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Il est certains esprits dont les sombres pensées 

Sont d'un nuage épais toujours embarrassées ; 

Le jour de la raison ne le saurait percer. 

Avant donc que d'écrire, apprenez à penser. 

Selon que notre idée est plus ou moins obscure, 

L'expression la suit, ou moins nette, ou plus pure. 

Ce que l'on conçoit bien s'énonce clairement, 

Et les mots pour le dire arrivent aisément. 

 

Surtout qu'en vos écrits la langue révérée 

Dans vos plus grands excès vous soit toujours sacrée. 

En vain, vous me frappez d'un son mélodieux, 

Si le terme est impropre ou le tour vicieux : 

Mon esprit n'admet point un pompeux barbarisme, 

Ni d'un vers ampoulé l'orgueilleux solécisme. 

Sans la langue, en un mot, l'auteur le plus divin 

Est toujours, quoi qu'il fasse, un méchant écrivain. 

 

Travaillez à loisir, quelque ordre qui vous presse, 

Et ne vous piquez point d'une folle vitesse : 

Un style si rapide, et qui court en rimant, 

Marque moins trop d'esprit que peu de jugement. 

J'aime mieux un ruisseau qui, sur la molle arène, 

Dans un pré plein de fleurs lentement se promène, 

Qu'un torrent débordé qui, d'un cours orageux, 

Roule, plein de gravier, sur un terrain fangeux. 

Hâtez-vous lentement, et, sans perdre courage, 

Vingt fois sur le métier remettez votre ouvrage : 

Polissez-le sans cesse et le repolissez ; 

Ajoutez quelquefois, et souvent effacez. 

 

Nicolas Boileau 

 

  

 

 

 

 

 

 



IV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



V 

 

Remerciements 

Il m’est aujourd’hui évident que ce qui compte le plus dans une aventure n’est ni le voyage ou 

la destination, mais les personnes qui nous accompagnent. C’est pourquoi je souhaiterai 

profiter de ces quelques lignes pour remercier toutes les personnes sans qui le travail présenté 

dans ce manuscrit n’aurait pu être possible. 

 

Je souhaiterai remercier tout d’abord Valentina Emiliani et Benoît C. Forget, mes deux 

directeurs de thèse, pour leur soutien tout au long de cette aventure scientifique. Votre 

confiance m’honore et ce fût une chance de pouvoir travailler et tant apprendre à vos côtés. A 

travers mon implication au sein de l’association Les Cartésiens, j’ai pu être témoin des 

conditions de thèses de nombreux autres jeunes chercheurs, et je mesure ainsi tout 

particulièrement la chance qui fut la mienne de pouvoir effectuer mon doctorat au sein de ce 

laboratoire avec vous, tant humainement que matériellement. 

 

Immédiatement, je pense aussi à vous Marco, Pascal, Fabrice et Nidal. Au-delà de votre 

soutien sans faille durant ces années, vous m’avez permis de m’épanouir et de me développer 

personnellement. Certains diraient même grandir. Travailler et vivre à vos côtés me manquent 

déjà. 

 

J’ai une pensée toute particulière aussi pour vous Marta, Florence, Clément, Chang, Aurélien, 

Minh Chau, Jeanne et Stan. Chacun à sa façon, vous avez été une source joie et de stimulation 

tout au long de ces années. Vous avez surement de plus été les plus exposés à mes digressions 

sans fins et blagues en tous genres. Ce n’est certainement pas à vous que je vais apprendre 

que les jeux de mollets font les jambettes. Je vous remercie tout spécialement. 

 

Je souhaiterai te remercier aussi Robert, Carolingien tout comme moi, pour ton support dans 

ton rôle de parrain de thèse, et en dehors. Je repense aussi à ces moments de cohabitation 

informatique qui furent des plus sympathiques. 

 

Je vous souhaiterai aussi vous remercier Dimitrii, Eirini, Nicolo, Christophe, Vincent, 

Emiliano, Valeria, Gilles, Thomas, Imane, I-Wen, Fabio, Anthony, Hugo, Verena, Elisa, 



VI 

 

Osnath, Haithem, Lyle, Marc, Rossella, Emmanuelle et Cécile. A travers nos nombreuses 

discussions, scientifiques ou non, votre gentillesse ainsi que le temps passé ensemble, vous 

m’avez permis à la fois de devenir un meilleur chercheur, et d’atteindre les objectifs que je 

m’étais fixé. Ces trois années se sont écoulées bien vite à vos côtés. 

 

Il ne m’est pas possible de rédiger des remerciements sans avoir une pensée toute particulière 

pour vous Zuzana, Coralie-Anne, Morgane, Valentina, Flavien et Franck. Quelle aventure 

nous avons traversé ensemble ! J’attends la prochaine avec impatience. Votre amitié 

m’honore, et votre soutien tout au long de ce périple fût des plus précieux.  

 

Qui dit aventure dit forcément Les Cartésiens. À travers cette association, j’ai eu la chance de 

vous rencontrer Giorgia, Anastasia, Anastasie, Christelle, Marie, Chahrazed, Léonie, 

Victorine, Tsevetelina, Alain, Gardy, Geoffrey, Margaux, Yasmina, Ola, Feriel, David, 

Jeverson, Camille, Michele et Juliette. Travailler et prendre du plaisir à vos côtés fût 

extrêmement enrichissant et une source de fierté pour moi. Je vous remercie tout 

particulièrement pour votre confiance et votre soutient. Je n’y serai pas arrivé sans vous. 

 

Je souhaiterai remercier aussi le logiciel TeamViewer, sans qui ma thèse n’aurait certainement 

pas été la même. A la fois source d’angoisse et de réconfort, tu ne m’as jamais déçu.  

 

J’ai une pensée pour vous aussi, mes mollets ainsi que le Dr Michel Barbier. Comme chacun 

sait, on n’est pas sérieux quand on a dix-sept ans. Grâce à vous j’ai pu faire à ce moment 

précis le choix qui s’est avéré être le bon dix ans plus tard. Merci de me le rappeler chaque 

jour qui passe. 

 

Je tiens à vous remercier aussi Marie-Claude Faure, Michel Goldmann, Gérard Louis, Anne 

Baudot, Marie-Agnès Sari, Mohammed Boubekri, Karine Le-Barch, Xavier Coumoul, 

Philippe Girard, Michele Aquino, Isabelle Fitton. Je vous remercie encore une fois aussi 

Benoît. Vous qui avez été mes encadrants, mes professeurs, vous m’avez aidé à développer 

mon sens critique, forger mes propres opinions, et appris tant de choses. Mon esprit est en 

grande partie la combinaison de vos enseignements, scolaires ou extras scolaires. Il en ressort 

plus fort. 

 



VII 

 

Je te remercie Delphine, toi qui a su installer tant d’applications. Tu m’as de plus montré 

comment se tenir droit face aux difficultés. Il y a un avant et un après. 

 

Encore merci Elizabeth pour la relecture attentive de ce manuscrit. Celle-ci t’aura permis de 

découvrir de nombreux mots que tu auras hâte je l’espère de réemployer lors de conversations 

mondaines. Je te remercie tout particulièrement aussi pour ton soutien inestimable tout au 

long de la rédaction de ce manuscrit. Merci, merci, et merci. 

 

Je souhaiterai aussi remercier ma famille pour son soutien sans faille tout au long de ces trois 

années, et tout particulièrement mes parents pour m’avoir donné l’ambition de mes moyens, 

et les moyens de mes ambitions. Je mesure la chance que j’ai eu toute ma vie que vous soyez 

ma mère et mon père. Я счастлив, когда вы горды. 

 

Enfin, je souhaiterai profiter de ces quelques lignes pour remercier Anna Devor, Ofer Yizhar, 

Samuel Grésillon et Isabelle Ledoux pour leur participation au sein de mon jury de thèse ainsi 

que pour leur évaluation de ce manuscrit et de mon travail. J’ai une pensée particulière pour 

vous Samuel Grésillon, qui avez été mon tuteur de thèse durant ces années. Merci. 

 

  



VIII 

 

Detailed Summary 

Over the past 15 years, a new approach, optogenetics, has allowed the optical manipulation of 

neuronal activity via the use of exogenous photosensitive proteins called opsins. This field of 

research has led to major progress in neurosciences, opening incredible prospects for 

fundamental and medical research. Today, the combination of optogenetic and two-photon 

illumination strategies allows to control neuronal activity deep in the brain at the scale of a 

single neuron with a sub millisecond temporal precision. The upcoming challenge of 

optogenetic is to be able to manipulate with this degree of precision tens, hundreds, or even 

thousands of cells at a time to identify, for instance, the role of a specific microcircuit of 

neurons in behavior or to get closer to real physiological stimuli.  

The advent of optogenetics techniques came with numerous technological advances such as 

the development of different illumination strategies, each with its advantages and 

inconvenients. At the same time, the multiplicity of now available opsins, as well as the fine 

tuning of their optical properties and expression methods, have opened more choices for 

neuroscientists. The rapid development of the field with the multiplication of tools and 

approaches as well as the constant rise in the ambition to tackle more complex biological 

questions raise the question of establishing optimal experimental conditions for each situation.  

Two issues are at the core of the doctoral work presented in this manuscript. First, with the 

multiplication of the number of target cells to simultaneously photostimulate comes the 

question of the total amount of the light power sent to and absorbed by the sample, and 

therefore the possible photodamage. In order to assess this risk and to guide optimization of 

the experimental conditions, we have developed and verified experimentally a simulation 

which calculates the spatiotemporal distribution of local heating for various illumination 

strategies commonly used in two-photon optogenetics. In parallel, we developed also a 

simulation to reproduce the dynamics of induced current during illumination. By fitting this 

model to electrophysiology experimental data obtained in our laboratory we were able to 

simulate these dynamics for the most commonly used illumination strategies, parallel and 

scanning. 

 

In our model of the spatiotemporal distribution of temperature, we included the propagation 

of light through a scattering medium (the brain) and the light absorption which will become 
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the local heat source. The medium is considered uniform and isotropic for heat diffusion. To 

validate this model, we experimentally measured the local temperature rise induced by laser 

heating in a phantom mimicking the optical and thermal properties of the brain. For this we 

used rare earths (Er, Yb) doped micro-crystals whose luminescence spectrum are temperature 

dependent. We were able to measure the temperature with a temporal resolution on the order 

of a few milliseconds and spatial accuracy of a few microns. We found these measurements in 

excellent agreement with the predictions of the model. We then used our model to calculate 

the temperature variations during a parallel activation of neurons in vivo expressing the opsin 

CoChR and found that the photostimulation of a cell causes an increase of the temperature of 

only a few tenths of a Kelvin. Then, we simulated the heating generated during the 

simultaneous photostimulation of 100 neurons, in a volume of 300×300×300 µm3 in order to 

find the conditions (duration of illumination, distance between the spots) which would limit to 

1 Kelvin in such a multiple cells photostimulation experiment. When comparing parallel and 

scanning illumination our simulation shows, as could be expected, an homogeneous increase 

of temperature within the cell in the case of the parallel stimulation, while scanning induces a 

significant heating at the center of the swept beam but a moderate elevation of temperature 

over the rest of the cell’s surface. We have also used our simulation to calculate the local 

heating in the experimental conditions of the most recent publications in the field of the in 

vivo optogenetic, including the approaches of simultaneous scans at several depths. Finally, 

our simulations can help gain insight on the optimization of the temporal sequence of 

photostimulation of several hundreds of target cells. Thanks to this work, the different teams 

working in the field of optogenetic will be able to optimize their experimental protocols, in 

order to ensure a controlled and safe environment for the living cells studied. To this end, a 

set of MATLAB functions has been made available to the scientific community that allows 

whoever is interested to simulate his own illumination conditions. Beyond the application to 

optogenetics, our simulation can be used for any photothermal study of biological tissue such 

as, for example, therapeutic hyperthermia or thermogenetics. 

 

The second part of my PhD has been focused on the modeling of intracellular currents during 

photostimulations. Previous work has already been carried out in other laboratories, 

associating model of population dynamics (Markov processes in continuous time) and 

experimental data. Nevertheless, this work had never been associated with different 

techniques of illumination (parallel and scanning), in a two-photon regime, and applied to 
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different opsins with various kinetic properties. We therefore implemented different models 

and adjusted their parameters (using conventional minimization algorithms) to fit 

experimental data recorded within our laboratory for three opsins, Chronos, CoChR and 

ReaChR. To this end, we have worked with Chinese Hamster Ovary (CHO) cells that we had 

modified to express the opsins of interest. We then photostimulated the cells during several 

seconds, with a wide range of illumination power, to obtain a representative sample of the full 

dynamics of opening and closing of these channels. A three-state (open - desensitized - close) 

model was sufficient to validate our approach but was insufficient to reproduce the full 

dynamics of the system, in particular to account for the bi- exponential-off transitions 

observed experimentally. Therefore, we implemented a four-state model, 2 “closed” and 2 

“opened” states with different conductivity which is consistent with biophysical observation 

of the photocycle of opsins. We have shown the capacity of our model to simulate both the 

parallel and scanning illumination conditions.  
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Résumé détaillé 

Depuis maintenant une quinzaine d’années, une nouvelle approche, l’optogénétique, permet la 

manipulation optique de l’activité neuronale à l’aide de protéines photosensibles exogènes 

appelées opsines, naturellement présentes dans certaines algues photosensibles.  Ce pan de la 

recherche a permis de grands progrès dans le domaine des neurosciences, ouvrant des 

perspectives incroyables dans le domaine de la recherche fondamentale et médicale. 

Aujourd’hui, la combinaison de l’optogénétique à l’illumination bi-photonique permet 

d’obtenir le contrôle de l’activité neuronale en profondeur à l’échelle de la cellule unique avec 

une précision temporelle proche de la milliseconde. Le futur de l’optogénétique est donc de 

pouvoir manipuler avec ce degré de précision des dizaines, centaines, voire milliers de 

cellules à la fois avec l’objectif de pouvoir, par exemple, éclaircir le rôle que l’activation 

spécifique d’un « microcircuit » de neurones a dans le contrôle du comportement. 

L’avènement de ce domaine de la recherche fondamentale a été porté par et a entraîné avec lui 

de nombreux progrès technologiques, ainsi que le développement de différentes stratégies 

d’illumination comportant à la fois des avantages et des inconvénients. Parallèlement, une 

plus grande diversification des opsines disponibles, ainsi que le raffinement de leur méthode 

d’expression, ont offert encore plus de choix stratégiques pour les neuroscientifiques. Face à 

cette multiplication des outils, et aux ambitions sans cesse revues à la hausse pour ce domaine 

de recherche prometteur, il est devenu important d’être capable de déterminer les conditions 

optimales d’utilisation de ces techniques afin d’optimiser l’efficacité de ces approches. 

Deux questions en particulier mêlant techniques d’illumination and protéines photo sensibles 

ont motivé le travail de thèse réalisé pendant trois ans et présenté dans ce manuscrit. Tout 

d’abord, la multiplication du nombre de cellules à activer simultanément pose immédiatement 

la question de la multiplication de la puissance lumineuse nécessaire envoyée dans 

l’échantillon, et rapidement celle des possibles dégâts photoinduits. Afin de mieux évaluer ces 

risques et proposer des pistes d’optimisation, nous avons développé et confirmé 

expérimentalement une simulation permettant de calculer l’amplitude et la dynamique des 

échauffements locaux quelle que soit la technique d’illumination utilisée aujourd’hui dans le 

domaine de l’optogénétique bi-photonique. Ce travail a notamment donné lieu à la publication 

d’un article de recherche au sein de la revue Cell Reports. Parallèlement, nous avons 

développé une autre simulation permettant de relier stratégie d’illumination, choix d’opsine et 



XII 

 

dynamique de courant intracellulaire photo induit, en se basant sur l’exploitation de données 

expérimentales d’électrophysiologie effectuées au sein du laboratoire. En permettant de mieux 

comprendre les subtilités de chacune des techniques et protéines, nous avons ainsi pu entamer 

un travail d’optimisation des protocoles de photostimulation à utiliser expérimentalement. 

 

Afin de pouvoir évaluer l’échauffement local induit dans les deux grandes familles 

d’illumination couramment utilisées aujourd’hui (l’approche parallèle et de balayage) et d’en 

évaluer les risques, nous avons développé et validé un modèle optique et thermique décrivant 

à la fois la propagation de la lumière au sein d’un tissu diffusant comme le cerveau, et la 

diffusion de la chaleur photo-induite au sein de celui-ci. Nous avons validé 

expérimentalement ce modèle en utilisant des particules de verre dopés aux terres rares (Er, 

Yb), possédant un spectre de luminescence dépendant de la température. Ainsi, il a été 

possible de mesurer une température en excellent accord avec les prévisions du modèle, avec 

une résolution temporelle de l’ordre de quelques millisecondes et la précision spatiale de 

quelques micromètres. Ce modèle a ensuite été utilisé pour calculer les variations de 

température lors d’une activation parallèle de neurones in-vivo exprimant l’opsine CoChR. Il 

a ainsi été montré que l’activation d’une cellule provoque une augmentation de la température 

de seulement quelques dixièmes de Kelvin. Ensuite, nous avons simulé l’échauffement créé 

lors de la stimulation parallèle de 100 neurones, dans un volume de 300×300×300 µm3 et à 

l’aide de notre modèle nous avons montré les conditions (durée d’illumination, distance entre 

les spots) qui permettent de minimiser les échauffements induits par l’optogénétique en 

dessous du Kelvin aussi dans le cas de l’activation de plusieurs cellules. Enfin, une 

comparaison des échauffements induits par les deux stratégies d’illumination (parallèle ou à 

balayage) a été effectuée, présentant les avantages et défauts inhérents à chacune. Comme 

attendu, une augmentation homogène de la température au sein de la cellule est obtenue dans 

le cas de la stimulation parallèle, tandis que le balayage induit un échauffement sensible au 

centre du faisceau balayé mais une élévation de température modérée dans les zones non 

illuminées de la cellule. Nous avons de plus utilisé notre simulation afin de calculer 

l’échauffement local des publications les plus récentes dans le domaine de l’optogénétique in-

vivo, notamment les approches de balayage simultané dans plusieurs plans. Enfin, nous avons 

montré des pistes d’optimisation à exploiter pour les futures expériences impliquant plusieurs 

centaines de cibles photostimulées dans une fenêtre temporelle, en optimisant la distribution 

temporelle des illuminations. Grâce à ces travaux, les différentes équipes travaillant dans le 
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domaine de l’optogénétique pourront optimiser leurs différents protocoles expérimentaux, 

afin de garantir un environnement contrôlé et sûr aux cellules vivantes étudiées. A cette fin, 

un jeu de fonctions MATLAB a été mis à la disposition de la communauté scientifique 

permettant à chacun de modéliser des conditions expérimentales spécifiques. Au-delà de cette 

application, ce modèle optique et thermique pourra permettre d’optimiser des stratégies 

d’échauffement (hyperthermie thérapeutique), d’étudier plus en détails la sensibilité des tissus 

cérébraux à la chaleur, ou d’améliorer les techniques de thermo génétique. 

 

La deuxième grande thématique de ce doctorat portait sur la modélisation des courants 

intracellulaires lors de photostimulations. De premiers travaux avaient déjà été réalisés dans 

d’autres laboratoires, associant modèle de dynamique des populations (processus de Markov à 

temps continu) et données expérimentales. Néanmoins, ces travaux n’avaient jamais été 

associées à différentes techniques d’illumination (parallèle et balayage), dans un régime bi-

photonique, et appliqués à différentes opsines aux propriétés cinétiques différentes. Nous 

avons donc entrepris de mettre en œuvre tout d’abord un modèle cinétique à trois états, puis à 

quatre états, à partir de données expérimentales d’électrophysiologie enregistrées au sein du 

laboratoire pour quatre opsines, Chronos, Chrimson, CoChR et ReaChR. Pour ce faire, nous 

avons travaillé avec des cellules chinoises d’ovaires de hamsters (cellules CHO) au sein 

desquelles nous avons induit l’expression des protéines d’intérêt. Nous les avons ensuite 

photostimulées durant plusieurs secondes, dans une grande gamme de puissance 

d’illumination, afin d’obtenir un échantillon représentatif de la dynamique complète 

d’ouverture et fermeture de ces canaux. Nous avons ensuite commencé par la mise en œuvre 

du modèle à trois états (ouvert – désensibilisé – fermé) en obtenant les paramètres de 

transition qui minimisent la différence entre le résultat du modèle et les données 

expérimentales. Pour ce faire, nous avons utilisé des algorithmes classiques d’ajustement de 

courbe (minimisation). Une fois ces paramètres obtenus, nous avons comparé le résultat du 

modèle et d’autres données expérimentales, dont le temps de photoactivation était plus faible 

(de l’ordre de la milliseconde). Ces travaux nous ont permis de vérifier l’efficacité du modèle 

à trois états pour un développement rapide, ainsi que sa capacité à prédire la dynamique de 

courants intracellulaire. Néanmoins, nous avons observé les limites de ce modèle à trois états, 

et notamment son incapacité à modéliser les transitions bi- (ou multi-) exponentielles 

constatées expérimentalement. Nous avons entreprise à la suite de mettre en œuvre un modèle 

à quatre états, basée sur de nouvelles données expérimentales, qui se montrera plus robuste 
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aux durées d’illumination. Enfin, nous avons montré la capacité de notre modèle à simuler à 

la fois les conditions d’illumination parallèles et de balayage. 
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Preamble 

This manuscript titled 2P optogenetics: Simulation and modeling for optimized thermal 

dissipation and current integration is organized in 5 chapters.  

In the first chapter, after a brief introduction on the physiology of neurons and the principle of 

electrophysiology, I will introduce the principle of optogenetics and the main results achieved 

with this revolutionary approach in neuroscience.  

In a second chapter I will review and describe the mostly used light delivering approaches for 

optogenetics brain stimulation.  

In chapter III, after a short introduction on light absorption and a description of the main 

photodamage mechanisms, I will present the model that I have developed to simulate 3D light 

propagation and heat diffusion in optically scattering samples. The model with its 

experimental validation is described in detail in the publication A. Picot et al. enclosed in the 

same Chapter. In the publication, it is also demonstrated the use of the model to predict the 

temperature rise under the most commonly used illumination configuration for two-photon 

optogenetics. 

In Chapter IV I will present the second part of my thesis, which has been focused on the 

modeling of the amplitude and temporal evolution of photocurrent under two-photon 

illumination for different opsins. I will compare the results achieved using a 3- and a 4-state 

model for a fast, a medium and a slow opsin. Lastly, I will show how knowing the parameters 

which describe the opsin photo-cycle is possible to predict the photocurrent traces under 

parallel or scanning illumination. 
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I.  

Neurophotonics 

The brain is one of the most fascinating parts of our body, studied for decades through a 

variety of methods. In order to better understand its mechanisms and organization, it has 

become increasingly important to consider the brain’s smaller components, such as the 

neurons and how they interact. In search of answers, a field of research known as 

“neurophotonics” has been developed, using light both to observe and interact with the brain. 

1) The neuron: a functional unit of the brain 

It was in 1655 that Robert Hooke became the first scientist to develop the concept of the cell 

as a biological unit. By composing a microscope out of an eyepiece, field lens and objective 

lens, Hooke analyzed plants (notably cork) and flies. He noted the plants’ and insects’ 

considerable organizational similarity, later naming the “cell” in 1667. 

Thanks to these early observations and tools, it became possible to progress beyond simple 

anatomical recognition and thus to define precise cell types: the smaller components of the 

cell and its inner organization became attainable. Jan Evangelista Purkinje was the first to 

observe the cells of the nervous system in 1837, just before Theodor Schwann and Matthias 

Jakob Schleiden proposed in 1838 their cellular theory which defines the cell as the structural 

and functional unit of plants and animals. At that time, however, this particular theory was 

considered invalid for the nervous system. 

 

Camillo Golgi and Santiago Ramon y Cajal went on to develop cell staining techniques which 

enabled finer observation of the structure of the nervous system’s cells (Figure 1) and helped 

Heinrich Wilhelm Waldeyer to propose his theory of the neuron as the functional component 

of the nervous system. 
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Figure 1: Representation of the nervous system in the cerebellum by S. R. y Cajal; from “Estructura de los centros nerviosos 

de las aves”, Madrid, 1905. 

 

The key element of the nervous system, the neuron is an excitable cell which can receive, 

process, and transmit information in the form of chemical or electrical signals. These cells can 

be specialized in the form of sensory or motor neurons. They consist mainly of a soma cell 

body, with extensions called dendrites and an axon. The diameter of the soma is of the order 

of ten micrometers. Dendrites, meanwhile, have a diameter measuring between 0.2 and 5 

micrometers and a length of between 10 and 1000 micrometers. 

 

 

Figure 2: Structure of a neuron. Dendrites are small structures which receive contributions from neighboring neurons. 

Image: Alan Woodruff; De Roo et al., 2008. 
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Ever since antiquity, the electrical properties of catfish – depicted in bas-reliefs – have been 

known. They were even exploited as a therapeutic tool under the reign of Emperor Claude 

(41-54 AD). It is only from the seventeenth century that the electrical organs of fish were 

identified and dissected. Although it was important to understand that these electrical 

phenomena were occurring in certain specific tissues, it mattered a lot to understand that these 

events were not restricted to the organ itself, but at the heart of the activity of the nerves and 

muscles. 

 

The excitable nature of neurons makes them particularly interesting cells. From simple 

observation to direct interaction, the investigation of neurons is essential for comprehension 

of how the nervous system operates. Towards the end of the eighteenth century, it was 

accepted that nerves were able to transmit an electrical signal to the muscles, thereby inducing 

muscle contraction. Nevertheless, in 1791, Luigi Galvani caused controversy by claiming in 

his Viribus electricitatis in motu musculari: Commentarius that electricity of animal origin 

also exists – that a frog’s biological tissue is able to generate sufficient electrical impulse 

through its nerves to induce muscle contraction. From this pioneering discovery stemmed the 

field of electrophysiology; techniques with which to study and measure currents within 

biological tissues – including those of the brain – would subsequently be refined. 

 

2) Action potential and electrophysiology 

Across every cell plasma membrane, ionic concentration gradients are constantly maintained 

by active transporters, a group of proteins ubiquitously expressed in the plasma membrane 

(Alberts, 2008). The existence of large K+ and Na+ gradients together with the selective 

permeability of the plasma membrane for different ions are at the basis of the transmembrane 

electric potential generation. Specific events can occur and induce a sharp and steep shift in 

the membrane potential reversing it from a negative value to a positive one. These shifts are 

called action potentials (AP) and neurons use the propagation of these variations of 

polarizations to trigger signals transmission, either electrical or chemical, to downstream 

directly connected neurons (L. Hodgkin & Huxley, 1952). AP is generated in a region close to 
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the neuronal soma and propagates along the axon up to the synapse, the connecting machinery 

interposed between two connected neurons.  

 

Neurons have heterogeneous properties, and their different firing patterns are a manifestation 

of these dissimilarities. For instance, neocortical neurons significantly differ in their firing 

patterns, ranging from regular-spiking cells, which can adapt strongly during sustained 

stimuli, to fast-spiking cells which can endure sustained firing activity with little or no 

adaptation (Connors and Gutnick, 1990). In a neuronal circuit, neurons with different 

membrane properties and firing characteristics will produce different transformations of 

inputs into outputs and how neurons interact in the networks to process information. The 

ability to control and observe neuronal firing plays an important role in neuroscience research 

focused on deep understanding of brain functioning. Neuronal circuits manipulation can go 

from understanding the role of specific neuronal sub-populations (Boyden, 2011) to the 

monitoring of  variations of natural neuron codes to control behavior (Dombeck et al., 2010). 

By activating a subpopulation of cells and monitoring the outcome elsewhere in the brain, it 

became possible to identify their role. Once their specificity is known, it became possible to 

design experiments where, by activating such a population via induction of APs, we could 

study specific behaviors (Grunstein et al., 2009; Houweling and Brecht, 2008; Huber et al., 

2008; Li et al., 2009; Szobota et al., 2007). Additionally, as it is known that the brain is made 

of thousands of neurons massively connected, gaining the ability to observe action potentials 

will help to build connectivity maps of neurons and brain regions (Brill et al., 2016; Kohara et 

al., 2014; Song et al., 2005). 

 

The first challenge of studying electrical events related to cellular physiology and ionic 

channels dynamics at high resolution has encouraged the development of a family of 

techniques (electrophysiology), which also enable to both induce and register action 

potentials. To measure and perturbate the state of polarization of one precise cell, it was 

necessary to develop techniques that would make possible to probe the electrical activity of 

the neurons of interest. In the last century, techniques based on the use of micro electrodes 

have been developed which allow intracellular or extracellular recordings with small-time 

resolution and robust sensitivity. Indeed, by recording directly using metal, silicon or glass 

electrodes, it is possible to work with a very high signal-to-noise ratio, without using reporters 
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of the neuronal electrical activity. The development of voltage registrations allowed to have a 

temporal precision below the millisecond, in the order of magnitude of neuronal signaling.  

Since their optimization in the early 1950s, extracellular recordings methods provided many 

advances in the understanding of the central nervous system (Humphrey and Schmidt, 1977). 

Extracellular microelectrodes helped to map the field potentials of single discharging neurons, 

answering fundamental questions about dendrites excitability (Frank and Fuortes, 1955) or 

discharge patterns during behavior in awake moving animals (Mountcastle et al., 1975). 

Moreover, extracellular recordings allowed D. Hubel and T. Wiesel to record the activity of 

single neurons in the primary visual cortex of anesthetized cats (Hubel and Wiesel, 1962), and 

to show how single neurons in this area respond to specific visual stimulus, granting them 

with the Nobel Prize in 1981. 

While extracellular recordings led to important discoveries, the intracellular recording 

methods became unavoidable thanks to their very high signal-to-noise ratio. This approach, 

originally developed by Kenneth Cole and George Marmont in 1947 (at a time when 

microelectrodes were not yet available), allowed later Alan Lloyd Hodgkin and Andrew 

Fielding Huxley to deepen our understanding of action potentials and several ion channels 

(Hodgkin and Katz, 1949). Although the idea of inserting a micro-electrode into a cell was 

innovative, it soon came up against a significant biological constraint: the membrane of a cell 

is not adapted to be pierced by an external element for long periods of time. It was then 

necessary to develop an improvement of the techniques of clamp, which also improved the  

signal to noise ratio: the ”patch-clamp”, evolution of the simple clamp, took over in the late 

1970s, thanks to the advances of Erwin Neher and Bert Sakmann, who perfected it reaching 

the capability to measure the activity of a single transmembrane molecule (Neher and 

Sakmann, 1976). 

 

 

Figure 3: Schematic of the patch clamp technique. Leica Microsystems. 



7 

 

Here, a glass pipette with tip of a few micrometers wide is brought into contact with the cell 

membrane. It can adhere very strongly to the cell, forming a gigaseal characterized by the 

very high resistance (GΩ), electrically isolating the membrane portion from the rest of the cell 

(Ogden and Stanfield, 1981). It is filled with an ionic solution adapted to the type of 

experiment and the type of cell. Once this step is performed, several variants of the “patch-

clamp” technique are available, depending on the research objective, ranging from the 

recording of single-channel currents (in “cell-attached” or “excised patch” configuration), or 

global currents passing through ionic channels of the cell (“whole cell” or “perforated patch”). 

Since then, the “patch-clamp” technique became the preferred method to both investigate the 

role of single channels and to monitor electrical activity of any cell type, either in vitro or in 

vivo (Verkhratsky and Parpura, 2014), including induction and registration of APs.  

 

Despite the strength of this technology, “patch-clamp" has also limitations. First, because of 

its invasiveness, it is very difficult to probe at the same time more than a few cells. However, 

brain is made of millions of neurons subdivided in multiple regions and areas, linked to 

complex chain of events that lead to specific behaviors and outcomes, and it became obvious 

that the perturbation and observation of tens, hundreds, thousands of neurons during the same 

experiments would help to answer more questions. Secondly, once again because of the 

invasiveness, patching a cell is not a reversible process and imply that it is not an adapted 

approach for long term studies of the same biological material. Finally, the selective 

inhibition of neurons remains largely inaccessible to electrophysiological  approaches 

(Scanziani and Häusser, 2009), closing the door to the manipulation of a biological 

mechanism that is common in the brain. All these restrictions have challenged the scientific 

community to develop complementary techniques that could overcome these limitations and 

allow more flexible approaches for activation and registration of neuronal activity. 

3) Optogenetics for neurosciences 

Forty years ago, in a totally different framework, bacteriorhodopsin was discovered as a light-

activated ion pump that could be found in microbial organisms (Oesterhelt and Stoeckenius, 

1971). Decades later, after further researches both on bacteriorhodopsin mechanisms and 

variants that could be found elsewhere, membrane-bound similar proteins that allow ions flux 

across membrane were discovered, known as halorhodopsins (Matsuno-Yagi and Mukohata, 
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1977) and channelrhodopsins (Nagel et al., 2002, 2003). Two variations of the latest were 

selected for their ease of expression, conductance and photo sensitivity: Channelrhodopsin-1 

and Channelrhodopsin-2 (ChR2). 

 

Two years after the introduction of ChR2, it was demonstrated that the induction of the 

expression of the gene coding for ChR2 allowed researchers to elicit reliable timely controlled 

action potentials for the first time in mammalian neurons (Boyden et al., 2005). Since then, 

interest rapidly grew for proteins such as ChR2 that we will call opsins in this manuscript.  

 

 

 

 

Figure 4: Activity diagram of Channelrhodopsin-2.(Tricoire 2015). Channelrhodopsin-2, a transmembrane protein, is a ion 

channel that opens when illuminated. Its expression inside neurons allow to induce non-invasively trains of action potentials. 

These transmembrane proteins, once illuminated at a suitable wavelength, open a channel 

through which an ion flux passes, participating in the depolarization of the membrane in 

which they are expressed. If enough opsins are expressed and activated within the cell, a 

depolarization threshold is reached, and action potentials can be generated (as shown in the 

bottom right of Figure 4).  
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Even if this technique defined the optogenetics field and is now an approach of reference for 

intracellular currents studies, it took decades for researchers to match together the two ideas 

of combining light and microbial ions channels. Beyond the necessary technical challenges 

that were mandatory to solve, a few presumptions slowed the access to this technology. 

Photocurrent induced by such proteins were expected to be both too weak and not fast enough 

to manipulate neurons with efficiency. Additionally, because of the origin of these microbial 

membrane proteins, the expression of such genes was expected to be low and inducing 

fragility to the neuron membrane (Yizhar et al., 2011). 

 

Once these considerations were overcome, this light-based approach that showed promises to 

solve patch-clamp techniques limits gave birth to a new neurosciences research domain that 

was named optogenetics. For some tasks, it allowed researchers to go beyond what electrodes 

based experiments could offer, such as the independent stimulation of multiple populations of 

neurons (Zhang et al., 2008), the bistable activation of neurons (Berndt et al., 2009), or the 

stimulation of defined second-messenger pathways (Airan et al., 2009; Kim et al., 2005). 

Even further, it was used to map functional connectivity (Petreanu et al., 2009), influence the 

neuronal dynamic circuits (Boyden et al., 2005; Cardin et al., 2009; Li et al., 2005; Zhang et 

al., 2007) and, finally, to control behavior (Grunstein et al., 2009; Huber et al., 2008; Szobota 

et al., 2007). 
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II.  

Single and two-photon optogenetics  

 

1) Single-photon approach 

Wide-field single-photon (1P) approach was the first to be employed for optogenetics 

stimulation (Adamantidis et al., 2007; Anikeeva et al., 2012; Aravanis et al., 2007; Boyden et 

al., 2005; Gradinaru et al., 2007; Huber et al., 2008; Nagel et al., 2005; Zhang et al., 2007), 

and remains today the approach of reference for neural circuit dissection (Makinson et al., 

2017; Weible et al., 2017). This technique has allowed researchers to study correlation and 

causal interactions in subpopulations of neurons both in vitro (Joshi et al., 2016; Morgenstern 

et al., 2016; Petreanu et al., 2007, 2009; Tovote et al., 2016) and in vivo (Adesnik et al., 2012; 

Atallah et al., 2012; Lee et al., 2012; Tovote et al., 2016). 

 

 

Figure 5: Several approaches for photoactivation. With anatomic targeting, groups of neurons are illuminated with an optic 

fiber after injection of viral vectors in the area of interest. Under genetic targeting, only specific cell types will express the 

opsins thanks to regulating sequences. Adapted from (Tricoire, 2015). 

With this technique, population specificity is obtained through genetic and anatomic 

targeting, (Figure 5), implying that precision and temporal resolution are only constrained by 

the channels’ and cells’ properties. 

The development of strategies for opsin expression confinement in specific cell types 

(Beltramo et al., 2013; Cardin et al., 2009; Kuhlman and Huang, 2008), or the addition of 
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optic tools such as optical fibers (Aravanis et al., 2007; Penzo et al., 2015; Wu et al., 2014) 

has helped to reach deeper regions of the brain. Improvements made to 1P microscopes (such 

as the use of multipoint-emitting optical fibers or micro-objective-coupled fiber bundles) has 

even enabled the restriction of illumination to specific brain layers (Pisanello et al., 2014) or 

subcellular structures (Guo et al., 2009; Petreanu et al., 2009; Szabo et al., 2014; Wyart et al., 

2009).  

 

Even though 1P illumination is the technique most commonly used today, its limitations in 

term of penetration depth and spatial resolution have motivated the development of other 

approaches that could bring higher spatial precision. Indeed, when illuminating a large 

volume with 1P widefield technique, we cannot select with single-cell precision the neuron 

that we want to photoactivate. This implies that we cannot, for example, in a specific brain 

region, photoactivate first a defined subgroup of neurons, observe the outcome, and activate 

another group nearby and repeat the observation. Furthermore, all opsin-expressing neurons 

are stimulated at the same time, which does not allow to reproduce the spatiotemporal 

distribution of naturally occurring brain microcircuits activity. Also, widefield illumination 

does not enable performing connectivity experiment since in that case one needs to 

interrogate each neuron individually in its environmental context. All these reasons have 

motivated the development of illumination approaches giving single-cell resolution in depth. 

This has inspired at first to replace single-photon excitation by two-photon excitation 

processes. 

 

2) Two-photon illumination: gains and 

challenges 

In 1P microscopy, which is based on a linear photon absorption process, an orbital electron of 

the protein to activate (fluorophore, opsin, …) will absorb a photon emitted by the light 

source. This reaction promotes the electron to an excited state from which it will relax, 

thereby allowing the emission of a photon of fluorescence, for example. This linear process 

will imply large amounts of out-of-focus neuron activation, or fluorescence. As an answer, 2P 

microscopy has shown itself to be highly efficient (Denk et al., 1990; Helmchen and Denk, 



12 

 

2005) and, combined with optogenetics techniques, offers a reasonable solution to the 

resolution issue mentioned above. With this method, two photons are required to bring the 

electron to an excited state. By using a high-power pulsed laser with a short pulse width 

(hundreds of femtoseconds), the high density of photons in the excitation area leads to the 

strong probability that a molecule will absorb two photons quasi-simultaneously. This 

condition directly implies that we have a quadratic dependence between the fluorescence (or 

any other non-linear process) and the light intensity, lowering substantially the out-of-focus 

fluorescence or neuron activation (Figure 6).  

 

 

Figure 6: Localization of fluorescence signal with 1P (a panel) and 2P (b panel) excitation. On the left, fluorescein 

activation with a 488 nm laser source. On the right, same molecule excited with a 960 nm light source (Zipfel et al., 2003). 

Importantly, the two photons must have roughly half of the photon’s amount of energy for the 

1P excitation process. As a consequence, their wavelength must be twice as big. This has 

shifted the use of light source from the visible 1P absorption band to the near-infrared. 

This aspect has helped 2P microscopy to assess its strength, opening deeper regions of brain 

for study. Indeed, near-infrared photons are less scattered and absorbed by the brain, as will 

be discussed later on. For the same reasons, three-photon microscopy (3P) has been 

developed with the same objectives, allowing even further access in the brain, or to go 

through the skull (Horton et al., 2013). 
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Therefore, 2P approaches have allowed to improve the axial resolution and penetration depth 

of the photoactivation techniques. Yet, being able to target with single-cell precision is not 

enough to guaranty the capability of the optical method to reliably activate neurons and elicit 

APs. Indeed, as opsins are proteins with a small single-channel conductance (40-80 fS for 

ChR2 (Feldbauer et al., 2009)) and a density of expression which implies a low amount of 

channels in the femtoliter two-photon focal volume (with a standard objective of 0.7 – 0.9 NA 

and a laser source in the near-infrared 800 – 1200 nm, the full width half maximum (FWHM) 

of this spot will be ~1 µm)  (Nagel et al., 1995), the simple addition of 2P techniques is not 

enough to induce strong enough depolarization for APs. This challenge has spurred the 

development of more sophisticated 2P illumination strategies in order to be able to 

photoactivate a large number of channels. They can be split in two categories: the scanning 

and the parallel techniques. 

 

3) Cellular targeting: from photons to 

action potentials 

a) Scanning strategy 

One way of increasing the number of activated channels is to scan the soma of the cell of 

interest with a spot. This strategy has been successfully demonstrated in cell cultures first 

(Rickgauer and Tank, 2009), then in brain slices (Andrasfalvy et al., 2010) and in vivo 

(Prakash et al., 2012). While this approach is relatively easy to be implemented, it can be 

limited in temporal precision as it requires to scan the laser source over the cell body or even 

multiple targets. For N targets, the temporal resolution T of a cycle of sequential 

photostimulations is given by: 

 

𝑇 = 𝑇𝑑𝑤𝑒𝑙𝑙 × 𝑁 + 𝑇𝑚𝑜𝑣𝑒 × (𝑁 − 1) Eq. 1 

 

with Tdwell standing for the time spent on a cell to photoactivate it, and Tmove the time to move 

the laser beam from one cell to another. With this approach, Rickgauer and Tank in 2009 

were able to generate APs with 30 ms temporal resolution (Rickgauer and Tank, 2009).  
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Figure 7:  Scanning illumination of one neuron. A raster scanning pattern is showed. Adapted from (Ronzitti et al., 2017a). 

The raster scanning pattern is adapted to the cell morphology. The amount of lines, the direction, the scanning speed are 

various parameters that can be tuned in order to maximize the photoactivation efficiency. 

The necessity to define a scanning protocol that will both target a significant number of 

channels and illuminate them within a specific time window can add constraints to the 

scanning approach. Indeed, a compromise must be made between the dwell time that will 

guarantee the opening of the channels, and the scan speed to assure that a maximum of 

channels will be open simultaneously to reach the action potential. Precisely as explained in 

Ref. (Rickgauer and Tank, 2009) : 

 

𝐼(𝑇)

𝐼𝑚𝑎𝑥
=

𝜏

𝑇
(1 − 𝑒

𝑇
𝜏 ) 

Eq. 2 

  

where 𝐼(𝑇) is the amplitude of the photocurrent during a scan time T,  𝐼𝑚𝑎𝑥 the whole-cell 

stimulated current amplitude,  𝜏 the opsin photocurrent decay constant. A scanning pattern 

that would be n times longer than 𝜏 would imply that the peak photocurrent would reach 

(1 − 𝑒−𝑛) 𝑛⁄  of the whole-cell photocurrent. Therefore, care must be given to the choice of 

the couple opsin/illumination pattern to ensure that enough photocurrent could be elicited to 

reliably guarantee an AP. The development of slower opsins with nanoampere-scale currents 

such as C1V1 enabled to dramatically increase the efficiency of this approach (Packer et al., 

2012; Prakash et al., 2012), reaching temporal resolution between 5 and 70 ms. However, 
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using slow opsins with scanning approaches add constraints, such as imposing limits to the 

achievable temporal precision of photo-evoked spikes, with significant in vivo jitter estimated 

at 5.6 ± 0.8 ms (Packer et al., 2015). 

One way to improve temporal resolution is to underfill the back aperture of the objective, 

which increases both the lateral and axial spot size. Increasing the lateral size reduces the 

number of scanning positions, thus minimizing or even getting to zero the term Tmove, 

however, it also decreases the technique’s precision, because of the increase in the axial size, 

as well. Temporal focusing approaches (TF) were then associated to the light activation 

techniques in order to compensate the deterioration of axial resolution. In such technique the 

pulse is temporally scrambled above and below the focal plane, which remains the only 

region irradiated at peak powers photoactivation (Oron et al., 2005). This allowed to fast 

photostimulate multiple cells in vitro and in vivo (Andrasfalvy et al., 2010; Rickgauer et al., 

2014), reducing Equation 1 to T = (𝑇𝑑𝑤𝑒𝑙𝑙 + 𝑇𝑚𝑜𝑣𝑒) × 𝑁. 

Recently, multiple cells photostimulation through scanning has been extended to activate tens 

(Packer et al., 2015) or nearly one hundred of cells at the same time at different depths (Yang 

et al., 2018). To do so, the optic system combines galvanometric mirrors (GM) which will 

move in a defined way to allow the laser source to perform this scanning pattern, and spatial 

light modulators (SLM) which will, by modulating the phase of the incoming light source, 

allow the simultaneous targeting of several cells. 

 

 

Figure 8: Scanning illumination of several neurons simultaneously. A spiral pattern is here applied, with pre-defined rotation 

speed, amount of revolutions and size of pattern. Adapted from (Ronzitti et al., 2017a). 
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With the combination of scanning and multiplexing, the equation for the temporal resolution 

of photostimulation of several cells at the same time reduces to: 

 

𝑇 =
𝑑𝑠

𝑆𝑠
 

Eq. 3 

where ds indicate the whole distance of scanning over a single cell, and Ss the scanning speed 

of the system. 

 

Lastly, another limitation for the scanning approach is the axial resolution. Indeed, requiring 

to work with light intensities close to saturation levels of opsin mechanisms at the focal plane, 

led to out-of-focus excitation above and below the cell of interest that induces significant 

photocurrent in the neighboring cells (Rickgauer and Tank, 2009; Ronzitti et al., 2017a). 

 

b) Parallel strategy 

Alternatively to scanning, the number of excited channels could increase by using parallel 

approaches where the light propagation is modified to cover the entire target. An efficient way 

to reach such precise confinement for light propagation is to use computer-generated 

holography (CGH), as proposed in 2008 (Lutz et al., 2008; Papagiakoumou et al., 2008). 

Originally developed for generating multiple-trap optical tweezers (Curtis et al., 2002), the 

experimental scheme for CGH (Figure 9) consists in computing with a Fourier transform-

based iterative algorithm (Gerchberg and Saxton, 1972) the interference pattern or phase- 

hologram that back-propagating light from a defined target (input image) will form with a 

reference beam, on a defined “diffractive” plane. The computer-generated phase-hologram is 

converted into a grey-scale image and then addressed to a SLM, placed at the diffractive 

plane. In this way, each pixel of the phase-hologram controls, proportionally to the analogous 

grey-scale-level, the voltage applied across the corresponding pixel of the liquid-crystal 

matrix, such as the refractive index and thus the phase of each pixel can be precisely 

modulated. As a result, the calculated phase-hologram is converted into a pixelated refractive 

screen and illumination of the screen with the laser beam (or reference beam) will generate at 

the objective focal plane a light pattern reproducing the desired template. This template can be 
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any kind of light distribution in two or three dimensions, ranging from diffraction-limited 

spots or spots of bigger surface to arbitrary extended light patterns (Papagiakoumou et al., 

2018). 

 

 

Figure 9: The iterative algorithm will process a theoretical light distribution image, often based on a fluorescence image. 

After computing, the interference pattern, or hologram, is obtained and addressed to the SLM. At the focal plane of the 

system, the initial illumination distribution is reproduced. Adapted from (Papagiakoumou et al., 2017). 

 

Different variations of this approach have been developed over the years, achieving actuation 

of opsin-expressing neurons in vitro and in vivo (Bègue et al., 2013; Packer et al., 2012; 

Ronzitti et al., 2017b; Szabo et al., 2014), or adapted with variations such as the generalized 

phase contrast technique (GPC) (Papagiakoumou et al., 2010, 2013). 

With parallel illumination, the temporal resolution is only limited by the illumination time and 

it is possible to use both fast and slow opsins. Therefore, this technique combined with fast 

opsins allowed to generate action potentials with millisecond temporal resolution (Bègue et 

al., 2013; Papagiakoumou et al., 2010), and submillisecond temporal jitter, the mean deviation 

of latency between the beginning of photostimulation and AP (Chaigneau et al., 2016; 

Ronzitti et al., 2017b). When illuminating a sample with a large excitation area, the optical 

axial resolution can be degraded. As an answer, CGH technique was combined with TF, 

allowing to preserve the axial resolution (5-10 µm) and the lateral shape of the spot after 
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hundreds of micrometers of light propagation in scattering tissues (Bègue et al., 2013; 

Hernandez et al., 2016; Papagiakoumou et al., 2013).  

 

 

 

Figure 10: Parallel illumination of several neurons simultaneously. An illumination pattern is here applied, based on the 

shape of neurons of interest. The cells are photoactivated at the same time, recruiting as many opsins as possible. Adapted 

from (Ronzitti et al., 2017a). 

The ambition of studying connected networks of neurons have motivated the development of 

3D light generation approaches, allowing to generate complex illumination patterns (Anselmi 

et al., 2011; dal Maschio et al., 2017; Hernandez et al., 2016; Packer et al., 2012). Further, 

this ambition has spurred the development of approaches allowing to simultaneously shine 

multiple spatiotemporally focused spots (Accanto et al., 2017; Hernandez et al., 2016; Pegard 

et al., 2017; Sun et al., 2018) (Figure 10). The latest opsins development have led to somatic 

versions of channels that allowed to reach the single-cell precision, by restricting the 

expression of the channels to the soma of the neuron (Shemesh et al., 2017). Indeed, the 

spatial resolution of 2P photostimulation systems can be degraded due to the undesired 

photostimulation of neurites surrounding the cell of interest. 

 

All of these approaches, combined with the use of high-energy amplified lasers (Accanto et 

al., 2017; Chaigneau et al., 2016; Ronzitti et al., 2017b; Yang et al., 2018) reaching more than 

10 W at laser output and eventually highly sensitive opsins make it now possible to 
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simultaneously target hundreds of cells within mm3-size illumination volumes. But the 

increase of targets rises, at the same time, the question of photodamage and how to minimize 

it. In the next chapter, we will introduce the different kind of photodamages that we can 

expect from 2P photostimulations, and the thermal model that we have built in order to 

evaluate and minimize thermal photodamage. 
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III.  

Photoinduced temperature rise: 

Thermal simulation and temperature 

measurements  

1) Light absorption in the brain 

a) Absorption and the “optical window” 

In the brain, several components are responsible for light absorption. Water will be the most 

absorbing element, followed by chromophores such as blood components (hemoglobin, 

melanin, …) and proteins such as fluorophores, the latest remaining negligible (see below).  

 

Figure 11: Absorbance of light at various wavelengths for water (solid line), oxygenated (thin dashed line) or deoxygenated 

hemoglobin (dots) and melanin (bold dashed line). Adapted from (Hamblin and Demidova, 2006). 
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The absorbance of each of these elements has different wavelength dependence, although as 

shown in Figure 11, it is possible to define an “optical window” in the range of wavelength 

(600 – 1200 nm) where they have a common minimum. Therefore, using excitation 

wavelengths in this range will allow focusing light at greater depth. 

b) Mono and multi photon absorption processes 

A wide range of phenomena can occur during light absorption, depending on the illumination 

source and its characteristics (wavelength, power, pulse duration). Given a certain 

wavelength, two parameters are important to define the cascade of events following the 

photon absorption, the irradiance and the illumination time.  In particular, we focus here on 

the processes, which occur in the near-infrared regime, i.e. at wavelength commonly used for 

2P photostimulation. 

 

 

Figure 12: Cascade of events after light absorption in the brain, with near infrared light sources, without energy 

considerations. Adapted from (Débarre et al., 2014). 

During the first step of a photon absorption, the excited molecule goes to an excited state, this 

is followed by a cascade of events, Figure 12. For low irradiance (below 106 W/cm2 

(Boulnois, 1986)), and long illuminations (on the millisecond scale), the molecule can go 

back to the resting state by transferring its energy in a non-radiative way, thereby inducing 

local heating. Other very specific chemical reactions can be catalyzed by a long exposure to 

light with low irradiance. On the other hand, if the irradiance is above the previous threshold, 
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even during a very short period of time (femtoseconds to nanoseconds), there is a high 

probability of an inverse Bremsstrahlung avalanche effect (Vogel et al., 2005). Here, free 

electrons are produced in a multi-photon absorption process and they can also absorb photons 

when they enter into collision with other molecules, generating even more free electrons. If 

the light intensity is too high, this reaction gets out of control. This is the so-called avalanche 

effect, inducing the apparition of a plasma of electrons in the sample. For low density plasma, 

i. e. below the optical breakdown threshold of 1021 electrons/cm3 (Débarre et al., 2014), this 

will produce a family of photochemical damages inducing molecules dissociation, or the 

creation of reactive oxygen species (Figure 12). For plasma density above the optical 

breakdown threshold this will induce mechanical damages where the cells will undergo 

supersonic shock wave by the formation of bubbles followed by their explosion. These effects 

will break the tissue structures and induce cell death.  

In typical optogenetics experiments using 2P and parallel illumination, a 3 ms long 

illumination pulse with a 10 mW mean power over a 100 µm2 cell surface is enough to elicit 

an AP. This corresponds to an irradiance of 104 W/cm2 and fluence of 30 J/cm2. These 

conditions are clearly (see Figure 13) in the range of photothermal damage. However, since 

this average power illumination is obtained from a train of fs pulses, we must also consider 

the possibility that an individual fs pulse (whose energy is much higher than the average 

energy) could induce nonlinear damage. For the case of 250 fs pulses at a 500 kHz rate, each 

individual pulse delivers an irradiance of 8 1010 W/cm2 corresponding to a fluence 20 mJ/cm2. 

This is close to the threshold of nonlinear photodamage (see Figure 13) but we never 

observed such effects. Nonlinear photodamage have been observed at peak fluences around 

0.1 J/cm2 for Chinese hamster ovarian cells (König et al., 1999), 0.5-2 J/cm2 in water (Linz et 

al., 2016; Noack and Vogel, 1999; Vogel et al., 2005) and 1.5-2.2 J/cm2 for porcine corneal 

stroma (Olivié et al., 2008). 
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Figure 13: Linear and nonlinear photodamages in biological tissues depending of the irradiance and exposure time of the 

light source. Several regimes can be discerned based on a level slopes that correspond to J/cm2 thresholds. Several regimes 

can be discerned based on a level slopes that correspond to J/cm2 thresholds. Here we consider the peak irradiance as the 

irradiance during a single laser pulse (at the femtosecond scale), as opposed to the mean irradiance calculated as the 

average irradiance during a repetition (at the millisecond scale) of single laser pulses. Adapted from (Boulnois, 1986). 

For the scanning illumination techniques, peak irradiance can reach 1012 W/cm2. Therefore, 

the nonlinear photodamages should be the dominant events. In conventional multi-photon 

scanning imaging, due to the short dwell time and small illumination volume, heating through 

linear absorption can be considered a negligible source of photodamage (Débarre et al., 2014; 

Koester et al., 1999; Linz et al., 2016). However heating can become an important source of 

photodamage for repetitive scanning of large areas (Hopt and Neher, 2001; Podgorski and 

Ranganathan, 2016). 

c) Brain sensitivity to thermal variations 

We can classify the effects of temperature increase in two categories: physiological variations 

and irrecoverable damages. Relatively small temperature changes (below 2 K) can, for 

instance, induce modulations of the shape of APs (Hodgkin and Katz, 1949), the firing rate of 

neurons (Reig et al., 2010; Stujenske et al., 2015), and the channel conductance (Plaksin et al., 

2018; Shibasaki et al., 2007; Wells et al., 2007) or fluctuation of synaptic responses 

(Andersen and Moser, 1995; Thompson et al., 1985). Furthermore, temperature variations 
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have been used as an inhibitor of neural activity by purposefully cooling the sample (Long 

and Fee, 2009; Ponce et al., 2008).  

 

 

Figure 14: Brain tissue responses to temperature increases. Alterations severity and intensity will vary with temperature 

increase. Adapted from (Elwassif et al., 2006). 

If the temperature increase goes above a certain threshold (3-4 K), the denaturation of proteins 

will occur; the structure of the cell will be affected; and cell apoptosis will follow (Deng et 

al., 2014; Thomsen, 1991). Extreme heating can induce edema, coagulation of proteins and 

inflammatory responses (Dewhirst et al., 2003; Lepock, 2003). It is important, though, to state 

that thermal damage thresholds depend on brain area and specific tissue properties (Kiyatkin, 

2007; Sharma and Hoopes, 2003).  
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2) Publication: Temperature rise under two-

photon optogenetics brain stimulation 

In this paper, three principal topics are addressed. First, we describe the light propagation and 

heat diffusion model that we used and the underlying physics. Then, the model is 

experimentally verified and applied to the typical illumination conditions that are currently 

used for 2P optogenetics. 

For all simulations we considered the absorption of water as the dominant one while we 

neglected the absorption from the opsins. Indeed when cells are illuminated, only a fraction of 

emitted photons will reach the retinal targets. To assess that, we first estimated the ratio of 

photons absorbed during propagation through a given volume of brain tissue. Considering the 

absorption coefficient of brain matter (0.06 mm-1 (Yaroslavsky et al., 2002)), we estimated 

that during propagation through the typical size of a cell body (15 µm), approximately 1 out 

of 103 photons are absorbed by this volume of medium. In parallel, we estimated the ratio of 

photons absorbed by a typical concentration of retinal on a cell membrane. By considering a 

typical ChR2 retinal cross section (≈260 GM (Rickgauer and Tank, 2009)) and concentration 

(≈130 molecules/µm2 (Nagel et al., 1995)) reported in literature and considering two-photon 

absorption probability (Rickgauer and Tank, 2009) for the laser source and the average laser 

power reported in our publication (Picot et al., 2018) , page 44 of this manuscript, we estimate 

a 10-8 photon absorption rate by retinal. Therefore, we can conclude that at the typical 

micrometric scale of a cell body, the contribution of brain (mostly water) absorption is around 

5 orders of magnitude more important than the retinal one 

On page 32 of this manuscript, we justify why we use the standard Fourier’s heat diffusion 

equation known as: 

 

 𝜕𝑇(𝑟, 𝑡)

𝜕𝑡
= 𝐷𝛻2𝑇(𝑟, 𝑡) +

𝑞(𝑟, 𝑡)

ρ𝐶
 Eq. 4 

 

where 𝑞(𝑟, 𝑡) = ϕ(𝑟, 𝑡)𝜇𝑎  is the heat source term corresponding to the deposited energy flux 

per unit of volume from the absorption of laser power, ϕ(𝑟, 𝑡) is the irradiance, and 𝜇𝑎 the 

absorption coefficient of the medium. We neglected other sources and sink terms due to 

metabolism, as discussed page 32.  
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To calculate the heat distribution within the sample of interest at any time frame, we used the 

Green’s function strategy to perform the convolution between the source term and the 

appropriate Green function for the 3D approach: 

 

 1

(4𝜋𝐷𝑡)3/2
𝑒𝑥𝑝 (−

𝑟2

4𝐷𝑡
), Eq. 5 

 

The convolution is performed in the Fourier domain and therefore imposes specific numerical 

conditions which are discussed on pages 58-61. Using the Green function, we were able to 

deduct 

 

 𝑙𝑡ℎ =  √2𝑛𝐷𝑡, where n = 1,2,3 Eq. 6 

   

the thermal diffusion length, depending on D the thermal diffusion coefficient, t the time and 

n the dimensionality of the system. By using this value that indicates the distance over which 

heat will diffuse during a specific period of time in the brain, we were able to define the 

conditions for designing an optogenetic experiment with simultaneous targeting of several 

neurons (page 50). 

To calculate the source term, we made the choice to simulate the scattering properties of the 

brain by using a phase mask approach (page 57). 

Furthermore, linearity of heat diffusion allowed us to simulate a moving laser beam with 

accumulations of discretized single spots turned on then off, one after the other, along the 

predesigned scanning trajectory by rewriting the source term as:  

 

 𝑞(𝑟, 𝑡) = ∑ 𝑞𝑖(𝑟 − 𝑟𝑖⃗⃗⃗ , 𝑡 − 𝑡𝑖)

𝑖

 Eq. 7 

 

Where the term representing the scanning source was expressed as a succession of square 

pulses centered on 𝑟𝑖⃗⃗⃗  at time 𝑡𝑖 and the total spatiotemporal heat distribution was obtained by 

summing the heat contribution of each individual spot. 
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At first, we validated the model by comparing the prediction with experimental measurements 

using temperature-dependent luminescence coming from doped nano particles (pages 34-35). 

Once the model has been validated we used it to predict the temperature rise under different 

illumination conditions for 2P optogenetics. 

This work led to the development of a MATLAB package which has been freely shared 

alongside the publication, so that the scientific community may simulate their own 

illumination conditions and establish the safest experimental protocols. 
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Summary 

Over the past decades, optogenetics has been transforming neuroscience research enabling 

neuroscientists to drive and read neural circuits. Recent development of illumination 

approaches combined with two-photon (2P) excitation, either sequential or parallel, has 

opened the route for brain circuits manipulation with single-cell resolution and millisecond 

temporal precision. Yet, the high excitation power required for multi-target photostimulation 

especially under 2P illumination raises questions about the induced local heating inside 

samples. Here, we present and experimentally validate a theoretical model that enables to 

simulate 3D light propagation and heat diffusion in optically scattering samples at high spatial 

and temporal resolution under the illumination configurations most commonly used to 

perform 2P optogenetics: single- and multi-spot holographic illumination and spiral laser 

scanning. By investigating the effects of photostimulation repetition rate, spot spacing, and 

illumination dependence of heat diffusion, we found conditions that enable to design a multi-

target 2P optogenetics experiment with minimal sample heating.  
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Introduction 

Over the past 15 years, optogenetics has become a unique and powerful tool for the 

investigation of brain circuits, with the capability of controlling neuronal firing and inhibition 

with millisecond precision and cell specificity (Emiliani et al., 2015). 

Wide-field single-photon (1P) illumination is the most commonly used method to 

activate optogenetic actuators (Boyden et al., 2005; Nagel et al., 2005). Combined with 

strategies that restrict opsin expression in specific neuronal sub-populations (Beltramo et al., 

2013; Cardin et al., 2009; Kuhlman and Huang, 2008) and/or optical fibers (Aravanis et al., 

2007; Penzo et al., 2015; Wu et al., 2014) to reach deep brain regions, 1P wide-field 

illumination has been widely applied in neuroscience research, for example inducing synaptic 

plasticity (Zhang and Oertner, 2007), mapping brain circuitry (Adesnik et al., 2012) and 

modulating behaviors (Adamantidis et al., 2007; Huber et al., 2008; Kitamura et al., 2017). 

Recently, additional strategies for 1P patterned illumination have enabled to further increase 

photostimulation precision by restricting the illumination on specific brain layers (Pisanello et 

al., 2014) or cellular and subcellular structures (Guo et al., 2009; Petreanu et al., 2009; Szabo 

et al., 2014; Wyart et al., 2009). Yet, the main constraint of 1P based illumination approaches, 

remains the limited spatial resolution and penetration depth: wide-field illumination makes it 

impossible to target an individual cell within a dense neuronal ensemble while 1P patterned 

approaches have only reached shallow depths (Szabo et al., 2014).  

This has spurred the development of more sophisticated light delivering methods using 

two-photon (2P) excitation. These can be divided in two main categories: scanning 

approaches (Packer et al., 2012, 2015; Prakash et al., 2012; Rickgauer and Tank, 2009; Yang 

et al., 2018) where cell photocurrent builds up thanks to the sequential photostimulation of 

channels or pumps expressed at the target membrane, and parallel approaches (low numerical 

aperture Gaussian beam, generalized phase contrast, computer generated holography (CGH), 

temporal focusing), where this is achieved by simultaneous illumination of the entire target 

(Bègue et al., 2013; Chaigneau et al., 2016; dal Maschio et al., 2017; Papagiakoumou et al., 

2010; Rickgauer et al., 2014; Ronzitti et al., 2017b). The combination of these approaches 

with ad hoc engineered control tools has enabled in-depth optical control of neuronal firing 

with millisecond temporal precision and cellular resolution (Ronzitti et al., 2017b). Very 

recently, 2P illumination methods have been extended to the generation of three-dimensional 

(3D) illumination patterns. This has been achieved by spiral scanning multiplexed 
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holographic foci (Packer et al., 2015; Yang et al., 2018) or by simultaneous shining of 

multiple spatiotemporally focused spots (Accanto et al., 2017; Hernandez et al., 2016; Pegard 

et al., 2017; Sun et al., 2018). These approaches combined with the use of high-energy fiber 

lasers (Chaigneau et al., 2016; Ronzitti et al., 2017b; Yang et al., 2018) and eventually highly 

sensitive opsins make it theoretically possible to simultaneously target hundreds of cells 

within mm3-size illumination volumes, i.e. comparable with what is achievable with single 

fiber visible light illumination, preserving at the same time the single-cell resolution of 2P 

illumination. Yet, setting the real limitations for multi-target 2P illumination requires 

considering possible sources of photodamage. These include both linear effects as thermal 

damage related to the linear absorption of light, and nonlinear, multiphoton absorption 

processes, inducing photochemical, ablation damage or optical breakdown (Hopt and Neher, 

2001; Koester et al., 1999; Vogel et al., 2005) arising at peak fluences around 0.1 J/cm2 for 

Chinese hamster ovarian cells (König et al., 1999), 0.5-2 J/cm2 in water (Linz et al., 2016; 

Noack and Vogel, 1999; Vogel et al., 2005) and 1.5-2.2 J/cm2 for porcine corneal stroma 

(Olivié et al., 2008). 

Due to the short dwell time and small illumination volume used in conventional multi-

photon imaging, heating through linear absorption can be considered a negligible source of 

photodamage (Débarre et al., 2014; Kobat et al., 2009; Koester et al., 1999; Linz et al., 2016). 

Nevertheless, for repetitive scanning of large areas this can become of increasing importance 

(Hopt and Neher, 2001; Podgorski and Ranganathan, 2016). Unlike 2P imaging, parallel 

optogenetic neuronal activation uses long (milliseconds to seconds) exposure time and/or 

large illumination area (or amount of targets), therefore thermal phenomena require a careful 

evaluation (Boulnois, 1986). Many neural functions can be altered when there is a change of 

temperature (Aronov and Fee, 2012; Christie et al., 2013; Elwassif et al., 2006; Kalmbach and 

Waters, 2012; Wang et al., 2014). Even small temperature changes can cause modulations of 

the action potential (AP) shape (Hodgkin and Katz, 1949), firing rate of neurons (Reig et al., 

2010; Stujenske et al., 2015), channel conductance (Shibasaki et al., 2007; Wells et al., 2007) 

or fluctuation of the synaptic responses (Andersen and Moser, 1995; Thompson et al., 1985). 

Cell death after denaturation of proteins can also be expected after a temperature increase of 

6-8 Kelvin above the physiological resting temperature (Deng et al., 2014; Thomsen, 1991). 

Notably, thermal damage thresholds also depend on brain area and specific tissue properties 

(Kiyatkin, 2007; Sharma and Hoopes, 2003). 
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Temperature rise under the typical illumination conditions for 1P optogenetics (i.e. wide-

field illumination through optical fibers and long, 0.5 to 60 s exposure time) has been 

investigated both theoretically, using Monte-Carlo with Finite Difference Time Domain 

schemes (Stujenske et al., 2015) or Finite Element Method (Shin et al., 2016), and 

experimentally using thermo-couples (Shin et al., 2016; Stujenske et al., 2015), quantum dots 

(Podgorski and Ranganathan, 2016) or IR cameras (Arias-Gil et al., 2016).  

Recently, Podgorski and his colleagues have modeled and measured heating under 20 to 

180 s 2P repeated scanning illumination of a volume measuring 1 mm2 in surface and 250 µm 

in depth (Podgorski and Ranganathan, 2016).  

Despite these first investigations, a careful evaluation of brain heating under the different 

illumination conditions (parallel and scanning) used for 2P optogenetics is still missing. 

In this paper, we present a theoretical model to describe light propagation and heat 

diffusion with millisecond precision and micrometer resolution under typical 2P excitation 

conditions that enable in vivo optogenetics control of neuronal firing. The model combines a 

random phase mask approach to account for 3D light scattering within tissue and Fourier's 

heat diffusion equation solved through Green’s function formalism to evaluate the 

corresponding spatial and temporal heat diffusion during and after 2P-photostimulation. We 

validated the model by comparing simulated and measured laser-induced temperature changes 

in a water/agar gel using the temperature dependent fluorescence emission of Erbium-

Ytterbium (Er/Yb) co-doped glass particles. We then use the model to predict the temporal 

and spatial heat distribution in scattering media under different illumination conditions 

including single- and multi-spot holographic illumination and spiral scanning. We analyze the 

3D spatial and temporal evolution of temperature rise as a function of the stimulation 

frequency, laser repetition rate, and illumination duration.  

The model is extendable to other illumination configurations, brain structures and 

biological preparations with different scattering properties and is a unique and powerful tool 

to design the optimal illumination conditions for 2P optogenetics brain circuit control. The 

model has been implemented in a MATLAB (MathWorks) package for use by other users to 

predict heat diffusion under their own 2P optogenetics experimental conditions.  
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Results 

Modeling heat diffusion 

Heating during photostimulation (or any experimental procedure involving shining light on or 

in an object) results from the thermalisation of the energy from the light source absorbed by 

the tissue. 

To model heat diffusion, we considered brain tissue as a uniform and isotropic medium 

initially at temperature T0, characterized by a thermal diffusion constant (or diffusivity) 𝐷, a 

specific heat 𝐶, and density ρ (see Table S1). The spatiotemporal distribution of the 

temperature rise 𝑇(𝑟, 𝑡), where 𝑟 is the spatial coordinate in 3D and 𝑡 is the time, is obtained 

from Fourier's heat diffusion equation (Fourier, 1822) : 

 𝜕𝑇(𝑟, 𝑡)

𝜕𝑡
= 𝐷𝛻2𝑇(𝑟, 𝑡) +

𝑞(𝑟, 𝑡)

ρ𝐶
 Eq. 1 

where 𝑞(𝑟, 𝑡) = ϕ(𝑟, 𝑡)𝜇𝑎 is the heat source term corresponding to the deposited energy flux 

per unit of volume from the absorption of laser power, ϕ(𝑟, 𝑡) is the irradiance, and 𝜇𝑎 the 

absorption coefficient of the medium. In the 950-1030 wavelength range, water is the main 

source of absorption while the contribution from the haemoglobin is almost negligible. 

Therefore for all simulations (in vitro and in vivo) we used for 𝜇𝑎 the ex-vivo value given in 

Ref. (Yaroslavsky et al., 2002), which in this wavelength regime is very close to the in vivo 

situation (Johansson, 2010). 

In living tissue, it is common to use the so-called Pennes bio heat equation (H. Pennes, 

1948) which would add to the previous equation a source related to metabolic process, 𝑞𝑚 , 

and a sink (cooling) term related to blood perfusion, 𝑞𝑝 , within the tissue: 

 

 𝜕𝑇(𝑟, 𝑡)

𝜕𝑡
= 𝐷𝛻2𝑇(𝑟, 𝑡) +

𝑞(𝑟, 𝑡)

ρ𝐶
+

𝑞𝑚 − 𝑞𝑝

ρ𝐶
 Eq. 2 

 

The sink term is a function of the thermal properties of blood (ρb, Cb), blood flow wb and 

temperature Tb and is expressed as: 𝑞𝑝 = ρ
𝑏

𝐶𝑏𝑤𝑏((𝑇0 + 𝑇(𝑟, 𝑡)) − 𝑇𝑏). In physiological 

conditions 𝑞𝑚 and 𝑞𝑝 should be equal, maintaining tissue temperature constant.  

If we take the characteristic values for ρb, Cb and wb (Elwassif et al., 2006; Stujenske et al., 

2015) and we consider a tissue temperature rise of 1 K, we obtain for the sum of the source 

and sink term, 
𝑞𝑚−𝑞𝑝

ρ𝐶
 , a value of roughly -9.2.10-3 K/s-1. By taking for 𝑞(𝑟, 𝑡) under our 

experimental conditions, a value of ~6.10-6 mW/µm3 (with ϕ(𝑟, 𝑡) ~0.1 mW/µm2 and 𝜇𝑎 = 
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6.10-5 µm-1) we obtain for 
𝑞(𝑟,𝑡)

ρ𝐶
 a value of roughly 1.7 103 K/s-1, with ρ and 𝐶 taken from Ref. 

(Blumm and Lindemann, 2003; Yizhar et al., 2011).  

In agreement with previous findings (Elwassif et al., 2006; Stujenske et al., 2015), we 

can consider that under the experimental conditions considered in this paper, the main cooling 

mechanism is through diffusion. We therefore neglected the 
𝑞𝑚−𝑞𝑝

ρ𝐶
 term and used the Fourier's 

heat diffusion, equation (1). 

To solve equation (1) we used Green’s function formalism (Carslaw and Jaeger, 

1947). Green's function 𝐺(𝑟, 𝑡) is the solution to an instantaneous point source of heat and 

𝑇(𝑟, 𝑡) is given by the convolution (over space and time) of this Green’s function and the 

source term 𝑞(𝑟, 𝑡). For an infinite media (see STAR Methods), Green’s function is readily 

obtained in analytical form for 1D:  

 

 1

√4𝜋𝐷𝑡
𝑒𝑥𝑝 (−

𝑥2

4𝐷𝑡
), Eq. 3 

 

or 3D diffusion:  

 1

(4𝜋𝐷𝑡)3/2
𝑒𝑥𝑝 (−

𝑟2

4𝐷𝑡
), Eq. 4 

 

where 𝑟2 = 𝑥2 + 𝑦2 + 𝑧2. 

As the Green’s function for the diffusion equation is a Gaussian distribution, it is 

common, as seen for example in (Bird, R. B.; Stewart, W. E.; Lightfoot, 1976), to define a 

diffusion length (here a thermal diffusion length) as the standard deviation of this Gaussian 

distribution: 𝑙𝑡ℎ =  √2𝑛𝐷𝑡, where n = 1,2,3 is the dimensionality of the medium in which the 

diffusion process occurs.  

Convolution of Green’s function and the source term must then be carried out over space 

and time. In order to facilitate this convolution, we expressed the source term as a separable 

function of space and time, meaning as the product of the function describing independently 

the spatial and temporal distributions: 𝑞(𝑟, 𝑡) = ϕ(𝑟, 𝑡)μ
𝑎 

=  Γ(𝑟)Π(𝑡)μ
𝑎 

 . Spatial 

distribution Γ(𝑟) and time dependence Π(𝑡) of the source term can therefore be treated 

separately. Further details describing the modelling of the light source propagation, the 
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scattering, the time dependence of source term and the trajectory of the laser beam can be 

found in the STAR Methods section. 

 

Experimental validation of the model 

We tested the accuracy of our model by comparing the theoretical prediction to the 

measured temperature rise induced by a holographic spot focalized on a water/agar gel by 

embedding a micrometric Er/Yb co-doped glass particle in the gel (Figure S1 A-B) and 

recording the luminescence spectral changes on the particle by the laser-induced heating (see 

STAR Methods). 

 

  

Figure S1, related to STAR Methods. Temperature measurement with luminescence probe in agar gel. 

(A) Schematic of the vertical section of the sample. Luminescence probe is fixed in the middle of agar gel. 
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(B) Left panel. Luminescence spectrum of the probe at different temperatures. The ratio between intensity of lines at 525 nm 

and 550 nm depends on temperature. Right panel. Calibration of the thermal probe by estimating the values A and B, 

necessary to perform the temperature measurement with 
𝐼525

𝐼550
∝ 𝑒𝑥𝑝 (

−𝛥𝐸

𝑘𝑇
) = 𝐴. 𝑒𝑥𝑝 (−

𝐵

𝑇
). 

We started by comparing simulations, with water coefficient of absorption taken from 

Ref. (Kedenburg et al., 2012), with experiments in the case of a 500 ms stimulation at 1030 

nm wavelength (laser pulse width ~250 fs, repetition rate 10 MHz) focalized to a 15 µm-

diameter holographic spot placed 30 µm away from the particle, and we found that our 

prediction perfectly reproduces both the magnitude and the temporal evolution of the 

temperature rise (Figure 1A; left panel). To validate the ability of the model to account for the 

spatial heat distribution, we compared the predicted and experimental values of the 

temperature rise reached 500 ms after optical excitation, while laterally moving the 

illumination spot with respect to the particle (Figure 1A; right panel). Finally, we exploit the 

capability of the model to predict the fast temperature changes and temperature accumulation 

produced by 2 Hz or 10 Hz stimulation trains (Figure 1B) of 50 ms illumination pulses. 

 

  

Figure 1: Validation of the thermal simulations through experimental luminescence recordings 



36 

 

A, left: Simulation (black trace) and experimental measurement (blue trace) of the temperature rise induced by a 15 µm 

diameter holographic spot (500 mW average power, 500 ms illumination time, 1030 nm excitation wavelength, 10 MHz 

repetition rate, ~250 fs laser pulse duration) placed at 30 µm from a Er/Yb codoped particle placed in water/agar gel (mass 

fraction of agar: 0.005) at a depth of 150 µm. Right: Simulation and experimental measurement of the peak temperature rise 

as a function of the distance X between the particle and the holographic spot using the same illumination conditions as in A, 

left panel. Scale bar is 10 µm. 

B, Simulation (black trace) and experimental measurement (blue trace) of the temperature rise induced by a 2 Hz (left) and 

10 Hz (right) train of 50 ms illumination pulses, using the same illumination conditions as in A with the spot placed at 30 µm 

from the particle.  

 

Single spot holographic photostimulation 

Here, we use the model to predict the temperature changes produced under exemplary 

illumination condition for 2P optogenetics using parallel (holographic) illumination (Chen et 

al., 2017). Figure 2A (left panel), shows the simulated temperature change produced by a 

single holographic spot after propagation through 150 µm of brain tissue (see STAR Methods 

and Figure S2 A) using exemplary conditions for in vivo AP generation (Figure 2A; right 

panel; see STAR Methods) using the opsin CoChR.  
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A 

                  

B        

 

Figure S2, related to STAR Methods. Propagation of a holographic beam through scattering media and effect of the laser 

repetition rate on the temperature evolution. 

(A) Left panel. Integrated 2P excited fluorescence signal vs penetration depth generated by a 12 µm holographic spot, 

calculated for two different wavelength, 800 nm (blue squares) and 1030 nm (red squares) using as a scattering sample a 

homogeneous medium of randomly distributed dielectric spheres of 4 μm FWHM, having a refractive index higher by 0.1 

than the surrounding medium and a concentration of 1 scatterer per 1000 µm3. This choice of parameters enabled to 

reproduce the experimental scattering length of brain cortex area (Papagiakoumou et al., 2013) and give a scattering length, 

ℓs, of 136 µm ± 9µm (n = 100), and 175 µm ± 13µm (n = 100), at 800 nm and 1030 nm, respectively. Red solid line shows 

the decay of the illumination intensity with the 1030 nm laser source, which was used to generate graded illumination masks 

that compensate for the scattering so that the deeper is the target the brighter is the spot. Right panel. Lateral (left) and axial 

(right) profile of a 12 µm holographic 800 nm beam without scattering (top), with scattering (middle) and after using the 

graded illumination mask which compensates for the scattering (bottom) at different depth of focus, 50 µm (black), 150 µm 

(red) and 250 µm (blue). The theoretical values for the axial disk elongation are in well agreement with previously measured 

data (Bègue et al., 2013) thus suggesting that further broadening due to aberration is negligible under these experimental 

conditions. 
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At the end of the 3 ms illumination time, the model predicts a mean temperature increase 

of the cell of 0.3 K followed by a rapid temperature decay (reaching 0.05 K after 10 ms). It 

should be noted that although the temperature increase has a linear dependence with the 

excitation power, it is not linear with exposure time when diffusion is taken into account. This 

sublinear dependence can be expressed in terms of the complementary error function and for 

the typical conditions considered in this paper increasing the exposure time of a factor of 10 

rises the temperature of only roughly a factor 2 (Figure S3 B). Although at the onset of heat 

diffusion the temperature distribution reproduces the speckled intensity distribution typical of 

CGH, these fluctuations are washed out as soon as the thermal diffusion length (𝑙𝑡ℎ =  √6𝐷𝑡) 

equals the speckle size (𝑙𝑡ℎ ≈ 𝜆 = 1,03 𝜇𝑚; i.e. for 𝑡 ≥ 1𝜇𝑠) (Figure S3 A).  
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Figure S3, related to STAR Methods. Spatio-temporal evolution of the temperature rise generated by a speckled 

holographic illumination pattern & holographic illumination simulation with varying parameters. 

(A) Left panel. 2D spatial distribution of the heating spreading after 0, 0.1 ms, 1.5 ms and 3 ms of illumination. Scale bar = 

10 µm. Right panel. Lateral profiles through images in A, showing how the speckle distribution is washed out after 0.1 ms. 

(B) Thermal simulations of a 1030 nm holographic spot in-vivo with varying conditions as in Figure 2. When not varying, 

spot diameter is 12 µm, power at the objective is 11 mW, illumination time is 3 ms. Top left panel. Variation of power 

conditions. Top right panel. Variations of illumination length. Bottom left panel. Variations of spot radius. Bottom right 

panel. Variations of illumination length with a train of 10 illuminations at 100 Hz.  
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We then simulated the effect on thermal response when the same stimulation 

(illumination time = 3 ms) was repeated at a rate of 10 Hz or 40 Hz (Figure 2B; left panel) to 

produce AP trains (Figure 2B; right panel). As we can observe, under 10 Hz stimulation, the 

heat dissipation after each photostimulation pulse is fast enough to bring the cell back to the 

equilibrium temperature before the arrival of the next photostimulation pulse. Increasing the 

stimulation repetition rate, generates a heat accumulation after each photostimulation pulse. 

However, even at a rate of 100 Hz, after 5 pulses, the accumulated temperature rise does not 

exceed a few tenths of a degree (Figure 2C) of course this accumulation becomes more 

relevant for longer illumination times (Figure S3 B). 
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Figure 2: Simulated temperature rise produced by a holographic spot using the photostimulation conditions necessary to 

evoke in vivo action potential. 

A, Left: Temperature rise, averaged on the spot surface, produced by a 12 µm diameter holographic spot at a depth of 150 

µm during 3 ms illumination, 1030 nm excitation wavelength, 500 kHz repetition rate, 250 fs laser pulse duration, 11.3 mW 
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excitation average power at the objective focal plane corresponding to ~0.07 mW/ µm2 at a depth of 150 µm (and to 0.1 mW/ 

µm2 excitation power density in absence of scattering). Right: In vivo voltage recordings in cell-attached configuration from 

a CoChR-expressing cortical neuron upon photostimulation with the parameters used for the simulation in A (left) evoking 

an action potential. B, Left: Temperature rise, averaged on the spot surface, produced by a 12 µm diameter holographic spot 

during a train of five illuminations of 3 ms at 10 Hz or 40 Hz using the conditions described in A. Right panel. Experimental 

voltage recordings in cell-attached configuration in vivo from a CoChR-expressing cortical neuron upon photostimulation 

using the same parameters as in the left panel. Action potentials were induced upon each photostimulation with trains of 3-

ms light pulse (red mark). C, Temperature rise, averaged on the spot surface, produced by a 12 µm diameter holographic 

spot during a train of five illuminations pulses of 3 ms at 100 Hz.  

Multi-spot holographic photostimulation  

Here, we consider the temperature rise induced by multiple spots distributed in a volume. 

In this case, it is important to consider for each plane the different attenuation of light due to 

scattering. To this end, the light distribution is obtained by using a holographic phase mask 

that compensates for the depth-dependent light losses and produces, at each focal depth, 

holographic spots of equal excitation density. Using a 3D fluorescence stack as a guide 

(Figure 3A) for placing the spots in 3D, we generated 100 holographic spots within a 300 x 

300 x 300 µm3 volume (excitation power density at each spot ~0.07 mW/µm2) and used our 

model to predict the corresponding 3D spatiotemporal evolution of the temperature rise 

(Figure 3B and Movie S1). At the end of the 3 ms stimulation, we found a mean temperature 

rise, averaged over the 100 spots, of ~1 K (Figure 3C). Due to the high density of spots, the 

value of the temperature rise at each spot obviously depends on the number and locations of 

the neighboring spots. For example, at spots generated in the deeper layers and surrounded by 

several neighboring spots, the local temperature rise can reach up to 1.85 K (Figure 3C), 

while for spot placed at an average distance greater than the thermal diffusion length (𝑙𝑡ℎ =

 √6𝐷𝑡 ~ 50µm) from their nearest neighbor, the temperature rise remains around 0.3 K, i. e. 

comparable to the case of the isolated spot reported in Figure 2A.  
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Figure 3: Simulated temperature rise produced by multiple holographic spots at the photostimulation conditions necessary to 

evoke in vivo action potential. 

A, 3D view of an in vivo two-photon fluorescence stack of the layer 2/3 of mouse visual cortex labeled with GFP with in red 

locations of the 100 holographic spots.B, 3D spatial distribution of irradiance produced by 100 holographic spots (12 µm 

diameter, 0.1 mW/µm2, 1030 nm) placed in a 300 x 300 x 300 µm 3, with scattering compensated for in-vivo conditions.C, 3D 

spatial distribution of the temperature rise produced by 100 holographic spots (12 µm diameter, 0.1 mW/µm2, 1030 nm) 

placed in a 300 x 300 x 300 µm3 volume, after 2 ms of illumination.D, Examples of traces of the temporal evolution of the 

temperature rise, averaged on the spot surface, produced by 3 ms of illumination with the spots distribution described in B, 

and the illumination conditions described in Figure 2, for an isolated spot (black curve) and a spot chosen in the area with 

high density of spots (blue curve). The purple curve represents the meant temperature rise averaged over the 100 spots. 
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Simulation of heating effect for different illumination conditions 

Here we show how our model can simulate the spatiotemporal temperature distribution 

generated under spiral scanning illumination and compare the corresponding heat distribution 

with the one obtained using holographic illumination. 

To quantitatively compare the two approaches, we first determined for each of these two 

approaches the power conditions which allow in vitro AP generation with comparable 

latencies. To this end, we used an optical system able to perform sequentially holographic and 

spiral scanning photostimulation on the same cell (see STAR Methods). We found that for 

both short (3 ms) and long (40 ms) illumination times, the average power necessary to evoke 

an action potential using holographic illumination was roughly twice larger than with the 

scanning approach (37.5 mW and 16 mW on average (n = 3) for 3 ms illumination, 5.8 mW 

and 2.5 mW on average (n = 4) for 40 ms illumination, Figure 4A). Of note, the larger spot in 

holographic excitation enables the use of a power density roughly 150 times smaller (0.2 

mW/µm2 vs 31 mW/µm2 for 3 ms illumination, 0.03 mW/µm2 vs 5 mW/µm2 for 40 ms 

illumination). These results confirm what has been recently achieved in vivo using the C1V1 

opsin and a laser source tuned to 1MHz (average power for spiral scanning about 1.8 lower 

than the one used for a 12 m diameter holographic spot) (Yang et al., 2018).  

These power values were used to simulate the spatiotemporal distribution of the 

temperature rise using holographic (Figure 4B) and spiral scanning illuminations (Figure 4C) 

and two illumination durations (3 ms and 40 ms). The maximum mean temperature is 

reached, as expected, at the end of the illumination time. After 3 ms of illumination (Figure 

4B; left panel; Figure 4C; left panel and Movie S3), it equals ~1.1 K for CGH and ~0.5 K for 

scanning. In the latter case, the accumulation of heat during the scan leads to a localized 

temperature peak of ~0.93 K. (about two times higher than the average value) when the laser 

reaches the center of the spiral. Also, the model enables to predict temperature oscillations at 

the edge of the cell during the 7 scanning loops. Using longer illumination times (40 ms) 

enables to decrease the excitation power although it also increases the AP latency, in this case 

the mean temperature stays below ~0.25 K and ~0.12 K for CGH and scanning, respectively, 

with a local maximum of ~0.18 K at the center of the cell in the case of spiral scanning 

(Figure 4B; right panel, Figure 4C; right panel). 
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Figure 4: Simulated temperature rise and experimental electrophysiological recordings with CGH and scanning illumination 

techniques. 

A, Left panel. Excitation average power needed to generate in CoChR expressing neuronal brain slices, a single AP with a 

latency between 2 and 10 ms using a 15 µm diameter holographic spot illumination for 3 ms, or a spiral scanning (7 

revolutions moving from the edge to the center, 15 µm diameter) for the same duration, 3ms, (laser excitation 1030 nm, 2 

MHz repetition rate, ~300 fs laser pulse duration). Right Panel. Excitation power needed to generate in CoChR expressing 
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cell in acute brain slices, a single AP with a latency between 20 and 45 ms using a holographic illumination for 40 ms, or a 

spiral scanning (7 revolutions moving from the edge to the center, 15 µm diameter) for the same duration, 40 ms, (laser 

excitaion 1030 nm, 2 MHz repetition rate, ~300 fs laser pulse duration).  

B, Left panel. Temperature rise averaged on the spot surface, produced using the holographic illumination condition of the 

experiments of A, left panel and 37.5 mW excitation average power. Right panel. Temperature rise averaged on the spot 

surface, produced using the holographic illumination condition of the experiments of B, right panel and 5.8 mW average 

power.C, Left panel. Temperature rise, using the spiral illumination condition of the experiments of A, left panel and 16 mW  

excitation average power. Right panel. Temperature rise, produced using the spiral illumination conditions of the 

experiments of B, right panel and 2.5 mW average power. In blue, temperature rise at the beginning, on the edge. In black, 

the temperature rise at the center of the spiral. In red, the temperature rise averaged over a disc of 15 µm. 
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Discussion 

In this study, we provide a method able to measure and predict the temperature changes 

induced by two-photon illumination with micrometer precision and millisecond temporal 

resolution, under the typical condition used for in vitro and in vivo 2P optogenetics 

stimulation.  

Combining a random phase mask approach with the Fourier's heat diffusion equation to 

account for 3D light scattering and heat diffusion within tissue, the model enables to follow 

the 3D spatiotemporal evolution of temperature rise both under single and multi-target 

activation. 

Previous approaches such as Monte Carlo simulations with Finite Difference Time 

Domain (FDTD) methods (Stujenske et al., 2015) or empirical fitting of experimental results 

(Arias-Gil et al., 2016; Podgorski and Ranganathan, 2016) did not reach micrometer and 

millisecond resolution. Indeed, to simulate the propagation of tightly focused beams would 

require introducing diffraction in the Monte Carlo code which is intrinsically difficult 

(Brandes et al., 2014). Furthermore, for holographic beams, a Monte Carlo approach would 

need to simulate the propagation of the electromagnetic field, which is much more complex 

than the traditional Monte Carlo schemes based on the propagation of the intensity. On the 

other hand, FDTD methods require extra care in setting the spatial and time discretization 

steps in order to assure stability and avoid spurious oscillations in the numerical solution. For 

a Crank-Nicolson scheme (Crank and Nicolson, 1947) this required to satisfy the condition: 

𝐷Δ𝑡

Δ𝑥2 <
1

2
 with D the thermal diffusivity, which bounds the spatial and the temporal resolution. 

For example, following the time interval of 3 ms with a micrometer resolution of Δ𝑥 =

0.5 µ𝑚 would imply setting Δ𝑡 ≈ 1 µ𝑠 and therefore using 3000 iterations. Other numerical 

schemes can be used to solve the heat diffusion equation, but in all cases, they are iterative 

processes and therefore are by themselves time consuming, particularly if high accuracy is 

needed. Empirical fitting of temperature measurements is intrinsically limited to the 

experimental spatial and temporal resolution, which so far were significantly above the 

micrometer and millisecond scale.  

On the other hand, using the analytical expression of the Green’s function gives us the 

possibility to simulate the spatial distribution of temperature with micrometer spatial 

precision and submilisecond temporal resolution and discuss the results from the simulation 

based on a physical parameter that is the thermal diffusion length, 𝑙𝑡ℎ.  
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So far, experimental methods to evaluate light induced heating during optogenetics 

experiments have used thermocouples, with a millimeter long tip and a diameter ranging 

between 220 µm and 500 µm which translates into a mm-range sensitive region (Podgorski 

and Ranganathan, 2016; Shin et al., 2016; Stujenske et al., 2015) or a thermal camera 

allowing a spatial resolution of 51 µm (Arias-Gil et al., 2016). These probes were well 

adapted to measure temperature rises averaged on large area but lack the necessary precision 

to predict the spatial heat distribution induced by 2P patterned light at micrometer scale. The 

use of quantum dot thermometry could reduce the spatial resolution down to the micrometer 

scale but required long (typically ~1s) integration time (Podgorski and Ranganathan, 2016).  

Here, we quantify (at high spatio-temporal resolution) the temperature response induced 

by 2P excitation by using rare-earth doped glass particles. Such particles have the property of 

emitting a strong temperature-dependent luminescent signal. (Aigouy et al., 2005; Saïdi et al., 

2009). By probing a single ~10 µm Er/Yb co-doped particle, we manage to significantly 

increase the photon budget to reach a thermal sensitivity below 0.2 K, a temporal resolution 

of 4 ms, while reducing the size of the probed region down to a spatial scale comparable to 

the neuron cell body. To efficiently sample the temporal evolution of heating we used here 

illumination pulses > 50 ms. More efficient detection schemes will increase sensitivity, enable 

higher sampling rates and thus the use of shorter illumination pulses. However, the Er/Yb co-

doped particle lifetime will limit the resolution to ~0.5 ms (Wang et al., 2016). 

After experimental verification of the validity of the model, we have used this to evaluate 

the spatiotemporal heat distribution under the most commonly used configurations for 2P 

optogenetics control of neuronal firing: holographic and scanning illumination.  

Holographic parallel illumination combined with amplified low repetition rate lasers and 

sensitive opsins enables to evoke AP and AP trains in vivo using low excitation density (< 0.1 

mW/m2) and short illumination time (< 3 ms) (Chen et al., 2017). Using our model we have 

shown that this illumination conditions correspond to less than 0.35 K of mean temperature 

increase for single-cell activation (Figure 2).  

In 2P CGH, the intensity distribution of the excitation patterns present spatial intensity 

fluctuations that could reach 50% around the mean value (Papagiakoumou et al., 2008), which 

could generate localized hot spots. However, we could show that this speckled distribution is 

preserved in the heating profile only for the first few microseconds, being quickly smoothed 

out by diffusion. Within this short time the temperature rise even at the hottest spots will not 
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exceed a few millikelvin, thus ruling out the risk that holographic speckles can induce local 

hot spots.  

The generation of trains of pulses had no effect on the total temperature rise, for a 

stimulation frequency of 10 Hz and 3 ms illumination time (Figure 2B). For higher 

stimulation frequency, when the delay between pulses becomes comparable to the heating 

decay time, repetitive pulse stimulation will induce heating accumulation, however even for 

the case of 100 Hz stimulation this will be less than 0.1 K (Figure 2C).  

For prolonged (seconds to minutes) scanning illuminations of large area (mm2) the 

highest temperature change is deeper in the brain than at the focal plane (Podgorski and 

Ranganathan, 2016) (see STAR Methods), while for the spatially localized and short 

(milliseconds) illumination conditions used in 2P optogenetics the highest temperature 

changes occurred within the spots (Figure 3B), suggesting that these are the positions where it 

is important to evaluate the maximum temperature rise. We have shown that the simultaneous 

illumination with 100 spots, placed in a 300 x 300 x 300 µm3 volume, enables to keep the 

temperature rise at the targets comparable to the case of an isolated cell, providing that the 

spatial distance among the targets is kept larger than the 3D diffusion length (Figure S4 and 

Movie S2). 
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Figure S4, related to Figure 3B. Temperature rise produced by 100 holographic spots placed at an average distance equal 

to the diffusion length  

(A) Left panel. 3D spatial distribution of irradiance produced by 100 holographic spots, with power compensation for 

scattering conditions in-vivo using the same excitation condition as in Figure 2, with a minimum distance between spot 

centers of 62 µm (i.e. equal to the diffusion length at 3 ms plus the spot diameter). See Movie S2. Right panel. 3D spatial 

distribution of the temperature rise produced by 100 holographic spots after 1 ms of illumination.  

(B) Examples of traces of the temporal evolution of the temperature rise, averaged on the spot surface, produced by 3 ms of 

illumination with the spots distribution described in A, and the illumination conditions described in Figure 2, for an isolated 

spot (black curve) and the spot with highest temperature rise (blue curve). The purple curve represents the mean temperature 

rise averaged over the 100 spots. 
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We have shown that our model can be applied to predict temperature rise both under 

parallel and spiral scanning optogenetic illuminations. In scanning approaches, the excitation 

light is focused on a small spot and photocurrent builds up thanks to the sequential opening of 

channels. This enables using lower illumination power than the one used in holographic 

photostimulation where, on the contrary, current integration is achieved by simultaneous 

activation of all channels. The smaller spot size used in spiral scanning also enables more 

efficient heat dissipation, so that overall spiral scanning leads to lower temperature rise. On 

the other hand, the concentration of light on a small spot leads to power densities 150 times 

higher than the one used in CGH and closer to nonlinear photodamage thresholds so that, 

especially for short illumination times, care needs to be taken in limiting the number of 

successive scans (Hopt and Neher, 2001).  

These results also indicate that the optimal laser repetition rate for 2P optogenetics 

depends on the adopted illumination methods: the extremely low excitation power density 

adopted for parallel illumination approaches (Figure 4B, peak fluence ≈ 10.7 mJ/cm2 and 1.7 

mJ/cm2, respectively for 3 ms and 40 ms illumination conditions; Figure 2, peak fluence ≈ 20 

mJ/cm2) enables to neglect nonlinear damage effect and privileges using low (500 kHz- 

2MHz) repetition rate lasers to minimize heating through linear absorption. Scanning 

approaches require higher excitation power density (Figure 4C, peak fluence ≈ 1.6 J/cm2 and 

0.25 J/cm2, respectively for 3 ms and 40 ms illumination conditions) but enable more efficient 

heat dissipation, therefore for short illumination times, higher repetition rate laser (Ji et al., 

2008) should be preferred in order to minimize peak-power - sensitive damages. 

Here, we used for both approaches the opsin CoChR, which has intermediate rise (~ 6 

ms) and decay time (~ 35 ms) (Shemesh et al., 2017). For parallel approaches, similar 

excitation power density and illumination times can be reached independently on the opsin 

kinetics (Chaigneau et al., 2016; Chen et al., 2017; Ronzitti et al., 2017b) therefore we can 

expect similar values of temperature rises. On the contrary, illumination conditions for spiral 

scanning are more sensitive to the opsin kinetics: combination with slower opsin as C1V1 

enables to lower the power (Yang et al., 2018) and therefore reduce the temperature rise even 

further, while combined with faster opsins as Chronos would require to use higher powers to 

compensate for the fast channel off-time.  

Our model is extendable to other brain regions or biological preparations differing in 

scattering properties, thus offering a unique and flexible tool for the design of complex 

optogenetics experiments with minimal sample heating. It will surely prove useful also to 
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simulate the temperature distribution under different excitation configurations (including 

single- and three-photon excitation) and imaging geometries (e. g. light sheet microscopy, 

stimulated emission depletion microscopy or Bessel beam illumination) or to optimize light 

distribution and illumination conditions for thermogenetics experiments (Bernstein et al., 

2012; Ermakova et al., 2017; Hamada et al., 2008). 
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STAR Methods 

Contact for reagent and resource sharing 

Further information and requests for resources and reagents should be directed to and will 

be fulfilled by the Lead Contact, Valentina Emiliani (valentina.emiliani@parisdescartes.fr). 

Experimental model and subject details 

Mice for in-vivo experiments 

All animal experiments were performed in accordance with the Directive 2010/63/EU of 

the European Parliament and of the Council of 22 September 2010. The protocols were 

approved by the Paris Descartes Ethics Committee for Animal Research with the registered 

number CEEA34.EV.118.12. Adult female or male C57BL/6J mice (Janvier Labs) were 

anesthetized with intraperitoneal injection of a ketamine-xylazine mixture (0.1 mg ketamine 

and 0.01 mg xylazine/g body weight) during stereotaxic injection and with isoflurane (2% for 

induction and 0.5-1 % for experiment) during photostimulation experiments. Cortical neurons 

of 4-week-old mice were transduced with viral vectors of opsins using stereotaxic injection. 

Photostimulation experiments were performed 5-8 weeks after injection. 

 

Mice for in-vitro experiments 

All experimental procedures were conducted in accordance with guidelines from the 

European Union and institutional guidelines on the care and use of laboratory animals 

(council directive 86/609 of the European Economic Community) that were approved by the 

Paris Descartes Ethics Committee for Animal Research (registration number 

CEEA34.EV.118.12). Stereotactic injections of the viral vectors AAV8-Syn-CoChR-GFP 

(Shemesh et al., 2017) were performed in 4-week-old male Swiss mice (Janvier Labs). 

Animals were housed from 3 to 5 per cage with a light dark cycle of 12 + 12 h. Mice were 

anesthetized with a ketamine (80 mg/kg)-xylazine (5 mg/kg) solution and a small craniotomy 

(0.7 mm) was made on the skull overlying V1 cortex. An injection of 1–1.5 µl solution 

containing the viral vector was made with a cannula at about 80–100 nl/min at 200–250 µm 

below the dural surface. The skin was sutured, and the mouse recovered from anesthesia. 

Method details 

Virus injection and surgical procedures – In-vivo 

Through a craniotomy over the right primary visual cortex (V1; 3.5 mm caudal from the 

bregma, 2.5 mm lateral from the midline), 1.5 µL viral vectors AAV2/8-hSyn-CoChR-GFP 

(Klapoetke et al., 2014; Shemesh et al., 2017) of were delivered via a cannula in the layer 2/3 
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(250 µm deep) at a speed of 80-100 nL/min. For performing acute photostimulation in vivo, a 

circular craniotomy of 2 mm diameter was made over V1 and the dura mater was removed. 

Agarose of 0.5-2% and a cover glass were applied on top of the craniotomy for 

stabilization/to dampen tissue movement. 

 

Two-photon-guided electrophysiology – in-vivo 

Cortical neurons were targeted with patch pipettes under a custom-built two-photon 

microscope equipped with a Ti:Sapphire laser (Chameleon Vision II, Coherent), and a 40x 

water-immersion objective (Nikon, CFI APO 40XW NIR, NA0.80). For a detailed description 

of the two-photon scanning imaging system see (Chaigneau et al., 2016). The GFP labelling 

in opsin-expressing cells were visualized by excitation at 920 nm and the emitted 

fluorescence was collected through red (617/70 nm) and green (510/80 nm) filters (Semrock). 

Imaging data were acquired using ScanImage 3 software (http://scanimage.org). 

Cell-attached recordings were obtained by using microelectrodes fabricated from 

borosilicate glass (5-8 M Ω resistance) and filled with solution containing the following (in 

mM): 135 potassium gluconate, 10 HEPES, 10 sodium phosphocreatine, 4 KCl, 4 Mg-ATP, 

0.3 Na3GTP, 25-50 Alexa Flour 594 for pipette visualization. The craniotomy was covered 

with the extracellular solution containing the following (in mM): 145 NaCl, 5.4 KCl, 10 

HEPES, 1 MgCl2, 1.8 CaCl2. Voltage recordings in the current-clamp mode were acquired by 

using a MultiClamp 700B amplifier and a Digidata 1550A digitizer, which were controlled by 

a pCLAMP10 software (Molecular Devices). Electrophysiology data were filtered at 6 kHz 

and digitized at 20 kHz. 

 

Holographic photostimulation – in-vivo 

Holographic photostimulation was implemented with the imaging system mentioned 

above. Computer-generated holography was utilized for patterning light beams from an 

amplified fiber laser (Satsuma HP, Amplitude Systemes) at 1030 nm via a spatial light 

modulator (LCOS-SLM; X10468-07, Hamamatsu Photonics). The photostimulation setup was 

similar to the one described in (Ronzitti et al., 2017b) and (Chaigneau et al., 2016). The SLM 

was controlled by a custom-designed software (Lutz et al., 2008). A cylindrical lens was 

introduced to suppress zero-order excitation (Hernandez et al., 2016).  

Two-photon photostimulation was performed using a circular holographic spot of 12-µm 

diameter covering the soma of a CoChR-positive neuron whose spiking activity was 

monitored through a patch pipette. A threshold power density between 0.05-0.5 mW/µm2 of a 
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1-10 ms light pulse was determined for a target neuron to elicit an action potential (AP) in 3-6 

repetitions. A train of APs were elicited upon photostimulation with 5-10 illumination pulses 

at 10, 20 and 40 Hz. 

Brain slices 

Brain slices of V1 cortex were prepared from mice 7–15 weeks after viral injection. Mice 

were deeply anesthetized with isoflurane (5% in air) and decapitated, and the brain was 

rapidly removed. Sagittal slices 300 µm thick were obtained (VT1200S Leica Biosystems, 

Germany) in room temperature or ice-cold solution containing the following (in mM): 93 

NMDG, 2.5 KCl, 1.25 NaH2PO4, 30 NAHCO3, 20 Hepes Acid, 25 Glucose, 2 thiourea, 5 

Na-Ascorbate, 3 Na-Pyruvate, 0.5 CaCl2 and 10 MgCl2. Afterwards, slices were transferred 

to a recovery chamber held at 35° for 45 min, in a bath containing the following (in mM): 125 

NaCl, 2.5 KCl, 26 NaHCO3, 1.25 NaH2PO4, 1 MgCl2, 1.5 CaCl2, 25 glucose, 0.5 ascorbic 

acid. All solutions were aerated with 95% O2 and 5% CO2 to a final pH of 7.4. Slices were 

placed in a recording chamber under the microscope objective and were patched while 

monitoring IR transmitted light images acquired at approximately video rate. Cells were 

patched at 40–70 µm depth and clamped at −70 mV in voltage-clamp configuration. Opsin 

expressing cells were identified via epifluorescence or 2P-scanning imaging. 

Whole-cell recordings – in-vitro 

Whole-cell patch clamp recordings were made using Multiclamp 700B amplifier and a 

Digidata 1440 digitizer and a PC running pClamp (Molecular Devices). Cell type was 

established based on morphology and AP firing properties. Membrane potential was kept at -

70 mV with current injections ranging from -5 to -35 pA in current-clamp configuration. 

Voltage and current clamp recordings were filtered at 6–10 kHz and sampled at 20–50 kHz. 

Borosilicate glass pipettes (outer diameter 1.5 mm and inner diameter 0.86 mm) were pulled 

with a micropipette puller (Sutter Instruments) and filled with a solution containing the 

following (in mM): 130 potassium gluconate, 7 KCl, 4 Mg-ATP, 0.3 mM Na-GTP, 10 sodium 

phosphocreatine and 10 mM HEPES (pH adjusted to 7.28 with KOH; osmolarity 280 mOsm). 

Pipette resistance in the bath was 5–7 MΩ.  

2P holographic and spiral scanning photostimulation – in-vitro 

The optical system used is analogous to the one described above for the measure of the 

laser induced heating. In this experiment, the excitation laser (GOJI, Amplitude Systemes, 

here operated at a repetition rate of 2 MHz and laser pulse width of ~300fs) could be 

alternatively directed onto two different optical paths, in order to generate either parallel 
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holographic stimulation or spiral scanning stimulation. The former consisted in illuminating 

the whole cell body with a 15 µm diameter holographic spot (see description of the optical 

path in the Thermal measurement section). The latter consisted in the spiral scanning of the 

cell body with an almost diffraction limited spot (~ 0.8 µm lateral size). The spiral trajectory 

was obtained by controlling the movement of the two galvomirrors using a SlideBook 6 

commercial software (3i-Intelligent Imaging Innovations) and its parameters (7 tours, pitch 1 

µm) were chosen to cover approximately the same surface of the holographic illumination. 

The two beams were focused on the sample by a 40x 0.8 NA water immersion Zeiss objective 

and the cell response to photostimulation was monitored by electrophysiological recording.  

Modeling – Light source propagation and scattering 

The spatial distribution of the source term, Γ(𝑟), can be calculated for the propagation of 

either a Gaussian or holographic light beam. To model the three-dimensional light scattering 

within an opaque tissue, we used a diffraction approach such as the angular spectrum of 

planes. Given a desired intensity distribution at the target plane we first used the Gerchberg-

Saxton algorithm (Lutz et al., 2008) to calculate the electric field distribution 𝐸𝑆𝐿𝑀(𝑟, 𝑡) =

𝐴(𝑥, 𝑦)𝑒𝑖𝜑(𝑥,𝑦) at the SLM plane, where 𝜑(𝑥, 𝑦) is the phase mask calculated by using the 

Gerchberg-Saxton based algorithm, and 𝐴(𝑥, 𝑦) is a Gaussian distribution reproducing the 

illumination beam at the SLM plane. The angular spectrum of plane waves (Goodman, 1996) 

is then used to propagate the 𝐸𝑆𝐿𝑀(𝑟, 𝑡) through the sample, step by step and adding a random 

phase to scramble the field after each step. The random phase mask is built up by using a set 

of scattering parameters, reproducing the scattering properties of brain tissue. These 

parameters have been calibrated and experimentally verified in (Bègue et al., 2013; 

Papagiakoumou et al., 2013), where we measured and modeled the effect of scattering on 

amplitude attenuation, spatial scale of speckle, and quality of focus after propagation of light 

through up to 550 m of acute brain slices. These parameters reproduced the experimental 

scattering length at 800 nm for cortical brain (~135 µm). The same parameters at 1030 nm 

give an effective extinction coefficient (or characteristic length for the decrease of 

fluorescence as a function of depth) of 175 µm ± 13 µm (Figure S2 A).  

This approach is only an approximation of actual light scattering, first because it accounts only 

for forward scattering (neglecting backscattering) and second because scattering occurs only at certain 

predetermined planes, after discrete steps, and not continuously while propagating in the tissue. 

Despite these limitations the approach has been used successfully to model, for instance, the two-
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photon fluorescence decay as a function of depth (Bègue et al., 2013; Papagiakoumou et al., 2013) or 

the angular memory effect (Schott et al., 2015) in biological tissue.  

Modeling – Time dependence of source term 

Considering a laser pulse of average power Pav and duration τ, which is obtained from a 

train of fs pulses of peak power Pp and duration τp at a repetition rate f, Pav = f τp Pp. The 

temporal dependence of the source term, Π(𝑡) , can be expressed either as a continuous 

illumination pulse of average intensity Pa or as a train of fs pulses. The two approaches can be 

considered equivalent if the heat diffusion out of the region of interest (ROI; area over which 

the temperature is averaged, e.g. the cell surface or the Er-Yb co-doped glass particle surface) 

is negligible in the interval between two successive laser pulses ∆𝑡 = 1/𝑓. If this condition is 

verified, the temperature over the ROI remains quasi constant during ∆𝑡 so that the energy of 

each successive laser pulse, τp Pp simply adds to the one of the other pulses. As a result, the 

total energy during an illumination time, τ, will equalize that of a continuous pulse of energy τ 

Pav, giving rise to the same temperature rise. If 𝑎 is the lateral dimension of the area of 

interest this condition can be expressed in terms of the thermal diffusion length: 

 

 
𝑙𝑡ℎ = √6𝐷∆𝑡 ≪ 𝑎 → 𝑓 ≫

6𝐷

𝑎2
 Eq. 5 

 

For a temperature averaged over a 12 µm diameter spot this corresponds to 𝑓 ≫ 23 kHz.  

In the case of a low repetition rate fiber laser (500 kHz) the relative decay of temperature in a 

6 µm or 1 µm radius circular area during the 2 µs between successive laser pulses is of the 

order of 0.01% and 0.3%, respectively. This relative decay is even more negligible in the case 

of a conventional mode-locked laser (80 MHz repetition rate, 12.5 ns between successive 

laser pulses). We therefore can consider that within this repetition rate range (500kHz - 

80MHz), the time dependence of the source term can be well approximated by a continuous 

illumination pulse of average intensity, the difference in the temperature at a given time step 

being simply the difference between continuous integration and a rectangle rule numerical 

integration of the heat source (Figure S2 B).  

We can also compare the expressions of the convolution of Green’s function with 

Π(𝑡) for both cases. This can be done in k-space (or Fourier domain where the convolution 

with the source term is carried out as a multiplication), for the 1D Green’s function: 
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𝐺̃1(𝑘, 𝜏) =
1

𝜏
∫ 𝑒𝑥𝑝(−𝐷(2𝜋𝑘)2𝑡)

𝜏

0

𝑑𝑡 

𝐺̃2(𝑘, 𝜏) =
1

𝑁
∑ 𝑒𝑥𝑝(−𝐷(2𝜋𝑘)2𝑖∆𝑡)

𝑁−1

0

 

Eq. 6 

𝐺̃1(𝑘, 𝜏) and 𝐺̃2(𝑘, 𝜏) are the expressions for respectively the average power continuous 

illumination pulse and the discrete sum of N successive laser pulses, where k is the spatial 

frequency. Carrying out the integration and the summation: 

 

 𝐺̃1(𝑘, 𝜏) =
1−𝑒𝑥𝑝(−𝐷(2𝜋𝑘)2𝑡)

𝐷(2𝜋𝑘)2𝜏
   𝐺̃2(𝑘, 𝜏) =

1

𝑁

1−𝑒𝑥𝑝(−𝐷(2𝜋𝑘)2𝑁∆𝑡)

1−𝑒𝑥𝑝(−𝐷(2𝜋𝑘)2∆𝑡)
 Eq. 7 

 

For 𝐷(2𝜋𝑘)2∆𝑡 ≪ 1 and noting that 𝑁∆𝑡 = 𝜏 

 

 
𝐺̃2(𝑘, 𝜏) ≈

1

𝑁

1 − 𝑒𝑥𝑝(−𝐷(2𝜋𝑘)2𝑁∆𝑡)

1 − (1 − 𝐷(2𝜋𝑘)2∆𝑡)
=

1 − 𝑒𝑥𝑝(−𝐷(2𝜋𝑘)2𝑁∆𝑡)

𝐷(2𝜋𝑘)2𝑁∆𝑡
 

𝐺̃2(𝑘, 𝜏) = 𝐺̃1(𝑘, 𝜏) 

Eq. 8 

 

Modeling – Convolution with separable source term 

For a continuous illumination pulse, Π(𝑡) can be written as Π(𝑡) = 𝑢(𝑡) − 𝑢(𝑡 − 𝜏) 

where 𝑢(𝑡) is Heaviside’s function and the convolution over time can be carried out the 

obtain a new Green’s function 

 

 𝐾(𝑟, 𝑡) = 𝐺(𝑟, 𝑡) ∗ Π(𝑡) 

𝐾(𝑟, 𝑡) =
1

4𝜋𝐷𝑟
[𝑒𝑟𝑓𝑐 (

𝑟

2√𝐷𝑡
) 𝑢(𝑡) − 𝑒𝑟𝑓𝑐 (

𝑟

2√𝐷(𝑡 − 𝜏)
) 𝑢(𝑡 − 𝜏)] 

Eq. 9 

 

where 𝑒𝑟𝑓𝑐(𝑥) is the complementary error function. 𝐾(𝑟, 𝑡) must then be convoluted over 

space with Γ(𝑟) to obtain the spatiotemporal distribution of temperature: 

 

𝑇(𝑟, 𝑡) = (𝐾(𝑟, 𝑡) ∗  Γ(𝑟))𝜇𝑎 Eq. 10 

 

Modeling – Moving laser spot 

To model the case of a moving light source (e. g. for spiral or raster scanning 

illumination) we can take advantage of the linearity of the diffusion equation and of the 

convolution operator to write the source term as: 
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𝑞(𝑟, 𝑡) = ∑ 𝑞𝑖(𝑟 − 𝑟𝑖⃗⃗⃗ , 𝑡 − 𝑡𝑖)

𝑖

 Eq. 11 

 

The term representing the scanning source was expressed as a succession of square pulses, 

centred on 𝑟𝑖⃗⃗⃗  at time 𝑡𝑖 and the total spatiotemporal heat distribution was obtained by 

summing the heat contribution of each individual spot. This approach is less computationally 

consuming than solving equation (1) using a continuous illumination. To ensure that the 

discretization of the light source does not affect the spatiotemporal distribution of temperature 

we chose a spatial separation between the steps to be shorter than the thermal diffusion length. 

For example the illumination time, 𝑡𝑖+1 − 𝑡𝑖, of 50 µ𝑠 used for the spirals in Figure 4C 

corresponds to a diffusion length 𝑙𝑡ℎ = √6𝐷𝑡 ≈ 6.6 µ𝑚, which is much larger than the 

corresponding spatial step 𝑟𝑖+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ −  𝑟𝑖  =  0.3 µ𝑚. 

Considering that the time to generate a temporally focused pattern (~ps) is much shorter than 

the heat diffusion time, the case of a temporally focused pattern (Figure 4B) has been treated 

as if the sample was continuously illuminated. 

 

Modeling – The infinite media hypothesis 

The infinite media hypothesis can be considered valid if the dimensions of the medium 

are large compared to the diffusion length. This condition is satisfied for the simulation of in 

vivo experiments at depth > 50μm. For experiments in vitro, this condition is in general valid 

for the transversal dimension (x,y) but not for the axial direction. Briefly, considering that the 

experiments are carried out using water immersion objective and the fact that the thermal 

properties of water are sufficiently close to those of biological tissue, we can neglect the 

thermal interface above the sample and consider the condition for an infinite medium verified 

in this direction. On the contrary, we must consider the thermal interface between the sample 

and the glass coverslip by introducing boundary conditions to equation (1) accounting for 

continuity of temperature and heat flux at this interface. Due to the mismatch in the properties 

between glass and tissue, the boundary conditions lead to a modified Green’s function 

𝐺∗(𝑟, 𝑡) which can be calculated numerically. After convolution of 𝐺∗(𝑟, 𝑡) and 𝑞(𝑟, 𝑡) we 

found that the infinite medium hypothesis leads to an overestimation of the temperature rise 

of the order of 15% for a holographic spot of 10 µm diameter focussed 5 µm above the 

sample/glass interface. 
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For prolonged (seconds to minutes) scanning illumination, the boundary conditions start 

to play a key role giving rise to a maximum of the temperature rise at a plane different from 

the objective focal plane (Podgorski and Ranganathan, 2016), therefore under these 

conditions the infinite medium approximation is not valid. 

 

Thermal measurement 

Our goal is to validate our model by measuring the spatiotemporal temperature 

distribution at the cellular scale within a 3D isotropic medium that mimics the thermal 

properties of biological tissue. To do so we used Er-Yb co-doped glass particles (50% GeO2 – 

40% PbO – 10% PbF2 – 1% ErF3 – 1% YbF3) which acts as a temperature probe due to its 

temperature-dependent luminescence, thanks to the optic properties of doped PbF2 crystallite 

(Aigouy et al., 2005; Dantelle et al., 2005; Mortier and Patriarche, 2000; Saïdi et al., 2009). 

After excitation by up-conversion with an infrared (980 nm) laser illumination, the ratio 

between the integrated intensity of two fluorescence lines around 525 and 550 nm varies with 

temperature (Aigouy et al., 2005; Saïdi et al., 2009), as shown in Figure S1B. This technique, 

which relies on an optical intensity ratio, provides a robust and absolute temperature 

measurement insensitive to optical excitation fluctuations.  

This probe is inserted in the middle of a water/agar gel (mass fraction of agar: 0.005), 

at distances larger than the thermal diffusion length from the nearest interfaces and can 

therefore be considered embedded in a 3D isotropic measurement medium. The whole sample 

is surrounded laterally by two layers of silicone isolator (0.5 mm thick each, Invitrogen 

P24743) and sandwiched between two coverslips (No. 1, 140 µm thickness). Owing to the 

very low agar contents, the optical and thermal properties of this phantom are very close to 

those of water (and to the thermal properties of tissue). The small dimension of the thermal 

probe (much smaller and less thermally invasive than a conventional metal thermocouple) 

offers the possibility of measuring temperature at the cellular scale, which is compatible with 

the cellular spatial scale measurement we aim for. The detection scheme used to measure the 

fluorescence ratio has a sampling rate limited to 250 Hz and therefore we used illumination 

pulses longer than those used for the simulations (50 or 500 ms vs 3 ms) in order to have 

enough data points to fit the model function.  

In order to obtain sufficient temperature sensitivity and a short (4ms) integration 

times, we used Er-Yb particles of roughly 10µm in diameter, therefore we could only measure 

the temperature rise averaged on a size comparable to the cell soma. Moreover, in order to 
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avoid that the (unknown) absorption of the particle hampered the reliability of temperature 

measurement we placed the crystal at ~30 µm from the location of the illumination spot. In 

these conditions the temporal evolutions for scanning and holography will look almost the 

same, and therefore we only performed the measurement under holographic light 

illumination. The measurements were performed on a system built around a commercial 

upright microscope (Zeiss, Axio Examiner Z1) coupled with two-pulsed infrared excitation 

path. The heat-inducing holographic excitation uses an amplified fiber laser (GOJI, 

Amplitude Systemes, λ = 1030 nm, operated at a repetition rate of 10 MHZ and laser pulse 

width of ~250 fs). The laser beam is triggered by an acousto-optic modulator (MQ40-A2, AA 

Optoelectronic) and expanded to illuminate the screen of Spatial light modulator (LCOS-SLM 

X10468-07 Hamamatsu Photonics). The SLM plane was then projected by two telescopes 

(equivalent magnification of 0.5) on the back aperture of a 20x-1.0 NA water immersion Zeiss 

objective. To maximize output power, the back aperture was underfilled, resulting in the 

generation of a holographic beam of ~0.5 effective NA. The SLM was addressed with phase 

profile calculated via Gerchberg-Saxton based algorithm, in order to generate a 15 µm 

diameter holographic circular spot over different positions of the sample. The zero and higher 

diffraction orders (>1) were blocked before entering the microscope. The position dependent 

diffraction efficiency of the SLM (Hernandez et al., 2016) were compensated by adjusting for 

each lateral displacement (Figure 1A) of the spot the total laser power.  

A second femtosecond laser source (Ti:Sapphire oscillator, laser pulse width ~100 fs, 

repetition rate 80 MHz, tuned at 980 nm, Mai Tai DeepSee, Spectra-Physics) was used to 

excite the Er/Yb glass probe. The laser beam, modulated by a Pockel cells (350-80, 

Conoptics), entered a commercial 2P scanning head (VIVO 2-PHOTON, 3i-Intelligent 

Imaging Innovations), and was focused on the Er/Yb probe by adjusting the position of two 

galvanometric mirrors. The paths of the two infrared beams were coupled through a polarizer 

beam splitter. The position of the glass probe was identified through DIC imaging on a 

CMOS camera (Thorlabs DCC 1545M) and its fluorescence was collected by the confocal 

entrance of a fiber spectrometer (Avantes, ULS2048L-EVO). 

Thermal measurement – Calibration of the probe 

In Er/Yb codoped glasses, the 2H11∕2 and 4S3∕2 levels of Erbium are in thermal 

equilibrium, and their population, and thus the fluorescence ratio, are ruled by a Boltzmann 

law of the form: 
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𝐼525

𝐼550
∝ exp (

−𝛥𝐸

𝑘𝑇
) = A. exp (−

𝐵

𝑇
) Eq. 12 

 

where I525 and I550 are the integrated luminescence intensities at 525 nm and 550 nm, 𝛥𝐸 is 

the energy separation between the corresponding levels, k the Boltzmann constant, and T the 

temperature (in Kelvins). A and B are constant coefficients which need to be determined by 

calibration, since they strongly depend on the nature and environment of the glass. Once A 

and B are known, the absolute temperature can be deduced quantitatively from measurements 

of I525/I550 (Aigouy et al., 2005; Saïdi et al., 2009).  

To do the calibration, the sample was heated on a PID-controlled heating element 

(Thorlabs, HT10K). A thin thermocouple (Omega, HYP0-33-1-T-G-60-SMP-M) 

implemented in the sample measured the temperature of the medium. At the same time, the 

probe was illuminated, and its luminescence spectrum was measured to derive I525/I550, as a 

function of T. These measurements were achieved at thermal equilibrium, between 296.6 K 

and 309.8 K, and repeated to increase the reliability of the calibration. A linear fit on 

ln(I525/I550) as a function of 1/T, shown in Figure S1 B, yielded the values of A and B with a 

coefficient of determination R2= 0.9362 (Figure S1 B). 

Quantification and statistical analysis 

In each experiment of Figure 4, multiple mice (n=3 or n=4) were analyzed as biological 

replicates. When we refer to the mean temperature rise, we perform the sum of the 

temperature rise in each pixel inside the spot of interest, and then divide by the number of 

pixels considered. 

Data and software availability 

The model has been implemented in a MATLAB (MathWorks) package that can be 

found as a supplemental zip file (see Data S1). Two main folders are in the archive, the first 

one with a master script and a library of functions for Holography simulations, and the second 

one following the same organization, but for Scanning simulations.  
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3) Illumination conditions from the 

literature 

The model presented in (Picot et al., 2018) also enables to compute the temperature rise for 

other illumination conditions than those considered in the paper. On the following we show 

few examples where the model has been applied to exemplary multi spot experiments taken 

from the literature. 

a) Simultaneous spiral scanning of 10 neurons in vivo 

In this work (Packer et al., 2015), Adam M Packer et al. realized one of the first multi-spiral 

photoactivation experiments in vivo, where they stimulated 10 cells at the same time. To do 

so, they scanned in a spiral pattern the neurons during 11 or 16 ms with a 10 mW per target, 

1064 nm laser source and a 0.8 NA objective. The spiral radius was 10 µm at maximum and 

included 3 revolutions. We assumed that the laser was moving from the edge to the center of 

the pattern, as in (Rickgauer and Tank, 2009). To compute the light propagation and heat 

diffusion of this experiment, we used the same thermal parameters that can be found in Ref 

(Picot et al., 2018) and took an absorption coefficient of 0.055 mm-1 (Yaroslavsky et al., 

2002). 

 

Figure 15: Left panel. The 10 neurons in layer 2/3 of somatosensory cortex expressing C1V1 opsin that have been stimulated. 

Scale bar is 50 µm. Adapted from Figure 3 of (Packer et al., 2015). Right panel. Representation of the spiral scanning 

trajectories and direction.  
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Figure 15, right panel, shows the 10 spirals used to cover the cells, each one centered on a 

specific target. Some of them (red, green, blue, black, purple and brown), crossed neighboring 

photostimulated cells, thus causing additional heating.  

 

Figure 16: 2D heat map of the 10 spiral scanning laser beams in the conditions of (Packer et al., 2015). Left panel. After 1 ms 

of illumination. Middle panel. After 8 ms of illumination. Right panel. After 16 ms of illumination. 

If we follow the evolution of heating in time, in Figure 16, after 1 ms of illumination we can 

still observe 10 localized hot spots, at the position of the laser source. This after few 

milliseconds becomes a larger homogeneously heated area. 

 

Figure 17 : Maximum (blue), 10 cells mean (red) and geometrical center temperature rise (black) in the conditions of 

(Packer et al., 2015). The horizontal red bar shows photostimulation duration. 
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As shown in Figure 17, for most of the target the temperature increase, exceed the 2K, with a 

mean temperature increase over the 10 cells of 1.4 K at the end of the photostimulation 

protocol and a temperature increase of 1.6 K at the center of the FOV on Figure 17. 

Although we have seen that spiral scanning enable efficient heat dissipation, these elevated 

temperature here are reached because, the mean inter-distance between cells (~30 µm) was 

much shorter than the thermal diffusion length (which for 16 ms is ~115 µm) thus generating 

an extra heat accumulation.  

b) Discrete raster scanning of one cell 

On the same paper the authors presented a complementary approach where, as depicted in 

Figure 18, the laser source was moved in a raster scanning fashion, with a discrete approach. 

On each site, stimulation was 0.1 ms long, and interval time was also 0.1 ms, which for 100 

targets gave a global scanning time of 20 ms. Optical system and laser sources remained the 

same as for the 10 spirally scanned neurons. The only difference was in the total power used 

for the photostimulation, 100 mW. 

 

 

Figure 18: Neuron, in layer 2/3 of barrel cortex expressing C1V1-2A-YFP, patched in cell attached condition. Red dots 

represent the laser illumination pattern. Scale bar is 10 µm. Adapted from (Packer et al., 2015). 
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Figure 19: 2D heat map of the raster scanning experiments in the conditions of (Packer et al., 2015). Left panel. After 0.1 ms 

of experiment. Middle panel. After 10.1 ms of experiment. Right panel. After 20 ms of experiment. 

 

On Figure 19, we can observe through the thermal variations the temperature oscillations due 

to the 10 lines of the scanning pattern (FOV center temperature increase (black), mean over 

the scanned area (red), last line half distance point (blue)) and also the 100 oscillations due to 

the multiple spot positions. 

 

Figure 20: Temperature rise simulated in the conditions of raster scanning adapted from (Packer et al., 2015). In black, 

temperature rise at the center of the pattern. In red, mean temperature increase when integrating temperature rise over the 

scanned area. In blue, temperature rise over the 95th targeted position. Horizontal dashed red bars show photostimulation 

duration. 
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In these conditions, heat did not accumulate globally over the whole scanned area; we observe 

a 2.5 ratio between the scanned area peak (~1.7 K) and the maximum temperature increase 

(~4.3 K). Whereas 10 mW was previously addressed for each cell, here 100 mW is necessary 

for this single cell. 
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c) Simultaneous spiral scanning of 84 neurons in vivo at 

different depths 

In the work of Weijan Yang et al. published in 2018, a multi-spiral scanning approach has 

been developed to photoactivate neurons simultaneously at different depths in a mice brain. 

Using a 1040 nm laser source with a low repetition rate (200 kHz – 1 MHz), the 

photostimulation laser beam was split into multiple foci and spirally scanned. Several 

variations of the spiral approach were used in this work. In the authors’ so-called “normal 

conditions”, the photostimulation duration was 100 ms, composed of sequenced spiral cycles, 

each lasting less than 20 ms. 8 to 50 revolutions were used to scan a 2-5 mW spot, starting on 

the edge and ending at the center of the target. This protocol we used to activated in vivo 83 

neurons simultaneously distributed on four planes, 17 cells at 150 µm, 15 at 200 µm, 26 at 

250 µm and 25 at 300 µm. Here, (Figure 21) we simulated the temperature rise during the first 

cycle of spirals (20 ms, 50 revolutions). 

 

 

Figure 21: 2D Heatmap of the temperature rise in the conditions of (Yang et al., 2018). 2D heat maps for time frames at 0.02 

ms, 5 ms and 20 ms are showed for each depth of focus, 150, 200, 250 and 300 µm. 
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In Figure 21, top panel, selected cells for photoactivation are marked with a black contour 

among the population studied with calcium imaging. Most of the cells are in the center of the 

FOV. At t = 0.02 ms, the laser source had just started the first revolution and heat did not yet 

have the time to diffuse over a large volume. We can clearly distinguish the positions of the 

spots. On average, the distance between cells for each depth of focus was 80, 121, 96 and 84 

µm respectively for z = 150, 200, 250 and 300 µm. Thermal diffusion length after 20 ms is 

~130 µm. Therefore, the lateral and axial distance between neurons was not sufficient to 

prevent heat accumulation from the dissipation of the neighboring cells, and in few positions 

the temperature rise was up to 5 times (0.3 K to 1.6 K) higher than the case of an isolated 

target, Figure 21.  

 

 

 

Figure 22: Maximum temperature rise for each cell in the conditions of (Yang et al., 2018). Top panel. Background color 

link Cell ID to right depth of focus in the bottom panel.  
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With Figure 22, we can analyze more precisely the thermal distribution corresponding to the 

configuration used by the authors. First, the lowest maximum temperature increase is around 

0.3 K, which is comparable to what was demonstrated before in the holographic illumination 

configuration. This, of course, depicts the temperature rise for cells, which were quite 

isolated. Secondly, most of the cells undergo a temperature rise of roughly 1.4 K, especially at 

250 µm in depth, where a lot of targets were packed into a small area. As a reminder, here we 

simulated only the first cycle of photostimulation among the several which composed the 100 

milliseconds protocol. We can then expect that even higher temperature were reached after 

repetitive cycles, as they were not separated by an OFF period. 

 

4) Optimization perspective for increased 

amount of targets  

In this last paragraph, I will show how generating sequential light patterns can also be used as 

a strategy to minimize local heating, although this has a cost in temporal resolution 

We took the same target distribution and illumination condition as used in Supplementary 

Figure 4 of the paper, i. e. 100 targets distributed in a 300x300x300µm volume, with a power 

density for each cell of 0.1 mW/µm2 and an illumination time of 3 ms. We randomly split the 

100 targets into 4 clusters of 25 targets and tested two illumination strategies, described in 

Figure 23. 

 

 

Figure 23 : Illumination protocols for the 100 sequenced illuminations in the conditions of (Picot et al., 2018). 
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Figure 24: Mean temperature rise of clusters of 25 spots illuminated in the conditions of Figure S4, related to Figure 3B 

from (Picot et al., 2018), with a 3 ms delay between each cluster activation, as in Protocol 1. Red horizontal bars represent 

the photostimulation duration for each cluster. 

As shown in Figure 24 the simulations predict a 0.7 K mean temperature increase for the last 

cluster (blue), and a smaller one for the others (0.4 (black); 0.52 (red) and 0.6 K (pink)). Thus, 

showing that introducing a 3 ms off interval between two sequential stimulations, enable to 

decrease the temperature rise for 75 of the spots. As expected, we found the 0.7 K mean 

temperature increase for the last cluster as in the previous simulation, as the same amount of 

energy was transferred in the volume at this moment. 

Interestingly, the mean temperature increase of the first cluster, in black in Figure 24 reaches 

its maximum at the end of the whole simulation and not at the end of the illumination of this 

group of spots. This shows the importance of the contribution from surrounding cells for 

repetitive light stimulation. 
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Figure 25: 3D heatmap of 100 holographic spots after 3, 6, 9 and 12 ms of illumination, with only 3 ms of illumination for 

each cluster of 25 spots. Volume of simulation is 300x300x300µm. 

Of course, this effect can be further decreased by increasing the time interval among 

sequential stimulation and shown in Figure 26 using the Protocol n°2.  

 

Figure 26:  Mean temperature rise of clusters of 25 spots illuminated in the conditions of Figure 24, with a 3 ms delay 

between each cluster activation, as in Protocol 1. Red horizontal bars represent the photostimulation duration for each 

cluster. 
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First, the mean temperature rise of each cluster at the end of the illumination, as visible in 

Figure 26, is roughly the same as for protocol n°1. Peak temperature rise for the first cluster is 

roughly 0.4 K in both cases and is ~0.7 K for the fourth cluster, too. What the protocol n°2 

actually provides is the ability to keep the temperature increase in the clusters at reasonable 

levels after the end of their own photostimulation. As a result, even though it is the same 

amount of energy that was deposited in the same volume, it is not the same amount of heat 

that is accumulated in the volume at the end of the photostimulation protocol.  

 

5) Conclusion 

During this thesis, we have developed methods enabling to measure and predict the 

temperature changes induced by two-photon illumination with micrometer precision and 

millisecond temporal resolution, under the typical condition used for in vitro and in vivo 2P 

optogenetics stimulation. We have shown that our model can be applied to predict 

temperature rise both under parallel and spiral scanning optogenetic illuminations. Our model 

is extendable to other brain regions differing in scattering properties and offers a unique and 

flexible tool for the design of complex optogenetics experiments with minimal sample 

heating. It will surely prove useful also to simulate the temperature distribution under 

different excitation configurations (including single- and three-photon excitation) and 

illumination geometries (e. g. light sheet microscopy, stimulated emission depletion 

microscopy or Bessel beam illumination) or to optimize light distribution and illumination 

conditions for thermogenetics experiments (Bernstein et al., 2012; Ermakova et al., 2017; 

Hamada et al., 2008). 

 

As for temporal resolution, here we developed a model for illumination durations going from 

tens of microseconds to few milliseconds. For fast scanning speed (Yang et al., 2018) or 

discretized scanning trajectory (Packer et al., 2015), few modifications should be made to the 

software to better integrate the thermal phenomena occurring on such temporal scales (i. e. 

less than µs). Indeed, this could require considering ultra-fast thermal events, in order to 

incorporate the delay between photons absorption and heat generation. Yet, this should not 

change significantly the thermal evaluation of 2P photostimulations techniques, as short 

illumination times translate into small temperature increase.  
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In the presented simulations, we used the infinite medium hypothesis because heat did not 

have the time to reach the boundaries of the sample. This is due both to the depth of the 

targets position (tens to hundreds of micrometers) and the pulse duration (few milliseconds) 

used. For longer protocols these effects should be taken into account, which will require to 

consider the thermal interfaces with surrounding medium (e. g. water, glass).  

For simulations using longer stimulation protocol but targets distributed deeper, the infinite 

media hypothesis still hold but will require very large calculation volumes. This can be 

reduced by using other approaches such as a-dimensioned simulations where the calculation 

resolution is reduced during the stimulation time: indeed, if sub-micromillimeter resolution is 

required for the first few microseconds, in order e.g. to calculate the local hot points coming 

from speckles inside the spot. For longer exposure time one could use a larger (~ 15 µm) 

calculation pixel. 
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IV. 

Opsins dynamics and illumination 

strategies 

1) Opsins kinetics diversity for optogenetics 

experiments 

In the last years a large variety of new opsins and mutants have been discovered or engineered 

(Zhang et al., 2011). This rapid development has been sparked by the need to adjust the 

biophysical properties: wavelength sensibility, reporter color, selective trafficking or  kinetics 

parameters for different experimental configuration using optogenetics (Gunaydin et al., 

2010; Klapoetke et al., 2014; Kleinlogel et al., 2011; Mattis et al., 2011; Prakash et al., 2012; 

Shemesh et al., 2017).  

 

Here we will focus on the opsin kinetics and their importance in the optimization of the 

photostimulation protocol. In general, a prolonged illumination of cells expressing an opsin 

will produce the typical photocurrent trace shown in Figure 27. After the start of 

photostimulation, the opsin channels will start to open, inducing a rapidly increasing inward 

current. This phase is followed by a desensitization phase, where the photocurrent decreases 

to reach a steady-state level.  At the end of photostimulation the current returns to its resting 

level. These three phases have typical durations for each opsin and they can be characterized 

by the three characteristic times, τON, τDES and τOFF, defined either as the time constant of a 

single exponential fit or simply as the total time from 0 to 90 or 100% of the peak.   
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Figure 27: Voltage clamp recording of a cell expressing ChR2, illuminated for 100 ms with a light source in the blue. τON 

describes the time between beginning of illumination and peak current. Desensitization describes photocurrent variations 

from peak to steady-state. τOFF represents the time required for photocurrent to go back to resting level after the end of 

photostimulation. Courtesy of E. Chaigneau.  

Based on these characteristic times, opsins can be classified as fast (e.g. Chronos), medium 

(e.g. CoChR), or slow (e.g. ReaChR) opsins, as seen in Table 1. 

 

 

Table 1: ON and OFF kinetics of several opsins under 2P illumination protocols. 

A more precise modeling of the photocurrent traces and opsin kinetics requires describing the 

opsin photocycle. As the first and most widely used opsins, ChR2 was also the first whose 

kinetics were modeled. ChR2’s photocycle has been studied extensively which led to a 

description in terms of Markov models (three- or four-state models, and recently six-state) as 

first suggested in REF (Hegemann et al., 2005; Nikolic et al., 2006). Figure 28 shows a 

representation of two of these models. The three-state model (open, close, desensitized) was 

shown to be insufficient (Bamann et al., 2008; Hegemann et al., 2005; Nikolic et al., 2009; 

Stehfest and Hegemann, 2010; Williams et al., 2013) as although it enabled a relative good 

modeling of the ChR2 photocurrent traces, it failed in the description of the observed bi-



78 

 

exponential decay. This lead to the proposition of four-state (two open and two closed) 

models and also more complex models (six-state, especially designed to finely tune the 

description of the latency in AP generation) although they inevitably add complexity to the 

numerical implementation (Evans et al., 2016; Grossman et al., 2013). In this work we will 

limit ourselves to the study to three- and four-state models. 

 

 

Figure 28: A Markov model describes a randomly changing system, evolving from one state to another (in the case of opsins:  

opened, closed or desensistized). Transition from state to another is caracterized by a probability (per unit of time) 𝐺𝑖. Here 

we show two widely adopted models of ChR2 photocycle. Left panel. Three-state model with C the closed state, O the open or 

conductive state and D the desensitized state. Right panel. Four-state model, with two closed C1 and C2 and two open states 

O1 and O2. The transition rate constants are described later in the manuscript. Adapted from (Nikolic et al., 2009). 

 

Four- and six-state Markov models have been successfully adapted to various studies of 1P 

illumination strategies (somatic, dendritic, axonal or whole cell) of ChR2 (Grossman et al., 

2013). Further, they have been used in order to question the spiking output of cells from 

different cell types and tissues, such as cortical later V pyramidal cell (Grossman et al., 2013), 

in cardiac myocytes (human ventricular, atrial and myocytes) or Purkinje cells (Williams et 

al., 2013). This has led to the development of an open source computational tool PyRhO 

(Evans et al., 2016) which can be interfaced with other computational neurosciences software 

such as NEURON, or Brian2. 

In this chapter, we will use Markov models (a three-state model slightly different from the 

one shown in figure 28 and the four-state model) to describe the kinetics of three opsins (fast: 

Chronos, medium: CoChR and slow: ReaChR) We will determine the transitions probabilities 

by fitting these models to experimentally recorded current traces from short and long 

photostimulations.  Finally, we will include these kinectic parameters in a broader model of 

induced current during scanning photostimulation.  
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2) Experimental procedures 

Photocurrent traces for the modeling were collected using three different opsins (experiments 

performed by Emiliani lab members: Dimitrii Tanese, Emiliano Ronzitti, Marta Gajowa, 

Florence Bui, Valeria Zampini, Imane Bentifalla) 

Three opsins have been studied in this project.  

1. Chronos, an opsin found in Stigeoclonium helveticum algae that possesses some of the 

fastest kinetics (Klapoetke et al., 2014). Along with these characteristics, it holds 

remarkable recovery properties, and allowed to reach up to 100 Hz trains of APs 

(Ronzitti et al., 2017b) under 2P excitation.  

2. CoChR, that was found in Chloromonas oogama algae, is very close to ChR2 in term 

of kinetics and absorption spectrum, and allows to reach high photocurrents, up to 3.5 

nA in cultured neurons  (Klapoetke et al., 2014). Furthermore, recently a somatic 

version of this opsin has been designed that allowed to improve spatial resolution in 

the photactivation by confining the expression of the opsin on the cell soma and 

proximal dendrites. (Shemesh et al., 2017).  

3. ReaChR (Red-activable ChannelRhodopsin) is an opsin that has been designed for 

better membrane trafficking and expression level. 1-photon and 2-photon experiments 

confirmed its interesting properties, showing high photocurrents, generation of AP 

with low light intensities, and besides its lower kinetics, photogeneration of  APs train 

up to a rate of 30 Hz (Chaigneau et al., 2016; Lin et al., 2013). 

 

a) Patch-clamp recordings with 2P holographic 

photostimulations for three-state model 

 

Cell culture and transfection. To obtain the transition rates in our photocurrent model, we 

performed 2P excitation and electrophysiological recordings on opsin expressing CHO cells. 

CHO cells, with respect to other systems, such as neurons, present the advantage to be 

isolated and do not express any other channels than the optogenetic ones, and therefore they 
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are ideal to a fine investigation of photocurrent dynamic.  The thawed portions of the cell 

cultures were kept in an incubator at 37 °C and 5% CO2 in a D-MEM/F12 GlutaMAX 

medium (Life Technologies) with the addition of 1 mM glutamine, 1% streptomycin and 10% 

fetal bovine serum. Bi-weekly passages allowed to keep the culture in good health for 

multiple transfections, up to 24 passages. Cells were seeded on plastic coverslips 

(Thermanox, Thermo Scientific) in 24- well plate, 24 hours before transfection (50 000 – 100 

000 cells/well). Plated cells were then transfected with DNA using either Ex-Gen 500 

(Biomol GmbH) or Jet-PRIME (Polyplus transfection) reagent. Data was collected 24 – 72 

hours after transfection. Here are the plasmid sequences that were used: FCK-Chronos-GFP, 

FCK- CoChR-GFP and pAAV-CamKII-ReaChR-p2A-eYFP. 

The cover slip with cultured cells was transferred from the incubation medium to a recording 

chamber on the microscope stage. All recordings were performed with an extracellular 

solution composed of: 140 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 20 mM 

HEPES, 25 mM Glucose, pH adjusted to 7.5. Patch pipettes were pulled (Sutter Instruments) 

from borosilicate glass filaments (ID 0,86mm, OD 1,5mm) to obtain 3 – 7 MΩ resistance and 

filled with an intracellular solution containing: 20 mM BAPTA, 140 mM KCl, 2 mM MgCl2, 

2 mM Mg ATP, 0.4 mM Na GTP, 10 mM na-phosphocreatine and 10 mM HEPES, with pH 

adjusted to 7.3, osmolarity to 330 mOsm. 

Optical set-up and photostimulations. The imaging part of the system was built on the basis 

of an upright microscope (Olympus BX51WI) providing wide field fluorescence imaging 

with an Arc Lamp (OptoSource Illuminator, Cairn Research) coupled with a monochromator 

(Optoscan Monochromator, Cairn Research). The fluorescence was collected by a CCD 

camera (Orca Flash 4.0 Hamamatsu) driven by MicroManager open source software. The 

Photoactivation part was conducted with a 2P photostimulation source consisting in a 

conventional pulsed Ti:Sapphire laser (pulse width: 100fs, repetition rate: 80MHz, model: 

Mai-Tai, Spectra Physics) with a tunable emission wavelength (from 700 to 1030 nm, used at 

950 nm) and output power around 2W (at 900 nm). The patterned illumination was focused 

on the sample by a 40x objective (40x NA 0.8, LUM PLANFI/IR, Olympus) and the control 

of intensity and length of the photostimulation pulses was obtained by the use of a Pockel 

cell, allowing the generation of very short photostimulations pulses (< 1 ms).  

Whole-cell electrophysiology in vitro. Positive cells in the CHO culture preparations were 

identified with the help of a fluorescent lamp, and then patched under IR illumination. After 

establishing a stable whole – cell patch configuration in voltage clamp mode, the access 
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resistance and cell capacitance were measured and compensated. Cell parameters were 

monitored during the entire recording, and cells whose access resistance increased by more 

than 20% were excluded from analysis. Three different types of photostimulation were used 

for this study: 

•  long lasting (up to 4s) photostimulation with increasing intensity of laser pulse, 

•  pulse trains with increasing frequency (10-100 Hz), 

• long lasting stimulation repeated while changing the interval between stimulations (from 

short - 1 s interval up to few minutes to reach a state of full recovery of a channel). 

Several cells for each opsin have been patched and photostimulated – ReaChR (n=13), 

CoChR (n=22) and Chronos (n=20). Recordings were performed at room temperature (18–

22◦C) in the dark to avoid any direct stimulation of cells by ambient light. We screened our 

data set to identify the cells providing similar current amplitudes in response to the same laser 

power density stimulation between sets of photo-stimulations. Additionally, an interval of at 

least 1-2 minute between stimulation was kept allowing for opsin recovery. The average 

access resistance and membrane capacitance values were: 12, 43 ± 3,11 MΩ and 16,91 ± 5 

pF. Here are exemplary traces of long photostimulation protocols for the 3 opsins: 

 

 

Figure 29: Sample traces of electrophysiological recordings for the three opsins Chronos, CoChR and ReachR expressed in 

CHO cells. Pulse duration is indicated with red bars and gradation of colors is used to distinguish traces with various 

illumination powers.  

 

b) Patch-clamp recordings with 2P Gaussian photostimulations 

for four-state model and scanning experiments 
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Cell culture and transfection. Chinese Hamster Ovary’s cells (CHO) were cultured in an 

incubator at 37°C and 5% CO2 in a D-MEM/F12 GlutaMAX medium (Life Technologies) 

with the addition of 1mM glutamine as the essential nutrient for cell cultures, 1% penicillin 

streptomycin, an antibiotic to maintain sterile conditions during cell culture and 10% fetal 

bovine serum to maintain cultured cells in an environment compatible for their growth and 

life. Cells were passaged in a new 25T flask every 2 days to avoid overcoming 90% of cell 

confluence inducing cell layers preventing an efficient patch-clamp. During the cultured cell 

passage, we used Phosphate-Buffered-Saline to wash the cells before adding nutrients and 

trypsine 1X, an enzyme to detach the cells from the flask. Cells were seeded on Thermanox 

plastic coverslips of 13mm of diameter (Thermo Fisher Scientific) and place on a 24-well 

plate (Thermo Fisher Scientific) 24 hour prior to transfection. For an optimized transfection, 

cell confluency should be about 60% so according to the Polyplus jetPRIME protocol, we 

counted the cells with a Malassez chamber to seed 50 000 cells. Cells were transfected with 

home-made plasmids: pAAV-CamKII-ReaChR-p2A-eYFP (provided by Allen Institute, 

USA), FCK-Gene86-GFP (provided by Ed Boyden’s laboratory, USA). The DNA was 

transfected using a JetPrime transfection reagent kit (Polypus) with 50μL of buffer per well 

and with a ratio of 1:2, i.e. 0.75 μg DNA: 1.5μL transfectant and for ReaChR and CoChR, and 

0.5 μg DNA: 1 μL transfectant for Chronos. Cells were patched, photostimulated and 

recorded 24-48 hours after transfection at the room temperature 18-22°C. The opsin 

expression was checked with the same optical set up containing a fluorescence system with a 

fluorescent lamp X-Cite series 120Q (Lumen dynamics) and a filter adapted for GFP 

detection. 

Optical set-up and photostimulations. The optical system used was built around a 

commercial Zeiss Examiner microscope (Figure 30). It was provided with two different 

imaging systems. A differential interference contrast (DIC) imaging based on infrared 

transmitted light and a CCD camera detection, was used to visualize cells and pipette for the 

patch clamp recording. An epifluorescence imaging, based on a fluorescent lamp illumination 

and camera detection, allowed to identify opsin expressing cells. The laser source used 

consisted of pulsed fiber laser at fixed wavelength of 1030 nm (Goji, Amplitude Systems, rep. 

rate 10MHz, pulse width 140 fs, max output power 5 W).  The beam was split in two different 

paths allowing either patterned holographic illumination or scanning stimulation. For the 

measurements of opsin kinetics, in order to avoid the « speckled » non-uniform illumination 

typical of holography, the optical path was modified to obtain a gaussian «cropped» 
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illumination, practically resulting in a homogeneous top-hat spot of diameter between 16-25 

microns. The spiral-scanning stimulation was achieved by the use of galvanometric mirrors, 

allowing to quickly move a point-like laser spot over the sample, following any arbitrary 

trajectory. The commercial 3i-Slidebook software was used to define the parameters of the 

spiral trajectories for scanning stimulation. More details for the scanning protocol will be 

given below. For each day of experiment, the laser was aligned, and its power checked, in 

order to control finely both spatial pattern and light power density used in the 

photostimulation. 

 

 

Figure 30: Scheme of the Optical set-up of a two-photon microscope capable of both scanning and holographic illumination. 

Courtesy of Florence Bui. 

 

Whole-cell electrophysiology in vitro. Once the CHO cells expressing the opsin targeted 

were selected, currents evoked by photo-stimulation were measured by patch-clamp in whole-

cell voltage-clamp configuration. Patch pipettes were pulled on the day of each experiment 

from borosilicate glass capillaries (outer diam. 1.5 mm, inner diam. 0.86 mm Harvard 

apparatus). Patch pipettes were filled with an intracellular solution with (in mM): 140 KCl, 2 

MgCl2, 2 ATP-Mg, 0.4 GTP-Na, 10 HEPES and 20 BAPTA. Patch pipette had a resistance 

that ranged from 4.5 to 5.5 MΩ. Current signals were recorded using a MultiClamp 700B 

amplifier (Molecular Devices) and data were digitized with Digidata 1440A (Molecular 

Devices). To perform data acquisition pCLAMP 10 software was used (Axon Instruments), 

Cultured cells were transferred for recording in a chamber and perfused with external medium 
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(300 mOsm, pH 7.3, 22-24°C ; solution oxygenated with CO2-O2 5-95%) with the following 

composition (in Mm): 140 NaCl, 5 KCl, 10 HEPES, 10 Glucose, 0.3 Na2HPO4, 0.4 

KH2PO4, 4 NaHCO3, 0.5 L-ascorbic acid, 2 CaCl2 and 1 MgCl2. Recordings were 

performed at room temperature (18–22◦C) in the dark to avoid any direct stimulation of cells 

by ambient light. Opsin-expressing CHO cells were voltage-clamped at −40 mV. 

For the measurements of the kinetics parameters, the transfected CHO cells were stimulated 

with a top hat circular illumination spot (see above). The cell chosen based on their 

morphological expression level was placed in the spot illumination area which covered the 

entire cell surface. For the kinetic characterization of the two opsins, we adjusted the length of 

the photo-activation pulse in order to reach for all opsins the steady-state value for the 

photoevoked current. CoChR- and ReaChR-expressing CHO cells were photo-stimulated 

during 1 to 4 seconds. Power was varied over typically a dozen of different light power 

densities going from 0.05 to 0.68 mW/μm², which was the maximum power achievable. Each 

trial was repeated twice after one to two minutes in order to enable full recovery after 

desensitization.  

 

 

3) Photoinduced current kinetics model 

a) Stochastic system model of the opsin 

In a conductance-based model of the initiation of action potential (such as the Hodgkin-

Huxley model) the current across the membrane is expressed as the sum of the current 

through the lipid bilayer: 

 

𝐼𝑐 = 𝐶𝑚

𝑑𝑉𝑚

𝑑𝑡
 Eq. 8 

 

and the current through ion channels: 

 

𝐼𝑖 = 𝑔𝑖(𝑉𝑚 − 𝑉𝑖) Eq. 9 
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where 𝑔𝑖 is the conductance of the i-th ion channel, 𝑉𝑖 its reversal potential, 𝐶𝑚 and 𝑉𝑚 are the 

membrane conductance and potential. 

The simplest model of an opsin as a light-gated channel would be to consider that its 

conductivity is either 0 (when in a nonconducting, closed or desensitized, state) or 𝑔𝑜 (when 

in the conducting, or opened, state). The membrane conductance due to opsins will be: 

 

𝑔 = 𝑔𝑜𝑁𝑜 = 𝑔𝑜𝑁𝑜𝑂 Eq. 10 

 

where 𝑁𝑜 is the number of opsins in the opened state which can expressed as the total number 

𝑁 of opsins in the membrane multiplied by the fraction 𝑂 (0 ≤ 𝑂 ≤ 1) of them which are in 

the open state.  This fraction depends on various biophysical parameters such as temperature, 

pH, etc. and more importantly for us it is a function of absorbed photons.  

The opsin is modeled as a randomly changing system, evolving from one state to another 

(opened, closed or desensistized), with the future state depending only on the currently 

occupied state and not on the events that occurred before (in other words, the system obeying 

the Markov property). Transistion from state i to to state j is caracterized by a probability (per 

unit of time) 𝐺𝑖𝑗 which can be function of the absorbed photon flux φ (this is the case for 𝐺𝐶𝑂 

in figure below).  

 

Figure 31: Representation of a three-state model (Open, Close and Desensitized) with its transition parameters. Green 

transition GCO is the only light sensitive one. The Open state is conductive, and the Desensitized state holds the opsin in a 

non activable form, before it goes back into the Close state and can be photoactivated again.  

Writing the probability of the opsin being in the opened, closed or desensitized state as O, C, 

D and considering a continuous time system, this model leads to three (one per state) first 

order rate equations, which are for the system represented in the figure above: 
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𝑑𝑂

𝑑𝑡
=  𝐺𝐶𝑂(𝜑)𝐶 − 𝐺𝑂𝐶𝑂 − 𝐺𝑂𝐷𝑂 Eq. 11 

 

𝑑𝐶

𝑑𝑡
= 𝐺𝑂𝐶𝑂 + 𝐺𝐷𝐶𝐷 − 𝐺𝐶𝑂(𝜑)𝐶 Eq. 12 

 

𝑑𝐷

𝑑𝑡
= 𝐺𝑂𝐷𝑂 − 𝐺𝐷𝐶𝐷 Eq. 13 

 

and a continuity equation: 

 

𝐶 + 𝑂 + 𝐷 = 1 Eq. 14 

 

The photon dependent transition can be written as: 

 

𝐺𝐶𝑂(𝜑) = 𝑘𝐶𝑂 𝜑𝑝 Eq. 15 

 

where p = 1 or 2 for respectively linear or 2P absorption. 
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b) Four-state model 

In the four-state model the system (opsin) evolves through four different states, two of them 

being conducting (O1 and O2) with different conductivity and the other two (C1, C2) being 

non-conducting. 

 

Figure 32: Representation of a four-state model with its transition parameters. The green transitions GCO and GOO are the 

only light sensitive ones. The Open states are conductive, with different conductivity. The GCO transitions, with red arrows, 

are the only transitions that can occur only if there is light (as opposed to GOO transitions) 

Four of the transitions are light dependent transitions (green arrows in Figure 32): from each 

closed to the corresponding opened state as well as between both opened states. The rate 

equations are: 

 

𝑑𝑂1

𝑑𝑡
= 𝐺𝐶1𝑂1

(𝜑)𝐶1 + 𝐺𝑂2𝑂1
(𝜑)𝑂2 − 𝐺𝑂1𝐶1

𝑂1 − 𝐺𝑂1𝑂2
(𝜑)𝑂1 Eq. 16 

 

𝑑𝑂2

𝑑𝑡
= 𝐺𝐶2𝑂2

(𝜑)𝐶2 + 𝐺𝑂1𝑂2
(𝜑)𝑂1 − 𝐺𝑂2𝐶2

𝑂2 − 𝐺𝑂2𝑂1
(𝜑)𝑂2 Eq. 17 

 

𝑑𝐶1

𝑑𝑡
= 𝐺𝑂1𝐶1

𝑂1 + 𝐺𝐶2𝐶1
𝐶2 − 𝐺𝐶1𝑂1

(𝜑)𝐶1 Eq. 18 

 

𝑑𝐶2

𝑑𝑡
= 𝐺𝑂2𝐶2

𝑂2 − 𝐺𝐶2𝐶1
𝐶2 − 𝐺𝐶2𝑂2

(𝜑)𝐶2 Eq. 19 

 

and the continuity equation: 

𝑂1 + 𝑂2 + 𝐶1 + 𝐶2 = 1 Eq. 20 
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An important difference with the previously described three-state model is that the total 

conductivity is now expressed as the sum of the conductivity for opsins in state O1 having a 

conductivity gO1 and those in state O2, having conductivity gO2: 

 

𝑔 = 𝑁(𝑂1𝑔𝑂1 + 𝑂2𝑔𝑂2) Eq. 21 

 

or, introducing the ratio of the two conductivities: 

 

𝛾 =
𝑔𝑂2

𝑔𝑂1
    → 𝑔 = 𝑁𝑔𝑂1(𝑂1 + 𝛾𝑂2) Eq. 22 

 

Another important difference with the previous model is that the light dependent transitions 

are considered to be saturable, reaching a maximum value when the incident light flux 

(photon flux) exceeds a certain value: 𝜑 > 𝜑𝑚. The corresponding transition parameters are 

written as: 

 

𝐺𝐶1𝑂1
(𝜑) = 𝑘𝐶1𝑂1

𝜑𝑝

𝜑𝑝 + 𝜑𝑚
𝑝  Eq. 23 

 

𝐺𝐶2𝑂2
(𝜑) = 𝑘𝐶2𝑂2

𝜑𝑝

𝜑𝑝 + 𝜑𝑚
𝑝  Eq. 24 

 

𝐺𝑂1𝑂2
(𝜑) = 𝑘𝑂1𝑂2

𝜑𝑞

𝜑𝑞 + 𝜑𝑚
𝑞 + 𝐺𝑂1𝑂2

0  Eq. 25 

 

𝐺𝑂2𝑂1
(𝜑) = 𝑘𝑂2𝑂1

𝜑𝑝

𝜑𝑞 + 𝜑𝑚
𝑞 + 𝐺𝑂2𝑂1

0  Eq. 26 

 

Equations 9 and 10 indicate that the induced current is directly proportional to O or 𝑂1 + 𝛾𝑂2, 

the fraction of opsins in either the single open state, or the sum of the opsins in both open 

states. Numerically solving the coupled differential equations 16-19 for different values of the 

photon flux φ (different values of Gco) we find that the temporal evolution of 𝑂1 + 𝛾𝑂2 

reproduces that of measured current traces, Figure 33:    
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Figure 33: Left panels. Typical electrophysiological recordings of CHO cells expressing CoChR during a 2.5 s 

photostimulation in the conditions detailed in Experimental procedures b), either with a 0.02 mW/µm2 illumination source 

(top), or 0.4 mW/µm2(bottom). Different power densities to some extent imply different temporal evolutions of the current, for 

instance reaching or not a clear steady-state. Right panels. Sum of the fraction of opsins in the two open states (𝑂1 + 𝛾𝑂2) of 

the four-state model calculated with the coupled differential equations 16-19, for each power density. 

c) Extraction of the fitting parameters  

The coupled differential rate equations (Eq.11-13 for three-state and Eq.16-19 for four-state 

models) are not solvable in an analytical form (except for cases which are detailed in 

Appendix) but are easily solved numerically using classic Runge-Kutta type algorithms 

(Butcher and Wanner, 1996). To find the corresponding fitting parameters we have used two 

optimization algorithms: Levenberg-Marquardt (arguably the most widely used 

minimization/curve fitting algorithm) and Powell. Levenberg-Marquardt is robust but, like 

many other algorithms, only finds a local minimum which can be far from the true minimum. 

Since it is a gradient based method its efficiency is hindered for not well-behaved (non-

smooth) functions. Powell’s method on the other hand does not make any requirement on the 
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derivability of the function (and no derivation is performed by the algorithm). Through trial 

and error, we found Powell’s method more efficient for extracting the parameters of our three- 

and four-state models. Both algorithms are readily available in mathematical software 

packages such as MATLAB or Numerical python (NumPy / SciPy).  

4) Three-state model results 

In order to obtain the transition probabilities for the three-state model, we recorded the 

induced current from either long photostimulations (one to a few seconds) or trains of 

photostimulations (pulse duration 2 to 5 ms and repetition rate ranging from 20 to 100 Hz) as 

summarized in Table 2. Figures 34-35-36 show a few examples of fitted curves obtained 

using the three-state model. 

 

 

Table 2: Illumination protocols of data used for the transition parameters obtention. Only a selection of data available was 

used for the model, as detailed in the Experimental procedures chapter. 

 

 

 

Figure 34: Experimental data (black) and model computation (red) for the opsin Chronos at various illumination powers, 

pulse durations and stimulation repetitions rates. 
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Figure 35: Experimental data (black) and model computation (red) for the opsin CoChR at various illumination powers, 

pulse durations and stimulation repetitions rates.  

 

Figure 36: Experimental data (black) and model computation (red) for the opsin ReaChR at various illumination powers, 

pulse durations and stimulation repetitions rates.  

 

The three-state failed to converge to a single set of parameters for all the experimental curves. 

In fact, finding a good agreement required using two distinct set of parameters, one to fit the 

traces corresponding to short illumination times (before reaching steady-state) and a second 

set to fit those obtained with long photostimulation times (Table 3).  
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Table 3: Table showing the transition parameters obtained for the 3 opsins based on the three-state model. The “Short” 

column gives the parameters that are better suited for millisecond illuminations, the “Long” column for seconds-long 

illuminations. They were obtained from the various fits observable on Figure 34, 35 and 36. 𝐺𝐶0 = 𝑘𝐶𝑂 × 𝐼2 here with I 

being the power density close to saturation (Chronos: 0.86 mW/µm2; CoChR: 0.54 mW/µm2; ReaChR: 0.28 mW/µm2). 

As detailed in the appendix, from the fitting parameters it is possible to extract from the 

model parameters the values for τON and τOFF for the three opsins. In Table 4 we report the 

values obtained for the two sets of parameters and compare them with those obtained using a 

mono exponential fit in previous publications (Chaigneau et al., 2016; Papagiakoumou et al., 

2018; Ronzitti et al., 2017b; Shemesh et al., 2017). From this comparison, we can see that the 

agreement with previously published values is better when fitting long stimulation curves. 

However, the discrepancy between the sets of parameters has led to consider a four-state 

model. 

 

 

Table 4: Comparison of 𝜏𝑂𝑁 and 𝜏𝑂𝐹𝐹 values either calculated from the model (see Appendix) or taken from the literature, 

for the three opsins Chronos, CoChR and ReaChR. More details can be found in Table 1 regarding the methodology of 

calculation. 



93 

 

5) Four-state model results 

Following the same procedure as before, we extracted the model parameter from the data set 

described in Table 5 and exemplary fits are shown in Figures 37-38. 

 

 

Table 5: Illumination protocols of data used for the transition parameters obtention. Only a selection of data available was 

used for the model, as detailed in the Experimental procedures chapter. 

From these fits we could extract the parameters listed in Table 6 for both CoChR and 

ReaChR.  
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Figure 37: Experimental data (black) and model computation (red) for the opsin CoChR at various illumination powers 

densities with the four-state model. Saturation is reached with power densities equal or above 0.3 mW/µm2. 

 

Figure 38: Experimental data (black) and model computation (red) for the opsin ReaChR at various illumination powers 

densities with the four-state model. 
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Table 6: Table showing the transition parameters obtained for the 2 opsins based on the four-state model. They were 

obtained from the various fit observable on Figures 37-38. In the fitting process, p and q were free to be adjusted between 

1.8 and 2.2. 

 

A first and striking conclusion that can be drawn from these results is that in the case of 

ReaChR, the fitted parameter 𝛾 tells us that the conductance from the second open state, 𝑔𝑂2, 

is negligible compared to that of the first, 𝑔𝑂1, i.e.  𝛾 =
𝑔𝑂2

𝑔𝑂1
= 1,3 10−8. This could indicate 
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that a three-state model would be sufficient for ReaChR. However, using the 4-state model 

still gives more flexibility in the fitting procedure and enable finding an improved agreement 

with the experimental data. 

 

As stated above, one of the advantages of a four-state model is the possibility to account for 

bi-exponential decay: 

 

𝐼 ∝ 𝐴1e− 𝑡/𝜏1 + 𝐴2𝑒−  𝑡//𝜏2 Eq. 27 

 

As detailed in the appendix, the two characteristic times 𝜏1 and 𝜏2 can be calculated from the 

fitting parameters. The results shown in Table 7 reveal an excellent agreement with those 

obtained with a simple bi exponential fit of the decay of the current after the end of the 

photostimulation (keeping in mind that for ReaChR, as we found that the conductivity of the 

second open channel is negligible compared to that of the first, the characteristic time 𝜏2 

associated with it is irrelevant).   

 

 

Table 7: Comparison of the two time constants 𝜏1 and 𝜏2  for the two opsins CoChR and ReaChR, either obtained from bi 

exponential decay fits of data displayed in Figures 37-38 or calculations. 

Further, we used the parameters of Table 6 to simulate the photocurrent traces under different 

experimental conditions (pulse durations and power densities, see Table 8) and compare the 

results with the experimental curves, few exemplary fits are shown in Figure 39. 

 

 

Table 8: Illumination protocols of ReaChR data used for four-state model testing.  
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Figure 39: Experimental traces (black) and four-state model prediction (red) for CHO cells expressing ReaChR 

photostimulated during 2 to 50 ms, with power densities ranging from 0.05 to 0.2 mW/µm2. Results from several cells are 

displayed in colored boxes. The same transition parameters were used to solve the coupled differential equations for each 

cell, and each pulse duration/power density couple. Red bars illustrate pulse duration. 
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In conclusion, we have shown that both the three-state and four-state models can account for 

the kinetics of induced photocurrent with good accuracy with the four-state model offering 

more flexibility to fit experimental data (due to more transitions and their saturable 

dependence on photon flux) at the expense of a slightly more complex equations system, 

which however remains easily solvable numerically. Further work should be carried on to 

evaluate more precisely the advantages and inconveniences of both models, and also the 

confidence intervals of the extracted parameters.  

 

6) Simulation of the photoinduced current 

for different illumination strategies  

a) Description of the program 

As a next step, we used the parameters extracted with the four-state model as described in the 

previous paragraph to predict the temporal evolution of the photocurrent under parallel and 

scanning illumination. The case of parallel illumination is rather simple: in Eq 10 the number 

of opsins in open state 𝑂 and the induced current 𝐼 are now expressed per unit of surface and 

the total induced current is then the integral (sum) over the illuminated surface of the cell. In 

the simplest case of uniform illumination and uniform distribution of opsins on the membrane 

surface the integration is reduced to a multiplication by the cell surface and the shape of the 

photocurrent current (as seen in Figure 39) and remains unchanged. 

In the case of scanning illumination, we consider the motion (either raster or spiral scanning) 

of the focused beam as a “step like” motion similarly to what we did for thermal modeling. 

For each time step of the motion, we calculate the locally induced photocurrent at the specific 

location of the focused beam. The total current is the sum of these time shifted locally 

induced photocurrents. In both cases, we considered the cell membrane as a flat disk. The two 

processes are shown schematically in Figure 40. 
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Figure 40: Schema representing the sequential steps within the MATLAB opsin model package. (1)We first define the 

necessary constants and the field of view in which we will find the cell area, assumed to be a disk for simplification. (2) We 
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declare the homogenous presence of opsins in each pixel of the 2D grid in which the cell is defined. (3) We declare what will 

be the light source and set the illumination pattern and characteristics. For the scanning approach, the laser power is first 

deposited in a single pixel, following time steps after time steps the pattern which has been defined before (raster or spiral 

scanning, how many revolutions, direction of movement, …). Then, a standard Gaussian filter is applied to approximate the 

light distribution of a diffraction limited spot. (4) Once we have a 3D map of photostimulation protocol (2D for XY and 1D 

for time), we solve the n-state equations with the transition parameters obtained beforehand. (5) We integrate the current 

that has been generated in each pixel of the simulation, which will give the predicted whole intracellular current. 

 

b) Preliminary tests of the scanning simulation with the four-

state model 

We used the model with two sets of spiral scanning data, summarized in Table 9 and shown in 

Figures 41-42: 

 

Table 9: Illumination protocols of scanning experimental data used for testing the illumination simulation. 

 

 

Figure 41: Experimental traces (black) and spiral scanning four-state model prediction (red) for CHO cells expressing 

ReachR photostimulated during 50 ms, with power ranging from 2.5 to 6.5 mW. The same transition parameters were used to 

solve the coupled differential equations for each protocol. Red bars illustrate pulse duration. 
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Figure 42: Experimental traces (black) and spiral scanning four-state model prediction (red) for CHO cells expressing 

ReachR photostimulated during 50 ms, with power ranging from 0.4 to 8.9 mW. The same transition parameters were used to 

solve the coupled differential equations for each protocol. Red bars illustrate pulse duration. 

The exact amount optical power reaching the cell after propagation through a scattering 

medium remains an approximation, and this could explain the overestimation observed for 

illumination power less than 2.5 mW. Furthermore, the fact that the membrane surface is not 

flat and therefore that the scanned beam does not remain focused as it is scanned can also 

account for discrepancies in the peak current. However, we can conclude the four-state 

models correctly predicts the shape of the photocurrent in the scanning illumination strategy. 
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V. 

Conclusions and Perspectives 

The work presented in this manuscript led to the development of two numerical approaches, 

which aimed at providing 2P optogenetics researchers with the tools to optimize their 

illumination protocols. Indeed, the ambition of increasing the amount of photostimulated cells 

in depth in the brain, while keeping a high spatial and temporal resolution, raises challenges 

which must be overcome. While each of our simulations can be used separately to provide 

valuable insights and recommendations for temperature control and photocurrent 

optimization, one may think to combine the two in order to define guidelines that would 

guarantee cell integrity and reliability of AP triggering. 

 

The first necessary step is to include the model of opsin kinetics (or membrane conductance 

kinetics) as a computational model of a spiking neuron (Hodgkin-Huxley, Integrate and Fire, 

etc.). This would allow to relate choice of opsin and various illumination strategies to spiking 

probability. From this point, one could use as an input in our simulations the requirements of 

his research object, such as a range of temperature increase compatible with the sample, and 

an objective in terms of spiking rate and timing. 

 

Further, our thermal model is already capable to account for different homogeneously 

considered cell types, by just adapting the absorption coefficient in the calculations. If more 

complex biological questions would require an inhomogeneous absorption of light in the 

sample (for instance, accounting for blood vessels through the brain), one can already use our 

approach with a 3D map of absorption. 

 

In the longer term, we could also easily adapt our models for other illumination strategies – 

3P approaches, for instance. Indeed, since scattering is weaker for 3P than for 2P 

wavelengths, the former could bring to optogenetics a deeper working distance within the 

brain. However, as wavelength shifts more in the infra-red, water absorption starts to rise 

again, Figure 11. This would suggest that our model would be of primary need for evaluating 

the thermal elevations of 3P optogenetic microscopes.  
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Appendix 

Time constants calculation with the three-state 

model  

 

Starting from the previously detailed equations: 

 

𝑑𝑂

𝑑𝑡
=  𝐺𝐶𝑂(𝜑)𝐶 − 𝐺𝑂𝐶𝑂 − 𝐺𝑂𝐷𝑂 Eq. 11 

 

𝑑𝐶

𝑑𝑡
= 𝐺𝑂𝐶𝑂 + 𝐺𝐷𝐶𝐷 − 𝐺𝐶𝑂(𝜑)𝐶 Eq. 12 

 

𝑑𝐷

𝑑𝑡
= 𝐺𝑂𝐷𝑂 − 𝐺𝐷𝐶𝐷 Eq. 13 

 

𝐶 + 𝑂 + 𝐷 = 1 Eq. 14 

 

if we declare that at the beginning of the photostimulation, and during the current rise toward 

the peak, D ≈ 0, we have: 

 

𝑑𝑂

𝑑𝑡
= 𝐺𝐶𝑂(𝜑)𝐶 − 𝐺𝑂𝐶𝑂 − 𝐺𝑂𝐷𝑂 

Eq. 28 

 

which implies that: 

𝐶 + 𝑂 ≈ 1 

𝑑𝑂

𝑑𝑡
= 𝐺𝐶𝑂(𝜑)𝐶 − (𝐺𝑂𝐶 + 𝐺𝑂𝐷) × 𝑂 

Eq. 29 

and then: 
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𝑑𝑂

𝑑𝑡
= 𝐺𝐶𝑂(𝜑)(1 − 𝑂) − (𝐺𝑂𝐶 + 𝐺𝑂𝐷) × 𝑂 

𝐺𝐶𝑂(𝜑) = 𝑂̇ + (𝐺𝑂𝐶 + 𝐺𝑂𝐷 + 𝐺𝐶𝑂(𝜑)) × 𝑂 

Eq. 30 

 

We know that the general solution of the homogeneous equation without right-hand side: 

 

𝑑𝑂

𝑑𝑡
= −(𝐺𝑂𝐶 + 𝐺𝑂𝐷 + 𝐺𝐶𝑂(𝜑)) × 𝑂 

Eq. 31 

is: 

𝑂(𝑡) = 𝐾𝑒−(𝐺𝑂𝐶+𝐺𝑂𝐷+𝐺𝐶𝑂(𝜑))×𝑡 Eq. 32 

 

with the trivial solution being a constant 𝐾0 as: 

 

𝑂 + (𝐺𝑂𝐶 + 𝐺𝑂𝐷 + 𝐺𝐶𝑂(𝜑)) × 𝐾0 = 𝐺𝐶𝑂(𝜑) 

𝐾0 =
𝐺𝐶𝑂(𝜑)

𝐺𝑂𝐶 + 𝐺𝑂𝐷 + 𝐺𝐶𝑂(𝜑)
 

Eq. 33 

giving: 

 

𝑂(𝑡) =
𝐺𝐶𝑂(𝜑)

𝐺𝑂𝐶 + 𝐺𝑂𝐷 + 𝐺𝐶𝑂(𝜑)
+ 𝐾𝑒−(𝐺𝑂𝐶+𝐺𝑂𝐷+𝐺𝐶𝑂(𝜑))×𝑡 

Eq. 34 

 

As we said, at t = 0, 𝑂 = 0. Therefore: 

 

𝑂 =
𝐺𝐶𝑂(𝜑)

𝐺𝑂𝐶 + 𝐺𝑂𝐷 + 𝐺𝐶𝑂(𝜑)
+ 𝐾         ;        𝐾 = −

𝐺𝐶𝑂(𝜑)

𝐺𝑂𝐶 + 𝐺𝑂𝐷 + 𝐺𝐶𝑂(𝜑)
 

Eq. 35 

 

leading to: 

 

𝑂(𝑡) =
𝐺𝐶𝑂(𝜑)

𝐺𝑂𝐶 + 𝐺𝑂𝐷 + 𝐺𝐶𝑂(𝜑)
× (1 − 𝑒−(𝐺𝑂𝐶+𝐺𝑂𝐷+𝐺𝐶𝑂(𝜑))×𝑡) 

Eq. 36 
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which is to say: 

1

𝜏𝑂𝑁
= 𝐺𝑂𝐶 + 𝐺𝑂𝐷 + 𝐺𝐶𝑂(𝜑) 

Eq. 37 

 

To calculate 𝜏𝑂𝐹𝐹, we need to start at the initial state equations describing 
𝑑𝑂

𝑑𝑡
: 

 

𝑑𝑂

𝑑𝑡
= 𝐺𝐶𝑂(𝜑)𝐶 − 𝐺𝑂𝐶𝑂 − 𝐺𝑂𝐷𝑂 

Eq. 38 

 

Therefore, when light is off: 

 

𝑑𝑂

𝑑𝑡
= −(𝐺𝑂𝐶 + 𝐺𝑂𝐷) × 𝑂 

Eq. 39 

  

which leads that the fraction of opsins in the Open state can be approximated as: 

 

𝑂 = 𝑘 × 𝑒−(𝐺𝑂𝐶+𝐺𝑂𝐷)×𝑡 Eq. 40 

  

with k a constant. From there, we can conclude that the theoretical 𝜏𝑂𝐹𝐹 is equal to: 

 

𝜏𝑂𝐹𝐹 =
1

𝐺𝑂𝐶 + 𝐺𝑂𝐷
 

Eq. 41 

  

Double exponential time constant calculation 

with the four-state model 

Starting from the previously detailed equations: 
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𝑑𝑂1

𝑑𝑡
= 𝐺𝐶1𝑂1

(𝜑)𝐶1 + 𝐺𝑂2𝑂1
(𝜑)𝑂2 − 𝐺𝑂1𝐶1

𝑂1 − 𝐺𝑂1𝑂2
(𝜑)𝑂1 Eq. 16 

 

𝑑𝑂2

𝑑𝑡
= 𝐺𝐶2𝑂2

(𝜑)𝐶2 + 𝐺𝑂1𝑂2
(𝜑)𝑂1 − 𝐺𝑂2𝐶2

𝑂2 − 𝐺𝑂2𝑂1
(𝜑)𝑂2 Eq. 17 

 

𝑑𝐶1

𝑑𝑡
= 𝐺𝑂1𝐶1

𝑂1 + 𝐺𝐶2𝐶1
𝐶2 − 𝐺𝐶1𝑂1

(𝜑)𝐶1 Eq. 18 

 

𝑑𝐶2

𝑑𝑡
= 𝐺𝑂2𝐶2

𝑂2 − 𝐺𝐶2𝐶1
𝐶2 − 𝐺𝐶2𝑂2

(𝜑)𝐶2 Eq. 19 

 

𝑂1 + 𝑂2 + 𝐶1 + 𝐶2 = 1 Eq. 20 

 

turning light off implies that 𝐺𝐶1𝑂1 and 𝐺𝐶2𝑂2 = 0. From there, we deduct the two double 

mono exponential equations: 

 

𝑂1 = 𝐴 × 𝐺𝑂2𝑂1

0 𝑒
(−

𝛼+𝜃
2

𝑡)
+ 𝐶 × 𝐺𝑂2𝑂1

0 𝑒
(−

𝛼−𝜃
2

𝑡)
 

𝑂2 = 𝐴 × (
𝛽 − 𝜃

2
) 𝑒

(−
𝛼+𝜃

2
𝑡)

+ 𝐶 × (
𝛽 + 𝜃

2
) 𝑒

(−
𝛼−𝜃

2
𝑡)

 

Eq. 42 

 

with A and C scaling for each value of steady-state current and  

 

𝛼 = (𝐺𝑂1𝐶1
+ 𝐺𝑂1𝑂2

0 ) + (𝐺𝑂2𝐶2
+ 𝐺𝑂2𝑂1

0 ) 

𝛽 = (𝐺𝑂1𝐶1
+ 𝐺𝑂1𝑂2

0 ) − (𝐺𝑂2𝐶2
+ 𝐺𝑂2𝑂1

0 ) 
Eq. 43 

 

𝜃 = √𝛽2 + 4 × 𝐺𝑂2𝑂1

0 × 𝐺𝑂1𝑂2

0  Eq. 44 

 

Therefore, we can isolate 𝐵𝑚𝑜𝑑𝑒𝑙 and 𝐷𝑚𝑜𝑑𝑒𝑙 that will define the current decrease dynamic 

and compare them to the previous 𝐵𝑓𝑖𝑡 and 𝐷𝑓𝑖𝑡 : 

 

𝐵𝑚𝑜𝑑𝑒𝑙 =
𝛼 + 𝜃

2
 ;  𝐷𝑚𝑜𝑑𝑒𝑙 =

𝛼 − 𝜃

2
 

Eq. 45 
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Optogénétique 2P : Optimisation thermique et électrophysiologique par simulation et modélisation 

 

Résumé: Depuis maintenant quinze ans, l’optogénétique a bouleversé la recherche en neurosciences en 

permettant de contrôler les circuits neuronaux. Le développement récent de plusieurs approches 

d’illumination, combinées à de nouvelles protéines photosensibles, les opsines, ont permis d’ouvrir une voie 

vers le contrôle neuronale avec la précision de la cellule unique.  L’ambition nouvelle d’utiliser ces 

approches afin d’activer des dizaines, centaines, milliers de cellules in vivo a soulevé de nombreuses 

questions, notamment concernant les possibles dégâts photoinduits et l’optimisation du choix du couple 

illumination/opsine.  

Lors de mon doctorat, j’ai conçu une simulation vérifiée expérimentalement qui permet de calculer, dans 

toutes les conditions actuelles d’illumination, quel sera l’échauffement au sein du tissus cérébral dû à 

l’absorption de la lumière par le cerveau. Parallèlement, j’ai paramétré à partir de données expérimentales 

des modèles de dynamique des populations, à partir d’enregistrements d’électrophysiologie, qui permettent 

de simuler les courants intracellulaires observés lors de ces photostimulations, pour trois protéines 

différentes. Ces modèles permettront les chercheurs d’optimiser leurs protocoles d’illumination afin de 

garantir l’échauffement le plus faible possible dans l’échantillon, tout en favorisant des dynamiques de 

photocourant adaptées aux besoins expérimentaux. 

Mots-clefs : optogénétique ; microscopie bi-photonique ; holographie générée par ordinateur ; 

photostimulation ; propagation de lumière ; diffusion thermique ; diffusion lumineuse ; cristaux Erbium-

Ytterbium ; potentiel d’action ; intégration de courant ; électrophysiologie ; opsine. 

Laboratoire : Laboratoire de Neurophotonique, CNRS UMR 8250, 45 rue des Saints-Pères, 75006 Paris  

 

 

2P optogenetics: Simulation and modeling for optimized thermal dissipation and current integration 

 

Abstract: Over the past fifteen years, optogenetics has revolutionized neuroscience research by enabling 

control of neuronal circuits. The recent development of several illumination approaches, combined with new 

photosensitive proteins, opsins, have paved the way to neuronal control with the single-cell precision. The 

new ambition to use these approaches in order to activate tens, hundreds, thousands of cells in vivo has 

raised many questions, in particular concerning the possible photoinduced damages and the optimization of 

the choice of the illumination / opsin couple. 

During my PhD, I developed an experimentally verified simulation that calculates, under all actual 

illumination protocols, what will be the temperature rise in the brain tissue due to the absorption of light. In 

parallel, I modeled, from electrophysiology recordings, the intracellular currents observed during these 

photostimulations, for three different opsins, allowing me to simulate them. These models will allow the 

researchers to optimize their illumination protocols to keep heating as low as possible in the sample, while 

helping to generate optimized photocurrent dynamics according to experimental requirements. 

Keywords: optogenetics; two-photon microscopy; computer generated holography; photostimulation; light 

propagation; heat diffusion; scattering; Erbium-Ytterbium crystals; scanning; action potential; current 

integration; electrophysiology; opsin. 

Laboratory: Neurophotonics Laboratory, CNRS UMR 8250, 45 rue des Saints-Pères, 75006 Paris, France 


