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CHAPTER 1

Introduction

From 1G to 4G, the technology mainly focused on increasing the bandwidth ca-

pacity of phones, to carry voice, message and Internet data. 5G has new goals:

providing low latency, bandwidth, and increased support for diverse connected

devices.

Network operators indeed anticipate an ever-growing number of more di-

verse connected devices, be them vehicles on roads, tra�c lights in cities, robots

in factories, or healthcare devices in human bodies. However, the companies

producing those devices and operating them know little about network opera-

tors’ business. For instance, they are not expected to own nor manage mobile

network equipment.

Fortunately, the MVNO business model shows that this business knowledge

is not mandatory. The MVNOs already provide services similar to other network

operators, while owning no or a few equipment. They rent them instead, after

negotiating speci�c agreements on speci�c resources. 5G proposes to generalize

the MVNO business model so that the aforementioned companies can operate

their devices on top of network operators’ infrastructures, as if they had their

own.

In the end, they get a dedicated, customized, virtual, end-to-end network on

top of a shared infrastructure, which is called a “slice”. Companies renting slices

are called “tenants”. And the shared infrastructure does not only rely on network

operators, but more broadly on a subset of all possible Infrastructure Providers

(InPs).

Each InP will then have to support multi-tenancy with a huge variety of de-

vices (IoT, V2V, Industry 4.0) which will autonomously communicate, along with

human-oriented devices.
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Introduction

In this thesis, we focus on slice customization. It is crucial: as tenants know

little about network operators’ business, network operators know little about

tenants’ business. Tenants have their own requirements to make their services

operational, or regulation-compliant. For instance, robots need low latency, while

a remote radiography needs high bandwidth.

We are already used to de�ne such QoS-oriented requirements, and to pay

for it, in the cloud model. But 5G invites us to go beyond, by considering more

general requirements, like security requirements. For instance, to comply with a

certain regulation in a certain country, tenants may require that their slices must

rent resources in certain other countries, from certain InPs, with a certain level

of certi�cation.

There is an obstacle, though. As of today, MVNOs get their infrastructures

through manually con�gured resources. With 5G and thousands of tenants, such

con�guration will be unpractical. We then need to automate slice deployment.

In this thesis, we present how we solve this problem.

We borrow from the literature the concept of VNE, which refers to the allo-

cation of resources from the physical network to ful�ll requirements of a virtual

network request. However, Fischer et al. (2013) show that the VNE problem is

NP -hard. Besides, we identify two aspects of the slice embedding problem that

previous works in VNE only covered partially: the multi-InP aspect, and the se-

curity requirement aspect. The algorithm we propose in this thesis successfully

covers both.

Throughout this thesis, the term domain refers to the infrastructure owned

by a certain InP. A given InP may own di�erent domains, which are not directly

interconnected together. When we use the term multi-domain, we mean that

there are both multiple InPs and multiple domains operated by di�erent InPs.

This thesis is organized as follows. Chapter 2 presents the state of the art

works addressing the same problem, or a related problem, to the one of this

thesis. Chapter 3 presents our attribute model for enabling security-oriented

constraints. Chapter 4 presents the algorithm leveraging our model to solve the

problem. Chapter 5 presents how we implement and evaluate our algorithm.

Chapter 6 concludes this thesis and provides possible future tracks.
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CHAPTER 2

State of the Art

While applying for a job position at Nokia Bell Labs, one of my interviewers

recommended me to read the transcription of a talk given by Richard Hamming,

“You and Your Research”. In this talk, Richard Hamming gave many advice about

how to do signi�cant research, based on his experience, as well as the ones of

many other well-known scientists.

As I am writing this thesis, I recall one of his ground ideas, which is that

science is cumulative. It is true that I took many inspiration from the works

I will describe in this chapter. Like an investigator, although heavily assisted

by modern research tools, I could gather information about the core problem of

this thesis, which is the Virtual Network Embedding (VNE) problem. I call it

so, because it is its recent name; but it covers so many �elds that I could �nd

the same problem with other names, such as network testbed mapping problem,

or resource allocation problem. I will then, only to the best of my knowledge,

presents the origins of this problem in Section 2.1.

By the light of this core description, we will then explore di�erent variants

of the VNE problem in Section 2.2. It will not be exhaustive; the works presented

there have been selected because they each re�ne the VNE problem in their own

way, and we will classify them according to some key aspects. This will allow us

to introduce what we learned and how we di�er from these works.

One aspect is of particular interest for this thesis, the security aspect, which

is investigated on its own in Section 2.3. Although we use the singular, again,

the works focusing on security for the VNE problem each addresses the security

aspect in its own way.

Yet, VNE works do share some similarities in how they solve the VNE prob-

lem. This resolution method is analyzed in Section 2.4, where we position our

3
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distinct resolution method, and explain why it is relevant and more appropriate

to address the security aspect.

2.1 The VNE Problem

The VNE problem is a relatively old problem in computer science. To the best of

my knowledge, its oldest mention is by Ricci et al. (2003). It is then referred to

as the network testbed mapping problem. The VNE problem can also be found in

other papers as the resource allocation problem, like Haider et al. (2009), but the

description remains basically the same.

As the name suggests, the network testbed mapping problem has emerged dur-

ing the creation of a network experiments platform at the University of Utah. The

idea of such a platform is to simplify the realization of experiments by connecting

a large quantity of switches together, and then to select the switches and cables

that must be part of a given experiment. All possible topologies can be imagined

and tested without having to physically modify the wiring. This di�erentiates

the network used during an experiment (referred to as a virtual network), from

the physical network. Another interesting property of this platform is that several

virtual networks can, under certain conditions, be deployed in parallel.

To instantiate a virtual network, experimenters must send a virtual network
request, in which they describe their needs. This description is given as a graph,

where nodes are di�erentiated by their type. A (virtual) node whose type is

“switch” (resp. “workstation”) must be assigned to a (physical) node whose type

is “switch” (resp. “workstation”). The edges of the graph represent virtual ca-
bles, which allow the di�erent virtual nodes to communicate. For instance, the

virtual cable that connects two virtual nodes “a” and “b” physically corresponds

to a path in the physical network that connects the physical node corresponding

to “a” to the physical node corresponding to “b”. When requesting such a virtual

cable, the experimenter must provide a quantity representing the bandwidth of

the virtual cable. At the physical level, this same quantity represents the maxi-

mum bandwidth that the experimenter can consume. In practice, this also means

that it is as much bandwidth that can not be reserved for any other virtual cable.

It is precisely during the deployment of a set of virtual networks that the

network testbed mapping problem appears. On the one hand, for a given virtual

topology, several physical topologies can match, or none at all. On the other

hand, as already mentioned, each virtual network consumes bandwidth: the vir-

tual networks are thus competing to acquire it.

In the end, not all deployments are equal, and some may even be undesirable.

Typically, some deployments overload the physical network, and so a virtual net-

work may impact the behavior of another virtual network. Since the goal is to
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have independent experiences, such deployments are undesirable. The question

then is to �nd the deployments that are desirable. This question is not simple.

It turns out that the underlying problem is mathematically NP -hard (see De�ni-

tion 2.3), as Ricci et al. (2003) and Fischer et al. (2013) remind us.

Besides, the initial state for the network testbed mapping problem may not

be a case where no virtual network is deployed, and no physical resource is re-

seved. Instead, we may have a set of virtual networks already reserving physical

resources. Finding deployments for newcoming virtual network requests then

depends on the remaining, non-reserved resources. Consequently, the choice of

resources for past virtual network requests matters, adding more complexity to

the problem.

2.2 Extensions to the VNE Problem

Since then, the VNE problem has spread in many other �elds of computer sci-

ence. Today, it should be noted that although Ricci et al. (2003) uses the term “vir-

tual network”, it rather means “logical network”, since every deployment merely

changes the cabling in an abstract way between the di�erent physical worksta-

tions. This precision is necessary, because state of the art works have re�ned

the de�nition of virtual networks, by following the advances of virtualization

technologies. As an example, Ballani et al. (2011), Papagianni et al. (2013), and

Rabbani et al. (2013) de�ne a virtual network in the cloud computing �eld, where

virtual nodes are VMs instantiated in physical servers. In other words, several

virtual nodes can be instantiated within the same physical node, which requires

the introduction of another consumption data, namely the computing capacity.

Similar to the bandwidth, this capacity is consumed by each VM.

Consequently, it is now very common in the VNE to consider that a physical

node can host more than one virtual node (which can be a VM, but also a virtual

router).

This section is intended to be an overview and an introduction to the di�erent

variants of the VNE problem, applied to di�erent �elds. To do so, we decide to

present how di�erent works, shown in Table 2.1, adapt the VNE problem to their

needs. We also add one of our previous publications, as Boutigny et al. (2018), in

Table 2.1.

In Table 2.1, we distinguish the problem the authors focus on (either the gen-

eral VNE problem or a variant), its formulation (or resolution method), and the

objective of their work. We warn the reader that two rows share the same ref-

erence. It is the case of Mehraghdam et al. (2014) and Liu et al. (2014). This is

because in each of those papers, the authors propose three VNE problems, with

each a di�erent objective.

5
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Overall, in the �rst column of Table 2.1, the di�erent investigated problem

variants are:

— VNE. The general VNE problem.

— Dynamic VNE. A VNE handling requests dynamically. See Subsec-

tion 2.2.3.

— Service Function Chain Embedding (SFCE). One of the VNE prob-

lems in the Network Function Virtualization (NFV) �eld. See Subsec-

tion 2.2.5.

— Intra-Domain VNE. One of the VNE problems in multi-domain con-

text. See Subsection 2.2.2.

— Inter-Domain VNE. One of the VNE problems in multi-domain con-

text. See Subsection 2.2.2.

— Virtual Network Embedding Recon�guration (VNER). A VNE vari-

ant supporting virtual network migration. See Subsection 2.2.3.

— Survivable Virtual Network Embedding (SVNE). A VNE variant sup-

porting fault tolerance. See Subsection 2.2.3.

— Intra-Domain VNER. One of the VNE problems in multi-domain

context, handling virtual network migration. See Subsection 2.2.2

and Subsection 2.2.3.

— Inter-Domain VNER. One of the VNE problems in multi-domain

context, handling virtual network migration. See Subsection 2.2.2

and Subsection 2.2.3.

— Virtual Data Center Embedding (VDCE). One of the VNE problems

in the cloud �eld. See Subsection 2.2.2.

— Dynamic VDCE. One of the VNE problems in the cloud �eld,

handling requests dynamically. See Subsection 2.2.2 and Subsec-

tion 2.2.3.

The second column of Table 2.1 is about the problem formulation. We identify

two formulations. When a paper proposes both formulations, it is indicated as

“ILP, heuristic”.

— Integer Linear Programming (ILP). An exact resolution method. See Sec-

tion 2.4.

— Heuristic. A resolution method relying on empirical evidence or apriori knowl-

edge of the problem. The actual resolution algorithm depends on the au-

thors.

Table 2.1 is a global presentation of all the works reviewed for the state-of-

the-art in the VNE �eld. In the remainder of this section, we analyze those works

using the following dimensions.

— Optimization Objective. In Subsection 2.2.1, we show that the optimization

objective for the VNE problem is not unique, and that di�erent concrete use

cases lead to di�erent optimization objectives, which can be con�ictual.
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2.2. Extensions to the VNE Problem

— Substrate Model. Subsection 2.2.2, we show that the VNE problem changes

drastically when considering that the substrate (which is the dedicated

term to refer to the infrastructure in the VNE �eld, see Fischer et al. (2013))

is divided into multiple domains.

— Request Model. In Subsection 2.2.3, we present how multiple requests can

be handled, and di�erent request models.

— Software-De�ned Network (SDN) and NFV Impact. In Subsection 2.2.4 and

Subsection 2.2.5, we show how two new emerging paradigms of network

virtualization, namely SDN and NFV, may rede�ne the VNE problem.

Table 2.1: Classification of VNE Research Papers

Reference Problem Formulation Objective

Rost and Schmid (2018) VNE ILP Max acceptance

Boutigny et al. (2018) Intra-domain VNE Heuristic Enumeration

Inter-domain VNE Heuristic Enumeration

Li et al. (2017) VNE Heuristic Min VN cost

Alaluna et al. (2017) VNE ILP Min VN cost

Mano et al. (2016) Inter-domain VNE Heuristic Min VN cost

Fischer et al. (2016) VNE Heuristic Min VN cost

Bays et al. (2016) VNE ILP Min �ow rules

Wang et al. (2015) VNE ILP Min VN cost

Nonde et al. (2015) VNE ILP, heuristic Min power consumption

Dietrich et al. (2015) Inter-domain VNE ILP, heuristic Min VN cost

Bellavista et al. (2015) VNE ILP, heuristic Min infrastructure load

Zhang et al. (2014) Dyn. VDCE ILP, heuristic

Min power consumption

and migration cost

Mehraghdam et al. (2014) SFCE ILP, heuristic Max residual bandwidth

SFCE ILP, heuristic Min # of hosts in use

SFCE ILP, heuristic Min latency

Liu et al. (2014) VNE ILP Max acceptance ratio

VNE ILP Max long-term revenue

VNE ILP Max long-term revenue to cost ratio

Chau and Wang (2014) VNE ILP Min VN cost

Bays et al. (2014) VNE ILP, heuristic Min VN cost

Riggio et al. (2013) VNE Heuristic Min virtual edge stress
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Reference Problem Formulation Objective

Rahman and Boutaba (2013) SVNE ILP, heuristic Min overconsumption

Rabbani et al. (2013) VDCE Heuristic Max # of accepted requests

Papagianni et al. (2013) VNE ILP Min VN cost

Di et al. (2013) Inter-domain VNE ILP, heuristic Min VN cost

Houidi et al. (2011) Intra-domain VNE ILP, heuristic Min VN cost

Inter-domain VNE ILP, heuristic Min VN cost

Fajjari et al. (2011) Dyn. VNE Heuristic Min congestion and recon�guration

Ballani et al. (2011) VDCE Heuristic Unknown

Arora et al. (2011) Intra-domain VNER Heuristic Min migration cost

Inter-domain VNER Heuristic Min migration cost

Chowdhury et al. (2010) Inter-domain VNE Heuristic Unknown

Bienkowski et al. (2010) VNER Heuristic Min migration cost

Yu et al. (2008) VNE Heuristic Max long-term revenue

2.2.1 Rethinking the Objective Function

In the network testbed mapping problem, the objective is to maximize the chances

of accepting future virtual network requests. We can understand this objective,

as it is in the context of an experimental platform.

For their part, all the works shown in Table 2.1 address a business use case,

be it in a datacenter, multiple datacenters, or an Internet Service Provider (ISP)

network. In all those cases, the authors oppose the tenant (the one requesting

the virtual network), to the Infrastructure Provider (InP) (providing the physical

resources). In some cases, another participant is added, the Virtual Network

Provider (VNP), negotiating with InPs to rent their resources on behalf of the

tenants. In all cases, the tenant is indeed renting the virtual network. A full

presentation of the relations between the VNP, the InP and the tenant is given

by Fischer et al. (2013).

Table 2.2 presents the same works as in Table 2.1 with a focus on their ob-

jective functions, as many di�erent objective functions exist. For instance, Liu

et al. (2014) propose to maximize the revenue of the InP. For their part, Alaluna

et al. (2017) propose to minimize the cost of the virtual network to the tenant.

Besides, in the �eld of cloud computing, Nonde et al. (2015) propose to minimize

the power consumption of the whole data center, down to the optical devices.

The reason why Nonde et al. (2015) minimize the power consumption is because

they report it to be the greatest operational expenditure for data centers.
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2.2. Extensions to the VNE Problem

Table 2.2: Classification of Objectives of VNE Research Papers

Objective Category Objective References

Tenant oriented Min VN cost Li et al. (2017) and Alaluna et al. (2017)

Fischer et al. (2016) and Mano et al. (2016)

Wang et al. (2015) and Dietrich et al. (2015)

Chau and Wang (2014) and Bays et al. (2014)

Papagianni et al. (2013) and Di et al. (2013)

Houidi et al. (2011)

InP oriented Min bottleneck load Bays et al. (2016)

Bellavista et al. (2015)

Mehraghdam et al. (2014)

Riggio et al. (2013) and Rahman and Boutaba (2013)

Fajjari et al. (2011) and Arora et al. (2011)

Bienkowski et al. (2010)

Min expenditure Nonde et al. (2015) and Zhang et al. (2014)

Max revenue Liu et al. (2014) and Yu et al. (2008)

Neutral Acceptance related Rost and Schmid (2018) and Rabbani et al. (2013)

Unknown Unknown Ballani et al. (2011) and Chowdhury et al. (2010)

Minimizing the cost of the virtual network is the most widespread objective,

although the actual de�nition of the cost depends on the paper. It is a tenant-

oriented objective, in the sense that InPs are likely to prefer to charge more. This

variety of cost de�nitions comes from the fact that the cost must be understood

as what the tenant is charged for (it is then referred to also as the “revenue”),

and this is up to the business strategy of the InP, which may vary. InPs get a

revenue from renting their resources, but must also pay for their expenditures,

like energy consumption, the buildings they rent, and their employees. To make

pro�t, they need multiple tenants, or tenants with big enough requests. Mean-

while, as they rent the embedded virtual networks, tenants are sensitive to the

rental price. Besides, virtualization naturally changes the perception of the vir-

tual networks: they only become a set of �les (VMs), software (VM hypervisor)

and con�guration (routing rules), consuming the desired amount of memory and

CPU provided by whatever physical resources. This change in the perception of

what a network represents may make it easier for tenants to consider to change

their InPs.

Meanwhile, we consider that the objective functions from works like Mehragh-

dam et al. (2014), Nonde et al. (2015), and Yu et al. (2008) belong to the same InP-

oriented objective category. Overall, those objectives are to minimize the load

of the bottlenecks in the infrastructure as identi�ed by the respective paper, or

to minimize InP expenditure (mainly power consumption), or to maximize the

InP revenue. The de�nition of the bottlenecks may vary. For Bays et al. (2016),

the bottleneck is the capacity of programmable switches in the SDN context (see
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Subsection 2.2.4), as their capacity is very limited. In the cloud context, Bellav-

ista et al. (2015) proposes to minimize the tra�c load in the whole infrastruc-

ture. Interestingly, Mehraghdam et al. (2014) propose, among other objectives,

to minimize the number of hosts in use, which in turn may increase the load on

the neighboring links. From their experiments, Fajjari et al. (2011) conclude that

the main bottleneck in the link capacity.

The remaining works could not be classi�ed as more tenant-oriented or more

InP-oriented. Some focus on the acceptance of the requests, which may be ben-

e�cial for both the tenants and the InPs. As such, we classify them as neutral.

This does not mean that they are better though. For instance, maximizing the

number of accepted requests does not mean we maximize the revenue, unless

the cost and the revenue of each request is equal.

For Ballani et al. (2011) and Chowdhury et al. (2010), we were not able to

retrieve information about an objective function.

From a security viewpoint, Alaluna et al. (2017) and Bays et al. (2014) consider

the security as a service, which is charged to the tenant. But other kinds of ob-

jective function may be considered. For instance, we can leverage the National

Vulnerability Database
1
, to retrieve the known vulnerabilities of each product

setup in a given infrastructure. The products are retrieved from the MITRE

Common Platform Enumeration (CPE) database
2
, and the vulnerabilities are re-

trieved from the MITRE Common Vulnerabilities and Exposures (CVE) database.

Each vulnerability is furthermore associated with a number, computed from the

MITRE Common Vulnerability Scoring System (CVSS). This number represents

the severity of the vulnerability. It is very di�erent from a security level, in the

sense that the CVSS is a scoring system which can be tuned by an organization

to better adapt to its environment. This is possible by tuning the environmen-

tal score metrics (in CVSS version 3). We could agglomerate the environmental

score metrics of all tenants, and minimize the severity of their virtual resources.

To the best of our knowledge, no work has proposed it yet. This approach

has di�erent downsides. First, it only deal with known vulnerabilities, and when

a new vulnerability is published, the embedding may have to be updated. Sec-

ond, the CPE database does not enumerate every known product, although every

product should be described by the CPE naming system, but at least every known
vulnerable product, even though the CPE can be contributed by organizations

external to MITRE
2

; to the best of our knowledge, there is no list of current

non-vulnerable products
3
.

1
See https://nvd.nist.gov/general.

2
See https://nvd.nist.gov/Products/CPE.

3
As an illustration, the reader can verify that on 6/10/2019 (time of writing), there is no en-

try for the Google Chrome 76 stable version (see https://en.wikipedia.org/wiki/Google_
Chrome_version_history), but one for Google Chrome 76 beta version. The Google Chrome
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As a consequence, some CPE data can be misleading. For instance, vul-

nerability CVE-2013-6662
4

impacts every version of Google Chrome, as it is in-

dicated by the CPE reference cpe:2.3:a:google:chrome:*:*:*:*:*:*:*:*;

however, the CPE database does not de�ne any entry for Google Chrome 76, or

Google Chrome 77. In other words, although they are known to be vulnerable,

there is no entry for them.

As such, when a non-referenced product is declared, we must ensure that we

have enough and correct data to identify it, if it happens to be vulnerable in the

long term.

To conclude this investigation around the objective functions in use, we want

to point out the work from Ludwig (2016), which proposes to price the virtual

networks on their speci�city. Such de�nition is more market-related, and con-

siders that the price of a virtual network may vary over time. The reason Lud-

wig (2016) proposes to do so is because a very speci�c virtual network topology,

once embedded, may cause the reject of future virtual networks. The physical

resources the embedded virtual network is using become then more valuable,

because they become key to ful�ll the demand. Ludwig (2016) proposes to rever-

berate the fact they become more valuable by increasing their price. Changing

the physical resources that are consumed by a virtual network is also a solution,

called migration. This aspect is however addressed in Subsection 2.2.3.

2.2.2 Rethinking the Substrate

From a general viewpoint, the VNE problem can be described as the matching

of an o�er and a demand. The o�er is brought by the InP, and the demand is

brought by the tenant. If the o�er was unlimited, the VNE problem would not

be very complex. It is actually the meaning of being a NP -hard problem (see

De�nition 2.3). The VNE problem is a NP -hard problem in general. But some

particular instances, like, a particular request, or a particular substrate, may lead

to a simpler problem. At least, it may lead to heuristic that are really e�cient for

those particular instances.

Table 2.3 enumerates the same works as from Table 2.1 classifying them ac-

cording to their substrate model. Our �rst discriminator is how many the model

can handle, either one (single InP) or many (multiple InPs). For the single InP

case, our second discriminator is if the substrate topology is structured or not.

For example, because data centers have structured topologies (usually in trees),

particular heuristics can be applied, as Bari et al. (2013) report in their survey

about virtual network embedding for cloud computing. These heuristics are not

76 version was released on 30/07/2019, and the 77 version was released on 24/09/2019.

4
See https://nvd.nist.gov/vuln/detail/CVE-2013-6662
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Table 2.3: Classification of Substrates of VNE Research Papers

Substrate Category Substrate Property References

Single InP Non-structured Topology Rost and Schmid (2018) and Li et al. (2017)

Fischer et al. (2016)

Bays et al. (2016)

Wang et al. (2015) and Nonde et al. (2015)

Chau and Wang (2014)

Bays et al. (2014)

Liu et al. (2014) and Mehraghdam et al. (2014)

Papagianni et al. (2013) and Riggio et al. (2013)

Rahman and Boutaba (2013)

Arora et al. (2011) and Fajjari et al. (2011)

Bienkowski et al. (2010)

Yu et al. (2008)

Structured Topology Bellavista et al. (2015) and Zhang et al. (2014)

Rabbani et al. (2013) and Ballani et al. (2011)

Multiple InPs Fully disclosed Alaluna et al. (2017)

Partially disclosed Mano et al. (2016) and Dietrich et al. (2015)

Di et al. (2013) and Houidi et al. (2011)

Chowdhury et al. (2010)

applicable when we reason with a distribution of virtual networks between sev-

eral data centers, or even when we consider the infrastructure of a telecom op-

erator, which has much less structured topologies. More speci�cally, Ballani et

al. (2011), Zhang et al. (2014), and Rabbani et al. (2013) address the Virtual Data

Center Embedding (VDCE) problem. The VDCE problem considers that both

the substrate and the requests are tree-like graphs, the substrate representing a

datacenter, and the requests representing the virtual datacenter requests.

Even the o�ered resources can be di�erent. For instance, we can distinguish

the following substrate networks: 1) for Bays et al. (2014), the substrate network

exposes only networking resources (i.e. switches, routers). Tenants request net-

working resources, and are provided with virtual switches/routers; 2) for Mano

et al. (2016), Dietrich et al. (2015), Papagianni et al. (2013), Alaluna et al. (2017),

and Liu et al. (2014), the substrate network exposes networking and computing

resources (i.e. virtualization servers). Tenants request only computing resources,

and are provided with VMs. Both cases are similar from the tenant’s viewpoint

though, in the sense that they request a single type of resource, either computing

or networking. Indeed, tenants are also provided with communication pathways

interconnecting those resources.

Another way to rethink the substrate is to divide it into multiple subparts

(referred to as domains), each owned by a di�erent InP. This corresponds to the

multiple InP case in Table 2.3. The idea then is that the InPs act as if there was
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Table 2.4: Classification of Request Handling Methods of VNE Research Papers

Request Handling Method References

Static Rost and Schmid (2018)

Mano et al. (2016)

Wang et al. (2015) and Bellavista et al. (2015)

Chau and Wang (2014) and Mehraghdam et al. (2014)

Rahman and Boutaba (2013) and Di et al. (2013)

Chowdhury et al. (2010)

Yu et al. (2008)

Online Li et al. (2017) and Alaluna et al. (2017)

Bays et al. (2016)

Nonde et al. (2015) and Dietrich et al. (2015)

Bays et al. (2014) and Liu et al. (2014)

Papagianni et al. (2013), Riggio et al. (2013), and Rabbani et al. (2013)

Houidi et al. (2011) and Ballani et al. (2011)

Dynamic Fajjari et al. (2011), Zhang et al. (2014), and Fischer et al. (2016)

Recon�guration Arora et al. (2011) and Bienkowski et al. (2010)

a single infrastructure. This does not mean that the requests will be always de-

ployed over every InP, nor that they will always deployed within a single InP.

Alaluna et al. (2017) apply such paradigm in the cloud context, with full in-

formation disclosure. Full information disclosure means that the VNE algorithm

knows all the information from every domain, like nodes, edges, node capacity,

edge capacity. It corresponds to the fully disclosed row in Table 2.3.

Full information disclosure, however, cannot be applied to every context, be-

cause topological information may be valuable, and sensitive, for the InPs. In that

case, it is better to provide limited information disclosure. Limited information

disclosure being related to InP protection, it will be treated within Section 2.3. It

corresponds to the partially disclosed row in Table 2.3.

2.2.3 Rethinking the Requests

In their survey, Fischer et al. (2013) use the request processing as a criterion to

classify VNE algorithms. Indeed, this aspect is already mentioned in the network
testbed mapping problem. Fischer et al. (2013) identify two cases, namely, the

static mode and the dynamic mode. We reuse this classi�cation in Table 2.4, and

we add two other classes, “Online” and “Recon�guration”.

The static mode is the simplest mode of both. It assumes that the virtual net-

work requests are known in advance. Then, the algorithm embeds them, while

meeting the goal of the objective function. It corresponds to the “Static” row in

Table 2.4.
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The dynamic mode is more complicated. The �rst di�culty is that it implies

to treat the requests in an online manner, as Houidi et al. (2011), Li et al. (2017),

Alaluna et al. (2017), and Bays et al. (2014) do. Each request has a lifetime and

a time of arrival. When the lifetime of a request is expired, the corresponding

virtual network is shutdown, and the resources it occupied are released. At each

instant, a new request may be submitted to the system, so the algorithm must be

able to prepare enough resources to accommodate any new request. It must also

memorize the residual capacities of the substrate network.

The second di�culty is that to increase the chances of a request to be ac-

cepted, the online treatment is not su�cient. Some VNE algorithms rely indeed

on the concept of migration. This second aspect is key to be part of the dynamic

category of the Fischer et al. (2013) classi�cation. In Table 2.1, Fajjari et al. (2011),

Arora et al. (2011), Bienkowski et al. (2010), Zhang et al. (2014), and Fischer et

al. (2016) are the only works addressing both di�culties. For this reason, we

distinguish in Table 2.4 works that treat requests in an online manner, without

considering their recon�guration, in class “Online”. Works that treat requests in

an online manner and consider their recon�guration are in class “Dynamic”.

This is such an intense research opportunity that simulation platforms (like

ALEVIN from Fischer et al. (2011)) have been developed speci�cally to test dy-

namic VNE algorithms. It is because Fischer et al. (2016) is implemented within

this platform that we consider it as dynamic.

To be more speci�c, Arora et al. (2011) and Bienkowski et al. (2010) address

the Virtual Network Embedding Recon�guration (VNER) problem, which seeks

how to migrate virtual networks to make room for another given virtual network.

They are listed in class “Recon�guration” in Table 2.4. This class is distinct from

the others in the sense that the VNER problem recon�gures already embedded

requests without handling new ones. The other works, Fajjari et al. (2011) and

Zhang et al. (2014), are true dynamic VNE algorithms as per the de�nition from

Fischer et al. (2013), in the sense that the same algorithm which is responsible

for the embedding task does also the re-embedding when needed. The slight

di�erence with the VNER algorithms is that those latter are executed when the

VNE algorithm counterpart fails to embed the newcoming request.

The use case of migration is as follows: the system receives a request and

replies that it can not process it, because it does not �nd a way to deploy a vir-

tual network corresponding to the request. In other words, there are not enough

physical resources available. To solve this problem, there are two ways: either

increase the number of physical resources (by buying more hardware), or in-

crease the number of available resources. In the latter case, the idea is that an

optimized deployment of n virtual networks does not necessarily allow to have

an optimized deployment of n + 1 virtual networks. To move from the n case

to the n + 1 case, it may be necessary to migrate the virtual elements, that is to
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say to change the physical resources that are associated with the nodes and the

virtual links.

Such an operation is not harmless though. For example, there are two mi-

gration paradigms: live migration and cold migration. Cold migration is the

simplest, and involves taking a virtual network, disable it, re-deploy it, and then

reactivate it. In other words, the virtual network, possibly in use, becomes un-

usable during the migration. In addition, data in memory (in nodes) or in transit

(in links) can be lost. The cold migration thus has a great advantage for solving

the VNE problem, but a great disadvantage for the user of the virtual network.

On the other hand, live migration makes the problem drastically complex.

The basic idea is to e�ect the migration in a continuous way. There are multiple

scenarios, which are surveyed by Leelipushpam and Sharmila (2013). We only

give an insight of one of them. In the case of VMs, the memory pages are trans-

mitted from the source machine to the destination machine. In the case of virtual

cables, there is a path for old tra�c during migration, and a path for new tra�c.

As, obviously, the transfer of the memory pages, the destination machine, and the

path of the new tra�c are added to the virtual network, an overconsumption of

resources occurs. This overconsumption must therefore be processed upstream

in order to decide whether or not live migration is even possible.

The migration of virtual networks intervenes also in another case of use, that

of the creation of backups. These backups must allow the virtual network to con-

tinue to function, even in the event of a failure or unavailability of the physical

resources on which it is deployed. This problem is investigated by Rahman and

Boutaba (2013), and is called the Survivable Virtual Network Embedding (SVNE)

problem. It is indeed a fault-tolerance oriented problem, as the algorithm tries to

circumvent any failure at the substrate level by reserving resources for potential

virtual network migrations.

Another approach is proposed by Alaluna et al. (2017). The idea is to allow

tenants of the virtual network to ask if they want backups for this or that part of

their virtual network. This service is obviously expensive, since the system must

identify and prepare additional physical resources.

Another fundamental aspect has been questioned by Yu et al. (2008). This

aspect can be summarized as follows: to what extent a virtual network should

be considered and modeled like a physical network?

In the original description of the VNE problem, virtual cables are considered

as an extension of the physical cables, which transmit packets without chang-

ing their chronological order up to their bandwidth capacity. To keep the same

properties, the original description of the VNE problem then de�ne virtual ca-

bles as physical paths, where a fraction of the bandwidth of each of its physical

cable component is allocated for the given virtual cable. For Yu et al. (2008), we

can also consider that a virtual cable correspond to a set of physical paths. The
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bandwidth requirement of the virtual cable is then distributed over the di�erent

physical paths, deployed in parallel. Such operation is referred to as path splitting
and increases the solution space for the VNE problem, as the bandwidth capac-

ity is often the bottleneck (see Fajjari et al. (2011)), and as, for a given physical

cable, fewer bandwidth may be required. Works like Li et al. (2017) also support

path splitting. Concretely, path splitting means that di�erent packets from the

same tra�c can take di�erent paths. Consequently, this may not preserve their

chronological order.

For their part, Dietrich et al. (2015) formulate an entirely new de�nition of

virtual network requests. They use a matrix de�nition rather than a graph de�ni-

tion, where the cells of the matrix contain the bandwidth demands (the requests

in computing capacity of the nodes are treated separately). Again, this de�nition

increases the number of candidates to the VNE problem, since the same ma-

trix can be used to generate several di�erent topologies, hence several di�erent

graphs.

All in all, the virtual network request is not set in stone. We see that requests

can be treated dynamically, or statically. De�ning virtual network requests as

dynamic lead to cope with the migration problem, in order to make room for

other requests. The substrate can also be dynamic, in the sense that some physi-

cal resources may fail to work at some point, leading to migrate their guests onto

other resources. What a virtual network request exactly represents is up to the

virtualization technology. With enough care, we can support path splitting, that

is, considering that a single virtual edge is represented by a bunch of physical

paths. Other such transformations are covered in the next subsections.

A last point remains to be discussed. As we see, even the representation of

virtual network requests as a graph can be questioned. If we stick to the graph

representation though, it is important to consider that the request is still abstract.

No work gives an exact de�nition of what the links in the graphs represent, for

instance. And we can have various interpretations.

For instance, some work, like Yu et al. (2008), Alaluna et al. (2017), Houidi

et al. (2011), and Chowdhury et al. (2010), assume that the virtual network re-

quest is an undirected graph. Others, such as Rost and Schmid (2018) and Bays

et al. (2016), consider it to be a directed graph. Considering an undirected graph

is meaningful, in the sense that we assume that virtual edges are like cables con-

necting two virtual nodes. The very idea is that all cables are bidirectional. How-

ever, this does not mean that the terminals at each end of the cable will use it

in the same proportions: the tenant may want to discriminate an upload and a

download bandwidth, or even the InPs may want to discriminate some of their

physical resources. Directed graphs become helpful in such context, by enabling

the tenant to create two directed edges between the same nodes, each with a

di�erent bandwidth.
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2.2.4 Leveraging SDN

De�nition 2.1: n-1 Mapping, n-n Mapping
A n-1 mapping (or one-to-many mapping) is a relation from a set X to a

set Y such that every element in Y is associated with at least one element

of X . Mathematically, it actually corresponds to a surjective function. The

notation “n-1 mapping” is inherited from computer science, and especially

for database models. Being surjective, a n-1 mapping can associate multiple

elements of X to the same element in Y . Besides, each element of X is

associated to a unique element of Y .

The n-n mapping (or many-to-many mapping) is another important re-

lation in computer science. It is a relation from a set X to a set Y such that

each element of X can have more than one image in Y . Mathematically, it

is a multi-valued function. Given an element of X , it is associated to mul-

tiple elements of Y , by de�nition. Besides, multiple elements of X can be

associated to the same element Y .

For completeness, we mention that a 1-1 mapping (or one-to-one map-

ping) is a relation from a set X to a set Y such that two distinct elements of

X have distinct images in Y . Mathematically, it actually corresponds to an

injective function.

The latest advances in virtualization that are the SDN and NFV paradigms

have also led to the formulation of speci�c VNE problems. SDN is commonly

described as decoupling the control plane from the data plane. This means that

switches and routers do no longer do anything by themselves, unlike legacy net-

work elements. Instead, the management of these protocols is the responsibility

of a new network component, referred to as the controller. The previously des-

ignated switches and routers then become programmable switches, and are all

connected to the controller. Programmable switches have only one default be-

havior: send the received tra�c to the controller. In response, the controller tells

them what action to take on this tra�c (for instance, to get it out of another port).

Better, the controller can also tell them a rule to follow.

All these tasks revolutionize the world of transmission protocols, because the

controller has a global view of the network it controls, which was not the case

before. In addition, the controller can be physically distributed: that is, there are

several physical controllers, but act logically as if there was only one controller.

This should ensure scalability of this solution.

Returning to the description of SDN as a decoupling, what must be seen here

is that the control plane corresponds to the tra�c between the programmable

switches and the controller. This tra�c is carried by various protocols still un-
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der study, the best known of which is OpenFlow. The data plane corresponds to

the tra�c exchanged by the programmable switches between them. SDN’s in-

terest in virtualization is to pave halfway. Thus, in the same way that we speak

of hypervisors for virtual machine managers, we speak of network hypervisors to

designate virtual network managers. And SDN is at the heart of these hypervi-

sors.

There are di�erent solutions and di�erent architectures of network hypervi-

sors; but overall, the principle is the same: we use the SDN controller as a proxy

server, able to transform one set of routing rules into another set. This exposes

a user Alice and a user Bob a virtual switch A and a virtual switch B when it is

the physical switch C. When Alice’s tra�c arrives on C, it follows the routing

rules of A, and when Bob’s tra�c arrives on C, it follows B’s routing rules. This

operation is a n-1 mapping (cf. De�nition 2.1), which is the same kind of map-

pings used for virtual machines, which allows multiple VMs to coexist on the

same host. However, network hypervisors enable also n-n mappings (cf. De�ni-

tion 2.1), which are much more complex. With such transformations, the virtual

switch A physically corresponds to a set of interconnected physical switches, for

example C and D, and the network hypervisor must then distribute the routing

rules between these switches in an intelligent manner.

The SDN technology thus makes it possible to imagine virtual networks where

certain nodes would themselves be programmable switches. These programmable

switches are actually virtual, and are managed by the system through the afore-

mentioned n-1 and n-n transformations. Of the two, the n-n transformation is

the one that poses the most di�culty for a VNE formulation. Indeed, the choice

of all the programmable switches to be used to represent a given virtual switch

is not trivial, because it must also be able to route the tra�c between the various

chosen programmable switches, and this can only pass through the selection of

paths, themselves consumers of bandwidth. To the best of our knowledge, no

work in VNE enables such transformations yet. Riggio et al. (2013) and Bays et

al. (2016) leverage SDN in their works though. Note that in Bays et al. (2016), the

objective function is to reduce the number of �ow rules on the programmable

switches. Without diving into the details, this is because of a current hardware

limit. The con�guration of a virtual network with SDN is made with �ow rules,

which are regular expression describing how an input �ow on a programmable

switch is transformed, and where it is outputted. However the memory which is

specialized into saving those �ow rules is very limited in capacity.

2.2.5 Leveraging NFV
NFV technology is based on the concept of network function. In abstract, a net-

work function is an operation that occurs within a network and a�ects its behav-
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ior. This de�nition is clearer if we compare it with the purpose of this technol-

ogy. Indeed, NFV is originally a principle promulgated by operators, who spend

time and energy to introduce devices into their networks. This is particularly

true in security, where to protect the network, �rewalls or intrusion detection

systems are installed. The problem is that adding such devices to a network

complicates its maintenance, especially since these devices are proprietary: to

con�gure or update the network function they run, it is often necessary to have

speci�c knowledge.

What NFV proposes is to use o�-the-shelf hardware instead of dedicated

hardware. The network function which is provided by the legacy hardware is

provided by the means of a software program instead. This software program is

referred to as a Virtual Network Function (VNF).

NFV’s interest in virtualization, however, is to provide an opportunity for a

tenant to have its own network function, while the con�guration and manage-

ment of the scaling of this network function is performed by the provider of this

function.

In addition, the work in NFV also relates to the Service Function Chains

(SFCs). This chain translates the fact that the network functions must execute

in a certain order. For example, tra�c is usually passed through a �rewall, then

through an IDS, in order to handle only the most complex attacks. In the case of

VNF, we end up with software that can be installed anywhere in the network:

the tra�c must therefore follow a particular route for all these functions to run

in order, as issued by the SFC.

The NFV technology thus makes it possible to imagine virtual networks where

the holder speci�es network functions to be applied along this or that virtual ca-

ble. The path used to represent the virtual cable must then follow the SFC as

described. Several visions are opposed to the location of the VNFs of the SFC,

however. Bellavista et al. (2015) considers that VNFs are instantiated at speci�c

places by the InP: thus, when the speci�c holder has a network function, every-

thing happens as if he was subscribing the virtual cable to a network function,

and thus causing the path to be modi�ed so that it reaches said VNF. Mehragh-

dam et al. (2014), however, o�ers another vision, where the InP seeks to optimize

the placement of VNFs. In this case, in a way, the information given by the holder

of the virtual network will be used to place the VNF that he himself asks. Opti-

mization aims to minimize the number or the load of instantiated VNFs, as well

as the over-consumption of bandwidth caused by overly complex paths within

the infrastructure.

To be more precise, as Mehraghdam et al. (2014) report it themselves, the

problem they address is a bit di�erent from the VNE problem, and can be more

accurately described as the Service Function Chain Embedding (SFCE) problem.

The SFCs are the equivalent of the virtual network requests of the VNE problem.
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Their topology is more structured and simple though, as they are chains. The

main di�erence though is that the virtual edge between two VNFs of one SFC

may be reused between the same VNFs of another SFC.

2.3 Security Aspects for the VNE Problem

VNE is a long-studied problem. As explained by Fischer et al. (2013), even if

we are told where to map virtual nodes, �nding the right link allocations cor-

responds to the unsplittable �ow problem, which Kolliopoulos and Stein (1997)

showed to be NP -hard. For this reason, the slice embedding problem is also

NP -hard.

This section presents works that address security aspects of the VNE problem.

We identify mainly two aspects. Works in Subsection 2.3.1 enable the tenants to

require security within their virtual network requests. Works in Subsection 2.3.2

enable the InP to protect themselves.

2.3.1 Security for the Tenants
We identify two primitives to provide security requirements into the VNE prob-

lem. The �rst primitive uses a level to de�ne a security requirement. When a

tenant requires a certain level for a given virtual resource, only substrate re-

sources with a greater level can be candidates to embed this virtual resource. In

other words, there is a direct placement relation between the virtual resource

and the substrate resource. This primitive is helpful, because it can directly be

expressed in ILP, the problem formulation which is used by most VNE works, as

shown in Table 2.1. Overall, this primitive is used to de�ne security levels based

on an absolute scale, which is then de�ned by the authors.

The second primitive de�nes a security requirement on an exclusion or a

collocation principle on the virtual resources themselves. Contrary to the �rst

primitive, this means that there is a direct placement relation between two or

more virtual resources.

The reviewed papers provide a composition of the di�erent primitives.

Liu et al. (2014) allow tenants to require a security level for nodes and links,

then following the �rst primitive. The InP must provide a resource with higher

security level.

Bays et al. (2014) focus on privacy issues for a tenant in an ISP infrastructure

context. The tenants can enforce their security through two ways. First way, by

demanding a cryptographic support for any virtual router. This translates into a

binary attribute, following the �rst primitive. Second way, by enumerating the

other requests with which they do not want to share any resource, following
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the second primitive. In addition, tenants can request a virtual router to be in a

speci�ed location, following the �rst primitive.

Alaluna et al. (2017) focus on tenant protection in the cloud context. They

propose four security attributes: cloud provider trustworthiness, node backups,
node security level, and link security level. Node and link security levels follow

the �rst primitive, as well as cloud trustworthiness level. In essence, the node and

link backups are duplicate of other virtual resources, as if the tenants require the

same node or link twice. What Alaluna et al. (2017) add is that a level determines

where to place the duplicate relatively to its originator. The duplicate may then

be in the same cloud as the originator, or in another cloud. For this reason, the

node and link backups follow the second primitive.

Wang et al. (2015) allow tenants to require a security plan on three categories:

virtual network wise, virtual node wise, and virtual link wise. Each plan further

propose three levels. The high (resp. medium, resp. low) level of the virtual

network wise security plan allows the virtual network to be collocated with no

(resp. trusted, resp. any) other virtual network, in the same datacenter. The high

(resp. medium, resp. low) level of the virtual node wise security plan allows the

virtual node to be collocated with any virtual node of no (resp. trusted, resp.

any) other virtual network, in the same host. The high (resp. medium, resp. low)

level of the virtual link wise security plan means that there is point-to-point

encryption (resp. end-to-end encryption, resp. no encryption). In essence, the

virtual network wise security plan and the virtual node wise security plan are

based on the second primitive, and the virtual link wise security plan is based on

the �rst primitive.

Fischer et al. (2016) propose to implement security requirements on the ALEVIN

simulator (see Fischer et al. (2011)). They classify security requirements into

three types: node requirements, such as encryption support; link requirements,

such as data encryption; and topological requirements, such as separating the

virtual network request into two administrative domains, one public, and one

private, this latter protected by a �rewall. Their node and link requirements are

then based on the �rst primitive, while the topological requirements are based

on the second primitive.

In this thesis, and like Fischer et al. (2016), we consider that the notion of

security or trustworthiness level is too abstract, as it may cover di�erent secu-

rity properties in a way which do not correspond to the various tenant needs.

Infrastructure Providers (InPs) and tenants may not have the same vision. For

this reason, we want to enable tenants to express their security needs with ap-

propriate attributes. To do so, we want to provide an attribute model general

enough to cover every security use case. In particular, we show that every re-

viewed security-oriented attribute is compatible with our model, and that we can

model other relevant security-oriented attributes.
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Our work is distinct to the aforementioned works as follows.

Liu et al. (2014) provide a single security level for the tenant. The de�nition

of such a security level is however only relevant when all tenants have the same

security policy, and the same security priorities. In a multi-tenant context as with

the 5G network slices, we cannot expect such a situation. Tenants may use slice

for a large variety of services: health care, vehicles, smart cities, governmental

services, and industrial automation.

Bays et al. (2014) investigate the VNE in the ISP infrastructure context, which

is slightly di�erent from slice embedding in the sense that the tenants are re-

questing (virtual) routers only, and virtual routers cannot be collocated on the

same substrate router.

Besides, Bays et al. (2014) propose a location requirement such that the ten-

ant can require a single location for each virtual resource. We consider it to be

too limited, as it can only be applied for a geographical scale, be it continents,

countries, or cities, but not a mix of di�erent scales: this model makes them ex-

clusive to each other. For instance, if the location of every substrate resource is

identi�ed at a country level, we have no way to support a city-level requirement;

and to support a continent-level requirement, the only solution would be to en-

able the tenant to require a list of countries. We consider that enabling tenants to

require a list of authorized locations is a plus, and that requiring a list of values

can also be generalized to other requirements.

Another limit of Bays et al. (2014) is that they leverage the second primitive

at the request level, while we consider three levels of isolation (exclude tenant,

exclude request, exclude resource), for the nodes as well as the edges of the tenant

requests.

For Alaluna et al. (2017), the cloud provider trustworthiness is absolute, and

does not vary for di�erent tenants, while we think it should be up to the opinion

of the tenant. In that latter case, it would mean that tenants can control in which

cloud provider their virtual resources are hosted. Besides, the security levels

are abstract, and the semantics of each level may vary among tenants, among

InPs, and also between tenants and InPs. In the remainder of this thesis, we

will show how to support the backup requirement they propose. We note also

that, although they consider multiple cloud providers, they consider that they

have full knowledge over their resources, while we follow a limited information

disclosure principle.

Wang et al. (2015) distinguish two steps. The �rst step is to apply their three

security plans (per virtual network, per virtual node, per virtual edge), and is

referred to as the admission process. The second step is the execution of the

VNE algorithm itself. The idea is that the admission process serves as a guide to

the VNE algorithm, because the admission process produces an auxiliary graph

where each substrate node is associated with a set of candidate virtual nodes.
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Those candidates are obtained by computing the exclusion constraints according

to the security plan of the current virtual network request.

These latter words are important, because we can imagine that a past request

refuse to be collocated with any other request and that the current one accept it;

with the algorithm proposed by Wang et al. (2015), only the plan of the current

request is considered, leading to a break in the security plan of the past request.

We consider this �aw to be due to a lack of a single requirement model, from

which the algorithm of the admission process should be derived.

Last but not least, the attribute model proposed by Fischer et al. (2016), al-

though general, is implementation dependent. To support the second primitive

in their topological requirements for instance, they add another embedding al-

gorithm to their system, the cross-domain link embedding. As we focus on a

security-oriented VNE, we think it is better to have at least a sound mathemati-

cal formulation, which can be veri�ed and audited.

2.3.2 Security for the InPs

This section presents works that aim to protect the InPs.

Liu et al. (2014) consider not only tenant protection (as shown in previous

section), but also InP protection. This latter is modelled with a level, like the

tenant protection, but it is a requirement from the InP. This means that tenants

must declare the security level of their virtual resources, and that this level should

be higher than the security level of the substrate resource of the InP. Regarding

the 5G slice embedding, we may not be able to make the same criticism than in

the previous section hold, that is, such a security level is too abstract, because we

may expect that in a multi-InP scenario, the di�erent InPs share some common

priorities, as they are in a common business �eld.

Liu et al. (2014) is, to the best of our knowledge, the only work requiring

information from the tenants. The other works providing security to the InPs

rather focus on di�erent aspects of limited information disclosure.

Limited information disclosure is part of the multi-provider VNE problem,

as illustrated by Mano et al. (2016) and Dietrich et al. (2015), where InPs do not

disclose their complete topologies, but only some nodes. In this variant of the

VNE problem, the substrate is split into domains, each domain being owned by

an InP. We can divide works supporting limited information disclosure into three

categories.

The �rst category contains the work from Chowdhury et al. (2010). In this

work, the authors provide a distributed algorithm that enable the domains to

cooperate, and the tenants to sent their requests to any of those domains. In

other words, there are multiple entry points for the VNE algorithm.
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The second and the third category only use a single entry point for the tenant.

It is in that case that we may have a VNP. The second and the third category

distinguishes the inter-domain level and the intra-domain level, but do di�er in

how the two levels are related.

The second category follows a top-down approach. This basically means that

the virtual network request is processed by an inter-domain level algorithm. This

algorithm aims at selecting the domains that will embed the corresponding vir-

tual network. Dietrich et al. (2015) and Houidi et al. (2011) provide each an inter-

domain level algorithm. This algorithm leverages the only information that the

InPs are not reluctant to share, like how the domains are interconnected, and

what general types of resources they support. Then, it splits the virtual network

request into subparts, that can each be considered as virtual network requests

themselves to an intra-domain level algorithm. At this stage, we come back to a

VNE problem where the substrate is the respective domain. Any suitable VNE

algorithm can be used at this point, and Houidi et al. (2011) provide their own

for instance.

For its part, the third category follows a bottom-up approach. This basically

means that the virtual network request is directly sent to each participating InP.

Those InPs then run an intra-domain level algorithm whose purpose is to gener-

ate candidates. A candidate is actually a subpart of the virtual network request

that the InP accepts and is able to embed. Then, an inter-domain level algorithm

runs to select the candidates. The set of candidates that are selected has the prop-

erty of covering the whole original virtual network request. Such an algorithm

is proposed by Mano et al. (2016) and Di et al. (2013).

Note that the information disclosure is limited, not null, in all approaches.

This follows the natural assumption that InPs know how they are intercon-

nected with their neighbors. For Houidi et al. (2011), the inter-domain level algo-

rithm knows the full pricing function of each InP for each given virtual resource.

For Dietrich et al. (2015), the VNP knows the InP’s border nodes (i.e. nodes inter-

connecting InPs with each other), as well as the types and prices of virtual nodes

each InP supports. For Mano et al. (2016) and Di et al. (2013), the inter-domain

level algorithm knowns the InP’s border nodes and the bandwidth of the inter-

domain links. Besides, for Di et al. (2013), the actual price of each candidate is

also fully known.

From all these works, two in particular focus on restricting access to prices,

that is, Dietrich et al. (2015) and Mano et al. (2016). The reason is that price

information is also sensitive.

Our work is distinct to the aforementioned works as follows.

For Dietrich et al. (2015), the capacity attributes (for nodes and for edges)

are deeply inset into the matrix-oriented model, making it di�cult to generalize

to other attributes. Besides, the matrix-oriented model is not compatible with
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support for multiple attributes at once. Some topologies generated by the matrix

model of the virtual network request may also be seen as undesirable by the

tenant. It may be even uneasy for an InP to disclose node types when considering

multiple attributes. In such a scenario, telling the external parties the features

which are not available, or the combinations of features which are available, may

be considered as very speci�c and then too sensitive.

For Mano et al. (2016), the partial embeddings are limited to connected sub-

graphs of the request. In other words, InPs cannot be used as a connection

provider. It follows that the InP topology should be full-mesh, which does not

correspond to the slice embedding scenario: we cannot expect every InP to be

connected to all others.

Besides, Mano et al. (2016) do not make explicit the inter-domain nor the

intra-domain algorithms, even if they rely on modi�ed versions of other works

of Yu et al. (2008) and Chowdhury et al. (2010). Last but not least, they limit

InP embedding propositions to be connected subparts, whereas we support more

general pieces.

2.4 Methods for Modeling the VNE Problem

When humans face a problem, they have a certain understanding of it. Some-

times, they overcome such problem by themselves. Other times, the problem is

big enough that it requires automation. Encoding a problem refers to this very

step of agreeing on the description of the problem. Such description comes with

de�nitions of the concepts of the problem, which are relevant to solve it. From

this description, we can formulate a procedure that will solve the problem. But

it is clear by how the description is given that it is still only an agreement. The

problem may be totally described in another way, and solved by another proce-

dure. Therefore, the encoding is not unique.

In this section, we present formal methods for describing a problem. One

method in particular is heavily used by the state of the art, Integer Linear Pro-

gramming (ILP). However, ILP is only a particular example of Constraint Satis-

faction Problems (CSPs). In this thesis, we propose to describe the VNE problem

with another formal method, to suit our purpose of enabling security-oriented

requirements.

From a mathematical point of view, the VNE problem is essentially a con-

straint satisfaction problem (CSP). CSPs appear in several �elds, such as software

and hardware veri�cation, type inference, static program analysis, test-case gen-

eration, scheduling, planning, and graph problems, as reported by De Moura and

Bjørner (2011).
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De�nition 2.2: CSP
A CSP is a triple (X,D,C) where:

1. X is a set of variables, denoted {X1, · · · , Xn},

2. D is a set of domains, denoted {D1, · · · , Dn},

3. C is a set of constraints.

Each domain Di is a set of values, {vi1 , · · · , vik}. Besides, each domain

Di corresponds to one variable Xi.

For their part, constraints are Boolean functions de�ned over every com-

binations of values from every domains. When the constraint is true for a

combination of values, it is said to be satis�ed. Otherwise, when the con-

straint is false, it is said to be violated.

Solving a CSP means that we must exhibit a solution. A CSP solution is a

complete, consistent assignment. An assignment is a function that associates

some or all variable Xi to one value vi in Di. A consistent assignment is an

assignment that does not violate any constraint. A complete assignment is

an assignment that associates a value to every variable.

Russell et al. (2010) provide a formal de�nition of CSPs, which we give in

De�nition 2.2. This de�nition is rather general: it says nothing about the for-

malism of the constraints, nor that of the domains
5
. This freedom makes CSP

formalism rich, thus its applicability to di�erent �elds. It must be borne in mind

that the most decisive step to mathematically solve a problem is still in the way

of formalizing it. In the CSP terminology, we are talking about the encoding of

the problem. In practice, it is a matter of translating a concrete problem possi-

bly expressed in natural language into a mathematical problem. This translation,

again, is not unique.

Note that De�nition 2.2 is rather general. Domains may be �nite or not, and

nothing is said about how constraints are de�ned. In Examples 2.1 and 2.2, we

show two simple examples of how the same constraint can be de�ned. Exam-

ple 2.1 sees the constraint as a collection of allowed combinations, while Exam-

ple 2.2 exhibits the (simple) equivalent relation.

Of course, when considering a non-�nite domain, enumerating all allowed

combinations is impossible. In such cases, representing a constraint as a relation

may not be only a concise representation, but the only one. Consider a simple

constraint like being even in Example 2.3. Here, we de�ne the constraint using the

modulo notation. This modulo notation is a common shorthand used in modular

5
Domain here should be understood in its mathematical de�nition, as a set of values.
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arithmetic, which is part of the standard de�nitions of the naturals, or D1 in the

example.

Example 2.1: Constraint as an enumeration
Let D = {D1, D2}, D1 = {a, b} and D2 = {c, d}. Table 2.5 de�nes a

constraint C1 which is violated for the combinations (a, c) and (a, d).

Table 2.5: Truth Table of C1

Value in D1 Value in D2 C1

a c ⊥
a d ⊥
b c >
b d >

Example 2.2: Constraint as a relation
The same constraint C1 as presented in Example 2.1 can be expressed as a

Boolean relation, as follows:

C1 : D1 ×D2 → {>,⊥}
(x1, x2) 7→ x1 6= a

Example 2.3: Being even
Let D = {D1} and D1 = N. Let C1 be a constraint such that X1 must be

even.

C1 : D1 → {>,⊥}
x1 7→ (x1 ≡ 0[2])

All the interest of the CSPs would be to have an automatic resolution tool,

e�cient (in terms of duration), capable of solving any CSP. For the moment, this

is not the case. On the other hand, categories of CSPs have been identi�ed, each

rich enough to solve many problems, and each using its own method of resolu-

tion. In this thesis, we will only mention three of these categories: ILP problems,

in Subsection 2.4.1, Boolean Satis�ability (SAT) problems, in Subsection 2.4.2,

and Satis�ability Modulo Theories (SMT) problems, in Subsection 2.4.1. We have

named these categories according to the resolution tools that are dedicated to

them.
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2.4.1 The ILP Model

ILP problems are problems whose variables are integers, and the goal is to opti-

mize a vector of these variables under a number of constraints. The constraints

themselves take the form of inequalities. It turns out that the ILP is used in the

majority, if not all, of the work listed around the VNE problem.

ILP problems are part of linear optimization problems, where the variables

are real. In practice, ILP problems are harder than linear optimization problems

simply because of passing real variables to integer variables. In the same way,

there is a sub-category to the problems in ILP, linear problems with binary vari-

ables. Binary linear problems are harder than ILP problems, simply because of

the passage of integer variables to binary variables. VNE is such a binary linear

problem. Indeed, the variables of the VNE problem in its classical formulation

are Boolean variables which indicate if such virtual element is associated with

such physical element. The other problem data, be it the physical resource capa-

bilities or the capacity requirements within the queries, are rather to be seen as

constants. They are known at the time of resolution of the problem.

The reader can refer to Table 2.1 to identify the works proposing an ILP for-

mulation to solve the VNE problem. These works are Rost and Schmid (2018),

Alaluna et al. (2017), Bays et al. (2016), Wang et al. (2015), Liu et al. (2014), Chau

and Wang (2014), Riggio et al. (2013), and Papagianni et al. (2013). In some cases,

the authors propose also a heuristic resolution. These works are Dietrich et al.

(2015), Nonde et al. (2015), Bellavista et al. (2015), Zhang et al. (2014), Mehragh-

dam et al. (2014), Bays et al. (2014), Rahman and Boutaba (2013), Di et al. (2013),

and Houidi et al. (2011).

We give in Example 2.4 an ILP formulation, adapted from Rost and Schmid

(2018). Before analyzing it, we want to emphasize that this ILP formulation is not

general, but su�cient to understand most other ILP formulations for the VNE

problem. Depending on the features the researchers want to add, the following

equations may be slightly di�erent. The formulation given by Rost and Schmid

(2018), for instance, focuses on only one virtual network request, described as

a directed graph (NR, LR), and on only one InP, described as a directed graph

(NS, LS). Both the virtual network request and the substrate are weighted. Sub-

strate resources (nodes and links) have a limited capacity, modelled as an integer,

which can be accessed through the offer function. Virtual resources (nodes and

links) have a capacity request, modelled as an integer, which can be accessed

through the dem (standing for “demand”) function. Besides, for Rost and Schmid

(2018), every substrate node can host a virtual node.

The objective chosen by Rost and Schmid (2018) is to embed the virtual net-

work request, and corresponds to Equation (2.1). It is modelled with a decision

variable, isEmbedded , which is an integer in {0, 1}. If it equals 0 (resp. 1), the
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Figure 2.1: Flow Conservation Rule Illustration

Table 2.6: Flow Conservation Analysis for Figure 2.1

j ∈ NS
∑

k∈Egress(j) li,k
∑

k∈Ingress(j) lj,k na,j − nb,j

A 1 0 1
B 1 1 0
C 0 1 −1

virtual network request is not embedded (resp. embedded). As the objective is
to maximize this variable, the ILP solver will always try to embed the virtual
network request.

The substrate resources allocated for the virtual resources are given through
two sets of unknowns, namely nij and lij . In this thesis, by convention, we use i
to represent a virtual resource, and j to represent a substrate resource.

The nij represent the virtual node mapping. It is defined for i in NR, and j
in NS . Its value is in {0, 1}, like isEmbedded .

The lij represent the virtual link mapping. It is defined for i in LR, and j in
LS . Its value is in {0, 1}, like isEmbedded .

Equation (2.2) states that, given a substrate resource, the sum of the vir-
tual node mapping unknowns over all virtual resources must be equal to the
embedding decision variable. To analyze this equation, let first suppose that
isEmbedded equals 1. Then, we have a sum of unknowns in {0, 1} which must
be equal to 1. This means that at least and at most one unknown should be equal
to 1, the others being equal to 0, for the given substrate resource. The equation
then actually states that the virtual node mapping is an n-1 mapping: all vir-
tual resources should be embedded, and each in one substrate resource. When
isEmbedded equals 0 however, all unknowns for all substrate resources must be
0, which is also consistent with the fact that no substrate resource is allocated
when the virtual network is not embedded.

Equation (2.3) is a rather complex equation which can be better understood
as a flow conservation rule. The idea is that the substrate links (exceptionally
denoted k here) allocated for the virtual link i must chain together to form a
continuous path. Besides, this path should go from the substrate node allocated
for the head node of the virtual link, to the substrate node allocated for the tail
node of the virtual link. More precisely, the nih,j − nit,j part can only take three
values: 1when j is the host of ih,−1when j is the host of it, and 0when j hosts
neither, or both. The other part relies on the definition of Ingress and Egress .
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Egress(j) (resp. Ingess(j)) is the set of edges whose tail node is (resp. whose

head node is) j. Then the

∑
k∈Ingress(j) li,k −

∑
k∈Egress(j) lj,k part only counts

the number of egressing links minus the ingressing links. To have a path, which

is a chain of edges, the equation only states that the substrate node hosting the

head node (resp. the tail node) of the virtual link should have one more egress

(resp. ingress) link allocated for the virtual link, and that all other substrate nodes

should have as many egress links as ingress links allocated for the virtual link.

To illustrate this equation, consider Figure 2.1, associated with Table 2.6. Fig-

ure 2.1 represents a virtual link (a, b), for which a substrate path has been se-

lected, going through substrate nodes A , B and C. Table 2.6 shows the calculation

of Equation (2.3) for each of those substrate nodes. Consequently, Equation (2.3)

simply describes a n-n mapping for the virtual links.

Finally, Equation (2.4) and Equation (2.5) only mean that the sum of all the

demands from the virtual resources allocated to a given substrate resource must

be lower that the substrate resource capacity. The di�erence between these equa-

tions is that Equation (2.4) use node variables, while Equation (2.5) use edge vari-

ables.

Example 2.4: An ILP formulation
The following ILP formulation is adapted from Rost and Schmid (2018), with

the notations used in this thesis, especially in Chapter 3. Please refer to the

table of all notations starting on page 137.

max isEmbedded (2.1)∑
j∈NS

nij = isEmbedded , ∀i∈NR

(2.2)∑
k∈Egress(j)

li,k −
∑

k∈Ingress(j)

lj,k = nih,j − nit,j, ∀i = (ih, it)∈LR, j∈NS

(2.3)∑
i∈NR

dem(i)× nij ≤ offer(j), ∀j∈NS

(2.4)∑
i∈LR

dem(i)× lij ≤ offer(j), ∀j∈LS

(2.5)

This precision on the de�nition of the VNE problem allows us to see it in

another form, that is to say no longer formulated in ILP, but formulated in SMT.
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Before explaining what SMT is, we will explain the category of problems in SAT.

It is this category that has historically led to a resolution method for SMT prob-

lems.

2.4.2 The SAT Model

De�nition 2.3: NP -hardness, NP-completeness
NP -hardness and NP -complete are two concepts from the theory of com-

plexity in mathematics. The theory of complexity tries to evaluate and clas-

sify the complexity of di�erent problems. The two main classes are P and

NP . TheP class contains all problems that can be solved in polynomial time.

Being solved in polynomial time means that there is an algorithm such that

the time to solve the problem is expressed as a polynomial function on the

input of the algorithm. It is said that P problems are easy to solve.

The other class, NP , contains all problems that can be veri�ed in poly-

nomial time. Being veri�ed in polynomial time means that there is an al-

gorithm such that the time to verify that a given input is a solution of the

problem is expressed as a polynomial function on the input of the algorithm.

It is said that NP problems are easy to verify.

Both de�nitions are relative to the existence of such algorithms. A prob-

lem may change of class if a better algorithm is found.

The equivalence between the NP class and the P class is an important

question, often summarized as asking if P = NP is true, false, or non-

demonstrable. Actually, many security algorithms rely on the P 6= NP
hypothesis, that is: there are problems which are easy to verify, but not

easy to solve.

The NP -hard and the NP -complete classes are derived from the NP
class as follows. The NP -complete class contains the hardest problems in

NP . In other words, it is a subset of NP .

The NP -hard class, for its part, contains all problems that are at least

as hard as the hardest NP problem. Consequently, it encompasses the NP -

complete problems and other problems outside the NP class.

The problems in SAT are CSPs where the variables are Boolean, and where

the constraints are expressed using the propositional logic. Propositional logic is

based on a number of operations, which are disjunction, conjunction, and nega-

tion. It thus makes it possible, typically, to model logic gates, and hence elec-

tronic circuits.

The interest of problems in SAT is that they are based on the SAT problem,

which is a very important problem in complexity theory. The SAT problem is a
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decision problem, which, given a set of constraints in propositional logic, aims to

�nd out if there is a solution that does not violate any constraint. This problem

is the �rst to have been proved to be NP -complete (see De�nition 2.3), thanks to

Cook–Levin’s theorem. In particular, it has been shown that the SAT problem is

an NP problem, and that any NP problem can be reduced to the SAT problem.

One main consequence of this theorem is that, unless P = NP , we do not

have an algorithm that can be used to solve every SAT problem instance in poly-

nomial time. There is no “one-size-�ts-all”. As such, the state of the art algorithm

to resolve SAT problems has an exponential complexity of O(2n).
However, this does not mean that every problem instance is solved with an

exponential time. First, we may have e�cient heuristics, which are dependent on

the problem instance. Second, the exponential time may be met for very speci�c

problem instances, which are not used in practice.

The Davis–Putnam–Logemann–Loveland (DPLL) algorithm, developed by

Davis et al. (1961), is originally a backtracking brute-force algorithm. What is

important in the DPLL algorithm is that it is also a state machine, with an initial

state, a �nal state, a fail state, transition states, and a set of transition functions.

Every state except the fail state are in the form of a model and a formula. The

model is a partial assignment of each variable to a value. The formula is a propo-

sition in the form of a conjunctive normal form, which is a standard form to

represent a set of propositions. This form means that we rewrite the formula as

a conjunction of disjunctions of litterals, where a litteral is either a variable, its

negation, the truth value, or the false value. The model has a relation with the

formula, in the sense that if we assign the variables in the formula like given in

the model, then the formula is true. For its part, the fail state indicates that the

formula given originally as an input cannot be satis�ed.

From the initial state, the algorithm tries to infer the variable values (either

true or false) from the logical propositions. To do so, it runs a series of “unit

propagation” function. The unit propagation is called as such because it is able

to propagate a variable value from a disjunction to all other disjunctions, and

infer new variable values from those disjunctions. However, when the algorithm

cannot determine a value, it will decide to assign a value to some variable. When

there is a con�ict, the algorithms backtracks to its latest decision. It then takes

the opposite decision.

Each time the algorithm forces a variable to be assigned to a value, it adds it to

the model. If the algorithm succeeds, the model is an example of an assignment

that makes the input formula true. Otherwise, the algorithm is in the fail state,

and the model can not be exploited.

Nowadays, the DPLL algorithm is extended to support backjumping, also

called non-chronological backtracking. This latter means that instead of back-

tracking to the latest decision, the algorithm will try to analyze the decision that
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leads to the con�ict. The con�ict resolution is based on the construction of an

implication graph.

2.4.3 The SMT Modeling
The SMT method focuses on all CSPs such that variables are part of some the-

ories, and constraints are expressed under the grammar of those theories. In

essence, it is an extension of SAT. The resolution of such problems relies on the

DPLL algorithm from a SAT solver, communicating with a theory checker for

each theory available in the SMT solver. The whole algorithm is then called

DPLL Modulo Theories (DPLL(T)), and was developed by Ganzinger et al. (2004).

The variables are typed, and treated with the axioms given their respective the-

ory. De Moura and Bjørner (2011) describe SMT as a way to express a CSP with

a rich mathematical language, rather than only propositional logic.

The SMT method has been applied in various �elds, and acquired momentum

especially for security purpose regarding system veri�cation, as illustrated by

Katz et al. (2017) for veri�cation of deep neural networks, by Delmas et al. (2017)

in safety, and by Shuyuan Zhang et al. (2012) for �rewalls.

Basically, it is possible to express ILP problems into SMT. However, regarding

performances, it may be better to use an ILP solver when the CSP can be reduced

to an ILP problem, because the simplex algorithm is in general more e�cient than

the DPLL(T) algorithm.

For this thesis, although we propose a general requirement model, our orig-

inal use case is to enable tenants to enumerate the locations they allow or the

vendors they allow for their virtual resources. However, we failed to model those

requirements within the ILP formulation. This failure is not due to those two re-

quirements in particular. The reason is more general, because those two require-

ments imply a set structure (the set of authorized locations, the set of authorized

vendors), which is very di�erent from the integer structure. Therefore, we also

failed to model any requirement using a set structure within the ILP formulation.

The di�erence between the set structure and the integer structure is that this

latter has a total order, while sets do not. In other words, we can always compare

any pair of integers (and saying which is lower or equal), but we cannot compare

every pair of sets. We can only compare sets based on which contains the other:

“authorizing vendor X and Y” implies “authorizing vendor X”, but we can say

nothing about a pair of sets like “authorizing vendor X” and “authorizing vendor

Y”. Hence, in this thesis, we decide to seek a CSP formulation that would support

the set structure, and we do not rely on the ILP formulation.

The description we give of the DPLL(T) algorithm is very high-level. Indeed,

there are di�erent variations which are investigated, in order to make it even

more e�cient. Besides, not all those variations support the same theories. Heiz-
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mann et al. (2018) organized the 13th International Satis�ability Modulo Theo-

ries Competition (SMT-COMP 2018). The four �rst best scores were assigned to

CVC4 of Barrett et al. (2011), z3 of Moura and Bjørner (2008) (although not com-

peting), Yices of Dutertre (2014) and SMTInterpol of Christ et al. (2012). In this

thesis, we use the z3 solver, as it is one of the best solvers, supports a wide range

of theories, and supports a Python API.

Although powerful, SMT solvers are not omnipotent. They are very depen-

dent on the CSP they are solving—and by this sentence, we mean that they are

very dependent on the way the user models the problem. In other words, trans-

lating a real world problem into a CSP is non-trivial, and we may have di�erent

alternatives. We can always imagine to use other theories, use less constraints,

or even use a totally di�erent set of constraints.

Despite this degree of freedom in the expression of the problem, there is al-

ways one property that we must ensure: that the problem is decidable. This

property is key to ensure that the SMT solver will always answer. Otherwise,

it may not terminate, or terminate but returning a meaningless result (typically

“unknown”). In such cases, we have di�erent options: re-run the solver (as the

resolution is not fully deterministic), hoping to get a meaningful result; analyz-

ing what makes the problem non-decidable, and circumvent it; or get rid of the

SMT solver and use a dedicated algorithm.

2.5 Conclusion

This chapter presented several state-of-the-art works around the VNE problem.

As a whole, it illustrated that it is a long-studied problem, with several rami�-

cations in computer science, and a close relation with virtualization technology.

It is then no surprise that new virtualization technologies such as SDN and NFV

are also covered.

Our focus nevertheless was security, which can be mainly divided into two

aspects: security for the tenants, and security for the InPs. In this thesis, we

understand, from the security for the tenants, that security cannot be described as

a single requirement. The needs of the tenants, especially in a 5G context where

they may come from very di�erent environments (industrial, healthcare, vehicle,

cities), with little knowledge about how a network is operated, may therefore be

very vast. Besides, in the same way they may have little knowledge about how

a network is operated, the InPs may learn a lot from the di�erent environments

the tenants are dealing with.

This �rst idea leads us to propose a di�erent VNE formulation, which should

be able to treat a variety of security-oriented requirements, along with QoS re-

quirements. This VNE formulation will leverage SMT.
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We also propose, inspired by the security for the InPs, to follow the limited in-

formation disclosure paradigm. It is a reasonable assumption, as �rst, we expect

multiple InPs to participate into the 5G network slicing, while being reluctant

to share such sensitive information as their resources, their topologies, and their

pricing policy.
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CHAPTER 3

Security Constraint Model

This chapter presents our attribute model for the security-aware Virtual Network

Embedding (VNE) in the 5G context. The goal of this model is to formalize the

attribute concept, which will enable tenants and Infrastructure Providers (InPs)

to agree upon what is o�ered, what is demanded, and how to ful�ll a demand.

There is a close connection between the concept of demand and o�er as used

in this thesis, and the concept of demand and o�er in economics. The idea in this

thesis, though, is that we identify the components of the demand of the tenant, as

well as the components of the o�er from the InPs, and formalize rules that will

tell how to automatically satisfy the tenant. Especially, we want to formalize

such rules even for security needs. For this reason, in this chapter, we describe

attributes in general terms, and provide security-oriented examples of attributes,

which are meaningful for our use case and serve for the evaluation of this work.

The reader may notice that our focus is the tenant, not the InPs. Neverthe-

less, InPs may have security requirements too, regarding the tenants and their

virtual resources. We also enable such requirements, but they will be treated in

Chapter 4. The ground reason is that InPs do not need a model to formalize their

needs, nor to enforce them onto the tenants, as InPs, by de�nition, have full con-

trol over the physical resources, and can always decide, for whatever reason, to

not provide them to a given tenant.

To tackle the security-aware VNE in the 5G context, our methodology is as

follows. First, we provide an attribute model in Section 3.1. It is the core of

our contributions. We then apply this model to a single domain scenario in Sec-

tion 3.2. We choose this scenario as the VNE problem is easier to reason within

this scenario than directly with the multi-domain scenario. Besides, the single

domain formulation will serve as a reference to build the multi-domain formu-
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lation in Chapter 4. Section 3.3 extends the attribute model to two new features,

namely conditional requirement, and attribute-speci�c exclusion and colloca-

tion. The reason why we separate our model into these two sections is because

the Satis�ability Modulo Theories (SMT) formulation from Section 3.1 is the one

implemented and evaluated in Chapter 4, while the features proposed by Sec-

tion 3.3 have not been evaluated.

3.1 The A�ribute Model

This section presents our attribute model. For this purpose, Subsection 3.1.1 �rst

provides a de�nition and a classi�cation of the attributes. One key category of

attributes is the active attributes, which is split into exclusion and tolerant at-

tributes. For both attributes, we give their semantics and further classi�cations in

respectively Subsection 3.1.2 and Subsection 3.1.3. The tolerant attributes them-

selves have the Subsection 3.1.4 dedicated to the description of their structure, as

they are the attributes which we want to be adapted and instantiated to whatever

tenant requirement. Subsection 3.1.5 addresses another key dimension of the ac-

tive attributes, which is the di�erence between the node and the link attributes.

3.1.1 A�ribute Classification
Requirements are expressed in natural language. They can be technical, but also

legal, security-based, or compliance-related. We propose here a model to trans-

late requirements into mathematical constraints. This requirement model is built

around the concept of attribute.
Attributes describe resources, either demanded by the tenants or owned by

the Infrastructure Providers (InPs). For instance, when a tenant expresses the

requirement “my server must be in the US or in the EU”, it translates as the

virtual resource tenant’s server having a location attribute, which value is US or
EU. This value is the tenant’s server demand (in location). Likewise, when an

InP declares that “my server is in the US”, it translates as the physical resource

InP’s server having a location attribute, which value is US. This value is the InP’s

server o�er (in location).

Attributes enable resources to be o�ered by providers to satisfy a demand

from a tenant. To tell whether the mapping of the virtual resource to the physi-

cal resource ful�lls the tenant’s requirements, we use mathematical constraints.

These mathematical constraints describe the relation between an o�er, a demand,

and an attribute. For our location attribute example, it is clear that o�er and de-

mand are related through the subset relation: the physical resource location must

be within the set of authorized locations of the virtual resource.
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Before introducing all the mathematical constraints, we now give a general

overview of our notations for the attribute model. We denote as i a resource

required by a tenant, and as j a resource provided by an InP. We denote as di
all the demands for the resource i, and as oj all the o�ers for the resource j. We

denote as di[a] (resp. oj[a]) a term in di (resp. oj), corresponding to the attribute a.

These terms have values in the set V (a), which is the set of allowed values for the

attribute a. We denote as xij ∈ {⊥,>} an unknown which equals > (meaning

“true”) if resource i is allocated to resource j, and⊥ (meaning “false”) otherwise.

The notations used in this thesis are detailed in the Table of all Notations starting

on page 137.

Although aiming to be general, our attribute model does not provide a unique

structure for every attribute, because we identi�ed some relations between them.

These relations lead us to an attribute classi�cation.

The main cause of the distinction between di�erent attributes is what we

call attribute derivation. This relation leads us to di�erentiate the active from

the inactive attributes. A second cause of distinction is the time-dependence,

which leads us to di�erentiate the mutable from the immutable attributes. The

third cause of distinction is semantics, leading us to di�erentiate exclusion from

tolerant attributes. All those distinctions can be combined together.

Active vs. Inactive Attributes. Attributes can be derived from other attributes.

For instance, given an attribute a, we can build a∗, an attribute such that the

tenant can enter several values from V (a) (empty set included). It is an ordered

attribute such that V (a∗) is Powerset(V (a) ), where Powerset(Set) stands for

the powerset of set Set. If we consider an o�er in a, its value is, by de�nition,

in V (a). At the tenant side, the demand is given with V (a∗), whose value is, by

de�nition, in Powerset(V (a) ).
Comparing directly the o�er and the demand is not possible. We need either

to convert the demand into an element of V (a), which is impossible, or to con-

vert the o�er into an element of Powerset(V (a) ), which can be simply done by

putting it into a singleton. This conversion actually describes an attribute deriva-

tion: we are actually de�ning the o�er in a∗, so that this o�er can be compared

with the demand in the same attribute, a∗.
Yet, for the InP, it may be more convenient, more accurate, to de�ne the o�er

in a in their substrate resources. For this reason, we enable both a and a∗. More

speci�cally, a is referred to as an inactive attribute, while a∗ is referred to as an

active attribute. Active attributes enable to compare an o�er and a demand. As

such, they can be part of a VNE algorithm. Inactive attributes, for their part,

do not enable such a comparison directly: their values, to be treated by a VNE

algorithm, must be used within a derived and active attribute.

Mutable vs. Immutable Attributes. We further classify attributes regarding

their time-dependency into mutable and immutable attributes. For this purpose,
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we de�ne a transition function Transitiona such that Transitiona(it, jt) ∈ V (a),
where it and jt are respectively a resource request i and a resource o�er j at a

given instant t. Then Transitiona(it, jt) is the value of oj[a] at next instant t+1,

or ojt+1 [a], and indicates how a substrate resource state changes over time.

Transitiona(it, jt) = jt[a]− it[a] (3.1)

Transitiona(it, jt) = Transitiona(jt) (3.2)

A typical immutable attribute for a substrate resource is its geographical lo-

cation (Transitiona is then a constant function), whereas a typical mutable at-

tribute is the link bandwidth or the link bit error rate (Transitiona is then a gen-

eral function). More precisely, the link bandwidth is a stateful resource, whereas

the link bit error rate is a stateless resource. Stateful attributes depend on the

past substrate network state and on the tenant request. The expression of the

Transitiona can vary, and is very dependent on the semantics of the attribute.

For instance, we can represent the depletion of the o�er jt due to its consumption

by it as a subtraction, as in Equation (3.1). On the contrary, stateless attributes

do not depend on the tenant request, as shown in Equation (3.2). In that case,

Transitiona can model a time-dependent physical process occurring on substrate

resource j.
Exclusion vs. Tolerant Attributes. The original use case for this thesis was

to enable two sets of requirements. One was to enable a tenant to enumerate

a set of authorized locations, which will be referred to as the !loc attribute in

the remainder of this thesis, as well as to enumerate a set of authorized vendors,

which will be referred to as the !ven attribute. The other set of requirements

encompassed exclusion relations between virtual resources of di�erent tenants.

Such exclusion relation were special, as they do not depend on the substrate

resources, while the !loc and the !ven do. These latter are encompassed in the

tolerant attribute category, opposed to the exclusion attribute category. These

categories are more deeply described in the remainder of this thesis.

3.1.2 Exclusion A�ributes: Semantics and Typology
Exclusion attributes enable tenants to forbid their virtual resources to share phys-

ical resources with other virtual resources, be them owned by the same tenant

or by other tenants. In practice, when tenants have an exclusion requirement on

one of their virtual resources (for instance, a), they enumerate the other virtual

resources they want to exclude (b and c for instance). Exclusion is special, be-

cause it does not depend on any property of the substrate resources. Once we

know that a excludes b and c, we can select any substrate resource for b (let it be
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B), any substrate resource for c (let it be C, or B again); the only real constraint is

that we must have another substrate resource, denoted A , distinct from B (and C),

to host a. For this reason, we use a distinct model for exclusion attributes. Be-

sides, exclusion by itself is a symmetric relation, as shown in Demonstration 3.1.

Demonstration 3.1: Exclusion symmetry

Let ResourcesV be the set of virtual resources, and ResourcesP the set of

physical resources. Let Exclude be the exclusion predicate, as a binary re-

lation. It can be expressed as:

∀(i, i′) ∈ ResourcesV × ResourcesV , i 6= i′,

Exclude(i, i′) =
(
∀j ∈ ResourcesP , xij ⇒ ¬xi′,j

)
By contraposition, xij ⇒ ¬xi′,j is equivalent to xi′,j ⇒ ¬xij . It follows that

Exclude(i, i′) ≡ Exclude(i′, i).

We exhibit three exclusion attributes, namely !exc-resources (resource ex-

clusion), !exc-requests (request exclusion), and !exc-tenants (tenant exclu-

sion). They follow respectively Equation (3.3), Equation (3.4) and Equation (3.5).

These three equations only di�er in what the tenant expresses as the elements to

be excluded, respectively resources, requests, and tenants. Each equation then

derives exclusion relationships from those elements. An excluded tenant will

lead its requests to be excluded, and an excluded request will lead its resources

to be excluded. In other words, Equation (3.3) implies Equation (3.4), which im-

plies Equation (3.5).

xij ⇒
∧

i′∈di[!exc-resources]

¬xi′,j (3.3)

Equation (3.3) means that if i is allocated to j, then no excluded resource i′

can be allocated to j, where di[!exc-resources] is the set of all resources i′

which are excluded by the requester.

xij ⇒
∧

R∈di[!exc-requests]
i′∈ResourcesR

¬xi′,j (3.4)

Equation (3.4) means that if i is allocated to j, then no virtual resource i′ from

any excluded request R can be allocated to j, where di[!exc-requests] is the

set of all requests R which are excluded by the requester. The set ResourcesR
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Table 3.1: Building Blocks of Some Tolerant A�ributes

Attribute V (a)
Ordering operator

(demand ≤ o�er)

+ ma Ma

!mem N ∪ {∞} Natural

order

Standard

addition

0 ∞

!bw N ∪ {∞} Natural

order

Standard

addition

0 ∞

!loc
Powerset

of locations

⊃ (note the orientation:

o�er must be in demand)

∩ All locations ∅

!ven
Powerset

of vendors

⊃ (note the orientation:

o�er must be in demand)

∩ All vendors ∅

!ber Percentage ≥ (note the orientation) min 100% 0%

represents the set of resources in a request R.

xij ⇒
∧

τ∈di[!exc-tenants]
R∈Requestsτ
i′∈ResourcesR

¬xi′,j (3.5)

Equation (3.5) means that if i is allocated to j, then no virtual resource i′

from any request R ∈ Requestsτ from any excluded tenant τ can be allocated to

j, where di[!exc-tenants] is the set of all tenants τ which are excluded by the

requester. The set Requestsτ represents the set of requests owned by a tenant τ .

The reason why we de�ne three distinct exclusion attributes is because the

needs of the tenants may evolve over time. They may need new slices, new vir-

tual resources. And of course, new tenants may appear. Our exclusion attributes

capture those three layers. In practice, we apply these exclusion attributes for

di�erent cases.

Excluding resources from each other in a tenant’s own request is useful if they

carry data that are sensitive, see Equation (3.3). Limiting collocations in between

the tenant’s requests is useful when the tenant is a company, as one request

may represent the company’s intellectual property department slice, another the

�nancial department slice, see Equation (3.4). Excluding tenants is useful when

the other tenants are identi�ed as rivals, see Equation (3.5). All those cases are

driven by mistrust in slice isolation at the physical level.

To be more precise, a tenant may trust the resource isolation as enforced by

the InPs for some resources, but not for some critical ones. In that case, this ten-

ant may desire more control over the physical resources in which those critical

resources are hosted, perhaps even to the point of allocating a dedicated physical

resource for them.
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3.1.3 Tolerant A�ributes: Semantics and Typology
Aside from the exclusion attribute, we have tolerant attributes. We call them

as such because they tolerate unspeci�ed values for both InPs and tenants. We

want the list of tolerant attributes to be extended freely by InPs. In this thesis,

we provide a �rst list of tolerant attributes in Table 3.1. Table 3.1 also shows the

building blocks of the corresponding mathematical structure. Besides, tolerant

attributes are divided into binding and non-binding attributes.

Binding attributes result in constraints where the acceptance of a demand

can impact the acceptance of another one. It is typically the case when we model

an attribute where demands will consume an o�er. Let !mem be the memory

attribute, which is a binding attribute. Let d1 be a demand allocated to an o�er

oj , that is, the variable x1,j is true. This means that the demand d1 in !mem is lower

that the o�er oj in !mem (that is, d1[!mem] ≤ oj[!mem]). Now, let d2 be another

demand such that the demand d2 in !mem is lower than the o�er oj in !mem. The

condition allowing to allocate d2 along d1 to oj (that is, both variables x1,j and

x2,j are true), is stricter than only having d1[!mem] ≤ oj[!mem] and d2[!mem] ≤
oj[!mem], because the demand d1 in !mem already consumes the o�er oj in !mem.

In other words, the demand d2 in !mem can only consume what remains of the

o�er oj in !mem, that is, oj[!mem] − d1[!mem]. The aforementioned condition

is then that the demand d2 in !mem should be lower than the remaining !mem
of oj , that is: d2[!mem] ≤ oj[!mem] − d1[!mem], better rewritten as: d1[!mem] +
d2[!mem] ≤ oj[!mem]. ∑

i∈ResourcesV ,xij=>

di[a] ≤ oj[a] (3.6)

Binding attributes follow Equation (3.6). This latter means that the sum of

the demands di[a] of all the virtual resources i ∈ ResourcesV that have been

allocated to j must be lower than the o�er oj[a]. There is one such constraint

per o�er oj and per attribute a.

xij ⇒ di[a] ≤ oj[a] (3.7)

On the contrary, non-binding attributes result in constraints where each de-

mand acceptance can be checked separately. It is typically the case of the bit

error rate (BER) attribute. Let !ber be the BER attribute, which is a non-binding

attribute. Let d1 be a demand allocated to an o�er oj , that is, the variable x1j is

true. This means that the demand d1 in !ber is lower than the o�er oj in !ber,

that is: d1[!ber] ≥ oj[!ber] (note the orientation of≥: di[a] here is the maximal

accepted BER, as shown in Table 3.1). Now, let d2 be another demand such that

the demand d2 in !ber is lower than the o�er oj in !ber. The condition allow-
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ing to allocate d2 along d1 to oj (that is, both variables x1j and x2j are true), is

equivalent to have d1[!ber] ≥ oj[!ber] and d2[!ber] ≥ oj[!ber]. The aforemen-

tioned condition is then that any demand allocated to an o�er oj should be lower

than the o�er in !ber, better rewritten as: min{d1[!mem], d2[!mem]} ≥ oj[!mem]
(again, see Table 3.1 regarding the orientation of ≥).

3.1.4 Tolerant A�ributes: Structure

Demonstration 3.2
Let (Wa,≤,+) be a commutative, partially ordered monoid. Let e be an ex
nihilo element not inWa. Let≤′ and +′ be extensions of≤ and + such that:

∀x ∈ Wa ∪ {e}, x ≤′ e
e+′ x = e+′ e = e

∀x, y ∈ Wa, x ≤ y is equivalent to x ≤′ y
x+′ y = x+ y

Then, we have stability of +′:

∀x, y ∈ Wa, x+′ y = x+ y ∈ Wa ⊂ Wa ∪ {e}
∀x ∈ Wa, e+′ x = e+ e = e ∈ Wa ∪ {e}

We have associativity of +′ (demonstration is shortened thanks to com-

mutativity assumption):

∀x, y, z ∈ Wa, (x+
′ y) +′ z = (x+ y) + z

= x+ (y + z)

= x+′ (y +′ z)

∀x, y ∈ Wa, (e+
′ x) +′ y = (x+′ y) +′ e = e

We have re�exivity of ≤′:

∀x ∈ Wa, x ≤′ x⇒ x ≤ x

e ≤′ e
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We have antisymmetry of ≤′, as e is the greatest element by construc-

tion:

∀x, y ∈ Wa, x ≤′ y ∧ y ≤′ x⇒ x ≤ y ∧ y ≤ x⇒ x = y

∀x ∈ Wa, x ≤′ e ∧ e ≤′ x⇒ e = x

We have transitivity of ≤′. Let x, y, z ∈ Wa ∪ {e} such that x ≤′ y and

y ≤′ z.

1) if z = e, then x ≤′ z is true

2) if z 6= e, then y 6= e hence x 6= e then x ≤ z so x ≤′ z

And we have compatibility between≤′ and +′. Let x, y ∈ Wa∪{e} such

that x ≤′ y.

We can show that: ∀t ∈ Wa ∪ {e}, x+′ t ≤′ y +′ t.

1) if y = e, we have ∀t ∈ Wa ∪ {e}, x+′ t ≤′ e+′ t
2) if y 6= e, then x 6= e

2a) if t = e, we have x+′ e ≤′ y +′ e
2b) if t 6= e, we have x+ t ≤ y + t hence x+′ t ≤′ y +′ t

Consequently, (Wa∪{e},≤′,+′) is also a partially ordered monoid.

More generally, we de�ne an attribute a as a tuple (V (a) ,≤,+,ma,Ma,×).
The building blocks of this structure for di�erent tolerant attributes is shown in

Table 3.1. Note that × does not appear in this table. We actually introduce it

later, and de�ne it from the other building blocks.

We build this tuple from a commutative, partially ordered monoid denoted

(Wa,≤,+). Monoids are structures such that the law is associative, and supports

a neutral element. We denote ma such a neutral element. We suppose that there

exists in Wa an element which is both its greatest
1

and its absorbing element.

This element is denoted Ma. Then V (a) is the positive cone of Wa, that is, the

set of all values which are greater than ma. It follows that ma is both the least
1

and the neutral element in V (a).
We show in Demonstration 3.2 that we can always extend a monoid to get

the Ma element, and the !mem attribute in Table 3.1, is an example of a monoid

(N,≤,+) we extend to get such Ma element, which is denoted as∞.

1
In a partially ordered structure, the greatest (resp. least) element (it is unique) is the element

of the structure which is greater (resp. lower) than any other element of the same structure. They

should not be confused with the de�nition of the maximum (resp. minimum), as those require a

totally ordered structure.
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De�nition 3.1: Ideal node and link
An ideal node (or link) is a resource for which we do not apply any tolerant

nor exclusion constraints. For a tolerant attribute a, this is done by using the

value Ma. As exclusion attributes do not exhibit such a convenient value,

we do not generate exclusion constraints from ideal nodes and links. In

other words, they will accept whatever request they receive.

We also de�ne an operation × as a function which takes a boolean (xij) and

an attribute value (di[a] ∈ V (a)) and returns another attribute value. It fol-

lows Equation (3.8).

xij × di[a] =

{
di[a] if xij = > (xij is true)

ma otherwise

(3.8)

As a general note, we can also de�ne the

∑
symbol in Equation (3.6) with

the law of the monoid, by applying recursively the associativity of this law, in

the same way

∑
is a recurrence over +. In this thesis though, all the binding

attributes we present are derived from integers.

Among those building blocks, ma and Ma happen to play a convenient role

for both tenants and InPs.

The ma value of tolerant attributes as well as the value ∅ of the exclusion

attributes can be used as a default value. In other words, when tenants �ll

their requests, they can skip some attributes, and focus only on those which are

meaningful to them. The ma value guarantees through Equation (3.6) and Equa-

tion (3.7) that all o�ers will be considered. For the exclusion constraint, the ∅
value guarantees through Equation (3.3) that all o�ers but the ones we have ex-

cluded will be considered (since exclusion is a symmetric relation).

At the same time,ma can be used by the InPs to indicate that the value for this

attribute is unknown or that the attribute itself is unsupported. In that case, the

ma value guarantees through Equation (3.6) and Equation (3.7) that only demands

which use ma too will be considered. In other words, the equations follow the

legitimate rule that demands with a meaningful value for the tenant (that is,

di�erent from ma) will not be allocated to o�ers with an unknown value or not

supporting the attribute (that is, equal to ma).

For its part, Ma is a convenient way to implement a resource with an unlim-

ited capacity (or a capacity which cannot be exhausted), while still complying

with capacity rule (R6). Indeed, by de�nition, when oj[a] = Ma, Equation (3.6)

and Equation (3.7) are true. In other words, when oj[a] = Ma, the o�er can

accept as many demands as desired. Note that unlike ma, we do not have any

equivalent of Ma for exclusion attribute.
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However, disabling the exclusion attribute for some o�ers happens to be use-

ful in some cases. These cases are actually described in Sections 4.1.1 and 4.1.2,

when applying the attribute model to the multi-domain scenario. This leads us

to the de�nition of ideal nodes and ideal links, given in De�nition 3.1.

3.1.5 Node and Link A�ributes: Semantics and Typology

De�nition 3.2: Aggregation function
A tolerant, link attribute a is a tuple (V (a) ,≤,+,ma,Ma,×, ·a) where

(V (a) ,≤,+,ma,Ma,×) is an attribute, and ·a is a binary relation called

the aggregation function. This latter is used to de�ne the o�er oj[a] for

some link j, as follows. We denote as ih and it the nodes at the tips of the

link j.
∀i = (ih, it) ∈ LS, oj[a] := oih [a] · aoit [a]

The relation ·a must have the following properties, with respect to the

attribute (V (a) ,≤,+,ma,Ma,×).

1) neutral element: ∀v ∈ V (a) ,Ma · av = v · aMa = v

2) absorbing element: ∀v ∈ V (a) ,ma · av = v · ama = ma

3) idempotence: ∀x ∈ V (a) , x · ax = x

4) commutative: ∀x ∈ V (a) , x · ay = y · ax
5) translation-invariance: ∀x, y, t ∈ V (a) , x ≤ y ⇒ x · at ≤ y · at

Note that the neutral (resp. absorbing) element of ·a is the absorbing

(resp. neutral) element of +.

Along the tolerant-exclusion distinction, we also distinguish node and link
attributes. Node attributes are on tenant virtual nodes, and link attributes are

on tenant virtual links. In other words, attributes are classi�ed according to the

tenant’s viewpoint.

As shown in the Table of all Notations starting on page 137, we denote as

BindingN (resp. NonBindingN ) the set of binding (resp. non-binding) node at-

tributes, and as BindingL (resp. NonBindingL) the set of binding (resp. non-

binding) link attributes.

The semantics of some attributes may not involve a virtual node and a phys-

ical node, or a virtual link and a physical link, but a virtual link and physical

nodes. In Table 3.1, we present such a link attribute (from the tenant’s view-

point), !ven, whose o�er is related to the nodes at the tips
2

of the physical link.

2
We use “tips” here instead of “ends”, to not introduce confusion with “end nodes”, already
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For such attribute, in Equation (3.6) and Equation (3.7), we consider that oj[a] is

the result of some aggregation function denoted ·a, as de�ned in De�nition 3.2.

As an example, for the tolerant link attribute !ven, we de�ne ·!ven as the

union (∪) of the node o�ers, for instance. The reader can easily verify that the

union follows the properties given in De�nition 3.2 asM !ven is the empty set (∅),
m!ven is the set of all vendors, and the ordering operator is the containment (⊃),

as shown in Table 3.1.

All the attributes in Table 3.1 can be formulated in Satis�ability Modulo The-

ories (SMT). As usual, the integer attributes leverage integer theory, and the

exclusion attribute leverage boolean theory. Our novelty is that the powerset

attributes leverage bitvector theory. The bitvector theory is a convenient way

to represent elements of a powerset Powerset(Set), where Set is �nite, because

we can associate each bit to the presence/absence of a certain element of Set.
Then for Set = {a, b, c} we can associate a sequence (a, b, c) that tells which bit

corresponds to which element, and then ∅ = 000, S = 111, {a, c} = 101. The

inclusion operation, x ⊂ y (see Table 3.1), is then equivalent to the predicate

(x = x� y) where � denotes the bitwise logical “and”.

3.2 Application to the Single Domain Scenario

This section applies the attribute model given in Section 3.1.1 to the single do-

main scenario. The single domain scenario corresponds to the original VNE prob-

lem, with a unique InP. Subsection 3.2.1 identi�es the key rules of the VNE prob-

lem in such a scenario and compares it with the Integer Linear Programming

(ILP) formulation we provided in Subsection 2.4.1. Subsection 3.2.2 provides the

SMT formulation of the problem, while leveraging our attribute model. This

formulation does not only serve as an illustration of how we can leverage our

attribute model. It is also a key part of our methodology to solve the VNE prob-

lem in a multi-domain context. For this reason, it will be reused and adapted in

Chapter 4.

3.2.1 VNE Description

Let us describe the VNE problem for a single domain slice embedding. The sit-

uation itself is represented in Figure 3.1. Let the substrate be a weighted graph

modelling the infrastructure. Substrate nodes model compute resources, and sub-

strate edges model network links. Their weights correspond to some capacity.

In Figure 3.1, such weights are labeled as cpu (node weight) or bw (edge weight).

used in eligible substrate hosts rule (R3).
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Figure 3.1: VNE illustration

A tenant willing to rent resources from this infrastructure must submit a virtual
network request, which is also modelled as a weighted graph. The weights of
virtual nodes and virtual links correspond to what the tenant demands. The goal
of the problem is to embed this request into the substrate, under the following
rules:

R1 Node mapping rule. Each virtual node is mapped to a unique substrate
host.

R2 Linkmapping rule. Each virtual link is mapped to a unique substrate path.
A path is surely a set of contiguous links.

R3 Eligible substrate hosts rule. There are two kinds of substrate nodes: tran-
sit nodes (usually network devices) and end nodes (usually servers), also
called substrate hosts in node mapping rule (R1). Only substrate hosts can
host a virtual node.

R4 Eligible paths rule. Paths in link mapping rule (R2) must be drawn between
substrate hosts (as per R3), which must be distinct.

R5 Node-link mapping coordination rule. The virtual nodes at the ends of
each virtual link must be mapped to the hosts at the ends of the substrate
path to which the virtual link is mapped.

R6 Capacity rule. The substrate node/linksmust accommodate all the demands
of all the virtual node/links which are mapped to them.
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In R1 and R2, we de�ne as a mapping a relation between a tenant-desired

virtual resource (a node or a link) and a physical resource (a host or a link).

This mapping relation technically corresponds to di�erent tasks. For instance,

if virtual nodes represent virtual machines (VMs) and physical hosts represent

servers, then the mapping represent the fact that the VM is installed in a server

through a hypervisor. It is a n-1 mapping (cf. De�nition 2.1), as illustrated by the

association between the nodes a and A in Figure 3.1.

Other node mappings are possible. For instance, Bays et al. (2014) consider

virtual nodes to be virtual routers, that must be instantiated in physical routers.

In other words, in their work, every substrate node could host a virtual node.

In this thesis, like in works from Alaluna et al. (2017) for instance, we consider

that substrate nodes are classi�ed into two categories: transit nodes, and end

nodes; and that only end nodes can actually host virtual nodes. For this reason,

we follow R3.

Meanwhile, the development of network hypervisors (see Blenk et al. (2016))

in the Software-De�ned Network (SDN) context enables a single virtual SDN

switch to be mapped to multiple physical SDN switches. As such, it is a n-n

mapping (cf. De�nition 2.1), which we decided to not address in this thesis. For

this reason, we follow R1.

Link mapping is another n-n mapping, where the virtual link is mapped to

a physical path, as illustrated by the association between the links ab and the

links along the path between A and B in Figure 3.1. This raises the question of

what happens when the path is empty, that is, when, technically, we are trying to

emulate a link within a node. In this thesis, we consider that this is still a tedious

task, and we will avoid it at the physical level. This is why, in the eligible paths

rule (R4), we explicitly mention distinct hosts.

Besides, there is an important relation between the link and the node map-

ping, which is described in node-link mapping coordination rule (R5). R5 is ac-

tually very important for an exact mapping. With this rule, we consider that

virtual links represent an authorized tra�c from a source node to a destination

node, and that it must �ow through a continuous set of links from this source

to that destination. It is typically this rule that becomes di�cult to formulate

when enabling a n-n node mapping. The reader can refer to De�nition 2.1 for a

reminder of the de�nition of n-n mapping and n-1 mapping.

The concept of demand (and o�er) from R6 will be described in the next sec-

tion. In Figure 3.1, the demands are formulated by the weights within the virtual

network request, and the o�ers by the weights within the infrastructure graph.

There are some relations indeed between them. For instance, ab and bd can be

mapped on the link between the rightmost switch and the server B because the

sum of their requested bandwidths (bw) is lower than what the physical link

provides.
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Figure 3.2: Flow Conservation Rule Limit

Note that the general ILP formulation we give in Example 2.4 follows some of
these rules. Indeed, Equation (2.2) corresponds to R1, Equation (2.3) encompasses
to R2 and R5, and Equation (2.4) and Equation (2.5) correspond to R6. The two
missing rules are R3, because this formulation considers that every substrate
node can host a virtual node, and R4, by definition of the flow conservation rule,
from Equation (2.3).

3.2.2 SMT Formulation

We leverage our attribute-based requirement model to express the slice embed-
ding problem as a Constraint Satisfaction Problem (CSP). In this section, we
present these mathematical constraints for a limited case, with only one InP and
only one domain, namely, the single domain scenario. We will build upon it in
the next sections.

The CSP formulation serves as an interface between the human language,
and the slice embedding algorithm. We consider this interface as an important
feature for InPs, tenants, and system auditors, as it enables them to verify what
the algorithm means, and how the attributes are applied. For this reason, we use
an SMT formulation. SMT solvers take a CSP, and return one solution at a time.
This solution is not necessarily optimal. To get an optimal solution, we must add
an optimality constraint to the solver.

In this thesis, we do not focus on finding an optimal solution. Instead, we
enumerate all of them, to verify that the constraints are applied as intended. The
reason is that in VNE, the ILP formulations are including optimization features.
For instance, paths are often expressed using a flow conservation rule, like Equa-
tion (2.3) in the general ILP formulation we give in Example 2.4. If we consider
this constraint alone, it authorizes very convoluted paths, which can loop and
go through the source and destination many times. A example of such a convo-
luted but legitimate path is given in Figure 3.2. The verification of Equation (2.3)
applied on this example is given in Table 3.2.

51



Security Constraint Model

Table 3.2: Flow Conservation Analysis for Figure 3.2

j ∈ NS
∑

k∈Egress(j) li,k
∑

k∈Ingress(j) lj,k na,j − nb,j
A 1 0 1
B 2 2 0
C 1 2 −1
D 1 1 0
E 1 1 0

The ground reason for this is that the ILP formulation we propose, taken

from Rost and Schmid (2018) is wrong to some extent, but remains also a good

example of why it is easy to be lost when encoding a problem as di�cult as the

VNE problem into the ILP paradigm. The problem raised by Figure 3.2 is that it is

very di�cult to give a meaning to such a convoluted path in a computer network.

The �rst thing which visually appears in a set of two loops, BCD and BCDEC,

which is also the very �rst thing we want to avoid for a tra�c. The second thing

is that it is a very suboptimal path: we traverse the node B multiple times, and

consume capacity of some substrate links without any concrete purpose.

Nevertheless, the same equation appears in several VNE works, within ILP

formulations. And each time, the use of this equation is legitimate; it is only

wrong from an operational viewpoint in Rost and Schmid (2018), because the

other works use the price as an objective, instead of the isEmbedded decision

variable. In other words, as they seek to minimize the cost of the virtual network

charged to the tenant, or to minimize the load of the infrastructure, solutions like

in Figure 3.2 are never chosen.

In this thesis, as we leverage more theories than the integer one, it is impor-

tant to be sure, before any optimization, that our problem is correctly formulated.

It is for this reason that, although we take inspiration from many equations of

the ILP formulation, we cannot follow them blindly, and especially, we cannot

reuse the �ow conservation rule. The semantical description of the single do-

main scenario is given in Section 3.2.1 as a set of rules to comply to. We now

translate those rules into mathematical constraints, as follows.

The substrate, or physical infrastructure, or single domain, is denoted S. It

is a directed, connected graph: S = (NS, LS). Some nodes are hosts: HS ⊂ NS
.

Only them can host slice nodes. Besides, we have a set of (slice) requests, denoted

Requests . Each request is owned by a tenant. Each request R is modeled as a

directed graph R = (NR, LR). We treat one request at a time, so we distinguish

a request-to-embed, denoted NewRequest , from already embedded slices.
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∨
j∈HS

(
nij ∧

∧
j′ 6=j

¬ni,j′
)
∀R∈Requests , i∈NR

(C1)

∨
j∈PS

(
pij ∧

∧
j′ 6=j

¬pi,j′
)
∀R∈Requests , i∈LR (C2)

Remark 3.1: Notations
As we consider a directed graph, we now want to emphasize the notation

for edges. Given two nodes A and B, the edge whose head is A (resp. B) and

tail is B (resp. A) is denoted (A, B) (resp. (B, A)). Conversely, given an edge

denoted e, its head is denoted eh and its tail is denoted et. The head and the

tail of the edge are called the tips of the edge.

(n1, (n1, n2), n2, · · · , nl, (nl, nl+1), nl+1) (3.9)

Besides, we want to emphasize the notation for paths. A path is a se-

quence alterning nodes and edges, as depicted in Equation (3.9), where the

ni for i ∈ [1, l + 1] are the nodes along the path, and the (ni, ni+1) for

i ∈ [1, l] are the edges along the path. The number l represents the length

of the path. The node n1 is called the node at the beginning of the path, or

head to make a parallel with the edge notation, and the node nl+1 is called

the node at the end of the path, or tail, to make a parallel with the edge

notation.

Conversely, given a path p, the set of nodes along the path p is denoted

AlongN(p), the set of edges along the path p is denoted AlongL(p), the head

of the path is denoted ph, the tail of the path is denoted pt, and the sequence

(ph, pt) is also referred to as the tips of the path, denoted Tipsp.
Those notations are also present in the Table of all Notations starting

on page 137.

Equation (C1) (resp. Equation (C2)) implements R1 (resp. R2), expressed as

a one-and-only-one predicate over the nij (resp. pij). The nij and the pij cor-

respond to the unknowns xij as used in Section 3.1. As such, nij (resp. pij) are

Boolean variables which are true (denoted >) when a virtual node i (resp. a vir-

tual link i) is mapped to a substrate host j from the set of hostsHS
(resp. a path j

from the set of paths ∈ P S
), and false (denoted⊥) otherwise. Especially, j ∈ HS

complies with R3, and j ∈ P S
complies with R4. We will give further details

about P S
at the end of this section, as not all paths are actually candidates.
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pij = (nih,jh ∧ nit,jt) ∧
∧

j′∈AlongL(j)

li,j′ ∧
∧

j′∈LS\AlongL(j)

¬li,j′

∀R∈Requests , i∈LR, j∈P S, i = (ih, it),Tipsj = (jh, jt)

 (C3)

The pij variables are derived from nij and lij through Equation (C3). It de�nes

the link-to-path variables as the conjunction of mapping link tips to path tips

(cf. R5), then mapping the link to the links along the path, and then not mapping

the link to the other links in the infrastructure. As a reminder, the de�nition of

AlongL(j) and Tipsj is given in the Table of all Notations starting on page 137.

It is also given in Remark 3.1. We will give further details about P S
at the end of

this section, as not all paths are actually candidates.

ni,memorizedN (i) = > ∀R∈Requests\{NewRequest}, i∈NR
(C4)

pi,memorizedP (i) = > ∀R∈Requests\{NewRequest}, i∈LR (C5)

Equation (C4) (resp. Equation (C5)) tells that each virtual node i (resp. each

virtual link i) of the already embedded requests should be mapped to the physical

node µN(i) (resp. physical path µP (i)), where memorizedN (resp. memorizedP )

is a function that memorizes the mappings for the currently embedded slices.∑
i∈NR

R∈Requests

nij × di[a] ≤ oj[a] ∀a∈BindingN , j∈HS

(C6)

nij ⇒ di[a] ≤ oj[a] ∀a∈NonBindingN , R∈Requests , i∈NR, j∈HS
(C7)∑

i∈LR
R∈Requests

lij × di[a] ≤ oj[a] ∀a∈BindingL, j∈LS
(C8)

lij ⇒ di[a] ≤ oj[a] ∀a∈NonBindingL, R∈Requests , i∈LR, j∈LS (C9)

Equation (C6) (resp. Equation (C7), Equation (C8), Equation (C9)) guaran-

tee requirements based on tolerant attributes BindingN (resp. NonBindingN ,

BindingL, NonBindingL). They express that the o�er oj[a] of an InP’s resource

j in a given attribute a is limited, and that the demands di[a] of the tenant re-

sources i allocated to j are bounded by the o�er. They comply with R6. Equa-

tion (C6) and Equation (C8) are based on Equation (3.6), using nij and lij instead

of xij . They describe binding attributes. For their part, equations Equation (C7)

and Equation (C9) are based on Equation (3.7), using nij and lij instead of xij .
They describe non-binding attributes.
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De�nition 3.3: Loop-free path
A loop-free path from a source to a target in a graph is a path that tra-

verse each node of the graph at most once when source6=target. When

source=target, and if there exists a self-loop (source, source), there is

a unique loop-free path between source and source. It is the sequence

(source, (source, source), source), which traverses the node source twice

and no other node.

nij ⇒
∧

i′∈di[!exc-resources]

¬ni′,j ∀R∈Requests , i∈NR, j∈HS

(C10)

nij ⇒
∧

R′∈di[!exc-requests]
i′∈NR′

¬ni′,j ∀R∈Requests , i∈NR, j∈HS

(C11)

nij ⇒
∧

τ∈di[!exc-requests]
R′∈Requestsτ

i′∈NR′

¬ni′,j ∀R∈Requests , i∈NR, j∈HS

(C12)

Equation (C10), Equation (C11), and Equation (C12) express node exclu-

sion constraints. They are based respectively on Equation (3.3), Equation (3.4)

and Equation (3.5), using nij instead of xij . They also comply with R6.

lij ⇒
∧

i′∈di[!exc-resources]

¬li′,j ∀R∈Requests , i∈LR, j∈LS
(C13)

lij ⇒
∧

R′∈di[!exc-requests]
i′∈LR′

¬li′,j ∀R∈Requests , i∈LR, j∈LS
(C14)

lij ⇒
∧

τ∈di[!exc-requests]
R′∈Requestsτ

i′∈LR′

¬li′,j ∀R∈Requests , i∈LR, j∈LS
(C15)

Finally, Equation (C13), Equation (C14), and Equation (C15) express link ex-

clusion constraints. Likewise, they are based respectively on Equation (3.3), Equa-

tion (3.4) and Equation (3.5), using lij instead of xij . They also comply with R6.

While describing Equation (C2) and Equation (C3), we mentioned that not all

paths are actually candidates. For this reason, P S
does not represent the set of

all paths, but a subset of them: the set of what we call “loop-free paths”. Loop-

free paths enable us to enforce R4. They are de�ned by De�nition 3.3. They are

indeed a special case of simple paths. For this reason, we can easily design a

loop-free path generating algorithm from a simple path generating algorithm.
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3.3 Model Refinement
In the earliest stage of this work, we envisioned two features that would be help-

ful when declaring a virtual network request. The �rst feature can be referred

to as conditional requirement, and should help tenants to formulate trade-o�s,

which minimize the chances of their requests to be rejected by the system. Ba-

sically, a conditional requirement is divided into di�erent alternatives. Each al-

ternative is itself a set of requirements upon di�erent resources. The conditional

requirement is then met if at least one alternative is met.

A use case of the conditional requirement feature could be as follows. The

tenant primarily asks for 100 of capacity (arbitrary unit), for a virtual node a.

The tenant also requires a security level of 3 (arbitrary level) for the same virtual

node a. In the same time, the tenant knows that it is possible to get the same

level of security by running security software by himself. Then, alternatively,

the tenant asks for 200 of capacity for the virtual node a, the extra capacity

being used to run the software. The resulting conditional requirement is given

in Equation (3.10).

(da[!cap] = 100 ∧ da[!sec] = 3) ∨ (da[!cap] = 200) (3.10)

In Equation (3.10), each equality associates a demand (da[!cap] for instance)

to a value (100 for instance). Actually, Alaluna et al. (2017) propose a similar

grammar to declare the virtual network requests. To be more precise, the tenant

declares a request using their grammar, and each possible alternative is converted

into its own virtual network request. In other word, Equation (3.10) would be

split among two di�erent requests, one stating that a should have 100 capacity

and a security level of 3; and the other stating that a should have 200 capacity.

What we are proposing, is that the system will choose between the two alterna-

tives. This is very di�erent from the model in Section 3.1, in the sense that the

system will assign itself some values to the demands. The assignment is only

limited to the alternatives we provide.

µN(a) 6= µN(b) (3.11)

oµN (a)[!loc] 6= oµN (b)[!loc] (3.12)

The second feature can be called attribute-speci�c exclusion (or collocation).

Contrary to conditional requirement, exclusion and collocation relations do not

describe the virtual resources themselves, but a relation upon them. For instance,

it enables to state that two virtual nodes a and b should be in a di�erent host, as

done in Equation (3.11). As a reminder, µN is the function that assigns a host to

each virtual node.
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What we propose with attribute-speci�c exclusion (or collocation) is to apply

it also when comparing o�er values. Equation (3.12) is an exemple of an attribute-

speci�c exclusion, which states that a and b should be in a di�erent location. It

reads as: the host of a, which is µN(a), should have a location, which is denoted

oµN (a)[!loc], di�erent from the location of the host of b.

It is also possible to combine the di�erent features. For instance, we can re-

quire a and b to be in the same authorized locations, {X, Y, Z}, and that they

should also be in distinct locations among the authorized locations, as in Equa-

tion (3.13).

oµN (a)[!loc] 6= oµN (b)[!loc] ∧ da[!loc] = {X, Y, Z} ∧ db[!loc] = {X, Y, Z}
(3.13)

The model presented in Section 3.1 does not encompass those two features,

but we can build from it to encompass them. To do so, we leverage the non-

interpreted function theory and the theory of arrays. These theories are de-

scribed in Subsection 3.3.1 and Subsection 3.3.2 respectively. We then leverage

them to encompass our two features. Subsection 3.3.3 presents how we inset

conditional requirements into our model, and Subsection 3.3.4 presents how we

inset attribute-speci�c exclusion and collocation into our model, along with con-

ditional requirements.

3.3.1 The Theory of Non-Interpreted Function

De�nition 3.4: Total function
A total function f is an application from a set X (also called the domaina) to

a set Y (also called the codomain) such that it associates every element x in

X to one element y of Y . It is said that a total function is de�ned for every

of its input.

We also de�ne the image of f as the set of all values y which are asso-

ciated to at least one x in X . The codomain of f may be a superset of, or

equal to, the image of f .

A n-ary function f is a total function whose domain is X1 × · · ·Xn,

where × is the Cartesian product. The (positive) number n represents the

number of arguments of the n-ary function f . It is also called the arity of

the function f . A n-ary function associates then a value y to each tuple

(x1, · · · , xn) where xi ∈ Xi and so forth.

a
Mathematical domain, not to confuse with a network domain.

The theory of non-interpreted functions is one of the most important theories

for SMT. The functions the theory deals with are not computer theory functions,
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which can have side-e�ect (such as raising an exception, returning no result, or

even never terminate if it encounters an in�nite-loop), but total functions. The

de�nition of total functions is given in De�nition 3.4, along with the de�nition

of n-ary functions. A particular case of n-ary functions, the nullary functions, is

de�ned in De�nition 3.5, which comes from Burris (2012).

De�nition 3.5: Nullary function
A constant is a 0-ary (or nullary) function.

The de�nition of nullary functions is an extension of he de�nition of

n-ary functions. The extension is as follows. Let S be a set. Let n be a

positive number. For n > 0, we de�ne as Sn the product S× · · · ×S where

S is repeated n times. Sn is then a particular case of X1 × · · ·Xn where

X1 = · · · = Xn = S.

For n = 0 we de�ne S0
as being the set containing the empty set, {∅}.

Let f be a function from S0
to Y . The only element in the domain of f is

then ∅. It is associated with the value f(∅).
In practice, we substitute f(∅) and f . For instance, let a = 2. We say

that a is actually a nullary function from {∅} to N such that a(∅) = 2.

It follows from De�nition 3.4 and De�nition 3.5 that every symbol used by

the SMT grammar can be considered as a n-ary function.

The theory of uninterpreted functions is called so because those n-ary func-

tions are not interpreted. This is what we do in De�nition 3.4, in the sense that

we declare some symbol f , x, y, without stating explicitly what x is, what y is,

and how to compute f(x) from that x.

To present things di�erently, we do not say, for instance, that f(x) = 2×x+1,

where × and + are the usual arithmetic operations.

The theory of uninterpreted functions used alone in SMT only allows sym-

bols (representingn-ary functions), equalities (=, 6=) between those symbols, and

logical operators (∧,∨). Example 3.1 gives di�erent examples of constraints with

non-interpreted functions. We give those examples to show that even though the

grammar is limited to equalities and symbols, it is very �exible and powerful.

Example 3.1
Let consider f a unary function from N to N, and a and b two natural con-

stants. The following constraint can be expressed in SMT:

(a = b) ∧ (f(a) 6= f(b))

It means that we want a function f such that for two equal inputs f
return a di�erent value. If such a constraint is provided to an SMT solver,
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it will obviously return that the constraint cannot be satis�ed, by de�nition

of total functions.

Chapoutot (n.d.) gives a more complex example (also unsatis�able):

(f(f(f(a))) = a) ∧ (f(f(f(f(f(a))))) = a) ∧ (f(a) 6= a)

Which can be solved as follows:

(f(f(f(a))) = a) ∧ (f(f(f(f(f(a))))) = a)⇒ (f(f(a)) = a)

(f(f(f(a))) = a) ∧ (f(f(a)) = a)⇒ (f(a) = a)

(f(a) 6= a) ∧ (f(a) = a)⇒ ⊥

In an SMT solver such as z3, it is also possible to use uninterpreted do-

mains (or sorts in z3 terms) instead of actual domains like N.

Let S be a set. Let x and y be two constants of S. Let f be a unary

function from S to S. We use the following constraint:

(f(f(x)) = x) ∧ (f(x) = y) ∧ (x 6= y)

This constraint is satis�able. Consequently, we can retrieve a model

from the solver. The code snippet below represents an example of an ob-

tained model when the constraint is implemented with z3.

>>> from z3 import ∗

>>> S = D e c l a r e S o r t ( " S " )

>>> f = F u n c t i o n ( " f " , S , S )

>>> x = Const ( " x " , S )

>>> y = Const ( " y " , S )

>>> p a r t 1 = ( f ( f ( x ) ) == x )

>>> p a r t 2 = ( f ( x ) == y )

>>> p a r t 3 = ( x != y )

>>> c o n s t r a i n t = And ( par t1 , pa r t 2 , p a r t 3 )

>>> s = S o l v e r ( )

>>> s . add ( c o n s t r a i n t )

>>> s . check ( )

s a t

>>> s . model ( )

[ y = S ! v a l ! 0 ,
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x = S ! v a l ! 1 ,

f = [ S ! v a l ! 1 −> S ! v a l ! 0 , e l se −> S ! v a l ! 1 ] ]

The last line must be read as follows. A solution to the constraint is to

interpret y as being a value v0 of S, and x as being a distinct value v1 of S,

and f a function that maps every input to v1 except for v1 which is mapped

to v0. What should be noted here is that when we declare a set (like S), it is

supposed to be in�nite, hence ensuring that v0 and v1 both exist.

To model a �nite set, we use the EnumSort constructor instead, which

will tell the SMT solver how many distinct elements there are inside. For

instance, let S = {v0, v1}.

>>> from z3 import ∗

>>> S , ( v0 , v1 ) = EnumSort ( " S " , [ " v0 " , " v1 " ] )

>>> f = F u n c t i o n ( " f " , S , S )

>>> x = Const ( " x " , S )

>>> y = Const ( " y " , S )

>>> p a r t 1 = ( f ( f ( x ) ) == x )

>>> p a r t 2 = ( f ( x ) == y )

>>> p a r t 3 = ( x != y )

>>> c o n s t r a i n t = And ( par t1 , pa r t 2 , p a r t 3 )

>>> s = S o l v e r ( )

>>> s . add ( c o n s t r a i n t )

>>> s . check ( )

s a t

>>> s . model ( )

[ y = v1 , x = v0 , f = [ v0 −> v1 , e l se −> v0 ] ]

The model is essentially the same as in the in�nite set example.

3.3.2 The Theory of Arrays
Arrays are one of the main structures in computer science. Tables in C or lists in

Python are kind of arrays. Arrays are a convenient way to store data. They can

be thought as functions from an index set (for instance, the naturals) to the data

set. It is said that an array stores a value v at an index i, and that by reading the

array at its index i, the value v can be retrieved. In Python, the dictionary type

(dict) acts as an array where indices can be tuples, for instance. In other words,

in the mathematical description of the arrays, the choice of the index is free. In

particular, in computer science, we never use the naturals as the index set, as we

are limited by the memory available to store the array, we use rather an interval.

Mccarthy (1962) propose a theory of arrays which is still widely used. Es-

sentially, this theory reuses the theory of non-interpreted functions, and add to

60



3.3. Model Refinement

it two main functions, namely Read and Write , as well as the axioms given in

Equation (3.14), where a in an array, v a value, i and j two indices. The func-

tion Read has two parameters (the array, the index), and the function Write has

three parameters (the array, the index, the value). For Python lists, Read would

correspond to __getitem__ (whose shortcut notation is v = l[i]) and Write
would correspond to __setitem__ (whose shortcut notation is l[i] = v).

(i = j)⇒ Read(Write(a, i, v), j) = v (3.14)

(i 6= j)⇒ Read(Write(a, i, v), j) = Read(a, j) (3.15)

Moura and Bjorner (2009) propose an extension of the theory of arrays which

is implemented in z3. In this theory, arrays can come with a pre-de�ned default

value, which is the value stored in the array at any index where we do not write.

Such pre-de�ned default value is de�ned by the function default , which is added

to the original theory of arrays, among other functions. Example 3.2 describes

how the same problem can be modelled with variables, non-interpreted functions

and arrays, with their respective bene�ts.

Example 3.2
Let us assume we have a phenomenon which is very rare and very short,

but we want to track it over time, so we measure its presence or absence

over a long period of time. We want to use our measures as an input of a

SMT solver to verify that the phenomenon obeys to some sets of physics

equations.

We have multiple ways to model the measures. This example shows

di�erent approaches.

Integer Theory. Suppose we have N measures. For instance, we can cre-

ate N variables xi for i in [1, N ], and add to the solver a constraint that tells

the value of the variable: xi = ⊥ or xi = >.

The integer theory is a convenient way to model the measures, until we

cope with a physics equation that says, for instance, that two consecutive

measures cannot be true together, for instance: xi∧xi+1 = ⊥. We then have

to createN−1 constraints, one for each value of i. The number of variables

and constraints that a SMT solver can treat is not in�nite. We currently have

2×N −1 constraints. IfN is very huge, it may be necessary to use another

model.

Non-Interpreted Function Theory. Another way to model the measures is

to let f be a function that assigns each time to a value. In other words, we

have a function f such that f(i) = xi. We would then have to create one

constraint that tells, for each i, the value of f : f(i) = ⊥, or f(i) = >, and
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one constraint for the physics equation: f(i) ∧ f(i+ 1) = ⊥. We then only

have N + 1 constraints.

Array Theory. Again, N + 1 constraints may still be too much. A more

precise analysis of the data may then be required. For instance, we supposed

at the beginning that the phenomenon is very rare, so many measures will be

false in practice. To model this situation, we can use an array a instead. We

then have to add the following constraints: Default(a) = ⊥, Write(a, i,>)
for the few indices i for which we measure the presence of the phenomenon,

and the physics equation as Read(a, i) ∧ Read(a, i + 1) = ⊥. This means

we have n+ 2 constraints, with n much lower than N .

As a conclusion for this example, the reader may notice that we use

three di�erent models for the data, each leveraging a di�erent theory. No

model is better than another in absolute; it really depends on the concrete

problem to solve. Nevertheless, it is a good illustration of how the theory

of non-interpreted functions and the theory of arrays can become useful in

practice.

3.3.3 Conditional Requirements
To leverage the non-interpreted function theory, we declare the following func-

tions. Equation (3.16) de�nes a function that assigns a substrate host to each

virtual node of each request. Equation (3.17) de�nes the association between a

virtual link and a set of substrate links. Equation (3.18) de�nes the function that

assigns a substrate path to each virtual link of each request.

µN :
⋃

R∈Requests

NR → HS
(3.16)

µL :
⋃

R∈Requests

LR × LS → {⊥,>} (3.17)

µP :
⋃

R∈Requests

LR → P S
(3.18)

Besides, we de�ne for each node and link attribute a two functions Da and

Oa. Those functions serve to extend the de�nition of di[a] and oj[a] respectively.

In the model from Section 3.1, di[a] and oj[a] can be considered as constant. In this

section, what we propose is thatDa(i) (andOa(j) for convenience) are variables
instead. The values thatDa(i) (on which we focus) can take are still given by the

tenant. We will explain shortly after how the tenant manipulate these functions.

∀a ∈ ActiveN , Da :
⋃

R∈Requests

NR → V (a) (3.19)
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∀a ∈ ActiveN , Oa : H
S → V (a) (3.20)

Grammar 3.1: Grammar for Conditional Requirement
The following grammar states that a request from a tenant is an expression
made of conjunctions (∧ operator, represented as AND below due to some

LATEXpackage limitations) and disjunctions (∨ operator, represented as OR
below due to some LATEXpackage limitations). The core is made of predicates

in the form (Da(i) = value), where a is the name of an attribute (whose

format is !<string>), i is a virtual resource (either a node or a link), and

value is a string representing a value in V (a).
The grammar itself is written in the Backus–Naur form.

〈expression〉 ::= 〈expression〉 OR 〈addend〉 | 〈addend〉

〈addend〉 ::= 〈addend〉 AND 〈multiplicand〉 | 〈multiplicand〉

〈multiplicand〉 ::= ( 〈expression〉 ) | ( 〈predicate〉 )

〈predicate〉 ::= D_{ 〈attribute〉 }( 〈resource〉 ) = 〈value〉

〈resource〉 ::= 〈node〉 | 〈link〉

〈node〉 ::= 〈string〉

〈link〉 ::= ( 〈string〉 , 〈string〉 )

〈attribute〉 ::= !〈string〉

〈value〉 ::= 〈string〉 | { 〈set〉 }

〈set〉 ::= 〈string〉 | 〈set〉 , 〈string〉

〈string〉 ::= 〈character〉 | 〈string〉 〈character〉

〈character〉 ::= 〈letter〉 | 〈digit〉

〈letter〉 ::= a | ... | z

〈digit〉 ::= 0 | ... | 9
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∀a ∈ ActiveL, Da :
⋃

R∈Requests

LR → V (a) (3.21)

∀a ∈ ActiveL, Oa : L
S → V (a) (3.22)

We de�ne two functions to hold the exclusion constraints, namely ExcludeN
and ExcludeL. More speci�cally, they are implemented as arrays, enabling us to

apply Read and Write predicates on them.

ExcludeN :
⋃

R∈Requests

NR ×
⋃

R∈Requests

NR → {⊥,>} (3.23)

ExcludeL :
⋃

R∈Requests

LR ×
⋃

R∈Requests

LR → {⊥,>} (3.24)

We de�ne also two collocation functions CollocateN and CollocateL. More

speci�cally, they are implemented as arrays, enabling us to apply Read and

Write predicates on them.

CollocateN :
⋃

R∈Requests

NR ×
⋃

R∈Requests

NR → {⊥,>} (3.25)

CollocateL :
⋃

R∈Requests

LR ×
⋃

R∈Requests

LR → {⊥,>} (3.26)

Finally, we de�ne two functions to identify the ideal nodes and links in the

substrate.

IdealN :
⋃

R∈Requests

NR → {⊥,>}
(3.27)

IdealL :
⋃

R∈Requests

LR → {⊥,>}
(3.28)

To specify the virtual network requests, we leverage a grammar which is

similar to Alaluna et al. (2017), although our grammar must enable tenants to

de�ne more attributes. The grammar itself is given in Grammar 3.1.

Then we rewrite all our equations from Section 3.1, namely from Equation (C1)

to Equation (C15), by applying the substitutions given by Equation (3.29), Equa-

tion (3.30), Equation (3.32), and Equation (3.33).

Equation (3.29) reads as follows. Every variable nij should be replaced by

the predicate (µN(i) = j). They are equivalent: nij is true when virtual node
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i is allocated to substrate node j; (µN(i) = j) is true when the substrate node

allocated to i, namely µN(i), is j.

Equation (3.30) reads as follows. Every variable lij should be replaced by the

function call µL(i, j). They are equivalent: lij and µL(i, j) are true when virtual

link i is allocated to substrate link j.

Equation (3.31) reads as follows. Every variable pij should be replaced by

the predicate (µP (i) = j). They are equivalent: pij is true when virtual link

i is allocated to substrate path j; (µP (i) = j) is true when the substrate path

allocated to i, namely µP (i), is j.

Equation (3.32) reads as follows. Every variable di[a] (resp. oj[a]) should be

replaced by the function call Da(i) (resp. Oa(j)). They are equivalent: di[a]
(resp. oj[a]) gets the value of the attribute a from the demand vector di[] (resp.

the o�er vector oj[]) of the virtual resource i (resp. of the substrate resource j),
whileDa(i) (resp. Oa(j)) gets the value of the attribute a for the virtual resource

i (resp. the substrate resource j).

As the (mathematical) domains that we manipulate for our functions are �-

nite, we can use SMT quanti�ers, like ForAll , and apply it for variables like i
and j. This is very di�erent from Section 3.1, where the only variables are the

nij , the lij and the pij . Those variables are also the unknowns of Section 3.1. In

the current section, the nij , the lij and the pij are still part of the unknowns,

but they are not the only variables, as i and j are also variables. Besides, for a

given virtual resource i and a given attribute a, di[a] is also an unknown, whose

possible values are given by the tenant with Grammar 3.1.

nij → (µN(i) = j) (3.29)

lij → µL(i, j) (3.30)

pij → (µP (i) = j) (3.31)

di[a]→ Da(i) (3.32)

oj[a]→ Oa(j) (3.33)

As µN and µP are total functions (see De�nition 3.4), they already imple-

ment R1 (resp. R2). For this reason, we do not need Equation (C1) nor Equa-

tion (C2) anymore.

Equation (C3d), Equation (C4d), Equation (C5d), Equation (C6d), Equation (C7d),

Equation (C8d), Equation (C9d) are all directly derived from the aforementioned

substitutions.
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(µP (i) = j) ≡ (µN(ih) = jh)

∧ (µN(it) = jt)

∧
∧

j′∈AlongL(j)

µL(i, j
′)

∧
∧

j′∈LS\AlongL(j)

¬ µL(i, j′)

∀R∈Requests , i∈LR, j∈P S, i = (ih, it),Tipsj = (jh, jt)


(C3d)

(µN(i) = memorizedN(i)) ∀R∈Requests\{NewRequest}, i∈NR
(C4d)

(µP (i) = memorizedP (i)) ∀R∈Requests\{NewRequest}, i∈LR (C5d)

∑
i∈NR

R∈Requests

(µN(i) = j) × Da(i) ≤ Oa(j) ∀a∈BindingN , j∈HS

(C6d)

(µN(i) = j) ⇒ Da(i) ≤ Oa(j) ∀a∈NonBindingN , R∈Requests , i∈NR, j∈HS

(C7d)

∑
i∈LR

R∈Requests

µL(i, j) × Da(i) ≤ Oa(j) ∀a∈BindingL, j∈LS
(C8d)

µL(i, j) ⇒ Da(i) ≤ Oa(j) ∀a∈NonBindingL, R∈Requests , i∈LR, j∈LS

(C9d)

For the exclusion attributes, we propose a revision to our constraints from

Section 3.1. This revision allows us to be transparent to our de�nition of ideal

resources (see De�nition 3.1), so that the constraints of this section can be reused

for the single domain case and the multi-domain case.

Our revision holds into two sets of constraints. Equation (C10d), Equation (C11d)

and Equation (C12d) each convert the exclusion attribute value from the ten-

ant (resp. !exc-resources, !exc-requests, and !exc-tenants) into a con-

straint over the exclusion function ExcludeN . Likewise, Equation (C13d), Equa-

tion (C14d), and Equation (C15d) convert tenant exclusion attribute values into

a constraint over the exclusion function ExcludeL.
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Write(ExcludeN , (i, i
′),>)

∀R∈Requests , i∈NR, j∈HS, i′∈D!exc-resources(i)

}
(C10d)

Write(ExcludeN , (i, i
′),>)

∀R∈Requests , i∈NR, j∈HS, R′∈D!exc-requests(i), i
′∈NR′

}
(C11d)

Write(ExcludeN , (i, i
′),>)

∀R∈Requests , i∈NR, j∈HS, τ∈D!exc-tenants(i), R
′∈Requestsτ , i

′∈NR′

}
(C12d)

Write(ExcludeL, (i, i
′),>)

∀R∈Requests , i∈LR, j∈LS, i′∈D!exc-resources(i)

}
(C13d)

Write(ExcludeL, (i, i
′),>)

∀R∈Requests , i∈LR, j∈LS, R′∈D!exc-requests(i), i
′∈LR′

}
(C14d)

Write(ExcludeL, (i, i
′),>)

∀R∈Requests , i∈LR, j∈LS, τ∈D!exc-tenants(i), R
′∈Requestsτ , i

′∈LR′

}
(C15d)

The second set of constraints for our revision of the exclusion requirement

encompass Equation (C16d) and Equation (C17d). Equation (C16d) is a rela-

tion between the node exclusion function ExcludeN , the ideal node function

IdealN , and the mapping function µN . It reads as follows: given two virtual

nodes i and i′, and given a substrate host j, such that j hosts i (written µN(i) =
j), and j is not an ideal node (written ¬IdealN(j)); if i excludes i′ (written

Write(ExcludeN , (i, i
′),>)), then j cannot host also i′.

Likewise, Equation (C17d) is a relation between the link exclusion function

ExcludeL, the ideal link function IdealL, and the mapping function µP .

(µN(i) = j) ∧ (Read(ExcludeN , (i, i
′)) = >) ∧ ¬IdealN(j)⇒ µN(i

′) 6= j

∀(i, i′)∈
⋃

R∈Requests

NR ×
⋃

R∈Requests

NR, j∈HS


(C16d)
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µL(i, j) ∧ (Read(ExcludeL, (i, i
′)) = >) ∧ ¬IdealL(j)⇒ ¬µL(i′, j)

∀(i, i′)∈
⋃

R∈Requests

LR ×
⋃

R∈Requests

LR, j∈LS

 (C17d)

As we use arrays for ExcludeN and ExcludeL, we can de�ne that when the

tenant does not explicitly set an exclusion relation between two virtual resources,

then we implicitly consider no exclusion relation between those virtual resources.

In other words, the tenant does not have to de�ne, for every pair of virtual re-

sources, that they exclude each other or not: unless the tenant states otherwise,

we consider that no virtual resources exclude each other, as per Equation (C18d)

and Equation (C19d). Besides, we also assume that both arrays de�ne a symmet-

ric relation, as per Equation (C20d) and Equation (C21d).

Default(ExcludeN) = ⊥ (C18d)

Default(ExcludeL) = ⊥ (C19d)

Read(ExcludeN , (i, i
′)) = Read(ExcludeN , (i

′, i)) ∀(i, i′)∈NR ×NR
(C20d)

Read(ExcludeL, (i, i
′)) = Read(ExcludeL, (i

′, i)) ∀(i, i′)∈LR × LR (C21d)

The same kind of equations can be used to model a collocation attribute,

!col-resources. The collocation attribute enables tenants to enumerate, within

their requests, the virtual resources that must be collocated. Two collocated vir-

tual nodes hence have the same host, and two collocated virtual links hence

have the same path. Equation (C22d) and Equation (C23d) are similar to Equa-

tion (C10d) and Equation (C13d) respectively. Note that we do not de�ne a col-

location attribute at the request or the tenant level, as we do not have a use case

to guide us for their actual de�nition
3
.

(Write(CollocateN , (i, i
′),>) ∀R∈Requests , i∈LR, j∈LS, i′∈di[!col-resources]

(C22d)

(Write(CollocateL, (i, i
′)),>) ∀R∈Requests , i∈LR, j∈LS, i′∈di[!col-resources]

(C23d)

3
For instance, if we had a per-request collocation attribute, like we have the !exc-requests

attribute, does that mean that we must collocate a virtual resource with every or at least one
virtual resource of the requests given by the tenant? The problem of collocation is that it

is transitive: if CollocateN (i, i′) is true and CollocateN (i′, i′′) is true, then CollocateN (i, i′′)
is also true; whereas for exclusion: ExcludeN (i, i′) and ExcludeN (i′, i′′) does not imply that

ExcludeN (i, i′′).
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Then Equation (C24d) and Equation (C25d) are similar to Equation (C16d) and

Equation (C17d) respectively. They both mean that given two virtual resources i
and i′, and a substrate resource j, such that j hosts i, if i must be collocated with

i′ then j also hosts i′. However, contrary to Equation (C16d) and Equation (C17d),

we do not consider the ideal functions (IdealN and IdealL). This is because, until

now, in our model, the ideal nodes and links (see Section 3.1) are only the domains

themselves and their self-loops (at the inter-domain level), the outside node, and

the outside self-loop (at the intra-domain level). The idea of ideal resources is

that they are abstract containers for further physical resources. In other words,

we need the IdealN and the IdealL functions for the exclusion attribute, because

two exclusive virtual resources can be in the same ideal resource; what matters

is that, within this ideal resource, they are hosted on distinct physical resources.

The reasoning for collocation relation is actually simpler: two collocated virtual

resources must be in the same physical resource, so they must be in the same

ideal resource.

(µN(i) = j) ∧ (Read(CollocateN , (i, i
′)) = >)⇒ µN(i

′) = j

∀(i, i′)∈
⋃

R∈Requests

NR ×
⋃

R∈Requests

NR, j∈HS

 (C24d)

µL(i, j) ∧ (Read(CollocateL, (i, i
′)) = >)⇒ µL(i

′, j)

∀(i, i′)∈
⋃

R∈Requests

LR ×
⋃

R∈Requests

LR, j∈LS

 (C25d)

Besides, as we use arrays for CollocateN and CollocateL, we can de�ne that

when the tenant does not explicitly set a collocation relation between two vir-

tual resources, then we implicitly consider no collocation relation between those

virtual resources. In essence, it is the same idea than for Equation (C18d) and

Equation (C19d). The corresponding equations for CollocateN and CollocateL
are Equation (C26d) and Equation (C27d) respectively. Finally, we also assume

that both arrays de�ne a symmetric relation, as per Equation (C28d) and Equa-

tion (C29d). This is because collocation is a symmetric relation, like the exclusion

relation. When a virtual resource is collocated with another virtual resource,

then the other virtual resource is collocated with the �rst virtual resource.
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Default(CollocateN) = ⊥
(C26d)

Default(CollocateL) = ⊥
(C27d)

Read(CollocateN , (i, i
′)) = Read(CollocateN , (i

′, i)) ∀(i, i′)∈NR ×NR

(C28d)

Read(CollocateL, (i, i
′)) = Read(CollocateL, (i

′, i)) ∀(i, i′)∈LR × LR
(C29d)

3.3.4 A�ribute-specific Exclusion and Collocation
We now present a model for the attribute-speci�c exclusion and collocation.

It extends Subsection 3.3.3, and use also functions. For each node and link at-

tribute a, we de�ne the attribute-speci�c exclusion function, Excludea, and the

attribute-speci�c collocation function, Collocatea. Equation (3.34) (resp. Equa-

tion (3.35)) de�nes the attribute-speci�c exclusion function applied to nodes (resp.

links), while Equation (3.36) (resp. Equation (3.37)) de�nes the attribute-speci�c

collocation function applied to nodes (resp. links). More speci�cally, they are im-

plemented as arrays, enabling us to apply Read and Write predicates on them.

∀a ∈ ActiveN , Excludea :
⋃

R∈Requests

NR ×
⋃

R∈Requests

NR → {⊥,>} (3.34)

∀a ∈ ActiveL, Excludea :
⋃

R∈Requests

LR ×
⋃

R∈Requests

LR → {⊥,>} (3.35)

∀a ∈ ActiveN , Collocatea :
⋃

R∈Requests

NR ×
⋃

R∈Requests

NR → {⊥,>} (3.36)

∀a ∈ ActiveL, Collocatea :
⋃

R∈Requests

LR ×
⋃

R∈Requests

LR → {⊥,>} (3.37)

Figure 3.3 illustrates the broad idea behind attribute-speci�c exclusion. The

tenant formulates a constraint, which is that the location of the substrate re-

source to which a virtual resource a is assigned should not be the same than

the location of the substrate resource to which another virtual resource, b, is

assigned. In the �gure, this results in a and b being in two di�erent countries,

namely “Country 1” and “Country 2”.
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Figure 3.3: Attribute-specific Exclusion Example for the !loc Attribute

Grammar 3.2: Grammar for Attribute-specific Exclusion and Collo-

cation
This grammar extends Grammar 3.1 with two new functions, which are re-
ferred to as Collocate and Exclude . We expose them as functions to the
tenant.

〈request〉 ::= 〈request〉 OR 〈addend〉 | 〈addend〉

〈addend〉 ::= 〈addend〉 AND 〈multiplicand〉 | 〈multiplicand〉

〈multiplicand〉 ::= ( 〈expression〉 ) | ( 〈predicate〉 )

〈predicate〉 ::= D_{ 〈attribute〉 }( 〈resource〉 ) = 〈value〉
| 〈function〉_{ 〈attribute〉 }( 〈node〉 , 〈node〉 )
| 〈function〉_{ 〈attribute〉 }( 〈link〉 , 〈link〉 )

〈function〉 ::= Exclude | Collocate

〈resource〉 ::= 〈node〉 | 〈link〉

〈node〉 ::= 〈string〉

〈link〉 ::= ( 〈string〉 , 〈string〉 )

〈attribute〉 ::= !〈string〉
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〈value〉 ::= 〈string〉 | { 〈set〉 }

〈set〉 ::= 〈string〉 | 〈set〉 , 〈string〉

〈string〉 ::= 〈character〉 | 〈string〉 〈character〉

〈character〉 ::= 〈letter〉 | 〈digit〉

〈letter〉 ::= a | ... | z

〈digit〉 ::= 0 | ... | 9

Instead of considering attribute-speci�c exclusion and attribute-speci�c col-

location as their own attributes, we consider that the structure of the attribute a is

extended with the aforementioned functions, namely Excludea, and Collocatea.
Then, we enable tenants to manipulate the attribute-speci�c exclusion function,

Excludea, and the attribute-speci�c collocation function, Collocatea, along the

demand function, as described in Grammar 3.2.

We then de�ne the node (resp. link) attribute-speci�c exclusion in Equa-

tion (C30d) (resp. in Equation (C31d)) as a relation between Excludea, the ideal

resource function (IdealN and IdealL respectively), the mapping function (µN
and µL respectively), and the o�er function, Oa. The relation is as follows: given

two virtual resources i and i′, and two substrate resources j and j′, such that j
hosts i, and j′ is not an ideal resource (note the prime symbol); if j and j′ have

the same o�er in a, then j′ cannot host i′.
The attribute-speci�c exclusion relation is more complex than for Equation (C16d)

and Equation (C17d) as it involves two substrate resources which are compared

against their o�er in some attribute a. It is a remote relation: the host chosen for

i impacts the choice of the host chosen for i′.

(µN(i) = j) ∧ (Oa(j) = Oa(j
′)) ∧ (Read(Excludea, (i, i

′)) = >) ∧ ¬IdealN(j
′)

⇒µN(i′) 6= j′

∀a∈ActiveN , (i, i
′)∈

⋃
R∈Requests

NR ×
⋃

R∈Requests

NR, (j, j′)∈HS×HS


(C30d)

µL(i, j) ∧ (Oa(j) = Oa(j
′)) ∧ (Read(Excludea, (i, i

′)) = >) ∧ ¬IdealL(j
′)

⇒¬µL(i′, j′)

∀a∈ActiveL, (i, i
′)∈

⋃
R∈Requests

LR ×
⋃

R∈Requests

LR, (j, j′)∈LS×LS


(C31d)
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(µN(i) = j) ∧ (Oa(j) 6= Oa(j
′)) ∧ (Read(Collocatea, (i, i

′)) = >) ∧ ¬IdealN(j
′)⇒

µN(i
′) 6= j′

∀a∈ActiveN , (i, i
′)∈

⋃
R∈Requests

NR ×
⋃

R∈Requests

NR, (j, j′)∈HS×HS


(C32d)

µL(i, j) ∧ (Oa(j) 6= Oa(j
′)) ∧ (Read(Collocatea, (i, i

′)) = >) ∧ ¬IdealL(j
′)⇒

¬µL(i′, j′)

∀a∈ActiveL, (i, i
′)∈

⋃
R∈Requests

LR ×
⋃

R∈Requests

LR, (j, j′)∈LS×LS


(C33d)

Besides, Equation (C32d) (resp. Equation (C33d)) de�nes the attribute-speci�c

collocation as a relation between Collocatea, the ideal resource function (IdealN
and IdealL respectively), the mapping function (µN and µL respectively), and the

o�er function, Oa. The relation is as follows: given two virtual resources i and

i′, and two substrate resources j and j′, such that j hosts i, and j′ is not an ideal

resource (note the prime symbol); if j and j′ do not have the same o�er in a, then

j′ cannot host i′.
At this point of the formulation of the model, a discussion is needed. The

model works; yet, its application is limited, due to limited information disclosure

design. In essence, attribute-speci�c exclusion (resp. collocation) is a remote

relation between two virtual resources: the choice of a substrate resource for

one virtual resource impacts the choice of the substrate resource for the other

virtual resource, because we want the substrate resources to have di�erent (resp.

same) attribute values.

If we take again Figure 3.3, this means that assigning b to C forces the system

to select either A for a, as A is the only substrate resource in a di�erent country

than C.

This remote relation naturally opposes to the limited information disclosure

design. A trade-o� appears about which information the InPs can disclose or

not. Depending on the level of disclosure, some attribute-speci�c exclusion (or

collocation) may be fully enabled, or not. We can imagine, like Dietrich et al.

(2015), that the InPs expose more information to the system, like a typology of

the di�erent attribute values that they resources have.

In the case of limited information disclosure, attribute-speci�c exclusion (or

collocation) are still enabled, but not fully enabled. It is still possible to apply

them within the same domain. The situation is illustrated by Figure 3.4. In this
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Figure 3.4: Attribute-specific Exclusion Example for the !loc Attribute, under

Limited Information Disclosure

Table 3.3: Building Blocks of !domain Attribute

Attribute V (a)
Ordering operator
(demand ≤ offer)

+ ma Ma

!domain
Powerset
of domains

⊃ (note the orientation:
offer must be in demand)

∩ All domains ∅

case, “Domain 1” is the only able to guarantee that a and b are in different coun-
tries.

However, our model may also produce the result depicted in Figure 3.5, due
to the definition of outside nodes (Out1 and Out2 in the figure), as ideal nodes.
By definition, ideal nodes make Equation (C30d) true. Then, at the intra-domain
level, “Domain 1” can assign a to A and b to Out1. And, independently, “Domain
2” can assign a to Out2 and b to D. In the end, the tenant requirement is not
fulfilled, as a and b are in the same country.

In other words, when tenants want an attribute-specific exclusion (or collo-
cation) upon some virtual resources, it is necessary to add another requirement,
explicitly telling that those virtual resources must be in the same domain. This
other requirement is the last stone of our model extension. We refer to it as
!domain, and it enables the tenant to enumerate the domains which are autho-
rized to host the virtual resource. Its structure is given in Table 3.3. It is a tolerant,
non-binding attribute.

The reason why !domain solves the problem despite being defined like other
attributes is that, contrary to the other attributes, the domains in which a virtual
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Figure 3.5: Undesired Result fromAttribute-specific ExclusionModel, under Lim-

ited Information Disclosure

network is instantiated are supposed to be known by the tenant. It is indeed
the only output of our algorithm. As such, it complies with limited information
disclosure. Algorithm wise, this new attribute is directly applied at the inter-
domain level.

All in all, when a tenant desires that a and b must be in different locations,
we convert it in the constraint depicted in Equation (3.38). It reads as follows:
the substrate resource hosting a must be in a different location that the substrate
resource hosting b, provided that a and b must be in the same domain.

O!loc(a) �= O!loc(b) ∧O!domain(a) = O!domain(b) (3.38)

3.4 Conclusion

In this chapter, we presented our attribute model for the security-aware VNE
in the 5G context. This model aims to be general enough so that we can in-
stantiate every kind of requirement. More specifically, we identify the tolerant
attributes as the ones which can be instantiated, and describe their key building
blocks. We illustrated how to leverage this model in the single domain scenario,
where we could identify the key rules of a VNE. Two other features are pro-
posed, which have not been evaluated. It is namely the conditional requirement
and the attribute-specific exclusion and collocation. As such, they will not be
part of Chapter 4, dealing with the implementation and the evaluation.
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CHAPTER 4

Algorithm Resolution

To solve the slice embedding problem, where multiple Infrastructure Providers

(InPs) are expected, several approaches exist. The tenant can submit the request

to any InP, and the InPs collectively negotiate which part of the slice they embed,

following a protocol like the one proposed by Chowdhury et al. (2010). It is a

distributed approach.

A second approach is to have a broker in between the tenant and the InPs.

This broker (or Virtual Network Provider (VNP)) sends the slice request to each

InP participant. The InPs then enumerate their embedding propositions, which

can ful�ll fully or partially the original slice request. The role of the broker is

then to gather the propositions that will fully ful�ll the original slice request.

This approach is a bottom-up approach. It is investigated by Mano et al. (2016).

A third approach is to have the same VNP broker, but instead, this broker

uses information from the InPs to pre-de�ne the distribution of the slice among

those InPs. The broker then sends his or her own requests to the di�erent InPs,

the di�erent requests being determined by how he or she wants to distribute the

slice. This approach is a top-down approach. Dietrich et al. (2015) and Houidi

et al. (2011) assume that to embed those requests, the InP can use any Virtual

Network Embedding (VNE) method.

In this thesis, we perceive that the distributed approach would be di�cult to

achieve, because it exposes multiple entry points of the system to the tenant. In-

stead, we favor a single entry point approach. In this thesis, we decide to follow

the top-down approach, as presented in Section 4.2, for which there are more

works with which we can compare, such as Dietrich et al. (2015) and Di et al.

(2013). Our main contribution then is that we minimize the disclosure of topo-

logical information, and that we formulate the partial slice embedding problem,
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because the distribution of the original virtual network request among the dif-

ferent InPs does not result in a set of requests which can be directly used by any

VNE algorithm.

4.1 From the Single Domain to the Multi-Domain
Formulation

The Constraint Satisfaction Problem (CSP) as formulated in Section 3.2.2 for a

single domain can be reused for a multi-domain scenario. An obvious way is to

consider as the substrate the aggregation of all the resources from all the involved

domains. Yet, for slices, the domains are the infrastructure networks and are

owned by several Infrastructure Providers (InPs) which are likely reluctant to

share their information, as they are commercially sensitive.

Instead, we need to make the InPs cooperate while keeping their information

private. In this thesis, we consider two levels of cooperation, the inter-domain

level and the intra-domain level. The intra-domain level is presented in Sec-

tion 4.1.1, and the inter-domain level is presented in Section 4.1.2.

Broadly speaking, the inter-domain level embeds a whole slice in the domains
without any knowledge about what they contain. The constraints hold on how

the domains are interconnected.

On the contrary, the intra-domain level embeds a part of a slice in the re-
sources of a domain with full knowledge about their attributes. By a part, we

mean that all requests must be embedded when considering all the domains,

but at the same time, some domains may not embed any request. Indeed, the

resources allocated for a given request may belong to completely di�erent do-

mains.

Modeling a partial mapping is not easy though, because node mapping and

link mapping are interrelated. In this thesis, to overcome the problem, we use

a topological heuristic, which makes us able to reuse the equations from Sec-

tion 3.2. The idea is to transform the substrate graph. We then seek an exact

mapping in this transformed graph. The exact mapping then corresponds to a

partial mapping on the original substrate graph.

4.1.1 Satisfiability Modulo Theories (SMT) Formulation for
the Intra-Domain Level

This section presents how we adapt the VNE formulation from Section 3.2.2 to

the intra-domain level, thanks to a topological heuristic.
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Figure 4.1: Example of Intra-Domain Graph

Before detailing more the heuristic, let us model what a domain can know.
We use Figure 4.1 for this purpose. On the left, we present some intra-domain
level graph with which we work for some domain S. It actually represents what
we assume S can know, in the form of a directed, connected multigraph. On
the right, we present a possible substrate corresponding to this knowledge. As in
Section 3.2.2, it is a directed, connected graph.

We consider that any domain knows:

i) its own resources, as well as their attributes (A, B, C and D, as well as the
links between them in Figure 4.1),

ii) the inter-domain links, as well as their attributes ((C,X) and (D, Y ) for
instance in Figure 4.1), and

iii) the switches to which it is connected in its neighboring domains, but not
their attributes (X , Y and Z in Figure 4.1).

However, the inner topology of other domains ((X,U) for instance), as well as
if and how they could be interconnected ((X, Y ) for instance), is not known.

The heuristic relies on a special host node, denoted OutS where S is the
domain being considered. This node models the outside of the domain, which
encompasses all other domains, being its neighbors or not. When we map a
virtual node to the outside, we say that we have a partial mapping (or that the
node is outsourced). In other words, we consider that such virtual node will be
hosted in another domain. The outside host is connected to every border nodes
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(C ,D and P for S in Figure 4.1). This follows a legitimate assumption, that there

is no disjoint domain in our system.

Besides, we consider a self-loop (OutS,OutS), which allows us to outsource

a virtual link to the outside. The existence of (OutS,OutS) is required to enable

and de�ne the outsourcing of a virtual edge (x, y), when both x and y must be

outsourced too.

From this topology, we de�ne P̂ S
the set of loop-free paths in P S

that start

from a host inside the domain, go out through OutS and then end in another

host inside the domain. The candidate paths we consider for our embedding are

then in P S\P̂ S
. By construction, there is a unique path in P S\P̂ S

that contains

(OutS,OutS). It is the path (OutS, (OutS,OutS),OutS), as explained in Def-

inition 3.3. As such, as we have a unique way to outsource a virtual node, we

have also a unique way to outsource a virtual link. This unicity is important

to guarantee when generating solutions, otherwise we would generate the same

solution multiple times.

Another property of the host OutS and the self-loop (OutS,OutS) is that

they are ideal, which is de�ned in De�nition 3.1. By doing so, OutS and (OutS,OutS)
limit the possible embeddings in the given intra-domain in terms of topology,

rather than attribute values, as any partial embedding requires to go through an

inter-domain link.

Inter-domain links are the most critical part of the intra-domain graph in-

deed, as each of them is known by two domains. For most attributes, the inter-

domain link attribute values do not depend on the intra-domain being consid-

ered, as we assume that such values are shared between the two involved InPs.

Consequently, a virtual link is allocated to an inter-domain link, only if both

domains allocate this virtual link to the inter-domain link at their intra-domain

level. Furthermore, if we had the full knownledge of the topology, this virtual

link could also be allocated to the same inter-domain link, as we have the same

attribute values.

However, the reader may be interested by the case of tolerant attributes

which rely on aggregation functions, as de�ned in De�nition 3.2, like the !ven
attribute. In that case, the inter-domain link attribute values are di�erent, due

to the presence of OutS . They are also di�erent from the inter-domain link at-

tribute value under the fully disclosed infrastructure. Thanks to the properties

of aggregation function (cf. De�nition 3.2), this di�erence does not impact the

validity of the embedding, as we show in Demonstration 4.1. More precisely, we

show that if an embedding is rejected with full knowledge of the attributes, then

it is also rejected by our solution.
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Demonstration 4.1
Let D and D′ be two domains. Let S be the infrastructure with full knowl-

edge about D and D′. Let (h, t) ∈ LS be an inter-domain link between D
and D′. Let a be a tolerant link attribute with an aggregation function ·a.

Thanks to the aggregation function properties, as given in Def. 3.2, we

can show that having both domains separately accepting the demand on

abstract links (h,OutD) and (OutD
′
, t) respectively implies to accept the

demand with full knowledge on the physical link (h, t).
By de�nition of outside hosts OutD and OutD

′
, as well as per Def. 3.2,

we have:

o(h,OutD)[a] = oh[a] · aMa = oh[a]

o(OutD′ ,t)[a] =Ma · aot[a] = ot[a]

o(h,t)[a] = oh[a] · aot[a]

Let R be a request and i ∈ LR a link. Let assume that each domain D and

D′ separately accepts the demand di[a] for oh[a] and ot[a] respectively. In

other words:

1) di[a] ≤ oh[a]

2) di[a] ≤ ot[a]

It follows:

translation-invariance of 1): di[a] · aot[a] ≤ oh[a] · aot[a]
translation-invariance of 2): di[a] · adi[a] ≤ ot[a] · adi[a]
idempotence of ·a: di[a] · adi[a] = di[a]

commutativity of ·a: di[a] ≤ di[a] · aot[a]
transitivity of ≤: di[a] ≤ oh[a] · aot[a]

As we have di[a] ≤ oh[a]·aot[a], we know that S will also accept the demand

di[a] for the link (h, t).

We now present how this heuristic helps us to adapt the equations from Sec-

tion 3.2.2. Every rule from Section 3.2.1 which is modi�ed is explicitly cited.

Those which are not cited are not modi�ed. The modi�cation of the equations is

also highlighted.

Equation (C1) still holds because OutS is a host. Equation (C2) and Equa-

tion (C3) only hold for P S \ P̂ S
and not P S

. This is to reduce recursivity: other-

wise, if we enable paths going out through OutS , it means that the other domains
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would have to also validate the link mapping. In other words, we alter eligible

paths rule (R4) by using a subset of the available paths. See Equation (C2b) and

Equation (C3b).

Equation (C4) and Equation (C5) still hold because OutS is a host. Equa-

tion (C6) and Equation (C7) still hold because OutS is an ideal node (cf. Def. 3.1).

Equation (C8) and Equation (C9) still hold because (OutS,OutS) is an ideal link

(cf. Def. 3.1). Equation (C10), Equation (C11) and Equation (C12) only hold for

host j 6= OutS , because OutS is an ideal node (cf. Def. 3.1. In other words,

we alter capacity rule (R6) to make an exception for exclusion attributes on

OutS , which is consistent with its abstract nature. See Equation (C10b), Equa-

tion (C11b), and Equation (C12b).

Equation (C13), Equation (C14), and Equation (C15) only hold for link j dif-
ferent from (OutS,OutS), because (OutS,OutS) is an ideal link (cf. Def. 3.1).

In other words, we alter R6 to make an exception for exclusion attributes on

(OutS,OutS), which is consistent with its abstract nature. See Equation (C13b), Equa-

tion (C14b), and Equation (C15b).

∨
j∈P S\P̂ S

(
pij ∧

∧
j′ 6=j

¬pi,j

)
∀R∈Requests , i∈LR

(C2b)

pij = (nih,jh ∧ nit,jt) ∧
∧

j′∈AlongL(j)

li,j′ ∧
∧

j′∈LS\AlongL(j)

¬li,j′

∀R∈Requests , i∈LR, j∈P S\P̂ S , i = (ih, it),Tipsj = (jh, jt)

 (C3b)

nij ⇒
∧

i′∈di[!exc-resources]

¬ni′,j ∀R∈Requests , i∈NR, j∈ĤS
(C10b)

nij ⇒
∧

R′∈di[!exc-requests]
i′∈NR′

¬ni′,j ∀R∈Requests , i∈NR, j∈ĤS

(C11b)

nij ⇒
∧

τ∈di[!exc-requests]
R′∈Requestsτ

i′∈NR′

¬ni′,j ∀R∈Requests , i∈NR, j∈ĤS

(C12b)
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lij ⇒
∧

i′∈di[!exc-resources]

¬li′,j ∀R∈Requests , i∈LR, j∈L̂S
(C13b)

lij ⇒
∧

R′∈di[!exc-requests]
i′∈LR′

¬li′,j ∀R∈Requests , i∈LR, j∈L̂S
(C14b)

lij ⇒
∧

τ∈di[!exc-requests]
R′∈Requestsτ

i′∈LR′

¬li′,j ∀R∈Requests , i∈LR, j∈L̂S
(C15b)

4.1.2 SMT Formulation for the Inter-Domain Level
At the inter-domain level, we only know the di�erent domains and the inter-

domain links. The inner domain topologies are unknown. Yet, we can still reuse

the rules in Section 3.2.1, and use them to adapt the equations from Section 3.2.2,

as follows.

We model the inter-domain level as a directed, connected, multigraph. Each

node represents a domain, and each link represents an inter-domain link. Do-

mains may be connected through more than one pair of border routers.

We leverage the multigraph to know which domains can be used for our slice,

and which inter-domain links will be used. The inner details of the embedding

are left to the domains.

In such graph, according to node mapping rule (R1) and eligible substrate

hosts rule (R3), we need to consider that each domain is a host. Then, we must

relax R4 to enable two virtual nodes to be embedded in the same domain. To do

so, we will use loop-free paths (cf. Def. 3.3), and bene�t from the fact that, by

de�nition, when there is a self-loop joining a node to itself, there exists a unique

loop-free path joining the same node to itself. Finally, we must relax R6, because

we cannot treat neither exclusion nor tolerant attribute constraint at this level

due to our lack of knowledge. This is also true for the self-loops on the domains.

From this update of the rules, it follows that we only need to consider domains

as hosts, with a self-loop edge. As we do not consider exclusion nor tolerant

attributes on domains nor on their self-loops, we can make them all ideal, as per

De�nition 3.1.

We now present how this heuristic helps us to adapt the equations from Sec-

tion 3.2.2. Like in Section 4.1.1, the equations which are modi�ed are highlighted.

The equations which are not modi�ed are not cited.

Equation (C1), Equation (C2), Equation (C3), Equation (C4) and Equation (C5)

still hold because domains are hosts. Equation (C6) and Equation (C7) still hold
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because domains are ideal nodes. Equation (C8) and Equation (C9) still hold be-

cause domain self-loops are ideal links. Equation (C10), Equation (C11) and Equa-

tion (C12) are removed because domains are ideal nodes. Equation (C13), Equa-

tion (C14), and Equation (C15) only hold for inter-domain links, as domain self-

loops are ideal links. See Equation (C13c), Equation (C14c), and Equation (C15c).

lij ⇒
∧

k∈di[!exc-resources]

¬lkj ∀R∈Requests , i∈LR, j∈LS\SelfLoopsS
(C13c)

lij ⇒
∧

R′∈di[!exc-requests]
k∈LR′

¬lkj ∀R∈Requests , i∈LR, j∈LS\SelfLoopsS

(C14c)

lij ⇒
∧

T∈di[!exc-requests]
R′∈Requestsτ

k∈LR′

¬lkj ∀R∈Requests , i∈LR, j∈LS\SelfLoopsS

(C15c)

4.2 Multi-level Resolution Algorithm
In this section, we present our algorithm resolution following a top-down ap-

proach, where the VNP determines the subparts of the original virtual network

request that the di�erent InP must embed. The InPs must then solve a partial slice

embedding problem, as each subpart sent by the VNP is a set of virtual resources

which must be connected to virtual resources instantiated by other InPs.

This algorithm resolution relies on SMT solvers. Our main motivation for

leveraging those is that they provide some guarantees, such as mathematical

consistency, trustworthiness (the SMT solver in use is z3, which is well-known

and open source, and relying on Barrett et al. (2017), which is a SMT standard),

and auditability (as the InPs can fully verify the constraints that the solver is

using).

Subsection 4.2.1 presents the architecture of the system, enabling the multi-

domain VNE. We describe our algorithm as a multi-level algorithm, as we have to

treat the inter-domain SMT formulation and the intra-domain SMT formulation

given in Section 4.1. Our main goal is to enumerate the candidate embeddings,

which is described in Section 4.2.2. This goal has been chosen instead of an

optimization goal because we want �rst to verify that our SMT formulation is

correct and generates correct solutions, which is evaluated in Chapter 5. Subsec-

tion 4.2.3 is dedicated to the description of how the inter-domain level and the

intra-domain level cooperates in the system to enumerate the candidates. We

also describe how a candidate can be selected by the tenant in Subsection 4.2.4.

As such, we enable the tenant to apply whatever decision criterion upon the set
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of candidates to choose the embedding candidate which will be instantiated to

provide the virtual network itself.

4.2.1 Architecture

Our algorithm is presented in Figure 4.2. It follows a delegation system, where

an InterDomainSolver serves as the unique interface between the tenant and

the InPs. The InterDomainSolver views only the interconnections between

the di�erent domains. It is the only solver belonging to what is called the “inter-

domain level”. Each IntraDomainSolver corresponds to a domain, and is the

only entity being able to access the data of that domain. They belong to what

is called the “intra-domain level”. The delegation system appears in how the

two levels interact. Indeed, the InterDomainSolver acts as an initiator, which

queries each IntraDomainSolver. It uses their replies to generate the solutions.

The system involves a tenant τ submitting a new request NewRequest to the

unique InterDomainSolver (denoted U ). This latter collaborates with several

IntraDomainSolvers (denoted D). From now, the inter-domain level must be

distinguished from the intra-domain level. To do so, the letters U and D will

be used in superscript. For instance, xij
D

is an allocation variable xij from the

intra-domain level problem (any nij , pij or lij in Section 4.1.1), while xij
U

is an

allocation variable xij from the inter-domain level problem (any nij , pij or lij in

Section 4.1.2).

The generation algorithm, presented in Fig. 4.2 starts with an initializa-
tion step, where the tenant τ sends the new request NewRequest (step 1) to

the inter-domain solverU , which relays it to the di�erent intra-domain solver in-

stancesD (step 3). When receiving NewRequest , each solver runs independently

a genCstr (for “generate constraints”) function. The function genCstrD (resp.

genCstrU ) is the function which generates the intra-domain level (resp. inter-

domain level) mathematical constraints as per the formulation in Section 4.1.1

(resp. Section 4.1.2).

Then at the enumeration step, all solvers participate in a while loop. The

embeddings are outputted in the variable results. We will describe how the

enumeration works shortly after. The algorithm ends with the �nalization step,

which sends the results back to the tenant τ .

4.2.2 Solution Enumeration

Enumerating solutions with a SMT solver is a known algorithm: while the con-

straints are satis�ed (through an isSatisfied function), the solver gets a model

m (through the getModel function, see step 6), stores it in the results, and adds a
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Figure 4.2: Embeddings Generation Sequence Diagram
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new constraint to the problem which prevents itself from re-generating m. This

new constraint is returned by the function forbid (step 8).

∨
x∈X

x 6= m(x) (4.1)∨
x∈Nij∪Pij ,m(x)=>

¬x (4.2)

By de�nition, a model m is a function that assigns a value m(x) to each

variable x ∈ X of the original problem. Hence forbidding a model m can be

done with Equation (4.1). This expression is for the general case. If we adapt it to

our slice embedding formulation, we can exhibit a shorter (in terms) forbidding

constraint, represented in Equation (4.2).

The reason why we can do so is that knowing, for each virtual resource i ∈
NR ∪ LR of a request R, the resource j ∈ HD ∪ P̂D

(resp. j ∈ HU ∪ PU
) to

which it is mapped at the intra-domain level (resp. the inter-domain level), fully
determines the values of all the variablesNij , Pij andLij (for the respective level),

as we show in Demonstration 4.2. Thus Equation (4.2) is the chosen expression

for forbid.

In our algorithm (see Figure 4.2), the enumeration stage features three steps,

numbered 7, 9 and 10. They are all related to the inter-level coordination. At

step 7.1, it sends the inter-domain level model m to the solver D. At step 7.2,

this model is translated into intra-domain level constraints with toCstrD (for

“translate to constraints”). At step 7.3, it generates the set of minimal unsatis-

�able subsets. We will explain its exact meaning later, but the reader can in-

terpret it globally as the set of con�icting variables. At step 7.4, those minimal

unsatis�able subsets are translated back into inter-domain level constraints with

toCstrU , which are sent to U at step 7.5.

Demonstration 4.2: Solution Determination by True-valued Variables
This demonstration aims to show that we can fully determine an embed-

ding solution by only knowing an appropriate set of nij variables and pij
variables.

For the sake of simplicity, this demonstration ignores the di�erence be-

tween the inter-domain level and the intra-domain level. We rely on the em-

bedding formulation in Section 3.2.2. Considering inter-domain level equa-

tions or intra-domain level equations does not alter the reasoning.
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Let suppose we have a solution. It follows:

1) Equation (C1) is true:

∀i ∈ NR,
∨
j∈HS

(
nij ∧

∧
j′ 6=j

¬ni,j′
)

= >

2) ∨-split:

∀i ∈ NR,∃j ∈ HS, nij ∧
∧
j′ 6=j

¬ni,j′ = >

3) ∧-split:

∀i ∈ NR,∃j ∈ HS, (nij = >) ∧ (∀j′ 6= j, ni,j′ = ⊥)
4) j is indeed unique:

∀i ∈ NR,∃!j ∈ HS, (nij = >) ∧ (∀j′ 6= j, ni,j′ = ⊥)

As such, knowing a resource j such that nij is true means that it is the
j such that nij is true and that for all j′ 6= j, the ni,j′ are false.

We apply the same reasoning to Equation (C2). In other words, knowing

all the nij which are true and all the pij which are true is equivalent to know

the values of all the nij and pij .
Besides, let i = (ih, it) ∈ LR. Let j ∈ P S

such that pij = >. Let

Tipsj = (jh, jt). It follows:

1) Equation (C3) is true:

pij = (nih,jh ∧ nit,jt) ∧
∧

j′∈AlongL(j)

li,j′ ∧
∧

j′∈LS\AlongL(j)

¬li,j′ = >

2) ∧-split:

(nih,jh=>) ∧ (nit,jt=>)∧
(∀j′∈AlongL(j), li,j′=>)∧
(∀j′∈LS\AlongL(j), li,j′=⊥)

In other words, for a given i, knowing a j such that pij is true implies

that we know the values of all the li,j′ for j′ 6= j. It follows that knowing all

the pij which are true implies to know the values of all lij .
Knowing all the nij which are true and all the pij which are true is then

su�cient to describe the solution.

At step 9, the algorithm uses the minimal unsatis�able subsets as new for-

bidding constraints, similarly to the function forbid at step 8. At step 10, the

algorithm determines if the model m is a solution. It is the case if every domain
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D returns an empty set of minimal unsatis�able subsets. Naturally, if m is a so-

lution, no forbidding constraint is added at step 9, but as the forbid function is

called in step 8, the solver never solves twice the same constraints. Consequently,

the enumeration loop will always terminate.

4.2.3 Inter-level Coordination

Let us now talk about the inter-level coordination. Above all the algorithm

uses getCflt (for “get con�icts”), a function relying on another known SMT al-

gorithm, called MARCO and designed by Li�ton et al. (2016), which produces

all minimal unsatis�able subsets. Given a problem as a set of constraints (like

{a,¬a, b,¬b}), an unsatis�able subset is a subset of the problem constraints

which are unsatis�able. For instance, {a,¬a, b} is such an unsatis�able subset,

as well as {a,¬a}. A minimal unsatis�able subset is then an unsatis�able subset

which does not contain any other unsatis�able subset. As {a,¬a, b} contains

{a,¬a}, it is not a minimal unsatis�able subset, but {a,¬a} is. Minimal unsatis-

�able subsets are not necessarily unique. For instance, {b,¬b} is also a minimal

unsatis�able subset of the same set of constraints. The MARCO algorithm can

be directly interconnected with z3 thanks to Bjørner (2016).

In our case, getCflt use a slight modi�cation of the MARCO algorithm so

that the minimal unsatis�able subsets are only composed of our allocation vari-

ables. In other words, getCflt(Xij, C) enumerates all variables inXij that make

the problem C unsatis�able. To do so, the algorithm �rst translates the inter-

domain level modem in terms of intra-domain level constraintsCD
m with toCstrD.

The problem given to getCflt is then C := CD ∪ CD
m where CD

is the initial

intra-domain level problem (from genCstrD). The result is denoted as XD
m and

is a set of sets of intra-domain level allocation variables, which cannot be true

together. We then translate back the intra-domain level allocation variables in

XD
m into inter-domain level allocation variables thanks to toCstrU . The result is

denoted XU
m,D.

The translation from the inter-domain level to the intra-domain level realized

by toCstrD is given in Equation (4.3), Equation (4.4), and Equation (4.5). Equa-

tion (4.3) means that mapping a tenant node i to a domain D is translated to the

constraint “do not map i to the outside” within the domain D. On the contrary,

Equation (4.3) means that mapping a tenant node i to a domain di�erent from D
is translated to the constraint “map i to the outside” within the domainD. Equa-

tion (4.5) means that mapping a tenant link i on a inter-domain link from/to the

domain D is kept as is within the domain D.
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Figure 4.3: Embedding Selection Sequence Diagram

∀i ∈ NNewRequest , ∃nijU , j = D ⇒ ¬ni,OutD
D

(4.3)

∀i ∈ NNewRequest , ∃nijU , i 6= D ⇒ ni,OutD
D

(4.4)

∀i ∈ LNewRequest , ∃lijU , j ∈ InterdomainLinksUD ⇒ lij
D

(4.5)

When generating constraints with genConsU (or genConsD), the solver of

course need to know the set of our loop-free paths PU
(or PD

, see Table of all

Notations starting on page 137). If we assume that the infrastructure topology

does not change, then this set can be considered as constant, like Yu et al. (2008),

and produced with a depth-�rst search algorithm.

4.2.4 Solution Selection

Figure 4.3 presents what happens after the tenant chooses which embedding is

the most suitable. Those steps are run after the generation algorithm. First, at

step 12, the tenant chooses a model m in the results the tenant got from the

generation algorithm. Then at step 13, the inter-domain solver runs the embedU
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function, which will memorize, for the future executions, which mapping vari-

ables nij and pij must be set to true. It is actually how (C4) and (C5) are �lled.

Steps 14 and 15 are the same as 7.1 and 7.2. The reason why they are repeated is

because we consider that D does not remember CD
m for every m. Step 16 gener-

ates a new model, mD
, which represents the partial mapping of the newcoming

request NewRequest at the intra-domain level. Model mD
is only known by D.

It is not unique, but it is guaranteed to exist, because if m ∈ results, then nei-

therD nor any other intra-domain solver sent any minimal unsatisfaction subset

at step 7.5. At step 17, the intra-domain solver runs its counterpart of embedU ,

namely embedD, to �ll (C4) and (C5) at the intra-domain level.

The tenant τ now has a slice. Note however that the process by which the

physical resources are technically reserved and con�gured is out of the scope of

this thesis, therefore not presented in Figure 4.3.

4.3 Conclusion
In this chapter, we present how we solve the security-aware VNE in the 5G con-

text. It is a top-down approach, distinguishing two levels: the inter-domain level,

and the intra-domain level. The inter-domain level is managed by the VNP, while

the intra-domain level is managed by the di�erent InPs. Our methodology to ad-

dress the problem was to leverage the single domain scenario, formulated with

SMT in Section 3.2, and a topological heuristic. The algorithm itself leverages

di�erent techniques from the SMT �eld, notably how to enumerate a set of so-

lutions, and how to identify the causes of rejection.
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CHAPTER 5

Prototyping and Evaluation

This chapter presents how we implement our work and evaluate it. More pre-

cisely, our implementation leverages the Satis�ability Modulo Theories (SMT)

oriented model from Chapter 3, and follows the top-down approach described in

Chapter 4. Section 5.1 presents our prototype, as well as an illustration with a use

case request. The implementation itself was not an easy task though, and nour-

ished our attribute model. Section 5.2 summarizes the challenges that occurred

during the implementation. We then consider the evaluation of the developed

system itself. Section 5.3 presents the experiments we conducted to evaluate

our work thoroughly. Then, in Section 5.4, we justify that our model is generic

enough, by leveraging it to implement the security-oriented attributes proposed

by the state of the art. Section 5.5 concludes this chapter.

5.1 Prototype Description and Use Case

Developing a prototype for our work is a necessity for any correct evaluation

and improvement. This prototype serves also other purposes. We presented it at

an event organized by Nokia Bell Labs France entitled “Nokia 5G Campus Event”,

in 2018, where we could gathered positive feedback. The audience encompassed

Nokia employees, and employees of telecom companies. The prototype is also

part of a demonstration for the sub-project TANDEM of the SENDATE European

project (see Pointurier (2016)), and included in the security work package, WP4.

SENDATE stands for Secure Networking for a Data Center Cloud in Europe, and

TANDEM for Tailored Network for Data Centers in the Metro.

In Subsection 5.1.1, we give a technical description of our prototype. In Sub-

section 5.1.2, we present a tenant scenario, and how we leverage the prototype
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to instantiate the tenant’s request. Although we use the term “technical”, we do

not intend to present the prototype down to the programming aspects. Our main

focus instead is to show how the prototype behaves, what are our design choices,

and which technical challenges have been great enough to make us rethink the

implementation.

5.1.1 Prototype Description
This section describes our prototype, implementing the model presented in Sec-

tion 3.1 and the algorithm presented in Section 4.2. The purpose of this prototype

is to solve the multi-provider security-aware virtual network embedding prob-

lem.

The core of the prototype is a web server, which comes with a GUI and a REST

API. Both are used for demonstrations of the prototype, and then, share some

ground features. They do di�er however, because of the stakes of the demon-

stration. The GUI was mainly used within a standalone demonstration, with

some processes directly run by the web server without control from the GUI. For

its part, the REST API is mainly used in a demonstration where it is connected

to an orchestrator. For integration purpose, the server has to cooperate with the

orchestrator.

As a whole, the GUI encompass the following processes:

Request creation The tenant customizes a graph representing the virtual net-

work. Once the graph is submitted, a virtual network request is created.

The request is considered to be in the state “non-embedded”.

Request embedding The tenant requests the embedding of one (and option-

ally, multiple) virtual network requests. This steps actually runs our Vir-

tual Network Embedding (VNE) algorithm. It also runs extra steps. The

�rst one is to memorize the embedding, both at the inter-domain level and

the intra-domain level. The second one is to display back the output of the

algorithm at the inter-domain level.

Candidates generation The tenant can ask (for demonstration purpose), to

enumerate all candidate embeddings for the selected virtual network re-

quest. A candidate embedding is an output of our VNE algorithm.

Embedding selection The tenant can select one candidate embedding from the

candidates generation page. This embedding is then memorized and dis-

played (like in “Request embedding”).

Request freeing An embedded request can be freed, which means that our

VNE algorithm must forget the association between the virtual resources
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and the infrastructure resources it memorized. The request comes back to

the “non-embedded” state.

Request deletion A non-embedded request can be deleted, which means that

the prototype forgets the virtual network request as a whole.

Infrastructure view The Infrastructure Providers (InPs) can view the change

in their respective infrastructure, as memorized by the prototype.

Then the REST API, enabling connection to an orchestrator, encompasses the

following processes:

Request creation Like for the GUI, but using a JSON format.

Request embedding Like for the GUI, but using a JSON format.

Infrastructure initialization Infrastructure initialization is currently out-of-

scope of our prototype, and done in an improper manner. Currently, the

prototype expects JSON data describing the whole infrastructure of every

InPs. Then, it distributes the data to di�erent servers, which are part of

the intra-domain level. The di�erent servers are the one responsible for

holding and protecting the data for a particular InPs. We do so because

we do not implement a mechanism for the InPs to register themselves and

plug an external intra-domain solver to our algorithm.

Attribute mutability When new hardware is acquired, new options may be

o�ered to the tenants, such as new supported vendors, or new supported

locations. Attribute mutability enables to update the attribute structure

accordingly in a single place.

Note that we distinguish request creation (resp. deletion) from request em-

bedding (resp. freeing). We do so because we want to empower tenants with full

control over when their virtual network is instantiated or not. This feature is in-

teresting when the tenant only needs (and accepts to pay for) the virtual network

for a short period of time, and may need it again later.

Besides, we mention the connection to an orchestrator, because orchestrators

are the entities dedicated to actually instantiate virtual networks. The output

of our prototype actually corresponds to the placement of the virtual resources

within the infrastructure. Naturally, our prototype and the so-called orchestrator

must cooperate closely. Another example of such cooperation is that, besides

the virtual network request, our prototype needs the infrastructure data. Such

data are only known by the orchestrator of the particular infrastructure. When

multiple InPs must be considered, our prototype seeks to communicate with the

orchestrators of the respective domains.
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Table 5.1: Overview of Python modules in use

Python module name Purpose

cffi For ZODB dependencies

ZODB Object-oriented database

ZEO Run ZODB as a server

passlib Password creation library

bottle Web server

z3-solver SMT solver

networkx Graph library

pydot Graph visualization library

requests REST API calls

The prototype itself has been developed under Python 3.6 and has been run

on an Ubuntu 16.04 OS. The Python package dependencies are enumerated in

Table 5.1. For the purpose of the SENDATE demonstration, the prototype can also

come in a Docker container. The Docker container format helps the prototype

to be more portable.

The choice of Python for programming is only driven by my familiarity with

this language. I have encountered it in my engineering school, and during my

end-of-studies internship. Python proved to me to be �exible enough to start any

kind of project, be it job-related or personal. For this prototype implementation,

it was just a tool to start, until I could face some drastical limits. When I tried

the implementation of the �rst proposed model, it was slow enough to make me

think about using another language; but as SMT stepped into the picture and as

I could rework my model around it, I continued to use Python.

Packages in Table 5.1 serve di�erent purposes. z3-solver (by Moura and

Bjørner (2008) and Bjørner and Moura (2018)), networkx (by Hagberg (2018)) and

ZODB (by Fulton (2018)) are closely related to the implementation of our model.

z3-solver provides the z3 SMT solver, which is at the core of our algorithm.

networkx provides graph manipulation and modelling tools. Particularly, we use

their simple path generation algorithm, which is based on a breadth-�rst search.

For its part, ZODB provides database tools for storing Python objets, especially

graphs from networkx or the instances from our model.

Another widely used package used by our prototype is the multiprocessing
standard Python package, as we have decided to implement the domain isolation

by instantiating the intra-domain solvers in distinct processes, run in parallel.

This design choice is driven by the decision to run our algorithm at �rst on a

single (but powerful) physical machine.

The other packages are related to the demonstration purpose of our proto-

type. The bottle package of Hellkamp (2018) provides tools for making a web

server, and is the core of our server architecture. I actually use it because I am
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Figure 5.1: Use case request

already familiar with it, and I could work with it without encoutering major ob-
stacle.

5.1.2 Use Case

Figure 5.1 shows an exemplary use case. Here, the tenant wants to outsource
some IT resources. The request is composed from an access node, x , two remote
workspaces for two users a and b, a server s and a database d. Apart from the
access part, the tenant wants to explicitly avoid switch vendor V 3. The database
containing some sensitive or regulation-protected information cannot be stored
in location Loc1. Using the exclusion attribute, the tenant explicitly avoids the
collocation of some virtual nodes and virtual edges. This is to prevent a and b
from spying on each other, and also from acquiring protected data from d.

Our prototype runs on a server. The tenant connects to it and describes the
request on a form page. Figure 5.2 shows the specific web form to fulfill for the
resource d.

In our use case, the tenant only modifies the fields for Requested Memory

(!mem attribute), theAuthorized Locations (!loc attribute) and Forbidden Resources
(!exc-resources attribute). Others are left to their default value.

The tenant then saves the request and can now find it on a dashboard page,
which encompasses all already submitted requests and their states (embedded,
not embedded). This dashboard is displayed in Figure 5.3, along with a summary
of the demands for each resource. The table on the right presents how each value
given by the tenant is translated by the server. The fields Requested Memory, Au-
thorized Locations and Forbidden Resources semantically describe what the tenant
asked for.
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Figure 5.2: Declaring resource d on prototype

Figure 5.3: Description of resource d on prototype

Figure 5.4: Proposed embeddings
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The tenant now executes our embedding generation algorithm (as a reminder,

it is depicted in Figure 4.2 in Chapter 4). The tenant is then redirected to an

interface similar to the one shown on Figure 5.4. This interface shows every

found embedding, depicted as a graph. The embeddings are numbered by the

order in which they were found. The bullet on top of each embedding enables

the tenant to select the desired embedding. Once an embedding is selected, we

run the embedding selection algorithm (as a reminder, it is depicted in Figure 4.3

from Chapter 4).

5.2 Implementation Challenges for Mutable At-
tributes

This section is about the di�culties encountered during prototype development.

We actually encountered one major di�culty, to which this section has been

dedicated. This di�culty is a good example of why it is necessary to go back and

forth between the model and the implementation, as it is due to an aspect which

has been overseen in the active attribute model. This aspect is the mutability of

the attributes, as introduced in Section 3.1.

In this prototype, we decouple request declaration from request embedding.

As such, tenants may declare requests and embed them later, or re-embed them

after freeing resources, for instance. Consequently, we have to store requests in

the database.

Yet, this raises a technical problem for the powerset-based attributes. For at-

tributes like !loc or !ven, the set of available locations, or the set of available

vendors, is expected to change over time, as the InPs may acquire more hard-

ware, or even because new InPs can participate into the system. The problem

is then that, although such attributes may change, the data we store, describing

requirements, should not change. This does not mean that the stored data may

not change over time; but that the requirement itself should be guaranteed to

have the same meaning over time. In other words, providing new options, new

vendors, new locations, should not a�ect the data using the old set of options,

vendors or locations.

Guarantee that the requirement keeps the same meaning over time happened

to be a challenge. We now illustrate it by describing how we tackle this problem.

We want to enable a certain attribute a to be a mutable set, growing over time.

We suppose that V (a) is a powerset of a set Seta: V (a) = Powerset(Seta).
Let Seta(t) denote such time-dependent set. At the initialization time (t0), we

assume that Seta(t0) = {X, Y }. At another (later) instant, t1, we assume that

Seta(t1) = {X, Y, Z}. The situation is presented in two distinct tables, Table 5.2
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Table 5.2: Compute before Store Strategy for A�ribute a Such That V (a) =
Powerset(Seta)

a Positive Requirement

Time t = t0 t = t1

Seta {X,Y } {X,Y, Z}
Intent X only X only

Computation Store {X} Get {X}
Semantics {X} {X}
Interpretation X only X only

b Negative Requirement

Time t = t0 t = t1

Seta {X,Y } {X,Y, Z}
Intent All except X All except X
Computation Store {Y } Get {Y }
Semantics {Y } {Y }
Interpretation All except X All except X and Z

Table 5.3: Compute on Demand Strategy for A�ribute a Such That V (a) =
Powerset(Seta)

a Positive Requirement

Time t = t0 t = t1

Seta {X,Y } {X,Y, Z}
Intent X only X only

Computation Store ({X}, pos,⊥) Get ({X}, pos,⊥)
Semantics {X} {X}
Interpretation X only X only

b Negative Requirement

Time t = t0 t = t1

Seta {X,Y } {X,Y, Z}
Intent All except X All except X
Computation Store ({X},neg ,>) Get ({X},neg ,>)
Semantics {Y } {Y, Z}
Interpretation All except X All except X
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and Table 5.3. Those tables actually present two strategies. The �rst strategy is

the one that leads to a problem. It is called “Compute before Store” and presented

in Table 5.2. The second strategy is how we solve the problem raised by the �rst

strategy. It is called “Compute on Demand” and presented in Table 5.3.

For both strategies, we consider two requirements. The �rst requirement is

a positive requirement, where the tenant enumerates all the authorized values.

In Table 5.2a and Table 5.3a, this positive requirement is “X only”, meaning that

only X is the authorized value. The second requirement is a negative require-

ment, where the tenant enumerates all the unauthorized values. In Table 5.2b and

Table 5.3b, this negative requirement is “all except X”, meaning that all values

except X are authorized.

Besides, for both strategies, at time t0, the tenant creates the request with

the desired requirement (either positive or negative); the request is then stored

in the database. At time t1, the system runs the embedding algorithm; for this

purpose, it retrieves the request of the tenant from the database.

Consider the �rst strategy. Table 5.2a is the case where everything works

right. The intent of the tenant (expressed in human language: “X only”) is con-

verted and computed as the set {X}. This set is stored as-is in the database.

Semantically, with the �rst strategy, the semantics is in accordance with the com-

putation. For this reason, the interpretation of the value {X} is that it represents

the requirement “X only”. If we now move to time t1, we are now retrieving

the value from the database; the computation gives {X}. Again, semantically,

with the �rst strategy, the semantics is in accordance with the computation, so

we have the same interpretation as for time t0. In other words, for a positive

requirement, the interpretation is constant, and matches, at all times, the intent.

Consider now Table 5.2b with the negative requirement. The intent of the

tenant is “all except X”. The �rst strategy states that we “compute before store”

so we convert the negative requirement into a positive requirement by using the

set subtraction operation on the value set at time t0 ({X, Y }); this leaves us with

the value {Y }. Semantically, {Y }means that we accept only Y ; but at time t0, it

is also equivalent to accept every value butX . However, if we now move to time

t1, the value we retrieve from the database is {Y }. As the value set has changed

(it is now {X, Y, Z}), the value {Y } means that we accept only Y ; and at time

t1, it is also equivalent to accept every value but X and Z . The interpretation

of the requirement at time t1 is then “all but X and Z”, which is not the same

interpretation than at time t0. In other words, for a negative requirement, the

interpretation is not constant, and does not match, at all times, the intent.

To correctly match the intent, our solution is to re-compute the value each

time we retrieve it. The data we store have a di�erent structure too. Instead of

a bare set, it is a tuple of a set, a type and a Boolean. The set in �rst position is

a subset of Seta(t) at time t when the request is registered. The type indicates
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Table 5.4: Data Structure for Mutable A�ribute At Time ti With Seta(ti) =
{X, Y, Z}

Input Set Type All others Interpretation Store at ti Retrieve at tj > ti

{X, Y } pos ⊥ X and Y only ({X, Y }, pos ,⊥) {X, Y }
{X, Y } pos > All but Z ({Z}, pos ,>) Seta(tj) \ {Z}
{X, Y } neg ⊥ All but X and Y ({X, Y }, neg ,⊥) Seta(tj) \ {X, Y }
{X, Y } neg > Z only ({Z}, neg ,>) {Z}

whether the requirement is positive (pos) or negative (neg). The Boolean indi-

cates for its part if the tenant authorizes future values (>) or not (⊥). Table 5.4

shows how the di�erent possible values for this structure are treated. The �rst

three columns represent the tenant input, that is, as if the tenant used the GUI

presented in Figure 5.2. We use the same “input set” and show how the options

“type” and “all others” a�ect it. The computation at time ti column gives how we

instantiate the data structure from the tenant input, and store it in the database.

The computation at time tj column shows how we retrieve and treat the value

from the database. In Table 5.4, we assume that Seta(ti) = {X, Y, Z}.
When the “all others” option is set by the tenant, we use the complement

to the current set, Seta(ti), in our data structure, as shown in rows 2 and 3 of

Table 5.4. It is for this reason that we store {Z}, as {Z} = Seta(ti) \ {X, Y }.
Otherwise, we use the input set as is, as shown in rows 1 and 4.

When retrieving a value, we use the complement to the new current set,

Seta(tj), only when the type is pos (resp. neg) and the “all others” option is

not used (resp. is used). Otherwise, we use the �rst element of the data structure

as-is.

Consider now the second strategy with this new structure. In Table 5.3a, the

intent “X only” is converted into ({X}, pos ,⊥). At time t1, the value ({X}, pos ,⊥)
semantically corresponds to (X), whose interpretation is “X only”. The interpre-

tation matches the intent. In Table 5.3b, the intent “all exceptX” is converted into

({X}, neg ,>). It semantically corresponds to the subtraction of the value set by

{X}. At time t1, the value ({X}, neg ,>) semantically corresponds to (Y, Z),
whose interpretation is “all except X”. The interpretation, again, matches the

intent.

In our implementation, every attribute with a value set derived from a pow-

erset supports this mechanism. In practice, it is required for the tenant-based

exclusion attribute, as the set of all tenants registered in the system is expected

to grow over time. Attributes such as !ven and !loc may bene�t from such a

mechanism when the infrastructure grows and the InPs acquire new hardware.

Note however that this structure has be designed to address a growing mu-

table value set. In order words, the value set at time ti+1 contains the value set
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Figure 5.5: The use case substrate, with its sub-domains

at time ti. We are unsure if it can be applied if the value set can shrink (lose of
values), or if freely evolve (either acquire new values or lose some).

5.3 Results and Interpretation

In this section, we evaluate the correctness of our algorithm, and provide some
measures about its time computation. We conduct the following experiments:
i) we show that computation time increases faster with the number of embed-
dings, and that all embeddings are correctly generated; ii) we show how time
computation evolves when no suitable embedding exists.

We implement our work under Ubuntu 16.04 on a i7-6700HQ@ 2.60GHz ma-
chine with 16 GB RAM and 300 GB of storage. Domains are modeled as separate
processes. We do not enforce any delay between calling a domain server and
getting its reply, even though we expect such delay to have an impact on the
time performances of our algorithm when deployed in a real system. We leave
such optimization for future works and here evaluate our algorithm as a proof
of concept.
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The substrate which is used for all our evaluations is described in Figure 5.5.

This �gure represents the substrate as a set of interconnected boxes (the do-

mains), with their hosts, switches and links inside the boxes. The substrate is

divided into four domains (Domain1 toDomain4). Domains are interconnected

following a ring topology. The Domain2 is special is that there are no host in-

side. The attribute values for each host, switch and link are also represented. The

node location is applied domain-wise, hence the location value is indicated next

to the domain name, between brackets. Host memory and vendor are indicated

next to the host name. For their part, edges come in three bandwidth �avors

(50 Gbps, 100 Gbps, 200 Gbps). The bit error rate is represented as a percentage.

Note that for the edge (C, E), the value is unknown%. This corresponds to the

case when the Infrastructure Providers (InPs) are unable to provide attribute in-

formation. As described in Section 3.1, the actual value is set to m!ber, which is

equal to 100%.

Figure 5.6 evaluates our algorithm for di�erent requests in time and in cor-

rectness. The requests come with three di�erent topologies, in which we increase

the number of nodes. Those topologies are chain, full-mesh, and star. They do

not enforce any requirement: all attributes are set to their default value. Conse-

quently, we generate the maximal number of embeddings for each request.

More speci�cally, Figure 5.6a shows the measured number of embeddings to

be generated for each request. This measured number of embeddings is then

compared to the theoretical number of embeddings in Figure 5.6b. For a chain

topology, the theoretical number of embeddings is 3× 5n where n is the number

of nodes (see Demonstration 5.1). For a star topology, the theoretical number of

embeddings is 3× 5n where n is the number of nodes (see Demonstration A.1 in

appendix). For a full-mesh topology, the theoretical number of embeddings for

n ∈ (1, 2, 3, 4) is given in Demonstration A.2 in appendix, and is respectively 3,

27, 673, 41985.

Demonstration 5.1
Let f(n) be the number of solutions for a chain ofn nodes, with the substrate

given in Figure 5.5. We show by induction that f(n) = 3×5n. We denote as

Ni where i ∈ (1, · · · , n) the nodes in the graph. We denote asmn
k a solution

for a chain of n nodes where k is an index identifying the solution.

Basis. When n = 1, the request is a single node, N1. Among the four

domains in our substrate, only three contain hosts: Domain1, Domain3,

and Domain4. Then we have 3 ways of embedding our request: m0
1(N1) =

Domain1, m0
2(N1) = Domain3 and m0

3(N1) = Domain4. Then f(1) = 3.

Induction step. Let mn
k be a solution for a chain of n nodes. Let mn+1

q

be a solution for a chain of n+ 1 nodes such that:

104



5.3. Results and Interpretation

∀i ∈ (1, · · · , n), mn+1
q (Ni) = mn

k(Ni)

∀i ∈ (1, · · · , n− 1), mn+1
q ((Ni, Ni+1)) = mn

k((Ni, Ni+1))

Then we need to embed Nn+1 and (Nn, Nn+1). Let d = mn+1
q (Nn) be

the domain hosting Nn.

If mn+1
q (Nn+1) = d, then mn+1

q ((Nn, Nn+1)) = (d, (d, d), d) by De�ni-

tion 3.3. We then have described one (1) solution from mn
k .

If mn+1
q (Nn+1) 6= d, then we can choose among the two (2) other do-

mains. Let d′ = mn+1
q (Nn+1), d

′ 6= d. Let d′′ be the remaining domain,

d′′ 6= d′, d′′ 6= d. As the substrate topology is a ring, we have two (2) paths

that join d to d′. Those paths are (d, (d, d′), d′) and (d, (d, d′′), d′′, (d′′, d′), d′).
They can be chosen for the mapping of (Nn, Nn+1). We then have described

four (4 = 2× 2) other solutions from mn
k .

Then f(n+ 1) = (1 + 4)× f(n) = 5× f(n).
As f is such that f(n + 1) = 5 × f(n) and f(0) = 3, it is a geometric

progression whose formula is f(n) = 3× 5n.

As shown in Figure 5.6b, there is no deviation from the expected number of

embeddings for any tested request. For star and chain topologies, the experiment

was conducted from n = 2 to n = 7 and repeated 50 times until n = 5 and 5

times for n = 6 and n = 7 due to computation time. For full-mesh topology,

the experiment was conducted from n = 2 to n = 4 and repeated 5 times due to

computation time.

In Figure 5.6c, we show the computation time for each execution. As ex-

plained before, this computation time is not expected to represent real time de-

ployment, with communication delays between the domains. We can notice that

the computation time grows faster than the number of embeddings between

n = 6 and n = 7. These computation times are way shorter than with the

implementation (not disclosed) of our previous algorithm, Boutigny et al. (2018),

which took at least several minutes for the n = 3 case.

Figure 5.7 shows computation time for di�erent requests. The idea of this

experiment is to evaluate how much time the algorithm needs to �nd out that

there is no solution. For this experiment, we have a reference request (cf. Fig-

ure 5.8a) whose requirements are strong enough to not be met, thus there are 0
embeddings. We then strengthen the requirements of this reference request and

measure the computation time. Each time, we reset the substrate. The di�erent

requests are derived from the reference request following Figure 5.8b.

We interpret our results as follows. First, as expected, the time taken by the

algorithm to ensure there is no solution is �nite, and varies depending on the
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Figure 5.7: Computation Time Trend with 0-Solution Request

requirements. Second, strengthening or adding requirements to a request does

not increase the computation time, but keeps it as-is or lowers it.

Third, we cannot conclude that there is a relation between computation time

and the requirement values, for a given attribute. For instance, we expected the

time to discover that there is no solution to be lower for V ∗ than for V 1, V 2
and V 3 respectively, but we did not expect the time to discover that there is no

solution to be greater for Loc∗ than for Loc1. In the same time, when combining

requirements, such as in V 3 + Loc2 and V 3 + Loc1 cases, we get a lower time

than when considering V 3, Loc2 or Loc1 independently.

5.4 Instantiation of the State-of-the-Art Security-
oriented A�ributes

In Table 2.1 of the state of the art, we presented di�erent works in the VNE �eld.

Among those works, Alaluna et al. (2017), Fischer et al. (2016), Wang et al. (2015),

Liu et al. (2014), and Bays et al. (2014) propose several security requirements. In

this section, we show how our model can handle them.

As a general remark, some proposed security requirements may indeed corre-

spond to a combination of several attributes from our model. It is then, somehow,

more atomic.

The security level (resp. the cloud trustworthiness level), denoted sec (resp.

cloud) in the work from Alaluna et al. (2017), is implemented using a non-binding

tolerant attribute, denoted as !sec-demand (resp. !cloud) in Table 5.5. The

levels are modelled using integers, where 0 is the lowest level andN is the highest
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a The Reference Request (Ref )

Request name Difference with Ref request

500bw d(s,d)[!bw] = d(d,s)[!bw] = 500

200mem ds[!mem] = 200

V 3 + Loc2
d(s,d)[!ven] = d(d,s)[!ven] = V endors \ {V 3}
∧ds[!loc] = Locations \ {Loc2}

V 3 + Loc1
d(s,d)[!ven] = d(d,s)[!ven] = V endors \ {V 3}
∧ds[!loc] = Locations \ {Loc1}

Loc∗ ds[!loc] = ∅
Loc34 ds[!loc] = Locations \ {Loc34}
Loc2 ds[!loc] = Locations \ {Loc2}
Loc1 ds[!loc] = Locations \ {Loc1}
V ∗ d(s,d)[!ven] = d(d,s)[!ven] = ∅
V 3 d(s,d)[!ven] = d(d,s)[!ven] = V endors \ {V 3}
V 2 d(s,d)[!ven] = d(d,s)[!ven] = V endors \ {V 2}
V 1 d(s,d)[!ven] = d(d,s)[!ven] = V endors \ {V 1}

b The Other Requests

Figure 5.8: Tested Requests in Figure 5.7
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Table 5.5: Building Blocks of State of the Art Security-oriented A�ributes

Reference work

Authors

Attribute

Our Attribute V (a)
Ordering operator

(demand ≤ o�er)

+ ma Ma

Alaluna et al. (2017) sec !sec-demand [0, N ] ⊂ N Natural

order

max 0 N

Liu et al. (2014) demV

Alaluna et al. (2017) avail !domain
Powerset

of domains

⊃ (o�er must be

in demand)

∩ All domains ∅

Wang et al. (2015)

virtual

network

plan

Alaluna et al. (2017) cloud !cloud [0, N ] ⊂ N Natural

order

max 0 N

Liu et al. (2014) demS !sec-level [0, N ] ⊂ N
≥

(demand must be

higher than o�er)

min N 0

Bays et al. (2014) KV
r,i !crypto

Powerset

of crypto suites

⊃
(o�er must be

in demand)

∩ All crypto suites ∅

SV !loc
Powerset

of locations

⊃
(o�er must be

in demand)

∩ All locations ∅

Bays et al. (2014) X !exc-requests
Powerset

of Requests
Not applicable

Wang et al. (2015)

virtual

node

plan

Bays et al. (2014) KV
r,i !has-crypto {⊥,>} Boolean

order

∨ ⊥ >

Wang et al. (2015)

virtual

edge

plan

Wang et al. (2015)

virtual

edge

plan

!tunnel {⊥,>} Boolean

order

∨ ⊥ >

Fischer et al. (2016)

data

encryption

Fischer et al. (2016) TH !tpm {⊥,>} Boolean

order

∨ ⊥ >

Firewall !is-firewall {⊥,>} Boolean

order

∨ ⊥ >
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Figure 5.9: Example of Embedding from Alaluna et al.

level. N itself is an integer whose value is arbitrary chosen. The order is such that

the o�er must have a higher level than the demand. Each substrate resource has a

security level, and also a cloud trustworthiness level. The cloud trustworthiness

level is constant within the same cloud.

To model the backup requirement, denoted avail in Alaluna et al. (2017), we

proceed step by step. First, we note that Alaluna et al. (2017) explicitly distinguish

the primary or working resource from the secondary or replicated resource. In

other words, the tenant can only require at most one backup. Alaluna et al. (2017)

says that “[t]his [the backup requirement] causes the embedding to allocate an

additional node and the necessary links to connect it to the other nodes”. This

means that the actual virtual network request treated by their VNE algorithm is

an augmented graph where some resources are duplicated, except that some are

labelled as being backup. This is reproduced in Figure 5.9. Note that their avail
attribute is a scale, where 0 means no backup, 1 means a backup in another cloud,

and 2 means a backup in the same cloud.

To enable the same requirement in our model, we propose:

1. that tenants create the so-called augmented graph by themselves: if they want

a backup for a node or an edge, they duplicate the appropriate node or edge
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in the graph; absence of duplicate for a node or an edge corresponds to avail
level 0;

2. leverage the !domain attribute (introduced in Subsection 3.3.4; its structure

has been given in Table 3.3, and repeated in Table 5.5 for convenience), to

force the backup node (or edge) to be in the same cloud (avail level 2), thanks

to attribute-speci�c collocation, or a di�erent cloud (avail level 1), thanks to

attribute-speci�c exclusion.

Our proposition enables also:

1. to require more than one backup, by duplicating their nodes or edges as many

times as needed;

2. to require that the di�erent backups are all in di�erent clouds;

3. to apply more advanced exclusion and collocation constraints if needed, for

instance based on geographical location, or switch vendors.

Liu et al. (2014) de�ne two security-oriented attributes: demV
and demS

.

demV
is tenant-oriented: it is a security level that the substrate resource should

reach (the substrate resource can have a higher security level). The other at-

tribute, demS
, is InP-oriented: it is a security level that the virtual resource

should reach (again, the virtual resource can have a higher security level). Mod-

elling demV
is straightforward, as it directly corresponds to the sec attribute

from Alaluna et al. (2017). It is modelled as the !sec-demand in Table 5.5.

The demS
attribute, for its part, is enabled by a similar structure, but keeping

in mind its InP-oriented nature. It is instantiated as the !sec-level attribute.

With !sec-demand, the demand represents the desired security level, while the

o�er represents the security level of the substrate resource. For !sec-level,

the demand represents the security level of the virtual resource, while the o�er

represents the desired security level. As such, contrary to !sec-demand, we

want the demand to be greater than the o�er. For this reason, we do not use the

Natural order, conventionally≤, but its dual,≥. It follows that when comparing

multiple demands to the same o�er, all demands are satis�ed if the least of them

is greater than the o�er. Then, the addition in our structure is based on the min
function, instead of the max function for !sec-demand. It also follows that the

least element for the ≥ order is N , and 0 is the greatest element.

The main consequence of our structure for !sec-demand is that it still is

tenant-oriented, in the sense that there is no incentive for tenants to declare

the security level of their virtual resources: by default, it is set to N . This is a

direct consequence of how this model has been designed. We want the tenants

to make requirements, and the InPs to ful�ll those requirements. When we try

to enable InPs to make requirements, as we do with !sec-demand, it can only
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be a requirement to which the tenant consents. In other words, the !sec-demand
attribute is only applied when tenants explicitly accepts to declare the security

level of their resources.

The actual incentive is elsewhere. At the intra-domain level, InPs have full

control over whether or not they accept the virtual network requests they re-

ceive. To make the !sec-demand attribute mandatory, InPs can then only treat

virtual network requests declaring their security levels.

Bays et al. (2014) propose three attributes. In their work, KV
r,i is a Boolean

variable that tells if a virtual router r needs a substrate resource with a crypto-

graphic support. This can be modelled with a Boolean structure as well, within

our attribute !has-crypto. It is also possible to enable the tenant to specify

which cryptographic suite is needed, through our attribute !crypto.

The second attribute Bays et al. (2014) propose is denoted X and enable ten-

ants to exclude requests as a whole. In other words, they are enabled to de-

clare, at the virtual network request level, which other virtual network requests

should not share any substrate resource with them. This is a particular case of

our !exc-requests indeed, where all virtual resources within the same request

have their !exc-requests set to the same set of virtual network requests. Our

attribute, !exc-requests, then supersedes the proposed attribute, X .

The last attribute Bays et al. (2014) propose is denoted SV and enable tenants

to force a location for their virtual resources. It is again a particular case of one of

our attributes, !loc, where the virtual resources only authorize a single location.

Our attribute enables also tenants to authorize multiple locations, in which their

virtual resources can be instantiated.

Wang et al. (2015) allow tenants to require a security plan on three categories:

virtual-network-wise, virtual-node-wise, and virtual-link-wise. Each plan fur-

ther propose three levels. Each time, the lowest level implies no restriction what-

soever. We then focus on the modelling of the medium and the high levels of

these plans.

The virtual-network-wise plan works as follows. The medium security level

states that virtual networks from other tenants can be in the same datacenter

than the virtual network of one tenant, only if those virtual networks are trusted

by this tenant. In other words, virtual networks which are untrusted cannot be

in the same datacenter. We then recognize in this sentence the application of

an attribute-speci�c exclusion, based on the !domain attribute. In practice, with

our model, this means that the tenant will apply Equation (5.1). This equation

reads as follows. Given Untrusted the set of all requests untrusted by the tenant,

a constraint O!domain(i) 6= O!domain(i
′) is added for each virtual resource of the

tenant and each virtual resource of the aforementioned request. The constraint

itself means that those two virtual resources cannot be in the same domain.
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∀i ∈ ResourcesR, i′ ∈ ResourcesR′, R′ ∈ Untrusted , O!domain(i) 6= O!domain(i
′)

(5.1)

The high security level of the virtual-network-wise plan states that no other

virtual network can be in the same datacenter. It then corresponds to an infras-

tructure dedication. This is also encompassed by Equation (5.1), provided that

Untrusted is the set of all the other virtual network requests.

Consequently, the virtual-network-wise plan is directly derived from our

!domain attribute.

The virtual-node-wise plan is very similar. The medium level states that the

virtual nodes of the tenant can only be collocated with virtual nodes from other

trusted virtual networks. The high level states for its part that the virtual nodes

of the tenant cannot be collocated with any other virtual node of any other vir-

tual network. This directly corresponds to the de�nition of our !exc-requests
attribute.

The last plan is the virtual-link-wise plan. The medium level states that the

physical resources hosting the virtual nodes at the tips of the virtual edge must

have some cryptographic support. The high level states for its part the same thing

than the medium level, and adds that every physical node along the path cho-

sen for the virtual edge should also have some cryptographic support. We here

recognize two attributes: one node attribute, and one link attribute. The node

attribute has already been mentioned with Bays et al. (2014): it is !has-crypto.

The link attribute is similar. It is actually an aggregation link attribute (we remind

that the aggregation function is given in De�nition 3.2), whose aggregation func-

tion is the conjunction (∧), as shown in Equation (5.2). This attribute is denoted

!tunnel. It works as follows. Each substrate node indicates if it supports crypto-

graphic tunneling. Then, thanks to the aggregation function, each substrate link

is said to be supporting cryptographic tunneling if its both tips supports it. For

the tenant, this means that each virtual edge can have two values for the !tunnel
attribute. If the value is ⊥, there is no end-to-end cryptographic support. If the

value is >, there is end-to-end cryptographic support.

∀(ih, it) ∈ LS, oih [!tunnel] · !tunneloit [!tunnel] = oih [!tunnel] ∧ oit [!tunnel]
(5.2)

As a summary, the virtual-network-wise plan is enabled by our !domain at-

tribute, the virtual-node-wise plan is enabled by our !exc-requests attribute,

and the virtual-link-wise plan is enabled by a combination of two attributes,

namely !has-crypto and !tunnel.
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Finally, Fischer et al. (2016) propose three examples of security attributes.

The �rst one is a node attribute, denoted TH , which stands for “trusted hard-

ware”. The idea is that the tenant can demand that a substrate host supports

some trusted hardware, or not. The semantics is very close to the !has-crypto
attribute, hence they share a common structure in Table 5.5.

The second proposed attribute is about “data encryption” along a path. This

example has already been treated with the virtual edge plan of Wang et al. (2015),

thanks to the !tunnel attribute.

The last proposed attribute is described as topological. The idea is that, within

the same virtual network request, the tenant identi�es two (or more) areas
1
. One

area should be protected by a �rewall, and the area should not. Besides, tra�c

coming from the non-protected area to the protected area should go through the

�rewall.

To reproduce the example, we actually only need one attribute, !is-firewall,

which enables the tenant to tell whether a virtual resource is a �rewall or not.

Likewise, the InPs declare which substrate hosts are dedicated to �rewalling, or

not. The two areas themselves are de�ned by the tenant, by manipulating the

topology of the virtual network request. The tenant only adds one special node,

fw for instance, such that its !is-firewall attribute is set to true.

But we can actually take a step further by taking inspiration from the Net-

work Function Virtualization (NFV) paradigm and the Service Function Chain

(SFC) concept. In their formulation of the �rewall example, Fischer et al. (2016)

implicitly make the assumption that the given virtual network is protected by a

single �rewall, although multiple �rewalls are provided by the InPs. With NFV,

we can imagine instead that the tenant explicitly tells instead which tra�c should

be protected by a �rewall. As such, di�erent �rewalls can be leveraged to protect

one area from the other. To do so, the tenant only needs to add one node with

the !is-firewall set to true, in the middle of each virtual edge corresponding

to a tra�c that should be protected.

5.5 Conclusion

This chapter presented our implementation, and how we evaluate it. The imple-

mentation leverages the SMT oriented model from Chapter 3, and follows the

top-down approach described in Chapter 4. The implementation of our work led

to interesting challenges to implement the mutability of some attributes. For its

part, the evaluation has been done around two axes. The �rst axis was to verify

1
Fischer et al. (2016) use actually the term “domain”, but as we already widely use this term

to refer to the domains of the InPs, we prefer to use “area” instead.
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that the algorithm produces only correct solutions; and to measure the compu-

tation time in di�erent cases. The second axis was to verify that we are indeed

able to model every security-oriented attribute from the state of the art. In other

words, that our model is atomic enough. We also showed that we are able to

provide substantially interesting features when modelling such attributes.
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CHAPTER 6

Conclusion and Future Tracks

6.1 Conclusion

In this thesis, we present how to solve the slice embedding problem in a multi-

domain context where domain owners are reluctant to expose their resource at-

tributes or topology. Our solution distinguishes two levels, the intra-domain

and the inter-domain, where the inter-domain is known by a trusted third party,

namely the Virtual Network Provider (VNP), and the intra-domain is only known

by the Infrastructure Provider (InP) owning it.

To solve this problem, we �rst express an attribute; formulate the Virtual

Network Embedding (VNE) problem in a single domain scenario; use a topologi-

cal heuristic to build the inter-domain and the intra-domain formulations; these

formulations are covered by our algorithm, enabling the Infrastructure Providers

(InPs) and the VNP to cooperate when generating the �nal embedding solution.

The proposed system displays interesting performance, and prove to encompass

the security-oriented requirements given by the state-of-the-art. Besides, our

attribute model is general enough to encompass other security-oriented require-

ments.

This thesis is the conclusion of a three-year work; it has been a very interest-

ing and stimulating personal experience. As I am concluding this work, I would

like to open it to other possible future tracks, which I did not address. There are

three main ideas I think of. First of all, although we solve the slice embedding

problem, which is related to 5G, we do not have a proper model for attributes

like latency. My suggestion of how to encompass such an attribute is given in

Section 6.2. Another use case I had in mind while developing this thesis is the

time-dependent requirement. In other words, it is the idea that the tenants may
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have a requirement depending on the time, and they want our system to auto-

matically take it into account. This is described in Section 6.3.

6.2 Cumulative Link A�ributes

We propose to refer to such a new link attribute as a cumulative link attribute.

The idea is that we leverage the addition of the tolerant structure, that is, the

+ in the tuple (V (a) ,≤,+,ma,Ma,×), as it is the operation we already use to

compose multiple demands together with binding attributes (see Equation (3.6) as

a reminder). As we already generate the set of loop-free paths in our Satis�ability

Modulo Theories (SMT) formulation, we can, in the same time, give an attribute

value for all cumulative link attributes upon these paths. This will lead also to

de�ne a new set of equations, very similar to Equation (C8), but using j in P
instead of j in LS .

Although adding the equations is simple, we will face the same problem as

when we designed the attribute-speci�c exclusion and collocation in Section 3.3.

Indeed, we must still respect the limited information disclosure, which is broken

by paths going through multiple domains: naturally, each InP can deduce the

latency upon links from neighboring InPs from the latency they compute within

their own domain, and the information that the virtual link latency demand is

ful�lled, or not.

To overcome this problem, we propose the same analysis as for Section 3.3,

which is that latency requirement (or, likewise, any of those new cumulative link

attribute requirement) should come with a domain collocation constraint, using

the domain attribute.

6.3 Time-dependent Requirement

We already overcome time-dependence and mutability of attributes in Section 5.2.

The time-dependence we now think of is of di�erent nature, as it the tenant re-

quirement itself which can vary over time. The use case for such behavior is sim-

ple indeed: a tenant may only need some virtual resources during work hours;

during time, the virtual resources can be removed, or paused.

In other words, the virtual network request itself has di�erent states. In our

example, there are two states. One where a given link exists, because it is re-

quired for transferring some tra�c between two virtual nodes. The other where

the same link does not exists, because it is not required, and the tenant does not

want to be charged for it. It may also be a defensive mechanism, to ensure that

the virtual nodes really are inactive over night.
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The fact that we have di�erent states slightly changes our resolution method.

What we suggest is that the embedding algorithm should also consider the sub-

strate as a set of graphs, each graph describing the state of the substrate at a given

period. The embedding algorithm then periodically checks and re-embeds, if nec-

essary, the virtual networks, according to the new state of the virtual network

request.
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APPENDIX A

Chapter 5 Appendices

Demonstration A.1
Let f(n) be the number of solutions for a star of n nodes, with the substrate

given in Figure 5.5. We show by induction that f(n) = 3×5n. We denote as

Ni where i ∈ (1, · · · , n) the nodes in the graph. The node N1 is the center

of the star. We denote as mn
k a solution for a star of n nodes where k is an

index identifying the solution.

Basis. Same as Demonstration 5.1.

Induction step. Let mn
k be a solution for a star of n nodes. Let mn+1

q

be a solution for a star of n+ 1 nodes such that:

∀i ∈ (1, · · · , n), mn+1
q (Ni) = mn

k(Ni)

∀i ∈ (2, · · · , n), mn+1
q ((N1, Ni)) = mn

k((N1, Ni))

Then we need to embedNn+1 and (N1, Nn+1). Let d = mn+1
q (N1) be the

domain hosting N1.

If mn+1
q (Nn+1) = d, then mn+1

q ((N1, Nn+1)) = (d, (d, d), d) by De�ni-

tion 3.3. We then have described one (1) solution from mn
k .

If mn+1
q (Nn+1) 6= d, then we can choose among the two (2) other do-

mains. Let d′ = mn+1
q (Nn+1), d

′ 6= d. Let d′′ be the remaining domain,

d′′ 6= d′, d′′ 6= d. As the substrate topology is a ring, we have two (2) paths

that join d to d′. Those paths are (d, (d, d′), d′) and (d, (d, d′′), d′′, (d′′, d′), d′).
They can be chosen for the mapping of (N1, Nn+1). We then have described

four (4 = 2× 2) other solutions from mn
k .
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Then f(n+ 1) = (1 + 4)× f(n) = 5× f(n).

Demonstration A.2
Let f(n) be the number of solutions for a complete directed graph of n
nodes, with the substrate given in Figure 5.5. We show that f(1) = 3,

f(2) = 27, f(3) = 673 and f(4) = 41985. We denote as Ni where

i ∈ (1, · · · , n) the nodes in the graph. We denote as mn
k a solution for

a complete directed graph of n nodes where k is an index identifying the

solution.

Case n = 1. Same as Demonstration 5.1.

Case n = 2. Let m1
k be a solution for a complete directed graph of 1

node. Let m2
q be a solution for a complete directed graph of 2 nodes such

that:

m2
q(N1) = m1

k(N1)

Then we need to embed N2, (N1, N2) and (N2, N1). Let d = m2
q(N1) be

the domain hosting N1.

If m2
q(N2) = d, then m2

q((N1, N2)) = m2
q((N2, N1)) = (d, (d, d), d) by

De�nition 3.3. We then have described one (1) solution from m1
k.

If m2
q(N2) 6= d, then we can choose among the two (2) other domains.

Let d′ = m2
q(N2), d

′ 6= d. Let d′′ be the remaining domain, d′′ 6= d′, d′′ 6= d.

As the substrate topology is a ring, we have two (2) paths that join d to

d′. Those paths are (d, (d, d′), d′) and (d, (d, d′′), d′′, (d′′, d′), d′). They can

be chosen for the mapping of the two (2) edges (N1, N2) and (N2, N1). We

then have described eight (8 = 2× 2× 2) other solutions from m1
k.

Then f(2) = (1 + 8)× f(1) = 9× 3 = 27.

Case n = 3. We have 3 nodes to embed in 3 domains. Some nodes can

be hosted in the same domain. We enumerate the di�erent cases as follows:

• If all nodes are hosted in distinct domains.

– We have 1 way to map 3 nodes into 3 clusters.

– The number of node mappings is an arrangement of 3 clusters

in 3 domains: 3× 2× 1.

– The number of link mappings per node mapping is 26 as 6 di-

rected edges are not mapped to any self-loops.

– Result: 1× (3× 2× 1)× 26 = 384 solutions.
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• If two nodes are hosted in the same domain.

– We have 3 way to map 3 nodes into 2 clusters.

– The number of node mappings is an arrangement of 2 clusters

in 3 domains: 3× 2.

– The number of link mappings per node mapping is 24 as 4 di-

rected edges are not mapped to any self-loops.

– Result: 3× (3× 2)× 24 = 288 solutions.

• If all nodes are hosted in the same domain.

– We have 1 way to map 3 nodes into 1 cluster.

– The number of node mappings is an arrangement of 1 cluster in

3 domains: 3.

– But neitherDomain1 norDomain3 can host the whole 3-complete

directed graph, so the arrangement is 1.

– The number of link mappings per node mapping is 20 as 0 di-

rected edges are not mapped to any self-loops.

– Result: 1× (3− 2)× 20 = 1 solution.

The number of link mappings per node mapping is 2k where k is the number

of directed edges that are not mapped to any self-loops because by De�ni-

tion 3.3 an edge mapped to a self-loop has one candidate and the substrate

topology is a ring, so we have two candidate paths otherwise.

At the intra-domain level, contrary to chains in Demonstration 5.1, a

3-complete directed graph is not bipartite, so we cannot respect eligible

paths rule (R4) with only 2 substrate hosts, which is the number of hosts

in Domain1 and Domain3. Then, some cases must be rejected.

Then f(3) = 384 + 288 + 1 = 673.

Case n = 4. We have 4 nodes to embed in 3 domains. Some nodes can

be hosted in the same domain. We enumerate the di�erent cases as follows:

• If all nodes are hosted in distinct domains.

– Less domains than nodes: not applicable.

• If two nodes are hosted in the same domain and the others in distinct

domains.
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– We have 6 ways to map 4 nodes into 3 clusters with one cluster

of two nodes.

– The number of node mappings is an arrangement of 3 clusters

in 3 domains: 3× 2× 1.

– The number of link mappings per node mapping is 210 as 10
directed edges are not mapped to any self-loops.

– Result: 6× (3× 2× 1)× 210 = 36864 solutions.

• If we group nodes into two clusters of two nodes each.

– We have 3 way to map 4 nodes into 2 clusters of two nodes each.

– The number of node mappings is an arrangement of 2 cluster in

3 domains: 3× 2.

– The number of link mappings per node mapping is 28 as 8 di-

rected edges are not mapped to any self-loops.

– Result: 3× (3× 2)× 28 = 4608 solutions.

• If three nodes are hosted in the same domain and the other in distinct

domain.

– We have 4 way to map 4 nodes into 2 clusters with one cluster

of three nodes.

– The number of node mappings is an arrangement of 2 clusters

in 3 domains: 3× 2.

– But neither Domain1 nor Domain3 can host a 3-complete di-

rected graph, so the arrangement is 2× 1.

– The number of link mappings per node mapping is 26 as 6 di-

rected edges are not mapped to any self-loops.

– Result: 4× (2× 1)× 26 = 512 solutions.

• If all nodes are hosted in the same domain.

– We have 1 way to map 4 nodes into 1 cluster.

– The number of node mappings is an arrangement of 1 cluster in

3 domains: 3.

– But neitherDomain1 norDomain3 can host the whole 4-complete

directed graph, so the arrangement is 1.
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– The number of link mappings per node mapping is 20 as 0 di-

rected edges are not mapped to any self-loops.

– Result: 1× (3− 2)× 20 = 1 solution.

At the intra-domain level, contrary to chains in Demonstration 5.1, a 3-

complete directed graph is not bipartite, so we cannot respect R4 with only

2 substrate hosts, which is the number of hosts in Domain1 and Domain3.

Then, some cases must be rejected.

Then f(4) = 36864 + 4608 + 512 + 1 = 41985.
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Acronyms

BER bit error rate. 40, 43, 137

CPE Common Platform Enumeration. 10, 11

CSP Constraint Satisfaction Problem. 25–27, 31, 33, 34, 51, 78

CVE Common Vulnerabilities and Exposures. 10

CVSS Common Vulnerability Scoring System. 10

DPLL Davis–Putnam–Logemann–Loveland. 32, 33

DPLL(T) DPLL Modulo Theories. 33

ILP Integer Linear Programming. i, 6–8, 20, 25, 27–30, 33, 48, 51, 52

InP Infrastructure Provider. i, 1, 2, 8–13, 16, 19–25, 28, 34, 35, 37–39, 42, 43, 46,

48, 51, 54, 73, 77, 78, 80, 84, 85, 91, 95, 99, 102, 104, 111, 112, 114, 117, 118,

144

ISP Internet Service Provider. 8, 20, 22

NFV Network Function Virtualization. i, 6, 7, 17–19, 34, 114

R1 node mapping rule. 49–51, 53, 65, 83

R2 link mapping rule. 49–51, 53, 65

R3 eligible substrate hosts rule. 48–51, 53, 83

R4 eligible paths rule. 49–51, 53, 55, 82, 83, 131, 133

R5 node-link mapping coordination rule. 49–51, 54
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Acronyms

R6 capacity rule. 46, 49–51, 54, 55, 82, 83

SAT Boolean Satis�ability. i, 27, 31–33

SDN Software-De�ned Network. i, 7, 9, 17, 18, 34, 50

SFC Service Function Chain. 19, 20, 114

SFCE Service Function Chain Embedding. 6, 7, 19

SMT Satis�ability Modulo Theories. i, ii, 27, 30, 31, 33, 34, 38, 48, 51, 57–61, 65,

78, 83–85, 89, 91, 93, 96, 114, 118

SN substrate network. 12, 40

SVNE Survivable Virtual Network Embedding. 6, 8, 15

VDCE Virtual Data Center Embedding. 6–8, 12

VM virtual machine. 12, 50

VN virtual network. 7–9

VNE Virtual Network Embedding. i, 2–9, 11–25, 27–31, 33, 34, 37, 39, 48, 49, 51,

52, 75, 77, 78, 84, 91, 94, 107, 110, 117, 147, 149

VNER Virtual Network Embedding Recon�guration. 6, 8, 14

VNF Virtual Network Function. 19, 20

VNP Virtual Network Provider. 8, 24, 77, 84, 91, 117
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Table of all Notations

Symbol Meaning Pages

a, · · · , z Font and format used to reference virtual

node examples.

29, 30, 40,

41, 50, 52,

56, 57, 70,

73–75, 97,

98, 108, 114,

147

A, · · · , Z Font and format used to reference physical

node examples.

29, 30, 41,

50, 52, 53,

73, 74, 104

e = (eh, et) A directed edge e, where eh is the head node,

and et is the tail node.

30, 47,

53–55, 66,

79–82, 88,

104, 105,

108, 113,

129, 130,

141

·a The aggregation function of a link attribute

a. See De�nition 3.2.

47, 48, 81,

113

!bw Required bandwidth for a virtual link. Mod-

elled as a binding link attribute. It serves

also for the available bandwidth of a phys-

ical link.

42, 108

!ber Maximal authorized bit error rate of a virtual

link. Modelled as non-biding link attribute.

It serves also for the bit error rate (BER) of a

physical link.

42–44, 104
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Table of all Notations

Symbol Meaning Pages

!col-resources Virtual resources (of the same request) that

must be collocated with the requesting vir-

tual resource. Modelled as a collocation at-

tribute.

68

!exc-requests Requests (of the same tenant) whose virtual

resources cannot be collocated with the re-

questing virtual resource. Modelled as an

exclusion attribute.

41, 55,

66–68,

82–84, 109,

112, 113

!exc-resources Virtual resources (nodes or links) of the

same request that cannot be collocated with

the requesting virtual resource. Modelled as

an exclusion attribute.

41, 55, 66,

67, 82–84,

97

!exc-tenants Tenants whose virtual resources of any of

their requests cannot be collocated with the

requesting virtual resource. Modelled as an

exclusion attribute.

41, 42, 66,

67

!loc Authorized locations for a virtual node.

Modelled as a non-biding node attribute, de-

rived from a powerset. It serves also for the

physical location of a physical node.

40, 42, 56,

57, 71, 74,

75, 97, 99,

102, 108,

109, 112,

147

!mem Required memory for a virtual node. Mod-

elled as a binding node attribute. It serves

also for the available memory of a physical

node.

42–45, 97,

108

!ven Authorized vendors along a virtual link.

Modelled as non-biding link attribute, with

aggregation function and derived from a

powerset. It serves also for the vendor of a

physical node.

40, 42, 47,

48, 80, 99,

102, 108
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Table of all Notations

Symbol Meaning Pages

a An attribute. For easier referencing, all ex-

amples of attributes in this document are us-

ing the following format: !<name>.

39–48,

54–57,

62–68,

70–75,

80–84, 97,

99–102,

104,

107–109,

111–114,

118,

137–140,

142, 143,

145, 147,

149

ActiveL The set of all active link attributes. 64, 70, 72,

73

ActiveN The set of all active node attributes. 62, 63, 70,

72, 73

AlongL(j) The set of links along path j in P S
. 53, 54, 66,

82, 88

AlongN(j) The set of nodes along path j in P S
. 53, 144

BindingL The set of binding link attributes. 47, 54, 66

BindingN The set of binding node attributes. 47, 54, 66

Collocatea(i, i
′) A Boolean function which is true when vir-

tual resources i and i′ inLR orNR
of request

R must be collocated in substrate resources

j and j′ with the same o�er in a, and false

otherwise.

70–73

CollocateL(i, i
′) A Boolean function which is true when vir-

tual links i and i′ in LR of request R must

be collocated in the same substrate link, and

false otherwise.

64, 68–70
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Table of all Notations

Symbol Meaning Pages

CollocateN(i, i
′) A Boolean function which is true when vir-

tual nodes i and i′ in NR
of request R must

be collocated in the same substrate node,

and false otherwise.

64, 68–70

di[a] Demand in attribute a of virtual resource

i∈NR ∪ LR. It is a value in V (a).
39, 41–44,

46, 54–57,

62, 65, 68,

81–84, 108,

140

Da(i) Function equivalent of di[a]. 62–67

D Reference to a domainD in the intra-domain

level.

81, 85, 87,

89–91, 141

Excludea(i, i
′) A Boolean function which is true when vir-

tual resources i and i′ in LR or NR
of re-

questR cannot be collocated in substrate re-

sources j and j′ with the same o�er in a, and

false otherwise.

70–72

ExcludeL(i, i
′) A Boolean function which is true when vir-

tual links i and i′ in LR of request R cannot

be collocated in the same substrate link, and

false otherwise.

64, 66–68

ExcludeN(i, i
′) A Boolean function which is true when vir-

tual nodes i and i′ in NR
of request R can-

not be collocated in the same substrate node,

and false otherwise.

64, 66–68

ĤS = HS\{OutS} The set of inner hosts of substrate S. 82, 144

HS
The set of hosts in substrate S. It is a subset

of NS
.

52–55, 62,

63, 66, 67,

69, 72, 73,

87, 88, 140,
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Résumé :
La 5G apporte un nouveau concept, le network slicing
(découpage du réseau en tranches). Cette technolo-
gie permet de généraliser le modèle économique des
MVNO à des entreprises qui ont besoin d’opérer un
réseau, sans que cela ne soit leur cœur de métier.
Chaque tranche (slice) est un réseau virtuel de bout
en bout, dédié et personnalisé, au-dessus d’une in-
frastructure partagée ; cette infrastructure elle-même
être fournie par l’interconnexion de fournisseurs d’in-
frastructure: nous parlons dans ce cas d’infrastructure
multi-domaine.
L’objectif de cette thèse est d’étudier l’allocation
de ces tranches dans une telle infrastructure multi-
domaine. Le problème est connu comme l’incorpo-
ration de réseau virtuel (Virtual Network Embedding
(VNE)). Il s’agit d’un problème NP-difficile. Pratique-
ment, le problème VNE recherche à quelles res-
sources physiques associer un ensemble d’éléments
virtuels. Les ressources physiques décrivent ce
qu’elles peuvent offrir. Les éléments virtuels décrivent
ce qu’ils exigent. La mise en relation de ces offres et
de ces demandes est la clé pour résoudre le problème
VNE.

En l’espèce, nous nous sommes intéressés à la
modélisation et à la mise en place d’exigences de
sécurité. En effet, nous nous attendons à ce que les
acteurs à l’initiative des tranches appartiennent à des
sphères éloignées des télécommunications. Or de la
même façon qu’ils connaissent peu ce domaine, nous
pouvons nous attendre à ce que leurs besoins, no-
tamment de sécurité, s’expriment d’une façon sans
précédent dans le contexte des tranches.
Cette thèse présente un algorithme capable de trai-
ter des exigences variées selon un modèle exten-
sible fondé sur un solveur de satisfiabilité appliqué à
des théories décidables (Satisfiability Modulo Theo-
ries (SMT)). Comparée à la programmation linéaire
(Integer Linear Programming (ILP)), plus commune
dans le domaine des VNE, cette formulation permet
d’exprimer les contraintes à satisfaire de façon plus
transparente, et d’auditer l’ensemble des contraintes.
De plus, ayant conscience que les fournisseurs d’in-
frastructure sont réticents à exposer les informations
relatives à leurs ressources physiques, nous pro-
posons une résolution limitant cette exposition. Ce
système a été implémenté et testé avec succès au
cours du doctorat.

Title : Multidomain Virtual Network Embedding under Security-oriented Requirements applied to 5G Network
Slices

Keywords : virtual network; multidomain; 5G; slice; security; SMT

Abstract :
5G brings a new concept called network slicing. This
technology makes it possible to generalize the busi-
ness model of MVNOs to companies in need to ope-
rate a network, without it being their core business.
Each slice is an end-to-end, dedicated and customi-
zed virtual network, over a shared infrastructure; this
infrastructure itself is provided by the interconnection
of infrastructure providers: we refer to this case as a
multi-domain infrastructure.
The objective of this thesis is to study the allocation
of these slices in such a multi-domain infrastructure.
The problem is known as Virtual Network Embedding
(VNE). It is an NP-hard problem. Practically, the VNE
problem looks for which physical resources to asso-
ciate a set of virtual elements. Physical resources
describe what they can offer. Virtual elements des-
cribe what they require. Linking these offers and re-
quests is the key to solve the VNE problem.

In this thesis, we focused on modeling and implemen-
ting security requirements. Indeed, we expect that the
initiators of the slices belong to areas distant from te-
lecommunications. In the same way that they know
little about this field, we can expect that their needs,
especially in security, are novel in the slice context.
This thesis presents an algorithm able to handling va-
rious requirements, according to an extensible model
based on a Satisfiability Modulo Theories (SMT) sol-
ver. Compared to Integer Linear Programming (ILP),
more common in the VNE field, this formulation allows
to express the satisfaction constraints in a more trans-
parent way, and allows to audit all the constraints.
Moreover, being aware that infrastructure providers
are reluctant to disclose information about their phy-
sical resources, we propose a resolution limiting this
disclosure. This system has been successfully imple-
mented and tested during the Ph.D.
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