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Abstract

We observe the actions of a K sub-sample of N individuals, during some time interval with
length ¢ > 0, for some large K < N. We model the relationships of individuals by i.i.d. Bernoulli(p)
random variables, where p € (0,1] is an unknown parameter. The rate of action of each individual
depends on some unknown parameter p > 0 and on the sum of some function ¢ of the ages of the
actions of the individuals which influence him. The function ¢ is unknown but we assume it rapidly
decays. The aim of this thesis is to estimate the parameter p, which is the main characteristic of the
interaction graph, in the asymptotic where the population size N — oo, the observed population
size K — oo, and in large time ¢ — co. Let m; be the average number of actions per individual
up to time ¢, which depends on all the parameters of the model. In the subcritical case, where my
increases linearly, we build an estimator of p with the rate of convergence \/% + th\/? + KLW
In the supercritical case, where m; increases exponentially fast, we build an estimator of p with
the rate of convergence \/1? + mf/?.

In a second time, we study the asymptotic normality of those estimators. In the subcritical
case, the work is very technical but rather general, and we are led to study three possible regimes,
. . . . 1 N N
depending on the dominating term in 7kt VR + Ky 0.

In the supercritical case, we unfortunately suppose some additional conditions and consider
only one of the two possible regimes.

Keywords. Multivariate Hawkes processes, Point processes, Statistical inference, Interaction
graph, Stochastic interacting particles, Mean field limit, Central limit theorem.
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Résumé

Nous observons les actions d’un sous-échantillon de K de N dindividus, pendant un intervalle
de temps de longueur ¢ > 0, pour certaines grandes K < N. Nous modélisons les relations des
individus par i.i.d. Bernoulli (p) variables aléatoires, ot p € (0, 1] est un parametre inconnu. Le
taux daction de chaque individu dépend dun parametre inconnu g > 0 et sur la somme de quelque
fonction ¢ des ages des actions des individus qui 'influencent. La fonction ¢ est inconnue mais
nous supposons qu’elle se désintegre rapidement. Le but de cette these est d’estimer le parametre
p, qui est la principale caractéristique du graphe dinteraction, dans I’asymptotique ou taille de la
population N — oo, la taille de la population observée K — oo, et dans un temps long t — co. Soit
my le nombre moyen d’actions par individu jusqu’au temps ¢, qui dépend de tous les parametres du
modele. Dans le cas sous-critique, ol m; augmente linéairement, nous construisons un estimateur
de p avec le taux de convergence \/1? + WL\/E + KLW Dans le cas supercritique, ot m; augmente

rapidement de faon exponentielle, nous construisons un estimateur de p avec le taux de convergence
N

1 +
VK miVEK '

Dans un second temps, nous étudions la normalité asymptotique de ces estimateurs. Dans le
cas sous-critique, le travail est trés technique mais assez génral, et nous sommes amenés a étudier

. o . . . 1 N N N
trois régimes possibles, en fonction du terme dominant dans TR + —yid + % i & 0.

Dans le cas supercritique, nous supposons malheureusement quelques conditions supplémentaires
et considérons seulement 1'un des deux régimes possibles.

Mots-clés.

Processus Hawkes multivariés, Processus ponctuels, Inférence statistique, Graphe d’interaction,
Particules a interaction stochastique, Limite de champ moyen, Théoréme centrale limite.
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Chapter 0

Introduction

0.1 Review of the thesis

We study mainly the statistical inference for a partially observed interacting system of Hawkes
processes in chapter 1 and the central limit theorem for this partially observed interacting system
of Hawkes processes in chapter 2.

0.2 Hawkes processes

In this section, we are going to give a short introduction of Hawkes process.

0.2.1 One dimensional Hawkes process

We consider 1 > 0 and ¢ : [0, 00) — [0,00). We always assume that the function ¢ is measurable
and locally integrable. We consider II(dt, dz), a Poisson measure on [0, 00) x [0, 00) with intensity
dtdz.

t oo t—
YARES / / 1.<a 3 1(ds, dz), where s := p —|—/ o(t — 8)dZs. (0.1)
o Jo 0

In this thesis, f(f means f[o i
processes. By [14, Proposition 1], the system (1) has a unique (F;);>o-measurable cadlag solution,
where

and fot* means f[o p- The solution ((Z¢)i=0) is a counting

Fi=o(II(A) : A € B([0,t] x [0,00))),
as soon as ¢ is locally integrable.

Remark 0.2.1. We usually say the function A\; as rate function and call function ¢ kernel of the
process Z;. We denote by {t;};>1 the sequence of jump times of the counting process Z. Then we
have another expression of the rate function:

)\tZM+Z¢(t—ti)-

t; <t

From the definition, we have the following martingale with respect to the filtration F;:

t t 00 ~
Mt = Zt — / )\SdS = / / 1{ZS>\S}H(d8?dZ))
0 0 JO
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where II(ds, dz) = II(ds, dz) — dsdz is the compensated Poisson measure associated to II(ds, dz).
Since Z; counts the jump of M;, we have the following equality for the quadratic covariation:
[M]: = Z;. We refer to Jacod-Shiryaev [23, Chapter 1, Section 4e] for definitions and properties of
pure jump martingales and of their quadratic variations.

Hawkes process is a simple point process, which has long memory, the clustering effect, the
self-exciting property and is in general non-Markovian.

The property of one dimensional linear Hawkes processes have been well studied, see e.g. Chap-
ter 12 of Daley and Vere-Jones in [13] for the introduction of the process, Brémaud and Massoulié
in [8] for the analysis of the Bartlett spectrum of the process. In [31], Ogata gives some asymptotic
behaviour of maximum likelihood for these processes.

Hawkes processes have a lot of illustrating representations. The most famous one is the following
immigration-birth model given by Hawkes in [19]:

Immigration-Birth Representation

We count the number of individuals and denote it as Z;. Each individual arrives either via
immigration or by birth. The immigrations arrive according to a homogeneous Poisson process at
rate p. Then each individual produces children independently from each other. An individual who
arrives at time ¢ produces offspring according to an inhomogeneous Poisson process with intensity

o(t — s).
0.2.2 Two special kernels of one dimensional Hawkes process

Exponential kernel

The Hawkes process with exponential kernels has a lot of advantageous, especially the Markov
property as follows:

Proposition 0.2.2. Consider the process (0.1) with exponential kernels ¢(s) = ae™”* where
a, B> 0. Then the couple (Z;, \;) is a Markov process and we have the following equation:

A\ = —B\dt + adZ,.

There is plenty of literature about this kind of Hawkes process, e.g. see [30], [16] and the
application in Finance see [2].

In the non-exponential case, the Hawkes process usually cannot have the Markov property
anymore. A famous example of a non-exponential kernel is the power-law one.

Power-law kernel

Consider the process (0.1) with power-law kernels ¢(s) = % for o, B, v > 0. If we

add v > «, it can ensure the stationarity of the process. The Hawkes with power-law kernel was
proposed by Ogata in [32] for describing temporal clusters of seismic activity.

0.2.3 Nonlinear Hawkes Processes

A nonlinear Hawkes Process is a simple point process Z;, such that:

Zy = /Ot /OOO 1r.<a11(ds, dz), where \; := f(/ot ot — s)dZs>. (0.2)

The Poisson measure II(ds,dz) and function ¢ are defined in (0.1) and f : [0,00) — [0,00). The
study of nonlinear Hawkes Processes is much rarer than the linear case.
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e the simulation see [10, P96-P116]

e the existence and uniqueness of a stationary nonlinear Hawkes process see Brémaud and
Massoulié [7],

e a central limit theorem for nonlinear Hawkes processes see Zhu [47],
e a large deviations for Markovian nonlinear Hawkes processes see Zhu [49],
e some approximation of nonlinear Hawkes process see [42] and [43].

More studies of nonlinear Hawkes Processes see Zhu [48].

0.2.4 Multivariate Hawkes Processes

We consider ¢;; : [0,00) — [0,00) for 4,j = 1,..,N. p; for ¢ = 1,..., N are constants. We
always assume that the function ¢;; are measurable and locally integrable. For NV > 1, we consider
an i.i.d. family (II*(dt,dz))i=1.. . n of Poisson measures on [0,00) x [0, 00) with intensity dtdz. We
consider the following system: for all i € {1,..., N}, all t > 0,

t [e'e] N t—
ziN ::/O /0 1{Z§)\2,N}Hl(d57dz), where A = p; + 2/0 b (t — s)dZIN. (0.3)
=

The solution ((ZZ’N)tzo)izl,...,N is a family of counting processes. By [14, Proposition 1], the
system (0.3) has a unique (F;);>o-measurable cadlag solution, where

Fi = o(IT"(A) : A€ B([0,t] x [0,00)),i = 1,..., N),

as soon as ¢ is locally integrable. We usually assume that for any i,7 =1,..., N, fooo ¢i; < 0oo. We
introduce the N' x N matrix Kn(i,) = [~ ¢i;(s)ds and let p(Ky) is the spectral radius. Define
the vectors Ziv = (Ztl’N7 ey ZtN’N)7 = (p1,..., pn). Then we will have the following proposition:

Proposition 0.2.3. ([1], Bacry, Delattre, Hoffmann and Muzy )
Assume p(Ky) < 1, then we have the following law of large numbers:

sup [t 23 — u(l = Kn) 'y = 0
0<u<1

as t going to co convergences almost surely and in L?(P).

If we assume further that for any 7,5 = 1,..., N, fooo V/s¢ij(s)ds < oo. Then, we have the
following central limit theorem: as t — oo,
(\/E(flzfjg —u(I—KN)*luN)) 4 ((I—KN)*lzéBﬁ)

0<u<l1 0<u<l1

where BY is a N dimensional Brownian motion and ¥ is the diagonal matrix with %5 = ((I —
Kn)tpy)i fori=1,... N.

And as the same of the case of one dimensional, there exists a unique stationary version of
the multivariate Hawkes process satisfies (0.3). In [41], Torrisi gives the rate of convergence to the
stationary version. Some studies of Bartlett spectrum of the multivariate Hawkes process can be
found in Hawkes [20]. In [18], Hansen, Reynaud-Bouret and Rivoirard give some study of non-
asymptotics estimates for multivariate Hawkes processes. The study of mean-field situations for
Hawkes processes see e.g. [15], the non-linear case see e.g. [11].

0.2.5 Applications of Hawkes Processes

The Hawkes processes was first introduced as an immigration-birth model by Hawkes in [19].
Since then, there has been a huge literature of the application of the processes. In [32], Ogata
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use the Hawkes process to give models for earthquake occurrences. In [6], Bray and Schoenberg
review the Hawkes process among other model alternatives for earthquake forecasting. Pratiwi
also gives a procedure for modeling earthquake based on these self-exciting point processes in [35]
and another example about earthquake see [24].

We can see there are plenty of applications in genomics, for example see [17] by Gusto and [37]
by Reynaud-Bouret. In [37], they use the hawkes process to model the process of the occurrences
of a particular event along DNA sequence.

Hawkes processes also have a lot of applications in finance. In [21], Hewlett model the occurrence
of buy and sell market orders on FX markets using a bivariate exponential Hawkes process. More
examples in Finance see e.g. [2].

There is also some applications in neuroscience see e.g. [39] Sarma et al. And in [44], Truccolo
uses autoregressive PPGLM models to treat spiking events from neurons as point events in these
processes.

Reinhart also gives some applications of these self-exciting spatio-temporal point processes in
[36]. Wu et a.l. also use Hawkes Processes to study Sporadic and Bursty Event in [45].

0.3 Statistical inference for Hawkes process

0.3.1 Motivation

Hawkes processes have been used to model interactions between multiple entities evolving
through time. For an example in neurosciences, see Reynaud-Bouret et al. [38], where they use
multivariate Hawkes processes to model the instantaneous firing rates of different neurons. In
[12], Chevallier gives the mean-field of spiking neurons modeled via Hawkes processes. There are
some more application examples in neroscience for example see Pakdaman et al. [33], [34]. In
finance, Bauwens and Hautsch in [4] give an order book model. And in [28], Lu and Abergel give
an order book model described by High-dimensional Hawkes processes with exponential kernels.
They study the calibration problem and show a good agreement between the statistical properties
of order book data and those of the model. Social networks interactions are considered in Blundell
et al. [5], Simma-Jordan [40], Zhou et al. [46]. There are even some applications in criminology,
see e.g. Mohler, Short, Brantingham, Schoenberg and Tita in [29]. Concerning the statistical
inference for Hawkes processes, mainly the case of fixed finite dimension N has been studied, to
our knowledge, in the asymptotic ¢ — oco.

However, in the real world, we often need to consider the case when the number of individuals
is large. For example, in the neurosciences, the number of the neurons are usually enormously
large. So it is natural to consider the double asymptotic t — co and N — oo.

0.3.2 The system

We consider some unknown parameters p € (0,1], ¢ > 0 and ¢ : [0,00) — [0,00). We always
assume that the function ¢ is measurable and locally integrable. For N > 1, we consider an
i.id. family (IT¥(dt,dz))i=1.. . n of Poisson measures on [0,00) x [0,00) with intensity dtdz. And
(0i5)i,j=1,....~ is a family of i.i.d. Bernoulli(p) random variables which is independent of the family
(IT%(dt,dz))i=1,.. n. We consider the following system: for all i € {1,..., N}, all t > 0,

; t roo ) : 1 N t— )
ziN ::/0/0 1,y 1T (ds, dz), where A :;HN;% i ot —s)dzZPN.  (0.4)
iz
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The solution ((ZZ’N)tzo)i:L...,N is a family of counting processes. By [14, Proposition 1], the
system (0.4) has a unique (F;);>o-measurable cadlag solution, where

Fi =o(IT(A) : A€ B([0,] x [0,00)),i=1,...,N)Va(8j,i,j =1,....,N),

as soon as ¢ is locally integrable.

Remark 0.3.1. We usually say the function \; as rate function. And from the definition, we have
the following martingale:

. ) t t o .
M = Z;’Nf/o )\Q’Nds:/o/o l{zg)\é,N}Hl(dS,dZ),

where IT?(ds, dz) = IT?(ds, dz) — dsdz is the compensated Poisson measure associated to IT*(ds, dz).
Since the Poisson measures II' are independent, the martingales MtZ N are orthogonal. More
precisely, we have [M*N MIN], = 0if i # j (because Z/" is the number of jumps of M"Y and
all jumps are size 1).

Let us provide an interpretation the process ((Z?N)tzo)i:l,.“,N-

0.3.3 An illustrating example

We have N individuals. Each individual j € {1,..., N} is connected to the set of individuals
S;={ie{l,...,N}:0;; =1}. The only possible action of the individual 7 is to send a message
to all the individuals of S;. Here ZZ’N stands for the number of messages sent by ¢ during [0, ¢].

The rate )\i’N at which ¢ sends messages can be decomposed as the sum of two effects:
e he sends new messages at rate y;

e he forwards the messages he received, after some delay (possibly infinite) depending on the
age of the message, which induces a sending rate of the form % Zjvzl 0 fot_ o(t — 8)dZIN.

If for example ¢ = 1jg g}, then N~! Z;\f:l 0:; [, ot — s)dZZN is precisely the number of
messages that the i-th individual received between time ¢t — K and time t, divided by N.

0.3.4 Main Goals

In [14], Delattre and Fournier consider the case when one observes the whole sample of indi-
viduals (Z;’N)izl,,,N’ogsgt and they propose some estimator of the unknown parameter p.

However, in the real world, it is often impossible to observe the whole population. Our goal in
the present thesis is to consider the case where one observes only a subsample of individuals.

In other words, we want to build some estimators of p when observing
(Z;"N){izl_’wa o<s<t} With 1 < K < N and with ¢ large. And then we establish a central limit
theorem for this estimator, which allows to construct an asymptotic confidence interval of the
parameter p.

Let A = [;° ¢(t)dt € (0,00]. In [14], we see that growth of 7N depends on the value of Ap.
When Ap < 1 (subcritical case), Z,"" increases (in average) linearly with time, while when Ap > 1
(supercritical case), it increases exponentially. Thus the limit theorems will be different in the two
cases. We will not consider the critical case when Ap = 1.
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0.3.5 The main result of the estimator

Assumptions

We will work under one of the two following conditions: either for some ¢ > 1,

€ (0,00), Ape€ (0,1) and /OOC s¢(s)ds < oo (H(q))

t

we€ (0,00), Ape€ (1,00) and / |dp(s)| increases at most polynomially.
0

In many applications, ¢ is smooth and decays fast.

(4)

Hence what we have in mind is that in

the subcritical case, (H(q)) is satisfied for all ¢ > 1. In the supercritical case, (A) seems very
reasonable.

The result in the subcritical case
ZN =

For N > 1 and for ((ZZ’N)tzo)i:L...,N the solution of (0.4), we set
=+ vazl ZZ’N and ZtN’K :

= LS8 Z0N . Next, we introduce
N,K N.K N,K Nr N Sz -y Nvirl? N Nk
Ko =17 N, 7V, L 2 t , ,
e =t (Zyy — 24T, Vi = X Z {% € R
i=1
For A > 0 such that t/(2A) € N*, we set
N-K
N, K . ooNK N,K NK .y yN,K N.K
WA,t = 2ZQA,t - ZA,t ) XA,t = WA,t T K &t
2/A

(0.5)
N N SN.K  5NK N K
where Z,'; = " Z (Z X" — 2 ya — Qe )2 (0.6)
a=t/A
Theorem 0.3.2. We assume (H(q)) for some q > 3. There is a constant C' depending only on ¢,

p, 1, ¢ such that for all e € (0,1), all 1 < K < N, if setting Ay = t/(2[t' =TV ) for all t > 1,
Ccr 1 N N
P(lo (M M2 — (A z6) < 2 (= +

+ ) +CNe 'K
VK  gi-th VK
with ¥ := 1p® : R®  R3, the function & := (&), &2 &C)) being defined on D := {(u,v,w) €
R®:w >u>0andv >0} by

— oM 2
W (u,v,0) := u\/E7 O (u, v, w) i= + [ (u, v, w)]
w

ulu — W (u,v,w)]
151
G (u, v, w) = L—u 120w, 0, w)

O (u, v, w)

We quote [14, Remark 2], which says that the mean number of actions per individual per unit
of time increases linearly.

Remark 0.3.3. Assume H(1). Then for all ¢ > 0,

(N,t)—= (00,00

> = 0.
/ l—Ap‘_€> 0

SN, K
lim )P(’ Zu H

So roughly, if observing ((Z4V

S

)se[0,4])i=1,...,K» We observe approximately Kt actions.
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Remark 0.3.4. If the function ¢ decays fast, for example ¢(s) = ae™* or clp where D is some

compact set. In these situations, the function ¢ can satisfy the assumptions for arbitrary ¢ > 0.

Hence, we can say KL\/Z is almost equivalent to %
KVt Ttq

Remark 0.3.5. We are going to consider two special cases:
e When K ~ N, we have

1 N N : 1 N
(—=+ + )+ CNe 9K ~ ( \F

K tliﬁ t\/}? \/ 1+q

Hence, in order to ensure the convergence, we just need ‘F — 0.

)+ CNe~ O'N

e Assume K ~ vlog N and vC’ > 1, where C’ is as in theorem 0.3.2, we have

1 N

1 N N N
Vl0og N logN\/t t\/logN

— + + )
\/E K\/tl—ﬁ t\/?

( +CNe @K ~ ( )+ CN*C,

Hence, in order to ensure the convergence, we just need \/ — + \/gg — — 0, which equiv-
log NVt 1+ag
alent to ———— — 0.
log NV tliﬁq
The result in the supercritical case
Here we define ZtN K as previously and we set
NE& jz0N _ZNK2 N
Z/{tN’K:: {—Z( t *NKt ) NK}]‘ ZN.K (07)
K z ZN Km0
i=1 t

1

N,K
and Pt = Zj[itN’K n 1 1{utN,K20}.

(0.8)
Theorem 0. 3 6. We assume (A) and define g by p [ e~ ¢(t)dt = 1 (recall that by (A),

Ap = pfo t)dt > 1). For all n > 0, there is a constant C, > 0 (depending on p, u, $,n), such
thatforallNZKZl alle € (0,1),

Cne‘“”( N 1 )

PUPEE =29 < 2 (e * UR)

g

Next, we quote [14, Remark 5].

Remark 0.3.7. Assume (A) and consider ag > 0 such that p [~ e=@'¢(t)dt = 1. Then for all
n>0, B
lim lim P(ZNK g [eloo—mt glaotmit)y — 1,

=00 (N, K)—(00,00)

So roughly, if observing ((Zi*N)se[Qt])1-:17___7K, we observe around Ke®! actions.

0.3.6 On the choice of the estimators

In the whole aper, we denote by Ey the conditional expectation knowing
(0i5)ij=1,...n. Here we explain informally why the estimators should converge.

The subcritical case

We define Ay (i,j) == N~'0;; and the matrix (An(i,4)); jeq1
AApn)~! on the event on which I — AAy is invertible.

Ny, as well as Qn = (I —

.....
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Define )% = t=1ZN K < N. We expect that, for ¢ large enough, Z/"N ~ Eg[Z"]. And,
by definition of Z}"" | see (2.1), it is not hard to get

Eo[ZiN] = pt + N~ Z 0; /0 ot — s)Eg[Z9N]ds.
j=1

Hence, assuming that vy (i) = lim; o t_l]Eg[ZZ’N] exists for each ¢ = 1,..., N and observing
that fg o(t — s)sds ~ At, we find that the vector vy = (yn())i=1,...n should satisfy vy =
uly + AANn~yy, where 1 is the vector defined by 15(i) = 1 forall¢ =1,..., N. Thus we deduce
that vy = u(I — AAx) 11y = uly, where we have set

N N K

. N 1 N 1 .

Ly = Qn1n, In(i) = E Qn(i,j), In = N E n (i), Iy = I E N (i)
= iz i=1

So we expect that Zi™ ~ Eg[Zi-N] ~ uly (i)t, whence 25 = =125 ~ 0K

We informally show that £x (i) ~ 1+ A(1 — Ap) 'L (i), where Ly (i) := Z;\;l An(i,7): when
N is large, Zjvzl A% (i,j) = N2 Z;\f:l Zi\;l 0;10r; ~ pN ! Zszl O, = pLn (7). And one gets
convinced similarly that for any n € N,., roughly, Zjvzl A% (i, 5) ~ p"*Lx(i). So

N
In() =D A" AR (i, 5) = 1+ A" Ly(i) =1+ - _AApLN(z').

n>0  j=1 n>1

But (NLy(4))i=1,... n are i.i.d. Binomial(/N,p) random variables, so that /& ~ 14+ Ap(1—Ap)~! =
(1 — Ap)~!'. Finally, we have explained why &"* should resemble (1 — Ap)~'.

R

Knowing (6;;)i,j=1..~, the process Ztl’N resembles a Poisson process, so that Varg(Ztl’N)
1,N
E¢[Z,""], whence

Var(Z}'N) = Var(Eg[ 2 N]) + E[Varg(Z} ™)) =~ Var(Eo[Z}N]) + E[Z V).
Writing an empirical version of this equality, we find

1
Ki

M=

K
i > 1 i > 25
(2N = 20 7 (BolZi™) ~ BolZ)K)) 4+ 2K
=1

1
And since ZN ~ pln (i)t ~ p[l 4 (1 — Ap)"'ALN ()]t as already seen a few lines above, we find
K 22 A2 K

1 N SNK\2 N FE\2 , 5NK
— Z)0 =7 ~ L —L /A
K ;:1( t : ) K(1—Ap)? ;:1( ~ (i) N+ 2,

But (NLn(i))i=1,.. n are i.i.d. Bernoulli(V, p) random variables, so that
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We finally build a third estimator. The temporal empirical variance
A VA
AZN,K 2
n Z - (k 1)A Bt
should resemble Varg[ZA "] if 1 < A < t. So we expect that:

t/A

—~ N - 2 N -
N.K _ N,K N.K —17NK]* N.K
WA =2 |2 - 255 s - 2 2] < Varo[ZY ).
k=1
5N, K : : i,N i,N
To understand what Varg[Z, "] looks like, we introduce the centered process U, = Z;" —

Eg[Z"] and the martingale M} := Z"N —CN where CV is the compensator of Z#N. An easy
computation, see [14, Lemma 11], shows that, denoting by Uiv and Miv the vectors (UZ’N)Z»:L,”,N
and (MZ’N)iZI,...,J\U

¢
UN =mMY + AN/ ot — s)UNds.
0
So for large times, we conclude that UY ~ MY + AAyUY | whence finally UY ~ QMY and thus

N
ZU:N Z;Q@,j)w“ Z ()M,

where we have set cK(j) = 25, Qn(i,). But we obviously have [M7N MiN], = e 2™
(see [14, Remark 10]), so that

Varg[Z] ] = Vary [N "] ~

N
Z Z]’

N\

Recalling that th Y~ wln(f)t, we conclude that
_ N 2
Varg 2] 2 K2t Y (K () en (),
j=1

whence

N
= N N2, .
WA o Doy [Z5°K] = i S () o).
j=1

To compute this last quantity, we start from cy(j) = >, 5 Zfil A" A% (i,7). But we have
S A () = N2 SN by ~ pKN"230 0y = pKN~'Cn(j). And one gets
convinced similarly that for any n € N, roughly, Zfil A% (i,j) ~ KN~'p"1Cn(j). So we
conclude that c§(5) ~ A% (i,5) + N({(AAp)CN( ). Consequently, c5(j) ~ 1+ %ﬁ for j €
{1,..,K} and cK(j) ~ K(l Ly for j € {K +1,..,N}. We finally get, recalling that ¢x(j) ~
(1 - Ap)_17

W it > (80 10

N K KAp 2 N-K KAp 2
L T A
N n (N_K)N

S (1-Ap)® K(1—-Ap)



10 CHAPTER 0. INTRODUCTION

All in all, we should have xy A t = Ao Ap)s

It readily follows that \I/(Et ’ ,VtN’K, XA)’tK) should resemble (u, A, p).

The three estimators siV’K,VN’K Xiv’t are very similar to siVK7 l~/tN’K, fgf and should
converge to the same limits. Let us explain why we have introduced Eiv K, VtN ’K, X i\i ’tK7 of which
the expressions are more complicated. The main idea is that, see [14, Lemma 16 (ii)], E[Z™] =
pN (i)t + XN 4+ ¢179 (under (H(q))), for some finite random variable x~. As a consequence,

tR[ZEN — ZIN] converges to ply (i) considerably much faster, if ¢ is large, than t~1Eg[Z1N] (for
which the error is of order t71).

The supercritical case

We now turn to the supercritical case where Ap > 1. We introduce the N x N matrix Ay (i, ) =
N’19ij .

We expect that ZiY ~ HyEg[ZY], when ¢ is large, for some random Hy > 0 not depending
on 4. Since Ap > 1, the process bhould 1ncreabe like an exponential function, i.e. there should be
ay > 0 such that for alli=1,...,N, Eg[Z"N] ~ yn(i)e™! for ¢ very large, where vy (7) is some
positive random constant. We recall that Eg[Zl N = put+ N1 Zj 1055 fo — 8)Eq[Z7N]ds.

We insert Ey [th ] ~ yn(i)e“Nt in this equation and let ¢ go to infinite: we mformally get Yy =
ANy fooo e N3¢(s)ds. In other words, vy = (Yn(%))i=1,.. .~ is an eigenvector of Ay for the
eigenvalue py = ([ e~*V¢(s)ds) L.

But Ay has nonnegative entries. Hence by the Perron-Frobenius theorem, it has a unique (up
to normalization) eigenvector V y with nonnegative entries (say, such that |V y|l2 = v/N), and
this vector corresponds to the maximum eigenvalue py of Ax. So there is a (random) constant
ki such that vy ~ kyV v and, furthermore, ( [y e=*¥*¢(s)ds)™' ~ py. All in all, we find that
ZPN ~ knHyeN'V N (i). We define VX = IxVy, where I is the N x N-matrix defined by
Ik (i,§) = 1im—j<ky-

As in the subcritical case, the variance K~ Y1 (27N — ZN )2 should look like

K K

N N K2 | sNK Ry Hy e Nt GE\2 | FNK
o L BlZi - B2 2000 o SRS ) - O 4 2
= i1

where as usual V& = K~! Zfil Vi (i). We also get Z)V'5 ~ iy Hy Vi e*Nt, Finally,

K

K
N Sz - 2 . N _
uNE - ZiN L gNKy2 | peoNKyg oo LN Ve li) — K.
t K(ZgV,K)2[ ( t t ) t ] {ZtN K>0} K(VNK)2 ;:1( N( ) N)

=1

)= .
Because IKA?VVN = p?\, VIA(,, we have p?\, V]If, ~ p?Vn1g, where 1 is the N dimensional vector of
which the first K elements are 1 and others are 0. By the same reason, we have p,V x ~ p?Vy1y.
So Vﬁ = IxkANV N /pn =~ knIx ANy, where ky = (p?/p3)Vn. In other words, the vector
(kn)~'VE is almost like the vector LY = I'x Ay1y. Finally, we expect that

Next, we consider the term (V)2 Zf{zl(VN(i) — V)2, By arough estimation, A% (i, j) ~ &

K K
N . - N g _ . = _ 1
U o )Y (Vi) = V) = (L) ()~ L)~ p p(—p) = 1,
=1 =1

N,K
whence P; " ~ p.
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0.3.7 Optimal rates in some toy models

The goal of this subsection is to verify, using some toy models, that the rates of convergence of
our estimators, see Theorems 0.3.2 and 0.3.6, are not far from being optimal.

The first example

Consider ap > 0 and two unknown parameters I' > 0 and p € (0,1]. Consider an i.i.d.
family (6;;);,j=1..~ of Bernoulli(p)-distributed random variables, where N > 1. We set /\i’N =
N~ 1T et Zjvzl 6;; and we introduce the processes (Ztl’N)tZO, ey (ZzV’N)tZO which are, condition-
ally on (6;;), independent inhomogeneous Poisson process with intensities ()\tl’N)tZO, s ()\iV’N)tZO.

We only observe (Z;"N)se[()’ﬂ’i:l,“.;(, where K < N and we want to estimate the parameter p in

the asymptotic (K, N,t) — (00, 00,00). This model is a simplified version of the one studied in our
thesis. And roughly speaking, the mean number of jumps per individuals until time ¢ resembles
my = fot e“%ds. When ag = 0, this mimics the subcritical case, while when g > 0, this mimics

the supercritical case. Remark that (Z,’ )i=1,...k is a sufficient statistic, since aq is known.

We use the central limit theorem in order to perform a Gaussian approximation of ZZ’N. It is
easy to show that:

N

N _ peeot[ 1 - ! -
Ayt =Te [\/ﬁ p(1 = p) Np(l_p)Z(Hu p)+p}

Jj=1

d \/ﬁ Zévzl(@j — p) converges in law to a Gaussian random variable G; ~ N(0, 1), where
p(1—p

G is an i.i.d Gaussian family, as N — oo, for each i. Thus
)\i’N ~ Te*!'[\/N-1p(1 —p)G; + p.

. i\N . . . t i
Moreover, conditionally on (6y;)ij—1,...~n, Z;" is a Poisson random variable with mean [j A" ds.

Thus, as ¢ is large, we have Z"" ~ fot AoNds + 4/ fg MoNdsH; where (H;)i=1,. .~ is a family of
N (0, 1)-distributed random variables, independent of (Gz)l 1...n- Since (my)IN"V2 < (my)71,

we obtain (my)~ 1Z’ N ~Tp+T/N p(1 —p)G; + /(my) 1I‘ 'pH;, of which the law is nothing
but A'(Tp, N~'T? ( p) + (m¢)~'Tp).

By the above discussion, we construct the following toy model: one observes (XZ’N),:L___ K,
where (X;™);—1 n are i.i.d and N'(Tp, N~'T%p(1 — p) + (m;)~'T'p)-distributed. Moreover we
assume that I'p is known. So we can use the well-known statistic result: the empirical variance
SNE — K1 Zfil(XZ’N — I'p)? is the best estimator of N='I'?p(1 — p) + (m;)"'Tp (in any
reasonnable sense). So T}VX = N(I'p)~2(S}N"* — (I'p)/my) is the best estimator of (% —1). As

2
Ulp) , Loy?

NEy_ L 1,N 21 _ 2
Var(SN5) = — Var[(X}N - Tp)?| = K( ~ o

K

we have

TN K 2 (I?p(l—p) = NIp \2
Ve = e (SRt )

. 1 . .. 1 N .
In other words, we cannot estimate (5 — 1) with a precision better than (W + m“/?), which

implies that we cannot estimate p with a precision better than ( TR + VR )
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The second example
In the second part of this section, we are going to explain why there is a term % in the
KVt " TH
subcritical case.

We consider discrete times t = 1,...,7 and two unknown parameters p > 0 and p € (0,1].
Consider an i.i.d. family (0;;); j=1..n of Bernoulli(p)-distributed random variables, where N >

1. We set Zé’N =0 for all i = 1,...,N and assume that, conditionally on (6;;); j=1,.. .~ and
(Zg’N)Szowyt’j:l_”,N, the random variables (Ztlﬁ - ZZ’N) (for i =1,...,N) are independent and

77(/\3;’N)—distributed7 where )\i’N = ;H—% Ejvzl Gij(th’N—Zg’_Al]). This process (Zti’N)i:17___7N,t:07,,,T
resembles the system of Hawkes processes studied in the present thesis.

By [1, theorem 2], we have when time ¢ is large, the process Ziv is similar to a d-dimensional
diffusion process (I — AN)_lE%Bt + EQ[ZiVL where B; is a N-dimensional Brownian Motion and
¥ is the diagonal matrix such that ¥;; = ((I — Ax)~u);. Hence (ZZ_‘_A{ — ZPNY — Ry ZPN — ZPN]
(fori=1,...,N and t = 1,...,T) are independent. Since Egy [Ziv] is similar to % when both NV
]

and t are large. Hence )\i’N ~ Eg[A ~ ﬁ. Then by Gaussian approximation, we can roughly

replace (th’N — Z{ﬁ)sz,__,N in the expression of ()\i’N)izlw,N by (ﬁ + Ytj’N)sz,,,,N, for an
ii.d. array (Ytj’N)sz,__7N7t:1,_“7T of M(0, ﬁ)—distributed random variables. Also, we replace the

PPN law by its Gaussian approximation.

We thus introduce the following model, with unknown parameters p > 0 and p € (0,1). We
N with law

.....

T with law

.....

N(0,1). We then set, for each t =1,...,T and eachi =1,..., N,
| X B
N N N i,N WN 4i,N
K :H“Jz_lg”(l_p“? ) and XN =0yt apY,

We compute the covariances. First, foralli=1,...,Nandallt=1,...,T,

Var(X;) = El(ay™ + /oy ¥ 4N - 57

1-p
u N 1 X 9
_ I o & . k,N i,N 4i,N
_E[(N(l—p) Z:(ezk p)+N;9th +\a A )}
2 2
__p e - p
N(1-p) N(1-p? (1-p)

Next, for i £ jand allt =1,...,T,

COV(XtivN?ngN) —_ E{(G?N + ai,NAi,N . M ) (ag‘,N 4 G%NA%N B 7 )}

Fors#tandi=1,...,N,

Cort ) = (s oA ) (i e
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Finally, for s # ¢ and 7 # j,
Cov(x;™, XPN) = E[(ai’N +farN AN — - p) (ai’N +\ alN ALY — - p)] =0.

Over all we have Cov(X}"N, Xi-N) = Cp.n((i,1),(4,5)), where

2 2 . . 3
Ajl”—ﬁg + N(Ii,ip)2 T (1ﬁp) ifi=j t=s,

C#vva((Zat)7 (]75)) = Np(;2 2 if =
= if i=j, t#s,
0 if i, t#s.

From the covariance function above, we can ignore the covariance when t # s. So, we construct a
new covariance function:

pu’ pu’ I TN
Na-p) T NO-p T T-p) ifi=j,t=s,

C 1), (j Sae Wit =
Coupn((ist),(4,8) = ¢ N =p)? , 7
w,p 0 if Z:j, t#s,

We thus consider the following toy model: for two unknown parameters g > 0 and p € (0,1),
we observe (U;’N)1':17___7;(75:07___7@ for some Gaussian array (U;*N)l-:L___7N75:07“_7T with covariance
matrix C), , v defined above and we want to estimate p. If assuming that ﬁ is known, it is

well-known that the temporal empirical variance SN = T th:l(UtN K _ ﬁ)Q, where UMV =
. 2 2 2 2
+ ZZK:1 U is the best estimator of ](\?f{(fj;)z + K(iu;p) +2 (]\I,(I;l) (1fp)2, (in all the usual senses).
Consequently, C’QJY’K = %(ﬁ)”[KSIJY’K — 155 is the best estimator of p?. And
1 N? 1 (K —1)a72 N2
Var(C ) = 2 K2 | | =
alCr ) = o Pt N TK?

where p = (?\?(_13 2;)’22 (1ﬁp) and o = % Hence for this Gaussian toy model, it is not possible
to estimate p? (and thus p) with a precision better than %%

Conclusion
Using the first example, it seems that it should not be possible to estimate p faster than

N/(VKe*!) 4+ 1/VK. in the supercritical case. Using the two examples, it seems that it should
not be possible to estimate p faster than N/(tv'K) + 1/vK + N/(K+/t) in the subcritical case.

0.3.8 Central limit theorem for the estimator

Recall that assumptions (H(q)) and (A) are defined at the beginning of section 0.3.5. In order
to make the central limit theorem hold, we need stronger condition:

Assumptions
We will work under the following conditions: for some g > 1,

(H(g)) end /0°°<¢<s>)2ds<oo (H'(q))

or
(A) and ¢(s) =e " for some unknown b > 0. (A7)

Here b is a positive constant. Since A = 1/b, we thus assume that p > b.
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The result in subcritical case

Here we will assume H'(g) for some ¢ > 1. We then introduce the function ¥ defined by

U2(1— %)2

v+ ut(l—/E)?

and U® (u,v,w) = 0 otherwise.

T (u, v, w) =

ifu>0,v>0 w>0

We set
PN Kt = \I’(S)(ei\]’KthNK XtNAIf)
with the choice
A, = @[y (0.9)
Theorem 0.3.8. We assume that p > 0 and that H'(q) holds for some q > 3. Define A; by (2.2).
We set ¢, 5 = (1 —Ap)?/(2A%). We always work in the asymptotic (N, K,t) — (00, 00,00) and in
the regime \/% + M5+ % + Ne=» K — 0.

1

(i) In the regime with dominating term \%, i.e. when | oo, it holds

At
—, e +=/% + =] =
that

VE (pwacs —p) ~ A (0,20,

1t

i) In the regime with dominating term =, i.e. when L 4+ X — 00, we have
tVK tf \/f K

t\]/\:(pNKt ) i>/\/<O, Q(L;A{‘}p))

(iii) In the regime with dominating term & %, i.e. when [?\/ﬁ]/[% + %] — 00,
1mposing moreover that imy g o0 % =~€[0,1],

ul Af(pzvm— )—>N( (;Ag)z((1—7)(1—Ap)3+7(1—/\p))2)-

We decided not to study the regimes where there are two or three dominating terms. We believe
this is not very restrictive in practise. Furthermore, the study would be much more tedious, because
it would be very difficult to study the correlations between the different terms.

Remark 0.3.9. This result allows us to construct an asymptotic confidence interval for p. We define

Anace =WV XOE), A = 0P VX0

where

+ [u— D (u, v, w)]?
) — \/H @ = 2 —
(’U,,U,UJ) U ’LU’ (U,U,UJ) U[U - \I/(l)(’u,,’l},’w)]

ifu>0,v>0 w>uand ¥W(u,v,w) =¥ (u,v,w) =0 otherwise. By [26, Theorem 2.1], we
have, in the regime \/% + %,/% + % + Ne~»aK 5,
. A . P
(NN,K,thN,K,hpN,K,t) — (1, Ay p).

Hence by Theorem 0.3.8, in the regime (i), (ii) or (iii), for 0 < o < 1,

11H1P(|13N,K,t —p| < IN,K,t,a) =l-«
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where

1 pnis(1—Pnkt) N \/2(1 — AN, K 4PN, K t)?
(v, xt)? tVK ﬂN,K,t(AN,K,t)2

N A 3(1—19p 2 K " . K " R
+ =1/ =t % (1— )1 = AN gabpNre)® + =1 — AN KkiDPN.Kt)
K t 2,Uz\r,K,tAJ\f,K,t N N

INKta=(®)'(1- %)(

)

1 x _s2
and ®(z) = = o e Tds.
Concerning the case p = 0, the following result shows that py, x + is not always consistent.

Proposition 0.3.10. We assume that p = 0 and that H’(q) holds for some ¢ > 3. We set
cp.a = (1 — Ap)?/(2A%). We always work in the asymptotic (N, K,t) — (00,00,00) and in the

regime %‘ / % + % + Ne~eraK 0.
(i) If [%]/[%w%]g — 00, we have

. P
ot — 0.

(i) If [%\/%]2/[%] — o0, we have
R d
PNt — X

where P(X =1) = P(X =0) = 1.

The result in the supercritical case

Theorem 0.3.11. We assume (A’) and set ag = p—>b. In the regime where (N, K, t) — (00, 00, 00)

with ﬁ + \/% — 0 with dominating term ﬁ (i.e. with [ﬁ]/[\/%] — 00), it holds

that,

76%5\[*/? (P —p) 5 (0, 2(0‘224172 ).

While our result in the subcritical case is rather general and satisfying, there are many re-
strictions in the supercritical case. First, we have not been able to deal with general functions ¢.
Second, we did not manage to prove a central limit theorem concerning a large Bernoulli random
matrix (and its Perron-Frobenius eigenvalue and eigenvector) that would allow us to study the

. 1 N
second regime where [W}/[W] — 0.
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Chapter 1

Statistical inference for a partially
observed interacting system of
Hawkes processes

Abstract. We observe the actions of a K sub-sample of N individuals up to time ¢ for some
large K < N. We model the relationships of individuals by i.i.d. Bernoulli(p)-random variables,
where p € (0, 1] is an unknown parameter. The rate of action of each individual depends on some
unknown parameter p > 0 and on the sum of some function ¢ of the ages of the actions of the
individuals which influence him. The function ¢ is unknown but we assume it rapidly decays. The
aim of this paper is to estimate the parameter p asymptotically as N — oo, K — oo, and t — oo.
Let m; be the average number of actions per individual up to time ¢. In the subcritical case, where
my increases linearly, we build an estimator of p with the rate of convergence \/% + th\/? + % \J/VW
In the supercritical case, where m; increases exponentially fast, we build an estimator of p with

1 N
the rate of convergence Tt iR

1.1 Introduction

1.1.1 Motivation

The Hawkes processes were first introduced as an immigration-birth model by Hawkes in [19].
The properties of one-dimensional Hawkes processes have been well-studied, see e.g. Chapter 12 of
Daley and Vere-Jones in [13] for the stability of the process, Brémaud and Massoulié in [8] for the
analysis of the Bartlett spectrum of the process. We can also find some study of non-linear Hawkes
processes from Zhu in [49], of their stability by Brémaud in [7]. Multivariate Hawkes processes
were explored in Liniger [25]. Infinite dimensional Hawkes processes have been studied in [15].

Hawkes processes have a lot of applications. In [32], Ogata uses the Hawkes process to give
models for earthquake occurrences. We can see there are plenty of applications in genomics, for
example see [17] by Gusto-Schbath and [37] by Bouret-Schbath. In [37], they use the Hawkes
process to model the process of the occurrences of a particular event along a DNA sequence.
There are also some applications in neuroscience, see e.g. Bouret-Rivoirard-Malot [38]. In [3§],
they use multivariate Hawkes process to model the instantaneous firing rates of different neurons.
There are applications in finance about market orders modelling, see e.g. Bauwens and Hautsch
in [4]. There are even some applications in criminology, see e.g. Mohler, Short, Brantingham,
Schoenberg and Tita in [29].

In the real world, we often need to consider the case when the number of individuals is large.

17
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For example, in the neuroscience, the number of the neurons are usually enormously large. So it
is very useful to consider the multivariate Hawkes process as the number of individuals goes to
infinite. This problem seems to be rarely studied.

Next, we are going to give an example.

1.1.2 An illustrating example

We have N individuals. Each individual j € {1,..., N} is connected to the set of individuals
S;={ie{l,...,N}:0;; =1}. The only possible action of the individual 7 is to send a message

to all the individuals of S;. Here Z"" stands for the number of messages sent by i during [0, ¢].

The counting process (Z2V);—1 N o<s<t is determined by its intensity process (A\o™V);—1. no<s<t-

It is informally defined by

P(Zf’Nhas a jump in [t,t + dt]’]—}) —\oNat, i=1,..,N

where F; denotes the sigma-field generated by (Z?N)i:l.uN,Ogsgt and (6;;)i,j=1,...N-
The rate )\i’N at which ¢ sends messages can be decomposed as the sum of two effects:
e he sends mew messages at rate p;

e he forwards the messages he received, after some delay (possibly infinite) depending on the
age of the message, which induces a sending rate of the form +; Zjvzl 0, fOF (t — s)dZIN.

If for example ¢ = 1y ], then N~* Z;VZI 0 [y~ o(t — s)dZI™N is precisely the number of
messages that the i-th individual received between time ¢t — K and time ¢, divided by N.

1.1.3 Main Goals

We usually consider (6;;); j=1,...,~ as a family of i.i.d. Bernoulli(p) random variables, where p
is an unknown parameter. In [14], Delattre and Fournier consider the case where one observes the
whole sample (Z;’N)izl...N,Ogsgt and they propose some estimator of the unknown parameter p.

However, in the real world, it is often impossible to observe the whole population. Our goal in
the present paper is to consider the case where one observes only a subsample of indivudals.

In other words, we want to build some estimators of p when observing (Zg»N){i:L,,,,K, 0<s<t}
with 1 < K < N and with ¢ large. The paper [14] thus considers the special case where K = N.

Let A = [;° ¢(t)dt € (0,00]. In [14], we see that growth of 7N depends on the value of Ap.
When Ap < 1 (subcritical case), Z,"" increases (in average) linearly with time, while when Ap > 1
(supercritical case), it increases exponentially. Thus the limit theorems will be different in the two
cases. We will not consider the critical case when Ap = 1.

1.2 Main results

1.2.1 Setting

We consider some unknown parameters p € (0,1}, > 0 and ¢ : [0,00) — [0,00). We always
assume that the function ¢ is measurable and locally integrable. For N > 1, we consider an
i.i.d. family (IT(dt,dz));=1, .~ of Poisson measures on [0,00) x [0,00) with intensity dtdz. And
(0i5)ij=1,...~ is a family of i.i.d. Bernoulli(p) random variables which is independent of the family
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(IT%(dt,dz))i=1,.. n. We consider the following system: for all i € {1,..., N}, all t > 0,

N t—
, 1 ,
zZiN / / DN Hl(ds dz), where NoN = 1+ N E eij/o ot —s)dzPN. (1.1
=

.....

counting processes. By [14, Proposition 1], the system (1) has a unique (ft)tzo measurable cadlag
solution, where

Fi = o(Il'(A) : A€ B([0,#] x [0,00)),i =1,.... N)V a(iji,j =1,...,N),

as soon as ¢ is locally integrable.

1.2.2 Assumptions

Recall that A = fo t)dt € (0,00]. We will work under one of the two following conditions:
either for some ¢ > 1,
€ (0,00), Ape€(0,1) and / s1¢p(s)ds < oo (H(q))
0
or
t
€ (0,00), Ape (1l,00] and / |dp(s)| increases at most polynomially. (4)
0

In many applications, ¢ is smooth and decays fast. Hence what we have in mind is that in
the subcritical case, (H(q)) is satisfied for all ¢ > 1. In the supercritical case, (A) seems very
reasonable.

Remark 1.2.1. There is a wide class of functions satisfy the assumptions (H(q)) or (A), especially
the functions who decay fast. For example, any decreasing oxponcntlal function ¢(s) = e
satisfies (H(q)) is satisfied for all ¢ > 1 if £ < 1 and satisfies (4) when £ > 1.

1.2.3 The result in the subcritical case

For N > 1 and for ((Z"™);>0)i=1...n the solution of (1.1), we set ZN := N=1 "N Z'"N and
ZNE = K=K 70N Next, we introduce

K N N
NK ._4=1(7zNE _ 7NK pNE N Zy —Zy Nvi]? N Nk
€ (Zoy™ =2y 7), t K Z p —& P .

For A > 0 such that t/(2A) € N*, we set

N,K N,K NK .y yNK !
Way = QZQAt_ZA,t’ Xny =Wah — Kot (1.2)
2/A
where Z]AV”tK ::— Z ZNK Z(IZKI)A Ael 2, (1.3)
a=t/A

Theorem 1.2.2. We assume (H(q)) for some q > 3. There is a constant C' depending only on q,
p, i, ¢ such that for all e € (0,1), all 1 < K < N, if setting A, = t/(2[t* =D ]) for all t > 1,

1 N N /
) +CNe ¢K
K

)< 9=+ +
€ \/E K\/E tf

P([w (e N aN) — (nAp)| 2 <
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with ¥ := 1p® : R? s R3, the function @ := (&) &2 &G)) being defined on D := {(u,v,w) €
R3:w >u>0andv>0} by

+ [u — @M (u, v, w)]?
»M —u L e®@ =Y Ad
(u,'[},w) u w7 (u,’l_},'IU) U['LL _ (p(l)(u,’l),'LU)] )

1—u W (u,v,w)
O (u, v, w) '

) (u, v, w) :=

We quote [14, Remark 2], which says that the mean number of actions per individual per unit
of time increases linearly.

Remark 1.2.3. Assume H(1). Then for all € > 0,
ZN.K L

lim P(|*
(N,t)—1>r(noc,oo) t 1-— Ap

‘25)20.

So roughly, if observing ((Z:")seqo,)i=1

L K, we observe approximately Kt actions.

.....

1.2.4 The result in the supercritical case

5N, K .
Here we define Z, " as previously and we set

K i, N 7N, K
N 200 — 7 2 N
Z/ltN’K = |:7 ( t —NKt ) — _NK:|1 ZN,K 0 (14)
Kzizl Zt ) Zt ) {z;>" >0}
1
and PN’K = ——1,,,~nK . 1.5
i R g ) (1.5)

Theorem 1.2.4. We assume (A) and define ag by p [, e=*'¢(t)dt = 1 (recall that by (A),
Ap = pfooo ¢(t)dt > 1). For alln > 0, there is a constant Cy,, > 0 (depending on p, 1, $,n), such
that for all N > K > 1, alle € (0,1),

dnt
C,e*n (\/I—?iaot+\/1[—()~

PP —pl > ) < =2

Next, we quote [14, Remark 5].

Remark 1.2.5. Assume (A) and consider ag > 0 such that p [ e"“¢(t)dt = 1. Then for all
n >0,

lim lim P(ZtN*K c [6<arn)t e(ao+n)t]) -1
t—00 (N,K)—(00,00) ’

So roughly, if observing ((Z1™).c(0.¢))i=1,...,ic; we observe around Ke®* actions.

veey

1.3 On the choice of the estimators

In the whole paper, we denote by Ey the conditional expectation knowing (6;;); j=1,... n. Here
we explain informally why the estimators should converge.

1.3.1 The subcritical case

We define Ay (i,j) == N~'0;; and the matrix (An(i,4)); jeq

Ny, as well as Qn = (I —
AApn)~! on the event on which I — AAy is invertible.

.....
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Define )% = t=1ZNK K < N. We expect that, for ¢ large enough, Z/" ~ Eg[Z"]. And,
by definition of Z}"" | see (1.1), it is not hard to get

Eo[ZiN] = pt + N~ Z 0; /0 ot — s)Eg[Z9N]ds.
j=1

Hence, assuming that vy (i) = lim; o t_l]Eg[ZZ’N] exists for each ¢ = 1,..., N and observing
that fg o(t — s)sds ~ At, we find that the vector vy = (Yn(4))i=1,... n should satisfy v =
uly + AANn~yy, where 1 is the vector defined by 15(i) = 1 forall¢ =1,..., N. Thus we deduce
that vy = u(I — AAx) 11y = uly, where we have set

N N K

. N 1 N 1 .

Ly = Qn1n, In(i) = E Qn(i,j), In = N E n (i), Iy = I E N (i)
= iz i=1

So we expect that Zi™ ~ Eg[Zi-N] ~ uly (i)t, whence 25 = =125 ~ 0K

We informally show that £x (i) ~ 1+ A(1 — Ap) 'L (i), where Ly (i) := Z;\;l An(i,7): when
N is large, Zjvzl A% (i,j) = N2 Z;\f:l Zi\;l 0;10r; ~ pN ! Zszl O, = pLn (7). And one gets
convinced similarly that for any n € N,., roughly, Zjvzl A% (i, 5) ~ p"*Lx(i). So

N
In() =D A" AR (i, 5) = 1+ A" Ly(i) =1+ - _AApLN(z').

n>0  j=1 n>1

But (NLy(4))i=1,... n are i.i.d. Binomial(/N,p) random variables, so that /& ~ 14+ Ap(1—Ap)~! =
(1 — Ap)~!'. Finally, we have explained why &"* should resemble (1 — Ap)~'.

R

Knowing (6;;)i,j=1..~, the process Ztl’N resembles a Poisson process, so that Varg(Ztl’N)
1,N
E¢[Z,""], whence

Var(Z}'N) = Var(Eg[ 2 N]) + E[Varg(Z} ™)) =~ Var(Eo[Z}N]) + E[Z V).
Writing an empirical version of this equality, we find

1
Ki

M=

K
i > 1 i > 25
(2N = 20 7 (BolZi™) ~ BolZ)K)) 4+ 2K
=1

1
And since ZN ~ pln (i)t ~ p[l 4 (1 — Ap)"'ALN ()]t as already seen a few lines above, we find
K 22 A2 K

1 N SNK\2 N FE\2 , 5NK
— Z)0 =7 ~ L —L /A
K ;:1( t : ) K(1—Ap)? ;:1( ~ (i) N+ 2,

But (NLn(i))i=1,.. n are i.i.d. Bernoulli(V, p) random variables, so that




22 CHAPTER 1. STATISTICAL INFERENCE FOR HAWKES PROCESSES

We finally build a third estimator. The temporal empirical variance

AR A n k]2
23 [ - 7 2]

should resemble Varg[ZA "] if 1 < A < t. So we expect that:

t/A

— N _ 2 N
N.K _ N.K N.K 15N,K N.K
WA =2 205 = 258 s - a2 ~ X Varg[Z)),
k=1
>N, K : : i,N N
To understand what Varg[Z, "] looks like, we introduce the centered process U, = Z;" —

Eg[ZN] and the martingale M;"™ := Z/"Y — CPN where € is the compensator of Z©N. An easy
computation, see [14, Lemma 11], shows that, denoting by Uiv and Miv the vectors (UZ’N)Z»:L,,,,N
and (MZ’N)iZI,...,Nv

¢
UN =mMY+ AN/ ot — s)UNds.
0
So for large times, we conclude that UY ~ MY + AAyUY | whence finally UY ~ QMY and thus

1K . 1KN
FONAEE SO WLRITAEE SWEIOIES
i=1

i=1 j=1 j=1
where we have set c§(j) = ZZ L Qn (i, j). But we obviously have [M7N M®N], = 1{i=j}Zg’N
(see [14, Remark 10]), so that

Varg[Z ] = Vary]

N
SC I

N \

, 2
Recalling that ZJ ~ uln(j)t, we conclude that Varg[Z'*] ~ K—2ut Z;\Ll (cfz\(,(j)) In(4),
whence

N
WA~ %Varg[ZIAV K] ~ Kﬂ Z ( ) ().

To compute this last quantity, we start from c&(j) = Y >0 Zfil A" A% (i,7). But we have
ZiKzl A% (i,j) = N2 Zfil Zivzl 0,10 ~ pKN—2 Z,ivzl 0r; = pKN'Cn(j). And one gets
convinced similarly that for any n € N*, roughly, Zfil A% (i,5) ~ KN-1p"~1Cxn(j). So we
conclude that c§(5) ~ A% (i,5) + N Ap)CN( j). Consequently, cK(j) ~ 1+ %ﬁ for j €
{1,..,K} and cK(j) ~ g(l iy for j € {K +1,..,N}. We finally get, recalling that ¢ (j) ~
(1 - Ap)_17

~ Nk N X K0\ 2
W'y '—“/«Lﬁz (CN(j)) In(J)

j=1
N/, K KAp 12 N-K[ KAp 12
~y— 1
e 1pr{ +N(17A)} 1pr[N(1pr)“
ot N K
S (1-Ap)?  K(1-Ap)
All in all, we should have xN At ~ W

It readily follows that W(zN* PNE ¥ A,}K) should resemble (u, A, p).
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K y,N,K N,K ~N,K
7Vt7 X )

. N . SNK  DNK
The three estimators & , XA are very similar to £, 7, V; ', X, and should

converge to the same limits. Let us explain why we have introduced eiV’K, VtN ’K, X g ’tK, of which

the expressions are more complicated. The main idea is that, see [14, Lemma 16 (ii)], E[Z/""] =
W (i)t + xN £ 179 (under (H(q))), for some finite random variable x. As a consequence,
t'E[Z5N — Z™N] converges to ply (i) considerably much faster, if ¢ is large, than ¢~ Eg[Z}""] (for
which the error is of order t71).

1.3.2 The supercritical case

We now turn to the supercritical case where Ap > 1. We introduce the N x N matrix Ay (i, ) =
N’IQW- .

We expect that ZZ’N ~ HNIEQ[ZZ’N}, when t is large, for some random Hpy > 0 not depending
on . Since Ap > 1, the process should increase like an exponential function, i.e. there should be
an > 0such that for all i = 1,..., N, Eg[Z"N] ~ yn (i)e®~t for ¢ very large, where vy (i) is some
positive random constant. We recall that Eg[Z"] = ut + N1 Zjvzl 0i; fot o(t — s)Eg[Z3N]ds.

We insert Eg[Z"N] ~ vn(i)e*Nt in this equation and let ¢ go to infinite: we informally get v, =
ANy fooo e N3¢(s)ds. In other words, vy = (Yn(%))i=1,.. .~ is an eigenvector of Ay for the
eigenvalue py := ([ e~*V¢(s)ds) L.

But Ax has nonnegative entries. Hence by the Perron-Frobenius theorem, it has a unique (up
to normalization) eigenvector V' with nonnegative entries (say, such that ||V x|z = v/N), and this
vector corresponds to the maximum eigenvalue py of Ay. So there is a (random) constant xx such
that vy ~ kyV . All in all, we find that Z?N ~ knHye®N'V y (7). We define V]I\i =IxVn,
where I is the N x N-matrix defined by I (4,7) = 1{i—j<ky-

As in the subcritical case, the variance K ! Zfil(Zti’N — ZtN’K)2 should look like

1 & i\ N SN K N Ky Hye2ont X = SN K
L S ™)~ B2 + 20 = IR S ) vy 4 2K,
=1 i=1

where as usual V& = K~! Zfil Vi (i). We also get Z)V'5 ~ iy Hy Vi e*Nt, Finally,

K K

N , . _ N .
UM = = D (2N = 2N — KZN N gy~ — = > (Vv(i) — V2.
t K(ZN,K)2 = t t t {ZN-% >0} K(VI\I]()Q ; N

Next, we consider the term (Vi )=2 Zfil(VN(i) — V)2, By arough estimation, A% (i,7) ~ %.
Because IKA?\,VN = p?VVg, we have p?\,V}I\(] ~ p?Vin 1k, where 1 is the N dimensional vector of
which the first K elements are 1 and others are 0. By the same reason, we have p?v Vi ~p?Vnln.
So Vﬁ = IxkANV N/pn =~ knIkANnLlN, where ky = (p?/p3)Vn. In other words, the vector
(k;N)_lV% is almost like the vector Lﬁ = Ix An1y. Finally, we expect that
N X N K 1
U (V)72 (Vv (i) = V)2 = 1 (LR) 72 Y (I (i) = L) ~p~?p(1 - p) = 5L

i=1 i=1

N,K
whence P; " ~ p.

1.4 Optimal rates in some toy models

The goal of this section is to verify, using some toy models, that the rates of convergence of our
estimators, see Theorems 1.2.2 and 1.2.4, are not far from being optimal.
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1.4.1 The first example

Consider ap > 0 and two unknown parameters I' > 0 and p € (0,1]. Consider an i.i.d.
family (6;;);,j=1..~ of Bernoulli(p)-distributed random variables, where N > 1. We set /\i’N =
N~ 1Texot Zjvzl 6;; and we introduce the processes (Ztl’N)tZO, ey (ZtN’N)tZO which are, condition-
ally on (6;;), independent inhomogeneous Poisson process with intensities (A, ’N)tzo, oy (WY ’N)tzo.
We only observe (Zg’N)se[()’tLi:l,mK, where K < N and we want to estimate the parameter p in
the asymptotic (K, N,t) — (00, 00,00). This model is a simplified version of the one studied in our
paper. And roughly speaking, the mean number of jumps per individuals until time ¢ resembles
my = fg e“%ds. When g = 0, this mimics the subcritical case, while when g > 0, this mimics

the supercritical case. Remark that (th )i=1,...k is a sufficient statistic, since aq is known.

We use the central limit theorem in order to perform a Gaussian approximation of ZZ’N. It is
easy to show that:

N __ eocot i . 1 al L
Ao =T [W p(1 p)in(l_p)Z(% p)+p]

d \/ﬁ Z;Vd(eij — p) converges in law to a Gaussian random variable G; ~ N(0, 1), where

G, is an i.i.d Gaussian family, as N — oo, for each i. Thus
/\i’N ~ Te*![\/N=1p(1 — p)G; + pl.

- i N . . . . t g
Moreover, conditionally on (6;;); j=1,...n, Z;" is a Poisson random variable with mean fo )\?S’Nds.

Thus, as ¢ is large, we have Z"" ~ fot NN ds + \/fot AeNdsH; where (H;)i=1,. n is a family of
N (0, 1)-distributed random variables, independent of (Gl)l 1...N- Since (my) ' N~=YV2 <« (my) 71,

we obtain (my)~ 1Z’ N~ I'p+Ty/N-1p(l—p)G; + +/(m:)"'T'pH;, of which the law is nothing

but N (I'p, N~1T? ( —p) + (my) " 1Tp).

By the above discussion, we construct the following toy model: one observes (XZ’N)I:L___ K,
where (X/™),—1.n are iid and N (I'p, N"'T%p(1 — p) + (m;)~'T'p)-distributed. Moreover we
assume that I'p is known. So we can use the well-known statistic result: the empirical variance
SN — KU (XN — Tp)? is the best estimator of N™'T2p(1 — p) + (my)~'Tp (in any
reasonnable sense). So T}V* = N(I'p)~2(S}N"® — (I'p)/my) is the best estimator of (% —1). As

1 *p(1—p)  Tpy\2
Var(§V) = < Varl(X"V — Tp)?) = K(ijuf)

N my ’
we have
2 /I?p(l— NTp \2
Var(T, NK) 4( p( p) p )
(I'p) VK myV K
. 1 1 N :

In other words, we cannot estimate (5 — 1) with a precision better than (T \/?>, which
implies that we cannot estimate p with a precision better than )
1.4.2 The second example

In the second part of this section, we are going to explain why there is a term % in the

KVt T+

subcritical case.
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We consider discrete times t = 1,...,7 and two unknown parameters y > 0 and p € (0,1].
Consider an i.i.d. family (0;;)i j=1..n of Bernoulli(p)-distributed random variables, where N >

1. We set Zé’N =0 for all i = 1,...,N and assume that, conditionally on (6;;); j=1,.. .~ and
(Z3N) s, tj=1....N, the random variables (Ztlﬁ ZZ’N) (for i = 1,...,N) are independent and

73(/\i’J\I)—distributed7 where )\i’N = ,u+% ZFl U(th’N—Zf’_A{). This process (ZZ’N)i=17___7N7t=07,,_T
resembles the system of Hawkes processes studied in the present paper.

By [1, theorem 2], we have when time ¢ is large, the process Ziv is similar to a d-dimensional
diffusion process (I — Ay)~'22 B, + Eg[ZD], where Bt is a N-dimensional Brownian Motion and
% is the diagonal matrix such that 3y = (I — An)~'p);. Hence (Zp) — Z0™N) — Eo2p™ — ZN]
(fori=1,...,N and t = 1,...,T) are independent. Since Egy [Ziv] is similar to % when both NV
and ¢ are large. Hence Ao ~ Eg[AY] ~ 115 Then by Gaussian approximation, we can roughly
replace (27 — ZI™N),_1. n in the expression of (AP™M)i1..n by (t5 + Y/N);21. N, for an
i.i.d. array (Ytj’N)j:L.__7N7tZ1 17 of N(0, ) distributed random varlables Also, we replace the

PPN law by its Gaussian approxnnatlon.

We thus introduce the following model, with unknown parameters p > 0 and p € (0,1). We
start with three independent families of i.i.d. random variables, namely (6;;); j=1,.. ~ with law

Bernoulli(p), and (Ytj’N)j:L“”N,t:lw,T with law N(0, lf—p) and (A%N)j:l’,,‘,N’tzle with law
N(0,1). We then set, for each t =1,...,T and each i =1,..., N,

N
. 1 ) ) ) 5 .
aN = g Zeij (%p + YtJ,N) and XN = o +4/abN AN,

We compute the covariances. First, forall:i=1,...,Nandallt=1,...,T,

Var(X;) = El(ay™ + oy ¥ AN — 57

I—p
i N X 5
_ 0.0 — 1 0.y N ZNA1N>:|
{(N(l—p);(m pHN;“” Tves A
pu’ pp’ [

Next, fori #jand allt =1,...,T,

Cov(X™, XYy = B[ (™ + Jap¥ ap¥ — L) (o 4 Jap aph - )]

Fors#tandi=1,..., N,

Cov(X{, XiV) =B (ap™ 4 VAN — ) (b At — )|

~(t55) (5 Z%) - ¥

Finally, for s # t and i # j,

COV(XZ’N,Xg’N) = E[(ai’N + ai’NAi’N — = p) (ag’N + aZ’NA{’N —p— p):| =0.
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Over all we have Cov(X}"N, XiN) = Chp.n((i,1),(4,5)), where

N(l p2)+N1 p)2+(1 o ifi=j, t=s,

: , Bt if i, t=s,
CIMPJV((Zat)v(J)S)) = Np(ljz p)? o )

N(1=p) if i=4, t#s,

0 if i34, t+#s.

From the covariance function above, we can ignore the covariance when t # s. So, we construct a
new covariance function:

N]at p2 + N( 1 p)z + [ p) if ¢ :j, t = ER
~ P> e . _
Cu7p, ((l t) (]7 )) = N (1 p)? if ¢ 75]7 t S,

0 if i=j, t#s,

0 i t#s.

We thus consider the following toy model: for two unknown parameters p > 0 and p € (0,1),

we observe (UN),_1 i s—o.. 1, for some Gaussian array (U»™),—1. n.s—o,.. 1 With covariance

matrix C), , v defined above and we want to estimate p. If assuming that ﬁ is known, it is
well-known that the temporal empirical variance SN’K =41 ZZ 1([7tN K _ ﬁ)Q, where U5 =
+ ST UPN s the best estimator of ](\?f{(f )1))2 +txd 5 (K 1)

Consequently, CN'* = %(1‘:10)*2[ SpK — 1] is the best estimator of p?. And

(1ﬁ;2 , (in all the usual senses).

1 N? TR

(K —1)ay2  N?
T(K—-1)2 K2 ]

N,K
Var(Cp'™) = ~ ~ oy

e

p—p*)u® 2
N (1 p)? (1-p)
to estimate p? (and thus p) with a precision better than £ ?T

where p = 2 and o = % Hence for this Gaussian toy model, it is not possible

1.4.3 Conclusion
Using the first example, it seems that it should not be possible to estimate p faster than

N/(VKe*t) 4+ 1/vK. in the supercritical case. Using the two examples, it seems that it should
not be possible to estimate p faster than N/(tv'K) + 1/vK + N/(K+/t) in the subcritical case.

1.5 Analysis of a random matrix in the subcritical case

1.5.1 Some notations
For r € [1,00) and z € RN, we set ||z|, = (vazl |zi|") 7, and ||@||sc = max;—;.y |z;]. For

M a N x N matrix, we denote by [||M]||. is the operator norm associated to || - ||, that is
[||M]||r = supgeprn | M|, /||z]-. We have the special cases

HIMIIh:{ Z|M1J|a H\Mllloo— ZIMUI

Jj=1,.. ,N

We also have the inequality

1 1—1
Ml < [[[M[[[[[M][l|loo ™ for any & 1, 00).
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1.5.2 Some more notations

We define Ay (i,j) :== N~'0;; and the matrix (An(i,7)); jeq1
AApn)~! on the event on which I — AAy is invertible.

Ny, as well as Qn = (I —

.....

For 1 < K < N, we introduce the N-dimensional vector 1x defined by 1x(i) = 1{1<,<k3 for
i=1,...,N,and the N x N-matrix I defined by I (i, j) = 1{i—j<k3-

We assume here that Ap € (0,1) and we set a = 1+TAP € (0,1). Next, we introduce the events

QL = {A|||AN|\|T <a, foral re [1,00]},

FEL .o {A|||IKAN|||T < (g)%,for all 7 € [1,00)},

FE2 .= {A||\ANIK|||T < (%)%a, for all 7 € [1,00)},

1 _ 0l K,1 1 ._ 0l K,2 _ 0l 2
QN’K._QNH}“N , QN’K =QyNFy7, QN,K_QN’KHQN’K.

We set £y = Qnln, {n(i) = Y1 Qn(i,j), In = % Sisy In(i), IK = £ S0, n(i).
We also set ¢X(j) = i, Qn(6,4), e& == & 0, K ().

We let Ly = Ayly, Ly(i) = Y0 An(i.j), Ly = & Y, Ly(i), LK = £ 3215, L (i)

and Cy = A§1y, On(j) = Y  An(irj), On == % Y0, On(j), CF = £ 305, Cn(i) and
consider the event .
An = {||Ly —pln|2+[[Cn —pln|2 < N7}

where Ly is the vectors (Ly(i))i=1,... n. We also set zn (i) = In(i) — In, zn = (2n5(i))i=1,...N,
Xn(i) = Ln(i) — Ly and Xy = (XN_(Z-))izl,..‘7N. We finally put X% (i) :7(LN(Z'> — L) cxy
and X5 = (XE(i))iz1...~v = LY — LE1x, as well as 2K (i) = (Ix(i) — BV <gy and oK =
(2R (i))i=1,..n = Eﬁ —R1g.

1.5.3 Review of some lemmas found in [14]

In this subsection we recall results from [14] showing that Ay and Q}V are big, and upper-bounds
concerning z,, and X y.

Lemma 1.5.1. We assume that Ap < 1. Then Qn x C QN C {|/|Qn]||» < C, for allr € [1,00]} C

{sup,_, N ¢n(i) < C}, where C = (1 —a)~t. For any o > 0, there exists a constant C,, such that
PAN)>1—-C,N™°.
Proof. See [14, Notation 12 and Proposition 14, Step 1].
Lemma 1.5.2. Assume that Ap < 1. Then,
P(Q}) > 1 — Cexp(—cN)
for some constants C' > 0 and ¢ > 0.

Proof.  See [14, Lemma 13].

Lemma 1.5.3. Assume that Ap < 1. Then

1 HSC

EN_I—Ap N2

]E|:1Q}V N2 .



28 CHAPTER 1. STATISTICAL INFERENCE FOR HAWKES PROCESSES

Proof.  See [14, Proposition 14].

Lemma 1.5.4. Assume that Ap < 1, set b= w and consider No the smallest integer such that
_1
a+ AN, * <b. For all N > N,

()loyraylznlz < ClIX w2, @E[(IX ]3] <O, (i@)E[|AvX N3] < ONTL

Proof. See [14, Proof of Proposition 14, Steps 2 and 4].
Remark 1.5.5. In Lemma 1.5.4, the condition Ap < 1 is not necessary for (ii) and (44i).

Lemma 1.5.6. Assume that Ap < 1 and set k := A~1 fooo so(s)ds, then forn >0, t >0,
t
/ s¢™™(t — s)ds = A"t — nA"k + €, (),
0

where 0 < g, (t) < Cmin{n?A"t1 =9, nA"k} and where $*"(s) is the n-times convolution of ¢. We
adopt the convention that ¢*° = &y, whence in particular fg 5¢*(t — s)ds = t.

Proof.  See [14, Lemma 15].

1.5.4 Other preparation

In this subsection, we are going to prove that the set Qy g is big, which will allow to work on
the set Qn g for all our study.

Lemma 1.5.7. Assume that Ap < 1. It holds that
P(QNJ() Z 1-— CNB_CK
for some constants C > 0 and ¢ > 0.

Proof.  On Q} , we have

K
NHllKANH'l = SUPNZQU :maX{XiN’Ka“'aXxyK )
Jj=1,..., i=1

where XiN’K = ZjK:1 6;; for i =1,...,N are i.i.d and Binomial(K, p)-distributed. So,

Ka Ka
by )
< NP(|X{V’K — Kp|> K(% —p)) < 2Ne2K(3-9)°,

The last equality follows from Hoeffding inequality. On the event Q} N {AZ|[|[IxAn||[1 < a}, we
have

1 -1 1 11 a K\Nr/aN1-7 a/K\=»

< : "< ; <) (% =+(5)
Iz Anlle < AN Iz ANl < ANl AN < (55) () = 5(F)
We conclude that Qf , = Qy N{(F)|[[IxAn|[l1 < a}. And by Lemma 1.5.2, we deduce that
P(Qy i) = 1 — CNe K. By the same way, we prove that P(Q% ;) > 1 — CNe °X. Finally by
the definition of Qy x, we have P(Qn x) > 1 — CNe <K,
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1.5.5 Matrix analysis for the first estimator
The aim of this subsection is to prove that /& ~ 1/(1—Ap) and to study the rate of convergence.

Lemma 1.5.8. Assume Ap < 1. Then

E[lgN,Kwﬁ —1- APENP} <NE

Proof. Recall that £y = Qn1n, whence QJ_VléN = 1y. And since, Qn = (I — AAx)™!, we have
Q;,léN = (I —AAN)€y = 1y and thus £y = 15 + AANnLN. We conclude that

B 1 AKX AN

Iy = ?(EN» 1) =1+ 7 ZZA(%J')@N(J') =1+ ZCﬁ(j)ﬁN(j),
i=1 j=1 j=1

where C& (j) = Zfil A, j) = % Zfil 0;;. By some easy computing, we have

(T [e50)- 22 < ok, 16

J=1

E

—

whence
- 7K _ 2
E 1QN$K|’]AN €N—1—Ap£]v‘ ]

B[ty | 3 (€56 - 52)en)[]

10| 2 30 (50 - KDY ent) - ) + x2S () - K2

Consequently,
]

() Bt s onlt] 2t s (35 (0 - K2)1) ]

Jj=

E[]-QN,KH.AN ‘Zﬁ -1- APZN

=

2

+20E Loy cnan [f] | f: COEESIN
Jj=1

<-C B tonwnanlionlt]* + 220 [ty o o] 3 () - K2V ).
j=1

By Lemma 1.5.4, we know that E[1g, ,na. ||zx][3] < C. By Lemma 1.5.1, /5 and £§ are bounded
on the set Qy x, whence, recalling (1.6), and since {C%(j) — 52},=1,...n are independent, we
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conclude that

=l s 32 (650 - )] < fin o | (0500~ 50

j=1

Hence
IE:[1QN KnAN(zN 1- ApﬁN‘ }

We finally apply Lemma 1.5.1 with e.g. a =2 and get

NK'

IE[1QN K’e 1 ApéN’ } [1QN KMN’EN 1 ApZN‘ } +H«:[1QN A,

< ¢
- NK NQ_NK

7 —1—Ap€N‘ }

The next lemma is the main result of the subsection.

Lemma 1.5.9. If Ap < 1, we have

_ 12 C
E[IQN’K‘%_ l—Ap‘ } S NK

Proof. Observing that 1/(1 — Ap) =1+ Ap/(1 — Ap), we write

oo~ ] 8l 1 <~ 22
<2E 1o, |0K 1 —Apr‘ | +2(Ap)E[1gy | — - 71Apm.

We complete the proof applying Lemmas 1.5.3 and 1.5.8.

1.5.6 Matrix analysis for the second estimator

The aim of this subsection is to prove that & ||z%||3 ~ A%p(1 — p)/(1 — Ap)? and to study the
rate of convergence.

Lemma 1.5.10. Assume that p € (0,1]. It holds that

E[|[IxAnX ]3] < CKN™2

Proof. By Lemma 1.5.4, we already know that E[|| Ay X x[|3] < <, whence
K N 4 ) K N )
2] _ Y, _ , N T
E[| T An Xy ]3] = ZE[(Z (L () - Ln)) | NQE[(]Z;%(LN(J) )]
which equals £E[||Ay X y||3] and thus is bounded by CKN~2,

Lemma 1.5.11. Assume that Ap < 1. It holds that

]E[lﬂN KﬂANHxN KNAX H 1< CN~.
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Proof. By definition, EJI\(, =Igbny =1 + Al An€y, so that

- 1
ZK = 7(1Ka£§) =

1 1 A
N=7 — 1k, Ixbn) = E(]-IO 1g + AIgAnly) =1+ E(IKANeNa 1k).

K
And, recalling that =§ = Kﬁ — K1k, we find

A
SCI]S] = ]-K + AIKANEN — [1 + ?(IKANEN, ]-K)}]-K

A
=AIgAnEN — ?(IKANENa 1)1k
A

= Al An(Ey — IN1N) — E(IKAN(EN —In1n), 1)K
+In[AIxkANTN — %(IKANlN,lK)lK]
=AlgAyxyN — %(IKANSEN, 1)1 +IN[AIKANTN — %(IKANlN, 15)1k]
= AgAyzy — %(IKANCCN, 1x)lx + My XY,
We deduce that

CE% — AZng = AIKANibN — %(IKAN(BN, 1K)1K

_ A _
= AIKAN(LIJN — AéNXN) — }(IKANSCN, 1K)1K +£NA21KANXN

_ _ A& E o
:AIKAN(ZBN—AeNXN)+£NAQIKANXN—?[ZZAN(ZJ)I‘N(])]lK

= AMgAn(zny — My X §) +HINNIKANX vy — — Z [CN } N()1k.

In the last step, we used that Zl 1 2(i) = 0. As a conclusion,
len — INAX N3 <3(AllIx An (2n — In X n)l2)® +3(A%n | Ik AN X w||2)?
N
K 2
+3A%r1(§;[cﬁu>ZV4xNoD.
j:

By the Cauchy-Schwarz inequality, (1.6) and Lemma 1.5.4, we have

E[lﬂN,KmAN <§: [C’ZI\?(]) - %p} l'N(j))Q}

<8ty s (32 [050) - 5] B [tnvcons (L 40)] < 5.

j=1 Jj=1
We also know from [14, Proposition 14, step 7, line 12] that E[lq, ,nay|ZN — INX N3] < %
And also, by the definition, ||Ay]|2 is bounded on Axr. So

B[l Anl By — In X 3] <

Recalling Lemma 1.5.10 and that £ is bounded on Q N,k , the conclusion follows.
Lemma 1.5.12. Assume that Ap < 1. It holds that

E[lﬂN KﬂAN’HwNHQ (AN X ||2H < %
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Proof. We start from

28118 = (AL XK < ok — (A XK (22 + (A2 | XKL,
whence
E[ Loy ray | 10513 = (AZ3)21 X K11
<E[loy cnayllzl — (AT X (25 12 + (A X 5 2)].

By the Cauchy-Schwarz inequality.

E[Lay cnax |28 — (A XK 12 (12X 12 + (A20) | X K12

[N

%
<E[10, coay 2§ — INAXEIE] "E 1oy cnay (I8 + M) 1XE]12) ]
Lemma 1.5.11 directly tells us that E[lg,  nay [lzX — INAX 3] < C/N.

Next, it is easy to prove, using that [| XX |2 = 2K (Ly (i) — LK), that NLy(1),..., NLy(K)
are i.i.d. and Binomial(N, p), that

N 2 _
E[(ZIXKI3-p(1-p) ] <CK, (L.7)
whence, recalling that £, is bounded on N.K>
— 5N 241
E (Lo, cran () I XK 3] < CE[(IXEIR o1 -p) ]+ <
Then, by Lemma 1.5.11 again,

_ K
E[ Loy cnay @81 < 2B Loy cnay 2§ — INAX K] + 2B Loy wnay IEVAX R3] < O3

The conclusion follows.

Lemma 1.5.13. Assume that Ap < 1. It holds that

IN

2) XK |2 - p(1—p) H c

E{IQN’KQAN‘%(ZN) (1—Ap)? VE

Proof. We define

2x s - 22

K _
af = B[ 1oy cray T

s
Then d¥ < af +b%, where

= 2B [Lay oy |@)? = (1 ap) 21X K],

b =(1— Ap)*2E[1QN,KmAN’K||X I3 —p(1 —p)H~

First, (1. 7) directly implies that b5 < C/v/K. Next, (1.7) also implies that E[(%)? | X K4 <
whence af < C’/\F by Lemma 1.5.3. This completes the proof.

Here is the main lemma of this subsection.

Lemma 1.5.14. Assume that Ap < 1. It holds that

N A*p(1 —p) c
E{IQN,KOAN‘?HwﬁHg - (1 — Ap)fH < \/7
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Proof. 1t directly follows from Lemmas 1.5.12 and 1.5.13 that

E{IQN,KnAN‘%HfBMb - [mu

N - p(l—p
<NE[Lay oy | o (E)21X 5] - 2L 2]

(1—Ap)?
JrNE[lQNKmAN‘Ha’NHQ (Aly) “X I3 H
<C(% N\/»>

from which the conclusion.

1.5.7 Matrix analysis for the third estimator

We define WK = & ST (K ())20n () — MRETK, XK = WK — e K gl

K2 j=1

33

. The aim

of this subsection is to prove that Xojg:fo ~ /(1 — Ap)? and to study the rate of convergence.

Lemma 1.5.15. Assume that Ap < 1. It holds that
CK
ISR < 58,

where FR =1L Ay — + (VK AN, 13)1Y, is a row vector.

Proof.  Since the inequality Y1 (z; — 2)* < >0 | (#; — p)?, where T = % Y_I" | @;, is correct for

any real sequence {z;};=1, ., and real number p. By definition,

E[|IF X3 =E[i{}vi b~ 3 ZZ%} ]

j=1 =1 i=11=1

<u[> {430 - 5] < bl

]:1 =1 Z=1

Mx

<
- N
Lemma 1.5.16. Assume that Ap < 1. It holds that
K2
E| Loy ItK13] < 055
N )
where ¢k =15Qn, ek = % ijl cX(j), and
K
th =K 81l — 1T + NlT
Proof. By definition, cX = 1%Qn, ek = %(cl[f,, 1n), Qn = (I — AAN)71, so that

1
ch =1% + AcK Ay, i

CN = N (CII\gANaqu:/)'

==

K
14) ==
(CN7 ) N +
We deduce that

K
th =K — k1t —1% + —1%

TN

= Ak Ay — (el v 1515

= Ay AN — %(t{@AN, 1)1y + A1 Ay — %EK(IT Ay, 10)1%
+MEAy — %(1}}AN, 14)1% - ANIJT\,AN + §§(1JTVAN, 1%)

= AN AN — %(t{@AN, 101% + AKX Y — AFYN — Aﬁxﬁ.

tn-nf) <58,

(1.8)
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where Xn =15 Ay — + (1N AN, 1%). And it is clear that £k = (%
By Lemma 1.5.1, £ and Zﬁ are bounded on the set 2y, i, whence, using Lemma 1.5.4,

K2
E (10, (IS XT3+ 1AL XEIR)] < Oy

Next, Lemma 1.5.15 tells us that

C’K2
E[loy | FXI3] <E[IFKIZ] <

Observing that Zf\]:l tK (i) = 0, we see that

A T A2 K T\2
I (K A, 1R)15 13 =5 (K Ax, 15)

so that

A2

A
E L0, a5 (5 An 101G 2] < B [Lay oty [E5 31O — pLv3]

2

A
SWE{lﬂw,KrﬁANHtf\{r”%}

by definition of Ay. Since finally [|[AtKAn|la < |[|AAN]|||2]|AtR |2 < a||AtE||2 on Qn x with
a = (1+ Ap)/2, we conclude that

2

K
E|loycnav 513 < O35

a7t + (a+ A*N 1/2)E[1QN,KmAN||t§H§

Since (a + A2N~1/2) < (a+1)/2 < 1 for all N large enough, we conclude that, for some constant
C >0, forall N> 1,

K2 K2
E| Loy cnav [E¥13] < O35

Finally, observing that |[t5 3 is obviously bounded by CN on Qy x and recalling that P(Ay) >
1 — C/N? by Lemma 1.5.1, we easily conclude that

K?+1 K?
E[Loy |51 < 0=— < O 55

as desired.

Lemma 1.5.17. Assume that Ap < 1. It holds that

B[ty IF518] < 05, 8[1a,. ]k 1] < 95

where fh = tR 1.
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Proof. The first inequality is obvious from Lemma 1.5.16 because || f& || < ||t%]|. For the second
inequality, by (1.8), we have

E[IQN¢W(f§71£)H ZZE[19N1<Mt§IK71T)H
:]E{IQNYKKAtﬁANIK—]‘/\XI( KA 1T 4+ AKX T I — AFKI — AL XN 1 )H

< SB[l 15| + oB[|(FS 1, 15|

St a0+t o avt. 11

We used that (N/K)ckK = ¢X is bounded on Qu x. First,

el k.t =5[] 3 xvto ] =5[] 3 (200 -1) + K60~ Ef

< 28| i (Ln(i) - p) ﬁ +2KE|(p— Lv)?| < CTK <c,

i=1

using only that NLy(1),..., NLy(N) are i.i.d. and Binomial(N, p)-distributed. Next,

e = (3230~ K33 0)

j=11i=1 i=1 j=1

so that
B L ) < B[ (P51 15[ < [N K ke B e ) <

Next, since vazl tK(i) =0,

E[Lay.| (5 An, 15)|] = E[lgN,K%‘ > 0tK )]

1 N Kp . ,
< VE[Lowi| D K005 - )| + S2E 10y YK G)]]
ij=1 i=1
1 e N2 e e 212 Kp K qT
< ﬁ]E[IQNK Z (tN(z)) } E[Z ( 7 *p)> } + WE[lﬂN,K‘(va 1K)H
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by Lemma 1.5.16. All this proves that

E (10, (75 15)]] < 0% + W2E 10, |7 1%)

|

whence the conclusion since Kp/N < p < 1.

Lemma 1.5.18. Assume that Ap < 1. It holds that

Bt |25 (e + XKV S v+ 2 (- K S )
Jj=1 j=K+1
N-K 1 2 C
K N_(l—Ap)3H NK

(% + =%

KNl e Ky, ,
—(h-3) Zl“(””(%‘MZWHZM”

(

2 _ _ _ _ _
5) (% — 12Ny + 2%(4% _ KT + KT
2

K? . K% _ _ _
:W(eﬁ —1)%y + 2F(£§ — )08 + K%

K2 — — K2/ _ K? _ — K?_ —
=25 (= Nl + (0°) + T (I = B) + T (PO — O + K,

Consequently,

K N
S ) i+ () Y )
Jj= j=K+1

—

= o= B+ (05)?) + (i - 75) + (zg)% + N%Kzg.

On the event Qy i, we have K_ﬁ, /n are bounded. Hence,

E[Loy.| - 850 + 05)7?| ] = B[ta,.|5] |25 — in[]

< CE Loy |0 - 1 —1Ap 1 —1Ap - ZNH
S S [ RS
by Lemmas 1.5.3 and 1.5.9. Similarly,
B[t0 (|00 - |+ (= 767
<CE [1QN‘K‘Z§ - ﬁﬁ + ClE[lgN,K‘ﬁ - szﬂ < %

The conclusion follows.

Here is the main result of this subsection.
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Lemma 1.5.19. Assume that Ap < 1. We have that

37

1 C
Bt 425 - T pll < %
Proof. By definition,
0 pN 2, (N - K) ’
where
N & x N-K72 N & X«
i =225 2[R0 — ek = == () + 5 D [ek0) -k + 5] (i)
j=1 j=K+1
SK & N-K
B =25 [ + 2] I
J=
N
vl [ - K]S )|k - e+ 5.
j=K+1
N N-Ki2g. . N  N-K 1
R =[5+ 5T Lot R[5 30 vt - MK =i

I
—

j=K+1

J
By Lemma 1.5.16, /5 and £x(j) are bounded on the set QNK for any j = 1,..., N, whence

Loy k] < O [Lay ek — 1% - 1515] = € 2B Loy« 151] < .
Recall the result from Lemma 1.5.18: we have
B Loy | B xl] < \/]%( < %
Next, we have IJQV K= 2[12\,’1K + 2[12\,’72K, where
NK KQZKN { —EJI\?—%},
=Nl - K o[ - - YK S [ - ok + K]
Jj=1 j=K+1
Since
us N-K al K
S|k -k -]+ X [Ko) -k + 5] =0,
Jj=1 J=K+1
we may write
iiﬂ‘éi&ﬁ' g}{ii(@“ﬁ_'N)FNU)_C%_]VRfé
j=1
J N 7 .
+ Y (EN(J) - EN) [Cﬁ(J) en + N] }
j=K+1
N
Y (et - B[ - - Y] S e[ -+ K]}
Jj=1 j=K+1
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Recalling that ¢ = K/X /N and that ¢§ is bounded on Qu, k, we conclude that 1o, . \IJQVZK

Cllzn||2|[tn]]2/K. Using Lemmas 1.5.4 and 1.5.16, we readily conclude that E[]_QNK|II2V ]
C/N. Finally,

<
<

Bl o 1B ) <20 10, | 0 ) - ) [e50) - o - =K
j=1
b B fton | 32 ) - o - 255
j=1
< N[t o] B 10 L] + B 10|75 1R < &

by Lemma 1.5.17. The proof is complete.

1.6 Some auxilliary processes

We first introduce a family of martingales: for i = 1,..., N, recalling (1.1),

) t [e’s} )
M?N:/o/o 1, yiny 7 (ds, d2).

where 7 (ds, dz) = 7'(ds,dz) — dsdz. We also introduce the family of centered processes Ui =
ZiN ~ElzN).

We denote by ZY (resp. UY, M¥) the N dimensional vector with coordinates Z"" (resp.
AN 3N
U™, M) and set
z"" =1z, UYE =1xUY

as well as Z;"5 = K1 Efil ZiN and UMK = K1 211(:1 UN. By [14, Remark 10 and Lemma
11], we have the following equalities

Eo[Z) 5] = MZ [/ s¢™™(t — s)ds} Ik A1y, (1.9)
n>0
UMk = Z/ ¢ (t — s) I A MY ds, (1.10)
n>0
[MON MIN] =120, (1.11)

We recall that ¢*0(s)ds = dods, whence in particular fg 5¢*0(t — s)ds = t.

Lemma 1.6.1. Assume H(q) for some q > 1. There exists a constant C' such that
(i) for all v in [1,00], all t > 0, a.s.,

]‘QN,K”EG[Z?/’K]”T < CtK%,
(it) for all 7 in [1,00], allt > s >0, a.s.,
Loy e [Ea(Z] = 22 — u(t = €], < Clmin{L, '~} K

Proof. (i) We start from (1.9). Recall that A = [ ¢(s)ds, whence

[e'e] t [e'e]
/0¢<s>s_ /Os¢ (s)ds /0¢<s>s
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So on the event Qy x, on which we have Al||[IxAx|||, < (K/N)Y" and Al||Ay]|l, < a < 1, we
have (observe that |[1||, = K/")

N,K 1 n n
o2 [l < ptK ™ + put > A™|[[ T ARl 11|
n>1
<tk + it ST AT Axl el A2 Ll < CHRY.
n>1

(ii) By (1.9) and Lemma 1.5.6, we have

Eo[Z)5] — Eg[ZYK] = u(t — 5) 3 A" Ix AR Ly + u( 3 lenlt) - en(s)}zKAmN)
n>0 n>0

with 0 < €, (t) < Cmin{nIA"'~%, nA"k}. Since 3.,  A"IxA%1n = IxQn1ly = £y on the
event Qn ., a
1o [Z3"] — EBo[Z ] — u(t — )N+

<C(min{1,s" D[ 1n|lr D n?A"[[Txc AR []],
n>0

<Cmin{1, s PNV (32w T Al A1) < Coming1, st 03

n>1

We used the very same arguments as in point (i).

1.7 The first estimator in the subcritical case

Here we prove that el * = t=1(Z)5 — ZN5) ~ *a; and to study the rate of convergence.

Theorem 1.7.1. Assume (H(q)) for some q > 1. There are some positive constants C, c’
depending only on p, u, ¢ and q such that for alle € (0,1), all N > K > 1, allt > 1,

P(EiVK T ‘>5><C’NBCK+C(\/17 \/L 1)

Lemma 1.7.2. Assume (H(q)) for some ¢ > 1. There is a constant C > 0 such that a.s.,

) = C . = Ct
(i) Loy [Eolel™] = nfl| < 520 (0) Tow i Boll0XP) < 22

Proof. By Lemma 1.6.1 (ii),

gNK _ ZNK
R N

- 1
-] < e 2

which proves (i). Using (1.10),

K N

RS 2N KD WLB A
n>0 i=1 j5=1

Recalling (1.11), it is obvious that for n > 1,

K N N K 2 N
B[ (2 AR G.MIY) | = 3 (3 Ak G0)) BalZ] < T An I 3 Bol 22

i=1 j=1 Jj=1 =1
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K 1
<gol(S) ) 2 2 [fomamom (S o]
=1 i=1 j=1
K 1 0 N j%
7]E9[ZZZ’N} +?Z|||IKA7V|||1/OE9[ZZ?N} 57t — 3)ds
i=1 n>1 i=1
S A Ik Al I Aw] 7
n>1
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By Lemma 1.6.1-(i) with » = 1, we have ].QNYKEQ[ZZ 1 Zz N] < CtN and 1q, KE@[E
CtK. Thus on QN K>
Bo[| T ]2

ZZN]

<S8 o

M\»—A

We used that fot Vs (t — s)ds < \ff & (t
since |||[IkAn]||1 < CK/N and A||An]IL €a< 1,

s)ds < v/tA™. As a conclusion, still on Qp g,
1 CVt
UNK < OVE
Eo[|07FP)E < Vi =t oE) S e
as desired.
Lemma 1.7.3. Assume (

(q)) for some ¢ > 1. There is C > 0 such that a.s

_ 12 1 1
o s <+

)
_ 12 2
Eg[eﬁw—ueﬁ‘ } §2]E9[5N —Eg[aiV’K]‘ } +2‘E9[5£VK

< =5 (EoIT ) + Eg[10
and to use Lemma 1.7.2

Proof. It suffices to write

_ 12
—Mﬁ’
“P]) + 2|Bolel] -

Finally, we can give the proof of Theorem 1.7.1
Proof. By Lemmas 1.5.9 and 1.7.3, we have

E [1QN B

N.K I N.K
=

1—ApH <E{1S2NK &t

1
3 - 1
_N’gﬁ‘ :|2 +ILL]E|:]‘QN,K’£§
SC( 1 1

_mﬂi
ﬁﬂ?ﬁr#)

VNK/
_“Ap\ze) < PO ) + P({[e

T1-Ap ‘ 25}09]”)
< PQy k) + iE[1QNK

1
“t 1—ApH
/ C 1 1 1
SCNe ¥4 Z(——=+—-+—=
- (\/NK ta \/Kt)
by Lemma 1.5.7.

By Chebyshev’s Inequality, we deduce

P( €£V’K

1

N,K

9

K (2 -z
=K i [

NK]?2 N NK
7 & G

1.8 The second estimator in the subcritical case
We now prove that V,

~ B2A’p(1-p)
— (1-Ap)?
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Theorem 1.8.1. Assume H(q) for some q > 1. There is C > 0 such that for allt > 1, a.s.,

,uN

N N N N
Loy B ||V~ VK| < O+ 35+ 5 liofl), where VIR i= B 21

tVK

. N,K N,K,1 N,K,2 N,K,3
We write [V, — VK| < A 4 A2 4+ A7) where

i1 N i\N i\N NK]? = i\ N i\N i 2
ANRL = SIS - 2 - ] -3 [ - 2 - ],
i—1

i=1

NEi2 N = i, N i, N 2 N.K
ANE :?’Z[(z;; -z )/t*uﬁzv(i)} — (K/t)e;

)

AN = 9| i (25~ = 20 = pen ()] [en () - K] |
=1

. N,K,2 N,K,21 N,K,22 N,K,23
We also write Ay <A AT L AT

, Where
K
ANK21 _ E‘ Z [<Zi,N ~ Z0NY J — Bl ZiN - Zi,N]/tr _ (K/t)EN,K)
t K|« 2t t 0142t t t )

)

ANE22 _ K‘ {]Eg[(Zé’tN — ZPNy ] - MN(Z')}2

=1

=

ANK2 _ 27‘ Z { (ZiN — 70N 1t~ Eg(Z5N — Zti’N)/t} {Eg(zé’t]\’ — 7Nyt - /JfN(Z')} ’

We next write Af 20 < ANFORIE L ANF212 L AN - yhere
N K
N,K,211 i\N i,\N i,N i, N
AN = 2SN - U~ Ealvg - U/},
=1
N K
N,K,212 iN i,N N.K
Ay K Z]E«?[(U% — U™ )2 1) = B[Ke, /1|,
=1
N
ANE2S = Kel Bt — Bo[KeM " /4],

N,K N,K,31 N,K,32
At7 73§At7 ,3 +At7 ,3

At the last, we write , where

ANK3L _ 2%) ZK: [(Z;;N — 7Ny e — Eg[(Z;%N _ ZZ,N)/t]} [/MN(Z') - Hgﬁ} )

Aiv,K,sz _ 2‘ ZK: [Eg[(Z;N _ ZZ"N)/f] _ MN@] [/MN(Z') — ,ué_ﬂ ’

Lemma 1.8.2. Assume H(q) for some ¢ > 1. Then, on the set Qn i, fort > 1, a.s.,
(i) Bg]AN ™' < O(Nt=29 4+ NK 171,
(ii) Eg[A)F%?) < CN/t29,
(iii) Eg[AN T3] < ON/te,
(iv) B[ AN < ONK 2172,
(v) Eg[ANT32]) < N/t
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Proof. (i) Recalling the definition e} "™ = ¢=1(Z)* — ZN5),

K
N - ; ; - e\ 2
N,K,1 _ K _ _NK i,N i,N K K
Ay —K‘;_l [Hﬂ —& ][2(Z2t —Zy7)/t— ply _Et ”— (t —IMN) )
whence by Lemma 1.7.3,
N2
Eo[AY ] = NEy | (o1 = u§) | < o(Ne20 4 N1,

(ii) We use Lemma 1.6.1-(ii) with r = 2:

K
. 2
Eg[AN 2 Z {Bol(z5" = Zi™) ] - wew (i)} < ON e,
(iii) By Lemma 1.6.1-(i) with r = co and 1.6.1-(ii),

4N _ CN
BolAN %) < [ (237~ 207) fe] -tk _||o[ 250+ 2X ] | 7 < S

(iv) Since
Ai\/,K,QlS _ Nt*Q‘Ué\t”K _ UtN,K‘ < Nt*2(|UQI\t[’K| 4 |UtN,K|)
and thanks to Lemma 1.7.2-(ii), we deduce that
Eo[AN 218 < ONK 2473,
(v) Since max;=1. n[¢n(j)] is bounded on the set Qu k, by Lemma 1.6.1-(ii) with r =1,

N N
Eo[ AN < CEo| =123y — 207 — el <

The proof is complete.

Lemma 1.8.3. Assume H(q) for some ¢ > 1. We have, for allt > 1, on the set Qn i, a.s.

Eg[ANT212) < O/t

Proof.  We write Eg[A)"*?] < 2K 57K 4, where a; = [Eo[(Uy" — UP™N)? — (ZyN — 20N,
and then

a; =b;+d; where a; =Eg[(R\N)?] and b = 2Bg[(MEY — MPN)REN],

where, recalling (1.10), we have Uy — UPN = M4 — MY + RPN | with

2t N
RN Z/ Bn(t,2t, s ZA (i,/)M?Nds with B, (t,2t,s) = ¢*"(2t — s) — ¢*"(t — 5).
J=1

n>1

This uses that Eo[(M2Y — M2 = Eg[Z25Y — Z"N] by (1.11). By the proof of [14, Lemma 21,
lines 10 and 15], we have b; < CtN~ Land d; < C’tN L whence the conclusion.

N,K,31
At”

Before considering the term , we review [14, Lemma 22| (observing that Qn x C Q).

Lemma 1.8.4. Assume H(q) for some ¢ > 1. Then for allt > 1 and k,l,a,b € {1,...,N}, all
r,s,u,v € [0,t], on the set Qn i a.s,

(i) |Covo(ZN, ZeN)| = |Cove (U, ULN)| < CUN T + 1pmyy),
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(ii) |Covg(ZFN, MLN)| = |Cove(UFN, MLN)| < CHNL + 1g—ny),

(iii) |Covg(ZPN, [ Mo_dMLN)| = |Cove(UFN, [ M,_dMEN)| < Ct3(N~' + 152py),
(iv) [Eg[MFPNMENMIN]| < SEif 4:{k, 1} = 2,

(v) |Cove(MENMLN MaNMENY| =0, if #{k,l,a,b} = 4,

(vi) |Cove(MENMUN MENMENY < Ct/N?, if #{k,a,b} = 3,

(vii) |Cove(MFENMLN MaNMaNY| < ON~t2, if #{k,a} = 2,

(viii) |Cove(MPFN MLN | MN MEN)| < Ct2.

Lemma 1.8.5. Assume H(q) for some ¢ > 1. Then fort>1 on Qn i a.s.,

K 2
Bl < S8 (i) - 7).

i=1
Proof. By definition of AéV’K’Sl,

42 N?
1?K?

K
Y (Un(i) = ER)(Un (f) — E8)Cove (Ugy” — U™, U™ — UP™).

i,j=1

Eo[(A7)%] =

By Lemma 1.8.4 (i), we have Covy[Us," — UPN, USN — U] < Ct(1i—jy + ). We deduce that

K

C’/ﬁN2 - o
B (AN < ST S (1agy + ) lewli) — 2577 + T ) — 2577
4,j=1

CN?> & L \?

< gm0 (v - 7))

i=1
We finally used that K/N < 1.
Next, we deal with the term AN-2,

Lemma 1.8.6. Assume H(q) for some ¢ >1. Then for allt > 1, a.s. on the set Qn k, we have

CN?
N,K,211,\2
Egl(AY S <~

Proof. First, Eg[(AN )] = 2 S8 ayj, where ag; = Covol(UgY —UP™)2, (UGN ~UP ™).
Let T'k,1,a,6(t) = SUD; 4 4 vefo,2] |Cove(MENMLN MaNMEN)|. By the proof of [14, Lemma 24

lines 9 to 12], we have

N
ai; <C Y (Lgmry + N (Lmyy + N DA gay + N Aoy + Nk (t)-
k,la,b=1

Hence,
K
> ai; < CIRF + RE + RY + R + RE + R,

ij=1
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where

klab 1

K N

Rff = N*Z Z Fklab Z Crtan(t
T
Z

i.j=1klab=1 kya=1b,1=1
| KX K KN
REK = 2 S e lp=—nTrias(t) = N2 D> Thkan(®),
i,j=1k,l,a,b=1 k=1a,b=1
1 K N 1 K N
K fr—
Ry =« 2:: 2; =} L=y 1 j=a} Tk ,a,0(F) N D Thkas(t),

Z =iy L=y 1 j=ay L (=0} Uk tap(t) = Z Chokaa(t)-
1k,l,a,b=1

ij=
By Lemma 1.8.4-(v)-(viii), we see that I'y ; 4.5(t) < CtQI{#{k,l7a7b}<4}, so that
K? K?
REK < Ct2W7 RE < CtQW, and RE < C#’K

Also, from Lemma 1.8.4-(vi)-(viii), we have T'y p.a,6(t) < C(1inir,apy=31N"

2t + L rany<3rt?),
whence

K2 K’ K2 K2
< — ) <C0—+¢? K< 2 t) < 2,
RE C( +Nt>_CNt and R5_C(Kt+N2t)_CKt

Finally, from Lemma 1.8.4-(vii)-(viii), T k,a,q(t) < C(l{#{k’a}ZQ}N_lti + 1{#{;@@}:1}752), so that
K2
RE < O(Wt% + Kt2) < OKt.
All in all, we deduce that ZZKJ a;; < CKt2.
Then we can give prove of Theorem 1.8.1.

Proof. Recalling that
|VtN,K _ YK :Aiv,K,1 +AiV’K’2H +A£V,K,212 +Aiv,K,213 +AiV,K,22
+A£V,K,23 _'_AiV,K,Sl +A£V,K,32’

Lemmas 1.8.2, 1.8.3, 1.8.5 and 1.8.6 allow us to conclude that

K 1
N N N N N N ) = 3
Lo BolVi — V") < C(t\/E TrhE e T T KJ[Z(ZN(’) -5°)°)
N N N
<O(—=+= + —=|ak
= (t./}( ta K\/EH:BNHQ)

as desired.

Corollary 1.8.7. Assume H(q) for some q > 3. There exists some constants C > 0 and C' > 0
depending only on p, u, ¢, q such that for all e € (0,1), such that, fort > 1,

2A2
P(‘VtN’K—(jl\_(Ap‘>e> < ONe™ CK+S(\/17{+“]/VF).
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Proof. By Theorem 1.8.1 and Lemma 1.5.14 (since VX5 = 2 &|[x¥|? = > % Zfil(&v(i) -
15)?), we have

PNE *A%p(1 — p) H
! (1 - Ap)?

N ’ N& \2 APp(1l—p)
<E[loy |V VOJZKIHALQE[MN,K‘K;(EN JK) *WH

E[ Loy

N N N c
< CE[1 (—+—+—xK N+~
= QN K NI q P'\/E” N”2 78
1 vN N N
< C(—ﬁ t =t —*).
By the classical inequality —— L —V%t, we end with

E{mw-M“;”usc(fi )

).
(1 — Ap)? VK VK

Using Lemma 1.5.7 and Chebyshev’s inequality, we conclude that

P(\VZ“K—MP o) soNe T+ Szt )

Next, we get rid of the term . We assume without loss of generality that C' > 1. When t < v K

then \I/\% > 1, so that

u

When now ¢t > VK, then LK > 4>

MR — P A%p(1—p)/(1 —AP)Q’ >e) <1< CONe K 4 g(

VE TR/

1 N)

So

i

ﬁ
2=

PV = 2621~ p)/(1 - ApP| <) < ONe O 1 &

1 N
=t i)

This completes the proof.

1.9 The third estimator in the subcritical case

Recall that by definition,

N & /- _ 2
N, K N, K N,K N, K N,K N, K
WAt _2ZZAt ZAt ) ZA,t = T E (Zm _Zz;l)A_Aft ) )
K

N, K _ v N, K N,K
XA,t = WA,t T K €t
The goal of this section is to check that X iv ’tK = = f\p)g , and more precisely to prove the following

estimate.

Theorem 1.9.1. Assume H(q) for some ¢ > 3. Then a.s., for allt > 4 and all A € [1,t/4] such
that t/(2A) is a positive integer,

N.K H N /A N? Nt N
e P < 4= .
E{lﬁNvK’Xﬁi (1 — Ap)3 H = C(K\/jJr KA3(a+1) T RAT T K\/ﬁ)
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In the whole section, we assume that ¢ > 4 and that A € [1,¢/4] is such that ¢/(2A) is a positive

integer. First, we recall that WYX = ‘;(—JZ évzl(cﬁ(j))QfN(j) and write

N-K

N.K , N,K ,
|XA,t _X£,§o| < |WA,t - Wo]\éé(o‘ +

N.K 7K
€t - KN)

N _
SDg:tK,l +2DéVA’I;’1 +DN,K,Q n 9 DN K2 +DN,K,3 +2DN,K,3 +DN,K,4 n E’gi\u{ _ 4%)7

At 20t At 24t At
where
2t %
A
N1 N ZNK _ NK A _NK 2 Z ZNK _ GNK A 7K 2
N al (a—1)A €t al (a—1)A HEN ) |5
a:i—i—l a:i-‘,—l
%
2
N2 N SN,K  5N,K K
Dyl =7 Z (ZaA *Z(aq)A*AMK)
a=Lt+1

E 2
SN,K  7N,K SN,K  7N,K
- E , (ZaA - Z(a—l)A —Eg[Z,5" - Z(a—l)A]>

9

N & /- _ _ _ 2
N,K,3 N,K N,K N,K N,K
Dpy ™ = m Z (ZaA - Z(afl)A —E9[Z, 5" — 2 )A])

(a—1
a:i—i—l
ES SN, K  5NK SN, K  5N,K 2
*E9{ Z (ZaA —Z,21ya — BolZaR *Z(almA]) H’
a:%—i—l
and finally
NK4 _|2N > SNK  5N,K SNK  5N,K 2
DA,t = TEG[ Z <Z2aA _Z2(a—1)A_E9[Z2aA _Z2(a—1)A]) }
a:i%»l
2t
N

Y 2
SN, K _ 7NK N, K _ 7NK N,K
- ?EO[ Z (ZO.A - Z(afl)A - ]EG[ZQA - Z(afl)A]) j| - Woo,oo .
a=%+1
For the first term DZ’tK ! we have the following lemma.
Lemma 1.9.2. Assume H(q) for some ¢ > 1. Then a.s. on the set Qn
N N)

N,K,
Eg[Dary '] < CA(th + %

Proof. Recalling that el ™ := t=1(Zy"™ — Z)"F), we have

b
oY

N1 N 3 NK NK N.K

K1Y ZN,K _ N, B K12

Dpy = P ‘ E , [Z.A Z(a—l)A Agy ]
a:%Jrl a

=NA(uly — e ™),

M

SNK _ 5NK 7K
[ZaX" — Zia—1ya ~ AplN]?
+1

Il
[

Lemma 1.7.3 completes the proof.

N,K,2

Next, we consider the term D At
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Lemma 1.9.3. Assume H(q) for some ¢ > 1. Then a.s. on the set Qn i,

Eg[DX'[?] < CNt' 4
Proof. First, we have

2t
a
N,K N K _ SNK
Dy * = E (A#EK Eo[Z, X" — Z(aLl)A])
a= +1

N.K 5NK N,K 5N,K 5
(2(ZaA - Z(a—l)A) 1) [Z Z(a—l)A} _AMIJ\(f) )

whence

b
b

ot

2N _ i
Eo[DNf %) < =5 ‘Auzﬁ ~EoZNF - 21 KI)A]‘(E@ [ZN Koz KM} + Aué{g).
+1

a

Il
Dl

By Lemma 1.6.1-(i)-(ii) with r = 1, since (a — 1)A > ¢, we conclude that on Qy g, a.s.,

AT —BolZ)5 = 20K )| < 01 and By |Z055 - 20K ] < catf+ o <coa

since Eﬁ is bounded on 2y k. The conclusion follows.

Next we consider the term Dg tK A

Lemma 1.9.4. Assume H(q) for some g > 1. On QN K, there is a 0((8i;)i j=1..N)-measurable
finite random variable Y™K such that for all1 < A< & 5, a.8. on QN g,

_ A
Varg(UAlIA( UNEY) = WNK YR 4y k(z,A),

x x

where, for some constant C, |rn i (z,A)| < CxATIK 1.

Proof.  Recalling (1.10), we write

U1+A UiVK Z/ Brn(x,z+ A, s)— ZZANZJM]Nds

n>0 11]1

where S, (z, + As) = ¢ (x +,A —8) — ¢*"(x — s). Set VJ/,JYAK = Varg(UﬁIZ UN-K). Recall
that E[M>N MPN] = 15,2y Eg[Z23], see (1.11). We thus have

N
S AT (i, 1) AR (b, Vo 223 drds.

15=1

z+A pxt+A 1
Z/ Bm(x, x4+ Ayr)Bn(z, 2+ A, s) 7

m,n>0 i,

ﬁMw

In view of [14, Lemma 28, Step 2], we have Eg[ZN] = uln(j)s — X}V + R} (s), where
N
—,LmZnA ZA" (j,1) and RN qun ZAR, g, 1)
n>0 n>0 I=1

Recall that x and ,(s) were defined in Lemma 1.5.6. Also, there is a constant C' such that, for
all j = 1,...,N, we have 0 < X]N < C and |R§V(s)| < O(s'79 A1). Then we can write that



48 CHAPTER 1. STATISTICAL INFERENCE FOR HAWKES PROCESSES

Va:A =1— M + @, where

z+A pr+A 1 K N
I= ZU/O Bu(z,x + A, 8)Bm(z, 0+ A1) — Z ZA%(Z AR (k, )l (G)(r A s)drds
nm> i k=15=1
T+A 1 K N
M= Z / / (2 + A, 8)Bm(z, 0+ A1) Z ZAW(i,j)A?V(k,j)Xderds
n,m>0 i,k=1j=1
r+A 1 K N
Q= Z / 6n x,x + A, 8) BT,z + A1) e ZA}(}(Z’,j)AR,(k,j)R;Y(T/\s)drds
n,m>0 i,k=1j=1

First, we consider M. Using that |fac+A Bn(z,z + A,r)dr] < CniA™z~9, see [14, Lemma 15

(ii)] and that X; N is bounded by some constant not depending on ¢, we conclude that on Qy r,

K N
M| <C > miIA 2K T2 NN AR §) AR (K, )

m,n>0 i,k=1j=1

<CaINK 3" mtnd A" || L AR ||| T AR
m,n>1

<CaINK2 3w A0 || i Aw |2 An ][+
m,n>1

<Cx 2N~ < CaxA K.

Next, we consider ). We write

z+A T+A
Qe [ |patwaran
m,n>1 0 0

N _ _
s I ANTEIANI[T %[0 A 5) =7 Ad]drds

z+A  pxt+A
—|—2CZ/ / ‘ﬂo(x,x—l—A,S)Hﬂm(x,x—i—Am)
=070 0

<Q1 + Q2 +2Q3 + 2Q4.

Bn(z,x+ As)

1 -
| T AR 121 A )9 A 1]drds

where, using that  — A > & and that (r A s)ITe<alTlifrAs>a — A,

M \ﬂm 2,0+ A1) [Ba, 4 A, )| g | i An [ An |7+ 2drds,
1 >1 K
r—A
Q2 =C Z / / Bm(x, 2 + A, r)’ Brn(z,x+ A s ’K2|||]KAN||| AN+ 2drds,
m,n>1
r+A r+A 1
Qs = Z/ / ‘ﬁo(ﬂc x+ A S)H,B (x,z+ A r)‘ |11 AR || drds,
3 xqfl A ’ i m\4Ls 5 K
z+A  pr—A 1
Q4—CZ>:O/ / ‘ﬁoxﬂc—FAsHﬁmxx—FAr‘KHUKA || 1drds.

In view of [14, Lemma 15-(ii)], we have the inequalities foz+A |Bn(z,x + A,s)|ds < 2A™ and



1.9. THE THIRD ESTIMATOR IN THE SUBCRITICAL CASE 49
fowiA |Bm (z, 2 + A, r)|dr < CmIA™A~9. Hence, on Qy g,

Q1 < Cx'™1 Z AN K 2| I AN |2 AN 2 < ON TPt~ < CaATIK Y

m,n>1

Q2 < CA™T >~ mIAN T NK 2| I An|[FIIAN[||7F" 72 < CATINT! < CaATIK !

m,n>1

Since furthermore |Bo(x, z + A, 5)| = [6fs—o+a} — Ofs=a}| < dfs—ara} + 0{s=z}, We have

Qs < Cx'™1 Y A"KY||Ig ARy < C2' 1K' < CaATIK Y,

m>0

Qi< CA™T Y mIN"K || Ix ARll[y < CATIK ™ < CaA™ K.

m>0

All in all, on Qu g, we have Q < CzATIK 1,
Finally we consider I. We recall from [14, Lemma 15 (iii)] that there are 0 < Ky, ,, < (M +n)K

and a function &, ,, : (0,00)? — R satisfying |e;, o (t,t + A)| < C(m + n)9A™T"tA~? such that

r+A
Yoo (T, 2+ A) :/ / (s AW)Bm(z,x+ A, 8)Bn(x,x + A, u)duds
0 0

=ANT — oy AT 4 Emn(z, T+ A).
Then we can write I as:

1
1= ,uZ'ymnxx—l—A e

m,n>0 7

N
> AN G) AR (k,j)n () = I — T2 + I,
j=1

Mw

o
Il
—

)

where

Mz

1 K
s Y el S

AR (i, 5) AR (K, ) En (5),

m,n>0 i,k=1j=1
1 K N
Iy =p Y AN DY AR () AR () (7).
m,n>0 i,k=1j=1
1 K N
L’)*MZ 5mnxx+A QZZA ZJAN(‘ZC])EN()
m,n>0 i,k=1j=1

Rec?llir;g that WK = &5 (cK(5))%¢n(j) by definition and that Y3, oo A™AR(,j) =
QN Za] )

m,n>0 i,k j=1

1 & 1
_ K. _ N,K
= ,UAKQ = (CN(])> In(5) AJ\[)/Voo co*

Next, we set YNK = I,. It is obvious that YV ¥ is a (Oij)i’jzl,,,N measurablefunction and well-
defined on Qu k. Finally, using that e, ,(z,2 + A) < C(m + n)IA™ " zA~? and that {y is
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bounded on Qu,x (we have to treat separately the case n =0 or m = 0),

m m zN m+n n m
O S N S AR + O S (A AR A
m>0 i,k=1 m,n>1
< E:ﬂﬂAmHUKA%Hh+*3AQK2 (n +m) A" ||| I AN A []]7 2
m=>0 m,n>1
T
<= _
*CNAQ’

still on Qun k. All in all, we have verified that VIJYAK =1—- M+ Q, with
IM|+1Q+ [ = ANTWIE + YV E| < CaATIK !,

which completes the proof.

Next, we consider the term DZ’tKA.

Lemma 1.9.5. Assume H(q) for some ¢ > 1. Then a.s. on Qn g, for 1 <A < 17 we have:

Nt

Proof. Recalling that U™ = Z'N —Ey[ZN], we see that

NK4 _|2N & NK NK UL NK NK
DY =\ D0 V(U — Uyt Z Var(U,g" = Uty a) = WSk |
a=t/(2A)+1 a=t/A+1

By Lemma 1.9.4, we have

Varg (UM — UNE) = WN 5 =YV fry k(D).

x

Since a € {t/(2A)+1,...,t/A}, v = 2(a—1)A > t satisfies 2A < J and for a € {t/A+1,...,2t/A},
= (a—1)A >t satisfies A < x/2. Then we conclude that

t/A

2N 2A
R DS [ng;f; —YNE 4y k(2(a—1)A, 2A)}
a=t/(2A)+1
2t/A
N A
S D [N -9V (e — 1A, A)] - WK
a:i—i—l
t/A 2t/ A
2N N
==/ Y rvx(a-1)A24) - 5 > rvkl(la- 1)A7A)‘-
a=t/(24)+1 a=t/A+1
But |ry i (z, A)] < CxA™9K ™!, whence finally
N,K4 N t t CNt
Dapm=C7 R (AqK) KA+

as desired.

To treat the last term Dg’tK ’3, we need this following Lemma.

Lemma 1.9.6. Assume H(q) for some ¢ > 1. On the set Qn i, for allt,z,A > 1, we have

Var[ (025 —02F) | < 0(B + ) I b<e-A<evA<u (1Y
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and

ANK  NK\2 (7rNLK N K2 Vit 2 Vi
COVG((U“A — U ) Uia = U ) = C(KAq—l txoas T [@Aq%) (1.13)

—A<y+A<z-2A<z+A<2

Proof. Step 1: recalling (1.10), for z € [z, x + A], we write
U;"N—U;’N / ﬁnxzrZANZJMJ’NdT—F’N+X;];’,
n>0
where B, (z,z,7) = ¢*"(z —r) — ¢*"(x — r) and where

N
Py =3 / B, 2,7) 3 A (i, ) (MFY — MIN, ),
Jj=1

n>0
N N
X;JZV / ﬁnwzrdr)ZAszMg’NA—i—Z/ Bn xzrz (i, 5) M?N dr.
n>0 T n>0"0 j=1

_ _ K ; .
We set TN K = K1 ZZ (TEN and XK = K130 XEY. We write

/ ﬁnmzrdr) NK”—&—Z/ (2, 7) ON Koy,
n>0 =

where
N,K,n 1 v ; 3N
0" = — ;: E: (4,7) M}

By (1.11), we have [M N MIN], = 1{i:j}ZZ7 . Hence, for n > 1,

N K
(ON-Hm QN Z(ZAWJ')ZJNsﬁWKANm A2z,

And when n = 0, we have

N
[ONKO ONK0) - Z(Z )ZJ’ :%27{\!,](.

By Lemma 1.7.2, we have, on Iy g,
Eo(Z"F)?) < 2Bo[2,7F)? 4 2B, (T, )% < O,

Hence, by the Doob’s inequality, when n > 1:

w0 < 55

ZN 2 < C A 4n—4t2 1 14
2t — N2 ||| NH‘l . ( . )
By the same way,

4
B[ sup  (0MFn 0N < Cayiinia, (1.15)
[z—A,z+A] N
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and in the case n = 0, by Doob’s inequality,

Eo [ [zfil,lgw] (O’N’K’O B 0541270)4} < CK°A%, (1.16)

Step 2: We recall the result of [14, Lemma 15):

z z—A
‘/ ﬁn(x,z,r)dr‘—}—/
x—A 0

So we conclude that

Bz, z,7) ‘dr < CnfA"AT9

[XN.| <O nIAmA~ sup [ONF"| = ¢ 3" nIAT A sup [ONFn

n>0 [0,2¢] n>1 (0,21]

Recalling (1.14), on the set Qn i, by using the Minkowski inequality we conclude that

E[(X2,)% < O3 ntA"|[An|llf " AN EVE < CATINTIVE

n>1

Step 3: We rewrite

fﬁi’f:Z/

z
R Bn(z, 2, T)[OiV’K’n — Oiv_’lg’n]dr.
n>0" %=

Since [ A |Bn(x,2,7)|dr < 2A™ by [14, Lemma 15, using (1.15)-(1.16) and the Minkowski in-
equality,
= 1 ]. 1 1 1
B[CYS) Y < o{atk—4 4 5 An—|llAyllliat} <cab(kd 4+ N-
[( T,z ) ] = Z \/Nm N|||1 = (

n>1

o=

)< CAZK™3.

Step 4: Since, see Step 1,

_ _ 4 _ _ 4 _ _
(ONK-ONF) = (D a+ X0a) <[00+ (X501,

we deduce from Steps 2 and 3 that (1.12) holds true.

Step 5: The aim of this step is to show that, for z,y, A as in the statement, it holds true that

C(t2 \/i).

Covy (UK — U, (UK — U)7)?) < |Covel (050" (O350 + 13 (R + xos

x Y Y,y+A

We write
7N K _ 77N, K\2 _ (N,K 2 N, K \2 =N,K  $NK
(U;H—A - Ux ) - (Fa:,w+A) + (Xx,a:+A) + 2Fa;,x+AXx,x+A’
and the same formula for y. Then we use the bilinearity of the covariance. We have the term

Cove[(f‘i\f;ﬁA)27 (f‘ﬁ;fiA)z], and it remains to verify that

._ ANK 2 g NE (2 ANK 2 5N.K  wN.K GNK 12/ NK 2
Ri=Eo |(T, 0 a) (X o n)” + 20, A) T A X s al + (X0 A) (5 A)

TN K \2/vN,K \2 N, K \2pN,K +N,K =N,K +N,K |fNK \2
+(Xx,z+A) (Xy,y+A) +2(Xx,x+A) |Fy,y+AXy,y+A|+2|Fw,w+AXw7I+A (Fy7y+A)

SN, K ©NK SN,K \2 =N,K +N,K ©NK wNK
+ 2|Xw,a:+AFz,w+A|<Xy,y+A) + 4|Fz,a:+AXa:7x+AFy,y+AXy,y+A

is bounded by %(giq + Af% )-
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By Steps 2 and 3, we know that E[(TY%)*] < CA?K~2 and E[(X);*)*] < Ct?A~*IN 2, and
the sames inequalities hold true with y instead of z. Using furthermore the Holder inequality, one
may verify that, setting a = CA2K~2 and b = Ct? A~*IN~2 we have

R < Vab+2a%40"* + Vab + b+ 2a' /634 + 2634614 1 20146/ 4 4v/ab,

which is easily bounded by C(b + b'/*a3/*), from which the conclusion follows.

Step 6: Here we want to verify that

| - CVi
= |COV9[(FI w-‘:—A)Q’ (Fy,y+A)2]| < KAa-1

We recall from [14, Lemma 30, Step 6] that for any r, s in [t — A, 2+ A], any u, v in [y — A, y+A],
any j, 1, 8, e in {1, ...N},

|Cove [ (MY — M2 ) (MEN = ML), (MEN = MIN)MEY = Mp2)| < Cggop vVin ™

We start from

K N
1
“+A_Z/ xx+ArKZZANZJ)(M7N M2N, Ydr.

n>0 i=1j=1

So

Z /zx+A /m+A /y+A /y+A (z,x+ A, r)Bn(z,x + A, s)

m,n,a,b>0 A
K

Bl + A Blyy+ A ) Y S AR A b 1 A (0,5 A 3.

i,k,a,y=13,1,6,e=1
Covyg [(MJN M; NA)(MIN MiNA) (MgN MéN )(MsN M;’_NA)}dvdudsdr

NN D SRS S S ARG DAY (A (05 3.,

m,n,a,b>0 i,k,a,y=1j,0,e=1

We used again the result [14, Lemma 15]: fI+A [Bm (z, 2 + A, r)|dr < 2A™. And we observe one

more time that A% (¢,5) = 1{—;; and, when m > 1, Zi:l AR (i, 5) < |1 A\ l||AN||[7E. We
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now treat separately the cases where m,n,a,b vanish and find, on Qy g,

C\/Z m-+n+a m-rnr+a
=Y Z AT T A [[4]]| A [ e

m,n,a,b>1j,0,e=1

40\/% = - n+a+b 3 n+a+b—3
AT O 2 2 L ATk An I AN

nab>1j66*1 i=1

K4Aq DD Z { Z Lick=i) + D Lamsemm + ) 1{i:j,a:6}}

a,b>13,0,e=1 i,k=1 a,y=1 i,a=1
x ATl I A |2 An] 15 +2
20VE K . _
DY Z { Z Ljistmjams) 72 D Limjazsemn) PA%l Tk AN Il ANNI!

a>1j,6 i,k,a=1 i,00,7=1

20V &
K4Aq1 Z Z 1{i=k=j,a=5,c=7}

i,k,a,y=1j,0,e=1
2 K3 K? K
gKfA\qfl( N3 + —N2K+ —(KN2 + KN + K°N) + (K2N+K3) +K3)

CVitA 1
<L — .
- K
Step 7: We conclude from Steps 5 and 6 that on the set Qn &,

N.K _ NK NK 77N, K\2 Vi t? Vi
)COVG {(UHA U )2, (Uy+A U,"™) ” < C{KAqfl + K2A4q + K2Aa-3/2)"

which proves (1.13).

N,K,3
We can now study D’ .

Lemma 1.9.7. Assume H(q) for some ¢ > 1. On the set Qn g, for all1 < A < L,

N2A N2 ¢t N2 Vit N2 #2 N2 \/i)

N,K,3\2
E(DXV) < C(fm T + gramsr + & Aek T gz amwE b 2 Aatl

Proof. Recall that by definition

2/A

N _ _ 2
N,K,3 _ N,K N,K N,K N,K
DA,t —7’ Z (ZaA _Z(aq)A _]EG[Z Z( 71)A])
a=t/A+1
2t/ A )
SN, K  5N,K N,K N,K
~Eo| > (20 - 20N A - EZE - 205 4) |
a=t/A+1

Since now UNK ZNK Eg [ZN K]

N2 2t/A N2 A
Eo[(DN{) = Srvare (Y (O =T =% Y K
a=t/A+1 a,b=t/A+1

where K, = Cove[(l_]éVA’K —gNE

(a_l)A)Q, (U&K — UMK A)?]- By Lemma 1.9.6, for |a — b] < 2,

(b-1)

_ _ 3 A2 g2
Kol < {Varg[(UK" = U5 ) Varl (035" - O3 D)4} < C(ﬁ + W)'
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If now |a —b| > 3, weset z = (a — 1)A, y = (b—1)A in (1.13) and get

NG t2 Vit
Kapl < C(KAq—l T RIAT T K%w%)'

Finally we conclude that

N2 ¢ /A2 12 N2 ¢2 Vi 2 Vit
N,K,3\2
Eol(DX V1 <0 3 (T2 + sanmn) * O az (ae * T2am * ane3)
NZA N2 ¢ N2 i N2 2 N2 Vit
<C(f=7+ 7= L N = \/1).
K2t K?2A%tl - K Actl - K2 Adat2 - K2 Aats

which completes the proof.

Lemma 1.9.8. Under the assumption H(q) for some ¢ > 3 and the the set Qn g, we have:

N /A N? Nt
N,K N,K

K , < .= .
EGHWAvt W‘X’voo] - C(K t + KAz (at1) * KA%H)
Proof. We summarize all the above Lemmas and conclude that, on Qy g,

Eo [ WA - WA
<Ey [DX + 2D9%5" + DYI? + 203107 + DY + 2D + DX

NA NA N Nt
(?? T Tt KA1+q)
+C\/JWA N2t N* Vi N2 2 N? i

<C

K2t TEEAWT T K Aerl T KZ A T ORE patd

Since 1 < A <t and ¢ > 3, we conclude, after some tedious but direct computations, that

N JA N? Nt
N,K N,K

KWK < o=y /= .
JE@HWAJ WCD)CD}_C(K t+ A%(q+1)+ A%“)

The most difficult terms are
N241/2 N2 \/ $1/2 N2 $1/2 N2 Nt

KAt N Ea@2V Az S Ra@D2 T A@E S FA@D2 T KAz

N V(SR ) < MR ),

The proof is complete.

and

Next we prove the main result of this section. Proof. [Proof of Theorem 1.9.1] We start from

N,K 1%
]E[lﬂw‘%m - (1 Ap)? H
N 7 %
<E[ay WA - WEE|| + FE [t | - nfR] + B[t | 225 - g |
N /A N? Nt 1 N N C
<C(=4/= — )+ Ot C——=+ =
- (K t + KA3(+1) * KA$+! * ./K) + Kta + KVEL + K

by Lemmas 1.9.8, 1.7.3 and 1.5.19. Since t > A > 1, we have Kj\gq < Ki\f%t“ and we conclude that

VK 1 N [A N2 Nt 1 N
m_ P < = —
E[lgNaK‘XA’t (1—Ap)3 H = C(K\/7+ KALa T KATH TR T Kx/ft)

which was our goal.
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Next, we write down the probability estimate.

Corollary 1.9.9. Assume H(q) for some ¢ > 1. We have

1
s sl =
SR IR
<9(ﬁ A N N 1
KVt KAs@tD) KA K KJVKt
Under H(q) for some q > 3 and with the choice Ay ~ Ay , this gives
1 N N?

Pl - ol 2 )—C(K+m+mz)

)+ CNeOK,

3

+ CNe 'K,

Proof. The first assertion immediately follows from Theorem 1.9.1 and Lemma 1.5.7. The second
assertion is not difficult.

1.10 The final result in the subcritical case.

We summarize the rates we obtained for the three estimators: by Theorem 1.7.1 and Corollaries
1.8.7 and 1.9.9, we have, under H(q) for some g > 3, for all € € (O Dyallt>1,all N> K >1,

P(giv’K 1— ‘>E)<CN60K ( +th>
22
P(VtN’K (/1\_1\19’>€)<CN6 +§(\/1E+t\]/vf>7
2
P - 1—Ap ‘—)—CG( K\/Tm + ) HONe O,

Proof. [Proof of Theorem 1.2.2] One easily verifies that ¥ is C* in the domain D, that

o p APl —p) 1
(’LL, v, ’U)) - ) )
1—Ap" (1-Ap)? " (1-Ap)
and that U(u,v,w) = (u, A, p). Hence there is a constant ¢ such that for any N > 1, ¢ > 1, any
g€ (0,1/c),

JeD

P([eE v a0 — A > <)
N
&t

§P( K K—v’—l—‘Xﬁ’f—w’ch)
cr/ 1 N N /
“(—=+ + =)+ CNe K,
€<\/K K\/tl—ﬁ K

which completes the proof.

1.11 Analysis of a random matrix for the supercritical case

We define the matrix Ay by An(i,j) :== N6, i,j € {1,..,N}. We assume here that
€ (0,1] and we introduce the events:

N N
1 N . . v .
2 ::{Ng E AN(Z,])>§ and ‘NA?V(%J>*p2|<2N3/S for alll,]:l,...,N},
i=1 j=1

K,2 1 g .. p 2
QN ::{§ZZAN(Z,3)>§}QQN.

i=1 j=1
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Lemma 1.11.1. One has
1
POR?) >1—CeoN*,

Proof. By [14, lemma 33], we already have P(Q%) > 1 — Ce “N*. We recall the Hoeffding
inequality for the Binomial(n,q) random variables. For all 2 > 0 and X is a Binomial(n,q)
distributed, we have:

P(\X —ng| > ;v) < 2exp(—2x2/n).

Since N Zfil Z;V:1 An(i,j) = Zfil Zf;l 0;; is Binomial(N K, p) distributed,

K N K N 2
P(K1;;AN(Z',J') <?)< P(‘N;;AN(i,j) - NEp| 2 TEP) < genp (- MET).
So we have

NKp?

1 1
P(Q§’2)2172exp(f )fC’ef‘:N4 >1—Ce N,

Next we apply the Perron-Frobenius theorem and recall some lemma in [1].

Lemma 1.11.2. On the event Qﬁ’Q, the spectral radius py of An is a simple eigenvalue of Ay

and py € [p(1— 2N$§),p(1 + 21\1[3 )]. There is a row eigenvector V y € Rf of AN for the eigenvalue
8 8

pn such that ||[Vx||2 = VN. We also have V(i) > 0 for alli=1,...N.

Proof.  See [14, lemma 34].
We set VK := IxVy and let (eq,...,en) the canonical basis of RY. Recall that 1y = Zfil €;.

Lemma 1.11.3. There exists Ng > 1 (depending only on p) such that for all N > Ny, on the set
Qﬁ’z, these properties hold true for all i,j,k,l=1,....,N:

(i) for alln > 2, A% (i,5) < (2)A% (k,1),

(i1) Vn (i) € [5,2],

(iii) for alln >0, || A% 1yll2 € [VNEE, 2V/Npl],
(iv) for alln = 2, AN (i, j) € [px/(BN),3p} /NI,

(v) for alln >0, all r € [1, 0],

Ae;/|lA% el — Vi /[IVall||, < 1228515,
(vi) for alln > 1, ||A%ejll2 < 3p§{,/(p\/ﬁ) and for allm >0, || A% 1Nl < 3p%/p.
(vii) for alln >0, all 7 € [1,00], |[Ix A% 1n/|Ixk A% Ln ], — VE/IVE]|, < 3(2N—5)L2]+1,

(viii) for alln >0, all r € [1, ],

I Afe; /| x Afveslle = VR/IIVRIL, < 12(2N7%)L3),
(iz) for alln >0 || Ik A% 1|2 € [\/Ep%/&&/[?p%].

Proof. The proof of (i)-(vi) see [14, Lemma 35]. For the point (vii), we set for z,y € (0, 00)™

L)
)

i

8

maXi:Lm’K(

[ls

dK(w,y)=10g[minv —
i=1,...,

<
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Clearly one has dx (Ixk A% 1n, Ik V) < dn(A%1n, V). Moreover from [14, Step 3 of the proof
of Lemma 35] one has dy (A% 1y, Vy) < (2N73/8)7/2J+1 Therefore we can apply [14, Lemma
39] and we obtain that

[k A% AN /| T A% AN — VEJIVEI < 3dx (I A% 1y, Ik V) < 3(2N~8) 121+

Let us prove (viii). The case n € {0,1} is straightforward. In [14, Lemma 35 step 4], we
already have for all n > 2, dy(A%e;, Viy) < 4(2N—3/8)17/2] Therefore

Ik Alre; /|| Ix A%esllr — VE/IIVEI |- < 3dr (Ix Ale;, Ix V) < 42N 81

which finishes the proof of (viii).

We now verify (iz). We write A%1y = [[A%1n|2(|V N3V N + ZN.n), where Zy, =
A% AN||3 P A% 1N — [V N|l3 'V v. By (vii), we already have || Zy || < 3(2N~3/8)l7/21+1 Mul-
tiplying each side by I, we obtain that Ix A% 1y = ||[A%In|(IV N3 ' VE + Ik Zn0)

Thus

[Tk ANInl2 IV l2
A% 1|2 [Vl

So for all n > 0, we have

_3\|n
‘ < Mk Znallz < 1 Znnll < 3(2N7F)LEHL

VRl
IV xl2

Finally, recalling (74) and (4i%), we deduce (iz).

VRl
IV xll2

AR N2 € [ (15252 = ON7F ) 1ARInl o, (257 + ON7F ) 1A% 1 o]

Lemma 1.11.4. We have

. C
E[llek - (LR)LYIE] < +
where Ly = A1y, LN = IxLy and Ly(i) = Y00 AR (i, ), LK = £ 3205, L (i).

Proof. We write

LN — (LR)PLy |2 = Tk A% 1N — (LR)° Ik AN1n])2

5
<Y LRI A Iy — (L) Tk AR 1w (1.17)
k=1
5 —
< AR 1y — (L) Ik ARy (1.18)
k=1

First we study the term corresponding to £k = 1. We have
E(|l1x A% 1y — Ly Ic Ann (3] < 2B [T AnEy — LI Anx I3 + I(Ex = LE) I An 3]
By Lemma 1.5.10 we have E[||Ix Ay(Ly — Ly1y)[|3] < $5. Besides we have
E[”(I/N - EI]\(T)IKANlNHE}

< 2E[I(Lx - ») Ik An1n 3] + 2 [l (0 — LE) Ik An ]3]

Nl

1

< 2E[(In — p)')PE || Ik An1nlli] " + 2El(p — LK) PE[ I An1n3]”

using the Cauchy-Schwarz inequality

< O(s K+~ K) <

¢
=Y et T NRTY SN
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since [ Ix Anln2 < VE, E[(Ly —p)']? < 35 and E[(L} - p)*)7 < 55 (NIn(1),..., NLy(K)
are i.i.d. and Binomial(N,p)). So

20

E[”IKA?VlN — E%IKANlN”%} <

Next, we consider the other terms, for any k£ > 2. We have
E[||IKA§€V+11N - (Eﬁ)IKAIf\rlNH%]
<E[llITx A I N ANNIE~* 4% Ly — (EX) An 1w 3]

< (%)2EU|A§V1N - (Eﬁ)ANlNH%}

since ||| Ik An||l2 < K/N

<2(iy) {B[14ky — Lnavanlg] + B[y I Av1vIE]}

<of ) it

+2E[|EN_p|2|\AN1N|| ] +2E[Ip Ly Pl ANLN3 ]}

C

<o(&) [k )< S

N N NK
Recalling (1.17), we conclude that

Z\Q

E[lLy — (Ly)° Ly 3] <
which completes the proof.
Lemma 1.11.5. We have

1

N X
]E{]_Qg,z Hﬁf(lf)fl)u T where  HE ::?;

Proof.  Since LY > p/2 on QI]\{,’Q, we have

1 N |L§ - L1k}  p(1—p) 1 1
af - (- -1)| < | PP (1 )| ey —
e 7 S 7 e AL (17 s
N _
< C| ZIXKIB - p(1 = p)| + CILE ).
Using (1.7) and the fact that E[(L¥ — p)?] < :&, we obtain
E[l HK_(E_l)H <CEH X512 - p(1 - )‘+|E |} =
Q2N D > 2 p \/»
Proposition 1.11.6. We set Vi = &+ Zfil Vn (i) and
N _ s _
UK = g(vﬁ)f2 > (Vi) = VE)? on Q% (1.19)

There exists Ny > 1 and C' > 0 (depending only on p) such that for all N > Ny,

%]E 1|V - V§1K||§} <c, JE[1Q§,2 UMK _ (;1) - 1)H < \/CE
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Proof. We start from

‘uNyK _ (1 _
> p

|
)] = S 5|+ [ = |+ 15 - (5 -1)

p
where HE = X $°K (%) and £ = LYK £5().

Step 1: First we check that ]E|:1Q§,2 HE — ’HﬁH < C/vK. We notice that

HE = LIEE)PLE — (E5) 13/ (L)
Thus
1 | < TN - L5103 (/5 - 1/(2%))
+(/ L) (I (E)P (LR — 1) I3 — I1£K — £R1k1) |

On the set QI;,Z, by Lemma 1.11.3 (iv), we have that (L¥)6 > pG and LE > (pg)G > {55, and the

function z2 is globally Lipschitz and bounded on the interval [192, 00). So

N sk - - -
Lowal HE = HE| < 2|1 (LR - IRL0IB(1/(25)'2 - 1/(25)?)
+ (/282 (N(ER)P (T - TK 1l - ek — £51x13)|
< O (B (@ — L) Bl(Eg)° - 25|
+ IR (LR — L1 I3 - 1% - £R1k13]).
Next, we use the inequality |a? — b%| < (a — b)? + 2ala — b| for a, b> 0. So

N/ - _ _ _
Loral HE - #i| < 02 (L)X - DRLI3| (25)° - 25|

+ IR (LK - LRL)I3 - 12K - £51x13])

< O3 {IEHMEE - L1 B 7K + (1K)
+ (R (LR - 1) BIK ),
where
= 125 — (LR)°I1xcllz = VE|LK = (E5)°), 1§ = (LR — L8 1) = (LK) (LR — 1) -
Because
(X = £8100) = (TR (LK — IR 1), 1xc) = 0.
it implies

(JN)?+ IN)? = |ILX — (LN LR 3-

And by Lemma 1.11.4, we conclude

a\ A

SE[{5)? + 51)] = TR - CH LK) <
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By (1.7), we conclude that ]EK ) X5 |14 } < C. Finally,

E[1gses| & —’H,ﬁu

< o2E[{1x HQ—JNHIN) + IX KB }]
<OE [{||XNH2JN+ 52+ 1xK 35 )]

< ogBl{fy + w2} + x| (%) W] B[ {utr + o]
C

S\/?-

Step 2: By (ii) and (iv) in Lemma 1.11.3, we have the following inequality under the set Q?Q:
N1 K

N,K _ 4V N TTEN2 NS}
Ut o | = | 20 [ @)/ 7 - (en i/ 57|

N & _ .
< O3 V)V — L) /25|

i=1
Then we use the lemma 1.11.3 (v): on the set Qﬁ’Q we have

72‘1@ IV = £x(0)/R] = N[l A% LT e A Ly = IVE T VE |

< CON(N™8)*! < fﬁ

So we have the following inequality:

C
E|:191A<7,2 UOJX’K —HN7KH < —.

VN

Step 3: From the two previous steps and lemma 1.11.5, it follows that

E 1o

G-Il
p VK
Moreover, by lemma 1.11.3 (i), V& is bounded by 2 on the set Qﬁ’g, thus
N _ _
E[Lora IVE - V1] = E[1gma (V2UE5)) < €.

1.12 The estimator in the supercritical case

Recall the definition in (1.4), the aim of this section is to prove P ~ p. Recall (1.9) and
(1.10). We start from

Ey[ZN5) = NZ[/ sqb*”t—s)ds}IKAN N = o EVE L IVE (1.90)

n>0

UNE = ZzNK _ Rz 5] = / *7( tfs)]IKA MYds=M>" + IV (1.21)

n>0
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where
Z”IKéKlN”Q/ ¢*n o (1'22)
= IVl
t I A%1
| / gt — 5)ds] [IKAmN_Mvﬁ (1.23)
n>0 70 ||VN||2
and
T = / qb*"t—s)}IKA" MY ds. (1.24)
n>1

Lemma 1.12.1. Assume (A) For all n > 0, there exists N, > 1 and C, < oo such that for all
N>N,, t>0, onthesetQN , we have

IIN5|y < CtvVEN—F.

Proof. In view of (1.23), Lemma 1.11.3 (vii) yields

*n [ AR Ln |2

<Ct\FZ /qﬁ*"t—sds}(N*%)L%Hl

n>0

< CtVENTR Y AM(N7R)LE]

n>0

< CtVEN~E.

Lemma 1.12.2. Assume (A). For all n > 0, there exists N, > 1 and C,, < oo such that for all
N >Ny, t>0, on the set Qﬁ’z, we have

= 3 K vl - vkl
B |90 — 71 3]” < 0y R [ebteorme g VN IR Licl oo
N VAL

where JNE = %(JiV’K, 1k).

Proof. In view of (1.24), by Minkowski inequality we have

1

Ee[”JN,K B jN,KlKH2:| 2

Nl

< Z/ ¢ (t — s)Ee[HIKA" MY — [ A% MY 1|2

n>1

where Ix AR MY = £ 2 SOF AR (i, ) MIN.
~NEo[(Z7N)?] < C,e? @0t on 0% Using (1.11),

.....

In [14, Lemma 44 (i)], it is shown that max;—;
we conclude that on Q3%

K N K
o115 AR MY — T AR M) = 3057 (436 5) — = S0 ARk ) Eol24]
i=1 j=1 k:

IN

¢, elootn)s Z 11k A%re; — Tx Afe; 1|12

j=1
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Using (vidi) in Lemma 1.11.3 and and the inequality |||z — Z1y||2 — ||y — 71n||2| < ||z — y||2 for
all 2, y € RN, we deduce that on QIA{,’zz

1k ANe; — IKA%elellz

I A%ejlo VE K
< |k Aze; - AT, KH g HrcAkeills g ey
KANE; HVKH H K jH2 ||VN|| H N K||2
IxAte; ”VN_V]\II(]'K”Q
- HJKA"e-Hg(H o H )
N Tk A%ejlla ||V Hz IVl

IV = Vi1l

< Ol i Afvelo (N3 L2
IVl

From Lemma 1.11.3 (iv) it follows that on the event Qﬁ’Q for all n > 2, |[IxA%e ]2 < 3‘FpN
So on the event QI]\(,’Q,

Eo[| JNE — JNE1 )22
Lz Kq . .
<ofE Sl DRI [ g
IVl

Using [14, lemma 43 (iii) and (iv)], we deduce that on the event Q5>

. K VR - VE1
B[00 — Y13 < Oy [ ebtovrnr | T sl Geotmr).
2

Lemma 1.12.3. There exists N9 > 1 such that for all N > Ny, for all t > 0, on the event
Qﬁ N {ZNK > 1 NK > 0}, we have the following inequality:

N ; 1
DY 16D + 128 IVE — VE LB DN + [ul ™ - (]; -1))|

where
1
DNE = utN’K - (7 - 1) , (1.25)
p
_ N _
N,K,1 ZNK N,K N.K N,K
v =27 k3 = N2 = 2@ IV - VL] (1.26)
N,K.2 ZtN’K 7K
pNK2 ‘ N ’ (1.27)
Uy
Proof.  Recall definitions (1.4) and (1.19). On the event Qg’z Nn{zZN" > i K> 0}, we have

_ _ N _
U U < NI = 2013 = N2V = N IV - T Lkl

——|=||Z
Zrp w1
N oKk oK 2 UiVK 2 1

By [14, lemma 35 (ii)], we have V¥ > 1 on Q 2. Since |k - %| = |%\ < 128|z — y|, for
z,y>1 ontheeventQKQH{ZNK>1 NK>O} we have

‘(“iw{)z 1 ’<128DN7K72
ZNE) (vl = T
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Finally on the event Q52 N {Z}" > ivgN’K > 0}, we obtain
1
DI < U U | [ - (5 1))
p

N _ 1
< 16D + 128 [V — VLD + (uOIZvK - (5 - 1) ’

N,K,2
Dt”

Before the analysis of the term , we still need the following fact:

Lemma 1.12.4. Assume (A). For anyn > 0, we can find Ny > 1, t, >0 and 0 < ¢, < C;, < 00,
such that for all N > Ny, t > t, on the set Qﬁ’Q

cne("‘“*")t < vgN’K < C’ne(aoJﬂ’)
where v} is defined in (1.22).

Proof. ~ We work on the set Q]I\{,’2. Recall Lemma 1.11.3 (ii) and (ix). We can conclude that
VK < | VK2 < 2VK and |IxA%1n||2 € [VEpY/8,8VEKpY]. So there exists 0 < ¢ < C' < 00

such that . N .
AR N2 _ M ARLn]l2 <C||AN1N||2
Vnllz = IIVRIz = Vil

Therefore we have vl < oM < Co]N™N. Moreover, in view of [14, (i) and (i) Lemma 43], we
already have cne(ao_")t < viV’N < C’ne(a0+’7). The proof is finished.

Lemma 1.12.5. Assume (A). For all n > 0, there exists Ny > 1, t, > 0 and C,, < oo such that
for all N > Ny, allt > t,, on the event Qﬁ’Q,

1
. N,K,2 2nt apt
e ot )
(Z) Eg[Dt ] Cne (\/> +e )

(ii) Py (ZtN’K < vtN’K> < Cne%’t(\/% +e*‘”‘0t).

N

Proof.  Recalling (1.20) and (1.21), we can write

7 N,K\— FN,K TN, K
S = V| < @) (1B 108K)).

We fix n > 0 and work with N large enough and on Qg’Q. By the lemma 1.12.1, we have:

7N, K N,K _3
7] < \/%”It l2 < Cyt N5,

From [14, proof of Lemma 44, step 3], we have Eg[(Jti’N)Q} < CanIGQ(aoJrn)t. Thus
- 1
AR - iN o
Eo[(J; )" < K~' igl]Ea[(Jt 2] < Gyt

In view of [14, Lemma 44 (i)], we already have max;—; __n Eg[(Z;™)?] < C,e2(@0+Mt Then by
(1.11) we deduce that

y , 1
E[(E)2) = 75 > Ea[ZN] < el

Over all, we deduce that IE[|UtNK|] < %e(ao‘“ﬂt. According to Lemma 1.12.4, there exists t,, > 0

such that for all t > t,), viV’K > cne("‘o_”)t and we finally obtain ():

_ _ 1
Eo[D;""?] = Eq [(va’K)_l (|ItN’K| + \UtN’K\” < Cne%t(i\/]? + e‘“"t).
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— — N 7N,
Now we prove (ii). Because of V& > %We have {ZtN’K < %} C {DfV’K’Q = ‘ZT—VAIf‘ > %
Hence ) )
P (ZNK 1 N,K) < 4R, [DNE2] < ¢ e2nt< +e—aot>.
0 4 = 0[ t ] =1 'K

Lemma 1.12.6. Assume (A). For all n > 0, there exists N, > 1 and C,, < oo such that for all
N> N,, allt >0, on Q8>

(i) Bol(MY — NN K 15, VE — T 110)%] < G [V — Vi e[ el

(ii) Eo[| X" [] < CyPeleotmt where Xy = R MY — MM 1[5 — KZ1F).

(iii) Bo[| M5 — MN51,2] < CNelootnt,

Proof. We fix n > 0 and work with IV large enough and on Qﬁ’z. We already from [14, Lemma

44 ()] that max,—, _n Eg[(Z0™)?] < Ce2(@otmt Thus

K
_ _ 2 _ )
B [ (M = MY, VE - VL) | = Do (Vi) - VB (2]
=1

< GylIVE = Vi |[3el et

which completes the proof of (i).
By Itd’s formula, we have

K

K t K
N,K i,N iN 17 ri, i, N
MY = Y0 =2 Y [N a + 30 2,
i=170 i=1

i=1

hence

N _ _

xNE == (||M£V’KH§ — K(MNY? — KZtN’K>
N , , _

/ MEN AN K(,‘[tN,K)2)

It follows that «
N
Eo[| X5 < 2 (2R ] /M’NdMZN’ FEg[ZV]
2 X e 5 |+ i),

Besides, using Cauchy-Schwarz inequality

Z/ M“VdM“V }:

KMN

E, [/0 (MEN Y2 dZQN}

i=1

1
2

Nl=

Eq [sup(MZN) }

1 Sup Eq [(ZZ)N)Q]

'MN

K2

o

Il
i

O Y B[ (2]

7

since Eq[supyg (M?N)4) < CEg[(Z"™)2] by Doob’s inequality. So

. _ N
Eo[| X V5] < = (28, ‘Z/ M NdM;*NH +Eo[Z9)) SC’nﬁe(aoJﬂv)t
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This completes the proof of (ii). Finally, we have
N _ _
B 1M = M1 |] < BoI XK + NEo[2)°F] < €, Neloorn,

This completes the proof of (iii).

Next we consider the term DN K1

Lemma 1.12.7. Assume (A). For all > 0, there are N,, > 1, t;, > 0 and C,) < oo such that for
all N > Ny, allt > t,, we have:

i + (@)% + ie*aot)'

VE \ewt) TR

Proof. Recalling (1.20) and (1.21), we start from Z; ™ = M5 4 JNE 4N Ky E L VK W
view of (1.26), we have:

E[1qx2D) " < Cne‘“?t(

DI = v B A P R s T RS | VA A e Y
—~ NZNE 4 2%(11”( — IV B+ TNE N B o N EWE -V E 1)
M ) 2N (VL M )
< o (2RI B Ll 2 b TN

N - - _
2 (1T = I el + 1195 = B ez ) (o) VA = T el

+ HMI{/\LK — MtN7K1K||2) + (Vﬁ — VI\If(lK,MiV7K — MtN7K1K) H .

We fix n > 0 and work with N and ¢ large enough and on QK’Q. Using Lemmas 1.12.1, 1.12.2
1.12.4, 1.12.6 together with the fact that cv'K < ||V X2 < C\/> K on QK % (by Lemma 1.11.3 (ii)),
we deduce the following bound on the set Qﬁ 2,

Eq [D;""] gCne”(“‘)*")f{Nie?"t+e<a°+ﬂ>t+e2<a°+">t||v H SIVA Vi Lk3
2

N OLQ+7 K =K ag+n
n elaotm)t 4 t\FN / b / eleotn - |\yE _ i H2} [\/}eLQ t
N ||v I YN

_'_e(ao-&-n)tHVIA(I _ V]\If(lK” } + 62(a0+71)t HVK VN 1KH }

By proposition 1.11.6, we finally obtain:

E[1x.DN 1) < Cne‘2<a°—”)t‘N%te”°?" + —\/]\;{e(aﬁ")t + Nelaotnt
N

Wtﬂ_e%(aoﬁ‘n)t_’_e%ao‘i‘ﬂ)ti _'_N%e%]t‘

5 3 N 1 1
Nse 20t 4 —_ 7ot 4 gm0l 4 7‘
VK VN
- "t’ NEe—3aot < (W/Ne*aot)%, one gets

<Gy etnt

i N oot 4 1
Since N +\/ﬁ26

\/JV>% +%€_a0t).

E[].QKJDiV’K’l] < Cneémt(i
N
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1.13 Proof of the main theorem in the supercritical case.

In this section we prove Theorem 1.2.4 and Remark 1.2.5.

1.13.1 Proof of Theorem 1.2.4

By Lemma 1.12.3, on the event Q5% N {ZVF > %UZV’K > 0},
we already have the following inequality:

N _ 1
DY < 16D + 128 [V - VL [3D)7 + ‘ugvf‘ - (7 - 1) ‘
P

Thus

1

N,K
LB [1 g 5 v sy [ U7 = (]; ~1)[] < 105

1
UMK _ (f - 1)‘ + C, 16E4[DN 1)
p
N _
+ 128 |V — Vi Ly I3 Eo (D)),
From Proposition 1.11.6 and Lemmas 1.12.5, 1.12.7 it follows that

(S ) <+ () 4 )

E[Loge 170 K005 f40)
Moreover, by Lemmas 1.11.1 and 1.12.5 we have:

1 _ 1
PQN?) = 1= Cem Nt Ry (200 < o) < Cnez”t(ﬁ +emoot),

1
4

Hence, by the Chebyshev’s inequality, we obtain:

1 VNN 3 N
N,K ant —apt
K _pl>e)< it e
P(|P p| >¢) < (Cy/e)e (\/? + (eaot) + \/I?e )
1 1
—cN1 2nt —aot
+Ce + Che (—\/E +e )
1 VNN 3 N
< ) ant( _— Y —apt
< (Cyf2)e ™ (=t (Tar) + e ™)
Finally, using that (evaf)\'t)% < %e’aot, we get:
C,e*nt N 1
P(IP —pl 2 2) < =1 ( +—=).
P =pl 28 < =\ Uieant T VR

The proof is complete.

1.13.2 Proof of Remark 1.2.5

By the Lemma 1.12.5, for N > N,, we have that:

N, K
’ _ 1
K N,K,2 _
1Q§,2E9 HT}LK -V H = 1Q§>2E9[Dt ] < One%?t(if +e ocot).

From lemma 1.11.3 (ii), we have for all Vy(i) € [$,2]. So Vi = (% Zfil V(i) € [3,2] on the
1

set Qg’Q. From lemma 1.11.1, we have P(QIA{,’Q) >1—Ce *N*. From Lemma 1.12.4, for ¢t > t, we

get v, € [a,el@0tn) b, e(*0=M1] for some a, < b,. So we deduce that for N > N,, t > t,,
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_ 1 1
P(ZN’K € ale(ao_")t, 2b, el ) >1—Ce N —(, eQnt(i + e_o‘ot).
el ! )= " \VE
This implies that for any n > 0,

lim lim P(ZNA g [elao=mt glaotmi)y — 1,
t—00 (N,K)—(c0,00)  ° ’



Chapter 2

Central limit theorem for a
partially observed interacting
system of Hawkes processes

Abstract We observe the actions of a K sub-sample of N individuals up to time ¢ for some
large K < N. We model the relationships of individuals by i.i.d. Bernoulli(p)-random variables,
where p € (0, 1] is an unknown parameter. The rate of action of each individual depends on some
unknown parameter p > 0 and on the sum of some function ¢ of the ages of the actions of the
individuals which influence him. The parameters p and ¢ are considered as nuisance parameters.
The aim of this paper is to obtain a central limit theorem for the estimator of p that we introduced
in [26], both in the subcritical and supercritical cases.

2.1 Introduction

2.1.1 Setting

We consider some unknown parameters p € (0,1],u > 0 and ¢ : [0,00) — [0,00). We always
assume that the function ¢ is measurable and locally integrable. For N > 1, we consider an i.i.d.
family (IT?(dt,dz))i=1,.. n of Poisson measures on [0,00) x [0,00) with intensity dtdz, together
with (055)i,j=1,...~, a family of i.i.d. Bernoulli(p) random variables independent of the family
(IT%(dt,dz))i=1,.. n. We consider the following system: for all i € {1,..., N}, all t > 0,

. t poo . ; 1 < = .
Zt’N = /0 /0 l{zg/\?w}ﬂ (ds,dz), where /\t’N =pu—+ ~ 29@'/0 ot — s)ng’N. (2.1)
=

In this paper, fot means f[o o 0.)" The solution ((Z;’N)tzo)izl _____ N is a family
of counting processes. By [14, Proposition 1], the system (1.1) has a unique (F;);>o-measurable

cadlag solution, where

Fr=o(Il'(A) : A€ B([0,#] x [0,00)),i =1,.... N)V o(iji,j =1,...,N),

and fOF means f[

as soon as ¢ is locally integrable.

2.1.2 An illustrating example

Let us provide an interpretation of the process ((ZZ’N)tzo)i:L...,N It describes the activity
of N individuals along the time. Each individual j € {1,..., N} influences the set of individuals

69
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S;={ie{1,...,N}:6;; =1}. The only possible action of the individual j is to send a message
to all the individuals of S;. Here Z;"" stands for the number of messages sent by i during [0, #].

The rate )\i’N at which ¢ sends messages can be decomposed as the sum of two effects:
e he sends new messages at rate p;

e he forwards the messages he received, after some delay (possibly infinite) depending on the
age of the message, which induces a sending rate of the form % Zjvzl 05 fot_ o(t — s)dZIN.

If for example ¢ = 1jp k], then N1 Z;V:l 0 fo_ #(t — s)dZ3N is precisely the number of
messages that the i-th individual received between time ¢t — K and time ¢, divided by N.

2.1.3 Motivations and main goals

In the real world, the number of individuals is often large. So it is necessary to construct
consistent estimators in the asymptotic where N and ¢ tend simultaneously to infinity. In our
context, we only observe the activity of some (or all) individuals, we do not know at all the graph
corresponding to the relationships between individuals. Our goal is to estimate p, which can be
seen as the main characteristic of the graph of interactions, since it represents the proportion of
open edges. In [14], Delattre and Fournier consider the case when one observes the whole sample
(ZoN)i21. N.o<s<t and they propose some estimator of the unknown parameter p. In [26], we build
some estimator of p when observing (Z;’N){izl,...,K, o<s<t} With 1 < K < N and with ¢ large.
In this work, we establish a central limit theorem for this estimator, which allows to construct an
asymptotic confidence interval of the parameter p.

2.1.4 Assumptions

We will work under the following conditions: for some ¢ > 1,

pe .00, Ae . Apel), [ st <o md [0 ds <00 (1)

or
pe(0,00), Ape (l,00) and ¢(s) =e " for some unknown b > 0. (A)

Here b is a positive constant. Since A = 1/b, we thus assume that p > b.

2.1.5 The result in subcritical case

Here we will assume H(q) for some ¢ > 1. We first recall the estimator we built in Chapter 1.
For N > 1 and for ((Z"™)i>0)i=1....n the solution of system (2.1), we set ZN = N~ Zf\il zZN
and Z,"% = K=K ZEN | Next, we introduce:

K iN iN
1, - _ N ZuN _ g 2 N
N,K N,K N,K N,K N,K N,K
e =22y —Z007), Vi :*Z{ = L —¢ - 7& -
t K & t t
And for A > 0 such that t/(2A) € N*.
N - K
N,K ._ N, K N,K
Xt,A = WA,t T K BIAEE
where
2t
N.K N.K NK NE N S~ oNK  SNEK N,K\2
Wae =225 —Za% > Zay = ry Z (Zo&™ =2 hya —Aep )"
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We then introduce the function ¥®) defined by

u?(1 — %)2
TG (0, v,w) = T f/v)z

ifu>0,v>0 w>0 and \11(3)(u,v7w) = 0 otherwise.

We set
ﬁN,K,t = \Il(g)(giv7K7VtN7KaXt],vA,If)7
with the choice
Ay = (2@ )1y (2.2)

It was shown in [26, Theorem 2.1] that under (H(q)) for some g > 3, for some constants C,c¢ > 0
(depending only on q,p, i, @), for alle € (0,1),all 1 < K < N, all t > 1,

cr/ 1 At N _eK
— < —(—= - e
(|pNKt p|>€) <\/>+K +t\/?)+CNe

We also showed using a toy model in [26, Section 13] that this rate of convergence is likely to
be optimal. Finally, to have an idea of the orders of magnitude, we recall that roughly, in the
subcritical case (where Ap € (0, 1)), each individual has around 1 jump per unit of time, in the sense
that, see [14, Remark 2], under H(1), t~1Z} goes in probability to the constant (1—Ap) 'y > 0 as
N — oo and t — oo. Hence, when observing a sample of K individuals during [0, ¢], one observes
around Kt jumps. Here is the main result of the present paper in the subcritical case.

Theorem 2.1.1. We assume that p > 0 and that H(q) holds for some q > 3. Define A; by (2.2).
We set cp p = (1 — Ap)?/(2A%). We always work in the asymptotic (N, K,t) — (o0, 00,00) and in

the regime \/% + %\/;Jr % 4 Ne—nnK 5.

N t(z) In the regime with dominating term \/%, i.e. when [\/%]/[K A' + t\/F] 00, it holds
a
2 1— 2
JE(ﬁN,K,t_p) i>N(07p ( 4p) )
W

\/A}%oo we have

. . . . . N .
(ii) In the regime with dominating term R e when [W]/[

N\Z

VE (e~ ) < (0, 2(2 ;Agm).

. . . . A . A
(iii) In the regime with dominating term %./5t, i.e. when [F\/*T]/[% + %] — 00,
imposing moreover that imy, koo % =~ €[0,1],

2

ul Af(pzvm— )—>N( 3 ;ApQ) ((1—7)(1—Ap)3+7(1—/\p))2)-

We decided not to study the regimes where there are two or three dominating terms. We believe
this is not very restrictive in practise. Furthermore, the study would be much more tedious, because
it would be very difficult to study the correlations between the different terms.

Remark 2.1.2. This result allows us to construct an asymptotic confidence interval for p. We define
e = WO VI AL, An g = O VI A0

where

+ [u — D (u, v, w)]?
g = /L w® =Y s
(v, w) =g/ (10, 0) = = T (0, w)]
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ifu>0v>0 w>uand ¥W(u,v,w) =¥ (u,v,w) =0 otherwise. By [26, Theorem 2.1], we

have, in the regime \/% + %, / % + % + Ne aK

N A . P
(,UzN,K,tyAN,K,tapN,K,t> — (u, A, p).
Hence by Theorem 2.1.1, in the regime (i), (ii) or (iii), for 0 < o < 1,
1imP<|]5N,K,t —p| < IN,K,t,a) =1-«

where

1 « 1 ﬁN,K,t(l *ﬁN,K,t) N \/2(1 - ;\N,K,tﬁN,K,t)z
InKita=(P) (11— *)(7 - 2 - A 2
2 (N, 1) VK gnkrid(ANKt)

K

31—p 2 A 5 A 3
30— Pk g _ =)= Ay gapnri) + N(l — AN K 1PN K 1)

2 A2
QUN,K,tAN,K,t
1 x 2
and ®(z) = = o e 7ds.
Concerning the case p = 0, the following result shows that py, x + is not always consistent.

Proposition 2.1.3. We assume that p = 0 and that H(g) holds for some g > 3. We set ¢, A :=
(1 — Ap)?/(2A%). We always work in the asymptotic (N, K,t) — (00,00,00) and in the regime

G g + NemoraK 0.

(i) If [%]/[%1/%]2 — 00, we have
DN,K .t o

(i) 1f [ /34]2/[;25] — oo, we have

. d
PNkt —r X

where P(X =1)=P(X =0) =

2.1.6 The result in the supercritical case

Here we will assume A and first recall the estimator we built in [26], Z}"'™ being defined as
previously. We set

K i, N 7N, K
N ZiN _gNK 2 N
quKzz[fE(t_ t )—_ }1-, 2.3
' Ko zZM AR IS 23)
1
and PNE .= 1kl 2.4
: UK 0y (2-4)

It was shown in [26, Theorem 2.3] that we assume A (actually for a much more general class of
functions ¢), for all n > 0, for some constant C,, > 0 (depending only on n,p, i, b), for all e € (0, 1),
allyp >0, forall l <K < N,allt>1,

t

P[P —pl>e) <
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where ag = p — b > 0 (it is determined by the equation p [~ e~*‘¢(t)dt = 1). We also showed
using a toy model in [26, Section 13] that this rate of convergence is likely to be optimal. Finally,
to have an idea of the orders of magnitude, we recall that assumption A, see [14, Remark 5], for
any 1 > 0, Hm(y ) (co,00) P(Z] € [e(@0~M? el@0Ftmt]) = 1. Hence, when observing a sample of K
individuals during [0, ¢], one observes around Ke®! jumps. Here is the main result of the present
paper in the supercritical case.

Theorem 2.1.4. We assume (A) and set ag = p—0b. In the regime where (N, K, t) — (00, 00, 00)

with \/?]Z%t + \/% — 0 with dominating term ﬁ (i.e. with [\/F]\e]aot]/[\/lﬁ] — 00), it holds

that,

L;V*/E (P —p) 5 (0, 2(0‘224272 ).

While our result in the subcritical case is rather general and satisfying, there are many re-
strictions in the supercritical case. First, we have not been able to deal with general functions ¢.
Second, we did not manage to prove a central limit theorem concerning a large Bernoulli random
matrix (and its Perron-Frobenius eigenvalue and eigenvector) that would allow us to study the

second regime where [ﬁ}/[ﬁ] — 0.

2.1.7 Reference and fields of application

Hawkes processes were first introduced as an birth-immigration model by Hawkes in [19]. The
properties of one dimensional Hawkes processes have been well studied, see e.g. Chapter 12 of
Daley and Vere-Jones in [13] for the stability of the process, Brémaud and Massoulié in [8] for
the analysis of the Bartlett spectrum of the process. Some limit theorems of some large systems
modeled by interacting Hawkes processes also have also been estiablished by Delattre, Fournier
and Hoffmann, [15]. In [1], Bacry, Delattre, Hoffmann and Muzy prove a law of large numbers and
a functional central limit theorem for finite dimensional Hawkes processes observed over a time
interval [0,T], as T — oo. Zhu proves some large deviation principles for Markovian nonlinear
Hawkes processes in the subcritical case in [49] and central limit theorem of stationary and ergodic
nonlinear Hawkes process in [47].

Hawkes processes have a lot of applications:

e carthquake seismology, see e.g. Ogata [32],

e finance about market orders modelling, see e.g. Bauwens and Hautsch [4] or Lu and Abergel
28],

e neuroscience, see e.g. Brémaud-Massoulié [7],
e criminology, see e.g. Mohler, Short, Brantingham, Schoenberg and Tita [29],
e genomics, see e.g. Gusto and Schbath [17].

e social networks interactions, see Blundell et al. [5] and Zhou et al. [46].

For more examples see the references [15].

2.1.8 Plan of the paper

Sections 2.2 to 2.6 are devoted to the study of the subcritical case. After some preliminaries
stated in Section 2.2, we study some random matrix in Section 2.3, establish some limit theorems
for the first and second estimator in Section 2.4, and for the third one in Section 2.5. We conclude
the study of the subcritical case in Section 2.6.

Concerning the supercritical case, we study the random matrix in Section 2.7, the stochastic
processes in Section 2.8, and conclude the proof in Section 2.9.
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An appendix containing some technical results lies at the end of the paper.

2.1.9 Important notation

In the whole paper, we denote by Eg the conditionnal expectation knowing (0;;); j=1,..~-

2.2 Preliminaries for the subcritical case

2.2.1 Some notations

For r € [1,00) and € RY, we set ||z, = (Zf\;l |z;)")7, and ||#||s = max;—1._x |z;|. For
M a N x N matrix, we denote by |||M]||. is the operator norm associated to || - ||, that is
[|[|M]||r = supgepn [|[Mx|/||x|.. We have the special cases

N
IIM][s = sup > M|, [|IM]|lc = sup
j=1,..,N i i=1,...,

N
> M)
N

We also have the inequality

1 1—
ML < M [[M]]]oo ™ for any € [1,00).

We define Ay (i,j) :== N710;; fori,j =1,...,N, as well as Qn := (I — AAx)~! on the event
on which I — AAy is invertible.

For 1 < K < N, we introduce the N-dimensional vector 1x defined by 1x(i) = 1{1<,<k3 for
i=1,...,N,and the N x N-matrix I defined by I (i,j) = 1{i—j<k3-

We assume here that Ap € (0,1) and we set a = 1+TAP € (0,1). Next, we introduce the events
QL = {A|||ANH|,» <a, forall re [1,00]},

FEL o {A|||IKAN|||T < (%)%a,for all 7 € [1,00)},

F? = {MAN Tkl < (%) e, forall 7€ [1,00)
Oh =W NFy', Q3 =04 NFL? Qni =4 x NOZ k-
Recall that ¢, a = (1 — Ap)?/(2A?).
Lemma 2.2.1. Assume that Ap < 1. It holds that
P(Qn ) >1—CNe vk
for some constants C > 0.

Proof.  On QJ , we have

K
NHllKANH'l = Ssup 292] :maX{XlNJ(a“'aXx’K )
Jj=1,..., i=1

where XiN’K = Z]K:1 g;; for i =1,...,N are i.i.d and Binomial(K, p)-distributed. So,

Ka

P(A%|||IKAN|||1 >a) = P(max{x" XV} > 28 < NP(XV > @)

IN

NP(\X{V’K ~ Kp| > K(% _p)) < INe 2K (G- — gNe—eraK
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The last equality follows from Hoeffding inequality. On the event Q% N{AZ|[|[IxAn|||1 < a}, we

have
1-1 a KN+ /a\1-%+ a/K\7
< =< r 2 — (=
|||IKAN|||T_HIIKAN|H1HIKAN|H |\|IKANH\1||AN\H (AN) (A) A(N)

We conclude that Q} = Q) N{A(F)|[IxAn||l1 < a}. And from the proof of [14, Lemma 13],
we find that that P(Q1 ) >1—CNe N, Hence

N
P(Qy.x) > P(QY) + P(AEH\IKANHh < a) —1>1—CNe K,

By the same way, we prove that P(Q3}; x) > 1—CNe~ X Finally by the definition of Qy x, we
have P(QNJ() > P(Q}V,K) -+ P(Q?V,K) —1>1- CNe_CT’vAK,

Next, we set €y := Qn1ly, i.e. In(i) := Zjv 1 QN(Z' j), as well as £ := % Ef\il In(i), 05 =
£ 3 n(i). We also set cX(j) == Y0t Qn(i,g), ek =% 30, K ().

We let Ly = Ayly, ie. Ly(i) == Y An(i,j). We also let Ly = & 21, Ly (i), L§ =
£ Ly(i) and Cy == Ayly, ie. On(j) == Yt  An(irj), Cn = & 3L On(j), CK =
+ Zszl Cn(j) and consider the event

An = {|Lx —plnla+ [Cn = ply]s < N}, (2.5)
We also set oy (i) = n(i) — Iy, Tn = (n(1))iz1...n, Xn(i) = Ln(i) — Ly and Xy =
(XN (i))izt,..,n- We finally put XX (i) = (Ly(i) — L¥)1<xy and XN = (XK('))l LN =

LY — LK1k, as well as 2K (i) = ({n(i) — 1<y and &k = (25(0)i=1,.. v = = 8 — IK1g
Next, we are going to review some important results in [14].

Lemma 2.2.2. We assume that Ap < 1. Then Qn x C QN C {|/|Qn]||» < C, for allr € [1,00]} C

{sup,_, N ¢n(i) < C}, where C = (1 —a)~t. For any o > 0, there exists a constant C,, such that
P(An)>1-C,N™%

Proof.  See [14, Notation 12 and Proposition 14, Step 1].

2.2.2 Some auxilliary processes

We first introduce a family of martingales: for i = 1,..., N, recalling (2.1),

. t e’} )
M~ :/ / 1m0 (ds, dz),
o Jo =

where 7 (ds, dz) = 7'(ds,dz) — dsdz. We also introduce the family of centered processes Ui =
2y —EolZ, ™).

We denote by ZY (resp. UY, MY) the N dimensional vector with coordinates Z"" (resp.
N N
U/, M) and set
Y AR VA PUAR
as well as Z;% = K1 Efil ZiN and UMK = K1 Zfil UN. By [14, Remark 10 and Lemma
11], we have the following equalities:

Eo[Z) 5] = MZ [/ SO (t — s)ds}IKANlN, (2.6)
n>0
UMk = Z/ ¢ (t — 8) [ A MY ds, (2.7)
n>0

i i, N
[MON MINT, =127 (2.8)
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We use the convention that ¢*°(s)ds = dpds, whence in particular fg 5¢ 0 (t — s)ds = t.

Lemma 2.2.3. Assume H(q) for some g > 1. There exists a constant C such that
(i) for all v in [1,00], all t > 0, a.s.,

Loy |EolZ ||, < CtET.

(ii) For any r € [1,00], for allt > s> 0,
Lo [ 22 — 22K — (e — 5)e8 ][, < Clmin{1, 'K

(1ii) For allt > s+ 1> 1, on Qn i, we have a.s.,

C(t —s)?

e and Eo[(ZNF — ZNEY < Ot — ).

Eo[(U;" = UM F)*) <

Proof.  See [26, Lemma 5.1] for the proofs of (¢) and (i7). For (4ii), we deduce from (2.7) that

U % =K~ 1Z/¢*n —5) Y > AR (i, )MV ds.

n>0 i=1 j=1
We set ¢(s) = 0 for s < 0. Separating the cases n = 0 and n > 1, using the Minkowski inequality,
we see that on {dy k, we have
B[ (0 = TN H)*)
<Eo[(M;" — MM )1

X e e mal(CE ) o

n>1 i=1 j=1
By [14, Lemma 16 (iii)], we already know that, on Qy x, maxi—1___n Eg[(Z/ —Z0N)2] < C(t—s)2.
For the first term (n = 0), we use (2.8) and Burkholder’s inequahty

Eol(M7"K — M) = S - )]

=1

<Cr (S - z)]

i=1

<C’(t —5)?

For the second term (n > 1), we use again (2.8) and by Burkholder’s inequality and we get

Ee[(ii%(mww)“] <CEo | (13032 ARG MM, 373 AR (i) |
i=1 j=1 — 11;137; 2 zf1j271
<CBy[(3 (32 A%.0)) 24Y) |
gcm'(ium I72N)]
<CE, (fjumm lAnlE"24) ]
j=1

4(n—1
<ON*G?|||Tic A ||[4]]| An |||1" 0.
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It implies that

1 50 K N 4l

[ (om0 w)E (X3 artmi) ] i
n>1 i=1j=1

C n—1 K *M *M

<= Y I AnlllilllAx]I: /vau@ (t =) = " (s — u) ) du
n>1

C(t — 1/2 , C(t — 1/2

<A S alanlly < U

n>0

We used first that for all n > 1, it holds that
t t s
/ Vu(d*™ (t —u) — ¢*" (s — u))du :/ Vit —ud™ (u)du — / Vs — ud™ (u)du
0 0 0
s t
S/ [Vt —u— s —ul¢™™(u)du + / Vit —ugd*™ (u)du
0 s
<2\t — s/Oo ¢ (u)du < 2A"V/t — s.
0

We next used that on Qn g, we have A|||An||[1 < a < 1and Al||[IxAn|||1 < aK/N. This completes
the first part of (4i7).

For the second part, by [26, Lemma 5.1 (ii)], we have Eo[Z," — ZN-K] < C(t — s) on Qn k,
whence

Eol(Z) = 25 < 4{Bol 25 - ZNKP 4 Bol(OF - OV Y]} < Ot - )

as desired.

2.3 Some limit theorems for the random matrix in the sub-
critical case

2.3.1 First estimator

As we will see, the first estimator Eiv T closely linked to Zﬁ. For this last quantity, we will
only use the following easy inequality, of which the proof can be found in [26, Lemma 3.9].

Lemma 2.3.1. If Ap < 1, there is C' > 0 such that for all1 < K < N,
2
1 H< C ’
1—Apl 1] = NK

E[ Loy | %

2.3.2 Second estimator

The second estimator V;'"X is related to VYK = E||l2X |13, which we now study.

Theorem 2.3.2. Assume Ap < 1. Then, in distribution, as (N,K) — (00,00), in the regime
Ne~aK 0,

o VR(VE - PR — (o (2 ))

The proof relies on four lemmas.
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Lemma 2.3.3. Assume that Ap < 1. There is C > 0 such that for all 1 < K < N,

CK?

E[[[(Ix An)"XR)IB] <

Proof. Recall that XK = LE — LE1x. By symmetry, we have

E[|| (T An)TX5 2] [(é{:eﬂ (Ln(j E{@)ﬂ
(S0 -n) <[ (S om0 - 1))

First, since §;; < 1, we obviously have

eel (-] = o 2871 < G

K

ii(%l —p)(0ji —p ) } +p2E[<i§: ) } +E[<Z9ﬂ(9ﬂ —P))z}}-

Jj=11i=2 Jj=11i=2 j=1

This is controled by CK?/N? as desired, because IE[(Z:jK:1 SN (051 — p)(0; — p))?] < CKN
(since the family {(0;; —p),i = 2,...,N,j =1,...,K} is independant and centered), because
E[(EJKZI zf’:z(eﬁ —p))?] < CNK (for similar reasons), and E[(Z 1051005 —p))*] < CK>.

Lemma 2.3.4. Assume that 0 < p < 1. There is C' > 0 such that for all 1 < K < N,

o )] = 55
Proof. By definition, we have
1 K
(IxkANXn,X}) = =N Z (0i; — p) XN (§) XA (i)
i,j=1
1 K K
— | 3 04 = 9L ()~ XK@ + (0= L) Y (0~ ) XK ()]
1 'LJI; )= p
:N[Z(ew N (LN () p)(LN(Z)—p)Jr(p—Lﬁ)‘Z(@u p)(Ln(j) —p)
i,j= . i,j= .
(p—Ln) Y 0 = P)(En(D) = p) + (0= La)(p — LK) 3 (63 )]
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We start with the first term:

E[( S~ 6~ D) - DEn) )]

o K N )
wE[(2 > (0= 1)0am =)0 1)) |
SB[ SR (-0~ 2o~ 9y Oy~ DB — )] < S

1,5, ,7'=1mmn,m’ n'=1

since the family {(0;; — p),4,j = 1,..., N} is i.i.d., centered, and bounded. For the second term,
we write, using the Cauchy-Schwarz inequality,

K

K N 1
= . 1 e 212
E[|(p—Z8) Y (05 —n)(Ln (i) - p)|]| < B0 - TOHEE[( X Y0 -n)0—) |-
i,j=1 1,j=1 k=1
.. . @ . _ TK\2] _
This is dominated by Y3, because on the first hand, we have the equality E[(p — Ly)*] =

L ]E[(Zfil Z;il(&j -p))? = E[(ejlvli;{p)z‘] < &, and on the other hand,

]E[( i XN:(‘% —p)(0jr — p))j

i—=1k=1

K N

> D (85 =)0y — )05k — p)(0j —p)| < ONEK>.
i,4,i g =1k, k=1

For the third term, using Cauchy-Schwarz inequality, we can write (by the previous discussion, we
have E[(p — Ly)*) = E[(p — L¥)?] < 3=,

1 mj: g 213
<El— LaPE[( 32 Y0y — )60 — D)) |
i,j=1k=1

[SIE

K N
S]b\/EE{ Z Z (91] - p)(elk - p)(gﬂ_,/ - p)(@i/k/ — p):|

i,5,4",7' =1 k,k'=1
,/ SVEK2N + K1 =
_N + C—7=

Finally, we study the last term. We observe that E[(ZK (0;5—p))?] = E[ZK-, (0;;—p)*] = CK?

1,]= 1 1,7=1

and E[(p — LK) = &= El(1s; Sjm1 (05 — p))1] < 5%z Hence

2

K
N3/2 Jrcﬁ

EH(p —Ln)(p— L) f: (05 —p)‘

4,j=1

—

N

<El(p ~ Ln)") El(p — LE)E[( 32 05 - 0)) ]

M=

I
-

2]

5

<(50)" (zme) VE =5

4

This completes the proof.
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Recalling the definition of Ay in (2.5) first, we have the following lemma.
Lemma 2.3.5. Assume Ap < 1. There is C > 0 such that for all 1 < K < N,

N _ - C
=E[Lay cnay| (2513 - (AZn)2IXEI3) - ll2k - EvaXEI]] < -
Proof. We start from
E[ Loy cnay| (12513 - (AT0)?IXE13) - ok - EvaX K]
— 2 [Loy ey | A (XK, AZVXE - 25|
By [26, Lemma 3.11], we already know that
_ _ A _
— AgNX]IS] = AIKAN(acN — AENXN) — ?(IKANQIN, 1K)1K +£NA21KANXN-

Since by definition (1x,X%) = 0, we conclude that
(m% — AENXI]\%X%) :A(IKAN(SCN — AZNXN),XI]\(,) + AQZN(IKANXN,X%) =en,k,1 +€enNK,2,

the last equality standing for a definition. By Lemma 2.3.3, and [26, Lemma 4.11], we have:

E[loy xnayen k1] =E [1SZN7KHANA(($N — MNX ), (IKAN)TX§>}

_ 3 3 CK
<AE[lay cnaxllen — A Xu 3] B[l An) X5 < =5

Next, by Lemma 2.2.2, we know that ¢ is bounded in Qn i, and by Lemma 2.3.4, we conclude
that

CK
E[lﬂN,KeQ,]\EK] < W
as desired.

Lemma 2.3.6. Assume Ap < 1. Then, in distribution, as (N, K) — (00, 00),
in regime Ne~»AK (),

R C R )

Proof.  Recall [14, Proposition 14]: we already have E[lg}va — 1_1Ap\2] < % By Lemma 2.2.2,
we also know that £, is bounded by some constant C' on N,k - Also, it is easily checked, see e.g.
[26, Equation (7)], that B[ || X% [|4] < C. Allin all,

@%E[lgN,K\<zN>2 - (1=5) Jixig]
N
1—1Ap‘2} = C’NK = \/ON’

<VRE[ N X 1] B [ty [

whence it suffices to prove that 1o,  VE[Z (| XX [2)? — p(1 — p)] N N(0,p*(1 — p)?). We recall
that 1q, , tends to 1 in probability. Hence it suffices to verify that vE[Z (| XK|2)2—p(1—p)] N
N(0,p*(1 = p)?). But

K K

IXNI3 = (Ln(i) = LX) =Y (L) = p)* = K(p — LY)*.

=1 i=1
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As seen in the proof of Lemma 2.3.4, we have E[(p — L%)?] < 54, so that VK XE[K (p— LK)?] <

\/%. Hence, our goal is to verify that

K

e = VE [ (3 (L) =0 = p(1 = )] 5 N(O.52(1 - ).

i=1

Recalling that Ly (i) = N~1 Zj\’=1 0;j, we can check that

1 K N 1 K N N
ENK = VR ;;[(% —p)* =p(1—p)]+ NVE ZZ > (i - p)(0ij — ).

i=1j=1j'=1,j'#j

The first term tends to 0 in probability, because by the central limit theorem, we have convergence
in distribution of ——~ Zfil ZjN:l[(Hij —p)? — p(1 — p)]. And, using the central limit theorem

VNK
again, we find that
| KN N ]
N > (6= )0y —p) S NP -p)).
i=1 j=1j/=1,'#j

The proof is complete.
Finally, we give the
Proof. [Proof of Theorem 2.3.2] Recalling that VY& = £||zK |13, we write
A’p(1—p)\y _ N 7
K(VN,K_ ): ( Ky2 _ (AT O2IXE 2)
\/> 0o (1 *Ap)Q \/? ||wNH2 ( N) || N||2
N(Aly)?
VK
By Lemma 2.3.6, it suffices to check that (y x = 1QN)K\/%(H:B§H% - (AEN)zHXﬁﬂg) — 0 in

probability. Since moreover 1 4, — 1 a.s. by Lemma 2.2.2, we only have to verify that 1 4, (v, x —
0 in probability. We write

Ap(1 —p)VE

XK 2
|| N||2 (1 *Ap)2

N _
E[lay(n k] S—=E[Llay cnaylley — AvXK 3]

VK
N _ _
T Lo | (12813 — A2 IXE ) ~ 2 — EvAXE 3]
By [26, Lemma 4.11], the first term is bounded by C'//v/K. By Lemma 2.3.5, the second term is
bounded by CvVK/N.

+

2.3.3 Third estimator

The third estimator X iv ’AIS is closely related to

N K
AT here WA = iy S (Do @nti)) i)

j=1 i=1

N,K .y yN,K
Xoo,oo = Woo,oo -
We thus study the convergence of X ﬁ{; The following easy estimate will be sufficient for our

task.
Lemma 2.3.7. When (N, K) tends to (c0,00), with K < N, we have

N,K I
1g2N7K\/E<XOO’OO 7(1 —Ap)?’)_)O

in probability.
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Proof. By [26, lemma 4.19], we have:

I C
KE 1o, |XX5 - —F—| < =
VEE[ | X~ Tl < VR
which includes the result of the statement.
2
We will also need the following estimate, asserting that, setting AJK = Zfil (cﬁ(z)) Uy (i),
(AZ5)?

. 1(_N-K K 2
sis— is close to 5 (F=a T FaoapE)

Lemma 2.3.8. When (N, K) tends to (00,00), with K < N and in the regime imp, k00 % =
v € 10,1], we have

it holds true that

. ALK 1—v v
lim — = +
K (1-Ap)  (1-Ap)?

in probability.

Proof.  We have WK = (uN/K?) ALK | so that

00,007

AV _ K ok (N-K

= Ix.
K ,UzN O0,00+ N

: K 1
Slnce £N — m

follows.

by [26, Lemma 4.9] and since XZOVOIO(O — W by Lemma 2.3.7, the conclusion

2.4 The limit theorems for the first and the second estima-
tors

Since the dominating error term cannot come from the first estimator, we only need to recall
the following result, which is an immediate consequence of [26, Lemma 6.3].

Lemma 2.4.1. Assume H(q) for some q > 1, in the regime t% — 0, we have:

t,N%iII(Il)oo 1QN’K \/I?]Ee |:

siV’K - MEIK/H =0
almost surely.

Recall the definition of VtN K see Section 2.1.5. The main result of this section is the following
limit theorem.

Theorem 2.4.2. Assume H(q) for some g > 1. When (N, K,t) — (00, 00,00) in the regime where
%(tﬂq +1/55) + Nem» 2% — 0 we have

tVE NK NEy d 2u°

We split VW5 — pNK — ANFL L ANKGZ L ANKS Ghere

K i, N i, N K i,N i, N
N Zy — 7 2 Zy —Z) —-12
Aiv,ijf{z{ 2t t 7€iV,K} 72{ 2t ¢ 7MJI\<,] }’
K i=1 t i=1 t
K i, i,
AN,K,2:E{ [Z%N_ZtN — N(Z)r—* N,K}
t K\ & t t ! '
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N,K,2 N,K,21 N,K,22 N,K,2
ANIZ = ANF2E L AN +At773

We also write , where

K T, Z T, Z
AN ﬁ{z [Zth z EB[Z2N Z N]} K N,K}
K& t t
K i,N i,N
N Ey[Z3 — Zy] RE
N,K22 _ 0142t t
A= R O}
K i, N i, N i, N i, N i, N
N Zy —Zy Eo(Z3," — Z) ]E(Z —Zy) .
N,K,23 2t 0\ “at 0 t
o I o).
We next write AN 2 = AN L ANKG212 L ANKG2LS o ore
K i,N i,N i,N i,N
ANE211 _ N Z { (Usy” —US)? Eo[(Uyy” — Uy )2}}
K K “ 2 2 ’
Uz N Ui,N 2 K
AiV,K,ZlZ {Z 2t ¢ )7 — K, [gév,K]T}’
N K K
N,K,213 _ N,K N,K
A = {ml ) e
At last, we write ANTO3 = ANFGSE L ANJG32 gpare
K i, N i\, N i\ N i\ N
N Zy, —Zy EelZy —Zp7] ) _
AP = E Z { 2 7 2 7 L } [MN(U - Mﬂ7

i, N i, N
AfV’K’?’Q —9 [EG[Zzt — 7y

g = ()] [ (0) = %)

'Mw

=1

We next summarizes some estimates of [26].

Lemma 2.4.3. Assume H(q) for some ¢ > 1. Then, on the set Qn i, for allt > 1, a.s.,

i) Eo[|ANK] < O(Nt—29 + NK—1¢71),
t —
i) Bg[| ANF22) < ONt—29,
t
iii) Bp[|ANK2 < ONt—9,
t —
w) Eg[|ANE213 < ONK—3¢-3,
t —
v) Eo[|ANE32] < N9,
t
vi) Bg[|AN 212 < o1,
t

(vii) E[lay cnay AP < CNV2E-1/2¢71/2,

83

Proof.  Points (i)-(v) can be found in [26, Lemma 7.2]. For point (vi), see [26, Lemma 7.3].

Finally, for (vii), we first use [26, Lemma 7.5] which tells us that

K 1/2

. o N
Loy v Eall A2 57 < CW[Z(M(Z)—&[@)Q = Ol

To conclude, we use [26, Lemmas 4.14, 7.5] which implies that E[1o, . nay|[2%||2] < CKY/2N—1/2,
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One immediately deduce the following result (recall that AN3 = AN L ANK32)

Corollary 2.4.4. Assume H(q) for some ¢ > 1. When (N, K,t) — (00,00,00) in the regime
EEG YR 20,

. WK . )
lim TE[lﬂw,K‘Ai\[’K’l +A£V,K,212 +AiV’K’213 +AiV’K’22 +AiV’K’23 +AiV’K’3H —0

Next, we study the limit behaviour of the intensity )\i’N, recall (2.1).

Lemma 2.4.5. Assume H(q) for some g > 1. Then on the event Qn g, we have

N H
sup max Eg[AoN] <
teRy i=1,...N ] 1—-a

Proof. We directly find, observing that Eg[Z}""] = f Eg[A\oN]ds, that

iN _
maxNEg[)\t |= pt max ZAN’LJ / ot — s)Eg[A ]ds}

i=1,...,

We define an(t) = SUPg<s<; MAXj=1 N Eg[ALN]. By definition, on Qn,x we have the bound
Amaxizlw,N{Z?{:l An(i,j)} < a < 1, whence, since A = [° ¢(s)ds,

an(t) < p+an(t)a,
which completes the result.

Lemma 2.4.6. Assume H(q) for some ¢ > 1. On Qn i, for allt > 1, we a.s. have

;{ém [(A;VN _ ,wN(i))zf < tgq + fﬁ

Proof. By definition, we have EN =Qnly = (I —AAN)"'1y, so that £y = 15 + AANLy. So,
writing A = f(f (t —s)ds + [ ¢(s)ds, we find

NV (i) = i 21 / ot - 9)dz: - b () / olt — s)ds) — L i 0t () / " os)ds

This implies, on {2 g, that
N : 1 . :
]Eg{(At’ —MN(Z)H <E, NZ;% /¢t—stJ 1l (j /¢t—sds }
J
1

+ uEq [(% Z 0:5¢n (j) /too ¢’(8)d3)2} .

Recalling that M =z — f AoNds and using that £y (j) is uniformly bounded on Qn k.,
, 241 1 & t N27%
By [ (3N — uon()) 1P <Bo[ (L S0, / 6(t — s)dM?
| )1 =m0 ), )|

—HEg 29”/ Bt — 8)|NN — b (; )N|ds §—i—C’/ @(s)ds.
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By Lemma 2.4.5 and assumption H(q), using (2.8),

;-ZN;% /ot(b(ts)dMg)gF :%E" Z/ 0ijo(t dZJF
p

T —.
VN
Defining F5V .= + Zfil Eo[(A™N — 1ln(i))2]2, we thus have, by Minkowski’s inequality,

3 > C
FKNSWZZ%/M—SEQ )\JN—MN( )H ds—i—C/t qﬁ(s)ds—&-\/—ﬁ

Jj=11i=1

t 0o
< o N,N
< [ FelAnlibote = FVas +0 [ ot + =

ta o C
< —(bt—stN’Nds—l—C/ o(s)ds + —,
[, wete= AR
because N||[IxAn|||1 = maxj=1, n Zfil 0;; and %\H[KANHh <a/A on Qp k.

Defining gn (¢ Cft s)ds + f’ we conclude that on Qpn g, forall K =1,..., N,

t
RN < / S(t — $)FNNds + g (1) (2.9)
0

Since [;°(1 + s9)¢(s)ds < oo from H(q), we have gn(t) < C(& A1) + CN~Y/2. Moreover, by

Lemma 2.4.5, F{"'N < O, so that [} (2)"¢*"(t —s)FN"Nds < Ca™ — 0 as n — oo. Hence, iterating
(2.9) (using it once with some fixed K € {1,..., N} and then always with K = N), one concludes
that on Qu g,

<5 [ () 6 vt vt

gZ/O; (%) " (t — s)gn(s ds—|—Z/ "(t —s)gn(s)ds + gn(t)
gcr;/; (%)% (s ds+gN Z/O (s)ds + gn(t),

because gy is non-increasing and bounded. Recalling that fooo ¢*"(s)ds = A™ and, see [14, Proof
of Lemma 15-(ii)], that

o0
/ ¢ (u)du < CniAN"r~9,
T

we conclude that (since a € (0,1))

FtN’N ( ) ana JFQN( )17+9N(t)§

n>1

2Q
EE

This completes the proof.
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Lemma 2.4.7. Forallt >s+12>1, on Qn k, we have a.s.,

maxNEg[(UZN UMY < (t—s)? and _maXNEg[(ZZ’N—Zi’N)4]SC(t—8)4.

i=1,..., i=1,...,

Proof. Recalling (2.7), we may write
UbN = Z/ o (t A% (i, §) MV ds.
n>0 1

Hence, by the Minkowski inequality, we see that on Qx g, we have
Eol (U™ — USN)')E <Eol(M™ — MEN)")4

+Z/ " (t — qﬁ*"(s—u)EgKiAﬁ, (i,5) M} N)Aj du.

n>1

-

By [14, Lemma 16 (iii)], we already know that, on Q. x, max;—1 . n Eg[(Z)N —Z0V)2] < C(t—s)2.
For the first term (n = 0), we use (2.8) and Burkholder’s inequality:

Eol(M;"™ — MM <CEy (2N = 22| < Ot - 9)°.

For the second term (n > 1), we use again (2.8) and Burkholder’s inequality and we get

It implies that

IS

> [ ——wns—wm[(iﬁ:a )]

n>1
<O S AN [ V(7 ) = 0% (s = )
n>1
<Ot - "> YAl Awllff < (¢~ )7
n>1

since we showed that fo u(p*(t —u) — ¢*"(s — u))du < 2A™\/t — s in the proof of Lemma 2.2.3
and since, as usual, on Qy x, we have Al||An||l1 < a < 1. This completes the first part of this
Lemma.
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For the second part, we recall from Lemma 2.2.3 (ii) with K = N and r = oo that we have
max;—i,... N ]Eg[ZtZ’N — ZN] <Ot —s) on Qn v D Qn i, whence

Jmax Bol(Z7Y - Z2iN) ) < 8{ max BolZpY - 2N 4 max B[N —URN)1} < Clt—s)’

as desired.

Lemma 2.4.8. Assume H(q) for some ¢ > 1. As (t, N,K) — (00, 00, 00),
in the regime Ne~ °»AK 0,

t
\FANK211

i i i, i d 2u
1QN KN { U2tN_Ut N)Q_]EG[(UmN_Ut N)Q]} — N(O, 1 A2

Nxtfz

Proof. We work on the set Qn x. Recalling (2.7), we have
Uz ,N Z Z/ ¢*n An (Z j)MJ’NdS
n>0 j=1
and we write
(U U = (Y~ M 2T O M) (5

where

TZN ZZ/ (b*n t—SAn (Z ] Mj,NdS_ZZ/ ¢*n An (’L ])MJ’NdS

n>1j=1 n>1j=1

We treat these terms one by one and set ¢(s) = 0 for s < 0 as usual.

Step 1. Here we verify that

K
. 1 i, N\2 i.N\21|1
lim Loy - ﬁuﬂe[i;\m )2~ Eol(T)%]] = 0.

We will check that for all i = 1,..., K, we have Eg[(T{"")2] < Ct/N, which of course suffices.

Setting B, (s, t,r) = ¢*™(t —r) — ¢*"(s — r), we may write

) 2t N
N = t,2t,u) Y A¥ (i, j) M) du. (2.10)
n>1 0 Jj=1
Hence
2t 2t N )
Eg[ Z / B (t, 2t,u) B, (L, 2t,v) Z A (i, §) A% (i, k) Eo [MIN MFENdvdu.
m,n>1 7,k=1

It is obvious that f Bn(t,2t,u) < 2A™ for any n > 0. Using (2.8) and that M7 and M* are
martingales, we see that Eg[ M7V MFN] = 14,2, Ey [Z2N] < C(uAv) (on Qy g, due to Lemma
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2.2.3-(i) with r = 00), whence

2t 2t N
o[(T7N)?] Z/ B (t, 2t, u) B (¢, 2t,v) ZA (i, 5) A% (i, k)Eo [MIN MFNdvdu

m,n>1 J,k=1

2 2t
<Ct Z / B (t, 2t, 1) B, (¢, 2t,v) dvduZAN (i, §) A% (i, 7)

m,n>1 j=1

N
<Ct > AN AR, 5) AR (6, 5)

m,n>1 j=1
N
. Ct
<CtY (Qnl(irj) = Li—jy)® < ~
j=1

The reason of the last step comes from the fact that by [14, Equation (8)], on Q}, we have
Li—jy <Qn(i,j) <1g—jy +ACNTL

Step 2. Here we verify that

K
i Lo | 3 (T (Y = 24 = Bz 03 = 2] )] = o
i=1

Actually, this will follows from the estimate (on Qu )

K

; ; ; Kt?
i, N i, N i, N
x 1= Varg [;m (3" = M) < 0=
that we now verify. We start from
z =B Y7 (TN (3" = M) - Bol1iN (05 — M) )
i,j=1

(7N (g — ™)) = Bolry N (M — a7 M))]) |-

Recalling (2.10) and setting an (u,t,4,j) = >_,, 51 Bn(t, 2t, u) AR (4, ),

2t 2t
x < Z/ / Z lan (s, t, 4, k)an (u, t, j,m)|

i,5=1 k,m=1
|Covg[(My,™ — My ™ )MEN, (ME™ — M) ™) MiN]|dsdu.
But
2t 2t
/ o (s 8,1, k)|ds < > AR (I, k)/ Bn(t,2t,5)|ds <2 AR (i, k)A" < 2(Qn (i, k) — 1)
0 n>1 0 n>1
which is bounded by C/N, as seen a few lines above.

And by [14, Lemma 22|, we already know that, for s and w in [0,2¢], still on Qp g,

[Covg[(Mg,N — MIMYMEN (MY — MPMYMPN]] < C(Legnijumy=sN 2t + Ly (i jimy <ot®)-

Hence we conclude that

K N
c 2 -2 2
FZ Z 1#{kz,jm} 3N t+1#{kz,jm}<2t) F(N K x N t+NKXt),

1,j=1k,m=1
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which is bounded by CKt?/N as desired.
Step 3. It only remains to show that

1 [ iV Ny N i\N i,N\2

NG [;%; — M) = DBl = M)

converges to some Gaussian random variable with variance 2u?/(1 — Ap)%. By Ito’s formula, we
have

2t
(MY = M =2 [N 2N 2 - 2
t
By [26, Lemma 6.2-(ii)], we know that 1QN,K]E9[|UtN7K‘2] < CL. This directly implies that
K N _ i,N iN _ i,N N N,K
Loy i S {26 = Z07) = Bol 25" — )N} = 1oy XEWO " - T 0.

We introduce NIV = ﬁt+ﬁt(M§fV — MiN)dMi’N. We observe that for t > 0 fixed,
(NE"N)yeoa) 18 a martingale in the filtration FJY We will prove that, as (¢,N,K) —

t+~/ut”
(007 007 OO)’
1 & (@) M
NN S B, ) 2.11
(t\/R ; w >u€[0,1] <\/§(1 — Ap) >ue[0,1] ( )

where (By)ye[o,1] is a Brownian motion. Since we have tf Zz 1 tZt(Mi’N — M}NydMEN =

s—

ﬁ Zi:l NP N “this will complete the proof. To prove (2.11), by Jacod-Shiryaev [23, Theorem
VIII-3-8], it suffices to verify that, as (¢, N, K) — (00, 00, 00),

(a) [ﬁ Zfil NLBN], — ﬁu in probability, for all u € [0, 1] fixed,
(b) sup,eo,1) ﬁ S LINGEN - NEEN| 0 in probability.

Point (b) is not difficult: using that the Poisson measures are independant in (2.1) and that
the jumps of MY are always equal to 1, one has, using (2.8),

1 4, N c i, N 7.N
——=E |:]_Q sup |NLEN _ NEBN <7IE 19 sup  max ‘M ’ H
tVK M 0] ; tvVK M el = cheva ~ Mi

|

C i, N i, N\2
<~ g su QjM — M
P /— QNKue Opl] tHt/a t )

[SIE

<7IE 19 sup (MY Mi’N)Q}
tVK NKueoﬂ; v '

C i, N i\, N % C
<—IE1NK’§ ZiN _ 7 < —.
; Qn, 7;:1( 2t t )] \/i

Concerning point (a), we fix u and write,

: i N LN\2 i N
tVE ZN-M N _tzK Z/ (M = Mp™)2dZeN = Iy e+ TEn s + T i
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where, recalling that Z: = M} + fg AbNds,

K m
It _ 1 v MEN N2 gMEN
t,N,K,u _WZ ( s— At ) s

=1

K
Paga = 3 [ QN < MENPOE — e (i)
t,N,K,u _tQK ! s t s HEN

=1

1 K t+/ut N N
B =gg Sopin() [ (MY - MY ds,
i=1 t
Step 3.1. Here we verify that E[la I}y r.] — 0. By (2.8), we have
N N ;
E9[(I1€1,N,Ku K2t4 Z]E@ {/ M;’_ - Mtz’ )4dZ;’N

t+ft ) N .
— ZEe[ / (MY — M) N ds

1
SKzt4

K
Y LB < AN YINE — it Eo[(MIN — MM [en (i) pd
> o[(M, ¢ )TN = b (@[] + pEe (M i 1IN (@)l pds.
t

i=1

Hence, using the Cauchy-Schwarz and Burkholder inequalities,

Eol(Iy v 1)’

K oty ut ' . 4 ‘
g2 [ (Bl — MEMPIEENSY — P + Bl — M) )] s
K rt+/ut .
<o [ (Bl = 2 PR — e (DI + Bal(MY — 3w ) s

By Lemma 2.4.7, we know that on Qy x, for all 5> 1, we have max;—1, N Eq[(MIN — MZ’N)4] <
C(t — s)2, as well as max;—1__n Eo[(ZN — ZPN)4] < C(t — s)*. Hence, recalling that £y is
bounded on Qy ,
K t+/ut
C - 1 C /1 1
1 2 N _ N\ [2715 Ry e
ol L asca)) < 2 / (1 BN — e P12 )ds < 55 (3 + )

which ends the step. We used Lemma 2.4.6 for the last inequality.

Step 3.2. Similarly, one verifies that, on Qy &,

2 1 t+ft N i, N N 1
BollE v scall <3 / Bal (M3 = M PHESNY — e}
K ot
c N c C
SfZ/ Eo[| ALY — pln (i) dsé;ﬁr*\/ﬁ

Step 3.3. Finally, we have to prove that IﬁN,K’u — p?u/[2(1 — Ap)?] in probability as
(t,N,K) — (00, 00,00). Using the It6 formula and (2.8), we write

(M — M)

:2/ (MY — MENYAMEN + Z0N — N
t

=2/ (M2 = M) AMEN + U = UPY + o[22 — 2™ — (s — ) (8)] + (s — £)en (i),
t
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and IP k., :IS]bKu_'_IEJ%IKu—’—I?]?\}Ku +It3NKu7 where
3,1 P BVut s N N PN
It,}V,K,u ) ; /MN(Z)/75 /75 (M2 — My )dM ds,
K t+/ut
3,2 1 . iN iN
It,N7K7u :W ; MEN(Z) \ (Us - Ut )dS,
3,3 1 & vt ; i\N
s =g Soptn) [ BalZEY = 20— uls = e,
i=1
K K
) 1 . ut?  plu .
N K “oK > P (Un (i) % 5 T 9Kk > (e (i)?.
i—1 i=1
First,
3,4 2. (FK\2 ,UQU = . K\ 2 7K 2 7K MQU N,K
20N e = oulln)” + YZ(EN(Z) —IN)* = pPu(ly)* + 7”33N||2 = pPu(ly)? + chx;
i=1

and we immediately deduce from Lemmas 2.3.1 and 2.3.2 that Ifj\l,’K’u tends to p2u/[2(1 — Ap)?].

For the second term, we recall (2.7) and we write for s > ¢,

N
Ui —gpN = 3 / (6 (s — u) — ™™ (¢ — w)) 3 A% (i, /) MV du,

n>0 j=1

so that, by Minkowski’s inequality and separating as usual the terms n =0 and n > 1,

il g [ Bl (Lo o) ] e
<o [ (B l(L oo - am)
+Z/ ¢ (s —r)— " (t—1) Eg[(ii D) AR (i, 5) M Hi

n>1

Nl=

By (2.8), we see that on Qu k, for all ¢t < s < 2¢, we have

mal (L - a) ]! <[ 3 oo - )
:{i EN(i))2IEg[ZlN ZZN]}%
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by Lemma 2.2.3-(i) with 7 = oo and since ¢y (%) is bounded on Qu k. Next, for n > 1,
K N _ 9 N K 9 ‘
Eo[( 30 (A ()M ) | =30 (3 ew(i) AR (i, 5)) Eol237)
i=1 j=1 =1 =1
K
<CZ (ZA?\, i, ) Eo[Z5V]

<CZ|HIKA I11Es (277

j=1

CK2

AN ?r

because ||[IxAn||l1 < CK/N on Qu k and by and Lemma 2.2.3-(i) again. So, for all u € [0, 1]
(recall that [° ¢*"(u)du = A™),

) t+/ut
Bl S [ {VETHX [0 -0 - 6= ) Tolliavlll s fas

n>1
C /t+ﬁt K _ 9
<5z VEt+) Vs—=A"l| AN} fds < ——.
2K J, { ~ " VN } VKt

We finally used that A|||Ax]|||1 <a <1on Qn k.

By Minkowski’s inequality and Lemma 2.2.3-(ii) with r = 1, we find, on Qx g,

K
Eo[| I3 <LZ t+ft|£ IBo[Z5N — ZN — (s — t)en ()] |ds
N K] SKe2 ) ~( al N

i=1
K try/ut
¢ i,N i,N C
<% ;/t BolZi — 70 = pls — ) (i)]|ds < o

Finally, we set N5 .= M#\Lt — MZ’N. Then N%% is a martingale for the filtration fﬁut
with parameter 0 < « < 1 and we have, by (2.8),

i ] N
[N?’ ’NaN?’J’N]u = 1{i:j}( t+ut ZZ )-

Then we have, on Qy k, using the change variables s =t + at,

K Vu  pttat ) ) ]
Eol(I% 1. )2]=%Ee[(2ufzv(i) [ [ an - anaa) |

K2t2 9 ,U,EN / / tszNthd>:|
KthZZ&v (i) (4 / / Eo / NEAN NG N / "N ’NdN;;’,”N]dada'
i=14'=1 0
C 1 ana’ AN AN 2
S[(2152 ;/0 /0 Ee[(/o NN dNy ) }dada/
¢ - ! i i,
<o B[ [ 0 azi

i\, N i, N
<tm ZEe[(O;ggl (N N)2) 23]
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Hence, using the Cauchy-Schwarz and Burkholder inequalities,

K
C [ % 1 C 7
Bol(I7 % sc)?) S 7oz O o[ sup (NG*™M)] “Bol(Z5")?)} < 1 D Bal(Z™)%) <

by Lemma 2.4.7.

Finally, we can give the
Proof. [Proof of Theorem 2.4.2] Recall that we work when (N, K,t) — (00, 00,00) in the regime
where #(tﬂq + \/Klt) + Ne~2% — (. In the beginning of the section, we have written

ViNK_VNK ANKl+ANK211—|—ANK212+ANK213+ANK22+ANK23+ANK3

We have seen in Corollary 2.4.4 that the terms 1,212,213, 22, 23,3, when multiplied by t\/I?/N,
all tend to 0, while Lemma 2.4.8 tells us that

t 2
Loy . \J/\:ANKQM iw\/-(o’ H

which completes the proof.

2.5 Some limit theorems for the third estimator

The aim of this section is to prove the following theorem.

Theorem 2.5.1. Assume H(q) for some ¢ > 3, K < N and limy g, IA(/ =<1
t/(2[t =tV ) ~ ¥t /2 (for t large). If (N, K,t) — (00, 00, 00) and = K\/7
Ne~eaK 0,

: e gl >
i o g (A0 - XE) — (0,5 ))
N Koo WE N Ast — N0 2\ (1 — Ap) + (1—Ap)3
Recall the definition in section 2.1.5 and we define:

N,K N,K
XA,t - X IS

N - K _
—WAL W) + == () — i)

N-K —_
N,K,1 N,K,1 N,K,2 N,K,2 N.K,3 N.,K,3 N,K .4 N, K K
:DA,t +2D2A,t +DAt +2D2At +DAt +2D2At +DAt + K (5t _/~L£N)a
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where
2t 2t
N1 N = SNK  5N,K N2 = SNK  5N,K 1\ 2
N :7{ (ZaA — 2y — A ) - Z (ZaA _Z(a’_1)A_AH£N> }7
a:%Jrl a:£+1
2t
N 2 _ _ N2
N,K,2 NK N,K K
.t —7{ (ZaA - Z(a—l)A - AMK)
a:i—i—l
2t
= N.K NK SN,K  5N,K 2
- Z (ZaA’ —Z—ya — BolZ,4 _Z(alnA]) }’
a:%-}-l

2.5.1 Some small terms of the estimator

. . N,K,1 N,K2 N,K,4
First, we are going to prove the terms DA’ DA’y 7", Dp%y

" are small.

Lemma 2.5.2. Assume H(q) for some q > 1. Then for allt > 4 and all A € [1,t/4] such that
t/(2A) is a positive integer,

(i) Ellay ([ DY) < 08 (2 + ),

(i1) Ellay  |DX; ) < O

(iii) ElLa,  |DXE4) < O b

KATFa»
. N,K h
(iv) NE[Lay (el — ulK]) < G 4 CN_,

Proof. The results follow easily from [26, Lemmas 6.3, 8.2, 8.3 and 8.5].
We then deduce the following corollary.

Corollary 2.5.3. Assume H(q) for some q > 3. If we choose Ay = t/(2[t' =4/ (@1 ) ~ ¢4/ (a+1) /2

(for t large) then, in the regime \/% + % % + % + Ne~»AK 0, we have the convergence in
probability

. K |t N,K,1 N,K,2 NE4, , N, NK K
N,Kl,ltrg+oo 1QN,KN E{‘DAt,t |+ DA+ DA+ E|Et - IMN\} =0.
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Next, we consider the term Dgth,g. For 0 < v <1, we define:

2v
A
N,K N,K N, K
XA to T Z {(y(a—l)A,aA)2 - ]EQ[(y(a_l)A,aA)Q}}a (2-12)
a=[%]+1
where
y(JZLI(l)A,aA =K ZCN (M — M(]N Ha)- (2.13)

Lemma 2.5.4. Assume H(q) for some q > 2, then we have

/ 19 NK3_ NXN H < CK C’Kt4 C\/7 Ct4
N NK t NA Al-i— \/7 / A1+2'

Before the proof, we need some preparations. For a € {t/(2A) + 1,...,2t/A}, we write that
i, N N N
Usa — U(Za nA = an 1)AaA +X(za 1)A.ans Where

FEaNm N / ¢ (a — s) ZAN i 5 — M7\Vds (2.14)
n>1
(a—1)A N N
L e s A ),
j=1
N
(a 1A, aA ZZ / ¢*n al — S)dSAN(Z ])M(zAN (215)
n>0j=1

(a-1)A _
[ e DA = asay MY

And we define the mean values as

N,K N,K o, N
F(a I)AaA KZ (a DA,aN? X(a I)AaA KZXa 1)A,aA"

First, we consider the term I‘(a NN Then we can write

NK

NN R+ Bk _C(JZLKl)A_B([ZLKl)A7
where
K N
ONFE == ZZZ/ &™" () AR (i, ) (MU _ ) — MIX )ds, (2.16)

i=1 j=1n>1
K N

}ZZZ/ &*" (8) AR (i, ) (ML) — MIX )ds. (2.17)
1=1j=1n>1

Lemma 2.5.5. Assume H(q) for some ¢ > 1. On the set Qn i, for a € {t/(2A) +1,...,2t/A},
we a.s. have

Bol(BI5)) < St

Proof.  'We work on the set Qy . Recall (2.8). By [14, Lemma 16.(iii)] and Cauchy-Schwarz
inequality we have:

Eo[(M7N

. -7 1
PN = MENYMIN - MI < 1, Bl 22N - 20N PRI - 23X T

(aA—s") (aA— (aA—s')
S 1j:j' Vv SS/.
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From Lemma 2.10.1, we already have froo Vud*™ (u)du < CA™n4r3~9, Hence,

al
B[V = o5 Z Z ) / / 6 ()6 (5 ) A (i ) AR (T, 5)

i,4'=14,7'=1nm>1

Eg [(M(JGJX s) M;ZV)(M(JaAJV s’) MglA,N)]desl
7CN nTm n+m-— > > *7 *m
<G (O A mmeax Blax g2 [ [ Ve e (s dsds)
n,m>1 A A
C 2 C
< qAm™ n—1 1—2q < = 1-2q
< N(n§>1:n A[I[ANIIE) (a)! 72 < A

Lemma 2.5.6. Assume H(q) for some ¢ > 1. On the set Qn i, for a € {t/(2A) +1,...,2t/A},
we a.s. have

C
N,K\4
Eg[(Coa" )" < e
Proof. We write
N,K *n N K,n
CaA Z/ (b s ,8,aA
n>1

where for r > 0 and 0 < s < adA,

N
NEn 1 "o PN N
Or,s,aA = ? z; z:l AN('Lv])(M(jaAfs) MiA s+r)
i=1 j=

When, we fix s, {ON’K’"},«ZO is a family of martingale for the filtration (Foa—_sitr)r>0. By (2.8),

r,8,a\

we have [M®N MIN], = 1,_, AR Hence, for n > 1, on Qp k,
{i=j}“¢ ,
N.K.n AN.K _ , i\N
[O‘7s,aAn7 S, aAn K2 Z (ZAnN i ] ) ZZ«A s+r Z(Z,A—s)

—K2|HIKA H‘ (ZaA s+r ZaA s)
7K2|\|IKAN\|\ AN (Z05—ctr = Zan-s)
7|||A |||%n 2(ZaA s+r Z(ivAfs)

Since ||[Ix An|||? < K2 on Oy, i, by Burkholder-Davis-Gundy inequality, we have on Qy g,

C AN 4dn—4 B
%E [(ZaA s+r ZiVA—s)z]'

From [14, lemma 16 (iii)], we already have sup,_; Eo[(ZN — Z2N)2] < O(t — 5)2. Recalling
the second part of Lemma 2.10.1, by Minkowski inequality, we deduce:

Py / 6 BN

n>1

Eol(ON2)") < 4B, [ (10750, 0N 557,) ] <

r,8,aA

ZH\ANnh/ Va6 (s)ds

n>0
Vn+ 1A Y| AN]||Pds < —

This completes the proof.
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Lemma 2.5.7. Assume H(q) for some ¢ > 1 and a,b € {i +1,..., %} Then a.s. on the set Qn Kk

cvt .
Covg[(CoR" = Ciulya)® (Cox" = C3 0% € agmr Fla—bl >4

Proof. Because

Covgl(Can™ = C 1 a) % (Coa™ = Cly)a)°]

S YD N B i Y et

ik,i’ k'=174,1,5"'=1 m,n,m/ ,n'>1
X AR (i, ) AR (k, DAR (7, ) AR (K1)
i\ N i\N i\N i\N
X (COW[(M(jaA—s) - My — M(J(a—l)A—s) M(ja—l)A)
i’"\N i’\N i’ N i’ N
x (M7, = MR = MG A gy + MY A),

(aA—s")
I,N I,N I,N LN
(Mga—py = Myn" = MG 1ya—ry T M —1)0)
U',N U',N U',N U',N
X (Ma—pry = MR+ (M5 gy — My~ )l dsdrds’dr’.
We define Cgi\{s = M(];]X_s) — MéAN for 0 < s < A. Then we can rewrite that:
COW[(M({;]X—S) - MJN - M(j(’iv_m_s) + M(j(;]jl)A)

X MRy = MUY = MY Ay + M),
(M(lzﬁ—r) - My - M(lﬁiv_nA—r) + M(ll;]ifl)A>
X (M(l;iv—w) - MY+ (M(l;;)le)A—r’) - M(lz;l]\gm)]
=Couvy|( ii\fs - Cgéjjl)A,s)(Cg/A]i' B gL;L]\[l)A,s/)» (sziv,r - Cééjjl)A,r)(Czl;A],\:«’ - Cébivl)A,r’)]‘
Because 0 < s,s', 7,7 < A, we have:
I',N

», -/’ ‘) ./) l7 l/7 l,
Eg [Cgajil)A’SCZAJL] =Ky [Cigsc(jai\;m,s/] = EB[C(b]Xl)A,TCbA{Vw] = Ee[Cbng(bfl)A,w] =0

Without loss and generality, we assume a — b > 4 and s < &', first we notice that
i\N 5N I,N I,N U',N U,N
Covg| iA,sC(jaA)A,sw (CbA,r - C(b—l)A,r)(CbA,r/ - C(bq)A,r/)]
j,N i’ N
:]E9|: ;A,Slf(afl)A Cgafl)A,s’
I,N I,N U,N I',N I,N I,N U',N U,N _
x ((CbA,r - C(bfl)A,r)(CbA,W - C(bfl)A,r’) — Ey (CbA,r - C(bfl)A,r)(CbA,r’ - C(bfl)A,r’)]) =0.
And by the same reason we conclude that
i, N i\ N (AN I,N U,N I',N _
Covy [Cga—l)A,sC;A,s” (Coar — C(b—l)A,r)(CbA,r’ - C(b—l)A,r’)] =0.
When j # j/, the covariance vanishes because
i, N i, N i’ N i’ N
EG[(CZA,S - Cga—l)A,s)(CgA,s’ - C(Ja—l)A,s/”]:bA} =0.
Next we assume that j = 7/, we have
i, N j,N i’ N i’ N I,N I,N U,N U,N
K :=Couvy|( c]zA,s o Cga—l)A,s)( tJlA,S' a Cga—l)A,s’)’ (CbAaT - C(b—l)A)T)(CbA’T/ B C(b_l)A7T'>]

N 5 N j, N i/, N LN Y U.N U,N
:(CO'UO[( Z,A,S Z,A,s’ + gafl)AﬁCga*l)A,s’)’ (CbA’T - C(bfl)A,r)(CbA,T/ - C(b*l)A,rJ]'
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Since ]EG[CQAS aAs NFan—o] = Bol(MPY)2 — (MY )2 Fan_o], writung as usual (M72V)% —
(MgAN—s 2=2 faA_S MijvdMﬁN + Z;ZV - Z;ZV_S, we find that

i\ N i\N N , I,N I,N I',N U,N
K =Covg|Z}\ — ZJ5_, Z& 1A Z(a HA— 97(CbA7r_C(b—l)A,r)(CbAw’_C(b—l)A,r’)]

i\ N i\ N N N I,N I,N U,N U,N
=Covg[U;x" —Uga_s + U(Ja A U(Ja 1)A—s? (Cm,r - C(b—l)A,r)(CbA,r’ - C(b—nA,w)]-

Recalling that 8, (z,z,7) = ¢**(z — r) — ¢*"(x — r), we can write

N
Ugg‘vaZZV_S: / Br(aA — saArZA i]MdeT*RaAaA ngTAaA o
n>0 Jj=1
where
N
. N
aA alA—s Z SC Z,T ZA MJN M(Ja 1)A— e)dr7
n>07 (@a=1A j=1
N
N .
TgAaA s Z / aczrdr)ZA (a 1)A—s
n>0 j=1
(a—1)A—s N .
Y / B, 2,r) S AR (i, )MV dr.
n>0Y0 =1

The conditional expectation of Rfl’AN, wA_s knowing Fya vanishes. Hence

i, N i, N I,N I,N U',N U',N
K = Couy [TgA,aAfs + T(Ja—l)A7(a—1)A—s’ (CbA,r - C(b—l)A,r)(CbA,w - C(b—l)A,r’)]'

Recall [14, proof of Lemma 30, Step 1] (and notice that TJANaA , is exactly the X7 s in [14]),
we have sup,_; _ y EG[(T;A,aAfs) ] < Ct2A~44. Since r < A,

LN I,N 471 I,N LN 411
[(MGa—py = Mya )15+ Eol (MG, 1ya—ry = Mip—1ya)"]*

EQ[(C};Z\{T - Céf,jfl)A,r) ]Z Eg
< OVA,

whence

1

, , .
K| <{Bo[(TIx a_s)*)? +Eo[(T] (a Daa-1ya—s)1?}

I, , v, v,
X EG[(Cbi\ir - C(b—l)A,T) ]4E9[(CbA],\£’ - C(bﬁ)Aw)‘l]
<Ct'2ATIA.

ENE

Moreover, by symmetry, we conclude that, when |a — b| > 4,

N I,N U',N
COW[( aA s C (a— 1)A 3)(CaA s C(a DA,s’ ) (CbA,r C(b 1A, r)(CbA i~ C(bfl)A,r’)]
SC(]_[:[/ + 1j:j/)\/£A1_q.

Recall the definition of Qp r, we have |[|[Ix A% |1 < |[[IxAn]||1|[|AN]|[F7" < CTKH|AN|||?_1,
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which gives us

N,K N,K N,K N,K
Covp[(C o1 _C(a—l)A 27(CbA - C(b—1)A)2]

cvial-1 &
S DD DD D
ik’ k'=174,1,5'=1 m,n,m’ ,n'>1
A AR i, ) AR O DA G 5 AR () (Lime + 1)

CVtA 4
§7K4

N

Ny A e AR AR e AR 2 e AR 1]

m,n,m’ n’'>1

1 s KN\ 4 ntm4n'+m’—4 Cvi Cvt
=N (ﬁ) A(A[l|An]]]) AT S NACT

n,m,n’ ,m’'>1

IN

The proof is finished.

Lemma 2.5.8. Assume H(q) for some ¢ > 1. Then a.s. on the set Qn g

< Tn]

Proof. We start from

M

_ _ CKvt CK CKti
N,K 2 N,K 2
{(F(a—l)A,aA) Ee[(r(a—l)A,aA) ]}H < NA(a+1) + NA + A(1+%) /—N
+1

Il
Dl

=N, K N,K N,K NK N,K N,K N,K N,K N,K
(F(aq)A,aA)Q =(Coa — C(afl)A)z T2(BR —Blya)(Cad” —Clha) +(Baa™ — B(a71)A)2~

By Lemma 2.5.5, we have

o
o
o
o

A A
N,K N,K N,K N K
Eq H Z (BaA - B(u,fl)A)2 —Eq |: Z (BaA - B(afl)A)2:| H

a=%+1 a=%+1

e N.K N.K Ct

> s 2
§2]E9 |: Z (BaA - B(afl)A) :| < NA2¢*

a=x+1

And by lemma 2.5.6 and lemma 2.5.7

a:%Jrl U«:%+1
2ut
S N,K N,K 2
Varg[ 3 (O - NS
a=%+1
1 1
b 2
< Y m[CR o] R - o]

t/A+1<a,b<2t/A
la—b|<3
N,K N,K N,K N,K
+ Z (Covg[(CaA _C(a—l)A)27(CbA -C )2}
t/A+1<a,b<2t/A
la—b|>4
t 1 t3 ]

<Ol 4 "
—C[A NN
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Moreover we have, by Lemmas 2.5.5 and 2.5.6,

N
N,K N,K N,K N,K N,K N,K N,K N,K
Bol| D (B - BUI MO = ) —EalBRS — B )@ - Ok W)

<t > B ]| B o] + o[BS 08N | + B[ B O

a:%-«—l
+E"HB<NK C(]ZKUAH}
2t
. Rk 73 IR NE |22
<t Y B[N + B W] Ee e []7 + o Jol s T
a:%+1
ct 1
~AGtE N

AR (I DR (L SN T LG |

a:%Jrl
2t 2t
K = N,K NK 2 = NK NKE 2
<o {B[| X BB B YD (B - B L
a=%+1 a=%+1
DA I DN (e e N R B Dl (e e eVl |
a:%—&-l a:%—i—l

—E, [(B(JZVA’K - B(]Z’_Kl)A)(CéVAK - C(]ZLKUA)} H }
5 1 %
<l e st + ) <ol » e k)

NA T AGD YN | NAGHD

The proof is finished.
Recall that ¢ (j) := Zz 1 Qn (i, j). Next, we will prove that X( )A un 18 close to y A aA?

Lemma 2.5.9. Assume H(q) for some ¢ > 2. Then a.s. on the set Qn x, one has

C 1 1
N,K N,K 2
Bl Vol ans = Xolhaus)) < 5 oy * o nap)
2} CK
L——-
NVtA21—3

2t
A
N,K
71&9[ Z ’y(a DA,aA X(a—1)A,aA
7Z
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Proof. By Lemma 2.10.2, on the set Qn g, we have:

1QN,KE9[O}(]ZLK1 AaA X(]Z KI)A aA)2}
< | A S ([ mtan - is - )i i |
j=1  n>0i=1

+;2Eeui{zi</f”Aw«a—m—s>ds—A">Ax<z»j>}wm

¢*n al — s)dsz”)A” (i, J)} Eo[Z7]]

I
|-
hE
——
] =

<
Il
—
3
vV
=}
-
Il
—

_|_
-
NE
—
M=

(a—1)A 2 .
| e a= DA 9as =AM 4300} BalZgY ]

Il
—
3
v
o
~

Il
—

| s ineay ) } Eoizd)

(ad)/n

IA
dlis
M=
——

3

<
Il
it
3
vV
_

w [ oA AR} BalZY
a—1)A/n

<
Il
—

IA +
3~ -
— ,—'—\ —

3

2 .
5o L, s iAN ) Rz

-
I
—

+
Z)
M=

n [T s Anli Y Bz )
(a—1)A/n

j=1 n>1
1 1+q q n—1 -1\ 2 3N
< o Tontrtan) [ stateiasanlaxly ) Bz
j=1 n>1
1 & o
+ WZ{Zan[(W 1)A]*q/0 s96(s)dsA™ ||| A |7 } Eo[Z]Y )]
j=1 n>1
1 N N
< 7N s 3,N
< Nz(aA)ngo[;ZaA} + NQ((a— A [;Z(a I)A}
9[ LR 1 ]
N l(aA)2a—1 * ((a —1)A)2a-1]"

For ¢ > 2, we always have Y o | a'~2¢ < +o0, which concludes the result.

Lemma 2.5.10. Assume H(q) for some ¢ > 2. Then a.s. on the set Qn i,

. N,K

(’L) E{lgN,K‘y(afl)A,aA i| S CA7

N K 2t NK N,K CVK
(i) 7\/E]E|:]‘QN,K Zai% (a—1)A,aA ‘y(a 1)A,aA X(a—l)A,aA:| < A UNE

Proof. By [26, Lemma 4.19] and the definition of XXX we have on Qx g,

00,007

o 3 (500) 0009]| = 8 {10 ] ot LY < o

j=

Recalling [14, Lemma 16 (ii)], we already know that

swp (Bl ZIY — 21N, — Alv ()] < 06T
J=1,..,
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From [26, Lemma 4.16], we easily conclude that

K2
> (1+N)+CK <CK.

E[1oy . le§ 18] < 2E 1oy (I#513 + 1% — 1% + 1% 17] <

Recalling the definition of y{j’_’j)MA and (2.8), we have
2
E |:1QN K ’y(a I)A,aA‘ :|

N N
1 )2 N N
=B Loy { D7 (K ) Balzid - 20N, 5 - Al +aY (50)) x()}]
Jj=1 j=1
CA
<
T K
which completes the proof of (i). From Lemma 2.5.9, we conclude that

2t

K N,K
EE{]‘QN,K ‘y(a 1 AaAHya 1)A,aA X(a DA, aA

a_A+1

)

K > N,K 2 % N,K N,K 2 %
< At Z E |:]'QN,K ‘y(afl)A,aA’ ] E|:]'QN K ’y(afl)A,aA X(a 1A, aA‘ :|
=

CVK XA: Jha < CVK
T AIz/Nt ~ AT 32y/Nt
a==x

For the last step, we used that since ¢ > 2, we always have Y -, az™4 < +o0.
Lemma 2.5.11. Assume H(q) for some ¢ > 1. Then

2t 2t
t N = TNK —~ NK >N, K
1QNKN\/ Ny ’ Z F(a AaaX (0 1)aan — Eol Z F(a7—1)A,aAX(a)—1)A,aA]’:|
a—A+1 a:£+1
. CK . CVtK O\F < Cti
TNAWE Atz \F VN A3
Proof.  Recalling (2.16) and (2.17), we write
N,K N,K N,K N,K N,K
F(a 1A, aAX(a DA,aA F(a 1A, aA(X( 1)A al y(a 1A, aA) + y (a— 1)A aAF(a 1)A,aA
N,K N,K N,K N,K N,K N,K N,K
= F(a 1A, aA(X(a 1)A,aA y(a 1A, aA) + y (a— I)A aA(C + B C(a 1A B(a 1A )

From Lemmas 2.5.9, 2.5.5 and 2.5.6, we get

E 1QN K ‘F(a 1)A,aA (X(]Z NN y(jz)le)A@A) H 2

<k [1QN'K ‘y(a’—l)A,aA — X&) aan Q}E{lﬂN’K(fzﬁ)Av“A)Q}

<4E [IQNK’y (a—1)A,aA X(IZ’—Ii)A,aA 2}
2t {(02) + (B5) -+ (€08) + (%) )

< %[(m)”q +((a- 1)A)1_2q} (le ]1VA1 ) < [(an) "2 + ((a - 1)A)1_2q}

N,K
X’

=K 1QN K ‘y(a 1)A,aA (a—1)A,aA

C
ﬁ.
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And by Lemmas 2.5.5 and 2.5.10, we have:

2
Loy e Hy(]Zﬁ)A,aA(BéVAK - B(]Z’fim)u

2 2 C
N,K N,K N,K
SlﬂN,KEHHy(aq)A,aA‘ :|E9[(BaA _B(aq)A) } < NEKA2¢-2"
Next, we consider the term y(]Zfi)A aA(C’éVA’K — C(JZ’_KI)A). We can write

N A
VirraaalCad = Calia) =52 D D / 0" () AR (6, )R (1)

i=14,j/=1n>1
i, N i, N i, N i, N i’ N i’ N
(M;A—s - MéA - M(Ja—l)A—s + M(ja—l)A)(MéA - M(]a—l)A)'

We set for 1 < j,5,0,I' <N and a, b€ {t/(2A) +1,...,2t/A}

Yo (o g5 1) :=Covg[ (MR, = MY = MEN |+ MEN ) MY = M7 L),

(a—1)A—s (a—1)A
LN LN LN LN N N
(Mya—g = Myn" = Mg "y a g + M ) A (M — M7 4]

It is obvious that without any condition on (a,b), we have that on Qn

|Ta,b(j7j/vlal/)|
AN _apN \E N JN hi FN N \1E
S{EGKMaA _M(a—l)A> } +E9|:(MaA—s _M(a—l)A—s> } }E(?[(Mlm _M(a—l)A> }
44 L 44 1 44 1
I,N I,N 1 I,N I,N a N U,N Z
{E9[(MbA *M(bq)A) } +E9[(MbA—s 7M(b71)Afs) } }EGKMbA *M(bq)A) }
<CA?

and 1#{jﬁj/7l$l/}:4|’ra)b(j,j/, l7 ZI)‘ = O

Next, we consider the case when a — b > 4. Recalling that CZZVS = M

0<s<A,

. i, N i, N i',N (N I,N U,N
You(5,501) :COUG[(CZA,S - Cga—l)A,s)CszA,A’ (CbA,r - C(b_1)A,r)CbA,A]

_ iN ~j',\N LN I,N U,N
f(CO/UG [CQA7SCQA7A7 (CbA7"' - C(b—l)A,T)CbA,A]'

Using the same strategy as the proof in Lemma 2.5.7, we have

i\N 5’ .,N N LN I',N
|Cove| iA,schzA,A’ (CbA,r - C(b—l)A,r)CbA,AH
j, N LN LN I',N
=|Couvy [TiA,(a—nAv (Coa,r — C(b—l)A,r)CbA,A”
N 1 LN LN 1 I)N \471
S{Ee[(TiA,(a_l)A)Q] 2 HEo[(Cya . — C(b_l)Am)ﬂ 4]E9[(<bA,A)4] *

<Ct'/2ATIA.

Hence, by symmetry, for |a — b] > 4, we have [Yo(j,5',1,1')| < C(Tizy + 150 ) VEA! 4. Hence,
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still for |a — b| > 4,

N,K N,K N,K N,K N,K
E[lﬂN K‘(COW [y(a—l)A aa(Cad™ — C(a 1)A) y(b 1A, a(Con — O(b—l)A)] H

DD D Sy A

ii'=11/ 5,5’ =1n,n'>1

()™ (") AR (i, ) Ay (I, )R (7)) R (1) Lo (5,57, 1, 1) dsds’

}

SR [nw\i(cw ) - 1)ek G HZcN \ZNA"|||IKAN||| lAxlz ]
=1
Ctl/? j
= KZAcT

The last step follows from Lemma 2.5.10 in which we have proved that E[lgN N3] < CK and
from the fact that on the event Q , it holds that ||| Ix An]||[1 < &, |Zl LK) = K| < CK.

Next, when |a — b| < 4,

N,K N, N, K N,K N, K N, K
]E[lﬂmx ‘Cm’e [y(aq)a,aA(CaA C (a— 1)A) Yoolia, NS C(bq)A)} H

<8 Lo B[P0 R0 (025 = 0500) T [ TR (63 - 0500 ]
CA

_NK

Finally,

2t
EX ct Ot
E[]-QN,KVQTG[ Z y(a 1A, an( CNK O(]Z’—Ii)A)H = NK + K2Aa+L"

Overall we conclude that

2t
A
TNK TNK
E[lﬂzva At Z F(a DA, aA (a DA,aA Z (a l)AaA ( )A,aA]H

a_A+1

¥
&

A

K
SE{E[]'QN,K Z (’F (a—1 AaA(X(Jt\zf KI)A al _y(](\ll)f{l)A,aA)‘

a=%x+1

e+

S

2
+ ’ya DA, aA(BNK Bé\af KI)A)D:| +E{IQN‘KV‘W9[ i a 1 A, anl Czjz\[AK - C(JZ’—KDA)H

j

- CK CVtK Cf + Cti
SNAnG T ATIVN | UNA A

The proof is finished.

Finally, we can give the proof of Lemma 2.5.4.
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Proof.  Recalling (2.13) and (2.12), as well as Lemmas 2.5.8, 2.5.11, 2.5.10-(é¢) and 2.5.9,

=%+1
2t 2t
= ~N,K N,K = ~N,K N,K
+ ‘ Z F(a 1A, aAX(a 1)A,aA Eg[ Z F(a;l)A,aAX(a 1A, aA]’
a:%-{-l a:%—l—l
2t 2t
A A N K 2
‘y(a 1A, aAHy(a 1)A,aA X(a 1)A,aA Z ‘y(a 1)A,aA X(aLl)A,aA’ >:|
afAJrl 7Z
_CK | CKt? CK\f L _CK CVitK
SNA T AN T NAGT T NAGG | ArEVN
Cf ctt CVK CK

- T
\/ AH' A9=3/Nt N\fAQ‘Hz
CKti C\/ Cti
<= 4 + =,
A3 VN  VNA  Alf:

which completes the proof.

2.5.2 The convergence of X}’ At b
The aim of this subsection is to prove the following Lemma.

Lemma 2.5.12. Assume H(q) for some g > 3. Fort > 1, set Ay = t/(2|t'~4/ (a1 |) ~ ¢4/(aF1) /2
(ast — o0). In the limit (N, K,t) — (00,00,00) and in the regime where & — v <1 and where

\/% + % % + % + Ne~¢»aK 50, it holds that

K N Nk a1/ 1—vy y
AT —X = B’U_B’UU
(N Att At,tv> 20—>\/§((1—Ap)+(1—/\p)3)( 2 )0

for the Skorohod topology, where B is a standard Brownian motion.

We start by applying the Ito formula to write
N 2
N,K . i, N N
(Ky(a—l)A,aA)2 = Qa,N.x + E (Cﬁ(ﬁ) (ZiA Zfa 1)A> (2.18)

where Qq N,k = 2fa HA Z] LRGN M(JaNl)A) Zj\f L R (§)dMIN . First, we verify that:
Lemma 2.5.13. Assume H(q) for someq¢>1,0<wv <1,

[%8*]

g

S () (228 - 2o - Balzil — 2, )| <

a=[%]+1 j=1

=)
%,_.

Y



106 CHAPTER 2. CENTRAL LIMIT THEOREM FOR HAWKES PROCESS

Proof.

2v

1 2]

BY

N
S (K0 (228 - 23— Bal2 - 22, )

a=[4L]+1 =1

- v (0) (a5 - 24 - et

j=1

+ZN:]E9[( J) (woten () = 253 + 23] }-

J=1

Recalling [14, (8)], we already know that 1,1 < Qn(%,7) < l{i:j}—&—ACN_l foralli,j=1,...,N
on Qn,x C Ql So IR ()] = |El 1 @n (i, )| is bounded by some constant C for j =1,..., K and
smaller than €& for K +1 < j < N. By [14, Lemma 16-(ii)], we also know that

max EQH(Z{,‘;}QV N —WteN(j))H <c.

j=1,...,
Hence
Eg [KJEJZJE ()" (2 — 28— moten())]] < \/%
So
Bl 3 S () (6 - s -t - 7)) <
KAt : N al (a=1)A 019 (71) = VAl

which ends the proof.
We next define

[A “]
L (u) ZQGNK, for 0 < u <2
We notice E[Qq, n, k| Fa—1] = 0. So EA’,’K(u) is a martingale for the filtration 7+ ;. Recalling the
equality (2.18) and definition (2.12), as well as Lemma 2.5.13, we conclude the following estimate.

Corollary 2.5.14. Assume H(q) for some q¢ > 1, then for 0 <wv <1,

£33 (20) — L85 () — B xN K

E[lgN’K ) /At At,v

<=
VAt
Next we will prove the convergence of ,CR’,AK(U) to a Brownian motion.

Lemma 2.5.15. Assume H(q) for some ¢ > 1. Then a.s. on the set Qp ki, for all A > 1:
Eo[(Qa,n.x)'] < C(KA)

Proof. For 0 <u <1, we set

A N N

[(a—1)+u) . ,
Qo1 () 1= /( S KDY Y (e ().

a—1)A j=1 j=1

It is obvious gq v k(1) = Qo N k- And

(a—14u)A | N

(o35 (s a1 (] = /

(a—1)A
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From [14, (8)], we already have on the event Qn x, 1p—j; < Qn(4,5) < 1g—jy + % for all
i,j =1,..., N. Recalling that c& (i) = Zj(=1 Qn(j,1),

CK CK
1gcﬁ(i)§1+TwhenlﬁiﬁKameﬁcﬁ(i)gTwhen (K+1)<i<N.
Then we conclude that

K2

N
: N

> (Cﬁ(j))gngﬁN < C(KdZSN,K N

dZN’N).
j=1

On Qn i, we have

EG[(Qa,N,K(u))ﬂ < 4E9[([qa,N,K(')’ Qa,N,K(-)]u)Z]

([ (S 0n - 0)'s3 () ) ]

a—1)A j=1 j=1

(ﬁoxMyimﬂAQﬁme(fj@%uoiﬁﬁHmAz@&m»?

1 =

3 N 2 4
K/ - i, N i, N Ky - i, N i, N
KOG =M 0) + (D (K D) ZLN 1wa = 20 00) |

] =

§4E9— sup (

Lo<s<uA j

=

M) =

<8Egy| sup (
L0<s<uA N7

<
Il
—
<.
Il
—

<CEy [(i (C§(j))2(2@71+u>a - Zgéjfl)ﬁ))4}

=1
<CE, [ (K(ZVE gy K2 o 25N N\ < o(Kun)
= "[( (Z@Ziswa = Zana) T 7 (Galiima — (afl)A)) ] < C(KuA)*™.

We used the Burkholder-Davies-Gundy inequality in the fourth step as well as Lemma 2.2.3-(iii)
in the last one.

Next, we are going to prove that the jumps of ﬁﬁ\’,’AK(u) are not large.

Lemma 2.5.16. Assume H(q) for some q¢ > 1.

ENE

a0 o] (2)

0<u<2

. . A . .
Proof.  First, we notice 'CN,K(“) is a pure jump process. So

t,A t,A 1 t t
EN,K(U) - EN,K(U*) = m ([KU] - [K“*])Q[iu],z\r,x
Then by Lemma 2.5.15, we have
1

Bl s 2850 — £85ct0)]] =

KVAt po
1 (% 1
SK\/EEO[Z_1 |Q[iA],N,K‘4} ’
AN
<c(3)"

The proof is complete.
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Lemma 2.5.17. Assume H(q) for some ¢ > 1. For allt > A, it holds that

K,QlAtE{lgN’K‘AJo\Q,I;{i Z/(a+1)A Z]N Z], (s )]d } A2t (Aﬁffo) H

j=1

c C

<~ Tt

where AXS, = T (c5(9)) o).
Proof.  Recall that on Qp , [y (i)] < C forall 1 <i < N.

K K
1<CN()<1+%when1<z<KandO<cN()<%When(K+1)§i§N.

By [14, Lemma 16 (ii) ], we have

et A3 (0) 3 [ Btz - e - B ()|

j=1 a—0 7 aA
ol X pla+D)A ' _
_I(jAsz[lﬂN,K‘ANK{;( ) z;)/(m Eq [ZZ"N_Zig(s)—u(s_aA)gN(j)]ds} ]
Jj= -
CK? &, pla+Da ) .o
<I(2Ata_0/aA (LA (aA)'"%)ds < E—’_?'

This concludes the proof.

Lemma 2.5.18. We assume H(q) for some ¢ > 1. For 0 < u < 2,

i 0 A < (gl o+ (54 )

Proof. For s > 0, we introduce ¢; a(s) = aA, where a is the unique integer such that aA < s <
(a +1)A. Then we have

tu N

N 3,.N i, N

Vi / § N ()MPN = MIN ) dM.
i—1

So
1 tu N N
A A ) (M ;
£ 0 £ O = o [ (a2, ) > o) e
J= =
= Al + AN+ AN
where

j=1 =1
2 1 t Y K i, N i, N 2 a K 2 i, N
A = / (ZlcNu)(Mg -3 ) > (R @) (A = e (i) ds,
Jj= =
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First we give an upper-bound for AX}}K. Recalling (2.8) and that

K K
1<CN()<1+CTWhen1<z<KandO<cN()<%When(K+1)<z<N,

and using Doob’s inequality and Lemma 2.4.7, we obtain

m N N
o[ (A8%)] = srmrr®ol [ (ZeAmanr -l ) 3 () 7]
N N
§K4(it)2E9[a_lf.l%}%]ﬂojsuglA<Z_; N (i )<M(]“N1)A+‘5 (“ nA ) jz:; (Cﬁ(j» ZgLN}
§K4(it)2 o L:l,rf.lf?x L+1 O<s<uA <ZCN M(J“Nl Ats M(j“Nl )
(2 (50) 7))
j=1
[%]+1 N
<l 3 120, (A0 e, 0500 ]
[5]41
§K4(0At)21[<:9[ ) ( ) (NG)*(ZaR - ZfaN1>A))4] +%
a=1 =1
cA C ’
= T rear

For the second term, we use Lemma 2.4.6, and we have on Qy i

]

5|

u,2
‘AN,K

) (3 - v ) B[ 3 (c50) (06 — nti)[[ s

1 i=1

(K00) (2 = 2i2s00)) ) Bl | 2 () (4 w0 ] s

<zeim |, B

<o ), (2

g [ Bl (e (2 2 < N (2 - 22)) ]
xwg<cmw_Mm%ds

<2 3 (56) s

S Z[oHN =l

C C
7_’_7

Vi

'MZ

J

NE

<.
Il
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For the third term, we write

N

AN,K 2 ut
Vara(A35) = v [ (S @@ - ) o)

K*A%t?
j=1

ANK ut N K - - N ] ) /
= K4A2t2/ CO’U@ ZCN (MY M@A(s ) (ZC )(MZ M¢;A(S))) ]dsds

ANK . ‘ ‘ . Z Z
N / / Covg [05(1)05(2’)(M§’N M DN = M ),
1<4,3’ jj’<N

RGRGV Y = M ()N = ML )] dsds’

ANK / /
1 ’ + 1 ’
TICAN242 |s—s’[>3A [s—s'|<3A Z

K At )1<ii’jj’<N

. i i i’ \N
Covy [ R (DR (@) (MEN = MY MY =2 N ),

. . N , '/,N »/7N
N DR G MEN = MZN )N = g N ) dsds

But on Qn g, we have

/ / 1 s'|<3ACOU(9[CN()0N( (MY — M;tNA(s))(MZN M;tf(s))
0

4,1,7,7'=1
KGR G MEN = MIN ML = N ) dsds’
ut ut N N N 4 %
<[ tensm (S w0 -2 )
i=1

N

Eg{(ch YN — N )) } dsds’
S/Out /Ou 1|s—sfggAEeKé(cﬁ(i))Q(Zi’N Z;tNA(S)))?F
(P - 2% ) ]%dsds
=1
<o [ [ encisml (200 - 235) + 5 (22 - 22 40)) ]
Eg[(K(ZéY’K zl f( ,)) + KWQ(ZN ZN ))) ]%dsds
<CtA3K?

By [14, Step 6 of the proof of Lemma 30], we already have, when |s — s’| > 3A, that

i, N i, N ,N i, N J,N 7, N i'\N N
(COUO[(MSZ M¢t A(s))(]wZ M¢t A(S)) (M M¢t INCL ))(M M¢t INCL ))}

SC(]_{,L:Z/} + 1{j:J’})t /2A1 q.
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Hence

1oy« Z //l\s s’|>3A(COUO[ N (i) ()(MZN M;JVA(S))(Mg’N M;t]Z(s))

i,1",7,7'=1

KGR ) (MY — Mz ) (2N aeN )] dsds'

N N

St 0 (S 0) (ko) < s

i=1 i=1

Overall, we have, on Q)

Varg(A% 3) K422t2(ANK)2(I§qtf/12+tA3K2)<C(K\[+7)

Recalling (2.8), by Lemma 2.5.17, we have on Quy k,

P Q\
AtK2 / ) N ) Eo| 20N — Zg, s (5)] Jds — W
C C
Gathering the previous results, we obtain:
B 10| [£550. £l — o=
o ] it s )
_KA \/> Vi (fq\£+*)§+%+§

1 K 3
<z * 7w+ ( J)Q )
KA /N Aatl t
The proof is finished.
By Lemmas 2.3.8, 2.5.16, 2.5.18 and [23, Theorem VIII.3.8], we get the following corollary.
Corollary 2.5.19. Assume K < N. Fort > 1, set A, = t/(2[t'~# @tV ) ~ t¥/(a+1) /2 (for
t large). We always work in the asymptotic (N, K,t) — (00,00,00) and in the regime where

\/% + %\/ % + % + Ne—2E 5 0 and where % — v < 1. It holds true that

(LR ())uzo — \1[((11:1p) ta 77Ap)3)(Bu)uZO

for the Skorokhod topology, where B is a standard Brownian motion.

Next, we are going to give the proof of Lemma 2.5.12. Proof.
By Corollaries 2.5.14 and 2.5.19, we conclude that

K N.K a1 11—~y Y
7X ’ v = Bv_va
g B = (T8 * ) B~ B

as desired.
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2.5.3 Proof of theorem 2.5.1

‘We notice that: XQIA’IE 1= Xg tKl By Lemma 2.5.12, we have

¥ AtN(Xﬁfjlwa ") i>N(07g((11:1;Yp) T —VAp)?’)Q)'

By Lemma 2.5.4, we conclude that

K t N N, K, N, K, N,K N,K
AV & T E[Low DX +2DJR05° — 20K - XX |
CK CKti L OVE Cti

“Natartyn T VNa T At
Finally, by Corollary 2.5.3, we have

[t MK N.K
hleNKN Xa: — X )
_hmlﬂNKN,/ NK3+2D;VA{<3}

K [T N
—lim At (XAttl—i—QXAtl)

2
which goes in distribution to J\/‘(O7 3 ((11:71;;) + m) )

2.6 The final result in the subcritical case

We can, at last, give the proof of Theorem 2.1.1.

Proof. One can directly check that W) (1—M1\p’ (“ﬁ)i’;\(;);p), (1_7\1))3) = p. By the Lagrange mean

value theorem, there exist some vectors Cziv, K, for ¢ = 1,2,3, lying in the segment joining the
2
points (ai\[K,V,fV’K,XiV”tK) and C := ( p_ (A p(l_p), (17‘/‘\17)3)7 such that:

1-Ap’ (1—Ap)?

A T AR CARR VAP S

_ w(3)/.N,K y,N,K N,K 3 H (MA)Qp(l—p) H
=) - O (e e a)

o NK 1 ove v (uA)?p(1—p)
- Ox (Cn,xt) (gt 11— Ap) + Ay (CNKt)(V (1—Ap)? )

ov® N,K H
O ()
T Ond (Yol —
From the first paragraph of [26, Section 9], we know that in the asymptotic (N, K,t) — (00, 00, 00)
and in the regime # + &4/ % + % + Ne=pa K Q, it holds that ()™, VX, Xg’tK) - C
in probability. This implies that the three vectors C”]/V,K’t, 1 = 1,2,3, all converge to C :=

(1_“ i (n (Al)ffjf;);” ), (1_’/‘\17)3) in probability in the same regime.

We define from D’ := {(u,v,w) € R®: w > u > 0 and v > 0} to R?

/ —p1))2
(1) o u (2) o v + (U \II )
v (u,'U,'LU) =Uu E, \ (U,U,U})— W
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g
Then we have U®) (u, v, w) = 1=F— in D".

Some tedious but direct computations show that

ow ow™ —(1—Ap)?  0¥® 1 —Ap)?
©=0 (o= UM Oy L)
dy 0z 2 dy w2 Ap
& e)
ou -2l w2pe boy= 10 Ap)*(2p — 1)
0z u (u—¥l) 2up ’
w2 2wl W) gy®@
o —2 +(1-22)ep () - =1
Oy o (T(2))2 - 2A2
(2 oM 1 2
e P L V) W L )
Case 1. In the regime with dominating term \/%, i.e. when [\/%]/[% 8+ %] — 00, We
write
ov® N.K 1%
K|p —p| =VK——(Cx -
\/>[pN,K,t p} VK oz (CN,K,t)(Et 1 Ap)
v Nk (#A)?p(1 —p)
+ \/ETy(CN,K,t) (Vt - W)
v 3 N,K H
+ VE (O (XN - T _Ap)3).
By Lemmas 2.4.1 and 2.3.7 and by Theorem 2.5.1, we have
ov® 1 N,K H ov® 3 N,K w d
VE=—(Chpe) (517 - Ap) +VE = —(Cope) (XIS - Ty Ap)g) KN
Next, we notice that
ove t,K,N—oo —(1 — Ap)?
gy (O T T GRR

So by Theorems 2.3.2 and 2.4.2, we conclude that

PeIe) x (uA)?p(1—p)\ a pP*(1-p)?
\/ETy(Clz\I,K,t) (VtN " W) - N<0’ 74)’

Case 2. In the regime with dominating term %, i.e. when [%]/[\/% + &\ /8] = o0, we
write
WET. WE ou® vk
7[pN,K,t —p} = ( NKt)(at ST )
N N Oz i) 1—Ap
VK 3‘1’(3)( 5 )(VN,K  (uA)?p(1 —p)>
N gy TN (1—Ap)?
N 9z NEL\TLA (1 Ap)3)”
By Lemmas 2.4.1 and 2.3.7 and by Theorem 2.5.1, we have
N Oz N K I\ 7 1—Ap N 0z NKt LA (1 — Ap)3 '
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Finally, using Theorems 2.3.2 and 2.4.2, we find that

# [ﬁN,K,t —p} 4, N(O, W)

Case 3. In the regime with dominating term #,/4¢, i.e. when [%\/Q]/[\% + %] — 00,
limy, g o0 % = <1, by Lemmas 2.4.1 and 2.3.7 and Theorem 2.5.1, we have

Ay gou® NK M v, vx  (1A)’p(1—p)
iV T T e (17 = 725) + T e (VI = )

v 3 N,K I d
T (Ol (X5 - g op) o

Hence it suffices to study

A, OB
TV T (O (XS - XX).

But by Theorem 2.5.1, we conclude that
K |t

N E{ﬁN,K,t— } —>N(

( QApf (1=~ ApP* + 71— Ap)) ).

Next, we are going to prove the proposition 2.1.3.

Proof. 'We remark the for the case p = 0, the result of Theorem 2.5.1 holds true (we do not need
the limit of % anymore). For matrix, it is easy to check /& =1, VK = (0 and onvofo = pu. We
define

flu,v,w) := m when u >0, w >0 and f = 0 otherwise.

By [26, Lemma 6.3], we have

K |t
lim ].QNKN A — (N =0
t

Hence by Theorem 2.5.1, we have:

K t N,K

N,Ky d 3
]_QNKN At(XAf’ — & )-)N(O,§>

By [26, Lemma 6.3, corollary 8.9], we have in the regime & A’ + t\f + Ne~»aK 5,

N,K

lime; " =lim Xg;f =i in probability.

Overall, we conclude that

K NK \,NJK NK, d 3
1QNKN Atf( Vt Xt,At ) —>N<O7 g)

By theorem 2.4.2; we have

1QNKt\]CVNK d N(o 2u)
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N

Hence in the regime [W]/[% 2

2t]2 — oo, we have

lim

A
t ‘VtNK‘ = in probability

[K
and since UG (u, v, w) = %1{1»0}, we deduce that

R d
P =T VIE ) S 0.

In the regime [£ \/Q] /[t\Nﬁ} — 00, we have

£2(e! N,K VNK XtNA{()

N,K N,K N,K
Vt Tt f2(€t 7Vt 7Xt,At )

— 1 in probability

and
limP<VtN’K > 0) -

Therefore
R d
PNkt — X.

2.7 Matrix analysis for the supercritical case

We now turn to the supercritical case and thus assume (A).

We recall that the matrix Ay is defined by Ay (i,j) :== N710;; for i,j € {1,..., N}. We assume
here that p € (0,1] and we introduce the events:

N N
1 D - »’ -
2 2 2 —
Q% _{N El ElAN(@,j)>§ and |NA%(i,j)—p |<W for all 173—1,...,]\7},
=1 j=

Q§’2::{ ZZANH Lhnas.
=1 j=1
We know from [26, Lemma 10.1] that

Lemma 2.7.1. There are some constants C,c > 0 such that for all 1 < K < N, we have

POE?) > 1 - Cem N,

Next, we recall the definition of py of [14, Lemma 34].

Lemma 2.7.2. Assume thatp € (0,1]. On Q%, the spectral radius py of An is a simple eigenvalue
of Ay and py € [p(1—1/(2N3/%)), p(1+1/(2N3/%))]. There is a unique eigenvector V € (]R+)
of Ay for the eigenvalue py such that ||Vy||2 = VN. We also have V(i) > 0 for alli=1,...,N.

Remark 2.7.3. On Q3%;, we define ay as the unique number such that pn [~ e *V*¢(s)ds = 1.
From py € [p(1—1/(2N?/8)),p(1+1/(2N?3/8))], we conclude that limy 00 any = g, where ag > 0
is defined by pfooo e~ *3%¢(s)ds = 1. Recall that Ap pfo s)ds > 1 by A. Furthermore, under
assumption (A4), we have ay = py —b and ag =p — b.

We introduce VN =IxVy,aswell as Vi = = ZZ 1 Va (i) and we write Vi := V. We first
recall the following result, see [26, Proposition 10.6].
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Lemma 2.7.4. There is Ng > 1 and C > 0 (depending only on p) such that for all N > Ny and

al K € {1,...,N},
- (=

]E|:]_QIA(7,2 p \/}_?7

where UNK = K(VL,?)? Zf;(VN(i) - V)2

Next we state some properties of the vector Vﬁ.

Lemma 2.7.5. Assume that p € (0,1]. The following properties hold true.

(1) impy, koo Lor, 2VEVE/|[VE|2a =1 a.s. For any fized i € N, limy_,0 1 Qs 2Vn (i) =1 a.s.

1) There is C' > 0 such that on Q , we have N K: Vn(i) = V2 < CNi a.s.
K 2ui=1 N
(11t) There is C > 0 such that E[lgg,z% SE (Vn() = VE? < C.

Proof. By [14, Step 1 of the proof of Lemma 39], on Qﬁz C Q% we have, for any i = 1,..., N,
V(i) € [en(1 — 1/(2N3/8)), kv (1 + 1/(2N3/%))], (2.19)

where ky = p?p >N~ Z Vn(j). Then the first result of () is obvious, by Lemma 2.7.1. For
the second result in (i), we only need to verify that limy oo kv = 1. But we easily deduce from
(219) that imy_ oo kv = limpy o0 Vi, so that imy oo kny = limpy_s o ||VN||2/\/N =1.

By [14, Lemma 35-(ii)], we already know that Vy (i) € [3,2], for any i = 1,..., N, on Q%. B
(2.19), we deduce that ky € [1,4]. Using again (2.19) gives us (ii).

For (iii), since Vi is bounded by some constant C' (on Q§2) and by Lemma 2.7.4, we have

K
D (Vi) = V)] =E[Lgree (Vi) UL K] < CE[LraUZ] < ©

i=1

N

E[lﬂﬁj ?

as desired.

Lemma 2.7.6. Assume that p € (0,1]. On Qﬁ’z, there exists some constant Ny, such that for all
N > Ny, all K € {1,...,N}, for alln > 2,

i ALl € [V laphe OV [V oo ],

Proof.

We write A% 1n = |[[A%1n|l2([|[V N2 ' VN + Znn),
where ZN,n = HA?V:lNH;lAR,lN — HVNHEIVN
By [14, Lemma 35-(v)] (with 7 = 2), we know that ||Zy ,||a < 3(2N~3/8)"/21+1 We next write,
for each n > 0, A"N+11N = ||A?V1N||2(HVNH2_1/)NVN + ANZy ) (recall that ANV N = pnVN).
Using the fact that |||An]||2 < 1, we conclude that

1A% 1xll2 — o[ AR Lwvll2| < BlIAN Lwvll2l| AN Znnll2 < 3[|AR Ly |l2(2N /%) /215,

We now set z, = ||A%1n]|2/(|V v|l2p%). Dividing the previous inequality by pi*||V x|2 and
using that px > p/2 on Q?\,, see Lemma 2.7.2, we have, for all n > 0,

|Zpai1 — @p| < 3, (2N T3/ 2041 0 < 6, (2N T3/8) 02041

We easily conclude, using that x¢y = 1, that for all n > 0,

n

[ﬁ ( 6(2N~ 3/8 Lk:/2j+1/p> H <1+6 (2N~ 3/8)U€/2j+1/p)}



2.7. MATRIX ANALYSIS FOR THE SUPERCRITICAL CASE 117

We conclude that there exists a constant C' such that for all N large enough, for all n > 0,

n

ech*% < ﬁ ( 6(2N 3/8)Lk/2j+1/p) H <1+6 (2N~ 3/8)[k/2j+1/p) < ON™ m'

_ 3 _ 3
We obtain that for all N large enough, on Q%;, for all n > 0, z,, € [e"“N ', e“N '], We also

have x,, € [1/2,2] for all n > 0. By definition of z,,, we conclude that for all n > 0,

_ 3 _ 3
AN N2 € [IV N ll2pRe™ N IV N [2pRe ™™ 7).

Moreover, by [26, end of the proof of Lemma 10.3-(vii)], we know that for all N large enough, all
Ke{l,...,N}, onQN,foralln>0
Ik Axin]lz [V a2

_ < 3 2N 3/8 |_7L/2J+1
il [Vl =2 )

Gathering the two previous estimates and using the fact that ||A%1x||2 < N'/2, we thus conclude
that, still on QA*2, for all n > 0,

_ 3
1k AN1n]|2 € [Hvlz\(/HzP?ve*CN ' — 3N2(2NT3/8)ln/2H

_ 3
|V E|2pheCN 1 4 3NV/2(2N—3/8) /2041 ]

The conclusion easily follows, because one can find a constant C' > 0 such that, on 0%:2

3N2(N T8 In2HL < |V |20 (1 4+ CNT3/1),

Indeed, |[V&|2 > 1/2 (because, as already seen, Vi (1) > 1/2), and py > p/2 > 2N 3/8, see
Lemma 2.7.2. Since n > 2 (recall the statement), this is sufficient.

I A% 1 ¢
Nz

n>0

Next, we define

and we recall the definition of o, see Remark 2.7.3.

Corollary 2.7.7. Assume (A). There are some constants C > 0 and No > 1, such that for all
N > No, t > 1 on Q87

N,K
Uy

_ 3 _ 3
€ {,ue_CN b 4(012[)2 (eoNt —1) — Ct, peN PN (XNt — 1) + Ct}.

Proof. For n = 0,1 we always have, on Qn"?, since |[Ix A% 1x|l2 < VK, |[VE|2 > VK (since
Vn (i) > 1/2 as already seen) and py < 2p (see Lemma 2.7.2)

I A% 1
H Iiv ||N|2/ (]5*” S)dS‘-F‘,Uze_CN 5 n / s¢*n( S)dS‘SCt
N2

Hence by Lemma 2.7.6, we have
_3 t _ 3 t
vaK {ue_CN 1 Zp}l\,/ s¢*™(t — s)ds — C't, peN *° Zp?{,/ ™™ (t — s)ds + Ct|.
n>2 0 n>2 0
But, recalling Assumption A, we have ¢*"(t) = t"“te~%/(n — 1)! for n > 1, which implies that
(recall that ay = py — b)

¢
Z pN/ s (t — s)ds = pN/ seb=3) (ePn(t=5) _ 1)ds = piN)g(eo‘Nt -1 - p—N(l — et
0

(07
n>2 N

Since £ (1 — ™) < C, the conclusion follows.
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It is easy to deduce the following statement.

Corollary 2.7.8. Assume (A). There are some constants C,c > 0, to > 1 and Ng > 1, such that
for all N > Ny and t > tg, on Q§’2,

N,K
ceNt < v < Ce“Nt,

Proof. We work on Q§’2. From Remark 2.7.3, we already have ay — ag = py — p and p/2 <
pN < 2p. By Lemma 2.7.2, we conclude that
)

O+N3/8

C
an € [O‘O T N3/
By Assumption (A), we know that cg = p — b > 0. We can choose Ny large enough so that for all
N > Ny, ay > % >0 and ay < % So there are some constants C' > 0, ¢ > 0 and ty > 1 such

that for all ¢ > tg,

CN71376 PN ant ant
e (an)? (e™*—1)4+Ct < Ce

_ 3
—en ((f]]\fv)Q (et —1) - Ct.

DLNt

< pe

Then the result follows from Corollary 2.7.7.

2.8 Analysis of the process in the supercritical case

The aim of this subsection is to give some analysis of the process Ziv ’K7 which will be used in
the proof of the main theorem in supercritical case. Recalling [26, Equations (20)-(21)], we write

Eo[ZY MZ[/ sqb*"t—s)ds}[KAN N = o EVE L IVE (2.20)
n>0
UMK = ZN K _Ry[z) 5 = Z/ ot — 8)[g AR MNds = MY + gV, (2.21)
n>0
where
IgA%1 K
N.K Z 115 N2 / ™ (t — s)ds, (2.22)
= IVl o
Ik AR 1
M=y / s™ (t — s)ds} [IKA" Mvﬂ, (2.23)
n>0 HV ||2
AR Z/ o (t — s) [k A MY ds. (2.24)
n>1

As usual, we denote by IZ’N and JZ’N the coordinates of I,{V’K and JiV’K and by ft]V’K and th’K
their empirical mean.

Lemma 2.8.1. Assume (A). There are some constants C > 0 and Ny > 1 such that for any
N >Ny, any K€ {l,...,N}, any t >0,

Lo |[Eo[Z7 ][0 < Ce".
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Proof. By [14, Lemma 35-(vii)], we already have, for all n > 0, ||A%1n]||coc < CpR. Then by
(2.20), on QK2

t
Bzl <Y [ [ 507 — s)is] AL

n>0

<u X[ [ oo opas] s
n>0

<OZPN/ s¢™" (t — s)ds.
n>0

Recalling that ¢*"(s) = s""te™%/(n — 1)

t
1B [ZY 5| |oo §Ct+C’pN/ seoN(t=9) g
0

PN ant ant
— NV __ < Nt
co(t+ e 1) < Ce

For the last inequality, we used that px /a3 < C (for N > Np), as in the proof of Corollary 2.7.8.

Next, we give the bound of || I,

Lemma 2.8.2. Assume (A). There exists Ng > 1 and C > 0 such that for all N > Ny, on QI]\(,’Q,
we have for all t > 0 ,
115, < CtVENTS.

Proof.  See [26, Lemma 11.1].
Corollary 2.8.3. Assume (A). There exists Ng > 1 and C > 0 such that for all N > Ny, on
Q 2 , we have, for allt > 0,
(V)2 < C*N™1
Proof. By using the Cauchy-Schwarz inequality and Lemma 2.8.2, we directly have:
() < KIS 3 < PN
which completes the proof.

Corollary 2.8.4. Assume (A). There exist Ng > 1, to > 1, and C > ¢ > 0 such that for all
N > Ny, on the set QJI\?Q, we have, for all t > ty,

ceNt < Eg[ZtN’K] < Cent,

Proof. By (2.20), we have Eg[Z]5] = NKVN + IN% . By [14, Lemma 35-(ii)], we have
Vn(i) € [3,2] for all i = 1,..., N, whence VX € [3,2]. Then the conclusion foolows from Corollaries
2.7.8 and 2.8.3.

Lemma 2.8.5. Assume (A). There exist No > 1 and C > 0 such that for any N > Ny, any t > 0
and anyi=1,..., N,

(i) 1Q§,2]E9[(JZ’N)2] < CN-le?ant gnd 1Q§,2E9[(ZZ’N)2] < Ce?ant,
(ii) 1Q§‘2E9[(UZ’N) ] < C[N~te?ent 4 eont] and 1QK2E9[(J; Ny4) < cetont,

(iii) 1955,21@9[(2;“)4] < Cetent gnd 1955,21[«:9[(@“)4] < Cetont,
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Proof. First we prove for any i = 1,..., N, 1QK,2E9[(JZ’N)2] < ON~le?ont By [14, Remark 10],
N
we already have

Eg[MPN MEN] = 1451 B[ Z]03). (2.25)

Recalling (2.24), we deduce that

N
B[N = 3 / / G =)= 5) S AT, §) A (5, k)Eg (MY MFNdrds
m,n>1 7,k=1
N
- / / 5 — 1) (E— ) S AT, §) AL (i, B[ 23 drds.
m,n>1 j=1

And by [14, Lemma 35-(iv)], for all n > 2, we have A% (i,7) € [p%/(3N),3p%/N] on Q&*, while
by Lemma 2.8.1, we know that Eg[ZZN] < Ce®~(7s)  Hence

Bl <N S [ [0t - e s
m,n>1

<ONT' YD / / Tt )6 (¢ — )l e drds
m,n>1

2
=N~ Z / O™ (t —r)pe E dr)
t - 2
=9N_1(pN/ eO‘N(t_")e%dr) < CN~te?ant
0

since py < 2p, see Remark 2.7.3. This finishes the proof of the first part of (i).

By (2.25) and Lemma 2.8.1, ]_Q}If/,zEg[(M;’N)Z] < 1911\5,2H]Eg[ZiV]HDO < Ce*Nt| whence, recall
(2.21),

1o 2Eal(UN)?] < 21 {Bol(JPN)?] + Bol(M;N)?]} < CINT1e2ont e,

By (2.21), we write Z;'" = Eo[Z"™] + U™, And by Lemma 2.8.1, we have 1Q§,2EQ[Z§’N]2

Ce?2nt whence
1£2§,2E0[(ZZJV)2] < 1521§=22{E9[ZZ7N}2 +E9[(UZ7N)2]} < Ce2aNt-
We have finished the proof of (i) and of the first part of (ii).

To verify the second part of (ii), we use that by Doob’s inequality,

Low2Eg[(MPY)Y] < 1QK21E9[(21N) ] < Ce?ont, (2.26)

Then by Minkowski’s inequality, we have, on Qﬁ’Q, (recalling (2.24) for the expression of Ji"V)

N
B < [0 93 ARG RN s

n>1 k=1
<CZ/ *”t—se?ds
n>1

t
=CpN/ N (t=8) o == 1 < CeoNt,
0
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which ends the proof of (ii).

Point (iii) easily follows from (ii) and (2.26), using (2.21) and Lemma 2.8.1:
LosBol(U )] < 1gueat{ o7V + Bo[(M] V) ]} < Ol + 2]
1o aBol(Z))) < 1 sa{Bo (20N ]! + Bo[(UF Y)Y} < Cetont,
We finished the proof.

Lemma 2.8.6. Assume (A). There exist C > 0 and Ny > 1 such that for all N > Ny, all
K=1,...,Ng, allt >0

N, K -1 _2ant
1911;,2E9[|Ut |2] S CK 1820{1\”‘.
Proof. By (2.21), Lemma 2.8.5 and the Cauchy-Schwarz inequality, we have

€2aNt eOLNt Cez(th

N+K_K

Lo 2Bl 072 < 1o 22{Bo[(F )] + B (31,72} < €|

Lemma 2.8.7. Assume (A). There are C > 0 and No > 1 and to > 1 such that, for all N > Ny,
all K=1,...,N, on the set QIA(,’Q, for all t > tg,

e < i) <o e+ o)

Proof.  We work on QKz. By [14, Lemma 35-(ii)], we have V¥ > 1. Thus ZNE < N g
implies that | e V| > 1, so that

5N,K

7 =N,K VK
NK)§4MH [ |+ 147
Ut

o) <m [

P0<ZNK

1
1 UN,K

t

by (2.20) and (2.21). The conclusion follows, since v > ce®~* by Corollary 2.7.8, Eq[| IV 5] <
CtN—3/8 by Corollary 2.8.3, and Eg[|U,""|] < CK~1/2¢2~* by Lemma 2.8.6.

The following statement is then clear from Lemmas 2.7.1 and 2.8.7 and Corollary 2.7.8.

Corollary 2.8.8. Assume (A). It holds that,

I P(QK2m ZNE >
(N,K,t)—l)r(noo,oo,oo) N {

K>0}):

»JM»—‘

We conclude the subsection with the following statement.

Lemma 2.8.9. We assume (A). In the regime where (N, K,t) — (00,00,00) with 1 < K < N
and

N 1 N
N \ﬁ — 0 with proriades (2.27)

we have lim Lo z(fe”zvf + \/%) =0 and lim lﬂﬁ'zeﬂ% =00 a.s.

Proof. On QK ? we have an = py—band ag = p—b (see Remark 2.7.3), whence Sy = elPn =Pt

euot

so that & aot - [e” 7St (52‘ng/8 t] by Lemma 2.7.2. The conclusion follows.
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2.9 Proof of the main result in the supercritical case

We recall that Z/{tN K was defined in (2.3). The main result, in the supercritical case, will easily
follow from the following statement.

Proposition 2.9.1. We assume (A). In the regime (2.27), it holds

191’5,‘20{2tN’K2iv§V’K>0}% [utN,K - (]13 - 1” = N<0’ 2((51;))):)'

We set DN’K = Z/IN’K — (% — 1) and we use the following decomposition, on the event Qﬁg N
{Zt]V,K> 1 NK>0}
,DiV,K _ ,DiV,K,l 4 ,DiV,K,2 4 ,DiV,K,B (2.28)

where, recalling that UXX was introduced in Lemma 2.7.4 and that v;N K was defined in (2.22),

_ N _

D! —TNK) (*II 2 = 213 = NZPE — o VR - VL)),
D2 N g (L) - ]
e (V)L

DN.K3 _ |:UNK (7 _ 1)}
p
Lemma 2.9.2. We assume (A). In the regime (2.27), in probability,

. eNVE N ks
llm19§,2T|D | —O
Proof. Tt suffices to gather Lemma 2.8.9, from which 1,x.2e*¥*/N — 0 a.s. and Lemma 2.7.4,
N
from which VK12 |UNK — (% —1)| is bounded in L?.
N

. N,K,2
Next, we consider the term D, " “.

Lemma 2.9.3. Assume (A). There are some constants C > 0, to > 1 and Ny > 1, such that for
all N > Ny and t > to, on the event Q>N {ZN" > 3 o > 0},

N,K,2 N -k ok 2( 1 t )
) ) < P _ J— .
[ID; ] < CKHVN VN 1kl NG + NEont

K> 0}. Recalling (2.20) and (2.21), we can write

Proof. We work on Qﬁ’Q N {ZtN’K > i

SN,K NE\—1 K N,K 7N, K =N, K
ZX @) = V] < )T (IR 10K,
According to Corollary 2.7.8, there eX1sts some positive constant ¢ such that ce®~Nt < UN K On

the event Q5. we already have Vi > 1 1 by [14, Lemma 35-(ii)]. Since |1 — —| = |w| <
128|z — y|, for =,y > i, it holds that

TN, K N,K —ant
2|I |+|U |  CNe v

128N
D < VR = VA Lrl3(7 [+ (T ).

By Corollary 2.8.3 and Lemma 2.8.6, we ﬁnally obtain
N _ t 1
N,K,2 N,k oK 2
B0 <C IV - VIl (p o+ 75)

which completes the result.
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Corollary 2.9.4. We assume (A). In the regime (2.27), in probability,

eNtEK PNE2| _
K e~

Proof. By Lemma 2.9.3, we have Eo[|D)"52|] < CRIVE — Vi1k|3 (7 + \F) on the
NgedN?t
event QII\(,’2 N{zZN"*" > %’U;V’K > 0}. By Lemma 2.7.5-(iii), we know that 1« K||VN VE1g|3
N
e Nt\/K( t
N

3
NS@C’Nt

is bounded in L', whence the conclusion, since + ﬁ)lﬂﬁa — 0 by Lemma 2.8.9.

N,K,1

Next, we consider the term D, , starting from

N,K,1 N,K,11 N,K,12 N,K,13 N,K,14
Dt’7:Dt” +Dt)) +2Dt’, +2Dt”7

where
DN,K,ll . N HIN,K I ].K +JNK o JNK].KHg
¢ = =Nkt t ;
K(Z;7)?
N NK o NK N.K
DY o I = 1§ - N2V,
K(Z,"")?
N _ _
DiV’K’l?’ = 7N, K\9 (I£V7K - ItJV7K1K + J£V7K - Jt]v,KlKa
K(Z;7)
N EWE VL) + MYE MthK1K),
N NK [+ K N.K N.K 4
DNEM N (VN Vi1, MK N K).
K(Z;7)?
N,K,11

First, we study D, . In order to obtain its limit theorem, we need the following lemme.

Lemma 2.9.5. Assume (A). There exist Ng > 1 and C > 0 such that for all N > Ny, any
K e{l,...,N}, on the set Qﬁ’z, for any t > 0, we have

() Eoll MM — SN 1,3 < CKe™,

. K Vi - Vi1
(i) Bl — 713t < 0y Koo 4 V0 Licl e,

IVl
(iii) ElIUN — O 1] < O (Ken! + -V 1xl3).
Proof. 'We work on Qﬁ’Q. Recalling (2.25), we write
Boll| M5 — M 1k 3) ZEe [(MPY)?) = KEo[(MVF)?) = > Eo[ 2] — KEo[(M]F)?).
i=1
Hence we deduce from Lemma 2.8.1 that
K
Eo[|| M5 — MN 51,2 Z ZN] < CKeon?,

which proves (7). For (i7), in view of (2.24), by the Minkowski inequality, we have

m\»a

E9[||J§“K - J§7K1K|\§} < Z ¢*n t—s EB[HIKA” MY — T A% MY 1|12

n>1
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where Ix AR MY = L Zjvzl SR A% (i, j)MPN . Using again (2.25), we see that

K

AR Z
K .

) Z k.4)) Eolzi™)

)]

I
M=
Mz

o[ I AR MY — L AR MY 1ic|3] = Y Bo|

H'MZ

s
I

-
I
—

>3- (4

1j=1

I
M=

<J
(

-
Il

IN

N
CeaNS Z ||IKA7V6] — IKARIGJ]_KHS
7j=1

For the last inequality, we used that max,—;  nEg[(Z/™V)2] < Ce2*Nt by Lemma 2.8.5 and we
introduced e; € RY with coordinates e;(i) = 1(;—;;. Using the inequality ||z — Z1y||2 — ||y —
gln|l2 < ||z — yl|2 for all z,y € RY,

Ik ANe; —IKA’I{[eleHQ
[ ARe;l2
IVl
IxAye; H HVN V16(1K||2>
IxAjesly HVN||2 IV l2
[Vy - V15<1K||2)
IVl '

<[ i ARve; - kAR eJ||2VKH + IV = Vi Liclla

||V 2

=lticAkeslla ||

<CllxcAje; (N3 +

by [26, Lemma 10.3-(viii)] with 7 = 2. From [26, Lemma 10.3-(iv)], for all n > 2, we have

K 1
Ce]f WK,
|k ARellz < [ Y (AR G.3)?]" < =k

i=1

We then conclude that

narN T _An \JN. 211/2 ans/2 K n —3/8y\|n/2] ||V§*VNKlKH2
Eo[|[Ix AN M, — Ik AR MN1k|[3]/* <Ce NpN((QN ) + VE| )
Nll2

So on the event 9115,2,

N,K  3N,K 1 -2 L ] Hvﬁ 1K||2 *n 2ne
Eo[|| ;" — J; " 1k]3])2 Z [2N + VE| /¢ —s)e 2 ds.
n>1 2

Using [14, Lemma 43-(iii)], we conclude

Zp (2N~5)L3 J/ " (t — s)e = d5<eaNfsz 2N77 L3 J/ P (t s)dsﬁC’eaTNt.

n>1 n>1

And we can compute directly, recalling that ¢(u) = e~** and that py = ax + b, that

t
ZPN/ Ot —s)e 2 ds —pN/ M=) "5 g < TN 2PN ot < Cle™N?
0

«
n>1 N

by Remark 2.7.3. All in all,

- 1 K ant vl —vEkl o
Eo[||JN5 — TNE1k|3)2 SC\/N{e | N”V;Jﬂ kllz,, Nt]
NIl2
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This completes the proof of (ii). For (iii), we recall (2.21) and write U™ = MM 4 VK
whence

)

Eo[|UN" — O 18] <2(Bolll M7 — 0 18] + EalIl T = T 1))

By (i), we have Eq[|| M5 — MM 1, 2] < CKe*~t. By (ii), we have Eq[||JN* — JN5F1,)12] <
C(Kent4 EQQTM |VE —VE1x|3). The conclusion follows, since, as already seen, we have Vi (i) >
1, whence [V |2 > ¢VK, by [14, Lemma 35-(ii)].

Lemma 2.9.6. Assume (A). In the regime (2.27), in probability

ant K
lim 1Q B iu)i\f,K,ll'

NZNE>1yY K501 N =0.

Proof. By Corollary 2.7.8, we easily deduce that

N,K,11 CN N.K N, K N, K
Lostanqznss g oy DN < LgmacZ s (1T + 100 = 7V 1|3

By Lemma 2.8.2, we have

N N.K N 5, K 12N1
Lot egmant 10l < ot oot 77 = ot e

As seen in the proof of Corollary 2.7.8, on QN’ , an > agp/2 (if N is large enough), so that
1

lim lﬂg,zeﬂf—it = 0. And ].Qﬁgﬁ = 0, see Lemma 2.8.9, implies that 1QK,2],¥7;,5 = 0. Hence,

we obtain lim 1%,2%”1%’%@ = 0.

From Lemma 2.9.5-(ii) and since ||[V¥|2 > ¢V/K on QK2 (see the end of the proof of the
previous lemma), Eq[||J;" — TN 1 |3] < O(Eeont 4 MN’ vk -
2.7.5-(ii) and since ay > ag/2, we have:

N N,K N, K
Lo T Boll T = TV 1k 3] < Clguea (-

VE1k|3). Hence by Lemma

1 1 < 1 1

an f+N4> ClQK2(€a0t +ﬁ>.
— JV1k]12]] = 0 which complete the proof.
Lemma 2.9.7. Assume (A). In the regime (2.27), in probability

eNtVK PN, 14
>0}T| h |

Finally we have im E[1 .2 7 AR

lim 1Q > N K

oz =0.

NH

Proof. By (2.25) and Lemma 2.8.5, we have
_ 2 _ 2
IEQKMNK—MNKlK,VN V§(1K> } Eg[(MNK vE VNKlK) }

K

:Z ]E [Z’L N}
i=1
<C|Vy = Vi [ze~".

By Corollary 2. 7 8, we knwo that ce®V! <

i K< Z K for ¢ big enough, on the event Qﬁg N
{ZNE > v K> 0}. By definition of DN

€O‘Nt\/E N,K,14
w50y Boll D]

1

4
N,K N,K 7 K 2 %
S\/?]_QK,QEQ[(Mt B VAL PO 7o VN1K)H

Va2




126 CHAPTER 2. CENTRAL LIMIT THEOREM FOR HAWKES PROCESS

It suffices to gather Lemma 2.8.9, from which 1,x.2e*¥*/N — 0 in probability and Lemma 2.7.5
N
(iit), from which 1¢rc. KV — V% is bounded in L.

N,K,13 N,K,131 N,K,132 N,K,133
Dtvv :Dt) ) _"_Dt) s _"_Dt)y

Next, we rewrite , Where

N 7 _ _
DY — (IﬁV’K — IV + TR = TN oMV - VJ\IflK)),
K(z,"")
N _ _
DiV’K’132 _ —— (IéV’K _Ith’KlKvMiV’K _ Mt]V’KlK),
K(z,")?
N N.K  FN,K NK 1 yN,K
DiV’K’l?’g’: - (Jt’ — JNE Y MNE N 1K>.
K(Z,7)?

Lemma 2.9.8. We assume (A). In the regime (2.27), in probability,

en? KDN,K,131 —0
P L

Proof. By Corollary 2.7.8, we have v)""" > ce®~' on the event Q5% N {ZNF > ivtN’K > 0}

whence, by definition of D{ZV ’K’131,

N,K,131
1 . _ DN
2z > 1o < 50y D |

] LA AR VI PR AR AL P BT A S P

Keant

Hence

ant, /
1 k2 =Nk N,K ﬂrDN’K’B”
Qnin{Z " > 10" >0} N t

C - N _
Stggn e I+ 130 = Tl (4 e IVA = Vel

By Lemma 2.8.2, we have

C o NK N -k = CtVvK ; I[N -
Loge S Il (4 T IVA = VLl ) 1o =0 (y IV - Vi),

By Lemma 2.7.5-(iii), we know that 1«2 % ||VI]\<,—‘_/]\I,{1K||§ is bounded in L'. In the regime (2.27),
N

. . N.K K O . -
we have lim Lo C]tv\/? = 0. So lim 195*"%”@ II2 (. [EVy - VNKlKHQ) = 0 in probability.

7
8

By Lemma 2.9.5-(i¢), we conclude that:

CVK
N

1
VN
As already seen, on Q&"*, we have Vy (i) > 1, whence IVE|2 > ev/K, by [14, Lemma 35-(ii)].
And by Remark 2.7.3, we see on Qﬁ’{ eONt < 0tesn378t Hence

VN — Vzé{lKHzeaNt}]

1 |
E[].QKQ{G;aNt‘F K
N IV ll2

T 1
EfL e[ J2F — T F 1,3} <

L bt _pt
Ce2%tean3/8 /K  e*0lean3/8
_|_
N N

1 NK _ iNK 1 -
T Elage 1T = 1xll3]® < E|lez| VR~ Vz\lflKHz]
In view of (2.27), we know that lim e3v3/% = 1 a.s., lim e(;\?t = 0. By Lemma 2.7.5-(iii), from which

1Q§,z%||V]I§ — V|3 is bounded in L. Then we finish the proof.
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Lemma 2.9.9. We assume (A). In the regime (2.27), in probability,

NIV PNK132) _
o Es0y Ty Dy | =0.

Proof. By Corollary 2.7.8, we have ce®~* < Z;"'¥ on the event Qx> N {Z"* > 1vV% > 0}. By
the Cauchy-Schwarz inequality,

eocNt\/E

N,K,132
19%’20{25\7’K2%vt]\]’K>0} N ‘,Dt ‘ < 1QK 2

N,K N,K N,K
fnr LY ACS TR P

By Lemmas 2.8.2 and 2.9.5-(i),
CtVK

]_QK,Q apnt
2

_C¢
N eaNt\/E
By Remark 2.7.3, we obtain

N,K N.K _ 37rNK
Bo[ll 1 (2| M — M7 1k 2] < 19%*2

3
8

ant
EON \/E|,DN,K,132|:| SE[ L CtvVK ] <62N - CtvVK

E[IQsz{ZN K> 1N Koy N

—4 NS eaTOt &
In the regime (2.27), we have limezne7 =1 as. and lim iﬁs =0 a.s., which ends the proof.
Ns&

Lemma 2.9.10. Assume (A). There are some constants C > 0, tg > 1 and Nog > 1, such that for
all N > Ny, on the event, for all t > to, Qg’Q,

. 3 K Ctezont
B |(J7 = I MUTE)? T < Oty [+ eN‘F

Proof. In view of [14, Proof of Lemma 35, Step 5], we already know that on Q3%;, for all n > 2,
j=1,.. N,

maxi AN 5) (g 4 on=3/%2(1 4 SN=H5) < 1 4 SN,

min; A% (3, j)
By [14, Lemma 35-(iv)], we know that for all n > 2, A% (i,5) € [p%/(3N),3p% /N]. Hence we
deduce that : foralln>2,4, j=1,...,N,

'AN(ZJ) - EZAN(I%J)‘ < B

We then write, for n > 1,

K
(ARG = 2 D Ao, ) ) EalMIN MFN M 0],

=
Il
—_

By Lemma 2.10.3-(iii)-(iv) in the appendix, we conclude that, for n > 2,

n K N ) . .

ST O O [EelMl MMM N
i,i'=14,j/'=1

ONK o, oviirsy  CN2Kt2 ,

TN e NI ——— pRrennt
N2+ N2N2+4
<CKt
SNy

E, [(IKA’;,M — I AR MY 1y, MN)2]

2n N (t+s)
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_ . . . . 1 .
For n = 1, we just use Ay (i,7) < & to write,

K N

2 C ) ) . y
Eg[(IKANMf—IKANMﬁﬁK,MgV) } <oz 3 RPN M AN b
ii'=14.j/=1
LONK o ey, CEN’K
g NZNZ
2
=TN

by Lemma 2.10.3-(iii)-(iv) again. Then we conclude, recalling (2.24),

1

E, {(JN,K _ jN,K MN7K)2} 2

<Z/ O (t = 5)Eg | (Iic AR MY — WlK,MN) }%ds
n>1
\F / Z / t—s)ds}
:Cteaévt{\/ﬁ/teaév 67’]1\\;;/?2/ ﬁv(tnijsyle%e—b(t_s)ds}
0 8 !

aNt
<Cte™N'y [ — K + 7Ct62 VK
N Ns

We used that ¢**(t) = t"~te=%/(n — 1)! for all n > 1.

<Cte

Lemma 2.9.11. We assume (A). In the regime (2.27), in probability,

€°‘Nth|DN,K,133|
— D,

1N K50y N =0.

lirnl K,2 >N,K
Qy n{Z,

Proof. By Corollary 2.7.8, we know that on the event Qﬁ’Q N {ZtN’K > vt K 0}, we always
have ce®Vt < ZtN’K. With Lemma 2.9.10, we conclude that, by Definition of DJ/V K133

e N/ K

QNYKQ{ZtN’KZ%UéV’K>O} N

)

Ct Cte 5 Ct Cte =z
< — + ezz\r~“/8 .

1
\/N N ~— VN N

N,K,133
Eo[|D; ] <

In view of (2.27), the proof is complete.

Summarizing Lemmas 2.9.8, 2.9.9 and 2.9.11, we have the following corollary:

Corollary 2.9.12. Assume (A). In the regime (2.27), in probability

eV K DN
— D

o} =0.

N, K

lim 1QK 2 {Z

>1,
4
By Corollaries 2.9.4, 2.9.6, 2.9.7 2.9.12 and Lemma 2.9.2, we conclude:

Corollary 2.9.13. Assume (A). In the regime (2.27), in probability
eVt K
im Y f pesca) sy paett| s s g

N,K,12

It only remains to study D, . We need some preparation.
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Lemma 2.9.14. Assume (A). In the regime (2.27), in probability

Eo[Z)"F] _ . ZME : Y (ZEY)? (up)?
= , limloke—— = , lim1 k2 == = .
cont ()2 N eant  (ag)2 oN?T Ke2ant (ap)*

lim 1 K,2
Qn

Eo[IT; ]
eaNt

Proof.  Corollary 2.8.3 tells us that lim 1Q§,2
have, in probability,

= 0 in probability. In view of (2.20), we

Eo[Z,""] v MV

lirn ]_Q}KV,Z = hm ]_Qg,z

eOcNt eaNt

From (2.19) (and a few lines after) lim IQK,2V]\I[< = lim1,x2ky = 1. From Remark 2.7.3, we
N N

N,K
already have lim ay = o and lim py = p. And by Corollary 2.7.7, we know that lim 1, - ZQT =
N

lim 19?‘\% = ﬁ. This finishes the proof of the first part.

(an

Eo[|T 5]
eaNt

By Lemma 2.8.6, we have lim ].Qﬁ,z = 0in L'. Then we conclude that, in probability,

lim yrea ZYV5 6N = lim 1y (UtN’K T Ey[ZN VK]) Jeont
=lim lﬂg,zEg[ZtN’K]/eaNt = (Mp)/(ao)Q.

For the third part, we start from:

K i,N K i,N K i,N K i,Nyy7i,N
Ei:l(Zt )2 _ Zi:l EG[Zt ]2 + Ei:l(Ut )2 +2 Ei:l ]E9[Zt ]Ut
KeQOcNt - KegaNt .

As seen in the proof of Corollary 2.7.8, on Qﬁ’z, an > ag/2 (if N is large enough). By Lemma

2.8.5-(ii), we have:

Bt 2200l (S0 O] <S4 C

N Ke2ant N  eant N = gzaot’

K i, N2
s, (UC7)
Ke2aNt

1QK,2H]E9[Z){V)K]||OO < Ce*N't. Hence, by Lemma 2.8.5-(ii), we have
N

K i,N1776,N K i,N
Zi:l Eq[Z, U, |} <E [1 Zi:l U, |}
IA<,’2 K€2()LNt — ng Ke()n]\]t

<E[1y (\/C;v i e%gmﬂ = \/CN ! C

which tends to 0 in probability. By Lemma 2.7.5-(i), we have lim% = lim(V¥)? = 1. By

which implies lim 19115.2 = 0 in probability. Recall Lemma 2.8.1: we already have

E[1,

N,K
Lemma 2.8.2, we see that lim ”;;ZOZ\U,; = 0. Hence, in view of (2.20) by Lemma 2.7.7,
K i\N N,K N,K N,K N,K
S BZYE @V IR+ 2 (VI (u)?
Ke2ant o Ke2ant B (040)4’

which complete the proof.
Next, we consider the term DiV’K’lz. By Itd’s formula and (2.25), we have:

K K t
SoOEN - NPRP - K20 =S [y - K,
i=1 Y0

i=1

K2 [ 7N.K N,K : N,K,12 N,K,121 N,K,122
On Q" N{Z,"" > 1v,°" > 0}, we write Dy "% = 2D, — D% where

N,K,121 N i ! 1, IN i N
Dy = /M;; dMDN,
' K(ZtN’K)Q; 0

pN.K122 _ N(]\ZtN’K)2
' (ZV")?
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Lemma 2.9.15. Assume (A). In the regime (2.27), in probability

NIV K (DNK122)
t

N =0.

lim1 Kzn{ZN KzivtN K>0}

Proof. In view of (2.25), by Lemma 2.8.1, we have

C
NK E : zN «
QK 2E9[( ) } = 1QK2K2 - Eg ] S ?19}1\5,26 N

By Corollary 2.7.8,2,5]\[’}( > ce“Nt, fro t large enough, on the event QJI\?’Z N {Z > % K 0}.
Hence
TN, K\2
L N emﬁ% < i
v >0} (ZthK)Q - \/E
This completes the proof.
Fort>1and 1 < K < N, we set, for m € [0, 1],

, , 1
Enx(m): *QWZ / Mj.deM;’N where  py(m) =t 5 log|(1 e~ )m e "],

so that €} j is a martingale (in the filtration G, = F,, () issued from 0. Recalling the definition

N,K,121 . .
of D;"" %" we are interested in the convergence of £ -(1).

Lemma 2.9.16. Assume (A). In the regime (2.27), in probability,

ant

lim 1,x2 £ sup ’é}t\, x(m) — 51tv x(m=)|=0.
N VK o<m<1! 7 '

Proof. Recall that ag > 0. By Doob’s inequality and Lemma 2.8.1, we have:

]-QK ) .j}l’a)fK Ey {?yg(Mz N)2:| < Clﬂﬁz z:I{I,a}SK ||E9[ZéV’K]Hoo < CeaNt.

Hence, since the jumps of all our martingales have size 1 and since they never jump simultaneously,

1QK,2E9[ sup ‘SjtV’K(m)—EZtV,K(m—)H SIgree” ‘“’tIEg{ sup max |MZN|}
N 0<m<1 0<s<t =1,

1
<1QK26 QQNt]EQ{ sup Z|MZN ]2
0<s<t

Bant

SC:lQK,z \/Xe 2
N

As seen in the proof of Corollary 2.7.8, on Q , any > ap/2 (if N is large enough). We finally
conclude that

eant agt

sup |E4 w(m) — EL o (m—)|| < Ce 2,
\/gogmpgl N,K( ) N,K( )H

E 1o

which ends the proof.
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Lemma 2.9.17. We assume (A). In the regime (2.27), it holds
eNIEN i (m) 4. pp
o —— — ————(Bm)o<m
Q}1§2< VK >0§mS1 \/5(040)2( Josms1

for the Skorohod topology, where B is a standard Brownian motion.

Proof. By [23, Chapter VIII, Theorem 3.8-(b)] and thanks to Lemma 2.9.16, it suffices to verify

that lim 1,x.2CY (M) = 2(51’;))24771 in probability, for all 0 < m < 1, where
¥ :

e"N'EN k() eathlt\I,K('):|

Chselm) = [— 75, — ¢

We start from

62011\715

K
O re(m) = |k k(. Ek k()] = ez D7 | / My MY, / M anN |
=1

pi(m)

by (2.25), from which we also have
¢ 1 [ N 2 37, N
Cn,x(m) = Keant Z/o (My2)2dzZo™.

i=1
Using now It6’s formula, we find

. 1 K pr(m) s— PN PN AN pr(m) PN AN
(M) =y S [2/0 (/0 MINdn )dZS’ +/0 7N dzk }
i=1

2 K pem o N g gzi N 1 X ZiN q2 _ giN
T Ke2ant Z 0 ( 0 - l ) s T 9K e2ant Z {[ w(m)] B soz(m)}
i=1 i=1

t,1 t,2
=Cy. x(m) + Oy 'k (m),
the last equality standing for a definition.

Step 1. In this step, we prove that lim 1 x » C’]t\}lK (m) tends to 0 in probability, for each fixed
~ )
m € [0,1]. By integration by parts, we have

/ ( / MENan N ) dzid
0 0

:Z;,N/ MliLNdMli,N _/ MliLNZliLNdMli,N _/ MliLNlei,N
0 0 0

=UiN / MNP / M N (B[ 22N — 22N Yam N — / MjNdziN.
0 0 0

We write C]t\’,’lK (m) = Cfvlll( (m) + C’Jt\,lf((m) + C]tvlf((m) accordingly.

Step 1.1. Concerning Cjt\’,lll((m), we first observe, using again an integration by parts, that

, w o . 1 , , N2 , ,
i [ aganN | <o (N - 2) | < o (vi) () 2N,
0

As seen in the proof of Corollary 2.7.8, on QI]{,’Q, an > ap/2 (if N is large enough). By Lemma
2.8.5-(ii), we have: for 0 < wu <'t,

Z| -
+

o)

o=

Q| <k

A

N—

t = )2 t ot
Lo gy Z;Ee [(U2™)] = Clgge (3 + 2ar) =€
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In view of (2.25), by Lemma 2.8.5-(i), we conclude that, for u € [0, ],

o 3 [ (08 4 7)) < .
=1

This concludes the sub-step.

Step 1.2 To study Ct rc(m), we first use (2.25): on Q7
G [ o Ay
Ki u 2 2
e[ 3 [ (Ralzi) - 2) (vi) 0z
ety e
0
oS (i ' [ ()]
<CZ]E9{(ZZN) ( sup (Mli,N)2Zi»N)2}

0<I<u
3% N\ ® V)
SC’Z]EQ[(ZL’ ) + sup (Ml’ ) +<Z;’ )]
= 0<I<u

By Doob’s inequality, we have on Q452 Eg[supoglgu(Mli’N)g} < CEy[(ZEN)4] < CKe*ont by
Lemma 2.8.5 (iii). We conclude that on Qﬁ’Q, for any m € [0, 1],

Eqg[CR 7 (m)] <

5o

Step 1.3 We next write, for u € [0,¢],

‘/ MMz < 2N sup [MEN) < 47N ZEN) et sup (MEN)?,
0

0<s<u 0<s<u

In view of (2.25), we have, on Qﬁ"Q,

K

w . n . i CK 2ant
Y Ey H / Mf;Nle"NH < t71Ey[(ZN)?] + CHE[ZEN] < % + CKteont
i=1 0

by Lemma 2.8.5-(i). This implies that, still on Q][é’?,

13 1 t
EollCh 2] < O (5 + =),
which tends to 0.

Step 2. We next study C}f\}?K(m). Using Lemma 2.9.14 and that ¢:(m) € [0,¢], we conclude
that, in probability
5N, K
‘Pt(m) — 0

eQ(INt

lim 19%'2



2.9. PROOF OF THE MAIN RESULT IN THE SUPERCRITICAL CASE 133

in probability. Since furthermore, by Corollary 2.8.8, we have lim 1,x> = 1 in probability, we are
N
reduced to check that, for all m € (0, 1]1,

K

lim;Z[Zi’N 32 = (Hp)zm

2K e2ant 2 pe(m) 208
=1

We write

o 1 12) ¢2an (eelm)=1) — (up)?
2K62a1\rt Z tpt(m) _hm(QKeQaNapt(m) Z tpt(m) )6 " - 20[3 m

by Lemma 2.9.14 and since ¢;(m) = ¢ + 52=log(m(1 — e=2*") + ¢~2%") and since ay — ag, see
Remark 2.7.3. The proof is complete.

Corollary 2.9.18. Assume (A). In the regime (2.27), we have the following convergence in dis-
tribution

eaNt\/?va’K’m
>0} N

1QK2 {Z

1 N, K
23V

Proof.  First, we know from Corollary 2.8.8 that lim 1QK,ZO{ZN,K>11UN‘K>O} = 1 in probability.
N t =4 "t
Also, we recall that D)2 = opMN-Fo121 _ pNFA122 50 that by Lemma 2.9.15,

NV K DN 122
t

lim ].QK 2n(ZN K > 1,M K 50y N =0
in probability. Since next
i N eZaNt
plK12L Z/ MINaMEN = & (1)
K(z, ")
and since lim (Zivif() (c2/(up))? by Lemma 2.9.14, we conclude from Lemma 2.9.17 that

e“NtMI?Dév’K’12 V203
lim ]_QK 2m{ZN K>1 >0} N — up Bl
in distribution.

Proof. [Proof of Proposition 2.9.1] We recall that we have written
ng,K _ D?[’K’H n D,;N’K’u 4 DtN,K,13 n DiV,K,M n DiV,K,Q n Di\l,K,3.

Gathering Corollaries 2.9.13 and 2.9.18 ends the proof.

Proof. [Proof of Theorem 2.1.4] We work in the regime (2.27). By Corollary 2.8.8, we know that,
in probability, lim ]_QK,2m{ZN,K>lvN,K>O} = 1. Also, we know from Proposition 2.9.1 that
N t =—4"t

1
uMNr = - 1,

lim 1QK2 {Z >1, >O} p

4

in probability. Since p < 1, we deduce that lim 1{MN,K>0}IQK 2ZN K S L NE gy = 1 in probability.
In view of (2.4), we have

Sl (1)
(PtN’K*p)l{Z/IN'Kw}: p{ : NK . 1
etz uUrE 1
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Hence
VK Nk
lim N ('Pt ’ fp)
. 7pe(a07aN)t€aNt\/I?ut]v’K _ (% — ].)
=l o202 > 10N K S0y 20) N UK 1
By Remark 2.7.3, we have |any — ag| = |[pny —p| < N—C; Since lim % = 0 in the regime (2.27), we
8 8

conclude that lim e(®~*~)t = 1. Finally, by Proposition 2.9.1, we deduce that

lim

L(ﬁ\/ﬁ (”Pf’K - p) = lim _peaf\;t\/ﬁutjv;N_,K(iI 1) LN /\/'(07 2(0224172 )

This ends the proof.

2.10 Appendix

We first write down two lemmas concerning the convolution of the function ¢ that will be useful
in the subcritical case.

Lemma 2.10.1. We consider ¢ : [0,00) — [0,00) such that A = fooo ¢(s)ds < oo and, for some
q>1, fooo s1¢(s)ds < co. Then, for alln>1 and r > 1,

/ Vs (s)ds < CA™n%r29  and / Vs (s)ds < /nA™.
T 0

Proof. 'We introduce some i.i.d. random variables X1, X5, ... with density A~'¢ and set Sy = 0
as well as S,, = X1+ ---+ X, for all n > 1. We observe that

/ Vs (s)ds = A"E[\/Snls, >, < A2 IE[S91g, >, < A"n%r3 IE[XY] < CA™nirs ¢,

We used the Minkowski inequality and that E[X{] = A= [° s?¢(s)ds < oo by assumption. For
the second part, we write

[ Ve sis = AELE] < Vant VBT < v

by the Cauchy-Schwarz inequality.

Lemma 2.10.2. Under the same conditions as in Lemma 2.10.1, we have, forn € Ny andr > 1,

| /O 5 (s)ds — A"

< nA™! /00 o(s)ds.

t

Proof. Then consider n i.i.d random variables {X;};=1, ., with density ¢(s)/A and write

t n

‘ / ¢*(s)ds — A”| = A"P(ZXZ- > t) < A"P( max X; > t/n) < nA"P(X, > t/n),

0 = i=1,..., n
which complete the proof.

We next adopt the notation of the supercritical case and study the martingales MtZ N
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Lemma 2.10.3. Assume (A). For any s € [0,t], i # k, on Q%7
(i) Bo[M{ N MPNM N ML N = 0 if {04, ') = 4
(ii) [Bo M MEN M N]| < S5 if i £ k.

aNt)

(iii) B (MY MEN M N Mg N)| < ST i i, .7, 5} = 3.

(iv) |Eqg [MZNMgNMZlNMglNH < CeN ) without any conditions.
Proof.  First, we recall that under (A), we have ¢*"(t) = t""le%/(n — 1)! for all n > 1.

Point (i) follows from the fact that, since when 4, j,i’, j’ are pairwise different, the martingales
MHNMONMIN and M3"N are orthogonal by (2.25).
For point (ii), we first use that M*" and M*" are orthogonal and that ¢t > s to write
Eo[MjY MIY MPN] = Bg[MVE, [M"’NM’“*N|F ]| = Bol(MEN)2MEFN),
Since [M*N, M*N], = Z0N_ it holds that (M?N)? = 2 [ M ™NdMPN + ZiN. Using that

I M NAMEN and M*N are orthogonal, we deduce that ]Eg[(Mg NY2MEN]| = Ep[Z0N MFN)
whence, by (2.21),

[Eo[(M3N)?MEN]| =[Eg[UN MEN)|

<ZZ/ ¢* (s — 1) A% (i, 1) |Eo [M7N MFN]|dl

n>07=1

—Z/ 0" (s — 1) A% (i, k) Eg[ 2N dl
n>0
by (2.25). By [14, Lemma 35-(iv)], we have A% (i, k) < C%fv for all n > 1 and A% (¢,k) = 0 for
n =0 (since i # k). We also know that Ey [Zk’N] < Ce*N (on QK72), so that

|Eg[(M§’N Mk N Z / (S - l) aNldl

n>1 (n— 1)

:icpN/ oo Do) el gy — CpnselPN T Cselon D
0 N =N

since ay = pny — b and py < 2p on QIA(,’2 by Remark 2.7.3.

For point (iii), we first consider the case j = j' (and i,47',j are pairwise different). We
have Eg[MP™N MIN M N MIN] = Eo[M#N M N (MIN)?] because ¢ > s and MY and MV
are orthogonal. Using the Itd formula as in (i), we find (MIN)? = 2 [ MINdMIN + Z3N,
with [ M2NdM3N orthogonal to M»NM¥-N. As a consequence, Eg[M,’ NN M N AN =
Eo[M#NMIN 73 N] = Eg[MN M- NUZN], recall (2.21), so that

|E9 [Mi’NMj’NMi/’NMj’N]l

<ZZ/ ¢ (s — AN (j, q)[Eg[MEN M N MM dl

n>0q=1

=3 [0t = D{ AR GBI M AN AR G MV N 01
n>0

< Z/ Rr;:ll e*b(S*l)le“Nldl

n>1
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by point (ii) and since, as in the proof of (ii), A% (j,1) < CPK’ for all n > 1 and A% (j,i) = 0
for n = 0 (since i # j), and similar considerations for ¢’. Usmg as usual that, on QN , we have
pN < 2p and ay = py — b, we easily conclude that

C s Cs2eNs

1N i’ \N PN ans

|Eo[ MY MIN My N MIN)| = e / L™ dl < —m—.
0

For the case where i = ¢’ (and where i, j, j* are pairwise different), we have, proceeding as previously,
Eo[ MY MIN MEN MI'N] = Bo[ 28N MIN MIN] = Bo[UN MFN MJ"N]. Hence, using (2.21),

‘Eg[Mi7NMj’NMi’NMj,7N]|

B / Gt — 1) AY (i, ) B [MP MIN M N

n>0q=1

<Z/ 6" (¢ = D) { AR (6, B (M MINMIN]| + AR (5,5 Eo[M7 N M M ] f.

n>0

If | > s, we see that Eg[M{’NMg’NMg/’N] = Eo[M?NMINMIN]. So in any case, we can apply
point (ii) and we find

A MM < S5 [ ARG+ ARSI e
n>0

Using the same argument as in the previous case, we conclude that

t B l) 7b(t7l)6051\rldl < CtQGQNt

i, N N 7 ri,N N
[Eo[MN MPN MY MI N < = Z/ n—l <z

n>1

as usual. Finally, if i = j (and 4,4, j’ are pairwise different), we first write, using that the three
involved martingales are orthogonal, Eg[M;"™ M#N MP N MIWN| = Eg[MEN MEN M N TN so
that, arguing as in the previous cases, Eg[M; NMZ N NMJ N = Eo[UHN M N MIN]. Tt then
sufﬁces to copy the previous case (When t=s and replacmg j by ') to find
2 ans
(N A pi N AN 3 il N Cs“e
[Eo[My ™ M My " M ”T
This completes the proof of (iii).

By Doob’s inequality, (2.25) and Lemma 2.8.5-(i), we have Eg[(M}"")4] < CEy[(Z1V)?] <
Ce?2nt whence

Eg[M™N MIN M N MI N < Eg[(MN )T E[(MI V)T Eg[(M] N YA E (M N )4

is bounded by Ce*~(+9) a5 desired.
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