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par

Quentin Akkaoui

Computational dynamics of geometrically
nonlinear structures coupled with acoustic

fluids in presence of sloshing and capillarity.
Uncertainty quantification.

Composition du jury

Président : Geert Degrande Professor – KU Leuven University

Rapporteurs : Maarten Arnst Professor – Université de Liège
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Encadrants : Évangéline Capiez-Lernout Assistant Professor – Université Paris-Est Marne-la-vallée
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Résumé

Dans cette thèse, on s’intéresse à la modélisation et à la simulation numérique de systèmes cou-
plés fluide-structure, constitués d’une structure élastique partiellement remplie d’un liquide avec
une surface libre, tenant compte des effets de ballottement et de capillarité. Le fluide interne
est considéré comme linéaire, acoustique, dissipatif et la structure, à comportement élastique
linéaire, est soumise à de grands déplacements induisant des non-linéarités géométriques. Le tra-
vail présenté dans ce manuscrit s’intéresse tout d’abord à l’étude théorique de ce type de système
couplé fluide-structure et s’attache à la construction et à l’implémentation du modèle numérique
en utilisant un modèle réduit non linéaire adapté. Ce modèle réduit permet d’effectuer les cal-
culs dynamiques non linéaires et permet également de mieux comprendre les phénomènes liés
à chaque partie du système couplé. Plusieurs applications numériques sont ensuite développées
permettant l’analyse de divers phénomènes liés aux différents couplages et transferts d’énergie
dans le système. Le premier axe de développement consiste en la quantification et en la réduc-
tion du temps de calcul nécessaire à la construction de la base de projection du modèle réduit
pour des modèles numériques de systèmes couplés fluide-structure de très grande dimension.
Une nouvelle méthodologie est présentée permettant de réduire les coûts numériques induits par
la résolution de trois problèmes généralisés aux valeurs propres ne pouvant être résolus sur les
ordinateurs de puissance intermédiaire. Un second axe de développement concerne la quantifi-
cation de l’influence de l’opérateur de couplage entre la structure et la surface libre du liquide
interne permettant de prendre en compte la condition d’angle de contact capillaire au niveau de
la ligne triple tout en considérant une structure déformable. Le troisième axe est basé sur des
travaux expérimentaux publiés en 1962, dans le cadre de développements de la NASA pour les
lanceurs, qui ont mis en évidence un phénomène inattendu de ballottement de grande amplitude
en basses-fréquences pour le liquide interne lors de l’excitation moyenne-fréquence du réservoir.
On propose de revisiter et d’expliquer les causes de ce phénomène inattendu au travers d’une sim-
ulation numérique prenant en compte les non-linéarités géométriques de la structure. Enfin, un
dernier axe de développement est consacré à la propagation des incertitudes non paramétriques de
la structure dans le système par les différents mécanismes de couplages. La modélisation stochas-
tique non paramétrique est celle de l’approche probabiliste non paramétrique qui utilise la théorie
des matrices aléatoires. Une méthodologie permettant l’identification de l’hyperparamètre est
présentée, basée sur un ensemble de données expérimentales et sur la résolution d’un problème
statistique inverse. Une validation numérique de cette méthode sur un ensemble de données
expérimentales simulées est présentée.



Abstract

In this thesis, we are interested in computationally modeling and simulating coupled fluid-
structure systems constituted of an elastic structure partially filled with a fluid with a free surface,
considering the effects of sloshing and capillarity. The internal fluid is linear, acoustic, dissipa-
tive, and the linear elastic structure is submitted to large displacements inducing geometrical
nonlinearities. The work presented in this manuscript first details the theoretical study regard-
ing such coupled fluid-structure systems and focuses on the construction and implementation of
the computational model using an adapted nonlinear reduced-order model. This reduced-order
model allows for performing the nonlinear dynamical simulations and for better understanding
the phenomena related to each subset of the coupled system. Several numerical applications are
then presented to analyze various phenomena related to the different coupling mechanisms and
energy transfers in such fluid-structure system. The first development axis consists in quantifying
and reducing the computational resources required for the construction of the projection basis of
the reduced-order model when dealing with very-large dimension fluid-structure computational
models. A new methodology is presented, which allows for reducing the computational costs
required for solving three generalized eigenvalue problems that cannot be solved on medium-
power computers. A second development axis is devoted to the quantification of the influence of
the coupling operator between the structure and the free surface of the internal liquid allowing
for taking into account the capillary contact angle condition on the triple line while consider-
ing a deformable structure. The third axis is based on experimental research published in 1962
in the framework of NASA researches for orbital launchers, which highlighted an unexpected
phenomenon of large amplitude and low-frequency sloshing of an internal liquid for a medium-
frequency excitation of the tank. We propose to revisit these experimental results and to explain
the causes of such unexpected phenomenon through a numerical simulation taking into account
the geometrical nonlinearities of the structure. Finally, the last development axis is devoted to
the propagation of nonparametric uncertainties of the structure in the system by the different
coupling mechanisms. The nonparametric stochastic model is the nonparametric probabilistic
approach using the random matrix theory. A methodology for identifying the hyperparameter is
presented, based on an experimental data set and on an inverse statistical problem. A numerical
validation of this method on a simulated experimental data set is presented.
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Chapter 1

Introduction

Contents
1.1 General introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Methodologies, novelties of the work, and manuscript organization 5

1.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 General introduction

From the analysis of microfluidic systems, through the study of a glass of water, to new space
propulsion technologies, coupled fluid-structure systems have always been of great interest for all
sectors of scientific research. The aeronautics, aerospace, naval, medical, and renewable energy
industries are, for example, major actors of the scientific advances in fluid-structure interactions.
Two main types of problems are generally studied: the first type focuses on the study of a fluid
flow in contact with a structure (see Figure 1.2 left) and the second type focuses on the dynamics
of a fluid and a structure around an initial static configuration without fluid flow (see Figure 1.2
right). The first type of problem can be encountered, for example, in the naval industry, con-
sidering the problems of hydroelasticity, as well as in the medical domain with the study of
hemodynamic flow. The second type of problem can be encountered in many applications such
as, for example, the vibration of kerosene tanks in military/civil aircrafts, the analysis of seismic
vibrations of complex constructions such as dams or nuclear power plants, or the dynamics of
liquids in oil tankers. In this work, we will focus on the second type of problem by analyzing
the dynamics of structures partially filled with a liquid around a stable equilibrium configuration
without fluid flow. In this type of problem, various phenomena can be encountered but the most
frequent and most analyzed are mainly: sloshing, which describes the wave motion of the free
surface of a liquid contained in a structure, directly related to the influence of gravity, and re-
sulting from an energy transfer between the kinetic energy of the liquid and its potential gravity
energy; capillarity, due to surface tension forces, which significantly influences the sloshing of
the liquid free-surface with respect to the scale of the considered system and inversely propor-
tional to the intensity of the gravity; hydroelasticity, which concerns the vibrations of a structure
coupled to those of an incompressible internal/external fluid; vibroacoustic, which concerns the
vibrations of a structure containing a compressible fluid and possibly immersed in an unbounded
compressible fluid.

1



Chapter 1. Introduction

The complexity of coupled fluid-structure models that consider these types of phenomena is
partly based on the significant difference between the frequency ranges at which these phenomena
occur. The free surface sloshing of a liquid generally occurs at frequencies that are much lower
that the frequencies of interest for the other phenomena (usually an order of magnitude 10 to
1 000 times higher). These sloshing frequencies can vary according to the intensity of the surface
tension effects (capillarity). The elastic potential energy of the structure is therefore added to
the gravity potential energy of the fluid. However, as the frequency increases, the free surface
sloshing motion has smaller wavelength and smaller amplitude: the free surface deformation
energy related to gravity becomes negligible compared to the other energies involved. Finally,
vibroacoustic phenomena are due to the compressibility of the liquid and can appear in any
part of the frequency band, depending on the cavity dimensions. It is thus essential to consider
the different frequency domains when studying complex fluid-structure systems that take into
account these various phenomena.

Figure 1.1 – Left figure: Nozzle filling simulation, Courtesy Reutter Group. Right figure:
Simulation of fuel sloshing in an aircraft tank. (Simulation result courtesy of Flow Science, Inc.,
developer of the computational fluid dynamics (CFD) software, FLOW-3D[58]).

The motion of internal on-board liquids (generally fuel, but also cooling liquids, or simply a
liquid cargo) can have a significant impact on the vibrational or vibroacoustic behavior, as well
as on the dynamical stability of the vehicle (satellite, launcher, aircraft, tanker, etc.). This is
why, since the end of the 1950s, the aerospace industry has been trying to quantify the influence
of the sloshing phenomenon for liquids in on-board tanks. Especially in the context of orbital
launchers and the development of Saturn V, for which NASA has launched a major research
campaign for quantifying the effects of an internal liquid and of its free-surface sloshing on flight
stability. Below, we present a brief history inspired from the one presented in [95].

In this domain, an early 1960s pioneer work was devoted to the analysis of the influence
of an internal liquid on the vibration modes of a cylindrical tank [73, 3] and to the analysis
of the influence of sloshing on the dynamical behavior of the system [2]. Later, in 1968, some
research concerning the stability of partially filled structure were presented in [80, 90]. Numerous
analytical or experimental studies for determining the natural frequencies of simple geometrical
tanks were also conducted in [27, 76]. Among the precursors of the analysis of hydroelastic
phenomena, we can mention, for example, the work published in 1968 [113], presenting one of
the first introductions to the concept of added mass matrix, in 1975 [30] for elastic tanks par-
tially filled with liquids, since 1977 [28, 29] for the applications in the nuclear field, and [31] for
the research applied to the hydroelasticity of boats. Concerning the effects of surface tension,
a particular interest was brought to the equations of capillarity and the conditions of contact

2



1.1. General introduction

angle between the liquid free surface and the structure in [55, 56, 57]. A theoretical energetic
approach for the study of elastic structures containing an incompressible liquid with capillarity
effects has recently been introduced in [79]. From a numerical point of view, a first symmetrical
variational formulation adapted to finite elements, based on certain approximations is proposed
in 1966 [107]. After many studies on various formulations [30, 46, 74], a complete symmetri-
cal variational formulation was finally proposed in [81], allowing for representing, without any
simplifying hypothesis, the sloshing, the hydroelastic deformations, the capillarity effects and
their possible couplings. In [83], the variational formulations and finite elements discretization
for the analysis of complex structures coupled with internal and external acoustic fluids, are
explained and detailed. Concerning the sloshing, the influence of gravity on the linear dynamics
of a structure containing an incompressible fluid is presented in [95] and an extension to the
effects of pressurization in an elastic container is proposed in [96]. In 2010, a study of the statics
and dynamics of complex fluid-structure systems taking into account the effects of sloshing with
capillarity for a rigid structure was detailed in [53, 54]. Recently, a computational model allowing
for considering the effects of sloshing and capillarity in a system constituted by an acoustic fluid
and an elastic structure has been presented in [85]. This new formulation allows for taking into
account the contact angle condition when considering a deformable structure. These various
phenomena are nowadays well understood for each of them, but the coupling effects and their
influences on the stability of the concerned mechanical system is still subjects of interest. For
example, in the space sector, a well-known and particularly critical example is the Pogo effect,
which involves a coupling between hydroelastic deformations of a tank and compressible fluid
flows in the fuel pipe admission [109, 108].

Figure 1.2 – Left figure: Hydrazine propellant tank built for NASA’s MAVEN space-
craft.(Credit: Lockheed Martin). Right figure: Bipropellant tanks integrated to the Structural
Test Article of Orion’s European Service Module before delivery to NASA Glenn (Image taken
from [1]).

The variability of solicitations applied to such fluid-structure coupled systems results in a
wide variety of dynamical behaviors and couplings between the different parts of the system. It
is easy to dissociate, for example, a vibratory excitation of the free surface sloshing induced by
a rigid motion of a kerosene tank in a military ship, from the vibratory excitation of the free
surface sloshing caused by the takeoff of an orbital launcher. This latter type of excitation can
then induce large amplitude vibrations of shells and panels inducing structural nonlinearities.
These nonlinearities have interested many researchers in the past few decades. In some appli-

3



Chapter 1. Introduction

cations, the vibration response of the structure calculated by linear theory is inaccurate. When
the vibration amplitude becomes comparable to the shell thickness, a geometrically nonlinear
theory should be used. The effects of the geometrical nonlinearities of structures containing
liquids without free surface have been studied in order to quantify the influence of a fluid on
the large amplitude motion of the structure [51, 18, 20, 17, 16, 105]. Many experimental studies
are available for large amplitude vibrations of thin shells [71, 40, 69] partially filled with liquids
such as the ones proposed by [3, 41, 38]. A comprehensive review of studies on geometrically
nonlinear vibrations in the context of fluid-structure interaction is proposed in [19]. Recently, a
nonlinear model for computational vibration analysis of structures partially filled with acoustic
liquid in presence of slohshing and capillarity has been presented in [86].

In the framework of the computational study of fluid-structure coupled systems, it is gen-
erally common to associate a significant computational cost. This computational cost is due to
several factors related to the complexities of such systems. For the simulation of fluid-structure
coupling phenomena, the computational models are generally very large in order to correctly
represent the various phenomena. Indeed, in the case of a finite element computational model,
the fineness of the numerical mesh of the fluid-structure system has to be sufficiently important
for correctly representing the highly flexible motion of the free-surface sloshing and of the thin-
walled tank. The dynamical simulation of these coupled systems involves a significant numerical
cost given the large frequency range of the system. As explained above, the frequency ranges
of each phenomenon are very diverse and extensive, resulting in complex calculations and long
simulation times. These long simulation times are all the more important because sloshing is
a very weakly damped motion of the free surface compared to vibroacoustic vibrations. It is
therefore necessary to introduce reduced-order models for simulating the nonlinear dynamics of
such complex coupled fluid-structure systems. The computational linear reduced-order models,
adapted to linear fluid-structure interactions, have been studied for instance in [81, 84]. For
nonlinear problems, the method of proper orthogonal decomposition (POD) has been used for
constructing reduced-order models, for example in [20, 21, 24]. The construction of a modal
reduced-order basis in the context of fluid-structure interactions taking into account sloshing
and capillarity has been developed in [85] for the linear cases, and an extension to geometrically
nonlinear structure is presented in [86].

Nowadays, for all industrial sectors, an important aspect is to take into account the un-
certainties in such complex systems. When analyzing and predicting the behavior of coupled
fluid-structure systems, it is essential to take into account the variabilities that exist within the
systems. The uncertainties in the computational models of the real complex systems can come
from several sources that are divided into categories [102] : First, the aleatory uncertainties are
related to physical phenomena that are random by nature such as, for example, the pressure field
in a fully developed turbulent boundary layer. These aleatory uncertainties are not considered
in the present work. Second, epistemic uncertainties are related to parameters of the model, (for
which there is a lack of knowledge), and to modeling errors, which cannot be described in terms of
the parameters of the computational model. For instance, the lack of knowledge in the mechani-
cal description of a boundary condition in a fluid-structure system; or the geometrical tolerances
induced by manufacturing processes are epistemic uncertainties. These two types of epistemic
uncertainties are respectively called parameters uncertainties and model uncertainties. Taking
into account these uncertainties in the computational model is very important for carrying out
robust updating and robust optimization such as robust design with respect to uncertainties.
The probabilistic approach for modeling uncertainties on the system parameters is called the
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parametric probabilistic approach which consists in constructing the stochastic model of the sys-
tem parameters using the available information. Such an approach is very well adapted and very
efficient to consider the uncertainties in the computational model parameters. Many works have
published on parametric uncertainty quantification, for example in [59, 60, 75, 97, 47]. Concern-
ing the model uncertainties induced by modeling errors, the nonparametric probabilistic approach
has been proposed [99] in 2000, allowing for modeling errors to be taken into account, based on
the random matrix theory [77, 102]. In this thesis we are interested in taking into account the
model uncertainties induced by the modeling errors in the fluid-structure computational models.

This thesis is in the continuation of the work published in [86], in which we are interested in
the dynamics of coupled fluid-structure systems taking into account the effects of sloshing and
capillarity. The geometrically nonlinear structure is coupled with a linear acoustic internal liquid
that has a free surface. The effects of sloshing and capillarity are taken into account through
a new linearized formulation for the contact angle condition between the structure and the free
surface of the liquid. This formulation therefore allows, through the linearity of the internal
liquid, for quantifying the influence of the geometrical nonlinearities of the structure on the
dynamical behavior of the system. The proposed approach for simulating the dynamics of large-
scale coupled fluid-structure systems relies on the implementation of a nonlinear reduced-order
model. This reduced-order model consists in projecting the equations of the model onto a basis
constituted of the modal bases issued from each physical subset of the fluid–structure system,
for the following reasons. (i) A better understanding of the couplings between each part of the
fluid–structure system can be done. (ii) It allows for filtering the eigenfrequencies of the different
physical subsets of the system; it is well known that the frequency gap between the (usually low-
frequency) sloshing resonances and the (usually high-frequency) elastic and acoustic resonances
is huge ; this means that if we were to build a global reduced-order basis, we would have to
compute an untractable number of (weakly energetics) sloshing eigenmodes before reaching any
acoustic or elastic eigenmodes. (iii) The computation of a global reduced-order projection basis
would induce some difficulties related to the non-symmetric global formulation of the coupled
problem. (iv) Such ROM allows for being predictive with a reasonable computational time
[82, 84, 8]. This reduced-order model will thus allow for better identifying and describing the
coupling mechanisms and energy transfers that occur in such coupled fluid-structure systems.
The computational model presented in [86] also allows, through the use of the adapted reduced-
order model, for implementing the random matrix theory for the nonparametric uncertainty
quantification. Indeed, the nonparametric probabilistic approach of uncertainties [99, 103] has
already been applied in the context of fluid-structure systems constituted of elastic structure
coupled with an internal acoustic liquid in [52, 35, 103]. With respect to uncertainties, this
thesis proposes an extension of the work published in [86].

1.2 Methodologies, novelties of the work, and manuscript orga-
nization

The novelties in this work are presented simultaneously with the organization of the manuscript.

• Chapter 2 presents a summary of the theoretical formulation of the mean (nominal)
computational model for the analysis of the dynamics of nonlinear coupled fluid-structure
system with sloshing and capillarity effects. The hypotheses under consideration for both
the structure and the internal liquid are described in details. The boundary value problem,
the associated weak formulation, and the mean nonlinear computational model are then
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expressed in terms of the nonlinear displacement of the elastic structure, of the pressure in
the acoustic liquid, and of the normal elevation of the free surface. When the capillarity
effects are taken into account, the triple line operator in the coupled problem requires the
use of more regular displacement field than for the usual cases without the capillarity effects.
This implies that quadratic (and not linear) interpolation functions have to be used for the
computational model. Finally, the construction of the mean nonlinear reduced-order model
(ROM) is presented, detailing the computation of the fluid-structure projection basis and
the explicit construction of the geometrically nonlinear stiffness operators of the structure.

• The finite element discretization of the fluid-structure computational model is detailed
in Chapter 3. This chapter presents the methodology for dicretizing the 3D, 2D, and
1D operators involved in the computational fluid-structure model using the finite element
method with quadratic interpolation functions. In this chapter, we present a validation of
the proposed methodology by comparing computational results to analytical results or to
numerical-benchmarks results.

• Chapter 4 presents novel results concerning the numerical analysis of the generalized
eigenvalue problems devoted to the construction of the reduced-order projection basis
(ROB). This novel methodology has been developed for circumventing the computational
difficulties and for reducing the cost induced by the construction of the ROB. The con-
struction of the projection basis requires to solve three generalized eigenvalue problems.
The first one is related to the elastic structure taking into account the added-mass effects
induced by the internal liquid and allows the added-mass elastic modes of the structure
to be computed. The second one is related to the internal acoustic liquid and allows the
acoustic modes to be computed. Finally, the last one is related to the free surface sloshing
taking into account the acoustic pressure induced in the internal liquid by the motion of
the free surface and allows the capillarity-sloshing modes to be computed. If standard
algorithms were used, these three generalized eigenvalue problems would be very expensive
when studying large-scale fluid-structure systems and could result in an infeasible calcu-
lation on mid-power computers. This is the reason why a novel computational strategy
is proposed based on a double projection method and on an adapted subspace iteration
method.

• Chapter 5 presents new results concerning the role played by the triple line operator in-
volved by the capillarity effects. At the knowledge of the author, these are the first results
of this type obtained throughout the literature. These results have been obtained by con-
structing a dedicated coupled fluid-structure system that allows for exhibiting the contact
angle influence when considering a deformable structure. This fluid-structure system has
been designed in order to promote the energy transfers between the free surface and the
structure through the triple line. The analysis of the influence of this new operator is then
carried out on several versions of this fluid-structure system with repect to several values
of contact angles. The dynamical responses of the fluid-structure system with and without
this triple line operator are then presented in order to demonstrate the importance of this
new coupling operator.

• Chapter 6 revisits and explains an unexpected experimental high-amplitude sloshing phe-
nomenon in a vibrating elastic tank, that has never been explained in the open literature.
As explained in Section 1.1, an experimental campaign, first designed for analyzing the
influence of an internal liquid on the breathing vibrations of a cylindrical tank partially
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filled with a liquid, highlighted an unexpected low-frequency and high-amplitude motion of
the free surface when the tank were submitted to high-frequency excitation. This chap-
ter proposes a reasonable explanation of this unexpected phenomenon through a numerical
simulation of the geometrically nonlinear fluid-structure system. The computational model
is first updated using the available experimental data. Then, using the updated computa-
tional model, numerical simulations are performed, which allow for giving a comprehensive
overview on the unexpected physical phenomenon that occured during this experiment.

• Finally, Chapter 7 is devoted to the nonparametric uncertainty propagation in such highly
coupled fluid-structure systems. The construction of the nonlinear stochastic reduced-
order model (SROM) is carried out using the nonparametric probabilistic approach and
is detailed. The application is the one presented in Chapter 6. The nonlinear structural
stiffness is modeled using random matrices. Finally, for identifying the hyperparameter
of the probabilistic model of the nonlinear structural stiffness giving target responses, we
present a methodology based on a least-square optimization problem.

1.3 Notations

In the manuscript, the following notations are used. Let "a" be a mathematical quantity. Re-
lated to such a quantity, a deterministic scalar is denoted by a or A and its random counterpart
by a or A; a deterministic vector is denoted by a or A and its random counterpart by aaa or AAA; a
deterministic matrix is denoted by [A] and its random counterpart by [A]; a second-order tensor
is denoted by A.

Some particular cases are defined hereinafter, R denotes the set of real numbers, Rp denotes the
euclidian space of dimension p, Mm,n denotes the set of real (m × n) matrices, Mn denotes the
set of real square matrices of size n, M+

n denotes the set of positive-definite real square matrices
of size n, and B denotes a frequency band.

The entries of a given vector a in Rn and of a given matrix [A] in Mn are denoted respectively aj
and Aij for i and j in {1, . . . , n}. The summation over repeated greek and latin indices is used in
the whole manuscript. If a ∈ Rn and b ∈ Rn, the inner product (or scalar product) between a and
b is defined by < a,b > or a ·b and is equal to aj bj . For a given function g sufficiently regular,
the partial derivative ∂g(x)/∂xj is denoted as g,j(x). The first- and second-time derivatives of
g are defined by ġ(x, t) = ∂g(x, t)/∂t, and g̈(x, t) = ∂2g(x, t)/∂t2. The gradient ∇x g(x, t) of
function g with respect to x is defined by (∇x g(x, t))ij = gi,j . The Fourier transform of the
function t 7→ g(x, t), with respect to time, is denoted by ĝ(x, ω) and is defined by

ĝ(x, ω) =

∫ +∞

−∞
e−iωt g(x, t) dt . (1.1)

The Euclidian norm
∥∥A∥∥ of vector A in Rn is

∥∥A ∥∥ =< A,A >
1
2 =
√∑n

i=1A
2
i . The Frobenius

norm
∥∥ [A]

∥∥
F
of matrix [A] in Mn is

∥∥ [A]
∥∥2

F
=< [A], [A] >F= Tr([A]T [A]). In order to simplify

the notations, the time and space dependencies are omitted when no confusion is possible.
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Chapter 2

Theoretical formulation of the mean
fluid-structure computational model
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2.5.2 Construction of the mean nonlinear reduced-order computational model 17

2.1 Hypotheses for the fluid-structure system

The physical space is referred to a cartesian reference system (O, e1, e2, e3) and the generic
point in this reference system is denoted by x = (x1, x2, x3). The structure under consideration
is assumed to be elastic and to undergo large displacements that are induced by geometrical non-
linearities. The considered constitutive equation for such material is a Saint-Venant Kirchhoff
constitutive equation. At equilibrium, the structure occupies a bounded volume Ωu and is taken
in its natural state without prestresses. The unknown displacement field u of the structure is ex-
pressed in the reference coordinate system as u(x, t) = (u1(x, t), u2(x, t), u3(x, t)). This structure
contains an internal dissipative acoustic liquid [86] occupying a bounded domain Ωp, assumed
to be at rest in the reference configuration. For additional details regarding the dissipation in
acoustic fluids we refer the reader to [72, 89, 34]. The unknown pressure in the acoustic internal
liquid is denoted by p(x, t). Gravitational and surface tension effects are taken into account but
internal gravity waves are neglected. The free surface of the liquid is therefore subject to the
effects of sloshing, which is considered to be linear, i.e. only the small vibrations around the
reference configuration are considered. The normal elevation of the free-surface is denoted by
h(x, t). The capillarity effects on the triple line between the structure, the fluid, and its free
surface are taken into account through a novel formulation for the linearized contact angle. The
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Figure 2.1 – Reference configuration of the coupled fluid-structure system

fluid-structure system is considered to be taken in its natural state without pre-stresses defined
as the reference configuration, (see Figure 2.1).

The boundary of Ωp, assumed to be smooth, is denoted by ∂Ωp = Σ ∪ γ ∪ Γ (with Σ and
Γ open sets such that Σ ∩ γ = ∅, Γ ∩ γ = ∅, and Σ ∩ Γ = ∅), where Σ is the fluid-structure
interface, Γ is the free surface of the liquid and γ is the triple contact line between the structure
and the liquid (called triple line). The boundary of Ωu, assumed to be smooth, is denoted as
∂Ωu = Σ0 ∪ΣE ∪Σ ∪ γ ∪ΣG where Σ0 is a part of the boundary in which there is the Dirichlet
condition u = 0, where ΣE is the external surface of the structure and ΣG is the structure
internal wall without contact with the liquid. The structure is submitted to a given body force
field b in Ωu and to a given surface force field f on ΣE . The external unitary normals to ∂Ωu

and ∂Ωp are written nu and np. Let νΓ and νΣ be the external unit normals to γ belonging
respectively to the tangent plane to Γ and to the tangent plane to Σ. The gravity vector is
denoted g = −g e3 with g the gravitational constant.

2.2 Boundary value problem for the nonlinear coupled fluid-structure
system

The fluid-structure boundary value problem is expressed in terms of structural displacement
field u(x, t), of internal pressure field p(x, t), and of normal displacement field h(x, t) of the free
surface. The nonlinear boundary value problem in (p, h,u) is written as,

1

ρ0c2
0

p̈− τ

ρ0
∇2ṗ− 1

ρ0
∇2p = 0 in Ωp , (2.1)

(
1 + τ

∂

∂t

)
∂p

∂np
= −ρ0 ü · np on Σ , (2.2)
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1 + τ

∂

∂t

)
∂p

∂np
= −ρ0 ḧ on Γ , (2.3)

p = ρ0 h g (ez · np)− σΓ

{(
1

R2
1

+
1

R2
2

)
h+∇2

Γ
h

}
on Γ , (2.4)

∂h

∂νΓ
= ch h+ J u on γ , (2.5)

ρS ü− div (F · S) = b in Ωu , (2.6)

u = 0 on Σ0 , (2.7)

(F · S) · nu = f on ΣE , (2.8)

(F · S) · nu = −1Σ pnu + σΓ (J ′h) on Σ ∪ γ ∪ ΣG , (2.9)

Eqs. (2.1) to (2.3) are related to the internal acoustic fluid and its boundary conditions. Eq. (2.1)
is related to the internal inviscid compressible liquid, with an additional small damping term,
which corresponds to the classical Helmholtz equation with a dissipative term. In Eq. (2.1), ρ0 is
the constant mass density of the homogeneous liquid, c0 is the constant speed of sound, and τ is
the constant coefficient that characterizes the dissipation in the internal liquid. Eq. (2.2) is the
fluid-structure coupling condition of the internal inviscid compressible liquid (weakly dissipative)
with the structure interface Σ. Eq. (2.3) represents the kinematic equation for the free surface
Γ.

Eqs. (2.4) and (2.5) are related to the free-surface of the acoustic fluid and its boundary con-
ditions. Eq. (2.4) corresponds to the free-surface constitutive equation of surface Γ, in which
σΓ is the surface tension coefficient, R1 and R2 are the main curvature radii of the free-surface,
and ∇2

Γh denotes the surface Laplacian related to surface Γ. In Eq. (2.5), the first term of the
right-hand side corresponds to the classical contact angle condition on γ in which ch is the first
the contact angle coefficient [81] defined by

ch =
< KΓ > cos(θ)− < KΣ >

sin(θ)
, (2.10)

in which θ is the contact angle on the triple line γ, and where < KΓ > (respec. < KΣ >) is the
local curvature of the intersection of Γ (respec. Σ) with the normal plane to γ. The operator J
is defined [85] by

J u = dh u · nu −
∂(u · nu)

∂νΣ
, (2.11)

in which the second contact angle coefficient dh [81] is defined by

dh =
< KΓ > − < KΣ > cos(θ)

sin(θ)
. (2.12)

Eqs. (2.6) to (2.9) are related to the elastic structure with geometrical nonlinearities and its
boundary conditions. Eq. (2.6) corresponds to the dynamic equation for the nonlinear structure
in the time domain, in which ρS is the constant mass density of the structure. The second order
tensor F is the deformation gradient tensor defined in Ωu by

Fij = δij + ui,j , (2.13)
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where δij denotes the Kronecker symbol such that δij = 1 if i = j and δij = 0 otherwise. In
Eq. (2.9), the tensor S is the second Piola-Kirchhoff symmetric tensor in the reference configu-
ration written as

Sij = Cijk`Ek` , (2.14)

where the tensor Cijk` is the fourth-order elasticity tensor, verifying the symmetry and positive-
ness properties and where the Green-Lagrange strain tensor is written as

Ek` = εk`(u) + ηk`(u) , (2.15)

in which
εk` =

1

2
(uk,` + u`,k) and ηk` =

1

2
um,k um,` . (2.16)

Note that the dissipative term in the structure will directly be added in the computational model.
The boundary condition defined by Eq. (2.7) corresponds to a Dirichlet boundary condition on
Σ0. Eq. (2.8) corresponds to the boundary condition on ΣE on which a given surface force field is
applied. The second term in the right-hand side of Eq. (2.9), that has been introduced in [85], is
a new term related to capillarity, which allows for taking into account the contact angle condition
when considering an elastic structure with geometrical nonlinearities. A short summary of the
construction of this boundary condition is presented in [85, 86]. The term (J ′h) is a generalized
function whose support is γ and is defined by duality of the term J u. We thus have

< J u, h >dγ=

∫
γ
(J u)h dγ , (2.17)

� u,J ′ h�dµγ=< J u, h >dγ . (2.18)

2.3 Weak formulation for the coupled nonlinear fluid-structure
system

Let Cad,p, Cad,h, and Cad,u be the admissible spaces defined by

Cad,p = {p ∈ Ωp, p sufficiently regular} , (2.19)
Cad,h = {h ∈ Γ, h sufficiently regular} , (2.20)
Cad,u = {u ∈ Ωu, u sufficiently regular} , (2.21)

and let C0
ad,u be the admissible space defined by

C0
ad,u = {u ∈ Cu, u = 0 on Σ0} . (2.22)

The weak formulation of the nonlinear boundary value problem described by Eq. (2.1) to (2.9)
consists in finding the unknown fields (p(·, t), h(·, t),u(·, t)) ∈ {Cad,p × Cad,h × C0

ad,u} such that,
for all (δp, δh, δu) ∈ {Cad,p × Cad,h × C0

ad,u} we have

Mp(p̈, δp) + Dp(ṗ, δp) + Kp(p, δp)−Cup(ü, δp)−Chp(ḧ, δp) = 0 , (2.23)

Cph(p, δh) + Kg(h, δh) + Ks
c (h, δh) + Kl

c(h, δh) + Chu(u, δh) = 0 , (2.24)

Cpu(p, δu) + Cuh(h, δu) + Mu(ü, δu) + Du(u̇, δu) + KNL(u, δu) = F(δu) . (2.25)

The linear and bilinear forms expressed in Eqs. (2.23) to (2.25) are described hereinafter
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• The bilinear forms Mp(p, δp) and Mu(u, δu) are defined by

Mp(p, δp) =
1

ρ0c2
0

∫
Ωp

p δp dx and Mu(u, δu) = ρS

∫
Ωu

u · δu dx , (2.26)

and have the following positive-definiteness properties:

Mp(p, δp) = Mp(δp, p) with Mp(p, p) > 0 , (2.27)

Mu(u, δu) = Mu(δu,u) with Mu(u,u) > 0 , (2.28)

• The bilinear form Dp(p, δp) is defined by

Dp(p, δp) =
τ

ρ0

∫
Ωp

(∇p) · (∇δp) dx , (2.29)

and have the following positive-semidefiniteness properties:

Dp(p, δp) = Dp(δp, p) with Dp(p, p) ≥ 0 . (2.30)

As explained in Section 2.2, the structural damping bilinear form is added in the equations
of the problem and is defined by

Du(u, δu) = τS

∫
Ωu

(∇u) · (∇δu) dx , (2.31)

and have the following positive-definiteness properties:

Du(u, δu) = Du(δu,u) with Du(u,u) > 0 . (2.32)

• The bilinear forms Kp(p, δp), Ks
c (h, δh), Kl

c(h, δh), and Kg(h, δh) are defined by

Kp(p, δp) =
1

ρ0

∫
Ωp

(∇p) · (∇δp) dx , Kg(h, δh) = ρ0

∫
Γ
h (g · np) δh ds , (2.33)

Ks
c (h, δh) = −σΓ

∫
Γ

(
1

R2
1

+
1

R2
2

)
h δh ds+ σΓ

∫
Γ
(∇Γh) · (∇Γδh) ds , (2.34)

Kl
c(h, δh) = −σΓ

∫
γ
ch h δh dγ . (2.35)

and have the following positive semi-definiteness and positive-definiteness properties:

Kp(p, δp) = Kp(δp, p) with Kp(p, p) ≥ 0 , (2.36)

Kg(h, δh) = Kg(δh, h) with Kg(h, h) > 0 , (2.37)

Ks
c (h, δh) = Ks

c (δh, h), Kl
c(h, δh) = Kl

c(δh, h) with Ks
c (h, h)+Kl

c(h, h) > 0, (2.38)

• The coupling bilinear forms Cpu(p, δu), Cph(p, δh), and Chu(u, δh) are defined by

Cpu(p, δu) = −
∫

Σ
p (np · δu) ds , Cph(p, δh) = −

∫
Γ
p δh ds , (2.39)
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Chu(u, δh) = −σΓ

∫
γ
(J u) δh dγ . (2.40)

and we introduce the following associated bilinear forms,

Cpu(p,u) = Cup(u, p) , (2.41)

Cph(p, h) = Chp(h, p) , (2.42)

Chu(u, h) = Cuh(h,u) , (2.43)

• The linear form F(δu) is defined by

Fu(δu) =

∫
ΣE

f · δu ds+

∫
Ωu

b · δu dx . (2.44)

The geometrical nonlinearities of the structure induced by the Saint-Venant Kirchhoff constitu-
tive equation Eq. (2.14) and expressed in KNL(u, δu), can be developped in order to show all the
linear and nonlinear contributions to internal forces. Such formulation allows for introducing the
decomposition into three multi-linear forms: a linear, a quadratic and a cubic one such that

KNL(u, δu) =

∫
Ωu

Fik Skj δui,j dx (2.45)

=

∫
Ωu

Cijpq (up,q + uq,p) δui,j dx +

∫
Ωu

Cijpq us,p us,q δui,j dx

+

∫
Ωu

ui,k Ckjpq (up,q + uq,p) δui,j dx +

∫
Ωu

ui,k Ckjpq us,p us,q δui,j dx .(2.46)

By using the symmetry properties of Cijpq, one can write

KNL(u, δu) =

∫
Ωu

εij(δu)Cijpq εpq(u) dx +

∫
Ωu

εij(δu)Cijpq ηpq(u) dx

+

∫
Ωu

ui,k Ckjpq εpq(u) δui,j dx +

∫
Ωu

ui,k Ckjpq ηpq(u) δui,j dx . (2.47)

Finally, we then obtain

KNL(u, δu) = Ku(u, δu) + K(2)(u,u, δu) + K(3)(u,u,u, δu) , (2.48)

in which
Ku(u, δu) =

∫
Ωu

εij(δu)Cijpq εpq(u) dx , (2.49)

is the bilinear form corresponding the elastic stiffness of the structure, and where

K(2)(u,u, δu) =

∫
Ωu

εij(δu)Cijpq ηpq(u) dx +

∫
Ωu

ui,k Ckjpq εpq(u) δui,j dx ,

K(3)(u,u,u, δu) =

∫
Ωu

ui,k Ckjpq ηpq(u) δui,j dx , (2.50)

are tri-linear and quadri-linear forms corresponding to the quadratic and cubic contributions.
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2.4 Mean discretized computational model of the fluid-structure
system

The computational model is constructed using the finite element method. With respect to space
variable x, the discretization of the test functions δp, δh, and δu belonging to the admissible sets
Cad,p, Cad,h, and Cad,u consists in constructing the subspaces Cεad,p, C

ε
ad,h, and Cεad,u of finite

dimensions np, nh, and nu. Let (ep1, . . . , e
p
np), be a set of interpolation functions that generate

subspace Cεad,p. Let (eh1 , . . . , e
h
nh

), be a set of interpolation functions that generate subspace
Cεad,h. Let (eu1 , . . . , e

u
nu), be a set of interpolation functions that generate subspace Cεad,u. The

finite element discretization δpε, δhε, and δuε of test function δp, δh, and δu is

δpε(x) =

np∑
j=1

δPj e
p
j , δhε(x) =

nh∑
j=1

δHj e
h
j , δuε(x) =

nu∑
j=1

δUj e
u
j . (2.51)

Let then denote by δP = (δP1, . . . , δPnp), δH = (δH1, . . . , δHnh), and δU = (δU1, . . . , δUnu),
the Rnp-vector, the Rnh-vector, and the Rnu-vector corresponding to the discretization of the
unknowns p(x, t), h(x, t), and u(x, t). The discretization of the linear and bilinear forms of the
coupled fluid-structure problem described in Section 2.3 is detailed in the following.

• The bilinear forms defined in Eq.(2.26) are discretized such that

Mp(p, δp) =⇒ δPT [Mp]P and Mu(u, δu) =⇒ δUT [Mu]U , (2.52)

in which [Mp] and [Mu] are (np × np) and (nu × nu) matrices of the fluid-structure system
with positive-definiteness properties.

• The bilinear forms defined in Eqs.(2.29) and (2.31) are discretized such that

Dp(p, δp) =⇒ δPT [Dp]P and Du(u, δu) =⇒ δUT [Du]U , (2.53)

in which [Dp] and [Du] are (np × np) and (nu × nu) matrices of the fluid-structure system
with positive-semidefiniteness properties.

• The bilinear forms defined in Eqs.(2.33) to (2.35) and (2.49) are discretized such that

Kp(p, δp) =⇒ δPT [Kp]P , Kg(h, δh) =⇒ δHT [Kg]H , (2.54)

Ks
c (h, δh) =⇒ δHT [Ks

c ]H , Kl
c(h, δh) =⇒ δHT [K l

c]H , (2.55)

Ku(u, δu) =⇒ δUT [Ku]U , (2.56)

in which [Kp], [Kg], [Ks
c ], [K l

c], and [Ku] are respectively (np × np), (nh × nh), (nh × nh),
(nh × nh), and (nu × nu) matrices. In the following, we introduce the (nh × nh) matrix
[Kgc] such that

[Kgc] = [Kg] + [Ks
c ] + [K l

c] . (2.57)

Remark 1: The discretization of the quadratic and cubic stiffness formsK(2)(u,u, δu) and
K(3)(u,u,u, δu) is written as an equivalent nonlinear restoring force denoted by FNL(U)
and expressed by

K(2)(u,u, δu) + K(3)(u,u,u, δu) =⇒ δUTFNL(U) . (2.58)
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Chapter 2. Theoretical formulation of the mean fluid-structure computational model

• The discretization of the bilinear forms corresponding to the coupling terms defined by
Eqs. (2.39) and (2.40) yields

Cpu(p,u) = Cup(u, p) =⇒ UT [Cpu]P = PT [Cup]U , (2.59)

in which [Cpu] and [Cup] are the (nu × np) and (np × nu) real rectangular matrices repre-
senting the coupling between the structure and the liquid such that [Cpu] = [Cup]

T .

Cph(p, h) = Chp(h, p) =⇒ HT [Cph]P = PT [Chp]H , (2.60)

in which [Cph] and [Chp] are the (nh × np) and (np × nh) real rectangular matrices repre-
senting the coupling between the liquid and its free surface such that [Cph] = [Chp]

T .

Chu(u, h) = Cuh(h,u) =⇒ HT [Chu]U = UT [Cuh]H , (2.61)

in which [Chu] and [Cuh] are the (nh × nu) and (nu × nh) real rectangular matrices rep-
resenting the coupling between the structure and the free surface of the liquid such that
[Chu] = [Cuh]T .

• The external force linear form defined in Eq. (2.44) is discretized such that

Fu(δu) =⇒ δUT Fu , (2.62)

in which Fu is the Rnu vector of the external force applied to the struture.

The mean nonlinear computational finite element model of the coupled fluid-structure system is
then written as

[Mp] P̈ + [Dp] Ṗ + [Kp]P− [Cph]T Ḧ− [Cpu]T Ü = 0 , (2.63)

[Cph]P + [Kgc]H + [Chu]U = 0 , (2.64)

[Cpu]P + [Chu]T H + [Mu] Ü + [Du] U̇ + [Ku]U + FNL(U) = Fu . (2.65)

It should be noted that the computation of such nonlinear coupled differential equations remains
difficult to achieve due to the large number of unknowns in a complex system. It is thus essen-
tial to introduce a strategy for constructing a reduced-order model in order de get a reasonable
number of unknowns in the problem.

Remark 2: The presence of the generalized function J ′ h, with support γ, in the boundary
conditions defined by Eq. (2.9) requires the introduction of admissible sets that are more regular
than in the usual weak formulation for which this term would not appear (when capillarity effects
are not considered). This implies that the interpolation functions must be quadratic (at least)
and cannot be linear (see [87] for the mathematical developments).

2.5 Construction of the mean nonlinear reduced-order model

The proposed mean nonlinear reduced-order model (mean ROM) requires to define a decom-
position of the admissible space of the coupled fluid-structure problem taking into account the
assumptions that have been introduced. The projection basis is constructed by "blocks" because
of the subsequent scale effects between the structural, acoustical, and sloshing dynamical behav-
iors. The vector basis is then computed in three steps, each one corresponding to a generalized
eigenvalue problem, related to the elastic structure, to the acoustic fluid, and to the free surface
with appropriate boundary conditions.
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2.5. Construction of the mean nonlinear reduced-order model

2.5.1 Definition of the admissible spaces for the construction of the reduced-
order bases

Let CP,H,U be the admissible space of the test functions (δP, δH, δU) related to the finite element
discretization of the fluid-structure interaction problem. The decomposition of this admissible
space can be written as the following direct sum (see [81])

CP,H,U = CP ⊕ CH ⊕ CU , (2.66)

that are illustrated in Figure 2.2, and where the following admissible spaces are defined here-
inafter.

    

Figure 2.2 – Representation of the decomposition of the admissible space CP,H,U . (scheme from
[85])

• CP denotes the admissible space of test functions δP related to the conservative and ho-
mogeneous problem for acoustic pressure P, for which the inviscid compressible liquid
occupies domain Ωp. The associated boundary conditions are ∂p

∂n = 0 on Σ, corresponding
to a fixed-wall condition (i.e. u = 0) and a zero pressure condition p = 0 on Γ.

• CH denotes the admissible space of test functions denoted by δ(H,P) whose notations is
described hereinafter. We consider the conservative and homogeneous liquid with acoustic
pressure P associated with a free-surface elevation H, considering sloshing and capillarity
effects, with the boundary condition ∂p

∂n = 0 on Σ (i.e. u = 0). the corresponding
generalized eigenvalue problem is then formulated as a function of H and P, which means
that for a given δH there is an associated δP.

• Cu denotes the admissible space of test functions δU, that are zero on Σ0, related to the
problem for structural displacement U, taking into account the added-mass effects induced
by the coupling of the structure with the liquid that is assumed inviscid and incompressible,
and for which the associated boundary condition is a zero pressure p = 0 on Γ.

2.5.2 Construction of the mean nonlinear reduced-order computational model

The construction of the global projection basis [Ψ] is divided in three steps, each one being issued
from the decomposition of CP,H,U . Therefore, three vector bases have to be calculated each one
being related to a generalized eigenvalue problem.
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Chapter 2. Theoretical formulation of the mean fluid-structure computational model

• A vector basis of CP is constituted of the acoustic modes of the internal liquid, which are
the eigenvectors of the generalized eigenvalue problem,

[Kp] [Φp] = [Mp] [Φp] [Λp] , (2.67)

in which the appropriate boundary conditions have to be added. In Eq. (2.67), [Φp] =

[ϕ1
p, . . . ,ϕ

Np
p ] is the (np ×Np) real matrix whose Np columns are constituted of the eigen-

vectors associated with the Np first smallest positive eigenvalues sorted by increasing order
such that λ1

p ≤ . . . ≤ λ
Np
p contained in the diagonal matrix [Λp]. Matrix [Φp] satisfies the

following orthogonality properties

[Φp]
T [Mp] [Φp] = [INp ] and [Φp]

T [Kp] [Φp] = [Λp] , (2.68)

in which [INp ] is the (Np ×Np) identity matrix.

• Using the definition of CH , a vector basis of CH is constituted of the sloshing modes of the
liquid in presence of capillarity and of the associated acoustic presure in the liquid, which
are the eigenvectors of the generalized eigenvalue problem

[Kp] [Φph] + [Cph]T [Φh] [Λh] = 0 , (2.69)

[Cph] [Φph] + [Kgc] [Φh] = 0 . (2.70)

In Eqs.(2.69) and (2.70), [Φh] = [ϕ1
h, . . . ,ϕ

Nh
h ] and [Φph] = [ϕ1

ph, . . . ,ϕ
Nh
ph ] are the (nh×Nh)

and the (np × Nh) real matrices whose Nh columns are constituted of the eigenvectors
associated with the Nh first smallest positive eigenvalues sorted by increasing order such
that λ1

h ≤ . . . ≤ λ
Nh
h contained in the diagonal matrix [Λh].

• A vector basis of CU is constituted of the elastic modes with the added-mass effects of the
underlying linear equations for the nonlinear structure, which are the eigenvectors of the
generalized eigenvalue problem

[Ku] [Φu] = ( [Mu] + [Ma] ) [Φu] [Λu] , (2.71)

in which the (nu × nu) symmetric positive-definite added-mass matrix [Ma] is defined by

[Ma] = [Cpu] [Kp]
−1 [Cpu]T . (2.72)

It should be noted that [Kp]
−1 is a formal notation for denoting the inverse of matrix

[Kp] in the subspace CU ensuring the corresponding boundary condition p = 0 on the free
surface. In Eq. (2.71), [Φu] = [ϕ1

u, . . . ,ϕ
Nu
u ] is the (nu×Nu) real matrix whose Nu columns

are constituted of the eigenvectors associated with the Nu first smallest positive eigenvalues
sorted by increasing order such that λ1

u ≤ . . . ≤ λNuu contained in the diagonal matrix [Λu].
Matrix [Φu] satisfies the following orthogonatlity properties matrix [Φu] is the matrix of
the corresponding eigenvectors that satisfy the following orthogonality properties,

[Φu]T ([Mu] + [Ma]) [Φu] = [INu ] , (2.73)

[Φu]T [Ku] [Φu] = [Λu] , (2.74)

in which [INu ] is the (Nu ×Nu) identity matrix.

Remark: The matrix [Mu] + [Ma] can be viewed as the Schur complement [61] of the
block matrix [S] defined by

[S] =

[
[Mu] [Cpu]
−[Cpu]T [Kp]

]
.
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2.5. Construction of the mean nonlinear reduced-order model

The construction of this reduced-order model involves three projection bases, each issued from
one of the subsystems of the coupled fluid-structure system. This method not only facilitates the
calculation of the projection basis in terms of calculation cost, but also separates the frequency
scales of the system. It is well known that the resonance phenomena of each subpart of such a
coupled fluid-structure system belong to different frequency ranges. This is why such modeling
allows, by avoiding calculating the low-energy modes located in the frequency gaps between each
subpart of the system, for choosing the contributions of each part of the system and for correctly
involving the most energetic modes in the system dynamics.

The nonlinear reduced-order computational model is constructed by projecting the equations
of the fluid-structure system (defined by Eqs. (2.63) to (2.65)) on the reduced-order basis [Ψ]
constituted of the vector bases constructed above. The solutions P, H, and U are then written
as PH

U

 =

[Φp] [Φph] 0
0 [Φh] 0
0 0 [Φu]

Qp

Qh

Qu

 = [Ψ]Q , (2.75)

in which Q = (Qp,Qh,Qu) is the RNphu-vector of the generalized coordinates, with Nphu =
Np +Nh +Nu, solution of the coupled nonlinear differential equation

[MFSI] Q̈ + [DFSI] Q̇ + [KFSI]Q + FNL(Q) = F , (2.76)

in which the (Nphu ×Nphu) matrices [MFSI], [DFSI], [KFSI], and the RNphu vector F are defined
by

[MFSI] = [Ψ]T

[Mp] −[Cph]T −[Cpu]T

0 0 0
0 0 [Mu]

 [Ψ] , (2.77)

[DFSI] = [Ψ]T

[Dp] 0 0
0 0 0
0 0 [Du]

 [Ψ] , (2.78)

[KFSI] = [Ψ]T

 [Kp] 0 0
[Cph] [Kgc] [Chu]
[Cpu] [Chu]T [Ku]

 [Ψ] , (2.79)

F = [Ψ]T

 0
0
Fu

 . (2.80)

All the detailed expressions of the reduced-order mass, damping, and stiffness fluid-structure
interaction matrices are given in Appendix A. In Eq. (2.76), FNL(Q) denotes the generalized
nonlinear internal forces that are related to the structure. These generalized conservative internal
nonlinear forces are written [78] as

{FNL(Q)}α = K (2)
αβγ Q

u
β Q

u
γ +K (3)

αβγδ Q
u
β Q

u
γ Q

u
δ , (2.81)

where the quadratic and cubic stiffness K (2)
αβγ and K (3)

αβγδ are such that

K (2)
αβγ =

1

2

(
K̂ (2)
αβγ + K̂ (2)

γαβ + K̂ (2)
βγα

)
, (2.82)
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Chapter 2. Theoretical formulation of the mean fluid-structure computational model

K̂ (2)
αβγ =

∫
Ωu

Cijk` ϕ
α
i,j ϕ

β
m,k ϕ

γ
m,` dx , (2.83)

K (3)
αβγδ =

1

2

∫
Ωu

Cijk` ϕ
α
s,i ϕ

β
s,j ϕ

γ
m,k ϕ

δ
m,` dx . (2.84)

The details regarding the construction of these nonlinear contributions can be found in [37].
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Chapter 3

Numerical implementation of the finite
element discretization and validations
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3.1 Numerical implementation of the finite element model

The explicit construction of the matrices introduced in Chapter 2, which are involved in the
computational model defined by Eqs. (2.63) to (2.65) is detailed in Appendix B. It should be
noted that the 3D finite elements are tetrahedra with 10 nodes, the 2D finite elements are
triangles with 6 nodes, and the 1D finite elements are lines with 3 nodes. The number of dofs
of the structural displacements is nu, the number of dofs of the acoustic pressure is np, and the
number of dofs of the free-surface elevation is nh. The finite element discretization of matrices
introduced in Chapter 2 requires a particular attention and implementation for the construction
of coupling matrix [Chu], which is detailed in Section B.3

3.2 Numerical validation of the computational modelling

The developments presented in Appendix B for the finite element discretization of the fluid-
structure problem, described by Eqs. (2.23) to (2.25), has to be validated in order to ensure the
correct implementation of the fluid-structure matrices. This validation can be performed by com-
paring the numerical results calculated using the computational model issued from Appendix B
(called N-FSI-SC) to reference computations and analytical results. The comparison between
the hydroelastic frequencies of a cylinder tank computed with industrial softwares and calculated
with N-FSI-SC is performed in order to validate the construction of the matrix [Cpu]. Analytical
calculations allow for validating the construction of matrices [Kg] and [Cph]. A manufactured
solution method is then implemented in order to validate the implementation of the nonlinear
stiffness matrices defined in Section B.4 of the mean nonlinear reduced-order model.
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Chapter 3. Numerical implementation of the finite element discretization and validations

3.2.1 Numerical validation of the hydroelastic coupling

The validation of the hydroelastic coupling in the fluid-structure system is performed through
a comparison between N-FSI-SC results and numerical results proposed in [95] which were cal-
culated using 3 softwares: Astral, Nastran, and FSI3D. The coupled fluid-structure system is a
fixed-flat base cylindrical tank of internal radius R = 2m, internal height h = 2m, and thickness
of the shell e = 0.01m. Its isotropic material properties are: Young modulus E = 200GPa,
mass density ρs = 8000Kg.m−3, and Poisson ratio ν = 0.25. The internal liquid is water with
mass density ρf = 1000Kg.m−3. The coupled system is meshed using quadratic interpolation

Figure 3.1 – Global (left figure) and detailed (right figure) views of the meshes of the fluid-
structure system for the validation of the hydroelastic matrices.

functions for the elements 3D-solid tetrahedral elements of the structure and of the liquid, for
the 2D triangles of the free surface of the liquid, and for the 1D elements of the triple line. The
characteristics of the tank mesh are given in Table 3.1. The comparison between the analytical

Nodes Dof Elements
Structure 64 424 193 272 32 895
Fluid 149 669 149 669 103 108

Free surface 6 785 6 785 3 328

Table 3.1 – Table of the mesh characteristics for the cylindrical tank.

and the numerical eigenfrequencies of the system is displayed in Table 3.2 for the 12 first hy-
droelastic eigenfrequencies of the system. Figure 3.2 displays three hydroelastic eigenmodes of
the structure and the associated longitudinal and circumferential wave numbers m and n.

The results shown in this comparison propose a good agreement between the eigenfrequencies
from N-FSI-SC and the eigenfrequencies from Astral, Nastran, and FSI3D. One can see that the
relative deviation increases with the circumferential wave number n (e.g. for n = 6 and for
n = 7). This is mostly due to the fact that linear interpolation is used in [95] whereas quadratic
interpolation is used in this work, and in addition, the finite element mesh of the system is finer
than the one used in [95]. These results validate the implementation of the coupling hydroelastic
operator [Cpu].
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3.2. Numerical validation of the computational modelling

Mode Astral Nastran FSI3D N-FSI-SC Relative deviation (in %)
(Hz) (Hz) (Hz) (Hz) Astral Nastran FSI3D

m = 1 , n = 3 95.03 94.00 96.19 94.66 0.4 0.7 1.6
m = 1 , n = 4 103.19 102.43 104.10 100.32 2.8 2.1 3.6
m = 1 , n = 2 122.80 121.41 124.35 123.02 0.2 1.3 1.1
m = 1 , n = 5 140.15 140.65 142.20 133.85 4.5 4.8 5.8
m = 1 , n = 1 184.99 183.08 186.34 184.04 0.5 0.5 1.2
m = 1 , n = 6 195.22 198.79 198.95 184.80 5.3 7.0 7.1
m = 1 , n = 0 240.60 238.43 241.35 235.38 2.2 1.3 2.5
m = 2 , n = 4 266.07 254.06 263.82 258.87 2.7 1.9 1.9
m = 2 , n = 3 274.32 262.75 275.30 268.00 2.3 1.9 2.7
m = 2 , n = 5 284.56 269.58 280.29 274.75 3.4 1.9 1.9
m = 1 , n = 7 264.08 272.92 270.70 248.43 5.9 8.9 8.2
m = 2 , n = 2 303.26 287.98 306.98 295.56 2.5 2.6 3.7

Table 3.2 – Table of the comparison between the hydroelastic eigenfrequencies computed by
Astral, Nastran, FSI3D (from [95]), and N-FSI-SC.

m = 1 , n = 3 m = 1 , n = 5 m = 2 , n = 2

Figure 3.2 – Example of three hydroelastic eigenmodes.

3.2.2 Analytical validation of the sloshing eigenmodes without capillarity

The validation of the sloshing operators [Cph] and [Kg] is performed through a comparison of
the sloshing eigenfrequencies (without capillarity). The modal shapes of the sloshing eigenmodes
without capillarity and their associated eigenfrequencies can be obtained by numerous software
(Astral, Nastran, ...). In our case, in order to validate the implementation of the sloshing matrices
[Kg] and [Cph], a comparison is performed between the sloshing frequencies obtained with N-FSI-
SC and analytical sloshing eigenfrequencies (proposed in [95]) within the framework of a simple
coupled system. This system is a parallelepipedic tank constituted of 5 plates (see Fig. 3.3),
fully filled with water, for which the internal dimensions are: height d = 5m, width ` = 7m,
length L = 10m, and thickness of plates e = 0.25m. The coupled system is meshed with 3D
solid tetrahedral elements for the structure and the liquid, 2D triangles for the free surface of the
liquid, and 1D elements for the triple line, and using quadratic interpolation functions. Since the
sloshing is a surface phenomenon and since the acoustic pressure induced by sloshing eigenmodes
satisfies the Airy infinitesimal wave theory (i.e. the pressure exponentially decreases with respect
to the depth of the liquid), the mesh is refined in the neighboorhood of the free surface. For such
a geometry, the analytical sloshing eigenfrequencies are expressed as function of two integers m
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Chapter 3. Numerical implementation of the finite element discretization and validations

Figure 3.3 – Dimensions of the parallelepipedic tank used for the comparison of sloshing eigen-
frequencies computed with N-FSI-SC to analytical sloshing eigenfrequencies.

and n

νm,n =

√
g k tanh(k d)

2π
with k2 = π2

(
m2

L2
+
n2

`2

)
(3.1)

The characteristics of the parallelepipedic tank mesh are given in Table 3.3. The comparison

Figure 3.4 – Global (left figure) and detailed (right figure) views of the meshes of the fluid-
structure system for the validation of the sloshing matrices.

Nodes Dof Elements
Structure 26 612 79 836 13 694
Fluid 53 551 53 551 34 231

Free surface 9 031 9 031 4 430

Table 3.3 – Table of the mesh characteristics for the parallelepipedic tank.

between the analytical and the numerical eigenfrequencies of the system is shown in Table 3.4
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3.2. Numerical validation of the computational modelling

for the 12 first eigenfrequencies of the system. Figure 3.5 displays three sloshing eigenmodes
of the free surface and the associated modal pressure in the liquid. One can see that the

Mode Analytical freq. (Hz) N-FSI-SC freq. (Hz) Relative error(%)

m = 1 , n = 0 0.2676 0.2676 0
m = 0 , n = 1 0.3302 0.3302 0
m = 1 , n = 1 0.3674 0.3674 0
m = 2 , n = 0 0.3944 0.3938 0.15
m = 2 , n = 1 0.4378 0.4378 0
m = 0 , n = 2 0.4722 0.4714 0.17
m = 3 , n = 0 0.4839 0.4839 0
m = 1 , n = 2 0.4861 0.4861 0
m = 3 , n = 1 0.5093 0.5093 0
m = 2 , n = 2 0.5218 0.5218 0
m = 4 , n = 0 0.5588 0.5587 0.02

Table 3.4 – Table of the comparison between the analytical sloshing eigenfrequencies and N-FSI-
SC eigenfrequencies.

m = 1 , n = 0 m = 1 , n = 2 m = 4 , n = 0

Figure 3.5 – Example of three sloshing eigenmodes with their associated acoustic pressure in the
liquid.

computational results are in excellent agreement with the analytical ones since the maximum
relative error on the first 12 eigenfrequencies is 0.17%. Such results allows for validating the
numerical implementation of the sloshing matrices [Cph] and [Kg].

3.2.3 Validation of the numerical implementation of the nonlinear restoring
forces

Concerning the validation of the finite element discretization of the nonlinear restoring forces,
induced by the geometrical nonlinearities of the structure, presented in Section B.4, the code
verification method proposed in [91] is used. Let us consider a nonlinear static problem of
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Chapter 3. Numerical implementation of the finite element discretization and validations

a structure for which a given compatible displacement field is proposed. The Neumann and
Dirichlet boundary conditions can be analytically determined from the continuous equations of
the problem. These boundary conditions are then used in a nonlinear static computation and
the computed nonlinear static response is then compared to the prescribed displacement.

3.2.3.1 Reference computational model for validating the implementation of the
reduced nonlinear restoring forces

A reference full nonlinear problem is designed to validate the implementation of the reduced non-
linear restoring forces. This is why, in this section, we consider a given elastic structure, without
any internal liquid, which undergoes large displacements inducing geometrical nonlinearities. In
the following, we consider a static problem which can be written as

− div(F · S) = b in Ωu , (3.2)

u = 0 on Σ0 , (3.3)

(F · S) · nu = f on ΣE . (3.4)

The weak form issued of this boundary value problem consists in finding u ∈ C0
ad,u such that,

for all δu ∈ C0
ad,u we have

f int(u, δu)− f ext(δu) = 0 , (3.5)

in which f int(u, δu) and f ext(δu) and their finite element discretization are such that

f int(u, δu) =

∫
Ωu

(F · S) : ∇δu dx =⇒ δUT Fint(U) , (3.6)

f ext(δu) =

∫
Ωu

b · δu dx +

∫
ΣE

f · δu ds =⇒ δUT Fext , (3.7)

Let introduce the residue r(u, δu) defined in C0
ad,u × C0

ad,u such that

r(u, δu) = f int(u, δu)− f ext(δu) . (3.8)

The finite element discretization yields

r(u, δu) =⇒ δUT R(U) , in which R(U) = Fint(U)− Fext . (3.9)

The nonlinear differential equation
R(U) = 0 , (3.10)

is solved using a classical iterative Newton-Raphson [45] algorithm, which is assumed to be
convergent, such that

R(Uk + ∆Uk+1) = R(Uk) + [K
(k)
T ]∆Uk+1 , (3.11)

in which k denotes the current iteration,

Uk+1 = Uk + ∆Uk+1 , (3.12)

denotes the displacement correction for the current iteration, and

[K
(k)
T ]ij =

∂Ri(U)

∂Uj

∣∣∣∣
U=Uk

(3.13)
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3.2. Numerical validation of the computational modelling

is the tangent stiffness matrix evaluated at equilibrium point Uk. The correction ∆Uk+1 is then
calculated by solving the linear matrix equation

R(Uk) + [K
(k)
T ] ∆Uk+1 = 0 . (3.14)

This implementation of the Newton-Raphson method for the nonlinear static problem has to be
validated. The manufactured solution method [91], which is a popular method for validating the
numerical implementation of such simple nonlinear boundary value problem, consists in

(i) Proposing a manufactured solution ũ, which verifies the boundary value problem defined
by Eqs. (3.2) to (3.4).

(ii) Determining the associated Neumann and Dirichlet boundary conditions by analytically
solving the continuous equations of the problem.

(iii) Implementing the analytically obtained Neumann and Dirichlet boundary conditions in the
computational model and solve the numerical problem defined by Eq. (3.10) for obtaining
the reference solution uref.

(iv) Comparing the reference solution uref to the manufactured solution ũ by evaluating the
L2-error erman,

erman =

√√√√√√√
∫

Ωu

∥∥ũ− uref∥∥2
dx∫

Ωu

∥∥ũ∥∥2
dx

, (3.15)

with respect to the mesh size.

The considered structure for the manufactured solution method is presented in Figure 3.6 for
which the following dimension are taken into account: ` = 15m, L = 15m, and d = 20m. The
isotropic material properties used for these computations are: Young modulus E = 8× 1010 Pa,
mass density ρS = 2 700Kg.m−3, and Poisson coefficient ν = 0.3. The finite element mesh of
the structure is constituted of 3D solid tetrahedron with quadratic interpolation functions and
the caracteristics of the finite element mesh are presented in Table 3.5.

Nodes Dof Elements
Structure 4 938 14 814 2 785

Table 3.5 – Table of the mesh characteristics for the structure used in the manufactured solution
method.

The following manufactured solution ũ is considered

ũ(x) =


α tanh(β x3)

sinh(
β

2
x3)

β

10
(x2

3 − γ x3)

 . (3.16)

in which α = 3, β = 0.1, and γ = 20. Introducing the manufactured solution ũ(x) in Eqs. (3.2)
to (3.4) yields the corresponding Neumann and Dirichlet boundary conditions (i.e. the analytical
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Chapter 3. Numerical implementation of the finite element discretization and validations

Figure 3.6 – Sketch of the structure considered for the manufactured solution method

expressions of f and b) that have to be applied to the system. The finite element solution is then
computed by solving the computational problem defined by Eq. (3.10) considering the boundary
conditions issued from the manufactured solution. It should be noted that such manufactured
solution allows for validating the numerical implementation of the geometrical nonlinearities
since it involves all ordered derivatives in the error expansion and all terms, e.g., cross-derivatives
terms. The convergence analysis of the L2-error, defined by Eq. (3.15) with respect to the finite
element mesh size is presented in Figure 3.7. The results show that the L2-error between the finite
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Figure 3.7 – Graph of log10(s/L) 7→ log10(erman) displaying the L2-error evaluated between the
manufactured solution and the finite element solution with respect to the mesh fineness s/L.

element solution and the manufactured solution decreases with respect to the mesh fineness. Such
results validate the implementation. This manufactured solution method allowed for validating
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the implementation of the geometrical nonlinearities for the full model (i.e. without using a
ROM). This reference calculation is now used in order to validate the implementation of the
reduced nonlinear restoring forces proposed in Section B.4.

3.2.3.2 Validating the implementation of the reduced-order geometrical nonlinear-
ities

The static nonlinear elasticity problem for the structure presented in Section 3.2.3.1 is reused in
the following. The numerical discretization of the reduced nonlinear restoring forces presented
in Section B.4 is validated in this section by comparing the solution urom(x) computed using
the reduced-order static nonlinear problem (called ROMstat), to the reference solution uref(x)
computed following the methodology described in Section 3.2.3.1. It should be noted that, in
this section, since we consider a static equilibrium problem (Eqs. (3.2) to (3.4)), the associated
projection basis for the construction of the adapted nonlinear ROMstat is a static projection basis
[Φstat
u ], of dimension N stat

u , computed by solving the generalized eigenvalue problem

[Ku] [Φstat
u ] = [Λstat

u ] [Φstat
u ] , (3.17)

The analysis on the L2-error

errom =

√√√√√√√
∫

Ωu

∥∥uref − urom∥∥2
dx∫

Ωu

∥∥uref∥∥2
dx

, (3.18)

is performed with respect to the order of truncationN stat
u of the ROMstat. The structure displayed

in Figure 3.6 is tested for two external loads, a traction load and a shear load. The convergence
analysis of the error errom for the two load cases are presented in Figure 3.8. One can see that the
reduced-order solution converges to the reference solution with respect to N stat

u . These results
allow for validating the implementation of the reduced nonlinear restoring forces proposed in
Section B.4.
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Figure 3.8 – Graph of N stat
u 7→ log10(errom) displaying the L2-error between the reference solution

and the reduced-order solution with respect to the size of the reduced-order basis N stat
u , for the

traction external load case (left figure), and for the shear external load case (right figure).
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Chapter 4. Computational strategy for large-scale fluid-structure numerical models

4.1 Introduction

The algorithms for solving eigenvalue problems (including generalized eigenvalue problems for
which one matrix is positive definite) have received a very great attention this last 40 years from
a mathematical point of view (see for instance, [104, 70, 88, 25, 94, 61, 39, 26, 66]), for algorithms
adapted to parallel computation (see for instance, [33, 65, 49, 62, 50, 106, 112, 15, 48]), and also
for massively parallel computers (see for instance, [110, 67, 63, 92, 64]). The majority of the
efficient algorithms have been implemented in a mathematical library for computers, parallel
computers, and massively parallel computers (see for instance, [42, 22, 23]).

This chapter is devoted to the computation of the generalized eigenvalue problems, presented in
Sec. 2.5, which involve very populated sparse matrices in the case of large-scale fluid-structure
models. Concerning the algorithms for solving these generalized eigenvalue problems for which
one of the two matrices is a positive-definite matrix, the mathematical libraries cited before
could, a priori, be used (these algorithms are really efficient and are adapted to large scale
models using parallel and massively parallel computers). Although these algorithms are efficient
on mid-power computers that we define as workstations with, for instance, 264 GB to 1 TB for
the RAM and 12 to 72 cores for the processors, we have encountered huge difficulties due to the
limitation of RAM and also to CPU-time consumption.

The difficulties encountered in the computation depend on the type of modes that have to be
computed. Concerning the computation of the elastic structural modes, the mass matrix of the
generalized eigenvalue problem is made up of the sparse mass matrix of the structure in which
is added the added-mass matrix of the internal liquid (the added-mass matrix is a full matrix
with respect to the fluid-structure coupling dofs). Due to a RAM consumption problem, the
computation of the added-mass matrix cannot be done as soon as the acoustic-stiffness matrix of
the internal liquid is very populated. In addition, assuming that the added-mass matrix has been
computed, if the stiffness matrix of the structure is also very populated, another difficulty arises
for solving the generalized eigenvalue problem inducing the same type of RAM consumption.
The difficulties are exactly of the same nature for the computation of the sloshing/capillarity
modes. Concerning the computation of the acoustic modes of the internal liquid, the difficulties
are due to the generalized eigenvalue problem that involves two very populated sparse matrices,
the acoustic mass and the acoustic stiffness matrices. Confronted with this situation, we have
thus revisited the formulations in order to be able to solve the three generalized eigenvalue prob-
lems on a mid-power computer. It should be noted that the formulations/algorithms proposed
allow for computing a large scale fluid-structure computational model on mid-power computers
but certainly, would allow for computing very large scale fluid-structure computational models
on high-power computers.

The finite element meshes of the fluid-structure system that will be considered in Section 4.5
have a large number of dofs and a high connectivity, inducing very populated sparse matrices
and consequently, leading us to an impossibility to construct the matrices and to compute the
generalized eigenvalue problems on mid-power computers using the most adapted algorithms
available in the mathematical libraries such as those proposed in Matlab. Concerning the choice
of the formulation, two possibilities can be envisaged. For computing the structural elastic modes
with the added-mass effects or for computing the sloshing modes with capillarity effects, a first
formulation could be based on the use of iterative algorithm for solving linear matrix equation
(relative to all the physical dofs) for a very populated matrix and for a large number of right-hand
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4.2. Summary of the classical formulation of the generalized eigenvalue problems

side members. A second formulation would avoid to solve such a linear systems of equations in
high dimension by using a double projection method, also known as the Rayleigh-Ritz method
in the framework of eigenvalue problems. An analysis of the advantages/disadvantages of these
two formulations has been performed in order to choose the most efficient one. This analysis is
summarized in Section 4.3.3 and allows for concluding that the double projection method is more
efficient and consequently, will be retained in this paper. This approach allows for decreasing
the CPU time and for reducing the RAM avoiding the out of memory and consequently, allowing
the computation to be effectively performed. For solving the acoustic generalized eigenvalue
problem, the main difficulty is induced by the RAM problem for which an out of memory is
obtained. For circumventing this difficulty, we have implemented the subspace iteration method,
first introduced in [25, 26], and which is particularly efficient for the problem that has to be
solved. Such an approach increases the CPU time but it is the only solution that we have found
for avoiding the out of memory. This chapter largely reuses the developments presented in [8, 5]
for which the notations have been adapted.

4.2 Summary of the classical formulation of the generalized eigen-
value problems

The algorithms used for solving the generalized eigenvalue problems presented in Section 2.5 are
presented in the following. In order to assure the readability of the proposed methodology, this
approach, and the consequent numerical algorithms used to solve them, will be defined as the
classical formulation. The projection vector bases calculated using this classical formulation will
be denoted in this chapter by superscript "ref" in order to be able to compare them with the
calculations issued from the proposed new methodology.

4.2.1 Generalized eigenvalue problem for the structure

In the framework of the considered fluid-structure computational model, the Nu � nu elastic
modes of the structure with added-mass effect of the fluid, which have to be calculated, require
to solve the following generalized eigenvalue problem,

[Ku] [Φref
u ] = ( [Mu] + [Ma] ) [Φref

u ] [Λref
u ] , (4.1)

in which we recall that the fluid added-mass matrix [Ma], that characterizes the quasi-static
effect of the acoustic fluid on the structure [81, 85], is an (nu × nu) positive-definite symmetric
matrix that is formally written as,

[Ma] = [Cpu] [Kp]
−1 [Cpu]T , (4.2)

in which we recall that [Kp]
−1 is a formal notation for denoting the inverse of matrix [Kp] ensuring

the boundary condition p = 0 for the dofs related to the free surface. The numerical algorithm
used for computing matrix [Ma] is a classical backsubstitution for calculating the (np×nu) matrix
[X] as

[Kp] [X] = [Cpu]T , (4.3)

with the corresponding boundary conditions, and for which the minimum degree algorithm ( for
minimizing the non-zeros elements in the sparse Cholesky factorization of [Kp]) is used. The
computation of matrix [X] can be very expensive for large-scale fluid-structure model (i.e. when
the sparsity of matrix [Kp] is weak) even with the use of minimum degree algorithm. The method
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proposed in Section 4.4 will allow for avoiding the computational difficulties related to the RAM
consumption induced by the use of the classical algorithms for computing a Schur complement.
It should also be noted that such method would be very efficient for a hydroelastic problem
related to an incompressible liquid in presence of a free surface on which there is a zero pressure
condition.

4.2.2 Generalized eigenvalue problem for the acoustic fluid

The Np � np acoustic modes of the acoustic fluid, which have to be computed, are obtained
by solving the following generalized eigenvalue problem by ensuring the corresponding boundary
conditions in Cp (that is to say with p = 0 for the degrees of freedom related to Γ),

[Kp] [Φref
p ] = [Mp] [Φref

p ] [Λref
p ] . (4.4)

The computation of the acoustic vector basis [Φref
p ] can be very expensive for a high number of

degrees of freedom in the internal liquid mesh due to the classical algorithm used for solving the
generalized eigenvalue problems presented in Section 4.3.

4.2.3 Generalized eigenvalue problem for the sloshing with capillarity

The computation of the Nh � nh sloshing/capillarity modes consists in finding the eigenvalues
represented by the (Nh×Nh) diagonal matrix [Λref

h ] and the associated eigenvectors represented
by the ((nh + np)×Nh) matrix [Ψref

h ] that is written by blocks as

[Ψref
h ] =

[
[Φref
h ]

[Φref
ph ]

]
, (4.5)

in which [Φref
h ] is a (nh ×Nh) matrix and [Φref

ph ] is a (np ×Nh) matrix, such that

[Kp] [Φref
ph ] + [Cph]T [Φref

h ] [Λref
h ] = 0 , (4.6)

[Cph] [Φref
ph ] + [Kgc] [Φref

h ] = 0 , (4.7)

that has to be solved with a constant pressure condition on the free surface of the acoustic fluid.
Eliminating [Φref

ph ] in Eqs. (4.6) and (4.7) by ensuring the constant pressure condition on the free
surface, is equivalent to solving the following generalized eigenvalue problem,

[Kgc] [Φref
h ] = [Mgc] [Φref

h ] [Λref
h ] , (4.8)

in which [Mgc] is a positive-definite (nh × nh) matrix that is formally written as [Mgc] =
[Cph] [Kp]

−1 [Cph]T because [Kp] is not invertible, and which is rewritten as [Mgc] = [Cph] [S]
where the (np × nh) matrix [S] is computed by solving the linear matrix equation[

[Kp] ζT

ζ 0

] [
[S]
[L]

]
=

[
[Cph]T

0

]
, (4.9)

in which [L] is the (1×nh) matrix of the Lagrange multipliers. In Eq. 4.9, ζ is a (1×nh) vector
with all the entries equal to 1. The orthogonality properties related to the generalized eigenvalue
problem defined by Eq. (4.8) are written as

[Φref
h ]T [Mgc] [Φref

h ] = [INh ] , (4.10)

[Φref
h ]T [Kgc] [Φref

h ] = [Λref
h ] . (4.11)

Once Eq. (4.8) is solved and therefore, matrix [Φref
h ] is known, matrix [Φref

ph ] is computed by

[Φref
ph ] = −[S] [Φref

h ] [Λref
h ] . (4.12)
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4.3 Computational limitations induced by the classical formula-
tion

This section presents the different computational limitations encountered when trying to compute
the different vector bases [Φref

u ], [Φref
p ], and [Ψref

h ] using the classical formulation.

4.3.1 Brief description of the algorithms required for solving the generalized
eigenvalue problems of the introduced formulation

The formulation that has been presented in Section 4.2 requires to use an algorithm for solving
a given linear matrix equation for a positive-definite matrix and an algorithm for solving a
generalized eigenvalue problem for two real symmetric matrices for which one is positive definite.

• The first classical algorithm (ALG1) is used for solving a linear matrix equation of the
type [A] [X] = [B] in which [A] is a symmetric positive-definite matrix (see, for instance,
Eq. (4.3)). Such a classical algorithm consists in computing the Cholesky factorization
[C] [C]T of [A] using a minimum degree algorithm for optimizing the sparsity of [C]. Then
the solution of the linear matrix equation is obtained using the standard successive back-
substitutions that is formally written as [X] = [C−T ]( [C]−1 [B]).

• The second classical algorithm (ALG2) is used for computing the N first smallest eigen-
values and their associated eigenvectors of the generalized eigenvalue problem of the type
[A] [X] = [B] [X] [Λ] in which [A] and [B] are two symmetric positive-definite matrices (see,
for instance, Eq. (4.4)). The classical algorithm for solving such a generalized eigenvalue
problem consists in transforming it into a classical eigenvalue problem [P ] [Y ] = [Y ] [Λ].
For that, algorithm ALG1 is used for computing [P ]. This type of algorithm is used by
Matlab that calls the standard library LAPACK [22, 61].

It should be noted that the computational difficulties related to the RAM consumption are
generally not due to the eigenvalue problem [P ] [Y ] = [Y ] [Λ] but are due to the use of ALG1 by
ALG2.

4.3.2 Limitations related to RAM consumption for large-scale numerical
models on mid-power computers

As explained in Section 4.2.1, the difficulties occur with ALG1 when sparse matrices [Mp] and
[Kp] are very populated. This is the case, for instance, for a medium-scaled fluid-structure com-
putational model for which 20-node 3D solid hexahedral finite elements are used for the structure
and the internal liquid. These difficulties are induced by the use of ALG1 in the following nu-
merical steps.

Remark: Note that the 20-nodes 3D solid hexahedral finite elements are also constructed using
quadratic interpolation functions. Historically, in this work, the calculations have beenn started
using this type of finite elements but it appeared, after, that 10-nodes 3D solid tetrahedral finite
elements were more appropriate for meshing the domains.

• The elastic eigenvalue problem defined in Section 4.2.1 requires to compute matrix [Ma]
(see Eq. (4.2)) solving the matrix equation defined by Eq. (4.3) using ALG1 involving
matrix [Kp]. The memory overconsumption is mainly due to the number of columns in
matrix [Cpu]T .
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• The acoustic eigenvalue problem defined in Section 4.2.2 requires to solve the generalized
eigenvalue problem defined by Eq. (4.4) using ALG2 that uses ALG1 involving matrix
[Mp]. The memory overconsumption is mainly due to the computation of the Cholesky
factorization of matrix [Mp].

• Finally, the sloshing/capillarity eigenvalue problem is obtained by solving the linear matrix
equation defined by Eq. (4.9) using ALG1 and then solving the generalized eigenvalue prob-
lem defined by Eq. (4.8) with ALG2 involving matrix [Kp]. The memory overconsumption
is mainly due to the number of columns in matrix [Cph]T .

4.3.3 Remark concerning the choice of a formulation

In this section, we analyze the CPU time induced by an iterative algorithm with respect to
ALG1. For solving Eq. (4.3) in which [Kp] is a very populated sparse matrix and where the
number of active columns in the right-hand side member is large, an iterative solver could be
used (the problem is similar for Eq. (4.9)). As [Kp] is positive, the preconditioned conjugate
gradient iterative algorithm, denoted as "PCG", is used for computing matrix [X]. This iterative
algorithm is known for being very efficient when solving [A]X = B in which [A] is a symmetric
positive-definite matrix. Such an algorithm requires that the right-hand side member B be a
vector (and not a matrix), which is not the case for the problem that we have to solve. This is
why, the use of such an iterative algorithm is not, a priori, the best choice for the computation
of matrix [X], because the PCG algorithm should be used for each column of matrix [Cpu]T .
The PCG algorithm requires the use of a preconditioner to speed up the convergence, which
is chosen as the incomplete Cholesky factorization of matrix [Kp]. This incomplete Cholesky
factorization requires a filling parameter named as "drop tolerance" that has to be optimized
for the PCG algorithm. This drop tolerance optimization must take into account the time
required to compute the incomplete Cholesky factorization of [Kp] and also the time required
to solve the linear system with this preconditioner. The analysis of the CPU-time consumption
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Figure 4.1 – Analysis of the PCG algorithm for solving the linear matrix equation defined by
Eq. (4.3) with respect to the Drop tolerance of the Cholesky factorization of matrix [Kp]: Elapsed
time required for computing the incomplete Cholesky factorization of matrix [Kp] (left figure);
Number of iteration required for solving Eq. (4.3) (middle figure) for only one right hand-side
member (i.e. for one column of matrix [Cpu]T ); CPU time required for solving Eq. (4.3) using
PCG algorithm for 10 right-hand side members (i.e. for the 10 first columns of matrix [Cpu]T )
(right figure).

for such iterative solver has been performed on the smallest mesh of the application presented
in Section 4.5. The detailed results of this analysis are shown in Figure 4.1. Figure 4.1 (left)
displays the graph of the elapsed time required for computing the PCG preconditionner using
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the incomplete Cholesky factorization of [Kp] with respect to the drop tolerance. It is shown that
the time required for computing this preconditionner is negligeable in front of the total elapsed
time required in the use of the PCG. Figure 4.1 (middle) displays the graph of the number of
iterations required to solve the linear matrix equation [Kp]X1 = [Cpu]T1 (in which [Cpu]T1 denotes
the first column of matrix [Cpu]T ) with respect to the drop tolerance. Finally, figure 4.1 (right)
displays the graph of the CPU time required for solving the 10 firsts linear matrix equations
defined by [Kp]Xi = [Cpu]Ti (i = 1, . . . , 10) with respect to the drop tolerance. One can see
that the same trend is visible for the 10 computations and that the value of the optimal drop
tolerance is 1.8×10−4. Table 4.1 synthesizes both the CPU time and the elapsed time required to
compute Eq. (4.2) using either ALG1 or PCG algorithms. One can see that the time required by
the PCG alogrithm is almost two times greater than the time for ALG1. The results show that

Algorithm CPU time Elapsed time
ALG1 8 h 54min 57min
PCG 57 h 09min 30 h 06min

Table 4.1 – Table of the CPU time and the corresponding elapsed time required for solving
Eq. (4.3) using ALG1 and PCG algorithm.

the PCG algorithm is a lot slower than ALG1 in this case. This difference between ALG1 and
PCG can be explained by the loop required to solve the linear system for each column of matrix
[Cpu]T , which is heavily time consuming on a software such as Matlab. For solving the linear
matrix equation, Eq. (4.3), with the PCG algorithm, the loop could be parallelized to speed up
the computation but would highly increase the RAM consumption. Finally, it is concluded that
PCG will not be retained.

4.4 Adapted computational strategy for solving the generalized
eigenvalue problems

Taking into account the limitations highlighted in Section 4.3, an alternative numerical strategy is
proposed, allowing the elastic, acoustic, and sloshing/capillarity eigenvalue problems, to be solved
for large scale fluid-structure computational models on mid-power computers with a moderate
RAM.

4.4.1 Double projection algorithm for solving the elastic eigenvalue problem

The proposed double projection method allows for circumventing the difficulties induced by
the computation of matrix [Ma]. It consists in introducing a second projection for solving the
generalized eigenvalue problem defined by Eq. (4.1). The modal matrix [Φu] is then rewritten
as,

[Φu] = [ΦI
u] [ΦII

u ] , (4.13)

in which [ΦI
u] is the full (nu × Nu) matrix that corresponds to the first projection basis on a

subspace of dimension Nu > Nu, and where [ΦII
u ] is the full (Nu ×Nu) matrix that corresponds

to the second projection basis on a subspace of dimension Nu. In the present case, the first
projection basis is constructed by solving the following eigenvalue problem for the structure in
vacuo (without the acoustic fluid),

[Ku] [ΦI
u] = [Mu] [ΦI

u] [ΛI
u] . (4.14)
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If Nu is sufficiently large, the Nu eigenvectors computed using Eq. (4.1) belong to the subspace
spanned by [ΦI

u]. Note that for Nu = nu, [ΦI
u] is a vector basis of the admissible set and

consequently, Nu can always be found for obtaining the convergence. Therefore the double
projection method requires a convergence analysis with respect to Nu. Matrix [ΦI

u] satisfies the
following orthogonality properties,

[ΦI
u]T [Mu] [ΦI

u] = [INu ] , (4.15)

[ΦI
u]T [Ku] [ΦI

u] = [ΛI
u] . (4.16)

Left multiplying Eq. (4.1) by [ΦI
u]T and using Eq. (4.13) yield the following generalized eigenvalue

problem with a very small dimension Nu (computationally solved without any problem),

[ΛI
u] [ΦII

u ] =
(

[INu ] + [Ma]
)

[ΦII
u ] [Λu] , (4.17)

for which the following orthogonality conditions are satisfied,

[ΦII
u ]T ([INu ] + [Ma]) [ΦII

u ] = [INu ] , (4.18)

[ΦII
u ]T [ΛI

u] [ΦII
u ] = [Λu] . (4.19)

In Eq. (4.17), the (Nu ×Nu) positive-definite matrix [Ma] is written as [Ma] = [ΦI
u]T [Ma][Φ

I
u].

Using Eq. (4.2), this matrix can be rewritten as

[Ma] = [Cpu] [Kp]
−1 [Cpu]T , (4.20)

in which [Cpu] = [ΦI
u]T [Cpu] is a (Nu × np) sparse rectangular matrix. In practice, matrix [Ma]

is computed by [Ma] = [Cpu] [X ] in which the (np ×Nu) matrix [X ] is the solution of the linear
matrix equation [Kp] [X ] = [Cpu]T that is solved with ALG1. Such calculations can now be done
with a reasonable computational time and RAM consumption.

4.4.2 Subspace iterations for the acoustic eigenvalue problem

For solving the acoustic eigenvalue problem, a method for circumventing the difficulties appear-
ing in ALG2 when using ALG1 that involves matrix [Mp] consists in using the subspace iteration
method [25, 26], which is briefly summarized and adapted to our context.

First, an initial projection basis, represented by the (np×Np) matrix [Φp]1 with Np < Np � np,
is computed using the initialization procedure described in [26]. Then the projection basis is
updated using the following iterative algorithm in which the subscript k ∈ {1, 2, . . .} denotes the
current iteration,

[Kp] [ΦI
p]k+1 = [Mp] [Φp]k , (4.21)

[Kp]
k+1 = [ΦI

p]
T
k+1 [Kp] [ΦI

p]k+1 , (4.22)

[Mp]
k+1 = [ΦI

p]
T
k+1 [Mp] [ΦI

p]k+1 , (4.23)

[Kp]
k+1 [ΦII

p ]k+1 = [Mp]
k+1 [ΦII

p ]k+1 [Λp]
k+1 , (4.24)

[Φp]k+1 = [ΦI
p]k+1 [ΦII

p ]k+1 . (4.25)

This iterative procedure is stopped when the following convergence criterion is reached,{
1−

(λ
(k+1)
i )2

(ϕII,α
p )Tk+1 (ϕII,α

p )k+1

} 1
2

≤ tol , i = 1, . . . ,Np , (4.26)
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where (ϕII,α
p )k+1 is the α-th vector in matrix [ΦII

p ]k+1 corresponding to λ(k+1)
i , and tol = 10−2s

with accuracy of 2s digits in the required eigenvalues. Finally, a Sturm sequence checking
is performed to ensure that the correct eigenvalues and their associated eigenvectors have been
calculated. This classical iterative procedure could certainly be sped up using the method recently
proposed in [68]. It would be an additional improvement of the method proposed for limiting
the RAM consumption.

4.4.3 Double projection algorithm for the sloshing/capillarity eigenvalue prob-
lem

Again, for avoiding the difficulties induced solving Eq. (4.9), a double projection method similar
to the one described in Section 4.4.1 is used for computing the sloshing/capillarity eigenvalue
problem defined in Section 4.2.3. However, the first approximation of the projection basis used
for the double projection of the elastic eigenmodes of the structure, which consisted in using the
dry eigenmodes of the structure, cannot be used for the sloshing eigenmodes. This is why a first
approximation of the sloshing projection basis has to be defined in order to apply the double
projection method.

4.4.3.1 Comments about the construction of an approximation of matrix [Kp]

In order to circumvent the difficulties due to the RAM overconsumption, several possibilities
have been explored for constructing a very sparsely populated matrix [Ka

p ] that approximates
the very populated matrix [Kp].

(i) - A first approximation would consist in using for [Ka
p ] the restriction of [Kp] to the pressure

dofs related to the free surface of the acoustic liquid (this means that the corresponding rows
and columns of [Kp] and the corresponding columns of [Cph] are removed). This approximation
leads a very slow convergence of the double projection method.

(ii) - A second one would consist in taking for [Ka
p ] a few diagonals of [Kp] in order to take into

account that [Kp] corresponds to the finite element approximation of the Laplace operator. This
approach is difficult because [Ka

p ] must stay nonnegative and in practice, such a property cannot
easily be ensured except if an incomplete factorization of [Kp] is performed (see below).

(iii) - A more natural construction of [Ka
p ] would consist in computing an incomplete factorization

of [Kp]. Since this matrix is positive semi-definite (and not positive definite), the incomplete
Cholesky factorization of [Kp] cannot be used with the standard libraries such as LAPACK.
Therefore, an incomplete LU factorization must be used that avoids the RAM overconsumption
but which induces a very high CPU-time consumption.

(iv) - The Airy infinitesimal wave theory shows that the pressure field exponentially decreases as
a function of the distance (depth) to the free surface. This means that an approximation [Ka

p ]
can be constructed by keeping the pressure dofs related to a small layer (with height hK) of the
acoustic liquid under the free surface. Such an approximation is in general, very efficient, and is
the one that we propose to use.
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4.4.3.2 Double projection algorithm

Let nah � np be the number of dofs related to the small layer of the acoustic fluid of height
hK under the free surface. Note that we have nh < nah. We then have [Ka

p ] and [Caph] as the
(nah × nhK ) and the (nah × nah) matrices corresponding to the restriction of matrices [Kp] and
[Cph] to the pressure dofs related to this small layer of the acoustic fluid. Consequently, matrix
[Kp]

a is positive definite. Let [ΦI
h] be the (nh × Nh) matrix in which Nh < Nh � nh and let

[ΛI
H ] be the (Nh × Nh) diagonal positive-definite matrix satisfying the following equation that

corresponds to the restriction of Eqs. (4.6) and (4.7) to the nah pressure dofs,

[Ka
p ] [Φa

ph] + [Caph]T [ΦI
h] [ΛI

H ] = 0 , (4.27)

[Caph] [Φa
ph] + [Kgc] [ΦI

h] = 0 , (4.28)

in which [Φa
ph] is a (nah × Nh) matrix that is the restriction of matrix [Φph] to the nah pressure

dofs related to the small layer of acoustic fluid. The elimination of [Φa
ph] between Eqs. (4.27) and

(4.28) yields the generalized eigenvalue problem,

[Kgc] [ΦI
h] = [Ma

gc] [ΦI
h] [ΛI

H ] , (4.29)

in which the positive-definite (nh × nh) matrix [Ma
gc] is written as,

[Ma
gc] = [Caph] [Ka

p ]−1 [Caph]T . (4.30)

In practice, matrix [Ma
gc] is computed by [Ma

gc] = [Caph] [X] in which the (nah × nh) matrix [X]

is solution of the linear matrix equation [Ka
p ] [X] = [Caph]T that is solved with ALG1. If Nh

is sufficiently large, the Nh sloshing/capillarity modes defined in Section 4.2.3 belong to the
subspace spanned by [ΦI

h]. Note that, for all nah such that nh ≤ nah ≤ np, if Nh = nh then [ΦI
h] is

a vector basis of the admissible set of H and consequently, Nh can always be found for obtaining
the convergence. Therefore the double projection method requires a convergence analysis with
respect to Nh. Matrix [ΦI

h] verifies the following orthogonality properties,

[ΦI
h]T [Ma

gc] [ΦI
h] = [INh ] , (4.31)

[ΦI
h]T [Kgc] [ΦI

h] = [ΛI
h] . (4.32)

The solution of Eq. (4.29) provides a reasonable approximation of the sloshing/capillarity modes
compared to those computed in Section 4.2.3. The double projection method then consists in
writing the block matrix Φh appearing in Eq. (4.5) as,

[Φh] = [ΦI
h] [ΦII

h ] , (4.33)

in which the full (Nh×Nh) matrix [ΦII
h ] corresponds to the second projection basis on a subspace

of dimensionNh < Nh. Substituting Eq. (4.33) in Eq. (4.8) and left multiplying by [ΦI
h]T yield the

following eigenvalue problem in the subspace with a very small dimension Nh (computationally
solved without any problem),

[ΛI
h] [ΦII

h ] = [Mgc] [ΦII
h ] [Λh] , (4.34)

in which [Mgc] is a positive-definite (Nh×Nh) matrix that is written as [Mgc] = [Cph] [S], where
the (Nh × np) matrix [Cph] is defined by [Cph] = [ΦI

h]T [Cph], and where matrix [S] = [S] [ΦI
h] is

computed as in Section 4.2.3 by solving the linear matrix equation,[
[Kp] (ζ)T

ζ 0

] [
[S]
[L]

]
=

[
[Cph]T

0

]
, (4.35)
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in which [L] is the (1×Nh) matrix of Lagrange multipliers and where ζ is the matrix introduced
in Section 4.2.3. Matrix [ΦII

h ] satisfies the following orthogonal properties,

[ΦII
h ]T [Mgc] [ΦII

h ] = [INh ] , (4.36)

[ΦII
h ]T [ΛI

h] [ΦII
h ] = [Λh] . (4.37)

In practice, matrix [S] is computed by solving the linear matrix equation Eq. (4.35) using ALG1;
then the solutions of the sloshing/capillarity eigenvalue problem defined in Eq. (4.34) are com-
puted using ALG2 involving ALG1. Such computation is done with a reasonable time and RAM
consumption. We then obtain the block matrix [Φph] of the sloshing/capillarity modes by,

[Φph] = −[S] [ΦII
h ] [Λh] . (4.38)

4.5 Quantification of the computer resources used for computing
the projection bases

In the present numerical study, all the computations are made on a workstation with 264 GB
RAM and 12 Intel(R) Xeon(R) CPU E5-2620 0 with a frequency of 2GHz.

4.5.1 Finite element model of the fluid-structure system

The fluid-structure system is the one described in [73, 3] for which the retained dimensions are
those of [73] (note that these two references are only used for defining the fluid-structure system
for which capillarity effects are not analyzed). The structure is a steel tank constituted of a thin
circular cylinder closed at both ends by circular plates (see Figure 4.2). The external radius
is Re = 3.78 × 10−2m, the thickness is e = 2 × 10−4m, and the height is h = 0.23m. This
tank is partially filled with an acoustic liquid with height hf = 0.12m. The origin O of the
Cartesian coordinates system (e1, e2, e3) is located at the center of the bottom of the cylindrical
tank. Axis e3 coincides with the axis of revolution of the system. The boundary conditions are
those defined in [73, 3]. The finite element model of the fluid-structure system is constructed
using 20-node 3D hexahedral finite elements for the structure and for the acoustic fluid. The free
surface of the liquid is meshed using 8-node 2D finite elements and the triple line is meshed using
3-node 1D finite elements. All the meshes of the computational model are compatible. On this
basis, several finite element meshes with different sizes have been constructed in order to quantify
and to identify the limitations of the computer resources used for the computation. Table 4.2
summarizes the finite element models built in order to study the efficiency of the algorithms.
Figure 4.2 displays three finite element meshes of the considered fluid-structure system for which
the number of dofs are 74 000, 196 000, and 578 000. Let nsystemdof and nKnz be the total number of
dofs of the computational model and the number of nonzero entries in matrix [Kp]. For the three
generalized eigenvalue problems, we are interested in computing the first Nu = 100 eigenvectors
of the elastic eigenvalue problem, the first Np = 100 eigenvectors of the acoustic eigenvalue
problem, and the first Nh = 70 eigenvectors of the sloshing/capillarity eigenvalue problem.

4.5.2 Elastic eigenvalue problem

The double projection method requires to find the optimum size of the initial projection basis
[ΦI
u] in order to accurately calculate the eigenvalues and to ensure a low computational and

memory usage. Let 0 < λu1(Nu) ≤ . . . ≤ λuNu(Nu) be the eigenvalues computed as explained
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nsystemdof = 74 000 nsystemdof = 196 000 nsystemdof = 578 000

Figure 4.2 – Example of three finite element meshes of the fluid-structure system corresponding
to three different mesh fineness.

nsystemdof /103 np /103 nKnz /105

74 44 24
127 83 46
196 134 75
362 262 147
578 441 249
850 679 387

1 142 945 541
1 664 1 411 811
2 298 1 990 1 147

Table 4.2 – Numerical data of the mesh and sparsity of matrix [Kp].

in Section 4.4.1. A convergence analysis of the largest eigenvalue, λuNu , with respect to Nu
is performed for mesh with nsystemdof = 196 000. Figure 4.3 displays the graph of the largest
eigenfrequency

ConvNu(Nu) =

√√√√λuNu(Nu)

λu,refNu

,

as a function of Nu, in which λu,ref
Nu

is the eigenvalue of rank Nu corresponding to the reference
solution (see Section 4.2.1). It can be seen that a good approximation is obtained with Nu = 500.
From now on, in this chapter, we use Nu = 500. An analysis of the computer resources required
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Figure 4.3 – Graph of function Nu 7→ ConvNu(Nu) showing the convergence of the highest
normalized eigenfrequency that is considered with respect to Nu using the double projection
algorithm.
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Figure 4.4 – CPU time (left figure) and RAM (right figure) required for solving the elastic
eigenvalue problem using standard method and double projection method as a function of the
dofs number defined in Table 4.2.

for solving the elastic eigenvalue problem has been performed with respect to the size of the finite
element mesh, for both standard and double projection methods. Figure 4.4 displays the graphs
of the CPU time (left) and the graph of the maximum RAM (right) required for the computation
with respect to the values of nsystemdof given in Table 4.2. It can be seen that the RAM required
for the computation with nsystemdof = 362 000 exceeds 264 GB when the standard method is used,
implying an out of memory and a stop of computation. Consequently, the computation cannot
be carried out for nsystemdof > 196 000. The double projection method proposed allows for solving
the elastic eigenvalue problem for all the values of nsystemdof considered in Table 4.2. In addition,
Figure 4.4 shows that the double projection yields a considerable gain for the CPU time with
respect to the standard method.
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4.5.3 Acoustic eigenvalue problem
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Figure 4.5 – CPU time (left figure) and RAM (right figure) required for solving the acoustic
eigenvalue problem using standard method and subspace iteration method as a function of the
dofs number defined in Table 4.2.

Figure 4.5 displays the graph of the computational CPU time (left) and the graph of the
maximum RAM (right) used for solving the acoustic eigenvalue problem for all the values of
nsystemdof considered in Table 4.2 using both standard and subspace iteration methods. It can be
seen that, for the standard method, the RAM required for nsystemdof = 850 000 exceeds 264 GB,
and consequently, could not be carried out. In comparison, the subspace iteration method allows
for solving the acoustic eigenvalue problem for larger values of nsystemdof until nsystemdof = 1 142 000
but in counterpart generates a higher CPU-time consumption, which is compensated by the fact
that the computation can effectively be done. Note that the CPU time with subspace iteration
is correlated to the choice of the tolerance for the convergence and can be decreased if a less
demanding tolerance is used.

4.5.4 Sloshing/capillarity eigenvalue problem

The double projection method requires to find the optimum size of the initial projection basis
[ΦI
h] in order to accurately solve the sloshing/capillarity eigenvalue problem and to ensure a

low-computation time and RAM usage. Let 0 < λh1(Nh, hK) ≤ . . . ≤ λhNh(Nh, hK) be the slosh-
ing/capillarity eigenvalues computed as explained in Section 4.4.3. A convergence analysis of the
largest eigenvalue, λhNh(Nh, hK), is performed with respect to the size Nh of the initial subspace
and to the height hK of the small acoustic-fluid layer used for constructing the approximation
[Ka

p ] of [Kp]. Figure 4.6 displays the graph of

ConvNh(Nh, hK) =

√√√√λhNh(Nh, hK)

λh,refNh

,

in which λh,refNh
is the eigenvalue of rank Nh corresponding to the reference solution (see Sec-

tion 4.2.3). It can be seen that a good approximation is obtained for Nh = 500 and hK corre-
sponding to 7% of acoustic-fluid depth that is retained in the following. The sloshing/capillarity
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Figure 4.6 – For given hK corresponding to 4%, 6%, and 7% of acoustic-fluid depth, graph of func-
tion Nh 7→ ConvNh(Nh, hK) showing the convergence of the highest normalized eigenfrequency
that is considered with respect to Nh using the double projection algorithm.
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Figure 4.7 – CPU time (left figure) and RAM (right figure) required for solving the slosh-
ing/capillarity eigenvalue problem using standard method and double projection method as a
function of the dofs number defined in Table 4.2.

eigenvalue problem is analyzed with respect to the number of dofs nsystemdof of the finite element
mesh described in Table 4.2 for both standard and double projection methods. Figure 4.7 displays
the graph of the CPU time and the graph of the maximum RAM required for the computation.
It can be seen that the RAM required for the computation with nsystemdof = 850 000 exceeds 264
GB when the standard method is used, implying an out of memory and a stop of computation.
Consequently, the computation cannot be carried out for nsystemdof > 578 000. In comparison, the
double projection method allows for solving the sloshing/capillarity eigenvalue problem for all
the values of nsystemdof considered in Table 4.2. In addition Figure 4.7 (left) shows that the double
projection yields a considerable gain for the CPU time with respect to the standard method.

45



Chapter 4. Computational strategy for large-scale fluid-structure numerical models

4.5.5 Conclusion on the efficiency of the proposed computational strategy

Non-standard algorithms have been proposed for solving generalized eigenvalue problems related
to large-scale fluid-structure computational models that are simulated with mid-power comput-
ers. In this framework, the limitations of the computer resources are principally due to the RAM
limitations. The double projection method and the subspace iteration method that are proposed
allow for solving problems that cannot be treated with standard algorithms. In addition, the use
of the double projection method not only allows for circumventing the RAM limitation but also
allows for considerably decreasing the CPU time with respect to the standard algorithms. The
algorithms proposed allow for computing a large scale fluid-structure computational model on
mid-power computers but certainly, would allow for computing very large scale fluid-structure
computational models on high-power computers.
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Chapter 5

Quantifying the influence of the triple line
coupling operator

Contents
5.1 Introduction and hypotheses . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Description of the fluid-structure system . . . . . . . . . . . . . . . . 48

5.2.1 Finite element models and boundary conditions . . . . . . . . . . . . . . 48
5.2.2 Parameters of the model and eigenfrequency characterization . . . . . . 51
5.2.3 Quantities of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2.4 Definition of the external excitation of the system . . . . . . . . . . . . 52
5.2.5 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Quantification of the influence of [Chu]T with respect to θ . . . . . . 53

5.1 Introduction and hypotheses

The new formulation proposed in [86] allows for taking into account the capillary effects occurring
at the triple line under the assumption of a deformable structure. The matrix [Chu]T introduced
in the equation Eq. (2.65) due to the second term in the right-hand side of Eq. (2.9), and
constructed by algebraic duality [85, 86], allows for better taking into account the dynamical
effects of the triple line on the elastic structure. We recall that both operators [Chu] and [Chu]T

depend on the capillary contact angle, but also depend on the local curvatures < KΓ > and
< KΣ > of the structure and of the free surface around the triple line. This influence is seen
through the term J defined (see Eq. (2.11)) by

J u = dh u · nu −
∂u · nu

∂νΣ
. (5.1)

Indeed, dh is directly related to the contact angle θ and to the local curvatures of both the
structure < KΣ >= 1/RΣ and the free surface < KΓ >= 1/RΓ (see Figure 5.1) by

dh =
< KΓ > − < KΣ > cos(θ)

sin(θ)
. (5.2)

We also recall that another influence of the triple line in the dynamical equation of the coupled
system appears through the free-surface stiffness matrix [K l

c], defined by Eqs. (2.35) and (2.56),
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Figure 5.1 – Sketch of the contact angle between the structure and the free surface, and of the
corresponding unit normals to each surface.

in which ch is written as

ch =
< KΓ > cos(θ)− < KΣ >

sin(θ)
. (5.3)

It is therefore essential to quantify the importance of the matrices related to the triple line in
relation to each other, in particular, to highlight the importance of the new term [Chu]T regarding
the dynamical behavior of the coupled fluid-structure system. This chapter is therefore devoted
to the analysis of a numerical application especially designed to quantify the influence of the
coupling matrix [Chu]T on the fluid-structure system dynamical responses. For that, we consider
the fluid-structure system for which the liquid is coupled to the elastic structure only by the triple
line. Consequently, the liquid is not excited by the structure if [Chu] and [Chu]T are removed. It
is important to note that the purpose of this section is to see if matrix [Chu]T contributes to the
system dynamics and to find one or more cases, for which the influence of [Chu]T is significant.
The quantification of the influence of coupling matrix [Chu]T is done within the framework of
linear dynamics, which is why the simulations presented in this chapter are performed with the
reduced-order model presented in Section 2.5 under the assumption of a linear elastic structure
(i.e. considering FNL = 0).

5.2 Description of the fluid-structure system

In this section, we are interested in describing the coupled fluid-structure system that will be
used to quantify the influence of matrix [Chu]T in comparison to the other coupling terms of the
fluid-structure model.

5.2.1 Finite element models and boundary conditions

The considered system is a small elastic cup (cylindrical elastic wall with a bottom elastic plate),
whose dimensions are given in the Figure 5.2, containing a liquid for which the contact angle with
the vertical elastic wall (cylindrical wall) is greater than 90◦ (non-wetting liquid). The liquid
is in contact with the structure, only on the bottom of the cup and on the triple line, which is
common to the vertical wall. Several contact angles between the free surface of the liquid and
the elastic wall of the structure are considered, θ ∈ {143◦, 152◦, 161◦, 169◦, 177◦}, which leads to
a modification of the curvature of the free surface especially at the triple line location.

The finite element model of the fluid-structure system is constructed using 3D-solid tetrahe-
dral finite elements with 10 nodes for the structure and for the acoustic liquid (see Figure 5.4).
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Figure 5.2 – Geometrical identification of the fluid-structure system constituents: liquid, vertical
wall, bottom, free surface, triple line, and contact (top figure). Dimensions of the cup (bottom
figure).

Figure 5.3 – Mesh of the cup.

The free surface of the liquid is meshed using 2D finite elements with 6 nodes and the triple
line is meshed using 1D finite elements with 3 nodes, with quadratic interpolation functions.
Figure 5.4 shows the 5 meshes of the fluid-structure system with their respective contact angles.
It can be seen that the smaller the contact angle, the greater the local curvature of the surface
at the triple line. Figure 5.5 displays a cross-section view of the different free surfaces of the
considered fluid-structure system, on which we can see the local curvature of the free surface
around the triple line. Table 5.1 reports the local curvature < KΓ > of the free surface at the
triple line as a function of the contact angle.

The boundary conditions applied to the structure are defined in order to avoid the energy
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θ1 = 143◦ θ2 = 152◦ θ3 = 161◦

θ4 = 169◦ θ5 = 177◦

Figure 5.4 – Computational finite element meshes of the fluid-structure system for 5 contact
angles θ ∈ {143◦, 152◦, 161◦, 169◦, 177◦}.

Figure 5.5 – Cross-section of the fluid-structure systems presented in Figure 5.4 for the different
contact angles θ.

θ1 θ2 θ3 θ4 θ5

< KΓ > 408 332 315 252 93

Table 5.1 – Curvature < KΓ > of the free surface at the triple line with respect to the considered
contact angles θi, i = 1, . . . , 5.

transmission from the structural excitation (which are radial forces applied to the vertical elastic
cylindrical wall) to the internal liquid by the contact surface Σ but to have only an energy
transmission by the triple line coupling.

A portion of the bottom of the cup, located on a centered disk with a radius of 6 × 10−3m
(part of the mesh colored red in Figure 5.3) is fixed in all three directions to prevent rigid body
motions of the elastic structure. The nodes located in the rest of the cup bottom (black-color
nodes in Figure 5.3) are locked along the vertical direction e3. This boundary condition prevents

50



5.2. Description of the fluid-structure system

vertical displacements of the elastic structure on Σ, which means that np · u = 0 on Σ (that
implies [Cpu] = [0]). The nodes located in the rest of the structure (blue-color nodes in Figure 5.2
right) are left free. These boundary conditions ensure that the transmission of the excitation
energy from the structure to the internal liquid is only by the coupling with the triple line.

5.2.2 Parameters of the model and eigenfrequency characterization

The material parameters of the structure are: Young modulus E = 50N.m−2, Poisson coefficient
ν = 0.25, mass density ρS = 7900Kg.m−3, and damping rate τS = 5× 10−5. The parameters of
the acoustic fluid are: sound velocity c0 = 0.08m.s−1 and mass density ρ0 = 1000Kg.m−3. The
parameters of the free surface are: surface tension coefficient σΓ = 0.0728, and gravity intensity
g = 9.81m.s−2.

Table 5.2 presents the eigenfrequency characterization of each part of the coupled fluid-
structure system corresponding to the three generalized eingevalue problems defined in Sec-
tion 2.5. The eigenfrequencies of the structure, of the liquid, and of the free surface are interlaced,
which strongly promotes resonance coupling in the dynamical responses of the system.

Contact angle Sloshing eigenfrequencies (in Hz)
θ1 2.82 4.61 6.51 6.61 8.52 9.93 10.89 13.31 13.42
θ2 3.29 5.33 7.42 7.47 9.72 10.89 12.28 14.29 14.95
θ3 3.56 5.75 7.82 8.01 10.35 11.24 13.05 14.58 14.71
θ4 3.79 6.05 8.01 8.35 10.71 11.14 12.70 13.47 14.22
θ5 3.58 5.58 6.61 7.67 8.37 8.82 9.97 11.15 12.01

Contact angle Acoustic eigenfrequencies (in Hz)
θ1 8.35 9.26 10.7 10.26 11.09 11.26 12.00 12.25 12.35
θ2 5.94 6.88 7.81 7.94 8.75 8.99 9.68 10.02 10.14
θ3 5.18 6.14 7.08 7.24 8.04 8.31 8.97 9.36 9.49
θ4 4.11 5.11 6.10 6.28 7.07 7.41 8.04 8.51 8.65
θ5 2.84 3.97 5.03 5.22 5.87 6.07 6.35 6.96 7.08

Contact angle Elastic eigenfrequencies (in Hz)
{θ1, θ2, θ3, θ4, θ5} 2.97 4.08 5.84 6.56 6.63 7.37 7.79 8.92 9.08

Table 5.2 – Table of the first 9 sloshing eigenfrequencies of the free surface, acoustic eigenfre-
quencies of the liquid, and elastic eigenfrequencies of the structure (in Hz).

5.2.3 Quantities of interest

The results of the numerical simulations are observed by different quantities of interest defined
on certain observation points. These interest quantities are chosen in order to visualize a global
behavior of the fluid-structure system towards matrix [Chu]T . It should be recalled that simula-
tions are made considering a linear elastic structure. The interest quantities are therefore defined
for each part of the system as follows.

• For the structural displacement, the quantity of interest, dBU , is defined as the spatial
averaging of all the nodes. Let Uxui (t) be the vector in R3 of the 3 displacement dofs of
node xui , which is constructed from U(t) (with values in Rnu). Let ω 7→ Ûxui (2πν) be the
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Fourier transform of t 7→ Uxui (t), the quantity of interest dBU (2πν) is defined by,

dBU (2πν) =
1

nu/3

nu/3∑
i=1

20 log10(
∥∥ Ûxui (2πν)

∥∥
C3 ) , (5.4)

• For the pressure in the acoustic liquid, the quantity of interest dBP is defined by

dBP (2πν) =
1

np

np∑
i=1

20 log10( |P̂i(2πν)| ) . (5.5)

• For the free-surface elevation, the quantity of interest dBH is defined by

dBH(2πν) =
1

nh

nh∑
i=1

20 log10( |Ĥi(2πν)| ) . (5.6)

5.2.4 Definition of the external excitation of the system

The external forces applied to the elastic structure are radial forces defined hereinafter. We
consider the sector of the cylindrical elastic wall defined by the polar angle [−π/16 , π/16]. Let
nexci be the number of nodes belonging to this sector and located on the external surface of the
cylindrical wall. A radial force is applied to each one of these nodes with an intensity equal to
1/nexci. These radial forces are represented by the time depending vector Fu(t)

Fu(t) = α g(t)F , (5.7)

in which the vector F is time independent and is such that
∥∥F∥∥ = 1. In Eq. (5.7), α is the intensity

coefficient taken as α = 5×10−8 and g(t) is the time function of the dynamical excitation, whose
Fourier transform is constant in the frequency band of excitation, Be = [νmin , νmax]Hz, with
νmin = 1Hz and νmax = 10Hz, which writes

g(t) = 2
sin(π∆ν t)

π t
cos(2π s∆ν t) , ĝ(2πν) = 1Be ⋃Be (ν) , (5.8)

in which Be = [−νmax , −νmin], ∆ν = νmax−νmin and s = (νmax+νmin)/(2∆ν). In Eq. (5.8), one
can see that ĝ(2πν) = 1 if ν ∈ Be and 0 if ν ∈ R+\Be. The dynamical responses of the system are
computed in the time domain. The Fourier transform of the time responses allows for obtaining
the responses in the frequency domain over chosen frequency band of analysis Ba = [0 , 40]Hz.
The computation is carried out on a truncated time domain [tini, tini+T ] with T tini = −66.67 s
and T = 1 469.32 s because sloshing resonances are very weakly damped phenomena and require
a long simulation time before returning to equilibrium position. The sampling frequency and the
number of time steps are chosen as νe = 80Hz and Nt = 122 880.

5.2.5 Convergence analysis

The linear reduced-order model used for the simulations requires a convergence analysis with
respect to the size Nphu of the projection basis [Ψ] (see Section 2.5. Since the dynamical ref-
erence solution cannot be computed for such large-scale and long-time computational model,
it is assumed that the convergence is reached when the response is no longer sensitive to pa-
rameters Np, Nh or Nu. Let X be representing whether P , H or U . The quantity of interest
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dBX(2πν) is rewritten as dBX(2πν;Np, Nh, Nu) for indicating its dependency with respect to
the modal truncation order Np, Nh, and Nu. We choose to normalize the convergence function
with respect to the values Np = 200, Nh = 250, and Nu = 100. The convergence function
(Np, Nh, Nu) 7→ ConvX(Np, Nh, Nu) is defined by,

ConvX(Np, Nh, Nu) =


∫
Ba

dBX(2πν;Np, Nh, Nu) 2 dν∫
Ba

dBX(2πν;Np, Nh, Nu) 2 dν


1/2

. (5.9)
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Figure 5.6 – Graphs of the convergence of the solutions obtained in terms of P, H, and U at
the observation points with respect to Np (left figure), to Nh (middle figure), and to Nu (right
figure).The vertical axis is in log scale.

Three convergence analyses are then performed with respect to Np, to Nh, and to Nu. Figure 5.6
displays the graphs of

Np 7→ ConvX(Np, Nh, Nu) for X = {P,H,U} (5.10)

Nh 7→ ConvX(Np, Nh, Nu) for X = {P,H,U} (5.11)

Nu 7→ ConvX(Np, Nh, Nu) for X = {P,H,U} (5.12)

It is shown that the convergence analyses yield the optimal order of the ROM: Np = 100,
Nh = 80, and Nu = 50. This optimal order of the ROM is used in the following computations.

5.3 Quantification of the influence of [Chu]T with respect to θ

In order to quantify the influence of the coupling matrix [Chu]T , two computations are performed.
The first one considers all coupling matrices and the results of this computation is presented in
blue-dashed line in Figures 5.8 to 5.10. In the second calculation, the coupling matrix [Chu]T is
removed and the results of this computation are displayed in red-solid line in Figures 5.8 to 5.10.
Figure 5.8, 5.9, and 5.10 respectively display the graphs of ν 7→ dBU (2πν), ν 7→ dBP (2πν), and
ν 7→ dBH(2πν), for the five contact angles θi, i = 1, . . . , 5. The results show that the coupling
matrix [Chu]T has a major influence on the dynamical response of the fluid-structure system.
This influence can be seen on the graphs of dBU (in Figure 5.8) for which some resonances
appear on the frequency response, which do not occur when [Chu]T is removed. In fact, one can
see that the resonances in the frequency response dBU without [Chu]T correspond to structural
eigenfrequencies (see Table 5.2). However, the resonances that occur in the frequency response
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dBU with [Chu]T are highly shifted, due to the coupling matrix [Chu]T . This phenomenon is
clearly seen for contact angle θ1, for which two resonances appear in the neighborhood of the
structural resonance located at 4.08Hz. A resonance also appears in the graph of dBU , for all
the contact angles, located between 1.17Hz and 1.58Hz. This resonance is the first sloshing
resonance that is shifted due to the coupling with a resonance of the elastic structure. The
results show that the influence of [Chu]T tends to decrease as the contact angle increases. In
addition, the influence of [Chu]T increases as the local curvature of the free surface increases. A
possible explanation for this increasing influence of [Chu]T , which is inversely proportional to θ,
is the increasing of the gap between ch and dh as θ increases, as shown in Figure 5.7. In this
figure, one can notice that the difference between ch and dh is greater when the contact angle
is small. In addition, we see that the term dh becomes more important than the term ch when
moving towards small angles. This means that the importance of the linear stiffness term [K l

c]
(proportional to ch) becomes small compared to the importance of the coupling term [Chu]T

(proportional to dh). It can therefore be suggested that the influence of the term [Chu]T becomes
significant when two criteria are satisfied: (i)- a negligible contribution of the linear stiffness
[K l

c]; (ii)- a strong local curvature of the free surface at the triple line γ.

3 (in /)
80 100 120 140 160 180

-20

-10

0

10

20
log10(jchj)
log10(jdhj)

Figure 5.7 – Graphs of θ 7→ log10(|ch|) (in blue dashed line) and θ 7→ log10(|dh|) (in red solid
line) which display the values of ch and dh for the curvature < KΓ >= 315.
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Figure 5.8 – Graphs of ν 7→ dBU (2πν) for the contact angle θ1 = 143◦ (top left), for the contact
angle θ2 = 152◦ (top right), for the contact angle θ3 = 161◦ (middle left), for the contact angle
θ4 = 169◦ (middle right), and for the contact angle θ5 = 177◦ (bottom).
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Figure 5.9 – Graphs of ν 7→ dBP (2πν) for the contact angle θ1 = 143◦ (top left), for the contact
angle θ2 = 152◦ (top right), for the contact angle θ3 = 161◦ (middle left), for the contact angle
θ4 = 169◦ (middle right), and for the contact angle θ5 = 177◦ (bottom).
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Figure 5.10 – Graphs of ν 7→ dBH(2πν) for the contact angle θ1 = 143◦ (top left), for the contact
angle θ2 = 152◦ (top right), for the contact angle θ3 = 161◦ (middle left), for the contact angle
θ4 = 169◦ (middle right), and for the contact angle θ5 = 177◦ (bottom).
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Chapter 6

Revisiting and explaining a liquid instability
experiment
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6.1 Introduction

In this chapter, a computational study of a fluid-structure system is detailed, which proposes an
explanation to an unusual sloshing dynamical excitation observed in an experimental investiga-
tion of a vibrating elastic tank partially filled with water, exhibited and investigated in [73, 3].
The experiments performed in [73] were first designed to quantify the effects of an internal liquid
on the breathing frequencies of a circular cylindrical thin-walled shell. During these experiments,
an unexpected behavior was observed when the structure were subjected to a high-frequency ex-
citation of small amplitude. The unusual results obtained in this first experiment were then
investigated in further details by [3]. Indeed, it was observed that a totally unexpected coupling
between low-frequency liquid free-surface oscillation and high-frequency shell-wall vibration could
occur for a wide range of parameter (cited from [3]). This result is all the more unexpected
as the frequency separation between the first eigenfrequencies of the sloshing modes and the
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first structural modes is of order 100. A discussion on these results is proposed in these papers,
which suggests that this unexpected behavior would be based on several unusual characteristics
that are not explained readily on the basis of existing theory (cited from [3]). These authors
concluded that the source of such coupling could possibly come from a nonlinear coupling be-
tween the liquid and the structure for which the source of nonlinearities would not be precisely
known. A first attempt for explaining this unexpected phenomenon has been carried out by
[43] using an analytical approach with a linear theory for the structure and a nonlinear one for
the free surface of the liquid. These authors conclude that exact quantitative comparisons of
theory and experiments may required a more complicated system. In this thesis, an alternative
is proposed for explaining the observed phenomenon using a nonlinear structure (geometrical
nonlinearities) and a linear compressible liquid (acoustic fluid) with sloshing and capillarity ef-
fects using a large-scale computational model. The observed experimental results are simulated
and the mechanisms of this unexpected free-surface response is detailed, which constitutes the
novelty of this work. The observed experimental results are simulated and the mechanisms of

Figure 6.1 – Images of the experimental setup used in [3].

this unexpected free-surface response are detailed. This chapter largely reuses the developments
presented in [12, 4, 6, 7, 9, 10, 11] for which the notations have been adapted.

6.2 Computationally reproducing the experimental conditions.
Hypotheses and validations.

6.2.1 Finite element modelization of the experimental apparatus

The fluid-structure system is the one described in [73, 3] for which the retained dimensions are
those given in [3]. The structure is a steel tank constituted of a thin circular cylinder closed
at both ends by circular plates. Its isotropic material properties are given by E = 2.05 ×
1011N.m−2, ν = 0.29, ρS = 7,800Kg.m−3, and damping coefficient τS = 10−6. This tank
is partially filled with 30% water with sound velocity c0 = 1,480m.s−1, mass density ρ0 =
1,014 kg.m−3, and damping coefficient τ = 10−5. Since capillary effects are taken into account in
the computational model, the characteristics of contact angles and capillary tension coefficient
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have been investigated in the literature. The surface tension coefficient for a water-steel contact
is σΓ = 0.0078N.m−1 and the contact angle considered in this work is θ = 83◦ (which allows
for precomputing equilibrium position of the free surface of the liquid using the software Surface
Evolver [32]). Let Re = 3.7833 × 10−2m and Ri = 2.76047 × 10−2m be the external and the
internal radii of the steel cylinder. The thickness of the end plates and the thickness of the
cylindrical shell are hd = 2.54 × 10−2m and e = 2.286 × 10−4m. Finally, the total height
of the tank and the fluid depth are h = 0.23876m and hf = 0.3h. The geometry of the
computational model is described in Figure 6.2 (left). The origin O of the Cartesian coordinates
system (O, e1, e2, e3) is located at the center of the bottom of the cylindrical tank. Axis e3

coincides with the revolution axis of the system. A particular attention is paid to the modeling
of the boundary conditions of the experimental setup. Thus, the structural node located at the
bottom center of the tank is locked along its directions e1, e2, and e3. The node located at the
top center of the tank is locked along its directions e1 and e2. The rotation of the bottom plate
is locked with one dof on the edge of the plate. The boundary conditions decribed hereinabove
(represented by ◦ symbol) are displayed in Figure 6.2 (right figure). Moreover, the experimental
pin-ended and cantilever boundary conditions described in [73, 3] are set in order to study the
breathing vibrations of the cylinder. In the present numerical simulation, the model has been
calibrated by optimizing the thickness of the bottom and top plates such that the numerical
eigenfrequencies of the structure coincides with the experimental ones. The optimization must
take into account the fact that the plates have to stay rigid compared to the cylinder wall. This
is why the optimal thickness of these plates has been set as hd = 2.54× 10−3m.

Figure 6.2 – Dimensions of the fluid-structure system (left) and representation of the numerical
boundary conditions applied on the system (right).

The finite element model of the fluid-structure system is constructed using 3D-solid tetrahe-
dral finite elements with 10 nodes for the structure and for the acoustic fluid. The free surface of
the liquid is meshed using 2D finite elements with 6 nodes and the triple line is meshed using 1D
finite elements with 3 nodes. Table 6.1 sums up the characteristics of the finite element mesh,
with quadratic interpolation functions.
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Figure 6.3 – View of the finite element mesh of the fluid-structure system (left figure). Detailed
view of the finite elements meshes of the liquid and of its free surface (right figure).

Nodes Dof Elements
Fluid 431 354 431 354 296 459
Free surface 11 566 11 566 5 684
Structure 660 385 1 981 155 334 784

Table 6.1 – Table of the finite element mesh properties.

6.2.2 Simulating the experimental setup with the computational model

Due to the limited data available in the experimental publications, the validation of the numerical
model of the experimental device is performed by comparing the experimental and numerical
elastic natural frequencies of the empty structure (data available in [3]) and by comparing the
experimental and numerical influences of the internal liquid on the structural eigenfrequencies
and their associated modal shapes. The computational reduced-order basis is calculated by
solving the generalized eigenvalue problems presented in Section 2.5.
In this Section, some elastic, acoustic, and sloshing-capillarity eigenmodes are represented with
their respective eigenfrequencies denoted by ν ai =

√
λ ai /2π, for i = 1, . . . , Na with a ∈ {p, h, u}.

6.2.2.1 Acoustic eigenmodes

Figure 6.4 displays some acoustic eigenmodes of the liquid with their respective eigenfrequencies.
It should be noted that the fundamental frequency of the internal liquid is νp1 = 5 194Hz.
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νp1 = 5 194Hz νp4 = 15 581Hz νp9 = 24 240Hz νp15 = 28 327Hz

Figure 6.4 – Example of acoustic modes of the liquid

6.2.2.2 Sloshing eigenmodes

Figure 6.5 (upper figure) displays some sloshing modes of the liquid free surface taking into
acount the capillarity effects. It is shown that the fundamental frequency of the free surface
is νh1 = 3.44Hz, that is of order 103 smaller than the fundamental frequency of the internal
liquid. Moreover, one can see that the modal density of the sloshing phenomena is significant
since νh107 = 19.67Hz. The acoustic part of the sloshing eigenmodes in the liquid are displayed
in Figure 6.5 (lower figure), for which we can see that the pressure exponentially decreases with
respect to the depth of the liquid, as it was expected.

νh1 = 3.44Hz νh20 = 8.28Hz νh25 = 8.71Hz νh107 = 19.67Hz

Figure 6.5 – Example of 4 sloshing eigenmodes of the free surface (top) and the corresponding
pressure in the acoustic liquid (bottom).

6.2.2.3 Elastic eigenmodes

The geometry of the structure has preliminarily been updated in order to match, for the best, the
experimentally measured eigenfrequencies. Figure 6.6 quantifies this updating and displays the
graph of the elastic eigenfrequencies of the empty cylinder (which will be called dry eigenfrequen-
cies in the following) with respect to the longitudinal and circumferential wave numbers m and
n. The updated computed dry eigenfrequencies are displayed in blue solid line and the experi-
mental ones [73] in red triangles. It should be noted that all computations have been performed
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on the 3D computational model and that the longitudinal and circumferential wave numbers of
the elastic eigenmodes have been identified from examining the 3D plots of the eigenmodes. One
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Figure 6.6 – Graph of the elastic dry eigenfrequencies calculated with the updated computational
model (blue solid line) compared to the experimental dry eigenfrequencies (red triangles).

can see that the updated computational model correctly fits the experimental eigenfrequencies.
Figure 6.7 displays four elastic dry eigenmodes (i.e. without taking into account the influence
of the internal liquid) of the structure respectively of rank 6, 12, 22, and 44 for which the as-
sociated longitudinal wave numbers are m = 1, m = 1, m = 2, and m = 3, and the associated
circumferential wave numbers are n = 4, n = 5, n = 7, and n = 4. Figure 6.8 displays the
corresponding four elastic wet eigenmodes of the structure (i.e. taking into account the influence
of the internal liquide through the added mass effect) partially filled with 30% water. It is shown
that the presence of the liquid locally modifies the modal shape of the elastic eigenmodes in the
spatial area where the liquid is in contact with the cylinder shell. In addition, a decrease of the
elastic eigenfrequencies is observed, which is confirmed by the experimental results.

6.2.3 Dynamical excitation of the system

The dynamical excitation is a time-dependent force for which its Fourier transform is a constant
in the frequency band of excitation Be = [νmin , νmax]Hz, with νmin = 500Hz and νmax =
2,500Hz. The nonlinear responses is computed in the time domain. The Fourier transform of
the time response allows for obtaining the response in the frequency domain. The external load
vector, which is denoted by Fu, is written as

Fu = α g(t)F , (6.1)

in which α is the intensity coefficient taken as α = 4, g(t) is the time function of the dynamical
excitation, and F is the normalized vector representing the spatial distribution of the external
time load. The excitation is located on a small rectangular patch that is radially oriented (see
the red patch in Figure 6.2 left). In Eq. (6.1), the time signal g(t) is the one defined by Eq. (5.8).
Therefore, the Fourier transform of g(t) is written as

ĝ(2πν) = 1Be ⋃Be (ν) , (6.2)
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νu6 = 993Hz νu12 = 1 402Hz νu22 = 2 008Hz νu44 = 2 757Hz

Figure 6.7 – Example of 4 "dry" elastic eigenmodes modes.

νu6 = 683Hz νu10 = 875Hz νu30 = 1 792Hz νu40 = 2 133Hz

Figure 6.8 – Example of the 4 corresponding "wet" elastic eigenmodes of the structure (i.e. with
added mass effect).

which is 1 if ν ∈ Be and 0 if ν ∈ R+\Be. The main computational difficulty is to well capture the
sloshing of the free surface that is a low-frequency phenomenon. In addition, the low damping of
the surface sloshing (resulting from indirect damping by coupling with the dissipative liquid and
with the dissipative structure) induces a very long time for returning to the equilibrium position,
yielding a significant computational cost. The computation is carried out on a truncated time
domain [tini, tini + T ] with a long time duration T for which tini = −1.28 s and T = 21 s. The
sampling frequency and the number of time steps are chosen as νe = 25 000Hz and Nt = 524 288.
Once the time response has been computed, a Fourier transform is performed to analyze the fre-
quency response of the system in the frequency band of analysis Ba = [0, 6 000]Hz.
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6.2.4 Eigenfrequency characterization of the system

Physically there are sloshing modes in the frequency band of excitation Be but their contributions
in this band Be are negligible. Consequently, only the sloshing modes whose eigenfrequencies
are below 500Hz are kept for constructing the ROM. Note that the sloshing eigenfrequencies
increase at a very slow rate since νh500 = 57.78Hz. The first acoustic mode has an eigenfrequency
νp1 = 5,194Hz greater than the upper bound 2 500Hz of Be. Note that only the first acous-
tic eigenfrequency belongs to Ba since the second acoustic eigenfrequency is νp2 = 12 504Hz.
Consequently, only the structural modes occur in the frequency band of the excitation. The
eigenfrequency characterization of the fluid–structure system is summarized in Figure 6.9. It
should be noted that, in the reduced-order model, all the elastic modes have been taken into
account in the frequency band: the structural modes n = 0 and all the modes n ≥ 1 for which
their eigenfrequencies have a multiplicity greater that one (due to geometrical symmetries). The
rank of the first n = 0 dry elastic mode is 89 and its associated eigenfrequency is 4 509Hz. The
rank of the corresponding wet elastic mode (with the added mass effects) is 32 and its associated
eigenfrequency is 1 852Hz (important shift due to the added mass). Thus, it can be seen that
this first n = 0 elastic mode belongs to the frequency band of excitation. There is no other n = 0
wet elastic eigenmode whose rank is less than or equal to 100.

Figure 6.9 – Table of the modal characterization of the fluid-structure system.

6.2.5 Quantities of interest for analyzing the results in the time and fre-
quency domains

6.2.5.1 Observation points

The dynamical response of the fluid-structure system is analyzed for different observation points
of the finite element mesh. These observations points are chosen to be of best interest for the
dynamical study of the system. Two nodes, denoted xp1 and xp2, are chosen for the observation of
the pressure in the acoustic liquid. A node, common to both the structure and the free surface
is chosen on the triple line, which allows for seeing the correspondence between the displacement
of the structure and the elevation of the free surface. This common node is denoted as xh1 on the
free surface, and as xu on the structure. Finally, another observation point xh2 is also chosen as
the point located at the center of the free surface. For the sake of clarity, the coordinates of these
observation points are summarized in Table 6.2. In the following, some notations are introduced
to lighten the writing. The quantities Pxpi

and Hxhi
denote the pressure and the elevation of

the free surface at the observation point xpi and xhi for i = 1, 2. The notation Uxuj denotes the
component j, j = {1, 2, 3}, of the structural displacement at the observation point xu.
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Location Name x1-coordinate x2-coordinate x3-coordinate
Liquid xp1 0.0187 0 0.0076

xp2 0.0187 0 0.0708

Free surface xh1 −0.0144 −0.0347 0.1248
xh2 0 0 0.1245

Structure xu −0.0144 −0.0347 0.1248

Table 6.2 – Coordinates of the observation points for the fluid, the structure and the free surface

6.2.5.2 Defining the quantities of interest

The results are observed on the observation points defined in the Section 6.2.5.1. The quantities
of interest are therefore explicited on these observation points and are defined in order to quantify
the influence of the geometrical nonlinearities on the resonances levels of the system. In order
to quantify the influence of the geometrical nonlinearities on the system, so-called linear com-
putations are performed, which consists in solving the numerical problem defined by Eq. (2.76)
without taking into account the nonlinear restoring forces (i.e. considering FNL = 0). In the
following, the superscripts L and NL denote respectively the quantities calculated for the linear
system and for the nonlinear system.

• For the structural displacement, the quantity of interest, dBU , calculated with both the
linear and the nonlinear ROM, is defined as the displacement seen at the point xu (see
Table 6.2 for its coordinates) and is written as

dBUL/NL

k (2πν) = 20 log10( |ÛL/NL
xuk

(2πν)| ) , k = 1, 2, 3 , (6.3)

where subscript k denotes the structural displacement along axis ek seen at the observation
point xu.

• For the pressure in the acoustic liquid, the quantity of interest, dBP , calculated with both
the linear and the nonlinear ROM, is defined as the pressure seen at the two observation
points xpk, k = 1, 2 (see Table 6.2 for their coordinates) and written as

dBPL/NL

k (2πν) = 20 log10( |P̂L/NL
xpk

(2πν)| ) , (6.4)

• For the sloshing of the free surface, the quantity of interest dBH , calculated with both the
linear and the nonlinear ROM, is defined as the normal elevation seen at the observation
points of coordinates xhk , k = 1, 2 (see Table 6.2 for their coordinates) and written as

dBHL/NL

k (2πν) = 20 log10( |ĤL/NL
xhk

, (2πν)| ) , (6.5)

6.2.6 Convergence of the reduced-order model with respect to the modal
truncation

The nonlinear reduced-order model presented in Section 2.5 is constructed using the eigenmodes
calculated in Section 6.2.2. A convergence analysis of the nonlinear response is performed with
respect to the order of the nonlinear reduced-order model. Since the reference solution cannot be
computed for such large finite element system given our computational resources, it is assumed
that the convergence is reached when the dynamical response is no longer sensitive to parameters
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Chapter 6. Revisiting and explaining a liquid instability experiment

Np, Nh or Nu. We choose to normalize the convergence function with respect to a high number
of eigenmodes Np = 200, Nh = 2,250, and Nu = 100. Let thus introduce the convergence
functions

ConvU (Np, Nh, Nu) =


∫
Ba

∥∥ dBUNL
(2πν;Np, Nh, Nu)

∥∥2
dν∫

Ba

∥∥ dBUNL
(2πν;Np, Nh, Nu)

∥∥2
dν


1
2

, (6.6)

ConvPk(Np, Nh, Nu) =


∫
Ba
dBPNL

k (2πν;Np, Nh, Nu)2 dν∫
Ba
dBPNL

k (2πν;Np, Nh, Nu)2 dν


1
2

, (6.7)

ConvHk(Np, Nh, Nu) =


∫
Ba
dBHNL

k (2πν;Np, Nh, Nu)2 dν∫
Ba
dBHNL

k (2πν;Np, Nh, Nu)2 dν


1
2

. (6.8)

These convergence analyses are displayed in Figure 6.10, first with respect to Np (left figure),
then with respect to Nh (right figure), and finally with respect to Nu (bottom figure).

Np

0 20 40 60 80 100

ConvU (Np; Nh; Nu)

ConvP1
(Np; Nh; Nu)

ConvP2
(Np; Nh; Nu)

ConvH1
(Np; Nh; Nu)

ConvH2
(Np; Nh; Nu)

Nh

0 500 1000 1500 2000

ConvU (Np; Nh; Nu)

ConvP1
(Np; Nh; Nu)

ConvP2
(Np; Nh; Nu)

ConvH1
(Np; Nh; Nu)

ConvH2
(Np; Nh; Nu)

Nu

0 20 40 60 80

ConvU (Np; Nh; Nu)

ConvP1
(Np; Nh; Nu)

ConvP2
(Np; Nh; Nu)

ConvH1
(Np; Nh; Nu)

ConvH2
(Np; Nh; Nu)

Figure 6.10 – Graph of the convergence of the solutions obtained in terms of P, H, and U at
the observation points with respect to Np (left), to Nh (right), and to Nu (bottom).

68
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It is shown that the convergence analysis yields an optimal size of the ROM of Nu = 60,
Np = 40, and Nh = 1 500. It should be noted that the large number of sloshing eigenmodes
required for the convergence of the solution is due to the high modal density of the sloshing
phenomenon.

6.3 Explaining the experimental unexpected sloshing phenomenon
by the simulations

6.3.1 Dynamical responses of the fluid-structure system

In this section the results issued from the linear and nonlinear simulations are presented. The
linear dynamical responses are displayed in blue solid line and the nonlinear dynamical responses
are displayed in red solid line in the following analysis. Figure 6.11 displays the graphs of
ν 7→ dBPL/NL

k (2πν) for k = 1, 2. First, one can see that numerous resonances arise outside
the excitation frequency band Be due to the structural nonlinearities. The contributions of
most of the elastic modes located above 2 500Hz appear in both nonlinear responses. On the
other hand, below 500Hz and for these two pressure observation points, the sloshing modes
are not detected due to the exponential decreasing of the sloshing-induced pressure with the
depth. In addition, for the nonlinear responses, the resonance peaks located inside Be are largely
spread out with respect to the ones obtained by the linear responses. This is the case, for
example, for the resonance located at 2 089Hz. For k = 1, 2, 3, Figure 6.12 displays the graph
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Figure 6.11 – Nonlinear analysis of the pressure in the internal liquid: graphs of ν 7→
dBPL/NL

1 (2πν) (left figure) and ν 7→ dBPL/NL

2 (2πν) (right figure).

of ν 7→ dBUL/NL

k (2πν). One can see that some sloshing modes below 500Hz contribute to the
structural displacements. The structural nonlinearities strongly modify the frequency responses
in excitation band Be: the resonance peaks are not only spread out, as for the acoustic pressures,
but they are also less isolated and less acute. This is due to the fact that the energy of the
responses in the frequency band Be is partially transferred outside this band, yielding an apparent
damping by this transfer of mechanical energy. The dynamical behavior of the structure is thus
significantly damped as it can be seen that the resonances levels inside Be are strongly reduced by
a factor up to 100. Note that the frequency spreading effect is again observed for the resonance
located at 872Hz. Figure 6.13 displays the graphs of ν 7→ dBHL/NL

k (2πν) for i = 1, 2. The
unexpected response in frequency band [0, 150]Hz (below the excitation band Be) is observed.
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Figure 6.12 – Nonlinear analysis of the displacement of the structure: graphs of ν 7→
dBUL/NL

1 (2πν) (left figure), ν 7→ dBUL/NL

2 (2πν) (right figure), and ν 7→ dBUL/NL

3 (2πν) (lower
figure).

The first sloshing modes are excited by the energy transferred in this band [0, 150]Hz due to
the structural nonlinearities. Let us note that, for the same reasons as the ones given for the
structural displacements, an apparent damping by a factor up to 100 occurs in excitation band Be.
When zooming in the sub-frequency band [0, 150]Hz, as displayed in Figure 6.14, one can see that
numerous isolated sloshing resonances of high amplitude appear. It is essential to underline that
there is a high-amplitude low-frequency free-surface motion while no external excitation exists
in this very low-frequency band. The experimental results presented in [73, 3], concerning the
unexpected free-surface elevation of liquid in a vibrating cylindrical shell, have been reproduced
in the present work that clearly exhibits the same unexpected phenomena. The understanding
of such complex mechanisms requires to quantify the influence of the different coupling operators
involved in the dynamical behavior of the free surface. These investigations have been performed
by computationally quantifying the influence of the coupling operator [Chu] in this fluid-structure
system. As shown in Chapter 5, the influence of [Chu]T is directly related to the local curvature
of the free surface and to the capillary contact angle at the triple line. As a consequence,
the dynamical response of the free surface is weakly sensitive to the coupling operator [Chu].
Therefore, it can be concluded that the energy issued from the structural nonlinearities follows a
path going from the structure to the free surface via the acoustic internal liquid. The complete
analysis of this phenomenon is presented in [12] and detailed in Section 6.3.2.
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Figure 6.13 – Nonlinear analysis of the free surface elevation: graphs of ν 7→ dBHL/NL

1 (2πν) (left
figure) and ν 7→ dBHL/NL

2 (2πν) (right figure).
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Figure 6.14 – Nonlinear analysis of the free surface elevation: graphs of ν 7→ dBHL/NL

1 (2πν) (left
figure) and ν 7→ dBHL/NL

2 (2πν) (right figure) displayed over the frequency band [0, 150]Hz.

6.3.2 Indirect coupling mechanism

Considering the numerical results presented in Section 6.3.1, it appears that the high-amplitude
motion of the free surface in the very-low frequency band (outside the frequency band of excita-
tion) can be explained by the the couplings illustrated in Figure 6.15 and detailed hereinafter.
The geometrical nonlinearities of the structure induce a transfer of the vibrational energy from
the high-frequency band of excitation in the very low- and low-frequency band (outside the fre-
quency band of excitation). As the first acoustic modes of the liquid is greater than the upper
bound of the high-frequency band of excitation, the acoustic fluid has a quasistatic behavior
in the low-frequency band. Therefore, the energy transferred by the structure in the very low-
frequency band is transmitted through the acoustic liquid to the first very low-frequency sloshing
modes. This means that the observed phenomenon appears to be an indirect transfer of energy
from the structure to the free surface through the acoustic liquid and is due to the presence of
the geometrical nonlinearity of the elastic tank.
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Figure 6.15 – Scheme of the energy transfers between the nonlinear structure, the linear acoustic
liquid, and the linear free surface, which explain the excitation of the first sloshing modes in the
very-low frequency band (outside the frequency band of the external excitations).
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Uncertainty quantification for coupled
fluid-structure systems
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7.1 Introduction

7.1.1 General introduction

The objective of the chapter is to implement in the computational model defined by Eqs. (2.63)
to (2.65) a probabilistic model of uncertainties for the structural stiffness forces in order to
analyze the robustness of the responses of the nonlinear dynamical system to these uncertainties.
In this work, we are interested in the structural modeling errors inducing model uncertainties.
Consequently, we use the nonparametric probabilistic approach [99, 102] that has the capability
to take into account this type of uncertainties. In order to facilitate the reading of this chapter,
we give a brief recall of the useful tools on which the nonparametric probabilistic approach of
uncertainties is based.
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7.1.2 Brief recall on the nonparametric probabilistic approach of uncertain-
ties

In the nonparametric probabilistic approach of uncertainties, the uncertainties are taken in ac-
count by substituting deterministic matrices of the ROM by randommatrices yielding a stochastic
reduced-order model (SROM). The probability distributions and the generators of independent
realizations of random matrices that are used are constructed using the ensembles of random
matrices introduced in [99, 102].

(i) - Ensemble SG+
0 and its generator

An element of ensemble SG+
0 is the random matrix [G0] whose probability density function is

defined by
p[G0]([G]) = 1M+

m
([G]) c0(det[G])c1 exp{−c2 Tr([G])} , (7.1)

in which c0 the positive constant of normalization, where c1 = (m + 1)(1 − δ2)/(2δ2), and
where c2 = (m + 1)/(2δ2) depend on dimension m and on a hyperparameter δ ∈ [0 , δmax[.
Such a random matrix [G0] admits the following algebraic representation that can be used as a
generator of independent realizations,

[G0] = [L]T [L] , (7.2)

in which [L] is an upper triangular (m×m) random matrix such that:

• random variables
{

[L]jj′ , j ≤ j′
}
are independent.

• For j < j′, the real-valued random variable [L]jj′ is written as [L]jj′ = σmAjj′ in which
σm = δ(m + 1)−1/2 and where Ajj′ is a real-valued Gaussian random variable with zero
mean and variance equal to 1.

• For j = j′, the positive-valued random variable [L]jj is written as [L]jj = σm
√

2Bj , in
which Bj is a positive-valued Gamma random variable with probability density function
Γ(aj , 1), in which aj = m+1

2δ2 + 1−j
2 .

(ii) - Ensemble SE+
0 of random matrices

Let [A] be a deterministic positive-definite matrix representing the given mean value. SE+
0 is

the ensemble of positive-definite random matrices such that any positive-definite random matrix
[A0] in SE+

0 satisfies

E{[A0]} = [A] , E{Log(det([A0]))} = ν[A0] , ν[A0] < +∞ . (7.3)

Random matrix [A] can then be written as

[A0] = [LA]T [G0] [LA] , [G0] ∈ SG+
0 , (7.4)

in which [A] = [LA]T [LA] is the Cholesky factorization of [A]. The positive parameter δ is the
hyperparameter of the probability distribution of random matrix [G0], which is such that

δ =

{
1

m
E{
∥∥ [G0]− [Im]

∥∥2

F
}
} 1

2

, (7.5)
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and which allows the dispersion of matrix [G0] to be controlled. The hyperparameter δ must be
such that 0 ≤ δ ≤ δmax = (m+ 1)

1
2 (m+ 5)−

1
2 .

(iii) - Ensemble SE+
ε of random matrices

For fixed ε > 0, any random matrix [A] in SE+
ε is a random matrix with values in M+

n , which is
written as

[A]− [A`] =
1

1 + ε
[A0] > 0 a.s. with [A0] ∈ SE+

0 , (7.6)

where [A`] ∈M+
m is the positive-definite lower bound that is presently defined by

[A`] = cε [A] with cε =
ε

1 + ε
. (7.7)

Consequently, E{[A]} = [A]. If ε = 0, then ensemble SE+
ε coincides with SE+

0 . For ε > 0, this
ensemble allows for introducing a positive-definite lower bound [A`] that is arbitrarily constructed
for the case where it is known that a lower bound exists but for which there are no available
information for identifying it. That is the case considered here and ε will be chosen as 10−6 in
the application. The generator of independent realization of [A] in SE+

ε is then deduced from
the one presented for SG+

0 .

7.2 Nonparametric stochastic computational model

This section is devoted to the construction of the stochastic nonlinear reduced-order computa-
tional model for the fluid-structure system using the nonparametric probabilistic approach (for
details, see [102, 14, 13]).

7.2.1 Hypotheses for the stochastic nonlinear reduced-order model

The considered computational fluid-structure system is the one presented in Chapter 6 for which
the deterministic coupling mechanism has been analyzed. We use the nonlinear reduced-order
computational model presented in Section 2.5. The uncertainty quantification for this system
will make it possible to quantify the uncertainties propagated in the fluid-structure system by
the different coupling mechanisms. The main source of uncertainty is due to the elastic structure
for which geometrical nonlinearities are taken into account. For such a slender and thin-wall
structure, the model uncertainties on the stiffness can be significant. Especially when geometrical
nonlinearities are taken into account due to the sensitivity of the quadratic and cubic terms in
the nonlinear restoring forces. This is why, in the following, we are interested in constructing
a stochastic reduced-order model (SROM) in which the linear and nonlinear stiffness forces are
uncertain and for which the nonparametric probabilistic approach is used.

7.2.2 Stochastic nonlinear reduced-order computational model

The stochastic nonlinear reduced-order computational model is written asPPP(t)
HHH(t)
UUU(t)

 =

[Φp] [Φph] 0
0 [Φh] 0
0 0 [Φu]

QQQp(t)

QQQh(t)
QQQu(t)

 = [Ψ]QQQ(t) , (7.8)
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in which, for all time t, the random vector QQQ(t) is solution of the following stochastic nonlinear
differential equation

[MFSI] Q̈QQ(t) + [DFSI] Q̇QQ(t) + [KFSI]QQQ(t) + FFFNL(QQQ(t)) = F(t) . (7.9)

In Eq. (7.9) [KFSI] and FFFNL(QQQ) denote respectively the (Nphu × Nphu) random linear stiffness
matrix and the RNphu random vector of nonlinear restoring forces. The random linear fluid-
structure stiffness matrix [KFSI] can be expressed by blocks (see Appendix A) as

[KFSI] =

[K11] [K12] [0]
[K21] [K22] [K23]
[K31] [K32] [K33]

 , (7.10)

in which [K33] ∈ SE+
ε is the random counterpart of matrix [K33]. The random vector FFFNL is

expressed as a function of the random quadratic and cubic stiffness tensors, K(2) and K(3), such
that

{FFFNL(QQQ)}α = K(2)
αβγ Q

u
β Qu

γ + K(3)
αβγδ Q

u
β Qu

γ Qu
δ . (7.11)

The construction of the random variables [K33], K(2) , and K(3) is detailed in Section 7.2.2.1.

7.2.2.1 Probabilistic modeling of random stiffness matrices

The random variables [K33], K(2) , and K(3) are statistically dependent. The construction of
these random variables is detailed in [78] and is summarized below. Let introduce the following
deterministic (NK ×NK) matrix, with NK = Nu(1 +Nu)

[K] =

[
[K33] [K̂(2)]

[K̂(2)]T 2[K(3)]

]
, (7.12)

in which [K̂(2)] and [K(3)] denote respectively the matrices issued from the following reshaping:

[K̂(2)]αB = K̂(2)
αβγ , with B = (β − 1)Nu + γ , (7.13)

[K(3)]AB = K(3)
αβγδ, with A = (α− 1)Nu + β and B = (γ − 1)Nu + δ . (7.14)

It is shown in [78] that matrix [K] is positive definite and can consequently be written as [K] =
[LK]T [LK]. Thus, the nonparametric probabilistic approach can be applied in the geometrically
nonlinear context on matrix [K], which ensures the statistical dependency of each linear and
nonlinear stiffness matrices of the fluid-structure problem. The construction of matrix [K],
random counterpart of [K], is chosen in ensemble SE+

ε . However, from a numerical point of view,
SE+

ε ∼ SE+
0 for ε = 10−6. In order to simplify the following algebraic developments, we construct

[K] in SE+
0 .

[K] = [LK]T [G0(δ)] [LK] . (7.15)

in which the random germ [G0(δ)] belongs in the ensemble SG+
0 . The expressions of random

variables [K33], K̂
(2)

, and K(3) are deduced from an extraction of [K]. The random variable K(2)

is then reconstructed from K̂
(2)

similarly to Eq. (2.82). However, it has been shown in [36] that
some difficulties can be encountered with this construction, due to the dimension (NK ×NK) of
random matrix [K]. The modification of the stochastic model for [K], proposed in [36] is used.
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The main idea of this formulation is to use another factorization of matrix [K] by introducing a
matrix of size (ÑK × NK) with ÑK � NK. This factorization is calculated by introducing the
eigenvalue problem

[K] [ΦK] = [ΦK] [ΛK] , (7.16)

in which the entries of the diagonal matrix [ΛK] are the eigenvalues λα, and where the associated
columns of [ΦK] are the eigenvectors ϕαK. Matrix [K] can then be approximated by the (NK×NK)

matrix [K̃] such that
[K̃] = [L̃]T [L̃] , (7.17)

in which [L̃] is the full (ÑK ×NK) matrix defined by

[L̃] = [ΛÑK
K ]

1
2 [ΦÑK

K ]T , (7.18)

where [ΛÑK
K ] is the (ÑK × ÑK) diagonal eigenvalue matrix such that [ΛÑK

K ]αα = λα sorted by

decreasing order (λ1 ≥ λ2 ≥ . . . ≥ λ
ÑK

), and where [ΦÑK
K ] is the matrix containing the ÑK

eigenvectors {ϕαK}α=1,...,ÑK
associated with eigenvalues λα. In order to find the optimal value of

ÑK, the error fuction ÑK 7→ ConvK(ÑK)is introduced such that

ConvK(ÑK) =

√√√√∥∥ [K̃]− [K]
∥∥2

F∥∥ [K]
∥∥2

F

(7.19)

in which || [K] ||F denotes the Frobenius norm of matrix [K]. The order ÑK of the truncature is
determined for a given relative error εK such that ConvK(ÑK) ≤ εK. The random matrix [K] is
then replaced by the random matrix [K̃] such that

[K̃] = [L̃]T [G̃0(δ)] [L̃] + ([K]− [K̃]) . (7.20)

in which [G̃0(δ)] is the (ÑK× ÑK) random matrix that belongs to SG+
0 . It should be noted that

Eq. (7.20) ensures that matrix [K̃] is almost surely positive-definite.

7.3 Uncertainty sensitivity analysis on the dynamical responses
of the fluid-structure system

This section is devoted to the analysis of the uncertainty propagation in the computational
fluid-structure system. The stochastic nonlinear reduced model introduced in Section 7.2 allows
for taking into account the nonparametric uncertainties in the modeling of the coupled fluid-
structure system. The uncertainty sensitivity of the model is analyzed for each part of the system,
namely the structure, the internal liquid, and the free surface. In the following sections, we are
interested in quantifying the influence of the hyperparameter δ on the 95% confidence interval of
the system dynamical responses seen at the observation points. The stochastic solver is based on
the Monte-Carlo numerical method for generating the Nr realizations of the random responses.
A convergence analysis with respect to Nr is performed in order to ensure the convergence of
the confidence region computed for each quantity of interest. The results are presented for
both the linear and nonlinear stochastic ROM. For the linear and nonlinear computations, the
quantities of interest used in this uncertainty sensitivity analysis are similar to the ones used in
Section 6.2.5. The observation points are the ones defined in Table 6.2. The quantities of interest
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dBPL/NL

1 (2πν) and dBHL/NL

k (2πν), (k = 1, 2), are related to the pressure in the liquid and to the
free-surface elevation (see Eqs. (6.4) and (6.5)). However, the quantity of interest related to the
structural displacement is

dBUL/NL
= 20 log10

(∥∥ÛUUL/NL
xu (2πν)

∥∥
C3

)
. (7.21)

For each quantity of interest, a confidence region with 95% confidence is estimated. The nominal
dynamical response of the quantity of interest, which corresponds to the deterministic computa-
tion of the fluid-structure system, is superimposed with the confidence region of the stochastic
responses. The numerical parameters used for the computations are similar to the ones described
in Section 6.2.3: Be = [500, 2 500]Hz, Nt = 65 536, T = 2.63 s, α = 1 × 10−2, and Nr = 256
(obtained from the convergence analysis). The short time duration T induces a low frequency
resolution for the very-low frequency resonances but is necessary to ensure the feasability of the
computations (in terms of computational time).

7.3.1 Sensitivity of the structural responses to uncertainties

The sensitivity of the structural responses to uncertainties is shown in Figures 7.1 to 7.3 which
display the linear and the nonlinear nominal frequency responses dBUL and dBUNL , and the
associated confidence region, for three values of hyperparameter δ ∈ {0.05, 0.15, 0.30}. It can be
seen that uncertainty tends to spread in the high- and low- frequency domains due to energy
transfer induced by the geometrical nonlinearities of the structure. The results show a significant,
if not a great, sensitivity of the displacements of the structure to structural uncertainties.

7.3.2 Sensitivity of the acoustic liquid to structural uncertainties

The sensitivity of the acoustic liquid to structural uncertainties is presented in Figures 7.4 to
7.6. One can see that the uncertainty propagation in the acoustic liquid is very important both
in the linear and in the nonlinear cases. The results of the linear simulations show that the
width of the confidence region is significant for a low dispersion rate δ = 0.05, but also that the
nominal dynamic response of the system in the frequency band of excitation Be tends to exit this
confidence region when δ increases. The same phenomenon is visible on nonlinear responses.

7.3.3 Sensitivity of the free-surface sloshing to structural uncertainties

The sensitivity of the free-surface sloshing to structural uncertainties is presented in Figures 7.7 to
7.12 for the observation points xh1 and xh2 . The first observation point xh1 , located on the triple
line, is less sensitive to uncertainties (both in the linear and in the nonlinear computations)
than the point xh2 located at the center of the free surface. These results suggest that the
dynamical sloshing responses of the free surface show an increasing uncertainty sensitivity as
one moves furhter from the shell wall. The influence of uncertainties on the indirect coupling
mechanism (detailed in Section 6.3) is then analyzed. Figures 7.13 to 7.18 display the frequency
responses of points xh1 and xh2 in the frequency band [0 , 130]Hz. It can be seen that the sloshing
resonances, excited by the indirect transfer of energy from the structural nonlinearities, are robust
to structural uncertainties.
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Figure 7.1 – Nominal dynamical responses and confidence regions at 95% of the linear (left figure)
and nonlinear (right figure) structural displacement at the observation point xu for δ = 0.05.

Figure 7.2 – Nominal dynamical responses and confidence regions at 95% of the linear (left figure)
and nonlinear (right figure) structural displacement at the observation point xu for δ = 0.15.

Figure 7.3 – Nominal dynamical responses and confidence regions at 95% of the linear (left figure)
and nonlinear (right figure) structural displacement at the observation point xu for δ = 0.30.
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Figure 7.4 – Nominal dynamical responses and confidence regions at 95% of the linear (left figure)
and nonlinear (right figure) acoustic pressure at the observation point xp1 for δ = 0.05.

Figure 7.5 – Nominal dynamical responses and confidence regions at 95% of the linear (left figure)
and nonlinear (right figure) acoustic pressure at the observation point xp1 for δ = 0.15.

Figure 7.6 – Nominal dynamical responses and confidence regions at 95% of the linear (left figure)
and nonlinear (right figure) acoustic pressure at the observation point xp1 for δ = 0.30.
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Figure 7.7 – Nominal dynamical responses and confidence regions at 95% of the linear (left figure)
and nonlinear (right figure) free-surface elevation at the observation point xh1 for δ = 0.05.

Figure 7.8 – Nominal dynamical responses and confidence regions at 95% of the linear (left figure)
and nonlinear (right figure) free-surface elevation at the observation point xh1 for δ = 0.15.

Figure 7.9 – Nominal dynamical responses and confidence regions at 95% of the linear (left figure)
and nonlinear (right figure) free-surface elevation at the observation point xh1 for δ = 0.30.
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Figure 7.10 – Nominal dynamical responses and confidence regions at 95% of the linear (left
figure) and nonlinear (right figure) free-surface elevation at the observation point xh1 for δ = 0.05.

Figure 7.11 – Nominal dynamical responses and confidence regions at 95% of the linear (left
figure) and nonlinear (right figure) free-surface elevation at the observation point xh1 for δ = 0.15.

Figure 7.12 – Nominal dynamical responses and confidence regions at 95% of the linear (left
figure) and nonlinear (right figure) free-surface elevation at the observation point xh1 for δ = 0.30.
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Figure 7.13 – Nominal nonlinear dynamical responses and confidence regions at 95% of the
free-surface normal elevation at the observation point xh1 for δ = 0.05, displayed over [0, 130]Hz.

Figure 7.14 – Nominal nonlinear dynamical responses and confidence regions at 95% of the
free-surface normal elevation at the observation point xh1 for δ = 0.15, displayed over [0, 130]Hz.

Figure 7.15 – Nominal nonlinear dynamical responses and confidence regions at 95% of the
free-surface normal elevation at the observation point xh1 for δ = 0.30, displayed over [0, 130]Hz.
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Figure 7.16 – Nominal nonlinear dynamical responses and confidence regions at 95% of the
free-surface normal elevation at the observation point xh1 for δ = 0.05, displayed over [0, 130]Hz.

Figure 7.17 – Nominal nonlinear dynamical responses and confidence regions at 95% of the
free-surface normal elevation at the observation point xh1 for δ = 0.15, displayed over [0, 130]Hz.

Figure 7.18 – Nominal nonlinear dynamical responses and confidence regions at 95% of the
free-surface normal elevation at the observation point xh1 for δ = 0.30, displayed over [0, 130]Hz.
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7.4 Statistical inverse problem

This section is devoted to solving the statistical inverse problem for identifying the hyperparam-
eter δ of the probabilistic model of the elastic forces. For the identification, the experimental
target has been generated by simulations and will be called simulated data. The statistical in-
verse problem is formulated as an optimization problem for which the cost function corresponds
to a least-square formulation.

7.4.1 Generating the simulated data

The simulated data are constituted of N exp
r independent realizations computed using the stochas-

tic reduced-order computational model introduced in Section 7.2. These simulated frequency
response functions are observed on the experimental points shown in Figure 7.19. These ob-

Figure 7.19 – Position of the observation points for the stochastic problem.

servation points have been chosen in order to potentially reproduce experimental apparatus
conditions. For this reason, the inverse identification of hyperparameter δ does not take into
account the data on the free-surface sloshing. There are nobs

p = 30 observations for the acoustic
pressure (blue dots on Figure 7.19) and nobs

u = 30 observations for structural displacement (red
dots on Figure 7.19). For the structural displacement of the elastic structure, the corresponding
quantities of interest are defined by

dBU,exp
i (2πν) = 20 log10

(∥∥ÛUUNL,exp
xui

(2πν)
∥∥
C3

)
, (7.22)

at the 30 observation points xui , i = 1, . . . , nobs
u , defined in Figure 7.19. The quantities of interest

related to the acoustic liquid are defined by

dBP,exp
i (2πν) = 20 log10( |P̂

NL,exp
xpi

(2πν)| ) , (7.23)

for the 30 observation points xpi , i = 1, . . . , nobs
p , in the internal liquid, displayed in Figure 7.19.
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7.4.2 Definition of the cost function

For estimating the optimal value of hyperparameter δ using the simulated data, the cost function
is defined in the framework of the least-square method. This method consists in calculating the
optimal value δopt of δ, solving

δopt = argminJ(δ) , (7.24)

in which J(δ) is written as
J(δ) = J1(δ) + J2(δ) . (7.25)

The cost function J1(δ) is calculated for each subset of the fluid-structure system as

J1(δ) = JU
1 (δ) + JP

1 (δ) . (7.26)

In Eq. (7.26), the cost function for each part of the system is calculated, for x ∈ {U,P}, by

JX
1 (δ) =

∫
Ba

nXobs∑
k=1

(
E{ dBX

k (2πν; δ) } − E{ dBX,exp
k (2πν) }

)2
dν

∫
Ba

nXobs∑
k=1

(
E{ dBX,exp

k (2πν) }
)2
dν

(7.27)

The cost function J2(δ) is calculated for each part of the fluid-structure system as

J2(δ) = JU
2 (δ) + JP

2 (δ) . (7.28)

In Eq. (7.28), the cost function for each part of the system is calculated, for X ∈ {U,P}, by

JX
2 (δ) =

∫
Ba

(
∆X(2πν, δ)−∆X,exp(2πν)

)2
dω∫

Ba
∆X,exp(2πν) dω

, (7.29)

In Eq. (7.29), the quantity ∆X(2πν, δ) is written as

∆X(2πν, δ) =


E


nXobs∑
k=1

dBX
k (2πν, δ)2

−
nXobs∑
k=1

E
{
dBX

k (2πν, δ)
}2

nXobs∑
k=1

E
{
dBX

k (2πν, δ)
}2



1
2

, (7.30)

and the quantity ∆X,exp(2πν) is defined by Eq. (7.30) in which dBX is replaced by dBX,exp.

7.4.3 Identification of the optimal hyperparameter δopt

The methodology for constructing the cost function J(δ) for estimating an optimal hyperpa-
rameter δopt of the stochastic computational model with respect to a reference simulated data
set has been presented in the previous sections. A numerical illustration is presented hereinafter
in which the optimal parameter δopt is evaluated using the inverse problem methodology, and is
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compared to the dispersion parameter δexp = 0.3 used for generating the simulated data as func-
tion of N exp

r . Figure 7.20 displays the graphs of 6 cost functions J(δ) evaluated for 6 different
values N exp

r ∈ {5, 10, 20, 60, 120, 200}. It can be seen in Figure 7.20 that the estimated optimal
hyperparameter δopt converges to δexp = 0.3 with respect to N exp

r . The results show that the
identification of the optimal hyperparameter δopt strongly depends on the initial number N exp

r

of the simulated data.

Figure 7.20 – Graphs of δ 7→ J(δ) displaying the cost function J(δ) with respect to the hyper-
parameter δ for 6 values of N exp

r ∈ {5, 10, 20, 60, 120, 200}.
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General conclusion

In this thesis, it has been proposed to analyze the behavior of several geometrically nonlinear
coupled fluid-structure systems taking into account the effects of sloshing and capillarity. A
nonlinear computational reduced-order model has been constructed allowing for defining the
modal characterization of the complex systems, for separating the frequency scales in the model,
and for considerably reducing the computational costs induced by the dynamical simulations of
such systems. This nonlinear reduced-order model has also allowed for implementing the non-
parmetric probabilistic approach for model uncertainties and their quantification such coupled
fluid-structure systems.

After presenting the theoretical context of the study as well as the computational model used
for the dynamical simulations, several numerical applications have been proposed in order to ana-
lyze different aspects related to such highly coupled fluid-structure systems. It was first proposed
to analyze the computational cost induced by the simulation of the system dynamical behavior,
and particularly induced by the construction of the projection basis of the reduced-order model.
This construction requires to solve three generalized eigenvalue problems that happen to be
very expensive in the case of large-scale coupled fluid-structure systems. The proposed method
for circumventing the non-feasibility of calculations on our mid-power computers is based on
two algorithms. The first algorithm is called "double projection" and allows us, by introducing
an intermediate reduction of the numerical model, to solve the generalized eigenvalue problem
related to the structure with added mass effect (due to the internal liquid), and to solve the
generalized eigenvalue problem related to the free-surface sloshing taking into account the effect
of the free-surface sloshing motion on the acoustic pressure in the liquid. The second algorithm
is a subspace iteration method allowing for solving the generalized eigenvalue problem related
to the internal acoustic liquid, which becomes very expensive when the matrices related to the
liquid are weakly sparse.

A numerical application is then proposed, in which the quantification of the influence of the
coupling operator on the triple line (called triple line operator) between the free surface of the
liquid and the elastic structure is investigated (see [87] for the mathematical developments).
Indeed, this operator, recently introduced in the theoretical formulation used for the coupled
fluid-structure problem, allows for taking into account the coupling effects at the triple line level
when considering a deformable structure. The quantification of its influence has been performed
by analyzing a fluid-structure coupled system designed to promote the energy transfer induced
by the triple line coupling. This system has been studied for different free surface configurations
with respect to different contact angles. It has been shown that this triple line operator is of great
importance when criteria of high curvature and low contact angle are combined. This operator
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modifies the dynamical responses of the fluid-structure system and allows for batter taking into
account the dynamical couplings that may occur between the different parts of the system.

The third computational analysis proposed is the analysis and the explanation of a phe-
nomenon of high-amplitude response of the internal liquid free-surface at very-low frequencies in
a cylindrical tank submitted to high-frequency excitation. We recall that an experimental cam-
paign conducted in 1962 revealed an unexpected phenomenon of high-amplitude vibration of the
free surface of the internal liquid during the high-frequency excitation of the cylinder. Indeed,
this phenomenon was all the more unexpected as the magnitude difference between the reso-
nance frequencies of the free surface of the liquid and the resonance frequencies of the structure
is about 100. The work presented in this thesis has provided an explanation of this unexpected
experimental phenomenon through a numerical simulation of a coupled fluid-structure system
taking into account the geometrical nonlinearities of the structure. The computational results
show the same very low-frequency excitation of the free surface induced by an energy transfer,
due to the geometrical nonlinearities of the structure, from the tank to the free surface by an
indirect coupling. This indirect coupling consists in a quasistatic energy transfer between the
fluid and its free surface.

Finally, an analysis of the model uncertainties and their propagation has been performed.
The nonlinear stochastic reduced-order model has been constructed using the nonparametric
probabilistic approach of model uncertainties allowing for considering the modeling errors in
the stiffness matrix of the structure. A sensitivity analysis has been carried out by comparing
the influence of the uncertainty dispersion hyperparameter of the probabilistic model on the
dynamical responses of the system. The results show a significant, if not a great, sensitivity of
the displacement of the structure, of the acoustic pressure in the liquid, and of the free-surface
elevation to uncertainties in both linear and geometrically nonlinear simulations. Note that the
dynamical sloshing responses of the free surface show an increasing uncertainty sensitivity as
one moves further from the shell wall. Indeed, the points on the free surface, which are the
most distant from the structure, show a higher level of sensitivity to uncertainty than those on
the triple line. However, a robustness (with respect to uncertainties) of the very-low frequency
sloshing resonances has been noticed. In addition, a methodology for the inverse identification of
the hyperparameter of the stochastic model of uncertainties, applied to a coupled fluid-structure
system, has been detailed. This methodology has been illustrated by a numerical application
for which, due to the absence of experimental data, the target dataset has been computationally
simulated.

Perspectives

• Concerning the triple line operator, additional works could be performed, which would
consist in analyzing other fluid-structure systems with respect to the influence of the contact
angle coupling condition for deformable structures. Several features could be explored
such as micro-gravity environments in which high curvature conditions are due to the
predominance of capillarity effects.

• In the framework on uncertainty quantification, a first perspective would be to quantify the
influence of model uncertainties on the coupling operators in the fluid-structure system.
In this work, the proposed model has presented the uncertainty propagation of the model
uncertainties involved by the structural stiffness to the whole system. An interesting devel-
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opment would thus be to model the coupling operators, such as the triple line operator,using
the nonparametric probabilistic approach of model uncertainties. Such nonparametric ap-
proach applied to triple operator could be justified by the existence of modeling errors
around the triple line, for example, contact angle values or surface roughness properties.

• Another perspective would consist in simultaneously using the nonparametric probabilistic
approach of model uncertainties based on the random matrix theory, and the nonparametric
probabilistic approach recently proposed [103], based on the use of stochastic ROBs. Due
to the block construction of the reduced-order basis, such hybridization would allow for
controling the uncertainty level on each subset of the fluid-structure system.
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Appendix A

Reduced-order matrices of fluid-structure
interactions

In this appendix, the full expressions of the reduced-order matrices of the fluid-structure system,
introduced in Section 2.5, are detailed. The fluid-structure redcued-order matrix [MFSI], which
is defined in Eq. (2.77), can be written by blocks as

[MFSI] =

[M11] [M12] [M13]
[M21] [M22] [M23]

[0] [0] [M33]

 , (A.1)

in which the sub-matrices are written as

[M11] = [Φp]
T [Mp] [Φp] , (A.2)

[M12] = [Φp]
T [Mp] [Φph]− [Φp]

T [Cpη]
T [Φh] , (A.3)

[M13] = −[Φp]
T [Cpu]T [Φu] , (A.4)

[M21] = [Φph]T [Mp] [Φp] , (A.5)

[M22] = [Φph]T [Mp] [Φph]− [Φph]T [Cpη]
T [Φh] , (A.6)

[M23] = −[Φph]T [Cpu]T [Φu] , (A.7)

[M33] = [Φu]T [Mu] [Φu] . (A.8)

The fluid-structure reduced-order matrix [DFSI], which is defined in Eq. (2.78), can be written
by blocks as

[DFSI ] =

[D11] [D12] [0]
[D21] [D22] [0]
[0] [0] [D33]

 , (A.9)

in which the sub-matrices are written as

[D11] = [Φp]
T [Dp] [Φp] , (A.10)

[D12] = [Φp]
T [Dp] [Φph] , (A.11)

[D21] = [Φph]T [Dp] [Φp] , (A.12)

[D22] = [Φph]T [Dp] [Φph] , (A.13)
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[D33] = [Φu]T [Du] [Φu] . (A.14)

The fluid-structure reduced-order matrix [KFSI], which is defined in Eq. (2.79), can be written
by blocks as

[KFSI ] =

[K11] [K12] [0]
[K21] [K22] [K23]
[K31] [K32] [K33]

 , (A.15)

in which the sub-matrices are written as

[K11] = [Φp]
T [Kp] [Φp] , (A.16)

[K12] = [Φp]
T [Kp] [Φph] , (A.17)

[K21] = [Φph]T [Kp] [Φp] + [Φh]T [Cph] [Φp] , (A.18)

[K22] = [Φph]T [K] [Φph] + [Φh]T [Cph] [Φph] + [Φh]T [Kgc] [Φh] , (A.19)

[K23] = [Φh]T [Chu] [Φu] , (A.20)

[K31] = [Φu]T [Cpu] [Φp] , (A.21)

[K32] = [Φu]T [Cpu] [Φph] + [Φu]T [Chu]T [Φh] , (A.22)

[K33] = [Φu]T [Ku] [Φu] . (A.23)
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Construction of the matrices of the
computational model by the finite element
method

The finite element discretization of the operators of the coupled fluid-structure system intro-
duced in Section 2.4 is based on the Ritz-Galerkin approximation (see Eq. (2.51)). This method
requires to choose an appropriate set of vector basis (ej) for correctly approximating the dynam-
ical behavior of the fluid-structure interaction problem. In the present case, the finite element is
chosen, involving isoparametric solid finite elements for the volumes, surface finite elements for
the coupling interfaces, and uni-dimensional finite elements for the triple line.

The spatial discretization of the domain is performed by defining a finite element mesh of each
subset of the system. This means that the mesh of the complete system is generated and then
the interface meshes are doubled to obtain a mesh for each sub-part of the system, for the liquid,
for the free surface and for the structure. This ensures that unknowns of the problem are defined
in their entire sub-domain and allows for maintaining mesh compatibility at the interfaces. The
complete finite element mesh is composed of NE = NEp + NEh + NEu elements denoted by
(Ei)i=1,...ne , where NEp (resp. NEh , NEu) denotes the number of elements of the internal fluid
(resp. the number of element of the free surface, and the number of elements of the structure).
The quantities denoted by superscript E refer to elementary quantities related to the considered
element. A classical formulation for the discretization is the isoparametric finite element method
which consists in defining the elementary interpolation functions in a given reference element
and expressing them in the physical space by defining a bijection between the reference and the
physical elements. The introduction of a finite element approximation (P,H,U) for unknown
fields (p, h,u) leads to the decomposition of the multi-linear forms defined in Section 2.4 into an
assembly of elementary quantities on each subdomain. For example, the mass operator of the
internal liquid defined in Eq. (2.52) can be approximated as

δPT [Mp]P ≈
NEp

A
i=1

δPT
Ei

[Mp]Ei PEi , (B.1)

where PEi denotes the vector of the elementary discretization of pressure P and where [Mp]Ei
denotes the elementary fluid mass matrix associated with element Ei(i=1,...,nE)

. In Eq. (B.1) the

operator A denotes the finite element assembling operator.

95



Appendix B. Construction of the matrices of the computational model by the finite element method

B.1 Finite element discretization of the three-dimensional oper-
ators

B.1.1 Isoparametric formulation

Let E be an isoparametric finite element whose nodes coordinates are expressed in the global
basis (e1, e2, e3). Let Er be the corresponding reference element with local basis (er1, e

r
2, e

r
3).

The volume domains occupied by finite element domain E and Er are denoted by ΩE and ΩEr

respectively. The transformation denoted as T associates one point m of the reference domain
with coordinates ξ = (ξ1, ξ2, ξ3), to one point M of the physical domain, with coordinates
x = (x1, x2, x3) (see Figure B.1). This bijection can be expressed as

Figure B.1 – Bijective transformation between the isoparametric reference 3D finite element Er

and the 3D physical finite element E.

x1(ξ) =

n∑
i=1

Ni(ξ)X
(i)
1 , x2(ξ) =

n∑
i=1

Ni(ξ)X
(i)
2 , x3(ξ) =

n∑
i=1

Ni(ξ)X
(i)
3 , (B.2)

in which n is the number of nodes of a given finite element E, X(i)
1 , X(i)

2 , and X
(i)
3 are the

coordinates of the ith node of the reference finite element, and Ni(ξ) are the shape functions or
interpolation functions that depend on the type of interpolation.

Let [J(ξ)] be the (3× 3) real matrix that represents the Jacobian matrix of the transformation
T such that

[J(ξ)]ij =
∂xj
∂ξi

. (B.3)

We then introduce the following properties that will be useful in the following. Let f(x) be a
given scalar field. We are interested in evaluating some integrals that a defined on the volume
domain of a given physical finite element into the volume domain of corresponding reference
finite element. The gradient of function f(x) with respect to x is written as

∇xf = [J(ξ)]−1∇ξf . (B.4)
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Since the finite elements are isoparametric, we can also write

f(x) =
n∑
i=1

Ni(ξ)Fi , (B.5)

in which Fi is the value of function f(x) at the nodes of finite element E.

Integral transformation
The integration over a physical finite element E can be expressed over the reference element Er

such that ∫
ΩE

f(x) dx =

∫
ΩEr

f(ξ) det([J(ξ)]) dξ , (B.6)

∫
ΩE

∇xf(x) dx =

∫
ΩEr

[J(ξ)]−1∇ξf(ξ) det([J(ξ)]) dξ , (B.7)

in which ∇ξf(ξ) is easily evaluated.

B.1.2 Interpolation of the unknown fields

The pressure p(x) and the free-surface elevation h(x) can be interpolated on a given element E
such that

p(x) = [N(ξ)]PE , h(x) = [N(ξ)]HE , (B.8)

where PE and HE are the Rn-vectors of the nodal values of pressure and free-surface elevation
of finite element E, and where [N(ξ)] is the (1× n) interpolation matrix such that

[N(ξ)] = [N1(ξ) N2(ξ) . . . Nn(ξ)] , (B.9)

The elementary vector field uE(x) = (uE1 (x), uE2 (x), uE3 (x))T can be written as

uE(x) = [N (ξ)]UE , (B.10)

in which the (3× 3n) interpolation matrix [N (ξ)] is defined by

[N (ξ)] =

N1(ξ) 0 0 . . . Nn(ξ) 0 0
0 N1(ξ) 0 . . . 0 Nn(ξ) 0
0 0 N1(ξ) . . . 0 0 Nn(ξ)

 , (B.11)

and where the R3n vector UE is written as

UT
E = (U (1)

1 , U (1)

2 , U (1)

3 , . . . , U (n)

1 , U (n)

2 , U (n)

3 ) , (B.12)

where U (k)
j denotes the component number j of the displacement at node number k of the finite

element.

Similarly to Eq. (B.5), the gradient of the unknown pressure p in the finite element E is written
as

∇xp(x) =

[
∂p

∂x1

∂p

∂x2

∂p

∂x3

]T
= [B(ξ)] PE , (B.13)
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in which [B(ξ)] is a (3× n) matrix such that

[B(ξ)] = [J(ξ)]−1


∂N1(ξ)

∂ξ1

∂N2(ξ)

∂ξ1
. . .

∂Nn(ξ)

∂ξ1
∂N1(ξ)

∂ξ2

∂N2(ξ)

∂ξ2
. . . ∂Nn(ξ)

∂ξ2

∂N1(ξ)

∂ξ3

∂N2(ξ)

∂ξ3
. . .

∂Nn(ξ)

∂ξ3

 . (B.14)

In the following, the Voigt notation is introduced. The second Piola-Kirchhoff tress tensor and
the Green-Lagrange strain tensor are represented by

{S} = (S11, S22, S33, 2S23, 2S13, 2S12) , {E} = (E11, E22, E33, E23, E13, E12) (B.15)

The constitutive equations defined by Eq. (2.14) can then be written as

{S} = [C] {E} , (B.16)

in which [C] is the (6× 6) matrix defined by

[C] =



λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 , (B.17)

in which λ and µ are the Lamé coefficients. In particular, the linearized strain tensor is written
as

{ε} = [B(ξ)] UE , (B.18)

in which [B(ξ)] is the (6×3n) interpolation matrix whose entries contains the partial derivatives
of the interpolation functions following the voigt notation.

B.1.3 Finite element discretization of the 3D operators

The computational evaluation of integrals over the reference elementary volume Ωr
E is performed

by using a Gauss quadrature [113, 44, 25, 111]. Generally, we have∫
ΩrE

f(ξ) dξ ≈
ng∑
g=1

f(ξg) ωg , (B.19)

in which ng denotes the number of Gauss integration points, ξg denotes the coordinates of the
integration points in the reference finite element, and ωg denotes the corresponding weight of
each Gauss point. Below, the expression of the elementary finite element matrices corresponding
to 3D finite elements are given.

The elementary "fluid" and "structural" mass matrices are written as

[Mp]E =
1

ρ0c2
0

ng∑
g=1

[N(ξg)]
T [N(ξg)] det

(
[J(ξg)]

)
ωg , (B.20)
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[Mu]E = ρS

ng∑
g=1

[N (ξg)]
T [N (ξg)] det

(
[J(ξg)]

)
ωg , (B.21)

The elementary "fluid" and "structural" stiffness matrices are written as

[Kp]E =
1

ρ0

ng∑
g=1

[B(ξg)]
T [B(ξg)] det

(
[J(ξg)]

)
ωg , (B.22)

[Ku]E =

ng∑
g=1

[
B(ξg)

]T
[C]

[
B(ξg)

]
det
(
[J(ξg)]

)
ωg . (B.23)

The assembling of the elementary matrices is then carried out taking into account the prescribed
boundary conditions.

B.2 Finite element discretization of two-dimensional operators

B.2.1 Isoparametric formulation

The finite element meshes are ssumed to be compatible and interfaces are constituted of some
faces of the 3D finite elements. This 2D restriction defines a two-dimensional physical isopara-
metric finite element Ē for which the normal np is characterized in the global coordinate system
(e1, e2, e3). A local coordinate system (ē1, ē2) is then introduced for finite element Ē. Let then
Ēr be the corresponding reference element with local basis (ē1, ē2). The bijective transforma-
tion T̄ between Ē and Ēr associates the coordinates (x̄1, x̄2) of a point located in the physical
finite element Ē with its corresponding counterpart of coordinates (ξ̄1, ξ̄2) in the reference finite
element such that

Figure B.2 – Bijective transformation between the isoparametric reference 2D finite element Ēr

and the local coordinate system (ē1, ē2) of the 2D physical finite element Ē.

x̄1(ξ̄) =
n̄∑
i=1

N̄i(ξ̄) X̄ (i)

1 , x̄2(ξ̄) =
n̄∑
i=1

N̄i(ξ̄) X̄ (i)

2 , (B.24)

in which n̄ is the number of nodes of a given 2D finite element, X̄ (i)

1 and X̄ (i)

2 are the coordinates
of the ith node of this given 2D element in its local system of coordinates, and N̄i(ξ̄) are the 2D
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shape function. Let [J̄(ξ̄)] be the (2× 2) real matrix that represents the Jacobian matrix of the
transformation such that

[J̄(ξ̄]ij =
∂x̄i
∂ξ̄j

. (B.25)

B.2.2 Interpolation of the unknown fields

The pressure p(x) and the free-surface elevation h(x) can be interpolated on a given 2D finite
element Ē such that

p(x) = [N̄(ξ̄)]PĒ , h(x) = [N̄(ξ̄)]HĒ , (B.26)

in which PĒ and HĒ are the Rn̄-vectors of the nodal values of pressure and free-surface elevation
on 2D finite element Ē, and where [N̄(ξ̄)] is the (1× n̄) interpolation matrix such that

[N̄(ξ̄)] = [N̄1(ξ̄) N̄2(ξ̄) . . . N̄n(ξ̄)] . (B.27)

The vector field u(x) can be expressed on the local 2D finite element as

u(x) = [N̄ (ξ̄)]UĒ , (B.28)

in which the (3× 3n̄) interpolation matrix [N̄ (ξ̄)] is defined by

[N̄ (ξ̄)] =

N̄1(ξ̄) 0 0 . . . N̄n̄(ξ̄) 0 0
0 N̄1(ξ̄) 0 . . . 0 N̄n̄(ξ̄) 0
0 0 N̄1(ξ̄) . . . 0 0 N̄n̄(ξ̄)

 , (B.29)

and where the R3n̄ vector UĒ is written as

UT
Ē = (U (1)

1 , U (1)

2 , U (1)

3 , . . . , U (n̄)

1 , U (n̄)

2 , U (n̄)

3 ) . (B.30)

The surface gradient that appears in the operator Ks
c (h, δh) can be expressed as a classical

gradient in the local surface coordinates system of a given 2D finite element. This gradient is
discretized as

∇Γ hĒ(x̄) =

[
∂hĒ(x̄)

∂x̄1

∂hĒ(x̄)

∂x̄2

]T
= [B̄(ξ̄)] HĒ , (B.31)

in which [B̄(ξ̄)] is the (2× n̄) interpolation matrix such that

[B̄(ξ̄)] = [J̄(ξ̄)]−1


∂N̄1(ξ̄)

∂ξ1

∂N̄2(ξ̄)

∂ξ1
. . .

∂N̄n(ξ̄)

∂ξ1
∂N̄1(ξ̄)

∂ξ2

∂N̄2(ξ̄)

∂ξ2
. . .

∂N̄n(ξ̄)

∂ξ2

 . (B.32)

B.2.3 Finite element discretization of the 2D operators

Similarly to Section B.1.3, the evaluation of the integrals on a given 2D element are approximated
using the Gauss quadrature method. In the case of 2D integrals, the number of gauss integration
points in denoted n̄g, their coordinates ξ̄g, and the associated Gauss weight ω̄g. Below, the
expression of the elementary finite element matrices corresponding to 2D finite elements are
given. The free surface gravity stiffness matrix, the free surface capillarity stiffness matrix, the
fluid-structure coupling matrix, and the fluid-free-surface coupling matrix are given by

[Kg]E = ρ0

n̄g∑
g=1

[N̄(ξ̄g)]
T (np

Ēi
· g

Ēi
) [N̄(ξ̄g)] det

(
[J̄(ξ̄g)]

)
ω̄g , (B.33)
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[Ks
c ]E = −

n̄g∑
g=1

σΓ

(
1(

REi
1

)2 +
1(

REi
2

)2
)

[N̄(ξ̄g)]
T [N̄(ξ̄g)] det

(
[J̄(ξ̄g)]

)
ω̄g . . .

+

n̄g∑
g=1

σΓ [B̄(ξ̄g)]
T [B̄(ξ̄g)] det

(
[J̄(ξ̄g)]

)
ω̄g , (B.34)

[Cph]E = −
n̄g∑
g=1

[N̄(ξ̄g)]
T [N̄(ξ̄g)] det

(
[J̄(ξ̄g)]

)
ω̄g , (B.35)

[Cpu]E = −
n̄g∑
g=1

(
[N̄ (ξ̄g)]

T np
Ēi

)
[N̄(ξ̄g)] det

(
[J̄(ξ̄g)]

)
ω̄g , (B.36)

It should be noted that, the quantities npĒi, gĒi
, REi

1 , and REi
2 that represents the external unit

normal to the fluid, the gravitational intensity vector, and the two principal curvature radii
are calculated, a priori, for each finite element of the free-surface mesh by a pre-computation
described in Appendix C.

B.3 Finite element discretization of one-dimensional operators

B.3.1 Isoparametric formulation

The triple line defines a uni-dimensional domain whose mesh is constituted of uni-dimensional
finite elements ¯̄E and results from the intersection of two surface meshes that are compatible.
The unitary tangent ¯̄e is expressed in the global coordinate system (e1, e2, e3) but also defines
a local coordinate system. Let ¯̄Er be the corresponding reference finite element with local basis
¯̄er. The bijective transformation ¯̄T between ¯̄E and ¯̄Er associates the coordinates (¯̄x) of a point
located in the physical finite element ¯̄E with its corresponding counterpart of coordinates ( ¯̄ξ) in
the reference finite element ¯̄Er such that

Figure B.3 – Bijective transformation between the isoparametric reference 1D finite element ¯̄Er

and the local coordinate system (¯̄e) of the 1D physical finite element ¯̄E.

¯̄x( ¯̄ξ) =

¯̄n∑
i=1

¯̄Ni(
¯̄ξ) ¯̄X (i) . (B.37)
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In which ¯̄n is the number of nodes of a given 1D finite element, ¯̄X (i) is the coordinates of the
ith node of this given 1D finite element in its local system of coordinates, and ¯̄Ni(

¯̄ξ) are the 1D
shape functions. The Jacobian of the transformation ¯̄T is expressed as:

¯̄J( ¯̄ξ) =
∂ ¯̄x

∂ ¯̄ξ
. (B.38)

B.3.2 Interpolation of the unknown fields

The free-surface elevation h(X) can be interpolated on a given local 1D finite element ¯̄E as

h(X) = [ ¯̄N( ¯̄ξ)]H ¯̄E , (B.39)

whereH ¯̄E is the R¯̄n-vector of the nodal values of the free-surface elevation of the 1D finite element
¯̄E and where [ ¯̄N( ¯̄ξ)] is the (1× ¯̄n) interpolation matrix defined such that

[ ¯̄N( ¯̄ξ)] = [ ¯̄N1( ¯̄ξ) ¯̄N2( ¯̄ξ) . . . ¯̄N¯̄n( ¯̄ξ)] . (B.40)

The vector field u(X) can be interpolated on the local 1D element as

u
¯̄E(X) = [ ¯̄N ( ¯̄ξ)] U ¯̄E , (B.41)

in which the (3× 3¯̄n) interpolation matrix [ ¯̄N( ¯̄ξ)] is defined by

[ ¯̄N ( ¯̄ξ)] =

 ¯̄N1( ¯̄ξ) 0 0 . . . ¯̄N¯̄n( ¯̄ξ) 0 0

0 ¯̄N1( ¯̄ξ) 0 . . . 0 ¯̄N¯̄n( ¯̄ξ) 0

0 0 ¯̄N1( ¯̄ξ) . . . 0 0 ¯̄N¯̄n( ¯̄ξ)

 (B.42)

and where the R3¯̄n-vector U ¯̄E is written as

UT
¯̄E

= (U (1)

1 , U (1)

2 , U (1)

3 , . . . , U (¯̄n)

1 , U (¯̄n)

2 , U (¯̄n)

3 ) . (B.43)

B.3.3 Finite element discretization of the 1D operators

Similarly to Section B.1.3, the evaluation of the integrals on a given 1D element are approximated
using the Gauss quadrature method. In the case of 1D integrals, the number of gauss integration
points in denoted ¯̄ng, their coordinates ¯̄ξg, and the associated Gauss weight ¯̄ωg. The lineic
contribution of the free-surface stiffness elementary matrix is given by

[K l
c]E = −

¯̄ng∑
g=1

σΓ ch [ ¯̄N( ¯̄ξg)]
T [ ¯̄N( ¯̄ξg)] det

(
[ ¯̄J( ¯̄ξg)]

)
¯̄ωg . (B.44)

A particular difficulty with the computation of the coupling matrix between the structure and the
free-surface is encountered because it requires the evaluation of the gradient of the displacement
field u(x) on the triple line γ. Such computation cannot be performed with classical interpolation
with isoparametric finite element method. Let us introduce the following decomposition of
operator Chu(u, δh)

Chu(u, δh) = C
(1)
hu (u, δh) + C

(2)
hu (u, δh) , (B.45)

in which
C

(1)
hu (u, δh) = −σΓ

∫
γ
dh u · nu δh dγ (B.46)
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and
C

(2)
hu (u, δh) = σΓ

∫
γ

∂(u · nu)

∂νΣ
δh dγ . (B.47)

The first term C
(1)
hu (u, δh) can be easily discretized and the corresponding elementary finite

element matrix [C
(1)
hu ]E is given by

[C
(1)
hu ]E = −

¯̄ng∑
g=1

σΓ dh [ ¯̄N ¯̄ξg]
T (nu

Ei
)T [ ¯̄N ( ¯̄ξ)] det

(
[ ¯̄J( ¯̄ξg)]

)
¯̄ωg . (B.48)

The gradient of the displacement field u(x) on the triple line γ is evaluated by considering the
gradient of the displacement field located in a 3D finite element whose edges contains the 1D
finite element under consideration denoted γE. In this 3D finite element, the displacement u(X)

Figure B.4 – Bijective transformation between the isoparametric reference 3D finite element Er

and the 3D physical finite element Ωγ
E
adjacent to the 1D local finite element γE.

is discretized such that

u(X) = [N (ξ)]

∣∣∣∣
γE

UE

∣∣∣∣
γE

. (B.49)

where UE| γE = U ¯̄E in this case is the nodal value of the displacement along the three dofs for
the 3D element, and where [N (ξ)] is the (3 × 3n) interpolation matrix. With this formulation,
the elementary displacement gradient ∇x(u(x) · nu¯̄E) can now be expressed as

∇ (u(x) · nu¯̄E) =

[J(ξ)]−T


(nuE)T

∂[N (ξ)]

∂ξ1

(nuE)T
∂[N (ξ)]

∂ξ2

(nuE)T
∂[N (ξ)]

∂ξ3


UE



∣∣∣∣∣∣∣∣∣∣∣
γE

=
(

[J(ξ)]−T [Ñ (ξ)] UE

)∣∣∣
γE

(B.50)

The second term C
(2)
hu is then discretized and the corresponding elementary finite element matrix

[C
(2)
hu ]E is expressed as

[C
(2)
hu ]E =

ng∑
g=1

σΓ [ ¯̄N( ¯̄ξg)]
T (νΣ

Er)
T
(

[J(ξg)]
−T [Ñ (ξg)]

)∣∣∣
γEr

det([ ¯̄J( ¯̄ξg]) ωg , (B.51)
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in which the tangential vector νΣ
Er is a priori computed in the global coordinate system. It

should be noted that, in order to ensure the correct intergration using the Gauss point method,
it is essential to determine the corresponding coordinates ξg of the 1D integration points ( ¯̄ξg) in
the 3D isoparametric system using a standard Newton-Raphson alogrithm.

B.4 Reduced-order finite element discretization of geometrical
nonlinearities

All the linear finite element matrices, that have been computed with the finite element method,
are used for computing the reduced-order basis required for the construction of the mean non-
linear reduced-order model. The construction of the linear reduced-order matrices is straight
forward and is written in Eqs. (2.77) to (2.80). However, the consideration of the geometri-
cal nonlinearities of the structure, in the context of the reduced-order model, does not require
the computational evaluation of the nonlinear finite element forces. In contrast, the nonlinear
reduced-order model defined in Section 2.5 introduces the operator FNL(Q) of the nonlinear in-
ternal restoring forces. These nonlinear restoring forces are constructed using Eq. (2.81) in which
the quadratic K̂(2)

αβγ and cubic K(3)
αβγδ operators are explicitly constructed using the methodology

proposed in [78]. Such reduced-order finite element modelization of the geometrical nonlinear-
ities allows for taking into account the uncertainties in the model by using the random matrix
theory [99, 100, 37, 101]. The nonlinear operators are thus explicitly constructed using the 3D
finite element methodology presented in Section B.1 and using the elastic projection basis [Φu]
such that the elementary nodeal structural displacement UE (in Eq. (B.10) can be expressed in
term of generalized coordinates such that

UE =

Nu∑
α=1

(ϕαu)E Q
u
α , (B.52)

where (ϕαu)E denotes the evaluation of the projection vector basis on the degrees of freedom
related to element E. Let then introduce the (3× 3n) real matrix [C(k)(ξ)]k∈{1,2,3} defined by

[C(k)(ξ)] =


∂N1(ξ)

∂ξk
0 0 . . .

∂Nn(ξ)

∂ξk
0 0

0
∂N1(ξ)

∂ξk
0 . . . 0

∂Nn(ξ)

∂ξk
0

0 0
∂N1(ξ)

∂ξk
. . . 0 0

∂Nn(ξ)

∂ξk

 . (B.53)

Let then introduce the (6× 3n) matrix [A(β)(ξ)] which corresponds to the interpolation matrix
related to the nonlinear part of the Green-Lagrange tensor using the Voigt notation defined as

[A(β)(ξ)] =



(ϕβu)TE [C(1)(ξ)]T [C(1)(ξ)]

(ϕβu)TE [C(2)(ξ)]T [C(2)(ξ)]

(ϕβu)TE [C(3)(ξ)]T [C(3)(ξ)]

(ϕβu)TE
(
[C(2)(ξ)]T [C(3)(ξ)] + [C(3)(ξ)]T [C(2)(ξ)]

)
(ϕβu)TE

(
[C(1)(ξ)]T [C(3)(ξ)] + [C(3)(ξ)]T [C(1)(ξ)]

)
(ϕβu)TE

(
[C(1)(ξ)]T [C(2)(ξ)] + [C(2)(ξ)]T [C(1)(ξ)]

)


. (B.54)
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The discretization of the quadratic and cubic sitffness operators can thus be expressed as

K̂(2)
αβγ = (ϕαu)T

NEu

A
i=1

ng∑
g=1

[B(ξg)]
T [C] [A(β)(ξg)] (ϕγu)Ei det

(
[J(ξg)]

)
ωg , (B.55)

K(3)
αβγδ = (ϕαu)T

NEu

A
i=1

ng∑
g=1

[A(β)(ξg)]
T [C] [A(γ)(ξg)] (ϕδu)Ei det

(
[J(ξg)]

)
ωg . (B.56)
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Appendix C

Calculation of the principal curvature radii of
a surface

The calculation of the principal curvature radii R1 and R2 of the free surface of the internal
liquid is performed in a pre-calculation. The elementary principal curvature radii REi

1 and REi
2 ,

used in the finite element discretization of matrix [Ks
c ] defined by Eq. (B.34), are calculated using

a Matlab function find in the Mathworks library [93, 98]. This function allows for computing
the mean, Gaussian, and principal curvatures of a given surface in a 3D space. The results are
obviously function of the surface mesh fineness. Thus, some examples of 3D surface curvature
calculations are presented in the following with respect to the characteristic mesh size dmesh of
the finite element surface. An example of a spherical surface of radius R = 0.5m is presented in
Figure C.1 with respect to the associated characteristic mesh sizes dmesh1 = 1m, dmesh2 = 0.1m,
and dmesh3 = 0.05m. In this spherical case, the two principal curvatures are identical and one
can see that the influence of the mesh is negligible.

dmesh
1 = 1m dmesh

2 = 0.1m dmesh
3 = 0.05m

Figure C.1 – First and second principal cuvature radii of the spherical surface computed with
respect to the mesh caracteristic sizes of the finite element surface.

However, for a more complex case presented in Figures C.2 and C.3, which respectively display
the first and the second principal curvature radii of a surface presenting 3 different extrusion
angles, we can see that the results strongly depend on the mesh caracteristic sizes dmesh1 = 1m,
dmesh2 = 0.1m, and dmesh3 = 0.02m. The calculations of the principal curvature radii of the free
surface of the internal liquid for the various numerical applications presented in this manuscript
have thus been performed by taking into account the influence of the finite element mesh size in
order to ensure the good approximation of the curvatures of the surface.
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dmesh
1 = 1m dmesh

2 = 0.1m dmesh
3 = 0.02m

Figure C.2 – First principal cuvature radius of the "complex" surface computed with respect to
the mesh caracteristic sizes of the finite element surface.

dmesh
1 = 1m dmesh

2 = 0.1m dmesh
3 = 0.02m

Figure C.3 – Second principal cuvature radius of the "complex" surface computed with respect
to the mesh caracteristic sizes of the finite element surface.
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