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In the context of Advanced Driver Assistance Systems (ADAS) and Autonomous Vehicles, scene understanding is a fundamental inference process in which several servoing and decision making functions depends on. Such a process is intended to retrieve reliable information about the vehicle's surroundings including static and dynamic objects (e.g. obstacles, pedestrians, vehicles), the scene structure (e.g. road, navigable space, lane markings) and ego-localization (e.g. odometry). All this information is essential to make crucial decisions in autonomous navigation and assisting maneuvers. To this end, perception systems are designed to provide redundant and reliable observations of the scene. This thesis is devoted and focused on image-based multi-body motion segmentation of dynamic scenes using monocular vision systems only.

The conducted research starts by surveying methods of the state-of-the-art and contrasting their advantages and drawbacks in terms of performance indicators and computation time. After identifying a Vision-only based methodology, sparse optical flow methods are studied. As a concept-proof, an algorithm implementation shows, in practice, limits of the addressed approach leading to envision and consolidate our contributions. This thesis was financed by the Department of Science, technology and innovation of

Detecting and tracking objects in a classic processing chain may lead to a low-performance and time-consuming solution. Instead of segmenting moving objects and tracking them independently, a Track-before-Detect framework for a multi-body motion segmentation (namely TbD-SfM) was proposed. This method relies detection and tracking on a tightly coupled strategy intended to reduce the complexity of an existing Multi-body Structure from Motion approach. Efforts were also devoted for reducing the computational cost without introducing any kinematic model constraints and for preserving features density on observed motions. Further, an accelerated implementation variant of TbD (namely ETbD-SfM) was also proposed in order to limit the complexity with respect to the number of observed motions.

The proposed methods were extensively tested with different publicly available datasets such as Hopkins155 [START_REF] Tron | A benchmark for the comparison of 3-d motion segmentation algorithms[END_REF] and KITTI [START_REF] Geiger | Vision meets robotics: The kitti dataset[END_REF]. Hopkins dataset allows a comparison under featuretracking ideal conditions since the dataset includes referenced optical flow. KITTI provides image sequences under real road scenarios in order to evaluate robustness of the method. Results on scenarios including the presence of multiple and simultaneous moving objects observed from a moving camera are analyzed and discussed.

In conclusion, the obtained results show that TbD-SfM and ETbD-SfM methods can segment dynamic objects using a 6DoF motion model, achieving a low image segmentation error without increasing of computational cost and preserving the density of the feature points. Additionally, the 3D scene geometry and trajectories are provided by estimating scale on the monocular system and comparing these results to referenced object trajectories.

Résumé

Dans le contexte applicatif des Systèmes d'Aide à la Conduite et des Véhicules Autonomes (anglais ADAS), l'analyse de scène est un processus d'inférence duquel dépendent multiples fonctions d'asservissement et de prise de décision. Le résultat issu de l'analyse de scène permet une description fiable de l'environnement aux alentours du véhicule composée des objets statiques et dynamiques ainsi que des éléments de structure de la scène (e.g. route, espace navigable, marquage routier) et de la localisation du véhicule observateur (e.g. odométrie). Ces informations supportent les décisions et l'engagement d'actions des systèmes automatiques dans la navigation autonome et les manoeuvres d'assistance à la conduite. Pour ce faire, les systèmes de perception sont conçus afin de fournir des observations de la scène redondantes et fiables. Dans le cadre de cette thèse nous nous intéressons à la segmentation d'une scène dynamique en utilisant seulement des images issues d'un système de vision monoculaire.

Dans un premier temps, une étude bibliographique des approches de l'état de l'art est présentée en contrastant les avantages et les limites des méthodes suivant des indicateurs de performance et de temps de calcul. Cela a permis la sélection d'une méthodologie récente basée vision servant de référence pour la segmentation de mouvement. Parallèlement, une étude approfondie des pré-traitements nécessaires à l'estimation du flot optique a aussi été menée. Cette première étape est clore par une implantation algorithmique pour la l'identification et la consolidation des contributions adressant les limites de l'état de l'art.

Dans la deuxième étape de ce travail, nous proposons un algorithme de segmentation de mouvement basée image. Les notions et les méthodes introduites font appel à la technique du Suivi-avant-Detection (anglais Track-before-Detect) en couplage serré aux méthodes de calcul de la structure et du mouvement (anglais Structure from Motion). La méthode dénommée TbD-SfM a pour objectif la réduction de la complexité dans l'analyse de la scène intégrant un modèle de mouvement générique à 6 dégrées de liberté. Et cela en préservant la densité de caractéristiques suivies sur les mouvements observés. En fin, nous proposons une variante accélérée de l'algorithme TbD-SfM dénommée ETbD-SfM qui limite efficacement la complexité de la segmentation par rapport au nombre de mouvements observés dans la scène.

iii L'ensemble des contributions a été évalué en utilisant différentes bases de données publiques reconnues dans le domaine des Transports Intelligents [START_REF] Tron | A benchmark for the comparison of 3-d motion segmentation algorithms[END_REF][START_REF] Geiger | Vision meets robotics: The kitti dataset[END_REF]. Nous avons étudié les algorithmes TbD-SfM et ETbD-SfM avec le dataset Hopkins dans de conditions idéales: sans erreurs de suivi de caractéristiques à faible vitesse. Le dataset KITTI a permit de vérifier la robustesse de l'approche et d'évaluer leur performances dans de scénarios incluant multiples objets en mouvement.

Pour conclure, les résultats expérimentaux démontrent que les méthodes TbD-SfM et ETbD-SfM effectuent la segmentation d'une scène dynamique en utilisant un modèle à 6 dégrées de liberté obtenant une faible erreur de ré-projection tout en préservant la densité de caractéristiques, essentiel au suivi de mouvement. La géométrie de la scène 3D calculée en estimant le facteur d'échelle est comparée et analysée aux trajectoires 3D des objets référencés dans la scène. 
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General Introduction

Advanced Driver Assistance Systems (ADAS) development is important to improve road safety conditions for drivers. ADAS's effectiveness is quantified in terms of road fatality reductions, crash avoided and serious injuries in drivers prevented [START_REF]Advanced driver assistance systems[END_REF]. In this context, scene understanding provides key information needed for making decisions in situations such as obstacle avoidance or collision warning.

Researchers have been developing two main strategies to recover the vehicle surroundings.

The first one consists in using multiple sensors systems as RADAR, GPS, LiDAR and cameras. The second one focus in employing multiple cameras. Fig. 1 shows examples of vehicles used in the two different approaches. Results presented in different studies such as [START_REF] Zhao | Fusion of 3d-lidar and camera data for scene parsing[END_REF][START_REF] Chavez-Garcia | Multiple sensor fusion and classification for moving object detection and tracking[END_REF][START_REF] Roldao | 3d surface reconstruction from voxel-based lidar data[END_REF] show that a vehicle equipped with sensors such as LIDAR and cameras can reconstruct its surrounding structures in detail with high precision. However, the high cost of sensors makes difficult a massive implementation in vehicles. On the other hand, vision only approaches are proposed due to the high performance of the camera in object classification applications, long range of view, high resolution data and low cost. Cameras are widely used in applications such as visual odometry, motion segmentation, road marking detection and object detection. Results achieved with vision only approaches show that camera-based methods can detect vehicles around a moving car with a similar precision to that of a LiDAR sensor [START_REF] Lim | Vision-based recognition of road regulation for intelligent vehicle[END_REF][START_REF] Wang | Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection for autonomous driving[END_REF]. However, vision-based approaches require the use of algorithms to process an image sequence which increases the computational cost. Therefore, the vision-based approach remains a promising method in order to achieve high accuracy in environment perception with a low cost sensor.

Motivation

This research is focused on vision-only approaches for scene understanding in order to provide key information to an ADAS controller as is detailed in Fig. 2. Specifically, this research is intended to develop a monocular motion segmentation method for intelligent vehicles applications. Monocular cameras are characterized by the absence of depth measure which increases the complexity for the 3D surroundings reconstruction. In this research, scene understanding is limited to the dynamic analysis of the scene which is intended to:

• Determine the number of dynamic objects on the scene (only objects considered as rigid bodies).

• Estimate the trajectories of the camera and the dynamic objects (up to 3 motions).

• Recover the scene structure (static environment).

• Estimate scaled trajectories for the moving camera and dynamic objects. In the scene understating, it is assumed that the dynamic objects are considered as rigid bodies.

Objectives and Contributions

The two main objectives of this thesis are: first, to propose a scene understanding algorithm capable to detect dynamic objects through motion segmentation for intelligent vehicles; second, to reduce the algorithm complexity in order to decrease processing time.

Thesis Contributions

The first contribution of this work is an enhanced initialization for a multi-body motion segmentation algorithm. The method reduces the computational complexity based on the dominant motion assumption and epipolar geometry. First, a group of dominant feature points are selected by using fundamental matrix and RANSAC estimation. Then, cluster by bucketing is implemented to find regions with a high density of points. A single feature point is sampled from each region by following a likelihood formulation in order to create motion hypotheses and to segment feature points. Later, the hypothesis with the highest amount of segmented feature points is selected as the dominant motion hypothesis. Finally, motion hypotheses are generated on the remaining groups of features points in order to find eoru-motions.

The second contribution of this work is the Track-before-Detect algorithm to segment dynamic objects along an image sequence. This approach is based on temporal filtering and RANSAC formulation to minimize the amount of hypotheses for a motion segmentation without any prior knowledge about observed motions. The algorithm starts by doing the ego-motion segmentation. Then, given the initial segmentation of the scene by the enhanced initialization, Kalman filter uses the dynamic models from the segmented moving objects to predict, in the next frames, the region where the dynamic objects are located. In each region, motion hypotheses are generated in order to find the eoru-motion or dynamic object.

Thesis Outline

This thesis reports a description of theoretical concepts, methods, experiments, evaluation of results and conclusions of this research study. The work is developed in five chapters and it provides the fundamental concepts and experimental evidence that will support the monocular motion segmentation approach. These chapters are: Evaluation Methodology, Structure from motion (SfM), Multibody Structure-from-Motion and Track-before-Detection.

Chapter 1: Evaluation methodology

A methodology to establish the operating conditions on the proposed algorithms is presented in this chapter. Moreover, the input data will be defined selecting datasets for the analysis of the algorithms, and the results will be evaluated by using the metrics proposed by the state of the art. The selected datasets will allow to compare the results with other state of the art methods.

Chapter 2: Structure from Motion (S f M)

The chapter presents the state of art of image based approaches for scene understanding.

A detailed description of the monocular Structure-from-Motion (S f M) method is provided.

The S f M allows to recover (up to scale) the camera trajectory and rebuild the structure of a static scene. In order to solve the scale ambiguity, it is explained the procedure to retrieve the real scale. Experiments are reported by using different image sequences.

Chapter 3: Multi-body Structure-from-Motion

This chapter introduces a state of the art method for the monocular multi-body motion segmentation. The method proposes to generate scene segmentation hypotheses by sampling a group of feature points. Then, hypotheses are evaluated in order to select the one with the lowest reprojection error between the ground truth points and the estimated point trajectories.

The method is evaluated in order to identify its advantages and flaws. The results will be used to compare with our proposed approach.

Chapter 4: Track-before-Detection

We proposed the Track-before-Detection method for the monocular multi-body motion segmentation to address issues that are highlighted by the state of the art. First, a fast initial segmentation was developed in order to provide the dynamic regions of observed moving objects. Then, a Track-before-Detection scheme provides the location of the dynamics objects. A motion is estimated for each area reducing the computational cost without implementing kinematics restrictions in the motions. This allows to retrieve motions of 6 Degrees of Freedom.

Conclusions and perspectives

The report ends with the conclusions of the conducted study, the contributions to the state of the art and the perspective works. 

Introduction

This chapter details the methodology followed to validate our proposed approaches. This methodology is organized by the following stages: the inputs of the model, the operating conditions of the model and the evaluation of results. These stages are employed to determine: datasets for testing our approaches, the different use cases of the model and the metrics to judge and compare the obtained results with other approaches.

The chapter starts by selecting the datasets that are going to be employed during the evaluation of the proposed approaches in Sec. 1.2. Then, Sec. 1.3 surveys the main feature detectors and descriptors. Moreover, the feature points extractor is selected for our application. Finally, the metrics to evaluate the obtained results are selected in the Sec. 1.4 in order to compare with other methods of the state of the art.

Datasets selection

Datasets are the inputs to test the proposed algorithm. The use of datasets allow to report a benchmark between the different proposed methods. A comparison between well-know datasets was done in order to select two of them to test our proposed method. Selected datasets are structured in two groups: public datasets in controlled scenarios and public use-case datasets.

Hopkins155 dataset

The Hopkins155 dataset [START_REF] Tron | A benchmark for the comparison of 3-d motion segmentation algorithms[END_REF] was developed by the Vision lab from the Johns Hopkins University. It contains video sequences and provides feature points that were extracted and tracked in all frames with no outliers. The main dataset objective was to provide a benchmark for testing feature based motion segmentation algorithms. It is composed of 155 different scenes divided in 4 categories such as: checkerboard, traffic sequences and, articulated and non-rigid motion sequences. The dataset provides a sequence of images recorded with a hand-held camera and small inter-frame ego-motion. The length of the sequences ranges from 16 to 50 frames with 640×480 images acquired at 15 frames per second.

KITTI dataset

KITTI dataset [START_REF] Geiger | Vision meets robotics: The kitti dataset[END_REF] was created by the Karlsruhe Institute of Technology. KITTI is composed of 1392×512 images sampled at 10 frames per second in uncontrolled illumination conditions from a camera embedded on a moving car. It provides objects labels and locations in some sequences, however, there are not referenced feature points that allow to estimate a optical flow error. The dataset allows to test an algorithm in areas such as stereo vision, optical flow, visual odometry and 3D objects detection.

MOTChallenge dataset

The Multiple Object Tracking Benchmark (MOTChallenge) dataset [START_REF] Leal-Taixé | MOTChallenge 2015: Towards a benchmark for multi-target tracking[END_REF] is mainly used in applications such as 3D object tracking, surveillance and sports analysis. The dataset provides the groundtruth for all the sequences of object detection, pedestrian detection, 3D reconstruction, optical flow and single-object short-term tracking. The scenes are characterized by its small inter frame motion.

BDD-Nexar

The Berkley Deep Drive (BDD) dataset [START_REF] Madhavan | The bdd-nexar collective: A large-scale, crowsourced, dataset of driving scenes[END_REF] was presented by the University of California at Berkeley. It is a large-scale dataset of urban driving scenes that provides images groundtruth information such as bounding box, object labels, lane markings and drive-able area. It is mainly used for deep learning approaches in applications like object detection and recognition.

NuScenes dataset

NuScenes dataset [START_REF] Caesar | nuscenes: A multimodal dataset for autonomous driving[END_REF] is a recent dataset for autonomous driving developed by Aptiv company. It is a large-scale dataset in urban scenarios with high traffic. It was acquired with a car equipped with 6 cameras, a LiDAR, 5 RADARs, a GPS and an IMU. The dataset provides a 360°-view around the vehicle and groundtruth information about pedestrian, vehicles and road markings. The dataset introduces scenes with rain conditions that degrades visibility conditions in cameras. 1.1 summarizes the main characteristics of the datasets analyzed. Hopkins155 and KITTI datasets were selected by considering their purpose, groundtruth and the number of references in the benchmark criteria.

Dataset in controlled scenarios

The Hopkins155 dataset allows tests with data in controlled scenarios where data is not affected by vehicle occlusions, incomplete information or illumination changes. Their main characteristics are:

• The dataset provides the scene optical flow without tracking errors along the sequence.

• The dataset was cited in more than 30 different state of the art references, this allows us to compare the obtained results to other methods.

Selected scenes exhibiting two and three simultaneous motions are presented in Fig. 1.1. 

Use cases datasets

Datasets with real data are necessary in order to develop an algorithm that can deal with different conditions such as: tracking errors in the feature points extracted, changes in the number of feature points and objects appearing or leaving the scene. Several scenes were selected from KITTI dataset in order to select the feature points extractor, to evaluate the visual odometry and finally to test the motion segmentation method.Dataset used for feature points selection.

The method to extract the feature points is selected by evaluating the amount of features extracted from the dynamics objects. To this end, the selected dataset was:

• Set15: The dataset has vehicles driving in the same and opposite direction to the moving camera. This increases the relative motion of the dynamic objects and makes difficult to track feature points in consecutive frames. It was selected from frame 117 to 257 (140 frames) due to the high traffic in this segment of the scene. Figure 1.2 shows the frame 212 where different vehicles are observed in driving directions. Dataset used for visual odometry in static scenes.

The monocular visual odometry allows to recover the vehicle trajectory in statics scenes. In static scenes, the onboard camera is the only moving object and the vehicle surroundings are static objects. Three scenes were selected to test the visual odometry method:

• Set00: This is considered a large dataset with by 4541 frames. The vehicle trajectory has straight and curved segments where more than 5 closed loop are created by repeating trajectory segments, see Fig. 1.3(a).

• Set04: This is mainly a straight line trajectory. This scene is considered a short sequence composed of 271 frames, see Fig. Dataset used for motion segmentation in dynamic scenes.

The dynamic motion segmentation methods are evaluated in the different dataset including dynamic scenes. A dynamic scene is described as a moving camera where there are dynamic objects in the camera surroundings.

The Set34 and Set42 datasets are proposed by a state of the art to tests motion segmentation:

• Set34: This scene is classified in the residential category and named 2011_09_30_drive_0034.

The sequence is composed of 1223 frames, however, it was selected a segmented of the sequence to test the proposed method. The scene fragment shows a reversing vehicle while the moving camera is approaching as is illustrated in Fig. 1.4(a). The third and fourth datasets are proposed to test our proposed method as follows:

• Set05: This sequence has 150 frames. It is identified as 2011_09_26_drive_0005 and classified in the city category. There are two dynamic objects, a vehicle driving and a man riding a bicycle in the same direction in front of the moving camera. These dynamic objects are visible along the whole sequence, see Fig. 1.5(a).

• Set13: The scene is classified in the city category and called 2011_09_26_drive_0013.It was selected to test the detection of dynamic objects appearing in scene. The sequence includes 140 frames with an on-board camera moving at high speed (about 60 Km/h). Two cars appear in the scene performing an overtaking maneuver of the ego-vehicle. Then, the first car appearing in the scene is occluded from the moving camera car by a second car that showed up in the scene, see Fig. 

Feature points selection

Vision-based applications are characterized by the dense data that images provide for processing. A usual approach to reduce the amount of data to process is to find meaningful information on the image called local feature. A local feature is an image pattern with different characteristics of its closed neighborhood in terms of intensity, color, and texture. Studied approaches rely on the feature point information extracted from the image in order to segment motions. Feature point method reduce the amount of data in order to reduce the computational cost. The feature detector is divided in two steps: feature detection and non-maxima suppression. In the first step, a feature response function such as Difference-of-Gaussian (DoG) is applied on the image. Then, a non-maxima suppression is applied on the result in order to identify local minima or maxima representing the features detected [START_REF] Hassaballah | Image Features Detection, Description and Matching[END_REF].

Feature detection

Feature detectors can be classified in point, edge or object detectors. A good or ideal feature detector is determined by the next properties [START_REF] Tuytelaars | Local invariant feature detectors: A survey[END_REF]:

• Robustness: A robust detector is designed to be photometric and geometric invariant. Photometric invariance ensures that results are not affected by variations in illumination, noise or blur conditions. Geometry invariance can deal with image scaling, rotation and perspective distortion without changing results as is presented in Fig. • Repeatability: This property is used to determine if the detector can find the same features in a sequence of consecutive tests. The test is performed between two different images under the same illumination, scale and rotation conditions.

• Localization accuracy: Giving the features extracted from an image, the detector should localize each point in a second image without location errors. • Computational efficiency: It is used to determine the processing time. It allows to evaluate if the detector can be implemented in real time applications. The computational cost is measured by the time spent to detect image feature points.

• Quantity of features: The detector must provide enough feature points according to the application. For example, small objects can be processed if the detector provides enough features of the object.

Different detectors are well documented in the literature [START_REF] Tuytelaars | Local invariant feature detectors: A survey[END_REF], however, the most representative in vision-based robot mobile applications are:

Harris detector

The first detector algorithm known was proposed in [START_REF] Harris | A combined corner and edge detector[END_REF] as a corner detector. This feature is based on the second moment matrix or auto-correlation matrix. This matrix describes the gradient distribution in a local neighborhood by using its eigen values (λ 1 , λ 2 ) in order to find a corner. A corner is detected when eigenvalues of M are larger than a defined threshold. Given a patch of size P centered in (x, y) on the image Im the second moment matrix is described as: Flat regions are detected when eigenvalues are small. Similarly, edges are found when the eigenvalues difference is larger than the defined threshold as is presented in Fig. 1.8. 

M = ∑ x,

Shi-Tomasi

Then, Shi and Tomasi [START_REF] Shi | Good features to track[END_REF] suggested a method based on Harris detector approach. They proposed a corner identification by checking if the minimum of the two eigenvalues of the auto-correlation matrix is larger than a user-defined threshold, t r . This criterion is defined as the cornerness function (r) as follows:

r = min(λ 1 , λ 2 ) > t r (1.2)
The cornerness function modifies the corner detection response as is presented in Fig 1 .9. 

Scale-Invariant Feature Transform (SIFT)

The next detector was introduced by Lowe in [START_REF] David | Distinctive image features from scale-invariant keypoints[END_REF] to extract invariant features from images. These features are invariant against different transformations such as rotation, scaling and illuminations changes. However, its computational cost is high for real time applications. The method is composed of four steps. First, the scale-space extrema detection step implements a Difference-of-Gaussian for searching potential interest points with invariant scale and orientation. Then, keypoint candidates are localized and their scales are determined. The keypoints with stable results are selected. Next, the orientation of each feature point is computed by using Histogram of Oriented Gradients (HOG), and the maxima of each peak in the histogram is selected as a keypoint descriptor with its dominant orientation. Finally, the local image gradients are measured at the selected scale by a descriptor such as SSD (Sum of Squared Differences). Fig. 1.10 shows the image gradients and a SIFT keypoint descriptor. 

Speeded-Up Robust Features (SURF)

Later, SURF detector was proposed by Bay et al. in [START_REF] Bay | Surf: Speeded up robust features[END_REF]. It is based on the Hessian matrix that achieves a good performance in processing time and accuracy. Given a point x = (u, v) in an image Im the Hessian matrix, H in x at scale σ is defined in Eq. 1.3, where L xx (x, σ ) is the convolution of the Gaussian second order derivatives. This detector relies on the SIFT detector and is divided in two stages: First, a fixed reproducible orientation based on Haar-wavelet responses from a circular region. Then, a squared region is aligned with the dominant orientation in order to extract the descriptor from this region.

H(x, σ ) = L xx (x, σ ) L xy (x, σ ) L xy (x, σ ) L yy (x, σ ) (1.3)
Features from Accelerated Segment Test (FAST)

Next, Rosten and Drummond [START_REF] Rosten | Machine learning for high-speed corner detection[END_REF] developed the FAST detector. It detects potential points by considering a circle of 16 pixels around the candidate. The candidate point is classified as a corner, r, if the intensity of the contiguous pixels set is brighter S bright than the intensity of the candidate pixel , Im, plus a threshold value t r (Im + t r ), or all darker (S dark ) than the intensity of the candidate pixel minus the threshold value (Im + t r ) as follows:

r(u, v) = max ∑ j∈S bright Im p→ j -Im -t r , ∑ j∈S dark Im -Im p→ j -t r (1.4)
Center Surrond Extremas (CenSurE)

Finally, the CenSurE detector was presented. This Local Binary Patterns (LBP) algorithm [START_REF] Agrawal | Censure: Center surround extremas for realtime feature detection and matching[END_REF] implements a space-scale by using bi-level kernels as a center-surround filter that consists in the image multiplication by either 1 or -1. Then, the extrema is found in a local neighborhood. Finally, these extrema are filtered by computing the Harris measure in order to eliminate those with a weak corner response. 

Descriptors

The feature descriptor takes the image information in the region around each detected feature to characterize it. The simplest descriptors such as the Sum of Squared Differences (SSD), Sum of Absolute Difference (SAD) or the Normalized Cross Correlation (NCC) can be implemented to compare intensities. However, these methods are affected by different conditions such as orientation changes. Descriptors must handle changes in orientation, scale or illumination conditions by using invariant information.

Descriptors are classified in two groups: vector descriptors and binary descriptors [START_REF] Krig | Interest Point Detector and Feature Descriptor Survey[END_REF]. The vector descriptors are more robust, however, these involve a high computational cost. The best known in this category are the SIFT and SURF descriptors. Descriptors such as BRIEF, BRISK, ORB and FREAK are the most implemented in the binary descriptors category.

Binary Robust Independent Elementary Features (BRIEF)

Calonder et al. [START_REF] Calonder | Brief: Binary robust independent elementary features[END_REF] introduced the BRIEF descriptor. It randomly selects a point pair (w u , w v ) and the square image patches around them. Then, a pixel intensity comparison is done in order to obtain the binary string that identifies the selected points. BRIEF has good accuracy, however, it is not robust to rotations because its matched error is affected.

b =    1, 0, Im(w u ) < Im(w v ) Im(w u ) Im(w v ) (1.5)

Binary Robust Invariant Scalable Keypoints (BRISK)

This binary method [START_REF] Leutenegger | Brisk: Binary robust invariant scalable keypoints[END_REF] uses FAST as detector. The method uses concentric circles denoted by α around the candidate point in order to sample the neighborhood and retrieve the pixel intensity value. In order to obtain a scale invariant measure, the method increases the circle size directly to the distance from the point center. Then, a Gaussian smoothing function is applied at each pixel in order to compute the region gradient. The bit vector descriptor is composed by the intensity short-distance (d) comparison of the point pairs (w α u , w α v ) as follows:

b =    1, 0, Im(w α v , σ v ) > (w α u , σ u ) otherwise , ∀ (w α u , w α v ) ∈ d (1.6)
Oriented FAST and Rotated BRIEF (ORB)

ORB [START_REF] Rublee | Orb: An efficient alternative to sift or surf[END_REF] relies on the BRIEF descriptor to add orientation invariance. Corner orientation is improved by intensity centroids using Rosin's method [START_REF] Paul | Measuring corner properties[END_REF]. In comparison with the BRIEF method, ORB uses a training step to find uncorrelated points with high variance instead of a random selection of points. Then, the best 256 points are selected to define the sampling pair according to the intensity pattern. It reduces the amount of point pairs to compare and improves the computer efficiency.

Fast Retina Keypoints (FREAK)

The method presented in [START_REF] Alahi | Freak: Fast retina keypoint[END_REF] creates a retinal sampling pattern inspired by the human retinal system as is shown in Fig. 1.11. The circular patches have a higher density of points near to the center and a density falling exponentially according to the center distance. The best image pairs are learned by using a training procedure in order to find the uncorrelated points with high variance in a similar manner to ORB descriptor. Hessian ORB -Overlapped FREAK (HOOFR)

HOOFR descriptor is based on the combination of the ORB detector and the FREAK descriptor [START_REF] Dai-Duong Nguyen | Hoofr: An enhanced bio-inspired feature extractor[END_REF]. HOOFR achieved similar results to FREAK descriptor, however, HOOFR is designed for real time implementations.

Library for Visual Odometry (LIBVISO)

Initially introduced by Kitt et al. [START_REF] Kitt | Visual odometry based on stereo image sequences with ransac-based outlier rejection scheme[END_REF] and improved by Geiger in [START_REF] Geiger | Stereoscan: Dense 3d reconstruction in real-time[END_REF]. The descriptor uses one corner detector (FAST) and one blob detector (SURF) by filtering the image with a 5x5 blob and corner mask (see Fig. 1.12). Then, the non-maximum and non-minimum suppression is applied in the responses in order to obtain stable feature locations. Next, Sobel filter is implemented in a vertical and horizontal direction with a 11 x 11 block windows to obtain the feature descriptor. 

Evaluation

Different studies have been carried out to evaluate the characteristics of feature detectors and descriptors [START_REF] Ozkan | A comparative evaluation of well-known feature detectors and descriptors[END_REF][START_REF] Karami | Image matching using sift, surf, brief and orb: Performance comparison for distorted images[END_REF][START_REF] Tareen | A comparative analysis of sift, surf, kaze, akaze, orb, and brisk[END_REF]. However, these studies were conducted over static scenes where the RANSAC formulation is used to evaluate the right match between two images. In these studies, the points selected as good matches are associated to static objects and the remaining feature points are considered outliers.

Motion segmentation involves scenes with dynamics objects that are analyzed by using optical flow from tracked feature points. In our approach, a dynamic object could be detected if the number of feature points on the object are higher than 8 feature points, that is the minimum amount necessary to estimate a motion model.

The feature point detectors are tested and compared according to the number of feature points extracted. This allows to find the feature extractor that provides the highest amount of points in a sliding window. Feature points are extracted between consecutive pairs along the sliding window (e.i 1st-2nd, 2nd-3rd, 3rd-4th e.t.c). The size of the sliding windows ranges from 3 to 5 frames and the amount of feature points correctly tracked and matched along the sliding window are reported.

The dataset Set15 was selected to test the amount of features extracted from the dynamic objects. In order to quantify this value, bounding regions with different colors are used to identify the dynamics objects. Then, the number of feature points inside of the bounding region is calculated. Table 1.4 reports the frame where vehicles appear and leave the scene, and the color assigned to each one. Feature points extractors were tested in order to quantify the amount of feature points tracked in 3, 4 and 5 consecutive frames. Table 1.5 reports the results of our observations. The LIB-VISO obtains the highest amount of feature points from the scene thanks to the combination of two detectors, one blob detector and one corner detector. Fig. 1.14 shows the number of feature points on each dynamic object tracked over 3 consecutive frames. Red line indicates the minimum number of feature points necessary to compute a motion model in order to detect the dynamic object. The amount of extracted feature points could fall under the minimum number when there is a total or partial object occlusion. In this case, the motion can not be estimated so the object can not be detected and these features are considered as outliers.

Results in object 1 show a decreasing number of points due to fact that the vehicle moves away from the moving camera. For the other objects, the amount of points are increasing because the vehicles are approaching to the moving camera.

Fig. 1.15 shows the number of feature points tracked in 4 consecutive frames. The number of points decrease around 30% in comparison with the amount tracked in 3 consecutive frames (Fig. 1.14). Objects 1 and 9 can be segmented for the same frames of the sequence , however, objects 2, 3, 4, 5, 6, 7 and 8 reduce the number of frames where they could be segmented to less than 20 frames. 8 could be segmented in less than 10 frames along the sequence. In this test, the number of frames where these objects could be detected shrinks by 50% in comparison with the results obtained in the 4 consecutive frames test.

The results obtained show that LIBVISO extractor provides the highest amount of features tracked on the dynamic objects in 3, 4 and 5 consecutive frames. It is demonstrated that the amount of feature points on dynamics objects is reduced according to the size of the sliding window. A large sliding window will reduce the number of feature points tracked on the dynamic objects and increase the number of undetected objects.

Performance criteria

This section is intended to introduce the metrics and explain their relevance to evaluate motion segmentation results. Additionally, their definitions and mathematical formulation are presented. The state of the art proposed different motion segmentation metrics such as: segmentation accuracy, percentage of misclassified features, outliers ratio, the average processing time, the precision and recall, and the mean reprojection error.

Segmentation error

It was initially proposed in [START_REF] Vidal | Two-view multibody structure from motion[END_REF] becoming a very common metric and implemented in [START_REF] Yan | A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and non-degenerate[END_REF][START_REF] Shankar | Robust algebraic segmentation of mixed rigid-body and planar motions from two views[END_REF][START_REF] Zhang | Hybrid linear modeling via local best-fit flats[END_REF][START_REF] Sabzevari | Multi-body motion estimation from monocular vehicle-mounted cameras[END_REF]. It is defined as the misclassification of points between the groundtruth of the scene and the result obtained. The groundtruth is obtained with bounding regions on the dynamic objects along the sequence as it was presented in Fig. 1.13. Additionally, a misclassification could represent a low accuracy estimation of the object motion since a feature is rejected when the difference between the trajectory estimated and the optical flow is larger than a defined threshold. This error is computed as the percentage over the total of points by the Eq. 1.7:

Segmentation Error = 100 × Number of misclassified points Number of segmented points (1.7)

Segmentation accuracy

It was proposed with the same objective of the segmentation error. However, the segmentation accuracy works with the number of points correctly classified. It was implemented in methods [START_REF] Sugaya | Geometric structure of degeneracy for multibody motion segmentation[END_REF][START_REF] Li | Subspace clustering by mixture of gaussian regression[END_REF][START_REF] Tourani | Using in-frame shear constraints for monocular motion segmentation of rigid bodies[END_REF][START_REF] Sako | Multibody motion segmentation for an arbitrary number of independent motions[END_REF][START_REF] Zhu | A multilayer-based framework for online background subtraction with freely moving cameras[END_REF] and it is calculated as: 

Mean reprojection error

It stands for the geometric difference between an estimated image point and a measured image point. Reprojection error is the variation between the image point representation given by the projection matrix P of a 3D point and an image feature point. It can be interpreted as the difference between the trajectory feature points and the trajectory points estimated in image coordinates. Reprojection error determines if the estimated motion in a sliding window is within an error bound. Mean reprojection error was implemented in [START_REF] Sabzevari | Monocular simultaneous multi-body motion segmentation and reconstruction from perspective views[END_REF][START_REF] Sabzevari | Multi-body motion estimation from monocular vehicle-mounted cameras[END_REF] methods and computed as follows:

Mean Reprojection Error = ∑ (Trajectory points -Estimated trajectory points ) Total number of points (1.9)

Outliers ratio

Outliers ratio segmentation is introduced to know the amount of points segmented by our proposed approach. The outliers are defined as points that do not meet the reprojection error criterion established by a threshold. The percentage outliers ratio is computed as:

Outliers Ratio = 100 × Number of unclassified points Total number of points (1.10)

Confusion matrix

It is a well know method to evaluate classification results between two or more groups [START_REF] Dragon | Multi-scale clustering of frame-to-frame correspondences for motion segmentation[END_REF][START_REF] Zhu | A multilayer-based framework for online background subtraction with freely moving cameras[END_REF]. Confusion matrix evaluates the algorithm performance of the segmented feature points.

It is used to compute the precision and recall of a classifier approach as is presented in Table 1.6. 

Average processing time

The execution time per frame is computed in order to provide information about the time spent by the proposed approach such as [START_REF] Li | Projective factorization of multiple rigid-body motions[END_REF][START_REF] Shankar | Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories[END_REF]. The processing time evaluates the performance of the proposed algorithm to segment motion. It is evaluated in different datasets where the number of simultaneous motions is increased in order to determine if the proposed approach is scalable or computationally limited. It is computed as follows:

Time (s) = ∑ Time per frame Number of frames per sliding window (1.11)

Conclusions

In this chapter, it was presented the methodology to validate the proposed approaches. The selected datasets are public and well known according to the state of the art, these allow us to compare with other methods that were tested under similar experimental conditions. The datasets have different use-cases in the scenes such as dynamic visible objects from the start until the end of the sequence or dynamic objects getting into the scene so as to test the method in different real conditions.

LIBVISO was selected to extract the image feature points in the scenes. It was selected according the number of tracked feature points in consecutive frames of the sliding window. These criteria, evaluated in the Sec. 1.3, indicate that LIBVISO extractor provides the highest number of feature points on the scene. The number of features is more than two times the amount extracted with the SIFT that was ranked second.

Finally, the metrics selected to evaluate the different properties and qualify our results are segmentation error, mean reprojection error, outliers ratio and average processing time. These metrics will allow us to evaluate the quality of the segmented motion, the accuracy of the motion estimation in the dynamic objects and the computational cost of the algorithm.

The next chapter will analyze image based approaches for the dynamic analysis of the scene. The methods will be compared in order to select the one that provides more advantages in the motion segmentation application.

Chapter 2

Structure from Motion (SfM) 

Introduction

Image based approaches for the analysis of dynamic scenes are presented in this chapter. These methods are compared in order to select the most appropriated research method to segment motions.

This chapter is structured as follows: First, state of the art concerning to the monocular motion segmentation methods is presented in Sec. 2.2. Next, Sec. 2.3 introduces the selected approach to segment dynamic objects. Then, the procedure to estimate the motion and structure is detailed in Sec. 2.3.2. The estimated camera pose can be optimized by local optimization methods presented in Sec. 2.4. Then, the scale estimation process is introduced in the Sec. 2.5. The experimental results obtained with this approach are presented and evaluated in Sec. 2.6. Finally, the conclusions of this chapter are presented in Sec. 2.7.

State of the art

Mobile robotics research has reached a high performance in applications which recovers the structure and motion designed to operate in static environments. However, outdoor applications are characterized by dynamic environments where these methods are not well-suited.

A taxonomy for vision-based motion segmentation methods has been initially suggested in [START_REF] Zappella | Motion segmentation: A review[END_REF]. However, the classification proposed in [START_REF] Risqi | Visual slam and structure from motion in dynamic environments: A survey[END_REF] was implemented. Monocular image based approaches for scene understanding are classified in three main families: Visual Simultaneous Localization And Mapping, Dynamic object segmentation and 3D tracking, and Joint motion segmentation and reconstruction. Table 2.1 summarizes the characteristics, methods, advantages and drawbacks. 

Visual Simultaneous Localization And Mapping (VSLAM)

VSLAM is mainly implemented in static scenes. It is defined as a Visual Odometry (VO) method with close loop detection that allows a 3D reconstruction of the scene. This method is based on graph optimization to improve the robot pose estimation. These approaches can be implemented in real time, however, these methods only achieve a high performance in static environments.

VO [START_REF] Levin | Visual odometry and map correlation[END_REF] is a specific case of S f M, that estimates the 3D camera motion from a relative position. This method accumulates the relative position errors over the time. Relative position errors can be reduced or bounded by using local optimization of the camera trajectory with techniques like pose graph or bundle adjustment [START_REF] Nister | Visual odometry for ground vehicle applications[END_REF].

VSLAM [START_REF] Davison | Simultaneous localization and map-building using active vision[END_REF][START_REF] Davison | Real-time simultaneous localisation and mapping with a single camera[END_REF][START_REF] Davison | Monoslam: Real-time single camera slam[END_REF][START_REF] Fuentes-Pacheco | Visual simultaneous localization and mapping: a survey[END_REF] estimates a global stable path of the moving camera and 3D geometry scene . Bayesian methods like Kalman filter or Particle filter are implemented to predict the robot location [START_REF] Martinez Montiel | Structure from Motion using the Extended Kalman Filter[END_REF][START_REF] Hauke Strasdat | Visual slam: Why filter? Image and Vision Computing[END_REF][START_REF] Bresson | A general consistent decentralized simultaneous localization and mapping solution[END_REF]. The 3D loop-closure geometry is matched with the new images in order to detect areas previously visited and optimize the robot trajectory and the 3D map created. VSLAM can be considered a VO before to close the trajectory loop [START_REF] Fraundorfer | Visual odometry: Part I -matching, robustness, optimization, and applications[END_REF].

In monocular cameras, depth measure can not be computed for this reason the robot trajectory is estimated up to scale. Real scale is estimated by using different methods. Song et al. [START_REF] Song | Robust scale estimation in real-time monocular SFM for autonomous driving[END_REF] proposed a robust scale estimation in real time for monocular S f M. The method detects the ground plane by using sparse points and prior knowledge about the camera height in order to estimate a scale between two consecutive views. The 3D object structure is computed by using 3D geometrical models learned in a training step. This work was extended in [START_REF] Song | Joint SFM and detection cues for monocular 3d localization in road scenes[END_REF][START_REF] Song | High accuracy monocular SFM and scale correction for autonomous driving[END_REF] by including the 3D object localization.

Mur-Alta et al. [START_REF] Mur-Artal | Orb-slam: A versatile and accurate monocular slam system[END_REF] introduced a monocular real time approach named ORB-SLAM. The method uses feature points for tracking, mapping, re-localization and loop closing steps.

The method computes a homography model for planar scenes and fundamental matrix for non-planar scenes in order to estimate the inter-frame camera motion.

Fanani et al. [START_REF] Fanani | Multimodal scale estimation for monocular visual odometry[END_REF] proposes a trajectory scale estimation by using a mechanism of prediction, classification and correction. Scale is estimated with ground plane feature points that are selected by using the epipolar geometry. The method optimizes the estimated motion instead the homography matrix in order to correct the trajectory scale.

In order to increase the performance in VSLAM, Buczko et al. [START_REF] Buczko | Monocular outlier detection for visual odometry[END_REF] suggest a method to detect outliers in visual odometry. The method calculates a hypothesis for the optical flow and computes the directional error in each point. The points with a directional error higher than a threshold are considered outliers and rejected.

Recent techniques are implementing deep learning to replace geometry approach in for VO and VSLAM applications [START_REF] Milz | Visual slam for automated driving: Exploring the applications of deep learning[END_REF] such as depth estimation, planar ground detection, intelligent loop closed detection, objects detection, optical flow estimation and joint supervised semantic SLAM.

Li et al. [START_REF] Li | Undeepvo: Monocular visual odometry through unsupervised deep learning[END_REF] proposed a Convolutional Neural Network (CNN) for visual odometry. The method uses an unsupervised deep learning scheme to train the network. The network learns the depth map by using a stereo image sequence. Then, the network is tested with a different monocular sequence in order to estimate the camera trajectory.

Zhan et al. [START_REF] Zhan | Unsupervised learning of monocular depth estimation and visual odometry with deep feature reconstruction[END_REF] suggested a CNN for visual odometry, moreover, a 3D scene reconstruction is done by using the contextual information instead of only pixel intensity color matching. This additional information improves the depth and the odometry estimation accuracy.

Wang et al. [START_REF] Wang | Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection for autonomous driving[END_REF] presented a CNN to reconstruct a 3D scene. The method uses monocular image sequence to estimate a depth map by using CNN. Then, the depth map is converted to a pseudo-LiDAR representation format, that means to show the information in the same manner of a LiDAR sensor. In this way, the method can increase the accuracy for the object detection and 3D reconstruction of the scene.

Dynamic object segmentation and 3D tracking

This family can be implemented in scenes with static and dynamic objects. These methods explore the scene in order to cluster the static and dynamic objects. For this reason, their performance is not affected by dynamic objects presented in the scene. For monocular cameras, the method can not perform a 3D reconstruction of the dynamic objects so this family must be complemented with trajectory triangulation techniques.

Subspace Clustering

In these approaches, the high-dimensional data can be represented by the union of lowdimensional sub-spaces. As sub-spaces and data segmentation are unknown, these are solved simultaneously. In motion segmentation, the method finds each individual subspace related to each body motion and fits the data points into the sub-spaces. The performance in this approach is not associated to the number of simultaneous motions, however, the sub-spaces must be known [START_REF] Tron | A benchmark for the comparison of 3-d motion segmentation algorithms[END_REF]. Some methods presented in the sub-space clustering family are:

Vidal et al. [START_REF] Vidal | Generalized principal component analysis (GPCA)[END_REF] proposed a motion segmentation by using Generalized Principal Component Analysis (GPCA) to estimate a mixture of linear sub-spaces from sampled feature points.

The method achieves an unique solution if the number of sub-spaces, given by the rank of the feature points matrix, are lower than 4. This limits the method to 4 simultaneous moving objects.

Yan and Pollefeys [START_REF] Yan | A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and non-degenerate[END_REF] introduced the concept of Local Sub-space Affinity (LSA) for clustering motion sub-spaces. Alternatively to approaches relying on feature points sets and trajectory matrices, LSA fits a local subspace for each point and constructs a similarity matrix using the distance between the local sub-spaces. LSA is not limited by the number of simultaneous motions, however, LSA does not have a good performance when the sub-spaces are intersected due to difficulties of a correct classification of feature points on subspaces borders.

Goh et al. [START_REF] Goh | Segmenting motions of different types by unsupervised manifold clustering[END_REF] employed a Locally Linear Manifold Clustering (LLMC) which is based on spectral clustering. It consists on a nonlinear dimensionality reduction retrieving different clusters where feature points are segmented. This unsupervised method does not require any prior knowledge for reducing the segmentation error, however, it has the same drawback of LSA when sub-spaces are intersected.

Elhamifar and Vidal [START_REF] Elhamifar | Clustering disjoint subspaces via sparse representation[END_REF] carried out the Sparse Sub-space Clustering (SSC) method for clustering disjoint sub-spaces. In this case, the segmentation of disjoint sub-spaces is difficult due to the fact that every pair of sub-spaces intersects only at the origin. A sparse representation is obtained when each point in a linear or affine subspace is written as a linear or affine combination of few points in its subspace. Then, the segmentation is obtained from the sparse coefficients.

Dragon et al. [START_REF] Dragon | Multi-scale clustering of frame-to-frame correspondences for motion segmentation[END_REF] contributed with a multi-scale clustering (MSCM). This method performs top-down split and merge strategy for segmenting motions between two consecutive frames. Image segments are split until they are consistent and finally merged to neighboring segments until convergence. MSCM combines frame-to-frame motion segmentation in a time-consistent manner. This method allows to segment motions with missing data in cases when objects are temporarily or spatially not visible.

In order to facilitate the object segmentation with incomplete or corrupted trajectories, Shi et al. [START_REF] Shi | Robust trajectory clustering for motion segmentation[END_REF] employed the Discrete Cosine Transform (DCT). In this case, a non-linear optimization scheme decomposes input trajectories into a set of DCT vectors. Then, a spectral clustering technique separates foreground trajectories from background trajectory.

Li et al. [START_REF] Li | Subspace clustering by mixture of gaussian regression[END_REF] carried out a sub-space clustering approach called Mixture of Gaussian Regression (MoG Regression) to work with noised data. The method employs a MoG model to characterize noise with a complex distribution in order to remove the noise. Then, a clustering method based on the spectral clustering is applied to identify moving objects.

Sako and Sugaya [START_REF] Sako | Multibody motion segmentation for an arbitrary number of independent motions[END_REF] proposed to segment motions by hierarchically separating trajectories into 2D and 3D affine spaces. The affine space is determined by the rank value of the trajectory matrix and computed by using the Minimum Description Length (MDL). Then, each average likelihood of the identified trajectories is computed and those with large likelihood are segmented again. This method improves the feature points segmentation on subspaces borders.

Statistical Model Selection

In statistical methods, a subset of data is sampled and fitted in motion models by using RANSAC or Monte-Carlo sampling iterations. This process is repeated with the remaining points until segmenting all the points, or the number of points are not enough to estimate a motion model. These steps are repeated to generate hypotheses and select the best one by using criteria such as reprojection error. The main advantage of statistical models is the ability to handle outliers, however, a common drawback is that the performance deteriorates exponentially when the number of dynamics objects increases [START_REF] Vidal | Subspace clustering[END_REF]. A state of art in the statistical model selection is presented:

Sugaya and Kanatani [START_REF] Sugaya | Geometric structure of degeneracy for multibody motion segmentation[END_REF] proposed a multi-stage unsupervised learning method (MSL). The method implements an initial unsupervised learning step by using a parallel 2D plane model to segment background feature points. Then, a second unsupervised learning stage with a 3D motion model is used to segment moving objects. This method has a low execution time, however, it requires a good initialization.

Yang et al. [START_REF] Yang | Robust statistical estimation and segmentation of multiple subspaces[END_REF] introduces a robustly motion segmentation. It relies on RANrandom SAmple Cconsensus (RANSAC) to robustly estimate multiple subspaces. The method achieves low segmentation errors, however, it works in the presence of moderate data noise and outliers.

Ma et al. [START_REF] Ma | Segmentation of multivariate mixed data via lossy data coding and compression[END_REF] presents the Agglomerative Lossy Compression (ALC). The method considers each data point as a group. Then, two groups are merging in order to minimize the coding length needed to fit the points with a mixture of degenerate Gaussians model. This method was improved in [START_REF] Shankar | Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories[END_REF] by introducing techniques from sparse representation allowing the method to handle incomplete and corrupted trajectories.

Sabzevari and Scaramuzza [START_REF] Sabzevari | Monocular simultaneous multi-body motion segmentation and reconstruction from perspective views[END_REF] introduced a multi-body motion segmentation approach for robust estimations of multiple structures and motions by using perspective views. The method is divided in two stages: firstly, the estimation of motions and structures, and secondly, an iterative optimization stage to reduce the reprojection error alternating between motion and structure estimation until they reach constant values. This work was extended in [START_REF] Sabzevari | Multi-body motion estimation from monocular vehicle-mounted cameras[END_REF] by introducing kinematic constraints of ground vehicles in order to reduce the mathematical complexity of the motion-estimation procedure.

Zhu and Elgammal [START_REF] Zhu | A multilayer-based framework for online background subtraction with freely moving cameras[END_REF] suggested a general multilayer framework to detect dynamic objects based on motion. Then, the appearance model is obtained from these objects in order to find the same objects in the next frames. Motion is estimated with Gaussian Belief Propagation and employed for propagating the appearance models and the prior probability. Kernel Density Estimation is applied to obtain the probability map as output.

Optical Flow

Optical flow defines the apparent change of location in individual tracked points from two consecutive images. This change corresponds to the motion field in surfaces, edges or objects. In motion segmentation, it is used to segment the relative motion between an observer and the scene. In general, the optical flow is recommended for small motions in order to avoid a wrong estimation due to illumination changes [START_REF] Bruhn | Combining the advantages of local and global optic flow methods[END_REF]. Different optical flow approaches are:

Klappstein et al. [START_REF] Klappstein | Moving object segmentation using optical flow and depth information[END_REF] studied a technique for monocular or stereo cameras to segment ego-motion and eoru-motions based on optical flow. Ego-motion is segmented by checking constraints such as epipolar geometry, cheirality, positive height and trifocal geometry. In the remaining features points, a globally optimal graph-cut algorithm is used to reject outliers and find dynamic object regions. The method achieves low segmentation error with stereo images, however, with monocular images the segmentation error increases.

Namdev et al. [START_REF] Namdev | Motion segmentation of multiple objects from a freely moving monocular camera[END_REF] suggested to combine optical flow information with the reconstructed map and camera trajectory obtained by Vision based Simultaneous Localization and Mapping (VSLAM) in order to identify the potential location of dynamic objects. Then, a graph based clustering algorithm provides a final segmentation of the dynamic scene. The method achieves low segmentation error but it has a high processing time.

Kao et al. [START_REF] Kao | Moving object segmentation using depth and optical flow in car driving sequences[END_REF] suggested to extract 2D motion models to recover a 3D motion based on the motion of vanishing points (MVP) of the scene and an estimated depth. Then, the 3D motion is optimized taking in consideration constrains such as piece-wise smoothness and sparse distribution of the motion. Finally, a spectral clustering is used over the 3D motion to provide a final segmentation.

Geometry

These methods are an extended formulation of geometry of multiple views that uses the fundamental matrix to describe static feature points. In dynamic scenes, the static approach is complemented by linking each moving object to a fundamental matrix that describes the motion. Geometry methods work under moderate noise conditions, however, the major flaw is the exponential growth in the number of image pairs necessary to estimate the funda-mental matrices according to the number of moving objects [START_REF] Vidal | Three-view multibody structure from motion[END_REF]. Some related state of art approaches are:

Vidal et al. [START_REF] Vidal | Segmentation of dynamic scenes from the multibody fundamental matrix[END_REF] introduced an algebraic and geometric method for estimating 3D motion and segmenting multiple rigid-body motions from two perspective views of a static camera.

The method relies on multi-body epipolar constraint and its corresponding multi-body fundamental matrix. The number of moving objects is estimated by computing the rank value of the Veronese map conformed by the measurement points matrix, then, the fundamental matrix of each object is calculated by establishing epipolar constrains.

This method was combined with the GPCA method [START_REF] Vidal | Two-view multibody structure from motion[END_REF] by computing the epipolar lines using first-order derivatives of the multi-body epipolar constraint and the epipoles by resolving a plane clustering problem using GPCA. The computation time of such an approach is unbounded since the amount of required image pairs grows exponentially in presence of more than two simultaneous motions.

Vidal and Hartley [START_REF] Vidal | Three-view multibody structure from motion[END_REF] addressed multiple rigid-body motion segmentation using three non consecutive views geometry model. In detail, a multi-body trifocal tensor encodes the parameters of the rigid motions and transfers epipolar points and lines between pairs of views. This information is used to obtain an initial clustering, then the trifocal tensor and the motion segmented are refined. The trifocal tensor reduces the number of feature points to segment a motion, however, the number of points grows exponentially according to the number of simultaneous motions.

Zhang et al. [START_REF] Zhang | Hybrid linear modeling via local best-fit flats[END_REF] presents a geometric method for modeling data by the union of affine sub-spaces. The method takes the best-fit affine subspaces determined by the Jones numbers.

Theses subspaces are evaluated by techniques such as spectral methods in order to obtained a final model.

Jung et al. [START_REF] Jung | Rigid motion segmentation using randomized voting[END_REF] studied a randomized voting (RV) method. The algorithm is based on epipolar constraints and Sampson distances between feature points and their epipolar lines. Motions which are correctly estimated obtain high scores and the invalid motions are penalized. The score is used as a discriminative criterion to separate motions into clusters.

Tourani and Krishna [START_REF] Tourani | Using in-frame shear constraints for monocular motion segmentation of rigid bodies[END_REF] presents the in-frame shear to segment motions. The method generates motion hypotheses by using RANSAC procedure in order to create an over-segmentation. Each motion belongs to a moving object or to the background. Then, similar segmented motions are merged in clusters based on a motion coherence.

Recently, Xu et al. [START_REF] Xu | Motion segmentation by exploiting complementary geometric models[END_REF] introduced a multi-view spectral clustering framework that synergistically combines multiple geometric models for motion segmentation.

Trajectory Triangulation

Trajectory triangulation tackles the problem of recovery the 3D moving objects structure of the scene. Standard triangulation can not be implemented because the camera motion does not allow to intercept the projection rays of a feature point in two consecutive frames. These methods estimate the 3D point trajectories by using techniques such as Kalman filter (KF) or Particle filter (PF). Nevertheless, the computational cost limits the PF implementation to a small number of simultaneous dynamic objects [START_REF] Kundu | Realtime multibody visual slam with a smoothly moving monocular camera[END_REF]. A trajectory triangulation state of the art is presented as follows:

Avidan and Shashua [START_REF] Avidan | Trajectory triangulation of lines: reconstruction of a 3d point moving along a line from a monocular image sequence[END_REF][START_REF] Avidan | Trajectory triangulation: 3d reconstruction of moving points from a monocular image sequence[END_REF] introduced the concept of trajectory triangulation to reconstruct 3D points. The technique finds the 3D trajectory line created by a moving point observed from a moving camera by using five consecutive views. Plucker representation is used to find the 3D line that intersects the projected rays from the views.

Ozden et al. [START_REF] Kemal Egemen Ozden | Reconstructing 3d trajectories of independently moving objects using generic constraints[END_REF] suggested a technique to solve the scale problem reconstruction in scenes with multiple dynamic objects. The approach defines two criteria: the independence criterion that refers to the linear coupling between camera and objects translation, and the nonaccidentalness criterion used to evaluate the scale applied. These concepts are implemented in [START_REF] Ozden | Simultaneous segmentation and 3d reconstruction of monocular image sequences[END_REF] in real scenes.

Wang et al. [START_REF] Wang | Simultaneous localization, mapping and moving object tracking[END_REF] presented the SLAMMOT method as a solution to perform the VSLAM method in dynamic scenes. In this technique, VSALM is complemented by adding the detecting and tracking of dynamic objects. This work was extended by Lin and Wang in [START_REF] Lin | Stereo-based simultaneous localization, mapping and moving object tracking[END_REF]. They proposed two monocular cameras to overcome observability issues. This method allowed to improve the performance of SLAM in terms of tracking and observability.

Kundu et al. [START_REF] Kundu | Realtime multibody visual slam with a smoothly moving monocular camera[END_REF] introduced an incremental visual SLAM integrated with a Bearing only Tracking (BOT) through a particle filter. BOT is employed to solve the scale problem in order to reconstruct the scene with static and dynamic information.

Static and dynamic objects have different scales to reconstruct the 3D scene. Namdev et al [START_REF] Namdev | Multibody vslam with relative scale solution for curvilinear motion reconstruction[END_REF] proposed two solutions. The first solution satisfies the planarity constraint of the object motion and the second one is to assume a locally circular or linear object motion.Joint motion segmentation and 3D reconstruction S f M is a technique to recover simultaneously the 3D scene structure and the camera poses (up to scale) using two different images of the scene by using a monocular camera [2]. Longuet-Higgins extended S f M method [3] by introducing a mathematical formulation of the problem. However, S f M became popular when Tomasi and Kanade [START_REF] Tomasi | Shape and motion from image streams under orthography: a factorization method[END_REF] proposed the factorization approach for recovering scene geometry (up to scale) and camera motion with a simple method. This method was complemented with the image scale estimation suggested by Sturm and Triggs [START_REF] Sturm | A factorization based algorithm for multi-image projective structure and motion[END_REF]. Later in [START_REF] Ao | A multibody factorization method for independently moving objects[END_REF], a factorization framework of multi-body S f M was proposed, however, this approach assumes a static camera that observes a scene with moving objects.

Li et al. [START_REF] Li | Projective factorization of multiple rigid-body motions[END_REF] proposed an extension of the iterative Sturm/Triggs (ST) algorithm to alternate between depth estimation and trajectories segmentation. Then, a GPCA or LSA is performed to cluster data in multiple linear subspaces. This method reduces processing time, however, it does not improve motion segmentation errors.

Ozden et al. [START_REF] Kemal Egemen Ozden | Multibody structurefrom-motion in practice[END_REF] applied the multi-body S f M formulation to compute the 3D structure and camera motion by using geometry decomposition from the five-points algorithm. The approach uses three non-consecutive frames (the first, middle and last frame) of the sequence for segmenting in order to obtain stable results.

In order to reduce the segmentation errors, Zapella et al. [START_REF] Zappella | Simultaneous motion segmentation and structure from motion[END_REF] proposed a solution based on a bi-linear optimization procedure to refine an initial segmentation following metric constraints and the sparsity matrix of the 3D moving object shapes. However, this method works given an initial feature points segmentation.

Factorization is a well know technique in S f M based on the rank theorem. Its main advantage is the possibility to segment, estimate a motion and recover the structure of the scene up to scale simultaneously. The theorem states a rank-4 estimation of the trajectory matrix that contains all feature points tracked through all frames. The factorization methods do not run in real time and it is necessary to complement with other techniques to estimate the scale.

S f M has been implemented in applications such as autonomous navigation, video processing, image-based 3D modeling, image organization [4]. These applications can be structured into two main groups:

• Hierarchical S f M: It is used to recover the scene geometry by using an unordered set of images from different viewpoints. In this case, S f M have to match the images by using image features as putting puzzle pieces together. Important works have been presented like the 3D geometry reconstruction of the Roman Coliseum [START_REF] Agarwal | Building rome in a day[END_REF] or the use of 100 million images to recover 3D structure of famous places like Notre Dame Cathedral or Piccadilly Circus [START_REF] Heinly | Reconstructing the world in six days (as captured by the yahoo 100 million image dataset)[END_REF].

• Sequential S f M: This is the most used approach in autonomous navigation. In this case, the images are processed in the order in which they were captured. The objective is limited to the computation of the camera poses and the estimation of the 3D geometry of the scene.

As a conclusion of the state of the art study, the joint motion segmentation and reconstruction was selected as the research method by the following reasons:

• Motion segmentation and reconstruction can be solved simultaneously.

• This single motion formulation that can be extended to a multi-body formulation in a easy manner.

Structure from Motion: Fundamentals

Structure from motion is a photometric technique that allows to construct descriptions of the environment in 3-dimensional shapes up to a scale factor (structure) and their motion through space from image sequences [2]. S f M fundamentals are based on projective geometry (Appendix A.1) and epipolar geometry (Appendix A.2). Projective geometry introduces different parameters such as the camera projection matrix (P), intrinsic parameters of the camera (K) and the camera motion (M). Epipolar geometry defines the concepts of fundamental matrix (F) and the essential matrix (E).

Single motion formulation

Let us consider an object as a rigid body and its motion to be represented and sampled by image feature points (see Sec. 1.3). From the viewpoint of a moving camera, the feature points observed on a scene can lie on static and dynamic objects. Under these assumptions, the factorization approach in [START_REF] Tomasi | Shape and motion from image streams under orthography: a factorization method[END_REF] considers a group of 2D feature points to be tracked and matched over f consecutive frames in a sequence of images. The cardinality of this set of points is denoted p.

A static scenario observed from a moving camera constitutes the simplest use-case. Let us consider W ∈ R 3 f ×p as the measurement matrix composed of the image coordinates of the feature points along the sequence. A feature point is symbolized by w p = (u p , v p , 1) T ∈ R 3 f ×1 and each column vector of w p represents the feature point position by frame as w p = [w 1p , w 2p , ..., w f p ] T . The camera motion between frames is modeled by a rigid transformation, M = [R|t], where M ∈ R 3 f ×4 R ∈ R 3×3 and t ∈ R 3×1 stand for rotation and translation respectively. Finally, S ∈ R 4×p is the structure composed of 3D homogeneous coordinates of the feature points s p = [s x , s y , s z , 1] T as stated in Eq. 2.1:

W =       w 11 w 12 • • • w 1p w 21 w 22 • • • w 2p . . . . . . . . . . . . w f 1 w f 2 • • • w f p       , M =       M 1 M 2 . . . M f       , S = s 1 s 2 • • • s p (2.1)
Thus, the single motion general formulation of S f M is defined as follows:

W 3 f ×p = M 3 f ×4 • S 4×p (2.2)
The bilinear elements M and S are computed by factorizing W . The solution to Eq. 2.2, namely W , stands for the best rank-4 approximation to the matrix W given by the rank-4 estimation of motion M and structure S as:

W 3 f ×p ≈ M 3 f ×4 S 4×p (2.
3)

The rank-4 estimation of motion M and structure S will be explained in Sec. 3.2.1 where considerations such as Z-coordinate translation and Z-coordinate (depth value) structure are evaluated.

Multi-Body Structure from Motion formulation

In a scene composed of multiple motions [START_REF] Ao | A multibody factorization method for independently moving objects[END_REF], multi-body motion segmentation facilitates the computation of the camera motion and the structure of all rigid bodies in the scene by using the general formulation (see Eq. 2.2). The multi-body trajectory matrix W is composed of the trajectory matrices of the n independent motions, each of them are represented by W n ∈ R 3 f ×p . The multi-body camera motion M ∈ R 3 f ×4n is computed with respect to each n independent body motion and denoted as M n ∈ R 3 f ×4 . Finally, a multi-body 3D structure, S ∈ R 4n×p , is built in a sparse shape enclosing the structure of each body, S n ∈ R 4×p , in a diagonal matrix. The general multi-body S f M formulation is:

[W 1 |...|W n ] = [M 1 |...|M n ] •     S 1 0 0 . . . . . . . . . 0 0 S n     (2.4) 
Eq. 2.4 is solved by factorizing each motion individually.Motion and Structure estimation

Motion estimation

Camera motion and orientation can be estimated by finding features correspondences between 2D-2D image points, 3D points and 2D image points, and 3D-3D points:

• 2D to 2D: This procedure only works in monocular cameras. The motion estimated, M, between two frames is applied in a set of 2D image points selected of the previous frame w f -1p , w f p = M w f -1p . Then, the coordinates of the estimated image points w f p and the selected image points w p are compared. The solution is founded by minimizing the reprojection error as detailed in Eq. 2.5:

arg min ∑ w f p -w f -1p 2 (2.5)
• 3D to 2D: This approach can be implemented in monocular or stereo cameras. Motion estimated M between two frames is applied over a set of 3D points in the previous frame X f -1p . These 3D points are reprojected onto the image by using the intrinsic camera parameters, K, and the reprojection error between the extracted image points, w f p , and the estimated image points, w f p , is calculated as in Eq. 2.6. This method leads to a solution by minimizing the reprojection error, and it is called camera resectioning or perspective from n points (PnP) [START_REF] Kneip | A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation[END_REF].

arg min ∑ w f p -K MX f -1p 2 (2.6)
• 3D to 3D: This case can be used only in stereo vision. The stereo vision allows to triangulate the 2D image points into their 3D point coordinates. Estimated motion M is applied over a set of 3D points of the previous frame X f -1p in order to estimate the actual 3D coordinates X f p . The method minimizes the euclidean distance between the actual 3D points X f p and the estimated 3D points X f p as stated in Eq. 2.7:

arg min ∑ X f p -MX f -1p 2 (2.7)
A single monocular camera is used to estimate the motion and the structure of the scene. In this case, the 2D-2D image features correspondences motion estimation is suited to compute the motion as follows.

Two consecutive sets of features w and w are sampled to recover the motion and structure by enforcing epipolar constraints. To this end essential matrix E is used as shows Eq. 2.8. E is estimated in a least square form, Ax = 0, where A are the coefficients of w and w , and x the essential matrix E.

w T • E • w = 0 (2.8)
The estimated motion M where the rotation and translation are recovered by means of a singular-value decomposition (SVD) of the essential matrix E as Eq. 2.9:

UDV T = SVD (E) (2.9)
Where, the columns of matrix U are the left singular vectors, the diagonal of matrix D are the non-zero singular values, and finally, the rows of matrix V are the right singular vectors.

The translation up to scale between the two vectors is defined by the last column of matrix U as t = [±U 3c ]. The orthogonal matrix Q is defined as Eq. 2.10 in order to determine the rotation between both vectors. The rotation is defined by the combination of the matrix U, Q and

V as R = UQV T or R = UQ T V T . Q =    0 -1 0 1 0 0 0 0 1    (2.10)
Four possible solutions are UQV T ±U 3c and UQ T V T ±U 3c , however 3 of them are senseless because these are solutions where the scene is located behind of the image plane in at least one of the two image processed. The solutions are evaluated in order to find a unique valid combination.

Structure estimation

Given two sets of consecutive feature points represented by w and w , a set 3D points coordinates X p are recovered by using linear triangulation. This method is used to compute the projective transformation between two sets of corresponding points in two images. The 3D points are projected onto an image plane as described in Eq. 2.11, and onto the second image plane as:

w = P • X p w = P • X p (2.11)
The initial camera projection matrix P is located at the origin of the world reference frame and P represents the camera projection matrix in a new position with reference to the initial position as presented in Eq. 2.12. K stands for the intrinsic matrix of the single monocular camera.

P = K • [I|0] P = K • [R|t]
(2.12)

Linear equation system of the form Ax = 0 is composed of the projection matrices (P, P ) and image points vectors (w, w ) as shown in Eq. 2.11:

w × P w × P • X p = 0 (2.13)
The equations system (Eq. 2.13) is detailed in Eq. 2.14, where P iT represents the i th row of the projection matrix and w = (u, v, 1) T encloses the image coordinates as:

           0 -P 2T vP 3T P 1T 0 -uP 3T -vP 1T uP 2T 0 0 -P 2T v P 3T P 1T 0 -u P 3T -v P 1T u P 2T 0            • X p = 0 (2.14)
Considering the independent equations only, the 3 rd and 6 th rows are removed to retrieve a solution in the form of Ax = 0:

      0 -P 2T vP 3T P 1T 0 -uP 3T 0 -P 2T v P 3T P 1T 0 -u P 3T       • X p = 0 (2.15)
A non-trivial solution for Eq. 2.15 is found by using the SVD of A where the solution is composed by the last column of V as shown in Eq. 2.16:

UDV T = SVD(A) (2.16)
Finally, V is normalized for obtaining the structure, S, for each point in homogeneous coordinates as:

S =       X Y Z 1       =       V x /v V y /v V z /v v/v      
(2.17)

Local optimization

Local optimization is used to refine the errors of the motion and structure estimation procedures. Pose-graph optimization and bundle adjustment are two main methods for local optimization.

Pose-graph optimization

This approach [START_REF] Olson | Fast iterative alignment of pose graphs with poor initial estimates[END_REF] proposes to represent the camera poses by nodes and the motions between poses by edges as shown in Fig. 2.1. The objective is to minimize the cost function by optimizing the estimated motion M between the camera pose C t and the previous camera pose as stated Eq. 2.18. This nonlinear function is solved by using algorithms such as Gauss-Newton or preferably Levenberg-Marquadt. Landmarks or loop detections for large sequences [START_REF] Ulrich | Appearance-based place recognition for topological localization[END_REF] are implemented to improve the optimization process and reduce the trajectory drift.

arg min ∑ C t -MC t-1

2

(2.18)

Bundle Adjustment (BA)

BA process is implemented in order to optimize the 3D structure [START_REF] Triggs | Bundle adjustment -a modern synthesis[END_REF] by changing camera parameters. The cost function is nonlinear, and it is solved by Levenberg-Marquadt method. BA works with features tracked over more than two frames. However, computational cost increases in large amount of consecutive frames. It is recommended to implement BA in a temporal sliding window along the sequence. The method minimizes the reprojection error between an image feature and a 3D structure point calculated and projected onto an image as follows:

arg min ∑ w p -PX p 2

(2.19)

Scale estimation

The trajectory in monocular navigation is obtained up to scale as it was explained in Sec. 2.3.3.

Scaramuzza et al. [START_REF] Scaramuzza | Absolute scale in structure from motion from a single vehicle mounted camera by exploiting nonholonomic constraints[END_REF] introduces non-holonomic constraints in order to compute the center of motion when the vehicle turns. The center of motion and a kinematic model are used to estimated the scale, however, the method only works in planar roads. Some approaches proposed to compute the homography between two consecutive views in order to detect the features on the ground plane. These points and the camera height are used to find the scale [START_REF] Song | High accuracy monocular SFM and scale correction for autonomous driving[END_REF][START_REF] Fanani | Multimodal scale estimation for monocular visual odometry[END_REF]. Other methods proposed to implement Kalman filter for the position estimation of the moving camera in order to reduce the trajectory drift such as [START_REF] Zhou | Reliable scale estimation and correction for monocular visual odometry[END_REF][START_REF] Ahuja | A factorization approach for enabling structure-from-motion/slam using integer arithmetic[END_REF].

In this work, the scale estimation is computed by using the height of the camera and the feature points located on the ground plane of the road. A Region of Interest (ROI) is defined in order to select the feature points for the ground plane estimation. A large ROI could take in consideration other planar surfaces such as walls or car doors that could lead to a wrong scale estimation. On the other hand, a small ROI could not have enough feature points for a homography estimation. In order to avoid these situations, a medium size ROI of 400x200 pixels was defined. The ROI centroid is located on the X-coordinate at the center of the However, the normal distance of the ground plane points to the camera center has variations between them, so the mean normal distance is implemented as:

s = mean(n) h (2.21)
Finally, the scale is applied to obtain the translation vector and the structure estimated as:

t scaled = t × s S scaled = S × s (2.22)
The monocular S f M method is described by the Alg. 1 as:

Algorithm 1 SfM Procedure 1: procedure 2:
Input: Monocular images sequence 3:

Output: Ego-motion and Structure estimation. Find features points correspondences between images 7:

Compute F by using RANSAC estimation 8:

Compute E from F Compute homography by using ROI feature points between the images 12:

Estimate the mean normal distance of the homography feature points 13:

Calculate the scale and apply it over the estimated translation and structure return M, S Motion and structure 17: end procedure

Evaluation results

The monocular S f M approach is evaluated on three KITTI dataset called Set00, Set04 and Set07 (Fig. 1.3). The scenes are characterized by the absence of moving objects where the main objective is to reconstruct the scene and evaluate the accuracy of the trajectory estimated by this 2D-2D approach.

The evaluation of the results is done by computing the Root Mean Square Error (RMSE) between the camera pose C gps , provided by a Global Positioning System (GPS), and the estimated pose C computed by the S f M method in the global reference frame. This evaluation tool was proposed by [START_REF] Kummerle | On measuring the accuracy of slam algorithms[END_REF][START_REF] Kitt | Moving on to dynamic environments: Visual odometry using feature classification[END_REF][START_REF] Geiger | Are we ready for autonomous driving? the kitti vision benchmark suite[END_REF][START_REF] Platinsky | Monocular visual odometry: Sparse joint optimisation or dense alternation[END_REF] and detailed in Eq. 2.23: Trajectory is well estimated in straight line, however, scale estimation errors were identified when the moving camera was turning. In these cases, the ground plane is not visible in the camera field of view and the scale estimation was not computed correctly. This monocular odometry is based on local coordinates system that causes an error accumulation for the next frames. Result shows a trajectory recovered with a RMSE of 51 m. This value represents a deviation of 0.013 m by meter driven. Set07 is a closed loop trajectory composed of 1101 frames in a static environment. The trajectory covers an area of 191m × 209m that combines straight and curved segments. In this trajectory, scale estimation is affected by the sidewalk that is detected as the ground plane when the moving camera is turning. The trajectory has a length 694m and the RMS error computed from the estimated trajectory was 25.94m. This deviation error is 0.037m per meter. Table 2.3 reports the results obtained in the three evaluated trajectories. Error percentage is computed by using the trajectory length and RMSE. The results show that the highest error percentage was 3.73% in the Set07 sequence. This error is mainly due to the sidewalk detection instead of the ground plane detection when the camera is turning. 

ε rmse (m) = ∑ C gps -C 2 # f rames (2.

Conclusions

Joint motion segmentation and reconstruction was selected as the method to study. Structure from Motion approach has been introduced and the results evaluated. In monocular systems, the S f M allow us to recover the structure and the ego-motion up to scale simultaneously.

In order to estimate the scale, a method based on the ground plane estimation was employed. This method is valid for scaling the camera trajectory and the static part of the scene. The experiments illustrated a reduced error when the ground plane is in the camera field of view.

Results obtained in Set04 scene demonstrated that in a straight line trajectory the ground plane is always visible in the image sequence therefore it was obtained an error percentage of 0.54% in comparison with the trajectory length.

The drift error increases since relative estimated motions are integrated over time to compute the trajectory. This is confirmed in large trajectories such as Set00 and Set07 whose lengths are 3724 m and 694 m respectively.

In the next chapter, motion segmentation of the scene by using Multi-Body Structure from Motion (MB-S f M) method will be introduced. This methodology will be presented and a state of the art method implemented in the datasets proposed by the author. The results will be studied by following the criteria already defined. 

Introduction

This chapter presents the Multi-Body Structure from Motion (MB-SfM) approach intended to support dynamic scene understanding. The method is performed by using a monocular camera on-board a moving platform and it is based on a hypotheses probabilistic method. The approach starts by generating multiples scene segmentation hypotheses, then, these are evaluated by following an image reprojection error criterion. The scene motion hypothesis that achieves the smallest projection error is selected as the best scene motion segmentation.

The chapter first addresses the Multi-Body Structure from Motion (MB-SfM) state of the art method and its implementation in Sec. 

Scene motion segmentation methodology

Let us refer to this method as a baseline method. This methodology is applied to scenes composed of static and dynamic objects. Hereafter, we consider monocular image sequences captured on-board a moving platform. Images are analyzed and processed through a temporal sliding window where feature points are extracted and tracked over time.

The detection process starts by randomly sampling a feature points set of two consecutive frames from the trajectory matrix. These points are employed to recover the relative motion between the frames, M, and the structure, S. This stage is carried out on the same set of feature points along a temporal sliding window of size F , so as to retrieve a trajectory which minimizes the reprojection error.

A new motion hypothesis, W hyp n , is instantiated from any set of features achieving a reprojection error less than a threshold. A motion hypothesis is defined as a possible trajectory matrix that satisfies the reprojection error criterion and represents the n th motion of the observed scene. Since the number of observed motions is unknown, new trajectories are built until all feature points are assigned. At the end of this procedure, the scene segmentation is composed of n motions. As a result, the best scene segmentation in terms of reprojection errors is selected.

In the remaining of this section, it is detailed how to determine the number of sampling trials that are required to instantiate a new motion hypothesis. Next, the hypotheses evaluation method is introduced and the association criterion of a feature point to a motion hypothesis is formalized. The procedure stated in [START_REF] Sabzevari | Monocular simultaneous multi-body motion segmentation and reconstruction from perspective views[END_REF] is considered in this study to detect motion and to recover trajectories from multiple views. 

Recovering motion and structure

Normalization

The data normalization reduces noise sensitivity and allows to obtain stable results in the algorithm. This is necessary due to the difference of magnitude among 2D image coordinates of the feature points set. The algorithm scales all data points, p, so as the centroid of each points set is zero and the average distance of one point to the centroid is equal to √ 2. Given the homogeneous coordinates w i = (u p , v p , 1) T , the centroid c(u, v) of the set is given by Eq. 3.1.

c = 1 p p ∑ i=1 w i (3.1)
Mean distance between the homogeneous coordinates and the centroid, σ , is computed by the Eq. 3.2.

σ = 1 p ∑ w i -c (3.2)
Finally, normalization is done by Eq. 3.3.

w i = √ 2 σ (w i -c) (3.3)

Sampling points

A set of k points in two consecutive frames are sampled from the matrix W and defined by w f = [w 1 , w 2 , ..., w k ] T and its consecutive frame w f = [w 1 , w 2 , ..., w k ] T . A feature point w i is selected randomly [START_REF] Zuliani | The multiransac algorithm and its application to detect planar homographies[END_REF] and w i features are associated following a nearest neighbor criterion with a likelihood distribution modeled by Eq. 3.4. The values of ζ and ρ are selected heuristically by considering the scale of the likelihood.

Pr(w i |w i ) =      1 ζ exp - w i -w i 2 ρ 2 i f w i = w i 0 i f w i = w i (3.4)

Motion estimation

The two consecutive sets of features w f and w f are used to recover the motion and structure by enforcing epipolar constraints using the essential matrix E. This procedure was introduced in Sec. 2.3.3.

Structure estimation

The 3D points coordinates, X p , are recovered by using linear triangulation from the feature points represented by w and w . The method was explained in Sec. 2.3.4.

Generation of motion hypotheses

A motion hypothesis M and structure S are recovered by using the vectors w and w for each consecutive pair of frames along the sliding window (see Sec. 3.2.1). In this procedure, it is necessary at least 8 feature points to generate a motion hypothesis. The matrix W is determined by the general formulation Eq. 2.3 for each sampling trial. Reprojection errors are evaluated for each pair of frames and accumulated by each sliding window. A hypothesis is accepted if the reprojection error on the sliding window is less than a threshold ε hyp , such as:

∑ F f =1 W k -M • S k ≤ ε hyp (3.5)
If the hypothesis is validated, the trajectory matrix, the motion and the structure are kept and added to W h k , M h and S h k , respectively. If the hypothesis is discarded, a new set of k feature points is sampled until the number of sampling trials, ψ, is reached.

Association criterion of a feature point and a motion hypothesis

Given the motion M h and the feature points matrix W , the structure S h is calculated using linear triangulation as explained in Sec. 3.2.1. The motion M h is applied to the structure S h in Eq. 2.3 to obtain W . Then, reprojection errors are computed for each point in the sliding window as in Eq. 3.5. Feature points achieving a reprojection error lower than a threshold ε pto are kept in the group W n and removed from W . Threshold ε pto is defined as the maximum accumulated reprojection error allowed by feature point in the sliding window.

W -W ≤ ε pto (3.6)
Finally, the structure S n is updated by using the feature points, W n , satisfying the reprojection error criterion and the motion M h . Motion hypotheses are created from the remaining points (W -W n ) until all the trajectory points in W are assigned in a new group or rejected as outliers.

Sampling trials for motion segmentation

This motion segmentation method is a probabilistic procedure. This procedure is carried out iteratively on the set of features until all observed motions are detected. For this reason, it is necessary to determine the number of sampling trials, ψ, required to achieve good results with a probability p r . ψ is estimated relying on the RANSAC formulation, where ε stands for the probability that any selected image feature is an outlier, such as:

ψ = log (1 -p r ) log 1 -(1 -ε) k (3.7)
It is worth to mention that this formulation leads to detect at first the dominant motion of the scene. This motion usually corresponds to the camera motion (i.e. ego-motion). In the subsequent iterations, motions from features lying on dynamic objects are detected.

Evaluation of a motion hypothesis

After ψ trials, multiple solutions for an observed motion may satisfy the condition stated in Eq. 3.6. In such a condition, the solution with the smallest Euclidean distance between the trajectory matrix W and the hypotheses estimations W n is selected as the best motion hypothesis. For the first motion (n = 1), this is considered as the dominant motion since it retrieves the higher consensus of the feature points set.

The outline of the motion segmentation process is summarized in Alg. 2.

Algorithm 2 Motion Segmentation Algorithm 1: procedure W SEGMENTATION(W,W (n)) Compute

W k = M • S k 12:
Compute reprojection error for W k 13:

end while 14:

n = n + 1 15: M h ← M, S h k ← S k Hypothesis approved 16:
Apply M h over remaining feature points in W 17:

Compute S h with W and M h

18:

Compute

W h = M h • S h 19:
Compute reprojection error for points W h 20:

if (reprojection error point w p ≤ ε pto ) then

21:

Add points to W n

22:

Remove points from W return W n , M n , S n Segmented trajectory matrix, motion and structure 28: end procedure

Experimental results

Experimental results obtained with the motion segmentation methodology (Sec. 3.2) are reported in this section. Four experiments were carried out by using two datasets with real data from Hopkins155 and two use cases datasets from KITTI presented in Sec. 1.2. These experiments are intended to validate the implementation of the state of art approach [START_REF] Sabzevari | Monocular simultaneous multi-body motion segmentation and reconstruction from perspective views[END_REF] by comparing its results with the obtained results. The metrics introduced in Sec. 1.4 such as reprojection error, segmentation error, outlier ratio and execution time will be used to evaluate the obtained results.

Experiments on real data in controlled scenarios

Fig. 3.2 illustrated a Hopkins155 scene called Car2. The scene is composed of two simultaneous motions, the dominant motion and a moving object reducing its speed. The baseline method was parameterized considering 200 scene motion segmentation hypotheses by frame along the sequences. Thirty frames were processed by using 26 sliding windows, each frame includes 490 feature points.

In order to set the parameters, the results were evaluated with the confusion matrix. The best precision and recall values were obtained with ε hyp = 0.5 pixels and ε pto = 1.5 as reported in Table 3.1. 3.1) is caused due to the fact that only segmented the dominant motion was segmented in frames 10, 19, 22, 23 and 26. In this scene, the number of dynamic objects was not correctly calculated. The observed vehicle slows down and reduces the inter-frame distance. In this case, the dynamic object is not detected with the selected parameters increasing the false negative detections. The fixed threshold along the sequence limits the capacity to segment dynamic objects when the interframe motions is not constant. Decreasing the value of ε pto may help to segment small inter-frame motions but it also leads to over-segment the scene. The percentage of feature points considered outliers was lower than 1.5% along the sequence as shown in Fig. 3.5. In frames, where the moving object was not segmented, the outliers percentage obtained ranges from 0.4% to 0.6%. This means that the amount of feature points rejected was less than 5 points when the moving object was not properly segmented and most of the feature points were segmented as dominant motion. Motion segmentation algorithm was executed 10 times and the mean value per frame was reported as shown in Fig. 3.6. In this scene with two simultaneous dynamic objects, the processing time per frame was lower than 14 seconds. Despite the fact that precision and recall scores in Table 3.2 are high, motion segmentation errors are still present along the sequence. Fig. 3.9 illustrates the mean reprojection error evolution in Car9 scene. The highest value was obtained in the 13th frame for the 2nd observed motion with 1.2 pixels. The dynamic object 1 (green color) was not detected in frame 8, this case is represented by a zero value with a red cross mark.

Figure 3.9: Mean reprojection error for Car9 scene using baseline method.

The highest outliers percentage was 22% in frame 2 as shown in Fig. 3.10. In this frame, the motions are classified without segmentation errors, however, these feature points did not fit in the estimated motions with the established threshold for the reprojection error. The algorithm was executed 10 times and the mean value per frame is reported in Fig. 3.11. In this scene with three simultaneous dynamic objects, the processing time reached was 180 seconds per frame. 

Experiments on real data in use-cases

The baseline algorithm was tested on the KITTI scenes road-2011_10_03_drive_0042 (namely as Set42) and residential-2011_09_30_drive_0034 (namely as Set34), the results are compared in terms of reprojection error and segmentation error to those reported in [START_REF] Sabzevari | Monocular simultaneous multi-body motion segmentation and reconstruction from perspective views[END_REF]. In these scenes, 200 scene motion segmentation hypotheses were generated and evaluated in each frame along the sequence. These experiments do not involve feature extraction, matching and tracking, these steps are implemented in a previous step before the motion segmentation algorithm.

The Set42 involves two cars at cruise urban speed (around 55 km/h), the car moving camera and other car performing an overtaking maneuver. A sequence of 20 frames with an average of 185 feature points by frame was processed with the values of ε hyp = 0.875 pixels and ε pto = 4. Fig. 3.12 illustrates the mean reprojection error for the two segmented motions, the highest value was 3.6 pixels for the moving object in the first frame.

Figure 3.12: Mean reprojection error results of the scene using the baseline method.

In order to compare with the results reported in [START_REF] Sabzevari | Monocular simultaneous multi-body motion segmentation and reconstruction from perspective views[END_REF], 5 frames were processed each one composed of 218 feature points. The tests were conducted with different setting values of ε hyp and ε pto , and the results in terms of precision and recall are reported in Table 3.3. Best results were obtained using thresholds that were set ε hyp = 0.3 pixels and ε pto = 4 pixels. These results are shown in Fig. 3.13(a) where feature points trajectories of the dominant motion are presented in red and those feature points trajectories of the independent moving object in green. Fig. 3.13(b) exhibits an example of over-segmented motion, it was segmented the dominant motion, the dynamic object and a second dynamic object indicated with blue feature points and enclosed with a yellow square. This over-segmentation was obtained with ε hyp = 0.3 pixels and ε pto = 3 pixels. In the observed scene, the moving object was correctly segmented, however, a second moving object was segmented from the dominant motion features set. It is worth noting that even if there is no classification errors on moving objects, the set of dominant motion features can be, in some cases, over-segmented. In Set34, it is observed a vehicle moving in reverse direction and turning. The parameter settings for this sequence were ε hyp = 0.25 pixels and ε pto = 3 pixels. In Fig. 3.15, three motions groups were detected: the dominant motion, the moving object and an over-segmented group of feature points. The motion sensibility and over-segmentation depend on the threshold selection of ε pto . Table 3.4 summarizes the results obtained for Set42 and Set34 and includes the performances reported in the state of the art [START_REF] Sabzevari | Monocular simultaneous multi-body motion segmentation and reconstruction from perspective views[END_REF]. In Set42, the baseline method achieved a segmentation without error and the mean and median reprojection error lower than the ones reported on [START_REF] Sabzevari | Monocular simultaneous multi-body motion segmentation and reconstruction from perspective views[END_REF]. However, in the Set34 the segmentation error was greater with 3.3% and the mean and median reprojection error were lower than the ones of [START_REF] Sabzevari | Monocular simultaneous multi-body motion segmentation and reconstruction from perspective views[END_REF]. These results let us assume that our implementation is reliable enough for a fair comparison. 

Conclusions

In this chapter, the Multi-Body Structure from Motion (MB-SfM) approach was presented to segment motions from a monocular camera. In comparison with the S f M, that allows to recover the ego-motion and its structure, the MB-SfM can segment dynamic objects and recover their structures. This statistical method uses feature points organized by sliding windows as information to detect the ego-motion (camera motion), and the eoru-motions that represents the dynamic objects.

Results show that MB-SfM allows to find a scene motion segmentation hypothesis with a low image reprojection error without using prior information about the number of simultaneous dynamics objects. However, good motion segmentation results are directly associated with the number of hypotheses generated that increases the computation cost.

It has been shown that the processing time increases exponentially when the number of simultaneous dynamic objects increases. The processing time in scenes with 3 simultaneous motions is 10 times higher than the running time obtained in scenes with two simultaneous motions. This disadvantage turns the MB-SfM method into a non scalable method. State of the art proposes to include kinematic restrictions such as constraints on the number of Degrees Of Freedom (DOF) of the estimated motion from 6 DOF to planar motions 2 DOF.

The results obtained in scenes such as Car2, Car9 and Set34 have shown that the number of segmented motions can change between consecutive sliding windows. In some frames the scene is over-segmented or under-segmented in comparison with the real number of dynamic objects. These results show that it is necessary a fine tuning in the parameters in order to find the values that allows a correct motion segmentation along the scene and reduce the segmentation error. A proposed solution could be to establish a minimum inter frame optical flow distance between two image.

The confusion matrix can be used as a tool to evaluate the segmentation, however, an oversegmentation on the ego-motion cannot be evaluated because this new group will be considered as a true negative and not as a segmentation error. It is necessary to consider that a sub-group on the ego-motion points is a segmentation error.

In the next chapter, Track-before-Detect method to segment dynamic objects will be introduced. This new methodology wants to solve the MB-SfM limitations in order to preserve the density of feature points on the followed dynamic objects and to reduce the method complexity.

Introduction

In Chapter 3, the Multi-Body Structure from Motion (MB-SfM) based approach proved to be suitable for scene motion segmentation. It was obtained a mean reprojection error and a segmentation error lower than 4 pixels and 4% in the evaluated datasets, respectively. However, the computational complexity of such a strategy is vast and increases exponentially with the number of observed motions in a scene. To alleviate such a limitation, the authors proposed in [START_REF] Sabzevari | Multi-body motion estimation from monocular vehicle-mounted cameras[END_REF] a speeded-up variant of the procedure taking advantage of motion model priors in context of a ground vehicle application. With lost of generality, the reformulated problem was limited to 2-DOF motions instead of 6-DOF motions reducing drastically the complexity. This model limits objects motion segmentation to planar motions, moreover, it is hardly transposable to important ground plane changes such as 3D trajectories.

This chapter introduces the Track-before-Detect (TbD) approach to segment motions. TbD is proposed to improve the motion segmentation performance without introducing kinematics constraints and preserving a low segmentation error, reprojection error and outliers ratio.

TbD needs an initial segmentation of the scene that could be obtained by two different methods such as the MB-SfM or our proposed procedure. These two methods are tested in different scene datasets, and the results are analyzed and compared with other state of the art methods.

This chapter is organized as follows: Sec. 4.2 introduces the fundamentals of the TbD-SfM method. Then, our proposed approach is presented to initialize the TbD-SfM method in Sec. 4.3. Then, TbD-SfM approach is described to segment moving objects in Sec. 4.4.

Experimental results of the proposed method are provided in Sec. 4.5. Finally, the chapter ends with conclusions and perspectives in Sec. 4.7.

Track-before-Detect approach

Track-before-Detect is a technique implemented in radar applications in order to improve the moving objects detection [START_REF] Kramer | Track-before-detect processing for an airborne type radar[END_REF]. Traditional radar applications are done by thresholding methods that report objects detected in each scan of the radar. However, a small motion signal detected by the scan is not reported due to its signal value is lower than a selected threshold that allows to remove noise detections, this could lead to miss information [START_REF] Blackman | Multiple-target tracking with radar applications[END_REF].

TbD is a non-threshold method that exploits the scan technique and the physical motion of the objects. The physical motion is used to predict the next position of the moving object. This prediction will be confirmed by the sensor scan in order to report the detected signal as a detected moving object [START_REF] Salmond | A particle filter for track-before-detect[END_REF][START_REF] Boers | Trackbefore-detect algorithm for tracking extended targets[END_REF].

In the scene analysis, Track-before-Detect Structure from Motion (TbD-SfM) was proposed as 6-DOF motion segmentation tightly coupling motion detection and temporal filtering of multiple dynamic image regions. Once the dynamic objects are detected, their regions are tracked to limit the solution exploration space, to preserve the feature points density in regions, and to reduce the computational cost without kinematic constraints in motion estimation.

TbD-SfM approach requires an initial scene segmentation that could be obtained by implementing state of art methods [START_REF] Fremont | Mono-vision based moving object detection in complex traffic scenes[END_REF]. Two methods are suggested, the MB-SfM algorithm and our proposed initialization procedure. TbD-SfM framework is divided into the following stages: Feature extraction and tracking, Initialization, Ego-motion segmentation, Eoru-motion segmentation, Image region tracking and Update tracking regions. Fig. 4.1 illustrates the proposed approach. 

TbD initialization

In order to implement TbD-SfM approach, it is necessary an initial segmentation of dynamic objects of the scene. Two methods are proposed to obtain an initial segmentation: First, it is used the MB-SfM algorithm named as baseline method and introduced in chapter 3. Second, it is proposed an alternatively initialization approach to obtain good quality results in terms of segmentation and reprojection error with a lower computational cost in comparison with the MB-SfM. The scene is composed of the ego-motion (set of static feature points) and eoru-motions (groups of dynamic feature points). The ego-motion is the set with the largest amount of feature points (dominant motion assumption) [START_REF] Gabriel | Segmentation and recognition using structure from motion point clouds[END_REF]. Eoru-motions describe the dynamic objects that will be assigned to the inputted dynamic regions.

The initialization method is done in three stages. First, the ego-motion segmentation. In this step, feature points are segmented by using the RANSAC formulation. Then, the iniliers points are clustered with the bucketing method in order to look for the best ego-motion hypothesis. Second, the eoru-motion segmentation. In this step, a probabilistic sampling is applied on the remaining feature points in order to find the best dynamic motion hypothesis. 

Ego-motion segmentation

The procedure begins by determining the trajectory matrix, W , that is conformed by tracked feature points along F frames (4 frames) of the sliding window. The ego-motion features are segmented by finding features correspondence between the first and the last frame of the sliding window as it is presented in Sec. A.2. To this end, F is robustly estimated using RANSAC formulation and the feature points are classified as inliers or outliers points according to the selected epipolar distance, ε ep . Fig. 4.3 illustrates the results for epipolar segmentation with two different epipolar distances. The red feature points represent the inliers for ego-motion and cyan feature points indicate the outliers for ego-motion. These results show that epipolar geometry is not enough to obtain a reasonable ego-motion segmentation.

Next, the inliers feature points are grouped in clusters by using the bucketing procedure. To this end, the image is divided in n × m buckets as shown in Fig. 4.4. The bucketing is employed to infer where the feature points should be sampled to generate a motion hypothesis. Afterwards, motion hypotheses are generated in order to find the best ego-motion estimation.

To this end, one feature point is picked out from a selected bucket until completing k feature points. The buckets are chosen by following a probabilistic sampling. A high amount of RANSAC inlier features in a bucket increases the probability of sampling a feature from such a bucket. Hypotheses are computed between a consecutive pair of frames along the sliding window, as explained in Sec. 2.3.2. To this end, the k selected feature points and their trajectories along the sliding window, represented by W k , are used to estimate the motion M h and the structure S h k of the hypothesis.

Relative motion between frames M h and inliers trajectory matrix W in are used to calculate structure S h in of the set of inliers points. The hypothesis trajectory matrix W h in is estimated with the motion M h and structure S h in hypothesis using the general formulation (Eq. 2.3) as:

W h in ≈ M h • S h in (4.1)
Hypotheses are evaluated by comparing the trajectory feature points W in and the trajectory matrix estimated W h in . Feature points with a reprojection error lower than a threshold ε pto along the temporal sliding window are considered inliers for the hypothesis, these are determined as:

F ∑ f =1 W in -W h in ≤ ε pto (4.2)
The hypotheses generation is repeated until finding the hypothesis with the highest percentage of inliers in a RANSAC scheme parametrized with an outliers proportion of 50% and a probability of 99%. This hypothesis is the best estimation for the ego-motion.

Then, structure and reprojection error constraints are evaluated in the selected hypothesis. The structure is evaluated considering that 3D points must be located in front of the camera, that means depth coordinates (Z) are positive values as is indicated in Eq. 4.3. On the other hand, the estimated trajectory points are evaluated with a reprojection error lower than ε pto as it was presented in Eq. 4.2.

S(z) ≤ 0 (

Structure and trajectory points are rejected if these do not satisfy the established constraints, and the structure S 1 and the trajectory matrix W 1 are updated. This hypothesis constitutes the first segmented group and it is represented by W 1 , M 1 and S 1 .

Finally, the trajectory matrix W 1 and the motion hypothesis M 1 are used to find ego-motion points in outliers feature points. Such points have been rejected by the epipolar geometry in the first step of this procedure. To this end, the remaining features are introduced in the structure S 1 . Then, the trajectory matrix W 1 is updated and the result is evaluated by checking the structure and reprojection error criteria described in Eq. 4.2 and Eq. 4.3.

Eoru-motion segmentation

After the ego-motion segmentation, the remaining feature points can be classified as dynamic objects or outliers. In order to segment these points, the generation of motion hypotheses is employed to identify one or more sets of feature points that represent dynamic objects. The implemented procedure was introduced in Sec. 3.2.2 and the dynamic objects found are enclosed in dynamic regions W r n . In order to avoid a false positive segmentation, the sets of feature points considered as dynamic objects must be repeated in the next sliding windows F times. Otherwise, the group of features will be rejected.

Representation of dynamic regions

A dynamic region is represented by a horizontally-oriented box with centroïd coordinates (u, v), width w, and height h in pixels. Dynamic regions enclose object entities and associate their features points along the temporal sliding window. Segment ego-motion from W using epipolar geometry Remove outliers of W in and update S h and W h in 13:

Find ego-motion features in outliers segmented by the epipolar geometry (line 4) 

Track-before-Detection for scene analysis

In last section, the TbD initialization obtained an initial scene segmentation of the egomotion W 1 and the dynamic objects W 2 ,W 3 , ...W n for n dynamic objects. In this section, TbD approach is introduced for the scene motion segmentation. Giving a trajectory matrix W from a new sliding window, the scene analysis with the TbD starts by identifying feature points belonging to the dominant motion set (W 1 ). To this end, the set of features enclosed in the dynamic regions (W r 2 ,W r 3 , ...,W r n ) are subtracted from the trajectory matrix W as:

W r 1 = W -({W r 2 } ∪ {W r 3 } ∪ ... {W r n }) (4.4)
where, W r n represents the set of trajectory points of the n th motion. It is important to recall that the set of points W r 1 can include misclassified points since a new sliding window may enclose different feature points from those used in the TbD initialization. A robust RANSAC-based ego-motion estimation is carried out on the set W r 1 following the steps described in the Alg. 3. At this point, the results are the segmented feature points W 1 , structure S 1 and motion M 1 which represent the observed dominant motion. The estimation of the ego-motion must fulfill a minimum number of feature points, k, required to instantiate a motion estimate, and it corresponds to the number of columns in W n as:

m = col(W n ) -k (4.5) 
If there are multiple motion solutions with the same consensus, the one with the smallest mean reprojection error is kept. In presence of multiple observed motions included in the set of points W 1 , motion estimates might not achieve the minimum required consensus. This situation occurs when the number of outliers is greater than k feature points, when there is at least one new moving object in the scene or if the dominant motion assumption is not satisfied (e.g partial occlusion). Fig. 4.5 shows the segmented ego-motion feature points (red), the remaining feature points (cyan) and the tracking area (blue square). 

Motion factorization on dynamic regions

Motions are factorized relying on segmented feature points assigned to each dynamic region (W r 2 ,W r 3 , ...,W r n ). In each set of trajectory points W r n , it is assumed the presence of feature points following the n th moving object and potential outliers under the assumption of a dominant motion in a dynamic region as shown in Fig. 4.6. The first step consists in detecting points belonging to ego-motion group. To this end, a structure is computed with the dominant motion M 1 and each set of dynamic points W r n . Feature points with a positive value in the Z coordinate and a reprojection error lower than ε pto are classified as ego-motion feature points. After, these features are moved to the trajectory matrix W 1 and removed from the set of dynamic points W r n . Then, the ego-motion structure S 1 is updated by using the trajectory matrix W 1 and the dominant motion M 1 as it was explained in Sec. 2.3.4. Remaining feature points in each set of trajectory points W r n are employed to estimate eorumotions, W n , as it was defined in Sec. 3.2.1. Motion factorization is applied to the set of unsegmented features in order to find new moving objects or to discard such features as outliers. The results in this stage are the segmented trajectory matrix W n , their structures S n and motions M n of the dynamic objects in the scene. The remaining feature points are clustered in order to estimate a motion model using the eoru-motion estimation approach. The object must be detected in F consecutive frames to avoid false new object detections in the scene.

Image region tracking

Literature introduces different approaches such as Kalman filter (KF), Multiple Hypothesis Tracking (MHT), Probability Hypothesis Density (PHD) or Poisson Multi-Bernoulli Mixture (PMBM). Assuming that the observed moving objects are subject to physical dynamics, these are expected to perform smooth changes in the image sequence. Under this consideration the Kalman filter is well-suited for image region tracking. A bank of Kalman filters is intended to manage and to infer the most probable states of the dynamic regions. This strategy is known as Multiple-Target Tracking (MTT). The state of a dynamic region in the image plane is tracked by a 8D vector. The track state is denoted by x f as shown in Eq. 4.6, and it is composed by the region centroïd in pixels coordinates (x c , y c ), the region width w, the region height h and their first derivatives (v x , v y , δ w , δ h ) respectively:

x f = [x c , y c , w, h, v x , v y , δ w , δ h ] T (4.6)
Since an inter-frame linear and uniform motion is assumed, a linear Gaussian model is well suited for tracking purpose as is stated in Eq. 4.7:

   x f = A • x f -1 + α f α f ∼ N (α f ; 0, Λ f ) y f = C • x f + β f β f ∼ N (β f ; 0, Γ f ) (4.7)
where A and C represent transition and observation models, respectively. x f -1 stands for the state vector in a previous sample frame and y f the multivariate observations. α f and β f are the state and observation noise following a zero-centered normal distribution with known variances.Track-to-Motion association

The state of each dynamic region is predicted by means of its associated Kalman filter. State predictions enclose the set of points employed for motion factorization as illustrated in Fig. 4.6. Association between the tracks and motions is done by following two criteria: the geometrical distance (d g ) and the image correlation (Img corr ). The geometrical distance is computed by using the symmetric intersection over union overlap region (A I ) between the predicted dynamic region (A W p ) and the region that encloses the dynamic object feature points (W r n ) as shown in Eq. 4.8. Tracks with a geometrical distance higher than a defined threshold are discarded.

A I A W p +W r n -A I < d g (4.8)
Then, the image criterion correlates the tracked dynamic region and the region enclosing the detected factorized motion regarding their appearance. Regions with an image correlation higher than a defined threshold (Img corr ) are associated. Feature points following the factorized motion update the tracked region if the feature satisfies the geometrical distance and the image correlation criteria.

Track creation and deletion

A dynamic region has to be detected in all the frames of the temporal sliding window so as to provide enough evidence for initializing a filter to track it. Non-updated tracks are destroyed if theirs predictions are not reliable enough to be associated to new detected motions. A new moving object is detected using feature points classified as outliers if there are at least 8 points, that is the minimum number of points to estimate a motion. The factorization method is applied over these feature points in order to find a new group that satisfies the reprojection error criterion ε pto , see Sec. 3.2. Hereafter, the outline of TbD-SfM is illustrated in Alg. 4:

Experiments in controlled scenarios

TbD with MB-SfM initialization (TbD-SfM). In the sequence, the two motions were correctly segmented using TbD-SfM. The ego-motion was composed of 431 feature points and the dynamic object of 59 features. The highest mean reprojection error in a sliding window was 1.35 pixels for the dominant motion and 0.8 pixels for the moving object as shown in Fig. 4.7. These reprojection errors are acceptable since the estimated movements allow to classified all the dynamic features points without error. The ratio of outliers per frame are illustrated in Fig. 4.8. The highest value corresponds to the first frame segmentation done with the MB-SfM method. In this frame, the outliers ratio achieved the highest value with a 15% of feature points rejected. In the next frames, the ratio of outliers with the TbD-SfM approach was less than 1%. The highest percentage of outliers observed from the second frame along the scene is less than 2% as shown in Fig. 4.10. At least 98% of feature points by frame were correctly classified and not rejected as outliers using the TbD-SfM approach. This result confirms that TbD-SfM approach exploits the implementation of the region tracking in order to improve the estimation of the scene motions. The better estimation is reflected in the low percentage of feature points rejected and derives in a density conservation of features points. The highest percentage of outliers was obtained in frame 15 as illustrated in Fig. 4.13. In this frame, it was also obtained the highest reprojection error in the dominant motion. In this case, the selected ego-motion hypothesis increased the reprojection error of the estimated trajectory points and some feature points were rejected. The high percentage of outliers were obtained from the dominant motion even when the reprojection error is less than 1.5 pixels. The opposite case is presented in the frames 2, 3, 4 and 5 where all the feature points were correctly segmented. Enhanced TbD with speeded-up initialization (ETbD-SfM)

TbD with the enhanced initialization is tested in car sequences of Hopkins dataset. The initialization step is performed in the first frame and its result is the input to the TbD-SfM algorithm. The initialization step is parametrized with a sliding windows of 5 frames. The threshold value for the epipolar distance is ε ep = 1 and the threshold values for the reprojection error ε pto are presented in Table 4.3. The obtained results are reported in Table 4.5. The proposed initialization increased the segmentation error in sequences such as Car2, Car3, Car8, Truck1 and Truck2, however, these increases were smaller than 0.34%. These values are acceptable considering that achieved segmentation errors were lower than 0.5% for all the datasets. The segmentation errors obtained with ETbD-SfM increased in comparison with the TbD-SfM because the initial segmentation in ETbD-SfM was obtained with misclassified points. These errors were corrected with the dynamic region estimation using Kalman filter. Fig. 4.17(a) shows the result for the proposed initialization and the segmentation obtained with ETbD-SfM in the frame 7 of the Car8 scene of the Hopkins155 dataset. The ETbD-SfM can deal with a non-perfect initial segmentation. It is recall that from frame 1 to 5 (sliding window size) the dynamic region is given by the initial segmentation. Then, in frame F + 1 the estimation is done by the Kalman filter that increases or decreases the dynamic region until a converged segmentation is achieved. The convergence can be obtained in around 8 frames, however, it depends on the initial result. Table 4.6 reports the reprojection and segmentation error benchmark of the car sequences results using TbD-SfM (Table 4.4) and ETbD-SfM (Table 4.5). The results show that TbD-SfM and ETbD-SfM achieved a lower segmentation error in scenes with two and three simultaneous motions in comparison with the methods presented in [START_REF] Zhu | A multilayer-based framework for online background subtraction with freely moving cameras[END_REF][START_REF] Tourani | Using in-frame shear constraints for monocular motion segmentation of rigid bodies[END_REF][START_REF] Li | Subspace clustering by mixture of gaussian regression[END_REF][START_REF] Jung | Rigid motion segmentation using randomized voting[END_REF][START_REF] Zhang | Hybrid linear modeling via local best-fit flats[END_REF][START_REF] Dragon | Multi-scale clustering of frame-to-frame correspondences for motion segmentation[END_REF][START_REF] Vidal | Subspace clustering[END_REF][START_REF] Elhamifar | Clustering disjoint subspaces via sparse representation[END_REF][START_REF] Ma | Estimation of subspace arrangements with applications in modeling and segmenting mixed data[END_REF][START_REF] Ma | Segmentation of multivariate mixed data via lossy data coding and compression[END_REF][START_REF] Tron | A benchmark for the comparison of 3-d motion segmentation algorithms[END_REF][START_REF] Yan | A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and non-degenerate[END_REF][START_REF] Yang | Robust statistical estimation and segmentation of multiple subspaces[END_REF][START_REF] Sugaya | Geometric structure of degeneracy for multibody motion segmentation[END_REF].

and SLBF [START_REF] Zhang | Hybrid linear modeling via local best-fit flats[END_REF] method in frame 13 of the Car3 sequence. The results illustrate a similar density of the feature points segmented by the two methods. The results prove that ETbD-SfM can segment a higher amount of feature points in comparison with other methods. Feature points density is an important characteristic because it is necessary a minimum of 8 feature points to estimate a motion model on the dynamic object and to avoid losing dynamic objects.

Experiments on real data use-cases

ETbD-SfM and TbD-SfM were tested with real data in order to evaluate their execution time and segmentation error. Algorithms were implemented in Matlab on a laptop with a i-7 2.6GHz processor and 16 GB of RAM.

Dataset 1

Set05 scene is characterized by two dynamic visible objects along of 150 frames of the sequence. The first dynamic object is a vehicle located far in front of the moving camera.

The second dynamic object is a person riding a bicycle located close in front of the moving camera. The average speed of these objects is around 15 km/h. was segmented until frame 84 when it was lost due to its small optical flow. The highest obtained reprojection errors were 2.3 pixels and 2.7 for the ego-motion and eoru-motion respectively.

Frame number 5 10 15 20 [START_REF] Olson | Fast iterative alignment of pose graphs with poor initial estimates[END_REF] Table 4.7 presents the execution time obtained with the two different initializations. The MB-SfM method proposed in [START_REF] Sabzevari | Monocular simultaneous multi-body motion segmentation and reconstruction from perspective views[END_REF] with 200 hypotheses created to segment motions and our proposed ETbD-SfM approach. Our approach obtained a speed gain of 38 times. It is considered the scene of Set13 in KITTI dataset composed of 140 frames where there are two simultaneous motion until frame 25, the moving camera (ego-motion) and a car passing from the back to the front with high speed. Then, a third car appears in the same direction from frame 26 until frame 50 (ego-motion and 2 eoru-motions). In the last part of the scene, there are two motions from frame 51 until frame 140 (ego-motion and eorumotion). Trajectory matrix is organized by sliding windows with a size of 4 frames and the average number of tracked feature points per frame is 1900. It was obtained a segmentation error of 0.31% in the scene.

The obtained results at frame 44 using ETbD-SfM are described as follows: The ego-motion reprojection error is lower than 1.9 pixels along the sequence (red feature markers). The first dynamic object (green feature markers) was segmented from the frame 2 until the frame 45 with a reprojection error lower than 2 pixels. The second dynamic object was segmented from frame 30 until the frame 61 with a reprojection error lower than 2.2 pixels. The eoru-motions are segmented as one dynamic object in the frame 46 because they are too close. In Fig. 4.27(b), zero values with a red cross mark represent the frames where it was not possible to estimate the reprojection errors because it is necessary at least 8 points to estimate the motion and the amount of feature points in the segmented set is lower than 8 points. In these cases, the object is only tracked in the sequence but it is not lost. In order to study how the initialization step could affect the computational cost along the sequence, two test are conducted by applying the initialization step every 20 frames and 40 frames. Other initializations are carried out in frames where the ETbD-SfM method does not The results show that the initialization step does not have any time influence over the execution time of the ETbD-SfM motion segmentation method. The highest value obtained was 49 s in the frame 50 because after ego-motion computation, motion estimation method (Sec. 3.2.2) is performed over the remaining feature points so as to find a new motion. Table 4.8 presents the execution time obtained every 20 frames with the two different initializations. The MB-SfM method proposed in [START_REF] Sabzevari | Monocular simultaneous multi-body motion segmentation and reconstruction from perspective views[END_REF] with 300 hypotheses created to segment motions and our ETbD-SfM proposed approach. Our approach obtained a speed gain between 50 and 800 times. Fig. 4.29 shows the outliers percentage along the sequence with a highest value of 10% in frame 28. The mean value of outliers was 2.62%, this proves that ETbD-SfM method can estimate multiple motions with a low reprojection error, preserving the quantity of feature points. 

Recovering trajectories

ETbD-SfM methodology is based on the ego-motion and eoru-motions estimation up to scale. In this section, the scaled object trajectories are computed by using the recovered motions. The results are evaluated by comparing the trajectories scaled with respect to the ground truth trajectories.

Dataset 1

Ground truth trajectories are included in KITTI dataset. Ego-motion trajectory is obtained from GPS and the dynamic objects trajectories are provided by the dataset tracklets. For each object trajectory, the scale is estimated by using the camera height and the ground plane feature points as it was presented in Sec. 2.5. Table 4.10 compares the error obtained in the recovered trajectories. The scaled ego-motion trajectory achieved a low error. However, the dynamic objects trajectories increased their errors. Trajectories error in dynamic objects increased due to a scale estimation error. Scale estimation is done by using the object height and the hypothesis that the detected object is on the ground plane. Fig. 4.37 explains how this hypothesis is not valid in all detections. Dynamic object 1 is segmented by the first time in the frame 2. In this frame, the segmented motion was estimated as a fragment of the object. This segmentation is considered by our hypothesis as a whole object on the ground plane leading to increase the computed scale value to obtain the object trajectory. 

Conclusions

In this chapter, a ETbD-SfM approach has been proposed to segment moving objects from a moving monocular camera. The method is able to infer independent motions (eoru-motions) and ego-motion (camera) trajectories under a 6-DOF motion model. The implementation of the ETbD-SfM in S f M allows to drastically decrease the number of trial hypotheses required for a scene motion segmentation without the use of kinematics constraints. Thanks to this, our method has a better performance and its advantages were thoroughly demonstrated in scenes until three simultaneous motions.

Experiments show that the proposed initialization speeds up segmentation of dynamic objects without affecting the ETbD-SfM segmentation process or entailing any performance loss. Our method achieved a low segmentation error with a high amount of segmented feature points as shown by the outliers percentage. The closed-form approach preserves the density of feature points reducing the probability of losing dynamic objects.

achieve a low segmentation error avoiding over segmentation. Moreover, the high processing time to segment a dynamic object.

In Chapter 4, Track-before-Detected framework, T bD-S f M, was presented as a contribution to reduce the MB-S f M algorithm complexity. T bD-S f M algorithm keeps the feature points density in the segmented objects. T bD-S f M employed a segmented scene to initialize (from MB-S f M) a multi tracking target strategy of the dynamic areas using a bank of Kalman filters. These filters provide probable areas where dynamic objects will be located in the next frames. Then, the motion hypotheses generation based on RANSAC formulation is performed to segment the dynamic object area. Experimental results proved that T bD-S f M achieved the lowest segmentation error of the literature but its mean reprojection error is high in comparison to the state of art. A high reprojection error is justified by the higher amount of segmented features that keeps the density of feature points on the dynamic objects and decreases the outliers percentage. At the same time, T bD-S f M reduces more than 10 times the processing time.

Considering that T bD-S f M needs an initial segmentation, we have proposed an enhanced initialization method, ET bD-S f M, based on epipolar geometry and motion hypotheses generation. The results demonstrated that ET bD-S f M increased the mean reprojection error by 0.5 pixels. However, it reduces the processing time by more than 30 times in comparison with the MB-S f M initialization. The initialization method is the functional block that presents high computing complexity. It creates the segmentation hypotheses that are used by the T bD-S f M.

An exploratory experiment was done, in order to recover the dynamic objects trajectories. However, the scaled estimation method works under the hypothesis that the segmented objects are located on the ground plane and their heights are known. This method is limited because the detection method can not identify if the features represents a whole object or a fragment of the object. The most important error identified was the scale estimation.

Future works

This thesis dealt with different problems that have still to be addressed. Future works can be oriented to improve methods or to increase the quality of obtained results with a monocular based-vision system.

The proposed ego-motion scale estimation method has to deal with images where the ground plane is not in the field of view of the camera. An alternative could be a Kalman filter implementation to estimate the moving camera position and reduce the trajectory estimation error. Some works are implementing this solution to reduce the error in the visual odometry problem [START_REF] Zhou | Reliable scale estimation and correction for monocular visual odometry[END_REF].
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 1 

Figure 1 :

 1 Figure 1: Left image illustrates the Uber company vehicle equipped with sensors such as LiDAR, RADAR and cameras. Right image shows the model S car from Tesla integrates a vision-only automated driving system.

Figure 2 :

 2 Figure 2: Diagram illustrates an implementation of scene understanding algorithms which provides key information to an ADAS controller.

Figure 1 . 1 :

 11 Figure 1.1: Figure shows traffic scenes wich are well-suited for evaluating motion segmentation. The illustrated scenes include feature points in the first frame.

Figure 1 . 2 :

 12 Figure 1.2: Figure shows the frame 212 of Set15 KITTI dataset.

  1.3(b). • Set07: This is a medium size dataset with 1101 frames. Its trajectory is composed by straight and curved segments. This trajectory has one closed loop, see Fig. 1.3(c).

Figure 1 . 3 :

 13 Figure 1.3: Figure shows image examples of the three KITTI scenes: (a) Frame 43 of the Set00. (b) Frame 53 of the Set04. (c) Frame 63 of the Set07.

•Figure 1 . 4 :

 14 Figure 1.4: Figure illustrates the frame 960 and 470 from Set34 and Set42, respectively.

Figure 1 . 5 :

 15 Figure 1.5: Figure illustrates the frame 10 and 41 from Set05 and Set13, respectively.

1 . 6 .

 16 (a) Figure shows an example of features matched with rotation changes. (b) Example of features matched with image scaling.

Figure 1 . 6 :

 16 Figure 1.6: Figure illustrates feature points matched in rotation and scalling changes.

Fig. 1

 1 .[START_REF] Levin | Visual odometry and map correlation[END_REF] shows an example of features localization between two images.

Figure 1 . 7 :

 17 Figure 1.7: Figure illustrates the features localization performed between two images.

Figure 1 . 8 :

 18 Figure 1.8: Figure presents the eigenvalues interpretation of the Harris corner detector.

Figure 1 . 9 :

 19 Figure 1.9: Figure illustrates the eigenvalues interpretation for the Shi-Tomasi corner detector.

Figure 1 . 10 :

 110 Figure 1.10: Figure shows SIFT feature point gradients in a 16x16 array. These are accumulated into histograms and represented over 4x4 sub-regions.

Figure 1 . 11 :

 111 Figure 1.11: Illustration of FREAK image sampling pattern inspired by the human retinal system. Image from [112].

Figure 1 . 12 :

 112 Figure 1.12: Figure illustrates Blob/corner mask for image filtering and feature descriptor of in LIBVISO.

Figure 1 . 13 :

 113 Figure 1.13: Figure shows the frames 120, 190, 220 and 250 of the scene in the Set15 KITTI dataset.

Figure 1 . 14 :

 114 Figure 1.14: Figure shows the number of feature points on the dynamic objects tracked in 3 consecutive frames with LIBVISO. Horizontal line represents the minimum amount of points necessary to estimate a motion model.

Figure 1 . 15 :

 115 Figure 1.15: Illustration of the amount of points on the dynamic objects tracked in 4 consecutive frames with LIBVISO.

Fig. 1 .Figure 1 . 16 :

 1116 Fig. 1.16 shows that the number of feature points in each dynamic object decreased around 30% in comparison with the amount of points tracked in 4 frames. Objects 2, 3, 4, 5, 6, 7 and

Segmentation accuracy = 100 ×

 100 Number of points correctly classified Number of segmented points (1.8)

Figure 2 . 1 :

 21 Figure 2.1: Figure shows the Pose-Graph representation of the camera poses and the 3D geometric points. Optimization is realized between the camera poses.

  image and on the Y-coordinate at 100 pixel from the highest image Y-coordinate feature point as is shown in Fig.2.2.

Figure 2 . 2 :

 22 Figure 2.2: Example of a ROI in frame 300 of the Set00 dataset. The feature points selected (green color) to compute the homography matrix. Magenta point indicates the ROI centroid.

Figure 2 . 3 :

 23 Figure 2.3: Illustration diagram of the geometry relation between the camera height and the ground plane.

4 : 5 :

 45 while (n < image length) doExtract feature points W on the images Im n and Im n+1 6:

9 :

 9 Decompose E to obtain motion M = [R|T ] between the images 10: Compute S from M and W 11:

23 )

 23 Set00 is composed of 4541 frames that combines straight and curved segments in different closed loops. The trajectory have a length of 3724m and covers an area of 564m × 496m as shown in Fig.2.4.

Figure 2 . 4 :

 24 Figure 2.4: Results obtained for the the KITTI Set00. Blue line indicates the up to scale trajectory. Red line represents the scaled trajectory and finally the black line illustrates the ground truth trajectory from the GPS.

Fig. 2 .

 2 Fig. 2.5 shows an example of the recovered structure from the feature points. Road structure is indicated in the front view with some structure points reconstructed under the ground plane estimation. Bird eye view of the recovered structure shows the building footprint in L-shape localed in the right side.

Figure 2 . 5 :

 25 Figure 2.5: Figure illustrates the structure from the bird eye view (X-Z) and front view (X-Y) as an example of recovered structure from the feature points in frame 90.

Figure 2 . 6 :

 26 Figure 2.6: Results obtained for the the KITTI Set04. Up to scale trajectory is denoted in blue. Scaled trajectory is indicated in red and ground truth trajectory from the GPS in black.

Fig. 2 .

 2 Fig. 2.7 represents the recovered structure in the frame 1. The structure views illustrate the road ground plane and the bushes structure on the right side of the image.

Figure 2 . 7 :

 27 Figure 2.7: Image illustrates the structure from the bird eye view (X-Z) and front view (X-Y) as example of the recovered structure in the frame 1.

Figure 2 . 8 :

 28 Figure 2.8: Results obtained for the the KITTI Set07. Up to scale trajectory is denoted in blue. Scaled trajectory is indicated in red and ground truth trajectory from the GPS in black.

Fig. 2 .

 2 Fig. 2.9 shows as example the structure view recovered in frame 100 where the two vehicle structures were detected in the image scene.

Figure 2 . 9 :

 29 Figure 2.9: Figure presents the structure from the bird eye view (X-Z) and front view (X-Y) as example of the recovered structure in the frame 100 from the feature points.

  Structure and motion are estimated by following the next steps: Normalization, Sampling points, Motion estimation and Structure estimation as is presented in Fig.3.1.

Figure 3 . 1 :

 31 Figure 3.1: Figure details the steps implemented in order to recover the motion and the structure along an image sequence.

while (hyp ≤ ψ) do 6 :Sample k points from W 10 :

 610 while (Number of feature points in (W ) k) do 7: while (reprojection error ( W k ) ε hyp ) Compute M and S k from W (Section 3.2.1) 11:

Fig. 3 .

 3 Fig.3.2(a) illustrates the segmentation results in the first frame. The moving object was correctly segmented, however, the dominant motion (red feature points) was over-segmented. A third group in blue color was created with few feature points. Fig.3.2(b) exposes the frames with the correct number of dynamic objects segmented in blue color. The frames with more (over-segmented) and less than 2 segmented motions (under-segmented) are presented in red color since the scene is only composed of two independent motions.

Figure 3 . 2 :

 32 Figure 3.2: Baseline method results for Car2 scene: (a) First frame segmentation. (b) Numbers of motions segmented along the sequence.

Fig. 3 .

 3 Fig. 3.3 shows the dynamic object segmented in frames 9, 20 and 23 with some false positives feature points. The recall value of 0.66 (see Table3.1) is caused due to the fact that only segmented the dominant motion was segmented in frames 10, 19, 22, 23 and 26. In this scene, the number of dynamic objects was not correctly calculated. The observed vehicle slows down and reduces the inter-frame distance. In this case, the dynamic object is not detected with the selected parameters increasing the false negative detections. The fixed threshold along the sequence limits the capacity to segment dynamic objects when the interframe motions is not constant. Decreasing the value of ε pto may help to segment small inter-frame motions but it also leads to over-segment the scene.

Figure 3 . 3 :

 33 Figure 3.3: Baseline method results for frames 9, 10, 20 and 25 in Car2 scene.

Fig. 3 .

 3 Fig. 3.4 plots the mean reprojection error of the motions segmented by the baseline method in Car2 scene. Moving object is indicated in green dot-line and the dominant motion (egomotion) in red dot-line. The highest reprojection error was 1.4 pixels in frame 21 for the dominant motion and 1.4 pixels in the frame 1.3 for the moving object motion. The reprojection error was not computed in frames 10, 19, 22, 23 and 26, due to the fact that the moving object was not segmented and its feature points were assigned to the dominant motion set.

Figure 3 . 4 :

 34 Figure 3.4: Mean reprojection error results for Car2 scene.

Figure 3 . 5 :

 35 Figure 3.5: Percentage of ouliers per frame in Car2 scene.

Figure 3 . 6 :

 36 Figure 3.6: Execution time per frame in Car2 scene.

Fig. 3 .

 3 Fig.3.7(a) shows the motion segmentation results for the first frame in Car9 scene from Hopkins155 dataset. The scene is composed of three simultaneous independent motions: the dominant motion represented in red (static objects) and two moving objects in green and blue. This sequence is a challenging case since the observed objects are moving at low speed (i.e 10 km/h). Twenty four frames were processed with 220 feature points per frame. The baseline method was set to consider 300 scene motion segmentation hypotheses by frame.

Fig. 3 .

 3 Fig. 3.7(b) illustrates the number of motions segmented along the sequence. The number of segmented motions is correctly estimated in the first frames, however, in the last frames of the sequence this number increases. This result indicates a low threshold value of ε pto . The number of segmented motions could decrease if the ε pto value is increased due to the moving objects which do not have a constant speed.

Figure 3 . 7 :

 37 Figure 3.7: Baseline method results for Car9 scene: (a) Motion segmentation result in the first frame. (b) Number of motions by frame along the sequence.

Fig. 3 .

 3 8 presents examples such as the frames 4, 12 and from 14 to 20 where the baseline method over-segments motions and misses one dynamic object of them in frame 8.

Figure 3 . 8 :

 38 Figure 3.8: Baseline method results for frames 4, 8, 12, and 14 in Car9 scene.

Figure 3 . 10 :

 310 Figure 3.10: Outliers percentage in the Car9 scene.

Figure 3 . 11 :

 311 Figure 3.11: Execution time per frame in Car9 scene.

Figure 3 . 13 :

 313 Figure 3.13: Results of Set42: (a) Motion trajectories. (b) Over-segmentation example.

Fig. 3 .

 3 Fig.3.14 highlights that the highest reprojection error was 2.8 pixels for the dominant motion features set and 1.8 pixels for the moving object features set.

Figure 3 . 14 :

 314 Figure 3.14: Mean reprojection error by frame in Set42.

Figure 3 . 15 :

 315 Figure 3.15: Results of Set34: (a) Ego-motion and vehicle trajectories. (b) Reprojection error.

Figure 4 . 1 :

 41 Figure 4.1: Diagram presents the outline of the motion segmentation algorithm tracking objects.

Finally, the dynamic

  object representation is defined to indicate the dynamic objects location on the scene. Fig. 4.2 illustrates the initialization step diagram. This stage outputs the first estimation of size, location, and number of dynamic objects in scene.

Figure 4 . 2 :

 42 Figure 4.2: Diagram presents the outline of the Enhanced TbD initialization algorithm.

Figure 4 . 3 :

 43 Figure 4.3: Motion segmentation by using epipolar geometry with epipolar distances of 1 and 2 pixels. RANSAC inlier features (red color) and outliers (cyan color) for the ego-motion.

Figure 4 . 4 :

 44 Figure 4.4: Figure presents an example of bucketing in image scene.

11 :

 11 Evaluate structure and reprojection error constrains in S h and W h in 12:

Figure 4 . 5 :

 45 Figure 4.5: Example of segmented ego-motion feature points (Red color), remaining feature points (Cyan color) and tracking area (Blue square).

Figure 4 . 6 :

 46 Figure 4.6: Example of feature points inside of the dynamic area (Blue color).

Fig. 4 .

 4 Fig.4.7 presents the Car2 scene of Hopkins155 with two simultaneous motions. It was processed 30 frames using 26 sliding windows with a size of 5 frames, F , each one includes 490 feature points. MB-SfM segmentation is used in the first sliding window selecting thresholds values for the hypothesis reprojection error, ε hyp , and the point reprojection error, ε pto . The results are evaluated by computing the precision and recall in the confusion matrix (see Sec. 1.4). The thresholds with the best precision and recall values are selected for the test. The initialization is parametrized with the thresholds values ε hyp = 0.5 pixels and ε pto = 3 pixels, following the precision and recall scores reported in Table4.1.

Figure 4 . 7 :

 47 Figure 4.7: TbD-SfM results in the Car2 scene: (a) Illustration of the trajectories segmented. Ego-motion and eoru-motion are presented in red and green color, respectively. (b) Mean reprojection error obtained for each motion segmented.

Figure 4 . 8 :

 48 Figure 4.8: Figure illustrates the outliers ratio for Car2 scene by using TbD-SfM method.

Figure 4 . 9 :

 49 Figure 4.9: Figure shows the quartiles representation of the mean reprojection error obtained in Monte-Carlo experiment by using TbD-SfM for Car2 scene: (a) Ego-motion, (b) Eorumotion.

Figure 4 . 10 :

 410 Figure 4.10: Figure illustrates the quartiles representation of the outliers percentage obtained in Monte-Carlo experiment by using TbD-SfM for Car2 scene.

Fig. 4 .

 4 Fig. 4.11(a) shows the feature points processed along the scene. Three motions were correctly segmented in the initialization step as is illustrated in Fig. 4.11(b).

Figure 4 . 11 :

 411 Figure 4.11: Examples of feature points in the first frame for Car9 scene: (a) Total amount of feature points. (b) Segmented feature points. Ego-motion feature points are indicated in red and the dynamic objects features are shown in green and blue.

Fig. 4 .

 4 Fig. 4.12(b) shows the mean reprojection error in the sliding window with a highest error of 1.45 pixels for the dominant motion. The highest reprojection errors on the moving objects were less than 0.55 pixels.

Figure 4 . 12 :

 412 Figure 4.12: Figure shows the trajectories of segmented motions and the mean reprojection error by using TbD-SfM for Car9 scene. (a) Ego-motion is presented in red color and the dynamic objects in green and blue color. (b) Mean projection error obtained for the segmented motions.

Figure 4 . 13 :

 413 Figure 4.13: Figure shows the percentage of segmented feature points as outliers along the sequence for Car9 scene.

Figure 4 . 14 :

 414 Figure 4.14: Figure shows the quartiles representation of the mean reprojection error in each object obtained in the Monte-Carlo test for Car9 scene. (a) Ego-motion, (b) First dynamic object (Van), (c) Second dynamic object(Car)

Fig. 4 .

 4 Fig. 4.15 illustrates the outliers percentage obtained along the sequence of the Monte-Carlo experiment in Car9. It is noted that until frame 14, the maximum percentage of outliers was limited to 3.1%. The outliers percentage increases from frame 14 when the dynamic objects are moving close to the camera. The near objects increase the reprojection error due to the direct relation with the optical flow and the percentage of outliers grows. In frame 19, it is shown a maximum boxplot value of 5.5% and the highest percentage of outliers with 12.2%.

Figure 4 . 15 :

 415 Figure 4.15: Figure illustrates the quartiles representation of the outliers percentage obtained in Monte-Carlo experiment by using TbD-SfM for Car9 scene.

Fig. 4 .

 4 Fig.4.16(a) shows the Car2 scene result with 3 feature points wrongly segmented (blue square). Fig.4.16(b) presents the segmentation result in frame 5. The wrongly segmented points are corrected by the Kalman filter (green square) that increases the dynamic region estimation from frame 6. Dynamic region has a growing trend if the points in a large estimated area belongs to the motion, on the other hand, the region has a decreasing trend if the points are rejected and the area is reduced.

Figure 4 . 16 :

 416 Figure 4.16: Figure shows the dynamic region evolution and the segmentation results for Car2 scene. Ego-motion points are represented in red and the dynamic object points in green. Green square indicates the dynamic object region. Blue square encloses the misclassified feature points. (a) Frame 1, (b) Frame 5, (c) Frame 6, (d) Frame 7.

Figure 4 . 17 :

 417 Figure 4.17: Figure shows the dynamic region evolution and the segmentation results for Car8 scene. Ego-motion points are represented in red and the dynamic object points in green. Green squared indicates the dynamic object region. Blue square encloses the misclassified feature points. (a) Frame 1, (b) Frame 5, (c) Frame 6, (d) Frame 7.

Figure 4 . 18 :

 418 Figure 4.18: Figure illustrates a comparison of the density between two methods for Car3 scene. Ego-motion points are represented in red and dynamic feature points in blue and green color: (a) ETbD-SfM, (b) SLBF [84].

Fig. 4 .

 4 Fig. 4.19 shows the results obtained in frame 5 of the Car7 scene by using ETbD-SfM and MB-SfM methods. The amount of features segmented by the MB-SfM on the dynamic object is lower in comparison with the amount of features segmented by the ETbD-SfM method as is indicated in the image.

Figure 4 . 19 :

 419 Figure 4.19: Example of the amount of segmented feature points in frame 5 of the Car7 scene: (a) ETbD-SfM, (b) MB-SfM [68].

Fig. 4 .

 4 Fig. 4.20 presents the results in the frame 11 of the Car8 scene where the number of features segmented by ETbD-SfM method is higher in comparison with the MB-SfM result on the dynamic object.

Figure 4 . 20 :

 420 Figure 4.20: Figure illustrates a comparison of density in frame 11 of Car8 scene: (a) ETbD-SfM, (b) MB-SfM [68].

Fig. 4 .

 4 Fig. 4.21 illustrates the amount of points segmented in each dynamic object by the ETbD-SfM and MB-SfM. The images show that ETbD-SfM preserves the density of feature points on the dynamic objects.

Figure 4 . 21 :

 421 Figure 4.21: Example of the amount of segmented feature points in the first frame of Car9 scene: (a) ETbD-SfM, (b) MB-SfM [68].

Fig 4 .

 4 Fig 4.22 shows the motion segmentation results in frame 10. Fig 4.22(a) illustrates the ego-motion segmented in red and the remaining points in cyan. In Fig 4.22(b), the tracking areas are used to indicate the probably location of the dynamic objects. Feature points in the tracking areas are used to estimate the motion of the objects and to segment the dynamic object. Fig 4.22(c) presents the dynamic objects segmented in green and blue, and the outliers feature points in cyan. We have processed 150 frames obtaining a segmentation error of 0.15% in the scene. This error was obtained using the Eq. 1.7 with the average number of 1600 feature points per frame.

Figure 4 . 22 :

 422 Figure 4.22: Figure illustrates the results in frame 10 of the Set05 scene. Ego-motion feature points are represented in red, dynamic features in green and blue, and remaining points in cyan: (a) Ego-motion segmentation, (b) Ego-motion and dynamic regions on the scene, (c) Motion segmentation result.

Fig 4 .

 4 Fig 4.23 illustrates the mean reprojection error along the sequence. Dynamic object 1 (green) was segmented until frame 79 when it is occluded by a parked car. Dynamic object 2 (blue)

Figure 4 . 23 :

 423 Figure 4.23: Figure shows the mean reprojection error along the Set05 sequence for the ego-motion in red and the dynamic objects in green and blue.

Fig. 4 .

 4 Fig.4.24 presents execution time along the sequence. It is noted a time variation when the dynamic objects were segmented. Computational cost shows a reduced processing time after frame 84 when the two dynamic objects were not segmented and ego-motion was the only estimated motion. Moreover, the initialization step achieved a processing time lower than 25 s.

Figure 4 . 24 :

 424 Figure 4.24: Figure shows the computational cost along the Set05 sequence. Initialization step is indicated with red dot line.

Fig. 4 .Figure 4 . 25 :

 4425 Fig.4.25 presents the outliers percentage along the sequence. The highest outliers value was 18% obtained in frame 91 due to the ego-motion estimation. Outliers percentage was no greater than 12% from frame 1 to 84 when the two dynamic objects were segmented.

Fig. 4 .

 4 26(a) presents the ego-motion feature points in red and the remaining points in cyan. In Fig. 4.26(b), the cyan box indicates the dynamic regions (W r n ) where the dynamic objects must be segmented and the feature points located inside in blue. Feature points belonging to the ego-motion are removed by applying structure and reprojection errors constraints as it was explained in Sec. 4.4.1. Finally, Fig. 4.26(c) shows the final motion segmentation of the frame. The cyan dots represent outliers of the scene segmentation.

Figure 4 . 26 :

 426 Figure 4.26: Figure illustrates the results in frame 44 of the Set13 scene. Ego-motion feature points are represented in red, dynamic features in green and blue, and remaining points in cyan: (a) Ego-motion segmentation, (b) Ego-motion and dynamic regions on the scene, (c) Motion segmentation result.

Fig. 4 .

 4 Fig.4.27 presents the mean reprojection errors of segmented motions in the temporal window. The ego-motion reprojection error is lower than 1.9 pixels along the sequence (red feature markers). The first dynamic object (green feature markers) was segmented from the frame 2 until the frame 45 with a reprojection error lower than 2 pixels. The second dynamic object was segmented from frame 30 until the frame 61 with a reprojection error lower than 2.2 pixels. The eoru-motions are segmented as one dynamic object in the frame 46 because they are too close. In Fig.4.27(b), zero values with a red cross mark represent the frames where it was not possible to estimate the reprojection errors because it is necessary at least 8 points to estimate the motion and the amount of feature points in the segmented set is lower than 8 points. In these cases, the object is only tracked in the sequence but it is not lost.

Fig. 4 .

 4 Fig.4.28(a) shows the obtained execution time along the Set13 sequence. The vertical dashed lines in red show the frames in which initializations were executed. The initialization is performed in the first frame of the sequence and in frames where a dynamic object is not found on the scene.

Figure 4 . 27 :

 427 Figure 4.27: Figure shows the mean reprojection error along the Set13 sequence for the ego-motion indicated in red and the dynamic objects in green and blue: (a) Mean reprojection error in ego-motion, (b) Mean reprojection error in dynamic objects.

Figure 4 . 28 :

 428 Figure 4.28: Figure shows the computational cost along the Set13 sequence: (a) Execution time along the sequence, (b) Execution time implementing the initialization step each 20 frames, (b) Execution time implementing the initialization step each 40 frames.

Figure 4 . 29 :

 429 Figure 4.29: Figure illustrates the outliers percentage along the Set13 sequence of KITTI datasets.

Fig. 4 .

 4 [START_REF] Ahuja | A factorization approach for enabling structure-from-motion/slam using integer arithmetic[END_REF] illustrates the ground truth trajectories along the 150 frames of the Set05 scene.

Figure 4 . 30 :

 430 Figure 4.30: Figure illustrates the ground truth trajectories of ego-motion and the eorumotions along the Set05 sequence of KITTI datasets.

Fig 4 .Figure 4 . 34 :

 4434 Fig 4.31 presents the recovered trajectories up to scale in Set05 scene. Ground truth trajectories show the dynamic objects along the sequence, however, object 1 and object 2 were segmented until frame 79 and 84 respectively. It is illustrated that ego-motion and eoru-motion trajectories scales are higher in comparison with their ground truth trajectories.

Figure 4 . 35 :

 435 Figure 4.35: Figure illustrates the structure recovered in frame 65 and the dynamic object estimation from bird eye view (X-Z) and front view (X-Y).

Fig. 4 .

 4 [START_REF] Dai-Duong Nguyen | Hoofr: An enhanced bio-inspired feature extractor[END_REF] shows the trajectories scaled obtained for the ego-motion and eoru-motions.

Figure 4 . 36 :

 436 Figure 4.36: Figure compares the recovered ego-motion and eoru-motion trajectories scaled and the ground truth trajectories along the Set13 sequence.

Figure 4 . 37 :

 437 Figure 4.37: Figure illustrates that motion is segmented in a fragment of the object in frame 2 of Set13 sequence.

Fig. 4 .

 4 Fig. 4.38 illustrates the frame 30 of the sequence. In this case, object 1 was entirely segmented allowing a good scale estimation in the trajectory object. On the other side, object 2 was partially segmented inducing errors in the computed trajectory scale.

Figure 4 . 38 :

 438 Figure 4.38: Figure illustrates that motion is segmented in a fragment of the object in frame 30 of Set13 sequence.

  

  

  

  

  

Table 1 .

 1 1: Comparison of datasets characteristics.

	Dataset	Purpose	Sensors	Groundtruth	Benchmark
	Hopkins 155 [81]	Feature based motion segmentation algorithms	Camera	Optical flow tracked >30 references
	KITTI [82]	Semantic understanding and vision-based control	Camera, LiDAR, GPS, and IMU	Bounding boxes and objects labeled	>150 references
	MOTChallenge [132]	Multiple objects tracking algorithms, mainly pedestrian	Camera	Bounding boxes and objects labeled	>130 references
	BDD-Nexar [131]	Vision-based control, semantic understanding and deep learning	Camera, GPS and IMU	Objects labeled	>100 references
	nuScenes [133]	Semantic understanding, vision-based control and multiple objects tracking	Camera, LiDAR, GPS, and IMU	Bounding boxes and objects labeled	>30 references
	Table				

Table 1

 1 

	.2 illustrates the summary of properties and performances of features points detectors
	[98, 99]. Harris and Shi-Tomasi presents the best repeatability and localization accuracy,
	however, their robustness and efficiency are medium. FAST has the best efficiency but
	its robustness and localization accuracy are medium. SIFT, SURF and CENSURE have
	similar repeatability, localization and robustness with a low, medium and high efficiency,
	respectively.

Table 1 .

 1 2: Comparison of detectors and their charactersitics.

		Corner Detector	Blob Detector	Rotation Invariant	Scale Invariant	Affine Invariant	Repeatability	Localization Accuracy	Robustness Efficiency
	Harris [100]	x		x			+++	+++	++	++
	Shi-Tomasi [101]	x		x			+++	+++	++	++
	FAST [103]	x		x			++	++	++	++++
	SIFT [102]		x	x	x	x	+++	++	+++	+
	SURF [104]		x	x	x	x	+++	++	+++	++
	CENSURE [105]		x	x	x	x	+++	++	+++	+++

Table 1

 1 

	.3 reports a comparison of different descriptors and their characteristics. SIFT, FREAK,
	ORB and LIBVISO have the best scores in properties such as repeatability and localization
	accuracy. SIFT is characterized by its low efficiency and ORB has regular robustness. LIB-
	VISO and FREAK are presented such as the best two descriptors with similar characteristics
	as follows:

Table 1 .

 1 3: Comparison of properties between descriptors.

		Vector Descriptor	Binary Descriptor	Rotation Invariant	Scale Invariant	Affine Invariant	Repeatability	Localization Accuracy	Robustness Efficiency
	SIFT [102]	x		x	x	x	+++	+++	+++	+
	SURF [104]	x		x	x	x	+++	++	++	++
	BRIEF [106]		x		x	x	+++	++	++	++
	BRISK [107]		x	x	x	x	+++	++	+++	++
	FREAK [112]		x	x	x	x	+++	+++	+++	++
	ORB [108]		x	x	x	x	+++	+++	++	+++
	LIBVISO [114]	x	x	x	x	x	+++	+++	+++	++

Table 1 .4: Dynamics objects distribution in Set15 scene.

 1 

	Object	Color	Begins (frame)	Ends (frame)
	Object 1	Red	117	257
	Object 2	Green	117	170
	Object 3	Blue	158	193
	Object 4	Yellow	172	203
	Object 5	Magenta	185	214
	Object 6	Cyan	195	222
	Object 7	Brown	203	232
	Object 8	Dark Green	204	244
	Object 9 Dark Magenta	204	257
	Fig. 1.13 illustrates different dynamic objects in frame 120, 190, 220 and 250 respectively,
	as examples of bounding region of Set15 scene.		

Table 1 .

 1 5: Comparison of the quantity of feature points extracted and matched between different methods.

		Number of points	Number of points	Number of points
	Method	matched in 3	matched in 4	matched in 5
		consecutive frames	consecutive frames	consecutive frames
	Harris-BRIEF	422	312	253
	Harris-BRISK	555	459	394
	Harris-FREAK	310	185	121
	Harris-ORB	230	162	117
	FAST-BRIEF	914	743	521
	FAST-BRISK	820	557	400
	FAST-FREAK	233	140	72
	FAST-ORB	260	183	129
	SURF	907	618	456
	SIFT	1740	1215	934
	LIBVISO	4817	2987	1930

Table 1 .

 1 

		6: Confusion Matrix	
			Actual Classification
			Yes	No
	Predictive	Yes	TP	FP
	classification	No	FN	TN

TP:True Positives; FP: False Positives; FN: False Negatives; TN: True Negatives.

Table 2 .

 2 

		Visual Simultaneous Localization And Mapping (VSLAM)	Dynamic object segmentation and 3D tracking	Joint motion segmentation and reconstruction
	Characteristics	Visual odometry + loop detection	Multibody motion segmentation Structure from Motion (SfM)
	Method	Graph optimization	Cluster based	Factorization based
	Advantages	Real time process	Static and dynamic environments	Simultaneous motion and structure estimation
	Drawbacks	Only works on static environments	Not 3D reconstruction in monocular approaches for dynamic objects	Not real time for multi-body motion segmentation, motions are segmented up to scale

1: Comparison of image based approaches for scene understating.

Table 2 .

 2 2 summarizes the state of the art work according to their corresponding taxonomy.

Table 2 .

 2 2: Survey of state-of-the-art motion segmentation methods.

	Approaches	Methods
	Visual Simultaneous	
	Localization And	
	Mapping	

Table 2 .

 2 

	Set Dimension (mxm) Distance (m) Frames RMSE (m)	Percentage of error (%)
	00	564 x 496	3724.2	4541	51.45	1.38
	04	0.5 x 394	393.64	271	2.15	0.54
	07	191 x 209	694.69	1101	25.94	3.73

3: Root Mean Square Error (RMSE) in trajectories.

Table 3 . 1 :

 31 Precision and Recall results for Car2 sequence.

	ε hyp -→	0.25		0.5		0.75		1	
	ε pto ↓	P	R	P	R	P	R	P	R
	0.75	0.37 0.77 0.34 0.44 0.53 0.7	0.4 0.7
	1	0.88 0.58 0.74 0.59 0.79 0.69 0.87 0.58
	1.5	0.80 0.72 0.89 0.66 0.61 0.68 0.7 0.78
	2	0.35 0.78 0.27 0.82 0.34 0.75 0.43 0.67
	3	0.17 0.75 0.16 0.85 0.18 0.71 0.18 0.72

Table 3 .

 3 2: Precision and Recall scores in Car9 scene using baseline method.

	ε hyp -→	0.125		0.25	0.375		0.5
	ε pto ↓	P	R	P	R	P	R	P	R
	0.5	0.99 0.56 0.99 0.65 0.95 0.73 0.94 0.8
	1	0.99 0.88 0.99 0.83 0.89 0.79 0.99 0.81
	1.5	0.98 0.91 0.94 0.87 0.91 0.82 0.93 0.92
	2	0.86 0.93 0.99 0.95	1	0.93 0.91 0.87
	2.5	1	0.92	1	0.96	1	0.94	1	0.88
	3	1	0.82 0.74 0.83 0.8 0.79 0.68 0.88

Table 3 . 3

 33 

	ε hyp -→	0.3		0.4			0.5
	ε pto ↓	P	R	P	R	P	R
	1	0.83 1 0.86 0.75 1 0.46
	2	0.85 1 0.87 0.82 1 0.57
	3	0.91 1 0.92 0.84 1 0.65
	4	1	1 0.95 0.88 1 0.71
	5	0.94 1 0.91 0.86 1 0.81

: Precision(P) vs. Recall(R) of baseline method for Set42.

Table 3 .

 3 4: Reprojection and segmentation errors obtained for Set42 and Set34.

	Method	Sequence	Number of frames	Number of Points	Mean Reprojection Error (pixels)	Median Reprojection Error (pixels)	Segmentation Error (%)
	Reported in [67]	Set42	5	193	1.63	1.43	0
	Baseline	Set42	5	218	1.54	1.18	0
	Reported in [67]	Set34	5	573	2.14	1.67	1.57
	Baseline	Set34	5	477	1.8	1.28	3.35

  It is worth noting that ego-motion feature points cannot be correctly enclosed by a unique dynamic region. For this reason, this set of features is put aside from the region representation. Only the remaining dynamic regions are then considered as potential location of dynamic objects. The initialization stage is summarized in the Alg. 3 as:Output: W 1,...,n , M 1,...,n , S 1,...,n Segmented n=motion number

	Algorithm 3 Initialization procedure
	1: procedure
	2:	Input: Trajectory Matrix W
	3:	

4:

Table 4

 4 

	.1.

Table 4 .

 4 1: Precision and Recall scores obtained for ε hyp and ε pto thresholds in the 1st frame of Car2 scene.

	ε hyp -→		0.25		0.5		0.75	1			1.25
	ε pto ↓	P	R	P	R	P	R	P	R	P	R
	2	1 0.93 1 093 1 0.5	1	0.93 1 0.75
	3	1 0.93 1 0.93 1 0.88	1	0.83 1 0.92
	4	1 0.77 1 0.89 1 0.93 0.98 0.89 1 0.93

Table 4 .

 4 2. 

Table 4 .

 4 2: Precision and Recall scores obtained for ε hyp and ε pto thresholds in the 1st frame of Car9 scene.

	ε hyp -→	0.125		0.25	0.375		0.5
	ε pto ↓	P	R	P	R	P	R	P	R
	0.5	0.99 0.56 0.99 0.65 0.95 0.73 0.94 0.8
	1	0.99 0.88 0.99 0.83 0.89 0.79 0.99 0.81
	1.5	0.98 0.91 0.94 0.87 0.91 0.82 0.93 0.92
	2	0.86 0.93 0.99 0.95	1	0.93 0.91 0.87
	2.5	1	0.92	1	0.96	1	0.94	1	0.88
	3	1	0.82 0.74 0.83 0.8 0.79 0.68 0.88

Table 4 . 3 Table 4 .

 434 3: TbD-SfM threshold values used for Hopkins155 dataset.

	Sequence ε hyp (pixels) ε pto (pixels)
	Car1	0.75	4
	Car3	0.5	3
	Car4	0.25	3.5
	Car5	0.5	3
	Car6	0.5	2.5
	Car7	0.25	3
	Car8	0.25	4
	Truck1	0.5	4
	Truck2	0.25	3.5

Table 4 .

 4 4 reports the results obtained in the different sequences. In the table, the results show that the mean reprojection error ranges from 0.44 pixels to 1.25 pixels. These reprojection errors are acceptable values since the segmentation errors obtained with the estimated motions were lower than 0.2%. The mean outliers percentage is reported as an indicator of the number of segmented features. In these results, the highest outliers percentage was 6.1% for the Truck2 sequence that corresponds to 20 feature points rejected.

Table 4 .

 4 4: TbD-SfM results for car sequences of Hopkins155 dataset.

	Sequence	Number of motions	Number of frames	Number of points per frame	Mean reprojection error (pixels)	Median reprojection error (pixels)	Segmentation error (%)	Mean outliers percentage (%)
	Car1	2	16	307	1.1	0.96	0	1.09
	Car2	2	26	490	1.25	0.93	0	0.73
	Car3	3	13	548	0.97	0.79	0.07	3.85
	Car4	2	50	147	0.78	0.52	0	2.3
	Car5	3	30	391	0.47	0.29	0	0.1
	Car6	2	27	464	0.44	0.35	0.03	0.1
	Car7	2	21	502	0.88	0.75	0	0.1
	Car8	2	21	192	0.74	0.58	0	0.37
	Car9	3	20	220	0.65	0.47	0.15	1.75
	Truck1	2	26	188	1	0.82	0	0.16
	Truck2	2	18	331	1.07	0.94	0.2	6.1

Table 4 .

 4 5: ETbD-SfM results for car sequences of Hopkins155 dataset.

	Sequence	Number of motions	Number of frames	Number of points per frame	Mean reprojection error (pixels)	Median reprojection error (pixels)	Segmentation error (%)	Mean outliers percentage (%)
	Car1	2	16	307	1.74	1.49	0	1.26
	Car2	2	26	490	1.57	1.49	0.13	0.69
	Car3	3	13	548	1.55	1.28	0.23	2.11
	Car4	2	50	147	1.19	0.9	0	1.91
	Car5	3	30	391	0.62	0.46	0	2.13
	Car6	2	27	464	0.86	0.69	0.03	0.39
	Car7	2	21	502	1.36	1.3	0	2.9
	Car8	2	21	192	1.12	0.96	0.34	3.37
	Car9	3	20	220	0.79	0.64	0.06	2.84
	Truck1	2	26	188	1.21	1.37	0.1	0.32
	Truck2	2	18	331	1.47	1.26	0.4	6.5

Table 4 .

 4 

	7: Execution time comparison for initilization in Set05
	Frame MB-SfM (s) ETbD-SfM (s) Ratio A/B
	1	914	24	38
	Dataset 2			

Table 4 .

 4 8: Execution time comparison each 20 frames for Set13 scene

	Frame MB-SfM (s) ETbD-SfM (s) Ratio A/B
	1	2418	29	83
	21	2641	5	528
	41	3210	29	110
	61	3012	32	94
	81	2328	7	332
	101	2142	3	714
	121	1956	16	122

Table 4 .

 4 10: Trajectories errors in Set13 sequence

	Object	Distance (m)	Number of frames detected	RMSE (m)	Percentage of error (%)
			Up to scale		
	Ego-motion (Red)	167.38	140	28.54	17.5
	Dynamic object 1	65.15	45	26.58	40.79
	Dynamic object 2	44.98	31	23.42	52.06
			Scaled		
	Ego-motion (Red)	167.38	140	1.33	0.79
	Dynamic object 1	65.15	45	56.74	87.1
	Dynamic object 2	44.98	31	39.89	88.68

Images from https://archpaper.com/2018/03/uber-self-driving-car-permits-lapse-california-fatal-crash/ and https://www.tesla.com/fr_FR/models repectively
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Input: W Trajectory matrix in sliding windows along the sequence 3:

Output: W 1,...,n , M 1,...,n , S 1,...,n Segmented n=motion number 4:

Flag=1

Flag for TbD initialization 5:

while (frame last frame) do 6:

if (Flag == 1 or n == 1) then if (frame ≤ F ) then 11:

Estimate the set W r 1 using Eq. 4.4

12:

Estimate M 1 , S 1 and W 1 of ego-motion Sec. 4 Tracking to motion association 16:

Initialize the KF with the dynamic regions (W r n )

17:

Predict locations and sizes of dynamic regions with the KF 19:

Estimate the set W r 1 using Eq. 4.4 

Experimental results

The TbD-SfM algorithm was tested using a datash tracking errors and other dataset with no tracking errors in feature points. These experiments allow to evaluate the performance of our approach following criteria such as the segmentation error, the reprojection error, the outliers percentage and the processing time as was introduced in Chapter 1. The car sequences Hopkins155 have 8 scenes with two simultaneous motions and 3 scenes with three simultaneous motions. All the scenes with a number of frames between 16 and 50. Theses datasets allows to characterize the TbD-SfM procedure without features tracking errors. On the other side, KITTI datasets were used to evaluate the TbD-SfM implementation with tracking errors conditions in the feature points. The TbD experiments were carried out using two different initialization methods: In the first method, the TbD is initialized with the MB-SfM approach [START_REF] Gonzalez | Track-before-detect framework-based vehicle monocular vision sensors[END_REF] introduced in Sec. 3.2 and named TbD-SfM. In the second method, the TbD is initialized with the proposed procedure introduced in Sec. 4.2 and called ETbD-SfM. ETbD-SfM obtains a segmentation error of 0.09% for sequences involving three simultaneous motions. This error is higher in comparison to HSIT [START_REF] Sako | Multibody motion segmentation for an arbitrary number of independent motions[END_REF] that reaches a perfect segmentation. In contrast, the segmentation error in two simultaneous motions sequences of ETbD-SfM is 0.12% that is far lower compared to the 1.65% of HSIT.

ETbD-SfM has similar performance in comparison with the DCT [START_REF] Shi | Robust trajectory clustering for motion segmentation[END_REF]. The DCT segmentation error was 0.05% considering all the sequences (two and three simultaneous motions) of the dataset, while ETbD-SfM segmentation error was lower in datasets with two motions by a difference of 0.07% and higher by 0.04% for three motions dataset.

Statistical model selection methods achieved the lowest segmentation error in the MB-SfM, TbD-SfM and ETbD-SfM methods. However, the GPCA and MLBS methods obtained the highest segmentation errors for two and three simultaneous motion scenes.

Comparing ETbD-SfM to the MB-SfM, the segmentation error is higher by a difference of 0.12% in sequences with two simultaneous motions and lower by 0.02% in datasets with three simultaneous motions.

It is worth noting that ETbD-SfM achieves a denser feature segmentation than the MB-SfM approach. MB-SfM approach performs an optimization step intended to enhance motion segmentation by rejecting feature points with a high reprojection error. This procedure can certainly improve motion estimates but it also reduces the number of feature points that represent a motion. Objects with few features may be easily lost or miss detected.

In order to compare the density of the segmented feature points, results obtained with ETbD-SfM and other methods are presented. Table 4.9 reports the errors obtained in the recovered trajectories in the Set05 scene. Results indicates a trajectory error of 4.7m in the ego-motion trajectory estimation. However, dynamic object trajectories were not well scaled due to the method limitations. The method can not verify if the segmented dynamic object corresponds to a whole object or an object fragment. This is key information because the method uses the object height to estimate the scale. Ground truth trajectories were obtained from the Set13 KITTI dataset. Fig. 4.33 illustrates the ground truth trajectories along the 140 frames of the scene. Dynamic objects show similar trajectories in the scene. Due to their similarity, the dynamic object 2 (blue) masks the dynamic object 1 (Green) from the moving camera after the frame 50. Ego-motion trajectory is estimated along the 140 frames, however, dynamic objects are not detected in all the frames as it was illustrated in Fig. 4.27. The trajectories recovered up to scale from by the ETbD method are presented in Fig. 4.34.

Chapter 5

Conclusions and future works

This thesis has studied a perception problem of a moving vehicle to provide meaningful information for ADAS applications. We focused on the scene understanding in order to segment dynamic objects, estimate the static and dynamic object structures, and recover the ego-motion and eoru-motions trajectories in a dynamic scene by using a on-board monocular vision-based system.

Detectors and descriptors methods frequently implemented in visual odometry were evaluated according to the number of features extracted from the dynamic objects. The study conducted in Chapter 1 has demonstrated that LIBVISO provides the highest amount of feature points tracked along 3, 4 and 5 consecutive frames on each dynamic object. Traditionally, this evaluation is done by computing the number of features matched between two consecutive ego-motion images, however, the dynamic objects are rejected as outliers.

In order to conduct the scene analysis from a monocular system, motion segmentation state of art was presented and the Structure from Motion (S f M) approach was selected for this study in Chapter 2. Dynamic motion segmentation by using S f M is based on the motion hypotheses generation where each hypothesis needs at least 8 feature points. S f M recovers motion and structure of the scene, up to scale, in a monocular system. In a static scene, the scale is estimated by finding the ground plane between two consecutive images. Experiments demonstrated that ego-motion is reasonable well estimated according to the trajectory length when the road plane is detected in the image. The scale method has limitations in stretch road scenes such as Set00 and Set04 when the moving camera is turning without exposing the ground plane.

Concerning the dynamic analysis of the scene, the S f M state of art formulation was implemented to segment multiple motions MB-S f M in Chapter 3. Results confirmed that the chosen methodology achieves a low reprojection error in the ego-motion and eoru-motion estimation, and the low segmentation error as reported in the state of the art. At the same time, method limitations were highlighted such as the sensibility to parameters settings to In terms of the scale estimation with a monocular camera, the eoru-motion scale can be improved if an appearance-based or object recognition method is implemented. In this way, it is possible to detect if the segmented feature points represent the whole object or a portion to improve the scale estimation.

ET bD-S f M method uses thresholds to segment the dynamic objects. In order to set thresholds automatically two methods could be combined. A segmentation method to remove the ego-motion feature points, and an appearance-based method on the remaining groups of points to detect objects. Then, feature points in the area are processed to computed the optical flow on the detected dynamic object.

The addition of a second monocular camera could set up a redundant monocular system to segment motion. Moreover, the two monocular cameras can be used as a stereo system that avoids the scale estimation and reduces the trajectories estimation error. The motion segmentation approach is based on temporal and geometrical information from image sequences. An image sequence is acquired by using a monocular projective camera which maps the 3D world onto a 2D image. In [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF], cameras are classified in two principal groups: Finite and affine cameras. The pinhole camera is classified as a Finite camera, where the center of projection is the origin of the euclidean coordinate system and the image plane Homogeneous coordinates are used to manipulate 2D image points, x = (u, v, 1) T , and 3D points, X = (X,Y, Z, 1) T with rotations, translations or scalings. In pinhole camera model, a 3D point X is mapped to a 2D image point x as explained in Eq. A.1, where P represents the camera projection matrix: i

Publications

The camera projection matrix, P, relates the intrinsic parameters of the camera K and the inter-frame camera motion defined as M = [R|t] between two images (i.e extrinsic parameters). Motion is modeled by a rigid transformation composed of a rotation R and a translation t as follows:

The intrinsic parameters, in camera calibration matrix (see Eq. A.3), are defined by the focal length following both axes ( f x , f y ), the skew parameter and the image center (u x , v y ).

A.2 Epipolar geometry

Epipolar geometry is independent of scene structure, only depends on the intrinsic camera parameters and the relative camera pose [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF]. Let consider an uncalibrated monocular moving camera whose center is denoted C t at time t and its next position at time t + 1, C t+1 , as shown in ii Several 3D points are represented by X and their image representation are enclosed in the vectors w and w respectively. Point X p and the camera centers C t , C t+1 , define a plane called the epipolar plane Π. The epipolar plane contains the baseline that connects the two camera centers and represents the euclidean distance between the two cameras centers.

In scenes where the ego-motion is the dominant motion, the static feature points are found by using the fundamental matrix F, that maps feature points between two camera images in order to find the feature point correspondences that represent the ego-motion points. The fundamental matrix is the algebraic representation of the epipolar geometry and satisfies the epipolar constraint established in Eq. A.4. This equation explains that a feature point x 1 projected onto the first image has its corresponding projection on a second image in the feature point x 1 that lies on the epipolar line l 1 .

x

F can be estimated using RANSAC (RANdom SAmple Consensus) strategy between the first frame and the last frame of the temporal sliding window of the trajectory matrix. It is necessary a minimum sample set of k = 8 feature points to estimate the fundamental matrix. Feature points with an error distance to the epipolar line lower than a defined threshold t r are classified as static features.

Then, the essential matrix is estimated from the fundamental matrix and the intrinsic parameters of the camera, K, as illustrated the general formulation in Eq. A.5. K 1 and K 2 represent the intrinsic parameters for the first and the second view respectively and these are equal for a single camera.

Appendix B

Probabilistic filtering B.1 The Kalman filter

The Kalman filter (KF) is defined as a finite impulse response filter (FIR) [START_REF] Thrun | Probabilistic Robotics (Intelligent Robotics and Autonomous Agents)[END_REF]. KF estimates the system state and its accuracy by using measurements observed over time from the past until current time. In this application, the measurements are made in the frame domain using the next notations.

x

Covariance matrix of the estimation error y ( f ), Observation vector x ( f | f -1), Predicted state G Kalman Gain P ( f | f -1), Covariance matrix of the predicted error KF is integrated by two main steps inside of an iterative scheme, the prediction and update.

Prediction

Giving initial conditions at f = 0, the state x(0|0) = x 0 and the covariance matrix P(0|0), the KF predicts the system state ahead (x f ) and its error covariance by:

Measurement Update

The predicted stated and its covariance are updated when a new measurement is made. This new measurement is called innovation that is computed by using the difference between the measured and the expected state values, y( f

, as follows:

iv

v Titre : Analyse de sc ènes dynamiques complexes par segmentation de mouvement -Application aux V éhicules Intelligents.

Mots cl és : Segmentation de mouvement, structure from motion, analyse de sc ène dynamique, odometrie visuelle. Abstract : In the context of Advanced Driver Assistance Systems (ADAS) and Autonomous Vehicles, scene understanding is a fundamental inference process in which several servoing and decision making functions depends on. Such a process is intended to retrieve reliable information about the vehicle's surroundings including static and dynamic objects (e.g. obstacles, pedestrians, vehicles), the scene structure (e.g. road, navigable space, lane markings) and egolocalization (e.g. odometry). All this information is essential to make crucial decisions in autonomous navigation and assisting maneuvers. To this end, perception systems are designed to provide redundant and reliable observations of the scene. This thesis is devoted and focused on image-based multi-body motion segmentation of dynamic scenes using monocular vision systems only. The conducted research starts by surveying methods of the state-of-the-art and contrasting their advantages and drawbacks in terms of performance indicators and computation time. After identifying a Visiononly based methodology, sparse optical flow methods are studied. As a concept-proof, an algorithm implementation shows, in practice, limits of the addressed approach leading to envision and consolidate our contributions. Detecting and tracking objects in a classic processing chain may lead to a low-performance and timeconsuming solution. Instead of segmenting moving objects and tracking them independently, a Trackbefore-Detect framework for a multi-body motion seg-mentation (namely TbD-SfM) was proposed. This method relies detection and tracking on a tightly coupled strategy intended to reduce the complexity of an existing Multi-body Structure from Motion approach. Efforts were also devoted for reducing the computational cost without introducing any kinematic model constraints and for preserving features density on observed motions. Further, an accelerated implementation variant of TbD (namely ETbD-SfM) was also proposed in order to limit the complexity with respect to the number of observed motions. The proposed methods were extensively tested with different publicly available datasets such as Hop-kins155 and KITTI. Hopkins dataset allows a comparison under feature-tracking ideal conditions since the dataset includes referenced optical flow. KITTI provides image sequences under real road scenarios in order to evaluate robustness of the method. Results on scenarios including the presence of multiple and simultaneous moving objects observed from a moving camera are analyzed and discussed. In conclusion, the obtained results show that TbD-SfM and ETbD-SfM methods can segment dynamic objects using a 6DoF motion model, achieving a low image segmentation error without increasing of computational cost and preserving the density of the feature points. Additionally, the 3D scene geometry and trajectories are provided by estimating scale on the monocular system and comparing these results to referenced object trajectories.
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