4, p.508, 1960.

T. Dougherty, Activated Dyes as Antitumor Agents, J. Natl. Cancer Inst, vol.52, pp.1133-1136, 1974.

U. Chilakamarthi and . Giribabu, Photodynamic Therapy: Past, Present and Future, Chem. Rec, vol.17, pp.775-802, 2017.

H. Mfouo-tynga and . Abrahamse, Cell Death Pathways and Phthalocyanine as an Efficient Agent for Photodynamic Cancer Therapy, Int. J. Mol. Sci, vol.16, issue.5, pp.10228-1024, 2015.

P. Agostinis, K. A. Berg, T. Cengel, . Foster, S. Girotti et al., Photodynamic Therapy of Cancer: An Update, CA: Cancer Journal for Clinicians, vol.61, pp.250-281, 2011.

B. Favaloro, . Allocati, . Graziano, V. D. Di-ilio, and . Laurenzi, Role of apoptosis in disease, Aging, vol.4, pp.330-349, 2012.

M. Dewaele, P. Maes, and . Agostinis, ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy, Autophagy, vol.6, pp.838-854, 2010.

D. Kessel and M. Vicente, Jr, Initiation of Apoptosis and Autophagy by Photodynamic Therapy, Lasers Surg Med, vol.38, issue.5, pp.482-488, 2006.

H. He, Y. Zang, . Feng, W. Wang, L. Liu et al., Physalin A Induces Apoptotic Cell Death and Protective Autophagy in HT1080 Human Fibrosarcoma Cells, J. Nat. Prod, vol.76, pp.880-888, 2013.

S. Manoto, . Houreld, H. Hodgkinson, and . Abrahamse, Modes of Cell Death Induced by Photodynamic Therapy Using Zinc Phthalocyanine in Lung Cancer Cells Grown as a Monolayer and Three-Dimensional Multicellular Spheroids, Molecules, vol.22, issue.5, p.791, 2017.

J. Yoo and K. Ha, New insights into the mechanisms forphotodynamic therapy-induced cancer cell death, Int. Rev. Cell Mol. Biol, vol.295, pp.139-145, 2012.

B. Krammer, Vascular effects of photodynamic therapy, Anticancer Research, vol.21, pp.4271-4278, 2001.

Z. Huang, A. Xu, A. Meyers, . Musani, . Wang et al., Photodynamic therapy for treatment of solid tumors--potential and technical challenges

, Technol Cancer Res Treat, vol.7, issue.4, pp.309-329, 2008.

. V-h-fingar, Vascular Effects of Photodynamic Therapy, Journal of Clinical Laser Medicine & Surgery, vol.14, pp.323-328, 1996.

P. Mroz, M. Szokalska, M. Wu, and . Hamblin, Photodynamic Therapy of Tumors Can Lead to Development of Systemic Antigen-Specific Immune Response, PLoS ONE, issue.5, p.12, 2010.

E. Reginato, M. Wolf, and . Hamblin, Immune response after photodynamic therapy increases anti-cancer and anti-bacterial effects, World journal of immunology, vol.4, issue.1, pp.1-11, 2014.

M. Korbelik, Induction of Tumor Immunity by Photodynamic Therapy, Journal of Clinical Laser Medicine & Surgery, vol.14, pp.329-334, 1996.

B. P-v-tsalu, D. Nsimba, D. Mwanangombo, P. Tshilanda, Z. Mpiana et al., Correlation between Structure and Crystallization of Porphyrins and Derivatives, vol.3, pp.1-6, 2015.

P. Rothemund, Porphyrin Studies. III. The Structure of the Porphine Ring System, J. Am. Chem. Soc, vol.61, pp.2912-2915, 1935.

F. A-d-adler, J. Longo, J. Finarelli, . Goldmacher, . Assour et al., A simplified synthesis for meso-tetraphenylporphine, J. Org. Chem, vol.32, pp.476-476, 1967.

. R-g-little, P. Anton, J. Loach, and . Ibers, The synthesis of some substituted tetraarylporphyrins, J Heterocycl. Chem, vol.12, pp.343-349, 1975.

M. A-m-a-r-gonzalves and . Pereira, A new look into the rothemund meso-tetraalkyl and tetraarylporphyrin synthesis, J. Heterocycl. Chem, vol.22, pp.931-933, 1985.

J. Lindsey, H. Hsu, and I. Schreiman, Synthesis of tetraphenylporphyrins under very mild conditions, Tetrahedron Lett, vol.27, pp.4969-4970, 1986.

J. Lindsey, S. Prathapan, T. Johnson, and R. Wagner, Porphyrin building blocks for modular construction of bioorganic model systems, Tetrahedron, vol.50, pp.8941-8968, 1994.

D. Oulmi, J. Maillard, C. L-guerquin-kern, M. Huel, and . Momenteau,

. Porphyrins, Synthesis of Flat Amphiphilic Mixed meso-(Glycosylated aryDarylporphyrins and Mixed meso-(Glycosylated aryl)alkylporphyrins Bearing Some Mono-and Disaccharide Groups, J. Org. Chem, vol.60, pp.1554-1560, 1995.

R. Woodward, Totalsynthese des chlorophylls, Angew. Chem, vol.72, pp.651-662, 1960.

R. Woodward, The total synthesis of chlorophyll, Pure Appl. Chem, vol.2, pp.383-404, 1961.

E. G-p-arsenault, S. Bullock, and . Macdonald, Pyrromethanes and Porphyrins Therefrom J. Am. Chem. Soc, vol.82, pp.4384-4389, 1960.

O. Thèse and . Rezazgui, Towards a Bio-Inspired Photoherbicide: Synthesis and Studies of Fluorescent Tagged or Water-Soluble Porphyrins, from Solution to Plant Cells, 2015.

H. Abrahamse and M. Hamblin, New photosensitizers for photodynamic therapy, Biochem. J, vol.473, pp.347-364, 2016.

S. Bonneau and C. Vever-bizet, Tetrapyrrole photosensitisers, determinants of subcellular localisation and mechanisms of photodynamic processes in therapeutic approaches, Expert Opin. Ther. Patents, vol.18, issue.9, pp.1-15, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02021225

A. Michael and R. Hamblin, Design features for optimization of tetrapyrrole macrocycles as antimicrobial and anticancer photosensitizers, vol.89, pp.192-206, 2017.

S. Bonneau, . Morlière, and . Brault, Dynamics of interactions of photosensitizers with lipoproteins and membrane-models: correlation with cellular incorporation and subcellular distribution, Biochemical Pharmacology, vol.68, pp.1443-1452, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02021243

D. Gal, P. Ohashi, H. Macdonald, E. Buchsbaum, and . Simpson, Low-density lipoprotein as a potential vehicle for chemotherapeutic agents and radionucleotides in the management of gynecologic neoplasms, Am. J. Obstet. Gynecol, vol.139, pp.877-885, 1981.

S. Bonneau, P. Vever-bizet, J. Morlière, D. C-mazière, and . Brault, Equilibrium and kinetic studies of the interactions of a porphyrin with low density lipoproteins, Biophys. J, vol.83, pp.3470-3481, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02021248

D. Braul, Physical chemistry of porphyrins and their interactions with membranes: the importance of pH, Journal of Photochemistry and Photobiology B: Biology, vol.6, pp.79-86, 1990.

S. Bonneau, . Maman, and . Brault, Dynamics of pH-dependent self-association and membrane binding of a dicarboxylic porphyrin: a study with small unilamellar vesicles, Biochim Biophys Acta, issue.1, pp.87-96, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02021245

H. Mojzisova, . Bonneau, D. Vever-bizet, and . Brault, The pH-dependent distribution of the photosensitizer chlorin e6 among plasma proteins and membranes: a physico-chemical approach, Biochim Biophys Acta, vol.1768, issue.2, pp.366-74, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02021238

S. Kwiatkowski, . Knap, . Przystupski, . Saczko, . K?dzierska et al., Photodynamic therapy-mechanisms, photosensitizers and combinations, Biomedicine & Pharmacotherapy, vol.106, pp.1098-1107, 2018.

H. A-b-ormond and . Freeman, Dye Sensitizers for Photodynamic Therapy, Materials, vol.6, pp.817-840, 2013.

. S-s-taneja, . Bennet, . Coleman, G. Grubb, R. Andriole et al., Final Results of a Phase I/II Multicenter Trial of WST11 Vascular Targeted Photodynamic Therapy for Hemi-Ablation of the Prostate in Men with Unilateral Low Risk Prostate Cancer Performed in the United States, pp.1096-1104, 2016.

N. Shirasu, . Nam, and . Kuroki, Tumor-targeted Photodynamic Therapy, Anticancer research, vol.33, pp.2823-2832, 2013.

N. Solban, . Rizvi, and . Hasan, Targeted Photodynamic Therapy, Lasers in Surgery and Medicine, vol.38, pp.522-531, 2006.

A. Bayona, P. Mroz, C. Thunshelle, and M. Hamblin, Design features for optimization of tetrapyrrole macrocycles as antimicrobial and anticancer photosensitizers, Chemical Biology and Drug Design, vol.89, pp.192-206, 2017.

J. Lagerberg, K. Überriegler, B. Krammer, T. Van-steveninck, and . Dubbelman, Plasma membrane praperties involved in the photodynamic efficacy of meracyanine 540 nd tetrasulfonated aluminium phthalocyanine, Photochem. Photobiol, vol.71, pp.341-346, 2000.

Y. Matsumura and . Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs, Cancer Research, vol.46, pp.6387-6392, 1986.

Y. Barenholz, Doxil(R)-the first FDA-approved nano-drug: lessons learned, J Control Release, vol.160, pp.117-151, 2012.

G. E-miele, F. Spinelli, . Tomao, and . Tomao, Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer, Int J Nanomedicine, vol.4, pp.99-105, 2009.

M. T-e-stinchcombe, C. Socinski, B. Walko, F. Neil, . Collichio et al.,

M. Mu, R. Hawkins, C. Goldberg, E. Lindley, and . Dees, Phase I and pharmacokinetic trial of carboplatin and albumin-bound paclitaxel, ABI-007 (Abraxane) on three treatment schedules in patients with solid tumors, Cancer Chemother Pharmacol, vol.60, pp.759-66, 2007.

R. Binetruy-tournaire, C. Demangel, . Malavaud, . Vassy, M. Rouyre et al., Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis, EMBO J, vol.19, pp.1525-1533, 2000.

X. B-y-zheng, Y. Yang, Q. Zhao, M. Zheng, . R-ke et al.,

J. Kumar and . Huang, Synthesis and photodynamic activities of integrin-targeting silicon(IV) phthalocyanine-cRGD conjugates, European Journal of Medicinal Chemistry, vol.155, pp.24-33, 2018.

R. Y-n-konan, . Gurny, and . Allémann, State of the art in the delivery of photosensitizers for photodynamic therapy, Journal of Photochemistry and Photobiology B: Biology, vol.66, pp.89-106, 2002.

D. Mew, G. Watts, J. Towers, and . Levy, Photoimmunothérapie: traitement de tumeurs animales avec des conjugués anticorps monoclonal anti-tumeur spécifiques à l'hématoporphyrine, J. Immunol, vol.130, pp.1473-1477, 1983.

C. C. Licence and . By-nc-nd, , p.204

M. Mitsunaga, . Ogawa, L. Kosaka, P. Rosenblum, H. L-choyke et al., Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules, nature medicine, vol.17, pp.1685-1692, 2011.

G. G-a-m-svan-dongen, M. Visser, and . Vrouenraets, Photosensitizer-antibody conjugates for detection and therapy of cancer, Advanced Drug Delivery Reviews, vol.56, pp.31-52, 2004.

H. Kataok, . Nishie, M. Hayashi, . Tanaka, . Nomoto et al., New photodynamic therapy with next-generation photosensitizers, Ann Transl Med, vol.2017, issue.8, p.183

S. Sakuma, . Otake, M. Torii, . Nakamura, . Maeda et al., Photodynamic therapy with glycoconjugated chlorin photosensitizer, Journal of Porphyrins and Phthalocyanines, vol.17, pp.1-12, 2013.

H. Nishie, . Kataoka, J. Yano, N. Kikuchi, . Hayashi et al.,

. Joh, A next-generation bifunctional photosensitizer with improved water-solubility for photodynamic therapy and diagnosis, Oncotarget, vol.7, issue.45, pp.74259-74268, 2016.

Y. Zorlu, . Dumoulin, . Bouchu, D. Ahsen, and . Lafont, Monoglycoconjugated water-soluble phthalocyanines. Design and synthesis of potential selectively targeting PDT photosensitisers, Tetrahedron Letters, vol.51, pp.6615-6618, 2010.

M. Desroches, C. Bautista-sanchez, . Lamotte, . Labeque, . Auchère et al., Pharmacokinetics of a triglucoconjugated 5,10,15-(meta)-trihydroxyphenyl-20-phenyl porphyrin photosensitizer for PDT. A single dose study in the rat, Journal of Photochemistry and Photobiology B: Biology, vol.85, pp.56-64, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00081262

Y. Lu and P. Low, Folate-mediated delivery of macromolecular anticancer therapeutic agents, Advanced Drug Delivery Reviews, vol.54, pp.675-693, 2002.

R. Schneider, C. Schmitt, Y. Frochot, . Fort, . Lourette et al., Design, synthesis, and biological evaluation of folic acid targeted tetraphenylporphyrin as novel photosensitizers for selective photodynamic therapy, Bioorganic & Medicinal Chemistry, vol.13, pp.2799-2808, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00200165

J. Wang, Y. Liu, H. Zhang, H. Shi, . Liu et al., Folic acid conjugated pyropheophorbide a as the photosensitizer tested for in vivo targeted photodynamic therapy, vol.106, pp.1482-1489, 2017.

G. Battogtokh and Y. Ko, Mitochondrial-targeted photosensitizer-loaded folate-albumin nanoparticle for photodynamic therapy of cancer, Nanomedicine: Nanotechnology, Biology, and Medicine, vol.13, pp.733-743, 2017.

D. A-a-rosenkranz, A. Jans, and . Sobolev, Targeted intracellular delivery of photosensitizers to enhance photodynamic efficiency, Immunology and Cell Biology, vol.78, pp.452-464, 2000.

S. Zhanga, . Yang, . Ling, . Shao, W. Wang et al., Tumor mitochondria-targeted photodynamic therapy with a translocator protein (TSPO)-specific photosensitizer, Acta Biomaterialia, vol.28, pp.160-170, 2015.

P. Agarwal, . Mitra, and . Roy, Handbook of Mitochondrial Dysfunction, 2 Structure, Function and Evolutionary Aspects of Mitochondria, p.9, 2019.

C. Sauvanet, C. Arnauné-pelloquin, . David, M. Belenguer, and . Rojo, Dynamique et morphologie mitochondriales Acteurs, mécanismes et pertinence fonctionnelle, Med Sci, vol.26, pp.823-829, 2010.

S. Hu, S. Jiang, J. Zhang, D. Luo, L. Yu et al., Effects of apoptosis on liver aging, World J Clin Cases, vol.7, issue.6, pp.691-704, 2019.

S. Shirjang, . Mansoori, P. Asghari, . Duijf, M. Mohammadi et al., MicroRNAs in cancer cell death pathways: Apoptosis and necroptosis, Free Radical Biology and Medicine, vol.139, pp.1-15, 2019.

R. Smith, C. Porteous, A. Gane, and M. Murphy, Delivery of bioactive molecules to mitochondria in vivo, Proc Natl Acad Sci U S A, vol.100, issue.9, pp.5407-5412, 2003.

M. Yang, D. Deng, . Guo, . Sun, . Wang et al., Mitochondria-targeting Pt/Mn porphyrins as efficient photosensitizers for magnetic resonance imaging and photodynamic therapy, Dyes and Pigments, vol.166, pp.189-195, 2019.

G. Battogtokh, Y. Choi, D. Kang, S. Park, M. Shim et al., Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives, Acta Pharmaceutica Sinica B, vol.8, pp.862-880, 2018.

W. Lei, Y. Xie, G. Hou, H. Jiang, P. Zhang et al., Mitochondria-targeting properties and photodynamic activities of porphyrin derivatives bearing cationic pendant, Journal of Photochemistry and Photobiology B: Biology, vol.98, pp.167-171, 2010.

L. Yang, Y. Gao, . Huang, . Lu, . Chang et al., Boosting the photodynamic therapy efficiency with a mitochondria-targeted nanophotosensitizer, Chinese Chemical Letters, vol.30, pp.1293-1296, 2019.

A. Wicki, . Witzigmann, . Balasubramanian, and . Huwyler, Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications, Journal of Controlled Release, pp.138-157, 0200.

C. D-b-warheit, K. Sayes, K. Reed, and . Swain, Health effects related to nanoparticle exposures: Environmental, health and safety considerations for assessing hazards and risks, Pharmacology & Therapeutics, vol.120, pp.35-42, 2008.

M. Elsabahy and K. Wooley, Design of polymeric nanoparticles for biomedical delivery applications, Chem Soc Rev, issue.7, pp.2545-2561, 2012.

D. Owens, I. , and N. Peppas, Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles, International Journal of Pharmaceutics, vol.307, pp.93-102, 2006.

J. Wang, M. Byrne, J. Napier, and . Desimone, More Effective Nanomedicines through Particle Design, Small, vol.7, issue.14, pp.1919-1931, 2011.

F. Zhao, Y. Zhao, . Liu, . Chang, Y. Chen et al., Cellular Uptake, Intracellular Trafficking, and Cytotoxicity of Nanomaterials, vol.7, pp.1322-1337, 2011.

P. Aggarwal, J. Hall, C. Mcleland, M. Dobrovolskaia, and S. Mcneil, Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy, Advanced Drug Delivery Reviews, vol.61, pp.428-437, 2009.

J. Suk, . Xu, . Kim, L. Hanes, and . Ensign, PEGylation as a strategy for improving nanoparticle-based drug and gene delivery, Adv Drug Deliv Rev, vol.99, pp.28-51, 2016.

C. Lemarchand, P. Gref, and . Couvreur, Polysaccharide-decorated nanoparticles, European Journal of Pharmaceutics and Biopharmaceutics, vol.58, pp.327-341, 2004.

G. Lan, . Ni, and . Lin, Nanoscale metal-organic frameworks for phototherapy of cancer, Coordination Chemistry Reviews, vol.379, pp.65-81, 2019.

S. Wang, L. Huang, R. Nie, . Xing, . Liu et al., Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars, Adv Mater, issue.22, pp.3055-3061, 2013.

L. Motte, what are the Current Advances Regarding Iron Oxide Nanoparticles for Nanomedicine?, J Bioanal Biomed, vol.4, p.6, 2012.

S. Richard, Y. Boucher, . Lalatonne, . Mériaux, and . Motte, Iron oxide nanoparticle surface decorated with cRGD peptides for magnetic resonance imaging of brain tumors, Biochimica et Biophysica Acta (BBA) -General Subjects, vol.1861, pp.1515-1520, 2017.

C. J-p-fortin, . Wilhelm, C. Servais, J. Ménager, F. Bacri et al., Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia, J Am Chem Soc

M. Thandu, . Rapozzi, . Xodo, C. Albericio, . Comuzzi et al., Clicking" Porphyrins to Magnetic Nanoparticles for Photodynamic Therapy, ChemPlusChem, vol.79, pp.90-98, 2014.

A. P-v-ostroverkhov, V. Semkina, E. Naumenko, P. Plotnikova, T. Melnikov et al., Synthesis and characterization of bacteriochlorin loaded magnetic nanoparticles (MNP) for personalized MRI guided photosensitizers delivery to tumor, Journal of Colloid and Interface Science, vol.537, pp.132-141, 2019.

F. Yan, . Jiang, . Chen, . Tian, and . Li, Synthesis and Characterization of Silica Nanoparticles Preparing by Low-Temperature Vapor-Phase Hydrolysis of SiCl4, Ind. Eng. Chem. Res, vol.53, pp.11884-11890, 2014.

W. Stöber, E. Fink, and . Bohn, Controlled growth of monodisperse silica spheres in the micron size range, Journal of Colloid and Interface Science, vol.26, pp.62-69, 1968.

. K-s-rao, T. El-hami, . Kodaki, . Matsushige, and . Makino, A novel method for synthesis of silica nanoparticles, J. Colloid Interface Sci, vol.289, issue.1, pp.125-131, 2005.

R. V-k-lamer and . Dinegar, Theory, production and mechanism of formation of monodispersed hydrosols, Journal of the American Chemical Society, vol.72, pp.4847-4854, 1950.

C. Carcouët, M. Van-de-put, P. Mezari, J. C-m-m-magusin, P. Laven et al., Gijsbertus de With, Nucleation and Growth of Monodisperse Silica Nanoparticles, vol.14, pp.1433-1438, 2014.

L. Colombeau, . Acherar, P. Baros, . Arnoux, K. Mohd-gazzali et al., Inorganic Nanoparticles for Photodynamic Therapy, Top Curr Chem, vol.370, pp.113-134, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01264846

J. J-g-croissant, L. Zink, J. Raehm, and . Durand, Two-Photon-Excited Silica and Organosilica Nanoparticles for Spatiotemporal Cancer Treatment, Adv. Healthcare Mater, 2018.

F. Yan and . Kopelman, The Embedding of Meta-tetra (Hydroxyphenyl)-Chlorin into Silica Nanoparticle Platforms for Photodynamic Therapy and Their Singlet Oxygen Production and pH-dependent Optical Properties, Photochemistry and Photobiology, vol.78, issue.6, pp.587-591, 2003.

. Roy, H. Ohulchanskyy, E. Pudavar, A. Bergey, ,. R-oseroff et al., Ceramic-based nanoparticles entrapping water-insoluble

, Licence CC BY-NC-ND, vol.3

, photosensitizing anticancer drugs: A novel drug-carrier system for photodynamic therapy, Journal of the American Chemical Society, vol.125, pp.7860-7865, 2003.

D. Dam, S. Zhao, Y. Jelsma, A. Zhao, and . Paller, Folic acid functionalized hollow nanoparticles for selective photodynamic therapy of cutaneous squamous cell carcinoma, Mater. Chem. Front, vol.3, pp.1113-1122, 2019.

C. Jimenez, J. Daggad, K. Croissant, . Tresfield, . Laurencin et al.,

L. Oliviero, C. Raehm, . Charnay, . Cattoën, M. Clément et al.,

V. Chaleix, . Sol, . Garcia, N. Gary-bobo, N. Khashab et al., Porous Porphyrin-Based Organosilica Nanoparticles for NIR Two-Photon Photodynamic Therapy and Gene Delivery in Zebrafish, Adv. Funct. Mater, vol.28, issue.21, p.1800235, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01973302

N. Clemente, . Miletto, M. Gianotti, . Invernizzi, U. Marchese et al., Verteporfin-loaded mesoporous silica nanoparticles inhibit mouse melanoma proliferation in vitro and in vivo, Journal of Photochemistry and Photobiology B: Biology, p.111533, 2019.

J. Vivero-escoto and D. Vega, Stimuli-responsive protoporphyrin IX silica-based nanoparticles for photodynamic therapy in vitro, RSC Adv, vol.4, pp.14400-14407, 2014.

A. Akbarzadeh, S. Rezaei-sadabady, S. Davaran, N. Joo, Y. Zarghami et al.,

M. Samiei, K. Kouhi, and . Nejati-koshki, Liposome: classification, preparation, and applications, Nanoscale Research Letters, issue.8, p.102, 2013.

A. S-l-derycke and P. De-witte, Liposomes for photodynamic therapy, Advanced Drug Delivery Reviews, vol.56, pp.17-30, 2004.

F. Jiang, . Lilge, Y. Grenier, M. Li, M. Wilson et al., Photodynamic Therapy of U87

, Human Glioma in Nude Rat Using Liposome-Delivered Photofrin, Lasers in Surgery and Medicine, vol.22, pp.74-80, 1998.

K. Nawalany, M. Rusin, . K?pczy?ski, . Mikhailov, M. Kramer-marek et al., Comparison of photodynamic efficacy of tetraarylporphyrin pegylated or encapsulated in liposomes: In vitro studies, J. Photochem. Photobiol. B Biol, vol.97, pp.8-17, 2009.

A. Iyer, K. Greish, . Seki, . Okazaki, . Fang et al., Polymeric micelles of zinc protoporphyrin for tumor targeted delivery based on EPR effect and singlet oxygen generation, Journal of Drug Targeting, vol.15, issue.7-8, pp.496-506, 2007.

F. Hu, X. H. Jiang, X. Huang, H. Wu, X. Yuan et al., Enhanced cellular uptake of chlorine e6 mediated by stearic acid-grafted chitosan oligosaccharide micelles, Journal of Drug Targeting, vol.17, issue.5, pp.384-391, 2009.

B. Klajnert, M. Rozanek, and . Bryszewska, Dendrimers in photodynamic therapy, Curr. Med. Chem, vol.19, pp.4903-4912, 2012.

A. Narsireddy, M. Vijayashree, S. Adimoolam, N. Manorama, and . Rao, Photosensitizer and peptide conjugated PAMAM dendrimer for targeted in vivo photodynamic therapy, Int J Nanomedicine, vol.10, pp.6865-6878, 2015.

J. Nicolas and . Couvreur, Les nanoparticules polymères pour la délivrance de principes actifs anticancéreux, médecine/sciences, vol.33, pp.11-18, 2017.

G. Saravanakumar, J. Jo, and . Park, Polysaccharide-Based Nanoparticles: A Versatile Platform for Drug Delivery and Biomedical Imaging, Current Medicinal Chemistry, vol.19, pp.3212-3229, 2012.

M. Swierczewska, H. Han, J. Kim, . Park, and . Lee, Polysaccharide-based Nanoparticles for Theranostic Nanomedicine, Adv Drug Deliv Rev, vol.99, pp.70-84, 2016.

S. Daus and . Heinze, Xylan-Based Nanoparticles: Prodrugs for Ibuprofen Release, Macromolecular Bioscience, vol.10, pp.211-220, 2010.

V. S-u-kumar, R. Kumar, P. Priyadarshi, Y. Gopinath, and . Negi, pH-responsive prodrug nanoparticles based on xylan-curcumin conjugate for the efficient delivery of curcumin in cancer therapy, Carbohydrate Polymers, vol.188, pp.252-259, 2018.

X. Peng, . Xiang, . Du, . Tan, . Zhong et al., Amphiphilic xylan-cholic acid conjugates: synthesis and self-assembly behaviors in aqueous solution, Cellulose, vol.25, pp.245-257, 2018.

G. Fu, L. Su, P. Yue, Y. H. Huang, J. Bian et al., Syntheses of xylan stearate nanoparticles with loading function from by-products of viscose fiber mills, Cellulose, pp.1-12, 2019.

Y. Jeong, B. Cha, H. Lee, Y. Song, Y. Jung et al., Simple nanophotosensitizer fabrication using water-soluble chitosan for photodynamic therapy in gastrointestinal cancer cells, International Journal of Pharmaceutics, vol.532, pp.194-203, 2017.

. S-j-lee, H. Koo, M. Jeong, Y. Huh, S. Choi et al., Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy, Journal of Controlled Release, vol.152, pp.21-29, 2011.

Y. Wang, . Yang, . Qian, . Xu, . Wang et al., Sequentially self-assembled polysaccharide-based nanocomplexes for combined chemotherapy and photodynamic therapy of breast cancer, Carbohydrate Polymers, vol.203, pp.203-213, 2019.

L. Dai, . Li, J. Zhang, Z. Liu, . Luo et al., Redox-Responsive Nanocarrier Based on Heparin End-Capped Mesoporous Silica Nanoparticles for Targeted Tumor Therapy in Vitro and in Vivo, Langmuir, vol.30, pp.7867-7877, 2014.

K. Kim, J. Kim, . Lee, . Matsuda, Y. Hideshima et al., Stimuliresponsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy, Nanoscale, vol.8, issue.22, pp.11625-11659, 2016.

Q. Zhao, W. Liu, . Zhu, . Sun, Y. Di et al., Dual stimuli responsive hyaluronic acid-conjugated mesoporous silica for targeted delivery to CD44-overexpressing cancer cells, Acta Biomater, vol.23, pp.147-156, 2015.

L. Li, M. Nurunnabi, Y. Nafiujjaman, K. Lee, and . Huh, GSH-mediated photoactivity of pheophorbide a-conjugated heparin/gold nanoparticle for photodynamic therapy, Journal of Controlled Release, vol.171, pp.241-250, 2013.

W. G-f-luo, Y. Chen, Q. Liu, R. Lei, X. Zhuo et al., Multifunctional Enveloped Mesoporous Silica Nanoparticles for Subcellular Co-delivery of Drug and Therapeutic Peptide, 2014.

K. Kim, E. Choi, M. Choi, J. Park, and . Ryu, Hyaluronic Acid-Coated Nanomedicine for Targeted Cancer Therapy, p.301, 2019.

Q. He, . Shi, M. Chen, . Zhu, and . Zhang, An anticancer drug delivery system based on surfactant-templated mesoporous silica nanoparticles, Biomaterials, vol.31, pp.3335-3346, 2010.

. S-e-park, P. K. Park, and S. Lee, The Effect of pH-adjusted Gold Colloids on the Formation of Gold Clusters over APTMS-coated Silica Cores, Bull. Korean Chem. Soc, vol.27, pp.1341-1345, 2006.

M. García-soto and O. González-ortega, Synthesis of silica-core gold nanoshells and some modifications/variations, Gold Bulletin, vol.49, pp.111-131, 2016.

K. Hettrich, N. Fischer, . Schröder, . Engelhardt, . Drechsler et al., Derivatization and Characterization of Xylan from Oat Spelts, Macromolecular Symposia, vol.232, pp.37-48, 2006.

A. Ebringerová and . Hromádková, Xylans of Industrial and Biomedical Importance, Biotechnology and Genetic Engineering Reviews, vol.16, pp.325-346, 2013.

C. R-h-marchessault and . Liang, The Infrared Spectra of Crystalline Polysaccharides VIII

. Xylans, Journal of Polymer Science, vol.59, pp.357-378, 1962.

A. Ebringerová, Structural Diversity and Application Potential of Hemicelluloses, Macromolecular. Symposia, vol.232, pp.1-12, 2006.

J. Havlicek and . Samuelson, Chromatography of oligosaccharides from xylan by various techniques, Carbohydrate Research, vol.22, pp.307-316, 1972.

. R-toman, . Kohn, and . Malovíková, J Rosik Distribution of 4-O-methyl-D-glucuronic acid units in xylan of the bark of white willow, Collect. Czech. Chem. Commun, vol.46, issue.6, pp.1405-1412, 1981.

M. Charlotte, Thèse Université de Limoges, extraction, caractérisation structurale et valorisation d'une famille d'hémicelluloses du bois. Obtention de matériaux plastiques par modification des xylanes, p.108, 2005.

. R-g-little, P. Anton, J. Loach, and . Ibers, The synthesis of some substituted tetraarylporphyrins, Journal of Heterocyclic Chemistry, vol.12, pp.343-349, 1975.

R. Boscencu, A. Socoteanu, L. Oliveira, and . Ferreira, Synthesis and spectral characterization of some unsymmetrically substituted mesoporphyrinic compounds, Revista de Chimie, vol.58, pp.498-501, 2007.

. V-chaleix, . Couleaud, . Sol, . Zerrouki, P. Alves et al., Microwave-assisted expeditious O-alkylation of meso-hydroxyphenylpotphyrins, Journal of Porphyrins and Phtalocyanines, vol.13, pp.888-892, 2009.

M. Österberg, . Laine, . Stenius, P. Kumpulainen, and . Claesson, Forces between xylancoated surfaces: effect of polymer charge density and background electrolyte, Journal of Colloid and Interface Science, vol.242, pp.59-66, 2001.

J. C-h-lee and . Lindsey, One-flask synthesis of meso-substituted dipyrromethanes and their application in the synthesis of trans-substituted porphyrin building blocks, Tetrahedron, vol.50, pp.11427-11440, 1994.

A. Nowak-król, R. Plamont, G. Canard, J. Edzang, D. Gryko et al., An Efficient Synthesis of Porphyrins with Different meso Substituents that Avoids Scrambling in Aqueous Media, Chem. Eur. J, vol.20, pp.1-12, 2014.

Y. B-j-littler, J. Ciringh, and . Lindsey, Investigation of Conditions Giving Minimal Scrambling in the Synthesis of trans-Porphyrins from Dipyrromethanes and Aldehydes, J. Org. Chem, vol.64, pp.2864-2872, 1999.

W. Lei, Y. Xie, G. Hou, H. Jiang, P. Zhang et al., Mitochondria-targeting properties and photodynamic activities of porphyrin derivatives bearing cationic pendant, Journal of Photochemistry and Photobiology B: Biology, vol.98, pp.167-171, 2010.

D. S-w-wright, A. L-hageman, L. Wright, and . Mcclure, Convenient preparations of t-butyl esters and ethers from t-butanol, Tetrahedron Lett, vol.38, issue.42, pp.7345-7348, 1997.

T. Figueiredo, R. Johnstone, A. M-p-s-sørensen, D. Burget, and . Jacques, Determination of Fluorescence Yields, Singlet Lifetimes and Singlet Oxygen Yields, vol.69, pp.517-528, 1999.

J. Rw-redmond and . Gamlin, A Compilation of Singlet Oxygen Yields from Biologically Relevant Molecules, Photochem Photobiol, vol.70, pp.391-475, 1999.

S. Elmore, Apoptosis: a review of programmed cell death, Toxicologic Pathology, vol.35, pp.495-516, 2007.

H. Wondraczek, P. Petzold-welcke, . Fardim, and . Heinze, Nanoparticles from conventional cellulose esters: evaluation of preparation methods, Cellulose, vol.20, pp.751-760, 2013.

L. Chronopoulou, C. Fratoddi, . Palocci, M. Venditti, and . Russo, Osmosis Based Method Drives the Self-Assembly of Polymeric Chains into Micro-and Nanostructures, Langmuir, vol.25, issue.19, pp.11940-11946, 2009.

N. Fundador, Y. Enomoto-rogers, . Takemura, and . Iwata, Acetylation and characterization of xylan from hardwood kraft pulp, Carbohydrate Polymers, vol.87, pp.170-176, 2012.

N. Fundador, Y. Enomoto-rogers, . Takemura, and . Iwata, Syntheses and characterization of xylan esters, Polymer, vol.53, pp.3885-3893, 2012.

M. Gröndahl, P. Teleman, and . Gatenholm, Effect of acetylation on the material properties of glucuronoxylan from aspen wood, Carbohydrate Polymers, vol.52, pp.359-366, 2003.

X. Zhang, C. Zhang, J. Liu, and . Ren, Per-O-acylation of xylan at room temperature in dimethylsulfoxide/N-methylimidazole, Cellulose, vol.23, pp.2863-2876, 2016.

A. Stallivieri, R. Le-guern, . Vanderesse, . Meledje, . Jori et al., Synthesis and photophysical properties of photoactivable cationic porphyrin 5-(4-N-dodecylpyridyl)-10,15,20-tri(4-N-methylpyridyl)-21H,23H-porphyrin tetraiodide for anti-malaria PDT, Photochem. Photobiol. Sci, vol.14, pp.1290-1295, 2015.

S. Wang, . Gao, M. Zhou, and . Selke, Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy, J. Mater. Chem, vol.14, pp.487-493, 2004.

Y. Li, N. Jang, . Nishiyama, . Kishimura, Y. Kawauchi et al.,

M. Yamashita, . Kikuchi, . Aida, and . Kataoka, Dendrimer generation effects on photodynamic efficacy of dendrimer porphyrins and dendrimer-loaded supramolecular nanocarriers, Chem. Mater, vol.19, pp.5557-5562, 2007.

S. Hackbarth, . Horneffer, . Wiehe, . Hillenkamp, and . Röder, Photophysical properties of pheophorbide-a-substituted diaminobutane poly-propylene-imine dendrimer, Chem. Phys, vol.269, pp.339-346, 2001.

F. Bregier, . Godard, . Thiais, . Bouramtane, Y. Moulin et al., Regioselective reduction of 5-aryl-10, Journal of Porphyrins and Phthalocyanines, vol.15, p.20, 2019.

A. Ebringerova, . Hromadkova, and . Heinze, Hemicellulosemolysaccharides I. Advances in Polymer Science, vol.186, pp.1-67, 2005.

C. Moine, . Krausz, . Chaleix, . Sainte-catherine, . Kraemer et al., Structural Characterization and Cytotoxic Properties of a 4-O-Methylglucuronoxylan from Castanea sativa, J. Nat. Prod, vol.70, pp.60-66, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00684098

, Mise en oeuvre et impacts sur la structure et le potentiel ant-radicalaire des Phyto-polysaccharides extraits, 2014.

D. Carvalho, D. Martínez-abad, J. V-evtuguin, M. L-colodette, . Lindström et al., Isolation and characterization of acetylated glucuronoarabinoxylan from sugarcane bagasse and straw, Carbohydrate Polymers, vol.156, pp.223-234, 2017.

, Extraction, caractérisation chimique et valorisation biologique de glucuronoxylanes de bois de châtaignier. Développement de nouveaux procèdés de délignification, p.83, 2009.

M. Gröndahl, P. Teleman, and . Gatenholm, Effect of acetylation on the material properties of glucuronoxylan from aspen wood, Carbohydrate Polymers, vol.52, pp.359-366, 2003.

S. H-e-yoon, . Oh, J. Kim, S. Yoon, and . Ahn, Pheophorbide a-mediated photodynamic therapy induces autophagy and apoptosis via the activation of MAPKs in human skin cancer cells, Oncol Rep, issue.1, pp.137-144, 2014.

P. Tang, J. Chan, S. Au, S. Kong, S. Tsui et al., Pheophorbide a, an active compound isolated from Scutellaria barbata, possesses photodynamic activities by inducing apoptosis in human hepatocellular carcinoma, Cancer Biol Ther, vol.5, pp.1111-1116, 2006.

G. Battogtokh and Y. Ko, Mitochondrial-targeted photosensitizer-loaded folate-albumin nanoparticle for photodynamic therapy of cancer, Nanomedicine: Nanotechnology, Biology, and Medicine, vol.13, pp.733-743, 2017.

, Article 3: Regioselective reduction of 5-aryl-10, vol.15, p.20

F. Bregier, J. Godard, J. Thiais, S. Bouramtane, A. Moulin et al., Vincent Sol Journal of Porphyrins and Phthalocyanines, 2019.

, Dihydroporphyrins or chlorins differ from porphyrins only by saturation of a peripheral double bond of the macrocycle. However, this small structural difference leads to a significant increase of the absorption band at approximately 650 nm, which makes them very interesting candidates for photodynamic therapy applications. The reduction of porphyrins bearing two, three or four pyridyl substituents with tin (II) chloride has been developed for the synthesis of dihydroporphyrins in yields of 15-73%. The reduction of 5-(aryl)-10, vol.15, p.20

, 18-dihydroporphyrins in 17-72% yield. Porphyrins with one meso-aryl substituted with one electron-withdrawing groups (EWG) gave 5-aryl-10, porphyrin with tin(II) chloride dihydrate demonstrated good regioselectivity, vol.15, p.20