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Number of uncorrected

q ch : The number of precision bits of the decoder input. R : Code rate.

ρ j , ρj : The proportion of edges connected to check-nodes of degree j, the proportion of check-nodes of degree j. and the modern coding theory. Nowadays, capacity (or almost capacity) achieving codes, like Polar code, Turbo code or LDPC code are available. Nevertheless, the rise of decoding throughput (up to the Tbit/s) due to emerging applications like optical fiber, free space laser communications, high speed memory access, push the decoding throughput at the edge of the deep submicron technology. The problem is no more the design of a code with good performance but to design of a hardware architecture that has contradictory requirement: low area print, low power dissipation and still, very good decoding performance.

This PhD explores solution to this problem with several a priori defined in the frame of the french funded project "Noise Against Noise Decoder" 1 : the use of LDPC code, the use of low input precision (3 or 4 bits for the channel quantization only) and finally, the help of some randomness in the decoding process to improve the decoding performance.

The main contributions of the thesis are the definition of improved decoders for quantized input channel with only 3 or 4 bits of precision, and a post-processing 1 Funded by ANR, grant n°ANR-15-CE25-0006-01

Introduction algorithm for low precision iterative decoders. One of the proposed decoders, named Noise-Against-Noise Min-Sum (NAN-MS) decoder, incorporates a certain amount of random perturbation due to deliberate noise injection. The other of the proposed decoders, named Sign-Preserving Min-Sum (SP-MS) decoder, always preserve the sign of the messages and it uses all the possible combinations that can be generated for a given precision. Also, the SP-MS decoder can reduce the precision of its messages by one bit maintaining the same error correcting performance. The NAN-MS decoder and the SP-MS decoder present a SNR gain of up to 0.43 dB in the waterfall region of the performance curve. On the other hand, the proposed post-processing algorithm is very efficient and easily adaptable in low precision decoders. For the IEEE ETHERNET code, the post-processing algorithm implemented in a very low precision SP-MS decoder helps to lower the error floor below a FER of 10 -10 .

The results of this work lead to two conference papers, one submitted patent, and one submitted journal paper. The rest of the thesis is divided in 5 additional chapters.

Chapter II gives the background on regular and irregular LDPC codes, message passing decoding algorithms for floating point messages and for finite precision messages, and the asymptotic performance determination using density evolution for finite precision messages.

Chapter Chapter 2

Background

In a communication system, a transmitter sends information through a noisy channel to one or more receivers. The channel adds random noise and corrupts the information.

The receiver has the purpose to retrieve the information with the least possible loss.

In order to protect the information against the channel noise, the transmitter adds redundancy to the information such that the receiver can detect and correct the errors.

Such process is called error correcting coding and decoding.

In the coding process, an error-correcting code converts a sequence of K information bits into a longer sequence of N bits using a coding function which defines how to build the N -K redundancy bits. Examples of coding processes include convolutional codes, block turbo-codes, LDPC codes, algebraic codes, etc.

In convolutional codes, the coding function uses individually each bit of the sequence of K bits to build the redundancy bits, through a discrete linear filter. The classical algorithms used for the decoding are the BCJR algorithm and the Viterbi algorithm.

In block codes the encoding is made by block of bits, and in this case the sequence of K bits is used altogether to build the redundancy bits, through a binary generator matrix.
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Nowadays, the most popular error-correcting codes are LDPC codes (or Gallager codes) [START_REF] Gallager | Low-Density Parity-Check Codes[END_REF][START_REF] Gallager | Low-density parity-check codes[END_REF][START_REF] Mackay | Information Theory, Inference, and Learning algorithms[END_REF], and the turbo-codes, because they have a high performance and practical decoding algorithms. LDPC codes, first introduced by Gallager in 1963, are widely used in communications standards like DVB-S2 [START_REF] Etsi | [END_REF], DVB-S2X [5], IEEE 802.3an [START_REF]IEEE Standard for Ethernet[END_REF],

WIMAX (IEEE 802.16) [START_REF]IEEE Standard for Local and metropolitan area networks -Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems -Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1[END_REF], etc, and storage applications [START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF][START_REF]IEEE Approved Draft Standard for Error Correction Coding of Flash Memory Using Low-Density Parity Check Codes[END_REF] because they provide an exceptional error correction capability. Turbo codes are also used for communications standards like LTE, DVB-RCS, WIMAX, etc.

LDPC codes can be efficiently decoded by Message-Passing (MP) algorithms that use a Tanner graph [START_REF] Tanner | A recursive approach to low complexity codes[END_REF] representation of the LDPC codes. One of the best MP algorithms is the Sum-Product algorithm also called Belief-Propagation (BP) algorithm [START_REF] Kschischang | Factor graphs and the sum-product algorithm[END_REF]. The BP decoder has excellent decoding performance in the waterfall region but at a cost of a high computational complexity. It is worth noting that a well-designed LDPC code decoded by the BP decoder can approach the Shannon limit asymptotically [START_REF] Mackay | Near shannon limit performance of low density parity check codes[END_REF][START_REF] Chung | On the design of low-density parity-check codes within 0.0045 db of the shannon limit[END_REF].

In the literature there are many BP-based decoders that are simplified versions of the BP decoder [START_REF] Chen | Density evolution for two improved bp-based decoding algorithms of ldpc codes[END_REF][START_REF] Chen | Near optimum universal belief propagation based decoding of low-density parity check codes[END_REF]. The Min-Sum (MS) and offset corrected Min-Sum (OMS) decoders [START_REF] Chen | Density evolution for two improved bp-based decoding algorithms of ldpc codes[END_REF][START_REF] Chen | Reducedcomplexity decoding of ldpc codes[END_REF], derived from the BP decoder, reduce the computational complexity, but also have a slight performance degradation, compared to BP, especially when they are implemented in finite precision. The effect of quantization on the messages of MP decoders has been extensively studied these past twenty years. In [START_REF] Ping | Decoding low density parity check codes with finite quantization bits[END_REF], the authors show that for the BP decoder, at least 6 precision bits should be used for the Binary-Input Additive White Gaussian Noise (BI-AWGN) channel. The effects of uniform quantization of the BP decoder over the Binary Symmetric Channel (BSC) is studied in [START_REF] Singhal | Quantized ldpc decoder design for binary symmetric channels[END_REF]. As for the MS and OMS decoders, the effects of clipping and quantization for the BI-AWGN channel are studied in [START_REF] Chen | Reducedcomplexity decoding of ldpc codes[END_REF][START_REF] Zhao | On implementation of min-sum algorithm and its modifications for decoding low-density parity-check (ldpc) codes[END_REF]. The Self-Corrected Min-Sum (SC-MS) decoder [START_REF] Savin | Self-corrected min-sum decoding of ldpc codes[END_REF], derived from the quantized MS decoder, sets to zero any message at

(2.1)
The usual graphical representation of an LDPC code is made by a In figure 2.1, we show a bipartite graph which is related to the sparse paritycheck matrix presented in (2.1). This graph also represents a graph for a (3, 4)-regular LDPC code. Note that a VN is always represented with a circle, while a CN is always represented with a square. 

V N 1 V N 2 V N 3 V N 4 V N 5 V N 6 V N 7 V N 8 V N 9 V N 10 V N 11 V N 12 CN 1 CN 2 CN 3 CN 4 CN 5 CN 6 CN 7 CN 8 CN 9
E = d v × N = d c × M . The code rate R can be calculated as R = K/N ≥ N -M N [26],
and if the rows of H are linearly independent, we can write R = 1 -(d v /d c ), which is usually defined as the design rate [START_REF] Richardson | The capacity of low-density parity-check codes under message-passing decoding[END_REF]. Now, we introduce the concept of the ensemble of (d v , d c )-regular LDPC codes in order to do the theoretical analysis: An ensemble or family

C N (d v , d c ) of LDPC codes
is composed of all the Tanner graphs with N VNs and regular degrees d v and d c .

Ensemble of Irregular LDPC codes

In case of irregular LDPC codes [START_REF] Richardson | Design of capacityapproaching irregular low-density parity-check codes[END_REF], the nodes can have different connection degrees, defining an irregularity distribution, which is usually characterized by the two polynomi-

als λ(x) = dv,max i=2 λ i x i-1
, and ρ(x) = dc,max j=2 ρ j x j-1 . The parameters λ i (respectively ρ j ) indicate the fraction of edges connected to degree i VNs (respectively degree j CNs) [START_REF] Richardson | Design of capacityapproaching irregular low-density parity-check codes[END_REF][START_REF] Luby | Analysis of low density codes and improved designs using irregular graphs[END_REF]. For regular codes, the polynomials reduce to monomials, λ(x) = x dv-1 and 10 Background ρ(x) = x dc-1 . Irregular LDPC codes can also be characterized by two other polynomials λ(x) = dv,max i=2 λi x i-1 , and ρ(x) = dc,max j=2 ρj x j-1 , where λi ∈ [0, 1] (respectively ρj ∈ [0, 1]) denotes the number of VNs of degree i (respectively CNs of degree j).

As for the case of regular LDPC codes, E denotes the number of edges in the Tanner graph. Considering H, the amount of non-zero elements in columns of degree

i is calculated as E × λ i or i × λi × N .
Similarly, the amount of non-zero elements in rows of degree j is given by E × ρ j or j × ρj × M . Hence, it is easy to obtain

E = (i × λi × N )/λ i = (j × ρj × M )/ρ j .
The relationship between λ i and λi (respectively

ρ j and ρj ) is giving by λ(x) = dv,max i=2 λ i E iN x i-1 (respectively ρ(x) = dc,max j=2 ρ j E jM x j-1
).

The design rate R(λ, ρ)

For irregular LDPC codes, the design rate can be computed as R(λ, ρ) = N -M N [START_REF] Richardson | Design of capacityapproaching irregular low-density parity-check codes[END_REF].

We can calculate the number of VNs as E 1 0 λ(x)dx, similarly, the number of CNs is

equal to E 1 0 ρ(x)dx. Using λ(x) we have 1 0 λ(x)dx = 1 0 dv,max i=2 λ i x i-1 = dv,max i=2 λ i i , and using ρ(x) we get 1 0 ρ(x)dx = 1 0 dc,max j=2 ρ j x j-1 = dc,max j=2 ρ j j . Therefore R(λ, ρ) can also be computed as R(λ, ρ) = 1 -( 1 0 ρ(x)dx)/( 1 0 λ(x)dx) or equivalently R(λ, ρ) = 1 -( dc,max j=2 ρ j j )/( dv,max i=2 λ i i ).
In figure 2.2, we show a Tanner graph for an irregular LDPC code. For example, for this graph we have λ(x) 

= 2 3 x + 1 3 x 2 , ρ(x) = 1 2 x 2 + 2 9 x 3 + 5 18 x 4 , λ(x) = 3 4 x + 1 4 x 2 , ρ(x) = 3 5 x 2 + 1 5 x 3 + 1 5 x 4 ,

Binary LDPC Decoders

In this Section, we first introduce the notations and terminologies related to binary LDPC decoders we use throughout this work. Then, we briefly review a number of important message-passing decoders.

Definitions

In Fig. 2.3, we depict a simple communication system. We assume that the source produces a vector s = (s 1 , ..., s K ). The encoder adds redundancy to s in order to obtain an encoded vector x = (x 1 , ..., x N ), which is a codeword, and which is mapped e.g. by the binary phase-shift keying (BPSK) modulation, to obtain w = (w 1 , ..., w N ). After w is sent through a noisy channel. Based on the channel output y = (y 1 , ..., y N ), the decoder produces the vector x = (x 1 , ..., xN ) which is an estimation of x. To check if x is a valid codeword, we verify that the syndrome vector is all-zero, i.e. H xT = 0. 

Source

Encoder M odulator Channel Decoder K s N x N w N y N x
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Binary Symmetric Channel

In the BSC, a bit transmitted x n ∈ {0, 1} is flipped to y n with probability ϵ, referred to as the error probability or crossover probability of the channel, hence y n ∈ A y = {0, 1}.

The BSC satisfies the following symmetry condition

p(y n = 1 | x n = 0) = p(y n = 0 | x n = 1), (2.2) 
where p(y | x) is the channel transition probability.

Binary-Input Additive White Gaussian Noise channel

The BI-AWGN channel is modeled by

y n = (1 -2x n ) + z n , where 1 -2x n ∈ {+1, -1},
and z n is a sequence of independent and identically distributed (i.i.d.) random variables with probability density function given by the normal (or Gaussian) distribution, hence

y n ∈ A y = R. p BIAW GN (z n ) = 1 √ 2πσ e -(zn) 2 /2σ 2 , ( 2.3) 
where σ 2 is the noise variance.

Similarly to the BSC, the BI-AWGN channel satisfies the following symmetry condition

p(y n = ψ | x n = 0) = p(y n = -ψ | x n = 1), ψ ∈ A y , ( 2.4) 
where p(y | x) defines the likelihood distribution.

Log-Likelihood Ratio

A log-likelihood ratio (LLR) form for the bit x n with probability p(x n ) is defined by

LLR(x n ) = log p(x n = 0) p(x n = 1) , ( 2.5) 

Binary LDPC Decoders
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where p(

x n = 0) + p(x n = 1) = 1. If p(x n = 0) > p(x n = 1) then LLR(x n ) is positive; if the inequality is reversed, then LLR(x n ) is negative. Therefore, the sign of LLR(x n )
indicates the value of the bit x n (x n = (1-sign(LLR(x n )))/2), and the magnitude

|LLR(x n )| of LLR(x n )
give us a measure of its reliability. We consider that the notation log denotes the logarithm with base e in the rest of the text.

The channel output can be also expressed in a LLR form as follows

LLR(y n ) = log Pr(y n | x n = 0) Pr(y n | x n = 1) . (2.6)
In the case of the BSC, we get LLR(y n ) = (1 -2y n )log ((1 -ϵ)/ϵ) where y n ∈ A y = {0, 1}, and for the BI-AWGN channel with noise variance σ 2 , we have

LLR(y n ) = 2y n /σ 2
where y n ∈ A y = R.

Message-Passing Decoders

Message-Passing (MP) decoders are iterative decoders that use a Tanner graph to pass messages along the edges. In MP decoders, a VN v n (respectively a CN c m ) sends its message to its neighbors V(v n ) (respectively V(c m )). In each iteration, the VN update (VNU) and the CN update (CNU) compute outgoing messages from all incoming messages.

Here we present the notations used to describe different MP decoders. We consider that the message alphabet is A C , while the decoder input alphabet is denoted by A L .

Unless otherwise stated, the decoder input alphabet will be the one of the messages, 

V(v n ) = {c m , c 1 , c 2 , c 3 } and V(c m ) = {v n , v 1 , v 2 , v 3 }. c 2 c 1 v n c 3 c m v 2 v 1 v 3 m ( ) c m →v n m ( ) v n →c m m ( ) c 1 →v n m ( ) v 1 →c m LLR(y n ) γ n V(v n )\{c m } V(c m )\{v n }

Fig. 2.4 A Tanner graph fragment

In this work, the message will be described in the log-likelihood ratio domain. The sign of a message m represents the hard-decision value of the VN it is connected to, and magnitude |m| of m represents its reliability. As a consequence, the message alphabet A C has to be symmetric around 0, for example A C = R for a continuous alphabet and A C = {-N q , ..., -1, 0, +1, ..., +N q } for a discrete alphabet with N q ∈ N. The LLR from the channel observation LLR(y n ) ∈ A L is usually referred to as the intrinsic message for the VN v n . The exchanged messages in the decoder are usually referred to as extrinsic messages. For a successful decoding, the measure of the reliability of extrinsic messages becomes more and more reliable at each new iteration.

We now define update functions for the VNU and the CNU. Let Ψ v : A L ×A 

(ℓ) n ))/2
(e) [Syndrome check] verifies that the syndrome vector is all-zero in order to check if x is a valid codeword.

H xT = 0.

The decoding stops when either [x n ] n=1,...,N is a codeword or a maximum number of iteration L max is reached.

In binary LDPC decoders, the MP decoding can be performed either (i) using one bit of precision to represent messages (hard-decision MP decoders) or (ii) using more than one bit of precision to represent messages (soft-decision MP decoders). We present in the next sections the most common examples of such decoders.
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Hard-decision MP decoders

Hard-decision MP decoders use just one bit of precision to represent the messages propagated in the Tanner graph, i.e. m (ℓ) v→c and m (ℓ) c→v ∈ {+1, -1} (which is equivalent to {0, 1}). Hard-decision decoders are more interesting for the BSC than for the AWGN channel. We restrict in this section the presentation of the decoders to the BSC.

1) Gallager-B decoder:

The Gallager-B decoder is a MP decoder [START_REF] Brkic | On fault tolerance of the gallager b decoder under data-dependent gate failures[END_REF][START_REF] Dupraz | Asymptotic error probability of the gallager b decoder under timing errors[END_REF] with binary alphabet A C = {+1, -1}. At the initialization step, the LLR from the BSC is equal to

LLR(y n ) = 1 -2y n ∈ A C , y n ∈ A y = {0, 1}, and 
m (0) vn→cm = LLR(y n ) at iteration ℓ = 0.
In each decoding iteration, the CNU computes the check-to-variable messages m (ℓ) cm→vn as the parity (in ±1 format) of the incoming messages m

(ℓ) v→cm , where v ∈ V(c m )\{v n }: m (ℓ) cm→vn = Ψ c m (ℓ) v→cm v∈V(cm)\{vn} = v∈V(cm)\{vn} m (ℓ) v→cm (2.7)
The VNU computes the variable-to-check messages m c→vn to a pre-determined threshold t:

m (ℓ+1) vn→cm = Ψ v LLR(y n ), m (ℓ) c→vn c∈V(vn)\{cm} =        LLR(y n ), if m (ℓ+1),U vn→cm < t sign m (ℓ+1),U vn→cm , otherwise. (2.8)
where m

(ℓ+1),U vn→cm = LLR(y n ) + c∈V(vn)\{cm} m (ℓ) c→vn .
The APP γ

(ℓ)
n can be calculated as γ

(ℓ) n = LLR(y n ) + c∈V(vn) m (ℓ)
c→vn . Hence, the hard decision xn can be computed as xn = (1 -sign(γ To improve the performance of the Gallager-B decoder, the threshold t can be optimized, could take different values at each iteration, and may vary from a VNU to another. However, the value of t is most of the time considered as constant. Two examples of Gallager-B decoders are the Gallager-A decoder and the Majority-Voting decoder, and we can refer to [START_REF] Declercq | Channel Coding: Theory, Algorithms, and Applications[END_REF] for more details.

(ℓ) n ))/2 if γ (ℓ) n ̸ = 0, otherwise xn = (1 -sign(LLR(y n )))/2.

2) Gallager-A decoder:

The Gallager-A decoder can be seen as a particular case of the Gallager-B decoder. In the Gallager-A decoder, the threshold t is equal to

d v -2,
where d v is the degree of the VN v.

3) Majority-Voting decoder:

The Majority-Voting decoder can be obtained from the Gallager-B decoder. In this case the threshold t is equal to 1. Hence, the update rule at a VN is given by

m (ℓ+1) vn→cm = Ψ v LLR(y n ), m (ℓ) c→vn c∈V(vn)\{cm} =        LLR(y n ), if m (ℓ+1),U vn→cm = 0 sign m (ℓ+1),U vn→cm , otherwise . 

4) Gallager-B decoder with extended alphabet:

The message alphabet for the Gallager-B decoder with extended alphabet is A C = {-1, 0, 1}. The value 0 is added to the alphabet to deal with the ties in the VNU of the Gallager-B and propagate 0 instead of the likelihood in such case. This decoder is also named erasure decoder. Strictly speaking this decoder is not a hard-decision decoder, and a least two bits of precision must be used in the hardware implementation. The update rule at a VN is given by

m (ℓ+1) vn→cm = Ψ v LLR(y n ), m (ℓ)
c→vn c∈V(vn)\{cm} = sign m (ℓ+1),U vn→cm .
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Background Some authors have proposed to improve the performance of the erasure decoder by weighting differently the channel value and the extrinsic contribution. Refer to [START_REF] Declercq | Channel Coding: Theory, Algorithms, and Applications[END_REF][START_REF] Ngassa | LDPC Decoders Running on Error Prone Devices: Theoretical Limits and Practical Assessment of the Error Correction Performance[END_REF] for more details.

Soft-decision MP decoders

Soft-decision MP decoders use more than one bit of precision to represent messages in the Tanner graph. These decoders propagate more information than hard-decision decoders, and they usually work in the LLR domain using real valued message,

i.e. m (ℓ)
v→c and m

(ℓ) c→v ∈ R.
The performance of soft-decision MP decoders is much better than the performance of the hard-decision MP decoders, but their hardware implementation is more complex. The sum-product algorithm, the Min-Sum (MS) algorithm are some examples of algorithms used for soft-decision MP decoders.

1) Belief Propagation decoder:

One important kind of message-passing decoding algorithms is the sum-product algorithm [START_REF] Kschischang | Factor graphs and the sum-product algorithm[END_REF], also called Belief-Propagation (BP) algorithm.

This algorithm is commonly used in different applications like artificial intelligence, information theory, etc.

For the BP decoder presented in this section, we consider that the message alphabet is continuous, i.e. A C = R. Also, we have obtained that the LLR is equal to LLR(y n ) =

(1 -2y n )log ((1 -ϵ)/ϵ) for the BSC and LLR(y n ) = 2y n /σ 2 for the BI-AWGN channel.

The update rule at a VN is given by

m (ℓ+1) vn→cm = Ψ v LLR(y n ), m (ℓ) c→vn c∈V(vn)\{cm} = LLR(y n ) + c∈V(vn)\{cm} m (ℓ) c→vn .
(2.9)

And the update rule at a CN is given by

m (ℓ) cm→vn = Ψ c m (ℓ) v→cm v∈V(cm)\{vn} = log          1 + v∈V(cm)\{vn} tanh m (ℓ) v→cm 2 1 - v∈V(cm)\{vn} tanh m (ℓ) v→cm 2          . (2.10)
Considering the function

Φ(x) = log tanh x 2 = log 1 + e -x
1 -e -x , ∀x > 0, equation (2.10) can be rewritten as

m (ℓ) cm→vn =   v∈V(cm)\{vn} sign m (ℓ) v→cm   .Φ   v∈V(cm)\{vn} Φ m (ℓ) v→cm   (2.11) 
The APP update at a VN v n of the BP decoder is given by

γ (ℓ) n = Ψ a LLR(y n ), m (ℓ) c→vn c∈V(vn) = LLR(y n ) + c∈V(vn) m (ℓ) c→vn .
(2.12)

From the APP, xn can be computed as xn = (1 -sign(γ

(ℓ) n ))/2, for n = 1, ..., N .
The BP decoder is quite tedious to implement because of the function Φ used to compute check-to-variable messages.

2) Min-Sum decoder: The Min-Sum (MS) decoder [START_REF] Chen | Density evolution for two improved bp-based decoding algorithms of ldpc codes[END_REF][START_REF] Chen | Reducedcomplexity decoding of ldpc codes[END_REF] is derived from the BP decoder. The MS decoder reduces the computational complexity at the CNU and is less sensitive than the BP decoder to message quantization effects.
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In the MS decoder, the update rule at a VN is the same as the BP decoder, equation (2.14)

The APP update of the MS decoder is also the same as the BP decoder.

3) Min-Sum-based decoders:

There are several Min-Sum-based decoders proposed in the literature which have been proposed to improve the performance of the MS decoder.

We introduce briefly two of them.

(i) The Normalized-Min-Sum (NMS) decoder [START_REF] Chen | Density evolution for two improved bp-based decoding algorithms of ldpc codes[END_REF][START_REF] Chen | Reducedcomplexity decoding of ldpc codes[END_REF], in this decoder a factor γ ∈]0, 1[ is used to weight the messages at the output of the CN update. Since the relation (2.13) leads to a systematic overestimation of the amplitude of the CNU output message, it makes sense to shrink it with γ ∈]0, 1[. The factor γ could be fixed to a constant value, or vary according to the check-node degree. This factor can be optimized by Monte-Carlo simulation, or using Density Evolution analysis. For the NMS decoder, the VNU and APP update are defined in (2.9) and (2.12), respectively, while the CNU defined in (2.14) is replaced by

m (ℓ) cm→vn = γ.   v∈V(cm)\{vn} sign m (ℓ) v→cm   . min v∈V(cm)\{vn} m (ℓ) v→cm .
(2.15)

(ii) The Offset-Min-Sum (OMS) decoder [START_REF] Chen | Density evolution for two improved bp-based decoding algorithms of ldpc codes[END_REF][START_REF] Chen | Reducedcomplexity decoding of ldpc codes[END_REF], a variant of the MS decoder is proposed by using an offset value λ > 0 to diminish the message amplitude at the output of the CNU. As in the NMS decoder, the offset λ has the objective of compensating the over-estimation of the MS outputs. The offset λ can be a constant value, or vary according to the check-node degree, and can be optimized by Monte-Carlo simulation, or using Density Evolution analysis. The VNU and APP update of the OMS decoder are the same as the BP decoder, and the CNU defined in (2.14) is replaced by

m (ℓ) cm→vn =   v∈V(cm)\{vn} sign m (ℓ) v→cm   . max min v∈V(cm)\{vn} m (ℓ) v→cm -λ, 0 .
(2.16)

Quantized Min-Sum-Based Decoders and Density Evolution

This section is dedicated to the presentation of the main theoretical tool that is used to analyze the performance of LDPC ensembles and decoders, called Density Evolution (DE). The concept of DE is to track the evolution of the probability mass function of the messages during the iterations of LDPC decoders. Although DE has been introduced as a theoretical approach, it turns out to be a very efficient tool to predict the performance of LDPC decoders in the waterfall region. This is especially true when the DE can follow the exact density of the messages (under the independence assumption), which is the case of quantized decoders, when the message alphabet is small enough.

From now on, and throughout the rest of this work, unless otherwise stated, we assume that the message is finite, and composed of 2N q + 1 states, with N q = 2 (q-1) -1.

Hence, A C = {-N q , -(N q -1), ..., -1, 0, +1, ..., +(N q -1), +N q }, i.e. the messages are quantized on q bits of precision. As we deal with quantized decoders with message alphabet A C , we can consider without loss of generality that A L ⊆ A C . In the sequel, we denote by C the channel value which is a positive integer, and consider that |LLR(y n )| is mapped to C. As a result, the decoder input alphabet becomes A L = {+C, -C}, with C ∈ {+1, +2, ..., N q }. In other words y n = 0 is mapped to +C and y n = 1 is mapped to -C. The value of C can be seen as an extra degree of freedom in the decoder definition. For example, a MS decoder with C = 1 and a MS decoder with C = 2 are interpreted as two different decoders. The value of C can be optimized in order to improve the decoder performance.

Quantization for the Binary-Input Additive White Gaussian Noise channel

According to Section 2.2.2, for the BI-AWGN channel we have LLR(y n ) = 2y n /σ 2 , with y n ∈ A y = R. In the initialization step, variable-to-check messages are initialized by integer numbers in quantized decoders, hence, LLR(y n ) has to be quantized on q bits of precision considering that

A L = A C .
Let us denote the quantizer by Q : R → A L for MS-based decoders, defined as

Q (a) = S (⌊α × a + 0.5⌋ , N q ) , ( 2.17) 
where ⌊.⌋ depicts the floor function and S(b, N q ) is the saturation function clipping the value of b in the interval [-N q , N q ], i.e. S(b, N q ) = min(max(b, -N q ), +N q ). The parameter α is called channel gain factor and is used to enlarge or decrease the amplitude of LLRs at the decoder input. Similar to C for the BSC, the value of α can be seen as an extra degree of freedom in the quantized decoder definition that can be analyzed and optimized for quantized decoders on the BI-AWGN channel.

With those notations, we define the quantized version of the intrinsic LLR that initialize the MS-based decoders by the vector I = (I 1 , ..., I N ) ∈ A N L , with

I n = Q (LLR(y n )) ∀n = 1, . . . , N.
(2.18) Fig. 2.6 shows the distribution of the quantized LLR I n using q = 3 bits of precision.

We can note that among 8 levels of a 3 bits representation, only 7 are used. Precision of q = 3 bits α = 0.7, σ = 0.8 α = 0.9, σ = 0.8 Fig. 2.6 LLR(y n ) and I n of quantized decoders for the BI-AWGN channel and precision q = 3. The functions Ψ v and Ψ c also satisfy the symmetry conditions presented in [START_REF] Richardson | The capacity of low-density parity-check codes under message-passing decoding[END_REF]. Also,
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Ψ a : A L × A (dv)
C → A app denotes the function used for the APP update at a VN v of degree d v .

We also consider that γ (ℓ) = (γ 

A app = {-N q × d v -C, ..., -1, 0, +1, ..., +N q × d v + C}
for the BSC, and by A app = {-N q × (d v + 1), ..., -1, 0, +1, ..., +N q × (d v + 1)} for the BI-AWGN channel. Also, the likelihoods of the vector I = (I 1 , ..., I N ) ∈ A N L are computed as explained in the previous sections, i.e. I n = ±C for the BSC, and

I n = Q (LLR(y n ))
for the BI-AWGN channel.

Update Rules

Two quantized decoders are considered, a quantized Min-Sum decoder and a quantized Offset Min-Sum decoder with offset value λ ∈ {+1, ..., +(N q -2)}. The update rule at a CN is the same for the MS and the OMS decoders, and is given by

m (ℓ) cm→vn =   v∈V(cm)\{vn} sign m (ℓ) v→cm   . max min v∈V(cm)\{vn} m (ℓ) v→cm -λ, 0 . (2.19)
As the CNU, we can use the same expression for both MS and OMS decoders, since the OMS decoder with offset value λ = 0 becomes the MS decoder.The VNU expression is given by

m (ℓ+1) vn→cm = Ψ v I n , m (ℓ) c→vn c∈V(vn)\{cm} = S m (ℓ+1),U vn→cm , N q . (2.20)
where m

(ℓ+1),U vn→cm = I n + c∈V(vn)\{cm} m (ℓ) c→vn .
The a posteriori probability update at a VN is given by 

γ (ℓ) n = Ψ a I n , m (ℓ) c→vn c∈V(vn) = I n + c∈V(vn) m (ℓ) c→vn . ( 2 

Density Evolution Recursion

In this section, we describe how to implement DE using the discrete update functions defined in (2. [START_REF] Zhao | On implementation of min-sum algorithm and its modifications for decoding low-density parity-check (ldpc) codes[END_REF]) and (2.20).

Let Θ (ℓ) (k), k ∈ A C , denote the PMF of check-to-variable messages in the ℓ th iteration. Similarly, let Ω (ℓ) (k), k ∈ A C , denote the PMF of variable-to-check messages in the ℓ th iteration. Also, let Ω (0) (k), k ∈ A L , be the initial PMF of messages sent at

ℓ = 0.
The assumption of infinite block length is useful such that the PMF evolution does not depend on the iteration number. The infinite block length allows to consider that the incoming messages to a CNU or a VNU are independent, which is a necessary condition to ensure that the function Ω (ℓ+1) = f unction Θ (ℓ) is the same for all iterations ℓ. In DE, we need also to consider that the all-zero codeword is sent over the channel.

1) Initialization: DE is initialized with the PMF of the channel as follows.

For the BSC with crossover probability ϵ:

Ω (0) (k) =                1 -ϵ, if k = C ϵ, if k = -C 0, otherwise.
(2.22)
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For the BI-AWGN channel with noise variance σ 2 :

Ω (0) (k) =                F (k + 0.5) if k = -N q F (k + 0.5) -F ((k -1) + 0.5) if -N q < k < +N q 1 -F ((k -1) + 0.5) if k = +N q (2.23)
where F (k) is given by [START_REF] Chung | Analysis of sum-product decoding of low-density parity-check codes using a gaussian approximation[END_REF][START_REF] Fu | On gaussian approximation for density evolution of low-density paritycheck codes[END_REF][START_REF] Li | Density evolution for nonbinary ldpc codes under gaussian approximation[END_REF]: 

F (k) = 1 √ 2πσ n k -∞ e -(t-µn) 2 /2σ
Θ (ℓ) (k) = (i,j):Ψc(i,j)=k Ω (ℓ) (i)Ω (ℓ) (j), ∀k ∈ A C (2.25)
This equation is used d c -2 times in order to compute the PMF of the output of a check-node of degree d c .

We can note that for a check-node of degree d c > 3, the computational complexity of the direct PMF update would be (A C ) dc-1 , while its implementation using elementary

CN updates is (d c -2)(A C ) 2
. This represents a huge complexity reduction, and a large values of d c is not a limitation to the practical computation of DE.

3) DE update for VNU:

We compute the PMF of the output of a variable-node of degree d v using the following relations.

Quantized Min-Sum-Based Decoders and Density Evolution
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For the BSC:

Ω (ℓ+1) (k) = (-C,i 1 ,...,i dv -1 ):Ψv(-C,i 1 ,...,i dv -1 )=k Ω (0) (-C)Θ (ℓ) (i 1 )...Θ (ℓ) (i dv-1 )+
(+C,i 1 ,...,i dv -1 ):Ψv(+C,i 1 ,...,i dv -1 )=k

Ω (0) (+C)Θ (ℓ) (i 1 )...Θ (ℓ) (i dv-1 ), ∀k ∈ A C (2.26)
For the BI-AWGN channel:

Ω (ℓ+1) (k) = (t,i 1 ,...,i dv -1 ):Ψv(t,i 1 ,...,i dv -1 )=k Ω (0) (t)Θ (ℓ) (i 1 )...Θ (ℓ) (i dv-1 ), ∀k ∈ A C (2.27)
For the VNU, we cannot rely on the decomposition in elementary VNU, because This recursion is then computed iteratively to obtain Ω (+∞) or Ω (Lmax) with L max sufficiently large in a practical implementation. It can be shown that when the iteration number grows to infinity in case of unquantized channel, the PMF should converge to a dirac mass at +∞ to characterize a zero error probability [START_REF] Richardson | Modern Coding Theory[END_REF]. For the case of a quantized MP decoder, the convergence is translated to a dirac mass at the saturation 30 Background value +N q . In other words, if the PMF converges to

Ψ v cannot
Ω (Lmax) (k) =        0, if k ∈ {-N q , ..., -1, 0, 1, ..., +N q -1}, 1, if k = +N q ,
(2.28) then successful decoding is declared.

Asymptotic Bit Error Probability

The asymptotic bit error probability can be deduced from the PMF of the APPs, which is obtained from the DE equations. Let Γ (ℓ) (k), k ∈ A app , denote the PMF of the APP at the end of the ℓ th iteration. To compute Γ (ℓ) for the BSC we use

Γ (ℓ) (k) = (-C,i 1 ,...,i dv ):Ψa(-C,i 1 ,...,i dv )=k Ω (0) (-C)Θ (ℓ) (i 1 )...Θ (ℓ) (i dv )+
(+C,i 1 ,...,i dv ):Ψa(+C,i 1 ,...,i dv )=k

Ω (0) (+C)Θ (ℓ) (i 1 )...Θ (ℓ) (i dv ), ∀k ∈ A app
and for the BI-AWGN channel we use

Γ (ℓ) (k) = (t,i 1 ,...,i dv ):Ψa(t,i 1 ,...,i dv )=k Ω (0) (t)Θ (ℓ) (i 1 )...Θ (ℓ) (i dv ), ∀k ∈ A app Let p (ℓ)
e denote the bit error probability at iteration ℓ. Assuming the transmission of all-zero codeword, we have 

p (ℓ) e =                1 2 Γ (ℓ) (0) + -1 i=-Nq×dv-C Γ (ℓ) (i), for the BSC, 1 2 Γ (ℓ) (0) + -1 i=-Nq×(dv+1) Γ (ℓ) (i),

Density Evolution threshold

The DE threshold δ is defined as the point of discontinuity between these two regions:

(i) the region of channel noise (ϵ, σ) > δ in which the DE recursion does not converge to a zero error probability, and (ii) the region of channel noise (ϵ, σ) < δ for which the DE recursion converges to a zero error probability (see (2.29)) in less than L max iterations of the DE recursion. The most efficient way to compute the DE threshold is to perform a dichotomic search and stop when the bisection search interval size is lower than some precision, e.g. prec = 10 -10 . The procedure is described in the algorithm 1.

A slight modification of the DE estimation procedure is to set a small target bit error probability η instead of targeting a zero error probability, to declare that the DE recursion converged. If η is small enough, e.g. η = 10 -6 , it does not change the threshold estimation for noiseless decoders. Having η > 0 is however necessary for noisy decoders, as will be explained in the next Chapter.

In the rest of this work, we consider that the notation δ denotes the DE threshold for both the BSC or the BI-AWGN channel, and the interpretation will depend on the context. We describe the main steps to compute the DE threshold for the BSC channel in the algorithm 1, the DE threshold for the BI-AWGN channel can be easily deduced. The iteration loop breaks when either the p 

(d) [Tolerance]

Compute the size of the interval |δ 2 -δ 1 | and stops the procedure if it is smaller than the threshold tolerance (e.g. 10 -10 ).

[Threshold]

δ = δ m is the DE threshold. As can be seen the optimization of the channel value yields important gains for all algorithms. We can note also that the use of an offset is beneficial for the 4-bit MS while it is not for the 3-bit MS.

Channel value : C 

Chapter 3

Noise-Against-Noise Min-Sum

Decoders

In recent years, the noise has been used to study the transient hardware noise of a faulty hardware [START_REF] Dupraz | Analysis and Design of Finite Alphabet Iterative Decoders Robust to Faulty Hardware[END_REF][START_REF] Ngassa | Min-sum-based decoders running on noisy hardware[END_REF][START_REF] Yazdi | Gallager b decoder on noisy hardware[END_REF][START_REF] Yazdi | Probabilistic analysis of gallager b faulty decoder[END_REF][START_REF] Varshney | Performance of ldpc codes under faulty iterative decoding[END_REF][START_REF] Varshney | Performance of ldpc codes under noisy message-passing decoding[END_REF]. However, these works do not use the noise to improve the error correction performance.

Recently, the study of noisy bit-flipping (BF) decoders, the Noisy Gradient Descent BF (NGDBF) [START_REF] Sundararajan | Noisy gradient descent bit-flip decoding for ldpc codes[END_REF] and Probabilistic Gradient Descent BF (PGDBF) [START_REF] Rasheed | Fault-tolerant probabilistic gradientdescent bit flipping decoder[END_REF][START_REF] Rasheed | Fault-tolerant Probabilistic Gradient-Descent Bit Flipping Decoder[END_REF], have

shown that the noise could help to achieve better performance than noiseless versions of the same algorithms. The noise in these probabilistic decoders helps the decoder to escape from a local minima, and therefore improve the error correction performance.

In [START_REF] Leduc-Primeau | Dithered belief propagation decoding[END_REF], the authors show that the introduction of randomness in the Belief Propagation (BP) algorithm can improve the performance in the error floor and the waterfall region. A noisy version of the Min-Sum decoder over the BSC and the BI-AWGN channel is studied in [START_REF] Ngassa | Density evolution and functional threshold for the noisy min-sum decoder[END_REF][START_REF] Ngassa | Unconventional behavior of the noisy min-sum decoder over the binary symmetric channel[END_REF][START_REF] Ngassa | Min-sum-based decoders running on noisy hardware[END_REF].

In this work, we investigate a modification of MS decoders, with the goal of improving the error correction performance when the number of precision bits is as low as 3 or 4, which could be the case when very low implementation complexity is Noise-Against-Noise Min-Sum Decoders required by the application. Our modification, named Noise-against-Noise Min-Sum (NAN-MS) decoders, consists in injecting a deliberate random perturbation during the decoding process, to modify the dynamics of the decoder, and help to correct channel error events that would not be corrected by a deterministic implementation.

We investigate the asymptotic behavior of our NAN-MS decoders using noisy density evolution (DE) techniques, as introduced in [START_REF] Varshney | Performance of ldpc codes under faulty iterative decoding[END_REF][START_REF] Ngassa | Density evolution and functional threshold for the noisy min-sum decoder[END_REF] Another aspect investigated in this work is the implementation of the NAN-MS decoders avoiding the use of Random Generators (RGs). This is because the implementation of RGs in a hardware realization is very expensive [START_REF] Le | Efficient realization of probabilistic gradient descent bit flipping decoders[END_REF][START_REF] Le | Efficient hardware implementation of probabilistic gradient descent bit-flipping[END_REF]. From the main conclusions obtained of the NAN-MS decoders, two implementations are proposed that avoid using RGs maintaining almost the same error correction performance.

The outline of this chapter is as follows. The first section briefly discusses the noiseless OMS-based decoders. The second section discusses the probabilistic error model used to inject noise to quantized decoders. In the third section, we present three methods to inject noise in order to implement NAN-MS decoders. In the fourth section, we present the noisy density evolution equations of the three methods to inject noise, and we explain how to optimize the model parameters with density evolution.

In the fifth and sixth sections, we present the results for the optimization of the noise models for regular and irregular LDPC codes, respectively. The seventh section shown finite length performance validation of the gains obtained with the proposed NAN-MS 3.1 Noiseless Offset Min-Sum-Based Decoders 37 decoders. In the eighth section, we explain how to implement NAN-MS decoders, and we define a deterministic decoder called Modified Offset Min-Sum (M-OMS). In the ninth section, we present another alternative to implement the NAN-MS decoders. We propose to use the M-OMS decoder and an optimized offset vector. And the tenth section concludes this chapter.

Noiseless Offset Min-Sum-Based Decoders

In this section, we will redefine the update rules of the quantized OMS presented in Chapter 2. The main reason to refine the VNU and CNU of the OMS decoder is because such decoder is sub-optimal. In order to see why the decoder is sub-optimal, let us take the example of an OMS decoder quantized on q = 3 bits of precision with

offset value λ = 1, see (2.

19) and (2.20). We can note the offset applied in CNUs only

gives us the possibility to use five values ({-2, -1, 0, +1, +2}) instead of the seven values of A C , in other words, the outgoing messages m

(ℓ)
cm→vn from the CNU belong to the set A C \{-N q = -3, +N q = +3} = {-2, -1, 0, +1, +2}. It can be clearly noted that all combinations that can be obtained from q = 3 bits are not used (the same analysis can be done for precision q = 4).

In order to allow c-to-v messages to use all the values of A C , the updates rules of the quantized OMS decoder need to be changed. Analyzing the update rule of a CN, the CNU can be written in two equivalent ways:

1) Classical method: The offset is applied after the calculation of the minimum value of all incoming messages.

m (ℓ) cm→vn = max min v∈V(cm)\{vn} m (ℓ) v→cm -λ, 0 .
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2) Equivalent method: The offset is applied to each message and then the minimum value is computed.

m (ℓ) cm→vn = min v∈V(cm)\{vn} max m (ℓ) v→cm -λ, 0 .
Therefore, we can move the offset from CNs to VNs and take to integrate the offset inside the VNU so that v-to-c messages take all values of A C , and thus, c-to-v messages take also all values of A C . Hence the CNU of OMS-based decoders can be rewritten as

m (ℓ) cm→vn = Ψ c m (ℓ) v→cm v∈V(cm)\{vn} =   v∈V(cm)\{vn} sign m (ℓ) v→cm   min v∈V(cm)\{vn} m (ℓ) v→cm . (3.1)
Let us denote by λ v the offset value applied at the VNs. Moving the offset from CNs to VNs, the VNU of OMS-based decoders can be given by

m (ℓ+1) vn→cm = Ψ v I n , m (ℓ) c→vn c∈V(vn)\{cm} = Λ m (ℓ+1),U vn→cm , ( 3.2) 
where the function Λ(.) is defined by Λ(a) = sign(a) × S (max(|a| -λ v , 0), N q ), and the

unsaturated v-to-c message m (ℓ+1),U
vn→cm is computed as

m (ℓ+1),U vn→cm = I n + c∈V(vn)\{cm} m (ℓ) c→vn .
We can observe that the offset λ v is subtracted before saturation to allow -N q and N q values in the variable-to-check message. The special case of λ v = 0 corresponds to the MS decoder. The alphabet of the unsaturated v-to-c message m

(ℓ+1),U vn→cm , denoted A U , is defined as A U = {-N q × d v , ..., -1, 0, +1, ..., +N q × d v }.
Moving the offset from CNs to VNs does not alter the calculation of the APP γ

(ℓ)
n given in (2.21).
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It is worth noting that in the literature the offset is often applied at the CN.

Applying the offset at the VN or at the CN is equivalent only when the saturation function is not used since min i=1,...,n

(|x i | -λ) = min i=1,...,n (|x i |) -λ.
From now on, when we refer to the MS and OMS decoders, we will refer to the decoders defined by the equations (3.1), (3.2), and (2.21). In order to be able to perform DE analysis of NAN-MS decoders [START_REF] Cochachin | Density Evolution Thresholds for Noise-Against-Noise Min-Sum Decoders[END_REF], the considered noise models need to be memoryless, i.e. the noise models are independent on the data streams processed by the decoders. Also, the considered noise models have to satisfy a symmetry condition defined as follows

Noise Model for

Pr( m = β 2 |m = β 1 ) = Pr( m = -β 2 |m = -β 1 ), ∀(β 1 , β 2 ) ∈ A C × ÃC .

Noise-Against-Noise Min-Sum Decoders

When memoryless and symmetric noise models are used to perturb noiseless decoders, the noisy-VNU and noisy-CNU are symmetric, allowing to use the all-zero codeword assumption and the independence assumption necessary in DE [START_REF] Richardson | The capacity of low-density parity-check codes under message-passing decoding[END_REF]. 

m = Υ(m = β) =                                        β, with prob. 1 -φ s , β ∈ {±N q } s β .(|β| -1), with prob. φ s , β ∈ {±N q } β, with prob. 1 -φ a , β / ∈ {±N q , ±1, 0} s β .(|β| -1), with prob. φ a , β / ∈ {±N q , ±1, 0} β, with prob. 1 -φ 0 , β ∈ {±1} s β .(|β| -1), with prob. φ 0 , β ∈ {±1}. (3.3) 
This noise model is parametrized by three different transition probabilities, denoted φ = (φ s , φ a , φ 0 ). φ s denotes the conditional PDF p Υ (m = N q , m = N q -1), φ a denotes the conditional PDF p Υ (m = β, m = β -1), ∀β ∈ {+2, ..., +(N q -1)}, and finally φ 0

denotes the conditional PDF p Υ (m = +1, m = 0).
The rationale behind this model is to implement a probabilistic offset. Let us discuss the case of φ s = φ a = φ 0 . The MS and the OMS with λ v = 1 can be obtained as special cases of the noise model Υ, i.e. φ = (0, 0, 0) for the MS and φ = (1, 1, 1) for the OMS.

For other values of the transition probabilities, the offset is only applied from time to time during the decoding iterations, leading to a probabilistic weighted combination of a deterministic MS and a deterministic OMS.

We have also introduced two other probabilities φ s and φ 0 , in order to study the effect of the noise on the extreme values of the message alphabet. A special case occurs when m = 1 because it will be changed to m = 0 or it will keep its value m = 1. Since the value m = 0 propagates no information about the bit value, φ 0 has to be analyzed differently than φ a . Additionally, in quantized decoders, all values which are greater than N q at the VNU are saturated to N q , according to (3.2). As a result, many more configurations of the VNU states lead to an output message m = N q compared to other values of m, and φ s should also be analyzed differently than φ a . As an example, Υ is depicted in Fig. 3.1 for (q = 3, The noise model Υ could then be used to determine whether a NAN-MS can outperform a noiseless decoder.

N q = 3). m -3 -2 -1 0 +1 +2 +3 m -3 -2 -1 0 +1 +2 +3 ϕ s ϕ a ϕ 0 1 1 -ϕ s 1 -ϕ a 1 -ϕ 0 m / m -3 -2 -1 0 +1 +2 +3 -3 1 -φ s 0 0 0 0 0 0 -2 φ s 1 -φ a 0 0 0 0 0 -1 0 φ a 1 -φ 0 0 0 0 0 0 0 0 φ 0 1 φ 0 0 0 +1 0 0 0 0 1 -φ 0 φ a 0 +2 0 0 0 0 0 1 -φ a φ s +3 0 0 0 0 0 0 1 -φ s

Noise-against-Noise Min-Sum Decoders

The first issue that we would like to analyze is the localization of the noise injection inside the decoder flow. Indeed, an iterative decoder is composed of several sequential steps, and the results could be different depending on when the noise is injected. We decided to restrict the possibilities of noise injection to the main steps of the algorithm, that are the VNU and the CNU steps. In this section, we present different versions Noise-Against-Noise Min-Sum Decoders of the NAN-MS decoders, depending on the choice of the decoding step in which we inject the noise.

The noise can be injected in three different ways: (i) during the VNU processing, (ii) after the VNU processing, or (iii) after the CNU processing. We decide in this work to analyze the NAN-MS decoders with noise injection only in one of these steps, although one could easily extend the analysis by injecting noise during more than one step of the decoding iteration.

Noise Outside the Variable Node Update

The first choice is obtained by perturbing the outgoing message from the VNU, after the processing of (3.2) is completed. The update rule for the corresponding noisy-VNU is given by

m(ℓ+1) vn→cm = Υ   S   I n + c∈V(vn)\{cm} m (ℓ) c→vn     (3.4) 
Note that the noise perturbs saturated v-to-c messages, which belong to A C , and the noise model of (3.3) can be used directly. We define this method to inject noise as Noise Outside the VNU (NOV). Fig. 3.2 depicts the simplest case of VNU, CNU, and the NOV model. 

v n S Υ c m m ∈ A C m ∈ ÃC ÃC ⊆ A C I n

Noise Inside the Variable Node Update

The second method to inject noise is implemented perturbing unsaturated v-to-c messages, before the use of function S in (3.2). In this case, the update rule for the noisy-VNU is given by m(ℓ+1

) vn→cm = S   Υ   I n + c∈V(vn)\{cm} m (ℓ) c→vn     (3.5)
We label this method to inject noise as Noise Inside the VNU (NIV). Since Υ perturbs unsaturated values, the alphabet of the noise model A N is larger than A C , and equal to

A N = ÃN = {-(2 (q-1) -1) × d v , . . . , -1, 0, +1, . . . , +(2 (q-1) -1) × d v }, i.e.
A N = ÃN = A U . It follows that there is no advantage in differentiating the transition probabilities φ s and φ a , as the largest values of A N will be saturated with function S.

Throughout the work, we will then assume that φ s = φ a for the NIV model.

The example of the NIV model with the simplest case of VNU and CNU is depicted 

on Fig. 3.3. v n Υ S c m m u ∈ A U A U ⊂ Z m ∈ ÃC A C = ÃC I n

Noise Outside the Check Node Update

The third method to inject noise perturbs the outgoing c-to-v messages from the CNU, after the processing is completed. Note that because during the CNU, the min operations leave the messages in the same alphabet A C , there is no need to consider two cases, like for the VNU. The update rule for a noisy-CNU is given by

m(ℓ) cm→vn = Υ m (ℓ) cm→vn (3.6)
where m

(ℓ)
cm→vn is obtained with (3.1). We label this method as Noise Outside the CNU (NOC). Fig. 3.4 shows the simplest case of VNU, CNU, and the NOC model. The APP update of NAN-MS decoders depends on the model used to inject noise, i.e. NIV, NOV, or NOC. For the NOC model, the noisy c-to-v messages are used to compute the APP, hence, the APP update is given by γ (ℓ)

v n c m Υ S m ∈ A C m ∈ ÃC ÃC ⊆ A C I n
n = I n + c∈V(vn) m(ℓ) c→vn .
In the case of NIV and NOV model, c-to-v messages are not corrupted, then the APP update is computed as γ (ℓ)

n = I n + c∈V(vn) m (ℓ) c→vn .

Noisy Density Evolution for NAN-MS decoders

We are interested in obtaining and comparing the DE thresholds of NAN-MS decoders with the DE thresholds of noiseless decoders.

Noisy DE recursions can be deduced from noiseless DE recursions and the noise model description of (3.3). To deduce the noisy DE equations, let Θ(ℓ

) (k), k ∈ A C ,
denote the PMF of noisy check-to-variable messages in the ℓ th iteration. Similarly, let Ω(ℓ) (k), k ∈ A C , denote the PMF of noisy variable-to-check messages in the ℓ th iteration. We consider that the all-zero codeword is sent over the BI-AWGN channel.

Noisy Density Evolution for the NOV model

Initialization like the case of noiseless quantized Min-Sum-Based decoders, the initialization of the noisy DE for NAN-MS decoders is given by equation (2.23).

Noiseless DE update for CNU

The input of a CNU is the PMF of the noisy messages going out of a noisy VNU, i.e.

Ω(ℓ) . For a CN of degree

d c , Θ (ℓ) 
dc is given by

Θ (ℓ) dc (k) = (i 1 ,...,i dc-1 ):Ψc(i 1 ,...,i dc-1 )=k Ω(ℓ) (i 1 )... Ω(ℓ) (i dc-1 ), ∀k ∈ A C . (3.7)
Considering the different connection degrees of CNs, we have

Θ (ℓ) (k) = dc,max dc=2 ρ dc × Θ (ℓ) dc (k), ∀k ∈ A C (3.8)
Noise-Against-Noise Min-Sum Decoders Similar to the noiseless DE, we can decompose a CNU of NAN-MS decoders into elementary CNUs to compute (3.7).

Noisy DE update for VNU

Similarly to the calculation made at the VN for the noiseless DE, we compute the PMF of the output of a VN of degree d v , i.e. Ω (ℓ+1) dv

. The input of noisy DE for the VNU are PMF computed with (3.8).

Ω (ℓ+1) dv (k) = (t,i 1 ,...,i dv -1 ):Ψv(t,i 1 ,...,i dv -1 )=k Ω (0) (t)Θ (ℓ) (i 1 )...Θ (ℓ) (i dv-1 ), ∀k ∈ A C . (3.9)
Then the noise effect is added at the output of the VNU.

Ω(ℓ+1) dv (k) = i∈A C Ω (ℓ+1) dv (i) × p Υ (i, k), ∀k ∈ A C , (3.10) 
where p Υ is the transition probability of the VN noise Υ.

Then the effect of the different connection degrees of VNs is considered using the following relation 

Ω(ℓ+1) (k) = dv,max dv=2 λ dv × Ω(ℓ+1) dv (k), ∀k ∈ A C (3.11)

V N CN

Υ Ω ( ) Ω( ) Θ ( ) p( ) e

Noiseless DE update for CNU

Similarly to the calculation made at the CNU for the NOV model, we compute Θ (ℓ) (k), ∀k ∈ A C with 3.7 and (3.8).

Noisy DE update for VNU

For the NIV model, we know that Υ perturbs unsaturated values. For this reason, we first compute the PMF of unsaturated v-to-c messages of a VN of degree d v , i.e.

Ω (ℓ+1),U dv

, with the following equation

Ω (ℓ+1),U dv (k) = (t,i 1 ,...,i dv -1 ):Ψv(t,i 1 ,...,i dv -1 )=k Ω (0) (t)Θ (ℓ) (i 1 )...Θ (ℓ) (i dv-1 ), ∀k ∈ A U . (3.12)
Second, the noise effect is added to the PMF of unsaturated v-to-c messages to obtain the corrupted PMF Ω(ℓ+1)

dv (k) = i∈A U Ω (ℓ+1),U dv (i) × p Υ (i, k), ∀k ∈ A U , ( 3.13) 
Finally, the saturation effect on the corrupted PMF is given by

Ω(ℓ+1) (k) =                        -Nq i=-Nq×dv Ω(ℓ+1) (i), k = -N q Ω(ℓ+1) (k), ∀k ∈ A C \{±N q } +Nq×dv i=+Nq Ω(ℓ+1) (i), k = +N q (3.14)
Noise-Against-Noise Min-Sum Decoders Similar to the NOV model, the effect of the different connection degrees of VNs is computed with (3.11). 

Noisy Density

Noisy DE update for CNU

The input of a noisy CNU is the PMF of the noiseless messages going out of a noiseless VNU, i.e. Ω (ℓ) . The following relation is used the PMF of a CN of degree

d c Θ (ℓ) dc (k) = (i 1 ,...,i dc-1 ):Ψc(i 1 ,...,i dc-1 )=k Ω (ℓ) (i 1 )...Ω (ℓ) (i dc-1 ), ∀k ∈ A C . ( 3.15) 
To make into account the effect of noise on the PMF of the output messages of a CN, the following relation is used

Θ(ℓ) dc (k) = i∈A C Θ (ℓ) dc (i) × p Υ (i, k), ∀k ∈ A C , ( 3.16) 
where p Υ is the transition probability of the CN noise (which can be identical to the VN probability).

To make into account the different connection degrees of CNs, we use . The input of noisy DE for the VNU are corrupted PMF computed with (3.19).

Θ(ℓ) (k) = dc,max dc=2 ρ dc × Θ(ℓ) dc (k), ∀k ∈ A C (3.
Ω (ℓ+1) dv (k) = (t,i 1 ,...,i dv -1 ):Ψv(t,i 1 ,...,i dv -1 )=k Ω (0) (t) Θ(ℓ) (i 1 )... Θ(ℓ) (i dv-1 ), ∀k ∈ A C . (3.18)
Then the effect of the different connection degrees of VNs is considered using the following relation

Ω (ℓ+1) (k) = dv,max dv=2 λ dv × Ω (ℓ+1) dv (k), ∀k ∈ A C (3.19)

Noisy DE recursion

Once the noisy DE update for VNUs and CNUs are defined, the rest of the DE principle is unchanged compared to the noiseless DE of Chapter 2.

Bit Error Probability

Let p(ℓ) e denote the bit error probability at iteration ℓ for NAN-MS decoders, p(ℓ) e is computed from the PMF of all incoming messages to a VN in the ℓ th iteration, and it is defined as

p(ℓ) e = 1 2 Γ(ℓ) (0) + -1 i=-Nq×(dv+1) Γ(ℓ) (i), (3.20) 
where Γ(ℓ) (k), k ∈ A app , denotes the PMF of the APP at the end of the ℓ th iteration for NAN-MS decoders. For the three models presented in this work, i.e. NIV, NOV, Noise-Against-Noise Min-Sum Decoders and NOC, Γ(ℓ) is computed as follows

Γ(ℓ) (k) = dv,max dv=2 λ dv × Γ(ℓ) dv (k), ∀k ∈ A app
In the case of the NOV model and NIV model, Γ(ℓ) dv is given by

Γ(ℓ) dv = (t,i 1 ,...,i dv ):Ψa(t,i 1 ,...,i dv )=k Ω (0) (t)Θ (ℓ) (i 1 )...Θ (ℓ) (i dv ), ∀k ∈ A app
whereas in the case of the NOC model, we have

Γ(ℓ) dv = (t,i 1 ,...,i dv ):Ψa(t,i 1 ,...,i dv )=k Ω (0) (t) Θ(ℓ) (i 1 )... Θ(ℓ) (i dv ), ∀k ∈ A app
In the asymptotic limit of the code-length, p(ℓ) e is the bit error probability of a noisy decoder at the ℓ th iteration.

Contrary to the noiseless case p(+∞)

e is not necessarily equal to zero when the noisy DE converges and corrects the channel noise. It depends mainly on the chosen error model and the computing units to which it is applied.

A lower bound on the asymptotic error probability can be computed. In [START_REF] Ngassa | Density evolution and functional threshold for the noisy min-sum decoder[END_REF],

the authors have proposed two error models for a quantized noisy MS decoder, and confirmed that p(+∞) e is bounded away from zero.

Noisy Density Evolution threshold

The noisy-DE threshold is denoted δ. It is a function of the code family, parametrized by its degree distribution (λ(x), ρ(x)), of the class of NAN-MS decoder as introduced in the previous section, of the number of precision bits q, of the value of the channel gain factor α, and the values of the transition probabilities of the noise model (φ s , φ a , φ 0 ). 

(d) [Tolerance]

Compute the size of the interval | δ2 -δ1 | and stops the procedure if it is smaller than the threshold tolerance (e.g. 10 -10 ).

[Threshold]

δ = δm is the noisy-DE threshold.
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We can use δ to jointly optimize the noise model parameters and the channel gain factor, for a fixed NAN-MS decoder, a fixed precision, and a fixed degree distribution:

(φ * s , φ * a , φ * 0 , α * ) = arg max (φs,φa,φ 0 ,α) δ (λ(x), ρ(x), q, α, (φ s , φ a , φ 0 )) (3.21)
The optimization of the transition probabilities of the model Υ, and the channel gain factor is made using a greedy algorithm which computes a local maximum DE threshold. For noiseless decoders, the optimum channel gain factor α * is computed performing a grid-search.

Asymptotic Analysis of NAN-MS Decoders for

Regular LDPC codes

In this section, we consider the ensemble of (d v , d c )-regular LDPC codes with variablenode degree d v ∈ {3, 4} and code rate R ∈ {1/2, 3/4}, and quantized decoders with q ∈ {3, 4, 5}.

Optimization of the Channel Gain Factor of Noiseless

Decoders

The DE thresholds of the noiseless MS and OMS decoders are given in Table 3.1. For the noiseless decoders, the optimization (3.21) is reduced to the optimum channel gain factor α * . It can be seen that the OMS is almost always superior to the MS for the considered cases, which was expected. The only exception is for regular (d v , d c ) = [START_REF] Mackay | Information Theory, Inference, and Learning algorithms[END_REF][START_REF]IEEE Standard for Ethernet[END_REF] and (d v , d c ) = (3, 12) LDPC codes with low precision messages q = 3, for which the MS threshold is better than the OMS's. We can also note that the largest difference is obtained for d v = 4 LDPC codes and quantization q ∈ {4, 5}.

Asymptotic Analysis of NAN-MS Decoders for Regular LDPC codes
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Table 3. 

DE thresholds of noiseless MS decoders and noiseless OMS decoders with offset value λ

v = 1. (d v , d c )-regular LDPC code, BI-AWGN channel (d v = 3, d c = 6) (d v = 3, d c = 12) (d v = 4, d c = 8) (d v = 4, d c = 16) q λ v α * δ db α * δ db α * δ db α * δ db 3 bits 0 0.

Localization of the Noise Injection in NAN-MS Decoders

In this section, we analyze and study the localization of the noise in NAN-MS decoders without performing the optimization of the channel gain factor, i.e. α. We restrict our analysis for the ensemble of (d v , d c )-regular LDPC codes with d v ∈ {3, 4}, R = 1/2, and precision q ∈ {3, 4}, setting α = 0.9 for q = 3-bit NAN-MS decoders and α = 1.5 for q = 4-bit NAN-MS decoders.

We consider a special case of the noise model Υ doing the transition probabilities φ s and φ 0 equal to φ a , hence, we have φ = (φ a , φ a , φ a ). The MS decoder is obtained with φ = (0, 0, 0) for the NOV, NIV, and NOC model, for this reason DE thresholds of NAN-MS decoders are equal to the DE threshold of the MS decoder as is shown in NAN-MS decoder, (3, 6)-regular LDPC 3-bit, α =0.9, ϕ = (ϕ a , ϕ a , ϕ a ), NIV 3-bit, α =0.9, ϕ = (ϕ a , ϕ a , ϕ a ), NOC 3-bit, α =0.9, ϕ = (ϕ a , ϕ a , ϕ a ), NOV Noiseless MS (3-bit), α =0.9 Noiseless OMS (3-bit), α =0.9 NAN-MS decoder, (4, 8)-regular LDPC 3-bit, α =0.9, ϕ = (ϕ a , ϕ a , ϕ a ), NIV 3-bit, α =0.9, ϕ = (ϕ a , ϕ a , ϕ a ), NOC 3-bit, α =0.9, ϕ = (ϕ a , ϕ a , ϕ a ), NOV Noiseless MS (3-bit), α =0.9 Noiseless OMS (3-bit), α =0.9

(a) Precision q = 3 

Joint Optimization of the Noise Model Parameters and the Channel Gain Factor of NAN-MS Decoders

In Table 3 LDPC codes and precision q ∈ {4, 5}, as an example, we draw the evolution of the NAN-MS threshold versus the value of φ 0 for (q = 4, d v = 4, R = 1/2) on Fig.

3.8, while keeping the other parameters constant, one can see that for all models, there is an optimum value of the threshold around φ * 0 = 0.5, and each of them is beating the DE threshold of the OMS. The NIV and NOV models are very much better than the NOC model for all cases.

4. Finally, some of the obtained NAN-MS decoders are not really probabilistic since the values of the transition probabilities are very close to 0 or 1. This is the case for (q = 5, 

d v = 3, R = 1/2), (q = 5, d v = 3, R = 3/4), and (q = 3, d v = 4, R = 1/2

Asymptotic Analysis of NAN-MS Decoders for

Irregular LDPC codes

In the previous section we have seen that the optimum noise parameters (φ * s , φ * a , φ * 0 )

and the respective gains of NAN-MS decoders depend on the VN degree. For LDPC codes with irregular VN distribution, we propose therefore to extend our approach by considering a noise injection model Υ with different values of the transition probabilities for the different connection degrees.

We denote by Υ (2) : φ (2) = φ

(2) s , φ (2) 
a , φ

(2) 0 the model which injects noise at VNs of degree d v = 2. Both the NIV and NOV methods can be considered. Similarly, let Υ (3) :

φ (3) = φ (3) s , φ (3) 
a , φ

(3) 0 denote the noise model for the VNs of degree d v = 3.
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Υ (≥4) : φ (≥4) = φ (≥4) s , φ (≥4) a , φ (≥4) 0
.

The optimization of the transition probabilities for an irregular LDPC code with distribution (λ(x), ρ(x)) is still performed by the maximization of the noisy DE thresholds: 2) ,φ (3) ,φ (≥4) ,α)

φ (2) * , φ (3) * , φ (≥4) * , α * = arg max (φ ( 
δ λ(x), ρ(x), q, α, φ (2) , φ (3) , φ (≥4)

(3.22)
For our analysis, we consider the ensemble of irregular LDPC codes which follow the distribution of the rate R ∈ {1/2, 3/4}, length N = 2304 code described in the WIMAX standard [START_REF]IEEE Standard for Local and metropolitan area networks -Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems -Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1[END_REF]. Another conclusion can be driven from these tables. From the DE analysis we can conclude that the noise should not be injected on degree d v = 2 VNs for the case of low precision q = 3, since we obtain always (φ

(2) s , φ (2) 
a , φ

(2) 0 ) ≃ (0, 0, 0). While in the case of the two considered precision q = 4 and q = 5, the noise should be injected on for the degree d v = 3 VNs (inject the noise on degree d v = 2 VNs will be depend on the degree distribution and the precision used)

Finally, the NAN-MS decoders obtain higher gains using irregular codes. The gain of the rate 1/2 code is 0.2074 dB for the lower precision q = 3, 0.3946 dB for the precision q = 4, and 0.3595 dB for the largest precision q = 5. In the case of the rate 3/4 B code, the gains for the three considered precision q = 3, q = 4 and q = 5 are smaller than the rate 1/2 code, a gain of 0.2913 dB for q = 3, a gain of 0.0278 dB for q = 4, and a gain of 0.0026 dB for q = 5.

Finite Length Performance of NAN-MS Decoders

In this chapter we present the frame error rate (FER) performance for noiseless (respectively L = 27), using the PEG algorithm from [START_REF] Venkiah | Design of Cages with a Randomized Progressive Edge Growth Algorithm[END_REF]. The considered decoders are the ones with the best DE thresholds, indicated in bold in Tables 3.1 and 3.2. The OMS decoder performance for q = 5 and λ v = 1 is considered as benchmark. For low precision messages q = 3 and for regular d v = 3 LDPC codes, the MS decoder is better than the OMS decoder. This result is surprising, but it can be justified by the fact that the variable degree is small (d v = 3), while an offset of λ v = 1 represents a significant amount of the total available dynamic when 3 bits is used (N q = 3). In those conditions, the OMS does not help extrinsic messages to be more reliable at each new decoding iteration. We observe in the waterfall (i.e. at FER = 10 -2 ) an SNR gain for the NAN-MS decoders which corresponds to the threshold differences: around 0.2 dB for (q = 3, d v = 3, R = 1/2), and 0.05 dB for (q = 4, NOV, and NOC models. For the regular d v = 3 QC-LDPC code and precision q = 3, it is evident that the NIV model clearly outperforms the NOV and NOC models (which exhibit poor performance) in the error-floor region. In the case of the regular

E b /N 0 (dB) 1 
d v = 3, R = 1/2
(d v = 3, d c = 6) (d v = 3, d c = 12) (d v = 4, d c = 8) (d v = 4, d c =
d v = 4
QC-LDPC code and q = 3, the NIV model achieves slightly better FER performance in the error-floor region compared to the NOV and NOC models. For the two regular QC-LDPC codes and q = 4 bits of precision, the three models exhibit almost the same FER performance. to what was predicted with the DE analysis, with a 0.4 dB gain for (q = 4, R = 1/2), a 0.2 dB gain for (q = 3, R = 1/2), a 0.32 dB gain for (q = 4, R = 3/4), and a 0.24 dB gain for (q = 3, R = 3/4). For the largest precision q = 5, the gain for R = 1/2, which is 0.08 dB, is much smaller than was predicted with the DE analysis, while for R = 3/4 the same performance is achieved.

E b /N 0 (dB) 1 
E b /N 0 (dB)
The NIV model is the best model because after the noise injection, the noisy v-to-c messages and c-to-v messages always belong to the alphabet A C . In the case of the NOC model, the noise perturbs the saturated c-to-v messages obtaining in some iterations the noisy c-to-v messages belonging to the alphabet A C \{-N q , +N q }, and in other iterations the noisy messages belonging to the alphabet A C . Similarly, in the NOV model, the noise perturbs the saturated v-to-c messages obtaining in some iterations the noisy v-to-c messages belonging to A C \{-N q , +N q } and in other iterations the noisy messages belonging to A C . For the NOC and NOV models, not using the saturation values in some decoding iterations causes the degradation of the decoder performance, especially for low precision messages.

As a last remark, we can also see that the injection of errors with the proposed models Υ do not seem to have an influence in the error floor of the decoders, since all 66 Noise-Against-Noise Min-Sum Decoders the curves have similar slopes in the low FER region. This means that the proposed models do not correct the dominant error events due to trapping sets. 

E b /N 0 (dB)

Implementation of NAN-MS Decoders as Deterministic Decoders

This section is dedicated to a simple implementation of NAN-MS decoders as deterministic decoders. From the analysis made in Section 3.5 and 3.6, an important conclusion obtained was that the offset should not be applied to messages whose magnitude is 1 

(m = ±1), i.e. (φ * s , φ * a , φ * 0 ) should be equal to (1, 1, 0),
m (ℓ+1) vn→cm = Ψ v I n , m (ℓ) c→vn c∈V(vn)\{cm} = Λ m (ℓ+1),U vn→cm , ( 3.23) 
where the function Λ(.) is redefined by

Λ (a) =                S(a + 1, N q ), if a < -1 a, if a ∈ {-1, 0, +1} S(a -1, N q ), if a > +1
We can note that the M-OMS decoders have similar cost of implementation than the OMS decoders because both use the same function Ψ c to perform the update rule at CNUs, and also because the update rule at VNUs is almost the same except for the case where the unsaturated v-to-c message is -1, 0, or +1, i.e. m (ℓ+1),U vn→cm ∈ {-1, 0, +1}.

Density Evolution thresholds

In this section, we present DE thresholds for the M-OMS decoders considering the four (d v , d c )-regular QC-LDPC codes presented in Section 3.5, and the two WIMAX LDPC codes studied in Section 3.6.

Density Evolution Thresholds for Regular LDPC Codes

The optimization (3.21) is used to find the optimum channel gain factor α * for regular LDPC codes. In Table 3.7, we show the DE thresholds of M-OMS decoders. When comparing the best thresholds indicated in bold in Table 3.1 and Table 3. From this analysis, we can conclude that the M-OMS decoders are better decoders than the MS and OMS in low precision q ∈ {3, 4}.

On the other hand, when comparing the best thresholds indicated in bold in Table 3.2 and Table 3.7, we observe that the NAN-MS decoders (using the NIV model) give us always better DE thresholds than M-OMS decoders, hence, one can conclude that NAN-MS decoders are better decoders than the M-OMS decoders especially for

d v = 3
and precision q = 3. 

(d v = 3, d c = 6) (d v = 3, d c = 12) (d v = 4, d c = 8) (d v = 4, d c = 16) q α * δ db α * δ db α * δ db α * δ db 3 bits 0.

Density Evolution Thresholds for Irregular LDPC Codes

In the case of WIMAX LDPC codes and considering the NIV model, we set φ (≥4) = φ (3) = (1, 1, 0), and we decide to analyze two cases for φ (2) : (i) the first one setting φ (2) = (0, 0, 0) and (ii) the second one setting φ (2) = (1, 1, 0).

The optimum channel gain factor α * is computed using the optimization (3.22).

Table 3.8 and Table 3.9 summarize the DE thresholds of the M-OMS decoders. From the results obtained, we can note: (i) φ (2) has to be equal to (0, 0, 0) for R = 1/2, (ii)

for R = 3/4, φ (2) has to be equal to (0, 0, 0) for low precision q = 3, while for R = 3/4 and precision q ∈ {4, 5}, φ (2) has to be equal to ( We can conclude that in low precision q = 3, φ (2) has to be equal to (0, 0, 0) in order to implement better decoders than MS and OMS decoders. Hence, the function Λ(.) of (3.23) can be redefined by FER performance results for the regular d v = 3 QC-LPDC codes are drawn in Fig. 3.13. We observe that the 3-bit M-OMS decoders have better FER performance than 3-bit OMS decoders, but 3-bit NAN-MS decoders achieve better FER performance than 3-bit M-OMS decoders, as it was predicted by the DE analysis. In the case of q = 4, the FER performance of NAN-MS decoders achieve slightly better FER performance results than the M-OMS decoders, as predicted by the DE threshold analysis.

Λ (a) =                        S(a, N q ), if d v = 2 S(a + 1, N q ), if d v ≥ 3, and if a < -1 a, if d v ≥ 3, and if a ∈ {-1, 0, +1} S(a -1, N q ), if d v ≥ 3,
Simulation results for the regular d v = 4 QC-LPDC codes are provided in Fig. 

Implementation of NAN-MS Decoders Using an Offset Vector

This section presents an alternative way to implement NAN-MS decoders using an offset vector. From the analysis made in Section 3.5 and 3.6, the noise is injected into the NAN-MS decoders at each decoding iteration. We can relax the way of injecting noise to the decoder considering the transition probabilities equal to 0 or 1 at each decoding iteration, in other words, an offset equal to 0 or 1 can be applied to the decoder at each decoding iteration.

Let λ v denote the offset vector defined as

λ v = λ (1) v , λ (2) v , . . . , λ (Lmax) v
, where

λ (ℓ) v ∈ {0, 1}
, and L max is the maximum number of iterations. Let also denote OMS-λ v the Offset Min-Sum decoder applying the offset value λ (ℓ) v at iteration ℓ, the update rule at a CNU is given by equation (3.1), and the update rule at a VNU is written as

m (ℓ+1) vn→cm = Ψ v I n , m (ℓ) c→vn c∈V(vn)\{cm} = Λ m (ℓ+1),U vn→cm , ( 3.24) 
where the function Λ(.) is redefined by

Λ (a) =                S(a + λ (ℓ) v , N q ), if a < -1 a, if a ∈ {-1, 0, +1} S(a -λ (ℓ) v , N q ), if a > +1
We can implement 2 Lmax different decoders because λ and also because the update rule at VNUs is almost the same, except for the offset vector. In order to save the offset vector λ v , we need a very small memory, specifically a memory that stores L max bits of information.

Density Evolution thresholds

The OMS-λ v decoder is analyzed with DE relaxing one of the DE constraints, specifically, the number of iterations used to compute the DE threshold will change from a very large value (L max = 1000) to a small value (L max = 20). In other words, the behavior of the OMS-λ v decoder is analyzed using only 20 iterations.

We consider the ensemble of (d v , d c )-regular LDPC codes with d v ∈ {3, 4} and R = 1/2 presented in Section 3.5, and the two WIMAX LDPC codes studied in Section 3.6.

Density Evolution Thresholds for Regular LDPC Codes

The DE equations of the NIV model are used to compute the DE thresholds considering λ (ℓ) v = φ s = φ a and φ 0 = 0. We use the DE threshold δ to jointly optimize the offset vector for a fixed number of iterations, and a fixed precision:

α * , λ (1) * v , λ (2) * v , ..., λ (Lmax) * v = arg max α,λ (1) v ,λ (2) 
v ,...,λ

(Lmax) v δ d v , d c , q, α, λ (1) v , λ (2) 
v , ..., λ From this analysis, we can conclude that the OMS-λ v decoders are better decoders than the MS and OMS when the same precision is used.

(Lmax) v . ( 3 
On the other hand, when comparing the best thresholds indicated in bold in Table 3.11 and Table 3.12, we observe that the OMS-λ v decoders give us always better DE thresholds than the M-OMS decoders, hence, one can conclude that the OMS-λ v decoders are better decoders to implement the NAN-MS decoders. 

Density Evolution Thresholds for Irregular LDPC Codes

Similar to Section 3.6, for LDPC codes with irregular VN distribution, we consider an offset vector for the different connection degree. Hence, Υ (2) :

λ v (2) = 76 
Noise-Against-Noise Min-Sum Decoders 

d v = 4 LDPC code. λ (2,1) v , λ (2,2) v , ..., λ (2,Lmax) v
is the offset vector at VNs of degree

d v = 2, Υ (3) : λ v (3) = λ (3,1) v , λ (3,2) v , ..., λ (3,Lmax) v
is the offset vector for the VNs of degree d v = 3, and finally, for all other VNs with degrees

d v ≥ 4, Υ (≥4) : λ v (≥4) = λ (≥4,1) v , λ (≥4,2) v , ..., λ (≥4,Lmax) v
is the offset vector.

The optimization of the offset vector for an irregular LDPC code with distribution (λ(x), ρ(x)) is still performed by the maximization of the DE thresholds: (2) ,λv (3) ,λv (≥4) ,α)

λ v (2) * , λ v (3) * , λ v (≥4) * , α * = arg max (λv
δ λ(x), ρ(x), q, α, λ v (2) , λ v (3) , λ v (≥4)
.

(3.26)

For two WIMAX LDPC codes studied in Section 3.6, we indicate in Table 3.13 the DE thresholds of the noiseless MS and noiseless OMS decoders using L max = 20.

Table 3.14 summarizes the DE thresholds of the OMS-λ v decoders using L max = 20.

From the results obtained, we can note: (i) the offset vector λ v (2) has to be all-zero for low precision q = 3 and R ∈ {1/2, 3/4}, (ii) for the degree d v > 2 VNs, λ v (3) * and λ v (≥4) * show that the offset equal to 1 is applied mainly during the first iterations, while in the last iterations the last iterations the offset equal to 1 is not applied. The same happens for the largest precision q = 4 and λ v (2) , (iii) the offset vector λ v ) ) is almost all-zero for (R = 1/2, q = 3) (resp. (R = 1/2, q = 4)).

(3) (resp. λ v ( 2 
Comparing the best thresholds indicated in bold showed in Tables 3.14 and Table 3.13, we can note that the OMS-λ v decoders achieve better DE thresholds than the MS and OMS decoders.

Table 3.14 DE thresholds of the OMS-λ v decoders for the WIMAX degree distribution using L max = 20.

Irregular LDPC code, BI-AWGN channel 

R q Υ α * λ (20) * v λ (19) * v ...λ (2) * v λ (1) * v δ db 1/2 3 bits λ v (2) 
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Simulation results for the WIMAX LDPC code with R ∈ {1/2, 3/4} are provided in Fig. 3.19. For the two considered precisions q = 3 and q = 4, we can see that the OMS-λ v decoders are better decoders than the MS and OMS decoders.

Conclusions

In this Chapter, we have first proposed a model to introduce randomness in highly quantized message passing decoder. Thanks to density evolution, we obtained the optimal parameters of "noise injection" in the asymptotic regime. The result shows that, for highly quantized decoder decoder is that all messages can take profit of the full dynamic given by q bits of precision and, corollary, that the 0 value is never used. In other words, the SP-MS decoder forbids the 0 value in its message alphabet during the iterative decoding,

i.e. a message cannot be erased. In order to achieve a high-throughput with low complexity hardware implementation, we investigate the SP-MS decoder defining a message alphabet constructed from 2, 3, or 4 bits of precision. In our research we also define a decoder input alphabet to quantize the Log-Likelihood Ratios (LLRs) values constructed from 3 or 4 bits of precision.

In order to optimize the SP-MS decoder performance, the optimization methodology using injection of noise during the iterative process (see Chapter 3) is also applied in the context of SP-MS decoders. The SP-MS decoder and its optimization are investigated in the asymptotic limit of the code length using a noisy version of density Sign-Preserving Min-Sum Decoders evolution (DE). We use the optimization method proposed in the previous chapter.

After optimization we can obtain two kinds of decoders: (i) a probabilistic decoder that keeps some randomness named Sign-Preserving Noise-Aided Min-Sum (SP-NA-MS) decoder, or (ii) a deterministic decoder that combines MS and OMS behaviors, named Sign-Preserving Min-Sum (SP-MS) decoder.

The outline of this chapter is as follows. The first section briefly analyzes the classical OMS-based decoders. In the second section, we present a quantification method used in SP-MS decoders. In the third section, we introduce the SP-MS decoders and we explain how to preserve the sign of exchanged messages of SP-MS decoders. In the fourth section, we explain how to optimize the SP-MS decoders. In the fifth section, we present the density evolution equations of SP-MS decoders. The sixth section shows how to compute the the asymptotic bit error probability. The seventh section explains how to compute the DE threshold. In the eighth section, we present the results of the asymptotic analysis of SP-MS decoders for regular and irregular LDPC codes.

The ninth section shows finite length performance validation of the gains obtained with the proposed SP-MS decoders. In the tenth section, we present the convergence performance analysis of the SP-MS decoders, and the eleventh section concludes this chapter.

classical OMS-based Decoders

The message alphabet A C = {-N q , .., -1, 0, +1, ..., +N q } of classical quantized decoders only uses 2 q -1 levels of a total of 2 q levels that can be used for a precision of q bits. For example, using q = 3 bits of precision, only 7 levels are used for A C .

In Chapter 3, the offset of the OMS decoders was moved from CNs to VNs allowing the c-to-v messages and v-to-c messages to use all values of A C . But the transfer of 4.2 Quantization used for SP-MS Decoders 85 the offset does not allow the decoder to use all the combinations that can be obtained for q bits of precision.

Analyzing the VNU of the classical OMS-based decoders, see 3.2, we can see that the value of the v-to-c message can be zero. In that case, the erased message, i.e. m (ℓ+1) vn→cm = 0, does not carry any information and does not participate in the convergence of the decoder. In this work, we propose a new type of decoder that always preserves the sign of the messages, with a modified VNU using a sign preserving factor, so that VNU never generates null or erased messages.

Quantization used for SP-MS Decoders

Using the sign-and-magnitude representation one can obtain a decoder input alphabet which is symmetric around zero and which is composed of 2 q ch states.

Hence the decoder input alphabet for SP-MS decoders is redefined as A L = {-N ch , ..., -1, -0, +0, +1, ..., +N ch }. Similarly, the message alphabet for SP-MS decoders denoted by A S is defined as A S = {-N q , ..., -1, -0, +0, +1, ..., +N q }, consists of 2 q states. The sign of a message m ∈ A S indicates the estimated bit value associated with the VN to or from which m is being passed while the magnitude |m| of m represents its reliability. In this work, it is assumed that 2 ≤ q ≤ q ch . The alphabets A L and A S can be easily implemented in hardware because each value of A L and A S has a natural (sign, magnitude) binary representation. An example of the binary representation of A C and A S for q = 3 is shown in Table 4.1, one can see that -0 is represented by 100 2 , +0 is represented by 000 2 , etc. The distribution of the quantized LLR I n using q = 3 bits of precision for the SP-MS decoder is depicted in Fig. 4.1.
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Sign-Preserving Min-Sum Decoders In order to obtain the quantized version of the LLRs belonging to A L , the quantization process defined in (2.17) is replaced by

1 σ n √ 2π exp -(t -µ n ) 2 2σ 2 n , with µ n = 2α σ 2 and σ n = 2α σ t -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +0 +1 +2 +3 -0 -1 -2 -3 000 
Q * (a) = (sign(a), S (⌈α × |a|⌉ -1, N ch )) , ( 4.1) 
where ⌈.⌉ depicts the ceiling function.

Then, I n is thus defined as One can note from (3.1) that the CNU by construction determines the sign of each outgoing message, thus the CNU generates outgoing messages that always belong to A S , therefore, the CNU remains identical.

I n = Q * (LLR(y n )) ∈ A L for n =
In the case of the VNU, (3.2) should be modified to ensure that the outgoing message will always belong to A S . To preserve always the sign of the messages, let us denote by µ

(ℓ)
vn→cm the sign-preserving factor of the message m

(ℓ+1)
vn→cm , defined as

µ (ℓ) vn→cm = ξ × sign(I n ) + c∈V(vn)\{cm} sign m (ℓ) c→vn , (4.2) 
where the values of ξ depends on the value of the column-weight d v of a VN v n , thus we have

ξ =                0, if d v = 2, 1, if d v > 2 and (d v mod 2) = 1, 2, if d v > 2 and (d v mod 2) = 0. (4.3)
From (4.2), one can note that, by construction, µ

(ℓ)
vn→cm takes its values among

{-1, +1} for the special case of d v = 2, {-d v , -d v + 2, ..., -1, +1, ..., +d v } for d v odd,
and

{-d v -1, -d v + 1, . . . , -1, +1, ..., +d v + 1} for d v even and d v > 2. Thus, µ (ℓ)
vn→cm is always an odd number.

Let us now redefine the unsaturated variable-to-check message m (ℓ+1),U vn→cm as

m (ℓ+1),U vn→cm = µ (ℓ) vn→cm 2 + I n + c∈V(vn)\{cm} m (ℓ) c→vn .
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We can note that the fractional part of (µ

(ℓ)
vn→cm )/2 is 0.5. Hence, the alphabet of m (ℓ+1),U vn→cm is given by

A U = {-N q × (d v -1) -N ch -(d v -1 +
ξ)/2, ..., -1.5, -0.5, +0.5, +1.5, ...,

+N q × (d v -1) + N ch + (d v -1 + ξ)/2}.
Then, the update rule at a VNU of the SP-MS decoder with offset value λ v is given by

m (ℓ+1) vn→cm = Ψ v I n , m (ℓ) c→vn c∈V(vn)\{cm} = sign m (ℓ+1),U vn→cm , S max m (ℓ+1),U vn→cm -λ v , 0 , N q .
(4.4)

The APP update at a VN v n of the SP-MS decoder is defined as follows

γ (ℓ) n = Ψ a I n , m (ℓ) c→vn c∈V(vn) = I n + 1 2 × ξ × sign(I n ) + c∈V(vn) m (ℓ) c→vn + 1 2 × sign m (ℓ) c→vn . ( 4.5) 
The alphabet of APPs for SP-MS decoders is given by 

A app = {-N q × d v -N ch - (d v + ξ)/2), ..., -1, 0, +1, ..., +N q × d v + N ch + (d v + ξ)/2)}.

Optimization of Sign-Preserving Min-Sum Decoders

In order to optimize the Sign-Preserving Min-Sum decoders, we use the optimization method proposed in [START_REF] Cochachin | Density Evolution Thresholds for Noise-Against-Noise Min-Sum Decoders[END_REF], i.e., we introduce a certain level of randomness in the decoder during the optimization process. In this work, the optimization process is defined by injecting some randomness during the VNU processing, i.e. the noise perturbs unsaturated v-to-c messages m (ℓ+1),U vn→cm . Hence, the optimization process is given by m(ℓ+1) vn→cm = Υ m (ℓ+1),U vn→cm , (4.6)

Optimization of Sign-Preserving Min-Sum Decoders
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where Υ is a noise model that also performs the saturation function.

After optimization we can obtain two kinds of decoders: (i) a decoder that keeps some randomness named Sign-Preserving Noise-Aided Min-Sum (SP-NA-MS) decoder, or (ii) a deterministic decoder named Sign-Preserving Min-Sum (SP-MS) decoder.

Let us now introduce the constraints on the noise models, and then let us present a noise model that we use to perturb the unsaturated v-to-c messages m (ℓ+1),U vn→cm .

Probabilistic Error Model to Optimize SP-MS Decoders

We assume that the noisy message alphabet is denoted by ÃS . The noisy message m(ℓ+1) vn→cm is obtained after corrupting the noiseless message m In order to be able to perform DE analysis to optimize SP-MS decoders, the considered noise model need to be memoryless, i.e. the noise model has to be independent on data streams processed by the SP-MS decoders. Also, the considered noise model must satisfy the following condition of symmetry

Pr( m = ψ 2 |m u = ψ 1 ) = Pr( m = -ψ 2 |m u = -ψ 1 ), ∀ψ 1 ∈ A U and ψ 2 ∈ ÃS .
When the noise model is memoryless and symmetric, it can be used to inject some randomness at the VNU during the optimization process of the SP-MS decoders, so the noisy-VNU is symmetric, allowing to use the all-zero codeword assumption and the independence assumption necessary in DE [START_REF] Richardson | The capacity of low-density parity-check codes under message-passing decoding[END_REF]. Since the addition of noise in VNUs is independent of the sign of the messages, we will suppose in the sequel without loss of generality that the messages m u and m are always positive. 

p Υ (m u , m) =                        1, if m = +0, m u = +0.5 or if m = +N q , m u > +N q + 0.5, φ(m u ), if m = ⌊m u ⌋ -1, ∀m u ∈ {+1.5, +2.5, ..., +N q + 0.5}, 1 -φ(m u ), if m = ⌊m u ⌋, ∀m u ∈ {+1.5, +2.5, ..., +N q + 0.5}, 0, otherwise, (4.7) 
where φ(m u ) is defined as

φ (m u ) =                φ 0 , if m u = +1.5,
φ a , if m u ∈ {+2.5, +3.5, ..., +N q -0.5},

φ s , if m u = +N q + 0.5, (4.8) 
The noise model analyzed is parametrized by three different transition probabilities φ = (φ s , φ a , φ 0 ). The choice of these three transition probabilities is a trade-off between complexity and the process of the border effects in the message alphabet A S .

The reasoning behind Υ is to implement a probabilistic offset with the purpose of always keeping the sign of the messages. Let us discuss the case of φ s = φ a = φ 0 , the SP-MS decoder with offset value λ v = 1 can be obtained as special case of Υ setting φ = (1, 1, 1), similarly, the SP-MS without offset, i.e. λ v = 0, can be obtained setting φ = (0, 0, 0). Thanks to Υ, we can implement a probabilistic SP-MS decoder whose behaviour is a probabilistic weighted combination of a SP-MS decoder without with probability φ 0 . Since m = ±0 propagates the sign but with a reliability of zero, therefore, φ 0 has to be analyzed differently than φ a . Additionally, in finite precision messages, all values greater than N q are saturated to N q . As a result, many more configurations of the VNU states lead to an output message m = N q compared to other values of m, and φ s should also be analyzed differently than φ a . As an example, Υ is depicted in Fig. 4.2a for (q = 3, N q = 3). It must be noted that the noise model Υ defined above is for the precision messages q ≥ 3. In the case of very low precision messages q = 2, the noise model Υ is given only by one transition probability φ = (φ s ) because the saturation value is N q = 1, hence m u = ±1.5 will be mapped to m = ±0 with probability φ s . For this special case, the message alphabet, which is only composed of four different values, is given by A S = {-1, -0, +0, +1}. Fig. 4.2b shows the noise model Υ for (q = 2, N q = 1).

m u +5.5 +4.5 +3.5 +2.5 +1.5 +0.5 m +3 +2 +1 +0 ϕ s ϕ a ϕ 0 1 1 -ϕ s 1 -ϕ a 1 -ϕ 0 (a) Precision q = 3 m u +5.5 +4.5 +3.5 +2.5 +1.5 +0.5 m +1 +0 ϕ s 1 -ϕ s 1 (b) Precision q = 2

Density Evolution for Sign-Preserving Decoders

The goal of DE [START_REF] Richardson | The capacity of low-density parity-check codes under message-passing decoding[END_REF][START_REF] Richardson | Design of capacityapproaching irregular low-density parity-check codes[END_REF][START_REF] Ngassa | Density evolution and functional threshold for the noisy min-sum decoder[END_REF] is to recursively compute the probability mass function (PMF) of the exchanged messages in the Tanner graph along the iterations. DE allows
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Sign-Preserving Min-Sum Decoders us to predict if an ensemble of LDPC codes, parametrized by its degree distribution, decoded with a given MP decoder, converges to zero error probability in the limit of infinite block length.

In order to derive the DE equations for Sign-Preserving decoders, let Θ (ℓ) (k), k ∈ A S , denote the PMF of noiseless c-to-v messages in the ℓ th iteration. Similarly, let Ω (ℓ) (k), k ∈ A S , denote the PMF of noiseless v-to-c messages in the ℓ th iteration. Also, let Ω (0) (k), k ∈ A L , be the initial PMF of messages sent at ℓ = 0. To deduce the noisy DE equations, let Ω(ℓ) (k), k ∈ A S , denote the PMF of noisy v-to-c messages in the ℓ th iteration. We consider that the all-zero codeword is sent over the BI-AWGN channel.

Initialization

DE is initialized with the PMF of the BI-AWGN channel with noise variance σ 2 as follows

Ω (0) (k) =                                        F (k) if k = -N ch F (k) -F (k -1) if -N ch < k ≤ -1 F (0) -F (-1) if k = -0 F (1) -F (0) if k = +0 F (k + 1) -F (k) if +1 ≤ k < +N ch 1 -F (k) if k = +N ch (4.9)
where F (k) is given by [START_REF] Chung | Analysis of sum-product decoding of low-density parity-check codes using a gaussian approximation[END_REF][START_REF] Fu | On gaussian approximation for density evolution of low-density paritycheck codes[END_REF][START_REF] Li | Density evolution for nonbinary ldpc codes under gaussian approximation[END_REF]: 

F (k) = 1 √ 2πσ n k -∞ e -(t-µn) 2 /2σ
Ω (0) (t)Θ (ℓ) (i 1 )...Θ (ℓ) (i dv-1 ), ∀k ∈ A U . (4.13)
And second, the noise effect is added to the PMF of unsaturated v-to-c messages to obtain the corrupted PMF Ω(ℓ+1)

dv (k) = i∈A U Ω (ℓ+1),U dv (i) × p Υ (i, k), ∀k ∈ A S , (4.14) 
where p Υ , expressed in (4.7), is the transition probability of the VN noise.

In this work we use only the transition probabilities of the noise model Υ defined in Section 4.4. Although of course other noise models can be used.
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Then the effect of the different connection degrees of VNs is considered using the following relation

Ω(ℓ+1) (k) = dv,max dv=2 λ dv × Ω(ℓ+1) dv (k), ∀k ∈ A S (4.15)
In the optimization process of SP-MS decoders, where the effect of noise injection is added at VNUs, the DE update of noisy-VNU is implemented with (4.13), (4.14), and (4.15). The DE update of VNU for SP-MS decoders without noise injection can be obtained setting p Υ (i, k) = 1 if i = k, otherwise p Υ (i, k) = 0, i.e. φ = (0, 0, 0) which corresponds to the offset λ v = 0.

Asymptotic Bit Error Probability

The asymptotic bit error probability can be deduced from the PMF of the APPs, which is obtained from the DE equations. Let p

(ℓ)
e denote the bit error probability at iteration ℓ, which is computed from the PMF of all incoming messages to a VN in the ℓ th iteration, and defined by

p (ℓ) e = 1 2 Γ (ℓ) (0) + -1 i=-(Nq×dv,max+N ch +(dv,max+ξ)/2) Γ (ℓ) (i), (4.16) 
where Γ (ℓ) (k), k ∈ A app , denotes the PMF of the APP at the end of the ℓ th iteration for Sign-Preserving decoders. We can compute Γ (ℓ) (k) as follows depends mainly on the chosen error model and the computing units to which it is applied [START_REF] Ngassa | Density evolution and functional threshold for the noisy min-sum decoder[END_REF].

Γ (ℓ) (k) = dv,max dv=2 λ dv × Γ (ℓ) dv (k),

Density Evolution threshold

The concepts and procedure for calculating the DE thresholds are given in Chapter 3 (Section 3.4.6). In this work, we use δ to jointly optimize the noise model parameters (φ s , φ a , φ 0 ) and the channel gain factor α for a fixed precision (q ch , q) and a fixed degree distribution (λ(x), ρ(x)) as follows

(φ * s , φ * a , φ * 0 , α * ) = arg max (φs,φa,φ 0 ,α)
δ (λ(x), ρ(x), q ch , q, α, (φ s , φ a , φ 0 )) . (4.17)

The optimization of the transition probabilities of the noise model Υ, and the channel gain factor α is made using a greedy algorithm which computes a local maximum DE
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Sign-Preserving Min-Sum Decoders threshold. For noiseless decoders, the optimization (4.17) is reduced to the optimum channel gain factor α * which is computed performing a grid-search.

Asymptotic Analysis of Sign-Preserving Min-Sum Decoders

This section presents the asymptotic analysis of SP-MS decoders with the values of ξ defined in (4.3). One can note that other values of ξ (different from those defined in (4.3)) give worse decoding performance.

Asymptotic Analysis of SP-MS Decoders for Regular

LDPC codes

For all results presented in this section, we consider the ensemble of (d v , d c )-regular LDPC codes with various code rate R for d v ∈ {3, 4, 5, 6}, and quantized decoders with precision q ch ∈ {3, 4} and q ∈ {2, 3, 4}.

We draw the evolution of SP-MS thresholds versus the check-node degree d c on 1. First, the DE thresholds of the SP-MS decoders are always better than the DE thresholds for noiseless classical decoders when the same precision is used. Also, the (q ch = 4, q = 4)-bit SP-MS decoders can almost achieve the same performance as 5-bit OMS decoders because the DE thresholds of (q ch = 4, q = 4)-bit SP-MS decoders are very close to the DE thresholds of the 5-bit OMS decoders.

Asymptotic Analysis of Sign-Preserving Min-Sum Decoders
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2. Second, one can see that for regular LDPC codes with d v > 2, the DE thresholds of (q ch = 4, q = 4)-bit SP-MS decoders are almost equal or equal to the DE thresholds of (q ch = 4, q = 3)-bit SP-MS decoders, except for the regular d v = 3 LDPC codes with d c < 16, in that case the DE thresholds of the (q ch = 4, q = 3)-bit SP-MS decoders are worse than the (q ch = 4, q = 4)-bit SP-MS decoders. We can also observe that the (q ch = 3, q = 3)-bit SP-MS decoders have the same DE thresholds as (q ch = 3, q = 2)-bit SP-MS decoders for the regular d v ≥ 4 LDPC codes, except for the regular d v = 4 LDPC codes with d c < 24 that exhibit worse DE thresholds, while in case of d v = 3 LDPC codes, the (q ch = 3, q = 3)-bit SP-MS decoders exhibit better DE thresholds than the (q ch = 3, q = 2)-bit SP-MS decoders.

From this analysis, we can conclude that the SP-MS decoders with precision q ch can be implemented using very low precision q = q ch -1 for the extrinsic messages. This implies a considerable reduction in the complexity of the CNs and the VNs, as well as a reduction in the number of wires in an implementation, e.g an ASIC implementation.

3. Third, one can note that the difference between the DE thresholds of the (q ch , q = q ch )-bit SP-MS decoders and (q ch , q = q ch -1)-bit SP-MS decoders decreases as d c increases, this phenomenon is very evident when the precision q ch = 3 is used.

In Table 4. Variable node degree : dv and q. Many more conclusions can be derived from this analysis. The DE gains for the SP-MS decoders are quite important for low precision (q ch = 3, q = 3), and very low precision (q ch = 3, q = 2). The largest gain obtained is around 0.3399 dB for the regular (d v = 4, d c = 8) LDPC code and precision (q ch = 3, q = 3). While the DE gains are smaller for the largest precision (q ch = 4, q = 4) and (q ch = 4, q = 3). We can observe a loss of around 0.0102 dB for the regular (d v = 6, d c = 32) LDPC code and precision (q ch = 4, q = 4).

(d v = 3, d c = 6) (d v = 4, d c = 8) (d v = 5, d c = 10) (d v = 6, d c = 32) q ch = q λ v α * δ db α * δ db α * δ db α * δ db 3 bits 0 0.
(d v = 3, d c = 12) (d v = 4, d c = 16) (d v = 5, d c = 20) (d v = 4, d c = 64) q ch = q λ v α * δ db α * δ db α * δ db α * δ
From this analysis, we can conclude that the preservation of the sign of messages is more and more beneficial as the decoders are implemented in low precision. For very low precision messages q = 2, the only transition probability φ * is equal to (φ * s ) = (0) for the regular d v < 5 LDPC codes which correspond to a SP-MS decoder without offset, while for the regular d v ≥ 5 LDPC codes, we obtain that φ * is equal to (φ * s ) = ( 1) which correspond to a SP-MS decoder with offset λ v = 1.

When comparing the DE thresholds of the SP-MS decoders (see Table 4.4) and the NAN-MS decoders (see Table 3.2 and Table 4. 

q ch = q ∈ {3, 4}.
Similar to Chapter 3 (Section 3.6), we consider Υ (2) : φ (2) = φ

(2) s , φ (2) 
a , φ

(2) 0

for d v = 2, Υ (3) : φ (3) = φ (3) s , φ (3) 
a , φ

(3) 0 for d v = 3, and Υ (≥4) : φ (≥4) = φ (≥4) s , φ (≥4) a , φ (≥4) 0 for d v ≥ 4.
The optimization of the transition probabilities for an irregular LDPC code with distribution (λ(x), ρ(x)) is still performed by the maximization of the noisy DE thresholds:

φ (2) * , φ (3) * , φ (≥4) * , α * = arg max (φ (2) ,φ (3) ,φ (≥4) ,α)
δ λ(x), ρ(x), q ch , q, α, φ (2) , φ (3) , φ (≥4) . Another conclusion can be derived from these tables for SP-MS decoders. From the DE analysis we can conclude that the offset λ v = 1 should not be applied on degree

d v = 2
VNs for the case of low precision q = 3, since we obtain always (φ

(2) s , φ (2) 
a , φ

(2) 0 ) = (0, 0, 0).

While for the largest precision q = 4, the offset λ v = 1 should be applied on degree

d v = 2
VNs for some cases. These observations, combined with the fact that the optimum values for φ (≥4) * are always 1 which correspond to the offset λ v = 1, lead to the conclusion that the offset λ v = 1 in SP-MS decoders must be chosen carefully for irregular LDPC codes, especially for the VN degree

d v = 2 and d v = 3.
Finally, the gains of the SP-MS decoders are greater when using irregular codes.

The gain of the rate 1/2 code is 0.4313 dB for the lower precision q = 3, and 0.4394 dB for the largest precision q = 4. In the case of the rate 3/4 code, the gains for the two considered precision q = 3 and q = 4 are smaller than for the rate 1/2 code. Obtaining gains of 0.3803 dB and 0.0306 dB for q = 3 and q = 4, respectively. A first conclusion is that the finite length FER performances are in accordance with the gains predicted by the DE analysis. We observe in the waterfall region (i.e. at FER = 10 -2 ) an SNR gain for the SP-MS decoders which corresponds to the threshold differences (Table 4.4): around 0.27 dB for (q ch = q = 3, (b) Precision q = q ch and q = q ch -1 for (q ch = q = 4, d v = 3, R = 1/2), 0.32 dB for (q ch = q = 3, d v = 4, R = 1/2), and the same performance for (q ch = q = 4, (b) Precision q = q ch and q = q ch -1 correspond to what was predicted with the DE analysis, with a 0.16 dB gain for q ch = q = 3 and 0.04 dB for q ch = q = 4. (b) Precision q = q ch and q = q ch -1 Fig. 4.7 FER performance for (4, 64)-regular QC-LDPC code.

d v = 3, R = 1/
d v = 4, R = 1/2).
On the other hand, from Fig. 4.5b, it is evident that the SP-MS decoders that use the precision q = q ch -1 exhibit very poor performance having an early error floor. In the case of d v = 4 QC-LDPC decoders, see Fig. 4.7b, we can confirm again that the SNR gains in waterfall correspond to the DE gains for the precision message q = q ch -1, but we can observe that the d v = 4 QC-LDPC decoders exhibit an early error floor. (b) Precision q = q ch and q = q ch -1 SNR gains, 0.20 dB for (q ch = q = 3, d v = 5, R = 1/2), and 0.02 dB for (q = 4, d v = 5, R = 1/2). Similarly, when the precision of messages equals q = q ch -1, the SNR gains correspond to the DE gains with a 0.20 dB gain for (q ch = 3, q = 2) and a 0.02 dB gain for (q ch = 4, q = 3).

Simulation results for the IEEE 802.3 ETHERNET code are provided on Fig. 4.9 with a maximum of 30 iterations. Again, the SNR gains in the waterfall correspond to what was predicted with the DE analysis, with a 0.19 dB gain for (q ch = 3, q = 3) and (q ch = 3, q = 2), and the same performance is achieved for (q ch = 4, q = 4) and (q ch = 4, q = 3). (b) Precision q = q ch and q = q ch -1 Fig. 4.9 FER performance for the ETHERNET code.

From Fig. 4.8b for d v = 5 QC-LDPC decoders and Fig. 4.9b for d v = 6 Reed-Solomon LDPC (RS-LDPC) decoders, we can confirm and conclude that the (q ch , q = q ch -1)-bit SP-MS decoders have the same performance as the (q ch , q = q ch )-bit SP-MS decoders, except for the d v = 5 QC-LDPC decoders and precision (q ch = 3, q = 2), in that case a negligible loss of performance is observed. In the implementation part this has a great impact, since it goes from the precision message q = q ch to the precision q = q ch -1, this implies a considerable reduction in the complexity of the CNs and VNs, as well as a reduction in the number of wires in an ASIC implementation. of 100 iterations. We observe again that the SNR gains in the waterfall region are in agreement with the gains predicted by the DE analysis, with a 0.40 dB gain for (q ch = q = 3, R = 1/2), a 0.40 dB gain for (q ch = q = 4, R = 1/2), a 0.37 dB gain for (q ch = q = 3, R = 3/4), and a 0.03 dB gain for (q ch = q = 3, R = 3/4).

Additionally, for the WIMAX rate 1/2 LDPC code, the (q ch = 3, q = 3)-bit SP-MS decoder has the same FER performance as the 4-bit MS decoder. In the waterfall region, the (q ch = 4, q = 4)-bit SP-MS decoder has the same FER performance as the 5-bit OMS decoder, while in the error floor region, the 5-bit OMS decoder has better FER performance than the (q ch = 4, q = 4)-bit SP-MS decoder. In the case of the WIMAX rate 3/4 B LDPC code, the SP-MS decoders have better FER performance than the MS and the OMS decoders in the error floor region using the same precision. On the other hand, one can note that for regular and irregular LDPC codes, the SP-MS decoders have a performance very close or even the same as the SP-NA-MS decoders when the same precision is used, this means that the noise injected in SP-NA-MS decoders can be ignored without affecting the performance of the SP-MS decoders which is the same conclusion obtained in the previous section. Therefore, the most important thing about SP-MS decoders is their nature, which is the preservation of the sign of the messages exchanged between VNs and CNs during the decoding process.

Comparing the FER performance of the SP-MS decoders and the NAN-MS decoders, we can clearly see that the SP-MS decoders have a better performance for both regular codes and irregular codes, especially when the precision of the messages is low. We can confirm again that the FER performances are in accordance with the gains predicted by the DE analysis.

As a last remark, we can also see that the preservation of the sign of messages does not seem to have an influence in the error floor of the decoders, since all the curves have similar slopes in the low FER region. This means that the preservation of the sign of messages does not correct the dominant error events due to trapping sets. 

Convergence Performance Analysis

Convergence Performance Analysis

In this section, we present the FER convergence performance for the (d v , d c )-regular QC-LDPC codes, for the IEEE 802.3 ETHERNET code [START_REF]IEEE Standard for Ethernet[END_REF], and the two WIMAX LDPC codes [START_REF]IEEE Standard for Local and metropolitan area networks -Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems -Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1[END_REF] used in Section 4.9. The FER is evaluated at each decoding iteration for the classical MS, the classical OMS, the SP-NA-MS, and the SP-MS decoders over the BI-AWGN channel. and Fig. 4.20 present FER convergence results for the WIMAX LDPC code. These figures show that the SP-NA-MS and the SP-MS decoders are faster to find the correct solution compared with classical MS and classical OMS decoders for a fixed precision q = q ch , a fixed degree distribution (λ(x), ρ(x)), and a fixed E b /N 0 . It can be seen that the FER curves of the SP-MS decoders decrease faster than the MS and the OMS decoders. In addition, for low precision (q ch , q = 3), the SP-MS decoders perform much better than MS and OMS decoders along with the number of iterations increasing. It can also be observed that the SP-MS decoders have the same FER convergence performance as the SP-NA-MS decoders for a fixed precision q = q ch . One can note that for regular LDPC codes with d v > 4, the FER convergence performance of the (q ch , q = q ch -1)-bit SP-MS decoders are almost equal or equal to the FER convergence performance of (q ch , q = q ch )-bit SP-MS decoders, see Fig. (b) Precision q = q ch and q = q ch -1. (b) Precision q = q ch and q = q ch -1. (b) Precision q = q ch and q = q ch -1. (b) Precision q = q ch and q = q ch -1. (b) Precision q = q ch and q = q ch -1. (b) Precision q = q ch and q = q ch -1. (b) Precision q = q ch and q = q ch -1. worse FER convergence performance than the SP-MS decoders using q = q ch due to the early appearance of the error floor.

On the other hand, for all decoders tested using QC-LDPC codes with length N ∈ {1296, 1280}, one can set the maximum number of iterations to 20 because after 20 iterations the slopes of the curves change drastically. For the ETHERNET code, a maximum of 10 iterations can be used for the SP-MS and decoders and precision q ∈ {3, 4}, while for the SP-MS decoders using precision q ∈ {2, 3}, a maximum of 15 iterations can be used. In the case of the WIMAX code, 30 and 20 iterations as maximum can be set for R = 1/2 and R = 3/4, respectively. From this analysis we can say that the maximum number of iterations allowed in a SP-MS decoder will depend on the length of the LDPC code N , the degree distribution (λ(x), ρ(x)), and the precision used (q ch , q). Let us analyse further the FER convergence performance for the case of the IEEE 802.3 ETHERNET code. During the first 10 decoding iterations, the (4, 4)-bit SP-MS and the (4, 3)-bit SP-MS decoders have almost the same FER performance as the 5-bit OMS decoders. We can observe that the SP-MS, MS, and OMS decoders 116 Sign-Preserving Min-Sum Decoders decrease slowly and in some cases they do not decrease after 15 iterations. Also, at E b /N 0 = 4.75 dB (Fig. 4.18), the (3, 3)-bit SP-MS and the (3, 2)-bit SP-MS decoders with 15 iterations reach the FER= 10 -6 . Similarly, the 4-bit OMS decoder with 9 iterations, the (4, 4)-bit SP-MS and the (4, 3)-bit SP-MS decoders with 8 iterations, and the 5-bit OMS decoder with 7 iterations reach the FER= 10 -6 . We can also see that during the first 10 decoding iterations, the FER curve of the (4, 3)-bit SP-MS decoder is almost an iteration away from the FER curve of the 5-bit OMS decoder.

In the case of the WIMAX rate 1/2 LDPC code at E b /N 0 = 2.0 dB (Fig. 4.19), we can see that (4, 4)-bit SP-MS decoder has the same FER performance as the 5-bit OMS decoder throughout the first 30 iterations. It can also be seen that the (3, 3)-bit SP-MS can achieve the same FER performance as the 4-bit MS decoder using 5 iterations more on average. For the WIMAX rate 3/4 B LDPC code at E b /N 0 = 3.25 dB (Fig. 4.20), we observe that the SP-MS decoders have better FER performance than the MS and the OMS decoder throughout the iterations using the same precision (q ch , q). converge faster than the MS and the OMS decoders when the same precision is used, (iii) the SP-MS decoder uses fewer iterations than the the MS and the OMS to reach at a fixed value of FER.

The SP-NA-MS and the SP-MS decoders are the best decoders because these decoders use the sign information of the messages. Specifically at the VNs, the sign of the c-to-v messages is used to increase the reliability of the v-to-c messages and the APP, this causes the decoder to converge faster, i.e. a smaller number of iterations is used. We can note that if the reliability of the APPs increases then the reliability of the estimated bits also increases, i.e. the estimated codeword is more reliable.

Conclusion

In this chapter we have proposed a new message passing iterative LDPC decoder defining a sign-preserving factor which helps the decoder to keep the sign information of extrinsic messages during the VNU processing. The sign-preserving factor helps to improve the error-correcting performance of finite precision iterative decoders. We have also proposed a noise model to introduce randomness in the optimization process of Sign-Preserving Min-Sum Decoders the proposed decoder. Density Evolution was used to optimize our SP-MS decoder performance. The analysis conducted with DE has shown that the preservation of sign of messages is always beneficial for low precision SP-MS decoders. Further DE analysis has shown that the noise injected in the SP-NA-MS decoders can be ignored without degrading their error-correcting performance, specially when the optimized transition probabilities are very close or equal to 0 or 1. Also, the DE thresholds results have shown that the precision of messages can be reduced by one bit maintaining the same error-correcting performance. The finite-length Monte Carlo simulations have corroborated the DE analysis and DE thresholds. We have also shown that the SP-MS decoders converge faster and use fewer iterations than the MS and OMS decoders.

From our study, an efficient implementation of SP-MS decoders can be made in a full-parallel architecture because the reduction of one bit in the precision of messages implies a considerable reduction in the complexity of the CNU and the VNU, and a great reduction in the total number of wires in the architecture. The cost that is paid for reducing the precision of the messages is the early appearance of the error floor, specially for the regular d v = 3 and d v = 4 LDPC codes.

The next chapter discusses the implementation of the (q ch , q)-bit SP-MS decoders for regular LDPC codes, for the IEEE 802.3 ETHERNET code, and for the WIMAX LDPC code with rate R = 1/2.

Chapter 5

Implementation of Sign-Preserving

Min-Sum Decoders

This Chapter presents the hardware implementation results of SP-MS decoders, first several LDPC decoders are studied, then the case of the IEEE 802.3 ETHERNET code is studied in detail. In particular, we presents two methods (one of them new) to efficiently mitigate the error floor at high levels of SNR. The resulting design of a 28 nm place and route ASIC shows very good results compared to state of the art implementations.

The outline of this chapter is as follows. The first section of this chapter presents rapidly the state of the art of highly parallel decoders. In the second section, we propose a fully parallel architecture to implement the MS, the OMS, and the SP-MS decoders for regular and irregular LDPC codes. The third section reports the the implementation results of the various regular and irregular LDPC decoders. The fourth section briefly discusses the trapping-sets for the IEEE 802.3 ETHERNET code. In the fifth section, we propose a post-processing architecture using the same precision for messages and LLRs. We also propose an architecture that implements the SP-MS decoder for the IEEE 802.3 ETHERNET code. In the sixth section, we introduce a new post-processing Implementation of Sign-Preserving Min-Sum Decoders algorithm for low precision decoders. Also, we present a fully parallel architecture that implements the proposed algorithm. The architecture is conceived for SP-MS decoders that use different precision for messages and LLRs. The seventh section reports the implementation results of the two proposed post-processing architectures. Also, the place and route results for two SP-MS decoders are listed, and the eighth section concludes this chapter.

Overview of Existing Hardware Implementations

In the past twenty years, the implementation of the OMS-based decoders in FPGAs and in CMOS technologies (ASIC implementations) has been studied and reported [START_REF] Nguyen-Ly | Fpga design of high throughput ldpc decoder based on imprecise offset min-sum decoding[END_REF][START_REF] Zhang | An efficient 10gbaset ethernet ldpc decoder design with low error floors[END_REF][START_REF] Mohsenin | A low-complexity message-passing algorithm for reduced routing congestion in ldpc decoders[END_REF][START_REF] Cheng | A fully parallel ldpc decoder architecture using probabilistic min-sum algorithm for high-throughput applications[END_REF][START_REF] Angarita | Reduced-complexity min-sum algorithm for decoding ldpc codes with low error-floor[END_REF][START_REF] Naderi | Delayed stochastic decoding of ldpc codes[END_REF]. In the literature, we can find works that implement quantized decoders using a fully parallel architecture [START_REF] Mohsenin | A low-complexity message-passing algorithm for reduced routing congestion in ldpc decoders[END_REF][START_REF] Cheng | A fully parallel ldpc decoder architecture using probabilistic min-sum algorithm for high-throughput applications[END_REF][START_REF] Naderi | Delayed stochastic decoding of ldpc codes[END_REF][START_REF] Angarita | Reduced-complexity min-sum algorithm for decoding ldpc codes with low error-floor[END_REF]. A parallel architecture is desirable for high-throughput applications, but it does not efficiently use the implementation area and presents routing congestion problems. In [START_REF] Blanksby | A 690-mw 1-gb/s 1024-b, rate-1/2 lowdensity parity-check code decoder[END_REF], the authors have show that the area of a parallel architecture is determined by routing congestion and not by the gate count. The routing congestion problem of a parallel LDPC decoder can be reduced using a layer architecture [START_REF] Nguyen-Ly | Analysis and design of cost-effective, high-throughput ldpc decoders[END_REF][START_REF] Zhang | A full layer parallel qc-ldpc decoder for wimax and wi-fi[END_REF][START_REF] Zhang | High-throughput layered decoder implementation for quasi-cyclic ldpc codes[END_REF]. In [START_REF] Darabiha | Power reduction techniques for ldpc decoders[END_REF] a bit serial architecture is proposed to alleviate the routing problem, but bit serial architecture greatly reduces the decoding throughput. In [START_REF] Zhang | An efficient 10gbaset ethernet ldpc decoder design with low error floors[END_REF], the authors use a grouping strategy of wires to reduce the routing congestion, the strategy consists of dividing the wires into global wires and local wires obtaining a partial-parallel architecture. Another strategy to reduce the routing congestion is to reduce the precision of messages, this strategy is used in [START_REF] Nguyen-Ly | Analysis and design of cost-effective, high-throughput ldpc decoders[END_REF] using the nonsurjective finite alphabet iterative decoder (NS-FAID), and in [START_REF] Ghanaatian | A 588-gb/s ldpc decoder based on finite-alphabet message passing[END_REF] using the FAID and an unrolled full-parallel architecture [START_REF] Schläfer | A new dimension of parallelism in ultra high throughput ldpc decoding[END_REF][START_REF] Balatsoukas-Stimming | A fully-unrolled ldpc decoder based on quantized message passing[END_REF] . The stochastic-based decoders 5.1 Overview of Existing Hardware Implementations 121 [START_REF] Sharifi Tehrani | Majority-based tracking forecast memories for stochastic ldpc decoding[END_REF][START_REF] Naderi | Delayed stochastic decoding of ldpc codes[END_REF] and the noisy gradient descent bit flipping decoder [START_REF] Sundararajan | Asic design of a noisy gradient descent bit flip decoder for 10gbase-t ethernet standard[END_REF] use 1 bit of precision for the messages helping to solve the problem of routing congestion.

Although it is true that quantized decoders have good error correction performance at low SNR levels (waterfall region), at high SNR levels the slope of the FER curve often changes drastically degrading the error correction capability (error floor region). This phenomenon called floor error is usually caused by small trapping-sets [START_REF] Richardson | Error floors of ldpc codes[END_REF]. In communication standards such as the IEEE 802.3 standard (10GBASE-T ETHERNET) that requires an error-free operation below the FER level of 10 -10 , the early appearance of the error floor degrades the service. Many algorithms have been proposed in the literature in order to lower the error floor [START_REF] Zhang | An efficient 10gbaset ethernet ldpc decoder design with low error floors[END_REF][START_REF] Zhang | Lowering ldpc error floors by postprocessing[END_REF][START_REF] Han | Low-floor decoders for ldpc codes[END_REF][START_REF] Landner | Algorithmic and combinatorial analysis of trapping sets in structured ldpc codes[END_REF][START_REF] Gong | Effective informed dynamic scheduling for belief propagation decoding of ldpc codes[END_REF][START_REF] Chen | Hardware implementation of a backtracking-based reconfigurable decoder for lowering the error floor of quasicyclic ldpc codes[END_REF]. The IEEE 802.3 ETHERNET code is one of the most studied regular LPDC codes to perform an implementation, several architectures and decoders have been proposed [63, 54-58, 74, 67]. The WIMAX LDPC code with rate R = 1/2 and length N = 2304 has also received important attention to carry out its implementation [START_REF] Zhang | A full layer parallel qc-ldpc decoder for wimax and wi-fi[END_REF][START_REF] Nguyen-Ly | Analysis and design of cost-effective, high-throughput ldpc decoders[END_REF][START_REF] Zhang | High-throughput layered decoder implementation for quasi-cyclic ldpc codes[END_REF][START_REF] Liu | An ldpc decoder chip based on self-routing network for ieee 802.16e applications[END_REF][START_REF] Xiang | An 847-955 mb/s 342-397 mw dualpath fully-overlapped qc-ldpc decoder for wimax system in 0.13µm cmos[END_REF][START_REF] Shih | An 8.29 mm 2 52 mw multi-mode ldpc decoder design for mobile wimax system in 0.13µm cmos process[END_REF].

In this work, in order to achieve high decoding speeds, we propose a fully parallel architecture to implement the MS, the OMS, and the SP-MS decoders for regular and irregular LDPC codes. We investigate whether the SP-MS decoder uses an area equivalent to or greater than the area used by the MS and the OMS decoder. We also investigate in what percentage the area of the SP-MS decreases when the precision of the messages goes from q = q ch bits to q = q ch -1 bits. On the other hand, the error floor of the IEEE 802.3 ETHERNET code is studied because the SP-MS decoder exhibit an error floor at a FER level of 10 -8 making the SP-MS unacceptable.

In order to lower the error floor of SP-MS decoders, this work proposes a new post-processing algorithm based on the algorithm of [START_REF] Zhang | Lowering ldpc error floors by postprocessing[END_REF][START_REF] Zhang | An efficient 10gbaset ethernet ldpc decoder design with low error floors[END_REF]. In addition, this work proposes two fully parallel post-processing architectures: (i) the first architecture adapts the post-processing algorithm of [START_REF] Zhang | Lowering ldpc error floors by postprocessing[END_REF][START_REF] Zhang | An efficient 10gbaset ethernet ldpc decoder design with low error floors[END_REF] and uses the same precision for messages and Implementation of Sign-Preserving Min-Sum Decoders for LLRs, and (ii) the second architecture incorporates the proposed post-processing algorithm and uses different precision for messages and for LLRs. Almost all the results of the area used and the power consumed by the decoders are obtained by making only the synthesis (FPGA and ASIC) of the decoders. At the moment that the place and route results are presented, it will be clearly stated.

Hardware Architecture of Sign-Preserving

Min-Sum Decoders

In this section, we propose a fully parallel architecture for Sign-Preserving Min-Sum decoders that can be easily adaptable to implement the MS or the OMS decoders. The proposed architecture performs a decoding iteration per clock cycle in order to achieve very high throughput and ensure efficient use of hardware resources.

The input and output signals of the architecture are shown in Fig. 5.1. We can observe that the input signals are clk which is the global clock, rst which is a signal that puts the architecture in initial conditions, go which is a signal that allows the decoding process, and DecInput (of q ch × N bits) which is the quantized version of the LLRs computed by I n = Q * (LLR(y n )) ∈ A S for n = 1, . . . , N . We can also see that the output signals are Codeword which is an estimated codeword x = (x 1 , ..., xN ) ∈ {0, 1} N , EndIter indicates the end of the current decoding process, it can be set to 1 if a valid codeword is obtained or if the maximum number of iteration is reached, and EndSyndr which is a signal equal to 0 if and only if a valid codeword is obtained. At the beginning of the architecture's operation, the reset signal is set to rst = 1 in order to initialize all signals. To start the decoding process, the signal go is set to 1 while reset equals rst = 0.

Hardware Architecture of Sign-Preserving Min-Sum Decoders
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Our architecture is composed of four main components: VNU, CNU, Count of Iterations, and Compute Syndrome. For a fixed degree distribution (λ(x), ρ(x)), it is sufficient to change the component VNU to implement the MS or the OMS for regular or irregular LDPC codes. It should be noted that for a regular code (ρ(x) = x dc-1 ), only one type of CNU is implemented, while in the case of irregular codes (ρ(x) = dc,max j=2 ρ j x j-1 ), various types of CNUs are implemented. It is worth mentioning that a C code has been written to generate the architecture from the description of a sparse parity-check matrix H. Those components are shown in Fig. 5.1 and they are discussed as follows.

Count of Iterations

This component is responsible for counting the decoding iterations. From Fig. 5.1, we can see that the input signals are clk, rst, and initialize, and the output signal is maxIter.

The count of the iterations is controlled by the signal initialize. When initialize = 1, the v-to-c messages are initialized with the quantized LLRs I n using S(I n , N q ), therefore, no iteration is counted and maxIter = 0. In the case that initialize = 0, the architecture performs the decoding process and one iteration is counted per each clock cycle, it should be noted that maxIter = 1 if and only if the maximum number of iteration is reached, otherwise maxIter = 0.

Compute Syndrome

This component is an asynchronous circuit and computes the syndrome at each decoding iteration. Its input signals are rst, go, maxIter, and decision which has N information bits, and its output signals are EndSyndr, EndIter, and codeword which is an estimation of the transmitted codeword over a noisy channel.
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The estimated bit xn is obtained from the sign of γ * n and the sign of the quantized LLR I n as follows: if γ * n = 0 we have xn = sign(I n ), otherwise xn = sign(γ * n ).

Check Node Component

The proposed architecture uses M CNU components. Each CNU c m is an asynchronous circuit that receives v-to-c messages m v→cm from the neighboring VNs v ∈ V(c m ). Note that each received message is represented by q bits. Among all received messages, the CNU c m computes the smallest element min 1 and the second smallest element min 2 
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Compute xn CNU CNU some cases a little more and in other cases a little less) the SP-MS decoder uses as many resources as the MS and the OMS decoder. Therefore, we can conclude that the complexity increment of the SP-MS decoder is negligible compared to the MS and OMS decoders when the same precision is used.

T T -1 m vn→c1 m c1→vn T T -1 m vn→c2 m c2→vn T T -1 m vn→cd v m cd v →vn I N T E R L E V E R γ * n
I N T E R L E V E R 1 1 1 v-to-c c-to-v c-to-v v-to-c v-to-c v-to-c c-to-v c-to-v CNU c-to-v v-to-c VNU v-to-c c-to-v 1 q q ch 1 0 1 0 1 0 1 0 1 0 initialize m cm→v2 Υ * Υ * Υ * sign(I n ) 1 1 q q q q q q q q q m cm→v1 m cm→vd c 2q -1 q q q S(I n , N q ) q ch
Table 5.2 shows the case of SP-MS decoders in which the message precision is different from the LLR precision for the IEEE ETHERNET code. From the obtained synthesis results, we can clearly see that the (q ch , q = q ch -1)-bit SP-MS decoders use less resources than the (q ch , q = q ch )-bit SP-MS decoders. A large savings of FPGA resources can be observed: around 27% of slice registers and 35% of slice LUTs for the precision (q ch = 3, q = 2) compared to (q ch = 3, q = 3), and 20% of slice registers and 10% of slice LUTs for the precision (q ch = 4, q = 3) compared to (q ch = 4, q = 4).

The synthesis results of the WIMAX rate 1/2 LDPC code is listed in Table 5.3.

The results show that the maximum frequency reached by the SP-MS decoders is a little higher than the maximum frequency of the MS and OMS decoders. Also, for both 130 Implementation of Sign-Preserving Min-Sum Decoders precisions q ch = q = 3 and q ch = q = 4, when comparing the use of FPGA resources, the SP-MS decoders use a little less resources compared to the MS and OMS decoders.

In this case, the complexity of the SP-MS decoder architecture is not increased. WIMAX LDPC code with R = 1/2

Precision (q ch = 3, q = 3) Precision (q ch = 4, q = 4) 

Decoder

ASIC synthesis results

This section reports the ASIC synthesis results for the MS, OMS, and SP-MS decoders using the 28 nm Fully Depleted of Silicon-on-Insulator (FDSOI) library at 0.9 V supply In order to measure the increase or decrease in complexity and power consumption of the SP-MS decoders, we list the area and power of each VNU/CNU of the MS, OMS, and SP-MS decoders in Table 5.4, Table 5.5, and Table 5.6. It must be taken into account that these tables were obtained considering an isolated VNU and an isolated CNU. One can note that for a fixed precision (q ch , q) and a fixed degree distribution (λ(x), ρ(x)), the same CNU is used to implement the MS, the OMS, and the SP-MS decoder. Therefore, the difference of the MS, OMS, and SP-MS decoders lies in the VNU.

From the results presented in Table 5.4, we can observe that a VNU of the SP-MS decoder uses less area than a VNU of the OMS decoder and more area than a VNU of the MS decoder. In other words, the VNU of the proposed decoder (SP-MS) helps to reduce the area used by the architecture of the OMS decoder. Also, when comparing the power consumption of the VNU, the SP-MS consumes less power than the OMS and more power than the MS. Table 5.5 and Fig. 5.4 show the area utilization and power consumption of a VNU of the SP-MS decoder when the precision of the messages goes from q = q ch bits to q = q ch -1 bits. One can note that a VNU/CNU of the (q ch , q = q ch -1)-bit SP-MS decoder helps to reduce the area used and the power consumed by a VNU/CNU of the (q ch , q = q ch )-bit SP-MS decoder. For the case of the precision (q ch = 3, q = 2) : (i) the CNU reduces an area of 459.73 µm 2 by 59.82% to 184.74 µm 2 , i.e. a saving of around 60% is achieved, and (ii) the VNU reduces an area of 446.2 µm 2 by 24.47% to 337.0 µm 2 . In the case of the precision (q ch = 4, q = 3), (i) the CNU helps to reduce an area of 883.24 µm 2 by 47.95% to 459.73 µm 2 (saving approximately 50% of the area), and Implementation of Sign-Preserving Min-Sum Decoders Table 5.4 ASIC synthesis results using the 28 nm FDSOI library for only one VNU of degree d v and only one CNU of degree d c .

(d v , d c )-regular LDPC code Precision (q ch = 3, q = 3) Precision (q ch = 4, q = 4) Precision : (q ch , q) (from 208.9 µW to 137.1 µW) for the VNU and very low precision (q ch = 3, q = 2).

(d v ,
(3,2) (3,3) (4,
More results are shown in the Table 5.5.

We can conclude that using one bit less to represent the messages, The VNU and especially the CNU can greatly reduce the area used to implement the (q ch , q = q ch -1)bit SP-MS decoder compared to the area used by the (q ch , q = q ch )-bit SP-MS decoder. WIMAX code, R = 1/2

d v = 2 d v = 3 d v = 6
(a) Area. WIMAX code, R = 1/2

d v = 2 d v = 3 d v = 6
(b) Power. Let us now present the ASIC synthesis results for the fully parallel architecture.

One should note that for a fixed precision (q ch , q) and a fixed degree distribution (λ(x), ρ(x)), the total number of wires is the same for the MS, OMS, and SP-MS decoders. To implement the three decoders (MS, OMS, and SP-MS), we only need to use the appropriate VNU in the architecture presented in Fig. 5.1. Hence, the area used by the decoders is linear to the area used by a single VNU. But the power consumption of the decoder is not linear to the power consumption of a single VNU, this is because in the decoder a VNU is no longer isolated but interacts with the CNUs.

In order to measure the energy needed to decode a bit for the fully parallel architecture, we define the energy per decoded bit (EpB) given by EpB = Power Throughput , pJ/bit (5.2) where Throughput (in Gbps) is the decoding throughput, and Power (in mW) is the power dissipation of the quantized decoder.

Analyzing the results obtained for (d v , d c )-regular LDPC decoders listed in Table 5.7, two conclusions can be stated: Precision (q ch = 3, q = 3) Precision (q ch = 4, q = 4) Let us now study the SP-MS decoders considering that the message precision is different from the LLR precision. Table 5.8 shows the area utilization and power consumption for the d v = 6 RS-LDPC decoders, also, the decoding throughput and the energy per decoded bit are listed. For a frequency of 600 MHz with a maximum of 10 iterations, the minimum throughput reached is 122.88 Gbps. The average number of decoding iterations in a SP-MS decoder at E b /N 0 = 4.75 dB is around 3, hence, the decoding throughput reached is around 409.60 Gbps.

(d v ,
From the results, we can confirm and conclude that the (q ch , q = q ch -1)-bit SP-MS decoder uses less area and consumes less power than the (q ch , q = q ch )-bit SP-MS decoder. We can observe that the (q ch = 3, q = 2)-bit SP-MS decoder reduces an area of 1.105 mm 2 by 29.96% down to 0.774 mm and the (q ch = 4, q = 3)-bit SP-MS decoder reduces an area of 1.540 mm 2 by 27.60% to 1.115 mm 2 (saving approximately 28% of the area). When comparing the power consumption, one can see a power consumption saving of 28.11% (from 336.91 mW to 242.19 mW) for very low precision (q ch = 3, q = 2), while for precision (q ch = 4, q = 3), the reduction of power consumption is 22.73%, i.e., from 419.17 mW to 323.91 mW.

Table 5.8 ASIC synthesis results using the 28 nm FDSOI library for the (q ch , q)-bit SP-MS decoders. [START_REF]IEEE Standard for Ethernet[END_REF][START_REF] Declercq | Channel Coding: Theory, Algorithms, and Applications[END_REF]-regular LDPC, N = 2048 Fig. 5.6 Total number of wires of a fully parallel architecture for the (q ch , q)-bit SP-MS decoders.

As we implement the decoders using a fully parallel architecture (N VNUs and M CNUs), the total number of wires used for the SP-MS decoder depends on the precision used, specifically of the precision used by the messages, i.e the total number of wires depends on q. Fig. 5.6 depicts the total number of wires of the ETHERNET code for Implementation of Sign-Preserving Min-Sum Decoders the (q ch , q)-bit SP-MS decoders. When the precision q goes from 3 bits to 2 bits, the reduction of wires is 33.33%, in the case that the precision q goes from 4 bits to 3 bits, a reduction of 25% of wires is obtained. One can note that the (4, 3)-bit SP-MS and the (3, 3)-bit SP-MS use the same amount of wires. Fig. 5.7 illustrates the area used for the (q ch , q)-bit SP-MS decoders. We can see that the (3, 2)-bit SP-MS decoder is the smallest decoder, the (4, 4)-bit SP-MS decoder is the biggest decoder, and the (4, 3)-bit SP-MS decoder occupies an area slightly greater than the (3, 3)-bit SP-MS decoder. Fig. 5.8 shows the area used and the power consumption for the MS, OMS, and SP-MS decoders. One can observe that the (q ch , q = q ch -1)-bit SP-MS decoder is the smallest decoder, and it consumes slightly more power than the MS and OMS decoder.

Precision : (q ch , q) The area utilization and power consumption of the (q ch , q)-bit SP-MS decoders.

From the analysis of the SP-MS decoders using q ch bits LLRs and q bits messages, with q ∈ {2, 3, 4} and q ch ∈ {3, 4}, we can conclude that: (i) the (3, 2)-bit SP-MS decoder will always be the smallest decoder, (ii) the (q ch , q = q ch )-bit SP-MS decoder always occupies an area smaller than the (q ch , q = q ch )-bit OMS decoder, and (iii) the ( 4 (a) Precision q = q ch = 3. Although it is true that the results presented, considering q = q ch -1, are for the Table 5.9 ASIC synthesis results using the 28 nm FDSOI library for the WIMAX LDPC code with R = 1/2 and N = 2304

Irregular LDPC code, BI-AWGN channel Precision (q ch = 3, q = 3) Precision (q ch = 4, q = 4) confirm the conclusions of the regular LDPC codes analysis: (i) the (q ch , q = q ch )-bit SP-MS decoder occupies less area than the (q ch , q = q ch )-bit OMS decoder, (ii) the SP-MS decoder consumes slightly more power than the MS and OMS, i.e. the SP-MS Implementation of Sign-Preserving Min-Sum Decoders decoder uses slightly more energy to decode a bit when using q = q ch . Fig. 5.9 depicts the area utilization and power consumption of the decoders considered. Also, the error-floor exhibited by quantized (2048,1723) RS-LDPC decoders (without an post-processing algorithm) is around 10 -8 of FER and is mainly due to [START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF][START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF] trapping-sets [START_REF] Zhang | Lowering ldpc error floors by postprocessing[END_REF][START_REF] Zhang | Design of ldpc decoders for improved low error rate performance: quantization and algorithm choices[END_REF]. The (q ch , q)-bit SP-MS decoder also exhibits the appearance of the error between 10 -7 and 10 -8 of FER as shown in Fig. 5.11. The IEEE 802.3

ETHERNET code is selected to provide an error-free operation below the bit error rate (BER) level of 10 -12 which corresponds to a frame error rate (FER) ≈ 10 -10 . Hence, the need to correct the [START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF][START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF] absorbing set errors that are the dominant trapping sets and are the main responsible for the error-floor.

SP-MS Decoder with Post-Processing Using

the Same Precision for Messages and LLRs

Post-Processing

In high-speed quantized decoders, the decoder can not know the absorbing set D, it is only possible to know the sets N (D), O(D), and S(D) in order to correct the absorbing set errors. In [START_REF] Zhang | Lowering ldpc error floors by postprocessing[END_REF][START_REF] Zhang | An efficient 10gbaset ethernet ldpc decoder design with low error floors[END_REF], the authors have defined a post-processing algorithm The post-processing algorithm implemented in the (q ch , q = q ch )-bit SP-MS decoder uses the same principle as the algorithm proposed in [START_REF] Zhang | Lowering ldpc error floors by postprocessing[END_REF]. In SP-MS decoders, it is sufficient to know the set of unsatisfied CNs O(D) to correct the [START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF][START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF] (b) The decoding process continues with the SP-MS decoder until the syndrome vector is all-zero or the maximum number of iterations is reached.
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Note that step (a) can be done locally at the VNU level and its procedure is described in the following section.

Post-Processing Architecture

This section presents an architecture designed mainly to correct the (8, 8) absorbing set errors. The (q ch , q = q ch )-bit SP-MS decoder and the message biasing are implemented together, thus adding only a little complexity to the decoder. Fig. 5.12 shows the proposed fully parallel architecture to correct the [START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF][START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF] When the decoding process is enabled, i.e. rst = 0 and go = 1, EndSyndr is determined with the OR logic of all the values of the syndrome vector, hence, a correct codeword is obtained when EndSyndr = 0 and the decoding process ends (EndIter = 1).

When EndSyndr = 1, a valid codeword is not computed and the decoding process continues (EndIter = 0). When maxIter = 1, we have EndIter = 1, and EndSyndr can be 0 or 1.

VNU Component

The For the proposed architecture, we determine by simulation that the optimal value of weak and strong are: (i) weak = (sign(m), 00) and strong = (sign(m), 11) for precision q ch = q = 3, and (ii) while for precision q ch = q = 4, weak = (sign(m), 001 

CNU I N T E R L E V E R 1 1 c-to-v v-to-c v-to-c c-to-v CNU c-to-v v-to-c VNU v-to-c c-to-v 1 q q 1 0 1 0 1 0 1 0 initialize Υ * Υ * sign(I n ) 1 q q q q m * cm→v1 m * cm→vd c 2q -1 q q q m c1→vn V 0 1 q 0 1 Weak Strong post d v 1 q m cd v →vn V 0 1 q 0 1 Weak Strong

Performance results

In this section, we present the FER performance of the proposed architecture for the two considered precisions q ch = q = 3 and q ch = q = 4. Fig. 5.14 FER (solid lines) and BER (dashed lines) convergence comparison on the IEEE 802.3 ETHERNET code at E b /N 0 = 4.5 dB using a maximum of 9 iterations of (q ch , q = q ch )-bit SP-MS and 21 iterations as maximum of post-processing.

The average number of iterations to correct the (8, 8) absorbing set errors is listed in Table 5. [START_REF] Tanner | A recursive approach to low complexity codes[END_REF]. We can see that approximately 4 (resp. 3) iterations are required for post-processing when q ch = q = 3 bits (resp. q ch = q = 4) of precision is considered.

Table 5.10 Average number of iterations for post-processing using (L pp -1) iterations as maximum of the (q ch , q = q ch )-bit SP-MS + (L max -L pp + 1) iterations as maximum of post-processing.

Average number of iterations for post-processing SNR (dB) (3, 3)-bit SP-MS, L max = 15 (4, 4)-bit SP-MS, L max = 15 The proposed architecture of Fig. 5.12 for precision (q ch = 3, q = 3) is implemented in an FPGA to evaluate its performance. Two decoders are emulated: (i) the first one using a maximum of 11 iterations of the (3, 3)-bit SP-MS + 8 iterations as maximum of post-processing, and the second one using a maximum of 9 iterations of the (3, 3)-bit SP-MS + 6 iterations as maximum of post-processing. Emulations results show that the error-floor is lowered below the FER of 10 -10 in the error-floor region, as is shown in Fig. 5.15. Also, the emulation confirms that in the waterfall region, the error correction performance is not degraded.

L pp -1 = 9 L pp -1 = 10 L pp -1 = 9 L pp -1 =
Simulation results for precision (q ch = 4, q = 4) are provided in Fig. 5.16 using a maximum of 9 iterations of the (4, 4)-bit SP-MS + 6 iterations as maximum of post-processing. Again one can see that the FER performance is not degraded in the waterfall region, and the error floor can be lowered below the FER of 10 In the previous section, the post-processing (message biasing) proved to be very effective in correcting the [START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF][START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF] absorbing set errors for precision q ch = q ∈ {3, 4}. But for precision (q ch = 3, q = 2), message biasing can only correct around 30% of all the (8, 8) absorbing set errors collected at high SNR levels, as is shown in Table 5 The (3, 2)-bit SP-MS decoder is a very special case because the message alphabet A S = {-1, -0, +0, +1} and the decoder input alphabet A L = {-3, -2, -1, -0, +0, +1, +2, +3} are very small. Fig. 5.17 shows the LLR distribution of the [START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF][START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF] fully absorbing sets for the (3, 2)-bit SP-MS decoder. The results are obtained considering the all-zero codeword sent over the BI-AWGN channel. We can see that the quantized LLR associated with the bits in the set D (|D| = 8) are in majority -3, -2, and -1. When message biasing is used, the maximum magnitude of strong can only be |strong| = N q = 1, while the minimum magnitude of weak can only be |weak| = 0. With these values, an erroneously estimated bit could not be corrected if the associated LLR is very large (-3 or -2). It is for this reason that message biasing can not correct all the (8, 8) absorbing set errors. In order that the (3, 2)-bit SP-MS decoder meets with the performance requirement of the ETHERNET standard, a new post-processing algorithm is introduced based on message biasing. The proposed post-processing algorithm to correct the (8, 8) absorbing set errors of the (q ch , q = q ch -1)-bit SP-MS decoder is described below:

1

. [SP-MS decoder]

Decode a codeword with the SP-MS decoder for a fixed number of iterations. If the syndrome vector is not all-zero, continue with the next step. 

Post-Processing Architecture

The proposed post-processing architecture is a full parallel architecture which performs a decoding iteration per clock cycle. This architecture only needs to know the unsatisfied CNs in order to correct the (8, 8) absorbing set errors. are mapped to weak, and the new LLRs are computed. Similar to the architecture of Fig. 5.12, the architecture for precision (q ch , q = q ch -1) is composed of five main components.

Count of Iterations

Like the case of precision (q ch , q = q ch ), this component counts one iteration per each clock cycle when initialize = 0. Only when the count of iterations equals L pp , the output signal Itpp is set to 1, otherwise Itpp is always 0. Similarly, only when the maximum number of iteration is reached, maxIter = 1, otherwise maxIter = 0.

Compute Syndrome

This component is an asynchronous circuit that computes the syndrome vector S in each decoding iteration using the input signal decision (x). The decoding process ends when a valid codeword is obtained (S = 0), in this case the output signals are

EndIter = 1 and EndSyndr = 0. In the case that S ̸ = 0, the decoding process continues (EndIter = 0) until the maximum number of iterations is reached (maxIter = 1).

One should note that the output signal SyndrVect (S) carries information about how many CNs are unsatisfied CNs. Also, unlike the architecture of Section 5.5 where the CNUs compute the signal SyndrVect, in this case the Compute Syndrome component is responsible for calculating the signal SyndrVect. 

Performance results

In this section, we present the FER performance of the proposed architecture for (q ch = 3, q = 2) and (q ch = 4, q = 3). 3 ETHERNET code at E b /N 0 = 4.5 dB using a maximum of 9 iterations of (q ch , q = q ch -1)-bit SP-MS and 21 iterations as maximum of post-processing.

Table 5.12 lists the average number of iterations to correct the (8, 8) absorbing set errors. Similar to the message biasing, the proposed post-processing requires 4 and 3 iterations for precision (q ch = 3, q = 2) and (q ch = 4, q = 3), respectively.

The architecture of Fig. 5.20 that implements our post-processing algorithm is implemented in an FPGA for the case of very low precision (q ch = 3, q = 2). Two decoders are emulated to evaluate the performance of the architecture: (i) the first one using a 166 Implementation of Sign-Preserving Min-Sum Decoders Table 5.12 Average number of iterations for post-processing using (L pp -1) iterations as maximum of the (q ch , q = q ch -1)-bit SP-MS + (L max -L pp + 1) iterations as maximum of post-processing.

Average number of iterations for the proposed post-processing Fig. 5.24 shows the simulation results for precision (q ch = 4, q = 3) using a maximum of 9 iterations of the (4, 3)-bit SP-MS + 6 iterations as maximum of post-processing.

One confirms again that the FER performance is not degraded in the waterfall region, and the error floor can be lowered below the FER of 10 

Implementation Results of SP-MS Decoder with Post-Processing

In this section we present the implementation results of the post-processing architectures considering S x < 21 for all decoders. Also, We consider 19 iterations as maximum for precision [START_REF] Mackay | Information Theory, Inference, and Learning algorithms[END_REF][START_REF] Gallager | Low-density parity-check codes[END_REF], and 15 iterations as maximum for precision [START_REF] Mackay | Information Theory, Inference, and Learning algorithms[END_REF][START_REF] Mackay | Information Theory, Inference, and Learning algorithms[END_REF], [START_REF] Etsi | [END_REF][START_REF] Mackay | Information Theory, Inference, and Learning algorithms[END_REF], and (4, 4).

Synthesis results on FPGA

This section reports the synthesis result of the proposed post-processing architectures on the Xilinx XC7V2000T-1FLG1925 FPGA chip for the IEEE 802. LDPC code.

The FPGA resource utilization of the (q ch , q = q ch )-bit SP-MS and (q ch , q = q ch -1)bit SP-MS decoders is listed in Table 5.13 for the (d v = 6, d c = 32)-regular LDPC code. Also, the maximum frequency that each decoder can reach is listed. From the results obtained, one can see that the (q ch = 3, q = 2)-bit SP-MS decoder reaches the maximum frequency among the 4 SP-MS decoders. For the precision q ch = 4, the maximum frequency of the (q ch = 4, q = 3)-bit SP-MS decoder is higher compared to the maximum frequency of the (q ch = 4, q = 4)-bit SP-MS decoder.

Comparing the resources used by the decoders on the FPGA, the (q ch , q = q ch -1)bit SP-MS decoders use less resources than the (q ch , q = q ch )-bit SP-MS decoders. We can clearly see a large savings of FPGA resources: around 27% of slice registers and 31% of slice LUTs for the precision (q ch = 3, q = 2), and 20% of slice registers and 37% of slice LUTs for the precision (q ch = 4, q = 3). 

Implementation Results of SP-MS

ASIC synthesis results

This section reports the ASIC synthesis results of the four SP-MS decoders with postprocessing using the 28 nm FDSOI library at 0.9 V supply voltage and temperature of 125 • C. The timing constraints used to perform the synthesis of the post-processing architectures are the same as Section 5.3. We list the area and power of an isolated VNU and an isolated CNU of the four SP-MS decoders with post-processing in Table 5.14. One can note that a VNU/CNU of the (q ch , q = q ch -1)-bit SP-MS decoder helps to reduce the area used and the power consumed by a VNU/CNU of the (q ch , q = q ch )-bit SP-MS decoder. When the precision of the messages goes from q = q ch = 3 bits to q = q ch -1 = 2 bits, we can see that (i) the CNU reduces an area of 403.10µm 2 by 68.30% to 127.74µm 2 , i.e. a saving of Implementation of Sign-Preserving Min-Sum Decoders around 70% is achieved, and (ii) the VNU reduces an area of 498.74µm 2 by 20.75% to 395.27µm 2 . In the case that the precision goes from q = q ch = 4 bits to q = q ch -1 = 3 bits, (i) the CNU helps to reduce an area of 826.60µm 2 by 51.27% to 402.77µm 2 (saving approximately 51% of the area), and (ii) the VNU reduces the area by 17.80%, i.e., from 612.33µm 2 to 503.31µm 2 . When comparing the power consumption, one can see a power consumption saving of 28.87% (from 276.1µW to 196.4µW) for the VNU and very low precision (q ch = 3, q = 2). More results are shown in the Table 5.14.

Like the SP-MS decoders without post-processing, for the SP-MS decoders with post-processing, we can conclude that using one bit less to represent the messages, the VNU and (especially) the CNU can greatly reduce the area used to implement the (q ch , q = q ch -1)-bit SP-MS decoder compared to the area used by the (q ch , q = q ch )-bit SP-MS decoder. Fig. 5.25 illustrates the are used for the power consumption by a single VNU/CNU of the SP-MS decoders with post-processing.

Precision : (q ch , q) Let us now present the ASIC synthesis results for the fully parallel post-processing architecture. Table 5.15 shows the area utilization and power consumption for the d v = 6 RS-LDPC decoders, also, the decoding throughput and the energy per decoded bit are listed. We can observe that the (q ch = 3, q = 2)-bit SP-MS decoder reduces an area of 1.185 mm 2 by 25.93% to 0.878 mm 2 , i.e. a saving of around 26% is achieved, and the (q ch = 4, q = 3)-bit SP-MS decoder reduces an area of 1.619 mm 2 by 24.12% to 1.229 mm 2 (saving approximately 24% of the area). When comparing the power consumption, one can see a power consumption saving of 22.59% (from 307.41 mW to 237.98 mW) for very low precision (q ch = 3, q = 2), while for precision (q ch = 4, q = 3), the reduction of power consumption is 20.57%, i.e., from 383.25 mW to 304.41 mW.

For a frequency of 500 MHz, the minimum throughput reached is 68.27 Gbps for precision (q ch = 3, q = 2). While for precision (q ch = 3, q = 3), (q ch = 4, q = 3), and

(q ch = 4, q = 4), the minimum throughput reached is 53.89 Gbps. The average number of decoding iterations in the SP-MS decoder at E b /N 0 = 4.75 dB is around 3, hence, the decoding throughput reached is around 341.33 Gbps.

From the analysis of the SP-MS decoders with post-processing using q ch ∈ {3, 4} bits LLRs and q ∈ {2, 3, 4} bits messages, we can conclude that: (i) the (3, 2)-bit SP-MS decoder is the smallest decoder, (ii) the (q ch , q = q ch -1)-bit SP-MS decoder uses less area and consumes less power than the (q ch , q = q ch )-bit SP-MS decoder, and (iii) the (4, 3)-bit SP-MS decoder occupies an area slightly greater than the (3, 3)-bit SP-MS decoder (both decoders have the same number of wires). Fig. 5.26 illustrates the are used for the (q ch , q)-bit SP-MS decoders. We can see that the (3, 2)-bit SP-MS decoder is the smallest decoder, the (4, 4)-bit SP-MS decoder This work [START_REF] Ghanaatian | A 588-gb/s ldpc decoder based on finite-alphabet message passing[END_REF] [54]

[55]

[56]

[57] At a SNR level of 5.5 dB.

*

The throughput reported is at E b /N 0 = 5.5 dB. The maximum frequency is set to 1000 MHz in 28 nm, and the average number of iterations used is to compute the throughput and the hardware efficiency.

⊥

Best throughput and and best hardware efficiency.

⋆

It is not indicated an error-free operation below the BER level of 10 -12

, the BER reported is only up to 10 -7

. ‡

The scale factor for the frequency and throughput is 1/k, for the area is k 2

, and for the hardware efficiency is 1/k 3 , where k is the relative dimension to 28 nm.

Implementation of Sign-Preserving Min-Sum Decoders

Conclusion

In this chapter we have proposed an fully parallel architecture for regular and irregular LDPC codes, the architecture can be easily adapted to implement different decoders using different precision for messages and for LLRs. Using the proposed architecture, we have shown that the SP-MS decoder consumes slightly less area than the OMS decoder. We have also presented that when the precision of messages is reduced from q = q ch bits to q = q ch -1 bits, the area consumed by the SP-MS decoder is reduced by at least 25%.

From the study conducted in detail of the the IEEE 802.3 ETHERNET code, we have proposed a post-processing algorithm and two post-processing architectures. We have exhibited that our post-processing algorithm is very efficient in very low precision decoders, lowering the error floor below a FER of 10 -10 . We have also presented that the algorithm is easily adaptable in a low precision decoder. Additionally, we have shown that the proposed algorithm converges rapidly using on average 3 to 4 iterations.

On the other hand, we have demonstrated that the proposed architectures do not degrade the error correction performance in the waterfall region.

we have implemented the (q ch = 3, q = 2)-bit SP-MS decoder that incorporates our post-processing algorithm and we have obtained an area of 1.76 mm 2 , a decoding throughput of 319.34 Gbit/s, and a hardware efficiency of 181.44 Gbit/s/mm 2 . When making the comparison with other decoders proposed in the literature, (q ch = 3, q = 2)bit SP-MS decoder is among one with the best hardware efficiency and good error correction performance. Abstract : In this thesis, we are interested in improving the performance of the highly quantized Low-Density Parity-Check (LDPC) code decoder (3 or 4 bits of precision input). The first proposed decoder, named Noise-Against-Noise Min-Sum (NAN-MS) decoder, incorporates a certain amount of random perturbation due to deliberate noise injection into the decoding process. The other decoder, named Sign-Preserving Min-Sum (SP-MS) decoder, always preserve the sign of the messages and it uses all the possible combinations that can be generated for a given precision. We further show that a SP-MS decoder quantizing its inputs in 3 or 4 bits can reduce the precision of internal messages respectively to 2 or 3 bits without affecting the threshold of convergence of the code when the degree of the variable nodes is greater than 4. The NAN-MS decoder and the SP-MS decoder present a SNR gain of up to 0.43 dB in the waterfall region of the performance curve. On the other hand, we proposed a modification of an existing post-processing algorithm which makes it possible to reduce the residual error rate (region called "error floor") for the decoders with only 2 bits of precision for the exchanged messages. Applied to the IEEE 10 Gigabit ETHERNET code, the SP-MS algorithm combined with the postprocessing algorithm reduces the error level below a frame error rate of 10 -10 . We implemented this decoder in 28 nm ASIC technology with a completely parallel architecture. The resulting area is 1.76 mm 2 , and the decoding rate of 319.34 Gbit/s for a signal-to-noise ratio of 5.5 dB, giving a hardware efficiency of 181.44 Gbit/s/mm 2 .
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1 Introduction

 1 ρ(x), ρ(x) : The edge-wise CN degree distribution, the node-wise CN degree distribution s : Encoder input of length K s = (s 1 , ..., s K ). sign(a) : Sign of a. v : Any Variable Node V(c) : The set of neighbors of a CN c. V(v) : The set of neighbors of a VN v. w : Codeword mapped by e.g. a binary phase-shift keying modulation of length N w = (w 1 , ..., w N ) which is sent through the noisy channel. x : Encoder output of length N x = (x 1 , ..., x N ) which a codeword. y : Channel output of length N y = (y 1 , ..., y N ). It is a long way from the formal definition of channel capacity by Shannon in the 50 th
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  III presents the first contribution of the thesis: the elaboration of a new message passing decoding algorithm named Noise-Against-Noise Min-Sum (NAN-MS) decoder. In order to introduce randomness in the NAN-MS decoders, a noise injection method is proposed. The asymptotic behavior of the NAN-MS is investigated using a noisy density evolution (DE). Using the decoding thresholds obtained with the noisy DE, the best location of the noise injection is studied. On the other hand, in order to make a low cost implementation of the NAN-MS decoder, two finite precision decoders are defined, the first one called Modified Offset Min-Sum (M-OMS) decoder, and the second one is a version of M-OMS that uses an optimized offset vector λ v and it is called OMS-λ v decoder. The M-OMS and the OMS-λ v decoders have an equivalent hardware complexity to the OMS decoder. It is shown by density evolution and by finite length simulations that: (i) the best location for the noise injection is in the variable nodes, and (ii) the NAN-MS, the M-OMS, and OMS-λ v significantly outperform the decoders presented in the state of the art. A SNR gain of up to 0.4 dB is obtained in the waterfall region for low precision messages represented on 3 or 4 bits.Chapter IV presents the second contribution of the thesis: the definition of a new finite precision iterative decoder for low-density parity-check codes named Sign-Preserving Min-Sum (SP-MS) decoder. The particularity of the SP-MS decoder is that variable-to-check messages are never set to 0 and always carry a sign information.IntroductionIn order to optimize the SP-MS decoder performance, the noise injection method proposed in Chapter III is adapted to always preserve the sign of the messages and to cover the case of 2-bit precision message. The SP-MS decoder and its optimization are investigated in the asymptotic limit of the code length with the noisy DE. The study performed with DE and validated with finite length simulations presents that: (i) the SP-MS significantly improves the decoding performance compared to classical Offset Min-Sum when messages are quantized with only 2, 3 or 4 bits of precision, (ii) the SP-MS can reduce their precision messages by one bit maintaining the same error-correcting performance, thereby reducing the hardware complexity of the implementation, and (iii) the SP-MS decoder shows a SNR gain of up to 0.33 dB for regular codes and 0.43 dB for irregular codes, compared to the OMS. Chapter V presents the third contribution of the thesis: a post-processing algorithm for low precision decoders. The first part of this chapter presents a fully parallel architecture to implement the MS, the OMS, and SP-MS. The proposed architecture is easily adapted to the implementation of regular and irregular LDPC codes. The synthesis results are presented for this architecture and reveal that the SP-MS decoder consumes less area than the OMS decoder, and that a saving of at least 25% of area used by the SP-MS decoder can be achieved when the precision of the messages is reduced. The second part of this chapter presents the post-processing algorithm for the IEEE 802.3 ETHERNET LDPC code. A fully parallel architecture is proposed to implement the SP-MS decoder and the proposed algorithm. Emulation results on FPGA exhibit that the error floor is lowered below a frame error rate (FER) level of 10 -10 , observing only a slight error floor for FER bellow 10 -10 . Implementation results on a 28 nm FD-SOI technology are presented showing a hardware efficiency of 181.44 Gbit/s/mm 2 .

Fig. 2 . 1 A

 21 Fig. 2.1 A Tanner graph for a (d v = 3, d c = 4)-regular LDPC code of length N = 12. There are 12 VNs, 9 CNs, and 36 edges.

8 .Fig. 2 . 2 A

 822 Fig. 2.2 A Tanner graph for an irregular LDPC code of length 8. There are 9 VNs, 5 CNs, and 18 edges.
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 2 Binary LDPC Decoders 11 Similar to the case of the (d v , d c )-regular LDPC ensemble, an ensemble C N (λ(x), ρ(x)) of irregular LDPC codes is composed of all the Tanner graphs of length N and associated to the degree distribution pair (λ(x), ρ(x)).

Fig. 2 . 3 A

 23 Fig. 2.3 A simple communication system

  i.e A L = A C . Let us denote by ℓ ∈ N the iteration number. Let us also denote by m (ℓ) v→c ∈ A C the message sent from VN v to CN c in the ℓ th iteration, denote by m (ℓ) c→v ∈ A C the message sent from CN c to VN v in the ℓ th iteration, and denote by γ (ℓ) = (γ (ℓ) 1 , ..., γ (ℓ) N ) the a posteriori probability (APP), where γ (ℓ) n is associated to the VN v n , for n = 1, 2, ..., N . Let us also denote by m (ℓ),U v→c the unsaturated variable-to-check 14 Background message in the ℓ th iteration. Fig. 2.4 depicts a Tanner graph fragment, showing the flow of messages in MP decoders. From this figure we have

A 1 .

 1 C denote the function used for the update at a VN v of degree d v . Let Ψ c : A (dc-1) C → A C denote the function used for the update at a CN c of degree d c . The functions Ψ v and Ψ c satisfy the symmetry conditions defined in [27]. Let us denote by A app the alphabet of APPs. Also, let Ψ a : A L × A (dv) C → A app denote the function used for the APP update at a VN v of degree d v . With those notations, we describe the main steps of MP decoders: Noise-against-Noise Decoders : Low Precision Iterative Decoders Franklin Rafael Cochachin Henostroza 2019 2.2 Binary LDPC Decoders 15 [Initialization] the LLR LLR(y n ) is computed for each VN v n . Then, variableto-check messages m (ℓ) vn→cm are initialized by LLR(y n ) at the 0 th iteration. 2. [Iteration Loop] Each decoding iteration consists of the following steps: (a) [CNU] a CN computes the outgoing message based on all the incoming messages except the one received from the outgoing message. [VNU] a VN computes the outgoing message from the channel observation and from all the incoming messages except the one which receives the outgoing message.m (ℓ+1) vn→cm = Ψ v LLR(y n ), m (ℓ) c→vn c∈V(vn)\{cm} . (c) [APP-update] (a posteriori probability update) the APP is computed from the channel observation and from all the incoming messages. γ (ℓ) n = Ψ a LLR(y n ), m (ℓ) c→vn c∈V(vn) (d) [Hard decision] makes an estimation of the bits transmitted from the APP. xn = (1 -sign(γ

  vn→cm by comparing the sum of LLR(y n ) and the incoming messages m (ℓ)

( 2 . 9 )

 29 . To obtain the update rule at a CN, the following relation is used Φ (Φ(a) + Φ(b)) ≤ min(a, b), ∀a > 0 and b > 0. (2.13) Using this relation, one could replace the CNU of the BP (2.11) by m

  Fig. 2.5 LLR(y n ) for the BSC.

e

  ≤ η or L max is reached. (b) [DE succeeds] If p (ℓ) e ≤ η, the DE has converged and we update δ 1 = δ m , δ 2 = δ 2 and δ m = (δ 1 + δ 2 )/2. (c) [DE fails] If p (Lmax) e > η, the DE has not converged and we update δ 1 = δ 1 , δ 2 = δ m and δ m = (δ 1 + δ 2 )/2.

2. 3

 3 Quantized Min-Sum-Based Decoders and Density Evolution 33 We show on Fig 2.7 two examples of the use of DE thresholds to compare different decoding algorithms. We plot the DE threshold of Min-Sum-Based decoders on the BSC, as a function of the channel value C.

1 (b) Precision q = 4 Fig. 2 .

 142 Fig. 2.7 DE thresholds of MS and OMS decoders using the BSC, as a function of the channel value C.

1

 1 Probabilistic Error Model for Noise-against-Noise Min-Sum DecodersIn order to define a NAN-MS decoder, we first express the constraints on the noise models, and then we present a noise model which will be used to perturb noiseless decoders. Let us denote by ÃC the noisy message alphabet. Noisy messages m(ℓ) v→c ∈ ÃC and m(ℓ) c→v ∈ ÃC are obtained after corrupting the noiseless messages m noise. To simplify the notations in this section, we use the notation m to denote any c-to-v message m (ℓ) c→v at iteration ℓ or any v-to-c message m (ℓ) v→c , and let s β be the sign of β.

  Now, let us denote by Υ : A N → ÃN the symmetric function which transforms a noiseless message m (ℓ) ∈ A C into a noisy message m(ℓ) ∈ ÃC . Unless otherwise stated, the alphabet of the noise model will be the one of the messages, i.e. A N = ÃN = A C . The noise model Υ is defined by the conditional probability density function (PDF) Pr( m|m) wich is denoted by p Υ (m, m). We propose in this work to analyze a noise model, defined in the following way:

Fig. 3 .

 3 Fig. 3.1 LUT representation and the mapping used for the noise model Υ.

Fig. 3 . 2

 32 Fig. 3.2 Noise injected after the VNU processing.

Fig. 3 . 3

 33 Fig. 3.3 Noise injected during the VNU processing.

Fig. 3 . 4

 34 Fig. 3.4 Noise injected after the CNU processing.

Fig. 3 .

 3 Fig. 3.5 depicts a simple Tanner graph with a single CN, a single VN, and the PMF of noiseless and noisy messages.

Fig. 3 . 5 47 3. 4 . 2

 354742 Fig. 3.5 Concept of Noisy DE calculation for the NOV model

  Evolution for the NOC model Initialization Similar to the NOV model and the NIV model, the initialization of DE does not change, therefore, equation (2.23) is used to initialize the noisy DE.

17

 17 

) 3 . 4

 34 Similar to the noiseless DE, we can use the decomposition of CNUs into elementary CNUs. Noisy Density Evolution for NAN-MS decoders 49 Noiseless DE update for VNU Similarly to the calculation made at the VN for the noiseless DE, we compute the PMF of the output of a VN of degree d v , i.e. Ω (ℓ+1) dv

3. 4 Algorithm 2

 42 Noisy Density Evolution for NAN-MS decoders 51 Similar to the noiseless case, the dichotomic search is used to compute noisy-DE thresholds. The DE estimation procedure is performed choosing a target residual error probability η, and declaring convergence of the noisy DE recursion when p(+∞) e is less than or equal to η, e.g. 10 -6 . The algorithm 2 describes the procedure to compute δ for the NOV model. Computation of the noisy DE threshold 1. [Initialization] Initialize interval limits [ δ1 , δ2 ] with δ1 < δ2 , such that DE succeeds for δ = δ1 and fails for δ = δ2 . Further define δm = ( δ1 + δ2 )/2. 2. [While | δ2 -δ1 | > prec] (a) [Perform noisy DE] i. [Initialize noisy DE] Noisy DE is initialized with the equation (2.23) and σ = δm ii. [Iteration Loop] A. [Compute PMF] Apply recursively the sequence of five equations (3.7), (3.8), (3.9), (3.10), and (3.11) for L max iterations. B. [Break Iteration] The iteration loop breaks when either the p (ℓ) e ≤ η or L max is reached. (b) [Noisy DE succeeds] If p (ℓ) e ≤ η, the noisy DE has converged and we update δ1 = δm , δ2 = δ2 and δm = ( δ1 + δ2 )/2. (c) [Noisy DE fails] If p (Lmax) e > η, the noisy DE has not converged and we update δ1 = δ1 , δ2 = δm and δm = ( δ1 + δ2 )/2.

Fig. 3 .

 3 Fig. 3.6 and Fig. 3.7. The OMS decoder with offset λ v = 1, which is implemented with equations (3.1) and (3.2), is also implemented using the NIV model with φ = (1, 1, 1). With the NIV model the v-to-c and c-to-v messages belong to the message alphabet A C . The NOC model with φ = (1, 1, 1) implements the OMS decoder with offset λ = 1 described in Chapter 2 (equations (2.19) and (2.20)), i.e. the offset is applied at the CNUs obtaining c-to-v messages belong to the message alphabet A C \{-N q , +N q }. In

(a) Precision q = 3 Transition 4 Fig. 3 . 6

 3436 Fig. 3.6 Noisy DE thresholds δdb of NAN-MS decoders as a function of φ a for regular d v = 3 LDPC codes.

4 -

 4 Fig. 3.7 Noisy DE thresholds δdb of NAN-MS decoders as a function of φ a for regular d v = 4 LDPC codes.

56 Noise-

 56 Against-Noise Min-Sum DecodersWhen comparing the best thresholds indicated in bold, the gains for NAN-MS decoders are quite important for the case of low precision q = 3, around 0.22 dB for (d v ∈ {3, 4}, R = 1/2), 0.13 dB for (d v = 3, R = 3/4), and 0.25 dB for (d v = 4, R = 3/4), while the gains are smaller for the precision q = 4, 0.06 dB for(d v = 3, R = 1/2), 0.07 dB for (d v = 3, R = 3/4), 0.01 dB for (d v = 4, R = 1/2),and 0.02 dB for (d v = 4, R = 3/4). In the case of the largest precision q = 5 the gains are much smaller, 0.01 dB for (d v = 3, R ∈ {1/2, 3/4}), 0.00006 dB for (d v = 4, R = 1/2), and 0.001 dB for (d v = 4, R = 3/4). From this analysis, we can conclude that the noise injection for NAN-MS decoders is more and more beneficial as the decoders are implemented in low precision. 3. A third interesting remark comes from the interpretation of the optimum noise parameters φ * that we obtained through the DE analysis. For almost all cases, we have φ * 0 = 0, which means that the decoder should never apply an offset to the message when the amplitude of the message is equal to 1. This makes sense as transforming m = ±1 into m = 0 would erase the bit value and remove the sign information contained in the message. An exception appears for regular d v = 4

Fig. 3 . 8

 38 Fig. 3.8 Noisy DE thresholds δdb of NAN-MS decoders as a function of φ 0 for regular d v = 4 LDPC codes

  and NAN-MS decoders. In order to corroborate the asymptotic results obtained in the previous chapter, we analyze the quantized decoder performance over the BI-AWGN channel. For this purpose, we designed a (3, 6)-regular QC-LDPC code and a (4, 8)-regular QC-LDPC code (respectively a (3, 12)-regular QC-LDPC code and a (4, 16)-regular QC-LDPC code) with length N = 1296 and circulant size L = 54

Fig. 3 .

 3 Fig.3.9 shows the FER performance comparisons between the noiseless MS, noiseless OMS, and best NAN-MS decoders, for the three considered precisions q = 3, q = 4,

  Fig. 3.9 FER performance of NAN-MS decoders for the d v = 3 regular LDPC codes.

  Fig. 3.10 FER performance of NAN-MS decoders for the d v = 4 regular LDPC codes.

  Fig. 3.11 FER performance of NAN-MS decoders implemented with the NIV, NOV, and NOC model.

4 Fig. 3 .

 43 Fig. 3.12 FER performance of NAN-MS decoders for the WIMAX LDPC code.

  7, we can observe: (i) the DE thresholds of the M-OMS decoders are always better than the DE thresholds of the MS and OMS decoders for d v = 3, (ii) for almost all cases when q ∈ {3, 4} and d v = 4, the M-OMS decoders give us always better DE thresholds 68 Noise-Against-Noise Min-Sum Decoders than OMS decoders, an exception appears for (q = 4, d v = 4, R = 1/2), and (iii) for (q = 5, d v = 4) the DE thresholds of the OMS decoders are always better than the DE thresholds of the M-OMS decoders.

  1, 1, 0), and (iii) the DE thresholds of the M-OMS decoders are always better than the DE thresholds of the MS and OMS 3.8 Implementation of NAN-MS Decoders as Deterministic Decoders 69 decoders. Comparing the best thresholds indicated in bold showed in Tables 3.4, 3.5, 3.8, and 3.9, one can note that NAN-MS decoders achieve slightly better DE thresholds than M-OMS decoders.

  In this section, we present the FER performance of noiseless MS and OMS, NAN-MS, and M-OMS decoders. In order to corroborate the asymptotic results obtained in the previous section, we analyze the quantized decoder performance over the BI-AWGN channel. For this purpose, we use the four (d v , d c )-regular QC-LDPC codes presented 70 Noise-Against-Noise Min-Sum Decoders Table 3.9 DE thresholds of M-OMS decoders and the rate 3/4 B code. Irregular LDPC code, BI-AWGN channel 1.0 1.0 0.0 2.1647 in Chapter 3.5. The considered decoders are the ones with the best DE thresholds, indicated in bold in Tables 3.1, 3.2, and 3.7. The noiseless 5-bit OMS decoder with offset λ v = 1 is also shown as benchmark.

Fig. 3 .

 3 Fig. 3.13 and Fig. 3.14 show the FER performance comparisons between the 5-bit OMS decoder, the noiseless quantized decoders, the NAN-MS decoders which use the NIV model, and the M-OMS decoders, as a function of E b /N 0 over the BI-AWGN channel.

3 . 2 E 4 Fig. 3 . 2 E 4 Fig. 3 .

 3243243 Fig. 3.13 FER performance of M-OMS and NAN-MS decoders for the regular d v = 3 regular LDPC codes.

v

  can only be 0 or 1. We obtain the M-OMS decoder of Section 3.8 setting λ v = (1, 1, . . . , 1). Also, the special case of λ v = (0, 0, . . . , 0) corresponds to the classical MS decoder. The OMS-λ v decoders have similar cost of implementation than the M-OMS decoders because both use the same function Ψ c to perform the update rule at CNUs, Noise-against-Noise Decoders : Low Precision Iterative Decoders Franklin Rafael Cochachin Henostroza 2019 3.9 Implementation of NAN-MS Decoders Using an Offset Vector 73

. 25 ) 9

 259 Table 3.10 shows the DE thresholds and the optimum channel gain factor α * for the MS and the OMS using the optimization (3.21) with L max = 20. The DE thresholds of the M-OMS decoders are shown in Table 3.11 using the optimization (3.25). In Fig. 3.15 and Fig. 3.16, we show the DE thresholds of 2 20 OMS-λ v decoders for the regular LDPC codes with d v = 3 and d v = 4. The results are obtained considering a fixed channel gain factor α, and varying the offset vector from (λ (1) v = 0, ..., λ Implementation of NAN-MS Decoders Using an Offset Vector 75

( 3 , 6 ) 3 Number 9 ( 3 , 6 ) 4 Fig. 3 .

 36393643 Fig. 3.15 DE thresholds δ db of 2 20 OMS-λ v decoders for the regular d v = 3 LDPC code.

Fig. 3 .

 3 Fig. 3.16 DE thresholds δ db of 2 20 OMS-λ v decoders for the regular d v = 4 LDPC code.

3 . 9 79 3. 9 . 2

 397992 Fig. 3.17 FER performance of OMS-λ v and M-OMS decoders for the regular d v = 3 LDPC code.

Fig. 3 .

 3 Fig.3.17 and Fig.3.18 show the FER performance comparisons between the 5-bit OMS decoder, the noiseless quantized decoders, the M-OMS decoders, and the OMS-λ v decoders, as a function of E b /N 0 over the BI-AWGN channel. From the results, we conclude that the finite length FER performances are in accordance with the DE gains.We observe that the 3-bit OMS-λ v decoders have better FER performance than 3-bit MS and 3-bit OMS decoders. For the regular d v = 3 LDPC code, the FER performance of the 4-bit OMS-λ v decoder is better than the FER performance of the 4-bit MS

20 ( 4 Fig. 3 .

 2043 Fig. 3.19 FER performance of OMS-λ v decoders for the WIMAX LDPC code.

  (3 or 4 bit of input quantization), the proposed Noise-Against-Noise Min-Sum decoder can improve significantly the decoding performance in the waterfall region (up to 0.4 dB). The finite-length Monte Carlo simulations for several code rates and degrees of variable node have corroborated the DE analysis. Then, the we have constraint the proposed NAN-MS decoder to become a deterministic decoder to simplify its hardware implementation. The obtained Modified Offset-Min-Sum decoder has performance closed to the NAN-MS and outperform classical MS and OMS when input message are quantized on 3 or 4 bits of precision. Moreover, the M-OMS decoder has equivalent complexity than the OMS decoder. Finally, in case where the decoder unrolled the decoding iterations, DE tool helps up to find optimal parameters of the decoder where each iteration uses the same type of Variable Node Unit. The obtained decoder is called OMS-λ v where λ v is a binary vector of the size of the maximum number of iterations. This work proposes a new finite precision iterative decoder for low-density paritycheck (LDPC) codes and for low complexity hardware implementation. The proposed decoder, named Sign-Preserving Min-Sum (SP-MS), significantly improves the decoding performance compared to classical Offset Min-Sum (OMS) decoder when messages are quantized on q = 2, 3 or 4 bits of precision. The particularity of the SP-MS

8 Fig. 4 . 1

 841 Fig. 4.1 LLR(y n ) and I n of the SP-MS decoder for the BI-AWGN channel and precision q = 3.

1 , 4 . 3

 143 . . . , N . In the initialization stage of the SP-MS decoders, i.e. at ℓ = 0, the variable-to-check messagesm (ℓ) vn→cm are computed as m (0) vn→cm = S(I n , N q ) where v n ∈ V(c m ), for n = 1, ..., N .Let us define the update rules for Sign-Preserving Min-Sum decoders.4.3 Sign-Preserving Min-Sum Decoders87 Sign-Preserving Min-Sum DecodersThe discrete functions Ψ v , Ψ c , and Ψ a of SP-MS decoders are redefined by Ψ v :A L × A (dv-1) S → A S , Ψ c : A (dc-1) S → A S ,and Ψ a : A L × A (dv) S → A app , respectively.

  From the APP, xn can be computed as xn = sign(I n ) if γ (ℓ) n = 0, otherwise, xn = sign(γ (ℓ) n ) for n = 1, ..., N .

(

  ℓ+1),U vn→cm with noise. To simplify the notations in this section, we use m u to denote any m

90

  Sign-Preserving Min-Sum Decoders Now, let us denote by Υ : A U → ÃS the function which transforms m u ∈ A U into m = Υ(m u ) ∈ ÃS with the random process defined by the conditional probability density function (CPDF) Pr( m | m u ). Unless otherwise stated, the noisy message alphabet will be the one of the messages, i.e. A S = ÃS . We propose in this work to analyze a noise model Υ whose CPDF Pr( m | m u ), denoted by p Υ (m u , m), is given by

  offset and a SP-MS decoder with offset λ v = 1. The effect of the noise on the extreme values of the message alphabet A S is studied introducing two other probabilities φ s Noise-against-Noise Decoders : Low Precision Iterative Decoders Franklin Rafael Cochachin Henostroza 2019 4.5 Density Evolution for Sign-Preserving Decoders 91 and φ 0 . A special case occurs when m u = ±1.5 because it will be mapped to m = ±0

Fig. 4 . 2

 42 Fig. 4.2 The mapping used for the noise model Υ.

Fig. 4 . 3 ,

 43 Fig. 4.3, while keeping the variable-node degree d v constant. We also show on Fig. 4.4 the DE threshold of SP-MS decoders as a function of the variable-node degree d v for d c ∈ {12, 20, 32}. Several conclusions can be derived from Fig. 4.3 and Fig. 4.4.

2 and 4 . 4 ,d v = 6 6 Fig. 4 .

 44664 Fig. 4.3 DE thresholds of optimized SP-MS decoders for (d v , d c )-regular LDPC codes.

d c = 32 Fig. 4 .

 324 Fig. 4.4 DE thresholds of optimized SP-MS decoders, as a function of the VN degree d v .

4 .

 4 Fourth, the DE thresholds of the SP-MS decoders are very close or equal to the DE thresholds of the SP-NA-MS decoders, specially for the regular d v > 3 LDPC codes, since the values of the transition probabilities are close or equal to 0 or 1. This implies that the noise injected to the SP-MS decoders during the optimization process can be ignored in a hardware realization, thus avoiding the implementation of Random Generators (RGs) to perturb the v-to-c messages. Of course, in all cases the injection of noise cannot be ignored, this depends on the VN degree and the precision used. 100 Sign-Preserving Min-Sum Decoders

6 using very low precision q = 2 . 4 . 8 6 .

 62486 5.A Fifth remark comes from the interpretation of the optimum φ * obtained through the DE analysis. For the case of precision messages q > 2, we have φ * 0 = 0 for regular d v = 3 LDPC codes, this makes sense because d v = 3 is small enough to transform m u = ±1.5 into m = ±0, which gives to m(ℓ) vn→cm a reliability of zero and which could not help to extrinsic messages become more and more reliable at each new decoding iteration. In the case of very low precision messages q = 2 and regular 2 < d v < 5 LDPC codes, we obtain φ * s close to 0 for SP-NA-MS decoders and φ * s = 0 for SP-MS decoders, this also makes sense because q = 2 is too small and transform m u = ±1.5 into m = ±0 sets the maximum reliability (which is 1)to zero.For SP-MS decoders, when using the precision q > 2 and regular d v > 3 LDPC codes, we have always φ * 0 = 1. In the case of very low precision q = 2 we obtain always φ * s = 1 for regular d v = 5 and d v = 6 LDPC codes. Hence, one can conclude that for (d v > 3, q > 2), the transformation from m u = ±1.5 to m = ±0, does not affect the decoding process, a similar conclusion is obtained for d v = 5 and d v = Asymptotic Analysis of Sign-Preserving Min-Sum Decoders 101 Finally, for SP-MS decoders and precision messages q > 2, the optimum noise parameters φ * are equal to (φ * s , φ * a , φ * 0 ) = (1, 1, 0) for the regular d v = 3 LDPC codes, while in the case of the regular d v > 3 LDPC codes, φ * are equal to (φ * s , φ * a , φ * 0 ) = (1, 1, 1) which correspond to a deterministic SP-MS decoder with offset λ v = 1.

  3), one can observe that the SP-MS decoders achieve better DE thresholds for almost all (d v , d c )-regular LDPC codes tested, the only exception appears for the regular (d v = 6, d c = 32) LDPC code and q = 4. The largest gain obtained, when comparing the SP-MS thresholds and NAN-MS thresholds, is around 0.1803 dB for the regular (d v = 6, d c = 32) LDPC code and q = 3. We can conclude that the SP-MS decoders are better decoders compared to the NAN-MS, the OMS, and the MS decoders.

(4. 18 )

 18 The two WIMAX LDPC codes studied in Chapter 3 are used for our analysis, i.e. the WIMAX codes with rate R ∈ {1/2, 3/4} and length N = 2304. Noisy DE thresholds are summarized in Table 4.5, where we indicate the optimum channel gain factor α * and the optimum noise parameters φ (2) * , φ (3) * , φ (≥4) * obtained during the optimization process. Those results confirm the conclusions of the regular LDPC codes analysis: (i) the DE thresholds of SP-MS and SP-NA-MS decoders are better than the DE thresholds of NAN-MS, MS, and OMS decoders using the same precision (see Tables 3.4, 3.5, and 4.5), (ii) the DE thresholds of SP-MS decoders are 104 Sign-Preserving Min-Sum Decoders very close or equal to the DE thresholds of SP-NA-MS decoders since the optimized values of the transition probabilities are very close to 0 or 1, and (iii) the optimum value for φ * 0 is 0 or it is close to 0 for d v = 3 VNs and for precision q = 3.

4. 9 Finite 4 . 9 Finite

 949 Length Performance of Sign-Preserving Min-Sum Decoders 105 Length Performance of Sign-PreservingMin-Sum DecodersIn this section we present the frame error rate (FER) performance for noiseless classical MS, noiseless classical OMS, SP-NA-MS, and SP-MS decoders. We analyze the performance of these quantized decoders over the BI-AWGN channel in order to corroborate the asymptotic results obtained in the previous section.For this purpose, the PEG algorithm from[START_REF] Venkiah | Design of Cages with a Randomized Progressive Edge Growth Algorithm[END_REF] is used to design the regular QC-LDPC codes. We designed:(i) two (d v , d c )-regular QC-LDPC codes with lengthN = 1280, R ∈ {1/2, 3/4} for d v =5, and L = 128 for R = 1/2 and L = 64 for R = 3/4, and (ii) one (d v , d c )-regular QC-LDPC codes with length N = 10240, R = 3/4 for d v = 5, and L = 512. In addition, the four (d v , d c )-regular QC-LDPC codes presented in Chapter 3 are used. The considered decoders are the ones with the best DE thresholds, indicated in bold in Table 4.2 and Table 4.4. The noiseless classical OMS decoder performance with the largest precision q = 5 is also shown as benchmark. A maximum of 100 iterations has been set for the regular (d v = 3, d c = 6) QC-LDPC code. Fig. 4.5 shows the FER performance comparisons between the classical MS, classical OMS, SP-MS, and SP-NA-MS decoders, for three considered precisions of messages q ∈ {2, 3, 4}, and for the regular (d v = 3, d c = 6) QC-LDPC code. Fig. 4.6 draws the same curves for the regular (d v = 4, d c = 8) QC-LDPC code.

  6)-regular LDPC, N = 1296 Classic OMS (5-bit), α = 2.625 Classic MS (3-bit), α =0.9375 Classic MS (4-bit), α =2 Classic OMS (3-bit), α =1.0625 Classic OMS (4-bit), α =1.875 (3, 3)-bit, SP-NA-MS, α = 0.96 (4, 4)-bit, SP-MS, α = 1.79 (a) Precision q = q ch E b /N 0 (dB) 6)-regular LDPC, N = 1296 Classic OMS (5-bit), α = 2.625 (3, 3)-bit, SP-NA-MS, α = 0.96 (3, 3)-bit, SP-MS, α = 0.95 (3, 2)-bit, SP-NA-MS, α = 0.48 (4, 4)-bit, SP-MS, α = 1.79 (4, 3)-bit, SP-NA-MS, α = 1.18

Fig. 4 .

 4 Fig. 4.5 FER performance for (3, 6)-regular QC-LDPC code.

  8)-regular LDPC, N = 1296 Classic OMS (5-bit), α = 2.0 Classic MS (3-bit), α =0.8125 Classic MS (4-bit), α =1.625 Classic OMS (3-bit), α =1.25 Classic OMS (4-bit), α =1.75 (3, 3)-bit, SP-NA-MS, α = 1.01 (4, 4)-bit, SP-MS, α = 1.54 (a) Precision q = q ch E b /N 0 (dB) 8)-regular LDPC, N = 1296 Classic OMS (5-bit), α = 2.0 (3, 3)-bit, SP-NA-MS, α = 1.01 (3, 3)-bit, SP-MS, α = 1.01 (3, 2)-bit, SP-NA-MS, α = 0.52 (4, 4)-bit, SP-MS, α = 1.54 (4, 3)-bit, SP-MS, α = 1.44

Fig. 4 .

 4 Fig. 4.6 FER performance for (4, 64)-regular QC-LDPC code.

4. 9

 9 Finite Length Performance of Sign-Preserving Min-Sum Decoders 107 E b /N 0 (dB) 64)-regular LDPC, N = 8960 Classic OMS (5-bit), α = 1.73 Classic MS (3-bit), α =0.5 Classic MS (4-bit), α =1.06 Classic OMS (3-bit), α =0.69 Classic OMS (4-bit), α =1.15 (3, 3)-bit, SP-NA-MS, α = 0.53 (4, 4)-bit, SP-MS, α = 1.04 (a) Precision q = q ch E b /N 0 (dB) 64)-regular LDPC, N = 8960 Classic OMS (5-bit), α = 1.73 (3, 3)-bit, SP-NA-MS, α = 0.53 (3, 3)-bit, SP-MS, α = 0.57 (3, 2)-bit, SP-NA-MS, α = 0.53 (4, 4)-bit, SP-MS, α = 1.04 (4, 3)-bit, SP-MS, α = 1.05

  20)-regular LDPC, N = 10240 Classic OMS (5-bit), α = 1.61 Classic MS (3-bit), α =0.56 Classic MS (4-bit), α =1.4 Classic OMS (3-bit), α =0.92 Classic OMS (4-bit), α =1.39 (3, 3)-bit, SP-NA-MS, α = 0.87 (4, 4)-bit, SP-MS, α = 1.39 (a) Precision q = q ch E b /N 0 (dB) 20)-regular LDPC, N = 10240 Classic OMS (5-bit), α = 1.61 (3, 3)-bit, SP-NA-MS, α = 0.87 (3, 3)-bit, SP-MS, α = 0.89 (3, 2)-bit, SP-NA-MS, α = 0.86 (3, 2)-bit, SP-MS, α = 0.88 (4, 4)-bit, SP-MS, α = 1.39 (4, 3)-bit, SP-MS, α = 1.42

Fig. 4 .

 4 Fig. 4.8 FER performance for (5, 20)-regular QC-LDPC code.

  32)-regular LDPC, N = 2048 Classic OMS (5-bit), α = 1.45 Classic MS (3-bit), α =0.455 Classic MS (4-bit), α =1.035 Classic OMS (3-bit), α =0.84 Classic OMS (4-bit), α =1.28 (3, 3)-bit, SP-MS, α = 0.74 (4, 4)-bit, SP-MS, α = 1.18 (a) Precision q = q ch E b /N 0 (dB) 32)-regular LDPC, N = 2048 Classic OMS (5-bit), α = 1.45 (3, 3)-bit, SP-MS, α = 0.74 (3, 2)-bit, SP-MS, α = 0.74 (4, 4)-bit, SP-MS, α = 1.18 (4, 3)-bit, SP-MS, α = 1.22

4. 9

 9 Finite Length Performance of Sign-Preserving Min-Sum Decoders 109 We have made the same analysis for the other LDPC codes designed with rate R = {1/2, 3/4}, i.e. (d v = 4, d c = 8, N = 1296), (d v = 5, d c = 10, N = 1280), (d v = 3, d c = 12, N = 1296), (d v = 4, d c = 16, N = 1296), and (d v = 5, d c = 20, N = 1280), and obtained the same conclusions. Similarly, Fig. 4.10 and Fig. 4.11 present simulation results for the WIMAX rate 1/2 LDPC code and the WIMAX rate 3/4 B LDPC code, respectively, for a maximum

  WIMAX, N = 2304, R = 1/2 Classic OMS (5-bit), α = 1.55 Classic MS (3-bit), α =0.44 Classic MS (4-bit), α =1.07 Classic OMS (3-bit), α =0.4 Classic OMS (4-bit), α =0.8 (3, 3)-bit, SP-NA-MS, α = 0.65 (4, 4)-bit, SP-NA-MS, α = 1.24 (a) FER performance of SP-NA-MS. E b /N 0 (dB) WIMAX, N = 2304, R = 1/2 Classic OMS (5-bit), α = 1.55 (3, 3)-bit, SP-NA-MS, α = 0.65 (4, 4)-bit, SP-NA-MS, α = 1.24 (3, 3)-bit, SP-MS, α = 0.65 (4, 4)-bit, SP-MS, α = 1.24 (b) FER performance of SP-MS.

Fig. 4 .

 4 Fig. 4.10 FER performance for the WIMAX LDPC code with R = 1/2.

Fig. 4 .

 4 Fig. 4.11 FER performance for the WIMAX LDPC code with R = 3/4.
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  Convergence results are presented on Fig. 4.12 for the regular (d v = 3, d c = 6) QC-LDPC code, on Fig. 4.13 and Fig. 4.14 for the d v = 4 QC-LDPC codes, and on Fig. 4.15, Fig. 4.16, and 4.17 for the d v = 5 QC-LDPC codes. Also, Fig. 4.18 shows the FER convergence performance for the IEEE 802.3 ETHERNET code. Similarly, Fig. 4.19

Fig. 4 .

 4 Fig. 4.16b, Fig. 4.17b, and Fig. 4.18b. In the case of the regular LDPC codes with d v = 3 and d v = 4, the SP-MS decoders implemented with precision q = q ch -1 exhibit

Fig. 4 .

 4 Fig. 4.12 FER convergence comparison on (3, 6)-regular QC-LDPC code at E b /N 0 = 3.0 dB.

Fig. 4 .

 4 Fig. 4.13 FER convergence comparison on (4, 8)-regular QC-LDPC code at E b /N 0 = 3.25 dB.

Fig. 4 .

 4 Fig. 4.14 FER convergence comparison on (4, 64)-regular QC-LDPC code at E b /N 0 = 5.2 dB for q ch = {4, 5} and at E b /N 0 = 5.3 dB for q ch = 3.

Fig. 4 .

 4 Fig. 4.15 FER convergence comparison on (5, 10)-regular QC-LDPC code at E b /N 0 = 3.75 dB.

Fig. 4 .

 4 Fig. 4.16 FER convergence comparison on (5, 20)-regular QC-LDPC code at E b /N 0 = 4.25 dB.

Fig. 4 .

 4 Fig.4.17 FER convergence comparison on (5, 20)-regular QC-LDPC code at E b /N 0 = 3.3 dB for q ch = {4, 5} and at E b /N 0 = 3.5 dB for q ch = 3.

Fig. 4 .

 4 Fig. 4.18 FER convergence comparison on the IEEE 802.3 ETHERNET code at E b /N 0 = 4.75 dB.

  WIMAX, N = 2304, R = 1/2, SNR = 2.0 dB Classic OMS (5-bit) Classic MS (3-bit) Classic MS (4-bit) Classic OMS (3-bit) Classic OMS (4-bit) (3, 3)-bit, SP-NA-MS (4, 4)-bit, SP-NA-MS (a) SP-NA-MS decoders. WIMAX, N = 2304, R = 1/2, SNR = 2.0 dB Classic OMS (5-bit) (3, 3)-bit, SP-NA-MS (4, 4)-bit, SP-NA-MS (3, 3)-bit, SP-MS (4, 4)-bit, SP-MS (b) SP-MS decoders.

Fig. 4 .

 4 Fig. 4.19 FER convergence comparison on the WIMAX rate 1/2 LDPC code at E b /N 0 = 2.0 dB.

Fig. 4 .

 4 Fig. 4.20 FER convergence comparison on the WIMAX rate 3/4 B LDPC code at E b /N 0 = 3.25 dB.

(min 2 ≥

 2 min 1 ), as well as the product of signs sign 1 of these messages. With those values, the function W is defined as W (a, sign, min 1 , min 2 ) = (sign(a) × sign, min 2 ) if |a| = min 1 , otherwise W (a, sign, min 1 , min 2 ) = (sign(a) × sign, min 1 ). The c-to-v messages m cm→v , which are the outputs of the CNUs, are computed using m cm→v = W (m v→cm , sign, min 1 , min 2 ) and sent to the VNUs v, with v ∈ V(c m ).

Fig. 5 .1

 5 Fig. 5.2 shows a timing diagram of the main signals of the proposed architecture.The decoding process starts only when go = 1. When the architecture is enabled to perform the decoding, go = 1 and rst = 0, only for one clock cycle the signal initialize is 1 and it is used to initialize the registers of the VNUs with the quantized LLRs I n . The decoding process is performed when initialize = 0 and go = 1. When a valid codeword is obtained (EndSyndr = 0) or the maximum number of iteration is reached (maxIter = 1), the signal EndIter is equal to 1 and the decoding process ends and other codeword can be decoded. One should note that at the same time that a codeword is decoded (EndIter = 1), e.g. I -b, another codeword, e.g. I -c, can initialize the registers of the VNUs (see Fig. 5.2 at clock cycle 12).

Fig. 5 . 1 Fig. 5 . 2

 5152 Fig. 5.1 Proposed architecture for the SP-MS decoders.

  voltage and temperature of 125 • C. The timing constraints used to perform the synthesis of all decoders are: (i) 0.05 ns of clock skew, (ii) 0.5 ns of output delay, and (iii) T -0.2 ns of input delay, where 5.3 Implementation Results of SP-MS Decoders and MS-Based Decoders 131 T is the clock period (in ns) obtained from the operating frequency of the decoder, i.e. T = 1/Freq.

Fig 5 . 3

 53 shows the area utilization and power consumption of a VNU of degree d v = 6 for the MS, OMS, and SP-MS decoders.

5. 3 ( 3 , 3 ) 9 A 1 A

 33391 Implementation Results of SP-MS Decoders and MS-Based Decoders 133 VN of degree d v = 6 Area Power (a) Precision q ch = 3. VN of degree d v = 6 Area Power (b) Precision q ch = 4.

Fig. 5 . 3

 53 Fig. 5.3 The area utilization and power consumption of a VNU of the IEEE 802.3 ETHERNET code for the MS, OMS, and SP-MS decoders.

Fig. 5 . 5

 55 Fig.5.5 The area utilization and power consumption of VNUs of the WIMAX rate 1/2 LDPC code for the MS, OMS, and SP-MS decoders using q = 3 bits of precision.

  (i) the SP-MS decoder helps reduce the area used 136 Implementation of Sign-Preserving Min-Sum Decoders by the OMS decoder when the same precision is used, and (ii) the SP-MS decoder always consumes slightly more power than the MS and OMS, i.e. the SP-MS decoder uses slightly more energy to decode a bit. To compute the decoding throughput, we consider L max = 20 for d v ∈ {3, 4, 5} and L max = 10 for d v = 6. Table 5.7 ASIC synthesis results using the 28 nm FDSOI library for (d v , d c )-regular LDPC codes, with N = 1296 for d v ∈ {3, 4}, N = 1280 for d v = 5, and N = 2048 for d v = 6 (d v , d c )-regular LDPC code, BI-AWGN channel

  Fig.5.[START_REF]IEEE Standard for Local and metropolitan area networks -Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems -Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1[END_REF] The area utilization and power consumption of the (q ch , q)-bit SP-MS decoders.
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42 ( 6 ,

 426 32)-regular LDPC, N = 2048 Area Power (b) Precision q ch = 4.

Fig. 5 . 8

 58 Fig. 5.8 The area utilization and power consumption of the MS, OMS, and SP-MS decoders considering the IEEE 802.3 ETHERNET code.

(d v = 6 ,

 6 d c = 32)-regular LDPC code (IEEE 802.3 ETHERNET code), the conclusions (i) and (ii) can be extended for other (d v , d c )-regular LDPC codes.

Fig. 5 . 9

 59 Fig. 5.9 The area utilization and power consumption of the WIMAX rate 1/2 LDPC code for the MS, OMS, and SP-MS decoders

Fig. 5 .Fig. 5 .

 55 Fig. 5.10 Graphical representation of (4, 4) trapping set.

  absorbing set errors. It is worth noting that knowing the set O(D) one can identify all the VNs connected to the unsatisfied CNs. Two decoding steps are performed to correct the absorbing set errors: 1. [SP-MS decoder] Decode a codeword with the SP-MS decoder for a fixed number of iterations. If the syndrome vector is not all-zero, continue with the next step. Implementation of Sign-Preserving Min-Sum Decoders 2. [Post-processing] (a) Only in a single iteration, all messages from CNs in O(D) to VNs in N (D) are set to strong, and all messages from CNs in S(D) to VNs in N (D) are set to weak.

  Fig. 5.1, i.e. the decoding process is enabled when go = 1 and rst = 0, a valid codeword is obtained when EndSyndr = 0, and the decoding process ends when EndIter = 1. The proposed architecture is composed of five main components: VNU, CNU, Count of Iterations, Compute Syndrome, and Usatisfied CNs. The VNU component implements the post-processing, and the CNU component sends information about whether a CN is a satisfied CN or an unsatisfied CN. Let us discuss the five main components of the proposed architecture.

- 1 ,

 1 proposed architecture uses N = 2048 VNU components. A VNU v n component is a synchronous circuit that has as input signals to clk, rst, initialize, post, c-to-v messages m * c→vn , c ∈ V(v n ), and the quantized LLR I n , while the output signals are v-to-c messages m vn→c and the estimated bit xn . 5.5 SP-MS Decoder with Post-Processing Using the Same Precision for Messages and LLRs 147 The mapping functions T , T ch , and T -1 defined to implement SP-MS decoders do not change, see Section 5.2. The function V of Fig. 5.12 is defined as V (a, b) = (sign(a) × sign(b), |b|). The correct c-to-v message m c→vn is obtained as m c→vn = V m vn→c , m * c→vn . Let denote b i , with i = 1, 2, ...d v , the sign of the c-to-v message m * c i →vn , b i carries information about whether the CNU c i is a satisfied CN or not. The product of signs (prd) of the c-to-v message, i.e. prd = i∈{1,...,dv} b i , gives us the information about whether the VN v n is connected to an unsatisfied CN c i . Specifically, if prd = -1 (in binary representation prd = 1) then the VN v n is connected to 1, 3, or 5 unsatisfied CNs. The architecture shown in Fig. 5.12 is designed to correct the (8, 8) absorbing set errors. Only when the signal post = 1 (obtained in iteration L pp ) and when prd = the message biasing is applied, i.e. the message m c i →vn is mapped to strong if b i = -1 (in binary representation b i = 1), otherwise, the message m c i →vn is mapped to weak. Let us take the example of a VN v n connected to an unsatisfied CN c 1 , and five satisfied CNs c i with i = 2, ..., 6. Considering post = 1, we have: (i) γ * n = T ch (I n ) + T (strong) + 5 × T (weak), and (ii) m vn→c 1 = T -1 (Υ * (γ * n -T (strong))), and m vn→c i = T -1 (Υ * (γ * n -T (weak))) for i = 2, ..., 6.

Fig. 5 .

 5 Fig. 5.13 shows a timing diagram of the main signals of the proposed post-processing architecture. We consider 9 iterations of SP-MS and 6 iterations of message biasing, a maximum of 15 iterations, S x < 21.

Fig. 5 .

 5 Fig.5.12 Post-processing architecture of the (q ch , q = q ch )-bit SP-MS decoders for the IEEE 802.3 ETHERNET code.

Fig. 5 .

 5 Fig.5.[START_REF] Chung | On the design of low-density parity-check codes within 0.0045 db of the shannon limit[END_REF] Behavior of the main signals of the (q ch , q = q ch )-bit SP-MS decoder with post-processing in the waterfall region and in the error-floor region. A maximum of 15 iterations is used.

Fig. 5 .

 5 Fig. 5.14 shows the FER convergence results at E b /N 0 = 4.5 dB for the SP-MS, SP-MS + post-processing (PP) without the unsatisfied CNs component, and SP-MS + PP considering S x < 21 and S x < 31. We can see that the SP-MS + PP without controlling the number of unsatisfied CNs give us the worst FER/BER performance after enabling post-processing. The FER/BER performance of the SP-MS + PP is not degraded when the number of unsatisfied CNs is controlled considering S x < 21. In the case of S x < 31, a slight degradation of FER/BER performance is observed. Therefore, Unsatisfied CNs component with τ = 21 helps the SP-MS decoder + PP to avoid decoding performance degradation in the waterfall region.

Fig. 5 .Fig. 5 .

 55 Fig. 5.15 FER performance of the (3, 3)-bit SP-MS decoder with post-processing obtained by FPGA emulation for the IEEE 802.3 LDPC code.

5. 6 Fig. 5 .

 65 Fig.5.18 depicts the behavior of the APPs (γ) for an[START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF][START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF] absorbing set when post-processing (message biasing) is enabled in the (3, 2)-bit SP-MS decoder. We can see the 8 APPs associated with the 8 wrong bits in iteration L pp -1. In iteration L pp , the message biasing changes the APP values as is shown in Fig.5.18b. In iteration L pp + 1, two bits of the[START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF][START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF] absorbing set are corrected because the two APPs associated with these two bits are positive. While in iteration L pp + 2, one bit corrected in iteration L pp + 1 becomes an incorrect bit again. Finally, after 4 iterations since the post-processing started, the same[START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF][START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF] absorbing set is obtained again as is shown in Fig.5.18e.

2 .

 2 [Post-processing] (a) [Only in a single iteration] i. Message biasing: map all messages from CNs in O(D) to VNs in N (D) to |strong| = N q , and map all messages from CNs in S(D) to VNs in N (D) to |weak| = 0. ii. Compute the APP: for each VN v n in N (D), the APP is computed from the channel observation I n and from all c-to-v messages whose magnitudes are |strong| = N q or |weak| = 0, i.e. γ * n = T ch (I n ) + T (strong) + 5 × T (weak) .

5. 6

 6 SP-MS Decoder with Post-Processing Using Different Precision for Messages and LLRs 157 5.19b. The LLR I n is mapped to (-sign, 0) if 2 ≤ |γ n | ≤ 7 and 0 ≤ |I n | ≤ 2. In iteration L pp + 1, the first two bits of the (8, 8) absorbing set are corrected. Also, the APPs associated with the 6 wrong bits are close to 0. With 3 iterations of post-processing, five bits are already corrected. Finally, all bits of the (8, 8) absorbing set are corrected after 4 iterations of the proposed post-processing algorithm, as is shown in Fig. 5.19e.

Fig. 5 .

 5 20 shows the main components and main signals of the proposed architecture, the input and output signals behave the same as the signals of the architecture shown in Fig. 5.12. The behaviour of the main signals of the proposed post-processing architecture is depicted in Fig. 5.21. We consider 9 iterations of SP-MS and 6 iterations of postprocessing with a maximum of 15 iterations. Also, the number of unsatisfied CNs is less 158 Implementation of Sign-Preserving Min-Sum Decoders 32)-regular LDPC, N = 2048 (a) LLR distribution of the bits in the set D at SNR = 4.9 dB. 32)-regular LDPC, N = 2048 (b) LLR distribution of the bits in the set N (D)\D at SNR = 4.9 dB. 32)-regular LDPC, N = 2048 (c) LLR distribution of the bits in the set D at SNR = 5.0 dB. 32)-regular LDPC, N = 2048 (d) LLR distribution of the bits in the set N (D)\D at SNR = 5.0 dB.

Fig. 5 .

 5 Fig.5.17 LLR distribution of the[START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF][START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF] fully absorbing sets obtained using the (3, 2)-bit SP-MS decoder. The results provided are for 281[START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF][START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF] absorbing set at SNR = 4.9 dB, and for 88[START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF][START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF] absorbing set at SNR = 5.0 dB.

Fig. 5 .

 5 Fig. 5.18 A posteriori probability of the (3, 2)-bit SP-MS decoder for an (8, 8) absorbing set. Behavior of the APPs in each iteration after enabling the post-processing (message biasing).

Fig. 5 .

 5 Fig. 5.19 A posteriori probability of the (3, 2)-bit SP-MS decoder for an (8, 8) absorbing set. Behavior of the APPs in each iteration after enabling the new post-processing.

5. 6 Fig. 5 .Fig. 5 .

 655 Fig.5.20 Post-processing architecture of the (q ch , q = q ch -1)-bit SP-MS decoders for the IEEE 802.3 ETHERNET code.

Fig. 5 .

 5 Fig. 5.22 shows the FER convergence results at E b /N 0 = 4.5 dB for the SP-MS, and SP-MS + PP considering S x < 21. We can see that the FER/BER performance of the SP-MS + PP is not degraded when the number of unsatisfied CNs is controlled considering S x < 21. Therefore this confirms that the Unsatisfied CNs component helps the SP-MS decoders to avoid decoding performance degradation in the waterfall region when using post-processing.

Fig. 5 .

 5 Fig.5.22 FER (solid lines) and BER (dashed lines) convergence comparison on the IEEE 802.3 ETHERNET code at E b /N 0 = 4.5 dB using a maximum of 9 iterations of (q ch , q = q ch -1)-bit SP-MS and 21 iterations as maximum of post-processing.

SNR (dB) ( 3 , 2 )

 32 -bit SP-MS, L max = 19 (4, 3)-bit SP-MS, L max = 15 L pp -1 = 9 L pp -1 = 11 L pp -1 = 9 L ppiterations of the (3, 2)-bit SP-MS + 10 iterations as maximum of postprocessing, and the second one using a maximum of 11 iterations of the (3, 2)-bit SP-MS + 8 iterations as maximum of post-processing. Fig. 5.23 shows the emulations results, one can see that the error-floor is lowered and excelled error correction performance is obtained below the FER of 10 -10 , which renders the proposed architecture of the (3, 2)-bit SP-MS decoder acceptable for the IEEE 802.3 ETHERNET code. Also, the emulations results confirm that the error correction performance is not degraded in the waterfall region.

- 10 .Fig. 5 .Fig. 5 .

 1055 Fig. 5.23 FER performance of the (3, 2)-bit SP-MS decoder with post-processing obtained by FPGA emulation for the IEEE 802.3 LDPC code.

2 A 5 A

 25 VN of degree d v = 6, post-proc.Area Power(a) A VNU of degree d v = 6.Precision : (q ch , q) CN of degree d c = 32, post-proc. Area Power (b) A CNU of degree d c = 32.

Fig. 5 .

 5 Fig.5.[START_REF] Rasheed | Fault-tolerant Probabilistic Gradient-Descent Bit Flipping Decoder[END_REF] The area utilization and power consumption by a single VNU/CNU of the IEEE 802.3 ETHERNET code for q ∈ {2, 3, 4} bits of precision.

)

  

Chapter 6 Conclusions

 6 This thesis has proposed two low precision iterative decoders for low-density paritycheck codes, the NAN-MS decoder and the SP-MS decoder. These decoders have been investigated and analyzed in the asymptotic limit of the code length using a noisy version of density evolution. The finite-length Monte Carlo simulations have corroborated the DE analysis. From the study carried out, it has been shown that the proposed decoders can reach a SNR gain of up to 0.43 dB. A much more exhaustive study of the SP-MS decoders has demonstrated that the precision of messages can be reduced by one bit maintaining the same error-correcting performance. It has also been presented that the SP-MS decoder consumes slightly smaller area than the OMS decoder when using the same precision. Additionally, it has been revealed that the reduction of one bit in the precision of the messages helps to reduce the area consumed by the SP-MS decoder by at least 25%. This thesis has also proposed a post-processing algorithm. It has been shown that the post-processing algorithm is very efficient in correcting the absorbing set errors of iterative decoders, especially for very low precision decoders. The post-processing algorithm was implemented in a fully parallel architecture, and the emulation results have exhibited that the error floor is lowered below a frame error rate level of 10 -10 Titre: Décodeur bruit contre bruit Mot clés : Correction d'erreur, codes LDPC, Density Evolution Résumé : Dans cette thèse, nous nous intéressons à l'amélioration des performances de décodeur Low-Density Parity-Check (LDPC) code fortement quantifié (3 ou 4 bits de précision en entrée).
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  )-regular LDPC code has all its VNs with the same degree d v and all its CNs of a fixed degree d c . In the corresponding sparse parity-check matrix H, d v is the amount of nonzero elements per column, and d c is the amount of nonzero elements per row. For a regular LDPC code, the density of H, denoted by d

Noise-against-Noise Decoders : Low Precision Iterative Decoders Franklin Rafael Cochachin Henostroza 2019 2.1 Generalities on LDPC codes 9 2.1.1 Ensemble of Regular LDPC codes A code is said to have a regular column-weight d v = |V(v)| if all VNs v have the same degree d v . Similarly, if all CNs c have the same degree d c = |V(c)|, a code is said to have a regular row-weight d c . A (d v , d c H , is equal to d H = d v /M = d c /N . For example, the matrix in (2.1) has a density d H equal to d H = 1/3. We can note that, for a fixed d c , when N increases to infinity, d H converges to zero. Let us denote by E the number of edges in the Tanner graph, or equivalently E is the amount of non-zero elements in H. For a regular LDPC code we have

22 Background 2.3.1 Channel Value Quantization Quantization for the Binary Symmetric Channel

  

	According to Section 2.2.2, for the BSC we have LLR(y n ) = (1 -2y n )log((1 -ϵ)/ϵ) ∈ R,
	with y n ∈ A y = {0, 1}. For a given BSC probability ϵ, the decoder input alphabet is
	composed of two values in A L = {+|LLR(y n )|, -|LLR(y n )|}. Fig. 2.5 shows the LLR
	LLR(y n ) as a function of the cross-over probability ϵ, we can see that LLR(y n ) is a
	real number.					
	LLR(y n = 0)					
	0	0.2	0.4	0.6	0.8	1
		Cross-over probability : ǫ	

  CN c of degree d c . Ψ v : A L → A C can be written in the 0th iteration.

	Notations		
	We keep the notations presented in Section 2.1 and Section 2.2.2, i.e. ℓ ∈ N denotes
	the iteration number, m	(ℓ) v→c ∈ A C denotes the message sent from VN v to CN c in
	the ℓ th iteration, m	(ℓ) c→v ∈ A C denotes the message sent from CN c to VN v in the ℓ th
	iteration, m (ℓ),U v→c denotes the unsaturated variable-to-check message in the ℓ th iteration.
	Also, V(v n ) is the set of neighbors of a VN v n in a Tanner graph, and V(c m ) is the set
	of neighbors of a CN c m in a Tanner graph.
	Following the definitions of the VNU and the CNU presented in Section 2.2.2, in
	this section we present the discrete update functions for quantized Min-Sum-Based
	decoders. Ψ v : A L × A	(dv-1) C	→ A C denotes the discrete function used for the update
	at a VN v of degree d v , and Ψ c : A (dc-1) C	→ A C denotes the discrete function used for
	the update at a		

.3 Density Evolution for Quantized Min-Sum-Based De- coders

  

	26	2.3 Quantized Min-Sum-Based Decoders and Density Evolution	Background	27
		As we can see, there is not much difference with the decoders presented in Section LDPC ensembles with good thresholds. Another less common utilization of DE is to fix
	2.2.2, except that the messages belong to a discrete alphabet, and then the update the LDPC ensemble (to the same parameters (d v , d c ) for example), and compare the
	rules require a saturation function S. thresholds of different decoders. This can be used for example to optimize the offset
		value in OMS decoders, or in the case of this work to analyze and optimize the injected
	2.3Density evolution (DE) is a tool which describes the asymptotic behavior of an iterative noise within the noisy MP decoders.	
	MP decoder as a dynamic system, and follows the probability mass function (PMF) of	
	the messages in the Tanner graph along the iterations. With DE, one can predict if an	
	ensemble of LDPC codes, parametrized by its degree distribution, decoded with a given	
	MP decoder, converges to zero error probability in the limit of infinite block length.
	This property gives rise to the definition of a density evolution threshold [27, 34, 35].	
		The DE threshold δ is expressed as a crossover probability (δ = ϵ) for the BSC or as	
	a standard deviation (δ = σ) for the BI-AWGN channel, with the objective of separating	
	two regions of decoder convergence. The first region composed of values smaller than δ	
	corresponds to the region where the DE converges to the zero error probability fixed	
	point. The second region composed of values greater than δ corresponds to the region	
	where the DE does not converge. In this later case, the DE converges to a fixed point	
	which does not represent the zero error probability. Then the DE threshold can be	
	considered as a point of discontinuity between these two regions.		
		The value of the DE threshold δ is then an indicator of whether the LDPC codes	
	ensemble decoded with a MP decoder is good or not. In particular, the DE threshold	
	.21) can be used to compare different systems and decide which ones are the best in terms
	of error correction. The most common utilization of DE in the literature is to compare	
	And the decision on the estimated bit xn is taken according to the sign of γ different LDPC codes ensembles using the BP decoder [32]. It is used for example to (ℓ) n .	
	optimize the degree distributions of irregular LDPC codes, or to design protograph	
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Break Iteration]

  

	32	Background
	Algorithm 1 Computation of the DE threshold	
	1. [Initialization]	
	Initialize interval limits [δ 1 , δ 2 ] with δ 1 < δ 2 , such that DE succeeds for δ = δ 1
	and fails for δ = δ 2 . Further define δ m = (δ 1 + δ 2 )/2.	
	2. [While |δ 2 -δ 1 | > prec]	
	(a) [Perform DE]	
	i. [Initialize DE]	
	DE is initialized with the equation (2.22) and ϵ = δ m .	
	ii. [Iteration Loop]	
	A. [Compute PMF]	
	Apply recursively the sequence of two equations (2.25) and (2.26)
	for L max iterations.	
	B. [	

  3.5 Asymptotic Analysis of NAN-MS Decoders for Regular LDPC codes55

			2.8			
	1	2Rσ * 2 2.7			
	DE threshold : 10log 10	2.3 2.4 2.5 2.6			
			2.2			
			0	0.2	0.4	0.6	0.8	1
				Transition probability : ϕ a

Table 3 .

 3 2 Noisy DE thresholds of NAN-MS decoders NAN-MS decoders, (d v , d c )-regular LDPC code, BI-AWGN channel Asymptotic Analysis of NAN-MS Decoders for Irregular LDPC codes 59 Finally, we decide to use the same model for all other VNs with degrees d v ≥ 4, denoted

	(d v , d c )	q	Method α *	φ * s	φ * a	φ * 0	δdb
			Υ-NIV 0.82 0.475 0.475 0.000	1.5711
		3 bits	Υ-NOV 0.77 0.338 0.313 0.000	1.5995
			Υ-NOC 0.77 0.850 0.363 0.000	1.6306
			Υ-NIV 1.72 0.887 0.887 0.000	1.2877
	(3, 6)	4 bits	Υ-NOV 1.7 0.000 0.912 0.000	1.2917
			Υ-NOC 1.75 0.000 1.000 0.000	1.2931
			Υ-NIV 2.49 1.000 1.000 0.000	1.2045
		5 bits	Υ-NOV 2.49 1.000 1.000 0.000	1.2045
			Υ-NOC 2.49 1.000 1.000 0.000	1.2045
			Υ-NIV 0.60 0.413 0.413 0.000	2.5989
		3 bits	Υ-NOV 0.60 0.900 0.338 0.000	2.5989
			Υ-NOC 0.61 1.000 0.425 0.000	2.6267
			Υ-NIV 1.26 0.750 0.750 0.000	2.3777
	(3, 12)	4 bits	Υ-NOV 1.25 0.800 0.737 0.000	2.3777
			Υ-NOC 1.33 1.000 0.962 0.000	2.3873
			Υ-NIV 2.15 1.000 1.000 0.000	2.2938
		5 bits	Υ-NOV 2.15 0.800 1.000 0.000	2.2938
			Υ-NOC 2.15 1.000 1.000 0.000	2.2938
			Υ-NIV 0.93 0.950 0.950 0.000	2.1056
		3 bits	Υ-NOV 0.92 1.000 0.912 0.000	2.1105
			Υ-NOC 0.92 1.000 1.000 0.000	2.1119
			Υ-NIV 1.67 1.000 1.000 0.463	1.7411
	(4, 8)	4 bits	Υ-NOV 1.67 1.000 1.000 0.450	1.7411
			Υ-NOC 1.69 1.000 1.000 0.475	1.7488
			Υ-NIV 1.95 1.000 1.000 0.825	1.7055
		5 bits	Υ-NOV 1.95 0.800 1.000 0.825	1.7055
			Υ-NOC 1.98 1.000 1.000 1.000	1.7060
			Υ-NIV 0.72 0.900 0.900 0.000	2.8121
		3 bits	Υ-NOV 0.72 0.700 0.887 0.000	2.8121
			Υ-NOC 0.71 1.000 1.000 0.000	2.8132
			Υ-NIV 1.36 1.000 1.000 0.213	2.5077
	(4, 16)	4 bits	Υ-NOV 1.36 0.700 1.000 0.213	2.5077
			Υ-NOC 1.36 1.000 1.000 0.000	2.5101
			Υ-NIV 1.81 1.000 1.000 0.662	2.4594
		5 bits	Υ-NOV 1.81 0.500 1.000 0.662	2.4594
			Υ-NOC 1.86 1.000 1.000 1.000	2.4606

  (ii) the optimum value for φ * 0 is 0 or it is close to 0 for d v = 3 VNs and (iii) some of the optimized models are not probabilistic since the optimized values of the transition probabilities are very close to 0 or 1.

	Table 3.4 DE thresholds of NAN-MS decoders and the rate 1/2 code.
	NAN-MS decoders, Irregular LDPC code, BI-AWGN channel
	q	Method α *	d v	φ * s	φ * a	φ * 0	δdb
				2	0.000 0.000 0.000
		Υ-NIV	0.42	3	0.350 0.350 0.000 1.6236
				≥ 4 1.000 1.000 0.225
	bits			2	0.000 0.013 0.000
		Υ-NOV	0.42	3	0.000 0.063 0.000 1.6302
				≥ 4 0.000 1.000 0.300
		Υ-NOC 0.44	-	0.000 0.000 0.000 1.8310
				2	0.000 0.000 0.000
		Υ-NIV	1.0	3	1.000 1.000 0.000 0.9995
				≥ 4 1.000 1.000 0.000
	bits			2	0.000 0.000 0.000
		Υ-NOV	0.98	3	0.000 0.988 0.000 1.0077
				≥ 4 0.000 1.000 0.000
		Υ-NOC 0.83	-	0.000 0.375 0.000 1.2178
		Irregular LDPC code, BI-AWGN channel 2 0.600 0.600 0.000
		Υ-NIV	1.84	3	R = 1/2 1.000 1.000 0.000 0.8233 R = 3/4
		q	λ v	α * ≥ 4 1.000 1.000 0.000 δ db α * δ db
	bits	0 0.44 1.8310 0.66 2.8236 2 0.000 0.613 0.000 1 0.40 5.2283 0.50 3.4406 1.85 3 bits 4 bits Υ-NOV 3 0.000 1.000 0.000 0.8233 0 1.07 1.3941 1.29 2.6150 ≥ 4 0.000 1.000 0.000 1 0.80 2.8140 1.42 2.2416 1 1.55 1.1828 1.97 2.1637 5 bits 0 2.30 1.3013 2.50 2.5654 Υ-NOC 1.66 -0.000 0.800 0.000 0.8679
	Noisy DE thresholds are summarized in Tables 3.4 and 3.5, where we indicate the

The degree distribution for the rate 1/2 code is λ(x) = (22/76)x + (24/76)x 2 + (30/76)x 5 and ρ(x) = (48/76)x 5 + (28/76)x 6 , while for the rate 3/4 B code is λ(x) = (10/88)x + (36/88)x 2 + (42/88)x 5 and ρ(x) = (28/88)x 13 + (60/88)x

14 

. For these distributions, we indicate in Table

3

.3 the DE thresholds of the noiseless MS decoder and the noiseless OMS decoder. Table 3.3 DE thresholds of noiseless MS decoders and noiseless OMS decoders with offset value λ v = 1 for the WIMAX degree distribution optimum values of α and of the noise parameters for the different degrees. Those results confirm the conclusions of the regular LDPC codes analysis: (i) the NIV model is again 60 Noise-Against-Noise Min-Sum Decoders the best one,

Table 3

 3 VNs for almost all cases. These observations, combined with the fact that the optimum values for φ (≥4) * are almost always 0 or 1, lead to the conclusion that injecting noise in NAN-MS decoders for irregular LDPC codes is especially important

	.5 DE thresholds of NAN-MS decoders and the rate 3/4 B code.
	NAN-MS decoders, Irregular LDPC code, BI-AWGN channel
	q	Method α *	d v	φ * s	φ * a	φ * 0	δdb
				2	0.038 0.038 0.000
		Υ-NIV	0.67	3	0.713 0.713 0.000 2.5323
				≥ 4 0.925 0.925 0.025
	3 bits			2	0.025 0.000 0.000
		Υ-NOV	0.63	3	0.000 0.025 0.000 2.5930
				≥ 4 0.013 1.000 0.238
		Υ-NOC 0.60	-	0.025 0.788 0.000 2.6172
				2	1.000 1.000 0.838
		Υ-NIV	1.39	3	1.000 1.000 0.000 2.2138
				≥ 4 1.000 1.000 0.000
	4 bits			2	0.000 0.513 0.000
		Υ-NOV	1.23	3	0.000 1.000 0.138 2.2284
				≥ 4 0.838 1.000 0.000
		Υ-NOC 1.16	-	1.000 1.000 0.000 2.2341
				2	1.000 1.000 0.000
		Υ-NIV	1.89	3	1.000 1.000 0.288 2.1611
				≥ 4 1.000 1.000 1.000
	5 bits			2	0.400 1.000 0.000
		Υ-NOV	1.89	3	0.500 1.000 0.288 2.1611
				≥ 4 0.500 1.000 1.000
		Υ-NOC 1.97	-	1.000 1.000 1.000 2.1637
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Table 3 .

 3 ). The others SNR gains are provided in Table 3.6. 6 DE gains and SNR gains of NAN-MS decoders. (d v , d c )-regular LDPC code, BI-AWGN channel

	Additional simulation results are provided in Fig. 3.11 which shows the FER
	performance comparisons between NAN-MS decoders implemented with the NIV,

  but for some cases analyzed φ *

	0
	is not close or equal to 0. In order to make a trade-off between FER performance and
	cost of implementation, we set (φ * s , φ * a , φ * 0 ) = (1, 1, 0) for all cases. Considering the NIV
	model with (φ * s , φ * a , φ * 0 ) = (1, 1, 0), we define the Modified Offset Min-Sum (M-OMS)
	decoder. For this decoder, the update rule at a CNU is given by equation (3.1), and
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the update rule at a VNU is written as

Table 3 .

 3 7 DE thresholds of M-OMS decoders.

(d v , d c )-regular LDPC code, BI-AWGN channel

Table 3 .

 3 and if a > +1 8 DE thresholds of M-OMS decoders and the rate 1/2 code.

	Irregular LDPC code, BI-AWGN channel
	q	α *	φ (2) s	φ	(2) a

Table 3 .

 3 11 DE thresholds of the M-OMS decoders using L max = 20.

					(d v , d c )-regular LDPC code, BI-AWGN channel
					(d v , d c )	q	α	δ db	λ	(20) v λ (19) v ...λ (2) v λ	(1) v
					(3, 6)	3 bits 0.78 2.1352 11111111111111111111 4 bits 1.78 1.6612 11111111111111111111
					(4, 8)	3 bits 0.93 2.3196 11111111111111111111 4 bits 1.64 1.9483 11111111111111111111
			2.2				
	1	2Rσ * 2 2.15				
	10	2.1				
	: 10log	2.05				
	DE threshold	1.9 1.95 2				
			1.85				
			0	2	4	6	8	10
				Number of OMS-λ v decoders	×10 5

Table 3 .

 3 [START_REF] Mackay | Near shannon limit performance of low density parity check codes[END_REF] DE thresholds of the OMS-λ v decoders using L max = 20.

		(d v , d c )-regular LDPC code, BI-AWGN channel	
	(d v , d c )	q	α *	δ db	λ	(20) * v	λ	(19) * v	...λ (2) * v λ (1) * v	DE gain
				1.8853						0.1943
				1.8858						0.1938
				1.8853						0.1943
		3 bits 0.75	1.8848 01000000100101010111 0.1948 1.8853 0.1943
				1.8858						0.1938
				1.8853						0.1943
	(3, 6)			1.8848 11000000100101010111 0.1948 1.6098 0.1407
				1.6094 01010010101011011111 0.1411
				1.6097						0.1408
		4 bits 1.47	1.6096 1.6098						0.1409 0.1407
				1.6094 11010010101011011111 0.1411
				1.6097						0.1408
				1.6096						0.1409
				2.2986						0.2770
				2.2985						0.2771
				2.2983 01010101011111111111 0.2773
		3 bits 0.88	2.2984 2.2986						0.2772 0.2770
				2.2985						0.2771
				2.2983 11010101011111111111 0.2773
	(4, 8)			2.2984 1.9468						0.2772 0.0241
				1.9470						0.0239
				1.9469						0.0240
		4 bits 1.60	1.9467 01110111111111111111 0.0242 1.9468 0.0241
				1.9470						0.0239
				1.9469						0.0240
				1.9467 11110111111111111111 0.0242

* (a) Precision q = 3 * (b) Precision q = 4

Table 3 .

 3 [START_REF] Chung | On the design of low-density parity-check codes within 0.0045 db of the shannon limit[END_REF] DE thresholds of noiseless MS decoders and noiseless OMS decoders with offset value λ v = 1 for the WIMAX degree distribution using L max = 20.

	Irregular LDPC code, BI-AWGN channel
	R	q	λ v α *	δ	δ db
	1/2	3 bits 4 bits	0 0.53 0.7871453339 2.0789 1 0.54 0.6148141689 4.2251 0 1.05 0.8124462941 1.8041 1 1.17 0.7676937113 2.2962
	3/4	3 bits 4 bits	0 0.58 0.5830334538 2.9252 1 0.71 0.5568327660 3.3246 0 1.12 0.5969529723 2.7203 1 1.39 0.6109303460 2.5193

Table 4 .

 4 1 Binary representation of the quantized values.

	Classical Decoder		Sign Preserving Decoder
	m ∈ A C q = 3 bits m ∈ A S q = 3 bits (sign(m), |m|)
	-3	101	-3	111	(-1,3)
	-2	110	-2	110	(-1,2)
	-1	111	-1	101	(-1,1)
	-	100	-0	100	(-1,0)
	0	000	+0	000	(+1,0)
	+1	001	+1	001	(+1,1)
	+2	010	+2	010	(+1,2)
	+3	011	+3	011	(+1,3)

Table 4 .

 4 3 Noisy DE thresholds of NAN-MS decoders using the NIV model

	s	φ * a	φ * 0	δdb

NAN-MS decoders, (d

v , d c )-regular LDPC code, BI-AWGN channel (d v , d c ) (q ch , q) Method α * φ *

2 Asymptotic Analysis of SP-MS Decoders for Irregular LDPC codes

  

	Analyzing the regular LDPC codes we have seen that the optimum noise parameters
	(φ * s , φ * a , φ * 0 ) and the respective gains of SP-MS and SP-NA-MS decoders depend on the
	VN degree. Therefore, in order to optimize the SP-MS decoders for the LDPC codes
	with irregular VN distribution, we extend our optimization approach by considering
	a noise injection model Υ with different values of the transition probabilities for
	the different connection degrees. The precision considered for this optimization is

Table 4

 4 

	.5 DE thresholds of SP-NA-MS and SP-MS decoders for the WIMAX degree
	distribution.										
					SP-NA-MS decoders				SP-MS decoders
	R q ch = q	α *	d v	φ * s	φ * a	φ * 0	δdb	DE gain	α * (φ * s , φ * a , φ * 0 )	δdb	DE gain
			2	0.000 0.000 0.000				(0,0,0)	
	3 bits	0.65	3	0.000 0.162 0.000 1.3997 0.4313 0.65	(0,0,0)	1.4003 0.4307
	1/2		≥ 4 1.000 1.000 1.000 2 0.000 0.000 0.000				(1,1,1) (0,0,0)	
	4 bits	1.24	3	0.250 1.000 0.375 0.9547 0.4394 1.24	(0,1,0)	0.9582 0.4359
			≥ 4 1.000 1.000 1.000				(1,1,1)	
			2	0.000 0.000 0.000				(0,0,0)	
	3 bits	0.81	3	1.000 0.687 0.000 2.4433 0.3803 0.81	(1,1,0)	2.4451 0.3785
	3/4		≥ 4 1.000 1.000 1.000 2 1.000 0.788 0.000				(1,1,1) (1,1,0)	
	4 bits	1.48	3	1.000 1.000 1.000 2.2110 0.0306 1.49	(1,1,1)	2.2111 0.0305
			≥ 4 1.000 1.000 1.000				(1,1,1)	

Table 5 .

 5 2 Synthesis results on FPGA of the SP-MS decoders for the IEEE 802.3 ETHERNET code.

			IEEE 802.3 ETHERNET code, SP-MS decoders	
		Max.	Number	Number	Number of	Throughput
	(q ch , q)	Freq.		of slice	of slice	fully used	with 10 iter
		(MHz)	registers		LUTs	LUT-FF pairs	(Gbps)
	(3, 3)	114.071 45061	(0.0%)	358221	(0.0%)	45061	(0.0%)	23.3617
	(3, 2)	123.843 32773 (-27.27%) 232797 (-35.01%) 32773 (-27.27%)	25.3630
	(4, 4)	90.435 59397	(0.0%)	638093	(0.0%)	59397	(0.0%)	18.5211
	(4, 3)	91.329 47109 (-20.68%) 571194 (-10.48%) 38917 (-34.48%)	18.7042

Table 5 .

 5 [START_REF] Mackay | Information Theory, Inference, and Learning algorithms[END_REF] Synthesis results on FPGA of the SP-MS decoders for the WIMAX LDPC code.

Table 5 .

 5 5 ASIC synthesis results using the 28 nm FDSOI library for only one VNU of degree d v = 6 and only one CNU of degree d c = 32.

			Variable-Node	Check-Node	Variable-Node	Check-Node
	d c ) Decoder	Freq.	Area Power Area Power	Freq.	Area Power Area Power
			(MHz) (µm 2 ) (µW) (µm 2 ) (µW) (MHz) (µm 2 ) (µW) (µm 2 ) (µW)
		MS		186.05 92.375			239.25 121.0
	(3, 6)	OMS	800	225.05 101.90 81.76 20.396	800	291.15 140.2 173.64 44.724
		SP-MS		195.51 100.70			258.84 134.7
		MS		269.28 124.3			337.66 162.9
	(4, 8)	OMS	700	338.80 143.9 110.81 29.005	700	420.57 189.8 228.15 58.902
		SP-MS		306.0	141.7			384.17 182.6
		MS		328.36 140.7			411.75 185.1
	(5, 10)	OMS	600	415.99 167.0 139.86 38.437	600	515.38 220.0 282.66 74.726
		SP-MS		362.47 161.2			456.63 207.5
		MS		394.8	178.4			494.2 232.6
	(6, 32)	OMS	600	499.2	214.0 459.73 165.7	600	618.5 280.5 883.24 237.3
		SP-MS		446.2	208.9			558.8 266.1
				IEEE 802.3 ETHERNET code, SP-MS decoders
	Precision			Variable-Node			Check-Node
	(q ch , q)	Freq. (MHz)		Area (µm 2 )		Power (µW)		Area (µm 2 )	Power (µW)
	(3, 3) (3, 2)	600	446.2 337.0 (-24.47%) 137.1 (-34.37%) 184.74 (-59.82%) 121.8 (-26.49%) (0.0%) 208.9 (0.0%) 459.73 (0.0%) 165.7 (0.0%)
	(4, 4) (4, 3)	600	558.8 450.6 (-19.36%) 209.9 (-21.12%) 459.73 (-47.95%) 165.7 (-30.17%) (0.0%) 266.1 (0.0%) 883.24 (0.0%) 237.3 (0.0%)

  the VNU reduces the area by 19.36%, i.e., from 558.8 µm 2 to 450.6µm 2 . When comparing the power consumption, one can see a power consumption saving of 34.37%

	134				Implementation of Sign-Preserving Min-Sum Decoders
	(ii)									
	(µW)	500 600	A VN of degree d v = 6 446.2 450.6 558.8 Power Area	(µW)	1000 800	A CN of degree d c = 32 Area 883.2 Power
	(µm 2 ), Power	200 300 400	337.0	208.9	209.9	266.1	(µm 2 ), Power	400 600			459.7	459.7
	Area	100	137.1				Area	200	184.7	121.8	165.7	165.7	237.3
		0						0		
					3)	(4,4)			(3,2)	(3,3)	(4,3)	(4,4)
											Precision : (q ch , q)
			(a) A VNU of degree d v = 6.			(b) A CNU of degree d c = 32.
	Fig. 5.4 The area utilization and power consumption of a VNU and a CNU of the
	IEEE 802.3 ETHERNET code for q ∈ {2, 3, 4} bits of precision.

Table 5 .

 5 

		6 ASIC synthesis results using the 28 nm FDSOI library for the degree
	distribution (λ(x), ρ(x)), with λ(x) = 22 76 x + 24 76 x 2 + 30 76 x 5 and ρ(x) = 48 76 x 5 + 28 76 x 6
					WIMAX rate 1/2 LDPC code
			VN of d v = 2	VN of d v = 3	VN of d v = 6	CN of d c = 6	CN of d c = 7
	q Decoder	Freq.	Area Power Area Power Area Power Area Power Area Power
			(MHz) (µm 2 ) (µW) (µm 2 ) (µW) (µm 2 ) (µW) (µm 2 ) (µW) (µm 2 ) (µW)
		MS		132.35 51.979 186.05 81.314 394.78 206.7
	3	OMS	700	158.47 55.339 225.05 89.759 499.23 247.8 81.76 20.396 93.84 24.760
		SP-MS		117.83 48.683 162.06 76.941 446.19 242.1
		MS		171.36 67.890 239.25 106.5 494.17 269.6
	4	OMS	700	205.96 75.328 291.15 123.4 618.53 325.0 173.64 44.724 195.19 52.270
		SP-MS		156.83 63.223 259.98 116.2 558.79 308.6
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Table 5 .

 5 9 summarizes the ASIC synthesis results for the WIMAX rate 1/2 LDPC code. The decoding throughput is computed considering L max = 20. Those results

		Freq.	Area	Power	EpB	Throughput	Freq.	Area	Power	EpB	Throughput
		(MHz) (mm 2 )	(mW) (pJ/bit)	(Gbps)	(MHz) (mm 2 )	(mW) (pJ/bit)	(Gbps)
	MS		0.598627 227.76 2.4714			0.816824 289.99 3.5961
	OMS	800	0.747223 209.81 2.2766	92.16	700	1.003706 293.92 3.6448	80.64
	SP-MS		0.608703 247.91 2.6900			0.913862 306.86 3.8053

  .11. For example, from the 281[START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF][START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF] absorbing set errors obtained from the (3, 2)-bit SP-MS decoder at an SNR of 4.9 dB, the message biasing can only correct 92[START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF][START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF] absorbing set errors, i.e. 67.26% of the (8, 8) absorbing set errors are not corrected. Since more than 60% of all the (8, 8) absorbing set errors are not corrected, an error floor emerges at a FER level of 10 -8 , this makes the (3, 2)-bit SP-MS decoder unacceptable for the IEEE 802.3 ETHERNET code.

Table 5

 5 

	.11 Number of uncorrected (8, 8) absorbing set errors by the proposed post-
	processing and by message biasing (11 iterations of the (3, 2)-bit SP-MS + 9 iterations
	of post-processing, and 9 iterations of the (4, 3)-bit SP-MS + 6 iterations of post-
	processing).							
		IEEE 802.3 ETHERNET code, (q ch , q)-bit SP-MS Decoder	
			Before post-processing		After post-processing	
	Precision SNR (q ch , q) (dB)	run the SP-MS Number of Average (8, 8) sets S x	proposed post-proc. Number of Average Number of Average message biasing (8, 8) sets S x (8, 8) sets S x
		4.75	193	8.11	3	10	130	8.12
	(3, 2)	4.8 4.9	257 281	8.12 8.05	3 0	10 0	162 189	8.27 8.29
		5.0	88	8.09	0	0	61	8.23
		4.75	369	8.10	9	8.67	26	9.62
	(4, 3)	4.8 4.9	384 88	8.13 8.05	11 2	14.36 8	24 2	10.75 8
		5.0	118	8	2	11	8	9

Table 5 .

 5 Decoder with Post-Processing 169 13 Synthesis results on FPGA of the SP-MS decoders with post-processing for the IEEE 802.3 ETHERNET code.

			IEEE 802.3 ETHERNET code, SP-MS decoders	
		Max.	Number	Number	Number of	Throughput
	(q ch , q)	Freq.		of slice	of slice	fully used	with 15 iter
		(MHz)	registers		LUTs	LUT-FF pairs	(Gbps)
	(3, 3)	99.975 45064	(0.0%)	319809	(0.0%)	38920	(0.0%)	13.6499
	(3, 2)	103.659 32777 (-27.27%) 218923 (-31.55%) 32777 (-15.78%)	14.1529
	(4, 4)	87.987 59400	(0.0%)	587153	(0.0%)	51208	(0.0%)	12.0132
	(4, 3)	99.440 47112 (-20.69%) 366031 (-37.66%) 47112 (-8.0%)	13.5769

Table 5 .

 5 [START_REF] Chen | Density evolution for two improved bp-based decoding algorithms of ldpc codes[END_REF] ASIC synthesis results using the 28 nm FDSOI library for only one VNU of degree d v = 6 and only one CNU of degree d c = 32, the post-processing algorithm is implemented in the VNU.

			IEEE 802.3 ETHERNET code, SP-MS decoders	
	Precision		Variable-Node		Check-Node	
	(q ch , q)	Freq. (MHz)	Area (µm 2 )	Power (µW)	Area (µm 2 )	Power (µW)
	(3, 3) (3, 2)	600	498.74 395.27 (-20.75%) 196.4 (-28.87%) 127.78 (-68.30%) 60.537 (-42.73%) (0.0%) 276.1 (0.0%) 403.10 (0.0%) 105.7 (0.0%)
	(4, 4) (4, 3)	600	612.33 503.31 (-17.80%) 271.5 (-20.19%) 402.77 (-51.27%) 104.2 (-41.30%) (0.0%) 340.2 (0.0%) 826.60 (0.0%) 177.5 (0.0%)

Table 5 .

 5 [START_REF] Chen | Near optimum universal belief propagation based decoding of low-density parity check codes[END_REF] ASIC synthesis results using the 28 nm FDSOI library for only one VNU of degree d v = 6 and only one CNU of degree d c = 32.

			IEEE 802.3 ETHERNET code, SP-MS decoders	
	Precision	Freq.	Area	Power	EpB	Throughput
	(q ch , q)	(MHz)	(mm 2 )	(mW)	(pJ/bit)	(Gbps)
	(3, 3) (3, 2)	500	1.185272 0.877948 (-25.93%) 237.98 (-22.59%) 4.4160 (-1.93%) (0.0%) 307.41 (0.0%) 4.5029 (0.0%)	68.27 53.89
	(4, 4) (4, 3)	500	1.619418 1.228852 (-24.12%) 304.41 (-20.57%) 4.4589 (-20.57%) (0.0%) 383.25 (0.0%) 5.6137 (0.0%)	68.27 68.27

Table 5 .

 5 [START_REF] Singhal | Quantized ldpc decoder design for binary symmetric channels[END_REF] Implementation results for the IEEE 802.3 ETHERNET code and comparison with other works.

  Le premier décodeur proposé, appelé décodeur Noise-Against-Noise Min-Sum (NAN-MS), intègre une certaine quantité de perturbations aléatoires dues à une injection délibérée de bruit dans le processus de décodage. L'autre décodeur, appelé décodeur Sign-Preserving Min-Sum (SP-MS), conserve toujours le signe des messages et utilise toutes les combinaisons possibles pouvant être générées pour une précision donnée. Nous montrons de plus qu'un décodeur SP-MS quantifiant ces entrées sur 3 ou 4 bits peut échanger des messages en internes quantifiés respectivement sur 2 ou 3 bits sans affecter le seuil de convergence du code dès lors que le degré des variables est supérieur à 4. Les décodeurs NAN-MS et SP-MS présentent un gain de SNR pouvant atteindre 0,43 dB dans la zone de convergence de la courbe de performances. D'autre part, nous avons proposé une modification d'un algorithme de post-traitement existant qui permet de réduire le taux d'erreur résiduelle (zone appelée « error floor ») pour les décodeurs avec seulement 2 bits de précision pour les messages échangés. Appliqué au code IEEE 10 Gigabit ETHERNET, l'algorithme SP-MS combiné avec l'algorithme de post-processing permet de réduire le niveau d'erreur au-dessous d'un taux d'erreur par trame de 10 -10 . Nous avons implémenté ce décodeur en technologie ASIC 28 nm avec une architecture entièrement parallèle. La surface obtenue est de 1,76 mm 2 , et le débit de décodage de 319,34 Gbit/s pour un rapport signal à bruit de 5,5 dB, soit une efficacité matérielle de 181,44 Gbit/s/mm 2 .
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Quantized Min-Sum-Based Decoders and Density Evolution

Noise-Against-Noise Min-Sum Decoders 

v = 1, ..., λ

). We denote the first decoder if (λ

v = 1), the second decoder if (λ

v = 0), and so on. From the results, we can see that there are many offset vectors that help the OMS-λ v decoder beat the MS and OMS. In Table 3.12, we show the best DE thresholds of OMS-λ v decoders, we also show the DE gains obtained comparing the best thresholds indicated in bold in Table 3.10 and the thresholds of OMS-λ v decoders.

When comparing the best thresholds indicated in bold in Table 3.10 and Table 3.12, we can observe: (i) the DE thresholds of the OMS-λ v decoders are always better than the DE thresholds of the MS and OMS decoders, (ii) the offset equal to 1 is applied mainly during the first iterations, while in the rest of iterations the offset equal to 1 is applied from time to time, (iii) for the regular d v = 3 LDPC code, about 50% of the applied offset is equal to 1 for both precisions q = 3 and q = 4, (iv) for the regular

LDPC code, about 25% of the applied offset is equal to 1 precisions q = 3, while for the largest precision q = 4, almost always the offset equal to 1 is applied, and (v)

the DE gains for low precision is quite important, the largest gain obtained is around 0.2773 dB. While the DE gains are smaller for the largest precision q = 4.

Implementation of Sign-Preserving Min-Sum Decoders

When the decoding process is enabled, i.e. rst = 0 and go = 1, the syndrome vector is computed in each decoding iteration using decision x. A correct codeword is obtained when the syndrome vector is all-zero, i.e. H xT = 0, in this conditions we have EndIter = 1 and EndSyndr = 0. If a valid codeword is not computed, the value of EndSyndr is equal to 1. When the decoder reach the maximum number of iterations, i.e. maxIter = 1, we set EndIter = 1, and decision can be a valid codeword (EndSyndr = 0 ) or not (EndSyndr = 1).

VNU Component

The proposed architecture uses N VNU components. A VNU v n component is a synchronous circuit that has as input signals to clk, rst, initialize, c-to-v messages m c→vn , c ∈ V(v n ), of q bits, and the quantized LLR I n of q ch bits, while the output signals are v-to-c messages m vn→c of q bits and the estimated bit xn .

In order to implement the equations (4.6) and (4. A v-to-c message is obtained using the function T -1 (a) = (sign(a), (|a| -1) /2). These functions are shown in Fig. 5.1, as well as the function Υ * . The function Υ * is defined as Υ * (a) = (sign(a), S (max(|a| -λ * v , 0), 2N q + 1)), where λ * v ∈ {0, 2} is the offset value.

From Table 4.4 and Table 4.5, λ * v = 0 if the transition probability (φ * s , φ * a , or φ * 0 ) of SP-MS decoders is 0, in the case that the transition probability is 1 we have

In the decoding process, i.e. initialize = 0, at each new clock cycle, the APP value

message is computed by subtracting the corresponding c-to-v message from the APP value γ * n and by applying the functions Υ * and T -1 to the result of the subtraction,
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Implementation of Sign-Preserving Min-Sum Decoders

We define the decoding throughput of the fully parallel architecture as

where Freq (in GHz) is the operating frequency and L max is the maximum number of clock cycles to decode a codeword.

Implementation Results of SP-MS Decoders

and MS-Based Decoders

Synthesis results on FPGA

In this section, we present the synthesis result of the proposed architecture on the Xilinx From the results obtained, one can see that the maximum frequency of (q ch = 3, q =

3)-bit SP-MS decoders is slightly higher compared to the maximum frequency of the (q ch = 3, q = 3)-bit MS and (q ch = 3, q = 3)-bit OMS decoders. For the precision (q ch = 4, q = 4), the maximum frequency of SP-MS decoders is close or slightly higher compared to the maximum frequency of the MS and the OMS decoders. When comparing the use of FPGA resources by different decoders, one can observe that on average (in Precision (q ch = 3, q = 3) Precision (q ch = 4, q = 4) The decoding process continues with the SP-MS using the new LLRs until the syndrome vector is all-zero or a maximum number of iterations is reached.

We determine by simulation that the optimal values used in the inequalities are

, L 1 = 0, and L 2 = 2 for the (3, 2)-bit SP-MS decoder.

In the case of the (4, 3)-bit SP-MS decoder, we have

The proposed post-processing algorithm is very efficient to correct the (8, 8) absorbing set errors compared to the message biasing, especially for very low precision (q ch = 3, q = 2). Table 5.11 shows the number of uncorrected [START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF][START_REF] Dong | On the use of soft-decision error-correction codes in nand flash memory[END_REF] absorbing set errors considering S x < 21. We can see that for very low precision (q ch = 3, q = 2), the proposed post-processing corrects all the (8, 8) absorbing errors at SNR = 4.9 dB and SNR = 5.0 dB, while the message biasing can not correct around 68% of the (8, 8) absorbing set errors. For the case of the (4, 3)-bit SP-MS decoder, the message biasing can also be used as post-processing, but a slight amount of the (8, 8) absorbing set errors can not be corrected using message biasing, as is shown in Table 5.11.

Using the proposed post-processing, Fig. 

VNU Component

The proposed architecture uses N = 2048 VNU components. The VNU component for precision (q ch , q = q ch -1) is very similar to the VNU component of the architecture presented in Section 5.5. Let us explain the two differences: (i) in the initialization stage, i.e. initialize = 1, the v-to-c messages (m vn→c ) are obtained by saturating the quantized LLR I n with the function S(I n , N q ), and (ii) during the decoding process, i.e. initialize = 0, and when the signal post = 1, a new LLR is computed if the APP γ * n and the quantized LLR I n satisfy the inequalities

respectively.

Unsatisfied CNs

This component is equal to the Usatisfied CNs component of the architecture presented in Section 5.5, i.e. this component produces the signal U nCN = 1 if and only if the number of unsatisfied CNs is less than τ (S x < τ ).

Implementation of Sign-Preserving Min-Sum Decoders

is the biggest decoder, and the (4, 3)-bit SP-MS decoder occupies an area slightly greater than the (3, 3)-bit SP-MS decoder.

Precision : (q ch , q) Fig. 5. [START_REF] Mackay | Good error-correcting codes based on very sparse matrices[END_REF] The area utilization and power consumption of the (q ch , q)-bit SP-MS decoders with post-processing.

Comparing the results of Table 5.8 and Table 5.15, one can see that for a fixed precision (q ch , q), the post-processing increases the core area of SP-MS decoders. For very low precision (q ch = 3, q = 2), the area of 0.774 mm 2 is increased by 13.38% to 0.878 mm 2 , while for precision (q ch = 4, q = 3), the area is increased by 10.20%, i.e., from 1.115 mm 2 to 1.229 mm 2 .

Place and Route results

The place and route results of SP-MS decoders presented in this section are preliminary results. We implement two decoders using S x < 21: (i) the first decoder considers a maximum of 9 iterations of (3, 3)-bit SP-MS + 6 iterations as maximum of postprocessing (message biasing), (i) the second decoder considers a maximum of 11 iterations of (3, 2)-bit SP-MS + 8 iterations as maximum of post-processing (proposed algorithm of Section 5.6).

The place and route of the [START_REF] Mackay | Information Theory, Inference, and Learning algorithms[END_REF][START_REF] Mackay | Information Theory, Inference, and Learning algorithms[END_REF] The place and route of the (3,2)-bit SP-MS decoder is also done 28 nm FDSOI, we obtain an area of 1.76 mm 2 , a density of 60%, and a clock frequency of 421 MHz.

In this case, using 19 iterations, the decoding throughput is 45.38 Gbit/s and the guaranteed hardware efficiency is 25.78 Gbit/s/mm 2 . At a SNR level of 5.5 dB, where 2.70 iterations is used in average, the decoding throughput is 319.34 Gbit/s and the hardware efficiency is 181.44 Gbit/s/mm 2 , as is shown in Table 5.17. When comparing the area used by the two SP-MS decoders, the precision (q ch = 3, q = 2) reduces an area of 2.56 mm 2 by 31.25% to 1.76 mm 2 , this result confirms the conclusions obtained in Section 5.7.2.

From the results of density, we can see that the (3,2)-bit SP-MS decoder helps alleviate the routing congestion problem of the (3,3)-bit SP-MS decoder. When comparing the hardware efficiency of both decoders at high SNR levels, where the average number Implementation of Sign-Preserving Min-Sum Decoders iterations is almost the same for both decoders, we can conclude that the (3, 2)-bit SP-MS is the best decoder. It must be taken into account that at high SNR levels, the use of the post-processing is infrequent and most codewords are decoded using very few iterations. 

Comparison with other works

In the literature there are many implemented decoders for the IEEE 802.3 ETHERNET code, some of them are listed in Table 5.18 in order to compare them with our SP-MS decoders. Note that the maximum frequency of [START_REF] Zhang | An efficient 10gbaset ethernet ldpc decoder design with low error floors[END_REF][START_REF] Naderi | Delayed stochastic decoding of ldpc codes[END_REF] is set to 1000 MHz in 28 nm (after scaling) to have a more realistic and non-optimistic decoder. Comparing the hardware efficiency, we can see that the (3,2)-bit SP-MS is 5.0 (resp. 2.5) times more efficient than the decoder of [START_REF] Ghanaatian | A 588-gb/s ldpc decoder based on finite-alphabet message passing[END_REF] (resp. [START_REF] Zhang | An efficient 10gbaset ethernet ldpc decoder design with low error floors[END_REF]).

The error correction performance of the proposed decoders are compared with the (4, 4)-bit OMS decoder of [START_REF] Zhang | An efficient 10gbaset ethernet ldpc decoder design with low error floors[END_REF] and with (4, 3)-bit LUT-based decoder of [START_REF] Ghanaatian | A 588-gb/s ldpc decoder based on finite-alphabet message passing[END_REF]. Fig. 5.28

shows the FER performance of the SP-MS decoders. We can see that all the SP-MS decoders exhibit better FER performance than the (4, 3)-bit LUT-based, For a FER = 10 -10 we obtain a SNR gain of 0.5 dB for the very low precision (3, 2), 0.52 dB for low precision (3, 3), and 0.56 dB for intermediate precision (4, 3) and the largest precision [START_REF] Etsi | [END_REF][START_REF] Etsi | [END_REF]. We can also observe that the (4, 4)-bit SP-MS and the (4, 3)-bit SP-MS decoders have slightly better FER performance than the (4, 4)-bit OMS. Also, the SP-MS decoder using (q ch = 3, q = 2) bits (resp. (q ch = 3, q = 3) bits) of precision is 0.1 dB (resp. 0.08 dB) away from the (4, 4)-bit OMS at a FER = 10 Fig. 5.28 Error correction performance of (q ch , q)-bit SP-MS decoders.

Conclusions

for the IEEE 802.3 ETHERNET code. Additionally, it has been determined that the algorithm converges quickly using on average 3 to 4 iterations.

The SP-MS decoder that incorporates the post-processing algorithm has been implemented obtaining an area of 1.76 mm 2 , a decoding throughput of 319.34 Gbit/s, and a hardware efficiency of 181.44 Gbit/s/mm 2 .

Future works that can be addressed from the results and conclusions presented in this thesis are: (i) the study of the SP-MS decoders in LDPC codes of the 5G, (ii) to use the concept of preserving the sign of the messages in FAIDs, and (iii) to adapt and extend the post-processing algorithm to other LDPC codes for storage applications. In addition, the concepts presented in this thesis can be adapted and extended to other codes such as the Turbo-code or the Polar code that need low precision decoders.