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Abstract

In this dissertation, we offer three new forensics imagery methods to detect splicing
in digital images by exploiting image noise statistics. To do so, we introduce
a new tool, the noise density histogram, and its derivative, the noise density
contribution histogram. Our methods allow splicing detection on both raw and
JPEG images. Although the use of noise discrepancies to detect splicing has already
been done multiple times, most existing methods tend to perform poorly on the
current generation of high quality images, with high resolution and low noise. The
effectiveness of our approaches are demonstrated over a large set of such images, with
randomly-generated splicings. We also present a detailed analysis of the evolution of
the noise in a digital camera, and how it affects various existing forensics approaches.
In a final part, we use the tool we developed in a counter-forensics approach, in
order to hide the trace left by splicing on the image noise.
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A picture is worth a thousand words.

— Arthur Brisbane [1]

1
Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Motivation

The first digital camera, the MegaVision Tessera, was commercialized in 1987. Since

then, the world of digital photography has been in a state of constant expansion

and improvement: longer battery life, increased resolution, automated focusing and

white balance, various modes for every kind of situation, etc. Every smartphone

now includes a digital camera. As a consequence, the world has moved away from

film-based pictures and wholly adopted digital images. However, this rising trend

was accompanied by a darker side: image falsification.

Photography falsification is older than the digital age: for example, censorship or

alteration of images was a widespread practice in the USSR [2], as shown in Fig. 1.1.

Those practices, however, required a trained hand a special equipment. With digital

images,all that is needed is a computer and an image-processing software, the latest

being commercially available, or even free. As such, almost anyone can alter a

digital photograph. In order to combat this new form of misinformation, the field

1
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Figure 1.1: Successive alterations of a portrait of Soviet leadership as members fell out
of favor with Stalin.

of digital forensic developed: a way to detect, through various attributes of digital

images, all kind of falsifications. The work presented here aims to provide new

tools to detect a particular type of falsification called splicing, using information

provided by the image noise. Splicing, also called “exogenous insertion”, consists in

inserting part of an image A into another image B, as shown in Fig. 1.2.
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Figure 1.2: Contrarily to what this image could imply, the author is not Batman.

1.2 Contribution

The central contribution of this dissertation is three new tools to detect splicing

in digital images. It also includes an in-depth analysis of image noise and counter-

forensics method designed to hide falsifications.

Chapter 3 offers a detailed study of noise in digital images, from its sources to

the final image. In a first part, the effect of the different steps of the camera

internal processing (demosaicking, internal denoising, white balance, contrast,

luminosity, compression, etc) is analyzed, with a comparison of the various possible

options. Then, we study the impact of different “classical” image processing methods
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(resampling, additional compression, rotation, etc) on the image noise. Finally, the

last section looks at the effect of strong falsifications on the image, as well as the

robustness of various forensic approaches to added noise.

Chapter 4.2 proposes a first approach of splicing detection, applied specifically to

raw images, which are the ones we get directly out of the sensor. This method is

based on the fact that the raw format contains Poisson-Gaussian noise, contrarily to

the noise in a JPEG image which is usually considered to be a white gaussian noise.

Additionally, the raw images have the advantage of being free of any processing, and

as such they have a “pure” noise. Based on these assumptions, the proposed method

divides the image in tiles and estimates the noise in each one in order to identify

potential anomalies, by clustering the tiles according to their noise characteristics.

Chapter 4.3 introduces the basis of the core tool developed in this thesis, the noise

density contribution histogram, along with a first application. As in the previous

chapter, this application will be used on raw images. The proposed tool is based

on building the noise density function of the image (specifically, a representation

of it as an histogram). If we assume that a spliced element has a different noise

compared to the rest of the image, then it will contribute to certain specific areas

of the noise density function. By observing which pixel clusters contribute to those

specific areas, we can isolate the spliced element from the original image.

Chapter 4.4 extends and polish the method presented in the previous chapter, by

applying it to the JPEG format. In order to adapt to the limitations imposed to the

accuracy of the noise in JPEG, we transform our original contribution histogram,

sparse in nature, in a dense version. The base form of this histogram is then used

to classify our tiles in two categories.

Finally, Chapter 5 offers an application of our tool to the domain of counter-forensics,

which is the field dedicated to hiding alterations in an image. By knowing the

noise characteristics of an image, we can reproduce them on the spliced element in

order to make its noise virtually identical to the one in the rest of the image. An

alternative application is proposed in making synthetic images more realistic.



Ipse se nihil scire id unum sciat

I know one thing; that I know nothing.

— Cicero’s Academica, Book I, section 16
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Digital Image Forensics Overview

Contents
2.1 Distinction Between Forgery And Enhancement . . . . 5
2.2 Main Forgeries And Counters . . . . . . . . . . . . . . . 6
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2.1 Distinction Between Forgery And Enhance-
ment

It is rather normal, nowadays, to perform minor aesthetic enhancement on an image

to improve its overall visual quality. The development of things like Snapchat or

Instagram filters, to apply various kinds of effects on a picture is a good example

of that, like in Fig. 2.1. However, those enhancements still alter the image and as

such, it is important to know where the distinction is between image improvement

and image forgery [3]. First of all, most “radical” modifications, such as splicing

or cloning a large area, can be immediately considered as forgery. The line blurs

5
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Figure 2.1: A purely aesthetic image modification. Although it is possible that the
subject eyes were originally red, it is unlikely.

when it comes to operations like contrast or chroma change. Although they are

usually seen as mere improvement tools, they can still be used in order to obfuscate

or erase elements of an image. For example, increasing the overall luminosity of

an image to bring certain parts to saturation can effectively hide previously visible

elements, an example of which can be seen in Fig. 2.2.

In the same way, changing the chroma key in a specific region of an image can

be used to make an item or person less distinguishable from the rest of the image.

As such, in those cases, the main element differentiating forgery from enhancement

is mainly intent; something which, unfortunately, can not be judged simply by

analyzing the image.

2.2 Main Forgeries And Counters

With the distinction between forgery and enhancement established, we will examine

the two main types of forgeries, colloquially known as copy-rotate-move and splicing,

and the methods that have been developed to counter them. We will also look
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Figure 2.2: An example of “soft” forgery. The only difference between the two images
is brightness and contrast, and yet some critical piece of information has disappeared.

at format-based detection methods, which exploits specificities of the files format

(usually JPEG) to expose forgeries.

2.2.1 Copy-Rotate-Move Detection

The copy-rotate-move forgery, formally endogenous insertion, consists in cloning -

and potentially rotating or resizing - part of an image to insert in the same image.

This method is commonly used to increase the size of a set of elements, like a crowd

or, more recently, a missile battery test [4], as shown in Fig. 2.3.

Most copy-move forgery detection algorithms (CMFD) follow one of two ap-

proaches: they’re either keypoint-based or block-based. Keypoint methods have

mainly been exploiting variants of the SIFT (Scale-Invariant Feature Transform)

algorithm since its proposed use by Huang et al. [5], with improvements proposed

over the years to increase robustness against compounded alterations. SIFT identifies

an object by associating it with a feature vector, assigning it keypoints and distance
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Figure 2.3: An example of copy-rotate-move forgery. The orange zones are original,
the red ones are duplicated.

between those keypoints. From there, it is possible to search the image for the same

feature vector, or one which has undergone geometric transformations (rotation,
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resizing). In other words, SIFT lead to a set of point correspondences from the

image to itself, and these points are clustered in the transfomation space (i.e. the

points that are linked by the most encountered transformation). For example,

Pan and Lyu [6] approach has been optimized to better handle rotations and

mirroring, with results shown in Fig. 2.4.

Block-based approaches tend to vary more in the elements they’re using: Bayram

et al. [7] do a bit-wise block analysis, called a Binary Similarity Measure. This

method considers each bit plane of an image as its own binary pictures, and analyzes

correlations (or lack thereof) to highlight the forgery. Kang and Wei [8] use a singular

value decomposition of the blocks to extract features of interest, as in a keypoint-

based approach, and Ryu et al [9] exploit the Zernike moment to locate similarities.

The Zernike moment is an invariant function that can be used to extract features

from the image, and is robust to various post-forgery alterations, such as added

noise. The features of each block are extracted, then sorted lexicographically. Two

blocks are considered forged if their Euclidean distance is too small. An example of

their results is shown in Fig. 2.5.

2.2.2 Splicing Detection

The splicing forgery, formally exogenous insertion, consists in taking an element of

an image and inserting it in a different image. It can be used in much the same

ways as a copy-move operation, but also to completely alter the information of

an image [10], with an example in Fig. 2.6.

The methods used to detect splicing cover a wide specter, exploiting different

elements of the image, but can be divided into a few broad families. The first one

is format-dependent, mainly exploiting the particularities of the JPEG format: for

example, the JPEG quantization analysis by Popescu et al. [11], He et al. [12], and

Lin et al [13] tries to detect different rates of compression throughout the image.

Those methods decompose the image into its DCT components and, combined with

its quantization table, build histograms of the main frequencies on block version
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Figure 2.4: Pan and Lyu [6] CRM detection results. The colored squares on the second
image indicate the matched areas.
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Figure 2.5: Ryu et al [9] CRM detection results. The bottom plane is a duplication,
and the suspect areas are highlighted in white in the second image.

Figure 2.6: An example of splicing forgery. The two top images have been merged to
produce the bottom one, which has a very different feeling.

of the base image. This gives a probabilistic result, with possibly tampered or

genuine regions. Lin et al. results are shown in Fig.2.7.

A second category is based on the use of the Color Filter Array (CFA), whose

functioning is detailed in Section 3.3.1.2. A representation of an unaltered CFA



12 2.2. Main Forgeries And Counters

Figure 2.7: Lin et al. [13] results. The original image is on the right. The middle image
shows the areas where the algorithm has found a probable alteration.

is presented in Fig. 2.8. Such methods are presented by Popescu and Farid [14],

Gallagher and Chen [15], or Ferrara et al. [16]. These three methods use irregularities

in the expected CFA interpolation pattern to highlight suspicious areas in the image.

Ferrara et al. results are shown in Fig. 2.9.

Figure 2.8: An example of CFA from an unaltered image. The grid pattern on the
right image shows no obvious disruption. Image from [17].

A third approach is based on machine learning and statistical analysis, such as

presented by Bayram et al. [18], Fu et al. [19], or Han et al.[20]. Those methods use
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Figure 2.9: Ferrara et al. [16] results. The original image is on the left. The right image
shows the areas where the algorithm has found a probable alteration. We can notice that
the sky is considered as suspect as the spliced element. This is due to the difficulty to get
a correct CFA interpolation pattern in bright, untextured areas.

support vector machines (SVM), coupled with large image databases, to extract of

set of statistical values and characteristics that are specific to altered or genuine

images. Although those methods tend to be extremely efficient, they require an

important number of images to extract the desired characteristics. The fourth

category exploits geometrical and lighting informations, as shown by Johnson and

Farid [21, 22] or Chennamma and Rangarajan [23]. Those approaches tend to

slightly underperform compared to other categories, due to the importance of

context and semantic clues in the analysis of geometry and lighting. Johnson and

Farid results are shown in Fig.2.10.

2.2.3 Format-based detection

Some methods can be to detect both types of forgeries: the double JPEG detection

method introduced by Popescu and Farid [11] is based on an effect of the quantization

step of the JPEG compression. The process of compressing twice in JPEG changes

the quantization histogram in an easily recognizable way as shown in Fig. 2.11.

Although this method is very hard to cheat, it does not indicate a falsification per

se, merely that the image has been saved twice as a JPEG.

The JPEG Ghost method presented by Farid [24] is an extension of the double

JPEG that handle local properties of the image. It searches for differences in JPEG

quality throughout the image, “quality” being the level of quantization (and as such

compression). An example of their results is shown in Fig. 2.12.
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Figure 2.10: Johnson and Farid [21] results. The images on the right show that the
eyes of the people in the image do not all show the same light reflection (notably the
third one), which indicates a falsification.

Some histogram-based methods are used to detect global pixel intensity modifi-

cations, typically from Look-up tables (LUT). Stamm et al. [25] detects the residual

peaks of the image histogram resulting from such transformation, by analysing the

frequency spectrum of the histogram. Finally, some methods detect very specific

alterations: Farid [24] offers an approach to detect resampling (resizing) in an

image, by looking for the periodic correlation between pixels introduced by the

resampling process using an EM approach. The result image shows a very distinct

grid-like pattern, as shown in Fig. 2.13

2.3 Splicing Detection State of the art

The methods presented up until now have been general approaches to falsification

detection. In this section, we will concentrate on methods which exploit the image

noise in order to detect splicing. As discussed in Chapter 3, the noise in a digital

image carries a lot of information. As such, numerous methods have been developed

to detect splicing by exploiting different aspects of the image noise. Indeed, it

can be safely assumed that the overall noise will be consistent inside of a single
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Figure 2.11: Popescu and Farid [11] results. The top image is a single-saved JPEG,
the bottom is double-saved. The difference is very easy to detect automatically.

image, and is dependent on the camera model, the lighting conditions, shutter

speed, etc. It can be induced that the noise in two different images will tend to

differ somewhat, and as such a variation of noise parameters in a specific zone of

a single image is a strong indicator of alteration or splicing.

2.3.1 PRNU and camera fingerprint

The PRNU (Photon Response Non Uniformity) can be considered as the “fingerprint”

of a digital camera. As explained in Sec. 3.2.1, the PRNU is caused by individual

defects in the wafers of the camera sensor. As such, they produce a specific noise

pattern on every image taken by a single camera. An example is shown in Fig. 2.14

(averaging many denoised images from the same camera can be enough to estimate
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Figure 2.12: Farid [24] results. The result images show the level of quantization in the
image though different levels of compression, highlighting the spliced element.

the PRNU). Several methods have been developped to exploit the PRNU and

the camera fingerprint: Lukáš et al. [54] propose to check an image against the

reference pattern of the camera that took it. Although this method is extremely

efficient, with results shown in Fig. 2.15, it requires to have the camera that took

the picture on hand, or several pictures taken by this camera. Although there are

some contexts where this prerequisite is a relatively same assumption (a court of
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Figure 2.13: Farid [24] results. The second image size has been augmented by 5%, and
we can see the grid pattern on its result image.

law, for example), it cannot be truly considered as a blind approach. Chierchia

et al. [55] propose a more advanced method which can extract the PRNU from

a single image, and verify its statistical consistency with a block-based approach.

This allows to highlight inconsistent areas and probable forgeries. Although this

method seems fairly reliable, the PRNU approaches overall are subject to several

issues: first, the PRNU is a rather weak noise compared to the other noises in an

image (most notably the Gaussian noise). Second, the PRNU noise is increasingly

getting removed by the camera itself using internal software [56] or in factory.
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(a) Base Image. (b) Image with the PRNU noise amplified.

Figure 2.14: Example of PRNU in a digital image. The second image PRNU noise has
been amplified after being extracted from several images from the same camera. Image
from H.G. Dietz [57]

Figure 2.15: Lukáš et al. [54] results. The pedestrian in the first image is a splicing,
and is detected in the second image.

2.3.2 Wavelet-based methods

Wavelets are a very powerful too when it comes to noise analysis. Indeed, wavelet

decomposition is frequently used in denoising methods since a noise image is usually

rather easy to obtain from one of the decomposition sub-bands. Consequently,

methods have developed to exploit this tool in digital forensics. Chen et al. [58] use

the moment and phase information contained in the wavelets to create a predictive

model of what each pixel value should be according to the values of its neighbours.

They then classify their results using a trained SVM, with final detection rates

higher than 75%. In comparison, Mahdian and Saic [41] perform a block based

decomposition of the HH1 sub-band and estimate the standard noise deviation
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in each block. The block are then merged according to their estimated noise, by

neighbourhood. This creates a partitioning of the image based on estimated noise

value, with the spliced element separated from the rest of the image. Although

their experiments only use natural images with noise added in specific areas, and

not true splicings, the application to noise-based splicing detection is clear. An

example of their results is shown in Fig. 2.16.

Figure 2.16: Mahdian and Saic [41] results. The top right image shows the noise-
corrupted area, and the bottom image is the detected area.

2.3.3 DCT-based methods

The Discrete Cosine Transform (DCT) decomposition is also useful to access an

image noise characteristics. The high-frequency coefficients of the DCT of an image

are more often than not principal components in the image noise, and their analysis

can yield significant results. Pan et al. [42] use a statistical measure called the

kurtosis, obtained with the variance and fourth order moment of a random variable,

here the noise. They estimate that in a given frequency band, the kurtosis value
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of a natural image tend to concentrate around a single value. They compute this

value over the whole image, and then repeat the computation at the local scale.

This allows them to look for areas where the noise seems significantly different

compared to the rest of the image, with results shown in Fig. 2.17. However,

their results show that their rate of success is significant only when the noise

variance difference between the original image and the spliced element is over 10db.

He et al. [59] compute the noise variance based on the DCT coefficient, but they

consider the problem as a L1 loss optimization problem, which is linear and therefore

easier and faster to solve. This accelerated method allows them to obtain almost

pixel-wise result images of the estimated kurtosis and noise variance. Those result

images are then clustered using a k-means algorithm to get the final result image,

which is shown in Fig. 2.18. He et al. [60] use an approach that exploits both

the DCT and the DWT decompositions. However, they use those decompositions

to extract Markov features that are analyzed by a SVM. This method has the

advantage of using a massive amount of features to distinguish between forged and

natural images, thanks to the double source of DCT and DWT transforms, and

the multiresolution nature of the wavelets. In order to keep the computational

time reasonable, they use a slightly altered SVM called SVM-RFE (support vector

machine recursive feature elimination) to reduce the final dimensionality of the

feature vector used by the machine. Their approach gives them an accuracy of

around 93% on the Columbia dataset [61].
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Figure 2.17: Pan et al. [42] results. The right column corresponds to the computed
variance. We can note that the top result shows the spliced element in black, because it
has a lower noise compared to the original image.
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Figure 2.18: He et al. [59] results. The right column corresponds to the final result
image obtained after the clustering.



One person’s data is another person’s noise.

— K.C. Cole

3
Noise Study

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Digital Image Noise . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Noise Sources . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Noise Model . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.3 Noise Estimation and Denoising . . . . . . . . . . . . . 26

3.3 Noise Alterations Caused by Image Processing . . . . 28
3.3.1 Noise and Camera Pipeline . . . . . . . . . . . . . . . . 28
3.3.2 “Legal” Image Enhancements . . . . . . . . . . . . . . . 31
3.3.3 Noise and Strong Image Forgeries . . . . . . . . . . . . . 32

3.4 Noise and Forensics Detection . . . . . . . . . . . . . . . 33
3.4.1 Noise Inconsistencies . . . . . . . . . . . . . . . . . . . . 33
3.4.2 The device sensor fingerprint . . . . . . . . . . . . . . . 34
3.4.3 Computer Graphics . . . . . . . . . . . . . . . . . . . . 35
3.4.4 Color forgery . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Adding Artificial Noise . . . . . . . . . . . . . . . . . . . 35
3.5.1 Artificial Images . . . . . . . . . . . . . . . . . . . . . . 36
3.5.2 Natural Images . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Noise and Anti-Forensics . . . . . . . . . . . . . . . . . . 36
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Introduction

From the film grain of analogue cameras to the sensor noise of digital cameras,

image noise has always been a concern in the history of image acquisition. Indeed,
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noise is an unwanted artefact that appears during the image capture process and

can take various forms depending on the camera model and the lighting conditions

during the image acquisition. For aesthetic reasons or for computer analysis clues,

many studies have been concerned with suppressing this noise from the “original”

signal. This interest is still an active research topic, particularly considering the

increasing number of smartphones equipped with low quality sensors.

Since the noise problem is far from solved, some digital image forensics methods

attempt to take advantage of this alteration of the signal to detect image forgeries.

Some methods focus on the detection of local noise inconsistencies when some others

attempt to identify the noise fingerprint of digital cameras.

The purpose of this chapter is to outline the alterations of noise characteristics

through the camera pipeline and the usual post-processing, in order to understand

what kind of noise one can expect for image forensics purposes. The content of

this chapter was first published at the International Workshop on Digital-forensics

and Watermarking 2015 and won the best paper award. The first focus is on

digital image noise characterisation and estimation. The next part deals with noise

alteration during the image acquisition and processing pipeline. We distinguish the

processing inherent to the camera pipeline from the usual post processing available

on many software packages. Finally, we present some image forensics methods that

fail when the image is corrupted with artificial noise.

3.2 Digital Image Noise

Noise in digital images can come from various sources. Some are physical, linked to

the nature of light and to optical artifacts, and some others are created during the

conversion from electrical signal to digital data. As noise degrades the quality of

an image, various models have been investigated to modelize the image noise for

subsequent reduction or removal, at various steps of the image acquisition process.
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3.2.1 Noise Sources

The main sources of noise can be divided into two main categories: the physical

noise, linked to physics constraints like the corpuscular nature of light, and the

hardware noise, linked to mechanical issues in the camera. Physical noise notably

includes dark shot noise and photon shot noise[26]. The dark shot noise is created

by electronic fluctuations caused by an accumulation of heat-generated electrons

in the sensor. It is related to thermal noise, and can be reduced by cooling down

the sensor. The photon shot noise, also called Poisson noise, is the one caused by

the corpuscular nature of light: as photons arrive irregularly on the photosites, two

adjacent pixels supposed to have a similar value can end up with different photon

counts. As the name indicates, the photons follow a Poisson distribution. Its effect

decreases proportionally to exposure time.

The hardware noise includes Fixed Pattern Noise (FPN), Photon Response Non

Uniformity (PRNU) and quantification noise. PRNU and FPN are caused by

imperfections in sensors. For the PRNU, the cause is mainly the inhomogeneity of

silicon wafers and light variations in which individual sensor pixels convert light

to electrical signals. It is most visible in pictures with a long exposure time and

does not follow any particular statistical law. As for the FPN, it is caused by dark

currents. Like photon shot noise, FPN tends to be reduced in long exposure images.

Both of those effects increase with light intensity. While the FPN can be removed

by substracting the dark frame, the PRNU is non-linear and as such is very hard

to remove. Quantification noise is caused by the analogic-numeric converter. It is

hard to quantify, because the process is non-linear, though there are some accepted

models. More advanced analysis can be found in [27, 28].

3.2.2 Noise Model

In the literature, the overall noise produced by a digital sensor is usually considered

as a stationary white additive Gaussian noise. In [29], Faraji et al. justify the

use of the Gaussian model for a specific interval of light intensity. However, this

approach tends to overlook several noise components, even if we consider it in a
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global perspective. Jezierska et al.[30] present a more robust model which also

considers a Poisson component. Both of those models take a high-level approach,

trying to offer a simplified overall model. In [31], Irie et al. present another approach,

which consists in modelizing the noise step by step to get to a final formula. While

this approach gives extremely precise results, it requires some specific data, such

as the gain parameter for digital image enhancement, and thus cannot be used for

blind modeling.

In the following parts of this section, we adopt the Poisson-Gauss model from [30].

This model is applied to all the pixel s of the image with :

Is = αQs +Ns (3.1)

where Qs is analogous to a Poisson distribution P(us) of the “clean” signal us
and α ∈ R is a scaling parameter corresponding to the strength of the Poisson

component in the noise. Ns is analogous to a Normal distribution N (c, σ2) with

mean c ∈ R and standard deviation σ > 0.

3.2.3 Noise Estimation and Denoising

Image denoising is a very active research field in the signal and image processing

community. However, most existing denoising methods require noise parameters

estimation before denoising. Hence, some noise parameters estimation studies have

also been proposed. For accuracy purposes, the following overview presents the

methods that can handle both Gaussian and Poisson noise.

Foi et al. [32] present such a method that identifies the Gaussian and the Poisson

noise. However, this method is subject to an homogeneous image region search

that discards a large part of the pixels of a natural image. Thus it may sometimes

fail on small regions of the image where homogeneous parts are too small to be

considered. Jezierska et al. [30] distinguish pixels that are more subject to Gaussian

or Poisson noise from an iterative Expectation-Maximization process. Nevertheless,

this method is extremely slow, and thus is impracticable for regular images. Colom

and Buades [33] present a PCA noise decomposition approach which gets fast

results and is efficient on post-CFA images.
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It is important to note that the main purpose of noise estimators is to get a

good noise estimation in order to denoise, but not really to get an accurate noise

estimation. Thus, a possible approach for estimating the image noise may consist

of first using one of the previously mentioned methods to roughly estimate the

image noise, then to denoise the image and then subtracting the result from the

original noised image. Among the large variety of denoising methods, the Non-Local

Means, proposed by Buades et al. [34], performs well. However our tests show

that the method lacks accuracy in highly textured zones. Moreover, this method

only denoises the Gaussian noise component. Jezierska et al. [35] follows their

previous work [30] and still suffers from time computation issue. Dabov et al. [36]

introduce the so-called BM3D algorithm that performs a 3D collaborative filtering.

This technique performs high-quality denoising for both homogeneous and textured

regions, and denoises both the Gaussian and Poisson components.

For our work, the noise estimation follows the latter approach and the noise

estimation is computed from the provided noise image. The Poisson and Gaussian

noise parameters are estimated from the difference image between the denoised

image by BM3D and the original noised image. We first divide the pixel luminance

range into n equal intervals Ii, i ∈ [1, n]. The pixels of the denoised image with

intensity in Ii are grouped together to compute a variance σi of these pixels in the

noise image and a mean value mi in the denoised image. As specified by [32], the

noise that appear in the lower and higher pixel intensities is not reliable. Thus, these

pixels are discarded from the noise estimation process. The plot of the variance as

a function of the mean gives a line which slope corresponds to the Poisson noise

parameters and the y-intercept corresponds to the Gaussian noise component. An

example of this noise estimation is depicted in Figure 3.1. The intervals Ii are

referred to as pixel groups in the following Figures of the section. In the case of

a pure Gaussian noise, this line would be horizontal.
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Figure 3.1: Pixel group variances according to the group mean. Here, the (first) green
channel of the raw image. This image does not use the full intensity range.

3.3 Noise Alterations Caused by Image Process-
ing

3.3.1 Noise and Camera Pipeline

The camera pipeline often differs from one camera to the next, according to the

sensor quality and the camera brand. Differences occur according to the processing

steps and their ordering, however most pipelines include similar steps. A good

description of these steps can be found in [37, chapters 1 and 3]. In this section, we

focus on the processings that affect the noise, and show their impact on a raw image.

The tests have been implemented using LibRaw [38] on a set of 15 raw images

from various cameras. For clarity purposes, we selected one image (Figure 3.2)

of the set with representative results for the figures.

3.3.1.1 Noise Reduction

It is generally preferable to reduce noise as early as possible in the chain, before signal

amplifier operations (notably color correction, gamma correction, edge enhancement

and color filter array demosaicking). Some standard denoising methods employ

wavelet denoising or Fake Before demosaicking De-noising (FBDD) on each of the

four channels (R, G1, B, G2). Figure 3.3 shows how a light and a full FBDD

affect the image noise.
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Figure 3.2: Input image used for the curves computation. Courtesy of Michel Couprie.
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Figure 3.3: Comparison of various denoising methods on raw images. For each image,
color filter array demosaicking was performed after the denoising step.
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3.3.1.2 Color Filter Array

The Color Filter Array (CFA) allows a single color to be acquired at each pixel.

This means that the camera must interpolate the missing two color values at each

pixel. This estimation process is known as demosaicking, and modifies the noise

properties that could be found on a raw image. Many demosaicking methods also

include edge detection or denoising, like Paliy et al. [39]. Therefore, the CFA can

have a strong effect on the noise structure, as shown in Figure 3.4, using adaptive

homogeneity-directed (AHD) interpolation algorithms of dcraw.
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Figure 3.4: This Figure depicts the effect of gamma correction, White Balance and
CFA demosaicking on the raw channels of the raw image. The combinaison of these 3
steps has a strong effect on the image noise.

3.3.1.3 White Balance and contrast

White Balance (WB) as well as a contrast operation is just a scaling of all the

values of a channel. Since the scaling of a Poisson Gaussian noise remains a Poisson

Gaussian noise, the only effect of a WB or a contrast is to enhance or decrease the

noise level, however the noise remains present with similar variations.
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3.3.1.4 Bit Depth

The conversion for raw depth, usually from 10 bits to 14 bits, to the 8 bits of the

usual image file format is a compression that can have varying effects. Intuitively,

we could expect noise levels to be reduced. However, we typically observed that the

noise was either at the same level, or even higher, after quantification. There are

several possible explanations for this phenomenon: first, if the standard deviation

is close enough to the conversion quantification step, results can be unpredictable.

Second, the quantization actually removes most of the low standard deviation noise,

which represents most of the noised pixels, and only leaves the noised pixels with high

variations. As a consequence, the calculated standard deviation is much higher, even

though the image may look less noisy. This phenomenon can be observed in Fig 3.4.

3.3.1.5 JPEG Compression

JPEG is a lossy compression method with the lossy part predominantly in the

high frequencies. Hence, it is not surprising that JPEG compression strongly affect

the noise, as depicted in Figure 3.5. However, our tests show that the global

shape of the noise is conserved.

3.3.2 “Legal” Image Enhancements

This section presents some usual image filters commonly used to enhance the visual

image quality. These processes usually do not involve image forgery. The tests were

performed on 8 bits digital images extracted from raw images without a denoising

process or lossy compression, i.e. they still contain noise.

3.3.2.1 Image Interpolation

Image interpolation usually results from image resize, which is one of the most

common image processing operation. Image interpolation can also occur for many

other reasons, such as image rotation, image perspective transformations (e.g.

stereoscopic rectification [40]), radial distortion and chromatic aberration correction,

etc. The tests have been conducted with bilinear, bicubic, Lanczo and “area”

interpolations for both decimation and zoom. The effect on noise is variable
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Figure 3.5: JPEG compression effect on noise. The bold line is the uncompressed 8
bits image noise and the other curves correspond to the noise after a compression of 95,
80, 70 and 50.

according to the interpolation method. The noise is always decreased but the global

noise shape is globally conserved, as shown on Fig. 3.6.

3.3.2.2 Others

We tested some others images transformations with potential effects on images noise,

without significant results. The image saturation process, where colors channels are

be mixed together, does not significantly alter the noise. Brightness transformation

will just translate the noise to higher pixel intensity levels. Contrast will increase

or decrease the noise, but the noise shape remains the same. Image crop will just

limit the image surface used for the noise estimation.

3.3.3 Noise and Strong Image Forgeries

This section aims at comparing image noise characteristics after a standard “legal”

image enhancement and after a stronger image forgery. The questions are how far

the transformed images are from the original in term of noise, and if the noise of



3. Noise Study 33

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

0.0022

0 0.2 0.4 0.6 0.8 1

p
ix

el
 g

ro
u
p
 v

ar
ia

n
ce

pixel group mean

Interpolation denoising

8 bit

radial distorsion

decimation area

decimation bilinear

decimation bicubic

decimation lanczo

zoom bilinear

Figure 3.6: Interpolation effect on the image noise.

a strong forgery still makes sens to study. In addition, we denoise the strongly

falsified image and renoised it with a light artificial noise.

Figure 3.7 illustrates one of these experiments with the original image, this image

with standard image processing (like non-linear histogram manipulations) and the

initial image with strong forgeries. Figure 3.8 shows that both soft and strong image

forgeries significantly impact the noise. More important, this figure demonstrates

how an image with artificial noise may exhibit statistics similar to the initial image.

3.4 Noise and Forensics Detection

This section outlines some digital forensic methods based on noise analysis.

3.4.1 Noise Inconsistencies

Mahdian and Saic [41] present a blind method to detect splicing from an image to

the other by detecting the noise inconsistencies in the falsified image. The authors

first perform a one-level wavelet analysis of the image and then divide the image into

a grid to estimate the noise block per block. The authors use white Gaussian noise

model. Finally, they merge blocks with similar noise estimation and generate a set
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(a) Input image. (b) image with “legal” modifications.

(c) image with strong forgery and virtual noise.

Figure 3.7: 4.2(a): The input image used for the tests. 3.7(b): The input image with
some “legal” transformations such resize, color enhancement, contrast, ... 3.7(c) Input
image with a strong forgery. This image has been denoised and renoised with virtual
noise. Courtesy of Michel Couprie and Warren Miconi.

of partitions with homogenous noise levels. Pan et al. [42] perform a similar image

partition using the kurtosis values of natural images in band-pass filtered domains.

3.4.2 The device sensor fingerprint

The device sensor fingerprint is a sensor pattern noise that can be extracted from the

PRNU of a set of images from the same camera. Chen et al. [43], Fridrich [44] and

many others like [45, 46] use these fingerprints for device identification. Experiments
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Figure 3.8: Image noise curves for “legal” vs. strong image manipulation and for a
renoised strong forgery (with an additional contrast modification).

reported in [43] show promising results even for JPEG compressed images down

to a quality factor of 75.

3.4.3 Computer Graphics

Some image forgeries can include some Computer Graphics (CG) parts when

splicing is not possible. These CG image areas may have unusual noise, or no

noise. Dehnie et al. [47] look for traces of PRNU in the image and consider the

areas with singular PRNU as forgeries.

3.4.4 Color forgery

Hou et aL. [48] detect hue modification by analysing the correlation of the PRNU

from each color channel.

3.5 Adding Artificial Noise

Adding artificial noise can serve several purposes: used on artificial images, it can

help to test noise models and algorithms. On natural images, it can be used as a

kind of filter, to imprint an image with an old-fashioned grainy feel, or, sometimes,
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to camouflage an alteration. For our tests, we use the C++11 random number

distributions to generate our Poisson and Gaussian distributions.

3.5.1 Artificial Images

Artificial images are ideal to test noise addition models, as they come free of

any noise. We have used them to test and confirm the noise model proposed in

Eq. (4.1) for raw images. They also allow to check the consistency of the noise

model throughout various intensities and bit depth.

3.5.2 Natural Images

In the case of noise addition in natural images, the questions depend on the objective.

If the noise addition is for a purely esthetical value, then the simple addition of a

white Gaussian noise is enough. However, if the purpose is to cover other alterations,

then a few parallel considerations have to be given thought. First, it is necessary

to simulate some FPN, especially if there are several images coming from a single

source being altered. Second, the added noise has to be coherent with the type

of the image. The type of noise will be different, Gaussian for an 8-bit image

and Poisson-Gaussian for a 16 bits one. In this second case, the noised value at

pixel s is obtained with Q and N from Eq. (4.1):

Inoiseds = αQs

( 1
α
∗ I
)

+Ns

The last thing to consider is the necessity or not to denoise the image before adding

noise. In the case of a splicing, for example, it is necessary to denoise beforehand:

indeed, the spliced section may have different noise characteristics than the rest

of the image, adding overall noise won’t camouflage the difference. A preliminary

denoising will help reduce this discrepancy.

3.6 Noise and Anti-Forensics

The objective of this section is to point out some forensics methods that fails to

detect digital image forgeries if some artificial noise is added on the falsified images.

Indeed, adding artificial noise may affect forgery detection method dealing with
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noise (Section 3.4) but also some methods where the pixel values distribution are

important. On the following tests, artificial noise is added following the indications

of section 3.5, with a very light Gaussian noise with σ = 2.5, meaning that about

30% of the pixels are not modified, due to quantization.

3.6.0.1 Double JPEG Compression

The double JPEG detection method introduced by Popescu and Farid [49] is based

on an effect of the quantization step of the JPEG compression. Adding some

noise on the falsified image will remove the quantization artefact and thus strongly

decreases the double JPEG detection rate. Figure 3.9 shows the Fourier analysis

of the first DCT coefficient for an image saved in JPEG, then saved again and

finally artificially noised and saved in JPEG. The double JPEG artefact are much

reduced, and so considerably more difficult to detect.

Figure 3.9: These graphics correspond to single JPEG (top), double JPEG (middle),
and double JPEG + artificial noise + JPEG (bottom). For each image, the upper part is
the histogram of the first DCT coefficient and the lower part to its Fourier transform,
where the peaks reveal a double JPEG.

3.6.0.2 JPEG Ghost

The jpeg Ghost method presented by Farid [24] is an extension of the double

jpeg that handle local properties of the image. Surprisingly, the method is not

altered by noise, unless it is implausibly high. Figure 3.10 shows the result of this
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method on a random image with the middle part previously saved in another jpeg

quality than the overall image. Note that Stamm et al. [50] successfully disguise

the JPEG compression history of an image by adding noise directly on its JPEG

DCT coefficients. However, this process leaves slight image alterations that can be

detected by [51]. Some recent methods can overcome this alterations issue [52].

Figure 3.10: JPEG ghost [24]: (Left) 64 levels on a random image. (Middle) the 64
levels on the random image where the middle square part is previously saved in another
jpeg quality than the overall image. (Right) Same as middle, but with artificial noise
before the last JPEG saving.

3.6.0.3 Histogram based methods

Some histogram-based methods are used to detect global pixel intensity modifica-

tions, typically from Lookup-tables (LUT). Stamm et al. [25] detects the residual

peaks of the image histogram resulting from such transformation, by analysing the

frequency spectrum of the histogram. Adding some noise on the modified image

will strongly affect the LUT modification, as depicted in Figure 3.11.

Figure 3.11: These graphics correspond to an original image (left), a modified image by
applying a LUT, here contrast and brightness (middle), and the middle image with artificial
noise (right). For each graphic, the upper part is the histogram of green component of
the image and the lower part to its Fourier transform, where the peaks reveal the LUT
operation.



3. Noise Study 39

3.7 Conclusion

In this chapter, we have detailed the various sources and models of noise in digital

images. Then we have explored a large panel of noise alterations, related to both the

acquisition pipeline and the post-processing. We have shown how these alterations

affect the quality and intensity of the noise, and study the precise impact of each

of those alterations. A major observation we have made is that, by the time we

get to a JPEG image, even a high-quality one, the noise is extremely different

from its original form in the raw image and is strongly affected by the successive

image processing operations. From a statistics point of view, it seems extremely

challenging to use this final noise for forgeries detection. Finally, we have looked at

the consequences for image forensics and anti-forensics based on noise analysis.
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千里之行，始於足下

A journey of a thousand miles begins with a single
step

— Laozi’s Tao Te Ching

4
Splicing Detection based on noise

characteristics
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4.1 Introduction

In this chapter, we will present three different methods to detect splicing in digital

images by exploiting the noise statistics. Sections 4.2 and 4.3 will focus on the

detection in raw images. Section 4.4 will extend our range of application to JPEG

images. The main contribution of this thesis, the contribution histograns, will be

presented in Section 4.3 and expanded in Section 4.4.

4.2 Splicing Detection in raw images based on
noise characteristics

4.2.1 Introduction

In this section, we will introduce a simple noise-based approach to splicing detection

using image noise, in raw images. This method is based on separating the image in

tiles, extracting the characteristics of the noise in each tile, and then repeating the

process with smaller tiles. The tiles are then separated in two categories using a

PCA transform in order to look for strong outsiders.

The focus on raw images gives us access to an information that one wouldn’t find in

JPEG images: the Poisson component of the noise, as explained in Sec. 3.2.2. This

allows us to do our tile classification using two characteristics, which gives us more

robustness. Additionally, the noise in raw images is not corrupted and permits fine

differentiation between tiles.

4.2.2 Digital Image Noise estimation

In order to obtain our noise parameters, we first denoise the original image, using

the BM3D method proposed by Dabov et al. [36], as said in Sec. 3.2.3. The Poisson

and Gaussian noise parameters are estimated from the difference image between

the denoised image by BM3D and the original noised image. We first divide the
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pixel luminance range into n equal intervals Ii, i ∈ [1, n]. The pixels of the denoised

image with intensity in Ii are grouped together to compute a variance σi of these

pixels in the noise image and a mean value mi in the denoised image. As specified

by [32], the noise that appear in the lower and higher pixel intensities is not reliable.

Thus, these pixels are discarded from our noise estimation process. The plot of the

variance as a function of the mean gives a line that can be fitted with RANSAC

line fitting. The line slope corresponds to the Poisson noise parameters whereas

the “y-intercept” corresponds to the Gaussian noise component. An example of

this fitting is depicted in Figure 4.1. For numerical robustness purpose, pixel

groups with only a few pixels are discarded. In the rare case where a line have

negative parameters, either Poisson or Gaussian, this line is discarded and not

taken into account for the rest of the process. This can occur when the denoising

is suboptimal or when the line fitting fails.
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Figure 4.1: Patches variances according to the patch mean. The lower and higher pixel
intensities are discarded. The line is fitted with RANSAC.
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(a) Input image
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(b) full image noise estimation
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(c) Top-left quarter
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(d) Top-right quar-
ter
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(e) Bottom-left quar-
ter
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(f) Bottom-right
quarter
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(g) Some 1/16 of the
image
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(h) Some 1/16 of the
image

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
a
tc

h
 v

a
ri
a
n
c
e

patch mean

Poisson + Gaussian noise

(i) Some 1/16 of the
image
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(j) The spliced zone

Figure 4.2: 4.2(a): a spliced image. The grid represents the quadtree sub-images.
4.2(b): Line-fitting of the noise data for the full image. From 4.2(c) to 4.2(i): Line-fitting
of the noise data for various 1/16 subimages. 4.2(i) Line-fitting of the noise data for the
spliced 1/16 sub-image.

4.2.3 Block based approach

The purpose of this method is to detect a splicing from the difference of noise

between the two images (or more) used in the forgery. Our approach consists in



4. Splicing Detection based on noise characteristics 45

the computation of a quad-tree of the image regions. The statistics of the falsified

region may differ from those of the rest of the image. This section describes how

to build this quadtree data and how to detect the falsified zones.

4.2.3.1 Image block noise estimation

A significant constraint of BM3D and most of the denoising methods is the

requirement of a good noise estimation of the input image before processing.

Indeed, the denoising strength will be chosen according to the estimated noise

in the image to process. Thus, a falsified region of the image may not be denoised

properly during the denoising process.

In practice, the falsified region can be correctly denoised when the image is

processed block per block, according to the respective proportion of original and

falsified part in the block. In that case, the Poisson and Gaussian component of

the falsified part can be estimated properly and compared to the rest of the image.

In this purpose, our method uses a quadtree to decompose the falsified image into

sub regions. The quadtree approach is motivated by the noise statistic computation

constraints. Indeed, very small regions provide an accurate spatial information of

the forgery coordinates but may not have a wide enough variety of pixel intensity to

compute the Poisson and Gaussian noise parameters. On the other hand, large image

region can provide robust noise statistics but are not precise enough for forgery

localization. It is noticeable that a small non falsified block of the image will not be

denoised in exactly the same way it is denoised when the process is performed on the

full image. A sample image with some subimages noise fitting is shown in Figure 4.2.

4.2.3.2 Gaussian-Poisson space

The quadtree processed on the falsified image generates a set of image regions.

Usually, 3 levels of quadtree, that generate a total of 21 images, are enough.

Each image is used to estimate a Poisson and a Gaussian noise component. The

blocks corresponding to non altered parts of the image will provide similar noise

parameters whereas the region corresponding to the splicing area may provide

different noise parameters.
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We use a clustering method on the Gaussian-Poisson space to identify the

potential suspicious regions. This Gaussian-Poisson space express each noise

estimation in term of coordinates (x =gaussian, y =poisson). Similar noise should

have similar position. An example of a usual point distribution is shown in Figure 4.7.

At this step, the point distribution is discriminative enough to visually identify

the splicing area but the automatic detection is not straightforward. The next

section describes how to identify an outlier.
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Figure 4.3: Each point represents the noise of a sub-region of the image. The horizontal
axis represents the Gaussian standard deviation of the subimage and the vertical axis the
Poisson standard deviation. The isolated point on the top right corner corresponds to
the splicing area, its noise parameters are different from the parameters of the rest of the
image.

4.2.3.3 Clustering

The point cloud obtained from the Gaussian-Poisson space should be transformed so

that the outliers can be detected easily. Ideally, the point cloud of the non-altered

sub-image should be grouped in a more compact form. A Principal Component

Analysis (PCA) would perform well in a data set without outliers, but in our

situation, an outlier located far from the main point group will alter the PCA

transformation, due to the L2-norm sensitivity of the PCA computation.
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Figure 4.4: After the robust Principal Component Analysis, the point cloud correspond-
ing to the non-falsified sub-images are grouped in a disc shape. The outlier, in the top
can be detected with a σ-clipping.

4.2.3.3.1 Robust Principal Component Analysis To perform a robust

PCA, we first remove a large set of potential outliers candidates. A point is

considered as an outlier if the distance to its nearest neighbor is the highest of

the group. To make our method robust to 2 splicings from the same image, with

their representation in the Gaussian-Poisson space with two points near from each

other, we better select an outlier as a point whose distance to its second nearest

neighbor is the highest of the group.

Then our process removes not only one, but many isolated points with an

iterative form of this method. Indeed, the PCA will still perform well if we remove

much more points than the expected number of outliers.

Finally, the data normalization along the axis of the PCA space is computed

only from the remaining points. Then this normalization is apply to all the data

points, including the potential outliers. The initial point distribution that initially

roughly looks like an ellipse should finally look like a compact group of points,

except for the outliers, as depicted in Figure 4.4.

4.2.3.3.2 Outlier detection From the compact form of the data described

in the previous section, the outliers can easily be extracted by a σ-clipping: all
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points with distance to the origin higher that twice the average distance from

the origin is considered as suspicious.

Moreover, for robustness purpose, the average distance from the origin σ is

computed without the 3 points whose distance from the origin is the higher.

Finally, we use a progressive σ-clipping. Data points with a distance to the

center of the disc shorter than two σ are considered unaltered. From two σ onward,

the probability of a patch being altered increases linearly, until it reaches one when

the most distant point or four σ, whichever is greater, is reached. This allows us to

evaluate the impact of false positive: while datapoints that are not representative

of an altered patch can be found outside of the two-σ boundary, they are often

fairly close to it, and thus can be disregarded in comparison with more distant,

and thus suspect, points. The boundary values have been chosen empirically, and

are the ones that give the best results.

4.2.4 Results
4.2.4.1 Implementation

The raw images are loaded using LibRaw [38]. We could test our method on

various raw image format files, like DNG, RAW, NEF, etc. The denoising process

is performed by BM3D using the Matlab code provided by [36]. We empirically

chose 100 value intervals to extract the noise statistics in section 4.2.2, inducing

a line fitting over a maximum of 100 points.

4.2.4.2 Experimentations

We conducted our tests on real data with an automatic process. The database

consists in 400 raw images with splicing, and 20 non spliced images to test the

robustness of the method against false positive. The spliced images were generated

automatically by copying random areas from other images in a random 1/16 of the

test image. We conduced the tests on the green channel of every raw image.

On spliced images, we detect a splicing in 84% of the cases, and in 70.6% of

those detection the localisation of the splicing is correctly identified. On unspliced

images, we have a rate of false positive of 30%. A sample splicing detection is shown
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on Figure 4.5. This method, however, has a few weaknesses: first of all, on the

size of the spliced areas. An area that is too small will not affect much the noise

characteristics of the subimage containing it, and thus will not be detectable. It is

also impossible for this method to detect spliced areas with noise characteristics

similar to the ones of the image being altered. We have also tested the method in

the case of two simultaneous splicing from two different images, with success, see

Figure 4.6. The discrimination method adopted for the PCA offer an important

robustness in the case of multiple splicings. We conducted some tests on JPEG files.

The results are promising but not convincing yet because of the lossy compression

characteristic of JPEG. Indeed, the method seems to measure a kind of JPEG noise

rather than the Gaussian and Poisson noise considered in this section.

4.2.5 Conclusion

We present a fully automated method to detect splicing in raw digital images.

This approach is based on the relative consistency of noise parameters throughout

an unaltered image. By looking for inconsistencies in those noise parameters in a

quad-tree decomposition of the image, which are representative of both the Gaussian

and Poisson components of the noise, we show that it is possible to highlight spliced

areas in an image. The method is fully automatic, based on a robust PCA of the

noise parameters and a subsequent σ-clipping, which detects the potential image

splicings, and returns an image showing the probability of falsification by patch.

The main drawback of the method, in this state, is its lack of accuracy: indeed, a

falsification that is too small will not have a sufficient impact on its tile to trigger

the differentiation. In the same way, a big splicing equally divided between four

or more tiles would skew the results. The solution to this second problem would

be to use sliding tiles and make a composite result image, but the time cost of

the denoising step would become very problematic.
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4.3 Splicing Detection using the Contribution His-
togram

4.3.1 Introduction

In this section, we present a more complex method to detect splicing in raw images,

using the image noise. For this purpose, we introduce a new tool: the noise density

contribution histogram, based on an analysis of the image noise probability density

function. Once again, our method starts with a denoising and tiling step, followed

by the construction of noise density contribution histograms for each tile. It is by

comparing those histograms pair-wise that we can classify them in order to detect

the splicing.

4.3.2 Noise Density Contribution Histograms
4.3.2.1 Principles and definitions

Noise in digital images can come from a wide variety of sources. In a raw image,

noise follows a Poisson-Gauss probability distribution, with the standard deviation

varying with the intensity of each pixel. A noise density table is the representation of

this probability distribution. For each pixel, we consider its denoised value vd and its

noised value vn. To each pixel of the image corresponds a value pair (vd, vn), which

are accumulated in the table. This way, the table can be seen as a 2D histogram, as

depicted in Figure 4.7. The exact function defining the Poisson-Gauss probability

density table is shown in Eq.4.1, where σ is the standard deviation of the Gaussian

portion of the function and α a scaling parameter applied to the Poisson portion:

f(vd, vn) = α

σ
√

2π

∞∑
x=0

(αvd)αxe−αvd

(αx)! exp
(−(vn − x)2

2σ2

)
(4.1)

In practice, the value of the table at any point (i, j) is the number of value pairs

where (vd, vn) = (i, j). For numerical purposes, we normalize the table on each row

(denoised values) to offset potential intensity imbalances in the image. Indeed, the

table of an image with a high proportion of high (or low) intensity pixels would
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have very high values in the corresponding areas. This would reduce the usability

of the table. The normalization suppresses this problem, as shown in Figure 4.7.

A cross-section of the table along a single denoised value follows a Poisson-Gauss

probability distribution (see dark line in Figure 4.7). However, in the case of a

spliced image, the noise density will be the sum of two different noise probability

functions: one for the original image, and one for the spliced element (Figure 4.8).

The objective of our method is to differentiate these two contributions, and to

identify the parts of the image that participate in each contribution.

A naive approach would be to try to fit a model, such as the one in Eq.4.1,

based on the overall noise characteristics over the noise density table, to try and see

which parts can be considered as outliers. However, this proves to be ill adapted

for two reasons: first, unless the spliced area represents a significant portion of the

original image, the impact on the noise density table will not be noticeable. Second,

the normalization process will flatten any major and noticeable difference.

4.3.2.2 Noise density contribution table

A noise density contribution table (referred to as “contribution table” from here

on) represents the contribution percentage of any subimage of an image to the

noise density table of the full image − more specifically, its contribution to each of

the (vd, vn) value pair presented before. Basically, a contribution table Csub is the

noise density table Dsub of a subimage divided by the noise density table Dim of

the whole image. A contribution can never be more than 1, 1 meaning that all the

pixels contributing to a pair are included in the subimage. More formally, we get:

Csub(vd, vn) = Dsub(vd, vn)
Dim(vd, vn) , ∀(vd, vn)

As a consequence of the overall noise being the sum of two different noises,

two shapes of contribution tables in a spliced image will appear. This is due to

the impact of each type of noise on the global one: as we can see on Figure 4.8,

each curve will have a zone with higher participation. The first will have higher

contributions on the identity axis, and the second higher contributions outside of

the identity axis, respectively referred to as ∧ type and ∨ type.
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4.3.2.3 Classification between ∧ type and ∨ type

The next step is to define the subimages and identify the type of their contribution

tables. To do so, the image is divided into a high number of square blocks of

identical size. Each of these blocks will be considered as a subimage, and will have

its own contribution table, see Fig. 4.9(a) and 4.9(b). To identify the type of a

contribution table, we locate its M highest contributions (corresponding to the M

maxima of the table). According to the location of these maxima, a type will be

attributed to the block: if there is a clear majority of them on, or near, the identity

axis, it will be a ∧ type. If there is a clear majority outside of this axis, it is a ∨ type

(Fig. 4.9(c)). If none of those conditions are fulfilled, the type remains undefined.

To make the method more robust, a good approach is to increase the number

of pixels in the subimages. Indeed, contribution tables are easier to identify when

they are built from more pixels. However, increasing the size of our blocks would

greatly reduce the spatial precision of our detection. To increase the robustness

while keeping the same precision, we create overlapping square cells, each containing

a moderate number of blocks. The contribution table of a cell is the sum of the

contribution tables of the blocks it contains. This results in contribution tables

which are easier to identify, thanks to the higher amounts of pixels used in each

cell. The type of each block then corresponds to the type in majority present in the

cells containing it. If there is no clear majority, the block type is undefined and it

will be changed in the seed expansion phase (see Fig.4.10, middle column).

4.3.3 Seed Expansion

Once every block has been assigned a primary type (be it ∧, ∨, or undefined),

we begin the expansion to find which of the two main categories each undefined

block is more likely to belong to. This expansion is based on the similarity between

blocks and the assumption that two similar blocks will probably belong to the

same type ∧ or ∨. The similarity s between two contribution histograms C1(vd, vn)

and C2(vd, vn) is simply a sum of term by term absolute difference, but only in
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the rows where both histograms have non-zero values:

s =
∑
i∈D

vmax
n∑
j=0
|C1(i, j)− C2(i, j)|

where

D =
{
i |

vmax
n∑
j=0

C1(i, j) 6= 0 and
vmax

n∑
j=0

C2(i, j) 6= 0
}

For a higher accuracy, we assign to each undefined block a probability p to belong

to the ∧ shape group, and thus a probability 1− p to belong to the ∨ shape group.

These probabilities are computed with an iterative scheme with an initial value set

to 0.5. Then, each undefined block probability is iteratively set as the weighted

average probability of the N blocks whose contribution histogram is the most similar

to that of the current block, with higher similarities giving a higher weight. At

an iteration k, the probability pkb of an undefined block b is:

pkb =

N∑
n=1

pk−1
n

n
N∑
n=1

1
n

This process is iterated on all undefined blocks until convergence. Finally, if a block

probability is high enough, the block is considered as being fully in said category.

The result can be seen in Fig.4.10, right column.

4.3.4 Multichannel

In order to improve our results, we apply the whole process - denoising, noise density

histogram, contribution histogram, classification, and expansion - to each channel

of the input image (R, G1, B, G2). Although the grey world assumption [62] can

be applied on a multi-channel image, each channel can contain drastically different

information − a clear sky, for example, will appear with a much higher intensity

on the blue channel. As each channel can give a more precise information on

various parts of the image, the multi-channel approach grants a higher precision

and more robustness in the final result. To do so, the probability map of each

channel are merged and averaged.
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4.3.5 Implementation and Results

The raw images are loaded using LibRaw [38]. The denoising process is performed

by BM3D using the Matlab code provided by [36]. Not taking the denoising time

into account, which we have little control over, the multi-channel version of the code

runs in around a minute for a 2000×2000 pixels image on consumer-grade hardware.

The choice of the code handling the denoising part is a crucial part of the

method: indeed, our method is extremely dependant on the quality of the denoising.

Although the procedure we used [36] is state-of-the-art for Poisson-Gauss denoising,

it tends to produce relatively poor results on dark textured areas. Even though our

method has no theoretical weakness on such areas, due to this, our output quality

drops similarly on images containing this kind of elements.

For our experiments, we used a base of 290 spliced images and 27 authentic

images. Those images come from a wide variety of cameras: Canon (2 models),

Leica (4 models), Nikon (1 model), Panasonic (9 models), Pentax (3 models), and

Sony (3 models). The results are exposed in Table 4.1. However, those results

do not take into account images containing dark textured areas (respectively 73

spliced and 7 authentic). If those images are considered, the splicing localization

rate drops to 51.7%, and the authentic detection rate to 58%. The splicing detection

rate remains at 100%.

Our method’s effectiveness is likely to increase in accordance to the efficacy

of upcoming denoising methods.

Table 4.1: The detection rate on spliced and unspliced images.

falsified / authentic Splicing localization
Image type correctly identified correct
Spliced 100% 68.6%
Authentic 86% na
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4.3.6 Conclusion

In this section, we present a new method to automatically detect splicing in raw

images. This method is based on the discrimination of contributions in the noise

density of the image, when the image contains a spliced element. By looking at

the locations where the contribution to the noise is different, we show that it is

possible to pinpoint a spliced area in an image. The robustness of the approach is

increased by replicating it over all the channels of the image. In the next section,

we adapt this method for JPEG images.

4.4 Splicing Detection using the Down-Projection
Contribution Histogram

4.4.1 Introduction

In this section, we present our third method to detect splicing in digital images. It

is both an improvement over the method presented in the previous section, and

an extension to the JPEG images, making it more efficient and giving it a wider

range of application. This method exploits the statistical properties of the noise

density function and is based on the assumption that the inherent noise in images

is different enough from one image to the other that their density functions differ.

We also presume that at least one of the images is otherwise unaltered.

We first address the subject of noise density histogram, and its transformation

to a noise contribution histogram. The next part introduces the concept of noise

contribution down-projection, which is the core of our method. The following

section shows how to use this new tool to detect splicing, accompanied by several

pre- and post-processing steps. Finally, we expose our results and compare them

to other state-of-the-art methods.

4.4.1.1 Denoising

The first step of our method is to denoise the image. In section 4.3, following a

similar approach, we used the denoising algorithm proposed by Dabov et al. [36].

Although extremely effective on RAW images, this denoiser is designed for 16-bit



56 4.4. Splicing Detection using the Down-Projection Contribution Histogram

images and relies on a Poisson-Gaussian model for the noise. As our method is to be

applied on 8-bit JPEG images, and since in chapter 3 we have shown that the noise

of those images can be considered as a zero-mean Additive White Gaussian Noise

(AWGN), we consider two state-of-the art denoisers: the non-local means method

implemented by Buades et al. [34], and the BM3D implementation by Lebrun [63].

Although both methods give comparatively similar results, the approach by Buades

et al. is faster, so we use that one in our experiments.

4.4.2 Noise Density Function Models

As explained in chapter 3, the noise in a single image can be assumed to follow a

single noise probability density function. As such, it is expected that noise in a

spliced image can be divided in two parts: the noise from the original image, and

the noise from the spliced element, as shown in Fig. 4.11. Although the overall

noise probability density function should not be altered much if the size of the

spliced element is small compared to that of the image, a local analysis of this

function may allow a differentiation between the two parts.

4.4.2.1 Noise density histogram

The noise density histogram of a discrete signal is a representation of the probability

density function of the noise contained in the signal. In our method, we build the

noise density histogram based on the original image IO and its denoised version

ID. As such, each pixel location p of the image is assigned a pair of values, vn(p)

and vd(p), corresponding to its original noised value and denoised value respectively.

Then, the value of the noise density histogram H at any point (i, j) is the number

of pixels respecting the condition (vn(p), vd(p)) = (i, j) or, more formally:

H(i, j) = cardPi,j, Pi,j = {p | vn(p) = i and vd(p) = j}

However, for the histogram to be representative of a probability density function,

each column j (denoised value) needs to be be normalized with a normalizing

constant Cj, where Cj = card p | vd(p) = j.
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If we assume an image with an equipartition of values, i.e. each possible

intensity is represented by an equal number of pixels, and add a perfect AWGN

of standard deviation σ, then the noise density histogram can be modeled as

the basic Gaussian probability density shown in Fig.4.12. In this situation, we

expect the value of the normalized histogram to be roughly equal to the equivalent

Gaussian probability density:

H(i, j) ' 1√
2πσ2

e
−

(i− j)2

2σ2

Fig. 4.13 depicts the noise density histogram computed on a real JPEG image,

from Algo. 1. It can be seen that the comportment of the extremities of the

histogram differs from the rest, which is due to the saturation of the noise. In

our experiments, we ignore those two extremes.

Algorithm 1: Global density histogram generation
Input: original image: IO

denoised image: ID
Output: global density histogram: H

1 // init the histogram
2 H.fill(0)
3 // fill the histogram
4 for p ∈ IO do
5 Increment(H

(
IO(p), ID(p)

)
)

6 // normalize the histogram
7 foreach column c of H do
8 normalize(c) such ∑iH(c, i) = 1

4.4.2.2 Noise contribution histogram

A noise contribution histogram represents the contribution of a subimage to the

noise density histogram of the whole image. A value at any point in the histogram

can be interpreted as the number of pixels fulfilling the values condition of this

point contained in the subimage, divided by the number of pixels fulfilling this same

condition contained in the full image. As such, it is an element-wise division of



58 4.4. Splicing Detection using the Down-Projection Contribution Histogram

the noise density histogram of the subimage by the global noise density histogram,

both non-normalized. More formally:

Csub(vd, vn) = Hsub(vd, vn)
Him(vd, vn) , ∀(vd, vn)

The contribution histogram values are upper-bounded by 1, indicating that all

the pixels couple values (vd, vn) are contained in the subimage. The sum of the

contribution histograms of non-overlapping subimages covering the entire image will

be an histogram with a shape resembling that of the global noise density histogram

(i.e. a gaussian noise density function), with the values all equal to 1.

The advantage of the contribution histograms is that they allow to distinguish noises

variations, even when they are small. Assuming the noise is always centered, a

small change in standard deviation (<1) will not alter the width of the distribution,

but will change its overall shape, allowing differentiation as shown in Fig. 4.14. An

example of the noise contribution histogram of a subimage is shown in Fig. 4.15.

4.4.3 Noise Contribution Down-Projection

One of the main issues with the noise contribution histograms is that their intensity

distribution corresponds to the one of the subimage, e.g. a subimage with a majority

of dark pixels will have an histogram with values concentrated in the lower rows

and columns of the histogram. Consequently, it is hard to compare two subimages

with highly different intensity ranges, since their contribution histograms will have

little or no intersection. In chapter 4.3, there is no real way around that, since the

noise follows a Poisson-Gaussian law and as such is inherently spatially variant.

However, when dealing with pure AWGN, we know that the noise distribution is

independent of the base intensity. As such, if we first deskew the histogram as

shown in Fig.4.16, so that it is centered around a single line instead of around the

diagonal identity, then histogram rows may be interchanged freely.

The concept of noise contribution down-projection derives from this indepen-

dance. If rows can be interchanged, then it is also possible to exchange single

histogram bins between rows, if they have the same signed difference between
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their noised and denoised values, e.g. exchanging the point of coordinates (51,

2) with the one in (57, 2).

The construction of a noise contribution down-projection from a noise contribu-

tion histogram is as follows: first, the histogram is deskewed so that the identity

axis is along a single value O, by default the 0 axis, using this equation:

∀t ∈ H

HR(t).x = H(t).x
HR(t).y = H(t).x−H(t).y

where HR is the skewed histogram and .x and .y respectively represent the first and

second coordinates of a point in the histogram. Then, for each column, we remove

all bins with a content of 0 and move down the upper elements of one histogram

cell. The length of a column is then only the number of non-zero bins originally in

it, as can be seen in Fig. 4.17 and applied to real data in Fig. 4.18.

The main justification of this data manipulation is that all of the separate con-

tribution down-projections will have roughly the same appearance: the first column

will be the largest, and they will get progressively smaller as we progress through. As

a consequence, we will always compare the largest possible columns of a contribution

down-projection to its average contribution equivalent, as depicted in Fig. 4.19.

4.4.4 Application to Splicing Detection
4.4.4.1 Tiling

In order to analyze the noise in an image IO, we first denoise it, obtaining the

denoised image ID. As suggested in Section 4.4.3, these images are then divided

into non-overlapping square subimages of identical sizes, referred to hereafter as

tiles. The size of the tiles is an important consideration: we need enough pixels in a

tile so that their contribution down-projections are statistically significant, but we

also know that smaller tiles will yield a better resolution to pinpoint the location

of the falsification. According to our tests, a size of 64×64 pixels provides enough

statistical data, while giving a reasonable accuracy on medium to wide sized images.
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4.4.4.2 Average Contribution down-projection

We then build the overall noise histogram, and the noise down-projection of each

tile, using the method presented in Sec. 4.4.2. These down-projections are what will

allow us to classify our subimages. In addition, we also construct an overall average

contribution histogram (and its corresponding down-projection), by averaging all

the non-zero contributions for each point of the histogram:

DPav(vd, vn) =
∑Ns
i DPi(vd, vn)

card
(
{DPi) | DPi(vd, vn) 6= 0}

)
where NS is the number of subimages. Using all the contribution for this histogram

(including the zero ones) would result in an flat histogram where each point has

a value of 1/NS.

4.4.4.3 Classification of Sub-Images

For each tile, we compute the location of the maximal differences its contribution

down-projection has compared to the average. Here, we consider only the lowest

row of each down-projected histogram. It is expected that the tiles from the original

image will have their maximal differences spread equitably around the central axis,

while the tiles from the spliced element will have maximal differences either close

to the axis or as far away from it as possible, depending on whether it has more or

less noise than the original image, as seen on Fig.4.19. The score of a tile is then

calculated based on those distances, and is obtained by taking the average distance

between its highest computed differences and the axis.

4.4.4.4 Results Visualization Enhancements

The result given by the first process of classification, although readily usable, can be

improved with several post-processing methods. The first thing that can be done is

to apply a scaling on the results, while removing the current extreme values. This

allows the classification to extend on a wider range, while avoiding to be misled by

potential aberrant, outlier results. This normalized image is then submitted to a

double threshold, whose values were found experimentally to give the best average
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Algorithm 2: Image Classification
Input: set of contribution down-projections of each subimage: DPi

average contribution down-projection: DPav
Output: score of each tile: score

1 foreach DPi do
2 scorei = 0
3 // n: number of locations used
4 for k = 0 to n− 1 do
5 (maxDiff,maxLoc) = max

(
DPi(t)−DPav(t), ∀t ∈ DPi, DPi(t) 6=

0
)

6 DPi(maxLoc) = 0
7 score+ = abs(maxDiff.x)
8 scorei = scorei/n

results on our database, in order to improve its readability by a human observer, as

shown in Fig. 4.20. This results in an easier way to highlight possible discrepancies

on the input image by comparing it to the threshold image. Finally, the whole

method (pre-processing, main algorithm, scaling, and thresholding) is applied on

each color channel, and on the luminance channel for additional information.

4.4.4.5 Formal Algorithm

The overall pipeline is outlined in algorithm 3.

4.4.5 Preprocessing

Due to the imperfect nature of the denoiser used, several steps are undertaken to

decrease the impact of the denoising process on the final classification.

The first step is to remove the traces of JPEG blocking in both the original and

the denoised image after denoising. Indeed, the denoiser used tends to consider

the borders of the JPEG blocks as slightly more noised than the rest of the image,

and as such denoise them more strongly. Although the suppression of the borders

decreases the resolution of the image by around 43%, the removal of this added

“artificial” noise increases the precision of the classification.
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Algorithm 3: Method Formal Algorithm
Input: original image: IO
Output: result image: IR

1 // cf. Sec. 4.4.2
2 ID = denoise(IO)
3 // cf. Algo. 1
4 H = densityHistogramGeneration(IO, ID)
5 // cf. Sec. 4.4.4.1
6 T = createTiles(IO,ID)
7 // compute the contribution for each map
8 foreach tile T do
9 // cf. Sec 4.4.3

10 DPi = contributionDPGeneration(TO, TD)

11 // cf. Sec 4.4.4.2
12 DPav = averageContributionGeneration(DPi)
13 // cf. Algo. 2
14 classifyTiles(DPi, DPav)

The second step consists in working around the contours in the original image.

The denoising process has a tendancy to perform poorly around contours, and as

such a replacement/elimination process is undertaken, in function of the amount

of contour contained in a tile. We detect the contours in the image by applying

a Laplacian filter, and then dilate them to ensure they contain all of the poorly

denoised areas. Then, we check the percentage of pixels belonging to a dilated

contour in each tile. If the percentage is lower than a defined threshold, set to

60% in our experimentations, we replace the contour pixels in the tile by random

non-contour pixels also belonging to the tile. However, if the percentage is too high,

we simply flag the tile so that it is removed from consideration for all subsequent

computations. A similar process is applied to saturated tiles, depending on their

number of pixels with either too high (>250) or too low (<5) intensity.

Finally, in some cases the denoiser causes noise discrepancies that can appear

even in non-spliced areas of the original image. This can be corrected by applying

a linear amplification to the noise according to the image pixel intensity, with a

minimal impact on the spliced element. This method is detailed in Algo. 4.
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Algorithm 4: Noise preprocessing
Input: original image: IO

noise image: IN
Output: result noise image: IRN

1 // global scale coefficient

2 k =
∑
i,j IO(i, j).|IN(i, j)|∑

i,j

(
IO(i, j).|IN(i, j)|

)2

3 // new noise image using IO intensity
4 foreach pixel (i, j) do
5 IRN = k.IO(i, j).IN(i, j)

4.4.6 Tests and Results

The method was tested on a set of 400 spliced images generated from 200 natural

images from the Dresden dataset [64], with sizes between 2592×1944 and 3648×2736.

This dataset was selected instead of the usual Columbia dataset that becomes

outmoded, notably in term of image size and quality. The images used cover

interior and exterior scenes, and were taken using different brands and models of

cameras. The noise standard deviation range from 0.36 to 1.4. The algorithm

runs in around 1 minute for the biggest images on consumer-grade hardware. The

general results are are shown in Table 4.2.

Table 4.2: Average results in normal image condition

F1 Score MCC
Mahdian and Saic [41] 0.133 0.110
Zeng et al. [65] 0.078 0.098
He et al. [59] 0.139 0.120
Our Method 0.203 0.178

The results are computed using the F1 score and the Matthews Correlation

Coefficient (MCC) [66]. Indeed, although the F1 score is more frequently employed,

in our database the spliced element tends to be small compared to the overall size

of the image, usually around 1/16th of the image. As such, the MCC seems to

be more adapted than the F1 score which gives the same weight to both areas,
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Table 4.3: Results with increased JPEG compression (using MCC)

JPEG 95 JPEG 90 JPEG 85 JPEG 80
Mahdian and Saic [41] 0.110 0.068 0.068 0.073
Zeng et al. [65] 0.098 0.099 0.105 0.116
He et al. [59] 0.120 0.124 0.134 0.119
Our Method 0.178 0.177 0.161 0.137

regardless of their respective sizes. This scoring method ranges between -1 and 1,

with zero being a random guess on each pixel. Additionally, we ran our algorithm

on a dataset of 300 artificial images, with a perfect denoising. The noise conditions

were set to replicate those of natural images (ie, a noise standard deviation between

0.36 and 1.4, and the spliced element having randomly more or less noise than the

base image). The average MCC on this dataset was 0.41. This shows a significant

impact of imperfect denoising on the overall efficiency of our method. As such,

it is reasonable to expect an improvement on detection capabilities as denoising

methods will improve.

Table 4.3 also shows that our approach is more impacted by a reduction in image

quality than other state-of-the art methods, although our results still remain better

than the alternatives. Finally, Table 4.4 shows that our method is also more resistant

to strong downsampling.

The two most important factors to explain the robustness of our approach against

compression and downsampling are the comparison to the global histogram and

the post-processing enhancements. As compression and downsampling are applied

equally across the whole image, the differentiation between the original pixels and

the spliced is still possible, though the difference is attenuated. Using the global

histogram down-projection allows us to reduce the impact that strong effects would

have on small patches of the image. Although the final difference in scores is

reduced in the result images, the normalization and thresholding applied afterwards

enhances even the small variations in score, facilitating the final discrimination.

This robustness can be seen as a consequence of the ability of our method to

discriminate even on low-noise images.
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Table 4.4: Results with downsampling (using MCC)

Normal
conditions

Downsample
75%

Downsample
50%

Mahdian and Saic [41] 0.110 0.093 0.010
Zeng et al. [65] 0.098 0.099 0.102
He et al. [59] 0.120 0.095 0.072
Our Method 0.178 0.157 0.140

4.4.7 Conclusion

In this section, we present a new approach to detect splicing in JPEG images, based

on the analysis of the noise density throughout the image. We have shown that

our method performs better than other state of the art approaches on a dataset

extracted from the Dresden image database.
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Figure 4.5: Top: a spliced image. Middle: the robust PCA and the σ-clipping. Bottom:
the spliced zone detection (in red).
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Figure 4.6: Top: a double spliced image. Middle: the robust PCA and the σ-clipping.
Bottom: the spliced zones detection (in red).
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Figure 4.7: Poisson-Gauss density histogram. The dark line is a cross-section along a
single denoised value.

+
Figure 4.8: Density histogram is an addition of two curves.
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(a) ∨ contribution table (b) ∧ contribution table
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1
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(c) Projections of each contribution table

Figure 4.9: The two types of contribution tables. 4.9(a) and 4.9(b) show their overall
appearance, 4.9(c) shows their projection on a plane orthogonal to the identity axis.
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(a) A falsified image (b) The corresponding classifi-
cation image

(c) The final probability map

(d) A falsified image (e) The corresponding classifica-
tion image

(f) The final probability map

Figure 4.10: Left column: spliced images. Middle column: block types after the initial
classification. Blue zones are ∧, red zones are ∨, and grey zones are undefined. Right
column: Final result after the seed expansion.

+
Figure 4.11: The noise density function in a spliced image remains Gaussian-like, and
is the sum of two Gaussian functions.



4. Splicing Detection based on noise characteristics 71

0

50

100

150

200

250
0 50 100 150 200 250

0

0.05

0.1

Noise distribution
histogram

Denoised
value

Noised value
Figure 4.12: Ideal Gaussian noise density histogram. The dark line is a cross-section
along a single denoised value, and represents a 1D Gaussian distribution.
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Figure 4.13: Gaussian noise density histogram obtained on a natural image with our
algorithm.
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Figure 4.14: Ideal shapes of various contribution histograms. Top: spliced part with a
higher standard deviation noise. Bottom: spliced part with a lower standard deviation
noise.
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Figure 4.15: The noise contribution histogram of a subimage. The higher contributions
on higher noises is normal, and is useful for identifying the spliced area.
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Figure 4.16: Deskewing the histogram. This is the first step before applying the
down-projection.

Figure 4.17: The process of down-projection.
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Figure 4.18: The skewed histogram and its down-projection side by side. We see that
the down-projection is dense compared to the initial histogram.
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(a) Contribution down-projection for a tile
of the original image.

(b) Contribution down-projection for a tile
of the spliced element.

Figure 4.19: The difference in contribution down-projections between a tile in the
original image and one in the spliced element. We can see that the contributions of the
spliced elementare much farther from the central axis on average.

(a) Spliced image (b) Scaled result (c) Thresholded result

Figure 4.20: An exemple of splicing detection.
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Figure 4.21: Results comparison. 4.21(a), 4.21(b) and 4.21(c) are the spliced images.
4.21(d), 4.21(e) and 4.21(f) are our results. 4.21(g), 4.21(h) and 4.21(i) are Zeng et al. [65]
results. 4.21(j), 4.21(k) and 4.21(l) are Mahdian and Saic [41] results. 4.21(m), 4.21(n)
and 4.21(o) are He et al. [59] results.
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A Photograph Is a Secret About a Secret. The More
it Tells You the Less You Know.

— Diane Arbus
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5.1 Introduction

Up to this point, all of the methods presented have been aimed at detecting

falsifications, and more precisely splicing, in images. In this chapter, we will focus

on a new, concurrent field, dedicated to countering the forensics methods: anti-

forensics. The main idea behind anti-forensics is to find ways to hide the detectable

signs of an alteration, without degrading its quality.
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Another face of digital imaging are artificial images generated using computer

graphics, referred to hereafter as CG images. The quality of CG images has

drastically increased over the past few years, to the point that some of them can

fool a human observer. Although they are commonly used in video games or

movies, CG images can have more ill-intentioned uses. They are, for example,

used in cases concerning identity theft, usually combined with a voice-alteration

software. Although high-quality CG images can deceive the human eye, there are

some physical or statistical properties that can be used by forensic methods to

differentiate them from natural images. Consequently, as with natural images, some

counter-forensics methods have emerged in order to hide those properties.

In this chapter, we present a novel way to transfer the noise from one image to

another, and two different uses for it: first, conceal a spliced element in a natural

image. Second, make a CG image appear more natural both from the human

perspective and against forensics software.

5.2 Noise Density Transfer

A first naive approach to transfer noise from one image to another would be to

denoise both images, obtain the noise image (difference between the original and

denoised image) of the first one, and add it onto the second one. This, of course,

causes several problems: the size of the two images has to be the same and the

contours of the first image will be superimposed on the second one, due to the fact

that all denoising methods leave traces correlated to the contours of the denoised

image.

Another method would consist of estimating the noise variance in the first image

and applying an artificial Gaussian noise with the same variance on the second image

after denoising. Although this would produce a reasonably convincing result, at

least for human observers, a perfect additive Gaussian white noise is never found in
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natural images. Indeed, chapter 3 shows that though a standard digital image noise

can be approximated by a Gaussian distribution, it is never perfect. Additionally,

the denoising step will clearly leave some traces, which could be detected with

adequate methods, such as the blur detection method presented in [67].

5.2.1 State of the art - Density Transfer

The probability density function associated to a random variable, such as noise in

an image, describes the odds for this random variable to have a given value. The

method we propose is based on transforming the noise density function of a first

image so that it is as close as possible to that of another image. The problem of

transferring and changing a density function has already been studied extensively

in several optimization problems. The concept was first introduced by Monge in

1781[68], and more recently studied statisticians in the 1970s [69] under the moniker

of Wasserstein distances. It was applied to images by Peleg et al. in [70], where it

is used to propose a method to change the resolution of an image while avoiding

aliasing. Several optimized versions of the generic transfer function have been

developed by Xu et al. [71] and Huang et al. [72]. However, the purpose of our

approach is not only to match one probability distribution to another, but also to

get a credible image noise as a result. Additionally, both of the optimized methods

are used to process very large amounts of data, while in our case the quantity

of changes to be done in a distribution are limited by the size of the image. As

a consequence, we do not need to focus on the optimal number of operations to

transform the distributions. The method may be implemented in a faster and more

efficient way, but this would not affect the final result.

5.2.2 Noise transfer

The proposed approach is based on transferring the noise density histogram

(introduced in Chapter 4.3 of an image onto another, in contrast to just generating

a Gaussian noise with the correct standard deviation on the second image. The

distinction between these two techniques is important: indeed, the proposed method

can copy any kind of noise density histogram, and as such is not only limited to
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images with Gaussian noise.

We note Is the image source of the transfer and Id the image destination of the

transfer. The first step is to denoise these two images, giving us the denoised images

Îs and Îd. Note that these denoised images Îs and Îd are used only for the density

histograms computation, but are not used in the noise transfer itself. Finally, we

compute the corresponding density histograms Ts and Td. See Fig. 5.1.
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Figure 5.1: 5.1(a) and 5.1(b) are the density histograms of the source and destination
images respectively. 5.1(c) shows a projection of those two histograms along the identity
axis for easier comparison.

For the transfer, we consider that a density histogram is bounded as follow:

each row represents the possible values of the denoised image, and each column
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pmax

nmax

Figure 5.2: A representation of the maximal differences and their location. The curves
represent a cut of the density function along a denoised value.

represents the possible values of the noised image. Both rows and columns can take

a value ranging in 1...N . For example, N = 255 for images with 8-bits per channel.

On a given row r, we look for the two maximal differences column indexes cp
and cn. Theses indexes are formally defined as:

cp|
(
Ts(r, cp)− Td(r, cp)

)
= max

1≤i≤N

(
Ts(r, i)− Td(r, i)

)

cn|
(
Td(r, cn)− Ts(r, cn)

)
= max

1≤j≤N

(
Td(r, j)− Ts(r, j)

)
We then define the corresponding maximal differences (see Fig.5.2) as:

pmax =
(
Ts(r, cp)− Td(r, cp)

)

nmax =
(
Td(r, cn)− Ts(r, cn)

)
Once the maximal differences and their positions are found, we change the value

of a random pixel on the destination image with a noised value of cn and a denoised

value of r to a noised value of cp. We then update the destination density histogram

to reflect the change. This will have the effect of altering the shape of the density

histogram Td and bring it closer to Ts, by reducing both pmax and nmax. This

process is iterated on the column until convergence. We consider convergence is

reached when the destination density histogram takes the same configuration two
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(a) Starting image (b) Transition image (c) End image
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(d) Starting density histogram
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histogram
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(f) End density histogram

Figure 5.3: Images in the top row show the impact of the noise transfer on an image.
The noise has been voluntarily amplified so that the results are more easily visibles. The
bottom row show the evolution of the density histogram through the transfer.

times in row. Once convergence is reached for a row, we process the next one until

all rows are transferred, as shown in Fig. 5.3.

5.2.3 Gamut management

In the case where the destination histogram has a row which is empty on the source

histogram, it is necessary to fill the row with coherent data for the sake of the

transfer. In the case of a Gaussian distribution, we simply translate the closest

non-empty row along the identity axis, as shown in Fig. 5.4. In the case of a

Poisson-Gauss distribution, this may not work if the closest non-empty row is too

far away and as such has a clearly different standard deviation. In that case, if we

assume that the noise is independent in each channel, we can look in each of the

other channels for a suitable replacement.
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Figure 5.4: A representation of the gamut management. The red curve is translated
and copied along the identity axis to fill the row where it is needed.

5.3 Application: splicing camouflage

5.3.1 State of the art

Several methods have emerged in recent years to counter the development of digital

forensics. When it comes to conceal splicings, most of the anti-forensics approaches

are focused on the JPEG format. In [73] and [17], the authors present counters to

hide several alterations, like CFA disturbance or image resampling. Likewise, [74]

propose to alter the transform coefficients of an image during compression, to hide

the impact of several falsifications like copy-move, splicing, or double-JPEG on the

compression history of an image. However, to our knowledge, there are no existing

methods to dissimulate the impact of splicing on the noise in an image.
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(a) Original image with splicing (b) Output of the algorithm
without noise transfer

(c) Output of the algorithm
with noise transfer

(d) Original image with splicing (e) Output of the algorithm
without noise transfer

(f) Output of the algorithm
with noise transfer

(g) Original image with splicing (h) Output of the algorithm
without noise transfer

(i) Output of the algorithm with
noise transfer

Figure 5.5: The effect of our method on three detection approaches. 5.5(a), 5.5(b)
and 5.5(c) show the effect on the approach designed by Pan et al. ; 5.5(d), 5.5(e) and
5.5(f) use the approach of Mahdian et al., and 5.5(g), 5.5(h) and 5.5(i) our approach from
chapter 4.3. In all of the cases, the spliced element cannot be distinguished from the rest
of the image after the noise transfer.

5.3.2 Test protocol

The first step of our experiments were to get an estimation of the standard deviation

of the noise on the images, then use it to denoise them. The noise estimation was

made using Colom and Buades work [75], and denoising was performed using the

Lebrun [63] implementation of BM3D.

We tested the efficiency of our approach against three different splicing detection

algorithm based on detecting noise inconsistencies: the work presented in chap-



5. Counter Forensics 85

ter 4.3, [42], and [41]. Those three algorithms use very different methods to detect

splicing, which allows us to test the robustness of our approach against dissimilar

detection methods. Our protocol was the same in the three cases: we splice two

images without altering the noise on any of them. Then, we analyse the spliced

image with the detection algorithm. Finally, we repeat this procedure, but we use

our noise transfer approach before the splicing. This allows us to highlight the

impact of our method.

5.3.3 Results

(a) Original image with splicing (b) Output of the algorithm
without noise transfer

(c) Output of the algorithm
with noise transfer

(d) Original image with splicing (e) Output of the algorithm
without noise transfer

(f) Output of the algorithm
with noise transfer

(g) Original image with splicing (h) Output of the algorithm
without noise transfer

(i) Output of the algorithm with
noise transfer

Figure 5.6: The results on this set of images are similar to the one in Fig. 5.5.

On both Fig. 5.5 and Fig. 5.6, we can see that after being subjected to our
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method, the spliced elements can not be found in the images, and this against

the three detection approach we used. Indeed, in the case of Pan et al. and

Mahdian et al., the spliced element noise is level with the rest of the image, and

thus indistinguishable. In our case, the algorithm does seem to find that part of

the image have been altered, but not in the correct position at all.

5.3.4 Consequences and discussion

As discussed in section 5.2.1, our method presents several advantages over other

more naive methods. The most common naive approach is to denoise the image

whose noise we want to change, and renoise it with an artificial Gaussian white

noise. However, this presents several issues: first, not all images have a noise

distribution that follows a Gaussian distribution. Some noises follow a Poisson

distribution, or a Poisson-Gauss one. In this last case in particular, getting the

parameters of the noise to reproduce it is considerably harder than with a simple

Gaussian noise. Second, this method needs a denoising step, and add the noise on

the denoised image. As there is no perfect denoising algorithm, the denoised image

will necessarily have denoising artefacts which can take different forms, the most

common being a slight blur or areas around edges that are not perfectly denoised.

To our knowledge, no method exists to detect this second case, but some algorithms

can already detect blurring in an image, even if it is renoised, as the one presented

in [67] and [76].

In comparison, our method only uses denoising in order to compute the density

histograms. All of the image modifications are made directly on the noised image.

Furthermore, the fact that we select the pixel to change randomly among those

eligible guarantees that there will be no observable blur or added noise around the

edges.
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In addition, our approach can be combined with other anti-forensics methods to

hide the possible other effects of a splicing, such as the alteration of the CFA pattern.

5.4 Application: CG camouflage

5.4.1 State of the art

According to a study by Fan et al. [77], image noise is not an element that helps

human to distinguish a CG from an natural image. However, several forensics

methods have been developed to make this distinction.

The first relevant method to distinguish CG from natural images was introduced

by Farid and Lyu [78]. They extract some features from a separable quadrature

mirror filters applied on the image, and use a learning framework to classify CG

from natural image. From then, nearly all the methods follow the same approach,

proposing more relevant features vectors.

Among these contributions, Chen et al. [79] explored the feature extraction

on HSV color space whereas concurrence only deals with each RGB channels

independently.

Wu et al. [80] simplify the usual wavelet-based features by just using histograms

of some measures on these wavelet decomposition. This method is one of the most

accurate in the state of the art and is also the easiest to implement.

For more details, the reader can refer to Ng and Chan [81] as well as Tokuda et

al. [82] who present some interesting performances evaluation tables comparing a

large set of state of the art methods.
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5.4.2 Consequences and discussion

In contrast to adding noise to natural images, which requires pre-emptive denoising,

adding noise to CG images can be done without a denoising step, depending on

the way the image was generated (some ray-tracer methods, like bidirectional path

tracing, induce noise in the final image). As a consequence, there is no risk of

denoising artefacts. However, this also guarantees that the resulting image will

have a perfect additive white Gaussian noise, which is not found in natural images,

except when very strong compression is involved. As seen in section 5.4.1, forensics

methods able to differentiate CG and natural images are based on first order wavelet

analysis (or similar alternatives) that is highly related to image noise.

These detection strategies exploit the unnaturalness of this perfect noise. Since

our method can transfer the noise from a natural image instead of adding a

generated noise, there is, in theory, a reduced chance to be detected by such

algorithms. However, it is important to note that those approaches use other

features beyond the pure noise statistics, and as such the impact of a more natural

noise requires more research.

5.5 Conclusion

In this chapter, we have proposed a novel way to alter the noise of an image

by transferring the noise density from another image. We have also presented

two possible applications for this method. The first application is to dissimulate

image splicing. The method is adaptable to various type of noises, and is able to

fool several state-of-the-art noise-based splicing detection algorithms. The second

possible application is to make computer-generated images appear less artificial,

by giving them the noise of a natural image.



There is nothing concealed that will not be disclosed,
or hidden that will not be made known.
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6.1 Overall contribution

In this manuscript, I have presented several contribution and improvements on the

state of the art in digital image forensics. The work presented in chapter 3, by

analyzing and detailing the evolution of the noise throughout the camera pipeline

and several base alterations, is a base building block that allows for the rest of

the methods shown (and, indeed, any noise-based forensics approach) to have solid

theoretical foundations. The Poisson-Gaussian nature of the noise in raw images, in

particular, gave me the starting point for the first method presented in section 4.2.

This method, although a bit rough along the edges, was the first noise-based method

to exploit the incredible precision that working with raw images allows.

The approach presented in section 4.3, in comparison, is a much more refined and

precise way to discover falsifications. Not only does it allow for increased spatial

precision in the detection, it also introduces the main contribution of this work, in
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the form of the tool baptized “Contribution Histograms”. We have shown that this

tool can, by comparing the shape of the noise in all subimages, to separate them

into two categories: genuine or spliced.

This method was once again improved upon in section 4.4, with its adaptation to

JPEG images. Not only does this expand the field of application to an incredible

degree, it also allowed me to refine the approach further, by changing the comparison

between subimages to a comparison between a subimage and the global noise. By

setting a base reference to compare local noise to, the method’s efficiency was

drastically increased, and got better detection results than the current state of the

art.

Finally, chapter 5 introduced a counter-forensics method based on the very tool I

developed. Although it may seems counter-productive, since using this approach

is the tailor-made counter to my own forensics algorithms (and a few others), it

gives a simple goalpost for improvement: create a new method able to beat this

anti-forensic approach.

6.2 Final thoughts

There is a kind of quiet jubilation in unveiling something that is supposed to be

hidden. Finding the manipulation in an image squarely falls in this category, and

the pleasure of detecting those alterations, even if I made them myself, has been an

agreeable reward time and time again throughout this thesis. When I first started

to work in the field of digital forensics, I though that I would never be able to

apprehend all of it. So many ways to alter an image, and so many methods to detect

each type of alteration, each one more specialized than the precedent. After working

on it for the last three years, this feeling has not disappeared at all. With the

constant evolution of digital cameras and their associated software, new methods of

falsifications keep popping up, and associated methods of detection do the same. It

is fascinating dance that needs and deserves to be continuously studied.

However, it is extremely likely that the discipline will evolve quickly in the next
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few years. The impact of machine learning is already starting to be felt, and

the methods using it tend to have extremely high rates of success. Since image

falsification is, by nature, a manual process, it is unlikely to be able to resist for

long against the emerging potential of deep learning and neural networks. It is

possible, however, that image falsification evolves by itself to a new field: indeed,

video falsification is now just as common. Although it probably won’t develop

before the next ten or fifteen years, I do believe that virtual reality alteration will

be the next step, and adapting image-based methods to this new environment will

certainly prove a formidable and fascinating challenge.
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A.1 Motivation

Le premier appareil photo digital, le Megavision Tessera, a été commercialisé en

1987. Depuis, le monde de la photographie digitale a été dans un état d’évolution et

d’amélioration constante: temps de batterie allongé, résolution augmentée, focus et

balance des blancs automatiques, divers modes convenant à tout types de situation,

etc. Tous les smartphones incluent maintenant un appareil digital. En conséquence,

le monde a laissé de côté la photographie argentique pour se concentrer sur les

images digitales. Cependant, cette tendance montante a été accompagnée par un

côté sombre: la fasification d’images.

La falsification de photographies est bien plus ancienne que l’âge du digital: par

exemple, censurer ou altérer des images étaient des pratiques courantes en URSS [2],

comme on peut le voir dans la Fig. A.1. Ces pratiques, cela dit, nécessitaient une

formation avancée et de l’équipement spécialisé. Avec les images digitales, les seuls

prérequis sont un ordinateur et un logiciel d’altération d’image, ce dernier étant
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Figure A.1: Altérations successives sur un portrait des dirigeants sovétiques, au fur et
à mesure que les membres perdaient la faveur de Staline.

disponible en magasin, voire parfois gratuit. En conséquence, une photographie

digitale peut être modifiée par pratiquement n’importe qui. Afin de combattre

cette nouvelle forme de désinformation, le domaine de l’imagerie forensique s’est

développé: un moyen de détecter, via différentes caractéristiques des images digitales,

tout type de falsifications. Les travaux présentés ici ont pour objectif de fournir

de nouveaux outils pour détecter une catégorie de fasifications appelée “splicing”,
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en exploitant les informations fournies par le bruit inhérent à l’image. Le splicing

(également appelé insertion exogène) consiste à insérer une partie d’une image A

dans une image B, comme montré dans la Fig. A.2.

Figure A.2: Contrairement à ce que cette image pourrait laisser penser, l’auteur n’est
pas Batman.

A.2 Contribution

La contribution principale de cette dissertation consiste en trois nouveaux outils pour

détecter le splicing dans les images digitales. Elle inclue également une analyse en

profondeur du bruit dans l’image et une méthode contre-forensique pour camoufler

des falsifications.
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Le chapitre 3 offre une étude approfondie du bruit dans les images digitales,

depuis sa source jusqu’à l’image finale. En premier lieu, l’effet des différentes

étapes de traitement interne à l’appareil photo (démosaiquage, débruitage interne,

balance des blancs, contraste, luminosité, compression, etc) est analysé, avec une

comparaison des différentes options. En deuxième partie, on étudie l’impact de

méthodes de traitement d’image “classiques” (changement de résolution, compression

supplémentaire, rotation, etc) sur le bruit de l’image. Enfin, une dernière section se

penche sur que des falsifications fortes ont sur l’image, ainsi que sur la robustesse

de diverses méthodes de forensique contre l’ajout de bruit.

Le chapitre 4.2 propose une première approche de détection de splicing, uniquement

dans les images en format raw, c’est-à-dire telles qu’enregistrées par les capteurs.

Cette méthode se base sur le fait que le format raw contient du bruit de Poisson-

Gauss, contrairement au bruit dans une image JPEG qui est usuellement considéré

comme étant un bruit blanc gaussien. Par ailleurs, les images raw ont l’avantage de

ne subir aucun traitement, et donc de fournir un bruit “pur”. Basé sur ces à-priori,

la méthode proposée estime le bruit sur différentes zones de l’image afin d’identifer

des anomalies potentielles, en clusterisant les zones selon leurs caractéristiques de

bruit.

Le chapitre 4.3 introduit la base de l’outil central développé dans cette thèse,

l’histogramme de contribution à la densité de bruit, ainsi qu’une première application.

Comme dans le chapitre précédent, cette application se porte sur les images raw.

L’outil proposé se base sur la construction de la fonction de densité de bruit de

l’image (en pratique, sa représentation sous forme d’un histogramme). Si l’on

suppose qu’un élément splicé a un bruit différent du reste de l’image, alors il

contribuera à des zones spécifiques de la fonction de densité de bruit. En observant

quels pixels contribuent à ces zones spécifiques, on pourra isoler l’élément splicé de

l’image originale.

Le chapitre 4.4 étend et raffine la méthode présentée dans le chapitre précédent,

en l’appliquant au format JPEG. De façon à s’adapter aux limitations imposées

à la précision du bruit par le format JPEG, on transforme notre histogramme de
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contribution original, sparse par nature, en une version densifiée. La forme de la

base de cet histogramme est alors utilisée pour séparer nos fragments d’image en

deux catégories.

Pour finir, le chapitre 5 propose une application de notre outil au domaine de

la contre-forensique, c’est-à-dire le champs des méthodes utilisées pour camoufler

l’altération d’une image. En connaissant les propriétés du bruit d’une image, on

peut les reproduire sur l’élément splicé de façon à rendre son bruit virtuellement

identique à celui du reste de l’image originale. Une application alternative est

proposée pour rendre plus réaliste des images synthétiques.
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