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Chapter 1

Introduction

Contents

1.1 Objective of this work: state estimation . . . . . . . . . . . . . . . . . . 13

1.2 State estimation with data assimilation . . . . . . . . . . . . . . . . . . 14

1.2.1 General overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.2 Roles and modeling of covariance matrices in data assimilation . . . . . . 19

1.2.3 Reduced methods in data assimilation . . . . . . . . . . . . . . . . . . . . 20

1.2.4 State-of-the-art on the use of data assimilation for state estimation in
nuclear engineering domain . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Data assimilation with reduced basis . . . . . . . . . . . . . . . . . . . . 22

1.3.1 Fundamentals of reduced basis methods . . . . . . . . . . . . . . . . . . . 22

1.3.2 State estimation with reduced basis and measurements . . . . . . . . . . . 24

1.3.3 Algebraic form of PBDW and further development . . . . . . . . . . . . . 29

1.3.4 Stability properties of PBDW . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.3.5 State-of-the-art on the use of reduced order modeling for nuclear reactor
simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.4 Contributions of this work . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.5 Summary of the results by chapters . . . . . . . . . . . . . . . . . . . . 36

1.1 Objective of this work: state estimation

A nuclear power plant is a complex physical system to produce electricity. To both improve
security and optimize the exploitation, it is necessary to know the neutronic state of the nuclear
reactor core as well as possible. It is in particular mandatory to know the behavior of the core in
current operation as in accidental case. This knowledge can be achieved through measurements,
and also through mathematical/numerical models. Various numerical models have been developed
since years, and give a very good estimation of the fine neutronic behavior of the core [81, 153].
Moreover, measurements, obtained during start-up tests as well as in operational context, allow to
improve the quality of the knowledge of the whole core state and possibly correct bias from the
model that can not take into account every single phenomenon occurring in the real process. This
ensemble computing + measurements must then be considered as a whole in order to get the best
estimation of this complex system state.

Integration of mathematical/numerical models with experimental observations is a general way
to perform accurate predictions. Mathematical/numerical models of physical systems are often
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14 1.2. State estimation with data assimilation

deficient due to i) the uncertainty in the value of the parameters representing material properties
and input forces, and ii) might also neglect some aspects of the system’s behavior (model bias quoted
above). On the other hand, experimental measurements are often scarce, corrupted by noise, and
they might also provide only indirect measurements of the quantities we wish to predict.

Data assimilation is a set of mathematical and numerical methods that allow to obtain a better
estimation of the true state of a physical system. In order to achieve this goal, these techniques are
using both the information provided by experimental devices and the information provided by an a
priori knowledge of the system (usually given by a numerical model with its associated parameters).
Data assimilation is in particular the major source of improvement of the weather forecasting since
the last 40 years, and it has been used successfully in several studies on the nuclear core analysis.

Data assimilation tasks present several challenges for applied mathematicians and engineers.
Mathematical models involved in data assimilation often consist of (systems of) parameter-dependent
Partial Differential Equations (PDEs) that are usually expensive to solve: since state-of-the-art data
assimilation procedures are cast as optimization problems allowing to fit the best, which hence in-
volve many model evaluations, the computational burden might be challenging for real applications,
even unsustainable for real-time and in situ applications. This challenge becomes even more severe
when the available mathematical model is affected by substantial data uncertainty: in this case,
current research focuses on the development of numerical techniques that i) are directly informed
by the specific data assimilation task at hand, and ii) meet the computational (time and memory)
constraints, iii) are designed to appropriately take into account the data uncertainty in the model.

Recent advances in reduced order models (ROM) obtained from reduced basis (RB) methods for
parameterized systems offer new opportunities for the integration of models and experimental data:

i) ROM allows extracting the principal component information of the system and also provides
a guideline to set the amount and measurement locations needed, and also a way to learn the
physical system,

ii) ROM techniques speed up computations, allowing better explorations of the parameter space
at an acceptable computational cost.

iii) ROM provides actionable tools to compress our prior knowledge about the system coming from
the parameterized mathematical model into low-dimensional and more manageable forms.

The goal of the thesis is to improve the physical and numerical interpretation of the information
involved in data assimilation with efficient model reduction strategies for systems modeled by PDEs.
More specifically, we shall focus on the data assimilation task: state estimation for stationary
problems, especially neutronic state estimation in nuclear reactor applications.

1.2 State estimation with data assimilation

1.2.1 General overview

Let V be a Hilbert space over a domain Ω ⊂ Rd (d ≥ 1) endowed with inner product (·, ·)
and induced norm ‖ · ‖ =

√

(·, ·). We next introduce the standard m-dimensional Euclidean space

Rm, m ∈ N with ℓp-norm ‖yyy‖ℓp(Rm) := (
∑m

i=1 |yi|p)
1/p

, ∀yyy ∈ Rm, 1 ≤ p < ∞, for simplicity we
further denote ‖yyy‖ℓp(Rm) by ‖yyy‖p. In the framework of state estimation, the goal is to understand
the inaccessible true value of a physical phenomenon/state ut ∈ V , where the t stands for true state
of interest. We can access this goal either through an implicit way based on the knowledge of a
physical model or through an explicit way based on the knowledge from observations collected from
the physical system itself.
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i) Implicit knowledge acquisition from a physical model: In general, the physical model can be
described in an implicit form through an operator equation e.g. a PED of the form

F(u, µ) = 0, (1.2.1)

where u ∈ V is a representation of the state, which depends on p ≥ 1 essential parameters
gathered in a vector µ ∈ Rp. To account for different possible working conditions for the
particular physical phenomenon, we assume that these p parameters vary in a compact set
D ⊂ Rp, by solving this implicit form numerically for each µ, we get a set of all possible states
given by

Mu := {u(·, µ) : µ ∈ D}, (1.2.2)

which is called the manifold of states. The knowledge of u thus directly depends on the
knowledge of µ.

ii) Explicit knowledge acquisition from observations: The physical state of interest can also be
represented explicitly as ut(x, µ) at point x ∈ Ω for a particular parameter state µ by point-
wise sensors that are installed in Ω, or less explicitly represented on average, e.g., a local
average over ut centered at x. More generally, one can estimate the state by an m-vector
observation yyyo ∈ Rm, where the o stands for observation. Let us assume that the observation
yyyo comes from an m-dimensional observation operator ℓ(ut) : V → Rm which maps the state
space into the observation space, thus

yyyo = ℓ(ut) + eeeo, (1.2.3)

where eeeo is an m-dimensional measurement error vector, considered stochastic, whose mean is
ēeeo = E[eeeo] that describes instrument errors, where E[·] is the expectation operator ∗.

Finally, there is a possibility to represent the physical state of interest based on the knowledge
from a physical model combined with measurements. Thus, in this framework of state estimation,
the problem can be described as:

Problem 1.2.1 (State estimation with data assimilation) Find u∗ ∈ V as an approxima-
tion of the true state ut from observation yyyo = ℓ(ut) + eeeo combined with the information from a
physical model (e.g., given by Equation (1.2.1)).

Let us first assume that no model information is available, then the state estimation Problem
1.2.1 above can be e.g., defined as a minimization problem: find an approximation state u∗ ∈ V of
ut from observations yyyo ∈ Rm by solving a classical least-squares problem

u∗ = argmin
u∈V

J(u) = argmin
u∈V

1

2
‖yyyo − ℓ(u)‖22 . (1.2.6)

∗We consider a random variable zzz ∈ Rm, defined as a function on an underlying probability space, and taking
values in Rm. Associated with this random variable is an induced probability measure ν on Rm. Furthermore, we
work with a sufficiently rich collection of subsets of Rm to each of which we are able to assign the probability that zzz

is contained in it; this collection of subsets is termed a σ-algebra. Throughout these notes we work with the Borel
σ-algebra generated by the open sets, Bν(Rm), and abbreviate this σ-algebra by Bν . We have defined a probability
triple (Rm,Bν , ν). We further assume that zzz has a strictly positive probability density function (pdf) ρ : Rm → R+,
which satisfies

∫

Rm
ρ(zzz)dzzz = 1. (1.2.4)

In this setting, we denote by E(zzz) the expected value of the random variable zzz on Rm; this expectation is given by

E[zzz] =

∫

Rm
ρ(zzz)zzzdzzz. (1.2.5)

We can further denote the m×m covariance matrix RRR ≡ E
[

(zzz − E[zzz])(zzz − E[zzz])T
]

, where T stands for the transpose.
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which is never mathematically well posed when V is infinite dimensional. To ensure the well posed-
ness of problem (1.2.6) for all possible configurations, we need to introduce some information from
an a priori knowledge on the state of the system, ub, where b stands for background which can be
the initial state, first guess/forecast from the model, e.g., PDEs. The background ub is also an
approximation to the true state ut which satisfies

ub = ut + eb , (1.2.7)

where eb is the background error, e.g., the model error. The optimal estimator u∗ is therefore the
result of the minimization of a quadratic function J(u), composed of two terms, one associated with
the background error, the other with the discrepancies between the observations and the image of
the state in the observation space:

J(u) =
1

2
λ‖u− ub‖2 + 1

2
‖yyyo − ℓ(u)‖22, (1.2.8)

here λ > 0 is a penalty factor that needs to be carefully selected. This approach consists in penalizing
the gap between the assimilation model and the observations by a back-pulling term proportional to
the norm of the gap between the assimilation model and the background. To this end, the objective
of data assimilation is to weigh each term in the cost function in Equation (1.2.8) by its precision,
or equivalently by the inverse of its uncertainty (modeled as an error covariance matrix).

In practice, we always consider the discretization of the state u, for example, the solution uN in
a finite element subspace V N ⊂ V of typically large dimension N . Let us further assume xxxt ∈ RN is
the coordinate vector of uN ∈ V N for a given orthonormal basis. Thus, our interest is the discrete
state xxxt ∈ RN instead of the continuous one ut ∈ V . We follow the standard notation for data
assimilation problem as formalized by Ide et al [113], denote by HHH the discretization of observation
functional ℓ, we further have

yyyo = HHH(xxxt) + eeeo, (1.2.9)

xxxb = xxxt + eeeb, (1.2.10)

where the observation error eeeo ∈ RM consists of instrumentation error, and the background error
eeeb ∈ RN consists of model errors and representation errors due to the discretization. In this setting,
Problem 1.2.1 becomes:

Problem 1.2.2 (State estimation with data assimilation in discrete sense) Find xxxa ∈
RN as an approximation of the true state xxxt ∈ RN from observation yyyo = HHH(xxxt) +eeeo combined with
the information from a physical model.

In discrete sense, Equation (1.2.8) becomes

J̃(xxx) =
1

2
λ‖xxx− xxxb‖22 +

1

2
‖yyyo −HHH(xxx)‖22 . (1.2.11)

In the above equation, we use the Euclidean norms in RN and Rm space respectively as measures.
More generally, one can define two symmetric positive definite matrices BBB ∈ RN×N and RRR ∈ Rm×m

as weight matrices, to replace the penalty factor λ in (1.2.11):

J(xxx) =
1

2
(xxx− xxxb)TBBB−1(xxx− xxxb) +

1

2
(yyyo −HHH(xxx))TRRR−1(yyyo −HHH(xxx)), (1.2.12)

where T stands for the transpose. One can easily find that (1.2.11) is just a special case of (1.2.12)
when BBB = λ−1IN×N and RRR = Im×m, here IN×N and Im×m are identity matrices of dimension N×N
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and m ×m respectively. To measure the weighted square difference between the observations and
the equivalent of the state in the observation space on the one hand, the background and the state
on the other hand statistically, the 3D variational (3D-Var) approach [204] takes the covariance
matrices of observation and background errors as BBB and RRR, which are defined as

RRR := E
[

(eeeo − E[eeeo])(eeeo − E[eeeo])T
]

, (1.2.13)

and
BBB := E

[

(eeeb − E[eeeb])(eeeb − E[eeeb])T
]

, (1.2.14)

where E[·] is the expectation operator. These matrices represent the prior assumptions about the
errors associated with the background and observations and determine the relative weight given to
xxxb and yyyo in the analysis.

Thus, the 3D-Var statement of Problem 1.2.2 is: find xxxa such that

xxxa = min
xxx∈RN

J(xxx) = min
xxx∈RN

1

2
(xxx− xxxb)TBBB−1(xxx− xxxb) +

1

2
(yyyo −HHH(xxx))TRRR−1(yyyo −HHH(xxx)). (1.2.15)

Note here that in the data assimilation literature, a in xxxa stands for analysis. The optimal solution
of 3D-Var, i.e. the analysis xxxa, is the closest to the true state xxxt in an root mean square sense. Its
determination requires that the gradient of the cost function with respect to its variable xxx at the
analysis xxxa be equal to zero

∇J(xxxa) =
dJ

dxxx
|xxxa = 0. (1.2.16)

Under linear assumption of the observation operator HHH, we have:

BBB−1(xxxa − xxxb)−HHHTRRR−1(yyyo −HHH(xxxa)) = 0, (1.2.17)

we then obtain

xxxa = xxxb +
(

BBB−1 +HHHTRRR−1HHH
)−1

HHHTRRR−1(yyyo −HHH(xxxb)) . (1.2.18)

Thus we have the well-known 3D-Var solution to Problem 1.2.2 :

xxxa = xxxb +KKK(yyy −HHH(xxxb)), (1.2.19)

where the difference yyy −HHH(xxxb) is called innovation and

KKK = BBBHHHT (HHHBBBHHHT +RRR)−1 (1.2.20)

is a weight or gain computed on the estimated statistical error covariances of the background
and the observations, here we already applied the Sherman-Woodbury-Morrinson equation [195]

to
(

BBB−1 +HHHTRRR−1HHH
)−1

HHHTRRR−1 in (1.2.18). It is proven through

BBBHHHT (HHHBBBHHHT +RRR)−1

= (BBB−1 +HHHTRRR−1HHH)−1(BBB−1 +HHHTRRR−1HHH)BBBHHHT (HHHBBBHHHT +RRR)−1

= (BBB−1 +HHHTRRR−1HHH)−1(HHHT +HHHTRRR−1HHHBBBHHHT )(HHHBBBHHHT +RRR)−1

= (BBB−1 +HHHTRRR−1HHH)−1HHHTRRR−1(RRR +HHHBBBHHHT )(HHHBBBHHHT +RRR)−1

= (BBB−1 +HHHTRRR−1HHH)−1HHHTRRR−1.

(1.2.21)

This equality of BBBHHHT (HHHBBBHHHT +RRR)−1 and (BBB−1 +HHHTRRR−1HHH)−1HHHTRRR−1 turns out to be useful, both
from a theoretical and practical standpoint. For instance, the observation space is quite often much
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smaller than the dimension of the state space, so that the inversion of the matrix BBB−1+HHHTRRR−1HHH is
much more costly than the inversion of the matrix HHHBBBHHHT +RRR. Therefore, it is often useful to resort
to (1.2.20).

We now make several remarks.

i) The estimation in Equation (1.2.19) is the same to the Best Linear Unbiased Estimator,
BLUE † [18, 40]. In the framework of BLUE, one takes the linear hypothesis on the observation
operator HHH, and assume the background error eeeb and observation error eeeo are unbiased when
deriving Equation (1.2.19).

ii) Equation (1.2.20) represents the Kalman filter [117] in the simplest static case. The Kalman
filtering is an algorithm that uses a series of measurements observed over time, containing
statistical noise and other inaccuracies, and produces estimates of unknown variables that
tend to be more accurate than those based on a single measurement alone, by estimating a
joint probability distribution over the variables for each timeframe. More details on this could
be found for example in reference [40, 32].

iii) If the background and observation error probability density functiond (pdfs) are Gaussian,
then xxxa is also the maximum likelihood estimator of xxxt [40, 132].

iv) When the observations are distributed over time, the 3D-Var approach is generalized to the
4D-Var approach [194, 137, 133, 205, 71, 209]. The equations are similar, provided by the
operators which are generalized including a forecasting model that allows comparison the
state of the model with the observations at time tk.

The matrices involved in computing Equation (1.2.19) and (1.2.20) cannot be stored because
of their very large dimensions, which can be as much as 107 − 109 state variables for classical
meteorology representation. Thus the direct calculation of the gain matrix, KKK, is unfeasible. The
basic principle of the 3D-Var is to avoid explicitly calculating the gain matrix and make its inversion
using a minimization procedure of the cost function J(xxx). In this case the solution to (1.2.15) is
obtained iteratively doing various evaluations of the equation and its gradient to get the minimum
using a suited descent algorithm. The iterative 3D-Var Algorithm 1.2.1 is a classical case of an
optimization algorithm [163]. For the gradient, there is a wide choice of algorithmic approached,
and quasi-Newton methods [163, 178] are generally used and recommended.

Algorithm 1.2.1 Iterative 3D-Var algorithm

1: k = 0,xxx = xxx0, J(xxx0),∇J(xxx0)
2: while ‖∇J(xxxk)‖ > ǫ or k ≤ kmax do
3: gradient descent and update of xxxk+1 = xxxk − λ∇J(xxxk), where the step size λ is small enough
4: compute J(xxxk+1)
5: compute ∇J(xxxk+1)
6: k=k+1

The 3D-Var/4D-Var approaches are just a small part among all the different optimization meth-
ods used in data assimilation applications. In this work, we only focus on the variational approaches,
and take the terminology data assimilation as an analysis technique for state estimation in which
the observed information is accumulated into the model state by taking advantage of consistency
constraints with laws of physical properties (e.g., [73, 25]). There are many different types of data as-
similation algorithm, each varies in formulation, complexity, optimality and suitability for practical

†Definition: The Best Linear Unbiased Estimator (BLUE) of a parameter θ ∈ Rp based on data YYY ∈ Rq is 1) a
linear function of YYY, that is, the estimator can be written as MMMYYY, where MMM ∈ Rp×q is an p× q-dimensional operator,
2) unbiased (E[MMMYYY] = θ), and 3) has the smallest variance among all unbiased linear estimators.
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application. In general, solving data assimilation problems in practice can be classically performed
in two ways: as variational data assimilation and as smoothing/filtering data assimilation [40].
Newer approaches are also becoming available, e.g., nudging methods, reduced methods, ensemble
methods and hybrid methods that combine variational and statistical approaches. We refer to the
recent surveys [18, 130, 40, 113] for a thorough introduction to data assimilation and the way to
solve the optimal problems.

1.2.2 Roles and modeling of covariance matrices in data assimilation

A correct specification of observation and background error covariances is crucial to the quality
of the analysis, because they determine to what extent the background state will be corrected to
match the observations. Indeed, the BBB matrix has multiple roles in the 3D-Var framework:

i) Information spreading: BBB matrix spreads information from an observed point to an unobserved
one;

ii) Balance properties: on one hand, BBB matrix spreads information from an observed point to an
unobserved one, on the other hand, it helps preserve physical properties;

iii) Information smoothing in space;

iv) Preconditioning of the assimilation: as the cost function is generally ill conditioned, a change
of variable involving BBB usually helps reduce the condition number of the problem.

By definition, exact values of RRR and BBB would require the knowledge of the true state xxxt. This is
not possible, and both matrices have to be estimated in practice. Often, the RRR matrix is assumed to
be diagonal, i.e., have uncorrelated observation errors with empirically prescribed variances. Notice
also that the dimension of BBB matrix is the square of the state dimension N . For typical engineering
problems, the size of BBB matrix has around 108 × 108 = 1016 entries. It is too large to be calculated
explicitly and to be stored in present-day computer memories. As a result, the BBB matrix needs to be
modeled. Additionally, BBB is often required to have some physical properties which are required to be
reflected in the analysis, e.g., i) it must be smooth in physical space, on sensible scales, ii) it should
go to zero for very large separations if it is believed that observations should only have a local effect
on the increments, iii) it should not exhibit physically unjustifiable variations according to direction
or location, etc. A favoured method of producing background error statistics is the ensemble (Monte
Carlo) method [111], in which an ensemble of N members of background are generated which are
intended to have the same spread as the true state error pdf. Then BBB can be approximated by
taking covariance statistics of the differences between each member and the mean:

BBB ≈ 〈(xxxb − 〈xxxb〉)(xxxb − 〈xxxb〉)T 〉, (1.2.22)

where 〈·〉 denotes an average operator over m, for instance an ensemble average 〈xxx〉 = 1
m

∑m
i=1 xxxi.

The BBB matrix can also be estimated as the product of a correlation matrix CCC by a scaling factor,
namely a suitable variance coefficients BBB0,

BBB ≈ BBB0CCC, (1.2.23)

where CCC is a correlation matrix which can be e.g., the Second Order Auto-Regressive (SOAR)
function [75, 173]

CCC(xxxi,xxxj) = (1 +
‖xxxi − xxxj‖2

L
)e−

‖xxxi−xxxj‖2
L , (1.2.24)

where L is the correlation length depends on the specified problem. In [91], the authors studied the
construction of correlation functions, especially the correlation models that are legitimate correlation
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functions on the sphere. For more information on modeling BBB we refer to the recent articles and
surveys [40, 20, 75, 92], examples can also be found in [173, 165, 91].

1.2.3 Reduced methods in data assimilation

As data assimilation often deals with large-scale and non-linear problems, e.g., with order 107−
109 state variables for classical meteorology representation, the tools offered by reduction can be
very useful. Here we mention some approaches in data assimilation with reduced modeling:

i) The first class of approaches reduces the model, but not the data assimilation scheme. In other
words, all the machinery of model order reduction methods, algorithms, and libraries can be
used. The general aim is to approximate a full-scale high-dimensional problem by a new, much
smaller dimensional problem. Examples in this topic can be found in [53], in which POD was
developed to build a reduced model of the Pacific tropical ocean, and the 4D-Var assimilation
was performed with this reduced model and it adjoint. On the real-time side, the work in [17]
combined POD and 4D-Var assimilation for fluid flow control applications, and the authors in
[52] designed reduced direct and adjoint models to be used within the 4D-Var minimization
algorithm, etc. The idea to reduce the model is widespread in applied mathematics, we refer
Section 1.3.1 for an introduction of the methodology.

ii) The second class of approaches reduces the covariance matrices, but still do not change the
data assimilation scheme. One of the major drawbacks of the data assimilation algorithms in
large dimensions is the prohibitive cost of the covariance matrices: they are too large to be
fully estimated or even stored in memory, and also too large to be used directly for numerical
computations. Thus most of the solutions rely on a simple principle: find a reduced and
cheaper way to compute and represent the covariance matrices. As a square root of BBB matrix
is often required in variational assimilation, factorizations of BBB1/2 using sparse matrices have
been proposed, BBB1/2 = LLLΣCCC, where LLL is a physical balance operator, Σ is a spectral transform
and CCC is a diagonal or block diagonal matrix containing the correlations in spectral space, for
further information in this topic, we refer to [20, 89, 44]. Besides, the empirical orthogonal
functions (EOFs) have also been used to reduced the rank of BBB matrix and provide a low-cost
approximation in a variational context [183], more recently, the ensemble method has been
applied in oceanography to estimate the BBB matrix in a variational framework [72], etc.

iii) The third class of approaches reduces the data assimilation method, i.e., reduce the working
dimension of the algorithm cores. In this aspect, many works have been done with the reduced
methods within variational assimilation, mostly 4D-Var. In [83], the reduced 4D-Var aims at
reducing the dimension in the core part of the algorithm, namely the minimization. The state
xxx ∈ RN is project onto a lower-dimensional space around the background

xxx = xxxb +

n
∑

i=1

ciqi, (1.2.25)

where n is the reduced dimension, {ci}i are the real coefficients, and {qi}i are suitable reduced
basis functions which can be EOFs [183], forward/backward singular vectors, Lyapunov vectors
[136], etc. However, it was unable to reach a good enough minimum, contrary to the classical
unreduced 4D-Var. This seems to be due mostly to the presence of a significant model error.
We refer to [103, 43, 170, 206] for more applications in this aspect.

Another approach, benefits from RB methods, instead of introducing the covariance matrices,
one searches the optimal solution from a problem dependent solution set (also-called man-
ifold) combining with the measurement information, thus largely simplifies the assimilation
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algorithm, one can refer to [29, 148, 144, 145, 31, 78]. In this thesis, we mainly focus on this
approach.

1.2.4 State-of-the-art on the use of data assimilation for state estimation

in nuclear engineering domain

Data assimilation has found an increasingly wide applications in nuclear engineering domain
mainly in i) uncertainty quantification/evaluation ‡ of simulation codes [104, 4, 119, 109], ii) param-
eters estimation such as the basic nuclear data evaluation and adjustment [106, 105, 34, 115, 165,
174], and iii) field reconstruction / state estimation to improve the accuracy of simulation codes
[173, 60, 59, 4, 182, 2], etc.

Particularly, in [15], the authors give a review of data assimilation applications in nuclear reactor
physics, focused on field reconstruction and parameters estimation, based on the standard simulation
of neutron fields which are already very accurate. In the framework of field reconstruction, the
differential influence of instruments in nuclear core activity evaluation with a 3D-Var approach is
studied in [36, 38] based on a EDF 900 MWe nuclear Pressurized Water Reactor (PWR900). In
[35], the 3D-Var and BLUE methodologies are used in optimal design of measurement network
for neutron flux/power field reconstruction, also in the standard configuration of a PWR900. The
robustness of these data assimilation methodologies used in nuclear field reconstruction is reported
in [37].

Other applications of field reconstruction with data assimilation related to nuclear domain are
such as off site nuclear emergency management [184, 87, 22], the atmospheric dispersion modeling
for nuclear accident assessments [218] and numerical reconstruction of high dose rate zones due to
the Fukushima Dai-ichi Nuclear Power Plant accident [118], etc.

Furthermore, at EDF R&D, data assimilation methods are systematically implemented in the
platform SALOME [182, 2] as a module called Assimilation de Données et Aide à l’Optimisation
(ADAO), designed to offer different tools (e.g., BLUE, 3D-Var, 4D-Var, etc.) to solve data assim-
ilation problems, in various fields such as mechanics, or nuclear physics. ADAO can be used for
field reconstruction applications in neutronic and to elaborate advanced methodology, for instance
to define an optimal set of measurement points to study the influence of a measurement network
on the accuracy of the reconstructed neutron flux field [36, 37, 38], or to define an optimal set of
measurement points recovering the best reconstruction of a specified field [35].

Through ADAO with current implemented data assimilation methods is able to solve large
amounts of data assimilation problems at EDF, there are still many challenges when solving large
scale problem, especially in field reconstruction applications where the dimension of the spatial
discretization might amount to 106 or even more, here we list a few.

i) There is no general way to model the problem-dependent covariance matrix BBB. Thus, for each
specified engineering problem, one has to remodel the covariance matrix, which makes the
essential part of data assimilation framework.

ii) The iteration procedure when solving the minimum cost function J(x) is time-consuming,
which makes the data assimilation method not feasible for on-line purpose.

iii) Even with a well-modeled covariance matrix or accelerated iteration procedure, solving the

‡Uncertainty quantification (UQ) is the science of quantitative characterization and reduction of uncertainties in
both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects
of the system are not exactly known. Many problems in the natural sciences and engineering are also rife with sources
of uncertainty. Computer experiments on computer simulations are the most common approach to study problems
in uncertainty quantification [69, 187, 114, 215].
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field reconstruction problem with data assimilation method is still costly in computing resource
(such as time, memory, etc.).

The data assimilation with reduced basis approach is a solution to address parts of the above
challenges. Much more ambitious is that this approach is based on a learning strategy concept for
the specified problem, which is hopeful to improve the result of data assimilation.

1.3 Data assimilation with reduced basis

1.3.1 Fundamentals of reduced basis methods

In this scenario, we are interested in solving parametric problems providing a solution map

u : D 7→ V (1.3.1)

from a compact parameter set D ⊂ Rp onto V . Such problems arise in many situations, e.g.,
optimization, control or parameter identification problems, response surface or sensitivity analysis.
The problem may be stationary or time dependent but in all these cases, a solution u(µ) has to be
evaluated or computed for many instances of µ ∈ D. In all the problems we consider, u(µ) will be
given as the solution of some parametric partial differential equations of the form

F(u, µ) = 0, (1.3.2)

where F is a partial differential operator, and µ is a parameter that varies in the set D.

Even well optimized, the favorite discretization method used to solve the underlying problem
will lead to very heavy computations in order to approximate all these solutions and decision may
not be taken appropriately due to too large computer time for reliable simulations. Instead of
presenting an alternative to the favorite discretization, one can construct a surrogate method with
the current discretization that simplifies the complexity of the equations resulting in very fast
solution algorithms. The method is based on a learning strategy concept, and, for a specified
problem, the preliminary off-line preparation is much time-consuming. It is only after this learning
step that the full speed of the method can be appreciated on-line, paying off the cost of the off-line
preparation step.

We look for a sequence of nested finite dimensional spaces V0 ⊂ V1 ⊂ · · · ⊂ Vn ⊂ · · · , dim(Vn) =
n, to approximate all the functions in the solution manifold

M := {u(µ) : µ ∈ D}, (1.3.3)

such that each Vn approximates M to a known tolerance εn, where εn is defined as

εn ≡ sup
u∈M

inf
v∈Vn

‖u− v‖. (1.3.4)

Namely, for a given basis {qi}ni=1 of Vn, our interest is to find un ∈ Vn to approximate u(µ) ∈M:

u(µ) ≃ un(µ) ≡
n
∑

i=1

αi(µ)qi , (1.3.5)

which satisfies:
‖u(µ)− un(µ)‖ ≤ Cr inf

vn∈Vn

‖u(µ)− vn‖, (1.3.6)
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where Cr > 0 is a scalar that reflects how good the selection method is. In order to apprehend in
which sense the good behavior of M and the corresponding approximation should be understood,
it is helpful to introduce the notion of Kolmogorov n-width dn(M, V ) of M in V be defined as

dn(M, V ) := inf
X⊂V

dim(X)≤n

max
u∈M

min
v∈X
‖u− v‖V . (1.3.7)

We assume in the following that it decays fast with n. This quantity, first introduced in Kolmogorov
[124] , describes the best achievable accuracy, in the norm of V , when approximating all possible
elements ofM by elements from a linear n-dimensional space Vn. If dn(M, V ) decays fast, then for
a given target accuracy ε > 0, one can build a space Vn s.t. dist(M, Vn) := maxu∈M minv∈Vn

‖u−
v‖V ≤ ε, where dim(Vn) = n ≡ n(ε) is moderate.

Several reasons can account for a rapid decrease of dn(M, V ) (see [145]): if M is a set of
functions defined over a domain, we can refer to regularity, or even to analyticity, of these functions
with respect to the domain variable (as analyzed in the example in [124]). Thus the approximation of
any element u ∈M by finite expansions is a classical problem addressed by, among others, reduced
basis methods as the results of [150] and [64, 63] show.

Several methods exist to find spaces Vn that yield an error en := maxu∈M ‖u−PVn
u‖ comparable

to dn. The first choice is polynomials, with high order polynomial approximation like uΛ(y, µ) =
∑

ν∈Λ aνy
ν [65], one is able to get a good approximation with a moderate n for some specified

problem. Anyway, in polynomial approximation, the polynomials are unable to adapt the specific
problem. The RB methods [150, 143] with well selected basis, on the contrary, are able to catch more
information for the underlying problem. It generates Vn from particular snapshots ui = u(µi), i =
1, · · · , n, of the solution manifold. These spaces are not optimal, however it has been shown in [30]
and [76] that, whenever dn(M, V ) is O(n−r) or O(e−c0n

α

), then a certain greedy recursive selection
of the µi in the reduced basis method gives similar convergence rates for the spaces Vn generated by
the optimal algorithm. The performance of other model reduction methods such as the generalized
empirical interpolation method (GEIM [144]), the generalized reduced basis methods [131] give also
a decay close to dn of the Kolmogorov width of the solution manifold.

Over the last decade, the reduced order models obtained from RB methods have become increas-
ingly popular for simulations requiring:

i) many-queries (optimal control, inverse problems, uncertainty quantification etc.),

ii) real-time computations (monitoring, parameter estimation, etc.).

We emphasize again that, with ROM, a computationally intensive off-line phase typically involve
approximation spaces of only a few hundreds or even less dimensions is necessary, that leads to
vast savings in computation time when these models are solved during the on-line phase. We
refer to the recent surveys [13, 23, 56] for a thorough introduction to ROM. We further refer to
[24, 164, 107, 176, 185] for a complete introduction to the RB methods. The recent advances in ROM
for parameterized systems offer new opportunities for the integration of models and experimental
data. In this framework, ROM i) provides a way to learn the physical system, which allows extracting
the principal component information of the system and also providing a guideline to set the amount
and locations of the measurement needed; ii) speeds up computations allowing better explorations of
the parameter space at an acceptable computational cost; iii) provides actionable tools to compress
our prior knowledge about the system coming from the parameterized mathematical model into
low-dimensional and more manageable forms, which makes the combination with experimental data
more efficiently.
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1.3.2 State estimation with reduced basis and measurements

Recall that the objective of the state estimation as described in Problem 1.2.1 is to approximate
the true state ut from m observations ℓ(ut) = (ℓ1(u

t), · · · , ℓm(ut))T , where the {ℓi}i are, e.g., linear
functionals.

To achieve this approximation, the first information that we have in hand is the observations.
Let us denote by wi the Riesz representation of ℓi which satisfies:

∀u ∈ V, (wi, u) = ℓi(u), (1.3.8)

where (·, ·) is the inner product defined in V . Let us then introduce the space

Wm = span{w1, · · · , wm}. (1.3.9)

In particular, we assume that the {wj}j are linearly independent i.e., dim Wm = m. We then define
the Gramian matrix W with entries

Wi,j = ℓi(wj) = (wi, wj), i, j = 1, · · ·m. (1.3.10)

Note that W is a symmetric matrix. Any element w ∈Wm can be represented as

w =

m
∑

i=1

βiwi. (1.3.11)

For notational simplicity, we denote by w =Wmβ the linear combination of w =
∑m

i=1 βiwi, where
β = (β1, · · · , βm)T ∈ Rm is an m-dimensional column vector and Wm := (w1, · · · , wm) is a permu-
tation of elements {w1, · · · , wm} in space Wm. For any k > 0 elements {w′

1 = Wmβ′
1, · · · , w′

k =
Wmβ′

k}, the permutation (w′
1, · · · , w′

k) can be represented as (w′
1, · · · , w′

k) = WmBBB′, where BBB′ is
an m × k-dimensional matrix with entries (BBB′)i,j = (β′

i)j , 1 ≤ i ≤ m, 1 ≤ j ≤ k. Let us then
denote by vTu the inner product (v, u), ∀v, u ∈ V . In this spirit, we can denote by WT

mu ∈ Rm the
m-dimensional column vector with elements (WT

mu)j := wT
j u = (wj , u), 1 ≤ j ≤ m,u ∈ V , thus

we have ℓ(u) = WT
mu. We can further define an m ×m-dimensional matrix WT

mWm with entries
(WT

mWm)i,j := wT
i wj = (wi, wj), 1 ≤ i, j ≤ m such that W = WT

mWm. At last, we denote by
wo = PWm

ut the orthogonal projection of ut ∈ V onto the space Wm, where throughout this thesis
PX denotes the orthogonal projection onto X for any closed subspace X ⊂ V . Note that wo ∈Wm

is another representation of the m observations of ut which is different from ℓ(ut). In this setting,
we first have the following proposition.

Proposition 1.3.1 The orthogonal projection of any function u ∈ V onto the subspace Wm can
be represented as

PWm
u =WmW−1WT

mu =WmW−1ℓ(u). (1.3.12)

Proof: By recognizing the singular value decomposition of matrix WT
mWm = W is W = USUT ,

we have the permutation Ŵm := (ŵ1, · · · , ŵm) =WmUS−1/2 where {ŵ1, · · · , ŵm} are orthonormal
basis of Wm. Thanks to the notations quoted above, we can represent PWm

u by PWm
u = ŴmŴT

mu =
WmUS−1/2(WmUS−1/2)Tu =WmUS−1/2S−1/2UTWT

mu =WmW−1WT
mu =WmW−1ℓ(u).

�

To this end, we get the first approximation PWm
ut of ut which satisfies

‖PWm
ut − ut‖ ≤ inf

w∈Wm

‖w − ut‖. (1.3.13)
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Note that, from this proposition, the information from observation ℓ(ut) = (ℓ1(u
t), · · · , ℓm(ut))T

is equivalent to knowing wo = PWm
ut. Note also that wo is totally computable thanks to the

Riesz representation theory and the observation information. But the estimation (1.3.13) may be
a very rough estimation since there is no reason that the observations generate a space Wm with
good approximation properties. Additional information from e.g., model is necessary for further
improvement.

As pointed out in Section 1.2, the estimation ub of the true state ut can be acquired through a
physical model F(u, µ) = 0, µ ∈ D. But generally speaking, there is no reason that the model is
perfect to describe the true state, thus the following relation always holds:

0 < η < ‖ub − ut‖ , (1.3.14)

where ub is the solution from the physical model with the correct parameter µ ∈ D corresponding
to the true state ut, the left part η < ‖ub − ut‖ is necessary which reflects the model bias, because
of the imperfect model. Recall that with RB method, with a carefully selected n-dimensional space
Vn ⊂ V where n is relatively small, one is able to get a very good estimation to ub (so that ut) with
un ∈ Vn which satisfies

0 < η < ‖un − ut‖ ≤ Cr inf
v∈Vn

‖v − ut‖ = Cr ‖PVn
ut − ut‖, (1.3.15)

where Cr is some scalar. The Galerkin method is a standard way to calculate un once the finite
dimensional subspace Vn on V is given, but one should be able to identify the correct parameter
µ ∈ D corresponding to the true state ut.

It is natural to combine the two estimations mentioned above, namely, the estimation PWm
ut

from observation information and the estimation un from the reduced model, that provides an
algorithm

A : Wm → V, (1.3.16)

which assigns to any wo ∈Wm the estimation u∗ = A(wo) = A(PWm
ut) and, hopefully is such that

‖u∗ − ut‖ ≤ CA(w
o) ‖PWm+Vn

ut − ut‖ (1.3.17)

for some scalar CA(w
o). The best algorithm A, for a given fixed value of wo, would give the smallest

constant CA(w
o) and the algorithm which gives this smallest constant is said to be instance optimal

with constant CA(w
o). There are two different approaches in this data assimilation scenario.

The first approach is the so-called parametrized-background data-weak (PBDW) state estima-
tion [148]. In particular, in order to find the optimal estimate of ut for a given measurement ℓ(ut),
we first write the state estimate u as the sum of two contributions:

u = v + η. (1.3.18)

The first contribution v, is called deduced background estimate which represents anticipated model
part; and Vn is interpreted as a background or prior space which approximates the best-knowledge
manifold on which we hope the true state resides. As already discussed, non-zero model error is a
virtual certainty, and thus we cannot realistically assume that ut lies exactly on the best-knowledge
manifold, which thus motivates the second contribution to u. This second contribution η is called
update estimate which accommodates unanticipated update or model bias. We then search for η of
minimum norm, that is to say, we look for the smallest correction to the best-knowledge parametric
manifold, subject to the observation constraints ℓ(η + v) = ℓ(ut). Thus the PBDW statement is
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that: find u∗ = v∗ + η∗ such that

(v∗, η∗) = arg inf
v∈Vn
η∈V

‖η‖2

subject to: ℓ(η∗ + v∗) = ℓ(ut).

(1.3.19)

Note that the constraint η ∈ V in (1.3.19) can be weakened, by recognizing that the component
PW⊥

m
η∗ doesn’t contribute to (1.3.19)2 but increases the infimum of (1.3.19)1, one can immedi-

ately have η∗ ∈ Wm [148]. The simplified Euler-Lagrange equation associated with the PBDW
minimization statement (1.3.19) is: find u∗ = v∗ + η∗ such that

(η∗, w) + (v∗, w) = (ut, w) ∀w ∈Wm ,

(η∗, v) = 0 ∀v ∈ Vn

(1.3.20)

This estimation u∗ gives the error bound

‖u∗ − ut‖ ≤ 1

β(Vn,Wm)
‖PVn+Wm

ut − ut‖, (1.3.21)

where the inf-sup constant β(Vn,Wm) is defined as

β(Vn,Wm) := inf
v∈Vn

sup
w∈Wm

(v, w)

‖v‖‖w‖ ∈ [0, 1], (1.3.22)

and plays the role of a stability constant [29, 148, 31].

The second approach is the so-called optimal recovery as proposed in [29]. This approach
relies on the facts that i) the observations ℓ(ut) = (ℓ1(u

t), · · · , ℓm(ut))T provide information of the
true state ut and ii) the true state ut is in the solution manifold M of a parametric PDE.

i) We first recognize that, from Proposition 1.3.1, knowing the observations ℓ(ut) = (ℓ1(u
t), · · · ,

ℓm(ut))T is equivalent to knowing wo = PWm
ut. In going further, we think of measurements

as simply providing the knowledge of this projection, on the contrary, all elements of the
orthogonal complement W⊥

m ⊂ V of Wm have zero measurements. Indeed, if u ∈ V satisfies
the measurements then u could be any of the functions u+ η, with η ∈W⊥

m , and each of these
functions would be assigned the same approximation if all the information we have about ut

is that wo = PWm
ut. Thus we define

Hwo = {u ∈ V | PWm
u = wo} = wo +W⊥

m . (1.3.23)

ii) As explained above, we need additional information about ut to have a much more meaningful
problem. Our interest here is the solution manifoldM of a parametric PDE. If the Kolmogorov
n-width dn(M, V ) of the manifold M decays fast with n, the typical way of resolving M is
through a finite sequence of spaces {V1, · · · , Vn} with Vi of dimension i where the spaces are
known — by a learning strategy, e.g., the off-line phase of the RB methods — to approximate
M to some known accuracy εi, where εi ≡ supu∈M ‖PVi

u − u‖, 1 ≤ i ≤ n. Accordingly, we
define

Ki := {u ∈ V | ‖PVi
u− u‖ ≤ εi}, 1 ≤ i ≤ n. (1.3.24)

The optimal recovery thus becomes: find an optimal solution u∗ which satisfies u∗ ∈ Hwo ∩ Kn

(the so-called one-space problem [29]) or more precisely u∗ ∈ ∩ni=1Ki ∩Hwo (the so-called the multi-
space problem [29]). For the one-space problem, the optimal solution u∗ is found by searching
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u∗ ∈ Hwo such that u∗ is closest to Vn, i.e.,

u∗ = argmin
u∈Hwo

‖u− PVn
u‖. (1.3.25)

This estimation u∗ gives the error bound

‖u∗ − ut‖ ≤ ν(Vn,Wm)‖PVn+Wm
ut − ut‖ , (1.3.26)

where ν(Vn,Wm) is defined as

ν(Vn,Wm) := sup
η∈W⊥

m

‖η‖
‖η − PVn

η‖ = sup
η∈W⊥

m

‖η‖
‖PV ⊥

n
η‖ . (1.3.27)

Note that, in this scenario, the authors proved that the error bound of PBDW estimation in
(1.3.21) can be improved and has the same form as in (1.3.26), and further pointed out that

ν(Vn,Wm) = β(Vn,Wm)−1, (1.3.28)

which it is the best constant in estimates of this form. The lower bound applies to both linear and
nonlinear algorithms, that is, (1.3.26) cannot be improved also using nonlinear mappings, thus,

ν(Vn,Wm) = min
A

wo∈Wm

|CA(w
o)| . (1.3.29)

We denote the solution to (1.3.19) by u∗
1 and the solution to (1.3.25) by u∗

2. The following
proposition shows the equivalence of the above two approaches.

Proposition 1.3.2 The solution u∗
1 to (1.3.19) is equivalent to the solution u∗

2 to (1.3.25).

Proof: Let u∗
1 = η∗1 + v∗1 be the solution to (1.3.19). We first prove that η∗1 ∈ V ⊥

n ∩Wm from the
original Equation (1.3.19). We split η∗1 = PVn

η∗1 + PV ⊥
n
η∗1 , then (v∗1 + PVn

η∗1 , PV ⊥
n
η∗1) also satisfies

(1.3.19)2, and we have ‖PV ⊥
n
η∗1‖ ≤ ‖η∗1‖, thus PVn

η∗1 = 0 and η∗1 ∈ V ⊥
n ∩Wm. Second, from (1.3.19)2,

we have ℓ(η∗1+v∗1) = ℓ(ut), from Proposition 1.3.1, it is equivalent to PWm
(η∗1+v∗1) = PWm

ut. Recall
that η∗1 ∈ V ⊥

n ∩Wm, then we have

PWm
ut = PWm

(η∗1 + v∗1)

= PWm
η∗1 + PWm

v∗1
= η∗1 + PWm

v∗1

(1.3.30)

and we get
η∗1 = PWm

ut − PWm
v∗1 = wo − PWm

v∗1 . (1.3.31)

In other words, the component v∗1 is chosen such that its projection onto the observable space
explains the observed data for a minimal η∗1 :

v∗1 = argmin
v∈Vn

‖wo − PWm
v‖ (1.3.32)

From η∗1 ∈ V ⊥
n ∩Wm and (1.3.31) we further get

0 = PVn
η∗1 = PVn

(wo − PWm
v∗1) = PVn

wo − PVn
PWm

v∗1 = PVn
wo − PWm

v∗1 , (1.3.33)
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thus we have the following relation
PVn

wo = PWm
v∗1 . (1.3.34)

Now we focus on (1.3.25). Let wo + v′ = u ∈ Hwo , where v′ ∈W⊥
m , from (1.3.25) we have

u∗
2 = argmin

u∈Hwo

‖u− PVn
u‖

= argmin
u∈Hwo ,v∈Vn

‖u− v‖2

= argmin
v′∈W⊥

m ,v∈Vn

‖wo + v′ − v‖2

= argmin
v′∈W⊥

m ,v∈Vn

‖wo + v′ − (PWm
v + PW⊥

m
v)‖2

= argmin
v′∈W⊥

m ,v∈Vn

‖wo − PWm
v + v′ − PW⊥

m
v‖2

= argmin
v′∈W⊥

m ,v∈Vn

‖wo − PWm
v‖2 + ‖v′ − PW⊥

m
v‖2,

(1.3.35)

the last equation holds because wo − PWm
v ∈ Wm and v′ − PW⊥

m
v ∈ W⊥

m . Then the solution
(u∗

2, v
∗
2 , v

′∗
2 ) to (1.3.35) satisfies

v∗2 = argmin
v∈Vn

‖wo − PWm
v‖ , (1.3.36)

and
v′∗2 = PW⊥

m
v∗2 , (1.3.37)

and
u∗
2 = wo + v′∗2 . (1.3.38)

From (1.3.32) and (1.3.36) we find that v∗1 = v∗2 . Then we denote u∗
2 − PVn

u∗
2 by η∗2 . To prove the

equivalence of (1.3.19) and (1.3.25), we only need to point out that PVn
u∗
2 = v∗2 and η∗2 = η∗1 . We

first have
η∗2 = u∗

2 − PVn
u∗
2

= wo + PW⊥
m
v∗2 − PVn

(wo + v′∗2 )

= wo + PW⊥
m
v∗2 − PVn

(wo + PW⊥
m
v∗2)

= wo + PW⊥
m
v∗2 − PVn

wo − PVn
PW⊥

m
v∗2

= wo + PW⊥
m
v∗2 − PVn

wo − PW⊥
m
v∗2

= wo − PVn
wo.

(1.3.39)

Then we have η∗2 = wo − PWm
v∗1 = η∗1 from (1.3.31) and (1.3.34). At last we prove v∗2 = PVn

u∗
2.

PVn
u∗
2 = PVn

(wo + v′∗2 )

= PVn
(wo + PW⊥

m
v∗2)

= PVn
wo + PVn

PW⊥
m
v∗2

= PWm
v∗1 + PVn

PW⊥
m
v∗2

= PWm
v∗2 + PW⊥

m
v∗2

= v∗2

(1.3.40)

The last third relation follows from PVn
wo = PWm

v∗1 , the last second relation follows from v∗1 = v∗1 .
Thus we have proved that u∗

1 = η∗1 + v∗1 and u∗
2 = η∗2 + v∗2 subject to v∗1 = v∗2 and η∗1 = η∗2 .
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�

1.3.3 Algebraic form of PBDW and further development

Now we consider the algebraic form of the PBDW state estimation of problem (1.3.20). The
practical computation of u∗ in algebraic form with matrices can be found in [148]. Let {q1, · · · , qn} be
the basis of Vn, any v ∈ Vn can be expressed as v =

∑n
i=1 αiqi. For notational convenience, we follow

Section 1.3.2 and denote v = Bnα, where Bn := (q1, · · · , qn) and α = (α1, · · · , αn)
T ∈ Rn. We then

introduce the m×n-dimensional matrices M =WT
mBn ∈ Rm×n with entries Mi,j = wT

i qj = (wi, qj),
which is the inner product of wi and qj . We further introduce the n × n-dimensional matrix
Q = BTnBn ∈ Rn×n with entries Qi,j = qTi qj = (qi, qj).

Considering u∗ ∈ Vn ⊕ (Wm ∩ V ⊥
n ), any u ∈ Vn ⊕ (Wm ∩ V ⊥

n ) has the form u = v + η, where
v =

∑n
j=1 αjqj = Bnα ∈ Vn and η =

∑m
i=1 βiwi = Wmβ ∈ Wm ∩ V ⊥

n . With these notations, we
have

u∗ =
m
∑

i=1

β∗
i wi +

n
∑

j=1

α∗
jqj =Wmβ∗ + Bnα∗. (1.3.41)

Substituting (1.3.41) into the Euler-Lagrange equation (1.3.20) of the PBDW minimization state-
ment, one can easily get the values of α∗ = (α∗

1, · · · , α∗
n)

T and β∗ = (β∗
1 , · · · , β∗

n)
T by solving the

following problem [148]:
[

W M

MT 0

] [

β∗

α∗

]

=

[

yyyt

0

]

. (1.3.42)

Note that the necessary and sufficient conditions for solvability of (1.3.42) are: i) M is full column
rank matrix and ii) W is invertible, these conditions can be satisfied by careful selections of Vn and
Wm. Note also that, in particular, the data assimilation process proposed by (1.3.19) or (1.3.25)
proposes an approximation of the solution u∗ written as the sum of two contributions: the deduced
background estimate v∗ ∈ Vn and the update estimate η∗ ∈ Wm ∩ V ⊥

n . Both [29] and [148] point
out that the deduced background estimate v∗ is chosen such that its projection onto the observable
space Wm is the closest one to the observed data wo = PWm

ut. We present it here as a proposition
and show the proof for the sake of completeness.

Proposition 1.3.3 The deduced background estimate v∗ of the solution u∗ of PBDW which
lies on the reduced space Vn is the solution to the problem: find v† ∈ Vn such that

v† = argmin
v∈Vn

‖wo − PWm
v‖ . (1.3.43)

Proof: One can find the proof in the first part of the proof procedure of Proposition 1.3.2. Here we
provide another proof by using the algebraic form. From (1.3.42), we have

Wβ∗ +Mα∗ = yyyt, (1.3.44)

and
MTβ∗ = 0. (1.3.45)

Since W is invertible, then from (1.3.44) we have

β∗ +W−1Mα∗ = W−1yyyt. (1.3.46)

Substitute (1.3.46) into (1.3.45) :

MTW−1Mα∗ = MTW−1yyyt. (1.3.47)
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Knowing that M is a full column rank matrix, we further have

α∗ = (MTW−1M)−1MTW−1yyyt, (1.3.48)

and
v∗ = Bnα∗ = Bn(MTW−1M)−1MTW−1yyyt. (1.3.49)

We now derive the algebraic form of v† of (1.3.43). From Proposition 1.3.1, we have wo =
PWm

ut =WmWℓ(ut) =WmW−1yyyt, and PWm
v =WmW−1WT

mBnα =WmW−1Mα. Thus we have:

‖wo − PWm
v‖2 = ‖WmW−1yyyt −WmW−1Mα‖2

= ‖Wm(W−1yyyt −W−1Mα)‖2

= (Wm(W−1yyyt −W−1Mα))T (Wm(W−1yyyt −W−1Mα))

= (W−1yyyt −W−1Mα)TWT
mWm(W−1yyyt −W−1Mα)

= (yyytTW−1 −αTMTW−1)W(W−1yyyt −W−1Mα)

= yyytTW−1yyyt − 2αTMTW−1yyyt +αTMTW−1Mα

(1.3.50)

Then problem (1.3.43) is equivalent to: find α† such that

α† = argmin
α∈Rn

J(α) = argmin
α∈Rn

yyytTW−1yyyt − 2αTMTW−1yyyt +αTMTW−1Mα (1.3.51)

The determination of the optimal solution α† requires that the gradient of the cost function
J(α) with respect to its variable α at α† be equal to zero:

∇J(α†) =
dJ

dα
|α† = 2MTW−1Mα† − 2MTW−1yyyt = 0. (1.3.52)

Thus we have
α† = (MTW−1M)−1MTW−1yyyt, (1.3.53)

and
v† = Bnα† = Bn(MTW−1M)−1MTW−1yyyt. (1.3.54)

From (1.3.49) and (1.3.54), one can easily find that v† = v∗, this completes the proof.
�

It thus appears that this part v∗ of the approximation provided by PBDW or the optimal recovery
approach is one of the possible solutions of Problem 1.3.1 written as follows:

Problem 1.3.1 (Recovery with reduced basis, RRB) We assume that we are given a se-
ries of linearly independent vectors (qi)i∈N ∈ V which span a sequence of reduced space Vn =
span{q1, · · · , qn} ∈ V of dimension n, and linear measurements yyyt = ℓ(ut) = (ℓ1(u

t), · · · , ℓm(ut))T

of ut ∈ M. The recovery problem is to find v ∈ Vn from observations yyyt to approximate the true
state ut.

For the sake of completeness, we also note that, another solution to Problem 1.3.1 is from the
well-known least-squares approximation which is stated as: find v∗LS such that

v∗LS = argmin
v∈Vn

‖ℓ(v)− yyyt‖2 . (1.3.55)
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We next derive the algebraic form of v∗LS of (1.3.55). By denoting v = Bnα ∈ Vn, we first have

‖ℓ(v)− yyyt‖22 = ‖WT
mBnα− yyyt‖22

= ‖Mα− yyyt‖22
= αTMTMα− 2αTMTyyyt + yyytTyyyt

(1.3.56)

Problem (1.3.55) is equivalent to: find α∗
LS such that

α∗
LS = argmin

α∈Rn

JLS(α) = argmin
α∈Rn

yyytTyyyt − 2αTMTyyyt +αTMTMα (1.3.57)

The determination of the optimal solution α∗
LS requires that the gradient of the cost function

JLS(α) with respect to its variable α at α∗
LS be equal zero:

∇JLS(α
∗) =

dJLS

dα
|α∗

LS
= 2MTMα∗

LS − 2MTyyyt = 0. (1.3.58)

Thus we have
α∗

LS = (MTM)−1MTyyyt, (1.3.59)

and
v∗LS = Bnα∗

LS = Bn(MTM)−1MTyyyt. (1.3.60)

If we further define a weighted norm ‖ · ‖W in Rm, such that for all yyy ∈ Rm we have ‖yyy‖W :=
√

yyyTW−1yyy [41]. From (1.3.53) and (1.3.59) we have the following remark:

Remark 1.3.1 The problem in (1.3.43) is equivalent to: find v∗ ∈ Vn that satisfies the weighted
least-squares problem [41]:

v∗ = argmin
v∈Vn

‖ℓ(v)− yyyt‖W. (1.3.61)

Furthermore, if w1, · · · , wm are orthonormal basis, then W = I, which is the identity matrix, thus
the problem in (1.3.43) is equivalent to the least-squares problem (1.3.55).

1.3.4 Stability properties of PBDW

We first state a proposition on the inf-sup constant β(Vn,Wm) of PBDW which gives a practical
computation framework for any given basis {q1, · · · , qn} of Vn and {w1, · · · , wm} of Wm. Let W =
UWSWUT

W , Q = UQSQUT
Q be the singular value decomposition of W = WT

mWn and Q = QT
nQn,

where Wm = (w1, · · · , wm) and Qn = (q1, · · · , qn) respectively. Then we have

B̂n = BnUQS
− 1

2

Q , (1.3.62)

and
Ŵm =WmUWS

− 1
2

W , (1.3.63)

where B̂n = (q̂1, · · · , q̂n) and Ŵn = (ŵ1, · · · , ŵm) are orthonormalization representation of Vn and
Wm respectively. We further define M̂ := ŴT

mB̂n and have the relation

M̂ = S
− 1

2

W UT
WWT

mBnUQS
− 1

2

Q = S
− 1

2

W UT
WMUQS

− 1
2

Q . (1.3.64)

Now we introduce the following proposition on the inf-sup constant β(Vn,Wm).
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Proposition 1.3.4 The inf-sup constant β(Vn,Wm) equals to the minimum singular value of

M̂.

Proof: By convention, we organize the singular values of M̂ in decreasing order 0 < sn ≤ · · · ,≤
s1 ≤ 1. Let v = B̂α̂ ∈ Vn and w = Ŵβ̂ ∈ Wm, and PWm

= ŴŴT is the orthogonal projection
operator onto Wm, then we have

β(Vn,Wm) ≡ inf
v∈Vn

sup
w∈Wm

(v, w)

‖v‖‖w‖
= inf

v∈Vn,‖v‖=1
sup

w∈Wm,‖w‖=1

(v, w)

= inf
v∈Vn,‖v‖=1

‖PWm
v‖

= inf
α̂∈Rn,‖α̂‖2=1

‖ŴŴT B̂α̂‖

= inf
α̂∈Rn,‖α̂‖2=1

‖ŴT B̂α̂‖2

= inf
α̂∈Rn,‖α̂‖2=1

‖M̂α̂‖2

= sn[M̂]

(1.3.65)

this completes the proof.
�

Note that in Remark 2.13 of [29], the authors also pointed out the relation β(Vn,Wm) = sn[M̂]
by using the so-called ‘favorable bases’ {q̂1, · · · , q̂n} of Vn and {ŵ1, · · · , ŵm} of Wm. Here we provide
a computable scheme for any given basis {q1, · · · , qn} of Vn and {w1, · · · , wm} of Wm.

As stated in [29, 148, 31], the inf-sup constant β(Vn,Wm) plays the key role in the stabil-
ity performance of the recovery algorithm, especially with respect the model bias quantified by
‖PVn+Wm

ut − ut‖, see (1.3.21), (1.3.26) and (1.3.28).

In practical data assimilation procedure, the observations are always polluted by measurement
noise and have the form yyyo = ℓ(ut) + eeeo, where eeeo ∈ Rm is the m-dimensional noise vector. Indeed,
the PBDW state estimation (1.3.19) or (1.3.25) is obtained in the absence of the measurement noise
eeeo, i.e., the observation we used is yyyt = ℓ(ut) or wo = PWm

ut, thus, we denote the corresponding
solution u∗ by unf , the superscript “nf" denotes “noise-free". In [149], the authors attribute the
PBDW estimation error to two distinct contributions:

• The deterministic error : this part arises from the fact that modeling error is inevitable (i.e.
ut /∈ Vn) and that the update space Wm and Vn are finite dimensional; this error is present
even if each observation is noise-free – that is, even if one is able to probe the true deterministic
state. The error estimation on this part is represented in (1.3.21) or (1.3.26).

• The stochastic error : this part arises from the fact that each observation is noisy, corrupted
by the random observation noise. The error estimation on this part will be shown in (1.3.67)
and (1.3.68) later.

In case the observations suffer from noise, we apply the same PBDW statement but subject to
the observation constraints ℓ(η + v) = ℓ(ut) + eeeo. Thus the PBDW statement in the noisy case is:
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find u∗ = v∗ + η∗ such that

(v∗, η∗) = arg inf
v∈Vn
η∈Wm

‖η‖2

subject to: ℓ(η∗ + v∗) = ℓ(ut) + eeeo.

(1.3.66)

In this case, the stochastic component of the error is given in [149, Proposition 3], here we list
out for convenience,

E[u∗ − unf ] = 0 , (1.3.67)

E[‖u∗ − unf‖2] ≤
(

1 +
2

β(Vn,Wm)

)2

σ2trace(W−1) , (1.3.68)

where E[·] is the expectation operator, σ2 is the variance of the measurement noise.

To this end, the left important issue is that: how to find good Vn and Wm. There are at least
two options:

1) Vn and Wm are sought independently.

• The reduced space Vn can be obtained through several different model reduction pro-
cesses, such as Proper orthogonal decomposition (POD) [128], Proper Generalized De-
composition (PGD) [129], different kinds of Weak Greedy RB methods [152, 131, 185,
56, 107], etc.

• For a given Vn, there are several processes looking for Wm from a dictionary Σ of obser-
vation functions, such as i) greedy methods like GEIM [144] (m = n) and greedy stability
maximization methods [148, 31] (m ≥ n), ii) quasi-uniform or random methods, etc.

2) One can obtain Vn and Wm simultaneously. In the special case is m = n, one can obtain Vn

and Wm with the greedy algorithm from GEIM [144]. We briefly summarise the procedure in
Algorithm 1.3.2.

Algorithm 1.3.2 Greedy Algorithm of GEIM

1: µ1 = arg supµ∈D ‖u(·, µ)‖
2: ℓ1 = arg supℓ∈Σ |ℓ(u(·, µ1))|
3: q1 = u(·, µ1)/ℓ1(u(·, µ1))
4: for n ≥ 2 do ⊲ Jn :=

∑n
i=1 αiqi ∈ Vn s.t. ℓi(Jn[u]) = ℓi(u)

5: µn = arg supµ∈D ‖(u− Jn−1[u])(µ)‖
6: ℓn = arg supℓ∈Σ |ℓ ((u− Jn−1[u])(µn)) |
7: qn = (u− Jn−1[u])(µn)/ℓn ((u− Jn−1[u])(µn))

1.3.5 State-of-the-art on the use of reduced order modeling for nuclear

reactor simulations

We give here a brief state of the art on previous works on nuclear reactor simulations that
make use of reduced order modeling techniques. The method which seems to have been more
extensively employed is the POD [166, 177] method. Examples of applications to neutronics are
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[216] and [47, 46, 100]. In addition to these contributions, one can find in [140] an evaluation of the
temperature reactivity feedbacks in a lead-cooled fast reactor with a POD basis.

Less numerous are the contributions using the reduced basis method. The works [190, 189,
192] apply the method to nuclear reactor core spatial kinetics and dynamics. In particular, [51]
models the motion of control rods by applying reduced bases to parametrized multi-group neutron
diffusion equations both in the time-dependent and stationary formulations. In addition to this,
a new numerical algorithm based on reduced basis techniques is proposed in [93] to improve the
computational performances for the homogenization of a coupled elliptic-parabolic system describing
flows in heterogeneous porous media in nuclear waste storage. As already brought up, our main
interest in this thesis is to couple the reduced basis techniques with measurement data for state
estimation/field reconstruction purposes.

1.4 Contributions of this work

There are mainly three contributions in this thesis.

1) Stability analysis and noise control (Chapter 2).

We first recognize that there are two different recovery algorithms to solve Problem 1.3.1.

• One is to find an element v∗LC ∈ Vn as described in (1.3.43) such that its projection onto the
observable space Wm is the closest one to the observed data wo, where the subscript ‘LC’ stands
for ‘Lebesgue constant’ [144, 148, 146] which controls the error amplification caused by model
bias. For an operator A : V → V , the Lebesgue constant is defined as Λ := supu∈V

‖A(u)‖
‖u‖ .

Later we will show that this algorithm aims at optimizing the Lebesgue constant of the recovery
algorithm.

• The other is to find an element v∗LS ∈ Vn as described in (1.3.55) such that its observations
ℓ(v∗LS) is the closest one to the observed data yyyo in the m-dimension Euclidean space Rm.
For an operator Q : Rm → V which maps the noise eeeo ∈ Rm onto the space V , we define
the operator norm ‖Q‖ := supyyy∈Rm

‖Q(yyy)‖
‖yyy‖2

and call it the noise amplifying factor or stability
factor. Later we will show that this algorithm aims at optimizing the noise amplification factor
of the recovery algorithm.

We find that the two algorithms have different stability properties with respect to the mode bias
and the measurement noise. By doing the stability analysis, we are able to optimize the observation
space Wm and amount of sensors for a given accuracy. Furthermore, we find that the improvement
of this optimization is rather limited, this inspired us to find other solutions to stabilize the recovery
algorithms.

In detail, if we are given noisy observations, yyyo = ℓi(u
t) + eeeo, where eeeo = (e1, · · · , em)T ∈ Rm

is the m-dimensional noise vector, and solve u∗ with (1.3.66), then we have the following error
estimation

‖u∗ − ut‖ ≤ 1

β(Vn,Wm)
‖PVn+Wm

ut − ut‖+ ‖Q‖‖eeeo‖2, (1.4.1)

where the operator Q : Rm → V is determined by (1.3.66) which maps the noise eeeo ∈ Rm onto
the space V . Numerical results show that ‖Q‖ largely depends on the Vn,Wm and the specified
observation functions wi, i = 1, · · · ,m. We also find that ‖Q‖ diverges when m→∞, thus u∗ 9 ut

in the noise case. Our contributions to improve this behavior are:

i) The search for a proper way to select ℓi or adapt the algorithm in (1.3.66) in order to have a
relatively good ‖Q‖.
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ii) To see if including additional information on whereM projects onto Vn improves the behavior.

Note that, in the noisy case, the adaptive parametrized-background data-weak (APBDW) ap-
proach [202] adapts the algorithm in (1.3.66) as follows:

u∗ = argmin
u∈V,v∈Vn

ξm‖u− v‖2 + ‖ℓ(u)− yyyo‖22 (1.4.2)

where ξm > 0 is a regularization coefficient that balances the relative importance of the mismatch
from the reduced space Vn. The numerical results show that, in some cases, especially when the
dimension n of the reduced space is relatively large, the performance of the above algorithm in
controlling noise amplification is limited.

In some case, we observe that for specified basis {qi}ni=1 of Vn, in absence of noise, the part of
recovery u∗ which lies on Vn, i.e. v∗ is constrained by a hypercube:

Kn(τ, α
0) := {v ∈ Vn ; v =

n
∑

i=1

αiqi, |αi| ≤ α0
i }, (1.4.3)

where α0
i = supu∈M{|α∗

i | |
∑n

i=1 α
∗
i qi = v∗} is the upper bound of αi.

If the sensors suffer from noise, our approach for the underlying recovery problem is: find u∗

such that
u∗ = argmin

u∈V,v∈Kn(τ,α0)

ξm‖u− v‖2 + ‖ℓ(u)− yyyo‖22 , (1.4.4)

and call (1.4.4) the constrained stabilized PBDW (CS-PBDW). A first application of (1.4.4) is we
might neglect the correction term η and thus simply optimize with respect to Vn:

u∗ = argmin
v∈Kn(τ,α0)

‖ℓ(u)− yyyo‖22 (1.4.5)

We call (1.4.5) the constrained stabilized recovery with reduced basis (CS-RRB). Observe that for
m = n, (1.4.5) corresponds to the GEIM ([144, 146]) in absence of noise. The case m ≥ n is
also analyzed in noise case in [16] which shows the possibility to improve the quality of the state
estimation by adding more measurements for a fixed amount of reduced basis from GEIM greedy
algorithm.

2) Sensor failure and constraint on the sensor locations (Chapter 5).

In some applications, the locations of the sensors might be restricted, also during real-time
reconstruction, some sensors might fail for some reasons. These cases need a stable interpola-
tion/extrapolation scheme, or relatively robust sensor deployment and a better reduced basis choos-
ing scheme.

Our study is based on GEIM. In case of k sensor failures, we propose an algorithm to reselect
the reduced space V̂n−k spanned by {q̂1 · · · q̂n−k}, and make use of all the observations from the
sensors without failures. Numerical results confirm the very stable and robust performance of the
proposed method.

3) Parameter sampling for multi-dimensional parameter problems (Chapter 6).

The success of the ‘classical’ reduced basis methods rely on the assumption that the high fidelity
model in the off-line phase is sufficiently accurate for all parameters. In practice, the construction
of Vn is done with greedy algorithm [143, 48] when applying the reduced basis method. Such
greedy approaches have proven themselves to be particularly valuable for the approximation of
high-dimensional problems where simple approaches are excluded due to the curse of dimension.
For a detailed recent overview of such ideas in a general context, we refer to [207]. Here we take
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GEIM greedy algorithm for example, see Table 1.3.2. In the generic greedy approach, D,Σ can be
infinite so we replace them with discrete training sets D(training) ∈ D and Σ(training) ∈ Σ to make
this algorithm feasible.

Algorithm 1.4.3 Weak Greedy Algorithm of GEIM

1: µ1 = argmaxµ∈D(training) ‖u(·, µ)‖
2: ℓ1 = argmaxℓ∈Σ(training) |ℓ(u(·, µ1))|
3: q1 = u(·, µ1)/ℓ1(u(·, µ1))
4: for n ≥ 2 do ⊲ Jn :=

∑n
i=1 αiqi ∈ Vn s.t. ℓi(Jn[u]) = ℓi(u)

5: µn = argmaxµ∈D(training) ‖(u− Jn−1[u])(µ)‖
6: ℓn = argmaxℓ∈Σ(training) |ℓ ((u− Jn−1[u])(µn)) |
7: qn = (u− Jn−1[u])(µn)/ℓn ((u− Jn−1[u])(µn))

The question is: how to choose D(training) without degrading the algorithm? Or in detail, this
can be addressed in the subsequent exposition:

i) Overfitting: In case of too small training set, the error on D(training) may be nicely decreasing
or can ideally be reduced to 0 with growing basis dimension, but the error for other test
parameters µ ∈ D remains large.

ii) Training time: In case of too large training set, the training time can be exorbitant.

The selection of D(training) is especially important in high-dimensional problems, the size of this
training set quickly becomes considerable, rendering the computational cost substantial and perhaps
even prohibitive. As a consequence, a fine enough train set is not realistic in practice, one is faced
to the problem of ensuring the quality of the basis set under a non-rich enough train set. It is worth
noting that when dealing with certain high-dimensional problems, one may encounter the situation
that the optimal basis set itself is also of large size. This situation is caused by the general complexity
of the real engineering problems, there are many strategies and various flavors of adaptivity, e.g.,
sampling set randomization, adaptive refinement of training sets, hp-RBM, time-partitioning etc.,
see, e.g., [84, 85, 5, 49, 54, 80, 108, 151, 10].

We propose a method to enrich the training set D(training) in a greedy way. In short, once we have
a training set with k > 0 sampling points {µ1, · · · , µk}, the next sampling point µk+1 is determined

by µk+1 = (µi + µj)/2 s.t. (i, j) = argmax1≤i′,j′≤k
dist(u(µi′ ),u(µj′ ))

dist(µi′ ,µj′ )
. This greedy algorithm is able

to take the typical snapshots u(µ) into account in the every beginning. Furthermore, in case the
computational cost of each snapshot is remarkable which is the general case in engineering domain,
this algorithm is more efficient than uniform or random sampling methods.

1.5 Summary of the results by chapters

Chapter 1: We overview in the first chapter some relevant mathematical background that
will be used frequently throughout the thesis. We analyzed and adapted the generalized empirical
interpolation method (GEIM) and the parametrized-background data-weak (PBDW) approach to
the problem of state estimation with data assimilation. These approaches aim at reducing the
problem’s complexity for state estimation based on the fact that the Kolmogorov n-width of the
manifold of all solutions decays fast with n. The GEIM [144] that allows, from values of the
measurements, to build a linear combination of some precomputed solutions associated to some well
chosen parameters. The linear combination is determined in such a way that it takes the same
values on the sensors. This concept generalizes the classical — e.g. polynomial or radial basis
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— interpolation procedure, the main difference is that the interpolating functions are not a priori
known but depend on the quantity we want to represent. The PBDW approach was originally
proposed in [148] for perfect observations then the noisy observations case was analyzed in [149]. It
is characterized by the following characteristics.

i) Variational formulation: the most important feature of PBDW is that, it is a special case of
3D-Var variational data assimilation for a parametrized background and a particular choice of
(penalized-update) background covariance. Benefiting from the background space Vn, PBDW
avoids modeling the covariance matrices in 3D-Var variational data assimilation formulation.

ii) Background and update spaces: PBDW provides the state estimate u as the sum of two
contributions: u = v + η. The first contribution v, is called deduced background estimate
which represents anticipated model part; and Vn is interpreted as a background or prior space
which approximates the best-knowledge manifold on which the true state resides. This second
contribution to η, is called update estimate which accommodates unanticipated update that
the model couldn’t represent.

Chapter 2: In this chapter, we present a stability analysis for the state estimation / field
reconstruction with reduced basis. Then we propose the so-called constrained stabilized recovery
methods in order to control the noise.

Stability analysis (Section 2.2): We formulate the posteriori error analysis respect to measure-
ment noise for GEIM, RRB and PBDW. The estimation error is attributed to two distinct con-
tributions: i) The deterministic error, which arises from the fact that modeling error is inevitable
(i.e. ut /∈ Vn) and that the update space Wm and the background space Vn are finite dimensional;
this error is present even if each observation is noise-free, though one is able to probe the true
deterministic state. We use the so-called Lebesgue constant Λ to evaluate the deterministic error;
ii) The stochastic error, which arises from the fact that each observation is noisy, corrupted by the
random observation noise. We use the stability factor ‖Q‖ to evaluate the stochastic error. We will
also propose algorithms to optimize the update space Wm with respect to different measures, i.e.,
diminishing the deterministic error or diminishing the stochastic error.

Constrained Stabilized Reconstruction (Section 2.3 - 2.5): We propose the so-called constrained
stabilized generalized empirical interpolation method (CS-GEIM) and the constrained stabilized
parametrized-background data-weak (CS-PBDW) approaches to further improve the stability and
robust performance for state estimation with data assimilation with noisy measurements. The
constraint relies on the coefficients of the reduced basis functions, are not the same order of quantity,
on the contrary, they decay in certain rate with the reduced dimension n increases. We demonstrate
that with the coefficients constraint, the recovery with reduced basis dramatically decreases the noise
amplifying, with good stability performance with respect to the reduced basis dimension n and the
number of measurement m. To go further, we propose the regularized versions (R-GEIM, R-PBDW)
to diminish the computational cost in the on-line phase, while retaining the same accuracy as the
constrained stabilized formulations.

Chapter 3: In the second part of the present thesis, we applied the methodologies for sensor
placement and field reconstruction applications in nuclear domain. The framework of GEIM/PBDW
makes it possible for us to focus on the need for effective, many-query design evaluation in nuclear
reactor domain: i) either real-time scenarios (control, parameter estimation, monitoring), where the
solution of the problem needs to be known very quickly under limited resources for a previously
unknown parameter, ii) or multi-query scenarios (design and optimization, multi-model/scale simu-
lation), where the problem has to be solved repeatedly for many different parameters. In the nuclear
reactor applications, we set the goal to reconstruct the thermal/fast flux and power distributions for
a wide range of parameters variation domain by using the measurements from sensors with combi-
nation of reduced basis methods, instead of solving the original neutronic governing equations with
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high resolution. The purpose of this chapter is to present the physical context and adapt the GEIM
methodology to neutronic field.

Chapter 4: We provide three contributions in this chapter.

Sensor placement in a nuclear reactor core (Section 4.1): We first adapt the GEIM greedy algo-
rithm, to be able to reconstruct the flux and power fields only from the thermal flux measurements.
Then we show its application in optimizing the sensor placement in nuclear reactor cores. Numerical
results on 1D/2D benchmarks confirm its feasibility. Furthermore, GEIM, can be applied efficiently
to the analysis of real nuclear cores. With the GEIM approach and the sensor information, we
are able to provide an optimized instrumental network to measure the neutronic flux inside the
core. The locations of the instruments show a global coherence with respect to what is known from
the physical behavior and process. This determination of the optimal localizations is done over all
the geometries of reactors operated by EDF: PWR 900 MWe, PWR 1300 MWe and PWR 1450
MWe. Several strategies are developed in order to emphasize the advantages and limitations of the
determination of the instrumental setup. Numerical results show that the method gives some in-
strumental setup that are consistent with what is expected from a physical point of view. Moreover,
we demonstrate that, with respect to the random case, the results of optimal networks are clearly
better. Finally, we conclude that the strategy which is the closest to the actual instrumentation
setup gives the best result.

Neutronic field reconstruction (Section 4.2, 4.3): We first apply the GEIM to control rods move-
ments problem to improve the flux and the power distribution knowledge in the whole domain
without knowing the control rods position (step) parameters thanks to the measurements. To reach
this goal, we first construct a set of snapshots by solving large amounts of PDEs for the underlying
physical problem. Then we select the sensor places (interpolation points) and the basis functions
in a greedy way with GEIM greedy algorithm. With the selected measurements, we are able to
reconstruct the flux and power distribution in high accuracy. Numerical results confirm that the
proposed GEIM methodology is hopefully acceptable in engineering usage, especially the online-
offline computational framework is good for on-line monitoring purpose.

Then we apply the GEIM method to reconstruct the Pin-by-Pin flux/power distribution during
the life cycle of a nuclear reactor core. All the simulations are based on the PWR 1450 MWe nuclear
reactor operated by EDF. Numerical result shows that, the manifold of the underlying problem (even
in Pin-by-Pin wise), which reflects the burnup and power evolution of the reactor core of the whole
life, is rather regular. This makes it possible to reconstruct the fields with only a few basis functions
and measurements. Further more, by considering the measurement system which is close to the real
engineering case, the proposed method still provides an acceptable accuracy.

Neutronic field reconstruction with noisy measurements (Section 4.4): The extension of the
method is to take into account the effect of the noise to qualify its impact when few instruments
remains and also to control it through various technique, either data pre-processing or mathematical
correction of the induced error. In this aspect, we propose the methodologies so called CS-GEIM
and CS-PBDW to control the noise and also the model bias. Based on the stability analysis, we are
able to optimize the sensor size and location. With the stabilized algorithms, we are able to control
the measurement noise amplification. Further more, by adding more measurements, the proposed
methods are able to provide even better accuracy than the noise level. The algorithms we proposed
are robust with respect to the measurement noise and model bias. Finally, we emphasize that the
regularized versions (R-GEIM, R-PBDW) with low computational cost are more suitable for on-line
calculation in case the shape of the noise is known, i.e., Gaussion noise.

In the third part of the thesis, we present the supplementary developments for industrial appli-
cations of the methodologies.

Chapter 5: Measurement failures for data assimilation with reduced basis, particularly, EIM, is
a practical issue. We propose a so called measurement failure tolerant EIM (mftEIM) approach to
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address this issue. Compared with other possible approaches, numerical results confirmed that, the
mftEIM approach provides the best interpolation in case of measurement failures. Need to point
out that, the basis functions for mftEIM are not fixed, and depend on the detailed failure scheme.
Thus, one can either calculate the specified new basis functions when the sensor failures happen,
or pre-calculate the basis functions for all possible measurement failures cases, in the latter case, a
relatively large storage is necessary.

Chapter 6: In the framework of reduced basis method, the crucial ingredient is the choice of
reduced basis {qn} from the discrete manifold M(training) := {u(µ) ; µ ∈ D(training)} to span the
reduced basis space Vn. We propose an adaptive sampling algorithm to sampling the parameter
in D to construct the discrete manifold. Compared with other adaptive methods e.g. [5, 49, 54,
80, 108, 151], the the method we proposed saves computing cost, it reduces the number of function
evaluation which might be very costly in the real engineering problem. This gives the adaptive
sampling method more potential for engineering problem with high-dimensional parameter space.
Nevertheless, we need to point out that, the adaptive sampling method may fail for some special
case, e.g., the snapshots are from the the function in [151] with periodicity or symmetrical parameter
space. The algorithm with pseudo-grads as an indicator may fail because of periodicity or symmetry.
In this case, one can set the initial points with LHS method or one can refer to [151] with locally
adaptive approach for anisotropic parameter space.

Chapter 7: Finally, we conclude in chapter 7 with summary of the thesis and some suggestions
for future work at EDF or even for the whole nuclear sector.
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In this chapter, we introduce the formulations of data assimilation with reduced basis and noisy
measurements. First in Section 2.1 we derive the problem statement, and we highlight the key issue
that will be addressed. In Section 2.2, we give a stability analysis. Then in Section 2.3 we derive
the formulation of the constrained stabilized reconstruction based on reduced basis i.e. CS-GEIM.
In Section 2.4 we apply the constraint to the PBDW method, and provide several formulations with
respect to different kinds of noise distribution. We introduce in Section 2.5 the regularized stabilized
GEIM and regularized stabilized PBDW, which are able to provide a very high efficiency computing
framework. In the end, we draw a short conclusion for this chapter in Section 2.6.

We indicate here that the formulation of CS-GEIM has already been presented in a published
paper with J.-P. Argaud, B. Bouriquet, Y. Maday and O. Mula. Its reference in the manuscript is
[16].
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2.1 Introduction and problem setting

We first recall the notations introduced in the previous chapter: V is a Hilbert space over a
domain Ω ⊂ Rd (d ≥ 1) endowed with inner product (·, ·) and induced norm ‖ · ‖ =

√

(·, ·), Vn ∈ V
stands for the reduced space of dimension n, and Wm ∈ V stands for the observation space spanned
by the Riesz representations of the m functionals {ℓi}mi=1.

Recall that the objective of the state estimation as described in Problem 1.2.1 is to approximate
the true state ut from m observations ℓ(ut) = (ℓ1(u

t), · · · , ℓm(ut))T . As already stated in the
previous chapter, in the framework of data assimilation with reduced basis, PBDW provides the
optimal algorithm in the sense that its outcome u∗ satisfies

‖u∗ − ut‖ ≤ ν(Vn,Wm)‖PVn+Wm
ut − ut‖ , (2.1.1)

where ν(Vn,Wm) is the best constant among all possible reconstruction schemes (see (1.3.29)). We
recall also that ν(Vn,Wm) = β(Vn,Wm)−1, where β(Vn,Wm) can be evaluated by the computation
of an inf-sup constant (1.3.22).

The estimate in (2.1.1) doesn’t take into account the noise from measurements, in [149], the
authors provide the error estimation to PBDW with respect to noisy observations. In [202, 203],
the author proposed an adaptive parametrized-background data-weak approach to variational data
assimilation, in which the noisy measurements are considered, and in [26] the authors analyzed the
stability performance of the operators with respect to noisy measurements from an oblique projection
point of view. In this chapter, we will analyze stability performance for the recovery problems with
reduced basis, then provide some recovery methods which show robust stability performance with
respect to noise.

Now, let us focus on the case that the observations suffer from noise. We are given noisy
observations yyyo = ℓ(ut) + eo = (ℓ1(u

t) + e1, · · · , ℓm(ut) + em)T , where eo = (e1, · · · , em)T ∈ Rm is
the noise vector. We assume that {ei}mi=1 are independent, have density pi on R. More precisely we
make the following three assumptions on the noise term:

i) zero mean: E[ei] = 0, i = 1, · · · ,m;

ii) covariance: E[e2i ] = σ2
i , i = 1, · · · ,m;

iii) uncorrelated: E[eiej ] = 0, i 6= j.

We denote the covariance matrix by D := E[eTe] ∈ Rm×m, which is thus diagonal. We do
not assume that the observation error follows any particular distribution, but only assume that the
mean and the covariance of the distribution exist. Note that in practice the mean and covariance
of the data acquired is more readily quantifiable than the distribution. We first study the following
problem:

Problem 2.1.1 (Recovery with reduced basis and noisy measurements, RRB) LetM :
= {ut(µ) : µ ∈ D} be the solution manifold of a physical problem, where D is the parameter set.
Assume that we are given a series of linearly independent vectors (qi)i∈N ∈ V which span a reduced
space Vn = span{q1, · · · , qn} ∈ V of dimension n, and linear measurements yyyo = ℓ(ut) + eo =
(ℓ1(u

t) + e1, · · · , ℓm(ut) + em)T of ut ∈M. The recovery problem is: find v ∈ Vn from observations
yyyo to approximate the true state ut.

In the following parts of this chapter, we will first analyze the stability performance for two
typical methods for the above recovery problem. Based on the stability analysis, we provide two
methods to optimize the observation space Wm with respect to different stability objectives. We will
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show that the improvement is rather limited by optimizing the observation space. Thus we propose
a constrained stabilized GEIM (CS-GEIM) approach for the recovery problem 2.1.1, which shows
robust stability performance with respect to noisy measurements. The natural extension of CS-
GEIM is that, by introducing the update term η ∈Wm, we obtain the constrained stabilized PBDW
(CS-PBDW), which again stabilizes the PBDW approach with respect to noisy measurements.

2.2 Stability analysis for recovery with reduced basis

2.2.1 Stability factors with respect to model bias and noisy measure-

ments

The recovery problem 2.1.1 needs to be considered from two different aspects point of view:

• With respect to observations yyyo (noisy or not), we denote by Q the operator: Rm → Vn, that
to any yyyo ∈ Rm associates v∗yyyo = Q(yyyo) a solution to Problem 2.1.1.

• If the data are not noisy yyy = ℓ(ut), we denote the associated operator A = Q ◦ ℓ : V → Vn,
∀ut ∈ V , v∗

ℓ(ut) = A(ut) = Q(ℓ(ut)).

We assume Q (and thus A) is a linear operator, i.e., we only focus on the recovery algorithms
which are linear mappings. In this setting, we use two quantities to measure the quality of this
recovery operator with respect to observation noise eo and model bias/mismatch δut = ut − PVn

ut.

• As a measure of stability with respect to measurement noise we use the operator norm

‖Q‖ := sup
yyyo∈Rm

‖Q(yyyo)‖
‖yyyo‖2

, (2.2.1)

and call it stability factor. (Remind that ‖ · ‖ is the V -norm.)

• As a measure of stability with respect to model mismatch, we follow [144, 148, 146] and define
the Lebesgue constant Λ of A as

Λ := sup
u∈V,u 6=0

‖A(u)‖
‖u‖ . (2.2.2)

In fact, the Λ defined in (2.2.2) is just the norm of the reconstruction operator A = Q ◦ ℓ. In the
context of interpolation, it is usually called Lebesgue constant. When not causing confusion and
for the sake of convenience, we call this norm Lebesgue constant in this thesis, particularly in the
context of reconstruction with reduced basis. Note also that we may follow [29, 7, 26] and use the
so-called quasi-optimality constant ν(A) (0 < ν(A) <∞) which is the smallest value for a given A
that satisfies

∀ut ∈ V, ‖A(ut)− ut‖ ≤ ν(A)‖PVn
ut − ut‖ , (2.2.3)

here we say that A is quasi-optimal if ν(A) is close to 1. We remind that PVn
ut denotes the

orthogonal projection of ut onto the space Vn. Thus, for recovery problem 2.1.1 in the linear case,
from (2.2.1) and (2.2.3) we derive an error estimate of the form:

∀ut ∈ V, ∀eeeo ∈ Rm, ‖ut −Q(ℓ(ut) + eeeo)‖ ≤ ν(A)‖PVn
ut − ut‖+ ‖Q‖‖eeeo‖2 . (2.2.4)

Furthermore, (2.2.2) implies that such a recovery operator Q (and A) is exact on the space Vn,
i.e., ut = Q(ℓ(ut)) for all ut ∈ Vn, this is straightforward, since otherwise ν(A) = ∞. Following
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[26], we call recovery operators fulfilling this property perfect recovery operators. From (2.2.2) and
(2.2.3) we further have

ν(A) ≤ (1 + Λ). (2.2.5)

The relation (2.2.5) can be proved through

∀ut ∈ V, ‖A(ut)− ut‖ = ‖A(ut)− PVn
ut + PVn

ut − ut‖
≤ ‖A(ut)− PVn

ut‖+ ‖PVn
ut − ut‖

= ‖A(ut)−A(PVn
ut)‖+ ‖PVn

ut − ut‖
= ‖A(ut − PVn

ut)‖+ ‖PVn
ut − ut‖

≤ Λ‖ut − PVn
ut‖+ ‖PVn

ut − ut‖
= (1 + Λ)‖PVn

ut − ut‖.

(2.2.6)

The third relation follows from the fact that A is exact on the space Vn, the fourth relation follows
from the linearity of A, and the last second relation follows from the definition of Λ. Then from
the definition of ν(A) we have (2.2.5). Later we will show the equivalence between the Lebesgue
constant Λ and the quasi-optimality constant ν(A) for some particular operators.

We observe that, the error bound in (2.2.4) raises several questions: i) Does the operator have
the smallest possible operator norm ‖Q‖ ? ii) Does the operator have the smallest possible quasi-
optimality constant ν(A)? To answer these questions, we will analyze two typical approaches to the
recovery problem 2.1.1, and show some numerical results of these stability factors, one can refer to
[26] for further analysis. Note also that the PBDW approach and GEIM approach have the smallest
possible quasi-optimality constant ν(A) [29, 145].

2.2.2 Recovery aiming to optimize the Lebesgue constant Λ

We begin by recalling some useful notations introduced in Chapter 1. Let Bn = (q1, · · · , qn)
and Wm = (w1, · · · , wm) be the representation of Vn and Wm respectively, where {wi}mi=1 are the
Riesz representations of the observation functionals {ℓi}mi=1. Furthermore, let B̂n = (q̂1, · · · , q̂n) and
Ŵm = (ŵ1, · · · , ŵm) be the basis set derived from Bn andWm respectively by an orthonormalization
process. For notational simplicity, we suppress the subscript n and m of Bn,Wm, B̂n, Ŵm. We
further denote W =WTW,Q = BTB, M =WTB, Mr =WT B̂, Ŵ = ŴT Ŵ, M̂ = ŴT B̂.

Stability factors of Lebesgue Constant approach

We first analyze the algorithm as stated in (1.3.43) or (1.3.61) to the recovery problem 2.1.1 that
we recall: find v∗ ∈ Vn s.t.

v∗ = argmin
v∈Vn

‖ℓ(v)− yyyo‖W , (2.2.7)

here we recall that the weighted norm ‖ · ‖W in Rm is defined such that for all yyy ∈ Rm we have
‖yyy‖W :=

√

yyyTW−1yyy. As pointed out in [29], the above algorithm provides an operator Q, such
that the associated operator A has the smallest quasi-optimality constant ν(A) (also the smallest
Lebesgue constant Λ) in the sense that no other linear Q operator leads to a better ν(Q ◦ ℓ), similar
proof can also be found in [26]. We thus denote this approach as stated in (2.2.7) by LC approach,
where ‘LC’ stands for the optimal Lebesgue constant. We refer to (1.3.49), but replace B with B̂
which is the orthonormal basis set, then the solution to (2.2.7) is given by:

v∗ = B̂α∗ = B̂(MT
r W

−1Mr)
−1MT

r W
−1yyyo. (2.2.8)
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Now we state a proposition on the recovery (2.2.7).

Proposition 2.2.1 The recovery operator QLC : Rm → Vn from (2.2.7) can be represented as

QLC = B̂(MT
r W

−1Mr)
−1MT

r W
−1, (2.2.9)

with norm
‖QLC‖ = s1[(M

T
r W

−1Mr)
−1MT

r W
−1]. (2.2.10)

And the associated linear operator ALC : V → Vn of QLC can be represented as

ALC = B̂(M̂T M̂)−1M̂T ŴT , (2.2.11)

with the Lebesgue constant
ΛLC = (sn[M̂])−1. (2.2.12)

The notation sk[B] represents the k−th singular value of matrix B in descending order, the subscript
‘LC’ of Q,A and Λ reflect that they come from the recovery (2.2.7).

Proof: The relation (2.2.9) is straightforward from (2.2.8). Now we prove (2.2.10).

∀eeeo ∈ Rm, ‖QLCeee
o‖ = ‖B̂(MT

r W
−1Mr)

−1MT
r W

−1eeeo‖
= ‖(MT

r W
−1Mr)

−1MT
r W

−1eeeo‖2.
(2.2.13)

The second relation follows from the fact that B̂ is an orthonormal representation of Vn, thus we
have

‖QLC‖ := sup
eeeo∈Rm

‖QLC(eee
o)‖

‖eeeo‖2

= sup
eeeo∈Rm

‖(MT
r W

−1Mr)
−1MT

r W
−1eeeo‖2

‖eeeo‖2
= sup

eeeo∈Rm,‖eeeo‖2=1

‖(MT
r W

−1Mr)
−1MT

r W
−1eeeo‖2 .

(2.2.14)

The right side of the last relation is the definition of matrix norm of B := (MT
r W

−1Mr)
−1MT

r W
−1

induced by the Euclidean vector norm [158], thus we have

sup
eeeo∈Rm,‖eeeo‖2=1

‖Beeeo‖2 = s1[B]. (2.2.15)

We now prove (2.2.11). ∀u ∈ V, yyy = ℓ(u) =WTu, we have

ALC(u) = QLC(ℓ(u)) = B̂(MT
r W

−1Mr)
−1MT

r W
−1WTu. (2.2.16)

We recall that Ŵ = WUWS
− 1

2

W , B̂ = BUQS
1
2

Q, where W = UWSWUT
W and Q = UQSQUT

Q are the
singular value decompositions of W and Q respectively. We further have W−1 = UWS−1

W UT
W , then

ALC(u) = B̂(MT
r W

−1Mr)
−1MT

r W
−1WTu

= B̂(B̂TWUWS−1
W UT

WWTB)−1B̂TWUWS−1
W UT

WWTu

= B̂(M̂T M̂)−1M̂T ŴTu .

(2.2.17)

Let M̂ = Ũ S̃Ṽ T be the singular value decomposition of M̂ where S̃ is an m×n rectangular diagonal
matrix with non-negative real numbers on the diagonal in descending order, i.e., s1 > · · · > sn > 0.
Then B̃ = B̂Ṽ = (q̃1, · · · , q̃n), W̃ = ŴŨ = (w̃1, · · · , w̃m) are another orthonormal representations
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of Vn,Wm respectively. Furthermore we have the notation M̃ := W̃T B̃ = S̃, and (M̃T M̃)−1M̃T is an
n×m rectangular diagonal matrix with entries (s1−1, · · · , sn−1) on the diagonal. In these settings,
we further have

ALC(u) = B̃(M̃T M̃)−1M̃T W̃Tu

= (q̃1, · · · , q̃n)(M̃T M̃)−1M̃T ((w̃1, u), · · · , (w̃m, u))
T

=

n
∑

i=1

1

si
(w̃i, u)q̃i .

(2.2.18)

Thus we have

∀u ∈ V, ‖ALC(u)‖2 = ‖
n
∑

i=1

1

si
(w̃i, u)q̃i‖2 =

n
∑

i=1

1

s2i
|(w̃i, u)|2‖q̃i‖2 =

n
∑

i=1

1

s2i
|(w̃i, u)|2 . (2.2.19)

Then

ΛLC := sup
u∈V

‖ALC(u)‖
‖u‖ = sup

u∈V

(

∑n
i=1

1
s2i
|(w̃i, u)|2

)1/2

‖u‖ = s−1
n . (2.2.20)

For the last relation we invoke Cauchy-Schwarz inequality and obtain the desired bound.
�

Remark 2.2.1 From (2.2.12) and Proposition 1.3.4, we observe that the Lebesgue constant
Λ of the recovery (2.2.7) is equivalent to the inverse of inf-sup constant β(Vn,Wm), i.e., Λ =
β(Vn,Wm)−1. A special case is that when m = n, Λ is the Lebesgue constant of GEIM algorithm
[145, Theorem 1.2]. Another case is that when Vn ⊂Wm, from the definition of β(Vn,Wm) we have
β(Vn,Wm) = 1, thus ΛLC = 1. This is the ideal case such that any element in Vn can be represented
by an element in Wm.

Stability factors of PBDW

As already stated, PBDW looks for the solution in Vn +Wm which has the same measurements
as yyyo and with a minimal updated term η∗ ∈ Wm ∩ V ⊥

n in the sense of norm. We first have the
following statement.

Statement 2.2.1 The algebraic representation of the solution u∗ to the PBDW approach in
noisy case as stated in (1.3.66) can be represented as:

u∗ = APBDWut +QPBDWeeeo . (2.2.21)

The linear operator QPBDW : Rm → Vn +Wm of PBDW can be represented as:

QPBDW := B̂E+WH, (2.2.22)

and the associated linear operator APBDW : V → Vn +Wm of QPBDW can be represented as:

APBDW := B̂EWT +WHWT , (2.2.23)

where E := (MT
r W

−1Mr)
−1MT

r W
−1, and H := W−1 −W−1Mr(M

T
r W

−1Mr)
−1MT

r W
−1.

Proof: For a given space Vn and Wm, and the corresponding basis {q1, · · · , qn} and {w1, · · · , wm},
we follow all the notations introduced previously. We denote the solution by u∗ = v∗ + η∗ =
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B̂α∗ + Wβ∗. We refer to Proposition 1.3.3 and Remark 1.3.1 for the analysis with respect to
noise-free measurements, it is easy to find that v∗ is the solution to Problem 2.1.1: find v∗ s.t.

v∗ = argmin
v∈Vn

‖ℓ(v)− yyyo‖W. (2.2.24)

Hence we follow Proposition 2.2.1 and obtain

v∗ = B̂α∗, with α∗ = (MT
r W

−1Mr)
−1MT

r W
−1yyyo. (2.2.25)

From (1.3.66)2, we have WTWβ∗ +WT B̂α∗ = yyyo, i.e.,

Wβ∗ +Mrα
∗ = yyyo, (2.2.26)

Substituting (2.2.25) into (2.2.26), we obtain

β∗ = W−1yyyo −W−1Mr(M
T
r W

−1Mr)
−1MT

r W
−1yyyo. (2.2.27)

Recall the denotations of E and H, from (2.2.25) and (2.2.27) we have

u∗ = B̂Eyyyo +WHyyyo, (2.2.28)

Substituting yyyo = ℓ(ut) + eeeo =WTut + eeeo into (2.2.28), we further obtain

u∗ = B̂EWTut +WHWTut + B̂Eeeeo +WHeeeo = APBDWut +QPBDWeeeo . (2.2.29)

This completes the proof.
�

Based on the linear representation (2.2.29) of u∗, we then have the following proposition.

Proposition 2.2.2 The stability factor ‖QPBDW ‖ is

‖QPBDW ‖ = (s1[S])
1/2

, (2.2.30)

and the Lebesgue constant is

ΛPBDW =
(

sn[M̂]
)−1

, (2.2.31)

where

S = W−1 −W−1Mr(M
T
r W

−1Mr)
−1MT

r W
−1 +W−1Mr(M

T
r W

−1Mr)
−2MT

r W
−1 , (2.2.32)

and sk[B] represents the k−th singular value of matrix B in descending order.

Proof: First we recognize that B̂Eeeeo ⊥ WHeeeo, i.e., (WHeeeo, B̂Eeeeo) = 0, this follows from the fact
that ∀eeeo ∈ Rm, if u∗(eeeo) = v∗(eeeo)+η∗(eeeo) is the PBDW solution, we have η∗(eeeo) ⊥ Vn and we know
that η∗(eeeo) ∈ V ⊥

n ∩Wm. Here we present the proof for the sake of convenience.

(WHeeeo, B̂Eeeeo) = eeeoTHTWT B̂Eeeeo

= eeeoTHTMrEeee
o

= eeeoT
[

W−1 −W−1Mr(M
T
r W

−1Mr)
−1MT

r W
−1

]

Mr(M
T
r W

−1Mr)
−1MT

r W
−1eeeo

= eeeoT
[

W−1Mr(M
T
r W

−1Mr)
−1MT

r W
−1 −W−1Mr(M

T
r W

−1Mr)
−1MT

r W
−1

]

eeeo

= 0
(2.2.33)
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Then we prove HTWH = H, this follows:

HTWH =
[

W−1 −W−1Mr(M
T
r W

−1Mr)
−1MT

r W
−1

]

W
[

W−1 −W−1Mr(M
T
r W

−1Mr)
−1MT

r W
−1

]

= W−1 −W−1Mr(M
T
r W

−1Mr)
−1MT

r W
−1 −W−1Mr(M

T
r W

−1Mr)
−1MT

r W
−1−

W−1Mr(M
T
r W

−1Mr)
−1MT

r W
−1Mr(M

T
r W

−1Mr)
−1MT

r W
−1

= W−1 −W−1Mr(M
T
r W

−1Mr)
−1MT

r W
−1

= H

(2.2.34)
By definition, we have

∀eeeo ∈ Rm, ‖QPBDWeeeo‖22 = (B̂Eeeeo +WHeeeo, B̂Eeeeo +WHeeeo)

= eeeoT (ET B̂T +HTWT )(B̂E+WH)eeeo

= eeeoT (ET B̂T B̂E+HTWTWH)eeeo

= eeeoT (ETE+HTWH)eeeo

= eeeoT (ETE+H)eeeo.

(2.2.35)

The third relation follows from B̂Eeeeo ⊥ WHeeeo, and the fourth relation follows from HTWH = H.
We further obtain

ETE+H = W−1−W−1Mr(M
T
r W

−1Mr)
−1MT

r W
−1+W−1Mr(M

T
r W

−1Mr)
−2MT

r W
−1 = S. (2.2.36)

Note that from W−1/2Mr = ŴT B̂ = M̂, we may also present S by

S = W−1 −W−1/2M̂(M̂T M̂)−1M̂TW−1/2 +W−1/2M̂(M̂T M̂)−2M̂TW−1/2. (2.2.37)

We finally invoke Rayleigh quotient theory [110] to the positive definite hermitian matrix S and
obtain the desired bound

‖QPBDW ‖2 = sup
eeeo∈Rm,eeeo 6=0

eeeoT S eeeo

eeeoTeeeo
= s1[S]. (2.2.38)

We now prove (2.2.31). Recall that ∀u ∈ V, yyy = ℓ(u) =WTu, we have

APBDW (u) = B̂EWTu+WHWTu. (2.2.39)

We recall that Ŵ = WmUWS
− 1

2

W , B̂ = BUQS
1
2

Q, where W = UWSWUT
W and Q = UQSQUT

Q are the
singular value decompositions of W and Q respectively. We further have W−1 = UWS−1

W UT
W , then

APBDW (u) = B̂(M̂T M̂)−1M̂T ŴTu+ ŴŴTu− ŴM̂(M̂T M̂)−1M̂T ŴTu . (2.2.40)

Let M̂ = Ũ S̃Ṽ T be the singular value decomposition of M̂ where S̃ is an m×n rectangular diagonal
matrix with non-negative real numbers on the diagonal in descending order, i.e., s1 > · · · > sn > 0.
Then B̃ = B̂Ṽ = (q̃1, · · · , q̃n), W̃ = ŴŨ = (w̃1, · · · , w̃m) are another orthonormal representations
of Vn,Wm respectively, furthermore M̃ = W̃T B̃ = S̃. In this setting, we further have

APBDW (u) = B̃(M̃T M̃)−1M̃T W̃Tu+ W̃W̃Tu− W̃M̃(M̃T M̃)−1M̃T W̃Tu

=

n
∑

i=1

1

si
(w̃i, u)q̃i +

m
∑

i=n+1

(w̃i, u)w̃i

(2.2.41)
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Thus we have

∀u ∈ V, ‖APBDW (u)‖2 = ‖
n
∑

i=1

1

si
(w̃i, u)q̃i +

m
∑

i=n+1

(w̃i, u)w̃i‖2

=

n
∑

i=1

1

s2i
|(w̃i, u)|2‖q̃i‖2 +

m
∑

i=n+1

|(w̃i, u)|2‖w̃i‖2

=

n
∑

i=1

1

s2i
|(w̃i, u)|2 +

m
∑

i=n+1

|(w̃i, u)|2 .

(2.2.42)

Then

ΛPBDW := sup
u∈V

‖APBDW (u)‖
‖u‖ = sup

u∈V

(

∑n
i=1

1
s2i
|(w̃i, u)|2 +

∑m
i=n+1 |(w̃i, u)|2

)1/2

‖u‖ = s−1
n . (2.2.43)

For the last relation we invoke Cauchy-Schwarz inequality and obtain the desired bound. �

Remark 2.2.2 From (2.2.12) and (2.2.31), we observe that the Lebesgue constant ΛPBDW of
PBDW is the same to the Lebesgue constant ΛLC of the LC approach (2.2.7). Furthermore, we have
ΛPBDW = ΛLC = β(Vn,Wm)−1. It is easy to observe that the error bound of LC approach is

∀ut ∈ V, ‖ALC(u
t)− ut‖ ≤ β(Vn,Wm)−1‖PVn

ut − ut‖,

and from (1.3.26) we observe that PBDW narrows the above bound to

‖APBDW (ut)− ut‖ ≤ β(Vn,Wm)−1‖PVn+Wm
ut − ut‖.

2.2.3 Recovery aiming to optimize the stability factor ‖Q‖

Now let us turn to the analysis of the second approach to the recovery problem 2.1.1 that we
recall: find v∗LS ∈ Vn s.t.

v∗LS = argmin
v∈Vn

‖ℓ(v)− yyyo‖2, (2.2.44)

which is a classical least-squares (LS) approximation, thus we call it LS approach. We refer to
(1.3.60), but replace B with the orthonormal one B̂, then the solution to (2.2.44) is given by:

v∗LS = B̂α∗
LS = B̂(MT

r Mr)
−1MT

r yyy
o . (2.2.45)

We first state a proposition on the estimations of the Lebesgue constant and stability factor of
(2.2.44) as follows.

Proposition 2.2.3 The recovery operator QLS : Rm → Vn from (2.2.44) can be represented as

QLS = B̂(MT
r Mr)

−1MT
r , (2.2.46)

with norm
‖QLS‖ = s1[(M

T
r Mr)

−1MT
r ] = (sn[Mr])

−1. (2.2.47)

And the associated linear operator ALS : V → Vn of QLS can be represented as

ALS = B̂(MT
r Mr)

−1MT
rWT , (2.2.48)
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and the Lebesgue constant of ALS satisfies

ΛLS ≤ s1[(M̂
TSWM̂)−1M̂TSW ], (2.2.49)

where sk[B] represents the k−th singular value of the matrix B in descending order, the subscript
‘LS’ of Q,A and Λ means they come from LS approach (2.2.44).

Proof: The relation (2.2.46) is straightforward from (2.2.45). Now we prove (2.2.47).

∀eeeo ∈ Rm, ‖QLSeee
o‖ = ‖B̂(MT

r Mr)
−1MT

r eee
o‖ = ‖(MT

r Mr)
−1MT

r eee
o‖2 . (2.2.50)

The second relation follows from the fact that B̂ is an orthonormal representation of Vn, thus we
have

‖QLS‖ := sup
eeeo∈Rm

‖QLS(eee
o)‖

‖eeeo‖2

= sup
eeeo∈Rm

‖(MT
r Mr)

−1MT
r eee

o‖2
‖eeeo‖2

= sup
eeeo∈Rm,‖eeeo‖2=1

‖(MT
r Mr)

−1MT
r eee

o‖2 .

(2.2.51)

The right side of the last relation is the definition of matrix norm of B := (MT
r Mr)

−1MT
r induced

by the Euclidean vector norm [158], thus we have

sup
eeeo∈Rm,‖eeeo‖2=1

‖Beeeo‖2 = s1[B]. (2.2.52)

We now prove (2.2.48). ∀u ∈ V, yyy = ℓ(u) =WTu, we have

ALS(u) = QLS(ℓ(u)) = B̂(MT
r Mr)

−1MT
rWTu. (2.2.53)

Then we prove (2.2.49).

∀u ∈ V,
‖ALS(u)‖
‖u‖ =

‖B̂(MT
r Mr)

−1MT
rWTu‖

‖u‖

=
‖(MT

r Mr)
−1MT

rWTu‖2
‖u‖

=
‖(MT

r Mr)
−1MT

r UWS
1
2

WŴTu‖2
‖u‖

=
‖(M̂TSWM̂)−1M̂TSWŴTu‖2

‖u‖

(2.2.54)

The second relation follows from the orthonormal of B̂, the third relation follows from Ŵn =

WmUWS
− 1

2

W , and from the definitions of Mr and M̂, we have the last relation.

Again we recall the definition of matrix norm of B′ := (M̂TSWM̂)−1M̂TSW induced by the
Euclidean vector norm [158], and we have

sup
yyy∈Rm,‖yyy‖2=1

‖B′ yyy‖2 = s1[B
′]. (2.2.55)
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Thus we have

∀u ∈ V,
‖ALS(u)‖
‖u‖ =

‖(M̂TSWM̂)−1M̂TSWŴTu‖2
‖u‖

≤ s1[(M̂
TSWM̂)−1M̂TSW ]

‖ŴTu‖2
‖u‖

= s1[(M̂
TSWM̂)−1M̂TSW ]

‖PWm
u‖

‖u‖
≤ s1[(M̂

TSWM̂)−1M̂TSW ]

(2.2.56)

The third relation follows from the fact that Ŵ is an orthonormal representation of Wm, thus we
obtain the desired bound. �

Note that we are unable to present the exact formula of ΛLS , but rather an upper bound as in
(2.2.49), so that the estimate of ΛLS we present in the next context are all from (2.2.49).

Remark 2.2.3 As pointed out in [26] that QLS provides the smallest possible operator norm
among all perfect recovery operators which satisfy (2.2.4).

2.2.4 Numerical results and analysis

Test case 2.2.1 Consider the family of functions from [145],

g(x, µ) ≡ 1
√

1 + (25 + µ1cos(µ2x))x2
, (2.2.57)

where µ = (µ1, µ2) ∈ D = [0.01, 24.9]× [0.01, 15], x ∈ Ω = [0, 1].

We work with L2(Ω) = {u | ‖u‖L2(Ω) < ∞} where the norm ‖ · ‖L2(Ω) is induced by the inner
product (w, v)L2(Ω) =

∫

Ω
w(x)v(x)dx. Also, H1(Ω) = {u | ‖u‖H1(Ω) <∞} where the norm ‖·‖H1(Ω)

is induced by the inner product (w, v)H1(Ω) =
∫

Ω
w(x)v(x)dx +

∫

Ω
∇w(x)∇v(x)dx. Here we set

Gaussian convolution as the measurement functionals, namely,

ℓi(v) = Gauss(v, xc
i , ri) ≡

∫

Ω

{

(2πr2i )
−d/2exp

(

−
‖x− xc

i‖2ℓ2(Rd)

2r2i

)}

v(x)dx, (2.2.58)

where xc
i ∈ Rd is the center of the sensor, and ri ∈ R>0 is the width of the sensor; localized

observation is of particular interest in this work.

We work with spaces Vn and Wm chosen as follows:

• Vn and the first n linear functionals are built with GEIM.

• The remaining n+1 to m functionals are selected with location which maximizes the shortest
distance to the set of points at the current step.

Once the linear functionals {ℓi}i have been determined, the corresponding Riesz representation
{wi}i are used to span the measurement space Wm = span{w1, · · · , wm}. Our calculations were
done with the finite element code Freefem++ [102].
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Stability with respect to sensor width

Here we analyze the dependence of the stability factors with respect to the sensor width.
We list the variations of the Lebesgue constant Λ and the stability factor ‖Q‖ for sensor width
r = 0.001, 0.005 and 0.01 in Figure 2.2.1 for LC approach. The reduced basis {qi}i and the measure-
ments are selected with GEIM greedy algorithm based on a fine enough training setM(training) :=
{g(x, µ) | µ ∈ D(training)}. In all cases, the number of sensors equals to the reduced dimension i.e.
m = n.

From Figure 2.2.1 we observe that, the smaller the sensor width is, the more stable either for
Λ or for ‖Q‖. Furthermore, the two factors are of different orders of magnitude, e.g., for the most
stable case (r = 0.001) in the figure, the Lebesgue constant Λ is of O(10), but ‖Q‖ is of O(100),
i.e., the stability factor with respect to noise is much more sensitive than the stability factor with
respect to model mismatch. In figure 2.2.1b, the explosion of ‖Q‖ comes from the almost linear
dependence of the observation functionals {ℓi}i when r is too large.
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Figure 2.2.1: Variations of the Lebesgue constant Λ and stability factor ‖Q‖ with respect to the
reduced dimension n for LC approach, for three different values of the sensor width r. In all cases,
we keep the number of sensors m equal to the number of reduced basis n.

Stability with respect to the number of observations

Now we study the effect of different number of observations. We determine the m measurements
by i) selecting the first n measurements with GEIM greedy algorithm, and ii) selecting the left
m− n measurements with the quasi-uniform method [148], i.e., at step i, we insert a new point at
the location xc

i which maximizes the minimum distance to the set of points {xc
1, · · · , xc

i−1, } at step
i − 1. Figure 2.2.2 shows the variations of the Lebesgue constant Λ and stability factor ‖Q‖ for
m/n = 1, 2, 4 for LC approach with sensor width r = 0.001, 0.005.

We observe that, by adding more measurements, on one hand, the Lebesgue constant is well
improved, especially for a ‘low resolution’ measurement system e.g. r = 0.005 in our case; on the
other hand, the stability factor ‖Q‖ explodes, that is to say, by adding more measurements doesn’t
improve ‖Q‖, see Figure 2.2.2d. The explosion comes from the almost linear dependence of the {ℓi}i
when m is too large for a relatively large r. In any case, the recovery approach (2.2.7) provides
a better Lebesgue constant Λ rather than ‖Q‖ with respect to measurement noise. This leads us
considering other approaches for the recovery problem 2.1.1.
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Figure 2.2.2: Variations of the Lebesgue constant Λ and stability factor ‖Q‖ with respect to the
reduced dimension n for LC approach, for three different values of m/n and two values of sensor
width r.

Comparison between LC approach and LS approach

From Proposition 2.2.3, we are able to present a numerical example to illustrate how Λ and ‖Q‖
behave for LS approach as stated in (2.2.46). We show the comparison between LS approach and
LC approach for three different values of m/n with the sensor width r = 0.001, 0.005 in Figure
2.2.3. All the calculations are based on Test case 2.2.1. We can draw several conclusions from the
numerical results as follows.

i) The LC approach always provides the smallest Lebesgue constant Λ among all simulated cases.

ii) The LS approach always provides the smallest stability factor ‖Q‖ among all simulated cases.
That is to say, LS approach stabilizes the noise with respect to LC approach, especially when
the number of measurements m is large or the sensor width r is large, i.e., the cases which
lead the observation functionals almost linearly dependent.

iii) Figure 2.2.3a and Figure 2.2.3b confirm that there is no difference for both approaches when
m = n, this is the classical GEIM approach.

Furthermore, we built a set of snapshot M(test) := {g(x, µ) | µ ∈ D(test)} which is different
from the training setM(training) with which we obtain the reduced space Vn. Then we test the two
approaches in i) noise-free case and ii) the case with a uniform distributed noise with noise level
σ = 0.01 on the test set. In order to verify the effects of Λ and ‖Q‖ with respect the number of
observations and the sensor width, we list the maximum relative recovery errors for m = n, 4n and
r = 0.001, 0.005 in Figure 2.2.4 from which we again confirm that, with respect to the recovery
error:
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i) the LC approach is better than LS approach when the measurements are noise-free. Further-
more, by adding more measurements, LC approach is able to improve the recovery accuracy,
on the contrary, LS approach might enlarge the error, see Figure 2.2.4a and 2.2.4c;

ii) the LS approach is better than the LC approach when the measurements are polluted by
noise. Particularly when the observation functions are almost linear dependent, the error in
the LC approach explodes in presence of the noise (e.g. see ‘LC m=4n’ in Figure 2.2.4d), on
the contrary, LS approach stabilizes the noise (e.g. see ‘LS m=4n’ in Figure 2.2.4d).

In short, LC approach is a more stable recovery method with respect to model mismatch, on the
contrary, LS approach is a stable recovery method with respect to measurement noise.
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Figure 2.2.3: Variations of the Lebesgue constant Λ and stability factor ‖Q‖ with respect to the
reduced dimension n for LC approach and LS approach, for three different values of m/n and two
values of sensor width r.
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Figure 2.2.4: Variations of the recovery errors (in H1 norm) with respect to the reduced dimension
n for LC approach and LS approach, for two different values of noise level σ and two values of sensor
width r.

2.2.5 Optimizing the observation space Wm

Methodologies

From Proposition 2.2.1 and 2.2.3 and the corresponding numerical results, we observe that, for a
given space Vn, the selection of an optimal observation space Wm largely depends on the following
two criteria:

• The minimization of the Lebesgue constant Λ = (sn[M̂])−1 for LC approach. To improve the
stability with respect to model mismatch, we wish to choose Wm such that any element in Vn

is well approximated by an element in Wm (see Remark 2.2.1).

• The minimization of the stability factor ‖Q‖ = (sn[Mr])
−1 for LS approach. To improve the

stability with respect to measurement noise, we wish to choose {ℓ1, · · · , ℓm} (and thus Wm)
such that any noise in Rm is well controlled.

Even though the underlying framework may accommodate any observation functional that is
consistent with the data-acquisition procedure, in this work we focus on localized observations. As
noted before, for localized observations using a given observation functional ℓi(·) ≡ Gauss(·, xc

i , ri),
the locations of the centers {xc

i}mi=1 and the feature {ri}mi=1 largely determine the space Wm. We
may select the observation functionals (and more specifically the observation centers) using several
different processes: ProcessVm(Vn)→Wm. Here we list a few:

• Quasi-uniform or random method. The algorithm aims at minimizing the approximation error
by providing a uniform coverage of the domain, see [148]. The Quasi-uniform is a deterministic



56 2.2. Stability analysis for recovery with reduced basis

sequential procedure: at step i, we insert a new point at the location which maximizes the
minimum distance to the set of points at step i− 1.

• Generalized empirical interpolation method [144]. The algorithm works for m = n.

• Op Λ method. The procedure is described in Algorithm 2.2.4. In short, the algorithm minimizes
the Lebesgue constant Λ in a greedy manner. Note that, this algorithm is a little different from
the greedy stability maximization procedure in [148], in which that algorithm maximizes the
inf-sup constant β(Vn,Wm) in a greedy manner. Furthermore, there is another way to add next
observation functionals: in [31], a greedy algorithm to ensure that β(Vn,Wm) ≥ βmin > 0 with
a small number m of observations is given. [31] also gives convergence rates of the behavior
of β(Vn,Wm) with respect to m.

• Op ‖Q‖ method. The procedure is described in Algorithm 2.2.5. In short, the algorithm
minimizes the operator norm ‖Q‖ in a greedy manner.

Algorithm 2.2.4 Op Λ greedy algorithm

1: input: the reduced space Vn, the observation functional set ΞM

2: output: the optimal observation space Wm

3: Set Wn = span{w1, · · · , wn} with GEIM greedy algorithm from ΞM

4: for i = n+ 1, · · · ,m do
5: Set Wi = span{Wi−1, wj}, where wj ∈ ΞM

6: With Vn,Wi, compute the Lebesgue constant with (2.2.12), i.e., Λ(Vn,Wi) = (sn[M̂])−1

7: wi = argminwj∈ΞM
Λ(Vn,Wi)

8: Set Wi = span{Wi−1, wi}
9: return Wm

Algorithm 2.2.5 Op ‖Q‖ greedy algorithm

1: input: the reduced space Vn, the observation functional set ΞM

2: output: the optimal observation space Wm

3: Set Wn = span{w1, · · · , wn} with GEIM greedy algorithm from ΞM

4: for i = n+ 1, · · · ,m do
5: Set Wi = span{Wi−1, wj}, where wj ∈ ΞM

6: With Vn,Wi, compute the stability factor with (2.2.47), i.e., ‖Q‖(Vn,Wi) = (sn[Mr])
−1

7: wi = argminwj∈ΞM
‖Q‖(Vn,Wi)

8: Set Wi = span{Wi−1, wi}
9: return Wm

Numerical results and analysis

We compared the following three methods for the determination of the observation space Wm:
by adding a new point (sensor center) that i) maximizes the minimum distance (Op Max-Min
dist), ii) minimizes the Lebesgue constant Λ = (sn[M̂])−1 (Op Λ), iii) minimizes the stability factor
‖Q‖ = (sn[Mr])

−1 (Op ‖Q‖). Once the space Wm is determined, we again use LC approach and
LS approach for the field reconstruction. We list the variations of the two kinds of stability factor
for a fixed reduced dimension n = 10, 20 and sensor width r = 0.001, 0.005 in Figure 2.2.5 – 2.2.8
respectively. We can draw several conclusions from the numerical results as follows.

i) If the LC approach is selected for the recovery problem, the Op Λ method provides the optimal
observation space Wm with respect to the Lebesgue constant Λ. On the contrary, Op Λ method
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is unable to stabilize ‖Q‖, especially when r = 0.005, where the observation functions are
almost linear dependent.

ii) If the LS approach is selected for the recovery problem, the Op ‖Q‖ method provides the
optimal observation space Wm with respect to the stability factor ‖Q‖. Furthermore, the Op
Λ method doesn’t explode the Lebesgue constant, i.e., there is not so much difference on Λ
between the Op ‖Q‖ method and the Op Λ method.

iii) Both the Op Λ method and the Op ‖Q‖ method are able to catch the most interesting obser-
vations in the very beginning thanks to the greedy algorithm. These properties are verified
by the rapid convergence of Λ for LC approach in Figure 2.2.5a, 2.2.5c, 2.2.6a, 2.2.6c, and the
rapid convergence of ‖Q‖ for LS approach in Figure 2.2.7b, 2.2.7d, 2.2.8b and 2.2.8d.

We observe that for LS approach, Figure 2.2.7b, 2.2.7d, 2.2.8b and 2.2.8d show that the con-
vergences of ‖Q‖ from Op ‖Q‖ method behave as m− 1

2 when Vn is fixed. That is to say, we can
expect the recovery error from noise observations to decrease with m and hence, converges to 0 in
the limit of m → ∞, but the convergence of the error with m is rather slow. We also note that in
the beginning, the convergence of ‖Q‖ doesn’t follow m− 1

2 , this is due to the greedy algorithm 2.2.5
providing the most important observations in the beginning.
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Figure 2.2.5: Variations of the Lebesgue constant Λ with respect to the number of observations m
for LC approach and LS approach with sensor width r = 0.001, for three different optimization
methods and two values of reduced dimension n.

We also note that, the two methods ( Op ‖Q‖ and Op Λ) — in practice mainly based on a
greedy procedure — are however not robust enough with respect to noisy measurements for the
reduced basis recovery problem 2.1.1, even though with a carefully selected observation space Wm,
one is able to get a rather small Lebegue constant Λ → 1 (e.g. see ‘Op Λ’ in Figure 2.2.5a, 2.2.5c,
2.2.6a, 2.2.6c), but the stability factor ‖Q‖ is still relatively large, especially when the dimension
of the reduced space Vn is relatively high (e.g. see Figure 2.2.3). Our question is: is there any
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Figure 2.2.6: Variations of the Lebesgue constant Λ with respect to the number of observations m
for LC approach and LS approach with sensor width r = 0.005, for three different optimization
methods and two values of reduced dimension n.
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Figure 2.2.7: Variations of the stability factor ‖Q‖ with respect to the number of observations m
for LC approach and LS approach with sensor width r = 0.001, for three different optimization
methods and two values of reduced dimension n.
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algorithm which is able to further improve the stability with respect to measurement noise? This
will be addressed in the following sections.
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Figure 2.2.8: Variations of the stability factor ‖Q‖ with respect to the number of observations m
for LC approach and LS approach with sensor width r = 0.005, for three different optimization
methods and two values of reduced dimension n.

2.3 Constrained stabilized recovery with reduced basis

As already stated in the previous sections, for those recovery methods with reduced basis, the
stability with respect noisy observations is more sensitive than the stability with respect to model
mismatch. By designing a ‘high resolution’ observation system and also increasing the amount of
observations, both the stability with respect to model mismatch and the stability with respect noisy
observations can be improved, but only up to some extent. Note that the stability analysis is based
on the general assumption that there is no constraint on the field u to be reconstructed, i.e., u ∈ V .
In practice, for our interest is the fields in the solution manifold M = {u(µ) : µ ∈ D}, which may
be rather regular. Another way to stabilize the procedure is that, for the underlying problem, if the
Kolmogorov n-width of the manifoldM decays fast with n, it is possible to improve the stability by
adding some constraints on the reduced basis, which is equivalent to add some physical constraints
on the underlying problem.

2.3.1 Constraints on the reduced space

Let us assume that S = span(M) (where the X denotes the closure in V of the set X) ad-
mits a basis {qi}i, i.e., for every u ∈ S there exists a unique sequence {αi(u)} of scalars such
that limn→∞ ‖u −

∑n
i=1 αi(u)qi‖ = 0. For every n ≥ 1, we define the n-dimensional subspace

Vn := span{q1, . . . , qn}. Let us formulate in a different manner the hypothesis made involving the
Kolmogorov n-width ofM in V : let us assume that the error in approximating the functions ofM



60 2.3. Constrained stabilized recovery with reduced basis

in Vn is
max
u∈M

dist(u, Vn) ≤ εn, (2.3.1)

where the sequence (εn)n decays fast with n. Note here that εn may not be the Kolmogorv n-width,
as the best optimal spaces Vn for the Kolmogorov n-width may not be hierarchical (i.e. Vn ⊂ Vn+1).
The greedy procedure however, allows to construct such a hierarchical series of spaces and is only
sub-obtimal (see [30]).

Let us now focus on a class of linear operator Jn : V → Vn. By construction, for any n ≥ 1 and
any u ∈ V , Jn(u) = Jn−1(u) + αn(u)qn, here we set J0 = 0 for notational coherence.

When we use the interpolation operator Jn, which is from GEIM to approximate the functions
of M, yields the error bound

max
u∈M

‖u− Jn(u)‖ ≤ (1 + Λn) εn, (2.3.2)

where
Λn := sup

u∈V
‖Jn(u)‖/‖u‖ (2.3.3)

is the Lebesgue constant. Note that [29, 145] narrow the error bound of inequation (2.3.2) to
Λnεn. The value of Λn diverges at a certain rate so the behavior of maxu∈M ‖u− Jn(u)‖ with the
dimension is dictated by the trade-off between the rate of divergence of (Λn) (that is generally slow)
and the convergence of (εn) (that is generally very fast, one can refer to [146] for further analysis
of the convergence rate). From the construction of Jn, we have the following proposition on the
coefficients.

Proposition 2.3.1 If the basis (qi)i are from GEIM greedy algorithm, and (Ji)i are GEIM
interpolants with functionals {ℓi} in the dual space V ′ of V of unity norm. Then, for any u ∈M,

|αn(u)| ≤ τ(1 + Λn−1)εn−1, n ≥ 1 (2.3.4)

where τ ≥ 1 is a constant because of the weak greedy algorithm of GEIM (see Algorithm 1.4.3 in
Section 1.4), and for notational coherence we set Λ0 = 0 and ε0 = maxu∈M ‖u‖.

Proof: From the construction of GEIM (see Algorithm 1.3.2), we have the snapshots

µn = argmax
u∈M

‖u− Jn−1(u)‖

and the observation functionals

ℓn = argmax
ℓ∈Σ

|ℓ (un − Jn−1(un)) |

and the basis
qn = (un − Jn−1(un))/ℓn (un − Jn−1(un)) .

We then have for every n ≥ 1 and every 1 ≤ j ≤ n, ∀i, 1 ≤ i ≤ j ℓi(qj) = δi,j . Thus we
have for all u ∈ M, we can write Jn(u) =

∑n
i=1 αi(u)qi with Jn(u) = Jn−1(u) + αn(u)qn. From

the relation ℓn(Jn(u)) = ℓn(u) we further have αn(u) = ℓn(u − Jn−1(u)). Then we recall the
unity norm of ℓn and immediately have |αn(u)| = |ℓn(u − Jn−1(u))| ≤ ‖ℓn‖V ′‖u − Jn−1(u)‖ =
‖u−Jn−1(u)‖ ≤ (1 + Λn−1)εn−1. In practice, the above arg max overM (and Σ) is replaced with
an arg max over a very fine sample M(training) (and Σ(training)) (see Algorithm 1.4.3), thus we
introduce a constant τ ≥ 1 to make the relation |αn(u)| ≤ τ(1 + Λn−1)εn−1 holds for all u ∈ M.

�
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Figure 2.3.9 shows the variations of α0
n = maxu∈M |αn(u)| for two different sensor width (r =

0.001, 0.005) for Test case 2.2.1, which confirms the statement in Proposition 2.3.1.
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Figure 2.3.9: The decay of the coefficients α0
n with respect to the dimension n of the reduced space

for Test case 2.2.1. The reduced basis are derived from GEIM greedy algorithm with sensor width
r = 0.001, 0.005 respectively.

Proposition 2.3.2 If the linear operator Jn is an orthogonal projector i.e. PVn
, and (qi)i are

the basis resulting from an orthogonalization process with the standard greedy algorithm for the
reduced basis method [48, 185], if the Kolmogorov n-width di(S;V ) ≤ ce−λi with λ > log 2, there
exists β > 0 such that |αi(u)| ≤ Ce−β(i−1).

Proof: We recall the greedy algorithm (or the algorithm from [48, Algorithm 1]) for the choice
of the elements that constitute the reduced basis is defined as follows [48, 185]:

i. u1 := argmaxu∈S ‖u‖ and q1 = u1

‖u1‖ ,

ii. assume u1, · · · , ui−1 and q1, · · · , qi−1 are defined, consider Vi−1 := span{q1, · · · , qi−1},

iii. ui := argmaxu∈S ‖u− PVi−1
u‖ and qi =

ui−PVi−1
ui

‖ui−PVi−1
ui‖ ,

where PVi−1
denotes the orthogonal projection on Vi−1 for the scalar product in V . We recall the

following result from [48, Theorem 2.1, Theorem 3.1]: if the Kolmogorov n-width di(S;V ) ≤ ce−λi

with λ > log 2, there exists β > 0 such that

∀u ∈ S, ‖u− PVi
u‖ ≤ Ce−βi . (2.3.5)

By recognizing Vi−1 ⊂ Vi and qi ⊥ Vi−1, we can denote u by u = PVi−1
u + αi(u)qi + PVi

⊥u. Thus
we have

Ce−β(i−1) ≥ ‖u− PVi−1
u‖

= ‖PVi−1
u+ αi(u)qi + PVi

⊥u− PVi−1
u‖

= ‖αi(u)qi + PVi
⊥u‖

= ‖αi(u)qi‖+ ‖PVi
⊥u‖

≥ ‖αi(u)qi‖ .

(2.3.6)

Thus we have ‖αi(u)qi‖ ≤ Ce−β(i−1). From the orthogonalization of qi we deduce that |αi(u)| ≤
Ce−β(i−1).

�

Proposition 2.3.1 and Proposition 2.3.2 imply that, if the Kolmogorov n-width of the manifold
M decays fast with n, for any u ∈ M, there exists an approximation Jn[u] =

∑n
i=1 αi(u)qi of u
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such that i) ‖Jn[u]− u‖ ≤ ǫn, ii) |αi(u)| ≤ O(ǫi−1), where ǫi → 0 with i→∞. That is to say, any
function of the manifold can be approximated by an element from a ‘long and narrow polyhedron’
associated with some particular basis. Note that this statement can be easily extended to POD
[128, 27, 172] case.

2.3.2 Constrained stabilized GEIM

Formulation

For a given series of linearly independent vectors (qi)i ∈ V and a scalar τ > 0, and also the series
{α0

i }i being given, let us define a polyhedron in V corresponding to the basis (qi)i:

Kn(τ, α
0) := {v ∈ Vn : v =

n
∑

i=1

αiqi |αi| ≤ τα0
i }. (2.3.7)

We have for any n ≥ 1 and any ut ∈M, Jn(ut) ∈ Kn(1, α
0), where α0

i represent the upper bound.

In presence of noisy measurements yyyo = ℓ(ut) + eo, reconstruction from these values yields an
element in Vn denoted as Jn(ut; eeeo). With noisy measurements, we propose to correct the recovery
operator by using more the structure of the manifold M that, at the discrete level, is expressed in
the fact that the approximation should belong to Kn(1, α

0). Indeed, the belonging of Jn(ut; eeeo)
to Kn(1, α

0) is not satisfied any more except if there exists ũ in M such that ℓi(ũ) = yoi for any
i, 1 ≤ i ≤ m (which is rarely the case). In addition, in order to minimize the effect of the noise, we
can increase the number of measurements and use m larger than n linear functional evaluations at
a given dimension n. This leads to propose a least-squares projection onto Kn(τ, α

0) for τ ≥ 1.

Definition 2.3.1 (Constrained Stabilized GEIM) If there exist a (generalized) projection
operator Jn : V → Vn, and an associated series {α0

i }i such that for any n ≥ 1 and ut ∈ M,
Jn(ut) = Jn−1(u

t) + αn(u
t)qn, with |αi| ≤ τα0

i . We now collect the values yyyo = ℓ(ut) + eeeo. There
exists an operator Am,n that, to any yyy0 associates an approximation of ut defined as follows

Am,n(u
t) = argmin

v∈Kn(τ,α0)

m
∑

i=1

(ℓi(v)− yoi )
2
= argmin

v∈Kn(τ,α0)

‖ℓ(v)− yyyo‖22 (2.3.8)

where Kn(τ, α
0) is a polyhedron defined in (2.3.7).

We consider the algebraic form of the CS-GEIM statement. We recall the notations of B,W and
M =WTB introduced in the previous sections. The algebraic form of (2.3.8) is: find α∗ ∈ Rn such
that

α∗ = argmin
α∈Rn

‖Mα− yyyo‖22 subject to: |αi| ≤ τα0
i , i = 1, · · · , n (2.3.9)

For the above definition, we have several remarks:

i) As already stated, the LS approach (2.3.9) provides the smallest possible operator norm among
all perfect recovery operators with respect to noise. Here we choose this operator instead of
(2.2.7) which provides the optimal Lebesgue constant with respect to model bias.

ii) The operator Am,n from (2.3.8) is not a linear operator any more. Indeed it is a constrained
quadratic programming (QP [96]) problem aims at finding a function from the polyhedron
Kn(τ, α

0) which makes the distance between the real and simulated observations minimal.
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iii) In absence of noise or with τ = ∞, when m = n, the operator Am,n from (2.3.8) boils down
to GEIM.

Numerical results

The comparison between GEIM and CS-GEIM based on Test case 2.2.1 is shown in Figure 2.3.10.
Assume the measurements suffer from Gaussian noise with standard deviations σ = 0.01 or 0.001.
Here we work on (·, ·)H1(Ω) inner product and induced norm when selecting the basis with GEIM
greedy algorithm. There are two kinds of measurement functionals with sensor width r = 0.001
and 0.005. Numerical results show that, the noise is well controlled with coefficients constraints,
especially in H1 norm. Note that with the increasing of reduced dimension n, GEIM amplifies the
noise but CS-GEIM provides a rather robust stability performance with respect to noise.
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Figure 2.3.10: Variations of the L2 and H1 relative errors with respect to the reduced dimension n
for GEIM and CS-GEIM, for two different sensor width r and two standard deviations σ of Gaussian
noise.

Note that there is no explicit solution to the constrained QP problem (2.3.9), one can e.g. use
the fmincon solver from Optimization toolbox of MATLAB [67] to solve this problem numerically.
fmincon finds the minimum of a problem specified by

min
xxx

f(xxx) such that































c(xxx) ≤ 0

ceq(xxx) = 0

A · xxx ≤ b

Aeq · xxx = beq

lb ≤ xxx ≤ ub

(2.3.10)

where b and beq are vectors, A and Aeq are matrices, c(xxx) and ceq(xxx) are functions that return
vectors, and f(xxx) is a function that returns a scalar. f(xxx), c(xxx), and ceq(xxx) can be nonlinear
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functions, xxx, lb, and ub can be vectors or matrices.

We also note that even with fmincon the iteration is need when solving (2.3.9), our advantage
here is that, we work with relative small matrices thanks to the RB method. Later we will show
that the regularized stabilized approach which provides simpler and closed form of (2.3.9), avoiding
to solve this constrained QP problem. With the regularized approximation, one can directly obtain
the algebraic solution for the underlying recovery problem.

2.4 Constrained stabilized PBDW

The CS-GEIM looks for a solution in the reduced space Vn, and doesn’t take into account the
update part η ∈ Wm, which belongs to the observation spaces Wm. Now we turn to the analysis
of PBDW approach, which looks for a solution in a wilder space, i.e., Vn +Wm for the underlying
recovery problem.

2.4.1 General constraint on the reduced space

Formulation

Recall that in noisy case, [202] proposed an adapted PBDW (APBDW) approach based on
(1.3.43) which reads:

u∗ = argmin
η∈V,v∈Vn

ξm‖η‖2 + ‖ℓ(η + v)− yyyo‖22, (2.4.1)

where ξm > 0 is a regularization coefficient that regulates the relative importance of the mismatch
from the reduced space Vn. Theory and numerical results in the previous section both confirm that
the least-squares term ‖ℓ(η + v)− yyyo‖22 provides a better stability factor with respect to noise.

Our approach is to add a constraint on v∗, which is similar to CS-GEIM to control the noise. Now
we state the constrained stabilized PBDW (CS-PBDW) minimization statement with least-squares
approach.

Proposition 2.4.1 (Constrained stabilized PBDW) The constrained stabilized PBDW (CS-
PBDW) minimization statement with least-squares approach is: find (u∗ = v∗+η∗ ∈ V, v∗ ∈ Vn, η

∗ ∈
Wm) such that

(v∗, η∗) = argmin
η∈V,v∈Kn(τ,α0)

ξm‖η‖2 + ‖ℓ(v + η)− yyyo‖22, (2.4.2)

where ξm is a trade-off factor between the complementary part ‖η‖2 and the observation misfit.

We first show that the constraint η ∈ V in (2.4.2) can be weakened to η ∈ Wm like in the plain
PBDW method. We have the following remark.

Remark 2.4.1 Let u∗ = v∗ + η∗ ∈ V be an optimal solution to (2.4.2). Then we have v∗ ∈ Vn

and η∗ ∈Wm.

Proof: Let η∗ = PWm
η∗ + PW⊥

m
η∗ be the solution to (2.4.2), and recall that ℓi(u

∗) = (u∗, wi), thus
we have ℓi(u

∗) = (v∗ + PWm
η∗, wi), then we deduce that

ξm‖η∗‖2 + ‖ℓ(u∗)− yyyo‖22 = ξm‖PWm
η∗‖2 + ξm‖PW⊥

m
η∗‖2 + ‖ℓ(v∗ + PWm

η∗)− yyyo‖22.
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Indeed η∗ is supposed to be the minimum, for PWm
η∗ ∈ V we should have

ξm‖η∗‖2 + ‖ℓ(u∗)− yyyo‖22 ≤ ξm‖PWm
η∗‖2 + ‖ℓ(v∗ + PWm

η∗)− yyyo‖22,

which means that PW⊥
m
η∗ = 0, and we get the conclusion.

Now we consider the algebraic form of (2.4.2). We recall the notations of W =WTW and M =
WTB introduced in the previous sections and further denote Am×(m+n) = [W,M], K(m+n)×(m+n) =
[

W 0
0 0

]

. Then the algebraic form of (2.4.2) is: find θ∗ = (β∗
1 , · · · , β∗

m, α∗
1, · · · , α∗

n)
T ∈ Rm+n (i.e.

u∗ =
∑m

i=1 β
∗
i wi +

∑n
j=1 α

∗
jqj ∈ Vn +Wm) such that:

θ∗ = argmin
θ∈Rm+n

ξmθT
Kθ + (Aθ − yyyo)T (Aθ − yyyo) s.t. |θi| ≤ θ0i , i = 1, · · · ,m+ n (2.4.3)

where θ0i = +∞, i = 1, · · ·m; θ0i+m = τα0
i , i = 1, · · ·n.

We now make several remarks:

i) The property η∗ ∈Wm∩V ⊥
n doesn’t hold any more because of the constraint, i.e., we constrain

the reduced space part v∗, but relax the constraint on the update part η∗;

ii) In absence of noise, the CS-PBDW approach (2.4.2) boils down to the classical PBDW ap-
proach (1.3.19);

iii) In absence of model update part η∗, the CS-PBDW approach (2.4.2) boils down to the CS-
GEIM approach (2.3.8).

Numerical results

We first illustrate the variations of the relative error versus the reduced dimension n for PBDW
with uniformly distributed noise with noise level σ = 0.01 or 0.001 in Figure 2.4.11 based on Test
case 2.2.1. The sensor width is r = 0.005. The number of observations m = 2n with the first n
observations selected with GEIM greedy algorithm and the left selected with Algorithm 2.2.5. As
shown in Figure 2.4.11, even though PBDW is able to correct the model bias, it still gives no solution
to address the noise. Then we present the recovery errors in Figure 2.4.12 for CS-PBDW approach
(2.4.2). We observe that the noise is well controlled with the method we proposed.

We notice here that the strange initial behavior of CS-PBDW comes from the improper factor
ξm. Indeed, for a reduced space Vn of relatively low dimension, the error from the plain PBDW
method itself (i.e. (η∗, v∗) = argminη∈Wm,v∈Vn

‖η‖ s.t. ‖ℓ(v+ η)−yyyo‖ = 0) is much larger than the
error caused by the noise, in this case the plain PBDW method still provides an optimal solution,
this corresponds to ξm → +∞ in (2.4.2). In Figure 2.4.11 we used a value of ξm which is optimal
for a relatively higher reduced dimension, thus we get this strange behavior.

The CS-PBDW approach takes no priori noise information into consideration. By knowing more
detail information of the noise, it’s hopeful to improve the above reconstruction process, e.g., by
taking the maximum a posteriori estimation (MAP) or maximum likelihood (ML) [19] to weight
the least-squares problem, with the inverse of the covariance matrix D of the observations. We will
analysis three typical noise distribution cases, i.e., uniform distribution, Gaussian distribution and
Laplacian distribution, etc.
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Figure 2.4.11: Variations of the L2 and H1 relative errors with respect to the reduced dimension
n for PBDW with sensor width r = 0.005, for two different noise level σ of uniformly distributed
noise.
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Figure 2.4.12: Variations of the L2 and H1 relative errors with respect to the reduced dimension n
for CS-PBDW and PBDW with sensor width r = 0.005, for two different noise level σ of uniformly
distributed noise.

2.4.2 Noise with uniform distribution

Formulation

To simplify the analysis, we take the first assumption on the noise eeeo that each term eoi is
uniformly distributed on [−ei,Max, ei,Max]. In this case, from [41, page 352], if {eoi }mi=1 are uni-
formly distributed on [−ei,Max, ei,Max], we have the corresponding probability distributions p(eoi ) =
1/(2ei,Max), and the maximum likelihood (ML) estimation of ut ∈ V is: find u ∈ V s.t.

|ℓ(u)− yyyo| ≤ eeeMax , (2.4.4)

here the inequality is to vector, it represents component-wise inequality, i.e., |ℓi(u)−yi| ≤ ei,Max, i =
1, · · · ,m.

Now we state the maximum likelihood constrained stabilized PBDW (MLCS-PBDW) approach
with uniformly distributed noise by adding an maximum likelihood estimation constraint (2.4.4),
which reads: find (u∗ = v∗ + η∗ ∈ V, v∗ ∈ Vn, η

∗ ∈ V ) such that

(v∗, η∗) = argmin
v∈Kn(τ,α0)

η∈V

‖η‖2 s.t. |(ℓi(v∗ + η∗)− yoi | ≤ ei,Max i = 1, · · · ,m (2.4.5)
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where {ei,Max}mi=1 are the upper limits of the noise, and we call the latter constraint ML constraint. If
(ei)

m
i=1 are uniformly independent, identically distributed (IID) on [−eMax, eMax], the ML constraint

term reduces to
‖ℓ(v∗ + η∗)− yyyo‖∞ ≤ eMax . (2.4.6)

Numerical results

Figure 2.4.13 illustrates the relative errors from MLCS-PBDW approach and PBDW approach
for different reduced dimension n, for sensor width r = 0.005 with uniformly distributed noise with
noise level σ = 0.01 or 0.001. The number of observations m = 2n with the first n observations
selected with GEIM greedy algorithm and the left selected with Algorithm 2.2.5. All the calculations
are based on Test case 2.2.1. It is easy to find that the noise is well controlled both in L2 norm and
in H1 norm.

Furthermore, we illustrate the comparison between general CS-PBDW approach (2.4.2) and
MLCS-PBDW approach (2.4.5) in Figure 2.4.14, which confirms that in uniformly distributed noisy
case, the MLCS-PBDW approach is better than the general CS-PBDW approach, especially when
the noise is smaller than the best estimate error (or model bias) with out noise, i.e., the cases when
n < 20 in Figure 2.4.14.
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Figure 2.4.13: Variations of the L2 and H1 relative errors with respect to the reduced dimension
n for MLCS-PBDW and PBDW with sensor width r = 0.005, for two different noise level σ of
uniformly distributed noise.
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Figure 2.4.14: Variations of the L2 and H1 relative errors with respect to the reduced dimension
n for general CS-PBDW approach (2.4.2) and MLCS-PBDW approach (2.4.5) with sensor width
r = 0.005, for two different noise level σ of uniformly distributed noise.
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Figure 2.4.15: Variations of the L2 and H1 relative errors with respect to the reduced dimension n
for MLCS-PBDW approach (2.4.5) and APBDW approach (2.4.1) with sensor width r = 0.005, for
two different noise level σ of uniformly distributed noise.

We also illustrate the recovery errors with APBDW approach (2.4.1) in Figure 2.4.15. From
this figure we observe that i) APBDW is still unable to balance the noise and model bias when the
noise is relatively small with respect to the model bias, ii) APBDW is unable to stabilize the noise
when the reduced space dimension n is relatively large, the cases when PBDW/APBDW are able
to provide very high accuracy. On the contrary, MLCS-PBDW stabilizes the noise in all cases.

2.4.3 Noise with Gaussian distribution

Formulation

We then analyze the Gaussian noise. Assume each ei is Gaussian noise with zero mean and
variance σ2

i , the density is pi(z) = (2πσ2
i )

−1/2e−z2/2σ2
i , and the maximum likelihood function [41]

of u that provides the noisy observations yyyo is

l(u) = −
m
∑

i=1

1

2
log(2πσ2

i )−
m
∑

i=1

1

2σ2
i

(ℓi(u)− yoi )
2. (2.4.7)

Therefore the ML estimation of ut is equivalent to solve

(u)ML = arg min
u∈V

m
∑

i=1

1

σ2
i

(ℓi(u)− yoi )
2. (2.4.8)

Now we state the maximum likelihood constrained stabilized PBDW (MLCS-PBDW) approach with
Gaussian noise, which reads: find (u∗ = v∗ + η∗ ∈ V, v∗ ∈ Vn, η

∗ ∈ V ) such that

(v∗, η∗) = argmin
v∈Kn(τ,α0)

η∈V

ξm‖η‖2 +
m
∑

1

1

σ2
i

(ℓi(v + η)− yoi )
2, (2.4.9)

where ξm is a trade-off factor between the complementary part ‖η‖2 and the maximum likelihood
estimation part

∑m
1

1
σ2
i

(ℓi(v + η)− yoi )
2, because for each term we look for minimum value.

We consider the algebraic form of MLCS-PBDW approach (2.4.9). We recall the notations of
W,M,A,D,K, then the algebraic form of (2.4.9) is: find θ∗ = (β∗

1 , · · · , β∗
m, α∗

1, · · · , α∗
n)

T ∈ Rm+n
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(or u∗ =
∑m

I=1 β
∗
i wi +

∑n
j=1 α

∗
jqj ∈ Vn +Wm) such that:

θ∗ = argmin
θ∈Rm+n

ξmθT
Kθ + (Aθ − yyyo)TD−1(Aθ − yyyo) s.t. |θi| ≤ θ0i , i = 1, · · · ,m+ n (2.4.10)

where θ0i = +∞, i = 1, · · ·m; θ0i+m = τα0
i , i = 1, · · ·n.

Remark 2.4.2 When the noise on each observation is independent and identically distributed
(IID) gaussian noise, (2.4.10) is equivalent to the general CS-PBDW approach (2.4.3).

Remark 2.4.3 (Noise with Laplacian distribution) When ei is Laplacian distributed noise,
i.e., pi(z) = (1/2a)e−|z|/a, where a > 0, the ML estimation of ut is equivalent to solve

(u)ML = argmin
u∈V
‖ℓ(u)− yyyo‖1 (2.4.11)

Now we state the maximum likelihood constrained stabilized PBDW (MLCS-PBDW) minimization
statement with Laplacian distributed noise, which reads: find (u∗ = v∗ + η∗ ∈ V, v∗ ∈ Vn, η

∗ ∈ V )
such that

(v∗, η∗) = argmin
v∈Kn(τ,α0)

η∈V

ξm‖η‖2 + ‖ℓ(v + η)− yyyo‖1 (2.4.12)

where ξm is a trade-off factor between the complementary part ‖η‖2 and the maximum likelihood
(ML) constraint ‖ℓ(v + η)− yyyo‖1.

Numerical results

The numerical results are based on Test case 2.2.1. We list the variations of the L2 and H1

relative errors with respect to the reduced dimension n for MLCS-PBDW and APBDW approaches
in Figure 2.4.16 for Gaussian noise with standard deviation σ = 0.01 or 0.001. The sensor width is
r = 0.001. The number of observations m = 2n with the first n observations selected with GEIM
greedy algorithm and the left selected with Algorithm 2.2.5. The numerical results again confirm
that the CS version improves the stability with respect to PBDW/APBDW.
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Figure 2.4.16: Variations of the L2 and H1 relative errors with respect to the reduced dimension n
for MLCS-PBDW and APBDW with sensor width r = 0.001, for two different standard deviations
σ of Gaussian noise.
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2.5 Regularized stabilized recovery

2.5.1 Formulation

The constrained stabilized recovery problem, e.g., (2.3.9) or (2.4.3) is a constrained QP problem,
that aims at finding a function from a polyhedron Kn(τ, α

0) making the distance between the real and
simulated observations minimal. Successful approaches to solving bound-constrained optimization
problems for general linear or nonlinear objective functions could be found in [112, 159, 138, 160]
and the Matlab function fmincon. Approaches which are specific to least-squares problem are
described in [28, 142, 161] and the Matlab function lsqlin. The shortcoming of these algorithms is
time-consuming because of iteration process. To meet online calculation for monitoring purpose, a
simpler and closed form to solve these problems is necessary.

Here we introduce an approach whereby the bound constrained problem is written with n
quadratic inequality constraints, (2.3.9) becomes

α∗ = argmin
α∈Rn

‖Mα− yyyo‖22 subject to: α2
i ≤ (τα0

i )
2, i = 1, · · · , n (2.5.1)

The necessary and sufficient KKT conditions for a feasible point α∗ to be a solution to (2.5.1) are

(MTM+ λ∗)α∗ = MTyyyo

λ∗
i ≥ 0 i = 1, · · · , n,

λ∗
i [(τα

0
i )

2 − α2
i ] = 0 i = 1, · · · , n,

(τα0
i )

2 − α2
i ≥ 0 i = 1, · · · , n,

(2.5.2)

where λ∗ := diag(λ∗
i ) is a diagonal matrix. Reformulating the box constraints |αi| ≤ τα0

i as
quadratic constraints α2

i ≤ (τα0
i )

2, i = 1, · · · , n effectively circumscribes an ellipsoid constraint
around the original box constraint. In other words, we replace Kn(τ, α

0) with the ellipsoid one

εn(τ, α
0) where εn(τ, α

0) := {x ∈ Rn :
∑n

i=1
α2

i

(τα0
i )

2 ≤ 1}. In [171] box constraints were refor-
mulated in exactly the same manner, in which parameters were found which ensure that there is
a convex combination of the objective function and the constraints. Another possibility to solve
this optimization problem is with the penalty or weighted approach, similar work can be found in
[156, 125].

Here, we apply the penalty or weighted approach to the quadratic, inequality constrained problem
to(2.5.1), then Tikhonov regularization [11] can be viewed as a quadratically constrained least
squared problem when the constraint in (2.5.1) is considered as a regularized term. In this case,
a penalty term on α is added to the objective function, and multiplied by a matrix that contains
the bounds of the inequality constraints i.e. α0

i . This matrix comes from the first KKT condition
(2.5.2), which is the solution of the least-squares problem:

α∗ = argmin
α∈Rn

‖Mα− yyyo‖22 + ‖(λ∗)1/2α‖22 (2.5.3)

We view the inequality constraints as a penalty term by replacing λ∗ with C = diag((α0
i )

2), and
taking the maximum a posteriori estimation (MAP) [19] to weight the least-squares problem with
the inverse of the covariance matrix D for the mismatch between the observation data and the
simulated ones, thus we have the following closed form:

α∗ = argmin
α∈Rn

‖D−1/2(Mα− yyyo)‖22 + ζm‖C−1/2α‖22 (2.5.4)

where ζm is the penalty or regularization factor. In our case, the penalty factor reflects the relative
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weight of each basis to the function u we want to approximate. (2.5.4) is a typical way to regularize
a problem with Tikhonov regularization, the L-curve [33] approach is used to find the factor ζm.
This is done by solving (2.5.4) multiple times with various ζm to get multiple solutions α. Once
these solutions are obtained, a log-log plot of J1 = ‖D−1/2(Mα−yyyo)‖22 versus J2 = ‖C−1/2α‖22 will
typically be in the shape of an L, and the optimal value of ζm is the one at the corner.

We now state the regularized stabilized recovery with reduced basis.

Proposition 2.5.1 (Regularized stabilized GEIM, R-GEIM) The regularized stabilized GEIM
in algebraic form is: find α∗ (or u∗ = Bα∗) s.t.

α∗ = argmin
α∈Rn

(Mα− yyyo)TD−1(Mα− yyyo) + ζmαTC−1α (2.5.5)

with solution α∗ = [MTD−1M + ζmC−1]−1MTD−1yyyo, thus u∗ = Bα∗ =
∑n

i=1 αiqi, where ζm is
determined with L-curve method.

Apply the same idea to the constrained stabilized PBDW problem (2.4.3), by defining a ma-
trix P(m+n)×(m+n) = diag((θ0i )

2), and following all the notations in (2.4.3), we have the following
proposition:

Proposition 2.5.2 (Regularized stabilized PBDW, R-PBDW) The regularized stabilized
PBDW in algebraic form is: find θ∗ = (β∗

1 , · · · , β∗
m, α∗

1, · · · , α∗
n)

T ∈ Rm+n (or u∗ =
∑m

I=1 βiwi +
∑n

j=1 αjqj ∈ Vn ×Wm) such that:

θ∗ = arg inf
θ∈Rm+n

ξmθT
Kθ + ζmθT

P−1θ + (Aθ − yyyo)TD−1(Aθ − yyyo) (2.5.6)

the solution is θ∗ = [ATD−1A+ ζmP−1 + ξmK−1]−1ATD−1yyyo, where ζm is the regularization factor
for the reduced space constraint, and ξm is a trade-off factor for model update/bias.

2.5.2 Numerical results

We illustrate the performance of R-GEIM and R-PBDW based on Test case 2.2.1 as stated
before.

We first analyze R-GEIM. Let us select three different reduced dimension cases with n = 40, 60, 80
and two observation systems with sensor width r = 0.001, 0.005 respectively. In all cases, we set the
number of observations m = 2n. Then we solve the recovery problem with (2.5.5), for two different
standard derivations σ = 0.01 or 0.001 of Gaussian noise with different regularization factor ζm.
The L-curves of all the cases are presented in Figure 2.5.18, which shows that i) the regularization
factors ζm are almost the same for different reduced dimension, but ii) for different noise level or
sensor width, they are different.

In Figure 2.5.17, we show the variations of the L2 and H1 relative errors with respect to the
reduced dimension n for R-GEIM, for sensor width r = 0.001, 0.005 with Gaussian noise with stan-
dard deviation σ = 0.01 or 0.001. For each case, the regularization factor is selected corresponding
to the one at the corner of the L-curve. It is easy to see that, with a proper regularization factor,
R-GEIM shows a better stability performance than CS-GEIM.
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Figure 2.5.17: Variations of the L2 and H1 relative errors with respect to the reduced dimension n
for CS-GEIM and R-GEIM, for two values of the sensor width r and two standard deviations σ of
Gaussian noise.
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Figure 2.5.18: Variations of the L-curves for R-GEIM for Test case 2.2.1, for three different values of
reduced dimension n, two different values of sensor width r and two different standard derivations
σ of Gaussian noise.

Now let us turn to analyze R-PBDW. From (2.5.6), we observe that there are two regularization
factors, ξ and ζ, the classical L-curve method is thus not feasible, the way to choose the proper
regularization factor pair (ξ, ζ) is a little complicated. A proposed method is that, for a fixed reduced
space dimension n, the number of observations m and the noise level σ, one can simulate the recovery
problem multiple times with different regularization factor pairs, and choose the pair which provides
the smallest recovery error. Figure 2.5.19 shows the variations of the H1 relative errors (in log scale)
for different regularization factor pairs (ξ, ζ) and two different standard deviations σ = 0.01 or 0.001
of Gaussian noise, for n = 60, m = 120 and r = 0.005.

Then we show the variations of the L2 and H1 relative errors for R-PBDW approach in Figure
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2.5.20, for two sensor width values r = 0.001, 0.005 and two standard deviations σ = 0.01 or 0.001.
The numerical results again confirm that, R-PBDW shows almost the same stability performance
with respect to CS-PBDW.

We conclude that, the linear form (2.5.5) and (2.5.6) of the regularized stabilized GEIM and
PBDW provide a very high efficiency computing framework, meanwhile, keep the same accuracy
with respect to the CS versions, the latter are relatively time-consuming as constrained QP problems.
Thus the regularized versions are more feasible for online purpose.
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Figure 2.5.19: Variations of the H1 relative errors (in log scale) for different regularization factor
pairs (ξ, ζ), for two different standard deviations σ of Gaussian noise, and n = 60, m = 120,
r = 0.005.
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Figure 2.5.20: Variations of the L2 and H1 relative errors with respect to the reduced dimension n
for R-PBDW and CS-PBDW, for two values of the sensor width r and two standard deviations σ
of Gaussian noise.
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2.6 Conclusions

In this chapter, we first analyzed the stability performance for the recovery problem with reduced
basis. We presented two stability factors in order to measure the stability, i) with respect to the
observation noise, the stability factor ‖Q‖ is used, ii) with respect to model mismatch, the Lebesgue
constant Λ is used. With the stability analysis, one is able to i) calculate the two factors for the
underlying practical problem, and evaluate the performance of the recovery methods e.g. GEIM
or PBDW, etc., ii) optimize the sensor placements or the amount of sensors needed for different
practical goal, particularly in controlling the model mismatch or measurement noise.

Furthermore, stability analysis also showed that, for those recovery methods with reduced basis,
the stability with respect to noisy observations is more sensitive than the stability with respect
to model mismatch. By designing a ‘high resolution’ observation system and also increasing the
amount of observations, both the stability with respect to model mismatch and the stability with
respect noisy observations can be improved, but only up to some extent. Another way to stabilize
the procedure is, for the underlying problem, if the Kolmogorov n-width of the manifoldM decays
fast with n, it is possible to improve the stability by adding some constraints on the reduced basis,
which is equivalent to add some physical constraints on the underlying problem. In this spirit, we
proposed a constrained stabilized GEIM and PBDW respectively. Numerical results showed that in
presence of measurement noise, CS-GEIM and CS-PBDW are able to control the noise amplification.
Furthermore, by adding more measurements, the recovery errors with CS version are even lower than
the noise level.

In the end of this chapter, we proposed the regularized stabilized GEIM and PBDW, i.e., R-
GEIM and R-PBDW, which provide a very high efficiency computing framework, meanwhile, keep
the same accuracy with respect to the CS versions, the latter are relatively time-consuming as
constrained QP problems. Thus the regularized versions are more feasible for online purpose.

In the next chapter, we will show more industrial applications for these stabilized recovery
methods in nuclear reactor physics domain.
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In this chapter, we introduce the data assimilation framework with the generalized empirical
interpolation method. We shall remind that some basics may have been explained in the previous
chapters but for the sake of convenience we remind in this part so that the reading of the chapters
can be done separately. First in Section 3.1, we give a general background for the application of
GEIM to nuclear reactor domain. Then in Section 3.2, we present the physical context of neutronic
modeling and simulation. In Section 3.3, we remind the GEIM methodology, then we adapt this
methodology to neutronic field reconstruction problem by exploiting a greedy algorithm within
measurements from thermal flux and reconstructing the fast/thermal flux and power distribution
in Section 3.4. In Section 3.5 we present the numerical tests of the adapted GEIM based on two
benchmark problems in nuclear domain, i.e., i) a 1D homogeneous slab reactor, and ii) a 2D IAEA
benchmark problem. Finally, in Section 3.6 we draw a short conclusion for this chapter.

We indicate here that part of the chapter (e.g. from Section 3.3 to Section 3.5) has been presented
in a published paper with J.-P. Argaud, B. Bouriquet, F. de Casoa, Y. Maday and O. Mula. Its
reference in the manuscript is [14].
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3.1 Introduction

Nowadays, the production of nuclear energy is done under very high safety standards where
tight criteria must be satisfied both at design and operational levels. What is essentially required is
the accurate knowledge of significant quantities like temperature, neutron flux, power, irradiation
or fluence. The quantities can be global outputs like the maximum or average temperature or the
total generated power but the knowledge of more detailed information like temperature, flux and/or
power maps in the whole reactor may also be required. The knowledge of any of these quantities
is accessed either through the study of parametrized models and/or through measurement data
collected from the reactor itself. In very general lines, the usual way to work with models and data
at design and operation levels is the following:

• At design stages, the goal is essentially to first find the most realistic model for the physics’
core and then optimize the parameters of the model to find the safest core configurations. At
this stage, if measured data from previous experiments are at reach, they are only used to find
the model.

• At the operational level, the information is primarily obtained via sensor measurements. Their
placement has to be carefully optimized in order to retrieve as much information as possible
while the reactor is running.

In all these modeling and optimization steps, the experience of engineers plays a crucial role in
order to find the best acceptable configurations.

Even more, due to the complexity of the physics, it is sometimes necessary to combine the
expertise of engineers from different fields and the modeling/optimization process might require
several iterations between experts before satisfying all the desired criteria. In this context, this
chapter is a contribution to making these tasks become more systematic. For this, we apply the
method that we have been presenting and analyzing in the previous chapters for data assimilation
and model order reduction to the field of reactor simulations. For a given quantity of interest, the
method provides a quick approximation of it by combining the measurement data and the knowledge
of a parametrized model. The key idea is to do the reconstruction on a well chosen finite dimensional
space of reduced dimension. The basis functions of this space are solutions to the model problem
for appropriately chosen parameter values. This idea, which is the root of reduced order modeling
techniques such as reduced basis, constitutes the reduced modeling part of our approach.

An overview of reduced bases can be found in the reference books [107, 24] and a summary on
some relevant applications to nuclear engineering is given in Chapter 1. With respect to these works,
the new main ingredient that we bring is the combination of this idea with data assimilation. This is
done via the Empirical Interpolation Method (EIM, [21]) which we will use in its generalized version
(GEIM, see [144, 145]). In this approach, at least the basic step, the approximation in the space of
reduced dimension is defined in such a way that the measures on the approximant coincide with the
measured data. Two features of this methodology which might be of interest to the community of
nuclear engineering are the following:

• The information from the model and the measurements is incorporated simultaneously and
not in a sequential manner like in the classical procedures in nuclear engineering.

• Since the approximation is done on a space of small dimension (dimension between 30 and 50
is usually enough in many cases, in the real application it is more about 50), its computation
is very quick. This could be helpful to accelerate some steps at design and operation stages.

We would like to emphasize that GEIM belongs to a broader class of recovery methods which
gathers other approaches like the PBDW methodology of [148] where the use of data allows not only
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to reconstruct the quantities of interest, but also to correct the possible bias in the mathematical
model. Here we shall not use this feature and assume that the mathematical model is perfect. The
whole class is subject of current active research in the community of applied mathematics (see, e.g.,
[169, 29, 77, 146]) since it carries potential to address in a unified methodology different types of
inverse or uncertainty quantification problems arising in a large variety of physical systems. Among
the possible applications of the method to the field of reactor physics stand

(i) the search for optimal sensor locations to measure certain quantities of interest during the
operation of the core,

(ii) the acceleration in the search for optimally safe and/or efficient core configurations since GEIM
gives a quick reconstruction of the quantities of interest.

Much more ambitious is the possibility to take into account the accuracy of the sensors in the
placement selection. Indeed one could be interested in using few, very accurate, sensors and more,
less accurate ones. The natural questions are then to place them in an optimal way. Another related
question is: given a certain budget, what is the best location/quality/number of sensors to recover
the best approximation. This question is difficult to answer in general but a recent investigation
on this topic can be found in [31]. At any rate, we emphasize that the method cannot completely
replace the experience of experts of the field. It should be seen as a tool to assist them in doing
these tasks more efficiently and especially in a more systematic way.

3.2 Physical context

The purpose of this section is to present the physical context of neutronic modeling and simu-
lation. Some notions of neutronic physics related to our problem will be introduced. We refer the
reader to the books [200, 101, 153] for more details of neutronic physics and nuclear reactors.

3.2.1 Objective of reactor physics

Nuclear reactors are engineering devices in which controlled nuclear fission chain reactions are
maintained and from which the produced nuclear energy is extracted for useful uses, such as gen-
eration of electricity. In such a device, neutrons induce nuclear fission reactions with heavy nuclei
called nuclear fuel. The constituent materials of a reactor are generally fuel, coolant/moderator,
structural materials, and fission control material. We illustrate a two-dimensional schematic of a
typical configuration of a power reactor core and fuel assembly in Figure 3.2.1. In general, these
materials are arranged very heterogeneously due to neutronics, thermal-hydraulics, and structural
considerations, etc. In addition, these structural arrangement and the constituents may change
depending on the life-cycle of the fuel or on the operational mode of the reactor, including accident
conditions.

Although the discipline of reactor physics that deals with the design and analysis of such reactors
encompasses several areas in science and engineering, the reactor physics has matured on its own
and established a unique field; and thus in particular, reactor analysis and methods development
may be characterized as a discipline concerning determination and prediction of the states of a
reactor that sustains chain reaction by balancing neutron production by fission and loss by capture
and leakage.

More specifically and summarily, we can say that the objective of the reactor analysis is to
determine:
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i) neutron multiplication factors for various configurations of a reactor, and

ii) neutron flux distributions (hence, power distributions that are generated), spatial and tempo-
ral, under various operating (including accident) conditions.

Thus, the results of reactor design and analysis become the base or springboard to other activities
necessary in the realization of a nuclear power plant. More details on this process may be found in
any of the numerous textbooks written on nuclear physics [200, 153, 101].

Figure 3.2.1: Typical configuration of 1/8 ractor core and fuel assembly.

3.2.2 Governing equations

In this thesis, we shall focus on the second objective above: neutron flux/power distributions.
For that, we have to take into account the motion of the neutrons and their interactions with the
host nuclei of various kinds. Thus, we need a mathematical model or theory to describe this particle
transport phenomena.

As a high-level model that describes the distribution of neutrons in a medium such as a reactor,
we usually consider the following Boltzmann transport equation [55, 74]:

1

v

∂

∂t
ϕ(r, E, ~w, t) + ~w∇ϕ(r, E, ~w, t) + Σt(r, E)ϕ(r, E, ~w, t)

=

∫

4π

d~w′
∫ ∞

0

dE′Σs(r, E
′ → E, ~w′ · ~w)ϕ(r, E′, ~w′, t)

+
χ(E)

4π

∫

4π

d~w′
∫ ∞

0

dE′νΣf (r, E
′)ϕ(r, E′, ~w′, t) + qex(r, E, ~w, t)

(3.2.1)

with appropriate initial and boundary conditions provided. In full generality, this equation has
seven independent variables: three spatial variables r, two direction-of-flight (or angular) variables
~w, energy E and time t. In (3.2.1), the angular neutron flux ϕ is defined as

ϕ(r, E, ~w, t) = vn(r, E, ~w, t) (3.2.2)

where v =
(

2E
m

)1/2
with energy E in direction ~w, and the angular neutron density n has the following

meaning: n(r, E, ~w, t)drdEd~w is the expected number of neutrons in dr, dE, d~w around the phase
space in point r, E, ~w at time t. The upper case Σ stands for macroscopic cross sections, other
notations are standard [200, 153].

It is customary to first represent the differential scattering cross section in Legendre components:
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Σs(r, E
′ → E, µ0) =

∞
∑

l=0

2l + 1

4π
Σsl(r, E

′ → E)Pl(µ0) (3.2.3)

where µ0 = ~w′ · ~w. In the case of time-independent or steady-state situation, (3.2.1) becomes
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(3.2.4)

Because the solutions to the transport equation for realistic reactor problems are difficult to
obtain, and also due to the fact that knowledge of the neutron density or the neutron flux

φ(r, E) =

∫

ϕ(r, E, ~w)d~w (3.2.5)

is sufficient for most applications such as the fission rate distribution, one is interested in obtaining a
governing equation with φ(r, E) as unknown instead of ϕ(r, E, ~w). We begin by defining, in addition
to (3.2.5), also neutron current density

~J(r, E) =

∫

4π

ϕ(r, E, ~w)~wd~w (3.2.6)

and integrate (3.2.4) over the angular variable, resulting in P1 equations [123]. If we assume that
the angular flux is only weakly dependent on the angle, i.e., linearly anisotropic (which would not
be good in a highly absorbing medium or near the boundary or in a medium of rapid variation of
cross sections):

P1 approximation: ϕ(r, E, ~w) =
1

4π
φ(r, E) +

3

4π
~w · J(r, E), (3.2.7)

then we define the so called diffusion coefficient,

D(r, E) =
1

3

[

Σt(r, E)−
∫∞
0

Σsl(r, E
′ → E)Ju(r, E

′)

Ju(r, E′)

]−1

, (3.2.8)

where u = x, y, z. We can write formally as

J(r, E) = −D(r, E)∇φ(r, E), (3.2.9)

which is the so-called Fick’s law [81]. Finally, the two P1 equations are combined to give the so
called continuous-energy diffusion equation:

−D(r, E)∇φ(r, E) + Σt(r, E)φ(r, E) =

∫ ∞

0

Σs0(r, E
′ → E)φ(r, E′)dE′

+ χ(E)

∫ ∞

0

νΣf (r, E
′ → E)φ(r, E′)dE′ +Qex(r, E

′)
(3.2.10)

The transport equation (3.2.1) and the diffusion equation (3.2.10) are of continuous form in
independent variables. Except for extremely simple cases, it is not feasible to find exact solutions
for them. We need to call for variety of methods by which the governing equations are discretized
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and solved numerically. The first discretization we consider is the energy variable, called multigroup
approximation.

The multigroup discretisation splits up the energy into a number of so-called energy groups
determined by a discrete set of values EG < EG−1 < · · · < E1 < E0. Each group has an asso-
ciated scalar flux solution, φg, and a set of material parameters. The behaviour of the neutrons
is described by the macroscopic cross-sections corresponding to fission, scattering and absorption,
denoted Σf

g ,Σ
s
g′→g,Σ

a
g respectively, where the subscripts g and g′ indicate a particular group. The

cross-sections represent the probabilities that fission, scattering or absorption will occur. The param-
eter Dg which controls how the neutrons diffuse through the domain, depends on the cross-sections
according to Dg(r) =

(

s(Σa
g(r) + Σs

g(r))
)−1

. The criticality is a measure of the growth or decay of
the neutron population in a system over successive neutron generations in a fission chain reaction.
In order to study criticality, the governing equation is cast in the form of an eigenvalue problem by
introducing the effective multiplication factor, keff . If neutrons removed from the system exactly
balance those created, the system is adjudged critical (keff = 1). If more neutrons are produced
than removed then the system is super-critical (keff > 1). If fewer neutrons are produced than
removed the system is sub-critical (keff < 1).

For group g, the criticality eigenvalue problem of the multigroup neutron diffusion equation is

−∇ · (Dg(r)∇φg(r)) + Σa
g(r)φg(r)−

G
∑

g′=1
g′ 6=g

Σs
g′→g(r)φg′(r) =

χg

keff

G
∑

g′=1

νg′Σf
g′(r)φg′(r) , (3.2.11)

where χg is the probability that fission will result in a neutron being born in group g, νg is the average
number of neutrons produced per fission event and keff is the effective multiplication factor. There
are two typical boundary conditions considered: reflective boundary conditions Dg∇φg(r) · n = 0,
and void boundary conditions − 1

2Dg∇φg(r) ·n = 1
4φg(r), where n is the outer normal vector on the

boundary.

Note that the numerical scheme to compute what can be interpreted as an eigenvalue 1/keff is
based on the well-known power method (see e.g. [101]). Even though for most practical problems,
there is no analytical solution for (3.2.11), we will show the special one dimension case in which the
analytical solution can be derived in Appendix A. Later the simple analytical case will be used for
the very beginning verification of the methodology.

3.2.3 Neutronics modeling and simulation at EDF R&D

As shown in Figure 3.2.2, the EDF neutronic calculation scheme is based on a classical two-step
calculation approach:

i) The micro-level calculation, also referred to as lattice calculation, determines the neutron
density over a two-dimensional (2D) radial slice of a nuclear reactor fuel assembly based on
assumed boundary conditions (e.g. reflective boundary conditions, specular reflection bound-
ary conditions, periodic boundary conditions, white boundary conditions, vacuum boundary
conditions, etc. [120]). The lattice calculation often comprises relatively accurate mathemati-
cal and/or numerical models, e.g., 1D spatial ultra-fine group neutron transport calculations
for each fuel pin in the lattice, 2D spatial multi-group neutron transport calculations for each
fuel lattice. From these calculations, effective few-group cross sections – representing the
macro-level parameters, i.e., few energy groups and homogenized materials – appropriately
averaged over angular direction, energy and space are determined so as to preserve neutron
reactions rates, and correction factors, e.g., discontinuity factors, are introduced to preserve
neutron leakage. The few-group cross sections are then input to a macro-level model, denoted
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by the core simulator. There are approximately 106 few-group cross sections that are fed to
the core simulator model as input data.

The APOLLO2 package [188, 213] is used at this level. The APOLLO2.8 / REL2005 /
CEA2005v.4 package is a state-of-the-art lattice calculation scheme developed at CEA. There
are currently two flux solvers that are used in APOLLO2, one is based on a multi-cell collision
probability approach (CP) and the other is a full heterogeneous transport solver based on the
method of characteristics (MOC). The cross sections depend on a few feedback parameters such
as boron concentration, fuel temperature, fuel burnup and so on which span a phase space. A
calculation point is an APOLLO2 calculation for a given point in this phase space. Since there
are thousands of calculation points to perform for a given assembly, an application software
converts these data in one object, the XSLIB. XSLIB contains all the input data needed to
perform calculations such as technological data (geometry of components, assemblies, pins
or grids, positions of burnable poisons, instrumentation types, clad constituents, etc.) or
depletion chain.

ii) The macro-level calculation, also referred to as core simulation, uses the few-group cross sec-
tions to calculate approximately 105 macroscopic attributes, including neutron multiplication
factor, safety margins, i.e., distance to design limits, and core-wide flux/power distributions,
etc.

At EDF, all the core simulations are performed with the core code COCAGNE [50] which is
still under development at EDF R&D. This code is part of the new EDF calculation chain,
ANDROMÈDE, which is a major step forward for an industrial core code. It has state-
of-the-art flux solvers, i.e., simplified transport solver (SPn) and Discrete Ordinates (Sn)
transport solver, an efficient microscopic depletion solver, and different levels of cross section
homogenizations (including pin-homogenized or pin-by-pin data) and relies on the APOLLO2
package.

Figure 3.2.2: EDF new neutronic calculation scheme.

3.3 The Generalized Empirical Interpolation Method

3.3.1 Rationale of the GEIM

We first introduce the mathematical notations used throughout this chapter. Let V be a Hilbert
space defined over a physical domain Ω ⊂ Rd (d ≥ 1) and let (·, ·) be the inner product, and ‖ · ‖ be
the associated norm. In our case Ω will be the reactor domain and V will be either L2(Ω), L∞(Ω)
or a product of these spaces.

In order to reconstruct the state f ∈ V of a physical quantity, we assume that we have access to
two types of information:

i) Information coming from measurements collected directly from the physical system. In the
following, we model sensors with linear functionals ℓ ∈ V ′ parametrized by the position x ∈ V
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and the quantity ℓ(f, x) denotes the measurement value given from a sensor located in x ∈ Ω.
The linear functionals can be chosen as Dirac masses, in which case the measurements are
pointwise evaluations of f at some points x ∈ Ω,

ℓ(f, x) = δx(f) = f(x).

A perhaps more realistic option is to work with local averages centered around some point x.
If D(x) is a neighborhood of x and g is a radial function, one can work with

ℓ(f, x) =

∫

D(x)

f(t)g(x− t) dt.

In our numerical experiments, we work either with Dirac masses or local averages depending
on the test case.

ii) An information coming from a physical model, which reads in general in the form of a para-
metric partial differential equation (PDE). We assume that f is the solution of

F(f, µ) = 0, (3.3.1)

where F is a differential operator defined in V and µ ∈ Rp is a vector of p ≥ 1 parameters. In
our case, we assume that for any µ, there exists a unique solution f(·, µ) ∈ V to problem (3.3.1).
However, the particular parameter µ that best describes the system under consideration is in
general not well known. Instead, one usually knows that the parameters may lie in some range
D ⊂ Rp so that the information from the parametrized model is that our function f of interest
belongs to the set

Mf := {f(·, µ) : µ ∈ D}, (3.3.2)

which is called the manifold of states. For certain classes of PDEs and for a given target
accuracy ε > 0, it is possible to approximate the elements of Mf with n-dimensional linear
spaces Vn such that

dist(Mf , Vn) := max
u∈Mf

min
v∈Vn

‖u− v‖ ≤ ε,

and where the dimension n = n(ε) increases moderately with the accuracy ε going to zero
(see [124]). In other words, one can find spaces Vn of reduced dimension which approximate
Mf at high accuracy. The underlying reason for having this property is the regularity in µ
of f(·, µ) for certain PDEs like elliptic ones (see [150, 64, 63]). One technique to build these
spaces are reduced basis methods, which use a greedy algorithm to select functions f(·, µi) for
appropriately chosen parameters µi and then define Vn := span{f(·, µi) : i = 1, . . . , n}.

GEIM combines measured data and a reduced space as follows. We first run a greedy algorithm
which selects

• a set of functions {f(·, µ1), · · · , f(·, µn)} from the manifoldMf . These functions will span our
reduced basis Vn := span{f(·, µi) : i = 1, . . . , n}. For convenience, we will sometimes work
with other functions qi ∈ Vn which are built from linear combinations of the f(·, µi). Their
exact form is given in section 3.3.2.

• a set of locations x1, . . . , xn ∈ Ω for the sensors. The locations are searched among all admis-
sible positions x ∈ Ωadmissible. Mathematically, this is expressed by saying that we search for
sensors σ(·, x) among a dictionary Σ := {σ(·, x) x ∈ Ωadmissible} of potential candidates. One
technical condition which is required is the following unisolvence property : if f ∈ span{Mf}
is such that σ(f) = 0, ∀σ ∈ Σ, then f = 0.
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Once Vn and the sensor locations are selected, we approximate any function f(·, µ) ∈Mf with

Jn[f ](µ) :=
n
∑

j=1

cj(µ)qj ∈ Vn (3.3.3)

The cj(µ) are coefficients which depend on the parameters µ. They are computed using measurement
information by imposing the interpolating conditions

ℓ (Jn[f ](·, µ), xk) = ℓ (f(·, µ), xk) , k ∈ {1, . . . , n}, (3.3.4)

where we see that the coefficients (c1, . . . , cn) are the solution of an n×n linear system of equations.
The reconstruction gives enough accuracy for a small dimension n of Vn. We refer to [145, 146] for
the mathematical analysis of the approach.

The next section explains how the greedy algorithm is exactly defined. Before moving to it, we
would like to emphasize that, in this approach, the mathematical model is assumed to be perfect in
the sense indicated above. Other approaches like the PBDW methodology of [148] allow to correct
the possible model bias.

3.3.2 GEIM greedy algorithm

We start by finding a parameter µ1 in D such that

‖f(·, µ1)‖ = max
µ∈D
‖f(·, µ)‖. (3.3.5)

Note that several parameters µ might maximize the function µ → ‖f(·, µ)‖. In this case, µ1 is
picked among the set of maximizers. The state f(·, µ1) defines V1 = span{f(·, µ1)}. The first sensor
location x1 is one of possibly multiple maximizers such that

|ℓ (f(·, µ1), x1) | = max
x∈Ω

|ℓ (f(·, µ1), x) |. (3.3.6)

To facilitate the practical computation of the generalized interpolant, we do a change of basis in V1.
Instead of working with f(·, µ1) as basis function, we use

q1 =
f(·, µ1)

ℓ(f(·, µ1), x1)
.

For any µ ∈ D, the generalized interpolant of f(·, µ) is

J1[f ](·, µ) = c1(µ)q1 (3.3.7)

and c1(µ) is found with the interpolating conditions (3.3.4) for n = 1. We then proceed by induction.
Assume that, for a given M ≥ 1, we have selected a set of states {f(·, µj)}Mj=1 and the associated
basis functions {q1, q2, . . . , qM} that span VM . Assume also that we have chosen positions x1, . . . , xM

to locate the first M sensors. The generalized interpolant is assumed to be well defined by (3.3.3)
for n = M , i.e.,

JM [f ](·, µ) :=
M
∑

j=1

cj(µ)qj .
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The coefficients cj(µ), j ∈ {1, . . . ,M}, are given by the interpolation problem (3.3.4) for n = M ,
i.e.,











Find {cj(µ)}Mj=1 such that:
M
∑

j=1

cj(µ)Bk,j = ℓ (f(·, µ), xk) , ∀k ∈ {1, . . . ,M}.

where Bk,j are the coefficients of the M × M matrix B := (ℓ(qj , xk))1≤k,j≤M . We now define
f(·, µM+1) such that

‖(f − JM [f ])(·, µM+1)‖ = max
µ∈D

‖(f − JM [f ])(·, µ)‖, (3.3.8)

and xM+1 such that

|ℓ ((f − JM [f ]) (·, µM+1), xM+1) | = max
x∈Ω
|ℓ ((f − JM [f ]) (·, µM+1), x) |. (3.3.9)

Like in the case M = 1, we might have several maximizers and, in this case, we just pick µM+1 and
xM+1 as one of them. The next basis function is then

qM+1 =
(f − JM [f ])(·, µM+1)

ℓ ((f − JM [f ])(·, µM+1), xM+1)

We finally set VM+1 = span{f(·, µj)}M+1
j=1 = span{qj}M+1

j=1 and the generalized interpolant of f(·, µ)
at dimension M + 1 is defined by formula (3.3.3) with n = M + 1. It satisfies the interpolating
conditions (3.3.4) for the sensors located at the M + 1 positions given by the algorithm.

It has been proven in [146] that for any n ≥ 1, the set {q1, . . . , qn} is linearly independent and
that this interpolation procedure is well-posed in V . This follows from the fact that the matrix B
is lower triangular with diagonal entries equal to 1.

Let us now make several remarks.

i) The particular case where V = L∞(Ω) and the dictionary Σ is composed of Dirac masses is
called EIM (and not Generalized EIM). This variant is the first one presented in the literature
(see [21]).

ii) D is a set containing parameters in a continuous range so, in practice, it is not possible to
compute maximum values over D as required in formulas (3.3.5) and (3.3.8). The same applies
for the computation of the maximum over x ∈ Ω in (3.3.6) and (3.3.9). This is the reason why
it is necessary to work with discrete subsets D(training), Ω(training) of D and Ω. They have to
be fine enough so that the maximum over D(training) (resp. Ω(training)) is representative of the
maximum over D (resp. Ω).

iii) In practice, problem (3.3.1) is solved with a numerical scheme that we denote by solve and
which yields an approximation f̄(·, µ) of f(·, µ),

f̄(·, µ) = solve (F (f, µ) = 0) .

For a given µ ∈ D(training), note that f(·, µ) is the exact solution of the PDE (3.3.1). So f(·, µ)
is not known exactly but only via an approximation f̄(·, µ) coming from solve (F (f, µ) = 0).
f̄(·, µ) is the quantity that is considered in the practical implementation of the algorithm. For
any µ̄ ∈ D(training), f̄(·, µ) is called a snapshot and

MD(training) := {f̄(·, µ) : µ ∈ D(training)}

is called the set of snapshots. It is intended to be representative enough of the setMf defined
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in (3.3.2).

The discretizations (D(training), Ω(training), f̄) yield an implementable version of the greedy algo-
rithm. If they are fine enough, the algorithm yields, up to a factor, a convergence rate which is the
same as the greedy algorithm with (D, Ω, f), see [146]. However, quantifying how fine these dis-
cretizations should be is a difficult task. Even more difficult is finding a systematic way of building
the discretizations. One result in this direction is lemma 1 of [146], which quantifies how much one
needs to refine D(training) and Ω(training) at each step M of the algorithm. However, the result is
difficult to use for practical purposes. Another relevant reference is [151] where the authors propose
an approach to refine D(training) by adapting the local approximation spaces to the local anisotropic
behavior in the parameter space, thus expected to be representative enough of the set Mf .

3.4 Implementation of GEIM to a nuclear reactor core

3.4.1 Physical model and remarks on how to apply GEIM

In this work, the neutron flux φ is modeled with the two-group neutron diffusion equation
with null flux boundary conditions, see (3.2.11). So φ has two energy groups φ = (φ1, φ2). Index 1
denotes the fast energy group and 2 the thermal energy one. The flux is the solution of the following
eigenvalue problem:

Find (λ, φ) ∈ C× (L∞(Ω)× L∞(Ω)) such that for all x ∈ Ω,

{

−∇ (D1∇φ1) + (Σa,1 +Σs,1→2)φ1 = 1
keff

(χ1νΣf,1φ1 + χ1νΣf,2φ2)

−∇ (D2∇φ2) + Σa,2φ2 − Σs,1→2φ1 = 1
keff

(χ2νΣf,1φ1 + χ2νΣf,2φ2) ,
(3.4.1)

with
φi|∂Ω = 0 for i = 1, 2.

The coefficients involved are the following:

• Di is the diffusion coefficient of group i with i ∈ {1, 2}.

• Σa,i is the macroscopic absorption cross section of group i.

• Σs,1→2 is the macroscopic scattering cross section from group 1 to 2.

• Σf,i is the macroscopic fission cross section of group i.

• ν is the average number of neutrons emitted per fission.

• χi is the fission spectrum of group i.

The generated power is
P := νΣf,1φ1 + νΣf,2φ2. (3.4.2)

We next make some comments on the coefficients and recall well-posedness results of the eigenvalue
problem (3.4.1). First of all, the first four coefficients (Di, Σa,i, Σs,1→2 and Σf,i) might depend on
the spatial variable. In the following, we assume that they are either constant or piecewise constant
so that our set of parameters is

µ = {D1, D2,Σa,1,Σs,1→2, ν,Σf,1,Σf,2, χ1, χ2}. (3.4.3)
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By abuse of notation, in (3.4.3) we have written Di to denote the set of values that this coefficient
might take in space and similarly for the other parameters.

Note that keff is not a parameter in our setting because, for each value of the parameters µ, keff

is determined by the solution of the eigenvalue problem. In the computation part, the numerical
scheme solve to compute the eigenvalue 1/keff is based on the well-known power method (see, e.g.,
[101]). The spatial approximation uses P1 finite elements of a grid of size h (this value will be
specified later in the following section).

If the parameters of our diffusion model range in, say,

D1 ∈ [D1,min, D1,max], D2 ∈ [D2,min, D2,max], . . . , χ2 ∈ [χ2,min, χ2,max],

then
D := [D1,min, D1,max]× · · · × [χ2,min, χ2,max] (3.4.4)

and the set of all possible states of the flux and power is given by

Mφ1,φ2,P := {(φ1, φ2, P )(µ) : µ ∈ D}, (3.4.5)

which is the manifold of solutions of our problem. It is composed of vectorial quantities (φ1, φ2, P )(µ).
Running GEIM in this case leads to various possibilities. First we could work on a product space
V 3, with measurements on the triplet (φ1, φ2, P ), or on φ1, φ2, P separately, letting the algorithm
select which quantity is best to include at each step n of the greedy algorithm. One could also view
the problem differently and define three independent manifolds











Mφ1
:= {φ1(µ) : µ ∈ D}

Mφ2
:= {φ2(µ) : µ ∈ D}

MP := {P (µ) : µ ∈ D}
(3.4.6)

for which we run three separate GEIM algorithms. To go either one of these two above ways we need
to have access to sensor measurements. For this reason, it is preferable to consider the manifold
(3.4.5) and devise a reconstruction strategy where only thermal flux measurements are taken. We
will follow the approach of [145] where the authors reconstruct the velocity and pressure of a fluid by
using pressure measurements only. We describe how to adapt the strategy to the current neutronics
problem in the next section. We also take into account that there are usually restrictions on the
locations to place the sensors in the reactor Ω. A typical situation is that they can only be placed
in the subdomain of Ω corresponding to the core Ωcore but there are no sensors in the reflector Ωrefl.

3.4.2 A GEIM algorithm for the neutronics problem

In the following C denotes a subdomain of the reactor Ω which is admissible for sensor placement.
To work with the manifold (3.4.5), we modify the greedy algorithm to approximate the flux and
power of Mφ1,φ2,P when:

• we only use thermal flux measurements (related to φ2),

• the sensors can only be placed in a partial region C of the reactor, e.g., C = Ωcore or C = Ω.
We insist here that the norms that are used (e.g in (3.4.7)) are norms on Ω.

Let Ψ(µ) be the triplet (φ1(µ), φ2(µ), P (µ)), and denote by Ψ1(µ) the φ1(µ), Ψ2(µ) the φ2(µ)
and Ψ3(µ) the P (µ). We have measurements ℓ1(Ψ) = ℓ(φ1), or ℓ2(Ψ) = ℓ(φ2) or again ℓ3(Ψ) = ℓ(P ),
but we use only ℓ2. Then we assume that:
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• the Kolmogorov n-width of the manifold of all Ψ(µ) decays fast with n,

• the thermal flux sensors satisfy the unisolvence property,

• for any given µ ∈ D, the knowledge of Ψ2(µ) allows to uniquely reconstruct Ψ1(µ) such that
φ = (Ψ1, Ψ2)(µ) is the unique positive eigenfunction of the eigenvalue problem (3.4.2) for the
given parameter µ. This property is satisfied if we assume that the mapping µ 7→ Ψ2(µ) is one
to one. This is a strong hypothesis and, in the following, we assume that we are in a regime D
of parameters where this is true (we will be able to confirm this in our numerical examples).
We explain why this assumption is necessary at the end of the section.

We start by defining µ1 as the quantity maximizing

max
µ∈D

max
i=1,2,3

‖Ψi(µ)‖. (3.4.7)

The first sensor location x1 is now the one such that

|ℓ2(Ψ(µ1), x1)| = max
x∈C
|ℓ2(Ψ(µ1), x)|. (3.4.8)

Instead of working with Ψ(µ1) as basis function, we use

q1 := (
Ψ1(µ1)

|ℓ2(Ψ(µ1), x1)|
,

Ψ2(µ1)

|ℓ2(Ψ(µ1), x1)|
,

Ψ3(µ1)

|ℓ2(Ψ(µ1), x1)|
). (3.4.9)

For any µ ∈ D, we can then define J1[Ψ](µ) as in the previous algorithm, i.e.

J1[Ψ](µ) := c1(µ)q1. (3.4.10)

For subsequent dimensions, we proceed by induction. We assume that, for a given M > 1, we
have selected {µ1, . . . , µM} and we have the set of locations {x1, . . . , xM} for the sensors of φ2. Then
the approximation of Ψ(µ) reads

JM [Ψ](µ) :=

M
∑

j=1

cj(µ)qj , (3.4.11)

and is well defined. We then define µM+1 as the parameter which maximizes

max
µ∈D

max
i=1,2,3

‖((JM [Ψ])i −Ψi)(µ)‖
‖Ψi(µ)‖

, (3.4.12)

where we use relative errors in order to deal with possible differences in the magnitude orders of
Ψi, i = 1, 2, 3. The next sensor location xM+1 satisfies

|ℓ2 ((Ψ− JM [Ψ])(µM+1), xM+1) | = max
x∈C
|ℓ2 ((Ψ− JM [Ψ])(µM+1), x) |. (3.4.13)

Finally, the (M + 1)-th basis function is

qM+1 :=

(

((JM [Ψ])1 −Ψ1) (µM+1)

|ℓ2(Ψ(µM+1), xM+1)|
,
((JM [Ψ])2 −Ψ2) (µM+1)

|ℓ2(Ψ(µM+1), xM+1)|
,
((JM [Ψ])3 −Ψ3) (µM+1)

|ℓ2(Ψ(µM+1), xM+1)|

)

,

(3.4.14)
and the inductive step is completed.

As we will see later, the interpretation (3.4.11) that is nice (i.e. being able to reconstruct Ψ1

from measurements on Ψ2!). The above approach itself, provided that the set of all Ψ(µ) is indeed
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with small dimension, is standard. The other approach we speak about is to consider indeed three
independent GEIM approaches: one from (φ1(µ), ℓ1), one from (φ2(µ), ℓ2), one from (P (µ), ℓ3).
We again emphasize that the same approach was used in [145] in a Stokes problem with a good
accuracy in the reconstruction. The reference might be of interest to the community studying
thermal-hydraulics in reactor cores.

Before giving some numerical results, a remark on the hypothesis about the bijectivity of the
mapping between µ 7→ Ψ2(µ) is in order. Classical results from spectral theory ensure that, for
µ ∈ D, the mapping µ 7→ (Ψ1,Ψ2)(µ) is one-to-one. However, they do not ensure bijectivity of
the mapping µ 7→ Ψ2(µ). We assume that we are in a parameter regime where this holds because
we reconstruct (Ψ1,Ψ2,Ψ3)(µ) from measurements only acquired from thermal flux Ψ2(µ). If µ 7→
(Ψ1,Ψ2)(µ) is bijective and µ 7→ Ψ2(µ) was not, then we would have existence of µ1 6= µ2 in D such
that Ψ2(µ1) = Ψ2(µ2) but Ψ1(µ1) 6= Ψ1(µ2). This would imply that (JM [Ψ](µ1))2 = (JM [Ψ](µ2))2
and therefore JM [Ψ](µ1) = JM [Ψ](µ2). As a result, we would have reconstructed Ψ1(µ1) and
Ψ1(µ2) with the same function and the quality of approximation would no longer be ensured.

We further note that the above greedy algorithm can be extended to the general case, i.e., to
recovery the multi-physics field Ψ = (Ψ1(·, µ), · · · ,Ψm(·, µ)) ∈ Rm, m ∈ N with the measurements
from the i-th component Ψi, 1 ≤ i ≤ m, where Ψ is the solution to the parameter-dependent problem
F(Ψ, µ) = 0. The bijectivity hypothesis about the mapping between µ 7→ Ψi(·, µ) is necessary.

3.5 Numerical tests on benchmark problems

In this section, we reconstruct φ1, φ2 and P with the only knowledge of thermal flux measure-
ments for two benchmark problems. The examples are in one and two dimensions and use the
methodology of Section 3.4.2. For the sensor selection and placement, we consider two cases:

• Case I: the sensors can be placed at any point, in Section 3.4.2, the partial region C = Ω.

• Case II: the admissible sensor locations are restricted to the core Ωcore, which corresponds to
setting C = Ωcore in the algorithm of Section 3.4.2.

With these two cases, we aim at showing how the GEIM algorithm can be adapted to explore
different restrictions in the positioning of the sensors.

3.5.1 1D homogeneous slab reactor

We consider the classical one-dimensional test case presented in [200, Chapter 4]. The reactor
domain is Ω = [0, 30cm]. The core and the reflector are Ωcore = [0, 25 cm] and Ωrefl = [25, 30 cm]
respectively. The parametrized model is the one given in (3.4.3) with periodic boundary conditions.
The discretization with P1 finite elements uses a mesh of size h = 0.01 cm. We consider only the
value of D1|Ωrefl

in the reflector Ωrefl as a parameter (so p = 1 and µ = D1|Ωrefl
). We assume that

D1|Ωrefl
∈ [0.5, 2.0]. The rest of the coefficients of the diffusion model (3.4.1) (including D1|Ωcore) are

fixed to the values indicated in Table 3.1. In principle, one could also consider these coefficients as
parameters but we have decided to focus only on D1|Ωrefl

because of its crucial role in the physical
state of the core: its variation can be understood as a change in the boundary conditions in Ωcore

which, up to a certain extent, allows to compensate the bias of the diffusion model with respect to
reality.
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Core Reflector
Energy group 1 2 1 2

χ 1.0 0.0 0.0 0.0
νΣf (cm

−1) 0.0085 0.1851 0.0 0.0
Σa(cm

−1) 0.0121 0.121 0.0004 0.020
Σs,1→2(cm

−1) 0.0241 – 0.0493 –
D(cm) 1.267 0.354 ∈ [0.5,2.0] 0.166

Table 3.1: Coefficient values.

In Figure 3.5.3, we show some examples of the behavior of (φ1, φ2, P ) for different values of the
parameter D1|Ωrefl

. We confirm visually that µ 7→ φ2(µ) is a bijective mapping. In addition, we
remind that it is possible if more values of the parameter would have been given, the bijectivity (i.e.
the unisolvence) would not be true anymore.

For any D1|Ωrefl
∈ [0.5, 2.0], we reconstruct Ψ = (φ1, φ2, P ) as outlined at the end of Section

3.4.2, that is, we approximate Ψ with its generalized interpolant JM [Ψ] (see (3.4.11)). For this, we
run a weak greedy algorithm over a set of 300 snapshots of φ2 (solutions of the PDE for a discrete
grid D(training) ⊂ D of 300 parameters). We use pointwise evaluations as a model for the sensors.
The admissible domain for the search of the interpolating points is either C = Ω (case I) or C = Ωcore

(case II).
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Figure 3.5.3: (φ1, φ2, P ) for different values of D1|Ωrefl
. The values have been normalized to a

reference quantity.

Let us now turn to the analysis of the results. We study the performance of the reconstruction
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strategy by considering first of all the decay of the relative errors











e
(training)
n (φ1) := maxµ∈D(training) ‖φ1(µ)− (JM [Ψ])1(µ)‖L2(Ω)/‖φ1(µ)‖L2(Ω)

e
(training)
n (φ2) := maxµ∈D(training) ‖φ2(µ)− (JM [Ψ])2(µ)‖L2(Ω)/‖φ2(µ)‖L2(Ω)

e
(training)
n (P ) := maxµ∈D(training) ‖P (µ)− (JM [Ψ])3(µ)‖L2(Ω)/‖P (µ)‖L2(Ω)

(3.5.1)

in the greedy algorithm. In Figures 3.5.4a and 3.5.4b we plot the decay for case I and II respectively
and observe that both yield very similar results. This is possibly due to the simplicity of the example.
The decay is compared to an indicator of the optimal performance in L2(Ω) which is obtained by
a singular value decomposition of the snapshots φ2(µ), ∀µ ∈ D(training). We see that e

(training)
n (φ2)

decays at a similar rate as the SVD which suggests that GEIM behaves in a quasi-optimal way (see
[146]). We now estimate the accuracy to reconstruct (φ1, φ2, P )(D1|Ωrefl

) for parameter values of
D1|Ωrefl

∈ [0.5, 2.0] which do not necessary belong to the training set D(training). For this, we consider
a test set of 300 parameters D(test) different from D(training) and compute the relative errors











e
(test)
n (φ1) := maxµ∈D(test) ‖φ1(µ)− (JM [Ψ])1(µ)‖L2(Ω)/‖φ1(µ)‖L2(Ω)

e
(test)
n (φ2) := maxµ∈D(test) ‖φ2(µ)− (JM [Ψ])2(µ)‖L2(Ω)/‖φ2(µ)‖L2(Ω)

e
(test)
n (P ) := maxµ∈D(test) ‖P (µ)− (JM [Ψ])3(µ)‖L2(Ω)/‖P (µ)‖L2(Ω).

(3.5.2)

Figure 3.5.5a shows the decay of these quantities for the first case where C = Ω. The behavior is
almost identical to the case with D(training), which suggests that the training set was large enough
for this example (otherwise the decay of the errors on D(test) might not have followed the same
trend). In addition to this, the very fast decay rate of the reconstruction errors for φ1 and P shows
that, in this simple example, it is possible to reconstruct these quantities with measurements of φ2

only. For certain safety studies, one might be interested in the behavior of the algorithm in L∞(Ω).
In this case, very similar results to the L2(Ω) norm are observed as Figure 3.5.5b shows. Also, the
exact same conclusions can be drawn from the results on the second case where C = Ωcore and the
plots are not given for the sake of brevity.
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norms).

As already brought up, the greedy algorithm finds sensor locations that can be used as a sys-
tematic tool for sensor placement. The locations selected in this simple test are given in Figures
3.5.6a and 3.5.6b for both cases I and II. We may note that the first locations (until more or less
ten) tend to arrange themselves uniformly in the interval C. This could be seen as an indication
that the selection is of good quality.
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Figure 3.5.6: Sensor locations chosen by the greedy algorithm.

3.5.2 2D IAEA benchmark problem

We consider the classical 2D IAEA benchmark problem (see page 437 of [3] for its official def-
inition and [1, 208] for implementations with different neutronic codes). The reactor geometry is
shown in Figure 3.5.7. Only one quarter is given because the rest can be inferred by symmetry along
the x and y axis.
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Figure 3.5.7: Geometry of 2D IAEA benchmark, upper octant: region assignments, lower octant:
fuel assembly identification (from reference [208]).

Region D1 D2 Σ1→2 Σa1 Σa2 νΣf2 Material
1 1.5 0.4 0.02 0.01 0.080 0.135 Fuel 1
2 1.5 0.4 0.02 0.01 0.085 0.135 Fuel 2
3 1.5 0.4 0.02 0.01 0.130 0.135 Fuel 2 + Rod
4 [1.0, 3.0] 0.3 0.04 0 0.010 0 Reflector

Table 3.2: Parameter values: diffusion coefficients Di (in cm) and macroscopic cross sections (in
cm−1).

As in the previous example, the parametrized model is the one given in (3.4.3). The computa-
tional domain Ω was not the whole reactor but only the lower octant of Figure 3.5.7. Note that four
regions are numbered: the first three correspond to the core domain Ωcore, and the fourth being
the reflector domain Ωrefl. To account for the symmetries boundary conditions were enforced in the
x = 0 and y = x axis and the external border has zero boundary conditions. The discretization with
P1 finite elements uses a mesh of size h = 1 cm. Like in the previous example, the only parameter is
D1|Ωrefl

for which we assume that it ranges in [1.0 cm, 3.0 cm] (the value in the original benchmark
being 2.0 cm). The rest of the coefficients of the diffusion model (3.4.1) (including D1|Ωcore) are in
accordance with the original benchmark problem. Their values are given in Table 3.2.

Using pointwise evaluations as a model for the sensors and working with a test set of 300
parameters for Dtest, we proceed in the same way as in the previous example to obtain convergence
errors for e

(test)
n (φ1), e

(test)
n (φ2) and e

(test)
n (P ). They are given in Figures 3.5.8 and 3.5.9 for both

cases I and II and in norms L2(Ω) and L∞(Ω). As we can see, the errors decays quickly in all cases,
confirming the efficiency of the methodology in this two dimensional case. However, in comparison
with the previous 1D example, in order to reach the same reconstruction accuracy the dimension of
the reduced space and the number sensors is more or less doubled. The fact that the geometry is
more complex and two dimensional is probably the most important factor to explain this observation.
We finish this example by giving in Figure 3.5.10 the corresponding sensor placement for both cases
I and II. We observe that in both cases the locations tend to cluster around the Dirichlet boundary.
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Figure 3.5.8: Case I, error convergence for the reconstruction of (φ1, φ2, P )(µ) with JM [φ1, φ2, P ](µ)
in 2D.
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Figure 3.5.9: Case II, error convergence for the reconstruction of (φ1, φ2, P )(µ) with JM [φ1, φ2, P ](µ)
in 2D.

(a) Case I. (b) Case II.

Figure 3.5.10: Sensor locations chosen by the greedy algorithm in the 2D example.
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3.6 Conclusions

In this chapter, we introduced a data assimilation framework with reduced basis for sensor
placement and field reconstruction applications in nuclear domain. The framework of GEIM makes
it possible for us to focus on the need for effective, many-query design evaluation in nuclear reactor
domain: i) either real-time scenarios (control, parameter estimation, monitoring), where the solution
of the problem needs to be known very quickly under limited resources for a previously unknown
parameter, ii) or multi-query scenarios (design and optimization, multi-model/scale simulation),
where the problem has to be solved repeatedly for many different parameters.

We set the goal to reconstruct the thermal/fast flux and power distributions with GEIM for
a wide range of parameters variation domain, instead of solving the original neutronic governing
equations with high resolution. To reach the goal, we first adapt the GEIM greedy algorithm, to
be able to reconstruct the flux and power fields only from the thermal flux measurements. We then
showed its applications to sensor placement and field reconstruction based on 1D and 2D benchmark
problems, numerical results confirmed the feasibility of the methodology.
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In this chapter, we show the applications of GEIM methodology on industrial cases, either based
on the realistic nuclear reactors operated by EDF or based on the real physical problem. In Section
4.1, we apply the GEIM method to the determination of the optimal sensor locations over all the
geometries of reactors operated by EDF: PWR 900 MWe, PWR 1300 MWe and PWR 1450 MWe.
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In Section 4.2, the methodology is proposed to reconstruct the flux and power fields of the core
during control rods movements based on the IAEA 2D benchmark. In Section 4.3, we apply GEIM
to the neutron flux/power reconstruction based on EDF reactors in Pin-by-Pin framework, and the
noisy measurements will be addressed in Section 4.4.

We indicate here that Section 4.1 has been presented in a published paper with J.-P. Argaud, B.
Bouriquet, F. de Caso, Y. Maday and O. Mula. Its reference in the manuscript is [14]. Section 4.2
has been presented in a published paper with J.-P. Argaud, B. Bouriquet, Y. Maday and O. Mula.
Its reference in the manuscript is [95]. Section 4.3 is a collaborative work with Francesco Silva, it is
a part of his internship work at EDF R&D.

4.1 Sensor placement in a nuclear reactor core

4.1.1 Introduction

Knowledge of the best locations of measurements in the core is of great interest for industrial
purposes. Of course, the main one is for new core design. But it can be also exploited to address
the question of the sensitivity of the core with respect to the instrumentation failures [37]. In order
to be sure that those two main issues could be addressed, we choose to work on real cases instead of
benchmarks as already verified in previous chapter. Such an approach allows to demonstrate that
the method can be applied in practical cases.

All referenced studies are originally driven by some effects that have been seen in data assimi-
lation studies [36, 37], where it appears that all the instruments in the core do not have the same
impact on the quality of the field reconstruction. As a consequence, the question is: where should
we put the instruments to get the best results? This kind of questions have started getting answers
in previous studies [35], in that work, the position optimization is realized using a Simulated An-
nealing algorithm, based on the Metropolis-Hastings proposition [157]. The results show that there
are some locations that are better suited for instruments positioning, thus we can optimize a full
instrumentation network at the design stage. However, no clear rule or systematic work has been
found in making a good instrumentation network.

In this section, we apply the GEIM method to the determination of the optimal localizations
over all the geometries of reactors operated by EDF: PWR 900 MWe, PWR 1300 MWe and PWR
1450 MWe. Several strategies are developed in order to underline the advantages and limitations
of the determination of the instrumental setup. It is shown that GEIM gives a rather systematic
instrument network that is consistent with what is expected from a physical point of view. Moreover,
we demonstrate that, with respect to the random case, the results of the optimal network with GEIM
are clearly better. Finally, we conclude that GEIM is able to provide a physically coherent sensor
placement with the structure of the neutronic flux in the reactor core.

4.1.2 Problem setting

We consider a realistic core geometry of Pressured Water Reactors of 900, 1300 and 1450 MWe
operated by EDF. The geometry for the PWR 900 and 1300 MWe is the one used in reference [39].
For the PWR1450 MWe, we use the one from [59] and an eighth of the core is presented in Figure
4.1.1a. Our goal is to find flux sensor locations which are well adapted for the whole life cycle of
each reactor. To each time of the life cycle is associated a state of the flux, which is modelled by
the solution to problem (3.4.1) with specific values of the coefficients

µ = {D1, D2,Σa,1,Σa,2,Σs,1→2, ν,Σf,1,Σf,2, χ1, χ2}.
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Here we work with boundary values defined by engineering rules which we do not explain here for
the sake of brevity. The entries of µ vary in space depending on the materials contained in each fuel
assembly. Their values also depend on three macroscopic parameters which give the stage of the life
cycle:

• Pw: the power level of the reactor core. It ranges between 0.3 and 1.

• Bu: the average burnup of the fuel in the whole core. It is a measure of how much energy
is extracted from the fuel so it is an increasing function in time. It ranges between 0 (for
the beginning of the life cycle) and Bumax (the end of the life cycle) and its exact evolution
depends on the operating history of the reactor.

• D1|R: the diffusion coefficient of the reflector (labelled with an R in Figure 4.1.1a). The coef-
ficient follows a classical Lefebvre-Lebigot modelling [153] of the reflector and ranges between
1.0 and 1.6.

Therefore, in this case, µ depends on the vector of “general” parameters

g := (Pw,Bu,D1|R)

that range in
G := [0.3, 1]× [0, Bumax]× [1.0, 1.6].

We remind that Ψ(µ(g)) := (φ1, φ2, P )(µ(g)), so the manifold of solutions is

MΨ := {Ψ(µ(g)) ; g ∈ G}. (4.1.1)

Note that the loading pattern of fuel assembly is octant-symmetry, in practice, the octant power tilt
increases from zero to some extent with the burn-up of the fuel. Thus the simulation is based on
the whole core symmetry, in order to take the possible power tilt into consideration when designing
the sensor placement.

4.1.3 Selection of assemblies to place the sensors for φ2

We have explored two approaches involving GEIM to find sensor locations for φ2 in each PWR.
For technological reasons, their placement is driven by the search of the most convenient assembly
to take measurements so the output of our algorithm will be the assemblies where we locate the
sensors. Therefore, even if the flux and power are three dimensional, our task can be seen as a
2D sensor placement problem and motivates to explore different strategies which we next explain.
In all cases, we have run the greedy algorithms with a training set of 1000 snapshots. They are
the solutions associated to a 5 × 5 × 40 uniform grid G(training) of the parameter set G. Note that
we make a finer sampling on D1|R because we know that the solutions are more sensitive to this
parameter. The snapshots have been generated with COCAGNE [50], an R&D code developped at
EDF R&D. We give in Figure 4.1.1b an example of the 3D power distribution in the core of the
PWR 1450 MWe reactor.

The 3D2D method: We run the greedy algorithm of Section 3.4.2 with:

• the 1000 snapshots in 3D computed with COCAGNE,

• sensors that give local averages of φ2 over portions of the assemblies that are called assembly
nodes. Denoting by A the index set of the assemblies and, for each a ∈ A, defining N(a) as
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(a) Eighth of core (1-33: fuel assembly; R: reflector).
(b) Example of the 3D power distribution over the
core from COCAGNE calculation.

Figure 4.1.1: The fuel assembly loading scheme and an example of 3D power distribution over the
core in a realistic PWR 1450 MWe reactor at EDF.

the set of assembly nodes in assembly a, the measure on an assembly node n ∈ N(a) is

ℓn(φ2) :=

∫

Vol(n)
φ2 dΩ

Vol(n)

As an example, we give the first 20 locations for the case of the PWR 1450 MWe in Figure 4.1.2.

Note that, with this approach, we may select more than one sensor per assembly. As a result,
we need to post-process the output of the greedy algorithm in order to decide what are the most
suitable assemblies. Our strategy goes as follows. We first compute

wa =
∑

n∈N(a)

wn, ∀a ∈ A,

where
wn := max

g∈G(training)
|ℓn (φ2(µ(g))− (JM [Ψ])2(µ(g))) |,

and JM [Ψ] is defined in (3.4.11). We finally arrange the values {wa}a∈A in decreasing order and
choose the assemblies according to this ordering. Figure 4.1.3 shows the first 50 assemblies where
to place the sensors for the three types of PWR’s.

The 2D2D method: In this second approach, we integrate the snapshots over the vertical axis
and run the greedy algorithm in the resulting 2D fluxes and power distributions. The measurements
are averages over the assemblies. This approach gives directly a choice of the assemblies to select
without a post-processing phase. Figure 4.1.4 shows the first 50 assemblies where to place the
sensors for the three types of PWR’s.
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Figure 4.1.2: The first 20 sensors placements, a realistic 1450 MWe reactor.
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Figure 4.1.3: 3D2D: The first 50 ordered optimized positioning of the instruments for
PWR 900/1300/1450 MWe reactor cores.
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(b) PWR 1300
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(c) PWR 1450

Figure 4.1.4: 2D2D: The first 50 ordered optimized positioning of the instruments for
PWR 900/1300/1450 MWe reactor cores.
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4.1.4 Analysis of the results

We first analyze the 3D2D case. From Figure 4.1.3, we notice that the mecanisms of sensor
placement are pretty similar on the three types of PWR’s. Globally speaking, two main areas are
instrumented: one at the center of the core and another one at the limit between the core and the
reflector. As a result, around the center of the core is a “ring” that is rather free of sensors in the
three cases. If we focus on the order in which the first five assemblies are selected, we observe that
the first ones are located at the border for the PWR 900 and 1300 MWe and at the center for PWR
1450 MWe.

The selected locations seem physically coherent with the structure of the neutronic flux in the
core. The main information to be collected by sensors is the flux level inside the core. To get
such information, the best option is to measure close to the center. This gives a good insight of the
overall behavior of the core. Then the second global step is to characterize the behavior at the border
which informs about the balance effect between the production (at the center) and the leakage (at
the border). This explains the placement of the sensors at the border. It can also be linked to the
importance, for global neutronic equilibrium in the core, of properly knowing the neutronic behavior
at the transition between the reflector and the core. Moreover, these effects are also consistent with
the burnup decrease during the whole life cycle of the reactor core, leading to changes in the power
distribution and requiring information on each type of neutronic field distribution from the beginning
to the end of the cycle. Thus the behavior of the method is in agreement with the neutronic physical
expectations.

If we compare globally the sensor placement with the 3D2D and the 2D2D methods, both seem
to be rather close. This confirms that working with the axially integrated flux and power is enough
to determine the optimal positioning of the instrumental network.

We next study the quality of the reconstruction. From an engineering point of view, the most
interesting parameter is the burnup Bu so we focus on its impact in the following. The study is
carried out on examples with 5 and 15 instruments. This may seem to be a small number, but if we
increase the number of sensors to be similar to real cores, the results become too close because the
amount of information provided is enough. This saturation effect of mandatory information for field
reconstruction has already been demonstrated in [37]. Thus, a setup with few sensors is chosen. In
order to better evaluate the quality of the optimized sensor locations, we also analyze 100 random
instrumental setups. In these random cases, the instrumental setup does not use any knowledge
about the interest of each measurement for the overall field quality. This complement is given for
all kinds of cores that we are taking into account in this study.

Figure 4.1.5 shows the mean reconstruction error over the whole core as a function of the burnup
with 5 sensors for the 2D2D and 3D2D methods. The average of the error over the 100 random
configurations is also plotted. We notice that the optimized sensor locations based on the greedy
algorithm are clearly better than the averaged random ones. Moreover, this effect is the same for
all cores. It demonstrates that the greedy algorithm of GEIM is also efficient in practice. We
notice that the 3D2D results are a little worse than the 2D2D ones for the three cores. This can
be understood in terms of dimension according to the instrumental network. As we look for a 2D
network of instrumentation, it seems that the very accurate information we obtain with the 3D case
is not fully useful.

We follow the same lines to analyze the case with 15 sensors. We give results on the field
reconstruction in Figure 4.1.6. From this figure, we can draw a similar conclusion as with the 5
sensors. The sensor placement proposed with GEIM is better than a random selection. However,
when comparing in detail the figures by pairs for the same core type, we notice that the difference
between the random placement and the optimal one for 15 instruments is less obvious. Since more
information is provided with 15 sensors than with 5, the differences between the random and optimal
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is less clear. This is even clearer if we compare the 3D2D and 2D2D cases, which are closer with 15
sensors than with only 5. The 2D2D method is still more efficient than the 3D2D method as it fits
better with the design of the final instrumental network we aim to build.
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Figure 4.1.5: Quality of the reconstruction as a function of the burnup for 5 instruments, for
PWR 900/1300/1450 MWe reactor cores.

Finally, whichever the strategies (3D2D method or 2D2D method) we choose to condensate
information into 2D framework, the optimal networks are far better than the averaged random ones.
It confirms the efficiency of the method for neutronic instrumental network analysis. Moreover, the
2D2D global method seems to be better suited than the 3D2D one.

0.0 0.25 0.5 0.75 1.0
Burn-up / Burn-up max

0.0

0.02

0.04

0.06

0.08

0.1

0.12

Re
co

ns
tr

uc
tio

n 
er

ro
r [

%
]

REP900 - 2D2D - 15 instruments
REP900 - 3D2D - 15 instruments
Random average : 15 instruments - 100 samples

(a) PWR 900

0.0 0.25 0.5 0.75 1.0
Burn-up / Burn-up max

0.0

0.02

0.04

0.06

0.08

0.1

0.12

Re
co

ns
tr

uc
tio

n 
er

ro
r [

%
]

REP1300 - 2D2D - 15 instruments
REP1300 - 3D2D - 15 instruments
Random average : 15 instruments - 100 samples

(b) PWR 1300

0.0 0.25 0.5 0.75 1.0
Burn-up / Burn-up max

0.0

0.02

0.04

0.06

0.08

0.1

0.12

Re
co

ns
tr

uc
tio

n 
er

ro
r [

%
]

REP1450 - 2D2D - 15 instruments
REP1450 - 3D2D - 15 instruments
Random average : 15 instruments - 100 samples

(c) PWR 1450

Figure 4.1.6: Quality of the reconstruction as a function of the burnup for 15 instruments, for
PWR 900/1300/1450 MWe reactor cores.

4.1.5 Conclusions and future works

We have shown how GEIM can be applied to find sensor locations in a real reactor core in a
systematic way. The example dealing with PWR illustrates the quality of the selection: the locations
given by the algorithm yield better reconstruction results than the mean value of a random sampling.
This proves that GEIM has the ability to learn the essential mechanisms of the physical system in
order to provide good indications on sensor locations. In future works, we will include the deviation
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of the model with respect to reality by working with PBDW [148]. In this approach, we work with a
number of measurements m ≥ n and approximate with a least squares projection over the reduced
model Vn. The greedy algorithm recently analyzed in [31] could be implemented in order to find
optimal locations in this setting.

We currently work with synthetic measurements and it would be desirable to consider real data
but there are still some obstructions to address in the methodology. Current research efforts go into
this direction. One of the most important problems to address is that measurements are usually
noisy. Some works in this topic whose results could be easily applied to nuclear engineering problems
are [149, 16, 202].

4.2 Monitoring flux and power during control rods movements

4.2.1 Introduction

Control rods are an important mechanism for maintaining the desired state of fission reactions
within a nuclear reactor. They constitute a real-time control of the fission process, which is crucial
for both keeping the fission chain reaction active and preventing it from accelerating beyond control.
During control rods movements, the power distribution is strongly affected locally, and any unantic-
ipated rod misalignment from an electrical or mechanical failure may lead a reactor core shutdown.
For safety reason to avoid such an issue, the power distribution monitoring system should be able
to detect the abnormality of the control rods.

Many kinds of on-line core monitoring systems, such as BEACON [42], GNF-ARGOS [211]
and SCORPIO-VVER [167] have been developed to estimate in-core power distributions during
operations using several detectors. These detectors provide results at certain locations which reflect
the actual reactor flux or power. Most of those systems also take advantage of the relationship
between control rods position and the power distribution in the reactor [42, 86]. This relationship
between flux shapes and rod positions is rather implicit, so for example neural network techniques
are utilized in [90, 199] to unfold the rod position from the axial flux shape which is measured by
movable in-core detectors. Recently, reduced basis methods have been applied to study the influence
of effects of control rods movements [162, 193].

From the use of information point of view, the methods mentioned above neither take the physical
governing equation/physical field information into consideration sufficiently, nor give an outline to
optimize the sensor deployment in order to maximize the use of measurement information from a
restricted number of sensors. On the other hand, from the on-line monitoring point of view, we
need a simulation tool with real-time simulation capability, which is able to capture the features of
the input/output behavior of a system in a rapid and reliable way, and the computational burden
should be considerably low in terms of computational costs and times.

The GEIM method, which provides the possibility by taking the advantage of reduced basis
method and optimized measurements, is thus proposed to reconstruct the flux and power fields of
the core during control rods movements for the above considerations.

4.2.2 Problem setting

We still consider the classical 2D IAEA Benchmark Problem [3], the core geometry can be found
in figure 3.5.7. The physical model is the one given in (3.4.1). The main effect of control rods
movements is the variety of neutron flux/power shape, caused by the neutron absorption variety of
the control rod assemblies. Note that, the control rods movements are always accompanied with
boron concentration variations, but this doesn’t affect the shape of the flux and power. Thus the
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variable parameter in the diffusion model (3.4.1) is set to be Σa,2|Ωcontrol
∈ D := [0.080, 0.150], the

rest of the coefficients of the model are in accordance with the original benchmark problem, see
Table 3.2. We remind again that Ψ(µ) := (φ1, φ2, P ), so the manifold of solution is

MΨ := {Ψ(µ) : µ ∈ D}. (4.2.1)

We keep the same computing settings as in Section 3.5.2, i.e., to account for the symmetries
boundary conditions were enforced in the x = 0 and y = x axis and the external border has zero
boundary conditions. The discretization with P1 finite elements uses a mesh of size h = 1 cm, and
the pointwise evaluations are used as a model for the sensors.

4.2.3 Implementation of GEIM with an offline-online framework

We implement the greedy algorithm of Section 3.4.2 to reconstruct φ1, φ2 and P with the
knowledge from thermal flux measurements. For the sensor selection and placement, we consider
two cases:

• Case I: the sensors can be placed at any point, in Section 3.4.2, the partial region C = Ω.

• Case II: the admissible sensor locations are restricted to the core except the control rod domain
i.e. Ωcote/control, which corresponds to setting C = Ωcote/control in the algorithm of Section
3.4.2.

We emphasize that, the GEIM greedy algorithm makes it possible to reconstruct the flux and
power during control rods movements based on the following offline-online computation stages:

• Offline phase: select basis functions and measurement functionals with high computational
cost.

– Build a discrete solution set M(training) which is intended to be representative enough
of the set MΨ based on the given physical model i.e. (3.4.1).

– Run the greedy algorithm of Section 3.4.2 to determine the basis functions {qi := (φ1, φ2, P )(µi)}ni=1

and measurement functionals {ℓi}ni=1 where n is determined to meet the given accuracy.

• Online phase: reconstruct flux/power fields with low computational cost.

– Acquire measurement data {ℓi(φ2)}ni=1 of the current state (φ1, φ2, P ).

– Approximate (φ1, φ2, P ) with Jn(Ψ) of (3.4.11) that we recall:

Jn[Ψ] =

n
∑

i=1

ciqi (4.2.2)

where {ci}ni=1 is determined by solving the following equations:

ℓi((Jn[Ψ])2) = ℓi(φ2), i = 1, · · · , n. (4.2.3)

4.2.4 Numerical results and analysis

Let us now turn to the analysis of the results. We first give the first twenty sensor locations
for case I and II in Figure 4.2.7. We observe that, because of the strong effect of the control rods,
many sensors are deployed in the control rods domain (see Figure 4.2.7a) in order to capture the
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behavior of control rods movements. When the control rod assemblies are not available for sensor
placement, which is the normal case, the sensors have to be placed around the control rod assemblies
(see Figure 4.2.7b). Furthermore, the effect of reflector is also considerable, thus several sensors are
placed around the interface of fuel/reflector. That is to say, GEIM has the ability to deal with the
essential mechanisms of the control rods movements based on a learning process from the manifold,
and provides coherent indications on sensor locations.

(a) Case I (C = Ω) (b) Case II (C = Ωcore/control)

Figure 4.2.7: Sensor locations chosen by the greedy algorithm.

We study the performance of the reconstruction strategy by considering first of all the decay of
the relative errors (e(training)n (φ1), e

(training)
n (φ2), e

(training)
n (P )) as defined in (3.5.1) for the training

set M(training) of 300 snaptshots. We also build a test set of 300 snaptshots M(test) which is
different from M(training), and compute the errors (e(test)n (φ1), e

(test)
n (φ2), e

(test)
n (P )) as defined in

(3.5.2). To evaluate the error convergence, we propose two measures: L2 norm and L∞ norm, the
former is an indicator of the average/total effect of the reconstruction error, and latter reflects the
maximum error in the domain, which is essential for safety analysis.

We give the errors from Figure 4.2.8 to Figure 4.2.11 for Case I and II. From these figures, we
can draw the conclusions as follows:

i) Even with the measurements only from the thermal flux, the GEIM algorithm proposed in
Section 3.4 is able to reconstruct the fast flux, thermal flux and the power distribution with
almost the same accuracy, which proves, a posteriori, the bijectivity of the application µ 7→
φ2(µ).

ii) The errors on the test set M(test) are almost identical to the errors on the training set
M(training) suggests that the training set is large enough to present the control rods movements
process(for the specified IAEA 2D benchmark).

iii) The very fast decay rate of the reconstruction errors shows that the Kolmogorov n-width of
the manifold decays rather fast with n. From this point of view, the flux/power fields set
produced by the control rods movements process are rather regular, and only a few number
of basis and measurements can provide very high accurate reconstructions.

iv) The very fast decay rate for Case II also confirms that, this methodology is of engineering
feasibility for control rods movements problem.

4.2.5 Conclusions

To summarize, we applied the GEIM to the control rods movements problem to improve the
flux and the power distribution knowledge in the whole domain, without knowing the control rods
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position (step) parameters thanks to the measurements. To reach this goal, we first construct a
set of snapshots by solving large amounts of PDEs for the underlying physical problem. Then we
select the sensors and the basis functions in a greedy way with GEIM greedy algorithm. With
the optimized measurements, we are able to reconstruct the flux and power distribution in high
accuracy. Numerical results confirm that the proposed GEIM methodology is hopefully acceptable
for control rods movements problem, additionally, the online-offline computational framework is
good for on-line monitoring purpose.
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4.3 Field reconstruction on EDF nuclear reactor cores

4.3.1 Introduction

Nowadays, the two-group and few-group neutron diffusion theory continues to be the workhorse
for practical LWR core calculations because of its relatively low computational cost with respect
to the transport theory. Increasingly coarse mesh nodal methods, such as Analytic Nodal Method
(ANM), Semi-Analytic Nodal Method (SANM), or Nodal Expansion Method (NEM) have been
widely used in the analysis of nuclear reactor cores [197, 196, 214, 181, 88]. These methods provide
only averaged values on the relatively large mesh nodes, while for the safety analysis of the reactor,
it is necessary to know the distribution of the power density in a Pin-by-Pin wise way. In order to
obtain the detailed distributions, the average values of the nodal calculations are used to reconstruct
the pin power distribution [122]. The reconstruction process involves a fundamental assumption,
that is the detailed Pin-by-Pin distributions inside a fuel assembly can be estimated by the product
of a homogeneous flux distribution by local heterogeneous form function. While the homogeneous
flux distribution takes into account the effects of fuel assembly on the vicinity of the core, the form
function loads the heterogeneity of fuel assembly (pin fuel, water holes, burnable poison pins, etc.).

It has only been possible recently with the availability of petascale computing that LWR re-
searchers have focused considerable efforts on performing whole-core LWR calculations using higher
order transport methods [127, 116, 154, 50]. Although several 3D deterministic transport methods
[135, 126, 134, 198] have been developed, it is not easy to apply thenm to realistic whole-core prob-
lems due to accuracy and memory problems. Among them, the Discrete Ordinates (Sn) method
[139] is the most widely used to solve the 3D transport equation. However, this method has dif-
ficulty in treating curvilinear geometry arising from heterogeneity. During the last several years,
the Method of Characteristics (MOC) has been revisited and refined to apply to 2D/1D whole core
calculations [135, 126, 134, 198, 58, 57], that is a synergistic combination of the method of charac-
teristics for radial 2D calculation and the Sn-like method for axial 1D calculation. More recently, a
direct 3D MOC approach has been studied [121], and the computational burden is considerable for
practical LWR applications. Additionally, the EDF core code COCAGNE [50] also implemented the
state-of-the-art flux solvers i.e. simplified transport solver (SPn) and Discrete Ordinates transport
solver.

Even though the direct 3D transport approach is possible, the real-time computation — es-
pecially for on-line monitoring purpose, or many-queries computation for design optimization or
safety evaluation purposes — is still full of challenges because of tremendous amounts of memory
and long computing time for the whole core calculation. The data assimilation with reduced basis
(e.g. GEIM) provides another possibility to estimate the state in Pin-by-Pin wise instead of running
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the transport code directly in this scenario. At any rate, we emphasize that the methodology cannot
completely replace the high performance computing, but provides a computational paradigm that
combines the high performance computing and advanced reduced order modeling techniques.

4.3.2 Problem setting

For the practical reactor core application, we chose an operating PWR 1450 MWe reactor core
that have been used in [59]. Our goal is to reconstruct the pin flux/power distribution for the whole
life cycle of the reactor. To each time of the life cycle is associated a state of the fields, which is
modeled by the solution to the following transport problem

F(φ1, φ2, P, µ) = 0, (4.3.1)

with engineering boundary conditions and specified macroscopic parameters µ, where F is the
transport operator, one can refer to (3.2.4) in Section 3.2.2 for more information. We consider two
main macroscopic parameters:

• Pw: the power level of the reactor core. It ranges between 0.3 and 1.

• Bu: the average burnup of the fuel in the whole core. It ranges between 0 (for the beginning
of the life cycle) and Bumax (the end of the life cycle) and its exact evolution depends on the
operating history of the reactor.

Therefore, in this case, µ depends on the vector of “general” parameters

µ := (Pw,Bu)

that range in
D := [0.3, 1]× [0, Bumax].

So the manifold of solutions is

MΨ := {Ψ(µ) = (φ1, φ2, P )(µ) : µ ∈ D}. (4.3.2)

The sampling of parameters over the space D is done on a regular mesh, and 50 × 50 = 2500
snapshots are generated with COCAGNE transport solver (Pin-by-Pin calculation) to be the training
setM(training). Then the reduced basis and sensor locations are selected with the greedy algorithm
in Section 3.4.2. In order to evaluate the quality of reconstructions, a randomly sampled set of
snapshots M(test) are also generated.

For comparison purposes, we design the following approaches:

• 2D Pin-by-Pin case. We first integrate the snapshots over the vertical axis and run the greedy
algorithm in the resulting 2D fluxes and power distributions.

• 3D Pin-by-Pin case. We work on the 3D Pin-by-Pin snapshots directly.

In both cases, the measurements can be averages over the assembly nodes (e.g. on node can be one
whole assembly or a quarter of an assembly, etc.)

ℓn(φ2) :=

∫

Volass(n)
φ2 dΩ

Volass(n)
, (4.3.3)
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or averages over the pin-nodes

ℓn(φ2) :=

∫

Volpin(n)
φ2 dΩ

Volpin(n)
, (4.3.4)

where Volass(n) and Volpin(n) denote the volume of the n-th assembly node and pin node in the
reactor respectively. For comparison reason, we denote the approach based on the assembly node
wise measurements by GEIM, and denote the approach based on the pin node wise measurements
by EIM though the latter is different from EIM as in [21].

4.3.3 Numerical results and analysis

The 2D case

Let us now turn to the analysis of the results. We first give in Figure 4.3.12 the first nine basis in
2D case, corresponding to the pin node wise and assembly node wise cases. For the assembly node
wise case, the measurements are averages over each assembly as a whole. We notice here that, there
is no big difference for the first seven basis functions between the above two cases. With Pin-by-Pin
measurements, the reduced basis functions are able to keep the high order information of the fields,
and the assembly wise approach can not.
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Figure 4.3.12: The first nine basis functions for pin node wise measurements and assembly node
wise measurements in 2D case.

We apply the relative errors (e(training)
n (·) and e

(test)
n (·) in L2 and L∞ norms defined in Section

3.5) to the training and test sets in order to evaluate the performance of the reconstruction.

We show in Figure 4.3.13 the L2 errors on the training set for pin node wise (EIM) and assembly
node wise (GEIM) cases. For comparison purposes, we also list the best estimation case, i.e., the
orthogonal projection of the field on the reduced space of the same dimension which is built with
POD method (denoted by POD). We observe that, the manifold — even in Pin-by-Pin wise —
which reflects the burnup and power evolution of the reactor core of the whole life is rather regular.
This makes it possible to approximate the field with only a few basis functions and measurements,
e.g., with only 20 basis functions, one can reach an accuracy of 10−4, even with assembly wise
measurements (see ‘GEIM’ in Figure 4.3.13). The reconstruction with GEIM is a little worse than
the best estimation with POD method (the difference is less than one order). Additionally, a smaller
size measurement system (EIM) is better than a large size one, but the difference only appears when
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the number of the reduced basis increases up to some extent (e.g. the reduced dimension n ≥ 20 in
our case).
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Figure 4.3.13: Variations of the L2 relative errors with respect to the reduced dimension n for EIM,
GEIM and POD in 2D case.
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Figure 4.3.14: Variations of the L2 and L∞ relative errors with respect to the reduced dimension n
with pin node wise measurements in 3D case.

The 3D case

We now turn to the analysis of the 3D case. We first study the case where the measurements
the averages on the pin nodes. We first present the L2 and L∞ errors on the training and test set in
Figure 4.3.14, the measurements are based on the pin node values. We notice that, within only 20
basis and measurements, we reach an accuracy of 0.1%, which is one order worse than the 2D case as
shown before. The difference between test errors and training errors also reflects that the snapshots
setM(training) which is used to derive the reduced basis is not fine enough, i.e., for practical usage
of GEIM for the underlying problem, a finer snapshot is necessary. Though the 3D case is a little
worse than the 2D case, the 0.1% relative error is still acceptable for engineering applications.
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Figure 4.3.15: The instrument frame inside the core. The sensor can be placed in any assembly of
the core with different axial segment number (AA1Z for 1, AA2Z for 2 and AA4Z for 4).

ℓn(φ2) :=

∫

Volass(n)
φ2 dΩ

Volass(n)
, (4.3.5)

In reality, the measurements are acquired from assembly node wise sensors rather than pin node
wise sensors. Thus we design the measurements with assembly node Volass(n) in (4.3.5) as follows:

i) Volass(n) ∼ Volassambly, i.e., the measurement is the average over the whole assembly.

ii) Volass(n) ∼ 1
2Volassambly, i.e., the measurement is the average over half of an assembly.

iii) Volass(n) ∼ 1
4Volassambly, i.e., the measurement is the average over a quarter of an assembly.

We show the admissible sensor placement framework of the above three sizes in Figure 4.3.15.
The left shows the radial distribution of the assemblies and the right shows the axial distribution of
the three kinds of sensors, which are denoted by AA1Z, AA2Z and AA4Z respectively. Note that
we already take the grids of the fuel assemblies into consideration, thus there is larger blank in the
bottom than in the top of each assembly.
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Figure 4.3.16: Variations of the L2 relative errors with respect to the reduced dimension n for
different measurements (Volass(n) ∼ Volassambly, 1

2Volassambly, 1
4Volassambly) in 3D case.
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We show in Figure 4.3.16 the L2 relative errors on the training set for the three cases. As
is expected, the reconstruction with 4 measurements in the axial direction provides the highest
accuracy than others. We also list the sensor locations for this case in Figure 4.3.17. Note that
Figure 4.3.17 can be a guide for sensor placement in Pin-by-Pin framework, and it’s very close to
the real engineering case.

The comparison of the L2 errors on the training set between GEIM (with assembly node wise
measurements, the AA4Z case) and EIM (with pin node wise measurements) is shown in Figure
4.3.18. We observe that the AA4Z case is rather close to the EIM case, which also shows an
accuracy of 0.1%. Recall that the AA4Z case is very close to the real case for sensor placement, i.e.,
we do not lose too much accuracy by considering the engineering constraints.

In addition, we show the comparison of the L2 errors on the training set and test set for GEIM in
Figure 4.3.19. Even though the training set is not fine enough, the relative error of the reconstruction
on the test set is still below 1%, this ‘methodology error’ is negligible with respect to the realistic
measurement error which ranges between 1% and 5%. Indeed, for the underlying problem, enrich
the training set is necessary in order to improvement the quality of the reconstruction.

4.3.4 Computational cost

Table 4.1 gives some computational times to illustrate the cost of the greedy algorithm (computed
in an offline stage) and the reconstruct with the reduced basis (online stage).

Items Off-line On-line
One snapshot calculation 46
Prepare M(training), 2500 snapshots 115000
Select 50 basis functions and sensors with GEIM greedy
algorithm

5328

Field reconstruction with 5 basis functions 0.05
Field reconstruction with 15 basis functions 0.25

Table 4.1: Computational cost (in seconds) of GEIM with PWR 1450 MWe reactor core.
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Figure 4.3.17: Sensor locations of GEIM for AA4Z case.
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Figure 4.3.18: Variations of the L2 er-
rors on the training set for GEIM (with
assembly node wise measurements i.e.
the AA4Z case) and EIM (with pin node
wise measurements).
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Figure 4.3.19: Variations of the L2 er-
rors of GEIM (with assembly node wise
measurements i.e. the AA4Z case) for
the training and test sets.

4.3.5 Conclusions

In this section, we applied the GEIM method adapted in Section 3.4.2 to reconstruct the Pin-by-
Pin flux/power distribution during the life cycle of a nuclear reactor core. All the simulations are
based on the PWR 1450 MWe nuclear reactor operated by EDF. Numerical result shows that, the
manifold of the underlying problem (even in Pin-by-Pin wise), which reflects the burnup and power
evolution of the reactor core of the whole life, is rather regular. This makes it possible to reconstruct
the fields with only a few basis functions and measurements. Furthermore, by considering the
measurement system which is close to the real engineering case, the proposed method still provides
an acceptable accuracy.

The extension of the method is to take into account the effect of the noise and qualify its impact
when few instruments remains and also to control the noise amplification through various technique,
either data pre-processing or mathematical correction of the induced error, will be studied in the
next section.

4.4 Reconstruction with noisy measurements

4.4.1 Introduction and problem setting

The examples dealing with PWR illustrate the quality of the field reconstruction given by GEIM.
This proves that GEIM has the ability to learn the essential mechanisms of the physical system in
order to provide good indications on sensor locations and good reconstructions. In previous sections,
we work with synthetic measurements and it would be desirable to consider real data but there are
still some obstructions to address for the methodology. One of the most important problems to
address is that measurements are usually noisy.

In this section, we will study the noisy measurements case with respect to GEIM, PBDW,
for nuclear applications, namely, the control rods movements problem. The problem setting can
be found in Section 4.2. For the measurement noise, we consider two kinds of independent and
identically distributed (IID) noise:
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i) With respect to the upper limits of the reconstruction error, we assume that the observations
suffer from a uniform distributed noise e ∈ [σmin, σmax].

ii) With respect to general statistical performance of the reconstruction, we assume that the

observations suffer from a Gaussian noise with probability density function p = 1
σ
√
2π

e−
(e−ē)2

2σ2 ,
with mean ē and standard deviation σ.

Besides, the localized observation is of particular interest in this work, for the sake of convenience,
we set Gaussian convolution as the measurement functionals:

ℓi(u) = Gauss(u, xc
i , si) ≡

∫

Ω

{

(2πs2i )
−d/2exp

(

−
‖x− xc

i‖2ℓ2(Rd)

2s2i

)}

u(x)dx, (4.4.1)

where xc
i ∈ Rd, d = 2 is the center of the detector in 2D case, and si ∈ R>0 is the filter width of the

detector. We work with L2(Ω) = {u | ‖u‖L2(Ω) < ∞} where the norm ‖ · ‖L2(Ω) is induced by the
inner product (w, v)L2(Ω) =

∫

Ω
w(x)v(x)dx. In this setting, examples of the Riesz representation wi

of the functional ℓi can be found in Figure 4.4.20, for three different values of s.

Figure 4.4.20: Example (4.4.1): plots of the Gaussian convolution as the measurement functionals
for three different values of sensor width s = 1, 2, 4 cm.

To this end, we recall some notations introduced in the previous chapter: V is a Hilbert space
over a domain Ω ⊂ Rd (d ≥ 1) endowed with inner product (·, ·) and induced norm ‖ · ‖ =

√

(·, ·),
Vn ∈ V stands for the reduced space of dimension n, and Wm ∈ V stands for the observation space
spanned by the Riesz representations of the m functionals {ℓi}mi=1.

4.4.2 Stability analysis

Our interest is the stability of GEIM for the control rods movements problem. More generally,
based on the knowledge of Chapter 2, we hope to stabilize the reconstruction and also increase
the accuracy by adding more measurements. Thus we analyze the general recovery problem with
reduced basis and noisy measurements as described in Problem 2.1.1, we recall it here for the sake
of convenience:
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Problem 4.4.1 (Recovery with reduced basis and noisy measurements, RRB) LetM :
= {ut(µ) : µ ∈ D} be the solution manifold of a physical problem, where D is the parameter set.
Assume that we are given a series of linearly independent vectors (qi)i∈N ∈ V which span a se-
quence of reduced space Vn = span{q1, · · · , qn} ∈ V of dimension n, and linear measurements
yyyo = ℓ(ut) + eo = (ℓ1(u

t) + e1, · · · , ℓm(ut) + em)T of ut ∈M. The recovery problem is: find v ∈ Vn

from observations yyyo to approximate the true state ut.

The field ut above can be φ1, φ2 or P , as already shown in Section 4.2, there is not so much
difference for the reconstructions of the three fields with the measurements from thermal flux. Later
we will show that in noisy case, the reconstruction errors of φ1, φ2 or P also follow the same behavior,
thus we will only study the reconstruction of thermal flux in this section for the sake of brevity. Note
that there are two different approaches introduced in Chapter 2 for the above recovery problem, we
recall them here also for the sake of convenience:

i) The LC approach (2.2.7): find v∗LC ∈ Vn s.t.

v∗LC = argmin
v∈Vn

‖ℓ(v)− yyyo‖W , (4.4.2)

where the Gramian matrix W is defined with entries Wi,j = ℓi(wj) = (wi, wj), i, j = 1, · · ·m.

ii) The LS approach (2.2.44): find v∗LS ∈ Vn s.t.

v∗LS = argmin
v∈Vn

‖ℓ(v)− yyyo‖2 . (4.4.3)

To evaluate the stability, we will use the stability factor ‖Q‖ defined in (2.2.1) as a measure of
stability with respect to the measurement noise, and use the Lebesgue constant Λ defined in (2.2.2)
as a measure of stability with respect to the model bias. Many factors may affect the performance
of the field reconstruction, such as i) the size of the sensors, namely the width s in (4.4.1); ii) the
amount of reduced basis functions used to reconstruct the fields; iii) the amount of measurements
used to reconstruct the fields; iv) the placement of the sensors, etc. Thus, the stability analysis is
carried out to understand the effects of each factors mentioned above.

Now we work with spaces Vn and measurements {ℓi}mi=1 which are determined as follows:

• Vn is spanned by the first n basis which are built with GEIM.

• The first n measurement functionals are from GEIM, and the remaining n+1 to m functionals
are selected with Op ‖Q‖ method which aims at minimizing the stability factor ‖Q‖, see
Algorithm 2.2.5.

Note that one can also use Op Λ method as stated in Algorithm 2.2.5 to select the n + 1 to m
functionals in order to get a better Lebesgue constant. Numerical results already confirmed that
the stability factor ‖Q‖ is more sensitive than the Lebesgue constant, thus Op ‖Q‖ method is of
interest. Furthermore, we will work with three typical sensors with different values of s as follows:

• s = 1 cm which corresponds to pin wise measurement.

• s = 2 cm which corresponds to a medium size measurement.

• s = 4 cm which corresponds to sub-assembly wise measurement.
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Stability performance of GEIM

We first show in Figure 4.4.21 the variations of the Lebesgue constant Λ and the stability
factor ‖Q‖ with respect to the reduced dimension n for different values of sensor width, i.e., s =
1, 2, 4 cm. We observe that, the stability factor ‖Q‖ is one order higher in magnitude than the
Lebesgue constant Λ, which means that GEIM algorithm is more sensitive with respect to the
noisy measurements than with respect to the mode error, i.e., the error caused by using an element
from the reduced spave Vn to approximate the true field. Furthermore, we observe that both the
Lebesgue constant and stability factor explosion with the increase of the reduced dimension, though
with higher dimension of reduced space one is able to reach a very high accuracy with noise-free
measurements, as already shown in Section 4.2. That means the recovery algorithms will be not
robust with respect to i) the model mismatch because of Λ diverges, and ii) the noisy measurements
because of ‖Q‖ diverges. At last, we note that with a larger values of sensor width, we get a better
Lebesgue constant.
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Figure 4.4.21: Variations of Lebesgue constant Λ and stability factor ‖Q‖ of GEIM with respect to
the reduced dimension n for different values of sensor width s.

Stability with respect to LC approach and LS approach

We now study the effects of different reconstruction approaches, namely, LC approach (4.4.2)
and LS approach (4.4.3). From Figure 4.4.21, we observe that when the reduced dimension n is no
greater than 5, the behavior of Lebesgue constant and stability factor are rather stable, the diverging
start when n > 5. Thus we select two typical reduced space with V5 and V10 for further analysis.

We show the reconstruction errors with respect the number of measurements in Figure 4.4.22
and Figure 4.4.23 for two reduced spaces V5, V10 for the two approaches with sensor width s = 4.
We observe that, with the increase of the number of measurements, both the Lebesgue constant and
stability factor decay very fast and stabilize to some extent, for the two recovery approaches. The
LC approach shows better performance in controlling the Lebesgue constant, on the other hand,
the LS approach shows better performance in controlling the stability factor. Even though there
is difference between LC approach and LS approach, for the underlying control rods movements
problem, the effect by adding more measurements to improve the quality of the reconstruction is
much more significant than by selecting a suitable reconstruction method.
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Figure 4.4.22: Variations of Lebesgue constant Λ and stability factor ‖Q‖ with respect to the number
of measurements, for LC and LS approaches with sensor width s = 4 for V5.
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Figure 4.4.23: Variations of Lebesgue constant Λ and stability factor ‖Q‖ with respect to the number
of measurements, for LC and LS approaches with sensor width s = 4 for V10.

Stability with respect to the measurements

As already known from Figure 4.4.22 and Figure 4.4.23 that by adding more measurements,
the Lebesgue constant and stability factor are improved. We show in Figure 4.4.24 and 4.4.25 the
variations of the two factors for sensor width s = 1, 2, 4 cm for LS approach. We observe that a
large s leads a better Lebesgue constant but a worse stability factor, vice versa.

Finally, we draw the following conclusions that, in order to control the noise for the field recon-
struction with noisy observations, one would

i) use sensors with relatively small sensor width,

ii) add more measurements but to some extent because of the fast decay thanks to the Op ‖Q‖
method,

iii) and use the least-square approach,

in order to control the noise amplification. Besides, the field reconstruction for a large dimensional
reduced space Vn, n > 5 is still unsatisfactory (e.g. even for the best case in Figure 4.4.23b, the
stability factor is of order 102 in magnitude). We will address this issue in the next section with
CS-GEIM proposed in Chapter 2 (see Definition 2.3.1).
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Figure 4.4.24: Variations of Lebesgue constant Λ and stability factor ‖Q‖ with respect to the number
of measurements for LS approach, for three different values of sensor width s for V5.
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Figure 4.4.25: Variations of Lebesgue constant Λ and stability factor ‖Q‖ with respect to the number
of measurements for LS approach, for three different values of sensor width s for V10.

4.4.3 CS-GEIM

As already shown in previous section, Λ and ‖Q‖ diverge with the increase of the reduced
dimension n. In order to study the effects of Λ and ‖Q‖ to noisy measurement and model mismatch,
we set the goal to reconstruct the biased field, i.e., u ∈ Mb, where b stands for bias. The biased
solution set Mb is built with parameter Σa,2|Ωcontrol

in the domain D := [0.080, 0.150], and other
coefficients are given in Table 3.2, but the diffusion coefficient in reflector region (Region 4) is
changed to D1|ref = 1.995 in order to make the biased snapshots. The reduced basis and sensor
locations are derived from the original manifoldM where D1|ref = 2.0 with GEIM algorithm.

We first study the case with uniformly distributed noise bounded by σ = 0.01 or 0.001 for
each sensor, and apply the LS approach (4.4.3) to reconstruct the fields (we denote here ‘GEIM’
to highlight the difference with CS-GEIM, when m = n, the LS approach is exact GEIM). We
emphasize that the first n sensor locations are selected with GEIM greedy algorithm, and the left
n+ 1 to m one are selected with Op ‖Q‖ method. When the sensor suffers from noise, we simulate
the reconstruction many times for different noise values of the same distribution and mark the
maximum relative error in L2 and L∞ norms.

In Figure 4.4.26, we present the variations of the errors with respect to the reduced dimension
n for sensor width s = 1, 2, 4 (dotted line). For all cases, we set the number of measurement to
m = 10n. For comparison purposes, we also present the errors for noise-free measurements (solid
line).
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Figure 4.4.26: Variations of the error of GEIM with respect to the reduced dimension n for different
values of sensor width s for LS approach with m = 10n.

From Figure 4.4.26, we observe that, in noise-free case, the quality of the reconstruction is
acceptable only when the reduced dimension is small, i.e., n < 6. The model bias is amplified with
the Lebesgue constant diverges when n is relatively large. The dotted lines in Figure 4.4.26 show
that, if the measurements suffer from noise, the reconstructions are much more pessimistic because
of the diverging of the stability factor ‖Q‖. Furthermore, by changing the sensor size or adding
more measurements doesn’t improve the stability performance so much.

Thus the CS-GEIM is proposed in order to further control the noise. The method is stated in
Definition 2.3.1. Figure 4.4.27 shows the comparison between CS-GEIM and GEIM. Here we only
list the case with sensor width s = 1. From this figure we observe that, with CS-GEIM, the noise
and the model mismatch are both well controlled. If the noise level (e.g. σ = 0.01) is larger than
the model mismatch , the error with CS-GEIM can be lower than the noise level by adding more
measurements. If the noise level (e.g. σ = 0.001) is lower than the model bias, the error with
CS-GEIM can reach the same level to the model bias, but it is unable to correct the model bias. In
a word, the reconstruction with CS-GEIM can reach an accuracy to the noise level or model bias.
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Figure 4.4.27: Variations of the error of GEIM and CS-GEIM with respect to the reduced dimension
n for different noise levels with m = 10n.

We now study the two typical cases: i) reconstruction based on V5, which corresponds the stable
Lebesgue constant and stability factor, and ii) reconstruction based on V10 which corresponds the
unstable Lebesgue constant and stability factor. We first show in Figure 4.4.28 the errors of GEIM
and CS-GEIM with respect to the number of measurement m for different values of sensor width,
i.e., s = 1, 2, 3 cm, the noise level σ = 0.001 and the reduced space is V5. We confirm that, when the
Lebesgue constant and stability factor are in a relatively ’good’ state, there is not so much difference
between CS-GEIM and GEIM. In this case, the reconstruction can be improved by adding more
measurements. But Figure 4.4.29 shows that, when the Lebesgue constant and stability factor are
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rather ’bad’, the constrained stabilized version of GEIM is much better, in this case, by adding more
measurements does improve the quality, but CS gains more.
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Figure 4.4.28: Variations of the errors with respect to the number of measurement m for GEIM and
CS-GEIM for different values of sensor width s with noise level σ = 0.001 and reduced space V5.
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Figure 4.4.29: Variations of the errors with respect to the number of measurement m for GEIM and
CS-GEIM for different values of sensor width s with noise level σ = 0.001 and reduced space V10.

To this end, we show in Figure 4.4.30 the relative L2 and L∞ errors of φ1, φ2 and P with respect
to the reduced dimension n for GEIM and CS-GEIM, for sensor width s = 1 and noise level σ = 0.01
(for CS-GEIM, the number of measurements m = n). From the figure we confirm that, in the noisy
case, the performances of the noise amplification for the reconstructions of φ1, φ2 and P for both
GEIM and CS-GEIM are coincident. Thus, we only study the reconstruction of φ2 for brevity.

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

 0  2  4  6  8  10  12  14

R
e
la
ti
v
e
 e
rr
o
r

Dimension n

GEIM �
1

CS-GEIM �
1

GEIM �
2

CS-GEIM �
2

GEIM P
CS-GEIM P

(a) L2 norm.

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

 0  2  4  6  8  10  12  14

R
e
la
ti
v
e
 e
rr
o
r

Dimension n

GEIM �
1

CS-GEIM �
1

GEIM �
2

CS-GEIM �
2

GEIM P
CS-GEIM P

(b) L∞ norm.

Figure 4.4.30: Variations of the recovery errors of φ1, φ2 and P with respect to the reduced dimension
n for GEIM and CS-GEIM, for sensor width s = 1 and noise level σ = 0.01.
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4.4.4 CS-PBDW

We already illustrated the benefits of CS-GEIM in controlling the noise and the model bias
amplification in Section 4.4.3. Recall that the PBDW method is able to correct the model bias by
adding an update term which belongs to the observation space Wm. In this section, we will show the
noise amplification of PBDW, and the benefits of CS-PBDW in controlling the noise. The detailed
formulation of PBDW (see (1.3.19)) and CS-PBDW (see Proposition 2.4.1) can be found in Chapter
1 and Chapter 2.

We still take the same problem setting as stated in Section 4.4.3, and we still assume that each
sensor suffers from uniform distributed noise e ∈ [−σ, σ], thus we use the CS-PBDW formulation
given in (2.4.5) in Chapter 2.

We first show in Figure 4.4.31 the errors of PBDW for sensor width s = 1, 2, 4 for different noise
levels. For comparison purposes, we also list the errors in noise-free case. We notice that, the error
performance of PBDW is almost the same to GEIM, i.e., the mode bias or the measurement noise
is amplified by the Lebesgue constant and stability factor.

For comparison purposes, we also studied the APBDW [202] approach for the noise control. The
formulation of APBDW can be found in (2.4.1). Note that, the regularization factor ξ in APBDW
formulation needs to be carefully selected, usually the L-curve [33] approach is used to determine ξ.
The errors of APBDW with different ξ are shown in Figure 4.4.32, the sensor width is set to s = 4,
and the noise level is σ = 0.01. For comparison purposes, we also list the errors of PBDW and CS-
PBDW. From Figure 4.4.32a and Figure 4.4.32b we observe that, with a proper regularization factor,
APBDW does improve the reconstruction when the reduced dimension n is relatively low (e.g. V5),
especially when more measurements are considered. In [202], the author shows the similar result,
the improvement is shown with a low dimensional reduced space. Figure 4.4.32c and Figure 4.4.32d
also show that, for a higher dimensional reduced space (e.g. V10), we have not been able to control
the noise, even by adding more measurements. On the other hand, CS-PBDW always improve the
performance of the reconstruction. Furthermore, it follows the rule that more measurements, more
accuracy.

We further compare the two cases i.e. V5 and V10 for sensor width s = 1, 2, 4 with noise level
σ = 0.01. The errors of PBDW and CS-PBDW are shown in Figure 4.4.33. We again confirm that,
in any case, CS-PBDW are able to control the noise with respect to PBDW.
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Figure 4.4.31: Variations of the errors with respect to the reduced dimension n for PBDW for
different values of sensor width s with m = 10n
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Figure 4.4.32: Variations of the errors with respect to the number of measurements m for different
regularization factors for APBDW for two different reduced space with sensor width s = 4 and noise
level σ = 0.01.
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Figure 4.4.33: Variations of the errors with respect to the number of measurements m for CS-PBDW
and PBDW for two different reduced space and three different values of sensor width s with noise
level σ = 0.01.



124 4.4. Reconstruction with noisy measurements

1e-04

1e-03

1e-02

1e-01

1e+00

 10  20  40  80

E
rr
o
r

# Measurement m

O(m
-1/2
)

CS-PBDW �=0.01
PBDW �=0.01
PBDW �=0

�=0.01

(a) The noise level σ = 0.01.

1e-04

1e-03

1e-02

1e-01

1e+00

 10  20  40  80

E
rr
o
r

# Measurement m

O(m
-1/2
)

CS-PBDW �=0.001
PBDW �=0.001
PBDW �=0
�=0.001

(b) The noise level σ = 0.001.

Figure 4.4.34: Variations of the L2 errors with respect to the number of measurements m for CS-
PBDW and PBDW for noise level σ = 0.01 or 0.001 for V10 with sensor width s = 4.

We now study the case with sensor width s = 4 and the reduced space V10. We show the errors of
PBDW and CS-PBDW in Figure 4.4.34 with noise level σ = 0.01 or 0.001. For comparison purposes,
the errors of PBDW in noise-free case are also shown. We again find that, with more measurements,
CS-PBDW is able to not only control the noise, but also improve the results that are even better
than the noise level. Furthermore, Figure 4.4.34b shows that CS-PBDW in noise case is even better
than PBDW in noise-free case. Recall that for the underlying problem, if the Lebesgue constant Λ
and stability factor ‖Q‖ diverge, even without noise, PBDW may amplify the model bias, but the
bias amplification is controlled by CS-PBDW. Additionally, we observe that, the red dotted lines in
Figure 4.4.34a and Figure 4.4.34b show that the error of CS-PBDW converges with m−1/2, which
is a slow but rather expected convergence rate.

4.4.5 Gaussian noise and regularization

We emphasize again that knowing the behavior of the reconstruction with the uniformly dis-
tributed noise, one is able to estimate the upper bound of the reconstruction error, which is of great
important for nuclear safety analysis. In section 4.4.3 and Figure 4.4.4, we studied the uniform noise
case. In this section, we study the performance of the reconstruction with CS-GEIM and CS-PBDW
with Gaussian noise, which is more general for measurements. We assume that the noise e of each

sensor is IID, with probability density function p(e) = 1
σ
√
2π

e−
(e−ē)2

2σ2 , with zero mean ē = 0 and
standard deviation σ.

With no loss of generality, we only analyze two typical cases with reduced space V5 and V10

for sensor width s = 4 and the standard deviation σ = 0.01. Furthermore, we simulate the recon-
struction many times for different noise of the same distribution and mark the average error in L2

and L∞ norms (note that for uniformly distributed noise, we mark the maximum error among all
simulations).

The reconstruction with CS-GEIM is based on the formulation (2.3.9) of Chapter 2. Note that
this formulation does not depend on the specified noise distribution. We show in Figure 4.4.35 the
L2 and L∞ relative errors of CS-GEIM and GEIM for different number of measurements, for V5

and V10. We immediately observe that, the performance of CS-GEIM with Gaussian noise is almost
the same to the performance with uniform noise, this again confirms that the constraint stabilized
GEIM approach is robust with respect to the noise.

The CS-PBDW formulation for Gaussian distributed noise is stated in (2.4.10) in Section 2.5.
The L2 and L∞ relative errors of CS-PBDW and APBDW are shown in Figure 4.4.36. We again
find that, in any case, CS-PBDW is robust with respect to the noise.
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As explained in Section 2.5, CS-GEIM and CS-PBDW are constrained quadratic programming
(QP) problems. Successful approaches to solve the bound-constrained optimization problems for
general linear or nonlinear objective functions can be found in [112, 159, 138, 160]. The shortcoming
of these algorithms is that it is time-consuming because of iterations. To meet online calculation for
monitoring purpose, a simpler and closed form for these problems is proposed, see the regularized
stabilized GEIM (R-GEIM, Proposition 2.5.5) and the regularized stabilized PBDW (R-PBDW,
Proposition 2.5.2).

The comparison between R-GEIM and CS-GEIM is shown in Figure 4.4.37. We observe that,
with a proper regularization factor, the performance of R-GEIM is the same to CS-GEIM, but the
computational cost of R-GEIM is as low as solving an m × n matrix equation. Thus, R-GEIM is
more suitable for on-line calculation.

We show the L2 and L∞ errors with respect to the number of measurement m for CS-PBDW
and R-PBDW in Figure 4.4.38, from which we find that, R-PBDW sometimes provides even a little
better reconstruction than CS-PBDW does. This again confirms that, the regularized version is
more suitable for on-line calculation, if a proper regularization factor is selected.
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Figure 4.4.35: Variations of the L2 and L∞ errors with respect to the number of measurement m for
GEIM and CS-GEIM for Gaussion noise with standard deviation σ = 0.01 and sensor width s = 4.
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Figure 4.4.36: Variations of the L2 and L∞ errors with respect to the number of measurement m
for CS-PBDW and APBDW for Gaussion noise with standard deviation σ = 0.01 and sensor width
s = 4.
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Figure 4.4.37: Variations of the L2 and L∞ errors with respect to the number of measurement m
for R-GEIM and CS-GEIM for Gaussion noise with standard deviation σ = 0.01 and sensor width
s = 4.
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Figure 4.4.38: Variations of the L2 and L∞ errors with respect to the number of measurement m
for CS-PBDW and R-PBDW for Gaussion noise with standard deviation σ = 0.01 and sensor width
s = 4.

4.5 Conclusions

We have showed the industrial applications of GEIM either based on the realistic nuclear reactors
operated by EDF or based on the real physical problems in this chapter.

This determination of the optimal sensor locations is done over all the geometries of reactors
operated by EDF: PWR 900 MWe, PWR 1300 MWe and PWR 1450 MWe. Several strategies
are developed in order to emphasize the advantages and limitations of the determination of the
instrumental setup. It is shown that the method gives some instrumental setup that are consistent
with what is expected from a physical point of view. Moreover, we demonstrate that, with respect
to the random case, the results of optimal networks are clearly better. Finally, we conclude that
GEIM is able to provide a physically coherent sensor placement with the structure of the neutronic
flux in the reactor core.

We then applied the GEIM to control rods movements problem to improve the flux and the
power distribution knowledge during control rods movements. Numerical results confirmed that,
with GEIM, the fields reconstruction is well performed from measurements, which is hopefully
acceptable in engineering usage, especially the realization meets the needs of online monitoring
purpose based on the online-offline computational framework of GEIM.

The field reconstruction based on EDF reactors is also optimistic, especially the reconstruction
is based Pin-by-Pin distribution framework. The important aspect is that we are providing a very
accurate field reconstruction method that moreover follows the physical property of the core. On
the case using the calculation code COCAGNE, the accuracy can reach up to 0.01% if a lot of basis
functions (50) are used and it is already 0.1% with only 5 basis functions.

The extension of the method is to take into account the effect of the noise to qualify its im-
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pact when few instruments remains and also to control it through various technique, either data
pre-processing or mathematical correction of the induced error. In this respect, we propose the
methodologies so called CS-GEIM and CS-PBDW to control the noise and also the model bias.
Based on the stability analysis, we are able to optimize the sensor size and location. With the
stabilized algorithms, we are able to control the measurement noise amplification, furthermore, by
adding more measurements the proposed methods are able to provide even better accuracy than
the noise level. The algorithms we proposed are robust with respect to the measurement noise and
model bias. Finally, we emphasize that the regularized versions (R-GEIM, R-PBDW) with low
computational cost are more suitable for on-line calculation in case the shape of the noise is known,
i.e., Gaussion noise.
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Chapter 5

Stabilization for sensor constraints

and failures
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5.1 Introduction

In the framework of state estimation with reduced basis methods e.g. GEIM and PBDW, where
the measurement is needed, there are at least two issues on the measurement in real engineering
applications: i) there are constraints on the amount or the location for the sensors, and ii) the
measurement always suffers from noise, let alone the measurement failures.

In presence of noise, the good properties of the reduced modeling approach may be blurred in
the sense that the approximation error no longer converges but even diverges. So special denoising
and stabilizing approaches are necessary for this class of recovery methods, this issue has already
been addressed in Chapter 2.

Indeed, for the recovery methods with reduced basis, the number of measurements needed and the
corresponding locations largely rely on the basis choosing procedure and the desired error threshold
εtol on the training set. The fact is that, the measurements may be constrained in some specified
sub-domain, e.g., in a nuclear reactor core, the control rod assemblies are unavailable for sensor
deployment (see Figure 5.3.1). In addition, at operation stage, measurement failures may happen
for the sensors. All these cases mentioned above may lead an unstable recovery, thus one has to
reconsider the sensor deployment or the choice of the reduced basis to stabilize the recovery.
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5.2 Measurement failure tolerant interpolation

5.2.1 Problem setting

Recall the notations we introduced in previous chapters : V is a Hilbert space over a domain
Ω ⊂ Rd (d ≥ 1) endowed with inner product (·, ·) and induced norm ‖ · ‖ =

√

(·, ·), e.g. V ⊂
L2(Ω) or H1(Ω). u(x;µ) ∈ V is the solution of a parameter dependent PDE set on Ω and on a
closed parametric domain D ⊂ Rp p ∈ N. Then we get the manifold M ≡ {u(x;µ);µ ∈ D} of all
parameter dependent solutions. We further denote by D(training) the discrete parameter set of D,
M(training) the corresponding discrete manifold of M and Ωd is the discrete of Ω.

For the sake of brevity, the measurement failure tolerant interpolation in the frame of EIM is of
particular interest in this section. The empirical interpolation method (EIM [21, 97, 147]) has been
introduced to extend the reduced basis technique [150, 143, 185] to nonaffine and nonlinear partial
differential equations (PDEs). The essential components of EIM procedure are (i) a good hierarchy
of collateral reduced basis approximation spaces (Vm)m with dim(Vm) = m and Vm ⊂ Vm+1, (ii)
a series of well selected interpolation points (also called ‘magic point’) {xi}i on a domain Ω ∈ Rd,
and (iii) an effective a posteriori estimator to quantify the interpolation errors.

The implantable EIM greedy algorithm [21] based on the discrete parameter training setD(training)

is shown in Algorithm 5.2.6. Once the basis functions and interpolation points are determined (off-
line), the interpolant (on-line) of any u ∈M is defined as

IM [u(·;µ)] =
M
∑

m=1

βm(µ)qm

subject to: IM [u(·;µ)](xm) = u(xm;µ), m = 1, · · · ,M.
(5.2.1)

Algorithm 5.2.6 Weak Greedy EIM

1: Input: D(training), the parameter train set; M , the number of basis functions.
2: Output: {xm}Mm=1, {µm}Mm=1, {qm}Mm=1 ⊲ qm is the basis function
3: µ1 = arg maxµ∈D(training)‖u(·;µ)‖L∞(Ω)

4: x1 = arg maxx∈Ωd
|u(·;µ1)| ⊲ Ωd is the discrete of Ω

5: q1 = u(·;µ1)/u(x1;µ1)
6: for m = 2 : M do
7: µm = arg maxµ∈D(training) ‖u(·;µ)− Im−1[u(·;µ)]‖L∞(Ω)

8: xm = arg maxx∈Ωd
|u(x;µm)− Im−1[u(·;µm)](x)|

9: qm = u(·;µm)−Im−1[u(·;µm)]
u(xm,µm)−Im−1[u(·;µm)](xm)

If there are measurement failures (always randomly), the interpolant in (5.2.1) will not holds
any more. In case of measurement failures, the problem becomes:

Problem 5.2.1 For a given set of basis function {q◦m}Mm=1 (or {u(·;µ◦
m)}Mm=1 equivalently, which

span VM ) and the associated interpolation point set IM := {x◦
m}Mm=1, assume that n (1 ≤ n < M)

measurements corresponding to the point set In = {x◦
mi
}nmi=1 faile. What is the best definition of

the new interpolation InM [u] ∈ VM based on the left observations u(xm), xm ∈ IM/In?

The superscript ‘◦’ of µ◦
m, x◦

m, q◦m quoted above denotes they are the initial sampling parameters,
interpolation points and basis functions, e.g., from EIM greedy algorithm 5.2.6. Let us further denote
by Un

M the set of indices for valid points. Normally, for any u ∈M, there are infinite v ∈ VM which
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satisfies v(xm) = u(xm), m ∈ Un
M . To make Problem 5.2.1 feasible, one must select no more than

M − n basis functions, in this case, one can

i) use the first (M − n) basis functions {q1, · · · , qM−n};

ii) use (M − n) snapshots u(·;µm) with m ∈ Un
M corresponding to the valid measurements;

iii) re-select (M − n) basis functions to set-up a new interpolant.

5.2.2 Interpolation aiming to optimize the basis functions and interpola-

tion points

A more general way to address the measurement failures is to design a new algorithm to constitute
the basis functions and points instead of EIM greedy algorithm. For the sake of brevity, we first
study the case with only one measurement failed. Suppose the first m−1,m ≥ 2 sampling snapshots
{u(·;µi)}m−1

i=1 , basis functions {qi}m−1
i=1 and point {xi}m−1

i=1 are already selected. Recall that with
EIM greedy algorithm, we select the m-th snapshot u(·;µm) where the L∞ norm of the (m− 1)-th
order interpolant error

em−1[u(·;µ)] = Im−1[u(·;µ)]− u(·;µ) (5.2.2)

is maximal, i.e.,
µm = argmax

µ∈D(training)

‖em−1[u(·;µ)]‖L∞(Ω) , (5.2.3)

and denote
ζm = ‖em−1[u(·;µm)]‖L∞(Ω). (5.2.4)

Then we select the point xm where the maximum value (in absolute) of the error em−1(u(·;µm))
happens, i.e.

xm = argmax
x∈Ωd

|em−1[u(x;µm)]|. (5.2.5)

Note that several parameters µ might maximize the function µ→ ‖em−1[u(·;µ)]‖L∞(Ω) and several
x might maximize the function x → |em−1[u(x;µm)]|. In this case, µm and xm are picked among
the set of maximizers. For the general algorithm with measurement failure tolerance, the idea is
that, at the m-th step, instead of selecting the m-th snapshot where the (m−1)-th order interpolant
error is maximal, we first select all the candidates where the (m − 1)-th order interpolation errors
are large than a threshold ηζm, where η with 0 < η < 1 is a tolerance, i.e.,

Dm := {µ ∈ D(training) ; ‖Im−1[u(·;µ)]− u(·;µ)‖L∞(Ω) ≥ ηζm}. (5.2.6)

Assume among the (m − 1) points, the i-th measurement failed, the new (m − 2)-th order
interpolant is thus defined as

I ′m−1,i[u(·;µ)] :=
m−1
∑

j=1,j 6=i

βj(µ)u(·;µj),

subject to: I ′m−1,i[u(·;µ)](xk) = u(xk;µ), k = 1, ...,m− 1, k 6= i.

(5.2.7)

The interpolation error is

e′m−1,i[u(·;µ)] := I ′m−1,i[u(·;µ)]− u(·;µ) . (5.2.8)

Then the next snapshot u(·;µm) is determined which maximize the interpolation error e′m−1,i[u(·;µ)]
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for all 1 ≤ i ≤ m− 1 and all snapshots u(·;µ) ∈ Dm :

µm = argmax
µ∈Dm

max
i=1,...m−1

‖I ′m−1,i[u(·;µ)]− u(·;µ)‖L∞(Ω). (5.2.9)

In order to determine the m-th interpolation point, we first define a set of the error indicators:

ρmm−1,i := ‖I ′m−1,i[u(·;µm)]− u(·;µm)‖L∞(Ω), i = 1, · · · ,m− 1, (5.2.10)

for a given tolerance α with 0 < α < 1, we select the point x with which the interpolation error
e′m−1,i[u(·;µm)](x) is no smaller than a threshold αρmm−1,i, i.e.,

Lm
m−1,i,α := {x ∈ Ωd ; |I ′m−1,i[u(·;µm)](x)− u(x;µm)| ≥ αρmm−1,i} . (5.2.11)

Similarly, we have a set Lm
m,α based on the (m− 1)-th order interpolant:

Lm
m,α := {x ∈ Ωd ; |Im−1[u(·;µm)](x)− u(x;µm)| ≥ αζm} . (5.2.12)

In this setting, we deduce a set Lm
α defined as

Lm
α := ∩

i=1,...,m−1
Lm
m−1,i,α ∩ Lm

α , (5.2.13)

in which the interpolation error on these points are relatively large in the sense of a given tolerance
α. We then find the maximum α which satisfies Lm

α 6= ∅, i.e.,

αmax = arg max
0<α<1

{α ; Lm
α 6= ∅} . (5.2.14)

The m-th interpolation point is determined:

xm ∈ Lm
αmax

. (5.2.15)

The algorithm is summarized in Algorithm 5.2.7. Note that the interpolation function I ′m−1,i, i =

1, ...,m− 1 is well defined. For any u(·;µ) ∈M(training), we have

I ′m−1,i[u(·;µ)] =
m−1
∑

j=1,j 6=i

βj(µ)u(·;µj), (5.2.16)

the coefficients βj(µ), j = 1, ...,m− 1, j 6= i satisfy

m−1
∑

j=1,j 6=i

βj(µ)qj(xk) = u(xk;µ), k = 1, ...,m− 1, k 6= i . (5.2.17)

The above equation (5.2.17) has solution if and only if

u(xk;µk)− I ′k−1,i[u(xk;µk)](xk) 6= 0, k = i+ 1, ...,m− 1,

and this holds evidently: when we select xk, we have xk ∈ { ∩
i=1,...,k−1

Lk
k−1,i,αmax

∩ Lk
k,αmax

},
thus we have xk ∈ Lk

k−1,i,αmax
, based on the definition of Lk

k−1,i,αmax
:= {x ∈ Ωd | |u(x;µk) −

I ′k−1,i[u(·;µk)](x)| ≥ αmaxρ
k
k−1,i}, we can easily find that |uk(xk)−I ′k−1,i[uk](xk)| ≥ αmaxρ

k
k−1,i 6=

0.

Note that Algorithm 5.2.7 proposes a general way to address the measurement failures. Unlike
EIM, we take the selected snapshot u(·;µm) as the m-th basis function directly instead of the error
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Algorithm 5.2.7 One measurement failed

1: Set η, 0 < η < 1
2: µ1 = arg maxµ∈D(training)‖u(·;µ)‖L∞(Ω)

3: x1 = arg maxx∈Ωd
|u(·;µ1)|

4: q1 = u(·;µ1)
5: m = 2
6: µm = arg maxµ∈D(training) ‖Im−1[u(·;µ)]− u(·;µ)‖L∞(Ω)

7: xm = arg maxx∈Ωd
|Im−1[u(·;µm)](x)− u(x;µm)|

8: qm = u(·;µm)
9: for m = 3:M do

10: ζm := max
µ∈D(training)

‖Im−1[u(·;µ)]− u(·;µ)‖L∞(Ω)

11: Dm = {µ ∈ D(training) ; ‖Im−1[u(·;µ)]− u(·;µ)‖L∞(Ω) ≥ ηζm}
12: µm = arg max

µ∈Dm

max
i=1,...m−1

‖u(·;µ)− I ′m−1,i[u(·;µ)]‖L∞(Ω)

13: Calculate ρmm−1,i := ‖I ′m−1,i[u(·;µm)]u(·;µm)‖L∞(Ω), 1 ≤ i ≤ m− 1
14: Lm

m−1,i,α := {x ∈ Ωd ; |I ′m−1,i[u(·;µm)](x)− u(x;µm)| ≥ αρmm−1,i}
15: Lm

m,α := {x ∈ Ωd ; |Im−1[u(·;µm)](x)− u(x;µm)| ≥ αζm}
16: Lm

α := ∩
i=1,...,m−1

Lm
m−1,i,α ∩ Lm

m,α

17: αmax = arg max
0<α<1

{α ; Lm
α 6= ∅}

18: The m-th interpolation point: xm ∈ {Lm
αmax

}
19: The m-th basis function: qm = u(·;µm)

function by an normalization process.

From the construction of the above algorithm, when there is one measurement failed, for any
µ ∈ D, one can use the (M − 1) measurements and (M − 1) snapshots u(·;µm) with m ∈ U1

M

corresponding to the valid measurements to do the interpolation:

I ′M,i[u(·;µ)] :=
M
∑

j=1,j 6=i

βj(µ)u(·;µj),

subject to: I ′M,i[u(·;µ)](xk) = u(xk;µ), k = 1, ...,M, k 6= i.

(5.2.18)

5.2.3 Interpolation aiming to optimize the basis functions

As already known, the basis functions and points from EIM greedy algorithm are already quasi-
optimal in some sense. Another possible way is to keep the original EIM magic points and re-select
some basis functions. In this setting, the problem becomes: with fixed points IM\n := IM \In, where
IM := {x◦

m}Mm=1 is the initial M interpolation points set and In := {x◦
mi
}ni=1, n ≥ 1 is the failed

n interpolation points set, we re-select the parameter sampling {µm}M−n
m=1 and the corresponding

snapshots {u(·;µm)}M−n
m=1 to do the interpolation.

Assume the index of the first failed point is m1, 1 ≤ m1 ≤ M , we keep the first (m1 − 1) well
selected points and basis functions (deduced from EIM) unchanged, i.e.,











xm = x◦
m

µm = µ◦
m , m = 1, · · · ,m1 − 1

u(·;µm) = u(·;µ◦
m)

(5.2.19)

and re-select the following (M − 1− (m1 − 1)) points and basis functions in a greedy way. Suppose



136 5.2. Measurement failure tolerant interpolation

the first m− 1 points and basis functions are already determined, the (m− 1)-th order interpolant
is

Im−1[u(·;µ)] =
m−1
∑

j=1

βj(µ)u(·;uj) . (5.2.20)

We again define the error indicator

ζm := max
µ∈D(training)

‖Im−1[u(·;µ)]− u(·;µ)‖L∞(Ω) , (5.2.21)

and select all the candidates where the (m−1)-th order interpolant errors are large than a threshold
ηζm, where η is a tolerance with 0 < η < 1, i.e.,

Dm := {µ ∈ D(training) | ‖Im−1[u(·;µ)]− u(·;µ)‖L∞(Ω) ≥ ηζm}. (5.2.22)

Our interest is the (µ, x) pairs which maximize the error |Im−1[u(x;µ)]− u(x;µ)| for all the candi-
dates in Dm on all the points IM \ In, i.e.,

(µm, xm) = argmax
µ∈Dm

max
x∈IM\In

|Im−1[u(·;µ)](x)− u(x;µ)| . (5.2.23)

The algorithm is summarized in Algorithm 5.2.8. We make the following remarks for this ap-
proach.

• If we use M basis functions and points to do the interpolation, and the system is required to be
designed with no more than n sensor failures, then we have to pre-computed

∑n
m=1

M !
(M−m)!m!

sets of basis functions for all possible sensor failures cases in the off-line phase, this may lead
computing and storage issues if M and n are relatively large.

• In practice engineering application, once the n measurement failures are detected, one can
re-calculate the new basis functions with Algorithm 5.2.8 immediately, then use the new in-
terpolation frame in the on-line phase until the failed measurements are recovered.

Algorithm 5.2.8 Measurement failure tolerant EIM (mftEIM) algorithm

1: Input: the points {x◦
m}Mm=1 and parameters {µ◦

m}Mm=1 (e.g., from EIM algorithm).
2: Input: In = {x◦

mi
}ni=1, the failed measurement points.

3: Input: a train set D(training), a tolerance η, with 1 ≥ η ≥ 0, M ≥ n+ 1.
4: Output: {xm}M−n

m=1 , {µm}M−n
m=1 , {u(·;µm}M−n

m=1

5: for m = 1 : m1 − 1 do
6: xm = x◦

m, µm = µ◦
m

7: for m = m1 : M − n do ⊲ for notational coherence, I0 = 0
8: ζm := max

µ∈D(training)
‖Im−1[u(·;µ)]− u(·;µ)‖L∞(Ω)

9: Dm := {µ ∈ D(training) ; |Im−1[u(·;µ)]− u(·;µ)|L∞(Ω) ≥ ηζm}
10: (µm, xm) = argmaxµ∈Dm

maxx∈IM\In |Im−1[u(·;µ)](x)− u(x;µ)|

From the construction of the above algorithm, when there is n measurements failed, for any
µ ∈ D, one can use the (M − n) measurements and (M − n) snapshots u(·;µm) with m ∈ Un

M



5.3. Location constraints 137

corresponding to the valid measurements to do the interpolation:

InM [u(·;µ)] :=
∑

j∈Un
M

βj(µ)u(·;µj),

subject to: InM [u(·;µ)](xj) = u(xj ;µ), j ∈ Un
M .

(5.2.24)

5.3 Location constraints

In the framework of data assimilation with reduced basis, the number of measurement needed and
the corresponding locations largely rely on basis choosing procedure and the desired error threshold
εtol on the training setM(training). The fact is that, the measurements may be constrained in some
specified sub-domain, e.g., in a nuclear reactor core, the control rod assemblies are not available for
sensor deployment, see Figure 5.3.1 the EPR in-core instrumentation for example [68], thus, only
part of the assemblies are able to implement the sensors.

Figure 5.3.1: EPR in-core instrumentation. Purple rectangle: fuel assemblies, yellow rectangle:
control rods. The black lines are instrumentation lances, red circles mark the position of in core
sensors, while the orange ones mark the position of the aeroball systems. Source: http://www.

areva-np.com/us/liblocal/docs/EPR/U.S.EPRbrochure_1.07_FINAL.pdf

Let’s consider EIM greedy algorithm again. The domain for measurements is constrained in a sub
domain Ωlc ∈ Ω. Our goal is to determine the basis functions and the corresponding interpolation
points with this domain constraint. Suppose the first m− 1 points {xi} and basis functions {qi} are
already determined, the (m− 1)-th order interpolant is

Im−1[u(·;µ)] =
m−1
∑

j=1

βj(µ)qj . (5.3.1)

Note that here for notational coherence, we set I0 = 0, and m ≥ 1. We again define the error
indicator

ζm := max
µ∈D(training)

‖Im−1[u(·;µ)]− u(·;µ)‖L∞(Ω) , (5.3.2)

http://www.areva-np.com/us/liblocal/docs/EPR/U.S.EPRbrochure_1.07_FINAL.pdf
http://www.areva-np.com/us/liblocal/docs/EPR/U.S.EPRbrochure_1.07_FINAL.pdf
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and select all the candidates where the (m−1)-th order interpolant errors are large than a threshold
ηζm, where η with 0 < η < 1 is a tolerance, i.e.,

Dm := {µ ∈ D(training) ; ‖Im−1[u(·;µ)]− u(·;µ)‖L∞(Ω) ≥ ηζm}. (5.3.3)

Our interest is the (µ, x) pairs which maximize the error |Im−1[u(x;µ)]− u(x;µ)| for all the candi-
dates in Dm and on all the points x ∈ Ωlc, i.e.,

(µm, xm) = argmax
µ∈Dm

max
x∈Ωlc

|Im−1[u(·;µ)](x)− u(x;µ)| . (5.3.4)

The algorithm is summarized in Algorithm 5.3.9. Indeed, this idea is an natural expansion of Algo-
rithm 5.2.8, we call it location constrained EIM (lcEIM), which constrains the possible interpolation
points in to a set Ωlc ⊂ Ω, where Ω is the whole space domain of our problem. An special case
is that when Ωlc = {x◦

m}Mm=1 \ In, the algorithm becomes Algorithm 5.2.8. If Ωlc = Ω, and the
tolerance η = 1, this algorithm degenerates to classical EIM greedy algorithm.

Algorithm 5.3.9 Location Constrained EIM Greedy algorithm (lcEIM)

1: Input: a train set D(training), a constrained set Ωlc, a tolerance η, with 0 < η < 1.
2: Output: {xm}Mm=1, {µm}Mm=1, {u(·;µm)}Mm=1

3: for m = 1 : M do ⊲ here for notational coherence, I0 = 0
4: ζm := max

µ∈D(training)
‖Im−1[u(·;µ)]− u(·;µ)‖L∞(Ω)

5: Dm := {µ ∈ D(training) ; ‖Im−1[u(·;µ)]− u(·;µ)‖L∞(Ω) ≥ ηζm}
6: (µm, xm) = argmaxµ∈Dm

maxx∈Ωlc
|Im−1[u(·;µ)](x)− u(x;µ)|

5.4 Numerical results

We first compare different algorithms for two test problems. Test case 5.4.1 is a pure numerical
test and Test case 5.4.2 is based on the IAEA 2D benchmark problem described in Section 3.5.2.

Test case 5.4.1 Consider the family of functions from [145],

g(x, µ) ≡ 1
√

1 + (25 + µ1cos(µ2x))x2
, (5.4.1)

where µ = (µ1, µ2) ∈ D, x ∈ [0, 1], and the parameter domain is modified from the original one
Do = [0.01, 24.9]× [0.01, 15].

Test case 5.4.2 The IAEA 2D benchmark problem described in Section 3.5.2.

Recall that the interpolation points IM := {x◦
m}Mm=1, snapshots {u(·;µ◦

m)}Mm=1 corresponding
to the basis functions {q◦m}Mm=1 are selected from EIM algorithm. There are n measurements on
In := {x◦

mi
}ni=1, n ≥ 1 failed among the IM points. Un

M is the set of indices for valid points. We
set-up new interpolation with different basis functions as follows:

i) the first (M − n) basis functions q◦1 , · · · , q◦M−n;

ii) the (M − n) snapshots {u(·;µ◦
m) ; m ∈ Un

M};

iii) the (M − n) basis functions selected with Algorithm 5.2.8; or
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iv) the (M−n) snapshots {u(·;µ1
m) ; m ∈ Un

M}, note that (µ1
i )i, (x

1
i )i are selected with Algorithm

5.2.7 as the initial ones;

v) the first (M − n) basis functions selected with POD method,

vi) the first M − n basis functions q◦1 , · · · , q◦M−n, use the constrained stabilized EIM method
(CS-EIM, see Section 2.3) to do the interpolation.

Note that for comparison purposes, we also tried the constrained stabilized EIM, introduced in
Chapter 2. All these interpolation point and basis function combinations are summarized in Table
5.1.

Table 5.1: Different points and basis functions combinations

Case Points Basis # Failed (n) Comment
1 {x◦

m ; m ∈ Un
M} {u(·;µ◦

m) ; m ∈ Un
M} 0,1,2 EIM

2 {x◦
m ; m ∈ Un

M} {q◦m}M−n
m=1 1,2 EIM

3 {x◦
m ; m ∈ Un

M} {q◦m}M−n
m=1 1 CS-EIM

4 {x◦
m ; m ∈ Un

M} {q◦m,POD}M−n
m=1 1 POD-EIM 1

5 {x◦
m ; m ∈ Un

M} {u(·;µ1
m)}M−n

m=1 1 Algorithm 5.2.7 2

6 {x◦
m ; m ∈ Un

M} {u(·;µ1
m) ; m ∈ Un

M} 1 Algorithm 5.2.7
7 {x◦

m ; m ∈ Un
M} {u(·;µ2

m)}M−n
m=1 1,2 mftEIM, Algorithm5.2.8 3

1 Here we use the first (M − n) POD basis functions {q◦m,POD}M−n
m=1 , but the interpolation

points are from EIM algorithm.
2 (µ1

i )i, (x
1
i )i are selected with Algorithm 5.2.7 to be the initial ones.

3 (µ2
i )i are selected with Algorithm 5.2.8.

To evaluate the qualities of the seven combinations shown in Table 5.1, we fist construct the
discrete manifold M(training) with cardinality Mmax = |M(training)|, which is fine enough to be
representative of the manifold M. Then we select the first M ≤ Mmax basis functions {q◦m}Mm=1

and interpolation points {x◦
m}Mm=1 with EIM greedy algorithm. Then we compute the errors in

X = L2(Ω) norm as in (5.4.2):

e
(training)
M,n := max

µ∈D(training)
‖InM [u(·;µ)](·)− u(·;µ)‖X /‖u(·;µ)‖X , (5.4.2)

where IM is the M -th order interpolant with one of the combinations in Table 5.1. The measure
with e

(training)
m can be used as an indicator to evaluate how good the method is, in case the training

set is fine enough to be representative for the manifold. In contrast to the training set, we construct
this test set with enough sampling point D(test) to be representative of the manifold. Then we
compute the errors as in (5.4.3):

e
(test)
M,n := max

µ∈D(test)
‖InM [u(·;µ)](·)− u(·;µ)‖X /‖u(·;µ)‖X . (5.4.3)

The measure with e
(test)
M,n can be used as an indicator to evaluate how robust the method is, in case

the training set is not enough representative for the manifold.

We first test all the seven combinations shown in Table 5.1 for Test case 5.4.1, but with a
relative small parameter domain i.e. D = [15.0, 24.9] × [14.9, 15]. The reason why we start with
a small parameter domain is that, in this setting, the Kolmogorov n-width of the manifold M of
the problem decays fast, and easily for us to find the effect of measurement failures. The errors
e
(training)
M,n and e

(test)
M,n are shown in Figure 5.4.2. We notice that, in case of one measurement failed,
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all the combinations loose at least one order accuracy, which is normal because we loose one basis
functions and measurement. Furthermore, we find that, mftEIM is always the best, and much
regular than others, no matter for the test set or the training set.

We then enlarge the parameter domain to D = [15.0, 24.9] × [4.9, 15]. The interpolation errors
for the seven combinations are shown in Figure 5.4.3, we can find the same result. Besides, with a
relative large parameter domain, the situation for other combination is much worse and irregular.
This means that, in this case, the measurement failures is really an issue, the mftEIM approach is
necessary to replace the original EIM process.

Figure 5.4.4 shows the interpolation errors for two sensors failures for the small parameter domain
case, and the large parameter domain case is shown in Figure 5.4.5. In these figures, we also list
the case only one sensor failed for mftEIM approach. This again confirms the robust of mftEIM
approach in addressing the measurement failures.

The tests based on the IAEA 2D benchmark problem are shown in Figure 5.4.6 for one sensor
failed, and in Figure 5.4.7 for two sensors failures respectively. For this problem, the Kolmogorov
n-width of the manifold M decays fast, the results are similar to Test case 5.4.1 with a small
parameter domain.
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Figure 5.4.2: Test case 5.4.1: The L2 errors with respect reduced dimension M for one measurement
failed case. D = [15.0, 24.9]× [14.9, 15], n is the number of failures.
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Figure 5.4.3: Test case 5.4.1: The L2 errors with respect reduced dimension M . D = [15.0, 24.9]×
[5.9, 15], n is the number of failures.
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Figure 5.4.4: Test case 5.4.1: The L2 errors with respect reduced dimension M . D = [15.0, 24.9]×
[14.9, 15], n is the number of failures.
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Figure 5.4.5: Test case 5.4.1: The L2 errors with respect reduced dimension M . D = [15.0, 24.9]×
[5.9, 15], n is the number of failures.
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Figure 5.4.6: Test case 5.4.2: The L2 errors with respect reduced dimension M for IAEA 2D
benchmark problem. One measurement failed case, n is the number of failures.
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Figure 5.4.7: Test case 5.4.2: The L2 errors with respect reduced dimension M for IAEA 2D
benchmark problem. Two measurement failed case, n is the number of failures.

5.5 Conclusions and further works

Measurement failures for data assimilation with reduced basis, particularly, EIM, is a practical
issue. We proposed a so called measurement failure tolerant EIM (mftEIM) approach to address
this issue. Compared with other possible approaches, numerical results comfirmed that, the mftEIM
approach provides the best interpolation in case of measurement failures. Need to point out that, the
basis functions for mftEIM are not fixed, and depend on the detailed failure scheme. Thus, one can
either calculate the specified new basis functions when the sensor failures happen, or pre-calculate
the basis functions for all possible measurement failures cases, in the latter case, a relatively large
storage is necessary.

More generally, if more measurements are available than the dimension of VM , we consider the
problem of reconstructing an approximation of f in the reduced basis space VM from noiseless (or
possibly noisy) samples of u at M ′ points {xi}M

′

i=1, M ≤ M ′. Recently, the reconstruction with a
weighted least-squares approximation in a given linear space VM and m independent random samples
has been studied in [62, 66]. The results show that stable results and optimal accuracy comparable
to that of best approximation in VM are achieved under the mild condition that m scales linearly
with n up to an additional logarithmic factor and the points {xi}M

′

i=1 are randomly chosen with
respect to a sampling measure which depends on the space VM : kM (x) :=

∑M
i=1 |q̃i(x)|2, where

{q̃i} is an orthonormal basis of VM .

Inspired by [66, 62], the on going work to stabilize EIM is based on a least-square framework with
more points than originally required. In this framework, the essential issues is how to determine
a ‘relative optimal’ set of the additional points under mild condition that M ′ is not so large with
respect to the reduced dimension M , and the ‘optimal’ is in the sense that even loosing some points,
the interpolation is still stable.
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6.1 Introduction

Reduced basis methods (RBMs [150, 143, 185]) have nowadays become a widely accepted and
used tools for realtime and/or multi-query simulations of parameterized partial differential equations
(pPDEs). By using an off-line/on-line decomposition, the main idea is to use a high fidelity, detailed,
but costly numerical solver off-line to compute approximations to the pPDEs for certain parameter
values on-line.

The crucial ingredient of RBM is the choice of the basis functions {qn}n which span the reduced
basis space Vn ∈ V , typically based on the solution manifold M := {u(·, µ) ; µ ∈ D} over the
parameter set D ⊂ Rp with p ∈ N, where V is a Hilbert space over a domain Ω ⊂ Rd (d ≥ 1)
endowed with inner product (·, ·) and induced norm ‖ · ‖ =

√

(·, ·), e.g. V ⊂ L2(Ω) or H1(Ω).
Due to practical implementation, the selection of these parameters is done e.g. by the generic
greedy approach [175, 185, 48]. One typically needs a fine enough training set D(training) ⊂ D
or M(training) instead of the full set D or M, over which an error estimator which is efficiently
computable has to be evaluated, thus allows one to determine the ‘worst’ approximated snapshot,
then let the corresponding parameter to be the next parameter sampling. Existing methods for
basis construction by random parameter space sampling [98] or uniform parameter grids [99] reveal
a breakdown of convergence of the global approximation error or high calculation times in case of
very fine grids.

143
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Note that in a high-dimensional parameter space case, the size of this training set quickly be-
comes considerable, rendering the computational cost substantial and perhaps even prohibitive. As
consequence, since a fine enough training set is not realistic in practice, one is faced with the problem
of ensuring the quality of the basis set under a non-rich enough training set, which leads to overfit-
ting to the test set. It is worth noting that when dealing with certain high-dimensional problems,
one may encounter the situation that the optimal basis set itself is of large size. This situation is,
however, caused by the general complexity of the problems and we shall not discuss this further. In
general, the two problems have to be addressed in the framework of RBM.

i) Overfitting: in case of too small training set, the error onM(training) may be nicely decreasing
or can ideally be reduced to 0 with growing basis dimension, but the error for independent
test parameters remains large.

ii) Training times: in case of too large training set, the training time can be exorbitant, in
particular in instationary scenarios without or with merely expensive error estimators.

Standard parameter sampling schemes such as uniform sampling (uniform gridding of the parameter
space) or random sampling are another option for creating snapshots. However, if the dimension of
the parameter space is large, uniform sampling will quickly become too computationally expensive
due to the combinatorial explosion of samples needed to cover the parameter space. Random
sampling, on the other hand, might fail to recognize important regions in the parameter space. One
sampling strategy that provides a compromise between the uniformity and the size of the sample is
the stratified sampling family, of which the popular Latin Hypercube Sampling (LHS) method is one
example [155]. The LHS method is more efficient than uniform sampling and often more accurate
than random sampling.

We would like to mention that there are existing literatures for RBM and various flavors of
adaptivity, e.g., sampling set randomization, adaptive refinement of training sets, hp-RBM, time-
partitioning etc., see, e.g., [5, 49, 54, 80, 108, 151], just to mention a few.

A recently proposed approach to address the challenge of sampling in a high-dimensional pa-
rameter space for building the reduced basis is the greedy algorithm. The basic idea of the greedy
algorithm is to adaptively choose samples by placing the new sample point at the location in the
parameter space where the estimated error with the reduced model is maximal. The approach is
taken to determine a trial parameter set with ntrial parameters. At each point in this parameter set,
the current reduced model is solved to determine the reduced states, which are then used to compute
an error estimate. The parameter location in the trial set at which the error estimator is maximal is
selected as the next sample point. Full model information is then generated via a full-scale system
solve at this location, the basis is updated using the resulting snapshot information, and the reduced
model is updated. These steps are then repeated, using the updated reduced model to compute the
reduced states at each of the ntrial parameters.

It is known e.g. from [61] that adaptive methods show faster convergence rates if the Besov
regularity of the solution in a certain scale exceeds the Sobolev regularity. For the off-line RB
setting this means that the regularity of the solution with respect to the parameter is of crucial
importance. If one single discretization is sufficient for approximating the solution u(·;µ) well
enough for all possible parameters µ, then adaptivity does not to make sense. On the other hand,
if u(·;µ) significantly differs with respect to µ, a joint discretization may be too fine.
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6.2 Adaptive sampling for training set enrichment

6.2.1 Methodology

In this work we consider greedy adaptive algorithms and improvements of particular relevance
to high-dimensional problems. While the ideas are of a general nature, we motivate and frame the
discussion in the context of RBM and empirical interpolation method (EIM [21, 97, 147]) in which
the greedy approximation approach plays a key role. The underlying reason for both overfitting and
too long training times is the unknown ideal size and distribution of the training set. Hence, the
main component of our first approach is an adaptive training set extension procedure to adapt the
number and particular values of the training parameters for the underlying problem.

Assume we have the parameter domain D := [µ
(1)
min, µ

(1)
max]×· · ·×[µ(p)

min, µ
(p)
max]. For any parameter

µi ∈ D, we denote by ui the function u(·, µi), then we define a grads like function (pseudo-grads)
as follows:

dµ(ui, uj) =
d[u](ui, uj)

d[µ](µi, µj)
, (6.2.1)

where d[u](ui, uj) is a distance function of ui, uj , defined as

d[u](ui, uj) := ‖
ui

‖ui‖
− uj

‖uj‖
‖ , (6.2.2)

or one can define

d[u](ui, uj) :=
|(ui, uj)|
‖ui‖ · ‖uj‖

, (6.2.3)

where (ui, uj) is inner product of ui and uj . And d[µ](µi, µj) is the normalized distance of µi, µj in
the parameter space, defined as

d[µ](µi, µj) :=

√

√

√

√

p
∑

n=1

( µ
(n)
i − µ

(n)
j

µ
(n)
max − µ

(n)
min

)2
, (6.2.4)

where µ
(n)
max, µ

(n)
min are the maximal and minimal values of µ in the n-th dimension. When µ

(n)
max =

µ
(n)
min, we use the definition 0

0 = 0 in (6.2.4).

To construct a global set of M sampling points in a multi-parameter space, we first initialize a set
of initial uniform Cartesian parameter grid with M0 = m1×m2× ...×mp points, or we can initialize
M0 points with LHS method. Usually one can set M0 = 2p initial sampling points on the corners of
the parameter domain. For some particular problems e.g. the function u(·, µ) doesn’t change with
the parameter on the boundary ΓD of the parameter space, the LHS sampling method is proposed
to set the initial points. With the initial parameter points we built a training set M(training)

M0
of

the manifold M which is not representative enough, then we enrich the training set based on the
pseudo-grads of point-pairs: aways add the next parameter point which is the middle point of the
point-pair (µi, µj) whose pseudo-grads is maximum among all the current C2

m = m(m− 1) pairs.

In more detail, at the m-th ( M0 ≤ m ≤M) step, we have

D(training)
m = {µ1, · · · , µm},

M(training)
m = {u(·;µ1), · · · , u(·;µm)}.

(6.2.5)
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Using (6.2.1), we are able to calculate the m×m grads-like matrix

Dµ[M(training)
m ] := (dµ(ui, uj)) , 1 ≤ i, j ≤ m . (6.2.6)

Then the m + 1-th parameter sampling is determined such that um+1 := (µi1 + µj1)/2, where
the parameter pair (µi1 , µj1) satisfies

(i1, j1) = argmax
1≤i,j≤m

d[µ](µij,D
(training)
m )>rtol

(Dµ[M(training)
m ])i,j , (6.2.7)

where µij := (µi+µj)/2 and d[µ](µij , D
(training)
m ) := min1≤k≤m d[µ](µij , µk) is the distance between

µij and D
(training)
m .

Indeed, the constraint in (6.2.7) is necessary. This can be understand as follows. We first select
the pair (µit , µjt) corresponding to the maximal element of Dµ[M(training)

m ]), then we evaluate the
distance between µitjt and D

(training)
m . If d[µ](µitjt , D

(training)
m ) is smaller than a given tolerance

rtol, that is to say, there already exists at least one sampling point µk in D
(training)
m such that the

candidate point µitjt locates in the local domain B(µk, rtol) of µk, in this case we have reasons to
believe that the difference between uk and uitjt is relatively small thus µk is of less interest. The
tolerance rtol is an indicator of the minimal admissible sampling density in the parameter domain
D.

Note also that several parameter pairs might maximize the element of Dµ[M(training)
m ], in this

case, (i1, j1) is picked among the set of maximizers. If (Dµ[M(training)
m ])i1,j1 is smaller than a given

tolerance ξtol, we would believe that the training set D(training)
m is fine enough. The above process

is summarized in Algorithm 6.2.10.

Algorithm 6.2.10 Adaptive sampling algorithm

1: Input: (Mmax, rtol, ξtol,m1,m2, ...,mp)
2: Output: (M(training),D(training),M (training))
3: Initialization: D0 is the initial mesh point set in the parameter space D e.g. with uniform

Cartesian parameter grid with cardinality |D0| = M0 = m1 ×m2 × ...×mp.
4: M(training) ← {u(·;µ0) ; µ0 ∈ D0}
5: D(training) ← D0, M (training) ← |D0|
6: Dµ[M(training)] = (dµ(ui, uj)),with ui, uj ∈M(training), µi, µj ∈ D(training)

7: while (M (training) < M and max(Dµ[M(training)]) > ξtol) do
8: (i1, j1) = arg max

i,j
(Dµ[M(training)])i,j

9: µi1j1 = (µi1 + µj1)/2
10: if d[µ](µi1j1 ,D(training)) < rtol then
11: (Dµ[M(training)])i1,j1 ← 0
12: else
13: D(training) ← D(training) ∪ {µi1j1}
14: M(training) ←M(training) ∪ {u(·;µi1j1)}
15: M (training) ←M (training) + 1

16: return (M(training),D(training),M (training))

6.2.2 The determination of the adaptive parameters

The determination of the adaptive parameters ξtol and rtol really depend on the underlying
problem. Here we list some outlines.
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For a fixed amount of the parameter sampling points M , we have the uniform sampling scale ru

ru = d
√

1/M , (6.2.8)

where d is the dimension of the parameter space. Then rtol satisfies

c1ru ≤ rtol ≤ ru, (6.2.9)

where 0 < c1 < 1, the left inequality constraints the minimal distance of sampling points, the right
inequality constraints the sampling points departure from the uniform distribution. In a word, rtol
reflects the to what extent the sampling points can departure from the uniform distribution.

The determination of the lower limit ξtol of the grads-like function dµ(ui, uj) is a little compli-
cated. ξtol reflects the degree of the variation of the function with respect to the variation of the
parameter. For a given initial sampling setting, M0 = m1×· · ·×mp, one can calculate the grads-like
matrix Dµ and find the maximum element d0 = maxDµ, then set

ξtol = c2d0 , (6.2.10)

where 0 < c2 < 1, for some good c2. Note that ξtol can not be too large in order to make sure the
loop in Algorithm 6.2.10 will not end until enough sampling points are selected.

6.3 Numerical results

We start by presenting numerical examples to illustrate the benefit of the adaptive sampling
approach. Consider the following functions:

• Test Case 1, 2D parameter space, D ∈ Rp, p = 2, u(x, µ) = 1√
(x1+µ1)2+(x2+µ2)2

, where

µ ∈ D = [0.01, 0.5]2, and x ∈ Ω := [0, 1]2 from [21].

• Test Case 2, 2D parameter space, D ∈ Rp, p = 2, u(x, µ) ≡ 1√
1+(25+µ1cos(µ2x))x2

, where

µ = (µ1, µ2) ∈ D = [0.01, 24.9]× [0, 15], and x ∈ Ω := [0, 1] from [145].

• Test Case 3, 3D parameter space, D ∈ Rp, p = 3, u(x, µ) ≡ 1√
1+µ3x+(25+µ1cos(µ2x))x2

, where

µ = (µ1, µ2, µ3) ∈ D = [0.01, 24.9]× [0, 15]× [0, 10], and x ∈ Ω := [0, 1].

To evaluate the quality of the sampling points for each sampling methods, we consider two model
order reduction methods i.e. EIM and POD.

With EIM, we fist run EIM greedy algorithm based on the training setM(training) with cardinal-
ity m = |M(training)| to find the first n ≤ m basis functions {qi}ni=1 and interpolation points {xi}ni=1.
With the basis functions and points, we reconstruct the field u in a test setM(test) (corresponding
to D(test)) which is different from the training set. In contrast to the training set, we construct this
test set with enough sampling point such that M(test) is representative of the manifold M. Then
we compute the errors as in (6.3.1):

e(test)n (u) := max
µ∈D(test)

‖u(µ)− Jn[u](µ)‖/‖u(µ)‖, (6.3.1)

where Jn is the n-th order interpolant with EIM.

With POD, we can also construct the first n basis functions {qi}ni=1, these basis functions span
an n dimensional reduced space Vn = span{q1, · · · , qn}. Then we evaluate the errors of the test set
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with the following error indicator:

e(test)n (u) := max
µ∈D(test)

‖u(µ)− PVn
u(µ)‖/‖u(µ)‖, (6.3.2)

where PVn
u is the orthogonal projection onto Vn.

We then compare the adaptive sampling approach with three different methods: uniform sam-
pling, random sampling and Latin Hypercube Sampling. For each sampling method, we generate
the same number of snapshots to construct the training set M(training). To evaluate the quality of
M(training), we then apply POD and EIM to generate the reduced basis functions, and use (6.3.1)
and (6.3.2) for the error estimation for the test set M(test).
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Figure 6.3.1: Test Case 1: Sampling points in the parameter space.

Figure 6.3.1 shows the sampling points distribution for Test Case 1 by using all the four meth-
ods (Uniform, Random, LHS, Adaptive) mentioned above, with a total sampling points m =
25, 100, 400. For the adaptive method, we set the initial points equal to m0 = 2p. We notice
that, there is no clear difference for the distribution from Uniform, Random, LHS , but the adap-
tive one is rather different from others. For adaptive sampling, the points are symmetrical and
gather around original point (µ1 = 0, µ2 = 0), there are almost no points located in the region
far from the original point. The distribution is consistent with the analytical expression of u(x, µ),
which is symmetrical for µ1 and µ2 and also shows a divergence property at the original point.
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Figure 6.3.2: Test Case 1: Relative error (in L2 norm) for test set with respect to the reduced
dimension n. The number of sampling points is m = 25.
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Figure 6.3.3: Test Case 1: Relative error (in L2 norm) for test set with respect to the reduced
dimension n. The number of sampling points is m = 100.
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Figure 6.3.4: Test Case 1: Relative error (in L2 norm) for test set with respect to the reduced
dimension n. The number of sampling points is m = 400.

We then show the different for the four sampling methods based on the test set which is different
from the training set. In contrast to the training set, we construct the test set with enough snapshots
to be representative to the manifold. The reconstruction errors for the test set are shown in Figure
6.3.2 - Figure 6.3.4.

In Figure 6.3.2, the total sampling points m = 25. With these points, we run EIM greedy
algorithm to select the basis functions and interpolation points, then reconstruct the functions in
the test set with different number of reduced basis for each sampling method, the maximum errors
in L2 norm is shown in Figure 6.3.2a. Besides, with the same training set, we use POD method
to generate the basis functions and approximate the functions in the same test set. The errors are
shown in Figure 6.3.2b. We observe that, in case of too small training set (m = 25), the overfitting
happens, the error for independent test parameters remains large and also not stable. But in this
case, the adaptive sampling method is much better than the others, both for EIM and POD methods.

We then enlarge the training set to m = 100, the results can be found in Figure 6.3.3. For a
larger training set, the overfitting is improved a lot. In this case, the reconstruction for the test is
also more stable for EIM and POD for all the four sampling methods. We notice that, the uniform
sampling method is one order accurate than random sampling and LHS, but the adaptive sampling
method behaviors much better than uniform case, even two order more accurate.

By enlarging the training set up to m = 400 snapshots, which is close to saturation. The
difference between uniform sampling method and adaptive sampling method is narrowing. But the
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latter is still the best.
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Figure 6.3.5: Test Case 2: Sampling points in the parameter space.
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Figure 6.3.6: Test Case 2: Relative error (in L2 norm) for test set with respect to the reduced
dimension n. The number of sampling points is m = 25.
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Figure 6.3.7: Test Case 2: Relative error (in L2 norm) for test set with respect to the reduced
dimension n. The number of sampling points is m = 100.
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Figure 6.3.8: Test Case 2: Relative error (in L2 norm) for test set with respect to the reduced
dimension n. The number of sampling points is m = 400.

We do the same test for Test Case 2. The sampling points distribution is shown in Figure 6.3.5.
Notice that we still find a big difference for adaptive sampling method with respect to other three
methods. The errors for each sampling case are shown in Figure 6.3.6 - Figure 6.3.8. We notice
that, in this case, the uniform sampling method is the worst because of the specified parameter
dependency. But the adaptive sampling method is still the best especially for the relatively small
training set case, this method is able to take the most important information of the manifold in the
beginning.

The benefit of adaptive sampling method is more obvious in higher dimensional parameter space
case. In Figure 6.3.9 we show the sampling points distribution for the 3D parameter space case,
Test Case 3. In this problem, we generate two level of the training set, with 125 and 1000 snapshots
respectively. For adaptive sampling method, we set the initial points equal to m0 = 23. The results
are similar to 2D case, the sampling points for adaptived one is totally different with others. The
errors show in Figure 6.3.10 and 6.3.11 again confirm that, the adaptive sampling method is the best
when the total amount of sampling point is limited, this is usual for high dimensional parameter
space problem.
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Figure 6.3.10: Test Case 3: Relative error (in L2 norm) for test set with respect to the reduced
dimension n. The number of sampling points is m = 125.
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Figure 6.3.11: Test Case 3: Relative error (in L2 norm) for test set with respect to the reduced
dimension n. The number of sampling points is m = 1000.

6.4 Application to EDF nuclear reactor cores

In this section, we test the sampling methods (uniform sampling, random sampling and adaptive
sampling) based on real reactors at EDF. For this application we chose an operating PWR 1450
MWe reactor core that has been used in the publication [59]. On the basis of this core we test the
method and see how good are the results. We will do those test in a simulation framework using
the COCAGNE code for neutronic simulation that is developed by EDF [50]. The result is the
comparison on the reconstruction done through the proposed method and the known calculation.

For the practical reactor core application, here we consider two-dimensional parameter space
settings similar to Section 4.1 with µ = (Pw,Bu) ∈ D := [0.3, 1] × [0, Bumax]. We evaluate the
quality of parameter sampling methods with GEIM, and the reduced basis are selected based on the
greedy algorithm presented in Section 3.4.2, other settings are the same as in Section 4.3.

We list the norm of the thermal flux ‖φ2(µ)‖ as a function of parameter µ in Figure 6.4.12 for
the total sampling points amount to m = 125 and 11300. As shown in this figure, the parameter
dependence of the flux is more or less regular, the effect from power level is stronger than the burnup
parameter. We construct the training setM(training) with m = 125 snapshots and build a finer test
set with m = 11300 snapshots.

We show the error distribution as a histogram in Figure 6.4.13 for the three sampling methods:
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uniform sampling method, random sampling method and adaptive sampling method. In this figure,
we use the first five basis functions for GEIM process to reconstruct the field in the test set. We
notice that, from statistical viewpoint, the adaptive sampling method is the best among all the three
methods.

Further more, we list the average and standard deviation of the error with different amount of
basis functions in Figure 6.4.14. This again confirms that, in all case, the sampling points selected
by adaptive sampling method is more representative than uniform and random sampling methods.

(a) Sampling points m = 125. (b) Sampling points m = 11300.

Figure 6.4.12: Variations of the norm of the thermal flux for each parameter sampling case.

Figure 6.4.13: Reconstruction errors for the three methods (uniform sampling method: Uniforme;
random sampling method: Aléatorie; Adaptive sampling method: Adaptatif) with the first five basis
functions.
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Figure 6.4.14: The average (Moyenne) and standard deviation (Escart-type) of the error with respect
to the reduced dimension n.

6.5 Computational cost

Let us turn to analysis the computational cost of the adaptive sampling method. We denote by
ti the computing time for one inner product (ui, uj) evaluation, and ts the one snapshot evaluation
with COCAGNE code. From Algorithm 6.2.10, we notice that the evaluation of the grads-like
matrix Dµ[M(training)

m ] dominates the computational cost, to select m snapshots, we need O(m2/2)
inner product evaluations and O(m) snapshot evaluations.

With COCAGNE code, it costs around ts = 46 seconds for one snapshot calculation in Pin-by-Pin
case, and one inner product evaluation costs ti = 0.005 second. Table 6.1 reports some computational
times to illustrate the cost of the adaptive sampling method and the uniform sampling method. We
notices that, for practical engineering problem, the off-line phase – preparing the training set – for
the application of reduced order method is really time costly, especially for the multi-dimensional
parameter space, the amount of the sampling points is rather limited. In this case, the adaptive
sampling method can be used in the off-line phase to build the training set with only a slight
increasing of the computational cost to obtain a higher accuracy than to other methods.

Items Computational cost
One snapshot calculation 46
One inner product calculation 0.005

Adaptive Uniform
Prepare 125 snapshots 5789 5750
Prepare 1000 snapshots 48500 46000
Prepare 11300 snapshots 838225 519000

Table 6.1: Computational cost (in seconds) for the adaptive sampling method and the uniform
sampling method in a PWR 1450 MWe reactor core.
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6.6 Conclusions

In a high-dimensional parameter space, the challenge for uniform sampling method is, unreach-
able, e.g. for p = 10, if we sample in each dimension by 10 points, the amount of sampling points
is 1010. On the other hand, with adaptive method, we first select 210 initial sampling points, which
is much smaller and also reachable, then with the greedy approach, we are able to pick the most
information from the ideal manifold M with fixed number of snapshots.

The random sampling method and LHS method, are reachable for high-dimensional parameter
case. But as the figures shown, some times may miss some important sampling points or with
redundancy. Compared with other adaptive methods e.g. [5, 49, 54, 80, 108, 151], the approach as
shown in Algorithm 6.2.10 saves computing cost, it reduces the number of function evaluation which
might be very costly in the real engineering problem. This gives the adaptive sampling method more
potential for engineering problem with high-dimensional parameter space. Nevertheless, we need to
point out that, the adaptive sampling method may fail for some special case, e.g., the snapshots
are from the the function in [151] with periodicity or symmetrical parameter space. The algorithm
with pseudo-grads as an indicator may fail because of periodicity or symmetry. In this case, one
can set the initial points with LHS method or one can refer to [151] with locally adaptive approach
for anisotropic parameter space.
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Chapter 7

Conclusions and perspectives

7.1 Summary and conclusions

This thesis presents work towards the improvement of the physical and numerical interpretation
of the information involved in data assimilation with efficient model reduction strategies for systems
modeled by PDEs. We specifically focused on the data assimilation task: state estimation for
stationary problems, especially neutronic state estimation in nuclear reactor applications.

In the first part of the present thesis, we analyzed and adapted the generalized empirical inter-
polation method (GEIM) and the parametrized-background data-weak (PBDW) approach to the
state estimation problem. These approaches aim at reducing the problem’s complexity for state es-
timation based on the fact that the Kolmogorov n-width of the manifold of all solutions decays fast
with n. The GEIM [144] that allows, from values of the measurements, to build a linear combination
of some precomputed states associated to some well chosen parameters. The linear combination is
determined in such a way that it takes the same values on the sensors as the original state. This
concept generalizes the classical — e.g. polynomial or radial basis — interpolation procedure, the
main difference is that the interpolating functions are not a priori known but are chosen as suitable
state that, altogether, carry the information of the set of all states. The PBDW approach was
originally proposed in [148] for perfect observations then the noisy observations case was analyzed
in [149]. It is characterized by the following characteristics.

i) Variational formulation: the most important feature of PBDW is that, it is a special case of
3D-Var variational data assimilation for a parametrized background and a particular choice of
(penalized-update) background covariance. Benefiting from the background space Vn, PBDW
avoids modeling the covariance matrices in 3D-Var variational data assimilation formulation.

ii) Background and update spaces: PBDW provides the state estimate u as the sum of two
contributions: u = v + η. The first contribution to u, v, is called “deduced background
estimate" which represents anticipated model part; and Vn is interpreted as a background or
prior space which approximates the best-knowledge manifold on which the true state resides.
This second contribution to u, η is called “update estimate" which accommodates unanticipated
update that the model couldn’t represent.

We have provided the following contributions to the original GEIM and PBDW formulations in
this thesis.

• Stability analysis: We formulated the posteriori error analysis with respect to measurement

157
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noise for GEIM, RRB and PBDW. The estimation error is attributed to two distinct contribu-
tions: i) The deterministic error, which arises from the fact that modeling error is inevitable
(i.e. ut /∈ Vn) and that the update space Wm and the background space Vn are finite di-
mensional; this error is present even if each observation is noise-free, though one is able to
probe the true deterministic state. We use the so-called Lebesgue constant Λ to evaluate the
deterministic error; ii) The stochastic error, which arises from the fact that each observation
is noisy, corrupted by the random observation noise. We use the stability factor ‖Q‖ to eval-
uate the stochastic error. We also proposed algorithms to optimize the update space Wm

with respect to different measures, i.e., diminishing the deterministic error or diminishing the
stochastic error.

• Constrained Stabilized Reconstruction: We proposed the so-called constrained stabilized gener-
alized empirical interpolation method (CS-GEIM) and the constrained stabilized parametrized-
background data-weak (CS-PBDW) approach to further improve the stability and robust per-
formance for state estimation with data assimilation with noisy measurements. The constraints
rely on the coefficients of the reduced basis functions, they are not the same order of quan-
tity, on the contrary, they decay in certain rate with the reduced dimension n increases. We
demonstrated that with the coefficients constraints, the recovery with reduced basis dramat-
ically decreases the noise amplification, with good stability performance with respect to the
reduced basis dimension n and the number of measurement m. To go further, we proposed the
regularized versions (R-GEIM, R-PBDW) to diminish the computational cost in the on-line
phase, while retaining the same accuracy as constrained stabilized formulations.

In the second part of the present thesis, we applied the methodologies for sensor placement
and field reconstruction applications in nuclear domain. The framework of GEIM/PBDW makes it
possible for us to focus on the need for effective, many-query design evaluation in nuclear reactor
domain: i) either real-time scenarios (control, parameter estimation, monitoring), where the solution
of the problem needs to be known very quickly under limited resources for a previously unknown
parameter, ii) or multi-query scenarios (design and optimization, multi-model/scale simulation),
where the problem has to be solved repeatedly for many different parameters. In the nuclear reactor
applications, we set the goal to reconstruct the thermal/fast flux and power distributions for a wide
range of parameters variation domain by using the measurements from sensors with combination
of reduced basis methods, instead of solving the original neutronic governing equations with high
resolution.

• Sensor placement in a nuclear reactor core: We first adapt the GEIM greedy algorithm, to
be able to reconstruct the flux and power fields only from the thermal flux measurements.
Then we show its application in optimizing the sensor placement in nuclear reactor cores.
Numerical results on 1D/2D benchmarks confirm its feasibility. Furthermore, GEIM, can be
applied efficiently to the analysis of real nuclear cores. With the GEIM approach and the
sensor information, we are able to provide an optimized instrumental network to measure
the neutronic flux inside the core. The locations of the instruments show a global coherence
with respect to what is known from the physical behavior and process. This determination of
the optimal localizations is done over all the geometries of reactors operated by EDF: PWR
900 MWe, PWR 1300 MWe and PWR 1450 MWe. Several strategies have been developed in
order to emphasize the advantages and limitations of the determination of the instrumental
setup. Numerical results show that the proposed method gives some instrumental setup that
are consistent with what is expected from a physical point of view. Moreover, we demonstrate
that, with respect to the random case, the results of optimal networks are clearly better.
Finally, we conclude that the strategy which is the closest to the actual instrumentation setup
gives the best result.
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• Neutronic field reconstruction: We first apply the GEIM to control rods movements problem to
improve the flux and the power distribution knowledge in the whole domain without knowing
the control rods position (step) parameters thanks to the measurements. To reach this goal, we
first construct a set of snapshots by solving large amounts of PDEs for the underlying physical
problem. Then we select the sensor places (interpolation points) and the basis functions in
a greedy way with GEIM greedy algorithm. With the selected measurements, we are able to
reconstruct the flux and power distribution in high accuracy. Numerical results confirm that
the proposed GEIM methodology is hopefully acceptable in engineering usage, especially the
online-offline computational framework is good for on-line monitoring purpose.

Then we applied the GEIM method to reconstruct the Pin-by-Pin flux/power distribution
during the life cycle of a nuclear reactor core. All the simulations are based on the PWR
1450 MWe nuclear reactor operated by EDF. Numerical result shows that, the manifold of the
underlying problem (even in Pin-by-Pin wise), which reflects the burnup and power evolution
of the reactor core of the whole life, is rather regular. This makes it possible to reconstruct
the fields with only a few basis functions and measurements. Further more, by considering
the measurement system which is close to the real engineering case, the proposed method still
provides an acceptable accuracy.

Neutronic field reconstruction with noisy measurements: The extension of the method is to
take into account the effect of the noise to qualify its impact when few instruments remains
and also to control it through various technique, either data pre-processing or mathematical
correction of the induced error. In this aspect, we propose the methodologies so called CS-
GEIM and CS-PBDW to control the noise and also the model bias. Based on the stability
analysis, we are able to optimize the sensor size and location. With the stabilized algorithms,
we are able to control the measurement noise amplification. Further more, by adding more
measurements, the proposed methods are able to provide even better accuracy than the noise
level. The algorithms we proposed are robust with respect to the measurement noise and
model bias. Finally, we emphasize that the regularized versions (R-GEIM, R-PBDW) with
low computational cost are more suitable for on-line calculation in case the shape of the noise
is known, i.e., Gaussion noise.

In the third part of the thesis, we present the supplementary developments for industrial appli-
cations of the methodologies.

• Sensor failures and constraints on the sensor locations: Measurement failures for data assim-
ilation with reduced basis, particularly, EIM, is a practical issue. We proposed a so called
measurement failure tolerant EIM (mftEIM) approach to address this issue. Compared with
other possible approaches, numerical results comfirmed that, the mftEIM approach provides
the best interpolation in case of measurement failures. Need to point out that, the basis
functions for mftEIM are not fixed, and depend on the detailed failure scheme. Thus, one
can either calculate the specified new basis functions when the sensor failures happen, or pre-
calculate the basis functions for all possible measurement failures cases, in the latter case, a
relatively large storage is necessary.

• Parameter sampling for multi-dimensional parameter problems: In the framework of reduced
basis method, the crucial ingredient is the choice of reduced basis {qn} from the discrete
manifold M(training) := {u(µ) ; µ ∈ D(training)}, which span the reduced basis space Vn .
We proposed an adaptive sampling algorithm to sample the parameters in D to construct the
discrete manifold. Compared with other adaptive methods, the method we proposed saves
computing cost, it reduces the number of function evaluation which might be very costly in
the real engineering problem. This gives the adaptive sampling method more potential for
engineering problem with high-dimensional parameter space. Nevertheless, we need to point
out that, the adaptive sampling method may fail for some special case, e.g., the snapshots are
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from the the function in [151] with periodicity or symmetrical parameter space. In this case,
one can set the initial points with LHS method or one can refer to [151] with locally adaptive
approach for anisotropic parameter space.

Additionally, we shall point out that, the reduced order modeling techniques we have studied can
make important contributions to the controlling or the analysis of the large scale industry systems.
The modeling and controlling of the uncertainty for data assimilation with reduced basis is an issue,
because the reduced order model is not robust with respect to the sensor locations and observation
values. Similar works have been done in [6, 70, 79] etc. In [6, 70], the ill-conditioning because of the
presence of the reduced basis is improved by using Tikhonov regularization, which is proved to be
effective in terms of reduction of errors. But in those works, not measurement information has been
taken into consideration. In [79], the authors present a technique for statistically modeling errors
introduced by reduced order models, the method employs Gaussian-process regression to construct
a mapping from a small number of computationally inexpensive ‘error indicators’ to a distribution
over the true error. But in that work, the study in controlling the noise amplification because of the
present of the reduced basis is rather limited. Our contribution in controlling the error of reduced
order modeling is rather different from the previous, the constraints on the reduced basis has been
taken in to consideration, which is of great important not only from the mathematic point of view,
but also from the physical point of view. Besides, more theoretical studies in this aspect shall be
carried out in the future.

7.2 Perspectives and future works

During the course of this work, we have identified several areas of future research. For purposes
of presentation, we shall distinguish between the methodologies themselves and the benefits to
industrial (e.g. nuclear power plant systems) design, operation, surveillance and maintenance, etc.

7.2.1 Further verification for engineering applications

Sensor placement designing at EDF: In Chapter 4, we demonstrated the sensor placement
optimization framework with GEIM based on all types of nuclear reactors that are operating at
EDF (PWR of 900 MWe, 1300 MWe and 1450 MWe). With this methodology, the locations of the
instruments show a global coherence with respect to what is known from the physical behavior and
process. But all those demonstrations were done without considering measurement noise. However,
in real engineering case, quality and noise-free data is not easy to obtain – e.g., for MFC, noise is
always exist because of the data acquisition procedure, signal processing, background noise, more
especially, the delayed signal response for Self Powered Neutron Detector (SPND [94, 210]) which
is fixed in the nuclear reactor core during operation, etc. Thus, the optimal instrument network
designed with GEIM shall be tested in noise case, or even take the noise into consideration when
designing the network.

Noise control in field reconstruction: Evaluating the neutronic state of the whole nuclear
core is a very important topic that has strong implication for nuclear core management and for
security monitoring. In Chapter 4, we demonstrated the benefits of GEIM/PBDW in field recon-
struction. We tested the methodologies based on EDF reactors in assembly/Pin-by-Pin wise with
noise-free measurements, the reconstruction errors stabilized at the order of 10−4 for assembly wise
and 10−3 for Pin-by-Pin wise which are totally acceptable in engineering point of view. Usually, the
noise level for sensors in nuclear reactor cores is around 1 - 5 10−2 [38], which is one to two order
higher than the accuracy derived with noise-free measurements. We demonstrated the benefits of
CS-GEIM/CS-PBDW based on the 2D IAEA benchmark for controlling the noise amplification.
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Further demonstrations shall be done based on EDF reactors with real measurements.

Field reconstruction using heterogeneous instruments: In this thesis, we only studied
the reconstruction with measurements from the Mobile Fission Chambers (MFC). However, the core
state estimation should be more accurate when more measurements are collected in the core. There
are four types of instrument that are usually used to monitor the nuclear power core:

• Mobile Fission Chambers, which are inside the active nuclear core,

• Thermocouples (TC), which are above the active nuclear core,

• fixed ex-core detectors,

• Self Powered Neutron Detectors (SPND [94, 210]) which are fixed inside the active nuclear
core.

Using information from heterogeneous sources is a difficult task. Some works have been done in this
respect at EDF [37, 38, 39] in the framework of data assimilation i.e. BLUE. Such a method allows
to combine in a coherent framework the information coming from model and the one coming from
various type of observations. Beyond the inner advantage to use heterogeneous instruments, this
leads to obtain a significant increasing of the quality of neutronic global state reconstruction with re-
spect to individual use of measures. The extending/adapting for GEIM/PBDW with heterogeneous
instruments could be studied for neutronic applications.

One natural solution is that, in the off-line phase, select the reduced basis and locations of
instruments using heterogeneous instruments with different class of measurement functionals; in
the on-line phase, reconstruct the fields using heterogeneous instruments with different class of
measurement functionals and different noise levels. This approach has been verified in [145], where
the authors reconstruct the velocity and pressure of a fluid by using pressure measurements only.

7.2.2 Data-enabled, physics-constrained predictive modeling for nuclear

power plant systems

Monitoring nuclear reactor core spatial kinetics: In the analysis of the nuclear reactor
dynamics, which is governed by the neutronics, the most used approach is constituted by the point-
kinetics equations, which are a set of coupled non-linear ordinary differential equations that describe
both the time-dependence of the neutron population in the reactor and the decay of the delayed
neutron precursors that allowing for the main feedback reactivity effects. For the point-kinetics
equations, the strongest approximation regards the shape of the neutron flux, which is assumed to
be represented by a single, time-independent spatial mode. Otherwise, if the reactors are character-
ized by complex geometries and asymmetric core configurations, more accurate modeling approach,
namely, aims at solving the energy-, space-, and time-dependent kinetic equations is necessary to
provide more detailed insights to the reactor behaviour during operational transients. Furthermore,
in order to develop suitable control strategies for such reactors, the spatial effects induced by the
movements of the control rods have to be taken into account as well. Thus, the Multi-Physics (MP)
approach in which all the involved physics are simulated is necessary. The main drawback of the
MP approach is that the computational burden is quite high, and simulating the entire core turns
out to be very demanding in terms of computational costs and times. In addition, it is quite difficult
to get the dynamics of the governing system and then set up a simulation tool that may assess and
represent the dynamic response of the overall system at different operating conditions.

In this context, the ROM technique, such as RB methods, which can lead to a simulation
tool with real time simulation, still solving a set of partial differential equations is proposed in
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[191, 189, 190, 192, 193]. With ROM, one is able to efficiently reproduce the neutron flux dis-
tribution allowing to take into account the spatial effects induced by the dynamics – e.g., the
movements of the control rods – with a computational speed-up of 30000 times, with respect to the
full model. But all those approaches, are conducted only for simulations with correct parameters,
and no additional ingredient of incorporating measurement information to the simulations. The
specified GEIM/PBDW frameworks, are able to integrate additional measurement information, also
benefit from RB methods, shows high potential for monitoring propose. In Chapter 3, the fields
reconstruction during control rods movements were studied, but that study was based on the sta-
tionary governing equations. Thus, a new data assimilation framework based on GEIM/PBDW,
with energy-, space-, and time-dependent kinetic equations, aims to monitor nuclear reactor core
spatial kinetics could be on the agenda. For long period or wide range monitoring propose, the
locally adaptive GEIM/PBDW could be a solution, similar works on locally or adaptive methods
can be found in [151, 168].

Data-enabled, physics-constrained predictive modeling: Full scale nuclear reactor test-
ing, numerical simulation of high dimensional (full-order) dynamic models or operation testing are
some of the fundamental but complex steps in the various design phases of recent or next gen-
eration civil nuclear power plant. Current nuclear reactor designs have increased in complexity
(multidisciplinary, multi-objective or multi-fidelity) and need to address the challenges posed by the
nonlinearity of the objective functions and constraints, uncertainty quantification in neutronics, ther-
mohydraulics, hydromechanics and materialogy problems or the restrained computational budgets.
Even with recent advances in computing power and algorithms, a multitude of first-principles-based
computations of physical problems remains out of reach, even on the most powerful supercomput-
ers. With the aim to reduce the computational burden and generate low-cost but accurate models
that mimic those full order models at different values of the design variables, recent progresses have
witnessed the introduction, in real-time and many-query analyses, of surrogate-based approaches as
rapid and cheaper to simulate models.

The reduced order modeling (ROM) methodology has found widespread applications in simpli-
fying the physics model and reducing numerical complexity. The various ROM methods do this in
general by exploiting similarity within an ensemble of high fidelity “snapshot" solutions which sample
a certain parametric domain of interest. The number of degrees of freedom (DoF) is then reduced
while retaining the problem’s physical fidelity, thus allowing predictions of the physical data to be
provided with lower evaluation time and storage than the original full scale model. Example can
be found in [201], the authors proposes developing and incorporating a ROM server into the engi-
neering design workflow. The ROM server stores all data associated with a given engineering model
and automatically constructs a ROM every time a model is created or updated, thus maintaining a
consistent version of information across multiple engineering teams.

A favoured application of ROM is in aerodynamic analyses [217, 212]. In these works, a compre-
hensive and state-of-the-art survey on common surrogate modeling techniques and surrogate-based
optimization methods is given, with an emphasis on models selection and validation, dimensionality
reduction, sensitivity analyses, constraints handling or infill and stopping criteria. Benefits, draw-
backs and comparative discussions in applying those methods are described. In [212], the steady
ROMs are used to predict the static aeroelastic loads in a multidisciplinary design and optimiza-
tion (MDO) context, where the structural model is to be sized for the (aerodynamic) loads. The
different ROM methods are applied to a 3D test case of a transonic wing-body transport aircraft
configuration.

In nuclear domain, ROM is used for the improvement of the control-oriented modelling of the
Gen-IV Lead-cooled Fast Reactor European Demonstrator (ALFRED [9]), in which the spatial de-
pendence plays a relevant role for the respect of technological constraints and for the reactivity
feedbacks. Thus, it has a different control strategies with respect to LWRs and SFRs. As reported
in [141], a ROM-based components for object-oriented simulator in which a POD-Galerkin method



7.2. Perspectives and future works 163

for Finite Volume approximation of Navier-Stokes and RANS equations (POD-FV-ROM) was de-
veloped. The new approach make it possible to provide the nuclear reactor control simulation tool
with spatial information capabilities, enhancing the level of detail without a strong computational
burden.

All those examples mentioned above, as a result, scientific and engineering community continue
to rely on physical intuition and empiricism to derive approximate models for prediction and control.
Advanced ROM techniques have allowed people to move from data to information, because in many
systems, and despite the large amount of data, the hidden information was quite reduced thanks
to ROM. One natural question is, can one extract cause-and-effect relationships and create reliable
predictive models based on a large number of observations of physical phenomena? To develop
improved predictive models of complex real-world problems, however, one may need to pursue a more
balanced view. We refer to [82], a more informal article on the use of data in modeling complex
physical problems. The main idea is that data cannot be an alternative for physical modeling,
but when combined with – and informed by – a detailed knowledge of the physical problem and
problem-specific constraints, it is likely to yield successful solutions. Nowadays, advanced clustering
techniques not only help engineers and analysts, but are also crucial in many areas where models,
approximation bases, parameters and so forth are adapted depending on the local state of the
system thanks to the large amount of data. Machine and manifold learning also helps to extract the
manifold in which the solutions of complex and coupled engineering problems are defined. Many
works have been done to addresses construction of solution manifolds and its use for interpolating
new solutions on the manifold, construction of parametric solutions on the just extracted manifold
and definition of behavior manifolds to perform data-driven simulation while avoiding the use of
usual constitutive equations. We refer to [179, 180, 12, 186, 8, 45] for further information in this
aspect.

As already explained, the data assimilation frameworks based on GEIM/PBDW, are able to take
the physics information and the observation information into consideration for field reconstruction.
Thus, a data-enabled, physics-constrained predictive modeling framework based on GEIM/BPDW
for nuclear power plant systems design, operation, surveillance and maintenance, etc., is of great
interests in the further.
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Appendix A

Analytical solution to the neutron

diffusion equation for a homogeneous

slab reactor

In this appendix, we use the one-dimensional multigroup neutron diffusion equation to recon-
struct the neutron flux in a slab reactor from the nuclear parameters of the reactor, boundary and
symmetry condition, initial flux and keff . The neutron multigroup difussion equation (3.2.11) in
one dimension, two groups of energy and stationary state are expressed by the following equations:

− d

dx
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dx
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)

+Σa
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(A.0.1)
Due to the fact of the reactor to be homogeneous in the case of one single region (fuel) or homo-
geneous per part in the case of more than one region (fuel and reflector), these nuclear parameters
are constant in each region, i.e.: Dg(x) ≡ Dg, Σa

g(x) ≡ Σa
g , Σs

g′→g(x) ≡ Σs
g′→g and Σf

g′(x) ≡ Σf
g′ .

With this, (A.0.1) it becomes:

−Dg
d2

dx2
φg(x) + Σa

gφg(x) =

2
∑

g′=1
g′ 6=g

Σs
g′→gφg′(x) +

χg

keff

2
∑

g′=1

νΣf
g′φg′(x), g = 1, 2 (A.0.2)

We shall seek an analytical solution from (A.0.2) for the following cases: Homogeneous slab reactor
consisting only of fuel and a heterogeneous slab reactor consisting of fuel and reflector as described.

The multigroup neutron diffusion equation defined as a eigenvalue problem can be written in the
matrix form as follows:

[
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·
(

φ1(x)
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)

=

(

0
0

)

(A.0.3)

where φ1(x) and φ2(x) represent respectively the fast and thermal neutron flux. If we study the
equation above it is possible to see that the equations both for the fast flux and for the thermal flux
satisfy Helmholtz’s equation, given by:

∇2φg(x) +B2φg(x) = 0, g = 1, 2 (A.0.4)
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where B2 denotes any one of the two roots of the equation characteristic of the second-order equation
in B2. Substituting (A.0.4) into (A.0.3), it results that:
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To solve (A.0.5), it is enough that the determinant of the matrix is null, i.e., we have a second-degree

equation for B2 whose solution is given by: B1 = ±
√
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Note that until now we only seek to find the roots of the characteristic equation. As we have not
defined the type of solution and we know that the diffusion equation is a second-order differential
equation, the types of solution that satisfy this equation are many, although we will consider that
this solution has an exponential behaviour for both fast and thermal flux. Thus, the general solution
for the thermal flux is given by:

φ2(x) = C1e
−B1x + C2e

B1x + C3e
−B3x + C4e

B2x (A.0.6)

Due to the fact that the system provided by Eq (A.0.3) is coupled, the solution for the fast flux can
be obtained by substituting (A.0.6) into (A.0.2) to g = 2 , of which we have
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We will now seek some conditions that have to be applied to (A.0.6) and (A.0.7) in order to
determine the coefficients of the equation. Note that the coefficients are the same for the fast and
thermal flow, so one only needs to impose contour and symmetry conditions for only one of the
equations. In the case of a slab reactor [200, 81] (plain slab in direction x) of dimension a as shown
in Figure A.0.1, we can impose the following conditions:

i) Null flux in the boundary the left, such that, φg(−a/2) = 0;

ii) Null flux in the boundary the right, such that, φg(a/2) = 0;

iii) Maximum flux in the origin, i.e., φg(0) = φgo;

iv) Null net current in the origin, Jg(0) = 0.

Figure A.0.1: Slab reactor with an a dimension.

The one-dimensional multigroup neutron diffusion equation for the fuel region was presented in
the previous section, whose solution was given by (A.0.6) and (A.0.7) . For the reflector region
this equation undergoes some modifications both in the nuclear parameters that will be different in
relation to the nuclear parameters for the fuel, as well as for the form of the diffusion equation, given
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that for this region there is no neutron fission. Therefore, this equation can be written as follows:
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and
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The solutions of the diffusion equation for the fast and thermal group for the reflector region are,
respectively,

Ψ1(x) = R1e
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L1x (A.0.10)
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1
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are the respective diffusion lengths for the fast and thermal

groups.

(A.0.11) and (A.0.11) represent the solutions for the neutron flux in the reflector region, while
(A.0.6) and (A.0.7) represent the solutions for the neutron flux in the fuel region. These regions are
shown in Figure A.0.2.

Figure A.0.2: Slab reactor with two regions of dimension a+ 2b.

As we already have the solutions for the flux in the two regions of the reactor, we will now
seek to find which condition we should impose to the flux in order to determine the coefficients of
(A.0.6), (A.0.7), (A.0.11) and (A.0.11) . As the coefficients of (A.0.11) are present in (A.0.11) and
the coefficients of (A.0.6) and (A.0.7) are identical, we will apply the conditions only for fast and
thermal flux in the two regions, fuel and reflector, such that

i) Continuity of flux in the interface between regions to the left and right, such that, φgc(±a/2) =
Ψgr(±a/2);

ii) Continuity of current in the interface between regions to the left and right, such that, Jgc(±a/2) =
Jgr(±a/2);

iii) Null flux in the boundary the left and right, such that, Ψgr(−a/2−b) = 0 and Ψgr(a/2+b) = 0;

iv) Maximum flux in the origin, i.e., φgc(0) = φgo;

v) Null net current in the origin, Jgc(0) = 0.

Subscripts c and r represent respectively, the fuel and reflector regions.
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