
HAL Id: tel-02478779
https://theses.hal.science/tel-02478779

Submitted on 14 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mathematical Modeling and Optimization for Biogas
Production
Antoine Haddon

To cite this version:
Antoine Haddon. Mathematical Modeling and Optimization for Biogas Production. General
Mathematics [math.GM]. Université Montpellier; Universidad de Chile, 2019. English. �NNT :
2019MONTS047�. �tel-02478779�

https://theses.hal.science/tel-02478779
https://hal.archives-ouvertes.fr


Modél isat ion Mathématiques et  Optimisation 
pour la Production de Biogaz

                                                           Devant le jury composé de

Alain RAPAPORT, Directeur de Recherche, INRA Montpellier 

Héctor RAMÍREZ, Associate Professor, Universidad de Chile

Frédéric BONNANS, Directeur de Recherche, INRIA-Saclay

Pedro GAJARDO, Associate Professor, Universidad Técnica Frederico Santa María

Maria Soledad ARONNA, Assistant Professor, Fundação Getulio Vargas

Anna DÉSILLES, Chargée de Recherche, ENSTA Paris

Jérôme HARMAND, Directeur de Recherche, INRA Narbonne

Axel OSSES, Professor, Universidad de Chile

 

Directeur

Directeur

Rapporteur

Rapporteur

Examinatrice

Examinatrice

Examinateur

Président du jury

Présentée par Antoine HADDON
Le 5 Novembre 2019

Sous la direction de Alain Rapaport et Héctor Ramírez

THÈSE POUR OBTENIR LE GRADE DE DOCTEUR 
DE L’UNIVERSITÉ DE MONTPELLIER

En Mathématiques et Modélisation

École doctorale I2S – Information, Structures, Systèmes

Unité de recherche UMR MISTEA

En partenariat international avec l’UNIVERSIDAD DE CHILE, CHILI



RÉSUMÉ

La digestion anaérobique est un processus biologique au cours duquel des micro-
organismes décomposent de la matière organique pour produire du biogaz (dioxyde de
carbone et methane) qui peut être utilisé comme source d’énergie renouvelable. Cette
thèse porte sur l’élaboration de stratégies de contrôle et la conception de bioréacteurs qui
maximisent la production de biogaz. La première partie se concentre sur le problème de
contrôle optimal de la maximisation de la production de biogaz dans un chemostat avec
un modèle à une réaction, en contrôlant le taux de dilution. Pour le problème à horizon
fini, nous étudions des commandes type feedback, similaires à ceux utilisés en pratique
et consistant à conduire le réacteur vers un niveau de substrat donné et à le maintenir à
ce niveau. Notre approche repose sur une estimation de la fonction valeur inconnue en
considérant différentes fonctions de coût pour lesquelles la solution optimale admet un
feedback optimal explicite et autonome. En particulier, cette technique fournit une esti-
mation de la sous-optimalité des régulateurs étudiés pour une large classe de fonctions de
croissance dépendant du substrat et de la biomasse. À l’aide de simulations numériques,
on montre que le choix du meilleur feedback dépend de l’horizon de temps et de la con-
dition initiale. Ensuite, nous examinons le problème sur un horizon infini, pour les coûts
moyen et actualisé. On montre que lorsque le taux d’actualisation tends vers à 0, la fonc-
tion valeur du problème actualisé converge vers la fonction valeur pour le coût moyen. On
identifie un ensemble de solutions optimales pour le problème avec coût moyen comme
étant les contrôles qui conduisent le système vers un état qui maximise le débit de biogaz
sur un ensemble invariant. Nous revenons ensuite au problème à horizon fini fixe et avec le
Principe du Maximum de Pontryagin, on montre que le contrôle optimal a une structure
bang arc singulier. On construit une famille de contrôles extrémaux qui dépendent de
la valeur constante du Hamiltonien. En utilisant l’équation de Hamilton-Jacobi-Bellman,
on identifie le contrôle optimal comme étant celui associé à la valeur du Hamiltonien qui
satisfait une équation de point fixe. On propose ensuite un algorithme pour calculer la
commande optimale en résolvant cette équation de point fixe. On illustre enfin cette
méthode avec les deux principales types de fonctions de croissance de Monod et Haldane.
Dans la deuxième partie, on modélise et on étudie l’impact de l’hétérogénéité du milieu
réactionnel sur la production de biogaz. Pour cela, on introduit un modèle de bioréacteur
pilote qui décrit les caractéristiques spatiales. Ce modèle tire parti de la géométrie du
réacteur pour réduire la dimension spatiale de la section contenant un lit fixe et, dans les
autres sections, on considère les équations 3D de Navier-Stokes en régime permanent pour
la dynamique des fluides. Pour représenter l’activité biologique, on utilise un modèle à
deux réactions et pour les substrats, des équations advection-diffusion-réaction. On con-
sidère seulement les biomasses qui sont attachées au lit fixe et on modélise leur croissance
avec une fonction densité dépendante. On montre que ce modèle peut reproduire le gra-
dient spatial de données expérimentales et permet de mieux comprendre la dynamique
interne du réacteur. En particulier, les simulations numériques indiquent qu’en mélangant
moins, le réacteur est plus efficace, élimine plus de matières organiques et produit plus de
biogaz.
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RESUMEN

La digestión anaeróbica es un proceso biológico en el cual diferentes poblaciones mi-
crobianas transforman compuestos orgánicos en biogás (dióxido de carbono y metano),
el cual puede ser luego utilizado como fuente de enerǵıa renovable. Esta tesis analiza
distintas estrategias de control y diseño de bio-reactores que maximicen la producción de
biogás. La primera parte se enfoca en el problema de control óptimo para maximizar la
producción de biogás en un bio-reactor continuo o Quimiostato. Se considera el modelo
de una reacción y la tasa de dilución es la variable de control. Para el problema con
un horizonte finito, se estudia controles retro-alimentados (o tipo feedback), similares a
los utilizados en la práctica, y que consisten en llevar el reactor hacia un nivel de sus-
trato determinado y mantenerlo alĺı. Nuestro enfoque se basa en establecer ĺımites de la
función valor considerando diferentes funciones de costo para las cuales la solución óptima
admite una forma expĺıcita, del tipo feedback, independiente del tiempo. En particular,
esta técnica proporciona ĺımites expĺıcitos para la sub-optimalidad de los controles es-
tudiados para una amplia clase de funciones de crecimiento dependientes de sustratos y
biomasa. A continuación, consideramos el problema con horizonte infinito, tanto para un
costo promedio como para uno descontado. Cuando la tasa de descuento tiende a cero,
probamos que la función valor del problema descontado converge y que el ĺımite es igual a
la función valor para el costo promedio. Luego, se muestra que los controles óptimos para
el problema con costo promedio son los que llevan al sistema a un estado que maximiza
el flujo de biogás en un conjunto invariante. Posteriormente, volvemos al problema con
horizonte finito dado y, usando el Principio Máximo de Pontryagin, demostramos que el
control óptimo tiene una estructura bang - arco singular y somos capaces de construir
una familia de controles parametrizadas por el valor constante del Hamiltoniano. Usando
la ecuación de Hamilton-Jacobi-Bellman, el control óptimo se identifica como el asociado
con el valor del Hamiltoniano que satisface una ecuación de punto fijo. A continuación,
se propone un algoritmo para determinar el control óptimo mediante la resolución de esta
ecuación de punto fijo. En la segunda parte se estudia el impacto de la heterogeneidad
del medio en la producción de biogás. Este bioreactor se divide en tres secciones, siendo
sólo la intermedia la que contiene biomasa. En dicha sección, el modelo matemático prop-
uesta da cuenta de la geometŕıa del reactor y reduce la dimensión espacial a una sola.
Por otro lado, en las otras secciones, las ecuaciones 3D de Navier-Stokes son utilizadas
para modelar la dinámica de fluidos. Para representar la actividad biológica se utiliza
un modelo de dos reacciones y para los sustratos se utilizan ecuaciones de advección-
difusión-reacción. Como ya establecido, sólo consideramos la biomasa que está fijada en
la sección intermedia y modelamos su crecimiento con una función densidad dependiente.
Hemos demostrado que nuestro modelo para este bio-reactor reproduce adecuadamente
el gradiente espacial de datos experimentales y proporciona una mejor comprensión de
la dinámica interna del reactor. En particular, las simulaciones numéricas indican que al
mezclar menos, el reactor es más eficiente y produce más biogás.
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ABSTRACT

Anaerobic digestion is a biological process in which organic compounds are degraded
by different microbial populations into biogas (carbon dioxyde and methane), which can
be used as a renewable energy source. This thesis works towards developing control
strategies and bioreactor designs that maximize biogas production. The first part focuses
on the optimal control problem of maximizing biogas production in a chemostat in several
directions. We consider the single reaction model and the dilution rate is the controlled
variable. For the finite horizon problem, we study feedback controllers similar to those
used in practice and consisting in driving the reactor towards a given substrate level and
maintaining it there. Our approach relies on establishing bounds of the unknown value
function by considering different rewards for which the optimal solution has an explicit
optimal feedback that is time-independent. In particular, this technique provides explicit
bounds on the sub-optimality of the studied controllers for a broad class of substrate
and biomass dependent growth rate functions. With numerical simulations, we show that
the choice of the best feedback depends on the time horizon and initial condition. Next,
we consider the problem over an infinite horizon, for averaged and discounted rewards.
We show that, when the discount rate goes to 0, the value function of the discounted
problem converges and that the limit is equal to the value function for the averaged
reward. We identify a set of optimal solutions for averaged problems as the controls
that drive the system towards a state that maximizes the biogas flow rate on an special
invariant set. We then return to the problem over a fixed finite horizon and with the
Pontryagin Maximum Principle, we show that the optimal control has a bang singular
arc structure. We construct a one parameter family of extremal controls that depend on
the constant value of the Hamiltonian. Using the Hamilton-Jacobi-Bellman equation, we
identify the optimal control as the extremal associated with the value of the Hamiltonian
which satisfies a fixed point equation. We then propose a numerical algorithm to compute
the optimal control by solving this fixed point equation. We illustrate this method with
the two major types of growth functions of Monod and Haldane. In the second part, we
investigate the impact of mixing the reacting medium on biogas production. For this we
introduce a model of a pilot scale upflow fixed bed bioreactor that offers a representation
of spatial features. This model takes advantage of reactor geometry to reduce the spatial
dimension of the section containing the fixed bed and in other sections, we consider
the 3D steady-state Navier-Stokes equations for the fluid dynamics. To represent the
biological activity, we use a 2 step model and for the substrates, advection-diffusion-
reaction equations. We only consider the biomasses that are attached in the fixed bed
section and we model their growth with a density dependent function. We show that
this model can reproduce the spatial gradient of experimental data and helps to better
understand the internal dynamics of the reactor. In particular, numerical simulations
indicate that with less mixing, the reactor is more efficient, removing more organic matter
and producing more biogas.
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Chapter 1

Introduction

1.1 Anaerobic Digestion and Biogas Production

Anaerobic Digestion (AD) is a natural process of degradation of organic matter by mi-
croorganisms in the absence of oxygen. It is the result of successive steps performed
by different groups of microorganisms, progressively degrading matter from large organic
polymers into simple monomers (sugars, amino acids and fatty acids) and further into
biogas (methane and carbone dioxyde) [43].

The interest in this process is that it allows the re-valorization of waste as a renewable
energy source since the methane in biogas can be used as fuel for heating or producing
electricity. This reduces greenhouse gas emissions by producing an alternative to fossil
fuels and by capturing the emissions of biodegrading matter that would otherwise be
released to the atmosphere. Furthermore, biogas presents a potential for electrical grid
balancing since it can be stored and therefore the power generation is controllable, unlike
other renewable energy sources, such as solar and wind. An additional environmental ben-
efit is the production of digestate, the matter not consumed by microorganisms (minerals,
certain organic compounds such as structural plant matter including lignin and cellulose)
and this can be used as fertilizer.

This process is implemented in anaerobic digesters, a type of bioreactor, and these
devices are designed to offer the best conditions to support microorganisms and maintain
the process. Dedicated AD plants have been developed to process agricultural waste,
manure and energy crops, but biogas can also be recovered from landfills or in wastewater
treatment, during the removal of organic matter [71].

The current installations in Europe and North America are mainly large scale electricity
and heat biogas plants but in Asia and Africa, many small domestic scale digesters can
be found in rural areas [86]. For the European Union, studies [96] have underlined that
despite a high potential, production remains low. Biogas represented 4.4% of natural gas
consumption in 2015, however, this average hides a heterogeneous situation : this figure
can be as high as 23.2% in Sweden while in France it is only 1.5%. In Chile, again a high
capacity is expected due to the importance of the agricultural sector and an estimated
4.1 TWh could be produced [90] for a total electricity consumption in 2016 of 67 TWh
[22], but only 2% of the potential is achieved.
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Various factors could explain this situation, despite the fact that the necessary tech-
nology has been available for several decades now. First, a high starting investment is
required as large AD bioreactors are needed to process the important volumes in wastew-
ater treatement or to produce a significant amount of biogas. Secondly, there is a serious
difficulty in assessing the economic viability of a project due to the volatility of energy
markets and, in addition, estimating the production of a bioreactor in advance remains a
challenge. Finally, there has been reports of poor profits due to high costs and low yields
that have lead to the closing of biogas plants [9].

For wastewater treatment, the use of AD for the removal of organic matter is still
uncommon and the alternative method, aerobic digestion, has prevailed for a long time.
Nonetheless, AD presents several advantages compared to aerobic digestion: less sludge is
produced, treatment of water with higher organic loadings is possible and the production
of biogas reduces the energetic cost of the process [88]. However, in addition to the prob-
lems previously mentioned, AD requires a longer time to start up, needs to be maintained
at high temperature and is susceptible to toxic substances.

This last point, and in general the instability of the process is an important aspect
of AD when considering its implementation. Indeed, this process can be inhibited by
wide range of substances, either that enter the reactor such as pathogens, or that are
intermediate products of the process, specifically volatile fatty acids (VFA) that can sig-
nificantly increase the pH [19]. Another reason explaining the complexity of the process is
the important differences between microorganisms producing acids and those producing
methane [80]. The consequence of this instability and the complexity of microbial ecosys-
tems and bioprocesses, is that when developing implementations of AD, the stability of
the process is considered first and foremost, often neglecting optimization of production.

1.2 Mathematical Models of Bioreactors

Bioreactors are used for science and industry, for the study of microorganisms, cell and
tissue culture or production of derivatives and end products for chemical processes. The
first models were introduced in the 1950s when the chemostat device was invented inde-
pendently by Jacques Monod [73] and Aaron Novick and Leo Szilard [77]. Since then, a
large variety of models have been developed [105, 109]. The purpose of this section is not
to review the wide range of models but rather to present the key properties of the models
used in this thesis.

The key aspect of microbial ecosystems is the important diversity of microorganisms,
in terms of physiology, nutritional needs, growth kinetics, and sensitivity to environmental
conditions. As a consequence, population models become rapidly complicated and their
mathematical analysis extremely difficult. However, we are interested in the macroscopic
behaviour of a bioreactor and in particular how matter is transformed. From this point of
view, a bioreactor can be modelled as the combination of a biological process, the result
of the microbial activity, and a physical process, the dynamics of the substances inside
the reactor and how they enter and leave.

This approach relies on characterizing microorganisms not as a population but instead
representing the biological process essentially as a bio-chemical reaction. The basis of
the model is then mass conservation and modelling the biological process corresponds to
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accounting how matter is transformed from one substance into another. The considered
variables are the concentrations of reacting matter, in units of mass per volume. This
includes microorganisms and they are characterized as biomass, which can be measured
although it is a complicated task, in addition to being costly and imprecise. When the
bioprocess is the result of a complex ecosystem, it can be viewed as the sum of several
reactions, grouping microorganisms by functional role and how they transform matter.

An important property of these bio-reactions is that the microorganisms are at the same
time a catalyst and a product : they both consume reactants and grow as a result. The
usual hypothesis of biological activity is that consumption and production are proportional
to growth, so that the reaction rate of each substance is obtained from a growth rate and
a yield coefficient.

In the simplest cases, when it can be considered that microorganisms have equal access
to the substrate they consume, the growth rate is considered linear with respect to biomass
concentration. The dependence on the substrate consumed is however more complex, non
linear and represented by a specific growth rate function, the rate of growth per unit of
biomass. It generally depends on a single limiting substrate but eventually other factors
affecting the microorganisms can be taken into account (inhibition by other substances,
impact of physical or chemical properties of medium).

A wide range of specific growth rate functions have been considered and the Monod
function [72] was one of the first to be proposed. It models the fact that the reaction
can take place up to a maximum rate µmax. Here, s denotes the concentration of limiting
substrate and Ks the half-saturation constant,

µM(s) =
µmax s

Ks + s
.

The Haldane function can be used to represent an inhibition of the reaction by the sub-
strate, with Ki the inhibition parameter,

µH(s) =
µ̄ s

Ks + s+ s2

Ki

.

To represent crowding effects, for example when microorganisms do not have equal access
to the substrate, the Contois function can be considered, which also depends on the
biomass concentration x,

µC(s, x) =
µmaxs

Kxx+ s
.

It is important to note that this remains an empirical approach, and that the pa-
rameters of growth functions and yield coefficients are obtained by fitting the model to
measurements. In particular, for AD this needs to be done for each bioreactor, as the
microbial community adapts itself to the feedstock.

This has lead to the development of many different models of anaerobic digestion.
The current standard, the ADM1 model [5], was developed by the International Water
Association (IWA) Anaerobic Digestion Modelling Task Group, and is composed of 19
reactions and at least 32 dynamic concentration state variables. Such large dimensions
make this model impractical for analytical optimization or control, so simplified models
have been proposed. A widely used model [13], is composed of two biochemical processes
to take into account the inhibition of the methane production by intermediate products,
namely volatile fatty acids.

3



Monod

Haldane

Figure 1.1: Examples of Monod and Haldane growth functions

Further simplification is possible, as it has been shown that a single step model can
reproduce the qualitative behaviour of the anaerobic digestion process [12]. Indeed, for
the two-step model, the second reaction is the most limiting due to inhibition by the
substrate and then a one-step model can be used to focus on the second reaction. In
particular, a common assumption is to consider that the first step is fast and then the
two reactions can be reduced to a single one with a slow-fast approximation, in which
case it provides a good representation of the biogas production.

Modelling the physical part of the process consists in taking into account the design
features of a bioreactor that have an impact on the biological activity. The first aspect
to consider is how the reactor is fed and how products are retrieved. The 3 main modes
of operation are :

• Batch : the contents are introduced at the beginning of the process, after which
nothing is added or removed.

• Fed-batch : similar to the batch mode, although susbtrate can be added during
process operation, but nothing is removed until the end.

• Continuously fed : during all of the process operation contents are added and re-
moved from the reactor at the same rate such that the volume remains constant.

The last case is the most common for wastewater treatment and anaerobic digesters and
the one we will consider in this thesis.

An important question is then if the reacting medium is homogeneous or heterogeneous.
The first case occurs when the reacting contents are mixed and concentrations can be
considered constant throughout the bioreactor such that the mass balance corresponds to
a system of Ordinary Differential Equations (ODE). The basic example is the chemostat,
a continuously fed, well mixed bioreactor [50, 98]. For a single step biological processes,
denoting s the substrate concentration and x the biomass, the model equations are

ṡ = D(sin − s)−
1

Y
µ(s)x,

ẋ = µ(s)x−Dx,

4



with sin the input concentration, µ(·) the specific growth rate, Y the yield coefficient, and
D the dilution rate which is equal to the feeding rate divided by the constant volume.

However, there is a diversity of designs that take advantage of a spatial gradient in the
concentrations, such as plug-flow reactors. In this case, bioreactors can be modeled using
Partial Differential Equations (PDE) [92] but this leads to complex models, especially
when authors try to account for all phenomenons (turbulence, different phases of matter,
sedimentation,...). In particular, anaerobic digesters are generally very large since AD is
a slow process and important volumes are treated, so that simulating an industrial scale
bioreactor requires substantial computational resources. An alternative is compartment
models, where the reactor is seen as a network of interconnected homogeneous zones,
each of which is modeled as a chemostat, resulting in a system of ODE, although of large
dimension.

1.3 Optimization of Biogas Production

The topic of this thesis is the maximization of biogas production, through the study of
mathematical models and optimization problems. The first part will focus on bioreactor
operation and the problem considered is the optimal control of the dilution rate for the
chemostat. In a second part, a question of bioreactor design is investigated to understand
the impact of heterogeneity of the reacting medium on biogas production.

It is important to point out that the aspect of stability of the bioprocess will not be
directly considered in the problems addressed. Since biogas is a final product, maximizing
it guarantees, although indirectly, that the process is kept in a healthy state. However,
this reasoning is limited and the extreme nature of an optimum could result in running
the process close to an unstable state, with the risk of tipping over inevitable due to the
variability of bioprocesses.

In addition to discarding the issue of stability, we are looking at theses questions of
bioreactor operation and design as mathematical problems and it is important to re-
member that a mathematical model is only an imperfect representation. There are also
important sources of model errors, as we have seen in the previous section, rendering the
models essentially qualitative rather than predictive.

The consequence is that we can not expect our results to be directly applicable. Instead,
the objective here is to find a qualitative description of the optimal solution in order to
understand the levers that can help increase biogas production. For instance, with optimal
control problems, the aim is not to obtain controls to be used in practice but rather to
find what characterizes the optimal control, to help practitioners improve their strategies
in terms of biogas production.

Furthermore, we are working with simple macroscopic models of an extremely variable
microbial ecosystem and a key weakness of this modelling approach is the choice of a
growth function. To remedy this, we want to obtain results for a general class of growth
functions, characterized by general properties of microbial dynamics (for example, to
generalize the Monod function, consider all functions that are increasing and bounded).

Ideally, for this we want to find the explicit or analytical expression of the solution of
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the optimization problems considered. However, the analytical resolution of optimization
problems poses a serious challenge. For example, a 2 stage model of AD will have at least
4 dynamic variables and therefore carrying out the computations to obtain an analytical
expression of an optimal control rapidly become complex.

On the other hand, numerical resolution of optimization problems is now well estab-
lished and the progress in computer performance in the last decades mean that it is
possible to solve large problems numerically. For the optimal control problems in con-
sideration here, solvers such as BOCOP [16] can easily and rapidly compute an optimal
control. However, it is obtained in open loop form whereas we aim at finding feedbacks,
which are more robust in terms of possible time delays and measurement errors. More
generally, the problem in using numerical optimization is that the computed solution is
valid only for one set of parameters of a given growth function.

The consequence is that neither of these approaches alone, purely analytical or purely
numerical, is adequate and this is a major challenge in the application of mathematical
optimization for the development of bioprocesses. In this thesis, we propose several new
methods that address this problem.

In Section 1.3.1, corresponding to Chapters 2 and 3, we present the main contributions
of this thesis for the optimal control of the dilution rate. We work with a simple model to
develop new techniques for the analysis of optimal control problems, that could be used
with more complex models. We will also see how to carefully combine both analytical and
numerical approaches. This will allow us to obtain expressions of optimal and sub-optimal
feedback controls and practical ways to compute them and analyze their performance. In
Section 1.3.2, corresponding to Chapter 4, dealing with bioreactor design, we show that
it is not necessary to develop overly complex models to study spatial heterogeneity in
bioreactors and we will see how numerical simulations can be used to obtain qualitative
results.

1.3.1 Optimal Control of Biogas Production

Control of bioreactors is an important and active research topic and more specifically,
control of AD has been the focus of many studies [30, 35, 57, 58, 59, 76]. The feeding
rate is typically considered as the variable input, as it has a rapid and significant impact
on the process. Other inputs have been considered, such as pH or alkalinity, but they are
less cost effective as they require adding substances (such as a concentrated acid or base
solution) [78].

The various strategies developed in process control have been applied for the control
of AD and they can be divided in 2 categories : model based and knowledge based.
The latter are mainly proposed by experts, such as bioprocess engineers, who construct
strategies based on practical knowledge. On the other hand, model based controllers are
developed by the automatic control community and the main advantage of this approach
is the theoretical properties that they can guarantee, such as robustness or performance
[15].

For knowledge based controllers, recent works have incorporated the aspect of optimiz-
ing performance, but avoiding failure of the process is still prioritized and only when the
process is stable does the controller attempt to push the system towards higher biogas
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production [100]. For example, the feedback controller developed in [89] uses a set-point
for the hydrogen outflow concentration, since it is very sensitive to process destabiliza-
tion and therefore guarantees a fast response of the controller. To optimize the biogas
production the gain is dependent on the methane concentration and allows the controller
to push the system to higher dilution rates as long as hydrogen remains close to the
set-point level. The PID (Proportional Integral Derivative) controller developed in [36]
uses a cascade strategy consisting of 2 control loops: the first is used to control the VFA
concentration, to avoid the acidification of the reactor and guarantee process stability.
The second loop then attempts to optimize production by driving the system towards a
set-point that maximizes the theoretical methane outflow. These knowledge based con-
trollers have the advantage to be simple, robust and effective although they are dependent
on the gain parameters and finding the optimal values can be challenging.

With model based control, maximization of biogas production has been taken into
account more directly but the optimization is generally of static nature in the sense that
controls are designed to drive the process towards a steady state, computed from a model,
that maximizes biogas production. For example, the equilibriums of the 2 step model have
been computed and the dilution rate corresponding to the most productive steady state
can be found by solving an optimization problem [8] or extremum seeking algorithms can
be used to reach it [28, 66]. The few applications of optimal control theory also follow
this direction: the minimal time problem of reaching an optimal steady state has been
solved on a 2 dimensional invariant set of a 2 stage model [7].

In contrast, there has been much less work considering the dynamic optimization prob-
lem over the transients. In [93], the authors study the problem of driving the system to a
neighborhood of an optimal steady state of a 2 step model, while maximizing the biogas
outflow rate but with a penalization of the control. The Pontryagin Maximum Principle
is used to show that the optimal control is of bang-bang type and although the switching
is not explicit, this has lead to the development of a control with a heuristic switching
strategy based on methane measurements [95].

We will consider here the optimal control problem of maximizing the total methane
produced for the single step model of the chemostat. For a fixed final time T ∈ R, initial
data

ξ := (t0, s0, z0) ∈ D := (−∞, T )× [0, sin)× (0,∞)

and maximum dilution rate Dmax > 0, the problem is

Maximize J(ξ,D(·)) :=

∫ T

t0

µ(s(t))x(t) dt

over all D : [t0, T ]→ [0, Dmax] measurable

such that ṡ = D(sin − s)− µ(s)x, s(t0) = s0,

ẋ = µ(s)x−Dx, x(t0) = x0.

(Pbio)

This problem was first stated over 20 years ago [99] and using the Pontryagin Maximum
Principle, it was shown that the optimal control is bang-bang singular arc but the optimal
synthesis was not given and remains unknown today.

Ghouali et al. [38] have made progress by solving (Pbio) for initial conditions in the
invariant set I = {x+ s = sin}, for which the dynamics reduce to a single scalar equation

ṡ =
(
D − µ(s)

)
(sin − s).
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Figure 1.2: State space trajectories with feedback ψs̄. The black line represents the
invariant set {x + s = sin}. Haldane growth function (µ̄ = 0.74, Ks = 9.28, Ki = 256)
with sin = 100, Dmax = 3.

This is achieved for a large class of growth functions, only requiring the existence of a
unique maximum on the set I of the growth rate µ(s)(sin−s), or equivalently, monotonicity
on either side of the maximum. This allows to use a comparison result for scalar ODEs to
compare trajectories associated with different controls and then establish which achieves
the greatest production, since the biogas flow rate is proportional to the growth rate. The
optimal control is a most rapid approach path (MRAP) feedback to the unique maximizer
s̄

ψs̄(s) =

∣∣∣∣∣∣∣
0 if s > s̄,

µ(s̄) if s = s̄,

Dmax if s < s̄.

(1.1)

Optimal control problems over a fixed time horizon, in general, possess a time-dependent
optimal synthesis, while the duration of process operation is often poorly known. The
reduced problem exhibits the remarkable feature of having an optimal synthesis indepen-
dent of the terminal time, which makes it attractive from an application point of view.
However, this will not be the case for the general problem (Pbio) and as we shall see later
on, the optimal control will depend on the time horizon and initial condition considered.
This makes it considerably more difficult to solve and in addition, as the dynamics are 2
dimensional, we can not use the same comparison technique.

The feedback (1.1) has the additional benefit that it can be implemented without
complex biomass measurements, and only requires estimations of substrate concentration
and biogas flow rate. Finally, this control strategy of driving the process to an optimal
substrate level resembles those used in practice [36, 100]. For these reasons, we have
developed a method of estimating the sub-optimality for all initial conditions of similar
MRAP feedbacks to any substrate level s∗ ∈ [0, sin], and identifying the best one.
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Sub-Optimal Feedback Controls with Guaranteed Value

The starting point of this work is the observation of monotonicity properties arising from
different sources. The first comes from natural assumptions on the growth rate and we
will consider here substrate and biomass dependent functions.

Assumption 1.1 We suppose that µ : R+×R+ → R+ is a Lipschitz continuous function
that satisfies, for all x > 0

µ(0, x) = 0 and µ(s, x) > 0 for s > 0.

We suppose as well that x 7→ µ(s, x) is non increasing, which models crowding effects, and
x 7→ µ(s, x)x is non decreasing, which models the fact that having more biomass provides
at least the same growth.

A typical instance of this class is the Contois growth function, but this class of functions
also contains growth functions that depend only on the substrate concentration, such as
the Monod and the Haldane functions.

The next monotonic behaviour can be observed in the chemostat model, in the way
trajectories are attracted to the invariant domain I, independently of the control. This is
immediately apparent with the change of variables

z =
x

sin − s
, ż = µ

(
s, (sin − s)z

)
(1− z)z

The consequence is that we can use the fact that z(·) is monotonic for all controls, in
conjunction with the properties of the growth rate to establish a relation between the
value functions of (Pbio) and of an auxiliary problem with an objective function depending
only on s(·). To simplify notations, we denote φ(s, z) = µ

(
s, (sin − s)z

)
(sin − s) and the

growth rate is then φ(s, z)z. We now consider the problem, for z1 > 0,

Maximize Jz1(ξ,D(·)) :=

∫ T

t0

φ(s(t), z1) dt

over all D : [t0, T ]→ [0, Dmax] measurable

such that ṡ = D(sin − s)− φ(s, z)z, s(t0) = s0,

ż = µ
(
s, (sin − s)z

)
(1− z)z, z(t0) = z0.

(Pz1)

We denote the value function of (Pbio) as V (·) and of (Pz1) as Wz1(·), that we can relate
in the following manner.

Proposition 1.2 For any initial data ξ ∈ D and any z1 ∈ [min(z0, 1),max(z0, 1)], we
have the following frame for the value function V of the original problem

min(z0, 1)Wz1(ξ) 6 V (ξ) 6 max(z0, 1)Wz1(ξ). (1.2)

Then, any optimal control u?z1(·) of the auxiliary problem (Pz1) guarantees a (sub-optimal)
value for the original criterion J(ξ, ·) that satisfies

min(z0, 1)Wz1(ξ) 6 J(ξ, u?z1(·)) 6 max(z0, 1)Wz1(ξ)

and we have the following sub-optimality estimation

V (ξ)− J(ξ, u?z1(·)) 6 |1− z0|Wz1(ξ). (1.3)

9



The first frame (1.2) is remarkable as it gives an estimation of the value function,
without having to solve the associated problem.

On the other hand, the sub-optimality estimation (1.3) will be the basis for assessing
the performance of MRAP feedbacks. It turns out that the optimal controls of (Pz1)
are similar to the solution (1.1) of the reduced problem. Indeed, the objective function
Jz1(·) of (Pz1) does not depends directly on z(·) and since this variable is monotone, the
impact of a control is seen through the s(·) variable. Therefore, we can employ a similar
comparison technique, as used for the reduced problem, to compare the rewards associated
with different controls and prove the optimality of an MRAP feedback. For this, we need
again to assume the existence of a unique maximum, but this time for the growth rate on
the set {z = z1}.

Assumption 1.3 For each z1 > 0, the function s 7→ φ(s, z1) admits a unique maximum
on (0, sin), and we denote the substrate level at which this maximum is attained as

s̄(z1) = arg max
s∈(0,sin)

φ(s, z1).

We then have the following result.

Proposition 1.4 For all initial data ξ ∈ D, the MRAP feedback to s̄(z1),

ψs̄(z1)(s, z) =

∣∣∣∣∣∣∣
0 if s > s̄(z1),

µ(s̄(z1), (sin − s̄(z1))z) z if s = s̄(z1),

Dmax if s < s̄(z1),

(1.4)

is optimal for the auxiliary problem (Pz1).

In the case of a substrate only dependent growth function, these feedbacks all coincide
with the MRAP to s̄(1), the maximum on the invariant set I = {z = 1}, since φ(s, z) =
µ
(
s
)
(sin− s). However, for the substrate and biomass dependent case, these controls can

differ and various factors impact which feedback is the best.

We can expect the initial condition to have an influence on the performance of (1.4), as
can been seen with the sub-optimality estimation (1.3). In particular, due to the the term
|1− z0|, the distance to the set I will be important. However, through Wz1(·), the impact
of the initial condition will differ for each growth function. Indeed, in Figure 1.3 we can
observe that, for the Contois growth function, Wz1(·) varies significantly with the initial
biomass and this can be attributed to the dependence of the Contois growth function on
biomass concentration.

On the other hand, the impact of the time horizon is more straightforward. Since the
trajectories are attracted to the invariant set, we can expect ψs̄(1)(·) to be the best when
the horizon is sufficiently large. However, when the horizon is small, the feedback ψs̄(z0)

would seem to be the best option since this strategy consists in remaining close to the
maximum of the biogas flow rate corresponding to the initial condition, whereas another
feedback could drive the system away, towards another maximizing state but that can not
be reached in time.

To examine this we proceed with numerical simulations by computing the reward for
a range of values of z1 ∈ [min(z0, 1),max(z0, 1)] and of final times for fixed initial data.
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Figure 1.3: Auxiliary value function (x0, s0) 7→ Wz1(0, x0, s0) with z1 = 1. On the left,
Contois growth function (µmax = 0.74, Ks = 1, umax = 1.5) and on the right, Haldane
growth function (µ̄ = 0.74, Ks = 9.28, Ki = 256, umax = 3). In both cases, sin = 100 and
T = 2.
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Figure 1.4: Normalized reward JN(T, z1) as a function of z1 ∈ [z0, 1] and T ∈ [0.5, 6] for
the initial condition (s0, z0) = (20, 0.25). Contois growth function (µmax = 0.74, Ks = 1)
with sin = 100, Dmax = 1.5.

In order to identify the maximum of J(ξ, ψs̄(z1)(·)) with respect to z1 for different final
times, we normalize the reward by computing

JN(T, z1) =
J(ξ, ψs̄(z1)(·))−miny J(ξ, ψs̄(y)(·))

maxy J(ξ, ψs̄(y)(·))−miny J(ξ, ψs̄(y)(·))
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where the minimum and maximum are taken for y ∈ [min(z0, 1),max(z0, 1)]. Hence, for
each final time T , the maximum reward is achieved for z1 such that JN(T, z1) = 1 and
the minimum when JN(T, z1) = 0. Figure 1.4 clearly shows that there is a monotonous
relation between the final time and the best feedback: the greater the time horizon, the
closer z1 must be chosen to the invariant set I. This has lead us to examine the case of a
infinite time horizon.

Infinite Horizon Problems

Stating the optimal control problem (Pbio) on a finite horizon raises a number of issues. In
practical applications, it can be difficult or even impossible to specify a final time in ad-
vance, especially considering that, in general, solutions of finite horizon problems depend
on the given time interval and therefore any change mid-course of the planning horizon
will result in loss of optimality. For a long time now, researchers working on optimization
related to economics have dealt with these difficulties by considering problems over an
infinite horizon [61, 97]. Such a formulation of optimal control problems also reflects the
need for preserving the viability of a system indefinitely.

As the reward is unbounded on a infinite horizon, we have to choose a concept of
optimality [18]. In most cases, the process is operated for a very long duration and the
performance expected from the practitioners is to maintain a high average value over time,
so a natural choice is to consider the limit of the averaged reward

JT (ξ,D(·)) =
1

T

∫ T

0

µ
(
s(t), x(t)

)
x(t) dt. (1.5)

However, we have to consider the inferior and superior limit as it is possible to construct
controls for which the average reward does not converge. We thus consider two optimal
control problems and denote their value functions

V ∞(ξ) = sup
{

lim inf
T→∞

JT (ξ,D(·)) : D(·) ∈ L∞((0,∞), [0, Dmax])
}
, (1.6)

V
∞

(ξ) = sup
{

lim sup
T→∞

JT (ξ,D(·)) : D(·) ∈ L∞((0,∞), [0, Dmax])
}
. (1.7)

Another choice of objective function, often used in problems related to economics, is the
discounted reward, for a discount rate δ > 0,

Jδ(ξ,D(·)) =

∫ ∞
0

δe−δtµ
(
s(t), x(t)

)
x(t) dt. (1.8)

The term e−δt represents a discount rate or a preference for earlier rather than later
production. For a positive discount rate, the optimal control for this reward could be
very different from the solution of problems (1.6) and (1.7) but, when the discount rate
δ goes to 0, the average and discounted rewards are in fact related. This is the reason
for rescaling the integral in (1.8) with the discount rate δ, in order to guarantee that the
limit remains finite. We thus consider the following value function

Vδ(ξ) = sup
{
Jδ(ξ,D(·)) : D(·) ∈ L∞((0,∞), [0, Dmax])

}
. (1.9)

The relation between the value functions (1.6), (1.7) and the limit of (1.9) as δ goes
to 0 has been studied by Grüne [41] and the basis of his work is the following result [41,
Lemma 3.1].
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Lemma 1.5 Let q : R 7→ R be a measurable and bounded function. If the average
1
T

∫ T
0
q(t) dt converges when T →∞ then

lim
T→∞

1

T

∫ T

0

q(t) dt = lim
δ→0

∫ ∞
0

δe−δtq(t) dt.

A similar result can be established for objective and value functions of optimal control
problems for general control systems and we transcribe it here in our setting.

Lemma 1.6 For all initial data ξ ∈ D, and controls D(·) ∈ L∞((0,∞), [0, Dmax]),

lim inf
T→∞

JT (ξ,D(·)) 6 lim inf
δ→0

Jδ(ξ,D(·)) 6 lim sup
δ→0

Jδ(ξ,D(·)) 6 lim sup
T→∞

JT (ξ,D(·)),

and
V ∞(ξ) 6 lim inf

δ→0
Vδ(ξ) 6 lim sup

δ→0
Vδ(ξ) 6 V

∞
(ξ).

The immediate consequence is that equality holds in both these frames if the limit of the
average reward exists. The main result of Grüne shows that the average and discounted
value functions are not only equal but also piecewise constant for general affine control
systems satisfying a controllability assumption. However, the work of Grüne gives no
information on the optimal controls, whether the solutions of the discounted problems for
a positive discount rate might converge to a solution of the limit problem.

In our case, we prove the existence of optimal controls for the discounted problem,
which is a first step in showing the convergence of the optimal controls thanks to the
concept of Γ−limit, the convergence notion guaranteeing that optimal solutions converge
to a maximizer of the limit problem.

Proposition 1.7 For all ξ ∈ D and for all δ > 0, the suprema are attained,

Vδ(ξ) = max
D(·)

Jδ(ξ,D(·)).

If the Γ−limit of Jδ(·) exists as δ goes to 0,

J0(ξ,D(·)) := Γ− lim
δ→0

Jδ(ξ,D(·)),

then the maxima converge, pointwise in ξ, to the maximum of the limit,

V0(ξ) := lim
δ→0

Vδ(ξ) = max
D(·)

J0(ξ,D(·)). (1.10)

Furthermore, if Dδ(·) is an optimal control for (1.9), i.e. if Vδ(ξ) = Jδ(ξ,Dδ(·)) and
if Dδ(·) converges to D0(·) in L∞((0,∞), [0, Dmax]) then D0(·) is an optimal control for
(1.10) and

V0(ξ) = J0(ξ,D0(·)) = lim
δ→0

Jδ(ξ,Dδ(·)).

Although our problem does not verify the controlability assumption of Grüne, Lemma
1.6 gives valuable information and allows us to show the equality of the value functions
(1.6), (1.7) and (1.10). The intuition here is that, under suitable conditions, the limit of
the average of a function is its value at infinity. In our case, we can show that the average
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reward associated with a converging trajectory is equal to the biogas flowrate reached at
infinity. Moreover, we can exploit a key property of the chemostat model : the invariant
domain I is attractive for all controls1 and therefore the maximum of the biogas flowrate
on the set I is an upper bound of the value functions. We denote s̄ = s̄(1), a substrate
level, not necessarily unique this time, at which the maximum biogas flowrate is attained.
Then the average reward of a control that drives the system to s̄ is equal to the upper
bound and thus such a control is optimal.

Proposition 1.8 For any initial data ξ ∈ D, any D(·) ∈ L∞((0,∞), [0, Dmax]) that drives
the system asymptotically to the state (s̄, sin − s̄) is optimal for problems (1.6), (1.7) and
(1.10). We then have

V ∞(ξ) = V0(ξ) = V
∞

(ξ) = µ(s̄, sin − s̄)(sin − s̄).

This result allows us to prove that the MRAP feedback (1.4) to s̄ is optimal for the
average reward problems since this control brings the system towards s̄ and maintains
it there as it reaches the set I. However, this is not the only optimal control and, for
example, in the case of a growth function that depends only on the substrate and that is
monotone (such as the Monod growth function), the constant control D = µ(s̄) can also
drive the system to the state (s̄, sin − s̄).

More generally, Proposition 1.8 offers a simple characterization of the optimal controls
and makes this approach valuable for understanding what constitutes a control strategy
that maximizes biogas production. In addition, posing the problem on an infinite horizon
is interesting when considering more complex models due to the relative simplicity of
resolution of these types of problems, compared to the finite horizon problem for instance.

Fixed Point Algorithm

We now consider the full problem (Pbio) on a finite horizon. As mentioned previously,
the optimal synthesis for this type of problem is in general time dependent and a key
difficulty here is understanding the impact of the time horizon on the optimal control.
Indeed, when this problem was first studied [99], although it was shown that the optimal
control is bang-bang singular, the dependence of the singular arcs on the initial data was
not given. It is in this aspect that we seek to advance and we focus here on proposing a
candidate to optimal control in feedback form and giving a practical way to compute it.

To gain information on the singular arcs, we use the Pontryagin Maximum Principle
(PMP) [20], which states that an optimal control maximizes the Hamiltonian, a function
of the state variables and associated adjoint states. An important fact here, is that the
Hamiltonian does not depend explicitly on time and thus is constant and equal to some
h = h(ξ) ∈ R. Combining this with the maximum condition, we can establish an equation
that is valid on a singular arc. Here, in the case of a substrate only dependent growth
function, we can view this as the fact that extremal trajectories during the singular arc
remain in the graph of

s 7→ xh(s) := h
µ′(s)(sin − s)

µ(s)2
. (1.11)

1except a certain set of controls but that can not be optimal
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Figure 1.5: Example of trajectories obtained with feedback ψh with h = 2 and Monod
growth function (µmax = 1.2, K = 7.1), Dmax = 0.7 and sin = 10.

The consequence is that if we know the value of h, we can identify the singular arc and if
we know how the control switches from bang to bang and from bang to singular arc, we
can construct an admissible extremal control.

We assume here, from the knowledge of the solution on the invariant set I, that the
optimal trajectories follow a most rapid approach path to the singular arc, and remain
on it. Althought computing a feedback Dh(s) depending only on s and h, to stay on
the graph of (1.11) is straightforward, there are several challenges to fully construct a
control for a large class of growth functions. In particular, it might not be possible to
remain on the singular arc with an admissible control and then the graph of (1.11) could
be divided in several disjoint admissible sets. Another key point is that bang-singular arc
trajectories might not cover all of the state space and therefore a switching curve for bang-
bang-singular arc trajectories must be determined. However, for the Monod and Haldane
growth functions, thanks to further assumptions, we can determine the admissible section
Gh of the singular arc and identify the set G0

h (resp. Gmax
h ) on which the control is 0 (resp.

Dmax). The result is the following feedback, illustrated in Figure 1.5,

ψh(x, s) =


0, if (x, s) ∈ G0

h,

Dmax, if (x, s) ∈ Gmax
h ,

Dh(s), if (x, s) ∈ Gh.

(1.12)

In order to make this a suitable candidate to optimal control, we can identify the value
of the Hamiltonian h for a given initial data thanks to the link between the PMP and the
Hamilton-Jacobi-Bellman (HJB) equation.

Lemma 1.9 ([3, Theorem III.3.42]) A measurable function D : [t0, T ] → [0, Dmax] max-
imizes (Pbio), the production of biogas problem, if and only if the maximum condition of
the PMP holds and

(−h, px(t), ps(t)) ∈ ∂+V (t, x(t), s(t)), a.e. on [t0, T ].

where ∂+V is the viscosity superdifferential of the value function of (Pbio) and px(·), ps(·)
are the adjoint states of the PMP.
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This Lemma implies that whenever the value function is differentiable at ξ = (t0, x0, s0),
we should have that

h = −∂t0V (ξ).

If ψh is actually an optimal control, we can write the value function as the cost of the
control ψh, that is, V (ξ) = J(ξ, ψh) and therefore

h = −∂t0J(ξ, ψh), (1.13)

In other words, h is a fixed point of the mapping η 7→ −∂t0J(ξ, ψη) and this is the key
point we use to construct an algorithm to identify h.

In addition, equation (1.13) could be seen as a certificate of optimality for the feedback
(1.12) if we could prove that it is an extremal control. Indeed, in this case, if the algorithm
converges to a fixed point, then the computed feedback is a good approximation of an
optimal control, because the reward associated with the feedback ψh is an approximated
solution to the HJB equation.

To solve (1.13), we consider the classical iterative scheme for finding a fixed point of
a function by repeatedly computing the image of the previous iterate. A particularity
here is that the function is composed of a partial derivative and therefore, to approximate
it with a finite difference, we work with a range of initial times and use the fact that
J(t0 = T, x0, s0, ψh) = 0 to start, running through the initial times backwards until
reaching the desired starting time. Testing this algorithm with parameters from published
works, we found that it performs well and converges in only a few iterations, with the
relative error decreasing rapidly.

This method is a promising illustration of an interesting combination of analytical
and numerical approaches. First, it allows to gain an understanding of the problem by
obtaining a sufficiently explicit expression of the solution. Furthermore, the computed
solutions show the complexity of the problem, with trajectories from different initial data
having different singular arcs. This could be used to further justify the use of the simpler
and easier to implement sub-optimal controllers (1.4) previously studied, as these have
a similar form to (1.12) and they can be seen as a way of approximating the singular
arcs. On the other hand, this work shows that numerical computations could be used to
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Figure 1.6: Optimal trajectories in state space, for the Monod growth function (µmax =
1.2, K = 7.1) with t0 = 0, T = 2.5, Dmax = 0.7 and sin = 10. The initial conditions
are on the left (x0, s0) = {(1, 3), (5, 1), (11, 2), (15.5, 4.5)} and on the right, (x0, s0) =
{(1, 5.5), (2, 6.5), (5, 7), (10, 7)}.
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confirm the validity of a candidate, in addition to giving a practical way of computing a
precise solution for a particular case.

1.3.2 Spatially Heterogeneous Bioreactor Modelling

The most common type of bioreactor in use today for anaerobic digestion is the contin-
uously stirred tank reactor (CSTR), which uses a mixing system to homogenize reactor
contents. The advantages of such a design is that it avoids the accumulation of toxic sub-
stances in one area of the tank and, in addition, mixing can prevent dead zones, with little
substrate and thus a low reaction rate. However, for homogeneous reactors, the output is
equal to the inner concentration, so that, to have a high level of organic matter removal,
the bioreactor must be maintained at a low concentration. This means that CSTR type
devices need to be operated with low dilution rates, either with a low feeding rate or by
designing large reactors. Furthermore, a major disadvantage of the CSTR is that mixing
represents a substantial portion of the energy required to run an anaerobic digester and
can thus offset the benefits of producing biogas.

An alternative design is a un-mixed reactor that has a gradient of concentration from
input to output, such as the plug flow or tubular reactor. This would potentially allow
a high reaction rate at the beginning, and thus high biogas production, but with a low
output concentration. However, few full scale bioreactors have been implemented for
AD, as a better understanding of the impact of heterogeneity of the reacting medium on
performance and stability is still required.

A variety of models have been developed to study questions related to mixing efficiency
and heterogeneity. On one hand, several studies have worked with very complex models,
considering multi-phase and turbulent flow, and generally using comercial computer fluid
dynamics (CFD) software to run simultions [67, 103, 107, 112]. However, the complexity
of these models means that they are computationally intensive to simulate and therefore
cannot be used to study optimization problems.

At the other end of the complexity spectrum, there is compartment models, which
represent a reactor as a network of interconnected well-mixed zones and thus use systems
of ordinary differential equations. The advantage of reducing complexity is that it allows a
more in depth analysis and for example, studies with this type of models have found that
the impact of heterogeneity depends on the graph of interconnections [10, 11, 32, 48, 81].

A third type of model attempts to find a compromise between model complexity and
physical accuracy. They represent a reactor in 1 or 2 spatial dimensions, often assuming
that fluid velocity is constant in space to focus on the biological activity [31, 65, 75, 111].
Recently, 2D models coupling bio-reactions with fluid dynamics have been developed and
this has allowed the consideration of optimization problems [2, 23, 24, 74].

We introduce here a similar type of reduced complexity model for a real pilot scale
bioreactor. This device is particularly adapted to develop a spatially heterogeneous model
as experimental data was gathered by collecting substrate at different points along the
main axis of the reactor and a spatial gradient was observed. A compartment model has
already been developed for this bioreactor [56], considering two interconnected homoge-
neous zones and the two reaction model of [13]. The experimental data was used to fit the
biological parameters and this model was able to reproduce the spatial gradient roughly.
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Figure 1.7: Schematic view of the reactor

The present work aims at improving the modelling of spatial features, by representing
more faithfully the details of the reactors geometry. This device can be divided in three
sections: the liquid enters at the bottom, goes up through a fixed bed, which helps to
fix the biomass, and the output of the reactor is at the top (Figure 1.7). The contents
of the reactor can be mixed by recirculating liquid from the output back into the input
or by an auxiliary system that pumps liquid from the very bottom back into the tank
at the same height. This makes this bioreactor particularly interesting for the study of
heterogeneity as it can either be operated as a CSTR or as a tubular reactor by changing
the recirculation flow rate.

The configuration of the input and output flows, means that we need to consider a
3D model for the lower and upper parts of the reactor. However, as the fixed bed is
made of narrow PVC tubes, the middle section can be modelled as an array of parallel
1D tubular reactors. This considerably reduces the complexity of the model, and in
particular of the fluid dynamics in this section. For the bottom and top sections, we
will model the liquid as an incompressible viscous fluid and since the timescale of the
dynamics of fluids is much shorter than the biological timescales, we consider the steady
state Navier-Stokes equations, denoting U = (ux, uy, uz) the fluid velocity, p the pressure
and g the acceleration due to gravity,

U · ∇U − ν∆U +∇p = g,

∇ · U = 0.

For the biological activity, we use the two reaction model of [13] and therefore need
to compute the spatial distribution of the concentrations of two substrates and two
biomasses. However, to further reduce the complexity of the model, we will consider
that the bio-reactions take place only in the middle section since it has been observed
that most of the active biomass is attached to the fixed-bed. Then, in the bottom and top
sections, the substrate concentrations Sk, k = 1, 2, satisfy advection-diffusion equations

∂tSk + U · ∇Sk −Dk∆Sk = 0
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where Dk are the diffusion coefficients. For the middle section, in each tube, we consider
advection-diffusion-reaction equations,

∂tSk + uz ∂zSk −Dk∂
2
zzSk = fk,

where fk is the reaction term which depends on the concentrations of substrate and
biomass through the growth rate functions.

As we suppose that the micro-organisms are fixed, the biomass concentrations Bk,
k = 1, 2 are neither transported nor diffused and only react. However, if we use a reaction
term only based on a classical growth rate function, which depends linearly on the biomass
concentration, then it will result in unbounded exponential growth of the micro-organisms.
To remedy this, we will consider a death rate τk and to take into account crowding effects,
we add a density dependent term to the growth function, taken from [68],

gk(Bk) =
1

1 + ck
√
Bk

.

Then, the biomasses satisfy a distributed ODE, denoting µk the specific growth rates,

∂tBk = µk(Sk)gk(Bk)Bk − τkBk,

The model equations can be straightforwardly solved with the Finite Element Method,
but the difference of physical and biological timescales make this type of model difficult
to simulate efficiently. Indeed, we are primarily interested in observing the biological
activity of the reactor over the course of several days, but to correctly resolve the physical
processes, we need to use a time step of the order of seconds for the bottom section due
to the high fluid velocities caused by the mixing system. In addition, with small diffusion
coefficients, fine meshes are required and using the reported values for Dk results in long
computations. However, the solution retains the same macroscopic behaviour even if we
take a value for Dk two orders of magnitudes greater and thus we can use a coarser mesh.

The detailed representation of the processes of advection and diffusion makes this
model a valuable tool to study the impact of physical operational parameters, such as

Figure 1.8: Tracer concentration for standard conditions, at 1, 2, 3, 4 and 5 hours after
pulse.
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Figure 1.9: VFA (S2) concentrations at different heights within the reactor (30 and 90
cm from the bottom) and at output, for the 3D model and experimental data. Values of
the 2 zones of the ODE model of [56] are also shown.

the recirculation and mixing flowrates. We first explore this question with numerical
simulations of tracer experiments, which consist in releasing a short pulse of an inert
substance in the inflow and measuring the concentration at the output (Figure 1.8).
These reveal that the influence of the bottom mixing system is mainly seen during the
transients and its efficiency is governed by the ratio between the recirculation and mixing
flowrates.

Concerning the biological activity, the computationally cost of simulations make esti-
mating the model parameters accurately unpractical. It is important to point out that
we are not trying to construct a predictive model here, but instead we want to be able to
reproduce the qualitative behaviour of the bioreactor. Then we can use the growth func-
tion parameters found for the compartment model of [56] and choose the extra parameters
(death rates τk and the density dependence parameter ck) so that model reproduces exper-
imental data. The results are satisfactory, considering that measurements of bioprocesses
have high error margins. In particular, the ODE model has a tendency to under estimate
the spatial variation of substrate concentration whereas we can reproduce it more accu-
rately (Figure 1.9). However, the transient behaviour is poorly captured but this can be
attributed to the use of a simple two reaction model and therefore, we will mainly focus
on reactor performance at steady state.

To study the impact of heterogeneity on the biological activity, we run simulations for
a range of recirculation flow rates. We observe that the reactor operates more efficiently
with lower recirculation, removing more organic matter and producing more biogas. For
small recirculation flow rates, the dilution rate is effectively lower, so that the substrate
concentration entering the reactor is much higher than standard operating conditions. In
this case, our simulations showed a very strong gradient of substrate concentrations, with
high levels of biomass at the very beginning of the fixed bed. This indicates that the
inhibition phenomenons are currently not well captured with this model as the biological
parameters where obtained with data that only had low concentrations of substrate. These
preliminary results of ongoing work must therefore be taken with caution.
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Chapter 2

Optimal and Sub-Optimal Feedback
Controls for Biogas Production

This chapter corresponds to the published article

Haddon, A., Ramı́rez, H., and Rapaport, A.
Optimal and Sub-optimal Feedback Controls for Biogas Production.

J Optim Theory Appl (2019) 183:642.
https://doi.org/10.1007/s10957-019-01570-3

2.1 Introduction

Anaerobic digestion is a biological process in which organic matter is transformed by
microbial species into biogas (methane and carbon dioxide). Such transformations have
been used for a long time in waste water-treatment plants to purify water [91]. Valorizing
biogas production while treating wastewater has received recently great attention, as a
way of producing valuable energy and limiting the carbon footprint of the process [85].
As a final product of the biological reaction, the total production of biogas measures the
performances of the biological transformation. Therefore, there is a strong interest in
determining control strategies maximizing biogas production.

With continuous-stirred bioreactors, two kinds of anaerobic models are usually con-
sidered for control purposes in the literature: the one-step model, which corresponds to
the classical chemostat model [50], and the two-step model that has been proposed by
Bernard et al. [13]. Although these models only have few dynamic variables, it has been
shown that they are capable of reproducing the qualitative behavior of the anaerobic
digestion process [12]. Furthermore, in the two-step model, the second reaction is the
most limiting due to inhibition by the substrate and we can then consider that a one-step
model can be used to focus on the second reaction. In particular, a common assumption
is to consider that the first step is fast and then the two reactions can be reduced to a
single one with a slow-fast approximation and in this case, the one-step model provides a
good representation of the biogas production.

The control variable is typically the input flow rate (or equivalently the dilution rate,
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since the volume of the reactor is constant in continuous operating mode). Several works
have already considered the static optimization problem of maximizing the output flow
rate of biogas at steady state, and various control strategies have been proposed to stabilize
the processes at these nominal states (see for instance [100, 89, 26, 27, 28, 95, 106]).

There has been comparatively much less work considering the dynamic optimization
problem over the transients, while bio-processes are often not initialized at their optimal
nominal state. Although the optimal control problem, which consists in maximizing
biogas production over a given time interval, has been posed a long time ago [99], it is
still unsolved today (even for the one-step model). Let us mention two attempts to solve
approximately or partially this problem. Sbarciog et al. [94] have considered the two-step
anaerobic model and proposed a strategy for maximizing biogas production as an optimal
control to drive the system in finite time in a neighborhood of the optimal steady state,
with additive penalty terms in the criterion. In [38], Ghouali et al. give a complete solution
of the original optimal control problem for the one-step model, but for a particular subset
of initial conditions which belong to an invariant manifold of the system (see also [51]).
The dynamics can be then reduced to a scalar one and the authors show that the optimal
solution exhibits a singular arc with a “most rapid approach path” optimal strategy. Let
us underline that optimal control problems over a fixed time horizon possess generally a
time-dependent optimal synthesis, while the duration of process operation is often poorly
known. However, the scalar reduced problem exhibits the remarkable feature of having
an optimal synthesis independent of the terminal time, which makes it quite attractive
from an application view point.

The purpose of the present article is to propose new control strategies for the one-step
model, as time-independent feedbacks for general initial conditions

• either considering an infinite horizon,

• either considering sub-optimal controllers for the finite horizon.

For the infinite horizon (see for instance the book [18]), we consider the limit of the
discounted criterion (when the discount factor tends to zero) and the average cost. We
study optimal strategies and compare their related optimal costs. This study extends the
preliminary results presented in the conference paper [47] and considers a large class of
growth functions, that can be in particular density-dependent (such as the Contois law)
or not (such as the Monod or Haldane law). Our work for the finite horizon exploits and
extends an approximation technique presented in [46]. This consists, for a given initial
condition, in framing the optimal solution by considering a different reward for which the
optimal solution can be determined exactly and that possess the property of having a
time-independent optimal synthesis (i.e. whatever is the time horizon, finite or infinite).
This technique has moreover the advantage of providing bounds on the sub-optimality of
the controllers. The results are again obtained for a large class of growth functions and
we show that density dependent growth functions lead to more sophisticated feedback
laws.

The paper is organized as follows. Section 2.2 specifies dynamics, control, criterion
and hypotheses, and gives some preliminary results about controllability and asymptotic
behavior of solutions. Sections 2.3 and 2.4 study the optimal solutions, respectively for
the infinite and finite time horizons. Finally, Section 2.5 illustrates our results on various
growth functions.

22



2.2 Preliminaries

In this work, we consider the classical chemostat model [50]. This represents a well-mixed
continuously fed bioreactor in which a substrate of concentration s is treated (and then
transformed into biogas) by a population of microorganisms of concentration x

ṡ = u(sin − s)−
1

Y
µ(s, x)x, (2.1)

ẋ = µ(s, x)x− ux. (2.2)

We denote sin > 0 the inflow concentration of substrate, Y the yield coefficient, µ(·, ·) the
specific growth rate and u the dilution rate, which is the control.

The biogas flowrate is assumed proportional to the growth rate so that the biogas
produced during a time interval [t0, T ] is proportional to∫ T

t0

µ(s(t), x(t))x(t) dt

and, without loss of generality, we will suppose that the proportionality coefficient as well
as the yield coefficient are equal to 1.

We will consider the following class of growth functions :

Assumption 2.1 We suppose that µ : R+×R+ → R+ is a Lipschitz continuous function
that satisfies, for all x > 0

µ(0, x) = 0 and µ(s, x) > 0 for s > 0.

We suppose as well that x 7→ µ(s, x) is non increasing, which models crowding effects, and
x 7→ µ(s, x)x is non decreasing, which models the fact that having more biomass provides
at least the same growth.

A typical instance of this class is the Contois growth function, defined later in (2.37),
but note that this class of functions also contains growth functions that depend only on
the substrate concentration, such as the Monod (2.35) and the Haldane (2.36) functions.

We will study the problem of maximizing the accumulated biogas for controls in the
following set of admissible controls

U([t0, T ]) =
{
u(·) ∈ L∞(t0, T ;R) : u(t) ∈ [0, umax] for t ∈ [t0, T ]

}
with t0 ∈ R and T ∈ R∪{+∞}, and where umax > 0 is a given parameter that represents
the maximal dilution rate. We will consider initial conditions taken in the invariant set

D := [0, sin[×]0,∞[

which corresponds to the most common operating conditions. Notice that for initial
conditions in D, any solution of (2.1)-(2.2) cannot reach s = sin in finite time and stays
non negative. Therefore the set D is (forward) invariant.
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2.2.1 Properties of the Dynamics

On the invariant domain D, we introduce the change of variables

ζ = (s, z) with z =
x

sin − s
,

under which the dynamics become

ζ̇ =

[
ṡ
ż

]
= f(ζ, u) :=

[ (
u− µ

(
s, (sin − s)z

)
z
)

(sin − s)
µ
(
s, (sin − s)z

)
(1− z)z

]
. (2.3)

We will denote st0,ξ,u(·) and zt0,ξ,u(·) the solution of (2.3), with initial condition ξ =
(s0, z0) = (s(t0), z(t0)) ∈ D and control u(·) ∈ U([t0, T ]). The cumulated biogas produc-
tion becomes ∫ T

t0

φ
(
st0,ξ,u(t), zt0,ξ,u(t)

)
zt0,ξ,u(t) dt (2.4)

with
φ(s, z) = µ

(
s, (sin − s)z

)
(sin − s) (2.5)

and we will denote
φ(z) = max

s∈]0,sin[
φ(s, z). (2.6)

We can now establish an important property of the controlled dynamics.

Lemma 2.2 The trajectories of the system (2.3) for a given initial condition ξ = (s0, z0) ∈
D, for all admissible controls, remain in the set

L(ξ) = [0, sin]× [min(z0, 1),max(z0, 1)]. (2.7)

Proof. From Assumption 2.1 we have that µ(·, ·) > 0 and since the solutions z(·) satisfy
(2.3), we then have the following

min(z0, 1) 6 zt0,ξ,u(t) 6 max(z0, 1)

for all t > 0, for any admissible control u(·).

In the following, we consider initial conditions that guarantee the controllability of the
s variable.

Assumption 2.3 We suppose that the initial condition ξ ∈ D is such that

max
(s,z)∈L(ξ)

µ
(
s, (sin − s)z

)
z < umax.

In practice, for a given initial condition it possible to choose umax such that the previous
inequality is satisfied.

We now define a class of feedbacks, that will play an important role, and that are based
on the notion of most rapid approach path, a well known concept in the theory of optimal
control; see, for example, [83, 52].
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Definition 2.4 For (s, z) ∈ L(ξ), we define the most rapid approach feedback to a given
substrate level s∗ ∈ [0, sin[, as

ψs∗(s, z) =

∣∣∣∣∣∣
0 if s > s∗,
µ(s∗, (sin − s∗)z) z if s = s∗,
umax if s < s∗.

(2.8)

Clearly, with Assumption 2.3 this feedback is well defined, so that, associated with
this control, for every initial condition ξ ∈ D, there exists a unique absolutely continuous
solution for the dynamics (2.3).

Lemma 2.5 For any ξ ∈ D satisfying Assumption 2.3, a given substrate level s∗ ∈]0, sin[
is reachable in finite time with the feedback ψs∗.

Proof. First, using the monotonicity properties of µ(·, ·) of Assumption 2.1, it is clear
that ψs∗ is admissible provided Assumption 2.3 is satisfied.

To show that s∗ is reachable in finite time, it is enough to note that when st0,ξ,ψs∗ (t) >
s∗, for t in a given open interval I, we have

ṡt0,ξ,ψs∗ (t) = −µ
(
s, (sin − s)z

)
z(sin − s) 6 k− < 0, ∀ t ∈ I

with k− = −mins∈]s∗,sin[ µ
(
s, (sin− s) min(z0, 1)

)
min(z0, 1)(sin− s∗). This insures that s∗

is always reachable in finite time from s0 > s∗.

Analogously, if st0,ξ,ψs∗ (t) < s∗, for t ∈ I, we have from Assumption 2.3

ṡt0,ξ,ψs∗ (t) =
[
umax − µ

(
s, (sin − s)z

)
z
]

(sin − s) > k+ > 0, ∀ t ∈ I

with k+ =
[
umax −maxs∈]0,s∗[ µ

(
s, (sin − s) max(z0, 1)

)
max(z0, 1)

]
(sin − s∗). Then s∗ is

reachable from s0 < s∗, again in finite time.

Remark It should be pointed out that there is a similarity with the turnpike property
[115, 104] when using the controller (2.8). The turnpike property has received great
attention in the literature (see, for instance, [42, 83, 52, 84]), and recent results give
sufficient optimality conditions [34, 33]. However, we shall show in the next sections
that the value s∗, which determines the turnpike, has to depend on the initial condition
(excepted for the very particular case when the initial condition belongs to the invariant
set {z = 1} that has been solved in [38]). So, we are not in the usual framework of a
single turnpike [34, 33] or isolated turnpikes [82], and the results of the literature do not
apply.

For the problem on an infinite horizon, we will consider persistently exciting controls,
which are defined as satisfying ∫ T

t0

u(t) dt −→
T→∞

∞.

As the next Lemma shows, the trajectories associated with these controls are such that
zt0,ξ,u(t) converges to 1, which is essential in our approach. Furthermore, for non per-
sistently exciting controls, st0,ξ,u(t) converges to 0 and thus the biogas production also
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converges to 0. As a consequence, the controls that maximize biogas production are
necessarily persistently exciting controls.

Lemma 2.6 For all initial conditions ξ ∈ D and for all persistently exciting controls
u(·) ∈ U([0,∞[), we have

lim
t→∞

z0,ξ,u(t) = 1

and

lim
δ→0

∫ ∞
0

δe−δtz0,ξ,u(t) dt = lim
T→∞

1

T

∫ T

0

z0,ξ,u(t) dt = 1.

Moreover, for non persistently exciting controls, we have

lim
t→+∞

s0,ξ,u(t) = 0.

Proof. From equation (2.3), the solution z(·) = z0,ξ,u(·) can be written as follows

z(t) =
z0 + e

∫ t
t0
µ(s(τ),x(τ)) dτ

1 + z0

(
e
∫ t
t0
µ(s(τ),x(τ)) dτ − 1

) (2.9)

where s(·) = s0,ξ,u(·), x(·) = x0,ξ,u(·). From equation (2.2), the solution x(·) is such that

x(t) = x(t0)e
∫ t
t0

(
µ(s(τ),x(τ))−u(τ)

)
dτ
.

Therefore, if the integral function

t 7→
∫ t

t0

µ(s(τ), x(τ)) dτ, t ≥ t0 (2.10)

is bounded, then x(t) must converge asymptotically to 0 when t goes to +∞ and u(·) is
a persistently exciting control. Moreover, from equations (2.1), (2.2) we have

d

dt

(
s(t) + x(t)

)
= u(t)

(
sin − s(t) + x(t)

)
so that

s(t) + x(t) = sin + (s(t0) + x(t0)− sin

)
e
−

∫ t
t0
u(τ) dτ

and then s(t) must converge to sin when t goes to +∞. Consequently, by continuity of
the function µ, there exists T > t0 such that

µ(s(t), x(t))) > µ(sin, 0)/2 > 0

for any t > T , which implies that the integral defined in (2.10) goes to +∞ when t goes
to +∞, which is a contradiction. We deduce that this integral cannot be bounded and
from equation (2.9) that z(t) converges to 1 when t goes to +∞.

A proof of the equality of limits of the integrals

lim
δ→0

∫ ∞
0

δe−δtz0,ξ,u(t) dt = lim
T→∞

1

T

∫ T

0

z0,ξ,u(t) dt

can be found in [40, Lemma 3.5]. For the value of the limits we use the fact that z0,ξ,u(t)
converges to 1 : for all ε̃ > 0, there exits a time tε̃ such that, for all t > tε̃,

|z0,ξ,u(t)− 1| < ε̃.
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Then, for all T > max(tε̃, tε̃/ε̃)∣∣∣∣ 1

T

∫ T

0

z0,ξ,u(t) dt− 1

∣∣∣∣ 6 1

T

∫ tε̃

0

|z0,ξ,u(t)− 1| dt+
1

T

∫ T

tε̃

|z0,ξ,u(t)− 1| dt

<
tε̃
T
|z0 − 1|+

(
1− tε̃

T

)
ε̃

< ε̃ (|z0 − 1|+ 1) .

With this, for all ε > 0, we can take ε̃ = ε/(|z0 − 1| + 1) and then we have, for T >
max(tε̃, tε̃/ε̃) ∣∣∣∣ 1

T

∫ T

0

z0,ξ,u(t) dt− 1

∣∣∣∣ < ε.

Finally, we prove that for non persistently exciting controls, s0,ξ,u(t) converges to 0.
Therefore, suppose that u(·) is an admissible control with a finite integral and we define,
for all t > 0,

I(t) :=

∫ t

0

u(τ) dτ <∞

and

ϕ(t) := (sin − s0,ξ,u(t))e
I(t).

Then

ϕ′(t) = φ
(
s0,ξ,u(t), z0,ξ,u(t)

)
z0,ξ,u(t)e

I(t) > 0

and since ϕ(t) is bounded, we can deduce that ϕ(t) converges as t goes to infinity. Note
as well that ϕ′ is absolutely continuous and thus uniformly continuous. We can therefore
use Barbalat’s Lemma [63, Lemma 4.2] to get that ϕ′(t) converges to 0. Then, as z0,ξ,u(t)
cannot reach 0 (Lemma 2.2), we have that φ

(
s0,ξ,u(t), z0,ξ,u(t)

)
must converge to 0 and by

continuity we conclude that s0,ξ,u(t) converges to 0.

2.3 Infinite Horizon and Average Reward

In this section, we study the problem of maximizing biogas production over an infinite
horizon. Since the dynamics (2.3) are autonomous, without loss of generality, we can
assume here that t0 = 0 and we will then denote sξ,u(·) and zξ,u(·) solutions of (2.3).

We start by defining the average biogas production during a time interval [0, T ] as

JT (ξ, u(·)) =
1

T

∫ T

0

φ
(
sξ,u(t), zξ,u(t)

)
zξ,u(t) dt (2.11)

and we consider the inferior and superior limits as T goes to infinity

J∞(ξ, u(·)) = lim inf
T→∞

JT (ξ, u(·)), (2.12)

J
∞

(ξ, u(·)) = lim sup
T→∞

JT (ξ, u(·)). (2.13)
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The optimal control problems in consideration here consist in maximizing these functionals
with respect to the dilution rate u(·) ∈ U([0,∞[), for any initial condition ξ ∈ D. More
precisely, the value functions of these optimal control problems are

V ∞(ξ) = sup
{
J∞(ξ, u(·)) : u(·) ∈ U([0,∞[)

}
, (2.14)

V
∞

(ξ) = sup
{
J
∞

(ξ, u(·)) : u(·) ∈ U([0,∞[)
}
. (2.15)

We need to consider the inferior and superior limits here as there exists controls for
which the rewards (2.12) and (2.13) may differ. Indeed, this is the case for certain oscil-
lating controls as can be seen in the example in the Appendix. Nevertheless, we will show
that the value functions (2.14) and (2.15) are in fact equal. Moreover, we will connect
these problems to the problem with a discounted reward when the discount factor goes
to 0, as in [41].

To this end, we now define the following discounted reward, for a discount rate δ > 0

Jδ(ξ, u(·)) = δ

∫ ∞
0

e−δtφ
(
sξ,u(t), zξ,u(t)

)
zξ,u(t) dt. (2.16)

This type of cost function is often used in problems related to economics for which the
term e−δt represents a discount rate or a preference for the present [18]. In our setting,
the use of this discounted reward can be seen as a preference for earlier rather than later
production. Here, the integral is rescaled with the discount factor δ in order to guarantee
that, when we take the limit as δ goes to 0, the reward remains finite.

The value function of the optimal control problem for a given δ is then

Vδ(ξ) = sup
{
Jδ(ξ, u(·)) : u(·) ∈ U([0,∞[)

}
. (2.17)

Note that both average rewards (2.12) and (2.13), as well as the discounted reward
(2.16), are well defined as the following Lemma shows.

Lemma 2.7 For all ξ ∈ D, for all admissible controls u(·) ∈ U([0,∞[) and for all δ > 0,
the rewards J∞(ξ, u(·)), J

∞
(ξ, u(·)) and Jδ(ξ, u(·)) are uniformly bounded.

Proof. From the monotonicity properties of Assumption 2.1, we have that the function
z 7→ φ(s, z) is non increasing. for all s > 0. Thus, for all t > 0

φ(sξ,u(t), zξ,u(t)) 6 φ(0).

The uniform boundedness of the rewards then follows from Lemma 2.2.

2.3.1 Solution of Optimal Control Problems for the Average
Rewards

We now solve the optimal control problems (2.14) and (2.15). We start by determining
an upper bound for the value functions and then we will exhibit controls that attain this
bound.
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Proposition 2.8 For all initial conditions ξ ∈ D

V ∞(ξ) 6 V
∞

(ξ) 6 max
s∈]0,sin[

φ(s, 1).

Proof. With the monotonicity properties of µ(·, ·) of Assumption 2.1, we have that z 7→
φ(s, z) is non increasing and z 7→ φ(s, z)z is non decreasing. This implies that

φ(s,max(z0, 1)) 6 φ(s, z) 6 φ(s,min(z0, 1)) (2.18)

and

φ(s,min(z0, 1)) min(z0, 1) 6 φ(s, z)z 6 φ(s,max(z0, 1)) max(z0, 1). (2.19)

First, we consider the case when z0 6 1. For any control u(·), we have

JT (ξ, u(·)) 6 1

T

∫ T

0

φ
(
s(t),max(z0, 1)

)
max(z0, 1) dt

6 max
s∈]0,sin[

φ(s, 1) = φ(1).

Taking the lower and upper limit as T goes to infinity and the supremum with respect to
u(·) we get the result.

Next, for z0 > 1, we have

JT (ξ, u(·)) 6 1

T

∫ T

0

φ
(
s(t),min(z0, 1)

)
z(t) dt

6 max
s∈]0,sin[

φ(s, 1)
1

T

∫ T

0

z(t) dt.

Using Lemma 2.6, we get that J∞(ξ, u(·)) 6 J
∞

(ξ, u(·)) 6 φ(1) and we conclude taking
the supremum with respect to u(·).

Note that the existence of a maximum of s 7→ φ(s, 1) = µ(s, sin − s)(sin − s) on ]0, sin[
follows from Assumption 2.1. We will denote a substrate level at which such a maximum
is attained as

s̄ = arg max
s∈]0,sin[

φ(s, 1)

Proposition 2.9 For any initial condition ξ ∈ D, any control u(·) ∈ U([0,∞[) that drives
the system asymptotically to the state (s̄, 1) is optimal for problems (2.14) and (2.15). We
then have

V ∞(ξ) = V
∞

(ξ) = φ(s̄, 1) = φ(1). (2.20)

Proof. The continuity of φ implies that for all ε > 0, there exists a time tε > 0 such that,
for all t > tε, ∣∣φ(sξ,ū(t), zξ,ū(t))zξ,ū(t)− φ(s̄, 1)∣∣ < ε. (2.21)

Since sξ,ū(·) and zξ,ū(·) take values in the compact set L(ξ) (2.7), there is a constant
Mξ > 0 such that, for all t > 0,∣∣φ(sξ,ū(t), zξ,ū(t))zξ,ū(t)∣∣ < Mξ. (2.22)
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Then, for all T > tε, from (2.21) and (2.22)∣∣∣JT (ξ, u(·))− φ
(
s̄, 1
)∣∣∣ 6 1

T

∫ tε

0

∣∣φ(sξ,ū(t), zξ,ū(t))zξ,ū(t)− φ(s̄, 1)∣∣ dt

+
1

T

∫ T

tε

∣∣φ(sξ,ū(t), zξ,ū(t))zξ,ū(t)− φ(s̄, 1)∣∣ dt

<
2Mξtε
T

+

(
1− tε

T

)
ε

and we have
J∞(ξ, u(·)) = J

∞
(ξ, u(·)) = φ(s̄, 1).

Using Proposition 2.8, we get the equality of value functions (2.20) and deduce the opti-
mality of u(·) for both average biogas production problems (2.14) and (2.15).

With Lemma 2.6, we know that all persistently exciting admissible controls make z(·)
converge to 1, and from Lemma 2.5, we know that the feedback ψs∗ defined in (2.8) with
s∗ = s̄ guarantees that s(·) reaches s̄. Then, from the previous Proposition we have the
following result.

Proposition 2.10 For any initial condition ξ ∈ D satisfying Assumption 2.3, the most
rapid approach feedback to s̄, defined in (2.8) and denoted ψs̄, is optimal for both average
production problems (2.14) and (2.15).

Clearly, there is not a unique optimal control for the infinite horizon problems that
we have considered. For example, in the case of a growth function that depends only on
the substrate and that is monotone (such as the Monod growth function), the constant
control u = µ(s̄) can also drive the system to the state (s̄, 1). Nonetheless, for the control
ψs̄, we are able to state an estimation of the sub-optimality for the finite horizon problem.

2.3.2 Relation between Average and Discounted Biogas Pro-
duction Problems

We now discuss the relation between the average and discounted biogas production prob-
lems. We first show that the value function of the discounted problem converges when
the discount factor δ goes to 0.

Proposition 2.11 For all ξ ∈ D, the value function of the discounted problem (2.17)
converge as δ goes to 0 to the value functions of the average problems (2.14) and (2.15),

V0(ξ) := lim
δ→0

Vδ(ξ) = V ∞(ξ) = V
∞

(ξ). (2.23)

Proof. This is a consequence of [41] on the relation between average and discounted
functionals. First, [41, Lemma 3.3] gives

sup
u(·)

lim inf
T→∞

JT (ξ, u(·)) = lim
T→∞

sup
u(·)

inf
τ>T

Jτ (ξ, u(·))
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and
sup
u(·)

lim sup
T→∞

JT (ξ, u(·)) = lim
T→∞

sup
u(·)

sup
τ>T

Jτ (ξ, u(·))

Now, denote Mξ the upper bound of φ(·, ·) on the compact set L(ξ) (2.7), then [41, Lemma
3.4] states that for all T > 0, ε > 0 and δ < ε/2TMξ and all admissible controls,

inf
τ>T

Jτ (ξ, u(·))− ε 6 Jδ(ξ, u(·)) 6 sup
τ>T

Jτ (ξ, u(·)) + ε. (2.24)

Therefore, taking the supremum over all admissible controls and the limit as T goes to
infinity, the result is obtained thanks to the equality of the average value functions of
Proposition 2.9.

Now the question is whether the limit (2.23) is the value function corresponding to the
problem for limit of the discounted reward when δ goes to 0. For this we would first need
to show the convergence of the discounted rewards but this remains an open question for
a general control. Notice nonetheless, that [41, Lemma 3.4] actually gives us the following
estimation,

J∞(ξ, u(·)) 6 lim inf
δ→0

Jδ(ξ, u(·)) 6 lim sup
δ→0

Jδ(ξ, u(·)) 6 J
∞

(ξ, u(·))

Then, for a given control, if the average cost converges when T goes to infinity, i.e.
J∞(ξ, u(·)) = J

∞
(ξ, u(·)), then the discounted reward also converges. In particular, this

means that for the MRAP feedback to s̄, defined in (2.8), the discounted reward converges
to the limit of the value function,

lim
δ→0

Jδ(ξ, ψs̄) = lim
δ→0

Vδ(ξ). (2.25)

Another interesting question is to determine if the optimal controls converge when δ
goes to 0. For this, we could show the Γ−convergence of the rewards and the existence
of optimal controls for δ > 0. We specify this last point in Proposition 2.14 and for
this, we will consider the discounted reward (2.16) as a function of the trajectory ζ(·) =(
sξ,u(·), zξ,u(·)

)
instead of the control and with a slight abuse of notation, we will denote

it as Jδ(ζ(·)).

Define the set valued map

F (ζ) :=
⋃

u∈[0,umax]

f(ζ, u)

and consider the set of all forward trajectories of (2.3) with initial condition ξ,

S(ξ) :=
{
ζ(·) ∈ AC([0,∞[,L(ξ)) : ζ(0) = ξ, ξ̇(t) ∈ F (ξ(t)) a.e. t ∈ [0,∞[

}
,

where AC([0,∞[,L(ξ)) denotes the set of absolutely continuous functions from [0,∞[ to
L(ξ). We recall from the Filippov Selection Theorem (see for instance [108]) that the
optimal control problem (2.17) is equivalent to the optimization problem on S(ξ),

Vδ(ξ) = sup
{
Jδ(ζ(·)) : ζ(·) ∈ S(ξ)

}
.

We now specify the topology that we will use.
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Definition 2.12 For b > 0, we denote by L1
(
0,∞;R2, e−btdt

)
the weighted Lebesgue

space of measurable functions y(·) from [0,∞[ to R2 such that∫ ∞
0

||y(t)||e−btdt <∞

and we denote W 1,1
(
0,∞;R2, e−btdt

)
the weighted Sobolev space of measurable functions

y(·) satisfying

y(·) ∈ L1
(
0,∞;R2, e−btdt

)
and ẏ(·) ∈ L1

(
0,∞;R2, e−btdt

)
.

We consider the topology on W 1,1
(
0,∞;R2, e−btdt

)
for which a sequence yn(·) converges

to y(·), if and only if,

- yn(·) converges uniformly to y(·) on compact intervals,

- ẏn(·) converges weakly to ẏ(·) in L1
(
0,∞;R2, e−btdt

)
.

Next, we define the notion of Γ−limit in our context (see [25] for further details).

Definition 2.13 For a given initial condition ξ ∈ D and trajectory ζ(·) ∈ S(ξ), the
Γ−lower limit and Γ−upper limit of Jδ(·) are

Γ− lim inf
δ→0

Jδ(ζ(·)) = sup
V∈N (ζ(·))

lim inf
δ→0

inf
η(·)∈V

Jδ(η(·))

Γ− lim sup
δ→0

Jδ(ζ(·)) = sup
V∈N (ζ(·))

lim sup
δ→0

inf
η(·)∈V

Jδ(η(·)).

Here, N (ζ(·)) denotes the set of all open neighbourhoods of ζ(·), for the topology of the
space W 1,1

(
0,∞;R2, e−btdt

)
given in Definition 2.12. If both of these limits coincide, then

the Γ−limit of Jδ(·) is

Γ− lim
δ→0

Jδ(ζ(·)) = Γ− lim inf
δ→0

Jδ(ζ(·)) = Γ− lim sup
δ→0

Jδ(ζ(·)).

We now have the following result.

Proposition 2.14 For all ξ ∈ D and for all δ > 0, the suprema are attained,

Vδ(ξ) = max
ζ(·)

Jδ(ζ(·)).

If the Γ−limit of Jδ(·) exists as δ goes to 0,

J0(ζ(·)) := Γ− lim
δ→0

Jδ(ζ(·)),

then the maxima converge, pointwise in ξ, to the maximum of the limit,

V0(ξ) := lim
δ→0

Vδ(ξ) = max
ζ(·)

J0(ζ(·)). (2.26)

Furthermore, if ζδ(·) is an optimal trajectory for (2.17), i.e. if Vδ(ξ) = Jδ(ζδ(·)), and if
ζδ(·) converges to ζ0(·) in S(ξ), then ζ0(·) is an optimal trajectory for (2.26) and

V0(ξ) = J0(ζ0(·)) = lim
δ→0

Jδ(ζδ(·)).
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Proof. To show that the suprema are attained we show that the the set of all forward tra-
jectories of (2.3) with initial condition ξ is compact for the topology onW 1,1

(
0,∞;R2, e−btdt

)
given in Definition 2.12.

For each ξ ∈ D we set
Fξ(ζ) := F

(
PL(ξ)(ζ)

)
where PL(ξ) is the projection on the convex set L(ξ). Then Fξ has linear growth, so that
we can define

c = sup
ζ∈Dom(Fξ)

||Fξ(ζ)||
||ζ||+ 1

,

where ||Fξ(ζ)|| := supη∈Fξ(ζ) ||η||. Note that F is upper semi-continuous and has compact
non-empty convex images (such a map is known as a Marchaud map [1]). With this, the
set S(ξ) is the set of absolutely continuous solutions of the differential inclusion

ζ̇(t) ∈ Fξ(ζ(t)), ζ(0) = ξ.

We can therefore use [1, Theorem 3.5.2] to establish that S(ξ) is compact for the topology
of W 1,1

(
0,∞;R2, e−btdt

)
for b > c, thereby proving the existence of optimal trajectories

in S(ξ).

In addition, this allows us to show that the maxima converge to to the maximum of the
limit. Indeed, when the rewards Γ−converge, it is sufficient to show that there exists a
countably compact set on which the suprema are attained for all δ [25, Theorem 7.4]. The
set S(ξ) is clearly independent of δ and countably compact, since it is compact. Finally,
the convergence of optimal trajectories can be shown with [25, Corollary 7.20].

Remark Notice that estimation (2.24) is obtained uniformly in the controls, so that the
discounted reward converges uniformly over the class of controls for which the average
cost converges. Uniform convergence implies Γ−convergence ([25, Proposition 5.2]), so
the consequence is that if we restrict the problem to this class of controls then the limit
problem is well defined. Then (2.25) can be written as

J0(ξ, ψs̄) = V0(ξ)

which proves the optimality of the MRAP feedback ψs̄ for the limit problem restricted to
the aforementioned class of controls.

2.4 Finite Horizon and Sub-optimal Controls

We now examine the problem of maximizing biogas production over a finite horizon for a
time interval [t0, T ] where T is fixed. For this we consider the following reward

J(t0, ξ, u(·)) =

∫ T

t0

φ
(
st0,ξ,u(t), zt0,ξ,u(t)

)
zt0,ξ,u(t) dt (2.27)

where we recall that
(
st0,ξ,u(·), zt0,ξ,u(·)

)
is the solution of (2.3) with control u(·) ∈

U([t0, T ]) and initial condition ξ ∈ D. The optimal control problem consists in max-
imizing this functional with respect to the dilution rate, so that the associated value
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function is
V (t0, ξ) = sup

{
J(t0, ξ, u(·)) : u(·) ∈ U([t0, T ])

}
. (2.28)

We also consider auxiliary optimal control problems, which consist in maximizing the
cost, for a given z1 ∈ [min(z0, 1),max(z0, 1)],

Jz1(t0, ξ, u(·)) =

∫ T

t0

φ(st0,ξ,u(t), z1) dt (2.29)

for the same dynamics (2.3). The value functions of these auxiliary problems are then
defined as

Wz1(t0, ξ) = sup
{
Jz1(t0, ξ, u(·)) : u(·) ∈ U([t0, T ])

}
. (2.30)

The resolution of these auxiliary problems will be presented in Section 2.4.1.

We now show that the value functions of the original problem (2.28) and the auxiliary
problems (2.30) are related.

Proposition 2.15 For all ξ ∈ D, t0 < T and any z1 ∈ [min(z0, 1),max(z0, 1)], we have
the following frame for the value function V of the original problem

min(z0, 1)Wz1(t0, ξ) 6 V (t0, ξ) 6 max(z0, 1)Wz1(t0, ξ). (2.31)

Proof. We start with the case z0 6 1. For a given control u(·) ∈ U([t0, T ]), we define the
following time

t1 = inf {t > t0 : zt0,ξ,u(t) = z1} ∧ T
which it is well defined since zt0,ξ,u(·) is monotonous. Then, for t0 6 t 6 t1 we have
z0 6 zt0,ξ,u(t) 6 z1 6 1 and with the monotonicity properties of µ(·, ·) of Assumption 2.1
we have

φ(st0,ξ,u(t), z1)z0 6 φ(st0,ξ,u(t), zt0,ξ,u(t))zt0,ξ,u(t) 6 φ(st0,ξ,u(t), z1)z1.

Next, for t1 6 t 6 T we have z0 6 z1 6 zt0,ξ,u(t) 6 1 and

φ(st0,ξ,u(t), z1)z1 6 φ(st0,ξ,u(t), zt0,ξ,u(t))zt0,ξ,u(t) 6 φ(st0,ξ,u(t), z1).

Combining these inequalities we get∫ t1

t0

φ(st0,ξ,u(t), z1)z0 dt+

∫ T

t1

φ(st0,ξ,u(t), z1)z1 dt 6 J(t0, ξ, u(·))

6
∫ t1

t0

φ(st0,ξ,u(t), z1)z1 dt+

∫ T

t1

φ(st0,ξ,u(t), z1) dt.

Now, since z0 6 z1 6 1 we have

z0Jz1(t0, ξ, u(·)) 6 J(t0, ξ, u(·)) 6 Jz1(t0, ξ, u(·)).

For the case z0 > 1, we proceed in a similar way to get

Jz1(t0, ξ, u(·)) 6 J(t0, ξ, u(·)) 6 z0Jz1(t0, ξ, u(·)).

We conclude by taking the supremum over all admissible controls.
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The interest of the previous frames on the value functions is that it allows to find
controls for which we have an estimation of sub-optimality for the original problem.

Proposition 2.16 For all ξ ∈ D and all t0 < T , any optimal control u?z1(·) for the
reward Jz1(t0, ξ, ·) guarantees a (sub-optimal) value for the original criterion J(t0, ξ, ·)
that satisfies

min(z0, 1)Wz1(t0, ξ) 6 J(t0, ξ, u
?
z1

(·)) 6 max(z0, 1)Wz1(t0, ξ) (2.32)

and we have the following estimation of the value function V

V (t0, ξ)− J(t0, ξ, u
?
z1

(·)) 6 |1− z0|Wz1(t0, ξ). (2.33)

Proof. From the proof of Proposition 2.15, for any control u(·) ∈ U([t0, T ]), we have

min(z0, 1)Jz1(t0, ξ, u(·)) 6 J(t0, ξ, u(·)) 6 max(z0, 1)Jz1(t0, ξ, u(·)).

Evaluating this for any optimal control u?z1(·) for the reward Jz1(t0, ξ, ·) gives the sub-
optimality frame (2.32). The sub-optimality estimation (2.33) then follows from (2.31)
and (2.32).

2.4.1 Resolution of Auxiliary Problems

In order to obtain sub-optimal controls for problem (2.28) we now need to solve the
auxiliary problem (2.30) for a given z1 ∈ [min(z0, 1),max(z0, 1)]. The optimal control of
this auxiliary problem is an autonomous feedback, even though the horizon is fixed and
finite. It is similar to the optimal feedback for the infinite horizon problem ψs̄, defined
in (2.8), and it drives the system towards a maximizer of s 7→ φ(s, z1) but now, this
maximizing substrate level depends on z1. We first need an assumption on the uniqueness
of a maximum of φ(·, z1).

Assumption 2.17 For each z1 > 0, the function s 7→ φ(s, z1) admits a unique maximum
on ]0, sin[, and we denote the substrate level at which this maximum is attained as

s̄(z1) = arg max
s∈]0,sin[

φ(s, z1). (2.34)

Note that implies that s 7→ φ(s, z1) is increasing on ]0, s̄(z1)] and decreasing on
[s̄(z1), sin[.

Proposition 2.18 For all ξ ∈ D satisfying Assumption 2.3 and all t0 < T , the most
rapid approach feedback to s̄(z1), defined in (2.8) and denoted ψs̄(z1), is optimal for the
auxiliary problem (2.30).

Proof. We start with the case s0 > s̄(z1). With the control u = 0, the solution of (2.3)
is such that st0,ξ,0(·) is monotonic and non increasing. Therefore there exists a time tmin,
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possibly larger than T , such that st0,ξ,0(tmin) = s̄(z1) and then the solution with the
feedback (2.8) is, with t∗ = min(tmin, T )

st0,ξ,ψs̄(z1)
(t) =

{
st0,ξ,0(t), if t0 6 t < t∗,

s̄(z1), if t∗ 6 t 6 T.

Next, for all u ∈ [0, umax] and for all (s, z) ∈ L(ξ),

−µ(s, (sin − s)z)(sin − s)z 6 (sin − s)u− µ(s, (sin − s)z)(sin − s)z.

By the theorem of comparison of solutions of scalar differential equations, this implies that
st0,ξ,0(t) 6 st0,ξ,u(t), up to time t∗, for all controls u(·) ∈ U([t0, T ]). Since s 7→ φ(s, z1) is
decreasing on [s̄(z1), sin[, we have

φ(st0,ξ,0(t), z1) > φ(st0,ξ,u(t), z1).

Finally, as s 7→ φ(s, z1) reaches its maximum at s̄(z1) we get

Jz1(t0, ξ, ψs̄(z1)) =

∫ t∗

t0

φ(st0,ξ,0(t), z1)dt+

∫ T

t∗

φ(s̄(z1), z1)dt

>
∫ T

t0

φ(st0,ξ,u(t), z1)dt

= Jz1(t0, ξ, u).

We now consider s0 < s̄. From Assumption 2.3, the feedback is admissible and we have

umax > µ(s, (sin − s)z)z for all (s, z) ∈ L(ξ)

Thus, with the control u = umax, the solution of (2.3) is such that st0,ξ,umax(·) is monotone
and non decreasing. Therefore, there exists a time tmax, possibly larger than T , such
that st0,ξ,umax(tmax) = s̄(z1) and then the solution with the feedback (2.8) is, with t∗ =
min(tmax, T )

st0,ξ,ψs̄(z1)
(t) =

{
st0,ξ,umax(t), if t0 6 t < t∗,

s̄(z1), if t∗ 6 t 6 T.

Next, for all u ∈ [0, umax] and for all (s, z) ∈ L(ξ)

(sin − s)(umax − µ(s, (sin − s)z)z) > (sin − s)(u− µ(s, (sin − s)z)z)

and this implies that st0,ξ,umax(t) > st0,ξ,u(t), up to time t∗, for all controls u(·) ∈ U([t0, T ]).
Since s 7→ φ(s, z1) is increasing on ]0, s̄(z1)], we have

φ(st0,ξ,umax(t), z1) > φ(st0,ξ,u(t), z1).

Finally, since s 7→ φ(s, z1) reaches its maximum at s̄(z1), we get

Jz1(t0, ξ, ψs̄(z1)) =

∫ t∗

t0

φ(st0,ξ,umax(t), z1)dt+

∫ T

t∗

φ(s̄(z1), z1)dt

>
∫ T

t0

φ(st0,ξ,u(t), z1)dt

= Jz1(t0, ξ, u).
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2.5 Application to Particular Growth Functions

The controls that we have considered up to now are all most rapid approach feedbacks to
s̄(z1), with z1 ∈ [min(z0, 1),max(z0, 1)], and this leads to the question of which is best in
terms of biogas production. It turns out that it depends on the initial conditions and the
horizon considered.

Indeed, we know that for an infinite horizon, the feedback ψs̄(z1) with z1 = 1 is optimal
and we can then expect that when the horizon is large, the best of the considered feedbacks
would be for z1 close to 1. On the other hand, when the horizon is small, the feedback
ψs̄(z0) would seem to be the best option since this strategy consists in remaining close
to the maximum of the biogas flow rate corresponding to the initial condition, whereas
another feedback could drive the system away, towards another maximizing state but that
can not be reached in time.

In this section, we apply our main results to the most common growth functions and
explore with numerical simulations the question of determining the best feedback ψs̄(z1)

for a given initial condition and final time. In particular, we will work with the Monod
function

µM(s) =
µmaxs

Ks + s
(2.35)

the Haldane function

µH(s) =
µ̄s

Ks + s+ s2

Ki

(2.36)

and the Contois function

µC(s, x) =
µmaxs

Ksx+ s
(2.37)

where µmax, µ̄, Ks and Ki are positive numbers. We shall see later that these functions
satisfy our assumptions (Lemma 2.19).

First, note that the Monod and Haldane functions only depend on the substrate, so
that in this case, the maximizers s̄(z1), defined in (2.34), are all equal to s̄(1) = s̄, for
all z1 ∈ [min(z0, 1),max(z0, 1)]. We illustrate the associated feedback ψs̄ for a Haldane
function with a graph of the state space trajectories in Figure 2.1. The case of a Monod
function leads to a similar dynamical behavior and the only major difference is the value
of s̄.

From now on we will only consider the Contois growth function, for which we plot the
trajectories in state space obtained with the feedback ψs̄(z0) in Figure 2.2.

To determine which of the feedbacks ψs̄(z1) is the best, we now compute the associated
reward for a range of values of z1 ∈ [min(z0, 1),max(z0, 1)] and of final times for a given
initial condition. In order to easily identify the maximum of J(ξ, ψs̄(z1)(·)) with respect
to z1, we normalize the average reward (2.11) by computing

JN(T, z1) =
JT (ξ, ψs̄(z1)(·))−miny J

T (ξ, ψs̄(y)(·))
maxy JT (ξ, ψs̄(y)(·))−miny JT (ξ, ψs̄(y)(·))

where the minimum and maximum are taken for y ∈ [min(z0, 1),max(z0, 1)]. Hence, for
each final time T , the maximum reward is achieved for z1 such that JN(T, z1) = 1 and
the minimum when JN(T, z1) = 0.
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Figure 2.1: State space trajectories with feedback ψs̄. The black line represents the
invariant set {(x, s) : x + s = sin}. Haldane growth function (µ̄ = 0.74, Ks = 9.28, Ki =
256) with sin = 100, umax = 3.
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Figure 2.2: State space trajectories with feedback ψs̄(z0) for z0 ∈ {0.2, 0.7, 1.5, 3} and
s0 ∈ {10, 60, 75}. The color and type of line indicates the value of z0. Contois growth
function (µmax = 0.74, Ks = 1) with sin = 100, umax = 1.5.
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Figure 2.3: Normalized average reward JN(T, z1) as a function of z1 ∈ [z0, 1] and T ∈
[0.5, 6] for the initial condition (x0, s0) = (20, 20). Contois growth function (µmax =
0.74, Ks = 1) with sin = 100, umax = 1.5.

Figure 2.3 shows a case when z0 < 1 and Figure 2.4 is an example of z0 > 1. We can
see clearly that for small final times, the maximum is attained for a value of z1 close to z0

and that for z1 = 1 the reward is the smallest. However, as the final time increases, the
value of z1 for which the reward is maximum approaches 1, and with the feedback ψs̄(z0)

the reward is the smallest. In particular, we can see that the best of the feedbacks ψs̄(z1)

depends on the final time.

This leads us to consider a new feedback that keeps the system in the set of maximizers

S =
{

(s, z) ∈ D : s = s̄(z)
}
. (2.38)

We therefore introduce the following most rapid approach feedback to S

ψS(s, z) =

∣∣∣∣∣∣
0, if s > s̄(z),
ū(s, z), if s = s̄(z),
umax, if s < s̄(z),

(2.39)

where ū(s, z) is the feedback that keeps the system in the set S, that we compute by
differentiating with respect to time the equation s(t) = s̄(z(t)).

We first illustrate this feedback in Figure 2.5 where we show the states as functions of
time and the open loop realizations of the feedbacks ψs̄(z0), ψs̄(1) and ψS . Next, in Figure
2.6 we compare the reward of the feedback ψS to the others and we can notice that the
reward associated with the feedback ψS is always one of the best, although for any given
final time it is possible to do better with a feedback ψs̄(z1) for the right z1.

Note also that the feedback ψS will drive the system asymptotically towards the state
(s, z) = (s̄, 1) so that it is also optimal for the infinite horizon problems (2.14), (2.15) and
(2.23).

In Figure 2.8, we show the difference between the rewards of the feedbacks ψs̄(1) and
ψs̄(z0) as a function of the initial condition for various final times. From this, we see that
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Figure 2.4: Normalized average reward JN(T, z1) as a function of z1 ∈ [1, z0] and T ∈
[0.5, 6] for the initial condition (x0, s0) = (70, 60). Contois growth function (µmax =
0.74, Ks = 1) with sin = 100, umax = 1.5.
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Figure 2.5: On the left, t 7→ x(t) (solid lines) and t 7→ s(t) (dashed lines) with feedbacks
ψ ∈ {ψs̄(z0), ψs̄(1), ψS} and on the right, the corresponding open loop controls. Contois
growth function (µmax = 0.74, Ks = 1) with sin = 100, umax = 1.5 and initial condition
(x0, s0) = (30, 2).
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Figure 2.6: On the left, average reward as function of final time T 7→ JT (ξ, ψ(·)) with
feedback ψ ∈ {ψs̄(z0), ψs̄(z1), ψs̄(1), ψS} with z0 = 0.25 and z1 = 0.625. On the right, the
corresponding state space trajectories. Contois growth function (µmax = 0.74, Ks = 1)
with sin = 100, umax = 1.5 and initial condition (x0, s0) = (20, 20).
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Figure 2.7: On the left, average reward as function of final time T 7→ JT (ξ, ψ(·)) with
feedback ψ ∈ {ψs̄(z0), ψs̄(z1), ψs̄(1), ψS} with z0 = 1/3 and z1 = 2/3. On the right, the
corresponding state space trajectories. Contois growth function (µmax = 0.74, Ks = 1)
with sin = 100, umax = 1.5 and initial condition (x0, s0) = (10, 70).
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Figure 2.8: Difference between rewards associated to the feedbacks ψs̄(1) and
ψs̄(z0) as functions of the initial condition and for various final times : (x0, s0) 7→
J(0, x0, s0, ψs̄(1)(·))−J(0, x0, s0, ψs̄(z0)(·)). Contois growth function (µmax = 0.74, Ks = 1)
with sin = 100, umax = 1.5.

the feedback that is best changes, depending on the initial condition and the horizon
considered.

The sub-optimality estimation (2.32) is affected similarly, as this bound depends on
the initial condition and in particular, the distance to the set {z = 1} has a major impact
on the sub-optimality of the considered feedbacks. In addition, the growth function has
an influence on our estimation, through Wz1(·), and we illustrate this in Figure 2.9 by
plotting this value function for the Haldane and the Contois growth function. Observe
that, for the Contois growth function, Wz1(·) varies significantly with the initial biomass
and thus the sub-optimality bound as well. This can be attributed to the dependence of
the Contois growth function on biomass concentration and this effect is not seen with the
Haldane growth function, which depends only on the substrate.

We finish this section with a Lemma that shows that the considered growth functions
satisfy our assumptions.

Lemma 2.19 For all positive µmax, µ̄, Ks and Ki the Monod, Haldane and Contois
growth functions satisfy Assumptions 2.1 and 2.17.

Proof. Notice that the function φ with the Monod or Haldane function does not depend
on z. Let us show that the function µM is increasing and strictly concave

µ′M(s) =
µmaxKs

(Ks + s)2
> 0, µ′′M(s) = −2

µmaxKs

(Ks + s)3
< 0.

Now, since the function φ(·, 1) is non-negative on [0, sin] and vanishes at 0 and sin it
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Figure 2.9: Auxiliary value function (x0, s0) 7→ Wz1(0, x0, s0) with z1 = 1. On the left,
Contois growth function (µmax = 0.74, Ks = 1, umax = 1.5) and on the right, Haldane
growth function (µ̄ = 0.74, Ks = 9.28, Ki = 256, umax = 3). In both cases, sin = 100 and
T = 2.

admits a maximum on ]0, sin[. One has

d

ds
φ(s, 1) = µ′M(s)(sin − s)− µM(s), (2.40)

d2

ds2
φ(s, 1) = µ′′M(s)(sin − s)− 2µ′M(s). (2.41)

The function φ(·, 1) is thus strictly concave on ]0, sin[, which provides the uniqueness of
its maximum.

For the Haldane function, we have

d

ds
φ(s, 1) = µ̄

sinKs − 2Kss− s2(1 + sin
Ki

)

(Ks + s+ s2

Ki
)2

such that d
ds
φ]0, 1) > 0 and d

ds
φ(sin, 1) < 0 and since d

ds
φ(·, 1) is continuous it must have

an odd number of zeroes in the interval ]0, sin[. But notice that the equation d
ds
φ(s, 1) = 0

admits at most 2 solutions and φ]0, 1) = φ(sin, 1) = 0 and therefore φ(·, 1) has a unique
maximum.

For the Contois function, notice that µC(s, x) = µM(s/x) so that,

φ(s, z1) = µM

(
s

(sin − s)z1

)
(sin − s),

for z1 ∈ [min(z0, 1),max(z0, 1)], and since s 7→ s
(sin−s)z1 is an increasing function, φ(·, z1)

is also strictly concave.

2.6 Conclusions

In this work, we have proposed a novel approach to obtain autonomous sub-optimal feed-
backs for the open problem of maximizing biogas production in the chemostat model out
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of equilibrium. These controllers generalize the “most-rapid approach path” feedback
control that is known to be optimal when the initial condition belongs to a certain man-
ifold. Indeed, we obtain a family of feedback controls of similar structure, for which we
are able to give bounds on the sub-optimality. This last point merits to be underlined as
it usually difficult to evaluate a priori the performances of sub-optimality without having
to determine or compute the optimal solution. This choice gives also flexibility for the
practitioners to choose a controller depending on the time horizon or simply to pick one
when the finite horizon is poorly known (as each controller guarantees a sub-optimality
bound), or to adjust it when the horizon is changed. For infinite horizon we show that
each controller guarantees the same optimal averaged cost.

This methodology, based on a framing of the dynamics, could be investigated for a
larger class of dynamics, such as the two-step model, and be the matter of future work.

Appendix: A Particular Example

We construct here a control u(·) for which the average rewards (2.12) and (2.13) do not
coincide. For this, let us consider an initial condition ξ = (s0, z0) = (ε, 1), with ε ∈]0, sin[
fixed. The set {(s, 1) ∈ R2

+ : s ∈ [0, sin]} is clearly invariant for the dynamics (2.3) and
therefore the chosen initial condition ensures that trajectories (sξ,u(·), zξ,u(·)) remains in
this set.

Now consider the 2 following paths :

(A) Starting at ξ := (ε, 1), use the control u = umax to reach a prescribed level of
substrate s∗ ∈ (ε, sin[ in finite time. Then, apply the control u = 0 to return to ξ in
finite time, which is possible by Assumption 2.3. Denote this control by u∗, and let
t∗ be the (finite) time necessary to follow this path and I∗ be the biogas produced
by this path.

(B) Starting at ξ := (ε, 1), use u = µ(ε, sin − ε) to stay at (s = ε, z = 1) for any time
interval.

Then, define control u(·) as follows:

• For t ∈ [0, t∗], set u(t) = µ(ε, sin − ε) so that the biogas production for this period
is Iε := t∗φ(ε, 1).

• For t ∈]22kt∗, 2
2k+1t∗], with k ∈ N, set u = u∗ in order to follow the path (A)

repeatedly 22k times. For each of these intervals the biogas production is 22kI∗.

• For t ∈]22k+1t∗, 2
2k+2t∗], with k ∈ N, set u = µ(ε, sin−ε). For each of these intervals

the biogas production is 22k+1Iε.

Thus, when we apply control u(·) up to a time 22N t∗, for a given N > 1, the average
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biogas production is computed as follows

KN =
1

22N t∗

∫ 22N t∗

0

φ(sξ,u(t), 1) dt

=
1

22N t∗

(
Iε +

N−1∑
k=0

22kI∗ +
N−1∑
k=0

22k+1Iε

)

=
I∗ + 2Iε

t∗

N∑
j=1

2−2j +
Iε

22N t∗

which yields

KN −→ K∞ :=
I∗ + 2Iε

3t∗
as N → +∞.

We have used here the fact that the sum sN =
∑N

j=1 2−2j converges to 1/3. Indeed, this
follows from the identity

4sN =
N∑
j=1

22(−j+1) =
N−1∑
i=0

2−2i = 1 + sN − 2−2N .

However, for the same control u(·), the average biogas production is, up to time 22N+1t∗,
computed as follows

LN =
1

22N+1t∗

∫ 22N+1t∗

0

φ(sξ,u(t), 1) dt

=
1

22N+1t∗

(
22N t∗KN + 22NI∗

)
=

1

2

(
KN +

I∗
t∗

)
which yields

LN −→ L∞ :=
2I∗ + Iε

3t∗
as N → +∞.

Since s∗ > ε, it follows that I∗ > Iε, and consequently, L∞ > K∞. We thus obtain
that

J
∞

(ξ, u(·)) > L∞ > K∞ > J∞(ξ, u(·)).
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Chapter 3

An Algorithm for Maximizing the
Biogas Production in a Chemostat

This chapter corresponds to the published article

Haddon, A. and Hermosilla, C.
An Algorithm for Maximizing the Biogas Production in a Chemostat.

J Optim Theory Appl (2019) 182:1150.
https://doi.org/10.1007/s10957-019-01522-x

3.1 Introduction

Biogas is a product of the anaerobic digestion process, in which several populations of
microorganisms break down organic matter in the absence of oxygen. This process is an
interesting technology for the treatment of liquid and solid waste since the collected biogas
is mainly composed of methane and therefore can be used as a renewable energy source
[85]. In this context, it is relevant to develop control strategies that maximize methane
production, in order to increase the efficiency and sustainability of waste treatment. As a
matter of fact, a major reason that has been reported for the closing of anaerobic digestion
plants, is the insufficient profits associated with poor biogas production [9].

Substantial expertise is needed to operate the anaerobic digestion process properly as
it is a complex non-linear and unstable process. Although it is possible to use various
inputs for control, such as pH or alkalinity [44], the dilution rate (also called feeding rate)
is considered in general as the variable input. It is important to note that most studies
on the control of anaerobic digestion have focused primarily on process stability [76].
However, recently, some works have incorporated the aspect of optimizing performance
and, among these, a wide range of control strategies have been used: PID controllers [36],
expert systems [89], fuzzy logic [29] and adaptive control [28], to mention a few strategies.

In this work, we address the problem of biogas production from an optimal control
point of view. We focus our attention on the one reaction model in a chemostat. We are
particularly interested in providing a practical method to determine an optimal control
in feedback form for maximizing the production of biogas. The numerical scheme we
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propose for such purpose (Algorithm 1) has been obtained by combining the two major
techniques in optimal control, namely, the Pontryagin Maximum Principle (PMP) and the
Hamilton-Jacobi-Bellman (HJB) equation. The PMP allows us to describe the structure
of the optimal synthesis and the singular curve in terms of a given parameter, while the
HJB equation gives a practical way to compute such a parameter.

As far as we are aware of, there are few works dealing with the dynamic optimization
problem of biogas production. Actually, due to the complexity of the problem, only
models with one or two bio-reactions have been considered [94, 7]. In addition, only
problems on well-mixed continuously stirred tanks have been studied, since the non-
linearities and the high dimension of a more complex bio-reactor model make the analysis
of the associated optimal control problem hard to handle. It is worth mentioning that
models with only few dynamic variables are capable of describing the qualitative behaviour
of the anaerobic digestion process [12]. The tradeoff between practical solvability and
qualitative description justifies the use of these simplified models, and in particular the
one reaction model we study in this paper.

The problem for a one reaction model was first considered in [99] and later solved for a
special set of initial conditions for which the model reduces to a one dimensional problem
[38]. More recently, the general one reaction model has been revisited to propose a sub-
optimal control for which there is an estimation of sub-optimality [46]. Let us mention
that the problem has also been considered in the infinite horizon case [47]. To the best of
our knowledge, a complete synthesis for the problem of maximizing biogas production over
a fixed finite horizon has not been addressed before, even for the single reaction model.
This work contributes in this direction, by proposing a candidate to optimal synthesis
and giving a practical way to compute it.

Notice that for general optimal control problems a wide range of algorithms have been
studied and implemented as open source software. Either based on Shooting methods,
Dynamic Programming or Discretize-then-optimize methods such as Nonlinear Model Pre-
dictive Control ; see for example [102, 37, 14, 114]. The problem we study in this paper
can in principle be solved numerically with any of these methods, provided that one knows
exactly the parameters of the model (which are hard to estimate in practice). However,
as pointed out earlier, the goal of studying simplified models is to provide a good picture
of how an optimal synthesis may look like (qualitative description) rather than giving a
specific solution for the maximization of biogas production problem.

This paper is organized as follows. In Section 2 we describe the problem at hand.
In Section 3 we analyze the optimality conditions and we identify a class of extremal
controls. In Section 4, we explain the algorithm we propose and we provide some numerical
simulations in Section 5. Finally, in the appendix, we give an analytic proof (based on the
HJB approach) for the optimality of the feedback law we found in Section 3 for a special
set of initial conditions.

3.2 Problem Statement

In this work, we consider a single reaction model of the anaerobic digestion process where
a substrate of concentration s is transformed by a microbial population of concentration
x into biogas. The bioreactor is assumed to be continuously-fed and well-mixed, for which
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the mass balance equations are the classical chemostat equations [69] :

ẋ = µ(s)x−Dx, ṡ = D(sin − s)− µ(s)x, (3.1)

where sin > 0 is the substrate inflow concentration and D is the dilution rate, which will
be the controlled variable (it is assumed to be a measurable function of time). We suppose
here, without loss of generality, that the units are chosen such that the yield coefficient
of the reaction is equal to 1.

The specific growth rate of the microorganisms µ(·) is usually chosen of Monod type
(µM) or of Haldane type (µH): given µmax, K,Ki > 0

µM(s) := µmax
s

K + s
, µH(s) := µmax

s

K + s+ s2/Ki

. (3.2)

However, at first we will study the optimal control problem for a rather general class of
functions, which in particular covers the Monod and Haldane cases.

Standing Assumptions: The growth rate of the microorganisms µ(·) is a twice con-
tinuously differentiable function on [0,+∞[ such that

µ(0) = 0, µ(s) > 0 and
d

ds

(
µ′(s)

µ(s)2

)
6= 0, ∀s > 0.

In the Monod and Haldane cases we have that

µ′M(s)

µM(s)2
=

K

µmaxs2
and

µ′H(s)

µH(s)2
=

K

µmaxs2
− 1

µmaxKi

respectively. Thus in particular, they satisfy our Standing Assumptions.

The biogas flow-rate is assumed proportional to the growth rate of the microorganisms
[4] and therefore the biogas production during a time interval [t0, T ] for a given substrate
concentration s(·) and a given microbial population concentration x(·) is∫ T

t0

µ(s(t))x(t)dt.

The goal of the problem we deal with here is to maximize the biogas production over a
finite horizon [t0, T ] for a given initial condition x0, s0 > 0 by controlling the dilution rate
t 7→ D(t) of the bioreactor under the constraint that D(t) ∈ [0, Dmax], where Dmax > 0 is
the maximal dilution rate allowed.

In summary, the optimal control problem that we will study is the following

Maximize

∫ T

t0

µ(s(t))x(t)dt

over all D : [t0, T ]→ [0, Dmax] measurable

such that ẋ = µ(s)x−Dx, x(t0) = x0,

ṡ = D(sin − s)− µ(s)x, s(t0) = s0,

0 ≤ s(t) ≤ sin and 0 ≤ x(t), ∀t ∈ [t0, T ].

(Pbio)

With a slight abuse of notation, we may sometimes write

J(t0, x0, s0, ψ) :=

∫ T

t0

µ(s(t))x(t)dt
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for the biogas production associated with a control ψ : R2 → [0, Dmax] in feedback form
and some initial conditions (x0, s0) = (x(t0), s(t0)). Under these circumstances, the func-
tions s(·) and x(·) denote a solution of control system (3.1) in closed-loop form associated
with these data.

Remark Since feedback controls ψ : R2 → [0, Dmax] are not necessarily continuous func-
tions of the state variables, the classical theory of ordinary differential equations (ODEs)
cannot be evoked for ensuring the existence and uniqueness of solutions to the ODEs
system:

ẋ = µ(s)x− ψ(s, x)x, ṡ = ψ(s, x)(sin − s)− µ(s)x.

In our setting, the feedback controls are going to be regular enough to ensure the
well-posedness (existence and uniqueness) of the control system (3.1) in closed-loop form.
This is due to the fact that the feedback controls considered later on have an underlying
stratified structure and so they can be handled with a tailored ODEs theory; see for
instance [54].

3.2.1 About the State-Constraints

Let us point out that in the formulation of the problem we have included state-constraints
over the system, described by a set K := [0,+∞[×[0, sin]. In the rest of the paper this
restriction will be disregarded. The main reason for doing so is that the system (3.1) is
invariant on K (see for example [21, Theorem 4.3.8]). Indeed, the set-valued map

F (x, s) := {(µ(s)x−Dx,D(sin − s)− µ(s)x) : D ∈ [0, Dmax]}

is locally Lipschitz continuous, has linear growth, has nonempty compact and convex
images and satisfies the invariance condition F (x, s) ⊆ TK(x, s) for any (x, s) ∈ K;
where TK stands for the Contingent Cone. The last affirmation comes from the fact that
F (0, s) ⊆ {0} × [0,+∞[ for any s ∈ [0, sin] and

F (x, 0) ⊆]−∞, 0]× [0,+∞[, F (x, sin) ⊆ R×]−∞, 0[, ∀x > 0.

By similar arguments we can see that the set {0}×[0, sin] is also invariant, which means
that no trajectory of the system that starts from x(t0) = x0 > 0 and s(t0) = s0 ∈]0, sin[
will reach that set. Moreover, the fact that F (x, sin) is contained in R×]−∞, 0[ for any
x > 0 implies that no trajectory can reach the level s = sin provided that s(t0) < sin. Also,
note that for any x ≥ 0 we can find sx > 0 small enough such that D(sin−sx)−µ(sx)x ≥ 0
for any D ∈]0, Dmax]. Moreover, a trajectory of (3.1) associated with D = 0 cannot reach
the level s = 0 in finite time, otherwise there would be two backward solutions to the
corresponding ODE starting from the same point. In practice, this means that whenever
the initial conditions are taken such that s0 ∈]0, sin[ and x0 > 0, we will have that the
condition over the states of the system holds, and is even stronger, in the sense that we
will also have that

0 < s(t) < sin and 0 < x(t), ∀t ∈ [t0, T ]. (3.3)
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3.3 Optimality Conditions

The preceding discussion implies in particular that admissible trajectories exist for the
optimal control problem (Pbio). Furthermore, since the objective function to be max-
imized does not depend explicitly on the control function D(·), standard assumptions
that guarantee the existence of optimal control can be evoked (for example [20, Theorem
23.11]). Thus in the rest of the paper we might assume that optimal trajectories for the
maximization of biogas production problem exists and focus on optimality condition to
understand and approximate such solutions. Also, since we are mainly interested in the
case that the initial conditions are such that s0 ∈]0, sin[ and x0 > 0, we will assume, unless
otherwise stated, that optimal trajectories satisfy (3.3).

3.3.1 Pontryagin Maximum Principle

We begin our study of problem (Pbio) by establishing necessary conditions of optimality
with the Pontryagin Maximum Principle (PMP) [20, Corollary 22.3]. For this we set the
Hamiltonian H : R2 × R2 × [0, Dmax]→ R as

H(x, s, px, ps, D) := µ(s)x+ ps(D(sin − s)− µ(s)x) + px(µ(s)x−Dx). (3.4)

We consider an optimal control D(·) of (Pbio) and its associated states x(·) and s(·),
solution of (3.1) with initial condition (x0, s0) = (x(t0), s(t0)). Then, the PMP states
that there exist adjoint states ps, px : [t0, T ] → R satisfying, for almost every t ∈ [t0, T ],
the adjoint equations

ṗx = Dpx − µ(s)(1 + px − ps), ṗs = Dps − µ′(s)x(1 + px − ps), (3.5)

the transversality condition px(T ) = ps(T ) = 0 and the maximum condition, for almost
every t ∈ [t0, T ],

H(x(t), s(t), px(t), ps(t), D(t)) = max
d∈[0,Dmax]

H(x(t), s(t), px(t), ps(t), d). (3.6)

In addition, since the Hamiltonian does not depend explicitly on time, it is constant,
which means that for some c = c(t0, x0, s0) ∈ R we have

H(x(t), s(t), px(t), ps(t), D(t)) = c, a.e. on [t0, T ]. (3.7)

This, along with the transversality condition, yields c = µ(s(T ))x(T ) > 0.

Let us call extremal trajectory and extremal control to any trajectory (x(·), s(·), px(·), ps(·))
and control D(·) satisfying (3.1)-(3.5)-(3.6)-(3.7).

Since the Hamiltonian is affine in the control variable, an extremal control will depend
on the sign of the commutation function

φ(t) :=
∂

∂D
H(x(t), s(t), px(t), ps(t), D(t)) = ps(t)(sin − s(t))− px(t)x(t).

We then have that D(t) = 0 if φ(t) < 0 and D(t) = Dmax if φ(t) > 0, while no information
can be directly obtained from the PMP in the case φ(t) = 0.

50



We recall that a singular arc is a time interval during which we have φ(t) = 0 and since
this equation is valid along a singular arc, we also have d

dt
φ(t) = 0. Therefore, during a

singular arc the state variables and the adjoint states satisfy the following equations

(sin − s)ps − xpx = 0, µ′(s)(sin − s)(1 + px − ps) = µ(s). (3.8)

With this, we can get an equation that the state variables satisfy during a singular arc, that
depends only on the constant value c of the Hamiltonian. Indeed, when the commutation
function vanishes, we have

c = µ(s)x(1 + px − ps)

and using (3.8) we get
cµ′(s)(sin − s) = µ(s)2x. (3.9)

We now define the following function, for h > 0 given

xh(s) := h
µ′(s)(sin − s)

µ(s)2
, 0 < s < sin.

Then, from (3.9), we have that the extremal state trajectories during the singular arc
remain in the graph of s 7→ xc(s). This means that if we knew the value of c then we
would be able to construct the singular arc and construct an admissible extremal control
in feedback form for the optimal control for problem (Pbio).

Remark In the Monod and Haldane cases, we have that the curve described above has,
respectively, the form

xMh (s) :=
hK(sin − s)
µmaxs2

, xHh (s) :=
hK(sin − s)
µmaxs2

− h(sin − s)
µmaxKi

.

Remark Note that in general the curve xh(s) → 0 when s → sin, and xh(s) → +∞ if

s→ 0 provided that µ′(s)
µ(s)2 → +∞ as s→ 0; this is for instance the case of the Monod and

Haldane growth rate functions.

3.3.2 Construction of Extremal Controls

To identify the extremal controls, we start by constructing explicitly a control that drives
the system to a singular arc associated with a given h > 0.

We first need to compute the control Dh that keeps the system on the singular curve
{(xh(s), s) : 0 < s < sin}. For this, we differentiate with respect to time the relation
x(t) = xh(s(t)) to get

µ(s)xh −Dhxh =
(
Dh(sin − s)− µ(s)xh

)
∂sxh

and we then have the following expression for the control on the singular arc

Dh(s) =
µ(s)xh(s)(1 + ∂sxh(s))

xh(s) + (sin − s)∂sxh(s)
, (3.10)

with

∂sxh(s) = h

(
d

ds

(
µ′(s)

µ(s)2

)
(sin − s)−

µ′(s)

µ(s)2

)
, ∀s ∈]0, sin[. (3.11)
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Our Standing assumptions, in particular the fact that d
ds

(
µ′(s)
µ(s)2

)
6= 0 implies that Dh(s)

is well defined (as a real valued function) for any s ∈]0, sin[.

The control Dh is not necessarily an admissible control for the problem at hand. For
some s ∈]0, sin[ it could happen that Dh(s) 6∈ [0, Dmax]. We assume that the singular
control Dh(s) is admissible only on a bounded interval Is where the bounds s0 and smax

are defined as the solutions of

Dh(s
0) = 0 and Dh(s

max) = Dmax. (3.12)

Remark It is straightforward to see that the control on the singular curve associated
with a Monod growth rate function is given by

DM
h (s) =

hK(2sin − s)− µmaxs
3

2s(K + s)(sin − s)
, ∀s ∈]0, sin[.

It follows that DM
h (s) → +∞ if s → 0. However, the behavior of DM

h (s) when s → sin

depends on the data of the problem. As a matter of fact

lim
s→sin

DM
h (s) =


+∞, if hK > µmaxs

2
in,

−∞, if hK < µmaxs
2
in,

2µmaxsin
K+sin

, if hK = µmaxs
2
in.

This means that, depending on the data of the problem, singular optimal trajectories may
not occur at all; for instance if DM

h (s) > Dmax for every s ∈]0, sin[. We plan to study this
issue in more details and for general growth rate functions elsewhere.

For (s, x) 6∈ Is × xh(Is), we extend the singular curve such that the control to stay
on that curve is equal to 0 or Dmax. For this we integrate the dynamics backwards with
D = 0 (respectively D = Dmax) starting from s0 (respectively smax). We therefore have
the following singular curve :

Gh :=


(
xh(s), s

)
: s ∈ Is(

x(τ, xh(s
0), 0), s(τ, s0, 0)

)
: τ 6 0(

x(τ, xh(s
max), Dmax), s(τ, smax, Dmax)

)
: τ 6 0

 (3.13)

where we denote s(τ, smax, Dmax) the value at time τ of the solution with control Dmax

starting at smax at time τ = 0 and similarly for x(τ, xh(s
max), Dmax), x(τ, xh(s

0), 0) and
x(τ, xh(s

0), 0).

Note that withD = 0 we have ẋ+ṡ = 0 so that the trajectory {
(
x(τ, xh(s

0), 0), s(τ, s0, 0)
)

:
τ 6 0} corresponds to the graph of the mapping s 7→ −s+s0+xh(s

0). This is a decreasing
function of s and with D = 0 the trajectories are such that s(t) is also decreasing and
therefore {

(
x(τ, xh(s

0), 0), s(τ, s0, 0)
)

: τ 6 0} corresponds to the set{(
− s+ s0 + xh(s

0), s
)

: s0 < s < sin,−s+ s0 + xh(s
0) > 0

}
. (3.14)

The singular curve Gh divides the state space in 2 sets on which the control must be
either 0 or Dmax and we thus denote G0

h (respectively Gmax
h ) the set on which the control

is 0 (respectively Dmax).
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Figure 3.1: Example of trajectories obtained with feedback ψh with h = 2 and Monod
growth function (µmax = 1.2, K = 7.1), Dmax = 0.7 and sin = 10. The thicker lines
correspond to the singular curve Gh.

To distinguish these sets we use again the fact with D = 0 the trajectories are such
that s(t) is decreasing and therefore either the trajectory reaches the singular curve or
approaches asymptotically the set {(x, 0) : x > 0}. This corresponds to determining
whether there exists a point (−s + x0 + s0, s) that belongs to Gh for s ∈]0, s0]. We then
have the following expression for G0

h

G0
h = {(x, s) : ∃ s̃ 6 s such that (−s̃+ x+ s, s̃) ∈ Gh}

and then Gmax
h := R2

+ \ (G0
h ∪Gh).

With this, we have the following family of feedback controls

ψh(x, s) =


0, if (x, s) ∈ G0

h,

Dmax, if (x, s) ∈ Gmax
h ,

Dh(s), if (x, s) ∈ Gh.

(3.15)

An example of the trajectoires obtained with this feedback is show in Figure 3.1. Note
that, because of the way the feedback control ψh has been constructed, solution of related
the closed-loop system do exist and are uniquely determined by the initial data.

3.3.3 Hamilton-Jacobi-Bellman Equation

In order to make the feedback law (3.15) a suitable candidate to optimal control, we now
need to identify the value of the Hamiltonian for a given initial condition and initial time,
that is, we need to calculate or approximate c. For this purpose, we use the Hamilton-
Jacobi-Bellman (HJB) equation, motivated by the fact that the cost associated with an
optimal control, seen as a function of the initial data, can be completely characterized by
an appropriate HJB equation.
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The value function for the production of biogas problem (without state constraints) is

V (t0, x0, s0) := sup
D(·)

{∫ T

t0

µ(s(t))x(t)dt :
ẋ = µ(s)x−Dx, x(t0) = x0,

ṡ = D(sin − s)− µ(s)x, s(t0) = s0

}
where the maximum is taken over all D : [t0, T ]→ [0, Dmax] measurable. It is not difficult
to see that, thanks to the continuity of the trajectories of the control system (3.1) with
respect the initial data, the value function (t0, x0, s0) 7→ V (t0, x0, s0) is continuous. We
have already discussed that optimal controls do exist, and then the supremum is actually a
maximum. Furthermore, because of the invariance of the set [0,+∞[×[0, sin] with respect
to the control system (3.1), this value function agrees with the value function of the
original problem (Pbio) with state constraints. Let us mention that problems with state
constraints are considerably harder to deal with and so the fact stated above simplifies
considerably the ensuing analysis (cf. [55]).

The HJB equation for the problem we are dealing with is

∂tu+ sup
D∈[0,Dmax]

H(x, s, ∂xu, ∂su,D) = 0, in ]−∞, T [×R2, (3.16)

where H is the Hamiltonian given in (3.4). Existence and uniqueness of solutions in the
viscosity sense for HJB equations is a well-known and studied fact, see for instance [3].
As a matter of fact, the value function V is the unique viscosity solution to (3.16) that
satisfies the terminal condition

u(T, x, s) = 0, ∀x, s ∈ R.

Furthermore, the HJB equation and the PMP are related via the following lemma, which
links the derivatives of the value function with the adjoint arcs.

Lemma 3.1 ([3, Theorem III.3.42]) Under the Standing Assumptions, a measurable func-
tions D : [t0, T ] → [0, Dmax] maximizes (Pbio), the production of biogas problem, if and
only if the maximum condition (3.6) holds and

(c, px(t), ps(t)) ∈ ∂+V (t, x(t), s(t)), a.e. on [t0, T ].

where c = H(x(t), s(t), px(t), ps(t), D(t)) for a.e. t ∈ [t0, T ] and

∂+u(z) :=

{
q ∈ Rn : lim sup

y→z

u(y)− u(z)− q>(y − z)

|y − z|
≤ 0

}
stands for the viscosity superdifferential of a function u : Rn → R.

The preceding lemma implies that whenever the value function is differentiable at
(t0, x0, s0), we should have that

(px(t0), ps(t0)) = ∇(x0,s0)V (t0, x0, s0) and c = −∂t0V (t0, x0, s0).

This fact is the key point we use for proposing an algorithm for solving the production of
biogas problem. Indeed, we have seen that the control that maximizes the Hamiltonian
is ψh given by (3.15), where h > 0 is the (constant) value of the Hamiltonian. The value
of the Hamiltonian can be obtained, for example, by evaluating at initial time:

h = H(x0, s0, px(t0), ps(t0), ψh(x0, s0))
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From the previous section, we can deduce that ψc is the optimal control associated with
optimal singular trajectories (it is the unique candidate to be an extremal control in this
case). Also, in the appendix we show that ψc is the optimal control for a particular choice
of initial conditions1. If ψc is actually an optimal control, we can write the value function
as the cost of the control ψc, that is, V (t0, x0, s0) = J(t0, x0, s0, ψc). With Lemma 3.1 we
then get

c = H(x0, s0,∇(x0,s0)J(t0, x0, s0, ψc), ψc(x0, s0))

Thus, using the HJB equation (3.16), we also have

c = −∂t0J(t0, x0, s0, ψc) (3.17)

In other words, c is a fixed point of the mapping h 7→ −∂t0J(t0, x0, s0, ψh). Hence, if we
are able to compute or approximate a fixed point of the mapping h 7→ −∂t0J(t0, x0, s0, ψh)
we will be able to reconstruct an optimal synthesis for the production of biogas problem.
In the next section we will present an algorithm, one of the main contribution of this work,
based on a classical iterative scheme for finding a fixed point of a function by repeatedly
computing the image of the previous iterate.

Let us point out that the HJB equation is valid regardless of the structure of the
optimal control. This means that this equation can be seen as a certificate of optimality
for the feedback control (3.15), in the sense that if the algorithm converges, then the
proposed feedback control is a good approximation of an optimal control, because the
value function obtained with the feedback ψc is an approximated solution to the HJB
equation.

3.4 An Algorithm for Maximizing the Production of

Biogas

We present now a way to compute the extremal feedback control ψc by solving the fixed
point equation (3.17) numerically, in order to get the value of the Hamiltonian c for any
initial condition (x0, s0) ∈]0,+∞[×]0, sin[.

3.4.1 HJB Fixed Point Algorithm

The algorithm we propose is based on a classical iterative scheme for finding a fixed point
of a function by repeatedly computing the image of the previous iterate. More precisely, if
the equation to be solved is F (h) = h for some given mapping F : Rd → Rd, then starting
from an initial guess h0, the numerical scheme consists in computing hn+1 = F (hn) for
n = 0, 1, 2, ... The algorithm is then considered to have converged to a fixed point when
the iterates stabilize to a given tolerance ε, specifically when ||hn+1 − hn|| < ε.

In our case, the function for which we need to compute a fixed point, −∂t0J(t0, x0, s0, ψh),
is composed of a partial derivative and therefore to estimate it numericaly with a finite

1The approach we have taken provides a new proof for the optimality of the synthesis already known
for the reduced model, that is, the case where sin = x0 + s0. To show consistency of our approach, the
details for this case have been included in the appendix.
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difference approximation, we must work with a discrete range of initial times. For N ∈ N,
we denote {tk0}k=1,..,N a set of initial times with constant step ∆t0 = tk+1

0 − tk0. We will
therefore compute a vector of fixed points c̃ = (ck) ∈ RN , where each ck will correspond
to the value of the Hamiltonian for the initial time tk0.

To obtain hn+1 from the previous iterate hn = (hkn) we start by computing for each
tk0 the trajectories with the control ψhkn and the associated cost J(tk0, x0, s0, ψhkn) with
standard numerical integration tools. For this the singular curve Ghkn

must be first de-
termined by solving equations (3.12) to establish the admissible range [smax, s0] and then
integrating backwards to obtain

(
x(·, xh(smax), Dmax), s(·, smax, Dmax)

)
.

We can then approximate the partial derivative of the cost as

∂t0J(tk0, x0, s0, ψhkn) ≈
J(tk+1

0 , x0, s0, ψhk+1
n

)− J(tk0, x0, s0, ψhkn)

∆t0

and if we set tN0 = T , we can use that J(T, x0, s0, ψh) = 0 to start the computations of
these partial derivatives, running through the range of initial times backwards beginning
with tN−1

0 and ending with t10.

In summary, for a fixed initial condition (x0, s0) ∈]0,+∞[×]0, sin[ and final time T ,
the algorithm is shown below.

Algorithm 1:

Input: N , MaxIterations, ε, h0

for n < MaxIterations do
for k = N − 1, ..., 1 do

Solve Dhkn
(s0) = 0 and Dhkmax

(smax) = Dmax

Compute singular curve Ghkn

Compute x(·, tk0, x0, s0, ψhkn), s(·, tk0, x0, s0, ψhkn) and J(tk0, x0, s0, ψhkn)

hkn+1 ← −(J(tk+1
0 , x0, s0, ψhk+1

n
)− J(tk0, x0, s0, ψhkn))/∆t0

if ||hn+1 − hn|| < ε then
return hn+1

The main issue that can prevent the convergence of this algorithm is the accumulation
of numerical errors that can propagate through the finite difference approximation of
∂t0J(t0, x0, s0, ψh). Indeed, since we need J(tk+1

0 , x0, s0, ψhk+1
n

) to compute hkn+1, any errors

made to get hk+1
n will propagate to hkn+1 and all following values hjn+1 for j < k. Another

consequence of this inter-dependance is that to have hkn converge, hk+1
n must have already

converged to a fixed point.

With these considerations in mind, it might seem unnecessary to compute the whole
vector hn+1 at every iteration and instead computing one fixed point at a time would
appear to be more efficient. An alternative algorithm would then consist in first iterating
only on hN−1

n until convergence, which is possible because we only need J(T, x0, s0, ψh).
Then using the obtained fixed point to get J(tN−1

0 , x0, s0, ψcK−1) we could move on to
computing cK−2. Repeating this process, we can thus find all the fixed points ck until
reaching the desired initial time. However, due to the accumulation of errors, to get the
convergence of hjn with a certain tolerance it is necessary to get the convergence of hkn for
j < k with a smaller tolerance. It is then complicated in practice to determine an efficient
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stoping condition that guarantees the convergence of the last fixed point to the desired
tolerance.

On the other hand, by computing the whole vector hn+1 at every iteration, we can
stop the algorithm when the vector has converged for the maximum norm, that is, when
maxk |hkn+1 − hkn| < ε. This guarantees that all components of the vector have converged
to a desired tolerance. In addition, the algorithm will keep iterating on the first compo-
nents (hN−1

n , hN−2
n , ...), which converge to the desired tolerance first, but as such it will

keep on reducing the errors automatically to achieve convergence of the last components
(h1

n, h
2
n, ...).

3.4.2 Initial Guess

Concerning the initial guess h0, recall that with the optimal control we have c = µ(s(T ))x(T ).
In most cases, we can broadly approximate this by taking hk0 = µ(s0)x0, for all k, and
Algorithm 1 will converge.

However, in the most difficult cases, this is not sufficient and the accumulation of
errors that were previously mentioned can cause the algorithm to diverge. In fact, the
only problems we encountered were when the solution has a bang-bang-singular arc control
with a switch from D = 0 to D = Dmax before reaching the singular arc. To deal with
these cases, we propose to first to identify an extremal candidate by solving the fixed
point equation

c = µ
(
s(T, t0, x0, s0, ψc)

)
x(T, t0, x0, s0, ψc)

Then using the obtained fixed point as an initial guess for Algorithm 1, we can check the
optimality of the associated extremal candidate.

In this case, as we do not need to compute the partial derivative of the cost with
respect to initial time we do not need to compute the fixed points for a range of initial
times simultaneously. Other than this, the algorithm to solve this equation is similar to
the previous and is shown below as Algorithm 2.

Algorithm 2:

Input: MaxIterations, ε
h0 ← µ(s0)x0

for n < MaxIterations do
Solve Dhn(s0) = 0 and Dhmax(smax) = Dmax

Compute singular curve Ghn

Compute x(·, t0, x0, s0, ψhn), s(·, t0, x0, s0, ψhn)
hn+1 ← µ(s(T, t0, x0, s0, ψhn))x(T, t0, x0, s0, ψhn)
if |hn+1 − hn| < ε then

return hn+1
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Figure 3.2: Optimal trajectories in state space, for the Monod growth function (µmax =
1.2, K = 7.1) with t0 = 0, T = 2.5, Dmax = 0.7 and sin = 10. The initial conditions
are on the left (x0, s0) = {(1, 3), (5, 1), (11, 2), (15.5, 4.5)} and on the right, (x0, s0) =
{(1, 5.5), (2, 6.5), (5, 7), (10, 7)}.

3.5 Numerical Simulations

In this section, we illustrate the fixed point algorithm with the growth functions of Monod
and Haldane (3.2) with parameter values from [13].

In Figures 3.2 and 3.3, we show examples of optimal trajectories in state space for
various initial conditions but with the same initial and final times for each growth function.
The solutions are similar for both growth functions and there is both bang-singular arc
and bang-bang-singular arc optimal solutions. Note that, the singular curve varies for
each initial condition but that all trajectories that reach a singular arc finish with

s(T ) = s∗ = arg max
s∈[0,sin]

µ(s)(sin − s).

This is expected since c = µ(s(T ))x(T ) and using the expression for the singular curve
(3.9) evaluated at final time we get µ′(s(T ))(sin − s(T )) = µ(s(T )) and we recognize this
as a necessary condition for maximizing s 7→ µ(s)(sin − s).

Next, Figures 3.4, 3.5 and 3.6 each show optimal trajectories in state space for various
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Figure 3.3: Optimal trajectories in state space, for the Haldane growth function (µmax =
0.74, K = 9.28, Ki = 256) with t0 = 0, T = 2, Dmax = 1 and sin = 100. The initial
conditions are on the left (x0, s0) = {(5, 10), (40, 5), (110, 1), (230, 23)} and on the right,
(x0, s0) = {(15, 40), (20, 60), (50, 70), (140, 70)}.
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Figure 3.4: Initial condition (x0, s0) = (7, 8), on the left, optimal trajectories in state
space and on the right, t0 7→ c(t0) value of the Hamiltonian as a function of initial time.
Monod growth function (µmax = 1.2, K = 7.1) with T = 1, Dmax = 0.7 and sin = 10.

initial times but for fixed initial conditions and final time. We can see that the singular
curve varies for different initial times and the strategy can also change. For instance,
in Figure 3.5, we can see that for t0 = 1.875 the optimal trajectory corresponds to the
control D = 0 and as the initial time decreases, the optimal control switchs to a bang-
bang-singular arc with first D = Dmax and then D = 0 before reaching the singular
arc.

Alongside each set of trajectories is also shown the corresponding values of the Hamil-
tonian as a function of the initial time. Although the function t0 7→ c(t0) appears to be
continuous it is clearly not continuously differentiable everywhere and the points at which
this function is not smooth correspond to initial times when there is a change in the type
of control. For example, in Figure 3.4 we can see on the state space trajectories graph
that the optimal control for t0 = 0.5 is a single bang D = 0 whereas for t0 = 0.25 it is
bang-bang with a switch from D = 0 to D = Dmax and on the graph of t0 7→ c(t0) there
is indeed a point of irregularity near t0 = 0.4.
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Figure 3.5: For the initial condition (x0, s0) = (1, 4.5), on the left, optimal trajectories in
state space and on the right, t0 7→ c(t0) value of the Hamiltonian as a function of initial
time. Monod growth function (µmax = 1.2, K = 7.1) with T = 2.5, Dmax = 0.7 and
sin = 10.
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Figure 3.6: Initial condition (x0, s0) = (200, 70), on the left, optimal trajectories in state
space and on the right t0 7→ c(t0) value of the Hamiltonian as a function of initial time.
Haldane growth function (µmax = 0.74, K = 9.28, Ki = 256) with T = 2, Dmax = 1 and
sin = 100.

We illustrate the performance and convergence of Algorithm 1 and 2 in Figure 3.7 with
graphs of error as function of iterations : n 7→ |hkn+1 − hkn|. For Algorithm 1, we can see
that for initial times close to the final time, the convergence is very fast. However, as the
horizon increases, not only is convergence slower but there is a limit for the errors and
eventually they stop decreasing. This is likely due to the numerical errors when computing
the finite difference approximation of ∂t0J(t0, x0, s0, ψh) since this behaviour is not seen for
Algorithm 2 which does not need the computation of ∂t0J(t0, x0, s0, ψh). Notice however,
that Algorithm 2 requires more iterations but that the convergence accelerates at the end
and reaches machine precision.

3.5.1 Comparison with Bocop

Finally, we compare our feedback to the control obtained with the open source toolbox
for optimal control Bocop [102, 16]. This package implements a direct method that
approximates the optimal control problem by a finite dimensional optimization problem
using a time discretization.

Table 3.1 presents a performance comparison by looking at the biogas production of
each control and the relative difference. We can see that our feedback achieves nearly as
much as Bocop and that the difference is greater for the last 2 rows which correspond to
trajectories that are bang-bang-singular arc as in Figures 3.4 and 3.5.

Table 3.1: Performance comparaison with Bocop
(x0, s0) Biogas (ψc) Biogas (Bocop) Relative Difference
(3, 2) 3.2232 3.2235 9 · 10−5

(3, 6) 5.3285 5.3290 9 · 10−5

(1, 4.5) 1.8725 1.8729 2 · 10−4

(7, 8) 4.7904 4.7933 6 · 10−4

Next, in Table 3.2 we show some computational times associated with our feedback
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Figure 3.7: Error as a function of iterations : n 7→ |hkn+1 − hkn| of Algorithm 1 on the
left and of Algorithm 2 on the right. Monod growth function (µmax = 1.2, K = 7.1) with
T = 1, Dmax = 0.7 and sin = 10. On the left initial condition (x0, s0) = (2, 2) and on the
left (x0, s0) = (7, 8)

(for various error tolerances ε) and Bocop. We can see that the time necessary to compute
our feedback is similar to the time reported by Bocop, although it is important to note
that Bocop only computes the control for a single initial time, where as our algorithm for
a range of initial times.

Table 3.2: Computation time (in seconds) comparison with Bocop
(x0, s0) CPU time (ψc) ε = 10−4 CPU time (ψc) ε = 10−6 CPU time (Bocop)
(3, 2) 2.32 3.60 2.06
(3, 6) 1.37 1.74 1.74

3.6 Conclusions

In this work, we have given an algorithm to compute an extremal control for the problem
of maximizing biogas production for the classical model of the chemostat for a fixed finite
horizon. The extremal control is obtained in state feedback form which has advantages
in terms of robustness with respect to pertubations on the initial data. In order to
achieve this we first studied necessary optimality conditions thereby obtaining an ana-
lytical expression of a family of extremal feedbacks. Then we use a sufficient optimality
condition (the HJB equation) to single out one of the extremal feedbacks as a candidate
to optimal control. The resulting algorithm is fast and converges rapidly in practice. As
pointed out before, the HJB equation can be seen as a test of optimality for the proposed
feedback control (3.15), in the sense that if the algorithm converges, then the proposed
feedback control is a good approximation of an optimal control. This fact has also been
corroborated with the numerical examples we have exhibited and the comparison done
with Bocop.

Let us finally mention that the technique we have introduced in this paper is well suited
for the one reaction model. Some extensions to more general cases, such as two reactions
models, should be possible. This is work in progress.
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Appendix: Reduced Model

In this final, part we provide a HJB proof for the optimal synthesis for the reduced model,
that is, the case where the initial data satisfy sin = x0 +s0. In particular, we show how the
fixed point characterization of the optimal control can be used analytically in a special case
when the dynamics reduces to a single equation. A well known property of the chemostat
model is that the set I := {(x, s) ∈ R : x + s = sin} is invariant for the dynamics (3.1)
and thus, for initial conditions in I, the dynamics reduce to ṡ =

(
D−µ(s)

)
(sin− s). This

special case was solved in [38], with the following assumptions

(H1) The function s 7→ µ(s)(sin − s) has a unique maximizer s∗ on [0, sin].

(H2) The upper bound on the controls is such that Dmax > µ(s∗).

The optimal control is then D∗(s) = 0 if s > s∗, D∗(s) = Dmax if s < s∗ and D∗(s) = µ(s∗)
if s = s∗. Here, we will give another proof of the optimality of this control, by using the
fixed point characterization. First, we can identify the control D∗ as a control of the type
(3.15) where the singular arc is reduced to s = s∗. In other words, it corresponds to the
control ψh∗ where h∗ satisfies equation (3.9) for the singular arc with s = s∗, which in this
case is h∗µ′(s∗) = µ(s∗)2. Next, since s∗ is a maximizer we have µ′(s∗)(sin−s∗)−µ(s∗) = 0
and therefore h∗ = µ(s∗)(sin − s∗).

To prove the optimality of ψh∗ , we must now show that h∗ is a fixed point of the
mapping h 7→ −∂t0J(t0, x0, s0, ψh). For this we first study the trajectories obtained with
the feedback control ψh∗ . We denote in the remainder of the section the right-hand side
of the differential equation for s(·) with control ψh∗ as f(s) := (ψh∗(s)− µ(s))(sin − s).

Notice that for s > s∗ we have f(s) = −µ(s)(sin − s) < 0 and for s < s∗ we have
f(s) = (Dmax − µ(s))(sin − s) > 0 from assumption (H2). Thus, s∗ is reachable from
any initial condition in I with control ψh∗ . We define the time t∗ when s∗ is reached,
from a given initial condition s0 ∈ [0, sin] and initial time t0 with control ψh∗ , that is,
t∗ := inf {t > t0 : s(t, t0, s0, ψh∗) = s∗} . Finally, note that with control D = µ(s∗) the
point s = s∗ becomes a steady state. Therefore the trajectories with control ψh∗ are

s(t) =

{
s(t, t0, s0, ψh∗), for t0 6 t 6 min(t∗, T ),

s∗, for min(t∗, T ) 6 t 6 T.

We can now compute ∂t0J(t0, x0, s0, ψh∗) and for this we need the following.

Lemma 3.2 For any initial condition (x0, s0) ∈ I, for the trajectories with control ψh∗
we have ∂t0s(t) = −f(s(t)) at time t ∈ [t0, t

∗].

Proof. We can write the differential equation satisfied by s(·) as s(t) = s0 +

∫ t

t0

f(s(τ)) dτ

and differentiating we get ∂t0s(t) = −f(s0) +

∫ t

t0

f ′(s(τ))∂t0s(τ) dτ. This is a linear dif-

ferential equation and the solution is ∂t0s(t) = −f(s0) exp

(∫ t

t0

f ′(s(τ)) dτ

)
. Now, as

f(s(t)) does not change sign for t ∈ [t0, t
∗) and since f(s(t)) is the derivative of s(t) we

have

∫ t

t0

f ′(s(τ)) dτ =

∫ s(t)

s0

f ′(s)

f(s)
ds = ln

(
f(s(t))

f(s0)

)
.
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We are now in a position to prove the optimality of the feedback control proposed
earlier.

Proposition 3.3 For any initial condition (x0, s0) ∈ I and for any initial time t0 such
that s∗ is reachable, that is when t∗ 6 T , we have ∂t0J(t0, x0, s0, ψh∗) = −µ(s∗)(sin − s∗),
so that ψh∗ is the optimal control.

Proof. We start by writing the cost as

J(t0, x0, s0, ψh∗) =

∫ t∗

t0

µ(s(t))(sin − s(t)) dt+ (T − t∗)µ(s∗)(sin − s∗)

differentiating with respect to t0 we get

∂t0J(t0, x0, s0, ψh∗) = −µ(s0)(sin − s0) +

∫ t∗

t0

∂s
(
µ(s(t))(sin − s(t))

)
∂t0s(t) dt.

Note that the terms with ∂t0t
∗ cancel out because s(t∗) = s∗. Now, using Lemma 3.2 we

get

∂t0J(t0, x0, s0, ψh∗) = −µ(s0)(sin − s0)−
∫ t∗

t0

∂s
(
µ(s(t))(sin − s(t))

)
ṡ(t) dt

= −µ(s0)(sin − s0)−
∫ t∗

t0

d

dt

(
µ(s(t))(sin − s(t))

)
dt

= −µ(s∗)(sin − s∗).

We conclude by recalling that h∗ = µ(s∗)(sin − s∗) and therefore h∗ is a fixed point of
h 7→ −∂t0J(t0, x0, s0, ψh).
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Chapter 4

Spatially Heterogeneous Modelling
of an Upflow Fixed-bed Bioreactor

This chapter corresponds to ongoing work.

4.1 Introduction

Anaerobic digestion (AD) is a commonly used process for the removal of organic matter
in the treatment of wastewater and agricultural waste. Through a series of biochemical
reactions, organic compounds are degraded by microorganisms into biogas, a mixture of
methane and carbon dioxyde, which can be used as a renewable energy source, thereby
reducing the energetic cost of the process.

The design and operation of AD bioreactors raises a number of challenges, since anaer-
obic digestion is known to be a complex, nonlinear and unstable process. The most
common type of reactor in use for AD is the continuously stirred tank reactor (CSTR),
which uses a mixing system to homogenize the reacting medium. Increasingly, reactors
with heterogeneous contents are being developed and implemented. However, the benefits
of a spatial gradient of concentration are unclear: while some experimental studies report
better performance or process stability with mixing [17, 60], others have observed the
opposite [45, 101] or that mixing has little impact on biogas production [62].

Mathematical modeling of bioreactors has been recognized as an important tool for the
analysis, control and optimization of the process [6] and in addition to giving a deeper
insight into the process, modeling allows to evaluate different bioreactor designs and oper-
ational scenarios. Therefore, models have been developed that are capable of representing
spatial variations of reactor contents in order to study the impact of heterogeneity. These
differ from the classical models that focus on the biochemical kinetics and generally as-
sume that the reactor is perfectly mixed.

The first examples of such models, known as compartment models or gradostat [98],
represent a reactor as a network of interconnected well-mixed zones and thus use systems
of ordinary differential equations, which facilitates analysis and simulation. Studies with
this type of models have found that the impact of heterogeneity depends on the graph of

64



interconnections [48, 81] and that mixing is either be beneficial [11], disadvantageous [10]
or has little impact [32].

The emergence of computer fluid dynamics (CFD) has allowed the simulation of mod-
els of AD bioreactors that take into account complex physical phenomenons and although
many studies only consider fluid dynamics without bioreactions, this leads to complex
models. This has been widely used to study and optimize various mixing systems for
CSTR [67, 103, 107, 112]. Recently however, simulations have been performed that con-
sider bioreactions [70, 87] and one study [113] has concluded that mixing has little impact
on methane yield.

A third type of model attempts to find a compromise between model complexity and
physical accuracy. These models represent a reactor in 1 or 2 spatial dimensions with
simple fluid dynamics or even assuming that fluid velocity is constant in space to focus on
the bioreactions [31, 65, 75, 111]. The advantage of reducing complexity is that it allows
a more in depth analysis or the consideration of optimization problems [2, 23, 24, 74].

The first objective of the present work is to continue the development of this type of
model that offers a more accurate representation of spatial features than compartment
models but that is still tractable for optimization of bioreactor design and operation. In
addition, we are interested in investigating the impact of heterogeneity on organic matter
removal and biogas production.

For this, we model here a pilot scale reactor operated in Guadalajara-Jalisco (Mexico)
that is used to treat diluted tequila vinasses by anaerobic digestion and produce biogas.
This bioreactor is particularly interesting for the study of heterogeneity as it is half way in
between a CSTR and tubular unmixed reactor. Indeed, there is no internal mixing system
and instead, homogenization is achieved primarily by recirculating liquid from the output
back into the input and therefore, by changing the recirculation flow rate, this reactor
can either be operated as a CSTR or as a tubular reactor. For the moment, experiments
were run only with a high recirculation, but nonetheless, a spatial gradient was observed
as data was gathered by collecting substrate at different points along the main axis of the
reactor. This was used to develop a compartment model consisting of two interconnected
homogeneous zones [56]. This model was able to reproduce the spatial gradient roughly
and the present work aims at improving the representation of spatial features.

In Section 2, we present our model and the challenges of its numerical simulation.
Section 3 deals with parameter estimation and model verification. Finally, in Section 4,
we study the impact of mixing on biological activity.

4.2 Model

The bioreactor that we model here is a vertical cylinder with the liquid to be treated
entering at the bottom and exiting at the top (Figure 4.1). A portion of the liquid from
the top is recirculated and mixed with the influent before re-entering the tank at the
bottom. Mixing is also helped by pumping out liquid from the very bottom of the tank
which is injected back into the tank at the same height. Furthermore, both the inflows at
the bottom are such that the liquid enters nearly tangentially in order to induce a circular
current in the bottom of the tank. In the middle, there is a fixed bed made of vertical
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PVC tubes with honeycomb structures (cloisonyl), which helps to fix the biomass.

The configuration of this reactor and in particular the arrangement of the input and
output flows, means that we need to consider a 3D model and can not use symmetry to
reduce the spatial dimensions for the lower and upper parts of the reactor. However, the
PVC tubes in the middle section of the reactor are narrow and once the fluid has entered
one of these tubes from the bottom, it remains in the same tube until it reaches the top
section. We can therefore consider that the contents inside each tube are homogeneous
in the horizontal directions and only model the spatial distribution of substances along
the vertical dimension. Furthermore, observations of this reactor have reported that
most of the active biomass is attached to the walls of the tubes and we will thus neglect
the suspended biomass, considering that the bio-reactions take place only in the middle
section.

The result is a model of the reactor in 3 parts : bottom and top sections in 3D,
where we must consider the fluid dynamics to compute the spatial distribution of the
substrates; and the middle section, modelled as an array of parallel 1D tubular reactors,
thereby reducing considerably the complexity of the model is this section.

4.2.1 Fluid Dynamics

The vinasses that are treated are completely liquid and do not contain any solid material,
so that we can consider that the contents of the reactor are only in liquid or gas phases.
We will model the liquid phase as an incompressible viscous fluid, having similar physical
properties to water. It is important to note that the timescale of the dynamics of fluids
is much shorter than the biological timescales and therefore we can consider that the
liquid flow remains in a steady state, as long as the input-output flows are constant. We
therefore use the steady state Navier Stokes equations to compute the fluid velocity and
pressure.

Figure 4.1: Schematic view of the reactor
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The gases produced by the biological activity collect at the top of the reactor and
the main impact gases can have on reactor dynamics is through pressure. Indeed, the
solubility of certain gases can vary with the pressure, such as CO2 for instance. This
effect could be taken into account by adding a boundary condition for the pressure at
liquid-gas interface at the top of the reactor, with the pressure of the gas phase obtained
from the ideal gas law. However, we are primarily interested in the biological activity
and we can estimate biogas production through the methane generation. Indeed, due to
the very low solubility of methane, its molar flow rate is unaffected by pressure. Then,
since the pressure in the Navier-Stokes equations is defined only up to a constant, we will
neglect the dynamics of gases and consider that the upper boundary of the liquid is fixed
and similar to a wall.

We now detail the model equations for the fluid dynamics in the three sections of the
reactor.

Bottom This part is a cylinder ΩB ⊂ R3, with boundary ∂ΩB = Γin ∪ ΓBM ∪ Γmi ∪
ΓBmo ∪ ΓBw. The fluid enters on the side through Γin, leaves towards the middle section
through ΓBM and ΓBw is the wall of the tank, through which the fluid cannot pass. For
the mixing system, the fluid is pumped out through Γmo and renters through Γmi.

We denote the fluid velocity

U(t, x, y, z) = (ux(t, x, y, z), uy(t, x, y, z), uz(t, x, y, z)),

and p(t, x, y, z) the pressure and g the acceleration due to gravity. The steady state
incompressible Navier-Stokes equations in 3 dimensions are

U · ∇U − ν∆U +∇p = g,

∇ · U = 0.
(4.1)

Concerning boundary conditions, for the walls of the bioreactor we consider a no-slip
condition,

U(t, x, y, z) = 0 on ΓBw.

For the inflow and the mixing system, we consider classical Poiseuille flow profiles: let
UBin, Umi and Umo be unitary parabolic functions such that∫

ΓBin

UBindσ =

∫
Γmi

Umidσ =

∫
Γmo

Umodσ = 1.

We denote the total input flow rate as Qtot = Qr + Qin, Qin the influent flow rate, Qr

the re-circulation flow rate and Qm the mixing flow rate. If α is the angle between the

Table 4.1: Physical parameters
Parameter Value Unit

g Acceleration due to gravity 9.81 m2 s−1

ν Fluid viscosity 10−3 m2 s−1

Ds Substrate diffusion coefficient 10−7 m2 s−1

Qin Influent flow rate 5 L h−1

Qr Recirculation flow rate 150 L h−1

Qm Mixing flow rate 1000 L h−1
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direction of injection and the outwards unit normal n, the boundary conditions are then

U(t, x, y, z) = Qtot

(
UBin(x, y, z) cosα, UBin(x, y, z) sinα, 0

)
on Γin,

U(t, x, y, z) = Qm

(
Umi(x, y, z) cosα, Umi(x, y, z) sinα, 0

)
on Γmi,

U(t, x, y, z) = Qm Umo(x, y, z)n on Γmo.

For the boundary ΓBM between the bottom and middle section, where the vertical inner
tubes begin, we will neglect a small interface layer and consider that the flow is completely
in the vertical direction and homogeneous in the horizontal directions. Denoting |ΓBM |
the surface area of the interface, we have

U(t, x, y, z) =
Qtot

|ΓBM |
(
0, 0, 1

)
on ΓBM .

Middle This is the section of the bioreactor with the honeycomb structure : there are
large tubes each divided in smaller tubes, for a total of Nt ≈ 100 tubes. We model
these as 1D vertical tubular bioreactors, indexed by a horizontal position (xi, yi) ∈ ΓBM ,
i ∈ {1, ..., Nt}, with each tube Ω(xi,yi) = [z0, z1]× {(xi, yi)}.

The fluid velocity in each tube Ω(xi,yi) is supposed constant in space, equal to the
velocity at the bottom interface ΓBM , so that we have

ux(t, x, y, z) = 0, uy(t, x, y, z) = 0, uz(t, x, y, z) =
Qtot

|ΓBM |
.

Top The upper section, ΩU is similar to the bottom although the fluid enters from the
bottom through ΓUM , leaves through ΓUo and does not pass through the walls ΓUw. The
fluid velocity satisfies the same Navier-Stokes equations (4.1) as in the bottom section
but the boundary conditions are

U(t, x, y, z) = Qb
|ΓBM |

(
0, 0, 1

)
on ΓUM

U(t, x, y, z) = 0 on ΓUw
U(t, x, y, z) = Qin UUo(x, y, z) on ΓUo

where UUo is again a unitary Poiseuille flow.

4.2.2 Biokinetics

For the anaerobic digestion process, we consider the two reaction model of [13]. The first
reaction, acidogenesis, represents the degradation of organic matter S1 into volatile fatty
acids (VFA) S2 by acidogenic microorganisms B1. Then methanogenes B2 transform the
VFA into methane.

k1S1
r1−→ B1 + k2S2, k3S2

r2−→ B2 + k4CH4

Here reaction rate r1, r2 are the reaction rates and k1, k2, k3, k4 are the yield coefficients.
In [13] the reaction rate were taken as rk = µk(Sk)Bk, for k = 1, 2, where the specific
growth rates µ1, µ2 are the Monod and Haldane growth functions

µ1(s) = µmax1

s

Ks
1 + s

, µ2(s) = µmax2

s

Ks
2 + s+ s2/Ki

.
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However in this work, in order to take into account the effects of crowding and the fact
that a majority of the biomass is fixed to the walls of the tubes in the middle section, we
will consider density dependent growth rates rk = µk(Sk)gk(Bk)Bk. Since we model the
tubes in 1 dimension, we consider that every point of these tubes there is a 2D colony of
microorganisms attached to the wall of the tube with the substrate passing through the
center. Biomass inhibition functions have been proposed, for a 2D dimensional colony of
microorganisms in [68] and we will consider the following function

gk(B) =
1

1 + ci
k

√
Bk

.

We now detail the model equation for the substrate and biomass concentrations in the
bottom, middle and top sections.

Bottom We suppose that there is no biomass in this section of the reactor and therefore
no reaction. The evolution of the substrate concentration Sk(t, x, y, z) for k = 1, 2 is
modeled by the following advection-diffusion equation

∂tSk + U · ∇Sk −Dk∆Sk = 0

where Dk is the diffusivity of the substrate Sk. The boundary conditions for the inflow
and the walls are

(Sk U +Dk∇Sk) · n = Sin
k U · n on Γin

∇Sk · n = 0 on ΓBw ∪ Γmi ∪ Γmo

where n is the outwards unit normal and Sin
k is the substrate inflow concentration, for

k = 1, 2

Sin
k =

QrS
r
k +QinS

if
k

Qr +Qin

Table 4.2: Biological parameters
Parameter Value Unit

Sif
1 Influent COD concentration 6.5 g L−1

Sif
2 Influent VFA concentration 100 mmol L−1

µmax
1 Maximum biomass growth rate (Acidogenesis) 1.96 d−1

µmax
2 Maximum biomass growth rate (Methanogenesis) 1.14 d−1

Ks
1 Half saturation constant (Acidogenesis) 8.16 g L−1

Ks
2 Half saturation constant (Methanoogenesis) 14.44 mmol L−1

Ki Substrate inhibition constant (Methanogenesis) 416.77 mmol L−1

k1 Yield for COD degradation 28.35 -
k2 Yield for VFA production 186.45 -
k3 Yield for VFA consumption 58.25 -
k4 Yield for CH4 production (Methanogenesis) 453 -
τ1 Biomass death rate (Acidogenesis) 0.1 µmax

1 d−1

τ2 Biomass death rate (Methanogenesis) 0.1 µmax
2 d−1

ci
1 Biomass inhibition constant (Acidogenesis) 0.6 (g L−1)1/2

ci
2 Biomass inhibition constant (Methanogenesis) 0.8 (g L−1)1/2
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where Srk is the substrate recirculation concentration coming from the upper section of
the bioreactor which is computed as, denoting ΓUo the section of the boundary where the
liquid leaves the reactor,

Srk(t) =
1

ΓUo

∫
ΓUo

Sk(t, x, y, z)dσ

For the auxiliary mixing system, we take similar boundary conditions

(Sk U +Dk∇Sk) · n = Smix
k U · n on Γmi

∇Sk · n = 0 on Γmo

with as before

Smix
k (t) =

1

ΓBmo

∫
ΓBmo

Sk(t, x, y, z)dσ

At the interface with the middle section ΓBM , we could consider flux equality conditions

(Sk U +Dk∇Sk) · n
∣∣
ΩB

= (Sk U +Dk∇Sk) · n
∣∣
ΩM

on ΓBM

where ΩM is the middle section. However, it is well know that for advection-diffusion
equations, when the diffusion coefficient is small, this type of interface conditions can be
well approximated by using the following artificial transparent boundary condition [49]

∇Sk · n = 0 on ΓBM .

Middle The various concentrations in consideration here are functions of (t, z) (time
and the vertical direction) and are also indexed by a horizontal position (xi, yi) ∈ ΓBM
and we denote them Sk(t, z;xi, yi) for the substrate with k = 1, 2 and similarly for the
biomasses.

The substrates satisfy the following equation, in each Ω(xi,yi)

∂tSk + uz ∂zSk −Dk∂
2
zzSk = fk(ξ),

where fk(ξ) corresponds to the biological reaction with ξ = (S1, S2, B1, B2),

f1(ξ) = −k1µ1(S1)g1(B1)B1 f2(ξ) = k2µ1(S1)g1(B1)B1 − k3µ2(S2)g2(B2)C2.

For boundary conditions we take, at the bottom interface

Sk(t, z0;xi, yi) = Sk(t, xi, yi, z0)
∣∣
ΩB
,

and for the top interface we take again an artificial transparent boundary

∂Sk
∂z

(t, z1;xi, yi) = 0.

We suppose that the micro-organisms are fixed to the wall of the tubes so that the
biomass concentrations are neither advected nor diffused, but we must take into account
their death rate τk

∂tBk = µk(Sk)gk(Bk)Bk − τkBk,

Note that this is a family of ordinary differential equations, so that no boundary conditions
are required.

For the methane flow rate, as proposed in [13], we will consider that it is proportional
to the growth rate of the second biomass. To compute the total flow rate for the whole
reactor, we need to integrate over all the middle section

QCH4 = |ΓBM |
Nt∑
i=1

∫ z1

z0

k4µ2

(
S2

)
g2

(
B2

)
B2 dz.
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Figure 4.2: Streamlines of fluid flow, for standard operating conditions Qr = 150 L/h
and Qmix = 1000 L/h. Bottom section (left) and top section (right).

Top We again suppose that there is no biomass in this section, so that the substrates
satisfy the same equations as in the bottom. The boundary condtions are

sk(t, x, y, z)
∣∣
ΩU

= sk(t, z1;x, y)
∣∣
ΩM

on ΓUM
∇sk · n = 0 on ΓUo ∪ ΓUw

4.2.3 Numerical Resolution

To solve the model equation we use the Finite Element method implemented in the open
source library FreeFem++ [53]. For the fluid dynamics, we solve the time dependent
Navier-Stokes equations until reaching a steady state. We consider the well established
combination of a characteristics method, to deal with the non-linear convection term [79],
and P2-P1 type finite elements [39]. As expected, the fluid converges to a steady state
rapidly and Figure 4.2 illustrates the computed flow for standard operating conditions.

For the substrate equations of the bottom and top sections, we also use a finite element
method with an implicit time discretization, which presents the advantage of being stable
for larger time steps and coarser meshes than explicit time discretizations. However,
to correctly solve these equations it is necessary to take time steps that are very small
compared to the biological timescale. Indeed, especially in the bottom with high fluid
velocities due to the mixing system, we need to take time steps of the order of seconds,
whereas the typical timescale of a bioprocess is of the order of a day.

Another complication comes from the very small diffusion coefficients of the substrates.
For example, a typical component of VFAs, acectic acid is reported to have a diffusion
coefficient of the order of 10−9 m2/s [110]. The consequence is that the substrate concen-
trations can present sharp spatial variations and to resolve these correctly, fine meshes
must be used. Then, for smaller diffusion coefficients, the computational cost of simu-
lations is substantially increased, as for example with D = 10−8 it is necessary to use a
mesh with 4 times more points than for D = 10−7 (Table 4.3).

To investigate the effect of lowering the diffusion coefficient on the solution, we have run
simulations of the bottom section for different values of D. Starting from an homogeneous
initial condition, our test case considers a 10% increase in input concentration. The
substrate concentrations at the interface between the bottom and middle sections after 8
hours are shown in Figures 4.3 (with mixing) and 4.4 (without mixing). Note that the
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main change of behaviour occurs between D = 10−6 and D = 10−7, when the spatial
variations of concentration become sharper and the homogenization effect of diffusion
less important. Therefore we will use D = 10−7 as we are essentially interested in the
macroscopic behavior of the reactor and the qualitative effects of heterogeneity.

Table 4.3: Bottom section mesh parameters
Diffusion Coefficient [m2/s] Number of Points

10−7 61 882
10−8 244 860

4.3 Parameter Estimation and Model Verification

The computational cost of simulations for this type of model makes it unpractical to fit
many parameters by minimizing the difference between model outputs and experimental
data. Instead, we will use parameters values from [56], that were obtained by fitting a
simpler compartment ODE model to experimental data of the reactor that we study here.

Figure 4.3: Bottom-Middle interface at 8h after a 10 % change of inflow concentration
with mixing flow rate Qmix = 1000 L/h and different diffusion parameters. Left D = 10−6,
Center D = 10−7, Right D = 10−8.

Figure 4.4: Bottom-Middle interface at 8h after a 10 % change of inflow concentration
with mixing flow rate Qmix = 0 L/h and different diffusion parameters. Left D = 10−6,
Center D = 10−7, Right D = 10−8.
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Figure 4.5: Comparison with ODE model

This simpler model was also based on the 2 reactions model of [13] and it was shown that
it is capable of reproducing the input-output behavior of the reactor, so that we will use
the same growth function parameters and yield coefficients.

However, this work did not consider density dependent growth functions or biomass
death rates and therefore we must estimate these parameters. For the death rates, it
is generally accepted that they are small compared to the maximum growth rate and
therefore we will take, somewhat arbitrarily, τ1 = 0.1 · µmax1 and τ2 = 0.1 · µmax2 .

For the density dependence parameters (c1, c2), we will use the same experimental
data used to fit the model of [56], which contains records of VFA concentration. There
is however no data for S1 and therefore to get a first estimate of c1, we use the simpler
model of [56]. Indeed, this model takes into account the physico-chemical dynamics of
the reactor (including pH, alkalinity, strong ions, inorganic carbon and carbon dioxyde)
for which experimental data was available and since these variables depend on S1, we can
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Figure 4.6: VFA (S2) concentrations at different heights within the reactor (30 and 90
cm from the bottom) and at output, for the 3D model and experimental data. Values of
the 2 zone ODE model of [56] are also shown.
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assume that the model represents correctly the input-output behavior of S1, especially
when the reactor is in a steady state. Therefore, to estimate c1, we have run simulations
for various values of this parameter and we then take the value for which our model
converges to the same steady state as the model of [56]. Figure 4.5 illustrates the best fit.

Now, using the experimental data, we can estimate c2, the parameter of the second
growth function. The VFA concentration was measured from the output but also at
several points within the reactor, at heights of 30 and 90 cm from the bottom. This will
allow us to check how well our model can represent the spatial gradient of concentrations
within the reactor. Figure 4.6 illustrates the best fit, along side the output of the simpler
model. Notice that the 3D model captures well the position where most of the degradation
takes place and is also capable of reproducing the vertical variation better than the ODE
model.

4.4 Impact of Recirculation and Mixing

The value of this model is that it can reproduce the spatial distribution of the contents
of the reactor and thus can help to understand the internal dynamics. In particular, the
detailed representation of the physical processes of advection and diffusion makes this
model a valuable tool to study the impact of physical operational parameters, such as the
recirculation and mixing flowrates. In this section we explore this question with numerical
simulations of tracer experiments and of the full model.

4.4.1 Tracer Pulse

The first simulations that we propose are numerical versions of tracer pulse experiments,
which is a common method of characterizing and understanding the hydrodynamics of
reactors. These consist in releasing a short pulse of an inert substance, the tracer, in
the inflow and measuring the concentration at the output. For our simulations, we will
therefore run the model with only one substrate and no bio-reactions. Starting from a
homogeneous initial condition, we consider a short pulse of high influent concentration,
with Sin = 60 g/L for 1 min.

Figure 4.7 shows the tracer concentration in the reactor during the first 5 hours. The
first observation that we can make is that the bottom mixing system does not induce a
circular current in the whole of the bottom and instead, mixes the tracer only in a small
section. This can be attributed to the fact that the input and output of the mixing system
are close to each other and therefore the fluid exiting this system is pulled back towards
it directly. This suggests that the complete homogenization of the bottom is achieved not
only through advection but that diffusion is also important.

This simulation also shows that, although a portion of the tracer goes directly up and
out, an important part of the tracer is pulled in by the mixing system and is delayed before
going up. This is confirmed by comparing the output concentrations with and without
mixing, i.e. for Qm = 1000 L/h and Qm = 0, as show in Figure 4.8. Indeed, the initial
spike and the total mass exiting during the first days (proportional to the integrals of the
curves) is much higher without mixing. This indicates that with mixing an important
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part of the tracer remains trapped in the bottom of the reactor and therefore the mixing
system also acts as a delay.

Now, to study the impact of the recirculation flow rate, we have run tracer simulations
for Qr ∈ {50, 100, 150, 200} and we show the tracer output concentration in Figure 4.9.
Notice that for Qr = 100, the initial spike is greatly diminished and seems to disappears
completely for Qr = 50. In fact, for Qr = 50, the maximum output concetration is
not reached at first, which indicates that the pulse of tracer has mainly gone through
the mixing pump. More generally, the mixing system becomes proportionally stronger
as the ratio Qm/Qr becomes higher. The result is that for a given mixing flowrate,
better homogenization is achieved with smaller recirculation flow rates, in the sense that
perturbations of the input, like the pulse of tracer, are absorbed by the mixing system.

Nonetheless, in all cases, after the initial spike the reactor behaves similarly to a well
mixed chemostat, with the output concentration slowly decreasing. Indeed, on longer
timescales, the diffusion process helps with the homogenization of the reactor, for all
mixing and recirculation flowrates.

4.4.2 Impact on Biological Activity

Unlike the inert tracer, the substrates will not always tend towards an even distribution,
since they are consumed through the bio-reactions. Therefore, we now look at the im-
pact of the flowrates on the biological activity and we are primarily interested in reactor
performance at steady state.

To study the influence of the recirculation flowrate Qr, we have run simulations for
a range of flowrates from 50 to 200 L/h and we plot the steady state values for the
output substrate concentration S1 and S2 and the methane flowrate in Figure 4.10. It
appears that a smaller recirculation flowrate gives better results, in particular in terms
of output concentration and for Qr = 50 L/h there is 7% less S1 and 12% less S2 than
for Qr = 150L/h. For the biogas production, the difference is a lot smaller, with Qr =
50 L/h there is only 1.7 % more methane compared to standard operating conditions.

Figure 4.7: Tracer concentration for standard conditions Qr = 150 L/h and Qm =1000
L/h, at 1, 2, 3, 4 and 5 hours after pulse.
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Figure 4.8: Tracer output concentration with and without bottom mixing and Qr =150
L/h

Nonetheless, there is a clear tendency and the reactor operates more efficiently with lower
recirculation, especially considering the energy gain of pumping less.

Figures 4.11 and 4.12 show the distributions of VFA and methanogenic biomass for
Qr = 50 and 150 L/h. Observe that for the slower recirculation rate, the variations
of substrate and biomass concentrations are a lot sharper and the reaction takes place
mainly at the beginning of the tubes. This can be explained by the fact that, because of
the lower recirculation rate, the influent concentration Sif

k (k = 1, 2) is less diluted as the
substrate concentration entering the bottom is

Sin
k =

QrS
r
k +QinS

if
k

Qr +Qin

.

Then, a higher substrate concentration arrives in the tubes, which translates into a higher
growth rate. This leads to more biomass, which also increases the growth rate and this
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Figure 4.9: Tracer output concentration for various recirculation flowrates and Qm =1000
L/h
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turns into a positive feedback, which is only balanced by the density dependence of the
growth rate. The result is that the substrate is rapidly consumed until the concentration
drop to levels at which the growth rate is very low and therefore little reaction occurs in
the upper part of the tubes.

This phenomenon is the reason why the biomass density dependence and substrate
inhibition of the growth rate must be correctly taken into account. In our case, these
results must be taken with caution, as the growth rate parameters where obtained with
data that had low concentrations of substrate and thus the obtained values are not very
accurate for high substrate concentrations. Notice in particular that the substrate inhibi-
tion constant Ki of the second growth rate is very high, so that this function is very close
to a Monod function [64] and therefore a lower value should be used.
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Figure 4.10: Steady state values for the output substrate concentration S1 and S2 and
the methane flowrate for a range of recirculation flowrates Qr ∈ [50, 200] L/h.

4.5 Conclusion

In this work, a 3D model of an Upflow Fixed Bed bioreactor was developed and it was
shown that it is capable of reproducing experimental data and in particular, the vertical
variations of substrate concentration. Then, with numerical simulations, the impact of
heterogeneity on biological activity was studied. A number of conclusions can be drawn
from this work.

• First, we have shown the value of simpler models in terms of physical representation:
without turbulence or multi-phase flow, this model can reproduce experimental data
and help to better understand internal dynamics of the reactor.

• Despite the reduced complexity compared to other 3 dimensional models, the differ-
ence of timescales between the physical and biological process mean that simulations
are computationally intensive. Serious work is needed to optimize the numerical
method and implementation.

• The efficiency of the bottom mixing system is governed by the ratio Qm/Qr and
its influence is mainly seen during the transients, by delaying or absorbing and
smoothing out perturbations. The closeness of the input and output of this mixing
system is detrimental and the system might be more efficient if they were further
apart.
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Figure 4.11: Distribution of S2 and B2 at steady state with Qr = 50 L/h.

Figure 4.12: Distribution of S2 and B2 at steady state with Qr = 150 L/h.
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• The bioreactor could be more efficient with a lower recirculation flow rate. However,
this leads to higher substrate concentration at bottom which could destabilize re-
actor. Further experimental data is necessary to confirm this result and in order to
have adequate representation of inhibition due to high substrate and biomass levels.
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Chapter 5

Conclusions

The purpose of this thesis was the study of optimal control problems and mathematical
models for the maximisation of biogas production. We present here the main contribution
of this thesis and the perspectives of future work.

• Chapter 2

- We presented a method to obtain an estimation of the value function of the
problem of maximization of biogas production in a chemostat on a finite hori-
zon, thereby establishing sub-optimality bounds for controls used in practice,
for a large class of substrate and biomass dependent growth functions. For the
infinite horizon, we showed that the value function of the discounted problem
converge when the discount rate goes to 0 and that the limit is equal to the
value function of the average reward.

- The time horizon influences the choice of the best MRAP type feedback. For
short horizons it is best to drive the chemostat to a substrate level that max-
imize the biogas flow rate on the set { x

sin−s = x0

sin−s0}. On the other hand, as
the horizon becomes longer, it is best to drive the system to a maximizer on
the set {x + s = sin}, and this becomes optimal, on average, for an infinite
horizon.

- The methods developed could be extended to more complex models. For ex-
ample, it is straightforward to show that for the two reaction model, there is a
2 dimensional invariant set that is attractive for persistently exciting controls.
Then, it could be shown that any control driving the system to a maximizer
on the invariant set is optimal for the average reward on an infinite horizon,
although the existence of such a control is not guaranteed. On the other hand,
with appropriate conditions on the growth function, we could establish an esti-
mation of the value function and we could find sub-optimal control by studying
the problem for initial conditions on the invariant set.

• Chapter 3

- We presented a method to transform the Hamilton-Jacobi-Bellman (HJB)
equation into a fixed point equation by writing extremal controls as functions
of the Hamiltonian. This allowed us to developed an algorithm to identify the
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singular arc of a candidate to optimal control. The computed control is ob-
tained in feedback form and depends on the initial condition and time horizon
considered.

- This method could be extended for more general problems to identify singular
arcs. For example, for systems with dynamics that are affine in the control, it
should be possible to write a expression of extremal controls that depends on
the Hamiltonian and then our algorithm could be used to compute the singular
arc.

• Chapter 4

- We have introduced a spatially heterogeneous model of a real bioreactor, ca-
pable of reproducing the spatial gradient of substrate concentration. It helps
to better understand the internal dynamics of the reactor and shows that it is
not always important to consider overly complex fluid dynamics.

- Our preliminary results indicate that a heterogeneous reactor is more efficient
than a well mixed device. However, we must accurately take into account
inhibition phenomenons to confirm our results. For example, we could consider
a different density dependence term in the growth rate, such as

g(B) =
1

1 + cB2

in order to have a reaction rate that goes to 0, when biomass concentrations
become very large.

- The difference of timescales between the physical and biological process make
it impossible to consider complex optimization problems due to the high com-
putational cost of simulations. However, simulations have shown that although
there are variations at reactor scale, concentrations are ’locally’ homogeneous.
This could be accurately approximated by a compartment model, although
more complex than the 2 zone model of [56]. Such a model would be much
faster to simulate and realistic optimization problems could be considered. Our
model could be used to determine the configuration of the interconnections of
the compartment model by minimizing the difference between both models.
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[42] L. Grüne, C. M. Kellett, and S. R. Weller, On the relation between turn-
pike properties for finite and infinite horizon optimal control problems, Journal of

84



Optimization Theory and Applications, 173 (2017), pp. 727–745.

[43] W. Gujer and A. J. Zehnder, Conversion processes in anaerobic digestion,
Water science and technology, 15 (1983), pp. 127–167.

[44] A. Guwy, F. Hawkes, S. Wilcox, and D. Hawkes, Neural network and on-
off control of bicarbonate alkalinity in a fluidised-bed anaerobic digester, Water Re-
search, 31 (1997), pp. 2019–2025.
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