
HAL Id: tel-02478383
https://theses.hal.science/tel-02478383v1

Submitted on 13 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From lexical towards contextualized meaning
representation
Diana-Nicoleta Popa

To cite this version:
Diana-Nicoleta Popa. From lexical towards contextualized meaning representation. Computers and
Society [cs.CY]. Université Grenoble Alpes, 2019. English. �NNT : 2019GREAM037�. �tel-02478383�

https://theses.hal.science/tel-02478383v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA
COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES
Spécialité : Informatique
Arrêté ministériel : 25 mai 2016

Présentée par

Diana-Nicoleta POPA

Thèse dirigée par Eric GAUSSIER

préparée au sein du Laboratoire d'Informatique de Grenoble
dans l'École Doctorale Mathématiques, Sciences et
technologies de l'information, Informatique

Vers des représentations contextualisées de
mots

From lexical towards contextualized
meaning representation

Thèse soutenue publiquement le 27 septembre 2019,
devant le jury composé de :

Monsieur ERIC GAUSSIER
PROFESSEUR, UNIVERSITE GRENOBLE ALPES, Directeur de thèse
Monsieur ERIC VILLEMONTE DE LA CLERGERIE
CHARGE DE RECHERCHE, INRIA CENTRE DE PARIS, Rapporteur
Madame CLAIRE GARDENT
DIRECTRICE DE RECHERCHE, CNRS DELEGATION CENTRE-EST,
Rapporteur
Monsieur LAURENT BESACIER
PROFESSEUR, UNIVERSITE GRENOBLE ALPES, Président
Monsieur ALEXANDRE ALLAUZEN
PROFESSEUR, UNIVERSITE PARIS-SUD, Examinateur
Monsieur JAMES HENDERSON
CHARGE DE RECHERCHE, INSTITUT DE RECHERCHE IDIAP -
SUISSE, Examinateur
Monsieur JULIEN PEREZ
CHERCHEUR, NAVER LABS EUROPE - MEYLAN, Examinateur

Abstract

Continuous word representations (word type embeddings) are at the basis of most modern natu-

ral language processing systems, providing competitive results particularly when input to deep

learning models. However, important questions are raised concerning the challenges they face

in dealing with the complex natural language phenomena and regarding their ability to capture

natural language variability.

To better handle complex language phenomena, much work investigated fine-tuning the generic

word type embeddings or creating specialized embeddings that satisfy particular linguistic con-

straints. While this can help distinguish semantic similarity from other types of semantic relat-

edness, it may not suffice to model certain types of relations between texts such as the logical

relations of entailment or contradiction.

The first part of the thesis investigates encoding the notion of entailment within a vector space

by enforcing information inclusion, using an approximation to logical entailment of binary

vectors. We further develop entailment operators and show how the proposed framework can

be used to reinterpret an existing distributional semantic model. Evaluations are provided on

hyponymy detection as an instance of lexical entailment.

Another challenge concerns the variability of natural language and the necessity to disambiguate

the meaning of lexical units depending on the context they appear in. For this, generic word

type embeddings fall short of being successful by themselves, with different architectures being

typically employed on top to help the disambiguation. As type embeddings are constructed from

and reflect co-occurrence statistics over large corpora, they provide one single representation

for a given word, regardless of its potentially numerous meanings. Furthermore, even given

monosemous words, type embeddings do not distinguish between the different usages of a word

depending on its context.

In that sense, one could question if it is possible to directly leverage available linguistic infor-

mation provided by the context of a word to adjust its representation. Would such information

be of use to create an enriched representation of the word in its context? And if so, how can

information of syntactic nature aid in the process? Further, what impact can this have on var-

ious natural language understanding tasks? One could thus investigate whether looking at the

i

representations of the words within a sentence and the way they combine with each-other can

help build more accurate token representations for that sentence and thus facilitate performance

gains on natural language understanding tasks.

In the second part of the thesis, we investigate one possible way to incorporate contextual

knowledge into the word representations themselves, leveraging information from the sen-

tence dependency parse along with local vicinity information. We propose syntax-aware to-

ken embeddings (SATokE) that capture specific linguistic information, encoding the structure

of the sentence from a dependency point of view in their representations. This enables mov-

ing from generic type embeddings (context-invariant) to specific token embeddings (context-

aware). While syntax was previously considered for building type representations, its benefits

may have not been fully assessed beyond models that harvest such syntactical information from

large corpora.

The obtained token representations are evaluated on natural language understanding tasks typ-

ically considered in the literature: sentiment classification, paraphrase detection, textual en-

tailment recognition and discourse analysis. We empirically demonstrate the superiority of the

token representations compared to popular distributional representations of words and to other

token embeddings proposed in the literature.

The work proposed in the current thesis aims at contributing to research in the space of mod-

elling complex phenomena such as entailment as well as tackling language variability through

the proposal of contextualized token embeddings.

ii

Acknowledgements

I would like to express my greatest gratitude to my PhD advisors for their invaluable support

and guidance throughout this journey. To my PhD director Prof. Dr. Eric Gaussier and my in-

dustrial PhD advisors, Dr. James Henderson and Dr. Julien Perez for their availability, patience,

clear explanations and inspiring vision. Working with you has been truly rewarding and I am

extremely lucky and grateful for being given this chance.

I would like to thank Prof. Claire Gardent and Prof. Eric Villemonte de la Clergerie for taking

the time to read and assess my PhD manuscript and for providing me with insightful scientific

feedback. I would also like to thank Prof. Alexandre Allauzen and Prof. Laurent Besacier

for accepting to be part of the PhD defense jury and evaluate my work and for the valuable

discussions and suggestions.

I am thankful to my former advisors and my colleagues in Xerox Research Centre Europe, later

become Naver Labs Europe and my colleagues from Laboratoire Informatique de Grenoble who

have witnessed and encouraged my development throughout all this time. I am very grateful for

being given support and feedback for my work as well as access to the computational resources

that enabled this to exist. These have been wonderful and enriching working environments and

I am forever grateful for the instructive conversations and exchanges I was part of.

Needless to say I would not be here today if it weren’t for my dearest parents who have always

been supportive, did their best for me and constantly encouraged me to aim higher. Your con-

tribution to who I am today cannot be measured in words. Thank you! I am also thankful to my

grand parents for their love and support.

Last, but not least, I am thankful to each and every one of my friends and dear ones who have

provided me with their understanding, patience and endless support in my times of doubt and

discouragement. Thank you for believing in me, I am very fortunate to have you near, no matter

how far!

iii

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Background . 1

1.1.1 Word representations . 1

1.1.2 Modelling compositionality . 3

1.1.3 Compositionality and contextuality 8

1.2 Outline of the thesis . 10

2 A vector space for the distributional semantics for entailment 13

2.1 Introduction . 13

2.2 Related work . 16

2.3 Proposal: modelling entailment in a vector space 21

2.3.1 A mean-field approximation . 23

v

vi CONTENTS

2.3.2 Extension to entailment graphs . 29

2.4 Interpreting distributional semantics vectors 31

2.5 Evaluation and results . 35

2.5.1 Experimental setup . 36

2.5.2 Results and discussion . 37

2.6 Conclusion . 41

3 Unsupervised syntax-aware contextualized word representations 43

3.1 Related work . 44

3.2 SATokE – Syntax-Aware Token Embeddings 58

3.2.1 Preliminaries . 58

3.2.2 Unsupervised learning of token embeddings via tensor factorisation . . 60

3.3 Experimental protocol . 67

3.3.1 End task architectures . 67

3.3.2 Implementation details . 71

3.4 Evaluation and results . 76

3.4.1 Data appropriateness . 77

3.4.2 Sentence understanding . 78

3.4.3 Paraphrase detection . 90

3.4.4 Textual entailment recognition . 97

3.4.5 Further analysis on sentence understanding tasks 104

3.5 Application to discourse analysis . 113

3.5.1 Implicit discourse relation classification 113

3.5.2 Data . 116

3.5.3 Experimental setup . 120

3.5.4 Implementation details . 122

3.5.5 Comparison to word type embeddings 124

3.5.6 Comparison to state-of-the-art systems 126

3.5.7 Extension: combining dependency information with constituent parse

features . 131

3.5.8 Ablation studies - impact of syntax - model variations 131

3.6 Conclusion . 134

4 Conclusion 138

4.1 Summary of Thesis Achievements . 139

4.2 Publications . 140

4.3 Future Work . 141

Bibliography 143

vii

viii

List of Tables

2.1 Pattern of logical entailment between nothing known (unk), two different fea-

tures f and g known, and the complement of f (¬f) known. 14

2.2 The proposed entailment operators, approximating logP (y⇒x). 29

2.3 Accuracies on the BLESS data from Weeds et al. (2014),using the Google-News

word embeddings for hyponymy detection (50% Acc) and hyponymy direction

classification (Dir Acc) in the unsupervised experiments. * marks a significant

difference with the previous row. 39

2.4 Accuracies on the BLESS data from Weeds et al. (2014), using the Google-

News word embeddings for hyponymy detection (50% Acc) and hyponymy di-

rection classification (Dir Acc), in the semi-supervised experiments. 41

3.1 Data characteristics. Bold underlined are the “appropriate” datasets 78

3.2 Data statistics for the sentence understanding datasets considered 80

3.3 Examples of sentences for the sentence understanding tasks considered 80

3.4 Best run parameters for each task: αLR the initial learning rate, rneg the ratio of

negative sampling, dp the dropout keep probability, nbh the number of hidden

states, nbf the number of filters and fsz the filter sizes. 81

ix

x LIST OF TABLES

3.5 Elements of data complexity (from top to bottom): average number of subject

relationships per sentence, percentage of sentences out of the whole dataset

that have more than 1 subject relationship, percentage of sentences that have

more than 1 subject relationship out of the sentences that have at least 1 subject

relationship, average dependency link distance. 85

3.6 Sentence classification results in terms of accuracy (%). Comparison of the re-

sults obtained using the proposed syntactically-aware token embeddings (SATokE

300d) to results obtained using standard pre-trained word type embeddings:

GloVe (Pennington et al., 2014) and Dep-based WE (Levy and Goldberg, 2014),

including results using positional encodings and self-attention. All embeddings

are fixed unless mentioned otherwise. Best results for each architecture (LSTM,

CNN) are in bold. Best overall results across architectures are in bold underlined. 86

3.7 Comparison of the results obtained using the proposed syntactically-aware to-

ken embeddings (SATokE 300d) to results obtained using existing token em-

beddings on sentence classification tasks: ELMo 1024d (Peters et al., 2018).

All embeddings are fixed unless mentioned otherwise. Best results for each ar-

chitecture (LSTM, CNN) are in bold. Best overall results across architectures

are in bold underlined. 88

3.8 Difference in performance between our token embeddings and ELMo (in abso-

lute value of accuracy) and percentage of unknown words out of the vocabulary

of each dataset. 90

3.9 Examples of sentences from the MSRPC dataset. 92

3.10 Best run parameters for the task of paraphrase detection: αLR the initial learning

rate, rneg the ratio of negative sampling, dp the dropout keep probability, nbh

the number of hidden states, nbf the number of filters and fsz the filter sizes. . . 92

LIST OF TABLES xi

3.11 Elements of data complexity (from top to bottom): average number of subject

relationships per sentence, percentage of sentences out of the whole dataset

that have more than 1 subject relationship, percentage of sentences that have

more than 1 subject relationship out of the sentences that have at least 1 subject

relationship, average dependency link distance. 92

3.12 Sentence pair classification results on the task of paraphrase detection in terms

of accuracy (%). Comparison of the results obtained using the proposed syntactically-

aware token embeddings (SATokE 300d) to results obtained using standard pre-

trained word type embeddings: GloVe (Pennington et al., 2014) and Dep-based

WE (Levy and Goldberg, 2014), including results using positional encodings

and self-attention. Best results for each architecture (LSTM, CNN) are in bold.

Best overall results across architectures are in bold underlined 95

3.13 Comparison of the results obtained using the proposed syntactically-aware to-

ken embeddings (SATokE 300d) to results obtained using existing token embed-

dings on the task of paraphrase detection: ELMo 1024d (Peters et al., 2018). All

embeddings are fixed unless mentioned otherwise. Best results for each archi-

tecture (LSTM, CNN) are in bold. Best overall results across architectures are

in bold underlined. 96

3.14 Examples of sentence pairs used for the evaluation of textual entailment recog-

nition. 98

3.15 Best run parameters for the task of textual entailment recognition: αLR the

initial learning rate, rneg the ratio of negative sampling, dp the dropout keep

probability, nbh the number of hidden states, nbf the number of filters and fsz

the filter sizes. 99

xii LIST OF TABLES

3.16 Elements of data complexity (from top to bottom): average number of subject

relationships per sentence, percentage of sentences out of the whole dataset

that have more than 1 subject relationship, percentage of sentences that have

more than 1 subject relationship out of the sentences that have at least 1 subject

relationship, average dependency link distance. 100

3.17 Sentence pair classification results on the task of textual entailment recognition

in terms of accuracy (%). Comparison of the results obtained using the proposed

syntactically-aware token embeddings (SATokE 300d) to results obtained using

standard pre-trained word type embeddings: GloVe (Pennington et al., 2014)

and Dep-based WE (Levy and Goldberg, 2014), including results using posi-

tional encodings and self-attention. Best results for each architecture (LSTM,

CNN) are in bold. Best overall results across architectures are in bold underlined103

3.18 Comparison of the results obtained using the proposed syntactically-aware to-

ken embeddings (SATokE 300d) to results obtained using existing token em-

beddings on the textual entailment recognition task: ELMo 1024d (Peters et al.,

2018). All embeddings are fixed unless mentioned otherwise. Best results for

each architecture (LSTM, CNN) are in bold. Best overall results across archi-

tectures are in bold underlined. 105

3.19 Comparison of the results obtained using the proposed syntactically-aware to-

ken embeddings (SATokE 300-dimensional) to results obtained using the 256-

dimensional ELMo token embeddings (Peters et al., 2018) across all tasks con-

sidered in Sections 3.4.2, 3.4.3, 3.4.4. All embeddings are fixed unless men-

tioned otherwise. Best results for each architecture (LSTM, CNN) are in bold.

Best overall results across architectures are in bold underlined. 106

LIST OF TABLES xiii

3.20 Sentence classification and sentence pair classification results in terms of accu-

racy (%). Comparison of the proposed syntactically-aware token embeddings

(SATokE 300d) to token embeddings computed using only adjacency informa-

tion from the sentence graph (SATokE 300d only-adjacency). All embeddings

are fixed. Best results are in bold. 108

3.21 Sentence classification and sentence pair classification results in terms of accu-

racy (%). Comparison of the proposed syntactically-aware token embeddings

(SATokE 300d) to token embeddings computed using “collapsed” punctuation

information under a single tag (SATokE 300d single-Punct). All embeddings

are fixed. Best results are in bold. 109

3.22 Sentence classification and sentence pair classification results in terms of accu-

racy (%). Comparison of the proposed syntactically-aware token embeddings

(SATokE 300d) to token embeddings computed using merged relations infor-

mation (SATokE 300d rels-merged). All embeddings are fixed. Best results are

in bold. 111

3.23 Sentence classification and sentence pair classification results in terms of accu-

racy (%). Comparison of the proposed syntactically-aware token embeddings

(SATokE 300d) to token embeddings computed using the 2-step setup, leverag-

ing pre-trained relations embeddings (SATokE 300d 2-step). All embeddings

are fixed. Best results are in bold. 112

3.24 Examples of challenging sentence pairs correctly classified using the SATokE

token embeddings . 112

3.25 Examples of most similar words to a given token 113

3.26 Data statistics for the PDTB-Lin split . 119

3.27 Data statistics for the PDTB-Pitler split . 119

3.28 Data characteristics for the PDTB data. 120

3.29 Elements of data complexity (from top to bottom): average number of subject

relationships per sentence, percentage of sentences out of the whole dataset

that have more than 1 subject relationship, percentage of sentences that have

more than 1 subject relationship out of the sentences that have at least 1 subject

relationship, average dependency link distance. 124

3.30 Parameters used for the reported results on each data split 124

3.31 Results for level-2 multi-class classification on the PDTB-Lin split in terms of

accuracy (%). Comparison to word type embeddings. Best results are in bold. . 125

3.32 Results for level-2 multi-class classification on the PDTB-Lin split in terms of

accuracy (%). Comparison to related work. 127

3.34 Results for level-1 multi-class classification on the PDTB-Pitler split in terms of

accuracy (%). Comparison to originally reported results and re-created settings

of Wang et al. (2017). 130

3.35 Results for level-1 multi-class classification on the PDTB-Pitler split using vari-

ations of the proposed token embeddings model with a CNN architecture. Re-

sults are reported in terms of accuracy (%). Best results are in bold. 133

xiv

List of Figures

2.1 The learning gradients for Word2Vec, the log-odds >©, the dup >© and the unk

dup >© interpretation of its vectors. 35

3.1 Example of relations that hold for one sentence: relations from the dependency

parse (in grey) + adjacency relations (in blue). 62

3.2 Example of a matrix corresponding to the dependency relation NSUBJ for sen-

tence s. 62

3.3 Example of a matrix corresponding to the adjacency relation ADJC. 63

3.4 Matrices form the tensor T (s) for sentence s. 63

3.5 Sentence graph decomposition . 64

3.6 General CNN architecture (Kim, 2014) . 69

3.7 General architecture for sentence pair classification 74

3.8 Distribution of the considered syntactic relations in the MR dataset. 82

3.9 Distribution of the considered syntactic relations in the CR dataset. 82

3.10 Distribution of the considered syntactic relations in the SUBJ dataset. 83

3.11 Distribution of the considered syntactic relations in the TREC dataset. 83

xv

3.12 Distribution of the considered syntactic relations in the SST-2 dataset. 84

3.13 Distribution of the considered syntactic relations in the MSRPC dataset. 93

3.14 Distribution of the considered syntactic relations in the SICK dataset. 100

3.15 Distribution of the considered syntactic relations in the SNLI-20k dataset. . . . 101

3.16 CGNN (Qin et al., 2016b) . 122

3.17 Distribution of the considered syntactic relations in the PDTB data. 123

xvi

Chapter 1

Introduction

1.1 Background

1.1.1 Word representations

Continuous word representations (word embeddings) (Collobert and Weston, 2008; Turian et al.,

2010; Collobert et al., 2011; Huang et al., 2012; Mikolov et al., 2013b; Pennington et al., 2014;

Bojanowski et al., 2017) lie nowadays at the basis of most methods employed for natural lan-

guage processing tasks. They encode richer representations than those provided by traditional

symbolic or discrete models, removing the sparsity issues and enabling similarity judgments.

Their usefulness has been proven in a variety of tasks such as paraphrase detection (Kenter

and de Rijke, 2015), textual entailment recognition (Bowman et al., 2015), dependency parsing

(Bansal et al., 2014), machine translation (Zou et al., 2013), language modelling (Peters et al.,

2017) and so on. The created embeddings encode words as vectors such that words with similar

meanings lie close to each other in the vector space, while dissimilar words are far apart. Vector

similarity measures can then be used to approximate meaning similarity within this space.

At the core of most approaches to meaning representation and to embeddings creation lies the

1

2 Chapter 1. Introduction

distributional hypothesis (Harris, 1954). This represents the idea that words that appear in

similar contexts tend to bear similar or related meanings, encouraging thus the implementation

of models that look at a word’s context to infer the word’s meaning. This enables leveraging the

available large amounts of data to create continuous word representations through unsupervised

methods (Mikolov et al., 2013b; Pennington et al., 2014).

However, while generic word representations are employed for a wide range of tasks, further

work has looked into adjusting these word embeddings to satisfy various linguistic constraints.

This is considered to be necessary due to the need to distinguish between semantic similarity

and other types of semantic relatedness (Hill et al., 2015), that is not possible when depend-

ing on purely distributional knowledge (Glavaš and Vulić, 2018). Consequently, the created

word representations are either better tailored for solving a particular task, such as the lexical

entailment-specific embeddings of Vulic and Mrksic (2018) or can be used to obtain improved

results invariably of the task (Yu and Dredze, 2014).

A common tendency to enable the creation of enriched word representations, is to leverage

the existence of multiple language resources, either during the embeddings creation phase or

as a post-processing step. In that sense, Faruqui et al. (2015) propose leveraging information

from semantic lexicons such as WordNet (Miller, 1995), FrameNet (Baker et al., 1998) and the

Paraphrase Database (Ganitkevitch et al., 2013) to refine word embeddings representations in a

post-processing step denoted as retrofitting. Yu and Dredze (2014); Xu et al. (2014) propose in-

cluding linguistic constraints through regularization terms included during the training of word

embeddings. Mrkšic et al. (2016) propose a model that injects antonymy and synonymy con-

straints into vector space representations which are further evaluated on semantic similarity and

dialogue state tracking. Mrkšić et al. (2017) leverage cross-lingual resources for improving the

quality of word representations, while Glavaš and Vulić (2018) propose a method to learn a

specialization function that can be further applied to previously unseen words.

Furthermore, when going beyond tasks that rely on meaning relatedness, into recognizing logi-

cal relations such as hypernymy, entailment or contradiction, using only distributional semantic

1.1. Background 3

models has been proven to be challenging and even insufficient (Levy et al., 2015; Kruszewski

et al., 2015). More particularly, for the case of lexical inference, Levy et al. (2015) show that

many supervised models learn whether one of the words in a pair of words is a “prototypical

hypernym” (to be read as “it tends to entail”, rather than “it tends to be entailed”), instead of

learning a concrete relation that holds between the two given words. This finding is consistent

across several methods for word representations creation, taking into account different context

types. Therefore, further effort has been put into better modelling such relations. For this, some

work creates hypernymy-specific word embeddings (Yu et al., 2015; Nguyen et al., 2017; Chang

et al., 2018), while other work goes further into modelling entailment within the vector space

itself through information inclusion (Kruszewski et al., 2015; Henderson and Popa, 2016). Nev-

ertheless, such methods contribute to the space of word representations, obtaining competitive

results on the respective tasks.

1.1.2 Modelling compositionality

Although modelling the individual words is important, representing and reasoning about longer

units of text such as phrases, sentences or paragraphs requires going beyond isolated word

representations. This aspect has been typically handled in various ways: one possibility is to

extend methods that initially dealt with word representations to consider longer units of text (Le

and Mikolov, 2014; Kiros et al., 2015) as part of an unsupervised approach. Another option is

to explicitly model in some way compositionality over individual word representations through

various mathematical operations (Clark et al., 2008; Mitchell and Lapata, 2010). Other work

aims to learn composition operators that map word representations to representations of longer

units of text, often employing neural network architectures (Hochreiter and Schmidhuber, 1997;

Socher et al., 2013b; Kalchbrenner et al., 2014; Kim, 2014). However, the resulting sentence

representations are learned as part of a supervised task, making the learned representations

tuned for the task. To account for that, some work has also looked at learning universal sentence

representations (Conneau et al., 2017; Cer et al., 2018), as part of transfer learning setups.

4 Chapter 1. Introduction

Most often though, such methods still assign one single vector per sentence which is arguably

insufficient for containing the entire meaning of the sentence.

As recent work (Dasgupta et al., 2018) shows though, the proposal in Conneau et al. (2017)

does not exhibit significant compositionality and, in general, many models leveraging such

sentence representations rely on heuristics of the data for achieving high performance. For the

SNLI dataset (Bowman et al., 2015) for example, a high overlap in words between premise and

hypothesis has been proven to be predictive of an entailment relation between sentences, while

the presence of negations and little word overlap indicates potential contradiction.

Nevertheless, while multiple approaches exist, no consensus has been reached regarding the

best method to employ for obtaining compositionality without losing information captured in

the individual word representations, yet generalizing to encoding the entirety of a sentence and

of the dependencies within it.

According to the Principle of Compositionality, also known as Frege’s principle (Frege, 1884),

the meaning (semantic intepretation) of a complex expression is a function of the meanings of its

parts and of the rules by which they are combined (Bach, 1989; Partee et al., 1990), with Partee

(1995) further suggesting that these rules could be of syntactic nature. That is to say, finding

a way to combine the meaning of individual words into longer units of texts such as phrases

or sentences is crucial to achieving overall text understanding. Such an approach implies that

the interpretation of a sentence is the combination of lexical semantics and syntactical aspects

within the sentence, supporting that the same words can be combined differently to provide

different meanings, like in the below example from Landauer et al. (1997):

• It was not the sales manager who hit the bottle that day, but the office worker with the

serious drinking problem.

• That day the office manager, who was drinking, hit the problem sales worker with the

bottle, but it was not serious.

1.1. Background 5

In this respect, much work has investigated methods to combine the vectorial representations of

words into representations of the phrases and sentences they form. Some early work questioned

the necessity of taking into account word order by representing a passage of text as a linear

combination of its word vectors (Landauer et al., 1997; Foltz et al., 1998), while other work

argued for the importance of considering syntactic information (West and Stanovich, 1986).

In general the reduced complexity of using an averaging approach along with the benefit of

maintaining the same dimensionality in the output as that of the input representations may be

preferred for some applications (Landauer et al., 1997; Iyyer et al., 2015). Yet, whenever there

is a need for encoding word order or distinguishing between representations of two passages

of text sharing the same vocabulary, but differing in meaning (like in the previous example),

leveraging the syntactic structure could constitute an alternative. In particular, it has been shown

that models of semantic similarity should encourage the combination of semantic content in a

syntactically-aware manner (Mitchell and Lapata, 2010).

Starting from a vector-based representation for each word, the meaning of sequences of words

is often obtained through linear combinations of the input vectors, such as addition or weighted

average. Variations also exist over such additive models, as that proposed by Kintsch (2001)

to model predicate-argument structures, relying on the idea that one can infer the meaning of a

predicate depending on the argument it operates upon. In such a model, the neighbours of target

words and their arguments are considered, allowing for distinguishing cases such as the cat ran

away and the color ran.

Formally, Mitchell and Lapata (2008, 2010) propose a framework for the use of additive and

multiplicative functions (and their combinations) to perform vector composition. Their frame-

work allows for integrating knowledge about syntactic relations as well as any additional world

knowledge or information about the neighbours of target words. It also allows for weighing

differently the individual contributions of the words to the final sequence representation. The

proposed operators are applied to word vectors obtained through different methods: either based

on co-occurrence statistics with neighbouring words or derived through topic modelling. Perfor-

6 Chapter 1. Introduction

mance is assessed on sentence similarity rating, with multiplicative models obtaining compet-

itive results on the word co-occurrence-based semantic space and additive models performing

well on the topic-based semantic space. Many subsequent models use their framework or vari-

ations of it as starting point for their compositional approaches (Erk and Padó, 2008; Baroni

and Zamparelli, 2010; Zanzotto et al., 2010; Kartsaklis and Sadrzadeh, 2013), including when

integrated in deep neural networks (Iyyer et al., 2015).

An alternative to using vector addition is represented by tensor products. Following Smolensky

(1990) in integrating the symbolic and distributional approaches, Clark and Pulman (2007)

propose using tensor products over the traversal of syntactic dependency trees. They consider

both word representations and the syntactic structures they appear in: vectors representing the

meaning of words are combined in a tensor product with vectors representing their roles. It is

interesting to note, though, that their modelling of the vectors for syntactic relations is regarded

as an open question and handled simply by assigning them pre-defined values that would satisfy

some constraints. The created representations obtained from their proposed tensor products do

allow for distinguishing sentences with the same vocabulary but different meanings from each

other, such as:

• The cat chased the dog.

• The dog chased the cat.

enabling the difference between cat being an agent in the first sentence and a patient in the

second. One of the main issues, however, with tensor products lies in the exponential growth

of the space created by the combination of such representations. A solution for this aspect

can be obtained by projecting the tensor product back into the space of the original vectors by

applying circular convolutions (Plate, 1991). However, later work (Mitchell and Lapata, 2010)

showed that the projection of the tensor products into a lower dimensional space provides a

decreased performance and, furthermore, in general the tensor product based approaches are

outperformed by the multiplicative ones. Clark et al. (2008) also make use of tensor products to

1.1. Background 7

propose linking models of linguistic composition to vector composition, while Widdows (2008)

provide an analysis of different compositional models based on vector operations.

Vectors are not the only structure used to encode word representations as part of modelling com-

positionality. Baroni and Zamparelli (2010) propose a model where nouns are encoded with

vectors and adjectives with matrices that act as functions over the nouns. Their model is evalu-

ated only on adjective-noun composition, not providing a framework of composition for a full

sentence. Rudolph and Giesbrecht (2010) propose a Compositional Matrix-Space model, prov-

ing theoretically its appropriateness for modelling compositionality. Yessenalina and Cardie

(2011) also propose modelling all words as matrices and their interactions as matrix multipli-

cations. However, due to the associative property of matrix multiplication such an approach

fails to model syntactic differences or to clearly delimit the scope of negations. Grefenstette

and Sadrzadeh (2011) model relational words (adjectives, adverbs, verbs) as matrices and their

arguments (nouns) as vectors within a categorical model that focuses on subject-verb-object

triples.

Some work uses models from the family of recursive neural networks to achieve competitive

results on several language understanding tasks by relying on the structure of natural language.

Within these approaches, compositionality is considered over the binarized constituency parse

tree of a sentence, by having the representation for any internal node in the tree computed as

a nonlinear function of the representations of its children. Socher et al. (2011b) model phrases

and sentences using recursive autoencoders, while Socher et al. (2012) propose using recursive

neural networks for modelling compositionality, by considering both a vectorial and a matrix

representation for each constituent in the parse tree. This enables the modelling of both the con-

tent of each word (through the vector) and of its interaction with neighbouring words (through

the matrix). Socher et al. (2013a) extend this further into a more powerful recursive neural

tensor network that includes a tensor product.

Tai et al. (2015) propose Tree-LSTMs, a generalization over the standard long short-term mem-

ory architecture (Hochreiter and Schmidhuber, 1997) to tree-structured topologies. They lever-

8 Chapter 1. Introduction

age both dependency and constituency parses and show such architectures bring improvements

on the tasks of semantic relatedness and sentiment classification. Similarly, Wang et al. (2017)

obtain improvements on classifying implicit discourse relations using Tree-LSTM and Tree-

GRU architectures, while Irsoy and Cardie (2013) propose using bidirectional recursive neu-

ral networks over binary parse trees. Much other work leverages the structure of parse trees,

sometimes combined with an attention mechanism (Yao Zhou and Pan, 2016; Kokkinos and

Potamianos, 2017), implicitly obtaining some form of compositionality.

1.1.3 Compositionality and contextuality

Apart from relying on the way the words combine with each-other and in order to be able to

reason beyond single lexical units by considering longer units of text such as sentences and

phrases, one also needs to take into account the different possible meanings of words. And one

possible (and often preferred) way to disambiguate the meaning of a word is by looking at its

immediate neighbouring context.

While contextual information, be it linear (Mikolov et al., 2013b) or of syntactic nature (Levy

and Goldberg, 2014), is much used in distributional semantics models, the obtained representa-

tion of a word encodes an abstraction over the occurrences and uses of that word in the dataset

it is learned from (Westera and Boleda, 2019). A distinction is thus to be made between the

general word type embedding which denotes the representation a word has across different con-

texts and a specific word token embedding, denoting the representation of a word in a particular

context. While, as previously discussed, the generic word type embeddings constitute an im-

portant and often employed starting point within many natural language understanding tasks, it

is the particular use of a given word that best disambiguates its meaning. Therefore, to get an

even clearer understanding of the role the word plays and its contribution to the overall meaning

of a particular sentence, one should ideally take the full sentence into account and focus on the

in-context representation of that word.

1.1. Background 9

Compositionality is thus inevitably linked to contextuality. As Frege (1884) points out in the

Context principle, that later Wittgenstein (1953) adheres to, the meaning of a word should be

considered only in the context of a statement and thus in its use. That is to say the meaning

of the whole statement is constructed from its words (compositionality), yet the meaning of the

words is derived from the entirety of the statement (contextuality). This suggests that a model

of compositionality should be seen as one that promotes contextual awareness just as a model

of contextuality should enable composition of meaning.

In that respect, the proposal in Chapter 3, also reflected in Popa et al. (2019a,b), aims at enabling

the construction of word representations taking into account the context they appear in and the

way the compose with each other. Context is considered from both a local linear perspective as

well as a syntactic one. Locally, this is achieved by inducing information from the neighbours

of a target word into the word representation itself. From a syntactic perspective, the parse tree

of the sentence is encoded, by conditioning the representation of a target word with respect to

representations of all the words it is connected to in the syntactic graph, considering the different

types of connections as different relations between words. Since it is possible to reach any word

from any other word within the syntactic graph of a sentence, information can “flow” from one

word to another through the relations, resulting in each word representing a compressed view of

the graph from its own perspective. In this model, contextuality becomes thus encoded within

each word’s representation (Popa et al., 2019a,b).

Much previous work relied on syntactic information for computing the word vector represen-

tations themselves (Padó and Lapata, 2007; Baroni and Zamparelli, 2010; Baroni and Lenci,

2010; Levy and Goldberg, 2014; Weir et al., 2016; Komninos and Manandhar, 2016; MacA-

vaney and Zeldes, 2018). But most of this work provided general purpose word type embed-

dings computed on the basis of syntactic contexts across large amounts of data, rather than

token embeddings that encode the full syntactic graph of each individual sentence they are part

of. Thus in such cases modelling compositionality and contextuality still need to be tackled

within the parameters of an architecture built on top of these representations.

10 Chapter 1. Introduction

An approach that does include syntactic information into word representations and also goes

beyond models that use tree-based recursive architectures to obtain compositionality, as those

presented in Section 1.1.2, is that of Erk and Padó (2008). They propose building a structured

vector space that provides for each word instance a vector denoting the lexical meaning of

the word as well as a set of vectors denoting the selectional preferences the word has for its

argument positions across multiple relations, thus inducing some form of syntactically aware

contextual representations. Selectional preferences had been previously used for a variety of

tasks from syntactic disambiguation (Hindle and Rooth, 1993) and word sense disambiguation

(McCarthy and Carroll, 2003) to semantic role labeling (Gildea and Jurafsky, 2002), but mostly

verbs were considered as taking part in relations. The obtained vector representations of Erk and

Padó (2008) are further combined according to the framework of Mitchell and Lapata (2008).

Nevertheless, Erk and Padó (2008) acknowledged the limitations of their proposed model to

allow for information to “flow” from one word to another as relations are modeled in isolation

and not within the graph of a sentence as in the current proposal. Additionally, in their proposed

framework the meaning of a particular word is neither computed by integrating information

from multiple relations as in the current proposal nor does it leverage distributional information

computed from large amounts of data.

1.2 Outline of the thesis

As a first step, we focus on the representation of basic lexical units, namely the words, and

propose a framework for including the entailment notion within the vector space itself, thus

contributing to the space of word representations (Henderson and Popa, 2016). For that we use

an instance of lexical entailment, namely hyponymy detection as a proxy task to modelling in-

formation inclusion. The relationship is modeled between lexical units disregarding the context

they appear in, relying solely on the probability of features being “known” or “unknown” within

the different dimensions of their representations. A mean-field approximation to entailment be-

tween binary vectors is thus proposed, along with operators that measure entailment between

1.2. Outline of the thesis 11

vectors. Further, we show that the proposed framework can be seen as an approximation of a

popular distributional semantics model and evaluate the potential of the proposal on the task of

hyponymy detection.

The context of the proposal, its motivation as well as the necessary introductory notions are

presented in Section 2.1. Section 2.2 presents the related work on hyponymy detection, with a

focus on methods that are close to the current proposal through their aim to learn hypernymy-

specific representations or to encode entailment. The proposal to model entailment in a vector

space is described in Section 2.3, while Section 2.4 provides a way to reinterpret an existing

model of distributional semantics as approximating one of semantic entailment. The experi-

mental setup, the evaluation of this interpretation as well as that of the entailment operators are

provided in Section 2.5. Some concluding remarks are presented in Section 2.6.

The next natural step is to abstract away from the lexical unit view and aim for a model of

contextuality. As compositionality and contextuality are interlinked, encoding words within

their context, while also taking into account the role each word plays in the sentence, could

serve as a starting point for methods that aim at modelling compositionality. This leads to the

proposal in Chapter 3. Both linear and syntactic contexts within a sentence are leveraged to

compute the SATokE token embeddings, syntactically-informed word representations adjusted

to their context (Popa et al., 2019a,b). Contextuality is achieved in this model as the context

is encoded within the word vectors themselves and not within an architecture set up on top

of them, which is often task dependent. The obtained token embeddings are computed such

as to provide a view of the graph of the entire sentence from their perspective. The method

used to induce these representations is based on tensor factorization which has proven to be

successful at modelling latent representations of entities and relations in graphs (Nickel et al.,

2012; Trouillon et al., 2016). The obtained token embeddings are tested on a wider range of

tasks, going beyond just textual entailment: sentence sentiment classification, question type

classification, paraphrase detection, implicit discourse relation classification.

Related work on context-aware token embeddings is presented in Section 3.1 in comparison to

12 Chapter 1. Introduction

the current proposal. The algorithm for token embeddings computation is detailed in Section

3.2, while the overall experimental protocol along with the implementation details are presented

in Section 3.3. Details of the different tasks considered for evaluation as well as the obtained

results are presented in Section 3.4. Finally, Section 3.5 presents the application of the proposed

token embeddings to the task of implicit discourse relation classification, while Section 3.6

concludes the chapter.

Some final remarks, a summary of the achievements of the current thesis and possible future

directions are outlined in Chapter 4.

Chapter 2

A vector space for the distributional

semantics for entailment

2.1 Introduction

A widely studied fundamental issue in computational semantics has been that of modelling the

entailment relation between two texts (Dagan et al., 2006; Mirkin et al., 2009; Rocktäschel et al.,

2016; Chen et al., 2017). Its importance stems from its potential applicability in many natural

language processing subfields where one needs to verify that some input text entails some output

text, like for example in question answering (Sacaleanu et al., 2008), machine translation (Padó

et al., 2009) or abstract summarization (Pasunuru et al., 2017). The notion of textual entailment

is based on the idea that the same textual meaning can be expressed in different ways. It is

generally defined as the directional relationship between two text fragments: the entailing Text

(T) and the entailed Hypothesis (H) . An entailment relationship is said to hold between T and

H if, by reading T, a human would infer that H is most likely true (Dagan et al., 2006).

While there has been a lot of interest and significant recent advances in modelling entailment

within a vector-space (Bowman et al., 2015; Camburu et al., 2018; Kim et al., 2019), most of

13

14 Chapter 2. A vector space for the distributional semantics for entailment

⇒ unk f g ¬f
unk 1 0 0 0
f 1 1 0 0
g 1 0 1 0
¬f 1 0 0 1

Table 2.1: Pattern of logical entailment between nothing known (unk), two different features f
and g known, and the complement of f (¬f) known.

the existing work does not explicitly create a vector space of entailment, but rather encodes

the relationship in the parameters of a classifier. As Levy et al. (2015) pointed out, for the

simpler case of lexical entailment, such an approach has the risk of only learning to detect the

generality of one of the terms involved in the relationship, rather than the actual relationship

between the two terms. In contrast to this, the current work proposes a new framework for

modelling entailment in a vector-space such that the entailment notion is captured within the

vector space itself as outlined in Henderson and Popa (2016). To illustrate its effectiveness, a

distributional-semantic model of hyponymy detection is used as an initial use case.

Identifying hyponymy relations is considered to be useful for a series of tasks ranging from

taxonomy creation (Snow et al., 2006) to recognizing textual entailment (Dagan et al., 2013).

Hyponymy/hypernymy represents the directional relation between a generic, superordinate term

(denoted as the hypernym) and a specific, subordinate instance of it (denoted the hyponym).

More precisely, it represents a type-of relationship between two terms or phrases, with the

hyponym necessarily implying the hypernym, but not vice versa. For example, “dog”, “cat”,

“parrot”, “rabbit” etc are all hyponyms of the word “animal”, which represents their hypernym.

Hyponymy is thus the canonical type of lexical entailment, with words representing the basic

lexical units between which such a relationship can hold. Reasoning about entailment implies

thus being able to reason about hyponymy relations.

Differently from previous vector-space models of entailment, the current work provides a frame-

work in which it is possible to explicitly model what information is known and unknown, of-

fering a change of dichotomy from “true” - “false” to “known” - “unknown”. This represents

a crucial property, because the entailment relationship fundamentally reflects information in-

2.1. Introduction 15

clusion, that is, what information is known and what is not known: a representation y entails a

representation x if and only if everything that is known given x is also known given y. Thus,

entailment is modeled in a vector space by representing in each dimension something that is

possibly known. This is illustrated in Table 2.1: knowing that a feature f is true always entails

knowing that same feature, but never entails knowing that a different feature g is true. Also,

knowing that a feature is true always entails not knowing anything (unk), since strictly less in-

formation is still entailment, but the reverse is never true. Table 2.1 also illustrates that knowing

that a feature f is false (¬f) patterns exactly the same way as knowing that an unrelated feature

g is true.

Previous vector-space models have been very successful at modelling semantic similarity, in

particular using distributional semantic models (e.g. (Deerwester et al., 1990; Schütze, 1993;

Mikolov et al., 2013a)). Distributional semantics uses the distributions of words in contexts

to induce vector-space embeddings of words, which have been shown to be useful for a wide

variety of tasks. In such models two words are predicted to be similar if the dot product be-

tween their vectors is high. But the dot product is a symmetric operator, which makes it more

natural to interpret these vectors as representing whether features are true or false, whereas the

dichotomy “known” versus “unknown” is asymmetric. This could be a reason why modelling

lexical entailment with distributional semantic models has been challenging (Levy et al., 2015).

To develop a vector-space model of whether features are known or unknown, we start with

discrete binary vectors, where 1 means “known” and 0 means “unknown”. As illustrated in

Table 2.1, entailment between these discrete binary vectors can be calculated by independently

checking each dimension and then taking the conjunction. However, as soon as we try to do

calculations with distributions over these vectors, we need to deal with the case where the

features are not independent. For example, if feature f has a 50% chance of being true and a

50% chance of being false, we can’t assume that there is a 25% chance that both f and ¬f are

known. This simple case of mutual exclusion is just one example of a wide range of constraints

between features which need to be handled in semantic models. These constraints mean that

16 Chapter 2. A vector space for the distributional semantics for entailment

the different dimensions of the vector space are not independent, and therefore exact models

are not factorised. Because the models are not factorised, exact calculations of entailment and

exact inference of vectors are intractable.

A popular approach to perform efficient inference for intractable models is through the use of

mean-field approximations. In a mean-field approximation, distributions over binary vectors are

represented using a single probability for each dimension. These vectors of real values represent

the basis of the proposed vector space for entailment (Henderson and Popa, 2016).

In the following the related work is discussed in Section 2.2, while the vector-space model

which provides a formal foundation for a distributional semantics of entailment is proposed

in Section 2.3. The framework is derived from a mean-field approximation to entailment be-

tween binary vectors, and includes operators for measuring entailment between vectors, and

procedures for inferring vectors in an entailment graph. The obtained word vectors represent

the probabilities of features being known or unknown. The framework is further validated in

Section 2.4 by using it to reinterpret existing distributional semantics word embedding vec-

tors (Word2Vec (Mikolov et al., 2013a)) as approximating an entailment-based model of the

distribution of words in contexts. This reinterpretation enables the usage of existing word em-

beddings as an unsupervised model of lexical entailment, successfully predicting hyponymy

relations using the proposed entailment operators in both unsupervised and semi-supervised

experiments. The experimental setup and the results of hyponymy detection are presented in

Section 2.5, while Section 2.6 outlines the main contributions of the proposal.

2.2 Related work

Since the evaluation of lexical entailment is limited in the current work to that of hyponymy / hy-

pernymy, not including other related lexical relations (cf. (Weeds et al., 2014; Vylomova et al.,

2015; Turney and Mohammad, 2014; Levy et al., 2014)), the presentation of related work will

also be restricted to that of hyponymy detection. More complex cases of entailment are left to

2.2. Related work 17

future work on compositional semantics.

There has been a significant amount of work on using distributional-semantic vectors for hy-

ponymy detection, using supervised, semi-supervised or unsupervised methods (e.g. (Yu et al.,

2015; Necsulescu et al., 2015; Vylomova et al., 2015; Weeds et al., 2014; Fu et al., 2015; Rei

and Briscoe, 2014)). However, most of this work uses measures computed outside the vector

space for entailment detection, applied mostly to traditional feature-based word vectors. Such

measures include: symmetric measures like LIN (Lin, 1998), asymmetric measures such as

WeedsPrec (Weeds and Weir, 2003; Weeds et al., 2004), balAPinc (Kotlerman et al., 2010),

invCL (Lenci and Benotto, 2012) and entropy-based measures like SLQS (Santus et al., 2014).

Later, Shwartz et al. (2017) provide a comprehensive review study of such measures across dif-

ferent distributional semantic spaces. Other work encodes hyponymy into the parameters of a

classifier (Baroni et al., 2012; Roller et al., 2014; Fu et al., 2015). Since the current proposal

differs from the above-mentioned, in that the modelling of entailment is performed within the

vector space, not outside it and not in the parameters of a classifier, no thorough comparison is

provided to these methods.

Among the methods that learn hypernymy-specific word representations, Yu et al. (2015) pro-

pose learning term embeddings by leveraging hypernymy pairs extracted from the web using

pattern-based methods. These are then integrated into a dynamic distance-margin model along

with “corrupted” negative pairs of words (that are not in a hypernymy relation) with the goal of

creating embeddings that capture hypernymy properties. The learned embeddings are further

used as features in a supervised learning setting. However, unlike in the current proposal, it is

not clear how to evaluate their embeddings in an unsupervised setting. Also, their evaluation

seems to be tailored exclusively for detecting hypernymy and is restricted to reasoning about the

pairs seen during training time, while the framework in the current proposal could be extended

to reason about textual entailment beyond hypernymy and beyond pairs that exist in a taxon-

omy. Tuan et al. (2016) extend their work by making use of the contextual information between

a hyponym and its hypernym. They create term embeddings that are further used as features in

18 Chapter 2. A vector space for the distributional semantics for entailment

a supervised model to identify new taxonomic relations. It is not trivial how to use the created

embeddings in an unsupervised model of hyponymy detection and no explicit feature inclusion

is enforced throughout the process of embeddings creation. Furthermore, neither of the two

proposals enable determining the directionality of the hypernymy relation given a pair of words

for which the relation holds, unlike in the proposed framework.

The most similar previous work, in terms of motivation and aims, is that of Vilnis and McCallum

(2015). They also model entailment directly using a vector space, without training a classifier.

But instead of representing words as points in a vector space (as in the current approach),

they represent words as a Gaussian distribution over points in a vector space. This allows

them to represent the extent to which a feature is known versus unknown as the amount of

variance in the distribution for that feature’s dimension. However the model appears to be more

computationally expensive than the current proposal, particularly for inferring vectors. The

unsupervised predictions of hyponymy relations are made with the learned vector distributions

using Kullback-Leibler divergence between the distributions for the two words. They evaluate

their models on the hyponymy data from Baroni et al. (2012). A comparison is provided to

their proposed model, but as discussed further in section 2.5.2, the best models in the current

proposal achieve non-significantly better average precision than their best models.

Another closely related work is that of Kruszewski et al. (2015). Their semi-supervised model

also models entailment in a vector space, but it uses a discrete vector space. They train a map-

ping from distributional semantic vectors to boolean vectors such that feature inclusion in the

boolean space respects a set of entailment relations. They then use feature inclusion to predict

hyponymy, and other lexical entailment relations. This approach is similar to the one used in the

proposed semi-supervised experiments, except that their discrete entailment prediction operator

is very different from the proposed entailment operators in this work. Also, Kruszewski et al.

(2015) do not propose any unsupervised method, or any insight into why distributional semantic

models extract information that can be useful for entailment. Furthermore, their use of different

data for evaluation makes a direct comparison to the current setup unfeasible.

2.2. Related work 19

Later, further work has looked at the task of hyponymy detection along with other adjacent

related tasks. Nickel and Kiela (2017) propose using hyperbolic embedding spaces to repre-

sent hierarchical data from knowledge graphs, and obtain competitive results on graded lexical

entailment. Dhingra et al. (2018) further learn word and sentence embeddings in a hyperbolic

space that seem to encode hierarchical information that is occurring implicitly in natural lan-

guage, rather than explicitly in graphs (Nickel and Kiela, 2017).

Nguyen et al. (2017) propose HyperVec, a method to learn hypernymy-specific hierarchical

embeddings. The embeddings are created to discriminate hypernymy from other relations, by

ensuring that the hypernymy relation is assigned a higher similarity score in the learned em-

beddings space than other relations. At the same time, the created embeddings enable distin-

guishing between the hypernym and the hyponym in a given pair of terms, based on the context

in which they occur, according to the distributional inclusion hypothesis (Geffet and Dagan,

2005). Vulic and Mrksic (2018) propose a post-processing step to induce linguistic constraints

from external resources into a vector space such that the resulting vectors become specialized

for entailment. However, their proposal is limited for use on words that appear in such exter-

nal linguistic resources. This differs from the current proposal in which no external linguistic

resource is required to reason about entailment.

Although much of this (later) work seems to follow the direction of encoding entailment in the

vector space itself, still none of the above propose entailment operators or inference procedures

over already existing word representations as in the proposed framework. Additionally, as it

has been previously pointed out (Levy et al., 2015), supervised methods tend to learn properties

of one of the words in the pair rather than the relationship between them (also known as the

problem of prototypical hypernyms), with unsupervised approaches being preferred as they are

shown to provide more robust results (Shwartz et al., 2017).

Recently, Chang et al. (2018) model hypernymy based on the distributional inclusion hypoth-

esis (Geffet and Dagan, 2005) according to which the contexts in which a hyponym occurs

should be included in the set of contexts in which its hypernym occurs. They obtain word

20 Chapter 2. A vector space for the distributional semantics for entailment

representations through non-negative matrix factorization of a weighted point-wise mutual in-

formation matrix. Feature inclusion is then modeled by ensuring that the created word vectors

corresponding to hypernyms have values that are higher or equal than those corresponding to

their hyponyms, in every dimension. Unlike most related work, yet similarly to the current

proposal, they also propose a set of scoring functions for entailment. However, unlike in the

current proposal, no single scoring function performs best across datasets, with the difference

in performance being difficult to interpret and not explained theoretically.

In Section 2.5, the experimental setup of Weeds et al. (2014) is replicated, considering both

the unsupervised and supervised models as well as their proposed dataset. Weeds et al. (2014)

propose an approach to distinguish between different relations that can exist between distribu-

tionally similar words by using a supervised approach based on linear SVMs (support vector

machine) over vectors encoding pairs of words. They also provide insights into which vec-

tor operations seem to be appropriate for detecting different relations: models based on vector

addition seem to be providing competitive results on detecting co-hyponymy, while vector dif-

ferences are being indicative of entailment. Additionally, as further explained in Section 2.5.1,

they provide a refinement of a commonly-used dataset in order to prevent supervised models

from using artefacts of the data and thus make them comparable in terms of performance to

unsupervised approaches. This dataset will be further used for evaluation in Section 2.5.

A comparison is thus provided to the results of the models evaluated by Weeds et al. (2014) and

to previously proposed vector-space operators: cosine, dot product and vector differences. The

list of considered operators also includes one vector space operator for hyponymy which does

not have trained parameters, proposed by Rei and Briscoe (2014), weighted cosine. In the case

of this directional similarity measure, the dimensions of the dot product (normalised to make

it a cosine measure) are weighted such that more weight is placed on the larger values in the

entailed (hypernym) vector. This yields an unsupervised model of hyponymy. However, it is

not clear how to use such an operator to perform inference, as it is possible within the proposed

framework.

2.3. Proposal: modelling entailment in a vector space 21

2.3 Proposal: modelling entailment in a vector space

In order to develop a model of entailment in a vector space, we consider the definition of en-

tailment as factorised into a conjunction of entailments between binary features. Given two

semantic representations y and x, entailment is defined using the logical definition for the vec-

tors of discrete known features: y entails x (further denoted as y⇒x) if and only if all the

known features in x are also included in y, that is whenever a feature is known in x, it must also

be known in y for the entailment relation to hold. This can be formalized with binary vectors

x, y, with 1 representing the known and 0 representing the unknown. The following entailment

relations hold: (1⇒0), (1⇒1) and (0⇒0), but (0 /⇒1).

Therefore the definition of entailment should be factorised into features k such that

P ((y⇒x) | x, y) =
∏
k

P ((yk⇒xk) | xk, yk)

while the following must hold:

P ((yk⇒xk) | yk = 0, xk = 0) = 1

P ((yk⇒xk) | yk = 1, xk = 0) = 1

P ((yk⇒xk) | yk = 1, xk = 1) = 1

P ((yk⇒xk) | yk = 0, xk = 1) = 0

with xk ∈ {0, 1} and yk ∈ {0, 1}.

Then the probability of entailment between two features yk, xk can be defined as:

P ((yk⇒xk) | xk, yk) = 1− P (yk = 0 | yk)P (xk = 1 | xk)

The discrete entailment relation (y⇒x) can thus be defined with the binary formula:

22 Chapter 2. A vector space for the distributional semantics for entailment

P ((y⇒x) | x, y) =
∏
k

(1− (1−yk)xk)

Given prior probability distributions P (x), P (y) over these vectors, the exact joint and marginal

probabilities for an entailment relation are:

P (x, y, (y⇒x)) = P (x) P (y)
∏
k

(1−(1−yk)xk)

P ((y⇒x)) = EP (x)EP (y)

∏
k

(1−(1−yk)xk) (2.1)

Because many important correlations can exist between features and therefore we cannot as-

sume that the features are independent, one should not assume that the priors P (x) and P (y)

are factorised. As discussed in Section 2.1, even just representing both a feature f and its nega-

tion ¬f requires two different dimensions k and k′ in the vector space, because 0 represents

unknown and not false. Given valid feature vectors, calculating entailment can consider these

two dimensions separately. However the prior P (x) has to enforce the constraint that xk and

xk′ are mutually exclusive in order to reason with distributions over vectors. In general, such

correlations and anti-correlations exist between many semantic features, which makes inference

and calculating the probability of entailment intractable.

To allow for efficient inference in such a model, we propose using a mean-field approximation.

This assumes that the posterior distribution over vectors is factorised, but in practice this repre-

sents a much weaker assumption than assuming the prior is factorised. The posterior distribu-

tion has less uncertainty and therefore is influenced less by non-factorised prior constraints. By

assuming a factorised posterior, one can then represent distributions over feature vectors with

simple vectors of probabilities of individual features (or as further seen, with their log-odds).

These real-valued vectors are the basis of the proposed vector-space model of entailment.

A mean-field model of the discrete space introduced earlier uses vectors µ of real values ∈ [0, 1]

2.3. Proposal: modelling entailment in a vector space 23

and interprets them as the mean values of the discrete distribution over 0 and 1.

µyk = P (yk = 1)

µxk = P (xk = 1)

In the following, the mean-field approximation for inference of real-valued vectors in entailment

graphs is derived. This derivation leads to three proposed vector-space operators for approx-

imating the log-probability of entailment, summarised in Table 2.2. These operators will be

used in the evaluation in Section 2.5. This inference framework will also be used in Section 2.4

to model how existing word embeddings can be mapped to vectors to which the entailment

operators can be applied.

2.3.1 A mean-field approximation

The mean-field approximation is used to approximate the posterior distribution P using a fac-

torised distribution Q. This provides a concise description of the posterior P (x| . . .) as a vector

of continuous values Q(x=1), where Q(x=1)k = Q(xk=1) ≈ EP (x|...)xk = P (xk=1| . . .) (i.e.

the marginal probabilities of each bit). Also, as it will be further shown, this provides efficient

methods for doing approximate inference of vectors in a model.

First we consider the simple case where we want to approximate the posterior distribution

P (x, y|(y⇒x)). In a mean-field approximation, we want to find a factorised distributionQ(x, y)

which minimises the Kullback-Leibler (KL) divergence

DKL(Q(x, y)||P (x, y|(y⇒x)))

with the true distribution P (x, y|(y⇒x)). The KL divergence represents a measure of how

one probability distribution differs from another probability distribution. Given two probability

24 Chapter 2. A vector space for the distributional semantics for entailment

distributions Q and P, the KL divergence is defined as

DKL(Q||P) = −
∑
x

Q(x) log
P (x)

Q(x)

≡
∑
x

Q(x) log
Q(x)

P (x)

For the particular case at hand, this results in having:

DKL(Q(x, y)||P (x, y|(y⇒x)))

=
∑
xy

Q(x, y) log
Q(x, y)

P (x, y|(y⇒x))

=
∑
xy

Q(x, y) logQ(x, y)−
∑
xy

Q(x, y) log
P (x, y, (y⇒x))

P ((y⇒x))

=
∑
xy

Q(x, y) logQ(x, y)−
∑
xy

Q(x, y) log(
P (x, y) · P ((y⇒x)|x, y)

P ((y⇒x))
)

= EQ(x,y) log(
∏
k

Q(xk)
∏
k

Q(yk))

− EQ(x,y)(log(P (x)P (y)) + log(
∏
k

(1−(1−yk)xk))− log(P ((y⇒x))))

Thus we want to minimize

minQ DKL(Q(x, y)||P (x, y|(y⇒x))) (2.2)

= minQ EQ(x,y) log(
∏
k

Q(xk)
∏
k

Q(yk))

− EQ(x,y)(log(P (x)P (y)) + log(
∏
k

(1−(1−yk)xk)))

Which leads to the objective function L

L =
∑
k

EQ(xk) logQ(xk) +
∑
k

EQ(yk) logQ(yk)

− EQ(x) logP (x)− EQ(y) logP (y)−
∑
k

EQ(xk)EQ(yk) log(1−(1−yk)xk)

2.3. Proposal: modelling entailment in a vector space 25

It is to be noted that (y⇒x) is a variable ∈ {0, 1}, depending on the existence of the en-

tailment constraint between any two variables. Thus the prior probability of this constraint,

P ((y⇒x)), as well as log(P ((y⇒x))), are not a function of Q, and are dropped in 2.2. In

the final equation, the first two terms are the negative entropy of Q,
∑

k EQ(xk) logQ(xk) +∑
k EQ(yk) logQ(yk), further denoted as−H(Q), which acts as a maximum entropy regulariser,

the final term enforces the entailment constraint, and the middle two terms represent the prior for

x and y. One approach (generalised further in Section 2.3.2) to the prior terms EQ(x) logP (x)

and EQ(y) logP (y) is to bound them by assuming P (x) is a function in the exponential family,

giving us:

EQ(x) logP (x) ≥ EQ(x) log
exp(

∑
k θ

x
kxk)

Zxθ

=
∑
k

EQ(xk)θ
x
kxk − logZxθ

=
∑
k

Q(xk = 1)θxk − logZxθ

and

EQ(y) logP (y) ≥ EQ(y) log
exp(

∑
k θ

y
kyk)

Zyθ

=
∑
k

EQ(yk)θ
y
kyk − logZyθ

=
∑
k

Q(yk = 1)θyk − logZyθ

where the logZθ is not relevant in any of the inference problems and thus will be dropped below.

θxk can be seen as the influence of the values taken by the rest of the dimensions k′ 6= k on the

value at dimension k, thus being a constant with respect to dimension k.

Inference

As typically in mean-field approximations, inference ofQ(x) andQ(y) can’t be done efficiently

with this exact objective L, because of the nonlinear interdependence between xk and yk in the

26 Chapter 2. A vector space for the distributional semantics for entailment

last term. Thus, we introduce two approximations to L, one for use in inferring Q(x) given

Q(y) (forward inference), and one for the reverse inference problem (backward inference).

For forward inference we thus have:

L ≤
∑
k

(EQ(xk) logQ(xk) + EQ(yk) logQ(yk)

−Q(xk = 1)θxk −Q(yk = 1)θyk

− EQ(xk)EQ(yk) log(1−(1−yk)xk))

≈
∑
k

(EQ(xk) logQ(xk) + EQ(yk) logQ(yk)

−Q(xk = 1)θxk −Q(yk = 1)θyk

− EQ(xk) logEQ(yk)(1−(1−yk)xk))

=−H(Q)−
∑
k

(Q(xk=1)θxk −Q(yk = 1)θyk

−Q(xk=1) logQ(yk=1))

:=LF (x) (2.3)

where the first inequality corresponds to the application of the bounds and the approximation is

obtained due to the discrete nature of xk and yk.

We can further optimise this for Q(xk=1):

∂LF (x)

∂Q(xk=1)
= 0

≡ logQ(xk=1)− log(1−Q(xk=1))− θxk − logQ(yk=1) = 0

≡ log
Q(xk=1)

1−Q(xk=1)
= +θxk + logQ(yk=1)

≡ log
Q(xk=1)

Q(xk=0)
= +θxk + logQ(yk=1)

≡ σ-1(Q(xk=1)) = +θxk + logQ(yk=1)

≡ Q(xk=1) = σ(θxk + logQ(yk=1))

2.3. Proposal: modelling entailment in a vector space 27

where σ() is the sigmoid function and the first step in the derivation is computing the derivative

with respect to u of u log(u) with u = Q(xk = 1). the entropy regulariser, making this a specific

form of maximum entropy model.

Similarly, for backward inference:

L ≤
∑
k

(EQ(xk) logQ(xk) + EQ(yk) logQ(yk)

−Q(xk = 1)θxk −Q(yk = 1)θyk

− EQ(xk)EQ(yk) log(1−(1−yk)xk))

≈
∑
k

(EQ(xk) logQ(xk) + EQ(yk) logQ(yk)

−Q(xk = 1)θxk −Q(yk = 1)θyk

− EQ(yk) logEQ(xk)(1−(1−yk)xk))

=−H(Q)−
∑
k

(Q(xk = 1)θxk −Q(yk=1)θyk

− (1−Q(yk=1)) log(1−Q(xk=1)))

:=LB(y) (2.4)

which we can optimise for Q(yk=1):

∂LB(y)

∂Q(yk=1)
= 0

≡ logQ(yk=1)− log(1−Q(yk=1))− θyk + log(1−Q(xk=1)) = 0

≡ log
Q(yk=1)

1−Q(yk=1)
= +θyk − log(1−Q(xk=1))

≡ log
Q(yk=1)

Q(yk=0)
= +θyk + logQ(xk=1)

≡ σ-1(Q(yk=1)) = +θyk + logQ(xk=1)

≡ Q(yk=1) = σ(θyk − log(1−Q(xk=1))) (2.5)

28 Chapter 2. A vector space for the distributional semantics for entailment

Entailment operators

Note that in equations (2.3) and (2.4) the final terms, Q(xk=1) logQ(yk=1) and

(1−Q(yk=1)) log(1−Q(xk=1)) respectively, are approximations to the log-probability of the

entailment. We define two vector-space operators, <© and >©, to be these same approximations.

This is obtained using Jensen’s inequality, defined as ϕ(E[X]) ≤ E[ϕ(X)] for any convex

function ϕ, with the inequality being reversed in the case of concave functions.

logQ(y⇒x) = log(EQ(x)EQ(y)

∏
k

(1− (1−yk)xk))

=
∑
k

log(EQ(xk)EQ(yk)(1− (1−yk)xk))

≥
∑
k

EQ(xk) log(EQ(yk)(1− (1−yk)xk))

=
∑
k

Q(xk=1) logQ(yk=1)

= Q(x=1) · logQ(y=1)

≡ X<©Y

logQ(y⇒x) = log(EQ(x)EQ(y)

∏
k

(1− (1−yk)xk))

=
∑
k

log(EQ(xk)EQ(yk)(1− (1−yk)xk))

≥
∑
k

EQ(yk) log(EQ(xk)(1− (1−yk)xk))

=
∑
k

(1−Q(yk=1)) log(1−Q(xk=1))

= (1−Q(y=1)) · log(1−Q(x=1))

≡ Y >©X

We parametrise these operators with the vectors X, Y of log-odds of Q(x), Q(y), namely X =

log Q(x=1)
Q(x=0)

= σ-1(Q(x=1)). The resulting operator definitions are summarised in Table 2.2.

2.3. Proposal: modelling entailment in a vector space 29

X<©Y ≡ σ(X) · log σ(Y)

Y >©X ≡ σ(−Y) · log σ(−X)

Y ⇒̃X ≡
∑
k

log(1− σ(−Yk)σ(Xk))

Table 2.2: The proposed entailment operators, approximating logP (y⇒x).

Also the probability of entailment given in equation (2.1) becomes factorised when we replace

P with Q. We define a third vector-space operator, ⇒̃, to be this factorised approximation, also

shown in Table 2.2.

2.3.2 Extension to entailment graphs

In general, doing inference for one entailment is not enough; we want to be able to do inference

in a graph of entailments between variables. In this section we generalise the above mean-field

approximation to inference of variables in entailment graphs.

To represent information about variables that comes from outside the entailment graph, we

assume we are given a prior P (x) over all variables xi in the graph. As previously, we do

not assume that the prior P (x) is factorised, but that it can be approximated with a mean-field

approximation.

Given a set of variables xi each representing vectors of binary variables xik, a set of entailment

relations r = {(i, j)|(xi⇒xj)}, and a set of negated entailment relations r̄ = {(i, j)|(xi /⇒xj)},

we can write the joint posterior probability as:

P (x, r, r̄) =
1

Z
P (x)

∏
i

(
(
∏
j:r(i,j)

∏
k

P (xik⇒xjk|xik, xjk))

(
∏
j:r̄(i,j)

(1−
∏
k

P (xik⇒xjk|xik, xjk)))
)

The goal to find a factorised distribution Q that minimises L = DKL(Q(x)||P (x|r, r̄)). As

30 Chapter 2. A vector space for the distributional semantics for entailment

previously, we bound this loss for each element Xik=σ-1(Q(xik=1)) of each vector we want to

infer, using analogous Jensen’s inequalities for the terms involving nodes i and j such that r(i, j)

or r(j, i). For completeness, we also propose similar inequalities for nodes i and j such that

r̄(i, j) or r̄(j, i), and bound them using the constants Cijk. If entailment cannot be established

based on any of the dimensions k′ 6= k, then one no longer needs to look at dimension k (as the

lack of entailment is already decided by the non-entailing dimensions).

Cijk ≤
∏
k′ 6=k

(1−(1−EQ(xik′)
xik′)EQ(xjk′)

xjk′) =
∏
k′ 6=k

(1−σ(−Xik′)σ(Xjk′)).

As previously, to represent the prior P (x), we use the terms θik.

θik ≥ log
EQ(xīk)P (xīk, xik=1)

1− EQ(xīk)P (xīk, xik=1)

where xīk is the set of all xi′k′ such that either i′ 6=i or k′ 6=k. These terms can be thought of

as the log-odds terms that would be contributed to the loss function by including the prior’s

graphical model in the mean-field approximation.

Now we can infer the optimal Xik as:

Xik = θik +
∑
j:r(i,j)

− log σ(−Xjk)

+
∑
j:r(j,i)

log σ(Xjk) +
∑
j:r̄(j,i)

log
1−Cijkσ(Xjk)

1−Cijk

+
∑
j:r̄(i,j)

− log
1−Cijkσ(−Xjk)

1−Cijk

In summary, the proposed mean-field approximation does inference in entailment graphs by

iteratively re-estimating each Xi as the sum of: the prior log-odds, − log σ(−Xj) for each en-

tailed variable j, and log σ(Xj) for each entailing variable j.1 This inference optimises Xi<©Xj

1It is interesting to note that− log σ(−Xj) is a non-negative transform of Xj , similar to the ReLU nonlinearity
which is popular in deep neural networks (Glorot et al., 2011). This transform reflects the fact that it is only the
features known in x that influence the possible y. log σ(Xj) is the analogous non-positive transform.

2.4. Interpreting distributional semantics vectors 31

for each entailing j plus Xi >©Xj for each entailed j, plus a maximum entropy regulariser on

Xi. Negative entailment relations, if they exist, can also be incorporated with some additional

approximations.

2.4 Interpreting distributional semantics vectors

In order to evaluate how well the proposed framework in Section 2.3 provides a formal founda-

tion for the distributional semantics of entailment, we use it to re-interpret an existing model of

distributional semantics in terms of semantic entailment.

There has been a lot of work on how to use the distribution of contexts in which a word occurs

to induce a vector representation that reflects the semantics of the word. Thus distributional

semantics learns the semantics of words by looking at the distribution of contexts in which

they occur. We could therefore leverage previous work on distributional semantics by mapp-

ping the produced word representations to vectors in the proposed framework. This implies

re-interpreting an existing distributional semantics model and further using the proposed entail-

ment operators to predict entailment between words using these vectors.

An evaluation of such predictions will be provided in Section 2.5 on the task of hyponymy de-

tection. In the following, three different options are provided for the interpretation of an existing

distributional semantics model: Word2Vec (Mikolov et al., 2013a,b) as an approximation to an

entailment-based model of the semantic relationship between a word and its context.

To model the relationship between words and their contexts, we assume that the semantic fea-

tures of a word (further referred to as the middle word) are (statistically speaking) redundant

with those of its context words, and consistent with those of its context words. One can thus

consider a hidden vector which is the consistent unification of the features of the word and

its context. In other words, we assume the existence of a hidden vector which entails both of

the (middle) word representation and the context word representations, and which is consistent

32 Chapter 2. A vector space for the distributional semantics for entailment

with prior constraints on these vector representations. The process can be split into two steps:

inferring the hidden vector Y from the middle vector Xm, context vectors Xc and prior, and

then computing the log-probability (2.6) that this hidden vector entails the middle and context

vectors:

max
Y

(logP (y, y⇒xm, y⇒xc)) (2.6)

One possible interpretation would be that Word2Vec’s Skip-Gram model is learning its context

and middle word vectors such that the log-probability of this entailment is high for the observed

context words and low for other (sampled) context words. The word embeddings produced

by Word2Vec within the Skip-gram model are thus related to the vectors Xm assigned to the

middle words. In a similar fashion, the vectorsXc represent the Word2Vec vectors of the context

words. We denote by X ′c the context vectors of Word2Vec that combine (as in equation (2.5))

information about a context word itself with information which can be inferred from this word

given the prior, X ′c = θc− log σ(−Xc). Further, the Word2Vec vectors can be interpreted as the

log-odds of features being known. In this case we can treat these vectors directly as the Xm in

the model.

The inferred hidden vector Y can then be calculated using the model of backward inference

from Section 2.3, taking into account that both the context vector and the middle vector are

needed to infer the hidden vector Y as discussed previously.

Y = θc − log σ(−Xc)− log σ(−Xm)

= X ′c − log σ(−Xm)

Since the unification Y of context and middle word features is computed using backward infer-

ence, we also use the backward-inference operator >© to calculate how successful that unification

was. This is the Log-odds interpretation and the final score obtained is:

2.4. Interpreting distributional semantics vectors 33

logP (y, y⇒xm, y⇒xc)

= Y >©Xm + Y >©Xc +Q(y = 1)·θc

= Y >©Xm + Y >©Xc + (σ(Y) · θc)

≈ Y >©Xm + Y >©Xc + (−σ(−Y)·θc)

= Y >©Xm + σ(−Y)· log σ(−Xc)− σ(−Y)·θc

= Y >©Xm−σ(−Y)·X ′c

The second equality follows from the first based on having Y = log Q(y=1)
Q(y=0)

= σ-1(Q(y=1))

and thus σ(Y) = Q(y = 1) as in 2.5. This interpretation ignores however the equivalence in

Word2Vec between pairs of positive values and pairs of negative values, due to its use of the

dot product. As a more accurate interpretation, we interpret each Word2Vec dimension as spec-

ifying whether its feature is known to be true or known to be false. Translating this Word2Vec

vector into a vector in the proposed entailment vector space, we get one copy Y + of the vector

representing known-to-be-true features and a second negated duplicate Y − of the vector repre-

senting known-to-be-false features, which we can concatenate to get our representation Y . This

is further referred to as the Dup interpretation. We thus obtain:

Y + = X ′c − log σ(−Xm)

Y − = −X ′c − log σ(Xm)

Then by replacing Y + and Y − into the previous formulation, we obtain the log probability of

entailment as:

logP (y, y⇒xm, y⇒xc)

≈ Y +
>©Xm + (−σ(−Y +))·X ′c + Y − >©(−Xm) + (−σ(−Y −))·(−X ′c)

A third alternative is to add some probability mass reserved for unknown in the vicinity of

zero. By subtracting 1 from both the original and negated copies of each dimension, we get a

34 Chapter 2. A vector space for the distributional semantics for entailment

probability of unknown of 1−σ(Xm−1) − σ(−Xm−1), namely the probability left over after

adding the probabilities of the original feature and its negation. This is referred to as the Unk

dup interpretation.

This gives us:

Y + = X ′c − log σ(−(Xm−1))

Y − = −X ′c − log σ(−(−Xm−1))

Then the log probability of entailment is:

logP (y, y⇒xm, y⇒xc)

≈ Y +
>©(Xm−1) + (−σ(−Y +))·X ′c + Y − >©(−Xm−1)) + (−σ(−Y −))·(−X ′c)

To understand better the relative accuracy of these three interpretations, Figure 2.1 shows a

comparison of the training gradient which Word2Vec uses to train its middle-word vectors to

the training gradient for each of these interpretations. The gradients are plotted for the range of

values typically found in Word2Vec vectors for both the middle vector and the context vector.

As expected, the second interpretation is more accurate than the first (referred to as Log-odds

further) because its plot is anti-symmetric around the diagonal, like the Word2Vec gradient.

In the third alternative (Unk dup), the constant 1 was chosen to optimise this match, rather

than assuming no uncertainty (a constant of 0). This produced a close match to the Word2Vec

training gradient, as shown in Figure 2.1 (Word2Vec versus Unk dup).

Thus, Word2Vec can be seen as a good approximation to the third model, and a progressively

worse approximation to the second and first models. Section 2.5 further evaluates the three

interpretations on the task of hyponymy detection.

2.5. Evaluation and results 35

Figure 2.1: The learning gradients for Word2Vec, the log-odds >©, the dup >© and the unk dup >©

interpretation of its vectors.

2.5 Evaluation and results

In the following the quality of the interpretations provided in Section 2.4 and further the perfor-

mance of the entailment operators proposed in Section 2.3 will be evaluated.

It is also important to note that determining whether entailment holds between two sentences

and in which direction depends on the ability to identify hyponyms (Weeds et al., 2014). It is

therefore natural to first investigate the proposed framework and operators on the task of hy-

ponymy detection. In this sense, one approach is to consider that most of the semantic features

of a hyponym (e.g. “dog”) must be included in the semantic features of the hypernym (e.g. “an-

imal”), but not necessarily in the opposite direction. Translated in the current framework, that

would imply that whenever a feature is “known” for the hyponym (e.g. “dog”), it must also be

“known” for its hypernym (e.g. “animal”), i.e. whatever a “dog” might represent should also be

represented by an “animal”.

36 Chapter 2. A vector space for the distributional semantics for entailment

2.5.1 Experimental setup

A variant of the BLESS dataset (Baroni and Lenci, 2011) is considered for evaluation as it rep-

resents the benchmark for the given task. In its original form, BLESS represents a collection

of noun-noun pairs constructed on the basis of 200 concrete monosemous nouns, denoted as

BLESS concepts, further equally divided between living and non-living entities, and grouped

into 17 broader classes (e.g., bird, furniture, vehicle, etc.). Each pair denotes one of the follow-

ing relations: hyponymy (denoting a superset relationship like for example “animal” - “dog”),

co-hyponymy (denoting words that share a common hypernym like in “dog” - “cat”), meronymy

(denoting a part-whole relationship like “tail” - “dog”) or random (denoting no relationship be-

tween the words like in “dog” - “computer”). The modified version (Weeds et al., 2014) refines

the dataset to fulfill some pre-established conditions in order to prevent classifiers to make use

of artefacts of the data. Such conditions ensure (among others) that just considering the distri-

butional similarity of words is not enough to do well on the task.

For evaluation on hyponymy detection, the experimental setup of Weeds et al. (2014) is repli-

cated, using the provided selection of word pairs 2 from the BLESS dataset. Contrary to the

approach in Weeds et al. (2014), publicly available pretrained 300-dimensional Word2Vec word

embeddings 3 were considered, as they had shown competitive results on a series of tasks. Out

of the 1667 word pairs in the original dataset, 24 were removed due to the lack of embed-

dings for either of the words in the pair. The considered noun-noun word pairs include positive

hyponymy pairs as well as negative pairs. The negative pairs are formed either by reversing

the hyponymy pairs or by considering pairs of words in other semantic relationships than hy-

ponymy (co-hyponymy, meronymy or no relation). Their selection is balanced between positive

and negative examples, so that accuracy can be used as the performance measure.

Two experimental setups are considered: semi-supervised and unsupervised. To evaluate the

proposed entailment operators in the semi-supervised setup, a linear mapping is trained into a

2https://github.com/SussexCompSem/learninghypernyms
3https://code.google.com/archive/p/word2vec/

https://github.com/SussexCompSem/learninghypernyms
https://code.google.com/archive/p/word2vec/

2.5. Evaluation and results 37

new vector space in which the entailment operators are applied to predict hyponymy. For the

semi-supervised experiments, ten-fold cross validation is used, where for each test set, items are

removed from the associated training set if they contain any word from the test set. Thus, the

vocabulary of the training and testing sets are always disjoint, thereby requiring that the models

learn about the vector space and not about the words themselves.

2.5.2 Results and discussion

The hyponymy detection results are given in Table 2.3 for the unsupervised approach and in

Table 2.4 for the semi-supervised one. Two measures of performance are reported: hyponymy

detection accuracy (50% Acc) and direction classification accuracy (Dir Acc).

Since all the operators only determine a score, a threshold was required for the hyponymy detec-

tion accuracy. Given that the proportion of positive examples in the dataset has been artificially

set to 50%, the threshold was set at the point where the proportion of positive examples output

is 50%, further called “50% Acc”. Thus the threshold is set after seeing the testing inputs but

not their target labels.

Direction classification accuracy (Dir Acc) indicates how well the method distinguishes the

relative abstractness of two nouns. Given a pair of nouns which are in a hyponymy relation, the

goal is to determine which word is the hypernym and which is the hyponym. The “Dir Acc”

measure only considers positive examples and chooses one of two directions, so it is inherently a

balanced binary classification task. Classification is performed by simply comparing the scores

in both directions and considering the highest one. If both directions produce the same score,

the expected random accuracy (50%) is used.

The best results from Weeds et al. (2014) are reported as representative of previous work. They

use the same testing methodology and hyponymy data as in the current work, with the only

difference being the word embeddings as explained previously. For the semi-supervised mod-

els, Weeds et al. (2014) train SVM classifiers, which are potentially more powerful than the

38 Chapter 2. A vector space for the distributional semantics for entailment

proposed linear vector mappings.

Unsupervised Hyponymy Detection

A first set of experiments evaluate the vector-space operators in unsupervised models of hy-

ponymy detection. As argued in Section 2.4, the three progressively more accurate interpreta-

tions of Word2Vec vectors are evaluated in the proposed framework: the log-odds interpretation

using the backward-inference entailment operator (log-odds >©), the negated duplicate interpre-

tation (dup >©), and the negated duplicate interpretation with unknown around zero (unk dup >©).

Additionally, the factorised calculation of entailment is also used with the log-odds interpreta-

tion (log-odds ⇒̃), as well as (dup ⇒̃) and (unk dup ⇒̃), and the forward-inference entailment

operator (log-odds <©), neither of which match the proposed interpretations.

Further, the proposed operators are also compared to the dot product (dot), vector differences

(diff), cosine (cos) and the weighted cosine proposed by Rei and Briscoe (2014) (weighted cos),

all computed using the same word embeddings as for the proposed operators.

The comparison to the dot product (dot) is explained by the fact that it represents the standard

vector-space operator and has been shown to capture semantic similarity very well. However,

because the dot product is a symmetric operator, it always performs at chance for direction

classification as seen from Table 2.3. Another vector-space operator which has received much

attention is vector differences (diff). This is used (with vector sum) to perform semantic trans-

forms, such as “king - male + female = queen”, and has previously been used for modelling

hyponymy (Vylomova et al., 2015; Weeds et al., 2014). In the current work, the pairwise dif-

ferences are summed to get a score which is further used for hyponymy detection.

For the unsupervised results in Table 2.3, the best unsupervised model of Weeds et al. (2014),

and the operators cos, dot, diff and weighted cos all perform similarly on accuracy, as does

the log-odds factorised entailment calculation (log-odds ⇒̃). The log-odds forward-inference

entailment operator (log-odds <©) performs above chance but not well, as expected given the

2.5. Evaluation and results 39

operator 50% Acc Dir Acc
(Weeds et al., 2014) 58% –

log-odds <© 54.0% 55.9%
weighted cos 55.5% 57.9%

dup ⇒̃ 55.6% 50.5%
cos 55.9% 51.8%
dot 56.3% 50%
diff 56.9% 59.6%

log-odds ⇒̃ 57.0% 59.4%
log-odds >© 60.1%* 62.2%

dup >© 61.7% 68.8%
unk dup ⇒̃ 63.4%* 68.8%
unk dup >© 64.5% 68.8%

Table 2.3: Accuracies on the BLESS data from Weeds et al. (2014),using the Google-News
word embeddings for hyponymy detection (50% Acc) and hyponymy direction classification
(Dir Acc) in the unsupervised experiments. * marks a significant difference with the previous
row.

backward-inference-based interpretation of Word2Vec vectors. By definition, dot is at chance

for direction classification, but the other models all perform better, indicating that all these oper-

ators are able to measure relative abstractness. As predicted, the backward-inference entailment

operator >© performs significantly better than all the other operators on accuracy, as well as on

direction classification, even assuming the log-odds interpretation of Word2Vec vectors.

When moving further to the more accurate interpretation of Word2Vec vectors as specifying

both original and negated features (dup >©), improvements (non-significant) can be observed

over the log-odds interpretation log-odds >©. Finally, the third and most accurate interpretation,

where values around zero can be unknown (unk dup >©), achieves the best results in unsuper-

vised hyponymy detection, as well as for direction classification. Changing to the factorised

entailment operator (unk dup ⇒̃) is worse than the unk dup >©, but still significantly better than

the results obtained using the other operators.

To allow a direct comparison to the model of Vilnis and McCallum (2015), an additional eval-

uation of the the unsupervised models was performed on the hyponymy data from Baroni et al.

(2012). The best model achieved 81% average precision on this dataset, non-significantly better

40 Chapter 2. A vector space for the distributional semantics for entailment

than the 80% achieved by the best model reported by Vilnis and McCallum (2015).

Semi-supervised Hyponymy Detection

Since the unsupervised learning of word embeddings may reflect many context-word correla-

tions which have nothing to do with hyponymy, a semi-supervised setting was also considered.

Adding some supervision helps distinguish features that capture semantic properties from other

features which are not relevant to hyponymy detection. But even with supervision, the goal is to

have the resulting model captured in a vector space, and not in a parametrised scoring function.

To achieve that, mappings are trained from the Word2Vec word vectors to new word vectors.

Further, the entailment operators are applied in the new vector space to predict hyponymy. Be-

cause the words in the testing set are always disjoint from the words in the training set, this

experiment measures how well the original unsupervised vector space captures features that

generalise entailment across words, and not how well the mapping can learn about individual

words.

The objective is to learn a mapping to a new vector space in which an operator can be ap-

plied to predict hyponymy. The linear mappings are trained for the >© operator (mapped >©) as

it represents the best performing proposed operator in the unsupervised experiments and for

vector differences (mapped diff), representing the baseline operator. Additionally, two sets of

experiments consider the forward-inference entailment operator (mapped <©) and the factorised

entailment calculation (mapped ⇒̃). The duplicated interpretations (dup >©, unk dup >©) are not

used because these transforms are subsumed by the ability to learn a linear mapping. Previous

work on using vector differences for semi-supervised hyponymy detection has used a linear

SVM (Vylomova et al., 2015; Weeds et al., 2014).However, a cross entropy loss is used in the

current work, while previous work uses a large-margin loss and SVM training.

The semi-supervised results in Table 2.4 show a similar pattern to the unsupervised results in

Table 2.4. The >© operator achieves the best generalization from training word vectors to testing

word vectors. The mapped >© model has the best accuracy, followed by the factorised entailment

2.6. Conclusion 41

operator supervision 50% Acc Dir Acc
(Weeds et al., 2014) SVM 75% –

mapped diff cross ent 64.3% 72.3%
mapped <© cross ent 74.5% 91.0%
mapped ⇒̃ cross ent 77.5% 92.3%
mapped >© cross ent 80.1% 90.0%

Table 2.4: Accuracies on the BLESS data from Weeds et al. (2014), using the Google-News
word embeddings for hyponymy detection (50% Acc) and hyponymy direction classification
(Dir Acc), in the semi-supervised experiments.

operator mapped ⇒̃ and Weeds et al. (2014). Direction accuracies of all the proposed operators

(mapped >©, mapped ⇒̃, mapped <©) reach into the 90’s, much better than with vector differences

(mapped diff). The diff operator performs particularly poorly in this mapped setting, perhaps

because both the mapping and the operator are linear. These semi-supervised results again

support the distributional-semantic interpretations of Word2Vec vectors and their associated

entailment operator >©.

2.6 Conclusion

With recognizing textual entailment being an important aspect in natural language understand-

ing tasks, the idea adopted in the current proposal is to use specialized vector space models to

encode various lexical relations such as hypernymy. This is motivated by the fact that exist-

ing distributional semantics creates vector-space representations that effectively capture many

forms of semantic similarity, yet their relation to semantic entailment has been less clear (Levy

et al., 2015; Henderson and Popa, 2016).

A vector-space model is thus proposed to provide a formal foundation for a distributional se-

mantics of entailment (Henderson and Popa, 2016). Using a mean-field approximation to logical

entailment of binary vectors, we develop approximate inference procedures and entailment op-

erators over vectors of probabilities of features being known (versus unknown). This framework

is also used to reinterpret an existing distributional-semantic model (Word2Vec) as approximat-

42 Chapter 2. A vector space for the distributional semantics for entailment

ing an entailment-based model of the distributions of words in contexts, thereby predicting lex-

ical entailment relations. Three increasingly accurate approximations are provided with more

accurate interpretations resulting in more accurate unsupervised models of lexical entailment.

In both unsupervised and semi-supervised experiments on hyponymy detection, substantial im-

provements are obtained over previous results. Additionally, the proposed model yields vectors

that obtain competitive results on direction classification as well, indicating that the method

enables distinguishing the relative abstractness of two nouns. A crucial distinction between the

semi-supervised models proposed here and much previous work is that they learn a mapping

into a vector space which represents entailment, rather than learning a parametrised entailment

classifier. Within this new vector space, the entailment operators and inference equations apply,

thereby generalising naturally from these lexical representations to the compositional semantics

of multi-word expressions and sentences.

Further work is needed to explore the full power of these abilities to extract information about

entailment from both unlabelled text and labelled entailment data, encode it all in a single vector

space, and efficiently perform complex inferences about vectors and entailments. This future

work on compositional distributional semantics should further demonstrate the full power of the

proposed framework for modelling entailment in a vector space.

Chapter 3

Unsupervised syntax-aware contextualized

word representations

In an effort to account for language variability and the insufficiency of generic word type em-

beddings to account for all senses and possible usages of a word, some work has looked at

methods to improve the representation of words based on their individual use within a particu-

lar context. While some work focused on modelling the context around a target word to further

obtain an enriched representation of the word itself (Melamud et al., 2016), other focused di-

rectly on the creation of a context-aware representation for the word, also denoted as (word)

token embedding or token-based representation (Tu et al., 2017; Popa et al., 2019a,b). The idea

behind token embeddings is to represent a word in its context, with the same word bearing dif-

ferent representations in different contexts. This contrasts to the generic word type embedding

representation, which is the same in every context. Furthermore, as contextuality and composi-

tionality are interlinked, and provided the structure of the sentence is taken into account when

creating such token representations, such an approach could lead to including some notion of

compositionality within the word representations themselves rather than relying only on the

parameters of an architecture built on top of them.

In the following, the relevant literature around context-aware word representations is presented

43

44 Chapter 3. Unsupervised syntax-aware contextualized word representations

in Section 3.1 in comparison to the current proposal. Section 3.2 details the proposal for the

computation of token embeddings, while Section 3.3 provides the experimental protocol fol-

lowed for the evaluation of the proposed token embeddings. Results of using token embeddings

on a series of commonly considered sentence understanding tasks are presented and discussed

extensively in Section 3.4, along with quantitative and qualitative analysis. Additionally, a

study on the application of contextualized representations to the task of implicit discourse re-

lation classification is provided in Section 3.5 as also outlined in Popa et al. (2019a,b). Finally

Section 3.6 summarizes the contribution of the current proposal and discusses possible future

directions.

3.1 Related work

To obtain context-sensitive word embeddings, most previous work has treated this as a word

sense disambiguation problem, with each word representing a collection of discrete mutually

exclusive senses, individually represented by different vectors - typically one vector per word

sense (Neelakantan et al., 2014; Chen et al., 2014; Guo et al., 2014; Liu et al., 2015). In these ap-

proaches there is a fixed number of vectors to learn for each word which is based on the number

of senses a word can have. Dasigi et al. (2017) also propose a method to obtain context-aware

token embeddings, however they produce their embeddings by estimating a distribution over

semantic concepts (synsets) extracted from WordNet (Miller, 1995). They test the proposed

embeddings to predict prepositional phrase attachments. Kawakami and Dyer (2015) use cross-

lingual supervision and bidirectional Long Short-Term Memory (LSTM) networks (Hochreiter

and Schmidhuber, 1997) to provide context-sensitive word representations. Their method is

based on the intuition that a contextualized representation of a word is sufficiently accurate if it

enables the selection of the correct translation of that word in another language. Their obtained

representations are tested on the tasks of lexical substitution, low resource machine translation

and prediction of semantic supersenses.

3.1. Related work 45

In contrast to these methods, the current proposal uses neither lexical resources nor multilingual

data and does not rely on the existance of a pre-defined list of senses for a word. Instead, it

leverages syntactic information from parse trees to derive a different representation for each

occurrence of a word, namely each word token (Popa et al., 2019a,b).

Melamud et al. (2016) propose context2vec, a model for learning a generic embedding function

for the contexts around a target word. Their proposal is based on the Continuous Bag-of-Words

(CBOW) (Mikolov et al., 2013a) architecture, yet provides a different way to embed the context:

instead of representing the context of a target word by an average of the word embeddings of its

context words, Melamud et al. (2016) propose using a variant of bidirectional LSTM networks.

Thus the local context of a target word is considered by running two LSTMs on its right and left

vicinity with the goal of having the context predict the target through a log linear model. The

parameters of the two LSTMs are separate and are intended for use on the left (from left-to-

right) and right (from right-to-left) contexts respectively. The two obtained representations are

further concatenated and fed as input to a multi-layer perceptron, whose output is considered to

be the context embedding. Finally, the objective is to embed the target word and its context in

the same space such that dependencies between them are preserved. The method is evaluated on

the tasks of sentence completion, word sense disambiguation and lexical substitution. Although

context2vec focuses on modelling the context alone and is not targeted at modelling the meaning

of words in context, authors note this could potentially be achieved as well. Nevertheless,

the method proposed does not use syntactic information and does not provide one different

representation for each word token. Moreover, the obtained representations are not tested on

tasks that require reasoning beyond word level such as sentence understanding tasks.

The method proposed in the current thesis provides a different word token vector for every

individual context and not just for each individual sense of a word and does not limit itself to the

modelling of contexts. In this respect, one proposal related to the current work is that of Tu et al.

(2017), who suggest learning embeddings for tokens in an unsupervised manner, by leveraging

information from the local context of each token, using a standard auto-encoder architecture.

46 Chapter 3. Unsupervised syntax-aware contextualized word representations

Their learned token embeddings represent transformations of the type embeddings they denote

along with transformations of the type embeddings their neighbouring tokens denote. They

provide two different approaches to compute representations for tokens: either through feed-

forward encoders or using recurrent neural network encoders.

Given a sequence of n tokens t = [t1, t2, . . . , tn], let xk denote the word type that corresponds

to token tk, let exk ∈ Rd denote the pre-trained embedding of the xk word type (which is

assumed to exist) and let w′ be the window size considered such that it contains: the token

tk, w′ tokens before it and w′ tokens after it. Let f be a set of functions that take as input a

sequence of tokens t and the index k of a token of interest and provide as output a d′-dimensional

vector representing the embedding of the sequence of tokens contained in the window of text

surrounding the kth token:

f(t, k) = q(W (D)vk + b(D))

vk = [ex(k−w′)
; ex(k−w′)+1

; . . . ; exk ; . . . ; ex(k+w′)−1
; ex(k+w′)

]

where q stands for an element-wise nonlinear function (e.g. tanh), W (D) ∈ Rd′×d(2w′+1) is

a matrix of parameters, (;) stands for vertical concatenation and b(D) ∈ Rd′ is a bias vector.

Training is performed using the autoencoder architecture with the feed-forward encoder f and

an analogous fully-connected layer decoder g : f converts the input to a vector and further

g attempts to reconstruct the input from that vector. The training objective is minimising a

weighted squared difference between the input and the reconstructed input. The weighting

scheme is adopted in order to account for the focus on a particular position in the encoded

sequence that corresponds to the token of interest.

lossWRE(f, g, t, k) =

|t|∑
i=1

wi ‖g(f(t, k))i − eti‖2
2

where wi is the weight of reconstructing the i’th token and g(f(t, k))i is the subvector of

g(f(t, k)) corresponding to the i’th entry in the sequence. Tu et al. (2017) report best results

are obtained when using a “focused” weighting scheme, with wj = 2 and wi = 1 for i 6= j.

3.1. Related work 47

Alternatively, considering the same scheme of encoding a token along with its context from a

given window size, Tu et al. (2017) note that one can use a Long Short-Term Memory (LSTM)

(Hochreiter and Schmidhuber, 1997) encoder. In this case, the sequence containing the token

tk is encoded and the final hidden vector hk stands for the d′-dimensional encoding of the

token. The training is done with a sequence-to-sequence “seq2seq” autoencoder (Sutskever

et al., 2014) that uses one LSTM as encoder f and another LSTM as the decoder g, initialized

with the output of f .

The produced token embeddings are further evaluated as features for downstream low-resource

tasks like Twitter part-of-speech tagging and dependency parsing. Regardless of the choice of

encoder, when input to the downstream tasks, the embeddings of the tokens are concatenated

to their corresponding word type embeddings and to a binary feature vector. Unfortunately,

that makes it difficult to determine to what extent it is the token embeddings that are responsi-

ble for the reported scores and which are the individual contributions of the pre-trained word

embeddings and of the feature vectors.

It is also important to note that, although they produce token embeddings in an unsupervised

manner, Tu et al. (2017) do not leverage in any way the sentence parse tree to induce syntactic

information to the token embeddings, limiting themselves to the local context (as defined by a

window of words) to estimate the token representations. It is thus not straightforward how to

explicitly add the syntactic information on top of their proposed model. Moreover, it is not clear

how these representations behave in a sentence understanding scenario. In such a setup long

distance dependencies could account for more than in the considered tasks and an encoding

of longer sequences (maybe entire sentences) might be preferred as opposed to the considered

tasks, where Tu et al. (2017) did not find large context windows to be helpful.

In computer vision it has become standard practice to re-use weights of deep convolutional

neural networks (CNNs) pre-trained on large supervised training sets like the ImageNet Large

Scale Visual Recognition Challenge (ILSVRC) dataset (Deng et al., 2009) to initialize multiple

deep layers for a series of tasks (Socher et al., 2014; Gao et al., 2015; Gidaris and Komodakis,

48 Chapter 3. Unsupervised syntax-aware contextualized word representations

2015; Shelhamer et al., 2017). On the other hand, in natural language processing most work

uses word embeddings pre-trained on large amounts of data to initialize only the lowest layer

of deep learning models, namely the word vectors. Inspired by this, McCann et al. (2017) pro-

pose a way to obtain context-aware word vectors (CoVe) by leveraging a deep LSTM encoder.

More precisely, they transfer the weights of a pre-trained deep LSTM encoder, coming from a

sequence-to-sequence model trained for machine translation (MT-LSTM), to a variety of NLP

tasks. These tasks include: question classification, textual entailment recognition, question an-

swering and sentiment analysis. They show that the produced contextualized representations

constitute improvements on these tasks when used in combination with standard pre-trained

word embeddings and character vectors.

The translation model McCann et al. (2017) use is an attention-based sequence-to-sequence

model for English-to-German translation. It follows a standard encoder-decoder architecture as

explained further: given an input sequence of n words in a source language

wx = [wx1 , w
x
2 , . . . , w

x
n]

and aiming to produce a sequence of m words in a target language

wy = [wy1 , w
y
2 , . . . , w

y
m]

, GloVe(wx) denotes the sequence of GloVe vectors that correspond to the words in wx and y

denotes the sequence of randomly initialized vectors for the words in wy. Then the encoder

of the sequence is a two-layer bidirectional long short-term memory network BiLSTM (Graves

and Schmidhuber, 2005) further denoted as MT-LSTM, which produces a sequence of hidden

states h:

h = MT-LSTM(GloVe(wx)).

Next, an attention-based decoder, produces a distribution over output words p(ŵyt |H,w
y
1 , w

y
2 , . . . , w

y
t−1])

at each time-step, with H representing a stack of the elements of h along the time dimension.

3.1. Related work 49

The decoder is a two-layer uni-directional LSTM, initialized from the last hidden state of the

encoder. For each time-step t, the decoder produces a hidden state hdect based on the previous

target embedding yt−1 and the context adjusted hidden state from time t− 1, h̃t−1:

hdect = LSTM([yt−1; h̃t−1], hdect−1).

Then, a vector of attention weights αt is computed to reflect the relevance of each encoding

time-step to the current decoder state in order to decide which part of the input sequence needs

to be translated next:

αt = softmax(H(W1h
dec
t + b1)).

These weights are then used to form the context-adjusted hidden state for time t, h̃t:

h̃t = [tanh(W2H
Tαt + b2);hdect].

A final transformation of the context-adjusted hidden state is required to obtain the distribution

over output words:

p(ŵyt |H,w
y
1 , w

y
2 , . . . , w

y
t−1]) = softmax(Wouth̃t + bout).

Once the encoder-decoder architecture is trained for the translation task, the parameters of the

encoder (MT-LSTM) can be used to produce contextualized word representations for sentences

involved in any new task as follows: given a sequence of words w and the sequence of the

corresponding word vectors GloVe(w), the learned context vectors (CoVe) produced by the

MT-LSTM are:

CoVe(w) = MT-LSTM(GloVe(w)).

These context vectors are further used through concatenation to GloVe embeddings as input to

the task at hand:

w̃ = [GloVe(w); CoVe(w)].

50 Chapter 3. Unsupervised syntax-aware contextualized word representations

While McCann et al. (2017) bring an important contribution by showing how transfer learning

could be efficiently applied from machine translation to other NLP tasks, their experimental

setup does not clearly reflect to what extent their contextualized word embeddings are infor-

mative by themselves. All reported results involve evaluations of the contextualized word em-

beddings concatenated with GloVe pre-trained word embeddings and/or with character-level

embeddings. Moreover, both GloVe and the MT-LSTM context embeddings, were trained on

large corpora (CommonCrawl-840B for GloVe and three different English-German machine

translation datasets for MT-LSTM). In this respect, McCann et al. (2017) also point out that the

size of the corpora used to pre-train the MT-LSTM directly correlates with the results obtained

on the end tasks to which these representations are transferred. That makes their method sensi-

tive to the size of the corpora used for pre-training which itself is also determined by the amount

of available data for translation.

Following on the idea of transfer learning, recent work leverages information coming from neu-

ral language models in semi-supervised and unsupervised settings (Peters et al., 2017, 2018;

Salant and Berant, 2018). Using a language modelling objective allows for unsupervised train-

ing on large amounts of data and has been shown to provide useful representations. Formally,

given a sequence of n tokens [t1, t2, . . . , tn], a language model computes the joint probability

distribution of the sequence as follows:

p(t1, t2, . . . , tn) =
n∏
k=1

p(tk|t1, t2, . . . , tk−1).

Typically, word vectors are initialized to pre-trained word embeddings or to values obtained

by running variants of LSTM or CNN architectures over their characters (Ling et al., 2015;

Kim et al., 2016; Labeau and Allauzen, 2017). This representation is referred to as the context-

independent token representation and will be further denoted by xk for the token at position

k. This is then passed to a forward LSTM layer that embeds the sequence [x1, x2, . . . , xk]

into a fixed dimensional vector
−→
h LM
k . This denotes the forward language model embedding

of the token at position k for the sequence [x1, x2, . . . , xk] and constitutes a context-dependent

3.1. Related work 51

representation of the token. The probability of the token at position k + 1, p(tk+1) is then

computed using a softmax layer over the words in the vocabulary:

p(tk+1|t1, t2, . . . , tk) =
exp(ztk+1

)∑
t′∈V exp(zt′)

, where V stands for the vocabulary and ztk+1
is computed as the inner product ztk+1

= hTk etk+1
,

with etk+1
representing the output word embedding for the token tk+1 (the representation of the

token in the weight matrix of the softmax layer) and hTk the output of the last hidden layer.

However, the above formulation only captures past context, modelling the probability of the

token at position k given the history [t1, t2, . . . , tk−1]. To account for future context, one could

consider a backward language model as computing the probability of the sequence

p(t1, t2, . . . , tn) =
n∏
k=1

p(tk|tk+1, tk+2, . . . , tn).

This yields
←−
h LM , denoting the backward language model embedding of the token at position k

for the sequence [xk+1, xk+2, . . . , xn]. Then the two language model embeddings for the token

at postion k can be concatenated to obtain the bidirectional language model embedding for that

token:

hLMk = [
−→
h LM
k ;
←−
h LM
k]

Peters et al. (2017) show how to make use of the parameters learned in such a pre-trained

bidirectional language model to improve the performance of a sequence tagger, by augment-

ing the token representations with contextual information. They consider a supervised se-

quence tagging model which they evaluate on the tasks of named entity recognition (NER)

and chunking. Their sequence tagger (TagLM) is built on the basis of pre-trained word embed-

dings and enhanced with embeddings computed using the pre-trained neural language model

(denoted as contextualized embeddings) as explained further: given a sequence of n tokens

52 Chapter 3. Unsupervised syntax-aware contextualized word representations

t = [t1, t2, . . . , tn], the representation of the kth token is given by

xk = [ck; ek]

ck = C(tk; θc)

ek = E(tk; θw)

, where ck represents an RNN or CNN-based character representation of the word, ek denotes

the pre-trained word embedding corresponding to the word and ; is the concatenation operation.

In order to obtain a contextualized representation of the input sequence, Peters et al. (2017) use

L = 2 layers of bidirectional RNNs. Given the representation xk for the kth token as input, the

bidirectional RNN at level j produces a hidden state hk,j such that:

hk,j = [
−→
h k,j;

←−
h k,j]

−→
h k,j =

−→
R j(xk,

−→
h k−1,j; θ−→R j

)

←−
h k,j =

←−
R j(xk,

←−
h k+1,j; θ←−R j

)

, with Rj parameterized as either a GRU or an LSTM, depending on the task. Finally, the score

for each tag is predicted using the output of the final layer hk,L followed by a dense layer. To add

the contextualized representations computed using the pre-trained language model, Peters et al.

(2017) propose concatenating them to the output of the first bidirectional RNN layer, namely:

hk,1 = [
−→
h k,1;

←−
h k,1; hLMk]

Alternatively these contextualized representations could be added to augment the input of the

first bidirectional RNN layer:

xk = [ck; ek;h
LM
k]

3.1. Related work 53

or the output of the second bidirectional RNN layer:

hk,2 = [
−→
h k,2;

←−
h k,2; hLMk].

Experiments show however that, for the tasks considered, adding the contextualized represen-

tations to the output of the first bidirectional RNN layer achieves the highest scores. Neverthe-

less, other tasks may benefit more from the inclusion of these embeddings at different layers.

The best results are obtained using separately trained forward and backward language models

on the publicly available benchmark for large-scale language modelling, 1B Word Benchmark

(Chelba et al., 2013). As previously noted for the context embeddings provided by McCann

et al. (2017), it would be interesting to analyse to what extent the language modelling-based

embeddings would yield the same performance by themselves in the lack of concatenation to

pre-trained word embeddings or CNN-based character-level embeddings.

Peters et al. (2018) extend the idea in Peters et al. (2017) by learning a task specific linear

combination of the intermediate layers of a deeper bidirectional language model pre-trained on

large corpora Chelba et al. (2013). They denote their embeddings ELMo (Embeddings from

Language Models) and evaluate them on a variety of tasks ranging from sentiment analysis,

textual entailment recognition and question answering to co-reference resolution, semantic role

labeling and named entity extraction. Their approach follows closely that of Peters et al. (2017),

with some extensions as further detailed.

As previously, given a sequence of n tokens t = [t1, t2, . . . , tn], xk denotes the context-independent

representation of the token tk obtained either through initialization to its corresponding pre-

trained word embedding or via a CNN over its characters. This representation is then fed into

an L-layer bidirectional language model that outputs a context-dependent representation hLMk,L

for a given token tk. For each layer j with j = 1, . . . , L,
−→
h LM
k,j represents the forward language

model embeddings of tk obtained from layer j, and
←−
h LM
k,j is the backward language model

embeddings of tk obtained from layer j. Thus, the bidirectional language model embedding

54 Chapter 3. Unsupervised syntax-aware contextualized word representations

obtained from layer j is given by

hLMk,j = [
−→
h LM
k,j ,
←−
h LM
k,j], ∀j = 1, . . . , L.

Differently than in the work of Peters et al. (2017), some of the parameters for the forward

and backward bidirectional language models are shared, namely the parameters of the token

representations θx and the softmax layer parameters θs. Thus, the bidirectional language model

jointly maximizes the log likelihood of the forward and backward directions:

n∑
k=1

(log p(tk|t1, . . . , tk−1; θx;
−→
θ LSTM ; θs)+

log p(tk|tk+1, . . . , tn; θx;
←−
θ LSTM ; θs)).

Further, the ELMo embeddings are computed as a task specific combination of the intermedi-

ate layers in the bidirectional language model. More precisely, given a token tk, the L-layer

bidirectional language model computes a set of representations:

Rk = {xLMk , hLMk,j | j = 1, . . . , L}

= {hLMk,j | j = 0, . . . , L}

Then, the ELMo representation is given by a task specific combination of all bidirectional lan-

guage model layers:

ELMotaskk = E(Rk; θ
task) = γtask

L∑
j=0

staskj hLMk,j .

This formulation enables Peters et al. (2018) to analyze the contribution of different layers of the

deep bidirectional language models to each considered task. However, it also implies that their

representation of tokens is task dependent: although the intermediate layers representations are

task independent, their linear combination is learned with respect to the task at hand. Addi-

3.1. Related work 55

tionally, the authors note that in most cases high performance is ensured by fine-tuning the pa-

rameters of the pre-trained bidirectional language model on the training data, before fixing them

during task training. Similarly to the protocol in McCann et al. (2017), the token representations

obtained from the bidirectional language model are concatenated with the context-independent

token representation xk, (obtained from pre-trained word embeddings and/or character-based

representations1) before being fed as input to any given task:

[xk; ELMotaskk].

Alternatively, results are improved for some tasks when adding the token representations to the

output of the task RNN as:

[hk; ELMotaskk].

Continuing on the same line, Salant and Berant (2018) show that adding rich contextualized rep-

resentations derived from language modelling to a basic model for question-answering achieves

state-of-the-art results. Moreover, they show that the model covering only minimal question-

document interaction, yet making use of contextualized token representations, is able to surpass

more sophisticated models that focus on the interaction between the question and the docu-

ment. They propose a re-embedding approach in which the model is allowed to choose between

the context-dependent and the context-independent representations of a token, through a gating

mechanism.

Given a sequence of n tokens [t1, t2, . . . , tn], let ek denote the pre-trained word embeddings

corresponding to token tk and ck denote the character-based representation of the same token

obtained using a CNN over character embeddings (Kim et al., 2016).

Then the re-embeddings of token tk is the result of a Highway layer (Srivastava et al., 2015)

1The experiments considered in Peters et al. (2018) use pre-trained GloVe embeddings (Pennington et al., 2014)
concatenated to character-level embeddings: 2048 character n-gram convolutional filters, followed by two highway
layers (Srivastava et al., 2015) and a projection to dimension 512.

56 Chapter 3. Unsupervised syntax-aware contextualized word representations

formulated as follows:

t′k = gk � ek + (1− gk)� zk

gk = σ(Wgxk + Uguk)

zk = tanh(Wzxk + Uzuk)

xk = [ek; ck]

, where � represents the element-wise product operator, Wg,Wz,Ug and Uz are parameter ma-

trices, xk denotes the non-contextualized representation of the token and uk stands for a con-

textualized representation of tk.

Salant and Berant (2018) provide two ways of constructing the contextualized representation uk

for any given token tk: either using the hidden states of the top layer in a stacked bidirectional

LSTM

{u1, u2, . . . , un} = BiLSTM(x1, x2, . . . , xn)

= {h1, h2, . . . , hn}

or by leveraging information coming from language modelling and concatenating such a repre-

sentation to the hidden states mentioned previously

uk = [hk; ok].

ok thus represents the embedding of token tk as provided by the hidden states of the trained

language model. Similarly to one of the settings presented in Peters et al. (2017), they use the

language model of Józefowicz et al. (2016), pre-trained on the 1B Word Benchmark corpus

(Chelba et al., 2013). This language model consists of an initial layer of character-based word

representations, two stacked forward LSTM layers and a softmax prediction layer.

In their work, Salant and Berant (2018) also emphasize the need of complementing the infor-

3.1. Related work 57

mation coming from the embedding of rare words with contextualized representations. They

observe that the activations of the gate gk have smaller values for rare words. In other words,

the re-embedded representation of a token t′k (corresponding to a rare word) is constructed us-

ing to a lesser degree its pre-trained word embedding and relies mostly on its contextualized

representation. Overall, their findings are interesting as they validate further the importance

of having contextually-informed features as input to deep learning models, even when these

models have simple architectures.

Recently, Devlin et al. (2019) have also provided a method (denoted BERT) to obtain to-

ken embeddings by leveraging an architecture based on multi-layer bidirectional Transformers

(Vaswani et al., 2017).

As previously noted, most of these token embeddings are constructed either in a supervised or

semi-supervised manner using large corpora and a large parameter space, which contrasts to the

current proposal. Moreover, within these models, it has been shown that the amount of data

used for constructing representations correlates with increases in performance, making training

on large amounts of data a pre-requisite for the success of such approaches: CoVe (McCann

et al., 2017) uses 350M words corpus for its best performing model, ELMo (Peters et al., 2018)

uses a 1B words corpus, while BERT (Devlin et al., 2019) leverages a 3.3B words corpus and

an architecture of 340M parameters. In contrast to these methods, the proposal in the current

thesis can provide competitive results even when leveraging only the corpus at hand to construct

representations for its tokens.

Furthermore, none of the related work provides an explicit encoding of the sentence structure

into the token embeddings themselves by directly leveraging information from syntactic depen-

dencies or a flexible framework for explicitly incorporating linguistic knowledge. Additionally,

in most of the evaluations of the related work, the proposed token embeddings are concatenated

to pre-trained word embeddings and/or other feature vectors before being fed as input for an

end task. This last aspect makes it difficult to quantify the contribution of the token embeddings

themselves to the obtained results.

58 Chapter 3. Unsupervised syntax-aware contextualized word representations

3.2 SATokE – Syntax-Aware Token Embeddings

Following the success of tensor factorisation models at learning latent representations of enti-

ties and relations from a graph, we propose a model that makes use of tensor factorisation to

produce token embeddings for sentences and their syntactic structures. The proposed token em-

beddings have the benefit of encoding the information about the structure of the sentence from a

dependency point of view in the representations themselves and not in the parameters of an end

task model they may be fed as input to. As a byproduct, our method also provides embeddings

for the relations present between the tokens in a parse tree, which can be further leveraged to

compute token embeddings on new corpora. Furthermore the token and relations embeddings

are constructed in an unsupervised manner and can be obtained for any given corpus regardless

of its size, provided access to the parse trees of the sentences in that corpus.

The token embeddings we propose will be compared empirically to context-independent word

type embeddings pre-trained on large corpora on local contexts (Mikolov et al., 2013b; Penning-

ton et al., 2014) in Section 3.4 on a series of tasks ranging from sentiment analysis to textual

entailment recognition and implicit discourse relation classification (Popa et al., 2019a,b). We

additionally provide a comparison to word type embeddings pre-trained on syntactic informa-

tion (Levy and Goldberg, 2014) and to an alternative token embeddings method proposed in the

literature (Peters et al., 2018).

3.2.1 Preliminaries

We propose to learn token embeddings in an unsupervised manner by choosing to model sen-

tences as graphs: the nodes in each graph represent the individual tokens in the sentence and

graph edges stand for the adjacency and syntactic relations between these tokens, as given by a

parse tree of the sentence.

To learn these token embeddings, we make use of tensor factorisation, through a model that can

3.2. SATokE – Syntax-Aware Token Embeddings 59

be seen at the intersection between the RESCAL model (Nickel et al., 2011) and the TransE

model (Bordes et al., 2013), both of which have been proposed for learning embeddings in

large relational databases. The structure used to model relations between entities in the current

work follows that proposed in RESCAL, with entities represented by vectors and relations by

matrices. Similarly to TransE, we choose to optimise a ranking loss function, unlike RESCAL

that proposes a squared loss optimisation in its original version or other related literature that

uses logistic loss (Trouillon et al., 2016).

Altough RESCAL is designed as a model of large relational databases, with large number of

entities and relations between them, our case is different. The entities are partitioned into sen-

tences and no relations can exist between entities belonging to different sentences. This makes

the learning more challenging. Unlike other multi-relational approaches where a threshold is

typically set on the number of times entities appear in relations in order to ease the learning

(Bordes et al., 2013), this is not a feasible option in our case. The maximum number of times an

entity takes part in a relation is limited to a very low value which is dependent on the parse tree

that entity is part of. The goal of learning in our model is to abstract away from the individual

sentences and learn the underlying regularity of parse trees. Thus, unlike in a typical relational

learning scenario, the proposed model learns from many small graphs rather than from one

single big one.

The factorisation model works by optimising a reconstruction of the graphs’ tensors, so that

given the token embeddings one can reconstruct each labelled edge in the graph. To predict

the different relations, it learns one real-valued matrix per relation label. It is these relation

matrices which capture the regularities which generalise across sentences. The information

about the individual sentence is captured in the token embedding vectors. Thus at the end of the

decomposition we aim to obtain a tensor of relation embeddings with one real-valued matrix

per relation and a matrix of token embeddings with one real-valued vector per token.

Because each token, in conjunction with the relation matrices, needs to be able to reconstruct

its relations with other tokens, the token vectors encode information about the graph context

60 Chapter 3. Unsupervised syntax-aware contextualized word representations

in which they appear. In this way, each token representation can be interpreted as a com-

pressed view of the sentence’s entire graph from the point of view of that token. The final

sentence representation is a set of all individual token representations which, by construction,

are contextually-aware and syntactically-aware.

Additionally to the tensor decomposition, our model incorporates another part of the loss that

constrains the nature of the entity representations that we wish to obtain. In order to account

for the semantic aspect, to enable information sharing across sentences and to make use of the

distributional information inferred from a large corpus, we constrain the token embeddings to

be similar to a pre-trained representation of the word types they denote. Although we could also

be learning the word type embeddings from scratch, one advantage of such an approach is the

possibility to learn tokens embeddings for any dataset regardless of its size.

3.2.2 Unsupervised learning of token embeddings via tensor factorisation

In the following we present our proposed method for token embeddings computation. This

method can be applied to any dataset of sentences with the sole prerequisites of having access

to parsing information and to pre-trained general purpose word type embeddings. Alternatively,

word type embeddings can also be computed using this method, provided a sufficiently large

amount of data is available.

There are two possibilities for token embedding computation: either a 1-step setting or a 2-

steps setting. In the 1-step setting, given a new dataset of sentences and their parses, we learn a

representation for each word token in the sentences as well as for each relation holding between

these tokens from scratch - in the current work we consider syntactic relations from the parse

tree as well as adjacency relations. We expect the token embeddings obtained through such a

learning scenario to perform best as they are directly learned for the given dataset along with

the relations present in the dataset.

An alternative to this is the 2-step setting in which we first learn the relation embeddings on one

3.2. SATokE – Syntax-Aware Token Embeddings 61

corpus and then we fix them when computing token embeddings on another corpus. This ap-

proach reduces the computation time as it leverages relation embeddings previously learned on

a different corpus. However, it may also affect the quality of the induced token representations

as the relations are kept fixed to values previously learned and there may be a domain mismatch

between the two corpora on which the relations and the tokens were learned. Given a new

dataset of sentences, their parses and previously trained relations embeddings, one can learn

token embeddings for the dataset through the same process by fixing the relation embeddings

to the pre-trained ones and optimising only for the token embeddings.

For completeness, we will further present the method corresponding to the 1-step setting, but we

will discuss results corresponding to the 2-step setting as well. We hypothesize (and later show

empirically) that the token embeddings learned in the 1-step setting obtain better results than

those learned in an 2-step setting, yet token embeddings learned in both settings outperform

general purpose word type embeddings on the sentence understanding tasks considered.

Formally, given the graph G(s) of a sentence s as provided by its parse tree, we model the

interactions between the tokens in the sentence as a 3-dimensional tensor T (s). In this work,

the possible relations between tokens are given by the parse tree of the sentence along with

an additional adjacency relation to denote neighbouring tokens. However, the current proposal

can be extended to deal with additional relations coming from semantic parsers for example.

All relations are modelled using asymmetric matrices. Each matrix in the tensor corresponds,

thus, to one of the possible relations between the tokens: this enables modelling the different

interaction types between tokens using different matrices. Let tok(s)
i represent the token that

appears at position i in the sentence s and let M (s)
REL denote the matrix in T (s) that holds entries

related to the REL relation in sentence s. Then an entry tijk in the final tensor T (s) takes value

1 if the relation k holds between the token tok(s)
i and the token tok(s)

j such that the token tok(s)
i

is the head in the dependency relation and tok(s)
j is the dependant. The matrix corresponding to

the adjacency information is populated similarly with value 1 whenever the token at position i

precedes the token at position j in the given sequence. All the remaining entries in the tensor

62 Chapter 3. Unsupervised syntax-aware contextualized word representations

A woman sings on stage

det nsubj prep pobj

adjc adjc adjc adjc

Figure 3.1: Example of relations that hold for one sentence: relations from the dependency
parse (in grey) + adjacency relations (in blue).

A w
om
an

si
ng
s

on st
ag
e

A

woman

1sings

on 0

stage

M
(s)
NSUBJ

NSUBJ(sings, woman)

NSUBJ(tok
(s)
3 , tok

(s)
2)

M
(s)
NSUBJ(tok

(s)
3 , tok

(s)
2) = 1

M
(s)
NSUBJ(tok

(s)
i , tok

(s)
j) = 0

∀i, j ∈ [1 . . . |s|], i 6= 3, j 6= 2

Figure 3.2: Example of a matrix corresponding to the dependency relation NSUBJ for sentence
s.

T (s) are set to value 0.

tijk = 1⇔M
(s)
k (i, j) = 1

tijk = 0⇔M
(s)
k (i, j) = 0

An example for a given sentence s is presented in Figure 3.1. This includes the sentence parse

information (marked in gray and red) as well as the adjacency information (marked in blue). In

the given example, the NSUBJ relation holds between tok(s)
3 and tok(s)

2 , with tok(s)
3 being the

head of the relation. Thus the matrix corresponding to the NSUBJ relation in sentence s will

have entry 1 at position M (s)
SUBJ(tok

(s)
3 , tok

(s)
2) and 0 everywhere else, as shown in Figure 3.2.

Similarly, all the other matrices corresponding to syntactic dependency relations are populated

based on the information from the sentence dependency parse tree.

For encoding information about neighbouring tokens in sentence s, an assymmetric matrix

M
(s)
ADJC is used as shown in Figure 3.3. This matrix holds value 1 at positionM (s)

ADJC(tok
(s)
i , tok

(s)
i+1)

3.2. SATokE – Syntax-Aware Token Embeddings 63

A w
om
an

si
ng
s

on st
ag
e

A

woman

sings

on

stage

1

1

1

1

0

M
(s)
ADJC

ADJC(A,woman)

ADJC(tok
(s)
1 , tok

(s)
2)

. . .

∀i ∈ [1 . . . |s|]

M
(s)
ADJC(tok

(s)
i , tok

(s)
i+1) = 1

M
(s)
ADJC(tok

(s)
i , tok

(s)
j) = 0

∀ i, j ∈ [1 . . . |s|], j 6= i+ 1

Figure 3.3: Example of a matrix corresponding to the adjacency relation ADJC.

1

0

M
(s)
NSUBJ

M
(s)
POBJ

M
(s)
ADJC

= T (s)

Figure 3.4: Matrices form the tensor T (s) for sentence s.

and 0 everywhere else, ∀ i ∈ [1 . . . |s|].

For sentence s, the matrices corresponding to syntactic dependency relations along with the

adjacency matrix form the tensor T (s) as shown in Firgure 3.4. Such a tensor is formed for each

of the sentences in a given dataset.

Further, in order to obtain embeddings for all the tokens in a sentence as well as for all the

relations holding between these tokens, we factorise each T (s) into:

• E(s), a matrix holding all token embeddings for sentence s, with one token embedding

per row

• R, a tensor for all the relations (shared between all sentences), with one matrix per relation

64 Chapter 3. Unsupervised syntax-aware contextualized word representations

E(s)

E(s)TR

T (s)

d

d
r

r|s|

|s|

G(s)

(a)

G(s) graph of sentence s
T (s) : r × |s| × |s| relations between tokens in G(s)

R : r × d× d relation tensor embeddings
E(s) : |s| × d vector embeddings for tokens in G(s)

d size of the embedding vectors
r number of binary relations
|s| number of tokens in sentence s

∀s, T (s) ≈ E(s) ·R · E(s)T

(b)

Figure 3.5: Sentence graph decomposition

embedding.

The factorisation has to be such that we can recompute the various relations between the tokens

in each sentence:

∀s, T (s) ≈ E(s) ·R · E(s)T

The decomposition is shown in Figure 3.5.

However, constraining an exact reconstruction of a binary tensor (with 1s for existing relations

between tokens and 0s otherwise) may be too strict. Therefore, as objective function, we opti-

mise a ranking loss within the tensor (T (s)
loss) that aims at scoring the reconstruction of positive

triples t(s)ijk = (e
(s)
i , Rk, e

(s)
j) higher than that of negative ones. We thus relax the exact recon-

3.2. SATokE – Syntax-Aware Token Embeddings 65

struction constraint to a ranking one.

We use an additional regularisation term (R(s)
loss) to minimise the gap between the token em-

beddings representation and the word type representation of their words. Conceptually, this is

similar to the vector space preservation term in Mrkšic et al. (2016) that controls how much

the token embeddings can deviate from their corresponding word representations. The overall

goal is to create embeddings that are close, through R
(s)
loss, to the original word embeddings

(known to capture semantics) and at the same time are syntactically-informed, through T (s)
loss,

so as to capture fine-grained semantic differences according to the role a given word plays in a

sentence. Optimising only T (s)
loss would be insufficient as it would lack the notion of semantics

provided through R(s)
loss. Indeed, by imposing that the token embeddings be close to the word

embeddings, one also forces the semantic representation of the word embeddings to be shared

across all sentences.

The optimisation problem is formulated as

min
∑
s∈S

αR(T
(s)
loss) + (1− αR)(R

(s)
loss) (3.1)

where:

T
(s)
loss =

∑
t
(s)
ijk∈G

(s),

t
(s)

i′j′k′∈¬(t
(s)
ijk)

max(0, γ+〈e(s)
i′ , Rk′ , e

(s)
j′ 〉−〈e

(s)
i , Rk, e

(s)
j 〉)

and

R
(s)
loss =

∑
e
(s)
i ∈G(s)

− log σ(e
(s)
i · w

(s)
i)

withG(s) the graph of sentence s holding all tokens and all relations present in the sentence, e(s)
i

the token embedding of token i in sentence s, Rk the matrix embedding for the relation k, w(s)
i

the pre-trained word embedding corresponding to the token e(s)
i , γ the margin hyperparameter

and ¬(t
(s)
ijk) the set of negative triples associated with tijk as explained below.

d denotes the dimensionality of the embeddings, while r denotes the number of relations. Thus

66 Chapter 3. Unsupervised syntax-aware contextualized word representations

the bilinear product:

〈e(s)
i , Rk, e

(s)
j 〉 = e

(s) 1×d
i ·R d×d

k · e(s)T d×1
j .

Considering all tokens in one sentence s, that results in approximating the relations tensor for

sentence s, T (s) by

E(s) (|s|×d) ·R(d×r×d) · E(s)T (d×|s|).

The regularization term R
(s)
loss can be seen as a particular case of cross entropy2

R
(s)
loss = −y · log ŷ − (1− y) · log(1− ŷ)

with y = 1 and ŷ = σ(e
(s)
i · w

(s)
i), where σ denotes the sigmoid function.

As detailed in the corresponding implementation details sections for each task, we explore

multiple settings by varying the ratio of negative sampling for one positive triple. A negatively

sampled example in the tensor is obtained by altering one element of the triple while fixing the

remaining two: this element can be either one of the entities or the relation holding between

them. As mentioned above, given a triple t(s)ijk = (e
(s)
i , Rk, e

(s)
j), we denote by ¬(t

(s)
ijk) the set

of negative examples associated to it. We consider here that ¬(t
(s)
ijk) is formed of the following

elements:

¬(t
(s)
ijk) = {(e(s)

i′ , Rk, e
(s)
j), (e

(s)
i , Rk′ , e

(s)
j), (e

(s)
i , Rk, e

(s)
j′)}∀i′ 6=i, j′ 6=j, k′ 6=k.

Ideally we would like to sample not only the positive triples, but also all the negative ones.

However, this is computationally expensive, which is why we choose to perform this contrastive

sampling which is more informative than a random sampling strategy.

We optimise Eq.(3.1) using mini-batch stochastic gradient descent. We construct our batches

bm such that if t(s)ijk ∈ bm then ¬(t
(s)
ijk) ⊂ bm. Sampling positive points and their negative

2An alternative was to use L2 between the token embeddings e(s)i and their corresponding word type embed-
dings w(s)

i , but preliminary experiments resulted in decreased performance.

3.3. Experimental protocol 67

counterparts together is important to ensure the consistency of the information at the basis of

which a step is taken when optimising each mini-batch. Further details regarding how the

validation set is constructed are provided with the implementation details in Section 3.3.2.

3.3 Experimental protocol

3.3.1 End task architectures

The set of token embeddings e(s)
i which result from the factorisation presented in 3.2 constitutes

the token-based representation of a sentence. Alternatively, a sentence can be represented as a

set of pre-trained word type embeddings, such as GloVe (Pennington et al., 2014), Word2Vec

(Mikolov et al., 2013b) or dependency-based word embeddings (Levy and Goldberg, 2014).

Such a representation is further fed as input to a neural network architecture. In this work we

have explored the two approaches that correspond to the building blocks of models mainly em-

ployed in the literature. This first approach is using a recurrent neural network architecture with

Long short-term memory (LSTM) units (Hochreiter and Schmidhuber, 1997) to encode a sen-

tence and the second approach uses a convolutional neural network (CNN) encoder following

Kim (2014).

Given an input sequence of k tokens

t = [t1, t2, . . . , tk]

let xi denote the vector representation that corresponds to token ti. This vector can be either the

corresponding pre-trained word embedding representation of the token or it can be the computed

representation using the method in 3.2. Then the vectorial representation of the sequence is

given by

[x1,x2, . . . ,xk].

68 Chapter 3. Unsupervised syntax-aware contextualized word representations

Long short-term memory

One of the most widely used models to encode sequences, that addresses the issue of learning

long-term dependencies and that takes into account contextual information, is the long-short

term memory network, a variant of the recurrent neural network. We adopt such an architec-

ture to model each sentence. Given the input sequence of vectors [x1,x2, . . . ,xk], an LSTM

computes the hidden state sequence representation

[h1,h2, . . . ,hk].

At each time step i, the model reads xi as input and updates the hi hidden state as follows:

ii = σ(W xixi + W hihi−1 + bi)

f i = σ(W xfxi + W hfhi−1 + bf)

oi = σ(W xoxi + W hohi−1 + bo)

ci = f i � ci−1 + ii � tanh(W xcxi + W hchi−1 + bc)

hi = oi � tanh ci

with � representing the element-wise product and σ the sigmoid function. i, f , o are the input

gate, forget gate and output gate respectively and c is the memory cell. W xi, W xf , W xo, W hi,

W hf , W ho, W xc, W hc, bi, bf , bo, bc are parameters of the model. The final representations

for the sequence is then given by the last hidden state representation hk.

Convolutional neural networks

In order to represent a sentence using convolutional neural networks (CNNs), we follow the

approach of Kim (2014). The general architecture is shown in Figure 3.6. Given the input se-

3.3. Experimental protocol 69

Figure 3.6: General CNN architecture (Kim, 2014)

quence of vectors [x1,x2, . . . ,xk], let xi:i+j be the concatenation of word vectors xi,xi+1, . . . ,xi+j

and W ∈ Rh×d be a filter applied to a window of h words to produce a feature ci. Let b be a

bias term and f a non-linear function. Then

ci = f(W · xi:i+h−1 + b).

A feature map c ∈ Rn−h+1 is created by applying the filter to each possible window of words

in the argument {x1:h,x2:h+1, . . . ,xk−h+1:k}. Thus

c = [c1, c2, ..., ck−h+1].

This is followed by a max-pooling operation ĉ = max(c) to obtain the most important feature,

i.e. the one with the highest value, corresponding to the particular filter. For m filters with

different window sizes we obtain m features: z = [ĉ1, ..., ĉm]. The representation of the input

sequence is thus the m-dimensional vector z.

Enhancing representations with positional information

One way to inject into word representations information about their order in a sequence is

through positional encodings (Gehring et al., 2017). Following the approach of Vaswani et al.

70 Chapter 3. Unsupervised syntax-aware contextualized word representations

(2017), we use fixed sinusoidal positional encodings of the same dimension as the word embed-

dings and sum them together. Given an input sequence of word embeddings

[x1, x2, ..., xk]

with xj ∈ IRd and the positional information for each of the words

P = (p1, p2, ..., pk)

with pj ∈ IRd, our new sequence representation will be

[x1 + p1, x2 + p2, ..., xk + pk].

For the positional encodings we use the sine and cosine functions:

p(pos, 2i) = sin(pos/100002i/d)

p(pos, 2i+ 1) = cos(pos/100002i/d)

with pos representing the position, i the dimension and d the embedding size.

Self-attention has also been recently used in a variety of tasks. It has been shown to be a useful

mechanism to connect information from different positions of a sequence in order to better

represent it. Similarly to Vaswani et al. (2017) we use a dot-product attention:

Att(Q,K, V) = softmax(QKT)V

where Q, K and V are transformations of the input embeddings

[x1, x2, ..., xk]

3.3. Experimental protocol 71

through matrices WQ, WK and WV . Each of the obtained vectors computed through the at-

tention mechanism represents thus a weighted combination of all tokens’ representations in the

sequence. Further, these representations constitute the input to the LSTM and CNN architec-

tures.

3.3.2 Implementation details

Pre-processing and linguistic information

The sentences in all considered datasets are parsed and further encoded using the method de-

scribed in 3.2. The dependency information used in the current work is obtained with the spaCy

toolkit 3, leveraging the transition-based dependency parser of Honnibal and Johnson (2015)

and using the CLEAR label scheme for the syntactic dependencies. For each dataset two differ-

ent learning strategies are explored: either learning token embeddings and relation embeddings

from scratch (1-step approach) or pre-training the relation embeddings on a corpus and then

fixing them to infer token embeddings for all the datasets considered (2-steps approach).

Token embeddings are computed for all the sentences in the datasets used. In this process

a threshold is set on the frequency of words thW to take into account (here set to 2). All

words that appear in the corpus with a frequency lower than the threshold or that do not have

a corresponding pre-trained word type embedding (here the GloVe (Pennington et al., 2014)

word type embeddings are used) are set to an ’unknown pos’ tag, where pos stands for the

part of speech associated to the word. The representations of these word types are also learned

along with the token representations. Embeddings for punctuation signs are also used when

provided by GloVe and replaced by a general ’unknown puncttag’ term otherwise, which is

further trained along with the graph of the sentence.

An additional threshold is imposed on the frequency of syntactic dependencies thD to take into

account (here set to 1000). Infrequent relations are replaced by an ’unknown relation’ tag and
3https://spacy.io/

72 Chapter 3. Unsupervised syntax-aware contextualized word representations

learned along with the rest of the graph. Apart from the syntactic dependencies obtained from

the parse tree, one additional relation is added to the parse graph in order to encode adjacency

information. The frequency distributions of all syntactic relations considered for each dataset

(after applying the threshold thD) are presented in Figures 3.8 to 3.17.

SATokE Token embeddings computation

For each dataset multiple threads of token embeddings computation are run considering varying

initial learning rate values in the range [10−2,10−5] and negative sampling factors (1x, 5x, 10x).

In all cases the ratio between the two losses αR is set to 0.5 and mini-batches are fixed to

size 300. Considering all dependency relations with a frequency higher than thD in the corpus

corresponds to using the top 12 to 35 most frequent relations, depending on the corpus.

For assessing the embeddings and to aid in the optimisation process, the mean reciprocal rank

(MRR) is used, which is a standard metric for the evaluation of the quality of triple ranking

(Bordes et al., 2013).

At the beginning all token embeddings are randomly initialised 4. Then the optimisation is

performed using Adam (Kingma and Ba, 2014). During this process, negative triples are re-

sampled for each considered positive triple at every epoch. The criteria for ending the optimi-

sation is based on early stopping, considering the MRR score on the validation set.

To construct the validation set 20% of the positive triples are randomly sampled from the train-

ing set t(s)ijk = (e
(s)
i , Rk, e

(s)
j) ∈ T+ such that at least one of the two following conditions holds:

∃Rk′′ , e
(s)
j′′ ∈ G

(s) : (e
(s)
i , Rk′′ , e

(s)
j′′) ∈ T+

or

∃e(s)
i′′ , Rk′′ ∈ G(s) : (e

(s)
i′′ , Rk′′ , e

(s)
j) ∈ T+

4Preliminary experiments with token embeddings initialised with their corresponding GloVe word type embed-
dings did not result in improvements.

3.3. Experimental protocol 73

where G(s) denotes the graph of the sentence composed of all the entities and relations present

in the sentence and T+ is the set of all positive triples in the dataset. This prevents the separation

of the graph of a sentence into two disjoint parts for training and validation. This allows us to

learn embeddings for all entities as it enables information from the entities in the training set to

flow to the entities in the validation set via the relations.

1-step vs 2-steps learning setups

As mentioned in 3.2, one can leverage pre-trained relations embeddings in order to compute to-

ken embeddings for any new dataset. In order to asses the quality of token embeddings induced

using pre-trained relations embeddings, a 2-steps process is employed: the model is first used

to train relations embeddings on the Penn TreeBank corpus of about 40k sentences (Marcus

et al., 1993) and then these embeddings are fixed in order to learn token embeddings for each

dataset. In practice, given any new sentence, one can use the 2-step setup to compute its token

representations based on pre-trained relations embeddings.

For training the relation embeddings, the margin parameter is set to γ = 1, the initial learning

rate value is varied in the range [10−3,10−4], the ratio between the two losses is set to α = 0.5,

mini-batches are of size 300 and the negative sampling factors remain (1x, 5x, 10x). Then token

embeddings are computed for each dataset using the same hyperparameters as the ones used for

learning the relations they are inferred from. The results obtained using token embeddings

computed in the 2-step setup are presented and discussed in Section 3.4.5.

End task learning

The details on the hyper-parameters used for both the LSTM and CNN encoders are reported

in the corresponding implementation details subsections for each considered task. With both

encoding schemes, the sequence representation is further passed to a fully connected layer that

outputs the probability distribution over labels: y = W · q + b, where q stands for the represen-

74 Chapter 3. Unsupervised syntax-aware contextualized word representations

tation hk in the case of an LSTM encoder or z in the case of a CNN encoder (for single sentence

classification tasks) or the concatenation of these representations (for sentence pair classifica-

tion tasks). The training objective is defined as the cross-entropy loss between the output of the

softmax layer and the class labels.

The general architecture for sentence pair classification can be seen in Figure 3.7. The archi-

tecture for single sentence classification follows the same structure as the one in Figure 3.7, but

for one single sentence as input. Sentences are encoded using the methods described in Section

3.3.1 (Encoded S1, Encoded S2). For the sentence pair classification, the representations of the

two sentences are concatenated to be provided as input to a fully connected layer before the

softmax layer.

This architecture enables the exploration of the behaviour of the produced token embeddings

on a large and representative set of tasks: textual entailment prediction, paraphrase detection,

sentence polarity detection, subjectivity detection and question-type categorisation.

Softmax layer

Fully-connected layer

[
Encoded S1,Encoded S2

]
Encoded S1 Encoded S2

Input S1 Input S2

xs11 xs12 . . . xs1n xs21 xs22 . . . xs2m

Figure 3.7: General architecture for sentence pair classification

Throughout all the experiments the input embeddings are fixed to be one of the following:

the popular pre-trained word type embeddings GloVe (Pennington et al., 2014) or Word2Vec

(Mikolov et al., 2013b), the dependency-informed word type embeddings Dep-based WE (Levy

and Goldberg, 2014), the ELMo token embeddings (Peters et al., 2018) or the proposed com-

puted token embeddings, SATokE.

3.3. Experimental protocol 75

The pre-trained word type embeddings of Pennington et al. (2014) considered in the current

work are 300-dimensional and were learned from the Common Crawl corpus5. These are used

for constraining the semantics of the SATokE token embeddings through R(s)
loss as discussed in

Section 3.2. They are also used for evaluation on each dataset in Section 3.4. The Word2Vec

word type embeddings used are 300-dimensional and were trained on part of the Google News

dataset (about 100 billion words) 6 using the Skip-gram model (Mikolov et al., 2013a,b). The

pre-trained word type embeddings of Levy and Goldberg (2014) are also 300-dimensional and

are learned using the Skip-Gram model (Mikolov et al., 2013a,b), from English Wikipedia,

considering dependency-based contexts7.

Results are provided using two variants of the ELMo token embeddings (Peters et al., 2018):

the 1024-dimensional embeddings that obtained the best results in Peters et al. (2018) as well as

the 256-dimensional embeddings obtained from the pre-trained ELMo models8 (for fair com-

parison to the proposed 300-dimensional SATokE). The pre-trained ELMo models are used as

they represent the optimized versions shown to provide the best results (Peters et al., 2018).

The ELMo models considered were trained on the 1 Billion Word Benchmark consisting of

approximately 800M tokens of news crawl data from WMT 2011.

Fixing the embeddings prevents their adaptation to the end task and disallows the representa-

tions of frequent words in the training data to distance themselves in the embedding space from

representations of related but rare words. It also enables to perform a stricter assessment of the

difference between the word type embeddings and the token embeddings as input features. For

the embeddings that lead to the best results, an additional set of experiments considers allowing

the input embeddings to change. Such experiments will be denoted by the usage of the suffix

(fine-tuned) after the embeddings type. More particularly, in the case of SATokE embeddings,

the suffix (fine-tuned) indicates that the construction of the embeddings was conditioned on

GloVe word type embeddings that were previously fine-tuned for the end tasks.

5https://nlp.stanford.edu/projects/glove/
6https://code.google.com/archive/p/word2vec/
7https://levyomer.wordpress.com/2014/04/25/dependency-based-word-embeddings/
8https://allennlp.org/elmo

76 Chapter 3. Unsupervised syntax-aware contextualized word representations

To tune all hyper-parameters for each end task learning scenario, a development set is used

when available or 20% of the training set is randomly selected when such a development set

is not provided. The optimisation stops when the loss increases on the development set (with

a patience of 5). Adam (Kingma and Ba, 2014) was used for the optimisation and the hyper-

parameters that lead to the best results for each task are reported in their corresponding sections.

3.4 Evaluation and results

The quality of the computed token embeddings is tested when provided as input features to sev-

eral text understanding tasks often evaluated in the literature (Zhou et al., 2016; Conneau et al.,

2017; Ding et al., 2018). Their behaviour is examined and their usefulness is investigated on text

understanding problems ranging from sentiment prediction and text classification to paraphrase

detection, textual entailment recognition and implicit discourse relation classification. There-

fore both sentence classification and sentence pair classification scenarios are being considered

as it will be detailed further. In addition to this, all datasets used are analyzed, by presenting

some of their characteristics as well as a discussion over the “appropriateness” of considering

them for evaluation in the current setting, despite their typical employment in literature.

A comparison is provided between the proposed SATokE token embeddings and various context-

independent word type embeddings: either pre-trained on large corpora on linear contexts

(Mikolov et al., 2013b; Pennington et al., 2014) or pre-trained on syntactic dependency infor-

mation (Levy and Goldberg, 2014). Additionally, the proposed token embeddings SATokE are

compared to an alternative token embeddings method proposed in the literature (ELMo), which

has been shown to provide improvements across multiple tasks (Peters et al., 2018). However,

it is important to note that ELMo was trained on a large amount of data with a language mod-

elling objective and additional character-level information. Also the resulting ELMo vectors

are 1024-dimensional, as opposed to SATokE’s 300-dimensional vectors. Results are provided

using a fine-tuned version of ELMo in which embeddings are allowed to adapt during the end

3.4. Evaluation and results 77

task learning as well as a version in which the embeddings are fixed.

While more complex models can be employed for each individual task, the current work is

exploratory and aims to assess the importance of using token embeddings compared to standard

pre-trained word embeddings as well as the added value of using syntax on the different tasks.

Furthermore, the architectures considered (recurrent and convolutional neural networks) are the

building blocks of most methods employed in recent literature for tackling text understanding

tasks, making them reasonable candidates to test the proposed token embeddings on.

3.4.1 Data appropriateness

Before deep diving into the evaluation of the datasets that provide a consensus in the literature

for natural language understanding tasks assessment (Conneau et al., 2017; Conneau and Kiela,

2018; Zhou et al., 2016; Ding et al., 2018), it is important to note some characteristics that might

make these datasets more or less appropriate for evaluation in the current setup.

Table 3.1 presents some data statistics of the considered datasets: average sentence length and

percentage of sentences in the dataset for which a subject and/or an object relationship has not

been detected by the parser. Based on the sentence length alone, these datasets can be split into

two categories: datasets containing short sentences with an average sentence length of around

10 words (TREC, SICK and SNLI-20k) and datasets having longer sentences with an average

sentence length around 20 words (MR, CR, SUBJ, SST-2 and MSRPC). In general one would

expect the shorter sentences to be “easier” to parse and thus “appropriate” for evaluation in a

setting that strongly relies on the availability and accuracy of parsed data. More precisely, by

minimising the propagation of errors from the parsing stage into the token embeddings creation

step, one could obtain more accurate SATokE representations.

Another important observation from Table 3.1 is that most datasets contain a high percentage of

sentences in which dependency relations such as SUBJ or OBJ are not detected or do not exist.

One such example from the MR dataset is presented in Table 3.3: the sentence considered lacks

78 Chapter 3. Unsupervised syntax-aware contextualized word representations

MR CR SUBJ TREC SST-2 MSRPC SICK SNLI-20k

average sentence length 22.34 20.61 25.17 10.10 19.89 22.24 9.71 11.84

%sent without SUBJ rel 21.00% 8.00% 10.00% 12.00% 21.00% 2.00% 6.00% 24.00%

%sent without OBJ rel 11.00% 15.00% 4.00% 25.00% 14.00% 3.00% 7.00% 10.00%

Table 3.1: Data characteristics. Bold underlined are the “appropriate” datasets
.

both a main verb and a SUBJ relation. Being part of a SUBJ and/or an OBJ relation provides

important information about the role of a word in a sentence which can further influence the

representations of the rest of the graph. Therefore having many sentences in a dataset for

which such information is lacking or fails to be detected, can affect the performance of the

representations obtained on the basis of the parse tree. Out of all the datasets considered, the

one that has the lowest percentage of such sentences without a SUBJ or OBJ relation is MSRPC.

This might indicate the “appropriateness” of using the MSRPC dataset for evaluation in the

current setup despite its high average sentence length.

According to the above discussion, one could thus split the datasets according to whether they

are adapted to syntactic analysis, in which case we refer to them as “appropriate” datasets,

or not, in which case we refer to them as “inappropriate” datasets. The “appropriateness”

of a dataset is therefore judged based on whether the sentences contained within it are well-

formed and enable leveraging syntactic information or not, based on the criteria in Table 3.1.

Having such a distinction should help assess the quality of the proposed representations while

minimising the chances of propagating parsing errors. Therefore we further consider datasets

TREC, MSRPC, SICK and SNLI-20k to fall under the “appropriate” datasets category and the

remaining MR, CR, SUBJ and SST-2 to constitute “inappropriate” datasets.

3.4.2 Sentence understanding

The SATokE proposed token embeddings are evaluated in the following widely considered sen-

tence understanding scenarios: sentiment analysis on movie reviews (MR, SST-2) and product

3.4. Evaluation and results 79

reviews (CR), text subjectivity/objectivity classification (SUBJ) and multi-class classification

on question types (TREC). In the following the data used for the experiments is presented along

with the specific implementation details pertaining to the used datasets, and the obtained results.

It is important to note that out of the 5 datasets considered for assessing sentence understand-

ing, only the TREC dataset seems to be “appropriate” for evaluation based on the analysis in

Section 3.4.1.

Data

The MR dataset (Pang and Lee, 2005) is a movie reviews dataset with one sentence per review.

The goal is to classify the reviews into two classes depending on the sentiment they express. The

dataset is balanced with 50% of the reviews bearing positive sentiment and 50% negative. SST-

2 (Stanford Sentiment Treebank-2) (Socher et al., 2013b) is an extension of the MR dataset,

with train / dev / test splits provided and having class distribution of 48% (negative) / 52%

(positive). The CR dataset (Hu and Liu, 2004) contains customer reviews of various products

(cameras, MP3s etc.) in which the goal is to determine the polarity of the reviews: 63% of the

reviews in the dataset are positive and 36% negative.

SUBJ (Pang and Lee, 2004) is a balanced dataset containing subjective and objective sentences

where the goal is to classify each sentence in one of the two classes. For the subjective sen-

tences, 5000 movie review snippets (e.g., “bold, imaginative, and impossible to resist”) were

collected, while the objective data was collected from plot summaries. TREC (Li and Roth,

2002) is a question dataset that involves classifying a question into one of 6 question types, de-

noting whether it refers to a location, a person, a description, a numeric value, an abbreviation

or an entity. The data is almost evenly distributed among the 6 classes: only the abbreviation

class is underrepresented (0.01% of the data) and each of the rest of the classes is covered by

approximately 20% of the cases. While for SST-2 and TREC the provided train/test splits are

respected, for MR, CR and SUBJ, the reported results are based on 3-fold cross-validation.

A summary of the data statistics is presented in Table 3.2 and some sentence examples along

80 Chapter 3. Unsupervised syntax-aware contextualized word representations

Corpus Nb instances Task Nb classes Split train/dev/test
MR 10.6k sentiment classification (movie reviews) 2 3-fold CV
CR 3.7k sentiment classification (product reviews) 2 3-fold CV
SUBJ 10.0k subjectivity / objectivity classification 2 3-fold CV
TREC 5.9k question type classification 6 4336 / 1116 / 500
SST-2 9.5k sentiment classification (movie reviews) 2 6895 / 870 / 1819

Table 3.2: Data statistics for the sentence understanding datasets considered

Corpus Example Class
MR “one from the heart.” positive
CR “the little bag it comes with is cheap and useless.” negative
SUBJ “bruce is a down on his luck tv news reporter.” objective
TREC “what is the most popular sport in japan?” entity
SST-2 “a vivid cinematic portrait.” positive

Table 3.3: Examples of sentences for the sentence understanding tasks considered

with their corresponding classes are presented in Table 3.3.

Implementation details

The hyper-parameters that were used to obtain the reported results on the end tasks are pre-

sented in Table 3.4. For each dataset, details are provided regarding the parameters involved

in the computation of the token embeddings fed as input to each task as well as those required

for the presented end task architectures. All parameters have been tuned on the corresponding

development sets. The rest of the settings not covered in Table 3.4 (such as the value of the mar-

gin parameter γ, the batch size and the pre-processing steps for token embeddings computation)

follow the general description in Section 3.3.2.

Figures 3.8 - 3.12 present the distribution of syntactic relations for the considered datasets: as

explained in Section 3.3.2, only relations that have frequency higher than the threshold thD

are considered. All relations with frequency lower than thD are merged into a single relation

denoted “unknown relation” also showed in the plots. After merging the low frequency rela-

tions into the “unknown relation” generic tag, the resulting relation still has a low frequency

in the case of the MR, SUBJ and SST-2 datasets and an important frequency in the case of the

3.4. Evaluation and results 81

Corpus
Token embeddings

computation LSTM runs CNN runs

αLR rneg αLR dp nbh αLR dp nbf fsz
MR 10−5 1 10−5 0.7 512 10−4 0.7 256 3,4,5
CR 10−4 5 10−5 0.7 150 10−4 0.8 256 3,4,5
SUBJ 10−5 1 10−5 0.7 512 10−4 0.7 256 3,4,5
TREC 10−4 10 10−5 0.7 512 10−4 0.8 256 3,4,5
SST 10−4 5 10−5 0.7 512 10−4 0.7 128 3,4,5

Table 3.4: Best run parameters for each task: αLR the initial learning rate, rneg the ratio of
negative sampling, dp the dropout keep probability, nbh the number of hidden states, nbf the
number of filters and fsz the filter sizes.

remaining two datasets CR and TREC. This indicates the number of low frequency relations is

higher in the case of these two datasets. It further means that by merging them, one may lower

the data sparsity at the cost of mixing potentially incompatible information.

The frequencies of the relations differ depending on the dataset, determining different levels of

sparsity in the tensors. In general, it can be noticed that punctuation relations are significantly

more frequent than the rest of the relations in 4 out of 5 datasets (except TREC). Additionally,

by looking at the distributions one can notice a higher gap between different relation frequencies

in the case of all datasets, except the “appropriate” one (TREC) for which the distribution of

the relations seems to be more or less uniform. Having high variations in relation frequencies

can affect the learning since it determines the amount of sampling done for each relation. This

not only favours a better learning of relations that are more frequent, but also biases the learning

of the least frequent ones: they have the same probability of being picked to constitute a part

of a negative example as any other relation, yet they are more rarely sampled as part of positive

points due to their low frequency. From this point of view one might expect the performance on

the TREC dataset to be higher than on the other datasets.

Overall the most frequent relations seem to be: det (determiner), pobj (object of preposition),

prep (prepositional modifier) and amod (adjectival modifier), with nsubj (nominal subject) fol-

lowing closely. Despite the high proportion of sentences without a subject relation observed in

Section 3.4.1 for some of these datasets, the high frequency of the nsubj dependency relation

82 Chapter 3. Unsupervised syntax-aware contextualized word representations

cc pr
t

co
nj

po
ss

ne
g

m
ar

k
au

xp
as

s
ad

vc
l

au
x

am
od

ro
ot

pr
ep

xc
om

p
do

bj
ns

ub
j

ad
vm

od
pu

nc
t

ac
om

p
co

m
po

un
d

pc
om

p
cc

om
p

re
lc

l
np

ad
vm

od
ca

se at
tr

ap
po

s
de

t
ac

l
po

bj
un

kn
ow

n
re

l

0

0.5

1

1.5

2

2.5

3

·104

N
um

be
ro

fo
cc

ur
re

nc
es

in
th

e
da

ta
se

t

Figure 3.8: Distribution of the considered syntactic relations in the MR dataset.

cc

co
nj

ad
vc

l
au

x

am
od

ro
ot

pr
ep

xc
om

p

do
bj

ns
ub

j

ad
vm

od
pu

nc
t

ac
om

p

co
m

po
un

d
cc

om
p

de
t

po
bj

m
ar

k

un
kn

ow
n

re
l

0

0.2

0.4

0.6

0.8

1

1.2
·104

N
um

be
ro

fo
cc

ur
re

nc
es

in
th

e
da

ta
se

t

Figure 3.9: Distribution of the considered syntactic relations in the CR dataset.

3.4. Evaluation and results 83

cc pr
t

ns
ub

jp
as

s
co

nj
po

ss
ne

g
m

ar
k

au
xp

as
s

ad
vc

l
au

x
am

od
ro

ot
pr

ep
xc

om
p

do
bj

ns
ub

j
nu

m
m

od
ad

vm
od

pu
nc

t
ac

om
p

co
m

po
un

d
pc

om
p

cc
om

p
re

lc
l

np
ad

vm
od

ca
se at
tr

ap
po

s
de

t
ac

l
po

bj
un

kn
ow

n
re

l

0

0.5

1

1.5

2

2.5

3

·104

N
um

be
ro

fo
cc

ur
re

nc
es

in
th

e
da

ta
se

t

Figure 3.10: Distribution of the considered syntactic relations in the SUBJ dataset.

au
x

am
od

ro
ot

pr
ep

do
bj

ns
ub

j

ad
vm

od

pu
nc

t

co
m

po
un

d

at
tr

de
t

po
bj

un
kn

ow
n

re
l

0

2,000

4,000

6,000

8,000

N
um

be
ro

fo
cc

ur
re

nc
es

in
th

e
da

ta
se

t

Figure 3.11: Distribution of the considered syntactic relations in the TREC dataset.

84 Chapter 3. Unsupervised syntax-aware contextualized word representations

cc pr
t

co
nj

po
ss

ne
g

m
ar

k
au

xp
as

s
ad

vc
l

au
x

am
od

ro
ot

pr
ep

xc
om

p
do

bj
ns

ub
j

ad
vm

od
pu

nc
t

ac
om

p
co

m
po

un
d

pc
om

p
cc

om
p

re
lc

l
np

ad
vm

od
ca

se at
tr

ap
po

s
de

t
ac

l
po

bj
un

kn
ow

n
re

l

0

0.5

1

1.5

2

2.5

3
·104

N
um

be
ro

fo
cc

ur
re

nc
es

in
th

e
da

ta
se

t

Figure 3.12: Distribution of the considered syntactic relations in the SST-2 dataset.

can be explained by the presence of multiple nsubj relations within the same sentence. More

statistics related to the average number of subject relations detected per sentence, the propor-

tion of sentences with more than 1 subject relation detected and the average dependency link

distance are all presented in Table 3.5. The dataset with the lowest average of subject relations

per sentence as well as the lowest percentage of sentences with more than 1 subject relationship

and the lowest average dependency link distance is the TREC dataset. For all the others, more

than half of the sentences containing a subject relationship actually have more than one such

relationship detected, indicating complex compound structures.

Comparison to word type embeddings

Table 3.6 presents results of evaluating the SATokE proposed token embeddings on the sentence

understanding tasks described previously. These are presented in comparison to results obtained

when using pre-trained word type embeddings as input features for the same tasks. One can

observe a consistent improvement in the performance of token embeddings over pre-trained

3.4. Evaluation and results 85

MR CR SUBJ TREC SST-2

avg subj / sent 1.61 1.99 1.83 1.11 1.46

% sent / ds w/ > 1 subj rel 48.56% 57.35% 56.60% 18.93% 43.49%

% sent / ds subj w/ > 1 subj rel 61.04% 62.31% 62,88% 21.31% 54.87%

avg link distance 3.23 3.28 3.27 2.51 3.1

Table 3.5: Elements of data complexity (from top to bottom): average number of subject rela-
tionships per sentence, percentage of sentences out of the whole dataset that have more than 1
subject relationship, percentage of sentences that have more than 1 subject relationship out of
the sentences that have at least 1 subject relationship, average dependency link distance.

word type embeddings across all “inappropriate” datasets when using a CNN architecture and

over the “appropriate” dataset when using both architectures. This result is invariant to the

type of contexts used for pre-training the word type embeddings: token based representations

outperform both word type embeddings trained on linear contexts (Pennington et al., 2014) as

well as those trained on dependency contexts (Levy and Goldberg, 2014). Overall, the observed

improvements confirm the importance of having a token-based representation.

In terms of architecture, CNN is preferred for almost all datasets when using the proposed token

embeddings, while the opposite holds with word type embeddings: the preferred architecture

for word type embeddings is the LSTM. This may be explained by the fact that the token embed-

dings already encode positional information by their construction using adjacency information,

and thus they complement less the advantages of using an LSTM encoder.

Most improvements obtained by fine-tuning GloVe embeddings can be observed when using an

LSTM architecture (datasets MR, SUBJ, SST, TREC) and only some hold for a CNN architec-

ture as well (datasets MR and TREC). However, it is only in the case of the MR dataset that fine-

tuning GloVe embeddings enables surpassing the score obtained using fixed SATokE embed-

dings. Overall no such tendency can be observed in the case of fine-tuning SATokE embeddings:

since anyway the SATokE representations depend on the fine-tuned GloVe representations, this

result is not surprising given the limited/no improvements brought about by the fine-tuning of

the GloVe representations. Nevertheless, in general, SATokE surpasses GloVe embeddings on

86 Chapter 3. Unsupervised syntax-aware contextualized word representations

Architecture / Embeddings
Datasets

“Inappropriate” “Appropriate”
MR CR SUBJ SST-2 TREC

LSTM

Standard pre-trained Word Type embeddings

GloVe 300d (Pennington et al., 2014) 75.86 76.79 92.06 80.42 80.60
GloVe 300d (Pennington et al., 2014) (fine-tuned) 77.24 73.23 92.78 81.80 82.40
GloVe 300d + pos encod 73.27 74.42 90.80 79.60 81.20
GloVe 300d + self-attention 75.44 77.37 90.92 79.49 70.40
Dep-based WE 300d (Levy and Goldberg, 2014) 67.81 69.27 87.07 72.20 68.40
Dep-based WE 300d + pos encod 50.30 63.78 69.96 50.63 68.00
Dep-based WE 300d + self-attention 54.88 68.90 86.95 73.17 68.00

Current proposal Token embeddings

SATokE 300d 74.39 73.00 91.19 79.60 84.40
SATokE 300d (fine-tuned) 72.13 66.91 89.99 76.58 54.20

CNN

Standard pre-trained Word Type embeddings

GloVe 300d (Pennington et al., 2014) 74.92 76.65 91.07 80.15 78.80
GloVe 300d (Pennington et al., 2014) (fine-tuned) 75.31 76.20 91.08 80.15 79.00
GloVe 300d + pos encod 72.53 74.34 90.79 78.33 82.40
GloVe 300d + self-attention 74.61 77.74 89.35 79.98 75.40
Dep-based WE 300d (Levy and Goldberg, 2014) 61.01 63.83 83.08 65.36 66.40
Dep-based WE 300d + pos encod 53.68 62.87 78.55 54.70 68.60
Dep-based WE 300d + self-attention 51.68 64.17 80.89 52.88 68.40

Current proposal Token embeddings

SATokE 300d 76.72 78.81 91.73 82.13 92.60
SATokE 300d (fine-tuned) 72.05 71.13 89.85 76.41 75.20

Table 3.6: Sentence classification results in terms of accuracy (%). Comparison of the results
obtained using the proposed syntactically-aware token embeddings (SATokE 300d) to results
obtained using standard pre-trained word type embeddings: GloVe (Pennington et al., 2014)
and Dep-based WE (Levy and Goldberg, 2014), including results using positional encodings
and self-attention. All embeddings are fixed unless mentioned otherwise. Best results for
each architecture (LSTM, CNN) are in bold. Best overall results across architectures are in
bold underlined.

3.4. Evaluation and results 87

the “appropriate” dataset and in all but two cases of the “inappropriate” data: when fine-

tuning of GloVe embeddings is allowed, this yields slightly higher results than SATokE on the

MR and SUBJ datasets.

As outlined in Table 3.6, the impact of using positional encodings and self-attention on top of

word type embeddings is limited. Fixed positional encodings on top of word embeddings do

not always help: one can only observe improvements on the TREC dataset when using GloVe

embeddings with both LSTM and CNN architectures and a slight improvement when using

dependency-based word embeddings as input to the CNN architecture. Nevertheless, these

improvements are still not sufficient to exceed the accuracy provided by the proposed SATokE

token representations.

For sentence classification, results using self-attention are mostly similar to those without at-

tention, except for a few cases when self-attention helps: CR dataset when using GloVe em-

beddings with both architectures and dependency-based embeddings with CNN, SST-2 dataset

with dependency-based word embeddings as input to LSTM and TREC dataset with a CNN

architecture when using dependency-based embeddings. However, the obtained scores are still

lower than those using the LSTM architecture on top of the same embeddings or any of the

architectures with token embeddings.

Comparison to other token embeddings

As by construction token embeddings already encode information about the position and role

in the sentence of the token, positional encodings and self-attention do not a priori bring an

additional value on top of token embeddings. Therefore, since their improvements over type

embeddings were limited, Table 3.7 focuses on comparing different token embeddings without

positional encodings and self-attention: fixed ELMo (Peters et al., 2018), its fine-tuned version

and the proposed SATokE embeddings. ELMo denotes a setting in which the layers of their deep

bidirectional language model are all weighted equally (see Section 3.1) and the embeddings are

fixed for the end task learning. ELMo (fine-tuned) stands for the original model in Peters et al.

88 Chapter 3. Unsupervised syntax-aware contextualized word representations

Architecture / Token Embeddings
Datasets

“Inappropriate” “Appropriate”
MR CR SUBJ SST-2 TREC

LSTM

ELMo 1024d (Peters et al., 2018) (fine-tuned) 79.24 81.54 94.27 84.33 94.00
ELMo 1024d (Peters et al., 2018) 79.43 82.36 93.77 84.38 92.00
SATokE 300d 74.39 73.00 91.19 79.60 84.40

CNN

ELMo 1024d (Peters et al., 2018) (fine-tuned) 78.38 82.10 93.14 83.01 93.40
ELMo 1024d (Peters et al., 2018) 78.03 82.60 93.27 84.00 92.60
SATokE 300d 76.72 78.81 91.73 82.13 92.60

Table 3.7: Comparison of the results obtained using the proposed syntactically-aware token
embeddings (SATokE 300d) to results obtained using existing token embeddings on sentence
classification tasks: ELMo 1024d (Peters et al., 2018). All embeddings are fixed unless men-
tioned otherwise. Best results for each architecture (LSTM, CNN) are in bold. Best overall
results across architectures are in bold underlined.

(2018) that has been shown to provide useful representations for a variety of tasks and that

allows fine-tuning of the weights of each layer along with end task learning.

The best results are obtained using ELMo (fixed) in three out of four cases (MR, CR and SST-

2) of the “inappropriate” datasets and using ELMo (fine-tuned) for the remaining two datasets

(SUBJ and TREC). From an architecture point of view, CNN seems to provide the best results

only for the CR dataset (at a low margin) when using the ELMo embeddings, while all the other

best results are obtained with an LSTM architecture on top of these embeddings. The fact that

the ELMo model is implemented using a bidirectional LSTM may explain the compatibility of

its output representations to an LSTM architecture rather than to a CNN one.

Obtaining better results with the ELMo embeddings than with SATokE might constitute a reflec-

tion of the nature of the datasets: MR, CR, SUBJ and SST-2 are all datasets of reviews in which

the sentences have a varied vocabulary and not always a well-formed syntactic structure. This

last aspect is important when dealing with methods that construct embeddings relying on accu-

rate parsing (like in the case of SATokE). Thus, from a structural point of view, these datasets

3.4. Evaluation and results 89

can be more challenging: for example some sentences lack the SUBJ dependency and/or a main

verb, as it can be seen from some of the examples in Table 3.3 and from the analysis in Section

3.4.1. Given the proposed SATokE token embeddings depend on a proper sentence structure, it

is expected to observe a lower performance on such examples.

In addition to this, having a rich vocabulary favours methods trained on large amounts of data.

Therefore, obtaining better scores using token embeddings trained with a language modelling

objective is not a surprising result on these datasets. In particular in the case of reviews, the

vocabulary employed can be often diverse and spelling errors can be present. To this end, the

fact that ELMo leverages character-level embeddings can be useful to encode words that are rare

or otherwise unknown. In contrast to that, SATokE does not leverage any a priori representation

for unknown words 9. Instead these words are replaced by a tag related to their part of speech

and their representations are learned during the token embeddings computation. That is, the

token embeddings are constrained to be close to a representation that is being constructed in the

same process. If the proportion of unknown words in the dataset is high and, furthermore, if the

dataset is small, performance can be affected in this process.

To validate this claim we can further look at the differences in performance between the results

obtained using ELMo and the results obtained with the proposed token embeddings on the

considered datasets. A parallel between these differences and the percentages of unknown

words out of the vocabulary of each dataset is drawn in Table 3.8. One can observe a positive

correlation between the two: the performance gap increases as the percentage of unknown

words increases. While this does not necessarily imply some causality, it suggests a better

handling of unknown words when constructing SATokE embeddings or even a concatenation

to embeddings derived from character-level information (like in the case of ELMo) might yield

improvements on the scores. We can observe that in the case of the “appropriate” dataset

(TREC), the difference in performance between the SATokE proposed embeddings and ELMo

is the lowest of all datasets. This may be because TREC contains only questions which are well-

9Unknown words are considered to be those that do not have a GloVe embedding or occur with a frequency
lower than a threshold in the dataset, as explained in Section 3.3.2

90 Chapter 3. Unsupervised syntax-aware contextualized word representations

Corpus Performance ∆ % unknown words
TREC 1.40 3.04
SST-2 2.25 7.92
SUBJ 2.54 15.79
MR 2.71 15.49
CR 3.79 16.49

Table 3.8: Difference in performance between our token embeddings and ELMo (in absolute
value of accuracy) and percentage of unknown words out of the vocabulary of each dataset.

formed sentences but also contains the lowest amount of unknown words. Based on a previous

analysis, TREC is also the dataset that contains a rather uniform distribution of relations which

may contribute to an efficient learning of the token embeddings for this dataset.

It is also worth noting that the SATokE token embeddings have been constructed by giving

an equal weight to the semantic aspect (by constraining the embeddings to be close to GloVe)

and the syntactic aspect (by forcing the embeddings to reconstruct the sentence parse tree).

Therefore, it would be interesting to investigate whether embeddings constructed with less em-

phasis on the structure and more emphasis on the semantic aspect would perform better on these

datasets. Also, an alternative approach would be to train relations embeddings on large datasets

of reviews before using them to infer the token embeddings for the considered datasets. Addi-

tionally it is worth noting that the embeddings used in the ELMo settings have dimension 1024,

which is 3 times the dimensionality of the proposed SATokE token embeddings.

3.4.3 Paraphrase detection

One task involving sentence pair understanding, which the proposed token representations can

be evaluated on, is that of paraphrase detection. A paraphrase is defined as the restatement

of a text such that its meaning is preserved. As it can be of use for several natural language

processing tasks such as summarization, machine translation, plagiarism detection or question-

answering, the task has received a lot of attention in the literature. Some work focuses on the

input features to the task (Milajevs et al., 2014; Cheng and Kartsaklis, 2015; Issa et al., 2018),

3.4. Evaluation and results 91

while others explore architectures that can obtain competitive results (Socher et al., 2011a; He

et al., 2015). The current work is part of the first category since the goal is to investigate the use

of token representations for the task, as opposed to standard word type representations. Related

work in the first category compares the use of different word type embeddings and composition

methods applicable to the task (Milajevs et al., 2014), evaluates the use of abstract meaning

representation parsing (Issa et al., 2018) or that of multi-sense word embeddings (Cheng and

Kartsaklis, 2015). However, none of these investigates employing token embeddings for the

task.

Data

The dataset used for the evalutation of the proposed SATokE token embeddings on paraphrase

detection is the Microsoft Research Paraphrase Corpus (MSRPC) (Dolan and Brockett, 2005).

It is a collection of 5801 sentence pairs extracted from news sources on the web and human-

annotated for paraphrase / semantic equivalence, 65% of which are paraphrase pairs. The train

(4076) / test (1725) split is provided. Some examples of sentences from MSRPC along with

their corresponding classes are presented in Table 3.9.

According to the analysis in Section 3.4.1, MSRPC has the characteristics of a dataset that

is “appropriate” for evaluation in the current setting, as almost all of its sentences are well-

formed, having at least one subject and one object dependency relation. However, MSRPC is

one of the datasets with the highest average sentence length out of all analyzed datasets.

Implementation details

The parameters used to obtain the reported results for the task of paraphrase detection are pre-

sented in Table 3.10. Information is included regarding the parameters involved in the com-

putation of the token embeddings as well as those used in the end task model for paraphrase

prediction. The parameters not included in Table 3.10 follow the description and values reported

92 Chapter 3. Unsupervised syntax-aware contextualized word representations

Example Class
S1: “His mother contacted the federal public defender’s office in Sacramento, which
has agreed to handle his surrender, she says.”;
S2: “His family approached the federal defender’s office in Sacramento about
arranging his surrender.”

paraphrase

S1: “July 1st is the sixth anniversary of hong kong ’s return to chinese rule.”;
S2: “The rally overshadowed ceremonies marking the sixth anniversary of hong kong’s
return to china on 1 july 1997.”

not paraphrase

S1: “It added that unless the problems are fixed, ’the scene is set for another accident.’ ”;
S2: “Without reform, ’the scene is set for another accident’, the report warned.”

paraphrase

Table 3.9: Examples of sentences from the MSRPC dataset.

Corpus
Token embeddings

computation LSTM runs CNN runs

αLR rneg αLR dp nbh αLR dp nbf fsz
MSRPC 10−4 1 10−5 0.7 150 10−4 0.7 128 3,4,5

Table 3.10: Best run parameters for the task of paraphrase detection: αLR the initial learning
rate, rneg the ratio of negative sampling, dp the dropout keep probability, nbh the number of
hidden states, nbf the number of filters and fsz the filter sizes.

in Section 3.3.2.

Figure 3.13 presents the distribution of syntactic relations in the MSRPC corpus. As it was

the case for many datasets analysed in Section 3.4.2, there is a high variation between the

frequencies of different relations, potentially making the learning more challenging. The most

frequent relations in the case of MSRPC are: punct (punctuation), prep (prepositional modifier),

pobj (object of preposition), compound and det (determiner).

MSRPC

avg subj / sent 1.83

% sent / ds w/ > 1 subj rel 58.68%

% sent / ds subj w/ > 1 subj rel 59.79%

avg link distance 3.2

Table 3.11: Elements of data complexity (from top to bottom): average number of subject
relationships per sentence, percentage of sentences out of the whole dataset that have more than
1 subject relationship, percentage of sentences that have more than 1 subject relationship out of
the sentences that have at least 1 subject relationship, average dependency link distance.

3.4. Evaluation and results 93

cc
co

nj ac
l

po
ss

ne
g

m
ar

k
au

xp
as

s
ad

vc
l

au
x

am
od

ro
ot

pr
ep

ca
se

do
bj

ns
ub

j
nu

m
m

od
ad

vm
od

pu
nc

t
qu

an
tm

od
ac

om
p

co
m

po
un

d
pc

om
p

cc
om

p
re

lc
l

np
ad

vm
od

xc
om

p
at

tr
ap

po
s

de
t

nm
od

po
bj

ns
ub

jp
as

s
un

kn
ow

n
re

l

0

1

2

3

4

·104
N

um
be

ro
fo

cc
ur

re
nc

es
in

th
e

da
ta

se
t

Figure 3.13: Distribution of the considered syntactic relations in the MSRPC dataset.

The high frequency of the nsubj (nominal subject) dependency relation is explained by the pres-

ence of a high number of sentences for which more than 1 subject relation was detected. Table

3.11 shows that almost 60% of the sentences that have a subject relation detected, actually have

more than one such relation, which indicates the presence of complex structures. Addition-

ally the average dependency link distance of 3.2 is among the highest of the analyzed datasets.

Therefore, although “appropriate” for analysis in the current setup, the MSRPC dataset repre-

sents a challenging dataset due to its characteristics.

Comparison to word type embeddings

Table 3.12 presents the results of using word type embeddings as input to the task of para-

phrase detection in comparison to using the proposed token embeddings. One can observe an

improvement in the performance of token embeddings over both GloVe and dependency-based

pre-trained word type embeddings regardless of the chosen architecture. The best overall results

are however obtained using the proposed SATokE token embeddings fed as input to the CNN

94 Chapter 3. Unsupervised syntax-aware contextualized word representations

architecture. Fine-tuning GloVe embeddings does not yield improved results over SATokE in

either of the two architectures.

In contrast to the sentence understanding tasks results in Section 3.4.2, the dependency-based

word type embeddings provide scores almost as high as the GloVe embeddings. This could be

due to the fact that sentences in MSRPC provide rich syntactic structures as compared to the

sentences considered in the sentence understanding tasks. Thus dependency information may

be leveraged more for such examples than for sentences that lack such properties. The MSRPC

corpus also contains the lowest percentage of sentences without a SUBJ or OBJ relation (out of

the analyzed corpora) as outlined in Section 3.4.1.

Positional encodings provide a marginal improvement (0.95%) when using the GloVe embed-

dings and have the opposite effect when using dependency-based word embeddings. Self-

attention yields slightly better scores on top of GloVe embeddings when using an LSTM archi-

tecture with an increase of 1.6% in performance. For the dependency-based word embeddings

self-attention does not provide improvements. However, no scores computed using positional

encodings or self-attention on top of pre-trained word type embeddings outperform the proposed

token embeddings. This result confirms the benefits of using contextualized representations for

the task considered.

Comparison to token embeddings methods

Table 3.13 compares results obtained using the proposed SATokE token embeddings to those

obtained using the ELMo token embeddings from Peters et al. (2018). The two settings ELMo

(fine-tuned) and ELMo correspond to two settings: the original setting in which a weighting

of the layers of the deep bidirectional language model is learned along with the end task (as

described in Section 3.1) and a version in which the layers are weighted equally and the embed-

dings constitute a fixed input to the task.

One can observe that the proposed SATokE token embeddings outperform both versions of

3.4. Evaluation and results 95

Architecture / Embeddings
“Appropriate” datasets

MSRPC

LSTM

Standard pre-trained Word Type embeddings

GloVe 300d (Pennington et al., 2014) 68.63
GloVe 300d (Pennington et al., 2014) (fine-tuned) 68.28
GloVe 300d + pos encod 69.50
GloVe 300d + self-attention 68.17
Dep-based WE 300d (Levy and Goldberg, 2014) 67.88
Dep-based WE 300d + pos encod 66.66
Dep-based WE 300d + self-attention 67.47

Current proposal Token embeddings

SATokE 300d 69.27
SATokE 300d (fine-tuned) 69.15

CNN

Standard pre-trained Word Type embeddings

GloVe 300d (Pennington et al., 2014) 66.89
GloVe 300d (Pennington et al., 2014) (fine-tuned) 65.25
GloVe 300d + pos encod 67.18
GloVe 300d + self-attention 68.52
Dep-based WE 300d (Levy and Goldberg, 2014) 66.26
Dep-based WE 300d + pos encod 65.85
Dep-based WE 300d + self-attention 67.65

Current proposal Token embeddings

SATokE 300d 70.32
SATokE 300d (fine-tuned) 69.44

Table 3.12: Sentence pair classification results on the task of paraphrase detection in terms
of accuracy (%). Comparison of the results obtained using the proposed syntactically-aware
token embeddings (SATokE 300d) to results obtained using standard pre-trained word type
embeddings: GloVe (Pennington et al., 2014) and Dep-based WE (Levy and Goldberg, 2014),
including results using positional encodings and self-attention. Best results for each architecture
(LSTM, CNN) are in bold. Best overall results across architectures are in bold underlined

.

96 Chapter 3. Unsupervised syntax-aware contextualized word representations

Architecture / Token Embeddings
“Appropriate” datasets

MSRPC

LSTM

ELMo 1024d (Peters et al., 2018) (fine-tuned) 69.10
ELMo 1024d (Peters et al., 2018) 68.50
SATokE 300d 69.27

CNN

ELMo 1024d (Peters et al., 2018) (fine-tuned) 66.20
ELMo 1024d (Peters et al., 2018) 66.84
SATokE 300d 70.32

Table 3.13: Comparison of the results obtained using the proposed syntactically-aware token
embeddings (SATokE 300d) to results obtained using existing token embeddings on the task
of paraphrase detection: ELMo 1024d (Peters et al., 2018). All embeddings are fixed unless
mentioned otherwise. Best results for each architecture (LSTM, CNN) are in bold. Best overall
results across architectures are in bold underlined.

ELMo, despite the fact that they use less parameters: 300-dimensional representations for the

proposed token embeddings vs 1024-dimensional representations for ELMo. It is also impor-

tant to note that ELMo was trained on large amounts of data, while the proposed SATokE token

embeddings are computed only on the basis of the corpus at hand (leveraging however infor-

mation from pre-trained word type embeddings). The second best results are, not surprisingly,

obtained by the version of ELMo that allows fine-tuning of the embeddings on the end task

(when provided as input to an LSTM). In terms of architecture, as previously, the best results

obtained by SATokE are when using a CNN, while the best ELMo results are obtained with

LSTM.

Similarly to some of the previously considered datasets for sentence understanding in Section

3.4.2, the MSRPC dataset contains challenging and complex examples, having among the high-

est average sentence length and average dependency link distance out of all datasets. However,

with dependency relations such as SUBJ, OBJ and MOD being present in most of the exam-

ples, the proposed SATokE token embeddings efficiently learn encodings of the parse trees of

the sentences, leveraging the syntactic structure. This thus outlines the benefit of using the

3.4. Evaluation and results 97

syntactically-informed token embeddings on such sentences.

3.4.4 Textual entailment recognition

Another task widely studied in the literature that pertains to sentence pair understanding and

that has applicability in many fields is that of textual entailment recognition (Dagan et al., 2006;

Mirkin et al., 2009; Rocktäschel et al., 2016; Chen et al., 2017; Peters et al., 2018). This is

based on the idea that the same meaning can be expressed by, or inferred from, different text

fragments and thus having an accurate model for textual entailment could benefit many natural

language application such as question-answering, machine translation or summarization.

Textual entailment is defined as the directional relationship that holds between two text frag-

ments T and H, called the entailing Text and the entailed Hypothesis respectively, if by reading

T a human would infer that H is most likely true (Dagan et al., 2006). This definition assumes

both common human understanding and background knowledge, which underlines the chal-

lenges arisen by this task. Much work has focused on textual entailment recognition throughout

time with only limited literature particularly investigating the use of different word representa-

tions as input to the task (Lan and Jiang, 2018; Peters et al., 2018). The current proposal falls

in this category of work by investigating the contribution of the proposed syntactically-aware

token representations to detecting textual entailment relations.

Data

To evaluate the proposed token embeddings on the task of textual entailment recognition, two

standard datasets often evaluated in literature are used: SICK (Sentences Involving Composi-

tional Knowledge) (Bentivogli et al., 2016) and SNLI (Stanford Natural Language Inference)

(Bowman et al., 2015). Table 3.14 presents examples of sentence pairs from both datasets along

with their corresponding labels.

98 Chapter 3. Unsupervised syntax-aware contextualized word representations

Examples - Corpus Class
SICK

T: “An old woman is shaking hands with a man.”;
H: “Two persons are shaking hands.”

entailment

T: “A baby is licking a dog.”;
H: “A dog is licking a baby.”

neutral

T: “A squirrel is lying down.”;
H: “A squirrel is running around in circles.”

contradiction

SNLI
T: “A man looking over a bicycle’s rear wheel in the maintenance garage
with various tools visible in the background.” ;
H: “A person is in a garage.”

entailment

T: “A couple walk hand in hand down a street.” ;
H: “The couple is married.”

neutral

T: “A person dressed in a dress with flowers and a stuffed bee attached to it,
is pushing a baby stroller down the street.” ;
H: “A lady sitting on a bench in the park.”

contradiction

Table 3.14: Examples of sentence pairs used for the evaluation of textual entailment recognition.

SICK (Sentences Involving Compositional Knowledge) (Bentivogli et al., 2016) is a corpus of

10k sentence pairs, drawn from image and video descriptions and split into: entailment, neutral

and contradiction, with a train/dev/test split provided.

SNLI (Stanford Natural Language Inference) (Bowman et al., 2015) represents a benchmark

for the evaluation of systems on the task of textual entailment. It consists of 570k human-

written English sentence pairs labelled as entailment, contradiction or neutral and divided into

pre-defined train, development and test sets. In the current work, the development (20k) set is

used as a train set and the provided test (20k) set is kept for testing. This split is further referred

to as SNLI-20k.

According to the analysis in Section 3.4.1, both these datasets are “appropriate”: they are

adapted to syntactic analysis due to their low average sentence length. In addition to this, the

SICK dataset also has the property of having a low percentage of sentences without certain

dependency relations, unlike the case of SNLI-20k for which a high number of sentences do not

contain a SUBJ dependency relation.

3.4. Evaluation and results 99

Corpus
Token embeddings

computation LSTM runs CNN runs

αLR rneg αLR dp nbh αLR dp nbf fsz
SICK 10−4 1 10−5 0.7 512 10−4 0.7 128 3,4,5
SNLI-20k 10−4 5 10−5 0.7 150 10−4 0.8 256 3,4,5

Table 3.15: Best run parameters for the task of textual entailment recognition: αLR the initial
learning rate, rneg the ratio of negative sampling, dp the dropout keep probability, nbh the
number of hidden states, nbf the number of filters and fsz the filter sizes.

Implementation details

The parameters used for the reported results are provided in Table 3.15. As previously, the

parameters that are not included in Table 3.15, namely the value of the margin parameter γ,

the batch size and all the parameters regarding the pre-processing steps for token embeddins

computation, follow the description in Section 3.3.2.

Figure 3.14 and Figure 3.15 present the distribution of the frequency of syntactic relations con-

sidered for these datasets. The distribution of the relations frequencies shows a high variation

in the case of the SNLI-20k dataset, while the SICK dataset presents a more balanced situation

with almost half of the relations having a frequency above average and the rest below. For

both datasets the frequency of the “unknown rel” relation is low with respect to other relations,

indicating a not very diverse set of infrequent relations. The most frequent relations are: det

(determiner), pobj (object of preposition), prep (preposition), punct (punctuation) and amod

(adjectival modifier) for both datasets, with aux (auxiliary) and nsubj (nominal subject) being

additionally well represented in SICK.

Table 3.16 outlines further characteristics about the data: SICK and SNLI-20k are the datasets

with the lowest average number of subject relations per sentence and have low percentages of

sentences with more than 1 subject relation detected (around 9.6% for SICK and 14.33% for

SNLI-20k). The average dependency link distance is also slightly lower than in the case of the

previously analyzed datasets.

100 Chapter 3. Unsupervised syntax-aware contextualized word representations

SICK SNLI-20k

avg subj / sent 1.04 0.89

% sent / ds w/ > 1 subj rel 9.06% 11.02%

% sent / ds subj w/ > 1 subj rel 9.60% 14.33%

avg link distance 1.95 2.44

Table 3.16: Elements of data complexity (from top to bottom): average number of subject
relationships per sentence, percentage of sentences out of the whole dataset that have more than
1 subject relationship, percentage of sentences that have more than 1 subject relationship out of
the sentences that have at least 1 subject relationship, average dependency link distance.

cc
co

nj ac
l

po
ss

au
xp

as
s

au
x

am
od

ro
ot

pr
ep

do
bj

ns
ub

j

nu
m

m
od

ad
vm

od
pu

nc
t

co
m

po
un

d

re
lc

l
at

tr
de

t
po

bj
ex

pl

un
kn

ow
n

re
l

0

1

2

3

4

·104

N
um

be
ro

fo
cc

ur
re

nc
es

in
th

e
da

ta
se

t

Figure 3.14: Distribution of the considered syntactic relations in the SICK dataset.

3.4. Evaluation and results 101

cc pr
t

ns
ub

jp
as

s
co

nj ac
l

po
ss

m
ar

k
au

xp
as

s
ad

vc
l

au
x

am
od

ro
ot

pr
ep

xc
om

p
do

bj
ns

ub
j

nu
m

m
od

ad
vm

od
pu

nc
t

ac
om

p
co

m
po

un
d

re
lc

l
at

tr
de

t
po

bj
un

kn
ow

n
re

l

0

2

4

6

8
·104

N
um

be
ro

fo
cc

ur
re

nc
es

in
th

e
da

ta
se

t

Figure 3.15: Distribution of the considered syntactic relations in the SNLI-20k dataset.

Comparison to word type embeddings

The results of using word type embeddings and the proposed SATokE token embeddings as in-

put to the task of textual entailment recognition are presented in Table 3.17. For both datasets,

SICK and SNLI-20k, feeding the SATokE token embeddings as input features yields better re-

sults than using word type embeddings. Even fine-tuning the GloVe embeddings with respect

to the end task only results in a slight improvement on the SNLI-20k dataset when used within

an LSTM architecture and yields no improvements within a CNN architecture. The proposed

SATokE token embeddings outperform both GloVe and dependency-based word type embed-

dings and obtain the highest scores when input to an LSTM architecture in the case of SICK

and to a CNN architecture for the SNLI-20k dataset.

The difference in performance between the GloVe and the dependency-based word type em-

beddings is lower in the case of the SICK dataset than in the case of the SNLI-20k dataset.

Similarly to the observations in Section 3.4.3, this could be due to the different characteristics

of the sentences in the two datasets: SICK contains a less diverse vocabulary than SNLI-20k,

102 Chapter 3. Unsupervised syntax-aware contextualized word representations

yet at the same time the sentences in SICK are more challenging from a structural point of view

as will be later seen in Table 3.24. This enables dependency-related information to be leveraged

and prevents successful results just on the basis of word overlap statistics.

Using positional encodings only brings a marginal improvement (0.25%) in the case of dependency-

based word type embeddings with an LSTM architecture on the SICK dataset. The results

obtained though are still lower than those when using a CNN architecture with the same em-

beddings but without positional encodings. In all the other cases positional encodings decrease

the scores on both datasets using both architectures.

Self-attention improves the scores for both datasets when using a CNN architecture on top of

GloVe embeddings: 1.5% for SICK and 0.7% for SNLI-20k. However for both datasets the

obtained scores remain lower than the best results obtained with the same embeddings (with-

out positional encoding) when input to an LSTM network. A marginal improvement is also

observed when using dependency-based word type embeddings as input to the LSTM archi-

tecture for the SICK dataset. However, similarly, the improvement is not sufficient to surpass

the results obtained by the dependency-based word type embeddings when input to a CNN

architecture without using self-attention.

None of the improvements present due to positional encodings or self-attention is sufficient to

outperform the accuracy provided by the proposed SATokE token representations.

Comparison to token embeddings methods

In Table 3.18, the proposed token embeddings are compared to the ELMo token embeddings

introduced in Peters et al. (2018). As previously, two settings are considered: allowing the

weights of the intermediate layers obtained from the deep bidirectional language model to tune

during the task learning (cf. Section 3.1) or weighting all layers equally and fixing the resulting

embeddings for the end task learning. Since token embeddings already include positional in-

formation and since positional encodings and self-attention did not result in improvements over

3.4. Evaluation and results 103

Architecture / Embeddings
“Appropriate” datasets

SICK SNLI-20k

LSTM

Standard pre-trained Word Type embeddings

GloVe 300d (Pennington et al., 2014) 61.96 57.13
GloVe 300d (Pennington et al., 2014) (fine-tuned) 60.33 57.51
GloVe 300d + pos encod 61.35 55.74
GloVe 300d + self-attention 58.76 50.62
Dep-based WE 300d (Levy and Goldberg, 2014) 59.88 50.55
Dep-based WE 300d + pos encod 60.13 33.53
Dep-based WE 300d + self-attention 60.59 47.79

Current proposal Token embeddings

SATokE 300d 63.59 56.76
SATokE 300d (fine-tuned) 59.68 51.51

CNN

Standard pre-trained Word Type embeddings

GloVe 300d (Pennington et al., 2014) 60.23 55.84
GloVe 300d (Pennington et al., 2014) (fine-tuned) 58.11 55.48
GloVe 300d + pos encod 59.78 55.12
GloVe 300d + self-attention 61.74 56.48
Dep-based WE 300d (Levy and Goldberg, 2014) 60.76 47.84
Dep-based WE 300d + pos encod 59.11 45.34
Dep-based WE 300d + self-attention 59.60 46.38

Current proposal Token embeddings

SATokE 300d 62.53 57.72
SATokE 300d (fine-tuned) 59.11 53.97

Table 3.17: Sentence pair classification results on the task of textual entailment recognition in
terms of accuracy (%). Comparison of the results obtained using the proposed syntactically-
aware token embeddings (SATokE 300d) to results obtained using standard pre-trained word
type embeddings: GloVe (Pennington et al., 2014) and Dep-based WE (Levy and Gold-
berg, 2014), including results using positional encodings and self-attention. Best results for
each architecture (LSTM, CNN) are in bold. Best overall results across architectures are in
bold underlined

.

104 Chapter 3. Unsupervised syntax-aware contextualized word representations

word type embeddings, such experiments were not considered along with token embeddings.

The best results are obtained using the SATokE proposed token embeddings for the SICK

dataset and using the fine-tuned ELMo token embeddings on the SNLI-20k dataset. In both

cases, LSTM is the preferred architecture, but considering the SATokE embeddings outper-

forms the results obtained with ELMo when input to a CNN.

Similarly to previous observations in Sections 3.4.2 and 3.4.3, the results can be analyzed with

respect to the characteristics of the datasets. The sentences in the SICK dataset have a less

diverse vocabulary than the ones in SNLI-20k. However, they pose a structural challenge in

that understanding the relation between two sentences can not be efficiently achieved just by

looking at the words themselves, but requires an understanding of the compositional aspect of

the sentences, like shown in the examples in Table 3.14 for the SICK dataset. Thus the proposed

token embeddings that explicitly leverage information about the structures of the sentences from

a dependency point of view, are particularly useful in this case. At the same time having a rich

vocabulary favours methods trained on large amounts of data that can additionally leverage

character-level information. This can be seen in the case of SNLI-20k: ELMo embeddings

pre-trained on the 1B Word Benchmark (Chelba et al., 2013) obtain the best results on this

dataset.

3.4.5 Further analysis on sentence understanding tasks

In the following a further look is provided into the tasks already considered and the focus shifts

on different aspects concerning the results. A first look is aimed at comparing the proposed

SATokE token embeddings to the 256-dimensional ELMo token embeddings. Then, a discus-

sion is provided around the comparison of SATokE to general purpose word type embeddings

computed on dependency contexts (Levy and Goldberg, 2014).

Further, one ablation study analyzes the impact of using only adjacency information compared

to adding the syntactic information when constructing the token embeddings. Two other sets

3.4. Evaluation and results 105

Architecture / Token Embeddings
“Appropriate” datasets

SICK SNLI-20k

LSTM

ELMo 1024d (Peters et al., 2017) (fine-tuned) 61.63 60.64
ELMo 1024d (Peters et al., 2017) 61.85 59.15
SATokE 300d 63.59 56.76

CNN

ELMo 1024d (Peters et al., 2017) (fine-tuned) 57.88 56.62
ELMo 1024d (Peters et al., 2017) 60.31 56.40
SATokE 300d 62.53 57.72

Table 3.18: Comparison of the results obtained using the proposed syntactically-aware token
embeddings (SATokE 300d) to results obtained using existing token embeddings on the textual
entailment recognition task: ELMo 1024d (Peters et al., 2018). All embeddings are fixed unless
mentioned otherwise. Best results for each architecture (LSTM, CNN) are in bold. Best overall
results across architectures are in bold underlined.

of experiments analyze the impact of having fine-grained punctuation marks and fine-grained

dependency relations. Then the results obtained using token embeddings computed in a 2-step

setup are analyzed and finally a qualitative analysis is also performed on the considered tasks.

Comparison to 256-dimensional ELMo token embeddings

The results previously presented in Table 3.7, Table 3.13 and Table 3.18 are obtained us-

ing 1024-dimensional ELMo embeddings, while the proposed SATokE embeddings are 300-

dimensional - to enable the compatibility to the 300-dimensional GloVe representations on

which they are constrained. Thus, to provide a fair comparison to embeddings of similar di-

mensions, Table 3.19 compares SATokE to 256-dimensional ELMo token embeddings. The

results show that, given similar dimensionality, SATokE outperforms ELMo across all but one

dataset (SUBJ), regardless of whether they are labeled as “appropriate” or “innapropriate”

and even despite fine-tuning the ELMo embeddings.

The significant drop in performance observed with respect to previous results using ELMo

106 Chapter 3. Unsupervised syntax-aware contextualized word representations

Architecture / Embeddings
Datasets

“Inappropriate” “Appropriate”
MR CR SUBJ SST-2 TREC MSRPC SICK SNLI-20k

LSTM

ELMo 256d 74.93 77.32 92.20 80.64 91.00 64.00 57.37 42.44
ELMo 256d (fine-tuned) 73.72 77.29 91.93 78.06 89.80 64.46 57.78 40.63
SATokE 300d 74.39 73.00 91.19 79.60 84.40 69.27 63.59 56.76

CNN

ELMo 256d 74.80 78.38 91.99 80.37 90.6 65.44 50.48 41.96
ELMo 256d (fine-tuned) 72.53 77.56 91.14 78.83 89.8 66.43 51.18 40.98
SATokE 300d 76.72 78.81 91.73 82.13 92.6 70.32 62.53 57.72

Table 3.19: Comparison of the results obtained using the proposed syntactically-aware token
embeddings (SATokE 300-dimensional) to results obtained using the 256-dimensional ELMo
token embeddings (Peters et al., 2018) across all tasks considered in Sections 3.4.2, 3.4.3, 3.4.4.
All embeddings are fixed unless mentioned otherwise. Best results for each architecture (LSTM,
CNN) are in bold. Best overall results across architectures are in bold underlined.

1024d suggest that the superior results of ELMo 1024d are (also) linked to its increased dimen-

sionality compared to ELMo 256d, which allows it to retain useful information. It is important

to note that ELMo 256d fails to capture the same amount and quality of information as SATokE,

despite it being trained on the same amount of data as ELMo 1024d, which is far larger than the

amount of data used in the case of SATokE.

With respect to the architecture type, CNN continues to be preferred for SATokE 300d, except

in the case of the SICK dataset when the best results are obtained using an LSTM. For ELMo

256d the best results are obtained using CNN for the CR and MSRPC datasets and using LSTM

for all the others. Additionally it can be observed that the difference between scores obtained

by SATokE and ELMo 256d on the “appropriate” datasets is higher (between 1.6% and 17%)

than that present on the “inappropriate” datasets (no more than 2%), suggesting SATokE clearly

yields improvements when “appropriate” data is provided.

3.4. Evaluation and results 107

Linear vs dependency contexts

The word type embeddings trained on dependency contexts (Levy and Goldberg, 2014) yield

consistently worse results than GloVe embeddings in the current evaluation, with positional

encodings providing an even further performance decrease. This result is consistent with the

analysis in Ghannay et al. (2016) who show that embeddings trained on dependency contexts

obtain lower results compared to other embeddings on semantic tasks such as analogical rea-

soning and similarity tasks, despite their high performance on named entity recognition (NER),

part-of-speech tagging or chuncking. However, contrary to a first interpretation, this does not

imply that dependency information is not useful for semantic tasks: it can be seen that the

induced SATokE token representations based strongly on dependency information obtain com-

petitive scores. This could lead to the belief that the value of using dependency information is

higher when this information is injected into the token representations directly, by using knowl-

edge from the parse tree of the sentence, than when used as context for creating generic word

type embeddings from a large corpus.

Furthermore, it has been observed that the difference in performance between GloVe and Dep-

based WE is considerably smaller for some datasets than for others: only 1.7% difference in

performance for MSRPC and 1.2% for SICK. In contrast to this, the score differences for all

the other datasets are between 6.5% and 14%: 8% for MR, 7.5% for CR, 5.3% for SUBJ, 14%

for TREC, 7% for SST-2, 6.5% for SNLI-20k.

Interestingly, the datasets on which word type embeddings trained on dependency contexts

provide results almost as good as GloVe are the same on which the proposed SATokE token

embeddings outperform ELMo, namely MSRPC and SICK. This can further support the obser-

vations regarding the link between differently constructed embeddings and the characteristics of

the sentences in these datasets as explained in Section 3.4.3 and Section 3.4.4: the MSRPC and

SICK datasets contain syntactically-rich structures and thus benefit more from having a contex-

tualized representation that takes the structure of the sentence into account. Also, according to

the analysis in Section 3.4.1, they have the lowest percentages of sentences without SUBJ and

108 Chapter 3. Unsupervised syntax-aware contextualized word representations

Architecture / Embeddings
Datasets

“Inappropriate” “Appropriate”
MR CR SUBJ SST-2 TREC MSRPC SICK SNLI-20k

CNN

SATokE 300d 76.72 78.81 91.73 82.13 92.60 70.32 62.53 57.72
SATokE 300d only-adjacency 50.67 63.62 50.94 51.45 33.20 66.43 56.50 36.79

Table 3.20: Sentence classification and sentence pair classification results in terms of accuracy
(%). Comparison of the proposed syntactically-aware token embeddings (SATokE 300d) to to-
ken embeddings computed using only adjacency information from the sentence graph (SATokE
300d only-adjacency). All embeddings are fixed. Best results are in bold.

without OBJ dependency relations.

Ablation study - impact of syntax

In order to assess the contribution of syntax, an additional experiment is performed by con-

structing token embeddings leveraging only information from the adjacency graph. These re-

sulting token embeddings are evaluated when input to a CNN architecture as it has yielded the

best results in most of the cases (see Sections 3.4.2, 3.4.3, 3.4.4). The results for all datasets

considered so far are in Table 3.20: SATokE 300d only-adjacency.

One can observe that the results are consistently worse than all the other results obtained with

token embeddings that take into account syntactic information as well. This empirically outlines

the importance of using syntax for the creation of token embeddings and suggests that the

successful results obtained by SATokE are not due to and could not be reproduced leveraging

local context only. While a more in-depth analysis can be performed to look into the individual

contribution of different syntactic relations and possibly a different model can be used to better

capture adjacency information, the current results demonstrate that the improvement comes

from the syntactic information as well and not only from adjacency.

3.4. Evaluation and results 109

Architecture / Embeddings
Datasets

“Inappropriate” “Appropriate”
MR CR SUBJ SST-2 TREC MSRPC SICK SNLI-20k

LSTM

SATokE 300d 74.39 73.00 91.19 79.60 84.40 69.27 63.59 56.76
SATokE 300d single-Punct 74.34 73.79 88.95 79.71 80.20 67.71 61.25 55.76

CNN

SATokE 300d 76.72 78.81 91.73 82.13 92.60 70.32 62.53 57.72
SATokE 300d single-Punct 75.15 76.26 89.18 80.37 88.00 69.91 60.82 55.45

Table 3.21: Sentence classification and sentence pair classification results in terms of accu-
racy (%). Comparison of the proposed syntactically-aware token embeddings (SATokE 300d)
to token embeddings computed using “collapsed” punctuation information under a single tag
(SATokE 300d single-Punct). All embeddings are fixed. Best results are in bold.

Ablation study - impact of punctuation

Another set of experiments aims to determine whether keeping the different punctuation infor-

mation within the graph of each sentence is beneficial for the end results or, on the contrary, if

removing such information can hurt the results on the end task. As detailed in Section 3.3.2,

punctuation embeddings are used as provided by GloVe whenever available and are learned

along with the graph of the sentence otherwise. An alternative to that would be to keep the

punctuation information only during the parsing phase and later collapse all punctuation signs

into a single generic tag. Table 3.21 shows results of training models that consider such a set-

ting. The results obtained when merging all punctuation signs are generally lower than those

obtained in the initial setting, except for marginal increases in scores for the CR and SST-2

datasets when using an LSTM architecture. This may indicate that in general keeping a finer-

grained notion of punctuation can be beneficial.

Ablation study - impact of merging relations

The original proposal maintains the different syntactic relations provided by the parser as sepa-

rate matrices within each sentence’s tensor. However, this implies that the infrequent relations

110 Chapter 3. Unsupervised syntax-aware contextualized word representations

will be sampled less and consequently may end up having less reliable representations. To ac-

count for that and also to investigate to what extent keeping a certain level of granularity for

relations is required, a set of experiments use embeddings created from merged relations.

In order to achieve this, three categories of relations are considered: those that refer to a subject

(SUBJ), object (OBJ) or a modifier (MOD). For each of these, a single matrix will hold all

related relations: in the case of SUBJ for example, instead of having separate matrices for the

different types of SUBJ: nsubj (nominal subject), nsubjpass (nominal subject passive), csubj

(clausal subject) and csubjpass (clausal subject passive), only one single relation is considered

with the general SUBJ label. For the case of OBJ, the merged relations are: dobj (direct object),

obj (object) and pobj (object of a preposition), while the MOD relation holds the merging of ad-

vmod (adverbial modifier), amod (adjectival modifier), nounmod (modifier of nominal), npmod

(noun phrase as adverbial modifier), nummod (numeric modifier) and quantmod (modifier of

quantifier) as provided by the parser.

The results of such an approach should be: smaller tensors (as the number of relations reduces),

more dense matrices (since multiple modifiers can exist within the same sentence, although of

different kind, all the information related to these modifiers will be stored within the same ma-

trix in the sentence’s tensor) and consequently a faster learning procedure. Table 3.22 presents

results obtained using such token embeddings. The score obtained are generally lower than

in the original setting, with the exception of the CR and SST-2 datasets when using an LSTM

architecture. As it was the case for punctuation as well, this may indicate it may be beneficial

to keep a certain granularity level for these relations. Nevertheless, there are some datasets for

which the difference in scores between the two settings is not very high (at least when using an

LSTM): MR, SST-2, MSRPC and SNLI-20k.

Token embeddings from the 2-step setup

As the best results using the proposed token embeddings for almost all datasets are obtained in

the 1-step setup using a CNN architecture, only such an architecture is considered for testing the

3.4. Evaluation and results 111

Architecture / Embeddings
Datasets

“Inappropriate” “Appropriate”
MR CR SUBJ SST-2 TREC MSRPC SICK SNLI-20k

LSTM

SATokE 300d 74.39 73.00 91.19 79.60 84.40 69.27 63.59 56.76
SATokE 300d rels-merged 74.37 75.35 89.12 79.87 78.80 69.10 61.23 56.54

CNN

SATokE 300d 76.72 78.81 91.73 82.13 92.60 70.32 62.53 57.72
SATokE 300d rels-merged 75.21 77.08 89.29 79.98 86.20 68.92 60.88 56.64

Table 3.22: Sentence classification and sentence pair classification results in terms of accuracy
(%). Comparison of the proposed syntactically-aware token embeddings (SATokE 300d) to
token embeddings computed using merged relations information (SATokE 300d rels-merged).
All embeddings are fixed. Best results are in bold.

token embeddings obtained in the 2-steps setup. The results using these token embeddings are

slightly lower than those obtained in the 1-step setting as it can be seen from Table 3.23. This is

an expected result and the difference between the two can mark the trade-off between having a

complete encoding of the sentences (when relations are learned along with the tokens and thus

from the same domain) and having a faster performance (when relations are reused and may

come from different domains). Thus the scores reflect a domain adaptation effect, reflecting the

domain mismatch between the data used to train relations and tokens.

It is possible that using a larger training corpus to learn relations embeddings might improve

on the results of inferred token embeddings. Nevertheless it can be noticed that the results

obtained when using the token embeddings from the 2-step setup are still better than results

obtained using standard word type embeddings (even when these are tuned) across all datasets

with the CNN architecture.

Qualitative analysis

A further look can be taken at challenging examples in which the produced SATokE token

embeddings perform better than the standard word type embeddings. Some examples from the

112 Chapter 3. Unsupervised syntax-aware contextualized word representations

Architecture / Embeddings
Datasets

“Inappropriate” “Appropriate”
MR CR SUBJ SST-2 TREC MSRPC SICK SNLI-20k

CNN

Standard pre-trained Word Type embeddings

GloVe 300d 74.92 76.65 91.07 80.15 78.80 66.89 60.23 55.84
GloVe 300d (fine-tuned) 75.31 76.20 91.08 80.15 79.00 65.25 58.11 55.48

Current proposal Token embeddings

SATokE 300d 76.72 78.81 91.73 82.13 92.60 70.32 62.53 57.72
SATokE 300d 2-step 75.83 78.11 91.34 81.85 89.80 70.20 62.47 56.94

Table 3.23: Sentence classification and sentence pair classification results in terms of accuracy
(%). Comparison of the proposed syntactically-aware token embeddings (SATokE 300d) to to-
ken embeddings computed using the 2-step setup, leveraging pre-trained relations embeddings
(SATokE 300d 2-step). All embeddings are fixed. Best results are in bold.

S1: a dog is chasing another and is holding a stick in its mouth.
S2: a dog is chasing a stick and holding another dog in its mouth.
S1: a baby is licking a dog.
S2: a dog is licking a baby.
S1: a man is holding a sign and is seeking money.
S2: a man is seeking a sign and is holding some money.
S1: the woman is picking up the baby kangaroo.
S2: a kangaroo is picking up the woman’s baby.

Table 3.24: Examples of challenging sentence pairs correctly classified using the SATokE token
embeddings

SICK dataset are presented in Table 3.24. It can be noticed that the sentences on which token

embeddings outperform type embeddings tend to be those which require an understanding that

goes beyond word surface level: the token embeddings seem to provide a useful representation

in these cases.

Finally, specific examples of sentences with polysemous words are shown in Table 3.25. For

each sentence, first the polysemous word (in bold) is found and then a list of the most similar

word types (by cosine similarity) to the token representation of the searched word is provided.

For comparison the list of most similar word types to the type representation of the same word

3.5. Application to discourse analysis 113

Sentence Nearest types to token Nearest types
to type

things go terribly wrong for the honest bank manager
[...]

banks, banking, credit, central, invest-
ment, financial

banks, banking,
credit, financial,
investmenta tan dog is splashing in the water on the bank of a

pond.
fed, money, branch, shore, wall

i’ve read about the issues with the scroll bar, but they
must have taken care of that now.

bars, menu, screen, shop, buttons,
camera

bars, cafe,
pub, lounge,
room, shop,
hotel

[...] first cartoon to look as if it were being shown on
the unknown nn television screen of a sports bar.

bars, cafe, lounge, hostess, pub

if so, then this movie will touch your soul... touches, senses, lightness, sweetness touches, hand,
screenwe are fully prepared to roll out the [touch - screen]

machines for the 2004 presidential primary [...]
touches, buttons, handheld, screen,
click, devices

Table 3.25: Examples of most similar words to a given token

(namely its GloVe embedding) is also provided. It can be observed the token embeddings

manage to capture meaning and distinguish between the senses of a word, although they have

not been explicitly trained on a word sense disambiguation task. This is another clue that

the produced token embeddings efficiently encode local context information obtained from the

graph.

3.5 Application to discourse analysis

3.5.1 Implicit discourse relation classification

An area worth exploring the benefits of using token embeddings on is that of discourse analysis.

Automatically identifying discourse relations is considered to be helpful for many downstream

NLP tasks such as question answering, machine translation or automatic summarization (Dai

and Huang, 2018). While identifying discourse relations in the presence of explicit connectives

has proven to be relatively easy, with accuracy scores around 93% (Pitler et al., 2008), it is

more challenging to identify these relations in the absence of textual cues. Nevertheless, a lot

of research effort has been focused on this task along with the release of the Penn Discourse

Treebank (PDTB) (Prasad et al., 2008), the largest annotated corpus of discourse relations.

In the PDTB, documents are annotated following the predicate-argument structure. More specif-

114 Chapter 3. Unsupervised syntax-aware contextualized word representations

ically, a discourse connective (e.g. so, but, because) is treated as a predicate that takes two text

spans around it as its arguments, further denoted as Arg-1 and Arg-2. The discourse connective

is structurally attached to Arg-2 and can be either explicit or implicit. Each argument can be a

single sentence, a clause or multiple sentences. In the PDTB only pairs of adjacent sentences

can contain implicit relations. An example of an implicit discourse relation is provided below:

the implicit connective “so” is not part of the original argument text but is added to illustrate the

idea.

• Arg-1: “A lot of investor confidence comes from the fact that they can speak to us,” he

says.

Arg-2: [so] “To maintain that dialogue is absolutely crucial.”

Class: Cause

The task of recognizing implicit discourse relations is typically approached as a classification

problem, with the two arguments as input and their implicit discourse relation as the label to

predict.

In implicit discourse relation classification literature, some work leverages additional informa-

tion from unlabeled data by removing the existing explicit connectives (Rutherford and Xue,

2015). However, it has been proven that the nature of the natively implicit data may be dif-

ferent from that of an artificially constructed implicit relation corpus from data with explicit

connectives (Lin et al., 2009). Other work makes use of labeled and unlabeled data (implicit

and explicit) coming from different corpora in order to classify discourse relations in multi-

task learning frameworks (Lan et al., 2013; Liu et al., 2016; Lan et al., 2017). In the lack of

(or sometimes in addition to) exploring additional unlabeled data, the focus of most works has

been either on the representation of the two arguments involved in a discourse relation or on

modelling the interaction between them. This interaction has been modelled through attention

mechanisms (Lan et al., 2017), through the use of features derived from word pairs (Chen et al.,

2016; Lei et al., 2017) or by directly modelling the argument pair jointly (Liu et al., 2016).

3.5. Application to discourse analysis 115

Regardless of the chosen approach however, accurately representing the arguments in the dis-

course relation is key to building a reliable model. Although earlier works focused on the use

of different feature sets as input to classification models: word pairs, part-of-speech tags, con-

text information etc. (Pitler et al., 2009; Rutherford and Xue, 2014), little attention has been

offered to varying the input features of recent deep neural network-based approaches to im-

plicit discourse relation classification and to how these can influence the quality of the output of

such models. That is, most current approaches rely on standard pre-trained word embeddings to

model the arguments of a discourse relation (Qin et al., 2017; Wang et al., 2017; Dai and Huang,

2018). The reason stems from their success across a variety of tasks (Zou et al., 2013; Bansal

et al., 2014; Tang et al., 2015) but also from the fact that they have been proven to perform best

on implicit discourse relation classification as well (Braud and Denis, 2015).

Further, to account for pre-trained word embeddings limitations and to integrate additional

knowledge, some work employs complementary features. Ji and Eisenstein (2015) note that

it is difficult to fully recover the semantics of arguments using only surface level features and

propose representing each argument using bottom-up compositional operations over its con-

stituency parse tree along with a top-down approach for modelling coreferent entity mentions.

Others successfully complement the use of word embeddings with extra linguistic features like

part-of-speech tag embeddings or named entity tag embeddings (Dai and Huang, 2018). Qin

et al. (2016a) consider character level information to enhance the word embeddings represen-

tations. An alternative is to learn distributional word representations tailored specifically for

implicit discourse relation classification (Braud and Denis, 2016).

However, information from syntactic dependencies, previously proven to be beneficial for the

task (Lin et al., 2009), is not integrated in any of these models. Moreover, following the intuition

that word pairs and information derived from constituency parse trees matters, this has been

mostly integrated in the architecture of the models through attention mechanisms rather than in

the input embeddings themselves.

One of the challenges of automatically identifying implicit discourse relations is the fact that

116 Chapter 3. Unsupervised syntax-aware contextualized word representations

it requires an in-depth semantic understanding of the text fragments involved in such relations.

So since the task of detecting implicit discourse relations requires semantic understanding and

since semantic understanding relies on encoding the word meaning in its context (Qin et al.,

2016a), it is natural to investigate the use of token representations for this task.

A step can be taken in this direction by analyzing the usefulness of the proposed SATokE token

embeddings for the task of implicit discourse relation classification (Popa et al., 2019a,b). The

computed SATokE contextualized representations of words could be beneficial for the task as

they leverage information from the sentence dependency parse to improve argument representa-

tion (which has been previously shown to be beneficial for detecting implicit discourse relations

in traditional models (Lin et al., 2009)). They also have the benefit of encoding the informa-

tion about the structure of the sentence from a dependency point of view in the representations

themselves and not in the parameters of the end task model.

The contribution of the proposed token embeddings to the task is analyzed and compared to

different standard word type representations and to the ELMo token embeddings. The proposed

token representations offer improvements over traditional word representations in all consid-

ered cases. Moreover, experimental results show that the proposed representations achieve near

state-of-the-art results when input to standard neural network architectures, surpassing complex

models that use additional data and consider the interaction between arguments. This represents

a first attempt to investigate the use of token embeddings for the task of implicit discourse rela-

tion classification and to analyze the impact of using information from syntactic dependencies

as input to deep learning models for this task.

3.5.2 Data

Throughout the experiments, the Penn Discourse Treebank (PDTB) 2.0 dataset 10 (Prasad et al.,

2008) is used, the largest annotated corpus of discourse relations covering 2312 Wall Street

10http://www.seas.upenn.edu/ pdtb/

3.5. Application to discourse analysis 117

Journal (WSJ) articles. The dataset contains a total of 16224 argument pairs annotated with

their corresponding explicit and implicit discourse connectives at three levels of granularity:

class, type and subtype. Level-1 contains four semantic classes: Comparison, Contingency,

Expansion and Temporal, whereas level-2 contains 16 types that refine the relation senses to

provide finer semantic distinctions. Level-3 is typically ignored in the literature as it provides

too fine-grained subtypes and is not present for all the types (Lin et al., 2009). Some examples

of such argument pairs along with their class, type and subtype annotations are further provided.

All examples are taken from the training data.

1. Arg-1: They motivate sales people with commissions.

Arg-2: Jewelry makers rarely pay commissions and aren’t expected to anytime soon.

Class: Comparison;

Type: Comparison.Contrast;

Subtype: Comparison.Contrast.Juxtaposition;

2. Arg-1: But the issue is stickier than it seems.

Arg-2: France, Britain and Italy all have light tanks they would like to keep out of the

talks.

Class: Contingency;

Type: Contingency.Cause;

Subtype: Contingency.Cause.Reason;

3. Arg-1: But even though NATO negotiators have only 10 months left under the Bush

timetable, they are still wrestling over such seemingly fundamental questions as “What is

a tank”.

Arg-2: Five of the six categories of weapons under negotiation haven’t even been defined.

Class: Expansion;

Type: Expansion.Restatement;

Subtype: Expansion.Restatement.Specification;

118 Chapter 3. Unsupervised syntax-aware contextualized word representations

4. Arg-1: Our pilot simply laughed, fired up the burner and with another blast of flame lifted

us, oh, a good 12-inches above the water level.

Arg-2: We scuttled along for a few feet before he plunged us into the drink again.

Class: Temporal;

Type: Temporal.Asynchronous;

Subtype: Temporal.Asynchronous.Precedence;

In all the experiments only argument pairs annotated with implicit discourse relations are con-

sidered and data marked with explicit connectives is not leveraged in any way. To enable

comparisons with previous work, two popular experimental setups are followed by perform-

ing multi-class classification on both level-1 and level-2. Although some work evaluates “one-

versus-all” classifiers for each individual class considered, recent studies focus on the multi-

class classification scenario which is more natural and realistic (Rutherford and Xue, 2014).

One split adopted is that of Lin et al. (2009), with sections 2-21 from PDTB used for training,

section 22 for development and section 23 for test. This is further denoted as the PDTB-Lin

split and used to perform multi-class classification for level-2 types. Similarly to Lin et al.

(2009), the least frequent 5 types are removed as they account for only 9 examples in the

training data and no examples in the development and test sets. The 11 types considered are:

Expansion.List, Expansion.Conjunction, Expansion.Instantiation, Expansion.Restatement, Ex-

pansion.Alternative, Comparison.Concession, Comparison.Contrast, Contingency.Cause, Con-

tingency.Pragmatic cause, Temporal.Asynchronous and Temporal.Synchrony. In PDTB about

2.2% of the implicit relations are annotated with two types. Following previous work, during

training, instances with more than one annotation are considered as multiple instances, each

with one type annotation. During testing, a correct prediction is one that matches one of the

annotated types. The number of instances in each split and their class distribution are shown in

Table 3.26.

A second split considered is that of Pitler et al. (2009). Here sections 2-20, 0-1 and 21-22 from

PDTB are used as training, development and test sets, respectively. This split is denoted as

3.5. Application to discourse analysis 119

Class Train Dev Test Total
Comparison.Concession 195 5 5 205
Comparison.Contrast 1653 88 127 1868
Contingency.Cause 3423 123 200 3746
Contingency.Pragmatic cause 68 2 5 75
Expansion.Conjunction 2968 117 118 3203
Expansion.Instantiation 1176 48 72 1296
Expansion.Restatement 2569 104 190 2863
Expansion.Alternative 159 2 15 176
Expansion.List 345 5 30 380
Temporal.Asynchronous 582 29 13 624
Temporal.Synchrony 213 19 5 237
Total 13351 542 780 14673

Table 3.26: Data statistics for the PDTB-Lin split

Class Train Dev Test Total
Comparison 1944 152 197 2293
Contingency 3346 279 292 3917
Expansion 7011 574 671 8256
Temporal 760 85 64 909
Total 13061 1090 1224 15375

Table 3.27: Data statistics for the PDTB-Pitler split

PDTB-Pitler and used to report results for level-1 multi-class classification to enable compar-

isons to previous work. Additionally, it should be noted that focusing on the level-1 relations

enables one to be theory-neutral as these represent the four core discourse relations that various

discourse analytic theories seem to converge on (Wang et al., 2012). The number of instances

for each set and their class distribution are shown in Table 3.27.

Data Appropriateness

A similar analysis to that from Section 3.4.1 can be done for the implicit discourse relation

classification data. Table 3.28 outlines some characteristics of this data: average sentence length

and percentage of sentences for which a SUBJ and/or an OBJ relationship has not been detected

by the parser. According to the separation done in Section 3.4.1, the discourse datasets may not

qualify as “appropriate” due to the high average sentence length (19.42) which could result

120 Chapter 3. Unsupervised syntax-aware contextualized word representations

PDTB

average sentence length 19.24

%sent without SUBJ rel 4.04%

%sent without OBJ rel 8.22%

Table 3.28: Data characteristics for the PDTB data.
.

in parsing challenges and further propagate their effects on the token embeddings computation.

However, similarly to the MSRPC dataset, it is important to note that the discourse data seems to

have very few sentence without a subject or object relationship, 4.04% and 8.22% respectively,

which might indicate generally well-formed sentences, appropriate for evaluation in the current

setup.

3.5.3 Experimental setup

Many neural network models and variants have been proposed to learn the semantic represen-

tation of each argument in a discourse pair. However, most of them rely on the same basic

neural network building blocks: LSTM and/or CNN. In the following, the proposed SATokE

token embeddings are evaluated as input to these neural network models, as part of a standard

architecture as outlined in Figure 3.7. Additionally a gated mechanism is exploited, that enables

controlling the flow of information and minimally modelling the interaction between the two

arguments in a discourse relation (Qin et al., 2016b).

No interaction between the arguments First the vector representations of each argument are

obtained either through an LSTM or a CNN encoding on top of word type embeddings or the

proposed token embeddings. Then the vectors corresponding to the arguments are concatenated

into a vector of the pair v = [hn,hm] for an LSTM encoding and v = [z1, z2] for a CNN

encoding. The representation of the pair is further passed to a fully connected layer, followed

3.5. Application to discourse analysis 121

by a softmax layer to obtain the probability distribution over labels. This approach, however,

does not focus on modelling the interaction between the two arguments in the discourse relation,

an important aspect when predicting discourse relations, as pointed out by previous work (Chen

et al., 2016; Lan et al., 2017).

Collaborative Gated Neural Network The Collaborative Gated Neural Network (CGNN)

architecture was introduced by Qin et al. (2016b) for the task of implicit discourse relation

classification and represents a model providing minimal interaction between the arguments.

In the proposed model, the arguments are individually modelled using convolutional neural

networks that share parameters of the convolution and pooling operations among each other.

Then an additional gated unit is used for feature transformation.

The input to the CGNN unit is the vector representing the concatenation of the arguments v =

[z1, z2]. Then the set of transformations are given by:

ĉ = tanh(W c · v + bc)

gi = σ(W i · v + bi)

go = σ(W o · v + bo)

c = ĉ� gi

h = tanh(c)� go

where � denotes the element-wise multiplication, σ denotes the sigmoid function, ĉ and c are

inner cells, gi and go are the two gated operations and W i, W o and W c are parameters of the

model.

The output of the CGNN unit is the transformed vector h which is further passed to a softmax

layer. Finally, the training objective is defined as the cross-entropy loss between the output of

the softmax layer and the class labels. The architecture can be seen in Figure 3.16. Note that

122 Chapter 3. Unsupervised syntax-aware contextualized word representations

the vector of the pair v is denoted by [EncArg-1, EncArg-2] in Figure 3.16.

Softmax

h

·

c

·gi g0

ĉ[
EncArg-1, EncArg-2

]
EncArg-1 EncArg-2

Arg-1 Arg-2

x1
1 x1

2
. . . x1

n x2
1 x2

2
. . . x2

m

Figure 3.16: CGNN (Qin et al., 2016b)

3.5.4 Implementation details

For the computation of token embeddings the best results are obtained when using an initial

learning rate of 10−3, a sampling factor of 5x and the margin parameter γ set to 10 for the

PDTB-Pitler split. For the PDTB-Lin split, the best results are obtained when using an initial

learning rate of 10−4, a negative sampling factor of 1x and the margin parameter γ set to 1.

A distribution of the dependency relations considered for the task is presented in Figure 3.17.

The most frequent relations present in the dataset are: prep (preposition), pobj (object of prepo-

sition), det (determiner), compound and nsubj (nominal subject). About one third of all rela-

tions have frequencies above the average, while the “unknown rel” relation represents a very

low proportion of the data.

According to the information in Table 3.29 almost half of the sentences in the PDTB data have

more than one subject relation detected, indicating the presence of composed structures. This,

combined with a high average sentence length as outlined in Table 3.28 and the variance present

3.5. Application to discourse analysis 123

cc
ag

en
t

pr
t

co
nj ac

l
po

ss
ne

g
m

ar
k

au
xp

as
s

ad
vc

l
au

x
am

od
ro

ot
pr

ep
xc

om
p

do
bj

ns
ub

j
nu

m
m

od
ad

vm
od

pu
nc

t
qu

an
tm

od
ac

om
p

co
m

po
un

d
pc

om
p

cc
om

p
re

lc
l

np
ad

vm
od

ca
se at
tr

ap
po

s
de

t
nm

od
po

bj
ns

ub
jp

as
s

un
kn

ow
n

re
l

0

1

2

3

4

5

6

·104
N

um
be

ro
fo

cc
ur

re
nc

es
in

th
e

da
ta

se
t

Figure 3.17: Distribution of the considered syntactic relations in the PDTB data.

in the frequency of syntactic relations can indicate a certain complexity of the data, making the

PDTB one of the challenging datasets for the proposed token embeddings evaluation.

For the optimisation of the implicit discourse relation classification task Adam (Kingma and

Ba, 2014) is used and the parameters of the models are tuned on the development set. The

parameters that lead to the reported results for each split are shown in Table 3.30, with αLR

denoting the initial learning rate, dp the dropout probability, nbh the size of the fully connected

layer, szb the size of the batches and nbf the number of filters. For the CNN and GCNN

architectures the filters used are of sizes 3, 4 and 5. The parameters of the CNN are shared

across the two arguments.

In the following a comparison is provided between the proposed token embeddings and standard

pre-trained word type embeddings. This is followed by a parallel between the reported results

and state-of-the-art systems aimed at solving the task as well as a comparison to the ELMo

token embeddings. All word type embeddings considered are 300-dimensional. The SATokE

token embeddings proposed in the current work are 300-dimensional as well, while the ELMo

124 Chapter 3. Unsupervised syntax-aware contextualized word representations

PDTB

avg subj / sent 1.56

% sent / ds w/ > 1 subj rel 41.26%

% sent / ds subj w/ > 1 subj rel 43.00%

avg link distance 2.66

Table 3.29: Elements of data complexity (from top to bottom): average number of subject
relationships per sentence, percentage of sentences out of the whole dataset that have more than
1 subject relationship, percentage of sentences that have more than 1 subject relationship out of
the sentences that have at least 1 subject relationship, average dependency link distance.

Data split
LSTM runs CNN runs CGNN runs

αLR dp nbh αLR dp nbf szb nbh αLR dp nbf szb nbh
PDTB-Lin 10−4 0.7 150 10−5 0.8 600 16 300 10−4 0.7 128 64 768
PDTB-Pitler 10−5 0.7 512 10−5 0.6 600 16 512 10−4 0.6 600 64 3600

Table 3.30: Parameters used for the reported results on each data split

token embeddings are 1024-dimensional. The considered ELMo representations are obtained

as a weighted sum of the different layers of the deep bidirectional language model, with the

weights being trainable. This is supported by the claim of Peters et al. (2018) that the semantic

and syntactic aspects are captured in different intermediate layers and including representations

from all layers improves overall performance. In that sense, combining the intermediate layers

for ELMo represents a trade-off between the two aspects. In the case of SATokE, the semantic

and syntactic aspects are weighted equally given that the ratio between the two loses is set to

α = 0.5. Finally a series of tests are conducted over model variations in order to analyze the

impact of the syntactic information and to justify its usefulness.

3.5.5 Comparison to word type embeddings

Table 3.31 presents the results of running three sets of experiments on the PDTB-Lin data using

the different encoding schemes: the two LSTM and CNN encoding approaches presented in

3.3.1 and the collaborative architecture (CGNN) presented of Qin et al. (2016b). A compari-

3.5. Application to discourse analysis 125

son is provided between the results obtained using different input features: standard word type

embeddings often employed in literature and pre-trained using local context over large corpora

(Pennington et al., 2014; Mikolov et al., 2013b), word type embeddings pre-trained using de-

pendency contexts (Levy and Goldberg, 2014) and the proposed SATokE token representations.

LSTM CNN CGNN
GloVe (Pennington et al., 2014) 38.97 38.25 39.03
Word2Vec (Mikolov et al., 2013b) 36.92 37.33 37.07
Deps-WE (Levy and Goldberg, 2014) 36.00 34.98 34.98
SATokE 40.51 42.55 43.08

Table 3.31: Results for level-2 multi-class classification on the PDTB-Lin split in terms of
accuracy (%). Comparison to word type embeddings. Best results are in bold.

It can be observed that using the proposed token embeddings as input yields important im-

provements over all the word type embeddings and across all the architectures considered. The

obtained improvements are between 1.5% and 4.5% when using an LSTM architecture, between

3.7% and 7.5% with a CNN encoder and between 4% and 8% with the CGNN architecture.

Although the CGNN architecture represents a model of minimal interaction, it is still more

complex than the LSTM and CNN encoders. Consequently, in 2 out of 4 cases (using GloVe

embeddings and the proposed token embeddings) the CGNN architecture reaches the highest

accuracy scores. One would expect that a more advanced interaction model would bring even

further improvements.

Unsurprinsingly, feeding the proposed token embeddings as input to an LSTM encoder only im-

proves the results by up to 4.5% over the word type embeddings. Since the proposed SATokE

token embeddings already encode positional information, passing them through an LSTM net-

work is less beneficial than for word embeddings. This improvement is lower than the improve-

ment of up to 8% observed when using the CGNN architecture over the same embeddings.

On the contrary, for the embeddings trained on dependency contexts (Levy and Goldberg, 2014)

the best scores are obtained when using the LSTM architecture. This is not a surprising result

as those embeddings may lack information about the immediate local context, since they were

126 Chapter 3. Unsupervised syntax-aware contextualized word representations

constructed using only dependency contexts. This is therefore complemented by the use of an

LSTM encoder that considers local context. For the pre-trained Word2Vec embeddings, the

choice of architecture does not influence much the results.

Another observation is that using as input features the dependency-based word embeddings

yields consistently worse results than all the other embeddings considered. This result is con-

sistent with the analysis in Ghannay et al. (2016) and with the analysis in 3.4.5. Again, contrary

to a first interpretation, this does not imply that dependency information is not useful for se-

mantic tasks: it can be seen that the induced SATokE token representations based strongly on

dependency information outperform all the other representations. Therefore token embeddings

computed using dependency information can bring higher value than generic word type em-

beddings trained on such contexts. The observed results support this belief with improvements

between 4.5% and 8% in absolute accuracy value between the word embeddings trained on

dependency contexts and the proposed token embeddings that use dependency information.

3.5.6 Comparison to state-of-the-art systems

A comparison to the related work for the fine-grained level-2 multi-class classification of the

PDTB-Lin split is further provided. The results can be seen in Table 3.32. Although the scores

obtained using the SATokE token embeddings are close to those of state-of-the-art systems, it is

important to note that they either use additional information from non-implicit relations to train

their models or consider more complex architectures:

• Lin et al. (2009) exploit and analyze the use of features derived from constituent and

dependency parse trees as well as word pair features as input to a traditional maximum

entropy classifier;

• Qin et al. (2016a) use a hybrid architecture in which they enhance the word embeddings

representations with character level information derived from stacked convolutional and

bidirectional LSTM layers;

3.5. Application to discourse analysis 127

Model Accuracy (%)
Lin et al. (2009) 40.20
Qin et al. (2016a) 43.81
Qin et al. (2017) 44.65
CNN + SATokE 42.55
CGNN + SATokE 43.08

Table 3.32: Results for level-2 multi-class classification on the PDTB-Lin split in terms of
accuracy (%). Comparison to related work.

• Qin et al. (2017) use a more complex model in an adversarial framework leveraging ex-

plicit discourse connectives. Their adversarial setup is composed of a network fed only

data with implicit relations, a network fed data augmented with connectives, a discrimina-

tor aiming at distinguishing between the features produced by the two and a final classifier

to determine the discourse relation between the two arguments.

To enable further comparisons to other models in the literature, a set of experiments is per-

formed on the level-1 multi-class classification using the PDTB-Pitler split. Although this split

is less fine-grained that the PDTB-Lin one, a wider variety of works have considered it. Table

3.33 compares the results using the CNN and CGNN architectures with the proposed SATokE

token embeddings to the results reported in the literature for this split. Additional details are

provided regarding the resources used by related work, the approaches employed and the num-

ber of parameters required. Estimations for parameter count are provided whenever the details

in the corresponding work are not sufficient to compute an exact number. All numbers assume

an input embedding size of 300.

While the results obtained are competitive to related work, the systems we compare to differ

from the current proposal from several points of view. Some work uses additional data from

different corpora or containing explicit connectives (Rutherford and Xue, 2015; Liu et al., 2016;

Ji et al., 2016; Lan et al., 2017; Dai and Huang, 2018). Other work focuses on complex archi-

tectures to model the interaction between the two arguments (Liu et al., 2016; Liu and Li, 2016;

Ji et al., 2016; Lan et al., 2017; Dai and Huang, 2018). Further details about each work are

provided in the following:

128 Chapter 3. Unsupervised syntax-aware contextualized word representations

• Rutherford and Xue (2015) collect additional training data through distant supervision

over freely omissible explicit discourse connectives;

• Liu et al. (2016) use a multi-task neural network framework leveraging a combination of

different discourse corpora. They use CNNs to represent the pairs of arguments, creating

both unique and shared representations across the different tasks and consider additional

surface-level features.

• Lan et al. (2017) use an attention-based LSTM to model the interaction between the two

arguments integrated in a multi-task joint learning setting. They also leverage explicit

discourse relations and unlabelled external data.

• Liu and Li (2016) use a multi-level attention mechanism to repeatedly read the arguments

involved in a discourse relation along with an external short-term memory to keep track

of the exploited information. The arguments are modeled using bidirectional LSTM net-

works.

• Dai and Huang (2018) model inter-dependencies between arguments and the sequence

patterns of their discourse connectives by positioning them in the wider context of para-

graphs.

• Ji et al. (2016) model jointly the discourse relation and the arguments with a latent vari-

able RNN-based architecture using additional data from non-implicit relations. Their

proposed probabilistic model is used to infer discourse relations given the representations

of the arguments as well as to do discourse-aware language modelling.

• Wang et al. (2017) focus on the representation of the arguments: they propose Tree-

LSTM and Tree-GRU models to encode the arguments. They use the structure of the

constituency parse trees to recursively compose semantics bottom-up and information

from the constituent tags in order to control for semantic composition and induce gram-

matical information.11

3.5. Application to discourse analysis 129

Model Accuracy (%) Additional data Arg Interaction Multi-task |θ|
Wang et al. (2017) 56.04 / 59.85 - - - 6.7M
Rutherford and Xue (2015) 57.10 X - - NA
Liu et al. (2016) 57.27 X X X > 1M
Lan et al. (2017) 57.39 X X X > 1M
Liu and Li (2016) 57.57 - X - 6.7M
Dai and Huang (2018) 58.20 X X - > 4M
Ji et al. (2016) 59.50 X X - 5.5M

LSTM + GloVe 300d 54.60 - - - 1.5M
CNN + GloVe 300d 56.42 - - - 4M

LSTM + ELMo 1024d 56.97 - - - 1.5M
CNN + ELMo 1024d 57.81 - - - 4M

LSTM + SATokE 300d 56.63 - - - 1.5M
CNN + SATokE 300d 58.83 - - - 4M
CGNN + SATokE 300d 57.90 - X - 41M

Table 3.33: Results for level-1 multi-class classification on the PDTB-Pitler split in terms of
accuracy (%). Comparison of the proposed SATokE token embeddings to related work, to
GloVe word type embeddings and to ELMo token embeddings. In italic and above the first
double line are reported scores in the literature. All non-italic scores are (re)produced in the
current work.

It can be observed that by using a simple CNN encoder with the SATokE token embeddings

as input features, one can obtain near state-of-the-art results, surpassing most complex models

which exploit external data or model the interaction between arguments or their positioning in a

wider context. The best scores obtained without additional data in a non multi-task setting and

without modelling argument interaction are those resulting from the CNN setup with SATokE

token embeddings as input. This setup also represents the one with the lowest number of pa-

rameters for the given performance level. Additionally, the scores obtained in this setup also

surpass results obtained by the any of the architectures when provided the GloVe word type

embeddings or the ELMo token embeddings as input.

As in the case of the PDTB-Lin split, among the 3 architectures considered, using an LSTM

over the token embeddings yields the lowest results. This may indicate that modelling the

arguments using a simple LSTM may not be sufficient to encode the required information for

the task. Another possible explanation can be related to the fact that each argument in the

11The reproduction of the scores reported by Wang et al. (2017) was impossible, despite re-creating the setup
described in the paper with the code provided by the authors.

130 Chapter 3. Unsupervised syntax-aware contextualized word representations

Model Accuracy (%)
Wang et al. (2017) + GloVe 50d 55.70
Wang et al. (2017) + GloVe 300d 56.04
Wang et al. (2017) + SATokE 300d 56.55
CNN + SATokE 300d 58.83
CGNN + SATokE 300d 57.90

Table 3.34: Results for level-1 multi-class classification on the PDTB-Pitler split in terms of
accuracy (%). Comparison to originally reported results and re-created settings of Wang et al.
(2017).

pair is represented only by the last hidden state of the LSTM. Thus subsequent layers only

have access to that information, while the CNN architecture has access to the computed token

embeddings at each position. Alternatively it can indicate that the SATokE token embeddings

are not fully exploitable when input to an LSTM either because the token embeddings already

encode positional information or because their syntactic component is less adapted for use in a

sequential manner.

The CNN+SATokE setup also surpasses the CGNN+SATokE run, suggesting that even though

the CGNN architecture models the interaction between arguments, it may not constitute a pow-

erful enough architecture for this setup: as noted previously it is indeed a minimal interaction

model. Modelling the interactions between the arguments is orthogonal to how one chooses to

model the arguments - which is the focus of the current work. Thus the two can bring comple-

mentary benefits in predicting the discourse relation holding between two arguments.

Although Lin et al. (2009) suggested the importance of including dependency-related informa-

tion when modelling the arguments of a discourse relation, none of the recent models investi-

gates the use of syntactic dependencies for this task. Moreover, contrary to the current proposal,

none of them can encode arbitrary graphs. It is also important to note that, as observed from

Table 3.33, the number of parameters required by the state-of-the-art models (Ji et al., 2016;

Wang et al., 2017) is higher than the number of parameters used by the CNN encoder along

with SATokE representations.

3.5. Application to discourse analysis 131

3.5.7 Extension: combining dependency information with constituent parse

features

Finally, inspired by the findings in Lin et al. (2009) regarding the benefit of combining in-

formation from syntactic dependencies with constituent parse features, one additional set of

experiments is run using the architecture presented in Wang et al. (2017). This architecture is

particularly fit for the current goal as it leverages constituency-based parse trees. Table 3.34

shows all results. Unfortunately, there are issues reproducing the results reported by Wang

et al. (2017), despite re-creating the setup described in the paper with the code provided by the

authors. The re-run of their method with the reported parameters and 50-dimensional GloVe

embeddings yielded only 55.7% accuracy, a drop of slightly over 4% from the originally re-

ported results.

To investigate to what extent token embeddings can be beneficial as input to the proposed archi-

tecture in Wang et al. (2017), two additional experiments were considered: one leveraging 300-

dimensional GloVe embeddings (for fair comparison) and one considering the proposed 300-

dimensional SATokE token embeddings. It can be observed that the token embeddings yield

a slight improvement over using word type embeddings, confirming once again the benefit of

having contextualized representations. However, the results obtained in both cases are approx-

imately 2% lower than the results obtained using the proposed token embeddings in the CNN

and CGNN architectures. This indicates that further investigation might be required into how

to efficiently combine the dependency information with knowledge derived from constituency-

based parse trees for this task.

3.5.8 Ablation studies - impact of syntax - model variations

While modelling the words in their context seems to be beneficial for the task, one can further

investigate to what extent syntax plays an important role in the obtained scores. An additional

set of experiments analyze the impact of using dependency information in the computation

132 Chapter 3. Unsupervised syntax-aware contextualized word representations

of the token embeddings. All results are reported in Table 3.35. The parameters for the token

embeddings computation are set to the ones that obtained the best results in the default scenario,

hereafter denoted SATokE12. Then two comparative settings are considered: token embeddings

computed without the adjacency relation SATokE-adjacency, and without all syntactic relations

SATokE-syntax respectively. The SATokE-syntax refers to a setting in which information about

individual syntactic relations is removed, yet one matrix is kept to account for any link between

tokens as derived from the syntactic dependency tree (unlabeled). The decrease of performance

in results shows that both adjacency relation and syntax play an important role in the final result.

However, the results seem to degrade slightly more when information about syntax is removed

from the token computation than when adjacency information is not present.

Further experiments take into account only certain types of dependency relations considered to

be highly relevant. The SATokEAdj+SUBJ+OBJ+MOD+1rel setup refers to tokens computed

taking into account information derived from the SUBJ, OBJ and MOD dependency relations

along with adjacency information. In this setting, one additional relation stands for all the other

dependency relations that occur between the tokens with frequency higher than the previously

set threshold. This additional relation is modelled by one single matrix in the tensor. Con-

sequently, this reduces the sparsity as it aggregates information that would otherwise be at the

basis of several matrices. The resulting tensors have thus less relations, also making the learning

process faster. It can be observed that the scores obtained in these settings are not far from the

best obtained scores overall. This may indicate that selecting only certain dependency relations

to use and merging all the rest, could provide good results, while at the same time reducing the

computation time and fighting the data sparsity issue when creating the token embeddings.

The two settings fine-grained and coarse-grained denote whether the original distinctions have

been maintained or not for the more granular dependency relations. For example in the fine-

grained setting, the nsubj (nominal subject), nsubjpass (nominal subject passive), csubj (clausal

subject) and csubjpass (clausal subject passive) relations are all kept separate and thus constitute

12The tokens used for the reported results in Table 3.33.

3.5. Application to discourse analysis 133

Model variations Accuracy (%)
Original model
SATokE 58.83
Removing information
SATokE-adjacency 57.81
SATokE-syntax 57.65
Limited information
SATokEAdj+SUBJ+OBJ+MOD+1rel fine-grained 58.07
SATokEAdj+SUBJ+OBJ+MOD+1rel coarse-grained 58.57
Filtering
SATokE-SUBJ 58.83
SATokE-SUBJ-OBJ 57.90
SATokE-SUBJ-OBJ-MOD 57.56

Table 3.35: Results for level-1 multi-class classification on the PDTB-Pitler split using varia-
tions of the proposed token embeddings model with a CNN architecture. Results are reported
in terms of accuracy (%). Best results are in bold.

separate matrices in the tensor of a sentence, while in the coarse-grained setting they are all

merged into the SUBJ relation and modelled using a single matrix in the tensor. It can be

observed from Table 3.35 that using the coarse-grained setup yields a 0.5% increase over its

corresponding fine-grained counterpart. This can be related to the sparsity issue: as Figure 3.17

shows, there are not enough examples of lower granularity dependency relations in the corpus to

account for having a separate matrix for each of these relations and to drive efficient learning:

see the low frequencies of nmod (modifier of nominal), nsubjpass (nominal subject passive)

and quantmod (modifier of quantifier). Thus having a single general relation that stands for

multiple fine-grained relations could be beneficial in the lack of high amounts of data. Overall,

these results also suggest that there may be settings in which other dependency relations could

be merged to obtain better results.

Finally, another set of experiments is considered in which certain dependency relations con-

sidered important are iteratively filtered out from the token embeddings computation. We thus

obtain the SATokE-SUBJ setting which corresponds to tokens computed without information

coming from the SUBJ dependency relations, SATokE-SUBJ-OBJ to denote tokens computed

without information regarding the SUBJ and OBJ dependency relations and SATokE-SUBJ-

134 Chapter 3. Unsupervised syntax-aware contextualized word representations

OBJ-MOD corresponding to tokens computed without information coming from the SUBJ,

OBJ and MOD dependency relations. It can be observed that, for the most part, results degrade

the more information is removed from the computation of the tokens.

3.6 Conclusion

Acknowledging the need for a contextualized representation of words, existing approaches in

current literature leverage machine translation (McCann et al., 2017) or language modelling

(Peters et al., 2017, 2018) on large amounts of data to enable the construction of word token

embeddings. However, none of the currently existing methods leverages directly the sentence

structure from a dependency point of view to create these token representations. Moreover,

most of the token embeddings are further used in combination with word type embeddings

(pre-trained on large amounts of data), character-level embeddings or other feature vectors and

are then provided as input features for different classifiers to solve various natural language

understanding tasks. Strictly determining the contribution of token embeddings obtained by

methods available in the literature is thus biased by their typical evaluation in combination with

different other features.

In contrast to existing work, the current proposal provides an unsupervised method to obtain

token embeddings by jointly encoding information from the sentence dependency parse tree

and local context information (adjacency). This information is injected directly into the token

representations, such that each token would reflect the whole sentence structure from its per-

spective. Additionally, the proposed method provides embeddings for the relations that hold

between tokens, which can be further leveraged to compute token embeddings on new corpora.

In the proposed model, sentences are modelled as graphs, with tokens standing for the nodes and

relations between them denoting the edges in the graphs. Embeddings for tokens and relations

are then obtained by factorizing these graphs into corresponding structures. A ranking objec-

tive is used in order to reconstruct the relations between tokens in the graph of each sentence as

3.6. Conclusion 135

detailed in Section 3.2.

The proposed representations have been evaluated on various natural language understanding

tasks ranging from sentiment analysis to paraphrase detection, textual entailment recognition

and implicit discourse relation classification in Section 3.4 and Section 3.5 also outlined in

Popa et al. (2019a,b). A discussion was provided in Section 3.4.1 with respect to the “ap-

propriateness” of considering such datasets for evaluation based on the characteristics of the

sentences contained in them: given the proposed token embeddings method relies heavily on

parsing information, it is important to ensure the consistency of such information when pro-

viding it as input to the token embeddings computation. The obtained results show indeed that

datasets having certain characteristics (and being adapted to syntactic analysis) can benefit more

from the use of the proposed syntactically-aware token embeddings.

Several discussions have been provided as well around other characteristics of the datasets such

as the complexity of the structures present in sentences and the frequency distribution of de-

pendency relations and how these may impact performance on the end task. However, it is

important to note that the proposed SATokE token embeddings obtain competitive results on

challenging datasets as it can be seen from the experiments in Section 3.4 and Section 3.5. For

example they outperform all word type embeddings considered as well as the ELMo token em-

beddings on both implicit discourse relation classification (PDTB dataset) and paraphrase de-

tection (MSRPC dataset), both datasets being among the ones with the highest average sentence

length, the highest average dependency link distance and rather important variations among the

frequencies of dependency relations, which made the embeddings computation process more

challenging.

When provided as input features to commonly-employed neural network architectures, the pro-

posed SATokE token embeddings have shown clear superiority to general purpose word type

embeddings. This has been observed including when the word type embeddings were pre-

trained on large corpora using dependency information or were enhanced with positional in-

formation or self-attention. Additionally, in some cases, the SATokE token embeddings fed

136 Chapter 3. Unsupervised syntax-aware contextualized word representations

to simple neural network-based models provide comparable or even increased performance to

more complex state-of-the-art methods that use word type embeddings as input, while at the

same time requiring less parameters as shown in Section 3.5.

Comparisons to other token embeddings methods yielded similar results with the type of data

being evaluated on and the size of the compared token embeddings playing an important role in

the final scores. Analysis conducted in Section 3.4 outlined multiple aspects: firstly, considering

ELMo token embeddings of comparable dimensionality (256d) to that of SATokE (300d) incurs

a performance drop. This suggests that at least a part of the difference in performance between

ELMo (1024d) and SATokE (300d) may be attributed to dimensionality.

Further, datasets involving sentences with rich vocabulary, but not necessarily challenging syn-

tactic structures favor the token embeddings trained on large amounts of data with a language

modelling objective. However, when dealing with sentences for which the understanding re-

quires going beyond word level and that pose a structural challenge, using the proposed token

embeddings brings benefits over alternative token embeddings methods. In that sense one possi-

ble solution would be to use different weights for the semantic and syntactic aspects of the loss.

This could boost performance on datasets where the syntactic aspect is less present (for exam-

ple reviews with sentences sometimes lacking verbs or the SUBJ relation). Alternatively, or in

addition to this, it would be interesting to use the proposed method to train relation embeddings

on large amounts of data and further leverage them for the computation of token embeddings on

any new given dataset. Furthermore, one could analyze to what extent giving different weights

to different syntactic relations can influence the scores.

Further, the amount of unknown words in a dataset has been shown to directly correlate to the

drop in performance with respect to the related work token embeddings methods. This can

be explained by the fact that related work estimates embeddings for unknown words based on

their character-level representation, while this is not integrated in the current proposal. Adding

character-level information to the proposed token embeddings could however constitute an in-

teresting experiment for the future.

3.6. Conclusion 137

Finally, qualitative analysis in Section 3.4.5 has shown that the proposed token embeddings

distinguish between the different senses of words although they have not been explicitly trained

to do so. Further analysis can be conducted in this sense by checking whether similarities

do exist between tokens that play the same functional role in different sentences (for example

fulfilling the subject role in a sentence).

In general, when constructing the token embeddings with the proposed method, using syn-

tactic information yields improvements in scores over just using adjacency information. This

has been observed across all datasets as detailed in Sections 3.4.5 and 3.5. One interesting

future direction though, can also be that of using relations from a semantic parser within the

same framework. Additionally, one could also consider enriching the graph of a sentence with

information from the part-of-speech tags of the words in the sentence or any other linguistic

knowledge. From this point of view, the method proposed here is expandable and can deal with

arbitrary graphs.

As a conclusion, having a contextualized word representation is beneficial for natural language

understanding tasks. The current proposal contributes to the space of token embeddings com-

putation by providing an unsupervised method to encode linguistic information and sentence

structure into token representations directly. The obtained token embeddings provide competi-

tive results on the tasks considered in this work (Popa et al., 2019a,b).

Chapter 4

Conclusion

Most approaches to natural language processing rely on vectorial word representations as their

input signal. These representations can be either pre-trained on large corpora and used as the

initialization point for subsequent tasks or learned along with the task at hand. While some

work focused on developing different methods for creating word representations that can be

used successfully across different tasks (Mikolov et al., 2013b; Levy and Goldberg, 2014),

other work specialized these representations into satisfying certain linguistic constraints that

pertained to individual tasks (Vulic and Mrksic, 2018).

In that sense, Chapter 2 proposes a framework for inducing an entailment vector space in which

words are represented by vectors denoting probabilities of features being known, thus enabling

the modelling of information inclusion. A set of proposed entailment operators are tested as

part of hyponymy detection evaluation and shown to obtain competitive results on a widely

used benchmark dataset. The proposal and the obtained results are also reflected in Henderson

and Popa (2016).

However, a challenging aspect is going beyond single word representations and encoding longer

units of text. With many existing architectures in the literature, yet no general consensus over

the one that encodes the best compositionality notions, combining the representations of words

138

4.1. Summary of Thesis Achievements 139

to form representations of sentences remains an open area of research.

At the same time, encoding words within the context they appear in can enrich their representa-

tions and could eventually help in enabling compositionality. One possible way to contextualize

word representations is through a model that considers both local and syntactic contexts for any

given word in a sentence. Further, such a model must condition the representation of each

word on the representations of all the other words it is related to in that sentence, such as to

be able to encode the structure of the sentence within the representations of each word. Some

compositional aspects could be therefore injected within the word representations themselves

as in the proposal described in Chapter 3 and in Popa et al. (2019a,b). Analysis of the ob-

tained contextualized word representations across various sentence understanding tasks outline

the benefits of using such an approach and widen the areas of exploration for context aware

word representations.

4.1 Summary of Thesis Achievements

The following outline the main achievements presented in the current thesis:

• a framework for modelling entailment within a vector space, relying on information in-

clusion, contributing to the area of specialized vector spaces (Henderson and Popa, 2016);

• a set of operators that can be used to reason about entailment within the vector space;

• an evaluation of the proposed entailment framework and operators for the task of hy-

ponymy detection as an instance of lexical entailment recognition;

• a flexible framework for explicitly incorporating linguistic knowledge into contextualized

word representations (Popa et al., 2019a,b);

• a method for constructing syntax-aware contextualized word token representations (SATokE)

that implicitly include aspects of the structure of the sentence they are part of (Popa et al.,

140 Chapter 4. Conclusion

2019a,b);

• a comparison of the proposed token representations to other contextualized word repre-

sentations proposed in the literature;

• an evaluation of the constructed token representations on a wide range of sentence under-

standing tasks;

• a set of ablation studies over the proposed model as well as a discussion of the obtained

results.

4.2 Publications

Peer - reviewed International Conferences Articles

• Henderson, James and Popa, Diana Nicoleta. (2016). A vector space for distributional

semantics for entailment. In Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), ACL.

• Popa, Diana Nicoleta, Perez, Julien, Henderson, James, and Gaussier, Eric. (2019). Im-

plicit discourse relation classification with syntax-aware contextualized word representa-

tions. In Proceedings of the 32nd International Florida Artificial Intelligence Research

Society Conference, FLAIRS-32.

Peer - reviewed International Journal Articles

• Popa, Diana Nicoleta, Perez, Julien, Henderson, James, and Gaussier, Eric. (2019). To-

wards Syntax-aware Token Embeddings. In Journal of Natural Language Engineering,

JNLE (under review).

4.3. Future Work 141

Peer - reviewed National Conferences Articles

• Popa, Diana Nicoleta, Perez, Julien, Henderson, James, and Gaussier, Eric. (2019).

SATokE: How can Syntax-Aware Contextualized Word Representations Benefit Implicit

Discourse Relation Classification? In Conférence sur l’Apprentissage automatique, CAp.

4.3 Future Work

While the proposal in Chapter 2 encodes lexical entailment within the vector space, more work

can be done to explore the potential of methods to extract information about entailment from

large corpora. Alternatively, in a similar fashion, one could imagine encoding other types of

relations between words instead of (or in addition to) enforcing the entailment constraints within

a vector space. In that sense a possible future direction concerns investigating further methods

to inject additional linguistic constraints into the vectorial representations themselves as well

as investigating to what extent doing so could benefit different natural language understanding

tasks.

Also, one possible future direction concerns merging the two proposals from Chapter 2 and

Chapter 3 into a model that goes beyond lexical entailment to reason about textual entailment.

One could thus imagine enforcing the information inclusion constraints along with ensuring

contextualized representations within the same model. This can be achieved either by reusing

the lexical entailment framework proposed in Chapter 2 on top of the architecture in Chapter 3

or by deriving a new architecture to consider both entailment and contextuality all-together.

Concerning the proposal in Chapter 3, more effort can be put into investigating how different

types of syntactic relations can affect the performance of the created representations on different

tasks. This could further lead to a model in which different relations are weighted differently

to obtain the token embeddings. Also only some relations could be taken into account, while

others can be completely discarded. Similarly, the syntactic and the semantic aspects can be

142 Chapter 4. Conclusion

weighted differently in the computation of the token embeddings. This aspect can be related

to investigating whether it is the syntactic or the semantic aspects that play a more important

role depending on the task. Relations from a semantic parser can also be used instead of, or in

addition to, the syntactic dependencies.

Since the proposal in Chapter 3 is suitable for encoding arbitrary graphs, much other informa-

tion can be included in the model, like for example that coming from external knowledge re-

sources. It is also possible to consider including further linguistic constraints into the proposed

model, such as for example information concerning the part-of-speech tags or information from

the constituency parse tree. This could be achieved either through regularization terms (like

the one proposed in the current approach to ensure the link to pre-trained word embeddings)

or through the use of an attributes matrix holding the desired linguistic properties that one may

want to enforce. Since previous work investigated ways to jointly factorize tensors and matrices

(Singh et al., 2015), such a properties matrix could be factorized along with the tensor holding

the graph of the sentence.

Also other factorization methods can be considered along with different options for the struc-

tures used to encode the words and the relations between them, like for example considering

vectors instead of matrices for relations. Whether such a decrease in the representation space is

indeed beneficial or even sufficient, to still represent the interactions between words within the

parse tree, is in itself a question. Varying the nature of the pre-trained word embeddings that

serve as constraint for the semantic nature of the token embeddings is also an option. Addition-

ally, one could consider adding a component that leverages character-level information or an

alternative to modelling the semantic aspects in the representations of rare words. Investigating

such an approach could help assess the benefits of the proposed representations by improving

on the comparison to methods that do handle these aspects.

From an evaluation point of view, one could consider more complex architectures on top of

the proposed token embeddings. Thus it would be possible to investigate to what extent other

architectures are able to make use of the information present in the contextualized word repre-

4.3. Future Work 143

sentations and whether a certain type of architecture is more suitable than others. Additionally,

different tasks could be considered, such as those that rely on more that just word similarity or

relatedness and that require an in-depth sentence understanding.

One particularly interesting direction concerns investigating to what extent the proposed repre-

sentations pass the challenging compositionality-awareness tests proposed in recent literature

(Dasgupta et al., 2018; Ettinger et al., 2018) and if they do not, in which way token representa-

tions can be improved to do so. In the same space, it would be very interesting to test the token

embeddings as part of adversarial setups such as that proposed by Nie et al. (2019). In that sense

one could expect positive results, given the performance of the proposed token embeddings on

the SICK dataset 1 as seen from the evaluation in Section 3.4.4.

Further, more work can be done to investigate alternative methods to encode contextual infor-

mation in the vector representations within parametric settings. One potential approach consists

in creating contextualized word representations by reusing a neural network encoder architec-

ture trained for dependency parsing, similarly to how related work reuses encoders trained for

language modelling or machine translation.

1It it worth noting that 7% of the sentence pairs in the SICK dataset are formed by sentences having the
same vocabulary but different meanings due to the way these words are combined with each-other. In that sense,
evaluating only that proportion of the SICK dataset could be seen as an instance of some of the tests proposed by
Dasgupta et al. (2018).

Bibliography

Bach, E. (1989). Informal lectures on formal semantics. State University of New York Press.

Baker, C. F., Fillmore, C. J., and Lowe, J. B. (1998). The Berkeley FrameNet Project. In

Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics

and 17th International Conference on Computational Linguistics - Volume 1.

Bansal, M., Gimpel, K., and Livescu, K. (2014). Tailoring continuous word representations

for dependency parsing. In Proceedings of the 52nd Annual Meeting of the Association for

Computational Linguistics.

Baroni, M., Bernardi, R., Do, N.-Q., and Shan, C.-c. (2012). Entailment above the word level

in distributional semantics. In Proceedings of the 13th Conference of the European Chapter

of the Association for Computational Linguistics.

Baroni, M. and Lenci, A. (2010). Distributional memory: A general framework for corpus-

based semantics. Journal of Computational Linguistics.

Baroni, M. and Lenci, A. (2011). How we BLESSed distributional semantic evaluation. In

Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Se-

mantics.

Baroni, M. and Zamparelli, R. (2010). Nouns are vectors, adjectives are matrices: Representing

adjective-noun constructions in semantic space. In Proceedings of the 2010 Conference on

Empirical Methods in Natural Language Processing.

144

BIBLIOGRAPHY 145

Bentivogli, L., Bernardi, R., Marelli, M., Menini, S., Baroni, M., and Zamparelli, R. (2016).

SICK through the SemEval glasses. Lesson learned from the evaluation of compositional

distributional semantic models on full sentences through semantic relatedness and textual

entailment. In Journal of Language Resources and Evaluation.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching word vectors with

subword information. Transactions of the Association for Computational Linguistics.

Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and Yakhnenko, O. (2013). Translating

embeddings for modeling multi-relational data. In Advances in Neural Information Process-

ing Systems 26.

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D. (2015). A large annotated corpus

for learning natural language inference. In Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing.

Braud, C. and Denis, P. (2015). Comparing word representations for implicit discourse relation

classification. In Proceedings of Empirical Methods in Natural Language Processing.

Braud, C. and Denis, P. (2016). Learning connective-based word representations for implicit

discourse relation identification. In Proceedings of Empirical Methods in Natural Language

Processing.

Camburu, O.-M., Rocktäschel, T., Lukasiewicz, T., and Blunsom, P. (2018). e-SNLI: Natural

language inference with natural language explanations. In Advances in Neural Information

Processing Systems 31.

Cer, D., Yang, Y., Kong, S.-y., Hua, N., Limtiaco, N., St. John, R., Constant, N., Guajardo-

Cespedes, M., Yuan, S., Tar, C., Strope, B., and Kurzweil, R. (2018). Universal sentence

encoder for english. In Proceedings of the 2018 Conference on Empirical Methods in Natural

Language Processing: System Demonstrations.

146 BIBLIOGRAPHY

Chang, H.-S., Wang, Z., Vilnis, L., and McCallum, A. (2018). Distributional inclusion vector

embedding for unsupervised hypernymy detection. In Proceedings of the 2018 Conference

of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long Papers).

Chelba, C., Mikolov, T., Schuster, M., Ge, Q., Brants, T., Koehn, P., and Robinson, T. (2013).

One billion word benchmark for measuring progress in statistical language modeling. arXiv

preprint arXiv:1312.3005.

Chen, J., Zhang, Q., Liu, P., Qiu, X., and Huang, X. (2016). Implicit discourse relation detection

via a deep architecture with gated relevance network. In Proceedings of 54th Annual Meeting

of Association for Computational Linguistics.

Chen, Q., Zhu, X., Ling, Z.-H., Wei, S., Jiang, H., and Inkpen, D. (2017). Enhanced LSTM for

natural language inference. In Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers).

Chen, X., Liu, Z., and Sun, M. (2014). A unified model for word sense representation and

disambiguation. In Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing.

Cheng, J. and Kartsaklis, D. (2015). Syntax-aware multi-sense word embeddings for deep

compositional models of meaning. In Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing.

Clark, S., Coecke, B., and Sadrzadeh, M. (2008). A compositional distributional model of

meaning. In Proceedings of the Second AAAI Symposium on Quantum Interaction.

Clark, S. D. and Pulman, S. G. (2007). Combining symbolic and distributional models of

meaning. In AAAI Spring Symposium: Quantum Interaction.

Collobert, R. and Weston, J. (2008). A unified architecture for natural language processing:

BIBLIOGRAPHY 147

Deep neural networks with multitask learning. In Proceedings of the 25th International

Conference on Machine Learning.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. (2011).

Natural language processing (almost) from scratch. Journal of Machine Learning Research.

Conneau, A. and Kiela, D. (2018). SentEval: An evaluation toolkit for universal sentence repre-

sentations. In Proceedings of the Eleventh International Conference on Language Resources

and Evaluation (LREC-2018).

Conneau, A., Kiela, D., Schwenk, H., Barrault, L., and Bordes, A. (2017). Supervised learning

of universal sentence representations from natural language inference data. In Proceedings

of the 2017 Conference on Empirical Methods in Natural Language Processing.

Dagan, I., Glickman, O., and Magnini, B. (2006). The PASCAL recognising textual entail-

ment challenge. In Proceedings of the First International Conference on Machine Learning

Challenges: Evaluating Predictive Uncertainty Visual Object Classification, and Recogniz-

ing Textual Entailment.

Dagan, I., Roth, D., Sammons, M., and Zanzotto, F. M. (2013). Recognizing textual entailment:

Models and applications. Synthesis Lectures on Human Language Technologies.

Dai, Z. and Huang, R. (2018). Improving implicit discourse relation classification by modeling

inter-dependencies of discourse units in a paragraph. ArXiv e-prints.

Dasgupta, I., Guo, D., Stuhlmüller, A., Gershman, S. J., and Goodman, N. D. (2018). Evaluating

compositionality in sentence embeddings. arXiv preprint arXiv:1802.04302.

Dasigi, P., Ammar, W., Dyer, C., and Hovy, E. H. (2017). Ontology-aware token embeddings

for prepositional phrase attachment. In Proceedings of the 55th Annual Meeting of the Asso-

ciation for Computational Linguistics.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R. (1990). In-

dexing by latent semantic analysis. Journal of the American Society for Information Science.

148 BIBLIOGRAPHY

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A large-

scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern

recognition.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep

bidirectional transformers for language understanding. Proceedings of the 2019 Conference

of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies.

Dhingra, B., Shallue, C. J., Norouzi, M., Dai, A. M., and Dahl, G. E. (2018). Embedding

text in hyperbolic spaces. In TextGraphs@Proceedings of the 2018 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language Tech-

nologies.

Ding, Z., Xia, R., Yu, J., Li, X., and Yang, J. (2018). Densely connected bidirectional LSTM

with applications to sentence classification. In Proceedings of the International Conference

on Natural Language Processing and Chinese Computing.

Dolan, B. and Brockett, C. (2005). Automatically constructing a corpus of sentential para-

phrases. In Proceedings of the Third International Workshop on Paraphrasing.

Erk, K. and Padó, S. (2008). A structured vector space model for word meaning in context. In

Proceedings of the Conference on Empirical Methods in Natural Language Processing.

Ettinger, A., Elgohary, A., Phillips, C., and Resnik, P. (2018). Assessing composition in sen-

tence vector representations. In Proceedings of the 27th International Conference on Com-

putational Linguistics.

Faruqui, M., Dodge, J., Jauhar, S. K., Dyer, C., Hovy, E., and Smith, N. A. (2015). Retrofitting

word vectors to semantic lexicons. In Proceedings of the 2015 Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics: Human Language Technolo-

gies.

BIBLIOGRAPHY 149

Foltz, P. W., Kintsch, W., and Landauer, T. K. (1998). The measurement of textual coherence

with latent semantic analysis. Discourse Processes.

Frege, G. (1884). Die Grundlagen der Arithmetik: eine logisch mathematische Untersuchung

über den Begriff der Zahl. W. Koebner.

Fu, R., Guo, J., Qin, B., Che, W., Wang, H., and Liu, T. (2015). Learning semantic hierar-

chies: A continuous vector space approach. IEEE/ACM Transactions on Audio, Speech, and

Language Processing.

Ganitkevitch, J., Van Durme, B., and Callison-Burch, C. (2013). PPDB: The paraphrase

database. In Proceedings of the 2013 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies.

Gao, H., Mao, J., Zhou, J., Huang, Z., Wang, L., and Xu, W. (2015). Are you talking to a

machine? Dataset and methods for multilingual image question answering. In Proceedings

of the 28th International Conference on Neural Information Processing Systems.

Geffet, M. and Dagan, I. (2005). The distributional inclusion hypotheses and lexical entailment.

In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics.

Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. (2017). Convolutional sequence

to sequence learning. In Proceedings of the 34th International Conference on Machine Learn-

ing.

Ghannay, S., Favre, B., Estve, Y., and Camelin, N. (2016). Word embeddings evaluation and

combination. In Journal of Language Resources and Evaluation.

Gidaris, S. and Komodakis, N. (2015). Object detection via a multi-region and semantic

segmentation-aware CNN model. In Proceedings of the 2015 IEEE International Confer-

ence on Computer Vision.

Gildea, D. and Jurafsky, D. (2002). Automatic labeling of semantic roles. Journal of Computa-

tional Linguistics.

150 BIBLIOGRAPHY

Glavaš, G. and Vulić, I. (2018). Explicit retrofitting of distributional word vectors. In Proceed-

ings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers).

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural networks. In

International Conference on Artificial Intelligence and Statistics.

Graves, A. and Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional

LSTM networks. Proceedings of the 2005 IEEE International Joint Conference on Neural

Networks.

Grefenstette, E. and Sadrzadeh, M. (2011). Experimental support for a categorical composi-

tional distributional model of meaning. In Proceedings of the 2011 Conference on Empirical

Methods in Natural Language Processing.

Guo, J., Che, W., Wang, H., and Liu, T. (2014). Learning sense-specific word embeddings

by exploiting bilingual resources. In Proceedings of the 25th International Conference on

Computational Linguistics: Technical Papers.

Harris, Z. (1954). Distributional structure. Word.

He, H., Gimpel, K., and Lin, J. (2015). Multi-perspective sentence similarity modeling with

convolutional neural networks. In Proceedings of the 2015 Conference on Empirical Methods

in Natural Language Processing.

Henderson, J. and Popa, D. N. (2016). A vector space for distributional semantics for en-

tailment. In Proceedings of the 54th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers).

Hill, F., Reichart, R., and Korhonen, A. (2015). SimLex-999: Evaluating semantic models with

(genuine) similarity estimation. Journal of Computational Linguistics.

Hindle, D. and Rooth, M. (1993). Structural ambiguity and lexical relations. Journal of Com-

putational Linguistics.

BIBLIOGRAPHY 151

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation.

Honnibal, M. and Johnson, M. (2015). An improved non-monotonic transition system for de-

pendency parsing. In Proceedings of the 2015 Conference on Empirical Methods in Natural

Language Processing.

Hu, M. and Liu, B. (2004). Mining and summarizing customer reviews. In Proceedings of the

10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

Huang, E. H., Socher, R., Manning, C. D., and Ng, A. Y. (2012). Improving word represen-

tations via global context and multiple word prototypes. In Proceedings of the 50th Annual

Meeting of the Association for Computational Linguistics: Long Papers-Volume 1.

Irsoy, O. and Cardie, C. (2013). Bidirectional recursive neural networks for token-level labeling

with structure. arXiv preprint arXiv:1312.0493.

Issa, F., Damonte, M., Cohen, S. B., Yan, X., and Chang, Y. (2018). Abstract meaning represen-

tation for paraphrase detection. In Proceedings of the 2018 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies.

Iyyer, M., Manjunatha, V., Boyd-Graber, J., and Daumé III, H. (2015). Deep unordered com-

position rivals syntactic methods for text classification. In Proceedings of the 53rd Annual

Meeting of the Association for Computational Linguistics and the 7th International Joint

Conference on Natural Language Processing (Volume 1: Long Papers).

Ji, Y. and Eisenstein, J. (2015). One vector is not enough: Entity-augmented distributed seman-

tics for discourse relations. Transactions of the Association for Computational Linguistics.

Ji, Y., Haffari, G., and Eisenstein, J. (2016). A latent variable recurrent neural network for

discourse-driven language models. In Proceedings of the 2016 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language Tech-

nologies.

152 BIBLIOGRAPHY

Józefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., and Wu, Y. (2016). Exploring the limits

of language modeling. CoRR, abs/1602.02410.

Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014). A convolutional neural network

for modelling sentences. In Proceedings of the 52nd Annual Meeting of the Association for

Computational Linguistics.

Kartsaklis, D. and Sadrzadeh, M. (2013). Prior disambiguation of word tensors for constructing

sentence vectors. In Proceedings of the 2013 Conference on Empirical Methods in Natural

Language Processing.

Kawakami, K. and Dyer, C. (2015). Learning to represent words in context with multilingual

supervision. CoRR, abs/1511.04623.

Kenter, T. and de Rijke, M. (2015). Short text similarity with word embeddings. In Proceedings

of the 24th ACM International on Conference on Information and Knowledge Management.

Kim, S., Hong, J.-H., Kang, I., and Kwak, N. (2019). Semantic sentence matching with densely-

connected recurrent and co-attentive information. Proceedings of the Sixteenth AAAI Confer-

ence on Artificial Intelligence.

Kim, Y. (2014). Convolutional neural networks for sentence classification. In Proceedings of

the 2014 Conference on Empirical Methods in Natural Language Processing.

Kim, Y., Jernite, Y., Sontag, D., and Rush, A. M. (2016). Character-aware neural language

models. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. In Proceedings of

the 2014 International Conference on Learning Representations.

Kintsch, W. (2001). Predication. Cognitive science.

Kiros, R., Zhu, Y., Salakhutdinov, R., Zemel, R. S., Torralba, A., Urtasun, R., and Fidler, S.

(2015). Skip-thought vectors. In Proceedings of the 28th International Conference on Neural

Information Processing Systems - Volume 2.

BIBLIOGRAPHY 153

Kokkinos, F. and Potamianos, A. (2017). Structural attention neural networks for improved

sentiment analysis. Proceedings of the 15th Conference of the European Chapter of the

Association for Computational Linguistics.

Komninos, A. and Manandhar, S. (2016). Dependency based embeddings for sentence classi-

fication tasks. In Proceedings of the 2016 conference of the North American chapter of the

association for computational linguistics: human language technologies.

Kotlerman, L., Dagan, I., Szpektor, I., and Zhitomirsky-geffet, M. (2010). Directional distribu-

tional similarity for lexical inference. Journal of Natural Language Engineering.

Kruszewski, G., Paperno, D., and Baroni, M. (2015). Deriving boolean structures from distri-

butional vectors. Transactions of the Association for Computational Linguistics.

Labeau, M. and Allauzen, A. (2017). Character and subword-based word representation for

neural language modeling prediction.

Lan, M., Wang, J., Wu, Y., Niu, Z.-Y., and Wang, H. (2017). Multi-task attention-based neural

networks for implicit discourse relationship representation and identification. In Proceedings

of Empirical Methods in Natural Language Processing.

Lan, M., Xu, Y., and Niu, Z. (2013). Leveraging synthetic discourse data via multi-task learning

for implicit discourse relation recognition. In Proceedings of the 51st Annual Meeting of the

Association for Computational Linguistics.

Lan, Y. and Jiang, J. (2018). Embedding WordNet knowledge for textual entailment. In Pro-

ceedings of the 27th International Conference on Computational Linguistics.

Landauer, T., Laham, D., and Rehder, R. (1997). How well can passage meaning be derived

without using word order? A comparison of latent semantic analysis and humans. In Pro-

ceedings of the 19th Annual Conference of the Cognitive Science Society.

Le, Q. and Mikolov, T. (2014). Distributed representations of sentences and documents. In

154 BIBLIOGRAPHY

Proceedings of the 31st International Conference on International Conference on Machine

Learning - Volume 32.

Lei, W., Wang, X., Liu, M., Ilievski, I., He, X., and Kan, M.-Y. (2017). SWIM: a simple word

interaction model for implicit discourse relation recognition. In Proceedings of the 26th

International Joint Conference on Artificial Intelligence.

Lenci, A. and Benotto, G. (2012). Identifying hypernyms in distributional semantic spaces. In

Proceedings of the First Joint Conference on Lexical and Computational Semantics.

Levy, O., Dagan, I., and Goldberger, J. (2014). Focused entailment graphs for open IE propo-

sitions. In Proceedings of the Eighteenth Conference on Computational Natural Language

Learning.

Levy, O. and Goldberg, Y. (2014). Dependency-based word embeddings. In Proceedings of the

52nd Annual Meeting of the Association for Computational Linguistics.

Levy, O., Remus, S., Biemann, C., and Dagan, I. (2015). Do supervised distributional methods

really learn lexical inference relations? In Proceedings of the 2015 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language Tech-

nologies.

Li, X. and Roth, D. (2002). Learning question classifiers. In Proceedings of the 19th Interna-

tional Conference on Computational Linguistics.

Lin, D. (1998). Automatic retrieval and clustering of similar words. In Proceedings of the 17th

International Conference on Computational Linguistics.

Lin, Z., Kan, M.-Y., and Ng, H. T. (2009). Recognizing implicit discourse relations in the Penn

Discourse Treebank. In Proceedings of Empirical Methods in Natural Language Processing.

Ling, W., Luı́s, T., Marujo, L., Astudillo, R. F., Amir, S., Dyer, C., Black, A. W., and Trancoso,

I. (2015). Finding function in form: Compositional character models for open vocabulary

word representation. arXiv preprint arXiv:1508.02096.

BIBLIOGRAPHY 155

Liu, P., Qiu, X., and Huang, X. (2015). Learning context-sensitive word embeddings with neural

tensor skip-gram model. In Proceedings of the 24th International Conference on Artificial

Intelligence.

Liu, Y. and Li, S. (2016). Recognizing implicit discourse relations via repeated reading: Neu-

ral networks with multi-level attention. In Proceedings of Empirical Methods in Natural

Language Processing.

Liu, Y., Li, S., Zhang, X., and Sui, Z. (2016). Implicit discourse relation classification via

multi-task neural networks. In Proceedings of the Thirtieth AAAI Conference on Artificial

Intelligence.

MacAvaney, S. and Zeldes, A. (2018). A deeper look into dependency-based word embeddings.

Proceedings of the 2018 Conference of the North American Chapter of the Association for

Computational Linguistics.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. (1993). Building a large annotated

corpus of english: The Penn Treebank. In Journal of Computational Linguistics - Special

issue on using large corpora.

McCann, B., Bradbury, J., Xiong, C., and Socher, R. (2017). Learned in translation: Contextu-

alized word vectors. In Advances in Neural Information Processing Systems 30.

McCarthy, D. and Carroll, J. (2003). Disambiguating nouns, verbs, and adjectives using auto-

matically acquired selectional preferences. Journal of Computational Linguistics.

Melamud, O., Goldberger, J., and Dagan, I. (2016). context2vec: Learning generic context

embedding with bidirectional LSTM. In Proceedings of The 20th SIGNLL Conference on

Computational Natural Language Learning.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of word repre-

sentations in vector space. CoRR, abs/1301.3781.

156 BIBLIOGRAPHY

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Distributed represen-

tations of words and phrases and their compositionality. In Advances in Neural Information

Processing Systems 26.

Milajevs, D., Kartsaklis, D., Sadrzadeh, M., and Purver, M. (2014). Evaluating neural word rep-

resentations in tensor-based compositional settings. In Proceedings of the 2014 Conference

on Empirical Methods in Natural Language Processing.

Miller, G. A. (1995). WordNet: A lexical database for english. Communications of the ACM.

Mirkin, S., Specia, L., Cancedda, N., Dagan, I., Dymetman, M., and Szpektor, I. (2009).

Source-language entailment modeling for translating unknown terms. In Proceedings of the

Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint

Conference on Natural Language Processing of the AFNLP.

Mitchell, J. and Lapata, M. (2008). Vector-based models of semantic composition. Proceedings

of the 46th Annual Meeting on Association for Computational Linguistics.

Mitchell, J. and Lapata, M. (2010). Composition in distributional models of semantics. In

Journal of Cognitive Science.

Mrkšic, N., OSéaghdha, D., Thomson, B., Gašic, M., Rojas-Barahona, L., Su, P.-H., Vandyke,

D., Wen, T.-H., and Young, S. (2016). Counter-fitting word vectors to linguistic constraints.

In Proceedings of the 2016 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies.

Mrkšić, N., Vulić, I., Ó Séaghdha, D., Leviant, I., Reichart, R., Gašić, M., Korhonen, A., and

Young, S. (2017). Semantic specialization of distributional word vector spaces using mono-

lingual and cross-lingual constraints. Transactions of the Association for Computational

Linguistics.

Necsulescu, S., Mendes, S., Jurgens, D., Bel, N., and Navigli, R. (2015). Reading between

BIBLIOGRAPHY 157

the lines: Overcoming data sparsity for accurate classification of lexical relationships. In

Proceedings of the Fourth Joint Conference on Lexical and Computational Semantics.

Neelakantan, A., Shankar, J., Passos, A., and McCallum, A. (2014). Efficient non-parametric

estimation of multiple embeddings per word in vector space. In Proceedings of the 2014

Conference on Empirical Methods in Natural Language Processing.

Nguyen, K. A., Köper, M., Schulte im Walde, S., and Vu, N. T. (2017). Hierarchical embed-

dings for hypernymy detection and directionality. In Proceedings of the 2017 Conference on

Empirical Methods in Natural Language Processing.

Nickel, M. and Kiela, D. (2017). Poincaré embeddings for learning hierarchical representations.

In Advances in Neural Information Processing Systems 30.

Nickel, M., Tresp, V., and Kriegel, H.-P. (2011). A three-way model for collective learning

on multi-relational data. In Proceedings of the 28th International Conference on Machine

Learning.

Nickel, M., Tresp, V., and Kriegel, H.-P. (2012). Factorizing YAGO: scalable machine learning

for linked data. In Proceedings of the 21st international conference on World Wide Web.

ACM.

Nie, Y., Wang, Y., and Bansal, M. (2019). Analyzing compositionality-sensitivity of NLI mod-

els. Proceedings of the Sixteenth AAAI Conference on Artificial Intelligence.

Padó, S., Galley, M., Jurafsky, D., and Manning, C. D. (2009). Textual entailment features

for machine translation evaluation. In Proceedings of the Fourth Workshop on Statistical

Machine Translation.

Padó, S. and Lapata, M. (2007). Dependency-based construction of semantic space models.

Journal of Computational Linguistics.

Pang, B. and Lee, L. (2004). A sentimental education: Sentiment analysis using subjectivity. In

Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics.

158 BIBLIOGRAPHY

Pang, B. and Lee, L. (2005). Seeing stars: Exploiting class relationships for sentiment cate-

gorization with respect to rating scales. In Proceedings of the 43rd Annual Meeting of the

Association for Computational Linguistics.

Partee, B. (1995). Lexical semantics and compositionality. An invitation to cognitive science:

Language.

Partee, B., Ter Meulen, A., and E Wall, R. (1990). Mathematical Methods in Linguistics.

Pasunuru, R., Guo, H., and Bansal, M. (2017). Towards improving abstractive summarization

via entailment generation. In Proceedings of the Workshop on New Frontiers in Summariza-

tion.

Pennington, J., Socher, R., and Manning, C. D. (2014). GloVe: Global vectors for word repre-

sentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing.

Peters, M., Ammar, W., Bhagavatula, C., and Power, R. (2017). Semi-supervised sequence

tagging with bidirectional language models. In Proceedings of the 55th Annual Meeting of

the Association for Computational Linguistics.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer, L.

(2018). Deep contextualized word representations. In Proceedings of the 2018 Conference

of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies.

Pitler, E., Louis, A., and Nenkova, A. (2009). Automatic sense prediction for implicit discourse

relations in text. In Proceedings of the Joint Conference of the 47th Annual Meeting of

the ACL and the 4th International Joint Conference on Natural Language Processing of the

AFNLP.

Pitler, E., Raghupathy, M., Mehta, H., Nenkova, A., Lee, A., and Joshi, A. (2008). Easily

BIBLIOGRAPHY 159

identifiable discourse relations. Proceedings of the 22nd International Conference on Com-

putational Linguistics.

Plate, T. (1991). Holographic reduced representations: Convolution algebra for compositional

distributed representations. In Proceedings of the 12th International Joint Conference on

Artificial Intelligence.

Popa, D. N., Perez, J., Henderson, J., and Gaussier, E. (2019a). Implicit discourse relation

classification with syntax-aware contextualized word representations. In Proceedings of the

32nd International Florida Artificial Intelligence Research Society Conference.

Popa, D. N., Perez, J., Henderson, J., and Gaussier, E. (2019b). Satoke: How can syntax-

aware contextualized word representations benefit implicit discourse relation classification?

Conférence sur l’Apprentissage automatique, CAp.

Prasad, R., Dinesh, N., Lee, A., Miltsakaki, E., Robaldo, L., Joshi, A., and Webber, B. (2008).

The Penn Discourse TreeBank 2.0. In Proceedings of the 6th International Conference on

Language Resources and Evaluation.

Qin, L., Zhang, Z., and Zhao, H. (2016a). Implicit discourse relation recognition with context-

aware character-enhanced embeddings. In Proceedings of the 26th International Conference

on Computational Linguistics: Technical Papers.

Qin, L., Zhang, Z., and Zhao, H. (2016b). A stacking gated neural architecture for implicit

discourse relation classification. In Proceedings of Empirical Methods in Natural Language

Processing.

Qin, L., Zhang, Z., Zhao, H., Hu, Z., and Xing, E. (2017). Adversarial connective-exploiting

networks for implicit discourse relation classification. In Proceedings of the 55th Annual

Meeting of Association for Computational Linguistics.

Rei, M. and Briscoe, T. (2014). Looking for hyponyms in vector space. In Proceedings of the

Eighteenth Conference on Computational Natural Language Learning.

160 BIBLIOGRAPHY

Rocktäschel, T., Grefenstette, E., Hermann, K. M., Kocisky, T., and Blunsom, P. (2016). Rea-

soning about entailment with neural attention. In Proceedings of the 2016 International

Conference on Learning Representations.

Roller, S., Erk, K., and Boleda, G. (2014). Inclusive yet selective: Supervised distributional

hypernymy detection. In Proceedings of the 25th International Conference on Computational

Linguistics: Technical Papers.

Rudolph, S. and Giesbrecht, E. (2010). Compositional matrix-space models of language. In

Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics.

Rutherford, A. and Xue, N. (2014). Discovering implicit discourse relations through brown

cluster pair representation and coreference patterns. In Proceedings of the 14th Conference

of the European Chapter of the Association for Computational Linguistics.

Rutherford, A. and Xue, N. (2015). Improving the inference of implicit discourse relations

via classifying explicit discourse connectives. In Proceedings of the 2015 Conference of

the North American Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies.

Sacaleanu, B., Orasan, C., Spurk, C., Ou, S., Ferrandez, O., Kouylekov, M., and Negri, M.

(2008). Entailment-based question answering for structured data. In 22nd International

Conference on on Computational Linguistics: Demonstration Papers.

Salant, S. and Berant, J. (2018). Contextualized word representations for reading comprehen-

sion. In Proceedings of the 2018 Conference of the North American Chapter of the Associa-

tion for Computational Linguistics: Human Language Technologies.

Santus, E., Lenci, A., Lu, Q., and im Walde, S. S. (2014). Chasing hypernyms in vector spaces

with entropy. In Proceedings of the 14th Conference of the European Chapter of the Associ-

ation for Computational Linguistics.

Schütze, H. (1993). Word space. In Advances in Neural Information Processing Systems 5.

BIBLIOGRAPHY 161

Shelhamer, E., Long, J., and Darrell, T. (2017). Fully convolutional networks for semantic

segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence.

Shwartz, V., Santus, E., and Schlechtweg, D. (2017). Hypernyms under siege: Linguistically-

motivated artillery for hypernymy detection. In Proceedings of the 15th Conference of the

European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers.

Singh, S., Rocktäschel, T., and Riedel, S. (2015). Towards Combined Matrix and Tensor Fac-

torization for Universal Schema Relation Extraction. In The North American Chapter of

the Association for Computational Linguistics Workshop on Vector Space Modeling for NLP

(VSM).

Smolensky, P. (1990). Tensor product variable binding and the representation of symbolic

structures in connectionist systems. Journal of Artificial Intelligence.

Snow, R., Jurafsky, D., and Ng, A. Y. (2006). Semantic taxonomy induction from heterogenous

evidence. In Proceedings of the 21st International Conference on Computational Linguistics

and the 44th Annual Meeting of the Association for Computational Linguistics.

Socher, R., Huang, E. H., Pennington, J., Ng, A. Y., and Manning, C. D. (2011a). Dynamic

pooling and unfolding recursive autoencoders for paraphrase detection. In Proceedings of

the 24th International Conference on Neural Information Processing Systems.

Socher, R., Huval, B., Manning, C. D., and Ng, A. Y. (2012). Semantic compositionality

through recursive matrix-vector spaces. In Proceedings of the 2012 Joint Conference on

Empirical Methods in Natural Language Processing and Computational Natural Language

Learning.

Socher, R., Karpathy, A., Le, Q. V., Manning, C. D., and Ng, A. Y. (2014). Grounded com-

positional semantics for finding and describing images with sentences. Transactions of the

Association for Computational Linguistics.

162 BIBLIOGRAPHY

Socher, R., Pennington, J., Huang, E. H., Ng, A. Y., and Manning, C. D. (2011b). Semi-

supervised recursive autoencoders for predicting sentiment distributions. In Proceedings of

the 2011 Conference on Empirical Methods in Natural Language Processing.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., and Potts, C. (2013a).

Recursive deep models for semantic compositionality over a sentiment treebank. In Proceed-

ings of the 2013 Conference on Empirical Methods in Natural Language Processing.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A. Y., and Potts, C. (2013b).

Recursive deep models for semantic compositionality over a sentiment treebank. In Proceed-

ings of the 2013 Conference on Empirical Methods in Natural Language Processing.

Srivastava, R. K., Greff, K., and Schmidhuber, J. (2015). Highway networks. arXiv preprint

arXiv:1505.00387.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural

networks. In Proceedings of the 27th International Conference on Neural Information Pro-

cessing Systems.

Tai, K. S., Socher, R., and Manning, C. D. (2015). Improved semantic representations from tree-

structured long short-term memory networks. In Proceedings of the 53rd Annual Meeting of

the Association for Computational Linguistics and the 7th International Joint Conference on

Natural Language Processing (Volume 1: Long Papers).

Tang, J., Qu, M., and Mei, Q. (2015). PTE: Predictive text embedding through large-scale

heterogeneous text networks. In Proceedings of the 21st ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining.

Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., and Bouchard, G. (2016). Complex embed-

dings for simple link prediction. In Proceedings of the 33rd International Conference on

International Conference on Machine Learning.

BIBLIOGRAPHY 163

Tu, L., Gimpel, K., and Livescu, K. (2017). Learning to embed words in context for syntactic

tasks. CoRR, abs/1706.02807.

Tuan, L. A., Tay, Y., Hui, S. C., and Ng, S. K. (2016). Learning term embeddings for taxonomic

relation identification using dynamic weighting neural network. In Proceedings of the 2016

Conference on Empirical Methods in Natural Language Processing.

Turian, J., Ratinov, L., and Bengio, Y. (2010). Word representations: A simple and general

method for semi-supervised learning. In Proceedings of the 48th Annual Meeting of the

Association for Computational Linguistics.

Turney, P. D. and Mohammad, S. M. (2014). Experiments with three approaches to recognizing

lexical entailment. Journal of Natural Language Engineering.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u.,

and Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information

Processing Systems 30.

Vilnis, L. and McCallum, A. (2015). Word representations via Gaussian embedding. In Pro-

ceedings of the 2015 International Conference on Learning Representations.

Vulic, I. and Mrksic, N. (2018). Specialising word vectors for lexical entailment. In Proceedings

of the 2018 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies.

Vylomova, E., Rimell, L., Cohn, T., and Baldwin, T. (2015). Take and took, gaggle and goose,

book and read: Evaluating the utility of vector differences for lexical relation learning. In

arXiv preprint arXiv:1509.01692.

Wang, X., Li, S., Li, J., and Li, W. (2012). Implicit discourse relation recognition by selecting

typical training examples. Proceedings of the 24th International Conference on Computa-

tional Linguistics.

164 BIBLIOGRAPHY

Wang, Y., Li, S., Yang, J., Sun, X., and Wang, H. (2017). Tag-enhanced tree-structured neural

networks for implicit discourse relation classification. In Proceedings of the 8th International

Joint Conference on Natural Language Processing.

Weeds, J., Clarke, D., Reffin, J., Weir, D., and Keller, B. (2014). Learning to distinguish

hypernyms and co-hyponyms. In Proceedings of the 25th International Conference on Com-

putational Linguistics: Technical Papers.

Weeds, J. and Weir, D. (2003). A general framework for distributional similarity. In Proceedings

of the 2003 Conference on Empirical Methods in Natural Language Processing.

Weeds, J., Weir, D., and McCarthy, D. (2004). Characterising measures of lexical distributional

similarity. In Proceedings of the 20th International Conference on Computational Linguis-

tics.

Weir, D., Weeds, J., Reffin, J., and Kober, T. (2016). Aligning packed dependency trees: A

theory of composition for distributional semantics. Journal of Computational Linguistics.

West, R. F. and Stanovich, K. E. (1986). Robust effects of syntactic structure on visual word

processing. Memory & Cognition.

Westera, M. and Boleda, G. (2019). Don’t blame distributional semantics it can’t do entailment.

In Proceedings of the 13th International Conference on Computational Semantics.

Widdows, D. (2008). Semantic vector products: Some initial investigations. In Proceedings of

the Second AAAI Symposium on Quantum Interaction.

Wittgenstein, L. (1953). Philosophical investigations. Blackwell.

Xu, C., Bai, Y., Bian, J., Gao, B., , Liu, X., and Liu, T.-Y. (2014). RC-NET: A general frame-

work for incorporating knowledge into word representations. In Proceedings of the 23rd

ACM international conference on conference on information and knowledge management.

Yao Zhou, C. L. and Pan, Y. (2016). Modelling sentence pairs with tree-structured attentive

encoder. In Proceedings of the 26th International Conference on Computational Linguistics.

BIBLIOGRAPHY 165

Yessenalina, A. and Cardie, C. (2011). Compositional matrix-space models for sentiment anal-

ysis. In Proceedings of the Conference on Empirical Methods in Natural Language Process-

ing.

Yu, M. and Dredze, M. (2014). Improving lexical embeddings with semantic knowledge. In

Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics

(Volume 2: Short Papers).

Yu, Z., Wang, H., Lin, X., and Wang, M. (2015). Learning term embeddings for hypernymy

identification. In Proceedings of the Twenty-Fourth International Joint Conference on Artifi-

cial Intelligence.

Zanzotto, F. M., Korkontzelos, I., Fallucchi, F., and Manandhar, S. (2010). Estimating linear

models for compositional distributional semantics. In Proceedings of the 23rd International

Conference on Computational Linguistics.

Zhou, P., Qi, Z., Zheng, S., Xu, J., Bao, H., and Xu, B. (2016). Text classification improved

by integrating bidirectional LSTM with two-dimensional max pooling. In Proceedings of the

26th International Conference on Computational Linguistics.

Zou, W. Y., Socher, R., Cer, D., and Manning, C. D. (2013). Bilingual word embeddings

for phrase-based machine translation. In Proceedings of the 2013 Conference on Empirical

Methods in Natural Language Processing.

	Abstract
	Acknowledgements
	Introduction
	Background
	Word representations
	Modelling compositionality
	Compositionality and contextuality

	Outline of the thesis

	A vector space for the distributional semantics for entailment
	Introduction
	Related work
	Proposal: modelling entailment in a vector space
	A mean-field approximation
	Extension to entailment graphs

	Interpreting distributional semantics vectors
	Evaluation and results
	Experimental setup
	Results and discussion

	Conclusion

	Unsupervised syntax-aware contextualized word representations
	Related work
	SATokE – Syntax-Aware Token Embeddings
	Preliminaries
	Unsupervised learning of token embeddings via tensor factorisation

	Experimental protocol
	End task architectures
	Implementation details

	Evaluation and results
	Data appropriateness
	Sentence understanding
	Paraphrase detection
	Textual entailment recognition
	Further analysis on sentence understanding tasks

	Application to discourse analysis
	Implicit discourse relation classification
	Data
	Experimental setup
	Implementation details
	Comparison to word type embeddings
	Comparison to state-of-the-art systems
	Extension: combining dependency information with constituent parse features
	Ablation studies - impact of syntax - model variations

	Conclusion

	Conclusion
	Summary of Thesis Achievements
	Publications
	Future Work

	Bibliography

