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Résumé substantiel

Les cellules souches sont caractérisées par leur capacité d’auto-renouvelement et de différen-

ciation. Autrement dit elles sont capables de à maintenir et de changer leur identité, afin

de conserver au cours du temps le nombre de cellules des différentes populations cellulaires

d’un organe. Ces cellules sont centrales dans l’homéostasie d’un organisme.

Historiquement le contrôle de l’identité cellulaire a été étudié du point de vue biochim-

ique. En effet, certaines molécules sont capables de lier des récepteurs à la surface des

cellules et d’activer ce que l’on appelle des voies de signalisations. Ces voies sont formées

par des activations en chaine de protéines (cascade d’activation) qui ont pour finalité la

translocation dans le noyau d’une protéine capable d’activer (ou inhiber) un facteur de

transcription, lui-même capable de modifier l’expression de gènes. Ces voies de signalisa-

tions vont se combiner en un réseau complexe capable de déterminer l’identité cellulaire.

S’ajoutant à ces voies biochimiques, de plus en plus d’études soulignent l’importance

des signaux mécaniques dans la régulation de l’expression génique: c’est la mécano-

transduction. Ces mécanismes passent principalement par l’intermédiaire du cytosquelette

et surtout le cytosquelette d’actine qui est étroitement lié à la forme de la cellule. Par exem-

ple, en fonction des conditions d’adhérence, une cellule est étalée ou au contraire confinée

et cela a des conséquences sur l’organisation de l’actine. Ces changements d’organisation

vont engendrer l’activation (ou l’inhibition) de facteurs de transcription. De cette manière

la cellule est capable de sentir son environnement physique et de s’y adapter.

Comment est alors définie l’identité cellulaire ? L’ADN, support de l’information géné-

tique, situé dans le noyau, interagit avec un ensemble de protéines et forment une structure:

la chromatine. En modifiant chimiquement l’ADN lui-même ou ces protéines il est possi-

ble de moduler la structure de la chromatine. Les principales protéines impliquées dans

la formation de la chromatine sont les histones. Ces protéines servent de support sur le

quel l’ADN s’enroule, et de fait, en fonction de cette enroulement régulé par des modifi-

cations chimiques, l’ADN est plus ou moins compacté (hétérochromatine contre euchro-

matine). Cette compaction limite l’accès aux machineries de transcription qui empêchera

donc l’expression de gènes. Toutes ces modifications chimiques portées par la chromatine

sont regroupées sous le terme de marqueurs épigénétiques.
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La chromatine est précisément organisée dans le noyau en fonction de sont état de

condensation. Les régions actives (non condensées) se regroupent entre elles, de même

que les régions inactives (condensées) se regroupent entre elles. Généralement les régions

inactives se retrouvent positionnées en périphérie, ancrée à l’enveloppe nucléaire par un

réseau de protéines: la lamina. Dans ce cas, les forces appliquées au noyau sont donc

transmises à la chromatine et peuvent donc potentiellement impacter son organisation. En

effet, il a été montré que des déformations de l’enveloppe peuvent influencer la conformation

des protéines de la lamina, la compaction de la chromatine et son état de transcription.

Les propriétés mécaniques du noyau, conférées par la lamina, sont également des facteurs

à prendre en compte dans la transmission de forces à la chromatine. Par exemple, plus

l’enveloppe est rigide plus il sera difficile de déformer le noyau et donc d’avoir un impact

sur l’organisation de la chromatine. Tous ces éléments illustrent l’importance de la lamina

dans la mécano-transduction ainsi que les modalités du contrôle mécanique d’expression

des gènes.

Comme mentionné précédemment, le cytosquelette est l’élément principal générant des

forces sur le noyau. Plusieurs études soulignent l’importance du cytosquelette d’actine dans

ce phénomène, particulièrement dans les cellules adhérentes. C’est lui qui va comprimer

le noyau lorsqu’une cellule s’étale. La dépolymérisation des filaments d’actine va regonfler

le noyau et favoriser les fluctuations de l’enveloppe nucléaire. Cela a pour conséquence,

d’augmenter les mouvements de la chromatine dans le noyau. Il est possible de provoquer

la contraction du réseau, ce qui va d’autant plus comprimer le noyau et réduire les mou-

vements de chromatine Ãă l’intérieur. Ces éléments montrent que la cellule est capable

de réguler le forme de son noyau et par la même occasion, d’y influencer l’organisation et

la dynamique de la chromatine. Pour aller plus loin, il a même été démontré qu’induire

la contraction du réseau d’actine de cellules souches pluripotentes humaines est capable

d’induire l’expression de gènes de différenciation.

Il existe d’autres filaments que l’actine capables de déformer le noyau dans une cel-

lule. Ces filaments sont générés à partir d’une structure centrale appelée centrosome. Le

réseau formé est une sorte d’étoile entourant le noyau. La contribution des microtubules

aux déformations du noyau n’a pas été totalement déterminée mais un nombre croissant

d’éléments suggère qu’ils sont bien capables de le déformer mais de manière plus faibles
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que l’actine. En effet, en rendant les microtubules plus rigides ou au contraire en ren-

dant le noyau plus souple, des déformations de l’enveloppe nucléaire dues au microtubules

peuvent être observées, le plus souvent des invaginations. Dans certaines conditions phys-

iologiques, les microtubules sont capables d’engendrer des fluctuations de l’enveloppe nu-

cléaire et de promouvoir les mouvements de le chromatine. Ces éléments montrent que les

microtubules sont également capables, au même titre que l’actine, d’avoir une influence

sur l’organisation de la chromatine. Néanmoins, l’impact de ces forces sur l’expression de

gènes et l’organisation de la chromatine lors de la différenciation de cellules souches a été

très peu documenté.

Afin d’apporter des éléments de réponse à cette question, des cellules non adhérentes,

où l’organisation de l’actine est moins propice à déformer le noyau, peuvent être utilisées

afin de déterminer la contribution des microtubules dans cette forme. Le système hé-

matopoïétique est constituté de cellules non-adhérentes, et on peut également y trouver

une cellule souche: la cellules souches hématopoïétique. Dans le cadre de l’étude de la

forme du noyau, il est particulièrement intéressant de noter que les cellules immunitaires

innées granulocytaires possèdent un noyau lobulé et il a déjà été suggéré que les micro-

tubules sont impliqués dans ces déformations. Cependant leur impact sur l’organisation de

la chromatine n’est pas clair. Pour cette raison, nous nous intéresserons à la différenciation

des cellules souches hématopoïétiques dans la lignées myelocytaire (donnant naissance par

la suite aux granulocytes), et nous porterons un attention toute particulière à l’architecture

intracellulaire, notamment à la forme du noyau et à l’organisation des microtubules.

Afin d’étudier le rôle des microtubules dans l’hématopoïèse, des cellules souches et des

cellules peu différenciées (progénitrices) ont été purifiées et séparées en trois populations:

les cellules souches naïves, les progéniteurs myéloïdes et les progéniteurs lymphoïdes. La

différence principale observée dans la structure intracellulaire est la suivante: les progéni-

teurs myéloïde possèdent un noyau plus gros et largement déformé (presque lobulé) par

rapport aux cellules souches et aux progéniteurs lymphoïdes. Ces déformations sont égale-

ment corrélées à des distributions d’hétérochromatine constitutive distinctes.

Afin de déterminer l’origine de ces déformations, le cytosquelette des progéniteurs

myéloïdes a été analysé. Les microtubules formes des faisceaux épais au niveau des défor-

mations suggérant fortement un rôle des microtubules dans ce phénomène. En cultivant ces
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cellules in vitro vers la voie myéloïde, il a été possible de reproduire ces observations: après

trois jours de culture, le noyau devient plus gros, présente des déformations et une distribu-

tion de l’hétérochromatine constitutive comparables à celles observée chez les progéniteurs

myéloïdes. La fenêtre temporelle pendant la quelle se produit se phénomène a été déter-

minée afin de pouvoir perturber la dynamique des microtubules lors de la déformation et

confirmer l’hypothèse selon la quelle les microtubules sont responsable des déformations du

noyau lors de la différenciation myeloïde. Par des traitements biochimiques qui perturbent

la dynamique des microtubules, en les dépolymérisant ou en les stabilisants par exemple, il

a été possible d’empêcher la déformation du noyau. Le plus remarquable étant que, lorsque

le noyau n’est pas déformé la distribution de la chromatine n’est pas impactée par rapport

à celle des cellules souches.

En résumé, ces travaux montrent que (i) les microtubules sont capables de déformer

lors de la différenciation des cellules souches hématopoïétiques dans la voie myéloïde, (ii)

le forme du noyau est corrélés à un changement d’organisation de la chromatine, (iii)

empêcher la déformation limite la réorganisation de la chromatine observées lors d’une

différentiation en condition normale.

De manière générale ces résultats indiquent que les microtubules peuvent être considérés

comme des acteurs à part entière de mécano-régulation génétique, au même titre que le

cytosquelette d’actine. De plus, il a été montré que des cellules de tumeurs cancéreuses ont

une morphologie différente de cellules saines, passant d’un phénotype adhérent à un plus

semblablement aux cellules non-adhérentes. Ce changement suggère une réorganisation du

cytosquelette, où potentiellement, les microtubules dérégulent l’expression génétique. Les

microtubules pourraient devenir ainsi un nouvelle angle d’attaque dans les traitements du

cancer.
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The terms stem cell emerged in the end of 19th century

[Ramalho-Santos & Willenbring 2007]. Ernst Haeckel used it to describe the fertil-

ized egg as a cell able to generate all the cell diversity bu changing identity of a given

organism during embryogenesis [Haeckel 1877]. Embryologists later described the mech-

anisms governing these identity changes and the terms were used to generally describe

cells able to switch identity. The definition then evolved to a more restricted one, the one

we know nowadays. Stem cells are indeed able to change identity and give rise to cells of

various functions, a process called differentiation, but they are also capable to self-renew,

which means they are able to proliferate and keep their differentiation potential, their

stemness. This behaviour make them capable to regenerate tissues.

All cells possess the same DNA content, acquisition and maintenance of a new identity

thus requires an information encoding gene expression independent of the DNA sequence.
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In other words, the question is how can cells change their gene expression profile to ac-

quire new functions ? Epigenetics partially answered this question showing that selective

DNA chemical modifications or DNA interactions with proteins could modify the expres-

sion/repression state of genes and be transmitted to the descendant. Nevertheless, how

the stem cell’s identity switch is regulated remains unclear.

It was shown that gene expression could be affected by external biochemical signals via

signalling pathways. It is a way for the cell to integrate informations from its environment

and adapt. This discovery made it possible to understand how stem cell fate could be

oriented towards a specific identity. Interestingly, it was also shown that depending on the

physical cues the cell is subjected to, its destiny could be biased: it is the mechanotrans-

duction.

Nowadays it is known that the nucleus, which contains the DNA, is responsive and

integrates mechanical stimuli. Modulating mechanical stress on the nucleus can lead to a

change of cell identity, mechanical properties of nucleus being the key factors determining

the cellular response. The cytoskeleton constitutes the main cellular component able to

generate forces and seems to govern mechanically gene expression via its interaction with

the nucleus. Altogether it led, step by step, to the hypothesis that modulating the cell’s

cytoskeleton can impair forces generated on the nucleus, alter gene expression and could

thus govern differentiation.

Many questions remain. It is still unclear how gene expression is linked to nuclear

mechanical properties. DNA and nuclear envelope must tightly interact so a physical in-

formation can go from one to the other. Similarly, how forces applied by the cytoskeleton

impact DNA is a topic of growing interest. It could impact DNA integrity and/or orga-

nization but how it would affect gene expression remains poorly described. In this work I

will describe the current knowledge on how stem cells fate can be controlled, how physical

constraints can contribute to fate determination, especially how cytoskeleton organization

and its dynamics are involved in this phenomenon.
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I Stem cells

1 Definition

Stem cells are found in all multicellular organisms and are needed for their homoeostasis,

i.e. the maintenance of the integrity of its tissues over a long period of time. In other words,

it means that they are able to maintain and adapt organs’ function to changes in physio-

logical or pathological conditions [Majeti et al. 2007] [Notta et al. 2015]. Skin and blood

are the most intuitive examples. In physiological conditions epidermal cells or red blood

cells have a limited life span because of the constant friction they’re subjected to (external

for skin, squeezing in vessels for red blood cells). These events, among others, damage the

cell and will impair their functions. The damaged cells then have to be replaced, that’s

where the stem cell comes into play and will generate new cells. In some cases, it happens

that an organism must adapt to a new condition, like gestation. Here, the added neces-

sity of vascularizing an embryo leads to a proliferation of hematopoietic stem cells in the

mother in order to increase the amount of blood available [Nakada et al. 2014]. Similarly,

in pathological conditions, such as bacterial infection, the number of immune cells has to

be increased in order to prevent bacterial growth. Here again the hematopoietic system is

stimulated to increase the number of immune cells available. Nevertheless, the system is

not always able to sustain proper functions, as it can be observed during aging, where stem

cells ability to restore the correct amount of blood cells is reduced [Shlush et al. 2015].

1 Hematopoietic stem cells during development

In mammals, two types of stem cells can be found: the embryonic and the adult stem cell.

Embryonic stem cells (ESC) are pluripotent cells, which means they can generate what are

called the three germ layers: the endoderm, the mesoderm and the ectoderm. Together,

the germ layers generate all the tissues of the embryo although they cannot sustain the

complete development of an embryo by themselves, they do not produce annexes like the

placenta. These cells can only be found in early stages of development in a region called

the inner mass (figure 1.1).

During development, stem cells of a given tissue will be localized at several specific sites.

For instance human hematopoietic stem cells (HSCs), historically the first ones discovered,
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Figure 1.1 – After fertilization, the egg undergoes several mitotic events and generate the blastocyst.
There, ESC can be found in the inner mass, outer cells will form the annexes like the placenta.

are located in different organs during development. Schematically they start in the yolk

sac, then simultaneously in the liver and the spleen to finally locate in the bone marrow, in

the adult [Mirshekar-Syahkal et al. 2014]. During these transitions, the activity of HSCs

varies. The liver and the spleen are hosts of a huge expansion period, during which HSCs

mostly self-renew. Then, when moved to the bone marrow, mature enough, starts the

regulation to maintain blood functions in the adult [Mirshekar-Syahkal et al. 2014]. This

observation highlights the importance of extracellular signals in hematopoiesis regulation.

Cells are the same, but according to their location behave differently, suggesting that their

environment, contributes a lot to their regulation.

2 Adult hematopoietic stem cells

The bone marrow, the adult HSCs location, is located in the bone epiphysis and is highly

vascular. As a consequence, it possesses two distinct environments, one associated to

the bone and the other to the blood vessels. These two regions communicate via solu-

ble factors and cells, mainly mesenchymal stem cells (MSCs) [Méndez-Ferrer et al. 2010].

The bone side, composed of osteoblasts, forms the endosteal niche, and the vascular side,

composed of endothelial cells, forms the perivascular niche. Both sites assume different

functions, the first one locates the quiescent stem cells and the other one the active ones

[Ehninger & Trumpp 2011]. In the end, the niche forms a highly complex environment

made of various cell types able to regulate the activity of HSCs. The role of the micro-
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environment becomes a growing topic of interest in the stem cell field and will be described

later.

Figure 1.2 – Hematopoietic stem cells are located in bone marrow. The stem cell can interacts with
two distinct environment: the endosteal one formed by osteoblasts and the perivascular niche formed by
endothelial cells. According to their location they will be quiescent or active.

As said previously, potency of stem cells finally stabilizes at the adult stage. At that

stage, HSCs differentiation potential can be quantified experimentally in terms of colony

forming units. What it means is that depending on the stage of differentiation when ex-

tracted from the organism, the cell (named colony forming cell (CFC)) is able to generate

colonies on agar plated Petri dishes of specific cell types [Sarma et al. 2010]. Analysis

of surface proteins, which are membranous proteins grouped under the name of cluster

of differentiation (CD), of a given colony made it possible to link this differentiation

potential to a molecular identity [Terstappen et al. 1991]. From there, it became possi-

ble to sort hematopoietic cells in order to purify stem cells and study their behaviour

[Hogan et al. 2002]. It led to the classical hierarchical step-like vision of the hematopoietic

system (figure 1.3).
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Figure 1.3 – Simplified classical view put the stem cell as the root of a tree, which nodes represent defined
intermediate states (progenitors) that can generate specific cell types. The end of the branches are the
terminally differentiated cells (Adapted from [Notta et al. 2015]).

3 Organ homoeostasis and therapeutic potential

Two behaviours characterize the stem cell activity and are crucial for organs’ homoeostasis:

self-renewal and differentiation. Self-renewal means the cell, upon symmetric division,

generates two equivalent daughter stem cells, leading to an increase of the population pool

of stem cells. On the contrary differentiation is the process during which the cell acquires

a new identity, usually happening through asymmetric division.

Balance between self-renewal and differentiation is tightly regulated. On the one hand

if cells divide too much, this could lead to a tumor-like behaviour, on the other hand if the

cells differentiate without self-renewing it will diminish the pool of stem cells, to the point of

total depletion and organ dysfunction because it can’t regenerate at all. It is what happens
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when stem cells are extracted and kept out of their physiological environment (ex vivo):

they tend to differentiate spontaneously without self-renewing, even though already differ-

entiated cells proliferate and increase to total number of cells [Capellera-Garcia et al. 2016]

[Roch et al. 2015].

Stem cells, due to their regenerative potential are promising for cellular therapy. Graft-

ing stem cells is a possible way to regenerate damaged or non functional organs. Historically

the first cell therapy was developed with the hematopoietic system in 1956 with the first

bone marrow transplants [Thomas et al. 1957]. After bone marrow destruction with radi-

ations or chemotherapy, transplantation of a healthy bone marrow containing HSCs can

regenerate a functional hematopoietic system. It is nowadays still the main treatment

for blood related cancers. Unfortunately, immunosupressing treatment is then needed, as

for any grafts. The treatment presents other limitations. First healthy HSCs harvesting

requires bone marrow donation which is not an easy procedure and the number of donors

is small, secondly, due to the low number of collected cell, only a low number of stem cells

will be present and it will reduce to the graft success rate. One way to resolve the prob-

lem is to expend the few available stem cells by engineering ex vivo culture conditions in

which the stem cells proliferate without differentiating [Zonari et al. 2017]. Another way

is to have a more accessible source of stem cells, like umbilical cord blood, which contains

circulating foetal HSCs. This technique is non invasive and more reliable due to a more

or less constant number of deliveries. Nevertheless, donors compatibility is still required.

To overcome this issue, most recent research focuses on the use of embryonic stem cells

or induced pluripotent stem cells to generate HSCs. It would increase the amount of cells

available and suppress any immunological constraint, in the latter case [Daniel et al. 2015]

[Choi et al. 2011] [Lachmann et al. 2015].

2 Stem cells regulation

1 Acquisition of a new identity

The most extensively studied mechanism of stem cell differentiation is the asymmetric

stem cell division. As it name suggests, this process gives two different daughter cells after

mitosis. One possibility to obtain two different cells is that the cell is polarized before
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division. The cell can indeed segregate proteins to a given location that will induce an

asymmetric phenotype. Then, during mitosis, spindle orientation will determine the con-

tent of the daughter cells: if perpendicular to the polarization axis, the cell content will

be different between the two cells, if parallel to the polarization axis, the two daughter

cells will be equivalent. The main model of asymmetric stem cell division is the drosophila

neuroblast. This stem cell is able to polarize what is called a cell fate determinant, the

Numb protein in this case. This protein is known to be involved in the maintenance of

stemness by repressing a specific subtype of genes, if not present the cell will differentiate.

Via Numb polarization and asymmetric division the neuroblast cell will generate two dif-

ferent daughter cells, one neuroblast and one ganglion mother cell (GMC) that will then

form neurons [Roubinet & Cabernard 2014] [Gómez-López et al. 2014].

These differences of content will induce differential gene expression thus an identity

switch. In stem cells repressing certain type of genes, and expressing others will par-

ticipate to the maintenance of the stemness [Atlasi & Stunnenberg 2017] [Liu et al. 2016]

[Peric-Hupkes et al. 2010] [Petruk et al. 2017] [Ugarte et al. 2015]. In other words, spe-

cific genes are expressed in the stem state and if not, cells tend to differentiate

[Lopes Novo & Rugg-Gunn 2016].

Maintenance of gene expression profile through several generations happens via an en-

semble of biochemical modifications either of the DNA itself or proteins associated to it.

These modifications are referred to as epigenetics (greek prefix epi- which means ‘on top

of’, here on top of genetics). The most studied protein post-transcriptional modifications

are those of histones which form together with the DNA, the chromatin. All these sequence-

independent modifications will participate to the compaction (heterochromatin) and de-

compaction (euchromatin) of the chromatin [Lopes Novo & Rugg-Gunn 2016]. When chro-

matin is not compacted, it is accessible to the transcription machinery responsible for gene

expression and on the contrary, compacting it silences it. In the end modulating the num-

ber of histones and the chemical functions responsible for their interaction with the DNA

allows to tune gene expression [Atlasi & Stunnenberg 2017] [Farlik et al. 2016]. It appears

that histones modifications in stem cells are unstable when stem cells are extracted from

their physiological environment which could explain the impossibility to keep the stem

state ex vivo [Rajamani et al. 2014]. Today’s biggest challenge of the stem cell field is to
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understand how the balance between self-renewal and differentiation is controlled at the

chromatin level, and how these conditions can be reproduced in a Petri dish.

Going in this direction, 2012’s Nobel Prize, Shinya Yamanaka, has shown that mature

cells could be reprogrammed into cells with stem cell capabilities only by inducing a small

amount of genes [Takahashi & Yamanaka 2006] and were named induced pluripotent stem

cells (iPSC). This founding highly contributed to the concept of stem genes. Then has

emerged the idea that differentiation, previously described by discrete well defined steps

is now seen as a continuous process, where these steps are virtual, each gene expression

profile variation potentially being a new step [Macaulay et al. 2016] [Velten et al. 2017].

Supporting this view, analysis of single cell gene expression profiles showed that what was

thought to be a unique specific stage, stem cells can be represented by a heterogeneous

population. This result shows that a single stem state is not definable. Most probably

it is even irrelevant. The tree-like classification illustrated with HSCs (figure 1.3) where

each node is a common precursor for other cell types now seem obsolete. Although this

representation remains correct, it is not accurate. Illustrating this knowledge shift, exper-

iments have shown that, differentiated cells could arise directly from stem cells without

going through the known intermediate states and without divisions [Roch et al. 2015]. The

current hypothesis is that stem cells are a reservoir common to several lineages and that

during early steps, differentiation can be reversed to another lineage [Notta et al. 2015]

(figure 1.4).

These results strongly suggest that the stem cell state is not unique and that differen-

tiation modalities are numerous. Under specific conditions cells can change their fate, a

stem cell can jump “steps”, differentiate without dividing, and a mature cell can even reac-

quire a stem cell behaviour. Nowadays, the main goal is to understand how these different

balances are regulated; i) the self-renewal/differentiation one and ii) the one between the

differentiation paths, determining which mature cell type will emerge from a single stem

cell.

2 Controlling cell identity: the biochemical way...

Gene expression is controlled via transcription factors, that are proteins interacting with

promoter sequences of a gene to activate its expression. Transcription factors activation
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Figure 1.4 – Stem cells are now seen as a heterogeneous population than can enter differentiation paths.
These paths have to some extent common progenitors and are entangled. Lineage specific differentiation
can even directly occur from the stem cell without intermediates. (Adapted from [Notta et al. 2015])

is tightly regulated by signalling pathways which allow to transduce a message from the

extracellular medium up to the DNA. This process works as follow: a biomolecule, ei-

ther soluble or present on another cell’s surface, interacts with a cell’s membrane receptor

through its outer domain. This receptor will change conformation exposing new interaction

sites for cytoplasmic proteins. So is triggered an activation cascade: activated proteins by

the receptor will in turn activate new ones, and so will the newly activated proteins, am-

plifying the initial signal. The final effector is a protein, the transcription factor regulator.

This protein will be translocated into the nucleus via nuclear pore complexes (NPCs) so

it can interact with its transcription factor in order to affect chromatin transcription state

(figure 1.5).

Historically most activation pathways were discovered in the fruit fly Drosophila

melanogaster by Christiane Nüsslein-Volhard and Eric Wieschaus rewarded by a Nobel

Prize in 1995. Many pathways are involved and are crucial for correct organisation of the
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embryo (segmentation, bilateral symmetry...) like Wnt/Beta-catenin, TGF-beta/ SMAD,

BMP/SMAD and Notch [Watabe & Miyazono 2009]. Later, during the adult stage, same

pathways are involved in the organism homoeostasis and particularly in stem cells reg-

ulation. For instance it has been shown that Wnt as well as Notch are involved in

hematopoietic stem cells self-renewal regulation through the activation of the transcrip-

tion factors OCT4 and Nanog [Blank et al. 2008] [Katoh & Katoh 2007]. These pathways

form a highly complex network, with common effectors or common receptors, making the

combination of all of them difficult to decipher.

One of the biggest achievements of the past decades has been to develop different

cell culture medium inducing different types of differentiation ex vivo [Berger et al. 2002]

[Donaldson et al. 2001]. They use standard medium supplemented with soluble factors

called cytokines to activate or repress specific signalling pathways regulating stem cell

fate.

3 ...and the mechanical way

Cells are able to respond, not only to chemical signals, but also to the physical ones, like

environment physical properties or physical constraints. It is called mechanotransduction.

To be more precise, mechanotransduction is the ability of a given cell to integrate a me-

chanical information from its surrounding and transduce it to the chromatin, converting a

mechanical information into a biochemical signal capable of affecting chromatin.

The biggest discovery in the field of mechanosensing was made when mesenchymal

stem cells (MSCs) were left to differentiate on substrates of different stiffnesses. Cells

adopt different shapes depending on the stiffness of the substrate thus influencing intra

cellular organization. If the biochemical environment is kept constant, MSCs fate could

be oriented towards osteogenesis by putting them on a stiff substrate, or towards adi-

pogenesis by putting them on a soft substrate [McBeath et al. 2004]. This result shows

that mechanotransduction is a processes capable of driving gene expression and impact

differentiation.

Two transcription factors, YAP and TAZ have been shown to localize in the nucleus

according to the cell physical environment [Piccolo et al. 2014]. These two factors are part

of the Hippo signalling pathway that regulates organ growth by controlling cell prolifer-
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ation. The mechanism by which they get shuttled to the nucleus remains unclear but it

is known that physical cues and not biomolecules trigger their relocalization. When cell

environment does not allow spreading, like during confluence, YAP and TAZ are relocated

from the cytoplasm to the nucleus. These to transcription factors act thus as sensors of the

physical environment [Low et al. 2014]. It is a mechanism involved in skin differentiation,

as during epithelial growth cells change their neighbouring contacts. According to a cell

position in the epithelium, in contact with the basal membrane (separating the epithelium

from the underneath connective tissue) or not, YAP/TAZ will control skin stem cells ac-

tivity and participate to its homoeostasis [Elbediwy et al. 2016]. All these shape changes

correlate strongly with the actin cytoskeleton organization which defines the framework of

the cell. It led to the discovery that disruption of actin filaments can impair YAP/TAZ lo-

calization [Low et al. 2014] showing that the cytoskeleton is necessary for the cell to sense

correctly its physical environment and thus connects the mechanical cues the cell receives

to biomolecular effectors.

Actin is capable of gene expression modulation via another modality. It has been

shown that soluble actin can directly interact in the cytoplasm with a transcription factor

activator, MAL. When actin reorganization is triggered (via mechanical cues like the ones

described previously), soluble actin will unbind MAL. MAL, now free of actin, can shuttle

into the nucleus, interact with its target, the serum response factor (SRF), a transcription

factor. SRF is involved in many developmental processes, such as muscle growth or cardiac

muscle differentiation [Miralles et al. 2003].

Presence of soluble actin itself inside the nucleus has also been demonstrated

[de Lanerolle 2012]. This pool of actin seems to be able to modulate transcription by

interfering with RNA polymerase activity [de Lanerolle 2012]. The mechanism of this reg-

ulation is still to be understood, the complex formed by actin and other associated proteins

(like myosin) with the transcription machinery couldn’t be clearly described yet.

Actin is capable of regulating transcription factors activity, directly or indirectly, and is

also involved in cell shape which depends on external cues, it becomes a major component

for mechanotransduction and makes it an important actor in stem cell fate regulation

[Driscoll et al. 2015].
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will induce an activation cascade ending to the translocation of a transcription factor in the nucleus that
will regulate gene expression. Mechanical signalling allows the cell to sense physical cues. When the cell
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3 Current Issues

Many questions remain concerning the stem cell behaviour. The main one being the

control of self-renewal vs. differentiation. Understanding this balance would make possible

to maintain and expand stem cells in culture and make more efficient cell therapies. It

should be noted that this limitation has been partially solved with ESCs. Indeed, with all

the signalling pathways discovered and the development of synthetic cytokines it is now

possible to keep their stemness ex vivo and protocols exist to differentiate them into the

desired cell types [Lim et al. 2013] [Karakikes et al. 2014] [Ben-Shushan et al. 2015] .
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To further understand how this balance is regulated it is necessary to go through the

study of the interplay between biochemical and mechanical pathways controlling differen-

tiation. It means that the whole environment has to be taken into account. Nowadays,

many researches focus on this topic and led to the concept of the stem cell niche (also

known as micro environment). The stem cell cannot be considered only as an isolated cell,

but exists within a certain context. The most striking example of a niche is the drosophila

testis. In this system, germline stem cells are organized around hubs which are small clus-

ters of somatic stem cells. The germline stem cells divide asymmetrically, one daughter

cell moving away from the hub and differentiate, the other one keeping contact with the

hub. The cell in contact with the hub generates membrane protrusions called nanotubes.

These nanotubes create invaginations in a hub cell resulting in an increased surface contact,

enriched in signalling pathways receptors. If the daughter cell loses this specific contact it

loses its stemness and differentiate but can recover it if it is back in contact with the hub

[Inaba et al. 2015]. Similar results where obtained in the airway system, where progeni-

tors daughter cells are able to prevent their progeny differentiating by keeping a physical

contact with them [Pardo-Saganta et al. 2015].

To investigate even more the role of the niche, organoids, sometimes called mini organs,

were developed. They are small aggregates of different cell types reproducing multi cellular

cell-to-cell interactions. These multicellular structures are generated from embryonic stem

cells and reproduce to a certain extent an organ architecture with all the physiological

cell diversity, including the stem cells, hence the name. The stem cell can be studied in

its environment, and many results suggest, as did the iPSC discovery and the drosophila

testis model that indeed, in the absence of stem cells in the niche other cell types could

do the job, i.e. can reacquire a stem cell identity [Tata et al. 2013]. Different fields are

needed to tackle stem cells regulation question properly, from biochemistry to integrated

tissue biology going through cellular biology.

Another critical point to understand stem cells stability concerns the DNA itself. How

can the cell identity be conserved over generations ? How DNA is modified to impact cell

fate ? The explanation goes through the study of the organization of the chromatin inside

the nucleus and current knowledge on this topic is detailed in the next section.
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II Chromatin and nucleus

1 Chromatin organization

1 Chromatin structure

Figure 1.6 – DNA is wrapped around histones form-
ing the nucleosome. The N-terminal tail of each hi-
stones can be modified. Most important ones for
gene repression and expression in stem cells are rep-
resented. Adding more or less histones will lead to
condensation of the chromatin making it less accessi-
ble to transcription factors.

Chromatin structure was already briefly

addressed in the previous part. Two

different types of chromatin can be dis-

tinguished according to their condensa-

tion state. Either decompacted (euchro-

matin) or compacted (heterochromatin).

Histones are small proteins, highly con-

served through evolution, forming octamers

(2xH2A, 2xH2B, 2xH3, 2xH4), around

which the DNA will be wrapped, and main-

tained by a histone H1, participate to chro-

matin condensation. The complex formed

is called the nucleosome. Forming more

or less nucleosomes, DNA becomes more

or less compacted, thus less or more acces-

sible to proteins like transcription factors,

RNA polymerases etc. In order to mod-

ulate chromatin compaction state, specific

amino-acids can be enzymatically modi-

fied on a specific histone like the tri-methylation (me3) of lysine 9 (K9) of the his-

tone number 3 (H3): H3K9me3. The most thoroughly described histones modifications

are (de)methylation (made by Histone Methyl Transferase) and (de)acetylation (made

by Histone Acetylase (HAT) and Histone DeAcetylase (HDAC)) and seem to be the

main ones involved in differentiation although many others exists (sumoylation, ubiq-

uitination...). These modifications have different roles, some methylation, or acetyla-

tion, will be associated to repressed genes, others will be associated to active ones
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[Atlasi & Stunnenberg 2017]. Moreover, these epigenetic marks are known to evolve during

differentiation. Genes known to have modifications in the stem state, such as Nanog target

genes, lose them over lineage commitment. These epigenetic marks are generally associ-

ated to decondensation, when lost they can trigger repression of stem state genes, leading

to differentiation [Lopes Novo & Rugg-Gunn 2016]. Put in other words, decondensation

state of the chromatin seems to be characteristic of the stem cell state [Talwar et al. 2013].

Almost twenty years ago, the concept of a histone code was proposed [Strahl & Allis 2000]

but some functions associated to marks seem to be species, tissue or even gene specific and

make the identification of such a code inapplicable.

2 Chromatin organization in the nucleus

In the nucleus, chromatin will interact with proteins constituent of nuclear envelope leading

to a highly 3D organized chromatin filament. The highest level of compartmentalization,

and historically the oldest, is the chromosome territory proposed in 1885 by Carl Rabl

(figure 1.7). Before that, nucleus and chromatin were thought to be like a spaghetti bowl,

where DNA was intermingled randomly in the nucleus. Chromosome painting techniques

(like Fluorescence in situ Hybridization (FISH) using complementary DNA sequence flu-

orescent RNA sequence) have shown that the localization of gene loci depends on their

activation state: active, they locate far from repressed regions, whereas inactivated they

come closer [Francastel et al. 2000]. It gave birth to the idea that chromatin regions of sim-

ilar condensation state cluster together and that these compartments are dynamic. Then,

techniques of chromosome conformation structure capture were developed and gave a way

more precise and global picture of DNA organization. The technique consists of fixing DNA

with paraformaldehyde so sequences spatially close to each other will be cross-linked. Then

DNA is digested and ligated so linked sequences will form only one. Sequencing of the re-

sulting fragments then allows to create a map of DNA-DNA interacting sequences. Results

strengthened the chromosome territories idea, showing that most of the inter chromatin

contacts happen inside a single chromosome [Wang et al. 2016]. Data analysis became

more and more powerful over time and led to a fine description of the interactions lead-

ing to the discovery of topologically associating domains (TADs) [Dekker & Mirny 2016].

These are active regions physically isolated from others via a loop extrusion mechanism.
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These loops are formed by an annular protein called cohesin, that bind chromatin and

pull on each of its side generating a loop that will go through the ring shaped protein

(figure 1.8). Loops are limited by transcriptional repressing factor CTCF (also known as

CCCTC-binding factor) creating boundaries of the active regions. These loops are thought

to be the basic building blocks for 3D chromatin organization, and also that cell type spe-

cific functions could be achieved by their combination. Nevertheless, CTCF depletion

alone does not seem sufficient to disrupt TADs’ structure in every cases [Hou et al. 2010]

[Barutcu et al. 2018].

Figure 1.7 – Most of DNA-DNA interactions
happen inside the same chromosome meaning
each chromosome interacts less with its neigh-
bours.

Active (non-condensed), and inactive (con-

densed) regions are distributed relatively to

each other following a certain pattern. Electron

microscopy techniques made possible to see eu-

and heterochromatin positioning in the nucleus

and showed the now acknowledged, peripheral

heterochromatin vs. central euchromatin dis-

tribution [Francastel et al. 2000]. This obser-

vation supposes that specific sequences or ele-

ments associated with repression of the genome

can interact with the nuclear envelope.

3 Chromatin interaction with nuclear

envelope

The nuclear envelope is formed of two lipid bi-

layers, covered on the inside by a network of filaments forming the lamina. In mammals the

lamina is composed of the lamin proteins, which are part of what are called intermediate

filaments (IFs), members of the cytoskeleton family. This class of filaments can be found

also in the cytoplasm and are thought to be relatively static and to give it its visco-elastic

properties [Chernyatina et al. 2015]. Every types of intermediate filaments have the same

structure: two filaments will associate in a parallel fashion, then, this dimer, will form a

tetramer in which two dimers are assembled in an antiparallel way. The tetramer is the

fundamental unit of the IF and will polymerize to form a meshwork.
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Figure 1.8 – Chromatin usually localizing at the periphery associates with lamins forming lamin associ-
ated domains (LADs) and correlates with repressive chromatin marks (heterochromatin). On the contrary
chromatin located in the center is often associated with expression marks (euchromatin). Expressed re-
gions are organized in transcriptional active domains (TADs) associated together. If interaction between
chromatin and lamin is removed, heterochromatin spontaneously positions in the central part.

Chromatin regions interacting with the lamina were named lamina associated domains

(LADs) and can be identified with the DamID technique (DNA Adenine Methyltrans-

ferase Identification) [Guelen et al. 2008] [Kind et al. 2013]. This technique uses the ade-

nine methyltransferase (AMT) present in bacteria but not in eukaryotic cells. The protein

of interest, is fused to this enzyme, so if an interaction between the protein of interest

present in the lamina and chromatin happens, AMT will methylate the adenines of the

DNA, thus making it possible to identify the binding sequences and map them. Using this

technique, it has been shown that the regions interacting with lamins are usually poor in
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active genes and bordered with CTCF interacting domains (also present on TADs bound-

aries) meaning these regions are clearly defined and selectively clustered at the envelope.

On top of the DNA sequence, histone modifications could also be characterized. LADs

are strongly associated to repressive histone modifications [van Steensel & Belmont 2017].

This again, participate to a highly compartmentalized chromatin vision, where active

and inactive regions position is tightly regulated. As it was made for epigenitic marks

[Atlasi & Stunnenberg 2017], LADs evolution was analyzed during lineage commitment

[Peric-Hupkes et al. 2010] [Cesarini et al. 2015]. The results show that some genes move

away from the lamina to be activated, but not all. Some remain inactivated and it is

thought that they are prepared for further activation during the next steps of differentia-

tion. Similarly, preventing repressive marks appearance prevent peripheral relocalization

[Towbin et al. 2012].

In other models, like trypanosoma, similar repositioning can be observed. Loci of

the variant surface glycoprotein (VSG) and procyclin, are expressed in different contexts,

respectively during mammal infection and during insect infection. VSG are highly variable

glycoproteins postionned at the surface of the cell, needed for the trypanosoma to escape

host immune system by increasing presented antigens variability. Many copies of VSG

are present on different chromosomes and are located in telomeric regions. Interestingly

a single organism expresses only one VSG during its lifetime meaning all the other copies

are inactive. Repression of these regions occurs by including these them to the peripheral

heterochromatin. On the contrary the active loci are moved to a region called the expression

body site (EBS) [Field et al. 2012] far from the periphery. Similar regulation is observed

for procyclin [Field et al. 2012]. These results show that the correlation between chromatin

positioning and gene expression is a highly conserved mechanism in eukaryotic cells.

To decipher the contribution of decondensation and activation on positioning, it is

possible to express artificially in a cell a synthetic transcription factor which has a spe-

cific peptide sequence that induces chromatin decondensation but lacks the transcriptional

activation function. If targeting this synthetic transcription factors to a gene sequence

it is then possible to compare the effect of mere decondensation to complete activation,

on chromatin positioning. With this technique it was shown that decondensation induces

comparable gene relocalization to the centre of the nucleus than the one observed during



20 Chapter 1. Introduction

physiological differentiation. It shows that decondensation and transcription effects on po-

sitioning can be decoupled. Condensation of the chromatin alone can affect its interaction

with the nuclear envelope and govern its positioning [Therizols et al. 2014]. The lamina

then appears as one of the important actor in chromatin organization and gene expression.

4 Nuclear periphery vs. nucleoplasm ?

Several studies tend to moderate this well established active-centre vs. repressive-periphery

view. Nuclear Pore Complexes (NPCs) make a connection between the inside and the out-

side of the nucleus. Through them, exit the newly transcribed messenger RNAs (mRNAs)

that will be translated into proteins. It has been demonstrated that chromatin can inter-

act with the NPCs and can induce gene transcription [Pascual-Garcia & Capelson 2014]

[Ptak et al. 2014]. Similarly, in plants gene activated by light exposure are relocated at

the nuclear periphery [Feng et al. 2014].

The centre of the nucleus does not seem to be only reserved for active genes. Indeed,

all lamins are not polymerised in the lamina. Some are present in a soluble form in the

nucleoplasm. The same way it interacts with DNA at the inner nuclear membrane, some

evidence suggests that soluble lamins can also interact with DNA and affect its expression

levels [Lund et al. 2013].

Giving importance to this soluble part, some experiments gave counter intuitive results.

Lamins have been shown to participate to polycomb group proteins (PcG) complexes

integrity. PcG are protein complexes involved in gene repression by forming visible foci

in the nucleus which are known to be involved in myogenic differentiation for instance

[Cesarini et al. 2015]. When lamins expression is impaired, these foci are more dispersed

and disassemble [Cesarini et al. 2015]. Going in the same direction, upon lamins depletion,

telomeres, non expressed chromatin regions, have increased mobility inside the nucleoplasm

[De Vos et al. 2010]. These two examples show that lamins depletion can have long range

effect, in the nucleoplasm, although at first they locate mostly at the periphery. Further

study of lamin depletion will have to take into account the contribution of the soluble part.

Questioning even more the necessity of the heterochromatin peripheral positioning,

there exists a cell type, the rod cell of the rodents’ retina, that exhibits an ‘inverted’

nuclei, meaning the heterochromatin is located in the central part of the nucleoplasm
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[Eberhart et al. 2013] (figure 1.8). Mathematical models tried to describe this observation

based on chromatin physical properties (mobility, capabilities of interaction). Modelling,

although theoretical, has the advantage to simplify drastically a system and allows to

tune freely parameters and see if they can explain current observations and can also lead

to new hypothesis. Models dealing with chromatin consider the chromatin as a pearl

necklace, i.e. beads linked together, and subjected to Brownian motion. A model in

which only the mobility of chromatin, dependant of its condensation state and of nuclear

envelope oscillation, is able to produce spontaneous heterochromatic regions positioning in

the central part of the nucleus [Awazu 2015]. A similar model, based not on motility but on

interaction between different types of chromatin and between the chromatin and the lamina

lead to the same results [Falk et al. 2018]. In this case, the difference of interaction between

different chromatin states is not fully established. These results raise the question of the

consequences of local lamin disruption. If global lamin loss is able to ‘invert’ a nucleus, local

loss should move heterochromatin at the center as well. Thus, if lamin organization can

be locally modified via external forces for instance, it could impact chromatin positioning

and expression.

5 Towards a mechanical regulation of chromatin organization

Altogether, this data underline the fact that the chromatin is highly compartmentalized in

the nucleus. Even though first observations tend to establish a simple pattern (periphery

vs. centre), exceptions make it difficult to establish a rule of thumb between position and

expression state. More studies of the chromatin organization are needed to be able to draw

a global picture.

One could think that forces on the nuclear envelope could impact the compartmen-

talization by modulating chromatin compaction state or by increasing its movements for

instance. Similarly, because heterochromatin is tightly associated to lamina, disruption of

lamins could affect its interaction with chromatin and nuclear integrity. These two aspects

lead us to explore the mechanical properties of the nucleus and to investigate how they are

linked to chromatin organization and gene expression.
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2 Nuclear mechanics

To probe more or less directly mechanical properties of the nucleus, different tech-

niques can be used, mainly micro-pipette aspiration or atomic force microscopy (AFM)

[Haase et al. 2016] [Guilluy & Burridge 2015]. Unfortunately, these techniques lead to

variable results depending on how measurements are made and on which cell type

[Dickinson et al. 2015] and does not allow to determine an absolute nuclear rigidity value.

Nevertheless, they are still able to show that the nucleus is much stiffer than the cytoplasm,

and is probably the stiffest organelle of the cell. Nuclear sturdiness has several origins, the

main ones being the chromatin and the lamina.
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Figure 1.9 – Chromatin tethering contributes to nuclear mechanical properties depending on its con-
densation state. Decondensation of chromatin induces nuclear blebbing and indicates that chromatin
participates to nuclear envelope integrity. Moreover chromatin follows envelope movements and a stiff
nucleus buffers the force transmitted to the chromatin.

1 Chromatin contribution to nuclear sturdiness

Chromatin even though organized is still a mass with its own physical properties. As

intuitively expected, impairing chromatin interaction with the envelope leads to a softer

nucleus. It shows that chromatin tethering puts up resistance to nuclear deformation

[Schreiner et al. 2015] (figure 1.9). It follows nuclear envelope movements and as such

contributes to the nucleus mechanical properties. Due to the fact that heterochromatin

and euchromatin have different physical properties, the first one being denser that the

second, nuclear mechanics can be modified by global chromatin condensation state: the

more condensed the stiffer the nucleus is [Furusawa et al. 2015] [Shimamoto et al. 2017].

What happens on the contrary, when chromatin is decondensed, is that the nucleus gets
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an abnormal shape identified by nuclear blebbing. It can even go to formation of micronu-

clei [Stephens et al. 2018] (figure 1.9). Similar results were obtained when modulating

formation of chromocenters, which are aggregates of heterochromatin. Their formation

participates to nuclear integrity: if chromocenter formation in blocked nuclei forms blebs

similar to what has been observed with global decondensation [Stephens et al. 2018]. Leak-

age from the nucloplasm to the cytoplasm can be observed as well. These results illustrate

that chromatin can influence nuclear shape and that its compaction state maintain the

integrity of the nuclear envelope.

Chromatin response to mechanical stress is also adaptive. Cyclic forces applied to the

nucleus affect condensation state of the chromatin that will remain over time. In other

words, chromatin state reflects mechanical events the cell has been subjected to and act as

a memory of the cell’s physical history [Haase et al. 2016]. Going in the same direction, it

has been shown that nuclear mechanical response in isolated cells depends on its previous

mechanical environment. Cells cultivated on a substrate favouring cell-matrix contact or

on the contrary on a substrate favouring cell-cell contact display different morphologies,

thus forces experienced by the nucleus will be different and will induce different chromatin

organization [Balikov et al. 2017]. All this data brings back and expands the concept

of the niche, adding to the short chemical range signalling the physical probing of the

environment. The relationship between chromatin state and mechanical properties of the

nucleus resonate very well with a mechanosensing mechanism. Going further, studies show

that lamins are at least as much important as chromatin for nuclear mechanics integrity.

2 Lamins contribution to nuclear sturdiness

There are three isoforms of lamins: A, B and C [Gruenbaum & Medalia 2015]. Lamins A

and C are usually grouped together due to their role in nuclear stiffness, whereas lamin B

is responsible for nuclear integrity and elastic response [Lammerding et al. 2006].

Abnormalities in lamin content have been observed in multiple diseases grouped under

the term laminopathies. The most striking one is progeria. Patients having this mutation

exhibit a premature senescence phenotypes starting the second year of life, with normal

intellectual capacities. When the nuclei of the cells of these patients are observed under

the microscope, they present a completely irregular shape [Davidson & Lammerding 2014].
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Correlated to this abnormal nuclear shape, these cells have an increased number of

DNA damage as well as abnormal chromatin organization. Strikingly expression of the

lamin mutant responsible for progeria (progerin) in human mesenchymal stem cells in-

duces a cell identity change and reduce their potency similarly to what is observed dur-

ing ageing [Scaffidi & Misteli 2008]. On top of that, it alters chromatin organization

[Briand & Collas 2018]. It strongly suggests that this truncated form of lamin, because

not able to preserve proper nuclear shape, disorganizes chromatin provoking stem potency

loss.

Surprisingly lamins are not the universal constituents of the lamina. In plants or uni-

cellular organism other proteins assume this role. In plants they are called nuclear matrix

constituent proteins (NMCP) and in trypanosoma, NUP-1. These proteins are analogue

(and not homologue) as they have very different sequence but similar tertiary structure.

They localize at the nuclear periphery and seem to have similar function regarding nuclear

integrity. For instance NUP-1 deletion leads to nuclear deformation and even loss of struc-

ture integrity [DuBois et al. 2012] similar to the phenotype induced by loss of function

of lamins in progeria. Why lamina components have followed very distinct evolutionary

pathways is not determined yet but their analogous relationship strongly strengthens the

role of nuclear mechanics for gene expression and cell identity maintenance.

Several laminopathies exists and are linked to particular mutations in the lamins gene

leading to organ specific phenotypes. Similarly lamin B receptor (LBR) a membranous

protein located on the inner nuclear membrane (INM) participate to the anchorage of

the lamina to the nuclear envelope and which is needed for proper neutrophils function

[Gaines et al. 2008].

Experiments on isolated nuclei highlighted the fact that the nucleus can respond by

itself to mechanical cues via lamin A/C recruitment [Guilluy & Burridge 2015]. This result

could be an explanation for the chromatin dependent stiffening of the nucleus. While

the nucleus is subjected to forces, lamins A/C are recruited to the envelope, increasing

its stiffness and increasing interaction probability with chromatin leading to compaction.

Hematopoietic stem cells differentiation can by directed towards a specific lineage solely

on modulating lamin A expression, high level of lamin A leading to erythropoiesis and the

opposite towards megakaryogenesis [Shin et al. 2013]. This observation raises the question
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of the interplay between nuclear mechanics and chromatin, how one can influence the other

and how this interplay can be involved in the control of differentiation.

Interestingly, during differentiation, lamin content changes: lamin A/C increases com-

pared to lamin B [Shin et al. 2014]. As stated previously this is indicative of a stiffening

of the nucleus [Lammerding et al. 2006] showing that stem cells are in a particular state

allowing them to respond to external stimuli, and that differentiation modify this ability

[Heo et al. 2016]. It means gene expression will afterwards, be differentially affected by

forces (figure 1.10).

3 Evolution of nuclear mechanical properties during differentiation

Embryonic stem cells entering differentiation exhibit auxetic nuclei which means pulling

them expands them in every direction instead of extending it only in the direction of

the pulling force [Pagliara et al. 2014]. Similarly compressing them in a given direction

compact them instead of squashing them. This is thought to be due to differences in

chromatin condensation state happening during differentiation, but how chromatin can

become auxetic is still not understood. It can have non negligible effects, as auxetic nuclei

will respond differently to physical stresses. The same force will in the auxetic case increase

available volume for protein-chromatin interaction and in the non auxetic case the volume

will be decreased increasing nuclear density. These two nuclei will respond in two different

ways to an identical mechanical stimuli [Pagliara et al. 2014].

4 Stem cell heterogeneity participates to differential mechanical response

Heterogeneity of expression profiles found in stem cells could reflect heterogeneous mechan-

ical properties found in embryonic stem cells. Some have a soft nuclei that will adapt to the

cellular shape, others will have stiff nuclei that will remain spherical even upon constraints.

Despite this heterogeneity these two populations still have embryonic stem cells capacities.

The stiff nuclei have an increased lamin A content as well as increased chromatin con-

densation marks and could explain the little deformability. As suspected the difference

in nuclear mechanical properties affects chromatin dynamics [Talwar et al. 2014]. It was

also shown that the stiff phenotype correlates with myocardin-related transcription fac-
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tor A (MRTF-A) localization in the nucleus [Talwar et al. 2014] and suggests that nuclear

mechanical properties can be linked to a differentiation potential.

In the light of those informations it seems quite hard to determine who comes first. Is

the nucleus stiffer because the cell has already started differentiation, even just a little ?

Or is it because it has been subjected to strains that lamin content has been changed and

differentiation is now biased towards another path. If we come back to the heterogeneous

stem cell population hypothesis it might be easier to link these events. What heterogeneity

of stem cells means is that they have different expression profiles although they have the

stem cell potency. Stochasticity of gene expression could explain this phenomenon and

might be necessary to access different stem states. For instance, in a very different system,

at the 32-cells-stage of the mouse embryo, cells’ genes expression is not correlated to their

position. This allows the cell to express for instance a receptor, at a given time and be

sensitive to an external stimuli. It will lead to a signalling pathway activation, acquisition

of a new identity that in turn will influence the one of its neighbours [Simon et al. 2018].

What it means is that stochastic gene expression (SGE) allows the cell to access numerous

states (like a stiff nucleus) that will allow it to respond in a specific manner to external

stimuli. What can initially thought to be inevitable noise is a way to expand available

states to enter differentiation.

5 Lamin response to mechanical stress

We have seen that lamins can impact chromatin organization. Next question is about what

can impact lamins, quantitatively or qualitatively. It was shown that changing nuclear

shape by the intermediate of cell shape, provokes a change in lamin phosophorylation

and turnover [Swift et al. 2013] [Buxboim et al. 2014]. Consequences could be that upon

bearing loads lamin interaction with chromatin would be modified. It strongly suggests

that when deformed, dynamics inside the nucleus are changed and heterochromatin could

be freed from the envelope for further activation.

Altogether these experiments shed light on the mechanisms of substrate stiffness depen-

dant MSC differentiation [McBeath et al. 2004]. Indeed, by modulating cell shape, thus

nuclear shape, via substrate stiffness, it could possible to modulate lamin organization.

Then chromatin would reorganize and it would eventually modulate gene expression in-
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Figure 1.10 – Nucleus stiffening upon cyclic stimulation or by lamin acquisition upon differentiation
changes its mechanical properties, therefore changing nuclear response to forces. Soft nuclei will deform
and fluctuate over time and for an equivalent compression forces will be easily transmitted to the chromatin
impacting its organisation.

volved during differentiation. This is possible because the nucleus is linked to cytoplamic

components like the cytoskeleton which governs nuclear shape.

6 Lamins interaction with the cytoskeleton

Emerin is a membranous protein, anchoring lamin to the envelope. Emerin is not as im-

portant as lamins for nucleus’ mechanical properties but is critically involved in mechan-

otransduction [Lammerding et al. 2005] [Gaines et al. 2008] because it links the lamina to

proteins of the outer nuclear envelope that will interact with the cytoskeleton: the linker

of nucleoskeleton and cytoskeleton (LINC) complex [Osmanagic-Myers et al. 2015].

The LINC complex is composed of proteins containing the SUN domain (SUN protein

in mammals) and KASH domain (nesprin in mammals) [Graham & Burridge 2016]. These
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two proteins form a complex that goes from the nucleoplasm to the cytoplasm, SUN be-

ing on the inner side interacting with the lamina, nesprin attaching to SUN in the inter

membranous space and pointing out in the cytoplasm, interacting with the cytoskeleton

(figure 1.11). This complex is the intermediary between the outside and the inside of the

nucleus, almost all mechanostranduction events go through it. It is via nesprin signalling

that isolated nuclei are able to regulate their lamin content [Guilluy & Burridge 2015]. It

is also thanks to the LINC complex that mesenchymal stem cells are able to integrate sub-

strate stiffness into the differentiation process [Alam et al. 2016]. LINC complex defects

impair correct mechanotransduction and are causes of diseases [P. Isermann 2013]. The

relationship between the nucleus and the cytoskeleton has to be considered to be able to

understand how mechanical events are integrated in the chromatin.
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Figure 1.11 – Chromatin is linked to the cytoplasm components via the LINC complex. It consists
of a SUN protein domain located in the inner nuclear membrane that binds with lamin, itself binding
with chromatin. In the inter membrane space SUN domain protein binds a KASH domain protein, which
is a transmembranous protein in the outer nuclear membrane. KASH domain protein can bind with
actin or molecular motors associated to microtubules. Doing so, forces generated by the cytoskeleton are
transmitted to the nucleus.
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3 Current Issues

Although through decades the description of chromatin organization was greatly improved,

less is known about how mechanical information is transmitted to the chromatin, in other

words, what happens to the chromatin when the envelope is put under constraints. Due to

the overall architecture of the chromatin-lamin-LINC complex ensemble, forces applied on

the nucleus can be transmitted to the chromatin and potentially impact its organization.

Indeed, when the nucleus is stretched, the force is directly transmitted to the chromatin

[Miroshnikova et al. 2017] [Jacobson et al. 2016]. This puts the chromatin filament under

tension and can in the short term affect its dynamics and its expression via rapid specific

promoter activation. This activation is likely provoked but not only by force-induced

decondensation. When inducing shear forces on the nucleus it was shown, by measuring

distance between two loci via FISH, that these forces have direct impact on chromatin

decompaction [Tajik et al. 2016]. Strikingly, correlating with decompaction, transcription

was also rapidly activated showing that force dependant gene expression is possible. On

the long term, forces have a different effect. It induces a switch of chromatin marks from

H3K9me3 to H3K9me27, from strongly repressed to fluctuating repression of genes. Even

though a repression mark, H3K9me27 is more flexible and participates to the appearance

of new gene expression control points [Miroshnikova et al. 2017].

Forces to which the nucleus is subjected also have consequences on the integrity of the

nuclear envelope. Studies show that during migration through pores the nuclear envelope

is ruptured [Raab et al. 2013] [Denais et al. 2016], actin cytoskeleton being involved in this

phenomenon [Thiam et al. 2016]. Leakage in the nucleus inevitably leads to cytoplasmic

components presence in the nucleus that could have lots a consequences on DNA integrity.

In the stem cell case these kind of phenomenon could be of great impact on differentiation.

Mechanics of the nucleus have been shown to be important in the differentiation pro-

cess, mostly as a force transmitter. The way it happens, how nuclear deformation can affect

global chromatin organization are just being described nowadays. But previous examples

of force mediated nuclear structure or chromatin changes were obtained using forces gen-

erated by the experimenter which do not reflect physiological conditions of differentiation.
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However cells are able to generate forces themselves via the cytoskeleton. Thus it should

be possible to reproduce similar results modulating solely cellular organization.
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III Nucleus and cytoskeleton

The cytoskeleton is composed of two types of very dynamic filaments (actin and micro-

tubules) and one less dynamic (intermediate filaments). Here only actin and microtubules

will be discussed as the role of intermediate filaments in force generation still remains

unclear.

1 Actin: the main force generator in adherent cells

1 Structure and organization

Actin forms polarized filaments (5nm) due to the polarity of its forming unit, monomeric

globular actin (g-actin). It has asymmetric affinity sites for other actin monomers and

this is responsible for the polarized characteristic of the filaments. The polymerizing front

is called the plus-end (or barbed-end). Polymerization is favoured when g-actin is bound

to ATP. When polymerized, ATP will be hydrolysed into ADP, leading to a change of

conformation, destabilizing the filament, favouring depolymerizing front at the opposite

end of the polymerization one. Finally, ADP of the released g-actin will be exchanged

for ATP, ending the cycle. This constant directional polymerization/depolymerization

makes the filament virtually move in a given direction, it is the threadmilling effect. In

the cell, actin filaments are quite stable because of the very slow depolymerization rate

compared to the polymerization one. To regulate the polymerization and arrangement of

all those filaments many proteins are expressed by the cell (crosslinkers, severing proteins,

capping protein which stops growth, nucleator...) to control fibers’ size, quantity etc.

[Blanchoin et al. 2014].

Actin filaments are thus dynamic, used to build a dynamic network and can be rear-

ranged to switch quite fast between different organizations. As already stated, structures

created by actin filaments make a framework giving the cell its shape. This framework

consists of two main structures among secondary others (figure 1.12).

• Branched network. A proteic complex (ARP2/3) will bind a filament and nucleate

a new filament at a specific angle. This creates at a large scale a branched structure

similar to a tree, covering a large area. This network is found in the lamelipodia, at
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Figure 1.12 – Two main actin organization can be found in adherent cells. The branched network is able
to cover large surface for the cell to extend and scan its environment. This structure is found at the leading
edge of the cell and propels it. Stress fibers are contractile bundles of actin fibers that will participate to
the cell contractility.
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the leading edge of migrating and spreading cells. It allows the cell, in combination

with stress fibers, to extend its membrane and migrate by pulling it on the substrate.

The cell crawls.

• Actin bundles. Made of the association of multiple actin filaments linked together

either in a parallel or anti-parallel fashion by a passive (alpha-actinin for instance)

or active crosslinker (non-muscle myosin). In the latter case the bundle is called a

stress fiber. Myosin is composed of a head and a tail, and form anti parallel bundles

binding actin by the heads (figure 1.12). With consumption of ATP, myosin is able

to walk on the actin filaments thus increasing the overlap between the two, it is

contraction (figure 1.12).

When a cell is plated on a surface, it goes from a spherical shape to a spread one. It

generates proteic complexes, focal adhesions, which anchor themselves on the surface by

the intermediate of proteins called integrins. Focal adhesions are stabilized when forces

are applied on them, those forces are generated by the actin fibers contraction. On a soft

substrate, focal adhesions can’t be efficiently stabilized due to the poor force transmission

to the substrate and prevents cell spreading. On the contrary on a stiff substrate focal

adhesions are easily stabilized because of the strong substrate reaction force. The cell is

able to spread, enters a positive feedback loop increasing the number of focal adhesions.

At the end of the day, the cell reduces its height. Fibers going on top of the nucleus will

compress it and deform it [Ramdas & Shivashankar 2015] (figure 1.13).

2 Stress fibers generate forces on the nucleus

Actin organization around the nucleus is involved in its mechanical response. Actin stress

fibers going over the nucleus form a polarized array: they are aligned with each other and

do not overlap. It means that when contracting they generate anisotropical forces. Thus,

when the cell contracts, the nucleus will stretch more in one direction than in another

[Haase et al. 2016]. Going further, it means that chromatin will sense different forces

depending on its position in the nucleus.
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Another example illustrating the ability of actin to apply forces on the nucleus is during

migration. During wound healing assay, to close the wound, cells at the edge start to move

and proliferate to close it. During these events, the centrosome goes between the nucleus

and the leading front of the cell, coming from behind the nucleus. Actin fibers, perpendicu-

lar to the migrating direction coming from the leading edge, from the lamelipodium, move

towards the nucleus and go over it. Interinstingly, SUN-2 and Nesprin-2 colocalize with

the fibers and form striations on the nucleus. This is indicative of actin fibers anchoring at

the nucleus via the LINC complex. When actin interaction with nuclear SUN-2 is altered

the repositioning of the centrosome does not happen [Gant Luxton et al. 2011]. This re-

sult shows that actin is able to generate forces on the nucleus and that the LINC complex

is absolutely necessary for it. Surprisingly, SUN isoform SUN-1 does not colocalize with

actin and do not form any striation. To sum up, the flow of actin is able to push the

nucleus back, allowing the centrosome to go in front of it for proper migration to begin

[Lee et al. 2007] [Folker et al. 2011]. This set of experiments also shows that expression of

specific isoforms of the LINC complex can be controlled for specific mechanisms to occur.

In the same way external forces applied to the nucleus can modulate chromatin orga-

nization, actin fibers and their ability to bind LINC complex also should, physiologically,

impact chromatin positioning, and thus gene expression.

3 Consequences of actin-driven forces on nuclear architecture

Actin network constitutively apply compressive forces on the nucleus. Nucleus squeezing

has consequences on nuclear architecture, among which it creates a lamin distribution

asymmetry between the top and the bottom of the nucleus [Kim & Wirtz 2015]. This re-

sult is supported by the fact that lamin conformation is load dependant and can change its

conformation [Ihalainen et al. 2015]. What it means is that lamins at the top and at the

bottom of the nucleus are distinguishable and are susceptible to interact in different man-

ners with chromatin. It also means that actin generated forces on the nucleus can impact

lamina. So modulating actin cytoskelton seems a reasonable way to modulate interactions

between nuclear envelope and chromatin that might in turn impact gene expression.

It was shown that modulating contractility or actin organization in spread cells, can

impact nuclear architecture. One way of doing so is to put cells on a substrate of a defined
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shape and size. It can be achieved by micro patterning of proteins on a glass substrate.

One of the technique used to obtain micro patterns consists of coating a glass surface

with hydrophobic, cell repellent, molecules. Then remove the cell repellent with deep UV

illumination through a mask containing micron scaled shapes. The repellent is removed

where the shapes are and are then coated with adhesion proteins such as fibronectin. Micro

patterning approach is similar to modulating substrate stiffness as limiting adhesion surface

recreates intracellular architecture of cells on soft substrate and in both cases spreading is

reduced and cells can’t form stress fibers over the nucleus. On large patterns, stress fibers

can be found on top of nuclei [Li et al. 2014]. It ends up that micropatterning can be a

tool to tune gene expression via its impact on nuclear shape, with constant biochemical

environment [Gupta et al. 2012]. Another method is to stretch the substrate the cells are

on.

Increasing cell contractility has been shown to induce chromatin methylation

(H3K27me3) indicative of gene repression [Le et al. 2016]. Ultimately it leads to

protein synthesis modification [Thomas et al. 2002]. On the contrary when depoly-

merized or myosin activity is blocked, the nucleus relaxes and appears swollen

[Ramdas & Shivashankar 2015]. Seemingly, reducing tension on the nucleus by micropat-

terning makes the envelope prone to fluctuations responsible for chromatin movements,

especially telomeres [Makhija et al. 2015]. Interestingly telomeres located close to the nu-

clear envelope follow more the envelope that the ones present at the nuclear interior. It

strongly supports the interplay between nuclear and chromatin dynamics. What has also

been observed is that on constrained nucleus, lamin A is more expressed than in non con-

strained. This has to be connected to experiments on isolated nuclei where cyclic force

application induces lamin A recruitment. Here, it is demonstrated that in cells, nuclear

compression by actin filaments cause lamin A recruitment that will in turn impact chro-

matin dynamics [Makhija et al. 2015].

To sum up all this data, it ends up that actin is forming a kind of cage around the

nucleus constitutively applying forces on it. Removing actin realeases pressure, the nucleus

swells back. In the first case the nucleus is trapped and is kind of fixed but when tension

is released it starts to fluctuate. These fluctuations are transmitted to the chromatin and

modulate its dynamics [Chu et al. 2017]. Lamin A seem to be the crucial intermediate
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between cytoskeleton and chromatin organization either by its ability to interact with

chromatin or to stiffen the nucleus. Similar morphological transitions can be observed in

other models, including stem cells.

lamin A

High chromatin

displacement

spr ading

R duced chr matin movement

chr matin mo ement

envelop f uctuation

ac in fiber

Non-polarized lamins T p-bottom polarized lamins

Low contractility

(fluctuating nucleus)

High contr ctilit

(stress fiber )

Figure 1.13 – During cell spreading actin starts to form stress fibers going on top the nucleus. When
contracting these fibers exert a compressive force on the nucleus.

4 Actin architecture transition in stem cells

Human pluripotent stem cells (hPSCs) change their actin architecture when they differ-

entiate. Initially they form colonies which have very specific organization. They are not

formed of spread cells but by weakly adherent cells. Cells at the edge of the colony generate

actin cables specifically on the edge side of the colony. They end up making a fence of actin

around the colony (figure 1.14 left). This structure, because confining the cells prevents

formation of actin stress fibers in the cell which means the nucleus is not compressed, just

like when the spreading surface is reduced via micro patterns. When the differentiation is

triggered this fence is broken and the cells start to spread thus compressing the nucleus

(figure 1.14 right). Gene expression changes are associated to this morphology transition
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and especially stem cell genes [Närvä et al. 2017]. Changes in chromatin organization can

be expected but have not been reported yet. What is important in this set of data is

that provoking this actin reorganization by perturbing actin fence integrity leads to the

spreading of the cells [Närvä et al. 2017]. This spreading is associated with the same gene

expression modification than during differentiation, although of a lower intensity. Thus,

without inducing differentiation it is possible to affect stemness solely by changing cellular

morphology [Närvä et al. 2017]. Nuclear shape is sufficient to alter gene expression.

Figure 1.14 – Human pluripotent stem cells form colonies with specific actin architecture. When differ-
entiating their morphology becomes fibroblast-like (mature adherent cells). Paxilin are used as a marker
of focal adhesion and SSEA-1 as a marker of differentiation [Närvä et al. 2017].

The nucleus is a mechanoresponsive organelle, and by modulating actin, the major

force generator in adherent cells, it is possible to affect, at least partially, chromatin or-

ganization and gene expression. All of these elements shed light on the mechanisms of

mechanotransduction and on the importance of nuclear interaction with the cytoskele-

ton during differentiation [Uzer et al. 2016]. Here, only actin was described, but there is

another dynamical cytoskeleton element in the cell: microtubules.

2 Microtubules: another way to constraint the nucleus

1 Structure and organization

Microtubules are organized in a very different manner than the actin filaments. First of all,

they are larger (25nm) and formed by the polymerization of a tubulin dimer (beta-tubulin

+ alpha-tubulin) (figure 1.15). The building block dimer binds GTP, hydrolysing it into

GDP when integrated into the polymerizing front. Here again difference in polymerization

speed at plus-end and depolymerization speed at the minus-end lead to a treadmilling

effect. In mammalian cells, most of the microtubules are generated from a single struc-
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ture: the centrosome (figure 1.15). It is a structure composed of two centrioles, also made

of microtubules, interacting with proteins of the pericentriolar material (gamma-tubulin,

pericentrin...). Altogether, they form the microtubules organizing center (MTOC), a small

non membranous organelle nucleating microtubules. Because growth always starts at the

centrosome, microtubules plus-end is always located at the periphery of the cell. Micro-

tubules are inherently unstable, as opposed to actin filaments. They grow, depolymerize

abruptly (catastrophe event at the plus-end), and then regrow (rescue event) and so on.

This characteristic was named dynamic instability. Microtubules can also be crosslinked,

either by passive or active crosslinkers, and are responsible for formation of larger structures

called bundles.

As for actin, active crosslinkers are able to make microtubules structures generate

forces: kynesin and dynein, both composed like myosin of a head and a tail. Dynein and

kinesin differ by their directionality, the first one goes towards the plus-end, the second

one towards the minus-end (figure 1.15). When microtubules are crosslinked together by

molecular motors the resulting sliding can generate forces, either contraction (in the case

of dynein) or expansion (in the case of kinesin) [Lu et al. 2015]. Sliding can generate

forces on the cell membrane and deform it as it could be observed in megakaryocytes.

Megakaryocytes are huge cells in the bone marrow that generate platelets by tearing appart

its membrane through sinusoids endothelial cells. These protrusions will be torn by the flow

induced shear stress and the resulting anucleated cell is the platelet. For this process to

occur microtubules and dynein motors are needed. The mechanism has not been described

yet[Bender et al. 2015].

2 Tracks to position structures in the cytoplasm

Motors’ tail can bind components of the cytoplasm and then position them at a specific

place. The classic example is the entherocyte which secretory vesicles are only transported

towards the lumen side of the cell and contributes to the polarization of the cell.

Dynein and kynesin can be anchored at the cytoplasmic membrane by nuclear mitotic

apparatus complex (NuMA) [Okumura et al. 2018] and participate to spindle positioning

during mitosis [Laan et al. 2012a] [Laan et al. 2012b] [Tanimoto et al. 2016]: chromosomes

will be gathered at the center of the spindle in order to be segregated in the daughter cells.
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Figure 1.15 – Microtubules are 25nm diameter tubes formed by polymerization of a tubulin dimer
(alpha+beta). Microtubules are nucleated from the MTOC forming an aster. In mammals MTOC is formed
of two centriols (centrosome) themselves formed by a 9 fold symmetry microtubules triplets. Microtubules
can interact with molecular motors (dynein and kinesin). These motors can be anchored at the LINC
complex level and generate forces on the nucleus. Kinesin will move away the centrosome and the nucleus
whereas dynein will bring them together. Dynein can also induce microtubule sliding responsible for
compressive forces on the nucleus.
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This process involves microtubules depolymerization which generate pulling forces on the

chromosomes.

Molecular motors are also critically involved in nuclear movements. Motors’ tail can

bind nepsrins from the LINC complex and by doing so, dyneins walking towards the minus-

end are capable of pulling the nucleus to the centrosome keeping them close together. On

the contrary kinesins walking toward the plus end will push the centrosome and the nucleus

apart (figure 1.15). Balance between kinesins and dyneins activity avoid dissociation of

the two organelles in interphasic cells [Akhmanova 2011].

In some cases like migration, nucleus has to follow the cell movements not

to act as a weight for cell displacement [Roux et al. 2009] [Fridolfsson & Starr 2010]

[Bone et al. 2016]. Nuclear oscillations induced by kinesin and dynein are needed for proper

nuclear positioning during migration direction changes [Akhmanova 2011]. If taken to the

limit, motors activity at the nuclear level could remove the nucleus from the cell. For

instance, during erythroblast maturation, a process during which the erythroblast cell is

enucleated to generate the functional red blood cell, dynein activity is necessary for enu-

cleation although the mechanism still remains unclear [Kobayashi et al. 2016]. The last

hypothesis potentially leading to nuclear deformation is if microtubules growing from the

centrosome surround the nucleus and then overlap. Sliding by dynein would compress the

nucleus like a vice (figure 1.15).

3 Another way to deform the nucleus

During interphase, microtubules induced forces seem to participate to nuclear

shape although in a lower range than those generated by actin filaments

[Ramdas & Shivashankar 2015]. Nevertheless, it is possible to observe strong deforma-

tions under certain conditions. During polymerization of microtubules from the MTOC,

after drug treatment depolymerization, the centrosome tends to form an invagination in

his vicinity, possibly induced by dynein bound to LINC complexes pulling on newly formed

microtubules [Gerlitz et al. 2013] (figure 1.15). Another way to illustrate the capacity of

the microtubules to deform the nucleus is by playing with the lamins content. Upon lamin

A depletion, interphasic cells display a large invagination that correlates with centrosome

position [Tariq et al. 2017] that disappear when microtubules are depolymerized. Same
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goes when the interaction between the microtubules and the nucleus is increased by over

expression the LINC complex [Donahue et al. 2016].

On the one hand these results suggest that during interphase in adherent cells, mi-

crotubules are capable to generate weak forces on the nucleus. On the other hand there

are physiological situations where microtubules are capable of generating much higher

forces. For instance, for mitosis to occur, nuclear envelope breakdown (NEB) is needed.

Microtubules, generated from both duplicated and original centrosomes, grow against the

envelope making small invaginations in the nuclear envelope. Then dynein walking to-

wards microtubules minus-ends and bound to the LINC complex tear the envelope down

[Gerlich et al. 2002]. When mitosis is over, microtubules serve as tracks to reform the nu-

cleus close to the centrosome highlighting a strong bound between those two structures

[Xue & Funabiki 2016].

Figure 1.16 – Large mi-
crotubules bundles can be
observed surrounding sperm
cell nucleus and deforming it
[Russell et al. 1991].

When bundled, microtubules are able to generate higher

forces. Bundles formation can be induced for example by

over expression of passive crosslinkers (like the TAU protein).

In this configuration they can drastically deform the nucleus

[Monroy-Ramirez et al. 2013]. Similarly large bundles of mi-

crotubules forming a structure called the manchette (figure

1.16), are known to induce large scale deformation of the

nucleus during the sperm cell maturation. This structure

is needed to compress the nucleus and compact the chro-

matin in order give the sperm head its final functional shape

[Russell et al. 1991]. In this system, integrity of the LINC

complex is needed otherwise the manchette is not able to gen-

erate the required forces on the nucleus [Pasch et al. 2015].

Finally, in tissues, nuclear envelope breakage was ob-

served during interphase. To repair these ruptures lamins

are recruited but interestingly dynein act oppositely to

the closing process, as their removal facilitate the repair

[Penfield et al. 2017].
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These examples show that microtubules are able to generate forces on the nucleus strong

enough to deform it just as actin does. It thus seems reasonable to infer that microtubules

can participate to chromatin organization.

4 Consequences of microtubules-driven forces on chromatin

If little is known about microtubules influence on interphase nucleus, even less is known

about the role of microtubules in chromatin organization nor in stem cells differentiation.

If we consider the MTOC evolution in eukaryotes it might not be surprising that this

structure and the microtubules associated can impact chromatin organization.

Centriols form the centrosome but are also at the basis of the flagellum (basal body),

a long protrusion formed by microtubules and allowing cell motility. It can be observed in

euglenids or plankton for instance. Some eukaryote organisms like yeast and dictyostelium

have acentriolar MTOCs, respectively called spindle pole body (SPB) and nucleus asso-

ciated body (NAB), and interestingly they are also deprived of flagellum. The SPB in

embedded during the whole cell cycle whereas the NAB is strongly attached to the nu-

cleus but can dissociate during interphase. What is thought is that the acentriolar nature

of the MTOCs is a secondary evolutionary loss, due to non flagellar motility and that

before nucleus appearance centriol from the flagella would have duplicated to serve as a

clustering agent for DNA which started to attach to the endomembrane system of the or-

ganism [Gräf et al. 2015]. In the end, the loss of a flagellum based motility in yeast would

have made the centriolar nature of the centrosome irrelevant and the MTOC remained

exclusively attached to the nucleus mostly for chromatin organization. SPB and NAB are

indeed centrometric clustering region and strongly suggests that due to their evolutionary

relationship with centriols that the centriolar centrosome of mammalian cells is still able

to interact strongly with chromatin.

In fission yeast S. pombe, the region of the nuclear envelope associating with the SPB

contains specific KASH proteins isoforms [King et al. 2008]. Interestingly specific hete-

rochromatin regions, centromeres, are directly bound to these KASH proteins and thus

provide an indirect interface via the SPB and the microtubules. Any forces coming from

the microtubules will be transferred to the chromatin [King et al. 2008]. Similarly specific

MTOCs called telocentrosomes are formed at the interface of telomeric regions and the
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nuclear envelope. They are formed by recruitment of LINC complex components and re-

quire centrosomal activity associated proteins. Then microtubules generated from these

MTOCs interact with each other via dynein, bringing together both telomeres at the SPB.

Homologous chromosome pairing for meiosis recombination can occur [Yoshida et al. 2013]

[Katsumata et al. 2017]. These examples show how chromatin and microtubules network

can be interwined as specific chromatin regions can be moved around the nuclear envelope

by interacting indirectly with microtubules.

To come back to multicellular organisms, in drosophila meiotic cells, nuclear movement

are also required for proper centromeric region clustering and depend on a microtubules

based mechanism. Dyneins drive rotation of the nucleus and increase centromeres en-

counter for pairing. If blocked, the time needed for this process to happen is increased

[Christophorou et al. 2015]. During interphase, microtubules can also induce chromatin

movement as demonstrated during DNA double strand break (DSB). When breakages oc-

cur, increased mobility of surrounding chromatin is observed. It is dependant of the LINC

complex integrity and microtubules dynamics [Lottersberger et al. 2015]. These move-

ments increase the chromatin mobility, just like during meiosis pairing, to favour encounter

that will reconnect the free ends. It is particularly important as after breakage the dis-

tance between the two free ends can be dramatically increased [Lottersberger et al. 2015].

This study shows that microtubules have the ability to organize chromatin during certain

events and suggests that microtubules dynamics can impact chromatin organization during

differentiation.

5 Potential actors for gene expression control

Drosophila embryo cellularization is a process during which a syncytium becomes an group

of cells delimited by membranes. This process is associated to transcriptional activation

[Anderson & Lengyel 1979] [Edgar & Schubiger 1986]. Interestingly during this process,

nuclei get deformed by bundled microtubules and the nucleus stiffens during this process

as well. If the stiffening is prevented the shape change cannot be maintained. Before this

shape change, microtubules polymerization is responsible for nuclear envelope fluctuations

[Hampoelz et al. 2011]. From a chromatin point of view, nuclear envelope fluctuations

are transmitted to the chromatin and induces its movement [Hampoelz et al. 2011] like it
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was described in adherent cells [Makhija et al. 2015]. Interestingly in this case, reducing

LINC-MTs interaction enhanced the fluctuations showing that the LINC complex buffers

the polymerization induced forces [Hampoelz et al. 2011]. In the end, when nuclei un-

dergo transcriptional modifications they switch between a fluctuating phenotype to a more

stable one fitting the general view that quiescent cells are characterized by a relatively

more fluctuating/open chromatin state. Nevertheless, how these fluctuations impact gene

expression and how it could be involved in differentiation is still unknown.

To sum up, microtubules are able to generate forces on the nucleus and impact its shape.

Evidence show that it can also impact chromatin movements, especially by increasing

their spatial fluctuations. At this stage, microtubules are good candidates for mechanical

controlling gene expression and differentiation but this has not been completely shown yet.

3 Current Issues

Microtubules are able to generate forces in different ways and different contexts in adherent

cells. Because studies have focused on the relationship between actin and nuclei only few

examples have demonstrated that microtubules could potentially impact gene expression.

Unfortunately, actin seems to be masking microtubules effect as it generates higher forces.

In order to determine the contribution of microtubules one would need a single cell model

where actin is less dominant and microtubules could be the ones leading the force gener-

ation on the nucleus. This kind of model could help to answer the questions associating

microtubules and mechanotransduction.
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Figure 1.17 – How forces deforming nucleus can impact nuclear organization still remains unclear.

IV Adherent vs. non-adherent cells

Most of the data linking cytoskeleton and gene expression were obtained in adherent cells.

Opposed to them, are the non-adherent cells, which only make very weak contacts with the

substrate they are on. Lack of adhesion leaves the cell floating, like in the blood stream for

instance. These cells are characterized by smaller size than adherent cells (5µm vs. 50µm)

and a spherical shape, like adherent cells before spreading (figure 1.18).

Figure 1.19 – Nuclear lobulations observed in neu-
trophils in a blood sample. Pale red cells are red
blood cells.

One system of non-adherent cells

changing identity is the hematopoietic

stem cell. Looking at mature blood cells

one can observe a great variety of mor-

phologies: red blood cells are enucle-

ated cells, platelets are torn out of a

huge cell (the megakaryocyte), lympho-

cytes are rather small and some innate im-

mune cells (myeloid cells) display a lob-

ulated nucleus. Some of these nuclear

morphologies changes involve microtubules
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Figure 1.18 – Non-adherent and adherent cells display strong morphological differences. Their size
differs by a factor 10, non-adherent cells only have cortical actin far from the nucleus and most of the
microtbules interact with the nucleus whereas in adherent cells stress fibers are present and microtubules
spread everywhere in the cell. These characteristics make the non-adherent cell a good model to study
microtubules impact on nuclear shape.

as described previously [Bender et al. 2015]

[Kobayashi et al. 2016].

The case of the myeloid pathway, giving rise to granulocytes, is the most interesting in

the context of chromatin organization because of their highly deformed nuclei (figure 1.19).

Most of the data in this respect where obtained on neutrophils, the most abundant type

of granulocytes in the innate immune system. Their characteristic lobulated nucleus was

observed on blood samples and was historically thought to be multiple nuclei (figure 1.19).

One potential involvement of these lobulations would be during migration. Indeed, those

cells have to migrate from the blood stream to the tissue in order to prevent spreading
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of pathogens. The consequences of the lobulations on chromatin organization have been

poorly discussed but chromosome painting show that chromosome positioning is not ran-

dom between different lobes [Bártová et al. 2001]. Adding to this, neutrophiles are known

to be the cells with the highest condensation level of chromatin [Sanchez & Wangh 1999]

and could be linked to the nucleus shape. The mechanism involved during lobulation has

not been well documented either. Nevertheless, it has been shown that lamins associated

proteins like lamin-B receptor (LBR) and the LINC complex are needed for correct lobula-

tion [Hoffmann et al. 2007] [Olins et al. 2009]. Supporting the role of microtubules, nuclear

deformation is closely associated with centrosome position [Olins & Olins 2005] and per-

turbing microtubules during granulocytic differentiation from promyelocytic leukemic cells

reduce their lobulation [Olins & Olins 2004].

Converging evidence suggests that microtubules dynamics changes between the

stem state and mature cells and that it can influence chromatin positionning

[Hampoelz et al. 2011]. Nevertheless, the link between microtubules, nuclear shape and

chromatin organization has never been fully addressed. Neither has been determined if

in systems where actin organization is more peripheral, microtubules could be involved in

gene expression.

WeâĂŹve seen that the nucleus is a mechanoresponsive organelle, forces applied on

it impact nuclear envelope properties that will in turn impact chromatin organization.

These two aspects are intimately linked to chromatin expression state and can thus impact

differentiation. In adherent cells the main actor able to generate forces on the nucleus is

the actin cytoskeleton. By compressing the nucleus it can affect chromatin dynamics and

if perturbed it can even trigger differentiation.

Because actin cytoskeleton generate high forces in adherent cells, microtubules contri-

bution to nuclear mechanics and chromatin organization was never fully elucidated. Nev-

ertheless, it is known that they are able to generate forces on the nucleus and participate

to chromatin dynamics, during meiosis for instance.

To diminish the dominant effect of actin, non-adherent cells can be used as they display

an actin organization less susceptible to impact nuclear mechanics. In this sense, I will

show how hematopoietic stem cells constitute a well suited model to study impact of mi-

crotubules during differentiation, especially toward the myeloid lineage in which lobulated
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cells can be found. It is nowadays well known how to select HSCs at specific differentiation

stages and also how to differentiate them in vitro towards a chosen lineage. The best

strategy is to split HSCs into populations representing the stem cells and early myeloid

differentiated cells as it is the one giving rise to granulocytic cells. The populations selected

have to be close enough in the differentiation process to be able to determine the interme-

diate state between the non deformed and deformed nucleus phenotypes. Once conditions

were set up, I could correlate nuclear shape and chromatin organization and then deter-

mine that microtubules architecture could explain these changes. Ultimately, modulating

microtubules organization during differentiation process impacted nuclear shape and chro-

matin organization. The present work show that microtubules can be established as a new

actor for chromatin reorganization during myeloid differentiation.
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I Results

1 Nuclear shape changes and chromatin reorganization occurs at an

early myeloid differentiation stage.

Human umbilical cord blood hematopoietic stem and progenitors cells (HSPCs) are char-

acterized by the expression of the surface marker CD34. Progenitors cells are distinguished

by a high level of expression of the surface marker CD38. Thus it is possible to distinguish

two populations: the CD34+/CD38- which are the stem cells, and the CD34+/CD38+

the progenitors. The progenitors can be split in two populations, the one coming from

the myeloid progenitor (MP), here selected by the expression of the surface marker CD33,

and the one coming from the lymphoid B progenitor (LP) selected by the expression of

the surface marker CD19 (figure 2.1A). We thus FACS sorted HSPCs in three populations

in order to study their intracellular architecture: the CD34+/CD38- cells representing the

stem cells, the CD34+/CD38+/CD33+ cells representing the myeloid engaged cells and

the CD34+/CD38+/CD19+ cells representing the lymphoid B engaged cells (figure 2.1B).

We could observe that stem and lymphoid cells nuclei appear rather round compared to

myeloid, which are bigger and display large invaginations in 2 dimensions (figure 2.1C).

SUN-2 was used in order to visualize the nuclear envelope. In order to better describe these

invaginations, nuclei images were acquired with a confocal microscope and 3-dimensional

meshworks generated for analysis (See Material and Methods) (figure 2.1C). Nuclear vol-

ume was measured for each population and myeloid nuclei’s show a significant higher

volume compared to stem and lymphoid cells (figure 2.1D). The deformation of the nuclei

could also be measured. Here again it is significantly increased for myeloid cells compared

to stem and lymphoid cells (figure 2.1D). We then measured lamin A : lamin B intensity

signal ratio, a parameter indicative of nuclear stiffness [Shin et al. 2013] (figure 2.1E). This

ratio is increased between stem and progenitor cells (figure 2.1F) indicating that besides

growing and deforming the nucleus becomes stiffer suggesting that forces applied to the

nucleus have to be high or happen before stiffening.

To study the impact of these deformations on chromatin organization, we used a consti-

tutive heterochromatin marker (H3K9me3) [Ugarte et al. 2015]. Both stem and lymphoid

nuclei exhibit homogeneous peripheral signal distribution (figure 2.2A). On the contrary,
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myeloid nuclei have more heterogeneous peripheral signal distribution (figure 2.2A). It was

confirmed measuring the signal dispersion along the nucleus border (figure 2.2B, C) by

computing the quartile coefficient of dispersion (figure 2.2D).

We also decided to analyze H3K27me3 position, another heterochromatin marker used

to identify repressed genes during hematopoiesis [Ugarte et al. 2015] and that has been

shown to vary during myeloid lineage commitment. We could see similar intensity hetero-

geneity as H3K9me3 which supports the idea that nuclear deformation can impact overall

heterochromatin positioning. Unfortunately the weak signal intensity and difficulties to

reproduce the observations did not allow further quantification (figure 2.3).

2 Cytoskeleton organization correlates with nuclear shapes.

We hypothesized that one of the members of the cytoskeleton family could be able to gen-

erate forces responsible for the deformations described. Striking changes in microtubules

(MTs) architecture but not in actin oriented the analysis. Stem cells display a low number

of MTs and a nucleus occupying almost the total volume of the cell, whereas myeloid cells

have a higher number of MTs which spatial position correlates with nuclear lobulations

(figure 2.4A). Myeloid cells also have much higher nucleo-cytoplasmic volume ratio com-

pared to the two other populations (data not shown). In myeoloid cells, MTs bundles

running along the nuclear envelope could be observed (figure 2.4A, insets) and seem likely

to interact specifically with the nucleus. All of the MTs seem to be nucleated from the

centrosome. Interestingly this structure is internalized in the biggest invagination (figure

Figure 2.1 (facing page) – (A) Stem cells and progenitors used in this study are isolated using the CD34
surface marker. Upon differentiation, progenitors start to express CD38 in contrast to stem cells (blue).
Progenitors engaged in the myeloid (magenta) and lymphoid (green) pathways express respectively the
specific markers CD33 and CD19. (B) FACS gating strategy to isolate stem cells (further referred as CD38-
, blue box), cells engaged in the myeloid (referred as CD33+, magenta box) and the lymphoid((referred as
CD19+, green box) differentiation pathways. (C) For each population, two representative nuclei are shown
in the left panel using the equatorial plane. Chromatin appears in blue (DAPI) and nuclear envelope in
white (Sun2). Scale bar: 5µm. For each nucleus, the corresponding 3D reconstruction is presented in
the right panel. Convex and non convex surfaces appear respectively in blue and yellow. (D) Nucleus
deformation is the ratio of the non convex area over the total nucleus area. Nuclei are larger and more
deformed in CD33+ cells (magenta, n=38) compared to CD38- cells (blue, n=38) and CD19+ cells (green,
n=35) cells. (***: p<0.001. ****: p<0.0001, Mann Whitney test). (E) Representative lamin A/C and
lamin B immunostaining in stem cells (CD38-,blue) versus progenitors (CD38+, black). Inverted images
of the equatorial plane are presented. Vertical scale bar: 5µm. (F) The lamin(A/C) / lamin B ratio
is significantly higher in CD38+ cells (n=191) compared to CD38- cells (n=169); ***: p<0.001, Mann
Whitney test), indicative of a nuclear envelope stiffening upon differentiation.
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Figure 2.2 – (A) Spatial distribution of H3K9me3 in CD38-, CD33+ and CD19+ cells. For each popula-
tion, two representative nuclei are presented. Inverted images of the equatorial plane of DAPI (left panel)
and H3K9me3 (right panel) are shown. Scale bar: 5µm. (B) For each cell, nucleus contour of the equato-
rial plane is extracted using the raw DAPI image (middle row). H3K9Me3 intensity variations following
nucleus contour are visualized and quantified (right row). Variations are used to extract the Dispersion
parameter defined by the quartile coefficient of dispersion (Qdisp = (Q3-Q1)/(Q3+Q1), where Q1 and Q3
are respectively the first and the third quartile of the intensity distribution). The dispersion parameter
is higher in CD33+ (n=98) cells compared to CD38- (n=58) and CD19+ (n=37) cells (****; p<0.0001.
Mann Whitney test) indicating that H3K9me3 is homogeneously distributed at the nucleus periphery in
CD38- and CD19+ cells, but becomes heterogeneous in CD33+ cells.

2.4C) and strongly support the idea that there is a strong link between the MTs network

and the nucleus.

The fact that the centrosome gets closer to the cell center also means it goes further

away from the cell membrane and makes it potentially less sensitive to external cues. We

decided to measure in stem cells and progenitor cells the position of the centrosome relative
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Figure 2.3 – For each population of CD38-, CD33+ and CD19+ cells, two representative nuclei are
presented. Inverted images of the equatorial plane of DAPI (left panel) and H3K27me3 (right panel) are
shown. Scale bar: 5µm.
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Figure 2.4 – (A) Two representative CD38- and CD33+ cells are shown in the left panel using selected
Z stack with magnified insets. Microtubules appear in green, actin in magenta, centrosome in white and
chromatin in blue. The corresponding 3D projection of microtubules is presented in the right panel. Scale
bar 5µm. (B) As schematized, centrosome-to-nucleus center distance (d) on nucleus center-to-nucleus
convex envelope (R) ratio is calculated to extract the centrosome relative position to the center. This
parameter is significantly lower in myeloid progenitors (n=127) compared to stem cells (n=127; ****;
p<0.0001. Mann Whitney test) indicating that the centrosome gets internalized upon differentiation.

to the center of the nucleus and the substrate, coated with different proteins. We measured

the angle formed by the centrosome and the nucleus and we could show that stem cells,

which have their centrosome located at the periphery of the cell tend to orient it towards

the substrate whereas progenitors have their centrosome more randomly distributed (figure
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2.5). Control condition with Poly-L-Lysine (PLL), which allows the cells to be fixed just

after sedimentation, shows that the centrosome orientation in stem cells is not due to geo-

metrical or physical factors (figure 2.5). This difference of centrosome orientation relative

to the substrate suggests that nuclear deformation induced by microtubules could impact

chromatin organization but also centrosome related phenomenons like spindle orientation

during mitosis.
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Figure 2.5 – Cells where seeded for 24h on coverslips coated with proteins known to favor lymphocyte
adhesion (ICAM-1, VCAM-1, Fibronectin+Collagen) except for Poly-L-Lysine (PLL). Cells on PLL were
seeded for 10 minutes and were used as a control to check if the mere difference in organization would
lead to a biaised sedimentation. Theta is the angle formed by the centrosome and the nucleus centroid in
the yz plane. Stem cells (CD38-) have a centrosome oriented towards the substrate whereas progenitors
(CD38+) have their centrosome more randomly positioned. Seeding on PLL coverslips does not recapitulate
polarization suggesting an active process after sedimentation.
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3 Nuclear deformation and chromatin reorganization are reproduced in

culture.

To confirm that the correlation between MTs and nuclear shape is linked to stem cell

differentiation towards the myeloid lineage, we allowed the freshly sorted stem cells to dif-

ferentiate for 3 days in culture medium supplemented with growth factors (IL-3/SCF/G-

CSF) and we analyzed their morphology each day (figure 2.6A). Quantitative analysis of

the nuclear shape shows that volume and deformation level could reach comparable level

than those of freshly sorted myeoloid cells (figure 2.6B,C). Most interestingly cells at day

2 display a high heterogeneity of morphologies suggesting that the time window during

which the architectural reorganization occurs is between day 2 and day 3. Supporting

the hypothesis that nuclear deformation impacts directly H3K9me3 position, already de-

formed nuclei at d2 display heterogeneous intensity pattern at the nuclear periphery (figure

2.6D,E). At day 3, the dispersion becomes non distinguishable from freshly sorted myeloid

cells (figure 2.6D,E). Strikingly when H3K9me3 signal intensity is plotted against the cur-

vature of nucleus, regions of weak intensities correlates with regions of negative curvatures

(figure 2.6F) and strongly support the hypothesis that nuclear deformation are responsible

for heterochromatin reorganization. Interestingly, nuclear deformation measured in 2 di-

mensions (Shape Index) positively and linearly correlates with H3K9me3 signal dispersion

(figure 2.6G). It allows to infer chromatin distribution based on nuclei shape and suggests

that the deformation dependant chromatin reorganization is a continuous process.

Altogether this data show that HSCs myeloid differentiation system is a well suited

model to study impact of microtubules perturbation on nuclear deformation and therefore

on chromatin organization.

4 Time-lapse imaging of nuclear deformation.

To target microtubules and affect as little a possible the stem cell physiology we determined

precisely what happens during the time window previously established. To achieve this,

cells were cultivated for one day in normal differentiation conditions then placed in 25µm

diameter poly-ethylene-glycol-diacrylamide (PEG-DA) microwells to perform time-lapse

imaging of the nuclei between day 2 and day 3 of culture (figure 2.6G). Nuclei were stained
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with DAPI 12 hours before imaging. Two types of behaviour could be observed: on the

one hand a population of cells that keep a round nucleus, on the other hand a population

of cells which nuclei go from a round to a highly deformed shape. Shape index of each

nuclei was measured at each time point, a variation of 10% compared to initial value was

considered as a deformation (figure 2.6H). This result shows that nuclear shape changes

can be monitored in real time and that during this event the cell does not enter mitosis

making it possible to perturb microtubules without affecting the division process.

5 Long-term time-lapse of migrating HSCs.

Unfortunately due to low temporal frequency and maximum 24h imaging period, we could

not monitor nuclear shape before and after division. Nevertheless, imaging only with white

light allows to obtain long-term movies of HSCs and study their behavior.

It is known that asymmetric division (regarding fate determinant) can occur in HSCs

[Zimdahl et al. 2014] and that, as we have observed as well, their migratory phenotype

changes during differentiation. We thus decided to track, upon division, daughter cells of

HSPCs, to see if these asymmetric divisions could be associated to asymmetric behaviors

in daughter cells. To increase the probability to observe asymmetric division we used a

Figure 2.6 (facing page) – (A) Isolated CD38- cells are cultured and differentiated upon addition of IL-3,
SCF and G-CSF cytokines. Cells are collected and analyzed at 24, 48 and 72 hours after cytokines addition.
(B) The nucleus gets progressively deformed upon culture. For each time point, two representative cells
are presented. Equatorial Z planes are presented. Left panel: Inverted image of chromatin (DAPI). Right
panel: microtubules appear in green and chromatin in blue. Scale bar: 5µm. (C) Nuclei volume and
deformation increase to reach levels similar to freshly isolated CD33+ cells (24h, n=50; 48h, n=45; 72h,
n=50; CD33+ n=55; n.s: non significant; **: p<0.01; ***: p<0.001, Mann Whitney test). (D) H3K9me3
redistributes upon culture. Two representative nuclei are presented for each time point. Inverted images
of equatorial Z stacks of DAPI (left panel) and H3K9me3 (right panel) are shown. Scale bar: 5µm. (E)
Dispersion of H3K9me3 increases with time to reach at 72 hours a level similar to freshly isolated CD33+
(24h, n=54; 48h, n=51; 72h, n=33; CD33+ n=42; n.s: non significant; **: p<0.01; ***: p<0.001, Mann
Whitney test). (F) H3K9me3 is lost from nucleus periphery where invaginations form. For each time point,
two representative nuclei are presented. Upper row: H3K9me3 line scans following nucleus contour. Local
intensity drops are highlighted with red asterisks. Lower rows: corresponding quantification of H3K9me3
intensity variation (blue line) and curvature (red line). (G) Shape index, as a 2D marker of deformation, is
calculated with the nucleus area (An, blue) and convex envelope area (Ak, red) measured the on equatorial
Z plane. Shape index correlates with H3K9me3 dispersion. Values measured at 24 (red) 48 (yellow) and
72 (green) hours of culture are plotted. (H) Nucleus deformation does not require cell division. Live-cell
imaging of individual CD38- cultured in 50µm-large micro-wells. Cells are classified according to the final
nucleus deformation: Blue: deformed, Red: undeformed. Upper row: transmitted light images were taken
every 6 minutes and indicated time points are presented. Cells are underlined with magenta dashed lines.
Scale bar 10µm. Lower row: Corresponding and magnified Hoechst fluorescence images of the nucleus.
Images were taken every 12 hours and indicated time points are presented.
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population of HSPCs intermediately expressing the surface marker CD38. We could observe

both symmetric and asymmetric behaviour mainly distinguished by the distance travelled

by each daughter cell. Figure 2.7A illustrate an asymmetric division where one daughter

cell starts to migrate whereas the other one stays non motile. Figure 2.7B illustrates a case

where both daughter cells stay non motile, potentially keeping their stemness and finally

figure 2.7C shows that a symmetric division but both daughter cells start to migrate.

This results suggests that indeed asymmetrical behavior can be found after division in

the daughter cells, but couldn’t be associated to asymmetrical distribution of fate deter-

minant nor to nuclear deformation yet.

6 Microtubules perturbation impairs nuclear shape and prevent chro-

matin reorganization.

Taxol and nocodazole are the most used biochemical compounds to perturb MTs dynam-

ics. Complete microtubules depolymerization induces cell contractility [Chang et al. 2008],

leading to blebbing in this case, blebbs which contain part of the nucleus and thus impact

its shape independently of microtubules. To resolve this issue, blebbistatin was used in con-

junction with nocodazole to block the induced cell contraction. Adding nocodazole (2µM)

and Blebbistatin (50µM) at day 2 of differentiation, led to significantly less deformed nuclei

than those in the control condition (figure 2.8A). Use of blebbistatin alone does not prevent

nuclear deformation excluding actin mechanical effect in this process. Similar results were

obtained by adding a low concentration dose of Taxol (50nM) (figure 2.8A). Interestingly,

in this condition microtubules seem unable to tightly interact with the nucleus. Since

microtubules are attached to the LINC complex via dynein we decided to use Ciliobrevin

(100µM) to affect their dynamics at the nuclear envelope level. We successfully managed

to affect nuclear shape with the advantage of perturbing less other microtubules dependant

processes (figure 2.8A). This result highlights the role of microtubules induced forces via

dynein on nuclear shape during early steps of myeloid differentiation.

Most importantly, we wanted to see if affecting nuclear shape during differentiation

could in turn affect chromatin organization. It appears that preventing nuclear deformation
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Figure 2.7 – HSPCs undergo transition between motile and non motile phases. When differentiating these
transition become less frequent and the cell become non-motile. (A) shows an asymmetric division during
which only one cell differentiate. (B) and (C) illustrate two symmetric division during which respectively
daughter cells both keep their stemness or both differentiate.
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prevents also nuclear peripheral signal intensity dispersion (figure 2.8C) in all described

conditions.

When nuclear deformation is prevented, peripheral H3K9me3 distribution stays homo-

geneous. This results strongly support the idea that nuclear deformations are responsible

for chromatin reorganization. In other words perturbing microtubules dynamics allows to

keep a stem cell like H3K9me3 profile.

7 Microtubules deforming the nucleus are stabilized.

Interestingly, using low concentration of nocodazole (500nM) during differentiation did not

prevent nuclear deformation. Most of the microtubules are depolymerized but the deforma-

tion happens anyway. Few microtubules remain and those are the ones running along the

deformations (figure 2.9A). This observation suggests that the population of microtubules

capable of nuclear deformation are somehow selected for their stability. Supporting this

hypothesis, acetylated tubulin (a post-translational modification marking stable micro-

tubules) could be found in the biggest invagination where the centrosome is located (figure

2.9B). This selection should happen before the deformation process occurs as nocodazole

does not manage to prevent the deformation.

Altogether we show that nuclear deformation during early stages of myeoloid differen-

tiation is a microtubule-based mechanism. We show that MTs are capable of generating

forces high enough to impact nuclear shape and that impairing their organization prevents

nuclear deformation. Furthermore, we show that negative curvature at the nuclear enve-

lope drives the transition of a homogeneous distribution of constitutive heterochromatin

H3K9me3 marker at the nuclear periphery to a heterogeneous one. Altering microtubules

organization with nocodazole or taxol treatment or dynein activity with ciliobrevin pre-

vent nuclear deformation and subsequently H3K9me3 reorganization is abolished. Most

probably, washing out the drugs at day 3 would lead to a delayed nuclear deformation at

day 4 (figure 2.10).
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Figure 2.8 – Cells were fixed and analysed after 72 hours of culture. Microtubule drugs were added to
culture medium between 48 and 72 hours. (A) Cytoskeletal organization and nucleus shape upon drug
treatments. For each condition, two representative nuclei are presented. Left panel: equatorial Z plane;
microtubules appear in green, chromatin in blue. Right panel: corresponding 3D reconstitution of the
DAPI staining. Convex and non-convex surfaces appear in blue and yellow respectively. Scale bar 5µm.
(B) Microtubules perturbations during differentiation impair H3K9me3 redistribution. Inverted images of
equatorial Z planes of DAPI (left panel) and H3K9me3 (right panel) are shown. Scale bar: 5µm. (C)
Quantifications of nuclear volume, deformation and H3k9me3 in the indicated conditions. Controls at 48h
and 72h are presented.
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A B

Figure 2.9 – (A) When differentiated in presence of a low concentration of nocodazole (500nM), HSCs’
microtubules are still able to deform the nucleus although most of them have been removed. The remaining
microtubules correlate with nuclear deformation and highlight a stable population of microtubules strongly
linked to the nuclear envelope. (B) Acetylated tubulin, indicative of stable microtubules, can be found in
the centrosome region and at the nuclear periphery.

8 Exploring dynein based mechanism: simulation

Figure 2.11 – Natively Cytosim can only
generate non deformable objects.

Ciliobrevin effect on nuclear shape during differenti-

ation shows that dynein is involved in nuclear shape

but the mechanism by which it happens can’t be de-

duced from the results obtained so far. To infer it,

it is possible to use numerical simulation to explore

different cell configuration ans see if observations can

be reproduced. Cytosim is a software developed by

J.F. Nedelec made for cytoskeleton simulation. It

can be used to simulate dynamic filaments, nucle-

ators and molecular motors in both 2 and 3 dimen-

sions. Unfortunately soft obstacles are not imple-

mented. The only way to simulate a nucleus natively

is to generate a non penetrable sphere (figure 2.11).
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Figure 2.10 – During myeloid differentiation microtubules deform the nucleus causing heterochromatin
marker H3K9me3 rearrangement. Perturbing microtubules dynamics during this process impairs nuclear
deformation and prevents H3K9me3 reorganization.

A way to bypass this limitation is to generate several spheres. By doing so it is possible to

reproduce a movable shape, however if the spheres are not maintained together the gen-

erated soft nuclei won’t be cohesive meaning the spheres will move away from each other

and microtubules will go through the structure. The size of the nucleus (9µm diameter)

represents here 70% of the cell volume (10µm diameter).

In order to make the spheres hold together and prevent at the same time lateral pene-

tration of microtubules in the shape, I used many filaments surrounding the structure and

bound them together with cross linkers. This trick allows to generate a cohesive structure

but parameters have to be correctly chosen so the mesh around the spheres is not too tight.

If not, spheres can be ejected from the defined limit of the nucleus (figure 2.12).

Finally a centrosome can be added. It will nucleate dynamical microtubules that will

undergo catastrophe (red arrow head) and rescue events (green arrow head) (figure 2.13).

Parameters were chosen so that microtubules can go around the nucleus to the opposite

side as observed in HSCs. In this case, the centrosome stays at the initial point. If dynein

are added at the cell cortex, the centrosome move towards the nucleus and starts to form an

invagination. Unfortunately the deformable-nucleus trick is limited as some microtubules
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Figure 2.12 – By crosslinking filaments around a structure made of several spheres, it is possible to create
a kind of deformable nucleus. The parameters have to be chosen carefully not to eject one or more spheres
from the meshwork.

can penetrate the nucleus for unknown reason. Most probably because Cytosim was not

designed to handle such structures and filaments interpenetration fails. For this reason

longer simulation run are not relevant because microtubules starts to collapse in the nucleus

as well as the centrosome. Another limitation of this approach is that its calculation speed

is very low.

Nevertheless, these simulations show that dynein is needed to generate nuclear deforma-

tion. Here only the condition of dyneins at the cell cortex was tested and shows that even

without LINC complexes it is possible to deform the nuclei. Further investigations would

be needed to determine if dyneins at the nuclear envelope works as well (most probably)

and what differences it makes compared to cortical ones.
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Figure 2.13 – Nucleus can be deformed by the action dynein located at the cell cortex. Arrow indicates
the centrosome position. ‘t’ is an arbitrary time unit.
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II Material and Methods

1 Sample preparation and cell culture

Human umbilical cord blood samples were obtained from the Saint Louis Hospital Cord

Blood Bank (Paris, France) in accordance with French national law (bioethics law n◦

2011-814) under declaration n◦ ????? to the French Ministry of Research and Higher

Studies. Mononuclear cells were separated with lymphocyte separation medium (Eurobio,

Courtaboeuf, France), then CD34+ HSCs were isolated using MACS magnetic micro beads

isolation kit and a QuadroMac Separator (Miltenyi Biotech, Paris, France) according to

the manufacturer’s instructions. Cells were either frozen in IMDM medium (Gibco) with

10% DMSO or used directly without freezing.

Cells were cultivated at 37◦C in a 5% CO2 humidified atmosphere. Cells were plated

at a density of 40 000 cells/cm2 in 96-wells plates in IMDM culture medium supplemented

with antibiotics (Anti-anti, Sigma), 10% FBS and growth factors: human IL-3 1µg/mL

(Peprotech), SCF 10µg/mL (Peprotech) and G-CSF 10µg/mL (Peprotech). One well was

used per conditions.

2 Flow cytometry

Freshly isolated CD34+ or thawed cells were kept in 10mL IMDM medium supplement with

antibiotics and 10%FBS for one night. Next day, cells were centrifuged at and resuspended

in a 500uL solution of PBS/EDTA 2mM. For staining, 5uL per 106 of antibodies (CD45-

AF700 (BioLegend), CD38-PerCp5.5 (BioLegend), CD34-APC (BD Bioscience), CD33-PE

(BD Bioscience), CD19-FITC (BD Bioscience)) were added for 30min at 4◦C. Then cells

were washed in 5mL of PBS/EDTA solution, and re suspended in PBS/EDTA at a final

concentration of 4.106 cells/mL. Sorting procedure was made on a FACS Aria II with

DIVA software (BD Bioscience). After sorting, cells were centrifuged and re suspended in

the desired volume of culture medium (with growth factors) to achieve correct cell culture

density.
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3 Immunofluorescence labelling

Poly-L-Lysine cover slips were prepared by putting the cover slips in the plasma machine

for 30 seconds, then incubated with a commercial solution of Poly-L-Lysine (Sigma). Cells

were allowed to sediment for 10 minutes at 37◦C. Then, cells were fixed either with glu-

taraldehyde (Sigma) or paraformaldehyde (Sigma) depending on the structures stained.

For cytoskeleton, a 0.5% glutaraldehyde with 0.1% Triton in Cytoskeleton Sucrose Buffer

(10 mM MES pH 6.1, 138mM KCl, 3mM MgCl, 2mM EGTA, 10% sucrose) solution was

used for 10 minutes. For nuclear staining, 3% paraformaldehyde in PBS solution for 20 min-

utes. Cells were washed with PBS, then permeabilized with 0.1% Triton for cytoskeleton

staining, and 0.1% Triton 1% BSA for nuclear staining. Coverslips were neutralized with

NaBH4 for glutaraldehyde fixations, and NH4Cl for paraformaldehyde ones for 15 min-

utes. Finally, 3% BSA/0.1% Tween in PBS was used as a blocking solution. This solution

was used for all antibodies dilution. Cells were then stained with primary antibodies for

1h at room temperature (Rat Anti-YL1/2 (ABD serotech) 1 : 500, Rabbit Anti-Pericentrin

(abcam) 1 : 2000) or at 4◦C overnight (Rabbit Anti-H3K9me3 (abcam) 1 : 500). Coverslips

were incubated with secondary antibodies or phaloidin (1 : 100 (Sigma)) for 1h at room

temperature. Finally, DAPI 1 : 1000 (5ng/mL stock solution) (Sigma) staining was made

for 5 min at room temperature in PBS. Coverslips were mounted with a Mowiol solution

(Sigma).

4 Confocal Microscopy and 3D measurements

Images were acquired using a LSM 780 confocal microscope and ZEN software (Zeiss).

Objective used was a 63x oil immersive (model), a 8x digital zoom was added. Each wave-

lengths were acquired separately with a 350nm z-step size to achieve proper reconstruc-

tion resolution. 3D projections of microtubules network was obtained using SOAX soft-

ware (http://www.cse.lehigh.edu/~idealab/soax/). For nuclei, Image J plugin 3D viewer

was used to generate and export an isosurface of the DAPI threshold signal. The sur-

face was then analyzed using MATLAB. It is imported as a mesh and smoothed using

openAndSmoothen script (source name, MATLAB file exchange). Surface’s main curva-

tures were calculated using the patchcurvature script (source name, MATLAB file ex-
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change) and corresponding areas then measured. For centrosomes, positions were detected

manually in the three dimensions from pericentrin images, an isosurface was generated and

added to the nuclear reconstruction for further calculations. Images were generated with

MATLAB, all data are plotted with Prism and statistical analysis (Mann-Whitney test)

made with Prism.

5 Chromatin image analysis

Images were acquired using a LSM 780 confocal microscope and ZEN software (Zeiss).

Objective used was a 63x oil immersive (model), a 8x digital zoom was added. Single slice

were manually selected, post-acquisition, to maximize deformation in a 2D plane. Contour

of the nucleus was manually detected (or automatically detected) on Image J. Straight

views of the line selection were obtained with ImageJ straighten function. Line scans

values and polygon vertices were extracted from ImageJ and analyzed with MATLAB.

All data are plotted with Prism and statistical analysis (Mann-Whitney test) made with

Prism.

6 Micro wells fabrication

Micro structured wafers were obtained by spin coating SU-8 photosensitive resist (com-

pany) on silicone wafers. First, a 5um thick layer (SU-3005) was made on the wafer

and fully exposed to UV light (UV KUB2) for complete polymerization. Followed by a

50um thick layer (SU-3050) exposed to UV light through a plastic mask stuck on a glass

to obtain pillars of 25um diameter. The obtained wafer was silanized with a gaz phase

trichloro(perfluorooctyl)silane (Sigma). A negative PDMS (1 : 10, reticulant : DMS)

mold of the wafer was then made, silanized, and used to obtain a positive mold of the

original wafer. The PDMS pillars obtained are then placed on a 50mm u-Dish (Ibidi)

and the inter pillars space was filled with poly(ethylenglycol)diacrylate (PEG-DA) solu-

tion (80% PEG-DA length: 250 (Sigma) and 20% PEG-DA length 575 (Sigma)) with 1%

hydroxymethylpropiophenone as reticulant. The whole montage was exposed to UV light,

full power, for 15min in order to polymerize. The chip obtained was sonicated and in-
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cubated with a collagen-fibronectin mix (1µg/mL-12µg/mL) in PBS for 30min at room

temperature, washed, and kept overnight in culture medium at 37◦C to detoxify.

7 Time-lapse microscopy of nuclear shape

One day prior to imaging (24h), cells where incubated with 200ng/mL Hoeschst (Sigma

?) diluted in culture medium supplemented with growth factors. Cells were seeded on top

the micro wells for 15min, washed, and the u-Dish was filled with fresh culture medium

supplemented with Hoechst at 200ng/mL. Images were acquired with a Yokogawa spinning

disk module (CSU-X1) mounted on a Nikon microscope (Eclipse Ti), and using a 100x oil

objective (Nikon S Fluor). Transmitted light images were acquired every 10 minutes, and

DAPI images every 12h to avoid cell death. Nucleus contour was manually made using

ImageJ, and values obtained plotted with Prism.

8 Long-term imaging of migrating HSCs

Two cover slips were plasmatized and coated with a fibronectin/collagen mix (1µg/mL and

12µg/mL respectively). One cover slip was placed on top of the other separated by two

bands of Parafilm (Bemis North America), then put briefly at 40◦C so the Parafilm melted

and stuck the two coverslips together. A cell solution of HSPCs expressing intermediate

level of CD38 (1000 cells/µL) was injected in the formed canal. The set up was placed in a

Chamlide (Live Cell Instrument) and images were acquired every 10min for 48h. Tracking

of cell division was made using Trackmate (ImageJ plugin).

9 Cytosim parameters

The following parameters where used for the simulations:

• cell radius: 5.5µm

• spheres radius: 4.5µm

• number of spheres: 24

• linking fibers:
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– length: 10µm

– rigidity: 1pN.µm−2

• microtubules:

– growing/shrinking speed: 50/20µm.s−1

– catastrophe/rescue rate: 0.4/0.1

• number of microtubules: 30
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I Comments

1 Results summary

The present work aimed to characterize cellular architecture changes during early

hematopoietic stem cell differentiation. We used human umbilical cord blood CD34+ cells

which are know to contain the stem (CD34+/CD38-) and progenitor (CD34+/ CD38+)

cells. To determine if structural changes where lineage specific, the progenitor popula-

tion was split into myeloid lineage engaged cells (CD34+/CD38+/ CD33+) and lymphoid

lineage engaged cells (CD34+/CD38+/CD19+). We could therefore show that nuclear
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deformations could be specifically seen in myeloid cells but not in stem nor in lymphoid

cells.

The deformation correlates with different organizations of heterochromatin (H3K9me3

marker) illustrated by the transition from a homogeneous to a heterogenous distribution

at the nuclear periphery. This result suggested that nuclear envelope deformation was

involved in chromatin organization. Cytoskeleton architecture analysis have shown a sharp

colocalization of microtubules, as well as centrosome’s position with nuclear lobulation, that

also have been observed in granulocytes [Olins & Olins 2005] and led to the hypothesis that

microtubules generate forces on the nucleus capable of deforming it.

We managed to reproduce these correlations in culture. First, the deformations appear

after 72h in differentiation conditions. Then, looking at H3K9me3, we could see that the

signal becomes heterogeneous and follows nuclear envelope curvature. Negative curvature

regions have lower signal intensity compared to positive curvature regions. Interestingly we

could show that the amplitude of the deformation positively correlates with the dispersion

of the heterochromatin signal. Variation of lamin B concomitant with local deformation

have also been reported in other cell types [Gerlitz et al. 2013] supporting the hypothesis

that deformation can induce local reorganization at the envelope level.

The contribution of microtubules was confirmed by perturbing their dynamics dur-

ing this 72h differentiation period. Indeed, affecting microtubules organization, prevents

nucleus deformation and thus no change in H3K9me3 distribution could be observed. Mi-

crotubules based deformation could have also been observed in promyeolocytic leukemic

cells differentiation upon retinoic acid activation [Olins & Olins 2004]. The fact that cilio-

brevin affects nuclear shape puts dynein in the center of this mechanism and potentially the

LINC complex, as it is known that dynein anchors microtubules to this complex. Support-

ing this hypothesis, over expression of SUN2 in lymphocytes have been shown to induce

strong lobulation of the nucleus [Donahue et al. 2016].

This set of data shows that microtubules are able to generate nuclear deformation that

can impact chromatin organization involved in gene expression changes during differen-

tiation (identified here by the marker H3K9me3). We show that if we prevent nuclear

deformation, chromatin reorganization does not happen.
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2 Going finer in chromatin organization description

To strengthen the hypothesis according to which nuclear deformation affect chromatin or-

ganization, more heterochromatin marker or other techniques than immunofluorescence

could be used to decipher the impact of nuclear deformations on chromatin organization.

For instance, first euchromatin-heterochromatin pictures were obtained with transmission

electron microscopy (TEM) (figure 3.1). This technique allows to see without any staining

region of condensed chromatin. Moreover technical advances now allow to reconstruct 3D

model from TEM stacks (tomography). It would drastically improve resolution of the nu-

clear shape description potentially highlighting changes not seen with confocal microscopy.

It would allow to see how heterochromatin is organized at curved regions of the nucleus.

Figure 3.1 – Euchromatin and hete-
rochromatin as they can be seen on elec-
tron transmission microscopy (ETM). [Ko-
rfali et al. - Mol Cell Proteomics - 2010;
doi:10.1074/mcp.M110.002915]

Looking carefully at myeloid cells and ex vivo

differentiated cells, H3K9me3 signal could also be

observed as patches both at the periphery and in-

side the nucleoplasm. This phenotype, in which

heterochromatin is distributed in the nucleoplasm

and not at the periphery is observed in the rod

cell of the retina, twhich have an ‘inverted’ nu-

clei’ [Eberhart et al. 2013] [Falk et al. 2018]. As it

is thought to be due to the absence of lamins-

chromatin interaction at the nuclear level, nuclear

deformations as observed in the HSC case, could

impact lamin ability to cluster chromatin. It is then

freed from the periphery and could explain the inter-

nal relocalization. When the patches are observed at

the periphery the variability of the signal does not correlate any more with the curvature. It

supposes that further processes occur and cannot be explained by current knowledge. Most

probably nuclear deformation is a first trigger for further heterochromatin reorganization.

3 Another way to deform the nucleus
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Figure 3.2 – Centrosome orientation to-
wards cell’s substrate could impact spindle
orientation during mitosis. In the stem cell
case, spindle would be perpendicular to the
substrate, whereas progenitor case leading
to reproducible daughter cells positions af-
ter division. In the progenitor case, the
orientation would be less precise and lead
to differential spatial organization of the
daughter cells.

We’ve shown that a sub-population of microtubules

seems to be stabilized and responsible for nuclear

deformation. This pre-stabilisation could lead to an-

other mechanism of nuclear deformation. Indeed, we

know that nuclear volume increases during differenti-

ation. Thus, microtubules could be stabilized, then

the nucleus grows, and those microtubules act as

constriction point and the envelope deforms. Dynein

and kinesin would only act as passive anchors in

this case. To test this hypothesis one would need

to increase nuclear volume at day 2. Two tech-

niques can be used, either putting cells in a hypo-

osmotic medium to provok water flux inside the nu-

cleus [Kim et al. 2015] [Guo et al. 2017], or use tri-

chostatin A (TSA) a histone deacetylase (HDAC)

inhibitor. TSA provokes massive chromatin decon-

densation and is known to induce nuclear volume

increase. The first approach can be cell destructive

as it will change the concentration of all molecules

in the cell.

4 Consequences of centrosome internal-

ization

We could show that stem cells localize their centro-

some mostly towards the substrate supporting the

idea that centrosome interacts somehow with the membrane-substrate interface (figure

2.5). They can be two potential consequences of this prepositioning. First, clustering

of fate determinants on the side of the centrosome could lead to two different daughter

cells after mitosis [Zimdahl et al. 2014]. Secondly, the spindle alignment in regards to the

substrate could be predetermined. If the cell is strongly polarized, the spindle can be
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oriented perpendicularly to the substrate. After the division the two daughter cells will

have different environments, one will stay in contact with the substrate the other will have

one cell distance with the substrate, leading here again to an asymmetric division. In the

case of progenitor cells, the spindle alignment with the substrate could be more random

and responsible for a less reproducible asymmetric division (figure 3.2). Therefore, cen-

trosome internalization via nuclear deformation could be a way to isolate the centrosome

from external cues.

Moreover we observed as well that progenitors are less migrating on fibronectin/collagen

cover slips (data not shown) compared to stem cells. Supporting this observation, it

was shown that the motility of HSPCs is associated with its differentiation stage, the

more they migrate the more they are differentiated [Moussy et al. 2017]. This behaviour

switch could be potentially linked to the positioning of the centrosome with the nucleus.

Indeed, it has been shown that centrosome is largely mobile in non-adherent motile cells

[Crespo et al. 2014], trapping it close to the nucleus could then prevent migration.

5 Linking chromatin organization to differentiation

To obtain a better view of the differentiation process, transcriptomic will be used to de-

termine if nuclear shape changes, when abolished, affect gene expression profile. Ideally,

treated cells would have gene expression profile closer to stem cells than progenitors. To go

further nuclear shape could also be compared with single cell transcriptome profiles either

during differentiation or by externally inducing deformation.

Many techniques can be used to induce nuclear deformation like AFM or pipette micro

aspiration, although both are low throughput. Development of microfabrication techniques

now allow to work with high number of cells at once. Cells could be put in micro chan-

nels with irregular shape, doing so the cell would be deformed and could induce nuclear

deformation. It would allow to study precisely the impact of externally induced nuclear

shape deformation on chromatin. Nevertheless, comes the question of time scales. Indeed,

nuclear deformation we observe happens on a 24h period. Although the dynamic is un-

clear at this point, it happens most probably progressively. Inducing externally nuclear

deformation should take this aspect into account. Oscillating deformation and long term

compression might lead to very different phenotypes.
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6 Molecular tools limitation in primary cells

Unfortunately, with primary human cord blood HSC it is very difficult to use exogenous

expression tools. Permanent gene expression (like viral transduction) is not possible as

these protocols need cultivating cells for few days before being able to use them, meanwhile

they differentiate. Other non permanent methods like transfection were tested. We could

manage following some electroporation protocols to transfect HSCs with an efficiency of

around 40% but here again these kind of protocols require at least 24h delay before the

cell can be used, making them already differentiated for further analysis.

This constraint made Hoechst the only way to monitor nuclear shape in real time. Both

its cytotoxicity and the fact that blue/UV light, also cytotoxic, is used to illuminate it, did

not allow high frequency acquisition. To keep the cell alive only 3 images could be acquired

over the required 24h time period. Similarly the impossibility to express fluorescent tubulin

makes it impossible to have a fine description of the deformation process.

Same problem appeared for microtubules perturbation. Putting two drugs at relatively

high concentrations like we did with nocodazole and blebbistatin treatment during 24h

seems quite harsh. Same goes for taxol although concentrations are relatively low compared

to what is commonly used (10µM). In these conditions many cells have defective mitosis

or are apoptotic. It means that for most of them physiological processes, even before

differentiation are impaired. Similarly, with blebbistatin alone some cells are binucleated

suggesting that the cytokonesis has failed. We show that the deformation happens within

a cell cycle but what happens before is not clear. It takes 20h for the first cells to divide,

so they should have divided at least once before drug addition but maybe not all of the

cells had the time to do so. What happened to the remaining observed cells ? Are those

cells so quiescent they did not divide thus even without microtubules the nucleus would

not deform ? Or were they perfectly caught between two cell cycles ? Hard to say.

Nevertheless, in live imaging experiments we could not observe asymmetric division

where a round nuclei gives one round and one deformed. The few observed were symmetric.

Either two round nuclei emerged from a round nuclei or two deformed from one deformed

and the deformation is always observed hours after the putative first division. These two

aspects support the fact that nuclear shape changes are independent of mitosis.
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Fortunately, ciliobrevin treatment have similar effect without blocking so drastically

mitosis as no defective mitosis are observed under microscope (data not shown). Two

hypothesis could explain that: either the studied event involves dyneins anchored at the

LINC complex pulling on microtubules or microtubules could slide between them around

the nucleus (figure 1.15). To answer this question it is necessary to modulate quantitatively

LINC complexes expressed by the cell.

Another approach to impact nuclear shape would be to modulate nuclear mechanical

properties by increasing lamin A/C expression level in cells. Lamins A/C promoter is

known to be sensitive to retinoic acid (RA) [Okumura et al. 2000]. Exposing progeric

cells to RA restore nuclear shape by increasing level of lamin A. RA treatment on stem

cells between day 2 and day 3, as did for microtubules related drugs, could be a way to

prevent nuclear deformation by stiffening the nucleus. Nevertheless, interpretation would

be difficult on chromatin as lamin would potentially increase chromatin interaction with

the envelope even without deformation.

Generally speaking using drugs on primary stem cells seems one of the biggest limiting

point. Most of the drugs used to perturb specific events almost always have side effects and

we usually chose to ignore them because there is no better solution. It might no be limiting

on short time scale events but have important consequences if the molecule is active for

a long time. For instance depolymerizing microtubules is known to trigger contraction

[Chang et al. 2008] so it is not possible to isolated completely the effect of microtubules

architecture as it will impact something else. Similarly microtubules stabilization with

taxol could affect some signalling pathways. About RA, long term exposure would have

potential strong consequences on the cell expression profile as RA is known to be involved

in the development of the heart [Lee & Skromne 2014]. Long term treatment can have

strong gene expression effect unrelated to normal differentiation. Mechanical treatment

like the one exposed above about externally induced nuclear deformation raise the same

type of questions. In the end, these side effects have to be taken into account if we consider

events that occur at time scales approximating the cell cycle. This consideration makes

it more difficult to establish reliable protocols for modulating differentiation as the exact

time window during which the event of interest happens have to be identified as precisely

as possible to avoid drug overexposure.
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7 Umbilical cord blood specificity

Here we used cells from human umbilical cord blood. These cells are still foetal like cells

which first mean that they have potentially different profile than adult stem cells. Cord

blood cells are purely circulating cells, do not have the same environment as cells in the

bone marrow. It would be necessary to check if the observations we made exist in vivo.

Ideally it would require working on living mice and do intravital microscopy unfortunately

these techniques would not achieve correct resolution to observe nuclear deformation. Most

relevant model would be fixed mice tissue slices where antibodies and nuclei staining can

be performed to identify hematopoietic stem cells and progenitors among the others cells.

Other important specificity of human cord blood is that the stem cells found in it are

myeloid biased meaning that although they are stem cells they preferentially orient their

differentiation towards the myeloid lineage. It can be identified by the surface markers

profile: CD34+/CD38- cells already express the surface marker CD33 [Knapp et al. 2018]

(data not shown). That’s probably why we could observe the deformation phenotype so

easily in sorted cells and during differentiation. It particularly made impossible to follow

CD33 expression changes during differentiation. That is why we could not make time-lapse

imaging of the deformation combined with CD33 staining to correlate nuclear shape with

a cell identity switch. Moreover, it is not possible with this model to see if perturbing

microtubules dynamics can impact cell fate choice. Similarly to what have been done

with mesenchymal stem cells, it would be possible to put HSCs in differentiation medium

supplemented half for lymphoid differentiating factors and half for myeloid differentiating

factors. Modulating microtubules organization, thus nuclear deformation, we could have

thought to bias differentiation towards lymphoid cells.

II Discussion

1 Other consequences of nuclear deformation

Nuclear deformation could be necessary for other phenomenons than chromatin organiza-

tion. Lobulation in granulocytes are thought be facilitate migration through pores. Indeed,

in other species neutrophils (a subtype of granulocytes) display various lobulation types.
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Some have hyper-lobulated others hypo-lobulated nuclei and even round nuclei, the later

mostly in non vertebrate [Carvalho et al. 2015]. Ring shapes nuclei have also been observed

in mice and in myeoloproliferative disorder in human [Carvalho et al. 2015]. Nuclear seg-

mentation could help to maintain nuclear envelope integrity during migration depending

on the tissue cell density. If we consider a round ball squeezing it will alter the envelope as

described previously but if it is already contracted only small blebs of organized chromatin

remain and can pass through pores without deformation.

Lobulations can have consequences on diffusion inside the nucleoplasm. The lobes

being linked by smaller volume, it reduces the probability of a particle moving from one

lobe to the other. Chromosomes become isolated and information transduced to one lobe

will not necessarily be communicated to the others. It was already shown that chromosome

repartition in two lobed neutrophils is not random suggesting that chromosome partitioning

has a role in cell function [Bártová et al. 2001].

2 Nuclear deformations are not restricted to myeloid lineage

Concerning fine nuclear shape changes, one question remains about CD19+ cells. Their

nucleus although at first glance seems not deformed, it often displays ridges going from

one side to the other and that are depleted of H3K9me3. Microtubules can still be found

there, which suggests again a mictrobule-based process. Frontally growing microtubules

pushing the envelope until reaching the other side seems the most probable hypothesis

compared to microtubles strangling the nucleus so much the lipid layer collapses to form a

tube. It suggests that deformation induced by microtubules can have different origins than

strangling. These structures remain deformations with high curvatures and could explain

why they lack H3K9me3 signal. These kind of deformations have also been reported in

adherent cells and are dependant of the cell differentiation state but the mechanism and

the consequences remain unclear [Johnson et al. 2003].

CD19+ cells belong to the lymphocyte type but are already biased towards B type

lymphocytes. During a collaboration (unpublished) with Nicolas Dulphy’s lab from the

Institut Universitaire d’Hematologie (IUH), we had the opportunity to study intracellu-

lar architecture of a subtype of T lymphocyte, CD8+ lymphocytes not expressing the

NKG2C receptor, an activator of lymphocytes cytotoxic activity. Surprisingly we could
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also observe high nuclear lobulation correlated with centrosome positioning (figure 3.3)

and microtubules (data not shown) in those cells. These observation show that nuclear

deformation can be found in the lymphoid lineage and suggests that the observations

on chromatin organization made in this work are not restricted to the particular case of

myeloid cells.

3 Nuclear deformation: a marker of gene expression

Figure 3.3 – LT
CD8+ NKG2C(-)
display highly in-
vaginated nuclei
and internalized
centrosome. Due to
their cytotoxic role it
suggests that nuclear
lobulation are linked
with this function.

Generally speaking nuclear mechanics were demonstrated to im-

pact differentiation. MSCs differentiation, for instance, was shown

to be impacted by substrate stiffness: soft substrate bias differ-

entiation towards adipogenesis, stiff substrate towards osteogensis

[McBeath et al. 2004]. Substrate stiffness is known to participate to

cell contractility, thus to the forces applied to the nucleus. This re-

sult strongly supports the importance of nuclear mechanics in gene

expression and as a driver of differentiation.

Already mentioned hPSCs colonies also support this hypothesis.

Indeed cells go from a confined and weakly adhering phenotype to a

strong adhering one, known to impact nuclear and chromatin orga-

nization, thus differentiation [McBeath et al. 2004]. Perturbing actin

organization in these colonies can trigger loss of stemness markers high-

lighting the importance of nuclear mechanics in stem cells in the main-

tenance of their potency. [Närvä et al. 2017]

The second aspect highlighted by results on hPSCs, and supported

by results on drosophila cellularization [Hampoelz et al. 2011], is the

transition between a nuclear fluctuating state and a locked one as it

was shown that compression of the nucleus reduce envelope fluctua-

tions and chromatin dynamics. It suggests that the stem state needs

these fluctuations to somehow maintain chromatin in a given state,

reducing them would lead to a less dynamic chromatin organization reducing its potency

[Lopes Novo & Rugg-Gunn 2016].
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In this perspective, shaking the nucleoplasm could help to maintain chromatin in an

open state keeping gene to several lineages available. It could also explain the large hetero-

geneity of expression profile observed in the stem cells as it could lead to increased chances

of random binding of transcription factors to chromatin.

Interestingly, in the ciliates group, particular nuclear shape could be associated to

specific developmental stage. These stages are also characterized by specific gene expression

profile and strongly suggest that there could be a correlation between these profiles and

nuclear shape [Wancura et al. 2018].

Nuclear deformation happens in physiological contexts but also in pathological ones.

Diseases caused by lamin defects seem to strengthen the link between nuclear mechanics,

chromatin organization and gene expression. Indeed, in progeric cells, the most studied

laminopathy, cells exhibit abnormal nuclear shape [Uhler & Shivashankar 2018] that could

be provoked by microtubules [Tariq et al. 2017], and is associated to particular gene ex-

pression profile characteristic of ageing [Scaffidi & Misteli 2008]. These results put nuclear

mechanics and microtubules at the front line of a new gene regulation mechanism.

Second important pathological context involving nuclear shape is cancer. Indeed, it

has been shown that cancerous cells exhibit abnormal nuclear shape and is even used as a

criteria to determine cancer invasiveness [Chiotaki et al. 2014]. These abnormal shapes are

frequently linked to defects in lamina constituents like lamins, emerin etc. These proteins

are strongly involved in gene regulation and nuclear mechanics. On top of this, these

nuclear deformations are also correlated with chromatin reorganization [Schirmer 2014]. It

becomes clear that the nuclear envelope is not only a physical barrier between the DNA

and the cytoplasm but is a critical component for gene regulation.

4 Microtubules: a new actor in mechanotransduction

Microtubules in hPSCs colonies cells have not been observed yet but their impact on

nuclear mechanics probably follow the one of HSCs. Indeed, at first the cells are confined,

a phenotype close to non-adherence. In this case, where actin in only located at the colony

borders, microtubules could be able to generate deformations of the nuclear envelope.

Then when the cell starts to spread, actin start compressing the nucleus and microtubules

effect is masked. The predominance of actin could explain why microtubules effect on gene
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regulation have been poorly described yet or maybe the phenomenon in which microtubules

are involved still remain unknown.

Fortunately, using non adherent stem cells like HSCs it is possible to lighten the con-

tribution of actin. In this extreme case, microtubules are the only ones able to generate

forces on the nucleus. That is most probably the reason why, even upon differentiation, mi-

crotubules are the one constraining the nucleus. The important fact is that, microtubules

now appear as much competent as actin to regulate gene expression.

It has been observed that cancerous cells exhibit amoeboid like migration

[Clark & Vignjevic 2015], similar to the one observed in non-adherent cells. If those cells

adopt an non-adherent like behaviour it suggests that their microtubules could be inter-

acting more with the nucleus, as opposed to what it would have been in a healthy, spread

cell. The link between microtubules, nuclear envelope and chromatin organization could

thus be of high interest in this pathological context and could help decipher how gene

misregulation happens.

For instance, taxol is widely used as a chemotherapy drug to treat cancers. Its effi-

ciency was thought to be due to is ability to prevent cell division of cancerous cells, by

affecting mitotic spindle assembly. As these cells divide more often than healthy cells,

it should reduce their number by inducing their apoptosis. This hypothesis comes from

experiments on cultured cells and is indeed correct. Nevertheless, in tumours the mitotic

index (the proportion of dividing cells) does not allow to validate this hypothesis: the

number of dividing cells is too low compared to the efficiency of paclitaxel to confirm that

the drug effect is due to mitosis defect [Weaver 2014]. So where does the taxol efficiency

as a chemotherapy drug comes from ? Maybe the answer lies in its ability to reduce mi-

crotubules dependant force on the nucleus preventing undesired chromatin reorganization,

thus gene misregulation.
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Rôle de l’interaction entre le noyau et les microtubules dans la

régulation de l’organisation de la chromatine dans les cellules souches

hématopoïétiques

Résumé : Les cellules souches hématopoïétiques sont caractérisées, comme chaque cel-

lule souche, par leur capacité à s’auto-renouveler et à se différencier, ce qui leur permettent

de participer à l’homéostasie du système sanguin. Comment ces cellules souches entrent

dans une voie de différenciation ou une autre est encore mal compris mais un nombre

croissant d’éléments obtenus dans différents systèmes soulignent l’importance des signaux

mécaniques dans ce choix. Les signaux physiques du microenvironnement de la cellule

peuvent-être transduits au noyau par l’intermédiaire du cytosquelette, qui va alors modu-

ler l’organisation de la chromatine et donc l’expression des gènes : c’est la mécano trans-

duction. Plusieurs études illustrent l’importance du cytosquelette d’actine dans les cellules

adhérentes dans ce phénomène mais le rôle d’autres éléments du cytosquelette, comme les

microtubules, reste encore mal connu. De plus, la mécano transduction dans les cellules

non-adhérentes a peu été étudiées, cellules où l’organisation de l’actine ne permet pas de

générer des forces sur le noyau. Le travail présenté ici montre que les microtubules peuvent

déformer le noyau et réguler l’organisation de la chromatine dans un système de cellules

souches non adhérentes, les cellules souches hématopoïétiques (CSH). Mots-Clés : mé-

canique noyau, microtubules, organisation chromatine, mécanotransduction, cytosquelette



Interplay between the nucleus and the microtubules: role in the

regulation of chromatin organization in hematopoietic stem cells

Abstract: Hematopoietic stem cells are characterized, like every stem cells, by their

self-renewal and differentiation ability so they can sustain mature blood cells populations.

How stem cells engage in one or the other path is poorly understood but increasing num-

ber of evidence in different stem cell types highlight the importance of mechanical signal

integration. Physical cues form the environment can be transduced to the nucleus via the

cytoskeleton, to impact chromatin organization and therefore gene expression: this process

is called mechanotransduction. Many studies bring light to the importance of the actin

cytoskeleton in adherent cells in this process but very little is known about the contribution

of microtubules in this process. Moreover, even less is known about mechanotransduction

in non adherent cells, in which actin organization is likely to have smaller impact than in

adherent cells. The present work show that microtubules can impact nuclear shape and

chromatin organization in a system of non-adherent stem cells, the hematopoietic stem cells

(HSCs). Keywords: nuclear mechanics, microtubules, chromatin organization, mechan-

otransduction, cytoskeleton


	Introduction
	Stem cells
	Definition
	Hematopoietic stem cells during development
	Adult hematopoietic stem cells
	Organ homoeostasis and therapeutic potential

	Stem cells regulation
	Acquisition of a new identity
	Controlling cell identity: the biochemical way...
	...and the mechanical way

	Current Issues

	Chromatin and nucleus
	Chromatin organization
	Chromatin structure
	Chromatin organization in the nucleus
	Chromatin interaction with nuclear envelope
	Nuclear periphery vs. nucleoplasm ?
	Towards a mechanical regulation of chromatin organization

	Nuclear mechanics
	Chromatin contribution to nuclear sturdiness
	Lamins contribution to nuclear sturdiness
	Evolution of nuclear mechanical properties during differentiation
	Stem cell heterogeneity participates to differential mechanical response
	Lamin response to mechanical stress
	Lamins interaction with the cytoskeleton

	Current Issues

	Nucleus and cytoskeleton
	Actin: the main force generator in adherent cells
	Structure and organization
	Stress fibers generate forces on the nucleus
	Consequences of actin-driven forces on nuclear architecture
	Actin architecture transition in stem cells

	Microtubules: another way to constraint the nucleus
	Structure and organization
	Tracks to position structures in the cytoplasm
	Another way to deform the nucleus
	Consequences of microtubules-driven forces on chromatin
	Potential actors for gene expression control

	Current Issues

	Adherent vs. non-adherent cells

	Experimental Work
	Results
	Nuclear shape changes and chromatin reorganization occurs at an early myeloid differentiation stage.
	Cytoskeleton organization correlates with nuclear shapes.
	Nuclear deformation and chromatin reorganization are reproduced in culture.
	Time-lapse imaging of nuclear deformation.
	Long-term time-lapse of migrating HSCs.
	Microtubules perturbation impairs nuclear shape and prevent chromatin reorganization.
	Microtubules deforming the nucleus are stabilized.
	Exploring dynein based mechanism: simulation

	Material and Methods
	Sample preparation and cell culture
	Flow cytometry
	Immunofluorescence labelling
	Confocal Microscopy and 3D measurements
	Chromatin image analysis
	Micro wells fabrication
	Time-lapse microscopy of nuclear shape
	Long-term imaging of migrating HSCs
	Cytosim parameters


	Discussion
	Comments
	Results summary
	Going finer in chromatin organization description
	Another way to deform the nucleus
	Consequences of centrosome internalization
	Linking chromatin organization to differentiation
	Molecular tools limitation in primary cells
	Umbilical cord blood specificity

	Discussion
	Other consequences of nuclear deformation
	Nuclear deformations are not restricted to myeloid lineage
	Nuclear deformation: a marker of gene expression
	Microtubules: a new actor in mechanotransduction


	Bibliography

