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Résumé 

Titre : Physiopathologie et traitement de l'atrophie multisystématisée 

 

L'atrophie multisystematisée (AMS) est une maladie neurodégénérative rare et à évolution 

rapide qui affecte de nombreuses régions du système nerveux central, y compris les systèmes 

olivopontocérébelleux et striatonigral ainsi que divers noyaux autonomes du tronc cérébral. La 

caractéristique pathologique de l’AMS est la présence d'agrégats oligodendrogliaux appelés 

inclusions cytoplasmiques gliales dont le composant principal est la protéine α-synuclein. Le 

processus neurodégénératif conduit à une dysautonomie, ainsi qu'à un degré variable de 

syndromes parkinsoniens et cérébelleux. Il n'existe actuellement aucun traitement pour ralentir 

l'évolution de la maladie. Ce travail de thèse a porté, d'une part, sur des approches précliniques 

visant à réduire l'accumulation de l’α-synuclein dans un modèle de souris transgénique de 

l’AMS, et d'autre part, sur une analyse anatomo-pathologique chez des patients présentant une 

forme lentement progressive de la maladie. Tout au long de ces trois années de travail, nous 

avons évalué différents candidats thérapeutiques chez la souris transgénique de l'AMS. La 

rapamycine, un médicament connu pour stimuler l'autophagie et la clairance des protéines, n'a 

montré qu'un effet neuroprotecteur partiel contre la perte neurale dans notre modèle. Le 

nilotinib, un médicament qui avait démontré des propriétés neuroprotectrices dans un modèle 

rongeur de la maladie de Parkinson, n'a pas eu d’effet sur l’accumulation de l’α-synuclein et la 

neurodégénérescence. Enfin, nous avons évalué la combinaison de deux médicaments (anle 

138b et belnacasan) qui ont déjà démontré leur capacité à réduire l'agrégation de l'�-synucléine 

et à protéger les neurones de la dégénérescence, pour déterminer si elles ont des effets 

synergiques. 

 

Mots-clés : Synucléine, atrophie à systèmes multiples, inclusions cytoplasmiques gliales, étude 

post-mortem du cerveau humain, rongeur, approche translationnelle, troncation c-terminale, 

phosphorylation, autophagie, agrégation des protéines 

 

Institut des Maladies Neurodégénératives, CNRS UMR 5293   

Centre Broca Nouvelle-Aquitaine - 3ème étage -146 rue Léo Saignat - 33076 Bordeaux cedex  
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Abstract  
 

Title: Pathophysiology and treatment of multiple system atrophy 

 

Multiple system atrophy (MSA) is an orphan, rapidly progressive neurodegenerative disease 

that affects numerous regions of the central nervous system, including the olivopontocerebellar 

and striatonigral systems as well as various autonomous nuclei of the brainstem. The 

pathological hallmark of MSA is the presence of oligodendroglial aggregates called glial 

cytoplasmic inclusions (GCI) whose main component is the protein α-synuclein. 

Neuroinflammation is a known factor in all neurodegenerative diseases, including MSA. The 

neurodegenerative process leads to severe impairment of autonomous functions, together with 

a varying degree of parkinsonian and cerebellar syndromes. There is currently no disease 

modifying therapy available 

This PhD work focused, on the one hand, on translational approaches aiming to reduce the 

accumulation of α-synuclein in an animal model of MSA, and on the other hand, on a 

pathological analysis of a rare subtype of the disease.  

Throughout the three years of work, we have assessed different therapeutic candidates in an 

animal model of MSA. Rapamycin, a drug known to enhance autophagy and protein clearance, 

showed only a partial neuroprotective effect against neural loss in our model. Nilotinib, a drug 

that had shown neuroprotective properties in a Parkinson’s disease animal model, failed to 

modify the disease course in our study. Finally, we evaluated the combinations of two drugs 

that have already proven to reduce a-synuclein aggregation and protect neurons from 

degeneration, to assess whether they have synergistic properties. 

 

Keywords: Synuclein, Multiple system atrophy, glial cytoplasmic inclusions, post-mortem 

human brain study, rodent, translational approach, c- terminal truncation, phosphorylation, 

autophagy, protein aggregation. 

 

Institut des Maladies Neurodégénératives, CNRS UMR 5293   

Centre Broca Nouvelle-Aquitaine - 3ème étage -146 rue Léo Saignat - 33076 Bordeaux cedex   
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ABBREVIATIONS 

 

 

α-synuclein alpha-synuclein 

AD Alzheimer’s disease 

BBB Blood brain barrier 
cAbl Abelson protein 

CSF Cerebrospinal fluid 
DBS Deep brain stimulation 

DLB Dementia with Lewy bodies 

GCI Glial cytoplasmic inclusions 

LB Lewy bodies 

MBP Myelin basic protein 

MMP Matrix metalloproteinase 

mTOR Mammalian target of rapamycin 

MSA Multiple system atrophy 

MSA-C Multiple system atrophy cerebellar phenotype 

MSA-P Multiple system atrophy parkinsonian phenotype 

OPCA Olivopontocerebellar atrophy 

PD Parkinson’s disease 

PLP Myelin proteolipid promoter 

ROS Reactive oxygen species 

SN Substantia nigra 

SND Striatonigral degeneration 

SNc Substantia nigra pars compacta 

TH Tyrosine hydroxylase 

UPDRS Unified PD Rating Scale 
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I-  INTRODUCTION 

 
Multiple System Atrophy and alpha-synuclein 
 

Multiple System Atrophy (MSA) is a rare neurodegenerative disease that leads to early 

disability and death. MSA belongs to a group of disorders called synucleinopathies, 

characterized by an abnormal accumulation of the ubiquitous protein alpha-synuclein (a-

synuclein) in different cell types in the central and peripheral nervous system (CNS and PNS). 

Accumulation of a-synuclein in the cytoplasm of oligodendrocytes, in the form of 

cytoplasmatic glial inclusions (GCI), is the defining pathological hallmark of MSA. Other 

synucleinopathies are Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). The 

primary trigger for a-synuclein accumulation and the underlying pathophysiology remain 

poorly understood. Finally, therapeutic options are restricted to symptomatic relief, while there 

are ongoing efforts to address the unmet need for neuroprotective and disease-modifying 

therapies. 

 

Epidemiology 

Previously thought to be three different disorders, namely Shy-Drager syndrome, 

olivopontocerebellar atrophy (OPCA) and striatonigral degeneration (SND), it was not until 

1969 that their common pathology was recognized and the term MSA coined (Graham and 

Oppenheimer, 1969). In 1989 its defining pathological hallmark, the GCI, was identified (Papp 

et al., 1989), and in 1998 it was found that GCIs’ major component is a-synuclein (Spillantini 

et al., 1998). The estimated mean incidence is 0.6 to 0.7 cases per 100,000 person-years, with 

a range of 0.1 to 2.4 cases per 100,000 person-years. The estimated point prevalence is 3.4 to 

4.9 cases per 100,000 population, increasing to 7.8 per100,000 among persons older than 40 

years of age (Fanciulli and Wenning, 2015). Disease onset is usually in the sixth decade of life, 

with both sexes equally affected. The median survival from symptom onset is 6 to 10 years, 

although disease duration may greatly vary, from 5 years to up to two decades (Gilman et al., 

2008; Jellinger, 2012; Ling et al., 2015; Lopez-Cuina et al., 2018a; Masui et al., 2012; Petrovic 

et al., 2012). Current consensus diagnostic criteria include two classical phenotypes, MSA with 

predominant parkinsonism (MSA-P) and MSA with predominant cerebellar ataxia (MSA-C) 
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(Gilman et al., 2008). While MSA-P is more frequent in the Western hemisphere, MSA-C is 

the more prevalent in Asia (Köllensperger et al., 2010; Watanabe et al., 2002).  

 

 

Genetics  

Contrary to what occurs in PD, unambiguous evidence for genetic causes of MSA is still 

lacking. Some evidence has pointed to a role of the coenzyme Q10 related COQ2 gene in Asian 

cohorts, however, other studies have failed to replicate these results (Jeon et al., 2014; Lin et 

al., 2015; Multiple-System Atrophy Research Collaboration, 2013; Ogaki et al., 2014; Ronchi 

et al., 2016; Sharma et al., 2014; Sun et al., 2016). A genetic study of pathologically confirmed 

MSA cases of the gene linked to familial PD, leucine-rich repeat kinase 2 (LRRK2), pointed to 

an association between exonic variants and MSA (Heckman et al., 2014). A study of another 

gene known to cause familial PD, the glucocerebrosidase (GBA) gene, suggested that GBA 

variants are associated to MSA (Mitsui et al., 2015); notwithstanding, these were small studies 

and these results would need replication. 

Genome-Wide Association Studies (GWAS) have failed to detect polymorphisms in the 

a-synuclein encoding gene (SCNA) (Sailer et al., 2016). Interestingly, two mutations of the 

SNCA gene, G51D and A53E, have been related to cases of atypical parkinsonian syndromes 

with a mixed neuropathology encompassing widespread neural and glial α-synuclein 

immunoreactive inclusions resembling Lewy bodies and GCIs (Kiely et al., 2015; Pasanen et 

al., 2014). Although speculative, this may suggest a possible link between PD and MSA, with 

both disorders being two extremes of the same spectrum 

Finally, well characterized genetic disorders can mimic MSA clinical presentation, such 

as Perry syndrome, hereditary spastic paraplegias, spinocerebellar ataxias (SCA), and others. 

This further complicates the task of accurately diagnosing this MSA for clinicians (Kim et al., 

2016; Stamelou et al., 2013). 

 

a-Synuclein in physiology and disease 

a-Synuclein is a small 14 kilo Dalton (kDa) protein, composed of 140 amino acids, which is 

physiologically expressed in the human brain. The name synuclein derives from its first 

characterization inside the nucleus and the synaptic terminals in neurons (Maroteaux et al., 

1988). a-synuclein exists in an equilibrium between a soluble and a membrane-bound state, 

with its secondary structure depending on its state (Burré et al., 2018). Through interaction with 
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membranes it adopts an alpha-helix (Bartels et al., 2011; Wang et al., 2011), and given this 

interaction with vesicle membranes in the presynaptic terminal, several studies have pointed a 

putative role in regulating synaptic vesicles and neurotransmitter release (Bendor et al., 2013; 

Burre, 2015; Burré et al., 2018; Burre et al., 2010). 

In contrast to its physiological conformations outlined above,  a-synuclein adopts a b-

sheet amyloid conformation under pathological conditions. This b-sheet conformation is 

associated with a-synuclein aggregation, fibril formation, and deposition into pathological 

inclusions (Burré et al., 2018).  

a-Synuclein aggregation takes place in a stereotypical pattern, firstly, soluble 

unstructured monomeric forms coalesce into partially soluble oligomers, then oligomers 

aggregate into immature fibrils and, lastly, amyloid fibrillary aggregates are formed (Burré et 

al., 2018; Dehay et al., 2015; Zhang et al., 2019)  

 

 

Figure 1. Schematic of a-synuclein conformations associated with its physiological function 

and pathological activities. Parkinson’s disease, PD; SNAP receptor, SNARE.  From Burré et 

al. (2018)). 

 

In vivo studies have shown than both fibrils and oligomers are toxic to dopaminergic neurons 

and lead to neural loss (Abdelmotilib et al., 2017; Paumier et al., 2015; Winner et al., 2011). In 

vivo research shows that a-synuclein exerts its toxic effect in numerous ways, oligomers show 

mitochondrial toxicity, they do so through inhibition of mitochondrial membrane protein 
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transporters, and metabolite flux controlling channels, also located in the mitochondria 

membrane (Di Maio et al., 2016). Oligomers induce fragmentation of mitochondrial 

membranes in vitro, they also disrupt mitochondrial calcium homeostasis and accelerate the 

release of respiration-related proteins (Luth et al., 2014; Plotegher et al., 2014). A disruption of 

intracellular calcium equilibrium also occurs, as the lipophilic a-synuclein interacts with the 

cellular membrane, and, through pore-forming mechanisms, disrupts calcium influx. It also 

alters, via membrane interactions, calcium signalling, further leading to calcium dysregulation. 

Additionally, binding of a-synuclein to components of the ubiquitin proteasome system (UPS) 

has been shown to inhibit its proteolytic activity, thus hampering protein degradation 

(Emmanouilidou et al., 2010; Lindersson et al., 2004). It has been reported that neuron released 

a-synuclein is an agonist of the toll-receptor 2 (TLR2), which is a microglial receptor 

responsible for activating its inflammatory response (Kim et al., 2013; Stirling et al., 2014). 

Finally, a-synuclein provokes synaptic dysfunction through several mechanisms, such as 

prevention of synaptic vesicle fusion, inhibition of microtubule formation, which hampers 

axonal transport, and reduced production of synaptic vesicles by the Golgi apparatus (Choi et 

al., 2013; Danzer et al., 2007; Gosavi et al., 2002; Prots et al., 2013) 

 

Figure 2. Pathways implicated in a-synuclein toxicity. Organelle dysfunction, defects in inter-

organelle contacts and dysfunctional organelle dynamics.; endoplasmic reticulum, ER; 

chaperone mediated autophagy, CMA; mitochondria-associated ER membrane, MAM; 
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mitochondrial DNA, mtDNA; nuclear factor of activated t-cells, NFAT; peroxisome 

proliferator-activated receptor gamma coactivator 1-alpha, PGC-1a; SNAP receptor, SNARE; 

Transcription factor EB, TFEB; tropomyosin receptor kinase B, TRKB; unfolded protein 

response, UPR. From Wong and Krainc (2017) 

 

a-Synuclein post translational modifications 

a-Synuclein can undergo a variety of post-transcriptional modifications (PTM) which alter the 

conformation and/or biological function of proteins, and can also affect protein folding and 

aggregation, but the precise contribution of different posttranslational modifications to disease 

mechanism is still unclear. 

Phosphorylation can affect protein configuration, function and fate in several ways: it 

may induce conformational changes, it may be required for protein folding, it might act as 

signalling for further modifications, it may alter protein localization and influence protein-to-

protein interactions (Salazar and Höfer, 2009). In neurodegeneration, it is known that 

phosphorylation is involved in protein toxicity and aggregation (Tenreiro et al., 2014). 

The predominant, most studied and understood α-synuclein modification is 

phosphorylation at serine 129 (S129). Although it is found in synucleinopathy inclusions and it 

has been linked to oligodendroglial a-synuclein induced toxicity in vitro, with over ten kinases 

targeting this site, the cross-talk between these enzymes remains to be elucidated. 

Phosphorylation at S129 modulates a-synuclein binding to membranes, influencing 

neurotransmitter uptake; it enhances a-synuclein interaction with metal ions, which promotes 

fibrillization. Data suggest it also modulates protein-to-protein interactions, regulates a-

synuclein turnover and its subcellular localization (Beyer and Ariza, 2013; Burré et al., 2018; 

Kleinknecht et al., 2016; Oueslati, 2016; Tenreiro et al., 2014; Wang et al., 2012). Other 

phosphorylated residues have been reported, such as serine 87 and 125 (S87 and S125) and 

tyrosine 39, 125, 133 and 136 (Y39, Y125, Y133 and Y136), and while there is some knowledge 

regarding the kinases that target them and their biological consequences, further research in this 

regard is warranted (Brahmachari et al., 2016; Ellis et al., 2001; Feany and Bender, 2000; 

Hasegawa et al., 2002; Mahul-Mellier et al., 2014; Nakamura et al., 2001; Paleologou et al., 

2010; Wang et al., 2012; Zhang et al., 2019). In vitro studies have suggested that Y39 is 

phosphorylated by the tyrosine kinase c-Abl, which also targets Y125, and that this 

phosphorylation prevents a-synuclein degradation by the proteasomal and lysosomal pathways 

(Brahmachari et al., 2016; Mahul-Mellier et al., 2014). Additionally, inhibition of this kinase 



pg. 15 
 

has proven neuroprotective in mouse models of PD (Brahmachari et al., 2016; Hebron et al., 

2013; Imam et al., 2013; Imam et al., 2011; Karuppagounder et al., 2014). 

Proteolytic cleavage of a-synuclein may occur at its carboxyl-terminus (C-terminus) 

and amino-terminus (N-terminus) regions. C-terminal and N-terminal truncated a-

synuclein species exist in brains of healthy individuals and PD as well as MSA patients, albeit 

in differing quantities. It has been shown that C-terminal truncated a-synuclein can be found 

in aggregates, further, truncated a-synuclein acts as seed and increases aggregation propensity 

(Campbell et al., 2001; Duda et al., 2000; Hoyer et al., 2004; Li et al., 2005; Murray et al., 2003; 

Peng et al., 2018; Tofaris et al., 2003; Ulusoy et al., 2010). Although the physiological role of 

truncated a-synuclein is unknown, several proteolytic enzymes that cleave a-synuclein at the 

C-terminus have been identified: neurosin, proteasome 20S, calpain-1, cathepsin D, matrix 

metalloproteinases  and caspase 1, the latter has been linked to a-synuclein aggregation in PD  

(Iwata  et al., 2003 ; Lewis  et al., 2010 a; Lewis  et al., 2010 b; Mishizen -Eberz  et al., 2003 ; 

Sevlever  et al., 2008; Sung et al., 2005; Wang et al., 2016). Further , inhibition  of caspase-1 

has  shown  to reduce a-synuclein aggregation  and  dopaminergic  cell  loss  in a transgenic 

mouse model of MSA (Bassil et al., 2016). 

Other PTMs include ubiquitination, SUMOylation, nitration and glycation, all have 

been described within GCIs, they mostly promote aggregation but the current knowledge of 

their roles is more limited than for phosphorylation and truncation (Bose and Beal, 2016; 

Danielson et al., 2009; Dorval and Fraser, 2006; Giasson et al., 2000; Gomez-Tortosa et al., 

2000; Krumova and Weishaupt, 2013; Melchior et al., 2003; Popova et al., 2015; Rott et al., 

2017; Rowan et al., 2018; Schapira and Jenner, 2011; Shin et al., 2005; Tetzlaff et al., 2008; 

Vicente Miranda et al., 2017; Videira and Castro-Caldas, 2018). 
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Figure 3. Location of the main a-synuclein PTMs (phosphorylation, ubiquitination, nitration, 

and truncation) are shown. Disease-associated PTMs identified in Lewy bodies are shown in 

the upper part of the scheme, and those identified from in vitro studies are shown below. PTM, 

post translational modification; lysine residues K6, 10, 12, 21, 23, 32, 34, 43 and 96; tyrosine 

residues Y39, 125, 133; serine residues S87 and S129. From Schmid et al. (2013) 

 

a-Synuclein and protein degradation mechanisms 

The ubiquitin-proteasome system (UPS) is the main mechanism for protein degradation in 

mammalian cells. Proteins are tagged by the attachment of ubiquitin molecules, which will be 

recognized by the proteasome. Proteasomes are small, barrel-like structures with a proteolytic 

core (called 20S proteasome), comprising three types of catalytic enzymes. Proteins are broken 

down into peptides that undergo further degradation (Nandi et al., 2006). Ubiquitination of a-

synuclein promotes its proteasomal degradation (Liani et al., 2004; Rott et al., 2011). 

Proteasomal components can be found within GCIs (Gai et al., 2003), post mortem studies have 

further shown the lack of some proteasomal subunits in the substantia nigra (SN) of MSA 

patients (Bukhatwa et al., 2010), and it has been demonstrated that pharmacological inhibition 

of the UPS enhances a-synuclein induced degeneration in a mouse model of MSA (Stefanova 

et al., 2012b). In addition, in vitro evidence indicates that a-synuclein is degraded by the UPS 

and autophagic lysosomal pathway (ALP) (Webb et al., 2003), and that there is a complex 

cross-talk between these two systems (Yang et al., 2013). Also, in vivo research suggests that 

the UPS is the principal mechanism of degradation of a-synuclein in health, while autophagy 
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is involved in α-synuclein degradation only in a pathological scenario where increased α-

synuclein burden exists (Ebrahimi-Fakhari et al., 2012). 

Autophagy is an evolutionarily conserved cellular mechanism for degradation of 

proteins and organelles in lysosomes. It is an effective neuroprotective mechanism that actively 

contributes to the removal of pathogenic proteins. Considerable evidence suggests that a-

synuclein clearance takes place in lysosomes, be it through the classical macroautophagy 

pathway, the chaperone-mediated pathway (CMA) or endosomal microautophagy. Dysfunction 

of these systems can facilitate a-synuclein aggregation, and, conversely,  a-synuclein 

aggregates may disrupt their function (Dehay et al., 2010; Mak et al., 2010; Scrivo et al., 2018a; 

Tofaris et al., 2011; Vogiatzi et al., 2008). 

 

Figure 4. Proteolytic pathways implicated in a-synuclein processing. Lysosome-associated 

membrane protein 2a, LAMP2a; proteasome core particle 20, S20; regulatory particle, S19. 

From Xilouri et al. (2013)  
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Pathogenesis 

The presence of aggregated a-synuclein containing GCIs is the defining hallmark of the 

disease, nonetheless, data show that a-synuclein also accumulates in neurons (Cykowski et al., 

2015; Papp et al., 1989). 

The origin of the a-synuclein present in GCIs is matter of an ongoing debate, with 

earlier studies failing to prove the expression of a-synuclein in mature oligodendrocytes and 

data showing that a-synuclein secreted by neurons can be uptaken by oligodendrocytes and 

astrocytes (Lindström et al., 2017; Miller et al., 2005; Ozawa et al., 2001; Reyes et al., 2014; 

Reyes et al., 2019). More recent research has shown that, albeit in small quantities, 

oligodendrocytes seem to express a-synuclein (Asi et al., 2014; Djelloul et al., 2015; Kaji et 

al., 2018). Latest data suggest that pathologically misfolded exogenous a-synuclein uptaken by 

oligodendrocytes promotes the misfolding and accumulation of endogenous a-synuclein 

forming insoluble aggregates. This process would not be due to an increase in expression of the 

endogenous protein, in accord with previous reports of low a-synuclein encoding messenger 

ribonucleic acid (mRNA) in oligodendrocytes, but, rather, to an impairment of autophagic 

catabolism of a-synuclein (Mavroeidi et al., 2019). In addition, a recent study revealed a 

widespread presence of a-synuclein oligomers in neurons throughout the brain, further 

suggesting that neural a-synuclein accumulation might be an early event in MSA (Sekiya et al., 

2019)  

Beyond a-synuclein, the oligodendroglial-specific phosphoprotein p25α (tubulin 

polymerization promoting protein, TPPP) is a major component of GCIs and facilitates a-

synuclein aggregation in vitro (Kovács et al., 2004; Lindersson et al., 2005; Song et al., 2007). 

In MSA, p25α is relocated from the myelin sheath to the abnormally expanded oligodendroglial 

cell bodies, an event followed by a reduction of total myelin basic protein (MBP) levels, myelin 

fragmentation, and accumulation of abnormal a-synuclein (Ota et al., 2014; Song et al., 2007). 

In vitro research has shown that p25α has a central role in the seeding of misfolded a-synuclein 

and the formation of pathological aggregates (Mavroeidi et al., 2019).  

The process by which abnormally misfolded proteins serve as template for the 

pathological misfolding of normal proteins has been named seeding or permissive templating 

(Hardy, 2005). This is the molecular mechanism behind a group of disorders commonly known 

as prion diseases, in which abnormal proteinaceous particles (prions) with an infectious 

behaviour spread and propagate through the CNS; being the bovine spongiform 

encephalopathy, commonly referred to as “mad cow disease”, the most recognizable by the 
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general public (Nathanson et al., 1997; Prusiner, 1982). In recent years, the aggregative 

behaviour of pathological a-synuclein in synucleinopathies has been likened to that of prion 

disease, but, even though there is evidence that a-synuclein assemblies might adopt different 

conformations, called strains, with distinct structural, biochemical, biological and pathological 

features (Candelise et al., 2019; Gribaudo et al., 2019; Guo et al., 2013; Mamais et al., 2013; 

Melki, 2015; Peelaerts and Baekelandt, 2016; Peelaerts et al., 2015; Peng et al., 2018), whether 

this equates to prion disorders is currently matter for scientific debate (Surmeier et al., 2017; 

Walsh and Selkoe, 2016; Wenning et al., 2018; Woerman et al., 2018b).  

Several studies have demonstrated that inoculation of synthetic aberrant a-synuclein 

into the brain of transgenic mouse models of synucleinopathy (PD or MSA) would accelerate 

the accumulation and aggregation of a-synuclein. Also, others have shown that injection of 

MSA brain homogenates into transgenic mice expressing mutant a-synuclein would induce 

neurodegeneration with a-synuclein accumulation, and the authors have characterized these  a-

synuclein aggregates as prions. However, even though these data suggest that a-synuclein 

spreads through the brain, for this pathological propagation to take place, expression of mutant 

a-synuclein is a requirement, meaning that healthy, non-transgenic mice do not develop the 

disease. This does not happen in actual prion disease, where prion particles do not require pre-

existing mutant protein to spread (Krejciova et al., 2019; Prusiner et al., 2015; Watts et al., 

2013; Woerman et al., 2018a). Furthermore, compelling epidemiological evidence that MSA 

might be a prion disease is lacking. Put together, these data do not allow, thus far, to 

unambiguously claim that MSA is a prion disease (Peelaerts and Baekelandt, 2016; Wenning 

et al., 2018). 
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Figure 5. Protein misfolding and aggregation into infectious fibrillar assemblies. Native or 

natively unfolded polypeptide chains (sphere) undergo conformational changes that lead to 

distinct abnormal (cube or cylinder) forms. From Melki (2015) 

 

Neuroinflammation has long been known to play a role in neurodegenerative disorders 

(Ransohoff, 2016), this is also the case for MSA. Microglial activation is commonly detectable 

in patients’ brains (Ishizawa et al., 2004; Jellinger, 2014), while positron emission tomography 

(PET) imaging studies haven reported activated microglia in MSA (Gerhard et al., 2006), and 

it appears microglia activation is driven by a-synuclein, and, in a vicious circle, this activation 

promotes further aggregation  (Su et al., 2009; Su et al., 2008; Vieira et al., 2015). In a mouse 

model of the MSA, microglial activation correlates with neuronal loss, furthermore, inhibition 

of the microglia-expressed myeloperoxidase attenuates neurodegeneration, although only if 

treatment is initiated in very early stages of the disease (Kaindlstorfer et al., 2015; Stefanova et 

al., 2012a; Stefanova et al., 2007). There is evidence that microglia and astrocytes interact with 

a-synuclein and undergo phenotypic changes in the context of a chronic pro-inflammatory 



pg. 21 
 

medium (Refolo and Stefanova, 2019). Even though the activation of the inflammatory cascade 

may be secondary to other phenomena, it likely contributes to many of the detrimental processes 

which can be observed in the disease (Compagnoni and Fonzo, 2019). 

Another facilitating factor of protein accumulation is the impairment of its clearance. 

Neuropathological studies show altered levels of autophagy markers in pathology-burdened 

regions of the brain, while in vitro and in vivo experimental data point to defective 

autophagolysosomal clearance (Compagnoni et al., 2018; Schwarz et al., 2012; Tanji et al., 

2013; Valera et al., 2017b). Further, experimental inhibition of the proteasomal machinery 

exacerbated neurodegeneration in a mouse model of MSA, while this was not the case in non-

transgenic mice, and proteasomal abnormalities have been reported in MSA brains (Bukhatwa 

et al., 2010; Furukawa et al., 2002; Stefanova et al., 2012b). 

Finally, neuroinflammation, loss of oligodendroglial neurotrophic support, and 

neuronal dysfunction due to a-synuclein inclusions may synergistically promote neuronal death 

and subsequent reactive astrogliosis (Fanciulli and Wenning, 2015). 

 

Neuropathology 

 Macroscopic changes 

The clinical differences between the two MSA phenotypes, MSA-P and MSA-C, reflect their 

underlying diverging anatomopathological features. While in MSA-P, symptoms point to 

predominant degeneration of the striatonigral system, the cerebellar phenotype of MSA-C 

indicates degeneration of olivopontocerebellar (OPC) structures. Both phenotypes have distinct 

neuropathological features, but with disease evolution, substantial overlap will develop. In 

MSA-P, atrophy of the caudate nucleus, putamen and globus pallidus (GP) with pallor of the 

SN in the midbrain are usually found. Conversely, in MSA-C there is atrophy of the pons, 

middle cerebellar peduncle, inferior olivary nuclei of the medulla and cerebellar cortex and 

white matter. Frontal cortex thinning is a late anatomical feature (Ahmed et al., 2012; Ozawa 

et al., 2004). 
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Figure 6. Main histological features of MSA phenotypes, from Ahmed et al. (2012). MSA-

OPCA, multiple system atrophy-olivopontocerebellar atrophy; MSA-SND, multiple system 

atrophy-striatonigral degeneration. 

 

 

 

Histopathology 

Even though the pathological hallmark and requirement for post-mortem definitive diagnosis 

of MSA is the presence of GCIs (Trojanowski et al., 2007), other a-synuclein containing 

inclusions are found in brains of MSA patients. These are glial nuclear (GNI), neuronal 

cytoplasmic (NCI), and neuronal nuclear inclusions (NNI), as well as neuronal threads (Song 
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et al., 2009; Wenning and Jellinger, 2005). Neuronal α-synuclein pathology, considered 

ancillary, has been historically overlooked. However, growing evidence suggests that neuronal 

α-synuclein pathology is not simply an epiphenomenon in MSA but may play a role in the 

disease process, as more research reveals that accumulation of a-synuclein in neurons is more 

widespread than previously believed (Cykowski et al., 2015; Halliday, 2015; Homma et al., 

2016; Jellinger, 2007; Rohan et al., 2015). Further, recent research has shown that a-synuclein 

oligomers in neurons are widely present throughout the brain, even earlier than in 

oligodendrocytes (Sekiya et al., 2019) 

GCIs contain full length, truncated and phosphorylated a-synuclein, though a-

synuclein only accounts for a fraction of the proteinaceous content in these inclusions. Over 40 

proteins have been described within GCIs, these are normally involved in numerous cellular 

mechanisms, including, but not limited to, cell cycle regulation, signal transduction, metal 

binding, protein folding and degradation, autophagy components and regulators (Jellinger, 

2018) (table 1). 
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Table 1. Proteins found within GCIs from Jellinger (2018) 

 

GCI density is positively correlated with neural loss and disease duration and severity. 

GCIs are found in cerebral white and grey matter, they are present in motor cortex, putamen, 

GP, motor nuclei of cranial nerves, pons, cerebellar cortex, spinal cord and autonomic nerve 

structures. They also occur in the internal and external capsules, corpus callosum, corticospinal 

tracts and cerebellar white matter (Halliday et al., 2011; Inoue et al., 1997; Jellinger, 2018; 

Jellinger and Lantos, 2010; Ozawa et al., 2004; Wenning et al., 2008). 
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A number of neuroinflammatory triggers such as cytokines, reactive oxygen species 

(ROS) and nitric oxide are commonplace in MSA. In response to these, activated microglia and 

reactive astrocytes infiltrate the diseased tissue (gliosis), and their presence is believed to be an 

important contributor to the disease process in MSA. In general, the degree of region specific 

astrogliosis parallels the severity of neurodegeneration and correlates positively with a-

synuclein pathology. In addition, microglial activation, also accompanying a-synuclein 

pathology and phagocytosing degenerating myelin, is prominent in degenerating regions 

(putamen, GP, SN, pons, and prefrontal cortex) (Gerhard et al., 2006; Ishizawa et al., 2008; 

Ishizawa et al., 2004; Kaufman et al., 2013; Kikuchi et al., 2002; Ozawa et al., 2004; Radford 

et al., 2015; Refolo and Stefanova, 2015; Refolo and Stefanova, 2019; Song et al., 2009). 

 

Animal models of MSA 

In order to investigate underlying mechanisms of pathogenesis and pathophysiology of MSA, 

animal models have been utilized for many years. These have helped further our understanding 

of the disease process, and have also been used to identify therapeutic targets and validate 

candidate drugs that might be further evaluated in clinical trials. Earliest models of MSA were 

produced through systemic or surgical intracerebral delivery of neurotoxins which induced 

robust neurodegeneration of the striatonigral system together with motor phenotypes, though 

lacking a-synuclein pathology. More recently, models expressing human a-synuclein in 

oligodendrocytes were developed through genetic manipulation, with three transgenic models 

using oligodendroglial promoters and one a Cre-loxP system to express inducible α- synuclein 

in mice (Bleasel et al., 2016; Fernagut and Tison, 2012; Kahle et al., 2002; Overk et al., 2018; 

Shults et al., 2005; Tanji et al., 2019; Yazawa et al., 2005). The mouse model expressing human 

a-synuclein through the proteolipid protein promoter (PLP-SYN) is commonly used and the 

one used for this PhD work. With the use of adeno-associated virus, expression of human a-

synuclein has been achieved in brains of rats and primates (Bassil et al., 2017b; Mandel et al., 

2017). 

Beyond the use of mammals, recently reported, a fly model expressing wild-type human 

a-synuclein in glial cells recapitulates a-synuclein aggregation in glial cells, loss of 

dopaminergic neurons, impaired locomotion, autonomic dysfunction and transcriptional 

changes. The authors reported 30 transcripts with mammalian orthologs known to intervene in 

pathways relevant to synucleinopathy pathogenesis (including mitochondrial function, 

lysosomal function, myelin synthesis, cytoskeletal function, fatty acid metabolism, apoptosis, 
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and adenosine metabolism), opening the way to further understanding of these pathways and 

possible therapeutic approaches (Olsen and Feany, 2019) 

 

Clinical presentation 

Motor features 

Parkinsonism, understood as a combination of bradykinesia (slowness of movement), rigidity 

and postural instability, characterizes the parkinsonian subtype of MSA. While in PD patients 

motor symptoms are levodopa sensitive, in MSA there is poor to no response to dopamine 

replacement therapy, and this lack of responsiveness to dopamine has been included in the 

consensus diagnostic criteria of MSA as a supportive feature (Fearnley and Lees, 1990; Gilman 

et al., 2008; Hughes et al., 1992). 

Patients may present postural alterations, with involuntary muscular contractions, and 

deformities, such as bent spine, foot dystonia or disproportionate anterocollis.  

On the other hand, in MSA-C cerebellar signs predominate. Cerebellar features include a wide-

based gait, uncoordinated limb movements, action tremor and different types of nystagmus 

(Köllensperger et al., 2010; Krismer and Wenning, 2017; Wenning et al., 2013b).  

  

Non-motor features 

Widespread degeneration of structures such as the brainstem, hypothalamus, the intermedio-

lateral column of the dorsal spinal cord and the Onuf nucleus in the sacral spinal cord, which 

are implicated in autonomic functions, is responsible for the majority of the non-motor 

symptoms and signs of MSA (Benarroch, 2002; Benarroch, 2007; Benarroch et al., 2006; 

Dugger et al., 2012; Ozawa, 2007; Schmeichel et al., 2008; Yamamoto et al., 2005; Yoshida, 

2007). Urogenital and cardio-vascular symptoms are the most common. Erectile dysfunction 

typically occurs at disease onset in male patients, while genital hyposensitivity during 

intercourse characterizes the sexual dysfunction in women (Köllensperger et al., 2008; Oertel 

et al., 2003). Urinary dysfunction includes urinary urgency and frequency, urge incontinence, 

nocturia, and incomplete bladder emptying. Moreover, MSA patients also suffer from 

orthostatic hypotension and frequently complain of gastrointestinal problems such as 

gastroparesis and constipation (Fanciulli and Wenning, 2015; Gilman et al., 2008; 

Köllensperger et al., 2007; Sakakibara et al., 2000). 

Patients often suffer from depression, mood swings, anxiety, panic attacks and suicidal 

ideation, they also show cognitive impairment, most frequently executive dysfunction; in the 

course of the disease, while 10-15% of cases will develop dementia (Auzou et al., 2015; Kao 
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et al., 2009; Schrag et al., 2010). A fundamental aspect in MSA is respiratory dysfunction, given 

that it indicates the extent of neurodegeneration in the ponto-medullary respiratory system, with 

inspiratory stridor and sleep apnoea being frequent signs, frequently provoking sleep 

disturbances (Benarroch, 2003; Benarroch, 2007). Additionally, patients report other sleep 

sleep-related problems, such as insomnia, sleep fragmentation, excessive daytime sleepiness 

and nocturnal agitation during rapid eye movement sleep (Ghorayeb et al., 2014; Iranzo et al., 

2005; Palma et al., 2015). 

 

 

Figure 7. Summary of brain regions affected in the two MSA phenotypes and their clinical 

correlates. Modified from Fanciulli and Wenning (2015) 

 

Clinical heterogeneity 

Even though current consensus diagnostic criteria include two classical phenotypes, MSA-P 

and MSA-C, clinical heterogeneity has been repeatedly described in the literature, ranging from 

an asymmetrical, slowly progressive levodopa-responsive phenotype that may last up to two 

decades (Jellinger, 2012; Masui et al., 2012; Petrovic et al., 2012) to the very aggressive so-

called ‘minimal change’ variant, which might lead to death within 5 years after having reached 

most of the clinical milestones by year 3 (Ling et al., 2015). Patients presenting the levodopa 

responsive variant might be misdiagnosed as PD, and, as such, may be subject to advanced 

invasive treatments, like deep brain stimulation. Unfortunately, the outcome of this intervention 

is very poor in these cases, underscoring the importance of recognizing this phenotype and a 

correct early diagnosis of MSA (Lezcano et al., 2004; Meissner et al., 2016; Thavanesan et al., 

2014; Ullman et al., 2012). 
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Diagnosis 

Diagnosis of MSA relies principally on clinical findings, but might be reinforced by ancillary 

tests. The latest revision on consensus diagnostic criteria was published in 2008. The only way 

to achieve a definite diagnosis is through post mortem analysis of the brain; before death the 

diagnostic criteria allow for two levels of certainty, possible and probable MSA. Probable MSA 

is defined as a sporadic, progressive disorder in adults, clinically characterized by severe 

autonomic failure (urinary incontinence or severe orthostatic hypotension) and poorly 

levodopa-responsive parkinsonism or cerebellar ataxia. Diagnosis of possible MSA requires a 

sporadic, progressive adult-onset disorder with parkinsonism or cerebellar ataxia to be 

accompanied by at least one feature suggesting autonomic dysfunction plus one additional 

clinical or neuroimaging abnormality (figure 8) (Gilman et al., 2008). 

Even though these consensus criteria yield a high specificity, sensibility is still poor, 

and accurate diagnosis in early stages remains challenging (Koga et al., 2015; Miki et al., 2019; 

Osaki et al., 2009).  
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Figure 8. Summary of consensus diagnostic criteria for MSA. Magnetic resonance imaging, 

MRI; 18-Fludeoxyglucose positron emission tomography, 18F-FDG-PET. From Krismer and 

Wenning (2017) 

 

Natural history and prognosis 

MSA progresses relentlessly, and patients become soon disabled, with frequent falls, needing 

walking aids, in average, 3-5 years after onset; significant autonomic dysfunction, speech and 

swallowing difficulties. Death arrives 6 to 10 years after disease onset, and it is usually 

provoked by aspiration pneumonia, sepsis and sudden death (Ben-Shlomo et al., 1997; Lee and 

Koh, 2012; Low et al., 2015; O'Sullivan et al., 2008; Wenning et al., 2013a). 
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Figure 9. Summary of MSA natural history from Fanciulli and Wenning (2015) 

 

Treatment 

Since, regrettably, there is no curative therapy for MSA, current strategies are aimed at 

alleviating symptoms. 

Symptomatic therapy 

Management of MSA’s most disabling features can prove challenging for clinicians. For the 

parkinsonian symptoms, levodopa is the first-line treatment, up to 83% of patients might show 

dopa responsiveness to some extent in early stages, although this effect is typically transient. 

First-line therapy for ataxia is physiotherapy. Orthostatic hypotension can, sometimes, be the 

most disabling feature, and its management consists of pharmacological and non-

pharmacological measures. Neurogenic bladder might be relieved through intermittent 

catheterization, anti-cholinergics and botulinum toxin. Erectile dysfunction may respond to 

intracavernosal papaverine injections, and sildenafil might offer relief and is a less daunting 

alternative for patients. The best option for focal dystonia and some postural deformities is 

botulinum toxin injections. A summary of current expert suggestions for symptomatic 

management can be found in table 2 (Perez-Lloret et al., 2015). 
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Table 2. Summary of symptomatic management in MSA patients from Perez-Lloret et al. 

(2015). OH, orthostatic hypotension; BoNT-A, botulinum toxin A; SC, subcutaneous; RBD, 

REM sleep behaviour disorder; RLS, restless legs syndrome; SSRIs, selective serotonin 

reuptake inhibitors; DA, dopamine agonists; TMS, transcranial magnetic stimulation. 

 

Disease-modifying therapy 

All but one randomized controlled trials (RCT) aiming at neuroprotection have failed 

(Bensimon et al., 2009; Dodel et al., 2010; Krismer and Wenning, 2017; Lee et al., 2012; Low 

et al., 2014; Poewe et al., 2015). The one study that reported positive effects for intra-venous 

and intra-arterial injections of mesenchymal stem cells raised safety concerns (Lee et al., 2012). 

An open label study of intra-thecal injections reported a good security profile, and this approach 

is being challenged in a phase III trial (Singer et al., 2017; Singer et al., 2019),  
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Table 3. Completed clinical trials in MSA modified from Lopez-Cuina et al. (2018b). BDI, Beck 

Depression Inventory; COMPASS, Composite Autonomic Symptom Score; MRI, Magnetic 

Resonance Imaging; MSA-QoL, Multiple System Atrophy Health-related Quality of Life; 

MSC, Mesenchymal Stem Cells; OL, Open label; PET, Positron Emission Tomography; PD, 

Parkinson Disease; RCT, Randomized Placebo-Controlled Trial; SCOPA-Aut, SCales for 

Outcomes in PArkinson's disease-Autonomic; SF-12/36, Short-Form Survey 12/36; UPDRS, 

Unified Parkinson's Disease Rating Scale; UMSARS, Unified Multiple System Atrophy Rating 

Scale. 
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Significant research on preclinical models of MSA is underway and recent studies show some 

molecules with promising neuroprotective potential that warrant further investigation, and 

might be assessed in future RCT. Classically, the main target of these therapies is a-synuclein, 

either aggregation inhibition or immunization, other drugs aim to improve cell survival via a-

synuclein independent pathways (see Table 4  on  page 109  for a summary of  the latest research 

in this regard  and suggests approaches deemed interesting for assessment in MSA mice).

 

 

We recently published a review describing the latest knowledge obtained from RCT on disease 

modifying therapies. This will serve as a closing piece to the introduction of this PhD work. 
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Present and future of disease-modifying therapies in multiple 

system atrophy (Review). 
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A B S T R A C T

Through the last decade seven clinical trials on Multiple System Atrophy have been published, virtually all of
them reported negative results. Patients and family remain hopeful while facing this devastating disease, but as
doctors we still cannot offer them disease-modifying therapies. The field has seen many advances regarding
pathophysiology, translational research, diagnostic accuracy, natural history and imaging, but successful
treatment remains elusive. This review provides an overview of the available tools for designing clinical trials,
critically analyzes the past studies and describes the knowledge obtained from them, and finally gives some
orientation for future trials that could meet the current needs of patients and clinicians, overcoming the hurdles
met by previous studies.

1. Introduction

Multiple System Atrophy (MSA) is a rapidly progressing and fatal
neurodegenerative disease characterized by a variable combination of
parkinsonism, ataxia and autonomic failure (Fanciulli and Wenning,
2015; Gilman et al., 2008). The pathological hallmark is the presence of
α-synuclein bearing glial cytoplasmic inclusions (GCI) (Jellinger, 2012;
Papp and Lantos, 1994).

MSA is an orphan disease with an estimated prevalence ranging
from 1.9–4.9/100,000 (Krismer and Wenning, 2017). Treatment is
available for some symptoms, in particular autonomic dysfunction,
while disease modification remains an urgent unmet need.

This review focuses on the seven randomized clinical trials (RCT)
that have been completed in the last decade, six of which reported
negative results. We begin by outlying the current tools available for
designing a robust clinical trial fitting the characteristics of a rare dis-
ease; later we critically analyze the above-mentioned trials, inferring
the possible causes of their failures to show significant results, while
appraising the knowledge that can be garnered from them. Finally, we
give some orientation for conceiving future RCT that could meet the
current needs of patients and clinicians, overcoming the hurdles met by
previous studies.

2. Diagnosis and outcomes for clinical trials in MSA

2.1. Diagnostic criteria

A first consensus statement was published in 1999 (Gilman et al.,
1999), which was the standard in clinical setup and in research until the
revised consensus criteria were released in 2008. The most relevant
changes being related to the criteria for possible MSA with the addition
of the results of paraclinical investigations, such as atrophy of the pu-
tamen, middle cerebellar peduncle (MCP), pons, or cerebellum on
magnetic resonance imaging (MRI); hypometabolism on 18F–fluor-
odeoxyglucose positron emission tomography (FDG-PET) and pre-
synaptic nigrostriatal denervation on single-photon emission computed
tomography (SPECT) or PET (Gilman et al., 2008).

These criteria allow three levels of certainty in diagnosing MSA,
possible, probable and definite. While for the diagnosis of probable
MSA unequivocal signs of autonomic failure are required, the diagnosis
of possible MSA allows for the use of the above–mentioned paraclinical
investigations. The diagnosis of definite MSA requires post-mortem
confirmation.

A study compared the performance of both consensuses in a neu-
ropathologically confirmed cohort of 59 patients with MSA (Osaki
et al., 2009). In later stages of the disease, the old and new consensus
for possible and probable MSA performed similarly, with sensitivities
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above 90%. However, differences became more apparent in earlier
stages, where the new consensus criteria for possible MSA achieved a
better sensitivity, albeit still remaining low (41% compared to 28%). In
contrast, both consensuses showed good positive predictive values in
both early and late visits (ranging from 86 to 100). This illustrates that
consensus diagnosis criteria are reliable but also underscores the chal-
lenge in recruiting patients in the early phase, when clinical signs re-
main non-specific and interventions are believed to be more likely to
modify the disease course, given that once the diagnosis becomes more
obvious (often meeting criteria for probable MSA) the neurodegenera-
tive process is in a relatively advanced stage (Gilman et al., 1999;
Gilman et al., 2008). A further revision of current diagnostic criteria is
warranted to improve the above-mentioned low sensibility for early-
stage disease, and also to account for clinical symptoms that are in-
creasingly being recognized. In this regard, cognitive impairment is
frequent but currently considered as non-supportive feature according
to consensus diagnosis criteria for MSA (Stankovic et al., 2014).

2.2. Clinical rating scales

The most frequently used outcome measure in MSA clinical trials is
the Unified MSA Rating Scale (UMSARS), which has been thoroughly
validated, is disease-specific, and its progression rates have been es-
tablished in large natural history studies (Low et al., 2015; Wenning
et al., 2013). By analyzing data from the MSA rasagiline trial, a mini-
mally clinically meaningful decline in MSA-P was estimated to be 1.5
points on the UMSARS ADL subscale, 1.5 points on the UMSARS motor
examination subscale, and 3.5 points on the UMSARS total scale, al-
though the trial's failure to show improvement in outcome measures did
not allow establishing a minimal relevant improvement, which would
prove more useful at determining accurate sampling size (Krismer et al.,
2016).

A prospective assessment of autonomic symptoms performed in
MSA patients through the Scales for Outcomes in Parkinson's
Disease–Autonomic questionnaire (SCOPA-Aut) questionnaire reported
slow progression of total and subdomain scores over time, thus, not
being a useful endpoint for disease-modification or neuroprotection
trials (Damon-Perrière et al., 2012).

MSA health-related quality of life (Hr-QoL) has been appraised by
the MSA-QoL questionnaire, the Short Form 36 Health Survey
Questionnaire, the EuroQol instrument and the Parkinson's Disease
Questionnaire-39 (Köllensperger et al., 2007; May et al., 2007;
Miyashita et al., 2011; Schrag et al., 2006; Schrag et al., 2007; Winter
et al., 2011).

Prospective studies of Hr-QoL have estimated sample sizes larger
than those required by UMSARS sum scores, thus making the latter the
most sensitive to change over time (Geser et al., 2006; May et al., 2007;
Meissner et al., 2012). Regarding Hr-QoL in MSA, some items did not
change over time probably due to the scores at baseline being already
too high (e.g. difficulty with handwriting), or because some symptoms
might appear in later stages of the disease (e.g. difficulty with swal-
lowing). Given the fact that Hr-QoL measures are more and more
considered as very relevant outcomes, it could prove worthwhile to
revise or develop specific tools that are sensitive to change for clinical
trials in MSA.

A recent study prospectively compared several clinical assessment
tools (i.e. MSA-QoL questionnaire, UMSARS, Scale for the Assessment
and Rating of Ataxia, Berg Balance Scale and SCOPA-Aut) during
12 months, reporting that UMSARS was the most responsive to change
over time. Putting together the best responding items from all scales,
they suggested a brief, 8-item scale which would require a sample size
of 98 patients per group in order to detect a 30% effect with a statistical
power of 90%. A limitation to the interpretation and generalizability of
the results from this study is the low representation of MSA-P, given
that it is less common in Japan (Matsushima et al., 2016).

It is also worth mentioning that clinical milestones are well known

markers of disease progression in MSA; namely frequent falling, urinary
catheterization, wheelchair dependency, dysphagia, and cognitive dis-
ability (Lee and Koh, 2012; O'Sullivan et al., 2008; Wenning et al.,
2013). These could prove useful in assessing the efficacy of therapies to
delay progression.

2.3. Biomarkers

A biomarker is a characteristic that is objectively measured and
evaluated as an indicator of normal biological processes, pathogenic
processes or pharmacological responses to a therapeutic intervention
(Biomarkers Definitions Working Group, 2001). Biomarkers, especially
neuroimaging, have clear potential to serve as objective endpoints for
future RCT in MSA.

2.3.1. Neuroimaging
There have been interesting advances in the last decade in this field;

nonetheless, it should be noted that studies have been largely per-
formed in small cohorts, and technologies and techniques utilized vary,
making it difficult to compare results and draw firm conclusions from
them. Accordingly, there is a need for a joint, multicenter force in order
to recruit a sufficient number of patients and follow them for, at least,
one year. This would provide invaluable insights into the variability
and natural history of image biomarkers in this rare disease. Beyond
disease progression, imaging biomarkers for the diagnosis of MSA may
be useful for patient stratification in clinical trials.

2.3.1.1. MRI. There has been an increasing interest in the use of MRI to
improve the diagnostic accuracy of MSA (Brooks et al., 2009). A recent
review illustrates the contribution of high field MRI and advanced MRI
modalities, and their role in the diagnosis of MSA (Kim et al., 2017).

It is equally relevant to develop MRI biomarkers of disease pro-
gression to understand the underlying pathophysiology and improve
patient management, as well as to monitor changes over time in RCT.
Although none of the currently available MRI studies has provided a
useful imaging biomarker for disease progression, numerous cross-
sectional studies have shown a relation between disease severity and
duration and MRI findings (Hara et al., 2016; Minnerop et al., 2007;
Pellecchia et al., 2009; Tha et al., 2010; Watanabe et al., 2002). For a
better understanding of the natural history of MSA, large longitudinal
follow-up studies need to be conducted to provide more robust in-
formation on the correlation between MRI changes and disease pro-
gression.

Earlier studies reported a mean annual cerebral brain atrophy rate
of 2.5% (3% for MSA-C and 1.9% for MSA-P) and 1.7% (Horimoto et al.,
2000; Konagaya et al., 2002). Later, a whole-brain atrophy rate of 1%
was reported, while regional measurements yielded annual atrophy
rates of 4.5% and 3.2% in pons and cerebellum, with a correlation
between infratentorial atrophy and Unified Parkinson's Disease Rating
Scale (UPDRS) motor scores (MSA-P, n = 11) (Paviour et al., 2006). A
more recent study reported a whole-brain annual atrophy rate of
1.65%, but without correlation with UPDRS motor scores (MSA-P,
n = 8), and in a later retrospective study in 35 MSA-P and 6 MSA-C
patients, this same group reported a similar annual whole-brain atrophy
rate of 1.65% (Guevara et al., 2016; Guevara et al., 2017).

Utilizing voxel-based morphometry (VBM), no correlation was
found between UPDRS and atrophy rates in any brain region including
the striatum, mesencephalon, cerebellum, and cortex (MSA-P, n = 14)
(Brenneis et al., 2007).

Another study reported increased atrophy rates of the cerebellum
and putamen in MSA-C patients compared to healthy controls (14 MSA-
C, 6 controls) (Hauser et al., 2006). Progression of atrophy has also
been reported in corpus callosum and MCP (32 MSA-C, 16 MSA-P)
(Minnerop et al., 2007). More recently, a retrospective study described
the relation between the annual cerebellar volume atrophy rate and the
increase in International Cooperative Ataxia Rating Scale (ICARS)
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scores in MSA-C. This study reported a mean annual loss of cerebellar
volume of 7.8 ml (n = 17) (Tanaka et al., 2016).

A study compared rates of atrophy in four subcortical regions and
reported a greater rate of atrophy in the putamen and caudate in MSA-P
than in MSA-C. Moreover, by quantifying iron deposition with R2*,
they showed progression in putaminal iron deposition in MSA-P, but
not in MSA-C (8 MSA-P, 9 MSA-C) (Lee et al., 2015).

Diffusion-weighted imaging (DWI) has been used to detect and
quantify early neurodegenerative changes in patients with MSA
(Barbagallo et al., 2016; Ito et al., 2007; Nicoletti et al., 2006; Nicoletti
et al., 2013; Paviour et al., 2007b; Schocke et al., 2002; Seppi et al.,
2006a; Seppi et al., 2003). One longitudinal study reported an increase
in diffusivity in the putamen, which correlated with UPDRS motor
scores in 10 MSA-P cases (the large time range between scans being its
main caveat, while the mean was 1.2 years [range 5–22 months])
(Seppi et al., 2006b). In contrast, another study reported progression in
diffusivity in putamen, frontal white matter, pons and cerebellum, al-
beit without correlation to UPDRS, perhaps due to analyzing a mixed
cohort of MSA cases (MSA-C n = 4, MSA-P n= 7, mean interval be-
tween MRI scans 0.7 years [range 9–13 months]) (Pellecchia et al.,
2011). A third study of 12 MSA-P cases with a longer follow-up de-
scribed a positive correlation between the increase in diffusivity in the
MCP and UPDRS motor scores (mean interval between scans
2.25 years) (Reginold et al., 2014).

Two recent RCT on MSA have used MRI as outcome measure. The
MSA rasagiline trial reported rates of progression of diffusivity in the
putamen, caudate and MCP that were slower than those described in
the above mentioned studies (MSA-P n = 40, time between scans
0.83 years) (Poewe et al., 2015). The trial with mesenchymal stem cells
(MSC) assessed prospectively gray matter density for the first time (Lee
et al., 2012).

2.3.1.2. Functional imaging. Most studies in MSA performing functional
neuroimaging are cross-sectional. One longitudinal single ROI-driven β-
CIT SPECT study included five MSA-P cases followed for 1.8 years. This
study reported a mean yearly reduction in striatal β-CIT binding of
9.6%, which proved to be faster than PD (this study did not use the first
consensus statement criteria for the diagnosis of MSA) (Pirker et al.,
2002). A second study assessed progression in 11 MSA-P patients using
β-CIT SPECT with a voxel-based analysis approach. It reported a faster
decline in dopamine transporter uptake in anterior putamen and
caudate in 11 MSA-P compared to PD, consistent with a faster disease
progression in MSA-P, but did not find a correlation with UPDRS motor
scores (Nocker et al., 2012).

In the MEMSA trial, a subgroup of MSA patients underwent [11C]
(R)-PK11195-PET, a marker of activated microglia. In contrast to the
placebo group, two of the three assessed patients who received mino-
cycline showed decreased binding at follow-up. However, this ob-
servation did not translate into a better clinical outcome (Dodel et al.,
2010; Gerhard et al., 2006).

In the clinical trial assessing the efficacy of MSC, patients underwent
FDG-PET scans at baseline and after 12 months of follow-up. A reduc-
tion in cerebral glucose metabolism in cerebellum and several cerebral
regions was observed, and in the treatment group, it was found to have
decreased less in the cerebellum (Lee and Koh, 2012).

2.3.2. Fluid biomarkers
Despite recent research efforts, reliable fluid biomarkers for a sen-

sitive and specific diagnosis of MSA are currently lacking. A combina-
tion of several cerebrospinal fluid (CSF) biomarkers, for instance neu-
rofilament light chain (NFL), metabolites of the catecholamine pathway
and proteins such as α-synuclein, DJ-1 and t-tau may prove useful in the
future for the diagnosis of MSA (Laurens et al., 2015).

Longitudinal studies of fluid biomarkers would provide valuable
insight not only into the pathophysiology of the disease, but also help
establishing objective outcomes for disease modification trials. In this

regard, one study did not find changes in cerebrospinal NFL and neu-
rofilament heavy chain (NFH) levels over a 12 month period (Petzold
et al., 2009); a later study assessed NFL and glial acidic protein (GFAP)
levels in MSA and other atypical parkinsonisms, and reported no sig-
nificant change over a mean period of 11 months for MSA
(Constantinescu et al., 2010).

2.4. Collaborating networks

Recruitment of sufficient numbers of patients to perform well-
powered RCT is hampered by the low prevalence and its geographical
spread. Thus, no single study center is able to recruit enough patients to
perform large clinical trials. A coordinated effort at an international
level is key in advancing MSA research.

The European MSA Study Group published reports of the natural
history of the disease (Geser et al., 2006; Wenning et al., 2013), as did
the North American MSA Study Group (NAMSA) (Low et al., 2015). The
Asian counterparts are The Japan Multiple System Atrophy Research
Consortium (JAMSAC) and the Chinese MSA Study Group (CNMSA-SG).
Lastly, the International Movement Disorders Society-sponsored MSA
Study Group seeks to develop a common data-set, establish a global
patient registry, a decentralized biomaterial bank, and recommenda-
tions for interventional trials, among others. It also enables joining
forces between the different regional study groups.

2.5. Power analysis for clinical trial design

Sample size estimations have been reported for various clinical and
neuroimaging outcomes (Guevara et al., 2016; Meissner et al., 2012;
Nocker et al., 2012; Paviour et al., 2007a; Singer and Low, 2015;
Wenning et al., 2013). Table 1 is adapted from (Fernagut et al., 2014)
and summarizes these figures. The results of preliminary brain imaging
studies suggest smaller numbers to demonstrate significant effects
compared to clinical ratings scales. This remains to be tested in future
RCT.

3. Completed disease-modifying trials in MSA

With the exception of one trial randomizing patients to intra-arterial
and intravenous delivery of MSC, all published clinical trials in MSA
have failed to show disease modification (Table 2). This small trial of 33
patients reported a statistically significant slowing in the UMSARS
progression rate, as well as a less extensive decline in glucose meta-
bolism and gray matter density after 1 year. The main limitations of this
study were the single-center design and safety issues related to the
intra-arterial procedure, namely subclinical acute ischemic cerebral
DWI lesions that were found in 30% of patients (more frequently in the
placebo group). Moreover, the included patient population was very
homogeneous compared to other studies increasing the likelihood to
demonstrate significant differences between treatment groups despite
the small number of recruited patients. The exact mechanism of action
remains uncertain, although it is hypothesized that stem cells offer
neurotrophic support and modulate neuroinflammation (Lee et al.,
2012). Secondary endpoints included differences in FDG-PET uptake
between groups and gray-matter density, their decline proved to be
slower in the MSC group. Despite identifying a treatment effect on the
UMSARS total and motor scores, no correlation was found between the
decline in glucose metabolism and clinical progression. PET scans were
performed in 27/33 patients, suggesting that including functional
imaging as endpoint is feasible. Additional longitudinal FDG-PET stu-
dies should provide data to better understand how to use this tech-
nology in RCT. A yet unpublished open-label phase I/II study reported
that intrathecal administration of MSC was well tolerated at low and
medium dose, and an apparent dose-dependent slowing of disease
progression (Singer et al., 2017).

Growth hormone (GH) is known to be involved in neural
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development acting through insulin/insulin like growth factor 1 (IGF-1)
and has several neurotrophic and pro-survival actions (Ajo et al., 2003).
A randomized, double-blind, placebo-controlled trial that enrolled an
arbitrary number of patients - deemed to be low - due to the difficulties
of reliably estimating sample sizes at the time this RCT was conducted.
It showed a mean difference of 6.3 points at 12 months in UMSARS
scores that failed to reach statistical significance, very likely as a result
of being underpowered and the very high discontinuation rate of 37%
(45.5% in the GH and 28.6% in the placebo group). The high dis-
continuation rate in this trial points further to possible challenges when
using the Last Observation Carried Forward (LOCF) strategy to impute
for missing values. Retrospectively, a sample size of 90 patients per
group was calculated to be necessary. Accordingly, the conduction of a
better-powered trial is achievable and may provide positive results in
the future; and since the current dose proved to be well tolerated and

showed a trend for improving the outcome, perhaps it would suffice to
maintain it, instead of increasing the dose as has been suggested
(Holmberg et al., 2007).

Microglia and inflammation play a pivotal role in neurodegenera-
tion (Perry and Holmes, 2014). In this regard, minocycline's potential as
disease-modifying therapy had faced conflicting evidence in preclinical
studies (Bonelli et al., 2004; Diguet et al., 2004a; Diguet et al., 2004b;
Stefanova et al., 2004; Stefanova et al., 2007; Wu et al., 2002). As
mentioned before, the MEMSA trial randomized 63 patients to either
minocycline or placebo and a subgroup of 8 patients underwent [11C]
(R)-PK11195-PET to assess the effects of the drug on microglial acti-
vation. The study lost 22% of patients and failed to show a significant
effect on clinical motor outcomes (UMSARS and UPDRS motor scores).
Patients receiving minocycline showed decreased microglial activation,
but the subgroup was too small to draw meaningful conclusions and

Table 1
Sample size estimates.

Outcome Number of patients that served
for the calculation

Mean disease duration at
inclusion (years)

Improvement of outcome under active treatment Reference

20% 30% 50%

Power

80% 90% 80% 90% 80% 90%

Survival
1 year follow-up 398 4.4 1761 2357 727 972 219 293 Bensimon et al.

(2009)2-year follow-up 808 1082 342 457 109 146
3-year follow-up 470 629 204 273 69 92

UMSARS I (ADL)
1 year follow-up 67 4.6 – – – – 162 216 May et al. (2007)
1 year follow-up 100 395 520 190 250 47 50 Singer and Low

(2015)
1 year follow-up 87 5.5 556 745 248 331 89 120 Wenning et al.

(2013)
2-year follow-up 49 5.5 206 275 92 123 33 44 Wenning et al.

(2013)

UMSARS II (motor examination)
1 year follow-up 57 4.6 455 609 203 271 73 98 May et al. (2007)
1 year follow-up 87 5.5 329 441 147 196 53 74 Wenning et al.

(2013)
2-year follow-up 49 5.5 212 284 95 126 34 46 Wenning et al.

(2013)

UMSARS I + II (total)
1 year follow-up 57 4.6 – – – – 83 111 May et al. (2007)
1 year follow-up 100 4.8 655 877 292 390 105 141 Meissner et al.

(2012)
1 year follow-up 85 5.5 389 520 173 231 63 84 Wenning et al.

(2013)
2-year follow-up 49 5.5 175 234 78 104 28 38 Wenning et al.

(2013)

MSA-QoL motor subscores
1 year follow-up 100 4.8 2003 2681 890 1192 321 429 Meissner et al.

(2012)
Putaminal trace D imaging
1 year follow-up 11 3.5 1111 1486 494 661 179 239 Pellecchia et al.

(2011)

Relative DAT decline
1 year follow-up (caudate) 11 2.4 219 – 79 – 35 – Nocker et al. (2012)
1 year follow-up

(putamen)
414 – 151 – 67 –

1 year follow-up
(striatum)

211 – 75 – 34 –

Brain atrophy
1 year follow-up (pons) 9 5.4 222 295 99 131 37 49 Paviour et al.

(2007a)1 year follow-up
(cerebellum)

176 232 79 103 29 39

1 year follow-up (whole
brain)

8 3.8 – 234 – – – 38 Guevara et al.
(2016)

Required group sizes below 100 are highlighted in bold.
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there was no difference in clinical outcomes. The study demonstrated
that using ancillary tests as objective outcome measures is feasible
(Dodel et al., 2010).

The NNIPPS trial randomized patients to receive either riluzole or
placebo for three years. The primary outcome, based on survival, was
negative. This study demonstrated (i) that survival rates can be used as
outcome measure in disease-modification trials in MSA and (ii) that
recruiting up to 400 patients in this rare disease is a feasible feat
(Bensimon et al., 2009).

Despite positive preclinical evidence (Stefanova et al., 2008), a
randomized, double-blind, placebo-controlled trial assigning 174 MSA-
P patients to either rasagiline or placebo was negative. The primary
outcome measure was the change from baseline to week 48 in total
UMSARS scores (Poewe et al., 2015). Despite positive preclinical data, a
randomized, double-blind, placebo-controlled trial assessing the effi-
cacy of rifampicin in 100 MSA patients was also negative (Low et al.,
2014; Ubhi et al., 2008). The results of these trials underscore not only
the importance of translatable preclinical studies but also a preclinical
framework designed for optimal validation of therapies (e.g. patients
received doses of rasagiline more than a hundred times lower than
those used in the mouse model, while a dose sixty times higher than
those used in humans was ineffective in MSA mice). In the rasagiline
trial, MRI was performed to assess putaminal diffusivity in a subgroup
of 40 patients. As previously mentioned (Section 2.3.1.1), the pro-
gression in putaminal diffusivity was slower than previously reported
and rasagiline failed to modify it (Poewe et al., 2015). This study
confirmed that the use of this technique is a promising approach to
objectively judge disease progression in RCT assessing compounds with
putative disease-modifying effects. Despite the fact that only a small
subgroup of patients was studied, it should be noted that it included
more cases than prior longitudinal imaging studies.

4. Looking forward in clinical trials in MSA

Through the last decade, the quality of RCT has greatly improved. In
spite of this fact, virtually all trials have reported negative results, while
the field is ready for conducting large RCT. Regardless of the result,
future trials should allow us to learn as much as possible, including
secondary or exploratory outcomes based on fluid (e.g. blood or CSF)
and image biomarkers; by collecting data that could help understand
the disease process and progression of biomarkers, and, at the same
time, help developing objective outcomes for better designing future
studies.

Regarding the near future, a phase I trial assessing the safety and
tolerability of active immunization with AFFITOPE PD01 and PD03 in
30 MSA patients was recently completed (NCT02270489), its final
study report is expected in early 2018. The rationale behind this trial is
that immunization may lead to a reduction of the α-synuclein load
through upregulated clearance by activated microglia, reducing de-
myelination and neurodegeneration (Mandler et al., 2015). A phase II
trial evaluating the effect of the myeloperoxidase inhibitor AZD3241 on
microglial activation as assessed by PET imaging was also recently
completed (NCT02388295). Preclinical data suggest the drug sup-
presses microglial activation in MSA, albeit highly dependent on the
time of introduction of the treatment (Kaindlstorfer et al., 2015;
Stefanova et al., 2012). A PET study in Parkinson's disease (PD) with
AZD3241 showed a statistically significant reduction in the microglial
activation marker, further supporting its effect on neuroinflammation
(Jucaite et al., 2015).

Regarding translational therapies, molecules targeting distinct dis-
ease mechanisms have shown encouraging effects in preclinical models
of MSA. The European ARTEMIS consortium is currently testing, in-
dividually and in combination, the efficacy of several complementary
strategies targeting α-synuclein in vitro and in transgenic MSA mice
(http://www.erare.eu/financed-projects/artemis). As a strategy to re-
duce seeding of aggregation by preventing its cleavage, the caspase-1Ta
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inhibitor prodrug VX-765 showed an attenuation in neurodegeneration
and decreased α-synuclein burden in PLP-SYN transgenic mice (Bassil
et al., 2016). Anle138b is a small molecule that that has been shown to
directly modulate α-synuclein aggregation at the oligomer level,
blocking the formation of toxic pore-forming oligomers. It proved
neuroprotective in preclinical models of PD (Wagner et al., 2013) while
it failed to show neuroprotection in very advanced-stage PLP-SYN
transgenic mice that received an additional toxic lesion with 3-ni-
tropropionic acid (Fellner et al., 2016; Levin et al., 2014). A novel drug
candidate, CLR01, that targets α-synuclein oligomer formation and
promotes clearance of already formed oligomers, has been shown to
reduce α-synuclein pathology in mouse models of PD and is currently
being tested in the PLP-SYN mouse model of MSA (Acharya et al., 2014;
Attar and Bitan, 2014; Prabhudesai et al., 2012; Richter et al., 2017).
The muscarinic acetylcholine receptor antagonist benztropine ad-
dresses MSA myelin dysfunction linked pathology through enhance-
ment of remyelination (it promotes myelin gene expression in pre-
myelinating oligodendrocytes and directly enhances myelin formation
in mature oligodendrocytes). In the MBP-SYN transgenic mouse model
of MSA, this drug promoted a recovery of myelination and a reduction
in motor cortical neuronal death (Ettle et al., 2016). A different ap-
proach to reducing dopaminergic neural death is improving insulin and
IGF-1 signaling. It has been shown that neurons and oligodendrocytes
are insulin-resistant in animal models of MSA and PD, as well as in
patient post-mortem brain tissue of both disorders, and that treatment
with exendin-4, a glucagon-like peptide 1 agonist, reduced cell death
and α-synuclein burden in transgenic MSA mice. Exendin-4 has also
shown promise in PD patients in an open label trial and, more recently,
a single-center RCT (Athauda et al., 2017; Aviles-Olmos et al., 2013a;
Aviles-Olmos et al., 2014; Aviles-Olmos et al., 2013b; Bassil et al.,
2017a; Bassil et al., 2017b). The mounting evidence supports the design
of a clinical trial in MSA patients for these drugs.
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II- Hypotheses and thesis objectives 
This work was part of a translational approach on MSA. It consists of a neuropathological study 

of the rare slowly progressive, dopa responsive form of MSA. These patients had been 

diagnosed as having PD for many years and underwent deep brain stimulation surgery, with 

poor outcomes; we aimed to study potential pathological differences between this phenotype 

and classical MSA-P. A second approach consisted of three preclinical proof of concept studies 

in view of disease modification in MSA. The first two projects aimed to assess the effects of 

drugs that have shown neuroprotective properties in models of PD on the neurodegenerative 

process in MSA. At the same time we try to identify underlying similarities and differences 

between the two entities, namely the roles of autophagy and a-synuclein aggregation-enhancing 

modifications. In the last study, we compared two drugs with previously reported 

neuroprotective effects in transgenic MSA mice and determined whether there is a synergistic 

effect when combining them. 

 

1. Our first project focused on MSA patients who had received deep brain stimulation and 

had shown poor outcome and survival in the following years. Our hypothesis being that 

DBS surgery might have induced inflammatory changes thereby accelerating the 

neurodegenerative process, and also that neuropathological differences between the 

MSA-DBS cohort and classical MSA-P patients may explain the more benign disease 

course in the PD-resembling MSA-P phenotype. 

2. Secondly, we aimed to test the efficacy of rapamycin following the hypothesis that its 

inhibition of the mammalian target of rapamycin (mTOR) pathway would enhance 

autophagic clearance of a-synuclein in PLP-SYN mice, which in turn would protect 

nigral dopaminergic neurons from death. Previous research has shown that rapamycin 

protects dopaminergic neurons in toxin-based and transgenic mouse models of PD and 

reduces a-synuclein accumulation, mostly by restoring autophagy. We determined 

whether daily administration of rapamycin has beneficial effects on the aggregation of 

α-synuclein and the neurodegenerative process in the PLP-SYN mouse model of MSA. 

3. The third project was proposed following the fact that the c-Abl tyrosine kinase 

phosphorylates a-synuclein at the tyrosine residue 39, thereby promoting and enhancing 

its aggregation; and that its inhibition would prevent a-synuclein accumulation. 

Nilotinib is a c-Abl tyrosine kinase inhibitor, with market approval for treating a form 

of human leukaemia. c-Abl inhibition by nilotinib and other c-Abl inhibitors has been 
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reported to alleviate a-synuclein accumulation and protect nigral dopaminergic neurons 

from death in toxin-based and transgenic models of PD. We aimed to determine whether 

daily administration of nilotinib has beneficial effects on the aggregation of α-synuclein 

and the neurodegenerative process in the PLP-SYN mouse model of MSA. 

4. Our fourth and ongoing project aimed to assess the combined effects of two drugs that 

have shown to reduce a-synuclein accumulation and to exert neuroprotective effects in 

transgenic MSA mice. Belnacasan inhibits the C-terminal cleavage of a-synuclein by 

the proteolytic enzyme caspase-1. This post-translational modification is known to 

enhance a-synuclein aggregation, and it was reported that inhibiting caspase-1 

significantly reduces a-synuclein polymerization and rescues dopaminergic neurons 

from death (Bassil et al., 2016). In addition, Anle138b is a small molecule that binds 

physically to a-synuclein, disassembles its oligomers and hampers its aggregation. 

Anle138b has been shown to also reduce a-synuclein accumulation and alleviate 

dopaminergic neurodegeneration in PLP-SYN mice (Heras-Garvin et al., 2018). We 

aimed to evaluate if there is a synergistic effect between these compounds in terms of 

a-synuclein aggregation and determine whether these drugs act upon different species 

of a-synuclein. 
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Figure 10. Summary of therapeutic approaches to combat α-synuclein accumulation, circled in 

red strategies used in this PhD; adapted from Lashuel et al. (2013). Matrix metallopeptidase 9, 

MMP9; microRNA, miRNA; small interfering RNA, siRNA.  



 

 
 

RESULTS 



 

pg. 48 
 

III- Results 
Article 1: 
Deep brain stimulation does not enhance neuroinflammation in multiple system 

atrophy 

 

Miguel López-Cuiña, MD, Pierre-Olivier Fernagut, PhD, Marie-Hélène Canron, Anne 

Vital, MD, PhD, Béatrice Lannes, MD, PhD, André Maues De Paula, MD, Nathalie 

Streichenberger, MD, PhD, Dominique Guehl, MD, PhD, Philippe Damier, MD, PhD, 

Alexandre Eusebio, MD, PhD, Jean-Luc Houeto, MD, PhD, François Tison, MD, 

PhD, Christine Tranchant, MD, PhD, François Viallet, MD, PhD, Tatiana Witjas, 

MD, PhD, Stéphane Thobois, MD, PhD, Wassilios G Meissner, MD, PhD 

(Neurobiology of Disease) 

 

Contexte : Un phénotype lentement progressive et sensible à la lévodopa de l'atrophie 

multisystématisée (AMS) peut être diagnostiquée à tort comme étant une maladie de 

Parkinson. La stimulation cérébrale profonde est généralement inefficace chez les 

patients AMS et peut même aggraver l'évolution clinique. Nous avons évalué ici si les 

différences neuropathologiques entre les patients atteints d’AMS qui ont été traités par 

stimulation cérébrale profonde en raison d'une présentation clinique trompeuse et de 

cas typiques d’AMS-P peuvent expliquer l'évolution plus bénigne de la première 

maladie et le déclin clinique rapide après la chirurgie. 

Méthodes : Évaluation post-mortem basée sur l'immunohistochimie du noyau sous-

thalamique, du globus pallidus, du thalamus et du putamen chez cinq patients atteints 

d’AMS ayant reçu une stimulation cérébrale profonde et neuf cas types de d’AMS-P 

typiques. 

Résultats : Il n'y avait aucune preuve de profils neuroinflammatoires distincts entre les 

deux groupes qui pourraient être reliés à l'intervention chirurgicale ou qui pourraient 

expliquer la progression clinique rapide suite à l'initiation de la stimulation cérébrale 

profonde. Les patients ayant reçu une stimulation cérébrale profonde présentaient une 

proportion plus élevée d'inclusions cytoplasmiques neuronales portant l’a-synucléine 

dans le putamen par rapport aux cas typiques, tandis que le nombre de neurones 

préservés n'était pas différent entre les groupes.  
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Conclusions : Nos résultats suggèrent que la stimulation cérébrale profonde n'induit 

pas de changements neuropathologiques chez les patients atteints d’AMS, au moins 

plusieurs années après la chirurgie. Nous émettons en outre l'hypothèse que des patrons 

distincts d'accumulation de l’a-synucléine contribuent à des différences dans le 

phénotype clinique, une plus grande proportion d'inclusions neuronales dans le 

putamen étant associée à un phénotype atténué ressemblant à une "maladie de 

Parkinson", avec réponse soutenue à la lévodopa et progression plus lente.
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A R T I C L E I N F O

Keywords:
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Multiple system atrophy
Atypical parkinsonism

A B S T R A C T

Slowly progressive, levodopa-responsive multiple system atrophy (MSA) may be misdiagnosed as Parkinson's disease
(PD). Deep brain stimulation (DBS) is mostly ineffective in these patients and may even worsen the clinical course. Here
we assessed whether neuropathological differences between patients with MSA who were treated with DBS of the
subthalamic nucleus because of a misleading clinical presentation and typical disease cases may explain the more
benign disease course of the former, and also the rapid clinical decline after surgery. The post-mortem assessment
included the subthalamic nucleus, the globus pallidus, the thalamus and the putamen in five patients with MSA who
received DBS and nine typical disease cases. There was no evidence for distinct neuroinflammatory profiles between
both groups that could be related to the surgical procedure or that could explain the rapid clinical progression during
DBS. Patients who received deep brain stimulation displayed a higher proportion of α-synuclein bearing neuronal
cytoplasmic inclusions in the putamen compared with typical cases, while the number of surviving neurons was not
different between groups. Our findings suggest that DBS does not induce neuroinflammatory changes in patients with
MSA, at least several years after the surgery. We further hypothesize that the peculiar pattern of α-synuclein pathology
may contribute to differences in the clinical phenotype, with a greater proportion of neuronal inclusions in the putamen
being associated to a milder, “PD-like” phenotype with sustained levodopa response and slower disease progression.
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1. Introduction

Multiple system atrophy (MSA) is a fatal orphan neurodegenerative
disorder that manifests in a variable combination with autonomic,
parkinsonian, cerebellar, and pyramidal features (Fanciulli and
Wenning, 2015; Gilman et al., 2008). The pathological hallmark is the
accumulation of misfolded alpha-synuclein (α-syn) in oligodendrocytes,
forming glial cytoplasmic inclusions (GCI), and to a lesser extent in
neurons, typically as neuronal cytoplasmic inclusions (NCI) (Inoue
et al., 1997; Kato and Nakamura, 1990; Lin et al., 2004; Nishie et al.,
2004; Papp et al., 1989; Papp and Lantos, 1992). The median disease
duration is 6–10 years (Gilman et al., 2008).

Current consensus diagnostic criteria include two classical pheno-
types, MSA with predominant parkinsonism (MSA-P) and MSA with
predominant cerebellar ataxia (MSA-C). Clinical heterogeneity has been
repeatedly described in the literature, ranging from an asymmetrical,
slowly progressive levodopa-responsive phenotype that may last up to
two decades (Jellinger, 2012; Masui et al., 2012; Petrovic et al., 2012),
to the very aggressive so-called ‘minimal change’ variant, which may
lead to death within 5 years after having reached most of the clinical
milestones by year 3 (Ling et al., 2015). Factors that have been asso-
ciated with poor survival in MSA are older age at onset, female gender,
MSA-P subtype, shorter period from onset to first clinical milestone,
stridor within the first three years after symptom onset and early au-
tonomic failure (Giannini et al., 2016; Low et al., 2015; O'Sullivan et al.,
2008; Wenning et al., 2013).

In MSA, the neurodegenerative process is most pronounced in the
substantia nigra (SN), putamen, globus pallidus (GP, particularly in
MSA-P), vermis, cerebellar hemispheres and inferior olivary nucleus
(particularly in MSA-C) (Fearnley and Lees, 1990; Wenning et al.,
1997), while significant involvement of the thalamus, subthalamic
nucleus (STN), cerebellar dentate nucleus and anterior horn cells is rare
(Ozawa et al., 2004).

The relevance of recognizing the more benign slowly progressive,
levodopa-responsive variant, lies in the fact that these patients can be
misdiagnosed as having Parkinson's disease (PD) with significant le-
vodopa-related motor complications and undergo deep brain stimula-
tion (DBS) surgery. In this regard, we recently reported the poor clinical
outcome of STN-DBS in a series of five post-mortem confirmed MSA
patients. These patients were initially considered as having PD with
motor fluctuations and underwent DBS surgery, followed soon after the
operation by a rapid deterioration and the appearance of clinical fea-
tures suggestive of MSA (Meissner et al., 2016).

The present study investigated whether neuropathological differ-
ences between these MSA-DBS cases and a cohort of typical MSA-P
patients might account for the more benign disease course of the MSA-
DBS cases, and also for their rapid clinical decline after DBS.

2. Methods

2.1. Human brain samples

Formalin-fixed and paraffin-embedded material of 5 MSA-DBS and 9
typical MSA-P cases was assessed. Written informed consent was ob-
tained prior to autopsy for the collection of the brain and the use of
clinical and post-mortem data from all subjects or their legal re-
presentatives. Human brain samples were obtained from the brain
banks in Marseille, Lyon, Strasbourg and Bordeaux (DC-2014-2164).

2.2. Immunohistochemistry

Brain regions included for comparative analysis were the putamen
and GP (studied within sections demonstrating the lentiform nucleus),
since these regions are severely affected in MSA; the thalamus, because
it is classically spared by the degenerative process; and the STN, being
the target of the DBS surgery. Dewaxed 4 μm thick coronal paraffin

sections were either stained with hematoxylin eosin and Cresyl violet
for the semiquantitative assessment of neuronal loss or processed for
immunohistochemistry as follows.

Immunostaining was performed with antibodies against α-syn
(mouse monoclonal antibody, clone LB509, 1:100; Invitrogen by life
technologies), glial fibrillary acidic protein (GFAP, polyclonal rabbit,
1:4000; Dako), CD68 (monoclonal mouse anti-Human, clone PG-M1,
ref. M 0876 DAKO) to label microglia and CD3 (polyclonal rabbit anti-
Human, ref. A 0452 DAKO), a marker of mature T lymphocytes.

After antigen retrieval and blocking with 5% normal goat serum
containing 0.05% Tween in phosphate-buffered saline (PBS) for 30min
at room temperature, sections were incubated overnight with the pri-
mary antibody. Immunoreactions were revealed with the appropriate
secondary antibody, a ready-to-use goat anti-rabbit or goat anti-mouse
EnVision-HRP enzyme conjugate (Dako) followed by the highly sensi-
tive diaminobenzidine plus (Dako) as substrate chromogen for GFAP or
a high sensitivity AEC (3-amino-9-ethylcarbazole) substrate-chromogen
system (Dako) for α-synuclein, CD3 and CD68. Finally, sections were
counterstained with Mayer's hemalum and mounted in a suitable
mounting medium.

The number of immunopositive cells was obtained using a compu-
terized image analysis system (Mercator V6.50, Explora Nova) linked to
a Leica microscope type DM-6000B. Quantitative evaluation was car-
ried out on one section per structure and boundaries on each structure
were first delineated at low magnification (×2.5). Quantification was
performed at ×20 magnification on the whole thalamus, STN and GP
except for the putamen where, from a random start position, the
computer-generated sampling grid placed the counting frames. Within
each frame, cells were counted only if the totality of the cell was inside
the frame taken into account. Results were expressed as an average of
immunopositive cells per mm2. To minimize the inherent variability in
the immunohistochemical procedures, all sections from all patients
were processed simultaneously for a given antibody and structure.
Putaminal degeneration was assessed by counting the number of sur-
viving neurons in the putamen.

2.3. Statistics

Comparisons between groups were done using a Student's t-test
whenever the variable had a normal distribution, while a Mann-
Whitney U test was used otherwise. The proportion of the total α-syn
inclusion load represented by NCI was compared between groups by
using a Fisher exact test (cut-off value of 10% of the total burden). For
the comparison between brain structures (NCI, GCI, total α-syn inclu-
sion load, CD3, CD68 and GFAP positive cells), a one-way ANOVA or, if
appropriate, a one-way ANOVA on ranks was performed including all
14 subjects. Post-hoc Tukey or Dunn tests were performed whenever
appropriate. A p-value<0.05 was considered significant. If not in-
dicated otherwise, results are presented as mean ± standard deviation.
Statistical analyses were performed with GraphPad Prism Software,
version 6.

3. Results

3.1. Patient characteristics

A detailed clinical description of the MSA-DBS cases is reported
elsewhere (Meissner et al., 2016). Mean age at disease onset was lower
in the MSA-DBS group (50.4 ± 6.3 years) compared to the MSA-P
control group (56.9 ± 9.5 years, p < 0.05), while mean age at death
was similar between groups with 61.6 ± 7.1 and 62.3 ± 8.5 years
respectively. Accordingly, mean disease duration was higher in the
MSA-DBS group (11.2 ± 3.0 years) compared to the MSA-P control
group (5.4 ± 2.5 years, p < 0.005, Table 1).

The response during the pre-surgical levodopa challenge was ex-
cellent in all five MSA-DBS patients, ranging from 49 to 88%
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improvement on the UPDRS part III subscale. Following DBS, all pa-
tients showed progressive clinical worsening. Patient one presented
with daily falls and urinary incontinence two years after surgery. For
patient two, clinical symptoms worsened one year after DBS with the
onset of severe end-of-dose dystonic and dyskinetic episodes and pos-
tural instability. The status of patient three worsened 18months after
surgery with the onset of gait instability and falls. Patient four pre-
sented a few weeks after the procedure ataxia with falls, dysarthria and
dysphagia. The parkinsonism of patient five progressed severely and
ataxia with falls appeared during the first year after DBS.

3.2. Neuronal loss in the putamen and α-syn pathology in the putamen, the
GP, the thalamus and the STN

Neuronal cell counts revealed no significant differences in the pu-
tamen between MSA-DBS (178.9 ± 94.6 neurons/mm2) and MSA-P
control patients (211.1 ± 118.2 neurons/mm2).

NCI and GCI were found in all brain regions. A comparison of NCI
and GCI load between groups for each region did not show significant
differences (Fig. 1), while an overall comparison between regions after
pooling the data of all 14 subjects revealed significant differences in the
number of NCI (H=14.3, df= 3, p < 0.05), GCI (H=21.5, df= 3,
p < 0.0001) and total α-syn burden (H=14.1, df= 3, p < 0.005). A
post-hoc analysis showed a higher number of NCI in the thalamus
compared to the GP and the STN, a lower number of GCI in the tha-
lamus compared to all other regions, and a higher total α-syn inclusion
burden in the putamen compared to the thalamus. NCI accounted
for> 10% of the total number of α-syn inclusions in the putamen in
four of the five MSA-DBS cases, while this was only the case in one of
the nine MSA-P controls (p < 0.005, Table 1 and Fig. 2).

Three out of five MSA-DBS cases showed a few Lewy bodies (LB). LB
pathology was restricted to the SN in patient 2, while patient 4 showed
some LB in the putamen, the caudate nucleus, the GP, the thalamus, the
STN, the midbrain, the pons and the medulla, as well as Lewy neurites
in the internal capsule, the subcortical and the cerebellar white matter.
Patient 5 had a few LB in the locus coeruleus, raphe nucleus and SN.
Conversely, only two out of nine MSA-P controls showed some LB pa-
thology. MSA-control 2 had rare LB in the midbrain, the pons and the
thalamus, and moderately in the caudate nucleus and the putamen.
MSA-P control 3 displayed some LB in the thalamus.

3.3. Neuroinflammation in the putamen, the GP, the thalamus and the STN

Numerical densities of microglia (CD68), CD3 positive T lympho-
cytes and GFAP positive astrocytes are presented in Table 2. There was

a trend for a higher number of CD68-positive microglia in the putamen
in MSA-P controls compared to MSA-DBS cases (Table 2). There was
also a trend for a higher number of CD3 positive T lymphocytes in the
GP in MSA-DBS patients, while the number of GFAP-positive astrocytes
was not different between MSA-DBS and MSA-P controls in any of the
investigated regions. Collectively, the quantification of these markers
revealed no evidence for a distinct inflammatory profile in the brains of
patients who underwent DBS surgery.

When pooling data of all 14 MSA cases, an overall comparison be-
tween regions showed a significant difference for CD3 positive T lym-
phocytes (F(3,50) = 23.4, p < 0.0001). Post-hoc testing further re-
vealed a higher number of CD3 positive cells in the putamen compared
to thalamus and STN. An overall comparison for CD68 between regions
yielded also a significant difference (F(3,50) = 3.8, p < 0.05), with the
presence of more CD68 positive cells in the putamen compared to the
thalamus. A comparison for GFAP expression between regions did not
reveal significant differences (F(3,50) = 0.9).

4. Discussion

This is the largest study comparing histological findings in post-
mortem confirmed MSA-DBS patients with slow disease progression and
sustained levodopa response (the so-called MSA-DBS group) and a
control group of typical MSA-P cases. No differences were found be-
tween groups when comparing neuronal cell loss in the putamen, or
markers of neuroinflammation. The brain structure with the highest
total α-syn inclusion burden was the putamen, while no differences
were found regarding NCI or GCI load between groups for the four
assessed regions. However, a detailed analysis showed that the pro-
portion of NCI in the putamen was higher in the MSA-DBS group.
Moreover, three out of five MSA-DBS cases presented a few LB, while
only two out of nine MSA controls showed some LB.

The degree of putaminal degeneration is associated with the level of
levodopa responsiveness in MSA (Fearnley and Lees, 1990; Hughes
et al., 1992). In this series, MSA-DBS cases and MSA-P controls showed
no difference in putaminal neural loss although MSA-DBS cases had
responded to levodopa for many years. This may be explained by the
fact that both groups had reached the end stage of the condition at
death, with a slower rate of putaminal degeneration in the MSA-DBS
group who had a mean disease duration twice as long compared to the
typical MSA cases.

Classically, MSA is considered to be a primary oligodendroglio-
pathy, with GCI being the neuropathological hallmark of the disease
(Jellinger, 2003; Papp and Lantos, 1994; Wenning et al., 2008). In PD,
the opposite is observed, where α-syn inclusions develop typically in

Table 1
Demographics.

Gender Age at disease onset Age at surgery Age at death Disease duration⁎ Tissue available for IHC Putamen NCI/total inclusions (%)⁎⁎

MSA-DBS 1 F 54 62 69 15 GP, P 14.6
MSA-DBS 2 F 41 50 54 13 GP, P, STN, T 96
MSA-DBS 3 M 47 52 54 7 GP, P, STN, T 100
MSA-DBS 4 M 54 58 65 11 GP, P, STN, T 0
MSA-DBS 5 M 56 64 66 10 GP, P, STN, T 16.0
MSA-control 1 M 51 – 59 8 P, STN, T 0.9
MSA-control 2 M 52 – 60 8 GP, P, STN, T 2.6
MSA-control 3 M 46 – 54 8 GP, P, STN, T 0
MSA-control 4 F 68 – 74 6 GP, P, STN, T 0
MSA-control 5 F 55 – 57 2 GP, P, STN, T 22.2
MSA-control 6 F 71 – 74 3 GP, P, STN, T 4.5
MSA-control 7 M 48 – 52 4 GP, P, STN, T 1.2
MSA-control 8 F 68 – 71 3 GP, P, STN, T 0.6
MSA-control 9 M 53 – 60 7 GP, P, STN, T 1.7

IHC: Immunohistochemistry, NCI: Neuronal cytoplasmic inclusion, P: Putamen, T: Thalamus, STN: Subthalamic nucleus, GP: Globus pallidus.
⁎ P=0.002.
⁎⁎ P=0.004.
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neurons (e.g. LB, neuronal perikaryal structures, Lewy neurites, axonal
spheroids and dot-like structures), while α-syn inclusions in glial cells
are rare (Dickson et al., 2009; Houlden and Singleton, 2012; Jellinger,
2003).

Neuronal α-syn pathology, considered ancillary, has been histori-
cally overlooked. However, growing evidence suggests that neuronal α-
syn pathology is not simply an epiphenomenon in MSA but may play a
role in the disease process (Cykowski et al., 2015; Halliday, 2015;
Homma et al., 2016; Jellinger, 2007; Rohan et al., 2015). Accordingly,
Lewy body-like inclusions in the substantia nigra pars compacta were
observed in 10 out of 44 MSA patients and neuronal α-syn pathology
was abundantly found throughout the brain in a series of 35 MSA pa-
tients (Cykowski et al., 2015; Jellinger, 2007). In the latter study, 29/35
MSA patients showed neuronal α-syn pathology in the putamen, while
the extent of overall neuronal α-syn pathology as determined by a
semiquantitative assessment was not correlated with age at onset or
disease duration (Cykowski et al., 2015). Additionally, two cases with
an exceptionally long disease duration and a relatively slow disease
progression showed abundant α-syn NCI and neurites in the striatum
and limbic cortices (Yoshida, 2007). Based on these findings, it was
suggested that inclusions of surviving neurons in the striatum or limbic
areas may play a role in cell repair and/or protection (Yoshida, 2007).

In our series, MSA-DBS cases had a significantly larger proportion of
NCI in the putamen compared to MSA-P controls. It could be argued
that this difference is simply due to the fact that MSA-DBS patients lived
longer, thus allowing more propagation of α-syn pathology, be it from

glia to neurons or from neurons to neurons. However, if that were the
case, one would expect an increase in the overall α-syn load as well
(including GCI), as described in some studies but not found by us and
others (Cykowski et al., 2015; Ishizawa et al., 2004). On the other hand,
perhaps, neurons may be more prone to the accumulation of aggregated

Fig. 1. Alpha-synuclein bearing inclusions in the four assessed regions. (A) thalamus, (B) subthalamic nucleus, (C) globus pallidus, and (D) putamen. GCI: glial
cytoplasmic inclusions, NCI: neural cytoplasmic inclusions. Horizontal lines in panels A-D indicate the median.

Fig. 2. Alpha-synuclein bearing inclusions (stained
in red) in the putamen of a MSA-P control (A) and a
MSA-DBS case (B). Arrow heads and arrows indicate
neuronal and glial cytoplasmic inclusions, respec-
tively. In contrast to panel A, panel B shows several
neuronal ctyoplasmic inclusions. Scale bar: 20 μm.
(For interpretation of the references to colour in this
figure legend, the reader is referred to the web ver-
sion of this article.)

Table 2
Immunohistochemistry findings.

MSA-DBS MSA-Controls P value

CD68 (/mm2) Thalamus 18.2 (0.03–54.9) 2.2 (0.5–3.6) 0.63
STN 26.3 (1.6–78.3) 6.6 (0.0–22.7) 0.50
GP 4.8 (0–10.7) 19.9 (0.6–59.8) 0.20
Putamen 14.3 (3.3–24.5) 43.2 (1.8–103.3) 0.06

CD3 (/mm2) Thalamus 4.9 (0.9–9.9) 4 (0.1–13.5) 0.60
STN 4.2 (0.3–10) 12.4 (0.0–40.7) 0.48
GP 45.1 (9.6–81.8) 15.9 (0.4–59.1) 0.09
Putamen 112.6 (3.1–263.6) 119

(10.2–263.5)
0.91

GFAP astrocytes
(/mm2)

Thalamus 129.7
(95.2–159.8)

117.6
(55–187.7)

0.61

STN 167.1
(52.8–258.3)

140.3
(72.5–200)

0.47

GP 155.5
(122.2–188.9)

124.6
(72.5–231.8)

0.25

Putamen 148.2
(19.1–292.8)

182.3
(22.1–513.5)

0.65

Values expressed as mean and range.
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α-syn as a consequence of an unknown process in this more benign
phenotype of MSA. Because of the oligodendroglial aggregation of α-
syn and distinct clinical features (early dysautonomia and levodopa
unresponsive parkinsonism), MSA is often presented as standing apart
within the family of synucleinopathies. Our finding of a higher pro-
portion of neuronal α-syn pathology in slowly progressive levodopa-
responsive MSA-P may suggest a possible continuum between PD and
MSA.

Recent post-mortem studies in patients with G51D and A53E SNCA
gene point mutations have described neuropathological profiles that
share features of both PD and MSA. These mutation carriers show
widespread neural and glial inclusions resembling NCI, LB and GCI,
pointing to a possible link between PD and MSA. Disease duration,
ranging from 6 to 30 years, and neural involvement were not related,
i.e. a greater neural α-syn load was not explained by a longer life-span
(Kiely et al., 2013; Kiely et al., 2015; Pasanen et al., 2014).

One may also hypothesize that the differences in the clinical phe-
notype could be related to different strains of α-syn with varying
seeding and spreading properties, as suggested for tauopathies
(Kaufman et al., 2016; Sanders et al., 2014). Moreover, the recent study
by Peng et al. (2018) describes how cellular milieu imparts distinct
pathological α-syn strains in the different synucleinopathies. Perhaps in
this rare subset of patients, different strains of α-syn co-exist, where
some strains may first involve structures and cells (e.g. neurons) af-
fected more commonly in PD - explaining a syndrome resembling PD
with sustained response to levodopa - and in a later phase trigger a
more aggressive phenotype, with spreading to other regions and in-
volvement of oligodendrocytes. This may further explain the distinct
combination of α-syn inclusions (NCI, LB and GCI) and clinical evolu-
tion found in our cohort. This remains highly speculative since current
knowledge of α-syn spreading in human brains is limited, and further
research on the behavior of protein aggregates in vivo is needed (Walsh
and Selkoe, 2016).

Our quantitative analysis showed a higher number of T lymphocytes
(CD3) in the putamen, a region with severe neurodegeneration in MSA,
compared to other regions, and a larger amount of activated microglia
(CD68) in the GP compared to thalamus (classically less affected in
MSA). To our knowledge, lymphocytic infiltration in brains of MSA
patients through CD3 staining has not been previously reported and
adds to our understanding of the neuroinflammatory process that oc-
curs in the brains of MSA patients.

Even though patients of the MSA-DBS group showed a rapid clinical
decline within two years after the intervention, there were no signs of
the surgical procedure or DBS inducing morphological, inflammatory,
or gliotic changes in the STN. Furthermore, we did not identify any
changes in the brain regions analyzed that could appear to be related to
the intervention. However, since the autopsy was only performed two
to seven years after the DBS surgery, the ongoing neurodegenerative
process may have concealed acute and direct influences on disease
progression. On the other hand, DBS-related mechanisms may explain
the clinical worsening in the MSA-DBS group. In PD, STN-DBS is ef-
fective in treating dopamine dependent symptoms such as tremor,
bradykinesia, and rigidity through the disruption of the abnormal ac-
tivity in the STN and connected structures of the motor loop (Krack
et al., 2003; Meissner et al., 2007; Meissner et al., 2005). In MSA and
other forms of atypical parkinsonism, the response to STN-DBS is lim-
ited because of the degeneration of basal ganglia nuclei and connected
structures. Nevertheless, electrical disruption of complex neural com-
pensatory circuits different from PD may explain the pronounced post-
surgical decline in the MSA-DBS group. However, this interpretation is
unlikely since the worsening was mostly due to the progression of do-
pamine independent symptoms (e.g. ataxia, postural instability and
autonomic failure) that are related to dysfunction of unconnected
structures outside the basal ganglia.

The main weakness of this study is the small number of patients
included, which is a limitation to the drawing of conclusions due to low

statistical power, bearing in mind that these are very rare patients,
making it virtually impossible to muster a larger cohort. Additionally,
since the primary objective was to describe histological findings that
would help elucidate the causes of the clinical worsening subsequent to
the surgical intervention, the assessment was limited to four brain re-
gions. Further studies addressing these rare subtypes of MSA are war-
ranted to comprehensively assess the disease process and the possible
neuropathological continuum between PD and the slowly progressive
levodopa-responsive MSA phenotype.

In conclusion, in this study comparing post-mortem brains of MSA-P
and slowly progressive MSA patients who underwent DBS, no patho-
logical differences were found that could be related to the surgical
procedure or that could explain the rapid decline of these patients after
DBS. Differences were observed regarding α-syn pathology, with a
greater proportion of NCI in the putamen of MSA-DBS patients. We
hypothesize that this observation may be related to the differences in
the clinical presentation, with a greater proportion of NCI being asso-
ciated to a milder, “PD-like” phenotype with sustained levodopa re-
sponse for many years and slower disease progression.
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Contexte : L'atrophie multisystématisée (AMS) est une maladie neurodégénérative rare sans 

traitement efficace. Elle est caractérisée par l'accumulation de la protéine a-synucléine dans les 

inclusions oligodendrogliales. À ce titre, l'AMS forme le groupe des synucléinopathies avec la 

maladie de Parkinson (MP) et la démence à corps de Lewy (DCL). L'activation de la tyrosine 

kinase c-Abl conduit à la phosphorylation de l'a-synucléine en tyrosine 39, favorisant ainsi son 

agrégation et la neurodégénérescence ultérieure. Le nilotinib, un inhibiteur de l’enzyme c-Abl 

utilisé pour le traitement de la leucémie myéloïde chronique, a montré des effets bénéfiques 

dans des modèles précliniques de la maladie de Parkinson, ce qui a motivé son évaluation dans 

un essai clinique ouvert de petite taille chez des patients atteints de MP et DCL.  

Objectifs : Évaluer l'efficacité du nilotinib dans le modèle préclinique de l’AMS.  

Méthodes : Des souris exprimant l'a-synucléine de type sauvage humaine dans les 

oligodendrocytes ont reçu une injection quotidienne de nilotinib (1 ou 12 mg/kg) pendant 12 

semaines. L'analyse post-mortem comprenait l'évaluation de l'activation de c-Abl, de la charge 

en a-synucléine et de la neurodégénérescence dopaminergique. 

Résultats : L’a-synucléine phosphorylée à la tyrosine 39 a été détectée dans des inclusions 

cytoplasmiques gliales chez des patients atteints d'AMS. Une activation accrue de la 

phosphorylation c-Abl et de l’a-synucléine à la tyrosine 39 a été observée chez des souris 

transgéniques. Malgré l'inhibition de c-Abl et la réduction concomitante de la phosphorylation 

de l’a-synucléine, le nilotinib n'a pas permis de réduire la charge globale de l’a-synucléine 

dans le striatum ou à diminuer la neurodégénérescence dans la substance noire. 

Conclusions : Cette étude préclinique suggère que l'inhibition de la c-Abl et la réduction de la 

phosphorylation de la tyrosine 39 de l’a-synucléine à ne semblent pas être une cible pertinente 

pour l’AMS.
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Abstract 

Background: Multiple system atrophy (MSA) is a rare untreatable neurodegenerative disorder, 

characterized by accumulation of the protein alpha-synuclein in oligodendroglial inclusions. As 

such, MSA is a synucleinopathy along with Parkinson’s disease (PD) and Dementia with Lewy 

bodies (DLB). Activation of the tyrosine kinase c-Abl leads to phosphorylation of alpha-

synuclein at tyrosine 39, thereby promoting its aggregation and subsequent neurodegeneration. 

The c-Abl inhibitor nilotinib used for the treatment of chronic myeloid leukemia was found in 

preclinical models of PD to interfere with pathogenic mechanisms that are relevant to PD and 

DLB, which motivated its assessment in an open label unblinded clinical trial in PD and DLB 

patients.  

Objectives: To assess the preclinical efficacy of nilotinib in the specific context of MSA 

Methods: Mice expressing human wild-type alpha-synuclein in oligodendrocytes received 

daily injection of nilotinib (1 or 12 mg/kg) during 12 weeks. Post-mortem analysis included the 

assessment of c-Abl activation, intracellular alpha-synuclein burden and dopaminergic 

neurodegeneration. 

Results: Alpha-synuclein phosphorylated at tyrosine 39 was detected in glial cytoplasmic 

inclusions in MSA patients. Increased activation of c-Abl and alpha-synuclein phosphorylation 

at tyrosine 39 were found in transgenic mice. Despite adequate inhibition of c-Abl and 

associated reduction of alpha-synuclein phosphorylation at Y39, nilotinib failed to reduce 

alpha-synuclein aggregates burden in the striatum or lessen neurodegeneration in the substantia 

nigra. 

Conclusions: This preclinical study suggests that inhibition of c-Abl and reduction of alpha-

synuclein phosphorylation at tyrosine 39 may not be a relevant target for MSA. 
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INTRODUCTION 

Multiple system atrophy (MSA) is an adult-onset rare neurodegenerative disorder characterized 

by a combination of parkinsonism, cerebellar impairment, and autonomic dysfunction (Gilman 

et al., 2008). The cytopathological hallmark of MSA is the accumulation of α-synuclein 

aggregates in oligodendrocytes, forming glial cytoplasmic inclusions (GCIs). As such, MSA is 

a synucleinopathy, a group of disorders characterized by a-synuclein accumulation, which also 

includes Parkinson’s disease (PD) and dementia with Lewy bodies. Currently, only 

symptomatic treatments are available to these patients who face a median life expectancy of 6 

to 10 years after symptom onset (Fanciulli and Wenning, 2015) 

Oxidative stress is a prominent feature in neurodegenerative disorders, including MSA 

(Stefanova et al., 2009). The non-receptor Abelson tyrosine kinase (c-Abl) is activated by 

oxidative and cellular stress (Hantschel and Superti-Furga, 2004). Its levels are increased in the 

substantia nigra and striatum of PD patients (Imam et al., 2011; Ko et al., 2010), and 

phosphorylated c-Abl is present in neuronal cell bodies in Alzheimer’s disease and several other 

neurodegenerative disorders (Derkinderen et al., 2005; Jing et al., 2009; Schlatterer et al., 2011; 

Tremblay et al., 2010). It has been shown that c-Abl phosphorylates a-synuclein at tyrosine 39 

(pY39) and serine 125, inhibiting its clearance via the autophagic and the proteasomal pathways 

(Brahmachari et al., 2016; Mahul-Mellier et al., 2014). 

Nilotinib is a c-Abl tyrosine kinase inhibitor used to treat Philadelphia chromosome-

positive chronic myeloid leukemia (Hantschel, 2012). Neuroprotective effects of c-Abl 

inhibition by nilotinib and other c-Abl inhibitors have been observed in toxin-based and 

transgenic models of PD (Brahmachari et al., 2016; Hebron et al., 2013; Imam et al., 2013; 

Imam et al., 2011; Karuppagounder et al., 2014).  

While this growing body of preclinical studies suggests potentially disease-modifying 

effects of c-Abl in PD, it is unknown if nilotinib may have similar beneficial effects in other 



 

pg. 61 
 

synucleinopathies such as MSA. In the current study, we determined whether administration of 

nilotinib for 12 weeks could attenuate the aggregation of α-synuclein and preserve nigral 

tyrosine hydroxylase (TH)-positive dopamine neurons in a transgenic mouse model of MSA. 

 

MATERIAL AND METHODS 

Human brain samples 

Formalin-fixed and paraffin-embedded material of 4 MSA cases with predominant 

parkinsonism (MSA-P) was used to assess the presence of pY39 a-synuclein. Written informed 

consent was obtained prior to autopsy for the collection of the brain and the use of clinical and 

post-mortem data from all subjects or their legal representatives. Human brain samples were 

obtained from the brain bank in Bordeaux (DC-2014-2164). 

 

Histopathological analysis and immunofluorescent labelling 

To assess the presence of glial inclusions positive for pY39 α-synuclein, sequential 

immunofluorescence labelling was performed on 4-µm thick paraffin-embedded putamen 

sections from MSA-P patients using the established MJFR1 (Abcam) α-synuclein antibody as 

a reference to label GCIs. Following antigen retrieval using TintoRetriever Pressure Cooker at 

114°C-120°C during 10 minutes in citrate buffer pH6 (Dako) and then 5 minutes in 80% formic 

acid, sections were washed in TBS-Tween 0.05%, blocked with goat serum and incubated with 

anti pY39 α-synuclein (mouse monoclonal antibody, clone A15119B, 1/100, BioLegend) 

overnight at 4°C. After transfer in 3% H2O2/H2O to block endogenous peroxidases, sections 

were treated with biotinylated anti-mouse IgG (diluted 1:200) and incubated with Tyramide 

Signal Amplification (TSA) reagent (Perkin Elmer). Streptavidine-Alexa fluor 488 (1/1000, 

Invitrogen) was used for revelation. Thereafter, sections were probed for MJFR1 α-synuclein 

(1:1000, Abcam) and revealed with goat anti-rabbit Alexa 568 (1:400, Invitrogen). 
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Immunohistochemical negative controls were performed by omission of one of the two primary 

antibodies. Slides were then incubated with 0.1% Sudan Black B (Sigma-Aldrich) in 70% 

ethanol to lower the intensity of lipofuscin autofluorescence. Nuclei were counterstained with 

DAPI (Sigma-Aldrich). To minimize the inherent variability in the immunofluorescence 

procedure, sections from all cases were processed simultaneously for a given marker. 

 

Quantitative analysis of human brain samples 

Analysis of the proportion of pY39 α-synuclein immunopositive cells over the total MJFR1 

immunopositive cells, was performed using a computerized image analysis system 

(Morphostrider, Explora Nova) linked to a Zeiss fluorescence microscope Imager M2. For co-

localization analysis, nine images were taken randomly from the putamen at x40 magnification, 

and image analysis was undertaken using ImageJ v1.50b. Oligodendrocytes containing GCIs 

were first identified based on MJFR1 α-synuclein and DAPI staining. Cell counts were 

performed on MJFR1 - pY39 α-synuclein overlay to discriminate between pY39-α-synuclein-

positive and negative oligodendrocytes. Both total numbers and the proportion of pY39-α-

synuclein-positive relative to MJFR-positive inclusions were calculated. 

 

Animals and treatment 

All experiments involving mice were performed in accordance with French guidelines (87-848, 

Ministère de l’Agriculture et de la Forêt) and the European Community Council Directive 

(2010/63/EU) for the care of laboratory animals. Animal experiments were approved by the 

Institutional Animal Care and Use Committee of Bordeaux (CE50, approval 

#2016120215297254). Mice were maintained in a temperature and humidity - controlled room 

on a 12:12 light-dark cycle with food and water ad libitum. 
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Mice expressing human a-synuclein in oligodendrocytes under the control of the proteolipid 

promoter (PLP-SYN) were previously generated on a C57BL/6J background (Kahle et al., 

2002). To compare the c-Abl phosphorylation state between adult PLP-SYN in mice and wild 

type (WT) mice, 6 PLP-SYN and 9 WT mice were used at 6 months of age. Treatment with 

nilotinib 10mg/kg has been reported to protect TH-positive neurons in the substantia nigra 

compacta (SNc) from α-synuclein toxicity  (Hebron et al., 2013). To confirm brain penetration 

of the compound by this regimen, a group of PLP-SYN mice aged 6 months (n=12) was first 

allocated to receive either nilotinib (10mg/kg) (Sigma Aldrich, CDS023093) or vehicle 

(dimethyl sulfoxide, DMSO) during five days and then terminated. Nilotinib was diluted in a 

solution consisting of 90% DMSO and 10% distilled water at the desired concentrations. 

In a second step, PLP-SYN mice aged 6 weeks (n=23) were allocated to receive either 

nilotinib high dose (10mg/kg) (n=8), nilotinib low dose (1mg/kg) (n=8), or DMSO (n=7); while 

WT littermates (n=9) were treated with DMSO (volume of 50µl per mouse, doses were adjusted 

according to the average weight of each group each week). Mice received daily i.p. injections 

of nilotinib for 12 weeks until termination. 

 

Tissue extraction 

For the first part of the study, mice were sedated with pentobarbital (100mg/kg i.p) and 

sacrificed by cervical dislocation 4h after the last nilotinib injection. Brains were quickly 

removed and cut in half between the two hemispheres to later be used for biochemical analysis 

and Mass Spectrometry. The rest of the animals were anaesthetized with pentobarbital 

(100mg/kg i.p.). They were then intracardially perfused with 25ml of 0.9% saline. After quick 

removal of the brain, the right hemisphere was frozen directly for biochemical analysis, while 

the left hemisphere was post-fixed for 5 days in 5ml of 4% (wt/vol) paraformaldehyde (PFA), 



 

pg. 64 
 

followed by cryoprotection in 10ml of 20% (wt/vol) sucrose in 0.1 M PBS, frozen in isopentane 

and stored at -80 °C. 

 

Mass Spectrometry analysis of brain nilotinib levels 

Fresh frozen hemispheres were used to quantify nilotinib through HPLC-MS/MS analysis 

(APTUIT, Verona, Italy), by a process previously described (Del Bello et al., 2018). Briefly, 

after defrosting, brains were weighed, diluted 1:5 with HEPES 0.1 N and homogenized with 

Precellys 24 homogenizer (Bertin Instruments), three homogenizations at 6100 rpm for 30” 

with a 15” pause. Calibration curves were prepared the same day of the study using blank matrix 

from naïve rats. The working solution, obtained by serial dilution in 50% (v/v) acetonitrile in 

water from a stock solution in DMSO, and spiking in matrix was performed by Hamilton 

Microlab STARlet. The calibration curves were stored at -20 °C until to the day of analysis. 

Samples were prepared by protein precipitation (2 volumes of acetonitrile with 20 ng/mL of 

rolipram used as internal standard (IS)) and vortex-mixed for 5 minutes. After centrifugation 

(3000 g, 10 min, 4°C), supernatants were transferred and diluted (1:6) with water using 

Hamilton Microlab STARlet. Chromatography was performed with HPLC (Agilent 1100 Series 

HPLC) on a phenomenex Synergi RPmax (50x2.1 mm) using a fast chromatography gradient 

(2 min; phase A 0.1% of formic acid in water, phase B 0.1% of formic acid in acetonitrile; 

gradient from 95% to 5% of A). The mass spectrometer was an AB Sciex triple quadrupole, 

API4000. Analytes were monitored in MRM using as quantifier channels 530.1/259.1 and 

276.1/208.2 for nilotinib and IS, respectively.  

 

Immunoblotting 

For biochemical analysis, mouse striatal tissue was homogenized in lysis buffer (10mM Tris-

HCl, 500mM NaCl, 0.5mM 1,4-dithiothreitol, 0.5mM ethylenediaminetetraacetic acid 
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[EDTA], 1% N-lauroylsarcosine [sarkosyl]) plus protease and phosphatase inhibitor cocktail 

(Halt, ThermoFisher), then centrifuged at 14 000 rpm for 15 minutes at 4˚C. Supernatants were 

collected and stored at -80˚C. Protein concentration was determined by BCA assay 

(ThermoFisher). Samples containing 10-30µg of protein were prepared in loading buffer (Tris-

HCl 25mM pH=6.8, glycerol 7.5%, SDS 1%, DTT 250mM and bromophenol blue 0.05%) and 

loaded onto 8% SDS-PAGE gels, then transferred to nitrocellulose membranes (Millipore). 

Membranes were incubated in blocking buffer for 30 minutes (4% bovine serum albumin, BSA 

in TBS), rabbit anti phospho-c-Abl T245 (1:1000, Cell Signaling #2861) or rabbit anti c-Abl 

(1:1000, ThermoFisher, PA1-46467). After rinsing with TBS 0.1% Tween (TBS-T) and TBS, 

membranes were incubated in the corresponding Horseradish Peroxidase (HRP)-conjugated 

secondary antibody (1:2000, Jackson laboratories). Membranes were revealed through 

chemiluminescence (Clarity Max, BioRad), images were acquired with the ChemiDoc+XRS 

gel imaging system (Bio-Rad), and optical density was analyzed with Image Lab (Biorad). 

Actin was used as loading control (1:10000, Sigma-Aldrich). 

For assessment of pY39 a-synuclein, proteins were loaded into 4-20% precast gels, transferred 

onto nitrocellulose membranes, which were then incubated in 4% v/v PFA in PBS for 30 

minutes and later blocked with 2% BSA-TBS-T for one hour. After incubation with a rabbit 

anti pY39 α-synuclein polyclonal antibody (gift from Dr. T Dawson, 1/1000), membranes were 

revealed with an anti-rabbit secondary antibody. Next, membranes were reincubated with the 

mouse monoclonal anti-human α-synuclein antibody (ThermoFisher clone 4B12, MA1-90346), 

and later revealed with an anti-mouse seconcary antibody as described above. 

 

Histopathological analysis in mice 

After washing with PBS 0.1M (PBS), 40μm sections of the SNc were incubated in a citrate 

solution (pH=6, Dako Target Retrieval Solution, diluted in distilled water) and heated at 80°C 
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for 30 minutes for antigen retrieval. Sections were then washed with PBS and incubated in a 

0.3% hydrogen peroxide solution (PBS dilution) for 10 min to quench endogenous peroxidases. 

After rinsing, sections were incubated in PBS with 2% BSA, 0.3% Triton X-100 solution for 

one hour at room temperature (RT). Then, they were incubated with the primary anti-TH mAB 

318 antibody (Millipore, 1:4000, PBS dilution, 1% BSA, 0.3% Triton X-100) overnight at RT. 

After rinsing, sections were incubated in goat anti-mouse EnVision-HRP enzyme conjugate 

(Dako) anti-mouse polymer for 30 minutes, rinsed again and then revealed with the Dako DAB 

kit following the supplier's instructions. Finally, sections were mounted and dried on gelatinized 

slides, immersed overnight in a solution composed of 50% absolute ethanol and 50% 

chloroform, and stained with a cresyl-violet solution. A series of SNc (1/4, allowing the 

counting of 5 sections) was used per animal for the stereological counting of TH-positive and 

Nissl-positive neurons. Systematic random sampling was performed with the Mercator Pro 

V6.5 (Explora Nova) software coupled with a Leica DM-6000B microscope. After delineation 

of the SNc with x5 objective, counting was done with x40 objective (Fernagut et al., 2014a). 

Striatal sections of PLP-SYN mice were treated to eliminate proteinase-K sensitive forms of a-

synuclein. The number of α-synuclein positive cells was counted by fluorescence microscopy. 

For the detection of oligodendroglial α-synuclein aggregates, striatum sections were first 

washed three times in PBS, and incubated for 10 minutes at RT in a 10mg/mL solution of 

proteinase-K (Sigma, diluted in PBS). Sections were then rinsed twice in distilled water and 

twice in PBS for 10 minutes each, at RT to wash proteinase K. Later they were immersed in the 

blocking solution (30 min at RT) followed by the primary rabbit anti-human a-synuclein 

MJFR1 antibody (1:10 000, overnight at RT). After rinsing, sections were incubated in 

secondary goat anti-rabbit 568 antibody (1:400, Alexa Fluor) for two hours at RT, rinsed in 

PBS and mounted on slides with a Vectashield + DAPI mounting medium. For 

immunofluorescent labelling of α-synuclein, one striatum slice per animal was used. Six 
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captures per mouse striatum in specific areas were taken with a x20 objective and the number 

of α-synuclein positive cells was counted using ImageJ. 

 

Statistics 

Statistical analysis was performed using GraphPad Prism (version 8; GraphPad Software Inc., 

La Jolla, CA). Mean ± standard error of the mean (SEM) was used to present the results. For 

comparisons between two groups, a t-test was used if data were normally distributed. If not, a 

Mann Whitney test was used instead. For the comparison of several groups, a one-way ANOVA 

was applied followed, if appropriate, by a Bonferroni post hoc test in case of a normal 

distribution and a Kruskal-Wallis test followed, where appropriate, by a Dunn multiple 

comparison in case of a non-Gaussian distribution. For a two-factor comparison, a two-way 

ANOVA was used followed, if appropriate, by Tukey’s post hoc test. A p value <0.05 was 

considered statistically significant. 

 

 

RESULTS 

pY39 α-synuclein is present in GCIs in MSA 

Double immunofluorescence for α-synuclein and pY39 α-synuclein revealed that most α-

synuclein-positive GCIs also contained pY39 α-synuclein (Fig.1 A-C). On average, 91.7 ± 

2.9% of α-synuclein-positive GCIs also stained positive for pY39 α-synuclein (Fig. 1D). 

 

c-Abl activation and pY39 α-synuclein levels are increased in PLP-SYN in mice 

We first assessed the phosphorylation state of c-Abl in PLP-SYN mice, and found that the 

phosphorylated c-Abl at tyrosine 245 (pY245) to total c-Abl ratio was significantly increased 

in adult PLP-SYN compared to age matched WT mice (p<0.05) (Fig.1 E-F). Levels of pY39 
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a-synuclein were similarly significantly elevated in PLP-SYN mice compared to non-

transgenic animals (p=0.001) (Fig.1 G-H). 

 

Figure 1: α-synuclein phosphorylated at tyrosine 39 (pY39) in MSA and PLP-SYN mice, and 

c-Abl activation in the PLP-SYN mouse model.  

Immunofluorescence for α-synuclein (A) and pY39 α-synuclein (B) in the putamen of MSA patients. Over 90% 

of α-synuclein-positive GCIs are also positive for pY39 α-synuclein (C, D). Western blot analysis of total and 

phosphorylated c-Abl (pY245 c-Abl) demonstrates increased activation of c-Abl in PLP-SYN in mice, as shown 

by an increased ratio of phosphorylated over total c-Abl compared with WT mice (E, F). Western blot analysis of 

pY39 α-synuclein PLP-SYN mice demonstrated elevated ratio of pY39 α-synuclein over total human alpha-

synuclein compared to WT mice (G, H). *, p<0.05; #, p=0.001. Scale bar = 10 μm  
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Nilotinib reduces activation of c-Abl in PLP-SYN in mice 

To confirm brain penetration of nilotinib, a dedicated group of mice received daily i.p. 

injections of 10mg/kg nilotinib during five days. Nilotinib was detected in brain homogenates 

by Mass Spectrometry, indicating that the dose used in this study results in significant increase 

levels of nilotinib in the brain (Fig. 2A). To confirm target engagement with the dose of 

10mg/kg, we observed a significant reduction of the pY245 to total c-Abl ratio by Western blot 

in nilotinib-treated animals compared to those that received vehicle (Fig.2 B, p<0.0001). 

 

Figure 2: Brain bioavailability of nilotinib and target engagement following nilotinib 

administration.  

Mass spectrometry (HPLC MS/MS) analysis of PLP-SYN in brains demonstrates that systemic administration of 

10mg/kg leads to significant brain levels of nilotinib (A). Western blot analysis of total and phosphorylated c-Abl 

demonstrates that chronic administration of nilotinib (10mg/kg) reverses the hyperactivation of c-Abl in PLP-SYN 

in mice, as shown by a decreased ratio of phosphorylated over total c-Abl compared with vehicle treated animals 

(B). **, p<0.01; ***, p<0.001. 
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Nilotinib does not modify the number of α-synuclein aggregates in the striatum of PLP-SYN 

mice despite reducing levels of pY39 α-synuclein  

Counts of alpha-synuclein positive inclusions in the striatum of placebo-treated mice (Fig.3 A), 

PLP-SYN mice given a daily dose of 1mg/kg (Fig.3 B) or 10mg/kg (Fig.3 C) revealed no effect 

of nilotinib on α-synuclein inclusions burden in the striatum (F (2,22) = 2.3 and p>0,1, Fig.3 

D). Biochemical analysis of striatal levels of pY39 α-synuclein over total human α-synuclein 

revealed a significant decrease following nilotinib treatment (F (2,19) = 21,29, p<0.0001, Fig.3 

E-F). Given these results, we then assessed whether nilotinib would nevertheless lead to a 

preservation of nigral dopaminergic neurons. 

 

Nilotinib has no effect on degeneration of dopaminergic neurons in the SNc 

PLP-SYN mice classically show about 30-40% loss of TH-positive neurons in the SNc, 

(Fernagut et al., 2014b; Refolo et al., 2018; Stefanova et al., 2005). We evaluated the therapeutic 

efficacy of nilotinib on TH-positive neuron survival within the SNc (Fig. 4). A one-way 

ANOVA revealed differences between groups in dopaminergic cell counts in the SNc [F (3,30) 

= 7, p<0.005]. A post-hoc analysis found the expected 25% loss of TH-positive neurons in 

placebo PLP-SYN compared to placebo WT mice (p<0.05). It also revealed a lack of protection 

of dopaminergic neurons for the low and high dose of nilotinib, as cell counts were also 

significantly reduced in these groups compared to WT mice (p<0.05 and p<0.001 respectively, 

Fig.4) and did not differ from PLP-SYN placebo mice. An overall analysis of Nissl-positive 

neurons showed a significant difference between groups [F (3,30) = 5, p<0.005], and the post-

hoc analysis confirmed that the low and high dose of nilotinib did not preserve PLP-SYN in 

mice from SNc neural loss (p<0.05) (Fig.4). 
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Figure 3: Effects of chronic administration of nilotinib on pY39 α-synuclein and α-synuclein 

inclusion burden.  

Representative images of α-synuclein immunofluorescence in the striatum of PLP-SYN mice treated with vehicle 

(A), 1mg/kg (B) and 10mg/kg nilotinib (C). Cell counts of α-synuclein immunopositive oligodendrocytes revealed 

no effect of nilotinib on striatal α-synuclein burden (D). Western blot analysis revealed a significant effect of both 

doses of nilotinib on pY39 α-synuclein levels over total human alpha-synuclein (E, F). ***, p<0.001; ****, 

p<0.0001. Scale bar = 20 μm 
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Figure 4: Effects of chronic administration of nilotinib on dopaminergic neurodegeneration. 

Representative images of tyrosine hydroxylase (TH) immunoreactivity in WT mice (A), PLP-SYN in mice treated 

with vehicle (B), 1mg/kg (C) and 10mg/kg nilotinib (D). Stereological counts of TH-positive neurons demonstrate 

that the loss of neurons in PLP-SYN in mice is not mitigated following chronic administration of nilotinib (E). 

Stereological counts showing a loss Nissl-stained and TH+Nissl stained neurons in PLP-SYN mice (F, G) indicate 

that the observed loss of TH-positive neurons is not attributable to a loss of the TH-phenotype. *, p<0.05; ***, 

p<0.001; ****p<0.0001. 
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DISCUSSION 

Nilotinib has emerged as a putative therapeutic option for synucleinopathies based on 

preclinical data showing its neuroprotective potential owing to inhibition of α-synuclein 

phosphorylation at tyrosine 39 and on an open label trial in 12 patients with PD or DLB (Pagan 

et al., 2016). Whether these encouraging findings may translate to all synucleinopathies is 

currently unknown. 

This is the first report of the effects of nilotinib in a preclinical model of MSA. Here, we show 

that, in contrast to previous reports in PD models and despite adequate target engagement, 

nilotinib failed to reduce α-synuclein burden in the striatum and to rescue dopamine neurons in 

the SNc from cell death. 

The absence of neuroprotection encountered cannot be explained by a lack of brain 

bioavailability or activity of nilotinib. Nilotinib was present in brains 4hs after i.p. injection as 

revealed by Mass Spectrometry, and Western blotting demonstrated that the treatment regimen 

used in our study significantly reduced the c-Abl phosphorylation ratio in the striatum, thereby 

confirming target engagement. 

pY39 α-synuclein has been reported to be present in normal and PD human brains. We here 

confirm that pY39 α-synuclein is also present in GCI, indicating that this post-translational 

modification of α-synuclein occurs in MSA. Increased levels of pY39 α-synuclein were also 

detected in the striatum of the PL-SYN mouse model of MSA, indicating that oligodendroglial 

overexpression of human wild-type α-synuclein leads to an increased occurrence of this 

phosphorylation. We also demonstrate that inhibition of c-Abl with nilotinib results in reduction 

of pY39 a-synuclein levels, but fails to impact a-synuclein inclusions burden and nigral 

neuronal death. As previously mentioned, phosphorylation of this residue promotes a-

synuclein aggregation and inhibits autophagic clearance of a-synuclein in animal models of PD 
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differences that impede directly extrapolating pathogenic hypothesis between different 

synucleinopathies. While it is evident that a-synuclein in PD inclusions originates and is 

metabolically processed in neurons, how a-synuclein becomes part of GCI is more complex. 

Latest data suggest that oligodendrocytes uptake abnormal exogenous neuron-secreted a-

synuclein, which would, in turn, recruit the endogenous oligodendrocyte-expressed a-

synuclein (Mavroeidi et al., 2019; Reyes et al., 2014). Differences in the time, place and type 

of the post-translational modifications a-synuclein can undergo, may dictate the already known 

distinct features of a-synuclein conformers in MSA and PD (Peng et al., 2018; Yamasaki et al., 

2019). In this context, it is unknown where and when phosphorylation at Y39 takes place in 

MSA and PD and its impact on the distinct protein seeds. As our results demonstrate a lack of 

preclinical efficacy of nilotinib, unlike in PD models, they suggest that pY39 a-synuclein might 

not be equally relevant to the neurodegenerative process in MSA and could, together with the 

differences in parkin involvement aforementioned, explain the lack of neuroprotective effect of 

nilotinib in the PLP-SYN model of MSA.  

 

ACKNOWLEDGEMENTS 

The Université de Bordeaux and the Centre National de la Recherche Scientifique provided 

infrastructural support. The funders had no role in study design, data collection and analysis, 

decision to publish, or preparation of the manuscript. Brain samples from MSA patients were 

obtained from the Brain Bank GIE NeuroCEB (BRIF number 0033-00011), funded by the 

patients' associations France Alzheimer, France Parkinson, ARSEP, and “Connaître les 

Syndromes Cérébelleux”, to which we express our gratitude. We would like to express our 

appreciation to Dr Ted Dawson for kindly providing the pY39 a-syn antibody used in this 

study.



 

pg. 76 
 

References 

1. Gilman S, Wenning GK, Low PA, et al. Second consensus statement on the diagnosis 
of multiple system atrophy. Neurology 2008;71(9):670-676. 

2. Fanciulli A, Wenning GK. Multiple-system atrophy. N Engl J Med 2015;372(3):249-
263. 

3. Stefanova N, Bücke P, Duerr S, Wenning GK. Multiple system atrophy: an update. 
Lancet Neurol 2009;8(12):1172-1178. 

4. Hantschel O, Superti-Furga G. Regulation of the c-Abl and Bcr-Abl tyrosine kinases. 
Nature reviews Molecular cell biology 2004;5(1):33-44. 

5. Imam SZ, Zhou Q, Yamamoto A, et al. Novel regulation of parkin function through c-
Abl-mediated tyrosine phosphorylation: implications for Parkinson's disease. The 
Journal of neuroscience : the official journal of the Society for Neuroscience 
2011;31(1):157-163. 

6. Ko HS, Lee Y, Shin J-HH, et al. Phosphorylation by the c-Abl protein tyrosine kinase 
inhibits parkin's ubiquitination and protective function. Proc Natl Acad Sci U S A 
2010;107(38):16691-16696. 

7. Derkinderen P, Scales TM, Hanger DP, et al. Tyrosine 394 is phosphorylated in 
Alzheimer's paired helical filament tau and in fetal tau with c-Abl as the candidate 
tyrosine kinase. The Journal of neuroscience : the official journal of the Society for 
Neuroscience 2005;25(28):6584-6593. 

8. Jing Z, Caltagarone J, Bowser R. Altered subcellular distribution of c-Abl in 
Alzheimer's disease. Journal of Alzheimer's disease : JAD 2009;17(2):409-422. 

9. Tremblay MA, Acker CM, Davies P. Tau phosphorylated at tyrosine 394 is found in 
Alzheimer's disease tangles and can be a product of the Abl-related kinase, Arg. Journal 
of Alzheimer's disease : JAD 2010;19(2):721-733. 

10. Schlatterer SD, Acker CM, Davies P. c-Abl in neurodegenerative disease. Journal of 
molecular neuroscience : MN 2011;45(3):445-452. 

11. Brahmachari S, Ge P, Lee S, et al. Activation of tyrosine kinase c-Abl contributes to α-
synuclein–induced neurodegeneration. J Clin Invest 2016;126(8):2970-2988. 

12. Mahul-Mellier A-LL, Fauvet B, Gysbers A, et al. c-Abl phosphorylates α-synuclein and 
regulates its degradation: implication for α-synuclein clearance and contribution to the 
pathogenesis of Parkinson's disease. Hum Mol Genet 2014;23(11):2858-2879. 

13. Hantschel O. Structure, regulation, signaling, and targeting of abl kinases in cancer. 
Genes Cancer 2012;3(5-6):436-446. 

14. Hebron ML, Lonskaya I, Moussa C. Nilotinib reverses loss of dopamine neurons and 
improves motor behavior via autophagic degradation of α-synuclein in Parkinson's 
disease models. Hum Mol Genet 2013;22(16):3315-3328. 

15. Karuppagounder SS, Brahmachari S, Lee Y, Dawson VL, Dawson TM, Ko H. The c-
Abl inhibitor, Nilotinib, protects dopaminergic neurons in a preclinical animal model of 
Parkinson's disease. Sci Rep 2014;4. 

16. Imam SZ, Trickler W, Kimura S, et al. Neuroprotective Efficacy of a New Brain-
Penetrating C-Abl Inhibitor in a Murine Parkinson’s Disease Model. PLoS One 
2013;8(5). 

17. Kahle PJ, Neumann M, Ozmen L, et al. Hyperphosphorylation and insolubility of 
synuclein in transgenic mouse oligodendrocytes. EMBO reports 2002;3(6):583-588. 

18. Del Bello F, Bonifazi A, Giorgioni G, et al. 1-[3-(4-Butylpiperidin-1-yl)propyl]-1,2,3,4-
tetrahydroquinolin-2-one (77-LH-28-1) as a Model for the Rational Design of a Novel 
Class of Brain Penetrant Ligands with High Affinity and Selectivity for Dopamine D4 
Receptor. J Med Chem 2018;61(8):3712-3725. 



 

pg. 77 
 

19. Fernagut P-OO, Dehay B, Maillard A, et al. Multiple system atrophy: a prototypical 
synucleinopathy for disease-modifying therapeutic strategies. Neurobiol Dis 
2014;67:133-139. 

20. Fernagut PO, Meissner WG, Biran M, et al. Age-related motor dysfunction and 
neuropathology in a transgenic mouse model of multiple system atrophy. Synapse 
2014;68(3):98-106. 

21. Refolo V, Bez F, Polissidis A, et al. Progressive striatonigral degeneration in a 
transgenic mouse model of multiple system atrophy: translational implications for 
interventional therapies. Acta Neuropathologica Communications 2018;6(1):2. 

22. Stefanova N, Reindl M, Neumann M, et al. Oxidative Stress in Transgenic Mice with 
Oligodendroglial Alpha-Synuclein Overexpression Replicates the Characteristic 
Neuropathology of Multiple System Atrophy. Am J Pathol 2005;166(3):869-876. 

23. Pagan F, Hebron M, Valadez EH, et al. Nilotinib Effects in Parkinson's disease and 
Dementia with Lewy bodies. J Parkinsons Dis 2016;6(3):503-517. 

24. Brahmachari S, Karuppagounder SS, Ge P, et al. c-Abl and Parkinson’s Disease: 
Mechanisms and Therapeutic Potential. J Parkinsons Dis 2017;7(4):589-601. 

25. Burré J, Sharma M, Spring S-TC. Cell biology and pathophysiology of α-synuclein. 
Cold Spring … 2018. 

26. Beyer K, Ariza A. Alpha-Synuclein Posttranslational Modification and Alternative 
Splicing as a Trigger for Neurodegeneration. Mol Neurobiol 2013;47(2):509-524. 

27. Oueslati A. Implication of Alpha-Synuclein Phosphorylation at S129 in 
Synucleinopathies: What Have We Learned in the Last Decade? J Parkinsons Dis 
2016;6(1):39-51. 

28. Kleinknecht A, Popova B, Lázaro DF, et al. C-Terminal Tyrosine Residue 
Modifications Modulate the Protective Phosphorylation of Serine 129 of α-Synuclein in 
a Yeast Model of Parkinson's Disease. PLOS Genetics 2016;12(6):e1006098. 

29. Tenreiro S, Eckermann K, Outeiro TF. Protein phosphorylation in neurodegeneration: 
friend or foe? Front Mol Neurosci 2014;7:42. 

30. Shin JH, Ko HS, Kang H, et al. PARIS (ZNF746) repression of PGC-1alpha contributes 
to neurodegeneration in Parkinson's disease. Cell 2011;144(5):689-702. 

31. Huang Y, Song YJ, Murphy K, et al. LRRK2 and parkin immunoreactivity in multiple 
system atrophy inclusions. Acta Neuropathol 2008;116(6):639-646. 

32. Jellinger KA. Multiple system atrophy: an oligodendroglioneural synucleinopathy. J 
Alzheimers Dis 2018. 

33. Dawson TM, Dawson VL. The role of parkin in familial and sporadic Parkinson's 
disease. Mov Disord 2010;25 Suppl 1(0 1):S32-S39. 

34. Krismer F, Jellinger KA, Scholz SW, et al. Multiple system atrophy as emerging 
template for accelerated drug discovery in α-synucleinopathies. Parkinsonism Relat 
Disord 2014;20(8):793-799. 

35. Mavroeidi P, Arvanitaki F, Karakitsou A-KK, et al. Endogenous oligodendroglial 
alpha-synuclein and TPPP/p25α orchestrate alpha-synuclein pathology in experimental 
multiple system atrophy models. Acta Neuropathol 2019. 

36. Reyes JF, Rey NL, Bousset L, Melki R, Brundin P, Angot E. Alpha-synuclein transfers 
from neurons to oligodendrocytes. Glia 2014;62(3):387-398. 

37. Peng C, Gathagan RJ, Covell DJ, Medellin C, Nature S-A. Cellular milieu imparts 
distinct pathological α-synuclein strains in α-synucleinopathies. Nature 2018. 

38. Yamasaki TR, Holmes BB, Furman JL, et al. Parkinson's disease and multiple system 
atrophy have distinct alpha-synuclein seed characteristics. J Biol Chem 
2019;294(3):1045-1058. 



 

pg. 78 
 

Article 3: 

Inhibition of the mammalian target of rapamycin alleviates alpha-synuclein aggregation 

and does partly protect dopamine neurons in a mouse model of multiple system atrophy 

 

Miguel Lopez-Cuina, MD, Paul A. Guerin, PhD, Marie-Laurre Arotçarena, PhD, Anna 

Delamarre, MD, Benjamin Dehay, PhD, Erwan Bezard, PhD, Wassilios G. Meissner, MD, PhD, 

Pierre-Olivier Fernagut, PhD 

(Soumis) 

 

Contexte : L'atrophie multisystematisée (AMS) est une maladie neurodégénérative rare sans 

traitement efficace. Elle est caractérisée par l'accumulation de la protéine a-synucléine dans les 

inclusions oligodendrogliales. À ce titre, l'AMS forme le groupe des synucléinopathies avec la 

maladie de Parkinson (MP) et la démence à corps de Lewy (DCL). Des études post-mortem 

suggèrent une altération des mécanismes de dégradation des protéines dans l’AMS, dont 

l'autophagie. Il est connu que l'inhibition de mTOR par la rapamycine augmente l'activité 

autophagique, et il a été démontré qu'elle atténue l'agrégation des protéines dans des modèles 

de MP et d’autres  protéinopathies.  

Objectifs : Évaluer l'efficacité de la rapamycine dans le modèle préclinique de l’AMS.  

Méthodes: Les souris exprimant l'a-synucléine de type sauvage humaine dans les 

oligodendrocytes ont reçu des aliments enrichis en rapamycine pendant 16 semaines. L'analyse 

post-mortem comprenait l'évaluation des marqueurs d'autophagie, la quantité intracellulaire de 

a-synucléine et de la neurodégénérescence dopaminergique. Une analyse biochimique des 

tissus humains a été effectuée pour évaluer l'activation de la voie mTOR. 

Résultats : Une activation accrue de mTOR et de ses effecteurs, ainsi qu'une altération de 

l'autophagie ont été détectées chez les patients atteints d'ASM. L'inhibition de mTOR a permis 

une réduction de l'agrégation de l'alpha-synucléine et un effet  protecteur partiel des neurones 

dopaminergiques, sans pourtant rétablir l'autophagie chez la souris transgénique d’AMS. 

Conclusion : Nos résultats suggèrent que l'inhibition de mTOR par la rapamycine est 

insuffisante pour restaurer l'autophagie et atténuer le processus neurodégénératif chez les souris 

transgéniques d’AMS. 
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Abstract 

Background: Multiple system atrophy (MSA) is a rare untreatable neurodegenerative disorder, 

characterized by accumulation of the protein alpha-synuclein in oligodendroglial inclusions. As 

such, MSA is a synucleinopathy along with Parkinson’s disease (PD) and Dementia with Lewy 

bodies. Post-mortem studies suggest an impairment of the protein degradation machinery in 

MSA, including autophagy. Inhibition of mTOR by rapamycin is known to increase autophagic 

activity, and has been shown to reduce protein aggregation in models of PD and other 

proteinopathies. 

Objectives: To assess the efficacy of rapamycin in a transgenic mouse model of MSA. 

Methods: Mice expressing human wild-type alpha-synuclein in oligodendrocytes received 

rapamycin-enriched food during 16 weeks. Post-mortem analysis included assessment of 

autophagy markers, intracellular alpha-synuclein burden and loss of nigral dopamine neurons. 

Biochemical analysis of human brain tissue was performed to assess the status of the mTOR 

pathway. 

Results: Increased activation of mTOR and downstream effectors, and alteration of autophagy 

were detected in MSA patients. Inhibition of mTOR with rapamycin did not restore markers of 

autophagy in the transgenic MSA mice, while it reduced alpha-synuclein aggregation and 

partially protected dopaminergic neurons from death.  

Conclusion: Our results suggest that inhibition of mTOR is insufficient to restore autophagy 

and mitigate the neurodegenerative process in transgenic MSA mice. 
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INTRODUCTION 

Synucleinopathies are a group of disorders characterized by alpha-synuclein (a-syn) 

accumulation in intracytoplasmic inclusions in the central and peripheral nervous system (CNS 

and PNS). These include Parkinson’s disease (PD), dementia with Lewy bodies (DLB) and 

multiple system atrophy (MSA), and affect millions of patients worldwide (Spillantini and 

Goedert, 2000).  

MSA is a rare, sporadic adult-onset neurodegenerative disorder clinically characterized by a 

variable combination of parkinsonism, cerebellar impairment, and autonomic dysfunction 

(Gilman et al., 2008). The cytopathological hallmark of MSA is the accumulation of α-syn 

aggregates in oligodendrocytes, forming glial cytoplasmic inclusions (GCIs). Currently, only 

symptomatic treatments with transient and limited efficacy are available to these patients who 

face a median life expectancy of 6 to 10 years after symptom onset, with rare cases surviving 

15 years or more (Fanciulli and Wenning, 2015). 

Degradation of a-syn is achieved by both the ubiquitin-proteasome system and the autosomal-

lysosomal pathways (Rivero-Ríos et al., 2016; Snyder et al., 2005). There is genetic and 

pathological evidence indicating that the different autophagic pathways, macroautophagy (MA) 

or chaperone-mediated autophagy (CMA), are impaired in synucleinopathies (Arotcarena et al., 

2019b). A growing number of autophagy enhancing approaches are being proposed to fight 

neurodegeneration or have already been tested in animal models of synucleinopathies 

(Arotcarena et al., 2019a; Decressac et al., 2013; Moors et al., 2017; Scrivo et al., 2018b; Torra 

et al., 2018). 

Mammalian target of rapamycin (mTOR) is a 289-kDa ubiquitously expressed serine/threonine 

kinase. mTOR forms the catalytic subunit of two distinct complexes, namely mTOR Complex 

1 (mTORC1) and 2 (mTORC2), which lies at the center of an intricate signaling pathway that 

is activated in response to several stress conditions and growth factor signals, regulating a large 
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number of cellular functions, including autophagy (Zoncu et al., 2011). When active, mTORC1 

suppresses autophagy and, conversely, its inhibition induces autophagy (Thoreen et al., 2009). 

Rapamycin and other mTOR inhibitors have been used for years in clinical practice to treat 

disorders ranging from tuberous sclerosis, to cancer, or to prevent rejection of organ transplants 

(Baroja-Mazo et al., 2016; Curatolo and Moavero, 2012; Palavra et al., 2017; Tian et al., 2019). 

Rapamycin has been reported to have a neuroprotective effect against loss of dopaminergic 

neurons in toxin-based and transgenic mouse models of PD, as well as to reduce a-syn 

accumulation, mostly by restoring autophagy (Bové et al., 2011; Crews et al., 2010; Dehay et 

al., 2010; Pan et al., 2008; Zhang et al., 2017). While there is a growing body of preclinical 

evidence pointing to inhibition of mTOR as a possible disease-modifying option in PD, no such 

advances have been made in other synucleinopathies, namely MSA. In the current study, we 

determined whether daily administration of rapamycin for 16 weeks has beneficial effects on 

the aggregation of α-syn and the neurodegenerative process in a transgenic mouse model of 

MSA. 

 

 

MATERIAL AND METHODS 

Study approval 

All experiments involving mice were performed in accordance with French guidelines (87-848, 

Ministère de l’Agriculture et de la Forêt) and the European Community Council Directive 

(2010/63/EU) for the care of laboratory animals. Animal experiments were approved by the 

Institutional Animal Care and Use Committee of Bordeaux (CE50, approval #7371-

2016101216326975). Mice were maintained in a temperature and humidity - controlled room 

on a 12:12 light-dark cycle with food and water ad libitum. 
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Human brain samples 

Human brain samples were obtained from the French Brain Bank (GIE-Neuro CEB, BB-0033-

00011), Paris, France. Written informed consent was obtained prior to autopsy for the collection 

of the brain and the use of clinical and post-mortem data from all subjects or their legal 

representatives. Samples from 7 MSA patients with predominant parkinsonism (MSA-P) and 6 

age-matched controls were processed for biochemical analysis. 

 

Animals and treatment 

Mice expressing human a-syn in oligodendrocytes under the control of the proteolipid promoter 

(PLP-SYN) were previously generated on a C57BL/6J background. Overexpression of a-syn 

in oligodendrocytes promotes accumulation of a-syn and neurodegeneration resembling MSA 

(Kahle et al., 2002). Rapamycin (Rapamycin Holding, USA) was microencapsulated in 

Eudragit and incorporated in standard mouse chow (Envigo) at a dose of 14mg/kg of food, 

chosen based on previously reported successful dosages (Fok et al., 2014; Harrison et al., 2009). 

Treatment began at age 6 weeks, with one group of transgenic and non-transgenic control mice 

receiving standard food and a third group rapamycin-enriched food. 

 

Tissue extraction 

Animals were anaesthetized with pentobarbital (100 mg/kg i.p.). They were then intracardially 

perfused with 25ml of 0.9% saline. After quick removal of the brain, the right hemisphere was 

directly frozen in isopentane for biochemical analysis, while the left hemisphere was post-fixed 

for 5 days in 5ml of 4% (wt/vol) paraformaldehyde (PFA), followed by cryoprotection in 10ml 

of 20% (wt/vol) sucrose in 0.1 M PBS, frozen in isopentane and stored at -80 °C 
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Antibodies 

Primary antibodies used for biochemistry and histology experiments were:  rabbit monoclonal 

antibody anti-human a-syn, purchased from Abcam (MJFR1, 1:10 000); the rabbit polyclonal 

antibodies anti-mTOR, anti-phospho-mTOR (Ser2448), anti-p70S6 Kinase and anti-phospho-

p70S6 Kinase (Thr389) were purchased from Cell Signaling Technology (297S, 2971S, 9202S 

and 9205S, 1:1000); rabbit polyclonal antibodies against beclin-1 and LC3, purchased from 

Novus Biologicals (NB100 and NB500, 1:1000); the mouse monoclonal antibody anti-Tyrosine 

Hydroxylase was obtained from Millipore (mAb318, 1:4000); the guinea pig polyclonal anti-

p62 antibody was purchased from ProGen (GP62-C-WBC, 1:1000) and the mouse anti-b-actin 

antibody was purchased from  Sigma-Aldrich (1:10 000). 

 

Immunoblotting 

For biochemical analysis, tissue samples were homogenized in RIPA lysis buffer (Sigma) plus 

protease and phosphatase inhibitor cocktail (Halt, ThermoFisher), then centrifuged at 14 000 

rpm for 15 minutes at 4˚C. Supernatants were collected and stored at -80 ˚C. Protein 

concentration was determined by BCA assay (ThermoFisher).  

Samples containing 10-40ug of protein were prepared in loading buffer (Tris-HCl 25mM 

pH=6.8, Glycerol 7.5%, SDS 1%, DTT 250mM and Bromophenol Blue 0.05%) and loaded 

onto SDS-PAGE, proteins then were transferred to 0.2µm pore nitrocellulose membranes 

(Millipore). When assessing phosphorylated proteins, membranes were blocked during 60 

minutes in 4% Bovine Serum Albumin (BSA) in TBS; for non-phosphorylated proteins, 3% 

non-fat dry milk in PBS was used instead. Membranes were incubated overnight at 4˚C with 

the primary antibody in 2% BSA in TBS. After rinsing with TBS 0.1% Tween (TBS-T) and 

TBS, membranes were incubated in the corresponding Horseradish Peroxidase (HRP)-

conjugated secondary antibody. Membranes were revealed through chemiluminescence 
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(Clarity ECL or Clarity Max ECL substrates, BioRad), images were acquired with the 

ChemiDoc+XRS gel imaging system (Bio-Rad). 

 

Histopathological analysis in mice 

After washing with PBS 0.1M (PBS), 40μm sections of the substantia pars compacta (SNpc) 

were incubated in a solution of citrate x1 (pH=6, Dako Target Retrieval Solution, diluted in 

distilled water) and heated at 80°C for 30 minutes for antigen retrieval. Sections were then 

washed with PBS and incubated in a 3% hydrogen peroxide solution (PBS dilution) for 10 min 

to quench endogenous peroxidases. After rinsing, sections were incubated in PBS with 2% 

BSA, 0.3% Triton X-100 solution for one hour at room temperature (RT). Then, they were 

incubated with the primary anti TH antibody  overnight at RT. After rinsing, sections were 

incubated in Dako Envision anti-mouse polymer for 30 minutes, rinsed again and then revealed 

with the Dako DAB kit following the supplier's instructions. Finally, sections were mounted 

and dried on gelatinized slides, immersed overnight in a solution composed of 50% absolute 

ethanol and 50% chloroform, and stained with a cresyl-violet solution. A series of SNpc (1/4, 

allowing the counting of 5 sections) was used per animal for the stereological counting of 

tyrosine hydroxylase (TH)-positive and Nissl-positive neurons. Systematic random sampling 

was performed with the Mercator Pro V6.5 (Explora Nova) software coupled with a Leica DM-

6000B microscope. After delineation of the SNpc with x5 objective, counting was done with 

x40 objective (Fernagut et al., 2014a). 

 

Striatal sections of PLP-SYN mice were treated to eliminate proteinase K sensitive forms of a-

syn. The number of α-syn positive cells was counted by fluorescence microscopy. For the 

detection of oligodendroglial α-syn aggregates, striatum sections were first washed three times 

in PBS, and incubated for 10 minutes at RT in a 10mg/mL solution of proteinase K (Sigma, 
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PBS dilution). Sections were then rinsed twice in distilled water and twice in PBS for 10 

minutes each, at RT to wash proteinase K. Later they were immersed in the blocking solution 

(30min at RT) followed by the primary rabbit anti-human a-syn antibody overnight at RT. After 

rinsing, sections were incubated in secondary goat anti-rabbit 568 antibody (1:400, Alexa 

Fluor) for two hours at RT, rinsed in PBS and mounted on slides with a Vectashield + dapi 

mounting medium. For immunofluorescent labelling of α-syn, one striatum slice per animal 

was used. Six captures per mouse striatum in specific areas were taken with a x20 objective and 

the number of α-syn positive cells was counted using ImageJ. 

 

Statistics 

Statistical analysis was performed using the software Graphpad Prism (version 8; GraphPad 

Software Inc., La Jolla, CA). Mean ± standard error of the mean (SEM) was used to present the 

results. For comparisons between two groups, a t-test was used if data were normally 

distributed. If not, a Mann Whitney test was used instead. For the comparison of several groups, 

a one-way ANOVA was applied followed, if appropriate, by Tukey’s post hoc test in case of a 

normal distribution; in case of a non-Gaussian distribution a Kruskal-Wallis test was performed, 

followed by a two-stage step-up method to correct for multiple comparisons. For a two-factor 

comparison, a two-way ANOVA was used followed, if appropriate, by Tukey’s post hoc test. 

A p value <0.05 was considered statistically significant.   

 

RESULTS 

Alteration of the mTOR pathway and autophagy in the putamen of MSA-P patients 

The demographic characteristics of MSA-P patients and control subjects are shown in Table 1. 

We measured levels of phosphorylated mTOR and total mTOR in the putamen of MSA-P 

patients and age-matched controls by immunoblotting experiments. We found a significant 
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reduction in the quantity of total mTOR in the putamen of MSA-P patients compared to controls 

(t-test, p<0.01), while the ratio of phosphorylated-to-total mTOR was significantly increased in 

MSA (t-test, p<0.05) (Figure 1). Then, we assessed the downstream effector of mTOR, p70S6K 

kinase, in its total and phosphorylated states. In line with the mTOR results, we found an 

increased phosphorylated-total p70S6K ratio in MSA-P patients (Mann Whitney test, p<0.05), 

while the amount of non-phosphorylated p70S6K was no different between MSA-P and 

controls (Figure 1). 

 

Figure 1: Alteration of the mTOR pathway in the striatum of MSA patients. 

Western blot analysis of total and phosphorylated mTOR and its downstream effector p70S6K (A) revealed 

reduced levels of total mTOR, while the ratio of phosphorylated over total mTOR and p70S6K is increased 

in MSA compared to healthy controls (B). *, p<0.05 

 

We further compared expression levels of autophagy-related markers. We observed a 

significant decrease of beclin-1 levels in MSA-P patients compared to controls (Mann Whitney, 

p< 0.005), while there was no significant difference in levels of the p62 protein. In contrast, we 

A Control MSA

mTOR300kDa --

40kDa --
b-actin

P-mTOR

b-actin

300kDa --

40kDa --

70kDa--

40kDa--
b-actin

p70S6K

70kDa--

40kDa-- b-actin

P-p70S6K

B

mTOR

P-m
TOR

mTOR ra
tio

p70
S6K

P-p70
S6k

p70
S6K

 ra
tio

0

1

2

5

15
pr

ot
ei

n 
le

ve
l /

 A
ct

in
 (r

el
at

iv
e 

to
 c

on
tro

ls
)

Control

MSA

*

* *



 

pg. 89 
 

found a higher amount of both forms of LC3, LC3-I and LC3-II, in the putamen of MSA-P 

patients (t-test, p<0.05 and Mann Whitney, p<0,05, respectively) (Figure 2). 

 

 

 

Figure 2: Alteration of autophagy in the striatum of MSA patients. 

Western blot analysis of markers beclin 1, p62 and LC3 I and LC3 II (A). In MSA patients, levels of the 

autophagy-initiating protein beclin 1 are reduced, while the membrane-bound for of LC3 (LC3 II) is increased 

compared to healthy controls (B). *, p<0.05 

 

Autophagy is impaired in the striatum of PLP-SYN mice, while rapamycin fails to restore 

autophagy 

Next, we aimed to determine whether PLP-SYN mice show impairment of autophagy and 

whether chronic treatment with rapamycin has beneficial effect on autophagy. To this end, we 

compared autophagy markers in WT and PLP-SYN placebo and rapamycin-treated mice. An 

overall analysis of beclin-1 levels in the striatum found a difference between groups [F(2, 16)= 
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20, p<0.0001] and the post-hoc analysis revealed a significant reduction of beclin-1 levels in 

placebo-treated and rapamycin-treated transgenic mice compared to the non-transgenic group 

(p<0.001 for both comparisons), while there was no difference between treated- and untreated-

PLP-SYN mice (Figure 3). Next, an analysis of p62 levels found a significant difference 

between groups [F(2, 16)= 9, p<0.005], and a post-hoc comparison confirmed reduction of p62 

levels in transgenic mice compared to non-transgenic mice, independent of the treatment 

received (p<0.05 and p<0.005 for untreated and treated mice respectively) (Figure 3). Finally, 

we assessed LC3-I and LC3-II levels, and found, again, a significant differences between 

groups [F(2, 16)= 6, p<0.05], and the post-hoc test revealed a significant reduction of both 

forms of LC3 in PLP-SYN mice compared to WT mice independently of treatment (p<0.05 for 

both comparisons) (Figure 3).  

 

Figure 3: Autophagy is impaired in PLP-SYN mice, while rapamycin does not restore 

autophagy 

Western blot analysis of markers of autophagy beclin 1, p62 and LC3 I and LC3 II (A), demonstrates that 

autophagy is altered in PLP-SYN mice, with reduced levels of all markers of autophagy compared to non-
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transgenic mice. Treatment with rapamycin did not restore their levels to normal (B). *, p<0.05; **, 

p<0.01; ***, p<0.001. 

 

Rapamycin reduced a-syn accumulation in the striatum of PLP-SYN mice  

We found that rapamycin-treated mice had, in average, a 32% lower amount a-syn-positive 

cells in the striatum compared to placebo treated PLP-SYN mice (p<0.05, Figure 4 A-C). 

 

Rapamycin partially protected dopaminergic neurons in the SNpc from death of PLP-SYN mice 

PLP-SYN mice classically show about 25-30% loss of TH-positive neurons in the SNpc, 

(Fernagut et al., 2014b; Refolo et al., 2018; Stefanova et al., 2005). We assessed the effect of 

rapamycin on TH-positive neuron survival within the SNpc. The overall analysis revealed 

differences between groups in dopaminergic cell counts in the SNpc (H=12.9, df = 2, p <0.005). 

The post-hoc test found an expected 30% loss of TH-positive neurons in placebo- treated PLP-

SYN mice compared to WT mice (p<0.0005). This analysis also revealed a lack of protection 

of TH expressing dopaminergic neurons following rapamycin treatment, as cell counts were 

also significantly reduced in this group compared to WT mice (p<0.01 Figure 4 D-G), and did 

not differ from the placebo-treated PLP-SYN group. A comparative analysis of Nissl-positive 

neurons showed a significant difference between groups [F(2,21) = 5, p<0.05], and a post-hoc 

test found that placebo-treated mice had a lower number of Nissl-positive neurons than the WT 

and rapamycin-treated mice (p<0.05 for both comparisons), while there was no difference 

between the latter two (Figure 4 H). 
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Figure 4: Effects of chronic treatment with rapamycin on a-synuclein burden and 

dopaminergic neurodegeneration. 

Representative images of α-syn immunofluorescence in the striatum of PLP-SYN mice treated with normal 

food (A) and rapamycin-enriched food (B). Cell counts of α-synuclein immunopositive oligodendrocytes 

revealed that rapamycin reduces striatal α-syn burden (C). Representative images of tyrosine hydroxylase 

(TH) immunoreactivity in WT mice (D), PLP-SYN in mice treated with normal food (E) and rapamycin-

enriched food (F). Stereological counts showing a loss Nissl-stained and TH+Nissl stained neurons in PLP-

SYN mice (F, G) indicate that the observed loss of TH-positive neurons is due to a loss of the TH-phenotype. 

*, p<0.05; **, p<0.01 
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Rapamycin inhibits the downstream targets of mTOR 

To assess target engagement by rapamycin, we compared striatal levels of total and 

phosphorylated p70S6K. While a one-way ANOVA analysis revealed no differences between 

groups in the amount of p70S6K phosphorylated at residue Thr389 (Figure 5), an overall 

analysis of the phosphorylated-total protein ratio revealed a significant difference between 

groups [F(3, 23)= 4, p<0.05]. The Tukey’s comparison test showed a significative decrease of 

the ratio in the rapamycin-treated PLP-SYN mice compared to the placebo treated group (p< 

0.05) (Figure 5).  

 

Figure 5: Chronic treatment with rapamycin induces an inhibition downstream of mTOR 

Western blot analysis of total and phosphorylated forms of  p70S6K, a downstream effector of mTOR (A), 

demonstrated an inhibition of the kinase activity of mTOR, as shown by a reduced ratio of phosphorylated 

over total p70S6k compared to placebo treated animals (B). *, p<0.05. 

 

DISCUSSION 

Evidence from in vitro and post-mortem studies point to an impairment of autophagy in MSA 

(Arotcarena et al., 2019b; Compagnoni et al., 2018; Schwarz et al., 2012; Tanji et al., 2013), 

thus, enhancing autophagy has emerged as a putative approach for preventing accumulation of 
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α-syn in synucleinopathies (Arotcarena et al., 2019a; Decressac et al., 2013; Moors et al., 2017; 

Scrivo et al., 2018b; Torra et al., 2018). 

We here have shown an increased activation of the mTOR pathway in the putamen of MSA 

patients compared to controls. Also, we have found an impaired autophagy, as evidenced by a 

decrease in beclin-1 levels, unchanged levels of p62 and increased expression of both LC3-I 

and LC3-II. Further, we showed that autophagy is also impaired in the PLP-SYN mouse model 

of MSA. While inhibition of mTOR with rapamycin proved to reduce the burden of a-synuclein 

aggregates in the striatum, rapamycin exerted only a partial neuroprotective effect on 

dopaminergic neurons. 

 

Dysregulation of the mTOR pathway and autophagy impairment in the putamen of MSA 

patients 

We demonstrated a reduction of mTOR in the putamen, which is in agreement with reduced 

mRNA levels of mTORC1 in the striatum of MSA patients as previously reported (Valera et 

al., 2017b). We also found an increase in its phosphorylation ratio, which confers a higher 

kinase activity. mTOR activates the p70S6K protein through phosphorylation (Hara et al., 

1998), and our results confirmed an enhanced activation downstream of mTOR, as illustrated 

by the elevated ratio of phosphorylated-total p70S6K in MSA patients. 

Similar to previous reports, we observed a decrease in the autophagy protein beclin-1 in the 

putamen of MSA cases (Figure 3) (Valera et al., 2017b). Beclin-1 was found to colocalize with 

a-syn in GCIs in MSA brains, suggesting an involvement in MSA pathology (Valera et al., 

2017b). Expression of beclin-1 has also been shown to be reduced in Alzheimer’s disease (AD) 

(Bieri et al., 2018; Lucin et al., 2013; Pickford et al., 2008). Hence, as we here showed, there is 

a reduction in autophagy activation and autophagosome elongation, in line with a reduction of 

beclin-1 (Bové et al., 2011). Regarding p62, we found no difference between controls and 
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MSA-P (Figure 3). Others have reported reduced levels of p62 in the striatum of MSA patients 

(Valera et al., 2017b), while increased levels were observed in an in vitro model of 

oligodendrogliopathy (Schwarz et al., 2012). Finally, LC3 is a membrane-bound protein, and 

its lipidated form, LC3-II, is the signature component of autophagic membranes. We observed 

increased levels of LC3 in both its forms, LC3-I and LC3-II, in the putamen of MSA-P patients 

compared to controls (Figure 1). In the context of reduced autophagosome elongation, this 

could be a result of their defective clearance in MSA (Arotcarena et al., 2019b). Previous 

literature reported the presence of LC3 inside of GCI, pointing to its involvement in MSA 

(Schwarz et al., 2012); furthermore, another study found LC3-II accumulation in the cytoplasm 

of induced-pluripotent stem cells derived from MSA patient skin fibroblasts associated with a 

defect in lysosomal clearance (Compagnoni et al., 2018).  

Taken together, most of the data suggest consistently reported autophagic alterations in MSA, 

in particular a diminished amount of the autophagy initiating protein beclin-1, secondary to its 

downregulation (Valera et al., 2017b) or its cleavage by pro-inflammatory proteolytic enzymes 

(Bieri et al., 2018), and an autophagosome clearance impairment (Compagnoni et al., 2018).  

 

Rapamycin reduces a-syn burden in the striatum of PLP-SYN mice and provides partial 

neuroprotection against dopaminergic cells death 

Rapamycin-treated mice showed a reduced amount of proteinase K-resistant a-syn aggregates 

in the striatum. Furthermore, we observed that, even though rapamycin-treated mice presented 

similar counts of TH-positive neurons in the SNpc as placebo-treated animals, the Nissl-

positive neuron counts were similar to WT mice. These Nissl-positive neurons represent 

dopaminergic neurons which have suffered a sufficient stress to impair TH expression, but not 

enough to induce cell death. 
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Autophagy dysregulation in PLP-SYN mice 

The effects observed in nigral cell survival and a-syn inclusion burden were not paralleled by 

an improvement in autophagy readouts. We observed a marked decrease of autophagy markers 

beclin-1, p62 and LC3 (LC3-I and LC3-II) in the striatum of PLP-SYN mice. Interestingly, 

beclin-1, p62 and LC3 colocalize with a-syn in striatal oligodendroglial inclusions in myelin 

basic protein a-syn transgenic mice (MBP-SYN), another mouse model of MSA (Valera et al., 

2017b). Levels of LC3-I and beclin-1 were also reduced in MBP-SYN mice, while p62 was 

increased. We found that while chronic treatment with rapamycin inhibited the mTOR 

downstream cascade, it did not induce similar changes in levels of these markers. One 

explanation for this discrepancy may be due to alterations of a parallel mTOR-independent 

autophagy controlling pathways, as (i) it has been the case for the leucine rich repeat kinase 2 

(LRRK2) via the beclin-1 pathway, bearing in mind that LRRK2 mutations are linked to PD 

and some polymorphisms in MSA (Heckman et al., 2014; Manzoni et al., 2016), and (ii) it could 

be a consequence of beclin-1 deactivation/enzymatic cleavage, as reported in AD (Lucin et al., 

2013; Pickford et al., 2008). 

Besides macroautophagy, mTOR also regulates other protein degradation systems (Zhao and 

Goldberg, 2016; Zhao et al., 2015). Of note, monomeric a-syn is known to be degraded by the 

ubiquitin-proteasome system (UPS), where proteins are tagged by the attachment of ubiquitin 

molecules, to be targeted to the proteasome (Nandi et al., 2006). Moreover, it has been 

demonstrated that pharmacological inhibition of the UPS enhances a-syn induced degeneration 

in a mouse model of MSA (Stefanova et al., 2012b). Consequently, rapamycin could  reduce 

PK-resistant a-syn aggregates by promoting the action of the aforementioned degradation 

pathways, such as the clearance of monomeric α-syn by the UPS, thereby preventing its 

aggregation during the three months of treatment.  
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Beyond its effects on protein turn-over, rapamycin has been shown to have effects on cell 

survival, as it has been reported it to reduce neurodegeneration in neurotoxic models of PD 

(Dehay et al., 2010; Malagelada et al., 2010). Blockade of mTORC1-mediated translation of 

pro-cell death protein RTP801 has been proposed as a mechanism responsible for preventing 

dopaminergic neural death in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse 

model of PD (Malagelada et al., 2010). Moreover, mTOR-independent mechanisms have also 

been reported, such as induction of mitophagy, decreased apoptosis, stabilization of 

mitochondrial membranes and reduction of oxidative stress (Jiang et al., 2013; Ravikumar et 

al., 2006; Zimmerman et al., 2018). 

 

CONCLUSION 

We report the first study on the effects of rapamycin in the PLP-SYN mouse model of MSA. 

Rapamycin improved striatal a-syn burden and, to an extent, nigral neural survival, while this 

was not paralleled by an improvement of autophagy markers. Our data further suggest the 

existence of a beclin-1-dependent impairment of autophagy in MSA patients and the PLP-SYN 

model. Additionally, other mTOR-independent autophagy-enhancing strategies need to be 

further studied in MSA models, likewise combinations of mTOR-dependent and independent 

approaches could be of interest (Moors et al., 2017; Scrivo et al., 2018a). 
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Table 1 
 

Id Diagnosis Age (y) Sex Postmortem delay (h) 

1 Control 84 M 15.5 
2 Control 79 M N/A 

3 Control 69 M 6 
4 Control 83 F 21 

5 Control 80 M 4 

6 Control 78 M 23 
7 MSA-p 54 M 5.25 

8 MSA-p 64 F 6.5 

9 MSA-p 60 F N/A 
10 MSA-p 57 F 7 

11 MSA-p 75 M 72 

12 MSA-p 78 F 48 

13 MSA-p 77 M 39 
 



 

 
 

CONCLUSIONS AND 

PERSPECTIVES 
 



 

pg. 103 
 

IV- Conclusions and perspectives 

 

As a clinical neurologist, this PhD work has allowed me to immerse myself into the field of 

basic science and, I expect, will help me bridge the existing gap between basic researchers 

investigating therapeutic interventions and clinicians who will put this knowledge into practice 

to try and improve our patients’ quality of life. I believe this shall have a positive impact on my 

clinical practice hereon.  

This work is part of a translational approach targeting the rare synucleinopathy MSA. We 

aimed to assess the neuroprotective effects of different a-synuclein-reducing strategies in 

transgenic mice of MSA, based on inhibition of post translational modifications of a-synuclein, 

enhancement of abnormal protein degradation and prevention of a-synuclein aggregation. In 

parallel, we evaluated the neuropathological features of a rare phenotype of MSA, which, 

interestingly, added to the existing knowledge that a-synuclein aggregation in neurons may be 

more relevant to the neurodegenerative process in MSA than previously believed.  

 

1. Deep brain stimulation has no effect on MSA neuropathology 

Current diagnostic criteria for MSA that distinguish between MSA-P and MSA-C subtypes  

have a sensitivity of 90% in late stages of the disease, but in earlier stages it is, at best, 41% 

(Osaki et al., 2009). If the classical MSA-P phenotype poses such a diagnostic challenge, it is 

unsurprising that patients affected by a phenotype that more closely resembles the classical 

progression of PD, i.e. asymmetric, slowly progressive and dopa-responsive parkinsonism with 

motor fluctuations and long duration (Jellinger, 2012; Masui et al., 2012; Petrovic et al., 2012), 

could be likely diagnosed as PD.  

In the first part of this work we completed a post-mortem neuropathological assessment of 

a cohort of patients having this rare MSA phenotype, which had been misdiagnosed as PD and 
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undergone DBS surgery. Typically, DBS alleviates motor symptoms of PD and improves 

quality of life (Groiss et al., 2009), conversely, all patients in our study suffered a clinical 

worsening with the appearance of clinical features of MSA, and died, on average, four years 

after the intervention (Meissner et al., 2016) 

We compared our MSA-DBS cohort with a control MSA-P group and, intriguingly, we 

found no pathological evidence of the surgery having induced morphological, inflammatory, or 

gliotic changes in the STN and other basal ganglia nuclei that would seem related to the rapid 

clinical worsening. Since the autopsy was only performed years after the DBS surgery, the 

ongoing neurodegenerative process could have concealed acute and direct influences on disease 

progression.  

Contrary to PD, where neural accumulation of a-synuclein is mandatory (Spillantini et al., 

1997), neuronal a-synuclein accumulation has classically been considered coincidental in 

MSA, while its deposition in oligodendrocytes is its defining feature (Trojanowski et al., 2007). 

However, recent studies suggest that accumulation of a-synuclein in neurons is more 

widespread in MSA than previously believed (Cykowski et al., 2015; Halliday, 2015; Homma 

et al., 2016; Jellinger, 2007; Rohan et al., 2015; Sekiya et al., 2019). Furthermore, current 

research indicates the origin of a-synuclein in GCIs is likely of dual origin, a combination of 

neuron-secreted and oligodendrocyte-expressed a-synuclein (Mavroeidi et al., 2019). Against 

this backdrop, we here demonstrate that MSA-DBS patients had a larger proportion of neuronal 

inclusions in the putamen compared to the control group, pointing to the possibility of a 

continuum between PD and MSA, rather than being them two distinct and independent entities 

as it is currently believed. 

Our results, together with previous reports of MSA patients’ failed response to DBS (Chou 

et al., 2004; Lezcano et al., 2004; Patrick et al., 2006; Tarsy et al., 2003; Thavanesan et al., 

2014; Ullman et al., 2012; Zhu et al., 2014) highlight the need for an accurate diagnosis in the 
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clinical practice in order to provide appropriate therapeutic advice. This requires a high level 

of clinical suspicion and to look for clinical and paraclinical red flags during DBS eligibility of 

PD patients (Meissner et al., 2016). 

 

2. Validating therapeutic strategies for MSA 

Despite the uncertainties in the aetiology and pathogenesis of MSA, α-synuclein is currently 

the main target for the development of possible neuroprotective treatments (Meissner et al., 

2019). In this PhD work, we have completed two studies aimed at reducing the accumulation 

of a-synuclein. In spite of the lack of effect against neurodegeneration shown by these 

compounds, we have garnered new knowledge about the pathogenesis of MSA that will 

improve our understanding of the underlying pathology.  

A growing body of research indicates a link between misfolded α-synuclein and the 

alteration of the protein degradation machinery; dysfunction of these systems can facilitate a-

synuclein aggregation and, conversely, a-synuclein aggregates may disrupt their function 

(Scrivo et al., 2018a). In particular, monomeric and small soluble oligomeric forms of α-

synuclein are degraded through the ubiquitin-proteasome system or chaperone-mediated 

autophagy, whereas larger oligomeric or aggregated forms are cleared by macroautophagy 

(Ebrahimi-Fakhari et al., 2011; Lee et al., 2004). A recent review describes the evidence of their 

impairment in MSA (Arotcarena et al., 2019b). Accordingly, boosting these protein clearance 

mechanisms has been proposed as a tool to fight this family of neurodegenerative diseases 

(Arotcarena et al., 2019a; Decressac et al., 2013; Moors et al., 2017; Scrivo et al., 2018b; Torra 

et al., 2018).  

As we set out to assess the validity of the autophagy enhancer rapamycin as a 

neuroprotective agent in MSA, we found active mTOR levels to be increased in the putamen 

of MSA patients. As previously mentioned, mTOR suppresses autophagy, so these findings 
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made the case for rapamycin – an mTOR inhibitor – to be a disease-modifying candidate all the 

more compelling. In addition, we encountered signs of defected macroautophagy in the 

putamen of MSA patients. Intriguingly, although rapamycin was able to reduce the 

accumulation of a-synuclein aggregates in the striatum and had modest neuroprotective effects 

in the SN of PLP-SYN mice, it did not revert the reduction of macroautophagy markers that we 

found in untreated PLP-SYN mice. It seems likely that the beclin-1-dependent impairment of 

macroautophagy, found in both patients and animals, acted as a bottle neck that limited the 

effects of the upstream macroautophagy-enhancing signal generated by inhibition of mTOR. In 

this regard, enzymatic deactivation of beclin-1 by caspase-3 has been linked to 

neurodegeneration (Bieri et al., 2018; Pickford et al., 2008). In addition, the vulnerability shown 

by dopaminergic neurons to the neurodegenerative process appears to be related to their 

expression of caspase-3 (Hartmann et al., 2000). 

Despite the failure of rapamycin to protect dopaminergic neurons from degeneration, 

enhancing autophagic clearance of aberrant, aggregated a-synuclein is still a promising strategy 

for treating MSA. Addressing the beclin-1-dependent defect in macroautophagy could prove of 

value, as it has been reported in models of AD, PD, spinocerebellar ataxia or brain damage 

(Bieri et al., 2018; Lonskaya et al., 2013; Nascimento-Ferreira et al., 2011; Pickford et al., 2008; 

Spencer et al., 2009; Yang et al., 2017). Moreover, it has recently been shown that inducing 

oligodendroglial overexpression of the autophagy regulator transcription factor EB (TFEB) 

improves lysosomal biogenesis and autophagic clearance of a-synuclein and prevents 

neurodegeneration in the PLP-SYN mouse model (Arotcarena et al., 2019a), opening the way 

to assessing compounds capable of increasing TFEB expression (Kilpatrick et al., 2015; Song 

et al., 2014; Tan et al., 2019). That being said, before autophagy enhancing therapies can move 

further into human trials, it is necessary to fully capture the extent and causes related to 

autophagic dysfunction in MSA. 
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The preclinical evidence pointing to c-Abl as an putative target for treating a-

synucleinopathies appears to be robust (Brahmachari et al., 2016; Brahmachari et al., 2017; 

Karuppagounder et al., 2014; Mahul-Mellier et al., 2014). Indeed, we found an increased ratio 

of activated c-Abl in the striatum of PLP-SYN mice, as it has been reported for PD mice 

(Brahmachari et al., 2016). Likewise, we also found pY39 a-synuclein levels to be increased 

in the striatum of PLP-SYN mice and to be present in GCI, which parallels findings in PD mice 

and LB inclusions (Brahmachari et al., 2016); it also appears to have a physiological role, as it 

can be detected in brains of non-transgenic mice. Despite these similarities and proper target 

engagement, inhibition of c-Abl by nilotinib had no effect on a-synuclein accumulation and 

nigral neurodegeneration. We believe this to be due to differences in the roles that c-Abl and 

pY39 a-synuclein play in oligodendroglial and neural synucleinopathies. It would be 

interesting for future studies to compare c-Abl kinase activity in different brain cells, and 

elucidate physiological and abnormal pathways that lead to phosphorylation of Y39 a-

synuclein, and its role in health and disease. This underscores the necessity to better understand 

the intrinsic molecular differences between synucleinopathies in the pursuit of effective 

disease-modifying treatments. 

  Beyond phosphorylation, another relevant PTM that a-synuclein undergoes is 

truncation (see summary at table 4). Proteolytic cleavage of a-synuclein may occur at its 

carboxyl-terminus (C-terminus) region, and C-terminal truncated a-synuclein can be found in 

aggregates; further, truncated a-synuclein acts as seed and increases aggregation propensity 

(Hoyer et al., 2004; Li et al., 2005; Murray et al., 2003; Sorrentino et al., 2018; Tofaris et al., 

2003; Ulusoy et al., 2010; Wang et al., 2016; Zhang et al., 2019). Accordingly, belnacasan 

(previously VX-765), an orally active inhibitor of the pro-inflammatory enzyme caspase-1, 

which cleaves a-synuclein, has been shown to attenuate a-synuclein accumulation and 

neuronal loss in vitro and in the PLP-SYN mouse model of MSA (Bassil et al., 2016; Wang et 
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al., 2016). Four studies have shown that direct inhibition of a-synuclein aggregation by 

compounds that physically interact with it is a promising approach. The orally available, small 

molecules CLR01 and PBT434 were revealed to decrease a-synuclein burden and alleviate 

nigral neural death (Finkelstein et al., 2019; Herrera-Vaquero et al., 2019); and anle138b, 

another small molecule that directly interacts with amyloidogenic proteins and modulates 

oligomer formation, reportedly mitigates α-synuclein aggregation and disease progression in 

animal models of PD and MSA (Antonschmidt et al., 2019; Heras-Garvin et al., 2018; Wagner 

et al., 2013). A last molecule with similar mechanism of action, SynuClean-D, has been 

reported beneficial in a mouse model of PD (Pujols et al., 2018); it remains to be seen if it does 

the same in MSA animals. Our final and ongoing project combines two drugs that reduce a-

synuclein aggregation in the PLP-SYN mouse model of MSA. Even though belnacasan and 

anle138b restored nigral dopaminergic neurons to healthy levels, and similarly reduced 

aggregates, pathological a-synuclein was still present. We aimed to assess whether combining 

drugs that target protein oligomerization and aggregation via different mechanisms would prove 

synergistic, and if a more profound reduction of a-synuclein accumulation could be attained. 

Briefly, 8 week-old PLP-SYN mice and age-matched non-transgenic littermates were treated 

with placebo, belnacasan and anle138b alone and in combination for 10 weeks. Study endpoints 

were the efficacy to decrease a-synuclein burden and alleviate dopaminergic neural loss. We 

will appraise the drugs’ effect on the amount of different species of a-synuclein, namely soluble 

oligomers and stable aggregates, also their impact on the inflammasome markers caspase-1 and 

interleukin-1beta (IL-1b), and the degree of microglial activation. Our preliminary data confirm 

that both drugs are capable of preserving the number of TH+ neurons in the SN to levels equal 

to those found in non-transgenic mice. We have also found that levels of both forms of caspase-

1, pro-caspase and active caspase-1, do not differ in the cortex or striatum of WT and PLP-SYN 

mice, irrespective of treatment; also, we found no difference of said enzyme in the putamen and 
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frontal cortex of MSA patients and controls. Once we have a more complete understanding of 

these drugs and their possible synergistic effects, it seems likely that one or more of them will 

enter clinical development in the future  

 Also aimed specifically at a-synuclein, studies evaluating immunization against it, both 

passive and active, have demonstrated a reduction of a-synuclein burden and neuroprotection 

in animal models of MSA, supposedly by blocking its cell-to-cell propagation and facilitating 

its clearance (Mandler et al., 2015; Valera et al., 2017a). This prompted the conduction of a 

phase I clinical trial of selective active immunization which recently reported a favourable 

safety and tolerability profile in early MSA patients (Meissner et al., 2018). Through gene 

therapy, induction of enzymatic proteolysis of a-synuclein has also proven to be effective in 

MSA mice (Spencer et al., 2015).  

Strategies that engage a-synuclein-independent disease mechanisms have shown 

neuroprotective effects too. Hereof, reversing neuro-oligodendroglial insulin resistance with a 

glucagon-like peptide 1 agonist prevented dopaminergic neuron loss in MSA mice (Bassil et 

al., 2017a). Related to the fact that oligodendrocytes produce the myelin sheaths surrounding 

axons, enhancing myelination with benztropine has been reported to be beneficial (Ettle et al., 

2016). Monophosphoryl lipid A, an agonist of the toll receptor 4 (TLR4), induces microglial 

autophagy, these cells would, in turn, increase their uptake and proteolysis of a-synuclein. It 

has been shown to be capable of reducing a-synuclein burden and dopaminergic cell loss in 

PLP-SYN mice (Venezia et al., 2017). Finally, stabilising chromatin by inhibiting histone 

deacetylases, a toxic mechanism through which a-synuclein interacts with nuclear DNA, has 

recently been reported to decrease dopamine neural death in MSA mice (Sturm et al., 2016).  
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DRUGS VALIDATED IN MSA MICE 
Compound Target Mechanism Outcomes References 
AFF1 
(corresponds to 
PD01 in clinical 
trials) 

α-synuclein Active immunization Protection of striatal and 
cortical neurons 
Induction of anti-α-
synuclein antibodies 
ò α-synuclein burden 
ñ microglial activation 
ñ myelination 
ñ motor function 

(Mandler et 
al., 2015) 

Anle 138b α-synuclein Aggregation inhibitor Protection of nigral neurons 
ò α-synuclein burden 
ò microglial activation 
ñ motor function 

(Heras-
Garvin et al., 

2018) 

CD5-D5 and 
lenalidomide 

α-synuclein and 
immunomodulatio
n 

Passive immunization, 
T cell co-stimulation, 
òTNFα 

ò astroglial and microglial 
activation 
ò α-synuclein burden 
ò hyperactivity phenotype 

(Valera et 
al., 2017a) 

CLR01 α-synuclein Aggregation inhibitor Protection of nigral neurons 
ò α-synuclein burden 
ò anxiety-like behaviour 

(Herrera-
Vaquero et 
al., 2019) 

Neurosin  α-synuclein Cleavage Protection of striatal 
neurons 
ò α-synuclein burden 
ñ myelination 
ò hyperactivity phenotype  

(Spencer et 
al., 2015) 

TFEB α-synuclein Autophagy enhancer Protection of nigral neurons 
ò α-synuclein burden 
ñ neurotrophic support 
ñ autophagy 

(Arotcarena 
et al., 2019a) 

Belnacasan  
(VX-765) 

α-synuclein Inhibition of C-terminal 
truncation by caspase-1 

Protection of nigral neurons 
ò truncated α-synuclein 
ò α-synuclein burden 
ñ motor function 

(Spencer et 
al., 2015) 

Benztropine Myelin Muscarinic antagonist Protection of cortical 
neurons 
ñ myelination 

(Ettle et al., 
2016) 

Exenatide Insulin resistance Glucagon-like peptide-1 
analogue 

Protection of nigral neurons 
ò α-synuclein burden 
ò insulin resistance 

(Bassil et al., 
2017a) 

Monophosphoryl 
lipid A 
 

Toll-like receptor 
4 (TLR4) 

TLR4 agonist 
Inducer of phagocytosis 

Protection of nigral and 
striatal neurons 
ò α-synuclein burden 
ñ motor function 

(Venezia et 
al., 2017) 

Sodium 
phenylbutyrate 

Histone 
deacetylase  

Histone deacetylase 
inhibition 

Protection of nigral neurons 
ò α-synuclein burden 
ñ motor function 

(Sturm et al., 
2016) 

POSSIBLE THERAPEUTIC APPROACHES TO BE ASSESSED 
Target/compound Rationale 

G protein–coupled receptor kinase 2 
(GRK2 

Main integrator of insulin signalling pathway. Phosphorylates IRS-1, 
decreasing insulin responsiveness, promoting insulin resistance. Increased 
levels in animal models of insulin resistance and humans with metabolic 
syndrome. 

Tubulin polymerization promoting 
protein (p25a) 

Oligodendroglial protein, present in GCI and involved in early 
pathological events in MSA. Enhances a-synuclein polymerization. 

Fingolimod Induces expression of BDNF and enhances myelination. Reverted 
neurodegeneration and a-synuclein accumulation  in PD mice. 
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Activated microglia Drives pathological neuroinflammation, secretes proinflammatory 
cytokines. Neuroinflammation promotes a-synuclein aggregation and 
redox disbalances.  

Tumour necrosis factor a (TNFa) Key cytokine in inflammation-induced cell damage. TNFa inhibitors 
already available for use in humans 

Oxidative stress Enhances neuroinflammation and promotes aggregation of a-synuclein 
 

Iron Iron disbalance increases oxidative stress. Iron also enhances a-synuclein 
aggregation 
 

 

Table 4. Summary of preclinical pipeline in MSA and promising therapeutic approaches to be 

validated. Brain-derived neurotrophic factor, BDNF; insulin receptor substrate 1, IRS-1. 

 

Apart from molecules already proven to be neuroprotective, there are a number of other 

possible target candidates for preclinical assessment in MSA. The protein p25a is involved in 

early pathogenic events preceding a-synuclein aggregation (Song et al., 2007), and recent in 

vitro research illustrates how it can interact with a-synuclein to accelerate its seeding and the 

formation of pathological aggregates in oligodendrocytes (Mavroeidi et al., 2019). In 

consequence, targeting p25a could provide a mechanism to prevent a-synuclein aggregation at 

the earliest steps of the pathogenesis of MSA. Dysfunction of the insulin signalling cascade in 

different brain cells has been described in neurodegenerative disorders, including MSA (Bassil 

et al., 2017a; Bassil et al., 2014). The insulin signalling is notably transduced by an integrator 

protein named G protein–coupled receptor kinase 2 (GRK2), while mouse models of insulin 

resistance and humans with metabolic syndromes display increased levels of GRK2 (Vila-

Bedmar et al., 2015). Targeted knockdown of GRK2 is currently being evaluated at our lab in 

MSA mice (https://www.multiplesystematrophy.org/msa-research/preclinical/). Fingolimod is 

an approved oral treatment for relapsing/remitting multiple sclerosis (MS) (Sanford, 2014). Its 

protective mechanism is due to an increase in the expression of brain-derived neurotrophic 

factor (BDNF) and improving myelination (Gurevich et al., 2018; Vidal-Martínez et al., 2016). 

This drug has been shown to alleviate a-synuclein pathology and protect dopaminergic neurons 
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in PD mice (Vidal-Martinez et al., 2019; Vidal-Martínez et al., 2016), and it appears to be 

effective in an in vitro model of MSA (Segura-Ulate et al., 2017; Vargas-Medrano et al., 2019).  

We have already mentioned the interplay between neuroinflammation  and a-synuclein 

(see page 18 of Introduction), where a-synuclein induces an inflammatory response from 

microglia and astroglia and, in turn, the inflammatory environment further promotes a-

synuclein aggregation (Lee et al., 2010; Vieira et al., 2015). In MSA, the distribution of 

microglial activation correlates with the known pattern of neurodegeneration and with the GCI 

burden in affected areas (Ishizawa et al., 2004). Through a PET imaging study assessing 

microglia, an increased activity was detected in classically affected regions in MSA (Gerhard 

et al., 2003). A clinical trial assessing minocycline, an antibiotic with anti-inflammatory effects 

(Clemens et al., 2018), failed to show disease modification in MSA-P patients, while two of the 

three minocycline-treated patients that underwent PET imaging showed decreased microglial 

activation (Dodel et al., 2010). In spite of this trial failure, reducing microglial activation 

remains a very appealing strategy to tackle the neurodegenerative process, and other 

compounds could prove more effective in restoring microglia to its normal activity. Moreover, 

abnormally activated glial cells secrete, among other pro-inflammatory cytokines, tumour 

necrosis factor alpha (TNFa) and IL-1b (Solleiro-Villavicencio and Rivas-Arancibia, 2018; 

Vieira et al., 2015). Elevated levels of these two cytokines have been described in cerebrospinal 

fluid, serum and post-mortem tissue of MSA patients  (Kaufman et al., 2013; Salvesen et al., 

2015; Yamasaki et al., 2017). Further, a recent study suggests a possible link between TNFa 

and IL-1b polymorphisms and MSA (Zhou et al., 2018). In this context, inhibition of TNFa 

has been suggested as a feasible approach in MSA, given that TNFa inhibitors are readily 

available in the clinic (Ndayisaba et al., 2019). Interestingly, pro-IL-1b, is proteolytically 

activated by caspase-1 (Denes et al., 2012), which is inhibited, as we have mentioned, by 

belnacasan (Bassil et al., 2016). Also, neuroinflammation is driven by a loss of redox balance 
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(Solleiro-Villavicencio and Rivas-Arancibia, 2018; Vieira et al., 2015), and iron imbalance has 

been described as an enhancer of oxidative stress, which promotes a-synuclein aggregation, 

but iron itself can also accelerate a-synuclein polymerization (Kaindlstorfer et al., 2018). 

Further, post-mortem and MRI studies have pointed to increased amounts of iron in regions 

classically damaged by the degenerative process in MSA (Dexter et al., 1991; Kaindlstorfer et 

al., 2018). Consequently, it would be interesting to explore strategies aimed at restoring redox 

and iron imbalances in MSA. 

 

Overall, we here have shown that even though MSA presents clinical, neuropathological 

and molecular features that overlap in some aspects with PD, there are facets that highlight the 

need to identify and understand their disparities, which range from a-synuclein processing, 

cellular accumulation, clearance, selective vulnerability or neuropathology, to the clinical 

presentation. The synucleinopathy puzzle has a millions pieces, to find them and put them 

together, this hard work has to be carried out in the clinic and the laboratory. 
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