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Abstract

Genotyping is becoming cheaper, making genotype data available for millions of indi-

viduals. Moreover, imputation enables to get genotype information at millions of loci

capturing most of the genetic variation in the human genome. Given such large data and

the fact that many traits and diseases are heritable (e.g. 80% of the variation of height

in the population can be explained by genetics), it is envisioned that predictive models

based on genetic information will be part of a personalized medicine.

In my thesis work, I focused on improving predictive ability of polygenic models.

Because prediction modeling is part of a larger statistical analysis of datasets, I de-

veloped tools to allow flexible exploratory analyses of large datasets, which consist in

two R/C++ packages described in the first part of my thesis. Then, I developed some

efficient implementation of penalized regression to build polygenic models based on

hundreds of thousands of genotyped individuals. Finally, I improved the “clumping and

thresholding” method, which is the most widely used polygenic method and is based on

summary statistics that are widely available as compared to individual-level data.

Overall, I applied many concepts of statistical learning to genetic data. I used ex-

treme gradient boosting for imputing genotyped variants, feature engineering to cap-

ture recessive and dominant effects in penalized regression, and parameter tuning and

stacked regressions to improve polygenic prediction. Statistical learning is not widely

used in human genetics and my thesis is an attempt to change that.
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Résumé

Le génotypage devient de moins en moins cher, rendant les données de génotypes

disponibles pour des millions d’individus. Par ailleurs, l’imputation permet d’obtenir

l’information génotypique pour des millions de positions de l’ADN, capturant l’essentiel

de la variation génétique du génome humain. Compte tenu de la richesse des données

et du fait que de nombreux traits et maladies sont héréditaires (par exemple, la géné-

tique peut expliquer 80% de la variation de la taille dans la population), il est envisagé

d’utiliser des modèles prédictifs basés sur l’information génétique dans le cadre d’une

médecine personnalisée.

Au cours de ma thèse, je me suis concentré sur l’amélioration de la capacité pré-

dictive des modèles polygéniques. Les modèles prédictifs faisant partie d’une analyse

statistique plus large des jeux de données, j’ai développé des outils permettant l’analyse

exploratoire de grands jeux de données, constitués de deux packages R/C++ décrits dans

la première partie de ma thèse. Ensuite, j’ai développé une implémentation efficace de la

régression pénalisée pour construire des modèles polygéniques basés sur des centaines

de milliers d’individus génotypés. Enfin, j’ai amélioré la méthode appelée “clumping

and thresholding”, qui est la méthode polygénique la plus largement utilisée et qui est

basée sur des statistiques résumées plus largement accessibles par rapport aux données

individuelles.

Dans l’ensemble, j’ai appliqué de nombreux concepts d’apprentissage statistique

aux données génétiques. J’ai utilisé du “extreme gradient boosting” pour imputer des

variants génotypés, du “feature engineering” pour capturer des effets récessifs et dom-

inants dans une régression pénalisée, et du “parameter tuning” et des “stacked regres-

sions” pour améliorer les modèles polygéniques prédictifs. L’apprentissage statistique

n’est pour l’instant pas très utilisé en génétique humaine et ma thèse est une tentative

pour changer cela.
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Chapter 1

Introduction

In my thesis work, we have been focusing on assessing someone’s risk of disease based

on DNA data. Except for somatic mutations, DNA data do not change over lifetime so

that we could, in theory, assess someone’s genetic risk of disease at birth. Thus, this

could have potentially large implications in disease prevention (Mavaddat et al., 2015;

Pashayan et al., 2015). As an example, about 12% of women in the general population

will develop breast cancer sometime during their lives (DeSantis et al., 2016). By con-

trast, a recent large study estimated that about 72% (95% CI: 65%-79%) of women who

inherit a harmful BRCA1 mutation and about 69% (95% CI: 61%-77%) of women who

inherit a harmful BRCA2 mutation will develop breast cancer by the age of 80 (Kuchen-

baecker et al., 2017). In 2013, Angelina Jolie announced that she had undergone a pre-

ventative double mastectomy, because she had a family history of breast cancer and was

carrying a harmful BRCA1 mutation. Thereby, DNA data can help identify individuals

who are at high-risk for some diseases in order to target preventive actions.

In this introduction, we first introduce the context of our research and the type of

data we work with. Then, we present the statistical methods that are widely used in our

field, and how the field has moved from association testing to prediction. Finally, we

present the main statistical and computational challenges that have driven our research.

During this thesis, two peer-reviewed papers have been published and a third paper is

currently available as a preprint.

7
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1.1 Context

Today, clinical risk prediction for common adult-onset diseases often relies on de-

mographic characteristics, such as age, gender and ethnicity; health parameters and

lifestyle factors, such as body mass index, smoking status, alcohol consumption and

physical activity; measurement of clinical risk factors linked to disease onset, such as

blood pressure levels, blood chemistries or biomarkers indicative of ongoing disease

processes; ascertainment of environmental exposures, such as air pollution, heavy met-

als and other environmental toxins; and family history (Torkamani et al., 2018). Routine

genetic profiling is absent from this list, often relegated to use only when testing clar-

ifies individual-level risks in the context of a known family history for some common

adult-onset diseases (Torkamani et al., 2018).

1.1.1 Different types of diseases and mutations

How mutations affect diseases depends on the effect sizes of causal variants and on the

allele frequencies of these variants (Figure 1.1). For example, harmful BRCA mutations

are highly penetrant mutations, i.e. that most women carrying these mutations will de-

velop breast cancer. Many mutations with large effect sizes have been identified and are

referenced in an online database called OMIM (Hamosh et al., 2005). Those mutations

are often very rare; either they are associated with some very rare disease or they explain

only a small proportion of common diseases incidence (Anglian Breast Cancer Study

Group et al., 2000). In this work, we focus on common diseases (e.g. breast cancer) and

try to predict individuals’ disease susceptibility based on common variants; the common

disease–common variant hypothesis (Pritchard and Cox, 2002). This hypothesis further

suggests that such diseases are likely caused by a large number of common variants,

each contributing only a small risk and thereby evading negative evolutionary selection

(Salari et al., 2012). Indeed, selection might be responsible for keeping genetic ef-

fects low, since variants of large effect may be selected against and eventually disappear

(Pritchard and Cox, 2002). One common form of variation across human genomes is

called a single nucleotide polymorphism (SNP). SNPs are single base changes in the

DNA. Genotyping technologies now exists to genotype hundreds of thousands of SNPs

at once for around $50 only. Starting with the Wellcome Trust Case Control Consor-
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tium (2007), these genotyping technologies have led to many genome-wide association

studies.

Figure 1.1: Feasibility of identifying genetic variants by risk allele frequency and

strength of genetic effect (odds ratio). Most emphasis and interest lies in identifying

associations with characteristics shown within diagonal dotted lines. Source: Manolio

et al. (2009).

1.1.2 Genome-Wide Association Studies (GWAS)

Visscher et al. (2017) provide a thorough review of the aims and outcomes of GWAS

and Tam et al. (2019) talk extensively about the benefits and limitations of GWAS. The

method behind GWAS is simple: test each variant one by one for association with a

phenotype of interest. For a continuous phenotype (e.g. height), linear regression is

used and, for each SNP j, a t-test is performed to look for an association between this

SNP and the phenotype of interest (βj = 0 vs βj 6= 0), where

y = αj + βjGj + γ
(1)
j COV (1) + · · ·+ γ

(K)
j COV (K) + ǫ , (1.1)

y is the continuous phenotype, αj is the intercept, Gj is SNP j with effect βj , COV (1),

..., COV (K) are K covariates with effects γ
(1)
j , ..., γ

(K)
j , including principal components

and other covariates such as age and gender. Similarly, for a binary phenotype (e.g.

disease status), logistic regression is used and a Z-test is performed on βj for each SNP
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j where

log

(
p

1− p

)
= αj + βjGj + γ

(1)
j COV (1) + · · ·+ γ

(K)
j COV (K) , (1.2)

p = P(Y = 1) and Y denotes the binary phenotype.

It is well established that principal components of genotype data should be included

as covariates in GWAS to account for the confounding effect of population structure

(Price et al., 2006). Indeed, principal components of genotype data capture well pop-

ulation structure (as shown in figure 1.2). To illustrate the importance of accounting

for population structure, consider a dataset where there are 900 Finnish people and 100

Italian people. Because Finnish people are on average taller than Italian people, any

SNP with a large difference in allele frequency between these two populations would

be flagged as being associated with height, leading to many false positive associations.

Thus, adding principal components as covariates aims at preventing those SNPs from

being false positive reports.

Figure 1.2: First two Principal Components of individuals from European populations

using the POPRES dataset (Nelson et al., 2008). PC1 correlates with latitude while PC2

correlates with longitude.
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These simple tests can be used only if individuals are not related to one another.

If they do, a common practice is to remove one individual from each pair of related

individuals. Another strategy is to use Linear Mixed Models (LMM) to take into account

both relatedness and population structure; these mixed models have also the potential to

increase discovery power in association testing (Yang et al., 2014).

In 2013, more than 10,000 strong associations had been reported between genetic

variants and one or more complex traits (Welter et al., 2013), where “strong” is de-

fined as statistically significant at the genome-wide p-value threshold of 5× 10−8. This

threshold corresponds to a type-I error of 5%, Bonferroni-corrected for one million

independent tests (Pe’er et al., 2008). Results of a GWAS are usually reported in a

Manhattan plot (Figure 1.3). Manhattan plots show some association peaks (similar to

skyscrapers in Manhattan) due to some local correlation between SNPs (Linkage Dise-

quilibrium), with squared correlation roughly inversely proportional to genetic distance

between SNPs (Hudson, 2001).

Figure 1.3: Manhattan plot from a GWAS of height based on 20,000 unrelated individ-

uals from the UK Biobank dataset (Bycroft et al., 2018).

1.1.3 GWAS data

There are mainly three types of individual-level data: genotyped SNPs from genotyping

chips, imputed SNPs from reference panels, and Next Generation Sequencing (NGS)

data. Genotyping chips enable a quick and cheap genotyping of 200K to 2M SNPs,

mostly focusing on common variants (Minor Allele Frequency (MAF) larger than 1-
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5%). Data resulting from genotyping can be coded as a matrix of 0s, 1s and 2s, counting

the number of alternative alleles for each individual (row) and each genome position

(column). There are usually few missing values (less than 5% in total) when using this

technology.

Imputation has a different meaning in genetics than in other Data Science fields;

it does not refer to filling those 5% missing values, but instead refers to adding com-

pletely new variants that were not genotyped with the chip used. This type of imputation

is possible because genotypes of unobserved genetic variants can be predicted by hap-

lotypes inferred from multiple observed SNPs (the ones that were genotyped) and hap-

lotypes observed from a fully sequenced reference panel (Marchini and Howie, 2010;

McCarthy et al., 2016). Imputation now allows to have large GWAS datasets such as

the UK Biobank: 90M imputed variants for each of 500K individuals who were initially

genotyped at 800K SNPs only (Bycroft et al., 2018).

Finally, NGS (also named Whole Genome Sequencing (WGS)) refers to fully se-

quenced data over more than 3M variants, including some rare variants. Yet, this tech-

nology is still very expensive, with a cost of around $1000 per genome but that could

reduce to $100 in a few years1. GWAS to date have been based on SNP arrays designed

to tag common variants in the genome. These arrays do not cover all genetic variants

in the population, and it seems natural that future GWAS will be based on WGS. How-

ever, the price differential between SNP arrays and WGS is still substantial, and array

technology remains more robust than sequencing (Visscher et al., 2017). An in-between

solution could be to use extremely low-coverage sequencing (Pasaniuc et al., 2012).

Recently, some national biobank projects have emerged. For example, the UK

Biobank has released to the international research community both genome-wide geno-

types and rich phenotypic data on 500K individuals (Bycroft et al., 2018). Yet, it is rare

to have access to large individual-level genotype data. Usually, only summary statistics

for a GWAS dataset are available, i.e. the estimated effect sizes and p-values for asso-

ciation of each variant of the dataset with a phenotype of interest (Table 1.1). Because

of the availability of such data en masse, specific methods using those summary data

have been developed for a wide range of applications such as imputation, polygenic

prediction and heritability estimation (Pasaniuc et al., 2014; Vilhjálmsson et al., 2015;

1https://www.bloomberg.com/news/articles/2019-02-27/

a-100-genome-within-reach-illumina-ceo-asks-if-world-is-ready

https://www.bloomberg.com/news/articles/2019-02-27/a-100-genome-within-reach-illumina-ceo-asks-if-world-is-ready
https://www.bloomberg.com/news/articles/2019-02-27/a-100-genome-within-reach-illumina-ceo-asks-if-world-is-ready
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Bulik-Sullivan et al., 2015; Pasaniuc and Price, 2017; Speed and Balding, 2018). The

craze for such data can be explained by the fact that GWAS individual-level data can-

not be easily shared publicly, as opposed to summary data (Lin and Zeng, 2010). In

fact, modern large GWAS are meta-analyses of many smaller GWAS summary statis-

tics. Moreover, methods using summary statistics data are usually fast and easy to use,

making them even more appealing to researchers.

In this thesis, we have not used NGS data, but we have used genotyped SNPs, im-

puted SNPs and summary statistics to construct predictive models of disease risk for

many common diseases.

Table 1.1: An example of summary statistics for type 2 diabetes (Scott et al., 2017).

Generally, effects and p-values are available for all SNPs in the GWAS, where there can

be many millions of them (Editors of Nature Genetics, 2012).

Chr Position Allele1 Allele2 Effect StdErr P-value TotalSampleSize

5 29439275 T C -0.000 0.015 0.990 111309

5 85928892 T C -0.008 0.031 0.790 111309

11 107819621 A C -0.110 0.200 0.590 87234

10 128341232 T C 0.024 0.015 0.110 111309

8 66791719 A G 0.069 0.120 0.560 99092

23 145616900 A G -0.011 0.060 0.860 19870

3 62707519 T C 0.006 0.034 0.860 111308

2 80464120 T G 0.110 0.057 0.062 108514

18 51112281 T C -0.011 0.016 0.490 111307

1 209652100 T C 0.260 0.170 0.120 84836

1.2 From GWAS to Polygenic Risk Scores (PRS)

For thorough guides on how to perform PRS analyses, please refer to Wray et al. (2014);

Chasioti et al. (2019); Choi et al. (2018).

1.2.1 The “Clumping + Thresholding” approach for computing PRS

The main method for computing Polygenic Risk Scores (PRS) is the widely used “Clump-

ing + Thresholding” (C+T, also called “Pruning + Thresholding” in the literature) model

based on univariate GWAS summary statistics as described in equations (1.1) and (1.2).

Under the C+T model, a coefficient of regression is learned independently for each SNP

along with a corresponding p-value (the GWAS part).
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The SNPs are first clumped (C) so that there remains only SNPs that are weakly

correlated with each other (Sclumping). Clumping looks at the most significant SNP first,

computes correlation between this index SNP and nearby SNPs (within a genetic dis-

tance of e.g. 500kb) and remove all the nearby SNPs that are correlated with this index

SNP beyond a particular threshold (e.g. r2 = 0.2, Wray et al. (2014)). The clumping

step aims at removing redundancy in included effects that is simply due to linkage dis-

equilibrium (LD) between variants (see figures 1.4 and 1.5). Yet, this procedure may as

well remove independently predictive variants in nearby regions.

Thresholding (T) consists in removing SNPs with a p-value larger than a p-value

threshold pT in order to reduce noise in the score. In figure 1.4, using no threshold

corresponds to “C+T-all”; using the genome-wide threshold of 5× 10−8 corresponds to

“C+T-stringent”. Generally, several p-value thresholds are tested to maximize predic-

tion.

A polygenic risk score is finally defined as the sum of allele counts of the remaining

SNPs (after clumping and thresholding) weighted by the corresponding GWAS effect

sizes (Purcell et al., 2009; Dudbridge, 2013; Wray et al., 2014; Euesden et al., 2015),

PRSi =
∑

j∈Sclumping
pj < pT

β̂j ·Gi,j ,

where β̂j (pj) are the effect sizes (p-values) estimated from the GWAS and Gi,j is the

allele count (genotype) for individual i and SNP j.

1.2.2 PRS for epidemiology

Polygenic Risk Scores (PRS) have been used for epidemiology before being used for

prediction. The steps for a PRS analysis are illustrated in figure 1.6 and have two goals.

First, PRS can be used when there is no SNP detected (at 5× 10−8) in a GWAS in order

to show that there is still a significant polygenic contribution to the phenotype of inter-

est. For example, in 2009, a GWAS for schizophrenia by Purcell et al. (2009) found

only a single significantly associated SNP, although this disease is known to be highly

heritable. Yet, by constructing a PRS using these GWAS results and testing this poly-

genic score for association with schizophrenia in another independent dataset, Purcell
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Figure 1.4: Illustration of C+T looking at a Manhattan plot from a GWAS of height

based on 20,000 unrelated individuals from the UK Biobank dataset (Bycroft et al.,

2018). Clumping removes nearby SNPs that are too correlated with one another be-

cause indirect associations due to Linkage Disequilibrium provide only redundant in-

formation (see figure 1.5). Thresholding includes SNPs if they are significant enough

(pj < pT ) in order to reduce noise in the polygenic score.

et al. (2009) proved that there is a polygenic contribution to schizophrenia (Figure 1.7).

Thus, polygenic analysis was central in demonstrating that the first phase of GWAS was

underpowered, which justified the need for larger sample sizes that is now starting to

pay off (Wray et al., 2014).

Another use of PRS for epidemiology is to test the PRS for association with a phe-

notype that is different from the one used to compute the summary statistics. This

technique enables researchers to prove that there is a common genetic contribution be-

tween two traits. For example, it was shown that there is a common genetic contribution

Figure 1.5: Illustration of an indirect association with a phenotype due to Linkage Dis-

equilibrium between SNPs. Source: Astle et al. (2009).
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Figure 1.6: Illustration of the steps in genomic profile risk scoring. Source: Wray et al.

(2014).

between schizophrenia and bipolar disorder (Figure 1.7).

1.2.3 The differing goals of association testing and risk prediction

Association testing (GWAS) and prediction have very different goals. First, GWAS aims

at identifying highly replicable disease-associated variants by using a highly stringent

p-value threshold to prevent false discoveries. However, using only hits from GWAS

results in PRS of low predictive value (see section 1.3.1). A common mistake is to report

highly significant findings with large odds ratios as useful predictors of disease. Thus,

people have been reminded over the years that GWAS findings are often not predictive

on their own even if they are highly associated with the disease of interest, and that

we would need scores that combine many SNPs in order to have a decent predictor of

disease, i.e. polygenic scores (Pepe et al., 2004; Janssens et al., 2006; Jakobsdottir et al.,

2009; Wald and Old, 2019).

Finally, it should be noted that population stratification, usually considered an un-

welcome confounder in GWAS, may be useful in risk prediction and may be leveraged

to produce better models (Golan and Rosset, 2014; Abraham and Inouye, 2015). In-

deed, for predictive purposes, the objective is to provide the best possible prediction

and confounding is not an issue.
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Figure 1.7: Replication of the polygenic component derived by the International

Schizophrenia Consortium in independent schizophrenia and bipolar disorder samples.

A PRS was computed using summary statistics from a GWAS of schizophrenia, and

this polygenic score was tested for association with schizophrenia, bipolar disorder and

other diseases in independent datasets. This proved that there was a polygenic contribu-

tion to schizophrenia, a common genetic contribution between schizophrenia and bipo-

lar disorder, but no apparent common genetic contribution between schizophrenia and

other diseases such as coronary artery disease, Crohn’s disease, hypertension, rheuma-

toid arthritis and diabetes. Associations were maximized for pT = 0.5, i.e. including

more than half of all SNPs. Source: Purcell et al. (2009).

1.3 Polygenic prediction

1.3.1 Heritability and missing heritability

The basic components of disease risk are usually broken down into genetic susceptibil-

ity, environmental exposures and lifestyle factors. Thus, all disease incidence cannot be

predicted by genetic factors only. For a quantitative phenotype, we call heritability (h2)

the proportion of phenotypic variation that is attributable to genetic factors among a pop-

ulation (Visscher et al., 2008). Methods now enable the estimation of chip-heritability

(also called SNP-heritability: h2
SNP ) using linear mixed models (LMM) and residual

maximum likelihood (ReML). For example, for a chip of 300K SNPs, it was shown
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that those SNPs could account for 45% of the variance of height (Yang et al., 2010).

Note that the heritability of height is estimated to be around 80% (Silventoinen, 2003;

Visscher et al., 2006); the difference between these two values can be explained by the

fact that 300K SNPs cannot capture the same variation in height as the 3 billion base

pairs of DNA. This difference can also reflect an overestimation of heritability (Visscher

et al., 2008). Authors of a recent preprint claim that they can recover the full heritability

for height and BMI using both rare and common variants from WGS data (Wainschtein

et al., 2019).

Heritability is the upper bound in terms of prediction power (when measured with

R2) that we can get using a model from genetic variants only. The difference between

R2 and h2 has been termed “missing heritability” (Manolio et al., 2009). So, the main

goal of my thesis is to get best possible predictions based on genetic data in order to

reduce this missing heritability.

The gap between predictions and heritability estimates was very large in the first

years of GWAS. For example, first GWAS found only 12 associated SNPs for type 2

diabetes and only 2 for prostate cancer, explaining a very small proportion of heritability

for these diseases (Jakobsdottir et al., 2009). Likewise, in 2008, only 40 genome-wide-

significant SNPs had been identified for height, and together they explained about 5%

of the heritability of height (Manolio et al., 2009). In 2014, the number of associated

SNPs had increased to around 700 for height, explaining 20% of its heritability (Wood

et al., 2014). Since many of the identified associated SNPs have an effect size close to

the limit dictated by the power of the studies, a likely explanation, at least in part, is that

there are many common polymorphisms with effects that are too small to be identified

at the stringent significance threshold of current GWAS (Wray et al., 2008). Therefore,

as results from multiple GWAS are combined to increase sample size, a larger fraction

of the genetic variance is likely to be explained and accurate prediction of genetic risk

to disease will become possible even though the risks conveyed by individual variants

are small (Wray et al., 2008, 2018). These findings have also led people to use not only

genome-wide significant SNPs, but many other SNPs, sometimes not even marginally

significant (i.e. with a p-value > 5%) in order to maximize predictive power (Purcell

et al., 2009; Dudbridge, 2013; Wray et al., 2014).
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1.3.2 Methods for polygenic prediction

Several methods have been developed to predict disease status based on genetic data.

We can divide these methods in two categories: the ones that use summary statistics and

the ones that use individual-level data only.

When summary statistics are available, the most widely used method is called “Clump-

ing + Thresholding” (C+T), which has been described in section 1.2.1. More recently,

researchers have focused their efforts on implementing more elegant and potentially

more optimal ways to account for LD, as a replacement of clumping that simply dis-

cards SNPs (Vilhjálmsson et al., 2015; Mak et al., 2017; Chun et al., 2019; Ge et al.,

2019). Take the solution of a linear regression y = Xβ + ǫ, β̂ =
(
XTX

)
−1

XTy.

This vector of effect sizes β̂, estimated from all variables at once, can be decomposed

in two parts: XTy that represents the marginal effects, i.e. the effects of each variable

when learned independently (up to some scaling); and
(
XTX

)
−1

, some rotation of the

effects that account for the correlation between variables. Then, the first element can be

replaced by summary statistics and the second element can be replaced by an estimation

of LD obtained e.g. from a reference panel.

Moreover, these methods handle weights differently than C+T that directly uses

GWAS effect sizes as weights in the PRS, or weights of 0 for SNPs not passing the

clumping and thresholding steps. Instead, these methods usually shrink effects towards

0. Apart from “lassosum” of Mak et al. (2017), the other methods do not perform vari-

able selection at all. This means that if you use GWAS summary statistics for 10M vari-

ants as input, you would get a predictive model composed of 10M variables (Janssens

and Joyner, 2019).

When using individual-level data only, the problem boils down to a standard clas-

sification problem. Thus, some statistical learning methods have been used to derive

PRS for complex human diseases by jointly estimating SNP effects. Such methods in-

clude joint logistic regression, Support Vector Machine (SVM) and random forests (Wei

et al., 2009; Abraham et al., 2012, 2014; Botta et al., 2014; Okser et al., 2014). Linear

Mixed-Models (LMMs) are another widely-used method in fields such as plant and an-

imal breeding or for predicting highly heritable quantitative human phenotypes such as

height (Yang et al., 2010). However, these methods and their derivatives are often com-

putationally very demanding, both in terms of memory and time required (Zhou et al.,
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2013; Golan and Rosset, 2014; Speed and Balding, 2014; Maier et al., 2015). Recently,

two methods named BOLT-LMM and SAIGE have been developed to handle very large

datasets (Loh et al., 2018; Zhou et al., 2018). BOLT-LMM and SAIGE were primarily

designed for association testing but can also be used for prediction purposes based on

individual-level data.

1.3.3 Objective and main difficulties of the thesis

We want to use genetic data to help distinguish between cases and controls for a given

disease, or at least to stratify people in the population in order to improve early detec-

tion of diseases and prevention for high-risk individuals. Genomic data are usually very

large and highly dimensional with hundreds of thousands of variables to many millions,

for thousands or hundreds of thousands individuals. Thanks to large sample sizes of

recent GWAS studies, many robust associations between DNA variants and many dis-

eases have been identified. Yet, individually, these variants generally have a small effect

on disease susceptibility, explaining a small fraction of the total heritability of the dis-

eases studied. In order to have predictive models useful in clinical settings, we need to

combine the information from a multitude of DNA variants (polygenic models), com-

ing from multiple studies and in diverse formats (e.g. individual-level data and summary

statistics).

To improve current disease predictions from Polygenic Risk Scores (PRS), we have

focused on using methods from the statistical learning community, which have received

only moderate attention in the "predictive human genetics" field. The main difficulty in

using these methods is that they do not necessarily scale well with the large-scale data

we now have in this field. For example, the UK Biobank is composed of 500K individu-

als from which 90M variants are available (Bycroft et al., 2018). When analyzing these

large-scale datasets, only a few methods can be used. Most of them are being developed

in a separate piece of software that does a specific analysis. Yet, if you want to do some

exploratory analyses and test new ideas, it becomes increasingly difficult to do so.

Thus, the first part of our work has been dedicated to developing two R packages

that could handle very large datasets, while being simple and flexible to use for both

standard and exploratory analyses. Our second paper has been dedicated to implement-

ing penalized regressions as a replacement to more simple, less optimal methods, and
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that could be used for very large individual-level datasets. Finally, because lots of sum-

mary statistics data are available while individual-level data are still scarce, we worked

on making the most of the Clumping and Thresholding (C+T) method since it proved to

be a simple and effective method for constructing PRS based on large GWAS summary

statistics and smaller individual-level datasets.



22 CHAPTER 1. INTRODUCTION



Chapter 2

Efficient analysis of large-scale

genome-wide data with two R

packages: bigstatsr and bigsnpr

2.1 Summary of the article

2.1.1 Introduction

Sample size of GWAS data has rapidly grown due to the reduction in genotyping costs

over the years. Moreover, thanks to the imputation of many non-genotyped SNPs, the

number of available SNPs for a given dataset has grown to millions. In 2007, there were

datasets with 2000 cases and 3000 controls, genotyped over 300K SNPs (Wellcome

Trust Case Control Consortium, 2007). Now, there are datasets of 500K individuals,

genotyped over 800K SNPs, and imputed over 90M SNPs (Bycroft et al., 2018). Geno-

type data are the first data of the omics family to have grown to such large scale. To

analyze these datasets, software have been consistently produced or updated over the

years to keep up with growing sizes. I think this is one of a few fields where producing

software is really recognized as an important part of research to help advance the field.

An obvious example in genetics is PLINK, a command line piece of software whose

first version has been cited more than 17K times since 2007 and whose second version

has already been cited more than 1500 times since 2015 (Purcell et al., 2007; Chang

23
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et al., 2015). This software is useful for file conversions as well as many types of SNP

data analyses and is used in plant, animal and human genetics alike.

I wanted to use R to analyze data from this field as it provides excellent tools for

exploratory analyses. R is a programming language that makes it easy to tie together

existing or new functions to be used as part of large, interactive and reproducible anal-

yses (R Core Team, 2018). Yet, most of the R packages that have been developed in

human genetics are now obsolete because they cannot scale to the size of the data we

currently have in the field. The first problem there is to solve is to actually store the data.

For example, a standard R matrix of size 500K x 800K would require 3TB of RAM just

to access it in memory. The second problem concerns computation time; if all functions

provided by a package take two weeks to run, it is not really useful.

2.1.2 Methods

We developed two R packages called bigstatsr and bigsnpr. To solve the memory issue,

we use a data format stored as a binary file on disk but that can be accessed almost

as if it were a standard R matrix in memory. To provide functions with a reasonable

computation time, I spent thousands of hours on the performance of code. Moreover,

most of the functions provided in these packages are parallelized, which is facilitated by

the fact that the data is stored on disk, therefore accessible by each process without the

need of any copying. The R packages makes extensive use of some C++ code in order

to fully optimize key parts of the available functions.

Specifically, package bigstatsr provides the on-disk data format and some standard

statistical algorithms such as Principal Component Analysis (PCA), multiple association

testing (GWAS, EWAS, TWAS, etc.), matrix products, etc. for this data format. This

package is not specific to genetic data and can be used by other fields. Package bigsnpr

builds on top of package bigstatsr and provides algorithms specific to GWAS data. It

also provides wrappers to widely used software such as PLINK in order to perform all

analyses within R, making it both simple and reproducible1. To save some disk space

and make accesses faster, we store genotype matrices using one byte per element only,

instead of eight bytes per element for a standard R matrix. With a special format, we

1https://hackseq.github.io/2017_project_5/all-in-R.html (Grande et al.,

2018)

https://hackseq.github.io/2017_project_5/all-in-R.html
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are able to store both hard calls (0s, 1s, 2s and NAs) and dosages (expected values from

imputation probabilities, d = 0× P(0) + 1× P(1) + 2× P(2)).

We also developed two new algorithms by building on existing R packages. One

algorithm is used for the imputation of missing values inside a genotype matrix. Gen-

erally, there are less than 1% of missing data in a genotype matrix, and current algo-

rithms for filling these blanks relies on complex inference algorithms. Notably, these

algorithms rely on a first step of phasing, which consists in inferring haplotypes from

genotypes. Phasing is very computationally demanding, so that we propose an algo-

rithm based on XGBoost (Chen and Guestrin, 2016), an efficient algorithm for building

decision trees using extreme gradient boosting, which allows for reconstructing data for

one SNP based on non-linear combinations of nearby SNPs. The other algorithm we

developed infer consecutive loadings that capture the structure of long-range LD regions

instead of capturing population structure when performing PCA on SNP data. This new

algorithm relies on pcadapt, an algorithm that find outlier loadings in PCA (Luu et al.,

2017).

2.1.3 Results

We show that our two R packages are very efficient and can perform standard analyses

as fast as dedicated command line software such as PLINK, and much faster than previ-

ously developed R packages. We also show that commonly used software for computing

principal components of genomic data are not accurate enough in some cases. Finally,

we show that, thanks to our two newly developed algorithms, we are able to quickly

impute the few missing values in a genotype matrix while being almost as accurate as

more complex and computationally demanding software. We also show that our PCA

algorithm is able to detect and remove long-range LD regions, which makes it possi-

ble to automatically retrieve population structure without capturing any LD structure in

PCA of SNP data.

2.1.4 Discussion

We developed two very fast R packages for analyzing large genomic data. One of them,

bigstatsr, is not specific to SNP data so that it could be used by other fields that need to
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analyze large matrices. Moreover, we think these packages are simple to use, very well

tested and easily maintainable because of relatively simple code. The two R packages

use a matrix-like format, which makes it easy to develop new functions in order to

experiment and develop new ideas. Integration in R makes it possible to take advantage

of the vast and diverse R packages.

2.2 Article 1 and supplementary materials

The following article is published in Bioinformatics 2.

2https://doi.org/10.1093/bioinformatics/bty185

https://doi.org/10.1093/bioinformatics/bty185
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Abstract

Motivation: Genome-wide datasets produced for association studies have dramatically increased

in size over the past few years, with modern datasets commonly including millions of variants

measured in dozens of thousands of individuals. This increase in data size is a major challenge

severely slowing down genomic analyses, leading to some software becoming obsolete and

researchers having limited access to diverse analysis tools.

Results: Here we present two R packages, bigstatsr and bigsnpr, allowing for the analysis of large

scale genomic data to be performed within R. To address large data size, the packages use

memory-mapping for accessing data matrices stored on disk instead of in RAM. To perform data

pre-processing and data analysis, the packages integrate most of the tools that are commonly

used, either through transparent system calls to existing software, or through updated or improved

implementation of existing methods. In particular, the packages implement fast and accurate com-

putations of principal component analysis and association studies, functions to remove single

nucleotide polymorphisms in linkage disequilibrium and algorithms to learn polygenic risk scores

on millions of single nucleotide polymorphisms. We illustrate applications of the two R packages

by analyzing a case–control genomic dataset for celiac disease, performing an association study

and computing polygenic risk scores. Finally, we demonstrate the scalability of the R packages by

analyzing a simulated genome-wide dataset including 500 000 individuals and 1 million markers on

a single desktop computer.

Availability and implementation: https://privefl.github.io/bigstatsr/ and https://privefl.github.io/

bigsnpr/.

Contact: florian.prive@univ-grenoble-alpes.fr or michael.blum@univ-grenoble-alpes.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide datasets produced for association studies have dra-

matically increased in size over the past few years, with modern

datasets commonly including millions of variants measured in doz-

ens of thousands of individuals. As a consequence, most existing

software and algorithms have to be continuously optimized in order

to avoid obsolescence. For computing principal component analysis

(PCA), commonly performed to account for population stratifica-

tion in association, a fast mode named FastPCA has been added to

the software EIGENSOFT, and FlashPCA has been replaced by

FlashPCA2 (Abraham and Inouye, 2014; Abraham et al., 2016;

Galinsky et al., 2016; Price et al., 2006). PLINK 1.07, which has
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been a central tool in the analysis of genotype data, has been

replaced by PLINK 1.9 to speed-up computations, and there is also

an alpha version of PLINK 2.0 that will handle more data types

(Chang et al., 2015; Purcell et al., 2007).

Increasing size of genetic datasets is a source of major computa-

tional challenges and many analytical tools would be restricted by the

amount of memory (RAM) available on computers. This is particu-

larly a burden for commonly used analysis languages such as R. For

analyzing genotype datasets in R, a range of software are available,

including for example the popular R packages GenABEL, SNPRelate

and GWASTools (Aulchenko et al., 2007; Gogarten et al., 2012;

Zheng et al., 2012b). Solving memory issues for languages such as R

would give access to a broad range of already implemented tools for

data analysis. Fortunately, strategies have been developed to avoid

loading large datasets in RAM. For storing and accessing matrices,

memory-mapping is very attractive because it is seamless and usually

much faster to use than direct read or write operations. Storing large

matrices on disk and accessing them via memory-mapping has been

available for several years in R through ‘big.matrix’ objects imple-

mented in the R package bigmemory (Kane et al., 2013).

2 Approach

In order to perform analyses of large-scale genomic data in R, we

developed two R packages, bigstatsr and bigsnpr, that provide a wide-

range of building blocks which are parts of standard analyses. R is a

programming language that makes it easy to tie together existing or

new functions to be used as part of large, interactive and reproducible

analyses (R Core Team, 2017). We provide a similar format as file-

backed ‘big.matrix’ objects that we called ‘Filebacked Big Matrices

(FBMs)’. Thanks to this matrix-like format, algorithms in R/Cþþ can

be developed or adapted for large genotype data. This data format is a

particularly good trade-off between easiness of use and computation

efficiency, making our code both simple and fast. Package bigstatsr

implements many statistical tools for several types of FBMs (unsigned

char, unsigned short, integer and double). This includes implementa-

tion of multivariate sparse linear models, PCA, association tests, matrix

operations and numerical summaries. The statistical tools developed in

bigstatsr can be used for other types of data as long as they can be rep-

resented as matrices. Package bigsnpr depends on bigstatsr, using a spe-

cial type of filebacked big matrix (FBM) object to store the genotypes,

called ‘FBM.code256’. Package bigsnpr implements algorithms which

are specific to the analysis of single nucleotide polymorphism (SNP)

arrays, such as calls to external software for processing steps, Input/

Output (I/O) operations from binary PLINK files and data analysis

operations on SNP data (thinning, testing, predicting and plotting). We

use both a real case–control genomic dataset for celiac disease and

large-scale simulated data to illustrate application of the two R pack-

ages, including two association studies and the computation of

polygenic risk scores (PRS). We compare results from bigstatsr and

bigsnpr with those obtained by using command-line software PLINK,

EIGENSOFT and PRSice, and R packages SNPRelate and

GWASTools. We report execution times along with the code to per-

form major computational tasks. For a comprehensive comparison

between R packages bigstatsr and bigmemory, see Supplementary

notebook ‘bigstatsr-and-bigmemory’.

3 Materials and methods

3.1 Memory-mapped files

The two R packages do not use standard read operations on a file

nor load the genotype matrix entirely in memory. They use a hybrid

solution: memory-mapping. Memory-mapping is used to access

data, possibly stored on disk, as if it were in memory. This solution

is made available within R through the BH package, providing

access to Boost CþþHeader Files (http://www.boost.org/).

We are aware of the software library SNPFile that uses memory-

mapped files to store and efficiently access genotype data, coded in

Cþþ (Nielsen and Mailund, 2008) and of the R package

BEDMatrix (https://github.com/QuantGen/BEDMatrix) which pro-

vides memory-mapping directly for binary PLINK files. With the

two packages we developed, we made this solution available in R

and in Cþþ via package Rcpp (Eddelbuettel and François, 2011).

The major advantage of manipulating genotype data within R,

almost as if it were a standard matrix in memory, is the possibility

of using most of the other tools that have been developed in R

(R Core Team, 2017). For example, we provide sparse multivariate

linear models and an efficient algorithm for PCA based on adapta-

tions from R packages biglasso and RSpectra (Qiu and Mei, 2016;

Zeng and Breheny, 2017).

Memory-mapping provides transparent and faster access than

standard read/write operations. When an element is needed, a small

chunk of the genotype matrix, containing this element, is accessed in

memory. When the system needs more memory, some chunks of the

matrix are freed from the memory in order to make space for others.

All this is managed by the operating system so that it is seamless and

efficient. It means that if the same chunks of data are used repeat-

edly, it will be very fast the second time they are accessed, the third

time and so on. Of course, if the memory size of the computer is

larger than the size of the dataset, the file could fit entirely in mem-

ory and every second access would be fast.

3.2 Data management, pre-processing and imputation

We developed a special FBM object, called ‘FBM.code256’, that can

be used to seamlessly store up to 256 arbitrary different values,

while having a relatively efficient storage. Indeed, each element is

stored in one byte which requires eight times less disk storage than

double-precision numbers but four times more space than the binary

PLINK format ‘.bed’ which can store only genotype calls. With these

256 values, the matrix can store genotype calls and missing values

(four values), best guess genotypes (three values) and genotype dos-

ages (likelihoods) rounded to two decimal places (201 values). So,

we use a single data format that can store both genotype calls and

dosages.

For pre-processing steps, PLINK is a widely-used software. For

the sake of reproducibility, one could use PLINK directly from R via

systems calls. We therefore provide wrappers as R functions that use

system calls to PLINK for conversion and quality control and a vari-

ety of formats can be used as input (e.g. vcf, bed/bim/fam, ped/map)

and bed/bim/fam files as output (Supplementary Fig. S1). Package

bigsnpr provides fast conversions between bed/bim/fam PLINK files

and the ‘bigSNP’ object, which contains the genotype FBM

(FBM.code256), a data frame with information on samples and

another data frame with information on SNPs. We also provide

another function which could be used to read from tabular-like text

files in order to create a genotype in the format ‘FBM’. Finally, we

provide two methods for converting dosage data to the format

‘bigSNP’ (Supplementary notebook ‘dosage’).

Most modern SNP chips provide genotype data with large call-

rates. For example, the celiac data we use in this paper presents only

0.04% of missing values after quality control. Yet, most of the func-

tions in bigstatsr and bigsnpr do not handle missing values. So, we

provide two functions for imputing missing values of genotyped

2782 F.Privé et al.
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SNPs. Note that we do not impute completely missing SNPs which

would require the use of reference panels and could be performed

via e.g. imputation servers for human data (McCarthy et al., 2016).

The first function is a wrapper to PLINK and Beagle (Browning and

Browning, 2007) which takes bed files as input and return bed files

without missing values, and should therefore be used before reading

the data in R (Supplementary Fig. S2). The second function is a new

algorithm we developed in order to have a fast imputation method

without losing much of imputation accuracy. This function also pro-

vides an estimator of the imputation error rate by SNP for post-qual-

ity control. This algorithm is based on machine learning approaches

for genetic imputation (Wang et al., 2012) and does not use phasing,

thus allowing for a dramatic decrease in computation time. It only

relies on some local XGBoost models (Chen and Guestrin, 2016).

XGBoost, which is available in R, builds decision trees that can

detect non-linear interactions, partially reconstructing phase, mak-

ing it well suited for imputing genotype matrices. Our algorithm is

the following: for each SNP, we divide the individuals in the ones

which have a missing genotype (test set) and the ones which have a

non-missing genotype for this particular SNP. Those latter individu-

als are further separated in a training set and a validation set (e.g.

80% training and 20% validation). The training set is used to build

the XGBoost model for predicting missing data. The prediction

model is then evaluated on the validation set for which we know the

true genotype values, providing an estimator of the number of geno-

types that have been wrongly imputed for that particular SNP. The

prediction model is also projected on the test set (missing values) in

order to impute them.

3.3 Population structure and SNP thinning based on

linkage disequilibrium

For computing principal components (PCs) of a large-scale genotype

matrix, we provide several functions related to SNP thinning and

two functions for computing a partial singular value decomposition

(SVD), one based on eigenvalue decomposition and the other one

based on randomized projections, respectively named big_SVD and

big_randomSVD (Fig. 1). While the function based on eigenvalue

decomposition is at least quadratic in the smallest dimension, the

function based on randomized projections runs in linear time in all

dimensions (Lehoucq and Sorensen, 1996). Package bigstatsr uses

the same PCA algorithm as FlashPCA2 called implicitly restarted

Arnoldi method (IRAM), which is implemented in R package

RSpectra. The main difference between the two implementations is

that FlashPCA2 computes vector-matrix multiplications with the

genotype matrix based on the binary PLINK file whereas bigstatsr

computes these multiplications based on the FBM format, which

enables parallel computations and easier subsetting.

SNP thinning improves ascertainment of population structure

with PCA (Abdellaoui et al., 2013). There are at least three different

approaches to thin SNPs based on linkage disequilibrium. Two of

them, named pruning and clumping, address SNPs in LD close to

each other’s because of recombination events, while the third one

address long-range regions with a complex LD pattern due to other

biological events such as inversions (Price et al., 2008). First, prun-

ing is an algorithm that sequentially scan the genome for nearby

SNPs in LD, performing pairwise thinning based on a given thresh-

old of correlation. Clumping is useful if a statistic is available for

sorting the SNPs by importance. Clumping is usually used to post-

process results of genome-wide association studies (GWAS) in order

to keep only the most significant SNP per region of the genome. For

PCA, the thinning procedure should remain unsupervised (no

phenotype must be used) and we therefore propose to use the minor

allele frequency (MAF) as the statistic of importance. This choice is

consistent with the pruning algorithm of PLINK; when two nearby

SNPs are correlated, PLINK keeps only the one with the highest

MAF. Yet, in some worst-case scenario, the pruning algorithm can

leave regions of the genome without any representative SNP at all

(Supplementary notebook ‘pruning-vs-clumping’). So, we suggest to

use clumping instead of pruning, using the MAF as the statistic of

importance, which is the default in function snp_clumping of pack-

age bigsnpr. In practice, for the three datasets we considered, the

clumping algorithm with the MAF provides similar sets of SNPs as

when using the pruning algorithm (results not shown).

The third approach, which is generally combined with pruning,

consists of removing SNPs in long-range LD regions (Price et al.,

2008). Long-range LD regions for the human genome are available

as an online table (https://goo.gl/8TngVE) that package bigsnpr can

use to discard SNPs in these regions before computing PCs.

However, the pattern of LD might be population specific, so we

developed an iterative algorithm that automatically detects these

long-range LD regions and removes them. This algorithm consists in

the following steps: first, PCA is performed using a subset of SNP

remaining after clumping (with MAFs), then outliers SNPs are

detected using the robust Mahalanobis distance as implemented in

method pcadapt (Luu et al., 2017). Finally, the algorithm considers

that consecutive outlier SNPs are in long-range LD regions. Indeed,

a long-range LD region would cause SNPs in this region to have

strong consecutive weights (loadings) in the PCA. This algorithm is

implemented in function snp_autoSVD of package bigsnpr and will

be referred by this name in the rest of the paper.

3.4 Association tests and polygenic risk scores

Any test statistic that is based on counts could be easily implemented

because we provide fast counting summaries. Among these tests, the

Armitage trend test and the MAX3 test statistic are already provided

for binary outcomes in bigsnpr (Zheng et al., 2012a). Package big-

statsr implements statistical tests based on linear and logistic

bigSNP object

(no missing values)

Very stringent 

pruning

vector of SNP 

indices to keep

snp_clumping(thr.r2 = 0.05)

snp_pruning(thr.r2 = 0.05)

Get SNPs in 

long-range 

LD regions

vector of SNP indices to 

exclude, corresponding to 

long-range LD regions

big_randomSVD(ind.col = ind.keep)

big_SVD(ind.col = ind.keep)

snp_indLRLDR()

Pruning after excluding 

some regions

snp_clumping(thr.r2 = 0.2,

    exclude = ind.excl)

snp_pruning(thr.r2 = 0.2,

   exclude = ind.excl)

Partial Singular Value 

Decomposition

Computation 

of partial SVD

Get SNPs in 

long-range

LD regions

Pruning after excluding 

some regions

Computa

of partial S

snp_autoSVD()

Algorithm that clumps 

and automatically 

detects long-range 

Linkage Disequilibrium 

regions while 

computing SVD

ind.excl

ind.keep

Fig. 1. Functions available in packages bigstatsr and bigsnpr for the computa-

tion of a partial singular value decomposition of a genotype array, with three

different methods for thinning SNPs
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regressions. For linear regression, a t-test is performed for each SNP

j on b(j) where

by ¼ aðjÞ þ bðjÞSNPðjÞ þ c
ðjÞ
1 PC1 þ � � � þ c

ðjÞ
K PCK

þd
ðjÞ
1 COV1 þ � � � þ d

ðjÞ
L COVL;

(1)

and K is the number of PCs and L is the number of other covariates

(such as age and gender). Similarly, for logistic regression, a Z-test is

performed for each SNP j on b(j) where

log
bp

1� bp

� �
¼ aðjÞ þ bðjÞSNPðjÞ þ c

ðjÞ
1 PC1 þ � � � þ c

ðjÞ
K PCK

þd
ðjÞ
1 COV1 þ � � � þ d

ðjÞ
L COVL;

(2)

and bp ¼ PðY ¼ 1Þ and Y denotes the binary phenotype. These tests

can be used to perform GWAS and are very fast due to the use of

optimized implementations, partly based on previous work by

Sikorska et al. (2013).

The R packages also implement functions for computing PRS

using two methods. The first method is the widely-used

‘ClumpingþThresholding’ (CþT, also called ‘Pruningþ

Thresholding’ in the literature) model based on univariate GWAS

summary statistics as described in previous equations. Under the

CþT model, a coefficient of regression is learned independently for

each SNP along with a corresponding P-value (the GWAS part). The

SNPs are first clumped (C) so that there remains only SNPs that are

weakly correlated with each other. Thresholding (T) consists in

removing SNPs that are under a certain level of significance (P-value

threshold to be determined). A PRS is defined as the sum of allele

counts of the remaining SNPs weighted by the corresponding regres-

sion coefficients (Chatterjee et al., 2013; Dudbridge, 2013; Euesden

et al., 2015). On the contrary, the second approach does not use uni-

variate summary statistics but instead train a multivariate model on

all the SNPs and covariables at once, optimally accounting for corre-

lation between predictors (Abraham et al., 2012). The currently

available models are very fast sparse linear and logistic regressions.

These models include lasso and elastic-net regularizations, which

reduce the number of predictors (SNPs) included in the predictive

models (Friedman et al., 2010; Tibshirani, 1996; Zou and Hastie,

2005). Package bigstatsr provides a fast implementation of these

models by using efficient rules to discard most of the predictors

(Tibshirani et al., 2012). The implementation of these algorithms is

based on modified versions of functions available in the R package

biglasso (Zeng and Breheny, 2017). These modifications allow to

include covariates in the models, to use these algorithms on the spe-

cial type of FBM called ‘FBM.code256’ used in bigsnpr and to

remove the need of choosing the regularization parameter.

3.5 Data analyzed

In this paper, two datasets are analyzed: the celiac disease cohort

and POPRES (Dubois et al., 2010; Nelson et al., 2008). The celiac

dataset is composed of 15 283 individuals of European ancestry gen-

otyped on 295453 SNPs. The POPRES dataset is composed of 1385

individuals of European ancestry genotyped on 447245 SNPs. For

computation time comparisons, we replicated individuals in the

celiac dataset 5 and 10 times in order to increase sample size while

keeping the same eigen decomposition (up to a constant) and pair-

wise SNP correlations as the original dataset. To assess scalability of

the packages for a biobank-scale genotype dataset, we formed

another dataset of 500 000 individuals and 1 million SNPs, also

through replication of the celiac dataset.

3.6 Reproducibility

All the code used in this paper along with results, such as execution

times and figures, are available as HTML R notebooks in the

Supplementary materials. In Supplementary notebook ‘public-data’,

we provide some open-access data of domestic dogs so that users

can test our code and functions on a moderate size dataset with

4342 samples and 145 596 SNPs (Hayward et al., 2016).

4 Results

4.1 Overview

We present the results of four different analyses. First, we illustrate

the application of R packages bigstatsr and bigsnpr. Second, by per-

forming two GWAS, we compare the performance of bigstatsr and

bigsnpr to the performance obtained with FastPCA (EIGENSOFT

6.1.4) and PLINK 1.9, and also two R packages SNPRelate and

GWASTools (Chang et al., 2015; Galinsky et al., 2016; Gogarten

et al., 2012; Zheng et al., 2012b). PCA is a computationally inten-

sive step of the GWAS, so that we further compare PCA methods on

larger datasets. Third, by performing a PRS analysis with summary

statistics, we compare the performance of bigstatsr and bigsnpr to

the performance obtained with PRSice-2 (Euesden et al., 2015).

Finally, we present results of the two new methods implemented in

bigsnpr, one method for the automatic detection and removal of

long-range LD regions in PCA and another for the in-sample impu-

tation of missing genotypes (i.e. for genotyped SNPs only). We com-

pare performance on two computers, a desktop computer with

64GB of RAM and 12 cores (six physical cores), and a laptop with

only 8 GB of RAM and 4 cores (two physical cores). For the func-

tions that enable parallelism, we use half of the cores available on

the corresponding computer. We present a table summarizing the

features of different software in Supplementary Table S5.

4.2 Application

The data were pre-processed following steps from Supplementary

Figure S1, removing individuals and SNPs with more than 5% of

missing values, non-autosomal SNPs, SNPs with a MAF lower than

0.05 or a P-value for the Hardy–Weinberg exact test lower than

10�10, and finally, removing the first individual in each pair of indi-

viduals with a proportion of alleles shared IBD >0.08 (Purcell et al.,

2007). For the POPRES dataset, this resulted in 1382 individuals

and 344 614 SNPs with no missing value. For the celiac dataset, this

resulted in 15 155 individuals and 281122 SNPs with an overall

genotyping rate of 99.96%. The 0.04% missing genotype values

were imputed with the XGBoost method. If we would have used a

standard R matrix to store the genotypes, this data would have

required 32GB of memory. On the disk, the ‘.bed’ file requires 1GB

and the ‘.bk’ file (storing the FBM) requires 4GB.

We used bigstatsr and bigsnpr R functions to compute the first

PCs of the celiac genotype matrix and to visualize them (Fig. 2). We

then performed a GWAS investigating how SNPs are associated

with celiac disease, while adjusting for PCs, and plotted the results

as a Manhattan plot (Fig. 3). As illustrated in the Supplementary

data, the whole pipeline is user-friendly, requires only 20 lines of R

code and there is no need to write temporary files or objects because

functions of packages bigstatsr and bigsnpr have parameters which

enable subsetting of the genotype matrix without having to copy it.

To illustrate the scalability of the two R packages, we performed

a GWAS analysis on 500K individuals and 1M SNPs. The GWAS

analysis completed in �11h using the aforementioned desktop

computer. The GWAS analysis was composed of four main steps.
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First we converted binary PLINK files in the format ‘bigSNP’ in 1 h.

Then, we removed SNPs in long-range LD regions and used SNP

clumping, leaving 93 083 SNPs in 5.4 h. Then, the 10 first PCs were

computed on the 500K individuals and these remaining SNPs in

1.8 h. Finally, we performed a linear association test on the complete

500K dataset for each of the 1M SNPs, using the 10 first PCs as

covariables in 2.9 h.

4.3 Performance and precision comparisons

First, we compared the GWAS computations obtained with bigstatsr

and bigsnpr to the ones obtained with PLINK 1.9 and EIGENSOFT

6.1.4, and also two R packages SNPRelate and GWASTools. For

most functions, multithreading is not available yet in PLINK, never-

theless, PLINK-specific algorithms that use bitwise parallelism (e.g.

pruning) are still faster than the parallel algorithms reimplemented

in package bigsnpr (Table 1). Overall, performing a GWAS on a

binary outcome with bigstatsr and bigsnpr is as fast as when using

EIGENSOFT and PLINK, and 19–45 times faster than when using

R packages SNPRelate and GWASTools. For performing an associa-

tion study on a continuous outcome, we report a dramatic increase

in performance by using bigstatsr and bigsnpr, making it possible to

perform such analysis in <2min for a relatively large dataset such as

the celiac dataset. This analysis was 7–19 times faster as compared

to PLINK 1.9 and 28–74 times faster as compared to SNPRelate and

GWASTools (Table 1). Note that the PC scores obtained are more

accurate as compared to PLINK (see the last paragraph of this

subsection), which is also the case for the P-values computed for the

two GWAS (see Supplementary notebook ‘GWAS-comparison’).

Second, we compared the PRS analysis performed with the R

packages to the one using PRSice-2. There are five main steps in

such an analysis (Table 2), including four steps handled with func-

tions of packages bigstatsr and bigsnpr. The remaining step is the

reading of summary statistics which can be performed with the

widely used function fread of R package data.table. Using bigstatsr

and bigsnpr results in an analysis as fast as with PRSice-2 when

using our desktop computer, and three times slower when using our

laptop (Table 2).

Finally, on our desktop computer, we compared the computation

times of FastPCA (fast mode of EIGENSOFT), FlashPCA2 and

PLINK 2.0 (approx mode) to the similar function big_randomSVD

implemented in bigstatsr. For each comparison, we used the 93 083

SNPs which were remaining after pruning and we computed 10 PCs.

We used the datasets of growing size simulated from the celiac data-

set (from 15155 to 151 550 individuals). Overall, function

big_randomSVD is almost twice as fast as FastPCA and FlashPCA2

and eight times as fast as when using parallelism with six cores, an

option not currently available in either FastPCA or FlashPCA2

(Fig. 4). PLINK 2.0 is faster than bigstatsr with a decrease in time of

20–40%. We also compared results in terms of precision by compar-

ing squared correlation between approximated PCs and ‘true’ PCs

provided by an exact eigen decomposition obtained with PLINK 2.0

(exact mode). Package bigstatsr and FlashPCA2 (that use the same

algorithm) infer all PCs with a squared correlation of more than

Fig. 2. Principal components of the celiac cohort genotype matrix produced

by package bigstatsr

Fig. 3. Manhattan plot of the celiac disease cohort produced by package

bigsnpr. Some SNPs in chromosome 6 have P-values smaller than the 10�30

threshold used for visualization purposes

Table 1. Execution times with bigstatsr and bigsnpr compared to

PLINK 1.9 and FastPCA (EIGENSOFT) and also to R packages

SNPRelate and GWASTools for making a GWAS for the celiac data-

set (15 155 individuals and 281122 SNPs). The first execution time

is with a desktop computer (6 cores used and 64GB of RAM) and

the second one is with a laptop (2 cores used and 8GB of RAM)

Operation\software Execution times (in seconds)

FastPCA bigstatsr SNPRelate

PLINK 1.9 bigsnpr GWASTools

Converting PLINK files n/a 6/20 13/33

Pruning 4/4 14/52 33/32

Computing 10 PCs 305/314 58/183 323/535

GWAS (binary phenotype) 337/284 291/682 16 220/17 425

GWAS (continuous phenotype) 1348/1633 10/23 6115/7101

Total (binary) 646/602 369/937 16 589/18 025

Total (continuous) 1657/1951 88/278 6484/7701

Table 2. Execution times with bigstatsr and bigsnpr compared to

PRSice for making a PRS on the celiac dataset based on summary

statistics for height. The first execution time is with a desktop com-

puter (6 cores used and 64 GB of RAM) and the second one is with

a laptop (2 cores used and 8 GB of RAM)

Operation\software Execution times (in seconds)

PRSice bigstatsr and bigsnpr

Converting PLINK files — 6/20

Reading summary stats — 4/6

Clumping — 9/31

PRS — 2/33

Compute P-values — 1/1

Total 22/29 22/91

R packages for analyzing genome-wide data 2785
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0.999 between true PCs and approximated ones (Fig. 5). Yet,

FastPCA (fast mode of EIGENSOFT) and PLINK 2.0 (that use the

same algorithm) infer the true first six PCs but the squared correla-

tion between true PCs and approximated ones decreases for further

PCs (Fig. 5).

4.4 Automatic detection of long-range LD regions

For detecting long-range LD regions during the computation of

PCA, we tested the function snp_autoSVD on both the celiac and

POPRES datasets. For the POPRES dataset, the algorithm converged

in two iterations. The first iterations found three long-range LD

regions in chromosomes 2, 6 and 8 (Supplementary Table S1).

We compared the PCs of genotypes obtained after applying

snp_autoSVD with the PCs obtained after removing pre-determined

long-range LD regions (https://goo.gl/8TngVE) and found a mean

correlation of 89.6% between PCs, mainly due to a rotation of PC7

and PC8 (Supplementary Table S2). For the celiac dataset, we found

five long-range LD regions (Supplementary Table S3) and a mean

correlation of 98.6% between PCs obtained with snp_autoSVD and

the ones obtained by clumping and removing pre-determined long-

range LD regions (Supplementary Table S4).

For the celiac dataset, we further compared results of PCA

obtained when using snp_autoSVD and when computing PCA with-

out removing any long range LD region (only clumping at R2
>0.2).

When not removing any long range LD region, we show that PC4

and PC5 do not capture population structure and correspond to a

long-range LD region in chromosome 8 (Supplementary Figs S3 and

S4). When automatically removing some long-range LD regions

with snp_autoSVD, we show that PC4 and PC5 reflect population

structure (Supplementary Fig. S3). Moreover, loadings are more

equally distributed among SNPs after removal of long-range LD

regions (Supplementary Fig. S4). This is confirmed by Gini coeffi-

cients (measure of dispersion) of each squared loadings that are sig-

nificantly smaller when computing PCA with snp_autoSVD than

when no long-range LD region is removed (Supplementary Fig. S5).

4.5 Imputation of missing values for genotyped SNPs

For the imputation method based on XGBoost, we compared the

imputation accuracy and computation times with Beagle on the

POPRES dataset (with no missing value). The histogram of the

MAFs of this dataset is provided in Supplementary Figure S6. We

used a beta-binomial distribution to simulate the number of missing

values by SNP and then randomly introduced missing values accord-

ing to these numbers, resulting in �3% of missing values overall

(Supplementary Fig. S7). Imputation was compared between func-

tion snp_fastImpute of package bigsnpr and Beagle 4.1 (version of

January 21, 2017) by counting the percentage of imputation errors

(when the imputed genotype is different from the true genotype).

Overall, in three runs, snp_fastImpute made only 4.7% of imputa-

tion errors and Beagle made only 3.1% of errors. Yet, it took Beagle

14.6 h to complete while snp_fastImpute only took 42min (20 times

less). We also note that snp_fastImpute made less 0/2 switching

errors, i.e. imputing with a homozygous referent where the true gen-

otype is a homozygous variant, or the contrary (Supplementary

notebook ‘imputation’). We also show that the estimation of the

number of imputation errors provided by function snp_fastImpute is

accurate (Supplementary Fig. S8), which can be useful for post-

processing the imputation by removing SNPs with too many errors

(Supplementary Fig. S9). For the celiac dataset in which there were

already missing values, in order to further compare computation

times, we report that snp_fastImpute took <10h to complete for the

whole genome whereas Beagle did not finish imputing chromosome

1 in 48 h.

5 Discussion

We have developed two R packages, bigstatsr and bigsnpr, which

enable multiple analyses of large-scale genotype datasets in R thanks

to memory-mapping. Linkage disequilibrium pruning, PCA, associa-

tion tests and computation of PRS are made available in these soft-

ware. Implemented algorithms are both fast and memory-efficient,

allowing the use of laptops or desktop computers to make genome-

wide analyses. Technically, bigstatsr and bigsnpr could handle any

size of datasets. However, if the OS has to often swap between the

file and the memory for accessing the data, this would slow down

data analysis. For example, the PCA algorithm in bigstatsr is itera-

tive so that the matrix has to be sequentially accessed over a hun-

dred times. If the number of samples times the number of SNPs

remaining after pruning is larger than the available memory, this

slowdown would happen. For instance, a 32GB computer would be

Fig. 4. Benchmark comparisons between randomized partial singular value

decomposition available in FlashPCA2, FastPCA (fast mode of SmartPCA/

EIGENSOFT), PLINK 2.0 (approx mode) and package bigstatsr. It shows the

computation time in minutes as a function of the number of samples. The first

10 principal components have been computed based on the 93 083 SNPs

which remained after thinning

Fig. 5. Precision comparisons between randomized partial singular value

decomposition available in FlashPCA2, FastPCA (fast mode of SmartPCA/

EIGENSOFT), PLINK 2.0 (approx mode) and package bigstatsr. It shows the

squared correlation between approximated PCs and ‘true’ PCs (produced by

the exact mode of PLINK 2.0) of the celiac dataset (whose individuals have

been repeated 1, 5 and 10 times)
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slow when computing PCs on more than 100K samples and 300K

SNPs remaining after LD thinning.

The two R packages use a matrix-like format, which makes it

easy to develop new functions in order to experiment and develop

new ideas. Integration in R makes it possible to take advantage of

the vast and diverse R libraries. For example, we developed a fast

and accurate imputation algorithm for genotyped SNPs using the

widely-used machine learning algorithm XGBoost available in the R

package xgboost. Other functions, not presented here, are also avail-

able and all the functions available within the package bigstatsr are

not specific to SNP arrays, so that they could be used for other omic

data or in other fields of research.

We think that the two R packages and the corresponding data

format could help researchers to develop new ideas and algorithms

to analyze genome-wide data. For example, we wish to use these

packages to train much more accurate predictive models than the

standard CþT model currently in use for computing PRS. As a sec-

ond example, multiple imputation has been shown to be a very

promising method for increasing statistical power of a GWAS

(Palmer and Pe’er, 2016), and it could be implemented with the data

format ‘FBM.code256’ without having to write multiple files.
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1 Supplementary Data

1.1 Pre-processing

Input files of many types 
(ped/map, bed/bim/fam, vcf, etc.)

Conversion and quality control 
(call rates, maf, hwe, etc.)

bed/bim/fam

bed/bim/fam

Relatedness removal

Figure S1: Conversion and Quality Control preprocessing functions available
in package bigsnpr via system calls to PLINK.

bed/bim/fam

bed/bim/fam

bk/rds

Conversion to vcf, 
imputation with Beagle, 
and conversion back to 
bed/bim/fam

snp_beagleImpute()

Conversion to 
bigSNP formatsnp_readBed()

Attach in R session

snp_attach()

bigSNP object

bk/rds

Conversion to 
bigSNP format

snp_readBed()

Attach in R session

snp_attach()

bigSNP object

snp_fastImpute()

bigSNP object

Imputation with local 
XGBoost models

Figure S2: Imputation and reading functions available in package bigsnpr.

1.2 Long-range LD regions

1
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Chromosome Start (Mb) Stop (Mb)

1 2 134.7 (134.5) 137.3 (138)
2 6 27.5 (25.5) 33.1 (33.5)
3 8 6.6 (8) 13.2 (12)

Table S1: Regions found by snp autoSVD for the POPRES
dataset. Numbers in parentheses correspond to regions referenced in
[Price et al.(2008)Price, Weale, Patterson, Myers, Need, Shianna, Ge, Rotter, Torres, Taylor, Goldstein,

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

PC1 100.0 -0.1 -0.0 0.1 -0.1 0.0 0.0 0.0 -0.0 -0.0
PC2 0.1 100.0 -0.0 0.1 -0.0 -0.0 -0.0 0.2 -0.1 -0.0
PC3 0.0 -0.0 99.9 0.9 0.1 -0.1 -0.3 0.2 0.4 0.1
PC4 -0.1 -0.1 -0.9 99.7 -1.0 0.7 0.6 0.2 0.3 0.9
PC5 0.1 0.0 -0.1 1.1 99.3 1.3 -0.8 1.3 -4.2 -2.4
PC6 -0.0 0.0 0.1 -0.7 -1.0 97.7 -3.5 6.1 7.9 -6.2
PC7 -0.0 -0.1 0.2 -0.3 -1.7 0.3 58.3 73.2 -25.9 9.1
PC8 0.1 -0.1 -0.3 0.4 -0.5 -5.3 -73.5 59.5 15.8 13.2
PC9 0.0 0.1 -0.4 -0.8 5.0 -7.6 27.8 11.0 91.9 9.0
PC10 0.1 0.0 0.0 -0.9 1.6 10.2 3.9 -19.6 -6.3 89.2

Table S2: Correlation between scores of PCA for the POPRES dataset
when automatically removing long-range LD regions and when removing
them based on a predefined table.

Chromosome Start (Mb) Stop (Mb)

1 2 134.4 (134.5) 138.1 (138)
2 6 23.8 (25.5) 35.8 (33.5)
3 8 6.3 (8) 13.5 (12)
4 3 163.1 (n/a) 164.9 (n/a)
5 14 46.6 (n/a) 47.5 (n/a)

Table S3: Regions found by snp autoSVD for the celiac dataset.
Numbers in parentheses correspond to regions referenced in
[Price et al.(2008)Price, Weale, Patterson, Myers, Need, Shianna, Ge, Rotter, Torres, Taylor, Goldstein,

2
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PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

PC1 100.0 -0.1 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PC2 0.1 100.0 0.0 0.0 -0.0 -0.0 0.0 -0.0 -0.0 -0.0
PC3 0.1 -0.0 99.9 0.2 -0.0 0.1 0.1 0.1 0.0 -0.1
PC4 -0.0 -0.0 -0.3 99.9 -0.1 0.1 -0.1 0.0 0.1 0.1
PC5 0.0 0.0 0.0 0.1 99.7 0.9 -0.3 0.1 -0.8 -0.6
PC6 -0.0 0.0 -0.1 -0.2 -0.8 99.6 0.5 -0.5 -0.2 -0.4
PC7 -0.0 0.0 -0.1 0.0 0.5 -0.4 98.9 3.1 0.7 1.6
PC8 0.0 0.0 -0.2 -0.0 -0.2 0.5 -3.2 98.4 -4.5 -1.5
PC9 -0.0 -0.0 -0.0 0.0 0.6 0.1 -0.7 4.6 96.9 -10.7
PC10 -0.0 -0.0 0.1 -0.1 0.3 0.1 -1.2 1.5 8.6 92.7

Table S4: Correlation between scores of PCA for the Celiac dataset when
automatically removing long-range LD regions and when removing them
based on a predefined table.

Figure S3: PC4 and PC5 of the celiac disease dataset. Left panel, PC scores
obtained without removing any long range LD region (only clumping at
R2 > 0.2). Individuals are coloured according to their genotype at the SNP
that has the highest loading for PC4. Right panel, PC scores obtained with
the automatic detection and removal of long-range LD regions. Individuals
are coloured according to their population of origin.

3
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Figure S4: Loadings of first 6 PCs of the celiac disease dataset plotted as
hexbins (2-D histogram with hexagonal cells). On the left, without removing
any long range LD region (only clumping at R2 > 0.2). On the right, with
the automatic detection and removal of long-range LD regions.

Figure S5: Boxplots of 1000 bootstrapped Gini coefficients (measure of sta-
tistical dispersion) of squared loadings without removing any long range
LD region (only clumping at R2 > 0.2) and with the automatic detection
and removal of long-range LD regions. The dashed line corresponds to the
theoretical value for gaussian loadings.

4
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1.3 Imputation

Figure S6: Histogram of the minor allele frequencies of the POPRES dataset
used for comparing imputation methods.

References

[Chen and Guestrin(2016)Chen and Guestrin] Chen, T. and Guestrin, C.
(2016). XGBoost : Reliable Large-scale Tree Boosting System. arXiv ,
pages 1–6.

[Price et al.(2008)Price, Weale, Patterson, Myers, Need, Shianna, Ge, Rotter, Torres, Taylor, Goldstein,
Price, A. L., Weale, M. E., Patterson, N., Myers, S. R., Need, A. C.,
Shianna, K. V., Ge, D., Rotter, J. I., Torres, E., Taylor, K. D. D.,
Goldstein, D. B., and Reich, D. (2008). Long-Range LD Can Confound
Genome Scans in Admixed Populations.

5

38 CHAPTER 2. R PACKAGES FOR ANALYZING GENOME-WIDE DATA



Figure S7: Histogram of the number of missing values by SNP. These num-
bers were generated using a Beta-binomial distribution.

6
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Figure S8: Number of imputation errors vs the estimated number of im-
putation errors by SNP. For each SNP with missing data, the number of
imputation errors corresponds to the number of individuals for which im-
putation is incorrect. The estimated number of errors is a quantity that is
returned when imputing with snp fastimpute, which is based on XGBoost
[Chen and Guestrin(2016)Chen and Guestrin, ].

7
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Figure S9: For each SNP (point), the estimated proportion of imputation er-
rors (p̂(error | NA)) vs the proportion of missing values (p(NA) > 0.001).
These results come from the imputation of the Celiac dataset with func-
tion snp fastImpute (Supplementary notebook “preprocessing”). Colored
curves are representing the estimated proportion of wrong genotypes per
SNP (p̂(error & NA) = p̂(error | NA) · p(NA)). This particularly shows
that no SNP has more than 1% of wrong genotypes, allowing for no post-
processing.

8
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Chapter 3

Efficient Implementation of Penalized

Regression for Genetic Risk Prediction

3.1 Summary of the article

3.1.1 Introduction

“Clumping+Thresholding” (C+T) is the most common method to derive Polygenic Risk

Scores (PRS). C+T uses only GWAS summary statistics with a (small) individual-level

data reference panel to account for linkage disequilibrium (LD). However, previous

work showed that jointly estimating SNP effects has the potential to substantially im-

prove predictive performance of PRS as compared to C+T (Abraham et al., 2013).

Moreover, now that large individual-level datasets such as the UK Biobank are avail-

able, it would be a waste of information to not use them to their full potential (Bycroft

et al., 2018). Indeed, in order for PRS to be useful in clinical settings, it should be as

predictive as possible.

3.1.2 Methods

We included some efficient implementation of penalized (linear and logistic) regres-

sions in R package bigstatsr. This implementation is not specific to genotype data at

all, but this paper focuses on its application to predicting disease status based on large

genotype data. We recall that bigstatsr uses some matrix format stored on disk instead

43
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of memory, so that functions of this package can be very memory efficient. To make

the algorithm very efficient, we based our implementation on existing implementations

that use mathematical rules to quickly discard many variables as they will not enter the

final model (Tibshirani et al., 2012). These rules can be used when fitting penalized

regression with either lasso or elastic net regularizations. To facilitate the choice of

the two hyper-parameters of the elastic net regularization, we develop a procedure that

we call Cross-Model Selection and Averaging (CMSA). CMSA is somehow similar to

cross-validation but allows to derive an early stopping criterion that further increases

the efficiency of the implementation.

We compare the penalized regressions with C+T and another method based on de-

cision trees. We use extensive simulations to compare methods for different disease

architectures, sample sizes and number of variables. We also compare methods in mod-

els with non-additive effects and show how to extend penalized regression to account

for recessive and dominant effects on top of additive effects. Finally, we compare per-

formance of methods using the UK Biobank, training models on 350K individuals and

using 656K genotyped SNPs.

3.1.3 Results

We show that penalized regressions can provide large improvements in predictive per-

formance as compared to C+T. When SNP effect sizes are small and sample size is

small compared to the number of SNPs, PLR performs worse than C+T, but all methods

provide poor predictive performance (AUC lower than 0.6) in this context. In contrast,

when sample size is large enough, when there are some moderately large effects, or

when there are some correlation between causal variants, using PLR substantially im-

proves predictive performance as compared to C+T. By using some feature engineering

technique, we are able to capture not only additive effects, but also recessive and dom-

inant effects in penalized regressions. Finally, we show that our implementation of pe-

nalized regressions is scalable to datasets such as the UK Biobank, including hundreds

of thousands of both observations and variables.
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3.1.4 Discussion

In this paper, we demonstrate the feasibility and relevance of using penalized regressions

for PRS computation when large individual-level datasets are available. Indeed, first,

we show that the larger is the data, the larger is the gain in predictive performance of

PLR over C+T. Second, we show that our implementation of PLR is scalable to very

large datasets such as the UK Biobank. We discuss what makes our implementation

scalable to very large datasets by explaining the algorithm and its memory requirements.

Computation time is a function of the sample size and the number of variables with a

predictive effect.

3.2 Article 2 and supplementary materials

The following article is published in Genetics 1.

1https://doi.org/10.1534/genetics.119.302019

https://doi.org/10.1534/genetics.119.302019
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ABSTRACT Polygenic Risk Scores (PRS) combine genotype information across many single-nucleotide polymorphisms (SNPs) to give a

score reflecting the genetic risk of developing a disease. PRS might have a major impact on public health, possibly allowing for

screening campaigns to identify high-genetic risk individuals for a given disease. The “Clumping+Thresholding” (C+T) approach is the

most common method to derive PRS. C+T uses only univariate genome-wide association studies (GWAS) summary statistics, which

makes it fast and easy to use. However, previous work showed that jointly estimating SNP effects for computing PRS has the potential

to significantly improve the predictive performance of PRS as compared to C+T. In this paper, we present an efficient method for the

joint estimation of SNP effects using individual-level data, allowing for practical application of penalized logistic regression (PLR) on

modern datasets including hundreds of thousands of individuals. Moreover, our implementation of PLR directly includes automatic

choices for hyper-parameters. We also provide an implementation of penalized linear regression for quantitative traits. We compare

the performance of PLR, C+T and a derivation of random forests using both real and simulated data. Overall, we find that PLR achieves

equal or higher predictive performance than C+T in most scenarios considered, while being scalable to biobank data. In particular, we

find that improvement in predictive performance is more pronounced when there are few effects located in nearby genomic regions

with correlated SNPs; for instance, in simulations, AUC values increase from 83% with the best prediction of C+T to 92.5% with PLR.

We confirm these results in a data analysis of a case-control study for celiac disease where PLR and the standard C+T method achieve

AUC values of 89% and of 82.5%. Applying penalized linear regression to 350,000 individuals of the UK Biobank, we predict height

with a larger correlation than with the best prediction of C+T (�65% instead of �55%), further demonstrating its scalability and

strong predictive power, even for highly polygenic traits. Moreover, using 150,000 individuals of the UK Biobank, we are able to

predict breast cancer better than C+T, fitting PLR in a few minutes only. In conclusion, this paper demonstrates the feasibility and

relevance of using penalized regression for PRS computation when large individual-level datasets are available, thanks to the efficient

implementation available in our R package bigstatsr.

KEYWORDS polygenic risk scores; SNP; LASSO; genomic prediction; GenPred; shared data resources

POLYGENIC risk scores (PRS) combine genotype infor-

mation across many single-nucleotide polymorphisms

(SNPs) to give a score reflecting the genetic risk of developing

adisease. PRSareuseful for genetic epidemiologywhen testing

polygenicity of diseases and finding a common genetic contri-

butionbetween twodiseases (Purcell et al.2009). Personalized

medicine is another major application of PRS. Personalized

medicine envisions to use PRS in screening campaigns in order

to identify high-risk individuals for a given disease (Chatterjee

et al. 2016). As an example of practical application, targeting

screening of men at higher polygenic risk could reduce the

problem of overdiagnosis and lead to a better benefit-to-harm

balance in screening for prostate cancer (Pashayan et al.

2015). However, in order to be used in clinical settings, PRS

should discriminate well enough between cases and controls.

For screening high-risk individuals and for presymptomatic

diagnosis of the general population, it is suggested that, for a

Copyright © 2019 Privé et al.
doi: https://doi.org/10.1534/genetics.119.302019
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10% disease prevalence, the AUC must be .75% and 99%,

respectively (Janssens et al. 2007).

Several methods have been developed to predict disease

status, or any phenotype, based on SNP information. A com-

monly used method often called “P+T” or “C+T” (which

stands for “Clumping and Thresholding”) is used to derive

PRS from results of Genome-Wide Association Studies

(GWAS) (Wray et al. 2007; Evans et al. 2009; Purcell et al.

2009; Chatterjee et al. 2013; Dudbridge 2013). This tech-

nique uses GWAS summary statistics, allowing for a fast

implementation of C+T. However, C+T also has several lim-

itations; for instance, previous studies have shown that pre-

dictive performance of C+T is very sensitive to the threshold

of inclusion of SNPs, depending on the disease architecture

(Ware et al. 2017). In parallel, statistical learning methods

have also been used to derive PRS for complex human dis-

eases by jointly estimating SNP effects. Suchmethods include

joint logistic regression, Support Vector Machine (SVM) and

random forests (Wei et al. 2009; Abraham et al. 2012, 2014;

Botta et al. 2014; Okser et al. 2014; Lello et al. 2018;

Mavaddat et al. 2019). Finally, Linear Mixed-Models (LMMs)

are another widely used method in fields such as plant and

animal breeding, or for predicting highly polygenic quantita-

tive human phenotypes such as height (Yang et al. 2010). Yet,

predictions resulting from LMM, known e.g., as “gBLUP,”

have not proven as efficient as other methods for predicting

several complex diseases based on genotypes [see table 2 of

Abraham et al. (2013)].

We recently developed two R packages, bigstatsr and

bigsnpr, for efficiently analyzing large-scale genome-wide

data (Privé et al. 2018). Package bigstatsr now includes an

efficient algorithm with a new implementation for comput-

ing sparse linear and logistic regressions on huge datasets as

large as the UK Biobank (Bycroft et al. 2018). In this paper,

we present a comprehensive comparative study of our

implementation of penalized logistic regression (PLR),

which we compare to the C+T method and the T-Trees

algorithm, a derivation of random forests that has shown

high predictive performance (Botta et al. 2014). In this com-

parison, we do not include any LMM method, yet, L2-PLR

should be very similar to LMM methods. Moreover, we do

not include any SVM method because it is expected to give

similar results to logistic regression (Abraham et al. 2012).

For C+T, we report results for a large grid of hyper-param-

eters. For PLR, the choice of hyper-parameters is included in

the algorithm so that we report only one model for each

simulation. We also use a modified version of PLR in order

to capture not only linear effects, but also recessive and

dominant effects.

To perform simulations, we use real genotype data and

simulate newphenotypes. In order tomake our comparison as

comprehensive as possible, we compare different disease

architectures by varying the number, size and location of

causal effects as well as disease heritability. We also compare

two different models for simulating phenotypes, one with

additive effects only, and one that combines additive, domi-

nant and interaction-type effects. Overall, we find that PLR

achieves higher predictive performance than C+T except in

highly underpowered cases (AUC values lower than 0.6),

while being scalable to biobank data.

Materials and Methods

Genotype data

We use real genotypes of European individuals from a case-

control study for celiac disease (Dubois et al. 2010). This

dataset is presented in Supplemental Material, Table S1. De-

tails of quality control and imputation for this dataset are

available in Privé et al. (2018). For simulations presented

later, we first restrict this dataset to controls from UK in order

to remove the genetic structure induced by the celiac disease

status and population structure. This filtering process results

in a sample of 7100 individuals (see supplemental notebook

“preprocessing”). We also use this dataset for real data appli-

cation, in this case keeping all 15,155 individuals (4496 cases

and 10,659 controls). Both datasets contain 281,122 SNPs.

Simulations of phenotypes

We simulate binary phenotypes using a Liability Threshold

Model (LTM) with a prevalence of 30% (Falconer 1965). We

vary simulation parameters in order to match a range of ge-

netic architectures from low to high polygenicity. This is

achieved by varying the number of causal variants and their

location (30, 300, or 3000 anywhere in all 22 autosomal

chromosomes or 30 in the HLA region of chromosome 6),

and the disease heritability h2 (50 or 80%). Liability scores

are computed either from a model with additive effects only

(“ADD”) or a more complex model that combines additive,

dominant and interaction-type effects (“COMP”). For model

“ADD,”we compute the liability score of the i-th individual as

yi ¼
X

j2Scausal

wj �gGi; j þ ei;

where Scausal is the set of causal SNPs,wj are weights generated

from a Gaussian distribution Nð0; h2=jScausaljÞ or a Laplace dis-

tribution Laplaceð0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2=ð2jScausaljÞ

p
Þ, Gi;j is the allele count of

individual i for SNP j, gGi; j corresponds to its

standardized version (zero mean and unit variance for all

SNPs), and e follows a Gaussian distribution Nð0; 12 h2Þ. For

model “COMP,”we simulate liability scores using additive, dom-

inant and interaction-type effects (see SupplementalMaterials).

We implement three different simulation scenarios, sum-

marized in Table 1. Scenario N�1 uses the whole dataset (all

22 autosomal chromosomes – 281,122 SNPs) and a training

set of size 6000. For each combination of the remaining pa-

rameters, results are based on 100 simulations except when

comparing PLR with T-Trees, which relies on five simulations

only because of a much higher computational burden of

T-Trees as compared to other methods. Scenario N�2 consists

of 100 simulations per combination of parameters on a data-

set composed of chromosome six only (18,941 SNPs).
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Reducing the number of SNPs increases the polygenicity (the

proportion of causal SNPs) of the simulated models. Reduc-

ing the number of SNPs (p) is also equivalent to increasing

the sample size (n) as predictive power increases as a func-

tion of n=p (Dudbridge 2013; Vilhjálmsson et al. 2015). For

this scenario, we use the additive model only, but continue to

vary all other simulation parameters. Finally, scenario N�3

uses the whole dataset as in scenario N�1 while varying the

size of the training set in order to assess how the sample size

affects predictive performance of methods. A total of 100 sim-

ulations per combination of parameters are run using

300 causal SNPs randomly chosen on the genome.

Predictive performance measures

In this study, we use two different measures of predictive

accuracy. First, we use the Area Under the Receiver Operating

Characteristic (ROC) Curve (AUC) (Lusted 1971; Fawcett

2006). In the case of our study, the AUC is the probability that

the PRS of a case is greater than the PRS of a control. This

measure indicates the extent to which we can distinguish be-

tween cases and controls using PRS. As a second measure, we

also report the partial AUC for specificities between 90 and

100% (McClish 1989; Dodd and Pepe 2003). This measure is

similar to the AUC, but focuses on high specificities, which is the

most useful part of the ROC curve in clinical settings. When

reporting AUC results of simulations, we also report maximum

achievable AUC values of 84% and 94% for heritabilities of 50%

and 80%, respectively. These estimates are based on three dif-

ferent yet consistent estimations (see Supplemental Materials).

Methods compared

In this paper,wecompare threedifferent typesofmethods: the

C+T method, T-Trees and PLR.

The C+T method directly derives PRS from the results of

Genome-Wide Associations Studies (GWAS). In GWAS, a

coefficient of regression (i.e., the estimated effect size b̂j) is

learned independently for each SNP j along with a corre-

sponding P-value pj. The SNPs are first clumped (C) so that

there remain only loci that are weakly correlated with one

another (this set of SNPs is denoted Sclumping). Then, thresh-

olding (T) consists in removing SNPs with P-values larger

than a user-defined threshold pT . Finally, the PRS for individ-

ual i is defined as the sum of allele counts of the remaining

SNPs weighted by the corresponding effect coefficients

PRSi ¼
X

j2Sclumping

pj , pT

b̂j � Gi;j;

where b̂j ðpjÞ are the effect sizes (P-values) learned from the

GWAS. In this study, we mostly report scores for a clumping

threshold at r2 . 0:2 within regions of 500 kb, but we also

investigate thresholds of 0.05 and 0.8. We report three

different scores of prediction: one including all the SNPs

remaining after clumping (denoted “C+T-all”), one includ-

ing only the SNPs remaining after clumping and that have

a P-value under the GWAS threshold of significance

(P, 5 � 1028, “C+T-stringent”), and one that maximizes

the AUC (“C+T-max”) for 102 P-value thresholds

between 1 and 102100 (Table S2). As we report the optimal

threshold based on the test set, the AUC for “C+T-max” is an

upper bound of the AUC for the C+T method. Here, the

GWAS part uses the training set while clumping uses the test

set (all individuals not included in the training set).

T-Trees (Trees inside Trees) is an algorithm derived from

random forests (Breiman 2001) that takes into account the

correlation structure among the genetic markers implied by

linkage disequilibrium (Botta et al. 2014). We use the same

parameters as reported in table 4 of Botta et al. (2014), ex-

cept that we use 100 trees instead of 1000. Using 1000 trees

provides a minimal increase of AUC while requiring a dispro-

portionately long processing time (e.g., AUC of 81.5% instead

of 81%, data not shown).

Finally, for PLR, we find regression coefficients b0 and b

that minimize the following regularized loss function

Lðl;aÞ ¼ 2

Xn

i¼1

ðyilogðziÞ þ ð12 yiÞlogð12 ziÞÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Loss function

                                             þ l

�
ð12aÞ

1

2
jjbjj22 þ ajjbjj1

�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Penalization

;

(1)

where zi ¼ 1=ð1þ expð2ðb0 þ xTi bÞÞÞ, x denotes the geno-

types and covariables (e.g., principal components), y is the

disease status to predict, l and a are two regularization hy-

per-parameters that need to be chosen. Different regulariza-

tions can be used to prevent overfitting, among other

benefits: the L2-regularization (“ridge,” Hoerl and Kennard

(1970)) shrinks coefficients and is ideal if there are many

predictors drawn from a Gaussian distribution (corresponds

to a ¼ 0 in the previous equation); the L1-regularization

(“lasso,” Tibshirani 1996) forces some of the coefficients to

be equal to zero and can be used as a means of variable

selection, leading to sparse models (corresponds to a ¼ 1);

the L1- and L2-regularization (“elastic-net,” Zou and Hastie

2005) is a compromise between the two previous penal-

ties and is particularly useful in the p � n situation (p is

the number of SNPs), or any situation involving many cor-

related predictors (corresponds to 0,a, 1) (Friedman

et al. 2010). In this study, we use a grid search over

a 2 f1; 0:5; 0:05; 0:001g. This grid-search is directly embed-

ded in our PLR implementation for simplicity. Using

a ¼ 0:001 should result in a model very similar to gBLUP.

To fit PLR, we use an efficient algorithm (Friedman et al.

2010; Tibshirani et al. 2012; Zeng and Breheny 2017) from

which we derived our own implementation in R package

bigstatsr. This algorithm builds predictions for many values

of l, which is called a “regularization path.” To obtain an

algorithm that does not require to choose this hyper-param-

eter l, we developed a procedure that we call Cross-Model
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Selection and Averaging (CMSA, Figure S1). Because of L1-

regularization, the resulting vector of estimated effect sizes is

sparse.We refer to this method as “PLR” in the results section.

To capture recessive and dominant effects on top of addi-

tive effects in PLR, we use simple feature engineering: we

construct a separate dataset with three times as many vari-

ables as the initial one. For each SNP variable, we add two

more variables coding for recessive and dominant effects: one

variable is coded1 ifhomozygousvariantand0otherwise, and

the other is coded 0 for homozygous referent and 1 otherwise.

We then apply our PLR implementation to this dataset with

three times asmanyvariables as the initial one;we refer to this

method as “PLR3” in the rest of the paper.

Evaluating predictive performance for celiac data

We useMonte Carlo cross-validation to compute AUC, partial

AUC, the number of predictors, and execution time for the

original Celiac dataset with the observed case-control status:

we randomly split 100 times the dataset in a training set of

12,000 individuals and a test set composed of the remaining

3155 individuals.

Data availability

Supplemental Data include a PDFwith two sections ofmethods,

two tables and eight figures. Supplemental data also include six

HTML R notebooks including all code and results used in this

paper, for reproducibility purposes, and available at https://fig-

share.com/articles/code/7178750. Additional analyses of the

UK Biobank are available as three R scripts at https://figshar-

e.com/articles/code_UKB/7531559. Results of simulations are

available at https://figshare.com/articles/results_zip/7126964.

A tutorial on how to start with R packages bigstatsr and bigsnpr

is available at https://privefl.github.io/bigsnpr/articles/

demo.html. The two R packages are available on GitHub.

Results

Joint estimation improves predictive performance

We compared PLR with the C+T method using simulations

of scenario N�1 (Table 1). When simulating a model with

30 causal SNPs and a heritability of 80%, PLR provides AUC

of 93%, nearly reaching the maximum achievable AUC of

94% for this setting (Figure 1). Moreover, PLR consistently

provides higher predictive performance than C+T across all

scenarios considered, except in some cases of high polyge-

nicity and small sample size, where all methods perform

poorly (AUC values below 60% – Figure 1 and Figure 3).

PLR provides particularly higher predictive performance

than C+T when there are correlations between predictors,

i.e., when we choose causal SNPs to be in the HLA region. In

this situation, the mean AUC reaches 92.5% for PLR and

84% for “C+T-max” (Figure 1). For the simulations, we

do not report results in terms of partial AUC because partial

AUC values have a Spearman correlation of 98% with the

AUC results for all methods (Figure S3).

Importance of hyper-parameters

In practice, a particular value of the threshold of inclusion

of SNPs should be chosen for the C+T method, and this

choice can dramatically impact the predictive performance

of C+T. For example, in a model with 30 causal SNPs,

AUC ranges from ,60% when using all SNPs passing

clumping to 90% if choosing the optimal P-value threshold

(Figure S4).

Concerning the r2 threshold of the clumping step in C+T,

we mostly used the common value of 0.2. Yet, using a more

stringent value of 0.05 provides equal or higher predictive

performance than using 0.2 in most of the cases we consid-

ered (Figure 2 and Figure 3).

Our implementation of PLR that automatically chooses

hyper-parameter l provides similar predictive performance

than the best predictive performance of 100 models corre-

sponding to different values of l (Figure S8).

Nonlinear effects

Wetested theT-Treesmethod in scenarioN�1.As compared to

PLR, T-Trees perform worse in terms of predictive ability,

while taking much longer to run (Figure S5). Even for simu-

lations with model “COMP” in which there are dominant and

interaction-type effects that T-Trees should be able to handle,

Table 1 Summary of all simulations

Number of

scenario

Dataset

(number of SNPs)

Sample size

of training set

Causal SNPs

(number and location)

Distribution

of effects Heritability

Simulation

model Methods

1 All 22 chromosomes 6000 30 in HLA Gaussian 0.5 ADD C+T

30 in all PLR

(281,122 SNPs) 300 in all Laplace 0.8 COMP PLR3

3000 in all (T-Trees)

2 Chromosome 6 only —

a
—

a
—

a
—

a ADD C+T

(18,941 SNPs) PLR

3 All 22 chromosomes 1000 300 in all —

a
—

a
—

a
—

a

(281,122 SNPs) 2000

3000

4000

5000

a Parameters are the same as the ones in the upper box.
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AUC is still lower when using T-Trees than when using PLR

(Figure S5).

We also compared the two PLRs in scenario N�1: PLR vs.

PLR3 that uses additional features (variables) coding for

recessive and dominant effects. Predictive performance of

PLR3 are nearly as good as PLR when there are additive

effects only (differences of AUC are always ,2%) and can

lead to significantly greater results when there are also

dominant and interactions effects (Figures S6 and S7).

For model “COMP,” PLR3 provides AUC values at least

3.5% higher than PLR, except when there are 3000

causal SNPs. Yet, PLR3 takes two to three times as much

time to run and requires three times as much disk storage

as PLR.

Simulations varying number of SNPs and sample size

First, when reproducing simulations of scenario N�1 using

chromosome six only (scenario N�2), the predictive perfor-

mance of PLR always increase (Figure 2). There is a partic-

ularly large increase when simulating 3000 causal SNPs:

AUC from PLR increases from 60% to nearly 80% for Gauss-

ian effects and a disease heritability of 80%. On the contrary,

when simulating only 30 or 300 causal SNPs with the cor-

responding dataset, AUC of “C+T-max” does not increase,

and even decreases for a heritability of 80% (Figure 2).

Second, when varying the training size (scenario N�3), we

report an increase of AUC with a larger training size, with a

faster increase of AUC for PLR as compared to “C+T-max”

(Figure 3).

Polygenic scores for celiac disease

JointPLRsalsoprovidehigherAUCvalues for theCeliacdata:

88.7% with PLR and 89.1% with PLR3 as compared to

82.5% with “C+T-max” (Figure S2 and Table 2). The relative

increase in partial AUC, for specificities larger than 90%, is

even larger (42 and 47%) with partial AUC values of

0.0411, 0.0426, and 0.0289 obtained with PLR, PLR3, and

“C+T-max,” respectively. Moreover, logistic regressions use

less predictors, respectively, at 1570, 2260, and 8360. In terms

of computation time, we show that PLR, while learning jointly

on all SNPs at once and testing four different values for hyper-

parameter a, is almost as fast as the C+T method (190 vs.

130 sec), and PLR3 takes less than twice as long as PLR

(296 vs. 190 sec).

Polygenic scores for the UK Biobank

Wetestedour implementationon656KgenotypedSNPsof the

UK Biobank, keeping only Caucasian individuals and remov-

ing related individuals (excluding the second individual in

each pair with a kinship coefficient .0.08). Results are pre-

sented in Table 3.

Our implementation of L1-penalized linear regression runs

in,1 day for 350K individuals (training set), achieving a

correlation of .65.5% with true height for each sex in the

remaining 24K individuals (test set). By comparison, the

best C+T model achieves a correlation of 55% for women

and 56% for men (in the test set), and the GWAS part takes

1 hr (for the training set). If using only the top 100,000

SNPs from a GWAS on the training set to fit our L1-PLR,

Figure 1 Main comparison of

C+T and PLR when simulating

phenotypes with additive effects

(scenario N�1, model “ADD”).

Mean AUC over 100 simulations

for PLR and the maximum AUC

reported with “C+T-max” (clump-

ing threshold at r2 .0:2). Upper
(lower) panels present results for

effects following a Gaussian (Lap-

lace) distribution, and left (right)

panels present results for a herita-

bility of 0.5 (0.8). Error bars are

representing 62SD of 105 non-

parametric bootstrap of the mean

AUC. The blue dotted line repre-

sents the maximum achievable

AUC.
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correlation between predicted and true heights drops at

63.4% for women and 64.3% for men. Our L1-PLR on breast

cancer runs in 13 min for 150K women, achieving an AUC of

0.598 in the remaining 39K women, while the best C+T

model achieves an AUC of 0.589, and the GWAS part takes

15 hr.

Discussion

Joint estimation improves predictive performance

In this comparative study, we present a computationally

efficient implementation of PLR. This model can be used to

build PRS based on very large individual-level SNP datasets

such as the UK biobank (Bycroft et al. 2018). In agreement

with previous work (Abraham et al. 2013), we show that

jointly estimating SNP effects has the potential to substan-

tially improve predictive performance as compared to the

standard C+T approach in which SNP effects are learned

independently. PLR always outperforms the C+T method,

except in some highly underpowered cases (AUC values

always ,0.6), and the benefits of using PLR are more pro-

nounced with an increasing sample size or when causal SNPs

are correlated with one another.

When there are many small effects and a small sample

size, PLR performs worse than (the best result for) C+T. For

example, this situation occurs when there are many causal

variants (3K) to distinguish among many typed variants

(280K) while using a small sample size (6K). In such un-

derpowered scenarios, it is difficult to detect true causal

variants, which makes PLR too conservative, whereas the

best strategy is to include nearly all SNPs (Purcell et al.

2009).

When increasing sample size (scenario N�3), PLR achieves

higher predictive performance than C+T and the benefits of

using PLR over C+T increase with an increasing sample size

(Figure 3). Moreover, when decreasing the search space (to-

tal number of candidate SNPs) in scenario N�2, we increase

the proportion of causal variants and we virtually increase

the sample size (Dudbridge 2013). In this scenario N�2, even

when there are small effects and a high polygenicity

(3000 causal variants out of 18,941), PLR gets a large in-

crease in predictive performance, now consistently higher

than C+T (Figure 2).

Importance of hyper-parameters

Thechoiceofhyper-parametervalues is very important since it

can greatly impact the performance of methods. In the C+T

method, there are twomain hyper-parameters: the r2 and the

pT thresholds that control how stringent are the C+T steps.

For the clumping step, appropriately choosing the r2 thresh-

old is important. Indeed, on the one hand, choosing a low

value for this threshold may discard informative SNPs that

are correlated. On the other hand, when choosing a high

value for this threshold, too much redundant information is

included in the model, which adds noise to the PRS. Based on

the simulations, we find that using a stringent threshold

ðr2 ¼ 0:05Þ leads to higher predictive performance, even

when causal SNPs are correlated. It means that, in most cases

tested in this paper, avoiding redundant information in C+T

is more important than including all causal SNPs. The choice

Figure 2 Comparison of meth-

ods when simulating phenotypes

with additive effects and using

chromosome six only (scenario N

�2). Thinner lines represent results

in scenario N�1. Mean AUC over

100 simulations for PLR and the

maximum values of C+T for three

different r2 thresholds (0.05, 0.2,

and 0.8) as a function of the num-

ber and location of causal SNPs.

Upper (lower) panels present re-

sults for effects following a

Gaussian (Laplace) distribution

and left (right) panels present re-

sults for a heritability of 0.5 (0.8).

Error bars representing 62SD of

105 nonparametric bootstrap of

the mean AUC. The blue dotted

line represents the maximum

achievable AUC.
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of the pT threshold is also very important as it can greatly

impact the predictive performance of the C+T method,

which we confirm in this study (Ware et al. 2017). In this

paper, we reported the maximum AUC of 102 different

P-value thresholds, a threshold that should normally be

learned on the training set only. To our knowledge, there is

no clear standard on how to choose these two critical hyper-

parameters for C+T. So, for C+T, we report the best AUC

value on the test set, even if it leads to overoptimistic results

for C+T as compared to PLR.

In contrast, for PLR, we developed an automatic pro-

cedure called CMSA that releases investigators from the

burden of choosing hyper-parameter l. Not only this pro-

cedure provides near-optimal results, but it also acceler-

ates the model training thanks to the development of an

early stopping criterion. Usually, cross-validation is used to

choose hyper-parameter values and then the model is

trained again with these particular hyper-parameter val-

ues (Hastie et al. 2008; Wei et al. 2013). Yet, performing

cross-validation and retraining the model is computation-

ally demanding; CMSA offers a less burdensome alterna-

tive. Concerning hyper-parameter a that accounts for the

relative importance of the L1 and L2 regularizations,

we use a grid search directly embedded in the CMSA

procedure.

Nonlinear effects

Wealsoexploredhowtocapturenonlineareffects. For this,we

introduced a simple feature engineering technique that en-

ables PLR todetect and learnnot only additive effects, but also

dominant and recessive effects. This technique improves the

predictive performance of PLR when there are nonlinear

effects in the simulations, while providing nearly the same

predictive performance when there are additive effects only.

Moreover, it also improves predictive performance for the

celiac disease.

Yet, this approach is not able to detect interaction-type

effects. In order to capture interaction-type effects, we tested

T-Trees, a method that is able to exploit SNP correlations and

interactions thanks to special decision trees (Botta et al.

2014). However, predictive performance of T-Trees are con-

sistently lower than with PLR, even when simulating a model

with dominant and interaction-type effects that T-Trees

should be able to handle.

Time and memory requirements

The computation time of our PLR implementation mainly

depends on the sample size and the number of candidate

variables (variables that are included in the gradient de-

scent). Indeed, the algorithm is composed of two steps: first,

for each variable, the algorithm computes an univariate

statistic that is used to decide if the variable is included in

the model (for each value of l). This first step is very fast.

Then, the algorithm iterates over a regularization path of

decreasing values of l, which progressively enables vari-

ables to enter the model (Figure S1). In the second step,

the number of variables increases and computations stop

when an early stopping criterion is reached (when predic-

tion is getting worse on the corresponding validation set,

see Figure S1).

Figure 3 Comparison of meth-

ods when simulating 300 causal

SNPs with additive effects and

when varying sample size (sce-

nario N�3). Mean AUC over

100 simulations for the maximum

values of C+T for three different

r2 thresholds (0.05, 0.2, and 0.8)

and PLR as a function of the train-

ing size. Upper (lower) panels are

presenting results for effects fol-

lowing a Gaussian (Laplace) distri-

bution and left (right) panels are

presenting results for a heritability

of 0.5 (0.8). Error bars represent

62SD of 105 nonparametric

bootstrap of the mean AUC. The

blue dotted line represents the

maximum achievable AUC.
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For highly polygenic traits such as height and when using

huge datasets such as the UK Biobank, the algorithm might

iterate over .100,000 variables, which is computationally de-

manding. On the contrary, for traits like celiac disease or breast

cancer that are less polygenic, the number of variables included

in the model is much smaller so that fitting is very fast (only

13 min for 150K women of the UK Biobank for breast cancer).

Memory requirements are tightly linked to computation

time. Indeed, variables are accessed in memory thanks to

memory-mapping when they are used (Privé et al. 2018).

When there is not enough memory left, the operating sys-

tem (OS) frees some memory for new incoming variables.

Yet, if too many variables are used in the gradient descent,

the OS would regularly swap memory between disk and

RAM, severely slowing down computations. A possible ap-

proach to reduce computational burden is to apply penal-

ized regression on a subset of SNPs by prioritizing SNPs

using univariate tests (GWAS computed from the same

dataset). Yet, this strategy was shown to reduce predictive

power (Abraham et al. 2013; Lello et al. 2018), which we

also confirm in this paper. Indeed, when using only the

100K most significantly associated SNPs, correlation be-

tween predicted and true heights is reduced from 0.656/

0.657 to 0.634/0.643 within women/men. A key advan-

tage of our implementation of PLR is that prior filtering of

variables is no more required for computational feasibility,

thanks to the use of sequential strong rules and early stop-

ping criteria.

Limitations

Our approach has one major limitation: the main advantage

of the C+T method is its direct applicability to summary

statistics, allowing to leverage the largest GWAS results to

date, even when individual cohort data cannot be merged

because of practical or legal reasons. Our implementation of

PLR does not allow yet for the analysis of summary data, but

this represents an important future direction. The current

version is of particular interest for the analysis of modern

individual-level datasets including hundreds of thousands of

individuals.

Finally, in this comparative study, we did not consider the

problem of population structure (Vilhjálmsson et al. 2015;

Márquez-Luna et al. 2017; Martin et al. 2017), and also did

not consider nongenetic data such as environmental and clin-

ical data (Van Vliet et al. 2012; Dey et al. 2013).

Conclusions

In this comparative study, we have presented a computation-

ally efficient implementationofPLR that canbeused topredict

disease status based on genotypes. A similar penalized linear

regression for quantitative traits is also available in R package

bigstatsr. Our approach solves the dramatic memory and

computational burdens faced by standard implementations,

thus allowing for the analysis of large-scale datasets such as

the UK biobank (Bycroft et al. 2018).

We also demonstrated in simulations and real datasets

that our implementation of penalized regressions is highly

effective over a broad rangeof disease architectures. It can be

appropriate for predicting autoimmune diseases with a few

strong effects (e.g., celiac disease), as well as highly poly-

genic traits (e.g., standing height) provided that sample size

is not too small. Finally, PLR as implemented in bigstatsr can

also be used to predict phenotypes based on other omics

data, since our implementation is not specific to genotype

data.
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Supplementary Material and Methods

Model “COMP”

For model “COMP”, we separate the causal SNPs in three equal sets S
(1)
causal, S

(2)
causal and S

(3)
causal; S

(3)
causal

is further separated in two equal sets, S
(3.1)
causal and S

(3.2)
causal. We then compute

yi =
∑

j∈S
(1)
causal

wj · G̃i,j

︸ ︷︷ ︸
linear

+
∑

j∈S
(2)
causal

wj · D̃i,j

︸ ︷︷ ︸
dominant

+

k=
∣

∣

∣
S
(3.1)
causal

∣

∣

∣∑

k=1
j1=e

(3.1)
k

j2=e
(3.2)
k

wj1 · ˜Gi,j1Gi,j2

︸ ︷︷ ︸
interaction

+ ǫi ,

where wj are weights generated from a Gaussian or a Laplace distribution, Gi,j is the allele count

of individual i for SNP j, G̃i,j corresponds to its standardized version (zero mean and unit variance

for all SNPs), Di,j = 1 {Gi,j 6= 0}, ǫ follows a Gaussian distribution N(0, 1 − h2) and S
(q)
causal ={

e
(q)
k , k ∈

{
1, . . . ,

∣∣∣S(q)
causal

∣∣∣
}}

.

Maximum AUCs

We use three different ways to estimate the maximum achievable AUC for simulations (see supple-

mentary notebook “oracle”).

First, we use the estimation from equation (3) of Wray et al. (2010). For a prevalence fixed at

30% and an heritability of 50% (respectively 80%), the approximated theoretical values of AUC

are 84.1% (respectively 93.0%). Note that this approximation is reported to be less accurate for

high heritabilities.

Secondly, if we assume that the genetic part of the liabilities follows a Gaussian distribution

N(0, h2) and that the environmental part follows a Gaussian distribution N(0, 1 − h2), we can

estimate the theoretical value of the AUC that can be achieved given the disease heritability h2

(and prevalence K) through Monte Carlo simulations. We report AUCs of 84.1% and 94.1% for

heritabilities of 50% and 80%, respectively.

Thirdly, we reproduce the exact same procedure of simulations and, for each combination of

parameters (Table 2), we estimate the AUC of the “oracle”, i.e. the true simulated genetic part of

the liabilities, through 100 replicates. For every combination of parameters, AUC values of oracles

vary between 83.2% and 84.2% for an heritability of 50% and between 93.2% and 94.1% for an

heritability of 80%.

Given all these estimates of maximal achievable AUC and for the sake of simplicity, we re-

port maximum AUCs of 84% (94%) for heritabilities of 50% (80%) whatever are the simulation

parameters.
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Population UK Finland Netherlands Italy Total

Cases 2569 637 795 495 4496

Controls 7492 1799 828 540 10659

Total 10061 2436 1623 1035 15155

Table S1: Number of individuals by population and disease status in the celiac disease case-control

study (after quality control, genotyped on 281,122 SNPs).

1.00e+00 7.22e-01 5.87e-01 4.20e-01 2.43e-01 1.00e-01 2.35e-02 2.21e-03 4.69e-05 8.81e-08 3.18e-12 1.83e-19 2.89e-31 1.70e-50 7.71e-82

5.00e-08 7.05e-01 5.65e-01 3.95e-01 2.20e-01 8.47e-02 1.79e-02 1.42e-03 2.28e-05 2.73e-08 4.69e-13 8.08e-21 1.80e-33 4.30e-54 1.06e-87

7.94e-01 6.87e-01 5.42e-01 3.69e-01 1.97e-01 7.08e-02 1.34e-02 8.83e-04 1.05e-05 7.74e-09 6.03e-14 2.86e-22 7.73e-36 5.97e-58 5.49e-94

7.81e-01 6.69e-01 5.19e-01 3.43e-01 1.75e-01 5.85e-02 9.79e-03 5.31e-04 4.61e-06 2.01e-09 6.69e-15 7.92e-24 2.24e-38 4.37e-62 1.00e-100

7.67e-01 6.50e-01 4.95e-01 3.18e-01 1.54e-01 4.76e-02 7.01e-03 3.08e-04 1.90e-06 4.72e-10 6.32e-16 1.70e-25 4.26e-41 1.61e-66

7.53e-01 6.30e-01 4.70e-01 2.93e-01 1.35e-01 3.82e-02 4.90e-03 1.72e-04 7.31e-07 1.00e-10 5.04e-17 2.75e-27 5.16e-44 2.83e-71

7.38e-01 6.09e-01 4.46e-01 2.68e-01 1.17e-01 3.02e-02 3.33e-03 9.18e-05 2.63e-07 1.89e-11 3.35e-18 3.31e-29 3.84e-47 2.26e-76

Table S2: The 102 thresholds used for the C+T method for this study.
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Figure S1: Illustration of one turn of the Cross-Model Selection and Averaging (CMSA) procedure.

First, this procedure separates the training set in K folds (e.g. 10 folds). Secondly, in turn, each fold

is considered as an inner validation set (red) and the other (K − 1) folds form an inner training set

(blue). A “regularization path” of models is trained on the inner training set and the corresponding

predictions (scores) for the inner validation set are computed. The model that minimizes the loss

on the inner validation set is selected. Finally, the K resulting models are averaged. We also use

this procedure to derive an early stopping criterion so that the algorithm does not need to evaluate

the whole regularization paths, making this procedure much faster.
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Figure S2: ROC Curves for C+T-max, PLR and PLR3 for the celiac disease dataset. Models were

trained using 12,000 individuals. These are results projecting these models on the remaining 3155

individuals. The figure is plotted using R package plotROC (Sachs et al. 2017).
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Figure S5: Comparison of T-Trees and PLR in scenario №1 for an heritability of 80%. Vertical

panels are presenting results for effects following a Gaussian or Laplace distribution. Horizontal

panels are presenting results for models “ADD” and “COMP” for simulating phenotypes. A: Mean

AUC over 5 simulations. Error bars are representing ±2SD of 105 non-parametric bootstrap of

the mean AUC. The blue dotted line represents the maximum achievable AUC. B: Boxplots of

numbers of predictors used by the methods for 5 simulations. C: Boxplots of execution times for 5

simulations.
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Figure S6: Comparison of PLR3 and PLR in scenario №1 for an heritability of 80%. Vertical

panels are presenting results for effects following a Gaussian or Laplace distribution. Horizontal

panels are presenting results for models “ADD” and “COMP” for simulating phenotypes. A: Mean

AUC over 100 simulations. Error bars are representing ±2SD of 105 non-parametric bootstrap of

the mean AUC. The blue dotted line represents the maximum achievable AUC. B: Boxplots of

numbers of predictors used by the methods for 100 simulations. C: Boxplots of execution times

for 100 simulations.
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mean AUC. The blue dotted line represents the maximum achievable AUC.
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Figure S8: Comparison of PLR and the best prediction (among 100 tested λ values) for “biglasso”

(another implementation of penalized logistic regression – Zeng and Breheny (2017)) in scenario

№1. Simulations use model “ADD”, an heritability of 80% and α = 1. Vertical panels are pre-

senting results for effects following a Gaussian or Laplace distribution. A: Mean AUC over 100

simulations. Error bars are representing ±2SD of 105 non-parametric bootstrap of the mean AUC.

The blue dotted line represents the maximum achievable AUC. B: Boxplots of numbers of predic-

tors used by the methods for 100 simulations. C: Boxplots of execution times for 100 simulations.
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Chapter 4

Making the most of Clumping and

Thresholding for polygenic scores

4.1 Summary of the article

4.1.1 Introduction

Most of the time, only summary statistics for a GWAS dataset are available, i.e. the esti-

mated effect sizes and p-values for each variant of the dataset. Because of the availabil-

ity of such data en masse, specific methods using those summary data have been devel-

oped for a wide range of applications (Pasaniuc et al., 2014; Vilhjálmsson et al., 2015;

Bulik-Sullivan et al., 2015; Pasaniuc and Price, 2017; Speed and Balding, 2018). More-

over, methods using summary statistics data are usually fast and easy to use, making

them even more appealing to researchers. One of these summary statistics based meth-

ods applicable for polygenic prediction is Clumping and Thresholding (C+T). When

only limited sample size of individual-level data are available (as opposed to summary

statistics), C+T provides a competitive method for deriving predictive polygenic risk

scores (Privé et al., 2019).

C+T is the simplest and most widely-used method for constructing PRS based on

summary statistics and has been used for many years now. The idea behind C+T is

simple because it directly uses weights learned from GWAS; it further removes SNPs

as one does when reporting hits from GWAS, i.e. only SNPs that pass the genome-wide

67
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threshold (p-value thresholding) and that are independent association findings (clump-

ing) are reported. In GWAS, it is commonly accepted to use a p-value threshold of

5 × 10−8 when reporting significant findings, yet for prediction purposes, including

less significant SNPs can substantially improve predictive performance (Purcell et al.,

2009).

Therefore, when using C+T, one has to choose a p-value threshold that balances

between removing informative variants when using a stringent p-value threshold and

adding too much noise in the score by including too many variants with no effect. The

clumping step aims at removing redundancy in included effects that is simply due to

linkage disequilibrium (LD) between variants. Yet, clumping may as well remove in-

dependently predictive variants in nearby regions; to balance this, C+T uses as hyper-

parameter a threshold on correlation between variants included. Thus, C+T users must

choose hyper-parameters of C+T well if they want to maximize predictive performance

of the polygenic score derived. Most of the time, people use default values for these

parameters, expect for the p-value threshold, for which they look at different values and

choose the one maximizing predictive ability in a training set.

4.1.2 Methods

We implement an efficient way to compute many C+T scores corresponding to many

different sets of hyper-parameters for C+T. This is now part of R package bigsnpr (Privé

et al., 2018). The 4 parameters we vary are the correlation threshold of clumping,

the window size for looking at correlation, the p-value threshold and the imputation

accuracy threshold when using imputed variants. In total, we investigate 5600 different

sets of hyper-parameters for C+T.

We also derive C+T scores for each chromosome separately, resulting in 123,200

different scores. We propose to use stacking, i.e. we fit a penalized regression of these

scores and learn an optimal linear combination of those scores instead of only choosing

the best one (Breiman, 1996). We hypothesize that Stacked Clumping and Thresholding

(SCT) has the potential to make C+T more flexible and to increase its predictive perfor-

mance. Moreover, SCT results in a linear model from which we can derive an unique

vector of coefficients to be used for testing in unseen individuals.
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4.1.3 Results

We test 6 different simulation scenarios using the UK Biobank dataset. We also derive

PRS for 8 common diseases using external summary statistics from published GWAS

and dividing the UK Biobank data into training and test sets. Investigating more hyper-

parameters for C+T (we call this maxCT) instead of using default values for these hyper-

parameters (we call this stdCT) consistently improves predictive performance in simula-

tions and real data applications. This makes C+T competitive to state-of-the-art methods

like lassosum (Mak et al., 2017). Moreover, SCT often provides substantial predictive

performance improvement over maxCT by using different weights from those reported

from the GWAS.

4.1.4 Discussion

We provide an efficient way to compute C+T scores for many different hyper-parameters

values in R package bigsnpr. Investigating 8 different diseases, we show that the opti-

mal C+T hyper-parameters for those traits are very different, probably because these

diseases have different architectures. Therefore, fine-tuning hyper-parameters of C+T

improves its predictive performance as compared to using default values for clumping.

Instead of choosing one set of hyper-parameters that maximizes predictive perfor-

mance in a training set, we propose instead to learn a combination of many C+T scores,

corresponding to different sets of hyper-parameters. This extension of C+T that we call

SCT (Stacked C+T) makes C+T more flexible. Moreover, we implement the possibility

for an user of SCT to define their own groups of variants. This opens many possibil-

ities for SCT. For example, we could derive and stack C+T scores for two related but

different GWAS summary statistics, we could use external information such as func-

tional annotations, or we could learn to differentiate between two genetically different

phenotypes with similar symptoms such as type 1 and type 2 diabetes.

4.2 Article 3 and supplementary materials

The following article is available as a preprint in bioRxiv 1.
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Abstract

Polygenic prediction has the potential to contribute to precision medicine. Clumping and Thresh-

olding (C+T) is a widely used method to derive polygenic scores. When using C+T, people usually

test several p-value thresholds to maximize predictive ability of derived polygenic scores. Along

with this p-value threshold, we propose to tune 3 other hyper-parameters for C+T. We implement an

efficient way to derive C+T scores corresponding to many different sets of hyper-parameters. For

example, you can now derive thousands of different C+T scores for 300K individuals and 1M vari-

ants in less than one day. We show that tuning 4 hyper-parameters of C+T consistently improves its

predictive performance in both simulations and real data applications as compared to tuning only the

p-value threshold.

Using this grid of computed C+T scores, we further extend C+T with stacking. More precisely,

instead of choosing one set of hyper-parameters that maximizes prediction in some training set, we

propose to learn an optimal linear combination of all these C+T scores using an efficient penalized

regression. We call this method Stacked Clumping and Thresholding (SCT) and show that this makes

C+T more flexible. When the training set is large enough, SCT can provide much larger predictive

performance as compared to any of the C+T scores individually.
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1 Introduction

The ability to predict disease risk accurately is a principal aim of modern precision medicine. As

more population-scale genetic datasets become available, polygenic risk scores (PRS) are expected to

become more accurate and clinically relevant. The most commonly used method for computing poly-

genic scores is Clumping and Thresholding (C+T), also known as pruning and thresholding (P+T).

The C+T polygenic score is defined as the sum of allele counts (genotypes), weighted by estimated

effect sizes obtained from genome-wide association studies, where two filtering steps have been ap-

plied (Wray et al. 2007; Purcell et al. 2009; Dudbridge 2013; Wray et al. 2014; Euesden et al. 2014;

Chatterjee et al. 2016). More precisely, the variants are first clumped (C) so that only variants that

are weakly correlated with one another are retained. Clumping looks at the most significant variant

iteratively, computes correlation between this index variant and nearby variants within some genetic

distance wc, and removes all the nearby variants that are correlated with this index variant beyond

a particular value r2c . Thresholding (T) consists in removing variants with a p-value larger than a

chosen level of significance (p > pT ). Both steps, clumping and thresholding, represent a statistical

compromise between signal and noise. The clumping step prunes redundant correlated effects caused

by linkage disequilibrium (LD) between variants. However, this procedure may also remove inde-

pendently predictive variants in nearby LD regions. Similarly, thresholding must balance between

including predictive variants and reducing noise in the score by excluding null effects. This is why

hyper-parameters of clumping and thresholding must be chosen with care when using C+T in order

to maximize its predictive ability.

When applying C+T, one has 3 hyper-parameters to select, namely the squared correlation thresh-

old r2c and the window size wc of clumping, along with the p-value threshold pT . Usually, C+T

users assign default values for clumping, such as r2c of 0.1 (default of PRSice), 0.2 or 0.5 (default

of PLINK), and wc of 250kb (default of PRSice and PLINK) or 500kb, and test several values for

pT ranging from 1 to 10−8 (Purcell et al. 2009; Wray et al. 2014; Euesden et al. 2014; Chang et al.

2015). Moreover, to match the variants of summary statistics and to compute the PRS, the target sam-

ple genotypes are usually imputed to some degree of precision. Liberal inclusion of imputed variants

is common, assuming that using more variants in the model yields better prediction, whatever the

imputation accuracy of these variants. Here, we explore the validity of this approach and suggest an

additional INFOT threshold on the quality of imputation (often called the INFO score) as a fourth

parameter of the C+T method.

We implement an efficient way to compute C+T scores for many different parameters (LD, win-

dow size, p-value and INFO score) in R package bigsnpr (Privé et al. 2018). Using a training set, one

could therefore choose the best predictive C+T model among a large set of C+T models with many

different parameters, and then evaluate this model in a test set. Moreover, instead of choosing one

set of parameters that corresponds to the best prediction, we propose to use stacking, i.e. we learn

an optimal linear combination of all computed C+T scores using an efficient penalized regression to

improve prediction beyond the best prediction provided by any of these scores (Breiman 1996). We

call this method SCT, which stands for Stacked Clumping and Thresholding. Using the UK Biobank
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data (Bycroft et al. 2018) and external summary statistics for simulated and real data analyses, we

show that testing a larger grid of parameters consistently improves predictions as compared to using

some default parameters for C+T. We also show that SCT consistently improves prediction compared

to any single C+T model when sample size of the training set is large enough.

2 Material and Methods

2.1 Clumping and Thresholding (C+T) and Stacked C+T (SCT)

We compute C+T scores for each chromosome separately and for several parameters:

• Threshold on imputation INFO score INFOT within {0.3, 0.6, 0.9, 0.95}.

• Squared correlation threshold of clumping r2c within {0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 0.95}.

• Base size of clumping window within {50, 100, 200, 500}. The window size wc is then com-

puted as the base size divided by r2c . For example, for r2c = 0.2, we test values of wc within

{250, 500, 1000, 2500} (in kb). This is motivated by the fact that linkage disequilibrium is

inversely proportional to genetic distance between variants (Pritchard and Przeworski 2001).

• A sequence of 50 thresholds on p-values between the least and the most significant p-values,

equally spaced on a log-log scale.

Thus, for individual i, chromosome k and the four hyper-parameters INFOT , r2c , wc and pT , we

compute C+T predictions

V
(k)
i

(
INFOT , r

2
c , wc, pT

)
=

∑

j∈Sclumping(k, INFOT , r2c , wc)

β̂j ·Gi,j · ✶{pj < pT } ,

where β̂j (pj) are the effect sizes (p-values) estimated from the GWAS, Gi,j is the dosage for in-

dividual i and variant j, and the set Sclumping(k, INFOT , r2c , wc) corresponds to first restricting to

variants of chromosome k with an INFO score ≥ INFOT and that further result from clumping with

parameters r2c and wc.

Overall, we compute 22× 4× 7× 4× 50 = 123200 vectors of polygenic scores. Then, we stack

all these polygenic scores (for individuals in the training set) by using these scores as explanatory

variables and the phenotype as the outcome in a regression setting (Breiman 1996). In other words,

we fit weights for each C+T scores using an efficient penalized logistic regression available in R

package bigstatsr (Privé et al. 2019). This results in a linear combination of C+T scores, where C+T

scores are merely linear combinations of variants, so that we can derive a single vector of effect sizes

corresponding to each variant. The single vector of new variant effects resulting from stacking C+T

scores is used for evaluation in the test set. We refer to this method as “SCT” in the rest of the paper.

From this grid of 123,200 vectors of polygenic scores, we also derive two C+T scores for compar-

ison. First, “stdCT” is the standard C+T score using some default parameters, i.e. with r2c = 0.2, wc =

500, a liberal threshold of 0.3 on imputation INFO score, and choosing the p-value threshold (≥ 10−8)
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maximizing the AUC on the training set (Wray et al. 2014). Second, “maxCT” is the C+T score max-

imizing the AUC on the training set among the 5600 (123200 / 22) C+T scores corresponding to all

different sets of parameters tested. Note that stdCT and maxCT use the same set of parameters for all

chromosomes, i.e. for one set of the four hyper-parameters, they are defined as V (1) + · · ·+V (22). In

contrast, SCT uses the whole matrix of 123,200 vectors.

2.2 Simulations

We use variants from the UK Biobank (UKBB) imputed dataset that have a minor allele frequency

larger than 1% and an imputation INFO score larger than 0.3. There are almost 10M such variants,

of which we randomly choose 1M. To limit population structure and family structure, we restrict

individuals to the ones identified by the UK Biobank as British with only subtle structure and exclude

all second individuals in each pair reported by the UK Biobank as being related (Bycroft et al. 2018).

This results in a total of 335,609 individuals that we split into three sets: a set of 315,609 individuals

for computing summary statistics (GWAS), a set of 10,000 individuals for training hyper-parameters

and lastly a test set of 10,000 individuals for evaluating models.

We read the UKBB BGEN files using function snp_readBGEN from package bigsnpr (Privé

et al. 2018). For simulating phenotypes and computing summary statistics, we read UKBB data as

hard calls by randomly sampling hard calls according to reported imputation probabilities. For the

training and test sets, we read these probabilities as dosages (expected values). This procedure enables

us to simulate phenotypes using hard calls and then to use the INFO score (imputation accuracies)

reported by the UK Biobank to assess the quality of the imputed data used for the training and test

sets.

We simulate binary phenotypes with a heritability h2 = 0.5 using a Liability Threshold Model

(LTM) with a prevalence of 10% (Falconer 1965). We vary the number of causal variants (100, 10K,

or 1M) in order to match a range of genetic architectures from low to high polygenicity. Liability

scores are computed from a model with additive effects only: we compute the liability score of the

i-th individual as yi =
∑

j∈Scausal
wjG̃i,j+ǫi, where Scausal is the set of causal variants, wj are weights

generated from a Gaussian distribution N(0, h2/|Scausal|), Gi,j is the allele count of individual i for

variant j, G̃i,j corresponds to its standardized version (zero mean and unit variance), and ǫ follows a

Gaussian distribution N(0, 1− h2).

We explore three additional scenarios with more complex architectures. In scenario “2chr”, 100

variants of chromosome 1 and all variants of chromosome 2 are causal with half of the heritability

for both chromosomes; it aims at assessing predictive performance when disease architectures are

different for different chromosomes. In scenario “err”, we sample 10,000 random causal variants but

10% of the GWAS effects are reported with an opposite effect in the summary statistics; it aims at

assessing if methods are able to partially correct for errors or mere differences in effect sizes between

GWAS and the target data. In scenario “HLA”, 7105 causal variants are chosen in one long-range LD

region of chromosome 6; it aims at assessing if methods can handle strong correlation between causal

variants.
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To compute summary statistics, we use Cochran-Armitage additive test (Zheng et al. 2012). Given

that we restricted the data to have minimal population structure, this test based on contingency tables

is much faster than using a logistic regression with 10 principal components as covariates (a few

minutes vs several hours) while providing similar effect sizes and Z-scores (Figure S1).

In simulations, we compare four methods: stdCT, maxCT, SCT (defined in section 2.1) and las-

sosum (Mak et al. 2017). Each simulation scenario is repeated 10 times and the average AUC is

reported. We prefer to use AUC over Nagelkerke’s R2 because AUC has a desirable property of being

independent of the proportion of cases in the validation sample; one definition of AUC is the proba-

bility that the score of a randomly selected case is larger than the score of a randomly selected control

(Wray et al. 2013). An alternative to AUC would be to use a better R2 on the liability scale (Lee et al.

2012; Allegrini et al. 2019).

2.3 Real summary statistics

We also investigate predictive performance of C+T and SCT in the UK Biobank using external sum-

mary statistics from published GWAS of real diseases, for which we summarize the number of in-

dividuals and variants in table 1 (Buniello et al. 2018). As in simulations, we restrict individuals to

the ones identified by the UK Biobank as British with only subtle structure and exclude all second

individuals in each pair reported by the UK Biobank as being related (Bycroft et al. 2018). Table

1 also summarizes the number of cases and controls in the UKBB, after this filtering and for each

phenotype analyzed. For details on how we define phenotypes in the UKBB, please refer to our R

code (Section 2.4). Briefly, we use self-reported illness codes (field #20001 for cancers and #20002

otherwise) and ICD10 codes (fields #40001, #40002, #41202 and #41204 for all diseases, and field

#40006 specifically for cancers).

Table 1: Number of cases and controls in UK Biobank (UKBB) for several disease phenotypes, along

with corresponding published GWAS summary statistics. Summary statistics are chosen from GWAS

that did not include individuals from UKBB. For depression, we remove UKBB individuals from the

pilot release since they were included in the GWAS from which we use summary statistics.

Trait UKBB size GWAS size GWAS #variants GWAS citation

Breast cancer (BRCA) 11,578 / 158,391 137,045 / 119,078 11,792,542 Michailidou et al. (2017)

Rheumatoid arthritis (RA) 5615 / 226,327 29,880 / 73,758 9,739,303 Okada et al. (2014)

Type 1 diabetes (T1D) 771 / 314,547 5913 / 8828 8,996,866 Censin et al. (2017)

Type 2 diabetes (T2D) 14,176 / 314,547 26,676 / 132,532 12,056,346 Scott et al. (2017)

Prostate cancer (PRCA) 6643 / 141,321 79,148 / 61,106 20,370,946 Schumacher et al. (2018)

Depression (MDD) 22,287 / 255,317 59,851 / 113,154 13,554,550 Wray et al. (2018)

Coronary artery disease (CAD) 12,263 / 225,927 60,801 / 123,504 9,455,778 Nikpay et al. (2015)

Asthma 43,787 / 261,985 19,954 / 107,715 2,001,280 Demenais et al. (2018)

We keep all variants with a GWAS p-value lower than 0.1 except for prostate cancer (0.05) and

asthma (0.5). This way, we keep around 1M variants for each phenotype, deriving all C+T scores and

stacking them in SCT in less than one day for each phenotype, even when using 300K individuals

in the training set. To match remaining summary statistics with data from the UK Biobank, we first

remove ambiguous alleles [A/T] and [C/G]. We then augment the summary statistics twice: first by
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duplicating each variant with the complementary alleles, then by duplicating variants with reverse

alleles and effects. Finally, we include only variants that we match with UKBB based on the combi-

nation of chromosome, position and the two alleles. Note that, when no or very few alleles are flipped,

we disable the strand flipping option and therefore do not remove ambiguous alleles; this is the case

for all phenotypes analyzed here. For example, for type 2 diabetes, there are 1,408,672 variants in

summary statistics (p < 0.1), of which 215,821 are ambiguous SNPs. If we remove these ambigu-

ous SNPs, 1,145,260 variants are matched with UKBB, of which only 38 are actually flipped. So,

instead, we do not allow for flipping and do not remove ambiguous alleles, then 1,350,844 variants

are matched with UKBB.

Training SCT and choosing optimal hyper-parameters for C+T (stdCT and maxCT) use 63%-90%

of the UK Biobank data reported in table 1. The training set can therefore contain as many as 300K

individuals. To assess how sample size affects predictive performance of methods, we also compare

these methods using a much smaller training set of 500 cases and 2000 controls.

2.4 Reproducibility

The code to reproduce the analyses and figures of this paper is available as R scripts at https://

github.com/privefl/simus-PRS/tree/master/paper3-SCT (R Core Team 2018). To

execute these scripts, you need to have access to the UK Biobank data that we are not allowed to

share (http://www.ukbiobank.ac.uk/). A quick introduction to SCT is also available at

https://privefl.github.io/bigsnpr/articles/SCT.html.

3 Results

3.1 Simulations

We test 6 different simulations scenarios. In all these scenarios, maxCT –that tests a much larger

grid of hyper-parameters values for C+T on the training set– consistently provides higher AUC values

on the test set as compared to stdCT that tests only several p-value thresholds while using default

values for the other parameters (Figure 1). The absolute improvement in AUC of maxCT over stdCT

is particularly large in the cases of 100 and 10,000 causal variants, where causal effects are mostly

independent of one another. In these cases, using a very stringent r2c = 0.01 threshold of clumping

provides higher predictive performance than using a standard default of r2c = 0.2 (Figures S4a and

S4b). However, r2c = 0.2 provides best predictive performance when simulating 1M causal variants.

Still, using a large window size wc of 2500 kb increases AUC as compared to using default values of

either 250 or 500 kb (Figure S4c).

As for SCT, it provides equal or higher predictive performance than maxCT in the different sim-

ulation scenarios (Figure 1). In the first three simple scenarios simulating 100, 10K or 1M causal

variants anywhere on the genome, predictive performance of SCT are similar to maxCT. In the “2chr”

scenario where there are large effects on chromosome 1, small effects on chromosome 2 and no effect

7

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/653204doi: bioRxiv preprint first posted online May. 30, 2019; 

76 CHAPTER 4. MAKING THE MOST OF CLUMPING AND THRESHOLDING



0.5

0.6

0.7

0.8

0.9

100 10K 1M 2chr err HLA

Simulation

A
U

C

Method

stdCT

maxCT

SCT

lassosum

Figure 1: Results of the 6 simulation scenarios: (100) 100 random causal variants; (10K) 10,000 random

causal variants; (1M) all 1M variants are causal variants; (2chr) 100 variants of chromosome 1 are causal

and all variants of chromosome 2, with half of the heritability for both chromosomes; (err) 10,000 random

causal variants, but 10% of the GWAS effects are reported with an opposite effect; (HLA) 7105 causal

variants in a long-range LD region of chromosome 6. Mean and 95% CI of 104 non-parametric bootstrap

replicates of the mean AUC of 10 simulations for each scenario. The blue dotted line represents the

maximum achievable AUC for these simulations (87.5% for a prevalence of 10% and an heritability of

50% – see equation (3) of Wray et al. (2010)). See corresponding values in table S1.

on other chromosomes, mean AUC is 78.7% for maxCT and 82.2% for SCT. In the “err” scenario

where we report GWAS summary statistics with 10% reversed effects (errors), mean AUC is 70.2%

for maxCT and 73.2% for SCT. SCT also provides higher AUC than lassosum, expect when simulat-

ing all variants as causal (1M).

Effects resulting from SCT (Figure S3) are mostly comprised between the GWAS effects and

0. For the simulation with only 100 causal variants, resulting effects are either nearly the same as

in the GWAS, or near 0 (or exactly 0). When there are some correlation between causal predictors

(Scenarios “1M” and “HLA”) or when reporting GWAS effects with some opposite effect (“err”),

some effects resulting from SCT are in the opposite direction as compared to the GWAS effects.

3.2 Real summary statistics

In terms of AUC, maxCT outperfoms stdCT for all 8 diseases consireded with a mean absolute in-

crease of 1.3% (Figures 2 and S2). A particularly large increase can be noted when predicting de-

pression status (MDD), from an AUC of 55.7% (95% CI: [54.4-56.9]) with stdCT to an AUC of
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59.2% (95% CI: [58.0-60.4]) with maxCT. For MDD, a liberal inclusion in clumping (r2c = 0.8) and a

stringent threshold on imputation accuracy (INFOT = 0.95) provides the best predictive performance

(Figure S6f). For all 8 diseases, predictions were optimized when choosing a threshold on imputation

accuracy of at least 0.9, whereas optimal values for r2c where very different depending on the archi-

tecture of diseases, with optimal selected values over the whole range of tested values for r2c (Table

S3).

0.5

0.6

0.7

0.8

BRCA RA T1D T2D PRCA MDD CAD Asthma

Trait

A
U

C

Method

stdCT

maxCT

SCT

Figure 2: AUC values on the test set of UKBB (mean and 95% CI from 104 bootstrap samples). Training

SCT and choosing optimal hyper-parameters for C+T use 63%-90% of the data reported in table 1. See

corresponding values in table S2.

Furthermore, when training size uses a large proportion of the UK Biobank data, SCT outperforms

maxCT for all 8 diseases considered with an additional mean absolute increase of AUC of 2.2%,

making it 3.5% as compared to stdCT (Figure 2 and table S2). Predictive performance improvement

of SCT versus maxCT is particularly notable for coronary artery disease (2.8%), type 2 diabetes

(3.1%) and asthma (3.4%).

Effects resulting from SCT have mostly the same sign as initial effects from GWAS, with few

effects being largely unchanged, and others having an effect that is shrunk to 0 or equals to 0, i.e.

variants not included in the final model (Figure S5).

When training size is smaller (500 cases and 2000 controls only instead of 200K-300K individu-

als), SCT is not as good as when training size is large, yet SCT remains a competitive method expect

for depression for which maxCT performs much better than SCT (Figure S2).
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4 Discussion

4.1 Predictive performance improvement of C+T

C+T has the advantage that it is intuitive and an easily applicable method for obtaining polygenic

scores trained on GWAS summary statistics. Two popular pieces of software that implement C+T,

PLINK and PRSice, have further contributed to the prevalence of C+T (Purcell et al. 2007; Euesden

et al. 2014; Chang et al. 2015). Usually, C+T scores for different p-value thresholds are derived,

using some default values for the other 3 hyper-parameters. In R package bigsnpr, we extend C+T

to efficiently consider more hyper-parameters (4 by default) and enable the user to define their own

qualitative variant annotations to filter on (e.g. minor allele frequency could be used as a fifth param-

eter). Using simulated and real data, we show that choosing different values rather than default ones

for these hyper-parameters can substantially improve the performance of C+T, making C+T a very

competitive method. Indeed, in our simulations (Figure 1), we found that optimizing C+T (maxCT)

performed on par with more sophisticated methods such as lassosum. Moreover, it is possible to rerun

the method using a finer grid in a particular range of these hyper-parameters. For example, it might be

useful to include variants with p-values larger than 0.1 for predicting rheumatoid arthritis and depres-

sion (Figures S6b and S6f). Another example would be to focus on a finer grid of large values of r2c

for coronary artery disease (Figure S6g), or to focus on a finer grid of stringent imputation thresholds

only (Table S3).

Using a large grid of C+T scores for different hyper-parameters, we show that stacking these

scores instead of choosing the best one improves prediction further (Breiman 1996). Combining

multiple PRS is not a new idea (Krapohl et al. 2018; Inouye et al. 2018), but we push this idea to the

limit by combining 123,200 polygenic scores. This makes SCT more flexible than any C+T model,

but it of course also requires a larger training dataset with individual-level genotypes and phenotypes

to learn the weights in stacking.

Normally, cross-validation should be used to prevent overfitting when using stacking and it is also

suggested to use positivity constraints in stacking (Breiman 1996). However, cross-validation is not

necessary here since building C+T scores does not make use of the phenotype of the training set that

is later used in the stacking; the training set is only used to choose the best set of hyper-parameters for

C+T. Moreover, we allow C+T scores to have negative weights in the final model for three reasons.

First, because C+T scores are overlapping in the variants they use, using some negative weights allows

to weight groups of variants that correspond to the difference of two sets of variants. Second, because

of LD, variants may have different effects when learned jointly with others (Figures S3c and S3f).

Third, if reported GWAS effects are heterogenous between the GWAS dataset and the validation or

target dataset, then having variants with opposite effects can help adjust the effects learned during

GWAS.
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4.2 Limitations of the study

In this study, we limited the analysis to 8 common diseases and disorders, as these all had substan-

tial number of cases and publicly available GWAS summary statistics based on substantial sample

sizes. For example, for psychiatric disease, we include only depression (MDD) because diseases such

as schizophrenia and bipolar disorder have very few cases in the UK Biobank; dedicated datasets

should be used to assess effectiveness of maxCT and SCT for such diseases. We also do not ana-

lyze many automimmune diseases because summary statistics are often outdated (2010-20111) and,

because there are usually large effects in regions of chromosome 6 with high LD, methods that use

individual-level data instead of summary statistics are likely to provide better predictive models (Privé

et al. 2019). We also chose not to analyze any continuous trait such as height or BMI because there

are many individual-level data available in UKBB for such phenotypes and methods directly using

individual-level data are likely to provide better predictive models for predicting in UKBB than the

ones using summary statistics (Privé et al. 2019; Chung et al. 2019). Phenotypes with tiny effects

such as educational attainment for which huge GWAS summary statistics are available might be an

exception (Lee et al. 2018).

The principal aim of this work is to study and improve the widely used C+T method. The idea be-

hind C+T is simple as it directly uses weights learned from GWAS; it further removes variants as one

often does when reporting hits from GWAS, i.e. only variants that pass the genome-wide threshold (p-

value thresholding) and that are independent association findings (clumping) are reported. Yet, there

are two other established methods based on summary statistics, LDpred and lassosum (Vilhjálms-

son et al. 2015; Mak et al. 2017; Allegrini et al. 2019). Several other promising and more complex

methods such as NPS, PRS-CS and SBayesR are currently being developed (Chun et al. 2019; Ge

et al. 2019; Lloyd-Jones et al. 2019). Here, we include lassosum in the simulations since no other

method yet shown that they provide some improvement over lassosum. In addition, we found las-

sosum to be easy to set up and use. However, lassosum requires substantial computation time when

there are too many samples or too many variants. Therefore, we did not apply lassosum to the full UK

Biobank data. A full comparison of methods (including individual-level data methods), including bi-

nary and continuous traits with different architectures, using different sizes of summary statistics and

individual-level data for training, and in possibly different populations would be of great interest, but

is out of scope for this paper. Indeed, we believe that different methods may perform very differently

in different settings and that understanding what method is appropriate for each case is of paramount

interest if the aim is to maximize prediction accuracy to make PRS clinically useful.

4.3 Extending SCT

The stacking step of SCT can be used for either binary or continuous phenotypes. Yet, for some dis-

eases, it makes sense to include age in the models, using for example Cox proportional-hazards model

to predict age of disease onset, with possibly censored data (Cox 1972). Cox regression has already

proven useful for increasing power in GWAS (Hughey et al. 2019). Currently, we support linear and

1https://www.immunobase.org/downloads/protected_data/GWAS_Data/
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logistic regressions in our efficient implementation of package bigstatsr, but not Cox regression. This

is an area of future development; for now, if sample size is not too large, one could use R package

glmnet to implement stacking based on Cox model (Tibshirani et al. 2012).

One might also want to use other information such as sex or ancestry (using principal compo-

nents). Indeed, it is easy to add covariates in the stacking step as (possibly unpenalized) variables in

the penalized regression. Yet, adding covariates should be done with caution (see the end of supple-

mentary materials).

Finally, note that we added an extra parameter in the SCT pipeline that makes possible for an user

to define their own groups of variants. This allows to refine the grid of computed C+T scores and

opens many possibilities for SCT. For example, we could derive and stack C+T scores for two (or

more) different GWAS summary statistics, e.g. for different ancestries or for different phenotypes.

This would effectively extend SCT as a multivariate method. We could also learn to differentiate be-

tween two genetically different phenotypes with similar symptoms such as type 1 and type 2 diabetes,

which is in our research interests.

4.4 Conclusion

In this paper, we focused on understanding and improving the widely-used C+T method by testing

a wide range of hyper-parameters values. More broadly, we believe that any implementation of sta-

tistical methods should come with an easy and effective way to choose hyper-parameters of these

methods well. We believe that C+T will continue to be used for many years as it is both simple to use

and intuitive. Moreover, as we show, when C+T is optimized using a larger grid of hyper-parameters,

it remains a competitive method since it can adapt to many different disease architectures by tuning

all hyper-parameters.

Moreover, instead of choosing one set of hyper-parameters, we show that stacking C+T predic-

tions improves predictive performance further. SCT has many advantages over any single C+T predic-

tion: first, it can learn different architecture models for different chromosomes, it can learn a mixture

of large and small effects and it can more generally adapt initial weights of the GWAS in order to

maximize prediction. Moreover, SCT remains a linear model with one vector of coefficients as it is a

linear combination (stacking) of linear combinations (C+T scores).
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Supplementary Materials

Figure S1: Comparison of estimated effect sizes (A) and Z-scores (B) if computed using a logistic re-

gression with 10 principal components as covariates, or with a simple Cochran-Armitage additive test.

Phenotypes were simulated using 100 causal variants only, allowing for large effects.

Table S1: AUC values on the test set for simulations (mean [95% CI] from 104 bootstrap samples).

Scenario stdCT maxCT SCT lassosum

100 79.8 [77.0-82.0] 86.9 [86.6-87.3] 86.3 [85.8-86.8] 83.2 [81.8-84.2]

10K 72.5 [71.8-73.3] 75.1 [74.7-75.5] 76.0 [75.5-76.6] 74.9 [74.3-75.6]

1M 68.9 [68.3-69.4] 69.5 [68.8-70.0] 69.0 [68.5-69.6] 70.4 [70.0-70.9]

2chr 77.2 [76.7-77.7] 78.6 [78.0-79.2] 82.2 [81.8-82.7] 78.9 [78.4-79.4]

err 69.8 [68.9-70.7] 70.7 [70.1-71.2] 73.2 [72.5-73.9] 72.1 [71.5-72.8]

HLA 78.7 [78.0-79.5] 79.8 [79.1-80.4] 80.7 [80.2-81.3] 79.4 [78.7-80.2]
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Table S2: AUC values on the test set of UKBB (mean [95% CI] from 104 bootstrap samples) and the

number of variants used in the final model. Training SCT and choosing optimal hyper-parameters for

C+T use 63%-90% of the data reported in table 1.

Trait stdCT maxCT SCT

Breast cancer (BRCA) 62.1 [60.5-63.6] 63.3 [61.7-64.8] 65.9 [64.4-67.4]

6256 2572 670,050

Rheumatoid arthritis (RA) 59.8 [57.7-61.8] 60.3 [58.3-62.4] 61.3 [59.1-63.4]

12,220 88,556 317,456

Type 1 diabetes (T1D) 75.4 [72.4-78.4] 76.9 [73.9-79.7] 78.7 [75.7-81.7]

1112 267 135,991

Type 2 diabetes (T2D) 59.1 [58.1-60.1] 60.7 [59.8-61.7] 63.8 [62.9-64.7]

177 33,235 548,343

Prostate cancer (PRCA) 68.0 [66.5-69.5] 69.3 [67.8-70.8] 71.7 [70.2-73.1]

1035 356 696,575

Depression (MDD) 55.7 [54.4-56.9] 59.2 [58.0-60.4] 59.5 [58.2-60.7]

165,584 222,912 524,099

Coronary artery disease (CAD) 59.9 [58.6-61.2] 61.1 [59.9-62.4] 63.9 [62.7-65.1]

1182 87,577 315,165

Asthma 56.8 [56.2-57.5] 57.3 [56.7-58.0] 60.7 [60.0-61.3]

3034 360 446,120

Table S3: Choice of C+T parameters based on the maximum AUC in the training set. Choosing optimal

hyper-parameters for C+T use 63%-90% of the data reported in table 1.

Trait wc r2c INFOT pT
Breast cancer (BRCA) 2500 0.2 0.95 2.2e-04

Rheumatoid arthritis (RA) 200 0.5 0.95 7.5e-02

Type 1 diabetes (T1D) 10K-50K 0.01 0.90 2.6e-05

Type 2 diabetes (T2D) 625 0.8 0.95 1.1e-02

Prostate cancer (PRCA) 10K-50K 0.01 0.90 4.2e-06

Depression (MDD) 625 0.8 0.95 1.0e-01

Coronary artery disease (CAD) 526 0.95 0.95 3.5e-02

Asthma 2500 0.2 0.90 2.2e-04
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Figure S2: AUC values on the test set of UKBB (mean and 95% CI from 104 bootstrap samples). Train-

ing SCT and choosing optimal hyper-parameters for C+T use 500 cases and 2000 controls only. See

corresponding values in table S4.

Table S4: AUC values on the test set of UKBB (mean [95% CI] from 104 bootstrap samples) and the

number of variants used in the final model. Training SCT and choosing optimal hyper-parameters for

C+T use 500 cases and 2000 controls only.

Trait stdCT maxCT SCT

Breast cancer (BRCA) 62.2 [61.6-62.7] 63.4 [62.8-63.9] 62.9 [62.4-63.5]

Rheumatoid arthritis (RA) 59.2 [58.4-60.0] 59.5 [58.7-60.3] 59.5 [58.7-60.3]

Type 1 diabetes (T1D) 75.6 [72.4-78.7] 76.7 [73.6-79.8] 78.7 [75.5-81.8]

Type 2 diabetes (T2D) 59.8 [59.3-60.3] 60.2 [59.7-60.7] 61.0 [60.6-61.5]

Prostate cancer (PRCA) 67.1 [66.4-67.8] 68.7 [68.0-69.3] 69.3 [68.7-70.0]

Depression (MDD) 54.5 [54.1-54.9] 58.4 [58.0-58.8] 54.7 [54.3-55.1]

Coronary artery disease (CAD) 59.7 [59.2-60.3] 60.0 [59.5-60.5] 61.4 [60.8-61.9]

Asthma 56.2 [55.9-56.4] 56.9 [56.7-57.2] 57.2 [56.9-57.4]
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(a) “100”: 100 random causal variants

(b) “10K”: 10,000 random causal variants
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(c) “1M”: all 1M variants are causal variants

(d) “2chr”: Causal variants on chromosomes 1 & 2
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(e) “err”: 10,000 random causal variants, but 10% of the GWAS effects are re-

ported with an opposite effect

(f) “HLA”: 7105 causal variants in a long-range LD region of chromosome 6

Figure S3: New effect sizes resulting from SCT versus initial effect sizes of GWAS in the first simulation

of each simulation scenario. Only non-zero effects are represented. Red line corresponds to the 1:1 line.
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(a) “100”: 100 random causal variants

(b) “10K”: 10,000 random causal variants

(c) “1M”: all 1M variants are causal variants
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(d) “2chr”: Causal variants on chromosomes 1 & 2

(e) “err”: 10,000 random causal variants, but 10% of the GWAS effects are reported with an opposite effect

(f) “HLA”: 7105 causal variants in a long-range LD region of chromosome 6

Figure S4: AUC values (for the training set) when predicting disease status for many parameters of C+T

in the first simulation of each simulation scenario. Facets are presenting different clumping thresholds r2c
from 0.01 to 0.95, window sizes wc from 52 to 50,000 kb, and imputation thresholds from 0.3 to 0.95. The

x-axis corresponds to the remaining hyper-parameter, the p-value threshold pT ; here, -log10(p-values) are

represented using a logarithmic scale.
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(a) Breast cancer

(b) Rheumatoid arthritis
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(c) Type 1 diabetes

(d) Type 2 diabetes
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(e) Prostate cancer

(f) Depression
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(g) Coronary artery disease

(h) Asthma

Figure S5: New effect sizes resulting from SCT versus initial effect sizes of GWAS in real data applica-

tions. Only non-zero effects are represented. Red line corresponds to the 1:1 line.
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(a) Breast cancer

(b) Rheumatoid arthritis

(c) Type 1 diabetes
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(d) Type 2 diabetes

(e) Prostate cancer

(f) Depression
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(g) Coronary artery disease

(h) Asthma

Figure S6: AUC values (for the training set) when predicting disease status for many parameters of C+T

in real data applications. Facets are presenting different clumping thresholds r2c from 0.01 to 0.95, win-

dow sizes wc from 52 to 50,000 kb, and imputation thresholds from 0.3 to 0.95. The x-axis corresponds

to the remaining hyper-parameter, the p-value threshold pT ; here, -log10(p-values) are represented using

a logarithmic scale.
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Caution on using covariates

For example, because prevalence of CAD is much higher in men than in women in the UKBB (8-9%

vs 2%), adding sex in the model amount to fitting two different intercepts, centering distributions of

fitted probabilities around disease prevalence (Figure S7). This increases the AUC from 63.9% to

74.4% but results in a model that would classify all women as healthy. A possible solution would be

to report AUC figures for each gender separately, or even to fit a model for each gender separately

(in the stacking step). Fitting models separately would enable the use of sex chromosomes without

introducing bias. As for ancestry concerns, fitting different models for different ancestries might be a

way to get more calibrated results and to account for differences in effect sizes and LD. However, here

for CAD, fitting two separate models for each gender results in a slight loss of predictive performance,

while using variable ‘sex’ does not change results when they are reported for each gender separately,

with an AUC of 64.9% [63.5-66.3] for men and 62.5% [59.8-65.2] for women. Thus, adding ‘sex’ as

a covariate in the model may provide a model with similar discrimination and with better calibration

of probabilities (if prevalence in the data is representative of prevalence in the population). Yet, we

would like to emphasize again that reporting one AUC figure for all individuals would be misleading

in the case of using variable ‘sex’ in the model.

Figure S7: Distribution of predicted probabilities of Coronary Artery Disease (CAD) in the UK Biobank

using SCT. Upper / lower panels corresponds to women / men. Left panels correspond to a model using

C+T scores and variable ‘sex’ when fitting penalized logistic regression in the stacking step. Right panels

correspond to performing stacking of C+T scores without using variable ‘sex’.
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Chapter 5

Conclusion and Discussion

5.1 Summary of my work

The first part of my work has consisted in developing tools to easily analyze genotype

matrices. There are different software using different input formats so that they are

sometimes difficult to use in the same analysis. These software are of tremendous utility

for the research community because they efficiently implement some of the validated

analyses that are used in genetics, such as performing GWAS or heritability estimation.

Yet, if you want to do some exploratory analysis, looking at new ideas, modifying the

code a little, it is practically impossible to do so. I understood that I would need some

kind of standard matrix format if I wanted to use simple code for explanatory analyses

and to develop new ideas. So, I started to develop R package bigsnpr. There is no better

way for understanding methods than to implement them. At some point, I realized that

lots of methods I was using and reimplementing for the on-disk matrix format was just

some standard statistical tools that would be useful for other fields too. So, I put all these

functions (PCA, multiple association tests, numerical summaries, matrix products, etc.)

in another R package called bigstatsr that can be used by other people outside the field of

genetics. Hopefully, this package will become useful for many people as data are getting

larger in other fields too. I have spent a lot of time documenting, testing and optimizing

the code in these two R packages. For example, you can now do an association analysis

for a continuous outcome in no time thanks to the use of some linear algebra tricks

(see the Appendix). I have also spent some time exploring some genotype datasets
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and found for example that standard software for computing PCA such as PLINK and

FastPCA sometimes are not accurate enough, i.e. that the approximation they use does

not give the same results as when using an exact PCA implementation. Moreover, I have

found that one should be extra careful about the SNPs that are used in PCA to avoid

capturing something else than population structure, such as LD structure1; I developed

the “autoSVD” procedure to detect those SNPs automatically and remove them.

Then, I developed some efficient implementation of penalized (linear and logistic)

regressions. Two efficient implementations were already available for these models, but

those implementations did not scale well with the very large datasets we have in the

field. For example, they could not be used to analyze the UK Biobank data. It is now

possible to do so with the implementation we provide in package bigstatsr. The dif-

ference in computation time resides mainly in the use of some early stopping criterion

in our implementation. We also provide a way to choose the two hyper-parameters of

elastic net regularization so that the user does not have to choose them arbitrarily or to

implement a cross-validation framework. We extensively compared the predictive per-

formance of our implementation of penalized regressions with standard methods such as

C+T, where SNP effects are learned independently before being combined using heuris-

tics. We showed that for large sample sizes, penalized regressions are able to capture

very small effects and that prediction is improved as compared to C+T. For example, we

are able to predict 43% of the variance in height, which represents almost all heritability

of height that can be captured by standard genotyping chips (Yang et al., 2010; Lello

et al., 2018).

Finally, we focused on developing a predictive method that uses summary statis-

tics. We first made it possible to derive the widely used C+T method for many hyper-

parameters, using an efficient implementation. We showed that choosing over a wider

range of hyper-parameter values as compared to the current practice of using C+T could

substantially improve predictive performance of C+T. We then proposed to stack all

those C+T predictors instead of choosing the best one. Stacking corresponds to finding

an optimal combination of different predictors in order to get higher predictive perfor-

mance than any single of these predictors. We called this method SCT, which stands for

Stacked Clumping and Thresholding. We showed that when using external summary

statistics and the UK Biobank data, we could substantially improve prediction over any

1https://privefl.github.io/bigsnpr/articles/how-to-PCA.html

https://privefl.github.io/bigsnpr/articles/how-to-PCA.html
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C+T model.

Thus, overall we developed tools to analyze large matrices, especially genotype ma-

trices, possibly in dosage format. We then proposed two methods for building polygenic

predictive models, one based on individual-level data (that could use summary statis-

tics to prioritize SNPs in the model), and one based on large summary statistics and

individual-level data. These two methods provide ones of the currently best predictive

performance for many diseases and traits.

5.2 Problem of generalization

Polygenic Risk Scores (PRS) might become a central part in precision medicine. For

now, predictive performance for most complex diseases are not good enough to be used

in clinical settings. A major concern with PRS at the moment is their problem of gen-

eralization / transferability in different populations. Indeed, most GWAS have included

European people only (Figure 5.1). In 2009, 96% of individuals included in GWAS

datasets were of European ancestry (Need and Goldstein, 2009). In 2016, still more than

80% of those individuals were of European descent, with an increase of the inclusion of

non-European participants, mostly constituted of Asian people (Popejoy and Fullerton,

2016). People from Hispanic or African ancestry are still poorly represented (Martin

et al., 2019). This poor heterogeneity in inclusion can be explained by the fact that the

more diverse are the population in the data we analyze, the more possible confounders

there are to account for in order to avoid spurious results (Popejoy and Fullerton, 2016).

This lack of heterogeneity in inclusion of diverse populations results in several prob-

lems. First, there are some SNP ascertainment bias because SNPs that are more common

are more likely to be discovered in GWAS so that associated SNPs tend to have larger

frequencies in European than in other populations, due to the winner’s curse. If alleles

have a frequency that is different between populations, using the corresponding effects

on disease naturally introduces some shift in PRS distributions for different populations.

Second, rare variants are missed in GWAS if they are specific to some population that is

not included in the association study (Martin et al., 2019). Thus, this limit the predictive

ability of PRS in different populations to the one(s) included in the GWAS. Third, it is

accepted that genotyped SNPs, or even imputed SNPs, that are discovered in GWAS

may not be true functional SNPs (fSNPs) having an effect on disease susceptibility. In-
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Figure 5.1: Proportion of GWAS participants by ancestry. Most GWAS include mainly

European people, some now include Asian people, but other ethnicities are still poorly

represented. Source: Popejoy and Fullerton (2016).

stead, GWAS are assumed to discover SNPs that tag fSNPs (tagSNPs), i.e. are correlated

with fSNPs. Yet, LD may be different between populations so that a tagSNP can have

a different correlation with the corresponding fSNP. Thus, effects of these SNPs can be

different and are often diluted toward zero for populations not included in the GWAS

(Carlson et al., 2013). In conclusion, for many reasons, magnitude and frequency of ef-

fects can vary considerably between populations, and these differences are larger when

populations are more genetically distant such as African population with either Euro-

pean or Asian populations. These differences in prediction between populations are

two-fold (Figures 5.2 and 5.3): distributions of PRS are shifted and prediction within

each distribution is also reduced (Vilhjálmsson et al., 2015; Martin et al., 2019).

Several solutions have been proposed to partially correct for the differences of pre-

diction between populations. First, Martin et al. (2017) proposed to mean-center PRS

for each population, yet this would require an accurate way to assess ancestry and would

not work for admixed people, e.g. one person with a father of African ancestry and a

mother of European ancestry (Reisberg et al., 2017). Second, it has been suggested to

include more diverse population in GWAS (Pulit et al., 2010). Indeed, new associations
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Figure 5.2: Distributions of Polygenic Risk Scores (PRS) for many populations and

phenotypes (T2D: type 2 diabetes). Source: Martin et al. (2017).

Figure 5.3: Prediction accuracy relative to European-ancestry individuals across 17

quantitative traits and 5 continental populations in the UK Biobank data (Bycroft et al.,

2018). Source: Martin et al. (2019).
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can be found if the frequency is higher in an under-represented population. It would be

also possible to fine-map fSNPs in common for multiple populations so that their effects

generalize better to any population, irrespective of LD (Carlson et al., 2013; Mägi et al.,

2017; Wojcik et al., 2018). Finally, statistical methods are being developed to use large

European GWAS in conjunction with smaller data from another population in order to

leverage both the discoveries from the large dataset and the specificities of the smaller

dataset (Márquez-Luna et al., 2017; Coram et al., 2017).

5.3 Looking for missing heritability in rare variants

“Still missing heritability”, i.e. the gap between heritability estimations from current

GWAS studies and from family studies, could reside in rare variants. Indeed, for height

and colorectal cancer, it has been shown that estimations of heritability from GWAS data

could recover almost all heritability when a large proportion of low-frequency variants

was present in the data (Yang et al., 2015; Huyghe et al., 2019; Wainschtein et al.,

2019). However, actual findings of significantly associated variants of low-frequency

are scarce. For example, a GWAS of height including more than 700K individuals found

83 associated variants with allele frequencies between 0.1% and 4.8%, with effects up

to 2 cm per allele (Marouli et al., 2017). Yet, these 83 variants together accounts for

only 1.7% of the total heritability of height. In other large studies, one for coronary

artery disease and one for type 2 diabetes, there was little evidence of low-frequency

variants with large effects (Nikpay et al., 2015; Fuchsberger et al., 2016).

Associations of rare variants with traits are difficult to find for two reasons. First,

it is very difficult to impute low-frequency variants with a good quality if using for

example a small reference panel such as the 1000 genomes (Nikpay et al., 2015). There

is now a reference panel of 32,000 individuals that is used to accurately impute variants

with allele frequencies as low as 0.1% (McCarthy et al., 2016). This large reference

panel is European specific, which means that imputing data from other ancestries is

more difficult. This is a problem because, one way to discover and accurately estimate

the effect of a rare variant is to look for it in a population in which its allele frequency

is larger (Moltke et al., 2014; Minster et al., 2016). Indeed, the power of association

studies is dependent on the variance explained by a locus and its frequency; for example,

for a disease that affects 1% of the population, we have the same power to detect a risk
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locus of 50% frequency and odds ratio of 1.1 as we do for a risk locus of 0.1% frequency

and odds ratio of 2.9 (Wray et al., 2018). Fortunately, ongoing large-scale projects, such

as the Trans-Omics for Precision Medicine (TOPMed) program, are expected to produce

reference panels of more than 100,000 individuals including diverse populations (Taliun

et al., 2019).

The second reason for which rare variant associations are difficult to find is that se-

quencing technologies are more expensive than genotyping and imputation. Currently,

studies have mostly focused on whole exome sequencing (WES) because it is cheaper

than whole genome sequencing (WGS). Indeed, the exome is where the effect sizes of

variants are expected to be larger and where discoveries are likely to be more imme-

diately actionable (Zuk et al., 2014). Yet, sample sizes of sequencing studies remain

small and special considerations and challenges arise when testing rare frequency vari-

ants from these studies (Auer and Lettre, 2015). Thus, sample size is the limiting factor

in variant discovery, not genotyping technology (Wray et al., 2018). It is probably the

limiting factor in prediction too.

5.4 Looking for missing heritability in non-additive ef-

fects

Knowledge about biological pathways and gene networks implies that epistasis (gene

interactions) might be important to consider (Hill et al., 2008). Apart from explain-

ing missing heritability, genetic interactions could also create phantom heritability, i.e.

could make current estimation of heritability upward biased (Zuk et al., 2012). There

have been some findings of interaction between loci, but mainly for autoimmune dis-

eases for which there are strong effects in regions of chromosome 6 that have an effect

on the autoimmune system (Lenz et al., 2015; Goudey et al., 2017). Yet, these interac-

tion effects explain little to phenotypic variance as compared to additive effects (Lenz

et al., 2015). In general, data and theory point to mainly additive genetic variance (Hill

et al., 2008).

Moreover, interactions are challenging to find for two reasons, and dedicated meth-

ods to epistasis detection have been implemented (Niel et al., 2015). First, it is analyt-

ically impractical to search for such interaction effects because it would require testing
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more than 100 billion pairs of variants, even for a small genotyping array. Second, be-

cause of this huge number of tests, correction for multiple testing allows the detection

of highly significant interactions only.

Finally, even if we find such interaction effects, they are unlikely to dramatically

improve risk prediction for complex diseases, but could still provide insights into their

ethiology (Aschard et al., 2012). Moreover, due to differences in effect sizes and LD

between populations, epistatic effects are even more unlikely than additive effects to

replicate to different populations (Hill et al., 2008; Visscher et al., 2017).

5.5 Integration of multiple data sources

There are many genetic data out there. Some large individual-level data such as the UK

biobank are available (Bycroft et al., 2018). When GWAS data is not publicly avail-

able, summary statistics are often publicly shared instead. Usually, predictive models

are based on either individual-level data (e.g. penalized regression) or summary statis-

tics (e.g. C+T). Building models that combine both individual-level data and summary

statistics, possibly including different populations, is necessary to increase predictive

power. We started to do this by implementing the SCT method in our latest paper,

where we combine several summary statistics based predictors using large individual-

level data. Alike with the adaptive lasso (Zou, 2006), one could also think of penalizing

SNPs differently in individual-level data methods, applying a penalization factor to each

SNP based on their significance or effect sizes in external summary statistics.

Human diseases are inherently complex and governed by the complicated interplay

of several underlying factors (Dey et al., 2013). For a trait or a disease, prediction based

on genetic data only is ultimately capped by heritability. Therefore, prediction must

integrate other types of data if we want to predict beyond the limit of heritability (Fig-

ure 5.4). For example, DNA methylation data can accurately predict age of any tissue

across the entire life course (Horvath, 2013; Horvath and Raj, 2018), gene expression

profiles enable to gain a broad picture of the genomic response to environmental pertur-

bation (Gibson, 2008) and microbiota can also be an important “environmental” factor

to take into account (Bäckhed et al., 2004). Yet, integrating variables with different

formats, types, structure, dimensionality and missing values is a challenging problem

(Dey et al., 2013). One could integrate genetic data with clinical data. For example,
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Inouye et al. (2018) designed a polygenic risk score (PRS) with higher discriminative

ability for coronary artery disease than any of 6 conventional risk factors (smoking, di-

abetes, hypertension, body mass index, high cholesterol and family history). Using this

PRS with all 6 conventional risk factors increases discriminative ability as compared to

using the PRS only or the 6 factors only. Moreover, electronic health records (EHR)

make possible to integrate large biobank datasets with large clinical, environmental and

phenotypic information (Roden and Denny, 2016).

Figure 5.4: Geographic information system of a human being. The different layers of

data available for an individual. Source: Topol (2014).

5.6 Future work

I will probably continue to work in the field of predictive human genetics. I am currently

visiting the National Center for Register-based Research (NCRR) in Aarhus, Denmark.

Researchers there are mostly epidemiologists using national registers where they have

information on all Danes over decades. Most of their work is funded to look at psychi-

atric disorders and they are now interested in how genetics influence psychiatric condi-

tions. It is a good opportunity to work on a large national biobank dataset with Bjarni

Vilhjálmsson.
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I would be interested in looking at many things. First, I think investigating which

method works best in which scenario is of great interest for the field. Many scenar-

ios could involve different sample sizes of summary statistics and individual-level data,

but also training and prediction in different populations. Such work could be useful

to make some guidelines about which method to use in which situation. For example,

individual-level data methods often work best when large individual-level data are avail-

able, but what about predicting in a different population where only smaller datasets are

available?

Second, it would be interesting to account for age in the prediction, for example

extending with Cox regression the methods I implemented. Many diseases such as

cancer, heart diseases and Alzheimer’s disease have an age component; modeling this

age component and accounting for right censoring (people who might develop disease

later) should increase predictive performance and usefulness of models.

Third, I would like to investigate more about imputation. At the moment, imputed

data is taken for granted. How to properly account for imputation accuracy in associa-

tion testing (using e.g. multiple imputation) and in predictive models?

Finally, other ideas could be to investigate how we can integrate many sources of

information such as functional annotations, looking at many phenotypes at once, or to

distinguish between two diseases with similar symptoms (e.g. diabetes) using polygenic

risk scores.
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Appendix A

Code optimization based on linear

algebra

A.1 Lightning fast multiple association testing

.

Here, I describe how to quickly test many variables for an association with a contin-

uous outcome of interest. For example, let us make a Genome-Wide Association Study

(GWAS) of height, i.e. we want to determine which genome variants are associated with

height.

The model we want to test is

y = βs+Xγ + ǫ ,

where s is one variant (we want to do this for each variant, separately), X are some co-

variates to adjust for some possible confounding factors (a matrix of N samples over K

columns, including a column of 1s to account for an intercept in the model). We are only

interested in estimating β̂ and computing a p-value corresponding to the significance of

the alternative hypothesis that β 6= 0.

Sikorska et al. (2013) show that we can rewrite this problem as

y∗ = βs∗ + ǫ ,
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where y∗ = y −X(XTX)−1XTy and s∗ = s −X(XTX)−1XT s. Thus, this becomes

a simple linear problem which is easy and fast to solve. We have

β̂ =
s∗Ty∗

s∗T s∗
,

v̂ar(β̂) =
(y∗ − β̂s∗)T (y∗ − β̂s∗)

(N −K − 1) s∗T s∗
,

β̂√
v̂ar(β̂)

∼ T (N −K − 1) .

We extend this idea further by computing the singular value decomposition X =

U∆V T (N×K matrix). As N ≫ K, we have UTU = IK , V TV = IK and V V T = IK .

Thus X(XTX)−1XT = U∆V T (V∆UTU∆V T )−1V∆UT = U∆V T (V∆2V T )−1V∆UT =

U∆V T (V∆−2V T )V∆UT = UUT . Then, we can simplify s∗Ty∗ = (s− UUT s)Ty∗ =

sTy∗ − sT UUTy∗︸ ︷︷ ︸
0

= sTy∗, s∗T s∗ = (s − UUT s)T (s − UUT s) = sT s − 2sTUUT s +

sTUUTUUT s = sT s− sTUUT s = sT s− zT z, where z = UT s, and (y∗ − β̂s∗)T (y∗ −

β̂s∗) = y∗Ty∗ − 2β̂s∗Ty∗ + β̂2s∗T s∗ = y∗Ty∗ − 2β̂s∗Ty∗ + β̂s∗Ty∗ = y∗Ty∗ − β̂sTy∗.

So, we only need to compute

z = UT s ,

β̂num = sTy∗ ,

β̂deno = sT s− zT z ,

β̂ = β̂num/β̂deno ,

v̂ar(β̂) =
y∗Ty∗ − β̂ β̂num

(N −K − 1) β̂deno

.

Since U and y∗ are computed only once for all variants, you can apply those for-

mulas to compute these statistics for 1,000,000 variants and N=500,000 samples and

K=11 covariates in one hour only (Privé et al., 2018). This is implemented in function

big_univLinReg() of package bigstatsr.
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A.2 Implicit scaling of a matrix

The matrix formulation of column scaling is X̃ = CnXS, where Cn = In − 1
n
1n1

T
n is

the centering matrix1 and S is a diagonal matrix with the scaling coefficients (typically,

Sj,j = 1/sdj).

In algorithms such as Principal Component Analysis (PCA) or multiple linear re-

gression, we must compute e.g. X̃V and X̃T X̃ , where V is another matrix. We can

show how to compute these products without explicitly scaling the matrix X . This is re-

ally useful when working with on-disk matrices such as in R package bigstatsr, because

you do not need to compute (and store) an intermediate scaled matrix.

For example, for computing products, X̃V = CnXSV = Cn(X(SV )). So, you can

compute X̃V without explicitly scaling X . Another example, for computing self cross-

products, X̃T X̃ = (CnXS)T · CnXS = STXTCnXS (C2
n = Cn is intuitive because

centering an already centered matrix does not change it). Then, X̃T X̃ = STXT (In −
1
n
1n1

T
n )XS = ST (XTX − XT ( 1

n
1n1

T
n )X)S = ST (XTX − 1

n
sX ∗ sTX)S where sX is

the vector of column sums of X.

This implicit scaling can be quite useful if you manipulate very large matrices be-

cause you are not copying the matrix nor making useless computation. For example,

this can be used to compute a correlation matrix 20 times as fast as base R function

cor()2.

1https://en.wikipedia.org/wiki/Centering_matrix
2https://privefl.github.io/blog/(Linear-Algebra)

-Do-not-scale-your-matrix/

https://en.wikipedia.org/wiki/Centering_matrix
https://privefl.github.io/blog/(Linear-Algebra)-Do-not-scale-your-matrix/
https://privefl.github.io/blog/(Linear-Algebra)-Do-not-scale-your-matrix/



	Introduction
	Context
	Different types of diseases and mutations
	Genome-Wide Association Studies (GWAS)
	GWAS data

	From GWAS to Polygenic Risk Scores (PRS)
	The ``Clumping + Thresholding'' approach for computing PRS
	PRS for epidemiology
	The differing goals of association testing and risk prediction

	Polygenic prediction
	Heritability and missing heritability
	Methods for polygenic prediction
	Objective and main difficulties of the thesis


	R packages for analyzing genome-wide data
	Summary of the article
	Introduction
	Methods
	Results
	Discussion

	Article 1 and supplementary materials

	Efficient penalized regression for PRS
	Summary of the article
	Introduction
	Methods
	Results
	Discussion

	Article 2 and supplementary materials

	Making the most of Clumping and Thresholding
	Summary of the article
	Introduction
	Methods
	Results
	Discussion

	Article 3 and supplementary materials

	Conclusion and Discussion
	Summary of my work
	Problem of generalization
	Looking for missing heritability in rare variants
	Looking for missing heritability in non-additive effects
	Integration of multiple data sources
	Future work

	Bibliography
	Code optimization based on linear algebra
	Lightning fast multiple association testing
	Implicit scaling of a matrix


