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ABSTRACT

Résumé de la thèse:
Le travail de thèse consiste en l’étude des propriétés mécaniques et optiques de couches
minces (principalement déposées par IBS au LMA), dans le but de réduire le bruit
thermique des miroirs des détecteurs des ondes gravitationnelles (GWDs) actuels et
futurs. La caractérisation mécanique effectuée au LMA concerne les mesures de frot-
tement interne et de constantes élastiques par la méthode de ”ring-down” utilisant un
système de suspension nodale (GeNS). La caractérisation optique a été réalisée à l’aide
de l’ellipsométrie spectroscopique (SE). Grâce à une collaboration avec l’OPTMATLAB
de l’Université de Gênes, j’ai pu caractériser les échantillons par SE pour une large
gamme d’énergie (des NIR aux UV).

Les premiers échantillons analysés sont les couches actuellement utilisées dans les
GWDs: SiO2, Ta2O5 et Ti:Ta2O5. Ensuite, Nb2O5, Nb:TiO2, Zr:Ta2O5, SiC et SiNx

ont été caractérisés en tant que matériaux à haute indice de réfraction, tandis que
MgF2 et AlF3 ont été étudiés pour remplacer le matériau à bas indice afin de réduire
l’épaisseur totale du revêtement et donc le bruit thermique.

Parmi les couches étudiées, Zr:Ta2O5 et SiNx ont fourni les résultats les plus
prometteurs en terme de dissipation.

Des résultats importants ont été obtenus concernant la théorie de la dissipation
dans les oxydes et lors de la caractérisation optique et mécanique des échantillons.

Mots-clés: couches minces, frottement interne, bruit thermique, ellipsométrie, énergie
d’Urbach, ondes gravitationnelles

Thesis abstract:
The work of this thesis is the study of mechanical and optical properties of coatings
(mainly deposited by IBS technique at LMA), with the purpose of finding a new possible
material with the aim of reduce the coating thermal noise in current and in future
gravitational-wave detectors (GWDs). The mechanical characterization done at LMA
regards measurements of internal friction and elastic constants by the ring-down method
using a Gentle Nodal Suspension (GeNS) system. The optical characterization has
been done using spectroscopic ellipsometry (SE). Thanks to a collaboration with the
OPTMATLAB of the University of Genova, I was able to characterize the samples
using SE in a wide-range energy region (from UV to NIR).

The first analysed samples are the coatings currently used in GWDs, SiO2, Ta2O5

and Ti:Ta2O5. Then, Nb2O5, Nb:TiO2, Zr:Ta2O5, SiC and SiNx have been character-
ized as high-refractive index coatings, whereas MgF2 and AlF3 have been studied with
the purpose of replace the low-refractive index, reducing the total coating thickness,
hence the coating thermal noise.

Among the investigated coatings, Zr:Ta2O5 and SiNx provided the most promising
results in term of internal friction.

Important finding have been achieved regarding the theory of the internal friction
of amorphous oxides and the optical and mechanical characterization of the samples.

Key-words: thin films, internal friction, thermal noise, ellipsometry, Urbach energy,
gravitational waves
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ABSTRACT

Résumé substantiel:
En septembre 2015, la première observation directe des ondes gravitationnelles, provenant
d’un système binaire de trous noirs, a été enregistrée. L’une des caractéristiques de la
radiation gravitationnelle est son amplitude extrêmement faible; ce n’est que grâce à la
grande amélioration technologique qu’il a été possible de réaliser la première détection,
en développant des interféromètres laser géants, fonctionnant à 1064 nm.

Ces interféromètres très sensibles se caractérisent par des bras kilométriques, des
cavités résonantes Fabry-Pérot et de grands miroirs de Bragg hautement réfléchissants.
Un réseau de détecteurs est actuellement opérationnel et d’autres détecteurs sont en
construction. En particulier, les détecteurs jumeaux Advanced LIGO opèrent aux USA,
Advanced Virgo opère en Europe tandis que KAGRA est en mis au point au Japon et
participera aux prochaines missions d’observation vers la fin de cette année 2019.

Bien que de multiples détections aient déjà eu lieu, les détecteurs des ondes grav-
itationnelles (GWDs) doivent entrer maintenant dans une phase d’amélioration. L’un
des principaux objectifs est de réduire le bruit thermique des couches réfléchissantes,
qui limite la zone centrale et plus sensible de la bande de détection, autour de 200
Hz. L’équilibre thermique est un équilibre dynamique, dans lequel il existe un échange
continu entre deux niveaux, provoquant le bruit thermique. C’est l’idée du système
à deux niveaux (Two-level System, TLS). Une sollicitation mécanique externe modifie
l’asymétrie d’un TLS, modifiant sa population en conséquence, et donc les constantes
élastiques du solide. La réponse mécanique est retardée par le processus de relaxation
qui se produit afin de rétablir l’équilibre dans le système, ce qui provoque la dissipation.
Selon le théorème de fluctuation-dissipation, les deux phénomènes de bruit thermique
et de dissipation d’énergie mécanique sont intimement liés.

Les revêtements réfléchissants actuellement utilisés sont des multicouches de tan-
tale dopé à l’oxyde de titane (Ti:Ta2O5, le matériau à haut indice) et de silice (SiO2,
le matériau à bas indice) déposés par pulvérisation ionique (IBS) dans le Laboratoire
des Matériaux Avancés (LMA) de Lyon, sur des substrats de silice fondue, massive et
de grande surface. Les couches de Ti:Ta2O5 sont reconnues comme étant la principale
source de bruit thermique dans les revêtements. Pour cette raison, il est important de
trouver un nouveau matériau à haut indice avec un frottement interne (directement lié
au bruit thermique) plus faible que le Ti:Ta2O5.

Dans ce contexte, la thèse consiste en l’étude des propriétés mécaniques et op-
tiques de couches minces (principalement déposées par IBS au LMA), dans le but de
trouver un nouveau matériau qui permette de réduire le bruit thermique des miroirs
des GWDs actuels et futurs. La caractérisation mécanique effectuée au LMA concerne
les mesures de frottement interne et de constantes élastiques par la méthode de � ring-
down � utilisant un système de suspension nodale (Gentle Nodal Suspension, GeNS).
La caractérisation optique a été réalisée à l’aide de l’ellipsométrie spectroscopique (SE),
une technique efficace pour étudier les propriétés optiques des matériaux et l’épaisseur
des couches minces. Grâce à une collaboration avec l’OPTMATLAB de l’Université de
Gênes, j’ai pu caractériser les échantillons par SE pour une large gamme d’énergie (des
UV aux NIR).

Les premiers échantillons analysés sont les couches actuellement utilisées dans les
GWDs: SiO2, Ta2O5 et Ti:Ta2O5. Ensuite, Nb2O5, Nb:TiO2, Zr:Ta2O5, SiC et SiNx

ont été caractérisés en tant que matériaux à haute indice de réfraction, tandis que
MgF2 et AlF3 ont été étudiés pour remplacer le matériau à bas indice afin d’augmenter
le contraste d’indice, réduisant ainsi l’épaisseur totale du revêtement et donc le bruit
thermique.

Parmi les couches étudiées, Zr:Ta2O5 et SiNx ont fourni les résultats les plus
prometteurs en terme de dissipation, en particulier à 100 Hz, où les GWDs sont limités
par le bruit thermique des revêtements réfléchissants. Par ailleurs, ces deux matériaux
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ayant une température de cristallisation nettement plus élevée que le Ti:Ta2O5, ils peu-
vent subir un traitement thermique à plus haute température, ce qui est favorable pour
leurs propriétés mécaniques et optiques. De plus, un recuit à plus haute température
est bénéfique également pour les couches de silice, ce qui permet de réduire l’angle de
perte total des revêtements.

Zr:Ta2O5 présente des constantes optiques et élastiques similaires à celles du
Ti:Ta2O5; pour cette raison, il pourrait être un bon candidat pour les détecteurs à
température ambiante. Toutefois, des tests supplémentaires sur un empilement opti-
misé Zr:Ta2O5/SiO2 sont nécessaires.

SiNx présente des pertes ∼ 3 fois plus faibles de celles du Ti:Ta2O5. Cependant,
il réside le problème lié à l’absorption à 1064 nm, bien plus élevée que celle des couches
actuellement utilisées dans les GWDs. Toutefois, d’autres améliorations de SiNx pour-
raient diminuer l’absorption optique; un test sur un empilement optimisé SiNx/SiO2

est nécessaire. Le bruit thermique dépend également de la différence entre les modules
d’élasticité du substrat et du revêtement, donc le module de Young de SiNx , supérieur
à celui du substrat, pourrait limiter son utilisation dans les détecteurs à température
ambiante. Toutefois, les futurs GWDs cryogéniques pourraient avoir un substrat en
saphir, dont le module de Young est supérieur à celui de la silice. Pour ces raisons, le
SiNx pourrait être une solution valable pour les détecteurs cryogéniques.

L’une des nouveautés de ce travail concerne le calcul analytique du
frottement interne dans un TLS, en considérant une expression générale de
la barrière de potentiel. L’angle de perte obtenu est en accord avec les résultats
connus dans la littérature sur la silice, en utilisant un potentiel exponentiel. Pour
confirmer la validité générale de ce calcul, d’autres comparaisons avec d’autres angles
de perte mesurés seront nécessaires.

D’autres résultats importants ont été obtenus lors des caractérisations optique et
mécanique des échantillons. En particulier, l’analyse des couches de silice a permis
d’observer un angle de perte mécanique supplémentaire du bord des échantillons. Un
modèle qui tient compte de cet effet du bord a été développé au cours
de cette thèse. Cet effet est en concurrence avec le modèle ”bulk and shear”, et il
pourrait masquer la dissipation intrinsèque de la couche s’il n’est pas pris en compte
pendant l’analyse. Par ailleurs, afin d’atténuer l’effet du bord et de définir les meilleurs
traitements pour tous les échantillons, un protocole de mesure et de conservation a été
établi, concernant le recuit post-dépôt et le stockage sous vide des échantillons.

De plus, une méthode non destructive, basée sur l’ajustement des sim-
ulations par éléments finis aux mesures effectuées à l’aide de GeNS, a été
développée pour évaluer la constante élastique des couches.

Enfin, au cours de cette thèse, les propriétés optiques, liées à la densité des états
électroniques, et les propriétés mécaniques, relatives à la dissipation, ont été analysées
en relation avec l’organisation structurale des couches à courte et moyenne distance.
En particulier, pour la première fois, une corrélation entre l’énergie d’Urbach,
liée au comportement exponentiel du bord de l’absorption, et la dissipation,
liée aux propriétés mécaniques, a été trouvée. Cette corrélation est observée pour
différents oxydes, ce qui suggère sa validité générale.
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INTRODUCTION

“If I have seen further than others, it is by standing
upon the shoulders of giants.”

Isaac Newton
Letter to Robert Hooke, Cambridge, February 5 (1676)

In 1916 Albert Einstein observed that light-speed transversal waves are solution
of the linearised equations of general relativity. One characteristic of the gravitational
radiation is the extremely weak amplitude, which makes them nearly impossible to
be detected from sources created in laboratory. For this reason, astrophysical sources
have to be considered in order to obtain detectable signals. With the observation of
the binary system PSR B1913+16 [1, 2], it was possible to demonstrate indirectly for
the first time the existence of gravitational-wave (GW).

Almost 33 years later, in September 2015, the first direct observation of GW
originated from a black-hole binary system was recorded [3]. It was only thanks to
the great technological improvement that it was possible to achieve the first detection,
developing giant ground-based laser interferometers detectors. These high-sensitive in-
terferometers are characterized by kilometric arms, Fabry-Perot resonant cavities and
high-reflective large mirrors. After more than 20 years of research and development,
the advanced-detectors started GW astronomy. A detectors network is already work-
ing and other detectors are under construction. In particular, the twins Advanced
Laser Interferometer Gravitational-Wave Observatory (LIGO) are operating in USA,
Advanced Virgo is working in Italy for an European collaboration whereas Kamioka
Gravitational Wave Detector (KAGRA) is under construction in Japan and will join
the next observation runs at the end of the year. Nowadays, we are in the middle of the
”O3” observing run and the network is detecting an average of four signals per months.

While multiple detections already occurred, the gravitational-wave detectors (GWDs)
are now entering an upgrading phase. One of the main goals is to reduce the so-called
coating thermal noise (CTN) which limits the central and most sensitive region of the
detection band, around 200 Hz. CTN arises from fluctuations of the mirror surface
under thermally activated transitions between equilibrium configurations of structure
in coatings [4]. Its amplitude is linked to the amount of internal friction within the
mirror materials, via the fluctuation-dissipation theorem [5]: the higher the loss, the
higher the thermal noise level. Fostering higher sensitivity in the next generation of
GWDs, necessary to investigate deeper portions of the universe, calls for a lowering
of CTN and a better knowledge of the structure of amorphous oxides coatings at the
molecular level [6]. Furthermore, the reduction of CTN would be beneficial also for
future GWDs and precision experiments using high-finesse optical cavities, such as
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INTRODUCTION

frequency standards for laser stabilization [7], atomic clocks [8] and opto-mechanical
resonators [9].

Current coatings are Ion Beam Sputtering or Ion Beam Sputtered (IBS) multilay-
ers made of titania-doped tantala (Ti:Ta2O5, the high-index material) and silica (SiO2,
the low-index material) deposited by the Laboratoire des Matériaux Avancés (LMA) of
Lyon1, on massive, large-area fused silica substrates [10]. Ti:Ta2O5 was recognized as
the dominant source of thermal noise in coatings [11]. For this reason, there is interest
in finding new possible high-index material with lower internal friction than Ti:Ta2O5.
Adding to this, new material with higher refractive index would allow to reduce the
total thickness of the coating and hence to decrease the total CTN [12].

Within this context, the work of this thesis concerned the study of mechanical and
optical properties of coatings, mainly deposited by IBS technique at LMA, with the
purpose of finding a new possible material for current and possibly for future GWDs.
The mechanical characterization done at LMA regards internal friction and elastic con-
stants. The optical characterization has been done using spectroscopic ellipsometry
(SE), a useful method to investigate optical properties and thickness of thin film mate-
rials. Thanks to a collaboration with the Optics Materials Laboratory (OPTMATLAB)
of the University of Genova, I was able to characterize the samples using SE in a wide-
range energy region (from ultraviolet (UV) to near-infrared (NIR)).

Outline of the Thesis

• Chapter 1 introduces the theory of GW and their interferometric detection.
The first part is dedicated to the gravitational radiation; the different sources are
listed, showing all the detected signals obtained since the first one in September
2015. The second part is dedicated to detectors, explaining the benefit of using
km-scale interferometers and the need of a network to localize the sources. The
main part of this chapter concerns the detectors sensitivity, explaining the need
of improvement towards a new generation. Particular attention is directed to the
CTN problem, which is the motivation of this work.

• Chapter 2 gives a fundamental understanding of the atomic arrangement in
amorphous structure, which is characterised by static and dynamic features and
determines the optical and mechanical properties of solids. In the first part are
described the static properties. The absorption of amorphous solids is defined by
three different region regarding the optical absorption edge: the main absorption
region involves band-like states and it is described by the Tauc-Lorentz and Cody-
Lorentz models; the absorption threshold involves transitions between localized
tails and extended states, described by the exponential Urbach behaviour, and
the transitions which involve only localized states inside the energy gap, near the
Fermi level, described by an exponential behaviour. Regarding the mechanical
behaviour, the interatomic forces and the structure of a glass determine its vi-
brational properties and hence its elastic constants. It is possible to demonstrate
that the elastic moduli of amorphous solids depend on Gaussian deformation of
the structure.

The second part treats the dynamic properties of solids. Raman spectroscopy
allows to obtain informations of atomic organizations by the scattering process
related to the interaction of light with the solid. Thermal equilibrium is a dynam-
ical equilibrium, where a continuous exchange between two levels exists, causing
the thermal noise. This is the idea of the two level system (TLS). An external me-
chanical solicitation modifies the asymmetry of a TLS, changing consequentially

1http://lma.in2p3.fr/
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its population, hence the elastic constant of the solid. The mechanical response
is delayed by the relaxing process that occurs in order to bring the system back
to the equilibrium, causing the dissipation. Following the fluctuation-dissipation
theorem [5] the two phenomena of thermal noise and mechanical dissipation are
the two aspects of the same phenomenon: irreversible processes in the solid struc-
ture.

The novelty presented in this chapter regards the analytical calculation
of the internal friction in a TLS, considering a general expression of
the potential barrier.

• Chapter 3 describes the methods adopted to characterize the samples. In SE the
change in polarization of reflected or transmitted light is probed, when it interacts
with the sample. I used two different ellipsometers, covering complementary and
partially overlapping spectral regions, obtaining information related to a broad
wavelength range from 190 to 1680 nm (0.7 - 6.5 eV). The different optical mod-
els are listed, regarding the transparent region, which gives preliminary results
including the wavelength of interest 1064 nm and 1550 nm, and the absorption
region.

The mechanical properties have been characterized by the ring-down method
using a Gentle Nodal Suspension (GeNS) system. Remarkably, the dilution factor
− the energy stored in the coating to the total energy of the system −, which allow
to estimate the coating loss angle, can now be measured with a GeNS system. A
non-destructive method to estimate the elastic constant of coatings has
been developed, based on fitting the measured dilution factors with a
model based on finite-element analysis.

• Chapter 4 presents the mechanical and optical investigation on coatings. A brief
introduction describes the coating deposition method and on the different coaters
used to deposit all the samples.

During the mechanical characterization, unexpected behaviour of the loss angle
highlighted the impact of the edge of the samples affecting the coating loss. For
this reason, a model which includes the extra mechanical loss of the
edge and a protocol to mitigate this problem have been developed
during this thesis.

The mechanical and optical properties of coatings are studied under different post-
deposition treatments and the doping. As first, we analyse the standard coatings
silica (SiO2), tantala (Ta2O5) and titania-doped tantala (Ti:Ta2O5). Combining
Raman and loss angle measurements on different post-deposition annealed sam-
ples, it has been possible to find a correlation between the structure organization
and the coating loss angle for SiO2 coating. Furthermore, the optical properties,
related to the electronic density of states, and mechanical properties, regarding
the internal friction, have been compared by their relationship with the structure
organization in a short- to medium-range order. In particular, for the first time
a correlation between the Urbach energy, related to the exponential
behaviour of the absorption edge, and the internal friction has been
found. The correlation is observed analysing different oxide coating materials,
suggesting a general validity of such property.

The mechanical and optical properties of Nb2O5, Nb:TiO2, Zr:Ta2O5, MgF2,
AlF3, SiC and SiNx as new possible coating materials have been analysed and
compared in order to determine the best candidate for future GWDs.
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CHAPTER 1

GRAVITATIONAL-WAVE DETECTORS

“One must still have chaos in oneself to be able to give
birth to a dancing star.”

Friedrich Nietzsche
Thus spoke Zarathustra, p.9 (1883)

Giants ears to listen to the universe. This first chapter introduces the theory of
gravitational waves, showing the detectors used for all the recent detections and the
upcoming improvements with the aim of a better sensitivity.

The first part is dedicated to the gravitational radiation, ripples in space and time
which are solutions of the gravitational field equations in the weak-field approximation.
The different sources are listed, showing all the detected signals obtained since the first
one in September 2015.

The second part is dedicated to gravitational-wave detectors, explaining the bene-
fit of using km-scale interferometers and the need of a network to localize the gravitational-
wave sources. A major part concerns the detectors sensitivity, explaining the need of
detectors improvement towards a new generation.

Particular attention is directed to the coating thermal noise problem, which is the
motivation of this work.
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CHAPTER 1. GRAVITATIONAL-WAVE DETECTORS

1.1 Space-Time Curvature

General Relativity conceived in 1916 by Albert Einstein gives a new way of thinking.
The main change introduced by this theory is the possibility of a curved space-time
in which objects can move, so that the idea of gravitational attracting force, settled
by Newton in 1687, is replaced by the concept of falling masses in a curved space.
More precisely, the space-time is influenced by the presence of massive objects and, as
a consequence, the matter moves according to lowest energy condition. In this sense
John Wheeler stated “Space-time tells matter how to move; matter tells space-time how
to curve.”

1.1.1 Gravitational-Wave Equation

To obtain the expression of gravitational wave equations we have to study the weak-field
solutions of the field equations [13]

Rµν −
1

2
Rgµν =

8πG

c4
Tµν , (1.1)

where Rµν is the Ricci tensor, R the Ricci scalar, G the Newton gravitational constant,
Tµν the energy-momentum tensor, c the speed of light and gµν is the metric-tensor such
that

ds2 = gµνdx
µdxν . (1.2)

Following equations (1.1), each variation of Tµν modifies the gravitational field corre-
sponding to a variation of the metric tensor gµν and vice versa. Starting from Minkowski
space, where the metric tensor is

gµν = ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (1.3)

and considering a weak perturbation, gµν is modified by a small quantity hµν ,

gµν = ηµν + hµν , |hµν | � 1 . (1.4)

If we now consider the Hilbert gauge1 ∂µhµν = 0, we obtain the following equations

∂λ∂λhµν =

(
∇2 − 1

c2

∂2

∂t2

)
hµν = 0 , (1.5)

which describe plane-wave radiation travelling at the speed of light c

hµν = εµνe
i(kλxλ) , (1.6)

where ε̂ is the polarization tensor. It can been shown that under a particular gauge
[14] i.e. transverse-traceless gauge (TT gaue), it is possible to reduce ε̂ to a linear
combination of two independent components ε̂+ and ε̂×,

ε̂ = h+ε̂+ + h×ε̂× = h+


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

+ h×


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 . (1.7)

Only the spatial components of the ĥ tensor perpendicular to the direction of propa-
gation have non-zero values and the sum of the diagonal terms is zero (traceless). In
this sense, taking a ring of masses in the xy-plane (figure 1.1), a gravitational wave
travelling in the z-direction affects only the components along x̂ and ŷ.

1It is equivalent to the Lorentz gauge for the electromagnetism.
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1.1. SPACE-TIME CURVATURE

h+

y

xz

t = 0 t = 1
4T t = 1

2T t = 3
4T

t = T

h×

Figure 1.1: Ring of test masses in the xy-plane under the effect of a grav-
itational wave travelling along the z-axis. ε̂+ and ε̂× polarizations,
having the same modulo over a period T = 2π/ω, differ only by a
rotation of 45°.

1.1.2 Gravitational-Wave Sources

To understand which mechanisms generate gravitational radiation, it is useful to start
making some considerations about the analogy with the electromagnetic radiation.
The emission by a slow variation of charge distribution can be expressed in a series of
multipoles, where the strongest electromagnetic radiation would be expected for the
lowest-order pole radiation, i.e. the electric dipole, followed by the magnetic dipole and
electric quadrupole. In the same way, for gravitational waves, the mass conservation
will exclude the monopole radiation. Furthermore, since the mass is always a positive
quantity, the linear and angular momentum conservation exclude the dipolar gravita-
tional radiation. It follows that gravitational radiation is at least quadrupolar and is
directly linked to the quadrupole moment of the mass distribution, which in TT gauge
reads [14]

Qµν =

∫
dV

(
xµxν −

1

3
δµνr

2

)
ρ(r) , (1.8)

where ρ(r) is the mass density in a volume V . In 1918 Einstein expressed the amplitude
hµν as second-order temporal variation of the quadrupole moment,

hµν =
2G

rc4
Q̈µν . (1.9)

Using this relation it is possible to obtain the order of magnitude for the wave amplitude
h [15]. If we imagine to create a gravitational-wave source in laboratory, by spinning at 1
kHz a dumbbell system of two masses of 1 ton each separated by a rod 2 meters long, the
amplitude of the waves generated by this device at the distance of one wavelength would
be hlab ≈ 10−39, which is practically impossible to detect. More massive sources moving
at relativistic speed are needed, in order to emit detectable gravitational radiation.

For astrophysical sources (like binary systems or supernova explosion, which emit,
as we will see, in the detection band of ground-based detectors, from 10 to 104 Hz),
the amplitude is h ≈ 10−21, which is higher than the current experimental detection
limit. The main expected sources of gravitational waves are:

Binary System: Compact object binaries consist of pairs of neutron stars (NS/NS),
black holes (BH/BH) or neutron star/black hole pairs (NS/BH) falling one into

7



CHAPTER 1. GRAVITATIONAL-WAVE DETECTORS

the other in inspiral orbits. Gravitational waves are emitted during the coa-
lescence. Typical signal frequency lies in the acoustic band probed by current
ground-based detector Advanced Virgo, Advanced LIGO and KAGRA. In figure
1.2 all the signals detected in last years are listed [16], obtained from black holes
or neutron stars binary system.

Pulsar: Neutron stars in rapid rotation can emit gravitational radiation if they lose
the spherical symmetry in their mass distribution. Electromagnetic radiation is
emitted with the same period of rotation. Despite the easy localization of these
objects due to the electromagnetic signal, the extreme stability of the frequency
radiation suggests a very small loss of energy, therefore a weak gravitational wave
signal.

Supernovae: Gravitational radiation can be emitted during the gravitational collapse
of certain types of stars. Supernovae are stars in which a gravitational collapse
generates a violent explosion. If the collapse is not spherically symmetric, gravi-
tational radiation can be emitted.

1.2 Interferometric Gravitational-Wave Detectors

The nature of gravitational wave radiation is to modify the space-time in the plane
perpendicularly to the propagation direction. The two polarizations ε̂+ and ε̂× act in
differential way, so that it is possible to detect the gravitational wave by measuring
the differences of the space deformation along the two perpendicular directions of the
polarizations. A particular instrument suitable for this kind of measure is the Michelson
interferometer, where the differential displacement of the mirrors is measured by the
interference of laser beams. The interference term is proportional to the phase shift φ0

of the beam electric fields

E1,2 = ∓1

2
E0e

−iωGWD(t+2L1,2/c) , (1.10)

where ωGWD = 2πc/λGWD is the frequency of the laser having wavelength λGWD and
L1,2 the length of the 1,2 arm. Under this respect, the power read by the photodiode
at the output of the detector is

P ∼ |Eout|2 = |E1 + E2|2 ,
P = P0 sin2 ∆φ0 , (1.11)

where ∆φ0 = 2π(L1 − L2)/λGWD. In the next session we will see how the detected
phase is modified by the presence of gravitational radiation.

1.2.1 Detection Principle

In order to use the interferometer as gravitational wave detector, the mirrors must play
the role of gravitational field probes. One can suppose a detector having free test-mass
mirrors in the xy-plane and calculate the phase shift caused by a gravitational wave
travelling along the z-direction, having polarization ε̂+ and time function

h+(t) = h0 cos(ωgwt) , (1.12)
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CHAPTER 1. GRAVITATIONAL-WAVE DETECTORS

where h0 is the amplitude and ωgw the frequency of the gravitational wave. The interval
between two close space-time events linked by the laser beam is given by

ds2 = gµνdx
µdxν

= (ηµν + hµν)dxµdxν

= −c2dt2 + (1 + h+(t))dx2 + (1− h+(t))dy2 = 0 .

(1.13)

Taking only the x-direction we obtain

ds2 = −c2dt2 + (1 + h+(t))dx2 = 0 , (1.14)

therefore

dx = ± cdt√
1 + h+(t)

∼ ±cdt
(

1− 1

2
h+(t)

)
. (1.15)

Gravitational radiation perturbs the metric ηµν modifying the space-time. This can be
observed as a delay of the laser beam in travelling along the arms of the interferometer.
Considering the light travel time τLx from the beam splitter to the end of the L-long x
arm, the integration of relation (1.15) reads

L = cτLx −
c

2

∫ τLx

0
h+(t)dt . (1.16)

Considering the time τ2Lx for the total round trip long 2L we obtain

2L = cτ2Lx −
c

2

∫ τ2Lx

0
h+(t)dt . (1.17)

From equation (1.17) it is evident that the time τ2Lx for a round trip is 2L/c plus a
correction of the order of h0. Since h+(t) depends already on h0 and we neglect terms
O(h2

0) we obtain from (1.17)

τ2Lx =
2L

c
+

1

2

∫ 2L/c

0
h0 cos(ωgwt)dt

=
2L

c
+
h0L

c

sin(ωgwL/c)

(ωgwL/c)
cos(ωgwL/c)

=
2L

c
+
L

c
h(t = L/c)sinc(ωgwL/c) . (1.18)

The same consideration can be done for the y direction

τ2Ly =
2L

c
− L

c
h(L/c)sinc(ωgwL/c) . (1.19)

From relations (1.18) and (1.19) it is possible to obtain the total travel time difference
between the two arms

∆τ = τ2Lx − τ2Ly =
2L

c
h(L/c)sinc(ωgwL/c) , (1.20)

which gives the following phase shift in the interferometer

∆φ = ωGWD∆τ =
4πL

λGWD

h(L/c)sinc(ωgwL/c) . (1.21)

According to relation (1.11), the power observed at the photodetector is modulated by
the gravitational wave signal as

P = P0 sin2(φ0 + ∆φ) . (1.22)
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1.3. PAST, PRESENT AND FUTURE DETECTORS

(a) Advanced Virgo. (b) Advanced LIGO.

Figure 1.3: Advanced VIRGO interferometer in Cascina, Italy on the left
(The Virgo collaboration (CC0 1.0)). Twin Advanced LIGO interferome-
ters in Livingston, Lousiana, and in Hanford, Washington on the right
(Courtesy CaltechMITLIGO Laboratory).

1.2.2 Large Ground-Based Interferometer

In order to obtain a detectable phase shift, it follows from the relation (1.21) that the
interferometer should have very long arms. For this reason, as showed in figure 1.3,
Advanced Virgo and Advanced LIGO interferometers have arms 3 and 4 km long.

In order to increase the detector sensitivity, several cavities are applied to the
interferometer [17]. Looking at equation (1.21), the sensitivity increases with the arms
length. For this reason, as can be observed in figure 1.4, Fabry-Perot cavities are
applied to the interferometry arms. The key feature of a Fabry-Perot resonator is the
finesse F , i.e. the spectral resolution. The sensitivity to a phase shift for a Fabry-Perot
interferometer ∆φFP is enhanced by a factor

∆φFP

∆φ
=

2F
π
. (1.23)

In presence of gravitational waves, the phase shift in a Fabry-Perot interferometer can
be written as [13]

|∆φFP| ' h0
8F
λGWD

L
1√

1 + (fgw/fp)2
, (1.24)

where fgw = ωgw/2π is the frequency of the gravitational wave and fp ' c/(4FL) is
the frequency related to the storage time of the cavity. This formula holds as long as
ωgwL/c � 1, otherwise the sinc(ωgwL/c) in relation (1.21) cuts the response further,
reflecting the fact that in each round-trip the gravitational wave have time to reverse
its sign.

Furthermore, to increase the signal to noise ratio one mirror (the power recycling
mirror) is added at the input of the detector to create the power recycling cavity with
the rest of the interferometer and use the signal sent backwards to increase the power
circulating in the interferometer [18]. In the same way, a mirror (the signal recycling
mirror) is added at the end of the detector, before the photodiode, to create the signal
recycling cavity and increase the sensitivity [18].

1.3 Past, Present and Future Detectors

Large ground-based interferometer requires extreme effort to control the many degrees
of freedom with extraordinary accuracy. Under this respect, the accomplishment of the
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Laser PRM BS

ITM

ETM

ITM ETM

SRM

Photodiode

Figure 1.4: Sketch of the interferometric detector highlighting the cavities.
The beam splitter (BS) allows to obtain the Michelson interferometer.
The Fabry-Perot cavities are between the input test-mass (ITM) and
the end test-mass (ETM). The power recycling cavity is made on the
power recycling mirror (PRM) and the rest of the interferometer. The
signal recycling cavity is made on the signal recycling mirror (SRM)
and the rest of the interferometer.

firsts detectors needed the building up of large collaborations and more than 30 years
of technological improvement.

The Virgo collaboration, which started as scientific collaboration between Italy
and France now extended to several European countries, inaugurated the Virgo project
in 2003; a power-recycled Fabry-Perot interferometer located in Cascina, Italy, with
arms of 3 km.

The LIGO collaboration has scientists members of the LIGO Scientific Community
(LSC) and runs two detectors in US with arms of 4 km since 2005, one located in
Hanford (Washington State) and one in Livingstone (Louisiana).

Beside these large detectors, GEO600 is an interferometer with 600-m long arms,
located in Hannover, Germany. The members of GEO600 are also members of the LSC.

If we refer only to binary system sources, the predicted rate of detection for these
interferometers is of the order of 10−3/yr. In practice, despite the several joint obser-
vational runs, the above interferometers never detected a gravitational wave signal.

1.3.1 To the First Detection and Beyond

A tenfold improvement of the first detectors’ sensitivity would increase the volume of the
Universe probed by a factor ∼ 103, increasing correspondingly the expected detection
rate. This was the motivation of the proposal of a second generation of interferometers:
Advanced LIGO (aLIGO) [19] and Advanced Virgo (AdV) [20], currently operational,
and KAGRA [21], a Japanese interferometer which will join the next observational runs.
The main improvement included the adoption of signal-recycling cavity, the increase of
input laser power, silica wires to suspend the optics and new high-reflective coatings.
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1.3. PAST, PRESENT AND FUTURE DETECTORS

Figure 1.5: The gravitational-wave event GW150914 observed by the LIGO
Hanford (H1, left column panels) and Livingston (L1, right column
panels) detectors [22]. First row: GW150914 signal. Second row:
Solid lines show a numerical relativity waveform for a system with pa-
rameters consistent with those recovered from GW150914. Third row:
Residuals after subtracting the filtered numerical relativity waveform
from the filtered detector time series. Bottom row: A time-frequency
representation of the strain data, showing the signal frequency increas-
ing over time.

On the 14th of September 2015, a gravitational wave was detected for the first
time by aLIGO [22]. This was the first direct detection of gravitational waves and the
first observation of a binary black hole merger. The detected signal is illustrated in
figure 1.5. After this great achievement, the gravitational-wave detectors accomplished
several detections [16] listed in figure 1.2.

After having accomplished a first stage of successful measurements, the largest
ground-based interferometric detectors are presently undergoing a major technical up-
grade towards a significant sensitivity improvement over the whole detection band. In
figure 1.6, the sensitivity improvement for Virgo and LIGO interferometers is showed.
The projects are identified by the appellative “+” and regard different technical aspect
of the detectors. LIGO and Virgo collaboration are planning to increase the detector
sensitivity in the central region of the detection band, where Brownian coating thermal
noise dominates.

Detector Network
A single detector allows to observe the transit of gravitational waves without the pos-
sibility to localize the sources. Similarly to what happens for an earthquake, at least
three detectors with similar sensitivity are needed to localize the source. As showed
in figure 1.7, there are four ground-based interferometers currently operational around
the globe: aLIGO Hanford, aLIGO Livingstone, AdV and GEO600 [23].

The localization of a source is extremely important because by knowing the exact
position of the source it is possible to observe also the electromagnetic counterpart of the
signal. Indeed, thanks to the first triple detection by aLIGO and AdV, it was possible
to localize a binary neutron-star merging system and to coordinate with others optical
astronomy facilities [24], giving birth to the multi-messenger astronomic observation
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(a) Advanced Virgo +. (b) Advanced LIGO +.

Figure 1.6: Detector sensitivity for (a) advance Virgo + and for (b) ad-
vanced LIGO +. The green area refer to noise budget reduced by the
laser beam size, the violet by the frequency-dependent squeezing and
the blue by lower coating loss angle.

LIGO
Livingstone

LIGO
Hanford

Virgo

GEO600

KAGRA

LIGO
India

Figure 1.7: Current ground-based gravitational-wave detectors’ network on
the Earth. In green, the operational interferometers: Advanced LIGO
(USA), Advanced Virgo (Italy) and GEO600 (Germany). In red, the
cryogenic interferometer under construction KAGRA (Japan) and the
replica of Advacned LIGO interferometer to be built in India.
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era. In figure 1.8a the localization of the signal is showed. Figure 1.8b shows the

(a) GW170817-HLV. (b) Skymap.

Figure 1.8: (a) Localization from the LIGO-Virgo 3-detectors global network (green)
of the gravitational-wave detected on the 17th of August, 2017. The posi-
tion overlaps with the gamma-ray and optical signals (blue) detected by the
Fermi/INTEGRAL satellites and the Swope discovery image respectively. The
inset shows the location of the apparent known galaxy NGC4993: In the image
on top, recorded almost 11 hours after the gravitational-wave and gamma-ray
signals had been detected, a new source (marked by a reticle) is visible. That
source was not there in the bottom image, taken about three weeks before the
event. (b) Sky localization of all the gravitational wave detection. The HLV
acronym at the end of the signal name stands for Hanford, Livingstone (LIGO)
and Virgo to indicate the triple detection.

skymap of all the gravitational wave detections using the ground-based interferometers.
It is clearly visible that the localizations made by the three detectors LIGO and Virgo
are more accurate than the others.

In order to improve the localization, another aLIGO interferometer is planned to
be built in India [25]. Furthermore, the Japanese detector KAGRA will operate at
cryogenic temperature, at the end of 2019.

1.3.2 Next Generation Detectors

The next generation gravitational wave detector Einstein Telescope (ET) [26], will be
an underground cryogenic detector planned to be operating in the 2030 decade with
10 km arm length. ET will combine three detectors in a triangle shape operating at
different frequency bands, with the aim of improving the detection bandwidth and
increasing the sensitivity with respect to the gravitational wave polarization.

Lowering the temperature is also an update proposed for the current Advanced
LIGO detectors. Cosmic Explorer [27] is a cryogenic detector with 40 km arms.

Laser Interferometer Space Antenna (LISA) [28] is a space-based detector, with
the aim to detect from 10−4 to 10−1 Hz, started under the coordination of the Euro-
pean Space Agency (ESA). LISA will be a space giant interferometer in which three
spacecraft are separated by 2.5 million km, orbiting behind the Earth as we orbit the
Sun.

1.4 The Limits to the Gravitational-Wave Detection

In this section the main sources of noise limiting the detector sensitivity are described.
For gravitational-wave interferometers, lowering the noise would allow to detect weaker
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signals from farther sources, thus increasing the detection horizon, i.e. the radius of
the accessible volume of the Universe.

The sensitivity curve of Advanced detectors is the envelop of all the noises con-
tributions, assumed to be statistically independent, expressed in equivalent amplitude
of the gravitational-waves signal as function of frequency. The output of the detector
φ(t), in arbitrary unit, will contain contributions from both gravitational wave strain
and from various noise sources. By assuming a linear response, it is possible to write
φ(t) as

φ(t) =

∫
Th→φ(t, t′)heff(t′)dt′ +Nφ(t) , (1.25)

where Nφ(t) is the additive noise contribution and Th→φ(t, t′) is the transfer function,
which connect the effective strain heff to the detected signal. By assuming stationary
condition for the interferometer, where time invariance occurs, the response function
will not depend independently on t and t′ but on their difference, t− t′. By doing this,
it is possible to perform the Fourier transform, going to the frequency domain f ,

φ̃(f) = T̃h→φ(f)h̃eff(f) + Ñφ(f) . (1.26)

For example, it is possible to rewrite equation (1.24) as |∆φFP| = Th→φh0, where

Th→φ '
8F
λGWD

L
1√

1 + (fgw/fp)2
, (1.27)

is the transfer function of the Fabry-Perot interferometer. It is possible to use the trans-
fer function in order to express the noise in a quantity comparable to the gravitational
wave signal heff(f)

Ñh(f) ≡ T̃−1
h→φ(f)Ñφ(f) , (1.28)

Assuming that Ñh(f) is related to stochastic stationary processes, it can be expressed
by its power Sh(f) [29]

Sh(f)δ(f − f ′) = 〈Ñh(f ′)Ñh(f)〉 . (1.29)

The square root of this quantity, having the unit of 1/
√
Hz, represents the spectral strain

sensitivity for the noise under consideration and can be compared to the gravitational
wave amplitude

h̃(f) =
√
Sh(f) . (1.30)

Thus, a gravitational wave signal having amplitude higher than the sensitivity curve
can be detected.

From equation (1.11) it is clear that the interferometer is sensitive to the fluctu-
ation of the laser power and phase shift, which can be observed as variation in arms
length ∆L = L1 − L2 thus as the displacement of the optical components in the arms.

The sensitivity curve of Advanced Virgo is showed in figure 1.9. It can be ob-
served that three main noise curves limit the sensitivity in different frequency region.
The quantum noise is related to the fluctuation of the power and limits the detector
sensitivity at both lower and higher frequencies. At lower frequencies the sensitivity is
limited by the suspension thermal noise whereas in the central and most sensitive region
there is coating thermal noise, which is a displacement noise. It has to be noted that,
in a Fabry-Perot interferometer, the noise sources inside the resonant cavity dominate
the others because they are amplified by the finesse of the cavity.
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Figure 1.9: The Advanced Virgo reference sensitivity (black) obtained as
envelop of different noise sources. The sensitivity is limited by the
suspension thermal noise at low frequency, by the shot noise at high
frequency (quantum noise) and by the coating thermal noise in the
intermediate region.

1.4.1 Quantum Noise

The incident laser light on the photodetector can be seen as a set of photons. The
effect of the discrete quanta can be observed in the laser power and sets a quantum
limits in the measurement. The spectral strain density of this quantum noise is made
on two components

h(f)QN = h(f)shot + h(f)rad , (1.31)

where h(f)shot is the shot noise and h(f)rad is the radiation pressure noise.

Shot Noise
The shot noise is due to the fact that the incident laser light on the photodetector
is a set of photons characterized by a Poisson distribution [30]. The incidence of one
photon is independent from the others and the spectral density of the phase shift is
then frequency independent [13]

S
1/2
∆φ =

(
2~ωGWD

P

)1/2

, (1.32)

where ~ is the reduced Planck constant and P the average incoming power. Therefore,
the shot noise can be reduced by increasing the laser power P . In order to obtain
the spectral strain noise and comparing it to the effective strain of gravitational wave
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signals, equation (1.32) must be divided by the transfer function (1.27)

hshot(f) = T̃−1
h→φ(f)

√
S∆φ

=
1

8FL

(
4π~λGWDc

P

)1/2√
1 + (f/fp)2 . (1.33)

Radiation Pressure
We observed that the shot noise is reduced by increasing the light power. However,
when photons hit an optical element they impart a recoil of the object, disturbing the
measure that we are performing. Considering the force F = 2P/c that a beam of power
P exerts on the mirror of mass M , the spectral density of the displacement of the mirror
is [13]

S1/2
x (f) =

2

M(2πf)2

(
2~ωGWDP

c2

)1/2

. (1.34)

The second term under the square root is related to the fluctuation of the number of
photons which is independent of the frequency, the first term is related to the Fourier
transform of the stochastic force F = Mẍ acting on the mirror. A given displacement
of a mirror results in a phase shift which is increased by the presence of the finesse in
the transfer function. However, in order to compare with the effect of a gravitational
wave, we must divide by the transfer function of the Fabry-Perot interferometer, so
the two effects cancel. Actually, the fluctuation of the electric field inside the cavity is
enhanced by a factor 2F/π. Furthermore, if the mirror vibrates at a frequency f, the
power inside the cavity is reduced by a factor (1 + (f/fp)

2). With this in mind and

considering the transfer function of a simple Michelson interferometer T̃Mich = L, we
obtain

h(f)rad =
16
√

2F
ML(2πf)2

(
~P

2πλGWDc

)1/2 1√
1 + (f/fp)2

. (1.35)

1.4.2 Seismic Noise

The first problem to face in order to use interferometer as gravitational-wave detector
is the isolation of the mirrors from the ground, because of the seismic noise. For this
purpose, a suspensions system called super attenuators (SA) is adopted on Advanced
Virgo (figure 1.10). It is made of three fundamental parts:

• The inverted pendulum (IP), which consists in three aluminium legs 6 m long. In
such a pendulum the gravity acts as an anti-spring and the resonant frequency
can be lowered by increasing the mass, suppressing a large part of the input
horizontal seismic noise.

• The chain seismic filters, made on five horizontal and vertical passive filters,
connected by a 8 m long suspension wire. With this chain a very large attenuation
of the seismic noise horizontal component can be obtained at a frequency above
the highest pendulum resonance.

• The mirror payload, the last stage of the suspension system, including the actu-
ators for the active isolation and alignment. This guarantees that the mirrors in
cavities are always at a position to assure the resonant condition.

The super attenuators allow to reduce the seismic noise well under the limit of the
detector sensitivity.
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Filter 0
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Mirror
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Standard
filters
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Figure 1.10: The Advanced Virgo SA. We can distinguish the three legs of
the inverted pendulum, the set of filters and the mirror.

1.4.3 Thermal Noise

The central part of the detection band (30 Hz to 300 Hz) is limited by the thermal
noise, arising from a thermally induced dissipation mechanisms of suspension elements
and high-reflecting coatings. The comprehension of such noise lies in the so-called
fluctuation-dissipation (F-D) theorem [5] (appendix A). Since the frequency of the
detector is always less than 104 Hz, the F-D theorem is considered in its classical limit
even at cryogenic temperature and we can express equation (A.9) as

S(ω, T ) =
4kBT

ω2
< [Y(ω)] . (1.36)

Suspension Thermal Noise
The pendulum thermal noise and the violin modes’ noise are the main contributions to
the suspension thermal noise, are expressed by the same function but act in different
frequency bands. The pendulum thermal noise is related to the thermally activated
oscillation of the suspension, causing a displacement of the test masses [31]. The violin
modes noise is related to the transversal oscillations which induce longitudinal dis-
placement of the test masses [4]. To reduce the suspension thermal noise, a monolithic

19



CHAPTER 1. GRAVITATIONAL-WAVE DETECTORS

suspension made of four fused silica wires, 400 µm thick, are fixed to the mirror using
silicate bonding [32]. However, this noise still dominant at frequency below 30 Hz.

Mirror Thermal Noise
Mirror thermal noise is composed of several terms, due to different dissipative processes.
The dissipation of mirror is treated in appendix A, and from (A.9) we obtain the general
power spectral density [33]

S(ω, T ) =
4kBT

ω

Wdiss

F 2
0 π

. (1.37)

The main mirror thermal noise contributions are:

• Brownian thermal noise: such noise is caused by the internal friction of both
coating and substrate, having the same spectral density [34]:

S(f, T ) =
2kBT

π
3

2 wf

(1− σ2)

Y
φ , (1.38)

where w is the laser beam size on the mirror, σ is the Poisson ratio, Y the Young’s
modulus and φ is the loss angle, which differ for substrate and coating.

The main contribution to the mirror thermal noise is the Brownian coating ther-
mal noise (CTN) [35]. In a Fabry-Perot cavity like those of GW interferometers,
the frequency-dependent coating thermal noise reads [35]

S(f, T )CTN =
2kBT

π
3

2 wf

(1− σ2)

Y
φtot
c

=
2kBTtc
π2w2f

(1− σ2)

Y

(
Y ′(1 + σ)(1− 2σ)2 + Y σ′(1 + σ′)(1− 2σ)

Y (1 + σ′)(1− σ′)(1− σ)
φ‖

+
Y (1 + σ′)(1− 2σ′)− Y ′σ′(1 + σ)(1− 2σ)

Y ′(1 + σ)(1− σ′)(1− σ)
φ⊥

)
,

(1.39)
where tc is the total coating thickness, Y , σ are the Young’s modulus and Poisson’s
ratio of the substrate, Y ′, σ′ are the Young’s modulus and Poisson’s ratio of the
high-reflecting coating and φ‖,φ⊥ are the coating loss angles associated to the
parallel and perpendicular coating strain.

• Thermo-elastic noise: in linear approximation, the thermal expansion coefficient
α(T ) induce a deformation proportional to the temperature fluctuation. If there
are thermal gradients, some stress may induce dissipation processes in the solid.
In this sense, the spectral density of such noise for the substrate [36] and for the
coating [37] is then related to the temperature, to the coefficient α(T ) and to the
elastic moduli of the solid.

• Thermo-refractive noise: considering the coating, thermal gradient induces fluc-
tuation in the refractive index with the quantity β(T ) = dn(T )/dT , which causes
noise in the output phase of the interferometer. Such noise is related to the
structure and the material of the coating [38].

1.5 Thesis Goal: Coatings for Future Detectors

The technological challenge in creating high-reflecting coatings with low thermal noise
lies in obtaining outstanding optical and mechanical properties at the same time, i.e.
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mainly low optical absorption and low internal friction. The reduction of coating ther-
mal noise is of fundamental importance in order to increase the detection horizon (i.e.
the radius of the accessible volume of the Universe) and hence of the expected detec-
tion rate [39] of present and future detectors like the Einstein Telescope [40]. More
generally, lowering such noise would be highly beneficial also for other precision exper-
iments using optical cavities such as optomechanical resonators [9] and references for
laser frequency stabilization [41].

It is clear from equation (1.39) that there are several parameters involved in the
coating thermal noise: the total coating thickness, the coating loss angle, the elastic
constant of the materials, the temperature and the laser beam size.

The coating thickness is a monotonically decreasing function of the refractive index
contrast c = nH −nL in the Bragg reflectors. An higher contrast c allows to reduce the
total stack thickness, hence the coating thermal noise, without altering the reflectivity.
As a consequence, the optimal coating materials would feature the lowest loss and the
largest refractive index contrast at the same time.

Several options can be considered in order to reduce the coating loss angle. First of
all, it depends on the coating material. Current oxide coatings can be also further opti-
mize to reduce the thermal noise: tuning of the sputtering ion beam, co-sputtering (also
referred to as doping), substrate heating during deposition, post-deposition annealing;
in principle, these techniques could be also combined to cumulate their benefits. Other-
wise, other alternative materials may be selected and then potentially further improved.
Indeed, crystalline coatings present very low loss angle [42,43] but there are difficulties
in the deposition on large substrate. A more exotic solution is nano-structuring of sili-
con waveguides [44], characterized by promising optical properties but limited to small
substrate.

The work in this thesis consist in finding a possible solution to the coating thermal
noise issue, studying the optical and mechanical properties of coatings.

1.5.1 The Current Picture

The advanced detectors impose some requirements that coatings must fulfil. On one
hand, coatings have to minimize the optical losses in order to avoid power issue in the
Fabry-Perot cavities and limit the shot noise. On the other hand, coatings must have
a low loss angle in order to minimize the Brownian thermal noise.

From an optical point of view, coatings for gravitational-wave detectors have high
reflectivity, low optical absorption and low scattering. The two first conditions increase
the power in the arm cavities, whereas the last one minimizes an additional phase noise
related to the reflection of scattered light on vibrating elements (optics, vacuum tubes).

From the mechanical point of view, in order to reduce the coating thermal noise,
thin coating with low internal friction must be adopted. Furthermore, the Young’s
modulus of coating should match the Young’s modulus of substrate. In table 1.1 the
technical requirements for Fabry-Perot cavities and mirrors are summarised.

Substrate
The 40 kg substrates play the role of the test masses in gravitational-wave detectors.
The main properties which define the choice of the material are the low optical ab-
sorption at the operational laser wavelength, the homogeneity of the refractive index
and the low internal friction. Several studies have determined that the fused silica
Suprasil® (3001 and 3002) is the best material to use at room temperature for a 1064
nm laser wavelength [46,47].
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Fabry-Perot Cavity

Geometry ITM ETM

∅ Beam [mm] 48.7 58.0

Optics ITM ETM

Transmission 1.4% 1 ppm
Finesse 443
Losses [ppm] < 75

(a) Measured values of Fabry-Perot arm
cavities.

Coatings ITM ETM

# layers 16 38
Thicnkess [µm] 2.8 5.9
Absorption [ppm] 0.2 0.2
Diffusion [ppm] 3 4
Roughness RMS [nm] 0.1 0.1
Planarity RMS [nm] 0.3 0.5
Loss Angle φ [10−4] 1.7 2.4

(b) Measured values of coatings properties.

Table 1.1: Parameters of Advanced Virgo, for the input test masses (ITM)
and end test masses (ETM) in the arm cavities [45].

Coating
In order to obtain high reflectivity, quarter-wave Bragg reflectors have been historically
chosen as mirror coatings. We can consider for instance a stack made of m+ 1 layers,
as shown in figure 1.11, where j = 0 and j = m+1 are the ambient and the substrate2.
If we assume that the stack is made of N doublets of material having high- and low-
refractive index (nH and nL), the reflectivity of the stack reads [48]

R =

∣∣∣∣∣∣∣
ns −

(
nH
nL

)2N

ns +
(
nH
nL

)2N

∣∣∣∣∣∣∣
2

' 1− 4ns

(
nL
nH

)2N

, (1.40)

where ns is the refractive index of the substrate. Considering the absorption and the
scattering negligible, we obtain the transmissivity

T = 1−R = 4ns

(
nL
nH

)2N

. (1.41)

It is easy to observe that for N →∞ then R→ 1 and T → 0.
Nowadays, the thickness of each layer has been optimized in order to reduce the

thickness of the high index layers, hence the coating thermal noise, without altering
the reflectivity [49].

The main characteristics of the coatings are summarised in table 1.1b. In order to
keep a low optical absorption, the Bragg reflectors were historically made of alternate
ion-beam sputtered layers of silica (SiO2) and tantala (Ta2O5), deposited at Laboratoire
des Matériaux Avancés (LMA) as low- and high-refractive index materials respectively
[50, 51]. Titania-doped tantala (Ti:Ta2O5) has been then developed in LMA in order
to minimize the loss angle, obtaining a value lower than Ta2O5 layer [52].

1.5.2 Objective of the Thesis

In a scenario of further upgrade of advanced detectors and of development of next
generation detectors, an intense research is devoted to decrease the coating loss angle
in order to reduce the coating thermal noise. The work presented in this thesis takes

2We consider linear, homogeneous and isotropic materials.
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Figure 1.11: Sketch of a multilayer. The surface of the mirror is perpen-
dicular to the z direction. in each j-th layer, E+

j and E−j are the
overlap of the multiple reflection for the transmitted and reflected
electric field.

place in this context and is intended to be a contribution to the development of present
and future detectors with higher sensitivity. Indeed, this research is not limited to
the upgrade on current detector but candidate coatings for future cryogenic detectors
KAGRA, Cosmic Explorer and Einstein Telescope, are also investigated.

Since the coatings must fulfil very stringent optical and mechanical requirements,
a deep optical and mechanical characterization have been made on several materials.
The analysis regards the standard materials currently adopted in advanced detectors;
oxides, carbides and nitrides in order to replace the high-refractive index material;
fluorides to investigate their possible application as low-refractive index material.

23



CHAPTER 1. GRAVITATIONAL-WAVE DETECTORS

24



CHAPTER 2

AMORPHOUS SOLIDS

“Crystals are like people: it is the defects in them which
tend to make them interesting!”

Colin J. Humphreys
Introduction to analytical electron microscopy, p.305 (1979)

This chapter gives a fundamental understanding of the atomic arrangement in
amorphous structure that determines the macroscopic optical and mechanical proper-
ties of the solid and marks the difference with respect to crystals. The structure of
amorphous materials is characterised by static and dynamic features.

The optical absorption of amorphous solids is determined by the structure arrange-
ment, hence by the static properties, and is defined by three different regions of the
absorption edge: (i) The main absorption region, described by the Tauc-Lorentz and
Cody-Lorentz models; (ii) The absorption threshold, around the energy gap, described
by the exponential Urbach behaviour. The extension of such tails gives information
about the structure organization of the solid; (iii) The transitions which involve local-
ized states inside the energy gap, near the Fermi’s level, described by an exponential
behaviour similar to the Urbach theory.

The structure of amorphous solids gives also important macroscopic mechanical
properties. The interatomic forces and the structure of a glass determines its vibrational
properties and hence its elastic constants.

The study of dynamic properties of solids can be performed by exploiting atomic
vibrations to study the structure. Raman spectroscopy allows to obtain informations
of atomic organization via the scattering process of light in the solid.

The structure of amorphous solids allows many equilibrium configurations in which
atoms can be disposed. Thermal equilibrium is a dynamical equilibrium, where a
continuous exchange between two levels exists, causing the thermal noise: this is the
two-level system (TLS) model, where all the possible energy minima in the atomic
configurations are represented by an asymmetric double-well potential. An external
mechanical solicitation modifies the asymmetry of a TLS, changing its population,
hence the elastic constants of the solid. The mechanical response is delayed by the
relaxing process that occurs in order to bring the system back to equilibrium, causing
dissipation which gives rise to thermal noise [5].

The novelty presented in this chapter regards the calculus of the in-
ternal friction in a TLS, considering a general expression of the potential
barrier.
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2.1 Structure

It is of fundamental importance to understand how to distinguish crystals from amor-
phous solids. There can be a considerable amount of confusion concerning the term
‘disorder’ as a definition of amorphous materials. In fact, in principle also crystalline
solids have a disordered structure at any finite temperature, where the random mo-
tion of atoms about their equilibrium positions destroys the perfect periodicity of the
lattice. Indeed, the concept of perfect crystal is valid only at absolute zero temper-
ature. However, atoms at finite temperature are vibrating about their equilibrium
crystalline positions and can not be considered as topologically disordered, where they
should present differences from the equilibrium crystalline positions even at absolute
zero temperature. In the following we will try to built a model to represent the struc-
ture of amorphous solids, considering that there are as yet no universally accepted
definitions.

2.1.1 Topological Disorder

The main property that define the amorphous solids is the absence of a periodicity i.e.
long-range (translational) order (LRO) of atomic structure. however, one may recog-
nise a short-range order (SRO) preserved. This means that the local coordination in
amorphous solid is similar to the corresponding crystal; the value of the first neigh-
bour distance, coordination number or binding energy is more or less the same in the
amorphous and crystalline phase [53]. Under this assumption it is possible to create
two models to describe amorphous solids: the random network and the polycrystallite
structure (figure 2.1).

(a) Random Network. (b) Polycrystallite materials.

Figure 2.1: Possible representation of amorphous solids. Random network
structure on the left and polycrystalline structure on the right.

Random network: This model is represented by a Gaussian distribution of the atomic
positions around the crystalline mean value, varying distances and bonding an-
gles. The resulting structure is a random distortion of the corresponding crys-
talline structure (figure 2.1a). This concept is interesting since it allows to develop
the idea of a perfect amorphous solid; the distortions related to the Gaussian dis-
tributions of angles and distance give rise to the perfect amorphous solid, whereas
the imperfections not related to the distributions, such as substitutional defects or
dangling bonds, affect the ideal structure. In this sense, as happens for crystals,
some properties are to associated to the ideal amorphous solid and the others are
related to the imperfections [54].
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Polycrystallite: In this model the structure is described by several crystalline grains,
randomly oriented in different part of the lattice. The disordered connection
between the crystalline domain breaks the LRO and the macroscopic properties
of the solid depend to the properties of every single crystal. The size of the grains
define the material as microcrystalline or nanocrystalline.

In both model the main feature is the absence of the LRO, however it is possible to
recognise a SRO. In fact, X-ray or neutron diffraction measurements show a distribution
of first-neighbours atoms positions around a mean value.

2.1.2 Radial Distribution Function

The technique that can be employed to obtain structural information for solids is the
diffraction pattern, obtained by the scattering of neutron or X-ray when they interact
with matter. As observed in figure 2.2a, in the presence of periodicity in atomic po-
sitions, if the incident beam has a wavelength comparable to the atomic dimensions,
a constructive interference occurs for the scattered beam under the Bragg condition,
giving information on the atomic positions. In amorphous solids the diffraction pattern
should not give information about the structure because there is not a LRO, however,
as observed in figures 2.2b and 2.2c, it is possible to recognize a SRO. The difference
between polycrystalline and random network structure lies in their electron diffraction
patters (sharpness and spottiness of rings) as well as in High Resolution Electron Mi-
croscopy (HREM). In order to quantify the information behind the diffraction pattern,

(a) Single-crystal gold. (b) Polycrystalline aluminum. (c) Amorphous carbon.

Figure 2.2: Ultrafast Electron Microscopy (UEM) diffraction patterns for
single-crystal gold (a), polycrystalline aluminium (b) and amorphous
carbon (c) [55].

a radial distribution function (RDF) can be defined as the average number of atoms
lying between r and r + dr from the center of an arbitrary origin atom

J(r)dr = 4πr2ρ(r)dr , (2.1)

where ρ(r) is essentially a pair correlation function, which is large for distances where
there are on average many atoms from a given origin atom, and small otherwise. In
figure 2.3a there is a two-dimensional representation of ρ(r) for an amorphous structure.
It can be observed that the first peak corresponds to the first shell of atoms, the second
peak to the second shell, and so on. It is important to note that both ρ(r) and RDF
(figure 2.3b) are a two-dimensional representation of a three-dimensional structure and
then they can only carry a limited amount of structural information. The importance
of the RDF is that the area under a given peak is related to the effective coordination
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(a) Pair correlation function. (b) RDF.

Figure 2.3: a) the meaning of the pair correlation function ρ(r) as func-
tion of radial distance from a given origin atom [56]. b) the RDF for
amorphous and crystalline silicon with sp3 configuration [57].

number of that particular shell. The position of the first peak gives a value for the
nearest-neighbour bond length, furthermore, a broadened peak is related to the random
distribution of atom positions around a mean value in amorphous solids or to the
thermal vibrations in perfect crystals.

2.2 Properties Related to Structure

Once understood what are the elements that differ amorphous solids from crystals, it
is possible to concentrate about the properties related to the random atomic positions,
where the translational symmetry disappear but a SRO can be observed. In the fol-
lowing we will concentrate about properties related simply to the static of amorphous
semiconductors structure.

2.2.1 Electronic Density of States

The lack of LRO breaks the translational symmetry so that the Block theorem is
no longer valid, resulting in the wavevector k not being a good quantum number. In
principle, the wavefunctions of electrons should not be extended in the whole lattice but
limited to localized regions [58]. Under these considerations, one should suppose that
the concept of energy bands is meaningless in amorphous solids. However, even if the
LRO does not characterize amorphous materials it is possible to recognise a SRO. For
covalent bond materials it is possible to assume that within the SRO a tight binding
(TB) approximation is still valid, where the superposition of electronic orbitals are
described by the first-neighbours distance and the extension of electronic wavefunctions.
Using a TB approach, the bonding and antibonding states create a situation similar to
the valence and conduction bands of a crystalline solid. These states are so closed to
obtain quasi-continuum states called delocalized stated or extended states, separated
by a gap. However, weak and strained bonds create bonding and anti-bonding states
which lie close to the valence and conduction extended state edges respectively. Under
this respect, the band edges broaden due to the disordered structure, creating tails
inside the energy gap called Urbach tails. The first evidence of such localized tails
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states was observed by Urbach in absorption measurements [59] and then included in
the electronic density of states (DOS) expressed by Mott [60]. Since the bonds related
to the Urbach tails are strained and larger than those related to the extended states,
the resulting states may not form quasi-continuum band, remaining localized. The
edge separating the extended states and tail states is called the mobility edge. As the
tail states are localized energy states, at 0°K conduction can only occur when excited
electrons are in the extended states above the conduction tail states, and that defines
the mobility edge [61].

In figure 2.4 there is a comparison of the DOS for crystalline and amorphous solids,
where the mobility shows the localized stated in the case of amorphous solids.
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Figure 2.4: DOS and mobility representation of amorphous semi-
conductor. On the left a) the DOS for crystalline solids, in
the middle b) for amorphous solids. On the right c) the mo-
bility related to each electronic state at 0°K is showed. Note
that the conductivity depends on the position of the Fermi
level. The features related to amorphous solids are exagger-
ated to obtain a more clear representation.

There are two mobility edges, electron mobility edge at the bottom of the con-
duction extended states Emc and hole mobility edge at the top of valence extended
states Emv . It is evident that amorphous solids presents localized states which extend
into the gap due to the disorder, creating the Urbach tails (blue area in figure 2.4b).
Furthermore, as it happens for crystals, local defects in amorphous solids like dangling
bonds or substitutional atoms create states near the Fermi level at the centre of the
gap (green area in figure 2.4b), which are localized and broadened due to the disorder.
In this sense, since the disorder related to the Urbach tails creates states far from the
Fermi level and near the extended states, it must be non-local and more complex with
respect to the simple random atomic dispositions.

2.2.2 Optical Response

In order to understand the optical response of solids and obtain important properties
like the refractive index or the absorption, the theory of propagation of light in matter
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must be introduced [62]. Starting from Maxwell equation in linear, homogeneous and
isotropic (LHI) media and assuming µr = 1, the electromagnetic-wave equation reads

~∇2 ~E =
ε

c2

∂2 ~E

∂2t
+

σ

ε0c2

∂ ~E

∂t
, (2.2)

where c = 1/
√
ε0µ0 is the speed of light in vacuum, ε0 = 8.85 · 10−12C2/Nm2 and

µ0 = 4π · 10−7Ns2/C2 are the electric and magnetic permittivity in vacuum respec-
tively, ε is the relative dielectric function and σ the electric conductivity. By assuming
monochromatic plane-waves

~E(~r, t) = ~E0e
i(ωt−~q·~r+δ) , (2.3)

where ω = 2πν is the radiation angular frequency and δ is the phase. From equation
(2.2) one obtains the dispersion relation

q2 =
(ω
c

)2
[
ε− i

(
σ

ε0ω

)]
=
(ω
c

)2
ε̃ , (2.4)

where ε̃ = ε̃1 − iε̃2 is the complex dielectric function and describes the macroscopic
optical properties of matter. From equation (2.4) it is clear that ε̃ consists in two
terms. The first, related to the electric charge described by the Lorentz model, can be
expressed as

ε = 1 +
P

ε0E
= 1 + χ , (2.5)

where P is the polarization and χ the electric susceptibility. The second term
(

σ
ε0ω

)
is

related to the free carrier described by the Drude model.
In order to describe the propagation and absorption phenomena it is useful to use a

complex quantity strictly linked to the dielectric function, which is made on measurable
quantity. This complex quantity is the refractive index

N = n− ik =
√
ε̃ =

√
ε− i

(
σ

ε0ω

)
, (2.6)

where n is the real part of the refractive index and k is the extinction coefficient. It is
possible to express the real and imaginary part of ε̃ in term of n and k:

ε̃1 = n2 − k2 , (2.7a)

ε̃2 = 2nk . (2.7b)

Usually the models describe the quantity ε̃2 and it is possible to demonstrate that
ε̃1 can be derived from ε̃2. This can be done using the Kramers-Kronig relations [63]

ε̃1(ω) = 1 +
2

π
P
∫ ∞

0

ω′ε̃2(ω′)
ω′2 − ω2

dω′ , (2.8a)

ε̃2(ω) = −2ω

π
P
∫ ∞

0

ε̃1(ω′)− 1

ω′2 − ω2
dω′ , (2.8b)

where P denotes the Cauchy principal value

P
∫ ∞

0
dω′ ≡ lim

δ→0

(∫ ω−δ

0
dω′ +

∫ ∞
ω+δ

dω′
)
. (2.9)
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2.2.3 Optical Absorption

The optical and conduction properties of solids are characterized by the behaviour of
the DOS. Indeed, the localized states are crucial not only for the conductivity but also
for the optical absorption. Since the optical transitions regard also localized states,
they are useful in order to study the DOS of amorphous solids. Indeed, it is almost
impossible to study the individual contribution of the elements that cause the disorder
and for that reason, it is useful to study the quantity which gives information related
to the population of the localized states like the absorption coefficient. In the case of
amorphous solids, the theory of optical transitions due to the absorption of photons
is similar to the crystalline solids, with the constraint that k is no longer a good
quantum number and only direct transitions are allowed. In figure 2.5 there is the
typical behaviour of the absorption near the absorption edge for an amorphous solid.
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Figure 2.5: (a) Typical behaviour of the absorption for amorphous solids in
logarithmic scale. The three regions A, B and C are associated to the
transitions involving different energy states. (b) The different allowed
transitions. The red arrow highlights the transition contributing to the
region A of the absorption, the blue one the region B and the green
one the region C.

looking at figure 2.5a it is possible to distinguish three different regions [54] which
are associated to the transitions between different states, as pointed out in figure 2.5b.
Note that the transitions involving only localized states gives a very low optical ab-
sorption and are not discussed here.

Region A
In the high energy region the absorption is produced by the transitions between ex-
tended states. Since ~k is not a good quantum number, in order to obtain the expression
of one photon absorption α, we should consider only the energy and momentum con-
servation laws. Considering the expression of the electric potential vector

~A = Aê, with A = − F
2q

(ei(~q·~r−ωt) + c.c.) , (2.10)
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where ê is the polarization and F the electric field modulus, the absorbed power W
over the unit volume, can be expressed as a variation of the intensity I = (nF )2/(8π)
over the time

W = R~ω = −dI(x)

dt
= −dI(x)

dx

dx

dt
= α

c

n
I , (2.11)

where c is the speed of light, c/n is the phase velocity of the radiation in matter and
R is the probability of the transition. This probability can be obtained by the Fermi’s
golden rule, expressed as function of the photon energy E = ~ω,

R =
2π

~Ω

∑
E′c,E

′
v

∣∣∣〈1, E′c|ĤI |0, E′v
〉∣∣∣2 δ(E′c − E′v − E) , (2.12)

where Ω is the irradiated volume, E′v and E′c are the two energy states where the

transition occurs and ĤI is the Hamiltonian of the interaction

ĤI = − e

m∗ec
~A · ~p , (2.13)

where ~p the momentum for an electron of effective mass m∗e. Under this consideration,
equation (2.12) reads

R =
2π

~Ω

(
e

m∗eω

)2(F
2

)2 ∑
E′c,E

′
v

∣∣〈1, E′c|ê · ~p|0, E′v〉∣∣2 δ(E′c − E′v − E) . (2.14)

It is now possible to express the absorption

α =
R~ω
I(c/n)

=
1

nc

(
2πe

m∗e

)2( 1

Ωω

) ∑
E′c,E

′
v

|pcv|2 δ(E′c − E′v − E) , (2.15)

where |pcv| = |〈1, E′c|ê · ~p|0, E′v〉| is the matrix dipole element. By considering all the
possible states

α =
1

nc

(
2πe

m∗e

)2( 1

Ωω

)∫ Ev+E

Ec

gc(E
′
c)

∫ Ev

E−Ev
gv(E

′
v) |pcv|2 δ(E′c − E′v − E)dE′vdE

′
c ,

(2.16)
where gc(E

′
c) and gv(E

′
v) are the DOS of the conduction and valence band respectively.

If we assume that the matrix element does not depend on the initial and final states,
|pcv| can be considered constant. Considering the delta function we can integrate over
the valence states to get

α =
1

nc

(
2πe

m∗e

)2( 1

Ωω

)
|pcv|2

∫ Ev+E

Ec

gc(E
′
c)gv(E

′
c − E)dE′c . (2.17)

Furthermore, assuming a dependence of g(E) by some power of E [64]

gc(E) =
(E − Ec)r1

(Emc − Ec)r1
g0
c (2.18)

gv(E) =
(Ev − E)r2

(Ev − Emv )r2
g0
v , (2.19)

where Emc −Ec = Ev −Emv = ∆E is the band-tail width in the extended states due to
disorder. In the case of identical bands r1 = r2 = r, we obtain1

α =
1

nc

(
2πe

m∗e

)2( 1

Ωω

)
|pcv|2

g0
cg

0
v

∆E2r

∫ Ev+E

Ec

(E′ − Ec)r(Ev + E − E′)rdE′ . (2.20)

1We changed the name of the variable to integrate E′c → E′.
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The integral can be calculated using the Eulero’s Gamma function, Γ(n) = (n− 1)!,

α =
1

nc

(
2πe

m∗e

)2( 1

Ωω

)
|pcv|2 g0

cg
0
v

(E − Eg)2r+1

∆E2r

(Γ(r + 1))2

Γ(2r + 2)
. (2.21)

Assuming parabolic bands (r = 1/2), we obtain the Tauc model [54]

α(E)n(E) ∝ (E − Eg)2

E
, (2.22)

where E = ~ω. Using equation (2.22), it is possible to evaluate the so called Tauc Plot
(α(E)n(E)E)1/2 as function of the energy E. In other words, the Tauc Plot is based
on the linearization of equation (2.22) and allows to determine the energy gap Eg. In
some experiments it has been observed that there are materials which do not follow the
Tauc behaviour but that can be represented by a cubic law [65] [66]. In this case, the
Davis-Mott model can be used in order to represent the absorption, where r = 1

α(E)n(E) ∝ (E − Eg)3

E
. (2.23)

It has to be noticed that the expressions (2.22) and (2.23) have been derived by
assuming the matrix element |pcv| not dependent on the photon energy, even though the
matrix element |pcv| has the dimension of momentum, and therefore it does not appear
to be justified to assume it independent of momentum and energy. However, there are
two methods to evaluate the matrix element. In Mott and Davis (1979) [61] method it
appears to be justified to assume |pcv| constant, obtaining the Tauc behaviour. On the
other hand Cody et al. (1984) [67] have demonstrated that it is not independent from
the photon energy. Under this respect, it is possible to obtain the absorption by using
the conjugate of the operator momentum [67]

~p = i
m∗e
~

[Ĥ, ~x] , (2.24)

and it can be shown that the momentum matrix element |pcv| depends on the initial
and final energy

pcv =
〈
1, E′c|ê · ~p|0, E′v

〉
= i

m∗e
~

(〈
1, E′c|Ĥê · ~x|0, E′v

〉
−
〈

1, E′c|ê · ~xĤ|0, E′v
〉)

= i
m∗e
~

(E′c − E′v)
〈
1, E′c|ê · ~x|0, E′v

〉
= i

m∗e
~

(E′c − E′v)xcv ,

(2.25)

where xcv is the dipole matrix element. In this sense, the dipole matrix element can
be treated as independent to the energy, following the Cody model. If we consider
parabolic bands, the absorption obtained from equation (2.16) reads

α(E)n(E) ∝ E(E − Eg)2 . (2.26)

Using equation (2.26) we can evaluate the Cody Plot (α(E)n(E)/E)1/2 where the energy
gap Eg can be extrapolated.

Two different methods can be used to evaluate the absorption behaviour for amor-
phous solids in the main absorption region. In both cases a parabolic trend of the DOS
is considered. Furthermore, the constant momentum matrix element is assumed by
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the Tauc model, whereas the constant dipole matrix element is assumed by the Cody
model. Considering the relation between the imaginary part of the dielectric function
and the absorption ε2 = cnα/ω, where n is the refractive index, we obtain

TAUC ε2(E) ∝ (E − Eg)2

E2
, (2.27a)

CODY ε2(E) ∝ (E − Eg)2 . (2.27b)

The distinction between (α/E)1/2 and (αE)1/2 as a definition of Eg is important only
when films of widely differing thicknesses are compared. These two formulas give
identical results if one considers only changes in Eg for the same film [67].

Region B
A seminal work by F. Urbach pointed out a near-edge exponential increase of the
absorption coefficient with the photon energy [59]. Such so-called Urbach edge is re-
lated to Gaussian distribution of disorder in the structure (bond lengths and angles)
giving an exponential broadening of the DOS and the creation of localized electronic
states (Anderson’s states [58]) routinely observed by optical absorption in crystalline
and amorphous semiconductors [68]. The Urbach behaviour of the absorption edge in
amorphous semiconductors is assigned to transitions between localized and delocalized
electronic state. The typical optical transitions observed by our system in the DOS, re-
gard the transitions between the initial localized state in the exponential valence band
tail and the extended state in the conduction band. The exponential absorption edge
can be obtained from equation (2.17), where the DOS has an exponential trend [54]

gt(E) = g0
t e

(E−Em0 )/EU , (2.28)

where g0
t is defined by the continuity condition g0

t = g(Em0 ), with g(Em0 ) the density of
state of continuous band evaluated at the mobility edge Em0 and the Urbach energy EU
characterizes the energy spread of the tail decay into the gap due to lattice disorder.
Assuming the Mott and Davis (1979) [61] theory for the matrix element |pcv| and
parabolic conduction band, the absorption coefficient which describes this transition
reads

α(E) ∝ e(E−Em0 )/EU . (2.29)

Recent works [69,70] have pointed out a relation between Urbach broadening and
the topological organization emerging of defects, where weakly-strained regions are
clustered. The Urbach energy is usually considered as made on three terms [71]

EU = (EU )T + (EU )X + (EU )C , (2.30)

where (EU )T , (EU )X and (EU )C are the contributions of the temperature disordering,
structural disordering, and compositional disordering, respectively. The temperature
disordering is mainly caused by the lattice thermal vibrations. The structural disor-
dering can be related to intrinsic defects of structure, e.g. vacancies or dislocations, or
induced by deviation from stoichiometry, doping, ion implantation, hydrogenation, etc.
The compositional disordering is caused by atomic substitution in mixed crystals.

Ab-initio structural simulation in amorphous Silicon highlighted the atomistic
origin of Urbach tails [69,72] associated to the existence of particularly extended atomic
topological organization and more interestingly, such structural topological organization
is connected to structural relaxation in the presence of disorder. Some theoretical works
investigate the correlation between Urbach tails, electronic DOS, atomic structure and
morphology. Interesting results are obtained by atomistic modelling of amorphous
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silicon [69]: molecular dynamics methods show that the reorganization of the simulated
structure, after artificially introducing a defect, generates an exponential valence tail in
the electronic DOS. In order to observe the extension of the electronic state, the inverse
participation ratio (IPR) quantifies the number of single atom wave functions needed
to create the Anderson state. Under this respect, near the valence and conduction band
edge, the energetic levels refer to more complex and extended structural organization
whereas, approaching the Fermi level, the energetic levels refer to more localized defects.
Therefore, less-organized structure presents topological defects extended in a medium-
long range and the Urbach tails are more broadened. This means that by measuring the
extension of the Urbach tails it is possible to obtain information about the structure
organisation at medium-long range. In this view, Urbach tails represent a simple,
meaningful way to visualize the impact of defects disorder, in a multi-range perspective
not limited to short-range or medium-range, on amorphous oxide coatings.

Region C
This region is characterized by the optical transitions between localized and extended
states, not involving the Urbach tails. The levels involved are near the Fermi levels cor-
responding to very localized defects such as dangling bond or variation in coordination
number. Also in that case, the absorption has exponential behaviour

α ∝ eE/Ed , (2.31)

where Ed is always higher than EU and is strictly related to the short-range organization
of the structure.

2.2.4 Elastic Response

The elastic response of solids can be studied considering the deformation of the solid
under an external solicitation. Under this condition, as observed in figure 2.6, the
generic point P , identified by the vector ~r = (x1, x2, x3), will move to the point P ′,
identified by the vector ~r′ = (x′1, x

′
2, x
′
3) [73]. The vector ~u = ~r′−~r is called displacement

x
y

z
P

~r

P ′

~r′

Figure 2.6: Deformation of the solid under external force. During the de-
formation, the point p will move to the point P ′.

vector.

Considering a second point Q close to P , it is possible to evaluate the distance
PQ after the deformation. If we call dxi and dx′i (i = 1, 2, 3) the difference between
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the coordinates of P and Q before and after the deformation, respectively, we obtain2

dl2 = dx2
i dl′2 = dx′2i = (dxi + dui)

2 ,

via the change in coordinates dui = ∂ui
∂xk

dxk, we obtain

dl′2 = dl2 +
∂ui
∂xk

∂ui
∂xl

dxkdxl +
∂ui
∂xk

dxidxk +
∂uk
∂xi

dxidxk = dl2 + 2uikdxidxk ,

where uik is the so-called strain tensor

uik =
1

2

(
∂ui
∂xk

+
∂uk
∂xi

+
∂ul
∂xi

∂ul
∂xk

)
. (2.32)

Under the small deformations condition, the relation (2.32) can be written considering
only the linear terms

uik =
1

2

(
∂ui
∂xk

+
∂uk
∂xi

)
. (2.33)

After the deformation, if the solid were in equilibrium, internal forces appear in order
to bring the system back to the equilibrium. These forces are called internal stress and
are due to the molecular interactions3. The action-reaction principle states that each
internal stress has to be balanced. For this reason, the total force on the solid consists
of superficial forces only, which can be expressed by the gradient of a high-order tensor,
so that ∫

V
FidV =

∫
V

∂σik
∂xk

dV =

∮
A
σiknkdA , (2.34)

where ni are the normal components to the surfaces and σik is the so-called stress
tensor. In order to obtain the link between the strain and the stress tensors, it is useful
to introduce the free energy of the system F = E− TS, where T is the temperature, S
the entropy and E the internal energy

dE = TdS − dL = Tds+ σikduik . (2.35)

We can then write
dF = σikduik − SdT . (2.36)

From the relation (2.35) and (2.36) we obtain

σik =

(
∂E

∂uik

)
S

=

(
∂F

∂uik

)
T

. (2.37)

We obtained that the stress is related to the change of the internal energy of the
system with respect to the deformation. It is possible to show that if we express the
free energy in power of uik, we can discriminate between two terms related only to
shear deformation and hydrostatic compression (i.e. bulk deformations)

F = F0 +
λ

2
u2
ii + µu2

ik , (2.38)

where λ and µ are the Lamé coefficients. In particular we can discriminate between:

• Shear: uii = 0 :
Change the shape but not the volume (figure (2.7a)).

• Compression: uik ∝ δik :
Change the volume but not the shape (figure (2.7b)).
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(a) Shear. (b) Compression.

Figure 2.7: (a) Example of shear deformation. (b) Example of bulk defor-
mation.

Therefore, the strain tensor can be expressed by

uik = (uik −
1

3
δikull) +

1

3
δikull , (2.39)

where the first term is the pure shear deformation and the second is the bulk term.
Using the relation (2.39) in (2.38) we obtain

F = F0 +
λ

2
u2
ii + µ(uik −

1

3
δikull)

2 +
1

9
(δikull)

2

= F0 + µ(uik −
1

3
δikull)

2 +
1

2
(λ+

2

3
µ)u2

ll

= F0 + µ(uik −
1

3
δikull)

2 +
1

2
Ku2

ll ,

(2.40)

where µ are K are the shear modulus and the bulk modulus, respectively. From equation
(2.40) it is possible to obtain the stress tensor as function of the strain tensor4

dF = 2µ(uik −
1

3
δikull)d(uik −

1

3
δikull) +Kulldull

= 2µ(uik −
1

3
δikull)duik +Kulldull

= [2µ(uik −
1

3
δikull) +Kullδik]duik ,

(2.41)

and finally

σik = 2µ(uik −
1

3
δikull) +Kullδik , (2.42)

which defines the stress tensor for isotropic solids. We can use the relation (2.42) in
order to express the strain tensor as function of the stress

uik =
1

9K
δikσll +

1

2µ
(σik −

1

3
δikσll) . (2.43)

The equation (2.43) is the well known Hooke’s law, where the strain is proportional to
the applied force.

Homogeneous Deformations
During a homogeneous deformation, the tensor uik is constant over all the volume of
the solid. We can consider a simple extension of a rod, represented in figure (2.8). If

2The sum over repeated index is adopted: dl2 = dx2i = dx21 + dx22 + dx23.
3Usually, the deformations under consideration are small with respect to the macroscopic system

and large with respect to the atomic interactions.
4The arbitrary constant term F0 has been put to zero.
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Figure 2.8: Traction of a rod along the z-direction.

z

P

P

we consider only the force along the nz direction, represented by a uniform force on
unit area p, it follows that all the components σki except σzz are zero

σzini = p ⇒ σzz = p . (2.44)

From equation (2.43) we obtain

uik = 0 per i 6= k (2.45a)

uxx = uyy = −1

3
p

(
1

2µ
− 1

3K

)
(2.45b)

uzz =
1

3
p

(
1

µ
+

1

3K

)
. (2.45c)

The term along the z-direction (2.45c) of the strain tensor defines the relative length-
ening of the rod,

uzz =
p

Y
with Y =

9Kµ

3K + µ
, (2.46)

where Y is the so-called Young’s modulus. The x and y terms (2.45b) represent the
relative compression of the rod in the transverse directions. The ratio of the transverse
compression to the longitudinal extension is called Poisson’s ratio:

σ = −uxx
uzz

= −uyy
uzz

=
1

2

3K − 2µ

3K + µ
. (2.47)

From equation (2.46) and (2.47) it is possible to express the Lamé coefficient as function
of Y and σ,

µ =
Y

2(1 + σ)

K =
Y

3(1− 2σ)
.

(2.48)

Therefore, the expression (2.43) can be written as

uik =
1

Y
[(1 + σ)σik − σσllδik] , (2.49)

which in matrix notation is û = Jσ̂,
uxx
uyy
uzz
uyz
uzx
uxy

 =



1
Y − σ

Y − σ
Y 0 0 0

− σ
Y

1
Y − σ

Y 0 0 0
− σ
Y − σ

Y
1
Y 0 0 0

0 0 0 1+σ
Y 0 0

0 0 0 0 1+σ
Y 0

0 0 0 0 0 1+σ
Y




σxx
σyy
σzz
σyz
σzx
σxy

 , (2.50)
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where J is the so-called compliance and the ratio 1+σ
Y is the inverse of the shear modulus

G = 1/2µ. For non-isotropic solids


uxx
uyy
uzz
uyz
uzx
uxy

 =



1
Yx

−σxy
Yy

−σzx
Yz

0 0 0

−σxy
Yx

1
Yy

−σyz
Yz

0 0 0

−σzx
Yx

−σyz
Yy

1
Yz

0 0 0

0 0 0 Gyz 0 0
0 0 0 0 Gzx 0
0 0 0 0 0 Gxy




σxx
σyy
σzz
σyz
σzx
σxy

 . (2.51)

Structural Changes
The interatomic forces and the structure of a glass determine its vibrational properties
and hence its elastic constants. The Poisson’s ratio is directly related to the bulk and
shear modulus ratio, as expressed by the equation (2.47), which is found to decrease af-
ter structural relaxation and increase under pressure. Under this respect, the behaviour
of K/µ of a metallic glass indicates a very different change of the structure. It has been
demonstrated that this ratio depends on microscopic and macroscopic properties. A
model based on a Gaussian distribution for the nearest-neighbour atomic distance has
been used to describe qualitatively the structural changes responsible for the Poisson’s
ratio behaviour [74]. The approach is based on the assumption of a Gaussian radial
distribution function (RDF) for the atomic positions and that the elastic properties
are determined by the immediate surroundings of the atoms, without considering the
contributions of the atomic configuration further than the first shell

RDF (r) =
r

(2π)1/2

N1

r1γ1

(
exp

[
−(r − r1)2

2γ2
1

])
, (2.52)

where N1 is the number of atoms, r1 the mean position and γ1 the the width of the
Gaussian for the atoms in the first shell, around a central atom.

To describe the macroscopic properties, an interatomic potential with harmonic
and anharmonic terms has been used

U(r) = a(r − rm)2 + b(r − rm)3 , (2.53)

where a > 0, b < 0 and rm the position of the minimum. In particular, the region of
interest in order to use U(r) and RDF (r) is within the interval rm− γ1 < r < rm + γ1.

Finally, the bulk and shear ratio becomes [74]

K

µ
=

5

3

[
1 +

3

2

〈∑ rkU
′(rk)〉〈∑

r2
kU
′′(rk)

〉]−1

, (2.54)

where 〈∑
rkU

′(rk)
〉

=

∫ ∞
0

rU ′(r)RDF (r)dr (2.55)〈∑
r2
kU
′′(rk)

〉
=

∫ ∞
0

r2U ′′(r)RDF (r)dr (2.56)

and rk is the position of a central atom k in the undeformed situation.
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2.3 Structure Dynamics

In the previous section we analysed the response of an amorphous solid related to
the static properties of its structure. In this section we are going to analyse how the
response is related to the dynamic properties of the structure. We will see how the
interaction of light with a vibrating structure, allows to obtain information about the
structure of solids. Furthermore, we will see how the elasticity of amorphous solids
relaxation phenomena and in particular how the mechanical losses and, consequently,
the thermal noise, depend on these relaxations.

2.3.1 Vibrational Spectroscopy

The interaction of light with matter can be mainly described by absorption and scat-
tering. The former has been explained in section 2.2, the latter occurs when the light
interacts and distorts the cloud of electrons round the nuclei, with a consequently re-
leased energy in the form of scattered radiation. In particular, Rayleigh scattering,
occurs when the electron cloud relaxes without any nuclear movement. This is essen-
tially an elastic process and there is no appreciable change in energy. Raman scattering
on the other hand occurs when the light and the electrons interact and the nuclei begin
to move at the same time. In this case the nuclei are much heavier than the electrons,
hence there is an appreciable change in energy of the molecule. The final photon en-
ergy will be lower for Stokes scattering, where the process starts with a molecule in
the ground state and obtains vibrational energy from the radiation, or higher for anti-
Stokes scattering, where the excited molecule transfers its energy to the photon when
it returns to its fundamental state. The relative intensities of the two processes depend
on the population of the various states of the molecule and at room temperature, the
number of molecules expected to be in an excited vibrational state will be small and it
is possible to verify that the intensity related to Stokes radiation is higher than that of
Anti-Stokes, explaining why Stokes radiation is usually used.

In Raman spectroscopy a monochromatic radiation is focussed on the sample and
the intensity of the scattered radiation is detected as function of frequency. Raman
spectrum gives the frequencies of the resonant modes of the structure at the molecular
level (at least all the modes that are Raman active). A model needs to be developed in
order to identify the specific modes from the frequency detected by the Raman spec-
trum. Usually, the intensity in a Raman spectrum is plotted as function of the Raman
shift expressed in cm−1, which corresponds to the difference in frequency between the
scattered light νs and the incident radiation ν0, normalized by the speed of light c

Raman shift =
ν0 − νs

c
. (2.57)

2.3.2 Two-Level Systems

We will see here how the disorder is able to determine the elastic and anelastic response
of an amorphous solid.

Mechanical response of ideal solids is described by the Hooke law. This instanta-
neous reaction to external solicitations does not manifest entirely in real solids, where
relaxation of some internal quantity take place [75]. In amorphous solids the struc-
ture allows several equilibrium configurations giving interesting characteristics which
differ from crystals, like the specific heat and thermal conductivity at low tempera-
ture [76–78]. The study of these several configurations is based on a pure theoretical
representation known as two-level system (TLS), where two different asymmetric local
minimum of the energy landscape separated by a barrier energy are considered and the
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system will be able to switch between these levels thanks to certain given energy, such
as the temperature, or by tunnelling effect at low temperature. In this sense, the two
equilibrium states are described by an asymmetric double-well potential (ADWP) [79]
showed in figure 2.9

x

U(x)

−∆

V
δ

Figure 2.9: Double-well potential with an asymmetry ∆, a potential barrier
V and width δ.

In order to represent the complexity of the solid, different TLS having a distribu-
tion of the potential V and asymmetry ∆ are usually considered. For sake of clarity,
here we will se the contribution of one TLS. Under thermal equilibrium the population
of the two minima in a TLS is described by the statistic of Boltzmann and it is possible
to relate the elastic response of the material to the population of the two systems [80].

The elastic constants express the dependence of the free energy from strain [73].
Therefore, in order to obtain the relation between the TLS and the mechanical loss, it
is essential to evaluate the free energy for a Gibbs distribution

F = −kBT lnZ , (2.58)

where kB is the Boltzmann constant, T is the temperature of the system and Z is the
partition function

Z =
∑
n

e−En/kBT = Tr{e−Ĥ/kBT } , (2.59)

over the eigenvalues En of the Hamiltonian Ĥ of the system. Such system can be
described by a combination of the eigenstates ϕL(x) and ϕR(x) of the left (L) and right
(R) local minima, treated as independent and with the same characteristic frequency
ω0. In this case, the Hamiltonian related to the potential U(x) is

ĤU =

(
0 −∆0

2
−∆0

2 −∆

)
, (2.60)

where ∆ is the energy difference between the minima of the double-well potential and
∆0 is a parameter which describes the coupling between the two states. By introducing
the tunnelling parameter5

λ =
1

2

δ

~
√

2mV , (2.61)

5We are not saying here that the transition is made through quantum tunneling.
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where δ is the separation between wells and m is the mass of the system, it is possible
to express ∆0 using the Wentzel-Kramers-Brillouin (WKB) approximation

∆0 = ~ω0e
−λ . (2.62)

The easier way to find the eigenvalues is to work on the base where ĤU does not have
off-diagonal therm. Using the unitary matrix

Û = Û−1 =
∆0√

∆2
0 + (∆− ε)2

(
1 ∆−ε

∆0
∆−ε
∆0

−1

)
, (2.63)

one can diagonalize ĤU as

Ĥ ′U = ÛĤU Û
−1 =

1

2

(
−∆ + ε 0

0 −∆− ε

)
, (2.64)

where ε =
√

∆2 + ∆2
0. In this sense, the Hamiltonian of the system will be the sum of

the Hamiltonian related to non-interacting wells with energy 1/2~ω0 and Ĥ ′U , than

Ĥ ′ =
1

2

(
~ω0 0
0 ~ω0

)
+

1

2

(
−∆ + ε 0

0 −∆− ε

)
, (2.65)

and the energies of the two levels which can be called ”up” (↑) and ”down” (↓) are

E↑ =
1

2
(~ω0 −∆ + ε) , (2.66a)

E↓ =
1

2
(~ω0 −∆− ε) . (2.66b)

Using equations (2.66) and (2.58) it is possible to evaluate the free energy F of the
system

F =
1

2
(~ω0 −∆)− kBT ln

(
2 cosh

(√
∆2 + ∆2

0

2kBT

))
= F0 + FU , (2.67)

where F0 is the free energy of the non-interacting wells and FU is the free energy for
the double-well potential.

Interaction with phonon
Once we found the free energy for a double-well potential we need to consider the
interaction between such system and its surroundings. In doing this, we consider the
phonon relaxation attenuation caused by TLS, in which the energy splitting will have a
periodic modulation at phonon frequency, related to the elastic stress [81]. Considering
a weak external field, the interaction with the TLS can be treated using perturbation
theory. Furthermore, the wavelengths of corresponding frequencies phonon modes,
which induce resonant transition from one level to the other, are typically larger than
the separation of the wells and the local perturbation field is taken as uniform. This
perturbation affects the energy U(x) leaving the height of the barrier unaltered and
changing the asymmetry energy by a linear function [82]

∆(u) = ∆ + γikuik , (2.68)

where γik = d∆/duik is the so-called deformation potential and

uik =
1

2

(
∂ui
∂xk

+
∂uk
∂xi

+
∂ul
∂xi

∂ul
∂xk

)
(2.69)
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is the deformation field6. Thanks to the isotropy of amorphous solids the two-level
system interacts only with longitudinal phonon and γik = γδik. In this case, the
Hamiltonian related to the perturbed potential is

ĤU =

(
0 −∆0

2
−∆0

2 −∆

)
+ γuii

(
0 0
0 −1

)
, (2.70)

and following the same procedure, the free energy becomes

F = F0 −
1

2
γuii − kBT ln

(
2 cosh

(√
(∆ + γuii)2 + ∆2

0

2kBT

))
. (2.71)

Since we are interested to the interaction with phonon, we have to consider the thermal
energy region kBT > ε� ~ω where the temperature is more important than tunnelling
effect. Furthermore, for weak perturbation we can neglect all non-linear therms in γuii
and the free energy is

F ≈F0 −
1

2
γuii − kBT ln

(
2 cosh

(√
ε2 + 2γuii∆

2kBT

))

≈F0 −
1

2
γuii − kBT ln

2 cosh

ε
√

1 + 2γuii∆ε2

2kBT


≈F0 −

1

2
γuii − kBT ln

(
2 cosh

(
ε(1 + γuii∆

ε2 )

2kBT

))
. (2.72)

Since
√

1 + x ≈ 1 + x/2 for x� 1. Furthermore, ∆� ∆0 and ε/ε2 ≈ 1/∆, hence

F = F0 −
1

2
γuii − kBT ln

(
2 cosh

(
ε+ γuii
2kBT

))
, (2.73)

which can be simplified by the assumption ε =
√

∆2 + ∆2
0 ≈ ∆

F ≈ F0 −
1

2
γuii − kBT ln

(
2 cosh

(
∆ + γuii

2kBT

))
. (2.74)

2.4 Properties Related to Structure Dynamics

2.4.1 Mechanical Response of Anelastic Solids

In order to understand the behaviour of anelastics solids is useful to look at the dif-
ferences from ideal elastic materials [75]. If we apply the stress σ(t) to the solid, the
strain u(t) is modified following the linear-response theory

u(t) =

∫ t

−∞
j(t− t′)σ(t′)dt′ , (2.75)

where j(t) is the response function (impulse response), which depends on elastic pa-
rameters of the solid such as the Young’s modulus, Poisson’s ratio and Shear modulus.
The output is therefore the convolution of the input and the response function. We

6Notation of sum over repeated index is used.
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Creep
σ(t) = σ0
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σ(t) = 0
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Figure 2.10: Creep function for ideal solid (blue line), anelastic solid (green
line) and viscoelastic solid (red line).

can imagine to apply a constant stress at t = 0 so that σ(t) = σ0θ(t), where θ(t) is the
Heaviside function. For this kind of perturbations, using equation (2.75) we found

J(t) =
u(t)

σ0
=

∫ t

0
j(t− t′)dt′ , (2.76)

which is known as compliance and can be seen as the response to a constant pertur-
bation. Since σ0 is applied, elastic solid shows a constant response function J(t) = JU
which is called unrelaxed compliance, whereas anelastic solid shows a creep response and
for that reason J(t) is known as creep function. In figure 2.10 there is the behaviour of
the creep function for different materials. After a transient period, for the viscoelastic
solid, J(t) increases linearly with time, representing steady-state viscous creep. On the
other hand, for anelastic solid the creep function or the strain, since σ(t) is constant,
approaches asymptotically to an equilibrium value JR called relaxed compliance. The
difference δJ = JR − JU is the reason of the difference between elastic and anelastic
solid after the stress is removed in the so called elastic aftereffect. In contrast with
elastic solid the strain of anelastic solid does not returns instantaneously to its initial
equilibrium value but to δJσ0 and reaches the initial value only after a certain period
of time. A similar behaviour can be found for viscoelastic solid with the difference that
the final strain value is different from the initial one.

The compliance is useful in order to study the deformation of the solid after the
applied stress. If we are interested in the dynamic of the system, it is useful to study
the internal stress as consequence of the deformation. Indeed, if we imagine to apply a
strain to the solid in equilibrium, internal stress would appear in order to bring back
the system to the equilibrium. Supposing a weak perturbation, one may suppose a
linear response

σ(t) =

∫ t

−∞
m(t− t′)u(t′)dt′ , (2.77)

where m(t) is the response function of the solid at applied strain. Following the ap-
proach used in the creep experiment, if we imagine to apply a constant strain at t = 0
so that u(t) = u0θ(t) we obtain

M(t) =
σ(t)

u0
=

∫ t

0
m(t− t′)dt′ , (2.78)
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2)1)

(a) Voigt-type model.

2)1)

3)

(b) Three-phase model.

Figure 2.11: Representation of Voigt-type model (a) and three-phase model
(b).

where M(t) is known as the modulus function. In this sense, since u0 is applied we
can introduce the unrelaxed modulus MU related to ideal elastic material response, the
relaxed modulus MR representing the stress of anelastic solid reached at infinite time
since u(t) = u0 and δM = MU −MR which represents the difference between modulus
functions of elastic and anelastic solid when the last one approach to the value MR.

Even if the meaning of equation (2.75) sometime is more easier to understand
than (2.77), it is more convenient to work with the modulus function. For that reason,
it is useful to express the relation between the different response functions. Applying
the Laplace transform at equations (2.75), (2.76), (2.77) and (2.78) we obtain

u(s) = j(s)σ(s) , (2.79a)

J(s) = j(s)/s , (2.79b)

σ(s) = m(s)u(s) , (2.79c)

M(s) = m(s)/s , (2.79d)

where we can derive the relation between the two response functions m(s) = j−1(s)
and s2M(s) = J−1(s). It is now clear that the elastic moduli are the response of the
solids to an external solicitation. This reaction can be compared to the reaction of a
spring. If we apply a force or a strain to the spring its response will try to bring the
system back to the equilibrium and will oppose to the external solicitation.

Debye functions
In order to evaluate m(t), we can build a model which describes the creep function. As
first, we may represent anelastic solid with a system composed by parallel coupling of
one spring, which describes the elastic part of the solid, and one dash-pot, which damp
the spring. This model, called Voigt-type model, is illustrated in figure 2.11a. In such
a system the stress is distributed in the two elements whereas the strain is the same

σtot = σ1 + σ2 , u = u1 = u2 , (2.80)

where
u1 = δJσ1 and u̇2 = δJσ2/τσ , (2.81)

where τσ is the relaxation time constant related to the presence of the dash-pot. Despite
the presence of the dash-spot which allows to reproduce the behaviour of J(t) during
and after the applied stress, the Voigt-type model does not describe the discontinuity
of the creep function when σ0 is removed. In order to include this gap, it is necessary
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to introduce another element describing the elastic behaviour, such as a spring. This
three-phase model is illustrated in figure 2.11b and allows to describe anelastic solids.
Now, the total strain contains two terms, one is related to the Voigt-type model and
the other is the third spring, whereas the total stress is the same

σtot = σ1 + σ2 = σ3 , u = u1 + u3 , (2.82)

and
u2 = u1 = δJσ1 , u̇2 = δJσ2/τσ and u3 = JUσ3 , (2.83)

where τσ is the retardation time of the deformation, due to the presence of the dash-pot
when a stress is applied. Using relations (2.82) and (2.83) it is easy to find

JRσ + JU σ̇τσ = u+ u̇τσ , (2.84)

which represents the equation of motion for such system. In the case of a creep exper-
iment, we may solve the equation (2.84) under the conditions

σ(t) = σ0 , σ̇(t) = 0 for t ≥ 0 , (2.85a)

u(t) = JUσ0 for t = 0 . (2.85b)

In this sense, the equation (2.84) becomes

JRσ0

τσ
= u+ u̇ , (2.86)

whit the solution

u(t) = e−
∫ t
0

1/τσds

(
JUσ0 +

∫ t

0

JRσ0

τσ
e
∫ s
0

1/τσdlds

)
, (2.87)

which yields the compliance in the case of a creep experiment

J(t) =
u(t)

σ0
= JU + δJ

(
1− e−t/τσ

)
. (2.88)

In order to obtain the modulus function it is useful to use the Laplace transform

L (J(t)) = J(s) = JUs
−1 + δJ

(
s−1 − τσ

1 + sτσ

)
, (2.89)

which yields the modulus function by using the relations (2.79b) and (2.79d)

M(s) =
1

s2J(s)
=

1 + sτσ

sJR

(
1 + JU

JR
sτσ

) . (2.90)

If we introduce a new time constant for the modulus function τu = τσJU/JR, we obtain

M(s) =
1

sJR
− δJ

JUJR

τu
1 + sτu

, (2.91)

therefore
L −1(M(s)) = M(t) = MR + δMe−t/τu , (2.92)

where MR = J−1
R and δM = δJ/(JUJR). In the figure 2.12 there is the behaviour

of the modulus function. By using the time constant τu, known as relaxation time
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Figure 2.12: Modulus function of anelastic solid.

at constant strain, it is possible to rewrite the equation of motion (2.84) in term of
modulus function

σ + σ̇τu = MRu+MU u̇τu . (2.93)

Since we are interesting to the dynamic response, we can assume a periodic strain

u = u0e
iωt, σ = (σ1 + iσ2)eiωt (2.94)

into equation (2.93) and call M1 = σ1/u0, M2 = σ2/u0. Using the real and the
imaginary part of the equation so obtained, we can evaluate the Debye equations

M1 = MR + δM
ω2τ2

u

1 + ω2τ2
u

, (2.95a)

M2 = δM
ωτu

1 + ω2τ2
u

. (2.95b)

The Debye equations are routinely obtained in relaxation processes7 and describe
the elastic modulus as function of frequency; The quantity M1 goes from MR at high
frequencies (ωτu � 1) to MU at low frequencies (ωτu � 1). The quantity M2 has small
values at both high and low frequencies and is called Debye peak.

Loss angle
We will see now the physical meaning of the Debye equations. Using equation (2.77)
it is possible to relate the stress to strain

σ = (M1 + iM2)u , (2.96)

that using the Debye equations (2.95a) and (2.95b), for a periodic strain reads

σ =

(
MR + δM

ω2τ2
u

1 + ω2τ2
u

)
u0 cos(ωt)−

(
δM

ωτu
1 + ω2τ2

u

)
u0 sin(ωt) , (2.97)

In figure 2.13 the hysteresis shows that there are two symmetrical moments where the
work is positive (blue curves) and two where it is negative (red curves). Furthermore
the area of the ellipse represents the dissipated energy over a cycle. It is possible to

7the Debye equations were first derived by P. Debye for the case of dielectric relaxation phenomena.
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u(t1) u(t2)

u(t)

σ(t)

Figure 2.13: Hysteresis cycle for the stress versus the strain. The blue area
represents the maximum energy stored by the system during a cycle.

demonstrate that the dissipated energy is associated to the area under the hysteresis
curve. The dissipated power reads

P (t) = σ(t)u̇(t) , (2.98)

so that the dissipated energy over a period T is

Ediss =

∫ T

0
P (t)dt, with ωT = 2π . (2.99)

We note that

u(t) = uo<[eiωt] , (2.100)

u̇(t) = −u0ω sinωt , (2.101)

σ(t) = uo<[M(ω)eiωt] = uo(M1 cosωt−M2 sinωt) , (2.102)

and equation (2.98) becomes

P (t) = u2
0ω
(
M2 sin2 ωt−M1 sinωt cosωt

)
, (2.103)

so that the dissipated energy is

Ediss = u2
0ω

(
M2

∫ T

0
sin2 ωtdt−M1

∫ T

0
sinωt cosωtdt

)
,

Ediss = u2
0πM2 . (2.104)

In other words, the dissipated energy depends on the imaginary part of the elastic
modulus function. It is also possible to evaluate the maximum stored energy in the
system, which corresponds to the area under the positive work curve in figure 2.13

Emax =

∫ t2

t1

P (t)dt . (2.105)

In order to obtain t1 and t2 we need to find the condition for having null stress σ(t) = 0
and the maximum of the strain max(u(t)), which corresponds to the zero of the function
u̇(t). In other words, we need to find the maximum of the energy which is

Emax = max

(∫
P (t)dt

)
→ P (t) = σ(t)u̇(t) = 0 . (2.106)
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From σ(t) = 0 we obtain tan(ωt) = M1/M2, that in the presence of quasi-ideal solid,
where M1 >> M2, is verified for t ∼= ±π/2ω. From u̇(t) = 0 we obtain t = kπ/ω with
k ∈ Z. Under this consideration, the maximum stored energy is

Emax =

∫ 0

− π

2ω

P (t)dt

= u2
0ω

(
M2

∫ 0

− π

2ω

sin2 ωtdt−M1

∫ 0

− π

2ω

sinωt cosωtdt

)
=

1

2
u2

0(M1 +M2/2) . (2.107)

Since M1 >> M2 we can assume that the maximum stored energy is Emax = u2
0M1/2

so that

ET = u2
0πM2

= u2
0π
M2

M1
M1

= 2π
M2

M1
Emax

= 2πφEmax , (2.108)

where φ is the so-called loss angle of the system.

2.4.2 Internal Friction and Relaxations

Now it remains to understand how to obtain the loss angle from the creep and the
relaxation time. The relaxation is related to a transition of the solid from a state at
higher energy to a state at lower energy. As we have seen in the section 2.3.2, in the
case of amorphous solids, the relaxation may be related to the multiple metastable
configurations of the structure at different energies. If we consider the asymmetric
double-well potential, the relaxation is due to the transition from the state E↑ to E↓,
and at room temperature, this phenomena is ensured by the thermal energy. In this
sense, if we have an asymmetric double-well potential with asymmetry energy ∆ and
energy barrier V , as shown in figure 2.9, the probability to change state using the
thermal energy is

p↑↓ = p↑↓0 e
− V

kBT , p↓↑ = p↓↑0 e
−V+∆

kBT , (2.109)

where p↑↓ is the probability to switch from the state up to the state down and p↓↑ vice
versa. Using the probability (2.109), the relaxation time8 is

τ =
1

p↑↓ + p↓↑
(2.110a)

= τ0
eV/kBT

1 + e−∆/kBT
(2.110b)

= τ ′0e
V/kBT , (2.110c)

which follows the Arrhenius’ law and where 1/(1 + e−∆/kBT ) goes from 1/2 to 1. The
thermal noise of the amorphous solids is related to the imaginary part of modulus func-
tion M2 expressed by relation (2.95b). In reality, amorphous solids are well described

8From now on the subscript on τ is omitted, since τσ and τu are equal if MR ∼MU .
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by a distribution of asymmetric double-well potential and equation (2.95b) must be
implemented [80]

M2 =

∫ ∞
0

∫ ∞
0

δM
ωτ

1 + ω2τ2
g(∆)f(V )d∆dV , (2.111)

where f(V )dV is the number of wells with barrier between V and V +dV , while g(∆)d∆
is the number of wells with asymmetry between ∆ and ∆ + d∆ and δM is evaluated
in appendix B.

Exponential Behaviour of f(V )
There are evidence of an exponential behaviour of the distribution function f(V ) for
materials like silica [83,84]

f(V ) =
1

V0
e−V/V0 , (2.112)

where V0 is a constant which depends on the material. Furthermore, considering equa-
tion (B.7) we obtain∫ ∞

0

ωτ

1 + ω2τ2
f(V )dV =

∫ ∞
0

f(V )dV

2 cosh (V/kBT + ln(ωτ ′0))
. (2.113)

In this respect we can solve the integral∫ ∞
0

f(V )dV

2 cosh (V/kBT + ln(ωτ ′0))
=
kBT

2

∫ ∞
ln(ωτ ′0)

f (kBT (x− ln(ωτ ′0)))

coshx
dx

=
kBT

2

∫ ∞
ln(ωτ ′0)

n
V0
e
− kBT

V0
x
e

ln(ωτ ′0)
kBT

V0

coshx
dx

=
n

V0

kBT

2
(ωτ ′0)

kBT

V0

∫ ∞
ln(ωτ ′0)

e
− kBT

V0
x

coshx
dx . (2.114)

From experimental data it can be observed τ0
∼= 10−13s for glasses and ωτ ′0 � 1, so that

ln(ωτ ′0)→ −∞. Furthermore, if we compare e
− kBT

V0
x

and coshx (figure 2.14) it is clearly
evident that the key of such integral is the parameter kBT

V0
. Indeed, V0 depends on the

temperature and it is possible to obtain kBT � V0 especially at low temperature. In

this sense, if we consider the case kBT � V0 the function e
− kBT

V0
x

can be considered as
constant with respect to 1/ coshx and

e
− kBT

V0
x

coshx
∼ 1

coshx
. (2.115)

We can now integrate∫ ∞
0

f(V )dV

2 cosh (V/kBT + ln(ωτ ′0))
=

n

V0

kBT

2
(ωτ ′0)

kBT

V0

∫ ∞
−∞

1

coshx
dx

=
n

V0

kBT

2
(ωτ ′0)

kBT

V0 π . (2.116)

Once the integration in V is done, the integral in ∆ must be solved and equation (2.111)
becomes

M2 =

∫ ∞
0

δM
n

V0

kBT

2
(ωτ ′0)

kBT

V0 πg(∆)d∆ . (2.117)
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Figure 2.14: Comparison of 1/ coshx (black) and e−
kBT

V0
x functions. The

comparison regards three cases of the exponential factor: kBT � V0
in red, kBT ' V0 in green and kBT � V0 in blue.

The asymmetry ∆ must be of the order of the energy available to the glass transi-
tion. For this reason, under the glass transition temperature the function g(∆) can be
considered as a constant g0. furthermore, considering the normalization∫ ∞

0
g(∆)d∆ = 1

g0∆0 = 1 , (2.118)

where we can observe that g(∆) has dimension of Joule−1. In this respect, considering
equation (B.5), we obtain

M2 =
n

V0

kBT

2∆0
(ωτ0)

kBT

V0 π

∫ ∞
0

δM

(1 + e−∆/kBT )
kBT

V0

d∆ . (2.119)

Considering δM as obtained in appendix B, we obtain

M2 =
n

V0∆0

πγ2

8
(ωτ0)

kBT

V0

∫ ∞
0

sech2
(

∆
2kBT

)
(1 + e−∆/kBT )

kBT

V0

d∆

=
n

V0∆0

πγ2

8
(ωτ0)

kBT

V0

∫ ∞
0

4
e
− ∆

kBT

(1 + e−∆/kBT )
(2+

kBT

V0
)
d∆ . (2.120)

If we consider kBT � V0

M2 ∼
n

V0∆0

πγ2

8
(ωτ0)

kBT

V0

∫ ∞
0

4
e
− ∆

kBT

(1 + e−∆/kBT )2
d∆

M2 =
n

V0∆0

πγ2

8
(ωτ0)

kBT

V0

∫ ∞
0

sech2

(
∆

2kBT

)
d∆ , (2.121)

and eventually9

M2 =
πγ2

4
kBT

n

V0∆0
(ωτ0)

kBT

V0 . (2.122)

9To solve the integral the change of coordinates via s = e
( ∆

2kBT
)

may help, so that

4kBT

∫ ∞
1

ds

(s+ 1)2
= 2kBT .
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It is now possible to obtain the expression of the loss angle.
Considering the Debye equations (2.95), under the condition of quasi-ideal solid

M2 � M1 we can assume that M1 ' MR. Using equation (2.108) it is possible to
express the loss angle in the case of harmonic analysis

φ = M2/M1 = M2/MR

=
πγ2

4MR
kBT

n

V0∆0
(ωτ0)

kBT

V0 , (2.123)

where MR is constant. From equation (2.123) we observe that the loss angle should
depend on frequency by a power law.

General f(V )
It is clear that the parameter kBT is important in order to evaluate the validity of the
function for the distribution f(V ). In the case where kBT is small, the Debye function
acts like a delta and we can expand the function f(V ) in term of (V + kBT ln(ωτ ′0))

f(V ) = f(−kBT ln(ωτ ′0)) +

∞∑
n=1

(V + kBT ln(ωτ ′0))n

n!
f (n)(−kBT ln(ωτ ′0)) , (2.124)

furthermore, since the imaginary part of the Debye equation acts like a delta function,
we obtain∫ ∞

0

f(V )dV

2 cosh (V/kBT + ln(ωτ ′0))
= f(−kBT ln(ωτ ′0))

∫ ∞
0

dV

2 cosh (V/kBT + ln(ωτ ′0))
+

+

∞∑
n=1

f (n)(−kBT ln(ωτ ′0))

n!

∫ ∞
0

(V + kBT ln(ωτ ′0))ndV

cosh (V/kBT + ln(ωτ ′0))
.

(2.125)

We transform the integral by a change of coordinates via

x = V/kBT + ln(ωτ ′0) , dx = dV/kBT , (2.126)

so that the integration reads

kBT

2
f(−kBT ln(ωτ ′0))

∫ ∞
ln(ωτ ′0)

dx

coshx
+

∞∑
n=1

f (n)(−kBT ln(ωτ ′0))

n!
(kBT )n

∫ ∞
ln(ωτ ′0)

xndx

coshx
.

(2.127)
For ωτ ′0 << 1, ln(ωτ ′0) −→ −∞ hence10

πkBT

2
f(−kBT ln(ωτ ′0)) +

∞∑
n=1

f (n)(−kBT ln(ωτ ′0))

n!
(kBT )n

∫ ∞
−∞

xndx

coshx
. (2.128)

For odd values of n the integral from −∞ to ∞ is zero because xn is an odd function
while 1/ coshx is an even function. For n = 2k with k ∈ N+ we obtain

1

n!

∫ ∞
−∞

xndx

coshx
=

2

n!

∫ ∞
0

xndx

coshx
∼ 4 , (2.129)

10We remember that ∫ ∞
−∞

dx

coshx
= π .
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and then

πkBT

2
f(−kBT ln(ωτ ′0)) + 4

∑
n=2k

f (n)(−kBT ln(ωτ ′0))(kBT )n . (2.130)

Once the integration in V is done, the integral in ∆ must be solved and equation (2.111)
becomes

M2 =

∫ ∞
0

δM
πkBT

2
f(−kBT ln(ωτ ′0))g(∆)d∆+

+ 4

∫ ∞
0

δM
∑
n=2k

f (n)(−kBT ln(ωτ ′0))(kBT )ng(∆)d∆ . (2.131)

We can do the previous observation for the asymmetry ∆ and consider that g(∆) ∼
1/∆0. Furthermore, considering kBT � V0 regarding τ ′0 and δM , using equation (2.118)
and (B.5) we obtain

M2 =
γ2π

8∆0
f(−kBT ln(ωτ0))

∫ ∞
0

sech2(
∆

2kBT
)d∆+

+
γ2π

∆0

∑
n=2k

(kBT )(n−1)f (n)(−kBT ln(ωτ0))

∫ ∞
0

sech2(
∆

2kBT
)d∆ , (2.132)

and finally

M2 =
γ2π

4∆0
(kBT )f(−kBT ln(ωτ0)) +

2γ2π

∆0

∑
n=2k

(kBT )nf (n)(−kBT ln(ωτ0)) . (2.133)

Under the condition of quasi-ideal solid M1 ' MR and using equation (2.108) it is
possible to use the harmonic analysis to express the loss angle

φ =
γ2π

4∆0MR
(kBT )f(−kBT ln(ωτ0))+

2γ2π

∆0MR

∑
n=2k

(kBT )nf (n)(−kBT ln(ωτ0)), (2.134)

where MR is constant. Finally, using equation (2.112) the loss angle reads

φ =
γ2π

4∆0MR

kBT

V0
(ωτ0)

kBT

V0

[
1 + 8

∑
n=2k

(kBT )n−1

V n
0

]
with k ∈ N+ , (2.135)

where it is clear that the relation is valid only in the case where kBT � V0.
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CHAPTER 3

METROLOGY

“Quelli che s’innamorano di pratica sanza scienzia son
come ‘l nocchier ch’entra in navilio senza timone o
bussola, che mai ha certezza dove si vada.”

Leonardo da Vinci
Trattato della pittura, parte II. 77 (the 16th century)

In this chapter the methods adopted to characterize the samples are illustrated.
Spectroscopic ellipsometry (SE) is a suitable method to investigate optical properties
and thickness of thin film materials. We used two different ellipsometers, covering
complementary and partially overlapping spectral regions, thus obtaining information
related to a broad wavelength range extended from 190 to 1680 nm (0.7 - 6.5 eV).

It is known that the optical properties of amorphous solids depend on micro-
structure and morphology; the optical models for amorphous oxide solids are here
illustrated. Since the coating materials are amorphous, the models describing the ab-
sorption edge are the well-known Tauc-Lorentz (TL) and Cody-Lorentz Cody-Lorentz
(CL). In order to describe the possible roughness of the coating surface, a model to
describe mixture of materials is here illustrated.

We characterized the mechanical properties by the ring-down method: the sample
is forced to vibrate at one of its resonance frequencies then the oscillations are free to
decay after the excitation is removed. The characteristic decay time is measured and
then the loss angle of the sample is worked out. We used a Gentle Nodal Suspension
(GeNS) in order to suspend the sample without clamping.

To estimate the coating loss angle it is necessary to know the dilution factor,
i.e. the ratio of the energy stored in the coating to the energy stored in the total
system. With a GeNS system, the dilution factor is measured via the shift
of the resonance frequencies due to the coating deposition. By fitting the
measured dilution factor with the numerical values from the finite element
simulations, it is possible to estimate the elastic constants of the coating.
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3.1 Introduction to Ellipsometry

When the light interacts with a solid having a refractive index which differs from the
medium where the radiation is propagating, reflection and transmission occur. The
reflected and transmitted beams obtained by the interaction of a solid with an incident
light beam are linked by suitable boundary conditions. The Snell’s laws give the relation
between the incident θi and reflection θr angle of the light beam

θi = θr = θ1 , (3.1)

which can be related to the transmission angle θt

sin θt = sin θ2 =
N1

N2
sin θ1 , (3.2)

where N1 and N2 are the refractive indices of the two media.

Since a randomly polarized light can be seen as a superposition of two linear po-
larizations, it is convenient to study two different cases of transmission and reflection.
Following figure 3.1, polarization can be classified as p-like (from parallel) and s-like
(from senkrecht, German for perpendicular) depending on the direction of the oscil-
lating electric fields with respect to the plane of incidence, which is defined by the
incoming propagation direction and the vector perpendicular to the plane of the inter-
face of the sample. As shown in figure 3.1a, in the case of p-polarization, the electric
fields of incident, reflected and transmitted radiation oscillate in the plane of incidence.
On the other hand, in figure 3.1b is shown that for s-polarization the electric fields are
perpendicular to the plane of incidence.
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(a) p-polarization.
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(b) s-polarization.

Figure 3.1: Electric ~E and magnetic ~B fields of the incident, reflected and
transmitted light beam represented over the plane of incidence. a) the
~B fields are transverse to the plane of incidence, and p-polarization
is commonly referred to as transverse-magnetic (TM). b) the ~E fields
are transverse and s-polarization is commonly referred to as transverse-
electric (TE).

Using the boundary conditions for the electric and magnetic fields at the interface,
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the Fresnel’s equations are obtained for the two polarizations

rp ≡

∣∣∣ ~Epr ∣∣∣∣∣∣ ~Epi ∣∣∣ =
N2 cos θ1 −N1 cos θ2

N2 cos θ1 +N1 cos θ2
, (3.3a)

tp ≡

∣∣∣ ~Ept ∣∣∣∣∣∣ ~Epi ∣∣∣ =
2N1 cos θ1

N2 cos θ1 +N1 cos θ2
, (3.3b)

rs ≡

∣∣∣ ~Esr ∣∣∣∣∣∣ ~Esi ∣∣∣ =
N1 cos θ1 −N2 cos θ2

N1 cos θ1 +N2 cos θ2
, (3.3c)

ts ≡

∣∣∣ ~Est ∣∣∣∣∣∣ ~Esi ∣∣∣ =
2N1 cos θ1

N1 cos θ1 +N2 cos θ2
. (3.3d)

Since the refractive index N is a complex quantity, it is possible to express the
Fresnel coefficients as

r = |r| eiδr , (3.4a)

t = |t| eiδt , (3.4b)

δr = arg r = arctan (=(r)/<(r)) , (3.4c)

δt = arg t = arctan (=(t)/<(t)) , (3.4d)

which help to describe the reflected and transmitted beam in term of change in am-
plitude and phase.

With ellipsometry it is possible to measure the change in polarization state of
light reflected or transmitted from the surface of a sample [85]. The sketch shown in
figure 3.2 represents the particular case with linearly polarized incident beam, where
the phase of p- and s-polarization are equal.

SAMPLE

θ
Es

r

Ep
r

Ψ

∆

Es
i

Ep
i

Figure 3.2: Sketch of reflection ellipsometry technique.

When the radiation interacts with the sample, the reflected beam is characterized
by a change in amplitude and phase for both p- and s-polarization, giving different rp
and rs. The fundamental equation of ellipsometry connects the two angles Ψ and ∆,
shown in figure 3.2, to the amplitude and the phase difference of p- and s-polarization

ρ ≡ rp
rs
≡ |rp||rs|

ei(δ
p
r−δsr) ≡ tan Ψei∆ , (3.5)
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where

Ψ = tan−1(|ρ|) = tan−1

( |rp|
|rs|

)
, (3.6)

∆ = δpr − δsr . (3.7)

From (Ψ, ∆) data, thanks to equation (3.5) it is possible to compute the Fresnel’s
coefficients and hence the refractive index of the sample. In order to increase the
sensitivity of ellipsometric measurements, it is recommended to collect the data around
the Brewster angle for the incident light beam. In fact, at the Brewster angle the
coefficient rp is zero for transparent samples1 and the differences between rp and rs is
maximised.

3.1.1 Spectroscopic Ellipsometers

Optical properties and thickness of coating layers have been obtained using spectro-
scopic ellipsometry. In particular, two different J.A. Woollam Co. ellipsometers have
been used, covering complementary and overlapping spectral regions: the VASE showed
in figure 3.3a for the interval 190 nm − 1100 nm, and the M-2000 showed in figure 3.3b
for the interval 245 nm − 1680 nm. The main differences between the two ellipsometers
are the configuration and the measurement method.

(a) VASE®. (b) M-2000®.

Figure 3.3: Ellipsometers adopted for optical characterisation. a) The
VASE, whit a vertical sample mount. b) The M-2000, featuring a
horizontal sample mount. (©J.A. Woollam Co.)

VASE
J.A.Woollam VASE ellipsometer is a wide spectral range (UV-Vis-NIR) variable angle
spectroscopic ellipsometer. It features a rotating analyzer ellipsometer (RAE) shown
in figure 3.4, which consists of an input linear polarizer and a rotating output analyzer2

allowing to convert the unknown polarized light coming from the sample in a linear
polarized light.

Furthermore, a monochromator allows to select the wavelength of input light
source, in order to perform a spectroscopic analysis changing ideally a single wave-
length at time. Another interesting characteristic is the size of the light beam, which is
of the order of some tens of millimeter, avoiding depolarization effects due to a possible

1For absorbing sample rp is not zero but has a minimum.
2Usually the analyzer is a polarizer which has a different name because of its function.

58



3.1. INTRODUCTION TO ELLIPSOMETRY
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Figure 3.4: Sketch of a rotating analyzer ellipsometer (RAE).

thickness non homogeneity when probing a small area. The depolarization transforms
the totally polarized light used as a probe into partially polarized light, increasing the
error of the instrument. This will occur when the sample is extremely rough or exhibits
back-surface effects, when a film on the sample is non-uniform or patterned, and when
monochromator bandwidth or angular spread effects are significant.

The output light beam for a RAE, expressed with the Jones matrices for the
optical components, reads

Lout = AR(A(t))SR(−P )PLin , (3.8)

where Lin and Lout are the Jones vectors3 of the incident and reflected beam respec-
tively, S matrix represents the sample, R(−P )P represents the light that transmits
the polarizer P , having the angular position P with respect to their polarization axis
and expressed by the rotating matrix R(−P ) (the same notation is adopted for the
analyser, where the angular position is a function of time A(t)). In this sense we obtain(

Eout
0

)
=

(
1 0
0 0

)(
cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

)(
sin Ψe(i∆) 0

0 cos Ψ

)
×
(

cosP − sinP
sinP cosP

)(
1 0
0 0

)(
1
0

)
,

(3.9)

and the intensity of the reflected beam at the detector is

Iout = |Eout|2

=
Iin
4

[(1− cos 2P cos 2Ψ) + (cos 2P − cos 2Ψ) cos 2ωt+ (sin 2P sin 2Ψ cos ∆) sin 2ωt]

=
Iin
4

[1− α cos 2ωt+ β sin 2ωt] ,

(3.10)
where

α =
tan2 Ψ− tan2 P

tan2 Ψ + tan2 P
β =

2 tan Ψ cos ∆ tanP

tan2 Ψ + tan2 P
. (3.11)

Therefore, with a RAE it is possible to evaluate (α, β) by performing a Fourier analysis
of the measured Iout and eventually to obtain (Ψ, ∆) from equation (3.11)

tan Ψ =

√
1 + α

1− α |tanP | cos ∆ =
β√

1− α2
. (3.12)

3The Jones vector is defined by the electric field vectors in the x and y directions, for a wave
travelling along the z direction. In the case of linear polarized light beam, the vector will have the
component only along one direction.
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Finally, since in RAE the polarization state of reflected light is determined from a
variation of light intensity with the analyzer angle, left-circular polarization cannot be
distinguished from right-circular polarization; these polarizations show the same light
intensity variation versus the analyzer angle.

M-2000
The M-2000 ellipsometer is made of an analyser fixed in a certain position and another
rotating optical element named compensator, which converts a linear polarization in
a circular polarization. For this reason the ellipsometer is a rotating compensator
ellipsometer (RCE) and in figure 3.5 it is shown a sketch of its operation principle.

SAMPLE
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A

Lout

s

p

C

P

Lin

s

p

Figure 3.5: ketch of a rotating compensator ellipsometer (RCE). P and A
are fixed linear polarizers while C convert the linear polarization into
a circular one.

Using the Jones formalism, the detected light is

Lout = AR(A)SR(−C(t))CR(C(t))R(−P )PLin , (3.13)

hence

(
Eout

0

)
=

(
1 0
0 0

)(
cosA sinA
− sinA cosA

)(
sin Ψe(i∆) 0

0 cos Ψ

)
×
(

cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

)(
1 0
0 eiφ

)(
cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

)
×
(

cosP − sinP
sinP cosP

)(
1 0
0 0

)
Lin ,

(3.14)

where φ represents the phase shift related to the compensator C. The intensity on the
detector is then [86]

Iout = Iin(α0 + α2 cos 2ωt+ β2 sin 2ωt+ α4 cos 4ωt+ β4 sin 4ωt) , (3.15)

where the angle of the rotating compensator is described as C = ωt and the normalized
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Fourier coefficients read

α0 =1 +
1

2
(1 + cosφ)(cos 2A cos 2P − cos 2P cos 2Ψ + sin 2A sin 2P sin 2Ψ cos ∆)

− cos 2A cos 2Ψ

α2 =− sin 2A sin 2P sinφ sin 2Ψ sin ∆

β2 = sin 2A cos 2P sinφ sin 2Ψ sin ∆

α4 =
1

2
(1− cosφ)(cos 2A cos 2P − cos 2P cos 2Ψ− sin 2A sin 2P sin 2Ψ cos ∆)

β4 =
1

2
(1− cosφ)(cos 2A cos 2P − cos 2P cos 2Ψ + sin 2A sin 2P sin 2Ψ cos ∆)

(3.16)
An important characteristic related to the angle of the compensator C with respect to
the light intensity variation period, is that the light intensity variation of left-circular
polarization versus C becomes opposite to that of right-circular polarization. The
signs of the normalized Fourier coefficient α2 are reversed and left- and right-circular
polarizations are distinguished in RCE measurement. Another characteristic which
differs from VASE ellipsometer is that the M-2000 does not use the monochromator and
the measurements are done by acquiring all the analysed wavelengths simultaneously,
reducing the measurement time. Furthermore, the light beam of M-2000 is larger than
the VASE one, probing larger surface area. In order to reduce depolarization effects
related to the large investigated area it is possible to reduce the beam light size using
an iris. However, a smaller light spot implies a smaller intensity of the detected signal
and a compromise is needed to find the right beam size and the intensity of the output
signal.

3.1.2 Optical Models

In spectroscopic ellipsometry, the dielectric constants of the material are worked out
from (∆, Ψ) parameters through a model which represents the material optical re-
sponse. The dielectric function of the coating is then obtained by using a method
called mathematical inversion after the comparison of the experimental data with the
model. This is the most significant limit of ellipsometric measurements: indeed, no
matter how complex and realistic it is, each model represents just an approximation
of the real system. However, once the model is validated, spectroscopic ellipsometry
allows accurate and fast characterizations.

Several models exist to represent the electric function of the sample. In figure 3.6
the most common models used in spectroscopic ellipsometry are shown.

In principle, we can distinguish two regions of photon energy. At high energies,
from the visible to ultraviolet (UV-Vis), there is the absorption edge, described by
several models such as the Cody-Lorentz, Tauc-Lorentz or harmonic oscillator approx-
imation (HOA). Most of them are a Lorentz model extension. At lower energies, in the
infrared (IR) region, amorphous oxides do not present strong absorption and models for
transparent region such as Sellmeier or Cauchy are adopted. Finally, if the absorption
is related to free electrons, it is convenient to adopt the Drude model. In the following
these models will be described in detail.

Lorentz Oscillator
The Lorentz model is a classic model which describes the optical properties of linear
and homogeneous dielectric materials, without considering free electrons.

In this model the dielectric solid is considered as a viscous solid described by
multiple spring-mass systems. The single spring-mass system is illustrated in figure

61



CHAPTER 3. METROLOGY

0

ε2

Photon Energy [eV]

0

ε1

ωp

Cauchy
Sellmeier,

Drude
Lorentz,
Cody-Lorentz,
HOA, ecc.

Figure 3.6: Most common optical models.
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Figure 3.7: Oscillating dipole.

When an external oscillating electric field is applied to the system, the charges
polarize along the field direction and start to oscillate around their equilibrium posi-
tions. Since the nucleus is much more massive than the electron, if the frequency of
the oscillating field is high, it is possible to assume the nucleus motionless and consider
only the motion of the electron. If the electric field ~E oscillates along the x direction,
we obtain

meẍ = −meΓẋ−meω
2
0x− eE0e

iωt , (3.17)

where me is the mass of the electron with charge e, Γ the viscous damping coefficient
and ω0 the resonance frequency. The total force described by equation (3.17) is made
on three terms. The first term is related to the viscosity of the system, where the
force is proportional to the electron velocity in under-dumped condition, the second
represents the elastic force described by the Hooke’s law, the third is the Coulomb’s
force.

Since the electron has the same frequency as the electric field E = E0e
iωt, it is

possible to assume as solution x(t) = aeiωt and from equation (3.17)

a = −eE0

me

1

(ω2
0 − ω2) + iΓω

. (3.18)

Considering Ne electrons we obtain the polarization

P = −eNex(t) = −eNeae
iωt , (3.19)

which is useful to obtain the dielectric function of the Lorentz model using equation
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(2.5)

ε = 1 +
A

(ω2
0 − ω2) + iΓω

, (3.20)

where A = (e2Ne)/(ε0me) and the real and imaginary parts read

ε1 = 1 +A
(ω2

0 − ω2)

(ω2
0 − ω2)2 + (Γω)2

, (3.21a)

ε2 = A
Γω

(ω2
0 − ω2)2 + (Γω)2

. (3.21b)

In figure 3.8 the real and imaginary part of the dielectric function are shown. The
curves represent the typical behaviour of the linear theory response function. Indeed,
the Lorentz model is Kramers-Kronig consistent. Under this consideration, the physical
model will represents the imaginary part ε2 and real part ε1 is then obtained from the
Kramers-Kronig relations (2.8).

ω

ε1

ω0

1

(a) Real part.

ω

ε2

ω0

(b) Imaginary part.

Figure 3.8: Dielectric function of Lorentz model. (a) The real part of the
dielectric function ε, (b) the imaginary part.

If we now consider the general case where multiple oscillators are involved, differ-
ent resonance frequencies associated to different energetic levels of the solid must be
considered. In this sense, the dielectric function is made by the superposition of several
oscillators

ε = 1 +
∑
n

εn , where εn =
A

(ω2
n − ω2) + i(Γnω)

. (3.22)

In order to analyse the experimental data it is useful to express the dielectric function
εn as function of the photon energy

εn2 = A~2 BrnE

(E2
n − E2)2 + (BrnE)2

=
AnEnBrnE

(E2
n − E2)2 + (BrnE)2

, (3.23)

where the three parameters An = (A~2)/(En), En = ~ωn and Brn = ~Γn have the
dimension of the energy in eV and they are referred to the amplitude of the n-th
oscillator, its energy position and the resonance peak width, respectively. In figure 3.9
an example of the ε1 behaviour considering multiple oscillator is shown.

If we consider only the n-th oscillator, the real part of the dielectric function εn
will have an offset ε1off which accounts for the presence of resonances at lower energies.

Transparent Region
For reasons that will be clear later we first analyse the transparent region where the
absorption is considered null as well as ε2. A model describing the transparent region
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E

ε1

En

ε1off

En+1

Figure 3.9: Real part of the dielectric function for the Lorentz oscillator.

can be derived from the Lorentz model. If we consider energies far from the resonance
frequency, the width Γ→ 0 and ε2 ∼ 0. Using the relation ω/c = 2π/λ, from equation
(3.21a) we obtain

ε1 = 1 +
e2Ne

ε0me(2πc)2

λ2
0λ

2

λ2 − λ2
0

= 1 +B
λ2

0λ
2

λ2 − λ2
0

, (3.24)

which represents the Sellmeier model. In the presence of several oscillators

ε2 = 0 ε1 = n2 = A+
∑
n

Bn
λ2

λ2 − λ2
n

, (3.25)

where A is the constant value of ε1 to be ascribed to the oscillators at higher energies.
Considering a single oscillator, it is possible to derive a basic model which describes

the refractive index. If we assume λ� λ0, equation (3.24) can be written as

n = A+B0
1

1−
(
λ0

λ

)2 , (3.26)

which can be expressed in the series expansion

n = A+
B

λ2
+
C

λ4
+ ... k = 0 , (3.27)

where A,B and C are the coefficients of the series. Equation (3.27) represents the
Cauchy model. In figure 3.10 the Cauchy model derived from the Lorentz oscillator is
shown. In particular, the refractive index n approaches the constant A as we get far
from the resonance, at lower frequencies. On the other hand, B and C parameters rule
the shape of the curve. Furthermore, since A is the constant parameter of n, the offset
ε1off is included in the model.

Another model which describes the refractive index in the transparent region takes
into account the absorptions in the two limits of the considered energy region. Despite
this model is not obtained from physical considerations, it represents well the behaviour
of the refractive index in the whole transparent region of interest. This model uses two
poles to describe the real part of the dielectric function

ε2 = 0, ε1 =
∑
n

εpolo n =
∑
n

An
E2
n − E2

n = 1, 2 , (3.28)

where An is the amplitude in (eV )2 and En the energy position of the n-th pole. Since
there are only parameters that define the shape of the refractive index, the value ε1off
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Figure 3.10: Cauchy model on the left and Lorentz model on the right. In
the Lorentz model the transparent region described by the Cauchy
model is highlighted.

E

ε1

E1 E2

Region of interest

ε1off

Figure 3.11: Two-poles model, with poles in E1 and E2.

is included in the model to consider the presence of resonances at higher energies. In
figure 3.11, ε1 obtained by the two-poles model is shown

Since the described models for transparent region consider k ∼= 0 and are limited
to a restricted region, they are not Kramers-Kronig consistent from a strictly mathe-
matical point of view.

The models describing the transparent region are useful in order to perform a
preliminary investigation of optical properties in the IR region, where the amorphous
oxides show an extremely low absorption. For this reason, for each sample the trans-
parent region has been at first investigated to obtain preliminaries informations about
the coating thickness and refractive index, then the analysis has been extended to the
UV region using models which describe the absorption edge. The Lorentz model is not
suitable to describe the absorption of amorphous solids, for this reason a model which
include Tauc or Cody behaviour is needed.

Tauc-Lorentz and Cody-Lorentz models
The Tauc-Lorentz model developed by Jellison [87] combines the absorption edge de-
scribed by Tauc (chapter 2) with the Lorentz oscillator in order to describe the joint
density of states (JDOS) of amorphous solids. In this sense, we obtain a parametriza-
tion of the imaginary part of the dielectric function

ε2 =

{
L(E)GT (E), E > Eg ,

0, E ≤ Eg ,
(3.29)
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where L(E) is the Lorentz oscillator (3.23) and GT (E) represents the absorption edge
described by Tauc

GT (E) =
(E − Eg)2

E2
. (3.30)

Hence, outside the gap Eg we obtain

ε2 =
AE0C(E − Eg)2

(E2 − E2
0)2 + C2E2

1

E
, (3.31)

where A is the amplitude, E0 the transition energy and C the peak width, expressed
in eV . In figure 3.12, the ε2 behaviour for Tauc-Lorentz model is shown.

Eg E0 E

ε2

Figure 3.12: Imaginary part of the dielectric function ε2 described by Tauc-
Lorentz model.

This model is well known in literature and describes successfully the absorption
edge of amorphous solids. However, ε2 = 0 does not allow to describe the presence
of defects as well as the distortions represented by the Urbach tails provide transition
including states within the gap, giving a non zero ε2.

As an alternative to the Tauc-Lorentz model, the Cody-Lorentz model developed
by Ferlauto et al. [88] includes the urbach tails transitions. Furthermore, it is similar
to the Tauc-Lorentz in the strong absorption region, where the Lorentz oscillator is
modulated by the Cody behaviour of the absorption edge for amorphous solids

ε2 =

L(E)GC(E), E > Et ,
E1

E
e(E−Et)/Eu , E ≤ Et ,

(3.32)

where E1 is defined by the continuity condition E1 = EtL(Et)GC(Et) , Eu represents
the extension of the Urbach tails and Et is the transition energy between localized-
extended and extended-extended transitions. As observed in (3.29) and (3.32), the
difference in the strong absorption region resides in the choice of the function multiplied
by the Lorentz oscillator. In the case of Cody behaviour, the expression ε2 ∝ (E−Eg)2

can not be applied to GC(E) because it diverges with the energy. For this reason the
following expression is adopted

GC(E) =
(E − Eg)2

(E − Eg)2 + E2
p

, (3.33)

where Ep is the limit energy between the Cody behaviour and the Lorentz oscillator.
It can be shown that if E ≈ Eg then GC(E) follows the Cody behaviour, whereas if
E � Ep then GC(E)→ 1.
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Following Ferlauto et al. [88], the absolute value of Et is used in the model. How-
ever, the analysis in the following chapter are done by considering Et → (Eg +Et), and
than inside the gap we obtain

ε2 =
E1

E
e(E−(Eg+Et))/Eu . (3.34)

In figure 3.13, the imaginary part of the dielectric function for the Cody-Lorentz model
is shown, where a zoom highlights the energy transitions separating the different trends.

Eg E0

Ep

10×

Eg

Eg+Et

E

ε2

Figure 3.13: Imaginary part of the dielectric function ε2 for the Cody-
Lorentz model. In the zoom, the energy transition Eg+Et are showed.

ε1 can be obtained starting from ε2 using Kramers-Kronig integrals (2.8). How-
ever, the TL and CL formulae define ε2 through peace-wise functions. Some authors
discuss the limitations that this fact involves regarding the full Kramers-Kronig con-
sistency of these models [89,90].

Parametric Model
Another method to describe the optical properties of solids is to reproduce the dielectric
function with an analytical expression, based on parametric functions. In this respect,
Herzinger et al. developed the so-called parameterized semiconductor (PSEMI) oscil-
lator, a parametric model which describes the absorption of semiconductors [91]. It
has to be noticed that the parameters used in this model do not have a direct physical
meaning; it is the behaviour of the dielectric function which is important. In figure
3.14 the PSEMI function is shown, which is similar to a Gaussian oscillator, where four
polynomial functions (FI , FII , FIII , FIV ) are connected respected continuity.

In the generic model developed by Herzinger and Johs, 12 parameters are needed
to obtain the dielectric function. Three of them E0, A and B are the energy of the os-
cillator, the amplitude and the peak width respectively. Furthermore, other parameters
modify the shape of the oscillator. In particular, WL, PL, AL and O2L are the width of
the left region of the absorption, the energy position of the connecting point between
WL and E0, the amplitude of the connecting point and the second order parameter
for the FI and FII polynomials. In the same way, WR, PR, AR and O2R parameters
are related to the right region of the absorption. The last parameter Disc rules the
discontinuity. However, the PSEMI model used for the analysis in the following section
is one of the five PSEMI type available from J. A. Woollam Co.4 models, which allows
to modify only 7 parameters and Disc is set to zero. In table 3.1 the seven models are
listed, highlighting the editable parameters.

4jawoollam.com
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Figure 3.14: Example of PSEMI oscillator.

Psemi E0 A B WL WR PL AL PR AR O2L O2R

PSM0 X X X 0 X 0.5 0.5 X X 0 X
PSM1 X X X X X 0.75 X 0.5 X 1 0
PSM2 X X X X X 0.5 X 0.75 X 0 1
PSM3 X X X X 0 X X 0.5 0.5 X 0
PSTRI X X X X X 0.5 X 0.5 X 0 0

Table 3.1: Editable parameters of PSEMI models available from J. A. Wool-
lam Co.

Mixtures
Sometimes the sample is not homogeneous and is characterised by a mix of several mate-
rials or presents regions with different density. In order to represent this kind of sample
it is useful to use an effective medium approximations (EMA). In order to represent the
optical properties of such system, it is convenient to relate the macroscopic properties
of the system such as the dielectric function ε, with the microscopic properties, such as
the atomic polarization α. This relation is given by the Clausius-Mossotti [92] formula

ε− 1

1 + (ε− 1)L
=
Nα

ε0
, (3.35)

where N is the atomic density and L is the depolarization factor which takes into
account the geometry of the system5. If we consider j different materials, we can
assume, as first approximation, that a linear combination of the several polarizations
gives the total one

ε− 1

1 + (ε− 1)L
=
∑
j

Njαj
ε0

. (3.36)

Using the relation (3.35)

ε− 1

1 + (ε− 1)L
=
∑
j

fj
εj − 1

1 + (εj − 1)L
, (3.37)

5In the case of a sphere, the depolarization factor is L = 1/3.
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where fj is the volume covered by the j-th component with respect to the total volume.
If we have a medium surrounded by a host dielectric having εh, relation (3.37) reads

ε− εh
εh + (ε− εh)L

=
∑
j

fj
εj − εh

εh + (εj − εh)L
, (3.38)

where the dielectric function of the entire mixed system ε depends on the dielectric
functions of the individual component, the relative covered volume and their morphol-
ogy.

In the Maxwell-Garnett (MG) EMA, the relation (3.38) considers the l-th material
as the host (figure 3.15a). In this respect we obtain

ε− εl
εl + (ε− εl)L

=
∑
j 6=l

fj
εj − εl

εl + (εj − εl)L
. (3.39)

This model is largely used to represent voids inclusion in the material or to describe
the roughness of the sample surface. In particular, the surface is described by a thin
layer having the dielectric function of the material at the top of the sample under
investigation, including 50% of voids.

The Bruggeman EMA considers the host material as the mixing itself ε = εh
(figure 3.15b), so that

0 =
∑
j 6=l

fj
εj − ε

ε+ (εj − ε)L
. (3.40)

This model is used in case of homogeneous mixed materials, where it is not possible to
recognise the host material. During the analysis of our coating, this model is used to
represent the surface roughness, mixing the coating optical properties with air.

Finally, in the presence of a porous sample, the system is described by the Lorentz-
Lorentz (LL) EMA, where the host material has εh = 1

ε− 1

1 + (ε− 1)L
=
∑
j

fj
εj − 1

1 + (εj − 1)L
. (3.41)

εb
εa

εMG

(a) Maxwell-Garnett.

εa(fa)

εb(1− fa)

εEMA

(b) Bruggeman.

Figure 3.15: Spherical inclusions in two materials. a) The Maxwell-Garnet
model, b) The Bruggeman model.

Non-ideal Model
When we create a model, it represents the ideal physical features which determine the
optical properties of the sample. In the real case, the sample could present non ideal
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characteristics which cause depolarization of light and affect the measurement. For
example, a coating thickness non uniformity may refract differently the wavelength of
the light beam which has a finite size and cover a certain area of the coating surface.
Another parameter can be related to the ellipsometer. The bandwidth of the monochro-
mator or the diffraction grating has a finite value and when we select a wavelength there
is the possibility to select also the adjacent one. All this parameters should be included
in the model if necessary.

3.1.3 Analysis Procedure

The protocol adopted to analyse the sample is described by the diagram in figure 3.16.
When we are interested on coatings properties, the substrate must be characterised with
previous dedicated measurements so that its optical properties can be used to develop
the model for the coated sample. For each sample, the first step is to measure all
the energies probed by the ellipsometers. Usually, measurements are done at different
angles 55°, 60° and 65° around the Brewster’s angle (θB ∼ 55.3° for silica and θB ∼
63.7° for tantala). This is useful in order to increase the sensitivity to ∆.

Measurement
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Figure 3.16: Diagram of the protocol for spectroscopic ellipsometry measurements.

In order to obtain information about the coating optical properties we have to
create a model to describe the dielectric function and hence, using equation (3.5),
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to reproduce the (ψ,∆) data. The model simulates (ψ,∆) data which have to be
compared to the experimental curves. If the fit is not satisfactory, the model should be
improved. Usually it is possible to develop different adequate models and eventually
obtain comparable results, for this reason the final optical properties should take into
account all the possible representations. Finally, the results must be discussed and
considered to define the most appropriate optical properties and thickness of coating
materials.

This protocol is applied in measurements done with both VASE and M-2000 ellip-
someters. Since they are based on different technologies, they produce different experi-
mental data. For that reason, the analysis done independently with the two instruments
must be compared to obtain the best and most adequate results. Furthermore, VASE
ellipsometer is more appropriate than M-2000 to analyse the coating presented in this
work. In fact, VASE probes a restricted surface area and has a small bandwidth, mak-
ing this ellipsometer a convenient instrument to investigate the absorption edge in the
UV region.

By combining the data obtained from the two instruments, it is possible to inves-
tigate a wide energy region, 0.7 - 6.5 eV. The two ellipsometers cover an overlapping
energy region where comparable results can be obtained. The extended energy region
contains the absorption edge of the investigated samples in the UV region and the trans-
parent region in the Vis-NIR, including the 1064 nm wavelength used in gravitational-
wave detectors. To obtain more accurate results, a preliminary analysis is done in the
transparent region in order to obtain information about thickness and refractive index.
The analysis is then extended to the whole energy region, trying to create a general
model which gives comparable results in the transparent region. This model should be
as simple as possible, representing the physics of the system. Finally, when it is neces-
sary, the model could be refined including non-ideal effects which cause depolarization,
such as the finite bandwidth of the ellipsometers.

The consistency of the model is checked by the minimization of the Mean Square
Error (MSE). This parameter represents the quadratic difference between the experi-
mental data and simulations

MSE =
1

2N −M

N∑
i=1

∣∣∣∣∣Ψmod
i −Ψexp

i

σexpΨ,i

∣∣∣∣∣
2

+

∣∣∣∣∣∆mod
i −∆exp

i

σexp∆,i

∣∣∣∣∣
2
 , (3.42)

where i is the photon wavelength or energy index (N is the total number of (Ψexp,∆exp)
experimental points6), M the number of parameters included in the model, (Ψmod,∆mod)
the simulated quantities and σexp the standard deviation of the experimental data.

There are several possibilities to reduce the standard deviation such as the pre-
cision of the angle of incidence, the calibration of the ellipsometer or reducing the
depolarization effects. Furthermore, In order to reduce σ it is possible to increase the
number of revolutions of the rotating element of the ellipsometers so that the measure-
ment corresponds to an average done on several periods.

3.2 The Resonant Method

In chapter 2 anelastic properties of amorphous solids have been treated in details.
One possible method to study the elastic properties of solids is the observation of the
compliance during the relaxation after an external excitation. In this respect, the
resonance method [75] is a valid option. If a periodic stress is applied to the sample

σ = σ0e
iωt , (3.43)

6It has to be noted that the MSE is calculated for both the Ψ and ∆ data at the same time.
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where σ0 is the amplitude and ω the angular frequency, the deformation should be
periodic with the same frequency

ε = ε0e
i(ωt−φ) , (3.44)

where ε0 is the amplitude of the deformation and φ is the so-called loss angle. The
compliance J will be then composed of a real and an imaginary term

J(ω) =
ε

σ
= |J | e−iφ(ω)

= J1(ω) + iJ2(ω) .
(3.45)

In the case of an ideal elastic solid, the loss angle must be zero (φ→ 0).
For a better understanding of J1 and J2, it can be useful to make some comments

about the energy of the system during the vibration. From equation (B.4) we can
obtain the dissipated energy (per unit volume) during a cycle

∆E =

∮
σdε = πJ2σ

2
0 , (3.46)

while the maximum stored energy density reads

E =

∫ π/2

ωt=0
σdε =

1

2
J1σ

2
0 . (3.47)

It is now clear that the real part of the compliance J is related to the stored energy in
the solid, while the imaginary part to the dissipation. Furthermore accordingly with
equation (2.108), using equations (3.45), (3.46) and (3.47) it is possible to obtain the
loss angle

tanφ =
J2

J1
=

1

2π

∆E

E
= Q−1 , (3.48)

where Q is the mechanical quality factor. From equation (3.48) it can be observed that
tanφ quantifies the dissipated internal energy for an anelastic deformation. For this
reason, the loss angle is also called internal friction.

To measure φ(ω) it is necessary to put the system in resonance at frequency ω
and to evaluate the amplitude of the deformation with the relative phase. During the
oscillations, the differential equation describing the energy during time is

dE

dt
= ∆E/T , (3.49)

where T is the period of the oscillations. From equation (3.48) the energy variation
(under the small oscillation condition, i.e. tanφ ∼ φ) is

∆E

E
= 2πφ , (3.50)

with the energy E(t) = E0e
−2t/τ and the decay time

τ = T/(πφ) . (3.51)

Since the energy is quadratic in the strain ε (see equation (2.38)), we obtain

ε(t) = ε0e
−t/τ . (3.52)

In figure 3.17 the strain is plotted over the time.
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ε0
ε(t) = ε0e

− t
τ

t

Figure 3.17: Strain ε(t) as function of the time t.

Considering T = 2π/ω = 1/ν0, where ν0 is the resonance frequency, we obtain

φ−1 = Q = (πν0τ) . (3.53)

In the general case, we have to consider several resonance modes j

φj = Q−1
j = (πνjτj)

−1 . (3.54)

Thus, in order to evaluate the loss angle, it is convenient to excite the sample with
a periodic stress and then to measure the decay time for a mode having resonance
frequency νj , after the excitation is removed.

3.2.1 Gentle Nodal Suspension (GeNS)

It is of fundamental importance that the energy during the loss measurement is dis-
sipated only by the internal friction of the sample, and not by any other different
mechanism. One of the usual suspension system is clamping of cantilever blades [93]
(figure 3.18a); with this system, measurements could be easily spoiled by the friction

(a) Cantilever blade. (b) GeNS.

Figure 3.18: Suspension systems for the mechanical loss characterization:
a) clamping of a fused-silica cantilever blade; b) spherical support of
GeNS with a fused-silica disk on top [94].

at the contact surface between the sample and the clamp.
If we change the suspension system, clamping can be avoided. Most of the reso-

nance modes of disk-shaped resonators present a nodal point at the center, as it can
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Figure 3.19: Vector displacement sum of disk-shape resonance mode for a
finite element simulation. The displacement goes from zero (blue)
to the maximum of the deformation during the vibration (red). The
three examples show modes (n,m) with n radial nodes and m az-
imuthal nodes: mode (0,4) on the left, mode (2,0) in the middle and
mode (1,3) on the right.

be seen by looking at finite element simulations of silica disks, for instance, shown in
figure 3.19. Therefore, it is possible to suspend the sample from the center, using the
Gentle Nodal Suspension [94–97] (GeNS) system. However, a drawback is that modes
vibrating at the center can not be measured because of the central contact point.

As shown in figure 3.18b, GeNS is made of a spherical support which allows ideally
one-point contact at the center of the disk. In figure 3.20 a sketch of GeNS system
shows the disk suspended on a sphere, having the possibility of rolling motion. In a

D/2

CM

θ

h(θ)

t

Figure 3.20: Sketch of the GeNS support with a disk suspended.

pure rolling condition, the vertical position h(θ) of the center of the mass (CM) can be
expressed as function of the angular position of the disk θ

2h(θ) = D cos(θ) +Dθ sin(θ) + t cos(θ) , (3.55)

where D is the diameter of the sphere and t is the thickness of the disk. Assuming a
static friction coefficient µs sufficiently high to avoid any slipping during the motion
around the equilibrium position, it possible to show that the equilibrium condition is
achieved when D > t [95]. In figure 3.21 three particular conditions are shown: only
when D > t we have a minimum in h(θ).

The GeNS used in this work is made of a silicon lens having 6 cm radius of curva-
ture in a copper mount, for cryogenic operation [97]. Since the samples are dielectric,
the mechanical excitation is generated through the electrical polarization of the mate-
rial. In particular, the vibrational modes νk of the resonator are excited with an AC
voltage applied through a comb-shaped capacitor, placed at about 1 millimeter away
from the surface of the sample [98] in order to avoid any contact (visible in figure 3.18a).
In turn, each mode k is excited well above its ambient noise level; then the excitation
is turned off, leaving the resonator free to ring down.

The amplitude of the resonating mode is continuously read out through an optical-
lever system, where a He-Ne laser is reflected at the surface of the sample towards a
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θ
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Figure 3.21: Vertical position of the CM h(θ) as function of θ (in arbitrary
unit): a) non-equilibrium condition D < t; b) limit condition D = t;
c) equilibrium condition D > t.

photodiode used as a displacement sensor. The measurements are performed using a
custom-developed software based on LabVIEW. The software allows to

1. Acquire the signal of the photodiode.

2. Perform the fast Fourier transform of the acquired signal and filter it with a
narrow (1 Hz) band-pass filter, centered around the mode frequency.

3. Compute the exponential fit of the envelope A(t) = A0e
− t

τj of the free decay
amplitude of the filtered signal.

4. Calculate the ring-down time τj and the corresponding loss angle φj = (πνjτj)
−1.

The system is installed in a vacuum tank in order to do measurements at p ≤ 10−6

mbar, to prevent residual-gas damping.

3.2.2 Dilution Factor

When we consider a heterogeneous sample, composed by different parts like the sub-
strate and the coating, the total dissipated energy density is the sum of those dissipated
in each part. Moreover, energy can be dissipated through several processes and each
dissipated energy is proportional to a specific stored energy. Therefore, we have a het-
erogeneity that comes from the resonator composition but also from the dissipation
mechanism involved. Here we are dealing with all kinds of heterogeneity. In one cy-
cle, each part i of the system will dissipate the stored energies, giving rise to different
loss angles. Thus, the energy dissipated in one cycle is Ei = 2πEtot,iφi, where φi and
Etot,i are the total loss angle and the total energy stored in the i part of the system,
respectively. Ei depends on the stored energies Ej (j = 1, 2, ...) dissipated by different
mechanisms φm,

Ei = 2π
∑
j

Ej,i
∑
m

φm,i . (3.56)

We can now introduce the definition of the dilution factor Dj,i as the ratio between the
stored energy Ej,i and the total energy Ei of the system, so that

φi =
∑
j

Dj,i

∑
m

φm,i , (3.57)
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and for the total system

φtot =
∑
i

∑
j

Dj,i ·
∑
m

φm,i . (3.58)

The previous expression is the most general one that applies to all kind of composed
resonators. Now we consider our system composed by a substrate and a coating, both
homogeneous and isotropic. Equation 3.58 leads to

φtot = Dsφs +Dcφc , (3.59)

where φs and φc are the loss angles associated to the total energy stored in the substrate
and the coating respectively, and Ds and Dc are the dilution factors of the substrate
and of the coating, respectively. Since the total energy Etot is entirely distributed
between the two parts s and c, we can write

φtot = (1−D)φs +Dφc , (3.60)

where D = Ec/Etot and Etot = Ec + Es. Therefore, the coating loss angle reads

φc =
φtot − (1−D)φs

D
. (3.61)

Thus, in order to estimate the internal friction of the coating, it is necessary to measure
the sample before and after the coating deposition. It is important to highlight the fact
that both φs and φc should present a frequency dependence without sharp variations,
as predicted by the theory described in chapter 2; we will see in the following that this
is not the case. As first approximation, D can be considered constant; however, we will
see that it actually depends on the resonant mode shape and hence on frequency.

Following the theory of elasticity of isotropic materials, the energy density in each
infinitesimal volume of the disk-shaped resonator reads

dE =
Y

1 + ν

{
1

2(1− ν)

(
∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2

∂2w

∂θ2

)2

−

+

[
∂2w

∂r2

(
1

r

∂w

∂r
+

1

r2

∂2w

∂θ2

)
−

+

(
∂

∂r

(
1

r

∂w

∂θ

))2]}
z2dzrdrdθ , (3.62)

where Y , ν are the Young’s modulus and Poisson’s ratio respectively. w is the function
expressing the off-plane displacements of the disk and hence it gives the shape of the
resonant mode. Although we assume that the shape modes are the same for the samples
before and after the coating deposition, the elastic energy as given by equation (3.62)
is divided in two parts whose ratio is fixed by the Poisson’s ratio ν. Therefore, if
the Poisson’s ratio of coating and substrate are the same, the dilution factor is mode
independent; otherwise, the dilution factor is similar to the example of figure 3.22. The
Poisson’s ratio is affecting the repartition of the total elastic energy into bulk and shear
components. It is clearly visible that, when the Poisson’s ratio of the coating differs
from the one of the substrate, the dilution factor as function of frequency presents
sharp variations which depend on resonant mode shapes.

Usually, dilution factors are computed (either analytically or through finite-element
simulations) by making assumptions on the coating Young’s modulus, Poisson’s ratio
and thickness. This is a rather important limitation, because most of the times the
coating parameters are not known. In this thesis we developed a method to mea-
sure the coating dilution factor D through the shift of resonance frequencies
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Figure 3.22: Simulated dilution factors of Ta2O5 coating (ν = 0.3) on silica
substrate (ν = 0.16). The two curves highlight the separation of
(0,m) and (1,m) family modes.

and mass variations after deposition. In this way the dilution factor can be
worked out without any prior knowledge of the coating parameters. In the
following, the basic theory of this method is explained.

When the disc is free to oscillate in one of its resonant modes, its elastic energy
must be equal to the kinetic energy,

K =
1

2
ρω2

∫
ẇ(r, θ, t)2dzrdrdθ , (3.63)

where ρ is the mass density, ω the angular frequency and w(r, θ, t) the time-dependent
mode shape in circular coordinates during time. By solving the integral for the bare
substrate thickness h along z, we obtain

Ks =
1

2
ρshω

2
s

∫
ẇs(r, θ, t)

2rdrdθ , (3.64)

whereas for a sample coated on both sides, with a coating thickness t,

Ktot =
1

2
ρtot(h+ 2t)ω2

tot

∫
ẇtot(r, θ, t)

2rdrdθ . (3.65)

Since the kinetic energy must be equal to the elastic energy, it is possible to write
1

2
ρshω

2
s

∫
ẇs(r, θ, t)

2rdrdθ = Es ,

1

2
ρtot(h+ 2t)ω2

tot

∫
ẇtot(r, θ, t)

2rdrdθ = Etot .

(3.66)

The integrals in equations (3.66) depend on the mode shape w(r, θ, t) of the disk7. In
the following we assume that the mode shape of the coated disc wtot is equal to that
of the bare disc ws. This implies also that the neutral plane − the imaginary surface

7The elastic energy of the substrate ES and of the coated sample Etot are evaluated analytically in
the appendix C for the simple disc geometry, applying the definition of the energy density (3.62).
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that has zero deformation all the times during the oscillation − remains in the same
position. Under this assumption, dividing each members of equations (3.66) we obtain

ρsh

ρtot(h+ 2t)

(
ωs
ωtot

)
=

Es
Etot

. (3.67)

Considering that Etot = Es +Ec and that Aρsh = ms and Aρtot(h+ 2t) = mtot, where
A is the area of the disk and ms, mtot the mass of the disk before and after the coating
deposition, respectively, we obtain

D = 1− ms

mtot

(
ωs
ωtot

)2

. (3.68)

where D = Ec/Etot is the dilution factor. This relation is very important because it
gives the dilution factor as a function of measurable parameters, without any prior
knowledge of coating elastic constants or thickness. The masses and frequencies after
coating deposition are significantly different from those of bare substrates, so that they
can be measured with an analytical balance and a GeNS system, respectively. The
validity of equation (3.68) is based on the homogeneity of the coating on the entire
surface of the substrate and on the fact that the deposition should not add stress on
the system which are not intrinsic to the coating. For this reason, the same coating
must be deposited on both sides of the substrate, avoiding additional stress and bending
of the sample [97].

3.2.3 Measurement of Coating Elastic Constant

The dilution factor can be obtained by measurements, using equation (3.68), and also
by finite-elements simulations [99]. This means that, in order to estimate the elastic
constants of the coating, it is possible to fit the measured dilution factor Dmeas

k with
finite-elements simulations Dsim

k for each k resonance mode, to minimize the least-
square merit function

mD =
∑
k

(
Dmeas
k −Dsim

k

σmeas
k

)2

, (3.69)

where σmeas
k is the statistical uncertainty on the dilution factor measurement.

In order to carefully reproduce the real system, we measured the geometry of
the sample. The model of the coated samples was composed of a three-dimensional
structural elements for the substrates and two-dimensional structural elements for the
coatings [94]. In figure 3.23 a typical geometry of the sample and the meshing is
reproduced using ANSYS8.

In this method, knowledge of the substrate parameters is critical: diameters are
measured, values of density (ρ = 2202 g/cm3), Young’s modulus (Ys = 73.2 GPa) and
Poisson’s ratio (νs = 0.17) of fused silica have been taken from the literature [100]; in
a dedicated subset of simulations of the bare substrates, thickness t has been fitted to
the measured mode frequencies. For few disks, we have independently measured t with
a micrometer and found that the discrepancy with the fitted values is less than 2%.

In figure 3.24a an example of the fitting of the dilution factor measured for tantala
coating is shown and the relative merit function is in figure 3.24b. Dilution factors of
modes with a different number of radial nodes lie on distinct curves, which we have
called mode families; thus, for example, modes with (0, a)k and modes with (1, a)k
belong to two different families (called butterfly and mixed modes, respectively). For

8ansys.com
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(a) Surface. (b) Profile.

Figure 3.23: Typical geometry of finite-element simulated sample. The
mesh size was set to 1 mm for in-plane surface and volume elements.
a) Front view of the circular sample with flats. b) Zoom on the profile
in order to show the finite elements along the thickness.
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Figure 3.24: Fitting procedure for tantala coating currently used in GWDs
(Y = 121 ± 1 GPa and ν = 0.30 ± 0.01). a) Best fit of measured
dilution factor with simulation. b) Minimization of merit function.

a given substrate, dilution factors are determined by the coating elastic constants:
their average value depends on the Yc/Ys ratio, whereas the separation between mode
families increases along with the difference |νc − νs|.
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CHAPTER 4

RESULTS

“A scientist in his laboratory is not a mere technician:
he is also a child confronting natural phenomena that
impress him as though they were fairy tales.”

Marie Curie
Madame Curie A Biography by Eve Curie (1937)

In this chapter the mechanical and optical characterization on coatings for present
and future gravitational-wave detectors is presented.

A brief introduction describes the coating deposition method and the different
coaters used to deposit all the samples.

During the mechanical characterization of substrates, an unexpected behaviour
of the loss angle highlighted the impact of the unpolished edge of the samples on the
mechanical loss. A similar effect affects also the coating. For this reason, a model that
includes the extra mechanical loss related to the edge has been developed
during this thesis.

The mechanical and optical properties of coatings are studied under different post-
deposition treatments and mixing ratios. As first, the analysis of silica (SiO2), tantala
(Ta2O5) and titania-doped tantala (Ti:Ta2O5), currently used in gravitational-wave
detectors, allowed a better comprehension of amorphous oxide coatings, obtaining new
results: a ”structural limit” for annealed Ta2O5 coatings, a correlation between the
structure organization and the coating loss angle for SiO2 coating.

The optical and mechanical properties have been associated to the structure or-
ganization in a short- to medium-range order: a correlation between the Urbach
energy and the internal friction has been found. The correlation is observed for
different oxide coating materials, suggesting its general validity for this kind of coating
materials.

Finally, we characterised alternative coating materials (Nb2O5, NbTiO2,
Zr:Ta2O5, MgF2, AlF3, SiC and SiNx ) to develop low-noise mirrors for gravitational-
wave detectors.
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Substrate

Target

Neutralizer
Ion Source

(a) IBS deposition. (b) Substrate holder.

Figure 4.1: (a) Sketch of IBS deposition method. (b) Planetary motion
holder.

4.1 Deposition Method

High-reflective coatings for gravitational-wave detectors are deposited by ion beam
sputtering (IBS) at Laboratoire des Matériaux Avancés (LMA) in Lyon. The IBS
deposition method is schematically illustrated in figure 4.1a. An ion source focuses an
ion beam over a target made on the material that has to be deposited. Because of
the energy of the ions and the highly collimated beam, it is possible to obtain precise
thickness control and deposition of very dense coatings. The high ions energy pulverises
the surface of the target and ejects the target as a ”plume” of particles, which will be
deposited on the substrate. Usually the ions are made of inert gas such as Ar+ in order
to be accelerated from the source and directed to the target. To prevent the impact of
charged particles on the target, a neutraliser diffuses electrons in order to neutralize the
ion beam before it collides on the target. A flux of Oxygen is injected in the chamber,
in order to deposit oxide coatings. In order to better control the deposition plume
profile, the deposition is done at low pressure p ' 10−4 mb.

The usual methods for improving the thickness uniformity in coating systems is
to include some kind of simple or planetary substrate rotation, together with moving
or stationary masks, to modify the deposition plume profile, which is approximately
Gaussian. As illustrated in figure 4.1b, the planetary motion support allows the simple
rotation of the substrate coupled with the motion around another rotation axis.

The IBS facilities used to deposit the coatings for this work are the Veeco’s
SPECTOR®, the double IBS (DIBS)1 and the Grand Coater (GC). In particular,
the SPECTOR (figure 4.2a) is a commercially available facility, with the possibility
to use a second ion source for substrate precleaning and bombardment of the oxide
films during the deposition, the DIBS (figure 4.2b) is one of the first IBS coaters devel-
oped in Europe. Finally, the GC is one of the largest IBS coater in the world (figure
4.2c), developed in order to deposit high-reflective coatings for the large mirrors of
gravitational-wave detectors. The GC allows to deposit coatings on two large (� = 35
cm) massive substrates in planetary motion in order to obtain two paired high-quality
mirrors. In figure 4.2d one pair of mirrors used for the gravitational-wave detectors of
Advanced LIGO is shown.

1Only one ion source has been used.
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(a) SPECTOR. (b) DIBS.

(c) Grand Coater. (d) Mirrors.

Figure 4.2: (a)Veeco’s SPECTOR®. (b) DIBS. (c) Grand Coater. The
dimension of GC can be compared with the height of a man. (d) A
set of high-reflective mirrors used for the first detection of Advanced
LIGO, right after the deposition.

4.2 Substrates for Optical Characterization

In reflective ellipsometry, a reflective substrate (high index of refraction) is to be pre-
ferred to transparent materials (e.g. silica), to increase the reflected signal. For this
reason, silicon wafer is adopted as substrate. Furthermore, the silicon substrate may
have the unpolished bottom surface, avoiding problems arising with backside reflec-
tions. In figure 4.3 the (Ψ,∆) data of VASE for a representative substrate are shown.
The M-2000 ellipsometer provided similar data.

Creating a model that reproduces well the optical properties of the substrate is
extremely important for the analysis of the coating. In fact, any unknown feature of
the substrate will introduce uncertainties in the analysis of the optical properties of
coating materials. The substrate model is set as bottom layer in the analysis of the
coating samples. In the case of silicon wafers the model consists of two layers. The first
includes several oscillators centred at critical points of the joint-density of state [101];
the other one is an ultra-thin layer, of the order of 2 nm, representing the native thermal
oxide and described by library optical properties [102]. The model based on critical
points in JDOS is illustrated in figure 4.4. In figure 4.4a the critical points in the JDOS
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Figure 4.3: Ψ (a) and ∆ (b) data of VASE ellipsometer at different angles
of incidence, compared with the fit curves, for a bare silicon wafer.
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Figure 4.4: (a) Critical points in JDOS of silicon that would affect ε2 at
T = 296 K. (b) The ε2 of silicon substrate made on several oscillators
centered at critical points in JDOS. The energies are in eV.

are highlighted, showing the direct inter-band transitions. In figure 4.4b the imaginary
part of the dielectric constant ε2 is made on the overlap of several oscillators, centered
at critical points in JDOS. The result is a curve with 3 main peaks around 3.4 eV, 4.2
eV and 5.3 eV. The fitting curves obtained with this model are shown in figure 4.3.

The data acquired by the two ellipsometers have been analysed independently
using the same method and, as showed in figure 4.5, the results are equivalent within
the fitting errors.

4.3 Substrates for Mechanical Characterization

The substrates used for mechanical characterizations are fused-silica disks (� 3” or
� 2”) of Corning 7980, of a nominal thickness of 1 mm, optically polished on both
surfaces. The purpose of such high-quality polishing is to test the coatings on substrates
with specifications as close as possible to those of substrates of gravitational-wave
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Figure 4.5: Real ε1 and imaginary ε2 part of the silicon dielectric function,
obtained by the analysis done on (Ψ,∆) acquired by VASE and M-2000
ellipsometers.

interferometers.

A perfect circular geometry gives resonance modes degeneration in which modes
with azimuthal nodes have “twin” modes rotated by π/2n, where n is the radial node
number, with the same elastic energy. This creates beating in the vibration and in
order to avoid it, two small symmetrical and diametrically opposite flats are cut from
the sample.

Samples are coated on both sides in order to avoid curvatures of the substrate
related to the stress applied on the system when a coating is deposited. Coating on one
side would change the neutral line of the disk and cause bending. This effect makes
impossible the direct measurement of dilution factor as given by equation (3.68).

4.3.1 Edge Effect on Substrates

In a recent work it has been shown that for silica disk-shaped resonators, the measured
loss angle is affected by spurious losses at the edge of the sample [103]. This might
be due to the adsorption of contaminants by the unpolished edge. As a result, the
internal friction of different resonance modes does not lie on a single curve, following
the frequency dependence discussed in chapter 2, but modes that vibrate more at the
edge have higher loss angle, separating in mode families. In particular, the deformation
is smaller at the edge for modes with only azimuthal nodes m and gets higher for
modes having more radial nodes n. In figure 4.6 there is the measured loss angle for
each resonant modes for one representative 3” silica disk, annealed at for 24 hours at
900°C and unpolished at the edge (blue dots). The measurements show separation
between modes with different azimuthal and angular nodes. In particular, modes with
only azimuthal nodes (0,m) lie in the curve with higher loss angle.

The spurious loss of the edge is well described by considering the system as com-
posed of a barrel and a disk [103]. Using the model illustrated in figure 4.7, one can
consider the system as composed by two different part having their own dissipation
mechanisms. From equation (3.56), the substrate s loss angle reads

Esφs = Edφd + EBφB , (4.1)

where φd and Ed (φB and EB) refer to the loss angle and the energy stored in the
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Figure 4.6: Measurement (blue) of silica disk (3” of diameter and 1 mm
thick) and fit (red). The simulation is made on two contribution, one
related to the extra loss on the edge (green squares) and the other to
the frequency dependence of the silica loss angle (dashed green line).
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Figure 4.7: Model based on barrel of thickness t.

central part of the disk d (in the barrel B), respectively. In particular,

EB =
dEB
dr

∣∣∣∣∣
r=R

t , (4.2)

where t is the thickness of the barrel. If we introduce the associated dilution factors,
we obtain

φs = Ddφd +DBφB , (4.3)

where Dd = Ed/Es and DB = EB/Es are the dilution factor of the disk and of the
barrel, respectively. If the thickness t of the barrel is t << r0, where r0 is the radius of
the disk, we can assume that Dd ∼ 1 and

DB = εt << 1 ; DB +Dd
∼= 1 , (4.4)

where ε is the dilution factor density

ε = lim
t−→0

1

t

EB
Es

, (4.5)

as introduced in [103]. The value of ε can be numerically computed2. The values for a
silica Corning 7980 (ν = 0.16) disk with unitary radius are listed in table 4.1.

As shown in chapter 2, the potential used to describe the TLS in glasses leads to
a power law for the internal friction [104, 105]. Using the power law for φd, equation
(4.1) can be rewritten as

φs = af b + εtφB . (4.6)

2The values are obtained from the energies Es end EB in equation (C.17), by doing the integration
over the radius of the disk for Es and considering only the element dr for EB .
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m
n 0 1 2 3 4 5 6 7 8 9 10

0 1.24 2.17 2.96 3.66 4.3 4.88 5.44 5.97 6.47
1 0.567 0.15 0.535 0.744 0.96 1.16 1.35 1.53 1.67 - -
2 0.116 0.08 0.282 0.43 0.59 0.757 0.901 1.03 1.16 - -

Table 4.1: Table of the dilution factor density ε for a disk (ν = 0.16) with
unitary radius. The value for a disk of radius R can be obtained as ε/R.
n and m stand for radial and azimuthal node numbers, respectively.

a (10−8) b t · φB (10−10m)

2.40 ± 0.08 0.070 ± 0.005 4.4 ± 0.2

Table 4.2: Results of the fit for the coating loss model defined in equation
(4.6) for the data of figure 4.6.

As shown in figure 4.8, the family separation resides in the dilution factor density of
the edge.
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Figure 4.8: Dilution factor density ε scaled by the radius R for a 3” diameter
disk, for the modes usually measured on a silica disk 1 mm thick.

Using equation (4.6) it is possible to model the experimental data. In figure 4.6 it
is possible to distinguish the two contributions related to the silica loss angle and the
edge effect. The fit results are listed in table 4.2. It is important to observe on figure
4.6 that for this silica substrate with unpolished edge, the extra losses of the edge are
of the same order of the internal friction of the substrate material. This means that,
if we are interested to the intrinsic loss angle of the substrate, it is necessary to find a
method to remove this edge effect.

The so-called edge effect limits the measurements not only because it limits the
sensitivity, but also because it evolves during time increasing the loss angle. The edge
effect is likely caused by adsorption of contaminants.

In figure 4.9a the evolution of the loss angle of a reference silica substrate (figure
4.6) can be observed. During this ageing, the loss angle increased especially for the first
family (0,m). This affects the coating loss measurement: it is clear from equation (3.60)
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(b) Ageing after annealing.
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Figure 4.9: (a) Ageing of a reference silica substrate. (b) Ageing of the
reference silica substrate after the annealing for 10 hours at 500℃ (the
reference loss value measured after the first annealing at 900℃ is also
shown, for comparison). (c) Evolution of the loss angle after laser
polishing (the reference loss value after 900℃ annealing is also shown,
for comparison). (d) Evolution of the edge term tφB during time.

that the coating loss angle is obtained by subtraction of the substrate contribution to
the total loss angle. Thus, if the substrate evolves during time, it is possible that the
measured coating loss angle resulting from the subtraction is affected by a systematic
uncertainty due to ageing effect of the substrate.

In figure 4.9a it can be observed that the annealing is a valid option to erase the
evolution of the ageing history. After several tests, it has been observed that, at least,
the annealing for 10 hours at 900℃ is needed in order to obtain the initial values of
loss angle. The heating treatment is a good procedure to restore the quality factor of
the sample, however the ageing effect is not eliminated: in figure 4.9b the evolution of
the loss angle after the annealing is shown; the ageing did not stop, even after more
than two months.

After preliminary tests performed by the groups of the University of Urbino Carlo
Bo, at the Virgo site, in the University of Roma Tor Vergata, has been developed a
system which allows to perform a CO2 laser polishing of the edge. The effect of the
polishing is shown in figure 4.9b: the ageing has been erased and the difference between
the first (0,m) and second (1,m) mode families is reduced. Figure 4.9c shows that the
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Figure 4.10: Loss angle for different resonant modes (n,m) of 3” silica sub-
strate monitored in vacuum during time.

laser polishing greatly inhibits the ageing effect.
In order to quantify the effect of the ageing, the change of loss angle has been

analysed using equation (4.6) and the value of edge term tφB is plotted in figure 4.9d.
After each annealing there is an evolution of the loss angle related to the edge and the
minimum of tφB is reached after the laser polishing. In figure 4.9d it is clearly evident
that after the polishing the evolution of the edge loss is significantly reduced.

While the laser polishing system was under development and not yet available, a
protocol was adopted to cope with the ageing problem. The protocol is:

• The substrates underwent a standard heating treatment for 10 hours at 900℃ be-
fore the coating deposition in order to erase any ageing effect.

• The loss angle of the samples is measured just after the annealing and the coating
is then deposited right after.

• The samples are stored in a vacuum tank in order to limit the ageing between
each measurement and treatments.

With these precautions, we are sure that the edge loss change is negligible with respect
to the coating loss angle to be measured; by using equation (3.60), it is then possible
to calculate the coating loss accurately.

In order to observe the effect of the vacuum storage, the loss angle of a 3” silica
substrate annealed for 10 hours at 900° C has been monitored in time, maintaining the
sample at p ∼ 10−6 mb. In figure 4.10 the loss angle of several modes (n,m) have been
measured as a function of time. It is evident from the figure that the vacuum prevents
ageing, keeping the loss angle approximately constant over twenty days. Furthermore,
the low pressure slightly lowers the loss angle during time, likely because it helps the
desorption of contaminants from the sample edge.
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Figure 4.11: a) Loss angle of bare silica disk (blue) and after the GC SiO2

coating deposition (green). The substrate has been annealed at
900℃. b) Measured dilution factor for a fused silica substrate of 3”
of diameter and 1 mm thick, coated on both sides with ∼700 nm of
silica. The error bars are mainly due to the uncertainties on mass
measurement which are dominant with respect to the uncertainties
of the frequencies measurement.

4.4 SiO2 Coating

Silica (SiO2) is the low-refractive index layer in the current Bragg mirrors of gravitational-
wave detectors. Historically it was chosen because of its low optical absorption at the
wavelength of interest. It also shows low internal friction at room temperature.

During the mechanical characterization of silica coatings, we observed a branching
of the coating loss as a function of mode shape, closely following a separation in mode
families. In the following we will discuss in detail how to cope with this edge effect on
coatings.

4.4.1 Edge Effect on Coatings

Following the procedure established by the protocol, in figure 4.11a it is possible to
observe a typical measurement of the loss angle of the substrate taken right after the
annealing, and of the coated sample. The substrate measurement is affected by the
edge effect and presents mode families separation, as we have seen in section 4.3.1. Al-
though the coating is much thinner than the substrate, the loss of the coated sample is
dominated by the coating as it is possible to observe in figure 4.11a. Moreover, the fam-
ily pattern observed in the coated disk should come from both the pattern of the bare
substrate and that of the dilution factor shown in figure 4.11b. The coating loss angle
can be then worked out using equation (3.61) and should depend on frequency without
sharp variations between frequency modes. However, even respecting the protocol, the
result of the coating loss angle φc of figure 4.12 still have a branching, closely following
the separation in mode families due to the edge effect present on the substrate. In
order to prove that this is likely related to an edge effect, the coating loss angle have
been analysed using the same model used for the substrate. The fitting result of figure
4.12 confirms that the edge model can still describe the data. Surprisingly, it is pos-
sible to observe that even if the edge effect of the substrate has been removed by the
CO2 polishing (figure 4.13a), the coating loss angle presents family modes that can be
represented by the edge effect model (figure 4.13b). This phenomenon could be caused
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Figure 4.12: Measurement of SiO2 GC coating (blue dots) and fit (red).
The first three mode families ((0,x), (1,x) and (2,x)) are shown. The
model is made of two contributions, one related to the extra loss on
the edge (green squares) and the other to the frequency dependence
of the silica coating loss angle (green line).

by spurious loss due to the coating spilling off on the substrate barrel, changing the
physical condition of the material. In figure 4.14 some examples of coating deposited
at the edge of samples are shown. In figure 4.15 there is a representation of the model
which considers the coating deposited also on the edge of the substrate.

Let’s see which are the assumptions behind this analysis. The system is repre-
sented by the composite resonator made by the substrate and the coating. The total
dissipated energy is the sum of the energies lost in each part of the resonator, as ex-
pressed by equation (3.56). In particular we have

Etotφtot = Etot
s φtot

s + Ec(φc + φBcεc) , (4.7)

where Etot is the total energy of the system, Etot
s is the contribution of the substrate,

including its edge, Ec is the energy stored in the coating and the last term Eccεc is
the energy stored in the coating spilled off onto the barrel of the substrate. Geometry
allows writing this edge contribution as proportional to the coating energy through the
coefficient εc. Since we are dealing with and edge effect, the coefficient εc has the same
values of the dilution factor density found for the substrate ε (table 4.1). It has to
be noted that in this case the parameter c does not represent strictly the thickness of
the barrel for the coating but contains also informations about the interaction between
coating and substrate. The hierarchy of the energies is

Etot & Etot
s � Ec � cεcEc , (4.8)

and the total energy must be

Etot = Etot
s + Ec(1 + cεc) . (4.9)

The coating increases the resonant frequency of each mode by the contribution Ec(1 +
cεc) to the total elastic energy and, at the same time, it reduces the resonant frequency
through its mass. Dividing (4.7) by Etot we obtain

φtot =
Etot
s

Etot
φtot
s +

Ec
Etot

(φc + φBcεc) . (4.10)

Now the question is whether or not the energy ratios of (4.10) are measured through the
frequency shifts. As pointed out above, the total energy stored in coating Ec(1 + cεc)
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Figure 4.13: a) Loss angle of bare silica disk (blue), CO2 polished and an-
nealed at 900℃, and frequency dependence af b fit (green line). b)
Measurement of DIBS SiO2 coating (blue dots) and fit (red). The
model is made of extra loss on the edge (green squares) and a fre-
quency dependence (green line).

(a) Silicon cantilever. (b) Silicon cantilever. (c) Silicon disk.

Figure 4.14: Example of IBS process on the edge of different geometry sub-
strate. (a) and (b) Scanning Electron Microscopy (SEM) image of
coated cantilever silicon substrate. (c) optical microscope image of
coated silicon disk. In every cases it is evident that the coating on
the edge looks different from the coating on the surface of the sample.

and its total mass, included that on the barrel, determine the resonant frequencies
shift. However, thanks to the hierarchy of the energy it is possible to consider that
Ec(1 + cεc)/Etot ' Ec/Etot = D and the inertia of the coating on the barrel are
negligible with respect that of the coating on the flat surfaces. The dilution factor D
is measured as explained in the section 3.2.2. Under these considerations, we obtain

φtot = (1−D)φtot
s +D(φc + φBcεc) (4.11)

= (1−D)φs +Dφtot
c , (4.12)

where φtot
c is the total loss related to the coating deposition

φtot
c =

φtot − (1−D)φtot
s

D
= φc + φBcεc (4.13)

φtot
c = af b + φBcεc . (4.14)

We remind again here that the useful information on coatings is inside the φc = af b term
only; the rest, coming from the edge effect, is a systematic error in the measurements
that can be isolated through the fitting process.
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Figure 4.15: Sketch of the geometry used in the model based on the edge
effect. For sake of clarity, the cross section of the disk is considered.

m
n 0 1 2 3 4 5 6 7 8 9

0 0.0699 0.1106 0.1376 0.1571 0.1719 0.1836 0.1931 0.2010
1 - 0.3487 0.3040 0.2845 0.2751 0.2706 0.2685 0.2678 0.2678 0.2683
2 - 0.3276 0.3151 0.3064 0.3004 0.2962 0.2932 0.2911 0.2897 0.2887

Table 4.3: Table of the dilatation dilution factor for a disk (ν = 0.16) with
unitary radius. n and m stand for radial and azimuthal node numbers,
respectively.

In figure 4.12 and 4.13b there are the comparisons between the data (blue dots)
and the fitted model (red dots) for SiO2 deposited in different conditions.

Edge effect vs Bulk/Shear losses
Every deformation of a solid can be decomposed in two contributions, one related to
the change in volume and the other to shear deformations. This means that the energy
of the system is made of two terms that depend on bulk and shear moduli, which
in principle will be related to different dissipation mechanisms. Since the samples
under investigation are amorphous coatings, it is reasonable to describe the mechanical
properties using only two quantities, the Young’s modulus and the Poisson’s ratio, and
hence to assume that there are two loss angles that dissipate the total energy of the
system. Then, the total loss angle of the coating is

φtot
c = φbulkc Ddil + φshearc Dshear + φBcεc (4.15)

= A1f
B1Ddil +A2f

B2(1−Ddil) + φBcεc , (4.16)

where Ai, Bi are coefficients of the frequency dependence of the loss angle and Ddil,
Dshear = 1−Ddil are the bulk and shear dilution factors.

The bulk dilution factor is the ratio of the energy stored in the system in which
the volume changes during the deformations to the total energy of the system3. The
values of bulk dilution factor for a disk with ν = 0.16 are listed in table 4.3. In figure
4.16 the values of the shear and bulk dilution factors for different resonance modes
are shown. Equation 4.16 describes all the physical factors involved in the dissipation
mechanisms of the coating and should be considered in the analysis. However, it is not
possible to obtain accurate results. If we compare the dilution factors 4.8 of the edge
effect and 4.16b of the shear, it is evident that they behave in the same way; the first
family has an higher dilution factor than the others. For this reason, these quantities
can not be discriminated during the analysis. This is a problem since our objective is
to remove the contribution of the edge and obtain information only on the coating bulk
properties.

3The bulk and shear dilution factors can be numerically computed considering the equation (C.31)
for the bulk energy.
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Figure 4.16: (a) Bulk dilution factor scaled by the radiusR for a 3” diameter
disk. The modes are those that are measured on the silica disk. (b)
Shear dilution factor obtained from Dshear = 1−Ddil.

In order to evaluate which mechanism represents better the data between the
shear and the edge effect, two different models have been used to fit the data. The
first describes the coating considering one loss angle and the edge effect, as shown by
equation 4.14, the second considers only the two loss angles ascribed to the bulk and
shear, as shown by equation 4.16, without the term φBcεc. In figure 4.17 the data are
compared with the two model fits. The fit results are summarized in table 4.4.
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Figure 4.17: (a) GC SiO2 coating data and fit obtained by the edge effect
model. (b) GC SiO2 coating data and fit obtained by the bulk/shear
model.

It was possible to find a set of parameters to reproduce the experimental data
using both models. It is clear from figure 4.17 that the edge effect model provides a
better fit than the bulk/shear, as confirmed by the MSE values of the fit in table 4.4.
Furthermore, in order to fit the data with the bulk/shear model, the bulk term must
be null, which appears to be unlikely. We note that the two models can both fit the
data but since the analysis shows better results for the edge effect, in the following the
data will be analysed using only the edge effect model.
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Edge Effect Bulk/Shear
MSE a (10−4) b cφBtot (10−7 m) MSE A1 B1 A2 (10−4) B2

0.27 1.81± 0.02 0 4.3± 0.3 2.18 0 − 1.1± 0.2 0.10± 0.02

Table 4.4: Fit results for the edge effect and the bulk/shear models.
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Figure 4.18: Coating loss angle of SiO2 deposited with GC, SPECTOR and
DIBS. (a) The comparison before the annealing. (b) The comparison
after the annealing at 500℃. Shaded regions represent uncertainties
from fitting parameters of equation (4.14) to each sample set, via
iterative non-linear regression; dashed curves show the behaviour of
the af b term only.

4.4.2 Mechanical Properties

Deposition Conditions
Different deposition conditions entail different coating properties. In figure 4.18a the
coating loss angles of silica deposited with the GC,the SPECTOR and the DIBS are
shown. All the three silica are sputtered from the same material but have different
losses. Deposition parameters which may have a relevant impact on the coating prop-
erties are the ion energy and current and the geometric configuration of the elements
inside the chamber, i.e. the distances and the angles between the sputtering sources,
the sputtered targets and the substrates to be coated. Each coater has its own specific
set of values for these parameters, optimized for yielding the highest coating optical
quality, resulting in a different deposition rate. However, in all the coaters the ion
energy and current are of the order of 1 keV and 0.1 A, respectively. Furthermore,
we found no correlation between the measured loss and the distances of targets and
substrates. For this reason, the loss seems to be related to the coating deposition rate,
determined by the energy and the flux of particles of the sputtering beam and by the
configuration of the coating chamber. In our case, the SPECTOR provided the fastest
rate (2.2 Å/s) and the highest loss; however, while having the same deposition rate
(within 25% experimental uncertainty) than the GC sample, the DIBS sample had the
lowest loss values. This might be related to the unusually small measured density value
for the DIBS sample.

When considering the af b term only, the loss of the GC sample appears fairly
constant (b ∼ 0), whereas the loss of the SPECTOR and DIBS samples showed sur-
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prisingly a weak decreasing trend (b < 0). This latter result could be related to a non
exponential distribution of the barrier height in the TLS. The samples underwent a
standard post-deposition annealing for 10 hours at 500℃. After the annealing (4.18b),
the loss of all samples are reduced. The loss values of the SPECTOR and GC samples
moved closer to those of the DIBS.

For all the samples, the elastic constants have been worked out by fitting the mea-
sured dilution factor D with simulations. In figure 4.19 the fit results for SiO2 coating
deposited with the CG and annealed at 500℃ is shown, as representative sample. The
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Figure 4.19: Fit of measured dilution factor (blue) with simulated values
(red), for a SiO2 coating annealed in air at 500℃ during 10 hours.

large residuals could be symptom of a slightly curved disk, where the curvature affects
the frequency shift [97]. The final results are listed in table 4.5.

SiO2 Y (GPa) ν a (10−4 rad Hz−b) b cφBtot (10−6 m)

GC 66 ± 4 0.19 ± 0.02 1.37 ± 0.22 0.024 ± 0.019 3.11 ± 0.26
GC 500℃ 70 ± 1 0.19 ± 0.01 0.20 ± 0.04 0.030 ± 0.024 1.41 ± 0.05
SPEC. 78 ± 1 0.14 ± 0.01 8.87 ± 0.19 -0.083 ± 0.003 0.84 ± 0.11
SPEC. 500℃ 78 ± 1 0.11 ± 0.01 1.26 ± 0.23 -0.069 ± 0.024 0.19 ± 0.15
SPEC. 900℃ - - 0.039 ± 0.013 0.10 ± 0.04 0.038 ± 0.006
DIBS 74 ± 2 0.18 ± 0.02 1.45 ± 0.06 -0.016 ± 0.005 0.39 ± 0.03
DIBS 500℃ 75 ± 2 0.19 ± 0.02 1.42 ± 0.54 -0.208 ± 0.044 0.42 ± 0.05

Table 4.5: Young’s modulus Y , Poisson ratio ν, and a, b, cφBtot parameters
from equation (4.14) for SiO2 coatings deposited with GC, SPECTOR
and DIBS, before and after the annealing at 500℃ and 900℃.

Annealing
The post-deposition heating treatment is of fundamental importance for the purpose of
reducing coating thermal noise. The problem is to find the optimal annealing tempera-
ture Ta and duration ∆t, avoiding coating crystallization which would increase optical
loss by scattering and absorption. In figure 4.20 is shown the effect of increasing ∆t
with Ta = 500℃ constant on SiO2 deposited by the SPECTOR.

SiO2 loss, shown in figure 4.20a, decreases with the annealing time and, as it can
be observed in figure 4.20b, this behaviour has a structural counterpart.

SiO2 is composed of tetrahedral units arranged in rings of different size [106]
and the area of the D2 band of the Raman spectrum, near 600 cm−1, is associated
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to 3-fold ring population [107]. A correlation between coating loss and D2 area has
been found, suggesting that SiO2 loss increases with the 3-fold ring population [108].
This correlation holds for different kinds of SiO2, for coatings deposited with different
parameters and treated with different annealing times, and also for bulk (Fig. 4.21).

Figure 4.22 shows coating loss and structure for increasing Ta, with ∆t = 10
hours constant. SiO2 coating loss angle decreases (4.22a) and its structure evolves
considerably (4.22b). The fit values for the coating annealed at 900℃ are listed in
table 4.5. Surprisingly, crystallization occurs at Ta = 1000℃, differently from fused
silica whose crystallization occurs at higher temperature.

103 104

10−4

10−3

Frequency (Hz)

C
o
at
in
g
L
os
s
A
n
gl
e
(r
ad

)

0h
5h
10h
30h
70h
189h
300h

(a) Coating loss angle.

200 400 600 800
0

0.2

0.4

0.6

0.8

1

Raman shift (cm−1)

R
a
m
an

in
te
n
si
ty

(a
.u
.) 0h

5h
10h
30h
70h
184h
300h

(b) Raman spectrum.

Figure 4.20: SiO2 coating (SPECTOR) annealed at 500℃ for different time
∆t. (a) Evolution of coating loss angle. (b) Evolution of Raman
spectrum (acquired in collaboration with Institut Lumière Matière
(ILM)).
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Figure 4.21: Normalized D2 area versus coating loss angle of SiO2 coatings
deposited with different coaters.

4.4.3 Optical Properties

All the analysed coatings gave comparable results; for this reason, only one representa-
tive sample deposited with the GC will be shown. Furthermore, the analysis has been
done with both ellipsometers, obtaining comparable results. For the sake of clarity,
only the measurement obtained by the M-2000 ellipsometer, which extends more in the
NIR region, will be shown.

After the coating deposition, the Ψ data showed in figure 4.23a present oscillations
that follow the bare substrate measurements. The amplitude of the oscillations depends
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Figure 4.22: SiO2 coating (SPECTOR) annealed for ∆t = 10 hours at dif-
ferent temperature. (a) Evolution of coating loss angle. (b) Evolution
of Raman spectrum (in collaboration with ILM).
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Figure 4.23: Ψ data measured at 55°. (a) Comparison between Ψ data of
Si substrate and SiO2 coating. (b) Comparison between Ψ data of
SiO2 coating before and after the annealing at 500℃.

on the difference between the refractive index of the substrate and of the coating,
whereas the distance of the minima/maxima depends on the coating thickness. Since
the substrate does not evolve with the annealing, the minima of the oscillations after
the annealing lie on the same curve. For this reason, in figure 4.23b the effect of the
standard annealing at 500℃ is shown only in the maxima of the oscillations, where
the differences between the curves before and after the annealing are well visible. The
annealing reduces the amplitude of the oscillations and shift the maxima positions.
Under this respect, the refractive index of the coating after the annealing should be
lower with a consequently change in the coating thickness.

For sake of clarity, in figure 4.24 only (Ψ, ∆) data and fit curves after the annealing
are shown at different angles. It is evident from the data that the oscillations, related
to the interference of the multiple reflections in the transparent film, do not stop,
pointing out that any absorbing mechanism occurs in the whole energy region. Indeed,
the extinction coefficient is too low to be appreciated by reflection SE.

The samples have been analysed with a three-layers model [109] including the sub-
strate, the thin film and a surface layer. The latter was modelled through a Bruggeman
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Figure 4.24: Experimental data and fit curves at different angles for SiO2

coating after the annealing at 500℃.

effective medium approximation (EMA) layer, which accounts for roughness. Silica is
transparent in the whole measured energy region. Thus, in order to reproduce the
experimental data, Cauchy or two poles function have been used as optical models for
the thin film. In figure 4.24 the best fit obtained by the two poles function is compared
with the (Ψ, ∆) data.

In figure 4.25a a comparison of the refractive index of SiO2 coating obtained from
the sample before and after the annealing is shown. The effect of the annealing is to
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Figure 4.25: (a) Refractive index of SiO2 coating before (green) and after
(red) the annealing at 500℃. (b) Analysed wavelength region con-
verted in photon energy.

reduce the refractive index. The reduction at 1064 nm is of about 1%, as can been
observed in table 4.6, furthermore, the annealing increases the coating thickness of
about the same amount. The coating thickness has been then used to estimate the
density of the material. The thickness and the density of the sample are listed in table
4.6. Remarkably, the SPECTOR sample is significantly denser and stiffer than the
GC one, whose properties closely resemble to those of bulk fused silica. The resulting
refractive index is comparable with previous determinations, such as those reported
for a silica film deposited by dual Ar+ IBS coater [110]. Furthermore, at 600 nm
the refractive index of our coating is comparable to other experiments reporting on
ion-beam assisted SiO2 growth [111].

The final results presented in table 4.6 are obtained by taking into account Cauchy
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SiO2 Thickness (nm) ρ (g/cm3) n@1064 nm n@1550 nm

GC 718 ± 2 2.33 ± 0.06 1.468 ± 0.005 1.46 ± 0.01
GC ann. 725 ± 2 2.20 ± 0.04 1.452 ± 0.004 1.45 ± 0.01
SPEC. 2961 ± 13 2.38 ± 0.01 1.480 ± 0.005 1.474 ± 0.005
SPEC. ann. 3000 ± 15 2.36 ± 0.03 1.467 ± 0.006 1.460 ± 0.006
DIBS − 2.02 ± 0.09 1.44 ± 0.01 1.44 ± 0.02
DIBS ann. − 1.91 ± 0.09 1.44 ± 0.01 1.44 ± 0.02

Table 4.6: Thickness, density ρ and refractive index n at wavelength of in-
terest (λ = 1064 nm for LIGO and Virgo detectors, λ = 1550 nm of
future detectors such as the Einstein Telescope) of different SiO2 sam-
ples before and after the annealing at 500℃. The silica DIBS values have
been obtained by transmission spectrophotometric measurements.

and poles models which give comparable and reasonable MSE, considering the mea-
surements of both ellipsometers. From the analysis, the EMA layer on top is of the
order of 3 nm.

4.4.4 Summary

Silica coating deposited with GC, SPECTOR and DIBS has been investigated. Silica
SPECTOR is stiffer and the coating loss angle measurements suggest a dependence of
the mechanical loss on the deposition rate, with the CG and DIBS yielding the lowest
internal friction.

The optical characterization shows that silica SPECTOR is also significantly
denser as confirmed by the higher refractive index than the one of silica GC. Fur-
thermore, silica coating shows a lower refractive index after the annealing.

It has been observed that the coating presents spurious loss at the edge, likely
related to the interaction of the sputtered material with the edge. The internal friction
of silica SPECTOR has been than characterized as function of the in-air post-deposition
annealing, monitoring the structure with Raman spectroscopy on analogous samples.
It has been observed that the coating loss angle is reduced by the increasing of the
annealing temperature and the annealing time. Furthermore, the Raman spectrum
highlighted an evolution of the D2 peak area, associated to the population of tetrahedral
units arranged in 3-fold ring. The evolution of internal friction and structure with
respect to annealing showed a correlation between the D2 area and the coating loss
angle. Another surprising result regards the unexpected crystallization at 1000℃.

Finally, comparing the silica coating loss angle with the loss angle of fused-silica
(figure 4.26) it can be observed that at room temperature, the internal friction of silica
coating obtained with the frequency trend af b at 100 Hz is higher than the one of
fused-silica even after the annealing. This difference could be related to the different
frequency range, which is of the order of the MHz for the fused-silica [112].
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Figure 4.26: Internal friction of fused-silica as function of temperature [112],
acquired at 1.5 MHz. The blue dots refer to the loss angle of silica
coating at 100 Hz, annealed at 500℃ and 900℃.

4.5 Ta2O5 and Ti:Ta2O5 Coatings

The Ti:Ta2O5 is the high-refractive index layer in the current Bragg reflector of gravitational-
wave detectors. Historically, the Ta2O5 was used because of its very low optical absorp-
tion. Ta2O5 proved to be substantially more dissipative than silica [11, 113], making
it the dominant source of coating loss in the Bragg mirrors. This loss was decreased
by mixing titanium dioxide (TiO2, titania) with tantala, a procedure developed by the
LMA [114] for the LIGO and Virgo collaborations [52]. Eventually, Ti-mixing proved to
be beneficial to the optical absorption of the high-reflective (HR) coating as well [115].
In the following, we will refer at the mixing as Ti-doping, which is entered in the
common language in this research field.

4.5.1 Mechanical Properties

Deposition Conditions
In figure 4.27 the coating loss angles of tantala deposited with the GC, SPECTOR and
the DIBS are shown. It can be observed that it is not possible to discriminate between
family modes, symptom of a negligible edge effect. Thus, the analysis has been carried
out by keeping only the af b term in equation (4.14).

The GC provides the slowest rate and lowest loss values, whereas the SPECTOR
the fastest rate (2.8 Å/s) and the highest loss values. however, despite having the
same deposition rate (within 25% experimental uncertainty), the DIBS sample has
lower loss values than those of the GC sample. While this inconsistency will be subject
to further investigation, we may conclude that, as a rule of thumb, the faster the
deposition rate, the higher the loss. The situation changed radically after the annealing
(figure 4.27b), when all the films exhibited equal and significantly lower loss, as if their
deposition history had been completely erased. This outcome seems to suggest that
500℃ in-air annealing during 10 hours brings the structure of tantala coatings down to a
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Figure 4.27: Coating loss angle of Ta2O5 deposited with the GC, SPEC-
TOR and the DIBS. (a) The comparison before the annealing. (b)
The comparison after the annealing at 500℃. The colours identifies
the coater and the different markers denote distinct samples; shaded
regions represent uncertainties from fitting parameters of af b.

stable optimal configuration for lowest loss, in agreement with observations that higher
annealing temperatures or longer duration do not decrease loss further [116]. The same
erasing effect has been observed later on in an independent experiment, where sputtered
tantala coatings (IBS, magnetron) had been annealed after being deposited on heated
substrates [117]. The coating structure depends on the chemical composition of the
sputtered particles and on their energy distribution and electrical charge, however so
far there is no model available nor there are any measurements for any of our coaters
about these data. A research project has been recently financed to address this issue
(project ViSIONs).

For all the samples the elastic constants have been carried out by fitting the mea-
sured dilution factor D with simulations. In figure 4.28 the fit result for Ta2O5 coating
deposited with the CG and annealed at 500℃ is shown, as representative sample. The
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Figure 4.28: Fit of measured dilution factor (blue) with simulated values
(red), Ta2O5 coating annealed in air at 500℃ during 10 hours.

final results are listed in table 4.7.
If measured via nano-indentation, the Young’s modulus of IBS tantala coatings

appears to be about 140 GPa [118], i.e. about 18% higher than our value. This differ-
ence could be explained by the nature of the films, deposited with different conditions,
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Ta2O5 Y (GPa) ν a (10−4 rad Hz−b) b

GC 121 ± 1 0.30 ± 0.01 4.61 ± 0.11 0.036 ± 0.003
GC ann. 117 ± 1 0.28 ± 0.01 1.88 ± 0.06 0.101 ± 0.004
DIBS 117 ± 1 0.27 ± 0.01 8.20 ± 0.24 -
DIBS ann. 115 ± 1 0.28 ± 0.01 2.27 ± 0.14 0.078 ± 0.007
SPEC. 121 ± 1 0.29 ± 0.01 7.60 ± 0.21 0.045 ± 0.003
SPEC. ann. 121 ± 2 0.29 ± 0.01 2.29 ± 0.06 0.079 ± 0.003

Table 4.7: Young’s modulus Y , Poisson ratio ν, and a, b parameters of the
model af b for Ta2O5 deposited with GC, DIBS and SPECTOR, before
and after the annealing at 500℃.
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Figure 4.29: Ta2O5 coating deposited with the SPECTOR and annealed at
500℃ for different time ∆t. (a) Evolution of coating loss angle. (b)
Evolution of Raman spectrum (acquired in collaboration with ILM).

and by the fact that results from nano-indentation are model dependent and rely on
assumptions on the coating Poisson’s ratio. Furthermore, nano-indentations of the
same coating deposited on different substrates might give different results: our tantala
SPECTOR coatings yielded a reduced coating Young’s modulus of 130 ± 3 GPa on
silica witness samples and of 100± 3 GPa on silicon wafers.

Annealing
In figure 4.29 it is shown the effect of increasing ∆t with Ta = 500℃ constant on Ta2O5

deposited by the SPECTOR on a 3” silica disk 0.5 mm thick. Ta2O5 loss, shown in
figure 4.29a, decreases rapidly with the first annealing, reaching a limit value; as it can
be observed in figure 4.29b, this behaviour has a structural counterpart.

Figure 4.30 shows coating loss and structure for increasing Ta, with ∆t = 10
hours constant. Ta2O5 coating loss is roughly constant for Ta > 500℃ (4.30a) and its
structure does not change up to Ta = 650℃ (4.30b), when crystallization occurs.

Ti:Ta2O5 mixture
The titania content in HR coatings for gravitational-wave detectors was initially deter-
mined by analysing a set of Bragg reflectors with λ/4 layers [52], produced in the DIBS
and in the GC with different titania-to-tantala mixing ratios. Since then, the structure
of the HR coatings of Advanced LIGO and Advanced Virgo has evolved [94,119], while
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Figure 4.30: Ta2O5 coating deposited with the SPECTOR and annealed for
∆t = 10 hours at different temperature. (a) Evolution of coating loss
angle. (b) Evolution of Raman spectrum (acquired in collaboration
with ILM).

the Ti/Ta ratio in the Ti-doped tantala layers remained the same. This choice is now
confirmed by our latest loss measurements of single titania-doped tantala films pro-
duced with the GC, which we also characterized through Rutherford back-scattering
(RBS) and energy-dispersive X-ray (EDX) spectroscopy. In figure 4.31 there is the
coating loss angle as function of Ti/Ta ratio: Ti/Ta= 0.27 yielded minimum loss and
thereby had been chosen as optimal ratio. In the following, the standard Ti:Ta2O5
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Figure 4.31: Coating loss angle of Ta2O5 as function of Ti/Ta ratio. For
clarity, only values measured at ∼2.5 kHz are shown; the same trend
has been observed at ∼10 kHz. The number of points corresponds
to the number of samples. The variation of the loss angle observed
on similarly doped samples is not explained, and will be subject to
further investigation.

deposited by the GC with Ti/Ta= 0.27 is presented in detail.

In figure 4.32a the coating loss angle before and after the post-deposition annealing
at 500℃ is shown. As expected, the annealing decreases the loss angle. By comparing
Ti/Ta= 0.27 Ti:Ta2O5 to Ta2O5 in figure 4.32b, we observe that both coating materials
feature similar loss before the annealing, whereas after the annealing Ti:Ta2O5 loss is
∼ 25% lower in the whole sampled band, suggesting that the lower loss of Ti:Ta2O5 is
the result of a combined effect of mixing and annealing. The ∼ 25% loss reduction has
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Figure 4.32: (a) Coating loss angle of standard Ti:Ta2O5. The colours iden-
tifies the coater and the different markers denote distinct samples (b)
The comparison of coating loss angle of Ta2O5 and Ti:Ta2O5 before
and after the annealing.

been confirmed by independent coating thermal noise measurements [120].
By fitting the measured dilution factor with the simulations, the elastic constants

have been obtained for the sample before and after the annealing. In table 4.8 the
final results are listed. It can be observed that the Ti-doping does not affect the elastic

Ti:Ta2O5 Y (GPa) ν a (10−4 rad Hz−b) b

GC 122 ± 1 0.30 ± 0.01 4.82 ± 0.18 0.029 ± 0.004
GC ann. 120 ± 4 0.29 ± 0.01 1.43 ± 0.07 0.109 ± 0.005

Table 4.8: Young’s modulus Y , Poisson ratio ν, and a, b parameters of
the coating loss model af b for standard Ti:Ta2O5 deposited with GC,
before and after the annealing at 500℃.

constants and that the main difference of loss angle is after the annealing.

4.5.2 Optical Properties

In figure 4.33 are shown the data obtained by VASE ellipsometer of Ta2O5 deposited
with the GC and annealed at 500℃. For sake of clarity, only the data at 60° are shown.
The oscillations related to the non-absorbing NIR region stop when approaching the
UV region, highlighting the absorption threshold.

The (Ψ,∆) data show a quality degradation in the UV region caused by the strong
absorption which reduces the signal to noise ratio and and data are no longer useful
for fitting purposes. The interference features, related to multiple reflections in the
transparent region of the coating, stop quite sharply around 4 eV; this behaviour marks
the fundamental absorption threshold. Furthermore, the amplitude of the oscillations
in the visible region starts to slowly reduce approaching the absorption threshold. This
could be related to the presence of the Urbach tails which are responsible of the weak
absorption near the absorption edge, inside the energy gap.

From the comparison of the measurements before and after the annealing, shown
in figure 4.34, it can be noted that the main difference related to the heating treatment
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Figure 4.33: Ψ (green), ∆ (blue) data of Ta2O5 annealed coating, measured
with VASE ellipsometer. The data are compared with the best fit
(red) obtained with a CL model.
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Figure 4.34: (Ψ,∆) data at 60° for Ta2O5 coating before (blue) and after
(orange) the annealing.

is around the absorption threshold. The annealing seems not to affect the energy gap.
However, it is evident that after the annealing, there are oscillations near the absorption
threshold that appear. This means that the absorption, related to the Urbach tails, is
slightly reduced.

The data have been analysed through a three-layers model including the substrate,
the thin film and a surface layer [109]. The latter was modelled through a Bruggeman
effective medium approximation (EMA) layer, which accounts for roughness. In a first
step of the analysis, Cauchy and 2-poles functions have been used in order to describe
the optical properties of the thin layer in the region of high transparency, below 3 eV.
The values of thickness and refractive index of the coating obtained by this kind of
analysis have been used as starting point in physical models aimed to reproduce data
in the whole measured energy region. Although the thin film can be represented by
both Cody-Lorentz (CL) and Tauc-Lorentz (TC) models, the best fit has been provided
by the CL model which accounts for the Urbach tails. It has to be noticed that the
analysis has been done at three angles of incident 55°, 60° and 65°, and the fit curves
reproduced the (Ψ,∆) data with the same accuracy.

In order to test the validity of the Urbach tails, the (Ψ,∆) data of Ta2O5 coating
before the annealing, which presents higher absorption in the region of interest, have
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been described by two CL models. The first model did not include the Urbach tails
and the best fit reproduced the (Ψ,∆) behaviour giving a mean squared error (MSE)
of about 6.4. The main differences between the fit curves and the data were mainly
located near the absorption edge, where the fit curves differed more than 10% from the
data. The second CL model included the Urbach tails and the best fit gave comparable
optical properties, especially the refractive index in the transparent region, the energy
gap and thickness; however, the model reproduced the (Ψ,∆) behaviour giving a lower
MSE of about 4.0. The differences located near the absorption edge have been reduced
to less than 5%, demonstrating that the Urbach tails are needed in the model to better
reproduce the (Ψ,∆) data. The same analysis has been done also for Ti:Ta2O5 and the
same result has been obtained. For this reason, the fit curves shown in figure 4.33 and
the following analysis refer to CL model including the Urbach tails.

The analysis showed that the annealing increases the coating thickness of about
almost 2% from 579 ± 2 to 592 ± 2 nm. The coating thickness has been then used
to estimate the density of the material, which does not change considerably with the
annealing. The thickness and the density of the sample are listed in table 4.9.

Ta2O5 n@1064 nm n@1550 nm ρ (g/cm3) Eg (eV) EU (meV)

GC 2.07 ± 0.01 2.06 ± 0.01 7.40 ± 0.03 4.1 ± 0.2 164 ± 8
GC ann. 2.05 ± 0.01 2.03 ± 0.01 7.33 ± 0.06 4.0 ± 0.1 130 ± 10
DIBS 2.06 ± 0.01 2.04 ± 0.01 7.04 ± 0.09 - -
DIBS ann. 2.03 ± 0.01 2.02 ± 0.01 6.94 ± 0.09 - -
SPEC. 2.11 ± 0.01 2.09 ± 0.01 7.75 ± 0.03 4.1 ± 0.1 -
SPEC. ann. 2.09 ± 0.01 2.07 ± 0.01 7.47 ± 0.09 4.1 ± 0.1

Table 4.9: Refractive index n at wavelength of interest (λ = 1064 nm for
LIGO and Virgo detectors, λ = 1550 nm of future detectors such as the
Einstein Telescope), density ρ, energy gap Eg and Urbach energy EU

of different Ta2O5 samples before and after the annealing at 500℃. The
values for the DIBS sample have been obtained by spectrophotometric
measurements on Vis-NIR region and hence the values regarding the
absorption threshold have not been worked out. The Ta2O5 SPECTOR
has been deposited on silica substrate and the bad quality of data did
not allow a reliable estimation of EU .

The roughness obtained on these coatings is less than 1 nm and the value is
comparable with atomic force microscopy (AFM) measurements of root mean square
(RMS) roughness on this kind of samples [121]. Since its value is less than 1% of the
coating thickness, the EMA layer does not affect substantially the coating fit optical
parameters, especially in the NIR region. Furthermore, the annealing reduces the
refractive index in the transparent region, as shown in figure 4.35. The values of the
refractive index at wavelengths of interest 1064 nm and 1550 nm are listed in table 4.9.

In figure 4.36a the Cody Plot obtained with the CL model is shown, in order to
evaluate the absorption edge. The energy gap Eg is not affected by the annealing,
whereas it is evident from the figure that there is a clearly change in the absorption
trend before the energy gap, related to the change of the Urbach tails. Indeed, the
extension of the Urbach tails, quantified by EU , are reduced after the annealing. The
values of the energy gap and the Urbach energies are listed in table 4.9.

In figure 4.37 the data of the standard Ti:Ta2O5 coating, deposited by the GC,
are compared with the fit curves obtained using the CL model. Also in this case, the
(Ψ,∆) data show a quality degradation related to the strong absorption in the UV
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Figure 4.35: a) Refractive index of Ta2O5 coating before (light blue) and
after (blue) the annealing, compared to the that of Ti:Ta2O5 coating
before (orange) and after (red) the annealing. b) The zoom in the
NIR-Vis region.
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Figure 4.36: Cody plot for (a) Ta2O5 and (b) Ti:Ta2O5 before (blue) and af-
ter (orange) the annealing, obtained with the CL model. The dashed
line represents the linear trend of (α(E)n(E)/E)1/2 and highlight the
energy gap value. The data not covered by the linear trend, represent
the Urbach tails.

region.
The annealing reduces the refractive index (figure 4.35) in the NIR region where

at 1064 the reduction is almost about 1%. The coating thickness is increased instead
of about 2% from 500±2 to 509±2. The coating thickness has been used to determine
the density. The values of the refractive index at wavelengths of interest 1064 nm and
1550 nm and the density are listed in table 4.10. It can be observed that the Ti:Ta2O5

has a lower density than Ta2O5.
The oscillations in (Ψ,∆) data, shown in figure 4.37, stop almost abruptly ap-

proaching the absorption edge. This could be related to shorter Urbach tails. The
Cody plot shown in figure 4.36b highlights the effect of the heating treatment on the
Ti:Ta2O5 absorption edge. The energy gap is not affected by the annealing whereas
there is a clearly reduction of the Urbach tails. Furthermore, by comparing Eg in table
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Figure 4.37: Ψ (green), ∆ (blue) data of Ti:Ta2O5 annealed coating, mea-
sured with VASE ellipsometer. The data are compared with the best
fit (red) obtained with the CL model.

Ti:Ta2O5 n@1064 nm n@1550 nm ρ (g/cm3) Eg (eV) EU (meV)

GC 2.11 ± 0.01 2.10 ± 0.01 6.87 ± 0.06 3.6 ± 0.1 152 ± 5
GC ann. 2.09 ± 0.01 2.08 ± 0.01 6.65 ± 0.07 3.6 ± 0.1 108 ± 5

Table 4.10: Refractive index n at wavelength of interest (λ = 1064 nm for
LIGO and Virgo detectors, λ = 1550 nm of future detectors such as
the Einstein Telescope), density ρ, energy gap Eg and Urbach energy
EU of Ti:Ta2O5 samples deposited with the GC before and after the
annealing at 500℃.

4.10, it is evident that the Ti-doping reduces the energy gap. This effect can be also
observed directly in the (Ψ,∆) data, comparing the figures 4.33a and 4.37a, where it
is evident that the Ti-doping causes a red-shift of the energy gap.

The values of the energy gap and the Urbach energy are listed in table 4.10. The
values confirm the homogeneity of the coatings since, especially for Ta2O5 the shift
of the energy gap due to the Ti-doping, where the TiO2 has been found to have an
energy gap about 3.3− 3.5 eV [122,123], seems in agreement with a linear combination
of the energy gap of pure material considering the atomic ratio concentration of 0.27.
Analysing the Urbach energy obtained by the CL model from Ta2O5 and Ti:Ta2O5

(table 4.9 and 4.10), it can be noticed that both Ti-doping and annealing reduce the
Urbach energy. In particular, the impact of the annealing is more evident than those
of the doping. Finally, by comparing refractive index in figure 4.35, it can be observed
that the Ti-doping increases the refractive index, in the NIR region, including 1064 nm
(table 4.10).

4.5.3 Correlation Between Urbach Energy and Internal Friction

In the context of optical measurements, so called Urbach tails [59] (usually observed by
optical absorption measurements in crystalline and amorphous semiconductors [68]),
describe a sub-gap exponential broadening of the absorption edge that is related to
structural and thermal disorder. The concept of band-tails states finds interesting
application in the study of amorphous solids [124,125] where the structural disorder is
dominant with respect to thermal one. The structural origin of the exponential tails [69]
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Figure 4.38: Absorption coefficient of Ta2O5 and Ti:Ta2O5 before and after
the annealing, obtained with the CL model. The logarithmic scale
allows to distinguish better the different slopes in the region where the
absorption decays exponentially with the energy EU . The solid lines
represent the absorption appreciated by SE analysis. The dashed
lines represent an extension of the CL model to better distinguish
the different slopes.

can give precious insight in atomic organization of the system involving several tens of
atoms.

In recent work [126] a correlation between the mechanical coating loss angle
and the short-range structural organization has been claimed. However, recent stud-
ies [127, 128] showed that the TLS giving rise to the dissipation mechanism at room
temperature must involve more complex structures, regarding a medium- and even
long-range structural organization.

The Urbach energy is a parameter which quantifies the homogeneity of the struc-
ture by optical absorption investigation, probing a multi-range structural organization.
In figure 4.38 the absorption coefficient is shown as the function of the photon energy
for the same materials analysed in previous sections. In the logarithmic scale repre-
sentation chosen for α, Urbach tails are linear functions and the inverse of the slope is
proportional to EU . It is clearly evident that each sample has different slope.

The results about the coating loss angle and the optical absorption coefficient,
exhibit a similar trend regarding the annealing and the mixing. In this respect, it is
interesting to look at figure 4.39 where the coating loss angle is reported as function of
the Urbach energy EU , for both Ta2O5 and Ti:Ta2O5 coating under different conditions.
The linear behaviour suggests the existence of a correlation between these two quantities
[129].

The observed correlation between coating loss angle and Urbach energy calls for a
common physical background, to be most naturally searched in the structural ground.
In this respect, interesting results were obtained on tantala and Ti-doped tantala coat-
ings, i.e. the same system investigated here (though deposited under different con-
ditions), by combining loss angle and transmission electron microscopy (TEM) mea-
surements, corroborated by molecular dinamycs (MD) simulations [126]. It has been
shown through radial density function (RDF) measurements on Ti:Ta2O5 coating that
a decrease of the measured loss angle is accompanied by a width reduction of the main
RDF peak, related to metal-oxygen distances at the short-range scale.

More recent studies [130] highlighted that the amorphous material is made of
Primary Structural Units (PSU) very similar to that of the units of the crystalline
state. The authors claimed that annealing favours the organization of PSUs in short
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Figure 4.39: (a) Coating loss angle as a function of Urbach energy. Circles
refer to as deposited samples, whereas squares to the samples after
annealing. Two different coatings are considered, the Ta2O5 and the
Ti:Ta2O5. Data are listed in the table (b). The reported loss angle is
the average value of the data shown in figure 4.32b. The uncertainty
is the maximum distance from the mean value.

1D-chains or 2D ribbons. Instead doping with Zr works in the opposite way. Further
they suggest that the emergence or suppression of medium range 2D order may have
important influence on mechanical properties of Ta2O5 coating.

A very recent paper [131] on the Zr:Ta2O5 system confirms that annealing pro-
duces systematic changes at the intermediate range scale; atomic modelling shows that
such changes are to be related to well definite changes of the connections between PSU.
These changes in the amorphous structure correlate with a reduction of mechanical
losses.

In another recent work, Raman spectroscopy measurements on SiO2 coating showed
that extended structures such as rings made of three tetrahedrons (the PSU of SiO2)
are correlated to the coating loss angle [108] and have an activation energy of about 0.5
eV [132]. Furthermore, molecular dynamics of amorphous oxides such as SiO2 showed
that TLS with a barrier of 0.5 eV primarily involves quasi-1D chain of Si-O-Si and
rings of Si-O-Si bonds [128]. The ensemble of measurements strongly suggests that at
room temperature the main contribution to the loss angle is to be ascribed not only to
short-range order but also to non-local structural organization.

The evidence for a relation between Urbach tails and structure is dating back to
early works on the subject: Cody et al. [68] recognized that the width of the exponential
tail is controlled by the amount of structural and thermal disorder in the network. More
recent works [69,70] have pointed out a relation between the presence of structural, not
crystalline atomic organization on a medium range scale and the extension of Urbach
tails.

Interesting results have been obtained by atomistic modelling of amorphous silicon
[69]: molecular dynamics calculations show that, after the relaxation of the structure,
an exponential valence tail appears in the electronic DOS. An inverse participation
ratio analysis shows that the extreme tail eigenstates on amorphous semiconductors
are primary localized on so-called topological filaments. In fact, while well localized
defects induce mid-gap states, more complex and organized structures induces Urbach
states near the valence or conduction band edge. In a-Si such structures are connected
subnetworks of short bonds or long bonds [125]. Interesting, if the defects correlation is
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artificially destroyed, the Urbach tail is severely affected. Structural relaxation favours
defects correlation and reduces the Urbach energy [69].

Post-deposition annealing generally modifies the Urbach tails. For example, Xue
et al. [133] recorded the decreasing of Urbach energy in ZnO thin film with increasing
annealing temperature from 600°C to 750°, whereas an inverse trend is observed exceed-
ing 750°. This observation can help to understand Urbach tailing mechanisms, where
the annealing may be used to allow a structural self-organization with a consequent
lattice strain relaxation [134].

Therefore, Urbach tails can be viewed as a simple, meaningful way to visualize
the occurrence of atomic organization in the amorphous structure, in a multi-range
perspective. In this respect, the correlation between the Urbach tail extension and
the mechanical losses could be explained through the spatial character of the Urbach
tails states, related to atomic configurations that are responsible of the dissipation of
mechanical energy as measured at 300 K in the acoustic band. Annealing relaxes the
network and consequently this relaxation increases the spatial correlation between de-
fects: the structure evolves from large stresses, concentrated in small regions, towards
a situation where weakly strained regions are clustered around the site where the large
stress were once. Urbach-type electronic states associated to medium/long range atomic
configurations approach in energy the mobility edge, so that Urbach tails get narrower
and Urbach energy decreases. In order to explain the impact of stress relaxation on
energy loss, one has to consider that the measurement were done only at room temper-
ature, hence, only the reduction of TLS density having a barrier height of about 0.5
eV is probed. Energy barriers of interest at room temperature correspond to equilib-
rium configurations formed by several PSUs, as suggested in a recent work [127, 130].
The recent observations of ref. [131] have been interpreted by the authors as due to a
decrease of PSUs sharing edges in favour of corner sharing which form TLS with lower
barrier heights.

The effect of Ti/Ta mixing on the reduction of the Urbach energy is less intuitive
and to some extent even counter-intuitive. The investigation done in [126] points out
that Ti-doping changes the Ta2O5 structure, possibly leading to an increase of short-
range homogeneity. The authors showed that this is related to a low coating loss angle.
In [126], reverse Monte Carlo simulation has been used to match the observed RDF and
a significant fraction of TaTiO2 ring fragments is formed in the doped coating. This
changes the structure by modifying the angles between oxygen-metal-oxygen and metal-
oxygen-metal as consequence. The considerations made above explain the reduction
of the Urbach tails with the reduction of disorder in the material as a consequence
of both annealing and mixing. Another mechanism could justify the modification of
Urbach energy after mixing, based on the consideration that Urbach energy depends
not only on static structural disorder but also on a temperature term [68, 71] that is
related to the interaction of electronic states with the phonon spectrum. Although
all the measurements reported here are done at room temperature, doping changes
the phonon spectrum and likely the Debye temperature of the original materials. A
changing in PSU connection, as found in ref. [131] is also able to change the Debye
temperature. The modification of the phonon spectrum alters the relation between
temperature and thermal disorder.

In any case, since the Urbach tails of doped oxides are less extended than in the
undoped ones, we can infer that the local structure of the doped material is more
homogeneous and that on a larger scale the material becomes organized into cluster of
atoms, resulting in a lower loss angle.

The observed correlation between the energy extension of Urbach tails and the
level of mechanical losses opens new perspectives. First, optical characterization of
the fundamental absorption edge emerges as a tool for rapid pre-diagnostics of coating
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ITM

f φc (10−4 rad) a (10−4 rad Hz−b) b r

2708.1 1.6 ± 0.1 1.1 ± 0.3 0.05± 0.03 0.32
16092.6 1.7 ± 0.1
16283.9 1.8 ± 0.1
22423.4 1.7 ± 0.1

ETM

f φc (10−4 rad) a (10−4 rad Hz−b) b r

2708.6 2.4 ± 0.1 2.2 ± 0.6 0.01± 0.03 0.56
6168.3 2.3 ± 0.1
16088.1 2.5 ± 0.1
16297.9 2.4 ± 0.1
22414.5 2.3 ± 0.1

Table 4.11: Mechanical loss φc of Advanced LIGO and Advanced Virgo
input (ITM) and end (ETM) mirror high-reflective coatings. Nominal
specification of thickness ratio r = tH/tL, where tH and tL are the
thickness of the high-index and low-index layers (tH = 727 nm, tL =
2080 nm for the ITM and tH = 2109 nm, tL = 3766 nm for the ETM).

mechanical quality. At the same time, the characterization of Urbach tails complements
the analysis of the structure in a different spatial range. Being the Urbach energy a
single value parameter, hardly it can describe the complexity of the amorphous material,
whereas it is correlated to the structural homogeneity of the material at the right range
for the energy loss mechanisms. Finally, the correlation has been observed on different
oxides, suggesting its general validity for this kind of coating materials [129].

4.5.4 High-Reflective Coatings of Advanced LIGO and Advanced Virgo

The knowledge of the mechanical properties of mono-layers are commonly used to
predict the loss of high-reflective coating φHR, which can be obtained by a linear com-
bination of the measured loss of its constituent layers [135],

φHR =

∑
i tiYiφi∑
i tiYi

, (4.17)

where ti, Yi and φi are the thickness, the Young’s modulus and the loss of the i-th layer
(i = H for the high-index Ti:Ta2O5 layers and i = L for the low-index SiO2 layers, for
instance), respectively.

The reference loss values of the Advanced LIGO and Advanced Virgo input (ITM)
and end (ETM) mirror high-reflective coatings had been previously estimated [94] by
assuming Yc = 140 GPa for titania-doped tantala layers [136]. These values may now
be updated by using the values of Young’s modulus and Poisson’s ratio, Yc = 120
GPa: the new estimations, listed in table 4.11, are about 10% higher than the previous
ones [94] for both ITM and ETM coatings.

Figure 4.40 shows the comparison between the expected loss of equation (4.17),
calculated using the values of loss and Young’s modulus from this thesis, and the direct
loss measurements of the HR coatings. As shown by the points, the measured loss is
fairly constant over the sampled band (2.7− 22.4 kHz), whereas the expectations have
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Figure 4.40: Mechanical loss of Advanced LIGO and Advanced Virgo in-
put (ITM, orange) and end (ETM, purple) mirror HR coatings:
comparison between the expected values (shaded regions) calculated
via equation (4.17) and measured values (markers) from table 4.11.
The frequency-dependent loss term φc(f) = af b of SiO2 (blue) and
Ti:Ta2O5 (green) layers, from table table 4.5 and 4.8, is also shown
for comparison.

the same frequency dependence of their dominant contribution, i.e. the titania-doped
tantala layers.

When extrapolating down to 100 Hz, i.e. the frequency where Advanced LIGO and
Advanced Virgo are limited by coating thermal noise, the expectations underestimate
the actual measured loss of the HR coatings, of about 30% for the ITM coating and
about 43% for the ETM coating.

4.5.5 Summary

The Ta2O5 has been studied as high-refractive-index material in Bragg reflectors. Dif-
ferent deposition conditions yield different coating mechanical properties. In particular,
the lowest deposition ratio provides the coating with lowest loss angle. These differences
disappear after the annealing at 500℃, which erases the deposition history. Indeed, the
rapid decrease of coating loss angle, with the annealing at 500℃, has little structural
counterpart. After 10 h, the increasing of annealing time does not affect the loss and
the structure, which keeps the same configuration. On the other hand, the increase
of the annealing temperature beyond 600℃ causes the crystallization. The Young’s
modulus and Poisson’s ratio is comparable for the different deposition conditions.

In order to decrease the internal friction, mixing Ta2O5 with TiO2 has been inves-
tigated at several Ti% concentration. It has been confirmed that Ti/Ta= 0.27 yielded
minimum loss. The mixed coating presents comparable elastic moduli but lower coating
loss angle, after the annealing. The coating loss angle of Ti:Ta2O5 after the annealing
at 100 Hz is almost reduced by 25% with respect to Ta2O5 coating loss (figure 4.41).

Looking at the optical properties, it has been observed that the annealing does
not affect the energy gap whereas it decreases the refractive index, especially in the
NIR region. However, the refractive index at 1064 nm of the Ti-doped coating after
the annealing is higher almost about 2% than the one of pure tantala. The Ti-doping
causes a red-shift of the energy gap which results to be in agreement with the doping
atomic ratio concentration of 0.27. The effect of the annealing and the doping on the
weak absorption related to the Urbach tails is remarkable. In particular, similarly to
the coating loss angle, the annealing and the doping reduce the Urbach energy, hence
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Figure 4.41: Comparison of Ta2O5 and Ti:Ta2O5 coating loss angle at 100
Hz after the annealing at 500℃, measured at room temperature. In
the plot, also the fused-silica internal friction [112], acquired at 1.5
MHz, is showed. The zoom allows to better compare the higher
dissipative materials.

leading to a correlation between the Urbach energy and the coating internal friction.
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4.6 Nb2O5 and Nb:TiO2 Coatings

Niobia (Nb2O5) has been one the first coating tested during my thesis with the purpose
of replacing the high-refractive index material in the Bragg mirror. The refractive index
of Nb2O5 is higher than the refractive index of Ti:Ta2O5 and this could lead to a thinner
high-reflective stack, hence to a lower coating thermal noise.

The analysed coatings are oxides deposited by IBS with DIBS; the deposition is
directly scalable to the Grand Coater, in order to deposit on large substrates.

Mixing with TiO2 has been tested in order to obtain a coating with high refractive
index. It has been observed that a modest amount of Ti-doping does not increase the
refractive index but it makes possible to anneal the sample at 600℃ without crystal-
lization. The crystallization temperature of the Ti:NbO2 is therefore higher than the
crystallization temperature of pure TiO2, which is between 250℃ and 300℃, and of
pure Nb2O5, which is about 400℃.

Then, TiO2 has been doped with Nb2O5 in order to obtain a coating with a
refractive index similar to pure TiO2, increasing its crystallization temperature. The
best result has been obtained by the Nb:TiO2 with atomic ratio of Nb to Ti equal
to 0.37, as measured through energy-dispersive X-ray spectroscopy (EDX), which has
been tested up to 400℃.

In the following, the measurements of pure Nb2O5 and of Nb:TiO2, before and
after an air post-deposition annealing at 400℃ for 10 hours, are presented.

4.6.1 Mechanical Properties

In figure 4.42, the coating loss angle of two samples having Nb2O5 coating deposited
with the DIBS (before and after the annealing) is shown. It can be observed that it
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Figure 4.42: Coating loss angle of Nb2O5 deposited with DIBS. Comparison
for the coating before (blue) and after (red) the annealing at 400℃.

is not possible to discriminate between family modes, so that the analysis has been
carried out considering only the frequency trend af b (see section 2.4.2). During the
analysis both samples have been considered whereas, for sake of clarity, in the following
plots only one sample is shown.

The annealing has been done in air at 400℃ for 10 hours, which is a temperature
lower than the standard annealing because of the crystallization starting just above
400℃. The heating treatment reduces the mechanical loss. It can be observed that the
after the annealing, the coating loss angle changes trend with respect to the frequency.
The exponent b, related to the distribution of the barrier height in TLS, goes from
negative to positive value, ascribed to an exponential distribution of the barrier height.

116



4.6. NB2O5 AND NB:TIO2 COATINGS

In figure 4.43 it is shown the fit of the measured dilution factor D with the simu-
lation, to obtain the elastic constant. The results have been summarised in table 4.12.
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Figure 4.43: Fit of measured dilution factors (blue) with simulated values
(red) for Nb2O5 coating before (a) and after (b) the annealed in air
at 400℃ during 10 hours. From these data, the elastic constant of
table 4.12 have been worked out.

Comparing the elastic moduli obtained following the procedure in section 3.2.3, it can

Nb2O5 Y (GPa) ν a (10−4 rad Hz−b) b

DIBS 100 ± 7 0.295 ± 0.015 9.8 ± 1.9 -0.02 ± 0.02
DIBS ann. 99 ± 1 0.24 ± 0.01 2.0 ± 0.4 0.09 ± 0.02

Table 4.12: Young’s modulus Y , Poisson ratio ν, and a, b parameters of
the model af b for Nb2O5 deposited with DIBS, before and after the
annealing at 400℃.

be observed that the annealing does not affect the Young’s modulus, whereas it reduces
the Poisson ratio. Even if the model for the fitting of the elastic constants seems to
work well, we observe that the change of ν is anomalous with respect to most of the
samples analysed in this thesis work.

Doping
Nb:TiO2 with atomic ratio of Nb to Ti equal to 0.37 (as measured through EDX) has
been tested at 400℃.

In figure 4.44 the coating loss angle is shown with the fit. It can be observed that
the data present a families separation. In particular, the second family (1,m) is more
dissipative than the first (0,m) (unlike the edge effect, where the second family (1,m)
is less dissipative), suggesting a considerable bulk contribution. The bulk deformation,
related to pure dilatation, can be described by the model expressed by equation 4.16.

In figure 4.44 it is clearly evident that the annealing reduces the coating loss angle
by reducing the shear contribution. The reduction of the shear term allows the dilata-
tion to be the main contribution at higher frequencies. The results are summarised in
table 4.13, including the Young’s modulus and the Poisson ratio. The elastic constants
are not significantly affected by the annealing, whereas, comparing the values of table
4.12 and 4.13, it is evident that the mixed coating Nb:TiO2 has higher Young’s modulus
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Figure 4.44: Coating loss angle of Nb:TiO2 deposited with DIBS (blue),
compared with the fit (red), for the sample before and after the an-
nealing at 400℃. The green points represent the contributions of the
fit model A1f

B1Ddil +A2f
B2Dshear, where the crosses represent the

shear part A2f
B2Dshear, where Dshear = 1 − Ddil, and the squares

represent the bulk part A1f
B1Ddil.

Nb:TiO2 Y (GPa) ν A1 (10−4) B1 A2 (10−4) B2

DIBS 120 ± 1 0.30 ± 0.01 1.2 ± 0.6 0.23 ± 0.05 6.5 ± 0.7 -
DIBS ann. 116 ± 1 0.29 ± 0.01 0.8 ± 0.7 0.27 ± 0.08 9 ± 3 -(0.12 ± 0.04)

Table 4.13: Young’s modulus Y , Poisson ratio ν, and A1,2 expressed in
rad Hz−b, B1,2 parameters of the model A1f

B1Ddil + A2f
B2Dshear

for Nb:TiO2 deposited with DIBS, before and after the annealing at
400℃.

and Poisson ratio than the pure Nb2O5. To better evaluate the effect of the doping
and compare it with the annealing, in figure 4.45 the coating loss angle of Nb2O5 and
Nb:TiO2 are compared. It can be observed that the annealing is the main factor which
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Figure 4.45: Coating loss angle of Nb2O5 and Nb:TiO2, before and after
the annealing in air for 10 hours at 400℃.
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Figure 4.46: Ψ (green), ∆ (blue) data of Nb2O5 annealed coating, measured
with VASE ellipsometer. The data are compared with the best fit
(red) obtained by CL model.

reduces the coating loss angle.

4.6.2 Optical Properties

At least four samples have been analysed, but since they provided comparable results,
we will show the analysis of one representative sample only. The measurements have
been acquired with both VASE and M-2000 ellipsometers at 55°, 60° and 65°. Since the
two ellipsometers and the analysis done for the three angles of incidence gave compa-
rable results, for sake of clarity, the measurements refer only to VASE ellipsometer at
60° whereas the final results have been obtained considering all the acquired data.

In figure 4.46 the data obtained by VASE ellipsometer of Nb2O5 deposited with
the DIBS and annealed at 400℃ are shown. The (Ψ,∆) data show a degradation in
the UV region caused by the strong absorption which reduces the signal to noise ratio
and data are no longer useful for fitting purposes. For this reason, the data are shown
below 6 eV.

The interference features, related to multiple reflections in the transparent region
of the coating, stop quite sharply around 3.4 eV; this behaviour marks the fundamental
absorption threshold. Furthermore, the amplitude of the oscillations in the Vis region
starts to slowly reduce approaching the absorption threshold. This is well remarkable
in figure 4.46b and could be related to the presence of Urbach tails. From the com-
parison of the measurements before and after the annealing, shown in figure 4.47, it
can be noticed that the main difference related to the heating treatment is around the
absorption threshold. As observed for the standard coatings, the annealing seems not
to affect the energy gap. However, it is evident that, after the annealing, the absorption
related to the Urbach tails is reduced.

Following previous analysis, the data have been analysed through a three-layers
model including the substrate, the thin film and a surface roughness layer. The latter
was modelled through a Bruggeman effective medium approximation (EMA) layer.
Although the thin film can be represented by Cody-Lorentz (CL) the Tauc-Lorentz
(TC), the best fit has been provided by the CL model which accounts for the Urbach
tails. The comparison between the fit curves and the data is shown in figure 4.46.
The fit curves reproduced the (Ψ,∆) data at the three angles of incidence 55°, 60° and
65° with the same accuracy. In particular, the analysis showed that the annealing
increases the coating thickness of about almost 3%, from (470 ± 2) nm to (483 ± 2)
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Figure 4.47: (Ψ,∆) data at 60° for Nb2O5 coating before (blue) and after
(orange) the annealing.

nm. The coating thickness has been then used to estimate the density of the material,
which does not change considerably with the annealing. The thickness and the density
of the sample are listed in table 4.14. Furthermore, the annealing reduces the refractive
index in the transparent region, as shown in figure 4.48. The values of the refractive
index at wavelengths of interest 1064 nm and 1550 nm are listed in table 4.14.

Nb2O5 n@1064 nm n@1550 nm ρ (g/cm3) EU (eV) Eg (meV)

DIBS 2.24 ± 0.01 2.22 ± 0.01 3.6 ± 0.8 110 ± 10 3.4 ± 0.1
DIBS ann. 2.22 ± 0.01 2.20 ± 0.01 3.5 ± 0.8 80 ± 10 3.4 ± 0.1

Table 4.14: Refractive index n at wavelength of interest (λ = 1064 nm for
LIGO and Virgo detectors, λ = 1550 nm of future detectors such as
the Einstein Telescope), density ρ, energy gap Eg and Urbach energy
EU of Nb2O5 before and after the annealing at 400℃.

In figure 4.49a the Cody Plot obtained by the CL model is shown in order to
evaluate the absorption edge. The energy gap Eg is not affected by the annealing,
whereas it is evident in the figure that a clearly change in the absorption trend occurs
below the energy gap, related to the reduction of the Urbach tails. The values of the
energy gap and the Urbach energies are listed in table 4.14.

In figure 4.50 the data of the standard Nb:TiO2 coating, deposited by the DIBS
and annealed at 400℃, are compared with the fit curves obtained using the CL model.
Also in this case, the (Ψ,∆) data show a degradation related to the strong absorption
in the UV region. The annealing reduces the refractive index (figure 4.48) in the
NIR region where at 1064 the reduction is almost about 1%. The coating thickness is
increased instead of about 2% from 482± 2 to 490± 2 nm. The coating thickness has
been used to determine the density. The values of the refractive index at wavelengths
of interest 1064 nm and 1550 nm and the density are listed in table 4.15. It can be
observed that the Nb:TiO2 has a higher density than Nb2O5.

The Cody plot shown in figure 4.49b highlights the effect of the heating treatment
on the Nb:TiO2 absorption edge. It is evident that the energy gap is not affected by the
annealing whereas there is a clearly reduction of the Urbach tails. Since the TiO2 has
almost the same energy gap than Nb2O5 (TiO2 has been found to have an energy gap
about 3.3− 3.5 eV [122, 123]), the mixing does not determine a change in energy gap,
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Figure 4.48: (a) Refractive index of Nb2O5 coating before (light blue) and
after (blue) the annealing, compared to the that of Nb:TiO2 coating
before (orange) and after (red) the annealing. (b) The zoom in the
NIR-Vis region.
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Figure 4.49: Cody plot for (a) Nb2O5 and (b) Nb:TiO2 before (blue) and
after (orange) the annealing, obtained by CL model. The dashed lines
represent the linear trend of (α(E)n(E)/E)1/2 to better highlight the
energy gap value and the beginning of the Urbach tails.

Nb:TiO2 n@1064 nm n@1550 nm ρ (g/cm3) EU (eV) Eg (meV)

DIBS 2.30 ± 0.01 2.28 ± 0.01 4.26 ± 0.11 108 ± 5 3.3 ± 0.1
DIBS ann. 2.28 ± 0.01 2.26 ± 0.01 4.08 ± 0.11 80 ± 5 3.3 ± 0.1

Table 4.15: Refractive index n at wavelength of interest (λ = 1064 nm for
LIGO and Virgo detectors, λ = 1550 nm of future detectors such as
the Einstein Telescope), density ρ, energy gap Eg and Urbach energy
EU of Nb:TiO2 before and after the annealing at 400℃.

as can be observed comparing figures 4.49a and 4.49b. The values of the energy gap
and the Urbach energy are listed in table 4.15. Analysing the Urbach energy obtained
by the CL model from Nb2O5 and Nb:TiO2 (table 4.14 and 4.15), it can be noticed
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Figure 4.50: Ψ (green), ∆ (blue) data of Nb:TiO2 annealed coating, mea-
sured with VASE ellipsometer. The data are compared with the best
fit (red) obtained by CL model.

that the annealing reduce the Urbach energy, whereas the doping does not change it.
Finally, by comparing refractive index in figure 4.48, it can be observed that the

mixing increases the refractive index, in the NIR region, including 1064 nm.

4.6.3 Correlation Between Urbach Energy and Internal Friction

Similar to Ta2O5 and Ti:Ta2O5 coatings, the effect of the annealing on the coating loss
angle and the Urbach energy suggests a correlation between these two quantities [129].
In figure 4.51 the absorption coefficient is shown as the function of the photon energy. In
the logarithmic scale representation chosen for α, Urbach tails have a linear appearance
and the inverse of the slope is proportional to EU . The different slopes for each sample
is evident.
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Figure 4.51: Absorption coefficient of Nb2O5 and Nb:TiO2 before and after
the annealing, obtained with the CL model. The logarithmic scale
allows to distinguish better the different slopes in the region where the
absorption decays exponentially with the energy EU . The solid lines
represent the absorption appreciated by SE analysis. The dashed
lines represent an extension of the CL model to better distinguish
the different slopes.

The coating loss angle (shown in figure 4.45) and the optical absorption coefficient
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Coating φc EU
·10−4 (meV)

Ta2O5 6.4± 0.2 164± 8
Ti:Ta2O5 6.1± 0.2 152± 5
Ta2O5 ann. 4.6± 0.5 130± 10
Ti:Ta2O5 ann. 3.7± 0.7 108± 5

Nb2O5 8.3± 0.4 110± 10
Nb:TiO2 7.4± 0.8 108± 5
Nb2O5 ann. 4.8± 0.7 80± 10
Nb:TiO2 ann. 4.7± 0.9 80± 5

(b) Data.

Figure 4.52: (a) Coating loss angle as function of Urbach energy. Circles
refer to as deposited samples, squares to the samples after the an-
nealing. Different coatings are considered, Ta2O5, Ti:Ta2O5, Nb2O5,
Nb:TiO2. The values of the data are listed in the table (b). The
reported loss angle is the average value of the data shown in figure
4.32b and 4.45. The uncertainty is the maximum distance from the
mean value.

exhibit a similar trend regarding the annealing and the mixing. Under this considera-
tions, the correlation shown in figure 4.39 can be compared to figure 4.52. The corre-
lation holds for several oxides (Ta2O5, Ti:Ta2O5, Nb2O5 and Nb:TiO2), suggesting a
general validity for this behaviour [129].

4.6.4 High-Reflective Stack

In order to measure the coating thermal noise of stacks made of Nb2O5 and Nb:TiO2

layers, three stacks are currently under investigation.

In particular, one λ/4 Bragg mirror stack Nb2O5/SiO2 with thickness ratio 0.62
and two stacks Ti:Nb2O5/SiO2 have been deposited on fused silica witness sample (�
1”, 5 mm thick). In the case of the stacks with the doped layers, one is a λ/4 mirror with
thickness ratio 0.60, whereas the other one is an optimized stack [137] with thickness
ratio 0.38.

The samples have been sent to the Massachusetts Institute of Technology (MIT)
for measuring directly the coating thermal noise, using a folded free-space Fabry-Perot
cavity [138,139] and three resonant transverse electromagnetic modes (TEM): the fun-
damental mode TEM00, commonly used in GW detectors, and the second order trans-
verse mode TEM02 and TEM20. The folded cavity allows to measure samples with high
reflectivity because the read-out is not located directly in transmission of the sample
under investigation, while the multiple co-resonating TEMs share the same sensitiv-
ity to the laser frequency and cavity lens, so that it is possible to use the TEM00 to
suppress the common noises, such as laser frequency noise, cavity length noise and
substrate thermal noise. Furthermore, TEM02 and TEM20 sample different areas of
the coating and hence the thermal noise seen by each of the resonant modes is largely
independent.
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Figure 4.53: Coating loss angle of Nb2O5 and Nb:TiO2 before and after the
annealing, compared with the standard coating Ti:Ta2O5 annealed
at 500℃.

4.6.5 Summary

A higher refractive index coating (increasing the crystallisation temperature) has been
achieved from TiO2 by Nb-doping. The resulting Nb:TiO2 has been tested at 400℃.
The Nb:TiO2 presents a refractive index at 1064 nm of 2.22± 0.01, which is about 6%
higher than the one of Ti:Ta2O5 (2.09 ± 0.01). The elastic constants of Nb:TiO2 are
comparable with those of Ti:Ta2O5 (Y ∼ 120 GPa and ν ∼ 0.3). However, it can be
observed from figure 4.53 that the lowest coating loss angle obtained is still slightly
higher than the one of Ti:Ta2O5 coating annealed at 500℃. In figure 4.54 the coating
loss angle at 100 Hz is compared with the one of standard coating after the annealing.

The higher refractive index can be used to develop the high-reflective coating
reducing the number of layer without affect the reflectivity and thank to the optimiza-
tion, to change the thickness ration of the high-refractive-index material respect to the
lower-index. In both cases, the thickness of the dissipative layer will be lower, leading
hence to a lower coating thermal noise.

In order to evaluate if the higher refractive index allows to obtain a high-reflective
coating with lower coating thermal noise, λ/4 and optimized stacks made with SiO2

and Nb2O5 or Nb:TiO2 have been sent to the MIT to perform direct measurements of
coating thermal noise.
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Figure 4.54: Nb:TiO2 and Nb2O5 coating loss angle at 100 Hz after anneal-
ing, measured at room temperature, compared with other coatings.
In the plot, also the fused-silica internal friction [112], acquired at 1.5
MHz, is showed. The zoom allows to better compare the dissipative
materials.

4.7 Zr:Ta2O5 Coating

It is now clear that the heating treatment play an important role in the reduction of
the internal stress of coating and hence in the reduction of internal friction. Under this
respect, besides the increasing of the refractive index, it would be interesting to find
an amorphous oxide to mix with Ta2O5 in order to increase the annealing temperature
and possibly reduce the coating loss angle.

One of the main aspect of the studied mixtures is the higher crystallization temper-
ature, likely achieved through the different atomic structure of the dopant. Accordingly
to preliminary results obtained by the LIGO Scientific Collaboration, ZrO2 is a valid
option other than TiO2. In fact, despite the refractive index of ZrO2 is comparable to
the one of Ta2O5 [140], we will see that the Zr:Ta2O5 (with 13-14% of Zr concentration
with respect to Ta) has been annealed at 700℃ for 10 hours avoiding crystallization.

4.7.1 Mechanical Properties

In figure 4.55a the Zr:Ta2O5 coating loss angle deposited by the CG and after in-air
annealing at 500℃, 600℃ and 700℃ for 10 hours is shown; it can be observed from the
figure that the annealing reduces the coating loss angle. In table 4.16 the fit results
are summarised. It is interesting to observe from table 4.16 that at each annealing,
the b parameter of Zr:Ta2O5 increases with the annealing temperature. Thus, it can
be interesting to extrapolate the values of the loss angle at 100 Hz. By doing this, at
100 Hz we obtain a loss angle of about φZr:Ta2O5

= 1.8 · 10−4 for Zr:Ta2O5, compared to
φTi:Ta2O5

= 2.4 · 10−4 for Ti:Ta2O5 with a reduction of a factor ∼ 1.3 (the difference in
frequency trend can be observed in figure 4.55b). Furthermore, the higher annealing
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Figure 4.55: Coating loss angle of Zr:Ta2O5. (a) the results for different
in-air post-deposition annealing up to 700℃ for 10 hours. (b) the
comparison with the coating loss angle of standard Ti:Ta2O5 annealed
at 500℃ for 10 hours.

Zr:Ta2O5 Y (GPa) ν a (10−4 rad Hz−b) b

GC 120 ± 3 0.32 ± 0.01 4.4 ± 0.4 0.05 ± 0.01
GC 500℃ − − 1.58 ± 0.15 0.13 ± 0.01
GC 600℃ − − 1.7 ± 0.2 0.115 ± 0.012
GC 700℃ − − 0.79 ± 0.11 0.181 ± 0.015

Table 4.16: Young’s modulus Y , Poisson ratio ν, and a, b parameters of the
model af b for Zr:Ta2O5 deposited with GC and after the annealing
at 500℃, 600℃ and 700℃ for 10 hours.

temperature would be beneficial also for the SiO2 coating in a high-reflecting stack of
SiO2 and Zr:Ta2O5, leading to a stack with lower coating loss angle and hence to a
lower coating thermal noise.

4.7.2 Optical Properties

The coating has been analysed by spectroscopic ellipsometry before the heating treat-
ment and a spectrophotometric measurement has been made after the annealing at
500℃. For sake of clarity, in figure 4.56 the (Ψ,∆) data are shown for the 60° angle of
incidence. It can be observed that the quality data degrades in the UV region just after
the energy gap around 4 eV. For this reason, parameters related to the properties in
that region such as the Urbach energy have a large uncertainty. The fit curve refer to
the Cody-Lorentz model and in figure 4.57a the refractive index and extinction coeffi-
cient are shown as function of energy, whereas in figure 4.57b the Cody plot highlights
the energy gap.

In table 4.17 the final results are summarised, including the analysis done with
spectrophotometry on reflectance measurements for the sample annealed at 500℃. As
expected, the annealing reduces the refractive index in the NIR region. Furthermore,
the energy gap is comparable to the one of Ta2O5 coating.
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Figure 4.56: Ψ (green), ∆ (blue) data of as deposited Zr:Ta2O5 coating,
measured with VASE ellipsometer. The data are compared with the
best fit (red) obtained by CL model.
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Figure 4.57: (a) Optical function n and κ for Zr:Ta2O5 coating obtained by
the Cody-Lorentz model. (b) Cody plot; the dashed line highlights
the linear trend of (α(E)n(E)/E)1/2 to better extrapolate the energy
gap value.

Zr:Ta2O5 n@1064 nm n@1550 nm ρ (g/cm3) Eg (eV) EU (meV)

GC (ellip.) 2.09 ± 0.01 2.07 ± 0.01 6.9 ± 0.1 4.1 ± 0.1 130 ± 30
GC 500℃ (spectro.) 2.03 ± 0.04 − - - -

Table 4.17: Refractive index n at wavelength of interest (λ = 1064 nm for
LIGO and Virgo detectors, λ = 1550 nm of future detectors such as
the Einstein Telescope), density ρ, energy gap Eg and Urbach energy
EU of Zr:Ta2O5 samples before and after the annealing at 500℃. Be-
fore the annealing the values has been carried out by spectroscopic
ellipsometry characterization, after the annealing by spectrophotom-
etry.
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Figure 4.58: Zr:Ta2O5 coating loss angle at 100 Hz after the annealing at
600℃ and 700℃compared with other coatings. 500℃, measured at
room temperature. In the plot, also the fused-silica internal friction
[112], acquired at 1.5 MHz, is showed. The zoom allows to better
compare the higher dissipative materials.

4.7.3 Summary

The Zr:Ta2O5 mixture has been developed with the purpose of increasing the annealing
temperature of Tantala coating, avoiding the crystallization. The main objective has
been achieved, testing the sample up to 700℃. The resulting coating presents optical
and mechanical properties similar to the tantala coating in term of refractive index,
energy gap and coating loss angle between 103−104 Hz. However, the higher annealing
temperature allows to reach a lower coating loss angle, and the particular frequency
trend set a reduction of a factor ∼ 1.3 with respect to the standard Ti:Ta2O5 at 100
Hz, where the gravitational-wave detectors are limited by the coating thermal noise. In
high-reflecting stack, the higher annealing temperature would beneficial also for silica
coating, leading to a reduction of the total coating loss angle.

In figure 4.58, the coating loss angle at 100 Hz of Zr:Ta2O5 after the annealing at
700℃ is compared with the previous analysed coatings.
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Figure 4.59: Coating loss angle of IBS as deposited fluorides. (a) AlF3, (b)
MgF2. The dashed lines represent the frequency trend af b. The red
line is the fit of both samples.

IBS Coating a (10−4 rad Hz−b) b

AlF3 sample 1 9 ± 2 0.03 ± 0.02
AlF3 sample 2 12 ± 2 0.006 ± 0.015
AlF3 total 10.7 ± 1.5 0.014 ± 0.015

MgF2 sample 1 2.7 ± 0.4 0.095 ± 0.016
MgF2 sample 2 2.6 ± 0.7 0.09 ± 0.03
MgF2 total 2.8 ± 0.5 0.09 ± 0.02

Table 4.18: Young’s modulus Y , Poisson ratio ν, and a, b parameters of the
model af b for MgF2 and AlF3 deposited by IBS.

4.8 MgF2 and AlF3 Coating

Fluorides like magnesium fluoride (MgF2) and aluminium fluoride (AlF3) present very
low refractive index in the NIR region, including the operational wavelength of laser
for gravitational-wave detectors. They could be a valid option for replacing SiO2 in
high-reflective coatings, in order to increase the refractive index contrast and reduce
the total coating thickness, hence the coating thermal noise.

The fluorides coatings investigated are MgF2 and AlF3 deposited by ion beam
sputtering at the Laser Zentrum Hannover (LZH). The main problem of such coatings
is the possible oxidation during air exposition. For this reason, between each measure-
ments the samples where stored in vacuum to prevent the oxidation.

4.8.1 Mechanical Properties

In figure 4.59 the coating loss angle of two samples of MgF2 and AlF3 is shown. The
distribution of loss values in families has not been observed. On the other hand, it is
clearly visible the frequency trend af b. In table 4.18 the results obtained on samples
analysed independently and considering their total measurements are listed.

Comparing the coating loss angle of the best as-deposited fluoride samples with
the one of as-deposited SiO2 CG (figure 4.60), it can be observed that both MgF2 and
AlF3 have a higher coating loss angle.
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Figure 4.60: Coating loss angle of IBS as deposited fluorides compared with
the as deposited SiO2 CG. The dashed lines represent the frequency
trend af b.

4.8.2 Optical Properties

The MgF2 and AlF3 coating presented a little thickness non-uniformity, observed by
measuring the samples at different positions. In figure 4.61 the comparison between
the Ψ measurements taken at two locations of the coating is shown. It can be observed
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Figure 4.61: Ψ data of (a) AlF3 and (b) MgF2 coating measured at 60° in
two different areas of the coating.

that the distance between the maximum is different, confirming a different coating
thickness in the two areas. A difference in thickness of about 4 nm for MgF2 and 10
nm for AlF3 have been found, due to the low thickness uniformity. The average value
of the thickness was 208 nm and 211 nm for MgF2 and AlF3 respectively. Under this
respect, these coatings have been analysed considering mainly the VASE ellipsometer,
which has a smaller light spot.

In figure 4.62 the (Ψ,∆) of MgF2 and AlF3 are shown. Fluorides should be ideally
transparent in the energy region covered by our ellipsometers. For example, the band
gap of crystalline MgF2 is 10.8 eV [141] and one would expect a similar band gap for
amorphous coating. For this reason, the 2-poles function has been used to represent
the (Ψ,∆) data. However, as it can be observed in figure 4.62, the model does not
work for these coatings. In particular, the Ψ data are well reproduced only in the NIR
region, whereas the ∆ data are substantially different from the simulated curves. In
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Figure 4.62: (Ψ,∆) data of (a), (b) AlF3 and (c), (d) MgF2 coating mea-
sured at 60° compared with model curves. The blue curves represent
the 2 poles function, the red curves are the 2-poles with TL oscillator.

order to fit the data, absorption in the UV region must be taken into account. Under
this respect, a TL oscillator has been added to the 2-poles function and, as it can be
observed in figure 4.62, the model matches well the (Ψ,∆) data for both MgF2 and
AlF3 coating. The values of the refractive index and density are listed in table 4.19.

In figure 4.63 the dielectric functions of MgF2 and AlF3 coating obtained from
2-poles and TL models are compared. The ε1 of the two models is similar in the NIR
region whereas presents differences in the UV region. Furthermore, it has to be noted
that for AlF3 coating (figure 4.63a), a Gaussian oscillator has been added to the model
to improve the MSE and hence the quality of the fit. Note that the absorption in
the UV region is relatively weak. These absorptions could be related for example to
colour centers, probably formed during the deposition of films which involves energetic

Coating n@1064 nm n@1550 nm ρ (g/cm3)

AlF3 1.36 ± 0.01 1.36 ± 0.01 2.3 ± 0.6
MgF2 1.41 ± 0.01 1.40 ± 0.01 2.7 ± 0.2

Table 4.19: Refractive index n at wavelength of interest (λ = 1064 nm for
LIGO and Virgo detectors, λ = 1550 nm of future detectors such as
the Einstein Telescope) and density ρ of as deposited fluorides samples.
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Figure 4.63: (ε1, ε2) of (a) AlF3 and (b) MgF2 coating. The dashed curves
represent the dielectric function obtained by the 2-poles model. For
AlF3 the ε2 is a superposition of Gaussian and TL oscillators.

particles [142,143].
Finally, it has to be noted that in both cases a thickness of about 6-8 nm for the

Bruggeman EMA layer, which accounts for the roughness, has been found. This values
has to be compared with the ∼ 200 nm of the coating thickness. Under this respect,
4% of roughness is considerable, especially in the UV region.

4.8.3 Summary

The fluorides coatings MgF2 and AlF3 deposited by ion beam sputtering have been
analysed with the purpose of replace SiO2 coating in high-reflective mirrors.

In order to reproduce the optical data, a weak absorption in the UV region had
to be included in the model. This could be related to the presence of colour centers,
likely formed during the IBS deposition.

The coating loss angle of both MgF2 and AlF3 is higher than all the previous
coatings. This can be observed in figure 4.64, where the loss angles of MgF2 and AlF3

at 100 Hz is shown.
It has been shown that SiO2 coatings have higher loss at cryogenic temperature

[97,144]. This is a limit if we want to use it in Bragg reflectors for cryogenic detectors.
In this respect, it would be interesting to investigate fluorides at lower temperature,
where the TLS distribution could be different than that of silica.

Work is ongoing to characterize the impact of annealing on their absorption and
internal friction; soon we will also measure their low-temperature internal friction, for
possible implementation in future interferometers.
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Figure 4.64: MgF2 and AlF3 coating loss angle at 100 Hz, measured at
room temperature, compared with other coatings. In the plot, also
the fused-silica internal friction [112], acquired at 1.5 MHz, is showed.
The zoom allows to better compare the dissipative materials.

4.9 SiC Coating

The main reason leading to the investigation of silicon carbide (SiC) coating is related
to the high refractive index in the NIR. Furthermore, SiC is a high-coordination number
solid: the idea is to verify if this high coordination number solid has the tendency to
reduce the TLS number and hence the mechanical loss. For this preliminary study, the
poly-crystalline form 3C-SiC has been investigated.

SiC is a semiconductor with rigid stoichiometry (50% Si and 50% C) where the
atoms are tetrahedrally bonded with covalent bonds. This material is the best known
example of polymorph. The polymorph nature of SiC arises from the large number
of combinations of stacking of Si-C bilayers. Staking Si-C bilayer along the c axis, in
different combinations (A, B and C), different polymorph are obtained (figure 4.65a).
In each layer, the silicon (or carbon) atoms have a close-packed hexagonal arrangement
(figure 4.65b).

The main problem in growing SiC is the very high temperature required to realize
single crystal material. For example, 4H-SiC and 6H-SiC need very high process tem-
peratures (about 2000℃) to produce samples for commercial use. On the other hand,
3C-SiC is the thermodynamically stable and it can be grown at lower temperatures
(i.e. below 1500℃). Furthermore, 3C-SiC has a diamond structure and if the coating
is grown along the c = 〈0001〉 axis, it is isotropic along the coating surface. Under
this respect, spectroscopic ellipsometry has been used to study the optical properties
of 3C-SiC.

The samples have been provided by the Laboratoire des Multimatériaux et Inter-
faces (LMI) using chemical vapour deposition (CVD) technique around 900 − 1000℃.
In order to use Silicon as substrate, the etching process with flowing HCl removes the
oxide layer, than the carbonization is needed in order to deposit a first layer of the order
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Number of
bilayers

Structure

(a) Polytypes. (b) Arrangement.

Figure 4.65: (a) Different possible polytypes of SiC. The red atoms are Si
atoms, the blue atoms are the C atoms. (b) Hexagonal arrangement.

of 1 nm in order to avoid the mismatch lattice between 3C-SiC and Silicon substrate.
The coating has been deposited on 1” diameter silicon wafer and, as can be observed
in figure 4.66, the coating shows a non-uniform deposition.

Figure 4.66: 3C-SiC deposited on a silicon substrate.

4.9.1 Optical Properties

The carbonization layer has been analysed with prior dedicated measurements. In
figure 4.67 the (Ψ,∆) data of carbonization layer are shown. It can be observed that
the data are similar to the (Ψ,∆) data of Silicon substrate because of the very thin layer
on top. We can use a generalized oscillator model to reproduce the imaginary part of
the dielectric function, obtaining a model Kramers-Kronig (KK)-consistent. However,
it is important to describe as well as possible this system in order to use this model as
substrate for the SiC coating. In figure 4.67 the data are compared to the fit curves.

In figure 4.68 the (Ψ,∆) data of 3C-SiC coating are shown. As can be observed
in figure 4.66, the sample presents a non uniform coating. In this respect the VASE
ellipsometer is to be preferred respect to M2000 which has a larger light spot. However,
the (Ψ,∆) data presented a degradation in the UV region and for this reason, the data
are presented up to 5.5 eV. The analysis shows a weak absorption also in the NIR region,
for this reason a simple Cauchy or 2-poles model can not be used to represent the data
in that region. A three layers model has been used to represent the optical properties,
the first represents the model used to describe the carbonization layer, the second a
generalized oscillator to describe the SiC coating and a surface layer. The latter was
modelled through a Bruggeman effective medium approximation (EMA) layer, which
accounts for a roughness of about ∼ 2 nm over a film thick 155± 2 nm. In particular,
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Figure 4.67: (Ψ,∆) data and fit curves (red) for the carbonization layer on
a silicon substrate.
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Figure 4.68: (Ψ,∆) data and fit curves (red) for the carbonization layer on
a silicon substrate.

five Gaussian oscillators and a pole around ∼ 7 eV have been used to describe the
optical properties of the SiC coating.

In figure 4.69a the real and imaginary part of the dielectric function are shown,
highlighting the several Gaussian oscillators used to build the optical model. In figure
4.69b the comparison of the result obtained by the analysis on VASE and M2000 data
is shown. The results are different and this could be related to higher sensitivity of
M2000 ellipsometer to the non-uniformity of the coating which may depolarize the light
and affect the data.

4.9.2 Summary

SiC presents a refractive index much higher than the standard coating currently adopted
in gravitational-wave detectors. The refractive index results n ∼ 2.57±0.01 at 1064 nm
and n ∼ 2.57±0.02 at 1550 nm, in agreement with the values obtained in literature [145]
(n ∼ 2.58 at 1064 nm and n ∼ 2.57 at 1550 nm). The main problem is the high optical
absorption; the extinction coefficient is of the order of 10−2, to compare with the ∼ 10−7

of standard coatings for gravitational-wave detector.
The analysed coating was crystalline, however it would be interesting to investigate

SiC deposited by IBS in order to obtain an amorphous coating with potentially lower
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Figure 4.69: Real and imaginary part of the dielectric function. (a) The re-
sult obtained by the analysis on VASE data. (b) Comparison between
the result obtained separately on VASE and M2000 data.

optical absorption.
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Figure 4.70: Si3N4 CVD coating loss angle measured using two different
systems. (a) Measurements at different temperatures of LPCVD a-
SiNx using the double-paddle oscillators (DPOs) [146]. (b) Measure-
ments at room temperature of different stoichiometry SiNx using a
cantilever silica blade [147].

4.10 Si3N4 Coating

Silicon nitride (Si3N4) is a high-coordination solid with potentially low mechanical loss.
Amorphous silicon nitride (a-SiNx ) thin films, are commonly deposited by chemical-
vapor deposition (CVD) techniques. In figure 4.70a the internal friction of a-SiNx of
a recent work [146], deposited by low-pressure chemical-vapor deposited (LPCVD), is
shown. It can be observed that the coating loss angle is reduced by the increasing of
deposition temperature (up to 800℃ in figure 4.70a) and that this coating is particularly
promising for application at low temperature. Furthermore, in figure 4.70b the coating
loss angle of CVD SiNx of another recent work [147] are presented. The authors noted
the presence of H in the coating, which concentration has an impact on the optical and
mechanical properties. It can be observed that different stoichiometry yields different
optical (the refractive index varies from 1.8 to 2.3) and mechanical properties (the loss
angle varies almost of a factor 2). Furthermore, SiNx presented in figure 4.70 shows a
coating loss angle at room temperature lower than the one of Ti:Ta2O5 and an higher
refractive index.

CVD SiNx might suffer from high optical absorption (κ ∼ 1 − 5 · 10−5) due to
hydrogen contamination [148]; moreover, their thickness uniformity still remains to
be tested against the stringent requirements of gravitational-wave detectors. Thus we
chose to develop IBS SiNx coatings and test their loss versus the annealing temperature
[116].

4.10.1 Mechanical Properties

In figure 4.71a the coating loss angle of first IBS SiNx samples (A1 and A2) deposited
at room temperature is shown [116]. It can be observed that it is not possible to
distinguish between family modes because in most of the cases, only one of the mixed
modes could be measured. However, a frequency trend is observed. The fit results are
summarised in table 4.20.

For all the samples the elastic constants have been carried out by fitting the
measured dilution factor D with simulations. In figure 4.72 the fit result for as deposited

137



CHAPTER 4. RESULTS

103 104

0.2

0.4

0.6

0.8

1

·10−3

Frequency (Hz)

C
o
at
in
g
L
o
ss

A
n
gl
e
(r
ad

)

as deposited
500℃
700℃
800℃
900℃
Ti:Ta2O5 500℃

(a) A1 and A2 samples.

103 104

0.2

0.4

0.6

0.8

1
·10−3

Frequency (Hz)

C
oa

tin
g

Lo
ss

A
ng

le
(r

ad
)

A as dep.
B as dep.
A 900℃
B 900℃
Ti:Ta2O5 500℃

(b) Comparison.

Figure 4.71: Coating loss angle of IBS SiNx at different post-deposition an-
nealing temperature. The circles and squares refer to two different
samples. The dashed lines represent the frequency trend af b ob-
tained considering both samples. (a) A1 and A2 samples [116]. (b)
Comparison between A1, A2, B1 and B2 samples.

IBS SiNx Y (GPa) ν a (10−4 rad Hz−b) b

A as dep. − − 10 ± 1 -0.017 ± 0.010
A 500℃ − − 4.6 ± 0.6 -0.025 ± 0.013
A 700℃ − − 4.9 ± 1.8 -0.05 ± 0.04
A 800℃ − − 2.9 ± 0.9 -0.02 ± 0.03
A 900℃ − − 1.2 ± 0.6 0.04 ± 0.05

B as dep. 250± 30 0.24± 0.03 7.8 ± 1.3 -0.017 ± 0.019
B 900℃ − − 0.59 ± 0.02 0.067 ± 0.005

Table 4.20: Young’s modulus Y , Poisson ratio ν, and a, b parameters of the
model af b for SiNx coatings.

B1 SiNx coating as representative sample.

One interesting feature of SiNx coating is the possibility to anneal the samples at
high temperature without crystallization. This allows to obtain a coating loss angle
lower than the standard Ti:Ta2O5. However, after the annealing at 800℃, the A1

and A2 samples present defects (figure 4.73). These defects are characterized by a
sinusoidal stress relief patterns usually called ”buckling waves”, which are well-known
in literature and are observed also in other systems under different conditions [149].
Cracks are due to excessive stress and poor adhesion [150]. The nucleation and growth
of these defects is caused by a very well-defined combination of internal strain, Young’s
modulus, coating thickness and adhesion energy. In particular, internal stress and
adhesion determine the stability of the coating/substrate composite and therefore the
lifetime of a coated sample. A defect will grow if the shear stresses at the boundary
exceed the bonding forces between the layer and the substrate. Under this respect, the
internal stress must be sufficiently high to cause buckling but must be lower than a
critical value for unbound spread of the defect. The cracks suggest that the substrate
and the coating should have very different elastic moduli. During the annealing, the
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Figure 4.72: Fit of measured dilution factor (blue) with simulated values
(red) for as deposited B1 SiNx coating.

different thermal expansions lead to an internal stress large enough to cause the defects.
In figure 4.71b the coating loss angle of latest IBS SiNx (B1 and B2 samples)

deposited at room temperature using different deposition parameters with respect to A
samples is shown. It is interesting to observe that the frequency trend is similar to the
one showed by the A1 and A2 samples, but the level is different; B1 and B2 samples
show lower coating loss angle. The fit values are summarised in table 4.20.

Another interesting detail is the behaviour of the coating loss angle of the different
samples with the annealing. It is evident that when we approach the crystallization
temperature, which is above 1300℃ [151], the difference between the loss angles de-
creases. The same behaviour has been observed for Ta2O5 coating, for which it is
related likely with the structural limit observed by Raman measurements [116]. We
did not observe cracks on latest B1 and B2 samples, even after the post deposition
annealing at 900℃.

4.10.2 Optical Properties

In figure 4.74 the extinction coefficient κ of IBS SiNx is shown as function of post-
deposition annealing temperature. The measurements have been carried out using
photothermal deflection technique [152]. The detection principle is based on the mirage
effect, where a probe laser beam is deflected by change of the refractive index, due to
the temperature gradient induced by absorption.

The obtained results show that, though lower than that of CVD coatings, their
absorption is still too high (10−6 < κ < 10−5) and we are presently working to further
reduce this value.

4.10.3 Summary

We tested IBS SiNx deposited using different conditions. The results show SiNx coat-
ings with different optical and mechanical properties. In particular, it has been observed
that the coating loss angle of latest B1 and B2 samples is lower than the first A1 and
A2 samples. However, this difference is reduced after the post-deposition annealing at
900℃. The coating loss angle after the annealing at 900℃, in the measured frequen-
cies, is lower than the one of Ti:Ta2O5 annealed at 500℃ of a factor ∼ 2 for A1 and
A2 samples and ∼ 3 for B1 and B2 samples. As can be observed in figure 4.75, this
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(a) A1 sample. (b) A2 sample.

(c) A1 sample (zoom). (d) A2 sample (zoom).

(e) B1 sample. (f) B2 sample.

Figure 4.73: IBS SiNx coating samples annealed at 800℃. (a) and (b) the
first samples. (c) and (d) the optical microscopic observation of red
squared area highlighted in (a) and (b) shows the sinusoidal stress
relief patterns. (e) and (f) the latest samples annealed at 900℃.
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Figure 4.74: Extinction coefficient at 1064 nm of IBS SiNx coatings an-
nealed at different temperature.

reduction at 100 Hz results of a factor ∼ 1.6 for A1 and A2 samples and ∼ 2.8 for B1

and B2 samples.
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Figure 4.75: IBS SiNx coating loss angle at 100 Hz after the annealing at
900℃, measured at room temperature, compared with other coatings.
In the plot, also the fused-silica internal friction [112], acquired at 1.5
MHz, is showed. The zoom allows to better compare the dissipative
materials.

The main problem is related to the absorption at 1064 nm, which is higher than
the absorption of coatings currently used in gravitational-wave detector (κ ∼ 10−7).

Another issue is the value of the Young’s modulus 250± 30. Looking at equation
(1.39) it is evident that the coating thermal noise depends also in the mismatch of the
elastic moduli of the substrate and the coating. Since SiO2 substrate has a Young’s
modulus of 72.2 GPa, SiNx Young’s modulus could limit its use on SiO2 substrates
of room-temperature detectors. However, future cryogenic gravitational-wave detector
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might use a 1.550 µm laser wavelength and sapphire substrates, having a Young’s
modulus of 350 GPa. For this reason, since SiNx is expected to show low coating
loss angle at cryogenic temperature, it could be a valuable option for future cryogenic
detectors if the absorption issue is solved.

Remarkable advantage of silicon nitride coatings is their much higher crystal-
lization temperature: we could anneal our IBS SiNx layers up to 900℃, without ob-
serving crystallization; since the crystallization temperature of our SiO2 coatings is
1000℃ [116], a high-reflective stack of SiNx and SiO2 could be annealed at higher tem-
peratures, decreasing also the loss of the SiO2 layers [116] and thus the resulting coating
thermal noise of the whole stack itself.

4.11 Publications and Presentations of Results

I published or presented at several conferences most of the main results of this thesis.
In particular, the first model of the edge effect on substrates has been described in
[103]; then I presented a new study about the edge effect on substrates at the LIGO-
Virgo Collaboration (LVC) meeting in Sonoma State University (USA, CA) and the
improvement of this model including the edge effect on coatings at the LVC meeting
in Maastricht University (NL). A paper with the final results and the model for coated
samples will be published soon.

A paper about the correlation between the structure and the coating loss angle
for SiO2 has been published [108].

I presented preliminary results about the coatings currently used in gravitational-
wave detectors at the 12th Edoardo Amaldi Conference on Gravitational Waves in
Pasadena (USA, CA), published in [116]. A paper on the mechanical properties of
these same coatings has been recently submitted for publication [153]. A paper on the
optical properties of these same coatings has been published [109].

I presented the correlation between the Urbach energy and internal friction for
the first time during the optical session of the LVC meeting in Lake Geneva (USA,
WI) and during a Coating Workshop at the same meeting. Then, the correlation has
been presented at the 8th International Conference on Spectroscopic Ellipsometry in
Barcelona(SE), for which a proceeding paper is under review. A paper about the
correlation has been recently published [129].

Finally, some first results obtained from alternative coatings have been published
[154] and presented by me at the 22nd International Conference on General Relativity
and Gravitation/13th Edoardo Amaldi Conference on Gravitational Waves in Valencia
(ES), for which a paper will be submitted for publication. Other presentations and
papers about the final results of this thesis work are planned.

Concerning theory and metrology, a paper on the analytical model of internal
friction is under preparation and a paper regarding the estimation of the coating elastic
constants has been submitted for publication [153].
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“Be glad that you have some little knowledge of
something that you cannot penetrate.
Don’t stop to marvel.”

Albert Einstein
LIFE Magazine, p.64 (2 May 1955)

At the end of 2015, the advanced-detectors started gravitational-wave astronomy;
since then, 11 signals were detected during the observing run O1 and O2, and at the
moment others signal alerts have been issued during the current observing run O3.
Nowadays, the gravitational-wave detectors are entering an upgrading phase. One of
the main goals is to reduce the so-called coating thermal noise which will limit the
sensitivity of present and future detectors. There are different strategies in lowering
coating thermal noise, and optical and mechanical characterizations are key ingredients
in order to achieve this goal. In the following, the results obtained during this thesis
work are listed.

Substrates. Silicon wafers have been used for optical investigation by reflection spec-
troscopic ellipsometry. The optical model developed here, based on several oscil-
lators centered at the critical point of the joint density of states, gives a dielectric
function which is in agreement with what can be found in literature.

Silica disk-shaped resonators have been used for mechanical characterizations.
Silica substrates are affected by the so called edge-effect. The ageing of the loss
angle due to this effect is erased by annealing and the vacuum storage of samples
mitigates the effect.

SiO2. Spurious loss at the coating edge has been observed. If not considered in the
analysis, this edge effect could mask the actual coating loss angle.

The coating loss angle suggests a dependence in the mechanical loss on the depo-
sition rate. However, the internal friction of silica coating at room temperature is
still higher than the one of fused-silica (substrate silica) even after the annealing.

The evolution of internal friction and structure with respect to annealing showed
a correlation between the D2 peak in the Raman spectra, associated with the
breathing mode of 3-ring structure, and the coating loss angle, measured at room
temperature. Another unexpected result was the crystallization of the silica coat-
ing at 1000℃.

The optical measurements show a reduction of the refractive index after the an-
nealing, accompanied by a reduction of density.
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Ta2O5. Different deposition conditions yield coatings with different properties: the
lowest deposition rate provides the coating with lower loss angle.

Moreover, as confirmed also by Raman measurements, post-deposition annealing
at 500℃ for 10h erases the deposition history.

The Young’s modulus and Poisson’s ratio do not show a clear dependence on
deposition conditions within the explored range.

In order to minimize the internal friction, the mixing Ti:Ta2O5 has been investi-
gated. It has been confirmed that Ti/Ta= 0.27 yielded minimum loss.

The mixed coating presents comparable elastic moduli to that of Ta2O5 but lower
coating loss angle after the annealing. The coating loss angle of Ti:Ta2O5 after
the annealing is reduced about 25% with respect to that of Ta2O5.

Concerning the optical properties of Ta2O5 and Ti:Ta2O5, it has been observed
that the annealing does not affect the energy gap whereas it decreases the refrac-
tive index of about 1%, especially in the NIR region. The refractive index at 1064
nm of the Ti-doped coating after the annealing is higher almost 2% than that of
pure tantala.

The Ti-doping causes a reduction of the energy gap which seems to be linearly
related to the doping atomic ratio concentration of 0.27.

The effect of the annealing and the doping on the absorption measured in the
Urbach tails spectral region is remarkable. In particular, similarly to the coating
loss angle, the annealing and the doping reduce the Urbach energy, hence leading
to a correlation between the Urbach energy and the coating internal friction. This
correlation has been found for the first time in this thesis work.

Nb2O5. The refractive index of Nb2O5 is higher than that of Ti:Ta2O5 and this could
lead to a thinner high-reflective stack and hence to a lower coating thermal noise.

The main objective of obtaining a high-refractive index coating from TiO2 by Nb-
doping, increasing the crystallisation temperature, has been achieved by Nb:TiO2

with atomic ratio of Nb to Ti equal to 0.37.

The crystallization temperature of the Nb:TiO2 is higher than 500℃, thus higher
than that of pure TiO2, which is between 250℃ and 300℃, and of pure Nb2O5,
which is above 400℃.

The refractive index of Nb:TiO2 at 1064 nm is about 6% higher than that of
Ti:Ta2O5. The high refractive index can be used to develop high-reflective coat-
ings reducing the number of layers without affecting the reflectivity, possibly
leading to a lower coating thermal noise.

The correlation between the Urbach energy and the coating internal friction has
been confirmed in Nb2O5 too. Also in this case, the material was annealed and
mixed with TiO2.

The elastic moduli of Nb:TiO2 are comparable with those of Ti:Ta2O5.

The lowest coating loss angle was obtained on Ti:Nb2O5 with atomic ratio of Nb
to Ti equal to 0.37 and annealing temperature of 400℃. This minimum value is
still higher than that of Ti:Ta2O5 coating annealed at 500℃.

MgF2 and AlF3. For the SE analysis, a relatively weak absorption had to be consid-
ered in the UV region, likely due to the presence of colour centers.

The coating loss angle of as deposited MgF2 and AlF3 is well higher than all the
analysed as deposited oxides coatings at room temperature and have high optical
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absorption. Further investigations on the impact of annealing on their absorption
and internal friction are ongoing; soon we will also measure their low-temperature
internal friction, for possible implementation in future cryogenic detectors.

SiC. It presents a refractive index ∼ 18% higher than the coatings currently adopted in
gravitational-wave detectors. The main problem is the high extinction coefficient
(of the order 10−2, to compare with 10−7 of standard coatings); it would be
interesting to investigate SiC deposited by IBS in order to obtain an amorphous
coating with potentially lower optical absorption.

Among all the investigated coatings Zr:Ta2O5 and SiNx provided the most promising
results in term of internal friction, especially at 100 Hz, where the gravitational-wave
detectors are limited by the coating thermal noise.

Zr:Ta2O5. This coating material has been proposed by the LIGO Scientific Collabo-
ration. The main objective of increasing the annealing temperature of Ta2O5 by
Zr-doping has been achieved, reaching 700℃.

The optical and mechanical properties are similar to the tantala coating in terms
of refractive index, energy gap and coating loss angle between 103 − 104 Hz.

The higher annealing temperature allows to reach a lower coating loss angle and
the particular frequency trend gives a reduction of a factor ∼ 1.3 with respect
to the standard Ti:Ta2O5 at 100 Hz. The higher annealing temperature would
beneficial also for silica coating in a high-reflecting stack, leading to a reduction
of the total high-reflective coating loss angle.

SiNx . Different deposition parameters provided different optical and mechanical prop-
erties. However, this difference is reduced after the post-deposition annealing at
900℃.

The coating loss angle after the annealing at 900℃is lower than the one of
Ti:Ta2O5, annealed at 500℃, in all the measured frequencies. This reduction
at 100 Hz is ∼ 2.8 for the latest IBS SiNx coatings.

The main issue is related to the absorption at 1064 nm, which is higher (10−6 <
κ < 10−5) than the absorption of coatings currently used in gravitational-wave
detectors (κ ∼ 10−7). Further improvement of IBS SiNx are then needed, in order
to decrease the optical absorption.

Another issue is the value of the Young’s modulus (250± 30 GPa). The coating
thermal noise increases with the mismatch of the elastic moduli between the
substrate and the coating. This is a problem since the SiO2 substrate has a
Young’s modulus of 72.2 GPa. Future gravitational-wave detectors working at
cryogenic temperature, will require substrates made of crystals. Among other
option, sapphire is quite promising and its Young’s modulus is ∼ 350 GPa.

Further investigation of IBS SiNx deposited at high temperature and measure-
ments at cryogenic temperature are planned.

Despite their different nature and annealing treatment, the coating loss angles of all
measured high-index oxides (in particular the mixing with metals of 4th and 5th group)
fall in the same range, from 1.5 ·10−4 to 3.5 ·10−4. This behaviour is in agreement with
the many times cited universal behaviour of amorphous oxides [112].

Other important findings concern the method of analysis and fundamental prop-
erties of amorphous coatings.
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Analytical model of internal friction. The analytical calculation of the internal
friction of amorphous coatings has been worked out in the most general case of
the potential barrier for the TLS. The obtained loss angle is in agreement with
known results in literature about silica, in the limit of an exponential potential.

Further comparisons with other measured loss angle are needed in order to confirm
the validity of this calculus.

Edge effect. A model which accounts for the extra mechanical loss of the edge has
been developed during this thesis. This effect competes with the bulk and shear
model and further investigation are needed in order to obtain better results in
coating loss angle investigation.

Protocol. In order to mitigate the edge effect and to define the best treatments for
all the samples, a protocol for loss measurements has been established, regarding
the post-deposition annealing and vacuum storage of samples.

Elastic constant estimation. A non-destructive method, based on the measured di-
lution factor (ultimately based on the frequency shift of the resonator after the
coating deposition), has been developed to estimate the elastic constants of coat-
ings.

Medium- long-range structure. A correlation between the Urbach tails, evident
in the optical absorption, and the internal friction, related to the mechanical
properties, has been found. This correlation highlights the importance of the
medum- long-range atomic organization in the mechanical quality of amorphous
coatings.
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APPENDIX A

FLUCTUATION-DISSIPATION THEOREM

In the 1951 has been demonstrated a fundamental property of thermally activated
fluctuations, where the power spectral density SAA of the observable A is related to the
imaginary part of the response function χAA, by the so-called dissipation-fluctuation
theorem [5]

SAA(ω) = 4~
(

1

2
+

1

eβ~ω − 1

)
= [χAA(ω)] , (A.1)

where β = (kBT )−1 and kB is the Boltzmann’s constant. The equation (A.1) can be
written under the classic limit β~ω → 0

S(ω) =
4kBT

ω
= [χ(ω)] . (A.2)

In order to evaluate the response function χ(ω), one may imagine to expose the ob-
servable A to an external solicitation F (t), so that V (t) = −BF (t), which combines
with an observable B of the system. If the external solicitation is weak, from the linear
response theory we obtain the Kubo relation [155]

δA(t) =

∫ +∞

−∞
χAB(t− t′)F (t′)dt′ , (A.3)

where δA(t) is the variation of the quantity A and χAB(t) is the so-called response
function

χAB(t− t′) = − i
~
θ(t− t′)Tr(ρ[B,A(t)]) , (A.4)

where θ(t − t′) is the Heaviside function and ρ is the matrix density of the system
in thermodynamic equilibrium. If we consider a periodic solicitation, it is possible to
rewrite the equation (A.3) using the admittance Y of the system

δȦ(t) =

∫ +∞

−∞
Y(t− t′)F (t′)dt′ . (A.5)

Using the frequency domain, it is possible to relates χ to Y

δA(ω) = χ(ω)F (ω) , (A.6)

−iωδA(ω) = Y(ω)F (ω) , (A.7)
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where
Y(ω) = −iωχ(ω) . (A.8)

We can now express equation (A.2) as

S(ω, T ) =
4kBT

ω2
< [Y(ω)] . (A.9)

If we are interesting in the coating thermal noise in gravitational-wave detectors,
we can consider as observable the displacement A(t) of the mirror surface along the
laser beam direction, averaged through the beam shape

A(t) =

∫
S
ζ(x, y, t)B(x, y)dxdy , (A.10)

where ζ(x, y, t) is the shape of the mirror surface at instant t and B(x, y) is the laser
beam intensity profile (usually considered as Gaussian), with

∫
B(x, y)dxdy = 1. The

external solicitation V (t) is obtained using relation (A.10) in the Hamiltonian

V (t) = −F0(t)A(t)

= −F0(t)

∫
S
ζ(x, y, t)B(x, y)dxdy

= −
∫
S
ζ(x, y, t)P (x, y, t)dxdy , (A.11)

where F0(t) has the dimension of a Force. The external force F can be then expressed
through the pressure P (x, y, t) = F0(t)B(x, y) applied on the mirror. It has to be noted
that if ζ(x, y, t) is constant the total force on the mirror is not zero and the mirror
start to move as a pendulum. For this reason, the observable is usually separated in
two components: the pendulum and the mirror deformation. In the following we will
consider ζ(x, y, t) as dependent on the spatial variables x, y. In order to use equation
(A.9) it is necessary to evaluate the admittance Y(ω), which is related to the dissipated
energy. Indeed, using equation (A.3) the dissipated energy, which corresponds to the
work done over a cycle T = 2π/ω, for a periodic solicitation F = F0<[eiωt] reads

Wdiss =

∫ T

0
F (t)dA(t) =

∫ T

0
F (t)Ȧ(t)dt

=

∫ T

0
F (t)<[YF (t)]dt =

∫ T

0
F (t)

(YF (t) + Y∗F ∗(t)
2

)
dt

=

∫ T

0
F 2(t)

(Y + Y∗
2

)
dt = <[Y]

∫ T

0
F 2(t)dt

= <[Y]
F 2

0

4

∫ T

0
(2 + e2iωt + e−2iωt)dt

= <[Y]
F 2

0

2
T = <[Y]

F 2
0 π

ω
. (A.12)

The thermal dissipation from (A.9) is then

S(ω, T ) =
4kBT

ω

Wdiss

F 2
0 π

. (A.13)
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M2 FOR A TWO-LEVEL SYSTEM

In order to study the mechanical properties of amorphous solids related to the structure
dynamics, the Debye equations (2.95) must be evaluated in the contest of two-level
system. In particular, the imaginary part of the elastic modulus

M2 = δM
ωτu

1 + ω2τ2
u

(B.1)

M2 = δMD(V ) , (B.2)

gives important hints on the dissipation energy, as expressed by the relation (2.104).

Following the theory of elasticity, we can relate δM to the free energy F . looking
at equation (2.78), the variation δM can be evaluated by

δM =
∂σii
∂ujj

, (B.3)

furthermore

σik =

(
∂F

∂uik

)
T

, (B.4)

and then

δM =
∂2F

∂u2
ik

∣∣∣∣
uik=0

. (B.5)

For a system with TLS, one may use equation (2.74) and hence

∂F

∂uii
=
γ

2
tanh

(
∆ + γuii

2kBT

)
,

∂2F

∂u2
ii

=
γ2

4kBT
sech2

(
∆ + γuii

2kBT

)
, (B.6)

which depends only on ∆. For that reason, it is possible to evaluate the integral of
equation (2.111) in V as first.

The factor D(V ) which gives the Debye peak can be obtained considering the
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kBT ln(ωτ0)

1/2

V

D(V )

Figure B.1: Imaginary part of Debye function expressed by equation (B.7).
The width depends on kBT . The blue curve is obtained for T =
290K, f = 1kHz and ∆ = 0.2eV . The red curve is obtained for
T = 100K, f = 1kHz and ∆ = 0.2eV . The green curve is the case
of an exponential distribution of the barrier height f(V ) ∝ e−V/V0 in
the TLS theory. For kBT � V0 the behaviour is similar to the delta
function with amplitude 1/2 and by changing the temperature, it is
possible to do a spectroscopic measurement of f(V ).

Arrhenius’ law for the relaxation time, where τ = τ ′0e
V/kBT . Under this respect

D(V ) =
ωτ

1 + ω2τ2
=

ωτ ′0e
V/kBT

1 + ω2τ ′20 e
2V/kBT

=
e[V/kBT+ln(ωτ ′0)]

1 + e2[V/kBT+ln(ωτ ′0)]

=
1

2 cosh (V/kBT + ln(ωτ ′0))
, (B.7)

which is shown in figure B.1.
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APPENDIX C

ELASTIC ENERGY OF DISK RESONATOR

The elastic energy density for a disk-shaped resonator reads [156]

dE =
Y

1 + ν

{
1

2(1− ν)

(
∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2

∂2w

∂θ2

)2

−

+

[
∂2w

∂r2

(
1

r

∂w

∂r
+

1

r2

∂2w

∂θ2

)
−

+

(
∂

∂r

(
1

r

∂w

∂θ

))2]}
z2dzrdrdθ , (C.1)

where Y , ν are the Young’s modulus and Poisson ratio respectively. In order to obtain
the numerical values of the energy stored in a disk resonator, it is necessary to know
the analytical expression of the deformation w(r, θ, t).

For a thin circular plate, the transversal displacement w is obtained by the differ-
ential equation

S∇4w + ρ
∂2w

∂t2
= 0 , (C.2)

where ρ is the superficial mass density of the disk, ∇2 is the Laplace operator in polar
coordinates1 and S is the stiffness

S =
Y h3

12(1− ν2)
, (C.3)

where h is the thickness of the disk. If we consider free vibrations, the displacement
can be described by two factor, one depends to the resonant mode shape and the other
one to the period of the deformation

w(r, θ, t) = ζ(r, θ) cosωt , (C.4)

Using expression (C.4) in equation (C.2) we obtain(
∇4 − ρω2

S

)
ζ = 0 , (C.5)

Defining K4 = ρω2

S we obtain(
∇4 −K4

)
ζ =

(
∇2 +K2

) (
∇2 −K2

)
ζ = 0 , (C.6)

1The Laplacian in polar coordinate is ∇2 = ∂2

∂r2
+ 1

r
∂
∂r

+ 1
r2

∂2

∂θ2
.
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with solutions {
∇2ζ1 +K2ζ1 = 0 ,

∇2ζ2 −K2ζ2 = 0 .
(C.7)

We can express the displacement ζ(r, θ) in therm of Fourier expansion over θ [157]

ζ(r, θ) =

∞∑
n=0

ζn(r) cos(nθ) +

∞∑
n=1

ζ∗n(r) sin(nθ) , (C.8)

so that we obtain the motion equations

∂2

∂r2 ζn,1 + 1
r
∂
∂rζn,1 +

(
K2 − n2

r2

)
ζn,1 = 0 ,

∂2

∂r2 ζn,2 + 1
r
∂
∂rζn,2 −

(
K2 + n2

r2

)
ζn,2 = 0 ,

∂2

∂r2 ζ∗n,1 + 1
r
∂
∂rζ
∗
n,1 +

(
K2 − n2

r2

)
ζ∗n,1 = 0 ,

∂2

∂r2 ζ∗n,2 + 1
r
∂
∂rζ
∗
n,2 −

(
K2 + n2

r2

)
ζ∗n,2 = 0 .

(C.9)

Equations (C.9) are the Bessel equations and the solutions read

ζn,1 = AnJn(Kr) +BnYn(Kr) , (C.10)

ζn,2 = CnIn(Kr) +DnKn(Kr) , (C.11)

ζ∗n,1 = A∗nJn(Kr) +B∗nYn(Kr) , (C.12)

ζ∗n,2 = C∗nIn(Kr) +D∗nKn(Kr) , (C.13)

(C.14)

where Jn and Yn are the Bessel functions of the first and second type whereas In and
Kn are the modified Bessel functions of the first and second type, respectively. The
coefficients An, Bn, Cn, Dn and their conjugates depend on the shape of the resonant
mode and are obtained from the boundary conditions. The displacement is then

ζ(r, θ) =

∞∑
n=0

(ζn,1 + ζn,2) cos(nθ) +

∞∑
n=1

(ζ∗n,1 + ζ∗n,2) sin(nθ) . (C.15)

Considering the circular symmetry of the system and a homogeneous disk, if the center
of the disk is the origin of the polar coordinates the functions Y (κr) and K(κr) are
not to be considered in order to avoid infinite displacement and infinite stress in r = 0.
Furthermore, considering the symmetry along the diameter, the solutions in sin(nθ)
can be discarded. In this respect, the displacement reads

ζ(r, θ) =

∞∑
n=0

(AnJn(Kr) + CnIn(Kr)) cos(nθ) , (C.16)

where An and Cn are obtained by the boundary conditions, which in the case of free-
edge vibrating plate correspond to zero bending and twisting moments at the edge of
the disk [158]. Considering the maximum displacement at t = 0, w(r, θ, t = 0) = ζ(r, θ),
it is possible to obtain the expression of the energy density and to solve numerically
the integral for each resonance mode.

If we consider a disk coated on both sides, we can evaluate the integral of equation
(C.1) over z direction and obtain the expression of the energy stored in the substrate
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Es and in the coating Ec

Es =
1

2

Ysh
3

12(1− ν2
s )

{
(∇2w)2 − 2(1− νs)

[
w′′(r, θ)

]}
rdrdθ , (C.17)

Ec =
Ych

2t

4(1− ν2
c )

{
(∇2w)2 − 2(1− νc)

[
w′′(r, θ)

]}
rdrdθ , (C.18)

where h is the thickness of the substrate, t is the thickness of the coating and

w′′(r, θ) =

[
∂2w

∂r2

(
1

r

∂w

∂r
+

1

r2

∂2w

∂θ2

)
−
(
∂

∂r

(
1

r

∂w

∂θ

))2]
. (C.19)

A deformation can be decomposed in bulk, where the dilatation changes the vol-
ume of the sample, and shear, where the deformation does not affect the volume. The
free energy density can be written as [156]

E =
1

2
(λ+

2

3
µ)u2

ll + µ(ik−
1

3
δikull)

2 (C.20)

=
1

2
Ku2

ll + µ(ik−
1

3
δikull)

2 , (C.21)

where uik are the elements of the strain tensor, λ, µ are the Lamé’s coefficients and
K = λ+ 2

3µ is the bulk modulus, which are related to the Young’s modulus and Poisson
ratio

Y =
9Kµ

3K + µ
, ν =

1

2

3K − 2µ

(3K + µ)
, so that K =

1

3

Y

(1− 2ν)
. (C.22)

The first term of equation (C.21) is the energy related to the bulk modulus and can be
expressed in polar coordinate by considering

urr =
∂ur
∂r

, (C.23)

uθθ =
1

r

∂uθ
∂θ

+
ur
r
, (C.24)

uzz =
∂uz
∂z

, (C.25)

with

ur = −z ∂w
∂r

, (C.26)

uθ = −z
r

∂w

∂θ
, (C.27)

uz = w . (C.28)

Thence

dEBulk =
1

2
Ku2

ll (C.29)

=
1

6

Y

(1− 2ν)

(
−z ∂

2w

∂r2
− z

r2

∂2w

∂θ2
− z

r

∂w

∂r

)2

dzdrdθ (C.30)

=
Y

6(1− 2ν)
(∇2w)2z2dzdrdθ . (C.31)
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